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Abstract

This thesis presents a study of translations, special “hybrid” logical systems developed on
the basis of these translations, and general Blok-Esakia theory. This is done on two levels: the
development of a theoretical framework for analysing such questions, as well as an analysis of the
special case of orthologic.

On the first front, inspired by the Kolmogorov Double Negation Translation, and DNA-Logics,
we develop a general notion of “Polyatomic Logics”, which can be studied for a wide class of
translations. These logics serve as “hybrids”, between the two logical systems being translated,
which can assist in applications, as well as in the study of the interrelations between the translated
systems. We develop the basic theory of Polyatomic Logics, and prove algebraic completeness, and
Birkhoff-style definability theorems of such systems.

We then develop a theory connecting such logics with “generalised modal companions” – ab-
stracting from the classic Blok-Esakia isomorphism, and taken to mean a strong and property-
preserving connection between the extensions of two logical systems. This is contrasted with the
famous Gödel-McKinsey-Tarski situation, where we show that many of the motivating results of
that theory can be recovered for a class of translations we call “sober translations”. Our main
contribution in this respect is the introduction of the notion of a “Polyatomic Blok-Esakia iso-
morphism”, which is shown to hold for any sober translation, and which provides a new natural
correspondence between logical systems.

As a case study, we provide an analysis of the logic of ortholattices, and the Goldblatt transla-
tion of Orthologic into KTB modal logic. Our results show that many natural invariance conditons,
including the Polyatomic Blok-Esakia introduced, fail for this setting. We undertake a study of
the reasons for this failure, and analyse whether restricted versions of it might hold. With this
goal in mind, we introduce a new duality between a subcategory of the category of ortholattices,
and a subcategory of the category of orthospaces. This representation is shown to have desirable
category-theoretic properties, which we use to identify appropriate expansions of orthologic and
KTB. With these tools, we prove the existence of a Polyatomic Blok-Esakia isomorphism between
“Orthoimplicative Logic” and “Sober KTB”.

Keywords: Polyatomic Logics, Blok-Esakia theory, Orthologic
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Chapter 1

Introduction

In the 20th century, classical logic, intuitionistic logic, modal logic, provability logic, and quan-
tum logic, were some of many logical calculi introduced to solve questions such as what counts as
a valid proof, or a valid inference in an experimental setting. Rather than wholly independent for-
malisms, it was noted soon after their creation that many of these systems were intimately related.
Early examples included:

• Double Negation Translations, introduced by Kolmogorov [45], and developed by Gödel and
Gentzen [31], which we refer to as the Kolmogorov-Gödel-Gentzen translation (KGG) which
translated classical logic, CPC into intuitionistic logic, IPC.

• The Gödel-McKinsey-Tarski translation (GMT) [33], which translated intuitionistic logic into
S4 modal logic.

• The Goldblatt translation [35], which translated orthologic into KTB modal logic.

All of these share the fact that they are sound and faithful translations, and that they contain
a syntactic part - the actual translation - coupled with a semantic part - a transformation of the
underlying models. For instance, in the KGG translation, given a Heyting algebra H, one considers
those elements a “ ␣␣a, called regular elements. Then we can look at the set

H␣ “ ta P H : a “ ␣␣au.

When equipped with the meet, implication and bounds of H, as well as the operation x 9_y :“
␣␣px_ yq, yields a Boolean algebra. We call Heyting algebras H such that H is generated by its
regular elements regularly generated.

Such translations have found applications in logic, mathematics, philosophy and linguistics,
through their capacity to hybridise different domains. In this setting, the KGG translation appears
as a paradigmatic example. The key idea in applications (see e.g. [43] or [16]) is that one has a set
of “constructive worlds”, which should be run with intuitionistic principles, together with a set of
“ideal worlds”, which should be run with classical principles. Thus, the double negation serves as
a way to go from constructive to ideal worlds.

Motivated by this interpretation, Ciardelli et al. [16] introduced a specific logic to model
questions, where the prototypical model was a regularly generated Heyting algebra. Its success later
lead to the development of a general analysis of such models [5], and DNA-logics (named for “Double
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Negation on Atoms”) in [5, 6], which vastly abstract this situation: given any superintuitionistic
logic L, one can take the Heyting algebras validating L and consider:

RegVarpLq “ tH : H is a regularly generated Heyting algebra and H ( Lu.

Then consider the formulas, φ, such that: whenever H P RegVar, and v : Prop Ñ H is a
valuation taking values in regular elements, H, v ( φ. Such a collection of formulas is called
the DNA-variant of L. Such “logics” have the feature that they are not closed under uniform
substitution, and can be axiomatised over L by closing under Modus Ponens the logic L together
with the axiom on propositional variables:

␣␣pÑ p.

The intuition behind this is worthwhile to spell out. Intuitionistic models have the property
that each world sees a classical world. If ␣␣p holds in a world, this means that each classical world
it sees is p – even if at the present world, p cannot be asserted. To say that one takes values in
regular models, means that whenever ␣␣p holds, then p holds already. However, more complex
statements such as p _ q might not be settled yet, as we can still conceive of worlds where p and
not q holds and worlds where q and not p holds.

Such logics provide new domains for analysing the relationship between classical and intuition-
istic logic, as well as influence new potential applications. However, through consideration of this
discussion, one can be lead to conclude that this structure does not depend entirely on properties
of Heyting algebras and the KGG translation. Indeed, the work was further extended to other
translations by Grilletti and Quadrellaro [38], and similar subjects, aiming towards more general
classes of logics, have been explored in unpublished work by Quadrellaro.

To see the breadth of these ideas, let us quickly turn to the GMT translation. We recall the
semantic transformation in the GMT translation: here, given S4 algebra pB,lq, an element a is
called open if a “ la. Then we consider:

Bl :“ ta : a “ lau.

Equipping this set with the induced operations from the distributive lattice as well as a ñ b :“
lp␣a _ bq, we obtain a Heyting algebra. In analogy with the situation above, given a normal
extension of S4, M , we consider the set of formulas which are valid on all openly generated M -
algebras, when the atomic propositions are sent to open elements. We could call this logic Ml

the l-variant of M . Such logics might be naturally considered under a provability interpretation:
one could think of hybridising contextual facts, as the domain of S4, with provable facts, as the
domain of IPC. The fact that pÑ lp should be added as an axiom on atomic propositions would
mean that our basic sentences (e.g., axioms), should all be provable, whereas their interrelations
might not be immediately provable. For example, the sentence pÑ q might be true, meaning that
whenever we observe p we obtain q, without lppÑ qq being so.

As we will have opportunity to see, similar arguments can be made for the Goldblatt translation,
since it works semantically by taking the l♢-fixed points. Translations with a similar selector term
are ubiquitous: we have translations from orthomodular lattices to residuated ortholattices [27];
reflexivisation translations [14, Chapter 4] in modal logic; as well as numerous substructural logics
into modal systems [40]. For a great number of these, as we will see, an appropriate notion of a
“hybrid” logic could be developed, but it certainly does not seem reasonable to do it one-by-one.
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Hence, a natural question arises as to what conditions are needed on a translation to ensure that
one can construct such a logic, and how this can be developed in general.

One of the contributions of this thesis lies in developing a theory of “Polyatomic Logics”.
This provides a broad generalisation of DNA-logics, to the setting of many naturally ocurring
translations. This is done in Chapter 3, inspired by the work of Moraschini [53], which identifies
the concept of a translation with categorical adjunction. In it, we identify the class of selective
translations as the appropriate setting for Polyatomic logics (PAt-logics). In this sense, and in
analogy with [6], we prove algebraic completeness and definability theorems for these logics with
respect to appropriate (quasi-)equational classes and (quasi-)varieties. In analogy with the above
situation, we also obtain completeness of these logics with respect to regularly generated algebras.
We then turn to one of the interesting applications of such a theory, which takes up the rest of the
thesis – the development of a general Blok-Esakia theory.

To understand this, let us return to the GMT translation. Gödel established that this translation
was sound and faithful. Later work proved that the same translation also translated IPC into
extensions of S4, namely the system S4.Grz. This lead to the idea of a “modal companion”: given
a normal extension of S4, M P NExtpS4q, and L a superintuitionistic logic, we say that M is a
modal companion of L iff:

φ P L ðñ GMT pφq PM

where GMT pφq is the translation of φ under the GMT translation. Developments of these ideas
eventually lead to the celebrated Blok-Esakia theorem, proved independently by Blok ([10]) and
Esakia ([24], see also [23]). This result establishes an isomorphism between the lattice of superintu-
itionistic logics, and the lattice NExtpS4.Grzq of normal extensions of S4.Grz. Relevantly, this iso-
morphism carries with it explicit maps transforming the semantic models of the respective systems.
This allows one to transfer a number of properties - such as FMP, tabularity, Kripke completeness,
decidability, canonicity, amongst many others - from axiomatic extensions of S4.Grz to axiomatic
extensions of IPC, and for some of these to be transfered back (see [14] for a survey of these). This
further allows a number of methods to be developed uniformly between the two systems, and has
highlighted, through what does not transfer (e.g., local tabularity, Craig interpolation), the key
differences of intuitionistic versus modalised classical logic. This area of research concerning the
interplay between S4.Grz and IPC can be generally described as “Blok-Esakia theory”.

Given the success and acclaim of this theory, it would be desirable to understand whether,
and when, one can expect similar results in the interplay between two systems. In Chapter 4, we
explore this question, armed with the tools developed before. In this sense, we outline the natural
generalisations of the concepts present in Blok-Esakia theory, and prove some basic properties of
these. We then make use of our PAt-logics to give meaning to these concepts, and show that the
study of Blok-Esakia theory can be appropriately conducted through looking at Polyatomic logics.
This is done by showing that the general concepts of Blok-Esakia theory – such as greatest or least
companions – correspond exactly with natural concepts from Polyatomic logic. Additionally, we
introduce the concept of a PAt-Blok Esakia isomorphism, which holds when the lattice of logics of
the translated system is isomorphic to the lattice of Polyatomic logics in the other system.

This approach thus bypasses the famous “Blok’s lemma”, which establishes that every S4.Grz
logic is sound and complete with respect to its openly generated algebras, and which establishes
the isomorphism in full. In fact, via these tools, all Polyatomic logics are sound and complete with
respect to their regularly generated algebras; hence, from the point of view of two systems for which
a PAt-Blok Esakia theorem holds, the analogue of Blok’s Lemma becomes a question of axiomatising
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the greatest logic having the same Polyatomic variant. This explains both its importance and its
general difficulty: for instance, the greatest logic having the same DNA-variant as IPC is the well-
known Medvedev Logic, a logic which is not known to have a recursive axiomatisation.

As an illustration of these methods, in Chapter 5 we take up orthologic and the Goldblatt
translation. This seems like a natural use case, since it fits pretty closely to the other translations
in its style, and relates systems which have long been known, but not extensively studied. A recent
revival of interest in questions related to ortholattices as related to residuated structures [27] as
well as modal logics [41] makes this a timely addition to studies of the topic. And importantly, this
is a case which has a long history of having been signalled as potentially having some analogue of
the Blok-Esakia theory [35, 18, 52, 17, 49]. Making use of the tools developed in Chapter 4, we
thus proceed to investigate this case, and prove that all currently considered types of Blok-Esakia
isomorphisms fail for this setting. Not only is an isomorphism impossible between “orthologics”
and KTB logics, but the Polyatomic Blok-Esakia isomorphism also fails.

This raises further questions about the ways in which systems can fail to be structurally similar,
even when their semantics are superficially very similar. This theme is taken up in Chapter 6.
Whereas in the IPC and S4 case, the key difficulties have solely to do with regular generation of
algebras, and the underlying axiomatisation, the Goldblatt translation faces other issues which
we deem sobriety problems. In an abstract way, this can be seen as a mismatch between a more
restrictive semantics of orthologic, and a broader semantics of KTB, which requires the models to
be violently transformed in order to witness the translation. To fix this situation, we propose two
new classes, to feature in an adapted Goldblatt translation:

• A new class of algebraic structure of ortholattices, called orthoimplicative systems, and a new
logic system, called Orthoimplicative Logic, which is a conservative extension of Orthologic.

• A suitable fragment of KTB, called sober KTB, which includes an additional non-standard
Π2-rule [2, 3] which is admissible for many interesting cases.

These developments allow us to prove a PAt Blok-Esakia isomorphism between these logical
systems, which vindicate the stated intuitions that orthologics and KTB-logics should be related in
a deeper manner than simply through a translation. The latter theorem requires the development
of a number of topological, logical and algebraic tools, which might have independent interest.

In Chapter 7 we conclude the work, providing a brief summary of the findings as well outlining
some further work. We also include some some remarks regarding work that, for reasons of space
and coherence, we could not include here.

Our main contributions in this thesis can be summarised as follows:

• We introduce the notion of “selective translation”, “strongly selective translation”, and “sober
translations”, and study their basic properties;

• We introduce the concept of PAt-logics and prove algebraic completeness for them;

• We develop a generalised Blok-Esakia theory for strongly selective and sober translations,
and show that PAt-logics are adequate structures for the development of such a theory;

• We introduce the concept of a “Polyatomic Blok-Esakia isomorphism”;

• We prove that no isomorphism can hold between the lattices of Orthologics and KTB modal
logic can hold, and the Polyatomic Blok-Esakia isomorphism fails;
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• We introduce the notion of “slim orthospace”, and provide a duality between a subcategory
of the category of ortholattices and the category of slim orthospaces;

• We show that the above duality realises in the ortholattice case the “Distributivisation”
functor;

• We introduce the concept of “Orthoimplicative System”, and “Sober KTB algebra”, providing
a non-standard axiomatisation of them;

• We translate these results into logic, obtaining Orthoimplicative Logics and Sober KTB logics,
and showing that these are logically conservative over orthologics and KTB logics for a variety
of cases;

• We prove that a Polyatomic Blok-Esakia isomorphism holds between the lattices of extensions
of Orthoimplicative Logic and Sober KTB logic.
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Chapter 2

Preliminaries

In this chapter we fix notation, and discuss some essential concepts that will be needed through-
out the thesis. Basic mathematical terminology, as well as familiarity with first order logic is
assumed throughout.

2.1 Lattices and Ordered Sets

In this chapter we present a number of different lattice-based algebras.

Definition 2.1.1. Let pX,Rq be a set with a relation R Ď X ˆ X. We say that pX,Rq is a
quasi-ordered set if R is:

• Reflexive: for all a P X, aRa

• Transitive: for all a, b, c P X, aRb and bRc implies aRc.

We say that pX,Rq is partially ordered (a poset) if in addition, R is antisymmetric:

• Antisymmetric: for all a, b P X if aRb and bRa then a “ b.

When pX,Rq is a partially ordered set, we often write ď instead of R. We also use ă and ě as
abbreviations with their usual meaning.

Definition 2.1.2. Let pX,ďq be a poset. Given a subset ta, bu Ď X, we say that c P X is a lower
bound of ta, bu if c ď a and c ď b. We say that c is a greatest lower bound if it is a lower bound of
ta, bu, and whenever d ď a and d ď b then d ď c. We define upper bounds and least upper bounds
dually.

Definition 2.1.3. Let pX,ďq be a poset. We say that pX,ďq is a lattice if for every pair a, b P X,
ta, bu Ď X has a greatest lower bound and a least upper bound. In this case we denote:

a^ b :“ greatest lower bound of ta, bu and

a_ b :“ least upper bound of ta, bu .

We say that furthermore pX,ďq is bounded if it has a least element (which we denote by 0) and a
greatest element (which we denote by 1). We say that pX,ďq is a complete lattice if for each subset
A Ď X, A has a greatest lower bound in X, denoted by

Ź

A.
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It is a general fact that lattices can be given an equational presentation (see for instance [19,
Chapter 2]). In this case, a lattice L is understood as an algebraic structure L “ pL,^,_q, in the
language with ^,_, which satisfies the following for each a, b, c P L:

• (Idempotence) a^ a “ a and a_ a “ a;

• (Commutativity) a^ b “ b^ a and a_ b “ b_ a;

• (Associativity) pa^ bq ^ c “ a^ pb^ cq and pa_ bq _ c “ a_ pb_ cq;

• (Absorption) a^ pb_ aq “ a and a_ pb^ aq “ a.

Definition 2.1.4. Let L “ pL,^,_, 0, 1q be a bounded lattice. We say that L is distributive if for
each a, b, c P L:

pa_ bq ^ c “ pa^ cq _ pb^ cq.

A majority of lattices that appear in studies related to algebraic logic tend to be distributive.
In this thesis, however, one of the main objects of study will be a kind of lattice which is not in
general distributive:

Definition 2.1.5. An algebraO “ pO,^,_,K , 0, 1q is said to be an ortholattice when pO,^,_, 0, 1q
is a bounded lattice, and K satisfies the following properties for every a, b P O:

1. pa^ bqK “ aK _ bK and pa_ bqK “ aK ^ bK;

2. a^ aK “ 0 and a_ aK “ 1

3. paKqK “ a.

Notice that distributive ortholattices coincide with Boolean algebras (see below). However,
Figure 2.1, depicts an ortholattice which is not a Boolean algebra1.

‚

aK bK cK dK

d c b a

‚

Figure 2.1: Example of an ortholattice

We also consider classes of lattices with various kinds of implications:

Definition 2.1.6. An algebra H “ pH,^,_,Ñ, 0, 1q is said to be a Weak Heyting algebra when
pH,^,_, 0, 1q is a bounded distributive lattice, and Ñ satisfies, for each a, b P H:

1. aÑ a “ 1;

1Simply note that the Pentagon lattice N5 embeds into the lattice, which means the lattice is not distributive.
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2. pa_ bq Ñ c “ aÑ c^ bÑ c;

3. aÑ pb^ cq “ aÑ b^ aÑ c;

4. aÑ b^ bÑ c ď aÑ c.

A special class of Weak Heyting algebras are their namesake:

Definition 2.1.7. An algebra H “ pH,^,_,Ñ, 0, 1q is said to be a Heyting algebra if it is a Weak
Heyting algebra, and additionally it satisfies, for each a, b P H:

1. a^ paÑ bq ď b;

2. a ď 1Ñ a.

The former are more usually presented through the so-called residuation laws: Heyting algebras
are bounded distributive lattices with a binary implication operationÑ satisfying, for each a, b, c P
H:

c^ a ď b ðñ c ď aÑ b.

A special class of Heyting algebras which has a ubiquitous presence in logic is that of Boolean
algebras:

Definition 2.1.8. An B “ pB,^,_,Ñ, 0, 1q is said to be a Boolean algebra if it is a Heyting
algebra which additionally satisfies for every a P B, a_ paÑ 0q “ 1.

The following is a well-known equivalence;

Proposition 2.1.9. Let B “ pB,^,_,Ñ, 0, 1q be a Heyting algebra. Then the following are
equivalent:

• B is a Boolean algebra;

• B “ pB,^,_,␣, 0, 1q, where ␣a :“ aÑ 0, is a distributive ortholattice.

Hence, we have that Heyting algebras and ortholattices constitute distinct generalisations of
Boolean algebras, emphasising different phenomena. We usually present Boolean algebras in the
language of ortholattices.

Intimately related to Weak Heyting algebras are specific classes of Boolean algebras with oper-
ators:

Definition 2.1.10. An algebra of type B “ pB,^,_,␣,l, 0, 1q is said to be a modal algebra if
pB,^,_,␣, 0, 1q is a Boolean algebra, and l satisfies, for each a, b P B:

1. l1 “ 1;

2. lpa^ bq “ la^lb.

We additionally say that B is a:

1. T -algebra, if it satisfies for a P B, la ď a;

2. Transitive modal algebra if it satisfies for a P B, la ď lla;
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3. Symmetric modal algebra if it satisfies for a P B, a ď l♢a.

Where ♢a “ ␣l␣a. We say that B is an interior algebra or an S4 algebra, if it is both a T -algebra
and a transitive modal algebra. We say that B is a KTB -algebra if it is both a T -algebra and a
symmetric modal algebra.

We conclude this section by discussing some concepts that appear naturally when discussing
lattices:

Definition 2.1.11. Let L be a lattice, and F Ď L a subset. We say that F is:

• Upwards closed if whenever x P F and x ď y then y P F ;

• Downwards closed if whenever y P F and x ď y then x P F ;

• ⃝-closed for ⃝ P t^,_u if whenever x, y P F then x⃝ y P F ;

• A filter if it is non-empty, upwards closed and ^-closed;

• An ideal if it is non-empty, downwards closed and _-closed;

• A prime filter if it is a filter, and whenever a_ b P F , then either a P F or b P F ;

• A prime ideal if it is an ideal, and whenever a^ b P F then either a P F or b P F .

We note that given a bounded lattice L, the set of downwards closed sets on L, the set of filters
on L, and the set of ideals on L are all closed under arbitrary intersection. Hence, given S Ď L, we
write:

• ÓS Ď L for the smallest downwards closed set containing S. It is known that ÓS “ ta P L :
Db P S, a ď bu;

• ÒS Ď L for the smallest upwards closed set containing S. It is known that ÒS “ ta P L : Db P
S, b ď au;

• FilpSq Ď L for the smallest filter containing S. It is known that FilpSq “ ta P L : Db0, ..., bn P
S, b0 ^ ...^ bn ď au;

• IdpSq Ď L for the smallest ideal containing S. It is known that IdpSq “ ta P L : Db0, ..., bn P
S, a ď b0 _ ..._ bnu

In Boolean algebras, due to the presence of a negation, one can also consider the following:

Definition 2.1.12. Let B be a Boolean algebra. We say that F Ď B is an ultrafilter if for all
a P B, either a P F or ␣a P F .

As is well-known, in Boolean algebras, ultrafilters are exactly the maximal filters, and also the
prime filters.
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2.2 Duality Theory

In this section we briefly recall Stone, Priestley and Esakia dualities. We assume the reader
is familiar with the notion of a topological space, and basic concepts of general topology. For
references on general topology see [22]. For specific references on these dualities, see [19].

Definition 2.2.1. Let pX, τq be a topological space. We say that pX, τq is zero-dimensional if τ
has a basis of clopen sets.

Definition 2.2.2. Given pX, τq a topological space, we say that it is a Stone space, or a Boolean
space, if it is a Hausdorff, compact and zero-dimensional space.

Denote by CloppXq the collection of clopen sets. Then we have:

Proposition 2.2.3. If X is a topological space, then the structure pCloppXq,X,Y,´,H, Xq is a
Boolean algebra.

Given a Boolean algebra, we can look at its spectrum, that is, the set of its ultrafilters, SpecpBq.
On the spectrum we can define a topology by declaring the following sets to be subbasic opens:

φpaq “ tx P SpecpBq : a P xu for a P B

Call the resulting topology τB. Then:

Proposition 2.2.4. If B is a Boolean algebra, the structure pSpecpBq, τBq is a Boolean space.

These transformations are moreover inverse of one another. This is captured by the following
duality result:

Theorem 2.2.5. (Stone Duality) The category BA of Boolean algebras with Boolean homomor-
phisms, and the category BS of Boolean spaces with continuous maps, are dually equivalent.

As a development of this, Priestley found a similar representation for the wider class of bounded
distributive lattices. To see this, recall that we say that a structure pX,ď, τq is an ordered topological
space if pX,ďq is a partially ordered set, and pX, τq is a topological space. Denote by ClopUppXq
the class of clopen upwards closed sets.

Definition 2.2.6. Let pX,ď, τq be an ordered topological space. We say that X is totally order-
disconnected if it satisfies the Priestley Separation Axiom: whenever x ę y, there is some U P

ClopUppXq such that x P U and y R U .
We say that pX,ď, τq is a Priestley space if it is a compact totally order-disconnected space.

Similar to before, given such a space, we have that:

Proposition 2.2.7. If pX,ď, τq is a a Priestley Space, the structure pClopUppXq,X,Y,H, Xq is a
bounded distributive lattice.

Given a bounded distributive lattice L, we can likewise look at SpecpLq the space of prime filters
of L, which come equipped with the natural inclusion order, and consider the subbasis induced by:

tφpaq : a P Lu Y tSpecpLq ´ φpaq : a P Lu for a P L

Denote again the resulting topology by τL:
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Proposition 2.2.8. Given a bounded distributive lattice L, pSpecpLq,Ď, τLq is a Priestley space.

Hence we obtain the following (see [19, pp.262]):

Theorem 2.2.9. (Priestley Duality) The categories DLat, of bounded distributive lattices and
bounded lattice homomorphisms, and Pries, of Priestley spaces and order preserving continuous
functions are dually equivalent.

Note that Priestley duality specialises to Stone duality on Boolean algebras. There, the order
becomes the identity, since as noted above, in Boolean algebras, prime filters are exactly the
ultrafilters. A special case of Priestley duality is that which covers Heyting algebras:

Definition 2.2.10. Let pX,ď, τq be a Priestley space. We say that X is an Esakia space if
whenever U is a clopen set, then ÓU is also clopen.

Given an Esakia space, we define the Heyting implication using the downwards closure operator.
Define the following for U a subset of pX,ďq:

lÓU :“ tx : @y if x ď y then y P Uu

Then define for two such subsets:

U ùñ V :“ lÓpX ´ U Y V q

Then we have:

Proposition 2.2.11. If pX,ď, τq is an Esakia space, then pClopUppXq,X,Y, ùñ ,H, Xq is a
Heyting algebra.

If H is a Heyting algebra, pSpecpHq,Ď, τHq is an Esakia space.

The final piece of structure concerns the morphisms of Esakia spaces:

Definition 2.2.12. Let f : X Ñ Y be a map between two ordered sets. We say that f is a
p-morphism if:

• Whenever x ď y then fpxq ď fpyq;

• If fpxq ď y then there exists some z such that x ď z and fpzq “ y.

Then we have (see [23, Corollary 3.4.8]):

Theorem 2.2.13. (Esakia duality) The categories HA, of Heyting algebras and Heyting algebra
homomorphisms, and ES, of Esakia spaces and continuous p-morphisms, are dually equivalent.

A final natural duality we will have to discuss is that between modal algebras and so called
modal spaces. This is a topological extension of Jonsson-Tarski duality, and is discussed extensively
in [9, Chapter 5].

Definition 2.2.14. Let X “ pX,R, τq be a Stone space equipped with a relation R satisfying:

• (Point-Closedness) Rrxs is closed for each x P X.

• (Clopen Closure) Whenever U is a clopen, then R´1pUq is clopen.
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The key idea to obtain this is extending Stone duality with a relation Rl induced on the
ultrafilters as follows:

xRy ðñ la P x ùñ a P y

In such a situation, recall that we denote by lR the following naturally induced operator:

lRU “ tx : @y, if xRy then y P Uu

Then we have:

Proposition 2.2.15. Given a modal algebra pB,lq, we have that pXB, Rl, τq is a modal space,
and pCloppXBq,X,Y,␣,lRl

,H, XBq is isomorphic to pB,lq.

2.3 Universal Algebra

For general references on universal algebra the reader can consult [12, 1].

Definition 2.3.1. We say that L “ pF, arq (also sometimes denoted as σ) is a language if F is a
collection of symbols, and ar : F Ñ ω is a function, called the arities of F .

Given a language σ “ pF, arq, we say that a structure A “ pA, σq is an algebra of type σ if for
each g P F , such that arpgq “ n, there is a function g : An Ñ A.

We say that two structures A and B are similar if they have the same type.

Definition 2.3.2. Let A “ pA, σq and B “ pB, σq be two algebras. A map f : AÑ B is called a
homomorphism if for each n-ary function symbol gpx0, ..., xnq P σ, and a0, ..., an P A

fpgpa0, ..., anqq “ gpfpa0q, ..., fpanqq

We say that an injective homomorphism is an embedding.

Definition 2.3.3. Given two algebras A and B of type σ, and a homomorphism f : A Ñ B we
say that:

• A is a subalgebra of B if A Ď B and the inclusion map i : A Ñ B is a homomorphism; we
denote this by A ĺ B.

• B is a homomorphic image of A if f is surjective.

• B is isomorphic to A if f is injective and surjective.

Definition 2.3.4. LetA be an algebra of type σ. Let θ be an equivalence relation θ Ď AˆA. We say
that θ is a congruence if for all n-ary function symbols gpx0, ..., xnq P σ, and pa0, b0q, ...., pan, bnq P θ:

pgpa0, ..., anq, gpb0, ..., bnqq P θ

We denote by ConA the set of congruences of an algebra A.

We recall the following fact about congruences:

Definition 2.3.5. Given an algebra A in the language σ, ConA forms a complete lattice, where
meets are given by intersection.
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Given an algebra A, and a collection S Ď Aˆ A, we denote by CgpSq the smallest congruence
containing S.

Definition 2.3.6. Given an algebra A and a congruence θ, we say that pB, σq is the quotient
algebra of A under θ if:

• B “ A{θ, i.e., the carrier set of B is the quotient set under θ.

• For each g P σ, and a0, ..., an P A, g
θpa0{θ, ..., an{θq “ gpa0, ..., anq{θ

Definition 2.3.7. Let pAiqiPI be a family of algebras. We say that an algebra B is the direct
product of the family pAiqiPI if:

• B “
ś

iPI Ai, i.e., the carrier set of B is the cartesian product

• For each g P σ, and each i:

gpa0, ..., anqpiq “ gpa0piq, ..., anpiqq

Definition 2.3.8. Let pAiqiPI be a family of algebra of type σ, and B an algebra of type σ. We
say that B is a subdirect product of the family pAiqiPI if there is an embedding f : B Ñ

ś

iPI Ai
which additionally satisfies: for each i, πi ˝ f is surjective, i.e., f is surjective on factors.

Especially important in the theory of quasivarieties is the notion of reduced product:

Definition 2.3.9. Let pAiqiPI be a family of algebras. Let F be a filter on PpIq, the power set
algebra of I. Define an equivalence relation, „F , by saying that given a, b P

ś

iPI Ai, a „F b if and
only if:

Ja “ bK “ ti P I : apiq “ bpiqu P F

Then „F is a congruence on
ś

iPI Ai. We denote by
ś

iPI Ai{F the quotient algebra
ś

iPI Ai{ „F .
We call this algebra the reduced product via F of the pAiqiPI .

Definition 2.3.10. Let A be an algebra. We say that A is subdirectly irreducible if for all families
pBiqiPI such that A is a subdirect embedding of this collection, there is some i such that A – Bi.

The following is known as Birkhoff’s Subdirect Decomposition Theorem (see [12, Chapter 2,
Theorem 8.6]):

Theorem 2.3.11. Every algebra A is isomorphic to a subdirect product of subdirectly irreducible
algebras.

Definition 2.3.12. Let A be an algebra. We say that A is trivial if A is a singleton.

Definition 2.3.13. We say that an algebra A is simple if whenever B is a homomorphic image of
A, then B is isomorphic to A.

For a class of similar algebras K, we recall the following monotone and idempotent operators:

1. IpKq - isomorphic copies of algebras in K;

2. HpKq - homomorphic images of algebras in K;
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3. SpKq - subalgebras of algebras in K;

4. PpKq - direct products of algebras in K;

5. PU pKq - ultraproducts of algebras in K;

6. PRpKq - reduced products of algebras in K.

7. PSpKq - subdirect products of algebras in K.

Definition 2.3.14. Let K be a class of algebras. Then we say that K is:

1. A variety if it is closed under subalgebras, homomorphic images and direct products;

2. A quasi-variety if it is closed under isomorphisms, subalgebras, direct products and ultraprod-
ucts; equivalently, if it is closed under isomorphic images, subalgebras, and reduced products.

We denote by V, respectively Q, the variety/quasivariety generator operator. The following are
sometimes referred to respectively as Tarski’s HSP and Mal’tsev’s ISPR theorems (see respectively
[12, Chapter 2, Theorem 9.5], [12, Chapter 5, Theorem 2.25]):

Theorem 2.3.15. For every class K of algebras we have:

• K is a variety if and only if K “ HSPpK1q for some class K1 of similar algebras.

• K is a quasivariety if and only if K “ ISPRpK1q

We also recall the following, sometimes called Hall’s Theorem (see for instance [12, Theorem
11.12]):

Theorem 2.3.16. A class K is a variety if and only if HPspKq “ K.

One of the early achievements of universal algebra was to relate the above “mathematical”
notions, with purely logical ones, finding a connection between syntactic presentations and semantic
operations. These are captured in the ideas of equations and quasi-equations.

Definition 2.3.17. Let L be an algebraic language. An equation is a positive atomic formula of
the form:

λ « γ

where λ, γ are terms in the language L. A quasi-equation is an implication of the form:

λ0 « γ0 & ... & λn « γn Ñ λ « γ

where λi, γi are terms in the language.

Definition 2.3.18. We say that an algebra A satisfies an equation λpx0, ..., xnq « γpx0, ..., xnq,
in symbols, A ( λ « γ, if for each a0, ..., an P A, we have that λpa0, ..., anq “ γpa0, ..., anq, i.e.,
interpreting the term in the algebra with those elements yields equality.

We say that an algebra A satisfies a quasi-equation λ0pxq « γ0pxq & ... & λnpxq « γnpxq Ñ
λpxq « γpxq, in symbols A $ λ0 « γ0 & ... & λn « γn Ñ λ « γ if for each a0, ..., am P A, if
λipa0, ..., amq “ γpa0, ..., amq for each i ď n, then λpa0, ..., amq “ γpa0, ..., amq.
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Definition 2.3.19. Let V be a class of algebras. We say that V is an equational class (resp.
quasi-equational class) if there exists some set of equations S (resp., quasi-equations) such that for
each algebra A, A P V if and only if A ( φ for each φ P S.

Theorem 2.3.20. Let K be a class of algebras. Then:

• (Birkhoff) K is an equational class if and only if K is a variety;

• (Mal’tsev) K is a quasi-equational class if and only if K is a quasivariety.

Proof. See [12, Chapter 2, Theorem 11.9, Chapter 5, Theorem 2.25]. ■

The following is a particularly useful tool developed by Jónsson, which we will use occasionally
(noting that virtually all varieties we will be dealing with are congruence distributive):

Lemma 2.3.21. (Jónssons’ Lemma) Let K be a set of algebras such that VpKq is congruence
distributive. Then the subdirectly irreducible elements of K are in:

HSPU pKq

Proof. See [12, Corollary 6.10]. ■

2.4 Logical Preliminaries

Throughout we denote some well-known logical systems as follows:

• CPC - Classical Propositional logic;

• IPC - Intuitionistic Propositional Logic;

• K - Minimal Normal modal logic;

• S4 - S4 modal logic;

We assume the reader is familiar with classical and intuitionistic logic. We briefly recall the
notion of a normal modal logic (for a detailed discussion on this see [9]):

Definition 2.4.1. Let L be the language of classical logic together with a unary operator ♢. A
collection of formulas L Ď L is called a normal modal logic if:

• CPC Ď L, i.e., L extends classical logic;

• L contains the following axioms (called the normality axioms):

lJ Ø J

lpφ^ ψq Ø lφ^lψ.

• L is closed under Modus Ponens, Unifrom Substitution and Necessitation: if φ P L then
lφ P L.
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It follows straightforwardly from the definitions that the arbitrary intersection of normal modal
logics is again a normal modal logic. This implies that the collection of normal modal logics forms
a complete lattice. We denote by K the minimal normal modal logic. Moreover, given an axiom φ,
we denote by K‘ φ the smallest normal modal logic containing φ. Given a normal modal logic L,
we denote by NExtpLq the complete lattice of normal extensions of L.

Important both in the theory of modal and intuitionistic logics is the concept of Kripke com-
pleteness:

Definition 2.4.2. Given a class K of Kripke frames, and φ a formula (in the language of intu-
itionistic or modal logic), we write K ( φ to mean that for each F P K where F “ pX,Rq, and each
model v over F, and each w P X, pF, vq, w , φ. A logic L P ΛpIPCq (resp. L P ΛpKq) is said to be
Kripke complete if there exists a class K of Kripke frames such that K ( L.

