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Abstract

This thesis contributes to the study of degrees of the finite model property
(FMP), initiated by G. Bezhanishvili, N. Bezhanishvili and T. Moraschini
(2022). We investigate degrees of FMP in extensions of bi-intuitionistic logic
through the lens of universal algebra. Motivated by the characterisation of
degrees of FMP for intuitionistic logic, which utilises the Kuznetsov-Gerčiu
variety KG, we define its bi-intuitionistic counterpart bi-KG. We obtain a
description of the subdirectly irreducible members of bi-KG and, as a result,
we prove that they are simple algebras. This enables us to develop a method
of comparing subvarieties of bi-KG using local embeddability properties of
their finitely generated simple members.

As an application of this method, we provide a full description of subva-
rieties of bi-KG with the FMP. Consequently, bi-KG turns out to enjoy the
FMP, while its least subvariety containing all 1-generated Heyting algebras
lacks the FMP. Our main result is a dichotomy-style theorem character-
ising degrees of FMP of subvarieties of bi-KG, meaning that the only two
degrees of FMP are 1 and 2ℵ0 . This is in sharp contrast with (intuitionistic)
KG, where all cardinals κ with κ ≤ ℵ0 occur as FMP degrees relative to KG.
Finally, we translate the statement into logical terms to obtain a correspond-
ing result about degrees of FMP relative to the extension of bi-intuitionistic
logic algebrised by bi-KG.
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Chapter 1

Introduction

One of the main tools for studying modal logics is Kripke semantics. A
normal modal logic is said to be Kripke complete if it is sound and complete
with respect to a class of Kripke frames. A number of important logics
enjoy this property and several powerful methods have been developed for
establishing Kripke completeness (see, e.g., [5, Chapter 4]). Initially, it even
seemed likely that every normal modal logic is Kripke complete (a historical
overview can be found in, e.g., [9, Section 6.8]). However, Fine [15] and
Thomason [28] displayed examples of Kripke incomplete logics, meaning
that no class of Kripke frames provides sound and complete semantics for
these logics. Because of this, the question arose whether the gap between
completeness and incompleteness could be understood in quantitative terms.
In [15] Fine introduced the degree of incompleteness of a normal modal
logic. Given a logic L, its degree of incompleteness is the cardinality of the
set of logics with the same Kripke frames as L. In essence, the degree of
incompleteness of L counts the number of logics that cannot be distinguished
from L by means of Kripke frames. A striking result due to Blok [6, 7],
known as Blok’s dichotomy, states that every normal modal logic has degree
of incompleteness 1 or 2ℵ0 . Similar results were obtained by Dzobiak [12]
and Chagrova [10] with respect to neighbourhood semantics.

This success in measuring incompleteness serves as an invitation to in-
vestigate degrees of other properties similar to Kripke completeness. In
particular, one important such property is the finite model property (FMP
for short). A normal modal logic is said to have the FMP if it is the logic of
some class of finite Kripke frames. Drawing inspiration from Blok’s work, G.
Bezhanishvili, N. Bezhanishvili and T. Moraschini [3] introduced the term
degree of FMP. The degree of FMP of a logic L counts the number of logics
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with the same finite Kripke frames as L. By utilising Blok’s dichotomy, they
showed that the degree of FMP of every normal modal logic is again 1 or
2ℵ0 . However, one is often interested in what can be said about a particular
set of normal modal logics, for instance, extensions of the transitive modal
logic K4 or extensions of the reflexive and transitive modal logic S4.

For this purpose, given a normal modal logic L and an extension L′ ⊇
L, we define the degree of FMP of L′ relative to L to be the number of
extensions of L that have the same finite Kripke frames as L′. This definition
can be taken even further, in the setting of intuitionistic logic. Indeed, the
intuitionistic propositional calculus (IPC) admits its own semantics based
on Kripke frames, so the notion of degree of FMP can be analogously defined
for extensions of IPC.

In this extended terminology, one can ask about the possible degrees of
FMP relative to some logic L. In [3], G. Bezhanishvili, N. Bezhanishvili
and T. Moraschini gave an answer to this question for IPC, K4 and S4.
Relative to IPC, all cardinals {1, 2, . . . ,ℵ0, 2ℵ0} occur as the degree of FMP
of some logic. This result is referred to as the antidichotomy theorem. Con-
sequently, with the help of the celebrated Blok-Esakia isomorphism between
extensions of IPC and the Grzegorczyk modal system Grz (see, e.g., [9,
Section 9.6]), they obtained that the same characterisation of degrees of
FMP holds relative to K4 and S4.

In order to take the investigation of degrees of FMP even further, [3] sug-
gests as a possible research direction characterising degrees of FMP relative
to bi-intuitionistic logic (bi-IPC). First introduced and studied by Rauszer
[24, 23, 25], bi-IPC is a conservative extension of IPC with an additional
binary connective←, called co-implication (also exclusion, pseudo-difference
or subtraction). Similarly to how falsum is dual to verum and conjunction
is dual to disjunction, the intuition behind co-implication is that it is dual
to implication. This duality can be observed in the definition of bi-Heyting
algebras – the algebraic models of bi-IPC. Bi-Heyting algebras are Heyt-
ing algebras with an additional co-implication operation ←, defined by the
following property:

c ∨ b ≥ a ⇐⇒ c ≥ a← b,

for all elements a, b, c in the algebra. This is a dualised version of the
implication condition:

c ∧ a ≤ b ⇐⇒ c ≤ a→ b.

Furthermore, bi-IPC also has a Kripke semantics – intuitionistic Kripke
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models in which the co-implication is interpreted as follows:

M,x ⊩ φ← ψ ⇐⇒ ∃y ≤ x (M,y ⊨ φ and M,y ⊭ ψ).

This is dual to the interpretation of implication:

M,x ⊩ φ→ ψ ⇐⇒ ∀y ≥ x (M,y ⊭ φ or M,y ⊨ ψ).

Thus, in terms of Kripke frames, bi-IPC can be seen as an extension of IPC
that can express properties dependant not only on the accessibility relation
≤, but also on its converse relation ≥. In this respect, bi-IPC resembles
temporal logic, where there are past-looking modalities.

This thesis initiates the study of degrees of FMP relative to bi-IPC.
In view of the similarity between IPC and bi-IPC, it appears promis-
ing to analyse the approach used in [3] and potentially adapt it to the
bi-intuitionistic setting. As already mentioned, relative to IPC, for ev-
ery cardinal κ in {1, 2, . . . ,ℵ0, 2ℵ0}, there exists a superintuitionistic logic
with degree of FMP κ. A core step in the proof is constructing a logic
with degree of FMP n for every natural number n. This relies on the well-
understood properties of the Kuznetsov-Gerčiu logic (KG), introduced in
[17, 16] for studying the FMP in superintuitionistic logics. For instance, one
can obtain continuum many extensions of KG with the FMP and continuum
many extensions without it (see, e.g., [2, Section 5]). Now the argument for
exhibiting logics of finite degrees of FMP runs as follows.

1. For every n ∈ N, find an extension of KG with degree of FMP n
relative to KG.

2. Prove that for every extension L of KG, the degree of FMP of L
relative to KG coincides with its degree relative to IPC.

These proofs rely heavily on the algebraic semantics of IPC. In fact, the
question of finding degrees of FMP can be entirely reformulated in algebraic
terms. Note that all logics of interest correspond to varieties, i.e., equa-
tionally defined classes of algebras. Now we define the degree of FMP of a
variety V relative to a variety W with W ⊇ V as the number of subvarieties
of W with the same finite algebras as V . In this way, the degree of FMP
of a logic L′, relative to a logic L, coincides with the degree of FMP of the
variety algebrising L′, relative to the variety algebrising L. We find it more
convenient to work purely in terms of varieties, so we take this approach for
the majority of the thesis. Nevertheless, we will occasionally provide the
most important statements in logical terms.
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In this thesis, we take inspiration from the above strategy of utilising
KG and study a bi-intuitionistic analogue of KG, which we name bi-KG.
Our main contributions can be summarised as follows.

• We introduce the variety bi-KG and examine its subvarieties. We prove
that bi-KG is semi-simple and give a description of all finitely generated
simple bi-KG algebras. This culminates in a theorem that reduces
comparison of subvarieties of bi-KG to local embeddability properties
of their finitely generated simple members.

• We present a complete characterisation of subvarieties of bi-KG with
the FMP. In particular, bi-KG itself has the FMP, but we can construct
continuum many subvarieties of bi-KG that do not have the FMP.

• Finally, we derive a dichotomy-style theorem about degrees of FMP
relative to bi-KG, according to which the only possible degrees of FMP
relative to bi-KG are 1 and 2ℵ0 . This is in stark contrast with KG,
where for every cardinal κ with κ ≤ ℵ0 there is a variety with degree
of FMP κ relative to KG.

Our work is structured into the following chapters. In chapter 2, we lay
out the general preliminaries. Chapter 3 introduces bi-KG and the methods
for describing its subvarieties. Chapter 4 deals with the questions regarding
finite frames of bi-KG, i.e., the FMP and degrees of FMP in bi-KG. Chapter
5 suggests possible directions for related future studies.
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Chapter 2

Preliminaries

In this chapter, we present preliminary notation, definitions and facts that
will be used throughout the thesis. Basic mathematical terminology and
set-theoretic notation, such as sets, relations, functions and cardinality, will
be assumed and used without explanation (see, e.g., [19, Chapter 1]). We
also expect familiarity with the language and semantics of first-order logic
(see, e.g., [11, 13]) and occasionally, the categorical notion of duality (see,
e.g., [1, 20]).

2.1 Ordered sets

We begin with a list of definitions related to ordered sets. These can be con-
sidered standard and well-known, but we spell them out to avoid confusion.

Definition 2.1.1 (Poset). Let A be a set and R ⊆ A × A be a binary
relation on A. We call the pair ⟨A,R⟩ a partially ordered set or a poset if
the following are satisfied.

• R is reflexive, i.e., ⟨a, a⟩ ∈ R for every a ∈ A.

• R is anti-symmetric, i.e., ⟨a, b⟩ ∈ R and ⟨b, a⟩ ∈ R imply a = b, for
every a, b ∈ A.

• R is transitive, i.e., ⟨a, b⟩ ∈ R and ⟨b, c⟩ ∈ R imply ⟨a, c⟩ ∈ R, for every
a, b, c ∈ A.

If the context is clear, we will write A to mean ⟨A,R⟩.
Remark 2.1.2. We usually denote the poset relation by ≤. In this case, we
use the infix notation a ≤ b. We use a < b to mean a ≤ b and a ̸= b. In
addition, ≥ denotes the inverse of ≤ and > denotes the inverse of <.
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Definition 2.1.3 (Upper and lower bound). Let ⟨A,≤⟩ be a poset and let
B ⊆ A. We call a an upper bound (resp. a lower bound) of B if x ≤ a (resp.
a ≤ x) for every x ∈ B.

Definition 2.1.4 (Supremum and infimum). Let ⟨A,≤⟩ be a poset and let
B ⊆ A. We call e a supremum of B and write e = sup(B) if e is an upper
bound of B and e ≤ a for every upper bound a of B.

Similarly, we call f an infimum of B and write f = inf(B) if f is a lower
bound of B and a ≤ f for every lower bound a of B.

Remark 2.1.5. When suprema and infima exist, they are unique.

Definition 2.1.6 (Upset and downset). Let ⟨A,≤⟩ be a poset and let B ⊆
A. We call B upwards closed or an upset if x ∈ B, y ∈ A and x ≤ y imply
y ∈ B. If C ⊆ A, we write ↑C for the least upset that contains C, namely
{x ∈ A | ∃y ∈ C : x ≥ y}.

Similarly, we call B downwards closed or a downset if x ∈ B, y ∈ A
and y ≤ x imply y ∈ B. If C ⊆ A, we write ↓C for the least downset that
contains C, namely {x ∈ A | ∃y ∈ C : x ≤ y}.

Definition 2.1.7 (Interval). Let ⟨A,≤⟩ be a poset and let B ⊆ A. We
call B an interval if x, y ∈ B, z ∈ A and x ≤ z ≤ y imply z ∈ B. Given
a, b ∈ A, we write [a, b] to mean the least interval containing a and b, namely
{x ∈ A | a ≤ x ≤ b}. We write (a, b) to mean [a, b] \ {a, b}.

The following three notions are common in the context of graphs, but
they also make sense for posets.

Definition 2.1.8 (Connected points). Let ⟨A,≤⟩ be a poset and let a, b ∈ A.
We say that a and b are connected if there exists a finite sequence a0, . . . , an
such that a0 = a, an = b and for every i ∈ {0, . . . , n− 1} we have ai ≤ ai+1

or ai ≥ ai+1.

Definition 2.1.9 (Connected sets). Let ⟨A,≤⟩ be a poset and let B ⊆ A.
We call B connected if every two elements of B are connected.

Definition 2.1.10 (Connected components). Every poset can be uniquely
partitioned into subsets such that each subset is connected and has no proper
connected supersets. We call the elements of this partition the connected
components of the poset.

Example 2.1.11. On Figure 2.1 we see two posets. The one on the left is
connected, so it has a single connected component. The one on the right
has two connected components.
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One connected component Two connected components

Figure 2.1: Examples of posets

2.2 Universal algebra

Most of our work is done in the context of universal algebra, so we gather
here the required terminology and properties. We cover the topics of algebras
and operations, universal classes, varieties and generating algebras.

2.2.1 Algebras and operations

The theory on universal algebra is built around the notion of an algebra and
some important operations between algebras, which we present here.

Definition 2.2.1 (Language). Let F be a set and τ : F → N. We call τ
an algebraic signature or language and F is called the corresponding set of
function symbols. For f ∈ F , we call τ(f) the arity of f . If τ(f) = 0, we
call f a constant symbol.

Definition 2.2.2 (Algebra). Let A be a non-empty set, τ : F → N be
an algebraic language and F = {fA | f ∈ F , fA : Aτ(f) → A}, i.e., F
contains interpretations of the symbols in F . We call ⟨A,F ⟩ an algebra in
the language τ . If the context is clear, we will write A both for the algebra
and for the underlying set.

Remark 2.2.3. Algebras can be seen as first-order models containing only
functions and constants. Hence we might assume that they come equipped
with a satisfaction relation ⊨.

Definition 2.2.4 (Similar algebras). We refer to algebras that are in the
same language as similar algebras.

Definition 2.2.5 (Homomorphism). Let A and B be similar algebras in a
language τ : F → N. We call a function g : A → B a homomorphism if for
every f ∈ F with n := τ(f) and every a1, . . . , an ∈ A:

g(fA(a1, . . . , an)) = fB(g(a1), . . . , g(an)).
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We call B a homomorphic image of A if there exists a surjective homomor-
phism from A to B.

Definition 2.2.6 (Embedding and isomorphism). Let f : A → B be an
algebra homomorphism. If f is injective, we call f an embedding and say that
A embeds into B. If, in addition, f is surjective, we call f an isomorphism
and say that A and B are isomorphic.

Definition 2.2.7 (Congruence). Let A be an algebra in a language τ : F →
N. We call an equivalence relation θ ⊆ A×A a congruence if for every f ∈ F
with n := τ(f):

⟨a1, b1⟩ ∈ θ ∧ · · · ∧ ⟨an, bn⟩ ∈ θ =⇒ ⟨f(a1, . . . , fn), f(b1, . . . , bn)⟩ ∈ θ,

for all a1, . . . , an, b1, . . . , bn ∈ A.

Definition 2.2.8 (Quotient). Let A be an algebra in a language τ : F → N
and θ be a congruence on A. Let B be the algebra in the language τ with
an underlying set A/θ := {[a]θ | a ∈ A} such that for every f ∈ F with
n := τ(f) and every a1, . . . , an ∈ A:

fA/θ(a1, . . . , an) = [fA(a1, . . . , an)]θ.

