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Abstract

This thesis presents a study of translations, special “hybrid” logical systems developed on
the basis of these translations, and general Blok-Esakia theory. This is done on two levels: the
development of a theoretical framework for analysing such questions, as well as an analysis of the
special case of orthologic.

On the first front, inspired by the Kolmogorov Double Negation Translation, and DNA-Logics,
we develop a general notion of “Polyatomic Logics”, which can be studied for a wide class of
translations. These logics serve as “hybrids”, between the two logical systems being translated,
which can assist in applications, as well as in the study of the interrelations between the translated
systems. We develop the basic theory of Polyatomic Logics, and prove algebraic completeness, and
Birkhoff-style definability theorems of such systems.

We then develop a theory connecting such logics with “generalised modal companions” — ab-
stracting from the classic Blok-Esakia isomorphism, and taken to mean a strong and property-
preserving connection between the extensions of two logical systems. This is contrasted with the
famous Godel-McKinsey-Tarski situation, where we show that many of the motivating results of
that theory can be recovered for a class of translations we call “sober translations”. Our main
contribution in this respect is the introduction of the notion of a “Polyatomic Blok-Esakia iso-
morphism”, which is shown to hold for any sober translation, and which provides a new natural
correspondence between logical systems.

As a case study, we provide an analysis of the logic of ortholattices, and the Goldblatt transla-
tion of Orthologic into KTB modal logic. Our results show that many natural invariance conditons,
including the Polyatomic Blok-Esakia introduced, fail for this setting. We undertake a study of
the reasons for this failure, and analyse whether restricted versions of it might hold. With this
goal in mind, we introduce a new duality between a subcategory of the category of ortholattices,
and a subcategory of the category of orthospaces. This representation is shown to have desirable
category-theoretic properties, which we use to identify appropriate expansions of orthologic and
KTB. With these tools, we prove the existence of a Polyatomic Blok-Esakia isomorphism between
“Orthoimplicative Logic” and “Sober KTB”.
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Chapter 1

Introduction

In the 20th century, classical logic, intuitionistic logic, modal logic, provability logic, and quan-
tum logic, were some of many logical calculi introduced to solve questions such as what counts as
a valid proof, or a valid inference in an experimental setting. Rather than wholly independent for-
malisms, it was noted soon after their creation that many of these systems were intimately related.
Early examples included:

e Double Negation Translations, introduced by Kolmogorov [15], and developed by Goédel and
Gentzen [31], which we refer to as the Kolmogorov-Godel-Gentzen translation (KGG) which
translated classical logic, CPC into intuitionistic logic, IPC.

e The Gddel-McKinsey-Tarski translation (GMT) [33], which translated intuitionistic logic into
S4 modal logic.

e The Goldblatt translation [35], which translated orthologic into KTB modal logic.

All of these share the fact that they are sound and faithful translations, and that they contain
a syntactic part - the actual translation - coupled with a semantic part - a transformation of the
underlying models. For instance, in the KGG translation, given a Heyting algebra H, one considers
those elements a = ——a, called regular elements. Then we can look at the set

H ={aeH:a=——a}.

When equipped with the meet, implication and bounds of H, as well as the operation xvy =
——=(z v y), yields a Boolean algebra. We call Heyting algebras H such that H is generated by its
regular elements reqularly generated.

Such translations have found applications in logic, mathematics, philosophy and linguistics,
through their capacity to hybridise different domains. In this setting, the KGG translation appears
as a paradigmatic example. The key idea in applications (see e.g. [13] or [1(]) is that one has a set
of “constructive worlds”, which should be run with intuitionistic principles, together with a set of
“ideal worlds”, which should be run with classical principles. Thus, the double negation serves as
a way to go from constructive to ideal worlds.

Motivated by this interpretation, Ciardelli et al. [16] introduced a specific logic to model
questions, where the prototypical model was a regularly generated Heyting algebra. Its success later
lead to the development of a general analysis of such models [5], and DNA-logics (named for “Double



Negation on Atoms”) in [5, 6], which vastly abstract this situation: given any superintuitionistic
logic L, one can take the Heyting algebras validating L and consider:

RegVar(L) = {H : H is a regularly generated Heyting algebra and H = L}.

Then consider the formulas, ¢, such that: whenever H € RegVar, and v : Prop — H is a
valuation taking values in regular elements, H,v = ¢. Such a collection of formulas is called
the DNA-variant of L. Such “logics” have the feature that they are not closed under uniform
substitution, and can be axiomatised over L by closing under Modus Ponens the logic L together
with the axiom on propositional variables:

——p —p.

The intuition behind this is worthwhile to spell out. Intuitionistic models have the property
that each world sees a classical world. If ——p holds in a world, this means that each classical world
it sees is p — even if at the present world, p cannot be asserted. To say that one takes values in
regular models, means that whenever ——p holds, then p holds already. However, more complex
statements such as p v ¢ might not be settled yet, as we can still conceive of worlds where p and
not ¢ holds and worlds where ¢ and not p holds.

Such logics provide new domains for analysing the relationship between classical and intuition-
istic logic, as well as influence new potential applications. However, through consideration of this
discussion, one can be lead to conclude that this structure does not depend entirely on properties
of Heyting algebras and the KGG translation. Indeed, the work was further extended to other
translations by Grilletti and Quadrellaro [38], and similar subjects, aiming towards more general
classes of logics, have been explored in unpublished work by Quadrellaro.

To see the breadth of these ideas, let us quickly turn to the GMT translation. We recall the
semantic transformation in the GMT translation: here, given S4 algebra (B,[]), an element a is
called open if @ = [(Ja. Then we consider:

B = {a:a=[a}.

Equipping this set with the induced operations from the distributive lattice as well as a = b =
[0(—a v b), we obtain a Heyting algebra. In analogy with the situation above, given a normal
extension of S4, M, we consider the set of formulas which are valid on all openly generated M-
algebras, when the atomic propositions are sent to open elements. We could call this logic MU
the [J-variant of M. Such logics might be naturally considered under a provability interpretation:
one could think of hybridising contextual facts, as the domain of S4, with provable facts, as the
domain of IPC. The fact that p — [Jp should be added as an axiom on atomic propositions would
mean that our basic sentences (e.g., axioms), should all be provable, whereas their interrelations
might not be immediately provable. For example, the sentence p — ¢ might be true, meaning that
whenever we observe p we obtain ¢, without [J(p — ¢) being so.

As we will have opportunity to see, similar arguments can be made for the Goldblatt translation,
since it works semantically by taking the [J0-fixed points. Translations with a similar selector term
are ubiquitous: we have translations from orthomodular lattices to residuated ortholattices [27];
reflexivisation translations [14, Chapter 4] in modal logic; as well as numerous substructural logics
into modal systems [10]. For a great number of these, as we will see, an appropriate notion of a
“hybrid” logic could be developed, but it certainly does not seem reasonable to do it one-by-one.



Hence, a natural question arises as to what conditions are needed on a translation to ensure that
one can construct such a logic, and how this can be developed in general.

One of the contributions of this thesis lies in developing a theory of “Polyatomic Logics”.
This provides a broad generalisation of DNA-logics, to the setting of many naturally ocurring
translations. This is done in Chapter 3, inspired by the work of Moraschini [53], which identifies
the concept of a translation with categorical adjunction. In it, we identify the class of selective
translations as the appropriate setting for Polyatomic logics (PAt-logics). In this sense, and in
analogy with [6], we prove algebraic completeness and definability theorems for these logics with
respect to appropriate (quasi-)equational classes and (quasi-)varieties. In analogy with the above
situation, we also obtain completeness of these logics with respect to regularly generated algebras.
We then turn to one of the interesting applications of such a theory, which takes up the rest of the
thesis — the development of a general Blok-Esakia theory.

To understand this, let us return to the GMT translation. Godel established that this translation
was sound and faithful. Later work proved that the same translation also translated IPC into
extensions of S4, namely the system S4.Grz. This lead to the idea of a “modal companion”: given
a normal extension of S4, M € NExt(S4), and L a superintuitionistic logic, we say that M is a
modal companion of L iff:

pel < GMT(p)e M

where GMT () is the translation of ¢ under the GMT translation. Developments of these ideas
eventually lead to the celebrated Blok-Esakia theorem, proved independently by Blok ([10]) and
Esakia ([241], see also [23]). This result establishes an isomorphism between the lattice of superintu-
itionistic logics, and the lattice NExt(S4.Grz) of normal extensions of S4.Grz. Relevantly, this iso-
morphism carries with it explicit maps transforming the semantic models of the respective systems.
This allows one to transfer a number of properties - such as FMP, tabularity, Kripke completeness,
decidability, canonicity, amongst many others - from axiomatic extensions of S4.Grz to axiomatic
extensions of IPC, and for some of these to be transfered back (see [11] for a survey of these). This
further allows a number of methods to be developed uniformly between the two systems, and has
highlighted, through what does not transfer (e.g., local tabularity, Craig interpolation), the key
differences of intuitionistic versus modalised classical logic. This area of research concerning the
interplay between S4.Grz and IPC can be generally described as “Blok-Esakia theory”.

Given the success and acclaim of this theory, it would be desirable to understand whether,
and when, one can expect similar results in the interplay between two systems. In Chapter 4, we
explore this question, armed with the tools developed before. In this sense, we outline the natural
generalisations of the concepts present in Blok-Esakia theory, and prove some basic properties of
these. We then make use of our PAt-logics to give meaning to these concepts, and show that the
study of Blok-Esakia theory can be appropriately conducted through looking at Polyatomic logics.
This is done by showing that the general concepts of Blok-Esakia theory — such as greatest or least
companions — correspond exactly with natural concepts from Polyatomic logic. Additionally, we
introduce the concept of a PAt-Blok Esakia isomorphism, which holds when the lattice of logics of
the translated system is isomorphic to the lattice of Polyatomic logics in the other system.

This approach thus bypasses the famous “Blok’s lemma”, which establishes that every S4.Grz
logic is sound and complete with respect to its openly generated algebras, and which establishes
the isomorphism in full. In fact, via these tools, all Polyatomic logics are sound and complete with
respect to their regularly generated algebras; hence, from the point of view of two systems for which
a PAt-Blok Esakia theorem holds, the analogue of Blok’s Lemma becomes a question of axiomatising



the greatest logic having the same Polyatomic variant. This explains both its importance and its
general difficulty: for instance, the greatest logic having the same DNA-variant as IPC is the well-
known Medvedev Logic, a logic which is not known to have a recursive axiomatisation.

As an illustration of these methods, in Chapter 5 we take up orthologic and the Goldblatt
translation. This seems like a natural use case, since it fits pretty closely to the other translations
in its style, and relates systems which have long been known, but not extensively studied. A recent
revival of interest in questions related to ortholattices as related to residuated structures [27] as
well as modal logics [11] makes this a timely addition to studies of the topic. And importantly, this
is a case which has a long history of having been signalled as potentially having some analogue of
the Blok-Esakia theory [35, 18, 52, 17, 19]. Making use of the tools developed in Chapter 4, we
thus proceed to investigate this case, and prove that all currently considered types of Blok-Esakia
isomorphisms fail for this setting. Not only is an isomorphism impossible between “orthologics”
and KTB logics, but the Polyatomic Blok-Esakia isomorphism also fails.

This raises further questions about the ways in which systems can fail to be structurally similar,
even when their semantics are superficially very similar. This theme is taken up in Chapter 6.
Whereas in the IPC and S4 case, the key difficulties have solely to do with regular generation of
algebras, and the underlying axiomatisation, the Goldblatt translation faces other issues which
we deem sobriety problems. In an abstract way, this can be seen as a mismatch between a more
restrictive semantics of orthologic, and a broader semantics of KTB, which requires the models to
be violently transformed in order to witness the translation. To fix this situation, we propose two
new classes, to feature in an adapted Goldblatt translation:

e A new class of algebraic structure of ortholattices, called orthoimplicative systems, and a new
logic system, called Orthoimplicative Logic, which is a conservative extension of Orthologic.

e A suitable fragment of KTB, called sober KTB, which includes an additional non-standard
IIp-rule [2, 3] which is admissible for many interesting cases.

These developments allow us to prove a PAt Blok-Esakia isomorphism between these logical
systems, which vindicate the stated intuitions that orthologics and KTB-logics should be related in
a deeper manner than simply through a translation. The latter theorem requires the development
of a number of topological, logical and algebraic tools, which might have independent interest.

In Chapter 7 we conclude the work, providing a brief summary of the findings as well outlining
some further work. We also include some some remarks regarding work that, for reasons of space
and coherence, we could not include here.

Our main contributions in this thesis can be summarised as follows:

e We introduce the notion of “selective translation”, “strongly selective translation”, and “sober
translations”, and study their basic properties;

e We introduce the concept of PAt-logics and prove algebraic completeness for them;

e We develop a generalised Blok-Esakia theory for strongly selective and sober translations,
and show that PAt-logics are adequate structures for the development of such a theory;

e We introduce the concept of a “Polyatomic Blok-Esakia isomorphism”;

e We prove that no isomorphism can hold between the lattices of Orthologics and KTB modal
logic can hold, and the Polyatomic Blok-Esakia isomorphism fails;



We introduce the notion of “slim orthospace”, and provide a duality between a subcategory
of the category of ortholattices and the category of slim orthospaces;

We show that the above duality realises in the ortholattice case the “Distributivisation”
functor;

We introduce the concept of “Orthoimplicative System”, and “Sober KTB algebra”, providing
a non-standard axiomatisation of them;

We translate these results into logic, obtaining Orthoimplicative Logics and Sober KTB logics,
and showing that these are logically conservative over orthologics and KTB logics for a variety
of cases;

We prove that a Polyatomic Blok-Esakia isomorphism holds between the lattices of extensions
of Orthoimplicative Logic and Sober KTB logic.



Chapter 2

Preliminaries

In this chapter we fix notation, and discuss some essential concepts that will be needed through-
out the thesis. Basic mathematical terminology, as well as familiarity with first order logic is
assumed throughout.

2.1 Lattices and Ordered Sets

In this chapter we present a number of different lattice-based algebras.

Definition 2.1.1. Let (X, R) be a set with a relation R € X x X. We say that (X,R) is a
quasi-ordered set if R is:

o Reflexive: for all a € X, aRa
e Transitive: for all a,b,c e X, aRb and bRc implies aRc.

We say that (X, R) is partially ordered (a poset) if in addition, R is antisymmetric:
o Antisymmetric: for all a,b e X if aRb and bRa then a = b.

When (X, R) is a partially ordered set, we often write < instead of R. We also use < and > as
abbreviations with their usual meaning.

Definition 2.1.2. Let (X, <) be a poset. Given a subset {a,b} € X, we say that c€ X is a lower
bound of {a,b} if ¢ < a and ¢ < b. We say that c is a greatest lower bound if it is a lower bound of
{a,b}, and whenever d < a and d < b then d < ¢. We define upper bounds and least upper bounds
dually.

Definition 2.1.3. Let (X, <) be a poset. We say that (X, <) is a lattice if for every pair a,be X,
{a,b} < X has a greatest lower bound and a least upper bound. In this case we denote:

anb:

greatest lower bound of {a,b} and

a v b:= least upper bound of {a,b} .

We say that furthermore (X, <) is bounded if it has a least element (which we denote by 0) and a
greatest element (which we denote by 1). We say that (X, <) is a complete lattice if for each subset
A < X, A has a greatest lower bound in X, denoted by A A.

10



It is a general fact that lattices can be given an equational presentation (see for instance [19,
Chapter 2]). In this case, a lattice L is understood as an algebraic structure L = (L, A, v), in the
language with A, v, which satisfies the following for each a,b,c € L:

e (Idempotence) a A a =a and a v a = a;

Commutativity) a Ab=bAraand av b=>bv a;

(
(
e (Associativity) (a Ab) Ac=an (bac)and (avd)ve=av (bvec);
e (Absorption) a A (bva) =aand av (b Aa) =a.

Definition 2.1.4. Let L = (L, A, v, 0, 1) be a bounded lattice. We say that L is distributive if for
each a,b,ce L:
(avb)ac=(anc)v(bnac).

A majority of lattices that appear in studies related to algebraic logic tend to be distributive.
In this thesis, however, one of the main objects of study will be a kind of lattice which is not in
general distributive:

Definition 2.1.5. An algebra O = (O, A, v,*,0,1) is said to be an ortholattice when (O, A, v,0,1)
is a bounded lattice, and * satisfies the following properties for every a,b € O:

1. (a Ab)t =at vbtand (avb)t=at Abb

2. anat=0andavat=1

3. (at)t =a.

Notice that distributive ortholattices coincide with Boolean algebras (see below). However,
Figure 2.1, depicts an ortholattice which is not a Boolean algebra'.

/&
‘\/

Figure 2.1: Example of an ortholattice

We also consider classes of lattices with various kinds of implications:

Definition 2.1.6. An algebra H = (H, A, v,—,0,1) is said to be a Weak Heyting algebra when
(H, A, v,0,1) is a bounded distributive lattice, and — satisfies, for each a,b € H:

l.a—a=1;

1Simply note that the Pentagon lattice N5 embeds into the lattice, which means the lattice is not distributive.
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2. (avb) >c=a—->cArb—-g
B.a—>(brc)=a—>bnra— ¢

4. a->bArb—-oc<a—c

A special class of Weak Heyting algebras are their namesake:

Definition 2.1.7. An algebra H = (H, A, v,—,0,1) is said to be a Heyting algebra if it is a Weak
Heyting algebra, and additionally it satisfies, for each a,b € H:

1. a A (a—b) <V
2.a<1—a.

The former are more usually presented through the so-called residuation laws: Heyting algebras
are bounded distributive lattices with a binary implication operation — satisfying, for each a, b, c €
H:

cAha<b < c<a—b.

A special class of Heyting algebras which has a ubiquitous presence in logic is that of Boolean
algebras:

Definition 2.1.8. An B = (B, A, v,—,0,1) is said to be a Boolean algebra if it is a Heyting
algebra which additionally satisfies for every a € B, a v (a — 0) = 1.

The following is a well-known equivalence;

Proposition 2.1.9. Let B = (B, A, v,—,0,1) be a Heyting algebra. Then the following are
equivalent:

e B is a Boolean algebra;
e B=(B,A,v,—,0,1), where —a := a — 0, is a distributive ortholattice.

Hence, we have that Heyting algebras and ortholattices constitute distinct generalisations of
Boolean algebras, emphasising different phenomena. We usually present Boolean algebras in the
language of ortholattices.

Intimately related to Weak Heyting algebras are specific classes of Boolean algebras with oper-
ators:

Definition 2.1.10. An algebra of type B = (B, A, v, —,[],0,1) is said to be a modal algebra if
(B, A, v,—,0,1) is a Boolean algebra, and [] satisfies, for each a,b € B:

1. 1 =1;
2. (a A b) =a A [b.
We additionally say that B is a:
1. T-algebra, if it satisfies for a € B, [(a < a;

2. Transitive modal algebra if it satisfies for a € B, (a < [ a;

12



3. Symmetric modal algebra if it satisfies for a € B, a < [0a.

Where 0a = —[J—a. We say that B is an interior algebra or an S4 algebra, if it is both a T-algebra
and a transitive modal algebra. We say that B is a KTB-algebra if it is both a T-algebra and a
symmetric modal algebra.

We conclude this section by discussing some concepts that appear naturally when discussing
lattices:

Definition 2.1.11. Let L be a lattice, and F' € L a subset. We say that F' is:
e Upwards closed if whenever x € F and x < y then y € F;
e Downwards closed if whenever y € F and z < y then z € F;

O-closed for O € {A, v} if whenever z,y € F then z Oy € F

A filter if it is non-empty, upwards closed and A-closed;

An ideal if it is non-empty, downwards closed and v-closed;

A prime filter if it is a filter, and whenever a v b € F', then either a € F' or b e F;
e A prime ideal if it is an ideal, and whenever a A b € F' then either a € F' or b e F'.

We note that given a bounded lattice L, the set of downwards closed sets on L, the set of filters
on L, and the set of ideals on L are all closed under arbitrary intersection. Hence, given S € L, we
write:

e |S < L for the smallest downwards closed set containing S. It is known that |S = {a € L :
dbe S,a < b}

1S < L for the smallest upwards closed set containing S. It is known that 1S ={ae L:3be
S,b < al;

Fil(S) < L for the smallest filter containing S. It is known that Fil(S) = {a € L : Jbg, ..., b, €
S;bo A .. A by < al

Id(S) < L for the smallest ideal containing S. It is known that |d(S) = {a € L : by, ..., b, €
S,a<byv..vby}

In Boolean algebras, due to the presence of a negation, one can also consider the following:

Definition 2.1.12. Let B be a Boolean algebra. We say that F' < B is an ultrafilter if for all
a € B, either ae F or —a e F.

As is well-known, in Boolean algebras, ultrafilters are exactly the maximal filters, and also the
prime filters.

13



2.2 Duality Theory

In this section we briefly recall Stone, Priestley and Esakia dualities. We assume the reader
is familiar with the notion of a topological space, and basic concepts of general topology. For
references on general topology see [22]. For specific references on these dualities, see [19].

Definition 2.2.1. Let (X, 7) be a topological space. We say that (X, 7) is zero-dimensional if T
has a basis of clopen sets.

Definition 2.2.2. Given (X, 7) a topological space, we say that it is a Stone space, or a Boolean
space, if it is a Hausdorff, compact and zero-dimensional space.

Denote by Clop(X) the collection of clopen sets. Then we have:

Proposition 2.2.3. If X is a topological space, then the structure (Clop(X),n,u,—, &, X) is a
Boolean algebra.

Given a Boolean algebra, we can look at its spectrum, that is, the set of its ultrafilters, Spec(B).
On the spectrum we can define a topology by declaring the following sets to be subbasic opens:

p(a) = {x € Spec(B) : a € z} for a € B
Call the resulting topology 75. Then:
Proposition 2.2.4. If B is a Boolean algebra, the structure (Spec(B), 7p) is a Boolean space.

These transformations are moreover inverse of one another. This is captured by the following
duality result:

Theorem 2.2.5. (Stone Duality) The category BA of Boolean algebras with Boolean homomor-
phisms, and the category BS of Boolean spaces with continuous maps, are dually equivalent.

As a development of this, Priestley found a similar representation for the wider class of bounded
distributive lattices. To see this, recall that we say that a structure (X, <, 7) is an ordered topological
space if (X, <) is a partially ordered set, and (X, 7) is a topological space. Denote by ClopUp(X)
the class of clopen upwards closed sets.

Definition 2.2.6. Let (X, <, 7) be an ordered topological space. We say that X is totally order-
disconnected if it satisfies the Priestley Separation Axiom: whenever © £ y, there is some U €
ClopUp(X) such that x € U and y ¢ U.

We say that (X, <,7) is a Priestley space if it is a compact totally order-disconnected space.

Similar to before, given such a space, we have that:

Proposition 2.2.7. If (X, <,7) is a a Priestley Space, the structure (ClopUp(X), n,u, &, X) is a
bounded distributive lattice.

Given a bounded distributive lattice L, we can likewise look at Spec(L) the space of prime filters
of L, which come equipped with the natural inclusion order, and consider the subbasis induced by:

{o(a) :ae L} u{Spec(L) —¢(a):ac L} forae L

Denote again the resulting topology by 7r.:
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Proposition 2.2.8. Given a bounded distributive lattice L, (Spec(L), <, 7r,) is a Priestley space.
Hence we obtain the following (see [19, pp.262]):

Theorem 2.2.9. (Priestley Duality) The categories DLat, of bounded distributive lattices and
bounded lattice homomorphisms, and Pries, of Priestley spaces and order preserving continuous
functions are dually equivalent.

Note that Priestley duality specialises to Stone duality on Boolean algebras. There, the order
becomes the identity, since as noted above, in Boolean algebras, prime filters are exactly the
ultrafilters. A special case of Priestley duality is that which covers Heyting algebras:

Definition 2.2.10. Let (X,<,7) be a Priestley space. We say that X is an FEsakia space if
whenever U is a clopen set, then |U is also clopen.

Given an Esakia space, we define the Heyting implication using the downwards closure operator.
Define the following for U a subset of (X, <):

OU :={z:VYyif £ <y then y e U}
Then define for two such subsets:
U= V=O(X-UuV)
Then we have:

Proposition 2.2.11. If (X,<,7) is an Esakia space, then (ClopUp(X),n,u, = ,J,X) is a
Heyting algebra.
If H is a Heyting algebra, (Spec(H), <, 7x) is an Esakia space.

The final piece of structure concerns the morphisms of Esakia spaces:

Definition 2.2.12. Let f : X — Y be a map between two ordered sets. We say that f is a
p-morphism if:

e Whenever z < y then f(x) < f(y);
o If f(z) <y then there exists some z such that x < z and f(z) = v.
Then we have (see [23, Corollary 3.4.8]):

Theorem 2.2.13. (Esakia duality) The categories HA, of Heyting algebras and Heyting algebra
homomorphisms, and ES, of Esakia spaces and continuous p-morphisms, are dually equivalent.

A final natural duality we will have to discuss is that between modal algebras and so called
modal spaces. This is a topological extension of Jonsson-Tarski duality, and is discussed extensively
in [9, Chapter 5].

Definition 2.2.14. Let X = (X, R, 7) be a Stone space equipped with a relation R satisfying:
e (Point-Closedness) R[z] is closed for each = € X.

e (Clopen Closure) Whenever U is a clopen, then R~1(U) is clopen.
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The key idea to obtain this is extending Stone duality with a relation R induced on the
ultrafilters as follows:
TRy < [aex = acy

In such a situation, recall that we denote by [Jr the following naturally induced operator:
rU = {x : Vy, if xRy then y € U}
Then we have:

Proposition 2.2.15. Given a modal algebra (B,[]), we have that (Xp, R, 7) is a modal space,
and (Clop(Xg),n, v, =,0ry, &, Xp) is isomorphic to (B,[]).

2.3 Universal Algebra

For general references on universal algebra the reader can consult [12, 1].

Definition 2.3.1. We say that £ = (F,ar) (also sometimes denoted as o) is a language if F' is a
collection of symbols, and ar : F' — w is a function, called the arities of F.

Given a language o = (F,ar), we say that a structure A = (A, o) is an algebra of type o if for
each g € F', such that ar(g) = n, there is a function g : A" — A.

We say that two structures A and B are similar if they have the same type.

Definition 2.3.2. Let A = (4,0) and B = (B, o) be two algebras. A map f: A — B is called a
homomorphism if for each n-ary function symbol g(x, ..., z,) € o, and ag, ...,a, € A

f(g(ao, ... an)) = g(f(ao), ..., f(an))

We say that an injective homomorphism is an embedding.

Definition 2.3.3. Given two algebras A and B of type ¢, and a homomorphism f : A — B we
say that:

e A is a subalgebra of B if A € B and the inclusion map i : A — B is a homomorphism; we
denote this by A < B.

e B is a homomorphic image of A if f is surjective.
e B is isomorphic to A if f is injective and surjective.

Definition 2.3.4. Let A be an algebra of type 0. Let 6 be an equivalence relation § € Ax A. We say
that 6 is a congruence if for all n-ary function symbols g(zo, ..., z,) € o, and (ag, by), ..., (an, by) € 6:

(9(ag, ..y an), g(bo, ..., bn)) €0
We denote by Cona the set of congruences of an algebra A.
We recall the following fact about congruences:

Definition 2.3.5. Given an algebra A in the language o, Cona forms a complete lattice, where
meets are given by intersection.
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Given an algebra A, and a collection S € A x A, we denote by Cg(.S) the smallest congruence
containing S.

Definition 2.3.6. Given an algebra A and a congruence 6, we say that (B,o) is the quotient
algebra of A under 0 if:

e B = A/0, ie., the carrier set of B is the quotient set under 6.
e For each g € o, and aq, ...,a, € A, ¢%(ag/0, ..., a,/0) = g(ao, ..., a,)/0

Definition 2.3.7. Let (A;);er be a family of algebras. We say that an algebra B is the direct
product of the family (A;)er if:

o B =], A, ie., the carrier set of B is the cartesian product

e For each g € 0, and each 1:
9(ao, .., an)(1) = g(ao(i), ..., an(7))

Definition 2.3.8. Let (A;);e; be a family of algebra of type o, and B an algebra of type 0. We
say that B is a subdirect product of the family (A;);er if there is an embedding f : B — [[,.; 4
which additionally satisfies: for each i, 7; o f is surjective, i.e., f is surjective on factors.

Especially important in the theory of quasivarieties is the notion of reduced product:

Definition 2.3.9. Let (4;);c;r be a family of algebras. Let F' be a filter on P(I), the power set
algebra of I. Define an equivalence relation, ~p, by saying that given a,be [[..; Ai, a ~p b if and
only if:

iel
[a=0b]={iel:a(i)=0(i)}eF

Then ~p is a congruence on [ [,.; A;. We denote by [ [,.; Ai/F the quotient algebra [[,.; Ai/ ~F.
We call this algebra the reduced product via F' of the (A;)ier.

Definition 2.3.10. Let A be an algebra. We say that A is subdirectly irreducible if for all families
(Bi)ier such that A is a subdirect embedding of this collection, there is some ¢ such that A ~ B;.

The following is known as Birkhoff’s Subdirect Decomposition Theorem (see [12, Chapter 2,
Theorem 8.6]):

Theorem 2.3.11. Every algebra A is isomorphic to a subdirect product of subdirectly irreducible
algebras.

Definition 2.3.12. Let A be an algebra. We say that A is trivial if A is a singleton.

Definition 2.3.13. We say that an algebra A is simple if whenever B is a homomorphic image of
A, then B is isomorphic to A.

For a class of similar algebras K, we recall the following monotone and idempotent operators:
1. I(K) - isomorphic copies of algebras in K;

2. H(K) - homomorphic images of algebras in K;
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S(K) - subalgebras of algebras in K;
4. P(K) - direct products of algebras in K;
5. Py(K) - ultraproducts of algebras in K;
6. Pr(K) - reduced products of algebras in K.
7. Pg(K) - subdirect products of algebras in K.
Definition 2.3.14. Let K be a class of algebras. Then we say that K is:
1. A wariety if it is closed under subalgebras, homomorphic images and direct products;

2. A quasi-variety if it is closed under isomorphisms, subalgebras, direct products and ultraprod-
ucts; equivalently, if it is closed under isomorphic images, subalgebras, and reduced products.

We denote by V| respectively Q, the variety/quasivariety generator operator. The following are
sometimes referred to respectively as Tarski’s HSP and Mal’tsev’s ISPg theorems (see respectively
[12, Chapter 2, Theorem 9.5, [12, Chapter 5, Theorem 2.25]):

Theorem 2.3.15. For every class K of algebras we have:
o K is a variety if and only if K = HSP(K') for some class K' of similar algebras.
e K is a quasivariety if and only if K = ISPr(K')

We also recall the following, sometimes called Hall’s Theorem (see for instance [12, Theorem
11.12)):

Theorem 2.3.16. A class K is a variety if and only if HPs(K) = K.

One of the early achievements of universal algebra was to relate the above “mathematical”
notions, with purely logical ones, finding a connection between syntactic presentations and semantic
operations. These are captured in the ideas of equations and quasi-equations.

Definition 2.3.17. Let £ be an algebraic language. An equation is a positive atomic formula of
the form:
ARy

where \,~y are terms in the language £. A quasi-equation is an implication of the form:
MrEY& . . &\rv > Ary
where \;,; are terms in the language.

Definition 2.3.18. We say that an algebra A satisfies an equation A\ xg,...,Tn) ~ (0, ..., Tpn),
in symbols, A = A ~ v, if for each ag,...,a, € A, we have that A(ag, ...,a,) = v(ag,...,an), i.e.,
interpreting the term in the algebra with those elements yields equality.

We say that an algebra A satisfies a quasi-equation A\o(Z) ~ v(T) & ... & A\ (T) ~ 1(T) —
AT) ~ y(T), in symbols A — A ~ v & ... & Ay & 7, = A ~ v if for each ag,...,an, € A, if
Ai(ag, ...y am) = y(ag, ..., am) for each i < n, then A(ag, ..., am) = v(ag, ..., am).
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Definition 2.3.19. Let V be a class of algebras. We say that V' is an equational class (resp.
quasi-equational class) if there exists some set of equations S (resp., quasi-equations) such that for
each algebra A, A € V if and only if A = ¢ for each p € S.

Theorem 2.3.20. Let K be a class of algebras. Then:
e (Birkhoff) K is an equational class if and only if K is a variety;
o (Mal’tsev) K is a quasi-equational class if and only if K is a quasivariety.
Proof. See [12, Chapter 2, Theorem 11.9, Chapter 5, Theorem 2.25]. |

The following is a particularly useful tool developed by Jonsson, which we will use occasionally
(noting that virtually all varieties we will be dealing with are congruence distributive):

Lemma 2.3.21. (Jénssons’ Lemma) Let K be a set of algebras such that V(K) is congruence
distributive. Then the subdirectly irreducible elements of K are in:

HSPy (K)

Proof. See [12, Corollary 6.10]. [ |

2.4 Logical Preliminaries

Throughout we denote some well-known logical systems as follows:
e CPC - Classical Propositional logic;

e |PC - Intuitionistic Propositional Logic;

e K - Minimal Normal modal logic;

e 54 - S4 modal logic;

We assume the reader is familiar with classical and intuitionistic logic. We briefly recall the
notion of a normal modal logic (for a detailed discussion on this see [9]):

Definition 2.4.1. Let £ be the language of classical logic together with a unary operator ¢. A
collection of formulas L < £ is called a normal modal logic if:

e CPCc L, ie., L extends classical logic;

e L contains the following axioms (called the normality axioms):

T o T
Ol A ) < O A L.

e [ is closed under Modus Ponens, Unifrom Substitution and Necessitation: if ¢ € L then
(lp e L.
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It follows straightforwardly from the definitions that the arbitrary intersection of normal modal
logics is again a normal modal logic. This implies that the collection of normal modal logics forms
a complete lattice. We denote by K the minimal normal modal logic. Moreover, given an axiom ¢,
we denote by K@ ¢ the smallest normal modal logic containing . Given a normal modal logic L,
we denote by NExt(L) the complete lattice of normal extensions of L.

