
Bisimulations over Parity Formulas

MSc Thesis (Afstudeerscriptie)

written by

Tianwei Zhang
(born July 30th, 1997 in Xinjiang, China)

under the supervision of Dr. Johannes Marti and Prof. Dr. Yde Venema, and submitted to the Examinations

Board in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
August 30th, 2022 Dr. Ekaterina Shutova (Chair)

Dr. Balder ten Cate

Dr. Tobias Kappé

Dr. Johannes Marti (Supervisor)

Prof. Dr. Yde Venema (Supervisor)

Abstract

This thesis is an investigation into how to define the notion of bisimulation over parity formulas. We provide

and argue for a list of criteria against which we could judge how good such a definition is. In general, a

notion of bisimulation should be sound, closed under union and composition, easily decidable and as close

to being complete as possible. It should also guarantee the existence of a largest bisimulation, namely the

bisimilarity relation. Particular to the situation with parity formulas, a good bisimulation should also have a

’relative flavor’ in its handling of the priority condition. We propose four definitions of bisimulations over

parity formulas and evaluate each of them according to those criteria. We especially argue for one of the four

definitions to be the best by far, since it satisfies all qualitative criteria and lies in a relatively good position on

the ’spectrum of completeness’. We also provide an adequate bisimilarity game for this notion of bisimulation

which makes it easier to work with the notion.

Acknowledgement

First and foremost, I would like to thank my supervisors. Yde, thank you for coming up with the thesis topic

in the first place and for urging me to look at the bigger picure in terms of research. Johannes, thank you for

the time you devoted to meeting and discussing with me, the patience you paid in reading my proofs and the

encouragement you gave me when I felt doubts in my ability to carry out the research for this thesis. I would

like to thank Tobias and Balder as well, for reading my thesis and providing insightful comments as part of

the thesis committee, and Katia, for chairing the defense. Thank you to Ulle, for being my academic mentor

and checking in on my progress with the program throughout the whole duration of my master’s.

I would like to thank my parents, who made it possible for me to study in Amsterdam, and who I know will

always stand by me no matter what life throws at me. I haven’t been able to see you two in person for more

than three years due to the pandemic, and I want you to know that I miss you very much and hope the day

when we finally meet again will come soon. I would also like to thank my grandma, who gave me endless

love and patience when I was a child and took care of me at the beginning of my life. Time has not been kind

to your memory, but I will always remember the time we spent. I dedicate this thesis to my grandma.

Special thanks to all the people that I met in Amsterdam for making it feel more like home. Lukas, thank you

for loving me and being my best friend. You bring out the best in me and fill my heart with kindness. Jeremy,

thank you for always lending me a listening ear and provide me with your sincere and unique perspective.

Massimo, thank you for your love and support. Your wisdom makes you the Pope in my heart. Bas, thank

you for being the most Dutch person I have ever seen. I have to admit that I stole a lot of style and humor

from you. Hugh Mee, thank you for being there to listen to me and for helping me clean my messy room.

Koen, thank you for inviting me to your home in Den Hague the first Christmas I spent in Europa and for

lending me your empathy numerous times when I needed it the most.This list can go on and on, Giovanni,

Lydia, Wĳnand, Freddy, Simon, Martina, Rui, Swapnil, Susan, Yunsong... Some of you I have known each

other since the very beginning of my stay in Amsterdam, and others I only had the pleasure to meet towards

the end of my masters. To all of these people, I want to say that I am grateful that our paths ever cross, and I

hold you all dearly in my heart.

The process of writing my thesis was not always easy, not to mention the incident that followed. For those

who understand this last paragraph, I pray to time to teach us the wisdom to pick resilience over fragility,

forgiveness over resentment, compassion over judgement, gratefulness over self-indulgence, and in the end,

happiness over pain. Perhaps later, when we look at our life via the space and time we have traveled through,

we will all understand it a bit better.

Contents

Contents vii

1 Introduction 1
Why Parity Formulas? . 1

Why Bisimulations? . 2

Related Work . 3

Outline of the Thesis . 3

2 Preliminaries 5
Modal 𝜇-calculus . 5

Board Games . 9

Parity Formula . 14

3 Criteria and Evaluation 19
Definition 1 . 21

Definition 2 . 21

Definition 3 . 22

Definition 4 . 25

4 Definition 3: Special cases 29
Case 1: Morphism . 29

Case 2: Parity Formulas with One Cluster . 38

5 Definition 4: Properties and Bisimilarity Game 41
Soundness . 41

Union . 43

Fixpoint Formulation & Decision Procedure . 45

Bisimilarity Game . 49

Composition . 59

6 Conclusion and Future Work 63

Appendix 65

A Example for Semantics of Parity Formulas 67

B Example for Composing Winning Strategies 71

Bibliography 75

List of Figures

1.1 Inspiration for Parity Formulas . 2

2.1 A parity formula that corresponds to the modal 𝜇-formula 𝜇𝑥.□𝑥 ∨ 𝑝 15

3.1 Two modally equivalent parity formula with disjoint labels . 19

3.2 Two intuitively isomorphic parity formulas . 20

3.3 ’Completeness’ of the definitions . 20

3.4 Counterexample to closure under composition . 25

3.5 Counterexample to closure under union . 26

3.6 Example for Def. 4⇏ Def. 3 . 27

3.7 Example for Def. 2⇏ Def. 4 . 27

4.1 Example of an Expansion Map that is not injective . 31

5.1 A𝔾,𝔾′
and a strategy tree for 𝑔A𝔾,𝔾′ . 56

5.2 A𝔾′ ,𝔾′′
and a strategy tree for 𝑔A𝔾′ ,𝔾′′ . 57

5.3 Structure of a match with ’shadow playing’; AMΠ=the set of admissible moves for player Π . . 60

B.1 Composition: INIT . 72

B.2 Composition: step 1 . 72

B.3 Composition: step 2 . 73

B.4 Composition: step 3 . 74

Introduction 1
The modal 𝜇-calculus is the extension of basic modal logic with the addition of the least and greatest fixpoint

operators. Its root in modal logic makes it a natural candidate when it comes to specifying properties of

transition systems, and its usage of fixpoint operators endows it the taste of recursion. These two powerful

traits combined with that fact that it is decidable allow it to become an exciting and fruitful area of research

in logic and theoretical computer science.

One way to think of any formula in a logic is to think of it as a representation of a statement about one or a

class of mathematical models whose truth and falsity can be constructed or recovered in an inductive way.

The modal 𝜇-calculus is no exception. Taking the standard modal 𝜇-calculus as introduced by Kozen [1]

as an example: its formulas are generated by recusive applications of connectives starting with atoms as

the base, and its semantics is understood by seeing the atoms as given subsets of the state space and the

connectives as set operations. The former inspires graph representations of formulas based on syntax such as

subformula dag. The latter is called the algebraic semantics of modal 𝜇-calculus since it treats connectives as

(parameterized) algebraic operations on the power set algebra of the state space.

Formulas in modal 𝜇-calculus can yet be given another interpretation, where the formula and the pointed

transition system in which the formula is to be evaluated on are put together to generate a game arena for

a two-player game, and we define the truth-value of the formula in terms of whether a given player has a

winning strategy in the game. Due to the involvement of the game-theoretic concept in this definition, we call

this interpretation the game semantics of modal 𝜇-calculus.

An elegant result that bridges the two interpretations is the Adequacy Theorem, which states that these two

ways of giving semantics to modal 𝜇-calculus are actually equivalent. Given this equivalence, one may

wonder the following question. What if we take the graph representation as the primary syntax and the game

semantics as the primary semantics for modal 𝜇-calculus? This is indeed the basic idea for parity formulas,

which is the main subject of our investigation in this thesis.

Why Parity Formulas?

Parity formulas are graph-based modal formulas derived from the graph representations of modal 𝜇-calculus.

Besides the conceptual motivation we have just mentioned, there are several benefits we can speculate to get

from considering parity formulas.

First, parity formulas themselves can be seen as coalgebra automata that run on Kripke models. Aside from

literatures that discuss in general coalgebra automata, most work in the field focus on 𝜔-automata and

sometimes tree automata. It would be interesting to look at a class of automata that take in specifically Kripke

models, and the study of parity formulas is a step towards that direction. Second, the use of parity formulas

can help simplify proofs of properties of modal 𝜇-formulas. Proofs that rely on the syntactic structure of

modal 𝜇-formulas are known to be tedious to read and write. Parity formulas give us a global view of the

connections among different elements in the closure set and the set of subformulas. This may give us a better

way to come up with or refer to the key notions that aid inductive proofs on the structure of formula, and

make such proofs easier to write and more accessible to readers.

Third, parity formulas may provide an alternative perspective that avoid the flaws of existing methods

for the study of modal 𝜇-calculus. For one, parity formulas may help circumvent the known problem of

size-explosion from 𝛼-conversion. 𝛼-conversion is the process of renaming bound variables. Two formulas

are 𝛼-equivalent if one can be obtained from the other by renaming bound variables. Formulas that are

𝛼-equivalent are commonly accepted as ’identical’ since the intensional meaning of a formula does not

depend on the choice of name of the bound variables. However, as [2] pointed out, the size of the graph

representations can grow exponentially after 𝛼-conversion. This poses problems when one tries to extend the

2 1 Introduction

Modal 𝜇-Formula

Strings of Characters Algebraic Semantics

Syntax
Semantics

Graphs

represent

Game Semantics

equivalent

Parity Formula

Syntax Semantics

Figure 1.1: Inspiration for Parity Formulas

complexity results obtained from a sub-class of nicely behaved modal 𝜇-formulas to the whole class. The

study of parity formulas may give us some insight in resolving this issue. In parity formulas, the recursive

power from the fix-point operation is not realized by variable binding but by looping in the graph. This might

provide us with a way to give graph representation to modal 𝜇-formulas that is invariant to 𝛼-conversion.

Finally, the study of parity formulas may give inspiration to studies on objects that share structural similarity.

Besides serving as a different perspective to formulas in modal 𝜇-calculus, parity formulas are also closely

related to parity automata [3] and parity games, which we will introduce later in the chapter on preliminaries.

Given the structural similarity, discovery made on the properties of parity formulas could be translated to

these structures and provide insights on them.

Why Bisimulations?

Bisimulation is a recurrent notion in modal logic. The concept was first proposed by van Benthem [4] for

talking about models, modal languages and invariance results. It has been used as a standard tool for

investigations of modal expressivity. Bisimulations reflect, in a particularly simple and direct way, the locality

of the modal satisfaction definition.

Following are some main goals for which one explores the notion of bisimulations.

• We want to establish identity between objects of potentially infinite size using only a finite collection of

properties. For example, we can determine whether two pointed Kripke models satisfy the exact same

set of formulas by observing whether there is a bisimulation between them. Alternatively, with the

notion we will define in this thesis, one can use the existence of a bisimulation over two formulas as a

sufficient condition for two formulas having the exact same class of models in which they are true.

• We can use bisimulations to capture behavioral equivalence over transition systems. Bisimulations

establish similarity between two transition systems in global behaviors from their similarity in local

behaviors. Sometimes, these global behaviors concerns infinite processes. In such cases, bisimulations

can be seen as a tool with which we establish properties concerning infinity with a finite collection of

facts.

• We investigate notions of bisimulation to come up with ways to take the quotient of a structure, and

as a result, compress the structure while maintaining behavioral equivalence. If we have a notion of

bisimulation that satisfies some additional nice properties, e.g. there exists a largest bisimulation which

is also an equivalence relation, we can take the quotient of a structure using the largest bisimulation

Related Work 3

from that structure to itself to get a behaviorally equivalent structure that is minimal. Such quotienting

operations often prove useful in reducing computational costs and defining canonical structures.

This thesis is an investigation into how to define the notion of bisimulaitions over parity formulas. We will

provide and argue for a list of criteria for a good notion of bisimulation that we consider to be faithful to the

aforementioned reasons for studying bisimulations and parity formulas. We will propose four definitions of

bisimulations over parity formulas and evaluate each of them according to those criteria.

Related Work

[5] proposes a way to resolve the issue of size-explosion from 𝛼-conversion with formulas in modal 𝜇-calculus

by defining a process called ’skeletal renaming’ that sends any modal 𝜇-formula to a unique representative

of the 𝛼-equivalence class with the minimal size in terms of its graph representation. One can look into the

functional relation induced by skeletal renaming, from a parity formula translation of a 𝜇ML formula 𝜉, to a

parity formula translation of the skeletal representative of 𝜉. It is very well possible that the relation fits into

some definitions of bisimulation we proposed in this these.

In Section 4 of [6], the authors implemented a sound definition of bisimulation over parity games, utilizing

the idea of power bisimulation [7]. In a power bisimulation, for two nodes to be bisimilar, it is not enough

for their successors to satisfy the canonical ’zig-zag’ condition, but rather, there must be for both nodes

in question a particular set of nodes that together satisfy the ’zig-zag’ condition. This can be seen as an

alternative method to deal with the global flavor of the priority condition that presents itself in both parity

games and parity formulas.

In Section 6 of [8], a ’consequence game’ between two coalgebra automata is proposed. The game is used to

show that the coalgebras accepted by the left automata are included in that of the right automata. The game

progresses similarly as the bisimilarity game that we will propose for one of the definition in Chapter 5. We

can show the equivalence of the set of accepted coalgebras, in our setting, Kripke models, by playing two

consequence games with symmetric positions of the two coalgebras. Given the close connection between

bisimulations and bisimilarity, we might be able to derive a notion of bisimulations from this perspective.

Quite some notable work has been done on simulation, bisimulation and quotients over 𝜔 automata. [9]

casts deterministic Muller automata that run on infinite words as coalgebras. They show that the coalgebraic

bisimilarity induced coincides with language equivalence. [10] uses a unified parity-game framework to give

efficient algorithms for calculating different kinds of simulation relations over Büchi automata. They also

established that one of the simulation relation, called delayed simulation, preserves the automaton language

upon taking quotients. The authors of [11] noted that automata language is not preserve if we generalize the

delayed simulation onto parity automata, and so-called biased notions of delayed simulation are proposed as

a remedy. [12] proposes several new approaches to reduce the state space of deterministic parity automata

based on extracting information from structures within the automaton. It also establishes a framework to

generalize the notion of quotient automata and uniformly describe their algorithms

Outline of the Thesis

• In Chapter 2, we prepare the readers with necessary preliminary knowledge on modal 𝜇-calculus,

games and parity formulas.

• In Chapter 3, we propose and argue for a list of criteria against which we could judge how good such a

definition is. We proposed four definitions of bisimulations over parity formulas and evaluated them

according to those criteria.

• Chapter 4 demonstrates some positive resuts when we consider Definition 3 on two special cases. One

case concerns bisimulations that can be seen as functions, which we can also see as the morphisms

over parity formulas. We show that when restricted to functional relations, Definition 3 has nice

4 1 Introduction

category-theoretical properties to be considered the ’arrows’ in the category of parity formulas. We

also show that the expansion map by Kozen is indeed a morphism by our definition.

The other case concerns parity formulas with only one cluster. We show that in this restricted situation,

Definition 3 is closed under union and composition, and thus, the largest bisimulation over any two

such parity formulas always exists. In light of that, we provide a way to take the quotient of a parity

formula with only one cluster.

• In Chapter 5, we prove that Definition 4 behaves nicely in terms of the proposed list of criteria. We show

that Definition 4 is sound, closed under union and composition, and hence, guarantees the existence of

the largest bisimulation, namely the bisimilarity relation. We provide an easy decision procedure for

bisimilarity and an adequate bisimilarity game. We also demonstrate an alternative formulation of the

bisimilarity relation using fixpoints.

Preliminaries 2
This chapter serves to introduce to the readers the necessary prerequisites to understand the rest of the thesis.

The chapter is divided into three sections.

In the first section, we introduce the modal 𝜇-calculus, an extension of propositional modal logic with the

least and greatest fixpoint operators that has a close connection with the subject of study of this thesis. We

will first introduce the syntax of modal 𝜇-calculus, together with the syntactical notations we use in this

thesis. Then, we show two graph representations of formulas in the modal 𝜇-calculus. Finally, we give the

algebraic semantics for modal 𝜇- calculus.

In the second section, we define the concept of board games. We first give definitions to the essential elements

of a board game, including the arena, players and (winning) strategies. Then, we introduce a particular type

of board games call parity games. Finally, we give an equivalent semantics for modal 𝜇-calculus from a game

theoretic point of view employing the concepts previously introduced in this section.

In the third section, we define parity formulas. We give its syntax and semantics, as well as ways to translate

a formula in modal 𝜇-calculus to an equivalent parity formula.

Modal 𝜇-calculus

Modal 𝜇-calculus is an extension of propositional modal logic with least fixpoint operator 𝜇 and greatest

fixpoint operator 𝜈.

Syntax

Definition 2.1 Given a set P of proposition letters, we define the sets Lit(P) and At(P) of literals and atomic formulas
over P by setting Lit(P) := {𝑝, 𝑝 | 𝑝 ∈ P} and At(P) := Lit(P) ∪ {⊤,⊥}, respectively.

Definition 2.2 Given a set D of atomic actions, we define the collection 𝜇ML of modal fixpoint formulas as follows:

𝜑 := ⊥ | ⊤ | 𝑥 | 𝑥 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | ^𝜑 | □𝜑 | 𝜇𝑥.𝜑 | 𝜈𝑥.𝜑

where 𝑥 is a propositional variable. There is a restriction on the formation of the formulas 𝜇𝑥.𝜑 and 𝜈𝑥.𝜑, namely,
that the formula 𝜑 is positive in 𝑥. That is, all occurrences of 𝑥 in 𝜑 may not be in the form of the negative literal 𝑥.

For a finite set of propositional variables P, we let 𝜇ML(P) denote the set of 𝜇ML-formulas 𝜑 of which all free

variables belong to P.

Definition 2.3 We define the set Sfor
0
(𝜉) of direct subformulas of a formula 𝜉 ∈ 𝜇ML via the following case

distinction:

Sfor
0
(𝜉) := ∅ if 𝜉 ∈ At(P)

Sfor
0
(𝜉0 ⊙ 𝜉1) := {𝜉0 , 𝜉1} where ⊙ ∈ {∧,∨}

Sfor
0
(♥𝜉) := {𝜉} where ♥ ∈ {^,□}

Sfor
0
(𝜂𝑥.𝜉) := {𝜉} where 𝜂 ∈ {𝜇, 𝜈}

and we write 𝜑 ⊳0 𝜉 if 𝜑 ∈ Sfor
0
(𝜉).

6 2 Preliminaries

Definition 2.4 For any formula 𝜉 ∈ 𝜇ML, Sfor(𝜉) is the least set of formulas which contains 𝜉 and is closed under
taking direct subformulas. Element of the set Sfor(𝜉) are called subformulas of 𝜉, and we write 𝜑 P 𝜉(𝜑 ⊳ 𝜉) if 𝜑 is
a subformula (proper subformula, respectively) of 𝜉.

Syntactically, the fixpoint operators are very similar to the quantifiers of first-order logic in the way they bind

variables.

Definition 2.5 Fix a formula 𝜑. the set 𝐹𝑉(𝜑) and 𝐵𝑉(𝜑) of free and bound variables of 𝜑 are defined by the
following induction on 𝜑.

𝐹𝑉(⊤) :=∅ 𝐵𝑉(⊤) :=∅
𝐹𝑉(⊥) :=∅ 𝐵𝑉(⊥) :=∅
𝐹𝑉(𝑥) :={𝑥} 𝐵𝑉(𝑥) :=∅
𝐹𝑉(𝑥) :={𝑥} 𝐵𝑉(𝑥) :=∅
𝐹𝑉(𝜑 ∧ 𝜓) :=𝐹𝑉(𝜑) ∪ 𝐹𝑉(𝜓) 𝐵𝑉(𝜑 ∧ 𝜓) :=𝐵𝑉(𝜑) ∪ 𝐵𝑉(𝜓)
𝐹𝑉(𝜑 ∨ 𝜓) :=𝐹𝑉(𝜑) ∪ 𝐹𝑉(𝜓) 𝐵𝑉(𝜑 ∨ 𝜓) :=𝐵𝑉(𝜑) ∪ 𝐵𝑉(𝜓)
𝐹𝑉(^𝜑) :=𝐹𝑉(𝜑) 𝐵𝑉(^𝜑) :=𝐵𝑉(𝜑)
𝐹𝑉(□𝜑) :=𝐹𝑉(𝜑) 𝐵𝑉(□𝜑) :=𝐵𝑉(𝜑)
𝐹𝑉(𝜂𝑥.𝜑) :=𝐹𝑉(𝜑)\{𝑥} 𝐵𝑉(𝜂𝑥.𝜑) :=𝐵𝑉(𝜑) ∪ {𝑥}

Formulas like 𝑥 ∨ 𝜇𝑥.((𝑝 ∨ 𝑥) ∧ □𝜈𝑥.^𝑥) may be well-formed, but in practice they are very hard to read

and to work with. In the sequel, we will often work with formulas in which every bound variable uniquely

determines a subformula where it is bound, and almost exclusively with formulas in which no variable has

both free and bound occurrences in 𝜑.

Definition 2.6 A formula 𝜑 ∈ 𝜇ML is tidy if 𝐹𝑉(𝜑) ∩ 𝐵𝑉(𝜑) = ∅, and clean if in addition with every bound
variable 𝑥 of 𝜑 we may associate a unique subformula of the form 𝜂𝑥.𝛿. In the latter case, we let 𝜑𝑥 = 𝜂𝑥𝑥.𝛿𝑥 denote
this unique subformula.

Now we define the recurrent operation of substitution for formulas of modal 𝜇-calculus.

Definition 2.7 Let 𝜓,𝜉 and 𝑥 be respectively two modal 𝜇-calculus formulas and a propositional variable. We say
that 𝜓 is free for 𝑥 in 𝜉 if 𝜉 is positive in 𝑥 and for every variable 𝑦 ∈ 𝐹𝑉(𝜓), every occurrence of 𝑥 in a subformula
𝜂𝑦.𝜒 of 𝜉 is in the scope of a fixpoint operator 𝜆𝑥 in 𝜉, i.e., bound in 𝜉 by some occurrence of 𝜆𝑥.

Definition 2.8 Let {𝜓𝑧 | 𝑧 ∈ 𝑍} be a set of modal 𝜇-calculus formulas, indexed by a set of variables 𝑍, let 𝜑 ∈ 𝜇ML
be positive in each 𝑧 ∈ 𝑍, and assume that, for each 𝑧 ∈ 𝑍, 𝜓𝑧 is free for 𝑧 in 𝜑. We inductively define the
simultaneous substitution [𝑧/𝜓𝑧 | 𝑧 ∈ 𝑍] as the following operation on 𝜇ML.

𝜑[𝑧/𝜓𝑧 | 𝑧 ∈ 𝑍] :=

{
𝜓𝑝 if 𝜑 = 𝑝 ∈ 𝑍
𝜑 if 𝜑 is atomic but 𝜑 ∉ 𝑍

♥𝜑[𝑧/𝜓𝑧 | 𝑧 ∈ 𝑍] :=♥𝜑[𝑧/𝜓𝑧 | 𝑧 ∈ 𝑍]
(𝜑0 ⊙ 𝜑1)[𝑧/𝜓𝑧 | 𝑧 ∈ 𝑍] :=𝜑0[𝑧/𝜓𝑧 | 𝑧 ∈ 𝑍] ⊙ 𝜑1[𝑧/𝜓𝑧 | 𝑧 ∈ 𝑍]
(𝜂𝑥.𝜑)[𝑧/𝜓𝑧 | 𝑧 ∈ 𝑍] :=𝜂𝑥.𝜑[𝑧/𝜓𝑧 | 𝑧 ∈ 𝑍]

In case 𝑍 is a singleton, say 𝑍 = {𝑧}, we will simply write 𝜑[𝑧/𝜓𝑧]

Definition 2.9 Given a formula 𝜂𝑥.𝜒 ∈ 𝜇ML, we call the formula 𝜒[𝑥/𝜂𝑥.𝜒] its unfolding.

Modal 𝜇-calculus 7

Definition 2.10 Let 𝜑 and 𝜓 be 𝜇-calculus formulas. We say that 𝜑 is a free subformula of 𝜓, notation: 𝜑 P 𝑓 𝜓, if
𝜓 = 𝜓0[𝑥/𝜑] for some formula 𝜓0 such that 𝑥 ∈ 𝐹𝑉(𝜓0) and 𝜑 is free for 𝑥 in 𝜓0.

Proposition 2.1 Let 𝜉 be a clean formula and 𝑥 ∈ 𝐵𝑉(𝜉). For all 𝜑 P 𝜉, if 𝑥 ∈ 𝐹𝑉(𝜑), then 𝜑 P 𝜂𝑥 .𝛿𝑥 ; if
𝑥 ∈ 𝐵𝑉(𝜑), then 𝜂𝑥 .𝛿𝑥 P 𝜑.

Proof. Consider the subformula dag (Sfor(𝜉), ⊲0). Note that since 𝜉 is clean, there is a unique subformula

in Sfor(𝜉) of the form 𝜂𝑥𝑥.𝛿′𝑥 for some formula 𝛿𝑥 ‘ and that subformula is 𝜂𝑥𝑥.𝛿𝑥 . Since 𝑥 ∈ 𝐵𝑉(𝜉) and 𝜉 is

tidy, it follows that 𝑥 ∉ 𝐹𝑉(𝜉). This means that for all 𝜉 ⊲0 𝜑0 ⊲0 ... ⊲0 𝜑𝑛 ⊲0 𝑥, there exists 0 ≤ 𝑖 ≤ 𝑛 such that

𝜑𝑖 = 𝜂𝑥𝑥.𝛿𝑥 . Take any 𝜑 P 𝜉 and suppose 𝑥 occurs in 𝜑. This means that there exists 𝜉 ⊲0 𝜑0 ⊲0 ... ⊲0 𝜑𝑛 ⊲0 𝑥,

there exists 0 ≤ 𝑗 ≤ 𝑛 such that 𝜑 𝑗 = 𝜂𝑥𝑥.𝛿𝑥𝜑. By the previous statement, there exists 0 ≤ 𝑖 ≤ 𝑛 such that

𝜑𝑖 = 𝜂𝑥𝑥.𝛿𝑥 . If 𝑖 ≤ 𝑗, then 𝑥 ∈ 𝐵𝑉(𝜑) and 𝜂𝑥𝑥.𝛿𝑥 ; otherwise, 𝑗 < 𝑖, 𝑥 ∈ 𝐹𝑉(𝜑) and 𝜑 P 𝜂𝑥𝑥.𝛿𝑥 .

