
On the Quantum Hardness of Matching Colored
Triangles

MSc Thesis (Afstudeerscriptie)
written by

Koen Leijnse
(born April 24th, 1996 in The Hague, Netherlands)

under the supervision of Harry Buhrman and Florian Speelman, and
submitted to the Board of Examiners in partial fulfillment of the

requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
07-07-2022 Harry Buhrman (co-supervisor)

Ronald de Haan
Maris Ozols
Florian Speelman (co-supervisor)
Yde Venema (chair)



I would like to dedicate this thesis to Soppie and Kees



Declaration
I hereby declare that except where specific reference is made to the work of
others, the contents of this thesis are original and have not been submitted
in whole or in part for consideration for any other degree or qualification in
this, or any other university. This thesis is my own work and contains nothing
which is the outcome of work done in collaboration with others, except as
specified in the text and Acknowledgements.



Acknowledgements
I would like to acknowledge my supervisors Florian, Subha and Harry for guid-
ing me through the thesis. Our meetings were always very fun and inspiring,
you made the whole experience enjoyable and stress-free.

Furthermore, I would like to thank Andris Ambainis for providing us with the
idea to use Variable Time Grover Search to solve ∆-Matching Triangles
and Triangle Collection quickly.

Also my friends, for keeping me sane.

My family, for supporting me whatever I do.

And God, for granting me insight and knowledge.



Abstract

Classically, many problems can be shown to have computational lower bounds
in their time complexity conditioned on the hardness of three popular prob-
lems; k-SAT, 3SUM and APSP. This is done through fine-grained reduc-
tions and research in this classical field has recently exploded, as can be seen
in V. Williams’ overview [52]. The reductions from all three popular prob-
lems to two intuitive graph triangle problems, ∆-Matching Triangles and
Triangle Collection, makes for a notable result in the field of fine-grained
computational complexity [3]. By reducing all three problems to the two graph
triangle problems Abboud, V. Williams and Yu prove that if we find an O(n3−ϵ)
time algorithm, with n the number of nodes and ϵ > 0, for either of the two
graph triangle problems, all three hardness conjectures must be false. This
result makes the two problems very worthwhile to work with.

Many computational problems allow for speed-ups on quantum computers
and recent work has taken the concept of fine-grained reductions to quantum
computers to prove many new conditional quantum lower bounds based on
quantum hardness conjectures for k-SAT and 3SUM [1, 6, 13, 15]. Con-
tinuing this work, we formulate an n2.5−o(1) quantum hardness conjecture for
APSP and provide arguments for why this hardness conjecture is likely to
be valid in the quantum case. Based on this conjecture, we prove a se-
ries of quantum lower bounds for graph and matrix problems. Starting at
APSP we follow the classical chain of reductions from [3, 53] all the way
through to ∆-Matching Triangles and Triangle Collection, first re-
viewing the classical reductions and then applying them in the quantum set-
ting. We do the same for k-SAT, proving the quantum hardness of the two
graph triangle problems based on the Quantum Strong Exponential Time
Hypothesis from [1], using classical reductions from [3]. Combined with
quantum hardness results based on 3SUM proven in [13], we show that an
O(n1.5−ϵ) algorithm for ∆-Matching Triangles, with ω(1) ≤ ∆ ≤ no(1), or
Triangle Collection would contradict all three quantum hardness conjec-
tures, mirroring the classical result.

The thesis finishes by showing matching upper bounds for all prob-
lems that we reduce APSP to. For ∆-Matching Triangles and
Triangle Collection we find matching upper bounds by using the Variable
Time Grover Search algorithm from [6] as suggested by Ambainis. For all other
problems, matching upper bounds are found through a simple application of
Grover Search.



Contents

1 Introduction 4
1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 13
2.1 Classical Computational Complexity . . . . . . . . . . . . . . . 13

2.1.1 Efficient Computation . . . . . . . . . . . . . . . . . . . 14
2.1.2 Random-Access Machines . . . . . . . . . . . . . . . . . 16
2.1.3 Complexity Classes . . . . . . . . . . . . . . . . . . . . . 18
2.1.4 Randomized Algorithms . . . . . . . . . . . . . . . . . . 20
2.1.5 Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Quantum Computing . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Bounded-Error Quantum Time . . . . . . . . . . . . . . 25
2.2.2 Quantum Queries and Oracles . . . . . . . . . . . . . . . 26
2.2.3 Quantum Speed-Ups . . . . . . . . . . . . . . . . . . . . 27

2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Known Fine-Grained Reductions 31
3.1 The Fine-Grained Model . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Coarse-Grained Reductions . . . . . . . . . . . . . . . . 32
3.1.2 Fine-Grained Reductions . . . . . . . . . . . . . . . . . . 33
3.1.3 Popular Hardness Conjectures . . . . . . . . . . . . . . . 34

3.2 Fine-Grained Reductions From APSP . . . . . . . . . . . . . . 42
3.2.1 APSP and Matrix Multiplication . . . . . . . . . . . . . 42
3.2.2 Graph Triangle Finding . . . . . . . . . . . . . . . . . . 46

3.3 Reductions from 3SUM, SAT and k-SAT . . . . . . . . . . . . 55
3.3.1 SAT and k-SAT . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Extremely Popular Conjecture . . . . . . . . . . . . . . . . . . . 61

4 Quantum Fine-Grained Conditional Lower Bounds 63
4.1 Hard Quantum Problems . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Quantum Fine-Grained Reductions from APSP . . . . . . . . . 70

2



4.3 Quantum Fine-Grained Reductions from SAT and k-SAT . . . 75

5 Quantum Upper Bounds 78
5.1 Delta Matching Triangles and Triangle Collection . . . . . . . . 79

6 Conclusion 83
6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A Graph Definitions 85

3



Chapter 1

Introduction

The field of computational complexity is a well-developed and well-studied
field. One of the major open questions in the field is whether the class of
easily solvable problems (P) the same as the class of easily verifiable problems
(NP).1 In other words: Is it necessarily easier to verify a solution than it
is to find one? The question has been around for a long time, and we may
wonder whether an answer can even be found. The consensus seems to be
that it is more likely that the classes are different. The question of whether
P is the same as NP can be rephrased as whether there exists a polynomial
time algorithm that can determine whether a propositional logic formula is
satisfiable or not. This satisfiability problem, known as SAT and formally
defined in Chapter 3, is NP-complete, meaning that SAT is at least as hard as
any other problem in NP. This comparable hardness makes it so that if we find
an efficient algorithm for just one NP-complete problem, we can solve all NP-
problems efficiently. We show NP-completeness through reductions which lets
us solve problems by using oracles to other algorithms. Comparable hardness
provides us with structure in the computational complexity classes, regardless
of the outcome of the P vs. NP question.

The different universes resulting from whether P is the same as NP have
been explored in detail by Impagliazzo in [32]. For example, if we had a fast
satisfiability algorithm, cryptography as we use it today would fail, since it
relies on the assumption that certain parts of the code are ‘hard’ to break, in
the sense that they take an exponential amount of time. A fast satisfiability
algorithm could be used to break these codes quickly. While the consequences
of finding a fast algorithm for satisfiability would be of great significance, it
is much more likely that such an algorithm does not exist and the universe
in which this is the case has been studied much more in depth. The Strong
Exponential Time Hypothesis (SETH), proposed by Impagliazzo and Paturi

1Technical terms such as computational classes, computational problems and other com-
putational lingo will be formally defined in appropriate parts of the thesis.

4



Section 1.0

in [33], states that indeed, no algorithm exists that solves satisfiability in sub-
exponential time. This is a stronger assumption than simply assuming that
P ̸= NP: It is possible that P ̸= NP but satisfiability can be solved in sub-
exponential, i.e. 2o(n), time, since that would not admit the satisfiability prob-
lem to the class P. From this hypothesis we can prove plenty of interesting
results, mainly the conditional hardness of many computational problems in
NP using reductions as shown in [18].

Reductions were commonly used to show that a problem is in P by reduc-
ing it to another problem in P or that a problem is NP-complete by reducing
another NP-complete problem to it. These reductions don’t tell us much about
the actual run time of our problems; a problem can be in P, but still require
time of some very high polynomial degree. In practical settings, such as ap-
plications of algorithms, we are interested in the exact run times of problems,
at least asymptotically. Cygan, Dell, Lokshtanov, Marx, Nederlof, Paturi,
Saurabh and Whalström showed in [18] that many other NP-hard problems
have a run time equivalent to SAT. This implies that under SETH, no sub-
exponential algorithms can exist for these problems either. We already knew
that these problems are NP-hard, but the definition of NP-hardness combined
with SETH alone does not exclude the possibility of a sub-exponential al-
gorithm existing for an NP-hard problem other than SAT. To prove these
results, Cygan et al. used reductions that preserve sub-exponential run times,
a guarantee that is not provided by the standard Turing reductions.

This line of thinking, where we use the conjectured hardness of a single
problem to show conditional lower bounds of many other problems, was taken
a step further recently by proving hardness of many computational problems
in P based on the conjectured hardness of 3SUM and APSP [27, 41, 43,
53]. In the 3SUM problem we are tasked with finding three integers in a
set of integers that sum to 0, while APSP is a popular graph problem with
applications in networks, where we have to find the shortest paths between all
nodes in a graph. Just like SAT, the problems 3SUM and APSP are popular
computational problems with an upper bound on their complexity that has not
been improved significantly in many years [51]. There are many computational
problems in P for which we have no reductions from SAT, so it seems natural
to formulate conjectures similar to SETH for the other popular problems that
have had no prominent speed-up in a long time.

The conditional lower bounds are proven by conjecturing the hardness of
one of the three problems and using fine-grained reductions, a special type of
computational reduction that lets us prove lower bounds of specific polyno-
mial degree. Where the comparable hardness of NP-complete problems versus
problems in P is coarse grained in the sense that it draws a coarse conditional
boarder between the complexity classes P and NP, showing conditional lower
bounds of polynomial degree in the input size is fine-grained: We show com-

5



Chapter 1 Section 1.0

parable hardness within the class P. We can then prove lower bounds on the
specific asymptotic run time of many computational problems based on one of
the three hypotheses.

It would of course be great if we had a reduction between any two of
the three problems, as this would make one conjecture weaker than the oth-
ers. If we were able to prove, e.g. a conditional lower bound on 3SUM
from APSP, then conjecturing hardness of 3SUM would imply hardness of
APSP, since we’d be able to use a fast 3SUM algorithm to solve APSP
fast as well. Unfortunately this is not the case, but we do have the next
best thing, problems to which all three hard problems reduce. In [3] Ab-
boud, V Williams and Yu found two problems, ∆-Matching Triangles
and Triangle Collection, to which all three hard problems reduce. Both
∆-Matching Triangles and Triangle Collection are intuitive graph
triangle problems: In ∆-Matching Triangles we are tasked to find a triple
of node colors for which there are ∆ triangles in a node-colored graph and for
Triangle Collection we are asked whether there is a triangle in the graph
for every possible triple of colors. Finding an O(n3−ϵ) algorithm for one of
these problems would then imply that all three popular hardness conjectures
are false, making the graph triangle problems very worthwhile to work with.

Since many of the computational lower bounds proved using fine-grained
reductions are of polynomial degree, it becomes very important to be clear
about what computational model we are using to run our reductions on.
For coarse-grained hardness this is not as important: the common classical
computational models give rise to the same complexity classes P and NP. We
often assume when working in fine-grained computational complexity that our
machines are classical and have random access memory. We can make these
assumptions, because they model how physical computers work. With the rise
of quantum technologies, it becomes more and more relevant to take classically
established frameworks and results and consider the advantages that could
come with changing the classical computational model to a quantum model.
We want our computational models to reflect what our physical computers
are capable of and although quantum computers come with many physical
challenges, they also promise additional computing power.

In quantum computing we let our computational models work with qubits,
allowing for superposition of bits, entanglement and interference effects. The
result is that many computational problems can be solved faster on a quantum
computer than on a classical computer. Many of the speed-ups are due to
variations and different applications of Grover Search [29], which provides a
quadratic speed up as compared to classical search algorithms. As such, any
computational problem that has a search algorithm embedded can likely be
sped-up on a quantum computer.

6



Section 1.1

Since Grover Search provides only a quadratic speed-up, it doesn’t let us
solve NP-complete problems in polynomial time. As of this moment, there is no
known efficient quantum algorithm for any NP-complete problem, although we
do have an efficient quantum algorithm for an NP problem that is not known to
be in P. In 1994 Shor found a quantum algorithm that efficiently decomposes
composite numbers into smaller integers [45]. Because there exists no classical
algorithm that solves integer factorization in polynomial time, the speed-up on
a quantum computer is exponential. However, integer factorization is not NP-
complete, and the speed-up does not have any bearing on whether quantum
computers can solve all NP problems efficiently.

In recent research the ideas from fine-grained computational complexity
have been extended to quantum computational models with the formulations
of quantum hardness conjectures for SAT and 3SUM [1, 15, 13]. By appli-
cations of Grover’s Search algorithm we find speed-ups for all three popular
problems and the lower conjectured hardness of the popular problems leads
to smaller lower bounds for the problems they are reduced to. Our popular
problems don’t have as much history in the quantum setting as they do in
the classical setting, and it might therefore be unclear how we should formu-
late our hardness conjectures. Many of the problems that we reduce to have
matching upper bounds through simple applications of Grover Search, which
to a certain extent validates our hardness conjectures: Suppose our conjec-
tured lower bound is too big. Then, if we reduce our popular problems to
many other computational problems, we’d only have to find an algorithm for
one of these problems that beats the proven conditional lower bound to show
that our conjectured hardness was indeed too big. As such, the more problems
we reduce to and the more matching upper bounds we find, the more likely we
are to have arrived at the correct hardness conjecture.

The plan for this thesis is to continue research in quantum fine-grained com-
plexity in the natural direction: We formulate a quantum hardness conjecture
for the third popular problem, APSP, and investigate the known classical fine-
grained reductions to find out what conditional lower bounds we can prove in
the quantum setting. We also continue the unifying approach of reducing all
three popular problems to the common problems ∆-Matching Triangles
and Triangle Collection.

1.1 Results
We explore the quantum fine-grained computational complexity landscape,
starting by adding a quantum hardness conjecture for APSP to the two pre-
viously formulated hardness conjectures for k-SAT and 3SUM.2 Classically

2Note that in the previous section we used SAT to refer in general terms to the satisfi-
ability problem. Since SETH is formally defined for k-SAT and implies hardness of SAT,

7



Chapter 1 Section 1.2

APSP is conjectured to have no O(n3−ϵ) time algorithm where n is the num-
ber of nodes in the graph and for ϵ > 0. Although in fine-grained literature we
often work with the shortest distance version of APSP, the cubic lower bound
is conjectured for both the version of APSP where we are tasked to output
the explicit paths between all points and the one where we have to output the
shortest distances between all points. We investigate natural speed-ups to the
classical algorithms for both versions and arrive at an n2.5−o(1) lower bound for
both versions of APSP in the quantum setting.

Having ‘natural’ algorithms for APSP that match the conjectured lower
bound is of course not a very strong argument for the conjecture being valid.
Furthermore, we can’t claim that an O(n2.5−ϵ) algorithm has not been found
for many years, as in the classical case. However, for all conditional lower
bounds that follow, we find matching quantum upper bounds, further reinforc-
ing the validity of our quantum hardness conjecture for APSP as discussed
in the previous section. We reduce APSP to ∆-Matching Triangles and
Triangle Collection and prove many conditional lower bounds for in-
termediate problems in the process. We also prove the same lower bounds
for ∆-Matching Triangles and Triangle Collection conditioned on
the quantum hardness of k-SAT and, using a result from [13], conditioned
on the quantum hardness of 3SUM. This lets us prove a lower bound of
n1.5−o(1) to both ∆-Matching Triangles, for ω(1) ≤ ∆ ≤ no(1), and
Triangle Collection based on a quantum version of the extremely popular
hardness conjecture from [3].

Lastly, for all problems for which we prove quantum lower bounds we pro-
vide matching upper bounds. In most cases this is done through a simple
application of Grover Search. In the cases of ∆-Matching Triangles and
Triangle Collection we find matching upper bounds by applying Variable
Time Grover Search from [6].

An overview of all relevant classical- and quantum lower bounds based on
hardness conjecture for APSP can be found in Table 1.1 below. We also
provide the corresponding upper bounds.

1.2 Thesis Outline
Here we give a brief overview of how the thesis is structured.

After this introduction we continue the thesis with a chapter on pre-
liminary knowledge in Chapter 2. We introduce some basic concepts from
computational complexity and quantum computing and discuss our computa-

we talk about k-SAT when discussing the formal hardness of satisfiability. We make the
distinction between the two problems more clear in Chapter 3.

8



Section 1.2

Problem Classical Quantum
(min,+)-Matrix
Multiplication

Lower bound n3−o(1) [25, 37] n2.5 Theorem 4.2.2
Upper bound O(n3) (∗) O(n2.5) (∗∗)

All-Pairs
Negative Triangle

Lower bound n3−o(1) [53] n2.5 Theorem 4.2.3
Upper bound O(n3) (∗) O(n2.5) (∗∗)

Negative Triangle Lower bound n3−o(1) [53] n1.5 Theorem 4.2.4
Upper bound O(n3) (∗) O(n1.5) (∗∗)

0-Weight Triangle Lower bound n3−o(1) [54] n1.5 Theorem 4.2.5
Upper bound O(n3) (∗) O(n1.5) (∗∗)

∆-Matching
Triangles

Lower bound n3−o(1) [3] (∗ ∗ ∗) n1.5 Theorem 4.2.6 (∗ ∗ ∗)
Upper bound O(n3−o(1)) [3] (∗ ∗ ∗) O(n1.5) Corollary 5.1.2 (∗ ∗ ∗)

Triangle
Collection

Lower bound n3−o(1) [3] n1.5 Theorem 4.2.7
Upper bound O(n3) (∗) O(n1.5) Theorem 5.1.2

Table 1.1: Overview of lower bounds based on a hardness conjecture for APSP,
both in the classical and in the quantum setting. Corresponding upper bounds
are also provided.
(∗): These upper bounds are the most straight forward algorithms, like ex-
haustive search, and therefore have no particular source.
(∗∗): By applying Grover Search, potentially as subroutine.
(∗ ∗ ∗): Holds only for ω(1) ≤ ∆ ≤ no(1).

tional models. In this thesis we will be comparing lower and upper bounds
for computational problems on different computational models, and we also
mentioned in the introduction that we need our models to have random access
memory. It is therefore important to clearly state on which computational
models we will be working in the classical and quantum settings respectively.

In Chapter 3 we present the classical framework of fine-grained compu-
tational complexity and provide definitions for the computational problems
encountered in this thesis. We then review known fine-grained reductions
from APSP to ∆-Matching Triangles and Triangle Collection
through 0-Weight Triangle, where we have to determine whether a
graph contains a triangle of 0 total edge weight. We also review the
reductions from k-SAT and SAT to ∆-Matching Triangles and
Triangle Collection. This combined with the known reduction from
3SUM to 0-Weight Triangle from [54] lets us restate the classical hardness
result from [3] for ∆-Matching Triangles and Triangle Collection
based on the disjunction of the three popular hardness conjectures. The
problems and classical reductions discussed in this section will be exactly

9



Chapter 1 Section 1.3

those for which we prove quantum lower bounds in Chapter 4 and quantum
upper bounds in Chapter 5. We don’t explicitly review the reductions from
3SUM since the quantum reductions from 3SUM to 0-Weight Triangle
have already been discussed in [13].

We proceed in Chapter 4 by considering fine-grained complexity in our
quantum computational model. We give an overview of the new hardness
bounds for k-SAT and 3SUM in the quantum setting and review quantum
algorithms for APSP to arrive at a n2.5−o(1) quantum lower bound for APSP.
We then go over the reductions from Chapter 3 to find quantum lower bounds
for many computational problems, conditioned on the quantum hardness of
APSP. We end up with quantum lower bounds for ∆-Matching Triangles
and Triangle Collection and review also the reductions from k-SAT and
SAT to these two problems. This combined with the quantum fine-grained
reduction from 3SUM to 0-Weight Triangle from [13] lets us prove
hardness of ∆-Matching Triangles and Triangle Collection based
on extremely popular quantum conjecture.

Chapter 5 is dedicated to discussing quantum upper bounds to the
different computational problems encountered in the thesis. Many of the
upper bounds are through simple application of Grover Search. Upper bounds
for ∆-Matching Triangles and Triangle Collection are found by
using Variable Time Grover Search from [6].

We finish the thesis in Chapter 6 with a discussion of the results found and
suggestions for future research.

1.3 Related Work
Before fine-grained computational complexity was considered a sub-field,
lower bounds implicitly based on the hardness of one of the popular prob-
lems were already found. After the hardness conjectures and fine-grained
reductions were formally defined, the amount of results has exploded. A lot
of recent work on fine-grained computational complexity was spearheaded by
V. Williams, who provides excellent overviews of many of the old and recent
results in [51, 52].

Work on lower bounds from k-SAT started with the formulation of SETH
and ETH in [33] and was continued in [34]. The first hardness results were
for other NP-problems, as shown in [18]. Work on proving polynomial lower
bounds based on SETH was started in [50], where a quadratic lower bound
was proven for the Orthogonal Vectors problem, where an algorithm

10



Section 1.3

is tasked with determining whether a set of vectors contains two orthogonal
vectors. Since k-SAT is naturally parameterized, it is also the object of
study for parameterized conditional lower bounds, as found in [19]. In
recent years many hardness results have been found based on Orthogonal
Vectors and SETH, such as hardness for ∆-Matching Triangles and
Triangle Collection from [3]. An overview can be found in [52]. Upper
bounds for k-SAT are studied in [42].

Proofs for lower bounds based on 3SUM started with the formu-
lation of a hardness conjecture for 3SUM in [27]. Notable reductions
are 3SUM’s hardness equivalence to Convolution-3Sum [41] and the
reduction from Convolution-3Sum to 0-Weight Triangle [54]. In
Convolution-3Sum we are asked to determine whether for an array of
integers S there exists indices i, j such that S[i] + S[j] = S[i + j]. Other
recent reductions can be found in the overview in [52]. Although 3SUM
is a relatively simple problem, extensive work has been done to improve
its run time, which depends heavily on the computational model used and
the bounds on the set of integers from which a problem instance may
draw its array. Nonetheless, no sub-quadratic algorithm has been found for
3SUM in the general case. Different n2−o(1) run times were found in [9, 16, 30].

The hardness of APSP was first officially formulated in [53], although many
earlier results already implicitly used it hardness, such as in [43] and the hard-
ness equivalence between APSP and (min,+)-Matrix Multiplication,
also known as the matrix distance product, from [25, 37]. Reductions from
(min,+)-Matrix Multiplication to All-Pairs Negative Triangle
and Negative Triangle from [53] will feature in this thesis alongside
the reduction from Negative Triangle to 0-Weight Triangle from
[54] and from 0-Weight Triangle to ∆-Matching Triangles and
Triangle Collection from [3]. In Negative Triangle we have to
determine whether an input graph contains a triangle of total negative
edge weight and in All-Pairs Negative Triangle we have to determine
for O(n2) pairs of nodes in a tripartite graph over O(n) nodes whether
they are part of a negative triangle. Cubic upper bounds to APSP have
been known for half a century. Famous are: the Floyd-Warshall algorithm,
the Bellman-Ford algorithm and lastly Johnson’s algorithm, which makes
use of Dijkstra’s single-source shortest paths algorithm [10, 22, 26, 35, 48].
The best known randomized O(n3−o(1)) algorithm for APSP was found in [49].

Not much work has been done in quantum fine-grained complexity. Quan-
tum versions of SETH were formulated in both [1] and [15] with reduc-
tions from k-SAT to different problems. The quantum hardness of 3SUM

11



Chapter 1 Section 1.3

was investigated in [7, 13], with [13] showing a quantum reduction to
0-Weight Triangle. No formal quantum hardness conjecture for APSP
has been made. For showing quantum upper bounds to the different prob-
lems that we have quantum reductions to, we make regular use of the Grover
Search algorithm from [29], the Grover Minimum Finding algorithm from [24]
and Variable Time Grover Search from [6].

12



Chapter 2

Preliminaries

This chapter introduces the different computational models that appear in the
thesis and lays the ground-works for the algorithmic language used throughout.
In the first section we discuss different classical models and explain which one
is the most appropriate for our work. We also provide some definitions and
tools that will help us in the analysis of the complexity of our algorithms. In
the second section we discuss the quantum model and which additions to the
usual quantum model will be necessary for us. We finish off the chapter with
a brief overview, comparison of the models and some final observations.

2.1 Classical Computational Complexity
In this section we describe some concepts from classical computational com-
plexity. We assume that the reader has some familiarity with the topic, but
for consistency’s sake will briefly go over the basics. We mostly follow [8] and
[19] for formalism, conventions and notation.

The field of computational complexity deals with computational problems,
the algorithms that allow us to solve them and the resources required to do
so. Computational problems are problems that may be solved by algorithms
and the algorithms themselves are executed in computational models. The
complexity of the algorithms is measured by the time or space required to run
them. The different models discussed here are definitions for different machines
or circuits that execute these algorithms. In the classical setting we will let
our algorithms be executed on machines as opposed to the circuits we will see
in the quantum setting.