Important both in the theory of modal and intuitionistic logics is the concept of Kripke com-
pleteness:

Definition 2.4.2. Given a class K of Kripke frames, and ¢ a formula (in the language of intu-
itionistic or modal logic), we write K = ¢ to mean that for each § € K where § = (X, R), and each
model v over §, and each w € X, (F,v),w I ¢. A logic L € A(IPC) (resp. L € A(K)) is said to be
Kripke complete if there exists a class K of Kripke frames such that K & L.

Equally relevant are the concepts of FMP and tabular logics:

Definition 2.4.3. Let L be superintuitionistic or modal. We say that L has the FMP if L is
Kripke complete with respect to a class K of finite frames. We say that L is tabular if L is Kripke
complete with respect to a single finite Kripke frame.

We let HA and BA denote the classes of Heyting and Boolean algebras respectively. We assume
familiarity with the algebraic completeness of the respective logical systems with respect to these
classes of algebras. Moreover we also have the following well-known facts:

Definition 2.4.4. For each Heyting algebra H = (H, A, v,—,0, 1), consider the collection H™ =
{a : a = —=—a}. Then this forms a Boolean algebra with the induced operations:

e0=0and1=1
e aAb=anb
e a>b=a—b
e avb=—-—(avb)

Definition 2.4.5. Let A be an algebra of type 0. We say that a map v : VAR — H is a assignment
of variables on H. Given an assignment v, we extend this to a valuation v on H recursively, by
defining:

o U(

o U(

o T(p A 1Y) = T(p) A TE);
o U(p v ) =0(p) v oY);
* (¢ =) =0(p) = V(¥);

where the symbols on the right hand side are computed inside of H. We write H = ¢ to mean that
whenever v is a valuation on H, v(y) = 1.
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We remark that the former is the understood meaning, whenever we take any algebra such as
a Boolean algebra, Heyting algebra or a bounded distributive lattice.

Theorem 2.4.6. (Glivenko Theorem) For each ¢, a formula in the language of classical logic, we
have that p € CPC if and only if ——p € IPC.

Proof. To establish this, assume that ¢ € CPC, and H is a Heyting algebra. We will show that
H = ——¢. To see this, note that by completeness of CPC with respect to Boolean algebras, we
have that H™ = ¢. Now suppose that v is a valuation on H. Define a valuation w : Prop — H™
by letting w(p) = ——wv(p). This is well-defined, since as is known, for all a € H:

——a > ————a
Then by induction, we can see that for each formula v in the language of CPC:

w(®) = ==o(y).

Indeed, the base case is given by hypothesis, and the remaining cases follow by well-known properties
of intuitionistic calculus. Hence, by hypothesis, w(yp) = 1, which means that ——v(p) = 1, i.e.,
v(——p) = 1.

Conversely, if ¢ ¢ CPC, then ——¢ ¢ CPC. Since IPC < CPC (since all Boolean algebras
are Heyting algebras, and the mentioned completeness theorem), so ——¢ ¢ IPC, which gets us
completeness. |

The classes we just met of Heyting algebras and S4 algebras are also intimately related. To see
why note the following;:

Proposition 2.4.7. Let B be an S4 algebra. Then the bounded sublattice B := {a € B : a = [Ja}
is a Heyting algebra when equipped with the induced meet and join and a = b := [J(a — b).

Moreover, it is also possible to have a weak inverse to this operation. This latter transformation
will play an important role in our investigations, and is frequently called Booleanisation (see for
instance [30, pp.25]):

Definition 2.4.8. Let D be a bounded distributive lattice, B a Boolean algebra, and e : D — B
a bounded lattice embedding. We say that (B, e) is the Booleanisation of D if for each Boolean

algebra C', and bounded lattice homomorphism f : D — C, there is a unique map h : B — C such
that f =hoe.

Proposition 2.4.9. Let D be a bounded distributive lattice, and Xp the dual Priestley space.
Then Clop(Xp), the class of all clopens of D is the Booleanisation of D.

Denote by B(D) the Booleanisation of D.

Proposition 2.4.10. Let f: D — C be an injective bounded lattice homomorphism, where C' is
a Boolean algebra. Then the unique map f : B(D) — C' is also injective.

Proof. Suppose that f(a) = f(b). Suppose that these are:

\/ flai) = fler) = \/ £(b)) = f(dy)
i=1 i=1
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Using distributivity, we can rewrite the latter into /\Ifn:1 f(km) v =f(lLn). Now since these are
equal we have that:

flai) = flei) < f(km) v = f(lm)

Then f(a;) < f(km) v =f(lm) v f(c), and in turn, then, f(a;) A f(ln) < f(km) v f(c;i). Now since
f is a homomorphism, and injective, this means that:

a; ANl < km v

Operating the same transformations backwards, we have that a; — ¢; < k,,, v —l,,. Since this is
true of arbitrary such elements, then ¢ < b. By a similar argument, then b < a. So a = b as
intended. |

Moreover, the following holds:

Proposition 2.4.11. The Booleanisation B(H) of a Heyting algebra H, admits an S4 structure:
for each a € B(H), we let:

Da::\/{ceH:céa}

Proof. See [23, Construction 2.5.7]. [

2.5 Algebraic Logic

Throughout, if K is a class of similar algebras, we denote by Ly the algebraic language of
K; when the subscript is understood we drop it. Given a set X, we denote by T, (X) the set of
terms constructed in the language £ with variables from X, and by Tm,(X) the corresponding
absolutely free algebra. Let Eq,(X) be the set of equations built from this language, with variables
from X.

We begin by recalling the concept of a consequence relation and of a logic.

Definition 2.5.1. Let X be a set. A consequence relation over X is a relation < P(X) x X such
that:

o (Reflexivity) If a € X then (X, a) e+
o (Cut) If (X,y) € for every y € Y, and (Y, 2) €, then (X, 2) e

Notation 2.5.1. Throughout, whenever S P(X) x X is a consequence relation, Y € X, a € X we
write Y |- a to mean that (Y, a) €l-. We write |- a to mean (&, a) €. Given Y, Z < X, we write
Y + Z to mean that Y - a for each a € Z.

In this thesis, all consequence relations are assumed to be finitary, that is, if X - a, then there
is some finite Y € X such that Y + a. This is not necessary for most results, but it makes the
presentation simpler, and avoids complications with respect to infinitary axiomatisations.

We note that consequence relations on X form a complete lattice:

Lemma 2.5.2. The collection Con(X) of consequence relations on a set X forms a complete lattice,
where arbitrary meets are given by intersections.

This entitles us to the following definition:
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Definition 2.5.3. Let X be a set, and S < P(X) x X. We denote by s< P(X) x X the smallest
consequence relation on X such that S Chg.

Definition 2.5.4. Given S € P(X) x X, define S" as:
Ref ={(A,a): A< X,a € A}.
Also, define S° as:
S° = {(A,c) : There exists some (B, ¢) € S, such that for all be B (A,b) € S}.
We then define S° as follows: S°° = Ref, Sn+1 = (§°)°.
Then it is not difficult to see that:

Lemma 2.5.5. For any S € P(X) x X:

Fs= U S°n.

new

A special kind of consequence relation we will be interested are logics. Throughout let VAR be
a fixed but arbitrary set of variables.

Definition 2.5.6. Given an algebraic language £ over VAR, a given consequence relation - <
P(Tmg(VAR)) x Tmg(VAR) is called a logic if |- is substitution invariant: for every homomor-
phism ¢ : Tm/(VAR) - Tmg(VAR), and every I' U {¢} < L:

I' - ¢ implies o[I'] - o(p)

In other words, logics are consequence relations where uniform substitutions are precisely the
endomorphisms of the set Tmg(VAR). Similarly to above, we also have:

Lemma 2.5.7. Given a logic |-, the collection A() of finitary extensions of - forms a complete
lattice with meet as intersection.

And similar to before, if S € P(Tmg(VAR)) x Tm,(VAR), we denote by Log(S) the smallest
logic generated by S. Then it is clear that given t—; a collection of finitary logics, then \/,.; Fi=
Log(|J,e; Fi)- Moreover, we get that the former description of the generated consequence relation
in fact captures the generated logic in this particular case:

Lemma 2.5.8. If (I;);cs is a collection of finitary logics, then:

\/ l_i B l_(Uiel'_i)

el

Proof. By Lemma 2.5.5, if we show that — ( is already a logic, it will surely be the smallest.

Uiert
Hence it suffices to check closure under subs‘si{cut)ion of that consequence relation. Suppose that
(X, ) €, _,+;- By the same Lemma, we get that then (X, ¢) € (,c; )" So by induction we
can show that for any substitution o, (¢[X], o(¢)) also belongs there: for the base case, this follows
by reflexivity and the fact that the logics are closed under substitution, whilst for the inductive

case this follows by induction hypothesis and cut. |
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We now turn to a related concept, stemming from algebra:

Definition 2.5.9. Let K be a class of algebras and L its language, and Eq(VAR) the set of
equations built over VAR. We say that xS Eq x Eq is the equational consequence relative to K
if it satisfies the following properties: for © < Eq and (%), 0(y) € Tm(VAR):

O £k Y(T) ~ §(y) < For every Ae K and h: Tmg(X) - A
if for all p ¥ 1 € © h(p) = h(¢), then h(vy) = h(d)

The equational consequence relative to a class of algebras is very often used as the semantics
for specific logics. This is boiled down to the property of having a completeness theorem:

Definition 2.5.10. Let £ be a language, and - be a logic in this language, and u(x) a set of
equations in one variable. We say that a class K of algebras is a u-algebraic semantics for | if for
all T'u {p} < L:

I'-¢ < p[l] =k p(p)

We say that K is an algebraic semantics if it is a p-algebraic semantics for some pu.

Most of the logics we will deal with in this thesis will have an algebraic semantics. Examples
are CPC, which has BA and the set u(x) = {z ~ 1}, and IPC, which has HA with the same set of
equations. However, consider for instance the set:

{(~e~ 1)

This set makes HA into an algebraic semantics for CPC by Theorem 2.4.6. This means that
one logic can have multiple algebraic semantics. Nevertheless, for some logics, there is a way to
determine a “canonical choice”:

Definition 2.5.11. Let £ be a language, and  a finitary logic for this language. We say that
is algebraizable if there are a quasivariety K, p(z) a set of equations in one variable, and A(z,y) a
set of formulas in two variables, such that for all formulas I' U {¢} € £ and © U {y ~ §} < Eq,:

1. T+ ¢ if and only if u[l'] Ex u(p)
2. © Ex v ~ ¢ if and only if A[®] - A(y,0)
3. x4 A(u(x))
4.z~ y HFk p[A(z,y)]
In this case, K is said to be an equivalent algebraic semantics.
And indeed, we have:

Theorem 2.5.12. [25, Theorem 3.17] Each algebraizable logic has a unique equivalent algebraic
semantics.
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Chapter 3

Translations, Adjunctions and
Polyatomic Logics

The purpose of the present chapter is to introduce the general aspects of the theory of Polyatomic
Logics.

We begin by taking a close look at several translations which bear some resemblance to the KGG
one. This is done to emphasise the similarities in them, and the way in which they allow for similar
completeness theorems. We then embark on the general theory, abstracting from this situation. We
recall the definition of a translation and its relation to right adjoints, as detailed in [53]. Building
on that work, we introduce the notion of a selective translation, abstracting from some desirable
properties present in the most salient examples. This allows us to provide an abstract framework
to discuss semantically rich relationships between distinct logical contexts. Building on this, we
introduce the idea of a PolyAtomic Logic (so named because atoms are sent to elements covered
by a given term, in analogy with the naming convention of DNA-logics [0]), which blend properties
of different logical settings into the same models.

In analogy with the setting of [0], we develop the theory of PAt-Logics and PAt-Quasivarieties,
and establish a connection between these concepts, proving analogues of the Birkhoff theorem and
algebraic completeness. This is then used to develop a basic abstract theory of “companionship”
holding between logics under a selective translation’.

3.1 Classical Translations and DN A-Logics

In the introduction and preliminaries we discussed several translations. Here we briefly recall
them and discuss their similarities as respects the structure of their completeness theorems. We
begin with the Double negation translation:

Definition 3.1.1. The Kolmogorov-Gddel-Gentzen Double Negation Translation (KGG)?, denoted
K-, maps Tmg,, (VAR) to Tmyg,,(VAR) through the following assignment:

LA quick technical note: throughout we focus on the setting of quasivarieties, which is more natural from an
algebraic-logical perspective. However, throughout, all results restrict to the setting of varieties unless otherwise
specified.

2We note that this translation, as noted in the introduction, is originally due to Kolmogorov; however, his transla-
tion applies the ——-operation to every formula. The specific version outlined is due to Godel, Gentzen and Glivenko.
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1. K. (p) =

2. K. (T)=Tand K__(L) =L

3. K—(p A tp) = K——(p) A K-~ (¢)
4 K-—(p—¢) = K-~(p) > K-~ (¢)
5. Kon(p v ) = ==K-~(p v )

As we mentioned in the Introduction, and showed in the preliminaries, we have that given a
Heyting algebra H:
“={a€eH:a=——a}

Is a Boolean algebra with the induced operations. Hence we have the following, which straightfor-
wardly implies Theorem 2.4.6 once one accounts for the algebraizability of the systems at hand:

Theorem 3.1.2. For each formula ¢ in the language of classical logic, and each Heyting algebra
H:
H Ep < HEK__(p)

Proof. First assume that H # K (¢). Let v : Prop — H be a valuation witnessing this. Construct
a valuation v’ : Prop — H™ by defining v'(p) = ——wv(p). Then by induction on construction of
terms ¢ € Tmg,, (VAR) we can prove that:

V() = v(K-~(9))
Hence, H™ i (. The converse is wholly similar. |

As discussed in the introduction, one of the important applications of this translation was the
development of inquisitive logic [16]. We recall here its development as DNA-logic, as presented in

[6]:
Definition 3.1.3. Let L € A(IPC) be an intermediate logic. We consider:
"=y :elomp/ple L}

where ¢[—p/p] is the result of substituting —p for p in the term ¢. Then we say that L™ is the
DNA-variant of L.

DNA-logics are thus defined as the DNA-variants of some intermediate logic. More explicitly,
they are collections S of formulas such that:

o IPCC §S;
e ——p—>peS;

e S is closed under Modus Ponens.
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This is the origin of the name DNA — short for “double negation on atoms”. Note that such
structures are not closed under uniform substitution. As algebraic models, one takes structures of

the form:
(H,V7)

where H is a Heyting algebra, and V™ is a valuation taking values in the regular elements of H,
i.e, those a € H such that a = ——a. Similar to what we did above, given any valuation V one
can produce a regular valuation by regularising the value of the atoms. Given this role of regular
elements, given any Heyting algebra H, we denote by:

(H™)

The Heyting subalgebra of H generated by the regular elements. Those Heyting algebras H such
that H = (H™) are called regularly generated, and they are especially important due to carrying
the essential properties of a logic. To correspond to this, a notion of DNA-variety was introduced
in [0]:

Definition 3.1.4. Let H and H' be two Heyting algebras. We say that H' is a core superalgebra
of Hif H< H and H™ = H'™.

One fact which can be noted is that core superalgebras are the operator which binds the least:

Proposition 3.1.5. For each variety of Heyting algebras K, the class of algebras obtained by
taking core-superalgebras of K':= {(B™): B € K}, is a DNA-variety.

Definition 3.1.6. Let K be a family of Heyting algebras. We say that K is a DNA-variety if it is
closed under homomorphic images, subalgebras, products and core-superalgebras.

In [6] the following facts about these logics and varieties were established:

e DNA-logics form a complete lattice under inclusion;
e DNA-varieties form a complete lattice under inclusion;

e The lattices of DNA-logics and DNA-varieties are dually isomorphic.

These facts are enough to show soundness and completeness of DNA-logics with respect to
Heyting algebra models as defined above, and moreover, completeness with respect to regularly
generated Heyting algebras.

The reader will notice that in some respects it seems to be the main properties of the ——-
operator, and the structure of the translation, which allow the above construction. However, many
other translations exist which are of a very similar nature. Let us recall three of these:

Definition 3.1.7. The Gddel-McKinsey-Tarski (GMT) translation maps the set Tmg,, (VAR)
to Tmgg, (VAR) through the following assignment:

1. GMT(T) =T
2. GMT(L) = L
3. GMT(p A ) = GMT(p) A GMT(¢)
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4. GMT(p v ) = GMT(p) v GMT ()
5. GMT(p — ) = (~GMT(p) v GMT(v)))

As mentioned also in the preliminaries and introduction, we have that given an S4-algebra
B = (B,[):
B ={aeB:a=[a}

Is a Heyting algebra with the induced operations:
e0=0andl=1
e aAb=a b
e aVb=avb
e a>b=[(—avb)

Definition 3.1.8. The Goldblatt translation between the language of ortholattices and KTB logic
is defined recursively as follows:

1. For each propositional variable p, G(p) = [10p;

2. G A ) = GW) A G(e)

3. G(p*) =O-G(v)

As in the other cases, given a KTB algebra (B,[]) we can consider the set:
By ={ae B:a=[10a}

And equip this with the following operations: aAb = a A b and a' = [J—a. It can be straightfor-
wardly verified that this yields an ortholattice.
For the last example, we need some definitions. These follow the terminology of [56].

Definition 3.1.9. Let G = (G, 1, 1,®, —,0,1) be a structure where:
e (G,m,u,0,1) is a bounded lattice.
e (G,®,1) is a commutative monoid.

e For all z,y,z € P:
TRQUYL 2z &= rx<y-—oz

e For all a,b,a’,V/: a <a and b <V impliesa®ad <bRbV anda —ob<a —oV.

We call this an intuitionistic linear algebra (ILA)3. Furthermore, we call an ILA a ILS-algebra if
there is a modality ! : L — L such that for all a,b € L:

e The operation ! is a normal S4-modality: !'a =!la < a, a < b implies la <!b, !'T = 1, and
furthermore, !(a M b) =la ® !b.

3These are more frequently called today commutative residuated lattices, see for example [28]
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The former structures are models of Intuitionistic Linear Logic. The specific details of this
system are not important, but the reader is invited to consult [56] for a detailed exposition. Our
concern will be with a translation of intuitionistic logic into this system:

Definition 3.1.10. The Girard call-by-value [32] C, translation from intuitionistic logic IPC to
Intuitionistic Linear Logic is defined as follows:

Cv(p) =Ip;
Cv((p N ¢) = CU(QD) ®Cv(¢)7
Colp v ) = Colp) L Cyp(¥);

Co(p = ) =H(Cu(p) — Cu(¥)).
The following is discussed in Troelstra [56, Chapter 8]:

Definition 3.1.11. Let G be an ILS-algebra. Define:
IG:={a:a=la}

And equip !G with the following operations 0 :=0, and 1 :=1;a Ab:=a®b, a v b:= (aub) and
a—b:=(a—b).

Proposition 3.1.12. Given an ILS-algebra, the structure !G = (IG, A, v,—,0,1) is a Heyting
algebra.

In all of these cases, we are translating the algebraic languages, and transforming algebras of one
similarity type into algebras of another. Hence, we may ask whether this transformation witnesses
the translation, i.e., for instance, whether for an S4-algebras we have:

MOokE e < MEGMT(p).

This is indeed true, and for all of the translations we have discussed, the proof goes through
similarly. Namely, we can additionally show for G an ILS-algebra:

MoEe < MEGMT(p)
IGE ¢ < GE Cyp),

and for B a KTB algebra:
By Eert =9 <= BEG(p) - G[).

Let us sketch this in the case of ILS-algebras. Given a valuation v : VAR — G, we can construct
a valuation v' : VAR —!G such that v'(p) =!v(p). Then this valuation will take values in the !-fixed
points, and it can be shown by induction on the construction that:

V() = Cu(v(p)).

Similarly, given such a valuation v’ : Prop —!G, we can construct a valuation v : Prop — G by
letting v(p) = v'(p). Then again by induction on construction we can show that:

v(p) = Cy(V'()).
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Hence, assuming in turn that G # C,(¢) and |G ¥ ¢ will get us the result. It should be obvious
that similar arguments will work for all other translations.

To obtain results similar to the Glivenko theorem, one also needs that, given any algebra from
the system being translated, there exists some algebra of the target system of which it is the
“skeleton” (e.g., the set of open elements, of [JQ-fixed points, of !-fixed points, etc). This can be
less obvious to establish, but as we will see in the next sections, it is true in all the cases at hand.

Together, these two facts allow us a result analogous to Glivenko’s theorem, with respect to the
equational consequence relation, in total analogy with the KGG case.

To pursue this analogy further, let us now quickly sketch what a hypothetical [J-logic could
look like:

Definition 3.1.13. Let L € NExt(S4) be a normal extension of S4. Consider:

LP = {¢: o[Op/p] € L}
where ¢[[Jp/p] is the resulting of replacing p with [Jp in ¢. Then we call L the [J-variant of L.

Just like in the DNA case, one can argue, analogously to Proposition 3.3 in [(], that adding;:
p—Llp

and closing under Modus Ponens, Necessitation, but not uniform substitution, would yield precisely
a [Jvariant of any given logic, and that all of them arise this way. Moreover, given an S4-algebra
B, we say that B is openly generated if B = (Br). We can then take models of the form (B, VL),
where VU takes values only on open elements.

What about [J-varieties? Just like in the DNA-case, one can show that core superalgebras bind
the least, and hence, a class of algebras is a [}variety if and only if it is the closure of a variety of
S4 algebras.

The facts mentioned above can also be carried out for this setting:

e [ogics form a complete lattice under inclusion;
e [varieties form a complete lattice under inclusion
e The lattices of [Jlogics and [J-varieties are dually isomorphic.

However, the reader might now be persuaded that there is also nothing special about the GMT-
translation. The Girard call-by-value translation or the Goldblatt translation would just as well
yield hybridised logics. Hence two natural questions arise:

e What kinds of properties must a translation have in order for it to enjoy the sort of complete-
ness theorem we found above;

e How can one develop a theory which generalises the DN A-logic structure to other such trans-
lations.

We will take on these tasks in the next sections.
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3.2 Algebraic Translations and Adjunctions

In [53], the concept of a contextual translation was introduced with the goal of providing a
characterisation of adjunctions between generalised quasivarieties. This is inspired by work of
McKenzie [50] and Dukarm [21], and related to work by Freyd [26], which describes categorical

equivalence through two “deformations” of the categories. The key idea of this approach is that right
adjoints correspond to translations between the equational consequence relations of the categories
of algebras. Below we present this concept, recalling its definition according to the presentation
of [53], as well as some key results, which we provide without proof. We note that as previously
noted, our discussion remains within a finitary context even though the results cited are proved in
the broader setting of generalised quasivarieties. We also focus only on unary translations, though
all of the results in this section could be proved for arbitrary x-ary translations.

Definition 3.2.1. Let X and Y be classes of algebras. We say that a map ¢ : Lx — Tm,, (VAR)
is a translation if for each n, ¢ sends n-ary function symbols to n-ary terms.

Given a translation ¢ we define a map ¢y : Tmg, (VAR) — Tm,,, (VAR) by stipulating that:
1. (i(x;) = @; for variables x; € Lx;
2. («(c) = ((c) for constants c € L;

3. For complex terms o, ..., pn, and n-ary operation v, such that {(¢) = f, where each f is a
term of the form f(xog,...,x). Then:

Moreover, we denote by ¢* the natural lifting of ( to sets of equations: let Eqy (VAR) be the
set of equations of the language Ly. We define ¢* : P(Eqx (VAR)) — P(Eqy (VAR)) by setting,
for ® < Eqx (VAR):

C*(®) = {¢(d) ~ Cu(7) : 6 ~ vy € D}

In other words, a translation for our purposes consists of an assignment of logical symbols,
preserving arities, which recursively induces an assignment of formulas. We note that whilst this
leaves out many notable translations - for instance, most instances of “standard translations”
occurring in the modal logic literature do not conform in an obvious way to this shape, despite
their relevance and uses - translations of this kind occur quite frequently in various natural logical
frameworks.

More than a merely syntactic assignment, though, we want our semantics to reflect this trans-
lation in some sense. Hence we will need the notion of a contextual translation.

Definition 3.2.2. Let X and Y be two classes of algebras. We say that a pair (¢,©), where ¢
is a translation, and © < Eqy(VAR) a finite subset of equations written over a variable z, is a
contextual translation if the following holds:

1. For every set ® U {\ ~ v} < Eqx, written in variables {z; : i € w}, we have:

if ® =x A~ 7, then ¢*(@) u | JO(z:) By (*(A ~ 7)

1EW
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2. For every k-ary operation f(yo, ..., yn) € Lx, we have:
O(z0) U ... U O(zy) v O(C*(f (20, -, Tn)))

In this case we refer to the set of equations © as the context of the translation.

Example 3.2.3. (KGG and GMT translations) The KGG and GMT translations we met in Def-
inition 3.1.1 and Definition 3.1.7 are contextual translations: for the first, take a modification of
the function K__ which maps proposition variables to themselves, and takes the context:

O = {z ~ ——z}.

For the latter, take in addition to the function GMT, with the same modification, the context:
O = {z ~ z}.

In both cases, these translations were shown to be contextual in [53].

Looking at these examples, we see that the introduction of a context has the following effect:
we take the equations we are interested in, when looking at a given algebra, and we interpret
these equations in a smaller algebra, comprised only of the elements satisfying the equations in the
context. We generically refer to these as reqular elements. Algebraically, this corresponds to the
following;:

Definition 3.2.4. Let Y be a class of similar algebras, and £ its language. Let 6 be a set of
equations of Eq, in one variable, where £ € Tm/(VAR) (i.e., n-ary terms are read as n-ary
functions), and where 0 is compatible with the operations of L', i.e, for each n-ary operation t € L'

O(xo) U ... U b(zy) Ex O(t(xo, ..., zn)).
Let A €Y be some algebra. Then we let §(A) be the following structure:
O0(A):={a:AE=06(a)}

equipped with the operations in £’ (note that compatibility of 6 allows this). We call this the
algebra of O-reqular elements of A.

If Y is a class of all similar algebras in the language £, and X is the class of all algebras in the
language L', this provides a map 6 : Y — X, sending A to 6(A). Moreover, given a homomorphism
of L-algebras f: A — B, we can define 6(f) as

0(f):0(A) — 0(B)
a— f(a)
i.e, as the restriction, and obtain that this is a well-defined homomorphism in the language £’:
it is well-defined since if ©(a) holds in A, then ©(f(a))) holds in B, since f is a homomorphism.

Moreover, it is a £’-homomorphism since the language is composed of terms in the language L.
Thus, 6 defines a functor. In other words, we have:
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Proposition 3.2.5. Let Y be some class of algebras, and L its language, and let £ € Tm/(VAR)
be the language of X. Let 6 be a set of compatible equations. Then the assignment:

0:Y —-X
A—0(A)

Is a functor, which acts on morphisms by restriction.

Given these definitions, one can see the connection between the notion of a contextual translation
and the above functor: if X and Y are two classes of algebras, and (¢, ©) is a contextual translation
between them, consider the following language:

L= {C() e Lx).

This will be a language composed of terms from Ly. By definition of being a contextual
translation, © is a compatible set of equations. Thus, this yields a functor in the manner described
above, which we denote by 6:. More than that, we have the following characterisation (for a proof
see [53], Theorem 5.1 and Lemma 5.4):

Theorem 3.2.6. Let X and Y be two quasivarieties. If (¢,0) be a contextual translation between
X and Y. Then 0, :' Y — X is a right adjoint functor.

The previous theorem establishes a deep connection between translations - an eminently syntac-
tic domain - and adjunctions - which relate the semantic domains of interpretation we care about?.
Through it we can investigate certain desirable properties of translations through a semantic lens,
and seek to impose certain properties through syntactic restrictions.

Before that, we recall the explicit description given of the left adjoint of the functor described
above:

Proposition 3.2.7. Let ((,©) be a contextual translation between Lx and Ly. Let 6; be the
induced right adjoint functor. Then the left adjoint functor, 7 : X — Y, acts on objects as follows:
if A €Y, then let U be a congruence on Tm,, (VAR) such that A =~ Tmg, (VAR)/V. Then
define:
F(A) = Tme(X)/Cay (CH(¥) v | O(x:))
1EW

In many cases, more explicit descriptions of left adjoints are available. We also remark that,
as we will see throughout the thesis, in the algebra of logic, such explicit descriptions tend to be
facilitated by the existence of a topological duality.

Example 3.2.8. (Heyting algebras and S4, continued) As mentioned in the preliminaries, the
functor B(—) : HA — S4 which takes the Booleanisation of a Heyting algebra, and induces the
modality [] as the relative complement in the Heyting algebra, is the left adjoint to the functor p
which selects the open elements. We also note that, dually, o corresponds to the forgetful functor
from the category of Esakia spaces to the category of Boolean spaces which forgets the order.

4We remark that Moraschini in fact proved the converse of this Theorem also holds, except the resulting translation
might not be unary, but instead, s-ary.
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3.3 Conditions on Adjunctions

For the rest of the chapter, let X and Y be two quasivarieties, and assume that {(¢,©) is a
unary contextual translation, with associated functor 6. Also, for a given A € X, let $(A) denote
0c(F(A)).

Notation 3.3.1. We write:
AOEC"(A~7)

to mean that A validates the equation (*(\ ~ ) in the context ©, that is, in any valuation where
all variables ocurring in A,y are assumed to satisfy ©. |

We begin by spelling out the structure of interpretations of elements from 6:(A). Note that for
ag, ..., an € 6¢(A), and (o, ..., z,) € Lx, we have:

<A (ag, ..., an) = C(¥)(ag, ..., an)
where the latter is calculated in A. Having this in mind, we look at the following:

Proposition 3.3.1. For each A €Y and 0 ~ v € Eqx (VAR),
AOE(C0~ry) = 0:(A)EI~1.

Proof. First suppose that A, 0 = (*(6 ~ A). Let v : Tm(X) — 6:(A) be an arbitrary valuation.
Then define a new valuation:

v Tmy(X) — A
x — v(zx)
which is defined on variables, and lifted to all terms in X as expected. Note that since v was

a valuation taking values in regular elements, then v’ will also take values in regular elements.
Moreover, we can see by induction on the construction of terms that:

v(p(7)) = ' (G (p(2))).

Indeed, for the base case this holds by assumption. Now assume that %g, ..., , are terms for which
this holds. Let ¢ be an n-ary operation in the language of X. Then:

V(Y (to, s tn)) = Y (v(to), .., v(tn))
= (G (1)), s Gl (20)))
= (V) (V' (t0), -y v (t )
=0 (C*( (t()? o tn )
where these equalities follow by definition of the translation and our remarks about the explicit

shape of operations in the algebra of regular elements. But then, since we have the equality, we
obtain that 6:(A) = 0 ~ v, as intended. The other direction follows by similar arguments. |

The former is one of the key results we will need throughout this chapter. An easy consequence
of it is a fact relating the structure of the adjunction and the correctness of the translation. First
we recall a piece of category theory:
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Definition 3.3.2. Let F': C — D be a functor. We say that F' is faithful if for all A, B € C and all
maps f,g: A — B: if F(f) = F(g) then f = g. We say that it is full if whenever f : F(A) — F(B)
is a map on D, then there is some map g : A — B such that F(g) = f. We say that F' is fully
faithful if it is both full and faithful. We say that F' is essentially surjective on objects if for all
C € D there is some A € C such that F(A) =~ C.

Definition 3.3.3. Let n: 1¢ = G(F(—)) and € : F(G(—)) = 1p be natural transformations.
We say that these are respectively the unit and the counit if for all B € C we have that the
composition,

EF(B

F(ns)
F(B) —>> F(G(F(B))) — F(B)
is equal to the identity on B, and also, for all A € D we have that the composition,

G(ea
—

G(A) 2, G(F(G(A))) G(A)

is equal to the identity on A. We say that n is pointwise injective (resp. surjective) if for each
A € C, na is injective (surjecitve). Similarly we say that ¢ is pointwise injective/surjective.

Proposition 3.3.4. Let n be the unit of the adjunction F I 6. If n is pointwise injective then
the translation is faithful: for every collection ® U {\ ~ v} < Eqx, written in variables {z; : j € w},
we have:

O x Ax oy, iff (@) U O(@i) By (A~ 7).
1EW

Proof. Assume that 7 is pointwise injective. Omne half of the above condition is true of every
contextual translation, so we focus on the other one. Suppose that ® F¥x A ~ v. Let A € X be
some algebra witnessing this. Then, let v be a valuation, such that A ;v = ® but A,v ¥ A ~ ~.
Since 7 is pointwise injective, we have that $(A),v = ® but H(A),v ¥ A ~ v as well. But then using
the arguments from Proposition 3.3.1, we get that F(A),v" = ¢*(®) whilst F(A),v" ¥ (*(A ~ 7).
This shows that:

¢*(@) u|J Ol thy (A~ )

as desired. [ |

We will be interested in translations where not only the unit is injective, but in fact an isomor-
phism. To work towards that, we need some definitions.