Definition 2.11 Given a clean formula 𝜉, we define a dependency order ≤𝜉 on the set 𝐵𝑉(𝜉), saying that 𝑦 ranks
higher than 𝑥 if 𝑥 ≤𝜉 𝑦. The relation ≤𝜉 is defined as the least partial order containing all pairs (𝑥, 𝑦) such that
𝑦 P 𝛿𝑥 P 𝛿𝑦

There are two canonical ways to provide a graph representation for a formula 𝜉 in modal 𝜇-calculus, one

based on the set of subformulas of 𝜉, the other based on the closure set of 𝜉.

Graph Representations

Subformula Dag

Definition 2.12 The subformula dag of a formula 𝜉 is the directed acyclic graph (Sfor(𝜉), ⊲0), where ⊲0 is the
converse of the directed subformula relation ⊳0.

Closure Graph

Definition 2.13 Let→𝐶 be the binary relation between tidy 𝜇-calculus formulas given by the following exhaustive
list:

1. (𝜑0 ⊙ 𝜑1) →𝐶 𝜑𝑖 , for any 𝜑0 , 𝜑1 ∈ 𝜇ML, ⊙ ∈ {∧,∨} and 𝑖 ∈ {0, 1};
2. ♥𝜑→𝐶 𝜑, for any 𝜑 ∈ 𝜇ML and ♥ ∈ {^,□};
3. 𝜂𝑥.𝜑→𝐶 𝜑[𝑥/𝜂𝑥.𝜑], for any 𝜂𝑥.𝜑 ∈ 𝜇ML, with 𝜂 ∈ {𝜇, 𝜈}.

We call a→𝐶-path 𝜓0 →𝐶 𝜓1 →𝐶 ...→𝐶 𝜓𝑛 a (finite) trace; similarly, an infinite trace is a sequence (𝜓𝑖)𝑖∈𝜔 such
that 𝜓𝑖 →𝐶 𝜓𝑖+1 for all 𝑖 ∈ 𝜔.

Definition 2.14 We define the relation↠𝐶 as the relfexive and transitive closure of→𝐶 , and define the closure of a
formula 𝜓 as the set

𝐶𝑙𝑜𝑠(𝜓) := {𝜑 |𝜓 ↠𝐶 𝜑}.

Formulas in the set 𝐶𝑙𝑜𝑠(𝜓) are said to be derived from𝜓. The closure graph of𝜓 is the directed graph (𝐶𝑙𝑜𝑠(𝜉),→𝐶).

Algebraic Semantics for Modal 𝜇-calculus

Canonically, formulas of modal 𝜇-calculus are evaluated on pointed Kripke models.

8 2 Preliminaries

Definition 2.15 A (labelled) transition system, LTS, or Kripke model of type (P,D) is a triple 𝕊 = ⟨𝑆,𝑉, 𝑅⟩ such
that 𝑆 is a set of objects called states or points,𝑉 : P→ P(𝑆) is a valuation, and 𝑅 ⊆ 𝑆 × 𝑆 is a binary accessiblility
relation.

Elements of the set 𝑅[𝑠] := {𝑡 ∈ 𝑆 | (𝑠, 𝑡) ∈ 𝑅} are called successors of 𝑠.

A pointed labelled transition system (pointed Kripke model) is a pair (𝕊, 𝑠) consisting of a transition system 𝕊 and a
designated state 𝑠 in 𝕊.

The following theorem is true in general for all complete lattices. However, due to the restricted application

of this theorem in this thesis, we restrict the formulation to complete lattices induced by the powersets of

sets.

Theorem 2.2 (Knaster-Tarski, Powerset) Let 𝑆 be a set and let P𝑆 denote the powerset of 𝑆. Let 𝑓 : P𝑆→ P𝑆 be
monotone. Then both the least and the greatest fixpoint exists for 𝑓 , and these are given as

𝐿𝐹𝑃. 𝑓 =
⋂

PRE(𝑓) 𝐺𝐹𝑃. 𝑓 =
⋃

POS(𝑓).

where LFP stands for the least fixpoint, GFP stands for the greatest fixpoint, PRE(𝑓) := {𝐴 ∈ P𝑆 | 𝑓 (𝐴) ⊆ 𝐴} and
POS(𝑓) := {𝐴 ∈ P𝑆 | 𝐴 ⊆ 𝑓 (𝐴)}.

Proof. We only prove the result for the least fixpoint, the proof for the greatest fixpoint is completely

analogous.

Define 𝑞 :=
∧

PRE(𝑓), then we have that 𝑞 ⊆ 𝑥 for all prefixpoints 𝑥 of 𝑓 . From this it follows by monotonicity

that 𝑓 (𝑞) ⊆ 𝑓 (𝑥) for all 𝑥 ∈ PRE(𝑓), and hence by definition of prefixpoints, 𝑓 (𝑞) ⊆ 𝑓 (𝑥) for all 𝑥 ∈ PRE(𝑓),
and hence by definition of prefixpoints, 𝑓 (𝑞) ⊆ 𝑥 for all 𝑥 ∈ PRE(𝑓). In other words, 𝑓 (𝑞) is a lower bound of

the set PRE(𝑓). Hence, by definition of 𝑞 as the greatest such lower bound, we find 𝑓 (𝑞) ⊆ 𝑞, that is, 𝑞 itself is

a prefixpoint of 𝑓 .

It now suffices to prove that 𝑞 ⊆ 𝑓 (𝑞), and for this we may show that 𝑓 (𝑞) is a prefixpoint of 𝑓 as well,

since 𝑞 is by definition a lower bound of the set of prefixpoints. But in fact, we may show that 𝑓 (𝑦) is a

prefixpoint of 𝑓 for every prefixpoint 𝑦 of 𝑓 , by monotonicity of 𝑓 it immediately follows from 𝑓 (𝑦) ⊆ 𝑦 that

𝑓 (𝑓 (𝑦)) ⊆ 𝑓 (𝑦).

In order to define the algebraic semantics of the modal 𝜇-calculus, we need to consider formulas as operations

on the power set of the state space of a transition system, and we have to prove that such operations indeed

have least and greatest fixpoints. In order to make this precise, we need some preliminary definitions.

Definition 2.16 Given an LTS 𝕊 = ⟨𝑆,𝑉, 𝑅⟩ and subset 𝑋 ⊆ 𝑆, define the valuation 𝑉[𝑥 ↦→ 𝑋] by putting

𝑉[𝑥 ↦→ 𝑋](𝑦) :=

{
𝑉(𝑦) if 𝑦 ≠ 𝑥

𝑋 if 𝑦 = 𝑥

Then, the LTS 𝕊[𝑥 ↦→ 𝑋] is given as the structure ⟨𝑆,𝑉[𝑥 ↦→ 𝑋], 𝑅⟩.

Now inductively assume that J𝜑K𝕊 has been defined for all LTSs. Given a labelled transition system 𝕊 and a

propositional variable 𝑥 ∈ P, each formula 𝜑 induces a map 𝜑𝕊
𝑥 : P(𝑆) → P(𝑆) defined by

𝜑𝕊
𝑥 (𝑋) := J𝜑K𝕊[𝑥 ↦→𝑋].

In particular, it is not the case that every formula has a least fixpoint. If we can guarantee that the induced

function 𝜑𝕊
𝑥 of 𝜑 is monotone, however, then the Knaster-Tarski theorem provides both least and greatest

fixpoints of 𝜑𝕊
𝑥 . Precisely for this reason, in the definition of fixpoint formulas, we imposed the condition in

Board Games 9

the clauses for 𝜂𝑥.𝜑, that 𝑥 may only occur positively in 𝜑. As we will see, this condition on 𝑥 guarantees

monotonicity of the function 𝜑𝕊
𝑥 .

Definition 2.17 Given a 𝜇ML-formula 𝜑 and a labelled transition system 𝕊 = ⟨𝑆,𝑉, 𝑅⟩, we define the extension
J𝜑K𝕊, together with the map 𝜑𝕊

𝑥 : P(𝑆) → P(𝑆) by the following simultaneous formula induction:

J⊥K𝕊 =∅
J⊤K𝕊 =𝑆

J𝑝K𝕊 =𝑉(𝑝)
J𝑝K𝕊 =𝑆\𝑉(𝑝)
J𝜑 ∨ 𝜓K𝕊 =J𝜑K𝕊 ∪ J𝜓K𝕊

J𝜑 ∧ 𝜓K𝕊 =J𝜑K𝕊 ∩ J𝜓K𝕊

J^𝜑K𝕊 =⟨𝑅⟩J𝜑K𝕊

J□𝜑K𝕊 =[𝑅]J𝜑K𝕊

J𝜇𝑥.𝜑K𝕊 =
⋂

PRE(𝜑𝕊
𝑥)

J𝜈𝑥.𝜑K𝕊 =
⋃

POS(𝜑𝕊
𝑥)

Here ⟨𝑅⟩(𝑈) := {𝑠 ∈ 𝑆 | 𝑅𝑠𝑢 for some 𝑢 ∈ 𝑈} and [𝑅](𝑈) := {𝑠 ∈ 𝑆 | 𝑅𝑠𝑢 for all 𝑢 ∈ 𝑈}. The map 𝜑𝕊
𝑥 for

𝑥 ∈ Prop, is given by 𝜑𝕊
𝑥 (𝑋) = J𝜑K𝕊[𝑥 ↦→𝑋].

Theorem 2.3 Let 𝜑 be an 𝜇ML-formula, in which 𝑥 occurs only positively, and let 𝕊 be a labelled transition system.
Then J𝜇𝑥.𝜑K𝕊 = 𝐿𝐹𝑃.𝜑𝕊

𝑥 and J𝜈𝑥.𝜑K𝕊 = 𝐺𝐹𝑃.𝜑𝕊
𝑥 .

Proof. This is an immediate consequence of the Knaster-Tarski theorem, provided we can prove that 𝜑𝕊
𝑥 is

monotone in 𝑥 if all occurences of 𝑥 in 𝜑 are positive. The latter is easily proven by induction on the structure

of 𝜑.

Board Games

The games that appear in this thesis can be classified as board or graph games. They are played by two

agents, here to be called 0 and 1. A board game is played on a board or arena, which is nothing but a directed

graph in which each node is marked with either 0 or 1. A match or play of the game consists of the two

players moving a pebble or token across the board, following the edges of the graph. To regulate this, the

collection of graph nodes, usually referred to as positions of the game, is partitioned into two sets, one for

each player. Thus, with each position we may associate a unique player whose turn it is to move when the

token lies on position 𝑝. A match or play of the game corresponds to a (finite or infinite) path through the

graph. Furthermore, the winning conditions of a match are determined by the nature of this path.

Definition 2.18 A board or arena is a structure 𝔹 = ⟨𝐵0 , 𝐵1 , 𝐸⟩, such that 𝐵0 and 𝐵1 are disjoint sets, and 𝐸 ⊆ 𝐵2,
where 𝐵 := 𝐵0 ∪ 𝐵1. We will make use of the notation 𝐸[𝑝] for the set of admissible or legitimate moves from a
board position 𝑝 ∈ 𝐵, that is, 𝐸[𝑝] := {𝑞 ∈ 𝐵 | (𝑝, 𝑞) ∈ 𝐸}. Positions not in 𝐸[𝑝] will sometimes be referred to as
illegitimate moves with respect to 𝑝. A position 𝑝 ∈ 𝐵 is a dead end if 𝐸[𝑝] = ∅. If 𝑝 ∈ 𝐵, we let Π𝑝 denote the
(unique) player such that 𝑝 ∈ 𝐵Π𝑝 , and say that 𝑝 belongs to Π𝑝 , or that it is Π𝑝 ’s turn to move at 𝑝.

A match of the game may in fact be identified with the sequence of positions visited during play, and thus

corresponds to a path through the graph.

10 2 Preliminaries

Definition 2.19 A path through a board 𝔹 = ⟨𝐵0 , 𝐵1 , 𝐸⟩ is a (finite or infinite) sequence Σ ∈ 𝐵∞ such that 𝐸Σ𝑖Σ𝑖+1

whenever applicable, where Σ ∈ 𝐵∞ denotes the collection of all finite and infinite sequences of elements of 𝐵. A full
or complete match or play through 𝔹 is either an infinite 𝔹-path, or a finite 𝔹-path ending with a dead end. A partial
match is a finite path through 𝔹 that is not a full match; in other words, the last position of a partial match is not a
dead end. We let PMΠ denote the set of partial matches such that Π is the player whose turn it is to move at the last
position of the match.

Each full or complete match is won by one of the players, and lost by their opponent; that is, there are no

draws. A finite match ends if one of the players gets stuck, that is, is forced to move the token from a position

without successors. Such a finite, completed, match is lost by the player who got stuck. If neither player ever

gets stuck, an infinite match arises. The flavor of a board game is very much determined by the winning

conditions of these infinite matches.

Definition 2.20 Given a board 𝔹, a winning condition is a map𝑊 : 𝐵∞ → {0, 1}. An infinite match Σ is won
by 𝑊(Σ). A board game is a structure G= ⟨𝐵0 , 𝐵1 , 𝐸,𝑊⟩ such that ⟨𝐵0 , 𝐵1 , 𝐸⟩ is a board, and 𝑊 is a winning
condition on 𝐵.

Before players can actually start playing a game, they need a starting position.

Definition 2.21 An initialized board game is a pair consisting of a board game Gand a position 𝑞 on the board of
the game; such a pair is usually denoted G@𝑞.

Central in the theory of games is the notion of a strategy. Roughly, a strategy for a player is a method that

the player uses to decide how to continue partial matches when it is their turn to move. More precisely,

a strategy is a function mapping partial plays for the player to new positions. It is a matter of definition

whether one requires a strategy to always assign moves that are legitimate or not; here we will not make this

requirement.

Definition 2.22 Given a board game G= ⟨𝐵0 , 𝐵1 , 𝐸,𝑊⟩ and a player Π, a Π-strategy, or a strategy for Π, is a
map 𝑓 : PMΠ → 𝐵. In cases we are dealing with an initialized game G@𝑞, then we may take a strategy to be a map
𝑓 : PMΠ(𝑞) → 𝐵. A match Σ is consistent with or guided by a Π-strategy 𝑓 if for any Σ′ which is a proper initial
segment of Σ with (last(Σ′) ∈ 𝐵Π), the next position on Σ (after Σ′) is indeed the element 𝑓 (Σ′).

Definition 2.23 A Π-strategy is surviving in G@𝑞 if the moves that it prescribes to 𝑓 -guided partial matches in
PMΠ@𝑝 are always admissible to Π, and winning for Π in G@𝑝 if in addition all 𝑓 -guided full matches starting at
𝑝 are won by Π. A position 𝑞 ∈ 𝐵 is winning for Π if Π has a winning strategy for the game G@𝑞; the collection of
all winning positions for Π in G is called the winning region for Π in G, and denoted as WinΠ(G).

Intuitively, 𝑓 being a surviving strategy in G@𝑞 means that Π never gets stuck in an 𝑓 -guided match of G@𝑞,

and so guarantees that Π can stay in the game forever.

It is easy to see that a position in a game Gcannot be winning for both players. On the other hand, whether a

position 𝑝 is always a winning position for one of the players, is a rather subtle one. Observe that in such

games the two winning regions partition the game board.

Definition 2.24 The game Gon board 𝔹 is determined if Win0(G) ∪Win1(G) = 𝐵; that is, each position is winning
for one of the players.

In principle, when deciding how to move a match of a board game, players may use information about

the entire history of the match played thus far. However, it will turn out to be advantageous to work with

strategies that are simple to compute. Particularly nice are so called positional strategies, which only depend

on the current position (i.e., the final position of the partial play).

Board Games 11

Definition 2.25 A strategy 𝑓 is positional or history-free if 𝑓 (Σ) = 𝑓 (Σ′) for any Σ,Σ′ with last(Σ) = last(Σ′).

Parity Games

Now, we introduce a specific type of infinite board games called parity games. A parity game is played on

a colored directed arena, where each node has been colored by a priority – one of finitely many natural

numbers.

Definition 2.26 A coloring of 𝐵 is a function Γ : 𝐵 → 𝐶 assigning to each position 𝑝 ∈ 𝐵 a color Γ(𝑝) taken
from some finite set 𝐶 of colors. By putting Γ(𝑝0𝑝1...) := Γ(𝑝0)Γ(𝑝1)... we can naturally extend such a coloring
Γ : 𝐵→ 𝐶 to a map Γ : 𝐵𝜔 → 𝐶𝜔.

Now if Γ : 𝐵→ 𝐶 is a coloring, for any infinite sequence Σ ∈ 𝐵𝜔
, the map Γ ◦ Σ ∈ 𝐶𝜔

forms the associated

sequence of colors. But then since 𝐶 is finite, there must be some elements of 𝐶 that occur infinitely often in

this stream.

Definition 2.27 Let 𝔹 be a board and Γ : 𝐵 → 𝐶 a coloring of 𝐵. Given an infinite sequence Σ ∈ 𝐵𝜔, we let
inf Γ(Σ) denote the non-empty set of colors that occur infinitely often in the sequence Γ ◦ Σ.

Definition 2.28 Let 𝐵 be some set; a priority map on 𝐵 is a coloring Ω : 𝐵→ 𝜔, that is, a map of finite range. A
parity game is a board game G= (𝐵0 , 𝐵1 , 𝐸,𝑊Ω) in which the winning condition is given by

𝑊Ω : 𝐵𝜔 → {0, 1}, 𝑊Ω(Σ) := max(infΩ(Σ)) mod 2.

Such a parity game is usually denoted as G= ⟨𝐵0 , 𝐵1 , 𝐸,Ω⟩.

The key property that makes parity games so interesting is that they enjoy positional determinacy.

Theorem 2.4 (Positional Determinacy of Parity Games) For any parity game G there are positional strategies 𝑓0
and 𝑓1 for 0 and 1, respectively, such that for every position 𝑞 there is a player Π such that 𝑓Π is a winning strategy
for Π in G@𝑞.

Here we omit the proof of this theorem, interested readers can refer to [13] or [14].

To end this subsection, the following is an auxiliary proposition that comes in handy in this thesis for proving

that two matches in parity games have the same winner.

Proposition 2.5 Let 𝑎, 𝑏 be two function from 𝜔 to 𝜔 of finite range. If there exists 𝑚 ∈ 𝜔 such that for all 𝑖 , 𝑗 ≥ 𝑚
it holds that

1) 𝑎(𝑖) ≡2 𝑏(𝑖)
2) if 𝑎(𝑖) .2 𝑎(𝑗), then 𝑎(𝑖) < 𝑎(𝑗) if and only if 𝑏(𝑖) < 𝑏(𝑗),

then max(inf (𝑎)) ≡2 max(inf (𝑏)).

Proof. Let 𝑛 ≥ 𝑚 be such that 𝑎(𝑛) = max(inf (𝑎)). Note that such an 𝑛 always exists because max(inf (𝑎)
occurs infinitely many times in 𝑎. Since 𝑎(𝑛) is the maximal value that occurs in 𝑎 for infinitely many times, it

follows that there are only finitely many 𝑖 ∈ 𝜔 such that 𝑎(𝑖) > 𝑎(𝑛). Specifically, there are only finitely many

𝑚 ≤ 𝑖 < 𝜔 such that 𝑎(𝑖) > 𝑎(𝑛). This means that the set

{𝑖 ∈ 𝜔 | 𝑎(𝑖) .2 𝑎(𝑛), 𝑎(𝑖) > 𝑎(𝑛), 𝑖 ≥ 𝑚}

12 2 Preliminaries

Table 2.1: Evaluation game for modal 𝜇-calculus

Position Player Admissible moves

(𝜑1 ∨ 𝜑2 , 𝑠) ∃ {(𝜑1 , 𝑠), (𝜑2 , 𝑠)}
(𝜑1 ∧ 𝜑2 , 𝑠) ∀ {(𝜑1 , 𝑠), (𝜑2 , 𝑠)}
(^𝜑, 𝑠) ∃ {(𝜑, 𝑡) | 𝑡 ∈ 𝜎(𝑠)}
(□𝜑, 𝑠) ∀ {(𝜑, 𝑡) | 𝑡 ∈ 𝜎(𝑠)}
(⊥, 𝑠) ∃ ∅
(⊤, 𝑠) ∀ ∅

(𝑝, 𝑠), 𝑝 ∈ 𝑉(𝑠) ∀ ∅
(𝑝, 𝑠), 𝑝 ∉ 𝑉(𝑠) ∃ ∅
(𝑝, 𝑠), 𝑝 ∈ 𝑉(𝑠) ∃ ∅
(𝑝, 𝑠), 𝑝 ∉ 𝑉(𝑠) ∀ ∅
(𝜂𝑥𝑥.𝛿𝑥 , 𝑠) - {(𝛿𝑥 , 𝑠)}

(𝑥, 𝑠),with 𝑥 ∈ 𝐵𝑉(𝜉) - {(𝛿𝑥 , 𝑠)}

Table 2.2: Winning conditions of E(𝜉,𝕊)

∃ wins Σ ∀wins Σ

Σ is finite ∀ got stuck ∃ got stuck

Σ is infinite max(Unf∞(Σ)) is a 𝜈 variable max(Unf∞(Σ)) is a 𝜇 variable

is of finite size.

Now, we show that, for all 𝑖 ≥ 𝑚, we have 𝑎(𝑖) .2 𝑎(𝑛) and 𝑎(𝑖) > 𝑎(𝑛) if and only if 𝑏(𝑖) .2 𝑏(𝑛) and

𝑏(𝑖) > 𝑏(𝑛). Fix an arbitrary 𝑖 ≥ 𝑚

⇒ Suppose 𝑎(𝑖) .2 𝑎(𝑛) and 𝑎(𝑖) > 𝑎(𝑛). By condition 1) of the assumption in the proposition, 𝑏(𝑖) ≡2

𝑎(𝑖) .2 𝑎(𝑛) ≡2 𝑏(𝑛). By condition 2), we have that 𝑏(𝑖) > 𝑏(𝑛).
⇐ Suppose 𝑏(𝑖) .2 𝑏(𝑛) and 𝑏(𝑖) > 𝑏(𝑛). By condition 1) of the assumption in the proposition, 𝑎(𝑖) ≡2

𝑏(𝑖) .2 𝑏(𝑛) ≡2 𝑎(𝑛). Given that we have shown 𝑎(𝑖) .2 𝑎(𝑛), by condition 2), we have 𝑎(𝑖) > 𝑎(𝑛).

In other words,

{𝑖 ≥ 𝑚 | 𝑎(𝑖) .2 𝑎(𝑛), 𝑎(𝑖) > 𝑎(𝑛)} = {𝑖 ≥ 𝑚 | 𝑏(𝑖) .2 𝑏(𝑛), 𝑏(𝑖) > 𝑏(𝑛)}.

Note that

|{𝑖 ∈ 𝜔 | 𝑏(𝑖) .2 𝑏(𝑛), 𝑏(𝑖) > 𝑏(𝑛)}| = |{𝑖 ≥ 𝑚 | 𝑏(𝑖) .2 𝑏(𝑛), 𝑏(𝑖) > 𝑏(𝑛)} ∪ {𝑖 < 𝑚 | 𝑏(𝑖) .2 𝑏(𝑛), 𝑏(𝑖) > 𝑏(𝑛)}|
= |{𝑖 ≥ 𝑚 | 𝑏(𝑖) .2 𝑏(𝑛), 𝑏(𝑖) > 𝑏(𝑛)}| + |{𝑖 < 𝑚 | 𝑏(𝑖) .2 𝑏(𝑛), 𝑏(𝑖) > 𝑏(𝑛)}|
≤ |{𝑖 ∈ 𝜔 | 𝑏(𝑖) .2 𝑏(𝑛), 𝑏(𝑖) > 𝑏(𝑛), 𝑖 ≥ 𝑚}| + 𝑚
= |{𝑖 ∈ 𝜔 | 𝑎(𝑖) .2 𝑎(𝑛), 𝑎(𝑖) > 𝑎(𝑛), 𝑖 ≥ 𝑚}| + 𝑚

Therefore, {𝑖 ∈ 𝜔 | 𝑏(𝑖) .2 𝑏(𝑛), 𝑏(𝑖) > 𝑏(𝑛)} is of finite size. This means that for any 𝑘 ∈ 𝜔 such that

𝑘 ∈ 𝑖𝑛 𝑓 (𝑏) and 𝑘 > 𝑏(𝑛), it most be the case that 𝑘 ≡2 𝑏(𝑛). Thus,

max(inf (𝑏)) ≡2 𝑏(𝑛) ≡2 𝑎(𝑛) = max(inf(𝑎)).

Game Semantics for modal 𝜇-calculus

We now provide an equivalent semantics for modal 𝜇-calculus in game-theoretic terms. We define the

evaluation game E(𝜉,𝕊) associated with a (fixed) formula 𝜉 and a (fixed) LTS 𝕊 (player 0 and 1 are refered to

as player ∀ and ∃). This game is an example of a board game.

Board Games 13

Definition 2.29 Given a clean modal 𝜇-calculus formula 𝜉 and a transition system 𝕊, we define the evaluation
game or model checking game E(𝜉,𝕊) as a board game with player ∃ and ∀moving a token around positions of the
form (𝜑, 𝑠) ∈ Sfor(𝜉) × 𝑆. The rules, determining the admissible moves from a given position, together with the
player who is supposed to make this move, are given in Table 2.1. E(𝜉,𝕊)@(𝜉, 𝑠) denotes the instantiation of this
game where the stargin position is fixed as (𝜉, 𝑠).