Equally relevant are the concepts of FMP and tabular logics:

Definition 2.4.3. Let L be superintuitionistic or modal. We say that L has the FMP if L is
Kripke complete with respect to a class K of finite frames. We say that L is tabular if L is Kripke
complete with respect to a single finite Kripke frame.

We let HA and BA denote the classes of Heyting and Boolean algebras respectively. We assume
familiarity with the algebraic completeness of the respective logical systems with respect to these
classes of algebras. Moreover we also have the following well-known facts:

Definition 2.4.4. For each Heyting algebra H “ pH,^,_,Ñ, 0, 1q, consider the collection H␣ “

ta : a “ ␣␣au. Then this forms a Boolean algebra with the induced operations:

• 90 “ 0 and 91 “ 1

• a 9̂ b “ a^ b

• a 9Ñb “ aÑ b

• a 9_b “ ␣␣pa_ bq

Definition 2.4.5. Let A be an algebra of type σ. We say that a map v : VARÑ H is a assignment
of variables on H. Given an assignment v, we extend this to a valuation v on H recursively, by
defining:

• vppq “ vppq

• vp0q “ 0 and vp1q “ 1;

• vpφ^ ψq “ vpφq ^ vpψq;

• vpφ_ ψq “ vpφq _ vpψq;

• vpφÑ ψq “ vpφq Ñ vpψq;

where the symbols on the right hand side are computed inside of H. We write H ( φ to mean that
whenever v is a valuation on H, vpφq “ 1.
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We remark that the former is the understood meaning, whenever we take any algebra such as
a Boolean algebra, Heyting algebra or a bounded distributive lattice.

Theorem 2.4.6. (Glivenko Theorem) For each φ, a formula in the language of classical logic, we
have that φ P CPC if and only if ␣␣φ P IPC.

Proof. To establish this, assume that φ P CPC, and H is a Heyting algebra. We will show that
H ( ␣␣φ. To see this, note that by completeness of CPC with respect to Boolean algebras, we
have that H␣ ( φ. Now suppose that v is a valuation on H. Define a valuation w : Prop Ñ H␣

by letting wppq “ ␣␣vppq. This is well-defined, since as is known, for all a P H:

␣␣aØ ␣␣␣␣a

Then by induction, we can see that for each formula ψ in the language of CPC:

wpψq “ ␣␣vpψq.

Indeed, the base case is given by hypothesis, and the remaining cases follow by well-known properties
of intuitionistic calculus. Hence, by hypothesis, wpφq “ 1, which means that ␣␣vpφq “ 1, i.e.,
vp␣␣φq “ 1.

Conversely, if φ R CPC, then ␣␣φ R CPC. Since IPC Ď CPC (since all Boolean algebras
are Heyting algebras, and the mentioned completeness theorem), so ␣␣φ R IPC, which gets us
completeness. ■

The classes we just met of Heyting algebras and S4 algebras are also intimately related. To see
why note the following:

Proposition 2.4.7. Let B be an S4 algebra. Then the bounded sublattice Bl :“ ta P B : a “ lau
is a Heyting algebra when equipped with the induced meet and join and añ b :“ lpaÑ bq.

Moreover, it is also possible to have a weak inverse to this operation. This latter transformation
will play an important role in our investigations, and is frequently called Booleanisation (see for
instance [30, pp.25]):

Definition 2.4.8. Let D be a bounded distributive lattice, B a Boolean algebra, and e : D Ñ B
a bounded lattice embedding. We say that pB, eq is the Booleanisation of D if for each Boolean
algebra C, and bounded lattice homomorphism f : D Ñ C, there is a unique map h : B Ñ C such
that f “ h ˝ e.

Proposition 2.4.9. Let D be a bounded distributive lattice, and XD the dual Priestley space.
Then CloppXDq, the class of all clopens of D is the Booleanisation of D.

Denote by BpDq the Booleanisation of D.

Proposition 2.4.10. Let f : D Ñ C be an injective bounded lattice homomorphism, where C is
a Boolean algebra. Then the unique map f : BpDq Ñ C is also injective.

Proof. Suppose that fpaq “ fpbq. Suppose that these are:

ł

i“1

fpaiq ´ fpciq “
ł

j“1

fpbjq ´ fpdjq
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Using distributivity, we can rewrite the latter into
Źk
m“1 fpkmq _ ␣fplmq. Now since these are

equal we have that:
fpaiq ´ fpciq ď fpkmq _ ␣fplmq

Then fpaiq ď fpkmq_␣fplmq_ fpciq, and in turn, then, fpaiq^ fplmq ď fpkmq_ fpciq. Now since
f is a homomorphism, and injective, this means that:

ai ^ lm ď km _ ci

Operating the same transformations backwards, we have that ai ´ ci ď km _ ␣lm. Since this is
true of arbitrary such elements, then a ď b. By a similar argument, then b ď a. So a “ b as
intended. ■

Moreover, the following holds:

Proposition 2.4.11. The Booleanisation BpHq of a Heyting algebra H, admits an S4 structure:
for each a P BpHq, we let:

la :“
ł

tc P H : c ď au

Proof. See [23, Construction 2.5.7]. ■

2.5 Algebraic Logic

Throughout, if K is a class of similar algebras, we denote by LK the algebraic language of
K; when the subscript is understood we drop it. Given a set X, we denote by TLpXq the set of
terms constructed in the language L with variables from X, and by TmLpXq the corresponding
absolutely free algebra. Let EqLpXq be the set of equations built from this language, with variables
from X.

We begin by recalling the concept of a consequence relation and of a logic.

Definition 2.5.1. Let X be a set. A consequence relation over X is a relation $Ď PpXqˆX such
that:

• (Reflexivity) If a P X then pX, aq P$

• (Cut) If pX, yq P$ for every y P Y , and pY, zq P$, then pX, zq P$

Notation 2.5.1. Throughout, whenever ,Ď PpXq ˆX is a consequence relation, Y Ď X, a P X we
write Y , a to mean that pY, aq P,. We write , a to mean pH, aq P,. Given Y,Z Ď X, we write
Y $ Z to mean that Y $ a for each a P Z.

In this thesis, all consequence relations are assumed to be finitary, that is, if X $ a, then there
is some finite Y Ď X such that Y $ a. This is not necessary for most results, but it makes the
presentation simpler, and avoids complications with respect to infinitary axiomatisations.

We note that consequence relations on X form a complete lattice:

Lemma 2.5.2. The collection ConpXq of consequence relations on a setX forms a complete lattice,
where arbitrary meets are given by intersections.

This entitles us to the following definition:
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Definition 2.5.3. Let X be a set, and S Ď PpXqˆX. We denote by $SĎ PpXqˆX the smallest
consequence relation on X such that S Ď$S .

Definition 2.5.4. Given S Ď PpXq ˆX, define Sr as:

Ref “ tpA, aq : A Ď X, a P Au.

Also, define S˝ as:

S˝ “ tpA, cq : There exists some pB, cq P S, such that for all b P B pA, bq P Su.

We then define S˝n as follows: S˝0 “ Ref , S˝n`1 “ pS˝nq˝.

Then it is not difficult to see that:

Lemma 2.5.5. For any S Ď PpXq ˆX:

$S“
ď

nPω

S˝n .

A special kind of consequence relation we will be interested are logics. Throughout let VAR be
a fixed but arbitrary set of variables.

Definition 2.5.6. Given an algebraic language L over VAR, a given consequence relation $ Ď

PpTmLpVARqq ˆTmLpVARq is called a logic if $ is substitution invariant: for every homomor-
phism σ : TmLpVARq Ñ TmLpVARq, and every ΓY tφu Ď L:

Γ $ φ implies σrΓs $ σpφq

In other words, logics are consequence relations where uniform substitutions are precisely the
endomorphisms of the set TmLpVARq. Similarly to above, we also have:

Lemma 2.5.7. Given a logic $, the collection Λp$q of finitary extensions of $ forms a complete
lattice with meet as intersection.

And similar to before, if S Ď PpTmLpVARqqˆTmLpVARq, we denote by LogpSq the smallest
logic generated by S. Then it is clear that given $i a collection of finitary logics, then

Ž

iPI $i“

Logp
Ť

iPI $iq. Moreover, we get that the former description of the generated consequence relation
in fact captures the generated logic in this particular case:

Lemma 2.5.8. If p$iqiPI is a collection of finitary logics, then:

ł

iPI

$i “ $
`

Ť

iPI$i

˘

Proof. By Lemma 2.5.5, if we show that $`

Ť

iPI$i

˘ is already a logic, it will surely be the smallest.

Hence it suffices to check closure under substitution of that consequence relation. Suppose that
pX,φq P$Ť

iPI$i
. By the same Lemma, we get that then pX,φq P p

Ť

iPI $iq
˝n . So by induction we

can show that for any substitution σ, pσrXs, σpφqq also belongs there: for the base case, this follows
by reflexivity and the fact that the logics are closed under substitution, whilst for the inductive
case this follows by induction hypothesis and cut. ■
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We now turn to a related concept, stemming from algebra:

Definition 2.5.9. Let K be a class of algebras and L its language, and EqpVARq the set of
equations built over VAR. We say that (KĎ Eq ˆ Eq is the equational consequence relative to K
if it satisfies the following properties: for Θ Ď Eq and γpxq, δpyq P TmLpVARq:

Θ (K γpxq « δpyq ðñ For every A P K and h : TmLpXq Ñ A

if for all φ « ψ P Θ hpφq “ hpψq, then hpγq “ hpδq

The equational consequence relative to a class of algebras is very often used as the semantics
for specific logics. This is boiled down to the property of having a completeness theorem:

Definition 2.5.10. Let L be a language, and $ be a logic in this language, and µpxq a set of
equations in one variable. We say that a class K of algebras is a µ-algebraic semantics for $ if for
all ΓY tφu Ď L:

Γ $ φ ðñ µrΓs (K µpφq

We say that K is an algebraic semantics if it is a µ-algebraic semantics for some µ.

Most of the logics we will deal with in this thesis will have an algebraic semantics. Examples
are CPC, which has BA and the set µpxq “ tx « 1u, and IPC, which has HA with the same set of
equations. However, consider for instance the set:

t␣␣x « 1u

This set makes HA into an algebraic semantics for CPC by Theorem 2.4.6. This means that
one logic can have multiple algebraic semantics. Nevertheless, for some logics, there is a way to
determine a “canonical choice”:

Definition 2.5.11. Let L be a language, and $ a finitary logic for this language. We say that $
is algebraizable if there are a quasivariety K, µpxq a set of equations in one variable, and ∆px, yq a
set of formulas in two variables, such that for all formulas ΓY tφu Ď L and ΘY tγ « δu Ď EqL:

1. Γ $ φ if and only if µrΓs (K µpφq

2. Θ (K γ « δ if and only if ∆rΘs $ ∆pγ, δq

3. x %$ ∆pµpxqq

4. x « y )(K µr∆px, yqs

In this case, K is said to be an equivalent algebraic semantics.

And indeed, we have:

Theorem 2.5.12. [25, Theorem 3.17] Each algebraizable logic has a unique equivalent algebraic
semantics.
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Chapter 3

Translations, Adjunctions and
Polyatomic Logics

The purpose of the present chapter is to introduce the general aspects of the theory of Polyatomic
Logics.

We begin by taking a close look at several translations which bear some resemblance to the KGG
one. This is done to emphasise the similarities in them, and the way in which they allow for similar
completeness theorems. We then embark on the general theory, abstracting from this situation. We
recall the definition of a translation and its relation to right adjoints, as detailed in [53]. Building
on that work, we introduce the notion of a selective translation, abstracting from some desirable
properties present in the most salient examples. This allows us to provide an abstract framework
to discuss semantically rich relationships between distinct logical contexts. Building on this, we
introduce the idea of a PolyAtomic Logic (so named because atoms are sent to elements covered
by a given term, in analogy with the naming convention of DNA-logics [6]), which blend properties
of different logical settings into the same models.

In analogy with the setting of [6], we develop the theory of PAt-Logics and PAt-Quasivarieties,
and establish a connection between these concepts, proving analogues of the Birkhoff theorem and
algebraic completeness. This is then used to develop a basic abstract theory of “companionship”
holding between logics under a selective translation1.

3.1 Classical Translations and DNA-Logics

In the introduction and preliminaries we discussed several translations. Here we briefly recall
them and discuss their similarities as respects the structure of their completeness theorems. We
begin with the Double negation translation:

Definition 3.1.1. The Kolmogorov-Gödel-Gentzen Double Negation Translation (KGG)2, denoted
K␣␣, maps TmLBA

pVARq to TmLHA
pVARq through the following assignment:

1A quick technical note: throughout we focus on the setting of quasivarieties, which is more natural from an
algebraic-logical perspective. However, throughout, all results restrict to the setting of varieties unless otherwise
specified.

2We note that this translation, as noted in the introduction, is originally due to Kolmogorov; however, his transla-
tion applies the ␣␣-operation to every formula. The specific version outlined is due to Gödel, Gentzen and Glivenko.
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1. K␣␣ppq “ ␣␣p

2. K␣␣pJq “ J and K␣␣pKq “ K

3. K␣␣pφ^ ψq “ K␣␣pφq ^K␣␣pψq

4. K␣␣pφÑ ψq “ K␣␣pφq Ñ K␣␣pψq

5. K␣␣pφ_ ψq “ ␣␣K␣␣pφ_ ψq

As we mentioned in the Introduction, and showed in the preliminaries, we have that given a
Heyting algebra H:

H␣ “ ta P H : a “ ␣␣au

Is a Boolean algebra with the induced operations. Hence we have the following, which straightfor-
wardly implies Theorem 2.4.6 once one accounts for the algebraizability of the systems at hand:

Theorem 3.1.2. For each formula φ in the language of classical logic, and each Heyting algebra
H:

H␣ ( φ ðñ H ( K␣␣pφq

Proof. First assume thatH * K␣␣pφq. Let v : PropÑ H be a valuation witnessing this. Construct
a valuation v1 : Prop Ñ H␣ by defining v1ppq “ ␣␣vppq. Then by induction on construction of
terms φ P TmLBA

pVARq we can prove that:

v1pφq “ vpK␣␣pφqq

Hence, H␣ * φ. The converse is wholly similar. ■

As discussed in the introduction, one of the important applications of this translation was the
development of inquisitive logic [16]. We recall here its development as DNA-logic, as presented in
[6]:

Definition 3.1.3. Let L P ΛpIPCq be an intermediate logic. We consider:

L␣ “ tφ : φr␣␣p{ps P Lu

where φr␣p{ps is the result of substituting ␣p for p in the term φ. Then we say that L␣ is the
DNA-variant of L.

DNA-logics are thus defined as the DNA-variants of some intermediate logic. More explicitly,
they are collections S of formulas such that:

• IPC Ď S;

• ␣␣pÑ p P S;

• S is closed under Modus Ponens.
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This is the origin of the name DNA – short for “double negation on atoms”. Note that such
structures are not closed under uniform substitution. As algebraic models, one takes structures of
the form:

pH,V ␣q

where H is a Heyting algebra, and V ␣ is a valuation taking values in the regular elements of H,
i.e, those a P H such that a “ ␣␣a. Similar to what we did above, given any valuation V one
can produce a regular valuation by regularising the value of the atoms. Given this role of regular
elements, given any Heyting algebra H, we denote by:

xH␣y

The Heyting subalgebra of H generated by the regular elements. Those Heyting algebras H such
that H “ xH␣y are called regularly generated, and they are especially important due to carrying
the essential properties of a logic. To correspond to this, a notion of DNA-variety was introduced
in [6]:

Definition 3.1.4. Let H and H 1 be two Heyting algebras. We say that H 1 is a core superalgebra
of H if H ď H 1 and H␣ “ H 1␣.

One fact which can be noted is that core superalgebras are the operator which binds the least:

Proposition 3.1.5. For each variety of Heyting algebras K, the class of algebras obtained by
taking core-superalgebras of KÒ :“ txB␣y : B P Ku, is a DNA-variety.

Definition 3.1.6. Let K be a family of Heyting algebras. We say that K is a DNA-variety if it is
closed under homomorphic images, subalgebras, products and core-superalgebras.

In [6] the following facts about these logics and varieties were established:

• DNA-logics form a complete lattice under inclusion;

• DNA-varieties form a complete lattice under inclusion;

• The lattices of DNA-logics and DNA-varieties are dually isomorphic.

These facts are enough to show soundness and completeness of DNA-logics with respect to
Heyting algebra models as defined above, and moreover, completeness with respect to regularly
generated Heyting algebras.

The reader will notice that in some respects it seems to be the main properties of the ␣␣-
operator, and the structure of the translation, which allow the above construction. However, many
other translations exist which are of a very similar nature. Let us recall three of these:

Definition 3.1.7. The Gödel-McKinsey-Tarski (GMT) translation maps the set TmLHA
pVARq

to TmLS4
pVARq through the following assignment:

1. GMT pJq “ J

2. GMT pKq “ K

3. GMT pφ^ ψq “ GMT pφq ^GMT pψq
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4. GMT pφ_ ψq “ GMT pφq _GMT pψq

5. GMT pφÑ ψq “ lp␣GMT pφq _GMT pψqq

As mentioned also in the preliminaries and introduction, we have that given an S4-algebra
B “ pB,lq:

Bl “ ta P B : a “ lau

Is a Heyting algebra with the induced operations:

• 0̂ “ 0 and 1̂ “ 1

• a ˆ̂ b “ a^ b

• a_̂b “ a_ b

• a ˆãÑb “ lp␣a_ bq

Definition 3.1.8. The Goldblatt translation between the language of ortholattices and KTB logic
is defined recursively as follows:

1. For each propositional variable p, Gppq “ l♢p;

2. Gpψ ^ φq “ Gpψq ^Gpφq

3. GpφKq “ l␣Gpφq

As in the other cases, given a KTB algebra pB,lq we can consider the set:

Bl♢ “ ta P B : a “ l♢au

And equip this with the following operations: a 9̂ b “ a ^ b and aK “ l␣a. It can be straightfor-
wardly verified that this yields an ortholattice.

For the last example, we need some definitions. These follow the terminology of [56].

Definition 3.1.9. Let G “ pG,[,\,b,⊸, 0, 1q be a structure where:

• pG,[,\, 0, 1q is a bounded lattice.

• pG,b, 1q is a commutative monoid.

• For all x, y, z P P :
xb y ď z ðñ x ď y ⊸ z

• For all a, b, a1, b1: a ď a1 and b ď b1 implies ab a1 ď bb b1 and a⊸ b ď a1 ⊸ b1.

We call this an intuitionistic linear algebra (ILA)3. Furthermore, we call an ILA a ILS -algebra if
there is a modality ! : LÑ L such that for all a, b P L:

• The operation ! is a normal S4-modality: !!a “!a ď a, a ď b implies !a ď!b, !J “ 1, and
furthermore, !pa[ bq “!a b !b.

3These are more frequently called today commutative residuated lattices, see for example [28]
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The former structures are models of Intuitionistic Linear Logic. The specific details of this
system are not important, but the reader is invited to consult [56] for a detailed exposition. Our
concern will be with a translation of intuitionistic logic into this system:

Definition 3.1.10. The Girard call-by-value [32] Cv translation from intuitionistic logic IPC to
Intuitionistic Linear Logic is defined as follows:

• Cvppq “!p;

• Cvpφ^ ψq “ Cvpφq b Cvpψq;

• Cvpφ_ ψq “ Cvpφq \ Cvpψq;

• CvpφÑ ψq “!pCvpφq⊸ Cvpψqq.

The following is discussed in Troelstra [56, Chapter 8]:

Definition 3.1.11. Let G be an ILS-algebra. Define:

!G :“ ta : a “!au

And equip !G with the following operations 0 :“ 0, and 1 :“ 1; a^ b :“ ab b, a_ b :“ pa\ bq and
aÑ b :“!pa⊸ bq.

Proposition 3.1.12. Given an ILS-algebra, the structure !G “ p!G,^,_,Ñ, 0, 1q is a Heyting
algebra.

In all of these cases, we are translating the algebraic languages, and transforming algebras of one
similarity type into algebras of another. Hence, we may ask whether this transformation witnesses
the translation, i.e., for instance, whether for an S4-algebras we have:

Ml ( φ ðñ M ( GMT pφq.

This is indeed true, and for all of the translations we have discussed, the proof goes through
similarly. Namely, we can additionally show for G an ILS-algebra:

Ml ( φ ðñ M ( GMT pφq

!G ( φ ðñ G ( Cvpφq,

and for B a KTB algebra:

Bl♢ ( φ^ ψ “ φ ðñ B ( Gpφq Ñ Gpψq.

Let us sketch this in the case of ILS-algebras. Given a valuation v : VARÑ G, we can construct
a valuation v1 : VARÑ!G such that v1ppq “!vppq. Then this valuation will take values in the !-fixed
points, and it can be shown by induction on the construction that:

v1pφq “ Cvpvpφqq.

Similarly, given such a valuation v1 : PropÑ!G, we can construct a valuation v : PropÑ G by
letting vppq “ v1ppq. Then again by induction on construction we can show that:

vpφq “ Cvpv
1pφqq.
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Hence, assuming in turn that G * Cvpφq and !G * φ will get us the result. It should be obvious
that similar arguments will work for all other translations.

To obtain results similar to the Glivenko theorem, one also needs that, given any algebra from
the system being translated, there exists some algebra of the target system of which it is the
“skeleton” (e.g., the set of open elements, of l♢-fixed points, of !-fixed points, etc). This can be
less obvious to establish, but as we will see in the next sections, it is true in all the cases at hand.

Together, these two facts allow us a result analogous to Glivenko’s theorem, with respect to the
equational consequence relation, in total analogy with the KGG case.

To pursue this analogy further, let us now quickly sketch what a hypothetical l-logic could
look like:

Definition 3.1.13. Let L P NExtpS4q be a normal extension of S4. Consider:

Ll “ tφ : φrlp{ps P Lu

where φrlp{ps is the resulting of replacing p with lp in φ. Then we call Ll the l-variant of L.

Just like in the DNA case, one can argue, analogously to Proposition 3.3 in [6], that adding:

pÑ lp

and closing under Modus Ponens, Necessitation, but not uniform substitution, would yield precisely
a l-variant of any given logic, and that all of them arise this way. Moreover, given an S4-algebra
B, we say that B is openly generated if B “ xBly. We can then take models of the form pB, V lq,
where V l takes values only on open elements.

What about l-varieties? Just like in the DNA-case, one can show that core superalgebras bind
the least, and hence, a class of algebras is a l-variety if and only if it is the closure of a variety of
S4 algebras.

The facts mentioned above can also be carried out for this setting:

• l-logics form a complete lattice under inclusion;

• l-varieties form a complete lattice under inclusion

• The lattices of l-logics and l-varieties are dually isomorphic.

However, the reader might now be persuaded that there is also nothing special about the GMT-
translation. The Girard call-by-value translation or the Goldblatt translation would just as well
yield hybridised logics. Hence two natural questions arise:

• What kinds of properties must a translation have in order for it to enjoy the sort of complete-
ness theorem we found above;

• How can one develop a theory which generalises the DNA-logic structure to other such trans-
lations.

We will take on these tasks in the next sections.
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3.2 Algebraic Translations and Adjunctions

In [53], the concept of a contextual translation was introduced with the goal of providing a
characterisation of adjunctions between generalised quasivarieties. This is inspired by work of
McKenzie [50] and Dukarm [21], and related to work by Freyd [26], which describes categorical
equivalence through two “deformations” of the categories. The key idea of this approach is that right
adjoints correspond to translations between the equational consequence relations of the categories
of algebras. Below we present this concept, recalling its definition according to the presentation
of [53], as well as some key results, which we provide without proof. We note that as previously
noted, our discussion remains within a finitary context even though the results cited are proved in
the broader setting of generalised quasivarieties. We also focus only on unary translations, though
all of the results in this section could be proved for arbitrary κ-ary translations.

Definition 3.2.1. Let X and Y be classes of algebras. We say that a map ζ : LX Ñ TmLY
pVARq

is a translation if for each n, ζ sends n-ary function symbols to n-ary terms.

Given a translation ζ we define a map ζ˚ : TmLX
pVARq Ñ TmLY

pVARq by stipulating that:

1. ζ˚pxiq “ xi for variables xi P LX;

2. ζ˚pcq “ ζpcq for constants c P L;

3. For complex terms φ0, ..., φn, and n-ary operation ψ, such that ζpψq “ f , where each f is a
term of the form fpx0, ..., xkq. Then:

ζ˚pψpφ0, ..., φnqq “ fpζ˚pφ0q, ..., ζ˚pφnqq

Moreover, we denote by ζ˚ the natural lifting of ζ˚ to sets of equations: let EqYpVARq be the
set of equations of the language LY. We define ζ˚ : PpEqXpVARqq Ñ PpEqYpVARqq by setting,
for Φ Ď EqXpVARq:

ζ˚pΦq “ tζ˚pδq « ζ˚pγq : δ « γ P Φu

In other words, a translation for our purposes consists of an assignment of logical symbols,
preserving arities, which recursively induces an assignment of formulas. We note that whilst this
leaves out many notable translations - for instance, most instances of “standard translations”
occurring in the modal logic literature do not conform in an obvious way to this shape, despite
their relevance and uses - translations of this kind occur quite frequently in various natural logical
frameworks.

More than a merely syntactic assignment, though, we want our semantics to reflect this trans-
lation in some sense. Hence we will need the notion of a contextual translation.

Definition 3.2.2. Let X and Y be two classes of algebras. We say that a pair pζ,Θq, where ζ
is a translation, and Θ Ď EqYpVARq a finite subset of equations written over a variable x, is a
contextual translation if the following holds:

1. For every set ΦY tλ « γu Ď EqX, written in variables txi : i P ωu, we have:

if Φ (X λ « γ, then ζ˚pΦq Y
ď

iPω

Θpxiq (Y ζ
˚pλ « γq
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2. For every k-ary operation fpy0, ..., ynq P LX, we have:

Θpx0q Y ...YΘpxnq (Y Θpζ˚pfpx0, ..., xnqqq

In this case we refer to the set of equations Θ as the context of the translation.

Example 3.2.3. (KGG and GMT translations) The KGG and GMT translations we met in Def-
inition 3.1.1 and Definition 3.1.7 are contextual translations: for the first, take a modification of
the function K␣␣ which maps proposition variables to themselves, and takes the context:

Θ “ tx « ␣␣xu.

For the latter, take in addition to the function GMT , with the same modification, the context:

Θ “ tx « lxu.

In both cases, these translations were shown to be contextual in [53].

Looking at these examples, we see that the introduction of a context has the following effect:
we take the equations we are interested in, when looking at a given algebra, and we interpret
these equations in a smaller algebra, comprised only of the elements satisfying the equations in the
context. We generically refer to these as regular elements. Algebraically, this corresponds to the
following:

Definition 3.2.4. Let Y be a class of similar algebras, and L its language. Let θ be a set of
equations of EqL1 in one variable, where L1 Ď TmLpVARq (i.e., n-ary terms are read as n-ary
functions), and where θ is compatible with the operations of L1, i.e, for each n-ary operation t P L1:

θpx0q Y ...Y θpxnq (X θptpx0, ..., xnqq.

Let A P Y be some algebra. Then we let θpAq be the following structure:

θpAq :“ ta : A ( θpaqu

equipped with the operations in L1 (note that compatibility of θ allows this). We call this the
algebra of θ-regular elements of A.

If Y is a class of all similar algebras in the language L, and X is the class of all algebras in the
language L1, this provides a map θ : Y Ñ X, sending A to θpAq. Moreover, given a homomorphism
of L-algebras f : AÑ B, we can define θpfq as

θpfq : θpAq Ñ θpBq

a ÞÑ fpaq

i.e, as the restriction, and obtain that this is a well-defined homomorphism in the language L1:
it is well-defined since if Θpaq holds in A, then Θpfpaqqq holds in B, since f is a homomorphism.
Moreover, it is a L1-homomorphism since the language is composed of terms in the language L.

Thus, θ defines a functor. In other words, we have:
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Proposition 3.2.5. Let Y be some class of algebras, and L its language, and let L1 Ď TmLpVARq
be the language of X. Let θ be a set of compatible equations. Then the assignment:

θ : Y Ñ X

A ÞÑ θpAq

Is a functor, which acts on morphisms by restriction.

Given these definitions, one can see the connection between the notion of a contextual translation
and the above functor: if X and Y are two classes of algebras, and xζ,Θy is a contextual translation
between them, consider the following language:

L1 :“ tζpψq : ψ P LXu.

This will be a language composed of terms from LY. By definition of being a contextual
translation, Θ is a compatible set of equations. Thus, this yields a functor in the manner described
above, which we denote by θζ . More than that, we have the following characterisation (for a proof
see [53], Theorem 5.1 and Lemma 5.4):

Theorem 3.2.6. Let X and Y be two quasivarieties. If xζ,Θy be a contextual translation between
X and Y. Then θζ : Y Ñ X is a right adjoint functor.

The previous theorem establishes a deep connection between translations - an eminently syntac-
tic domain - and adjunctions - which relate the semantic domains of interpretation we care about4.
Through it we can investigate certain desirable properties of translations through a semantic lens,
and seek to impose certain properties through syntactic restrictions.

Before that, we recall the explicit description given of the left adjoint of the functor described
above:

Proposition 3.2.7. Let xζ,Θy be a contextual translation between LX and LY. Let θζ be the
induced right adjoint functor. Then the left adjoint functor, F : XÑ Y, acts on objects as follows:
if A P Y, then let Ψ be a congruence on TmLX

pVARq such that A – TmLX
pVARq{Ψ. Then

define:
FpAq “ TmL1pXq{CgYpζ

˚pΨq Y
ď

iPω

Θpxiqq

In many cases, more explicit descriptions of left adjoints are available. We also remark that,
as we will see throughout the thesis, in the algebra of logic, such explicit descriptions tend to be
facilitated by the existence of a topological duality.

Example 3.2.8. (Heyting algebras and S4, continued) As mentioned in the preliminaries, the
functor Bp´q : HA Ñ S4 which takes the Booleanisation of a Heyting algebra, and induces the
modality l as the relative complement in the Heyting algebra, is the left adjoint to the functor ρ
which selects the open elements. We also note that, dually, σ corresponds to the forgetful functor
from the category of Esakia spaces to the category of Boolean spaces which forgets the order.

4We remark that Moraschini in fact proved the converse of this Theorem also holds, except the resulting translation
might not be unary, but instead, κ-ary.
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3.3 Conditions on Adjunctions

For the rest of the chapter, let X and Y be two quasivarieties, and assume that xζ,Θy is a
unary contextual translation, with associated functor θζ . Also, for a given A P X, let HpAq denote
θζpFpAqq.
Notation 3.3.1. We write:

A,Θ ( ζ˚pλ « γq

to mean that A validates the equation ζ˚pλ « γq in the context Θ, that is, in any valuation where
all variables ocurring in λ, γ are assumed to satisfy Θ. ■

We begin by spelling out the structure of interpretations of elements from θζpAq. Note that for
a0, ..., an P θζpAq, and ψpx0, ..., xnq P LX, we have:

ψθζpAqpa0, ..., anq “ ζpψqpa0, ..., anq

where the latter is calculated in A. Having this in mind, we look at the following:

Proposition 3.3.1. For each A P Y and δ « γ P EqXpVARq,

A,Θ ( ζ˚pδ « γq ðñ θζpAq ( δ « γ.

Proof. First suppose that A,Θ ( ζ˚pδ « λq. Let v : TmpXq Ñ θζpAq be an arbitrary valuation.
Then define a new valuation:

v1 : TmYpXq ÞÑ A

x ÞÑ vpxq

which is defined on variables, and lifted to all terms in X as expected. Note that since v was
a valuation taking values in regular elements, then v1 will also take values in regular elements.
Moreover, we can see by induction on the construction of terms that:

vpppxqq “ v1pζ˚pppxqqq.

Indeed, for the base case this holds by assumption. Now assume that t0, ..., tn are terms for which
this holds. Let ψ be an n-ary operation in the language of X. Then:

vpψpt0, ..., tnqq “ ψpvpt0q, ..., vptnqq

“ ψθζpAqpζ˚pv
1pt0qq, ..., ζ˚pv

1ptnqqq

“ ζ˚pψqpv
1pt0q, ..., v

1ptnqq

“ v1pζ˚pψpt0, ..., tnqq

where these equalities follow by definition of the translation and our remarks about the explicit
shape of operations in the algebra of regular elements. But then, since we have the equality, we
obtain that θζpAq ( δ « γ, as intended. The other direction follows by similar arguments. ■

The former is one of the key results we will need throughout this chapter. An easy consequence
of it is a fact relating the structure of the adjunction and the correctness of the translation. First
we recall a piece of category theory:
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Definition 3.3.2. Let F : CÑ D be a functor. We say that F is faithful if for all A,B P C and all
maps f, g : AÑ B: if F pfq “ F pgq then f “ g. We say that it is full if whenever f : F pAq Ñ F pBq
is a map on D, then there is some map g : A Ñ B such that F pgq “ f . We say that F is fully
faithful if it is both full and faithful. We say that F is essentially surjective on objects if for all
C P D there is some A P C such that F pAq – C.

Definition 3.3.3. Let η : 1C ùñ GpF p´qq and ε : F pGp´qq ùñ 1D be natural transformations.
We say that these are respectively the unit and the counit if for all B P C we have that the
composition,

F pBq
F pηBq
ÝÝÝÝÑ F pGpF pBqqq

εF pB
ÝÝÝÑ F pBq

is equal to the identity on B, and also, for all A P D we have that the composition,

GpAq
ηGpAq
ÝÝÝÑ GpF pGpAqqq

GpεA
ÝÝÝÑ GpAq

is equal to the identity on A. We say that η is pointwise injective (resp. surjective) if for each
A P C, ηA is injective (surjecitve). Similarly we say that ε is pointwise injective/surjective.

Proposition 3.3.4. Let η be the unit of the adjunction F $ θζ . If η is pointwise injective then
the translation is faithful : for every collection ΦYtλ « γu Ď EqX, written in variables txj : j P ωu,
we have:

Φ (X λ « γ, iff ζ˚pΦq Y
ď

iPω

Θpxiq (Y ζ
˚pλ « γq.

Proof. Assume that η is pointwise injective. One half of the above condition is true of every
contextual translation, so we focus on the other one. Suppose that Φ *X λ « γ. Let A P X be
some algebra witnessing this. Then, let v be a valuation, such that A, v ( Φ but A, v * λ « γ.
Since η is pointwise injective, we have that HpAq, v ( Φ but HpAq, v * λ « γ as well. But then using
the arguments from Proposition 3.3.1, we get that FpAq, v1 ( ζ˚pΦq whilst FpAq, v1 * ζ˚pλ « γq.
This shows that:

ζ˚pΦq Y
ď

iPω

Θpxiq *Y ζ˚pλ « γq

as desired. ■

We will be interested in translations where not only the unit is injective, but in fact an isomor-
phism. To work towards that, we need some definitions.

Definition 3.3.5. Let xζ,Θ, fy be a contextual unary translation together with a unary term
fpxq P LY called the selector. We say that the triple xζ,Θ, fy is a selective translation if:

1. ζ is faithful;

2. (Y Θpfpxqq, i.e, selected elements are regular;

3. Θpxq (Y fpxq « x.

We say that the translation is strongly selective if additionally we have:

4. The unit η of the adjunction is an isomorphism.
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Example 3.3.6. The GMT and KGG translations we have encountered are both selective. Let
the selector term be fpxq “ lx. Then by the transitivity and reflexivity axioms, for any S4-modal
algebra A, and a P A, lla “ lla. By this fact and given the context is lx, we have the
conditions. The arguments for the KGG translation are similar, using the selector term ␣␣x, and
using the fact that on Heyting algebras the equation ␣␣␣␣x « ␣␣x holds.