Definition 3.3.5. Let {((,0, f) be a contextual unary translation together with a unary term
f(x) € Ly called the selector. We say that the triple ((, O, f) is a selective translation if:

1. ( is faithful;
2. Ev O(f(x)), i.e, selected elements are regular;
3. O(z) Fy f(z) ~ .
We say that the translation is strongly selective if additionally we have:

4. The unit n of the adjunction is an isomorphism.
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Example 3.3.6. The GMT and KGG translations we have encountered are both selective. Let
the selector term be f(x) = [Je. Then by the transitivity and reflexivity axioms, for any S4-modal
algebra A, and a € A, [1TJa = [1Ja. By this fact and given the context is [Jx, we have the
conditions. The arguments for the KGG translation are similar, using the selector term ——z, and
using the fact that on Heyting algebras the equation ————x ~ ——z holds.

Also note that they are faithful: we check this for the double negation translation, since the
other has been mentioned. Indeed, if ® £ A = , let B be a Boolean algebra witnessing this; since
we know that B is such that §(B) = B, this is enough to prove faithfulness.

Finally, the GMT translation is strongly selective, whereas this is not clear for the double
negation translation.

It is a general categorical fact that if the unit is an isomorphism, then the left adjoint is fully
faithful and the right adjoint is essentially surjective on objects. We leave open the question of
whether this and other sufficient conditions we give are actually necessary.

In addition to being well-behaved, these translations are quite abundant: all four translations
we discussed in the previous section are examples of translations that are faithful, and as one can
see by their definition, also selective®.

We now turn to the selector term. Indeed, in the work of McKenzie [50], categorical equivalences
were given by the presence of a unary idempotent and invertible term. The selector term is a
similar device. Its role, for our purposes, will be to essentially internalise contexts, and allow the
transformation of arbitrary valuations into regular valuations. However, it also has some categorical
consequences. The following lemma follows by definition of being a selective translation:

Lemma 3.3.7. Let (¢, O, f) be a selective translation, and A an algebra. Then whenever a € 6:(A),
then f(a) = a.

Proposition 3.3.8. Let ((,0, f) be a selective translation. Then the right adjoint functor, 6,
preserves surjective homomorphisms.

Proof. Suppose that h : A — B is a surjective homomorphism. Let a € 6:(B) be some regular
element. By hypothesis let a’ be an element such that h(a’) = a, which is possible since h is
surjective. Then note that:

Oc(h)(f(a') = f(h(a')) = f(a) = a,

where the second equality follows from Lemma 3.3.7. So f(h) is surjective as intended. [

3.4 PAt-Logics and Quasivarieties

The previous section gave us a notion of a selective translation, which was shown to enjoy many
of the nice properties of the double negation translation. In this and the following sections we will
outline how such translations can be used to develop general “Polyatomic Logics” — so named since
the atoms are ‘covered’ by the selector term.

Since we will be working with logics, we make a few assumptions on the objects at hand. For
the following sections, unless specified assume that | is an algebraizable logic, Y is its equivalent

SIn fact, most unary contextual translations that are considered tend to be of this kind. For a binary example,
the reader may want to consider the example, also presented in [53], of the translation from Kleene algebras to
distributive lattices, which the reader may find in that paper.
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algebraic semantics, p(z) and A(zx,y) are the two sets witnessing algebraizability. Moreover, denote
by A(F) the lattice of finitary extensions of this logic. We also fix a selective translation (¢, O, f)
between X and Y, with all previous assumptions made on these classes.

We note that these assumptions are not necessary — indeed, throughout the thesis, namely
through the Goldblatt translation, we will encounter examples which do not satisfy them, but
are still amenable to the same treatment. The assumptions at hand make, however, for a more
transparent read, and in any case, in concrete situations, it will be relatively clear how to overcome
the lack of some assumptions.

We will be concerned here with “PAt-variants” of logics:

Definition 3.4.1. Let ,€ A() be a finitary extension of . We define the PAt-variant of |,
denoted }—f:, as follows: for each set I' U p € Ly

I+ o < T[f(p)/p] -+ e[f(p)/p].

where for each formula, x[f(p)/p] is obtained by substituting p by f(p) in x, and T'[f(p)/p] =
X[f(p)/pl = x €T}

The former abstracts from the idea of a negative variant [16].

Definition 3.4.2. Let -4 be an arbitrary subset of P(Tm,, (VAR)) x Tm,, (VAR). We say
that -5 is a PAt-logic if it is the PAt-variant of a logic € A(}-).

The main notable feature of PAt-logics is that, whilst they are closed under modus ponens, they
need not be closed under uniform substitution. We collect some observations about these structures
in the next proposition®:

Proposition 3.4.3. Let 4 be a PAt-logic, and -, € A(}) some logic such that -3 = 5. Then
I, is the least set of formulas such that:

1.  is a consequence relation in the language Lv;
2. s C by
3. For all atomic propositions p, we have s A(f(p),p).

Proof. To see that 5 is a consequence relation, note this follows from the fact that . is one,
and the definition of being a PAt variant. If S -, ¢, then by closure under uniform substitution,
S[f(p)/p] F« ©[f(p)/p], 0 S s @. The third property follows from the fact that, =y f2(p) ~ f(p),
and hence, . A(f%(p), f(p)) by definition of algebraizability, so by definition of being a variant,
Fs A(f(p), p).

Now we note that this is least in these conditions: suppose that |- is another consequence relation
satisfying the above properties. Suppose that S s ¢. By definition, then, S[f(p)/p] -+ ¢[f(p)/p];
hence S[f(p)/p] = ©[f(p)/p]) by the second property. Now by assumption, I A(f(p),p) for all
atomic propositions; so by induction on complexity of formulas, and the properties of A, we get
that:

= A(e[f(p)/p], ¢)

And similar for any formulas in S. So since S[f(p)/p] - ¢[f(p)/p], by A-Modus Ponens (recalling
that . < IF, and this is assumed to be algebraizable, hence satisfying A(z,y), z - y for any z,y)
and the Cut rule, S I- ¢. |

51n fact, the properties outlined here could have been taken as the definition of PAt-logic.
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As examples of the former, we recall from Section 1.1 the cases of DNA-Logics as well as the [-
Logics which we sketched there. The requirement (3) can be seen as an abstract version of requiring
that p — [Jp or ——p — p hold for atomic propositions. Indeed, in the case of DNA-logics, we have
that p — ——p ~ 1 is a theorem in IPC. Moreover, the set A in this case is given by:

A(p,q) = {p — ¢,9 — p}

Hence, A(——p,p) = {p > ——p, —=—p — p}. Thus, requiring that ——p — p amounts to requiring
that A(——p,p) € IPC™, the negative variant of intuitionistic logic. The case for [}-logics is wholly
similar.

We now turn to showing that PAt-logics relative to a given translation form a complete lattice.
Before that, recall from the preliminaries that given a collection (};);es of logics, we denote by
H (Uiefh‘) the closure of the union under being a consequence relation.

Proposition 3.4.4. Let (I;)ier be a collection of PAt-logics. Then (1),.; F; is a PAt-logic. More-

over:
\/ Fi=r (Uieﬂ_i)

iel

where \/,_; I; denotes the supremum in the lattice of PAt-logics of .

Proof. Let ;=I-!. Let I-/:= ,.; I-; Then note that:

(Vi = (@) : T p)/p] i oL (0)/]}

i€l 1€l
={(T,¢) : TLf(p)/p] - oLf(p)/pP]}
=+

This follows by definition of being a PAt-variant.
_ : e fo_ ; .
To see that \/,; l_i_l_(Uieﬂ_i)’ we claim that if |-; = I; for every ¢, then:

(\/ i )f - l_(UieI’_i)

To see this, make some abbreviations: let = \/,_; I, and l_*ZI_(U-ez'—i)'

Now first, assume that I' -/ ¢. By assumption, then I'[f(p)/p] IF ¢[f(p)/p]. By definition of
being the supremum of a logic (see Proposition 2.5.8), we have that (I'[f(p)/p], ¢[f(p)/p]) belongs
to the closure of | J,.; I-; under being a consequence relation. So first assume that it belongs to the
union; then clearly it belongs to I-; for some i, hence, I' ; ¢, as desired. Next, assume that for
all (I",4) € (U;es i)™ this holds. If (T[f(p)/p), o[ f(p)/p]) € (Uies i)+, then by assumption
there is some (I, [ f(p)/p]) € Ujes ™, and (T[f(p)/p), x) is in the same set for x € Y. By closure
under uniform substitution, we have that:

(T[f*(p)/p), X[ £ (p)/p]) and (T'[f(p)/p], e[ £*(p)/p)) € () Fo)>"

el

Hence, by induction hypothesis, we have that these will be in ( J,.; ;. Hence, in -, we will have
(T[f(p)/p], ¢lf(p)/p]) which by assumption on some logics means that (', ¢) is there as well. The
converse inclusion follows by similar arguments. |
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Hence, we denote by Af(}-) the complete lattice of PAt-variants of the logic . Moreover, we
have the following:

Corollary 3.4.5. The map / : A(-) — AJ () that assigns to each logic - its PAt-variant is a
complete lattice homomorphism.

Proof. Preservation of bounds is obvious, and we have shown preservation of meets and joins in
3.4.4. |

The natural question then is what the appropriate semantics for these logics should be. Let
A €Y be some algebra. Then define:

Al i={ae A:AE f(a) =a}.
Note that in light of Lemma 3.3.7, we have:
Al =6(A).
We will use this fact freely in the sequel. We can then define the semantics of our models:

Definition 3.4.6. Let A € Y. We denote by (A’) the subalgebra of A generated by regular
elements. We say that A is reqularly generated if A = (AT).

We say that a pair (A,vf) is a polyatomic model of the language Ly if v/ maps propositional
variables to regular elements.

We define the semantic clauses for interpreting formulas in a polyatomic model as follows:
e For z a propositional variable, we let [2] = v/ (z)
e For any complex terms v (tg, ..., t,) we have that [1(to, ..., tn)] = L ([to], ..., [ta])

Given a model (A, vf), and a set of equations X,y we write (A, vf) = X ~ v if for all zg, ..., z, €
VAR, A/ (20), ..., v" (25)) = v(v/ (20), ..., v7 (z,)). Given an algebra A, we write A =7 ¢ ~ 1
to mean that for every PAt-model v/ over A, (A,v7) = ¢ ~ 1; then we say that the equation is
PAt-valid in A. Given a class C of algebras, we write C =7 ¢ ~ 1 to mean that each algebra has
the equation as a PAt-validity.

Additionally, we abbreviate what it means to satisfy a sequent: given a pair of the form (T, ) €
P(Tmg, (VAR)) x Tmg, (VAR) we write (A,v) = (I, ¢) to mean that: for all zo, ..., z, € VAR,
and each equation § ~ v € u[I'] = (J{u(p) : ¢ € T'}, if §(v(xo), ..., v(xn)) = y(v(20), ..., v(zn)), then
3 (v(xg)y ..., v(p)) = v*(v(x0), ..., v(zy)) for each §* ~ v* € u(p). We write A = (', ¢) to mean
that for each valuation v : VAR — A, (A,v) = (I',¢). We write A ¢ (', ¢) to mean that for
every polyatomic model over A, v/, (A,v) = (T, ¢).

Given a family S € P(Tmg, (VAR)) x Tm,, (VAR) we write A = S to mean that for each
(I'yp)e S, AE (I',p). Similarly we define A =y (T, ¢).

Given an arbitrary v a valuation on A, define v/ by letting v/ (p) = v(f(p)) and lifting to terms
appropriately. Then note that in this situation, for any term y:

vf (x) = v(x[f(p)/p])

Lemma 3.4.7. Let A €Y and |, a finitary extension of -. Then we have:
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1. A= (I[f(p)/pl, elf (p)/p]) iff A g (T, 0);
2. f A= s then Ay (Fs)f
3. For any algebra A, we have that A = (I', ¢) if and only if (AT Er (L, p).

4. Let A be an algebra and  an extension of . Then we have that A ; (.)/ implies
(AT) = s

Proof. (1) Suppose that A B (T[f(p)/p], ¢[f(p)/p]); then take v a valuation witnessing this, and
consider v/; then since:

v (x) = o(x[f(0)/p])

We have that (A, o) # (T',¢). The converse is similar.

(2) Suppose that A ¢ (I',) where (I',¢) € {. Then by the previous statement, A
(C[f(p)/p], ¢lf(p)/p]); but the latter is by definition in k-, as desired.

(3) Note that (Af) = A7, since the former is a subalgebra of A. Hence a given v is a regular
valuation on A if and only if it is a regular valuation on (Af). This yields the result immediately.

(4) Suppose that (A/) £ —,. Hence there is a sequent (I',¢) € -4, and a valuation v, such
that:

ANy v X~ y, for Aayepu[l] and (A7), v XN ~ 4 for X ~ 4 € u(p)

Since <Af ) is a generated subalgebra, we can express each element as a term over regular elements,
say a = 04(Yy), for some trm d,(y). Then for A\ ~ v € u[I'], we have:

A0, ooy ) [T = A(32(7))

and similar for 7. Hence consider a regular valuation, say w, on A, such that ¢; — v(y;), for each
¢; ocurring in the above formulas. Then we have that for each A,~ as noted, [A[6,(7)/Z]]A7 > =
A(0,(y)) and similar for 4. Hence for each A ~ v € u[I]

(A7), w) E A0:(9)) ~ 1(6:(7))

And likewise, ((A),w) # N(5.(7)) ~ 7/(5:()). Now notice that:

p[C[6x(m)/7]] = {n(x[0=(@)]) : x € T}

and the latter is equal substituting every equation A ~ v € p[I'] using the substitution given.
Hence for each equation in u[T'[6,(7)/Z]], ((A)), w) satisfies it, and it does not satisfy some equation
in p[e[6.(7)/Z]]. Hence ((A), w) # T[6,(7)], ¢[6(7)]). Hence, since the valuation takes values in
regular elements, also ((A7), w) s T[0:(¥)], ¢[6:()])-

In light of all of this, by the previous statement, A v ¢ (I'[0.(¥)/P], ¢[02(¥)/p]). Since -4 is a
genuine logic, and thus, is closed under substitution, and since (I, p) €f:

(T'[02(9)/pl, #102(¥)/P]) €F+ -

But then we have by Proposition 3.4.3 that (I'[0,(7)/p], ¢[6=()/P]) € (—+)/ as well. So we have
that A £ ()7, as intended. [

We further isolate one fact which follows from the previous proof.
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Corollary 3.4.8. Suppose that {(A) ¥ (T',¢). Then there is a substitution o, such that A ¥y
(o (p)/p, elo(p)/p])-

These lemmas are needed to establish the connection between PAt-logics and the PAt-quasivarieties,
which we turn to now:

Definition 3.4.9. Let A, B €Y be algebras. We say that A is a core superalgebra of B if A < B
and A = B/,

Definition 3.4.10. Let V be a subquasivariety of Y. We define the PAt-variant of V as:
V= {A:3BeV,A/ =B/, and A < B}.

We say a quasivariety is a PAt-quasivariety, relative to the translation and the quasivariety Y, if it
is the PAt-variant of some subquasivariety of Y.

Furthermore, we say that a PAt-quasivariety is a PAt-variety, relative to the translation and Y,
if it is the PAt-variant of a subvariety of Y.

This definition parallels the one for DNA logics, and similar to what is found in that setting,
we have:

Proposition 3.4.11. Let K be a family of algebras from Y. Then:

1. K is a PAt-quasivariety if and only if it is closed under subalgebras, reduced products and
core superalgebras.

2. K is a PAt-variety if and only if it is closed under subalgebras, homomorphic images, products
and core superalgebras.

Proof. The proof is a generalisation of [6, Proposition 3.18], where the role of Heyting algebra
regular elements is replaced by that of #-regular elements. Indeed, we provide only the proof of the
first statement, as the second follows by the arguments in that Proposition and the ideas sketched
here.

For the right to left direction, we simply note that if V is closed under the specified operations,
then it forms a quasivariety; hence if it is further closed under core superalgebras it will be its own
PAt-variant.

For the other direction, let V! be some PAt-variant. We check closure under the operations.

e (Subalgebras): Suppose that A < B and B € V'. By definition, then, there is some C € V
such that C < B, with the same set of regular elements. Then consider C' n A. We have that
this will be a subalgebra of B (since intersections of subalgebras are again subalgebras), so
will be in V. Moreover, (C n A)! = (A)f: whenever a € A C, then a € A, so if f(a) = a in
AnC, then the same will hold in A; conversely, if a € A, and f(a) = a, then already f(a) = a
in B, so by assumption, f(a) € A~ C. This then shows that A e VT,

e (Reduced Products): Suppose that (A;);es are a family of algebras all in V!, and hence, that
(Bi)ier is a family of algebras in V such that B; < A; with the same regular elements. Now
consider [ [,.; A;/R. By closure of V under reduced products, we obtain that [ [,.; B;/R € V.
Moreover, by Proposition 3.3.8, we have that:

([Tesm)’ - ]8R

iel iel
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Hence, we get the latter is equal to [ | Azf /R, which tells us by the same fact that [ |

\VAR

iel w1 Ai/R €

|
We have that, as expected, PAt quasivarieties and PAt varieties form a complete lattice:

Lemma 3.4.12. Let (K;);er be a non-empty collection of PAt-quasivarieties (resp. PAt-varieties).
Then (), ; K; is a PAt-quasivariety (resp. PAt-variety).

Proof. In light of Proposition 3.4.11, we simply note that the intersection will be closed under all
the operations. [

Indeed, it is not difficult to show that one needs only to look at the composed operator:
(ISPg)" =

in the sense that whenever K is a class of algebras, this is a PAt-quasivariety iff K = (ISPz)"(K).
This follows by the same arguments as presented in [0, Theorem 3.21]. Similarly, a class K is a
PAt-variety if and only if K = VI(K).

With this we have, denoting by PAQ(X) the class of PAt subquasivarieties of X. For that we
quickly recall the following simple fact:

Lemma 3.4.13. Let (A;)r) and (Bier) be two families of algebras, and assume that for each 1,
A, < B;. Then:

o [lics Aier <[ lies Bier
e Given a filter F on I, [ [,.; Aicr/F < [],c; Bier/F

Proof. (1) Is straightforward by the definition: given a € []
[ [,c; Bi; moreover, the operations are computed pointwise.

To see (2), first note that for a,b € [ [,.; Ai, a ~p b implies that a ~p b in [ [, ; B;. Hence we
can send the equivalence class [a|p € [ [;c; Ai/F to [a]r € | [,c; Bi/F. It is clear to see that this is
then a homomorphism. |

ie[Ai? CL(Z) € A; < B;, hence, a €

Proposition 3.4.14. The map (—)" : A(X) — PAQ(X) is a complete lattice homomorphism.

Proof. First let (K;);er be a collection of subquasivarieties of X. Then we show that:
(Nx)' =Kl
el el

Indeed, if A € (();c; K;)" then A is the core superalgebra of some B which is in every subquasivari-
ety; but then clearly A is in each such subquasivariety. For the converse, if A is a core superalgebra
of B; each respectively in K;, note that ﬂie ; B; will be a subalgebra of all B;, it will have the same
regular elements, and will be in () K;, showing the result.

For the preservation of the join, we show that:

(V) = VK]

el el
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Where the left hand side join is taken in the class of quasivarieties, and the left hand side in PAt-
quasivarieties. Indeed, by our previous remark, and general facts about closure operators, we have

that:
\/K} = (1sPR)' (| K!)

iel iel

Whereas in turn we have that \/,.; K; = HSIP’R( Uier Kz) So we show that:

ISPL (| Ki) = ISPL(| JK]).

el el

One inclusion follows from the inflationarity and monotonicity of the 1 operator. For the other,
assume that A is a core superalgebra of B, which is a subalgebra of C = []._; D;/F, where for
each j, there is some E; such that E; < Dj, and E; € K.

Now consider [ [, ; E;/F. Then by Lemma 3.4.13, we have that [ [, ; E;/F' < C. Since B < C,
welet G=Bn]J] jed E;/F, which is a subalgebra of both of these algebras. Then we claim that
E is a core subalgebra of B: indeed, if a € B, and f(a) = a, then surely a € C, and there f(a) = a.

jedJ

jedJ

Hence, a € Hje] E;/F since this has the same regular elements as C. So a € G by definition. Thus,
we have that A is a core superalgebra of G, and G is in SPr(|J,.; Ki). So A € ]ISIP’;%(UZ«H K,), as
desired. This shows the other inclusion, and concludes the proof. [

We conclude by mentioning some natural facts holding for PAt-Quasivarieties:
Corollary 3.4.15. FEvery PAt-Quasivariety is generated by its reqularly generated algebras.

Proof. Note that if K is a PAt-Quasivariety, and B € K is not regularly generated, then (B/) < B,
and so (B') € K is a regularly generated algebra which moreover has B as its core-superalgebra. W

This can be sharpened in the case of PAt-varieties into a Birkhoff-style theorem:

Definition 3.4.16. Let A be some algebra. We say that A is regular-subdirectly irreducible (RST)
if it is regularly generated and subdirectly irreducible.

Theorem 3.4.17. Every PAt-Variety is generated by its regular-subdirectly irreducible elements.

Proof. Let K be a PAt-Variety, and let Kg; be the class of subdirectly irreducible algebras in
K, and Kgrgs the class of regular subdirectly irreducible algebras. Then clearly VT(KRSI) c K.
Conversely, we show that K € V!(Kpg;) by showing that every regularly generated algebra in K
is in V1 (Kpsr); then the inclusion will follow from the last corollary.

So assume that A is a regularly generated algebra. By Birkhoff’s Subdirect Decomposition
Theorem (see Preliminaries), we have that A is a subdirect product of subdirectly irreducible
algebras, i.e:

h:A=]]B
1€l
Where the B; € Kg;. We will show that in fact B; € Krgr. So let B; and ¢ € B; be arbitrary. By
assumption on the embedding, we have that for some a € A:

h(a)(i) = ¢

43



Since a is regularly generated, there is some term ¢(xo, ..., x,) written over regular elements from
A, such that t(eq, ..., e,) = a for some e, ...,e, € A. Hence:

h(a)(i) = h(t(eg,...,en))(i) = t(h(eo)(i), ..., h(en) (7)) = ¢

But now notice that h(e;)(¢) is regular: indeed, f(h(z;)(i) = h(f(e;)(i) = h(e;)(i), which follows
from h being an embedding, and e; being a regular element. So we obtain that c is regularly
generated. Thus we obtain that A is a subdirect product of regular subdirectly irreducible algebras
from K, i.e, A e V(Kpgsr). [

3.5 Dual equivalence between PAt-logics and quasivarieties

As before, let X and Y be given, and + a logic such that Y is its equivalent algebraic semantics.
Let A(F) be the lattice of finitary extensions of |-, and A(Y) the lattice of subquasivarieties of Y.
Consider the two following maps: for K a subquasivariety of Y, and -, a finitary extension. Then
first consider the following operators:

QVar(kF+) == {A: V([ p) e+, A E (T, 9)}
Log(K) := {(I', ) : K = (T, )}

Similarly, we define the polyatomic version of these maps:
QVar! (i) = {A V(I p) € bu, A = (T, 0)}
Log/ (K) = {(T,¢) : K = (T, )}

We will now show that given any such K and }., applying these operators yields a PAt-logic
and a PAt-quasivariety respectively. First, we show the following, which has the exact same proof
as [0, Lemma 3.22].

Proposition 3.5.1. The PAt-validity of a pair (T', ¢) is preserved under the operations of subal-
gebras, homomorphic images, products and core superalgebras.

As a corollary, we note it is moreover preserved under reduced products.
Corollary 3.5.2. Given a logic \, the class QVarf(l—*) 1s a PAt-quasivariety.

Proof. By Proposition 3.5.1, we have that (-4)7 is closed under subalgebras, reduced products and
core superalgebras. Hence by Proposition 3.4.11, we get the result. |

Given a quasivariety K € A(Y), we also denote by g the logic Log(K), and say this is the
logic dually corresponding to K.

Proposition 3.5.3. Given a quasivariety K, Logf (K) is the PAt-variant of -k, the finitary ex-
tension dually corresponding to K.

Proof. To see this, note that I' £k ¢ if and only if there is some A € K, and A ¥ (I',¢). By
Proposition 3.4.7, this holds iff (A,v7) & (T[f(p)/p], ¢[f(p)/p]). But this holds if and only if
(T, ) ¢ K. u
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AF) — A
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AQY) ——— A(Y)/

Figure 3.1: Commuting Diagram of PAt-Logics and Quasivarieties

Denote by A(-)f and A(Y)7 respectively the lattices of PAt-variants of - and PAt-quasivarieties
of Y. Then we have that the diagram in Figure 3.1 commutes:
This follows, exactly as in [(] by observing:

1. QVar/ (/) = QVar(+)'
2. Log/ (K") = (Log(K))’

This follows by the same arguments as those found in the above cited paper, using in an essential
fashion Lemma 3.4.7. We extract the consequences of this for our purposes:

Theorem 3.5.4. (Definability Theorem) FEvery K, a PAt-quasivariety, is defined by its PAt-
validities, i.e for every algebra A:

AceK = A, Llog/(K)

Proof. If A € K, then certainly A = Log/ (K). Conversely, if A ¢ K, by the above commu-
tativity result, we have that K = QVar/(Log/ (K)), since QVar/(Log/ (K)) = QVar/ (Log(K)/) =
QVar(Log(K))" = K = K. So A ¢ QVar/(Log/ (K)), hence A # Log/ (K). |

As a corollary we have the following Birkhoff theorem analogue:

Theorem 3.5.5. ( PAt-Birkhoff) A class K of algebras is a PAt-quasivariety if and only if it is
PAt-definable by a collection of quasi-equations.

Similarly, we have completeness:

Theorem 3.5.6. (Algebraic completeness) Every PAt-logic s is complete with respect to its cor-
responding PAt-quasivariety, i.e, for every pair (', ¢):

[y < QVarl (=) =5 (I,9)
Proof. If T' |-, ¢, then certainly QVar/ (i) ¢ (I, ¢). Now assume that I' I~ ¢. Then note that:
s = Log/ (QVar/ (1))

Which follows since Log/ (QVarf(-)) = Log/(QVar(—)") = Log(QVar(-5))f =+s. Hence we
obtain the result. [ |

Then in light of this, together with Corollary 3.4.5 and Proposition 3.4.14, we have:
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Corollary 3.5.7. The map QVar! is a dual isomorphism between the complete lattices A (F) and
A (Y).

Moreover, in light of Corollary 3.4.15 we have:

Corollary 3.5.8. Ewvery PAt-logic \~; is sound and complete with respect to regularly generated
algebras, with respect to PAt-validity.

We thus obtain a completeness theorem for all PAt-logics. We expect that these logics should
be ubiquitous, both in light of our examples, and the relative ease of finding selective translations.
Given the motivations provided in the introduction, we also hope that they could be useful in
applications. For our purposes, we will show in the next chapter that they are intimately related
to Blok-Esakia theory.

3.6 Chapter Summary

We summarise our contributions in this chapter as follows:

e We develop the framework proposed in [53], and introduce the concepts of selective transla-
tions, and prove some basic properties of these translations.

e We generalise the notions introduced in [6] of DNA-logics and varieties to the setting of
Polyatomic logics and quasivarieties, and prove analogues of Birkhoff’s theorem and algebraic
completeness for this setting
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Chapter 4

General Blok-Esakia Theory

In this chapter we provide a general theoretical application of PAt-logics: the development of a
generalised Blok-Esakia theory. This is done by an analysis of the GMT translation, which we carry
out in the first sections, in the setting of strongly selective translations. We identify a more specific
class of translations called sober translations which allow for a Blok-Esakia theory mimicking the
GMT case, and note the fact that not all translations we have so far considered are of this kind.
We then outline a path to generalising this, making use of natural concepts from DNA-logics which
we generalise to Polyatomic Logics. We conclude by showing that these are genuine generalisations
of the concepts as they appear in the GMT case.

4.1 The GMT Translation and Classic Blok-Esakia Theory

In this section we recall some known facts from Blok-Esakia theory. For an in-depth reference,
we refer the reader to [23], see also [17]. We will provide full proofs of some known facts, as these
turn out to have all the relevant ideas which are needed for the general case, and we prefer to
outline them in this more concrete setting.

Throughout this and following sections, let A(IPC) denote the lattice of axiomatic extensions of
IPC and NExt(S4) denote the class of normal extensions of S4. Let A(HA) and A(S4) respectively
denote the lattices of subvarieties of Heyting algebras and S4-algebras, respectively. Similar notation
is used for other systems and varieties.

We begin with the notion of a modal companion which grounds the whole endeavour:

Definition 4.1.1. For M € NExt(S4) and L € A(IPC), we say that M is a modal companion of L
iff:
peL < GMT(p)e M.

It follows by our discussion in Chapter 3 (see the discussion in page 30) and the known algebraic
completeness theorems of S4 with respect to S4-algebras and IPC with respect to Heyting algebras,
that S4 is a modal companion of IPC. It is however, by far the only one. Another well-known
companion is the logic known as Grz: this can be axiomatised as:

Grz:=KeOdp — Op) — p) — p.
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It was shown by Grzegorczyk [39] that this logic is a modal companion of IPC'. Given this
diversity of companions, one generally makes use of three maps, carrying logics to logics: the first
two are denoted by 7 and p:

7: A(IPC) - NExt(54)
L—S4a®{GMT(p):pe L}

And

7 : A(IPC) - NExt(Grz)
L— Gz {GMT(p):pe L}

By definition, we have that given L € A(IPC), 7(L) and o(L) are logics, though we have no
guarantee that they are — as desired — modal companions. In the opposite direction, one defines
the following map, from logics M € NExt(S4) to sets of intuitionistic formulas:

p(M) ={p: GMT(p) € M}

The definition is suggested by the notion of modal companion, and one would want to say that
p(M) is a logic in A(IPC), but this is again not immediate. A way to prove these facts goes by
looking at the algebraic semantics of these logics, and corresponding to these syntactic assignments
some semantic ones.

Let (—)7:S4 — HA be the functor which maps an S4-algebra B to B, and which, for every
homomorphism of S4-algebras f : B — B’ maps this to f|5: Bq— B’D, the restriction of f. This
is well-defined: if a € By, then [Ja = a, so [Jf(a) = f(da) = f(a). As it turns out, this functor
has some additional nice properties:

e It is a right adjoint functor, and hence, preserves all limits (including injective homomor-
phisms and products, which are specific kinds of limits);

e The right adjoint functor preserves surjective homomorphisms.

Its corresponding left adjoint functor B(—) : HA — S4, assigns to each Heyting algebra H its
Boolean envelope B(H) (see Preliminaries), together with a [Fmodality defined as follows:

Da:\/{ceH:cga}

This is well-defined [23, Construction 2.4.7]. On maps, given f : H — H’ a Heyting algebra
homomorphism, we let B(f) : B(H) — B(H’) be the unique lift of this map, which can be shown
to preserve the modality. Then we have that:

e The functor B(—) is a left adjoint, and hence preserves all colimits (including surjective
homomorphisms, which are coequalizers in the case of varieties) and also preserves finite
products and injective homomorphisms.

Finally, the adjunction of these two functors has two very desirable properties:

We note however that the current axiomatisation is, as far as we are aware, due to Segerberg [55], who noted
Grzegorczyk’s original axiom was equivalent to the present simpler one.
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e The unit map 7 is an isomorphism.
e The counit map € is pointwise injective.

Using these functors one can define appropriate maps on varieties. Given a variety V € A(HA),
consider:

7(V)={BeS4:Bye V}.
The ambiguity in denoting this as 7 is intentional, and is motivated by the following proposition:
Proposition 4.1.2. Let L € A(IPC) and K € A(HA). Then:
1. 7(K) is a variety, and 7 is a complete homomorphism on the lattice of varieties.

2. 7(Var(L)) = Var(7(L)). Hence 7(Log(K)) = Log(7(K)) and 7 is a complete homomorphism
on the lattice of logics.

3. 7(L) is the least modal companion of L;

Proof. To see (1), suppose that A € 7(K). By Tarski’s HSP theorem, assume that A is a homo-
morphic image of B, which is a subalgebra of [[,.; B;, and (B;); € K. Since (—); commutes
with all limits and surjective homomorphisms, then A is a homomorphic image of By which is a
subalgebra of [ [,.;(B;). Hence A e K, and thus, A € 7(K).

To see that 7 is a homomorphism on the lattice of varieties, notice that 7([,c; Ki) = [,y 7(Ki)
by definition: A € 7([),c; K;) if and only if Ag € (,.; K;, if and only if A e K; for each 4, if
and only if A € 7(K;) for each 4, if and only if A € (,.; 7(K;). Moreover, if A € 7(\/;c; Ki),
then A € \/,.; K;; hence A is a homomorphic image of B, which is a subalgebra of [[,.; C;,
where the factors are from the K;. Then because the unit is an isomorphism, B = Bf and
[1ier Ci = [Lic/(C))m, and C; € 7(K;) surely. Hence A € \/,.; 7(K;). For the converse, suppose
that A € \/,.; 7(K;); then A is a homomorphic image of B, a subalgebra of [ [,.; C;, and (C;)7 €
B;; then A is a homomorphic image of B, a subalgebra of [ [,.;(C;). Hence A € \/,.; By, so
Ace T(\/zel K; )

To see (2), we see that for each S4-algebra B, B € 7(Var(L)) if and only if B € Alg(L), if and
only if B = L if and only if B = {GMT(p) : ¢ € L}, if and only if B € Var(r(L)). Hence by

algebraic completeness:

7(Log(K)) = Log(7(K)) <= Var(r(Log(K)) = Var(Log(7(K))) = 7(K)
<= 7(Var(Log(K))) = 7(K).

With this it is straightforward to see that 7 is also a complete homomorphism on logics.