Definition 2.30 Let 𝜉 be a clean 𝜇ML-formula, and 𝕊 a labelled transition system. A match of the game E(𝜉,𝕊) is
a (finite or infinite) sequence of positions

Σ = (𝜑𝑖 , 𝑠𝑖)𝑖∈𝜅
(where 𝜅 is either a natural number or 𝜔) which is in accordance with the rules of the evaluation game — that is, Σ is
a path through the game graph given by the admissibility relation of Table 2.1. A full match is either an infinite match,
or a finite match in which the player responsible for the last position got stuck. In practice, we will always refer to full
matches simply as matches. A match that is not full is called partial.

Definition 2.31 Given an infinite match Σ, we let Unf∞ ⊆ 𝐵𝑉(𝜉) denote the set of variables that are unfolded
infinitely during Σ.

Proposition 2.6 Let 𝜉 be a clean 𝜇ML-formula, and 𝕊 a labelled transition system. Then for any infinite match Σ of
the game E(𝜉,𝕊), the set Unf∞(Σ) has a highest ranking member in terms of the dependency order.

Proof. Since Σ is an infinite match, the set 𝑈 := Unf∞(Σ) is not empty. Let 𝑦 be an element of 𝑈 which is

maximal (with respect to the ranking order ≤𝜉) — such an element exists since𝑈 is finite.

We claim that

from some moment on, Σ only features subformulas of 𝛿𝑦 . (2.1)

To prove this, note that since 𝑦 is ≤𝜉-maximal in 𝑈 , there must be a position in Σ such that 𝑦 is unfolded

to 𝛿𝑦 , while no variable 𝑧 >𝜉 𝑦 is unfolded at any later position in Σ. But then a straightforward induction

shows that all formulas featuring at later positions must be subformulas of 𝛿𝑦 : the key observation here is

that if 𝑧 P 𝛿𝑦 unfolds to 𝛿𝑧 , and by assumption 𝑧 ≯𝑥𝑖 𝑦, then it must be the case that 𝛿𝑧 P 𝛿𝑢 .

As a corollary of 2.1, we claim that

𝑦 is in fact the maximum of𝑈 (with respect to ≤𝜉). (2.2)

To see this, suppose for contradiction that there is a variable 𝑥 ∈ 𝑈 which is not below 𝑦. It follows from 2.1

that 𝛿𝑥 P 𝛿𝑦 , and without loss of generality we may assume 𝑥 to be such that 𝛿𝑥 is a maximal subformula

of 𝛿𝑦 such that 𝑥 ≰𝜉 𝑦 (in the sense that 𝑧 ≤𝜉 𝑦 for all 𝑧 ∈ 𝑈 with 𝛿𝑥 ⊳ 𝛿𝑧). In particular, then we have

𝑦 ∉ 𝐹𝑉(𝛿𝑥). But since 𝑦 is unfolded infinitely often, there must be a variable 𝑧 ∈ 𝐹𝑉(𝛿𝑥)which allows Σ to

’leave’ 𝛿𝑥 infinitely often; this means that 𝑧 ∈ 𝑈 , 𝛿𝑥 P 𝛿𝑧 , but 𝛿𝑧 R 𝛿𝑥 . From this it is immediate that 𝑥 ≤𝜉 𝑧,
while from 𝑧 ∈ 𝑈 and 2.1 we obtain 𝛿𝑧 P 𝛿𝑦 . It now follows from our maximality assumption on 𝑥 that

𝑧 ≤𝜉 𝑦. But then by transitivity of ≤𝜉 we find that 𝑥 ≤𝜉 𝑦 indeed. In other words, we have arrived at the

desired contradiction. This shows that 2.2 holds indeed, and from this the proposition is immediate.

Definition 2.32 Let 𝜉 be a clean 𝜇ML-formula. The winning conditions of the game E(𝜉,𝕊) are given in Table 2.2.

In fact, the E(𝜉,𝕊)mentioned in the definition above can always be seen as a parity game. This is due to the

fact that we can always map the dependency order of bound variables onto the natural numbers in an order-

and parity-preserving way. We omit the detail of this mapping here, but interested reader can refer to [13].

14 2 Preliminaries

We can now formulate the game-theoretic semantics of the modal 𝜇-calculus as follows.

Definition 2.33 Let 𝜉 be a clean formula of the modal 𝜇-calculus, and let 𝕊 be a transition system of the appropriate
type. Then we say that 𝜉 is (game-theoretically) satisfied at 𝑠, notation 𝕊, 𝑠 |=𝑔 𝜉 if (𝜉, 𝑠) ∈ Win∃(E(𝜉,𝕊)).

Theorem 2.7 (Equivalence of the Algebraic Semantics and the Game Semantics) Let 𝜉 be a clean 𝜇ML-formula.
Then for any Kripke model 𝕊 and any state 𝑠 in 𝕊:

𝑠 ∈ J𝜉K𝕊 ⇐⇒ (𝜉, 𝑠) ∈ Win∃(E(𝜉,𝕊)).

We omit the proof of this theorem. Interested readers can refer to [13].

Parity Formula

Syntax

Definition 2.34 Let P be a finite set of proposition letters. A parity formula over P is a quintuple𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼)
where

1. (𝑉, 𝐸) is a finite, directed graph, with |𝐸[𝑣]| ≤ 2 for every vertex 𝑣;
2. 𝐿 : 𝑉 → At(P) ∪ {∧,∨,^,□, 𝜖} is a labelling function;
3. Ω : 𝑉

◦→ 𝜔 is a partial map, the priority map of 𝔾; and
4. 𝑣𝐼 is a vertex in 𝑉 , referred to as the initial node of 𝔾;

such that

1. |𝐸[𝑣]| = 0 if 𝐿(𝑣) ∈ At(P), and |𝐸[𝑣]| = 1 if 𝐿(𝑣) ∈ {^,□, 𝜖}; and
2. every cycle of (𝑉, 𝐸) contains at least one node in Dom(Ω).

A node 𝑣 ∈ 𝑉 is called silent if 𝐿(𝑣) = 𝜖, constant if 𝐿(𝑣) ∈ {⊤,⊥}, literal if 𝐿(𝑣) ∈ Lit(P), atomic if it is either
constant or literal, boolean if 𝐿(𝑣) ∈ {∧,∨} and modal if 𝐿(𝑣) ∈ {^,□}. Elements of Dom(Ω) will be called states.
We say that a proposition letter 𝑞 occurs in 𝔾 if 𝐿(𝑣) ∈ {𝑞, 𝑞} for some 𝑣 ∈ 𝑉 .

Example 2.1 Figure 2.1 shows the parity formula

𝔾 = (𝑉 = {𝑤, 𝑥, 𝑦, 𝑧},
𝐸 = {(𝑤, 𝑥), (𝑥, 𝑦), (𝑥, 𝑧), (𝑦, 𝑤),
𝐿 = {(𝑤, 𝜖), (𝑥,∨), (𝑦,□), (𝑧, 𝑝)},
Ω = {(𝑤, 0)}}
𝑣𝐼 = 𝑤).

This parity formula corresponds to the modal 𝜇-formula 𝜇𝑥.□𝑥 ∨ 𝑝.

Semantics

An example that demonstrates the following semantics can be found in Appendix A.

Definition 2.35 Let 𝕊 = (𝑆, 𝑅,𝑉) be a Kripke model for a set P of proposition letters, and let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼)
be a parity P-formula. The evaluation game E(𝔾,𝕊) is the parity game (𝐺, 𝐸,Ω′) of which the board consists of the

Parity Formula 15

𝜖 |0

∨

□ 𝑝

𝑤

𝑥

𝑦 𝑧

Figure 2.1: A parity formula that corresponds to the modal 𝜇-formula 𝜇𝑥.□𝑥 ∨ 𝑝

Table 2.3: Evaluation game E(𝔾,𝕊)

Position (𝑣, 𝑠) Player Admissible moves

𝐿(𝑣) = 𝑝 & 𝑠 ∈ 𝑉(𝑝) ∀ ∅
𝐿(𝑣) = 𝑝 & 𝑠 ∉ 𝑉(𝑝) ∃ ∅
𝐿(𝑣) = 𝑝 & 𝑠 ∈ 𝑉(𝑝) ∃ ∅
𝐿(𝑣) = 𝑝 & 𝑠 ∉ 𝑉(𝑝) ∀ ∅

𝐿(𝑣) = ⊥ ∃ ∅
𝐿(𝑣) = ⊤ ∀ ∅
𝐿(𝑣) = 𝜖 - 𝐸[𝑣] × {𝑠}
𝐿(𝑣) = ∨ ∃ 𝐸[𝑣] × {𝑠}
𝐿(𝑣) = ∧ ∀ 𝐸[𝑣] × {𝑠}
𝐿(𝑣) = ^ ∃ 𝐸[𝑣] × 𝑅[𝑠]
𝐿(𝑣) = □ ∀ 𝐸[𝑣] × 𝑅[𝑠]

set 𝑉 × 𝑆, the priority map Ω′ : 𝑉 × 𝑆→ 𝜔 is given by

Ω′(𝑣, 𝑠) :=

{
Ω(𝑣) if 𝑣 ∈ Dom(Ω)
0 otherwise

and the game graph is given in Table 2.3. Note that we do not need to assign a player to positions that admit a single
move only.

Definition 2.36 A parity formula 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) holds at or is satisfied by a pointed Kripke model (𝕊, 𝑠),
notation: 𝕊, 𝑠 |= 𝔾, if the pair (𝑣𝐼 , 𝑠) is a winning position for ∃ in E(𝔾,𝕊). We say two parity formulas 𝔾 and 𝔾′
are equivalent if they hold at the exact same class of pointed Kripke models, notation 𝔾 ≡ 𝔾′.

Definition 2.37 Let𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) be a parity formula, and let 𝑣 be a vertex in𝑉 . Let𝔾⟨𝑣⟩ := (𝑉, 𝐸, 𝐿,Ω, 𝑣)
denote the variant of 𝔾 that takes 𝑣 as its initial node.

From 𝜇ML Formula to Parity Formula

In this subsection, we discuss two ways to construct an equivalent parity formula given a clean modal

𝜇-formula.

16 2 Preliminaries

Parity Formulas on Subformula Dag

The following construction shows that for a clean formula, we can indeed obtain an equivalent parity formula

which is based on its subformula dag. The basic idea underlying the construction is to view the evaluation

games for clean formulas in 𝜇ML as instances of parity games. Given an arbitrary formula 𝜉 ∈ 𝜇ML, we then

need to see which modifications are needed to turn the subformula dag (Sfor(𝜉), ⊲0) into a parity formula ℍ𝜉

such that, for any model 𝕊, the evaluation games E(𝜉,𝕊) and E(ℍ𝜉 ,𝕊) are more or less identical. Clearly, the

fact that the positions of the evaluation game E(𝜉,𝕊) are given as the pairs in the set Sfor(𝜉) × 𝑆, means that

we can take the set 𝑉𝜉 := Sfor(𝜉) as the carrier of ℍ𝜉 indeed.

Looking at the admissible moves in the two games, it turns out that we cannot just take the converse direct

subformula relation ⊲0 as the edge relation of ℍ𝜉: we need to add all back edges from the set

𝐵𝜉 := {(𝑥, 𝛿𝑥) | 𝑥 ∈ 𝐵𝑉(𝜉)},

where, as usual, we let 𝛿𝑥 denote the unique formula such that, for some 𝜂 ∈ {𝜇, 𝜈} the formula 𝜂𝑥.𝛿𝑥 is a

subformula of 𝜉. In fact, if we write 𝐷𝜉 for the relation ⊲0, restricted to Sfor(𝜉), then we can take

𝐸𝜉 := 𝐷𝜉 ∪ 𝐵𝜉 ,

as the edge relation of ℍ𝜉. Furthermore, the labelling 𝐿𝜉 is naturally defined via the following case

distinction:

𝐿𝜉(𝜑) :=

𝜑 if 𝜑 ∈ {⊤,⊥} ∪ {𝑝, 𝑝 | 𝑝 ∈ 𝐹𝑉(𝜉)}
⊙ if 𝜑 is of the form 𝜑0 ⊙ 𝜑1 with ⊙ ∈ {∨,∧}
♥ if 𝜑 is of the form ♥𝜓 with ♥ ∈ {□,^}
𝜖 if 𝜑 is of the form 𝜂𝑥𝑥.𝛿𝑥 with 𝜂 ∈ {𝜇, 𝜈}

With this definition, it is easy to see that the boards of the two evaluation games E(𝜉,𝕊) and E(ℍ𝑥𝑖 ,𝕊) are

isomorphic, for any labeled transition system 𝕊. As the initial node 𝑣𝜉 of ℍ𝜉 we simply take

𝑣𝜉 := 𝜉.

In order to finish the definition of the parity formula ℍ𝜉 it is then left to come up with a suitable priority map

Ω𝜉 on 𝑉𝜉. Since the winning condition s of the evaluation game for the formula 𝜉 are defined in terms of the

priority ordering ≤𝜉 on the collection 𝐵𝑉(𝜉) of bound variables of 𝜉, it seems natural to take these bound

variables of 𝜉 as the states of ℍ𝜉, that is, the nodes for which a priority is defined. It will be more convenient,

however, to take the unfolding of these bound variables instead; that is, we take

Dom(Ω𝜉) := {𝛿𝑥 | 𝑥 ∈ 𝐵𝑉(𝜉)}.

Definition 2.38 Let 𝜉 be a clean modal 𝜇-formula. Define the its parity formula translation based on the subformula
dag ℍ𝜉 := (𝑉𝜉 , 𝐸𝜉 , 𝐿𝜉 ,Ω𝜉 , 𝜉).

Note that for the sake of equivalence between 𝜉 and ℍ𝜉, it is sufficient for the the priority map Ω to satisfy

the following two conditions:

1. Ω(𝛿𝑥) ≤ Ω(𝛿𝑦) if and only if 𝑥 ≤𝜉 𝑦, and

2. Ω(𝛿𝑥) is even if and only if 𝑥 is a 𝜈-variable.

In light of this, we propose

Ω𝜉(𝛿𝑥) :=

{
ℎ𝜉(𝑥) − ℎ↑𝜉(𝑥) if ℎ𝜉(𝑥) − ℎ↑𝜉(𝑥) has the same parity as 𝜂𝑥

ℎ𝜉(𝑥) − ℎ↑𝜉(𝑥) + 1 otherwise,

Parity Formula 17

where for any bound variable 𝑥 ∈ 𝐵𝑉(𝜉), ℎ↑𝜉(𝑥) denote the maximal length of an alternating <𝜉-chain of

fixpoint variables starting at 𝑥, and ℎ𝜉(𝑥) denote the maximal length of an alternating <𝜉-chain in the cluster

of 𝑥. Additionally, 𝑖𝑛𝑑(ℍ𝜉) = 𝑎𝑑(𝜉) in this construction. ℍ𝜉 can be shown to be equivalent to 𝜉. Interested

readers can refer to [15].

Parity Formulas on Closure Graph

For an arbitrary tidy formula, we can find an equivalent parity formula that is based on the formula’s closure

graph.

The priority map that we will define on the closure graph of a tidy formula is in fact global in the sense that

it can be defined uniformly for all (tidy) formulas, independently of any ambient formula. Furthermore,

we will base this map on a partial order of fixpoint formulas, the closure priority relation ⊑𝐶 that we will

introduce now. Recall that P 𝑓 denotes the free subformula relation introduced in Definition 2.10.

Definition 2.39 We let ≡𝐶 denote the equivalence relation generated by the relation→𝐶 , in the sense that: 𝜑 ≡𝐶 𝜓
if 𝜑 ↠𝐶 𝜓 and 𝜓 ↠𝐶 𝜑. We will refer to the equivalence classes of ≡𝐶 as (closure) clusters, and denote the cluster
of a formula 𝜑 as 𝐶(𝜑).

Definition 2.40 Define the closure priority relation ⊑𝐶 on fixpoint formulas by putting 𝜑 ⊑𝐶 𝜓 precisely if
𝜓 ↠

𝜓
𝐶
𝜑, where↠𝜓

𝐶
is the relation given by 𝜌↠

𝜓
𝐶
𝜎 if there is a trace 𝜌 = 𝜒0 →𝐶 𝜒1 →𝐶 ...→𝐶 𝜒𝑛 = 𝜎 such

that 𝜓 P 𝑓 𝜒𝑖 for all 0 ≤ 𝑖 ≤ 𝑛. We write 𝜑 ⊏𝐶 𝜓 if 𝜑 ⊑𝐶 𝜓 and 𝜓 @𝐶 𝜑.

Definition 2.41 An alternating ⊏𝐶-chain of length 𝑛 is a sequence (𝜂𝑖𝑥𝑖 .𝜒𝑖)0≤𝑖≤𝑛 of tidy fixpoint formulas such
that 𝜂𝑖𝑥𝑖 .𝜒𝑖 ⊏𝐶 𝜂𝑖+1𝑥𝑖+1.𝜒𝑖+1 and 𝜂𝑖+1 = 𝜂𝑖 for all 0 ≤ 𝑖 < 𝑛. We say that such a chain starts at 𝜂1𝑥1.𝜒1 and leads
up to 𝜂𝑛𝑥𝑛 .𝜒𝑛 .

Given a tidy fixpoint formula 𝜉, we let ℎ↑(𝜉) and ℎ↓(𝜉) denote the maximal length of any alternating ⊏𝐶-chain
starting at, respectively leading up to, 𝜉. Given a closure cluster 𝐶, we let 𝑐𝑑(𝐶) denote the closure depth of 𝐶, i.e.,
the maximal length of any alternating ⊏𝐶-chain in 𝐶.

The global priority function Ω𝑔 : 𝜇ML → 𝜔 is defined cluster-wise, as follows. Take an arbitrary tidy fixpoint
formula 𝜓 = 𝜂𝑦.𝜑, define

Ω𝑔(𝜓) :=

{
𝑐𝑑(𝐶(𝜓)) − ℎ↑(𝜓) if 𝑐𝑑(𝐶(𝜓)) − ℎ↑(𝜓) has parity 𝜂

𝑐𝑑(𝐶(𝜓)) − ℎ↑(𝜓) + 1 if 𝑐𝑑(𝐶(𝜓)) − ℎ↑(𝜓) has parity 𝜂.

Here we recall that we associate 𝜇 and 𝜈 with odd and even parity, respectively. If 𝜓 is not of the form 𝜂𝑦.𝜑, we leave
Ω𝑔(𝜓) undefined.

Definition 2.42 Fix some tidy formula 𝜉. Let ℂ𝜉 be the closure graph (𝐶𝑙𝑜𝑠(𝜉),→𝐶) of 𝜉, expanded with the
natural labelling 𝐿𝐶 given by

𝐿𝐶(𝜑) =

𝜑 if 𝜑 ∈ At(P)
♥ if 𝜑 = ♥𝜓
⊙ if 𝜑 = 𝜓0 ⊙ 𝜓1

𝜖 if 𝜑 = 𝜂𝑥.𝜓

Let
𝔾𝜉 := (ℂ𝜉 ,Ω𝑔 ↾𝐶𝑙𝑜𝑠(𝜉) , 𝜉).

𝔾𝜉 can be shown to be equivalent to 𝜉. Interested readers can refer to [15].

18 2 Preliminaries

From Parity Formula to 𝜇ML Formula

In the previous section we saw constructions that, for a given 𝜇ML formula, produce equivalent parity

formulas based on, respectively, the subformula dag and the closure graph of the original formula. It is also

possible to give a construction that turns an arbitrary parity formula 𝔾 in to an equivalent 𝜇ML formula

𝜉𝔾 ∈ 𝜇ML. Basically, this construction takes a parity formula as a system of equations, and it solves these

equations by a Gaussian elimination of variables. As a result, the transformation from parity formulas to

𝜇ML formulas can be seen as some sort of unraveling construction. We will not go into details about this

construction here, and interested readers can refer to [13].

Criteria and Evaluation 3
In this chapter, we will introduce a list of criteria for judging whether a definition of bisimulation is a good

one, as well as the four attempts at defining a good notion of bisimulation over parity formulas that appear

in this thesis.

We first consider a list of properties we want a definition of bisimulation to have in general before delving

into any details of the specific definitions. In Chapter 1, we mentioned that there are three main reasons

for which we want to investigate the notion of bisimulation, namely to capture behavioral equivalence over

transition systems, to establish identity of theory or extension, and to take the quotient of a structure. In our

setting, these goals inspire the following criteria for a good definition of bisimulation S.

1. S is a sufficient condition for modal equivalence.

2. There is a largest bisimulation between any two structures and it is an equivalence relation.

3. Given a relation 𝐵, it should be easily verifiable whether it is a bisimulation.

4. Sshould include as many pairs of modally equivalent nodes as possible.

Criterion 1 and 2 are intuitively some necessary conditions for achieving aforementioned goals. With criterion

3, we want to capture the nature of bisimulations as a tool to establish identity between infinite objects

by a finite collection of facts, while leaving enough space for interpreting counts as ’easily verifiable’. If

we think of Criterion 1 as expressing the requirement of the notion of bisimulation being ’sound’, then

Criterion 4 requires the notion to be as close to ’complete’ as possible. However, completeness for any notion

of bisimulation built on the matching of labels is impossible, as is illustrated by the following two parity

formulas that are obviously modally equivalent while having two disjoint sets of labels.

⊥
∧

𝑝 𝑝

𝔾1 𝔾2

Figure 3.1: Two modally equivalent parity formula with disjoint labels

In the case where it is not immediately obvious whether Criterion 2 holds or not, we also propose the

following two criteria which when combined are stronger than Criterion 2, a consequence of the fact that

there are only finitely many bisimulations over any two parity formulas due to their finite nature.

5. S is closed under union.

6. S is closed under composition.

Given the fact that the semantics of parity formulas is built upon parity games, one requirement particular to

the definition of bisimulation over parity formulas is that we want the treatment of priorities to have a ’relative

flavor’, since in parity games what matters is only the order between the priorities of different positions, and

not their absolute value. Consider Example 3.1.

Example 3.1 Figure 3.2 shows two parity formulas that should be counted as the same, as there is a

one-to-one correspondence between the nodes respecting the labeling, parity and relative order of the

priorities.

Accordingly, we propose the following criterion.

7. In S, the treatment of priorities has a ’relative flavor’.

20 3 Criteria and Evaluation

𝜖 |0

∨

□|1 𝑝

𝜖 |2

∨

□|5 𝑝

Figure 3.2: Two intuitively isomorphic parity formulas

In the rest of this chapter, we will introduce the aforementioned definitions of bisimulation and evaluate

them against these criteria. Table 3.1 is an overview of the four definitions we discuss in this chapter. Table

3.2 summarizes the result of the evaluation.

Table 3.1: An overview of the definitions.

Definition 1 Definition 2 Definition 3 Definition 4

- modal equivalence - Match on Labels - Match on Labels - Match on Labels

- Match on Priority - Match on Parities - Match on Parities

- Zig-zag - Zig-zag - Zig-zag from 𝐴𝑖+1\𝐴0 to 𝐴𝑖
- Order Preserving - Zig-zag within 𝐴0

–in Clusters - Order Preserving in 𝐴0

Table 3.2: An overview of the evaluation of the definitions.

Def. 1 Def. 2 Def. 3 Def. 4

Crit. 1 ✓ ✓ ✓ ✓

Crit. 2 ✓ ✓ ✗ ✓

Crit. 3 ✗ ✓ ✓ ✓

Crit. 4 See Figure 3.3

Crit. 5 ✓ ✓ ✗ ✓

Crit. 6 ✓ ✓ ✗ ✓

Crit. 7 - ✗ ✓ ✓

•

•

• •
Loose Strict

Definition 1 Definition 2Definition 3

Definition 4

✗ ✗

Figure 3.3: ’Completeness’ of the definitions

Definition 1 21

Definition 1

The easiest way to ensure criterion 4 is satisfied is perhaps to take modal equivalence as the definition for

bisimulation.

Definition 3.1 (Definition 1) Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω) and 𝔾′(𝑉′, 𝐸′, 𝐿′,Ω′) be two parity formulas. 𝐵 ⊆ 𝑉 ×𝑉′ is
a bisimulation over 𝔾 and 𝔾′ if and only 𝐵 = {(𝑣, 𝑣′) | 𝑣 ∈ 𝑉, 𝑣′ ∈ 𝑉′,𝔾⟨𝑣⟩ ≡ 𝔾′⟨𝑣′⟩}.

For this definition, criterion 2 and 5 are satisfied because there is exactly one bisimulation over any two parity

formulas and criterion 6 is satisfied due to transitivity of identity.

However, this approach to defining bisimulations is almost tautological and does not provide any information

about the structure of the parity formulas in question. It goes against the idea of bisimulation, which is to

show infinite properties with a finite collection of facts, and to establish similarity in global behaviors from

similarity in local behaviors. The result of this flaw is that it is unclear how to verify whether a given relation

is indeed a bisimulation, i.e., criterion 3.

Definition 2

Another inspiration for defining bisimulations over parity formulas is how bisimulations are defined on

Kripke models for the basic modal logic.

Definition 3.2 Let 𝕊1 = ⟨𝑆1 , 𝑉1 , 𝑅1⟩ and 𝕊2 = ⟨𝑆2 , 𝑉2 , 𝑅2⟩ be two Kripke models. 𝑍 is a bisimulation over 𝕊1

and 𝕊2 if for any 𝑠1 ∈ 𝑆1, 𝑠2 ∈ 𝑆2, 𝑠1𝑍𝑠2, we have

1) 𝑠1 and 𝑠2 satisfy the same proposition letters;
3) for any 𝑠′

1
∈ 𝑆1, if 𝑅1𝑠1𝑠

′
1

then there exists 𝑠′
2
∈ 𝑆2 such that 𝑠′

1
𝑍𝑠′

2
and 𝑅2𝑠2𝑠

′
2
; and

4) for any 𝑠′
2
∈ 𝑆2, if 𝑅2𝑠2𝑠

′
2

then there exists 𝑠′
1
∈ 𝑆1 such that 𝑠′

1
𝑍𝑠′

2
and 𝑅1𝑠1𝑠

′
1
.