Also note that they are faithful: we check this for the double negation translation, since the
other has been mentioned. Indeed, if Φ * λ « γ, let B be a Boolean algebra witnessing this; since
we know that B is such that θpBq “ B, this is enough to prove faithfulness.

Finally, the GMT translation is strongly selective, whereas this is not clear for the double
negation translation.

It is a general categorical fact that if the unit is an isomorphism, then the left adjoint is fully
faithful and the right adjoint is essentially surjective on objects. We leave open the question of
whether this and other sufficient conditions we give are actually necessary.

In addition to being well-behaved, these translations are quite abundant: all four translations
we discussed in the previous section are examples of translations that are faithful, and as one can
see by their definition, also selective5.

We now turn to the selector term. Indeed, in the work of McKenzie [50], categorical equivalences
were given by the presence of a unary idempotent and invertible term. The selector term is a
similar device. Its role, for our purposes, will be to essentially internalise contexts, and allow the
transformation of arbitrary valuations into regular valuations. However, it also has some categorical
consequences. The following lemma follows by definition of being a selective translation:

Lemma 3.3.7. Let xζ,Θ, fy be a selective translation, andA an algebra. Then whenever a P θζpAq,
then fpaq “ a.

Proposition 3.3.8. Let xζ,Θ, fy be a selective translation. Then the right adjoint functor, θζ ,
preserves surjective homomorphisms.

Proof. Suppose that h : A Ñ B is a surjective homomorphism. Let a P θζpBq be some regular
element. By hypothesis let a1 be an element such that hpa1q “ a, which is possible since h is
surjective. Then note that:

θζphqpfpa
1qq “ fphpa1qq “ fpaq “ a,

where the second equality follows from Lemma 3.3.7. So θζphq is surjective as intended. ■

3.4 PAt-Logics and Quasivarieties

The previous section gave us a notion of a selective translation, which was shown to enjoy many
of the nice properties of the double negation translation. In this and the following sections we will
outline how such translations can be used to develop general “Polyatomic Logics” – so named since
the atoms are ‘covered’ by the selector term.

Since we will be working with logics, we make a few assumptions on the objects at hand. For
the following sections, unless specified assume that $ is an algebraizable logic, Y is its equivalent

5In fact, most unary contextual translations that are considered tend to be of this kind. For a binary example,
the reader may want to consider the example, also presented in [53], of the translation from Kleene algebras to
distributive lattices, which the reader may find in that paper.
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algebraic semantics, µpxq and ∆px, yq are the two sets witnessing algebraizability. Moreover, denote
by Λp$q the lattice of finitary extensions of this logic. We also fix a selective translation xζ,Θ, fy
between X and Y, with all previous assumptions made on these classes.

We note that these assumptions are not necessary – indeed, throughout the thesis, namely
through the Goldblatt translation, we will encounter examples which do not satisfy them, but
are still amenable to the same treatment. The assumptions at hand make, however, for a more
transparent read, and in any case, in concrete situations, it will be relatively clear how to overcome
the lack of some assumptions.

We will be concerned here with “PAt-variants” of logics:

Definition 3.4.1. Let $˚P Λp$q be a finitary extension of $. We define the PAt-variant of $˚,

denoted $f˚, as follows: for each set ΓY φ Ď LY

Γ $f˚ φ ðñ Γrfppq{ps $˚ φrfppq{ps.

where for each formula, χrfppq{ps is obtained by substituting p by fppq in χ, and Γrfppq{ps “
tχrfppq{ps : χ P Γu.

The former abstracts from the idea of a negative variant [16].

Definition 3.4.2. Let $s be an arbitrary subset of PpTmLY
pVARqq ˆ TmLY

pVARq. We say
that $s is a PAt-logic if it is the PAt-variant of a logic $˚P Λp$q.

The main notable feature of PAt-logics is that, whilst they are closed under modus ponens, they
need not be closed under uniform substitution. We collect some observations about these structures
in the next proposition6:

Proposition 3.4.3. Let $s be a PAt-logic, and $˚ P Λp$q some logic such that $f˚ “ $s. Then
$s is the least set of formulas such that:

1. $s is a consequence relation in the language LY;

2. $˚ Ď $s;

3. For all atomic propositions p, we have $s ∆pfppq, pq.

Proof. To see that $s is a consequence relation, note this follows from the fact that $˚ is one,
and the definition of being a PAt variant. If S $˚ φ, then by closure under uniform substitution,
Srfppq{ps $˚ φrfppq{ps, so S $s φ. The third property follows from the fact that, (Y f

2ppq « fppq,
and hence, $˚ ∆pf2ppq, fppqq by definition of algebraizability, so by definition of being a variant,
$s ∆pfppq, pq.
Now we note that this is least in these conditions: suppose that , is another consequence relation
satisfying the above properties. Suppose that S $s φ. By definition, then, Srfppq{ps $˚ φrfppq{ps;
hence Srfppq{ps , φrfppq{psq by the second property. Now by assumption, , ∆pfppq, pq for all
atomic propositions; so by induction on complexity of formulas, and the properties of ∆, we get
that:

, ∆pφrfppq{ps, φq

And similar for any formulas in S. So since Srfppq{ps , φrfppq{ps, by ∆-Modus Ponens (recalling
that $˚ Ď ,, and this is assumed to be algebraizable, hence satisfying ∆px, yq, x $˚ y for any x, y)
and the Cut rule, S , φ. ■

6In fact, the properties outlined here could have been taken as the definition of PAt-logic.
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As examples of the former, we recall from Section 1.1 the cases of DNA-Logics as well as the l-
Logics which we sketched there. The requirement (3) can be seen as an abstract version of requiring
that pÑ lp or ␣␣pÑ p hold for atomic propositions. Indeed, in the case of DNA-logics, we have
that pÑ ␣␣p « 1 is a theorem in IPC. Moreover, the set ∆ in this case is given by:

∆pp, qq “ tpÑ q, q Ñ pu

Hence, ∆p␣␣p, pq “ tp Ñ ␣␣p,␣␣p Ñ pu. Thus, requiring that ␣␣p Ñ p amounts to requiring
that ∆p␣␣p, pq P IPC␣, the negative variant of intuitionistic logic. The case for l-logics is wholly
similar.

We now turn to showing that PAt-logics relative to a given translation form a complete lattice.
Before that, recall from the preliminaries that given a collection p$iqiPI of logics, we denote by
$`

Ť

iPI$i

˘ the closure of the union under being a consequence relation.

Proposition 3.4.4. Let p$iqiPI be a collection of PAt-logics. Then
Ş

iPI $i is a PAt-logic. More-
over:

ł

iPI

$i“$
`

Ť

iPI$i

˘

where
Ž

iPI $i denotes the supremum in the lattice of PAt-logics of $.

Proof. Let $i“,
f
i . Let ,

f :“
Ş

iPI ,i Then note that:

č

iPI

$i –
č

iPI

tpΓ, φq : Γrfppq{ps ,i φrfppq{psu

“ tpΓ, φq : Γrfppq{ps , φrfppq{psu

“,f

This follows by definition of being a PAt-variant.
To see that

Ž

iPI $i“$
`

Ť

iPI$i

˘, we claim that if ,fi “ $i for every i, then:

`

ł

iPI

,i
˘f

“ $`

Ť

iPI$i

˘

To see this, make some abbreviations: let ,“
Ž

iPI ,i, and $˚“$
`

Ť

iPI$i

˘.

Now first, assume that Γ ,f φ. By assumption, then Γrfppq{ps , φrfppq{ps. By definition of
being the supremum of a logic (see Proposition 2.5.8), we have that pΓrfppq{ps, φrfppq{psq belongs
to the closure of

Ť

iPI ,i under being a consequence relation. So first assume that it belongs to the
union; then clearly it belongs to ,i for some i, hence, Γ $i φ, as desired. Next, assume that for
all pΓ1, ψq P

`
Ť

iPI ,iq
˝n this holds. If pΓrfppq{ps, φrfppq{psq P p

Ť

iPI $iq
˝n`1 , then by assumption

there is some pΓ1, φrfppq{psq P
Ť

iPI ,
˝n
i , and pΓrfppq{ps, χq is in the same set for χ P Y . By closure

under uniform substitution, we have that:

pΓrf2ppq{ps, χrfppq{psq and pΓ1rfppq{ps, φrf2ppq{psq P p
ď

iPI

$iq
˝n

Hence, by induction hypothesis, we have that these will be in
Ť

iPI $i. Hence, in $˚ we will have
pΓrfppq{ps, φrfppq{psq which by assumption on some logics means that pΓ, φq is there as well. The
converse inclusion follows by similar arguments. ■
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Hence, we denote by Λf p$q the complete lattice of PAt-variants of the logic $. Moreover, we
have the following:

Corollary 3.4.5. The map f : Λp$q Ñ Λf p$q that assigns to each logic $˚ its PAt-variant is a
complete lattice homomorphism.

Proof. Preservation of bounds is obvious, and we have shown preservation of meets and joins in
3.4.4. ■

The natural question then is what the appropriate semantics for these logics should be. Let
A P Y be some algebra. Then define:

Af :“ ta P A : A ( fpaq “ au.

Note that in light of Lemma 3.3.7, we have:

Af “ θpAq.

We will use this fact freely in the sequel. We can then define the semantics of our models:

Definition 3.4.6. Let A P Y. We denote by xAf y the subalgebra of A generated by regular
elements. We say that A is regularly generated if A “ xAf y.
We say that a pair pA, vf q is a polyatomic model of the language LY if vf maps propositional
variables to regular elements.

We define the semantic clauses for interpreting formulas in a polyatomic model as follows:

• For x a propositional variable, we let JxK “ vf pxq

• For any complex terms ψpt0, ..., tnq we have that Jψpt0, ..., tnqK “ ψApJt0K, ..., JtnKq

Given a model pA, vf q, and a set of equations λ, γ we write pA, vf q ( λ « γ if for all x0, ..., xn P
VAR, λpvf px0q, ..., v

f pxnqq “ γpvf px0q, ..., v
f pxnqq. Given an algebra A, we write A (f φ « ψ

to mean that for every PAt-model vf over A, pA, vf q ( φ « ψ; then we say that the equation is
PAt-valid in A. Given a class C of algebras, we write C (f φ « ψ to mean that each algebra has
the equation as a PAt-validity.

Additionally, we abbreviate what it means to satisfy a sequent: given a pair of the form pΓ, φq P
PpTmLY

pVARqq ˆTmLY
pVARq we write pA, vq ( pΓ, φq to mean that: for all x0, ..., xn P VAR,

and each equation δ « γ P µrΓs “
Ť

tµpφq : φ P Γu, if δpvpx0q, ..., vpxnqq “ γpvpx0q, ..., vpxnqq, then
δ˚pvpx0q, ..., vpxnqq “ γ˚pvpx0q, ..., vpxnqq for each δ˚ « γ˚ P µpφq. We write A ( pΓ, φq to mean
that for each valuation v : VAR Ñ A, pA, vq ( pΓ, φq. We write A (f pΓ, φq to mean that for
every polyatomic model over A, vf , pA, vf q ( pΓ, φq.

Given a family S Ď PpTmLY
pVARqq ˆ TmLY

pVARq we write A ( S to mean that for each
pΓ, φq P S, A ( pΓ, φq. Similarly we define A (f pΓ, φq.

Given an arbitrary v a valuation on A, define vf by letting vf ppq “ vpfppqq and lifting to terms
appropriately. Then note that in this situation, for any term χ:

vf pχq “ vpχrfppq{psq

Lemma 3.4.7. Let A P Y and $˚ a finitary extension of $. Then we have:
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1. A ( pΓrfppq{ps, φrfppq{psq iff A (f pΓ, φq;

2. If A ( $˚ then A (f p$˚q
f

3. For any algebra A, we have that A (f pΓ, φq if and only if xAf y (f pΓ, φq.

4. Let A be an algebra and $˚ an extension of $. Then we have that A (f p$˚q
f implies

xAf y ( $˚

Proof. (1) Suppose that A * pΓrfppq{ps, φrfppq{psq; then take v a valuation witnessing this, and
consider vf ; then since:

vf pχq “ vpχrfppq{psq

We have that pA, vf q * pΓ, φq. The converse is similar.

(2) Suppose that A *f pΓ, φq where pΓ, φq P $f˚. Then by the previous statement, A *

pΓrfppq{ps, φrfppq{psq; but the latter is by definition in $˚, as desired.
(3) Note that xAf yf “ Af , since the former is a subalgebra of A. Hence a given v is a regular

valuation on A if and only if it is a regular valuation on xAf y. This yields the result immediately.
(4) Suppose that xAf y * $˚. Hence there is a sequent pΓ, φq P $˚, and a valuation v, such

that:
xAf y, v ( λ « γ, for λ « γ P µrΓs and xAf y, v * λ1 « γ1 for λ1 « γ1 P µpφq

Since xAf y is a generated subalgebra, we can express each element as a term over regular elements,
say a “ δapyq, for some trm δapyq. Then for λ « γ P µrΓs, we have:

Jλpx0, ..., xnqKxA
f y,v “ λpδxpyqq

and similar for γ. Hence consider a regular valuation, say w, on A, such that qi ÞÑ vpyiq, for each

qi ocurring in the above formulas. Then we have that for each λ, γ as noted, Jλrδxpyq{xsKxA
f y,w “

λpδxpyqq and similar for γ. Hence for each λ « γ P µrΓs

pxAf y, wq ( λpδxpyqq « γpδxpyqq

And likewise, pxAf y, wq * λ1pδxpyqq « γ1pδxpyqq. Now notice that:

µrΓrδxpyq{xss “ tµpχrδxpyqsq : χ P Γu

and the latter is equal substituting every equation λ « γ P µrΓs using the substitution given.
Hence for each equation in µrΓrδxpyq{xss, pxA

f y, wq satisfies it, and it does not satisfy some equation
in µrφrδxpyq{xss. Hence pxA

f y, wq * Γrδxpyqs, φrδxpyqsq. Hence, since the valuation takes values in
regular elements, also pxAf y, wq *f Γrδxpyqs, φrδxpyqsq.

In light of all of this, by the previous statement, A *f pΓrδxpyq{ps, φrδxpyq{psq. Since $˚ is a
genuine logic, and thus, is closed under substitution, and since pΓ, φq P$˚:

pΓrδxpyq{ps, φrδxpyq{psq P$˚ .

But then we have by Proposition 3.4.3 that pΓrδxpyq{ps, φrδxpyq{psq P p$˚q
f as well. So we have

that A *f p$˚q
f , as intended. ■

We further isolate one fact which follows from the previous proof.
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Corollary 3.4.8. Suppose that xAf y * pΓ, φq. Then there is a substitution σ, such that A *f

pΓrσppq{ps, φrσppq{psq.

These lemmas are needed to establish the connection between PAt-logics and the PAt-quasivarieties,
which we turn to now:

Definition 3.4.9. Let A,B P Y be algebras. We say that A is a core superalgebra of B if A ĺ B
and Af “ Bf .

Definition 3.4.10. Let V be a subquasivariety of Y. We define the PAt-variant of V as:

VÒ :“ tA : DB P V,Af “ Bf , and A ĺ Bu.

We say a quasivariety is a PAt-quasivariety, relative to the translation and the quasivariety Y, if it
is the PAt-variant of some subquasivariety of Y.

Furthermore, we say that a PAt-quasivariety is a PAt-variety, relative to the translation and Y,
if it is the PAt-variant of a subvariety of Y.

This definition parallels the one for DNA logics, and similar to what is found in that setting,
we have:

Proposition 3.4.11. Let K be a family of algebras from Y. Then:

1. K is a PAt-quasivariety if and only if it is closed under subalgebras, reduced products and
core superalgebras.

2. K is a PAt-variety if and only if it is closed under subalgebras, homomorphic images, products
and core superalgebras.

Proof. The proof is a generalisation of [6, Proposition 3.18], where the role of Heyting algebra
regular elements is replaced by that of θ-regular elements. Indeed, we provide only the proof of the
first statement, as the second follows by the arguments in that Proposition and the ideas sketched
here.

For the right to left direction, we simply note that if V is closed under the specified operations,
then it forms a quasivariety; hence if it is further closed under core superalgebras it will be its own
PAt-variant.
For the other direction, let VÒ be some PAt-variant. We check closure under the operations.

• (Subalgebras): Suppose that A ĺ B and B P VÒ. By definition, then, there is some C P V
such that C ĺ B, with the same set of regular elements. Then consider CXA. We have that
this will be a subalgebra of B (since intersections of subalgebras are again subalgebras), so
will be in V. Moreover, pCXAqf “ pAqf : whenever a P AXC, then a P A, so if fpaq “ a in
AXC, then the same will hold in A; conversely, if a P A, and fpaq “ a, then already fpaq “ a
in B, so by assumption, fpaq P AX C. This then shows that A P VÒ.

• (Reduced Products): Suppose that pAiqiPI are a family of algebras all in VÒ, and hence, that
pBiqiPI is a family of algebras in V such that Bi ĺ Ai with the same regular elements. Now
consider

ś

iPI Ai{R. By closure of V under reduced products, we obtain that
ś

iPI Bi{R P V.
Moreover, by Proposition 3.3.8, we have that:

`

ź

iPI

Bi{R
˘f
“

ź

iPI

Bf
i {R.
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Hence, we get the latter is equal to
ś

iPI A
f
i {R, which tells us by the same fact that

ś

iPI Ai{R P
VÒ.

■

We have that, as expected, PAt quasivarieties and PAt varieties form a complete lattice:

Lemma 3.4.12. Let pKiqiPI be a non-empty collection of PAt-quasivarieties (resp. PAt-varieties).
Then

Ş

iPI Ki is a PAt-quasivariety (resp. PAt-variety).

Proof. In light of Proposition 3.4.11, we simply note that the intersection will be closed under all
the operations. ■

Indeed, it is not difficult to show that one needs only to look at the composed operator:

pISPRqÒ “

in the sense that wheneverK is a class of algebras, this is a PAt-quasivariety iffK “ pISPRqÒpKq.
This follows by the same arguments as presented in [6, Theorem 3.21]. Similarly, a class K is a
PAt-variety if and only if K “ VÒpKq.

With this we have, denoting by PAQpXq the class of PAt subquasivarieties of X. For that we
quickly recall the following simple fact:

Lemma 3.4.13. Let pAiqiPIq and pBiPIq be two families of algebras, and assume that for each i,
Ai ĺ Bi. Then:

•
ś

iPI AiPI ĺ
ś

iPI BiPI

• Given a filter F on I,
ś

iPI AiPI{F ĺ
ś

iPI BiPI{F

Proof. (1) Is straightforward by the definition: given a P
ś

iPI Ai, apiq P Ai ĺ Bi, hence, a P
ś

iPI Bi; moreover, the operations are computed pointwise.
To see (2), first note that for a, b P

ś

iPI Ai, a „F b implies that a „F b in
ś

iPI Bi. Hence we
can send the equivalence class rasF P

ś

iPI Ai{F to rasF P
ś

iPI Bi{F . It is clear to see that this is
then a homomorphism. ■

Proposition 3.4.14. The map p´qÒ : ΛpXq Ñ PAQpXq is a complete lattice homomorphism.

Proof. First let pKiqiPI be a collection of subquasivarieties of X. Then we show that:

`

č

iPI

Ki

˘Ò
“

č

iPI

KÒ

i .

Indeed, if A P p
Ş

iPI Kiq
Ò then A is the core superalgebra of some B which is in every subquasivari-

ety; but then clearly A is in each such subquasivariety. For the converse, if A is a core superalgebra
of Bi each respectively in Ki, note that

Ş

iPI Bi will be a subalgebra of all Bi, it will have the same
regular elements, and will be in

Ş

Ki, showing the result.
For the preservation of the join, we show that:

`

ł

iPI

Ki

˘Ò
“

ł

iPI

KÒ

i
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Where the left hand side join is taken in the class of quasivarieties, and the left hand side in PAt-
quasivarieties. Indeed, by our previous remark, and general facts about closure operators, we have
that:

ł

iPI

KÒ

i “ pISPRq
Ò
`

ď

iPI

KÒ

i

˘

Whereas in turn we have that
Ž

iPI Ki “ ISPR
`

Ť

iPI Ki

˘

. So we show that:

ISPÒR
`

ď

iPI

Ki

˘

“ ISPÒR
`

ď

iPI

KÒ

i

˘

.

One inclusion follows from the inflationarity and monotonicity of the Ò operator. For the other,
assume that A is a core superalgebra of B, which is a subalgebra of C “

ś

jPJ Dj{F , where for
each j, there is some Ej such that Ej ĺ Dj , and Ej P Kj .

Now consider
ś

jPJ Ej{F . Then by Lemma 3.4.13, we have that
ś

jPJ Ej{F ĺ C. Since B ĺ C,
we let G “ B X

ś

jPJ Ej{F , which is a subalgebra of both of these algebras. Then we claim that
E is a core subalgebra of B: indeed, if a P B, and fpaq “ a, then surely a P C, and there fpaq “ a.
Hence, a P

ś

jPJ Ej{F since this has the same regular elements as C. So a P G by definition. Thus,

we have that A is a core superalgebra of G, and G is in SPRp
Ť

iPI Kiq. So A P ISPÒRp
Ť

iPI Kiq, as
desired. This shows the other inclusion, and concludes the proof. ■

We conclude by mentioning some natural facts holding for PAt-Quasivarieties:

Corollary 3.4.15. Every PAt-Quasivariety is generated by its regularly generated algebras.

Proof. Note that if K is a PAt-Quasivariety, and B P K is not regularly generated, then xBf y ď B,
and so xBf y P K is a regularly generated algebra which moreover has B as its core-superalgebra. ■

This can be sharpened in the case of PAt-varieties into a Birkhoff-style theorem:

Definition 3.4.16. Let A be some algebra. We say that A is regular-subdirectly irreducible (RSI)
if it is regularly generated and subdirectly irreducible.

Theorem 3.4.17. Every PAt-Variety is generated by its regular-subdirectly irreducible elements.

Proof. Let K be a PAt-Variety, and let KSI be the class of subdirectly irreducible algebras in
K, and KRSI the class of regular subdirectly irreducible algebras. Then clearly VÒpKRSIq Ď K.
Conversely, we show that K Ď VÒpKRSIq by showing that every regularly generated algebra in K
is in VÒpKRSIq; then the inclusion will follow from the last corollary.

So assume that A is a regularly generated algebra. By Birkhoff’s Subdirect Decomposition
Theorem (see Preliminaries), we have that A is a subdirect product of subdirectly irreducible
algebras, i.e:

h : A ãÑ
ź

iPI

Bi

Where the Bi P KSI . We will show that in fact Bi P KRSI . So let Bi and c P Bi be arbitrary. By
assumption on the embedding, we have that for some a P A:

hpaqpiq “ c
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Since a is regularly generated, there is some term tpx0, ..., xnq written over regular elements from
A, such that tpe0, ..., enq “ a for some e0, ..., en P A. Hence:

hpaqpiq “ hptpe0, ..., enqqpiq “ tphpe0qpiq, ..., hpenqpiqq “ c

But now notice that hpejqpiq is regular: indeed, fphpxjqpiq “ hpfpejqpiq “ hpejqpiq, which follows
from h being an embedding, and ej being a regular element. So we obtain that c is regularly
generated. Thus we obtain that A is a subdirect product of regular subdirectly irreducible algebras
from K, i.e, A P VpKRSIq. ■

3.5 Dual equivalence between PAt-logics and quasivarieties

As before, let X and Y be given, and $ a logic such that Y is its equivalent algebraic semantics.
Let Λp$q be the lattice of finitary extensions of $, and ΛpYq the lattice of subquasivarieties of Y.
Consider the two following maps: for K a subquasivariety of Y, and $˚ a finitary extension. Then
first consider the following operators:

QVarp$˚q :“ tA : @pΓ, φq P$˚,A ( pΓ, φqu

LogpKq :“ tpΓ, φq : K ( pΓ, φqu

Similarly, we define the polyatomic version of these maps:

QVarf p$˚q :“ tA : @pΓ, φq P $˚,A (f pΓ, φqu

Logf pKq :“ tpΓ, φq : K (f pΓ, φqu

We will now show that given any such K and $˚, applying these operators yields a PAt-logic
and a PAt-quasivariety respectively. First, we show the following, which has the exact same proof
as [6, Lemma 3.22].

Proposition 3.5.1. The PAt-validity of a pair pΓ, φq is preserved under the operations of subal-
gebras, homomorphic images, products and core superalgebras.

As a corollary, we note it is moreover preserved under reduced products.

Corollary 3.5.2. Given a logic $˚, the class QVarf p$˚q is a PAt-quasivariety.

Proof. By Proposition 3.5.1, we have that p$˚q
f is closed under subalgebras, reduced products and

core superalgebras. Hence by Proposition 3.4.11, we get the result. ■

Given a quasivariety K P ΛpYq, we also denote by $K the logic LogpKq, and say this is the
logic dually corresponding to K.

Proposition 3.5.3. Given a quasivariety K, Logf pKq is the PAt-variant of $K, the finitary ex-
tension dually corresponding to K.

Proof. To see this, note that Γ &K φ if and only if there is some A P K, and A * pΓ, φq. By
Proposition 3.4.7, this holds iff pA, vf q * pΓrfppq{ps, φrfppq{psq. But this holds if and only if
pΓ, φq R Kf . ■
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Λp$q Λp$qf

ΛpYq ΛpYqf

$f

–op –op

Ò

Figure 3.1: Commuting Diagram of PAt-Logics and Quasivarieties

Denote by Λp$qf and ΛpYqf respectively the lattices of PAt-variants of $ and PAt-quasivarieties
of Y. Then we have that the diagram in Figure 3.1 commutes:

This follows, exactly as in [6] by observing:

1. QVarf p$f q “ QVarp$qÒ

2. Logf pKÒq “ pLogpKqqf

This follows by the same arguments as those found in the above cited paper, using in an essential
fashion Lemma 3.4.7. We extract the consequences of this for our purposes:

Theorem 3.5.4. (Definability Theorem) Every K, a PAt-quasivariety, is defined by its PAt-
validities, i.e for every algebra A:

A P K ðñ A (f Logf pKq

Proof. If A P K, then certainly A (f Logf pKq. Conversely, if A R K, by the above commu-
tativity result, we have that K “ QVarf pLogf pKqq, since QVarf pLogf pKqq “ QVarf pLogpKqf q “
QVarpLogpKqqÒ “ KÒ “ K. So A R QVarf pLogf pKqq, hence A * Logf pKq. ■

As a corollary we have the following Birkhoff theorem analogue:

Theorem 3.5.5. ( PAt-Birkhoff) A class K of algebras is a PAt-quasivariety if and only if it is
PAt-definable by a collection of quasi-equations.

Similarly, we have completeness:

Theorem 3.5.6. (Algebraic completeness) Every PAt-logic $s is complete with respect to its cor-
responding PAt-quasivariety, i.e, for every pair pΓ, φq:

Γ $s φ ðñ QVarf p$sq (f pΓ, φq

Proof. If Γ $s φ, then certainly QVarf p$sq (f pΓ, φq. Now assume that Γ &s φ. Then note that:

$s “ Logf pQVarf p$sqq

Which follows since Logf pQVarf p$sqq “ Logf pQVarp$sq
Òq “ LogpQVarp$sqq

f “$s. Hence we
obtain the result. ■

Then in light of this, together with Corollary 3.4.5 and Proposition 3.4.14, we have:
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Corollary 3.5.7. The map QVarf is a dual isomorphism between the complete lattices Λf p$q and
Λf pYq.

Moreover, in light of Corollary 3.4.15 we have:

Corollary 3.5.8. Every PAt-logic $f is sound and complete with respect to regularly generated
algebras, with respect to PAt-validity.

We thus obtain a completeness theorem for all PAt-logics. We expect that these logics should
be ubiquitous, both in light of our examples, and the relative ease of finding selective translations.
Given the motivations provided in the introduction, we also hope that they could be useful in
applications. For our purposes, we will show in the next chapter that they are intimately related
to Blok-Esakia theory.

3.6 Chapter Summary

We summarise our contributions in this chapter as follows:

• We develop the framework proposed in [53], and introduce the concepts of selective transla-
tions, and prove some basic properties of these translations.

• We generalise the notions introduced in [6] of DNA-logics and varieties to the setting of
Polyatomic logics and quasivarieties, and prove analogues of Birkhoff’s theorem and algebraic
completeness for this setting
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Chapter 4

General Blok-Esakia Theory

In this chapter we provide a general theoretical application of PAt-logics: the development of a
generalised Blok-Esakia theory. This is done by an analysis of the GMT translation, which we carry
out in the first sections, in the setting of strongly selective translations. We identify a more specific
class of translations called sober translations which allow for a Blok-Esakia theory mimicking the
GMT case, and note the fact that not all translations we have so far considered are of this kind.
We then outline a path to generalising this, making use of natural concepts from DNA-logics which
we generalise to Polyatomic Logics. We conclude by showing that these are genuine generalisations
of the concepts as they appear in the GMT case.

4.1 The GMT Translation and Classic Blok-Esakia Theory

In this section we recall some known facts from Blok-Esakia theory. For an in-depth reference,
we refer the reader to [23], see also [17]. We will provide full proofs of some known facts, as these
turn out to have all the relevant ideas which are needed for the general case, and we prefer to
outline them in this more concrete setting.

Throughout this and following sections, let ΛpIPCq denote the lattice of axiomatic extensions of
IPC and NExtpS4q denote the class of normal extensions of S4. Let ΛpHAq and ΛpS4q respectively
denote the lattices of subvarieties of Heyting algebras and S4-algebras, respectively. Similar notation
is used for other systems and varieties.

We begin with the notion of a modal companion which grounds the whole endeavour:

Definition 4.1.1. For M P NExtpS4q and L P ΛpIPCq, we say that M is a modal companion of L
iff:

φ P L ðñ GMT pφq PM.

It follows by our discussion in Chapter 3 (see the discussion in page 30) and the known algebraic
completeness theorems of S4 with respect to S4-algebras and IPC with respect to Heyting algebras,
that S4 is a modal companion of IPC. It is however, by far the only one. Another well-known
companion is the logic known as Grz: this can be axiomatised as:

Grz :“ K‘lplppÑ lpq Ñ pq Ñ p.
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It was shown by Grzegorczyk [39] that this logic is a modal companion of IPC1. Given this
diversity of companions, one generally makes use of three maps, carrying logics to logics: the first
two are denoted by τ and ρ:

τ : ΛpIPCq Ñ NExtpS4q

L ÞÑ S4‘ tGMT pφq : φ P Lu

And

τ : ΛpIPCq Ñ NExtpGrzq

L ÞÑ Grz‘ tGMT pφq : φ P Lu

By definition, we have that given L P ΛpIPCq, τpLq and σpLq are logics, though we have no
guarantee that they are – as desired – modal companions. In the opposite direction, one defines
the following map, from logics M P NExtpS4q to sets of intuitionistic formulas:

ρpMq “ tφ : GMT pφq PMu

The definition is suggested by the notion of modal companion, and one would want to say that
ρpMq is a logic in ΛpIPCq, but this is again not immediate. A way to prove these facts goes by
looking at the algebraic semantics of these logics, and corresponding to these syntactic assignments
some semantic ones.

Let p´ql : S4Ñ HA be the functor which maps an S4-algebra B to Bl, and which, for every
homomorphism of S4-algebras f : B Ñ B1 maps this to fæl : Bl Ñ B1l, the restriction of f . This
is well-defined: if a P Bl, then la “ a, so lfpaq “ fplaq “ fpaq. As it turns out, this functor
has some additional nice properties:

• It is a right adjoint functor, and hence, preserves all limits (including injective homomor-
phisms and products, which are specific kinds of limits);

• The right adjoint functor preserves surjective homomorphisms.

Its corresponding left adjoint functor Bp´q : HA Ñ S4, assigns to each Heyting algebra H its
Boolean envelope BpHq (see Preliminaries), together with a l-modality defined as follows:

la “
ł

tc P H : c ď au

This is well-defined [23, Construction 2.4.7]. On maps, given f : H Ñ H1 a Heyting algebra
homomorphism, we let Bpfq : BpHq Ñ BpH1q be the unique lift of this map, which can be shown
to preserve the modality. Then we have that:

• The functor Bp´q is a left adjoint, and hence preserves all colimits (including surjective
homomorphisms, which are coequalizers in the case of varieties) and also preserves finite
products and injective homomorphisms.

Finally, the adjunction of these two functors has two very desirable properties:

1We note however that the current axiomatisation is, as far as we are aware, due to Segerberg [55], who noted
Grzegorczyk’s original axiom was equivalent to the present simpler one.
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• The unit map η is an isomorphism.

• The counit map ε is pointwise injective.

Using these functors one can define appropriate maps on varieties. Given a variety V P ΛpHAq,
consider:

τpVq “ tB P S4 : Bl P Vu.

The ambiguity in denoting this as τ is intentional, and is motivated by the following proposition:

Proposition 4.1.2. Let L P ΛpIPCq and K P ΛpHAq. Then:

1. τpKq is a variety, and τ is a complete homomorphism on the lattice of varieties.

2. τpVarpLqq “ VarpτpLqq. Hence τpLogpKqq “ LogpτpKqq and τ is a complete homomorphism
on the lattice of logics.

3. τpLq is the least modal companion of L;

Proof. To see (1), suppose that A P τpKq. By Tarski’s HSP theorem, assume that A is a homo-
morphic image of B, which is a subalgebra of

ś

iPI Bi, and pBiql P K. Since p´ql commutes
with all limits and surjective homomorphisms, then Al is a homomorphic image of Bl which is a
subalgebra of

ś

iPIpBiql. Hence Al P K, and thus, A P τpKq.
To see that τ is a homomorphism on the lattice of varieties, notice that τp

Ş

iPI Kiq “
Ş

iPI τpKiq

by definition: A P τp
Ş

iPI Kiq if and only if Al P
Ş

iPI Ki, if and only if Al P Ki for each i, if
and only if A P τpKiq for each i, if and only if A P

Ş

iPI τpKiq. Moreover, if A P τp
Ž

iPI Kiq,
then Al P

Ž

iPI Ki; hence Al is a homomorphic image of B, which is a subalgebra of
ś

iPI Ci,
where the factors are from the Ki. Then because the unit is an isomorphism, B “ B1l and
ś

iPI Ci “
ś

iPIpC
1
iql, and C1i P τpKiq surely. Hence A P

Ž

iPI τpKiq. For the converse, suppose
that A P

Ž

iPI τpKiq; then A is a homomorphic image of B, a subalgebra of
ś

iPI Ci, and pCiql P

Bi; then Al is a homomorphic image of Bl, a subalgebra of
ś

iPIpCiql. Hence A P
Ž

iPI Bi, so
A P τp

Ž

iPI Kiq.
To see (2), we see that for each S4-algebra B, B P τpVarpLqq if and only if Bl P AlgpLq, if and

only if Bl ( L if and only if B ( tGMT pφq : φ P Lu, if and only if B P VarpτpLqq. Hence by
algebraic completeness:

τpLogpKqq “ LogpτpKqq ðñ VarpτpLogpKqq “ VarpLogpτpKqqq “ τpKq

ðñ τpVarpLogpKqqq “ τpKq.

With this it is straightforward to see that τ is also a complete homomorphism on logics.
To see (3), notice that by definition if φ P L then GMT pφq R τpLq. Conversely, if φ R L,

let H P VarpLq be such that H * φ; because η is an isomorphism, we know that there is some
B such that ρpBq “ H; hence, B P τpAlgpLqq. By (2), then B P AlgpτpLqq, i.e, B ( τpLq, and
B * GMT pφq. This proves that τpLq is a modal companion. It is clear to see that it must be
least. ■

We now turn to the other direction. Paralleling the assignment ρ above, we can define:

ρpKq :“ tBl : B P Ku.
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The following proposition also establishes that this indeed gives us a well-defined map, and also
that the map ρ on logics does give us genuine modal companions. We call the attention to the
reader to the different properties of the adjunctions we will use here, compared to τ :

Proposition 4.1.3. Let K P ΛpS4q. Then:

1. ρpKq is a variety, and ρ is a surjective complete homomorphism on the lattice of varieties.