We denote B by A/θ and call it the quotient algebra of A by θ.

Remark 2.2.9. The definition of congruence ensures that the operations in
the quotient are well-defined.

The following theorem expresses that homomorphic images and quotient
algebras are different ways to construct the same structures.

Theorem 2.2.10. Let A and B be similar algebras. Then B is a homo-
morphic image of A if and only if B is isomorphic to a quotient of A.

Proof sketch. Suppose B is a homomorphic image of A, witnessed by the
homomorphism f : A→ B. Then

Ker(f) := {⟨a, b⟩ ∈ A×A | f(a) = f(b)}

is a congruence on A and A/Ker(f) is isomorphic to B.
Conversely, if B is isomorphic to A/θ, witnessed by an isomorphism

f : A/θ → B, then g : A→ B defined as:

g(a) := f([a]θ)

is a surjective homomorphism. ■
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Definition 2.2.11 (Subalgebra). Let A and B be similar algebras such
that A ⊆ B as underlying sets. If the inclusion function of A into B is a
homomorphism, we write A ≤ B and call A a subalgebra of B.

Definition 2.2.12 (Direct product). Let {Ai | i ∈ I} be a set of similar
algebras in a language τ : F → N. Let B be the algebra in the language τ
with an underlying set Πi∈IAi such that for every f ∈ F with n := τ(f),
every a1, . . . , an ∈ Πi∈IAi and i ∈ I:

fΠi∈IAi(a1, . . . , an)(i) = fAi(a1(i), . . . , an(i)).

We denote B by Πi∈IAi and call it the direct product of {Ai | i ∈ I}.

For the next operation on algebras, we need the notion of an ultrafilter.

Definition 2.2.13 (Filter and ultrafilter). Let I be a set and let F ⊆ P(I)
be non-empty. Suppose A,B ∈ F implies A ∩ B ∈ F and in addition, F is
an upset in ⟨P(I),⊆⟩. We call F a filter on I.

If F ̸= P(I), we call F proper. If F is maximal with this property, we
call it an ultrafilter.

Remark 2.2.14. Equivalently, a proper filter F is an ultrafilter if for every
A ⊆ I, either A ∈ F or I \A ∈ F .

Definition 2.2.15 (Ultraproduct). Let {Ai | i ∈ I} be a set of similar
algebras and U be an ultrafilter on I. Let θU be the congruence on Πi∈IAi

defined by:
⟨a, b⟩ ∈ θU ⇐⇒ {i ∈ I | a(i) = b(i)} ∈ U.

We call Πi∈IAi/θU the ultraproduct of {Ai | i ∈ I} on U .

Remark 2.2.16. The fact that θU is a congruence follows from the properties
of filters.

Definition 2.2.17 (Subdirect embedding and product). An embedding
A → Πi∈IAi is called subdirect if for every i ∈ I, we have (πi ◦ f)[A] = Ai.
Here πi denotes the projection onto the i-th coordinate.

If A ≤ Πi∈IAi and the inclusion function is a subdirect embedding, we
call A a subdirect product of {Ai | i ∈ I}.

Definition 2.2.18 (Subdirect irreducibility). An algebra A is called subdi-
rectly irreducible if for every subdirect embedding f : A → Πi∈IAi, there
exists i ∈ I such that (πi ◦ f) : A→ Ai is an isomorphism.
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Definition 2.2.19 (Class operators). Let K be a class of similar algebras.
We write:

I(K) := {A | A is isomorhpic to some B ∈ K};
H(K) := {A | A is a homomorphic image of some B ∈ K};
S(K) := I({A | A is a subalgebra of some B ∈ K});
P(K) := I({A | A is a direct product of some {Bi}i∈I ⊆ K});

PU (K) := I({A | A is an ultraproduct of some {Bi}i∈I ⊆ K});
PS(K) := I({A | A is a subdirect product of some {Bi}i∈I ⊆ K}).

2.2.2 Universal classes

Universal classes are collections of similar algebras that can be defined by
universal formulas. Formally, we use the following definitions (see, e.g., [8,
Section 5.2]).

Definition 2.2.20 (Universal formula). A first-order formula φ is called
universal if it is of the form φ = ∀x1 . . . ∀xnψ where ψ is quantifier-free.

Definition 2.2.21 (Universal class). A class of similar algebras is said to be
a universal class if it is the class of models of some set of universal sentences.

Definition 2.2.22 (Universal class generation). If K is a class of similar
algebras, we write U(K) for the least universal class that contains K, also
known as the universal class generated by K.

The following is a useful characterisation of U in terms of the operators
from the previous section. See, e.g., [8, Chapter 5, Theorem 2.20] for a
proof.

Theorem 2.2.23. Universal classes are closed under S and Pu. Further-
more:

U(K) = SPu(K).

Next, we define the auxiliary notion of a local subgraph that will allow
for another useful characterisation of universal classes, found in, e.g., [18,
Section 1.2]. Intuitively, a local subgraph of an algebra A is a finite subset
of A endowed with finitely many partial operations, inherited from A.

Definition 2.2.24 (Local subgraph). Let A be an algebra in a language
τ : F → N. We call ⟨X, fX1 , . . . , fXm ⟩ a local subgraph of A, if:

• X is a finite subset of A;
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• for every i ∈ {1, . . . ,m}, fXi = fAi ∩ Xn+1 for some fi ∈ F with
n := τ(fi).

If the context allows, we will write X as shorthand for ⟨X, fX1 , . . . , fXm ⟩.

Definition 2.2.25 (Local subgraph embeddability). Let ⟨X, fX1 , . . . , fXm ⟩
be a local subgraph of A and let B be an algebra similar to A. We call
g : X → B an embedding if g is injective and for every i ∈ {1, . . . ,m} and
a1, . . . , an ∈ X (where n is the arity of fXi ) such that fXi (a1, . . . , an) ∈ X,
we have:

g(fXi (a1, . . . , an)) = fBi (g(a1), . . . , g(an)).

If such a function exists, we say that X embeds into B.

Theorem 2.2.26. Let {A} ∪ K be a class of similar algebras. We have
A ∈ U(K) if and only if for every local subgraph X of A, there exists B ∈ K
such that X embeds into B.

Proof sketch. For the left-to-right direction, we reason as follows. For every
local subgraph X of A, there exists a universal sentence φX such that for
every algebra B, we have B ⊨ φX if and only if X does not embed into B.
Now suppose that there exists a local subgraph X of A that does not embed
into any member of K, then K ⊨ φX . Since φX is universal, U(K) ⊨ φX .
But as A ⊭ φX , this implies A /∈ U(K).

For the right-to-left direction, we use [18, Theorem 1.2.8], which states
that if every local subgraph of A embeds into some member of K, then
A ∈ SPU (K). By Theorem 2.2.23, this means A ∈ U(K). ■

2.2.3 Varieties

We look more closely into a special kind of universal classes, called varieties,
that are closed under homomorphic images and direct products. They are
very frequently used throughout the text as algebraic models of logics.

The following definition is taken from [8, Section 2.9].

Definition 2.2.27 (Variety). A class of similar algebras V is called a variety
if it is closed under H, S and P.

Definition 2.2.28 (Variety generation). Let K be a class of similar algebras.
We write V(K) for the least variety that contains K and call it the variety
generated by K.

Below we state [8, Chapter 2, Theorem 9.5], which is a characterisation
of varieties in terms of the operators.
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Theorem 2.2.29 (Tarski). Let K be a class of similar algebras. Then
V(K) = HSP(K).

Similarly to how universal classes are defined by universal formulas, we
know that varieties are defined by special formulas called equations. This
result is known as Birkhoff’s Theorem.

Definition 2.2.30 (Equation). A first-order sentence φ is called an equation
if it is of the form σ ≈ τ , where σ and τ are terms and≈ is the formal equality
symbol.

The proof of the next theorem can be found in [8, Chapter 2, Theorem
11.9].

Theorem 2.2.31 (Birkhoff). Let V be a class of similar algebras in a lan-
guage τ . Then V is a variety if and only if V is equationally definable, i.e.,
there exists a set of equations Φ such that:

V = {A is an algebra in τ | A ⊨ Φ}.

Next, we see that varieties are always generated by its subdirectly irre-
ducible algebras (see [8, Chapter 2, Corollary 9.7]).

Definition 2.2.32. If K is a class of algebras, we write KSI for the collection
of subdirectly irreducible members of K.

Theorem 2.2.33. For every variety V , we have V = PS(VSI), i.e., V is
generated by its subdirectly irreducible members.

In addition to subdirectly irreducible algebras, there is another impor-
tant sort of algebras called simple algebras.

Definition 2.2.34 (Simple algebra). An algebra A is called simple if it has
exactly two congruences (these are A×A and {⟨a, a⟩ | a ∈ A}).

Given a class of algebras K, we write KS for the collection of simple
members of K.

Simple algebras are subdirectly irreducible, but the converse does not
hold in general. Nevertheless, in the following chapter we will study a variety
where the two notions coincide, i.e., we will have the following.

Definition 2.2.35 (Semi-simple variety). A variety V is called semi-simple
if VSI = VS .
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Finally, we define the finite model property of varieties, which is closely
connected to the finite model property of logics.

Definition 2.2.36. Let K be a class of algebras. We write Fin(K) for the
collection of finite members of K.
Definition 2.2.37 (FMP). Let V be a variety. We say that V has the finite
model property (FMP) if V = V(Fin(V )), i.e., V is generated by its finite
members.

2.2.4 Generating algebras

Some important objects that we study are defined in terms of algebra gen-
eration, which we cover here.

Definition 2.2.38 (Algebra generation). Let A be an algebra and X ⊆
A. We refer to the least subalgebra of A containing X as the subalgebra
generated by X.

Definition 2.2.39 (n-generated and finitely generated). An algebra A is
said to be n-generated, for n ∈ N, if there exist a set B ⊆ A with |B| ≤ n
that generates A. If A is n-generated for some n ∈ N, A is said to be finitely
generated.

Now we have the required terminology to further strengthen Theorem
2.2.33.

Theorem 2.2.40. Every variety is generated by the set of its finitely gen-
erated subdirectly irreducible members.

Proof sketch. From the fact that each equation contains finitely many vari-
ables, one can derive that varieties are generated by their finitely generated
members. From here, we can adapt the proof of [8, Chapter 2, Corollary
9.7]. ■

Definition 2.2.41 (Locally finite). A variety V is said to be locally finite
if every finitely generated algebra in V is finite.

Definition 2.2.42 (Free algebra). Let n ∈ N and let V be a variety. We
call A ∈ V the free n-generated algebra in V if A is generated by some
{a1, . . . , an} ⊆ A and for every B ∈ V generated by {a1, . . . , an}, there
exists a unique homomorphism f : A → B that restrict to the identity
function on {a1, . . . , an}, i.e.:

f
∣∣
{a1,...,an} = Id{a1,...,an}.

Note that a1, . . . , an are not necessarily distinct.
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2.3 Heyting and bi-Heyting algebras

We presented the general theory of universal algebra so that we can apply it
to two concrete classes of algebras – Heyting and bi-Heyting algebras. Here
we see what these are. We define them as special cases of simpler structures,
which we introduce first.

Definition 2.3.1 (Lattice). Let ⟨A,≤⟩ be a poset where every pair of ele-
ments has a supremum and an infimum. Define for every a, b ∈ A:

∧A (a, b) = inf{a, b}, ∨A(a, b) = sup{a, b}.

We call the algebra ⟨A, {∧A,∨A}⟩ a lattice. Thus the language of lattices
consists of two binary operations ∧ and ∨. We call ∧ a meet and ∨ a join.

Remark 2.3.2. Note that the order ≤ is not present in ⟨A, {∧A,∨A}⟩, but it
can be retrieved by the equivalences:

a ≤ b ⇐⇒ a ∧ b = a ⇐⇒ a ∨ b = b.

Hence we may assume that lattices come equipped with a partial order.

Remark 2.3.3. With lattices and other classes of algebras that follow, we will
drop the superscript (as in ∧ instead of ∧A) whenever no confusion arises.

Definition 2.3.4 (Dual lattice). Let A be a lattice induced by ⟨A,≤⟩. We
define A∂ to be the lattice induced by ⟨A,≥⟩ and call it the dual of A.

Remark 2.3.5. Meets in A∂ are the joins of A and joins in A∂ are the meets
of A. Intuitively, A∂ is the upside-down image of A.

Definition 2.3.6 (Bounded lattice). Let A be a lattice with a least element
⊥A and a greatest element ⊤A. Then A, endowed with the two constants ⊥A

and ⊤A, is called a bounded lattice. Thus the language of bounded lattices
consists of two constants ⊥ and ⊤ and two binary operations ∧ and ∨.

Definition 2.3.7 (Distributive lattice). Let A be a lattice, such that for
every a, b, c ∈ A:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Then A is called a distributive lattice.

16



Definition 2.3.8 (Heyting algebra). Let A be a bounded lattice and let
→: A×A→ A satisfy:

c ∧ a ≤ b ⇐⇒ c ≤ a→ b for all a, b, c ∈ A.

We call A, endowed with→, a Heyting algebra. Thus the language of Heyting
algebras consists of two constants ⊥ and ⊤ and three binary operations ∧,
∨ and →. We call → an implication.

Remark 2.3.9. Every Heyting algebra is a distributive lattice.

The following property is useful for determining which ordered structures
can be turned into Heyting algebras.

Proposition 2.3.10. Let A be a Heyting algebra. Then for every a, b ∈ A:

a→ b = sup{c ∈ A | c ∧ a ≤ b}.

Moreover, a bounded distributive lattice can be equipped with an implica-
tion, i.e., turned into a Heyting algebra, if and only if the above supremum
exists for all elements a and b.

Remark 2.3.11. Consequently, a Heyting algebra is uniquely determined by
its partial order.

Definition 2.3.12 (bi-Heyting algebra). Let A be a Heyting algebra and
let ←: A×A→ A satisfy:

a ≤ c ∨ b ⇐⇒ a← b ≤ c for all a, b, c ∈ A.

We call A, endowed with ←, a bi-Heyting algebra. Thus the language of
bi-Heyting algebras consists of two constants ⊥ and ⊤ and four binary op-
erations ∧, ∨, → and ←. We call ← a co-implication.

Remark 2.3.13. We will call a bounded lattice with a co-implication only a
co-Heyting algebra.

Next, we have the bi-Heyting analogue of Proposition 2.3.10.

Proposition 2.3.14. Let A be a bounded distributive lattice. Then for
every a, b ∈ A:

a← b = inf{c ∈ A | a ≤ c ∨ b}.

Moreover, a bounded distributive lattice can be equipped with a co-implica-
tion, i.e. turned into a co-Heyting algebra, if and only if the above meet
exists for all elements a and b.
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Corollary 2.3.15. A bounded distributive lattice A can be turned into
a bi-Heyting algebra if and only if A and A∂ can be equipped with an
implication.

We will be interested in the collection of all Heyting algebras and all
bi-Heyting algebras.

Definition 2.3.16. Let HA denote the class of all Heyting algebras and
bi-HA denote the class of all bi-Heyting algebras.

Crucially, we have the following property.

Theorem 2.3.17. HA and bi-HA are varieties.

Lastly, we recall the so-called Jónsson’s Lemma (see, e.g., [8, Chapter 4,
Theorem 6.8]). It can be useful for characterising the subdirectly irreducible
algebras of a variety. It only applies to congruence-distributive varieties,
which we define below.

Definition 2.3.18 (Lattice of congruences). Let A be an algebra. We write
Con(A) for the lattice of congruences of A, where θ1 ∧ θ2 is defined as the
intersection of θ1 and θ2 and θ1∨θ2 is the least congruence containing θ1∪θ2,
for any pair of congruences θ1, θ2 on A.

Definition 2.3.19 (Congruence distributive). An algebra A is said to be
congruence-distributive if Con(A) is a distributive lattice. A class of algebras
K is said to be congruence-distributive if each of its members is congruence-
distributive.