If we see the valuation in Kripke models and the label and priority functions both as some sort of ’coloring’,

then we can translate the definition above into a definition of bisimulation over parity:

Definition 3.3 (Definition 2) Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′) be two parity formulas. 𝐵 ⊆ 𝑉 ×𝑉′
is a bisimulation between 𝔾 and 𝔾′ if for all (𝑢, 𝑢′) ∈ 𝐵 we have

1) 𝐿(𝑢) = 𝐿′(𝑢′);
2) if 𝑢 ∈ Dom(Ω), then 𝑢′ ∈ Dom(Ω′) and Ω(𝑢) = Ω′(𝑢′);
3) if 𝑢′ ∈ Dom(Ω′), then 𝑢 ∈ Dom(Ω) and Ω(𝑢) = Ω′(𝑢′);
4) for any 𝑣 ∈ 𝑉 , if 𝐸𝑢𝑣 then there exists 𝑣′ ∈ 𝑉′ such that (𝑣, 𝑣′) ∈ 𝐵 and 𝐸′𝑢′𝑣′; and
5) for any 𝑣′ ∈ 𝑉′, if 𝐸′𝑢′𝑣′ then there exists 𝑣 ∈ 𝑉 such that (𝑣, 𝑣′) ∈ 𝐵 and 𝐸𝑢𝑣.

This definition satisfies criteria 1, 2, 3, 5 and 6. Following is the proof for criteria 1, 5 and 6. Criterion 2 then is

a result of condition 5 and 6. Criterion 3 is true because we can simply enumerate the element in a given

relation 𝑅 and check for each of them if they satisfy the conditions in Definition 2.

Proposition 3.1 Let 𝐵 be a bisimulation between parity formulas 𝔾 and 𝔾′ in the sense of Definition 2. Then for any
(𝑣, 𝑣′) ∈ 𝐵 it holds that

𝔾⟨𝑣⟩ ≡ 𝔾′⟨𝑣′⟩.

Proof. This is a corollary of Proposition 3.5 and 3.4.

22 3 Criteria and Evaluation

Proposition 3.2 Let 𝐵1 and 𝐵2 be two bisimulations between parity formulas 𝔾 and 𝔾′ in the sense of Definition 2.
Then for any 𝐵 := 𝐵1 ∪ 𝐵2 is also a bisimulation between parity formulas 𝔾 and 𝔾′.

Proof. Let (𝑢, 𝑢′) ∈ 𝐵 = 𝐵1 ∪ 𝐵2. Without loss of generality, assume (𝑢, 𝑢′) ∈ 𝐵1.

1. By assumption, 𝐿(𝑢) = 𝐿′(𝑢′).
2. By assumption, if 𝑢 ∈ Dom(Ω), then 𝑢′ ∈ Dom(Ω′) and Ω(𝑢) = Ω′(𝑢′).
3. Symmetric to the previous point

4. Let 𝑣 ∈ 𝑉 be such that 𝐸𝑢𝑣. Then, by assumption, there exists 𝑣′ ∈ 𝑉′ such that (𝑣, 𝑣′) ∈ 𝐵1 ⊆ 𝐵 and

𝐸′𝑢′𝑣′.
5. Symmetric to the previous point.

Proposition 3.3 Let 𝔾, 𝔾′ and 𝔾′′ be three parity formulas. Let 𝐵1 be a bisimulation between 𝔾 and 𝔾′ and let 𝐵2

be a bisimulation between 𝔾′ and 𝔾′′, both in the sense of Definition 2. Then, 𝐵 := 𝐵1; 𝐵2 is a bisimulation between
𝔾 and 𝔾′′.

Proof. Let (𝑢, 𝑢′′) ∈ 𝐵 = 𝐵1; 𝐵2. Then, there exists 𝑢′ ∈ 𝑉′ such that (𝑢, 𝑢′) ∈ 𝐵1. and (𝑢′, 𝑢′′) ∈ 𝐵2.

1. By assumption, 𝐿(𝑢) = 𝐿′(𝑢′) and 𝐿′(𝑢′) = 𝐿′′(𝑢′′). Thus, 𝐿(𝑢) = 𝐿′′(𝑢′′).
2. Suppose 𝑢 ∈ Dom(Ω). Then, by assumption, 𝑢′ ∈ Dom(Ω′) and Ω(𝑢) = Ω′(𝑢′). Again, by assumption,

𝑢′′ ∈ Dom(Ω′′) and Ω′(𝑢′) = Ω′′(𝑢′′). This means that Ω(𝑢) = Ω′′(𝑢′′).
3. Symmetric to the previous point.

4. Let 𝑣 ∈ 𝑉 be such that 𝐸𝑢𝑣. Then, by assumption, there exists 𝑣′ ∈ 𝑉′ such that (𝑣, 𝑣′) ∈ 𝐵1 and 𝐸′𝑢′𝑣′.
Again, by assumption, there exists 𝑣′′ ∈ 𝑉′′ such that (𝑣′, 𝑣′′) ∈ 𝐵2 and 𝐸′′𝑢′′𝑣′′. This means that there

exists 𝑣′′ ∈ 𝑉′′ such that (𝑣, 𝑣′′) ∈ 𝐵1; 𝐵2 = 𝐵 and 𝐸′′𝑢′′𝑣′′.
5. Symmetric to the previous point.

The main problem with Definition 2 is that it loses the ’relative flavor’ of the priority map, that is, what

matters is only the order between the priorities of different nodes, and not their absolute value. This loss in

the ’relative flavor’ is reflected in the fact that Definition 2 does not include enough pairs of nodes that are

modally equivalent, i.e., Criterion 4. To see this, note that the relation in Example 3.1 is not a bisimulation in

the sense of Definition 2 since the priorities do not match in terms of their exact value.

Definition 1 and 2 together show the two extremes in the trade-off in defining the notion of bisimulation

between the requirement to include more pairs that are modally equivalent and the requirement to make the

decision problem for bisimilarity as easy as possible in terms of computation. A better definition should find

a subtle balance between these two extremes.

Definition 3

Since priorities only matter in infinite plays and any infinite play is eventually restricted to one cluster, one

way to strike a balance between these two extremes, as is hinted in [13], is to relax the requirement on the

priorities of the pairs in a bisimulation to only match on their parity and add another requirement that a

bisimulation preserve the relative ordering of the priorities within a cluster.

Definition 3.4 (Definition 3) Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′) be two parity formulas. 𝐵 ⊆ 𝑉 ×𝑉′
is a bisimulation over 𝔾 and 𝔾′ if for all (𝑢, 𝑢′) ∈ 𝐵 we have

1) 𝐿(𝑢) = 𝐿′(𝑢′);
2)’ if 𝑢 ∈ Dom(Ω), then 𝑢′ ∈ Dom(Ω′) and Ω(𝑢) ≡2 Ω′(𝑢′);

Definition 3 23

3)’ if 𝑢 ∈ Dom(Ω), then 𝑢′ ∈ Dom(Ω′) and Ω(𝑢) ≡2 Ω′(𝑢′);
4) for any 𝑣 ∈ 𝑉 , if 𝐸𝑢𝑣 then there exists 𝑣′ ∈ 𝑉′ such that (𝑣, 𝑣′) ∈ 𝐵 and 𝐸′𝑢′𝑣′;
5) for any 𝑣′ ∈ 𝑉′, if 𝐸′𝑢′𝑣′ then there exists 𝑣 ∈ 𝑉 such that (𝑣, 𝑣′) ∈ 𝐵 and 𝐸𝑢𝑣; and
6) for any 𝑢, 𝑣 ∈ 𝑉 , 𝑢′, 𝑣′ ∈ 𝑉′ such that (𝑢, 𝑢′), (𝑣, 𝑣′) ∈ 𝐵, 𝑢 ≡𝐸 𝑣, 𝑢′ ≡𝐸′ 𝑣′ and Ω(𝑢) .2 Ω(𝑣), it holds

that Ω(𝑢) < Ω(𝑣) if and only if Ω′(𝑢′) < Ω′(𝑣′).

The following proposition on the relation between Definition 2 and 3 is easy to see, so we present it without

proof.

Proposition 3.4 Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′) be two parity formulas. Let 𝐵 ⊆ 𝑉 × 𝑉′ be a
bisimulation over 𝔾 and 𝔾′ in the sense of Definition 2. Then 𝐵 is also a bisimulation in the sense of Definition 3.

The advantages of Definition 3 are that it satisfies Criterion 1, as is shown by Proposition ??, that it has the

’relative flavor’, as is shown by condition 5), and that it improves Definition 2 in terms of Criterion 4, since the

red relation in Example 3.1 is now indeed a bisimulation. The disadvantage of Definition 3 is that it is no

longer closed under union and bisimulation, nor does it always allow the largest bisimulation, as is shown by

Proposition 3.6.

Proposition 3.5 Let 𝐵 be a bisimulation between parity formulas 𝔾 and 𝔾′ in the sense of Definition 3. Then for
any (𝑢, 𝑢′) ∈ 𝐵 it holds that

𝔾⟨𝑢⟩ ≡ 𝔾′⟨𝑢′⟩.

Proof. We need to show that, given a transition system 𝕊 with initial state 𝑠𝐼 , ∃ has a winning strategy in

E(𝔾⟨𝑢⟩,𝕊) if and only if∃ has a winning strategy in E(𝔾′⟨𝑢′⟩,𝕊). By symmetry and positional determinacy of

parity games, it suffices to show that given a positional winning strategy for∃ on E(𝔾⟨𝑢⟩,𝕊), 𝑔 : 𝑉×𝑆→ 𝑉×𝑆,

∃ has a winning strategy 𝑔′ on E(𝔾′⟨𝑢′⟩,𝕊). This strategy is constructed by ’shadow playing’. To be specific,

during the game, ∃ keeps track of two matches: one is the match she plays with ∀ in E(𝔾′⟨𝑢′⟩,𝕊) and the

other is what we call a shadow match in E(𝔾⟨𝑢⟩,𝕊) which she uses together with 𝑔 to decide what to do in

E(𝔾′⟨𝑢′⟩,𝕊)when it is her turn. At each turn, ∃ updates the positions simultaneously for both games. We

write (𝑢𝑖 , 𝑠𝑖) and (𝑢′
𝑖
, 𝑠′
𝑖
) respectively to denote the updated positions after the 𝑖-th turn in E(𝔾⟨𝑢⟩,𝕊) and

E(𝔾′⟨𝑢′⟩,𝕊). ∃ update the positions in a way such that for all applicable 𝑖,

1. 𝑠𝑖 = 𝑠′
𝑖
and (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐵, and

2. (𝑢0 , 𝑠0)(𝑢1 , 𝑠1)...(𝑢𝑖 , 𝑠𝑖) is a full match if and only if (𝑢′
0
, 𝑠′

0
)(𝑢′

1
, 𝑠′

1
)...(𝑢′

𝑖
, 𝑠′
𝑖
) is a full match.

∃ starts from (𝑢0 , 𝑠0) := (𝑢, 𝑠𝐼) in E(𝔾⟨𝑢⟩,𝕊) and (𝑢′
0
, 𝑠′

0
) := (𝑢′, 𝑠𝐼) in E(𝔾′⟨𝑢′⟩,𝕊). Note that 𝑠0 = 𝑠′

0
and

(𝑢0 , 𝑢
′
0
) ∈ 𝐵 by our assumption that (𝑢, 𝑢′) ∈ 𝐵. Suppose 𝑖 turns have passed in E(𝔾′⟨𝑢′⟩,𝕊). Assume 𝑠𝑖 = 𝑠′

𝑖

and (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐵. Then, 𝐿(𝑢𝑖) = 𝐿′(𝑢′
𝑖
) by the definition of 𝐵. We have the following cases.

1. 𝐿(𝑢𝑖) = 𝐿′(𝑢′
𝑖
) ∈ {^,∨} and (𝑢𝑖 , 𝑠𝑖) has at least one successor in E(𝔾⟨𝑢⟩,𝕊). In this case, ∃ can make a

move in E(𝔾′⟨𝑢′⟩,𝕊). Let (𝑢𝑖+1 , 𝑠𝑖+1) := 𝑔(𝑣, 𝑠). Since (𝑢𝑖 , 𝑠𝑖) has at least one successor in E(𝔾⟨𝑢⟩,𝕊)
and 𝑔 is a well-defined strategy, it follows that (𝑢𝑖+1 , 𝑠𝑖+1) is a successor of (𝑢𝑖 , 𝑠𝑖), and thus is a legitimate

move from (𝑢𝑖 , 𝑠𝑖). Let 𝑠′
𝑖+1

:= 𝑠𝑖+1 and 𝑢′
𝑖+1

be an element from {𝑧 ∈ 𝑉′ | (𝑢𝑖+1 , 𝑧) ∈ 𝐵, 𝐸′𝑢′𝑖 𝑧} that we

pick out in a certain way. Note that {𝑧 ∈ 𝑉′ | (𝑢𝑖+1 , 𝑧) ∈ 𝐵, 𝐸′𝑢′𝑖 𝑧} is non-empty because of condition 5)

in Definition 2. Note that we have 𝑠𝑖+1 = 𝑠′
𝑖+1

and (𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝐵 and neither of (𝑢0 , 𝑠0)(𝑢1 , 𝑠1)...(𝑢𝑖 , 𝑠𝑖)

and (𝑢′
0
, 𝑠′

0
)(𝑢′

1
, 𝑠′

1
)...(𝑢′

𝑖
, 𝑠′
𝑖
) are full matches in this case.

2. 𝐿(𝑢𝑖) = 𝐿′(𝑢′
𝑖
) ∈ {□,∧} and (𝑢′

𝑖
, 𝑠′
𝑖
) has at least one successor in E(𝔾⟨𝑢⟩,𝕊). In this case, ∀ can make a

move in E(𝔾′⟨𝑢′⟩,𝕊). Denote the position∀ chooses as (𝑢′
𝑖+1
, 𝑠′
𝑖+1
). Let 𝑠𝑖+1 := 𝑠′

𝑖+1
and 𝑢𝑖+1 be an element

from {𝑧 ∈ 𝑉 | (𝑧, 𝑢′
𝑖+1
) ∈ 𝐵, 𝐸𝑢𝑖𝑧} that we choose in a certain way. Note that {𝑧 ∈ 𝑉 | (𝑧, 𝑢′

𝑖+1
) ∈ 𝐵, 𝐸𝑢𝑖𝑧}

is non-empty because of condition 4) in Definition 2. Note that we have 𝑠𝑖+1 = 𝑠′
𝑖+1

and (𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝐵

and neither of (𝑢0 , 𝑠0)(𝑢1 , 𝑠1)...(𝑢𝑖 , 𝑠𝑖) and (𝑢′
0
, 𝑠′

0
)(𝑢′

1
, 𝑠′

1
)...(𝑢′

𝑖
, 𝑠′
𝑖
) are full matches in this case.

24 3 Criteria and Evaluation

3. 𝐿(𝑢𝑖) = 𝐿′(𝑢′
𝑖
) = 𝜖. Let (𝑢𝑖+1 , 𝑠𝑖+1) and (𝑢′

𝑖+1
, 𝑠′
𝑖+1
) be the unique successors of (𝑢𝑖 , 𝑠𝑖) and (𝑢′

𝑖
, 𝑠′
𝑖
)

respectively. This means that 𝐸𝑢𝑖𝑢𝑖+1, 𝐸′𝑢′
𝑖
𝑢′
𝑖+1

, 𝑠𝑖 = 𝑠𝑖+1 and 𝑠′
𝑖
= 𝑠′

𝑖+1
. Since 𝑠𝑖 = 𝑠′

𝑖
, it follows that

𝑠𝑖+1 = 𝑠′
𝑖+1

. Since (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐵 and 𝐸𝑢𝑖𝑢𝑖+1 by assumption, it follows that there exists 𝑣′ ∈ 𝑉′ such

that 𝐸′𝑢′
𝑖
𝑣′ and (𝑢𝑖+1 , 𝑣

′) ∈ 𝐵. Since 𝑢′
𝑖+1

is the only successor to 𝑢′
𝑖
, it follows that 𝑣′ = 𝑢′

𝑖+1
. Thus,

(𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝐵. That is, we have 𝑠𝑖+1 = 𝑠′

𝑖+1
and (𝑢𝑖+1 , 𝑢

′
𝑖+1
) ∈ 𝐵 and neither of (𝑢0 , 𝑠0)(𝑢1 , 𝑠1)...(𝑢𝑖 , 𝑠𝑖)

and (𝑢′
0
, 𝑠′

0
)(𝑢′

1
, 𝑠′

1
)...(𝑢′

𝑖
, 𝑠′
𝑖
) are full matches in this case.

4. If none of the cases above are true, then it must be one of the following cases.

• 𝐿(𝑣) = 𝐿′(𝑣′) ∈ At(P).
• 𝐿(𝑢𝑖) = 𝐿′(𝑢′

𝑖
) ∈ {^,∨} and (𝑢𝑖 , 𝑠𝑖) has no successor in E(𝔾⟨𝑢⟩,𝕊).

• 𝐿(𝑢𝑖) = 𝐿′(𝑢′
𝑖
) ∈ {□,∧} and (𝑢′

𝑖
, 𝑠′
𝑖
) has no successor in E(𝔾⟨𝑢⟩,𝕊).

We argue that in all of these cases, neither (𝑢𝑖 , 𝑠𝑖) has successors in E(𝔾⟨𝑢⟩,𝕊) nor (𝑢′
𝑖
, 𝑠′
𝑖
) has successors

in E(𝔾′⟨𝑢′⟩,𝕊), i.e., both (𝑢0 , 𝑠0)(𝑢1 , 𝑠1)...(𝑢𝑖 , 𝑠𝑖) and (𝑢′
0
, 𝑠′

0
)(𝑢′

1
, 𝑠′

1
)...(𝑢′

𝑖
, 𝑠′
𝑖
) are full matches. This is

obvious in the first case. The argument for the third case is similar to that of the second case, so we only

show the argument for the latter.

Now we show that if 𝐿(𝑢𝑖) = 𝐿′(𝑢′
𝑖
) ∈ {^,∨} and (𝑢𝑖 , 𝑠𝑖) has no successor in E(𝔾⟨𝑢⟩,𝕊), then (𝑢′

𝑖
, 𝑠′
𝑖
)

has no successor in E(𝔾′⟨𝑢′⟩,𝕊). We make the following distinction.

• 𝐿(𝑢𝑖) = 𝐿′(𝑢′
𝑖
) = ^. Suppose (𝑣′, 𝑠′) is a successor to (𝑢′

𝑖
, 𝑠′
𝑖
) in E(𝔾′⟨𝑢′⟩,𝕊). This means that

(𝑠′
𝑖
, 𝑠′) = (𝑠𝑖 , 𝑠′) ∈ 𝑅𝕊 and 𝐸𝑢′

𝑖
𝑣′. Since (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐵, it follows that there exists 𝑣 ∈ 𝑉 such that 𝐸𝑢𝑖𝑣

and (𝑣, 𝑣′) ∈ 𝐵. This means that (𝑣, 𝑠′) is a successor to (𝑢𝑖 , 𝑠𝑖) in E(𝔾⟨𝑢⟩,𝕊), which contradicts

our assumption. Thus, (𝑢′
𝑖
, 𝑠′
𝑖
) has no successor in E(𝔾′⟨𝑢′⟩,𝕊).

• 𝐿(𝑢𝑖) = 𝐿′(𝑢′
𝑖
) = ∨. Suppose (𝑣′, 𝑠′) is a successor to (𝑢′

𝑖
, 𝑠′
𝑖
) in E(𝔾′⟨𝑢′⟩,𝕊). This means that

𝑠′
𝑖
= 𝑠𝑖 = 𝑠′ and 𝐸𝑢′

𝑖
𝑣′. Since (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐵, it follows that there exists 𝑣 ∈ 𝑉 such that 𝐸𝑢𝑖𝑣 and

(𝑣, 𝑣′) ∈ 𝐵. This means that (𝑣, 𝑠′) is a successor to (𝑢𝑖 , 𝑠𝑖) in E(𝔾⟨𝑢⟩,𝕊), which contradicts our

assumption. Thus, (𝑢′
𝑖
, 𝑠′
𝑖
) has no successor in E(𝔾′⟨𝑢′⟩,𝕊).

Since (𝑢𝑖 , 𝑠𝑖) has no successor in E(𝔾⟨𝑢⟩,𝕊) and (𝑢′
𝑖
, 𝑠′
𝑖
) has no successor in E(𝔾′⟨𝑢′⟩,𝕊), no move is

possible in either game and the two games end simultaneously.

Now we show that 𝑔′ is indeed a winning strategy. Suppose ∃ follows this strategy. As we have shown above,

the two matches always end simultaneously. There are two possibilities.

1. The matches end after finitely many, say 𝑛, steps. Let 𝑙 = (𝑢, 𝑠𝐼)(𝑢1 , 𝑠1)...(𝑢𝑛 , 𝑠𝑛) be the match

in E(𝔾′⟨𝑢′⟩,𝕊) and 𝑙′ = (𝑢′, 𝑠′
𝐼
)(𝑢′

1
, 𝑠′

1
)...(𝑢′𝑛 , 𝑠′𝑛) be the match in E(𝔾′⟨𝑢′⟩,𝕊). By a), 𝑠𝑛 = 𝑠′𝑛 and

(𝑢𝑛 , 𝑢′𝑛) ∈ 𝐴. Thus (𝑢𝑛 , 𝑠𝑛) and (𝑢′𝑛 , 𝑠′𝑛) belong to the same player. Since both matches are full, it follows

that the two matches are won by the same player.

2. The matches are infinite. Let 𝑙 = (𝑢, 𝑠𝐼)(𝑢1 , 𝑠1)... be the match in E(𝔾′⟨𝑢′⟩,𝕊) and 𝑙′ = (𝑢′, 𝑠′
𝐼
)(𝑢′

1
, 𝑠′

1
)...

be the match in E(𝔾′⟨𝑢′⟩,𝕊). Since any infinite match is eventually restricted to one cluster on the first

coordinate, it follows that there exists 𝑛, 𝑛′ ∈ 𝜔 such that for all 𝑖 ≥ 𝑛 we have 𝑢𝑖 ∈ 𝐶(𝑢𝑛) and for

all 𝑖 ≥ 𝑛′ we have 𝑢′
𝑖
∈ 𝐶(𝑢′𝑛′). Without loss of generality, assume 𝑛 ≥ 𝑛′. Then for all 𝑖 ≥ 𝑛 we have

𝑢𝑖 ∈ 𝐶(𝑢𝑛) and 𝑢′
𝑖
∈ 𝐶(𝑢′𝑛). Note that we have shown that (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐵 for all 𝑖 applicable. By condition

5) of Definition 3, we have

i) Ω(𝑢𝑖 , 𝑠𝑖) ≡2 Ω′(𝑢′
𝑖
, 𝑠′
𝑖
), and

ii) if Ω(𝑢𝑖 , 𝑠𝑖) .2 Ω(𝑢𝑗 , 𝑠 𝑗), then Ω(𝑢𝑖 , 𝑠𝑖) < Ω(𝑢𝑗 , 𝑠 𝑗) if and only if Ω′(𝑢′
𝑖
, 𝑠′
𝑖
) < Ω′(𝑢′

𝑗
, 𝑠′
𝑗
).

By Proposition 2.5, 𝑙 and 𝑙′ have the same winner. Since 𝑙 is a match where ∃ follows strategy 𝑔, it

follows that ∃ is the winner in 𝑙. Thus, ∃ is also the winner in 𝑙′.

Thus, 𝑔′ is a winning strategy for E(𝔾′⟨𝑢′⟩,𝕊).

Proposition 3.6 Definition 3 is not closed under union or composition. Futhurmore, it does not always allow the
largest bisimulation between two parity formulas. These two claims still hold true even if one relaxes condition 6) to

6)’ For any infinite play 𝑓 : 𝜔→ 𝑉 and 𝑔 : 𝜔→ 𝑉′ on 𝔾 and 𝔾′ such that (𝑓 (𝑖), 𝑔(𝑖)) ∈ 𝐵 for any 𝑖 ∈ 𝜔, we

Definition 4 25

𝜖 |3

∨|4

𝜖 |5

𝜖 |3

∨|4

𝜖 |5

𝜖 |3

∨|4

𝜖 |5

𝜖 |1

𝑎

𝑏

𝑎′

𝑏′

Figure 3.4: Counterexample to closure under composition

have that max(inf (Ω(𝑓))) ≡2 max(inf (Ω(𝑔))).

Proof. Figure 3.4 presents a counterexample to closure under composition. In Figure 3.4, Bisimulation 𝐵 is

shown as the red (dashed) lines while bisimulation 𝐵′ is shown as the blue (solid) lines. Note that 𝐵1; 𝐵2

is not a bisimulation since the composed line between 𝑎 and 𝑎′ and the composed line between 𝑏 and 𝑏′

together contradicts condition 6).

Figure 3.5 presents a counterexample to closure under union. In Figure 3.5, bisimulation 𝐵1 is the union of

the red (dashed) lines and gray (solid) lines and bisimulation 𝐵2 is the union of the blue (dotted) lines and

gray lines. Note that 𝐵1 ∪ 𝐵2 is not a bisimulation because the red line between 𝑎 and 𝑎′ and the blue line

between 𝑏 and 𝑏′ together contradicts condition 6).

One can replace the condition 6) with the weaker condition 6)’. However, this does not make bisimulations

closed under unions or compositions and the two counter-examples above still serve their purpose. To see

that, note the fact that since 5)′ is weaker than 5), it follows that 𝐵, 𝐵′ and 𝐵1 , 𝐵2 are still bisimulations under

the weaker definition. In both examples, the play 𝑓 := (𝑎𝑏)𝜔 and 𝑔 := (𝑎′𝑏′)𝜔 together satisfy the condition

that (𝑓 (𝑖), 𝑔(𝑖)) ∈ 𝐵; 𝐵′ and (𝑓 (𝑖), 𝑔(𝑖)) ∈ 𝐵1 ∪ 𝐵2 for all 𝑖 ∈ 𝜔 respectively, but they have different winners.

The counterexample shown by Figure 3.5 also rules out in general the existence of the largest bisimulation

between two parity formulas, since any relation that contains both the red line between 𝑎 and 𝑎’ and the blue

line between 𝑏 and 𝑏′ violates condition 6) for being a bisimulation. This argument is still valid if we replace

condition 6) with condition 6)’.