To see (3), notice that by definition if ¢ € L then GMT(¢) ¢ 7(L). Conversely, if ¢ ¢ L,
let H € Var(L) be such that H ¥ ¢; because 7 is an isomorphism, we know that there is some
B such that p(B) = H; hence, B € 7(Alg(L)). By (2), then B € Alg(7(L)), i.e, B = 7(L), and
B ¥ GMT(p). This proves that 7(L) is a modal companion. It is clear to see that it must be
least. |

We now turn to the other direction. Paralleling the assignment p above, we can define:

p(K) = {Bg:Be K}
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The following proposition also establishes that this indeed gives us a well-defined map, and also
that the map p on logics does give us genuine modal companions. We call the attention to the
reader to the different properties of the adjunctions we will use here, compared to 7:

Proposition 4.1.3. Let K € A(S4). Then:

1. p(K) is a variety, and p is a surjective complete homomorphism on the lattice of varieties.

2. The map p : NExt(S4) — A(IPC) defined as p(L) = {¢ : GMT(p) € L} is a complete lattice
homomorphism.

3. For all N € NExt(S4), and L € A(IPC), N is a modal companion of L if and only if p(N) = L.
Hence, for all K € Var(S4) and P € Var(HA) we have that if Log(K) is a modal companion of
Log(P) then p(K) = P.

Proof. (1) Suppose that A € p(K). By Tarski’s HSP theorem, A is a homomorphic image of B,
which is a subalgebra of [ [, ;(C;), where C; € K. Note that since (—) preserves products, the
latter is ([ [;c; Ci)- Hence, since B(—) preserves homomorphic images, B(A) is a homomorphic
image of B(B) which is a subalgebra of B(([ [;c; Ci)m); since the counit is an injective homomor-
phism, B((] [,c; Ci)o) is a subalgebra of | [,.; C;, and so B(B) is as well. Thus, B(A) € K, since
the latter is a variety. Since (B(A))g = A, we have that A € p(K). We leave the verification that
this is a complete homomorphism to the reader. To see that it is surjective, simply note that if K
is any variety of Heyting algebras, then 7(K) = {B : p(B) € K} is such that p7(K) = K.

To see (2), first note that if H € p(Var(M)) then H = p(B) where B = M; hence, if GMT(p) €
M, then H = ¢, so H = p(M). Thus H € Var(p(M)). Conversely, assume that ¢ € p(M), and let
H be such that p(B) = H and B = M; since ¢ € p(M), then GMT(p) € M, so B = GMT(p),
and hence, H = ¢ so:

p(M) < Log(p(Var(M))
Hence by algebraic completeness, and the fact that p(Var(M)) is a variety:

Var(p(M)) < Var(Log(p(Var(M)))) = p(Var(M))
ar(M

This shows the other inclusion. Hence we have that p(V. )) = Var(p(M)).

Thus, given M € NExt(S4), Log(Var(p(M))) = Log(p(Var(M)). We will show that the
latter is simply p(M). Indeed, if ¢ € p(M), then GMT(p) € M; if A € p(Var(M)), then
for some B € Var(M), B = A. Since GMT(p) € M, by the results of 30, A E ¢, so
A € Log(p(Var(M)). Conversely, if ¢ ¢ p(M), then GMT(p) ¢ M, so let A € Var(M) be such that
A ¥ GMT(p); we have that A # ¢ by the same result, and since A € p(Var(M)), this shows
that ¢ ¢ Log(p(Var(M)). By arguments analogous to those above, we can show that p is a complete
homomorphism.

(3) Note that given any such N and L, we have that p(M) = L if and only if ¢ € L if and only
if GMT () € M if and only if M is a modal companion of L.

To see the last statement, assume that Log(K) is a modal companion of Log(P). Then
p(Log(K)) = Log(P). Hence Log(p(K)) = Log(P), so by algebraic completeness, p(K) = P. [ ]

The final map that appears in this context is usually called 0. Whereas, by the contents of the
previous propositions, 7 is the least modal companion, ¢ outlines the greatest. Its definition on
algebras is thus as follows:

o(K) := HSP{B(H) : H € K}
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However, a careful analysis of the Blok-Esakia theory, reveals that the greatest modal companion
is the one structure which heavily depends on properties of S4 and HA. One fact which can be
established generically is the following:

Proposition 4.1.4. For any L € A(IPC), Log(o(Var(L)) is the greatest modal companion of L.

Proof. First we note that this is a modal companion: assume that ¢ € L. Since o(Var(L)) is
generated by B(H) for H € Var(L), if H is such an algebra, then H = ¢, so B(H) = GMT(p)
(given that (B(H)); =~ H. Hence GMT(¢) € Log(o(Var(L))). Conversely, if ¢ ¢ L, let H €
Var(L) be such that H ¥ ¢; hence B(H) # GMT (). But since B(H) € o(Var(L)) we have that
GMT(g) ¢ Log(o(Var(L)).

To see that it is the greatest modal companion, suppose that M is an arbitrary modal companion
of L. To show that M < Log(c(Var(L))) it suffices to show that o(Var(L)) < Var(M). In turn
to show this, it suffices to show that {B(H) : H € Var(L)} < Var(M). So let H € Var(L) be
arbitrary. Since M is a modal companion of L, then p(Var(M)) = Var(L). Hence H = p(B) for
some B € Var(M). Moreover, we know that:

B(Bp) — B

Maps injectively, via the counit map. Hence B(Br) € Var(M). But then o(H) € Var(M), which
shows the result. [

Unlike the remaining maps, the fact that ¢ : A(IPC) — NExt(Grz) as defined above is a
homomorphism on the lattice of varieties, or that its definition on varieties matches up with its
definition on logics, requires using “Blok’s lemma”. This is the result which says that for each
K € A(Grz), that is, each subvariety of the variety of Grz-algebras, K is generated by its elements
of the form B(H) for H € HA.

This result is quite particular to Heyting algebras and IPC, and to the properties of the Grz
axiom. On the other hand, it is plain to see from the facts we have about 7 and p, that the
categorical properties we noted — the unit of the adjunction being an isomorphism, the counit being
injective, etc — are already enough to allow some properties — like FMP, tabularity, or decidability
- to transfer between logical systems.

4.2 Sober Translations

The recollections of last section should give us a good idea of how to generalise basic Blok-
Esakia theory for a great number of contextual translations. For that purpose, assume that X
and Y are quasivarieties, where X is an algebraic semantics of a logic x, with set of equations
ux (z) witnessing this fact, and Y is the equivalent algebraic semantics of -y, with sets py () and
Ay (z,y). Let A(Fx) and A(Fy) be the lattices of finitary extensions of the logics. We assume
throughout that ¢ = (¢, 0, f) is a selective translation from kx to =y. Correspondingly, let A(X)
and A(Y) be the lattices of subquasivarieties of X and Y.

We also need a special assumption which is met in all cases we consider. This is that, es-
sentially, the translation commutes with the algebraization. More concretely, given any formula
v € Tmg, (VAR), we assume that:

Cux () = py (C(¥)

o1



Throughout, we use 0 to refer to the right adjoint functor associated to this translation, and F
to denote the corresponding left adjoint functor.
First we will define two maps between x and v

Definition 4.2.1. Let p be the following map: for € A(v):
p(t=+) = {(, ) € P(Tmry (VAR)) x Ty (VAR) @ G[T] Fx Co(9)]}
Also, define 7 as the following map, for —*€ A(x):
(%) =y @ {(G[T], G(9)) € P(Tmgy (VAR)) x Tmgy (VAR) : T =¥ ¢}

It is straightforward to see that 7 as defined is a logic. These maps are related to the following
definition:

Definition 4.2.2. Let -.€ A(y) and *€ A(Fx). We say that ., is a (-companion of +* if:

I C[T] 4 G (o)
Given any —*, we denote by ((*) the collection of (-companions of this logic.

Correspondingly we define the following on algebras: for K a subquasivariety of X:
T(K)={A:0(A)e K}

The following is analogous to Proposition 4.1.2. Its proof follows mostly the same way, using
the hypothesis of strong selectivity to exploit the fact that the unit is an isomorphism, and by
Proposition 3.3.8, the right adjoint # preserves surjective homomorphsims.

Proposition 4.2.3. Let *¢ A(x) and K € A(X). Assume that ( is a strongly selective trans-
lation.

1. 7(K) is a quasivariety, and 7 is a complete homomorphism on the lattices of quasivarieties.

2. 7(QVar(*)) = QVar(7(+*)). Hence 7(Log(K)) = Log(7(K)) and 7 is a complete homomor-
phism on the lattice of logics.

3. 7(F4) is the least (-companion of .

Proof. (1) follows from the same arguments as before. For (2) assume that A € 7(QVar(*)), hence
0(A) € QVar(*). If (T',p) e-*, then O(A) = (I, ). Assume that A, v = py|[C«[[]]. hence, by
assumption, A, v = (*[ux|[I']]. So since the translation is selective, we can transfer this valuation to
obtain some valuation v’, such that (A), v’ = ux|[I']. By assumption,then §(A),v" & ux(¢), which
by the reverse arguments shows that A,v = fieassy [C«(@)]. This shows that A = (C«[I'], C«(p))-
Similarly, if A € QVar(7(*)), then we show that §(A) € QVar(*) using the converse arguments.
Similar arguments also show that:

7(Log(K)) = Log(7(K))

For (3), left to right is obvious. Now for the converse, assume that I' |/* ¢. Let A € QVar(—*)
witness this. Since the translation is strongly selective, we know that there exists some alge-
bra B such that §(B) =~ A. Hence, B € 7(QVar(*)). By the same arguments as above, then
B ¥ ((«[T'],¢«(¢)). But by (2) we have that then B € QVar(7(*)), hence, by completeness,

(Ge[T], G () ¢ 7(=7). |
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Hence, all strongly selective translations admit a notion of a least (-companion. For such
translations, for now, we cannot say much more. Hence we turn to the following definition:

Definition 4.2.4. Let {((, 0, f) be a strongly selective translation between X and Y. We say that
{(, 0, f)is a sober translation if it satisfies:

e (Injective Preservation) F preserves injective morphisms;
e (Sobriety) The counit ¢ is pointwise injective.
In light of the previous section we have:
Proposition 4.2.5. The Godel-McKinsey-Tarski translation is sober.

Proof. We have noted in Example 3.3.6 that the translation is strongly selective. The fact that the
counit of the adjunction is injective, and the left adjoint preserves injective morphisms was noted
in pp.49, and is shown in [23, Construction 2.5.7]. |

For sober translations we can show the following:

Proposition 4.2.6. Let (¢, 0, f) be a sober translation. For K € A(Y), let:
p(K) = {0(A) : A € K]}
Then p(K) is a quasivariety, and the map p : A(X) — A(Y) is a surjective complete homomorphism.

Proof. The proof runs exactly the same way as (1) in 4.1.3, except we use Maltsev’s ISP theorem,
instead of Tarski’s HSP theorem. |

We also have the definition of p on logics, analgous to the GMT case:

Proposition 4.2.7. For each .€ A(vy), p(Fx) is a logic in A(l-x). Moreover, € A(Fy) is a
¢-companion of *€ A(x) if and only if p(-,) =F*. Hence, for all K € A(Y) and P € A(X) we
have that if Log(K) is a modal companion of Log(P) then p(K) = P.

Hence, for sober translations we have that all finitary extensions of —x have {(-companions, and
the syntactic maps witnessing this transformation have a concrete semantic meaning. Moreover,
we also have the existence of greatest (-companions: for K € A(X), define:

o(K) :=ISPr{F(B): Be K}
Then we have the following:

Proposition 4.2.8. For any logic 4+€ A(Fx), Log(c(QVar(-4))) is the greatest (-companion of
.

As noted, properties like FMP and tabularity now could be studied in the relationship between
these two systems: for instance, if K € A(Y) is generated by its finite elements, clearly p(K) will
be as well; if P € A(X) is generated by a single element, then 7(P) will be as well. In specific
cases, a more detailed study could then be made paralleling the preservation results studied for the
Blok-Esakia theory.

We conclude this section by showing that the KGG translation is not sober. First, we note that
the following result is proven in [57, Lemma 4.2]:
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Proposition 4.2.9. The unit of the adjunction F — Reg, between Boolean algebras and Heyting
algebras, is an isomorphism.

Hence the natural follow up question is whether such a translation is in fact sober. The following
results would also easily follow from results at the end of this section; however the proof we provide
illustrates some of the questions that we will encounter in Chapter 5, and so we opt to discuss it
in greater detail.

For that purpose we recall some facts about the regularisation of a Heyting algebra. Throughout,
given an Esakia space (X,<,7), and U a clopen in X, let Max(U) = {x e U : Yy € X, if z <
y then = = y}.

Lemma 4.2.10. Let H be a Heyting algebra, and Xy the dual Esakia space. Then:

1. For each U € ClopUp(Xp), we have that U = ¢(a) is such that a € Reg(H) if and only if: for
all x € Xg, if Max(1x) < U, then 2 € U.

2. For each a,b € Reg(H) we have that a = b if and only if p(a) " Max(Xg) = ¢(b) n Max(Xg).

3. The assignment k : Reg(H) — Clop(Max(Xp)) given by k(a) = ¢(a) n Max(Xpg) is an
isomorphism.

Proof. (1) First assume that a € Reg(H). Let U = ¢(a). Assume that Max(1z) < U, but = ¢ U.
Hence since U = ——U, there is some x < y, such that whenever y < z, then z ¢ U. Since Xy
is an Esakia space, let y < z be maximal element; then we get a contradiction to Max(fz) < U.
Conversely, we show that ——U = U. Hence, assume that £ € ——U; hence whenever z <y, y < z
and z € U. Hence in particular, this holds for all maximal elements seen by x, which implies by
assumption that x € U.

(2) The left to right direction is clear. If a # b, then by Esakia duality, p(a) # ¢(b). Then
without loss of generality, there is z € p(a) such that = ¢ ¢(b). Now if Max(1z) < ¢(b), by
regularity, z € ¢(b), which does not hold. Hence, there is some y, such that © < y, and y ¢ ©(b),
whereas obviously, y € ¢(a).

(3) Now let k : Reg(H) — Clop(Max(X)) be the assignment k(a) = ¢(a) n Max(Xg). Then k
is injective, since if a # b, then k(a) # k(b) by what we just showed. Moreover, this is easily seen to
be surjective, and it is also a Boolean algebra homomorphism: k(a A b) = k(a) n k(b), and we can
see that k(—a) = p(—a) N Max(Xpg) = Max(Xg) — (| (¢(a)). Then we claim the latter is equal to
Max(Xg) — ¢(a). Indeed, if x € k(—a), then x ¢| (p(a)). Since x is maximal, then = ¢ ¢(a), hence,
x € Max(Xpg) — ¢(a). Conversely, if x € Max(Xg) — ¢(a), then if x < y, then x =y, so y ¢ ¢(a).
This shows the claim. Moreover, k preserves the bounds, which shows that k is an isomorphism of
Boolean algebras. |

Now let Reg : HA — BA : F be the adjunction corresponding to the double negation translation.
As far as we are aware, there are no descriptions of the left adjoint functor for this right adjoint?
which are very explicit (but see [57] for an extended discussion). However, we can show that the
translation is not sober using the above duality-theoretic properties.

Consider 2 the 2-element Boolean algebra. This is a Heyting algebra, and it is clear that
Reg(2) = 2. Moreover, by Lemma 4.2.10, we obtain that any Heyting algebra which Esakia space
has exactly two maximal elements (and only such Esakia spaces) will map via Reg to 2.

2By contrast, it is known that Reg is left adjoint to the full and faithful inclusion of Boolean algebras into Heyting
algebras.
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Now assume towards a contradiction that the translation is sober. Hence F(Reg(2)) must be
isomorphic to 2, since it is an adjunction: we know that Reg(F(Reg(2))) = 2, by the fact that this
is an idempotent adjunction (since it is strongly selective), and hence it must have two elements in
the dual Esakia space. But now consider the Heyting algebra in Figure 4.1

%

A
x —x
0
Figure 4.1: Hasse Diagram of H(2)

Dually, this corresponds to the frame known as a 2-fork. It is clear to see that Reg(H) = 2
as well. By assumption on the adjunction we have a counit map ¢ : F(Reg(H)) — H, which is
dually, a surjective p-morphism from the 2-fork to the space with 2 elements (since we assume that
F(Reg(H)) = F(2) is isomorphic to the 2-element Boolean algebra). But this is impossible, as can

be obtained by inspecting the diagram in Figure 4.2, and noting that there cannot be a surjective
p-morphism from a connected frame to a disconnected one.

D
* D

Figure 4.2: Impossibility of P-morphism from 2-fork to 2-Boolean algebra

.\./.

Hence we have shown:
Corollary 4.2.11. The KGG translation is not sober.

The former proof illustrates our choice of the term sobriety: dually, the space Xy as seen above
is not “sober” in so far as it contains points which are redundant from the point of view of the
adjunction. This will become a theme in later chapters.

4.3 Polyatomic Logics as Generalised Companions

Despite the notion of (-companion corresponding very naturally to that found in Blok-Esakia
theory, it seems to have some flaws. For starters, we do not have an understanding of how many
selective translations are strongly selective or sober. On the other hand, even for sober translations,
the description we gave of the greatest modal companion is in a sense purely existential — we do
not have any semblance of an axiomatisation of it on the basis of the original logic. Hence, one
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might ask whether some natural construction could exist which could match up with {(-companions
but also be defined for a much larger scope of translations.

To assist us in this task, we recall from [6] two crucial notions: that of the least and great-
est DNA-variant. It was proved that every intermediate logic has both of these variants. More
concretely, the following was shown:

Definition 4.3.1. Let L € A(IPC). We say that L is:
o DNA-minimal if whenever S is an intermediate logic and L~ = S~ then L < S.
e DNA-maximal if whenever S is an intermediate logic and L™ = S~ then S € L.

Definition 4.3.2. Let L’ be a DNA-logic. We define the schematic fragment of L', denoted
Schem(L') as follows:

Schem(L'") = {¢ : Y, p[1/p] € L'}

In other words, the schematic fragment is the smallest fragment of the DNA-logic which is
closed under substitution. It can be shown that this is an intermediate logic, and moreover:

Var(Schem(L')) = Var({{H-) : H e DNA — Var(L')})

In other words, the variety generated by the schematic fragment is precisely the variety generated
by the regularly generated subalgebras of those H which belong to the DNA-variety of L’. More
importantly, we have the following;:

Proposition 4.3.3. For each intermediate logic L, L is DNA-maximal if and only if L = Schem(L™).

Hence, schematic fragments provide a concrete syntactic description of the greatest DNA-
variant. This is not of course a very concrete decription - in fact, it is shown in [0] that the
schematic fragment of ZPC is the well-known Medvedev Logic, which as far as we are aware has
never been given a recursive axiomatisation. Nevertheless, knowing the properties associated to it
can provide us with insight on the nature of the translation and the logics at play.

To see this, we first exemplify this for the GMT translation, once again. If indeed [J-varieties
and [JHogics should serve as something like generalised modal companions, then we should hope
that for this prototypical example they should coincide. Indeed, note that:

Proposition 4.3.4. For each variety K € A(S4):
7(p(K)) = K

Consequently, given two logics M, N € NExt(S4) and a logic L € A(ZPC), we have that M, N are
both modal companions of L if and only if M and N have the same [ }-variant.

Proof. Indeed, if B € 7(p(K)), then By = C where C € K; hence, up to isomorphism, Cp
includes in B, so B(C) maps injectively into B(Bp), which since the counit is injective, is a
subalgebra of B. Since B(CH) € K, then B is a core superalgebra of B(Cp), and so is in K'.
Conversely, if B € K, then C < B where C € K, and they share the same core; hence, B € p(K),
hence, B € 7(p(K)).
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Now in light of the fact we just showed, MU = NU (their Box variant) if and only if 7(p(Var(M))) =
T(p(Var(N))). Since 7 is injective, this holds if and only if p(Var(M)) = p(Var(N)). This holds if
and only if:

Var(p(M)) = Var(p(N)

Which by algebraic completeness holds if and only if p(M) = p(NN). The latter holds if and only if
M and N are modal companions of L. |

Hence, as expected, greatest modal companions should exactly correspond to the largest logic
with the same [ ]-variant. That is:

Proposition 4.3.5. If L is an intermediate logic, o(L) = Schem(r(L)V).

Proof. First note that Schem(7(L)Y) and (L) havethe same [J-variant by definition; hence, they
are both modal companions of L. Moreover, since Schem(7(L)D) is the greatest having 7(L)- as a
[Fvariant, it will also be the greatest modal companion. Hence since (L) is moreover the greatest
modal companion, we have that Schem(r(L)Y) = o(L). [ ]

If we now consider a world where we did not know the axiom Grz, we can imagine the possibilities
of arriving to this axiom through the study of the schematic fragment. Namely, we could — as we
will do in the next section — derive the following result:

Proposition 4.3.6. The lattice A(IPC) is isomorphic to A/ (S4).

Let us exemplify this briefly: consider for instance the logic LC € A(IPC), which is axiomatised
by the axiom p — ¢ v ¢ — p. It can be shown by semantic methods that 7(LC) = S4.3, the system
S4 together with the axiom [J(Clp — ¢q) v [(Clg — p). The lattice of extensions of this logic has a
countable, though somewhat complicated structure; by contrast, in light of the previous result, one
has that A(LC) =~ AH(S4.3) =~ A(Grz.3), which is known to be isomorphic to an infinite descending
chain (see [14, pp.427]). Hence, the study of [Jvariant extensions could presumably, in a setting
where the Grz axiom was not known, be carried out in a more straightforward fashion.

A similar but more striking example is the following: if one looks at CPC, its least modal
companion is the system S5, which has infinitely many extensions. By contrast, S5& has no proper
extensions.

In the next few sections, following the structure of [6], we outline how the notion of a “DNA-
logic” can be carried out in general. We provide most of the proofs, since the change of setting
brings some subtleties we would wish to take into consideration, but refer the reader to the article
above for some facts which carry to our setting immediately.

4.4 Connecting Companions and Variants

In this section we conclude our discussion by establishing the connection between our discussion
of ¢-companions and PAt-logics. Assume throughout a contextual translation ¢ = {((, O, f).

Proposition 4.4.1. Let ¢ be a strongly selective translation, and K € A(X). Then 7(K) is a
PAt-quasivariety. Moreover, the assignment:

7 A(X) - A(Y)

is injective.
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Proof. By Proposition 4.2.3, we know that 7(K) is a quasivariety. Moreover, it is easy to see that
it is closed under core superalgebras: if A € 7(K), and A < B, where A7 = B/, then (B) € K, so
B € 7(K) by definition.

To see that 7 is injective, notice that if K # K’, then let A € K and A ¢ K’ be arbitrary. Then
F(A) € 7(K) by definition of 7 and the fact that the unit is an isomorphism. By the same fact, we
have F(A) ¢ 7(K'). So 7(K) # 7(K’). [ ]

Hence, we have that, semantically, for strongly selective translations, one can study least (-
companions as logics, or as PAt-logics. If moreover we assume that the translation is sober, we have
the following result:

Proposition 4.4.2. (PAt-Blok Esakia Isomorphism) Assume that ¢ is a sober translation. Then
the assignment 7 : A(X) — Af(Y) : p/ is a lattice isomorphism.

Proof. Let K be an arbitrary PAt-quasivariety in Af(Y). We will show that 7p(K) = K. Indeed,
first we see that if A € K, then (A) € p(K), so by definition A € 7p(K). Conversely, if A €
7p(K), then 0(A) € p(K). By assumption, then §(A) = 6(B) for some B € K. Hence note that
F(O(A)) = F(6(B)). Since the translation is sober, by sobriety, F(6(B)) < B, so F(6(B)) € K.
But by sobriety again, F(#(A)) < A, and so we get that A is a core superalgebra of F(6(B)) - i.e,
A € K, since K is a PAt-quasivariety. This shows that 7 is surjective.

The fact that 7 is an injective homomorphism between these lattices follows from the commuting
diagram of pp.45, and Proposition 4.4.1. |

Corollary 4.4.3. If (¢, 0, f) is a sober translation, then A(Fx) = A (Fvy).

This isomorphism can thus serve as a natural correspondence for the study of the relationship
between two systems. In a sense, as noted in the introduction, it can be seen as “modding out”
Blok’s Lemma: since our Polyatomic Logics are by construction complete with respect to regularly
generated algebras, this ensures the isomorphism goes through in that case. Nevertheless, this does
not trivialise the situation — as we will have opportunity to see, sobriety is far from a straightforward
property.

As a consequence of the former result, we also get for free that the Double Negation Translation
could never be sober: it is trivial to observe that there is a single quasivariety of Boolean algebras,
and correspondingly, a single logic, though it is known that there are infinitely many DNA-logics
[6, Theorem 5.11].

For the rest of this section, we show that additionally, in the setting of sober translations we
get that the natural counterpart of the map o is defined. As we will see, we have a good grasp of
it semantically:

Definition 4.4.4. Let {((, 0, f) be a sober translation between X and Y, inducing an adjunction
f:X — Y : F. We define for each quasivariety K € A(X), the collection

o(K) =QVar({F(A): A e K})
Definition 4.4.5. Let - be a PAt-logic. We define Schem(y), its schematic fragment as:

Schem(i=y) == {(L',¢) : V¢ € Ly, T[yp/p] = ¢[v/pl}-

In other words, the schematic fragment is the collection of all formulas for which the PAt-logic
is closed under substitution. The following explains the main properties of this:
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Lemma 4.4.6. For each PAt-logic I-¢, Schem(l-¢) is a logic in A(y). Moreover, it is the greatest
logic which has ; as a PAt-variant.

Proof. The verification that this is a logic is straightforward. It is also clear that the schematic
fragment will have |-, as its PAt-variant. Now suppose that -, has |-, as a PAt-variant. Assume
that T' 4 ¢ is arbitrary, and suppose that ¢). Then for each 1), we have I'[1)/p] 4« ®[¢/p], hence,

)F [¥/pIf(@)/a] F+ ¢l/pl[f(q)/q]- This means that T'[v)/p] -y ¢[v/p]. Hence (T',¢) € Schem(iy
. ]

Moreover, schematic fragments are also companions. To simplify notation, given ., we denote
by:
Sch(r,) := Schem(Log’ (QVar(7(-+))))

Lemma 4.4.7. For each ,€ A(-x) we have that Sch(l-4) is a (-companion of }—.

Proof. Suppose that I' -, ¢. Then by definition, ((«[I'], («[¢]) € 7(F+). Now suppose that 1) is
any formula. We want to show that if A € Var(r(4)), then A &= (¢[T'][¥/p], C«[@][¥/p]) . Hence
by definition, we want to check that A &= (C[T][v/p]lf(q)/al, C«[/p]lf(q)/q]). But we know that
T(F«) is a logic, and hence is closed under uniform substitution; so since A &= ((«[I'], («[p]), the
result follows.

Conversely, suppose that (I',) ¢ .. Suppose that A € QVar(7r(-4)) is an algebra such
that A B (C«[T'], («[¢]) in the context of ©, by Proposition 3.3.1. Hence, we can assume the
valuation witnessing this to be regular, i.e, A ¢ ((«[T'], C«[]), which by Lemma 3.4.7 means that
(ATY B4 (¢, Ce[]). But now by Corollary 3.4.8, we have that there is a substitution o, such

that A ¥ (C[I'l[o(p)/p], Cs[][o(p)/p]). This means that (T'[X], T[¢]) ¢ Sch(t+). u

We will now show that schematic fragments correspond exactly to the quasivarieties of the form
0(K) as defined above.

Proposition 4.4.8. Let -.€ A(—y). Then —{= Schem(()?) if and only if QVar(-5) = QVar(C)
for some class C of regularly generated algebras.

Proof. First we prove right to left. Suppose that |-, is the logic of a class of regularly generated alge-
bras. Note that by maximality of the schematic fragment amongst logics with the same variant, .S
Schem((l—*)f ), so we focus on the other inclusion. Suppose that I" (£, ¢. Hence by assumption, we
can find A, a regularly generated algebra, such that A # (T, ¢); hence (A) £ (T, ), so by Corol-

lary 3.4.8, A t#; (U[o(p)/pl, #lo(p)/pl), and so A i (U[o(p)/pl[f(q)/al, #lo(p)/p][f(a)/q]). Hence,
since A is an algebra in QVar(}-), and by algebraic completeness, we have that T'[o(p)/p][f(¢)/q] V=

lo(p)/p][f(@)/a). Thus, [o(p)/p] ¥4 ¢lo(p)/p]. Thus by definition:
(T, ¢) ¢ Schem((F+)7)

As desired.
For the converse, assume that .= Schem((-+)/). First define:

QVarg(+) = QVar({(B/) : B € QVar(-4)})

Then by definition:
QVarg(F4) < QVar(t-4)
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So we show the other inclusion. For that purpose, we show that Log(QVarg) has l—{ as its
PAt-variant. Indeed we have:

(Log(QVarg(i-+)))” = Log/ (QVar({(B') : B e QVar(i-:)})")
= Log/ (QVar/ (i)
= (|_*)f

Where the first inclusion follows by the commutativity of the operators, the second follows from
the fact that every PAt-quasivariety is generated by its regular elements and the final is by defini-
tion. Hence we conclude that Log(QVarg(i—+)) has (-4)/ as its PAt-variant, whence we know that
Log(QVarg(-+)) € Schem(()f). Hence QVar(Schem((4)7)) < QVarg(+), which shows the
result. |

Lemma 4.4.9. Let K € A(Y), and suppose that Log(K) is a {-companion of ,€ A(X). Suppose
that S = QVar(4). Then o(S) < K.

Proof. Tt suffices to show that {F(A): A € S} € K. By Proposition 4.4.2, we have that p(K) = S.
Hence if A € S, then A = §(B) for some B € K. But then F(A) = F(6(B)) < B, given the
translation is sober. So indeed, F(A) € K, as intended. [

Lemma 4.4.10. Let A = F(B). Then A is regularly generated.

Proof. First note that §(A) =~ B, since the unit is an isomorphism. Hence, consider (B), the
subalgebra generated in A by B. Clearly we have that ((B)) =~ B. But then we have that
A = F(B) is a subalgebra of (B), since the counit is injective. [

Lemma 4.4.11. Suppose that A is regularly generated. Then A = F(6(A)).

Proof. Suppose that A is regularly generated. Then first note that §(A) < F(6(A), since §(A) =~
O(F(O(A)) < F(O(A)). Hence, F(A(A)) is a subalgebra of A which contains the regular elements;
since A is regularly generated, A =~ F(6(A)). [

Using all of these lemmas we conclude the following;:

Corollary 4.4.12. Let {(,0, f) be a sober translation between X and Y, then for each € A(-x)
there is a greatest -companion. This is exactly Sch(ly).

Proof. By Lemma 4.4.7, we have that Sch(l-,) is a {-companion. Moreover, by lemma 4.4.8,
we have that QVar(Sch(l-)) is generated by a class of regularly generated algebras; hence in
particular it is generated by all of its regularly generated algebras. By the previous lemma, we
have that o(QVar(+)) < QVar(Sch(t4)). Now note that the former are exactly the regularly
generated algebras: if A € o(QVar(4)) then A = F(B), so by Lemma 4.4.10, it is regularly
generated; and if A is regularly generated, then by Lemma 4.4.11, A =~ F(A(A)), and we have that
0(A) € QVar(-+«), so A € o(»). Hence:

QVar(Sch(F+)) = QVar(c(QVar(t4))),

but by Lemma 4.4.9, we have that o(QVar(l-)) € K whenever K is a quasivariety which logic is
a PAt companion of .. Hence for all such quasivarieties:

QVar(Sch(F+)) < K,
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but then by completeness:
Log(K) < Log(QVar(Sch(—+))) = Sch().
This shows that Sch is the greatest (-companion, as was to show. |
We conclude with a tentative definition:

Definition 4.4.13. Let ¢ be a sober translation. We say this is a BE-translation if there is some
logic -+€ A(y) such that for each |-€ A(v), IF€ A(F+) if and only if there is some —*€ A(-x)
such that Sch(+*) =|-.

As discussed in 51, the GMT is a BE-translation, and it and its close progeny (the translaton for
bi-intuitionistic logic, amongst others), are the only examples we are aware of this kind. We remark
that in this discussion we have only provided tentative steps in using PAt-logics for exploring the
connections between logical systems: for instance, in [0], it is shown that the lattice of inquisitive
extensions of the system KP is isomorphic to the lattice of Boolean algebras ordered by the < order,
where:

A < B <= A is a homomorphic image of a subalgebra of B

Such connections are much more fine-grained than can be found in homomorphisms of varieties, and
seem to more naturally be discussed in the setting of Polyatomic logics rather than companions.

In the rest of the thesis, for reasons of space, we will not be able to explore deeply PAt-logics for
the cases we will study. Nevertheless, we expect that the results from this chapter can highlight the
importance of this connection, and bring attention to the potential of such tools to study translation
relations between logical systems.

As a visual summary of our discussions, we have the following picture, found in Figure 4.3,
capturing the various kinds of translations and logical relationships studied.

These translations are some of those we have previously encountered, and they also witness the
strictness of some of these inclusions: Ks, the translation between Kleene algebras and Distributive
lattices mentioned in [53], is a contextual translation but not selective (in any obvious sense). As
we will see in the next chapter, the Goldblatt translation is selective, and it is not strongly selective.
The double negation translation is strongly selective, and we showed above that it is not sober.
The last class — BE-translations — is introduced to highlight the Blok-Esakia isomorphism, and its
close progeny, through the GMT translation.