Theorem 2.3.20. The varieties HA and bi-HA (and consequently, all of
their subvarieties) are congruence-distributive.

Theorem 2.3.21 (Jónsson’s Lemma). Let V be a congruence-distributive
variety such that V = V(K) for some class K. Then V = PSHSPU (K).
Consequently, VSI ⊆ HSPU (K).

Remark 2.3.22. By Theorem 2.3.17, we can freely apply Jónsson’s Lemma
to subvarieties of HA and bi-HA.

2.4 Bi-Heyting Duality

When working with varieties, it is sometimes possible to translate the al-
gebraic objects of study into a topological language, which allows us to
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approach the problem from a different perspective. An example is the so-
called Esakia duality between Heyting algebras and Esakia spaces (see, e.g.,
[14, Chapter 3]). Moreover, bi-Esakia spaces (see, e.g., [27, Chapter 2]),
which are a special kind of Esakia spaces, are dual to bi-Heyting algebras.
In this section, we outline the Esakia and bi-Esakia dualities and some of
their consequences that will be of use.

We assume familiarity with introductory notions from general topology,
such as topological spaces, open and closed sets, bases, subbases, continuous
functions and compactness. For a text on general topology, refer to, e.g.,
[21].

Definition 2.4.1 (Esakia space). Let X := ⟨X, T ,≤⟩ satisfy the following
conditions.

• ⟨X, T ⟩ is a compact topological space.

• ⟨X,≤⟩ is a poset.

• If x, y ∈ X and x ≰ y, then there exists a clopen set U ∈ T such that
x ∈ U and y /∈ U .

• If U ∈ T is clopen, then ↓U is clopen.

We call X an Esakia space.

Definition 2.4.2 (bi-Esakia space). If an Esakia space ⟨X, T ,≤⟩ satisfies
the additional condition:

• if U ∈ T is clopen, then ↑U is clopen,

we call it a bi-Esakia space.

An Esakia space X can be seen as an intuitionistic general Kripke frame
F, where the admissible subsets of F are the clopen upsets of X .

Definition 2.4.3 (Esakia morphism). Suppose X := ⟨X, T ,≤⟩ and X ′ :=
⟨X ′, T ′,≤′⟩ are Esakia spaces. We call f : X → X ′ an Esakia morphism if:

• f is a continuous function between the topological spaces ⟨X, T ⟩ and
⟨X ′, T ′⟩;

• f is monotone, i.e.:

∀x, y ∈ X : x ≤ y → f(x) ≤ f(y);
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• f satisfies the forth condition, i.e.:

∀x ∈ X∀y′ ∈ X ′(f(x) ≤′ y′ → ∃y ∈ X(x ≤ y ∧ f(y) = y′)).

Definition 2.4.4 (bi-Esakia morphism). Let X := ⟨X, T ,≤⟩ and X ′ :=
⟨X ′, T ′,≤′⟩ be bi-Esakia spaces. We call f : X → X ′ a bi-Esakia morphism
if it is an Esakia morphism such that:

• f satisfies the back condition, i.e.:

∀x ∈ X∀y′ ∈ X ′(y′ ≤ f(x)→ ∃y ∈ X(y ≤ x ∧ f(y) = y′)).

Esakia morphisms can be seen as p-morphisms, while bi-Esakia mor-
phisms can be seen as bidirectional p-morphisms.

In the following theorem, we state the Esakia and bi-Esakia dualities
together.

Theorem 2.4.5. The category of (bi-)Heyting algebras with homomorph-
isms is dually equivalent to the category of (bi-)Esakia spaces with (bi-
)Esakia morphisms.

Below we present the object part of the dualities. As a preliminary, we
recall what filters and prime filters on a bounded lattice are.

Definition 2.4.6 (Filter, prime filter). Let A be a bounded lattice and let
∅ ≠ F ⊆ A. We call F a filter if:

• a, b ∈ F implies a ∧ b ∈ F ;

• F is an upset.

We call F a prime filter if in addition, we have the following:

• ⊥ /∈ F ;

• a ∨ b ∈ F implies a ∈ F or b ∈ F .

Definition 2.4.7 (Dual space). Let A be a (bi-)Heyting algebra. We define
the dual (bi-)Esakia space of A to be X (A) := ⟨X, T ,≤⟩, where:

• X is the set of prime filters on A;

• ≤ := ⊆ is the set inclusion between filters;
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• T is the topology induced by the subbase:

{φ(a) | a ∈ A} ∪ {A \ φ(a) | a ∈ A},

where φ(a) := {F is a prime filter | a ∈ F} for a ∈ A.

Remark 2.4.8. A (bi-)Heyting algebra is finite precisely when its dual space
is finite.

Definition 2.4.9 (Dual algebra). Let X := ⟨X, T ,≤⟩ be a (bi-)Esakia space.
Denote by A(X ) the (bi-)Heyting algebra obtained by equipping the set of
clopen upsets of X with the following operations:

• ⊥ := ∅;

• ⊤ := X;

• U ∧ V := U ∩ V ;

• U ∨ V := U ∪ V ;

• U → V := X \ ↓(U \ V );

• U ← V := ↑(U \ V ), in case X is a bi-Esakia space.

We call A(X ) the dual (bi-)Heyting algebra of X .

The object part of the duality is conveyed by the following statement.

Theorem 2.4.10. If A is a (bi-)Heyting algebra and Y is a (bi-)Esakia
space, then:

A ∼= A(X (A)),
Y ∼= X (A(Y)).

For the rest of the section, we work with the bi-Heyting duality only. Our
goal is to state a consequence of this duality that we are going to need in
this thesis. For this purpose, we define the following analogue of a generated
subframe of a Kripke frame.

Definition 2.4.11 (Generated subspace). Let X := ⟨X, T ,≤⟩ be a bi-
Esakia space. We call ⟨X ′, T ′,≤′⟩ a generated subspace of X if:

• X ′ ⊆ X is closed, an upset and a downset;

• ⟨X ′, T ′⟩ is a topological subspace of X ;

21



• ≤′= ≤
∣∣
X′ .

Proposition 2.4.12. Let A and B be bi-Heyting algebras. Then B is a
homomorphic image of A if and only if X (B) is a generated subspace of
X (A).

For our purposes, the main ingredient to take away from this section is
the following corollary of Proposition 2.4.12.

Corollary 2.4.13. A bi-Heyting algebra A is simple if and only if X (A)
is non-empty and does not contain non-trivial generated subspaces, i.e.,
generated subspaces different from ∅ and X (A).

2.5 Intuitionistic and bi-intuitionistic logic

Most results in the following chapters are presented in the language of va-
rieties, but in order to appreciate them, we should look at the connection
between varieties and logics. In particular, we will focus on the systems IPC
(intuitionistic propositional calculus) and bi-IPC (bi-intuitionistic proposi-
tional calculus).

Remark 2.5.1. By a logic, we will refer to a set of formulas, as opposed to a
consequence relation.

The logic IPC is obtained by removing the law of excluded middle p∨¬p
from classical propositional logic. Among other purposes, it aims to model
constructive reasoning in mathematics. A more thorough presentation can
be found in [9, Chapter 2].

Definition 2.5.2 (IPC). Consider the language consisting of the constants
⊥ and ⊤ and the binary connectives ∧, ∨ and →. We use the abbrevia-
tion ¬φ := φ → ⊥. We work with an infinite set of propositional letters
{p0, p1, . . . }. The logic IPC is defined as the least set of formulas in this
language, containing the axioms:

p0 → (p1 → p0 ∧ p1) p0 → (p1 → p0)

p0 ∧ p1 → p1 p0 ∧ p1 → p0

p0 → p0 ∨ p1 p1 → p0 ∨ p1
(p0 → p2)→ ((p1 → p2)→ (p0 ∨ p1 → p2)) ⊥ → p0

(p0 → (p1 → p2))→ ((p0 → p1)→ (p0 → p2))

and closed under the rules:
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• Modus Ponens: if φ ∈ IPC and φ→ ψ ∈ IPC, then ψ ∈ IPC;

• Substitution: if φ ∈ IPC, then φ[ψ/pi] ∈ IPC for every formula ψ
and i ∈ N.

Definition 2.5.3 (Superintuitionistic logic). A set of formulas in the lan-
guage of IPC is called a superintuitionistic logic if it extends IPC and is
closed under the rules of Modus Ponens and Substitution.

Note that IPC has a Kripke frame semantics. In particular, a finite
intuitionistic frame is simply a finite Esakia space. Since we will be inter-
ested in the class of finite frames validating a logic, we give the following
definition.

Definition 2.5.4 (Finite frames of a logic). Let L be a superintuitionistic
logic. We define:

FinFr(L) := {X | X is a finite Esakia space such that A(X ) ⊨ L}

and call it the class of finite frames of L.

The importance of Heyting algebras is conveyed by the following the-
orem, stating that the variety of Heyting algebras serves as semantics for
IPC.

Theorem 2.5.5. For every formula φ in the language of IPC:

φ ∈ IPC ⇐⇒ HA ⊨ φ ≈ ⊤.

In addition to IPC itself, superintuitionistic logics are also modelled by
varieties of Heyting algebras. In order to present this fact, we define a lattice
structure on superintuitionistic logics and on subvarieties of HA.

Proposition 2.5.6. The collection of superintuitionistic logics is a lattice
with operations defined as follows:

• L1 ∧ L2 = L1 ∩ L2;

• L1 ∨ L2 = L(L1 ∪ L2), where L(X) is defined to be the least superin-
tuitionistic logic containing X,

for any pair of superintuitionistic logics L1 and L2.

Proposition 2.5.7. The set of subvarieties of HA is a lattice with operations
defined as follows:
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• V1 ∧ V2 = V1 ∩ V2;

• V1 ∨ V2 = V(V1 ∪ V2),

for any pair of varieties V1, V2 ⊆ HA.

We know that these two lattices are dually isomorphic and the isomor-
phism is given in the following way.

Definition 2.5.8. Let V ⊆ HA be a variety. We define the logic:

LV := {φ | V ⊨ φ ≈ ⊤}.

Theorem 2.5.9. The function L− is a dual isomorphism between the lattice
of subvarieties of HA and the lattice of superintuitionistic logics.

Next, we define bi-IPC, which is a conservative extension of IPC with
an additional connective ←, which behaves dually to →.

Definition 2.5.10 (bi-IPC). Consider the language obtained from adding
a binary connective ← to the language of IPC. We use an additional ab-
breviation ∼φ := ⊤ ← φ. The logic bi-IPC is the least set of formulas
containing the axioms of IPC and:

p0 → (p1 ∨ (p1 ← p0)) (p1 ← p0)→ ∼(p0 → p1)

¬(p0 ← p1)→ (p0 → p1) ¬∼(p0 ← p0)

(p2 ← (p1 ← p0))→ ((p0 ∨ p1)← p0)

which is closed under the rules of IPC and:

• Double negation: φ ∈ bi-IPC, then ¬∼φ ∈ bi-IPC.

As might be expected, bi-Heyting algebras model bi-intuitionistic logic.

Theorem 2.5.11. For every formula φ in the language of bi-IPC:

φ ∈ bi-IPC ⇐⇒ bi-HA ⊨ φ ≈ ⊤.

Definition 2.5.12 (Bi-superintuitionistic logic). A set of formulas in the
language of IPC is called a bi-superintuitionistic logic if it extends bi-IPC
and is closed under the rules of Modus Ponens and Substitution and Double
negation.
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Remark 2.5.13. The finite frames operator FinFr from Definition 2.5.4 can
be adapted to bi-superintuitionistic logics. For every bi-intuitionistic logic
L, we define:

FinFr(L) := {X | X is a finite bi-Esakia space such that A(X ) ⊨ L}.

Remark 2.5.14. Completely analogously to superintuitionistic logics and
subvarieties of HA, we can define a lattice structure on bi-superintuitionistic
logics and subvarieties of bi-HA. In the same way as in Definition 2.5.8, we
can define L on subvarieties of bi-HA.

As a result, we have the following analogous dual isomorphism.

Theorem 2.5.15. The function L− is a dual isomorphism between the lat-
tice of subvarieties of bi-HA and the lattice of bi-superintuitionistic logics.

In view of these correspondences, in the following chapters, we freely
switch between logics and varieties. In fact, we choose to do the proofs
algebraically (and occasionally, order-topologically) and only state the most
important results in logical terms.
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Chapter 3

Bi-intuitionistic
Kuznetsov-Gerčiu variety

The purpose of this chapter is to introduce the bi-intuitionistic variant of the
Kuznetsov-Gerčiu variety (resp. the Kuznetsov-Gerčiu logic) and to estab-
lish its core properties. We begin by recalling the well-known intuitionistic
variety KG. Motivated by it, we proceed to define its bi-Heyting variant
bi-KG. Next, we focus on proving semi-simplicity of bi-KG, together with a
characterisation of its subvarieties. As a result, local subgraphs (see Defi-
nition 2.2.24) turn out to be especially useful for comparing subvarieties of
bi-KG with the help of Theorem 2.2.26. Lastly, we collect a number of useful
facts about local embeddability in bi-KG, which are essential to our further
study of this variety.

3.1 The Kuznetsov-Gerčiu variety KG

The variety KG (more precisely, its logic counterpart KG) appeared in the
work of Kuznetsov and Gerčiu [17, 16]. It was motivated by studying finite
axiomatizability and the FMP of superintuitionistic logics. Moreover, its
fine combinatorial properties (see, e.g., [4, Chapter 4]) allow for the con-
struction of subvarieties without the FMP. This makes it a very valuable
tool in characterising degrees of FMP of superintuitionistic logics [3]. Recall
that the degree of FMP of a variety U relative to a variety V is the number
of subvarieties of V with the same finite algebras as U .

In order to define KG, we need to introduce several notions. Recall the
notion of an n-generated algebra from Definition 2.2.39. Here we describe the
1-generated Heyting algebras. By Definition 2.2.42, this can be done by first
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Figure 3.1: Rieger-Nishimura lattice RN

RN1 RN2 RN3 RN4 RN5 RN6 RN7 RN8

Figure 3.2: Some finite 1-generated Heyting algebras

considering the free Heyting algebra on 1 generator, because the 1-generated
Heyting algebras are precisely its homomorphic images. This is the so-
called Rieger-Nishimura lattice RN , described in [26, 22], which is depicted
in Figure 3.1. Consequently, the other 1-generated Heyting algebras are
homomorphic images of RN . Except for RN itself, these images are finite
and are, in fact, principal downsets of RN . The first several smallest 1-
generated Heyting algebras are depicted in Figure 3.2. Notice that we denote
the finite 1-generated algebra with m elements by RNm. This is convenient,
because for every natural number, there exists a unique 1-generated Heyting
algebra of that size. Thus we obtain the following definition.

Definition 3.1.1. We denote the free 1-generated Heyting algebra by RN
and for every m ∈ N, we denote the 1-generated Heyting algebra with m
elements by RNm.

Next, we recall the sum operation on Heyting algebras (see, e.g., [14,
Appendix A.9]).

Definition 3.1.2 (Sum of Heyting algebras). Let A and B be Heyting
algebras. The sum A+B of A and B is defined as the algebra obtained by
pasting A below B and identifying the top element of A with the bottom
element of B.
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Example 3.1.3. For instance, RN7 = RN6 +RN2.

Remark 3.1.4. Given Heyting algebras A and B, the sum A+B is indeed a
Heyting algebra. This can be seen with the help of Proposition 2.3.10.

Remark 3.1.5. By a straightforward argument, the operation + is associa-
tive. Therefore, we will write expressions of the form A1 + · · · + An or
Σ1≤i≤nAi without parenthesis.

It is convenient to introduce the following notation:

Definition 3.1.6 (Finite sums). Let K be a class of Heyting algebras. De-
fine:

FinSum(K) = {A1 + · · ·+An | A1, . . . , An ∈ K, n ∈ N+}.