Despite the disadvantage that Definition 3 is not satisfying Criterion 2, 5 and 6, it already shows some

promising results when restricted to special cases. We dedicate Chapter 4 to discuss these positive results.

Definition 4

Definition 3 takes into account the ’relative flavor’ of the priorities in parity formulas, and in doing so,

includes more pairs of nodes that are modally equivalent in the definition. However, an obvious shortcoming

of Definition 3 is that it is not closed under union and composition and as a result, does not allow the

largest bisimulation over two parity formulas in general. In the next definition, we will maintain the relative

treatment of priorities while trying to make the definition closed under union and composition.

To achieve this goal, we first take another look at the counterexamples presented in the proof of Proposition

3.6. One observation is that both examples run into problems because, following the bisimulation, it is

possible to stay in the same cluster in one graph while going down to another cluster in the other. Since

the definition does not have any restriction on the priorities of nodes that are in different clusters, such

bisimulations, when united or composed, can have undesirable loops. However, we do not want to completely

get rid of such links from our bisimulation, since they still express a sense of equivalence in terms of the game

26 3 Criteria and Evaluation

𝜖 |3 ∨|4 𝜖 |5

𝜖 |3 ∨|4 𝜖 |5

𝜖 |3 ∨|4 𝜖 |5

𝜖 |3 ∨|4 𝜖 |5

𝑎𝑏 𝑎′ 𝑏′

Figure 3.5: Counterexample to closure under union

semantics. It is safe to assume that such a dilemma results from mixing two different ideas of equivalence:

equivalence as initial positions, and equivalence as positions that can be visited infinitely many times. To

reconcile these two notions, we define a notion of bisimulation in a two-step manner. First, we define the

non-trivial base case of induction, 𝐴0, which is a collection of partial bisimulations restricted to pairs of

clusters. In these partial bisimulations, relative order of priorities is respected. Then, on top of that, we define

inductively the entire bisimulation (

⋃
𝑖∈𝜔

𝐴𝑖) over the two parity formulas, where we no longer care about

priorities. The precise definition is shown below.

Definition 3.5 (Definition 4) Given two parity formulas 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
), a

family of binary relations (𝐴𝑖)𝑖∈𝜔 , with 𝐴𝑖 ⊆ 𝑉 ×𝑉′ for all 𝑖 ∈ 𝜔, is a bisimulation between 𝔾 and 𝔾′ if it satisfies
the conditions 1 - 6 below. Here we use 𝐴 to denote

⋃
𝑖∈𝜔

𝐴𝑖 .

1. 𝐴𝑖 ⊆ 𝐴 𝑗 for all 𝑖 , 𝑗 ∈ 𝜔 such that 𝑖 < 𝑗;
2. 𝐿(𝑣) = 𝐿′(𝑣′) for all (𝑣, 𝑣′) ∈ 𝐴;
3. for all (𝑣, 𝑣′) ∈ 𝐴0, neither 𝐶(𝑣) nor 𝐶(𝑣′) are degenerate, 𝑣 ∈ Dom(Ω) ⇔ 𝑣′ ∈ Dom(Ω′), and if
𝑣 ∈ Dom(Ω), then Ω(𝑣) ≡2 Ω′(𝑣′);

4. for any (𝑢, 𝑢′), (𝑣, 𝑣′) ∈ 𝐴0 such that 𝑣 ∈ 𝐶(𝑢), 𝑣′ ∈ 𝐶(𝑢′) and Ω(𝑢) .2 Ω(𝑣), we have that Ω(𝑢) < Ω(𝑣)
if and only if Ω′(𝑢′) < Ω′(𝑣′);

5. for all 𝑖 ∈ 𝜔, (𝑣, 𝑣′) ∈ 𝐴𝑖+1\𝐴0;

a) for all 𝑢 ∈ 𝑉 such that 𝐸𝑣𝑢, there exists 𝑢′ ∈ 𝑉′ such that 𝐸′𝑣′𝑢′ and (𝑢, 𝑢′) ∈ 𝐴𝑖 ;
b) for all 𝑢′ ∈ 𝑉′ such that 𝐸′𝑣′𝑢′, there exists 𝑢 ∈ 𝑉 such that 𝐸𝑣𝑢 and (𝑢, 𝑢′) ∈ 𝐴𝑖 ; and

6. for all (𝑣, 𝑣′) ∈ 𝐴0,

a) for all 𝑢 ∈ 𝐶(𝑣) such that 𝐸𝑣𝑢, there exists 𝑢′ ∈ 𝐶(𝑣′) such that 𝐸′𝑣′𝑢′ and (𝑢, 𝑢′) ∈ 𝐴0;
b) for all 𝑢′ ∈ 𝐶(𝑣′) such that 𝐸′𝑣′𝑢′, there exists 𝑢 ∈ 𝐶(𝑣) such that 𝐸𝑣𝑢 and (𝑢, 𝑢′) ∈ 𝐴0;
c) for all 𝑢 ∈ 𝑉 such that 𝐸𝑣𝑢, there exists 𝑢′ ∈ 𝑉′ such that 𝐸′𝑣′𝑢′ and (𝑢, 𝑢′) ∈ 𝐴;
d) for all 𝑢′ ∈ 𝑉′ such that 𝐸′𝑣′𝑢′, there exists 𝑢 ∈ 𝑉 such that 𝐸𝑣𝑢 and (𝑢, 𝑢′) ∈ 𝐴.

Definition 4 has the ’relative flavor’, i.e., Criterion 7, as is shown by condition 6). Its status in terms of Criterion

4 is shown in Figure 3.3. The following propositions explains its position in Figure 3.3.

Proposition 3.7 There exist parity formulas 𝔾 = (𝑉, 𝐸, 𝐿,Ω) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′), a bisimulation (𝐴𝑖)𝑖∈𝜔

Definition 4 27

𝜖 |3 ∨|4 𝜖 |5 𝜖 |3 ∨|4 𝜖 |5

𝑎 𝑎′𝑏 𝑏′𝐴1

𝐴0

Figure 3.6: Example for Def. 4⇏ Def. 3

𝜖 |1 ∨|0 ∨|0

𝜖 |1 ∨|0

𝑎𝑏

𝑎′

Figure 3.7: Example for Def. 2⇏ Def. 4

between them in the sense of Definition 4, and (𝑣, 𝑣′) ∈ 𝐴, such that there is no bisimulation 𝐵 between 𝔾 and 𝔾′ in
the sense of Definition 3 with (𝑣, 𝑣′) ∈ 𝐵.

Proof. Consider the two parity formulas in Figure 3.6. Let (𝐴𝑖)𝑖∈𝜔 be such that 𝐴0 is the collection of the gray

(solid) lines and 𝐴𝑖+1 is 𝐴0 together with the red (dashed) line. It is easy to check that (𝐴𝑖)𝑖∈𝜔 is indeed a

bisimulation in the sense of Definition 4. However, note that if we include (𝑎, 𝑎′) in any bisimulation 𝐵 in the

sense of Definition 3, then to comply with condition 4)/5), we would need to include (𝑏, 𝑏′) in 𝐵 as well. But

having (𝑎, 𝑎′) and (𝑏, 𝑏′) in 𝐵 at the same time contradicts condition 6). This means that no bisimulation in

the sense of Definition 3. contains (𝑎, 𝑎′).

Proposition 3.8 There exist parity formulas 𝔾 = (𝑉, 𝐸, 𝐿,Ω) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′) and a bisimulation 𝐵
between them in the sense of Definition 2, and (𝑣, 𝑣′) ∈ 𝐵, such that there is no bisimulation (𝐴𝑖)𝑖∈𝜔 between 𝔾 and
𝔾′ in the sense of Definition 4 with (𝑣, 𝑣′) ∈ 𝐴.

Proof. Consider the two parity formulas in Figure 3.7. Let 𝐵 be the relation represented by both the gray

lines and the red line. It is easy to check that 𝐵 is indeed a bisimulation in the sense of Definition 2. Suppose

there exists a bisimulation (𝐴𝑖)𝑖∈𝜔 in the sense of Definition 4 such that (𝑎, 𝑎′) ∈ 𝐴. Then either (𝑎, 𝑎′) ∈ 𝐴0

or (𝑎, 𝑎′) ∈ 𝐴𝑖+1 for some 𝑖 ∈ 𝜔.

Suppose (𝑎, 𝑎′) ∈ 𝐴0. By condition 5a), when we go from 𝑎 to 𝑏, we need to be able to go from 𝑎′ to a successor

𝑏′ of 𝑎′ in the cluster of 𝑎′ such that (𝑏, 𝑏′) ∈ 𝐴0. Since 𝐶(𝑎′) = {𝑎′}, it has to be the case that 𝑏′ = 𝑎′. This

28 3 Criteria and Evaluation

means that the pair (𝑏, 𝑎′) has to be in 𝐴0. But this contradicts the requirement that any pair in 𝐴 has to

match in both labels and parity. So the red line cannot be in 𝐴0.

Suppose (𝑎, 𝑎′) ∈ 𝐴𝑖+1 for some 𝑖 ∈ 𝜔. By condition 4b), when we go along the self-loop of 𝑎′, we need to be

able to go from 𝑎 to a successor 𝑐 of 𝑎 such that (𝑐, 𝑎′) ∈ 𝐴𝑖 . Since any pair in 𝐴 has to match in both labels

and parity, it follows that 𝑐 = 𝑎. This means that the red line is in 𝐴𝑖 . Since by assumption, the red line is not

in 𝐴0, it follows that the red line is in 𝐴𝑖\𝐴0. If 𝑖 = 0, then we have a contradiction. If 𝑖 > 0, then repeat this

argument for 𝑖 more times and we will run into contradiction. So the red line cannot be in 𝐴𝑖+1\𝐴0 for any

𝑖 ∈ 𝜔.

To sum up, there is no bisimulation (𝐴𝑖)𝑖∈𝜔 between 𝔾 and 𝔾′ in the sense of Definition 4 with (𝑎, 𝑎′) ∈ 𝐴.

Furthermore, Definition 4 also satisfies Criterion 1, 2, 3, 5 and 6. We dedicate Chapter 5 to proving and

discussing these properties.

Definition 3: Special cases 4
In this chapter, we consider some positive results when considering Definition 3 on two special cases. One

case concerns bisimulations that can be seen as functions, which we can also see as the morphisms over parity

formulas. We show that when restricted to functional relations, Definition 3 has nice category-theoretical

properties to be considered the ’arrows’ in the category of parity formulas. We also show that the well-known

expansion map by Kozen [1] is indeed a morphism by our definition. The other case concerns parity formulas

with only one cluster. We show that in this restricted situation, Definition 3 is closed under union and

composition, and thus, the largest bisimulation over any two such parity formulas always exists. This provides

a way to take the quotient of a parity formula with only one cluster.

Case 1: Morphism

Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
) be two parity formulas and 𝐵 ⊆ 𝑉 × 𝑉′ be a binary

relation. We call 𝐵 functional if, for each 𝑣 ∈ 𝑉 , there exists a unique 𝑣′ such that (𝑣, 𝑣′) ∈ 𝐵. When restricted

to functional relations, Definition 3 translates to the following.

Definition 4.1 Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
) be two parity formulas. A morphism from

𝔾 to 𝔾′ is a map 𝑓 : 𝑉 → 𝑉′ satisfying the following conditions, for all 𝑢, 𝑣 ∈ 𝑉 :

1) 𝐿(𝑢) = 𝐿′(𝑓 (𝑢));
2) if 𝐸𝑢𝑣 then 𝐸′ 𝑓 (𝑢) 𝑓 (𝑣);
3) if 𝐸′ 𝑓 (𝑢)𝑣′ then 𝐸𝑢𝑣 for some 𝑣 ∈ 𝑉 such that 𝑓 (𝑣) = 𝑣′;
4) 𝑢 ∈ Dom(Ω) if and only if 𝑓 (𝑢) ∈ Dom(Ω′);
5) if 𝑢 ∈ Dom(Ω), then
6) if 𝑢 ≡𝐸 𝑣 and Ω(𝑢) .2 Ω(𝑣), then Ω(𝑢) < Ω(𝑣) if and only if Ω′(𝑓 (𝑢)) < Ω′(𝑓 (𝑣)).

Now we show that Definition 4.1 has nice category-theoretical properties to be considered the ’arrows’ in the

category of parity formulas.

Proposition 4.1 The following holds:

1. The identity function 𝑖 is a morphism of parity games.
2. For any 𝑢, 𝑣 ∈ 𝑉 such that 𝑢 ≠ 𝑣, if 𝑢 ≡𝐸 𝑣, then 𝑓 (𝑢) ≡𝐸′ 𝑓 (𝑣).
3. Function composition works as composition of morphism of parity formulas.
4. Identity functions are identity morphisms and composition of morphisms is associative.

Let us prove each statement separately.

1. The identity function 𝑖 is a morphism of parity formulas.

Proof. For any 𝑢, 𝑣 ∈ 𝑉
1) 𝐿′(𝑖(𝑢)) = 𝐿(𝑖(𝑢)) = 𝐿(𝑢)
2) 𝐸𝑢𝑣 ⇒ 𝐸(𝑖(𝑢))(𝑖(𝑣)) ⇒ 𝐸′(𝑖(𝑢))(𝑖(𝑣))
3) 𝐸′(𝑖(𝑢))𝑣 ⇒ 𝐸𝑢𝑣 while 𝑖(𝑣) = 𝑣
4) 𝑢 ∈ ˙ if and only if 𝑖(𝑢) ∈ ˙.
5) If 𝑢 ∈ ˙, then Ω(𝑢) ≡2 Ω(𝑖(𝑢)) ≡2 Ω′(𝑖(𝑢))
6) If 𝑢 ≡𝐸 𝑣 and Ω(𝑢) .2 Ω(𝑣), then it is obvious that Ω(𝑢) < Ω(𝑣) if and only if Ω(𝑖(𝑢)) <

Ω(𝑖(𝑣)).

2. For any 𝑢, 𝑣 ∈ 𝑉 such that 𝑢 ≠ 𝑣, if 𝑢 ≡𝐸 𝑣, then 𝑓 (𝑢) ≡𝐸′ 𝑓 (𝑣).

30 4 Definition 3: Special cases

Proof. Assume 𝑢 ≡𝐸 𝑣. Then there exists 𝑢 = 𝑤0 , 𝑤1 , ..., 𝑤𝑛 = 𝑣, 𝑤𝑛+1 , ..., 𝑤𝑛+𝑚 = 𝑢 ∈ 𝑉 such that

𝑤𝑖𝐸𝑤𝑖+1 for all 0 ≤ 𝑖 < 𝑛 + 𝑚. By condition 2) of Definition 3 this means that 𝑓 (𝑤𝑖)𝐸′ 𝑓 (𝑤𝑖+1) for all

0 ≤ 𝑖 < 𝑛 + 𝑚, which in turn means that 𝑓 (𝑢) ≡𝐸′ 𝑓 (𝑣).

3. Function composition works as composition of morphism of parity formulas.

Proof. Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼),𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
),𝔾′′ = (𝑉′′, 𝐸′′, 𝐿′′,Ω′′, 𝑣′′

𝐼
) be three parity

formulas. Let 𝑓 : 𝐺→ 𝐺′ and 𝑔 : 𝐺′→ 𝐺′′ be two morphisms of parity games. For any 𝑢, 𝑣 ∈ 𝑉 :

1) 𝐿′′(𝑔 𝑓 (𝑢)) = 𝐿′(𝑓 (𝑢)) = 𝐿(𝑢)
2) 𝐸𝑢𝑣 ⇒ 𝐸′ 𝑓 (𝑢) 𝑓 (𝑣) ⇒ 𝐸′′𝑔 𝑓 (𝑢)𝑔 𝑓 (𝑣)
3) Suppose 𝐸′′𝑔 𝑓 (𝑢)𝑣′′. Then 𝐸′ 𝑓 (𝑢)𝑣′ for some 𝑣′ such that 𝑔(𝑣′) = 𝑣′′. This in turn means that 𝐸𝑢𝑣

for some 𝑣 with 𝑓 (𝑣) = 𝑣′. Note that 𝑔 𝑓 (𝑣) = 𝑣′′.
4) Since both 𝑓 and 𝑔 are morphisms, we have 𝑢 ∈ Dom(Ω) if and only if 𝑓 (𝑢) ∈ Dom(Ω′) if and only

if 𝑔 𝑓 (𝑢) ∈ Dom(Ω′′).
5) Suppose 𝑢 ∈ Dom(Ω). Then by condition 4), 𝑓 (𝑢) ∈ Dom(Ω′) and 𝑔 𝑓 (𝑢) ∈ Dom(Ω′′). By condition

5, Ω(𝑢) ≡2 Ω′(𝑓 (𝑢)) ≡2 Ω′′(𝑔 𝑓 (𝑢))
6) Suppose 𝑢 ≡𝐸 𝑣 and Ω(𝑢) .2 Ω(𝑣). Then from Proposition 3 part 2 it follows that 𝑓 (𝑢) ≡𝐸′ 𝑓 (𝑣)

and from Definition 3 condition 4) it follows that Ω′(𝑓 (𝑢)) .2 Ω′(𝑓 (𝑣)). Then Ω(𝑢) < Ω(𝑣) if and

only if Ω′(𝑓 (𝑢)) < Ω′(𝑓 (𝑣)) if and only if Ω′′(𝑔 𝑓 (𝑢)) < Ω′′(𝑔 𝑓 (𝑣)).

4. Identity functions are identity morphisms and composition of morphisms is associative.

Proof. If we take the identity funtion as the identity isomorphism, it is clear that composing it with

any morphism of parity games from right or left returns that morphism. Also, the composition of

morphisms of parity formulas are associative since functional composition is associative.

Proposition 4.2 Let 𝑓 : 𝔾→ 𝔾′ be a morphism of parity formulas. Then for any node 𝑣 in 𝔾 it holds that

𝔾⟨𝑣⟩ ≡ 𝔾′⟨ 𝑓 (𝑣)⟩.

Proof. This proposition is a corollary of Proposition 3.5

Expansion as Morphism

In this section, we show that the expansion map defined by Kozen [1] is indeed a morphism according to

Definition 3.

Definition 4.2 Let 𝜉 ∈ 𝜇ML(P) and let 𝐵𝑉(𝜉) = {𝑥0 , ..., 𝑥𝑛}, where we assume that 𝑖 < 𝑗 if 𝑥𝑖 <𝜉 𝑥 𝑗 . Define the
expansion exp𝜉(𝜑) of some 𝜑 P 𝜉 as:

exp𝜉(𝜑) := 𝜑[𝑥0/𝜂𝑥0
𝑥0.𝛿𝑥0

]...[𝑥𝑛/𝜂𝑥𝑛 𝑥𝑛 .𝛿𝑥𝑛].

For the proof that exp𝜉 is indeed a function from Sfor(𝜉) to Clos(𝜉) please refer to [13]. In the rest of this

section we write 𝑥1 , ..., 𝑥𝑛 with this specific order in which exp𝜉 performs substitutions in mind.

Throughout this subsection, we assume 𝜉 ∈ 𝜇ML(P) to be clean. First, we construct an equivalent parity

formula ℍ′𝜉 from the subformula dag in a slightly different way than that of Definition 2.38. Let ℍ′𝜉 :=

(𝑉𝜉 , 𝐸𝜉 , 𝐿𝜉 ,Ω𝜉 , 𝑣𝐼)where

• 𝑉𝜉 := Sfor(𝜉) − 𝐵𝑉(𝜉).
• Use 𝐷𝜉 to denote the relation ⊲0 restricted to Sfor(𝜉).

𝐸𝜉 := {(𝑎, 𝑏) | (𝑎, 𝑏) ∈ 𝐷𝜉 , 𝑏 ∉ 𝐵𝑉(𝜉)} ∪ {(𝑎, 𝜂𝑥𝑥.𝛿𝑥) | (𝑎, 𝑥) ∈ 𝐷𝜉}.

Case 1: Morphism 31

𝜇𝑦. (𝜇𝑥. (𝑥 ∧ 𝑦) ∧ 𝑦)

𝜇𝑥. (𝑥 ∧ 𝑦) ∧ 𝑦

𝜇𝑥. (𝑥 ∧ 𝑦)

𝑥 ∧ 𝑦

𝜇𝑦. (𝜇𝑥. (𝑥 ∧ 𝑦) ∧ 𝑦) = 𝛼𝑦

𝜇𝑥. (𝑥 ∧ 𝛼𝑦) ∧ 𝛼𝑦

𝜇𝑥. (𝑥 ∧ 𝛼𝑦) = 𝛼𝑥

Figure 4.1: Example of an Expansion Map that is not injective

•

𝐿𝜉(𝜑) :=

𝜑 if 𝜑 ∈ {⊤,⊥} ∪ {𝑝, 𝑝 | 𝑝 ∈ 𝐹𝑉(𝜉)}
⊙ if 𝜑 is of the form 𝜑0 ⊙ 𝜑1 with ⊙ ∈ {∨,∧}
♥ if 𝜑 is of the form ♥𝜓 with ♥ ∈ {□,^}
𝜖 if 𝜑 is of the form 𝜂𝑥𝑥.𝛿𝑥 with 𝜂 ∈ {𝜇, 𝜈}

• Given a bound variable 𝑥 ∈ 𝐵𝑉(𝜉), let ℎ
↑
𝜉(𝑥) be the maximal length of an alternating <𝜉-chain of

fixpoint variables starting at 𝑥. Furthermore, let ℎ𝜉(𝑥) be the maximal length of an alternating <𝜉-chain

with the corresponding fixpoint subformula of each variable from the chain being in the cluster of

𝜂𝑥𝑥.𝛿𝑥 . Then we define

Ω𝜉(𝜂𝑥𝑥.𝛿𝑥) :=

{
ℎ𝜉(𝑥) − ℎ↑𝜉(𝑥) if ℎ𝜉(𝑥) − ℎ↑𝜉(𝑥) has the same parity as 𝜂𝑥

ℎ𝜉(𝑥) − ℎ↑𝜉(𝑥) + 1 otherwise

.

For 𝜑 ∈ 𝑉𝜉 that is not of the shape of 𝜂𝑥𝑥.𝛿𝑥 , Ω𝜉(𝜑) is undefined.

• 𝑣𝐼 := 𝜉.

Let 𝔾𝜉 be the equivalent parity formula constructed from the closure graph in Definition 2.42. Before we

delve into the proof that is the goal of this subsectioin, we first provide an example of an expansion map

which at the same time shows that even for clean formulas, the expansion map is not always an injection.

Example 4.1 Note that exp𝜉 ↑𝑉𝜉 is not necessarily injective. Consider 𝜉 = 𝜇𝑦. (𝜇𝑥. (𝑥 ∧ 𝑦) ∧ 𝑦). Figure 4.1

shows ℍ𝜉, 𝔾𝜉 and exp𝜉.

In the rest of this subsection, we show a collection of propositions that gradually build up to the final

proposition in which we prove that exp𝜉 ↾𝑉𝜉 is a morphism from ℍ𝜉 to 𝔾𝜉 for any clean modal 𝜇-formula

𝜉.

Proposition 4.3 For all 0 ≤ 𝑘 < 𝑗 ≤ 𝑛, it holds that 𝑥𝑘 ∉ 𝐹𝑉(𝛿𝑥 𝑗).

Proof. Suppose 𝑥𝑘 ∈ 𝐹𝑉(𝛿𝑥 𝑗) for some 0 ≤ 𝑘 < 𝑗 ≤ 𝑛. Then 𝑥𝑘 ∈ 𝐹𝑉(𝜂𝑥 𝑗 𝑥 𝑗 .𝛿𝑥 𝑗). Since 𝜉 is clean, by

Proposition 2.1 the fact that 𝑥𝑘 occurs freely in 𝜂𝑥 𝑗 𝑥 𝑗 .𝛿𝑥 𝑗 means that 𝑥𝑘 P 𝜂𝑥 𝑗 𝑥 𝑗 .𝛿𝑥 𝑗 P 𝜂𝑥𝑘 𝑥𝑘 .𝛿𝑥𝑘 . This means

that 𝑥 𝑗 <𝜉 𝑥𝑘 , and thus, 𝑗 < 𝑘. However, by our assumption, 𝑘 < 𝑗. Hence, contradiction.

32 4 Definition 3: Special cases

Proposition 4.4 Let 𝑥0 , . . . , 𝑦𝑖 , 𝑦𝑖+1 be all distinct variables and 𝜑,𝜓0 , ...,𝜓𝑖+1 be formulas in 𝜇ML. Then

𝜑[𝑦0 , . . . , 𝑦𝑖/𝜓0 , . . . ,𝜓𝑖][𝑦𝑖+1/𝜓𝑖+1] = 𝜑[𝑦0 , . . . , 𝑦𝑖 , 𝑦𝑖+1/𝜒0 , . . . , 𝜒𝑖 ,𝜓𝑖+1]

where for all 𝑗 with 0 ≤ 𝑗 ≤ 𝑖, 𝜒𝑗 = 𝜓𝑖[𝑦𝑖+1/𝜓𝑖+1].

Proof. We prove this by induction on the size of 𝜑:

• Base case.

a) 𝜑 = 𝑝 for some 𝑝 ∉ {𝑦0 , ..., 𝑦𝑖}.

𝑝[𝑦0 , ..., 𝑦𝑖/𝜓0 , ...,𝜓𝑖][𝑦𝑖+1/𝜓𝑖+1] = 𝑝[𝑦𝑖+1/𝜓𝑖+1] = 𝑝[𝑦0 , ..., 𝑦𝑖 , 𝑦𝑖+1/𝜒0 , ..., 𝜒𝑖 ,𝜓𝑖+1]

b) 𝜑 = 𝑦 𝑗 for some 0 ≤ 𝑗 ≤ 𝑖.