Computational problems can be easily represented by boolean functions,
independent of the model in which they’re solved.

We will be comparing a framework for analyzing computational complexity
lower bounds in two different computational models. The main parameter
that we use for comparison in performance of the algorithms in different

13



Chapter 2 Section 2.1

models is their ‘time’ or ‘efficiency’, which we will define here first.

2.1.1 Efficient Computation
To judge which computational model is most suitable for our work we start by
laying the foundations for analyzing our algorithms.

To execute a set of instructions in a model we need to first translate our
instructions into the mathematical language of the model. The time required
to solve a problem in a model then depends on the time of the translation
and how long it takes to execute the translated instruction in our model of
choice. Usually this adds about a constant factor in steps, meaning that every
single instruction in the mathematical language of our problem leads to a
constant number of instructions in the model. These constant factors are not
very meaningful when running the algorithms on very large input. In order to
analyze our algorithms properly, we introduce big-O (or asymptotic) notation.
Big-O notation also allows us to define asymptotic upper and lower bounds.

Definition 2.1.1 (Big-O Notation). Let f and g be real-valued functions,
with g(n) strictly positive for large enough values of n. Then:

• If there are some positive constants c and n0 such that f(n) ≤ cg(n)
for n ≥ n0, then f(n) = O(g(n)).

• If there exists some c such that f(n) = O(g(n) logc(g(n))),
then f(n) = Õ(g(n)).

• If g(n) = O(f(n)), then f(n) = Ω(g(n)).

• If for any positive c there exists an n0 such that f(n) ≤ cg(n) for n ≥ n0,
then f(n) = o(g(n)).

• If g(n) = o(f(n)) then f(n) = ω(g(n)).

We care about the asymptotic complexity of our algorithms and write
down the time in big-O notation, which allows us to ignore the time cost of
translating our simple algorithmic instructions into model instructions or any
other type of asymptotically irrelevant overhead. Generally we parameterize
the time complexity in terms of the input size of the problem n. The
parameter n may refer to the length of the binary encoding of our problem,
but in many cases we parameterize the complexity by a more useful parameter
of the problem such as the number of nodes in a graph or distinct variables
in a propositional logic formula. If the more useful parameter is linear in
the binary encoding of the entire problem instance, the parameter and the

14



Section 2.1

problem encoding will have the same asymptotic size.

Next we need to clarify what it means to solve a problem in a model.
Our algorithms take a problem instance as input and produce an output, and
we can therefore view them as maps. Since the input can be encoded into
a binary language, we can view problems more specifically as functions over
the domain {0, 1}n, with n the size parameter for the given problem instance.
Decision problems with a ‘yes’ or ‘no’ answer then become Boolean functions
and problems outputting a different kind of data structure like a list as in
APSP will simply output another binary string.

Thinking of computational problems as functions and algorithms as maps
allows us to introduce the following notion.

Definition 2.1.2 (Computability). An algorithm R computes a function
f : {0, 1}n → {0, 1}m, if f(x) = R(x) for all x ∈ {0, 1}n.

• An algorithm computes a function f in time O(T (n)) if the machine
computes f and never takes more than O(T (n)) time to reach its output
state.

• An algorithm efficiently computes a function f if it computes f in
time O(nc) for some constant c.

In computational complexity terminology, efficient therefore means ‘in
asymptotic polynomial time’. What constitutes as ‘time’ for our algorithm
depends on the specific model in question, but is usually determined by the
amount of ‘basic operations’ the machine performs before arriving in its halting
state. Furthermore, it is important to note that in the way the above definition
for computable functions is worded we calculate a worst-case time complexity
when calculating the time it takes for a machine to compute a function.

We can encode problem instances in binary to provide as input to our algo-
rithm, but there are some problems that arise in doing so. First, encoding very
large numbers in binary will require a large amount of bits, so we can’t let our
problems run over unrestricted sets of integers. In computational complexity,
if n denotes the main variable for parameterizing a problem’s complexity, e.g.,
the number of nodes in a graph or the number of variables in a formula, we as-
sume that integers used in describing the problem instance, e.g., edge weights,
come from the interval [−nc, . . . , nc] for some constant c. This way we will
only need O(log(n)) bits to encode integers.

The second problem that arises is that the input can come in variable size.
If we want to be able to say that an algorithm solves a problem, we want the
algorithm to be able to solve it for any input size. For any computational
problem we then have a family of computable functions. Such families of

15



Chapter 2 Section 2.1

Boolean functions define languages as subsets of the set of all strings of any
length n,

{0, 1}∗ :=
⋃

n∈N
{0, 1}n.

For the family of Boolean functions {fn}n∈N with f : {0, 1}n → {0, 1} we have
language

Lf := {x : f|x|(x) = 1} ⊆ {0, 1}∗.

A single element x ∈ {0, 1}∗ is called an instance.

Definition 2.1.3 (Decidability). Let L ⊆ {0, 1}∗ be a language. An algo-
rithm R decides L in time O(T (n)) if for any x ∈ {0, 1}n it holds that R(x) = 1
if and only if x ∈ L and R(x) halts in time O(T (n)).

There are many types of computational problems that are not decision
problems, e.g. APSP. These problems cannot be represented by a Boolean
function. Common concepts such as the complexity classes P and NP are
defined for decision problems and for this section we will therefore stick with
these definitions. The definitions relying on decidability can easily be extended
to work for functional problems as well, by requiring that our machine or circuit
outputs the correct bit-string.

We use the same definition of efficiency when it comes to decidability as
we did for computability. In fact, whenever efficient is used in this thesis, we
mean ‘in polynomial time’.

2.1.2 Random-Access Machines
Without giving strict requirements for what an algorithm needs to be capable
of and what it is allowed to do, our definitions for efficiency and computability
are not of much use yet. There are no clear rules for what an abstract
machine needs to look like; so far it just needs to be able to compute functions
according to a set of instructions. Since we do want our abstract machine
to model physical computers, there are some limitations to what we should
and shouldn’t allow. There needs to be some way for the machine to be
implementable.

The first and most well known computational machine model is the Turing
Machine (TM). The TM should be familiar to the reader and is not the model
that we end up using for our analysis. However, since it can be considered as
a baseline for computational machines, we give a short informal description of
the model.

A TM is an abstract machine that consists of a series of tapes with symbols
and a set of instructions for reading and rewriting the tapes.

16



Section 2.1

More specifically, a TM is a collection of tapes divided into cells, each
containing a symbol. One of the tapes contains the machine input and another
will contain the machine output. The machine then starts in some input state
and uses a predefined set of instructions, provided by the transition function to
produce an output. While executing the instructions, the machine reads and
alters the symbols on the tapes using tape-heads and the transition function
tells the machine whether to move the tape-heads left, right or to stay. When
the tape heads reach a halting state, the output is read from the output tape.
Time on a TM is easily defined as the number of state transitions required to
go from the starting to the halting state.

There are many types of TM’s; machines with multiple tapes and with
different alphabets. The simplest type are single tape machines with a binary
alphabet: We have one tape that serves as input, write and output tape
with alphabet {0, 1}. Restricting our TM’s to a single tape can increase the
run-time at most quadratically compared to multi-tape machines [8], but
since this is not our actual working model, this won’t pose an issue.

In many areas of computational complexity, even this quadratic increase
from working on single-tape TM’s is of no concern, since any function that is
efficiently computable on a single-tape TM will be efficiently computable on
a multi-tape TM and vice-versa. In this thesis we work with algorithms that
have polynomial run times and as a result, do care about these differences in
polynomial factors and another problem arises for why TM’s are not the most
suitable machines for working in polynomial levels of complexity.

Consider for example a graph problem like the APSP, represented on a
graph with n nodes. We translate the adjacency matrix A to a binary code
and at some point during our algorithm we want to access the value A[ij].
This value will be stored somewhere in the binary code, and it may take
us O(n2) transitions of the tape head to read it. Our actual computers or
physical machines are designed to have direct access to such a value, and
we want our abstract machine to model that. Furthermore, the complexity
of many popular algorithms, such as binary search, is measured under the
assumption of random-access to certain data-structures. To incorporate
random-access in our model we define the random-access machine (RAM)
from [46].

The RAM is a machine that can:

• Execute simple operations such as basic arithmetic or if/else statements
in a single time step.

• Store an infinite amount of integers.

• Access memory in a single time step.

17



Chapter 2 Section 2.1

The main feature here is of course the fact that we can always access
stored integers in a single time step. The ‘simple operations’ specified for
the RAM are the same operations that a multi-tape TM can perform in
constant time. We can therefore view a RAM as a TM with memory tapes
whose memory can be accessed in constant time. More formally, this would
work by writing down a memory address on a write-tape, then querying the
specified memory address and receiving the contents of the memory cell on an
output tape. In this more formal description, accessing a cell of a bit-string
of length n would take O(log(n)) for writing down the bit index in binary. In
our formulation of RAM we choose to let our machine access memory in a
single time-step. We are more interested in polynomial bounds, and it is not
unconventional to ignore these logarithmic factors altogether.

Formulating the RAM in this somewhat loose way allows us to be quite
flexible in describing algorithms later on during the thesis. We don’t have to
stick close to a very rigorous mathematical language or encode instructions
into binary and can instead describe our algorithms more intuitively.

It can be shown that any algorithm executed on a RAM in time O(nc)
for some constant c can be executed on a TM in time O(nck) for some
constant k ≥ 0 [17]. That means that any problem that is efficiently decidable
on a TM is efficiently decidable on a RAM and vice-versa, but as expected,
it is still very possible that a RAM outperforms a TM asymptotically, which
is why we settle on the RAM as the appropriate computational model for our
work.

2.1.3 Complexity Classes
TM’s, RAM’s and other common computational models give rise to the same
classes of efficiently decidable languages and verifiable languages. It is therefore
useful to explicitly define the classes.

Definition 2.1.4 (P and NP). Let L ⊆ {0, 1}∗ be a language.

• The language L is in P if there is an algorithm that efficiently decides it.

• The language L is verified efficiently by an algorithm R if R runs in
polynomial time and if it holds that x ∈ L if and only if there is
some u ∈ {0, 1}O(|x|) such that R(x, u) = 1.

• The language L is in the complexity class NP if it can be verified effi-
ciently by an algorithm.

In the above definition, verification of a language means that given a solu-
tion or certificate to a problem, we can check efficiently whether the solution

18



Section 2.1

is correct. If we were to allow non-determinism in our machines, we could in
polynomial time compute one of an exponential amount of different solutions.
Since the space of certificates is exponential in the size of the instance x, an
alternative definition for the class NP is ‘the class of languages that can be
decided by a non-deterministic TM’. We’ll use the definitions synonymously.
Clearly it must be that P ⊆ NP, but whether P = NP is an important open
problem in computational complexity.

Whether it is true that P = NP may also be phrased as whether there
exists a language that is in NP but not in P. The most interesting candidates
are NP-complete problems. If we were to find a fast algorithm for an NP-
complete problem, we’d be able to solve all NP problems efficiently through
reductions. Before we go deeper into the notion of reductions, we need to talk
about oracles.

In some cases we may access the solution to certain problem instances in
a black box setting, and we can do that by querying an oracle. A RAM can
in one time-step query an instance x ∈ {0, 1}∗ to an oracle O ⊆ {0, 1}∗ to
find out whether x is contained in the language represented by O. Of course
constructing the specific oracle instance may take the RAM more than constant
time.

In cases where we don’t have an oracle to a desired language L, we can
simulate one by constructing an algorithm for L and then using the algorithm
as a black-box. Whenever we query the simulated black-box we incur a cost
in time complexity.

The idea to simulate oracles does require another component of our RAM
that we haven’t discussed; the capacity to simulate other RAM’s. In the
TM model we have the universal TM and similarly there is such a thing as
a universal RAM, the Random-Access Stored-Program machine (RASP). We
add the simulation of other RAM’s to the list of what our RAM is capable of.

If we can decide a language L efficiently using an oracle to an NP language,
then finding an efficient algorithm for the NP oracle would allow use to decide
L efficiently as well, using a simulated oracle. We use the definition of Turing
reductions to make this concept more clear.

Definition 2.1.5 (Turing Reductions). A language L is Turing-reducible to
a language L′, denoted as L ≤T L′ if there is an algorithm with oracle access
to L′, denoted RL′ that efficiently decides L.

• A language L is NP-hard if L′ ≤T L for any L′ in NP.

• A language L is NP-complete if it is NP-hard and in NP.

Reductions give us a notion of comparable hardness: Any NP-complete
problem is at least as hard as any NP-problem. If we find an algorithm

19



Chapter 2 Section 2.1

for any NP-complete language that computes it efficiently, we know that
it holds for every language in NP that it is also in P: Let L be a lan-
guage in NP and L′ the NP-complete language for which we have an
efficient algorithm. Since L′ is NP-complete, there is some oracle machine
with oracle L′ that decides L efficiently. We use this machine but instead
of querying the L′ oracle, we simply run the machine that decides L′ efficiently.

2.1.4 Randomized Algorithms

The object of this thesis is to investigate potential speed-ups of many compu-
tational problems on quantum computers as compared to classical computers.
The interesting quantum algorithms naturally turn out to be probabilistic due
to the uncertainty inherent to quantum measurements. To be sure that our
speed-ups come from quantum effects and not merely from allowing random-
ization, we need to include randomization in our classical machines as well.

On the level of the model, this simply means that at every step of the
algorithm our machines are allowed to make decisions based on probability
distributions. The consequence is that we end up with new complexity classes.

Definition 2.1.6. Let L ⊆ {0, 1}∗ be a language.

• The language L is in BPP if there is a randomized algorithm R such that
if x ∈ L it holds that R(x) = 1 with probability at least 2

3 and if x /∈ L
it holds that R(x) = 0 with probability at least 2

3 .

• The language L is in MA if there is a randomized verifier algorithm R
such that the following holds. If x ∈ L then it must be that there exists
a u ∈ {0, 1}O(|x|) for which R(x, u) = 1 with probability at least 2

3 . If x /∈
L then it must be that for all u ∈ {0, 1}O(|x|) it holds that R(x, u) = 0
with probability at least 2

3 .

It is clear that P ⊆ BPP and NP ⊆ MA. It is an open question
whether P = BPP, although it is believed to be indeed the case. Many prob-
lems for which efficient randomized algorithms had been found and for which
no efficient deterministic algorithm was known to exist were eventually solved
efficiently by a deterministic algorithm. Different derandomization techniques
can be used to turn a random algorithm into a deterministic algorithm with
only polynomial overhead [36]. For our comparative analysis this polynomial
overhead could of course be problematic, so we will stick to randomized algo-
rithms for our work. Similar arguments can be made for whether NP = MA.

20



Section 2.2

2.1.5 Circuits
The computational model of TM’s that we’ve talked about is one of many
classical computational models and because it models how classical algorithms
work and in a somewhat circular way, ends up defining what an algorithm
is by the Church-Turing thesis. Our classical RAM is essentially a TM with
additional functionality for memory access. Although there is such a thing
as a Quantum Turing Machine, the most workable computational model
for performing quantum computations is that of quantum circuits, and we
would rather add random-access capacity to the quantum circuit model than
the quantum TM model. In this section we’ll therefore give an overview of
classical circuits first.

The classical or Boolean circuit model is equivalent to the TM and RAM
models, in that any function that can be efficiently computed on a RAM can
be efficiently computed by a Boolean circuit and vice-versa. As opposed to a
machine with tapes and tape-heads, we can consider applying boolean gates
to our input string to generate an output bit.

Definition 2.1.7 (Boolean Circuit). A Boolean circuit Cn of input size n is
a directed acyclic graph with n nodes that have only outgoing edges, called
sources and 1 node having only incoming edges, called a sink. All other vertices
are called gates and are labelled by the logical operations AND, OR and NOT.
The size of C is the number of nodes in C. For x ∈ {0, 1}n, the output C(x) is
defined naturally by assigning bit values to every node recursively depending
on the value of the nodes from the incoming edges and the gate label.

Of course, we need to be careful now about how we define efficiency, since
it is not obvious how time in the TM language translates to circuit time. The
time it takes for a circuit to compute a function is given by the circuit-size
complexity, which is the total amount of logic-gates in the circuit. We often
refer to circuit size as time complexity as well.

Another key difference is that while a TM is uniformly defined for any input
string length, a circuit acts on strings of a specified length n. When providing
circuits for deciding a language, we describe a family of circuits.

Definition 2.1.8 (Circuit decidability). A family of circuits {Cn}n∈N decides
a language L ⊆ {0, 1}∗ if for any x ∈ {0, 1}∗ it holds that C|x|(x) = 1 if and
only if x ∈ L.

2.2 Quantum Computing
In this section we provide some background information for quantum comput-
ing with formalism and conventions taken from [55] and [40]. Again, some

21



Chapter 2 Section 2.2

familiarity is assumed but for the sake of consistency we start with the basics.
The quantum circuit model uses quantum gates as opposed to boolean

gates and applies them to qubits as opposed to bits.
When working with quantum algorithms, what our algorithms can and

can’t do becomes a lot less intuitive and more mathematical rigor is required.
While we can still represent quantum circuits as graphs, it is more useful to
think of them using the Hilbert space formulation of quantum mechanics.

Definition 2.2.1 (Hilbert Space and Quantum States).

• A Hilbert space H is a complex vector space equipped with an inner
product.

• A pure quantum state |ψ⟩ is an element of a Hilbert space with inner
product equal to 1.

• The complex conjugate of a state |ψ⟩ is denoted ⟨ψ|.

• The inner product of states |ψ⟩ and |ϕ⟩ is denoted ⟨ψ|ϕ⟩.

• We use shorthand |ϕψ⟩ = |ψ⟩⊗|ϕ⟩ to denote the tensor product of states.

In quantum computing we will generally only be dealing with pure states
and not with mixed states. As a consequence, when talking about quantum
states, we will always be talking about pure states. Furthermore, Hilbert
spaces can be infinite, but since we always deal with a finite number of qubits,
we may stay with finite quantum mechanics. Lastly, we restrict our attention
to real valued Hilbert spaces.

Definition 2.2.2 (Qubit). A qubit is a state |ψ⟩ in a two-dimensional Hilbert

space R⊗2. A qubit in the state 0 is denoted |0⟩ =
[
1
0

]
and a qubit in the state 1

is denoted |1⟩ =
[
0
1

]
. The states |0⟩ and |1⟩ are called the computational basis

states.

• A qubit-string |ψ⟩ of length n is an element of a 2n-dimensional
Hilbert space. We write |ψ⟩ = ∑

i∈{0,1}n αi |i⟩ with complex αi

and ∑
i∈{0,1}n α2

i = 1. The j’th element of the string i in the above formula
for |ψ⟩ denotes the value of the j’th qubit.

• The Hadamard basis consists of the states |+⟩ = 1√
2 |0⟩ + 1√

2 |1⟩
and |−⟩ = 1√

2 |0⟩ − 1√
2 |1⟩.

22



Section 2.2

The main point of course in our above definition for the qubit is that our
bit strings can be in superposition over many strings.

In the quantum circuit model, we have an n-qubit bit-string described by
a normalized 2n-dimensional vector as input. Gates in the circuit correspond
to operations on the string and since our input is a vector, these operators
are matrices. Furthermore, since our states need to always have unit length,
we can restrict our quantum operations to unitary matrices. It follows that
unitary matrices represent exactly those operations that send qubits to qubits.

Definition 2.2.3 (Quantum Gates). A quantum gate acting on a single qubit
is a 2 × 2 unitary matrix U .

• A quantum gate acting on n qubits is a 2n × 2n unitary matrix.

• Common quantum gates are:

– The X-gate (also called NOT-gate): X =
[
0 1
1 0

]
.

– The Y -gate: Y =
[
0 −i
i 0

]
.

– The Z-gate (also called phase-gate): Z =
[
1 0
0 −1

]
.

– The Hadamard gate: H = 1√
2

[
1 1
1 −1

]
.

The most common gates are the X-gate, which simply flips a qubit, the
Z-gate, which adds a negative to the computational basis state |1⟩ and the
Hadamard-gate, which allows us to prepare uniform superpositions from
computational basis states. Another type of gate that we will regularly
encounter and that can be constructed from the above elementary gates are
controlled gates, mainly controlled-NOT-gates (CNOT) and controlled-phase-
gates. If we’d let ourselves use any possible unitary as elementary quantum
gate, we would be able to decide any decidable language in unit time, since
any sequence of unitaries is again a single unitary. As a result, in quantum
computing we often limit ourselves to the use of elementary gate sets of easily
implementable quantum operations. For our purpose we allow use of all single-
qubit gates and the CNOT-gate. Circuit complexity is then defined as the
number of elementary gates we need for a quantum circuit to decide a language.

It is easy to see that a quantum circuit can do anything a classical circuit
can do at least as fast. We can simply let the computational basis states |0⟩
and |1⟩ represent the classical states 0 and 1 and we can simulate classical
propositional logic gates using our quantum gates.

23



Chapter 2 Section 2.2

Now we run into the same issue as in the classical case where we want
our model to be able to access stored memory efficiently. On top of having
random access, we want our quantum models to be ably to query memory bits
in superposition, to fully access the power of quantum computing. We do this
by allowing quantum-Random-Access-Gates (qRAG’s) in our quantum circuit,
using the definition from [14].1

Definition 2.2.4 (Quantum-Random-Access-Gates). A Quantum-Random-
Access-Gate is a O(n2n) unitary qRAG acting on n memory bits and log(n)+1
work-bits that operates as follows:

qRAG |i, b, x1, . . . , xn⟩ = |i, xi, x1, . . . , xi−1, b, xi+1, . . . , xn⟩

We also restrict our circuits to only wire qRAG’s so that they use the
work bits for addressing the memory and the memory bits as the addressed
qubit, to prevent our circuits to use qRAG with permuted inputs of the work
and memory registers.

A quantum circuit for an instance input of size n is therefore a sequence
of elementary gates and qRAG’s applied to a work register of log(n) qubits
and an unrestricted amount of memory registers of size n. We read the circuit
output by performing a measurement in the computational basis on the first
qubit of the work register.

Since measurements are non-deterministic, they are also irreversible and
can therefore not be represented by a unitary operation. We do actually want
our circuit output to be observable, so we want measurements to be part of our
algorithm in some way. We can incorporate measurements in the definition of
circuit decidability as opposed to letting them be part of our actual circuits.
This lets us ensure that our circuits stay deterministic and reversible, which
then lets us represent them as unitary operations. Some quantum algorithms
may want to use measurements during the algorithm, as opposed at the end.
The deferred measurement principle tells us that by conditioning quantum
gates on measurement outcomes we can always defer measurements to the end
of our algorithm [40].

We then have the following definition for quantum qRAG circuit decidabil-
ity.

Definition 2.2.5. Let L ⊆ {0, 1}∗ be a language.

• A family of quantum circuits with qRAG’s {Cn}n∈N decides the lan-
guage L with probability 2

3 in time T (n) if Cn has circuit complexity T (n)
1Quantum random-access memory has previously been discussed in works such as [28]

and [38].

24



Section 2.2

and for every x ∈ {0, 1}∗ the following hold: If x ∈ L, then the proba-
bility of observing a 1 after a measurement of the first qubit of C|x|(x)
in the computational basis is at least 2

3 . If x /∈ L, then the probability
of observing a 0 after a measurement of the first qubit of C|x|(x) in the
computational basis is at least 2

3 .

• A family of quantum circuits with qRAG’s {Cn}n∈N verifies the language
L with probability 2

3 in time T (n) if Cn has circuit complexity T (n)
and for every x ∈ {0, 1}∗ the following hold: If x ∈ L there exists
u ∈ {0, 1}O(|x|) such the probability of observing a 1 after a measurement
of the first qubit of Q(x, u) in the computational basis is at least 2

3 . If
x /∈ L it holds for all u ∈ {0, 1}O(|x|) that the probability of observing a
0 after a measurement of the first qubit of Q(x, u) in the computational
is at least 2

3 .

With our preferred quantum model at hand, we can move on to the natural
analogues of BPP and MA discussed in the previous section.

2.2.1 Bounded-Error Quantum Time
Before showing where quantum circuits potentially outperform classical cir-
cuits, we need to consider the complexity classes naturally defined in quantum
computing. The classes of problems solved by deterministic quantum algo-
rithm are not very interesting since they make it hard to work with quantum
measurements. We will therefore directly skip ahead to the bounded-error
quantum classes. First we need to say a bit more about measurements.

Quantum measurements are performed relative to a basis spanning the
Hilbert space of the measured state. Since we generally want to observe bits
or bit-strings by the end of our algorithm, we perform measurements in the
computational basis.

Theorem 2.2.1 (Born’s Rule). The probability of observing the state |x⟩
with x ∈ {0, 1}n after performing a measurement in the computational basis on
the state |ψ⟩ in Hilbert space R⊗2n is given by | ⟨x|ψ⟩ |2. If |ψ⟩ = ∑

i∈{0,1}n αi |i⟩
it follows that | ⟨x|ψ⟩ |2 = α2

x.

Simply said, the probability of observing a string i is given by the squared
norm of the amplitude of the state |i⟩ in the measured state |ψ⟩.