2. The map ρ : NExtpS4q Ñ ΛpIPCq defined as ρpLq “ tφ : GMT pφq P Lu is a complete lattice
homomorphism.

3. For all N P NExtpS4q, and L P ΛpIPCq, N is a modal companion of L if and only if ρpNq “ L.
Hence, for all K P VarpS4q and P P VarpHAq we have that if LogpKq is a modal companion of
LogpPq then ρpKq “ P.

Proof. (1) Suppose that A P ρpKq. By Tarski’s HSP theorem, A is a homomorphic image of B,
which is a subalgebra of

ś

iPIpCiql, where Ci P K. Note that since p´ql preserves products, the
latter is p

ś

iPI Ciql. Hence, since Bp´q preserves homomorphic images, BpAq is a homomorphic
image of BpBq which is a subalgebra of Bpp

ś

iPI Ciqlq; since the counit is an injective homomor-
phism, Bpp

ś

iPI Ciqlq is a subalgebra of
ś

iPI Ci, and so BpBq is as well. Thus, BpAq P K, since
the latter is a variety. Since pBpAqql – A, we have that A P ρpKq. We leave the verification that
this is a complete homomorphism to the reader. To see that it is surjective, simply note that if K
is any variety of Heyting algebras, then τpKq “ tB : ρpBq P Ku is such that ρτpKq “ K.

To see (2), first note that if H P ρpVarpMqq then H “ ρpBq where B (M ; hence, if GMT pφq P
M , then H ( φ, so H ( ρpMq. Thus H P VarpρpMqq. Conversely, assume that φ P ρpMq, and let
H be such that ρpBq “ H and B ( M ; since φ P ρpMq, then GMT pφq P M , so B ( GMT pφq,
and hence, H ( φ so:

ρpMq Ď LogpρpVarpMqq

Hence by algebraic completeness, and the fact that ρpVarpMqq is a variety:

VarpρpMqq Ď VarpLogpρpVarpMqqqq “ ρpVarpMqq

This shows the other inclusion. Hence we have that ρpVarpMqq “ VarpρpMqq.
Thus, given M P NExtpS4q, LogpVarpρpMqqq “ LogpρpVarpMqq. We will show that the

latter is simply ρpMq. Indeed, if φ P ρpMq, then GMT pφq P M ; if A P ρpVarpMqq, then
for some B P VarpMq, Bl “ A. Since GMT pφq P M , by the results of 30, A ( φ, so
A P LogpρpVarpMqq. Conversely, if φ R ρpMq, then GMT pφq RM , so let A P VarpMq be such that
A * GMT pφq; we have that Al * φ by the same result, and since Al P ρpVarpMqq, this shows
that φ R LogpρpVarpMqq. By arguments analogous to those above, we can show that ρ is a complete
homomorphism.

(3) Note that given any such N and L, we have that ρpMq “ L if and only if φ P L if and only
if GMT pφq PM if and only if M is a modal companion of L.

To see the last statement, assume that LogpKq is a modal companion of LogpP q. Then
ρpLogpKqq “ LogpP q. Hence LogpρpKqq “ LogpP q, so by algebraic completeness, ρpKq “ P . ■

The final map that appears in this context is usually called σ. Whereas, by the contents of the
previous propositions, τ is the least modal companion, σ outlines the greatest. Its definition on
algebras is thus as follows:

σpKq :“ HSPtBpHq : H P Ku

50



However, a careful analysis of the Blok-Esakia theory, reveals that the greatest modal companion
is the one structure which heavily depends on properties of S4 and HA. One fact which can be
established generically is the following:

Proposition 4.1.4. For any L P ΛpIPCq, LogpσpVarpLqq is the greatest modal companion of L.

Proof. First we note that this is a modal companion: assume that φ P L. Since σpVarpLqq is
generated by BpHq for H P VarpLq, if H is such an algebra, then H ( φ, so BpHq ( GMT pφq
(given that pBpHqql – H. Hence GMT pφq P LogpσpVarpLqqq. Conversely, if φ R L, let H P

VarpLq be such that H * φ; hence BpHq * GMT pφq. But since BpHq P σpVarpLqq we have that
GMT pφq R LogpσpVarpLqqq.

To see that it is the greatest modal companion, suppose thatM is an arbitrary modal companion
of L. To show that M Ď LogpσpVarpLqqq it suffices to show that σpVarpLqq Ď VarpMq. In turn
to show this, it suffices to show that tBpHq : H P VarpLqu Ď VarpMq. So let H P VarpLq be
arbitrary. Since M is a modal companion of L, then ρpVarpMqq “ VarpLq. Hence H – ρpBq for
some B P VarpMq. Moreover, we know that:

BpBlq ãÑ B

Maps injectively, via the counit map. Hence BpBlq P VarpMq. But then σpHq P VarpMq, which
shows the result. ■

Unlike the remaining maps, the fact that σ : ΛpIPCq Ñ NExtpGrzq as defined above is a
homomorphism on the lattice of varieties, or that its definition on varieties matches up with its
definition on logics, requires using “Blok’s lemma”. This is the result which says that for each
K P ΛpGrzq, that is, each subvariety of the variety of Grz-algebras, K is generated by its elements
of the form BpHq for H P HA.

This result is quite particular to Heyting algebras and IPC, and to the properties of the Grz
axiom. On the other hand, it is plain to see from the facts we have about τ and ρ, that the
categorical properties we noted – the unit of the adjunction being an isomorphism, the counit being
injective, etc – are already enough to allow some properties – like FMP, tabularity, or decidability
- to transfer between logical systems.

4.2 Sober Translations

The recollections of last section should give us a good idea of how to generalise basic Blok-
Esakia theory for a great number of contextual translations. For that purpose, assume that X
and Y are quasivarieties, where X is an algebraic semantics of a logic $X, with set of equations
µXpxq witnessing this fact, and Y is the equivalent algebraic semantics of $Y, with sets µYpxq and
∆Ypx, yq. Let Λp$Xq and Λp$Yq be the lattices of finitary extensions of the logics. We assume
throughout that ζ “ xζ,Θ, fy is a selective translation from (X to (Y. Correspondingly, let ΛpXq
and ΛpYq be the lattices of subquasivarieties of X and Y.

We also need a special assumption which is met in all cases we consider. This is that, es-
sentially, the translation commutes with the algebraization. More concretely, given any formula
φ P TmLX

pVARq, we assume that:

ζ˚pµXpφqq “ µYpζ˚pφqq
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Throughout, we use θ to refer to the right adjoint functor associated to this translation, and F
to denote the corresponding left adjoint functor.

First we will define two maps between $X and $Y.

Definition 4.2.1. Let ρ be the following map: for $˚P Λp$Yq:

ρp$˚q :“ tpΓ, φq P PpTmLX
pVARqq ˆTmLX

pVARq : ζ˚rΓs $˚ ζ˚pφqsu

Also, define τ as the following map, for $˚P Λp$Xq:

τp$˚q :“ $Y ‘ tpζ˚rΓs, ζ˚pφqq P PpTmLY
pVARqq ˆTmLY

pVARq : Γ $˚ φu

It is straightforward to see that τ as defined is a logic. These maps are related to the following
definition:

Definition 4.2.2. Let $˚P Λp$Yq and $
˚P Λp$Xq. We say that $˚ is a ζ-companion of $˚ if:

Γ $˚ φ ðñ ζ˚rΓs $˚ ζ˚pφq

Given any $˚, we denote by ζp$˚q the collection of ζ-companions of this logic.

Correspondingly we define the following on algebras: for K a subquasivariety of X:

τpKq :“ tA : θpAq P Ku

The following is analogous to Proposition 4.1.2. Its proof follows mostly the same way, using
the hypothesis of strong selectivity to exploit the fact that the unit is an isomorphism, and by
Proposition 3.3.8, the right adjoint θ preserves surjective homomorphsims.

Proposition 4.2.3. Let $˚P Λp$Xq and K P ΛpXq. Assume that ζ is a strongly selective trans-
lation.

1. τpKq is a quasivariety, and τ is a complete homomorphism on the lattices of quasivarieties.

2. τpQVarp$˚qq “ QVarpτp$˚qq. Hence τpLogpKqq “ LogpτpKqq and τ is a complete homomor-
phism on the lattice of logics.

3. τp$˚q is the least ζ-companion of $˚.

Proof. (1) follows from the same arguments as before. For (2) assume that A P τpQVarp$˚qq, hence
θpAq P QVarp$˚q. If pΓ, φq P$˚, then θpAq ( pΓ, φq. Assume that A, v ( µYrζ˚rΓss. hence, by
assumption, A, v ( ζ˚rµXrΓss. So since the translation is selective, we can transfer this valuation to
obtain some valuation v1, such that θpAq, v1 ( µXrΓs. By assumption,then θpAq, v1 ( µXpφq, which
by the reverse arguments shows that A, v ( µclassY rζ˚pφqs. This shows that A ( pζ˚rΓs, ζ˚pφqq.
Similarly, if A P QVarpτp$˚qq, then we show that θpAq P QVarp$˚q using the converse arguments.
Similar arguments also show that:

τpLogpKqq “ LogpτpKqq

For (3), left to right is obvious. Now for the converse, assume that Γ &˚ φ. Let A P QVarp$˚q
witness this. Since the translation is strongly selective, we know that there exists some alge-
bra B such that θpBq – A. Hence, B P τpQVarp$˚qq. By the same arguments as above, then
B * pζ˚rΓs, ζ˚pφqq. But by (2) we have that then B P QVarpτp$˚qq, hence, by completeness,
pζ˚rΓs, ζ˚pφqq R τp$

˚q. ■
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Hence, all strongly selective translations admit a notion of a least ζ-companion. For such
translations, for now, we cannot say much more. Hence we turn to the following definition:

Definition 4.2.4. Let xζ,Θ, fy be a strongly selective translation between X and Y. We say that
xζ,Θ, fy is a sober translation if it satisfies:

• (Injective Preservation) F preserves injective morphisms;

• (Sobriety) The counit ε is pointwise injective.

In light of the previous section we have:

Proposition 4.2.5. The Gödel-McKinsey-Tarski translation is sober.

Proof. We have noted in Example 3.3.6 that the translation is strongly selective. The fact that the
counit of the adjunction is injective, and the left adjoint preserves injective morphisms was noted
in pp.49, and is shown in [23, Construction 2.5.7]. ■

For sober translations we can show the following:

Proposition 4.2.6. Let xζ,Θ, fy be a sober translation. For K P ΛpYq, let:

ρpKq “ tθζpAq : A P Ku

Then ρpKq is a quasivariety, and the map ρ : ΛpXq Ñ ΛpYq is a surjective complete homomorphism.

Proof. The proof runs exactly the same way as (1) in 4.1.3, except we use Maltsev’s ISPR theorem,
instead of Tarski’s HSP theorem. ■

We also have the definition of ρ on logics, analgous to the GMT case:

Proposition 4.2.7. For each $˚P Λp$Yq, ρp$˚q is a logic in Λp$Xq. Moreover, $˚P Λp$Yq is a
ζ-companion of $˚P Λp$Xq if and only if ρp$˚q “$

˚. Hence, for all K P ΛpYq and P P ΛpXq we
have that if LogpKq is a modal companion of LogpPq then ρpKq “ P.

Hence, for sober translations we have that all finitary extensions of $X have ζ-companions, and
the syntactic maps witnessing this transformation have a concrete semantic meaning. Moreover,
we also have the existence of greatest ζ-companions: for K P ΛpXq, define:

σpKq :“ ISPRtFpBq : B P Ku

Then we have the following:

Proposition 4.2.8. For any logic $˚P Λp$Xq, LogpσpQVarp$˚qqq is the greatest ζ-companion of
$˚.

As noted, properties like FMP and tabularity now could be studied in the relationship between
these two systems: for instance, if K P ΛpYq is generated by its finite elements, clearly ρpKq will
be as well; if P P ΛpXq is generated by a single element, then τpPq will be as well. In specific
cases, a more detailed study could then be made paralleling the preservation results studied for the
Blok-Esakia theory.

We conclude this section by showing that the KGG translation is not sober. First, we note that
the following result is proven in [57, Lemma 4.2]:
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Proposition 4.2.9. The unit of the adjunction F $ Reg, between Boolean algebras and Heyting
algebras, is an isomorphism.

Hence the natural follow up question is whether such a translation is in fact sober. The following
results would also easily follow from results at the end of this section; however the proof we provide
illustrates some of the questions that we will encounter in Chapter 5, and so we opt to discuss it
in greater detail.

For that purpose we recall some facts about the regularisation of a Heyting algebra. Throughout,
given an Esakia space pX,ď, τq, and U a clopen in X, let MaxpUq “ tx P U : @y P X, if x ď
y then x “ yu.

Lemma 4.2.10. Let H be a Heyting algebra, and XH the dual Esakia space. Then:

1. For each U P ClopUppXHq, we have that U “ φpaq is such that a P RegpHq if and only if: for
all x P XH , if MaxpÒxq Ď U , then x P U .

2. For each a, b P RegpHq we have that a “ b if and only if φpaqXMaxpXHq “ φpbqXMaxpXHq.

3. The assignment k : RegpHq Ñ CloppMaxpXHqq given by kpaq “ φpaq X MaxpXHq is an
isomorphism.

Proof. (1) First assume that a P RegpHq. Let U “ φpaq. Assume that MaxpÒxq Ď U , but x R U .
Hence since U “ ␣␣U , there is some x ď y, such that whenever y ď z, then z R U . Since XH

is an Esakia space, let y ď z be maximal element; then we get a contradiction to MaxpÒxq Ď U .
Conversely, we show that ␣␣U “ U . Hence, assume that x P ␣␣U ; hence whenever x ď y, y ď z
and z P U . Hence in particular, this holds for all maximal elements seen by x, which implies by
assumption that x P U .

(2) The left to right direction is clear. If a ‰ b, then by Esakia duality, φpaq ‰ φpbq. Then
without loss of generality, there is x P φpaq such that x R φpbq. Now if MaxpÒxq Ď φpbq, by
regularity, x P φpbq, which does not hold. Hence, there is some y, such that x ď y, and y R φpbq,
whereas obviously, y P φpaq.

(3) Now let k : RegpHq Ñ CloppMaxpXHqq be the assignment kpaq “ φpaq XMaxpXHq. Then k
is injective, since if a ‰ b, then kpaq ‰ kpbq by what we just showed. Moreover, this is easily seen to
be surjective, and it is also a Boolean algebra homomorphism: kpa^ bq “ kpaq X kpbq, and we can
see that kp␣aq “ φp␣aq XMaxpXHq “ MaxpXHq ´ pÓ pφpaqq. Then we claim the latter is equal to
MaxpXHq´φpaq. Indeed, if x P kp␣aq, then x RÓ pφpaqq. Since x is maximal, then x R φpaq, hence,
x P MaxpXHq ´ φpaq. Conversely, if x P MaxpXHq ´ φpaq, then if x ď y, then x “ y, so y R φpaq.
This shows the claim. Moreover, k preserves the bounds, which shows that k is an isomorphism of
Boolean algebras. ■

Now let Reg : HAÑ BA : F be the adjunction corresponding to the double negation translation.
As far as we are aware, there are no descriptions of the left adjoint functor for this right adjoint2

which are very explicit (but see [57] for an extended discussion). However, we can show that the
translation is not sober using the above duality-theoretic properties.

Consider 2 the 2-element Boolean algebra. This is a Heyting algebra, and it is clear that
Regp2q “ 2. Moreover, by Lemma 4.2.10, we obtain that any Heyting algebra which Esakia space
has exactly two maximal elements (and only such Esakia spaces) will map via Reg to 2.

2By contrast, it is known that Reg is left adjoint to the full and faithful inclusion of Boolean algebras into Heyting
algebras.
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Now assume towards a contradiction that the translation is sober. Hence FpRegp2qq must be
isomorphic to 2, since it is an adjunction: we know that RegpFpRegp2qqq “ 2, by the fact that this
is an idempotent adjunction (since it is strongly selective), and hence it must have two elements in
the dual Esakia space. But now consider the Heyting algebra in Figure 4.1

1

A

x ␣x

0

Figure 4.1: Hasse Diagram of Hp2q

Dually, this corresponds to the frame known as a 2-fork. It is clear to see that RegpHq “ 2
as well. By assumption on the adjunction we have a counit map ε : FpRegpHqq Ñ H, which is
dually, a surjective p-morphism from the 2-fork to the space with 2 elements (since we assume that
FpRegpHqq “ Fp2q is isomorphic to the 2-element Boolean algebra). But this is impossible, as can
be obtained by inspecting the diagram in Figure 4.2, and noting that there cannot be a surjective
p-morphism from a connected frame to a disconnected one.

‚ ‚ ‚

‚ ‚

Figure 4.2: Impossibility of P-morphism from 2-fork to 2-Boolean algebra

Hence we have shown:

Corollary 4.2.11. The KGG translation is not sober.

The former proof illustrates our choice of the term sobriety : dually, the space XH as seen above
is not “sober” in so far as it contains points which are redundant from the point of view of the
adjunction. This will become a theme in later chapters.

4.3 Polyatomic Logics as Generalised Companions

Despite the notion of ζ-companion corresponding very naturally to that found in Blok-Esakia
theory, it seems to have some flaws. For starters, we do not have an understanding of how many
selective translations are strongly selective or sober. On the other hand, even for sober translations,
the description we gave of the greatest modal companion is in a sense purely existential – we do
not have any semblance of an axiomatisation of it on the basis of the original logic. Hence, one
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might ask whether some natural construction could exist which could match up with ζ-companions
but also be defined for a much larger scope of translations.

To assist us in this task, we recall from [6] two crucial notions: that of the least and great-
est DNA-variant. It was proved that every intermediate logic has both of these variants. More
concretely, the following was shown:

Definition 4.3.1. Let L P ΛpIPCq. We say that L is:

• DNA-minimal if whenever S is an intermediate logic and L␣ “ S␣ then L Ď S.

• DNA-maximal if whenever S is an intermediate logic and L␣ “ S␣ then S Ď L.

Definition 4.3.2. Let L1 be a DNA-logic. We define the schematic fragment of L1, denoted
SchempL1q as follows:

SchempL1q “ tφ : @ψ,φrψ{ps P L1u

In other words, the schematic fragment is the smallest fragment of the DNA-logic which is
closed under substitution. It can be shown that this is an intermediate logic, and moreover:

VarpSchempL1qq “ VarptxH␣y : H P DNA´ VarpL1quq

In other words, the variety generated by the schematic fragment is precisely the variety generated
by the regularly generated subalgebras of those H which belong to the DNA-variety of L1. More
importantly, we have the following:

Proposition 4.3.3. For each intermediate logic L, L is DNA-maximal if and only if L “ SchempL␣q.

Hence, schematic fragments provide a concrete syntactic description of the greatest DNA-
variant. This is not of course a very concrete decription - in fact, it is shown in [6] that the
schematic fragment of IPC is the well-known Medvedev Logic, which as far as we are aware has
never been given a recursive axiomatisation. Nevertheless, knowing the properties associated to it
can provide us with insight on the nature of the translation and the logics at play.

To see this, we first exemplify this for the GMT translation, once again. If indeed l-varieties
and l-logics should serve as something like generalised modal companions, then we should hope
that for this prototypical example they should coincide. Indeed, note that:

Proposition 4.3.4. For each variety K P ΛpS4q:

τpρpKqq “ KÒ

Consequently, given two logics M,N P NExtpS4q and a logic L P ΛpIPCq, we have that M,N are
both modal companions of L if and only if M and N have the same l-variant.

Proof. Indeed, if B P τpρpKqq, then Bl “ Cl where C P K; hence, up to isomorphism, Cl

includes in Bl, so BpClq maps injectively into BpBlq, which since the counit is injective, is a
subalgebra of B. Since BpClq P K, then B is a core superalgebra of BpClq, and so is in KÒ.
Conversely, if B P KÒ, then C ď B where C P K, and they share the same core; hence, Bl P ρpKq,
hence, B P τpρpKqq.
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Now in light of the fact we just showed,Ml “ Nl (their Box variant) if and only if τpρpVarpMqqq “
τpρpVarpNqqq. Since τ is injective, this holds if and only if ρpVarpMqq “ ρpVarpNqq. This holds if
and only if:

VarpρpMqq “ VarpρpNqq

Which by algebraic completeness holds if and only if ρpMq “ ρpNq. The latter holds if and only if
M and N are modal companions of L. ■

Hence, as expected, greatest modal companions should exactly correspond to the largest logic
with the same l-variant. That is:

Proposition 4.3.5. If L is an intermediate logic, σpLq “ SchempτpLqlq.

Proof. First note that SchempτpLqlq and τpLq havethe same l-variant by definition; hence, they
are both modal companions of L. Moreover, since SchempτpLqlq is the greatest having τpLql as a
l-variant, it will also be the greatest modal companion. Hence since σpLq is moreover the greatest
modal companion, we have that SchempτpLqlq “ σpLq. ■

If we now consider a world where we did not know the axiom Grz, we can imagine the possibilities
of arriving to this axiom through the study of the schematic fragment. Namely, we could – as we
will do in the next section – derive the following result:

Proposition 4.3.6. The lattice ΛpIPCq is isomorphic to Λf pS4q.

Let us exemplify this briefly: consider for instance the logic LC P ΛpIPCq, which is axiomatised
by the axiom pÑ q_ q Ñ p. It can be shown by semantic methods that τpLCq “ S4.3, the system
S4 together with the axiom lplpÑ qq _lplq Ñ pq. The lattice of extensions of this logic has a
countable, though somewhat complicated structure; by contrast, in light of the previous result, one
has that ΛpLCq – ΛlpS4.3q – ΛpGrz.3q, which is known to be isomorphic to an infinite descending
chain (see [14, pp.427]). Hence, the study of l-variant extensions could presumably, in a setting
where the Grz axiom was not known, be carried out in a more straightforward fashion.

A similar but more striking example is the following: if one looks at CPC, its least modal
companion is the system S5, which has infinitely many extensions. By contrast, S5l has no proper
extensions.

In the next few sections, following the structure of [6], we outline how the notion of a “DNA-
logic” can be carried out in general. We provide most of the proofs, since the change of setting
brings some subtleties we would wish to take into consideration, but refer the reader to the article
above for some facts which carry to our setting immediately.

4.4 Connecting Companions and Variants

In this section we conclude our discussion by establishing the connection between our discussion
of ζ-companions and PAt-logics. Assume throughout a contextual translation ζ “ xζ,Θ, fy.

Proposition 4.4.1. Let ζ be a strongly selective translation, and K P ΛpXq. Then τpKq is a
PAt-quasivariety. Moreover, the assignment:

τ : ΛpXq Ñ Λf pYq

is injective.
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Proof. By Proposition 4.2.3, we know that τpKq is a quasivariety. Moreover, it is easy to see that
it is closed under core superalgebras: if A P τpKq, and A ĺ B, where Af “ Bf , then θpBq P K, so
B P τpKq by definition.

To see that τ is injective, notice that if K ‰ K1, then let A P K and A R K1 be arbitrary. Then
FpAq P τpKq by definition of τ and the fact that the unit is an isomorphism. By the same fact, we
have FpAq R τpK1q. So τpKq ‰ τpK1q. ■

Hence, we have that, semantically, for strongly selective translations, one can study least ζ-
companions as logics, or as PAt-logics. If moreover we assume that the translation is sober, we have
the following result:

Proposition 4.4.2. (PAt-Blok Esakia Isomorphism) Assume that ζ is a sober translation. Then
the assignment τ : ΛpXq Ñ Λf pYq : ρf is a lattice isomorphism.

Proof. Let K be an arbitrary PAt-quasivariety in Λf pYq. We will show that τρpKq “ K. Indeed,
first we see that if A P K, then θpAq P ρpKq, so by definition A P τρpKq. Conversely, if A P

τρpKq, then θpAq P ρpKq. By assumption, then θpAq “ θpBq for some B P K. Hence note that
FpθpAqq “ FpθpBqq. Since the translation is sober, by sobriety, FpθpBqq ď B, so FpθpBqq P K.
But by sobriety again, FpθpAqq ď A, and so we get that A is a core superalgebra of FpθpBqq - i.e,
A P K, since K is a PAt-quasivariety. This shows that τ is surjective.

The fact that τ is an injective homomorphism between these lattices follows from the commuting
diagram of pp.45, and Proposition 4.4.1. ■

Corollary 4.4.3. If xζ,Θ, fy is a sober translation, then Λp$Xq – Λf p$Yq.

This isomorphism can thus serve as a natural correspondence for the study of the relationship
between two systems. In a sense, as noted in the introduction, it can be seen as “modding out”
Blok’s Lemma: since our Polyatomic Logics are by construction complete with respect to regularly
generated algebras, this ensures the isomorphism goes through in that case. Nevertheless, this does
not trivialise the situation – as we will have opportunity to see, sobriety is far from a straightforward
property.

As a consequence of the former result, we also get for free that the Double Negation Translation
could never be sober: it is trivial to observe that there is a single quasivariety of Boolean algebras,
and correspondingly, a single logic, though it is known that there are infinitely many DNA-logics
[6, Theorem 5.11].

For the rest of this section, we show that additionally, in the setting of sober translations we
get that the natural counterpart of the map σ is defined. As we will see, we have a good grasp of
it semantically:

Definition 4.4.4. Let xζ,Θ, fy be a sober translation between X and Y, inducing an adjunction
θ : XÑ Y : F . We define for each quasivariety K P ΛpXq, the collection

σpKq “ QVarptFpAq : A P Kuq

Definition 4.4.5. Let $f be a PAt-logic. We define Schemp$f q, its schematic fragment as:

Schemp$f q :“ tpΓ, φq : @ψ P LY,Γrψ{ps $f φrψ{psu.

In other words, the schematic fragment is the collection of all formulas for which the PAt-logic
is closed under substitution. The following explains the main properties of this:
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Lemma 4.4.6. For each PAt-logic $f , Schemp$f q is a logic in Λp$Yq. Moreover, it is the greatest
logic which has $f as a PAt-variant.

Proof. The verification that this is a logic is straightforward. It is also clear that the schematic
fragment will have $f as its PAt-variant. Now suppose that $˚ has $f as a PAt-variant. Assume
that Γ $˚ φ is arbitrary, and suppose that ψ. Then for each ψ, we have Γrψ{ps $˚ φrψ{ps, hence,
Γrψ{psrfpqq{qs $˚ φrψ{psrfpqq{qs. This means that Γrψ{ps $f φrψ{ps. Hence pΓ, φq P Schemp$f
q. ■

Moreover, schematic fragments are also companions. To simplify notation, given $˚, we denote
by:

Schp$˚q :“ SchempLogf pQVarpτp$˚qqqq

Lemma 4.4.7. For each $˚P Λp$Xq we have that Schp$˚q is a ζ-companion of $˚.

Proof. Suppose that Γ $˚ φ. Then by definition, pζ˚rΓs, ζ˚rφsq P τp$˚q. Now suppose that ψ is
any formula. We want to show that if A P V arpτp$˚qq, then A (f pζ˚rΓsrψ{ps, ζ˚rφsrψ{psq . Hence
by definition, we want to check that A ( pζ˚rΓsrψ{psrfpqq{qs, ζ˚rψ{psrfpqq{qsq. But we know that
τp$˚q is a logic, and hence is closed under uniform substitution; so since A ( pζ˚rΓs, ζ˚rφsq, the
result follows.

Conversely, suppose that pΓ, φq R $˚. Suppose that A P QVarpτp$˚qq is an algebra such
that A * pζ˚rΓs, ζ˚rφsq in the context of Θ, by Proposition 3.3.1. Hence, we can assume the
valuation witnessing this to be regular, i.e, A *f pζ˚rΓs, ζ˚rφsq, which by Lemma 3.4.7 means that
xAf y *f pζ˚rΓs, ζ˚rφsq. But now by Corollary 3.4.8, we have that there is a substitution σ, such
that A *f pζ˚rΓsrσppq{ps, ζ˚rφsrσppq{psq. This means that pT rXs, T rφsq R Schp$˚q. ■

We will now show that schematic fragments correspond exactly to the quasivarieties of the form
σpKq as defined above.

Proposition 4.4.8. Let $˚P Λp$Yq. Then $
f
˚“ Schempp$˚q

f q if and only if QVarp$˚q “ QVarpCq
for some class C of regularly generated algebras.

Proof. First we prove right to left. Suppose that $˚ is the logic of a class of regularly generated alge-
bras. Note that by maximality of the schematic fragment amongst logics with the same variant, $˚Ď
Schempp$˚q

f q, so we focus on the other inclusion. Suppose that Γ &˚ φ. Hence by assumption, we
can find A, a regularly generated algebra, such that A * pΓ, φq; hence xAf y * pΓ, φq, so by Corol-
lary 3.4.8, A *f pΓrσppq{ps, φrσppq{psq, and so A * pΓrσppq{psrfpqq{qs, φrσppq{psrfpqq{qsq. Hence,
sinceA is an algebra in QVarp$˚q, and by algebraic completeness, we have that Γrσppq{psrfpqq{qs &˚
φrσppq{psrfpqq{qs. Thus, Γrσppq{ps &f˚ φrσppq{ps. Thus by definition:

pΓ, φq R Schempp$˚q
f q

As desired.
For the converse, assume that $˚“ Schempp$˚q

f q. First define:

QVarRp$˚q “ QVarptxBf y : B P QVarp$˚quq

Then by definition:
QVarRp$˚q Ď QVarp$˚q
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So we show the other inclusion. For that purpose, we show that LogpQVarRq has $f˚ as its
PAt-variant. Indeed we have:

pLogpQVarRp$˚qqq
f “ Logf pQVarptxBf y : B P QVarp$˚quq

Òq

“ Logf pQVarf p$˚qq

“ p$˚q
f

Where the first inclusion follows by the commutativity of the operators, the second follows from
the fact that every PAt-quasivariety is generated by its regular elements and the final is by defini-
tion. Hence we conclude that LogpQVarRp$˚qq has p$˚q

f as its PAt-variant, whence we know that
LogpQVarRp$˚qq Ď Schempp$˚q

f q. Hence QVarpSchempp$˚q
f qq Ď QVarRp$˚q, which shows the

result. ■

Lemma 4.4.9. Let K P ΛpYq, and suppose that LogpKq is a ζ-companion of $˚P ΛpXq. Suppose
that S “ QVarp$˚q. Then σpSq Ď K.

Proof. It suffices to show that tFpAq : A P Su Ď K. By Proposition 4.4.2, we have that ρpKq “ S.
Hence if A P S, then A “ θpBq for some B P K. But then FpAq “ FpθpBqq ĺ B, given the
translation is sober. So indeed, FpAq P K, as intended. ■

Lemma 4.4.10. Let A “ FpBq. Then A is regularly generated.

Proof. First note that θpAq – B, since the unit is an isomorphism. Hence, consider xBy, the
subalgebra generated in A by B. Clearly we have that θpxByq – B. But then we have that
A – FpBq is a subalgebra of xBy, since the counit is injective. ■

Lemma 4.4.11. Suppose that A is regularly generated. Then A “ FpθpAqq.

Proof. Suppose that A is regularly generated. Then first note that θpAq Ď FpθpAq, since θpAq –
θpFpθpAqq Ď FpθpAqq. Hence, FpθpAqq is a subalgebra of A which contains the regular elements;
since A is regularly generated, A – FpθpAqq. ■

Using all of these lemmas we conclude the following:

Corollary 4.4.12. Let xζ,Θ, fy be a sober translation between X and Y, then for each $˚P Λp$Xq

there is a greatest ζ-companion. This is exactly Schp$˚q.

Proof. By Lemma 4.4.7, we have that Schp$˚q is a ζ-companion. Moreover, by lemma 4.4.8,
we have that QVarpSchp$˚qq is generated by a class of regularly generated algebras; hence in
particular it is generated by all of its regularly generated algebras. By the previous lemma, we
have that σpQVarp$˚qq Ď QVarpSchp$˚qq. Now note that the former are exactly the regularly
generated algebras: if A P σpQVarp$˚qq then A “ FpBq, so by Lemma 4.4.10, it is regularly
generated; and if A is regularly generated, then by Lemma 4.4.11, A – FpθpAqq, and we have that
θpAq P QVarp$˚q, so A P σp$˚q. Hence:

QVarpSchp$˚qq “ QVarpσpQVarp$˚qqq,

but by Lemma 4.4.9, we have that σpQVarp$˚qq Ď K whenever K is a quasivariety which logic is
a PAt companion of $˚. Hence for all such quasivarieties:

QVarpSchp$˚qq Ď K,
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but then by completeness:

LogpKq Ď LogpQVarpSchp$˚qqq “ Schp$˚q.

This shows that Sch is the greatest ζ-companion, as was to show. ■

We conclude with a tentative definition:

Definition 4.4.13. Let ζ be a sober translation. We say this is a BE-translation if there is some
logic $˚P Λp$Yq such that for each ,P Λp$Yq, ,P Λp$˚q if and only if there is some $˚P Λp$Xq

such that Schp$˚q “,.

As discussed in 51, the GMT is a BE-translation, and it and its close progeny (the translaton for
bi-intuitionistic logic, amongst others), are the only examples we are aware of this kind. We remark
that in this discussion we have only provided tentative steps in using PAt-logics for exploring the
connections between logical systems: for instance, in [6], it is shown that the lattice of inquisitive
extensions of the system KP is isomorphic to the lattice of Boolean algebras ordered by the ĺ order,
where:

A ĺ B ðñ A is a homomorphic image of a subalgebra of B

Such connections are much more fine-grained than can be found in homomorphisms of varieties, and
seem to more naturally be discussed in the setting of Polyatomic logics rather than companions.

In the rest of the thesis, for reasons of space, we will not be able to explore deeply PAt-logics for
the cases we will study. Nevertheless, we expect that the results from this chapter can highlight the
importance of this connection, and bring attention to the potential of such tools to study translation
relations between logical systems.

As a visual summary of our discussions, we have the following picture, found in Figure 4.3,
capturing the various kinds of translations and logical relationships studied.

These translations are some of those we have previously encountered, and they also witness the
strictness of some of these inclusions: K2, the translation between Kleene algebras and Distributive
lattices mentioned in [53], is a contextual translation but not selective (in any obvious sense). As
we will see in the next chapter, the Goldblatt translation is selective, and it is not strongly selective.
The double negation translation is strongly selective, and we showed above that it is not sober.
The last class – BE-translations – is introduced to highlight the Blok-Esakia isomorphism, and its
close progeny, through the GMT translation.

4.5 Chapter Summary

We summarise our contributions in this chapter as follows:

• Inspired by the GMT translation, we introduce the notion of a sober translation, for which a
rich Blok-Esakia theory can be introduced.

• We show that the KGG translation is strongly selective, but not sober.

• We generalise the notions of schematic fragment and least DNA-variant to the Polyatomic
case, and show that they correspond, for sober translations, to the least and greatest gener-
alised companions.
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Contextual Translations

K2

Selective Translations

K␣␣

Sober Translations

BE Translations

GT

S. Selective Translations

G

Figure 4.3: Types of Translations and Examples

• We introduce the concept of a Polyatomic Blok-Esakia isomorphism as a correspondence
between logical systems, and show that it always holds for sober translations.
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Chapter 5

Translations of Orthologic

In this chapter we investigate orthologic and the logics of ortholattices, through the lens of
translations, adjunctions and PAt-logics developed in the previous chapter.