𝑦 𝑗[𝑦0 , ..., 𝑦𝑖/𝜓0 , ...,𝜓𝑖][𝑦𝑖+1/𝜓𝑖+1] = 𝜓 𝑗[𝑦𝑖+1/𝜓𝑖+1] = 𝜒𝑗 = 𝑦 𝑗[𝑦0 , ..., 𝑦𝑖 , 𝑦𝑖+1/𝜒0 , ..., 𝜒𝑖 ,𝜓𝑖+1]

• Induction step.

a) 𝜑 = 𝜑0 ⊙ 𝜑1 for some ⊙ ∈ {∧,∨}.

𝜑[𝑦0 , ..., 𝑦𝑖/𝜓0 , ...,𝜓𝑖][𝑦𝑖+1/𝜓𝑖+1]
= 𝜑0[𝑦0 , ..., 𝑦𝑖/𝜓0 , ...,𝜓𝑖][𝑦𝑖+1/𝜓𝑖+1] ⊙ 𝜑1[𝑦0 , ..., 𝑦𝑖/𝜓0 , ...,𝜓𝑖][𝑦𝑖+1/𝜓𝑖+1]
𝐼𝐻
= 𝜑0[𝑦0 , ..., 𝑦𝑖 , 𝑦𝑖+1/𝜒0 , ..., 𝜒𝑖 ,𝜓𝑖+1] ⊙ 𝜑1[𝑦0 , ..., 𝑦𝑖 , 𝑦𝑖+1/𝜒0 , ..., 𝜒𝑖 ,𝜓𝑖+1]
= (𝜑0 ⊙ 𝜑1)[𝑦0 , ..., 𝑦𝑖 , 𝑦𝑖+1/𝜒0 , ..., 𝜒𝑖 ,𝜓𝑖+1]
= 𝜑[𝑦0 , ..., 𝑦𝑖 , 𝑦𝑖+1/𝜒0 , ..., 𝜒𝑖 ,𝜓𝑖+1]

b) 𝜑 = ♥𝜓 for some ♥ ∈ {□,^}.

𝜑[𝑦0 , ..., 𝑦𝑖/𝜓0 , ...,𝜓𝑖][𝑦𝑖+1/𝜓𝑖+1]
= ♥𝜓[𝑦0 , ..., 𝑦𝑖/𝜓0 , ...,𝜓𝑖][𝑦𝑖+1/𝜓𝑖+1]
= ♥(𝜓[𝑦0 , ..., 𝑦𝑖/𝜓0 , ...,𝜓𝑖][𝑦𝑖+1/𝜓𝑖+1])
𝐼𝐻
= ♥(𝜓[𝑦0 , ..., 𝑦𝑖 , 𝑦𝑖+1/𝜒0 , ..., 𝜒𝑖 ,𝜓𝑖+1])
= ♥𝜓[𝑦0 , ..., 𝑦𝑖 , 𝑦𝑖+1/𝜒0 , ..., 𝜒𝑖 ,𝜓𝑖+1]
= 𝜑[𝑦0 , ..., 𝑦𝑖 , 𝑦𝑖+1/𝜒0 , ..., 𝜒𝑖 ,𝜓𝑖+1]

c) 𝜑 = 𝜂𝑥.𝜓 for some 𝜂 ∈ {𝜇, 𝜈}.

𝜑[𝑦0 , ..., 𝑦𝑖/𝜓0 , ...,𝜓𝑖][𝑦𝑖+1/𝜓𝑖+1]
= 𝜂𝑥.𝜓[𝑦0 , ..., 𝑦𝑖/𝜓0 , ...,𝜓𝑖][𝑦𝑖+1/𝜓𝑖+1]
= 𝜂𝑥.(𝜓[𝑥/𝑞][𝑦0 , ..., 𝑦𝑖/𝜓0 , ...,𝜓𝑖][𝑦𝑖+1/𝜓𝑖+1][𝑞/𝑥])
𝐼𝐻
= 𝜂𝑥𝑥.(𝜓[𝑥/𝑞][𝑦0 , ..., 𝑦𝑖 , 𝑦𝑖+1/𝜒0 , ..., 𝜒𝑖 ,𝜓𝑖+1][𝑞/𝑥])
= 𝜂𝑥.𝜓[𝑦0 , ..., 𝑦𝑖 , 𝑦𝑖+1/𝜒0 , ..., 𝜒𝑖 ,𝜓𝑖+1]

where 𝑞 is a new propositional letter.

Proposition 4.5 For any 𝜑 ∈ Sfor(𝜉), exp𝜉(𝜑) = 𝜑[𝑥1 , 𝑥2 , ...𝑥𝑛/exp𝜉(𝑥1), exp𝜉(𝑥2), ..., exp𝜉(𝑥𝑛)]. That is,
exp𝜉(𝜑) can be obtained from 𝜑 by a uniform substitution that replaces the variable 𝑥𝑖 with exp𝜉(𝑥𝑖) for all
0 ≤ 𝑖 ≤ 𝑛.

Case 1: Morphism 33

Proof. Denote 𝜑[𝑥0/𝜂𝑥0
𝑥0.𝛿𝑥0

]...[𝑥𝑖/𝜂𝑥𝑖 𝑥𝑖 .𝛿𝑥𝑖] by exp𝑖𝜉(𝜑) for all 0 ≤ 𝑖 ≤ 𝑛. We show by induction on 𝑖 that

for all 0 ≤ 𝑖 ≤ 𝑛 and 𝜑 ∈ Sfor(𝜉), it holds that

exp𝑖𝜉(𝜑) = 𝜑[𝑥0 , ..., 𝑥𝑖/exp𝑖𝜉(𝑥0), ..., exp𝑖𝜉(𝑥𝑖)].

• Base case, 𝑖 = 0. It is easy to see that for all 𝜑 ∈ Sfor(𝜉), it holds that

𝜑[𝑥0/𝜂𝑥0
𝑥0.𝛿𝑥0

] = 𝜑[𝑥0/(𝑥0[𝑥0/𝜂𝑥0
𝑥0.𝛿𝑥0

])].

• Induction step. Assume that the proposition holds for some 0 ≤ 𝑖 < 𝑛. We show that the proposition

also holds for 𝑖 + 1. Note that

exp𝑖+1

𝜉 (𝜑) = exp𝑖𝜉(𝜑)[𝑥𝑖+1/𝜂𝑥𝑖+1
𝑥𝑖+1.𝛿𝑥𝑖+1

]
= 𝜑[𝑥0 , ..., 𝑥𝑖/exp𝑖𝜉(𝑥0), ..., exp𝑖𝜉(𝑥𝑖)][𝑥𝑖+1/𝜂𝑥𝑖+1

𝑥𝑖+1.𝛿𝑥𝑖+1
]

𝑃𝑟𝑜𝑝.4.4
= 𝜑[𝑥0 , ..., 𝑥𝑖 , 𝑥𝑖+1/exp𝑖𝜉(𝑥0)[𝑥𝑖+1/𝜂𝑥𝑖+1

𝑥𝑖+1.𝛿𝑥𝑖+1
], ..., exp𝑖𝜉(𝑥𝑖)[𝑥𝑖+1/𝜂𝑥𝑖+1

𝑥𝑖+1.𝛿𝑥𝑖+1
], 𝜂𝑥𝑖+1

𝑥𝑖+1.𝛿𝑥𝑖+1
]

𝑑𝑒 𝑓
= 𝜑[𝑥0 , ..., 𝑥𝑖 , 𝑥𝑖+1/exp𝑖+1

𝜉 (𝑥0), ..., exp𝑖+1

𝜉 (𝑥𝑖), 𝜂𝑥𝑖+1
𝑥𝑖+1.𝛿𝑥𝑖+1

]
∗
= 𝜑[𝑥0 , ..., 𝑥𝑖 , 𝑥𝑖+1/exp𝑖+1

𝜉 (𝑥0), ..., exp𝑖+1

𝜉 (𝑥𝑖), exp𝑖+1

𝜉 (𝑥𝑖+1)].

Note that ∗ holds because

𝜂𝑥𝑖+1
𝑥𝑖+1.𝛿𝑥𝑖+1

= 𝑥𝑖+1[𝑥𝑖+1/𝜂𝑥𝑖+1
𝑥𝑖+1.𝛿𝑥𝑖+1

]
= 𝑥𝑖+1[𝑥0/𝜂𝑥0

𝑥0.𝛿𝑥0
]...[𝑥𝑖/𝜂𝑥𝑖 𝑥𝑖 .𝛿𝑥𝑖][𝑥𝑖+1/𝜂𝑥𝑖+1

𝑥𝑖+1.𝛿𝑥𝑖+1
]

= exp𝑖+1

𝜉 (𝑥𝑖+1)

The case 𝑖 = 𝑛 is precisely the proposition we set out to prove.

Corollary 4.6 𝑥𝑖 ∉ 𝐹𝑉(exp𝜉(𝜑)) for any 𝑥𝑖 ∈ 𝐵𝑉(𝜉) and 𝜑 ∈ Sfor(𝜉).

Proof. Directly follows from Proposition 4.5.

Proposition 4.7 For all 𝑥𝑖 ∈ 𝐵𝑉(𝜉), it holds that exp𝜉(𝑥𝑖) = exp𝜉(𝜂𝑥𝑖 𝑥𝑖 .𝛿𝑥𝑖).

Proof.

exp𝜉(𝑥𝑖) = 𝑥𝑖[𝑥0/𝜂𝑥0
𝑥0.𝛿𝑥0

]...[𝑥𝑛/𝜂𝑥𝑛 𝑥𝑛 .𝛿𝑥𝑛]
= 𝜂𝑥𝑖 𝑥𝑖 .𝛿𝑥𝑖 [𝑥𝑖+1/𝜂𝑥𝑖+1

𝑥𝑖+1.𝛿𝑥𝑖+1
]...[𝑥𝑛/𝜂𝑥𝑛 𝑥𝑛 .𝛿𝑥𝑛]

𝑃𝑟𝑜𝑝.4.3
= 𝜂𝑥𝑖 𝑥𝑖 .𝛿𝑥𝑖 [𝑥0/𝜂𝑥0

𝑥0.𝛿𝑥0
]...[𝑥𝑛/𝜂𝑥𝑛 𝑥𝑛 .𝛿𝑥𝑛]

= exp𝜉(𝜂𝑥𝑖 𝑥𝑖 .𝛿𝑥𝑖)

Proposition 4.8 For any 𝜑,𝜓 ∈ 𝑉𝜉, if 𝜑 𝐸𝜉 𝜓, then exp𝜉(𝜑) →𝐶 exp𝜉(𝜓).

Proof. Suppose 𝜑 𝐸𝜉 𝜓. There are the following cases:

1. 𝜑 = 𝜑0 ⊙ 𝜑1 and 𝜓 = 𝜑𝑖 for some 𝑖 ∈ {0, 1} and ⊙ ∈ {∨,∧}. Then exp𝜉(𝜑) = exp𝜉(𝜑0) ⊙ exp𝜉(𝜑1) and

[exp𝜉(𝜑0) ⊙ exp𝜉(𝜑1)] →𝐶 exp𝜉(𝜑𝑖).

34 4 Definition 3: Special cases

2. 𝜑 = 𝜑0 ⊙ 𝜑1 and 𝜑𝑖 = 𝑥, 𝜓 = 𝜂𝑥𝑥.𝛿𝑥 for some 𝑥 ∈ 𝐵𝑉(𝜉), 𝑖 ∈ {0, 1}. Without loss of generality, assume

𝑖 = 1. Then exp𝜉(𝜑) = exp𝜉(𝜑0) ⊙ exp𝜉(𝑥)
𝑃𝑟𝑜𝑝.4.7

= exp𝜉(𝜑0) ⊙ exp𝜉(𝜂𝑥𝑥.𝛿𝑥) and

[exp𝜉(𝜑0) ⊙ exp𝜉(𝜂𝑥𝑥.𝛿𝑥)] →𝐶 exp𝜉(𝜂𝑥𝑥.𝛿𝑥).
3. 𝜑 = ♥𝜑′ and 𝜓 = 𝜑′ for some ♥ ∈ {□,^}. Then exp𝜉(♥𝜑′) = ♥exp𝜉(𝜑′) and ♥exp𝜉(𝜑′) →𝐶 exp𝜉(𝜑′).
4. 𝜑 = ♥𝑥 and 𝜓 = 𝜂𝑥𝑥.𝛿𝑥 for some ♥ ∈ {□,^} and 𝑥 ∈ 𝐵𝑉(𝜉). Then

exp𝜉(♥𝑥) = ♥exp𝜉(𝑥)
𝑃𝑟𝑜𝑝.4.7

= ♥exp𝜉(𝜂𝑥𝑥.𝛿𝑥) and ♥exp𝜉(𝜂𝑥𝑥.𝛿𝑥) →𝐶 exp𝜉(𝜂𝑥𝑥.𝛿𝑥).
5. 𝜑 = 𝜂𝑥𝑖 𝑥𝑖 .𝛿𝑥𝑖 and 𝜓 = 𝛿𝑥𝑖 for some 𝑥𝑖 ∈ 𝐵𝑉(𝜉). Then

exp𝜉(𝜂𝑥𝑖 𝑥𝑖 .𝛿𝑥𝑖)
𝑃𝑟𝑜𝑝.4.5

= 𝜂𝑥𝑖 𝑥𝑖 .𝛿𝑥𝑖 [𝑥0 , ..., 𝑥𝑛/exp𝜉(𝑥0), ..., exp𝜉(𝑥𝑛)]
=𝜂𝑥𝑖 𝑥𝑖 .(𝛿𝑥𝑖 [𝑥0 , ..., 𝑥𝑖−1 , 𝑥𝑖+1𝑥𝑛/exp𝜉(𝑥0), ..., exp𝜉(𝑥𝑖−1), exp𝜉(𝑥𝑖+1), ..., exp𝜉(𝑥𝑛)])

→𝐶 𝛿𝑥𝑖 [𝑥0 , ..., 𝑥𝑖−1 , 𝑥𝑖+1 , ..., 𝑥𝑛/exp𝜉(𝑥0), ..., exp𝜉(𝑥𝑖−1), exp𝜉(𝑥𝑖+1), ..., exp𝜉(𝑥𝑛)][𝑥𝑖/exp𝜉(𝜂𝑥𝑖 𝑥𝑖 .𝛿𝑥𝑖)]
𝑃𝑟𝑜𝑝.4.4

= 𝛿𝑥𝑖 [𝑥0 , ..., 𝑥𝑖−1 , 𝑥𝑖 , 𝑥𝑖+1 , ..., 𝑥𝑛/exp𝜉(𝑥0)[𝑥𝑖/exp𝜉(𝜂𝑥𝑖 𝑥𝑖 .𝛿𝑥𝑖)], ..., exp𝜉(𝑥𝑖−1)[𝑥𝑖/exp𝜉(𝜂𝑥𝑖 𝑥𝑖 .𝛿𝑥𝑖)],
exp𝜉(𝜂𝑥𝑖 𝑥𝑖 .𝛿𝑥𝑖), exp𝜉(𝑥𝑖+1)[𝑥𝑖/exp𝜉(𝜂𝑥𝑖 𝑥𝑖 .𝛿𝑥𝑖)], ..., exp𝜉(𝑥𝑛)[𝑥𝑖/exp𝜉(𝜂𝑥𝑖 𝑥𝑖 .𝛿𝑥𝑖)]]

𝐶𝑜𝑟.4.6
= 𝛿𝑥𝑖 [𝑥0 , ..., 𝑥𝑖−1 , 𝑥𝑖 , 𝑥𝑖+1 , ..., 𝑥𝑛/exp𝜉(𝑥0), ..., exp𝜉(𝑥𝑖−1), exp𝜉(𝜂𝑥𝑖 𝑥𝑖 .𝛿𝑥𝑖), exp𝜉(𝑥𝑖+1), ..., exp𝜉(𝑥𝑛)]

𝑃𝑟𝑜𝑝.4.7
= 𝛿𝑥𝑖 [𝑥0 , ..., 𝑥𝑖−1 , 𝑥𝑖 , 𝑥𝑖+1 , ..., 𝑥𝑛/exp𝜉(𝑥0), ..., exp𝜉(𝑥𝑖−1), exp𝜉(𝑥𝑖), exp𝜉(𝑥𝑖+1), ..., exp𝜉(𝑥𝑛)]

𝑃𝑟𝑜𝑝.4.5
= exp𝜉(𝛿𝑥𝑖).

Here we distinguish two different cases:

a) 𝜓 = 𝛿𝑥𝑖 . Then it is obvious that exp𝜉𝛿𝑥𝑖 = exp𝜉(𝜓).
b) 𝜓 ≠ 𝛿𝑥𝑖 . Then by construction, 𝛿𝑥𝑖 must be of the form 𝑥 𝑗 for some 𝑥 𝑗 ∈ 𝐵𝑉(𝜉). This means that

𝜓 = 𝜂𝑥 𝑗 𝑥 𝑗 .𝛿𝑥 𝑗 and thus,

exp𝜉(𝜓) = exp𝜉(𝜂𝑥 𝑗 𝑥 𝑗 .𝛿𝑥 𝑗)
𝑃𝑟𝑜𝑝.4.7

= exp𝜉(𝑥 𝑗) = exp𝜉(𝛿𝑥𝑖).

Proposition 4.9 For any 𝜑 ∈ 𝑉𝜉 and 𝜓 ∈ 𝐶𝑙𝑜𝑠(𝜉) such that exp𝜉(𝜑) →𝐶 𝜓, there is 𝜓′ ∈ 𝑉𝜉 such that
exp𝜉(𝜓′) = 𝜓 and 𝜑 𝐸𝜉 𝜓′.

Proof. Suppose exp(𝜑) →𝐶 𝜓. There are the following cases:

1. 𝐿𝐶(exp𝜉(𝜑)) = ⊙ for some ⊙ ∈ {∧,∨}. Since exp𝜉 preserves the labels, it follows that 𝜑 is of the form

𝜑0 ⊙ 𝜑1 for some 𝜑0 , 𝜑1 ∈ Sfor(𝜉). Then exp𝜉(𝜑) = exp𝜉(𝜑0) ⊙ exp𝜉(𝜑1). This means that 𝜓 = exp𝜉(𝜑𝑖)
for some 𝑖 ∈ {0, 1}. If 𝜑 𝐸𝜉 𝜑𝑖 , then we can let 𝜓′ = 𝜑𝑖 ; otherwise, by construction, 𝜑𝑖 must be of the

form 𝑥 for some 𝑥 ∈ 𝐵𝑉(𝜉), in which case 𝜓 = exp𝜉(𝑥)
𝑃𝑟𝑜𝑝.4.7

= exp𝜉(𝜂𝑥 .𝛿𝑥) and 𝜑 𝐸𝜉 (𝜂𝑥 .𝛿𝑥), so we can

let 𝜓′ = 𝜂𝑥 .𝛿𝑥 .

2. 𝐿𝐶(exp𝜉(𝜑)) = ♥ for some ♥ ∈ {□,^}. Since exp𝜉 preserves the labels, it follows that 𝜑 is of the form

♥𝜑′ for some 𝜑′ ∈ Sfor(𝜉). Then exp𝜉(𝜑) = ♥exp𝜉(𝜑′). This means that 𝜓 = exp𝜉(𝜑′). If 𝜑 𝐸𝜉 𝜑′, then

we can let 𝜓′ = 𝜑′; otherwise, by construction, 𝜑′ must be of the form 𝑥 for some 𝑥 ∈ 𝐵𝑉(𝜉), in which

case 𝜓 = exp𝜉(𝑥)
𝑃𝑟𝑜𝑝.4.7

= exp𝜉(𝜂𝑥 .𝛿𝑥) and 𝜑 𝐸𝜉 (𝜂𝑥 .𝛿𝑥), so we can let 𝜓′ = 𝜂𝑥 .𝛿𝑥 .

3. 𝐿𝐶(exp𝜉(𝜑)) = 𝜖. Then exp𝜉(𝜑) is of the form 𝜂𝑥𝑖 .𝛿
′
𝑥𝑖

for some 𝑥𝑖 ∈ 𝐵𝑉(𝜉) and some formula 𝛿′𝑥 .
Since 𝜉 is clean, it follows that 𝜑 = 𝜂𝑥𝑖 .𝛿𝑥𝑖 . By Proposition 4.8, exp𝜉(𝜑) = exp𝜉(𝜂𝑥𝑥.𝛿𝑥) →𝐶 exp𝜉(𝛿𝑥).
Since 𝐿𝐶(exp𝜉(𝜑)) = 𝜖, exp𝜉(𝜑) only has one successor. So, 𝜓 = exp𝜉(𝛿𝑥). If 𝜑 𝐸𝜉 𝛿𝑥𝑖 , then we can

let 𝜓′ = 𝛿𝑥𝑖 ; otherwise, by construction, it has to be that 𝛿𝑥𝑖 = 𝑥 𝑗 for some 𝑥 𝑗 ∈ 𝐵𝑉(𝜉), in which

Case 1: Morphism 35

case 𝜓 = exp𝜉(𝑥 𝑗)
𝑃𝑟𝑜𝑝.4.7

= exp𝜉(𝜂𝑥 𝑗 𝑥 𝑗 .𝛿𝑥 𝑗). By construction, (𝜑 = 𝜂𝑥𝑖 𝑥𝑖 .𝑥 𝑗)𝐸𝜉 (𝜂𝑥 𝑗 𝑥 𝑗 .𝑥 𝑗), so we can let

𝜓′ = 𝜂𝑥𝑖 𝑥𝑖 .𝛿𝑥𝑖 .

Corollary 4.10 exp𝜉 ↑𝑉𝜉 is surjective.

Proof. Note that 𝜉 = exp𝜉(𝜉). Proposition 4.9 shows that exp𝜉[𝑉𝜉] is closed under →𝐶 . Since 𝐶𝑙𝑜𝑠(𝜉) is

characterized as the smallest set that contains 𝜉 and is closed under→𝐶 , it follows that 𝐶𝑙𝑜𝑠(𝜉) ⊆ exp𝜉[𝑉𝜉].
In other words, exp𝜉 ↑𝑉𝜉 is surjective.

Proposition 4.11 For any 𝜑 ∈ 𝑉𝜉, if exp𝜉(𝜑) = exp𝜉(𝑥) for some 𝑥 ∈ 𝐵𝑉(𝜉), then 𝜑 = 𝜂𝑥𝑥.𝛿𝑥 .

Proof. By Proposition 4.7, exp𝜉(𝜑) = exp𝜉(𝜂𝑥𝑥.𝛿𝑥). Then exp𝜉(𝜑) = 𝜂𝑥𝑥.𝛿′𝑥 for some formula 𝛿′𝑥 . It follows

that 𝜑 must be of the form 𝜂𝑥𝑥.𝛿′′𝑥 for some formula 𝛿′′𝑥 . Since 𝜉 is clean, it must be that 𝜑 = 𝜂𝑥𝑥.𝛿𝑥 .

Proposition 4.12 For 𝑥, 𝑦 ∈ 𝐵𝑉(𝜉) such that 𝑥 ≠ 𝑦, it holds that 𝜂𝑥𝑥.𝛿𝑥 ≡𝐸𝜉 𝜂𝑦𝑦.𝛿𝑦 if and only if exp𝜉(𝑥) ≡𝐶
exp𝜉(𝑦).

Proof. We show both directions:

⇒ Suppose 𝜂𝑥𝑥.𝛿𝑥 ≡𝐸𝜉 𝜂𝑦𝑦.𝛿𝑦 . Then there exists path

(𝜂𝑥𝑥.𝛿𝑥 = 𝜑0)𝐸𝜉 ... 𝐸𝜉 (𝜑𝑛 = 𝜂𝑦𝑦.𝛿𝑦)𝐸𝜉 ... 𝐸𝜉 (𝜑𝑚+𝑛 = 𝜂𝑥𝑥.𝛿𝑥).

By Proposition 4.8,

exp𝜉(𝜂𝑥𝑥.𝛿𝑥) →𝐶 ...→𝐶 exp𝜉(𝜑𝑖) →𝐶 ...→𝐶 exp𝜉(𝜂𝑦𝑦.𝛿𝑦) →𝐶 ...→𝐶 exp𝜉(𝜑 𝑗) →𝐶 ...→𝐶 exp𝜉(𝜂𝑥𝑥.𝛿𝑥).

By Proposition 4.7,

exp𝜉(𝑥) →𝐶 ...→𝐶 exp𝜉(𝜑𝑖) →𝐶 ...→𝐶 exp𝜉(𝑦) →𝐶 ...→𝐶 exp𝜉(𝜑 𝑗) →𝐶 ...→𝐶 exp𝜉(𝑥).

Thus, exp𝜉(𝑥) ≡𝐶 exp𝜉(𝑦).
⇐ Suppose exp𝜉(𝑥) ≡𝐶 exp𝜉(𝑦). Then there exists a trace

exp𝜉(𝑥) →𝐶 ...→𝐶 exp𝜉(𝜑𝑖) →𝐶 ...→𝐶 exp𝜉(𝑦) →𝐶 ...→𝐶 exp𝜉(𝜑 𝑗) →𝐶 ...→𝐶 exp𝜉(𝑥).

By Proposition 4.9, there exists a path 𝜑0 𝐸𝜉 ... 𝐸𝜉 𝜑𝑛 𝐸𝜉 ... 𝐸𝜉 𝜑𝑚+𝑛 such that exp𝜉(𝜑0) = exp𝜉(𝜑𝑛+𝑚) =
exp𝜉𝑥 and exp𝜉(𝜑𝑛) = exp𝜉(𝑦). By Proposition 4.11, it follows that 𝜑𝑜 = 𝜑𝑛+𝑚 = 𝜂𝑥𝑥.𝛿𝑥 and 𝜑𝑛 =

𝜂𝑦𝑦.𝛿𝑦 . So, 𝜂𝑥𝑥.𝛿𝑥 ≡𝐸𝜉 𝜂𝑦𝑦.𝛿𝑦 .

Proposition 4.13 For any 𝑥, 𝑦 ∈ 𝐵𝑉(𝜉), it follows that 𝑥 <𝜉 𝑦 if and only if exp𝜉(𝑥) ⊏𝐶 exp𝜉(𝑦).

Proof. We show both directions.