With these definitions in place, we are now ready to give the notion
of KG. It is the variety of Heyting algebras generated by finite sums of
1-generated algebras.

Definition 3.1.7 (Kuznetsov-Gerčiu variety). Let K denote the class of
1-generated Heyting algebras. Define the Kuznetsov-Gerčiu variety :

KG := V(FinSum(K)).

As we saw in Section 2.5, subvarieties of HA give rise to superintuition-
istic logics via L− (see Definition 2.5.8). We apply it in the current context.

Definition 3.1.8 (Kuznetsov-Gerčiu logic). Define the Kuznetsov-Gerčiu
logic:

KG := LKG.

3.2 The bi-intuitionistic variant bi-KG

The similarities between the varieties HA and bi-HA motivate a fruitful ap-
proach to solving questions of bi-intuitionistic nature by building on the
already established methods for HA. Since we are interested in studying
degrees of FMP in bi-HA and the central tool used for resolving this intu-
itionistically is KG (see [3]), it is meaningful to look for a bi-intuitionistic
counterpart bi-KG of KG. In the present section, we introduce a natural such
candidate.

In the last section, we defined KG by specifying a class of generators – the
class of finite sums of 1-generated Heyting algebras. Now we aim to use the
same generators to induce a variety in the bi-Heyting language. But before

28



we are able to do that, we need to make sure that our generators are indeed
bi-Heyting algebras. More concretely, we need to turn RN,RN1, RN2, . . .
into bi-Heyting algebras and verify that the sum operation is well-defined
for bi-Heyting algebras.

Proposition 3.2.1. The 1-generated Heyting algebras RN,RN1, RN2, . . .
can be (uniquely) equipped with a co-implication.

Proof. By referring to Proposition 2.3.14, it suffices to check that for ev-
ery A ∈ {RN,RN1, RN2, . . . }, the algebra A possesses the required infima
inf{c | a ≤ c ∨ b}, for every a, b ∈ A. This is a straightforward verifica-
tion. ■

As a result of this proposition, we can give the following definition.

Definition 3.2.2. We denote the bi-Heyting algebra obtained by equipping
RN with a co-implication by L. For every m ∈ N, we denote the bi-Heyting
algebra obtained by equipping RNm with a co-implication by Lm.

Next, we ensure the sum operation is well-defined for bi-Heyting alge-
bras.

Proposition 3.2.3. Let A and B be bi-Heyting algebras and let A′ and B′

be their respective Heyting reducts. Then the sum A′+B′ can be equipped
with a co-implication in a unique way and hence gives rise to a bi-Heyting
algebra.

Proof. Consider the dual lattices (A′)∂ and (B′)∂ . Since A and B are bi-
Heyting algebras and are equipped with a co-implication, we know that
(A′)∂ and (B′)∂ can be equipped with an implication. Thus by viewing
them as Heyting algebras, we can write the sum (B′)∂ + (A′)∂ . But we
know that the sum of two Heyting algebras is a Heyting algebra, therefore
(B′)∂ +(A′)∂ can also be equipped with an implication. Now it follows that

A′ +B′ =
(
(B′)∂ + (A′)∂

)∂
can be equipped with a co-implication. ■

Remark 3.2.4. Given A,B ∈ bi-HA, we will write A + B to mean the bi-
Heyting algebra arising from the sum of the reducts of A and B. Un-
surprisingly, + is also associative on bi-Heyting algebras, so we will write
expressions of the form A1 + · · ·+An or Σ1≤i≤nAi for A1, . . . , An ∈ bi-HA.

As a last preparation step, recall the FinSum class operator from last
section. We will use it for bi-Heyting algebras as well. In addition, the
following shorthand notation will be convenient. Here G is short for “gener-
ators”.
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Definition 3.2.5. Define G := FinSum({L} ∪ {Ln | n ∈ N+}.

Now we are ready to define bi-KG.

Definition 3.2.6 (Bi-Kuznetsov-Gerčiu variety). We define the bi-Kuzne-
tsov-Gerčiu variety :

bi-KG := V(G).

Again, we have a corresponding bi-superintuitionistic logic.

Definition 3.2.7 (Bi-Kuznetsov-Gerčiu logic). Define the bi-Kuznetsov-
Gerčiu logic:

bi-KG := Lbi-KG.

As a consequence of Theorem 2.5.15, the lattice of subvarieties of bi-KG
is dually isomorphic to the lattice of extensions of bi-KG. Thus the results
for the variety bi-KG that we study in the remainder of this chapter can be
translated into results for the logic bi-KG.

3.3 Understanding the universal class of the bi-
KG generators

Now that we have defined bi-KG, we are interested in determining its prop-
erties. More specifically, we would like to have a good understanding of
the lattice of subvarieties of bi-KG. From the study of universal algebra, we
know that every variety is fully characterised by its subdirectly irreducible
algebras.

In the current setting, we will see that subdirectly irreducible bi-KG
algebras have a particular form, which will allow us to work with them in a
very concrete way. The core step towards finding this form is to study the
universal class U(G), which turns out to almost match the class of simple
bi-KG algebras. In order to characterise U(G), we need to introduce a few
new notions, which arise in relation to bi-KG.

Firstly, we present a slight generalisation of the sum operation. So far
we have worked with sums of Heyting and bi-Heyting algebras, which are
bounded lattices. But it is also possible to glue together a lattice without
a top element and a lattice without a bottom element, resulting in a bi-
Heyting algebra. In order to allow this, we extend the definition of the sum
operation to possibly unbounded lattices.
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Definition 3.3.1 (Sum of possibly unbounded lattices). Let A and B be
lattices. If A has a top element and B has a bottom element, the sum A+B
is defined to be the algebra obtained by pasting A below B and identifying
the top element of A with the bottom element of B. Otherwise, A + B
is defined to be the algebra obtained by pasting A below B, without any
identification.

Example 3.3.2. Let RNu denote the Rieger-Nishimura lattice without its top
element. Then RN = RNu+RN1. In this case, we make no identifications,
because the first summand RNu is unbounded from above.

This new sum operation is again associative, so we can write finite sums
without parentheses. In fact, we can write arbitrary linear sums.

Definition 3.3.3. Let I be a linear order and let {Ai}i∈I be a set of lattices
indexed by I. We write Σi∈IAi for the lattice obtained by pasting all Ai

on top of each other according to the order of I and making the following
identifications. For every i ∈ I, if i has a direct successor j ∈ I (meaning
i < j and there are no elements between them) and in addition, Ai has a
top element and Aj has a bottom element, we identify the top of Ai with
the bottom of Aj . If Σi∈IAi has a least and a greatest element, we call the
sum bounded.

Remark 3.3.4. From now on, if we have a sum of lattices A that can be
equipped with an implication and a co-implication, we will consider it as
a bi-Heyting algebra (unless explicitly stated otherwise). So for example,
saying that B is a subalgebra of A will tacitly imply that B is closed under
→ and ←.

Secondly, we give names to some particular algebras that will play an
essential role in understanding bi-KG. By Lu, Lu and Lu

u we will refer to
the corresponding unbounded lattices depicted in Figure 3.3 (the index u
indicates the directions in which they are unbounded).

Definition 3.3.5. We call Lu the lattice L without its top element; we
call Lu the dual of Lu; we call Lu

u the lattice whose every principle upset is
isomorphic to Lu and whose every principal downset is isomorphic to Lu.

Amongst the many algebras we have introduced in relation to bi-KG, we
are interested in the ones that cannot be represented as a sum of strictly
smaller summands. For example, if we look at the algebras L1, L2, L3, . . . ,
the ones that satisfy this property are L1, L2, L4, L6, L8, . . . (see Figure 3.4).
Notice that, for instance, L3, L5 and L does not satisfy this property, since
L3 = L2 + L2, L5 = L4 + L2 and L = Lu + L1.
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Figure 3.3: Infinite prime algebras

L1 L2 L4 L6 L8

Figure 3.4: Some finite prime algebras

Definition 3.3.6 (Prime algebras). Let L be a lattice. If for every pair of
lattices K and M we have that L = K +M implies K = L or K = M , we
call L prime. Moreover, we define the following set of prime algebras:

P := {Lu, Lu, L
u
u} ∪ {Ln | Ln is prime, n ∈ N+}.

Remark 3.3.7. The set P coincides with {Lu, Lu, L
u
u, L1} ∪ {L2n | n ∈ N+}.

Remark 3.3.8. It is straightforward to see that any bounded sum of elements
of P can be equipped with an implication and a co-implication.

We are ready to prove the main result of this section – a characterisation
of U(G). As we will see in the next section, this result encapsulates most
of the technicalities behind the characterisation of subvarieties of bi-KG. It
states that:

U(G) = {Σi∈IPi | I is a linear order, {Pi}i∈I ∈ PI ,Σi∈IPi is bounded }.

We prove each of the two inclusions separately. We begin by introducing
terminology that will be used in the proof of the first inclusion (Theorem
3.3.11).
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Definition 3.3.9. Let A be a lattice and a, b ∈ A. We call the pair ⟨a, b⟩:

• boundary, if a = b and A = ↑{a} ∪ ↓{a}.

• neighbouring, if {a, b} is an anti-chain, A = ↑{a, b} ∪ ↓{a, b} and all of
the intervals (a, a ∨ b), (b, a ∨ b), (a ∧ b, a), (a ∧ b, b) are empty (recall
the notation (a, b) from Definition 2.1.7).

• distant, if it is a non-neighbouring anti-chain.

We call two neighbouring pairs ⟨a, b⟩ and ⟨c, d⟩ adjacent, if {a, b}∩{c, d} = ∅
and for every e ∈ A \ {a, b, c, d}, we have:

e ∈ ↑{a, b} ∩ ↑{c, d} or e ∈ ↓{a, b} ∩ ↓{c, d}.

Example 3.3.10. Consider the Rieger-Nishimura lattice (Figure 3.1). The
only boundary pairs are ⟨⊥,⊥⟩ and ⟨⊤,⊤⟩. The neighbouring pairs are
exactly the pairs of distinct points lying on the same Y-axis. The distant
pairs are all pairs of incomparable points that are 1 unit apart on the Y-axis.
Two neighbouring pairs are adjacent precisely when they are 1 unit apart
on the Y-axis.

Theorem 3.3.11. The following inclusion holds:

U(G) ⊆ {Σi∈IPi | I is a linear order, {Pi}i∈I ∈ PI ,Σi∈IPi is bounded }.

Proof. The universal class U(G) is defined by the universal sentences that
hold in G. Our proof strategy is to find some concrete universal sentences
that are specific enough to ensure that every algebra that validates them
is a bounded sum of elements of P. The choice of formulas is guided by
the goal of describing the local structure of the members of G. We do this
through the introduction of local patterns that can be described by universal
formulas.

Below we work with first-order formulas in the language of bi-Heyting
algebras, so we need to be careful with notation. For the remainder of
the proof, we use the logical symbols ∧ (conjunction), ∨ (disjunction), ⇒
(implication) and the algebraic symbols × (meet), + (join), → (Heyting
implication), ← (co-Heyting implication).

Before we start with the local patterns, let us see how to define a two-
element anti-chain. The property of being an anti-chain is expressed as
follows.

φac(x, y) := x ≰ y ∧ y ≰ x
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Our first local patterns are the Base patterns, which will be used as
building blocks for other patterns.

c

a b

Base pattern 1

a

b c

Base pattern 2

c

a b

d

Base pattern 3

Figure 3.5: Base patterns

Intuitively, these patterns describe the existence of distinct a, b, c (and
possibly d) with the displayed relations between them. Moreover, every
other element in the algebra is inside one of the curly segments. A curly
segment above a point means that there could be points greater than it; a
curly segment below a point means that there could be points less than it.

The Base patterns are defined by the following formulas:

φbp1(xa, xb, xc) := φac(xa, xb) ∧ xa < xc ∧ xb < xc ∧
∀y(y ̸= xa ∧ y ̸= xb ∧ y ̸= xc ⇒

y > xc ∨ y < xa ∨ y < xb)

φbp2(xa, xb, xc) := φac(xb, xc) ∧ xa < xb ∧ xa < xc ∧
∀y(y ̸= xa ∧ y ̸= xb ∧ y ̸= xc ⇒

y > xb ∨ y > xc ∨ y < xa)

φbp3(xa, xb, xc, xd) := φac(xa, xb) ∧ φac(xa, xd) ∧ φac(xc, xd) ∧
xa < xc ∧ xb < xc ∧ xb < xd ∧
∀y(y ̸= xa ∧ y ̸= xb ∧ y ̸= xc ∧ y ̸= xd ⇒

y < xa ∨ y < xb ∨ y > xc ∨ y > xd).

With the Base patterns in place, we can now present the main patterns
of interest – the Neighbouring patterns. Suppose we are given an anti-chain
{a, b} in a member A of G. The Neighbouring patterns capture the possible
cases of ⟨a, b⟩ being a neighbouring pair. Below we present the patterns
pictorially, immediately followed by the formula that defines them. So the
pair of incomparable points ⟨a, b⟩ in A satisfies Neighbouring pattern 1 if
and only if A ⊨ φnp1(a, b) (and same for the other Neighbouring patterns).
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a+ b

a b

a× b

Figure 3.6: Neighbouring pattern 1

φnp1(xa, xb) := φbp1(xa, xb, xa + xb) ∧
φbp2(xa × xb, xa, xb)

a+ b

a b

a× b b← a

Figure 3.7: Neighbouring pattern 2

φnp2(xa, xb) := φbp1(xa, xb, xa + xb) ∧
φbp3(xb ← xa, xa × xb, xb, xa)

a+ b

a b

a× ba← b

Figure 3.8: Neighbouring pattern 3

φnp3(xa, xb) := φbp1(xa, xb, xa + xb) ∧
φbp3(xa ← xb, xa × xb, xa, xb)
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a+ b

a b

a× b

a→ b

Figure 3.9: Neighbouring pattern 4

φnp4(xa, xb) := φbp3(xa, xb, xa + xb, xa → xb) ∧
φbp2(xa × xb, xa, xb)

a+ b

a b

a× b

a→ b

b← a

Figure 3.10: Neighbouring pattern 5

φnp5(xa, xb) := φbp3(xa, xb, xa + xb, xa → xb) ∧
φbp3(xb ← xa, xa × xb, xb, xa)

a+ b

a b

a× b

b→ a

Figure 3.11: Neighbouring pattern 6

φnp6(xa, xb) := φbp3(xb, xa, xa + xb, xb → xa) ∧
φbp2(xa × xb, xa, xb)
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a+ b

a b

a× b

b→ a

a← b

Figure 3.12: Neighbouring pattern 7

φnp7(xa, xb) := φbp3(xb, xa, xa + xb, xb → xa) ∧
φbp3(xa ← xb, xa × xb, xa, xb)

Again, all depicted points are understood to be distinct and all other
points in the algebra are inside the curly segments. In addition, some points
have labels indicating the algebraic operations.

But in a member A of G, an anti-chain {a, b} need not satisfy any of
these patterns. What we claim is that if none of the Neighbouring patterns
are satisfied, the pair ⟨a, b⟩ is distant and it satisfies one of the following
Distant patterns.

a

a× b

b

a+ b

Distant pattern 1

b

a× b

a

a+ b

Distant pattern 2

Figure 3.13: Distant patterns

While we cannot directly define these patterns with universal formulas,
there is a list of Distant pattern properties that are restrictive enough for
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our purposes, as we will see later.