As noted in the introduction, this topic has received some attention, though not the same as
either the KGG or GMT translations. Previous analysis which marked this topic were developed
by Goldblatt [35, 36, 34] as well as Miyazaki [52], for general orthologic, and by several authors
[18, 44, 48] for the special case of quantum logic.

In this and the next chapter, we take a close look at these developments, and relate them to our
general picture. To do so, we begin by recalling the notions of orthologics, their associated algebraic
semantics, and the duality associated to ortholattices. We recall in particular the investigations
done by Miyazaki with respect to the Goldblatt translation, which relates orthologics and KTB
normal modal logics. Using the proof of filtration introduced by Goldblatt, we are able to prove
that the translation is selective.

We then turn to negative results. We first show – from basic facts since known about the
lattices of orthologics and KTB logics – that a genuine Blok-Esakia theorem cannot hold between
these two lattices. We then move further and show that the translation is not even sober, further
evidencing the untractability of the translation. We conclude the chapter with an outline of the
main difficulties found, through a discussion of the idea of sober algebras and spaces, and prepare
our approach in the next chapter to overcome them.

5.1 Orthologics and Ortholattices

We begin with the notion of an orthologic, as introduced by Goldblatt [35]. Recall that LO, the
language of ortholattices, is the same as the language of Boolean algebras, namely, the language
with signature:

p | ␣p | p^ p | 0 | 1

Throughout, let VAR be a fixed set of countably many proposition letters.

Definition 5.1.1. Let $ be a binary consequence relation in LO, i.e.:

$Ď PpTmLO
pVARqq ˆTmLO

pVARq

Then we say that $ is an orthologic if it is closed under uniform substitution, and satisfies the
following axioms, for all φ,ψ, χ P LO:
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1. For finite Γ Ď TmLO
pVARq, Γ $ φ if and only if

Ź

Γ $ φ

2. φ^ ψ $ φ; φ^ ψ $ ψ

3. φ $ ␣␣φ; ␣␣φ $ φ

4. φ^␣φ $ ψ

5. If φ $ ψ and φ $ χ, then φ $ ψ ^ χ

6. If φ $ ψ and ψ $ χ then φ $ χ

7. If φ $ ψ then ␣ψ $ ␣φ

The former is exactly the concept as presented by Goldblatt. As we will note later, the pecu-
liarities of this system will mean that the specific assumptions of our Chapter 3 might not be met,
despite in all cases it being clear to see that the desired results could also be proved We will strive
throughout to minimise such pathologies.

The following is an easy observation about orthologics:

Proposition 5.1.2. Let p$iqiPI be a family of orthologics. Then
Ş

iPI $i is an orthologic.

Henceforth, we denote by O the minimal orthologic, and by O arbitrary orthologics. We denote
by ΛpOq the lattice of orthologics.

Definition 5.1.3. Let O be an ortholattice. We write O ( pφ,ψq to denote: for each valuation
v : TLO

Ñ O, vpφq ď vpψq.

Definition 5.1.4. Let O be an orthologic. Consider all pairs pφ,ψq P O, and let:

VarpOq :“ tO : O ( pφ,ψqu

In other words, we form VarpOq by taking the equational class containing φ ď ψ for pφ,ψq P O.
Similarly, given a class K of ortholattices, we consider:

LogpKq :“ tpφ,ψq P TmLO
pVARq2 : K ( pφ,ψqu

It is not hard to see that this is indeed an orthologic, since K is a variety of ortholattices.
Indeed, we have the next proposition which follows by usual arguments.

Definition 5.1.5. Let O be an orthologic. We consider TmLO
pVARq, the absolutely free algebra,

and define an equivalence relation ”O there by:

φ ”O ψ ðñ pφ,ψq P O and pψ,φq P O

Then consider FpOq :“ TmLO
pVARq{ ”O. We call this the Lindenbaum-Tarski ortholattice asso-

ciated to O.

Denote by ΛpOrtq the lattice of varieties of ortholattices. Then we have, as usual:

Proposition 5.1.6. The operators V ar : ΛpOq Ñ ΛpOrtq : Log establish a dual isomorphism
between the lattice of orthologics and the lattice of varieties of ortholattices.

The former provides, then, an algebraic semantics (in the loose sense) to ortholattices and their
varieties. However, the key results of Goldblatt [35] made use of a dual representation. We turn to
this in the next section.
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5.2 Orthospaces and Duality

In this section we briefly recall the duality of ortholattices using the space of filters. This was
initiated by Goldblatt [35], who provided the original representation theorem; Bimbó [8] established
the functoriality of this, though she left a gap, that was noted by Dmitrieva [20], in line with previous
work on choice-free duality (see [7] for the original developments, and see also [49]). As such we
refer to this simply as orthospace duality throughout. We refer to all stated articles for proofs of
the statements in this section.

Definition 5.2.1. Let pX,Kq be a non-empty set, with K an irreflexive and symmetric relation.
Then we say that this is an orthoframe.

Whenever xKy, we say that x is orthogonal to y. If xKy for every y P Y , we denote this by
xKY .

Definition 5.2.2. Let pX,Kq be an orthoframe, and A Ď X. We define AK as:

AK “ tx P X : @y P A, xKyu

We say that AK is the orthogonal complement of A. We denote by A˚ the set pAKqK, and call this
the orthogonal closure. We say that a set is regular if A “ A˚. We define an operator:

R : PpXq Ñ PpXq
A ÞÑ tA P A : A “ A˚u

Thus, we say that RpAq is the set of regular sets inside A.
Let A be a subset of X. We say that A is K-closed iff for all x P X:

@y P X, yKAÑ yKx ùñ x P A

In other words, if AK Ď txuK then x P A.

It is a general fact that a relation between two sets induces a Galois connection between the
power sets of those sets. In our case, this Galois connection turns out to be between the set and
itself, and because of symmetry, both polarities coincide. This translates to the following useful
properties (see for example [1, pp.38]):

Proposition 5.2.3. Given pX,Kq an orthoframe, and A,B subsets of X:

1. A Ď B implies that BK Ď AK

2. A Ď A˚

3. pA˚qK “ AK

4. p
Ť

iPI Aiq
K “

Ş

iPI A
K
i

5. AK is K-closed. So A˚ is K-closed as well.

The concept of an orthoframe had been known in the theory of orthomodular lattices for a
long time (see [44] for a detailed account). It was also known that this provided a representation
for complete ortholattices. The topologisation of this concept allowed Goldblatt[36] to extend the
representation to all ortholattices:
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Definition 5.2.4. Let pX,ď,K, τq be a space such that ď is a partial order, K is an irreflexive
symmetric order, and τ is a compact topological space. Denote by CloppXq the set of clopen
sets, ClopUppXq the set of clopen upsets, and in line with the above definition, RCloppXq and
RClopUppXq the set of regular clopen sets and regular clopen upsets, respectively. We say that X
is a maximal sober orthospace1 if for all x, y P X

1. x ę y implies that there exists O P RCloppXq such that x P O and y R O

2. xKy implies there exists O P RCloppXq such that x P O and y P OK

3. xKy and x ď z implies that zKy

4. O P RCloppXq implies that OK is in RCloppXq

5. Whenever F is a filter in RCloppXq, then there exists some x P X such that F “ Fx “ tO P
RCloppXq : x P Ou.

If the structure satisfies 1-4, we call X simply an orthospace.

We note the following regarding the previous definition:

Definition 5.2.5. Let pX,Kq be an orthoframe. Define x ĺK y as follows:

x ĺK y ðñ @z, xKz ùñ yKz

Lemma 5.2.6. Let pX,Kq be an orthoframe. Then x ĺK y is a quasi-order. Moreover, if pX,ď
,K, τq is an orthospace, then ď“ĺK.

Proof. The relation is clearly reflexive, and transitive. To see that it is a partial order, suppose
that x ‰ y. Without loss of generality, then, x ę y, so by Axiom 1, we have that there is some
regular U such that x P U and y R U . by regularity, since y R U , there is some z such that y M z,
and z P UK. Since x P U , then xKz, which implies that x łK y. Hence, by contraposition, we
obtain that ĺK is a partial order, and also that ĺKĎď. Conversely, if x ď y, by Axiom 3, we have
that x ĺK y. ■

In this sense, the partial order is wholly induced by the irreflexive relation. This means that
drawing the graphs corresponding to either the orthogonality or non-orthogonality relation canon-
ically yields the partial order, so long as either relation corresponds to an orthospace.

We have the following fact:

Lemma 5.2.7. Given an orthospace X “ pX,ď,K, τq the structure pRCloppXq,X,K ,H, Xq is an
ortholattice.

To move in the opposite direction, we make use of the space of filters:

Definition 5.2.8. Let O be an ortholattice. Denote by FilpOq the set of all proper filters on O.
We define an orthogonality relation on FilpOq as follows:

FKG ðñ Da P O, a P F and aK P G

1These are called in [4] orthosober orthospaces. Our change of name reflects our concerns in the thesis with
condition 5.
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Then we have the following:

Lemma 5.2.9. Let O be an ortholattice, and XO “ FilpOq. For a P O, denote by φpaq the set
tF P FilpOq : a P F u. Then pXO,Ď,K, τq forms an orthosober orthospace where τ is given by the
topology with subbasis:

tφpaq : a P Ou Y tXO ´ φpaq : a P Ou

From now on, denote by R the complement of the orthogonality relation:

xRy ðñ x M y

The morphisms of orthospaces are the following:

Definition 5.2.10. Let f : X Ñ Y be a continuous map between orthospaces. We say that this is
an orthospace morphism when:

1. If xRy then fpxqRfpyq;

2. If fpxqRy then there exists some z P X such that xRz and y ď fpzq.

We further say the orthospace morphism is strong if the last inequality is an equality.

Readers familiar with modal logic but not familiar with the literature on duality for relevant
logics might find the inequality in the back condition odd. However, we note that this is not spuri-
ous. For instance, consider the following structures, where the lines refer to the non-orthogonality
relation:

w z w1 fpzq fpwq

x y fpxq

1

It is not hard to see that these are two orthospaces, and that the map defined by f is an
orthospace morphism. However, this is not a p-morphism with respect to the non-orthogonality
relation: indeed, fpxqRy, and indeed, z is such that xRz and y ď fpzq; but no node maps to y.

We have the following:

Lemma 5.2.11. Let f : O Ñ O1 be an ortholattice homomorphism. Then f´1 : XO1 Ñ XO

is an orthospace morphism. Conversely, if g : Y Ñ Y 1 is an orthospace morphism, then g´1 :
RCloppY 1q Ñ RCloppY q is an ortholattice homomorphism.

The following is the actual statement of the duality:

Theorem 5.2.12. (Orthospace duality) The category of ortholattices with ortholattice homomor-
phisms is dually equivalent to the category of maximal sober orthospaces with orthospace morphisms.

We now collect some facts we will later make use of regarding orthospaces in general. The first
is the condition which Bimbó originally proved as part of her analysis, regarding orthospaces in
general:

67



Lemma 5.2.13. Let pX,ď,K, τq be an arbitrary orthospace, and O be the dual ortholattice. Then
X embeds into XO through a topological embedding which both preserves and reflects the relation
K.

Proof. See [8, Theorem 3.6]. ■

We also have the following properties which will come useful later:

Lemma 5.2.14. Let pX,K,ď, τq be an orthospace. Then:

1. If U is a clopen regular, then x P U if and only if whenever xRy then there is some z such
that yRz and z P U .

2. Every clopen regular set is an upset; hence pX,ď, τq is a Priestley space.

3. The class of clopen regulars is closed under intersection.

4. Every clopen upset of pX,K,ď, τq is a union of clopen regular sets.

Proof. (1) This is simply a matter of unfolding the definition that U “ U˚.
(2) Let U be a clopen regular set. Suppose that x P U and x ď y. Now assume that yRz. Then

by the third condition on orthospaces, xRz, so by the first part, there is some w such that zRw
and w P U . Hence y P U .

(3) Follows from the above duality. To see (4) assume that V is a clopen upset. Suppose that
x R V is arbitrary. Then whenever y P V , y ę x; hence by the clopen regular separation property,
there is some Ux,y such that y belongs there and x does not. Hence:

V Ď
ď

yPV

Ux,y

By compactness we can obtain some Wx “ Ux,y0 Y ...Y Ux,ym such that V ĎWx. Then:

V “
č

xRV

Wx

So by compactness again, we obtain that:

V “Wx0 X ...XWxn

Now applying the distributivity of X and Y in a judicious manner, one can write:

V “
n

ď

i“1

m
č

j“1

Uxi,yj

Since by (3) clopen regulars are closed under intersection this gives us the result. ■
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5.3 Orthologic and KTB

As promised, we can use the structures we have just studied to provide a relational semantics
to orthologics:

Definition 5.3.1. (Kripke semantics of Orthologic) Let pX,Kq be an orthoframe. A valuation v
on this frame is a map v : TLO

pVARq Ñ PpXq such that vppq is a regular set for each p P VAR.
We call X “ pX,K, vq a model, and define the satisfaction, at a point x P X, as follows:

• X, x , p iff x P vppq

• X, x , φ^ ψ iff X, x , φ and X, x , ψ

• X, x , ␣φ iff whenever xRy, then X, y . φ.

We say that an orthoframe pX,Kq validates a sequent pφ,ψq if and only if for all models X on
pX,Kq, and all points x P X, if X, x , φ then X, x , ψ. This leads to the following:

Definition 5.3.2. Let O be an orthologic, and K a class of orthoframes. We say LogpKq “
tpλ, ψq : K ( pλ, ψqu is the orthologic associated to K.

As usual in modal logic, there is a Galois connection between logics and classes of frames.

Definition 5.3.3. Let O be an orthologic. We say that this is Kripke complete if there is a class
K of orthoframes such that:

pλ, ψq P O ðñ K ( pλ, ψq

All following results were shown by Goldblatt in [35]. First, we have the following adequacy
theorem:

Lemma 5.3.4. Let O be an ortholattice, and v : TLO
pVARq Ñ O a valuation. Let Y be an

orthospace such that RCloppY q – O via a map φ. Let v1 : TLO
pVARq Ñ PpY q be the valuation

given by v1ppq “ φpvppqq. Then O, v ( pλ, ψq if and only if Y, v1 ( pλ, ψq.

Proof. Note that the above definition is sound, and by induction on the construction of formulas,
and the duality, we get for each χ P LO:

v1pχq “ φpvpχqq

Indeed, v1ppq “ φpvppqq, and for conjunctions, this is obvious. If this holds for χ, note that
v1pχKq “ v1pχqK “ φpvpχqqK “ φpvpχqKq. Now assume that O, v * pλ, ψq. Since vpλq ę vpψq by
duality, φpvpλqq Ę φpvpψqq; hence v1pλq Ę v1pψq so there is a point x in the first set, but not the
second. Hence pXO, v

1q, x , λ but pXO, v
1q, x . ψ. The converse follows by similar arguments. ■

Corollary 5.3.5. (Canonical Model of Orthologic) Let O be any orthologic. Then there is a model,
MO “ pW

O,KO, vOq, such that pλ, ψq P O if and only if for each x PWO MO, x , pλ, ψq.

Proof. Let O be the arbitrary orthologic, and FO be the Lindenbaum-Tarski algebra associated to
this orthologic. Let v : TLO

pVARq Ñ FO be the valuation mapping vppq “ rpsO. Then it is clear
to see that pφ,ψq P O if and only if FO, v ( pφ,ψq. Hence, by Lemma 5.3.4, we get the desired
result by taking the orthospace dual of FO. ■
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Corollary 5.3.6. The minimal orthologic is Kripke complete.

Proof. Soundness follows from verifying that the axioms outlined above in the definition of an
orthologic are valid in the minimal orthologic. Completeness follows from Corollary 5.3.5. ■

Quite relevant for our purposes is the notion of filtration. This was shown by Goldblatt, and
consists essentially of the following:

Theorem 5.3.7. Let Σ Ď TmLO
be a finite collection of well-formed formulas which is closed

under subformulas, and such that for each propositional variable pi, pi P Σ if and only if pKi P Σ.
Let X “ pX,K, vq be an orthomodel. Then there exists an orthomodel Xf “ pX{ „,K

f , vf q, such
that for each x P X, and for each φ P Σ, X, x , φ if and only if Xf , rxs , φ.

Note that more is true: given a sequent pφ,ψq where φ,ψ P Σ, we have that X, x , pφ,ψq if
and only if Xf , rxs , pφ,ψq.

We are now ready to take on the main object of study of this chapter. We recall from Chapter
3 that the Goldblatt translation between Orthologic and KTB logic [36] is defined recursively as
follows:

1. For each propositional variable p, Gppq “ l♢p;

2. Gpψ ^ φq “ Gpψq ^Gpφq

3. GpφKq “ l␣Gpφq

From these clauses and the DeMorgan laws of ortholattices one deduces semantically that Gpφ _
ψq « l♢pGpφq _Gpψqq. Given a set of formulas Γ, define GrΓs :“ tGpφq : φ P Γu.

The first and foundational result about the Goldblatt translation was the following:

Theorem 5.3.8. (Goldblatt, 1975)[36] For any pair of formulas φ,ψ P LO, we have that:

pφ,ψq P O ðñ Gpφq Ñ Gpψq P KTB

Proof. Suppose that Gpφq Ñ Gpψq R KTB. By Kripke completeness of KTB, there is then a
Kripke model M “ pW,R, V q, and a world x P W such that M, x , GpΓq but M, x * Gpφq. Now
consider the orthoframe given by M1 “ pW,KR, V

1q where xKRy if and only if ␣pxRyq, and:

V 1ppq “ l♢V ppq

It is not hard to see that regular subsets for KR are exactly those of the form l♢U for some U ĎW .
Hence, M1 is an orthoframe model. Moreover, we can show by induction that:

V 1ppq “ V pGppqq

Which shows that then M1, x , Γ and M1, x . ψ. Hence, by soundness of orthologic with respect
to orthoframes, pφ,ψq R O. The converse follows similarly, using Kripke completeness of orthologic.

■

We thus have that the translation is indeed correct. Later, Miyazaki [52] extended such results
to a theory analogous to that of modal companions:
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Definition 5.3.9. Let O P ΛpOq and L P NExtpKTBq. We say that L is a KTB-companion of O
if:

pφ,ψq P O ðñ Gpφq Ñ Gpψq P L

Theorem 5.3.10. [52, Theorem 21] The following hold:

1. For each L P NExtpKTBq, there is a logic O P ΛpOq such that L is the modal companion of
O; this assignment preserves Kripke completeness, tabularity and FMP.

2. For each orthologic O P ΛpOq with the FMP, there is a logic L P NExtpKTBq such that L is
the modal companion of O; this assignment preserves tabularity and FMP.

The techniques used by Miyazaki to prove the first part mirror our functor θ, whilst for the
second he uses a finite representation theorem, and arguments analogous to those used to establish
orthospace duality. In light of our discussion of orthospaces, the correspondence can be captured
in the following:

Proposition 5.3.11. Let pX,Kq be a finite orthospace. Then pX,Rq is a KTB-space, and addi-
tionally:

pX,Kq , pφ,ψq ðñ pX,Rq , Gpφq Ñ Gpψq

Proof. The fact that pX,Rq will be a KTB space is trivial: since pX,Kq is finite, the space is
discrete, hence every set is clopen, and since R is reflexive and symmetric, pX,Rq will be a finite
KTB space, i.e., a KTB frame. Given an orthomodel pX,K, vq, consider the same assignment in
pX,R, vq; hence vpχq “ vpGpχqq, by definition. Similarly, if pX,R, vq is a KTB model, define v1 by
letting v1ppq “ l♢vppq. Then again we have that v1pχq “ vpGpχqq. This yields the result. ■

We will now move to approaching the Goldblatt translation as a contextual translation. The
following is the basic result that we can expect:

Proposition 5.3.12. Let pB,lq be a KTB-algebra. Then the set:

OB :“ ta P B : l♢a “ au

Is an ortholattice with the operations induced by the Goldblatt translation. Moreover, for each set
Φ Ď EqLO

of equations, we have:

OB ( Φ ðñ B ( G˚pΦq

Proof. The verification that the regular elements form an ortholattice is straightforward; see for
instance that for conjunction:

l♢pa^ bq ď lp♢a^ ♢bq ď l♢a^l♢b ď a^ b ď l♢pa^ bq

Where the inequalities follow from usual modal logical reasoning. The second part follows by the
same arguments as Proposition 3.3.1. ■

Now let Θ “ tx « l♢xu. Note that mapping variables to l♢, and considering all valuations,
is the same as operating modulo the context Θ. Hence the former can be seen as a translation in
the sense presented in Chapter 3. We thus have the following:
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Proposition 5.3.13. The translation xG,Θ,l♢y is a selective translation

Proof. Let Φ be a collection of equations in the language of ortholattices. By Proposition 5.3.12, we
can prove the translation is contextual: indeed, assume that Φ is a set of equations in the language
of KTB, and G˚pΦq * G˚pλq « G˚pψq. Let B be a KTB algebra, and v a valuation, such that
B ( G˚pΦq, and B, v * G˚pλq ‰ G˚pψq. Then by that Proposition, OB * λ « ψ, whilst it satisfies
Φ, by Proposition 5.3.12.

Now conversely, assume that Φ * λ « γ. Hence, without loss of generality, Φ * pλ, γq. Let O be
an ortholattice such that O ( Φ and O * pλ, γq, and let v be a valuation. Hence, by Lemma 5.3.4,
we have that Y, v * pλ, γq, for Y the dual orthospace of O, at a point x, and Y, v ( pµ, ιq, pι, µq for
all µ « ι P Φ. Now consider:

Σ “ tG˚pφq ď G˚pψq : pφ,ψq P Φu Y tG˚pλq ď G˚pγqu.

Let Σ0 be a finite subset of Σ, say Σ0 “ tG˚pφiq ď G˚pψiq : i ď nu Y tG˚pλq ď G˚pγqu. Let
F0 “ tφi, ψi : G˚pφiq ď G˚pψiq P Σ0u Y tλ, γu, and F the subformula closure of F0. Let pYF , vF q
be the filtration of Y, v along F . Hence, by hypothesis on Y , we have that:

@G˚pφiq Ñ G˚pψiq, YF , vF , pφi, ψiq and YF , vF . pλ, γq

By Proposition 5.3.11, we have that pYF , vF q , G˚pφiq Ñ G˚pψiq, and pYF , vF q . G˚pλq Ñ
G˚pγq. By duality, this means that there is a valuation v on a KTB algebra B, such that B, v (
G˚pφiq Ñ G˚pψiq. By definition of satisfaction, this means that B, v ( G˚pφiq ď G˚pψiq., and also
B, v * G˚pλq ď G˚pγq. Hence, we can find a KTB algebra and a valuation satisfying Σ0.

By compactness of first order logic, we have that since each finite subset of Σ is satisfiable in
a KTB algebra, the whole of Σ is. Hence, there is a KTB algebra B, such that B ( G˚pΦq, and
B * G˚pλq « G˚pγq. Hence, this implies that G˚pΦq * G˚pλq « G˚pγq. This shows that the
translation is faithful.

Finally, notice that the term l♢ is a selector, essentially because l♢l♢p “ l♢p. ■

Having this established, we can define versions of the map τ : for O P ΛpOq, τpOq “ KTB ‘
tGpφq Ñ Gpψq : pφ,ψq P Ou; as well as ρ: ρpLq “ tpφ,ψq : Gpφq Ñ Gpψq P Lu. On algebras, we
have τpKq “ tB : OB P Ku and ρpMq “ tOB : B PMu. Using these, one can make many questions
related to our discussion in Chapter 4. Given what we have discussed about Polyatomic Blok-Esakia
isomorphisms, we can naturally ask whether the Goldblatt translation is strongly selective, or even
sober, and whether we can describe the schematic fragment of the PAt-variants as laid out above.

Our results from now on will be mostly negative, and we will seek to identify and emphasise
the sources of problems. To work towards this, we begin by giving a dual description of the
transformations we have encountered.

Definition 5.3.14. Let θ˚ : KTBSÑ OrtS be the assignment going from the category of KTB-
spaces with continuous p-morphisms, to the category of orthospaces with orthospace morphisms,
defined as follows: given a KTB space pX,R, τq take the relation, ĺ:

x ĺ y ðñ @z P XpyRz ùñ xRzq

This forms a preorder. Let ”ĺ be the induced equivalence relation. Let ”ĺ be defined as:

rxsR”rys ðñ Dx1 P rxs, y1 P rys, x1Ry1
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And similarly for ĺ”. Then we denote by X˚ “ pX{ ”ĺ, R”,ĺ”, τ”q, where τ” is the quotient
topology.

Lemma 5.3.15. Let pX,R, τq be a KTB-space. Then X˚ as defined above is an orthospace,
when we define rxsKrys if and only if ␣prxsR”rysq. Moreover, the map q : X Ñ X˚, when X˚ is
understood as a KTB space, is a surjective p-morphism.

Proof. (Sketch) It is a straightforward, using the fact that the relation R is reflexive and symmetric,
to see that the definitions given are sound. Now let q : X Ñ X˚ be the quotient map; to obtain
the result, after observing that this preserves the relations, it suffices to show that the clopen
regulars on X are saturated, i.e, if U is a clopen set and l♢U “ U , then q´1qpUq “ U . Indeed, if
x P q´1qpUq, then qpxq “ qpzq where z P U ; hence for some x ” x1 and z ” z1, z1 ĺ x1; but then
z1 P U , so x1 P U , i.e, x P U as well. Using this one can then show the axioms in a straightforward
way. ■

The reader will have noted that the former transformation essentially only removes clusters
associated to the induced quasi-order, and collapses them. This means that, for instance, a cluster
of 2-elements in the modal logic sense will be collapsed to a single element, as exemplified in Figure
5.1:

‚ ‚

‚ ‚ ‚ ‚

‚ ‚ ‚ ‚ ‚ ‚

‚ ‚

Figure 5.1: Collapsing of clusters

We can also define the action of this transformation on morphisms:

Lemma 5.3.16. Let f : X Ñ X 1 be a p-morphism between KTB-spaces. Then 9f : θ˚pXq Ñ
θ˚pX 1q defined by rxs ÞÑ rfpxqs is a strong orthospace morphism.

Proof. This is well-defined since f preserves the order ĺ: if x ” y, suppose that fpyqRz; then
yRw where fpwq “ z; then xRw, so fpxqRz, i.e, fpxq ĺ fpyq, and similarly, fpyq ĺ fpxq, i.e,
fpxq ” fpyq. It is easily seen to be continuous and order preserving since f is. It also satisfies the
back condition: if fprxsqRrys, there is some x1 ” fpxq such that x1Ry1 and y1 ĺ y, i.e, fpxqRy;
then because f is a p-morphism, there is some z such that xRz, and fpzq “ y. Hence rxsRrzs and
rfpzqs “ rys, i.e, fprzsq “ rys. ■

More importantly, we get that this corresponds to the θ operation:

Proposition 5.3.17. LetB be an arbitraryKTB algebra andXB its dual space. Then RCloppX˚Bq –
OB. Hence, X˚B is an orthospace embedding into the orthospace dual of OB. Moreover, if

f : BÑ B1 is a homomorphism, then pfæOBq
q´1 “ 9f´1
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Proof. For each a P OB, let fpaq “ trxs P X
˚
B : x P φpaqu. Note that because a is regular, this is a

clopen regular subset of X˚B, and is well-defined: if x P φpaq and x ” y, then a P x; now if a R y,
because a is regular, ♢l␣a P y; then yRz, and l␣a P z, but also, xRz, so zRx, a contradiction.

Additionally, this assignment is injective: if a ‰ b are both regular, let a P x and b R x where
x P XB. Then we have that rxs P fpaq and rxs R fpbq, which shows that fpaq ‰ fpbq. Moroever, if
U is a clopen regular subset of X˚B, by definition of the quotient topology, q´1pUq is clopen, and
since q is a p-morphism, also regular:

• First, note that l♢q´1pUq “ q´1pl♢Uq: if qpxq P l♢U , and xRy, then qpxqRqpyq, so by
definition, qpyqRz and z P U ; hence, there is some z1 such that yRz1, and qpz1q “ z. Hence,
x P l♢q´1pUq. Conversely, if x P l♢q´1pUq, and qpxqRy, by assumption, for some y1, xRy1,
so y1Rz and z P q´1pUq; so qpy1qRqpz1q, and qpz1q P U . So x P q´1pl♢Uq.

• Then notice that l♢q´1pUq “ q´1pl♢Uq “ q´1pUq, since U is assumed to be regular.

Hence, q´1pUq “ φpaq, where a is a regular element. Thus, note that fpaq “ trxs : x P φpaqu “
qrφpaqs “ qrq´1pUqs “ U , as intended. Finally, to see that this is a homomorphism, note that
fpa ^ bq “ fpaq ^ fpbq, clearly, and fpaKq “ trxs : x P φpl␣aqu “ l␣trxs : x P φpaqu: if
x P φpl␣aq, then l␣a P x; so if x ” x1, since this is a regular element, also l␣a P x1. Similarly,
if y ” y1, then a P y if and only if a P y1 because this is regular. Hence, if rxsRrys, then for some
x1 ” x and y ” y1 we have that x1Ry1, so l␣a P x1, and hence, a R y. So rys R fpaq. Conversely, if
rxs P l␣fpaq, assume that l␣a R x; hence ♢a P x, so xRy, and a P y; hence rxsRrys and a P y,
so rys P fpaq, a contradiction. This shows the first statement. The second statement follows by
similar arguments on the maps. ■

Using these transformations, we can highlight some aspects which distinguishes this translation
from the GMT case. There, recall that the class of spaces such that the corresponding transforma-
tion ρ acts as an identity, is modally definable (by the Grz axiom), even whilst it is not elementary.
However, we have:

Proposition 5.3.18. The class of KTB spaces such that θ˚ acts as an identity is not closed under
p-morphic images.

Proof. Consider the KTB frame, 3´ f , consisting of three points in a chain, and consider the map
as drawn in Figure 5.2.

‚

‚ ‚

‚ ‚

Figure 5.2: Collapse of frame

It is straightforward to verify that the map as defined is a p-morphism. But we see that the
first frame does not have any clusters in the ĺ-sense, whilst the second does. ■
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Hence, our hopes that an isomorphism motivated by a natural axiom such as Grz might be
diminished. So let us diminish them further, by removing the possibility of a more complicated
isomorphism. To see this, consider the algebras corresponding to the KTB-algebra which is a
single cluster, and the KTB-algebra which is a 2-cluster, as drawn above. As mentioned before,
these will be identified by θ˚. Now we note the following two facts, respectively from ortholattice
and KTB theory:

Fact 1. (cf. [11, Corollary 3.6]) The bottom of lattice of varieties of ortholattices consists of the
following varieties: the trivial variety, covered by the Boolean algebras, covered by the variety
generated by MO2, and the variety generated by Benzene.

‚

‚ ‚ ‚

‚ ‚ ‚ ‚ ‚ ‚

‚ ‚

Figure 5.3: MO2 and Benzene

Fact 2. (cf. Miyazaki,[46, Theorem 2.2]) The top of the lattice of KTB logics consists of the
following logics: the trivial logic, covered by the logic generated by a single reflexive point, covered
by the logic generated by a 2-cluster.

By this latter fact, we have that the identification made by θ above collapses two algebras
which come from distinct varieties. Hence, the map cannot correspond, in the top part, to an
isomorphism. But what we noted from ortholattices implies more is true. Since any isomorphism
would have to preserve the cover relation, the existence of such a map is impossible for purely
combinatorial reasons.

Corollary 5.3.19. There is no logic L P NExtpKTBq such that there is an isomorphism between
ΛpOq and NExtpLq.

This leaves the possibility that we could have a Polyatomic Blok-Esakia isomorphism. We will
now rule this possibility out. Recall that by a Polyatomic Blok-Esakia isomorphism, we mean
that the lattices ΛpOq and Λl♢pKTBq are isomorphic through the specific maps τ and ρ, and it is
assumed additionally that ρ is a homomorphism on the lattice ΛpKTBq of varieties. We will prove
that such a situation cannot happen.

To see this, consider the orthologic generated by Benzene, the ortholattice ocurring on the
right hand side in Figure 5.32. Now consider the following two KTB frames: Note that θ˚ acts as
an identity on both of these frames (i.e, they contain no ĺ-clusters), and both of them are dual
to the Benzene ortholattice. The right hand side frame is the maximally sober orthospace frame

2This is a very well-known algebra in the theory of orthomodular lattices [11], since it is the forbidden subalgebra
which characterises orthomodular lattices within ortholattices
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‚ ‚ ‚

‚ ‚ ‚ ‚ ‚

‚

Figure 5.4: Two Benzene frames

which is dual to Benzene, whilst the left hand side is another orthospace which has Benzene as the
ortholattice of clopen regulars. Indeed, we have the following:

Lemma 5.3.20. The previous two frames are the only two orthospaces which have Benzene as the
ortholattice of clopen regulars.

Proof. By inspection we see that the right hand side orthospace, call it XBe is indeed the maximal
sober one. By Lemma 5.2.13, we know that if Y is an orthospace with Benzene as the ortholattice of
clopen regulars, then Y embeds through a topological embedding that both preserves and reflects
the relation K (correspondingly the relation R) into XBe. This means that the only possible
orthospaces are those which remove a point and all relations from that point to the points it relates
to. Now, manually, we can check that removing any point other than the central one from XBe

yields a frame which has a cluster, and hence cannot be an orthospace. So YBe is the only possible
candidate. ■

Now let LpXBeq and LpYBeq be the KTB-logics of each of these frames. Let OBe be the
orthologic generated by Benzene. Then we have the following:

Lemma 5.3.21. Both LpXBeq and LpYBeq are KTB-companions of OBe.

Proof. Suppose that pλ, ψq is an arbitrary sequent in OBe. Let v be a valuation on XBe, respectively
YBe; then consider the valuation v1 given by v1ppq “ l♢vppq. Then we have that:

pXBe, v
1q, x , pλ, ψq ðñ pXBe, vq, x , Gpλq Ñ Gpψq

This follows easily by induction, and the definition of the translation. Moreover, by Lemma 5.3.4, we
have that since pλ, ψq P OBe, then pXBe, v

1q, x , pλ, ψq for any x; and similar for YBe (we note that
there we did not assume that the dual space was maximally sober). Hence Gpλq Ñ Gpψq P LpXBeq

and LpYBeq.
Conversely, suppose that pλ, ψq R OBe. By assumption, then Be, the Benzene algebra, is such

that Be * pλ, ψq. So XBe * pλ, ψq, and YBe * pλ, ψq. Transferring this to KTB using the usual
arguments then yields that Gpλq Ñ Gpψq R LpXBeq Y LpYBeq. ■

Moreover, one can see that these logics are distinct by using the following observation (see
Miyazaki [51, Lemma 2.6] for a stronger result implying this):

Lemma 5.3.22. Every finite KTB algebra whose dual is a connected graph is a simple algebra
(and hence, subdirectly irreducible).
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This follows from the fact that by standard Jonsson-Tarski duality, generated subframes cor-
respond to homomorphic images. Moreover, since the duals of KTB algebras have a symmetric
relation, this means any generated subframe will necessarily encompass the whole frame.

Now, given this, we have that the two frames above are subdirectly irreducible, so by Jonssons’
Lemma (see Preliminaries), noting that in the case of finite algebras ultraproducts disappear, if
they were equal, we would have these would be p-morphic images of generated subframes of each
other. Since all generated subframes are the frames themselves, they would have to be p-morphic
images of each other – something which one can manually verify does not happen, in either case.
Indeed, this implies that there is no p-morphism from XBe to YBe or vice-versa, whether surjective
or not.

Hence, by the above facts, if X is some KTB space and θ˚pXq is the dual of Benzene, then X
is obtained by some cluster-expansion of either XBe or YBe. Moreover, note that if X is arbitrary
in such conditions, then either XBe or YBe is a p-morphic of X, by Lemma 5.3.15.