4.5 Chapter Summary

We summarise our contributions in this chapter as follows:

e Inspired by the GMT translation, we introduce the notion of a sober translation, for which a
rich Blok-Esakia theory can be introduced.

e We show that the KGG translation is strongly selective, but not sober.

e We generalise the notions of schematic fragment and least DNA-variant to the Polyatomic
case, and show that they correspond, for sober translations, to the least and greatest gener-
alised companions.
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BE Translations

Sober Translations

ranslations

Figure 4.3: Types of Translations and Examples

e We introduce the concept of a Polyatomic Blok-Esakia isomorphism as a correspondence
between logical systems, and show that it always holds for sober translations.
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Chapter 5

Translations of Orthologic

In this chapter we investigate orthologic and the logics of ortholattices, through the lens of
translations, adjunctions and PAt-logics developed in the previous chapter.

As noted in the introduction, this topic has received some attention, though not the same as
either the KGG or GMT translations. Previous analysis which marked this topic were developed
by Goldblatt [35, 36, 34] as well as Miyazaki [52], for general orthologic, and by several authors
[18, 44, 48] for the special case of quantum logic.

In this and the next chapter, we take a close look at these developments, and relate them to our
general picture. To do so, we begin by recalling the notions of orthologics, their associated algebraic
semantics, and the duality associated to ortholattices. We recall in particular the investigations
done by Miyazaki with respect to the Goldblatt translation, which relates orthologics and KTB
normal modal logics. Using the proof of filtration introduced by Goldblatt, we are able to prove
that the translation is selective.

We then turn to negative results. We first show — from basic facts since known about the
lattices of orthologics and KTB logics — that a genuine Blok-Esakia theorem cannot hold between
these two lattices. We then move further and show that the translation is not even sober, further
evidencing the untractability of the translation. We conclude the chapter with an outline of the
main difficulties found, through a discussion of the idea of sober algebras and spaces, and prepare
our approach in the next chapter to overcome them.

5.1 Orthologics and Ortholattices

We begin with the notion of an orthologic, as introduced by Goldblatt [35]. Recall that Lo, the
language of ortholattices, is the same as the language of Boolean algebras, namely, the language
with signature:

pl=plpap[0]1
Throughout, let VAR be a fixed set of countably many proposition letters.

Definition 5.1.1. Let I be a binary consequence relation in Lo, i.e.:
< P(Tmg,(VAR)) x Tm,, (VAR)

Then we say that  is an orthologic if it is closed under uniform substitution, and satisfies the
following axioms, for all ¢, , x € Lo:
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1. For finite I' € Tmg, (VAR), I’ - ¢ if and only if AT + ¢
pAYEQonY =

e

pATPEY

If o -1 and ¢ - x, then p =9 A X

If o -1 and ¥ - x then ¢ - x

I A T o

If o - 1 then =Y - —¢

The former is exactly the concept as presented by Goldblatt. As we will note later, the pecu-
liarities of this system will mean that the specific assumptions of our Chapter 3 might not be met,
despite in all cases it being clear to see that the desired results could also be proved We will strive
throughout to minimise such pathologies.

The following is an easy observation about orthologics:

Proposition 5.1.2. Let (-;);er be a family of orthologics. Then (),.; t—; is an orthologic.

Henceforth, we denote by O the minimal orthologic, and by O arbitrary orthologics. We denote
by A(O) the lattice of orthologics.

Definition 5.1.3. Let O be an ortholattice. We write O = (p,%) to denote: for each valuation
v:Tz, — O, v(p) <v(¥).

Definition 5.1.4. Let O be an orthologic. Consider all pairs (¢, 1) € O, and let:
Var(0) :={0: 0 & (¢,%)}

In other words, we form Var(O) by taking the equational class containing ¢ < v for (¢, ) € O.
Similarly, given a class K of ortholattices, we consider:

Log(K) = {(¢,¥) € Tmz, (VAR)* : K = (¢,9)}

It is not hard to see that this is indeed an orthologic, since K is a variety of ortholattices.
Indeed, we have the next proposition which follows by usual arguments.

Definition 5.1.5. Let O be an orthologic. We consider Tm,, (VAR), the absolutely free algebra,
and define an equivalence relation =¢ there by:

p=01% = (p,9) €0 and (,p) € O

Then consider F(O) := Tm,,(VAR)/ =0. We call this the Lindenbaum-Tarski ortholattice asso-
ciated to O.

Denote by A(Ort) the lattice of varieties of ortholattices. Then we have, as usual:

Proposition 5.1.6. The operators Var : A(O) — A(Ort) : Log establish a dual isomorphism
between the lattice of orthologics and the lattice of varieties of ortholattices.

The former provides, then, an algebraic semantics (in the loose sense) to ortholattices and their
varieties. However, the key results of Goldblatt [35] made use of a dual representation. We turn to
this in the next section.

64



5.2 Orthospaces and Duality

In this section we briefly recall the duality of ortholattices using the space of filters. This was
initiated by Goldblatt [35], who provided the original representation theorem; Bimb6 [¢] established
the functoriality of this, though she left a gap, that was noted by Dmitrieva [20], in line with previous
work on choice-free duality (see [7] for the original developments, and see also [19]). As such we
refer to this simply as orthospace duality throughout. We refer to all stated articles for proofs of
the statements in this section.

Definition 5.2.1. Let (X, 1) be a non-empty set, with L an irreflexive and symmetric relation.
Then we say that this is an orthoframe.

Whenever zly, we say that x is orthogonal to y. If x 1y for every y € Y, we denote this by
zlY.

Definition 5.2.2. Let (X, L) be an orthoframe, and A € X. We define A+ as:
At ={zeX:VyeAxly}

We say that At is the orthogonal complement of A. We denote by A* the set (A+)*, and call this
the orthogonal closure. We say that a set is regular if A = A*. We define an operator:

R:P(X) - P(X)
A {Ac A: A= A%

Thus, we say that R(A) is the set of regular sets inside .A.
Let A be a subset of X. We say that A is 1-closed iff for all x € X:

Vye X,ylA > ylex =— x€ A

In other words, if At < {z}* then x € A.

It is a general fact that a relation between two sets induces a Galois connection between the
power sets of those sets. In our case, this Galois connection turns out to be between the set and
itself, and because of symmetry, both polarities coincide. This translates to the following useful
properties (see for example [1, pp.38)]):

Proposition 5.2.3. Given (X, 1) an orthoframe, and A, B subsets of X:
1. A< B implies that B+ < A+
2. Ac A¥
3. (A"t = At

- (User Az‘)l = Mier Az‘L

5. At is L-closed. So A* is L-closed as well.

W

The concept of an orthoframe had been known in the theory of orthomodular lattices for a
long time (see [14] for a detailed account). It was also known that this provided a representation
for complete ortholattices. The topologisation of this concept allowed Goldblatt][36] to extend the
representation to all ortholattices:
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Definition 5.2.4. Let (X,<,Ll,7) be a space such that < is a partial order, L is an irreflexive
symmetric order, and 7 is a compact topological space. Denote by Clop(X) the set of clopen
sets, ClopUp(X) the set of clopen upsets, and in line with the above definition, RClop(X) and
RClopUp(X) the set of regular clopen sets and regular clopen upsets, respectively. We say that X
is a mazximal sober orthospace' if for all z,y e X

1. = € y implies that there exists O € RClop(X) such that z € O and y ¢ O
2. Ly implies there exists O € RClop(X) such that 2 € O and y € O+

3. xly and x < z implies that z Ly

4. O € RClop(X) implies that O+ is in RClop(X)

5. Whenever F is a filter in RClop(X), then there exists some = € X such that F = F, = {O €
RClop(X) : z € O}.

If the structure satisfies 1-4, we call X simply an orthospace.
We note the following regarding the previous definition:

Definition 5.2.5. Let (X, L) be an orthoframe. Define x < y as follows:
r<|y < Vz,oxlz = ylz

Lemma 5.2.6. Let (X, 1) be an orthoframe. Then = <, y is a quasi-order. Moreover, if (X, <
, L, 7) is an orthospace, then <=<.

Proof. The relation is clearly reflexive, and transitive. To see that it is a partial order, suppose
that = # y. Without loss of generality, then, z € y, so by Axiom 1, we have that there is some
regular U such that x € U and y ¢ U. by regularity, since y ¢ U, there is some z such that y £ z,
and z € UL. Since = € U, then 1z, which implies that £, y. Hence, by contraposition, we
obtain that < is a partial order, and also that <) €<. Conversely, if z < y, by Axiom 3, we have
that ¢ < y. |

In this sense, the partial order is wholly induced by the irreflexive relation. This means that
drawing the graphs corresponding to either the orthogonality or non-orthogonality relation canon-
ically yields the partial order, so long as either relation corresponds to an orthospace.

We have the following fact:

Lemma 5.2.7. Given an orthospace X = (X, <, L, 7) the structure (RClop(X), n,*, &, X) is an
ortholattice.

To move in the opposite direction, we make use of the space of filters:

Definition 5.2.8. Let O be an ortholattice. Denote by Fil(O) the set of all proper filters on O.
We define an orthogonality relation on Fil(O) as follows:

F1G < 3a€0,ac F and a* € G

!These are called in [4] orthosober orthospaces. Our change of name reflects our concerns in the thesis with
condition 5.
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Then we have the following:

Lemma 5.2.9. Let O be an ortholattice, and Xp = Fil(O). For a € O, denote by ¢(a) the set
{F € Fil(O) : a € F}. Then (Xp,<, L, 7) forms an orthosober orthospace where 7 is given by the

topology with subbasis:
{p(a) :ae O} u{Xp —p(a):ac O}

From now on, denote by R the complement of the orthogonality relation:
TRy < x4y
The morphisms of orthospaces are the following:

Definition 5.2.10. Let f : X — Y be a continuous map between orthospaces. We say that this is
an orthospace morphism when:

1. If Ry then f(z)Rf(y);
2. If f(z)Ry then there exists some z € X such that zRz and y < f(z).
We further say the orthospace morphism is strong if the last inequality is an equality.

Readers familiar with modal logic but not familiar with the literature on duality for relevant
logics might find the inequality in the back condition odd. However, we note that this is not spuri-
ous. For instance, consider the following structures, where the lines refer to the non-orthogonality

w z w’ f(2) f(w)
N, ( y
NP

It is not hard to see that these are two orthospaces, and that the map defined by f is an
orthospace morphism. However, this is not a p-morphism with respect to the non-orthogonality
relation: indeed, f(z)Ry, and indeed, z is such that xRz and y < f(z); but no node maps to y.

We have the following:

Lemma 5.2.11. Let f : O — O’ be an ortholattice homomorphism. Then f~!: Xo — Xo
is an orthospace morphism. Conversely, if g : Y — Y’ is an orthospace morphism, then g~! :

RClop(Y’) — RClop(Y") is an ortholattice homomorphism.
The following is the actual statement of the duality:

Theorem 5.2.12. (Orthospace duality) The category of ortholattices with ortholattice homomor-
phisms is dually equivalent to the category of mazximal sober orthospaces with orthospace morphisms.

We now collect some facts we will later make use of regarding orthospaces in general. The first
is the condition which Bimbé originally proved as part of her analysis, regarding orthospaces in
general:
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Lemma 5.2.13. Let (X, <, L, 7) be an arbitrary orthospace, and O be the dual ortholattice. Then

X embeds into X through a topological embedding which both preserves and reflects the relation
1.

Proof. See [3, Theorem 3.6]. [ ]
We also have the following properties which will come useful later:
Lemma 5.2.14. Let (X, 1, <, 7) be an orthospace. Then:

1. If U is a clopen regular, then x € U if and only if whenever xRy then there is some z such
that yRz and 2z € U.

2. Every clopen regular set is an upset; hence (X, <, 7) is a Priestley space.
3. The class of clopen regulars is closed under intersection.
4. Every clopen upset of (X, L, <, 7) is a union of clopen regular sets.

Proof. (1) This is simply a matter of unfolding the definition that U = U*.

(2) Let U be a clopen regular set. Suppose that € U and x < y. Now assume that yRz. Then
by the third condition on orthospaces, xRz, so by the first part, there is some w such that zRw
and w € U. Hence y e U.

(3) Follows from the above duality. To see (4) assume that V is a clopen upset. Suppose that
x ¢ V is arbitrary. Then whenever y € V', y € x; hence by the clopen regular separation property,
there is some Uy, such that y belongs there and x does not. Hence:

Ve lU,
yeV

By compactness we can obtain some W, = Uy, U ... U Uy, such that V < W,. Then:

V=W,

x¢V
So by compactness again, we obtain that:

V=Wgn..0nWy,

Now applying the distributivity of » and U in a judicious manner, one can write:

V= U ﬂ Usiy;
i=1j=1

Since by (3) clopen regulars are closed under intersection this gives us the result. |
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5.3 Orthologic and KTB

As promised, we can use the structures we have just studied to provide a relational semantics
to orthologics:

Definition 5.3.1. (Kripke semantics of Orthologic) Let (X, L) be an orthoframe. A valuation v
on this frame is a map v : T, (VAR) — P(X) such that v(p) is a regular set for each p € VAR.
We call X = (X, L,v) a model, and define the satisfaction, at a point = € X, as follows:

o X,z |- piff x € v(p)
e XzlFpnryif X,z I-pand X,z I
e X,z |+ — iff whenever xRy, then X,y |- ¢.

We say that an orthoframe (X, 1) validates a sequent (g,1)) if and only if for all models X on
(X, 1), and all points z € X, if X,z |- ¢ then X,z |- ¢. This leads to the following:

Definition 5.3.2. Let O be an orthologic, and K a class of orthoframes. We say Log(K) =
{\ ) : K= (M)} is the orthologic associated to K.

As usual in modal logic, there is a Galois connection between logics and classes of frames.

Definition 5.3.3. Let O be an orthologic. We say that this is Kripke complete if there is a class
K of orthoframes such that:
(AY)e0 = KE A7)

All following results were shown by Goldblatt in [35]. First, we have the following adequacy
theorem:

Lemma 5.3.4. Let O be an ortholattice, and v : Tz, (VAR) — O a valuation. Let Y be an
orthospace such that RClop(Y) = O via a map ¢. Let v' : Tz ,(VAR) — P(Y) be the valuation
given by v'(p) = ¢(v(p)). Then O,v = (A, ) if and only if Y,v' E (A, ).

Proof. Note that the above definition is sound, and by induction on the construction of formulas,
and the duality, we get for each x € Lo:

Indeed, v'(p) = ¢(v(p)), and for conJunctlons this is obvious. If this holds for y, note that
v (xT) = V() = e(w(x))t = p(v(x)t). Now assume that O,v # (), 1). Since v(\) € v(z)) b

duality, p(v(N)) € @(v(¥)); hence v'(A) &€ v'() so there is a point z in the first set, but not the
second. Hence (Xp,v"),z |- X but (Xp, '),z I ¢. The converse follows by similar arguments. W

Corollary 5.3.5. (Canonical Model of Orthologic) Let O be any orthologic. Then there is a model,
Mo = (WO, L9,0v9), such that (X, ) € O if and only if for each x € WO Mo,z I (N, ).

Proof. Let O be the arbitrary orthologic, and Fp be the Lindenbaum-Tarski algebra associated to
this orthologic. Let v : Tz, (VAR) — Fo be the valuation mapping v(p) = [p]o. Then it is clear
to see that (p,v) € O if and only if Fp,v & (¢,1). Hence, by Lemma 5.3.4, we get the desired
result by taking the orthospace dual of Fp. |
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Corollary 5.3.6. The minimal orthologic is Kripke complete.

Proof. Soundness follows from verifying that the axioms outlined above in the definition of an
orthologic are valid in the minimal orthologic. Completeness follows from Corollary 5.3.5. |

Quite relevant for our purposes is the notion of filtration. This was shown by Goldblatt, and
consists essentially of the following:

Theorem 5.3.7. Let ¥ < Tmyg, be a finite collection of well-formed formulas which is closed
under subformulas, and such that for each propositional variable p;, p; € 3 if and only if piL € .
Let X = (X, 1,v) be an orthomodel. Then there exists an orthomodel X; = (X/ ~, L/, vf), such
that for each x € X, and for each ¢ € ¥, X,z I+ ¢ if and only if Xy, [x] I ¢.

Note that more is true: given a sequent (¢,v) where p,1) € X, we have that X,z I+ (p,) if
and only if Xy, [z] IF (¢, ).

We are now ready to take on the main object of study of this chapter. We recall from Chapter
3 that the Goldblatt translation between Orthologic and KTB logic [30] is defined recursively as
follows:

1. For each propositional variable p, G(p) = [10p;
2. G Ag) = GW) A Glp)
3. G(ph) =0-G(p)

From these clauses and the DeMorgan laws of ortholattices one deduces semantically that G(p v
¥) = OO(G(¢) v G(1)). Given a set of formulas T', define G[I'] :== {G(p) : p € T'}.
The first and foundational result about the Goldblatt translation was the following:

Theorem 5.3.8. (Goldblatt, 1975)[50] For any pair of formulas ¢,v € Lo, we have that:
(p,¥) €0 = G(p) - G(¥) e KTB

Proof. Suppose that G(p) — G(¢) ¢ KTB. By Kripke completeness of KTB, there is then a
Kripke model 9t = (W, R, V), and a world = € W such that 9, z - G(I") but M, z # G(p). Now
consider the orthoframe given by 9 = (W, Lz, V') where x 1 gy if and only if —=(xRy), and:

V'(p) =0V (p)

It is not hard to see that regular subsets for | g are exactly those of the form [JQU for some U < W.
Hence, 9 is an orthoframe model. Moreover, we can show by induction that:

Which shows that then 9,z |- T' and 2V, x | ¢. Hence, by soundness of orthologic with respect
to orthoframes, (¢, %) ¢ O. The converse follows similarly, using Kripke completeness of orthologic.
|

We thus have that the translation is indeed correct. Later, Miyazaki [52] extended such results
to a theory analogous to that of modal companions:
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Definition 5.3.9. Let O € A(O) and L € NExt(KTB). We say that L is a KTB-companion of O
if:
(P 9) €0 <= G(p) > GY) e L

Theorem 5.3.10. [52, Theorem 21] The following hold:

1. For each L € NExt(KTB), there is a logic O € A(O) such that L is the modal companion of
O; this assignment preserves Kripke completeness, tabularity and FMP.

2. For each orthologic O € A(O) with the FMP, there is a logic L € NExt(KTB) such that L is

the modal companion of O; this assignment preserves tabularity and FMP.

The techniques used by Miyazaki to prove the first part mirror our functor 6, whilst for the
second he uses a finite representation theorem, and arguments analogous to those used to establish
orthospace duality. In light of our discussion of orthospaces, the correspondence can be captured
in the following:

Proposition 5.3.11. Let (X, 1) be a finite orthospace. Then (X, R) is a KTB-space, and addi-
tionally:
(X, DI (v, ) <= (X, R) I G(p) = G(¥)

Proof. The fact that (X, R) will be a KTB space is trivial: since (X, L) is finite, the space is
discrete, hence every set is clopen, and since R is reflexive and symmetric, (X, R) will be a finite
KTB space, i.e., a KTB frame. Given an orthomodel (X, 1, v), consider the same assignment in
(X, R, v); hence v(x) = v(G(x)), by definition. Similarly, if (X, R,v) is a KTB model, define v’ by
letting v'(p) = OJOv(p). Then again we have that v'(x) = v(G(x)). This yields the result. [ |

We will now move to approaching the Goldblatt translation as a contextual translation. The
following is the basic result that we can expect:

Proposition 5.3.12. Let (B,[]) be a KTB-algebra. Then the set:
Op :={ae B :[I0a =a}

Is an ortholattice with the operations induced by the Goldblatt translation. Moreover, for each set
® < Eq,,, of equations, we have:

OpkE® < BEG*9)

Proof. The verification that the regular elements form an ortholattice is straightforward; see for
instance that for conjunction:

0(a A b) < O(0a A Ob) < [O0a AI0b < a A b<[J0(a Ab)

Where the inequalities follow from usual modal logical reasoning. The second part follows by the
same arguments as Proposition 3.3.1. |

Now let © = {z ~ [J0x}. Note that mapping variables to []0, and considering all valuations,
is the same as operating modulo the context ©. Hence the former can be seen as a translation in
the sense presented in Chapter 3. We thus have the following:
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Proposition 5.3.13. The translation (G, ©,[10) is a selective translation

Proof. Let ® be a collection of equations in the language of ortholattices. By Proposition 5.3.12, we
can prove the translation is contextual: indeed, assume that ® is a set of equations in the language
of KTB, and G*(®) ¥ G«(\) ~ G.(v). Let B be a KTB algebra, and v a valuation, such that
B = G*(®), and B, v £ G«(\) # G«(¢). Then by that Proposition, Op ¥ A ~ 1, whilst it satisfies
®, by Proposition 5.3.12.

Now conversely, assume that ® ¥ A ~ v. Hence, without loss of generality, ® & (\,7). Let O be
an ortholattice such that O = ® and O ¥ (A, ), and let v be a valuation. Hence, by Lemma 5.3.4,
we have that Y, v B (), ), for Y the dual orthospace of O, at a point z, and Y, v &= (u,¢), (¢, u) for
all u~ 1 e ®. Now consider:

E={Gx«(p) < Gx(¥) : (p,¥) € P} U{Gx(N) < Gx(7)}-

Let ¥y be a finite subset of X, say Yo = {Gx(@:i) < Gx(¢i) 1 1 < n} U {Gx(N\) < Gy(7)}. Let
Fo = {vi, Vi : Gu(pi) < Gu(;) € o} U {\, 7}, and F the subformula closure of Fy. Let (Yp,vp)
be the filtration of Y, v along F'. Hence, by hypothesis on Y, we have that:

VGai(pi) = Gu(¥i), Y, vr = (i, %:) and Yr,vp I (A, 7)

By Proposition 5.3.11, we have that (Yr,vp) I Gx(pi) — G«(¢;), and (Yp,vp) I Gx(X) —
G« (7). By duality, this means that there is a valuation v on a KTB algebra B, such that B,v =
G+(pi) = G«(1;). By definition of satisfaction, this means that B, v = G.(¢;) < G«(1)., and also
B,v ¥ G« (\) < Gy(7). Hence, we can find a KTB algebra and a valuation satisfying .

By compactness of first order logic, we have that since each finite subset of ¥ is satisfiable in
a KTB algebra, the whole of ¥ is. Hence, there is a KTB algebra B, such that B = G*(®), and
B ¥ G«(\) ~ Gy(v). Hence, this implies that G*(®) ¥ Gy«(\) ~ G«(v). This shows that the
translation is faithful.

Finally, notice that the term [J{ is a selector, essentially because (10 10p = [IOp. [ |

Having this established, we can define versions of the map 7: for O € A(O), 7(0) = KTB &
{G(p) = G() : (p,0) € O}; as well as p: p(L) = {(¢,?) : G(p) = G(¢p) € L}. On algebras, we
have 7(K) = {B : Op € K} and p(M) = {Op : B € M}. Using these, one can make many questions
related to our discussion in Chapter 4. Given what we have discussed about Polyatomic Blok-Esakia
isomorphisms, we can naturally ask whether the Goldblatt translation is strongly selective, or even
sober, and whether we can describe the schematic fragment of the PAt-variants as laid out above.

Our results from now on will be mostly negative, and we will seek to identify and emphasise
the sources of problems. To work towards this, we begin by giving a dual description of the
transformations we have encountered.

Definition 5.3.14. Let 6* : KTBS — OrtS be the assignment going from the category of KTB-
spaces with continuous p-morphisms, to the category of orthospaces with orthospace morphisms,
defined as follows: given a KTB space (X, R, ) take the relation, <:

r<y < Vze X(yRz = zRz)
This forms a preorder. Let =< be the induced equivalence relation. Let =< be defined as:

[z]R=[y] <= 32" € [z],y € [y], 2’ Ry
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And similarly for <—. Then we denote by X* = (X/ =<, R=, <=, 7=), where 7= is the quotient
topology.

Lemma 5.3.15. Let (X, R,7) be a KTB-space. Then X* as defined above is an orthospace,
when we define [z]L1[y] if and only if —([z]R=[y]). Moreover, the map ¢ : X — X*, when X* is
understood as a KTB space, is a surjective p-morphism.

Proof. (Sketch) It is a straightforward, using the fact that the relation R is reflexive and symmetric,
to see that the definitions given are sound. Now let ¢ : X — X™* be the quotient map; to obtain
the result, after observing that this preserves the relations, it suffices to show that the clopen
regulars on X are saturated, i.e, if U is a clopen set and [JOU = U, then ¢ 'q(U) = U. Indeed, if
x € ¢ 'q(U), then q(z) = q(z) where z € U; hence for some x = 2’ and z = 2/, 2/ < 2’; but then
2/ eU,sox' eU,ie, x €U as well. Using this one can then show the axioms in a straightforward
way. |

The reader will have noted that the former transformation essentially only removes clusters
associated to the induced quasi-order, and collapses them. This means that, for instance, a cluster
of 2-elements in the modal logic sense will be collapsed to a single element, as exemplified in Figure
5.1:

Figure 5.1: Collapsing of clusters

We can also define the action of this transformation on morphisms:

Lemma 5.3.16. Let f : X — X’ be a p-morphism between KT B-spaces. Then f : 8*(X) —
0*(X') defined by [x] — [f(z)] is a strong orthospace morphism.

Proof. This is well-defined since f preserves the order <: if x = y, suppose that f(y)Rz; then

yRw where f(w) = z; then xRw, so f(z)Rz, i.e, f(z) < f(y), and similarly, f(y) < f(z), ie,
f(x) = f(y). Tt is easily seen to be continuous and order preserving since f is. It also satisfies the
back condition: if f([z])R[y], there is some 2’ = f(z) such that 'Ry’ and v’ < y, i.e, f(z)Ry;
then because f is a p-morphism, there is some z such that xRz, and f(z) = y. Hence [z]R[z] and

[f(2)] = [y, ie, f([z]) = [y]- u
More importantly, we get that this corresponds to the 8 operation:

Proposition 5.3.17. Let B be an arbitrary KTB algebra and Xg its dual space. Then RClop(X4) =
Ogp. Hence, X§ is an orthospace embedding into the orthospace dual of Og. Moreover, if

f: B — B’ is a homomorphism, then (f foB))_1 = f;1
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Proof. For each a € Og, let f(a) = {[z] € X} : x € ¢(a)}. Note that because a is regular, this is a
clopen regular subset of X§, and is well-defined: if € ¢(a) and = = y, then a € z; now if a ¢ y,
because a is regular, O[J—a € y; then yRz, and []—a € z, but also, xRz, so zRz, a contradiction.

Additionally, this assignment is injective: if @ # b are both regular, let a € x and b ¢ x where
x € Xg. Then we have that [z] € f(a) and [z] ¢ f(b), which shows that f(a) # f(b). Moroever, if
U is a clopen regular subset of Xg, by definition of the quotient topology, ¢ '(U) is clopen, and
since ¢ is a p-morphism, also regular:

e First, note that [10¢ ' (U) = ¢ 1{(Q0U): if ¢(x) € (JOU, and xRy, then q(x)Rq(y), so by
definition, ¢(y)Rz and z € U; hence, there is some 2z’ such that yRz’, and ¢(z’) = z. Hence,
r € [J0q 1 (U). Conversely, if z € [(JOq~!(U), and q(z)Ry, by assumption, for some v/, zRy/,
so 'Rz and z € ¢ 1(U); so q(y')Rq(2), and q(2') € U. So z € ¢~ H(TIOU).

e Then notice that [J0¢~1(U) = ¢ 1 ({O0U) = ¢~ 1 (U), since U is assumed to be regular.

Hence, ¢~ (U) = ¢(a), where a is a regular element. Thus, note that f(a) = {[z] : © € p(a)} =
qlp(a)] = qlg 1 (U)] = U, as intended. Finally, to see that this is a homomorphism, note that
flanb) = fla) A f(b), cleatly, and f(a*) = {[z] : = € p(@—a)} = O—{[z] : = € p(a)}: if
x € p([(0—a), then [J—a € x; so if © = 2/, since this is a regular element, also [J—a € z’. Similarly,
if y = ¢/, then a € y if and only if a € ¥’ because this is regular. Hence, if [z]R[y], then for some
2’ =z and y =y we have that 'Ry, so [J—a € 2/, and hence, a ¢ y. So [y] ¢ f(a). Conversely, if
[z] € (O~ f(a), assume that [J—a ¢ z; hence Qa € x, so Ry, and a € y; hence [z]R[y] and a € y,
so [y] € f(a), a contradiction. This shows the first statement. The second statement follows by
similar arguments on the maps. |

Using these transformations, we can highlight some aspects which distinguishes this translation
from the GMT case. There, recall that the class of spaces such that the corresponding transforma-
tion p acts as an identity, is modally definable (by the Grz axiom), even whilst it is not elementary.
However, we have:

Proposition 5.3.18. The class of KTB spaces such that 6* acts as an identity is not closed under
p-morphic images.

Proof. Consider the KTB frame, 3 — f, consisting of three points in a chain, and consider the map
as drawn in Figure 5.2.

Figure 5.2: Collapse of frame

It is straightforward to verify that the map as defined is a p-morphism. But we see that the
first frame does not have any clusters in the <-sense, whilst the second does. |
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Hence, our hopes that an isomorphism motivated by a natural axiom such as Grz might be
diminished. So let us diminish them further, by removing the possibility of a more complicated
isomorphism. To see this, consider the algebras corresponding to the KTB-algebra which is a
single cluster, and the KTB-algebra which is a 2-cluster, as drawn above. As mentioned before,
these will be identified by 6*. Now we note the following two facts, respectively from ortholattice
and KTB theory:

Fact 1. (cf. [11, Corollary 3.6]) The bottom of lattice of varieties of ortholattices consists of the
following varieties: the trivial variety, covered by the Boolean algebras, covered by the variety
generated by M O», and the variety generated by Benzene.

/'\
o
e \/

Figure 5.3: M Os and Benzene

A

Fact 2. (cf. Miyazaki,[16, Theorem 2.2]) The top of the lattice of KTB logics consists of the
following logics: the trivial logic, covered by the logic generated by a single reflexive point, covered
by the logic generated by a 2-cluster.

By this latter fact, we have that the identification made by 6 above collapses two algebras
which come from distinct varieties. Hence, the map cannot correspond, in the top part, to an
isomorphism. But what we noted from ortholattices implies more is true. Since any isomorphism
would have to preserve the cover relation, the existence of such a map is impossible for purely
combinatorial reasons.

Corollary 5.3.19. There is no logic L € NExt(KTB) such that there is an isomorphism between
A(O) and NExt(L).

This leaves the possibility that we could have a Polyatomic Blok-Esakia isomorphism. We will
now rule this possibility out. Recall that by a Polyatomic Blok-Esakia isomorphism, we mean
that the lattices A(Q) and ALY (KTB) are isomorphic through the specific maps 7 and p, and it is
assumed additionally that p is a homomorphism on the lattice A(KTB) of varieties. We will prove
that such a situation cannot happen.

To see this, consider the orthologic generated by Benzene, the ortholattice ocurring on the
right hand side in Figure 5.3%. Now consider the following two KTB frames: Note that #* acts as
an identity on both of these frames (i.e, they contain no <-clusters), and both of them are dual
to the Benzene ortholattice. The right hand side frame is the maximally sober orthospace frame

2This is a very well-known algebra in the theory of orthomodular lattices [11], since it is the forbidden subalgebra
which characterises orthomodular lattices within ortholattices
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Figure 5.4: Two Benzene frames

which is dual to Benzene, whilst the left hand side is another orthospace which has Benzene as the
ortholattice of clopen regulars. Indeed, we have the following:

Lemma 5.3.20. The previous two frames are the only two orthospaces which have Benzene as the
ortholattice of clopen regulars.

Proof. By inspection we see that the right hand side orthospace, call it X g, is indeed the maximal
sober one. By Lemma 5.2.13, we know that if Y is an orthospace with Benzene as the ortholattice of
clopen regulars, then Y embeds through a topological embedding that both preserves and reflects
the relation L (correspondingly the relation R) into Xp.. This means that the only possible
orthospaces are those which remove a point and all relations from that point to the points it relates
to. Now, manually, we can check that removing any point other than the central one from Xp.
yields a frame which has a cluster, and hence cannot be an orthospace. So Yp, is the only possible
candidate. |

Now let L(Xpg.) and L(Yp.) be the KT B-logics of each of these frames. Let Op. be the
orthologic generated by Benzene. Then we have the following:

Lemma 5.3.21. Both L(Xp.) and L(Yp.) are KTB-companions of Op..

Proof. Suppose that (A, 1)) is an arbitrary sequent in Opg.. Let v be a valuation on X g, respectively
YBe; then consider the valuation v" given by v’(p) = [JOv(p). Then we have that:

(XBea U/)a z - (>\a ¢) A (XBea U),$ I~ G()‘) - G(’@Z])

This follows easily by induction, and the definition of the translation. Moreover, by Lemma 5.3.4, we
have that since (\,9) € Ope, then (Xpg.,v'), z I (A, ¢) for any x; and similar for Yz, (we note that
there we did not assume that the dual space was maximally sober). Hence G(\) — G(¢) € L(Xpge)
and L(Ype).

Conversely, suppose that (X, 1) ¢ Ope. By assumption, then Be, the Benzene algebra, is such
that Be ¥ (A, 1). So Xpe ¥ (A ¢), and Ype ¥ (A, ¢). Transferring this to KTB using the usual
arguments then yields that G(\) — G(¢) ¢ L(Xge) U L(Ype). [

Moreover, one can see that these logics are distinct by using the following observation (see
Miyazaki [51, Lemma 2.6] for a stronger result implying this):

Lemma 5.3.22. Every finite KTB algebra whose dual is a connected graph is a simple algebra
(and hence, subdirectly irreducible).
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This follows from the fact that by standard Jonsson-Tarski duality, generated subframes cor-
respond to homomorphic images. Moreover, since the duals of KTB algebras have a symmetric
relation, this means any generated subframe will necessarily encompass the whole frame.