Due to the probabilistic nature of measurements, the natural quantum
classes of efficiently computable and efficiently verifiable decidable languages
are probabilistic.

Definition 2.2.6 (BQP and QMA). Suppose L ⊆ {0, 1}∗.

25



Chapter 2 Section 2.2

• A language L is in BQP if there is a polynomial time quantum algorithm
that decides it with probability 2

3 .

• A language L is in QMA if there is a polynomial time quantum verifier
algorithm that verifies L with probability 2

3 .

Here we use a verifier definition of QMA similar to the one used in for NP.
Again, we can think of Quantum Merlin-Arthur QMA as the class of problems
decidable by polynomial time non-deterministic quantum algorithms.

2.2.2 Quantum Queries and Oracles
We will be working with quantum reductions in this thesis and our quantum
algorithms can therefore have access to quantum oracles. A quantum oracle
works similar to a classical oracle in that we query a problem instance to
an oracle in order to retrieve some type of function or algorithm output for
that instance. The main difference is that since our oracles are also quantum
objects, we can query superpositions of instances, similarly to how we let
qRAG’s query superpositions of memory addresses. Formally, we define oracle
queries as follows.

Definition 2.2.7 (Quantum Oracle). A quantum oracle to the
function f : {0, 1}n → {0, 1} is a unitary Of such that

Of |x, b⟩ = |x, (f(x) + b) mod 2⟩

for each x ∈ {0, 1}n.

In many algorithms we use oracles as placeholders for actual algorithms
that can be simulated by our computational model. Because the algorithms
that we use to simulate our oracles end up being quantum algorithms they will
naturally have some error probability. In order for us to use oracles in a useful
manner, we assign a success probability to our quantum oracles. The bounded-
error of our oracles will be the same as those in our BQP and QMA complexity
classes, and we assume that oracles are successful with probability 2

3 .
We could also introduce uncertainty for our oracles in the classical setting,

since we do work with randomized hardness conjectures. However, we
conjecture the same hardness for our three popular problems for randomized
classical algorithms as we do for deterministic classical algorithms. As a
result, lower bounds conditioned on these hardness conjectures will generally
be the same as they would be for the deterministic hardness conjectures. On
top of that, all the problems that we use classical oracles to have deterministic
matching upper bounds, so the extra baggage of introducing randomness in
our classical oracles is not necessary.

26



Section 2.2

Due to the useful interaction between quantum algorithms and queries, we
often measure quantum algorithms in their query complexity as opposed to
their time complexity; how many queries to a given input does an algorithm
require to solve a problem? The time complexity is, of course, lower bounded
by the query complexity.

The query complexity is also useful when using quantum algorithms as
subroutines of our main algorithms. In RAM models, querying the input
requires constant time, but if we apply our quantum algorithms as sub
routines, we may be querying a different mathematical object. If the queried
property can be computed within the main algorithm, we don’t need to
explicitly construct the full mathematical object but can simply compute the
properties, potentially in superposition, as they are queried. The queries then
come at a cost of the time that is required to compute the property. We will be
making use of this strategy in Chapter 4 and will discuss it more in-depth there.

For classical algorithms it is more conventional to measure the complexity
of an algorithm by its time complexity and since we are comparing the effec-
tiveness of quantum computers to the effectiveness of classical computers, we
will be talking about quantum time complexity in this thesis.

2.2.3 Quantum Speed-Ups
Now that we’ve provided definitions of the common quantum complexity
classes and our quantum model, we can actually talk about what it means for
a quantum algorithm to outperform a classical algorithm. In the comparison
we compare quantum circuits with qRAG’s to classical randomized RAM’s. If
we find a quantum circuit that solves a problem faster than the fastest known
randomized RAM, we say we have a quantum speed-up. One of the most
important quantum speed-ups is found through the Grover Search algorithm
and as it turns out, a lot of the quantum speed-ups found in more complicated
computational problems are a result of applications of Grover’s algorithm as
sub-routines. Such speed-ups are called Grover type speed-ups.

Consider a string x ∈ {0, 1}n and suppose we have query access to the
string, i.e., we can access the value of the i′th bit in one time-step. Now
suppose we want to ask if there is at least one index i for which xi = 1. A
classical RAM would need time O(n) to solve this problem, since in the worst
case only the last queried index is set to 1. Quantumly we can do this in O(

√
n)

time by Grover’s search. We don’t go into the details of the algorithm here, but
the main idea is that we can query every index of the string x in superposition
and then use state interference effects to increase the amplitude of indices that
are set to 1 by applying controlled-phase gates. We end the algorithm by

27



Chapter 2 Section 2.2

performing a measurement in the computational basis and query the observed
index to see whether it is a solution [29].

Theorem 2.2.2 (Grover Search). Suppose x ∈ {0, 1}n and we have query
access to the different bits xi of x. There exists a quantum algorithm such
that the following hold: If there is some i ∈ {0, 1}log n such that xi = 1,
then the algorithm will output some j ∈ {0, 1}log n such that xj = 1 with
probability 2

3 . If there is no such i ∈ {0, 1}log n, then the algorithm will output 0
with probability 2

3 . The algorithm takes O(
√
n) time and makes O(

√
n) queries

to x.

The type of search problem presented in the above theorem comes in many
shapes. Essentially, if we have a set of elements X and we want to know if X
contains some kind of marked element; an element with a property that we can
compute, we can apply Grover Search to that set. Since Grover Search requires
O(

√
|X|) queries, finding the marked element will take time O(

√
|X|T ), if T

is the time required time to compute the desired property. In this scenario we
can view T as the cost of making a query to our search space.

To make this idea more concrete, we can consider the satisfiability
problem. Given a propositional logic formula ϕ over n literals, we have a
search space of size 2n. To find out whether there is a satisfying assignment
to ϕ would classically take time 2n times the time it takes to verify whether
a given variable assignment satisfies the formula. Since verifying a formula
takes polynomial time, it takes time Õ(2n) to solve the problem. Using Grover
Search we can solve the problem by querying the truth table of ϕ a number
of O(

√
2n) times. Each query takes polynomial time, and we find a quantum

complexity of Õ(2n
2 ).

In the APSP problem we are trying to look for shortest paths and the
minimization operation will therefore be an operation naturally occurring in
this work. We provide here also a Grover Minimum Finding algorithm that will
be useful later on. The algorithm uses a generalization of the Grover Search
algorithm and was first shown in [24].

Theorem 2.2.3 (Grover Minimum Finding). Let S be an unsorted array of
elements with a linear order and suppose that |S| = n. There exists a quantum
algorithm that outputs the minimal element of S with probability at least 2

3 ,
taking O(

√
n) time and making O(

√
n) queries to S.

In Grover Search, we assume query access to the values of the set where we
want to find a marked element. In some cases like the satisfiability example it
is not so obvious whether we have that type of access, as we need to compute
the queried value. In the satisfiability example this posed no problem, since

28



Section 2.3

we could always compute the queried value in polynomial time, and we were
searching an exponentially sized space.

A variation of Grover’s algorithm found in [6] allows us to find the complex-
ity of Grover search when computing the properties of elements in our search
space has a variable time, e.g., when the elements are of different size. Con-
sider for example a set of graphs that each have a varying amount of nodes. If
we want to find whether this set contains a graph with some desired property,
it may take us a different amount of time to compute the property for each
graph. For such a case, we have the following theorem:

Theorem 2.2.4 (Variable Time Grover Search). Let x ∈ {0, 1}n and suppose
we can compute the value of xi in time ti. There exists a quantum algorithm
such that the following hold: If there is some i ∈ {0, 1}log n such that xi = 1,
then the algorithm will output some j ∈ {0, 1}log n such that xj = 1 with proba-
bility 2

3 . If there is no such i ∈ {0, 1}log n, then the algorithm will output 0 with
probability 2

3 . The algorithm takes O(
√∑n

i=1 t
2
i ) time and makes O(

√∑n
i=1 t

2
i )

queries to x.

We refer to ti in the above theorem as the ‘checking time’ for each el-
ement in the search space and abbreviate Variable Time Grover Search VTGS.

The algorithms from the theorems above are all polynomial speed-ups; the
problems posed could already be solved in polynomial time by a randomized
algorithm, but can now simply be solved in faster polynomial time. It would
be very interesting to know whether there exists an algorithm that can solve
an NP-complete problem in polynomial time, as this would imply that NP ⊆
BQP. While so far no such algorithm has been found, and it is unlikely that
such an algorithm exists, we do have quantum speed-ups that are exponential:
problems for which no polynomial time algorithm has been found that can be
solved in polynomial time by a quantum computer. The main such example is
Shor’s algorithm for integer factorization. The best classical algorithm runs in
sub-exponential time, roughly Õ(2(log n)

1
2 ), where n is the size of the composite

number [12]. Shor’s algorithm finds the prime factors of n in time roughly
O((log n)2)[45]. Unfortunately integer factorization is not known to be NP-
hard so even though our speed-up is exponential, there are no consequences
for whether NP ⊆ BQP holds.

2.3 Overview
A lot of our speed-ups in the quantum setting will be as a result of Grover
Search, which allows for a polynomial speed-up. Combined with the fact that
a lot of the lower and upper bounds in this work fall in the polynomial regime,

29



Chapter 2 Section 2.3

it is important that our machines have random-access memory, both in the
quantum case and in the classical case.

Furthermore, we would do ourselves short leaving out the capacity of
randomness in our quantum algorithms and since we want to make sure
that our comparative analysis focuses on classical versus quantum effective
differences, we incorporate randomness in our classical algorithms as well.

As a result, in the classical setting we end up with randomized RAM’s to
model our algorithms and in the remainder of this thesis whenever we mention
what randomized algorithms are capable of, imagine them being executed on
a randomized RAM.

Quantum random-access memory is not as conventional as classical
random-access memory, but it makes for a natural extension of our classical
model to also include the capacity for random-access memory in the quantum
setting. As a result, we find quantum circuits with qRAG’s to be the
appropriate model for our quantum algorithms and whenever we mention
quantum algorithms in the remainder of this thesis, assume that they can be
executed on quantum circuits with qRAG’s.

We defined the RAM somewhat loosely, and although we had a more rig-
orous mathematical definition of our quantum algorithms, using the Hilbert
space formulation of quantum mechanics, in practice we will take liberties in
describing our quantum algorithm to the same extent that we do classically.
Large parts of our quantum algorithms will run the same as they would clas-
sically and as such, we describe them classically assuming that the algorithm
can easily be executed on a quantum circuits with qRAG’s. We apply the
actual quantum parts of our algorithms, like Grover Search and VTGS, as
subroutines. We do this by specifying the search set, the properties that mark
elements and the time required to compute them. We can then find the com-
plexity of our algorithms by combining the classical complexity for the classical
part of our algorithm with the complexity stipulated by our quantum ‘black
boxes’.

30



Chapter 3

Known Fine-Grained
Reductions

Fine-grained computational complexity started receiving notoriety over the
past ten years as it’s given us a very clear overview of comparable hardness
between many computational problems. It is no surprise then that, just as
many other classical frameworks, we want to see how these results hold up
in the quantum case. In this chapter we define fine-grained reductions and
elaborate on the classical framework. We also review classical reductions from
three different popular problems and their associated popular hardness con-
jectures: k-SAT, 3SUM and APSP. In the end, we find two graph problems,
∆-Matching Triangles and Triangle Collection to which the three
popular problems reduce. This result was found in [3] and allows us to prove
the hardness of ∆-Matching Triangles and Triangle Collection
based on the disjunction of the hardness conjectures for k-SAT, 3SUM
and APSP. Since the hardness conjecture for each of these three problems
is popular, conjecturing that at least one of the three problems is hard is
extremely popular.

The goal is to repeat the hardness result based on an extremely popular
conjecture in Chapter 4 for the quantum setting and formulate an extremely
popular quantum conjecture. The relevant quantum reductions from 3SUM
have already been reviewed in [13] and so the reductions that will be
investigated in this chapter will be related to SAT, k-SAT and APSP and
are taken from [3, 25, 37, 54, 53]. For the classical reductions from 3SUM we
refer to [41] and [54].

In the first section we go over the required definitions and the ideas that
helped develop them. In the second section there will be some graph re-
lated definitions and an overview of the reductions from APSP. In the third

31



Chapter 3 Section 3.1

section we discuss the reductions from SAT and k-SAT. We close off the
chapter with an overview of all the reductions and proving the hardness of
∆-Matching Triangles and Triangle Collection based on extremely
popular conjecture.

3.1 The Fine-Grained Model
Fine-grained reductions take the ideas from reducibility and hardness and
refine them, allowing for even more structure in the different levels of compu-
tational complexity to emerge. The concept of fine-grained reductions already
existed for a while, with conditional hardness based on the implicit hardness
of our popular problems, such as the quadratic hardness of many problems
based on the hardness of 3SUM in [27]. This notion was further developed
with the introduction of SETH in [33] and the exponential hardness of many
NP problems based on SETH in [18].

Later on this framework was extended and formalized with the inclusion of
hardness conjectures for 3SUM and APSP. An overview of many fine-grained
reductions found so far can be studied in [51] and [52].

Many of the conditional lower bounds proven so far use deterministic algo-
rithms and the hardness for our popular problems is in those cases conjectured
for deterministic algorithms. However, as can be seen in the well-regarded
overview in [52], it is not unconventional to conjecture the same hardness for
the popular problems for randomized algorithms. Furthermore, important re-
sults such as the fine-grained reduction from 3SUM to Convolution-3Sum
already made use of randomized reductions, relying on the quadratic hard-
ness of 3SUM for randomized algorithms. We will extend the classical work
reviewed in this chapter to the quantum framework and will therefore conjec-
ture classical hardness of the popular problems for randomized algorithms.

3.1.1 Coarse-Grained Reductions
We’ve talked about the P versus NP problem in Chapter 2 and how the NP-
completeness of k-SAT together with SETH makes a conditional distinction
between polynomial-time problems and exponential-time problems. The hard-
ness conjecture, in combination with polynomial-time reductions, allows us to
structure different levels of computational complexity. Although the struc-
ture is based on conjecture, and therefore in a way completely hypothetical,
the value of finding this structure is not diminished and does not depend on
the validity of SETH. Regardless of the validity of SETH, working with such
a hardness conjecture allows us to show that comparable hardness of other
problems: SAT is equivalent in hardness as many other problems in NP. An
important aspect of why this reasoning through reductions works, lies in the

32



Section 3.1

definition of Turing reductions from the previous chapter; namely that they
have to be polynomial time. If we’d let our reduction take more time, say expo-
nential, having a polynomial time algorithm for a problem like k-SAT would
not mean as much. If we had an efficient algorithm for k-SAT, we could
not use exponential-time reductions to solve other NP problems in polynomial
time.

Requiring that reductions take polynomial-time is the weakest time-
requirement that lets us use reductions to show that a problem is in P by
reducing it to other problems in P or showing that a problem is NP complete
by reducing another NP-complete problem to it. To sum up, we can use them
to show that problems can be solved in polynomial or probably not in polyno-
mial time. It doesn’t let us compare differences in complexity between different
problems in P, for this, the polynomial-time requirement for the reductions is
too coarse. We therefore refer to them as coarse-grained reductions.

3.1.2 Fine-Grained Reductions
Clearly the definition for coarse-grained reductions is too free to let us prove
the hardness of problems up to precise asymptotic complexity. We refine the
definition as follows:

Definition 3.1.1 (Fine-Grained Reductions). Let l(n) and l′(n) be two non-
decreasing functions of n. For two problems L,L′ ⊆ {0, 1}∗, we say that L is
(l, l′)-fine-grained reducible to L′, denoted L ≤l,l′ L if there exists a randomized
algorithm RL′ with access to oracle L′ that solves L with probability at least 2

3
such that for every ϵ > 0 there exists δ > 0 and:

• The algorithm RL′ runs in time O(l(n))1−δ.

• For the sequence of instances n1, ..., nk that RL′ queries to oracle L′ it
holds that ∑k

i=1 l
′(ni)1−ϵ = O(l(n))1−δ.

Whenever L ≤l,l′ L′ and L′ ≤l′,l L, then L and L′ are fine-grained
equivalent, denoted L ≡l,l′ L

′.

The above definition should make it clear why we started from Turing
reductions as opposed to Karp-reductions in Chapter 2: We want to allow our
algorithms to make multiple queries to the problem that we want to reduce
to, as opposed to just outputting a single problem instance.

If we can show this type of fine-grained reducibility between two prob-
lems we can use the oracle machine from the above definition to solve L
using a simulated oracle to L′. Suppose we have a l′(n)1−ϵ time algorithm
to L′, we can then use the fine-grained reduction to solve L in l(n)1−δ

time. If we conjecture a lower bound in complexity to solving L′ equal to

33



Chapter 3 Section 3.1

our best algorithm for L′, finding a faster algorithm for solving L′ would
then also imply a smaller lower-bound to L through the fine-grained reduction.

The function l(n) represents the known or conjectured lower bound for the
problem that we are reducing, L. The bound l′(n) is the lower bound we prove
for the problem L′, conditioned on the l(n)-hardness of problem L.

The first bullet-point in the definition for fine-grained reduction ensures
that the algorithm takes no more than O(l(n)1−δ) time. Clearly this require-
ment is needed if we want to solve A using an oracle for L′: if our reduction
exceeds the run- time l(n)1−δ, finding a l′(n)1−ϵ time algorithm for L′ would
not contradict the l(n)-hardness for L.

Lastly, we need to limit the use of the oracle L′ by our algorithm. Solving
the problem L through reduction would only work if we don’t make too
many queries to L′ or our queried instances are small. If we’d find a l′(n)1−ϵ

time algorithm for L′ but all the combined calls to this algorithm exceed the
run time l(n)1−δ, we again don’t contradict the l(n)-hardness for L. This
requirement is set in the second bullet point.

Ideally we’d be able to use a single conjecture to show conditional lower
bounds for many other problems through fine-grained reductions as we do
in the coarse-grained case through SETH. Unfortunately we don’t have this
luxury, but with conjecturing hardness for just three popular problems we can
already prove hardness of many computational problems.

3.1.3 Popular Hardness Conjectures
The three main popular problems for which hardness has been conjectured and
from which fine-grained reductions have been found are k-SAT, 3SUM and
APSP. For all three problems the hardness conjectures are natural in a way
that no faster algorithm has been found in a long time or is ever expected to
be found. Like mentioned in the first paragraph of this chapter, it is not really
that important whether the conjecture is valid or not; fine-grained reductions
let us know in any case that certain problems are at least as hard as others. The
work done in the classical case on each of these three conjectures is extensive.
We define the three problems in this section, starting with k-SAT.

The satisfiability problem is usually defined for a specific class of
propositional-logic formulas: Conjunctive Normal Form (CNF) formulas.

Definition 3.1.2 (SAT and k-SAT). Let ϕ be a propositional logic formula.
We say that ϕ is CNF if it is a conjunction of clauses, ϕ := c1 ∧ · · · ∧ cm for
some m > 0. A clause is a disjunction of literals and a literal is a propositional
variable or its negation.

34



Section 3.1

• A formula ϕ is in SAT if it is CNF and there is a satisfying assignment
to ϕ.

• A formula ϕ is in k-SAT if ϕ is CNF, every clause in ϕ is a disjunction
of at most k literals and there is a satisfying assignment to ϕ.

For the satisfiability problem we assume that logical formulas are CNF
since it makes them easier to work with. Furthermore, it can be shown that
any logical formula can be translated in polynomial time into a CNF formula
of the same asymptotic size that is equi-satisfiable [44, 47].

We often mention k-SAT and SAT separately when talking about hard-
ness of satisfiability. The reason for this is that the two popular hardness
conjectures for satisfiability are both formulated for k-SAT, and we can infer
hardness for SAT from them. Any algorithm for SAT is also an algorithm for
k-SAT and it is therefore easy to reduce k-SAT to SAT.

There are two main hardness conjectures for k-SAT, each of which can
be stated in different equivalent ways. We chose common formulations that
will be useful to our work. While the conjectures were first formulated in
[33] for deterministic algorithms, it is not uncommon these days to extend the
hardness to randomized algorithms [21, 52].

Conjecture 3.1.1 (Exponential-Time Hypothesis). For k ≥ 3, let δk be the
infimum of the set of constants c for which there exists a randomized algorithm
that solves k-SAT in O(m2cn) time, where n is the number of variables and
m the number of clauses of the k-SAT instance. Then it holds that δk > 0,
for k ≥ 3.

From ETH it follows that for any k ≥ 3 it holds that there is some δk such
that k-SAT cannot be solved in O(m2δk) time. Since the sequence δ3 . . . δi . . .
is non-decreasing, this implies that SAT cannot be solved in time O(m2nδ3)
and we find hardness for SAT.

Unfortunately ETH is not strong enough for proving conditional lower
bounds based on SAT or k-SAT. We have the following stronger version:

Conjecture 3.1.2 (Strong Exponential-Time Hypothesis). For all ϵ > 0 there
exists k ≥ 3 such that k-SAT cannot be solved in time O(m2n(1−ϵ)) by a
randomized algorithm, where n is the number of variables and m the number
of clauses of the k-SAT instance.

If we were to have an O(m2n(1−ϵ)) time algorithm for SAT for some ϵ > 0,
then k-SAT for any k could be solved in O(m2n(1−ϵ)) time and SETH would
be violated. As a result, we have that under SETH, SAT requires O(m2n−o(1))
time.

35



Chapter 3 Section 3.1

The Exponential-Time Hypothesis (ETH) follows from the Strong
Exponential-Time Hypothesis (SETH) by use of the sparsification lemma from
[34] which is discussed towards the end of this chapter. Whether SETH is
strictly stronger is unknown, it is possible that an implication from ETH to
SETH can be found.

For the lower bounds in fine-grained complexity based on k-SAT we
need to assume SETH and for lower bounds on SAT we need to assume
the possibly weaker requirement that SAT requires at least O(m2n−o(1))
time, which is why we make a clear distinction between hardness for the two
problems.

Lastly, to sketch why ETH may not be strong enough, consider the following
reduction scenario: Suppose we fine-grained reduce SAT to some polynomial
time problem L, proving a conditional lower bound O(N c) to L in L’s size
parameter N and for some c > 0. Furthermore, assume that on a SAT input
over n variables andm clauses our reduction makesO(1) queries of instance size
O(2n

c ) to oracle A, such that O((2n
c )c) = O(2n). Finding a O(N c−ϵ) algorithm,

with ϵ > 0, for problem L would then result in a O((2n
c )c−ϵ) = O(2n(1− ϵ

c
)) time

algorithm for SAT, which contradicts SETH but not ETH.
We can easily solve SAT in the time conjectured by SETH through simple

brute force search and trying all possible variable assignments. For k-SAT
there are faster than O(m2n) algorithms for all values of k as described in
[42].

The next popular problem is the 3SUM problem.
Definition 3.1.3 (3SUM). Given a set of integers S of size n from
range [−nc, nc], determine whether there exist three integers x, y, z ∈ S such
that x+ y = z.

Naively we could solve 3SUM in n3 time by computing the sum of every
pair of numbers and searching S to determine whether S contains that sum.

We can solve 3SUM in n2 by using a traversal. First we sort the set of
integers in time O(n log(n)). We then proceed by having an outer loop iterate
over the integers k in ascending order and having a second loop traversing the
order. This means that in the second loop, we take two integers i, j, starting
with i as the lowest integer and j as the highest integer. We then compare
their sum to the integer k from the outer loop.

If k = −(i + j), we have found our sum and the algorithm terminates.
If k > −(i+ j) then the traversal loop sets i to the next integer in ascending
order. If k < −(i + j) then the traversal loop sets j to the next integer in
descending order.

Clearly if there are no integers that sum to 0 the algorithm will output
a negative answer correctly. If there are three such integers, we know that

36



Section 3.1

whenever our outer loop arrives at one of them, the traversal loop will find the
other two. Since the traversal loop iterates over O(n) integers, the algorithm
takes O(n2) time.

Work has been done to improve the run-time of 3SUM and the best ran-
domized algorithm solves it in O(n2 log(log(n))

log2(n) ) time[9]. It is an open question
whether there exists a O(n2−ϵ) randomized algorithm for 3SUM for any ϵ > 0
and it is therefore natural to conjecture the following.

Conjecture 3.1.3 (3SUM-hardness). There exists no randomized algorithm
for 3SUM that solves it in time O(n2−ϵ) for any ϵ > 0.

We keep the discussion of 3SUM brief since we won’t be reviewing direct
reductions from 3SUM in this work.

The final popular problem for which we have a popular hardness conjecture
is APSP.

Definition 3.1.4 (APSP). Let G = (V,E) be a weighted directed graph
over n nodes with no negative cycles and with integer weights given by
weight function w : E → [−nc, nc] for some constant c. For a pair of ver-
tices, a sequence of connecting edges p(a, b) := ((a, i1); (i1, i2); . . . ; (ik−1, b))
is called a path over k edges from a to b. The length of a path p(a, b)
is l(a, b) = ∑k

j=1 w(p(a, b)j). An algorithm solves APSP if it outputs for every
pair of vertices (a, b) the length of the shortest path from a to b and outputs ∞
if there is no path for a pair of nodes.