⇒: For this direction we show that given a path 𝜂𝑦𝑦.𝛿𝑦 ⊲0 𝜑0 ⊲0 ... ⊲0 𝜑𝑚 = 𝜂𝑥𝑥.𝛿𝑥 witnessing that

𝑥 <𝜉 𝑦, it holds that exp𝜉(𝑦) = exp𝜉(𝜂𝑦𝑦.𝛿𝑦) →𝐶 exp𝜉(𝜑0) →𝐶 ... →𝐶 exp𝜉(𝜂𝑥𝑥.𝛿𝑥) = exp𝜉(𝑥) and

exp𝜉(𝑦) P 𝑓 exp𝜉(𝜑𝑖) for all 0 ≤ 𝑖 ≤ 𝑚.

We first show that for any 𝑥, 𝑦 ∈ 𝐵𝑉(𝜉) such that 𝑥 ≠ 𝑦 and 𝑦 P 𝜂𝑥𝑥.𝛿𝑥 P 𝜂𝑦𝑦.𝛿𝑦 , it holds that

exp𝜉(𝑥) ⊏𝐶 exp𝜉(𝑦). Here we use the fact that for any 𝜑 ∈ Sfor(𝜉) such that 𝑦 ∈ 𝐹𝑉(𝜑), it holds that

36 4 Definition 3: Special cases

exp𝜉(𝑦) P 𝑓 exp𝜉(𝜑), that is, exp𝜉(𝑦) P exp𝜉(𝜑) and 𝐹𝑉(exp𝜉(𝑦)) ∩ 𝐵𝑉(exp𝜉(𝜑)) = ∅. The former is

true because by Proposition 4.5, exp𝜉(𝑦) occurs as a subformula of exp𝜉(𝜑)where 𝑦 is replaced with

exp𝜉(𝑦); the latter is true because 𝐹𝑉(exp𝜉(𝑦)) ⊆ 𝐹𝑉(𝜉) and 𝐵𝑉(exp𝜉(𝜑)) ⊆ 𝐵𝑉(𝜉) and that 𝜉 is tidy.

Since 𝑦 P 𝜂𝑥𝑥.𝛿𝑥 P 𝜂𝑦𝑦.𝛿𝑦 , we have a path 𝜂𝑦𝑦.𝛿𝑦 ⊲0 𝜑0 ⊲0 ... ⊲0 𝜑𝑚 = 𝜂𝑥𝑥.𝛿𝑥 such that 𝑦 ∈ 𝐹𝑉(𝜑𝑖)
for all 0 ≤ 𝑖 ≤ 𝑚. To see that 𝑦 is free in all 𝜑𝑖 , 0 ≤ 𝑖 ≤ 𝑚, note that if 𝑦 occurs in 𝜑𝑚 , it

must occur in 𝜑𝑖 for all 0 ≤ 𝑖 ≤ 𝑚. Suppose 𝑦 occurs bound in 𝜑𝑖 . Since 𝜉 is clean, it must

be that 𝜂𝑦𝑦.𝛿𝑦 P 𝜑𝑖 . This implies that |𝜑𝑖 | ≥ |𝜂𝑦𝑦.𝛿𝑦 |. However, since 𝜂𝑦𝑦.𝛿𝑦 ⊲0 𝜑0 ⊲0 ... ⊲0 𝜑𝑖 ,
we have |𝜑𝑖 | < |𝜂𝑦𝑦.𝛿𝑦 |. Contradiction. Thus, 𝑦 is free in all 𝜑𝑖 , 0 ≤ 𝑖 ≤ 𝑚. By Proposition 4.8,

exp𝜉(𝑦) →𝐶 exp𝜉(𝜑0) →𝐶 exp𝜉(𝜑1) →𝐶 ... →𝐶 exp𝜉(𝜑𝑚) = exp𝜉(𝑥). Furthermore, by what we have

shown in the previous paragraph, exp𝜉(𝑦) P 𝑓 exp𝜉(𝜑𝑖) for all 0 ≤ 𝑖 ≤ 𝑚. Thus, exp𝜉(𝑥) ⊏𝐶 exp𝜉(𝑦).
We have shown that for any 𝑥, 𝑦 ∈ 𝐵𝑉(𝜉) such that 𝑥 ≠ 𝑦 and 𝑦 P 𝜂𝑥𝑥.𝛿𝑥 P 𝜂𝑦𝑦.𝛿𝑦 , it holds that

exp𝜉(𝑥) ⊏𝐶 exp𝜉(𝑦). Suppose 𝑥 <𝜉 𝑦. Then there is a chain of bound variables 𝑥 = 𝑦0 , 𝑦1 , ..., 𝑦𝑛 = 𝑦

such that 𝑦𝑖+1 P 𝜂𝑦𝑖 𝑦𝑖 .𝛿𝑦𝑖 P 𝜂𝑦𝑖+1
𝑦𝑖+1.𝛿𝑦𝑖+1

for all 0 ≤ 𝑖 < 𝑛. This means that exp𝜉(𝑥) = exp𝜉(𝑦0) ⊏𝐶
exp𝜉(𝑦1) ⊏𝐶 ... ⊏𝐶 exp𝜉(𝑦𝑛) = exp𝜉(𝑦). Since ⊏𝐶 is transitive, it follows that exp𝜉(𝑥) ⊏𝐶 exp𝜉(𝑦).

⇐: Suppose exp𝜉(𝑥) ⊏𝐶 exp𝜉(𝑦). Let exp𝜉(𝑦) = 𝜓0 →𝐶 ... →𝐶 𝜓𝑛 = exp𝜉(𝑥) be one of the shortest

traces in the closure graph witnessing exp𝜉(𝑦)↠
exp𝜉(𝑦)
𝐶

exp𝜉(𝑥). By Proposition 4.9, there exists a path

𝜑0 𝐸𝜉 𝜑1 𝐸𝜉 ... 𝐸𝜉 𝜑𝑛 such that exp𝜉(𝜑𝑖) = 𝜓𝑖 for all 0 ≤ 𝑖 ≤ 𝑛. By Proposition 4.11, 𝜑0 = 𝜂𝑦𝑦.𝛿𝑦 and

𝜑𝑛 = 𝜂𝑥𝑥.𝛿𝑥 .We argue that 𝜂𝑦𝑦.𝛿𝑦 = 𝜑0 ⊲0 𝜑1 ⊲0 ... ⊲0 𝜑𝑛 = 𝜂𝑥𝑥.𝛿𝑥 . To see this, assume the contrary. Let

0 ≤ 𝑖 < 𝑛 be the smallest number such that 𝜑𝑖 ⋫0 𝜑𝑖+1. Then 𝜑𝑖+1 is of the form exp𝜉(𝜂𝑧𝑧.𝛿𝑧) = exp𝜉(𝑧)
for some 𝑧 ∈ 𝐵𝑉(𝜉) ∩ 𝐹𝑉(𝜑𝑖). We further distinguish the following three cases:

a) 𝑧 = 𝑦. Then exp𝜉(𝑦) = 𝜓𝑖 →𝐶 𝜓𝑖+1 →𝐶 ... →𝐶 𝜓𝑛 = exp𝜉(𝑥) is a strictly shorter trace in the

closure graph witnessing exp𝜉(𝑦)↠
exp𝜉(𝑦)
𝐶

exp𝜉(𝑥), which contradicts our assumption.

b) 𝑧 ≠ 𝑦 and 𝑧 ∈ 𝐹𝑉(𝛿𝑦). This means that 𝑧 P 𝜂𝑦𝑦.𝛿𝑦 P 𝜂𝑧𝑧.𝛿𝑧 and thus, 𝑦 <𝜉 𝑧. By the⇒ direction,

it follows that exp𝜉(𝑦) ⊏𝐶 exp𝜉(𝑧). However, since 𝑧 ≠ 𝑦 and exp𝜉(𝑦) = 𝜓0 →𝐶 ... →𝐶 𝜓 𝑗 =

exp𝜉(𝑧)witnesses exp𝜉(𝑦)↠
exp𝜉(𝑦)
𝐶

exp𝜉(𝑧), we have exp𝜉(𝑧) ⊏𝐶 exp𝜉(𝑦). Contradiction.

c) 𝑧 ≠ 𝑦 and 𝑧 ∈ 𝐵𝑉(𝛿𝑦). Since 𝑧 ∈ 𝐹𝑉(𝜑𝑖) and 𝜑 𝑗 ⊲0 𝜑 𝑗+1 for all 0 ≤ 𝑗 ≤ 𝑖, it follows that there exists

0 < 𝑗 ≤ 𝑖 such that 𝜑 𝑗 = 𝜂𝑧𝑧.𝛿𝑧 and 𝜑 𝑗+1 = 𝛿𝑧 . This means that exp𝜉(𝑦) = 𝜓0 →𝐶 ... →𝐶 𝜓 𝑗 =

𝜓𝑖+1 → 𝜓𝑖+2 →𝐶 ...→𝐶 𝜓𝑛 = exp𝜉(𝑥) is a strictly shorter trace in the closure graph witnessing

exp𝜉(𝑦)↠
exp𝜉(𝑦)
𝐶

exp𝜉(𝑥), which contradicts our assumption.

Note that since 𝜑𝑖 P 𝜂𝑦𝑦.𝛿𝑦 and that 𝑧 occurs in 𝜑𝑖 , it follows that 𝑧 must occur in 𝜂𝑦𝑦.𝛿𝑦 . So the three

cases above exhaust all possibilities. Thus, 𝜂𝑦𝑦.𝛿𝑦 = 𝜑0 ⊲0 𝜑1 ⊲0 ... ⊲0 𝜑𝑛 = 𝜂𝑥𝑥.𝛿𝑥 .

Now we argue that for all 0 < 𝑖 ≤ 𝑛, there exists 0 ≤ 𝑗 < 𝑖 and 𝑧 ∈ 𝐹𝑉(𝜑𝑖) such that 𝜑 𝑗 = 𝜂𝑧𝑧.𝛿𝑧 . Fix an

𝑖. Note that |𝜑𝑖 | < |𝜂𝑦𝑦.𝛿𝑦 | ≤ |exp𝜉(𝑦)| so exp𝜉(𝑦) R 𝜑𝑖 . However, exp𝜉(𝑦) P exp𝜉(𝜑𝑖), by assumption.

As a consequence of Proposition 4.5, we know that the subformula dag of exp𝜉(𝜑𝑖) can be obtained

from the subformula dag of 𝜑𝑖 by simultaneously replacing the node for 𝑥𝑖 with the whole subformula

dag of exp𝜉(𝑥𝑖) for all 𝑥𝑖 ∈ 𝐹𝑉(𝜑𝑖). Under this perspective, two possibilities arise in terms of how

exp𝜉(𝑦) appears as a subformula of exp𝜉(𝜑𝑖), or equivalently, how exp𝜉(𝑦) appear as a subtree in the

subformula dag of exp𝜉(𝜑𝑖):
a) The root note for the subtree exp𝜉(𝑦) already exists in 𝜑𝑖 (including the 𝑥𝑖 ’s which are later

substituted). This means that there exists 𝜓 P 𝜑𝑖 such that 𝜓[𝑦1 , ..., 𝑦𝑚/exp𝜉(𝑦1), ..., exp𝜉(𝑦𝑚)] =
exp𝜉(𝑦) = exp𝜉(𝜂𝑦𝑦.𝛿𝑦) where {𝑦1 , ..., 𝑦𝑚} = 𝐵𝑉(𝜉) ∩ 𝐹𝑉(𝜑𝑖). Then 𝜓 is of the form 𝜂𝑦𝑦.𝛿′𝑦 for

some formula 𝛿′𝑦 . Since 𝜓 P 𝜉 and 𝜉 is clean, it must be the case that 𝜓 = 𝜂𝑦𝑦.𝛿𝑦 . Since 𝜑𝑖 is a

strict subformula of 𝜂𝑦𝑦.𝛿𝑦 for all 0 < 𝑖 ≤ 𝑛, this is a contradiction.

b) The root note for the subtree exp𝜉(𝑦) does not exist in 𝜑𝑖 . This means that there exist 𝑧 ∈ 𝐹𝑉(𝜑𝑖)
such that exp𝜉(𝑦) P exp𝜉(𝑧). Since 𝑧 occurs in 𝜑𝑖 and 𝜑𝑖 P 𝜂𝑦𝑦.𝛿𝑦 , it follows that 𝑧 also occurs in

𝜂𝑦𝑦.𝛿𝑦 . Thus, 𝑧 ∈ 𝐹𝑉(𝜂𝑦𝑦.𝛿𝑦) or 𝑧 ∈ 𝐵𝑉(𝜂𝑦𝑦.𝛿𝑦).
i. 𝑧 ∈ 𝐹𝑉(𝜂𝑦𝑦.𝛿𝑦). Then 𝑦 <𝜉 𝑧, and by⇒, exp𝜉(𝑦) ⊏ exp𝜉(𝑧), which implies that exp𝜉(𝑧) P

exp𝜉(𝑦). But we have assumed that exp𝜉(𝑦) P exp𝜉(𝑧). Putting these two statements together

we have exp𝜉(𝑦) = exp𝜉(𝑧), which implies that 𝜂𝑦𝑦.𝛿𝑦 = 𝜂𝑧𝑧.𝛿𝑧 . This contradicts our

assumption that 𝑧 ∈ 𝐹𝑉(𝜂𝑦𝑦.𝛿𝑦).

Case 1: Morphism 37

ii. 𝑧 ∈ 𝐵𝑉(𝜂𝑦𝑦.𝛿𝑦). Since 𝑧 ∈ 𝐹𝑉(𝜑𝑖) and 𝜑 𝑗 ⊲0 𝜑 𝑗+1 for all 0 ≤ 𝑗 ≤ 𝑖, it follows that there exists

0 ≤ 𝑗 < 𝑖 such that 𝜑 𝑗 = 𝜂𝑧𝑧.𝛿𝑧 and 𝜑 𝑗+1 = 𝛿𝑧 .

In light of this, we know that there exists a finite sequence (𝑥, 𝑛) = (𝑦0 , 𝑘0)(𝑦1 , 𝑘1)...(𝑦𝑚 , 𝑘𝑚) = (𝑦, 0) of

elements from 𝐵𝑉(𝜉) × {0, 1, ...𝑛} such that

• 0 ≤ 𝑘𝑖+1 < 𝑘𝑖 ,

• 𝜑𝑘𝑖 = 𝜂𝑦𝑖 𝑦𝑖𝛿𝑦𝑖 for all 0 ≤ 𝑖 ≤ 𝑚, and

• 𝑦𝑖+1 P 𝑓 𝜂𝑦𝑖 𝑦𝑖 .𝛿𝑦𝑖 P 𝜂𝑦𝑖+1
𝑦𝑖+1.𝛿𝑦𝑖+1

for all 0 ≤ 𝑖 < 𝑚.

Note that 𝑥 = 𝑦0 , 𝑦1 , ..., 𝑦𝑚 = 𝑦 is a chain of bound variables witnessing 𝑥 <𝜉 𝑦.

In conclusion, we have shown that for any 𝑥, 𝑦 ∈ 𝐵𝑉(𝜉), it follows that 𝑥 <𝜉 𝑦 if and only if exp𝜉(𝑥) ⊏𝐶
exp𝜉(𝑦).

Proposition 4.14 Given a clean 𝜉 ∈ 𝜇ML(P), exp𝜉 is a morphism from ℍ′𝜉 to 𝔾𝜉 in the sense of Definition 3.

Proof. We prove that exp𝜉 satisfies every condition in Definition 3.

1) It follows directly from the definition of exp𝜉 that 𝐿(𝜑) = 𝐿(exp𝜉(𝜑)) for all 𝜑 ∈ 𝑉𝜉.

2) Precisely Proposition 4.8.

3) Precisely Proposition 4.9.

4) Let 𝑣 ∈ 𝑉𝜉. Suppose 𝑣 ∈ Dom(Ω), then by definition 𝑣 = 𝜂𝑥𝑥.𝛿𝑥 for some 𝑥 ∈ 𝐵𝑉(𝜉). Since exp𝜉 only

involves substitutions on 𝑣, it is easy to see that exp𝜉 is still a fixpoint formula and by definition in the

domain of Ω𝑔 . Suppose exp𝜉(𝑣) ∈ Dom(Ω𝑔). Then by definition, exp𝜉(𝑣) is a fixpoint formula. Note

that exp𝜉, consisting only of substitutions, does not change the outermost operator in a formula. This

means that 𝑣 = 𝑥 or 𝑣 = 𝜂𝑥𝑥.𝛿𝑥 for some 𝑥 ∈ 𝐵𝑉(𝜉). Since the former is not in 𝑉𝜉, it follows that 𝑣 is a

fixpoint formula, and therefore, 𝑣 ∈ Dom(Ω𝜉).
5),6) Suppose 𝑣 ∈ Dom(Ω), then by definition 𝑣 = 𝜂𝑥𝑥.𝛿𝑥 for some 𝑥 ∈ 𝐵𝑉(𝜉). Note that for all 𝑥 ∈ 𝐵𝑉(𝜉), it

holds that

Ω𝜉(𝜂𝑥𝑥.𝛿𝑥) ≡2 𝜂𝑥 ≡2 Ω𝑔(exp𝜉(𝜂𝑥𝑥.𝛿𝑥)).

Combining Proposition 4.11, Proposition 4.12 and Proposition 4.13, we observe the following.

• If 𝑧0 <𝜉 𝑧1 <𝜉 ... <𝜉 𝑧𝑚 is an alternating <𝜉 chain such that 𝜂𝑧𝑖 𝑧𝑖 .𝛿𝑧𝑖 is in the cluster of 𝜂𝑥𝑥.𝛿𝑥
for all 0 ≤ 𝑖 ≤ 𝑚, then exp𝜉(𝑧0) ⊏𝐶 exp𝜉(𝑧1) ⊏𝐶 ... ⊏𝐶 exp𝜉(𝑧𝑚) is an alternating ⊏𝐶 chain in the

cluster of exp𝜉(𝑥) = exp𝜉(𝜂𝑥𝑥.𝛿𝑥);

• If 𝜂𝑧0
𝑧0.𝛿′𝑧0

⊏𝐶 𝜂𝑧1
𝑧1.𝛿′𝑧1

⊏𝐶 ... ⊏𝐶 𝜂𝑧𝑚 𝑧𝑚 .𝛿
′
𝑧𝑚

is an alternating ⊏𝐶 chain in the cluster of

exp𝜉(𝜂𝑥𝑥.𝛿𝑥) = exp𝜉(𝑥) for some formula 𝛿′𝑧0

, 𝛿′𝑧1

, ..., 𝛿′𝑧𝑚 , then 𝜂𝑧𝑖 .𝑧𝑖𝛿
′
𝑧𝑖
= exp𝜉(𝑧𝑖) for all 0 ≤ 𝑖 ≤

𝑚 and thus, 𝑧0 <𝜉 𝑧1 <𝜉 ... <𝜉 𝑧𝑚 is an alternating <𝜉 chain such that 𝜂𝑧𝑖 𝑧𝑖 .𝛿𝑧𝑖 is in the cluster of

𝜂𝑥𝑥.𝛿𝑥 for all 0 ≤ 𝑖 ≤ 𝑚.

• If𝜂𝑥𝑥.𝛿𝑥 = 𝜂𝑧0
𝑧0.𝛿𝑧0

<𝜉 𝜂𝑧1
𝑧1.𝛿𝑧1

<𝜉 ... <𝜉 𝜂𝑧𝑚 𝑧𝑚 .𝛿𝑧𝑚 is an alternating<𝜉-chain then exp𝜉(𝜂𝑥𝑥.𝛿𝑥) =
exp𝜉(𝜂𝑧0

𝑧0.𝛿𝑧0
) = exp𝜉(𝑧0) ⊏𝐶 exp𝜉(𝑧1) ⊏𝐶 ... ⊏𝐶 exp𝜉(𝑧𝑚) is an alternating ⊏𝐶 chain.

• If exp𝜉(𝜂𝑥𝑥.𝛿𝑥) = 𝜂𝑧0
𝑧0.𝛿′𝑧0

⊏𝐶 𝜂𝑧1
𝑧1.𝛿′𝑧1

⊏𝐶 ... ⊏𝐶 𝜂𝑧𝑚 𝑧𝑚 .𝛿
′
𝑧𝑚

is an alternating ⊏𝐶 chain for

some formula 𝛿′𝑧0

, 𝛿′𝑧1

, ..., 𝛿′𝑧𝑚 , then 𝜂𝑧𝑖 .𝑧𝑖𝛿
′
𝑧𝑖

= exp𝜉(𝑧𝑖) for all 0 ≤ 𝑖 ≤ 𝑚 and thus, 𝜂𝑥𝑥.𝛿𝑥 =

𝜂𝑧0
𝑧0.𝛿𝑧0

<𝜉 𝜂𝑧1
𝑧1.𝛿𝑧1

<𝜉 ... <𝜉 𝜂𝑧𝑚 𝑧𝑚 .𝛿𝑧𝑚 is an alternating <𝜉 chain.

These observations sum up to the fact that 𝑐𝑑(𝐶(exp𝜉(𝑥))) = ℎ𝜉(𝑥) and ℎ↑(exp𝜉(𝑥)) = ℎ
↑
𝜉(𝑥) for all

𝑥 ∈ 𝐵𝑉(𝜉). Recall the definition for Ω𝜉 and Ω𝐶 , we conclude that Ω𝜉(𝜂𝑥𝑥.𝛿𝑥) = Ω𝑔(exp𝜉(𝜂𝑥𝑥.𝛿𝑥)) for

all 𝑥 ∈ 𝐵𝑉(𝜉).

38 4 Definition 3: Special cases

Case 2: Parity Formulas with One Cluster

In this section, we show that the notion of bisimulation given in Definition 3 is closed under unions and

compositions for parity formulas that consist of only one cluster. These properties together ensure the

existence of the largest bisimulation, i.e., the bisimilarity relation over any two parity formulas that have only

one cluster. In the end of this chapter, we provide a way to take the quotient of such a parity formula with the

help of the bisimilarity relation.

Proposition 4.15 Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼),𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′𝐼),𝔾′′ = (𝑉′′, 𝐸′′, 𝐿′′,Ω′′, 𝑣
′′
𝐼
) be three parity

formulas such that for all 𝑢, 𝑣 ∈ 𝑉 , 𝑢′, 𝑣′ ∈ 𝑉′ and 𝑢′′, 𝑣′′ ∈ 𝑉′′, we have that 𝑢 ≡𝐸 𝑣, 𝑢′ ≡𝐸′ 𝑣′ and 𝑢′′ ≡𝐸′′ 𝑣′′.
Let 𝐵 ⊆ 𝑉 ×𝑉′ and 𝐵′ ⊆ 𝑉′×𝑉′′ be two bisimulations of parity formulas. Then the composition of the two relations
𝐵; 𝐵′ is also a bisimulation.

Proof. Let (𝑢, 𝑢′′) ∈ 𝐵; 𝐵′. Note that this means that there exists 𝑢′ ∈ 𝑉′ such that (𝑢, 𝑢′) ∈ 𝐵 and (𝑢′, 𝑢′′) ∈ 𝐵′.

1) 𝐿(𝑢) = 𝐿′(𝑢′) = 𝐿′′(𝑢′′).
2) Let 𝑣 ∈ 𝑉 such that 𝐸𝑢𝑣. This means that there exists 𝑣′ ∈ 𝑉′ such that 𝐸′𝑢′𝑣′ and (𝑣, 𝑣′) ∈ 𝐵. It follows

that there exists 𝑣′′ ∈ 𝑉′′ such that 𝐸′′𝑢′′𝑣′′ and (𝑣′, 𝑣′′) ∈ 𝐵′. Note that (𝑣, 𝑣′′) ∈ 𝐵; 𝐵′.
3) Let 𝑣′′ ∈ 𝑉′′ such that 𝐸′′𝑢′′𝑣′′. Then there exists 𝑣′ ∈ 𝑉′ such that 𝐸′𝑢′𝑣′ and (𝑣′, 𝑣′′) ∈ 𝐵′. It follows

that there exists 𝑣 ∈ 𝑉 such that 𝐸𝑢𝑣 and (𝑣, 𝑣′) ∈ 𝐵. Note that (𝑣, 𝑣′′) ∈ 𝐵; 𝐵′.
4) By condition 4, 𝑢 ∈ Dom(Ω) if and only if 𝑢′ ∈ Dom(Ω′) if and only if 𝑢′′ ∈ Dom(Ω′′).
5) Suppose 𝑢 ∈ Dom(Ω). Then by condition 4, 𝑢′ ∈ Dom(Ω′) and 𝑢′′ ∈ Dom(Ω′′). By condition 5,

Ω(𝑢) ≡2 Ω′(𝑢′) ≡2 Ω′′(𝑢′′)
6) Suppose (𝑣, 𝑣′′) ∈ 𝐵; 𝐵′. Then there exist 𝑣′ ∈ 𝑉′ such that (𝑣, 𝑣′) ∈ 𝐵 and (𝑣′, 𝑣′′) ∈ 𝐵′. Assume that

Ω(𝑢) .2 Ω(𝑣). By condition 2) of the definition of bisimulation, we have that Ω′(𝑢′) .2 Ω′(𝑣′). Since

each of the three parity formulas only consists of one cluster, it follows that 𝑢 ≡𝐸 𝑣, 𝑢′ ≡𝐸′ 𝑣′ and

𝑢′′ ≡𝐸′′ 𝑣′′. Then, by condition 5) of the definition of bisimulations, it follows that Ω(𝑢) < Ω(𝑣) if and

only if Ω′(𝑢′) < Ω′(𝑣′) if and only if Ω(𝑢′′) < Ω(𝑣′′).

Proposition 4.16 Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼),𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′𝐼) be two parity formulas such that for all
𝑢, 𝑣 ∈ 𝑉 and 𝑢′, 𝑣′ ∈ 𝑉′, we have that 𝑢 ≡𝐸 𝑣 and 𝑢′ ≡𝐸′ 𝑣′. Let 𝐵1 , 𝐵2 ⊆ 𝑉 ×𝑉′ be two bisimulations of parity
formulas. Then the union 𝐵1 ∪ 𝐵2 is also a bisimulation.