Now, given this, we have that the two frames above are subdirectly irreducible, so by Jonssons’
Lemma (see Preliminaries), noting that in the case of finite algebras ultraproducts disappear, if
they were equal, we would have these would be p-morphic images of generated subframes of each
other. Since all generated subframes are the frames themselves, they would have to be p-morphic
images of each other — something which one can manually verify does not happen, in either case.
Indeed, this implies that there is no p-morphism from Xp. to Yp. or vice-versa, whether surjective
or not.

Hence, by the above facts, if X is some KTB space and 0*(X) is the dual of Benzene, then X
is obtained by some cluster-expansion of either Xpg. or Yg.. Moreover, note that if X is arbitrary
in such conditions, then either Xpg, or Yg. is a p-morphic of X, by Lemma 5.3.15.

Now assume that there is a greatest KTB-companion of the orthologic of Benzene. Let L €
NExt(KTB) be such a logic, and Var(L) be the dual variety. Hence we have that:

Var(L) < Var(Xp.) and Var(L) < Var(Yg,).

Since it is a companion, and we assume that p is a homomorphism, we have that this is enough to
get that p(Var(L)) = Var(Be) (through arguments similar to those sketched in Chapter 4). Hence,
there is some B € Var(L) such that §(B) = Be, and this corresponds dually to some KTB space X.

Now if the first case holds, then X has Xp. as a p-morphic image, and we have a contradiction,
since that would mean that X, would be in Var(Ypg.). A similar argument shows that Yp. cannot
be the p-morphic image of X. Hence, we have just proved:

Corollary 5.3.23. The Polyatomic Blok-FEsakia fails for the Goldblatt translation.
From the previous proof one can extract, using a very similar idea, a stronger result:
Proposition 5.3.24. The Goldblatt translation is not strongly selective.

Proof. We make use again of Be and the two spaces above, Xp. and Yp.. Let their algebras be
denoted by A and B, respectively.

Now assume that the translation was strongly selective, and let F(Be) be the image under the
left adjoint. Denote by Z the unique dual KTB space of this algebra. Since this is an adjunction,
we have counit maps which are KTB homomorphisms:

eq:F(Be) > Aand ep: F(Be) » B

Dualising, this means that there are p-morphisms f4 : Xg. — Z, and fp : Yg. — Z. Now, since we
assume the translation to be strongly selective, we have that O zp.) = Be. Hence, by Proposition
5.3.17, we have that 6*(Z) is an orthospace which dualises to Be. By the above arguments, then
Z must be a cluster expansion of either Xp, or Yg..

First assume that Z is a cluster expansion of Xp.. Hence, we have a p-morphism k : Z — Xp,,
which collapses all the clusters. Since fg : Yg. — Z is a p-morphism, note that then we have
a p-morphism ko fg : Yg. — Xpg.. But as noted above, there is no p-morphism between these
two structures. Similar arguments show that if Z is a cluster expansion of Yg., then we get a
contradiction. Hence, by reductio, we conclude that the Goldblatt translation is not strongly
selective. |
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At this point, the hope for a reasonable Blok-Esakia theory of the kinds we discussed in Chapter
4 seems very slim. Hence it might be good to take stock on the problems we have here encountered
so far. These can be summarily divided into two classes:

e Regularity problems: In a (PAt-) Blok-Esakia theory one would want regularly generated
algebras to form a nice enough class. This implies that the class should be modally defin-
able, or at least, definable by some quasi-equation, universal formula or other such logical
apparatus, over the target signature (e.g, modal algebras).

e Sobriety problems: In a (PA) Blok-Esakia theory, one would want the functors to lose as
little information as possible.

We note that as far as regularity goes, very little seems to be possible to do in our current setting.
The lack of closure under subalgebras of the class of regularly generated KTB algebras means that
a genuine Blok-Esakia isomorphism would likely require some definition involving formulas of a
higher complexity than universal ones.

As far as sobriety goes, the situation is rather peculiar. The proofs we gave showing that
sobriety fails, made use of the fact that there were multiple KTB spaces which dualised to the
same orthospace — just as in Corollary 4.2.11 regarding the KGG translation. However, unlike that
case, we could establish some bounds, namely, the maximal sober orthospace as a universal frame
embedding all other such frames.

As such, it seems there could be some hope to eliminate these extraneous frames through some
logical expedient, and with that, obtain some form of isomorphism between logical systems. A
natural choice, in light of this translation, could be to consider a suitably defined fragment of
KTB consisting of all maximally sober KTB spaces; that is, consider only the KTB models which
dualise to maximally sober orthospaces. This approach would be justified in having these models
be somewhat analogous to the UV-spaces of choice-free duality [7, 19]. This can presumably be
done if one can find an appropriate logical description of such a fragment in algebraic terms. We
have not been able to do so.

Instead, in the next chapter we will take a different route, and look for minimally sober spaces.
As we will see these present different challenges, and require us to rework our machinery. Never-
theless, we think that this approach is justified by recent approaches to duality of bounded lattices
[30, 29], and might be independently interesting.

5.4 Chapter Summary

We summarise our principal contributions in this chapter as follows:
e We show that the Goldblatt translation is a selective translation.

o We develop the maps naturally corresponding to the adjunction induced by the Goldblatt
translation in a dual setting, and use them to study KTB companions.

e We show the impossibility of an isomorphism of the same kind as in the classic Blok-Esakia
theorem, in Corollary 5.3.19, that the Polyatomic Blok-Esakia isomorphism fails, in Corollary
5.3.23, and that the Goldblatt translation is not strongly selective in Proposition 5.3.24.
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Chapter 6

Sober Representations and
Orthoimplicative Logic

In this chapter we continue our investigations of chapter 5 into the logic of ortholattices, and
the relationships this establishes with other logical systems.

As noted in the previous chapter, some of the difficulties faced in studying the translation
of orthologics into other systems can be attributed to the duality these ortholattices hold with
orthospaces - whether through the fact that maximal sobriety is required to get an actual duality,
or the fact that ortholattices seem to lack syntactic resources to capture natural operations one
can consider on the dual space. In this chapter, we outline an alternative dual representation.
This makes use of a notion of quasi-prime filter, which provides some advantages, in our setting,
over the orthospace one (e.g, it restricts to Stone duality in the Boolean algebra case). Using this
notion, we construct a simple representation of the “distributive envelope” of an ortholattice [29].
We then study compatible ortholattices, which admit an implicative structure, relating these to the
Weak Heyting algebras of Celani and Jansana [13]. We prove some basic properties of the resulting
systems, exploiting the advantages of our representation.

We then turn our focus to the relationship between these new “orthoimplicative systems” and
KTB. Motivated by our representation, we identify a fragment of the system KTB admitting a
sober translation, which we call “sober KTB”, and provide a translation, analogous to the Goldblatt
translation, to these systems. This allows us to obtain a PAt-Blok-Esakia isomorphism between
the lattice of orthoimplicative logics and the lattice of sober KTB.

6.1 Admissible joins and Quasi-Prime Filters

Let us take stock of the representation studied in the last section. We begin with an ortholattice,
and get from it a dual space consisting of all filters. Now, since Boolean algebras are ortholattices
as well, this means that the dual of a Boolean algebra will include many more filters than just the
ultrafilters - indeed, what one gets is the so called upper Vietoris space (see [7], see also [19] for
the case of ortholattices), which represents a Boolean algebra by all of its filters. Whilst having
the advantage of being choice-free, it is somewhat unsatisfactory if one wants to connect this
construction to the established Priestley and Stone-type dualities for distributive lattices.

Similar concerns have long been present in the duality of orthomodular lattices. Indeed, already
in 1986 Iturrioz [12] proved a representation theorem for these lattices which made use of filters

79



sharing the center of an orthomodular lattice, which is a Boolean algebra, and her representation
does restrict to the Boolean algebra case. However, her approach does not seem easily adapted to
the context of general ortholattices, since the notions of center and commuting elements are only
truly valuable in the presence of orthomodularity.

Our approach stems from ideas developed by Gehrke and van Gool [29]. These authors studied
the free distributive lattices generated by a (possibly non-distributive) bounded lattice. Naturally,
in the case of non-distributive lattices, one cannot then expect for this extension to be a homomor-
phism, since it cannot preserve both joins and meets. However, the key observation of the authors,
stemming from the theory of canonical extensions, was that in such a construction one needs to
preserve as much of the original structure as possible. That is, if a join was already distributive,
for example, if a v b is such that for all c:

(avb)rc=(anc)v(bnc),

then we would want this join to be preserved by the extension map.
We call a finitary — not necessarily just binary — join with this property an admissible join. A
trivial, but important, case, is the order relation:

Lemma 6.1.1. If a < b in a lattice, then the join a v b is admissible.
Proof. Simply note that if ¢ is arbitrary, then:
anc<bnac
Hence (anc) v (bac)=(bAac)=(avb)Aec [
This motivates the following definition, introduced in [29]:

Definition 6.1.2. Let L be a lattice, and F' a filter. We say that F' is quasi-prime if whenever
M < L is a finite subset where M = {m; : i < n}, and \/ M € F is an admissible join, then for
some i, a; € F.

Example 6.1.3. Consider the lattice in Figure 6.1:

A
v/

Figure 6.1: The lattice M O»

It is easy to see that the space of all filters consists of all principal proper filters on this lattice.
However, note that the filter {1} is not quasi-prime: \/{a,b,a",b'} is an admissible join, and is
equal to 1, but the above filter contains no element from the set.!

!The former example also illustrates that, in generla, binary admissible joins do not suffice.
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In a distributive lattice, all joins will be admissible, so quasi-prime filters will simply coincide
with prime filters. Hence, as we will see below, our duality will indeed simply become Stone-
Priestley duality in the case of distributive ortholattices, i.e., Boolean algebras.

It is of course important that quasi-prime filters exist in a way that makes them useful. For
that we will need one more definition:

Definition 6.1.4. Let O be an ortholattice and I < O a downwards closed set. We say that [ is
an admissible ideal if whenever M < I is a subset with an admissible join, then \/ M € I.

Proposition 6.1.5. Let O be an ortholattice, and S < O a downwards closed subset; then the
smallest admissible ideal containing S exists, and is:

Adld(S) :=={ae O :3M < S, such that \/M is admissible and a < \/M}

Proof. Tt is not hard to see by the definitions that the intersection of admissible ideals is an ad-
missible ideal. Hence let Adld(S) be the least admissible ideal containing S. Let K = {a : a <
\/ M,M < S, M has an admissible join }; first note that this is an admissible ideal. It is clearly
downwards closed. If M < K is a subset with an admissible join, let M = {m; : i < n}. For each
i, by hypothesis, m; < \/ N;, where the latter is an admissible join. Hence:

mizmi/\\/Niz\/miAnj
J

Where the last equation uses admissibility. Moreover, note that \/ ;Mi Ay is an admissible join:
(\/mi/\nj)/\C=(\/Nj)/\mi/\c=\/mi/\nj/\c
J J

Since S is downwards closed, and n; € S, then m; A n; € S as well. Thus:

\/M= \n/\]/ml A Mg

=1

Which is thus an admissible join of elements from S.
It is easy to show that K will be contained in every admissible ideal. Hence, K < Adld(S),
which is least. This concludes the proof. |

We are now ready to prove the appropriate version of the prime filter theorem for our purposes:

Theorem 6.1.6. (Quasi Prime filter theorem) Let O be an ortholattice, F,1 < O. Assume that
F is a filter and I is an admissible ideal, such that F' n I = . Then there exists some H < O, a
quasi-prime filter, such that F < H and H n I = (.

Proof. The proof is analogous to the proof of the prime filter theorem. Consider:
P={GcO:Gisafilter GnI =}

Note that this is non-empty since F' is contained in it. Moreover, it is not hard to see that the set
is inductive. So by Zorn’s Lemma, let H be a maximal element there.
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We check that H is quasi-prime. Indeed, suppose that \/ M € H is an admissible join, where
M = {m; :i < n}, but no m; is in H. So consider in O, for each i:

Hp, =t{mirnc:ce H}

Then since H was maximal, each of these filters must intersect with I. So for each 4, there is some
¢; € H, such that that m; A ¢; € I. Let d = A\ ¢;, and note that d € H, hence \/ M nd € H.
Now note that since \/ M is admissible then so is \/;_; m; A d. Indeed, indeed if e is arbitrary:

(\/mi/\d)/\c:(\/M)/\d/\c
i=1

= (\n/ml AdAc)
i=1

So since I is an admissible ideal, and m; A d € I, (\/}_; m; A d) € I as well. By admissibility, then,
\/ M A deI. But this is also in H, which is disjoint from I; contradiction. |

We now make use of our quasi prime filters to provide the desired representation theorem. We
note that the arguments proving the following are very similar to those given in [%], and hence,
we give here the proof of the two cases where the quasi-prime filter representation deviates from
orthospace duality. A detailed proof of the full duality can be found in the Appendix.

Definition 6.1.7. Let (X, <, R,7) be an orthospace. We say that this is a slim orthospace if it
satisfies the following condition:

e (Admissibility) For each finite subset Uy, ..., Uy, C € RClop(X), if:

n n

nlﬁmCﬁtMnQJ%ﬁzLJm
=1 =1

=1

iuumﬁmCQ(

(2

In words, a slim orthospace makes precise the following intuition: if a join of a lattice is
distributive, then it should be represented using the “real join” - where this means, through the
idea that lattices are carved out of a power set lattice, the union. Using these ideas, we have the
following;:

Theorem 6.1.8. Let O be an ortholattice, and Xo its orthospace dual. Let Yo = {x € Xo : z is
a quasi-prime filter}. Then Yo with the subspace topology, the restriction to L, and the restriction
of <, is a slim orthospace such that RClop(Yo) = O.

Let ¢’ : O — RClop(Yp) be the map taking U to {x € Yo : U € z}. Notice that since Yo
is a subset of X, this will form a subbasis of the subspace topology. The point of the proof of
orthospace duality which requires some more elaboration lies in the proof of compactness.

Lemma 6.1.9. The space Yo as defined above is compact.

Proof. We use Alexander’s Subbase Lemma. So suppose that:

Yo = U (a) u U Yo — p(b)

aeC beD
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Suppose towards a contradiction that there is no finite subcover. Then, for each collection ag, ..., a, €
C and by, ..., b, € D, we have:

n

Yo # | Jelai) u | X — (b))
i=1 j=1

Hence, there exists some quasi-prime filter F_ 7 in the first set which is not in the second. Spelling
this out, all of the b; € F-; and none of a; are there. Thus, consider:

Fil({b:be D}) and Adld({a : a € C})
We claim that these sets are disjoint. Indeed, suppose not. Then this means that:

boA...Abn<VM

Where M = {m; : i <k} < [{a:ae C}, by Lemma 6.1.5, and the join is admissible. Thus, for each
i, m; < a; for some a; € C. Let @ = (ao, ..., ax) be the elements in these conditions. Let F_; be the

filter corresponding to this as well as the sequence b = (b, ..., b,). By hypothesis, by A ... A b, € FE,E‘
But then \/ M € F 3, so there is some m; in that filter, by admissibility and the fact that this filter
is quasi-prime. But then by upwards closure, there is some a; € Fa,57 a contradiction.

Because these sets are disjoint, by the Quasi-Prime Filter theorem we have that there is some
x € Yo which extends {U : U € C}), and is disjoint from the admissible ideal noted above. Hence,
there is some x such that:

ze o) v Yo-¢la)=Yo— (| ela) v Yo-eb) =0

beD aeC aeC beD

Which is a contradiction. Hence, by contradiction, we have that Yy is compact. [

We now move to checking that the function ¢ as defined above is an embedding preserving the
orthocomplement. This follows essentially by the same arguments of Goldblatt in [36, Theorem 4]:

Lemma 6.1.10. The function ¢ : O — RClop(Yp) is an embedding, and moreover, whenever
{aj : i < ny < O are such that \/ a; is admissible, then:

n

p(\/ ai) = | elai)

i=1

Proof. The fact that ¢ is injective follows from the quasi-prime filter theorem: if ¢ £ b, then
consider ta and |b. The former is clearly a filter, and the latter is an ideal, hence clearly an
admissible ideal, and the two are disjoint. So by the Quasi-prime filter, we can separate them, i.e,
p(a) £ ¢(b).

We now move to showing the orthocomplement is preserved, that is ¢(a)t = ¢(at) (note we
take the restriction of the operator L, so this ranges only over quasi-prime filters). One inclusion
is clear: if a* € x, then if a € y, clearly zLy. For the other inclusion, suppose that a ¢ z. Then
we show that:

Fil({a}) and Id({c: ¢* € x} are disjoint
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Indeed, suppose not. Then a < ¢y v ... v ¢,,. But then by applying L to both sides we get:

1

cH /\.../\C,,J;<CLL

Since all the former are in x, a*+ would also be in z, a contradiction. Hence by the Quasi-Prime
filter theorem, there is some y containing a, such that whenever a* € z, a ¢ y - that is, 2 Ry. This
shows that = ¢ ¢(a)’.

To show the last statement, note that since a; < \/, a;, whenever a € z, then \/; a;, so | J_; <
©(V; ai). On the other hand, if \/, a; € , and the join is admissible, ten for some i, z € ¢(a;).
This shows the result. n

Moreover, we can prove surjectivity:

Lemma 6.1.11. The map ¢ is surjective, i.e, any clopen regular of Yo is of the form ¢(a) for some
a€ 0.

Proof. The proof is the usual one: if K is a clopen regular in Yo, and K = Yp then K = ¢(1).
Otherwise, let « ¢ K. By regularity, let y € K+ such that zRy. Then for each z € K we have that
there is some V, such that v, € z and UZl € y. Then:

Kc U o(vy)

zeK

By compactness, K € ¢(v,,) U ... U ©(vs,) S 9(vz v ... v v,,). By contrast, (v, v ... v v, )t ey.
Since xRy, (vz V ... VUs,) ¢ x. Hence z € —p(vyy v ... Vv, ) €Y — K. Let Zy = vy v oo V 0.
Then Y — K = Ucc¢ i ©(2z). By compactness we can extract a finite subcover that will get us the
desired representation of K. |

Then we can finally show:
Lemma 6.1.12. The space Yg is a slim orthospace such that RClop(Yp) = O.

Proof. The proof that this space is compact has already been given. The two separation conditions
follow by definition: if z Ly then a € x and a* € y, so x € p(a) and p(at) = ¢(a)* 3 y. The upwards
closure condition is automatically satisfied. Finally, the admissibility condition is automatic by the
fact that, as just showed, the lattice O and RClop(O) are isomorphic via ¢. [

The morphisms of slim orthospaces will just be orthospace morphisms. However, to get a
duality, following [29], the algebraic morphisms need to be tweaked:

Definition 6.1.13. Let L and L’ be lattices. Suppose that f : L — L’ is a lattice homomorphism.
We say that f is join-admissible if whenever \/ M is an admissible join, then \/, ., f(m) is an
admissible join.

These morphisms are discussed in [29, Example 3.11], where the authors show that the condition
of preservation of admissibility is necessary. With it, we can obtain a duality:

Theorem 6.1.14. The categories Ort® of ortholattices with admissible homomorphisms and
SOrtS of slim orthospaces are dually equivalent.

Proof. See Appendix. |
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Moreover, the former results also have, as a corollary, that slim orthospaces are minimal amongst
orthospaces representing a given ortholattice:

Proposition 6.1.15. Let O be an ortholattice, and X an orthospace representing O. Then Yg
embeds into X through a continuous map that preserves and reflects the relation L.

Proof. See Appendix. |

All of these results make use of the crucial notion of a distributive envelope. This is what
motivated the above representation, and what we turn to now. Since in this chapter we will have
to often consider the “distributive” join, we denote this as U, and reserve v for the join coming
from the ortholattice, i.e, v = (U)*t.

We begin by reviewing some ideas and facts proved by Gehrke and van Gool which we will make
use of:

Definition 6.1.16. Let L be a bounded lattice, and L a bounded distributive lattice. Let e : L — D
be an injective map preserving meets, admissible joins and the bounds. We say that (D,e) is a
(join)-distributive envelope if for each D’ a bounded distributive lattice, such that f : L — D’ is an
injective map preserving meets, admissible joins and the bounds, there is some g : D — D’ where

goe=f.

In other words, a distributive envelope is the free distributive extension of L. For an arbitrary
lattice L, denote by D" (L) the unique distributive envelope of L. Gehrke and van Gool [29] proved
the existence (and uniqueness) of such a distributive envelope, and provided a topological duality
for these. However, for arbitrary lattices, the representation requires making use of a topological
polarity, connecting two Priestley spaces. The key observation simplifying this in our case is that
for ortholattices, since the join can be defined in terms of the meet, we can afford this simpler
representation.

The study by Gherke and van Gool reveals the distributive envelope is a functorial construction,
enjoying nice properties:

Theorem 6.1.17. The map ~ : Lat — DLat, between the category of bounded lattices with
join-admissible homomorphisms and distributive lattices, assigning to each distributive lattice its
distributive envelope, is a functor, left adjoint to the inclusion from DLat to Lat. Moreover, if
f L —> D is amap from L to a bounded distributive lattice D which preserves all meets and
admissible joins, the unique lift, f : D™ (L) — D is given by:

f:D"L)>D
Oe- (e

Moreover, they provided a very useful characterisation of the distributive envelope. For that,
recall that we say that a map e : L — L’ between bounded lattices is join-dense if every element
in I can be written as a join of elements e(a) for a € L:

Proposition 6.1.18. Let L be a lattice and (D, e) a distributive lattice, and a map e : L — D.
Then (D, e) is the distributive envelope if and only if:

1. e is injective;
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2. e preserves all meets and admissible joins;
3. e is join dense;
Proof. For a proof, see [29, Corollary 3.15]. |
With this we can obtain the following fact, capitalising on our representation theorem:
Proposition 6.1.19. Let Y be a slim orthospace. Then ClopUp(Y’) is isomorphic to D” (RClop(Y')).

Proof. Consider the inclusion of RClop(Y') into ClopUp(Y). By the same arguments as in the
previous proposition, this is seen to be injective, preserve all meets, and by the slim orthospace
condition, to preserve admissible joins. It is moreover join dense by Lemma 5.2.14. Hence by
the universal property of the distributive envelope, the inclusion factors through the distributive
envelope. More explicitly, we get a universal isomorphism:

h: D*(RClop(Y)) — ClopUp(Y)

n

U o(U;) — U Ui
i=1

i=1
This was to show. |
As such we get the following useful tool:

Lemma 6.1.20. Suppose that Y is a slim orthospace. If U, Vy,...,V, are clopen regulars, and
U< Vyu...uV,. Then if z is a quasi-prime filter over RClop(Y'), and U € z, then there is some i
such that V; € x.

Proof. Let = be an arbitrary quasi-prime filter over RClop(Y’). Now, since U < Vy U ... U V},, this
implies by the isomorphism in Proposition 6.1.19 that p(U) < ¢(Vh) U ... U (V). If U € z, then
x € p(U), so x € p(V;) for some i, hence, V; € . [

We now look a bit further into the properties of the functors at play here, and investigate their
universal algebraic and categorical properties.

Definition 6.1.21. Let D be a bounded distributive lattice. We say that an operation (—)* :
D — D is an orthonegation if it satisfies for every a,b e D:

L1l _ L

L and a a

e a<(at)
o (at v bt = (ab)t A ()L
o (at AL = ((ab)t v (1) )L

In this case we say that (D,%) is an orthonegated lattice.

The following is immediate in virtue of our representation:

Proposition 6.1.22. If O is an ortholattice, then (D" (0O),*), where * is calculated in the dual
Priestley space, is an orthonegated lattice.
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Definition 6.1.23. Let F': O" — PDLat” be the map assigning to each ortholattice its distribu-
tive envelope with the associated orthonegation, and to each admissible morphism f : O — O’ the
unique lift:

N

f:D"(0) - D"(0)

Jai—J fla)
i=1 i=1
We call this the Distributivisation of O.

To check that the former makes sense, we will need a little fact about dualising maps:

Lemma 6.1.24. Suppose that f : O — O’ is an admissible ortholattice homomorphism. Then
f~1: Yo — Yo is an orthospace morphism.

Proof. See Appendix. |

This allows us to show the following:

Lemma 6.1.25. The map F as defined above is a well-defined functor, which moreover preserves
injective morphisms.

Proof. The following argument stems essentially from [29, Corollary 2.13], where we also check
preservation of the orthonegation. The definition of F' on objects is given. Now suppose that
f : O — Q' is an ortholattice homomorphism. We check that the lift is well-defined. Indeed,
suppose that | J;~; a; = U§:1 bj. Then by Lemma 6.1.20 this refers to | J;_; ¢(ai) = U?:l o(bj).
So now suppose that = € Yy is a quasi-prime filter, and x € ¢(f(b;)). Hence f(b;) € x, so by the
previous lemma, b; € f71[z], so f71[z] € ¢(b;). But we have that:

p(b;) < | wla)
i=1

So f7[z] € ¢(a;) for some i. So x € o(f(a;)). A similar argument shows the other inclusion, and
shows the map is well-defined.

Now if f is injective: if (i, f(a;) = U?:l f(bj), then suppose that a; € x; since f is injective,
x = f1[2'], so f(a;) € 2'; the rest of the argument then follows inverting the arguments above.

It is clear from the definition that this will be a distributive lattice homomorphism. To see that
it also preserves pseudo-negation one can see that:

3

F(Ja* = F(ah)

=1 =1

S
Il
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Thus we can capture the following universal property of the distributive envelope, analogously
to the work of Gehrke and van Gool, and which we will need later:

Corollary 6.1.26. If O is an ortholattice, and f : O — D is a map to an orthonegated lat-
tice, preserving meets, admissible joins and the orthonegation, then there exists a unique map
g: D"(O) — D such that f = goi, wherei: O — D"(O) is the natural inclusion.

Proof. Simply note that the universal map given above will, according to the previous lemma, lift
to a map preserving the pseudo-negation. |

For future use, we also note an extra fact about categorical constructions and admissible ho-
momorphisms:

Proposition 6.1.27. Let O and O’ be ortholattices, and D and D’ distributive lattices with a
pseudo-negation:

1. Let f: O — O be a surjective homomorphism of ortholattices. Then f is admissible.
2. Let f: O — [[;c; Oi be a subdirect embedding. Then f is admissible.

Proof. First we show (1): suppose that \/ M are some elements in O which form an admissible
join, and let ¢ € O be arbitrary. Then by surjectivity, ¢ = f(d) for each d € D. Hence:

(\ fm) ne=(\/ f(m) A f(d)

meM meM

— 7\ M) n d)
=f(\/ m A d)

meM

\/ fm) A f(d)

meM

Where the equalities follow from the admissibility of M and.

To see (4) we use a similar argument. Suppose that M is an admissible subset. By subdirectness,
for each 7 € I, m; o f is surjective. Hence, using the same argument as above coordinatewise will
get us the result. [ ]

Having these results, one is left with some natural questions. One line of inquiry runs as follows.
Given an orthonegated lattice (D, ), one can look at:

D, ={aeD:a=a"t}

we can show that this is an ortholattice. This is essentially by the same arguments as in Proposition
5.3.12, where the conditions of an orthonegation ensure that D satisfies the equations of an
ortholattice. It it not hard then to conceive of this yielding a translation between orthologic and
some logic of orthonegated lattices. So we can ask: could such a hypothetical translation in this
setting have the above distributivisation functor as its left adjoint?

Consider the distributive lattice with a negation given in Figure 6.2:

Which we call the “2-Fork” algebra, L. Here we have that -z = y, and —y = =z, whilst
—A = —1=0and —1 = 0. Then note that x,y, 0, 1 are all —— fixed points, whilst A is not. Hence,
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Figure 6.2: 2-Fork

if we take the ortholattice of fixed points, this turns out to in fact be a Boolean algebra. In such
an algebra, all joins are admissible, trivially. However, the inclusion map cannot preserve all these
joins: since z v y in 6(L) will be 1, whilst in L it must be A. Hence there is no hope in general to
return from the —-fixed points to the original algebra through a map which preserves all admissible
joins.

A different question: we know that as a distributive lattice, D*(O) can be Booleanised. Since
we know that the elements of D" (O) are finite unions of elements from O, we also know the shape
of the elements from B(D”(0)) - they are finite unions of finite differences of elements from O.
This is justified by, up to isomorphism, such elements being the clopens from the slim orthospace.
However, there is no general guarantee that given an arbitrary clopen U, U+ is clopen as well. In
other words, we do not know whether the orthonegation of D" (O) can be extended to B(D"(0O)).
This leads us to the following definition:

Definition 6.1.28. Let O be an ortholattice. We say that O is compatible if whenever U € Yg is
a clopen subset, then U~ is clopen as well.

In essence, this implicit question is, as we will see, intimately related to the question of how we
can extend the expressive power of a logic of ortholattices by some operations. In the next sections
we take a closer look at this question.

6.2 Orthoimplicative Systems

In this section we tackle the question of providing an algebraic structure which captures the
notion of a compatible ortholattice in an algebraic way. As we will see, the underlying description
is quite complicated, and requires heavy use of admissibility of specific joins. We do this essentially
by providing a structure, which we deem an orthoitmplicative system, which is deeply related to
Weak Heyting algebras. Indeed, readers familiar with [13] will notice our proofs are essentially
more complicated versions of the arguments found in that paper.

Additionally, the logical complexity of the class is somewhat unusual, in that these are “Induc-
tive Rule” classes, i.e., axiomatised by Il first order formulas. The latter have recently received
attention in [2], in the effort to axiomatise a calculus for compact Hausdorff spaces; our work here
relies heavily on these ideas.

To motivate our developments, we recall that the quest to find an adequate implication connec-
tive has long marked research into quantum logic (see [14, Chapter 14] for an extensive discussion).
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Most interest has focused on term-definable implications, though recent work has started to focus
on signature expansions [27]. The key difficulties seem to be that the desiderata for implications
are in many senses conflicting: one would want the implication to satisfy the residuation laws, as
in the intuitionistic setting, but this is known to bring us back to Boolean algebras. Already in
1981, Dalla Chiara in [18] noticed that the Kripke semantic approach to ortholattices allowed for
another connective, modeled as:

U - V)

Where U and V are propositions, and []is the induced operator from the non-orthogonality relation.
This was noted to have many if not all of the properties which were desired in such an implication;
however, this was, as far as we are aware, not pursued further.

As it turns out, our goal to capture compatible ortholattices turns out to be the same as
providing an axiomatisation of this implication relation, and its close relatives. Given the intricate
nature of the technical details, we focused on keeping in the main text only the crucial details, and
as before, direct the reader to the Appendix, where full proofs can be found.

Throughout, as before, we let R denote the non-orthogonality relation on any orthospace under
consideration.

Definition 6.2.1. Let O = (O, A, Vv, (—op)new,™ , 0, 1) be an algebra with a family of implications.
We say that O is an orthoimplicative system if it satisfies:

1. (O, A, v,t,0,1) is an ortholattice.

2. For each n, a —o, (0,...,0) = a*

3. a —op (by, ... b)) < a —op41 (boy vy b, €)

4. a —op (a,bgy...,bp—1) =1

5. a—op (bo, -, bn) A @ —om (Co, vy Cm) = @ —onxm (bi A ¢j)(ij)enxm

6. (a v b) —om (b, ....bm) < a —op, (boy oy bin) A b —om, (bo,y ...y b))

7. a —o (bycoy .y Clhm1) A b —op, (doy ooy dm) < a —pim (doy ooy dimy Coy ovey Cl—1)

8. an(a—o1b)<h
9. a —opyi1 ((a—o (bgy ... bp)) L, bg, .o by) = 1
10. For each i < n, a —op (b, ...; bi, bit1, ..y bn) = a —op (b0, -.ey big1, b3y ooy by).
11. For each n, a —on41 (¢,¢,bg, ..oy bp—1) = a —op, (¢, b0, ...y bp—1)
As well as the admissibility axioms:

e (Al) Whenever \/ M is an admissible join, then (\/ M) —on, (bo,....bm) = Nypepr @ —om
(bo, vy b,)

e (A2) Whenever C = {co, ..., ¢y} and D = {dy, ..., dy} are such that ¢; = \/;?:1 ¢; A dj and this
is an admissible join, then for all e € O:

e —op, (C(), ...,Cn) < e —ok (do, ,dk)
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e (A3) For all a, by, ..., b, if a —of, (b, ...,b,) = 1 then a = \/f:1 a A b; is an admissible join.

Example 6.2.2. Let B = (B, A, v,—,0,1) be a Boolean algebra. Then for each n, and each
a, by, ...,b, € B let:

a —op (b, ...y bpy) == —a v by v ... v by,
Then B is an orthoimplicative system. Note that in this setting, the admissibility axioms are trivial,
since every join is admissible.

Example 6.2.3. More generally, let O be a compatible ortholattice. Then by slim orthospace
duality, Yo is such that whenever U is clopen, U™ is clopen. Then define, for a, by, ..., b, € O

o(a —op (boy v, b)) = r(—p(a) U v(by) U ... U p(by))

where —p(a) = Yo — ¢(a) and [JrZ = {y : Yw(yRw implies w € Z}. Then (O, (—op)new) is an
orthoimplicative system.

The latter example is the example which guided our definitions, and as we will see, it encom-
passes all possible orthoimplicative systems.