There are many versions of APSP. A common formulation of the problem
requires an algorithm to output not just the length of the shortest paths, but
the paths themselves. The popular conjecture in fine-grained literature is for
the above distance formulation of the problem and many of the reductions
work for the shortest distance as opposed to the shorted paths version. We
can, of course, easily solve the shortest distance version by reading the shortest
paths version, providing us with a reduction from the distance version to the
paths version.

Other versions of the problem can be found by restricting the problem to
a subclass of graphs such as APSP on undirected graphs, unweighted graphs,
dense graphs, sparse graphs, etc. Common graph definitions that appear
throughout the thesis can be found in Appendix A. In the above definition
of APSP we have made one restriction: Our input graph has no negative
cycles; paths from a node back to the original node that have a negative
length. If there is a negative cycle in a graph, then any path from node a to
node b that crosses a node on the negative cycle will have shortest distance
−∞, since our path can simply walk over the cycle an infinite number of
times. This is problematic for our algorithms, since they need to terminate

37



Chapter 3 Section 3.1

in finite time and have a finite output. There are three ways of fixing this
problem: We could reformulate our definition and force paths to be simple,
meaning that they can only cross every node at most once. Second, we can
have an algorithm that first detects whether the input contains a negative
cycle and halts if it does. Or, lastly, we can simply restrict our input as we
did in the current definition. The first option unfortunately increases the
complexity of the problem [31, 56] and while the second option is accept-
able, it does complicate our algorithms and reductions. We settle for the third.

We haven’t specified a specific data structure of the input and output of
the problem and algorithm and graph problems are usually presented in one of
two different ways. A graph can be presented by either an adjacency list or an
adjacency matrix. For our work we take the adjacency matrix representation
and extend it to a weight matrix. We assume that our algorithms have random
access to the nodes, edges and the edges weights, with the edge weights being
encoded as entries of the weight matrix. The absence of an edge between two
nodes is marked as an ∞ in the weight matrix.

The output for APSP is usually given in the form of a distance matrix D
of the graph. For any pair of nodes i, j we have that the entry D[ij] denotes
exactly the length of the shortest path from i to j. If there is no path from i
to j then D[ij] = ∞.

We work with ∞ in the problem formulation and our description of the
weight and distance matrices which may present a problem since we would
need infinite bits to store such a value. In practice, we can use any value larger
than n · nc instead. Since the longest shortest path in any graph has at most
length nc+1, we know that if we find a value in our distance or weight matrix
that exceeds nc+1, there is no edge or path between the nodes correspond-
ing to the entry address. For ease of notation we will keep using ∞ in this work.

We won’t provide matching upper bounds for most classical lower bounds
presented in this chapter, as that is not the focus of this thesis. For arguing a
conjectured classical, and later quantum, lower bound to APSP, it is however
important to show an algorithm for solving APSP. Solving the distance ver-
sion of APSP is rather straight-forward and is closely related to the matrix
distance product and the fine-grained reduction from APSP to the distance
product that will be discussed in the next section. Classically, there is no
O(n3−ϵ) time algorithm for any ϵ > 0, for both versions of APSP and since we
will be the first to formally define a quantum hardness conjecture for APSP,
it will be important to consider hardness for both versions of the problem. As
such, we present here also a classical algorithm for solving the path version of
APSP. The most popular classical algorithms for the path version of APSP
are the Floyd-Warshall, Bellman-Ford and Johnson algorithms [26, 10, 35].

38



Section 3.1

Johnson’s algorithm is based on the single-source shortest paths algorithm by
Dijkstra [22], which works for graphs with no negative weights and finds the
shortest path from one node to all other nodes in O(n2) time. Johnson’s al-
gorithm uses a graph re-weighting trick from the Bellman-Ford algorithm to
make all edges non-negative and then applies Dijkstra’s algorithm to all nodes
in the graph. Since we support our quantum hardness for APSP in Chapter 4
with a quantum single-source shortest paths algorithm, we provide Johnson’s
algorithm here.

Theorem 3.1.1 (Dijkstra’s Algorithm). There exists an algorithm that, given
a weighted directed graph G = (V,E) over n nodes, weight matrix W with
weights from [0, nc] and input node a outputs the shortest paths between a and
all other nodes in G in time O(n2).

Proof. Let G = (V,E) be a weighted directed graph over n nodes with
weights from [0, nc] and suppose we want to find all shortest paths from
node a. We output our solution as a shortest path tree; a tree with a as its
root node and if there is a path to another node b in our original graph, the
unique path from a to b in the shortest path tree will be the shortest path
from a to b in G. We enumerate the nodes in G and while the algorithm
runs, we also keep track of an n-dimensional tentative distance vector d,
where we keep track of all shortest distances from a to the other nodes in
G. To start, we set the distance form a to a to 0 and all other values in d to ∞.

The algorithm proceeds as follows: Start by setting a as the current node.
From the current node, compare the tentative distance from a to the current
node plus the distance from the current node to one of its unvisited neighbors b
and compare that distance to the distance from a to b stored in d. Update d
so it contains the smallest of the two distances:

d[b] = min(d[current] + w(current, b), d[b]).

Once all unvisited neighbors of the current node have been considered in this
way, mark the current node as visited. The next current node will be the
unvisited node that has the smallest tentative distance from a stored in d.
Every time we move to a new current node, we can add it to our shortest
path tree along the tentative shortest path from a in G.

We claim that whenever we move to a new current node b, the tentative
shortest path from a to b is the shortest path from a to b. By induction on
the number of visited nodes: It is trivially true for the base case from a to a.
Assume we have visited i − 1 nodes, and we added each of them with their
shortest path from a to our shortest path tree. Suppose our next current
node is b. If there was a shorter path that crosses unvisited nodes from a

39



Chapter 3 Section 3.1

to b than the tentative path and the first unvisited node on that path is c,
then the tentative distance from a to c would be smaller than the tentative
distance from a to b, which is a contradiction. If there is a shorter path
from a to b that crosses only visited nodes and the last node on that path
before reaching b is c, then the tentative distance from a to b would be the
tentative distance from a to c plus the distance from b to c, which is also a
contradiction. It must be that the i’th visited node will be correctly added to
our shortest path tree.

The algorithm terminates when every node has been visited or all the
unvisited nodes have tentative distance ∞. Since each node will have O(n)
neighbors, the run time is O(n2).

Dijkstra’s algorithm works because the edges are all non-negative, so by
iteratively adding the unvisited node with the least tentative distance to our
shortest path tree, we know we will always be adding shortest paths. John-
son’s algorithm uses a reweighing trick involving the Bellman-Ford algorithm
to construct a graph with non-negative edges from the input graph that is
shortest-path-equivalent. We can then apply Dijkstra’s algorithm to each of
the nodes in the non-negative graph.

Theorem 3.1.2 (Johnson’s Algorithm). There exists an algorithm that
solves APSP on weighted directed graphs G = (V,E) over n nodes with weights
from [−nc, nc] in O(n3) time.

Proof. Let G = (V,E) be a weighted directed graph over n nodes with weights
from [−nc, nc] and no negative cycles.

First we enumerate all nodes in G and add a new node z to G that
is connected to all other nodes by a 0-weight edge. We can, somewhat
inefficiently in time O(n3), compute all shortest path lengths from node
a using the Bellman-Ford algorithm as follows: We start with the same
tentative-distance vector d from Dijkstra’s algorithm and iterate n times,
constantly relaxing the tentative distances. In iteration k loop over all edges
(i, j) and check whether d[i] + w(i, j) < d[j]. If the check returns true, update
the distance d[j] to d[i] + w(i, j).

We claim that after k updates, d[a] will be ∞ if there is no path over k
edges from z to a and d[a] will be the length of the shortest path over k edges
otherwise. By induction:

The base case where k = 0 is straight forward. Assume that for k = i − 1
it holds that d[a] will be ∞ if there is no path over i − 1 edges from z to a
and d[a] will be the length of the shortest path over i − 1 edges otherwise. If
there is no path over i edges from z to a, then there is no path over i− 1 edges
reaching any of the neighbors of a and d[a] = ∞. Otherwise, assume that b is

40



Section 3.1

the second to last node on the shortest path over i edges from z to a. By the
induction hypothesis the shortest paths from z to all of a’s neighbors will be
stored in d and as a result, our update rule will correctly select the shortest
path going through b.

Since there are no negative cycles in G, after n iterations d will contain
the shortest distances from z.

We will now replace all edge-weights w(i, j) in G by w(i, j) + d[i] − d[j]
and remove the node z to construct the graph G′. We then make the following
two claims: G′ contains only non-negative edge weights and the shortest path
from a to b in G is the shortest path from a to b in G′:

Let p′(a, b) be a path of length k in G′ from a to b and let p(a, b) be the
path crossing the same edges but in G. The length of the path p′(a, b) will be:

k∑
i

p′(a, b)i = (w(a, i1) + d[a] − d[i1]) + (w(i1, i2) + d[i1] − d[i2]) + · · · + (w(ik, b) + d[ik] − d[b])

=
k∑
i

p(a, b)i + d[a] − d[b]

We see that any path from a to b in G′ has the same value d[a] − d[b]
added to it and it follows that any shortest path in G will be the short-
est path in G′. All the paths from z to other nodes a in the graph G
would have the value d[z] − d[a] = −d[a] added to them and as a result
would have distance 0 from z. There can therefore be no negative edges
in G′: if there was a negative edge (i, j) in G′ then the path going from z
to i to j would have negative length in G, contradicting the previous statement.

It follows that G′ has only non-negative edges and has the same shortest
paths as G. We apply Dijkstra’s algorithm to all nodes in G′ to find all shortest
paths in G in O(n3) time.

The Bellman-Ford algorithm used in Johnson’s algorithm finds single
source shortest paths just like Dijkstra’s algorithm does but works on graphs
with negative edges. Unfortunately, Bellman-Ford has a worse run time
of O(n3) for dense graphs, and we can therefore not use it on every node to
solve APSP in O(n3) time. Johnson’s algorithm cleverly combines the two
algorithms to solve APSP in O(n3) time.

For unrestricted APSP, Johnson’s algorithm is not necessarily the fastest
algorithm out there but is rather well-known and intuitive. The best random-
ized algorithm to date solves APSP in O( n3

e
√

log(n) ) time and no truly faster
than cubic algorithm for APSP has been found in many years [52]. We can

41



Chapter 3 Section 3.2

easily read the shortest distances from the shortest paths in O(n3) time and
solving the shortest paths version is therefore at least as hard. We have the
following conjecture.

Conjecture 3.1.4 (APSP-hardness). There exists no randomized algorithm
that solves APSP in time O(n3−ϵ) for any ϵ > 0.

Although it is easier to work with the shortest distance version of APSP,
we have the same hardness for both shortest distance and shortest paths
between all pairs.

As explained earlier in this chapter, it is also not that important to give
very strong arguments for why the conjectured hardness of our problems is
believable. We can always use the conjecture to show comparable hardness for
many other computational problems as we will see consequently. Finding a
faster algorithm for any of the problems to which one of our popular problems
reduces to will then simply let us reformulate our conjecture.

As a final remark before we jump into the classical known fine-grained
reductions: While we defined the hardness of our popular problems for ran-
domized algorithms, the classical reductions shown in this thesis are fully de-
terministic. As a consequence, we will simply be referring to ‘algorithms’ as
opposed to ‘randomized algorithms’ in our theorem statements. Randomized
fine-grained reductions do exist, as shown in [41], and for this work we need to
randomize our hardness conjectures to make the comparative analysis valid.

3.2 Fine-Grained Reductions From APSP
Johnson’s algorithm described in the previous section does more than we re-
quire for solving APSP since it also outputs the shortest paths themselves.
The consensus in fine-grained literature is to stick to the shortest distance ver-
sion and this is mostly due to the relation between APSP and the distance
matrix product.

3.2.1 APSP and Matrix Multiplication
Since we can handily represent all the information of a graph using its
adjacency- or weight matrix, there are very close relations between graph
problems and matrix problems. Many problems can then come to depend
on how fast we can perform matrix multiplication. It becomes important here
to clarify which kind of matrix multiplication we are talking about. The stan-
dard matrix product is taken over the field R with standard addition and
multiplication. This is the most common type of matrix multiplication and
new techniques keep being developed to improve on its computational upper

42



Section 3.2

bound. Since the best known upper bound is constantly improved upon, we
say that the product of two n × n matrices takes time O(nω), with as of this
moment ω < 2.3728596 [4]. It is generally believed that no algorithm exists
that performs matrix multiplication in O(n2−ϵ) time for ϵ > 0, but a O(n2)-
time algorithm is not completely unthinkable. In fact, many algorithms that
use matrix multiplication and have a time complexity parametrized by ω, turn
out to have very ‘nice’ upper bounds when ω = 2.

‘Nice’ in this context means nothing else than that the upper bound is
something that we may have expected and seems natural to us like in the
matrix multiplication case or because it matches a lower bound. We won’t
actually see much use of this kind of matrix multiplication for the reductions
seen in this chapter, since it is more commonly used to show complexity upper
bounds as opposed to lower bounds. We’ll make use of standard matrix multi-
plication, henceforth simply referred to as matrix multiplication in Chapter 5,
and will get back to this as it becomes relevant.

We can view a matrix as a 2-dimensional array for storing data and in doing
so it is not hard to imagine performing matrix operations using other opera-
tions than multiplication and addition. More formerly, as opposed to matrix
multiplication over the (+,×)-ring, we can consider matrix multiplication over
other ring or semi-ring structures. While standard matrix multiplication is be-
lieved to possibly go as fast as O(n2) for n×n matrices, matrix multiplication
over an arbitrary semi-ring knows no O(n3−ϵ) time algorithm for any ϵ > 0.
This can be explained in part by the fact that clever algorithms for standard
matrix multiplication make use of subtraction, an operation that is not always
available in semi-rings. The alternative matrix multiplication that is relevant
for our work is matrix multiplication over the (min,+)-semi ring.

Definition 3.2.1 (Distance Product). Matrix multiplication of m× l matrix
M and l × n matrix N over the (min,+)-semi ring is denoted M ⋆N and
defined by:

(M ⋆N)[ij] := min
k∈[l]

(M [ik] +N [kj])

Inspecting the operation a bit more closely, we can already see some con-
nections to the APSP problem, we are computing the smallest element of a
list of sums, while in APSP we want to compute the smallest edge-weight sum
over all possible paths. For this reason we may also call this type of matrix
multiplication the distance product of two matrices. The distance product
allows us to formulate a corresponding computational problem:

Definition 3.2.2 ((min,+)-Matrix Multiplication). Given two n×n ma-
trices M , N , with entries from [−nc, nc] for some constant c, compute M ⋆N .

The relation between the distance product and APSP was first discussed
in [25, 37], where Fischer and Munro discussed the transitive closure of graphs.

43



Chapter 3 Section 3.2

We can use the distance product to find the distance matrix of a graph by
repeated squaring of the weight matrix of the graph.

Theorem 3.2.1 (APSP ≤n3,n3 (min,+)-Matrix Multiplication).
If (min,+)-Matrix Multiplication over n × n matrices with entries
from [−nc, nc] can be solved by an O(n3−ϵ) time algorithm for some ϵ > 0,
then APSP over weighted graphs with n nodes and entries from [−nc, nc] can
be solved in O(log(n)n3−ϵ) time.

Proof. Let G = (V,E) be a weighted directed graph with no negative
cycles and with weights from [−nc, nc] and let W be its weight matrix
where we set all diagonal entries to 0. For the distance product we define the
k’th power ofW to beW k := W⋆W⋆...⋆W , with k copies ofW in the sequence.

We claim that W n is the shortest distance matrix of G. First we show by
induction that W k[ij] is the length of the shortest path from i to j over at
most k edges and W k[ij] = ∞ if there is no such path. This is clearly true
for the base case W . Assume that it is true for W k, we show that it holds for
W k+1. We have that W k+1 = W k ⋆ W and therefore

W k+1[ij] = min
1≤l≤n

(W k[il] +W [lj])

We know that W k[il] holds the length of the shortest path from i to l for
all 1 ≤ l ≤ n over k edges if such a path exists. We prove the inductive step
by case distinction:

Suppose there is no path that crosses k + 1 edges that is shorter than the
shortest path over k edges between nodes i and j. Then W k stores the length
of that path, and since the diagonal entries are 0 we have that

min
1≤l≤n

(W k[il] +W [lj]) = W k[ij] +W [jj]

is the shortest distance from i to j. If there was some edge l such that

W k[il] +W [lj] < W k[ij] +W [jj],

there would either be a shorter path from i to j over k+1 edges, which violates
the case assumption, or there would be a shorter path from i to j over k edges,
which violates the induction hypothesis.

In the next case, suppose there is a path from i to j that consists of k + 1
edges and that is shorter than the shortest path over k edges. Let (l, j) be
the last edge on that path over k + 1 edges. It follows that the shortest path
from i to l is over k edges and its distance will be W k[il]. As a result

W k+1[ij] = W k[il] +W [lj],

44



Section 3.2

which is the length of the shortest path over k + 1 edges from i to j.
Lastly, assume that there exists no path over k+ 1 edges from i to j. Then

there is no path over k edges from i to j. It must be that for all 1 ≤ l ≤ n it
holds that W k[il] = ∞ or W [lj] = ∞ and as a result W k+1[ij] = ∞.

Since there are no negative cycles in our graph, we know that every shortest
path will cross at most n edges, and it must be that W n is the shortest dis-
tance matrix. We can compute W n using (min,+)-Matrix Multiplication
and repeated squaring: W n = W

n
2 ⋆ W

n
2 . It takes log(n) calls to

(min,+)-Matrix Multiplication with n × n sized matrices. The theorem
statement follows.

We find that, in fact, (min,+)-Matrix Multiplication is fine-grained
equivalent to APSP.

Theorem 3.2.2 ((min,+)-Matrix Multiplication ≤n3,n3 APSP). If
APSP over weighted graphs with n nodes and weights from [−nc, nc]
can be solved by an algorithm in time O(n3−ϵ) for ϵ > 0, then
(min,+)-Matrix Multiplication over n × n matrices and entries from
[−nc, nc] can be solved in time O(n3−ϵ).

Proof. Let M and N be two n × n matrices. We will construct a graph in a
way that we can read the product M ⋆N from its distance matrix D.

Let G = (V,E) be the graph with vertex set V = A ∪ B ∪ C such
that A = {a1, , , an}, B = {b1, , , bn} and C = {c1, , , cn}. For every M [ij] we
add edge (ai, bj) with weight M [ij] to E and for every N [ij] we add edge (bi, cj)
with weight N [ij] to E. For a pair of nodes ai, cj it holds that the distance of
its shortest path is

min
bk∈B

(w(ai, bk) + w(bk, cj)) = min
1≤k≤n

(M [ik] +N [kj]) = (M ⋆N)[ij].

Since |V | = 3n and |E| = 2n2, it takes O(n2) time to construct the graph G,
furthermore it takes O(n) time to read the correct entries from D.

The equivalence follows immediately.

Corollary 3.2.1 (APSP ≡n3,n3 (min,+)-Matrix Multiplication). For
weighted graphs over n nodes and with weights from [−nc, nc] there is an
O(n3−ϵ) time algorithm for APSP for ϵ > 0 if and only if an Õ(n3−ϵ) algorithm
exists for (min,+)-MM over n× n matrices with entries from [−nc, nc].

Proof. Follows from Theorem 3.2.1 and Theorem 3.2.2.

The cubic hardness-equivalence between APSP and
(min,+)-Matrix Multiplication has been known for a while and
seems natural to the extent that in both problems we are minimizing over

45



Chapter 3 Section 3.2

sums; summing path weights or summing matrix entries.

The next series of reductions from (min,+)-Matrix Multiplication to
our end goals of ∆-Matching Triangles and Triangle Collection are
all triangle related graph problems.

3.2.2 Graph Triangle Finding
In the next series of problems, all our problem instances will be weighted
graphs, and the instances can of course be represented fully by their weight
matrices. More specifically, the graph problems we’ll discuss in this section
have to do with triangle finding problems.

Definition 3.2.3 (Graph Triangles). Let G(V,E) be a weighted graph.
Nodes a, b, c form a triangle if (a, b), (b, c), (c, a) ∈ E.

• If nodes a, b, c form a triangle in a weighted graph G, then the weight of
the triangle is w(a, b) + w(b, c) + w(c, a).

In directed graphs, triangles are 3-cycles and in undirected graphs they are
3-cycles and 3-cliques.

Another important definition that we’ll often encounter in graph-triangle
problems is that of tripartiteness.

Definition 3.2.4 (Tripartite). A graph G = (V,E) is tripartite if there is a
partition of V = A ∪ B ∪ C for which it holds that there exists no (i, j) ∈ E
such that i ∧ j ∈ A or i ∧ j ∈ B or i ∧ j ∈ C.

Combining the tripartiteness definition with the triangle one from before,
we can observe an interesting property about triangles in tripartite graphs:
A triangle in a tripartite graph must contain one node in each of the three
different graph parts.

Assuming that the graph input for a triangle problem is tripartite can
simplify our reductions a great deal. Here we show that we can often make
this assumption without loss of generality.

Theorem 3.2.3 (Tripartiteness Assumption). Let G = (V,E) be a weighted
graph over n nodes and with weights from [−nc, nc] and let t be the number of
triangles in G. We can construct a tripartite graph G′ from G in O(n2) time
such that the number of triangles in G′ is 3t.

Proof. Let G = (V,E) be a weighted graph with V = {v1, , , vn} and t
triangles. Define vertex set V ′ = A ∪ B ∪ C such that A = {a1, , , an},
B = {b1, , , bn} and C = {c1, , , cn}. We define our new edge set E ′ as follows:
For every edge (vi, vj) ∈ E, add edges (ai, bj), (bi, cj) and (ci, aj) to E ′. It is

46



Section 3.2

clear that G′ = (A ∪B ∪C,E ′) is tripartite, now we show that G′ contains 3t
triangles.

Let vi, vj, vk be a triple of nodes in V . Suppose that the triple of nodes forms
a triangle in G. It must be that (vi, vj), (vj, vk), (vk, vi) ∈ E and as a result
(ai, bj), (bj, ck), (ck, ai) ∈ E ′. We then know that the triple of nodes ai, bj, ck

forms a triangle in G′. Similarly, the triples ak, bi, cj and aj, bk, ci form triangles
in G′.

Assume ai, bj, ck forms a triangle in G′. It must be
that (ai, bj), (bj, ck), (ck, ai) ∈ E ′ and by definition (vi, vj), (vj, vk), (vk, vi) ∈ E.
It follows that vi, vj, vk is a triangle in G.

Every triangle vi, vj, vk in G gives rise to three triangles in G′ in-
dexed with i, j, k and every triangle in G′ must be the result of a trian-
gle in G. We can conclude that G′ contains 3t triangles. Furthermore,
since O(|A| + |B| + |C|) = O(|V |) and O(|E ′|) = O(|E|), we can construct G′

in O(n2) time.

Assuming tripartiteness on graph inputs then works for graph problems
where we need to determine the existence of triangles or make a triangle count.

The next series of reductions to triangle problems is of relevance due to
their connection to the other two hardness conjectures. The reductions are all
taken from [3, 54, 53].

To get to these problems from APSP, we depart from
(min,+)-Matrix Multiplication to the somewhat artificial problem
All-Pairs Negative Triangle, which looks at pairs of nodes in a tripar-
tite graph and determines whether they are part of a triangle that has total
negative edge-weight.

Definition 3.2.5 (All-Pairs Negative Triangle). Given a tripartite
weighted graph G = (A ∪ B ∪ C,E) over O(n) nodes and with weights
from [−nc, nc] determine for every pair of nodes a, b such that a ∈ A and
b ∈ B whether there exists c ∈ C such that nodes a, b, c form a triangle of
negative weight in G.

The All-Pairs Negative Triangle problem is mostly a stepping stone
towards showing the reduction to the Negative Triangle problem, and so
we can let tripartiteness be part of the problem definition. It is also not
quite clear whether the tripartiteness could be assumed on a graph instance
of All-Pairs Negative Triangle w.l.o.g.

Definition 3.2.6 (Negative Triangle). Given a weighted graph G over n
nodes with weights from [−nc, nc], determine if there is a triangle in G with
negative weight.

47



Chapter 3 Section 3.2

From Negative Triangle we go to 0-Weight Triangle, which is also
the meeting point for 3SUM:

Definition 3.2.7 (0-Weight Triangle). Given a weighted graph G over n
nodes and with weights from [−nc, nc], determine if there is a triangle in G
with weight 0.

The final two problems are closely related and can be reduced to from
0-Weight Triangle. Through a separate route, also SAT and k-SAT re-
duce to these problems. The following two problems will be the main focus in
the quantum setting in Chapter 4 and Chapter 5.

First we have ∆-Matching Triangles, a parameterized problem on col-
ored graphs where we are tasked to find ∆ triangles of the same color.

Definition 3.2.8 (∆-Matching Triangles). Given a colored graph G =
(V,E) over n nodes and with color function γ : V → Γ, determine if there
is a triple of colors i, j, k ∈ Γ such that there are ∆ triangles a, b, c for
which (γ(a), γ(b), γ(c)) = (i, j, k).

On colored graphs we can also ask whether there is a triangle for any
possible color triple.