Now assume that there is a greatest KTB-companion of the orthologic of Benzene. Let L P
NExtpKTBq be such a logic, and VarpLq be the dual variety. Hence we have that:

VarpLq Ď VarpXBeq and VarpLq Ď VarpYBeq.

Since it is a companion, and we assume that ρ is a homomorphism, we have that this is enough to
get that ρpVarpLqq “ VarpBeq (through arguments similar to those sketched in Chapter 4). Hence,
there is some B P VarpLq such that θpBq – Be, and this corresponds dually to some KTB space X.

Now if the first case holds, then X has XBe as a p-morphic image, and we have a contradiction,
since that would mean that XBe would be in V arpYBeq. A similar argument shows that YBe cannot
be the p-morphic image of X. Hence, we have just proved:

Corollary 5.3.23. The Polyatomic Blok-Esakia fails for the Goldblatt translation.

From the previous proof one can extract, using a very similar idea, a stronger result:

Proposition 5.3.24. The Goldblatt translation is not strongly selective.

Proof. We make use again of Be and the two spaces above, XBe and YBe. Let their algebras be
denoted by A and B, respectively.

Now assume that the translation was strongly selective, and let FpBeq be the image under the
left adjoint. Denote by Z the unique dual KTB space of this algebra. Since this is an adjunction,
we have counit maps which are KTB homomorphisms:

εA : FpBeq Ñ A and εB : FpBeq Ñ B

Dualising, this means that there are p-morphisms fA : XBe Ñ Z, and fB : YBe Ñ Z. Now, since we
assume the translation to be strongly selective, we have that OFpBeq – Be. Hence, by Proposition
5.3.17, we have that θ˚pZq is an orthospace which dualises to Be. By the above arguments, then
Z must be a cluster expansion of either XBe or YBe.

First assume that Z is a cluster expansion of XBe. Hence, we have a p-morphism k : Z Ñ XBe,
which collapses all the clusters. Since fB : YBe Ñ Z is a p-morphism, note that then we have
a p-morphism k ˝ fB : YBe Ñ XBe. But as noted above, there is no p-morphism between these
two structures. Similar arguments show that if Z is a cluster expansion of YBe, then we get a
contradiction. Hence, by reductio, we conclude that the Goldblatt translation is not strongly
selective. ■
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At this point, the hope for a reasonable Blok-Esakia theory of the kinds we discussed in Chapter
4 seems very slim. Hence it might be good to take stock on the problems we have here encountered
so far. These can be summarily divided into two classes:

• Regularity problems: In a (PAt-) Blok-Esakia theory one would want regularly generated
algebras to form a nice enough class. This implies that the class should be modally defin-
able, or at least, definable by some quasi-equation, universal formula or other such logical
apparatus, over the target signature (e.g, modal algebras).

• Sobriety problems: In a (PA) Blok-Esakia theory, one would want the functors to lose as
little information as possible.

We note that as far as regularity goes, very little seems to be possible to do in our current setting.
The lack of closure under subalgebras of the class of regularly generated KTB algebras means that
a genuine Blok-Esakia isomorphism would likely require some definition involving formulas of a
higher complexity than universal ones.

As far as sobriety goes, the situation is rather peculiar. The proofs we gave showing that
sobriety fails, made use of the fact that there were multiple KTB spaces which dualised to the
same orthospace – just as in Corollary 4.2.11 regarding the KGG translation. However, unlike that
case, we could establish some bounds, namely, the maximal sober orthospace as a universal frame
embedding all other such frames.

As such, it seems there could be some hope to eliminate these extraneous frames through some
logical expedient, and with that, obtain some form of isomorphism between logical systems. A
natural choice, in light of this translation, could be to consider a suitably defined fragment of
KTB consisting of all maximally sober KTB spaces; that is, consider only the KTB models which
dualise to maximally sober orthospaces. This approach would be justified in having these models
be somewhat analogous to the UV-spaces of choice-free duality [7, 49]. This can presumably be
done if one can find an appropriate logical description of such a fragment in algebraic terms. We
have not been able to do so.

Instead, in the next chapter we will take a different route, and look for minimally sober spaces.
As we will see these present different challenges, and require us to rework our machinery. Never-
theless, we think that this approach is justified by recent approaches to duality of bounded lattices
[30, 29], and might be independently interesting.

5.4 Chapter Summary

We summarise our principal contributions in this chapter as follows:

• We show that the Goldblatt translation is a selective translation.

• We develop the maps naturally corresponding to the adjunction induced by the Goldblatt
translation in a dual setting, and use them to study KTB companions.

• We show the impossibility of an isomorphism of the same kind as in the classic Blok-Esakia
theorem, in Corollary 5.3.19, that the Polyatomic Blok-Esakia isomorphism fails, in Corollary
5.3.23, and that the Goldblatt translation is not strongly selective in Proposition 5.3.24.

78



Chapter 6

Sober Representations and
Orthoimplicative Logic

In this chapter we continue our investigations of chapter 5 into the logic of ortholattices, and
the relationships this establishes with other logical systems.

As noted in the previous chapter, some of the difficulties faced in studying the translation
of orthologics into other systems can be attributed to the duality these ortholattices hold with
orthospaces - whether through the fact that maximal sobriety is required to get an actual duality,
or the fact that ortholattices seem to lack syntactic resources to capture natural operations one
can consider on the dual space. In this chapter, we outline an alternative dual representation.
This makes use of a notion of quasi-prime filter, which provides some advantages, in our setting,
over the orthospace one (e.g, it restricts to Stone duality in the Boolean algebra case). Using this
notion, we construct a simple representation of the “distributive envelope” of an ortholattice [29].
We then study compatible ortholattices, which admit an implicative structure, relating these to the
Weak Heyting algebras of Celani and Jansana [13]. We prove some basic properties of the resulting
systems, exploiting the advantages of our representation.

We then turn our focus to the relationship between these new “orthoimplicative systems” and
KTB. Motivated by our representation, we identify a fragment of the system KTB admitting a
sober translation, which we call “sober KTB”, and provide a translation, analogous to the Goldblatt
translation, to these systems. This allows us to obtain a PAt-Blok-Esakia isomorphism between
the lattice of orthoimplicative logics and the lattice of sober KTB.

6.1 Admissible joins and Quasi-Prime Filters

Let us take stock of the representation studied in the last section. We begin with an ortholattice,
and get from it a dual space consisting of all filters. Now, since Boolean algebras are ortholattices
as well, this means that the dual of a Boolean algebra will include many more filters than just the
ultrafilters - indeed, what one gets is the so called upper Vietoris space (see [7], see also [49] for
the case of ortholattices), which represents a Boolean algebra by all of its filters. Whilst having
the advantage of being choice-free, it is somewhat unsatisfactory if one wants to connect this
construction to the established Priestley and Stone-type dualities for distributive lattices.

Similar concerns have long been present in the duality of orthomodular lattices. Indeed, already
in 1986 Iturrioz [42] proved a representation theorem for these lattices which made use of filters
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sharing the center of an orthomodular lattice, which is a Boolean algebra, and her representation
does restrict to the Boolean algebra case. However, her approach does not seem easily adapted to
the context of general ortholattices, since the notions of center and commuting elements are only
truly valuable in the presence of orthomodularity.

Our approach stems from ideas developed by Gehrke and van Gool [29]. These authors studied
the free distributive lattices generated by a (possibly non-distributive) bounded lattice. Naturally,
in the case of non-distributive lattices, one cannot then expect for this extension to be a homomor-
phism, since it cannot preserve both joins and meets. However, the key observation of the authors,
stemming from the theory of canonical extensions, was that in such a construction one needs to
preserve as much of the original structure as possible. That is, if a join was already distributive,
for example, if a_ b is such that for all c:

pa_ bq ^ c “ pa^ cq _ pb^ cq,

then we would want this join to be preserved by the extension map.
We call a finitary – not necessarily just binary – join with this property an admissible join. A

trivial, but important, case, is the order relation:

Lemma 6.1.1. If a ď b in a lattice, then the join a_ b is admissible.

Proof. Simply note that if c is arbitrary, then:

a^ c ď b^ c

Hence pa^ cq _ pb^ cq “ pb^ cq “ pa_ bq ^ c. ■

This motivates the following definition, introduced in [29]:

Definition 6.1.2. Let L be a lattice, and F a filter. We say that F is quasi-prime if whenever
M Ď L is a finite subset where M “ tmi : i ď nu, and

Ž

M P F is an admissible join, then for
some i, ai P F .

Example 6.1.3. Consider the lattice in Figure 6.1:

‚

a b aK bK

‚

Figure 6.1: The lattice MO2

It is easy to see that the space of all filters consists of all principal proper filters on this lattice.
However, note that the filter t1u is not quasi-prime:

Ž

ta, b, aK, bKu is an admissible join, and is
equal to 1, but the above filter contains no element from the set.1

1The former example also illustrates that, in generla, binary admissible joins do not suffice.
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In a distributive lattice, all joins will be admissible, so quasi-prime filters will simply coincide
with prime filters. Hence, as we will see below, our duality will indeed simply become Stone-
Priestley duality in the case of distributive ortholattices, i.e., Boolean algebras.

It is of course important that quasi-prime filters exist in a way that makes them useful. For
that we will need one more definition:

Definition 6.1.4. Let O be an ortholattice and I Ď O a downwards closed set. We say that I is
an admissible ideal if whenever M Ď I is a subset with an admissible join, then

Ž

M P I.

Proposition 6.1.5. Let O be an ortholattice, and S Ď O a downwards closed subset; then the
smallest admissible ideal containing S exists, and is:

AdIdpSq :“ ta P O : DM Ď S, such that
ł

M is admissible and a ď
ł

Mu

Proof. It is not hard to see by the definitions that the intersection of admissible ideals is an ad-
missible ideal. Hence let AdIdpSq be the least admissible ideal containing S. Let K “ ta : a ď
Ž

M,M Ď S, M has an admissible join u; first note that this is an admissible ideal. It is clearly
downwards closed. If M Ď K is a subset with an admissible join, let M “ tmi : i ď nu. For each
i, by hypothesis, mi ď

Ž

Ni, where the latter is an admissible join. Hence:

mi “ mi ^
ł

Ni “
ł

j

mi ^ nj

Where the last equation uses admissibility. Moreover, note that
Ž

jmi ^ nj is an admissible join:

p
ł

j

mi ^ njq ^ c “ p
ł

Njq ^mi ^ c “
ł

j

mi ^ nj ^ c

Since S is downwards closed, and nj P S, then mi ^ nj P S as well. Thus:

ł

M “

n
ł

i“1

ł

j

mi ^ nj

Which is thus an admissible join of elements from S.
It is easy to show that K will be contained in every admissible ideal. Hence, K Ď AdIdpSq,

which is least. This concludes the proof. ■

We are now ready to prove the appropriate version of the prime filter theorem for our purposes:

Theorem 6.1.6. (Quasi Prime filter theorem) Let O be an ortholattice, F, I Ď O. Assume that
F is a filter and I is an admissible ideal, such that F X I “ H. Then there exists some H Ď O, a
quasi-prime filter, such that F Ď H and H X I “ H.

Proof. The proof is analogous to the proof of the prime filter theorem. Consider:

P :“ tG Ď O : G is a filter , GX I “ Hu

Note that this is non-empty since F is contained in it. Moreover, it is not hard to see that the set
is inductive. So by Zorn’s Lemma, let H be a maximal element there.
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We check that H is quasi-prime. Indeed, suppose that
Ž

M P H is an admissible join, where
M “ tmi : i ď nu, but no mi is in H. So consider in O, for each i:

Hmi
:“ Òtmi ^ c : c P Hu

Then since H was maximal, each of these filters must intersect with I. So for each i, there is some
ci P H, such that that mi ^ ci P I. Let d “

Źn
i“1 ci, and note that d P H, hence

Ž

M ^ d P H.
Now note that since

Ž

M is admissible then so is
Žn
i“1mi ^ d. Indeed, indeed if e is arbitrary:

p

n
ł

i“1

mi ^ dq ^ c “ p
ł

Mq ^ d^ c

“ p

n
ł

i“1

mi ^ d^ cq

So since I is an admissible ideal, and mi^ d P I, p
Žn
i“1mi^ dq P I as well. By admissibility, then,

Ž

M ^ d P I. But this is also in H, which is disjoint from I; contradiction. ■

We now make use of our quasi prime filters to provide the desired representation theorem. We
note that the arguments proving the following are very similar to those given in [8], and hence,
we give here the proof of the two cases where the quasi-prime filter representation deviates from
orthospace duality. A detailed proof of the full duality can be found in the Appendix.

Definition 6.1.7. Let pX,ď, R, τq be an orthospace. We say that this is a slim orthospace if it
satisfies the following condition:

• (Admissibility) For each finite subset U0, ..., Un, C P RCloppXq, if:

if p
n

ď

i“1

Uiq
˚ X C Ď p

n
ď

i“1

Ui X Cq
˚ then p

n
ď

i“1

Uiq
˚ “

n
ď

i“1

Ui

In words, a slim orthospace makes precise the following intuition: if a join of a lattice is
distributive, then it should be represented using the “real join” - where this means, through the
idea that lattices are carved out of a power set lattice, the union. Using these ideas, we have the
following:

Theorem 6.1.8. Let O be an ortholattice, and XO its orthospace dual. Let YO :“ tx P XO : x is
a quasi-prime filteru. Then YO with the subspace topology, the restriction to K, and the restriction
of ď, is a slim orthospace such that RCloppYOq – O.

Let φ1 : O Ñ RCloppYOq be the map taking U to tx P YO : U P xu. Notice that since YO
is a subset of X, this will form a subbasis of the subspace topology. The point of the proof of
orthospace duality which requires some more elaboration lies in the proof of compactness.

Lemma 6.1.9. The space YO as defined above is compact.

Proof. We use Alexander’s Subbase Lemma. So suppose that:

YO :“
ď

aPC

φpaq Y
ď

bPD

YO ´ φpbq
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Suppose towards a contradiction that there is no finite subcover. Then, for each collection a0, ..., an P
C and b0, ..., bm P D, we have:

YO ‰
n

ď

i“1

φpaiq Y
m
ď

j“1

X ´ φpbjq

Hence, there exists some quasi-prime filter Fa,b in the first set which is not in the second. Spelling
this out, all of the bi P Fa,b and none of ai are there. Thus, consider:

Filptb : b P Duq and AdIdpta : a P Cuq

We claim that these sets are disjoint. Indeed, suppose not. Then this means that:

b0 ^ ...^ bn ď
ł

M

WhereM “ tmi : i ď ku Ď Óta : a P Cu, by Lemma 6.1.5, and the join is admissible. Thus, for each
i, mi ď ai for some ai P C. Let a “ pa0, ..., akq be the elements in these conditions. Let Fa,b be the

filter corresponding to this as well as the sequence b “ pb0, ..., bnq. By hypothesis, b0^ ...^bn P Fa,b.
But then

Ž

M P Fa,b, so there is some mi in that filter, by admissibility and the fact that this filter
is quasi-prime. But then by upwards closure, there is some ai P Fa,b, a contradiction.

Because these sets are disjoint, by the Quasi-Prime Filter theorem we have that there is some
x P YO which extends tU : U P Cuq, and is disjoint from the admissible ideal noted above. Hence,
there is some x such that:

x P
ď

bPD

φpbq Y
ď

aPC

YO ´ φpaq “ YO ´
`

ď

aPC

φpaq Y
ď

bPD

YO ´ φpbq
˘

“ H

Which is a contradiction. Hence, by contradiction, we have that YO is compact. ■

We now move to checking that the function φ as defined above is an embedding preserving the
orthocomplement. This follows essentially by the same arguments of Goldblatt in [36, Theorem 4]:

Lemma 6.1.10. The function φ : O Ñ RCloppYOq is an embedding, and moreover, whenever
xai : i ď ny Ď O are such that

Ž

ai is admissible, then:

φp
ł

aiq “
n

ď

i“1

φpaiq

Proof. The fact that φ is injective follows from the quasi-prime filter theorem: if a ę b, then
consider Òa and Ób. The former is clearly a filter, and the latter is an ideal, hence clearly an
admissible ideal, and the two are disjoint. So by the Quasi-prime filter, we can separate them, i.e,
φpaq ę φpbq.

We now move to showing the orthocomplement is preserved, that is φpaqK “ φpaKq (note we
take the restriction of the operator K, so this ranges only over quasi-prime filters). One inclusion
is clear: if aK P x, then if a P y, clearly xKy. For the other inclusion, suppose that aK R x. Then
we show that:

Filptauq and Idptc : cK P xu are disjoint
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Indeed, suppose not. Then a ď c0 _ ..._ cn. But then by applying K to both sides we get:

cK0 ^ ...^ c
K
n ď aK

Since all the former are in x, aK would also be in x, a contradiction. Hence by the Quasi-Prime
filter theorem, there is some y containing a, such that whenever aK P x, a R y - that is, xRy. This
shows that x R φpaqK.

To show the last statement, note that since ai ď
Ž

i ai, whenever a P x, then
Ž

i ai, so
Ťn
i“1 Ď

φp
Ž

i aiq. On the other hand, if
Ž

i ai P x, and the join is admissible, ten for some i, x P φpaiq.
This shows the result. ■

Moreover, we can prove surjectivity:

Lemma 6.1.11. The map φ is surjective, i.e, any clopen regular of YO is of the form φpaq for some
a P O.

Proof. The proof is the usual one: if K is a clopen regular in YO, and K “ YO then K “ φp1q.
Otherwise, let x R K. By regularity, let y P KK such that xRy. Then for each z P K we have that
there is some Vz such that vz P z and vKz P y. Then:

K Ď
ď

zPK

φpvzq

By compactness, K Ď φpvz0q Y ...Y φpvznq Ď φpvz0 _ ..._ vznq. By contrast, pvz0 _ ..._ vznq
K P y.

Since xRy, pvz0 _ ..._ vznq R x. Hence x P ␣φpvz0 _ ..._ vznq Ď Y ´K. Let Zx “ vz0 _ ..._ vzn .
Then Y ´K “

Ť

xRK φpzxq. By compactness we can extract a finite subcover that will get us the
desired representation of K. ■

Then we can finally show:

Lemma 6.1.12. The space YO is a slim orthospace such that RCloppYOq – O.

Proof. The proof that this space is compact has already been given. The two separation conditions
follow by definition: if xKy then a P x and aK P y, so x P φpaq and φpaKq “ φpaqK Q y. The upwards
closure condition is automatically satisfied. Finally, the admissibility condition is automatic by the
fact that, as just showed, the lattice O and RCloppOq are isomorphic via φ. ■

The morphisms of slim orthospaces will just be orthospace morphisms. However, to get a
duality, following [29], the algebraic morphisms need to be tweaked:

Definition 6.1.13. Let L and L1 be lattices. Suppose that f : LÑ L1 is a lattice homomorphism.
We say that f is join-admissible if whenever

Ž

M is an admissible join, then
Ž

mPM fpmq is an
admissible join.

These morphisms are discussed in [29, Example 3.11], where the authors show that the condition
of preservation of admissibility is necessary. With it, we can obtain a duality:

Theorem 6.1.14. The categories Ortad of ortholattices with admissible homomorphisms and
SOrtS of slim orthospaces are dually equivalent.

Proof. See Appendix. ■
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Moreover, the former results also have, as a corollary, that slim orthospaces are minimal amongst
orthospaces representing a given ortholattice:

Proposition 6.1.15. Let O be an ortholattice, and X an orthospace representing O. Then YO
embeds into X through a continuous map that preserves and reflects the relation K.

Proof. See Appendix. ■

All of these results make use of the crucial notion of a distributive envelope. This is what
motivated the above representation, and what we turn to now. Since in this chapter we will have
to often consider the “distributive” join, we denote this as Y, and reserve _ for the join coming
from the ortholattice, i.e, _ “ pYqKK.

We begin by reviewing some ideas and facts proved by Gehrke and van Gool which we will make
use of:

Definition 6.1.16. Let L be a bounded lattice, and L a bounded distributive lattice. Let e : LÑ D
be an injective map preserving meets, admissible joins and the bounds. We say that pD, eq is a
(join)-distributive envelope if for each D1, a bounded distributive lattice, such that f : LÑ D1 is an
injective map preserving meets, admissible joins and the bounds, there is some g : DÑ D1 where
g ˝ e “ f .

In other words, a distributive envelope is the free distributive extension of L. For an arbitrary
lattice L, denote by D^pLq the unique distributive envelope of L. Gehrke and van Gool [29] proved
the existence (and uniqueness) of such a distributive envelope, and provided a topological duality
for these. However, for arbitrary lattices, the representation requires making use of a topological
polarity, connecting two Priestley spaces. The key observation simplifying this in our case is that
for ortholattices, since the join can be defined in terms of the meet, we can afford this simpler
representation.

The study by Gherke and van Gool reveals the distributive envelope is a functorial construction,
enjoying nice properties:

Theorem 6.1.17. The map ^ : Lat Ñ DLat, between the category of bounded lattices with
join-admissible homomorphisms and distributive lattices, assigning to each distributive lattice its
distributive envelope, is a functor, left adjoint to the inclusion from DLat to Lat. Moreover, if
f : L Ñ D is a map from L to a bounded distributive lattice D which preserves all meets and
admissible joins, the unique lift, f̂ : D^pLq Ñ D is given by:

f̂ : D^pLq Ñ D
n

ď

i“1

ai ÞÑ
n

ď

i“1

fpaiq

Moreover, they provided a very useful characterisation of the distributive envelope. For that,
recall that we say that a map e : L Ñ L1 between bounded lattices is join-dense if every element
in L1 can be written as a join of elements epaq for a P L:

Proposition 6.1.18. Let L be a lattice and pD, eq a distributive lattice, and a map e : L Ñ D.
Then pD, eq is the distributive envelope if and only if:

1. e is injective;
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2. e preserves all meets and admissible joins;

3. e is join dense;

Proof. For a proof, see [29, Corollary 3.15]. ■

With this we can obtain the following fact, capitalising on our representation theorem:

Proposition 6.1.19. Let Y be a slim orthospace. Then ClopUppY q is isomorphic toD^pRCloppY qq.

Proof. Consider the inclusion of RCloppY q into ClopUppY q. By the same arguments as in the
previous proposition, this is seen to be injective, preserve all meets, and by the slim orthospace
condition, to preserve admissible joins. It is moreover join dense by Lemma 5.2.14. Hence by
the universal property of the distributive envelope, the inclusion factors through the distributive
envelope. More explicitly, we get a universal isomorphism:

h : D^pRCloppY qq Ñ ClopUppY q
n

ď

i“1

φpUiq Ñ
n

ď

i“1

Ui

This was to show. ■

As such we get the following useful tool:

Lemma 6.1.20. Suppose that Y is a slim orthospace. If U, V0, ..., Vn are clopen regulars, and
U Ď V0 Y ...Y Vn. Then if x is a quasi-prime filter over RCloppY q, and U P x, then there is some i
such that Vi P x.

Proof. Let x be an arbitrary quasi-prime filter over RCloppY q. Now, since U Ď V0 Y ... Y Vn, this
implies by the isomorphism in Proposition 6.1.19 that φpUq Ď φpV0q Y ... Y φpVnq. If U P x, then
x P φpUq, so x P φpViq for some i, hence, Vi P x. ■

We now look a bit further into the properties of the functors at play here, and investigate their
universal algebraic and categorical properties.

Definition 6.1.21. Let D be a bounded distributive lattice. We say that an operation p´qK :
DÑ D is an orthonegation if it satisfies for every a, b P D:

• a ď paKqK and aKKK “ aK

• paK _ bKqK “ paKqK ^ pbKqK

• paK ^ bKqK “ ppaKqK _ pbKqKqKK

In this case we say that pD,K q is an orthonegated lattice.

The following is immediate in virtue of our representation:

Proposition 6.1.22. If O is an ortholattice, then pD^pOq,K q, where K is calculated in the dual
Priestley space, is an orthonegated lattice.
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Definition 6.1.23. Let F : O^ Ñ PDLat^ be the map assigning to each ortholattice its distribu-
tive envelope with the associated orthonegation, and to each admissible morphism f : OÑ O1 the
unique lift:

f̂ : D^pOq Ñ D^pO1q
n

ď

i“1

ai ÞÑ
n

ď

i“1

fpaiq

We call this the Distributivisation of O.

To check that the former makes sense, we will need a little fact about dualising maps:

Lemma 6.1.24. Suppose that f : O Ñ O1 is an admissible ortholattice homomorphism. Then
f´1 : YO1 Ñ YO is an orthospace morphism.

Proof. See Appendix. ■

This allows us to show the following:

Lemma 6.1.25. The map F as defined above is a well-defined functor, which moreover preserves
injective morphisms.

Proof. The following argument stems essentially from [29, Corollary 2.13], where we also check
preservation of the orthonegation. The definition of F on objects is given. Now suppose that
f : O Ñ O1 is an ortholattice homomorphism. We check that the lift is well-defined. Indeed,
suppose that

Ťn
i“1 ai “

Ťk
j“1 bj . Then by Lemma 6.1.20 this refers to

Ťn
i“1 φpaiq “

Ťk
j“1 φpbjq.

So now suppose that x P YO is a quasi-prime filter, and x P φpfpbjqq. Hence fpbjq P x, so by the
previous lemma, bj P f

´1rxs, so f´1rxs P φpbjq. But we have that:

φpbjq Ď
n

ď

i“1

φpaiq

So f´1rxs P φpaiq for some i. So x P φpfpaiqq. A similar argument shows the other inclusion, and
shows the map is well-defined.

Now if f is injective: if
Ťn
i“1 fpaiq “

Ťk
j“1 fpbjq, then suppose that ai P x; since f is injective,

x “ f´1rx1s, so fpaiq P x
1; the rest of the argument then follows inverting the arguments above.

It is clear from the definition that this will be a distributive lattice homomorphism. To see that
it also preserves pseudo-negation one can see that:

fp
n

ď

i“1

aiq
K “ fp

n
č

i“1

aKi q

“ fp
n

ľ

i“1

aKi q

“

n
ľ

i“1

fpaiq
K

“ p

n
ď

i“1

fpaiqq
K

■
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Thus we can capture the following universal property of the distributive envelope, analogously
to the work of Gehrke and van Gool, and which we will need later:

Corollary 6.1.26. If O is an ortholattice, and f : O Ñ D is a map to an orthonegated lat-
tice, preserving meets, admissible joins and the orthonegation, then there exists a unique map
g : D^pOq Ñ D such that f “ g ˝ i, where i : OÑ D^pOq is the natural inclusion.

Proof. Simply note that the universal map given above will, according to the previous lemma, lift
to a map preserving the pseudo-negation. ■

For future use, we also note an extra fact about categorical constructions and admissible ho-
momorphisms:

Proposition 6.1.27. Let O and O1 be ortholattices, and D and D1 distributive lattices with a
pseudo-negation:

1. Let f : OÑ O1 be a surjective homomorphism of ortholattices. Then f is admissible.

2. Let f : OÑ
ś

iPI Oi be a subdirect embedding. Then f is admissible.

Proof. First we show (1): suppose that
Ž

M are some elements in O which form an admissible
join, and let c P O be arbitrary. Then by surjectivity, c “ fpdq for each d P D. Hence:

p
ł

mPM

fpmqq ^ c “ p
ł

mPM

fpmqq ^ fpdq

“ fpp
ł

Mq ^ dq

“ fp
ł

mPM

m^ dq

“
ł

mPM

fpmq ^ fpdq

Where the equalities follow from the admissibility of M and.
To see (4) we use a similar argument. Suppose thatM is an admissible subset. By subdirectness,

for each i P I, πi ˝ f is surjective. Hence, using the same argument as above coordinatewise will
get us the result. ■

Having these results, one is left with some natural questions. One line of inquiry runs as follows.
Given an orthonegated lattice pD,K q, one can look at:

DK “ ta P D : a “ aKKu

we can show that this is an ortholattice. This is essentially by the same arguments as in Proposition
5.3.12, where the conditions of an orthonegation ensure that DK satisfies the equations of an
ortholattice. It it not hard then to conceive of this yielding a translation between orthologic and
some logic of orthonegated lattices. So we can ask: could such a hypothetical translation in this
setting have the above distributivisation functor as its left adjoint?

Consider the distributive lattice with a negation given in Figure 6.2:
Which we call the “2-Fork” algebra, L. Here we have that ␣x “ y, and ␣y “ x, whilst

␣A “ ␣1 “ 0 and ␣1 “ 0. Then note that x, y, 0, 1 are all ␣␣ fixed points, whilst A is not. Hence,
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1

A

x y

0

Figure 6.2: 2-Fork

if we take the ortholattice of fixed points, this turns out to in fact be a Boolean algebra. In such
an algebra, all joins are admissible, trivially. However, the inclusion map cannot preserve all these
joins: since x_ y in θpLq will be 1, whilst in L it must be A. Hence there is no hope in general to
return from the ␣-fixed points to the original algebra through a map which preserves all admissible
joins.

A different question: we know that as a distributive lattice, D^pOq can be Booleanised. Since
we know that the elements of D^pOq are finite unions of elements from O, we also know the shape
of the elements from BpD^pOqq - they are finite unions of finite differences of elements from O.
This is justified by, up to isomorphism, such elements being the clopens from the slim orthospace.
However, there is no general guarantee that given an arbitrary clopen U , UK is clopen as well. In
other words, we do not know whether the orthonegation of D^pOq can be extended to BpD^pOqq.
This leads us to the following definition:

Definition 6.1.28. Let O be an ortholattice. We say that O is compatible if whenever U Ď YO is
a clopen subset, then UK is clopen as well.

In essence, this implicit question is, as we will see, intimately related to the question of how we
can extend the expressive power of a logic of ortholattices by some operations. In the next sections
we take a closer look at this question.

6.2 Orthoimplicative Systems

In this section we tackle the question of providing an algebraic structure which captures the
notion of a compatible ortholattice in an algebraic way. As we will see, the underlying description
is quite complicated, and requires heavy use of admissibility of specific joins. We do this essentially
by providing a structure, which we deem an orthoimplicative system, which is deeply related to
Weak Heyting algebras. Indeed, readers familiar with [13] will notice our proofs are essentially
more complicated versions of the arguments found in that paper.

Additionally, the logical complexity of the class is somewhat unusual, in that these are “Induc-
tive Rule” classes, i.e., axiomatised by Π2 first order formulas. The latter have recently received
attention in [2], in the effort to axiomatise a calculus for compact Hausdorff spaces; our work here
relies heavily on these ideas.

To motivate our developments, we recall that the quest to find an adequate implication connec-
tive has long marked research into quantum logic (see [44, Chapter 14] for an extensive discussion).
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Most interest has focused on term-definable implications, though recent work has started to focus
on signature expansions [27]. The key difficulties seem to be that the desiderata for implications
are in many senses conflicting: one would want the implication to satisfy the residuation laws, as
in the intuitionistic setting, but this is known to bring us back to Boolean algebras. Already in
1981, Dalla Chiara in [18] noticed that the Kripke semantic approach to ortholattices allowed for
another connective, modeled as:

lpU Ñ V q

Where U and V are propositions, and l is the induced operator from the non-orthogonality relation.
This was noted to have many if not all of the properties which were desired in such an implication;
however, this was, as far as we are aware, not pursued further.

As it turns out, our goal to capture compatible ortholattices turns out to be the same as
providing an axiomatisation of this implication relation, and its close relatives. Given the intricate
nature of the technical details, we focused on keeping in the main text only the crucial details, and
as before, direct the reader to the Appendix, where full proofs can be found.

Throughout, as before, we let R denote the non-orthogonality relation on any orthospace under
consideration.

Definition 6.2.1. Let O “ pO,^,_, p⊸nqnPω,
K , 0, 1q be an algebra with a family of implications.

We say that O is an orthoimplicative system if it satisfies:

1. pO,^,_,K , 0, 1q is an ortholattice.

2. For each n, a⊸n p0, ..., 0q “ aK

3. a⊸n pb0, ..., bmq ď a⊸n`1 pb0, ..., bm, cq

4. a⊸k pa, b0, ..., bk´1q “ 1

5. a⊸n pb0, ..., bnq ^ a⊸m pc0, ..., cmq “ a⊸nˆm pbi ^ cjqpi,jqPnˆm

6. pa_ bq⊸m pb0, ..., bmq ď a⊸m pb0, ..., bmq ^ b⊸m pb0, ..., bmq

7. a⊸k pb, c0, ..., ck´1q ^ b⊸m pd0, ..., dmq ď a⊸k`m pd0, ..., dm, c0, ..., ck´1q

8. a^ pa⊸1 bq ď b

9. a⊸n`1 ppa⊸ pb0, ..., bnqq
K, b0, ..., bnq “ 1

10. For each i ď n, a⊸n pb0, ..., bi, bi`1, ..., bnq “ a⊸n pb0, ..., bi`1, bi, ..., bnq.

11. For each n, a⊸n`1 pc, c, b0, ..., bn´1q “ a⊸n pc, b0, ..., bn´1q

As well as the admissibility axioms:

• (A1) Whenever
Ž

M is an admissible join, then p
Ž

Mq ⊸m pb0, ..., bmq “
Ź

mPM n ⊸m

pb0, ..., bmq

• (A2) Whenever C “ tc0, ..., cnu and D “ td0, ..., dku are such that ci “
Žk
j“1 ci ^ dj and this

is an admissible join, then for all e P O:

e⊸n pc0, ..., cnq ď e⊸k pd0, ..., dkq
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• (A3) For all a, b0, ..., bn if a⊸k pb0, ..., bnq “ 1 then a “
Žk
i“1 a^ bi is an admissible join.

Example 6.2.2. Let B “ pB,^,_,␣, 0, 1q be a Boolean algebra. Then for each n, and each
a, b0, ..., bn P B let:

a⊸n pb0, ..., bnq :“ ␣a_ b0 _ ..._ bn

Then B is an orthoimplicative system. Note that in this setting, the admissibility axioms are trivial,
since every join is admissible.

Example 6.2.3. More generally, let O be a compatible ortholattice. Then by slim orthospace
duality, YO is such that whenever U is clopen, UK is clopen. Then define, for a, b0, ..., bn P O

φpa⊸n pb0, ..., bnqq :“ lRp␣φpaq Y φpb0q Y ...Y φpbnqq

where ␣φpaq “ YO ´ φpaq and lRZ “ ty : @wpyRw implies w P Zu. Then pO, p⊸nqnPωq is an
orthoimplicative system.

The latter example is the example which guided our definitions, and as we will see, it encom-
passes all possible orthoimplicative systems.

Some remarks are in order. The former is, as the reader might suspect, obtained from the
axioms of a Weak Heyting algebras by essentially splitting the right coordinate of a Weak Heyting
implication into infinitely many connectives. Moreover, the former axiomatisation is not equational,
due to the admissibility Axioms. (A3) is essentially a collection of quasi-equations, whilst (A1) and
(A2), through a more careful writing, can be seen to be collections of Π2 formulas, indeed, so-called
special Horn Formulas: for example, (A2) says, for every n:

@c0, ..., cn, d0, ..., dk, eppci “
ł

ci ^ dj & @fpf ^ p
ł

ci ^ djq ď
ł

pf ^ ci ^ djqqq

ùñ e⊸n pc0, ..., cnq ď e⊸n pd0, ..., dkqq

We will later take stock of this situation. For now, we first define the following relation between
filters:

xTy ðñ @n P ω,@a, b0, ..., bn, a⊸n pb0, ..., bnq P x and a P y ùñ Di ď n, bi P y

One can then show the following:

Proposition 6.2.4. Let O be an orthoimplicative system. Let YO be the dual slim orthospace.
Then:

φpa⊸k pb0, ..., bkqq “ lT p␣φpaq Y φpb0q Y ...Y φpbkqq

Proof. See Appendix. ■

We also have that the relation T as defined above is simply the relation R:

Proposition 6.2.5. If O is an orthoimplicative system, and YO is the dual slim orthospace, then
T is reflexive and T “ R. Hence φpa⊸k pb0, ..., bkqq “ pφpaq ´ φpb0q ´ ...´ φpbkqq

K
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Proof. (1) First suppose that a⊸n pb0, ..., bnq P y and a P y. By Axiom 9, we have that:

a⊸n`1 ppa⊸ pb0, ..., bnqq
K, b0, ..., bnq “ 1

By (A3), then:
n

ł

i“1

pa^ biq _ pa^ pa⊸ pb0, ..., bnqq
Kq

Is an admissible join. Hence either one of bi P y, or pa ⊸ pb0, ..., bnqq
K P y; but since pa ⊸

pb0, ..., bnqq P y, the latter would be a contradiction. So there is some i such that bi P y, as intended.
Thus, we conclude that yTy.