φdpp1(xa, xb) := ∀y(y > xa ∧ y ≱ xa + xb ⇒ xa < y × (xa + xb) < xa + xb)

φdpp2(xa, xb) := ∀y(y > xb ∧ y ≱ xa + xb ⇒ xb < y × (xa + xb) < xa + xb)

φdpp3(xa, xb) := ∀y(y < xa ∧ y ≰ xa × xb ⇒ xa × xb < y + (xa × xb) < xa)

φdpp4(xa, xb) := ∀y(y < xb ∧ y ≰ xa × xb ⇒ xa × xb < y + (xa × xb) < xb)

φdpp5(xa, xb) := ∀y(xa < y < xa + xb ⇒ φbp3(xa, y × xb, y, xb))
φdpp6(xa, xb) := ∀y(xb < y < xa + xb ⇒ φbp3(xb, y × xa, y, xa))

So if an anti-chain {a, b} in a member A of G satisfies Distant pattern 1 or
2, then it satisfies all Distant pattern properties, i.e., A ⊨

∧
1≤i≤6 φdppi(a, b).

By combining the Neighbouring pattern formulas and the Distant pat-
tern property formulas, we obtain the Anti-chain pattern formula.

φacp(x, y) =
∨

1≤i≤7

φnpi(x, y) ∨

 ∧
1≤i≤6

φdppi(x, y)


We express the fact that any two-element anti-chain in a member of G

satisfies the Anti-chain pattern as:

φ := ∀x∀y(φac(x, y)⇒ φacp(x, y)).

We are now ready to proceed with the main part of the proof. Let
A ∈ U(G), it suffices to show that A is a sum of elements of P, because A is
assumed to be bounded. By a straightforward verification we can see that φ
is equivalent to a universal formula and φ holds in G. Therefore φ holds in
A. We will show that we can partition A into neighbouring and boundary
pairs.

We can directly see that if an anti-chain {a, b} in A satisfies a Neigh-
bouring pattern, then ⟨a, b⟩ is a neighbouring pair. But the converse also
holds, as will follow from the lemma below.

Lemma. Let {a, b} be an anti-chain in A such that ⟨a, b⟩ does not satisfy any
Neighbouring pattern. Then (a, a+b)∪(b, a+b) ̸= ∅ and (a×b, a)∪(a×b, b) ̸=
∅.

Proof of Lemma. Observe that in members of G, there does not exist three-
element anti-chains and moreover, this property can be expressed with the
universal formula:

∀x∀y∀z(φac(x, y) ∧ φac(y, z) ∧ φac(x, z)⇒ x = y ∨ y = z ∨ x = z).
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Hence there are no three-element anti-chains in A either. Since {a, b} is an
anti-chain, this implies A = ↑{a, b} ∪ ↓{a, b}.

Be begin by proving that at least one of the intervals (a, a+b), (b, a+b),
(a×b, a) and (a×b, b) is non-empty. For suppose the contrary, with a view to
contradiction. Since by assumption ⟨a, b⟩ does not satisfy any Neighbour-
ing pattern, it satisfies all Distant pattern properties. By φdpp1(a, b) and
φdpp2(a, b) we have ↑{a, b} = {a, b} ∪ ↑{a+ b}. Similarly, by φdpp3(a, b) and
φdpp4(a, b) we have ↓{a, b} = {a, b}∪↓{a×b}. But now these two properties,
together with A = ↑{a, b} ∪ ↓{a, b}, imply that ⟨a, b⟩ satisfies Neighbouring
Pattern 1, which is a contradiction. Therefore at least one of the intervals
is non-empty.

Consider the case where (a, a + b) is non-empty, i.e there exists x ∈ A
with (a < x < a+ b), then a× b < x× b < b (by basic properties of lattices).
Therefore (a, a+ b)∪ (b, a+ b) ̸= ∅ and (a× b, a)∪ (a× b, b) ̸= ∅. The other
cases are analogous. This concludes the proof of the Lemma.

Consequently, an anti-chain {a, b} in A satisfies a Neighbouring pattern
if and only if ⟨a, b⟩ is neighbouring.

Observation 1. Let {a, b} be an anti-chain in A such that ⟨a, b⟩ is dis-
tant, i.e., not neighbouring. We show that a and b belong to two adjacent
neighbouring pairs. By the above Lemma, we know (a, a+b)∪ (b, a+b) ̸= ∅.
Consider the case where (a, a+ b) ̸= ∅ (the other case (b, a+ b) ̸= ∅ is simi-
lar). Then there exists x ∈ (a, a+ b) with x× b ∈ (a× b, b). By φdpp5(a, b)
we have that ⟨a, x × b, x, a⟩ satisfy Base Pattern 3. From the definition of
Base Pattern 3 it follows that the intervals (x×b, x) and (x×b, b) are empty.
Therefore by the above Lemma, the pair ⟨x, b⟩ is neighbouring. Similarly,
the pair ⟨a, x× b⟩ is neighbouring. Now we see that ⟨x, b⟩ and ⟨a, x× b⟩ are
adjacent.

Observation 2. Notice that if ⟨a, b⟩ is an arbitrary neighbouring pair in
A, then it has adjacent neighbouring pairs ⟨a′, b′⟩ and ⟨a′′, b′′⟩ above and
below respectively (meaning a′, b′ ∈ ↑{a, b} and a′′, b′′ ∈ ↓{a, b}). Take, for
example, Neighbouring pattern 5. There {a + b, a → b} is an anti-chain
and the intervals (b, a + b) and (b, a → b) are empty, hence by the Lemma
⟨a+ b, a→ b⟩ is neighbouring. This gives us the desired adjacent pair above
⟨a, b⟩. Similarly, ⟨a × b, b ← a⟩ is neighbouring, so we obtain an adjacent
pair below ⟨a, b⟩.

We are ready to see how A can be written as a sum of element of P. Let
{a, b} be an anti-chain in A. Either ⟨a, b⟩ is neighbouring or by Observation
1, a and b are part of two adjacent neighbouring pairs. Traverse A by
repeatedly applying Observation 2 upwards and downwards, at most ω times
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in each direction, until reaching a boundary pair. If we reach boundary pairs
above and below, this means we have traversed a finite element of P inside
A. If we only reach a boundary pair below, this means we have traversed
Lu. If we only reach a boundary pair above, we have traversed Lu. If neither
direction reaches a boundary pair, we have traversed Lu

u.
By inductively running this procedure for all two-element anti-chains

(skipping the ones already traversed), we obtain a set of linearly ordered
elements of P. The rest of the points in A are boundaries and can be
written as sums of L1 and L2, again elements of P. Taking the sum of all
these parts gives the whole A. ■

In preparation of the next theorem, we point out the following.

Remark 3.3.12. Notice that when writing sums of elements of P, technically,
we can obtain the same algebra in different ways. For instance L6 = L1 +
L6 = L1 + L6 + L1 = · · · . However, when writing Σi∈IPi, we will always
tacitly assume that this sum does not contain any redundant L1 summands,
i.e., L1 summands that can be contracted. With this in place, every algebra
has a canonical decomposition into prime summands. We will often refer to
these prime summands.

Theorem 3.3.13. The following inclusion holds:

{Σi∈IPi | I is a linear order, {Pi}i∈I ∈ PI ,Σi∈IPi is bounded } ⊆ U(G).

Proof. We prove this using Theorem 2.2.26. Let A be a bounded sum of
elements of P and let X be an arbitrary local subgraph of A. Our strategy
is to find a local subgraph Y of A that extends X and embeds into a member
of G. We construct Y in the following steps, where every step adds finitely
many new points to Y .

1. Take Y := X.

2. Close Y under meets and joins. Since distributive lattices are locally
finite, this adds finitely many points.

3. For all x ∈ Y , if x is contained in a finite prime summand P and x is
neither the least, nor the greatest element in P , add the whole P to
Y .

4. For all x ∈ Y , if x is contained in an Lu summand P , add ↓{x}∩P to
Y . In this way, the part of P that lies in Y will be an initial segment
of P .
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5. For all x ∈ Y , if x is contained in an Lu summand P , add ↑{x} ∩ P
to Y . In this way, the part of P that lies in Y will be a final segment
of P .

6. For all x, y ∈ Y , if x and y are contained in the same Lu
u summand P ,

add (x, y) to Y . In this way, since Y was closed under meets and joins
in step (2), the part of P that lies in Y will be a closed interval.

These properties guarantee that Y can be constructed by stacking finitely
many finite elements of P, say P1, . . . , Pn. Now take the algebra:

Σ1≤i<n(Pi + Si) + Pn,

where for every 1 ≤ i < n, Si = L1 if Pi ∩ Pi+1 ̸= ∅ and Si = L2 otherwise.
One can directly check that Y embeds into a member of FinSum(G). ■

Corollary 3.3.14. The following identity holds:

U(G) = {Σi∈IPi | I is a linear order, {Pi}i∈I ∈ PI ,Σi∈IPi is bounded }.

3.4 Characterising subvarieties of bi-KG

We have now developed sufficient machinery to prove a promised character-
isation of subvarieties of bi-KG. As mentioned in the previous section, this
is achieved by understanding the subdirectly irreducible members of bi-KG
and in fact, we need only consider the finitely generated ones. And since
we will show that bi-KG is semi-simple (see Definition 2.2.35), these are pre-
cisely the finitely generated simple members of bi-KG. Furthermore, we will
describe a convenient way to compare varieties generated by a given class
of finitely generated simple algebras.

We start off with the description of simple bi-KG algebras.

Lemma 3.4.1. All members of U(G) except the ones isomorphic to L1, L4

and L6, are simple.

Proof. We make use of Corollary 2.4.13, i.e., we work with the dual spaces
of members of U(G).

Let A ∈ U(G). Firstly, consider the case where A is prime. By Corol-
lary 3.3.14 and boundedness of A, we know A is a finite member of P. In
Figure 3.14 we see the dual spaces of the first smallest finite members of
P (except X (L1), which is empty). It is straightforward to conclude that
the only spaces that are either empty or contain a non-trivial upwards- and
downwards-closed subset are the duals of L1, L4 and L6.

Secondly, consider the case where A is not prime. There are two options.
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X (L2) X (L4) X (L6) X (L8) X (L10) X (L12)

...

X (L)

Figure 3.14: Dual spaces of some prime algebras and L

• In the decomposition of A into prime summands, all but one summand
is L1. This means that the only non-L1 summand is Lu, Lu or Lu

u,
hence A is Lu + L1 = L or L1 + Lu = L∂ , or L1 + Lu

u + L1. By
examining the Rieger-Nishimura ladder X (L), which is the dual of the
Rieger-Nishimura lattice (see Figure 3.14), we see that it has no non-
trivial upwards- and downwards-closed subsets. The other cases L∂

and L1 + Lu
u + L1 admit a similar argument.

• In the decomposition of A into prime summands, there exist two non-
L1 prime summands B and C. Let FB and FC be prime filters in A
and B respectively. By spelling out the definition of a prime filter and
a sum of algebras, we see that ↑FB and ↑FC are prime filters in A and
every prime filter in A is comparable with FB or FC .

Now suppose Y ⊆ XA is upwards- and downwards-closed. Suppose
Y is non-empty, i.e., there exists x ∈ Y and let G be the prime filter
in A that corresponds to x. Now notice that G is comparable to FB

or FC , i.e., Y contains the point corresponding to FB or the point
corresponding to FC . Moreover, FB and FC are comparable, so Y
contains both of these points. Finally, every prime filter is comparable
to FB or FC , thus Y contains every point in X, i.e., Y = X.

■

Theorem 3.4.2. bi-KG is semi-simple and bi-KGS = U(G)\I({L1, L4, L6}).

Proof. We prove V(G)SI ⊆ U(G) \ I({L1, L4, L6}) ⊆ V(G)S .
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• First inclusion. By Jónsson’s Lemma (Theorem 2.3.21), V(G)SI ⊆
HSPU (G). We claim that the class SPU (G) = U(G) is closed under
homomorphic images. Indeed, by Lemma 3.4.1, every A ∈ U(G) \
I({L1, L4, L6}) is simple and has no non-trivial homomorphic images,
while H({L1, L4, L6}) = I({L1, L2, L4, L6}) ⊆ U(G). Therefore we
have V(G)SI ⊆ U(G). Finally, we can directly check that L1, L4 and
L6 are not subdirectly irreducible, so V(G)SI ⊆ U(G)\ I({L1, L4, L6}).

• Second inclusion. Again by Lemma 3.4.1, U(G) \ I({L1, L4, L6}) is a
class of simple algebras. Now:

U(G) \ I({L1, L4, L6}) =
(
U(G) \ I({L1, L4, L6})

)
S
⊆ V(G)S .

Finally, since simple algebras are always subdirectly irreducible, we get
V(G)S ⊆ V(G)SI and thus V(G)SI = U(G) \ I({L1, L4, L6}) = V(G)S . This
proves both properties stated in the theorem. ■

As a consequence, every subvariety of bi-KG is generated by its simple
members. In addition, this property holds even if we consider only finitely
generated simple algebras. This motivates us to give the following descrip-
tion of finitely generated members of U(G).

Proposition 3.4.3. The finitely generated members of U(G) are the finite
bounded sums of members of P.

Proof. Firstly, we show that if A ∈ U(G) is finitely generated, then it is a
finite bounded sum of members of P. By Corollary 3.3.14, A is an arbitrarily
large bounded sum of members of P. Assume towards a contradiction that
A contains infinitely many prime summands. Let G ⊆ A be a finite set of
generators of A. Notice that if a ∈ A lies inside a prime summand disjoint
from G, then a cannot belong to the subset generated by G. But since every
element of G can belong to at most two prime summands and there are
infinitely many prime summands, there exists an element not generated by
G. This contradicts our assumption.

Secondly, by Corollary 3.3.14, finite bounded sums of members of P are
in U(G), so it suffices to show they are finitely generated. It is straight-
forward to see that every member of P is finitely generated and that finite
sums of finitely generated algebras are finitely generated. This gives us the
desired result. ■

Remark 3.4.4. Theorem 3.4.2 and Proposition 3.4.3 together give us that
the finitely generated simple bi-KG algebras coincide with the finite bounded
sums of elements of P, with the exception of L1, L4 and L6.
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In our setting, finitely generated simple algebras are important enough
to have a special notation.

Definition 3.4.5 (Finitely generated simple members). Let V ⊆ bi-KG be
a variety. We write FGS(V ) to refer to the class of finitely generated simple
members of V . Alternatively, by Remark 3.4.4, FGS(V ) is the class of those
finite bounded sums of elements of P that lie in V , except L1, L4 and L6.

The following two results summarise the work of this section and together
are useful for comparing subvarieties of bi-KG.

Theorem 3.4.6. Let V1, V2 ⊆ bi-KG be varieties. Then V1 = V2 if and only
if FGS(V1) = FGS(V2).

Proof. This follows from Proposition 2.2.40 and the semi-simplicity of bi-KG
(Theorem 3.4.2). ■

Theorem 3.4.7. Let V be a variety given by V = V(K), where K ⊆
FGS(bi-KG) and let A ∈ FGS(bi-KG). Then A ∈ V if and only if for
every local subgraph X of A, there exists B ∈ K such that X embeds into B.

Proof. (=⇒) Suppose A ∈ V . By Jónsson’s Lemma (Theorem 2.3.21) and
simplicity of A, we get A ∈ HSPU (K). Since all members of K are simple,
by Theorem 3.4.2 we know K ⊆ U(G), hence U(K) ⊆ U(G). So the only
non-simple members of U(K) are potentially L1, L4 and L6 and for all
B ∈ {L1, L4, L6}, we have H(B) = S(B). Therefore U(K) is closed under
H, which allows us to deduce A ∈ HSPU (K) = HU(K) = U(K). Now the
desired conclusion follows from Theorem 2.2.26.

(⇐=) If every local subgraph of A embeds into a member of K, then by
Theorem 2.2.26, A ∈ U(K) ⊆ V(K) = V . ■

With these properties at hand, we have a very strong grasp of subvarieties
of bi-KG. Theorem 3.4.6 reduces comparing subvarieties to determining the
membership of finitely generated simple algebras, Theorem 3.4.7 prescribes
how to determine this membership and Remark 3.4.4 describes the structure
of these algebras in terms of finite bounded sums of prime components.