Definition 3.2.9 (Triangle Collection). Given a colored graph G =
(V,E) over n nodes with color function γ : V → Γ, determine if for
every triple of colors i, j, k ∈ Γ there is at least one triangle a, b, c for
which (γ(a), γ(b), γ(c)) = (i, j, k).

In the remainder of this section we present all the reductions from APSP
to the above defined problems. The chain starts with the reduction from
(min,+)-Matrix Multiplication to All-Pairs Negative Triangle,
from [53].

Theorem 3.2.4 ((min,+)-Matrix Multiplication ≤n3,n3

All-Pairs Negative Triangle).
If All-Pairs Negative Triangle over graphs of n nodes and weights
from [−nc, nc] can be solved by an O(n3−ϵ) time algorithm for ϵ > 0,
then (min,+)-Matrix Multiplication over n × n matrices with entries
from [−nc, nc] can be solved in O(log(n)n3−ϵ) time.

Proof. Let M,N be two n × n matrices. We construct the tripar-
tite graph G = (A ∪B ∪ C,E) with A = {a1, , , an}, B = {b1, , , bn}
and C = {c1, , , cn}. Then for every pair (bj, ck) ∈ B × C we add an edge
to E with weight w(bj, ck) = N [jk] and for every pair (ck, ai) ∈ C ×A we add
an edge to E with weight w(ck, ai) = M [ki].

For every pair ai, bj, there is a triangle ai, bj, ck for each k ∈ [n]. We want
to determine the largest weight that the edge (ai, bj) can have for which there

48



Section 3.2

exists a negative triangle that contains ai and bj. In this specific scenario we
are certain that the only negative triangle ai and bj are part of is the smallest
triangle. It will also be true that w(ai, ck) +w(ck, ai) = −w(ai, bj) − 1 and we
have that:

−w(ai, bj) − 1 = w(bj, ck) + w(ck, ai)
= min

k∈[n]
(w(bj, ck) + w(ck, ai))

= min
k∈[n]

(M [jk] +N [ki]) = (M ⋆N)[ji]

We find these values w(ai, bj) by binary searching the integer weight space
and making repeated use of the All-Pairs Negative Triangle algorithm.
First set the lower bound l(ai, bj) = −nc and the higher bound h(ai, bj) = nc.
Define w(ai, bj) = l(ai,bj)+h(ai,bj)

2 . Now run All-Pairs Negative Triangle
on the graph G. For every pair of nodes ai, bj, if they are part of a neg-
ative triangle, set l(ai, bj) = w(ai, bj) for the next run and if they are
not part of a negative triangle, set h(ai, bj) = w(ai, bj) for the next run.
We make log(2nc) calls to All-Pairs Negative Triangle in this manner
until l(ai, bj) = h(ai, bj) = w(ai, bj).

All-Pairs Negative Triangle is a somewhat artificial problem but
does allow us to reduce APSP to the more interesting Negative Triangle,
as done in [53].

Theorem 3.2.5 (All-Pairs Negative Triangle ≤n3,n3 Negative Triangle).
If Negative Triangle on weighted graphs of n nodes with weights
from [−nc, nc] can be solved by an O(n3−ϵ) time algorithm for ϵ > 0, then
All-Pairs Negative Triangle on weighted graphs of n nodes and weights
from [−nc, nc] can be solved in O(log(n)n3−ϵ) time.

Proof. Let G = (A ∪ B ∪ C,E) be a tripartite, weighted graph
with |A| = |B| = |C| = n. First we claim that upon detecting a negative tri-
angle in G, we can find it efficiently. We do this as follows:

Suppose we query the negative triangle oracle to determine whether there
is a negative triangle in G. If the oracle answers ‘yes’, we split the vertex
set V into 4 equally sized subsets. We know that there must be at least one
combination of three vertex sets that contains the nodes of a negative triangle.
As soon as we’ve determined such a triple of three vertex sets using the
negative triangle algorithm, we eliminate the remaining fourth of the vertex
set. We repeat this step, eliminating a fourth of the remaining vertex sets at
every iteration, until only three vertices remain. If our Negative Triangle
oracle runs in time n3, the running time of finding a negative triangle after
detection will be O(n+ (3

4n)3 + ( 9
16n)3 + . . . ) = O(log(n)n3).

49



Chapter 3 Section 3.2

We will use the above sub-algorithm to solve
All-Pairs Negative Triangle on G. First we split A,B and C
each into nα graphs with n1−α nodes. We can use these vertex subsets to
create n3α new tripartite sub-graphs of G, taking always a subset of A, a
subset of B and a subset of C to make the vertex set of our new sub-graph.
For each of these new tripartite graphs, we run the negative triangle detecting
and finding algorithm to find a triangle a, b, c with a ∈ A, b ∈ B and c ∈ C.
After finding such a triangle report ‘yes’ for the pair (a, b) and remove the
edge (a, b) from all the new sub-graphs. We repeat until no new triangles are
detected in any of the n3α sub-graphs.

The total number of sub-graphs is n3α but the number of pairs for which we
need to find a check whether they are part of a negative triangle is O(n2). Since
the size of the Negative Triangle oracle input is nα−1 we find a complexity
of O(T (n1−α) · (n3α + n2)). For T (n) = O(n3), this complexity is optimized
at α = 2

3 and the theorem statement follows.

In a nice result that we don’t necessarily need for the results in
this thesis, but that does give us some interesting insight later on
in the quantum setting we can reduce Negative Triangle back to
(min,+)-Matrix Multiplication as done in [53].

Theorem 3.2.6 (Negative Triangle ≤ (min,+)-Matrix Multiplication).
If (min,+)-Matrix Multiplication on n × n matrices with weights
from [−nc, nc] can be solved by an O(n3−ϵ) time algorithm for some ϵ > 0,
then Negative Triangle on graphs of n nodes and weights from [−nc, nc]
can be solved in O(n3−ϵ) time.

Proof. Let G = (V,E) be a weighted graph and W its weight matrix.
Compute M = W + (W ⋆W )T and check if there are any entries (i, j) for
which M [ij] ≤ 0. Whenever this is the case we will have

W [ij] + (W ⋆W )[ji] = w(i, j) + min
1≤k≤n

(w(j, k) + w(k, i)) < 0.

Which shows that for nodes i, j if we take k such that the triple of nodes i, j, k
has the smallest combined edge-weight we will have a negative triangle.

Since we already had fine-grained equivalence between APSP
and (min,+)-Matrix Multiplication, we now have fine-grained
equivalence between APSP, (min,+)-Matrix Multiplication,
All-Pairs Negative Triangle and Negative Triangle. The cu-
bic hardness equivalence of our reductions breaks down in the reduction from
Negative Triangle to 0-Weight Triangle from [54].

For this reduction we will first need a lemma that lets us relate inequality
to equality, also proven in [54]. We leave the proof out of this thesis since we
can use the lemma as a black box, and we won’t need its proof in Chapter 4.

50



Section 3.2

Lemma 3.2.1. For non-negative integers x, y, z we have that x+ y < z if and
only if there exists a k such that either:

⌊ x2k
⌋ + ⌊ y2k

⌋ = ⌊ z2k
⌋ + 1

or it holds that both ⌊ x
2k−1 ⌋ mod 2 = ⌊ y

2k−1 ⌋ mod 2 = 0 and

⌊ x2k
⌋ + ⌊ y2k

⌋ = ⌊ z2k
⌋

Proof. See [54].

Since the weights of our graphs are always taken from a space polynomial
in the size of our graph, the conditions in the lemma only need to be checked
for k = O(log(n)). We can then use the lemma to construct a logarithmic
number of graphs to account for all the possible cases in the lemma. We
show the idea in more detail in the reduction from Negative Triangle to
0-Weight Triangle below.

Theorem 3.2.7. If 0-Weight Triangle on graphs of n nodes and with
weights from [−nc, nc] can be solved by an O(n3−ϵ) time algorithm for
some ϵ > 0, then Negative Triangle on graphs of n nodes and weights
from [−nc, nc] can be solved in O(log2(n)n3−ϵ) time.

Proof. Let G = (V,E) be a weighted graph with weight function w and assume
w.l.o.g. that it is tripartite with partition V = A ∪B ∪ C. We make 2 log(nc)
new copies Gi,j = (A ∪ B ∪ C,E) of the graph G with the same vertex sets
and edge sets, but with a new weight function wi,j for 1 ≤ i ≤ log(nc) and for
j = 0 or j = 1.

For nodes a ∈ A and b ∈ B, with edge-weight w(a, b), we
set wi,j(a, b) = ⌊w(a,b)

2i ⌋. For b ∈ B and c ∈ C we set wi,j(b, c) = ⌊w(a,b)
2i ⌋.

For c ∈ C and a ∈ A, we set wi,j(c, a) = −⌊w(c,a)
2i ⌋ + j.

For each of the graphs we run the 0-Weight Triangle algorithm. When-
ever we detect a 0-weight triangle in a graph Gi,0 we know there must be a
negative triangle in G. If we detect a 0-weight triangle a, b, c in a graph Gi,1
for some i we use the triangle finding algorithm from Theorem 3.2.5 to locate
it and check whether ⌊wi,0(a,b)

2k−1 ⌋ mod 2 = ⌊wi,0(b,c)
2k−1 ⌋ mod 2 = 0 to determine

whether there is a negative triangle in G. We run the 0-Weight Triangle
algorithm O(log(n)) times for O(log(nc)) of the graphs and the theorem state-
ment follows.

Before the reduction from Negative Triangle to 0-Weight Triangle
was shown in [54] it was already shown in [41] that 3SUM re-
duces to 0-Weight Triangle as well. The next reductions from
0-Weight Triangle provide the meeting point for SAT and k-SAT

51



Chapter 3 Section 3.2

also.

The reduction from 0-Weight Triangle to ∆-Matching Triangles
requires another lemma which was used in [2] and later reformulated in [3].
Here we state it without proof, since we can use the lemma as a black box in
Chapter 4.

Lemma 3.2.2. For integers p, d, s, n, c ≥ 1 if p ≥ 3n c
d and s = 4d−1 there

is a collection of functions f1, , , fs : [−nc, nc] → [−p
3 ,

p
3 ]d and target vec-

tors ttt1, . . . , ttts ∈ [−p, p]d, computable in O(log(n)) time, such that for all
numbers x, y, z ∈ [−nc, nc] it holds that

x+ y + z = 0 iff ∃j ∈ [s] s.t. fj(x) + fj(y) + fj(z) = tttj

Proof. See [2].

The reduction from 0-Weight Triangle to ∆-Matching Triangles
and Triangle Collection requires us to turn a weighted graph instance
into a colored graph instance. In order to encode the edge weights we use
Lemma 3.2.2 to encode the weight space [−nc, nc] of a graph into d-dimensional
vectors and construct a node for each possible edge weight. We see it in more
detail in the following reduction.

Theorem 3.2.8 (0-Weight Triangle ≤n3,n3 ∆-Matching Triangles).
If ∆-Matching Triangles on colored graphs of n nodes can be solved by
an O(n3−ϵ) time algorithm for some ϵ > 0 and ω(1) ≤ ∆(n) ≤ o(log(n)),
then 0-Weight Triangle on weighted graphs of n nodes and with weights
from [−nc, nc] can be solved in O(log(n)n3−ϵ) time.

Proof. Let G(V,E) be a weighted graph with weight function
w : E → [−nc, nc] and assume that it is tripartite with vertex partition
V = A ∪B ∪ C and let A = {a1, , , an}, B = {b1, , , bn} and C = {c1, , , cn}.

We will use Lemma 3.2.2 setting d = ∆, p = O(n c
∆ ) and n = n to

construct s = 2O(∆) functions fi : [−nc, nc] → [−n c
∆ , n

c
∆ ]∆. Now we use fi to

construct unweighted colored graphs Gi = (Ai ∪Bi ∪ Ci, Ei) for each i ∈ [s].

For every a ∈ A add ∆ copies labelled aj for j ∈ [∆] to Ai and let their
color be a. For each b ∈ B add ∆ · 2n c

∆ copies to Bi labelled bj,x for j ∈ [∆]
and x ∈ [−n c

∆ , n
c
∆ ] and with color b. Similarly, add ∆ · 2n c

∆ copies cj,x with
color c for each c ∈ C to Ci. That is, we add a node to B and C for every
dimension up to ∆ and every possible vector entry value in [−n c

∆ , n
c
∆ ].

Now for the edges: For each (a, b) ∈ A × B add the edges
(aj, bj,fi(w(a,b))[j]) to Ei for every j ∈ [∆]. For each (b, c) ∈ B × C add
the edges (bj,x, cj,x+fi(w(b,c))[j]) to Ei for every j ∈ [∆]. Finally, for each

52



Section 3.2

(c, a) ∈ C×A, add edges (cj,ti[j]−fi(w(c,a))[j], aj) to E for every j ∈ [∆]. That is,
we have edges going only from nodes in the same dimension, with the specific
value for the b and c nodes given by our constructed function fi. Every aj has
one outgoing edge and every bj, x has one outgoing edge, even for the values
of x that don’t have an edge incoming from aj. For every c only ∆ of the
∆2n c

∆ nodes cj,x has an outgoing edge.

We now claim that G has a 0-weight triangle if and only if there exists
some i ∈ [s] such that Gi has ∆ matching triangles.

Suppose G has a 0-weight triangle a, b, c. It follows from Lemma 3.2.2
that there is some i ∈ [s] such that fi(w(a, b)) + fi(w(b, c)) + fi(w(c, a)) = ttti.
In the following set for ease of notation xxx = fi(w(a, b)), yyy = fi(w(b, c)) and
zzz = fi(w(c, a)). We know that there exists an i ∈ [s] such that

x[j] + y[j] + z[j] = ti[j],

for each j ∈ [∆]. By our construction it always holds for a graph Gi that
(aj, bj,x[j]), (bj,x[j]cj,(x+y)[j]), (cj,−z[j], aj) ∈ Ei for each j ∈ [∆]. Since (x+y)[j] =
(ti − z)[j] by the previous observation, it follows that cj,(x+y)[j] = cj,ti[j]−z[j]
and the triple of nodes (aj, bj,x[j], cj,−z[j]) forms a triangle for every j ∈ [∆].
Furthermore, since the triangle (aj, bj,x[j], cj,−z[j]) is the same color for every
j ∈ [∆], we have ∆ matching triangles.

Conversely, suppose there are ∆ matching triangles in Gi for some
i ∈ [s]. We know from the construction of our graphs Gi that the colors
must correspond to a triple of nodes (a, b, c) ∈ A × B × C in the graph G.
Every aj ∈ Ai has only one outgoing edge (aj, bj,x) and so it must be that
x = fi(w(a, b))[j]. The node bj,x also only has one outgoing edge (bj,x, cj,x+y)
and it must be that y = fi(w(b, c))[j]. Lastly, since aj has only one incoming
edge (cj,ti[j]−z, aj) it must be that z = ti[j] − fi(w(c, a))[j] and as a result
fi(w(a, b))[j] + fi(w(b, c))[j] = ti[j] − fi(w(c, a))[j] for each j ∈ [∆]. It follows
by Lemma 3.2.2 that w(a, b) + w(b, c) + w(c, a) = 0.

We can use the above algorithm to solve 0-Weight Triangle using a
∆-Matching Triangles oracle. We construct 2(O(∆)) graphs of O(∆n ·n c

∆ )
nodes and O(∆mn c

∆ ) edges each. To keep the number of graphs small
enough, the algorithm only works for providing a sub-cubic algorithm for
0-Weight Triangle if ∆ = o(log n). On the other hand, to ensure that
the individual graph sizes are small enough, we need to ensure that ∆ = ω(1).
The theorem follows.

A sub-cubic algorithm for ω(1) ≤ ∆ ≤ no(1) on graphs of n nodes
provides us with a sub-cubic algorithm for 0-Weight Triangle. Since
∆-Matching Triangles can be solved in sub-cubic time for ∆ = O(1),

53



Chapter 3 Section 3.2

it makes sense that the reduction does not work for that regime of ∆’s. We
can improve the upper bound on ∆ using the following theorem:

Theorem 3.2.9. If ∆-Matching Triangles on graphs with n nodes can be
solved by a O(n3−ϵ) time algorithm for some ϵ > 0 and ω(1) ≤ ∆ ≤ no(1), then
∆′-MT can be solved in Õ(n3−ϵ) time for ω(1) ≤ ∆′ ≤ o(log(n)).

Proof. Let G be a colored graph over n nodes and suppose we want to know
whether G contains ∆′ matching triangles, but we have an algorithm for
∆-Matching Triangles for ∆ ≥ ∆′. We can add ∆′ − ∆ nodes to G for
every color in G. We add edges to turn the newly added nodes into a complete
graph, adding ∆′ − ∆ triangles of every color combination to G. We can run
the ∆-Matching Triangles algorithm on the graph to solve ∆′-Matching
Triangles. As long as ∆ − ∆′ = no(1) the graph will have size O(n).

The reduction from 0-Weight Triangle to Triangle Collection
uses the same Lemma 3.2.2 and construction from Theorem 3.2.8 for a specified
value of ∆.

Theorem 3.2.10 (0-Weight Triangle ≤n3,n3 Triangle Collection).
If Triangle Collection on graphs over n nodes can be solved by an O(n3−ϵ)
time algorithm for some ϵ > 0, then 0-Weight Triangle can be solved in
O(log(n)n3−ϵ) time.

Proof. We will use the same graph construction as in the proof of Theo-
rem 3.2.8 but use it to construct new graphs G′

i = (A′
i ∪ B′

i ∪ C ′
i, E

′
i) such

that there is a 0-weight triangle in G if and only if there is a G′
i where we can’t

collect all color triples.
From each Gi from Theorem 3.2.8, we construct the graph G′

i by inverting
all the edges in Gi. In the case that there is no 0-weight triangle in G, we want
all color triples to be collected in every G′

i, which includes color triples with
colors of the same parts in G, e.g. (a, b, b′) ∈ A × B × B. To do so, we finish
the constructions of the graphs G′

i by adding nodes and edges to G′
i.

For every a ∈ A, add two nodes aB, aC to A′
i with color a. For every b ∈ B

add nodes bA, bC to B′
i with color b. Lastly, for c ∈ C add cA, cB to C ′

i with
color c.

For any pair of nodes a, a′ ∈ A we add edges (aB, a
′
B) and (aC , a

′
C)

to E ′
i. Similarly, for b, b′ ∈ B and c, c′ ∈ C we add edges

(bA, b
′
A), (bC , b

′
C), (cA, c

′
A), (cB, c

′
B) to E ′

i. Finally, for pair (a, b) ∈ A×B, we add
edge (aB, bA) for pair (b, c) ∈ B×C, we add (bC , cB) and for pair (c, a) ∈ C×A
we add (cA, aC) to E ′

i.
This finishes off our construction of graphs G′

i, now we prove that there is
no 0-weight triangle in G if and only if there is no triangle collection in G′

i for
some i ∈ [2O(∆)].

54



Section 3.3

Suppose (a, b, c) ∈ A × B × C forms a 0-weight triangle in G. Let Gi be
the graph containing ∆-matching triangles from the proof of Theorem 3.2.8.
We saw that every aj in Gi can only be part of one triangle. Since there are ∆
of each aj, every such aj must be part of a triangle in Gi if there is a 0-weight
triangle in G. In our inverted graph G′

i, there can therefore be no triangle with
color a. By adding the extra nodes and edges to G′

i, we have not made any
new triangles that have a node in the three different parts of G′

i and there is
therefore no triangle collection for graph G′

i.
Conversely, suppose there is no 0-weight triangle in G. Following the

reasoning in the previous paragraph and the proof of Theorem 3.2.8, it must
be that we collect every possible triple of colors (a, b, c) ∈ A×B ×C in every
graph G′

i. We now show that we also collect every triple of colors that is not in
A×B×C. Suppose we have three colors corresponding to three nodes from the
same part in G, e.g. a, a′, a′′ ∈ A. Then nodes aB, a

′
B, a

′′
B from a triangle in G′

i

for every i. If two colors come from one part of G and the third from another,
e.g. (a, a′, b) ∈ A×A×B, the nodes aB, a

′
B, ba form a triangle in G′

i for every i.

Complexity-wise we have the bounds to ∆ as in the proof of Theorem 3.2.8
and we can instantiate our construction by setting ∆ = 2

√
log n. The theorem

statement follows.

This concludes the main section of reductions from APSP. A clean
overview can be seen in the graphic at the end of the chapter.

3.3 Reductions from 3SUM, SAT and k-SAT
We’ve formulated three different conjectures, because many problems can
only be reduced to or from one of them. Ideally we’d be able to reduce the
conjectures to each other so that we can reduce the amount of conjectures
on which we base our hardness results. Unfortunately, none of our 3 hard
problems reduces to another. The next best thing is to find problems that
either reduce to all three of them or that all three reduce to. While problems
that reduce to both APSP and 3SUM have been investigated in [11, 20],
here we place the focus on two problems that all three hardness conjectures
reduce to.

We ended our chain of reductions from APSP at the
∆-Matching Triangles and Triangle Collection problems. It
turns out that both 3SUM and SAT reduce to these problems as well.
3SUM through a reduction to 0-Weight Triangle and SAT directly
to Triangle Collection and through the sparsification lemma to
∆-Matching Triangles.

55



Chapter 3 Section 3.3

The 3SUM reduction to 0-Weight Triangle has already been investi-
gated in both the classical setting in [41] and [54] and in the quantum setting
in [13] so we cite the classical result here without proof.

Theorem 3.3.1 (3SUM ≤n2,n3 0-Weight Triangle). If
0-Weight Triangle on graphs over n nodes and with weights from
[−nc, nc] can be solved by an O(n3−ϵ) time algorithm for some ϵ > 0, then
3SUM over sets of size n and with integers from [−nc, nc] can be solved in
O(n2−ϵ) time.

Proof. See [41] and [54].

What remains is to investigate how the classical results from SAT to
∆-Matching Triangles and Triangle Collection hold up.

3.3.1 SAT and k-SAT
In the reductions in this section it will become clear why it is important to
make the distinction between SAT and k-SAT. For some reductions we will
need the sparsification lemma from [34] which only works for k-SAT. Ideally
all our reductions would work from SAT, since it allows use to make a weaker
hardness conjecture.

The algorithm for sparsifying a CNF-formula is not too complex, but the
analysis of the correctness of the algorithm is rather involved and not necessary
for the results in this thesis. Instead, we simply provide the algorithm here
and refer to [34] for the proof of correctness and run-time of the algorithm.

Lemma 3.3.1 (Sparsification Lemma). Let ϕ be a k-CNF formula over n
variables and with m clauses for k ≥ 3. For any ϵ > 0 there is an O(2ϵn) time
algorithm that produces O(2ϵn) k-CNF formulas ϕ1, . . . , ϕO(2ϵn) over n variables
and cn clauses where c = (k

ϵ
)O(k). It then holds that ϕ is in SAT if and only

if there is a satisfying assignment to ∨O(2ϵn)
i=1 ϕi.

Proof. The intuition for sparsifying a k-CNF formula is as follows. Given a
k-CNF instance over m clauses ϕ = c1 ∧ · · · ∧ cm, we try to find common
subclauses to make sunflowers.

A clause c′ = l′1 ∨ · · · ∨ l′k′ is the subclause of a clause c = l1 ∨ · · · ∨ lk if
every literal l part of the disjunction in c′ is also part of the disjunction in c.

A sunflower is a disjunction of clauses that share a common subclause.
The common subclause is called the heart of the sunflower and the clauses
without the literals contained in the heart are called the petals.

56



Section 3.3

Whenever we find a sunflower in a formula ϕ, we can remove all the
clauses in the sunflower from ϕ and make two new copies, ϕp and ϕh. To
ϕp we add all the petals of our sunflower as clauses and to ϕh we add the
heart. If there is a variable assignment that satisfies all clauses in the
sunflower, it must be that the heart or all the petals are satisfied by that
assignment. If no such assignment exists, then no assignment exits that
satisfies the heart and no assignment exists that satisfies the petals. As
a result, ϕp and ϕh preserve the satisfiability of ϕ. We use ϕp and ϕh to
find new sunflowers starting a tree-like structure, with ϕ as its root and
the formulas ϕ1, . . . , ϕ2ϵn described in the lemma statement on the leaves.
The amount of clauses we need in our sunflower depends on the values k and ϵ.

To find the sunflowers, the algorithm proceeds as follows: Let ϕ be a k-
CNF instance. Iterate first over 2 ≤ i ≤ k and then 1 ≤ j ≤ i − 1. For step
i, j look for sunflowers of clauses over i literals with petals over j literals and
a heart over i− j literals. The amount of petals we look for in the sunflower is
given by the function C(i, ϵ, k) = O((k

ϵ
2k)2i−1). Whenever we find a sunflower

satisfying our restraints, halt the iteration and recurse on formulas ϕp and ϕh.
If we complete the iteration over i and j without finding a sunflower terminate.
Lemma 3.3.2. The sparsification algorithm ends in at most 2ϵn steps.

Proof. See [34].

Lemma 3.3.3. The sparsification algorithm outputs 2ϵn k-CNF formulas
ϕ1, . . . , ϕ2ϵn of at most cn clauses, where c >

∑k
i=1 C(i, ϵ, k). It holds that

a assignment to the variables in ϕ satisfies ϕ if and only if it satisfies ∨2ϵn

i=1 ϕi.