(2) First suppose that xTy. Assume that a P x. Then if aK P y, for any of the equivalent
definitions of aK, then since:

aK “ a⊸ 0

This would imply that 0 P y, a contradiction. So aK R y. Hence xRy.
Conversely, assume that xRy, and a⊸n pb0, ..., bnq P x, and a P y. Now, because xRy, we have

that pa⊸n pb0, ..., bnqq
K R y. By Axiom 10, we have that:

a⊸n`1 ppa⊸n pb0, ..., bnqq
K, b0, ..., bnq P y

So since by (1), yTy, we must have that for some i, bi P y. This was to show. ■

With these facts, we can show that the notion of orthoimplicative system axiomatises the com-
patible ortholattices. First, note that in light of the above, if an ortholattice admits an orthoim-
plicative system structure, it does so uniquely: if O was an ortholattice with two orthoimplicative
structures, by duality they would yield two relations T0 and T1. In light of the above proposition,
T0 “ R “ T1. Hence, by duality, the derived operators lT0 and lT1 must be the same, mean-
ing that the actions of the arrows must agree. Moreover, orthoimplicative systems are intimately
related to special classes of Weak Heyting algebras:

Definition 6.2.6. Let H “ pH,^,_,⊸, 0, 1q be a Weak Heyting algebra. We say that H is a
WH-symmetric algebra, if H satisfies the reflexivity axiom, as well as:

a ď pa⊸ bqK Y b

This allows us to prove the following characterisation theorem, which ensures that these are the
appropriate notions to work with:

Theorem 6.2.7. (Characterisation of Compatible Ortholattices) Let O be an ortholattice. Then
the following are equivalent:

1. O admits an orthoimplicative system structure.

2. D^pOq admits a unique WH-symmetric algebra structure, with the dual relation being given
by the non-orthogonality relation.

3. O is compatible.

Proof. See the Appendix. ■
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For orthoimplicative systems, we can moreover explicitly describe the implications, using the
distributive envelope structure: if O is such a structure, then for each a, b0, ..., bk P O:

a⊸ pb0, ..., bkq :“
ł

tc P O : a ď cK Y b0 Y ...Y bku

Indeed, the symmetry axiom ensures that a ⊸ pb0, ..., bkq ď
Ž

tc P O : a ď cK Y b0 Y ... Y bku.
Conversely, if a ď cK Y b0 Y ...Y bk, this means:

φpaq Ď φpcqK Y φpb0q Y ...Y φpbkq

Hence:
φpaq ´ φpb0q ´ ...´ φpbkq Ď φpcqK

And so:
φpcq Ď pφpaq ´ φpb0q ´ ...´ φpbkqq

K “ φpa⊸k pb0, ..., bkqq

Which establishes the equation.
We saw in Proposition 6.1.26, that the distributive envelope enjoys a universal property. It is not

hard to see that this extends to orthoimplicative systems and their corresponding WH-envelopes.

Corollary 6.2.8. Let O be an orthoimplicative system and D a WH-symmetric algebra and f :
OÑ D an admissible map such that:

fpa⊸k pb0, ..., bkqq “ fpaq⊸
k

ď

i“1

fpbiq

Then there is a unique WH-homomorphism f : D^pOq Ñ D extending f such that f ˝ i “ f where
i : OÑ D^pOq is the inclusion.

Proof. We already know that the lift f is a homomorphism of distributive lattices. Now given
Ťk
i“1 ai and

Ťk
i“1 bi note that:

fp
k

ď

i“1

ai ⊸
k

ď

i“1

biq “
k

č

i“1

fpai ⊸
k

ď

i“1

biq

“

k
č

i“1

fpai ⊸k pb0, ..., bkqq

“

k
č

i“1

fpai ⊸k pb0, ..., bkq

“

k
č

i“1

fpaiq⊸
k

ď

i“1

fpbiq

“

k
ď

i“1

fpaiq⊸
k

ď

i“1

fpbiq

This was to show. ■

We now look briefly at general questions of duality for this setting.
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Definition 6.2.9. Let Y be a slim orthospace. We call pY, T q, where T Ď Y ˆ Y is a point-closed
binary relation (i.e., for each x P Y , T rxs is closed), an expanded orthospace. We say that an
expanded orthospace is full if T “ R and additionally, whenever U is clopen, then UK is closed.

The former definition is motivated by the following fact:

Lemma 6.2.10. Let X “ pX,ď, R, τq be an orthospace and U Ď X a closed set. Then UK is open.

Proof. Suppose that x P UK. Then for each y P U , by the separation axioms of orthospaces, there
is some Wx,y such that x PWx,y and y PWK

x,y, where Wx,y is a clopen regular. Hence:

U Ď
ď

yPU

WK
x,y

Since U is closed, by compactness, we can extract a finite subcover, i.e:

U ĎWK
x,y0 Y ...YW

K
x,yn

Hence, Wx,y0 X ...XWx,yn Ď UK, which is an open set, and x PWx,y0 X ...XWx,yn . This establishes
that UK is open. ■

As far as the converse proposition – that whenever U is open, then UK is closed – we see that
the above proof carries out under the additional hypothesis that U is regular. The general case
appears to require further analysis.

We recall that an orthospace morphism f : X Ñ X 1 is called strong if it satisfies for all x, y P X:

• R-forth: if xRy then fpxqRfpyq

• R-back: fpxqRy implies that Dz, xRz and fpzq “ y

For orthoimplicative systems, strong orthospace morphisms are indeed the right duals to ho-
momorphisms:

Proposition 6.2.11. Let f : O Ñ O1 be a homomorphism between orthoimplicative systems.
Then f´1 : YO1 Ñ YO is a strong orthospace morphism. Conversely, if g : Y Ñ Y 1 is a strong or-
thospace morphism between full orthospaces, then g´1 : RCloppY 1q Ñ RCloppY q is a homomorphism
between orthoimplicative systems.

Proof. See Appendix. ■

We conclude with some logical problems associated to this class of structures. The axioma-
tisation we have given of orthoimplicative systems uses Π2-formulas which are also special Horn
sentences. This is outside most classical formalisms dealing with algebraic logic and universal
algebra, but has not gone undiscussed. Notably, work related to the symmetric calculus of subordi-
nation algebras [2] and some specific investigations of these structures [3] have marked some recent
analysis of such settings. This setting is also a particularly well-behaved (in being Π2) fragment
of so-called geometric theories, heavily studied in categorical logic [47] and more recently in proof
theory [54].

We begin by recalling some classic concepts from model theory:
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Definition 6.2.12. Let φ be a first order formula. We say that φ is a Horn formula if φ is in
prenex normal form and:

φ “ Q0x0...Qnxn
`

k

&
i“1

ψi
˘

Where each Qi is a quantifier, and ψi is a formula of the form:

χ0 _ ..._ χn

in which each χi is atomic or negated atomic, and at most one χi is atomic.

Definition 6.2.13. Let φ be a first order formula. We say that φ is a Special Horn formula if it
is of the form:

n

&
i“1

@xpφi Ñ ψiq

where each φi is positive, and each ψi is atomic.

Proposition 6.2.14. Let K be an elementary class (of algebras). Then:

• K is axiomatised by Horn formulas if and only if it is closed under reduced products.

• K is axiomatised by special Horn sentences if and only if it is closed under subdirect products.

Proof. See for instance [15, pp.418-419]. ■

Since we are mostly interested in equational classes of orthoimplicative systems, we would
want to work with something approximating varieties. However, naturally, the fact that we carry
three inductive rules with us implies closure under homomorphic images or subalgebras cannot be
expected in general. The notion we are looking for is that of a relative variety :

Definition 6.2.15. Let K be an elementary class of algebras, and S Ď K another class. We
say that S is a relative variety with respect to K, if S is closed under subdirect products and
homomorphic images which belong to K.

Given a theory T in first order logic, We say that S is a relative equational class with respect
to T , if there exists a collection of equations Φ in the language, such that for each A a model of T ,
A P S if and only if A ( Φ.

Note we work with subdirect products, rather the more usual subalgebras and products combi-
nation, in light of Hall’s theorem (see preliminaries), and in light of the pathologies associated to
subalgebra embeddings, such as the fact that they may not be admissible. We make the connection
explicit in the case we are interested in. We recall a small universal algebraic fact:

Lemma 6.2.16. Let K be any class. Then for some cardinal κ, if |X| ě κ, then FKpXq P IPSpKq.

Proof. See for instance [12, Theorem 11.11]. ■

Theorem 6.2.17. The collection ΛApOISq of relative varieties of orthoimplicative systems forms
a complete lattice. This is dually isomorphic to ΛpOILq, the lattice of relative equational classes,
relative to the axiomatisation given above.
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Proof. First we show that a class is a relative variety if and only if it is a relative equational
class. The if part is clear: if K is a relative equational class, then since subdirect products and
homomorphisms preserve equations, we have that it is a relative variety. For the converse, we use
a standard argument, together with the lemma above. If K is a relative variety, then consider:

EqpKq

The set of equations satisfied by all members of K. Then clearly if A P K, A ( EqpKq. Now if
B is an orthoimplicative system, assume that B ( EqpKq. Let κ be a sufficiently large cardinal to
satisfy the former lemma, and X a set such that |X| “ maxp|B|, κq. Hence, let

f : X Ñ B

be an arbitrary surjective map. By the universal mapping property, f has a lift to f : TmLOIS
pXq Ñ

B. Since B ( EqpKq, then this factors through the algebra FKpXq, i.e, there is a surjective
homomorphism g : FKpXq Ñ B. By the above lemma, we have that FKpXq P IPSpKq, and by
assumption the class is closed under subdirect products. Hence we have that B is a homomorphic
image of that algebra, ensuring that B P K by closure under homomorphic images. ■

We have thus laid all of the groundwork for our return, in the next section, to the relationship
between Ortholattices and KTB. We close this section with some remarks about compatibility of
ortholattices and the naturality of the structures so discussed.

What we have proved in this section is that we can axiomatise compatibility in a stronger
signature, but have not discussed how such structures can be found in ortholattices. It is obvious
by the notion of compatibility that finite ortholattices will be compatible, and it can be shown that
compatible ortholattices are closed under products (See Appendix), though we have not managed
to prove or refute closure under homomorphic images or subalgebras.

However, it might be that many natural structures will admit an orthoimplicative system struc-
ture. As an encouraging example, the most paradigmatic orthomodular lattice – the lattice of
closed subspaces of a Hilbert space – can be seen to admit an implication satisfying the equational
axioms above, using the explicit definition we outlined. We leave the details of whether this means
such a lattice forms a genuine orthoimplicative system, and a proof that such a space indeed forms
a compatible ortholattice, for further work.

6.3 Orthoimplicative Logic and Sober KTB

In this brief section, we outline how the structures we met in the previous section can be
described logically. We show that such systems are conservative over many classes of orthologics –
such as those with the FMP – which ensures that our results still extend those of Miyazaki. We then
explain how the developments of the previous chapter can be paralleled in the case of KTB, and
construct a calculus for KTB, where the models are exactly the soberly generated KTB-algebras.
We discuss logical admissibility of Π2-rules, and provide natural examples of KTB-extensions which
are conservative (such as the whole logic KTBq) and others which are not (such as tabular logics
generated by non-sober KTB frames).

Definition 6.3.1. Let LOIS be the language consisting of p^, p⊸nqnPω, 0, 1q. We say that O, a set
of pairs pφ,ψq of formulas in TmLOIS

pVARq is an orthoimplicative logic if:
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1. O is an orthologic;

2. For each axiom from 1-11 of an orthoimplicative system, of the form λ « γ, O contains the
pairs pλ, γq and pγ, λq;

3. O is closed under uniform substitution.

4. O is closed under the admissibility rules:

(a) For each finite subset Φ, if for each formula ψ, p
Ž

Φq ^ψ $
Ž

φPΦ φ^ψ (we say that Φ
is admissible) then

Ž

Φ ⊸m pb0, ..., bmq %$
Ź

φPΦ φ⊸m pb0, ...,m q

(b) For each pair of finite subsets Φ and Ψ, if φ P Φ is such that φ %$
Ž

ψPΨ φ^ ψ and Φ
is admissible, then for each χ χ⊸n pφ0, ..., φnq $ χ⊸k pψ0, ..., ψkq.

(c) For all φ,ψ0, ..., ψn if J %$ φ⊸n pψ0, ..., ψnq then φ %$
Ž

ψPΨ ψ^φ and tψ^φ : ψ P Ψu
is admissible.

Where we write φ $O ψ to mean, as usual, pφ,ψq P O.

It is trivial to see that arbitrary intersections of OIL (Orthoimplicative Logic) will again be
OIL. More interestingly, the Lindenbaum-Tarski techniques can still be applied.

Lemma 6.3.2. Let TmLOIS
pVARq be the term algebra on the signature of orthoimplicative sys-

tems, and O an orthoimplicative logic. Then FpVARq :“ TmLOIS
pVARq{ ”O, the algebra quo-

tiented by the equivalence relation generated by interderivability in the logic, is an orthoimplicative
system.

Proof. First notice that with this definition, ”O is still a congruence of the algebra. We know this
will be an ortholattice, and by usual arguments, it will be clear that it will satisfy axioms 1-10.
The fact that it satisfies the admissibility axioms follows from the admissibility rules. We prove
(A1), and the arguments for the others are wholly similar.

Suppose that
Ž

rΦs is an admissible join. Hence, for each ψ a formula, we have that:

ł

rΦs ^ rψs ď
ł

φPΦ

rφs ^ rψs

Hence, since the relation is a congruence:

rp
ł

Φq ^ ψs ď r
ł

φPΦ

φ^ ψs

Hence, this means, by the lattice structure:
ł

Φ^ ψ $
ł

φPΦ

φ^ ψ

Since this holds for all ψ, by the A1-rule, then we get that:

r
ł

Φ ⊸m pb0, ..., bmqs “ r
ľ

φPΦ

φ⊸m pb0, ..., bmqs

■
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To provide an algebraization result, we make use of our work from last section:

Lemma 6.3.3. Let O be an orthoimplicative logic. Then VarpOq, the class of algebras validating
this, is a relative variety of orthoimplicative systems.

Proof. Immediate, since such a logic will extend the basic orthoimplicative logic by some sequents
of the form pφ,ψq, and these are simply equations of the form φ^ ψ “ φ. ■

Corollary 6.3.4. Every orthoimplicative logic is sound and complete with respect to the relative
variety of orthoimplicative systems validating the logic.

We now reserve the symbol OIL for the minimal orthoimplicative logic. We also note the
following fact connecting orthologics and orthoimplicative logics:

Definition 6.3.5. Let O be an orthoimplicative logic. We define O, the orthologic reduct, to be:

O :“ tpφ, χq : φ, χ P TmLO
pVARq, pφ, χq P Ou.

It is clear by definition that every orthoimplicative logic is conservative over its orthologic
reduct. Conversely, given an axiomatic extension O ‘ T , where T is a collection of ortholattice
formulas, we can consider OIL‘ T . Then we get the following:

Corollary 6.3.6. For each orthologic O “ O ‘ T , VarpOq is a variety generated by compatible
ortholattices if and only if OIL‘ T is conservative over O.

Proof. The left to right direction of this is clear. Conversely, suppose that OIL‘ T is conservative
over O‘ T . Then for each pφ,ψq R O‘ T , let Aφ be an orthoimplicative system satisfying OIL‘ T
but not pφ,ψq. Consider S “ tAφ : pφ,ψq R OIL ‘ T u be the collection of ortholattice reducts of
these structures. Then look at the orthologic of S. If pφ,ψq P O, then pφ,ψq P OIL‘ T , hence it is
valid on all Aφ; conversely, if pφ,ψq R O, by construction this fails in some Aφ. Thus, LogpSq “ O,
so the variety of O is generated by S. ■

We now move to a discussion of sober KTB algebras and their logic. Recall that in Chapter 5 that
we showed that the Goldblatt translation could not be full by showing that there were two logics
which both mapped to the same logic - namely, two logics generated by different representations of
Benzene. There, we claimed that in Figure 5.4, the right hand side was the maximally sober frame;
it is now not hard to see that the left hand side is the minimally sober one, i.e, the slim orthospace
dual. If we want to pick only the minimally sober ones, it turns out it is enough to require closure
under a collection of Π2-rules:

Definition 6.3.7. Let pB,lq be a KTB algebra. We say that B is sober if it satisfies the following:

• (KTB-sob) If M “ tm0, ...,mku is a subset of B such that for all b P B:

l♢p
ł

mPM

l♢mq ^l♢b ď l♢p
ł

l♢m^l♢cq

Then l♢
Ž

mPM l♢m “
Ž

mPM l♢m.

Lemma 6.3.8. Let B be a sober KTB algebra. Then:

98



1. OB embeds into B through a map which preserves meets and admissible joins.

2. X˚B is a slim orthospace.

Proof. (1) is clear: the fact that the inclusion preserves meets is obvious by definition of OB, whilst
preservation of admissible joins follows from the rule KTB-sob.

To see (2), let rxs P X˚B. We will show that this is a quasi-prime filter with respect to OB. So
let

Ž

M be admissible in OB, and assume that
Ž

M P rxs; by (1), then, ip
Ž

Mq P B, the mapping
through the inclusion, sends this to

Ť

mPM m understood as an element of B. Since
Ž

M P rxs,
then by definition l♢p

Ť

Mq P x; but by assumption,
Ť

mPM m “ l♢p
Ť

Mq, hence, there is some
m PM such that m P rxs. This was to show. ■

The former thus repairs one of the issues we had found with the previous situation in KTB:
we could start with a KTB algebra, turn it into a KTB space, translate it into an orthospace, and
then obtain the induced ortholattice; but if we took the dual of that ortholattice, the orthospace
obtained need not be the same. Since we know that slim orthospaces are unique, and minimal, this
cannot happen for sober KTB algebras.

Definition 6.3.9. Let K be a class of KTB algebras. We say that K is sober if all B P K are
sober.

We note that again, given the underlying formula is a special Horn sentence, the class of
sober KTB algebras will be closed under subdirect products. Moreover similar arguments to those
sketched in the previous section yield:

Proposition 6.3.10. There is a dual isomorphism between the lattice of relative varieties, relative
to sober KTB algebras, and relative equational classes relative to the theory of sober KTB algebras.

Moreover, adding the admissibility rule to the calculus of KTB yields a logic, which we denote
KTBs. Using similar arguments to those of this section, we have that the relative varieties are dual
to the logics extending KTBs. Hence we have a perfect parallelism between orthoimplicative logic
and sober KTB logic, which will be the focus of our next, and last, section.

Before that, we turn to a natural question which is better discussed in the setting of KTB sober
algebras, given the availability of tools and literature. The rule we just added states, explicitly, for
a given logic L:

• If M is a subset which is admissible, in the sense that for each ψ we can prove that:

$L p
ł

χPM

l♢χq ^l♢ψ Ñ l♢p
ł

χPM

l♢χ^l♢ψq

then:
$L l♢p

ł

χPM

l♢χq Ø
ł

χPM

l♢χ.

Now we note the following which uses similar ideas to Corollary 6.3.6:

Lemma 6.3.11. Let L P NExtpKTBq be arbitrary such that L “ KTB ‘ T . The following are
equivalent:

• VarpLq is generated by sober KTB algebras;
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• Ls “ KTBs ‘ T is conservative over L

• The KTB-sob rule is admissible in L.

Proof. The equivalence of (1) and (2) is essentially as in the above corollary. Now we show that
(1) implies (3): assume that we have $L p

Ž

χPM l♢χq ^ l♢ψ Ñ l♢p
Ž

χPM l♢χ ^ l♢ψq. Let
A P V arpLq be a sober generator. Then for each valuation v:

A ( p
ł

χPM

l♢vpχqq ^l♢vpψq Ñ l♢p
ł

χPM

l♢vpχq ^l♢vpψqq « 1

Hence by definition in A:

p
ł

χPM

l♢vpχqq ^l♢vpψq ď l♢p
ł

χPM

l♢vpχq ^l♢vpψqq

Since this holds for all valuations, given any valuation v, we can let p1 be a proposition letter not
ocurring in any χ PM , and let v1pp1q be any element in A, with the same result. Since A is sober,
then:

ł

χPM

l♢vpχq “ l♢p
ł

χPM

l♢vpχqq

Hence, since the sober elements generate V arpLq:

$L

ł

χPM

l♢χØ l♢p
ł

χPM

l♢χq

This was to show.
Conversely, assume that the KTB-sob rule is admissible in L. Then KTBs ‘ T “ KTB ‘ T ,

since we know that no application of the rule can yield new theorems. Hence (3) implies (2). ■

These rules can be put into a very specific shape, as discussed in [2, 3]:

Definition 6.3.12. A Π2-rule is a rule of the form:

F pφ{x, pq Ñ χ
pρq

Gpφ{xq Ñ χ

Where F px, pq, Gpxq and χ are formulas, possibly with open variables, in the language of modal
algebras.

To see that our KTB rules are of this shape, consider the following formulas

F px0, ..., xn, yq :“ l♢p
n

ł

i“1

l♢xiq ^l♢y Ñ l♢p
n

ł

i“1

l♢xi ^l♢yq and

Gpx0, ..., xnq :“ l♢p
n

ł

i“1

l♢xiq Ø
n

ł

i“1

l♢xi

In [3], a series of techniques were used to recognise admissibility of Π2-rules. We recall one
of the ones used. For it, recall that a modal logic L is said to have the interpolation property
if, whenever $L φ Ñ ψ, then you can find a formula χ P Langpφq X Langpψq, (where Langpχq
denotes the set of all terms involving variables from χ) the shared language, such that $L φ Ñ χ
and $L χÑ ψ.
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Theorem 6.3.13. Let L be a modal logic system with the interpolation property. Then a Π2-rule
ρ as above is admissible if and only: whenever $L F pφ{x, pq ^Gpφ{xq Ñ χ then $L Gpφ{xq Ñ χ.

Proof. See [3, Theorem 3.2]. ■

We apply this theorem to our case:

Corollary 6.3.14. Let L P NExtpKTBq be a system with the interpolation property. Then the
KTB-sob rule is admissible in L.

Proof. Assume that $L F pφ, pq ^Gpφq Ñ χ, for some χ and φ, where these formulas are the ones
defined above. Let A be an algebra in VarpLq, and v any valuation. Now, by assumption, then:

A ( F pφ, pq ^Gpφq Ñ χ

Now, notice that in A, for any valuation, Gpφq ď F pφ, pq: indeed, if the join is distributive, then
the statement of F follows, regardless of the value taken by the extra parameter. Hence:

A, v ( Gpφq Ñ χ

This shows conservativity. Hence by Theorem 6.3.13, we have that L admits the rule. ■

Corollary 6.3.15. The variety of KTB algebras is generated by sober KTB algebras.

With these preliminaries, we are ready to tackle the question of the relationship between ortho-
logic and KTB logic.

6.4 The Goldblatt Translation Revisited

Definition 6.4.1. Let LOIS be the language of orthoimplicative logic, and LKTB the language of
KTB logic. Define the second Goldblatt translation as follows:

1. G2p0q “ 0

2. G2ppq “ l♢p for any proposition p;

3. G2pφ^ ψq “ G2pφq ^G2pψq

4. G2pφ⊸n pψ0, ..., ψnqq “ lp␣G2pφq _G2pψ0q _ ..._G2pψnqq

From this translation we obtain the semantically equivalent clauses G2pφ
Kq “ l␣G2pφq and

G2pφ_ ψq “ l♢pG2pφq _G2pψqq. Let Θ “ tx « l♢xu. Then we have:

Proposition 6.4.2. The tuple pG2,Θ,l♢q satisfies the conditions of being a contextual translation
between the relative equational consequence of orthoimplicative systems and sober KTB algebras,
and has a selector term.
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Proof. It is not hard to see that the Θ equations are compatible with the equational consequence,
and the proposed term is a selector. Moreover, the translation is contextual: if G2rΦs * G2pλq «
G2pγq, for some collection of equations ΦYtλ « γu in the language of orthoimplicative systems, letB
be a sober KTB algebra witnessing this. Then by arguments we have seen before, OB “ ta : l♢au,
equipped with the induced operations, is an ortholattice with an implication which refutes the
equation in some valuation. Moreover, we have that OB is orthoimplicative, because B is sober
and in KTB: if

Ž

M is an admissible join in OB, by definition, then l♢p
Ž

Mq is admissible in
B; hence

Ž

M “
Ť

M , whereby the axioms (A1) and (A2) follow as easy properties of Boolean
algebras with modal operators. Axiom (A3) as well as Axioms 8 and 9 follow from the fact that
the modality is symmetric and reflexive. ■

Our work in the previous chapters now allows us to explicitly describe the adjunction which is
related to this translation.

Definition 6.4.3. Let OIS be the category of orthoimplicative systems with implicative maps, and
KTBsob the category of sober KTB algebras with admissible homomorphisms. Let KTBSsob be
the category of sober KTB spaces with p-morphisms, and OrtS be the category of slim orthospaces
with strong orthospace morphisms. We define a functor:

θ : KTBsÑ OIS

Which takes B to OB, and acts as the restriction on maps. Similarly, we have its dual:

θ˚ : KTBÑ OrtS

Which takes a sober KTB space X to X˚, and acts as the induced map on maps.
We also define a functor:

BDp´q : OISÑ KTBsob

Which on objects takes an orthoimplicative system O to the Boolean envelope of D^pOq, its
distributive envelope, and on maps, takes the unique lift of all maps involved. Dually, we have:

BD˚ : OrtSÑ KTBSsob

Which acts by sending a slim orthospace to its Boolean space reduct, and acts as the identity on
maps.

We have already studied the maps θ and θ˚ and have that they are duals by Proposition 5.3.17
and Lemma 6.3.8. We will thus concentrate for now on showing that the other two maps are
well-defined functors and that they are duals of each other.

Lemma 6.4.4. The maps BD and BD˚ defined above are well-defined functors. Moreover, we
have that:

• If O is an orthoimplicative system, then XBDpOq – CloppBD˚pYOqq

• If Y is a slim orthospace, then CloppBD˚pY qq – BDpRCloppY qq
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Proof. First we show that BD is a functor. Given O, note that BD^pOq is a well-defined Boolean
algebra. By what we proved in Section 5.1, and facts mentioned in the preliminaries, BD^pOq will
be isomorphic to the set of clopens of YO. Hence its elements are of the form:

a “
k

ľ

i“1

ci _´d
0
i _ ..._´d

j
i

where ci, d
k
i P O. Hence we define:

la “
k

ľ

i“1

ci ⊸j pd
0
i , ..., d

j
i q

We have that l will be a symmetric and reflexive modality (since the relation R is reflexive and
symmetric), hence, it is a KTB algebra. Dually, the space YO seen as a Boolean space with the
non-orthogonality relation R, is a modal space, since R is point closed, and when U is clopen in
YO, lU is clopen (and regular).

It is clear to see that the proposed definitions on maps make BD and BD˚ into functors. Now
suppose that O is an arbitrary orthoimplicative system. Then by what we just mentioned, BDpOq
is isomorphic to the clopens of YO. The second statement is similar. ■

We now consider two candidate maps:

Definition 6.4.5. Let ηO : OÑ θpBDpOqq be the map sending a P O to a P θpBDpOqq for O an
orthoimplicative system. Let εB : BDpθpBqq Ñ B be the unique map induced by the inclusion of
θpBq into B.

Lemma 6.4.6. η and ε are natural transformations. Moreover, η is a natural isomorphism, and ε
is pointwise injective.

Proof. The proof of naturality is straightforward once we show the remaining facts (for η this is
trivial, since it is an isomorphism, and for ε this follows from the universal property of Booleanisa-
tion and Distributivisation). To see that η is a well-defined isomorphism, note that if a P O, then
a P BD^pOq, and moreover, l♢a “ aKK “ a. Moreover, if a P BD^pOq and a “ l♢a, then by
duality, φpaq is a clopen regular in BD˚pYOq; but by construction, then a P O. Hence we have that
η is bijective, and it is clearly a homomorphism.

To see the statement for ε, consider i : θpBq Ñ B the inclusion. Since B is sober, this inclusion
preserves all meets and admissible joins. Hence, by the universal property of the distributivisation,
there is a unique lift i : D^pθpBqq Ñ B which is injective, since i was injective. In turn, as proved
in the preliminaries, this means that there is a unique lift î : BD^pθpBqq Ñ B which is again
injective. This is what we define εB to be, and hence the result follows. ■

With this we can now show that θ and BD form an adjunction:

Theorem 6.4.7. The maps BD : OIS Ñ KTBsob : θ form an adjunction, where moreover
BD preserves injective maps, ε is pointwise injective, θ preserves surjective maps and η is an
isomorphism.
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BDpOq BDpθpBDpOqqq

BDpOq

BDpηOq

1BDpOq

εBDpOq

Figure 6.3: Left Adjoint Triangle Identity

Proof. To see this forms an adjunction it suffices to check the triangle identities on the maps η and
ε. To see that:

Simply note that by uniqueness of the map εBDpOq, and the fact that ηO is an iso, we have that
1BDpOq ˝ pBDpηOqq

´1 “ εBDpOq, which immediately yields equality.
Similarly, to see as in Figure 6.4:

θpBq θpBDpθpBqqq

θpBq

ηθpBq

1θpBq

θpεBq

Figure 6.4: Right Adjoint Triangle Identity

Note that if a P θpBq, then ηθpBqpaq “ a, and since the counit maps is an inclusion, θpεBq ˝
ηθpBqpaq “ a. ■

Hence, we have that the extended Goldblatt translation is sober, in the sense developed in
Chapter 4. Hence, carrying out minimal changes for the case of relative varieties, we get a theory
of companions for this setting, and a Polyatomic Blok-Esakia theorem. We briefly spell out what
this amounts to, where proofs will proceed exactly as in Chapter 4:

Definition 6.4.8. Given an orthoimplicative logic O and a sober KTB logic L P NExtpKTBsq we
say that O is a Goldblatt companion of L if:

O $ pφ,ψq ðñ L $ G2pφq Ñ G2pψq

We define the maps ρ, τ and σ on relative varieties of algebras as before; we also define the maps
ρ and τ on logics, in the same way as described on Chapter 5. We denote by Ll♢ the l♢-variant
of the sober KTB logic L. Carrying out all arguments from Chapter 4 relativised to the sobriety
condition, we then have finally:

Corollary 6.4.9. (PAt-Blok Esakia Theorem for OIL and KTBs) The following hold:

• The map ρ is a surjective homomorphism on varieties of algebras.

• The map τ is an isomorphism between the lattice of orthoimplicative logics and the lattice of
l♢-variants of sober KTB-logics.

• The greatest Goldblatt companion of an orthoimplicative logic is the sober logic generated, as
a relative variety by:

tσpBq : B P V arpLqu
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We thus have the sought out PAt-Blok Esakia theorem. Using the results from the previous
section, we also note that this result encompasses all of the results found in the literature: since
all varieties of ortholattices with the FMP are compatibly generated, all of them are conservatively
translated to orthoimplicative logic, and hence the second Goldblatt translation extends the first.
This recovers Theorem 5.3.10 by Miyazaki, and shows that our result is a genuine extension of the
work done so far on the theory of KTB companions.

6.5 Chapter Summary

We summarise our principal contributions in this chapter as follows:

• We use the notion of quasi-prime filter to provide a new representation for ortholattices. This
is done with the novel notion of a slim orthospace, which is shown to be minimal amongst
orthospaces. This also yields a universal distributivisation functor.

• We study orthoimplicative systems as algebras with natural slim orthospace duals. We provide
an axiomatisation of these using Π2-formulas, and study the descriptions of these in model
theoretic terms. We introduce Orthoimplicative Logic, which corresponds on the logic side
to these structures.

• We introduce a sober version of KTB, and discuss the context of applicability of these systems.
We discuss admissibility of the non-standard rules in this case, and show that the key rule is
admissible in the case of KTB and other systems.

• We provide explicit descriptions of the adjunction witnessing the second Goldblatt translation
in the case of orthoimplicative systems and sober KTB algebras.

• We show that the second Goldblatt translation is sober, and prove a Polyatomic Blok-Esakia
isomorphism between Orthoimplicative Logic and Sober KTB.
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Chapter 7

Conclusions and Further Work

In this thesis, we introduced the concepts of Polyatomic logics, and initiated a generalised
study of “Blok-Esakia theory” for a large class of translations. Building on ideas from [53] and [6],
we presented a framework for this study, outlining the concepts of selective, strongly selective, and
sober translations, developing the concept of Polyatomic logics, and proving algebraic completeness
theorems for such logics. Using these tools, we undertook a systematic study of the Goldblatt
translation, finding that it fails to induce a classic Blok-Esakia isomorphism and fails to have the
Polyatomic Blok-Esakia isomorphism. We then identified an adequate conservative expansion of
minimal orthologic – orthoimplicative logic – as well as a conservative expansion of KTB – sober
KTB – which are connected by a Polyatomic Blok-Esakia isomorphism.

The work presented provides only the basics of the underlying theory, and leaves many natural
continuations for this research. We highlight some of these below.

We did not elaborate the study of the l♢-logics associated to the Goldblatt translations, and
did not investigate many natural properties of orthoimplicative systems and their logics. Properties
such as FMP, Kripke completeness, canonicity, for both Orthoimplicative Logic and the dual l♢-
logics, would be the first natural continuation of the work presented here. We expect that standard
techniques could be adapted to this case, with the role of the distributive envelope and Weak
Heyting algebras should be emphatic in establishing these. In a similar vein, preservation results
are an important theme of the GMT translation which we did not touch on here. Whilst certain
properties follow from our results immediately (e.g., FMP and tabularity being preserved by the
maps σ or ρ in the extended Goldblatt translation), others might require more careful analysis
(e.g., Kripke completeness being preserved by the three maps). More broadly, for other polyatomic
logics, including DNA-logic, the development of techniques like universal models and Jankov-De
Jongh formulas can be expected to provide useful insights.

Related to all of these questions, the investigation of the regularly generated sober KTB algebras
seem like a natural continuation of the research from chapter 6. The existence of a Polyatomic Blok-
Esakia isomorphism leaves open the question of whether this translation is in fact BE-translation
– that is, whether we can axiomatise the greatest companions. In this sense, we expect that the
methods from [17] could be useful in establishing possible isomorphisms, though more work is
necessary to understand the classes of sober and regularly generated KTB frames (i.e, the order
theoretic reducts of slim orthospaces).

In addition to the contributions to the study of translations, in Chapter 5 we presented a new
duality for ortholattices, which can be exploited further. For instance, we have the important
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case of orthomodular lattices – which we notably did not discuss throughout the thesis – and the
associated systems of Quantum Logic. For instance, we have that the elements of the center, that
is, those elements a P O such that for every b P O:

a “ pa^ bq _ pa^ bKq

are such that a _ aK is an admissible join. This implies that quasi-prime filters behave with
respect to these elements in a way similar to ultrafilters. A broad research topic would be to look
into the applicability of these ideas to the study of orthomodular lattices, modular ortholattices
and Quantum Logics, which have various longstanding open problems [11]. In a similar vein,
these methods should be applicable to modal ortholattices [41], and could allow for representations
connecting these systems with classical modal logic.