3.5 Local and weak embeddability for simple bi-
KG algebras

In view of Theorem 3.4.7, it is useful to understand when all local subgraphs
of a given finitely generated simple bi-KG algebra embed into other finitely
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generated simple bi-KG algebras. The present section discusses some termi-
nology and properties that will simplify working with local subgraphs and
their embeddability properties. Our aim is to gather the more technical as-
pects here, so that later on we can use them freely and keep the exposition
lighter and more conceptual.

Definition 3.5.1 (Local embeddability).

1. Let A and B be algebras. If every local subgraph of A embeds into B,

we write A
loc
↪→ B and say that A locally embeds into B.

2. Let {A}∪K be a class of algebras. If every local subgraph of A embeds

into a member of K, we write A
loc
↪→ K and say that A locally embeds

into K.

Suppose A,B ∈ FGS(bi-KG) and A has a prime summand P . Sometimes
it will be useful to determine whether every local subgraph of P embeds into

B, because if the answer is negative, we can immediately deduce A�
�loc↪→B. But

in general, we cannot assume that P contains the least and greatest element
of A. For this reason, we introduce the following notion.

Definition 3.5.2 (Weak embeddability).

1. Let A,B be bi-Heyting algebras. If every local subgraph of A whose
language does not contain the constants ⊥ and ⊤ embeds into B, we

write A
w
↪→ B and say that A weakly embeds into B.

2. Let {A} ∪K be a class of bi-Heyting algebras. If every local subgraph
of A whose language does not contain the constants ⊥ and ⊤ embeds

into a member of K, we write A
w
↪→ K and say that A weakly embeds

into K.

Remark 3.5.3. Note the difference between not containing the constants ⊥
and ⊤ and not containing their interpretations, i.e., the least and greatest
element. The above definition does allow including the least and greatest
element in the local subgraph, but does not require that they are sent to
minima and maxima, respectively.

In the proof of Theorem 3.3.13, we constructed a local subgraph Y with
some “good” properties that turned out to be convenient. Moreover, we saw
that any local subgraph of a member of FinSum(P) can be extended to a
graph that satisfies these “good” properties. So without loss of generality,
we may disregard completely local subgraphs which are not “good”. Below
we make this precise.
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Definition 3.5.4 ((Weakly) normal local subgraph). Let A ∈ FinSum(P)
and let X be a local subgraph of A. We call X normal if it satisfies the
following properties:

• X contains the constants ⊥ and ⊤ (assuming A has ⊥ and ⊤ in its
signature in the first place).

• X is closed under meets and joins.

• If x ∈ X, x is contained in a finite prime summand P and x is neither
the least, nor the greatest element in P , then the whole P is in X.

• If x ∈ X and x is contained in an Lu summand P , then ↓{x}∩P is in
X.

• If x ∈ X and x is contained in an Lu summand P , then ↑{x}∩P is in
X.

• If x, y ∈ X are contained in the same Lu
u summand, then (x, y) is in

X.

If X satisfies all of the above, except its language does not comprise the
constant symbols ⊥ and ⊤, we call X weakly normal.

Proposition 3.5.5. Let {A} ∪ K be a class of algebras. Then A
loc
↪→ K if

and only if every normal local subgraph of A embeds into a member of K.

Proof. Follows directly from the idea of extending X to Y in the proof of
Theorem 3.3.13. ■

Proposition 3.5.6. Let {A} ∪ K be a class of algebras. Then A
w
↪→ K if

and only if every weakly normal local subgraph of A embeds into a member
of K.

Proof. An adaptation of the above argument. ■

In what follows, we collect several facts about local and weak embed-
dability in FGS(bi-KG). They will be used in the following chapter, when
we want to prove that specific bi-KG algebras do or do not embed into other
bi-KG algebras.

Proposition 3.5.7. Any finite sum of L2 and L4 weakly embeds into Lu,
Lu and Lu

u.
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...

...

Embedding L2

...

...

Embedding L4

Figure 3.15: Weakly embedding L2 and L4 into Lu, Lu or Lu
u

Proof. We see in Figure 3.15 that L2 and L4 embed weakly into a middle
section of Lu, Lu and Lu

u. And since all three of them contain infinitely
many consecutive such sections, we deduce that any finite sum of L2 and L4

weakly embeds into Lu, Lu and Lu
u. ■

Recall Definition 3.3.9, where we introduced the terms boundary, neigh-
bouring and distant pairs of lattice elements. We also introduced the term
adjacent pairs of lattice elements. These will be used again in the present
section. We will also use the following slightly modified terminology.

Definition 3.5.8. Let A be a lattice and a, b ∈ A.

• We call a a boundary point if ⟨a, a⟩ is a boundary pair.

• We call a and b neighbouring points if the pair ⟨a, b⟩ is neighbouring.

• We call a and b distant points if ⟨a, b⟩ is a distant pair.

The following Proposition has a relatively long proof, but most of it is
dealing with technicalities.

Proposition 3.5.9. Let P ∈ P \ {L1, L2} and suppose a weakly normal
local subgraph X of P with |X| > 2 embeds into some A ∈ FGS(bi-KG) via
f . Then f [X] lies inside a single prime summand of A.
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Proof. Assume towards a contradiction that there exist a, b ∈ f [X] that do
not lie inside a single prime summand of A. Then a and b must be com-
parable, so without loss of generality, assume a ≤ b. Our contradiction will
be finding three distinct points in X, such that each of them is comparable
with every other point in X. Consider the following cases.

• Neither a, nor b is boundary. Let Q, resp. R, be the prime summand
of A that contains a, resp b. Take c := sup(Q ∩ f [X]) and d :=
inf(R ∩ f [X]). These supremum and infimum exist, because f [X] is
finite. By the basic properties of embeddings and the fact that X is
a lattice (by normality), we have c ∈ Q ∩ f [X] and d ∈ R ∩ f [X].
Notice that c and d are comparable with every other point in f [P ],
thus f−1(c) and f−1(d) are comparable with every other point in X.
But since, by normality, X is isomorhpic as a lattice to a member
of P, this is only possible if f−1(c) = minX and f−1(d) = maxX.
Therefore a = c and b = d.

Since |X| > 2, there exists some point p ∈ (minX,maxX). Let S be
a prime summand of A containing f(p). Let e := sup(S ∩ f [X]) ∈
S ∩ f [X]. Again, e is comparable to every point in f [X]. Now S ̸= Q,
S ̸= R and a, b not boundary imply a < e < b. But this means
f−1(a) < f−1(e) < f−1(b) are all comparable with every other point
in X, which is a contradiction.

• a is boundary, b is not. Take c := a and take d as in the previous
case. By the same argument as above, b = d. Again, there exists
f−1(a) < p < f−1(b). If f(p) is boundary, take e := f(p), otherwise
take S to be the prime summand of A containing f(p) and take e :=
sup(S∩f [X]). Again, a < e < b and f−1(a) < f−1(e) < f−1(b), which
is a contradiction.

• a is not boundary, b is. This case is symmetric to the previous one.

• Both a and b are boundary. Here a and b directly turn out to be
comparable to all other points in f [X]. Take p ∈ X in the same way
as before. Take S to be a prime summand of A containing f(p). Since
a and b are not in the same prime summand, we know that the least
element of S is not a or the greatest element of S is not b. These
cases are symmetric, so assume a is not the least element of S. Now
take e := inf(S ∩ f [P ]) ∈ S ∩ f [X]. Again, we have a < e < b and
f−1(a) < f−1(e) < f−1(b), which is a contradiction.

■
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Definition 3.5.10 ((Weakly) total local subgraph). Let A be a finite alge-
bra. We call the local subgraph X = A the total local subgraph of A. We
call the local subgraph obtained by removing the constants ⊥ and ⊤ from
the language of the total local subgraph of A the weakly total local subgraph
of A.

Proposition 3.5.11. Let P = Ln for n > 4 and let X be the weakly total
local subgraph of P . Suppose X embeds into A ∈ FGS(bi-KG) via f . Then
f [X] is a prime summand of A. Consequently, A contains a prime summand
Ln.

Proof. By Proposition 3.5.9, let Q be the prime summand of A containing
f [X].

Observation 1. Any two neighbouring points in X map to neighbouring
points in A.

Proof of Observation 1. Assume towards a contradiction that there exist
two neighbouring points a, b ∈ X that do not map to neighbouring points
in A. Since a and b are not comparable, we know f(a) and f(b) are also not
comparable. The only way to have two distinct non-neighbouring incompa-
rable points in a member of FGS(bi-KG) is for them to be distant. Then no-
tice that f(a)→ f(b) = f(b), f(b)→ f(a) = f(a), f(a)← f(b) = f(a) and
f(b) ← f(a) = f(b). By properties of embeddings, a → b = b, b → a = a,
a← b = a, b← a = b. But given that a and b are neighbouring and P ∈ P,
this can only happen if P = L4, which is a contradiction with n > 4.

Observation 2. Adjacent pairs of neighbouring points map to adjacent
pairs of neighbouring points.

Proof of Observation 2. Suppose ⟨a, b⟩ and ⟨c, d⟩ are adjacent neighbour-
ing pairs. By Observation 1, they map to neighbouring pairs. By adjacency,
we have {a ∧ b, a ∨ b} ∩ {c, d} ̸= ∅, so the same holds for their images,
i.e., {f(a) ∧ f(b), f(a) ∨ f(b)} ∩ {f(c), f(d)} ≠ ∅. This is only possible if
⟨f(a), f(b)⟩ and ⟨f(c), f(d)⟩ are adjacent.

We prove the main statement using Observation 2. By injectivity of f ,
we have |Q| ≥ n. Now assume towards a contradiction that |Q| > n. By
Observation 2, f [X] is an interval in A, because there are no “gaps” between
adjacent pairs. Since |Q| > n, this means f(minX) ̸= minQ or f(maxX) ̸=
maxQ. These two cases are symmetric, so assume f(minX) ̸= minQ. Let
⟨a, b⟩ be the lowest neighbouring pair in X and notice that a ← b = a
and b ← a = b. But since f(a) ∧ f(b) ̸= minQ, we know that ⟨f(a), f(b)⟩
is not the lowest neighbouring pair in Q, thus f(a) ← f(b) ̸= f(a) or
f(b) ← f(a) ̸= f(b). This is a contradiction, which confirms |Q| = n and
therefore Q = Ln. ■
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Proposition 3.5.12. Let P = Lu and K ⊆ FGS(bi-KG). Let π(K) be the
following property: there exists A ∈ K that contains a prime summand Lu

or for every n ∈ N there exists m > n and A ∈ K such that A contains a

prime summand Lm. Then P
w
↪→ K if and only if π(K).

Proof. (=⇒). We prove this direction by contraposition. Assume π(K) does
not hold and let n ∈ N be such that n > 2 and n is a strict upper bound on
the size of finite prime summands occurring in K. Let X be a weakly normal
subgraph of P of size at least n. Note that, by normality, X is a finite initial
segment of Lu. We will derive a contradiction from the assumption that
X embeds into some A ∈ K via some f . By Proposition 3.5.9, f [X] lies
inside a single prime summand of A. Now the choice of n and injectivity
of embeddings imply that Q is infinite and moreover, Q = Lu or Q = Lu

u

(Q = Lu is not possible by the assumed failure of π(K)). Let ⟨a, b⟩ be the
lowest neighbouring pair inX. Using Observation 1 from Proposition 3.5.11,
we know that f(a) and f(b) are neighbouring. Now notice that a ← b = a
and b← a = b, but sinceQ has no least element, we have f(a)← f(b) ̸= f(a)
or f(b)← f(a) ̸= f(b). Hence we have a contradiction.

(⇐=) Assume π(K) holds. We choose an arbitrary normal subgraph X
of P and embed it into a member of K. If some A ∈ K contains an Lu

summand, we can directly embed X into A. Otherwise, choose A ∈ K such
that A contains an Ln summand for n ≥ |X|. Once again, we can see that
X embeds into A. ■

An interesting observation is that in the last two propositions, it was
essential for our proof that we are working in the signature with a co-
implication. Indeed, in KG weak embeddability is notably less rigid (see
[4, Chapter 4]).

Proposition 3.5.13. Let P = Lu and K ⊆ FGS(bi-KG). Let ρ(K) be the
following property: there exists A ∈ K that contains a prime summand Lu

or for every n ∈ N there exists m > n and A ∈ K such that A contains a

prime summand Lm. Then P
w
↪→ K if and only if ρ(K).

Proof. Notice how this proposition is symmetric to Proposition 3.5.12. And
since the signature of bi-Heyting algebras allows for symmetric arguments,
a symmetric version of the above proof establishes the current result. ■

Proposition 3.5.14. Let P = Lu
u and K ⊆ FGS(bi-KG). Let σ(K) be

the following property: there exists A ∈ K that contains a prime summand
Q ∈ {Lu, Lu, L

u
u} or for every n ∈ N there exists m > n and A ∈ K such

that A contains a prime summand Lm. Then P
w
↪→ K if and only if σ(K).
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Proof. The only difference between the current proposition and the previous
two propositions is that, in contrast with Lu and Lu, we have that L

u
u weakly

embeds into Lu, Lu and Lu
u. This is due to the fact that any weakly normal

subgraph of Lu
u is a closed interval and it is straightforward to verify that it

embeds into Lu, Lu and Lu
u. ■
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Chapter 4

FMP and degrees of FMP in
bi-KG

After the introduction of bi-KG and some general properties about its subva-
rieties, we proceed with questions related to its finite members. In particular,
in the present chapter we study the finite model property in subvarieties of
bi-KG and degrees of FMP relative to bi-KG.

Both of these problems have been studied for KG, see [4, Chapter 4]
and [3] respectively. Degrees of FMP in KG are especially interesting, be-
cause they are an essential step towards finding degrees of FMP relative
to HA (see [3]). In analogy with the case of Heyting algebras, our hope is
that understanding degrees of FMP relative to bi-KG will aid the efforts of
characterising degrees of FMP relative to the whole bi-HA.

4.1 Characterising FMP in bi-KG

In this section we present several results about the FMP of subvarieties of
bi-KG. We start with a general characterisation of subvarieties of bi-KG
with the FMP and later on, we draw as corollaries facts about the FMP in
particular subvarieties.

Before we proceed with the main results, we make a convenient obser-
vation about varieties with the same finite members, which will be useful
throughout the whole chapter. Recall that by Theorem 3.4.6, two subvari-
eties of bi-KG coincide if and only if they have the same finitely generated
simple members. Similarly, what we will see now is that when comparing the
classes of finite algebras of two subvarieties of bi-KG, it suffices to compare
only their finite simple algebras.
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Definition 4.1.1 (Finite simple members). Let V ⊆ bi-HA be a variety. By
FinS(V ) we denote the class of finite simple members of V .

Proposition 4.1.2. Let V1, V2 ⊆ bi-HA be varieties. Then Fin(V1) =
Fin(V2) if and only if FinS(V1) = FinS(V2).

Proof. The left-to-right implication follows directly, so we focus on the con-
verse. Suppose FinS(V1) = FinS(V2) and let A ∈ Fin(V1). We show that
A ∈ V2. By Remark 2.4.8, the space X (A) is finite. Let X1, . . . , Xn be
the subspaces of X (A), corresponding to the connected components (recall
Definition 2.1.10) of the poset of X (A). Denote by A1, . . . , An the dual alge-
bras of X1, . . . , Xn respectively. Since X1, . . . , Xn are generated subspaces
of X (A), it follows that A1, . . . , An ∈ V . Moreover, connectedness of the
duals implies that A1, . . . , An are simple by Proposition 2.4.13. Now, by
assumption, it follows that A1, . . . , An ∈ V2. But notice that X (A) is the
sum of X1, . . . , Xn, so A is the product of A1, . . . , An. This allows us to
deduce A ∈ V2 and since A was an arbitrary member of V1, we conclude
V1 ⊆ V2.