Proof. See [34].

The sparsification lemma follows from the two above claims.

We consider it necessary to at least discuss the algorithm for sparsifying a
k-CNF instance as opposed to using the sparsification lemma purely as a black
box, to ensure that the algorithm also works in a quantum setting.

We are now ready to reduce SAT to ∆-Matching Triangles and
Triangle Collection.

Theorem 3.3.2. If ∆-Matching Triangles on graphs with N nodes can
be solved by an O(N3−ϵ) time algorithm for some ϵ > 0, then SAT over n
variables and m clauses can be solved in O((∆2n

3 + m
3∆ )3−ϵ) time.

Proof. Let ϕ be a SAT instance over n variables and m clauses. Partition the
set of variables into three sets N1, N2, N3 of size n

3 each and index the 3 · 2n
3

partial assignments with i = 1, 2, 3 depending on which of the three Ni they
assign truth values to. Let C be the set of all clauses in ϕ, divide it into 3∆

57



Chapter 3 Section 3.3

sets C1, . . . , C3∆ of m
3∆ clauses each.

We make a tripartite graph G = (V1 ∪V2 ∪V3, E). For every partial assign-
ment αi to variables in Vi, clause set C3j+i with j ∈ [∆] and subset of clauses
s ⊆ C3j+i, add node vα,j,s to Vi. We end up with 2n

3 · ∆ · 2 m
3∆ = O(∆2n

3 + m
3∆ )

nodes in each Vi. The color of node vα,j,s is α, i.e. nodes indexed by a different
partial assignment have a different color.

In the following let α4 = α1 and V4 = V1 and let’s describe the edges of
G: For every pair of nodes vαi,j,s and vαi+1,j,s′ we add an edge between them
if and only if αi+1 satisfies exactly the subset of clauses s ⊆ C3j+i and αi

together with αi+1 satisfy all clauses in C3j+i+1\s′.

We now claim that there are ∆ matching triangles in G if and only if there
is a satisfying assignment to ϕ.

Suppose there is a satisfying assignment to ϕ. Then there is a triple of
partial assignments α1, α2, α3 that together satisfy all clauses in ϕ. Then for
every j ∈ [∆] let s1 ⊆ C3j+1 be exactly the subset of clauses satisfied by α2
and similarly for s2 ⊆ C3j+2 and s3 ⊆ C3j+3. Then since the three partial
assignment together must satisfy all clauses in C3j+1 ∪ C3j+2 ∪ C3j+3, it must
be that for αi and αi+1 satisfies C3j+i+1\si+1. It follows that the triple of nodes
(vα1,j,s1 , vα2,j,s2 , vα3,j,s3) forms a triangle, and we will have ∆ matching triangles
as a result.

Now suppose there are ∆ matching triangles in G. Since edges are only
drawn between nodes indexed by partial assignments to different variable
parts and indexed by clause groups C3j+i with the same value j ∈ [∆],
it must be that the triangles are of the form (vα1,j,s1 , vα2,j,s2 , vα3,j,s3) for
some s1 ⊆ C3j+1, s2 ⊆ C3j+2 and s3 ⊆ C3j+3. An edge can only be drawn
between vαi,j,si

and vαi+1,j,si+1 if αi+1 satisfies si and αi together with αi+1
satisfy C3j+i+1\si+1. It must be that together α1, α2, α3 satisfy all clauses
in C3j+1 ∪ C3j+2 ∪ C3j+3. Since each αi+1 satisfies exactly the set si there
can be only one triangle in colors (α1, α2, α3) for every j ∈ [∆] and as a
result, (vα1,j,s1 , vα2,j,s2 , vα3,j,s3) must be a triangle for each j ∈ [∆] in order
for ∆ matching triangles to exist in colors (α1, α2, α3). All clause groups are
satisfied by α1, α2 and α3 and as a result there is a satisfying assignment to ϕ.

Since G has O(∆2n
3 + m

3∆ ) nodes, the theorem statement follows.

We can use Theorem 3.3.2 to prove lower bounds for
∆-Matching Triangles conditioned on both k-SAT and SAT.

For SAT we find the following.

Theorem 3.3.3 (SAT ≤2n,n3 ∆-Matching Triangles). If

58



Section 3.3

∆-Matching Triangles on graphs with N nodes can be solved by an
O(N3−ϵ) time algorithm for some ϵ > 0 and ω(log(N)) ≤ ∆(N) ≤ N o(1), then
SAT over n variables and m clauses can be solved in O(2n(1−ϵ)+o(1)) time.

Proof. Suppose we have an O(N3−ϵ) algorithm for ∆-Matching Triangles
over graphs of N nodes for some ϵ > 0 and ω(log(N)) ≤ ∆(N) ≤ N o(1)

and let ϕ be a CNF instance over n variables and m clauses. We apply the
reduction from Theorem 3.3.2 to decide ϕ in O((∆2n

3 + m
3∆ )3−ϵ) time. Then since

N = O(∆2n
3 + m

3∆ ) and it must be that m = Ω(nc) for some c ∈ N, it follows
that ω(m) ≤ ∆(n) ≤ (2n

3 + m
3∆ )o(1). For ω(m) ≤ ∆(n) ≤ (2n

3 + m
3∆ )o(1) we have

that O((∆2n
3 + m

3∆ )3−ϵ) = O(2n
3 +o(1))3−ϵ) = O(2n(1− ϵ

3 )+o(1)).

To increase the range of ∆ for which the reduction holds, we use the sparsi-
fication lemma. This means that this wider range of ∆ only holds when basing
hardness of ∆-Matching Triangles on k-SAT.

Theorem 3.3.4 (k-SAT ≤2nδk ,n3 ∆-Matching Triangles). If
∆-Matching Triangles on graphs with N can be solved by an O(N3−ϵ)
time algorithm for some ϵ > 0 and ω(1) ≤ ∆ ≤ N o(1), then k-SAT over
n variables and m clauses can be solved in O(2n(1−ϵ′)+o(1)) time for some
0 < ϵ′ < ϵ

3 .

Proof. Let ϕ be a k-SAT instance over n variables and m clauses and sup-
pose we have an O(n3−ϵ) algorithm for ∆-Matching Triangles over graphs
with N nodes and ω(1) ≤ ∆ ≤ N o(1). We apply the sparsification algorithm
from Lemma 3.3.1 to ϕ to produce O(2ϵ′n) k-SAT instances ϕ1, , , ϕO(2ϵ′n)
over n variables and cn clauses for some constant c. To each ϕi we ap-
ply the reduction from Theorem 3.3.2 to decide whether ϕi is satisfiable in
O((∆2n

3 + cn
3∆ )3−ϵ) time. Since ω(1) ≤ ∆(N) ≤ N o(1) and N = O(∆2n

3 + cn
3∆ ) this

reduces to O(2n(1− ϵ
3 )+o(1)) time. We can then decide whether ϕ is satisfiable

in O(2ϵ′n2n(1− ϵ
3 )+o(1)) = O(2n(1+ϵ′− ϵ

3 )+o(1)) time. For any ϵ′ < ϵ
3 the theorem

statement follows.

The reduction to Triangle Collection works for SAT and therefore
also for k-SAT, with no strings attached.

Theorem 3.3.5 (SAT ≤2n,n3 Triangle Collection). If
Triangle Collection on graphs with N nodes can be solved by an
O(N3−ϵ) time algorithm for some ϵ > 0, then SAT over m clauses and n
variables can be solved in Õ(2n(1− ϵ

3 )) time.

Proof. Let ϕ be a SAT instance over n variables and m clauses. Partition the
set of variables into three sets NA, NB, NC of size n

3 each and enumerate the
clauses of ϕ.

59



Chapter 3 Section 3.4

We construct the graph G = (A ∪ B ∪ C,E) as follows: For every
partial assignment α to variables in NA and for the i’th clause in ϕ, we
add node ai with color α to A. Similarly, we add nodes bi and ci to B
and C respectively for the i’th clause and each partial assignments β and γ
to NB and NC with colors determined by the corresponding partial assignment.

Now for the edges of G:

For each (ai, bi) ∈ A × B we add the edge (ai, bi) to E if neither of the
corresponding partial assignments α or β satisfies the i’th clause in ϕ.

For each (bi, ci) ∈ A× C we add the edge (bi, ci) to E if γ does not satisfy
the i’th clause.

For each (ci, ai) ∈ C × A we add an edge to E.

Now we claim that for every triple of colors (α, β, γ) coming from three
partial assignments to the three different variable parts there is a triangle in
G if and only if there is no satisfying variable assignment to ϕ.

First assume that the triple of partial assignments α, β, γ forms a satisfying
assignment to ϕ. Any triangle in the colors (α, β, γ) will have to be of the form
(ai, bi, ci) for some i ∈ [m]. Since every clause is satisfied by the triple of partial
assignments, each of the edges (ai, bi) will be missing by construction. There
is no triangle that collects the color triple (α, β, γ).

Now assume that there is no satisfying assignment to ϕ. Then for every
triple of partial assignments (α, β, γ) there must be some clause that is not
satisfied by any of the partial assignments. Assume that it is the case for the
i’th clause of ϕ. Then (ai, bi, ci) is a triangle in G. Any triple of colors of the
form (α, β, γ) is collected by a triangle in G.

To complete the reduction, we add edges and nodes to G to ensure
that color triples that do not come from the different parts in G, e.g., of
the form (α, α′, β), are always collected. We do that using a similar con-
struction as in the reduction from Theorem 3.2.10, adding dummy nodes
aB, aC , bA, bC , cA, cB to A,B,C respectively and for a, a′, b, b′, c, c′ we add edges
(aB, a

′
B), (aC , a

′
C), (bA, b

′
A), (bC , b

′
C), (cA, c

′
A), (cB, c

′
B) to E.

It follows that there is no satisfying assignment to ϕ if and only if we have
a triangle for every color triple in G.

The graph contains O(m2n
3 ) nodes, and we can use a O(N3−ϵ)

time Triangle Collection algorithm to solve SAT in O((m2n
3 )3−ϵ) =

O(m3−ϵ2n(1− ϵ
3 )) time.

60



Section 3.4

3.4 Extremely Popular Conjecture
We now have all the theorems at hand to prove the main result from [3] and
the main result that we will try to replicate in the quantum case in Chapter 4.

Theorem 3.4.1. If ∆-Matching Triangles with ω(1) ≤ ∆ ≤ no(1) or
Triangle Collection can be solved by a O(n3−ϵ) time algorithm for some
ϵ > 0, then Conjecture 3.1.2, Conjecture 3.1.4 and Conjecture 3.1.3 must be
false.

Proof. We have that k-SAT reduces to ∆-Matching Triangles for
ω(1) ≤ ∆ ≤ no(1) from Theorem 3.3.2 and Theorem 3.3.4 and re-
duces to Triangle Collection from Theorem 3.3.5. APSP reduces to
0-Weight Triangle from Theorem 3.2.2, Theorem 3.2.4, Theorem 3.2.5
and Theorem 3.2.7 and 3SUM reduces to 0-Weight Triangle from
Theorem 3.3.1. We then found that 0-Weight Triangle reduces to
∆-Matching Triangles for ω(1) ≤ ∆ ≤ no(1) from Theorem 3.2.8 and
Theorem 3.2.9 and to Triangle Collection from Theorem 3.2.10.

An overview of all the reductions discussed in Chapter 3 can be found in
the figure below.

61



Chapter 3 Section 3.4

3SUM
n2−o(1)

Convolution-
3Sum
n2−o(1)

APSP
N3−o(1)

(min,+)-Matrix
Multiplication

N3−o(1)

All-Pairs
Negative Triangle

N3−o(1)

Negative Triangle
N3−o(1)

0-Weight Triangle
N3−o(1)

∆-Matching
Triangles
N3−o(1)

Triangle
Collection

N3−o(1)

k-SAT
2δkn−o(1)

Sparsification
Lemma

SAT
2n−o(1)

ω(1) ≤ ∆(N)
∆(N) ≤ N o(1)

∆(N) ≤ N o(1)
ω(1) ≤ ∆(N)

ω(logN) ≤ ∆(N)
∆(N) ≤ N o(1)

Figure 3.1: Classical reductions to ∆-Matching Triangles and
Triangle Collection. The parameter n denotes the size of the sets in
the case of 3SUM and Convolution-3Sum and the number of variables in
the case of SAT and k-SAT. The parameter N denotes the number of nodes
in a graph. In the case where multiple arrows arrive at one box, the lower
bound in the second line of that box is the same for all reductions. Lastly, the
lower bounds for ∆-Matching Triangles hold only for the ∆ values on the
incoming arrows.

62



Chapter 4

Quantum Fine-Grained
Conditional Lower Bounds

In the classical setting a lot of work has been done in finding reductions from
3SUM, SAT and APSP, as seen in the overviews in [51] and [52].

Work in the quantum setting has only just started, with different formu-
lations of quantum hardness conjectures for SAT and k-SAT and reductions
from them being discussed in [1] and [15]. A quantum hardness conjecture for
3SUM and subsequent fine-grained reductions were researched in [13].

In this chapter we will review quantum fine-grained reductions from
SAT, k-SAT, 3SUM and APSP to ∆-Matching Triangles and
Triangle Collection to prove a quantum version of Theorem 3.4.1 and
show a series of conditional quantum lower bounds for many computa-
tional problems in the process. Quantum upper bounds for APSP were
discussed in [23] and for structured APSP instances in [39], but no for-
mal quantum hardness conjecture has been made in current literature. We
make sure to provide an extra argument for what makes a good quantum
hardness conjecture for APSP. Furthermore, quantum fine-grained reduc-
tions from 3SUM to 0-Weight Triangle were already analyzed in [13],
and since we will be reviewing the reduction from 0-Weight Triangle
to ∆-Matching Triangles and Triangle Collection here, there is no
need to review the quantum reductions from 3SUM. The focus of this chapter
will therefore be on a formulation of a quantum hardness conjecture for APSP
and reductions from APSP, SAT and k-SAT to ∆-Matching Triangles
and Triangle Collection.

4.1 Hard Quantum Problems
From now on we will be working with quantum algorithms and the definition
that we used for fine-grained reductions in the previous chapter needs to be

63



Chapter 4 Section 4.1

updated. We use a slightly modified version of the definition for quantum
fine-grained reductions from [1].

Definition 4.1.1 (Quantum Fine-Grained Reductions). Let l(n) and l′(n) be
two non-decreasing functions in n. For two problems L,L′ ⊆ {0, 1}∗, we say
that L is (l, l′)-quantum fine-grained reducible to L′, denoted L ≤Q,l,l′ L

′ if
there exists a quantum algorithm QL′ with query access to quantum oracle L′

such that for every ϵ > 0 there exists δ > 0 and:

• For instance x, it holds that QL′(x) = 1 with probability at least 2
3 if

x ∈ L and QL′(x) = 0 with probability at least 2
3 if x /∈ L.

• The quantum algorithm QL′ runs in time O(l(n))1−δ.

• For the sequence of instances n1, ..., nk that QL′ queries to oracle L′ it
holds that ∑k

i=1 l
′(ni)1−ϵ ≤ O(l(n))1−δ.

The idea remains the same as that of fine-grained reductions in the classical
case, with the exceptions that we work with quantum algorithms and quantum
oracles.

Working with quantum algorithms gives us access to the power of quantum
computing but also provides us with some extra challenges. Since our hardness
conjectures will be over smaller lower bounds, we will naturally find smaller
lower bounds for many of the problems we reduce to. We may then run into
the issue of the classical algorithm taking up too much time.

To illustrate: Graphs over n nodes can be of size O(n2) if they are dense.
Using a reduction where we have to construct e.g. a graph over n nodes to
prove a lower bound of O(n2−ϵ) for some ϵ > 0 could be problematic, as our
reduction itself would take more than O(n2−ϵ) time, violating the second bullet
point in the definition of quantum fine-grained reductions. Luckily we don’t
need to compute the instances queried to our quantum oracle explicitly. Let’s
say instead of a quantum oracle to a problem L′ we have an actual quantum
algorithm to L′ that we simulate or query using a quantum algorithm QL′ . This
quantum algorithm does not require the problem instances to L′ explicitly,
it needs random access to the values in the problem instance, e.g. the edge
weights. For a problem instance of size n, we need log(n) qubits to encode
the different memory addresses and since we can query the instance values in
superposition, we can also compute these values in superposition ‘on-the-fly’.
We just need to ensure that computing the values takes time Õ(1) in the input
size.

We defined our quantum oracles to be probabilistic, and we will need to
account for that in our algorithms. Furthermore, many of the quantum algo-
rithms in the following sections will use probabilistic quantum algorithms as
subroutines. These algorithms ensure us a correct output with probability at

64



Section 4.1

least 2
3 . In order for the main algorithm to also have a correct output with

probability at least 2
3 we need to boost the probability of our subroutines and

oracles somehow.
Suppose that our quantum algorithm uses m subroutines with error

probabilities at most 1
3 each. By the union bound we know that if we can

reduce the error to 1
3m

, the probability that at least one of the m subroutines
fails will be at most 1

3 . To boost the success probability of each of the
individual subroutines, we need to apply each subroutine log(m) times and
take the majority output if the algorithm outputs a yes/no answer. In the
case of Grover Search algorithms, we can compute for each of the log(m)
outputs whether the output is indeed a marked element and stop as soon
as we find one. If none of the outputs is marked, we conclude that there
exists no marked element. In the case of Grover Minimum finding, we can
deterministically compute the minimum of all log(m) minima and use it as
our output. By Hoeffding’s inequality this will reduce the error probability of
the individual algorithms to at most 1

3m
.

With the quantum fine-grained model at hand, we can discuss the hardness
of the popular problems in the quantum setting.

We can easily solve SAT over n variables and m clauses with a quantum
algorithm in time O(m2n

2 ) by using Grover Search in an exhaustive search
over all variable assignments. Furthermore, similarly to the classical setting,
we need a quantum version of SETH, as ETH is not strong enough for providing
the necessary bounds.

The different formulations of SETH easily generalize to a QSETH by ap-
plying the square root improvement provided by Grover Search. Our hardness
conjecture for quantum SETH mostly resembles the one from [1], different
versions of a quantum SETH were discussed in [15]. We have the following
hardness for SAT and k-SAT, where we keep a distinction in hardness for the
two problems.

Conjecture 4.1.1 (QSETH). Let ϕ be a k-SAT instance given over n vari-
ables and m clauses. For all ϵ > 0 there exists a k ≥ 3 such that there is no
quantum algorithm that can solve k-SAT in time O(m2n( 1

2 −ϵ)).

As in the classical case, we can use QSETH to prove that there is
no O(m2n( 1

2 −ϵ)) time quantum algorithm for ϵ > 0 for SAT: if there was such
an algorithm we could use it to solve k-SAT in O(m2n( 1

2 −ϵ)) time for any k.
In other words, under QSETH SAT is lower bounded by Ω(m2n

2 −o(1)).

The hardness of 3SUM in the quantum setting was discussed in [13]. We
saw that we can solve 3SUM in quadratic time classically by performing a
structured search over the set of integers. In the outer loop we loop over the

65



Chapter 4 Section 4.1

(sorted) integers and in the inner loop we perform a traversal loop over at
most O(n) pairs to look for integers a, b, c such that a + b + c = 0. We can
Groverize both loops to arrive at a linear run-time for 3SUM in the quantum
model. Similar applications of Grover search to other quadratic algorithms for
3SUM have let to a conjectured linear hardness of 3SUM, first discussed in
[7] and further researched in [13].

Conjecture 4.1.2 (3SUM Quantum Hardness). There exists no quantum al-
gorithm that solves 3SUM in time O(n1−ϵ) for any ϵ > 0.

Again, since the reduction that we need from 3SUM to prove conditional
hardness based on all three popular quantum conjectures was already shown
in [13]; we leave the 3SUM discussion brief.

Finally, we turn our attention to a quantum hardness conjecture for APSP.
In the classical setting, we conjectured that for graphs with n nodes, noO(n3−ϵ)
time algorithm for ϵ > 0 can exist. The question arises, what is a natural lower
bound for APSP in the quantum setting for both the path and the distance
version of APSP? In our formulation of APSP we only need to output the
shortest distances to solve APSP and a speed-up for this version of the problem
is natural. We can easily speed up (min,+)-Matrix Multiplication by
Groverizing the minimization step and using the Grover Minimum Finding
algorithm from Chapter 2.

Theorem 4.1.1 ((min,+)-Matrix Multiplication Upper Bound).
For n×n matrices M and N with entries from [−nc, nc], there exists a quantum
algorithm that computes M ⋆N in O(n2.5) time.

Proof. Let M,N be two n×n matrices with entries from [−nc, nc]. To compute
the entry

(M ⋆N)[ij] = (min
k∈[n]

(M [ik] +N [kj])),

we simply use the Grover Minimum Finding Algorithm on the
set {x|x = M [ik] +N [kj]∀k ∈ [n]}. This takes O(

√
n) time. Since we

need to compute n2 entries, we need to boost the probability of finding the
correct minimum by applying the Grover algorithm O(log(n)) times. The
distance product M ⋆N can therefore be computed in O(log(n)n2.5) time.

We can then compute the distance matrix of a graph by repeated squaring
under the distance product of the weight matrix of a graph similar to the proof
of Theorem 3.2.2.

Theorem 4.1.2 (APSP Upper Bound). Let G be a directed graph over n
nodes and with weights from [−nc, nc]. There exists a quantum algorithm that
computes the shortest distance matrix D of G in Õ(n2.5) time.

66



Section 4.1

Proof. Given a directed graph G over n nodes, with weights from [−nc, nc]
and no negative cycles, we can run the reduction from the proof of Theo-
rem 3.2.1 to compute the shortest distance matrix D of G. Instead of using
a (min,+)-Matrix Multiplication oracle, we simply apply the algorithm
from the proof of Theorem 4.1.1. We compute D in Õ(n2.5) time.

The question remains whether there is also a O(n2.5) time algorithm for the
paths version of APSP. The common classical Floyd-Warshall algorithm does
not allow for a very obvious speed-up, but a quantum single-source shortest
paths algorithm was found by Dürr, Heiligman, Høyer and Mhalla in [23].

The algorithm works somewhat similarly to Dijkstra’s algorithm as it it-
eratively constructs a shortest paths tree from a single source by adding the
node closest to the source that is not yet in the tree to the shortest path tree.
The algorithm finds these nodes by using a Grover Search for multiple minima
finding, also proven in [23].

We state the minima finding lemma here without proof.

Lemma 4.1.1 (Grover Minima Finding). Let f : [n] → N∪{∞} be a function
indexing a set of numbers and suppose we have query access to f . There exists
a quantum algorithm that outputs the set of d smallest elements in the image
of f with probability at least 2

3 in time O(
√
dn) and making O(

√
dn) queries

to f .

Proof. See [23].

We then find the following single-source shortest paths algorithm.

Theorem 4.1.3. There exists a quantum algorithm that, given a weighted
directed graph G = (V,E) over n nodes, weight matrix W with weights from
[0, nc] and input node a, computes the shortest paths between a and all other
nodes in G in time Õ(n1.5).

Proof. Let G = (V,E) be a weighted directed graph over n nodes, weight
matrix W with weights from [0, nc] and suppose we want to find all shortest
paths from node a ∈ V .

We want to use the minimum finding algorithm from Lemma 4.1.1, but
our search space is very specific: we want to search over edges (i, j) such that
i is already in our shortest path tree and j is not. Furthermore, for each
vertex outside our shortest path tree, there may be multiple incoming edges
from vertices inside our shortest path tree, and we would have to compare
distances between all of them. We can’t simply use the Grover Minimum
Finding algorithm to find the unvisited node that is closest to our tentative
shortest path tree: We would either have to search the set of all O(n) nodes
O(n) times, and for each node compare its distance to a through each of the
O(n) nodes in the tree, or search the set of O(n2) edges O(n) times. Even with

67



Chapter 4 Section 4.1

a Grover speed-up that would take O(n) time at every step. Luckily, we don’t
need to actually compute the closest neighbors of all our tree nodes at every
step. Instead, we add nodes to the tree iteratively and partition our search
set to look for multiple minima during each step that we add a node to the tree.

Start by keeping a counter k, set k = 1 and let S1 = {a}. At each iteration
we look for the |Sk| closest edges to a with sources in Sk. We use these edges
to construct small-edge set Uk and add the closest edge to a from ⋃

k Uk to our
shortest paths tree. We set k = k + 1 and construct a new source set Sk from
the target vertex of the edge we just added. We repeat this procedure and
whenever |Sk| = |Sk−1| we set Sk−1 = Sk−1 ∪ Sk and k = k − 1.

We repeat O(n) times or until all vertices not in the tree have infinite
distance from a.

The source sets Sk will have size some power of 2 with Sk < Sk−1 and since
we have that ∑

i=1k−1 2i = 2k − 1, any Sk will be bigger than the union of all
the following sets.

There are log(n) different set sizes that Sk can have and for each size |Sk|
there are at most n

|Sk| such sets. The time required to process all sets of size Sk

is ∑ n
|Sk|
i=1

√
|Sk|n2 = O(

√
n3). Since there are log(n) different set sizes the total

time required is O(log(n)n1.5). Furthermore, our iteration runs O(n) loops so
in order to boost the success rate of our Grover Minima Finding algorithm at
each iteration, we need to apply it log(n) times, adding another log factor to
the complexity.