Many questions which are naturally related to those in this thesis can be asked for adjacent
translations, and we expect, can be addressed by methods such as the ones presented. One example
is the following questions: intuitionistic logic embeds into classical logic (through an inclusion), and
classical logic embeds into intuitionistic logic (via the KGG translation); orthologic embeds into
classical logic (through an inclusion); so in what way should classical logic embed into orthologic?
An intuitive idea, inspired by our Kripkean approach, is that this should somehow “collapse” the
various states representing compatible options, making the phenomenon classical. We believe that
a translation into specific modal orthologics, should be possible, so as to capture this intuition.

Finally, one could pursue a research program into Inductive Rule classes, which have the same
kind of axiomatisation as Orthoimplicative Logic. This seems like a broad setting in which to
develop algebraic logic, as its complexity is just above that of universal sentences, whilst preserving
some of the universal algebraic desiderata (notably, Lindenbaum-Tarski constructions). We expect
that a systematic investigation of this could unify and generalise many studies [58, 37, 54, 3] in
the use of rules for axiomatising non-classical logical systems, and shed new light on the expressive
power of such axiomatisations.
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Chapter 8

Appendix

The purpose of this appendix is to provide detailed proofs of some facts which are used in the
thesis, but whose proofs are either standard or quite lengthy and unremarkable from the point of
view of the main argument.

8.1 Slim Orthospace Duality

In Chapter 5, we proved the representation theorem of ortholattices inside slim orthospaces.
We can show that this is in fact a full duality, by arguments analogous to those outlined in [8],
which is what we do in this part of the appendix.

Our first focus will be on the method of working within distributive envelopes.

Lemma 8.1.1. The map ε defined above is a homeomorphism which preserves and reflects the K
relation.

Proof. We begin by showing that indeed ε is well-defined, namely, that its image is a quasi-prime
filter:

• (Filter): if U P εpxq and U Ď V , then x P U implies that x P V , so V P εpxq; similar for
closure under conjunction.

• (Quasi-primeness): if p
Ťn
i“1 Uiq

˚ is an admissible join, by the slim-orthospace property,
p
Ťn
i“1 Uiq

˚ “
Ťn
i“1 Ui. Hence if it belongs to εpxq, then x P

Ťn
i“1 Ui, so x P Ui for some

i, i.e, Ui P εpxq.

Moreover, we see that it is continuous. For this it suffices to show that the pre-image of subbasic
open sets is again open, and indeed we have, for U P RCloppYOq:

ε´1pφpUqq “ tx : εpxq P φpUqu

“ tx : U P εpxqu

“ tx : x P Uu

“ U

And similar for X´U . Moreover, the map is injective: if x ‰ y, then by Axiom 1 of an orthospace,
there is some regular clopen set U such that x P U and y R U , hence U P εpxq and U R εpyq. It is
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K preserving and reflecting: by Axiom 2 xKy if and only if there is some U such that x P U and
y P UK, if and only if U P εpxq and UK P εpyq, if and only if εpxqKεpyq. Finally, we have that ε
is surjective: suppose that YRCloppY q ´ εpY q is non-empty. Let z be an element there. Since this
space is Boolean, by total disconnectedness, and the fact that εpY q is closed, we can find a clopen
set V such that z P V and V X εpY q “ H. By usual representations, we may assume that:

V “
n

ď

i“1

Ai ´B
0
i ´ ...´B

m
i

Where A,B are all clopen regulars. Hence we may assume without loss of generality that z P
φpUq ´ φpV0q ´ ...´ φpVnq. Hence we have that:

ε´1pφpUq ´ φpV0q ´ ...´ φpVnqq “ H

Which implies that U Ď V0 Y ...Y Vn. Bu by Lemma 6.1.20, this means that:

φpUq ´ φpV0q ´ ...´ φpVnq “ H

Which contradicts the fact that z is there. ■

Next we consider the case of the morphisms:

Lemma 8.1.2. Let f : O Ñ O1 be an admissible ortholattice homomorphism, and g : Y Ñ Y 1 an
orthospace morphism between slim orthospaces. Then:

• f´1 : YO1 Ñ YO is an orthospace morphism.

• g´1 : RCloppY 1q Ñ RCloppY q is an admissible ortholattice homomorphism.

• pf´1q´1 – f and pg´1q´1 – g

Proof. (1) Notice that because f is admissible, then f´1 is well-defined: it surely sends filters to
filters, and moreover, if x P YO1 is quasi-prime, then so is f´1rxs: if

Ž

a P f´1rxs is an admissible
join, then fp

Ž

aq P x, and by assumption, this is admissible as well.
It is straightforward to see that f´1 is continuous. Moroever, if xRy, then f´1rxsRf´1rys: if
a P f´1rxs, then fpaq P x, so fpaqK R y, hence aK R f´1rys using preservation of K by f . To see
the back condition, suppose that f´1rxsRy. Then look at:

Filpf rysq and IdptcK : c P xuq

Note these must be disjoint; otherwise, for some a0, ..., an P y, fpa0q ^ ... ^ fpanq ď cK0 _ ... _ cKm.
Hence:

fpa0 ^ ...^ anq ď pc0 ^ ...^ cnq
K

Hence c0^ ...^cn ď fppa0^ ...^anq
Kq. Since the former is in x, so is the latter, so pa0^ ...^anq

K P

f´1rxs. But then pa0^ ...^anq R y, which is a contradiction. So by the Quasi-prime filter theorem,
there is some z such that f rys Ď z, and whenever c P x, cK R z. So xRz, and moreover, y ď f´1rzs,
as intended.
(2) To see that g´1 is an ortholattice homomorphism is clear. We show that it is admissible. If
Žn
i“1 Ui is admissible, then by the slim orthospace condition, this is equal to

Ťn
i“1 Ui. Then surely
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g´1r
Ťn
i“1 Uis “

Ťn
i“1 g

´1rUis will be such that all clopen regulars distribute over it.
(3) We show this fact for f , whilst for g this is analogous. Indeed, we show that if a P O is arbitrary,
φpfpaqq “ pf´1q´1pφpaqq. Suppose that x P φpfpaqq. This is true if and only if fpaq P x, if and
only if a P f´1pxq, if and only if f´1pxq P φpaq, if and only if x P pf´1q´1pφpaqq. ■

With this we have shown the following.

Theorem 8.1.3. The categories Ortad of ortholattices with admissible homomorphisms and SOrtS
of slim orthospaces are dually equivalent.

The former also allows us to prove, as claimed in Chapter 5, that slim orthospaces are minimal:

Proposition 8.1.4. Let O be an ortholattice, and X an orthospace representing O. Then YO
embeds into X through a map that preserves and reflects the relation K.

Proof. Let x P YO be arbitrary. Since X represents O, we can, without loss of generality, denote
its clopen regulars by φpbq for b P O. So consider in X the intersection

Ş

aPx φpaq X
Ş

bRxX ´φpbq.
First we claim that this is non-empty. Indeed, if it were, by compactness, some finite subfamily
would be empty, i.e, φpa0q X ...X φpanq XX ´ φpb0q X ...XX ´ φpbmq “ H. Hence:

φpa0q X ...X φpanq Ď φpb0q Y ...Y φpbmq

By the above isomorphism Lemma, we get then that in the distributive envelope:

a0 ^ ...^ an ď b0 Y ...Y bm

But then, we have that x contains all the ai, so it must contain one of the bi, a contradiction.
Moreover, we claim that it can contain at most one element. Indeed, if x and y are both in that
intersection, by assumption, there is some V a clopen regular such that w P V and y R V . I.e,
w P φpaq and y R φpaq, so a P w and a R y, a contradiction. Hence mapping χpxq to the unique
element is well-defined.
Notice that the argument we have given now also shows that χ is injective. It is moreover continuous:
χ´1pφpaqq “ tx : χpxq P φpaqu “ tx : a P χpxqu “ φpaq. And by similar arguments to those sketched
above, we see that the map preserves and reflects the relation K. ■

Hence, we can genuinely talk about the space of quasi-prime filters as the minimally sober
orthospace.

8.2 Axiomatisation of Orthoimplicative Systems

The purpose of this section is to provide proofs for many of the claims on orthoimplicative
systems, which were introduced in Chapter 5. To work up to this, we will need to gather some tools
relating the distributive envelope to the original ortholattice. Throughout, given any H Ď D^pOq,
define:

H :“ ta P O : a P Hu

We call the former the restriction of H to the ortholattice.
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Proposition 8.2.1. Let O be an ortholattice, and D^pOq its distributive envelope. Suppose that
F Ď O is a subset, and F “ H, where H is an upwards closed subset of D^pOq. The following are
equivalent:

1. H is a prime filter.

2. H is a filter which is prime with respect to admissible joins from F .

3. F is a quasi-prime filter.

Proof. (1) implies (2) since admissible joins in O coincide with the joins from D^pOq. To see that
(2) implies (3), suppose that H is a filter which is prime with respect to admissible joins from O.
Then it is straightforward to see that H is upwards closed, since the order agrees, and closed under
meets. Moreover, if

Ž

M is an admissible join, then we know that
Ž

M P D^pOq is the same
element, hence, if

Ž

M P H then m P H by the primeness assumption, so m P H.
Now to see (3) implies (1), note that by definition H is upwards closed. It is a filter, since if
a ď

Ť

ci and b ď
Ť

dj , where these are elements from D^pOq, then a^ b ď
Ť

ci^ dj . Now we will

show primeness. To see that, assume that for some a0, ..., an P F , a0 ^ ...^ an ď
Ťk
i“1 ci. Since F

is a filter, write the former as a. Then consider:

a “
k

ł

i“1

a^ ci

Then we claim that this is an admissible join. Indeed, if e P O is arbitrary, note that:

e^
k

ł

i“1

a^ ci “ e^ a

By duality:

φpeq X φpaq “ φpeq X
k

ď

i“1

φpaq X φpciq “
k

ď

i“1

φpaq X φpeq X φpbiq

Since this equality holds, and φpeq X φpaq is clopen regular:

k
ď

i“1

φpaq X φpeq X φpbiq “
k

ł

i“1

φpaq X φpeq X φpbiq

Which by duality again yields that e^ a “
Žk
i“1 e^ a^ ci. This shows the desired equality. Now,

since a P F , and this is quasi-prime, then a^ci P F for some i; so since F is upwards closed, ci P F .
Hence, ci P H, establishing that H is prime. ■

We now begin by proving some elementary properties of orthoimplicative systems:

Lemma 8.2.2. Let O be an orthoimplicative system.

• If a ď b then c⊸k pa, d0, ..., dk´1q ď c⊸k pb, d0, ..., dk´1q.

• If a ď b then b⊸k pc0, ..., ck´1q ď a⊸k pc0, ..., ck´1q
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Proof. Assume that a ď b. Then a^ b “ a, so c⊸ a “ c⊸ pa^ bq “ c⊸ a^ c⊸ b, by Axiom 5.
Next note that under the same hypothesis, we have that:

b⊸k pc0, ..., ck´1q “ pa_ bq⊸k pc0, ..., ck´1q

ď a⊸k pc0, ..., ck´1q ^ b⊸k pc0, ..., ck´1q

Which follows by Axiom 6. This shows the result. ■

Recall that we defined the following relation between filters:

xTy ðñ @n P ω,@a, b0, ..., bn, a⊸n pb0, ..., bnq P x and a P y ùñ Di ď n, bi P y

And we also have the following relation between filters in D^pOq:

xT̃ y ðñ @n P ω,@a, b0, ..., bn P O, a⊸n pb0, ..., bnq P x and a P y ùñ
n

ď

i“1

bi P y

The key tool we will use to produce prime filters is an adaptation from [13].

Definition 8.2.3. If O is an orthoimplicative system, F,X Ď O, we define:

DF pXq :“ tc P D
^pOq : Dc0, ..., ci P O, c “

n
ď

i“1

ci and DY Ď X, Y is finite,
ľ

Y ⊸n pc0, ..., cnq P F u

Lemma 8.2.4. For O an orthoimplicative system, X Ď O a subset, and F Ď O a quasi-prime
filter, the following hold:

1. DF pXq is a filter.

2. X Ď DF pXq

3. pFilDpOqpF q, DF pXqq P T̃

4. DF pDF pXqq “ DF pXq

Proof. (1) Suppose that c P DF pXq, and c ď d. Hence for some Y Ď X,
Ź

Y ⊸k pc0, ...., cnq P F .
By arguments similar to Lemma 8.2.1, we have that since c ď d, if c “

Ť

ci and d “
Ťk
j“1 dj , then

ci ď d and so ci “
Žk
j“1 ci ^ dj is an admissible join. Hence, by Axiom A2, we have that:

ľ

Y ⊸k pc0, ..., ckq ď
ľ

Y ⊸m pd0, ..., dmq

Since F is a filter, and
Ź

Y ⊸k pc0, ..., ckq P F , then
Ź

Y ⊸m pd0, ..., dmq P F . So d P DF pXq by
definition.

Now suppose that c, d P DF pXq, where c “ a0 Y ... Y ak´1 and d “ b0 Y ... Y bm´1. Then
Ź

Z ⊸k pa0, ..., ak´1q P F , and
Ź

Y ⊸m pb0, ..., bm´1q. By the same Lemma, then, f “
Ź

Z^
Ź

Y
is such that:

f ⊸k pb0, ..., bk´1q P F and f ⊸m pa0, ..., am´1q P F

Hence their meet is in F . Hence by Axiom 5, we have that f ⊸kˆm ppdi ^ cjq. Since d X c “
Ť

pi,jqPkˆm di ˆ cj , this shows that d^ c P DF pXq as intended.
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(2) Note that by Axiom 4, X Ď DF pXq obviously holds: if a P X, then a ⊸1 a “ 1, which is
in F .

(3) Let a, b0, ..., bn P O and a ⊸n pb0, ..., bnq P Fil
D^pOqpF q, and assume that a P DF pXq.

Since FilD
^pOqpF q agrees with F on the ortholattice reduct (given that F is a filter), we have

that a ⊸n pb0, ..., bnq P F . Now by definition, since a P DF pXq there is some
Ź

Y ⊸1 a P F ; so
Ź

Y ⊸n pb0, ..., bnq P F by Axiom 7. Hence
Ťn
i“1 bi P DF pXq by definition.

(4) Finally suppose that a P DF pDF pXqq. Then by assumption, there is Y Ď DF pXq such
that

Ź

Y ⊸k pa0, ..., akq P F . In turn, by definition, Y “ ty0, ..., ymu, and each yi P DF pXq.
Hence, for some finite Zi Ď X, we have that

Ź

Zi ⊸1 yi. Hence, using Lemma 8.2.2, and letting
W “

Źm
i“1 Zi, we have that:

W ⊸1 yi P F

So, by Axiom 5, we have that W ⊸
Ź

Y P F . But then by Axiom 7 we obtain that W ⊸k

pa0, ..., akq P F , which implies that
Ť

i“1 ai P DF pXq, as desired. ■

Lemma 8.2.5. (Existence Lemma for Orthoimplicative Systems) Let O be an orthoimplicative
system, and F a quasi-prime filter, and I an ideal in D^pOq such that DF pXq X I “ H. Then
there exists some G such that DF pXq Ď G, G is a quasi-prime filter, pF,Gq P T , and GX I “ H.

Proof. Let as usual:

P “ tH Ď D^pOq : H is a filter pFilD
^pOqpF q, Hq P T̃ and H X I “ Hu

Now by assumption, and the last lemma, we have that P is non-empty, and it is easily seen that such
a set is inductive. So let H 1 be a maximal element in P , and let H “ H 1. We claim that H 1 is closed
under admissible joins from O. For suppose not. Then there isM Ď O such thatM “ tm0, ...,mku,
Ž

M is admissible,
Ž

M P H 1, and for no i do we have that mi P H
1. Note that for each mi PM ,

Dmi “ DF pH Y tmiuq is such that pFilD
^pOqpF q, Dmiq P T̃ : if a ⊸ pb0, ..., bnq P Fil

D^pOqpF q, and
a P Dmi , then by definition, for some z P H (by closure under meets), we have z ^mi ⊸1 a P F ,
and hence z ^mi ⊸1 a P Fil

D^pOqpF q. So by Axiom 7, z ^mi ⊸ pb0, ..., bnq P Fil
D^pOqpF q. This

in turn implies, since F is a filter, that z ^m ⊸ pb0, ..., bnq P F , which by definition means that
Ť

j“1 bj P Dmi .
Hence, for each such mi, we have that Dmi X I ‰ H. Hence for some cmi P H (by closure):

cmi ^mi ⊸kmi
pe0, ..., ekmi

q P F

Where
Ťkmi
j“1 ej P I. Since this is true for each m then, using repeatedly Axiom 3, we obtain that:

cmi ^mi ⊸p pl0, ..., lpq P F

Where the latter is a list containing all sequences for each mi. By Axioms 10 and 11, we know that
it does not matter the order or the multiplicity in such a list. Moreover, let c1 “

Ź

miPM
cmi . Then

we have:
c1 ^mi ⊸p pl0, ..., lpq P F

For each mi, and so:
ľ

miPM

pc1 ^mi ⊸p pl0, ..., lpqq P F
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Then we note that:
ł

miPM

c1 ^mi

Is an admissible join, by arguments we have used before. So by Axiom A1:

ł

mPM

pc1 ^mq⊸p pl0, ..., lpq P F

But then by admissibility:
ł

M ^ c1 ⊸p pl0, ..., lpq P F

But now we have that
Ž

M ^ c1 P H, so
Ťp
i“1 li P DF pHq. By Lemma 8.2.4, namely (3) and

(4), we have that DF pHq “ H 1 Hence
Ťp
i“1 li P H

1. On the other hand, by assumption, for each

i,
Ťkmi
j“0 ej P I. So since I is an ideal, and

Ťp
i“1 li “

Ťk
i“1

Ťkmi
j“0 ej , we have that

Ťp
i“1 li P I - a

contradiction to I XH 1 “ H.
So finally consider H. Then by Lemma 8.2.1, and the fact that H “ H 1, H is a quasi-prime

filter, and H X I “ H. We show that pF,Hq P T : whenever a⊸n pb0, ..., bnq P F , and a P H, then
a ⊸n pb0, ..., bnq P Fil

DpOqpF q and a P H 1, by assumption. Hence
Ť

i“1 bi P H
1. Since by Lemma

8.2.1 we have that H 1 is a prime filter, there is some bi P H
1, which shows that bi P H. This was to

show. ■

To provide our characterisation, we briefly recall the concept of a WH-space ([13]):

Definition 8.2.6. Let pX,ď, Sq be a set equipped with a partial order ď and a relation R. We
say that pX,ď, Sq is a WH-frame if ď ˝S Ď S.

We say that a relational topological space pX,ď, S, τq is a WH-space if:

1. pX,ď, Sq is a WH-frame;

2. pX,ď, τq is a Priestley space;

3. pX,ď, Sq is a Modal space.

We say that a map f : X Ñ X 1 between WH-spaces is a WH-morphism if it is (1) continuous, (2)
ď-order preserving, (3) an R p-morphism.

For a proof of the following see [13]:

Theorem 8.2.7. The categories WH of Weak Heyting algebras with Weak Heyting homomor-
phisms and WHS of WH spaces with WH-morphisms are dually equivalent.

The following is an easy correspondence result:

Lemma 8.2.8. For each WH-algebra H “ pH,^,_,⊸, 0, 1q, we have that:

1. (B) H ( a ď ppa⊸ bq⊸ 0q _ b if and only if R is symmetric.

2. (T) H ( a^ pa⊸ bq ď b if and only if R is reflexive.
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Proof. First suppose that H ( a ď pa ⊸ bq⊸ 0_ b. Suppose that xSy. We will show that ySx.
Indeed, suppose that a⊸ b P y and a P x. By the axiom and primeness, either b or pa⊸ bq⊸ 0 P x;
but if the latter was the case, then since xSY we would have 0 P y, a contradiction. So b P x, as
desired.

Conversely, suppose that H * a ď pa ⊸ bq ⊸ 0 _ b. Let x be a prime filter containing the
first term but not the second. Then by our remark above, there must be some y such that xSy,
a⊸ b P y and 0 R y (trivially); also a P x, but b R x, hence ␣pySxq.

The reflexivity axiom has a very similar argument. ■

All of this allows us to prove the following:

Proposition 8.2.9. Let O be an orthoimplicative system. Let YO be the dual slim orthospace.
Then:

φpa⊸k pb0, ..., bkqq “ lT p␣φpaq Y φpb0q Y ...Y φpbkqq

Proof. One inclusion is obvious: if a ⊸n pb0, ..., bnq P x, and xTy and a P y, then by definition
there is some i such that bi P y. Now assume that a⊸n pb0, ..., bnq R x. Consider:

Dxptauq and IdD
^pOqptb0, ..., bnuq.

Indeed, we claim these must be disjoint subsets of D^pOq. If not, there is some c P Dxptauq such
that c ď b0 Y ... Y bn. Since we have that c “

Ťm
j“1 cj , using the same argument as we have in

prvious lemmas, we can show that cj “
Žn
i“1 cj ^ bi, and that this is an admissible join. Hence by

Axiom A2:
a⊸m pc0, ..., cmq ď a⊸n pb0, ..., bnq

Then since a⊸m pc0, ..., cmq P x, this means we have that then:

a⊸k pb0, ..., bnq P x

Which is a contradiction. Hence, by Lemma 8.2.5, we have that there exists some y such that xTy,
a P y, and bi R y for any i. This means that x R lT pφpaq Ñ φpb0q Y ...Y φpbkqq. ■

All of this work culminates, as presented in Chapter 5, in the following:

Theorem 8.2.10. (Characterisation of Compatible Ortholattices) Let O be an ortholattice. Then
the following are equivalent:

1. O admits an orthoimplicative system structure.

2. D^pOq admits a unique WH-symmetric algebra structure, with the dual relation being given
by the non-orthogonality relation.

3. O is compatible.

Proof. To see that (1) implies (2), we define the structure on D^pOq using duality. Indeed, for
each U “

Ťk
i“1 φpaiq and V “

Ťk
i“1 φpbiq, clopen upsets in YO, let:

U ùñ V :“
k

č

i“1

lRp␣φpaiq Y V q
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By the above Proposition 6.2.4, this is a clopen regular element, and represents precisely
Ź

ai ⊸k

pb0, ..., bkq. By duality, this is a well-defined notion. It is not hard to see that this will yield a
WH-implication structure on D^pOq. Moreover, because R is reflexive and symmetric, D^pOq
will be a WH-symmetric algebra by Lemma 8.2.8. The argument that shows that the structure is
unique runs parallel to the Lemma above establishing that T “ R.

The fact that (2) implies (3) follows because, if D^pOq admits such a structure, by WH-algebra
duality with WH-frames, we have that YO, the dual WH-space, will be a modal space with respect
to the relation R.

Finally, to see that (3) implies (1), it suffices to show that if O is compatible, then it admits an
orthoimplicative system structure. We do so using duality. Indeed, define, for a, b0, ..., bk P O:

φpa⊸k pb0, ..., bkqq :“ lpφpaq Ñ φpb0q Y ...Y φpbkqq

The reader can easily check that this satisfies Axioms 1-7, 10 and 11. Axiom 8 is valid since
the relation R is reflexive, and Axiom 9 is valid since R is symmetric. So we need to check the
admissibility axioms:

• (A1) if
Ž

mPM φpmq is admissible, then
Ž

mPM φpmq “
Ť

mPM φpmq. Thus:

φp
ł

M ⊸k pb0, ..., bkqq “ lp
ď

mPM

φpmq Ñ φpb0q Y ...Y φpbkqq

“ lp
č

mPM

pφpmq Ñ φpb0q Y ...Y φpbkqqq

“
č

mPM

lpφpmq Ñ φpb0q Y ...Y φpbkqq

“
č

mPM

φpm⊸k pb0, ..., bkqq

“ φp
ľ

mPM

m⊸k pb0, ..., bkqq

• (A2) Assume that C “ tc0, ..., cnu and D “ td0, ..., dku are in the stated conditions. Then
note that this means simply that:

C Ď D

Hence the result follows by a straightforward calculation using the WH-implication and the
fact that in WH-algebras, when c ď d, then e⊸ c ď e⊸ d.

• (A3) Assume that a⊸n pb0, ..., bnq “ 1. Dually, this means that:

lpφpaq Ñ φpb0q Y ...Y φpbnqq “ YO

Since l is a reflexive modality, we have that:

φpaq Ñ φpb0q Y ...φpbnq “ YO

So by classical reasoning, φpaq Ď φpb0q Y ... Y φpbnq. Then by an argument we have met
before,

Ž

a^ bi is an admissible join, as it is equal to a.

This shows that O admits an orthoimplicative system structure, as desired. ■
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We now show some of the facts mentioned in Chapter 5 related to morphisms.

Proposition 8.2.11. Let O,O1 be orthoimplicative systems, Y, Y 1 full orthospaces. Then:

1. If f : OÑ O1 is a homomorphism between orthoimplicative systems, then f´1 : YO1 Ñ YO is
a strong orthospace morphism.

2. If g : Y Ñ Y 1 is a strong orthospace morphism between full orthospaces, then g´1 :
RCloppY 1q Ñ RCloppY q is a homomorphism between orthoimplicative systems.

Proof. (1) We already know, by the orthospace duality, that f´1 is an orthospace morphism. Now
assume that xTy; if a ⊸k pb0, ..., bkq P f

´1rxs. Then fpaq ⊸k pfpb0q, ..., fpbkqq P x. Hence by
definition, fpbiq P y, hence, bi P f

´1rys. Next suppose that f´1rxsRy. Consider:

Filpf rxsq and AdIdpf rO ´ ys Y tc : cK P xuq.

We claim these two sets are disjoint. For otherwise, we would have, for some M ĎÓ pf rO´ysYtc :
cK P xuq which is an admissible join:

fpaq ď
ł

M

Now by assumption, for each m P M , m ď fpbiq or m ď c, and the join is admissible. Hence, by
duality:

φpfpaqq Ď
ď

mPM

m Ď

n
ď

i“1

φpbiq Y
k

ď

j“1

φpcjq

By similar arguments to what we showed before, then fpaq “
Žn
i“1 fpaq ^ fpbiq _

Žk
j“1 cj ^ fpaq

is an admissible join. Since O is orthoimplicative, then:

k
ľ

j“1

cKj ď fpaq⊸k pfpb0q, ..., fpbnqq

Now since
Źk
j“1 c

K
j P x, then the latter is as well. But since f preserves the implication connective

fpa ⊸k pb0, ..., bkqq “ fpaq ⊸k pfpb0q, ..., fpbkqq. Thus by hypothesis, the former is in x. Thus,
a⊸k pb0, ..., bkq P f

´1rxs. Since a P y, by definition, for some i, bi P y. But this is a contradiction.
By reductio, we obtain that the two sets above are disjoint, hence, by the prime filter theorem for
distributive lattices, let z be such that f rys Ď z and z X f rO ´ ys “ H, and whenever c P x, then
cK R z. Thus finally look at z. Then:

• z is a quasi-prime filter, by Lemma 8.2.1.

• xRz

• f´1rzs “ y: indeed, if a P y, then fpaq P f rys, hence fpaq P z; but since fpaq P O1, then
fpaq P z, hence a P f´1rzs. Conversely, if a R y, then fpaq P f rO ´ ys, so fpaq R z, hence
clearly fpaq R z.

This shows the result.
For (2), we show that:

g´1rφpa⊸n pb0, ..., bnqs “ lRpg
´1rφpaqs Ñ g´1rφpb0qs Y ...Y g

´1rφpbnqsq
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Indeed, if gpxq P φpa ⊸n pb0, ..., bnq, then a ⊸n pb0, ..., bnq P gpxq; because this is R-monotone, if
xRy, then gpxqRgpyq, so if a P gpyq, then for some i, bi P gpyq. Conversely, if x P lpg´1rφpaqs Ñ
g´1rφpb0qs Y ...Y g

´1rφpbnqsq, assume that gpxqRy. Because this is a strong orthospace morphism,
then for some z, xRz and gpzq “ y. Hence, if a P y, then z P g´1rφpaqs, so z P g´1rφpbiqs for some
i, i.e, bi P y. We know that if a⊸n pb0, ..., bnq R gpxq, then by the Existence Lemma proved above,
there would be some y such that gpxqRy and a P y whilst bi R y. Hence this is not possible, i.e,
a⊸n pb0, ..., bnq P gpxq. This shows the result. ■

8.3 Compatibility of Products

In this section we provide a direct proof that the product of orthoimplicative systems is again an
orthoimplicative system. The arguments hereby contained are also useful to prove that structures
such as the lattice of closed subspaces of a Hilbert space is a compatible ortholattice, hence, we
provide full proofs as much as possible.
Let pYOiqiPI be a family of spaces of quasi-prime filters of the orthoimplicative systems Oi. Let
Z :“

Ů

iPI YOi be the disjoint union. Define a family RegpZq as follows: S Ď Z is called regular if
for each i, Spiq “ W that is the i’th coordinate of this set, where W Ď YOi is a clopen regular.
Define a relation K1 on this structure pointwise: given a subset A Ď Z, we let xK1y if and only
if x and y are in the same coordinate of YOi , and xKYOi

y. Using this relation, note that RegpZq
forms an ortholattice, under intersection, pointwise orthocomplement, and the implication lpxÑ
y0 Y ...Y ynq, which we denote by ⊸n. Then note the following:

Lemma 8.3.1. For any U, V0, ..., Vn P RegpZq we have pU ⊸n pV0, ..., Vnqq P RegpZq.

Proof. This follows almost by definition, once we note that because the elements have disjoint parts,
the subtractions are also taken pointwise, i.e:

pU ´ V0 ´ ...´ Vnq “
ď

iPI

Upiq ´ V0piq ´ ...´ Vnpiq

Now if x P pU ´ V0 ´ ... ´ Vnq
K then whenever y P pU ´ V0 ´ ... ´ Vnq, and x and y are in

the same coordinate, that is, y P Upiq ´ V0piq ´ ... ´ Vnpiq for some i, we have xKYOi
y. Thus

x P
Ť

iPIpUpiq ´ V0piq ´ ... ´ Vnpiqq
K. The converse is immediate since each x can be in a single

coordinate. ■

It is moreover easy to see that:

Proposition 8.3.2. The algebras pRegpZq,X, p⊸qnPω,Kq and
ś

iPI Oi are isomorphic.

Proof. Define the map p :
ś

iPI Oi Ñ RegpZq which assigns to paiqiPI the sequence pφpaiqqiPI ; by
our definitions above this is seen to be an isomorphism. ■

To proceed, we will show that this structure allows us to work with RegpZq in our calculations.
We denote by FinpRegpZqq the set of all U “

Ťk
i“1 Ui where Ui P RegpZq, and the union is taken

over RegpZq. Then we have:

Lemma 8.3.3. The structure pFinpRegpZqq,Y,X,Kq is isomorphic to D^pRegpZqq.
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Proof. We apply Proposition 6.1.18. We have that the inclusion of RegpZq is injective and dense.
We show it preserves admissible joins. Indeed, assume that

Žk
j“1 Uj is admissible. Then we have

that for each coordinate of the disjoint union i P I,
Ž

j“1 Ujpiq is admissible as well. Since the spaces

are slim orthospaces, then
Ž

j“1 Ujpiq “
Ť

j“1 Ujpiq. So we can see that
Žk
j“1 Uj “

Ťk
j“1 Uj . ■

Now let
š

iPI YOi be the space of quasi-prime filters on pRegpZq,X, ùñ ,Kq. We will now prove
the following crucial lemma.

Lemma 8.3.4. Let U 1 and V 10 , ..., V
1
n be clopen regulars in

š

iPI YOi , i.e, U
1 “ φpUq and V 1i “ φpViq.

Then:
pφpUq ´ φpV0q ´ ...´ φpVnqq

K “ φppU ⊸n pV0, ..., Vnqqq

Proof. Let x P φpU ⊸n pV0, ..., Vnqq. Now suppose that y P φpUq ´ φpV0q ´ ...φpVnq. By the
hypothesis, then U P y and Vi R y. Let ŷ be the prime filter extension. Now note that in RegpZq
we have that U Ď pU ´ V0 ´ ...´ Vnq

KK Y V0 Y ...Y Vn. Indeed, note that:

pU ´ V0 ´ ...´ Vnq
KK Y V0 Y ...Y Vn Ď UKK Y V0 Y ...Y Vn

Ď U Y V0 Y ...Y Vn

Ď pU ´ V0 ´ ...´ Vnq Y V0 Y ...Y Vn

Ď pU ´ V0 ´ ...´ Vnq
KK Y V0 Y ...Y Vn

Hence since clearly U Ď U Y V0 Y ...Y Vn we have this fact. But now, since U P ŷ, and Vi R ŷ, we
must have pU´V0´ ...´Vnq

KK P ŷ; hence, since pU ⊸n pV0, ..., Vnqq “ pU´V0´ ...´Vnq
K P RegpZq

by our previous lemma, clearly its orthogonal complement will be as well. But now, we must have
that xKy. This shows one inclusion.

Conversely, suppose that x R φppU ´V0´ ...´Vnq
Kq. Then we will have that over D^pRegpZqq:

FilptUuq X IdptCK : C P xu Y tV0, ..., Vnuq ‰ H

For otherwise, we will have that:

U Ď pC0q
K Y ...Y pCnq

K Y V0 Y ...Y Vn

Hence since these are sets:

U ´ V0 ´ ...´ Vn Ď pC0q
K Y ...Y pCnq

K

Applying K on each side:

pC0q
KK X ...X pCnq

KK Ď pU ´ V0 ´ ...´ Vnq
K “ U ùñ npV0, ..., Vnq

Since the former are in x by regularity, we have the latter is as well, since by the previous lemma,
it is clopen regular. But this is a contradiction. So by the Prime filter theorem, we can find some
prime filter y extending the above filter, and disjoint from the filter. Let y be its restriction to a
quasi-prime filter in O. Then whenever C P x, CK R y, by our Proposition 8.2.1, so xRy; also U P y
and Vi R y for any i. This shows that x R pφpUq ´ φpV0q ´ ...´ φpVnqq

K. ■

Corollary 8.3.5. The following hold:
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1. The structure
ś

iPI Oi in the signature p^,_, p⊸nqnPω, 0, 1q is an orthoimplicative system so
long as all Oi are.

2. The structure
ś

iPI Oi is the signature p^,_,K , 0, 1q is a compatible ortholattice so long as
all Oi are.

Proof. By the fact that the images under φ form a subbasis, and by compactness, we know that if
A is a clopen subset of an orthospace, it is of the form:

A “
n

ď

j“1

φpU jq ´ φpV j
0 q ´ ...´ φpV

j
k q

Also we know by definition of the K that:

AK “
n

č

j“1

pφpU jq ´ φpV j
0 q ´ ...´ φpV

j
k q
K

Now by Lemma 8.3.1 and Lemma 8.3.4, together with our hypothesis, we know that for each j:

pφpU jq ´ φpV j
0 q ´ ...´ φpV

j
k qq

K “ φppU j ´ V j
0 ´ ...´ V

j
k q
Kq

Hence, that each such is a clopen regular. Hence AK is an intersection of clopens, and hence, a
clopen. Thus, we have that

ś

iPI Oi is compatible as an ortholattice. Moreover, note that:

φpU ⊸n pV0, ..., Vnqq “ lpφpUq⊸n φpV0q Y ...Y φpVnqq

By Lemma 8.3.4. Hence the implication coincides with the reduct of the WH-implication from the
extension of

ś

iPI Oi, i.e, the product is orthoimplicative.
The second statement follows easily from the above lemmas and a similar argument as the one. ■
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