The other inclusion V2 ⊆ V1 follows by a completely symmetric argu-
ment. ■

Remark 4.1.3. For a variety V ⊆ bi-KG, we have FinS(V ) ⊆ FGS(V ).

Recall that a variety V has the finite model property if it is generated
by its finite members (Definition 2.2.37). In the case where V ⊆ bi-KG, we
can say more.

Proposition 4.1.4. A variety V ⊆ bi-KG has the FMP if and only if V =
V(FinS(V )).

Proof. (=⇒) Suppose V = V(Fin(V )). Let W := V(FinS(V )). We have
FinS(V ) = FinS(W ), so by Proposition 4.1.2, Fin(V ) = Fin(W ). Now
V = V(Fin(V )) and W ⊆ V imply V =W .

(⇐=) Suppose V = V(FinS(V )). We have FinS(V ) ⊆ Fin(V ), thus
Fin(V ) = V . ■

Remark 4.1.5. Now, by Theorems 3.4.6 and 3.4.7, determining whether a
subvariety of bi-KG has the FMP is equivalent to checking whether each of
its finitely generated simple algebras locally embeds into its class of finite
simple algebras. In this way, we can rely on the extensive embeddability
properties described in Section 3.5.
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For the general characterisation of the FMP, we will show that a variety
V has the FMP if and only if for each A ∈ V , there exists a class of special

finite algebras B ⊆ V such that A
loc
↪→ B. We call these special finite algebras

m-compressions of A, where m ∈ N is a parameter. The role of m is to
accommodate for the size of the local subgraph that we want to embed.

Before defining what an m-compression is formally, we will give an in-
tuitive explanation. Suppose we are given A ∈ FGS(bi-KG) with its prime
decomposition. The idea is to collapse some of the prime summands of A
in such a way that the resulting algebra is finite. More specifically, we are
allowed to collapse consecutive summands that are of type L1, L2, L4, L

u,
Lu or Lu

u. An intuitive justification for this choice is that, by Proposition
3.5.11, large finite prime summands are inflexible with respect to embedding,
i.e., we do not want to collapse them. While we can freely merge L1, L2,
L4 and Lu

u summands, Lu summands can only appear at the beginning of a
collapse block and Lu summands can only appear at the end of a collapse
block. This is due to the embeddability restrictions observed in the proofs
of Proposition 3.5.12 and 3.5.13. The result of this collapse is a finite Lp

summand for p ≥ m (this is where the parameter m comes into the picture).
In addition, we are sometimes allowed to “disconnect” collapsed summands
from their adjacent summands. This is done by adding an L2 before or after
a collapse. The purpose of this is technical and only comes up at the end of
the proof of Theorem 4.1.9, left to right direction.

Definition 4.1.6 (m-compression). Let A ∈ FGS(bi-KG) with a prime
decomposition A = P1 + · · · + Pn and let m ∈ N. Let T1, . . . , Tk be a
partition of {P1, . . . , Pn} such that:

T1 = ⟨P1, P2, . . . , Pi1⟩,
T2 = ⟨Pi1+1, Pi1+2, . . . , Pi2⟩,
. . .

Tk = ⟨Pik−1+1, Pik−1+2, . . . , Pn⟩.

Moreover, suppose that for each j ∈ {1, . . . , k}, one of the following condi-
tions holds:

• Tj = ⟨Pij ⟩ for a finite Pij .

• Tj = ⟨Pij−1 , . . . , Pij ⟩ where:

– each of Pij−1 , . . . , Pij is isomorphic to L1, L2, L4, L
u, Lu or Lu

u;

– at least one of Pij−1 , . . . , Pij is infinite;
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– only Pij−1 could be an Lu summand;

– only Pij could be an Lu summand.

An algebra C of the form:

C = C1 +Σj∈{2,...,k}(Dj + Cj)
1

is called an m-compression of A, if for each j ∈ {1, . . . , k}:

• Cj = Pij , if Tj contains a single finite element Pij or

• Cj = Lp ∈ P for p ≥ m, if Tj contains an infinite element;

and for each j ∈ {2, . . . , k}:

• Dj ∈ {L1, L2}, if the last member of Tj−1 is unbounded above (i.e.,
Lu or Lu

u) or the first member of Tj is unbounded below (i.e., Lu or
Lu
u) or

• Dj = L1, otherwise.

Remark 4.1.7. All m-compression algebras are finite.

Example 4.1.8. Let A := L6 + Lu + Lu + L2 + L10 + Lu
u + L4.

• The algebra B:

B := L6 + L8 + L2 + L10 + L2 + L16

= L6 + (L1 + L8) + (L1 + L2) + (L1 + L10) + (L2 + L16)

is an 8-compression of A. This is witnessed by the partition T1 = ⟨L6⟩,
T2 = ⟨Lu, Lu⟩, T3 = ⟨L2⟩, T4 = ⟨L10⟩, T5 = ⟨Lu

u, L4⟩ and the algebras
C1 = L6, C2 = L8, C3 = L2, C4 = L10, C5 = L16 and D2 = D3 = L1,
D4 = L2.

• The algebra C:

C := L6 + L2 + L8 + L2 + L10 + L2 + L16

= L6 + (L2 + L8) + (L1 + L2) + (L1 + L10) + (L2 + L16)

is not an 8-compression of A – we are not allowed to have an L2

summand between L6 and L8.

1In this sum, we allow contractible L1 summands. See Remark 3.3.12.
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Let D := L4 + Lu + Lu
u + Lu

u + L2.

• The algebra E:

E := L4 + L50

= L4 + (L1 + L50)

is an 18-compression of D. This is witnessed by the partition T1 =
⟨L4⟩, T2 = ⟨Lu, Lu

u, L
u
u, L2⟩.

• The algebra F := L20 is not a 10-compression of D, because Lu cannot
appear in the middle of a partition block.

The following theorem gives us a full characterisation of subvarieties of
bi-KG with the FMP.

Theorem 4.1.9. Let V = V(B) where B ⊆ FGS(bi-KG) is a class closed
under subalgebras. Then V has the FMP if and only if for all A ∈ B and
for all m ∈ N, there exists an m-compression of A in B.

Proof. We outline only the most important steps and observations for the
sake of comprehensibility.

(=⇒) Let A ∈ FGS(V ) with a prime decomposition A = P1 + · · ·+ Pn

and let m ∈ N. Let X be a normal local subgraph of A such that for every
infinite prime summand Pj of A, we have |X ∩ Pj | ≥ max{m, 6}. By the
assumption that V has the FMP, Proposition 4.1.4 and Theorem 3.4.7, we

know A
loc
↪→ FinS(V ). Hence there exists an embedding f of X into some

B ∈ FinS(V ). Again by Theorem 3.4.7, B ∈ FinS(V ) = V(B) implies that

B
loc
↪→ B. By finiteness of B, this means B ∈ S(B). From the closure of B

under subalgebras, we deduce B ∈ B.
Let C be the subalgebra of B generated by f [X]. Note that, similarly to

the proof of Proposition 3.4.3, if a, b ∈ B are in different prime summands,
then they generate no new points, and if a, b ∈ B lie in the same prime
summand, then all new points that they generate are in this prime summand.

We know that C ∈ B, so showing that C is an m-compression of A would
suffice for this direction of the proof. We do this by presenting the Tl, Cl

and Dl witnesses.
We define T1, . . . , Tk inductively on P1, . . . , Pn. Suppose we have parti-

tioned P1, . . . , Pj−1 into T1, . . . , Tl−1. We define Tl as follows.
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1. If Pj = Lp for p > 4, we define Tl := ⟨Pj⟩ and Cl := Pj . Note that, by
Proposition 3.5.11, f [Pj ] is an Lp summand in B, so it is also a prime
summand in C.

2. Otherwise, suppose Pj is L2 or L4. Let Q be the first infinite prime
summand in Pj , . . . , Pn. The condition m ≥ 6, together with Proposi-
tion 3.5.9, ensures that f [Q] lies inside a single prime summand R of
B. Moreover, f [Q] generates the whole of R, so R is a prime summand
of C. If f [Pj ] ⊈ R, then define Tl := ⟨Pj⟩ and Cl = Pj .

3. Suppose Pj is L1, L2, L4 or infinite. Let Q and R be defined as above
and suppose that this time f [Pj ] ⊆ R. Let Pj , . . . , Pj+p be all prime
summands of A that lie inside R. Define Tl := ⟨Pj , . . . , Pj+p⟩ and
Cl := R.

Now notice the following properties hold for all l ∈ {1, . . . , k}.

• If Tl contains a single finite summand, then this finite element is equal
to Cl. This follows from items (1) and (2).

• If Tl contains an infinite summand, then Tl can only contain Lu as
its first member and only contain Lu as its last member. This follows
from item (3) and the fact that the part of X contained in an Lu

summand (which is of size at least m ≥ 6) can only embed into an
initial segment ofR and the part ofX contained in an Lu summand can
only embed into a final segment of R (by the proof of Proposition 3.5.12
and Proposition 3.5.13). Moreover, Tl does not contain Lp members
for p > 4, because of Proposition 3.5.11.

• Cl is a prime summand of C. In items (1) this has already been
observed and in item (3) it follows from the way we obtained R. In
item (2), we know that Cl is contained neither in the summands that
follow, nor in the preceding summands of C. And for Pj = L2 or
Pj = L4, we know that f [Pj ] does not generate new elements.

• If l < k, then Cl and Cl+1 are either consecutive prime summands of C
(if they share an element) or there is exactly one L2 summand between
them (if they are disjoint). Moreover, the latter can only happen if
the last element of Tl is unbounded from above or the first element of
Tl+1 is unbounded from below.

For l < k, if Cl and Cl+1 are consecutive in the prime decomposition of C,
define Dl+1 := L1. Otherwise, define Dl+1 := L2. From the observations
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that we made, it follows that C = C1 + Σj∈{2,...,k}(Dj + Cj) and thus C is
an m-compression of A.

(⇐=) We prove this direction by showing that for every A ∈ FGS(V ):

A
loc
↪→ {B ∈ B | m ∈ N and B is an m-compression of A}.

Let X be a normal local subgraph of A. Take m := 2|X| and choose an
m-compression C ∈ B of A. Let P1, . . . , Pn be the prime decomposition of
A. We know C is induced by some partition T1, . . . , Tk of P1, . . . , Pn and the
corresponding {C1, . . . , Ck} and {D2, . . . , Dk}.

Suppose l ∈ {1, . . . , k}, Tl = {Pil−1+1, . . . , Pil} and define Ul := Pil−1+1∪
· · ·∪Pil . We claim that X∩Ul embeds into Cl. Indeed, if Tl contains a single
finite summand, then Ul is isomorphic to Cl. Otherwise, Tl contains only L1,
L2, L4 and infinite prime summands and Cl = Lp for some p ≥ m. In the
proof of Propositions 3.5.7 and 3.5.14, we saw that for a sufficiently large
p ∈ N, Lp embeds finitely many L2, L4 and intervals of Lu

u. Furthermore, in
Propositions 3.5.12 and 3.5.13 we saw that such an Lp also embeds initial
segments of Lu and final segments of Lu. This is possible here, because
in the definition of an m-compression, we imposed the restriction that Lu

summands can only appear at the beginning of a partition block and Lu

summands can only appear at the end of a partition block. Now the choice
m ≥ 2|X| guarantees that Cl is indeed sufficiently large to embed Ul.

Finally, notice that Dl = L2 only if Ul−1 is unbounded above or Ul

is unbounded below, i.e., Ul−1 ∩ Ul = ∅. This ensures that the individual
embeddings can be pasted together into a single embedding of X into C. ■

As a consequence of this theorem, we obtain a significantly less gen-
eral proposition, which is nevertheless useful, because it bypasses the heavy
technicalities of m-compressions.

Corollary 4.1.10. Let V = V({B1, . . . , Bn}) for some algebrasB1, . . . , Bn ∈
FGS(bi-KG). Then V has the FMP if and only if B1, . . . , Bn are finite.

Proof. (=⇒) We prove this direction by contraposition. Assume that there
exists an infinite algebra B among B1, . . . , Bn. Since B1, . . . , Bn are finitely
many and each of them contains finitely many prime summands, there exists
4 < m ∈ N such that every finite prime summand in B1, . . . , Bn is of size less
than m. Take C := S({B1, . . . , Bn}). By Proposition 3.5.11, if Lp occurs as
a summand in a member of C, then it occurs in a member of {B1, . . . , Bn}.
Therefore every finite prime summand in C is also of size less than m.
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Since B is infinite, we know that for k ≥ m, its finite k-compressions
contain at least one Lp with p ≥ k ≥ m. This means that C does not contain
any k-compressions of B for k ≥ m. Therefore, by Theorem 4.1.9, V does
not have the FMP.

(⇐=) Follows directly from V = V({B1, . . . , Bn}) for finite B1, . . . , Bn.
■

We finish this section with the FMP in two particular varieties. We show
that bi-KG has the FMP, but the variety V(L) generated by the bi-Heyting
Rieger-Nishimura lattice lacks the FMP. Not only are these facts noteworthy
on their own, but they will also be useful for our discussion of degrees of
FMP in the next section.

Corollary 4.1.11. The variety bi-KG has the FMP.

Proof. We know bi-KG = V(FSG(bi-KG)). But FGS(bi-KG) is closed under
subalgebras and contains all m-compression algebras. By Theorem 4.1.9,
this means bi-KG has the FMP. ■

Corollary 4.1.12. The variety V({Lu + L1}) generated by the bi-Heyting
Rieger-Nishimura lattice lacks the FMP.

Proof. Follows directly from Corollary 4.1.10. ■

This is a striking difference with the intuitionistic case. There the variety
generated by the Rieger-Nishimura lattice has the FMP and, moreover, each
of its subvarieties has the FMP (see, e.g., [4]).

4.2 Degrees of FMP relative to bi-KG

We move to the task of characterising the possible degrees of FMP relative
to bi-KG. Here we give the formal definition of this notion.

Definition 4.2.1 (Degree of FMP of a variety). Let U and V be varieties
such that U ⊆ V . We define:

degV (U) = |{W ⊆ V :W is a variety with Fin(W ) = Fin(U)}|

and call it the degree of FMP of U relative to V .

Degrees of FMP can also be assigned to superintuitionistic and bi-super-
intuitionistic logics, through the finite frames of a logic FinFr (recall Defi-
nition 2.5.4).
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Definition 4.2.2 (Degree of FMP of a logic). Let L′ be a (bi-)superintuiti-
onistic logic and let the logic L′′ extend L′. We define:

degL′(L′′) := |{M ⊇ L′|M is a logic such that FinFr(M) = FinFr(L′′)}|

and call it the degree of FMP of L′′ relative to L′.

Once again, the algebraic and logical notions coincide, as witnessed by
the following proposition.

Proposition 4.2.3. Let U and V be a variety of Heyting or by-Heyting
algebras with U ⊆ V . Then:

degV (U) = degL(V )(L(U)).

Consequently, we will formulate and prove results on degrees of FMP for
varieties, while only stating the corresponding results for logics as corollaries.

For each cardinal κ ∈ {1, . . . , 2ℵ0}, we are interested whether there exists
a variety V ⊆ bi-KG such that degbi-KG(V ) = κ. We elaborate on the choice
of the interval {1, . . . , 2ℵ0}. It follows from the definition that degrees of
FMP are always at least 1. The other bound, 2ℵ0 , is justified by the following
proposition.

Proposition 4.2.4. If V is a variety in a countable language, degrees of
FMP relative to V are at the most the continuum.