We end up with a Õ(n1.5) time algorithm for finding all shortest paths
from a single source on graphs with n nodes and no negative edge weights.
Unfortunately the reweighting trick at the beginning of Johnson’s algorithm
from Theorem 3.1.2 takes O(n3) time, so we cannot use it to find a Õ(n2.5)
time algorithm for APSP with integer edge weights.

Remember that the Bellman-Ford algorithm that we used to reweight our
graph in the proof of Theorem 3.1.2 only needs to output the shortest dis-
tances between all paths, so we can simply replace the call to Bellman-Ford
in Johnson’s algorithm by the Groverized repeated distance-product squaring
of the extended weight matrix described in the above paragraph to reweight
the graph in Õ(n2.5) time. We then replace the calls to Dijkstra’s algorithm
with calls to the Õ(n1.5) time single-source shortest path algorithm from [23]
to arrive at a Õ(n2.5) time algorithm for the paths version of APSP.

Theorem 4.1.4. There is a quantum algorithm that solves the paths version
of APSP over n nodes and with weights from [−nc, nc] in Õ(n2.5) time with
probability at least 2

3 .

68



Section 4.1

Proof. Let G be a directed graph over n nodes with no negative cycles and
weights from [−nc, nc]. We start the algorithm in the same way that Johnson’s
algorithm starts, by adding a node z to G that has a 0-weight edge connected
to all other nodes in G. We compute the shortest distance matrix D of G
in O(log(n)n2.5) time by repeated squaring of the weight matrix under the
distance product. At every squaring step we use a Grover Minimum Finding
algorithm to compute the distance product in O(n2.5) time. Since we use
O(log(n)) Grover algorithms, we need to boost the success rate of each Grover
Search by applying it O(log(log(n))) times.

To any edge (i, j) with weight W [ij] we then add D[zi]−D[zj] to construct
graph G′ that has no negative weights and that is shortest-path equivalent to
G. The verity of these claims follows from the proof of Theorem 3.1.2.

We use the quantum single-source shortest paths algorithm from [23] to
compute n shortest path trees in Õ(n2.5) time.

We arrive at a likely n2.5−o(1) time quantum hardness conjecture for APSP.
We reduce the distance version of APSP to many other problems for which
we will in Chapter 5 find matching upper bounds. This will further reinforce
the likelihood of n2.5−o(1) being a correct quantum lower bound to APSP.
Then since the distance version of APSP easily reduces to the paths version
of APSP, we have a conditional lower bound of n2.5−o(1) for the paths version
of APSP through fine-grained reduction. We could of course have used this
reduction to solve the shortest distance version of APSP without using the
distance product, but the algorithm from Theorem 4.1.2 is so simple that it is
worth providing in any case.

Technically we are solving APSP through a reduction to
(min,+)-Matrix Multiplication and in many cases we’d ideally give a
straight forward algorithm for providing an upper bound to the complexity
of the problems discussed in this thesis, without using one of the described
reductions, since it can lead to unnecessary logarithmic and combinatorial
overhead. If we used the reductions we’d have to give an algorithm only
for the last problem reduced to, and this would in turn solve all previously
reduced from problems as well. In the particular case of APSP however, the
fact that we are using a reduction is not that obvious, we simply take the
weight matrix of a graph and use Grover Search to compute the distance
product over it swiftly, we don’t need to change the mathematical structure of
our problem instance at all, or construct specific problem instances to query
to an oracle. We will leave the other upper bounds for the next chapter.

Conjecture 4.1.3 (APSP Quantum Hardness). There exists no quantum al-
gorithm for APSP that solves it in time O(n2.5−ϵ) for any ϵ > 0.

69



Chapter 4 Section 4.2

Having formulated the hardness of our popular computational problems,
we can start proving conditional quantum lower bounds for the computational
problems from Chapter 3.

4.2 Quantum Fine-Grained Reductions from
APSP

The first couple of results are quite straight-forward, we can use the classical
reductions with occasional on-the-fly methods, and we find many quantum
lower bounds based on the quantum hardness of APSP. First we retain the
hardness-equivalence with (min,+)-Matrix Multiplication.

Theorem 4.2.1 (APSP ≤Q,n2.5,n2.5 (min,+)-Matrix Multiplication).
If (min,+)-Matrix Multiplication over n × n matrices with entries
from [−nc, nc] can be solved by an O(n2.5−ϵ) time algorithm for some ϵ > 0,
then APSP over weighted graphs with n nodes and entries from [−nc, nc] can
be solved in O(log(n) log(log(n))n2.5−ϵ) time.

Proof. We use the same reduction as was used in the proof of Theorem 3.2.1:
Let G = (V,E) be a weighted directed graph with weight matrix W and with
n nodes. We use a (min,+)-Matrix Multiplication oracle to compute
W ⋆n by making log(n) calls to the oracle through repeated squaring. To boost
the success probability of each of the log(n) oracle calls we need to repeat
them O(log(log(n))) times. We don’t need to use on-the-fly methods, since
our instance size of O(n2) is smaller than the lower bound of O(n2.5).

Since the above reduction does not use on-the-fly methods or quantum
algorithms, Theorem 4.2.1 also holds on classical probabilistic RAM’s.

Theorem 4.2.2 ((min,+)-Matrix Multiplication ≤Q,n2.5,n2.5 APSP).
If APSP for weighted graphs over n nodes and with weights from
[−nc, nc] can be solved by an O(n2.5−ϵ) quantum algorithm for ϵ > 0,
then (min,+)-Matrix Multiplication over n × n matrices and entries
from [−nc, nc] can be solved in time O(n2.5−ϵ).

Proof. We use the same reduction as was used in the proof of Theorem 3.2.2:
LetM,N be two n×nmatrices. We construct the graphG from Theorem 3.2.2.
We can query the values of its distance matrix to find the values of M ⋆ N .
Constructing G takes O(n2) time and we can construct it explicitly.

Again, we don’t need any quantum operations for the above reduction to
work.

The hardness equivalence follows.

70



Section 4.2

Corollary 4.2.1 (APSP ≡Q,n2.5,n2.5 (min,+)-Matrix Multiplication).
For weighted graphs over n nodes and with weights from [−nc, nc] there is a
Õ(n2.5−ϵ) time algorithm for APSP and ϵ > 0 if and only if a Õ(n2.5−ϵ) algo-
rithm exists for (min,+)-MM over n× n matrices with entries from [−nc, nc].

Proof. Follows from Theorem 4.2.1 and Theorem 4.2.2.

From (min,+)-Matrix Multiplication we follow the classical chain
of reductions, first finding a quantum conditional lower bound for
All-Pairs Negative Triangle:

Theorem 4.2.3 ((min,+)-Matrix Multiplication ≤Q,n2.5,n2.5

All-Pairs Negative Triangle). If All-Pairs Negative Triangle
over weighted graphs of n nodes and with weights from [−nc, nc]
can be solved by an O(n2.5−ϵ) time quantum algorithm for ϵ > 0,
then (min,+)-Matrix Multiplication over n × n matrices with en-
tries from [−nc, nc] can be solved in O(log(n) log(log(n))n2.5−ϵ) time.

Proof. Given two n×n matrices M and N with entries from [−nc, nc], we apply
the reduction from Theorem 3.2.4, constructing a graph of O(n) nodes and
perform a binary search over [−nc, nc] to find the shortest paths using log(n)
applications of an All-Pairs Negative Triangle oracle. To boost the
individual All-Pairs Negative Triangle calls, we apply each one of them
log(log(n)) times and take the output of each individual pair of nodes.

We again don’t need to run this reduction on a quantum computer, since
we don’t require on-the-fly methods or other quantum operations.

We find an interesting divergence in conditional lower bounds
between our quantum and classical model in the reduction from
All-Pairs Negative Triangle to Negative Triangle.

Theorem 4.2.4 (All-Pairs Negative Triangle ≤Q,n2.5,n1.5 Negative Triangle).
If Negative Triangle can be solved in O(n1.5−ϵ) time by a quantum al-
gorithm on weighted graphs over n nodes with weights from [−nc, nc]
and for ϵ > 0, then All-Pairs Negative Triangle on weighted
graphs over n nodes and with weights from [−nc, nc] can be solved in
O(log(n) log(log(n))n2.5−ϵ) time.

Proof. Given a weighted graph G over n nodes and with weights from [−nc, nc],
we apply the reduction from Theorem 3.2.5 to construct n1−α graphs of size nα

for 0 ≤ α ≤ 1. If All-Pairs Negative Triangle can be solved in time
T (n), then we can solve Negative Triangle in O(T (n1−α)(n3α +n2)) time.
For T (n) = n1.5, this is optimised at α = 2

3 . For each graph we need to
make log(n) calls to the Negative Triangle oracle and to boost the success
probability of each call, we apply each one of them log(log(n)) times. We can
solve All-Pairs Negative Triangle in O(log(n) log(log(n))n2.5) time.

71



Chapter 4 Section 4.2

Although we prove a lower bound of n1.5−o(1) to Negative Triangle, we
use the above algorithm to solve All-Pairs Negative Triangle in O(n2.5)
time and on-the-fly methods are therefore still not necessary, making the
above reduction classically viable.

Where in the classical setting we had cubic lower bounds for all prob-
lems from APSP to ∆-Matching Triangles and Triangle Collection,
we find a n1.5−o(1) lower bound for Negative Triangle for graphs with n
nodes. A lower bound of n1.5−o(1) does not imply that a better lower bound
of e.g. n2.5−o(1) does not exist for Negative Triangle. However, a simple
Grover Search of all triples of nodes results in a matching upper bound, which
does imply that a larger lower bound would be inconsistent.

One could argue that it may come as more of a surprise that
Negative Triangle is as hard as All-Pairs Negative Triangle or
APSP classically than that we find a gap in computational complexity in
the quantum case. We look for a single triangle in Negative Triangle and
for n2 potential triangles in All-Pairs Negative Triangle. The quan-
tum model highlights these gaps in difficulty of the problems in a way that
the classical model could not. In this sense working in a quantum model on
itself is already providing us with useful insights on the complexity of these
problems, without requiring that we have a physical quantum algorithm to
implement our reductions. An unfortunate consequence of this gap in lower
bound complexities is that we lose the reduction from Negative Triangle
to (min,+)-Matrix Multiplication, since this reduction ‘as-is’ does not
let us go up in complexity. In fact, the definition for fine-grained reductions
makes it very challenging to prove computational lower bounds conditioned on
smaller computational lower bounds, especially when the instances are simi-
larly structured. To illustrate:

Proving a n2.5−o(1) lower bound for (min,+)-Matrix Multiplication
conditioned on a n1.5−o(1) lower bound for Negative Triangle using
(quantum) fine-grained reductions would mean that our algorithm cannot
query (min,+)-Matrix Multiplication instances of more than O(n.6) rows
and columns, since O((n.6)2.5) = O(n1.5). It will be difficult to encode dense
graphs into matrices of this size.

We do classically go from a quadratic lower bound for Convolution-
3SUM to a cubic lower bound for 0-Weight Triangle, where quadratic
is in the number of integers N in the Convolution 3SUM instance
and cubic in the number of nodes n for 0-Weight Triangle. By the
definition of fine-grained reductions, we can’t prove a useful lower bound to
0-Weight Triangle by constructing graphs for our 0-Weight Triangle
oracle that have the same number of nodes as there are integers in the
Convolution-3SUM instance. The reduction circumvents the obstacle

72



Section 4.2

by constructing
√
N graphs over

√
N nodes each. If a graph instance has√

n nodes, we can have up to n edges and entries in our weight matrix.
Pushing the lower bound up through fine-grained reduction can in this case
be explained by the change in parameters in which we measure the complexity.

Less surprising, we find a similar lower bound of n1.5−o(1) for the
0-Weight Triangle problem.

Theorem 4.2.5 (Negative Triangle ≤n1.5,n1.5 0-Weight Triangle). If
0-Weight Triangle on graphs over n nodes and with weights from [−nc, nc]
can be solved in O(n1.5−ϵ) time by a quantum algorithm for some ϵ > 0, then
Negative Triangle on graphs of n nodes and weights from [−nc, nc] can be
solved in O(log(log(n))n1.5−ϵ) time.

Proof. Given a weighted directed graph G over n nodes with weights from
[−nc, nc], we apply the reduction from Theorem 3.2.7 to construct log(nc)
graphs Gi over n nodes. Since we work in the adjacency matrix model of
graphs, am Negative Triangle algorithm has to look over n2 matrix entries
to decide whether a negative triangle exists in one of the graphs. This reduction
therefore needs to be on-the-fly. The entries of the adjacency matrix of a graph
Gi can be computed in O(1) time. Since we need to boost the individual calls
to the 0-Weight Triangle oracle, we can detect a negative triangle using
O(log(log(n))) calls to a 0-Weight Triangle algorithm.

Just like in the classical case, there are no reductions from
0-Weight Triangle up the chain of reductions towards APSP or
3SUM. Since 0-Weight Triangle is the meeting point for 3SUM and
APSP, having a reduction from 0-Weight Triangle to APSP or 3SUM
would imply a reduction between 3SUM and APSP.

The reduction from 0-Weight Triangle to ∆-Matching Triangles
highlights some interesting aspects about the complexity of
∆-Matching Triangles.

Theorem 4.2.6 (0-Weight Triangle ≤Q,n1.5,n1.5 ∆-Matching Triangles).
If ∆-Matching Triangles on coloured graphs of n nodes can be
solved in O(n1.5−ϵ) time by a quantum algorithm for some ϵ > 0 and
ω(1) ≤ ∆(n) ≤ o(log(n)), then 0-Weight Triangle on weighted
graphs of n nodes and with weights from [−nc, nc] can be solved in
O(log(n) log log(n)n1.5−ϵ) time by a quantum algorithm.

Proof. Given a weighted directed graph G over n nodes and using the re-
duction from the proof of Theorem 3.2.8 we can compute the adjacency

73



Chapter 4 Section 4.2

matrices of 2O(∆) graphs Gi over O(∆n · n c
∆ ) nodes on-the-fly. We ap-

ply a ∆-Matching Triangles algorithm to each of these graphs us-
ing on-the-fly computation. Computing the edges of our graphs requires
functions computed using Lemma 3.2.2. The functions are computable
in O(2∆) time. It follows that for ω(1) ≤ ∆ ≤ log(n) we can use a
∆-Matching Triangles algorithm to solve 0-Weight Triangle. We
boost the log(n) calls to the ∆-Matching Triangles oracle and arrive at a
complexity of O(log(n) log log(n)n1.5).

Corollary 4.2.2. If ∆-Matching Triangles on coloured graphs of n nodes
can be solved in O(n1.5−ϵ) time for some ϵ > 0 and ω(1) ≤ ∆(n) ≤ o(no(1)),
then 0-Weight Triangle on weighted graphs of n nodes and with weights
from [−nc, nc] can be solved in Õ(n1.5−ϵ) time.

Proof. Follows from Theorem 4.2.6 and Theorem 3.2.9.

Here it is less clear whether the lower bound of O(n1.5) is the best lower
bound we can find for ∆-Matching Triangles. On an intuitive level,
∆-Matching Triangles definitely seems more complex than the single tri-
angle finding problems of Negative Triangle and 0-Weight Triangle.
It is important to note that the above reduction only holds for the specified
values of ∆: ω(1) ≤ ∆(n) ≤ no(1). We will see in Chapter 5 that for these
ranges of ∆, there is indeed a matching upper bound. This leaves open the
question of whether we can find a reduction from 0-Weight Triangle to
∆-Matching Triangles for ranges of ∆ that are polynomial or constant
in the number of nodes in the graph. For polynomial values of ∆ we are
faced with the same challenge as in reducing Negative Triangle to
(min,+)-Matrix Multiplication in the quantum case: we would be trying
to increase the complexity of the lower bound through fine-grained reduction,
going from O(n1.5) to potentially O(n2.5), depending on values of ∆. In
Chapter 5 we will see why O(n2.5) could be a reasonable quantum lower
bound for ∆-Matching Triangles for unrestricted values of ∆.

The reduction from 0-Weight Triangle to Triangle Collection
makes use of the construction from the reduction from 0-Weight Triangle
to ∆-Matching Triangles for ∆ values of 2O(

√
log n), which is in the regime

of ∆ where we found an O(n1.5) lower bound for ∆-Matching Triangles.
As a consequence, we get a similar result for Triangle Collection .

Theorem 4.2.7 (0-Weight Triangle ≤Q,n1.5,n1.5 Triangle Collection).
If Triangle Collection can be solved in O(n1.5−ϵ) time by a quantum
algorithm for some ϵ > 0, then 0-Weight Triangle can be solved in
Õ(log(n) log log(n)n1.5−ϵ) time by a quantum algorithm.

74



Section 4.3

Proof. Given a weighted directed graph G over n nodes, using the reduction
from the proof of Theorem 3.2.10 we can compute the adjacency matrices
of 2O(∆) graphs Gi over O(∆n · n c

∆ ) nodes on-the-fly. We set ∆ = 2
√

log(n)

and use a Triangle Collection algorithm to solve 0-Weight Triangle,
boosting each of the individual Triangle Collection calls.

Here the question now really comes down to whether we can find a O(n1.5)
matching upper bound for Triangle Collection, which we do in Chapter 5.

4.3 Quantum Fine-Grained Reductions from
SAT and k-SAT

Through the results from the previous section, and the quantum reductions
from 3SUM to 0-Weight Triangle from [13] we now have lower bounds on
∆-Matching Triangles and Triangle Collection from the disjunction
of hardness conjectures for APSP and 3SUM. To complete the result, we need
to verify the reductions from SAT and k-SAT.

For k-SAT we again go through the sparsification lemma, arriving at
the same lower bound we found through 0-Weight Triangle for the same
ranges of ∆-Matching Triangles.

Theorem 4.3.1 (k-SAT ≤
Q,2δk

n
2 ,n1.5 ∆-Matching Triangles). If

∆-Matching Triangles can be solved in O(n1.5−ϵ) time by a quantum al-
gorithm for some ϵ > 0 and ω(1) ≤ ∆(N) ≤ NO(1), then k-SAT can be solved
in Õ(2n

2 (1−ϵ′)) time for some 0 < ϵ′ < 2
3ϵ.

Proof. Suppose we have a O(N 3
2 −ϵ) time ∆-Matching Triangles algorithm

for graphs with N nodes and ω(1) ≤ ∆(N) ≤ N o(1) and let ϕ be a k-CNF
instance over n variables and m clauses. We apply the sparsification lemma,
Lemma 3.3.1, to compute 2ϵ′n k-CNF formulas ϕi with cn clauses for some
constant value c in 2ϵ′n time. We then apply the reduction from Theorem 3.3.4
to decide whether ϕi is satisfiable for each i ∈ [2ϵ′n] in O((∆2n

3 + nc
3∆ ) 3

2 −ϵ) time.
Since ω(1) ≤ ∆(N) ≤ N o(1) it follows that O((∆2n

3 + nc
3∆ ) 3

2 −ϵ) = O(2n( 1
2 − ϵ

3 )+o(1)).
The total time to evaluate all sparse formulas will be O(2n( 1

2 − ϵ
3 +ϵ′)+o(1)) =

O(2n
2 (1− 2

3 ϵ+2ϵ′)+o(1)). The theorem statement follows for 0 < ϵ′ < ϵ
6 . For

these ranges of ϵ′, the number of sparse formulas and the time required to
compute them will not exceed the time necessary to solve k-SAT faster than
conjectured.

For any ϵ′ < 1
2 , the sparsification lemma can easily be applied for

quantum reductions from k-SAT. Furthermore, we don’t need to explicitly

75



Chapter 4 Section 4.3

construct all graphs for our sparse formulas as we did in the proof above.
Instead, we can Grover search the set of sparse formulas, applying our
∆-Matching Triangles reduction on-the-fly. In this case, the total run
time can be improved to O(2n

2 (1− 2ϵ
3 +ϵ′)), allowing for a wider range of ϵ′ < ϵ

3 .

Also the reduction from SAT to Triangle Collection gives us the same
lower bound as we found from 0-Weight Triangle.

Theorem 4.3.2 (SAT ≤
Q,2δk

n
2 ,n1.5 Triangle Collection). If

Triangle Collection can be solved in O(n 3
2 −ϵ) time by a quantum

algorithm for some ϵ > 0, then SAT can be solved in Õ(2n
2 (1− ϵ

3 )) time.

Proof. Suppose we have a O(N1.5−ϵ) time algorithm for
Triangle Collection on graphs of N nodes. Let ϕ be a CNF for-
mula over n variables and m clauses. We apply the reduction from
Theorem 3.3.5 to produce a graph over O(2n

3m) nodes. We can then use our
Triangle Collection algorithm to solve SAT in Õ(2n

2 (1− ϵ
3 )) time.

Since we find the same lower bounds from 0-Weight Triangle and k
SAT to ∆-Matching Triangles and Triangle Collection for the same
ranges of ∆, we can now state the quantum equivalent of Theorem 3.4.1.

Theorem 4.3.3. If ∆-Matching Triangles with ω(1) ≤ ∆ ≤ no(1) or
Triangle Collection can be solved in time O(n1.5−ϵ) for some ϵ > 0, then
Conjecture 4.1.1, Conjecture 4.1.3 and Conjecture 4.1.2 must be false.

Proof. We know that k-SAT reduces to ∆-Matching Triangles for ω(1) ≤
∆ ≤ no(1) from Theorem 4.3.1 and reduces to Triangle Collection
from Theorem 4.3.2. APSP reduces to 0-Weight Triangle from The-
orem 4.2.2, Theorem 4.2.3, Theorem 4.2.4 and Theorem 4.2.5 and 3SUM
reduces to 0-Weight Triangle as shown in [13]. We then found that
0-Weight Triangle reduces to ∆-Matching Triangles for ω(1) ≤
∆ ≤ no(1) from Corollary 4.2.2 and to Triangle Collection from The-
orem 4.2.7.

This concludes the main quantum fine-grained reduction result from this
thesis. We find all discussed quantum lower bounds alongside their classical
counterpart in the figure below.

76



Section 4.3

3SUM
n2−o(1)

n1−o(1)

Convolution-
3Sum
n2−o(1)

n1−o(1)

APSP
N3−o(1)

N2.5−o(1)

(min,+)-Matrix
Multiplication
N3−o(1), N2.5−o(1)

All-Pairs
Negative Triangle
N3−o(1), N2.5−o(1)

Negative Triangle
N3−o(1), N1.5−o(1)

0-Weight Triangle
N3−o(1), N1.5−o(1)

∆-Matching
Triangles
N3−o(1)

N1.5−o(1)

Triangle
Collection

N3−o(1)

N1.5−o(1)

k-SAT
2δkn−o(1)

2δk
n
2 −o(1)

Sparsification
Lemma

SAT
2n−o(1)

2n
2 −o(1)

ω(1) ≤ ∆(N)
∆(N) ≤ N o(1)

∆(N) ≤ N o(1)
ω(1) ≤ ∆(N)

ω(logN) ≤ ∆(N)
∆(N) ≤ N o(1)

Figure 4.1: Quantum fine-grained reductions to ∆-Matching Triangles
and Triangle Collection. The parameter n denotes the size of the sets in
the case of 3SUM and CONV-3SUM and the number of variables in the case of
SAT and k-SAT. The parameter N denotes the number of nodes in a graph.
The first lower bound in each node denotes the known classical lower bound
and second lower bound denotes the new quantum lower bound. In the case
where multiple edges arrive at one node, the lower bound in the second line of
the node is the same for all reductions. For the dashed edge we only know of
a classical reduction. Lastly, the lower bounds for ∆-Matching Triangles
hold only for the ∆ values denoted by the labels on the incoming edges.

77



Chapter 5

Quantum Upper Bounds

In Chapter 4 we saw a series of lower bounds, conditioned on our quantum
hardness conjectures. In this chapter we will provide upper bounds that match
these lower bounds by constructing quantum algorithms. We could be done
swiftly by constructing two algorithms: One for ∆-Matching Triangles
and one for Triangle Collection. If we have an algorithm for these prob-
lems that solves it in a time matching their lower bounds, we can apply our
reductions to solve inputs from any of the other problems mentioned in the
previous chapter.

It can still be useful to construct algorithms in a more direct manner for
several reasons. Foremost, many of the reductions used induce logarithmic
overheads: we have to binary search integers spaces, evaluate a logarithmic
amount of graphs, and boost probabilistic algorithms. Asymptotically, these
factors can be largely ignored, but practically they can be very impactful,
especially if we use many reductions on one instance, as when we’d want to
solve an APSP instance using a Triangle Collection algorithm.

A lot of the direct algorithms are more ‘natural’ ways of solving a problem
than is done through reductions. It is more intuitive to solve a problem directly
and this can help us get a better understanding of the problem at hand.

In Chapter 4 we already saw a matching algorithm for APSP
and (min,+)-Matrix Multiplication through an application of the
Grover Minimum Finding algorithm. For All-Pairs Negative Triangle,
Negative Triangle and 0-Weight Triangle we find matching upper
bounds through application of Grover Search as well. Since the algorithms
are quite straight-forward, we briefly sketch them here.