Some remarks are in order. The former is, as the reader might suspect, obtained from the
axioms of a Weak Heyting algebras by essentially splitting the right coordinate of a Weak Heyting
implication into infinitely many connectives. Moreover, the former axiomatisation is not equational,
due to the admissibility Axioms. (A3) is essentially a collection of quasi-equations, whilst (A1) and
(A2), through a more careful writing, can be seen to be collections of Iy formulas, indeed, so-called
special Horn Formulas: for example, (A2) says, for every n:

Yo, ..., Cn, do, ...,dk,e((ci = \/Ci A dj & Vf(f A (\/ Ci N dj) < \/(f A G A d])))
= e —op (Coy..., Cn) < € —op (dp, ..., dg))

We will later take stock of this situation. For now, we first define the following relation between
filters:

Ty < Vnew,Va,bg,...bn,a —o, (by,....0p) €z and a €y = Ji<n,b €y
One can then show the following;:

Proposition 6.2.4. Let O be an orthoimplicative system. Let Yo be the dual slim orthospace.
Then:

p(a —op (bo, ..., b)) = Or(—p(a) U (bo) U ... U p(br))
Proof. See Appendix. [ |
We also have that the relation T" as defined above is simply the relation R:

Proposition 6.2.5. If O is an orthoimplicative system, and Yo is the dual slim orthospace, then
T is reflexive and T = R. Hence p(a —of, (bo, ..., bx)) = (¢(a) — @(bg) — ... — p(bp))*
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Proof. (1) First suppose that a —o,, (bo, ...,b,) € y and a € y. By Axiom 9, we have that:

a —ont1 ((@ —o (bg, ... bp))E b, ooy by) = 1

By (A3), then:

n

\V(anbi) v (an(a—o (b, bn))")

i=1
Is an admissible join. Hence either one of b; € y, or (a — (bo,...,b,))" € y; but since (a —o
(bo, ..., bn)) € vy, the latter would be a contradiction. So there is some i such that b; € y, as intended.
Thus, we conclude that yT'y.

(2) First suppose that zTy. Assume that a € x. Then if at € y, for any of the equivalent

definitions of a*, then since:

at =a—0

This would imply that 0 € y, a contradiction. So a' ¢ y. Hence zRy.
Conversely, assume that xRy, and a —o,, (bg, ..., b,,) € x, and a € y. Now, because xRy, we have
that (a —o, (b, ...,bn))" ¢ y. By Axiom 10, we have that:

a4 —Op+1 ((CL —©n (bﬂa ey bn))L) bﬂa ey bn) €y
So since by (1), yT'y, we must have that for some 4, b; € y. This was to show. |

With these facts, we can show that the notion of orthoimplicative system axiomatises the com-
patible ortholattices. First, note that in light of the above, if an ortholattice admits an orthoim-
plicative system structure, it does so uniquely: if O was an ortholattice with two orthoimplicative
structures, by duality they would yield two relations Ty and 77. In light of the above proposition,
To = R = T1. Hence, by duality, the derived operators [z, and [J7; must be the same, mean-
ing that the actions of the arrows must agree. Moreover, orthoimplicative systems are intimately
related to special classes of Weak Heyting algebras:

Definition 6.2.6. Let H = (H, A, v,—,0,1) be a Weak Heyting algebra. We say that H is a
WH-symmetric algebra, if H satisfies the reflexivity axiom, as well as:

a<(a—btub

This allows us to prove the following characterisation theorem, which ensures that these are the
appropriate notions to work with:

Theorem 6.2.7. (Characterisation of Compatible Ortholattices) Let O be an ortholattice. Then
the following are equivalent:

1. O admits an orthoimplicative system structure.

2. D" (0O) admits a unique WH-symmetric algebra structure, with the dual relation being given
by the non-orthogonality relation.

3. O is compatible.

Proof. See the Appendix. |
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For orthoimplicative systems, we can moreover explicitly describe the implications, using the
distributive envelope structure: if O is such a structure, then for each a, b, ..., b; € O:

a —o (bg, ..., b) = \/{ceO:aécLuboy...ubk}

Indeed, the symmetry axiom ensures that a —o (bg,...,b;) < \/{c€ O :a < ¢t Uby U ... U bi}.
Conversely, if a < ¢ U by U ... U by, this means:

p(a) < (e) Up(b) U ... U p(by)
Hence:
p(a) — o(bo) — ... — p(br) S (c)*
And so:
o(c) < (pla) — @(bo) — ... — p(br))" = @(a =y, (b, -.., by))

Which establishes the equation.
We saw in Proposition 6.1.26, that the distributive envelope enjoys a universal property. It is not
hard to see that this extends to orthoimplicative systems and their corresponding WH-envelopes.

Corollary 6.2.8. Let O be an orthoimplicative system and D a WH-symmetric algebra and f :
O — D an admissible map such that:

k
fla —ox (bos - b)) = fla) — | £(03)
izl

Then there is a unique WH-homomorphism f : D*(O) — D extending f such that f oi = f where
i: O — D"(O) is the inclusion.

Proof. We already know that the lift f is a homomorphism of distributive lattices. Now given
U§:1 a; and Ule b; note that:

— k k i r )
FUa— ) = () Fla — J o)
i=1 1=1 i=1 =1
k
- ,ﬂ?(az —op (bo, -, b))
z;l
= ﬂ f(a; —ok (bo, ..., by)
2:1 .
- ﬂ f(a;) — U f(bi)
i=1 i=1
i k
— U f(a;) — U f(bi)
i=1 i=1
This was to show. -

We now look briefly at general questions of duality for this setting.
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Definition 6.2.9. Let Y be a slim orthospace. We call (Y,T'), where T'C Y x Y is a point-closed
binary relation (i.e., for each x € Y, T[z] is closed), an ezpanded orthospace. We say that an
expanded orthospace is full if T = R and additionally, whenever U is clopen, then U is closed.

The former definition is motivated by the following fact:
Lemma 6.2.10. Let X = (X, <, R, 7) be an orthospace and U < X a closed set. Then U~ is open.

Proof. Suppose that z € U. Then for each y € U, by the separation axioms of orthospaces, there
is some W, , such that x € W, , and y € Wiy, where W , is a clopen regular. Hence:
v W,
yelU

Since U is closed, by compactness, we can extract a finite subcover, i.e:

UcWi .. .oWt

Z,Y0 Z,Yn

Hence, Wy yo N oo. 0" Wy yy, © U+, which is an open set, and x € W, o n...n W, . This establishes
that U~ is open. |

As far as the converse proposition — that whenever U is open, then U' is closed — we see that
the above proof carries out under the additional hypothesis that U is regular. The general case
appears to require further analysis.

We recall that an orthospace morphism f : X — X' is called strong if it satisfies for all z,y € X:

e R-forth: if xRy then f(x)Rf(y)
e R-back: f(z)Ry implies that 3z, xRz and f(z) =y

For orthoimplicative systems, strong orthospace morphisms are indeed the right duals to ho-
momorphisms:

Proposition 6.2.11. Let f : O — O’ be a homomorphism between orthoimplicative systems.
Then f~!: Yo — Yo is a strong orthospace morphism. Conversely, if g : Y — Y’ is a strong or-
thospace morphism between full orthospaces, then g=! : RClop(Y”’) — RClop(Y") is a homomorphism
between orthoimplicative systems.

Proof. See Appendix. |

We conclude with some logical problems associated to this class of structures. The axioma-
tisation we have given of orthoimplicative systems uses Ils-formulas which are also special Horn
sentences. This is outside most classical formalisms dealing with algebraic logic and universal
algebra, but has not gone undiscussed. Notably, work related to the symmetric calculus of subordi-
nation algebras [2] and some specific investigations of these structures [3] have marked some recent
analysis of such settings. This setting is also a particularly well-behaved (in being Ils) fragment
of so-called geometric theories, heavily studied in categorical logic [17] and more recently in proof
theory [54].

We begin by recalling some classic concepts from model theory:
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Definition 6.2.12. Let ¢ be a first order formula. We say that ¢ is a Horn formula if ¢ is in
prenex normal form and:

k
¥ = QOwOann( & ¢z)
=1

Where each @Q); is a quantifier, and ); is a formula of the form:

X0V ... V Xn
in which each y; is atomic or negated atomic, and at most one y; is atomic.

Definition 6.2.13. Let ¢ be a first order formula. We say that ¢ is a Special Horn formula if it

is of the form: .
& VT (pi — i)
i=1

where each ¢; is positive, and each ; is atomic.
Proposition 6.2.14. Let K be an elementary class (of algebras). Then:

e K is axiomatised by Horn formulas if and only if it is closed under reduced products.

e K is axiomatised by special Horn sentences if and only if it is closed under subdirect products.
Proof. See for instance [15, pp.418-419]. |

Since we are mostly interested in equational classes of orthoimplicative systems, we would
want to work with something approximating varieties. However, naturally, the fact that we carry
three inductive rules with us implies closure under homomorphic images or subalgebras cannot be
expected in general. The notion we are looking for is that of a relative variety:

Definition 6.2.15. Let K be an elementary class of algebras, and S < K another class. We
say that S is a relative variety with respect to K, if S is closed under subdirect products and
homomorphic images which belong to K.

Given a theory T in first order logic, We say that S is a relative equational class with respect
to T, if there exists a collection of equations @ in the language, such that for each A a model of T',
A € S if and only if A = ®.

Note we work with subdirect products, rather the more usual subalgebras and products combi-
nation, in light of Hall’s theorem (see preliminaries), and in light of the pathologies associated to
subalgebra embeddings, such as the fact that they may not be admissible. We make the connection
explicit in the case we are interested in. We recall a small universal algebraic fact:

Lemma 6.2.16. Let K be any class. Then for some cardinal &, if | X| > &, then Fg(X) € IPg(K).
Proof. See for instance [12, Theorem 11.11]. [

Theorem 6.2.17. The collection A o(OIS) of relative varieties of orthoimplicative systems forms
a complete lattice. This is dually isomorphic to A(OIL), the lattice of relative equational classes,
relative to the axtomatisation given above.

95



Proof. First we show that a class is a relative variety if and only if it is a relative equational
class. The if part is clear: if K is a relative equational class, then since subdirect products and
homomorphisms preserve equations, we have that it is a relative variety. For the converse, we use
a standard argument, together with the lemma above. If K is a relative variety, then consider:

Eq(K)

The set of equations satisfied by all members of K. Then clearly if A € K, A = Eq(K). Now if
B is an orthoimplicative system, assume that B = Eq(K). Let  be a sufficiently large cardinal to
satisfy the former lemma, and X a set such that | X| = max(|B|, k). Hence, let

f:X >B

be an arbitrary surjective map. By the universal mapping property, f has alift to f : Tm.,,,(X) —
B. Since B = Eq(K), then this factors through the algebra Fg(X), i.e, there is a surjective
homomorphism g : Fg(X) — B. By the above lemma, we have that Fg(X) € IPg(K), and by
assumption the class is closed under subdirect products. Hence we have that B is a homomorphic
image of that algebra, ensuring that B € K by closure under homomorphic images. |

We have thus laid all of the groundwork for our return, in the next section, to the relationship
between Ortholattices and KTB. We close this section with some remarks about compatibility of
ortholattices and the naturality of the structures so discussed.

What we have proved in this section is that we can axiomatise compatibility in a stronger
signature, but have not discussed how such structures can be found in ortholattices. It is obvious
by the notion of compatibility that finite ortholattices will be compatible, and it can be shown that
compatible ortholattices are closed under products (See Appendix), though we have not managed
to prove or refute closure under homomorphic images or subalgebras.

However, it might be that many natural structures will admit an orthoimplicative system struc-
ture. As an encouraging example, the most paradigmatic orthomodular lattice — the lattice of
closed subspaces of a Hilbert space — can be seen to admit an implication satisfying the equational
axioms above, using the explicit definition we outlined. We leave the details of whether this means
such a lattice forms a genuine orthoimplicative system, and a proof that such a space indeed forms
a compatible ortholattice, for further work.

6.3 Orthoimplicative Logic and Sober KTB

In this brief section, we outline how the structures we met in the previous section can be
described logically. We show that such systems are conservative over many classes of orthologics —
such as those with the FMP — which ensures that our results still extend those of Miyazaki. We then
explain how the developments of the previous chapter can be paralleled in the case of KTB, and
construct a calculus for KTB, where the models are exactly the soberly generated KTB-algebras.
We discuss logical admissibility of IIs-rules, and provide natural examples of KTB-extensions which
are conservative (such as the whole logic KTB)) and others which are not (such as tabular logics
generated by non-sober KTB frames).

Definition 6.3.1. Let Loss be the language consisting of (A, (—op )new, 0,1). We say that O, a set
of pairs (¢, 1) of formulas in Tmg,, (VAR) is an orthoimplicative logic if:
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1. O is an orthologic;

2. For each axiom from 1-11 of an orthoimplicative system, of the form A ~ v, O contains the
pairs (A,7) and (v, A);

3. O is closed under uniform substitution.
4. O is closed under the admissibility rules:
(a) For each finite subset @, if for each formula ¢, (\/ @) A ¥ =V cq ¢ A ¥ (we say that @
is admissible) then \/ ® —oy, (b, ..., bm) = Ao © —om (b0, --m )

(b) For each pair of finite subsets ® and W, if ¢ € ® is such that ¢ 4 \/ ey ¥ A ¢ and @
is admissible, then for each x x —on (©0, ..., on) = X —ok (Yo, ..., Vi).

(c) For all o, g, ooy Y i T~ 0 —on (10, s ) then o —- \/ g YA and {ngp : ¥ € T}

is admissible.
Where we write ¢ o ¥ to mean, as usual, (¢,v) € O.

It is trivial to see that arbitrary intersections of OIL (Orthoimplicative Logic) will again be
OIL. More interestingly, the Lindenbaum-Tarski techniques can still be applied.

Lemma 6.3.2. Let Tm,,,,(VAR) be the term algebra on the signature of orthoimplicative sys-
tems, and O an orthoimplicative logic. Then F(VAR) := Tmg,,,(VAR)/ =0, the algebra quo-
tiented by the equivalence relation generated by interderivability in the logic, is an orthoimplicative
system.

Proof. First notice that with this definition, =¢ is still a congruence of the algebra. We know this
will be an ortholattice, and by usual arguments, it will be clear that it will satisfy axioms 1-10.
The fact that it satisfies the admissibility axioms follows from the admissibility rules. We prove
(A1), and the arguments for the others are wholly similar.

Suppose that \/[®] is an admissible join. Hence, for each 1 a formula, we have that:

Hence, since the relation is a congruence:

[\ @) vl <[\ @l

ped

Hence, this means, by the lattice structure:

\/<I)A1/J|—\/g0/\w

ped

Since this holds for all v, by the Al-rule, then we get that:

[\/ @ —om (bo, -, bm)] = [ /\ @ —om (b0, ..., bm)]

wed
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To provide an algebraization result, we make use of our work from last section:

Lemma 6.3.3. Let O be an orthoimplicative logic. Then Var(O), the class of algebras validating
this, is a relative variety of orthoimplicative systems.

Proof. Immediate, since such a logic will extend the basic orthoimplicative logic by some sequents
of the form (p,%), and these are simply equations of the form ¢ A 1) = . [

Corollary 6.3.4. Every orthoimplicative logic is sound and complete with respect to the relative
variety of orthoimplicative systems validating the logic.

We now reserve the symbol OIL for the minimal orthoimplicative logic. We also note the
following fact connecting orthologics and orthoimplicative logics:

Definition 6.3.5. Let O be an orthoimplicative logic. We define O, the orthologic reduct, to be:

0 :={(¢,x) : p,x € Tmz,(VAR), (p,x) € O}.

It is clear by definition that every orthoimplicative logic is conservative over its orthologic
reduct. Conversely, given an axiomatic extension O @ T', where T is a collection of ortholattice
formulas, we can consider OIL@ T. Then we get the following:

Corollary 6.3.6. For each orthologic O = O @ T, Var(O) is a variety generated by compatible
ortholattices if and only if OIL@® T is conservative over O.

Proof. The left to right direction of this is clear. Conversely, suppose that OIL @ T is conservative
over O@T. Then for each (p,¢) ¢ ODT, let A, be an orthoimplicative system satisfying OIL@® T
but not (¢,1). Consider S = {A, : (p,v) ¢ OIL@® T} be the collection of ortholattice reducts of
these structures. Then look at the orthologic of S. If (¢,%) € O, then (¢, ) € OIL@ T, hence it is
valid on all A,; conversely, if (¢,1) ¢ O, by construction this fails in some A,. Thus, Log(S) = O,
so the variety of O is generated by S. |

We now move to a discussion of sober KTB algebras and their logic. Recall that in Chapter 5 that
we showed that the Goldblatt translation could not be full by showing that there were two logics
which both mapped to the same logic - namely, two logics generated by different representations of
Benzene. There, we claimed that in Figure 5.4, the right hand side was the maximally sober frame;
it is now not hard to see that the left hand side is the minimally sober one, i.e, the slim orthospace
dual. If we want to pick only the minimally sober ones, it turns out it is enough to require closure
under a collection of Ils-rules:

Definition 6.3.7. Let (B,[]) be a KTB algebra. We say that B is sober if it satisfies the following:

e (KTB-sob) If M = {my, ..., my} is a subset of B such that for all b € B:

00 \/ 00m) A 00b < 0(\/ 00m A [0¢)

meM

Then DO \/meM \:‘Om = \/meM Dom
Lemma 6.3.8. Let B be a sober KTB algebra. Then:
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1. Op embeds into B through a map which preserves meets and admissible joins.
2. X4 is a slim orthospace.

Proof. (1) is clear: the fact that the inclusion preserves meets is obvious by definition of Og, whilst
preservation of admissible joins follows from the rule KTB-sob.

To see (2), let [x] € X};. We will show that this is a quasi-prime filter with respect to O. So
let \/ M be admissible in Og, and assume that \/ M € [z]; by (1), then, i(\/ M) € B, the mapping
through the inclusion, sends this to | J,,c,, m understood as an element of B. Since \/ M € [z],
then by definition [(JO(|J M) € x; but by assumption, | J,,.,; m = OO M), hence, there is some
m € M such that m € [x]. This was to show. [

The former thus repairs one of the issues we had found with the previous situation in KTB:
we could start with a KTB algebra, turn it into a KTB space, translate it into an orthospace, and
then obtain the induced ortholattice; but if we took the dual of that ortholattice, the orthospace
obtained need not be the same. Since we know that slim orthospaces are unique, and minimal, this
cannot happen for sober KTB algebras.

Definition 6.3.9. Let K be a class of KTB algebras. We say that K is sober if all B € K are
sober.

We note that again, given the underlying formula is a special Horn sentence, the class of
sober KTB algebras will be closed under subdirect products. Moreover similar arguments to those
sketched in the previous section yield:

Proposition 6.3.10. There is a dual isomorphism between the lattice of relative varieties, relative
to sober KTB algebras, and relative equational classes relative to the theory of sober KTB algebras.

Moreover, adding the admissibility rule to the calculus of KTB yields a logic, which we denote
KTB?. Using similar arguments to those of this section, we have that the relative varieties are dual
to the logics extending KTB?®. Hence we have a perfect parallelism between orthoimplicative logic
and sober KTB logic, which will be the focus of our next, and last, section.

Before that, we turn to a natural question which is better discussed in the setting of KTB sober
algebras, given the availability of tools and literature. The rule we just added states, explicitly, for
a given logic L:

e If M is a subset which is admissible, in the sense that for each 1 we can prove that:

Fr (\/ T0x) A 00y — T0(\/ D0x A T0%)

xeM xeM

then:
Fo 00\ 00x) < \/ O0x

xXeM xXeM
Now we note the following which uses similar ideas to Corollary 6.3.6:

Lemma 6.3.11. Let L € NExt(KTB) be arbitrary such that L = KTB@® 7. The following are
equivalent:

e Var(L) is generated by sober KTB algebras;
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o [ =KTB®*@®T is conservative over L
e The KTB-sob rule is admissible in L.

Proof. The equivalence of (1) and (2) is essentially as in the above corollary. Now we show that

(1) implies (3): assume that we have (\/xeM O00x) A 0y — DO(\/X€M C0O0x A [O0Y). Let

A e Var(L) be a sober generator. Then for each valuation v:
A (\/ O0v(x) A T0v(w) - T0(\/ T0v(x) A T0v(w)) ~ 1
XEM xeM
Hence by definition in A:
(\/ O0v(x)) A D0v(¥) <T0(\/ D0v(x) A T0v(%))

xXeEM xXeEM

Since this holds for all valuations, given any valuation v, we can let p’ be a proposition letter not
ocurring in any x € M, and let v'(p’) be any element in A, with the same result. Since A is sober,
then:

\/ 0v(x) = O( \/ 0v(x))

xeM xXeEM
Hence, since the sober elements generate Var(L):
Fr\/ O0x < 00(\/ 00x)
xeM xXeEM

This was to show.
Conversely, assume that the KTB-sob rule is admissible in L. Then KTB*® T = KTB® T,
since we know that no application of the rule can yield new theorems. Hence (3) implies (2). W

These rules can be put into a very specific shape, as discussed in [2, 3]:

Definition 6.3.12. A Ils-rule is a rule of the form:

() F(p/Z,p) — X
G(p/z) = x
Where F(Z,p), G(T) and x are formulas, possibly with open variables, in the language of modal
algebras.

To see that our KTB rules are of this shape, consider the following formulas

F(x0, -, xn,y) = 00(\/ T0w:) A 00y — T0(\/ D02 A [0y) and
i=1 =1

G(x0, ..., Tp) = DO(\/ 0z;) < \/DQ%‘
i=1 i=1

In [3], a series of techniques were used to recognise admissibility of IIp-rules. We recall one
of the ones used. For it, recall that a modal logic L is said to have the interpolation property
if, whenever -7 ¢ — 1, then you can find a formula y € Lang(¢) n Lang(v), (where Lang(x)
denotes the set of all terms involving variables from x) the shared language, such that 7 ¢ — x
and - x — .
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Theorem 6.3.13. Let L be a modal logic system with the interpolation property. Then a Ila-rule
p as above is admissible if and only: whenever -1 F(p/x,p) n G(p/x) — x then 1 G(p/x) — X.

Proof. See [3, Theorem 3.2]. [
We apply this theorem to our case:

Corollary 6.3.14. Let L € NExt(KTB) be a system with the interpolation property. Then the
KTB-s0b rule is admissible in L.

Proof. Assume that -1, F(@,p) A G(¥) — X, for some x and , where these formulas are the ones
defined above. Let A be an algebra in Var(L), and v any valuation. Now, by assumption, then:

A= F(p,p) A G(®) — X

Now, notice that in A, for any valuation, G(¢) < F (%, p): indeed, if the join is distributive, then
the statement of F' follows, regardless of the value taken by the extra parameter. Hence:

AvEG®) —x
This shows conservativity. Hence by Theorem 6.3.13, we have that L admits the rule. |

Corollary 6.3.15. The variety of KTB algebras is generated by sober KTB algebras.

With these preliminaries, we are ready to tackle the question of the relationship between ortho-
logic and KTB logic.

6.4 The Goldblatt Translation Revisited

Definition 6.4.1. Let Lprg be the language of orthoimplicative logic, and Lxrp the language of
KTB logic. Define the second Goldblatt translation as follows:

1. Ga(0) =

Q

(
2. Go(p) = [JOp for any proposition p;

3. Ga(p A ) = Ga(p) A Ga(¥)

4. Ga(p —on (Yo, -, ¥n)) = O(—G2(p) v G2(o) v .. v Ga(¢n))

From this translation we obtain the semantically equivalent clauses Go(p*) = [J—Ga(p) and

Ga(p v 1Y) =0(Ga(p) v G2(¥)). Let © = {x ~ [J0z}. Then we have:

Proposition 6.4.2. The tuple (G2, ©,[]0) satisfies the conditions of being a contextual translation
between the relative equational consequence of orthoimplicative systems and sober KTB algebras,
and has a selector term.
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Proof. 1t is not hard to see that the © equations are compatible with the equational consequence,
and the proposed term is a selector. Moreover, the translation is contextual: if Gao[®] ¥ Ga(\) ~
G2(), for some collection of equations PU{A ~ v} in the language of orthoimplicative systems, let B
be a sober KTB algebra witnessing this. Then by arguments we have seen before, Og = {a : [10a},
equipped with the induced operations, is an ortholattice with an implication which refutes the
equation in some valuation. Moreover, we have that Op is orthoimplicative, because B is sober
and in KTB: if \/ M is an admissible join in Og, by definition, then (J0(\/ M) is admissible in
B; hence \/ M = | JM, whereby the axioms (A1) and (A2) follow as easy properties of Boolean
algebras with modal operators. Axiom (A3) as well as Axioms 8 and 9 follow from the fact that
the modality is symmetric and reflexive. |

Our work in the previous chapters now allows us to explicitly describe the adjunction which is
related to this translation.

Definition 6.4.3. Let OIS be the category of orthoimplicative systems with implicative maps, and
KTBsob the category of sober KTB algebras with admissible homomorphisms. Let KTBSsob be
the category of sober KTB spaces with p-morphisms, and OrtS be the category of slim orthospaces
with strong orthospace morphisms. We define a functor:

0 : KTBs — OIS
Which takes B to Og, and acts as the restriction on maps. Similarly, we have its dual:
0* : KTB — OrtS

Which takes a sober KTB space X to X*, and acts as the induced map on maps.

We also define a functor:
BD(—) : OIS — KTBsob

Which on objects takes an orthoimplicative system O to the Boolean envelope of D" (0O), its
distributive envelope, and on maps, takes the unique lift of all maps involved. Dually, we have:

BD* : OrtS — KTBSsob

Which acts by sending a slim orthospace to its Boolean space reduct, and acts as the identity on
maps.

We have already studied the maps 6 and 6* and have that they are duals by Proposition 5.3.17
and Lemma 6.3.8. We will thus concentrate for now on showing that the other two maps are
well-defined functors and that they are duals of each other.

Lemma 6.4.4. The maps BD and BD* defined above are well-defined functors. Moreover, we
have that:

e If O is an orthoimplicative system, then Xgpoy = Clop(BD*(Yo))

e If Y is a slim orthospace, then Clop(BD*(Y')) = BD(RClop(Y))
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Proof. First we show that BD is a functor. Given O, note that BD”(0O) is a well-defined Boolean
algebra. By what we proved in Section 5.1, and facts mentioned in the preliminaries, BD" (O) will
be isomorphic to the set of clopens of Yp. Hence its elements are of the form:

k
a= /\ci v —d)v..v—d
i=1
where ¢;, df € O. Hence we define:

k
Lla = /\Ci —y (dg, ,dg)
i=1

We have that [ will be a symmetric and reflexive modality (since the relation R is reflexive and
symmetric), hence, it is a KTB algebra. Dually, the space Yo seen as a Boolean space with the
non-orthogonality relation R, is a modal space, since R is point closed, and when U is clopen in
Yo, (U is clopen (and regular).

It is clear to see that the proposed definitions on maps make BD and BD* into functors. Now
suppose that O is an arbitrary orthoimplicative system. Then by what we just mentioned, BD(O)
is isomorphic to the clopens of Yg. The second statement is similar. |

We now consider two candidate maps:

Definition 6.4.5. Let no : O — 0(BD(0)) be the map sending a € O to a € §(BD(O)) for O an
orthoimplicative system. Let eg : BD(60(B)) — B be the unique map induced by the inclusion of
6(B) into B.

Lemma 6.4.6. n and ¢ are natural transformations. Moreover, 7 is a natural isomorphism, and &
is pointwise injective.

Proof. The proof of naturality is straightforward once we show the remaining facts (for n this is
trivial, since it is an isomorphism, and for ¢ this follows from the universal property of Booleanisa-
tion and Distributivisation). To see that 7 is a well-defined isomorphism, note that if a € O, then
a € BD"(0), and moreover, [J0a = a'* = a. Moreover, if a € BD"(0O) and a = [10a, then by
duality, ¢(a) is a clopen regular in BD*(Yp); but by construction, then a € O. Hence we have that
7 is bijective, and it is clearly a homomorphism.

To see the statement for e, consider i : §(B) — B the inclusion. Since B is sober, this inclusion
preserves all meets and admissible joins. Hence, by the universal property of the distributivisation,
there is a unique lift i : D*(6(B)) — B which is injective, since i was injective. In turn, as proved
in the preliminaries, this means that there is a unique lift 7 : BD"(0(B)) — B which is again
injective. This is what we define ep to be, and hence the result follows. |

With this we can now show that # and BD form an adjunction:

Theorem 6.4.7. The maps BD : OIS — KTBsob : 0 form an adjunction, where moreover
BD preserves injective maps, € s pointwise injective, 6 preserves surjective maps and n is an
isomorphism.
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BD(0) 2" Bp(9(BD(0)))

\ \LEBD(O)
1gp(0)
BD(O)

Figure 6.3: Left Adjoint Triangle Identity

Proof. To see this forms an adjunction it suffices to check the triangle identities on the maps 1 and
€. To see that:

Simply note that by uniqueness of the map £pp(0), and the fact that 7o is an iso, we have that
Igp(o) © (BD(no))~! = €Bp(0), Which immediately yields equality.

Similarly, to see as in Figure 6.4:

No(B)
—

0(B) 6(BD(0(B)))

h |otce)

6(B)
Figure 6.4: Right Adjoint Triangle Identity

Note that if a € 6(B), then nyy(a) = a, and since the counit maps is an inclusion, f(¢p) o
no(sy(a) = a. n
Hence, we have that the extended Goldblatt translation is sober, in the sense developed in
Chapter 4. Hence, carrying out minimal changes for the case of relative varieties, we get a theory

of companions for this setting, and a Polyatomic Blok-Esakia theorem. We briefly spell out what
this amounts to, where proofs will proceed exactly as in Chapter 4:

Definition 6.4.8. Given an orthoimplicative logic O and a sober KTB logic L € NExt(KTB?) we
say that O is a Goldblatt companion of L if:

O (p,¥) = L Gap) > Ga(v)

We define the maps p, 7 and o on relative varieties of algebras as before; we also define the maps
p and 7 on logics, in the same way as described on Chapter 5. We denote by L9 the [JO-variant
of the sober KTB logic L. Carrying out all arguments from Chapter 4 relativised to the sobriety
condition, we then have finally:

Corollary 6.4.9. (PAt-Blok Esakia Theorem for OIL and KTBs) The following hold:
o The map p is a surjective homomorphism on varieties of algebras.

o The map T is an isomorphism between the lattice of orthoimplicative logics and the lattice of
(10 -variants of sober KTB-logics.

o The greatest Goldblatt companion of an orthoimplicative logic is the sober logic generated, as
a relative variety by:
{oc(B) :BeVar(L)}
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We thus have the sought out PAt-Blok Esakia theorem. Using the results from the previous
section, we also note that this result encompasses all of the results found in the literature: since
all varieties of ortholattices with the FMP are compatibly generated, all of them are conservatively
translated to orthoimplicative logic, and hence the second Goldblatt translation extends the first.
This recovers Theorem 5.3.10 by Miyazaki, and shows that our result is a genuine extension of the
work done so far on the theory of KTB companions.

6.5

Chapter Summary

We summarise our principal contributions in this chapter as follows:

We use the notion of quasi-prime filter to provide a new representation for ortholattices. This
is done with the novel notion of a slim orthospace, which is shown to be minimal amongst
orthospaces. This also yields a universal distributivisation functor.

We study orthoimplicative systems as algebras with natural slim orthospace duals. We provide
an axiomatisation of these using Ilo-formulas, and study the descriptions of these in model
theoretic terms. We introduce Orthoimplicative Logic, which corresponds on the logic side
to these structures.

We introduce a sober version of KTB, and discuss the context of applicability of these systems.
We discuss admissibility of the non-standard rules in this case, and show that the key rule is
admissible in the case of KTB and other systems.

We provide explicit descriptions of the adjunction witnessing the second Goldblatt translation
in the case of orthoimplicative systems and sober KTB algebras.

We show that the second Goldblatt translation is sober, and prove a Polyatomic Blok-Esakia
isomorphism between Orthoimplicative Logic and Sober KTB.
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Chapter 7

Conclusions and Further Work

In this thesis, we introduced the concepts of Polyatomic logics, and initiated a generalised
study of “Blok-Esakia theory” for a large class of translations. Building on ideas from [53] and [0],
we presented a framework for this study, outlining the concepts of selective, strongly selective, and
sober translations, developing the concept of Polyatomic logics, and proving algebraic completeness
theorems for such logics. Using these tools, we undertook a systematic study of the Goldblatt
translation, finding that it fails to induce a classic Blok-Esakia isomorphism and fails to have the
Polyatomic Blok-Esakia isomorphism. We then identified an adequate conservative expansion of
minimal orthologic — orthoimplicative logic — as well as a conservative expansion of KTB — sober
KTB — which are connected by a Polyatomic Blok-Esakia isomorphism.

The work presented provides only the basics of the underlying theory, and leaves many natural
continuations for this research. We highlight some of these below.

We did not elaborate the study of the [J{-logics associated to the Goldblatt translations, and
did not investigate many natural properties of orthoimplicative systems and their logics. Properties
such as FMP, Kripke completeness, canonicity, for both Orthoimplicative Logic and the dual [J{-
logics, would be the first natural continuation of the work presented here. We expect that standard
techniques could be adapted to this case, with the role of the distributive envelope and Weak
Heyting algebras should be emphatic in establishing these. In a similar vein, preservation results
are an important theme of the GMT translation which we did not touch on here. Whilst certain
properties follow from our results immediately (e.g., FMP and tabularity being preserved by the
maps o or p in the extended Goldblatt translation), others might require more careful analysis
(e.g., Kripke completeness being preserved by the three maps). More broadly, for other polyatomic
logics, including DNA-logic, the development of techniques like universal models and Jankov-De
Jongh formulas can be expected to provide useful insights.