Proof. It suffices to prove that the total number of varieties in the language
of V does not exceed 2ℵ0 . By Theorem 2.2.31, the number of varieties in a
fixed language is bounded by the number of sets of equations in ℵ0-many
variables in the language. But since the language is assumed to be countable,
there are countably many such equations and therefore continuum many sets
of equations. ■

Corollary 4.2.5. Relative to HA, KG, bi-HA and bi-KG, degrees of FMP
are at most the continuum.

Proof. The listed varieties are defined in a finite language. ■

Recall that relative to the intuitionistic KG, every cardinal κ with κ ≤ ℵ0
is a degree of FMP of some subvariety of KG. In complete contrast to this,
it turns out that the only possible degrees of FMP relative to bi-KG are 1
and 2ℵ0 . Our strategy for showing this is to display a variety with degree 1
and one with degree greater than 1 and prove that any variety with degree
greater than 1 has degree the continuum.
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We begin by giving the witness of a subvariety of bi-KG with degree 1
and a subvariety with a degree greater than 1. In fact, the variety with
degree 1 is bi-KG itself and the variety with a greater degree is V(Lu + L1),
the variety generated by the bi-Heyting Rieger-Nishimura lattice L.

Proposition 4.2.6. The degree of FMP of bi-KG relative to bi-KG is 1.

Proof. Recall from Corollary 4.1.11 that bi-KG has the FMP. Suppose V ⊆
bi-KG satisfies Fin(V ) = Fin(bi-KG). We have:

bi-KG = V(Fin(bi-KG)) = V(Fin(V )) ⊆ V ⊆ bi-KG.

As a result, V = bi-KG and we conclude degbi-KG(bi-KG) = 1. ■

Proposition 4.2.7. The degree of FMP of V(Lu + L1) relative to bi-KG is
greater than 1.

Proof. Denote V := V(Lu + L1). Let U := V(Fin(V )). We know that
Fin(V ) ⊆ V , so U ⊆ V . Thus it turns out that U is a subvariety of V with
the same finite members. But since U is generated by finite algebras and
by Corollary 4.1.12, V does not have the FMP, we conclude V ̸= U and so
degbi-KG(V ) > 1. ■

The main challenge of this section, which we address next, is proving that
there do not exist any degrees of FMP relative to bi-KG strictly between
1 and 2ℵ0 . The way we do this is by explicitly constructing continuum
many varieties with the same finite members as a given variety V with
degbi-KG(V ) > 1.

The following notion of a prime skeleton is a technical preparation for
proving the main theorem. It is a formal way to describe taking the sequence
of all Lu and Lu summands in the prime decomposition of an algebra A ∈
FGS(bi-KG).

Definition 4.2.8 (Prime skeleton). Let A ∈ FGS(bi-KG). Let P1, . . . , Pn ∈
{Lu, Lu} andB0, . . . , Bn ∈ FinSum(P) be such that for every i ∈ {1, . . . , n},
Bi does not contain any Lu and Lu prime summands. Suppose:

A = B0 +Σi∈{1,...,n}(Pi +Bi),

where we do allow sum contraction (see Remark 3.3.12). In this case, we
call P1, . . . , Pn the prime skeleton of A.
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The following lemma gives us, under certain circumstances, a substantial
restriction on the form of embeddings by requiring that prime skeletons are
mapped to prime skeletons. This will be useful in proving the non-existence
of embeddings.

Lemma 4.2.9. Let {A} ∪ B ⊆ FGS(bi-KG) be a set of algebras with the
same prime skeleton P1, . . . , Pn. Moreover, assume there exists m ∈ N such
that B does not contain Lk summands for k ≥ m. Then there exists a
normal local subgraph X of A such that if X embeds into some B ∈ B via
the function f , then f [X ∩ Pi] ⊆ Pi for every i ∈ {1, . . . , n}.

Proof. Without loss of generality, assume m > 2. Take X to be a normal
local subgraph of A that contains at least m elements from every Pi for
i ∈ {1, . . . , n} and assume X embeds into some B ∈ B via a function f . By
Proposition 3.5.9, f [X ∩ Pi] is contained a single prime summand of B, for
each i ∈ {1, . . . , n}. Because of the choice ofm, these single prime summands
must be infinite. Now from the proof of Proposition 3.5.12, it follows that
if Pi is a Lu summand, then X ∩ Pi embeds into an initial segment of an
Lu summand and if Pi is an Lu summand, then X ∩ Pi embeds into a final
segment of a Lu summand. This shows that for every i ∈ {1, . . . , n} there
exists j ∈ {1, . . . , n} such that f [X ∩ Pi] ⊆ Pj . Moreover, if i1 ̸= i2 are two
indices in {1, . . . , n}, then X ∩ Pi1 and X ∩ Pi2 embed into different prime
summands. By monotonicity of f , it follows that f [X ∩ Pi] ⊆ Pi for every
i ∈ {1, . . . , n}. ■

Intuitively, we will construct continuum many different varieties with the
same finite members by taking different subsets of ω. More specifically, we
will have a collection of countably many algebras and will generate varieties
from subcollections of these algebras. In order to guarantee that distinct
subcollections of algebras indeed generate distinct varieties, we want the
algebras to be incomparable in some sense. In this context, comparability
means local embeddability. So we are looking for countably many algebras
that do not mutually locally embed into each other. A good candidate is
the sequence L4, L4+L4, L4+L4+L4, . . . . Let us now see how to formalise
these ideas.

Theorem 4.2.10. Let V ⊆ bi-KG be a variety with degbi-KG(V ) > 1. Then
degbi-KG(V ) = 2ℵ0.

Proof. Let U := V(FinS(V )). We have U ⊆ V , hence FinS(U) ⊆ FinS(V ).
In addition, by definition of U , we know FinS(V ) ⊆ FinS(U), therefore
FinS(V ) = FinS(U). Note that every variety with the same finite simple
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members as V contains U . Now degbi-KG(V ) > 1 implies the existence of a
variety W ⊆ bi-KG with W ̸= U and FinS(W ) = FinS(U). By Theorem

3.4.7, there exists A ∈ FGS(W ) with A�
�loc↪→FinS(V ).

From A�
�loc↪→FinS(V ), we know that A is infinite. Since A is the sum

of finitely many prime summands, it contains at least one infinite prime
summand in its prime decomposition. Let P be the first infinite summand in
the decomposition of A into prime summands. We consider as two separate
cases P = Lu and P ̸= Lu.

Firstly, suppose P = Lu. We write a representation A = A′ + P + A′′,
where A′′ could be a contractible L1. We construct from A countably many
algebras B0, B1, . . . which will be used to generate continuum many varieties
with the same finite simple members as V . Define for every n ∈ N:

Bn := A′ + Lu +Σi∈{1,...,n}L4 + Lu + P +A′′.

A visual representation of this construction can be seen on Figure 4.1. Using
these algebras, define for every I ⊆ N:

VI := V({Bi | i ∈ I} ∪ FinS(V )).

Our purpose is to show that |{VI | I ⊆ N}| = 2ℵ0 and that all of these
varieties have the same finite simple members as V . For the first claim, let
I, J ⊆ N with I ̸= J . We prove that VI ̸= VJ . Since I and J are different,
without loss of generality, we have i ∈ I \ J . By Theorem 3.4.7, it suffices

to show that Bi�
�loc↪→{Bj | j ∈ J} ∪ FinS(V ). It is straightforward to see that

A ≤ Bi. So if we assume Bi
loc
↪→ FinS(V ), this would imply A

loc
↪→ FinS(V ),

which is in contradiction with the choice of A.

As a result, it only remains to see that Bi�
�loc↪→{Bj | j ∈ J}. Let X be

the normal local subgraph given by Lemma 4.2.9 by taking A := Bi and
B := {Bj | j ∈ J}. Let Y be the local subgraph of Bi obtained by extending
X with the i copies of L4 between A′ + Lu and Lu + P +A′′.

Assume towards a contradiction that Y embeds into some Bj for some
j ∈ J via a function f . Denote:

a := max{A′ + Lu} in Bi

a′ := max{A′ + Lu} in Bj

b := min{Lu + P +A′′} in Bi

b′ := min{Lu + P +A′′} in Bj .
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Figure 4.1: Constructing algebras from A

Since a, b ∈ X ⊆ Y , we get f(a) = a′ and f(b) = b′, due to the choice of X.
Therefore f , restricted to the i copies of L4, is an embedding:

g : Σk∈{1,...,i}L4 → Σk∈{1,...,j}L4.

We show that such an embedding cannot exist. Note that if i < j, we have:

|Σk∈{1,...,i}L4| < |Σk∈{1,...,j}L4|,

so the embedding is impossible due to the requirement of injectivity. We
know i ̸= j, so the only option left is i < j. For convenience, denote:

C := Σk∈{1,...,i}L4

D := Σk∈{1,...,j}L4.

In addition, we write Qk for the k-th L4 copy in C and Rk for the k-th L4

copy in D. We prove by induction on k ∈ {1, . . . , i} that g[Qk] = Rk.

• Base case k = 1. By Proposition 3.5.9, we know that Q1 embeds
into a single prime summand of D. Since g(a) = a′, this single prime
summand has to be the first one, i.e, R1.
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• Induction step. Suppose k < i and the g[Qk] = Rk. In particular,
the top element c of Qk is mapped to the top element c′ of Rk. Once
again, we apply Proposition 3.5.9 and deduce that Qk+1 is mapped
into a single prime summand in D. But c is the bottom element of
the Qk+1 and c′ is the bottom element of Rk+1, so this single prime
summand has to be Rk+1.

Consequently, g[Qi] = Ri ̸= Rj , which is a contradiction with g(b) = b′.
Therefore, we found a local subgraph Y of Bi that does not embed into

{Bj | j ∈ J}, so Bi�
�loc↪→{Bj | j ∈ J} and VI ̸= VJ .

It remains to show FinS(VI) = FinS(V ) for every I ⊆ N. By definition
of VI , it follows directly that FinS(V ) ⊆ FinS(VI). For the other inclusion
FinS(VI) ⊆ FinS(V ), suppose E ∈ FinS(VI). Take X to be the total local
subgraph of E, then we know that X embeds into a member of {Bi | i ∈
I} ∪ FinS(V ). If X embeds into a member of FinS(V ), we immediately
get E ∈ FinS(V ). Otherwise, X embeds into a member of {Bi | i ∈ I}, so
suppose i ∈ I is such that X embeds into Bi via a function f . We prove
that X embeds into A.

We name the following subsets of Bi:

B′ := Bi ∩ (A′ ∪ P ∪A′′),

B′′ := Bi ∩ (Lu +Σi∈{1,...,n}L4 + Lu),

i.e., B′ is the A-segment of Bi and B
′′ contains the rest of the summands.

Since there is no point identification between the summands A′ and Lu and
between the summands Lu and P in Bi, we know that B′ ∩B′′ = ∅. Hence
for every point in x ∈ X, we know that f(x) belongs to exactly one of B′ or
B′′.

We construct an embedding g : X → A in two steps.

• For the points x ∈ X with f(x) ∈ B′, since B′ is isomorphic to A, we
can take g(x) to be the point in A corresponding to f(x).

• The remaining points of X are Y := {x ∈ X | f(x) ∈ B′′}. Notice that
B′′ does not contain any Lm summands for m > 4, so by Proposition
3.5.11, Y does not contain any Lm summands for m > 4 either. This
means that Y is a finite sum of L2 and L4. Since P = Lu is infinite,
there exists a final segment Q of P with f−1[Q] = ∅. From the proof
of Proposition 3.5.7, we know that Q embeds all finite sums of L2 and
L4. Therefore we can define g to embed Y into Q.
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Now g witnesses E
loc
↪→ A, thus E ∈ FinS(W ) = FinS(V ).

This completes the proof that {VI | I ⊆ N} is a set of continuum many
varieties with the same finite simple members as V . So, by Proposition 4.1.2,
they all have the same finite members. It follows that degbi-KG(V ) ≥ 2ℵ0 .
Together with Proposition 4.2.4, we conclude degbi-KG(V ) = 2ℵ0 .

We have covered the case P = Lu. For the other case, i.e., P = Lu or
P = Lu

u, redefine:

Bn = A′ + P + Lu +Σi∈{1,...,n}L4 + Lu +A′′.

Now notice that the proof of the previous case P = Lu relied only on the
fact that Lu is infinite and unbounded below. And since in the present case
P is infinite and unbounded above, we can run a symmetric proof. ■

Remark 4.2.11. We constructed continuum many subvarieties of bi-KG with
the same finite algebras. But since at most one of them can have the FMP,
it follows that for every variety V ⊆ bi-KG with degbi-KG(V ) > 1, there exist
continuum many subvarieties of bi-KG without the FMP.

As a consequence of the theorem, we obtain a full description of degrees
of FMP relative to bi-KG.

Theorem 4.2.12. Relative to bi-KG, all possible degrees of FMP are 1 and
2ℵ0.

Proof. By Proposition 4.2.6, there exists a subvariety of bi-KG of degree 1.
By Proposition 4.2.7 and Theorem 4.2.10, there exists a subvariety of bi-KG
of degree 2ℵ0 . By Theorem 4.2.10, there are no other degrees relative to
bi-KG. ■

Now we can use Proposition 4.2.3 to derive a corresponding statement
about the logic bi-KG.

Corollary 4.2.13. Relative to the logic bi-KG, all possible degrees of FMP
are 1 and 2ℵ0 .

In conclusion, we have obtained a dichotomy theorem, which is remi-
niscent of Blok’s dichotomy [6, 7] and is in stark contrast with the antidi-
chotomy theorem for KG [3].
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Chapter 5

Conclusion

This thesis is centered around the variety bi-KG, understanding the lattice
of its subvarieties and, ultimately, finding degrees of FMP of its subvarieties.

We began by defining bi-KG as the variety generated by the class G of
finite sums of 1-generated Heyting algebras, endowed with a co-implication.
We looked more closely into the universal class generated by G and found a
representation of its members as sums of indecomposable algebras, which we
called prime. This fact yielded a description of the subdirectly irreducible
members of bi-KG and led to the discovery that bi-KG is semi-simple. This
enabled us to compare subvarieties of bi-KG by examining their finitely gen-
erated simple members. In particular, we showed how to do this using local
embeddability and developed technical tools for determining local embed-
dability for finitely generated simple bi-KG algebras.

Subsequently, we applied these findings to obtain a full characterisation
of the FMP in subvarieties of bi-KG. As a result, bi-KG was found to satisfy
the FMP, while the variety generated by the bi-Heyting Rieger-Nishimura
lattice L does not. The latter was the first major difference from the intu-
itionistic case, where the variety generated by the Heyting Rieger-Nishimura
lattice RN enjoys the FMP, together with all of its subvarieties.

Lastly, we found a complete description of the possible degrees of FMP
relative to bi-KG. For every subvariety V of bi-KG with degree of FMP
relative to bi-KG greater than 1, we were able to build continuum many
distinct subvarieties of bi-KG with the same finite members as V . In this
way, we proved a dichotomy theorem, stating that the set of degrees of FMP
relative to bi-KG is {1, 2ℵ0}. This differs substantially from degrees of FMP
in KG, where every cardinal κ with κ ≤ ℵ0 is the degree of FMP relative to
KG of some variety.
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We conclude with possible research directions extending our work.

• An important property of KG, described in [3], is that it can be ax-
iomatised by Jankov-de Jongh formulas (see, e.g., [4, Section 3.3]).
We defined the variety bi-KG by providing a class of generators, but
we did not give any axiomatisation. We find it interesting whether a
recursive axiomatisation exists for bi-KG and how it compares to the
axiomatisation of KG.

• The problem of characterising degrees of FMP relative to bi-HA is still
open. We believe our work in bi-KG highlights the differences between
HA and bi-HA and hints at a possible dichotomy in bi-HA.

• On the side of modal logics, we noted in the introduction that tem-
poral logic resembles bi-intuitionistic logic with its backwards-looking
modalities. Therefore, we are interested whether our bi-intuitionistic
insights can assist the study of degrees of FMP relative to temporal
logic.
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