For All-Pairs Negative Triangle we simply run a Grover Search for
each pair of nodes for which we need to check for a negative triangle, requiring
O(n2) applications of a O(

√
n) time Grover Search. We boost each of the

O(n2) Grover Search subroutines to solve All-Pairs Negative Triangle
in O(log2(n)n2.5) time.

78



Section 5.1

For Negative Triangle and 0-Weight Triangle we can simply
Grover Search the set of all triples of nodes. Since the checking time to de-
termine whether a given triple of nodes is the right type of triangle we’re
looking for takes O(1) time due to our RAM capacity, both algorithms require
O(

√
n1.5) time in the quantum setting.

5.1 Delta Matching Triangles and Triangle
Collection

The algorithms for solving ∆-Matching Triangles and
Triangle Collection are not as straight forward as those from the
previous section. We are not looking for a single triangle, yet here we find
quite a large speed-up, going from O(n3) to O(n1.5). Both algorithms rely
heavily on the Variable Time Grover Search algorithm from Theorem 2.2.4 in
Chapter 2, as suggested by Ambainis [5].

Theorem 5.1.1. There exists a quantum algorithm that solves
∆-Matching Triangles on graphs of n nodes in O(min{n1.5+ α

2 , n1.5+ω− α
2 })

time for ∆ = nα.

Proof. Let G = (V,E) be a colored graph with |V | = n and colors given
by γ : E → Γ. We want to search the set of all possible color triples using
Variable Time Grover Search. To determine the time it takes for checking
whether a single triple of colors contains ∆ triangles, we will use a combination
of two different approaches. First, let ∆ = nα for 0 ≤ α ≤ 3. We apply VTGS
to the set of color triples Γ3 and to determine the VTGS ‘checking time’ for
a single color triple, we use one of two different techniques, dependent on the
value of α. For small α we will want to use regular Grover Search, while for
large α, we will use matrix multiplication. Given a color i, let Vi ⊆ V be
the subset containing only nodes in that color and let |Vi| = Γi be the color size.

Small α: We use VTGS on the set Γ3. Given a triple of colors (i, j, k) ∈ Γ3,
let the time to determine whether G contains nα triangles in that color be
ti,j,k. Using Grover Search we have ti,j,k =

√
nαΓiΓjΓk. Since VTGS takes

time T (n) = O(
√∑

i,j,k∈Γ t
2
i,j,k) and ∑

i∈Γ Γi = n we find the following:

79



Chapter 5 Section 5.1

T (n) = O(
√ ∑

i,j,k∈Γ
t2i,j,k)

= O(
√ ∑

i,j,k∈Γ
nαΓiΓjΓk)

= O(
√
nα

∑
i∈Γ

Γi

∑
j∈Γ

Γj

∑
k∈Γ

Γk)

= O(
√
nαn3) = O(n1.5+ α

2 ).

Large α: First we notice that as α increases, the amount of color triples
for which there are even enough nodes in the graph to form nα triangles de-
creases. Before performing VTGS, we filter out all colors triples (i, j, k) such
that ΓiΓjΓk < ∆. We need to be able to this efficiently, and we achieve that
in the following way: First enumerate all nodes and all colors in G. Then con-
struct the n×n matrix M such that M [uv] = 1 if the color of the v’th node is
u and M [uv] = 0 otherwise. This will take time n2. Now we can Grover Search
the set of color triples Γ3 to filter out all the small triples. Checking whether
a triple is large enough takes constant time and there are at most n3

nα such
triples. Grover Search will therefore take at most O(

√
n3−αn3) = O(n4.5−1.5α)

time.
Let Γ′ ⊆ Γ3 denote the set of all large enough color triples. To check

whether there are nα triangles in G for color triple (i, j, k) we apply matrix
multiplication to the adjacency matrix of the sub-graph induced by Vi∪Vj ∪Vk.
First we’d have to construct this matrix, which takes time(Γi + Γj + Γk)2. Let
Mi,j,k be the adjacency matrix of the induced sub-graph. Then to count the
number of triangles, we compute Tr[M3] in O((Γi + Γj + Γk)ω) time.

For VTGS we then find:

T (n) = O(
√ ∑

i,j,k∈Γ
t2i,j,k)

= O(
√ ∑

i,j,k∈Γ
(Γi + Γj + Γk)2ω)

≤ O(
√ ∑

i,j,k∈Γ
n2ω)

≤ O(
√
n3−αn2ω) = O(n1.5+ω− α

2 ).

The complexity for large α will then be O(n1.5+ω− α
2 +n4.5−1.5α). Then from

1.5 + ω − α

2 = 4.5 − 1.5α

80



Section 5.1

we have that whenever α ≥ 3 − ω the complexity becomes O(n1.5+ω− α
2 ).

Combined approach: Given an instance of ∆-Matching Triangles,
we first compute which of the two approaches is faster based on ∆ = nα and
then apply that approach. We find a complexity of:

T (n) = O(min{n1.5+ α
2 , n1.5+ω− α

2 + n4.5−1.5α})

Setting
1.5 + α

2 = 1.5 + ω − α

2
we see that for α < ω the small α algorithm will be faster while for α > ω
our large algorithm is faster. Combined with the fact that in the regime where
α > ω and assuming that ω ≥ 2, we have that the complexity for large α is
O(n1.5+ω− α

2 ). We find a final complexity of

O(min{n1.5+ α
2 , n1.5+ω− α

2 })

From Theorem 5.1.1 we get a worst case corollary and a corollary for the
range of ∆ for which we found reductions in Chapter 4.

Corollary 5.1.1. There exists a quantum algorithm that solves
∆-Matching Triangles on graphs of n nodes in O(n1.5+ ω

2 ) time for
any ∆.

Corollary 5.1.2. There exists a quantum algorithm that solves
∆-Matching Triangles on graphs of n nodes in O(n1.5) time for
ω(1) ≤ ∆ ≤ no(1).

The commonly conjectured lower bound for ω is 2, in which case we have
a worst case complexity for ∆-Matching Triangles of O(n2.5), matching
the quantum complexity of other problems encountered in our reductions
from APSP. That is not to say that a faster algorithm is not possible of
course. Pushing the O(n1.5) lower bound for ∆-Matching Triangles
up for polynomial ∆ is challenging with current techniques and a match-
ing upper bound of O(n1.5) for unrestricted ∆ is not impossible, albeit unlikely.

Using a similar strategy as for the case of small ∆ in the proof of Theo-
rem 5.1.1 we also find a matching upper bound for Triangle Collection.

Theorem 5.1.2. There exists a quantum algorithm that solves
Triangle Collection in O(n1.5) time.

81



Chapter 5 Section 5.1

Proof. Let G = (V,E) be a colored graph with |V | = n and colors given by
γ : E → Γ. We apply the Variable-Time Grover Search algorithm to the set of
all color triples Γ3, to determine whether there is a color triple for which there
is no triangle in G. Let (i, j, k) be a triple of colors and let the time it takes
to check whether G contains a triangle in these colors be ti,j,k. Then VTGS
takes T (n) = O(

√∑
i,j,k∈Γ t

2
i,j,k) time. Given a color i, let Vi ⊆ V be the subset

containing only nodes in that color and let |Vi| = Γi be the color size. For any
triple of colors (i, j, k), we can Grover Search the set Vi ×Vj ×Vk to determine
whether there is a triangle in the induced sub-graph in

√
ΓiΓjΓk time, and we

have that ti,j,k = ΓiΓjΓk. Since it holds that ∑
iΓ Γi = n it follows that

T (n) = O(
√ ∑

i,j,k∈Γ
t2i,j,k)

= O(
√ ∑

i,j,k∈Γ
ΓiΓjΓk)

= O(
√∑

i∈Γ
Γi

∑
j∈Γ

Γj

∑
k∈Γ

Γk)

= O(
√
n3) = O(n1.5).

We can solve Triangle Collection in O(n1.5) time.

Both the reductions to Triangle Collection and the direct algo-
rithm for solving Triangle Collection decide Triangle Collection
by solving the negation of the problem: In the reductions we accept a
0-Weight Triangle or SAT instance using a Triangle Collection or-
acle if and only if the Triangle Collection oracle rejects. In the al-
gorithm from Theorem 5.1.2 we solve a Triangle Collection instance
by looking for a triple of colors for which there is no triangle. The
Triangle Collection problem comes down to a single-triangle finding
problem, which may be what explains the low computational complexity of
the problem.

82



Chapter 6

Conclusion

6.1 Discussion

In this thesis we have contributed a natural continuation to the recent work
done in quantum fine-grained computational complexity by formulating a
quantum hardness conjecture for APSP. There are many classical fine-grained
reductions from APSP, but in order to connect to previous work done in quan-
tum fine-grained complexity, we decided to investigate reductions connected
to the other quantum hardness conjectures. In doing so, we found many con-
ditional lower bounds and were able to make some interesting observations.

Classically, it was surprising to find in Chapter 3 that more seemingly
simple problems such as Negative Triangle and 0-Weight Triangle
are at least as hard as more seemingly complex problems like APSP and
(min,+)-Matrix Multiplication. In the quantum framework in Chapter 4
we found that our intuition regarding the difference in complexity of these prob-
lems is to a reasonable degree well-founded: In the quantum setting we found
a quadratic gap in complexity in both the lower and the upper bounds of these
problems. A consequence of this gap in complexity was the loss of the reduction
from Negative Triangle back to (min,+)-Matrix Multiplication.

In Chapter 5 we found that many other computational prob-
lems find natural speed-ups through Grover’s Search algorithm, with
∆-Matching Triangles and Triangle Collection finding speed-ups
through Variable-Time Grover Search. In a result that ties in well
with the lower bound results, we have a O(n1.5) upper bound for
∆-Matching Triangles that works for those exact ranges of ∆ for which
the reduction works from all three hardness conjectures.

Overviews of all the results are nicely presented in Table 1.1 and Figure 4.1,
with the complexity gaps clearly visible.

83



Chapter Section .0

6.2 Future Work
There are many opportunities for future research in quantum fine-grained com-
putational complexity.

To pick up where this work has left off would be to face the challenges
of finding reductions that prove a lower bound that is higher than the
lower bound on which it is conditioned, as in the case of quantum reducing
Negative Triangle to (min,+)-Matrix Multiplication.

The ∆-Matching Triangles problem presents another series of worth-
while challenges. Due to the dependency of the upper bound on ω, faster
algorithms for ∆-Matching Triangles can definitely be found, either by
improving ω, or by finding an algorithm with no or lower dependency on ω.
The question remains then whether there exists quantum algorithms that
have a better than O(n2.5) worst case ∆ complexity, which would be the worst
case ∆ complexity if ω = 2. To reinforce the likelihood of O(n2.5) being the
best worst case ∆ upper bound for ∆-Matching Triangles, we could look
for reductions to ∆-Matching Triangles that work for polynomial ranges
of ∆. In the classical setting, we saw in [3] that for constant ranges of ∆,
∆-Matching Triangles permits a faster than cubic algorithm and it leads
us to wonder whether a faster than O(n1.5) algorithm exists for ∆-Matching
Triangles with constant ∆ in the quantum case. The ∆-Matching
Triangles and Triangle Collection are of course of special interest due
to their connection to all three popular hardness conjectures.

Aside from picking up where this work leaves off, much work remains to
be done in quantum fine-grained complexity as a whole. An easy starting
point is the overview of classical reductions from [52], which points to many
classical reductions that can be reviewed in the quantum case, in the effort to
construct a quantum complexity web of reductions that mirrors the classical
complexity web.

In [15] many computational lower bound were proven using truth table
properties of computational problems. Some reductions preserve or alter in
some computable way properties such as the parity or count of solutions.
These properties provide us with an additional tool for proving lower bounds,
possibly letting us overcome the challenge of increasing lower bounds through
reductions as mentioned in the first paragraph of this section.

84



Appendix A

Graph Definitions

Here we collect all the definitions relating to graphs that occur in the thesis.

Definition A.0.1 (Graphs). A graph G is an ordered pair (V,E) with a vertex
set V of vertices (or nodes) and an edge set E of unordered pairs of vertices
called edges.

• The size of a graph comes in two parameters, with n = |V | and m = |E|.

• A graph is sparse if O(|V |) = O(|E|).

• A graph is dense if O(|V |2) = O(|E|).

• A directed graph is a graph where the edge set consists of ordered pairs
of vertices.

• A weighted (directed) graph is a triple (V,E,w) such that (V,E) is a
(directed) graph and w : E → W a weight function for some set of
weights W .

• A coloured graph is a triple (V,E, c) such that (V,E) is a (directed)
graph and c : V → L is a function to a set of colours or labels L.

As opposed to an ordered triple, the information in a graph can also be
stored using adjacency and weight matrices.

Definition A.0.2 (Adjacency Matrix). Let G(V,E) be a graph, with V =
[|V |].

• The adjacency matrix A of G is a |V | × |V | matrix such that Aij = 1 if
(i, j) ∈ E and Aij = 0 else.

• If G is a weighted graph and w is its weight function, the weight matrix
W of G is a |V | × |V | matrix such that Wij = w((i, j)) if (, ij) ∈ E and
Wij = ∞ else.

85



Chapter A Section A.0

Definition A.0.3 (Trees). Let T (V,E) be a graph.

• The graph T is a tree if for any two vertices in T there is exactly one
path.

• The graph T is a rooted tree if T is a directed tree and there is a node,
called the root, that has only outgoing edges.

86



Bibliography

[1] S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang. “On the
quantum complexity of closest pair and related problems”. In: Proceed-
ings of the 35th Computational Complexity Conference. CCC ’20. July
2020, pp. 1–43.

[2] A. Abboud, K. Lewi, and R. Williams. “Losing weight by gaining edges”.
In: Algorithms - ESA 2014. Ed. by A. S. Schulz and D. Wagner. Lecture
Notes in Computer Science. 2014, pp. 1–12.

[3] A. Abboud, V. V. Williams, and H. Yu. “Matching triangles and bas-
ing hardness on an extremely popular conjecture”. In: Siam journal on
computing 47.3 (Jan. 2018), pp. 1098–1122.

[4] J. Alman and V. V. Williams. “A refined laser method and faster matrix
multiplication”. In: Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA). 2021, pp. 522–539.

[5] A. Ambainis. personal communication. 2022.
[6] A. Ambainis. “Quantum search with variable times”. In: Theory of com-

puting systems 47.3 (Oct. 2010), pp. 786–807.
[7] A. Ambainis and N. Larka. “Quantum algorithms for computational ge-

ometry problems”. In: 15th conference on the theory of quantum compu-
tation, communication and cryptography (tqc 2020). Ed. by S. T. Flam-
mia. Vol. 158. Leibniz International Proceedings in Informatics (LIPIcs).
2020, 9:1–9:10.

[8] S. Arora and B. Barak. Computational Complexity: A Modern Approach.
2009.

[9] I. Baran, E. D. Demaine, and M. Pǎtraşcu. “Subquadratic algorithms
for 3SUM”. In: Algorithmica 50.4 (Apr. 2008), pp. 584–596.

[10] R. Bellman. “On a routing problem”. In: Quarterly of applied mathemat-
ics 16.1 (1958), pp. 87–90.

[11] D. Bremner, T. M. Chan, E. D. Demaine, J. Erickson, F. Hurtado, J.
Iacono, S. Langerman, M. Pǎtraşcu, and P. Taslakian. “Necklaces, con-
volutions, and X+Y”. In: Algorithmica 69.2 (June 2014), pp. 294–314.

87



Bibliography

[12] J. Buhler, H. Lenstra, and C. Pomerance. “Factoring integers with the
number field sieve”. In: The development of the number field sieve (edited
with A. K. Lenstra), Lecture Notes in Mathematics 1554. Nov. 2006,
pp. 50–94.

[13] H. Buhrman, B. Loff, S. Patro, and F. Speelman. “Limits of quantum
speed-ups for computational geometry and other problems: fine-grained
complexity via quantum walks”. In: 13th innovations in theoretical com-
puter science conference (itcs 2022). Ed. by M. Braverman. Vol. 215.
Leibniz International Proceedings in Informatics (LIPIcs). 2022, 31:1–
31:12.

[14] H. Buhrman, B. Loff, S. Patro, and F. Speelman. “Memory compres-
sion with quantum random-access gates”. In: Arxiv:2203.05599 [quant-
ph] (Mar. 2022). arXiv: 2203.05599.

[15] H. Buhrman, S. Patro, and F. Speelman. “A framework of quantum
strong exponential-time hypotheses”. In: 38th international symposium
on theoretical aspects of computer science (stacs 2021). Ed. by M. Bläser
and B. Monmege. Vol. 187. Leibniz International Proceedings in Infor-
matics (LIPIcs). 2021, 19:1–19:19.

[16] T. M. Chan. “More logarithmic-factor speedups for 3SUM, (median,+)-
convolution, and some geometric 3SUM-hard problems”. In: Acm trans-
actions on algorithms 16.1 (Nov. 2019), 7:1–7:23.

[17] S. A. Cook and R. A. Reckhow. “Time bounded random access ma-
chines”. In: Journal of computer and system sciences (1973), pp. 354–
375.

[18] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto,
R. Paturi, S. Saurabh, and M. Wahlström. “On problems as hard as
CNF-SAT”. In: Acm transactions on algorithms 12.3 (May 2016), 41:1–
41:24.

[19] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M.
Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized algorithms. 2016,
p. 629.

[20] M. Cygan, M. Mucha, K. Węgrzycki, and M. Włodarczyk. “On problems
equivalent to (min,+)-convolution”. In: Acm transactions on algorithms
15.1 (Jan. 2019), pp. 1–25.

[21] H. Dell, T. Husfeldt, D. Marx, N. Taslaman, and M. Wáhlen. “Exponen-
tial time complexity of the permanent and the Tutte polynomial”. In:
Acm transactions on algorithms 10.4 (Aug. 2014), pp. 1–32.

[22] E. W. Dijkstra. “A note on two problems in connexion with graphs”. In:
Numerische mathematik 1.1 (Dec. 1959), pp. 269–271.

88



Bibliography

[23] C. Dürr, M. Heiligman, P. Hoyer, and M. Mhalla. “Quantum query com-
plexity of some graph problems”. In: Siam journal on computing 35.6
(Jan. 2006), pp. 1310–1328.

[24] C. Dürr and P. Hoyer. “A quantum algorithm for finding the minimum”.
In: Corr quant-ph/9607014 (July 1996).

[25] M. J. Fischer and A. R. Meyer. “Boolean matrix multiplication and tran-
sitive closure”. In: 12th Annual Symposium on Switching and Automata
Theory (swat 1971). ISSN: 0272-4847. Oct. 1971, pp. 129–131.

[26] R. W. Floyd. “Algorithm 97: shortest path”. In: Communications of the
acm 5.6 (June 1962), p. 345.

[27] A. Gajentaan and M. H. Overmars. “On a class of O(n2) problems in
computational geometry”. In: Computational geometry 5.3 (Oct. 1995),
pp. 165–185.

[28] V. Giovannetti, S. Lloyd, and L. Maccone. “Quantum random access
memory”. In: Phys. rev. lett. 100 (16 2008), p. 160501.

[29] L. K. Grover. “A fast quantum mechanical algorithm for database
search”. In: Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing - STOC ’96. 1996, pp. 212–219.

[30] A. Grønlund and S. Pettie. “Threesomes, degenerates, and love trian-
gles”. In: Journal of the acm 65.4 (Apr. 2018), 22:1–22:25.

[31] J. Hershberger, M. Maxel, and S. Suri. “Finding the k shortest simple
paths: A new algorithm and its implementation”. In: Acm transactions
on algorithms 3.4 (Nov. 2007), p. 45.

[32] R. Impagliazzo. “A personal view of average-case complexity”. In: Pro-
ceedings of Structure in Complexity Theory. Tenth Annual IEEE Con-
ference. 1995, pp. 134–147.

[33] R. Impagliazzo and R. Paturi. “On the complexity of k-SAT”. In: Journal
of computer and system sciences 62.2 (Mar. 2001), pp. 367–375.

[34] R. Impagliazzo, R. Paturi, and F. Zane. “Which problems have strongly
exponential complexity?” In: Journal of computer and system sciences
63.4 (Dec. 2001), pp. 512–530.

[35] D. B. Johnson. “Efficient algorithms for shortest paths in sparse net-
works”. In: Journal of the acm 24.1 (Jan. 1977), pp. 1–13.

[36] V. Kabanets. “Derandomization: A brief overview”. In: In Electronic
Colloquium on Computational Complexity, technical report, TR. 2002,
pp. 02–008.

89



Bibliography

[37] I. Munroe. “Efficient determination of the transitive closure of a directed
graph”. In: Information processing letters 1 (1971). ISSN: 0020-0190,
pp. 56–58.

[38] M. Naya-Plasencia and A. Schrottenloher. “Optimal merging in quan-
tum k-xor and k-sum algorithms”. In: Advances in Cryptology – EU-
ROCRYPT 2020. Ed. by A. Canteaut and Y. Ishai. Lecture Notes in
Computer Science. 2020, pp. 311–340.

[39] A. Nayebi and V. V. Williams. “Quantum algorithms for shortest paths
problems in structured instances”. In: Arxiv:1410.6220 [quant-ph] (Oct.
2014). arXiv: 1410.6220.

[40] M. A. Nielsen and I. L. Chuang. Quantum computation and quantum
information. 10th anniversary ed. 2010.

[41] M. Patrascu. “Towards polynomial lower bounds for dynamic problems”.
In: Proceedings of the annual acm symposium on theory of computing
(June 2010), pp. 603–610.

[42] R. Paturi, P. Pudlak, M. E. Saks, and F. Zane. “An improved
exponential-time algorithm for k-SAT”. In: Journal of the acm (2005),
p. 28.

[43] L. Roditty and U. Zwick. “On dynamic shortest paths problems”. In:
Algorithmica 61.2 (Oct. 2011), pp. 389–401.

[44] D. Sheridan. “The optimality of a fast CNF conversion and its use with
sat”. In: The seventh international conference on theory and applications
of satisfiability testing (2004), p. 6.

[45] P. Shor. “Algorithms for quantum computation: discrete logarithms and
factoring”. In: Proceedings 35th Annual Symposium on Foundations of
Computer Science. Nov. 1994, pp. 124–134.

[46] S. S. Skiena. The algorithm design manual. 2nd. 2018.
[47] T. B. de la Tour. “An optimality result for clause form translation”. In:

Journal of symbolic computation 14 (4 1992), pp. 283–301.
[48] S. Warshall. “A theorem on boolean matrices”. In: Journal of the acm

9.1 (Jan. 1962), pp. 11–12.
[49] R. R. Williams. “Faster All-Pairs Shortest Paths via circuit complexity”.

In: Siam journal on computing 47.5 (Jan. 2018), pp. 1965–1985.
[50] R. Williams. “A new algorithm for optimal 2-constraint satisfaction

and its implications”. In: Theoretical computer science. Automata, Lan-
guages and Programming: Algorithms and Complexity 348.2 (Dec. 2005),
pp. 357–365.

90



Bibliography

[51] V. V. Williams. “Hardness of easy problems: basing hardness on popular
conjectures such as the strong exponential time hypothesis”. In: The in-
ternational symposium on parameterized and exact computation (2018),
p. 14.

[52] V. V. Williams. “On some fine-grained questions in algorithms and com-
plexity”. In: Proceedings of the International Congress of Mathematicians
(ICM 2018). May 2019, pp. 3447–3487.

[53] V. V. Williams and R. R. Williams. “Subcubic Equivalences Between
Path, Matrix, and Triangle Problems”. In: Journal of the acm 65.5 (Sept.
2018), pp. 1–38.

[54] V. V. Williams and R. Williams. “Finding, minimizing, and counting
weighted subgraphs”. In: vol. 42. Jan. 2009, pp. 455–464.

[55] R. de Wolf. Quantum Computing: Lecture Notes. arXiv: 1907.09415. Jan.
2022.

[56] J. Y. Yen. “Finding the K shortest loopless paths in a network”. In:
Management science 17.11 (1971), pp. 712–716.

91


	Introduction
	Results
	Thesis Outline
	Related Work

	Preliminaries
	Classical Computational Complexity
	Efficient Computation
	Random-Access Machines
	Complexity Classes
	Randomized Algorithms
	Circuits

	Quantum Computing
	Bounded-Error Quantum Time
	Quantum Queries and Oracles
	Quantum Speed-Ups

	Overview

	Known Fine-Grained Reductions
	The Fine-Grained Model
	Coarse-Grained Reductions
	Fine-Grained Reductions
	Popular Hardness Conjectures

	Fine-Grained Reductions From APSP
	APSP and Matrix Multiplication
	Graph Triangle Finding

	Reductions from 3SUM, SAT and k-SAT
	SAT and k-SAT

	Extremely Popular Conjecture

	Quantum Fine-Grained Conditional Lower Bounds
	Hard Quantum Problems
	Quantum Fine-Grained Reductions from APSP
	Quantum Fine-Grained Reductions from SAT and k-SAT

	Quantum Upper Bounds
	Delta Matching Triangles and Triangle Collection

	Conclusion
	Discussion
	Future Work

	Graph Definitions