Related to all of these questions, the investigation of the regularly generated sober KTB algebras
seem like a natural continuation of the research from chapter 6. The existence of a Polyatomic Blok-
Esakia isomorphism leaves open the question of whether this translation is in fact BE-translation
— that is, whether we can axiomatise the greatest companions. In this sense, we expect that the
methods from [17] could be useful in establishing possible isomorphisms, though more work is
necessary to understand the classes of sober and regularly generated KTB frames (i.e, the order
theoretic reducts of slim orthospaces).

In addition to the contributions to the study of translations, in Chapter 5 we presented a new
duality for ortholattices, which can be exploited further. For instance, we have the important
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case of orthomodular lattices — which we notably did not discuss throughout the thesis — and the
associated systems of Quantum Logic. For instance, we have that the elements of the center, that
is, those elements a € O such that for every b € O:

a=(anb)v(anbl)
are such that @ v a' is an admissible join. This implies that quasi-prime filters behave with
respect to these elements in a way similar to ultrafilters. A broad research topic would be to look
into the applicability of these ideas to the study of orthomodular lattices, modular ortholattices
and Quantum Logics, which have various longstanding open problems [11]. In a similar vein,
these methods should be applicable to modal ortholattices [11], and could allow for representations
connecting these systems with classical modal logic.

Many questions which are naturally related to those in this thesis can be asked for adjacent
translations, and we expect, can be addressed by methods such as the ones presented. One example
is the following questions: intuitionistic logic embeds into classical logic (through an inclusion), and
classical logic embeds into intuitionistic logic (via the KGG translation); orthologic embeds into
classical logic (through an inclusion); so in what way should classical logic embed into orthologic?
An intuitive idea, inspired by our Kripkean approach, is that this should somehow “collapse” the
various states representing compatible options, making the phenomenon classical. We believe that
a translation into specific modal orthologics, should be possible, so as to capture this intuition.

Finally, one could pursue a research program into Inductive Rule classes, which have the same
kind of axiomatisation as Orthoimplicative Logic. This seems like a broad setting in which to
develop algebraic logic, as its complexity is just above that of universal sentences, whilst preserving
some of the universal algebraic desiderata (notably, Lindenbaum-Tarski constructions). We expect
that a systematic investigation of this could unify and generalise many studies [58, 37, 54, 3] in
the use of rules for axiomatising non-classical logical systems, and shed new light on the expressive
power of such axiomatisations.
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Chapter 8

Appendix

The purpose of this appendix is to provide detailed proofs of some facts which are used in the
thesis, but whose proofs are either standard or quite lengthy and unremarkable from the point of
view of the main argument.

8.1 Slim Orthospace Duality

In Chapter 5, we proved the representation theorem of ortholattices inside slim orthospaces.
We can show that this is in fact a full duality, by arguments analogous to those outlined in [8],
which is what we do in this part of the appendix.

Our first focus will be on the method of working within distributive envelopes.

Lemma 8.1.1. The map ¢ defined above is a homeomorphism which preserves and reflects the L
relation.

Proof. We begin by showing that indeed ¢ is well-defined, namely, that its image is a quasi-prime
filter:

o (Filter): if U € e(x) and U < V, then x € U implies that x € V, so V € ¢(z); similar for
closure under conjunction.

e (Quasi-primeness): if (| J;_; U;)* is an admissible join, by the slim-orthospace property,
(U, Ui)* = Ui, Ui. Hence if it belongs to e(x), then z € | J;_, U;, so x € U; for some
i, i.e, U; € e(x).

Moreover, we see that it is continuous. For this it suffices to show that the pre-image of subbasic
open sets is again open, and indeed we have, for U € RClop(Yp):

e (p(U)) = {z : e(2) € p(U)}
={z:Uc€e(x)}
={z:zeU}
=U

And similar for X —U. Moreover, the map is injective: if z # y, then by Axiom 1 of an orthospace,
there is some regular clopen set U such that z € U and y ¢ U, hence U € e(x) and U ¢ e(y). It is
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1 preserving and reflecting: by Axiom 2 x Ly if and only if there is some U such that x € U and
y € UL, if and only if U € e(x) and U™t € £(y), if and only if e(x) Le(y). Finally, we have that ¢
is surjective: suppose that Yrcyopy) — €(Y) is non-empty. Let z be an element there. Since this
space is Boolean, by total disconnectedness, and the fact that e(Y) is closed, we can find a clopen
set V such that ze€ V and V ne(Y) = . By usual representations, we may assume that:

V=|]4-B-. -B"

n
%
i=1

Where A, B are all clopen regulars. Hence we may assume without loss of generality that z €
o(U) — (Vo) — ... — ¢(V3,). Hence we have that:

e eU) — (Vo) — ... —p(Va)) = &
Which implies that U < Vy u ... U V,,. Bu by Lemma 6.1.20, this means that:
e(U) —o(Vo) — . — (Vi) = &
Which contradicts the fact that z is there. [ |

Next we consider the case of the morphisms:

Lemma 8.1.2. Let f : O — O’ be an admissible ortholattice homomorphism, and g : Y — Y’ an
orthospace morphism between slim orthospaces. Then:

e f~1:Yy — Yy is an orthospace morphism.
e g1 RClop(Y'") — RClop(Y) is an admissible ortholattice homomorphism.

o (ff)t=fand (g7') =y

Proof. (1) Notice that because f is admissible, then f~! is well-defined: it surely sends filters to
filters, and moreover, if z € Yo is quasi-prime, then so is f~![z]: if \/ @ € f~![z] is an admissible
join, then f(\/a) € z, and by assumption, this is admissible as well.

It is straightforward to see that f~! is continuous. Moroever, if xRy, then f~'[x]Rf [y]: if
a € f~[z], then f(a) € x, so f(a)* ¢ y, hence a' ¢ f~'[y] using preservation of L by f. To see
the back condition, suppose that f~![z]Ry. Then look at:

Fil(f[y]) and TId({c* : c € z})
Note these must be disjoint; otherwise, for some ag, ...,an € y, f(ag) A ... A f(an) < cg V ... V i
Hence:
flao A oo Aan) < (o A e A cy)t

Hence co A ... Acpy < f((ag A ... Aap)t). Since the former is in x, so is the latter, so (ag A ... Aay)* €

f~[z]. But then (ag A ... A a,) ¢ y, which is a contradiction. So by the Quasi-prime filter theorem,
there is some z such that f[y] < z, and whenever c € x, ¢* ¢ 2. So Rz, and moreover, y < f~'[2],
as intended.

(2) To see that g~! is an ortholattice homomorphism is clear. We show that it is admissible. If
Vi, U; is admissible, then by the slim orthospace condition, this is equal to | J;_; U;. Then surely
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g UL, Uil = U, g7 [Ui] will be such that all clopen regulars distribute over it.

(3) We show this fact for f, whilst for g this is analogous. Indeed, we show that if a € O is arbitrary,
o(f(a)) = (f 1)~ Y(p(a)). Suppose that = € p(f(a)). This is true if and only if f(a) € , if and
only if a € f~!(z), if and only if f~1(x) € ¢(a), if and only if z € (f~1)"(p(a)). [

With this we have shown the following.

Theorem 8.1.3. The categories Ort® of ortholattices with admissible homomorphisms and SOrtS
of slim orthospaces are dually equivalent.

The former also allows us to prove, as claimed in Chapter 5, that slim orthospaces are minimal:

Proposition 8.1.4. Let O be an ortholattice, and X an orthospace representing O. Then Yo
embeds into X through a map that preserves and reflects the relation L.

Proof. Let x € Yp be arbitrary. Since X represents O, we can, without loss of generality, denote
its clopen regulars by ¢ (b) for b€ O. So consider in X the intersection (,., ¢(a) N[ Nye, X — @(b).
First we claim that this is non-empty. Indeed, if it were, by compactness, some finite subfamily
would be empty, i.e, ¢(ag) N ... p(an) N X —@(by) N ... n X — (b)) = . Hence:

@(ag) N ... nplan) < @(bo) U ... U ©(bm)
By the above isomorphism Lemma, we get then that in the distributive envelope:
ag A ... Nap < by u...u by

But then, we have that x contains all the a;, so it must contain one of the b;, a contradiction.
Moreover, we claim that it can contain at most one element. Indeed, if z and y are both in that
intersection, by assumption, there is some V' a clopen regular such that w € V and y ¢ V. Le,
w € ¢(a) and y ¢ ¢(a), so a € w and a ¢ y, a contradiction. Hence mapping x(z) to the unique
element is well-defined.

Notice that the argument we have given now also shows that x is injective. It is moreover continuous:
X Yp(a) = {z: x(z) e p(a)} = {z : a e x(x)} = ¢(a). And by similar arguments to those sketched
above, we see that the map preserves and reflects the relation L. |

Hence, we can genuinely talk about the space of quasi-prime filters as the minimally sober
orthospace.

8.2 Axiomatisation of Orthoimplicative Systems

The purpose of this section is to provide proofs for many of the claims on orthoimplicative
systems, which were introduced in Chapter 5. To work up to this, we will need to gather some tools
relating the distributive envelope to the original ortholattice. Throughout, given any H < D" (O),
define:

H:={acO:ac H}

We call the former the restriction of H to the ortholattice.
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Proposition 8.2.1. Let O be an ortholattice, and D" (O) its distributive envelope. Suppose that
F < O is a subset, and F' = H, where H is an upwards closed subset of D" (0O). The following are
equivalent:

1. H is a prime filter.
2. H is a filter which is prime with respect to admissible joins from F'.
3. F'is a quasi-prime filter.

Proof. (1) implies (2) since admissible joins in O coincide with the joins from D" (O). To see that
(2) implies (3), suppose that H is a filter which is prime with respect to admissible joins from O.
Then it is straightforward to see that H is upwards closed, since the order agrees, and closed under
meets. Moreover, if \/ M is an admissible join, then we know that \/ M € D”"(O) is the same
element, hence, if \/ M € H then m € H by the primeness assumption, so m € H.

Now to see (3) implies (1), note that by definition H is upwards closed. It is a filter, since if
a <|Je¢ and b < | Jd;, where these are elements from D”(O), then a A b < |J¢; A dj. Now we will
show primeness. To see that, assume that for some ag, ...,a, € F, ag A ... A ap < Ule ¢;. Since F
is a filter, write the former as a. Then consider:

k
az\/a/\cz-
i=1

Then we claim that this is an admissible join. Indeed, if e € O is arbitrary, note that:

k
6/\\/(1/\01'26/\&
i=1

By duality:
k

p(a) np(e) = | v(a) nple) mo(b)

1 i=1

=

p(e) np(a) = p(e) N

7

Since this equality holds, and ¢(e) n ¢(a) is clopen regular:

k
U ) N p(e) (b

Which by duality again yields that e A a = \/f”:1 e A a A ¢;. This shows the desired equality. Now,
since a € F', and this is quasi-prime, then a A ¢; € F for some i; so since F' is upwards closed, ¢; € F.
Hence, ¢; € H, establishing that H is prime. |

o(a N o(b;)

<w

=1

We now begin by proving some elementary properties of orthoimplicative systems:
Lemma 8.2.2. Let O be an orthoimplicative system.
e If a < b then ¢ —o (a,dy, ...,dx_1) < ¢ —ok (b,dy, ..., dx_1).

e If a < b then b —op (cq,...,cp—1) < a —ok (Coy vy Ck—1)
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Proof. Assume that a <b. ThenaAnb=a,s0c—oa=c— (aAb)=c—aAc—ob, by Axiom 5.
Next note that under the same hypothesis, we have that:

b —ok (coy ey Cl—1) = (a v b) —o (coy ..., Cl—1)
a —o

k (607 "'7ck—1) Ab —k (607 "'7Ck:—1)

N

Which follows by Axiom 6. This shows the result. |

Recall that we defined the following relation between filters:
2Ty < Vnew,Va,bg,....,bn,a —op (bo,....,0p) Ex and a €y = Ji < n,b; ey

And we also have the following relation between filters in D" (O):

n
Ty < VYnew,Va,bg,.., b, €0, a—o, (boy...,bp) exand a ey = Ub,-ey
i=1

The key tool we will use to produce prime filters is an adaptation from [13].

Definition 8.2.3. If O is an orthoimplicative system, F, X < O, we define:

n
Dp(X) = {ce D(0) : 3cg, ..ci € O, ¢ = | Jei and Y € X, Y is finite, /\ Y —o, (co, .., cn) € F}
=1

Lemma 8.2.4. For O an orthoimplicative system, X € O a subset, and F' € O a quasi-prime
filter, the following hold:

1. Dp(X) is a filter.

2. X € Dp(X)

3. (FilPON(F),Dp(X))eT

4. Dp(Dp(X)) = Dp(X)

Proof. (1) Suppose that ¢ € Dp(X), and ¢ < d. Hence for some Y € X, A Y —oi (co,....,cn) € F.
By arguments similar to Lemma 8.2.1, we have that since ¢ < d, if ¢ = | J¢; and d = U?:l d;, then

¢; < d and so ¢; = \/?=1 ¢ A dj is an admissible join. Hence, by Axiom A2, we have that:

A\Y ok (co,ver) < /\Y —om (do, ey din)

Since F is a filter, and A'Y —o (co,...,ck) € F, then AY —op, (do,....,dm) € F. So d € Dp(X) by
definition.

Now suppose that ¢,d € Dp(X), where ¢ = ap U ... Uag—1 and d = by U ... U by,—1. Then
N\ Z —o (ag,...,ai_1) € Fyand \'Y —op, (bo, ..., bj—1). By the same Lemma, then, f = AZAAY
is such that:

f —O (bo, u-;bk—l) € F and f —Om (a(), ...,am_l) eF

Hence their meet is in F'. Hence by Axiom 5, we have that f —opxpn, ((di A ¢j). Since d nc =
Ui j)ekxm @i x ¢j, this shows that d A ¢ € Dp(X) as intended.
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(2) Note that by Axiom 4, X < Dp(X) obviously holds: if a € X, then a —; a = 1, which is
in F.

(3) Let a,bg,...,b, € O and a —o, (bg,...,b,) € FilP"(O)(F), and assume that a € Dp(X).
Since FilP?"(O)(F) agrees with F' on the ortholattice reduct (given that F is a filter), we have
that a —o,, (b, ...,b,) € F. Now by definition, since a € Dp(X) there is some A\Y —o1 a € F; so
NAY —o, (bo,...,bn) € F' by Axiom 7. Hence i, b; € Dp(X) by definition.

(4) Finally suppose that a € Dp(Dp(X)). Then by assumption, there is Y € Dp(X) such
that A'Y —ok (ag,...,ar) € F. In turn, by definition, Y = {yo,...,ym}, and each y; € Dp(X).
Hence, for some finite Z; € X, we have that A Z; —o1 y;. Hence, using Lemma 8.2.2, and letting
W = AL, Z;, we have that:

W—olyieF

So, by Axiom 5, we have that W — AY € F. But then by Axiom 7 we obtain that W —o
(ag, ...,ax) € F', which implies that | J;_, a; € Dp(X), as desired. [

Lemma 8.2.5. (Existence Lemma for Orthoimplicative Systems) Let O be an orthoimplicative
system, and F' a quasi-prime filter, and I an ideal in D" (O) such that Dp(X) n I = . Then
there exists some G such that Dp(X) € G, G is a quasi-prime filter, (F,G) € T, and G n I = .

Proof. Let as usual:
P ={H < D"O): H is a filter (Fil?"©O(F),H)eT and H n I = &}

Now by assumption, and the last lemma, we have that P is non-empty, and it is easily seen that such
a set is inductive. So let H' be a maximal element in P, and let H = H’. We claim that H' is closed
under admissible joins from O. For suppose not. Then there is M < O such that M = {my, ..., my},
\/ M is admissible, \/ M € H’, and for no i do we have that m; € H'. Note that for each m; € M,
Dy, = Dp(H U {m;}) is such that (FilP"(O)(F), D,,,) € T: if a —o (by, ..., b,) € FilP?"(©O)(F), and
a € Dy,,, then by definition, for some z € H (by closure under meets), we have z A m; —o; a € F,
and hence z A m; —o1 a € FilP"(O)(F). So by Axiom 7, z A m; —o (bg, ..., b,) € FilP?"(O)(F). This
in turn implies, since F' is a filter, that z A m —o (by, ..., b,) € F', which by definition means that
Uj=1 05 € D,
Hence, for each such m;, we have that D,,, n I # . Hence for some ¢,,, € H (by closure):

Cm; A M —ok,, (€0, ..., €k, ) € F

Where i—1€j € 1. Since this is true for each m then, using repeatedly Axiom 3, we obtain that:
cm; A mi —op, (lo, ..., 1p) € F

Where the latter is a list containing all sequences for each m;. By Axioms 10 and 11, we know that
it does not matter the order or the multiplicity in such a list. Moreover, let ¢ = A, 1 ¢m;. Then
we have:

d nm; —op (loy oy lp) € F

For each m;, and so:
/\ (¢ Ami—op (I, ... 1)) € F

miEM
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Then we note that:

Is an admissible join, by arguments we have used before. So by Axiom Al:

\/ (' Am) —op (lo,...,lp) € F
meM

But then by admissibility:
\/M A =, (lgy.osly) € F

But now we have that \/ M A ¢ € H, so | J\_;1; € Dp(H). By Lemma 8.2.4, namely (3) and
(4), we have that Dp(H) = H' Hence | J/_,; € H'. On the other hand, by assumption, for each
1, 526 ej € I. So since I is an ideal, and | J!_; l; = Ule Uf;"é ej, we have that (J/_;l; €I - a
contradiction to I n H' = .

So finally consider H. Then by Lemma 8.2.1, and the fact that H = H’, H is a quasi-prime
filter, and H n I = ¢J. We show that (F, H) € T: whenever a —o,, (b, ...,b,) € F', and a € H, then
a —op (bo, ..., by) € FilP©O)(F) and a € H', by assumption. Hence U, bi € H'. Since by Lemma
8.2.1 we have that H' is a prime filter, there is some b; € H’, which shows that b; € H. This was to
show. |

To provide our characterisation, we briefly recall the concept of a WH-space ([13]):

Definition 8.2.6. Let (X, <,S) be a set equipped with a partial order < and a relation R. We
say that (X, <, S) is a WH-frame if < oS < S.
We say that a relational topological space (X, <, S, 7) is a WH-space if:

1. (X,<,S) is a WH-frame;
2. (X, <, 7) is a Priestley space;
3. (X, <,9) is a Modal space.

We say that a map f : X — X’ between WH-spaces is a WH-morphism if it is (1) continuous, (2)
<-order preserving, (3) an R p-morphism.

For a proof of the following see [13]:

Theorem 8.2.7. The categories WH of Weak Heyting algebras with Weak Heyting homomor-
phisms and WHS of WH spaces with WH-morphisms are dually equivalent.

The following is an easy correspondence result:
Lemma 8.2.8. For each WH-algebra H = (H, A, v, —,0, 1), we have that:
1. (B) HEa<((a—ob) —0)vbif and only if R is symmetric.

2. (T) H=a A (a—b) <bif and only if R is reflexive.
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Proof. First suppose that H = a < (@ — b) — 0 v b. Suppose that xSy. We will show that ySz.
Indeed, suppose that a —o b € y and a € x. By the axiom and primeness, either b or (a —o b) — 0 € x;
but if the latter was the case, then since zSY we would have 0 € y, a contradiction. So b € x, as
desired.

Conversely, suppose that H # a < (a —o b) — 0 v b. Let = be a prime filter containing the
first term but not the second. Then by our remark above, there must be some y such that xSy,
a—obeyand0¢y (trivially); also a € z, but b ¢ z, hence —(ySx).

The reflexivity axiom has a very similar argument. |

All of this allows us to prove the following:

Proposition 8.2.9. Let O be an orthoimplicative system. Let Yo be the dual slim orthospace.
Then:

p(a —o (bo, -, bx)) = Or(—w(a) U @(bo) U ... U p(by))

Proof. One inclusion is obvious: if a —o, (bg,...,b,) € z, and 2Ty and a € y, then by definition
there is some i such that b; € y. Now assume that a —o,, (by, ..., b,) ¢ x. Consider:

D, ({a}) and 1dP"(©) ({by, ..., b,}).

Indeed, we claim these must be disjoint subsets of D" (O). If not, there is some ¢ € D,({a}) such

that ¢ < bg U ... U b,. Since we have that ¢ = UT:l c¢j, using the same argument as we have in

prvious lemmas, we can show that ¢; = \/I_, ¢; A b;, and that this is an admissible join. Hence by
Axiom A2:

a —om (€oy ey Cm) < a —op, (boy vy by)
Then since a —o,, (co, ..., ¢m) € x, this means we have that then:
a —of (b(), ,bn) EX

Which is a contradiction. Hence, by Lemma 8.2.5, we have that there exists some y such that 7Ty,
a €y, and b; ¢ y for any 7. This means that = ¢ (r(p(a) — ¢(bo) U ... U p(bg)). [

All of this work culminates, as presented in Chapter 5, in the following;:

Theorem 8.2.10. (Characterisation of Compatible Ortholattices) Let O be an ortholattice. Then
the following are equivalent:

1. O admits an orthoimplicative system structure.

2. D" (O) admits a unique WH-symmetric algebra structure, with the dual relation being given
by the non-orthogonality relation.

3. O is compatible.

Proof. To see that (1) implies (2), we define the structure on D" (O) using duality. Indeed, for
each U = Ule p(a;) and V = Ule ©(b;), clopen upsets in Yy, let:

k
U = Vi=()Or(~¢la;) v V)

i=1
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By the above Proposition 6.2.4, this is a clopen regular element, and represents precisely /A a; —op
(bo, ..., br). By duality, this is a well-defined notion. It is not hard to see that this will yield a
WH-implication structure on D”(0). Moreover, because R is reflexive and symmetric, D" (O)
will be a WH-symmetric algebra by Lemma 8.2.8. The argument that shows that the structure is
unique runs parallel to the Lemma above establishing that T' = R.

The fact that (2) implies (3) follows because, if D”(O) admits such a structure, by WH-algebra
duality with WH-frames, we have that Yo, the dual WH-space, will be a modal space with respect
to the relation R.

Finally, to see that (3) implies (1), it suffices to show that if O is compatible, then it admits an
orthoimplicative system structure. We do so using duality. Indeed, define, for a, by, ..., by € O:

p(a —ok (bo, -, br)) = O(p(a) = ¢(bo) © ... U (b))

The reader can easily check that this satisfies Axioms 1-7, 10 and 11. Axiom 8 is valid since
the relation R is reflexive, and Axiom 9 is valid since R is symmetric. So we need to check the
admissibility axioms:

o (A1) if \/, s p(m) is admissible, then \/, _,, ©(m) =, ,eps ¢(m). Thus:

o(\/ M oy, (bo, -, ) = O( | ¢(m) — @(bo) L .. v (b))

meM
0 () (olm) = obo) - U o(Br)
meM
- ﬂ O(e(m) — ¢(bo) U ... U (by))
meM
= ﬂ w(m —o, (b, ..., b))
meM
— (,0( /\ m —og (bo, ,bk))
meM

e (A2) Assume that C' = {co,...,cp,} and D = {dp,...,dy} are in the stated conditions. Then
note that this means simply that:
ccD

Hence the result follows by a straightforward calculation using the WH-implication and the
fact that in WH-algebras, when ¢ < d, then e — ¢ < e —o d.

e (A3) Assume that a —o,, (bo, ...,b,) = 1. Dually, this means that:
O(p(a) = ¢(bo) U ... v @(by)) = Yo
Since [] is a reflexive modality, we have that:
p(a) = ¢(bo) U ...p(bn) = Yo

So by classical reasoning, ¢(a) < ¢(by) U ... U ¢©(b,). Then by an argument we have met
before, \/ a A b; is an admissible join, as it is equal to a.

This shows that O admits an orthoimplicative system structure, as desired. [
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We now show some of the facts mentioned in Chapter 5 related to morphisms.
Proposition 8.2.11. Let O, O’ be orthoimplicative systems, Y,Y” full orthospaces. Then:

1. If f: O — O’ is a homomorphism between orthoimplicative systems, then f~!: Yoy — Yo is
a strong orthospace morphism.

2.If g : Y — Y’ is a strong orthospace morphism between full orthospaces, then ¢~ ! :

RClop(Y') — RClop(Y) is a homomorphism between orthoimplicative systems.

Proof. (1) We already know, by the orthospace duality, that f~! is an orthospace morphism. Now
assume that 2Ty; if a —op (b, ...,br) € f~x]. Then f(a) —o (f(bo),..., f(bx)) € x. Hence by
definition, f(b;) € y, hence, b; € f~1[y]. Next suppose that f~![z]Ry. Consider:

Fil(f[x]) and AdId(f[O —y] U {c: ¢t € x}).

We claim these two sets are disjoint. For otherwise, we would have, for some M <| (f[O —y]u{c:

¢t e x}) which is an admissible join:

fla) < \/M

Now by assumption, for each m € M, m < f(b;) or m < ¢, and the join is admissible. Hence, by
duality:
k

i@y e | melJeto o el
By similar arguments to what we showed before, then f(a) = \/i—; f(a) A f(bi) v \/?=1 ci A fla)
is an admissible join. Since O is orthoimplicative, then:

i < fla) —ok (f(bo), es f(bn))

k
7j=1

Now since /\’?:1 0]4 € x, then the latter is as well. But since f preserves the implication connective

fla —o (bo,...,bg)) = f(a) —ok (f(bo),..., f(br)). Thus by hypothesis, the former is in x. Thus,
a —oy (bo, ..., bg) € f~1[z]. Since a € y, by definition, for some 4, b; € y. But this is a contradiction.
By reductio, we obtain that the two sets above are disjoint, hence, by the prime filter theorem for
distributive lattices, let z be such that f[y] € z and z n f[O — y] = &, and whenever ¢ € z, then
¢t ¢ 2. Thus finally look at z. Then:

e 7 is a quasi-prime filter, by Lemma 8.2.1.
o xRz

e f7!Z] = y: indeed, if a € y, then f(a) € f[y], hence f(a) € z; but since f(a) € O, then
f(a) € Z, hence a € f71[z]. Conversely, if a ¢ y, then f(a) € f[O — y], so f(a) ¢ z, hence
clearly f(a) ¢ z.

This shows the result.
For (2), we show that:

g pla —on (bo, .., bn)] = Or(g ' [e(a)] = g~ e(bo)] L ... U g~ [ (bn)])
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Indeed, if g(z) € p(a —op (bo,-..,bn), then a —o, (bo,...,b,) € g(z); because this is R-monotone, if
TRy, then g(z)Rg(y), so if a € g(y), then for some i, b; € g(y). Conversely, if x € (I(g~[p(a)] —
g ebo)] U ... u g p(by)]), assume that g(z)Ry. Because this is a strong orthospace morphism,
then for some z, xRz and g(z) = y. Hence, if a € y, then z € g~ '[p(a)], so z € g~ [¢(b;)] for some
i, i.e, b; € y. We know that if a —o,, (b, ..., b,) ¢ g(x), then by the Existence Lemma proved above,
there would be some y such that g(z)Ry and a € y whilst b; ¢ y. Hence this is not possible, i.e,
a —op, (bg, ...,bn) € g(x). This shows the result. [ ]

8.3 Compatibility of Products

In this section we provide a direct proof that the product of orthoimplicative systems is again an

orthoimplicative system. The arguments hereby contained are also useful to prove that structures
such as the lattice of closed subspaces of a Hilbert space is a compatible ortholattice, hence, we
provide full proofs as much as possible.
Let (Yo,)ier be a family of spaces of quasi-prime filters of the orthoimplicative systems O;. Let
Z := | |,.; Yo, be the disjoint union. Define a family Reg(Z) as follows: S < Z is called regular if
for each ¢, S(i) = W that is the ¢’th coordinate of this set, where W < Yq. is a clopen regular.
Define a relation 1’ on this structure pointwise: given a subset A € Z, we let x1'y if and only
if # and y are in the same coordinate of Ygp,, and 1y, y. Using this relation, note that Reg(Z)
forms an ortholattice, under intersection, pointwise orthécomplement, and the implication [J(z —
Yo U ... U Yp), which we denote by —o,,. Then note the following:

Lemma 8.3.1. For any U, Vp, ..., V,, € Reg(Z) we have (U —o,, (Vp,...,V,,)) € Reg(Z).

Proof. This follows almost by definition, once we note that because the elements have disjoint parts,
the subtractions are also taken pointwise, i.e:

U =Vo— . = Vo) = | JUG) = Vold) — .. = Viu(4)
el
Now if z € (U — Vo — ... — Vj,)* then whenever y € (U — Vy — ... — V), and = and y are in
the same coordinate, that is, y € U(i) — Vp(i) — ... — V,,(i) for some i, we have :L'J.yoiy. Thus
z € J;ef(U(i) — Vo(i) — ... — Viu(i)). The converse is immediate since each z can be in a single
coordinate. |

It is moreover easy to see that:
Proposition 8.3.2. The algebras (Reg(Z), N, (—)new, L) and [ [,.; O; are isomorphic.

Proof. Define the map p : [ [,.; O; — Reg(Z) which assigns to (a;)ier the sequence (¢(a;))icr; by
our definitions above this is seen to be an isomorphism. |

To proceed, we will show that this structure allows us to work with Reg(Z) in our calculations.
We denote by Fin(Reg(Z)) the set of all U = Ule U; where U; € Reg(Z), and the union is taken
over Reg(Z). Then we have:

Lemma 8.3.3. The structure (Fin(Reg(Z)), u, n, 1) is isomorphic to D" (Reg(Z)).
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Proof. We apply Proposition 6.1.18. We have that the inclusion of Reg(Z) is injective and dense.
We show it preserves admissible joins. Indeed, assume that \/;?:1 U; is admissible. Then we have
that for each coordinate of the disjoint union i € I, \/ j=1 Uj(7) is admissible as well. Since the spaces

are slim orthospaces, then \/,_; U;(i) = (J;_; U;(i). So we can see that \/?:1 Uj; = Ule Uu;, 1

Now let | [,.; Yo, be the space of quasi-prime filters on (Reg(Z), n, =, L). We will now prove
the following crucial lemma.

Lemma 8.3.4. Let U’ and V{j, ..., V;, be clopen regulars in [ |
Then:

Yo,,i.e, U = p(U) and V/ = ¢(V}).

iel
(P(U) = (Vo) = .. = o(Va)) = (U —op (Vo -ers Vi)

Proof. Let z € o(U —op, (Vy,...,Vs)). Now suppose that y € ¢(U) — p(Vo) — ...p(Vy,). By the
hypothesis, then U € y and V; ¢ y. Let § be the prime filter extension. Now note that in Reg(Z)

we have that U € (U — Vg — ... = V,)*t U Vy U ... U V.. Indeed, note that:
U-Vo—.— V) uVou..uV,cUH UVou...uV,
cUuVWu..uV,
c(U-Vo—...—Vy)uVpu..uV,
cU—-Vo—o.— V) uWhu..uV,

Hence since clearly U < U u Vy U ... u V,, we have this fact. But now, since U € ¢, and V; ¢ ¢, we
must have (U —Vp—... — V;,)*+ € §; hence, since (U —o, (Vp, ..., Vp)) = (U —Vo—...—V,,)* € Reg(2)
by our previous lemma, clearly its orthogonal complement will be as well. But now, we must have
that zly. This shows one inclusion.

Conversely, suppose that = ¢ (U — Vo — ... — V,)*). Then we will have that over D”(Reg(Z)):

Fil{U}) nId({C*: C ez} U {Vp,....Vu}) # &
For otherwise, we will have that:
Uc(Co)tu..u@C)ruthu..uV,

Hence since these are sets:

Applying | on each side:
CH) i n(C)HcU-Vo—.. = V)t =U — (Vo,... V)

Since the former are in x by regularity, we have the latter is as well, since by the previous lemma,
it is clopen regular. But this is a contradiction. So by the Prime filter theorem, we can find some
prime filter y extending the above filter, and disjoint from the filter. Let § be its restriction to a
quasi-prime filter in O. Then whenever C € z, C* ¢ 7, by our Proposition 8.2.1, so zR7; also U € §
and V; ¢ 3 for any 4. This shows that x ¢ (o(U) — (Vo) — ... — o(Vi))*. [

Corollary 8.3.5. The following hold:
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1. The structure | [;c; O; in the signature (A, Vv, (—opn)new, 0, 1) is an orthoimplicative system so
long as all O; are.

2. The structure | [,.; O; is the signature (A, v,1,0,1) is a compatible ortholattice so long as
all O; are.

Proof. By the fact that the images under ¢ form a subbasis, and by compactness, we know that if
A is a clopen subset of an orthospace, it is of the form:

n
U P(V) = — (V)
Also we know by definition of the 1 that:
n .
ﬂ (V) — .. — (V)
Now by Lemma 8.3.1 and Lemma 8.3.4, together with our hypothesis, we know that for each j:

((U7) = p(VJ) = oo — oV = (U7 = VJ — .. = V])H)

Hence, that each such is a clopen regular. Hence Al is an intersection of clopens, and hence, a
clopen. Thus, we have that [ [,.; O; is compatible as an ortholattice. Moreover, note that:

(U —on (o, Vo)) = Dlp(U) —on p(Vo) © .. v p(V2))

By Lemma 8.3.4. Hence the implication coincides with the reduct of the WH-implication from the
extension of [ [,.; Oy, i.e, the product is orthoimplicative.
The second statement follows easily from the above lemmas and a similar argument as the one. W
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