Proof. Let (𝑢, 𝑢′) ∈ 𝐵1 ∪ 𝐵2. Without loss of generality, assume (𝑢, 𝑢′) ∈ 𝐵1.

1) By definition, 𝐿(𝑢) = 𝐿′(𝑢′).
2) For any 𝑣 ∈ 𝑉 such that 𝐸𝑢𝑣, there exists 𝑣′ ∈ 𝑉′ such that (𝑣, 𝑣′) ∈ 𝐵1 ⊆ 𝐵1 ∪ 𝐵2 and 𝐸′𝑢′𝑣′.
3) For any 𝑣′′ ∈ 𝑉′ such that 𝐸𝑢′𝑣′, there exists 𝑣 ∈ 𝑉 such that (𝑣, 𝑣′) ∈ 𝐵1 ⊆ 𝐵1 ∪ 𝐵2 and 𝐸𝑢𝑣.

4) By condition 4, 𝑢 ∈ Dom(Ω) if and only if 𝑢′ ∈ Dom(Ω′).
5) By condition 5, if 𝑢 ∈ Dom(Ω), then Ω(𝑢) = Ω′(𝑢′).
6) Suppose 𝑣 ∈ 𝑉 , 𝑣′ ∈ 𝑉′, (𝑣, 𝑣′) ∈ 𝐵1 ∪ 𝐵2, 𝑢 ≡𝐸 𝑣, 𝑢′ ≡𝐸′ 𝑣′ and Ω(𝑢) .2 Ω(𝑣). If (𝑣, 𝑣′) ∈ 𝐵1, then

condition 5) is met by definition. Thus, assume without loss of generality that (𝑣, 𝑣′) ∈ 𝐵2, Ω(𝑢) < Ω(𝑣)
and Ω′(𝑢′) > Ω′(𝑣′), and that

Ω(𝑢) = 𝑚𝑖𝑛{Ω(𝑤) | (𝑤, 𝑤′) ∈ 𝐵1 , (𝑥, 𝑥′) ∈ 𝐵2 ,Ω(𝑤) < Ω(𝑥),Ω′(𝑤′) > Ω′(𝑥′) for some 𝑤, 𝑥 ∈ 𝑉, 𝑤′, 𝑥′ ∈ 𝑉′}.

Since 𝑢′ ↠𝐸′ 𝑣
′
, it follows that there exists 𝑣1 ∈ 𝑉 such that 𝑢 ↠𝐸 𝑣1 and (𝑣1 , 𝑣

′) ∈ 𝐵1. Since 𝐵1 is a

bisimulation and 𝑢 ≡𝐸 𝑣1, it follows that Ω(𝑢) > Ω(𝑣1).
Since 𝑣 ↠𝐸 𝑢, it follows that there exists 𝑢′

1
∈ 𝑉′ such that 𝑣′ ↠𝐸′ 𝑢

′
1

and (𝑢, 𝑢′
1
) ∈ 𝐵2. Since 𝐵2 is a

bisimulation and 𝑢′
1
≡𝐸′ 𝑣′, it follows that Ω′(𝑢′

1
) < Ω′(𝑣′).

Note that (𝑣1 , 𝑣
′) ∈ 𝐵1, (𝑢, 𝑢′

1
) ∈ 𝐵2, Ω(𝑣1) < Ω(𝑢), Ω′(𝑣′) > Ω′(𝑢′

1
), which contradicts our assumption

that 𝑢 has the smallest priority among nodes in 𝑣 that has such a property.

Case 2: Parity Formulas with One Cluster 39

𝑢

𝑣

𝑢′

𝑣′
𝑣1

𝑢′
1><

< >

Thus, for any 𝑢, 𝑣 ∈ 𝑉 , 𝑢′, 𝑣′ ∈ 𝑉′ such that (𝑢, 𝑢′), (𝑣, 𝑣′) ∈ 𝐵1∪𝐵2, 𝑢 ≡𝐸 𝑣, 𝑢′ ≡𝐸′ 𝑣′ andΩ(𝑢) .2 Ω(𝑣),
it holds that Ω(𝑢) < Ω(𝑣) if and only if Ω′(𝑢′) < Ω′(𝑣′).

Now that we have shown that bisimulations between parity formulas with one cluster are preserved under

finite union, We can define the bisimilarity relation over 𝔾, a parity formula that has only one cluster, as the

biggest bisimulation between 𝔾 and itself.

Definition 4.3 Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) be a parity formula with only one cluster. Define ∼𝔾⊆ 𝑉 ×𝑉 to be the
union of all bisimulations from 𝔾 to itself. Since there are only finitely many such bisimulations, their union is still a
bisimulation. When it is clear in the context, we omit the subscript and only write ∼.

It is easy to see that

1. The graph of the identity function on 𝑉 , graph(𝑖𝑑𝑉), is a bisimulation, and

2. if 𝑅 ⊆ 𝑉 × 𝑉 is a bisimulation from 𝔾 to itself, then 𝑅−1
:= {(𝑡 , 𝑠) | 𝑡 , 𝑠 ∈ 𝑉, (𝑠, 𝑡) ∈ 𝑅} is also a

bisimulation from 𝔾 to itself.

These properties together with the fact that bisimulations are closed under composition mean that ∼ is an

equivalence relation. This means that we can define a quotient parity formula out of 𝔾.

Definition 4.4 Let 𝔾 be a parity formula with one cluster. Define the quotient parity formula

𝔾/∼:= (𝑉/∼, 𝐸∼ , 𝐿∼ ,Ω∼ , [𝑣𝐼]∼)

where 𝐸∼ := {([𝑠]∼ , [𝑡]∼) | 𝑠, 𝑡 ∈ 𝑉, 𝐸𝑠𝑡}, 𝐿∼([𝑠]∼) = 𝐿(𝑠) and

Ω∼([𝑠]∼) =
{
𝑚𝑖𝑛({Ω(𝑡) | 𝑡 ∈ 𝑉, 𝑠 ∼ 𝑡}) 𝑠 ∈ Dom(Ω)
undefined otherwise

.

Since ∼ is a bisimulation, we have that 𝐿(𝑠) = 𝐿(𝑡) for any 𝑠, 𝑡 ∈ 𝑉, 𝑠 ∼ 𝑡. So this is well-defined.

Proposition 4.17 The graph of the quotient function [·]∼ is a bisimulation.

Proof. We show this by checking that it satisfies all the conditions of Definition 3.

1) 𝐿(𝑠) = 𝐿∼([𝑠]∼) for all 𝑠 ∈ 𝑉 by definition.

2) For any 𝑠, 𝑡 ∈ 𝑉 such that 𝐸𝑠𝑡, by definition 𝐸∼([𝑠]∼)([𝑡]∼).
3) For any 𝑠, 𝑡 ∈ 𝑉 such that 𝐸∼([𝑠]∼)([𝑡]∼), there exists 𝑠′, 𝑡′ ∈ 𝑉 such that 𝐸𝑠′𝑡′, 𝑠 ∼ 𝑠′ and 𝑡 ∼ 𝑡′. This

means that there exists 𝑡′′ ∈ 𝑉 such that 𝐸𝑠𝑡′′ and 𝑡′ ∼ 𝑡′′. By transitivity of ∼, we have 𝑡 ∼ 𝑡′′, or

equivalently, [𝑡]∼ = [𝑡′′]∼.

4) Suppose 𝑠 ∈ Dom(Ω), then by definition [𝑠]∼ ∈ Dom(Ω∼). Suppose [𝑠]∼ ∈ Dom(Ω∼), then there exists

𝑡 ∈ Dom(Ω) such that 𝑠 ∼ 𝑡, 𝑡 ∈ Dom(Ω) and Ω∼([𝑠]) = Ω(𝑡). Since ∼ is a bisimulation in the sense of

Definition 3, it follows from condition 4 that 𝑠 ∈ Dom(Ω).

40 4 Definition 3: Special cases

5) For all 𝑠 ∈ Dom(Ω), by definition there exists 𝑡 ∈ Dom(Ω) such that 𝑠 ∼ 𝑡 and Ω∼([𝑠]) = Ω(𝑡). This

means that Ω∼([𝑠]) = Ω(𝑡) ≡2 Ω(𝑠).
6) Let 𝑠, 𝑡 ∈ Dom(Ω) be such that Ω(𝑠) .2 Ω(𝑡). We show that Ω(𝑠) < Ω(𝑣) if and only if Ω∼([𝑠]∼) <

Ω∼([𝑡]∼).
⇐: Note that there exists 𝑠′, 𝑡′ ∈ 𝑉 such that 𝑠 ∼ 𝑠′, 𝑡 ∼ 𝑡′ and Ω(𝑠′) = Ω∼([𝑠]∼) < Ω∼([𝑡]∼) = Ω(𝑡′).

The fact that ∼ is a bisimulation implies that 𝜔(𝑠) < Ω(𝑡).
⇒: Note that there exists 𝑠′, 𝑡′ ∈ 𝑉 such that 𝑠 ∼ 𝑠′, 𝑡 ∼ 𝑡′, Ω(𝑠′) = Ω∼([𝑠]∼) and Ω∼([𝑡]∼) = Ω(𝑡′).

The fact that ∼ is a bisimulation implies that 𝜔(𝑠′) < Ω(𝑡′). Then it follows that Ω∼([𝑠]∼) <
Ω∼([𝑡]∼).

Definition 4: Properties and Bisimilarity Game 5
This chapter is dedicated to proving the properties of Definition 4 shown in Figure 3.2. Recall Definition 4

provided in Chapter 3.

Definition 5.1 (Definition 4) Given two parity formulas 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
), a

family of binary relations (𝐴𝑖)𝑖∈𝜔 , with 𝐴𝑖 ⊆ 𝑉 ×𝑉′ for all 𝑖 ∈ 𝜔, is a bisimulation between 𝔾 and 𝔾′ if it satisfies
the condition 1 - 6 below. Here we use 𝐴 to denote

⋃
𝑖∈𝜔

𝐴𝑖 .

1. 𝐴𝑖 ⊆ 𝐴 𝑗 for all 𝑖 , 𝑗 ∈ 𝜔 such that 𝑖 < 𝑗;
2. 𝐿(𝑣) = 𝐿′(𝑣′) for all (𝑣, 𝑣′) ∈ 𝐴;
3. for all (𝑣, 𝑣′) ∈ 𝐴0, neither 𝐶(𝑣) nor 𝐶(𝑣′) are degenerate, 𝑣 ∈ Dom(Ω) ⇔ 𝑣′ ∈ Dom(Ω′), and if
𝑣 ∈ Dom(Ω), then Ω(𝑣) ≡2 Ω′(𝑣′);

4. for any (𝑢, 𝑢′), (𝑣, 𝑣′) ∈ 𝐴0 such that 𝑣 ∈ 𝐶(𝑢), 𝑣′ ∈ 𝐶(𝑢′) and Ω(𝑢) .2 Ω(𝑣), we have that Ω(𝑢) < Ω(𝑣)
if and only if Ω′(𝑢′) < Ω′(𝑣′);

5. for all 𝑖 ∈ 𝜔, (𝑣, 𝑣′) ∈ 𝐴𝑖+1\𝐴0;

a) for all 𝑢 ∈ 𝑉 such that 𝐸𝑣𝑢, there exists 𝑢′ ∈ 𝑉′ such that 𝐸′𝑣′𝑢′ and (𝑢, 𝑢′) ∈ 𝐴𝑖 ;
b) for all 𝑢′ ∈ 𝑉′ such that 𝐸′𝑣′𝑢′, there exists 𝑢 ∈ 𝑉 such that 𝐸𝑣𝑢 and (𝑢, 𝑢′) ∈ 𝐴𝑖 ; and

6. for all (𝑣, 𝑣′) ∈ 𝐴0,

a) for all 𝑢 ∈ 𝐶(𝑣) such that 𝐸𝑣𝑢, there exists 𝑢′ ∈ 𝐶(𝑣′) such that 𝐸′𝑣′𝑢′ and (𝑢, 𝑢′) ∈ 𝐴0;
b) for all 𝑢′ ∈ 𝐶(𝑣′) such that 𝐸′𝑣′𝑢′, there exists 𝑢 ∈ 𝐶(𝑣) such that 𝐸𝑣𝑢 and (𝑢, 𝑢′) ∈ 𝐴0;
c) for all 𝑢 ∈ 𝑉 such that 𝐸𝑣𝑢, there exists 𝑢′ ∈ 𝑉′ such that 𝐸′𝑣′𝑢′ and (𝑢, 𝑢′) ∈ 𝐴;
d) for all 𝑢′ ∈ 𝑉′ such that 𝐸′𝑣′𝑢′, there exists 𝑢 ∈ 𝑉 such that 𝐸𝑣𝑢 and (𝑢, 𝑢′) ∈ 𝐴.

This chapter is divided into five sections. In section Soundness, we show that Definition 4 provides a sufficient

condition for model equivalence between parity formulas. In section Union, we prove that Definition 4 is

closed under union. Since parity formulas are by definition finite, it follows that closure under union ensures

the existence of the largest bisimulation between any two parity formulas, which we call the bisimilarity

relation. In section Fixpoint Formulation & Decision Procedure, we provide an alternative formulation of the

bisimilarity relation which leads to a decision procedure for bisimilarity. In section Bisimilarity Game, we

provide a two-player game, parameterized by two parity formulas, in the form of parity games in which ∃
has a winning strategy if and only if the two parity formulas are bisimilar in the sense of Definition 4. Finally,

with the help of the bisimilarity game, we show in section Composition that Definition 4 is also closed under

composition.

Soundness

In this section, we show that Definition 4 provides a sufficient condition for model equivalence between

parity formulas.

Proposition 5.1 Given two parity formulas 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
), and a bisimulation

(𝐴𝑖)𝑖∈𝜔 from 𝔾 to 𝔾′, it follows that for any (𝑢, 𝑢′) ∈ 𝐴 we have

𝔾⟨𝑢⟩ ≡ 𝔾′⟨𝑢′⟩.

Proof. We need to show that, given a transition system 𝕊 with initial state 𝑠𝐼 , ∃ has a winning strategy in

E(𝔾⟨𝑢⟩,𝕊) if and only if∃ has a winning strategy in E(𝔾′⟨𝑢′⟩,𝕊). By symmetry and positional determinacy of

parity games, it suffices to show that given a positional winning ∃-strategy on E(𝔾⟨𝑢⟩,𝕊), 𝑔 : 𝑉 × 𝑆→ 𝑉 × 𝑆,

42 5 Definition 4: Properties and Bisimilarity Game

∃ has a winning strategy 𝑔′ on E(𝔾′⟨𝑢′⟩,𝕊). This strategy is constructed by ’shadow playing’. To be specific,

during the game, ∃ keeps track of the position of the token in two matches: one is the match she plays with ∀
in E(𝔾′⟨𝑢′⟩,𝕊) and the other is what we call a shadow match in E(𝔾⟨𝑢⟩,𝕊)which she plays according to

the aforementioned winning strategy. ∃ decides what to do in E(𝔾′⟨𝑢′⟩,𝕊) based on the position of the two

tokens as well as 𝑔 when it is her turn. At each turn, ∃ updates the positions simultaneously for both games.

We write (𝑢𝑖 , 𝑠𝑖) and (𝑢′
𝑖
, 𝑠′
𝑖
) respectively to denote the updated positions after the 𝑖-th turn in E(𝔾⟨𝑢⟩,𝕊)

and E(𝔾′⟨𝑢′⟩,𝕊). ∃ update the positions in a way such that for all applicable 𝑖,

a) 𝑠𝑖 = 𝑠′
𝑖
and (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐴,

b) if (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐴 𝑗+1 − 𝐴0 for some 𝑗 ∈ 𝜔 and neither of the games has ended, then (𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝐴 𝑗 , and

c) if (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐴0, 𝑢𝑖+1 ∈ 𝐶(𝑢𝑖) and 𝑢′
𝑖+1
∈ 𝐶(𝑢′

𝑖
), then (𝑢𝑖+1 , 𝑢

′
𝑖+1
) ∈ 𝐴0.

d) (𝑢𝑖 , 𝑠𝑖) is a dead end if and only if (𝑢′
𝑖
, 𝑠′
𝑖
) is a dead end.

∃ starts from (𝑢0 , 𝑠0) := (𝑢, 𝑠𝐼) in E(𝔾⟨𝑢⟩,𝕊) and from (𝑢′
0
, 𝑠′

0
) := (𝑢′, 𝑠𝐼) in E(𝔾′⟨𝑢′⟩,𝕊). Note that 𝑠0 = 𝑠′

0

and (𝑢0 , 𝑢
′
0
) ∈ 𝐴 by our assumption that (𝑢, 𝑢′) ∈ 𝐴. Suppose the positions after 𝑖 turns are (𝑢𝑖 , 𝑠𝑖) and

(𝑢′
𝑖
, 𝑠′
𝑖
). We can assume 𝑠𝑖 = 𝑠′

𝑖
and (𝑢𝑖 , 𝑢𝑖) ∈ 𝐴. Then 𝐿(𝑢𝑖) = 𝐿′(𝑢′

𝑖
) and we have the following cases.

1. 𝐿(𝑢𝑖) = 𝐿′(𝑢′
𝑖
) ∈ {^,∨} and (𝑢𝑖 , 𝑠𝑖) has at least one successor in E(𝔾⟨𝑢⟩,𝕊). In this case, by the

definition of the evaluation game, it is ∃’ turn make a move in E(𝔾′⟨𝑢′⟩,𝕊). Let (𝑢𝑖+1 , 𝑠𝑖+1) := 𝑔(𝑢𝑖 , 𝑠𝑖).
Since (𝑢𝑖 , 𝑠𝑖) has at least one successor in E(𝔾⟨𝑢⟩,𝕊) and 𝑔 is a well-defined strategy, it follows that

(𝑢𝑖+1 , 𝑠𝑖+1) is a successor of (𝑢𝑖 , 𝑠𝑖), and thus is a legitimate move from (𝑢𝑖 , 𝑠𝑖). We make the following

distinction.

• If (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐴0 and 𝑢𝑖+1 ∈ 𝐶(𝑢𝑖), then let 𝑠′
𝑖+1

:= 𝑠𝑖+1 and 𝑢′
𝑖+1

:= 𝑐𝑉′({𝑧 ∈ 𝑉′ | (𝑢𝑖+1 , 𝑧) ∈
𝐴0 , 𝐸

′𝑢′
𝑖
𝑧}). Note that we can use 𝑐𝑉′ here because of condition 6a) in Definition 3.5.

• If (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐴0 and 𝑢𝑖+1 ∉ 𝐶(𝑢𝑖), then let 𝑠′
𝑖+1

:= 𝑠𝑖+1 and 𝑢′
𝑖+1

:= 𝑐𝑉′({𝑧 ∈ 𝑉′ | (𝑢𝑖+1 , 𝑧) ∈
𝐴, 𝐸′𝑢′

𝑖
𝑧}). Note that we can use 𝑐𝑉′ here because of condition 6c) in Definition 3.5.

• If neither of the two cases above is true, then let (𝑢𝑖 , 𝑢𝑖) ∉ 𝐴0. Since (𝑢𝑖 , 𝑢𝑖) ∈ 𝐴, it follows that

(𝑢𝑖 , 𝑢′𝑖) ∈ 𝐴 𝑗+1 for some 𝑗 ∈ 𝜔. In this case, 𝑠′
𝑖+1

:= 𝑠𝑖+1 and 𝑢′
𝑖+1

:= 𝑐𝑉′({𝑧 ∈ 𝑉′ | (𝑢𝑖+1 , 𝑧) ∈
𝐴 𝑗 , 𝐸

′𝑢′
𝑖
𝑧}). Note that we can use 𝑐𝑉′ here because of condition 5a) in Definition 3.5.

Note that the conditions a)-c) are respected in this case.

2. 𝐿(𝑢𝑖) = 𝐿′(𝑢′
𝑖
) ∈ {□,∧} and (𝑢′

𝑖
, 𝑠′
𝑖
) has at least one successor in E(𝔾⟨𝑢⟩,𝕊). In this case, ∀ can make a

move in E(𝔾′⟨𝑢′⟩,𝕊). Denote the position ∀ chooses as (𝑢′
𝑖+1
, 𝑠′
𝑖+1
). We make the following distinction.

• If (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐴0 and 𝑢′
𝑖+1
∈ 𝐶(𝑢′

𝑖
), then 𝑠𝑖+1 := 𝑠′

𝑖+1
and 𝑢𝑖+1 := 𝑐𝑉 ({𝑧 ∈ 𝑉 | (𝑧, 𝑢′𝑖+1

) ∈ 𝐴0 , 𝐸𝑢𝑖𝑧}).
Note that we can use 𝑐𝑉 here because of condition 6b) in Definition 3.5.

• If (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐴0 and 𝑢′
𝑖+1

∉ 𝐶(𝑢′
𝑖
), then 𝑠𝑖+1 := 𝑠′

𝑖+1
and 𝑢𝑖+1 := 𝑐𝑉 ({𝑧 ∈ 𝑉 | (𝑧, 𝑢′𝑖+1

) ∈ 𝐴, 𝐸𝑢𝑖𝑧}) .

Note that we can use 𝑐𝑉 here because of condition 6d) in Definition 3.5.

• If neither of the two cases above is true, then (𝑢𝑖 , 𝑢′𝑖) ∉ 𝐴0. Since (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐴, it follows that

(𝑢𝑖 , 𝑢′𝑖) ∈ 𝐴 𝑗+1 for some 𝑗 ∈ 𝜔. In this case, 𝑠𝑖+1 := 𝑠′
𝑖+1

and 𝑢𝑖+1 := 𝑐𝑉 ({𝑧 ∈ 𝑉 | (𝑧, 𝑢′𝑖+1
) ∈

𝐴 𝑗 , 𝐸𝑢𝑖𝑧}). Note that we can use 𝑐𝑉 here because of condition 6b) in Definition 3.5.

Note that the conditions a)-c) are respected in this case.

3. 𝐿(𝑢𝑖) = 𝐿′(𝑢′
𝑖
) = 𝜖. Let (𝑢𝑖+1 , 𝑠𝑖+1) and (𝑢′

𝑖+1
, 𝑠′
𝑖+1
) be the unique successors of (𝑢𝑖 , 𝑠𝑖) and (𝑢′

𝑖
, 𝑠′
𝑖
)

respectively. This means that 𝐸𝑢𝑖𝑢𝑖+1, 𝐸′𝑢′
𝑖
𝑢′
𝑖+1

, 𝑠𝑖 = 𝑠𝑖+1 and 𝑠′
𝑖
= 𝑠′

𝑖+1
.

• Since 𝑠𝑖 = 𝑠′
𝑖
, it follows that 𝑠𝑖+1 = 𝑠′

𝑖+1
. Since (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐴 and 𝐸𝑢𝑖𝑢𝑖+1, it follows that there exists

𝑣′ ∈ 𝑉′ such that 𝐸′𝑢′
𝑖
𝑣′ and (𝑢𝑖+1 , 𝑣

′) ∈ 𝐴. Since 𝑢′
𝑖+1

is the only successor of 𝑢′
𝑖
, it follows that

𝑣′ = 𝑢′
𝑖+1

. Thus, (𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝐴.

• If (𝑢𝑖 , 𝑢𝑖) ∈ 𝐴 𝑗+1 − 𝐴0 for some 𝑗 ∈ 𝜔, then by condition 5a) of definition 3.5, there exists 𝑢′ ∈ 𝑉′
such that 𝐸′𝑢′

𝑖
𝑢′ and (𝑢𝑖+1 , 𝑢

′) ∈ 𝐴 𝑗 . Since 𝑢′
𝑖+1

is the unique successor of 𝑢′
𝑖
, it follows that

𝑢′ = 𝑢′
𝑖+1

and (𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝐴 𝑗 .

• If (𝑢𝑖 , 𝑢𝑖) ∈ 𝐴0 and 𝑢𝑖+1 ∈ 𝐶(𝑢𝑖), then by condition 6a) of definition 3.5, there exists 𝑢′ ∈ 𝑉′ such

that 𝐸′𝑢′
𝑖
𝑢′ and (𝑢𝑖+1 , 𝑢

′) ∈ 𝐴0. Since 𝑢′
𝑖+1

is the unique successor of 𝑢′
𝑖
, it follows that 𝑢′ = 𝑢′

𝑖+1

and (𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝐴0.

Note that the conditions a)-c) are respected in this case.

Union 43

4. If none of the cases above are true, then it must be one of the following cases.

• 𝐿(𝑣) = 𝐿′(𝑣′) ∈ At(P).
• 𝐿(𝑢𝑖) = 𝐿′(𝑢′

𝑖
) ∈ {^,∨} and (𝑢𝑖 , 𝑠𝑖) has no successor in E(𝔾⟨𝑢⟩,𝕊).

• 𝐿(𝑢𝑖) = 𝐿′(𝑢′
𝑖
) ∈ {□,∧} and (𝑢′

𝑖
, 𝑠′
𝑖
) has no successor in E(𝔾⟨𝑢⟩,𝕊).

We argue that in all of these cases, neither (𝑢𝑖 , 𝑠𝑖) has successors in E(𝔾⟨𝑢⟩,𝕊) nor (𝑢′
𝑖
, 𝑠′
𝑖
) has successors

in E(𝔾′⟨𝑢′⟩,𝕊). This is obvious in the first case. The argument for the third case is similar to that of the

second case so we omit it. Now we show that if 𝐿(𝑢𝑖) = 𝐿′(𝑢′
𝑖
) ∈ {^,∨} and (𝑢𝑖 , 𝑠𝑖) has no successor in

E(𝔾⟨𝑢⟩,𝕊), then (𝑢′
𝑖
, 𝑠′
𝑖
) has no successor in E(𝔾′⟨𝑢′⟩,𝕊). We make the following distinction.

• 𝐿(𝑢𝑖) = 𝐿′(𝑢′
𝑖
) = ^. Suppose (𝑣′, 𝑠′) is a successor to (𝑢′

𝑖
, 𝑠′
𝑖
) in E(𝔾′⟨𝑢′⟩,𝕊). This means that

(𝑠′
𝑖
, 𝑠′) = (𝑠𝑖 , 𝑠′) ∈ 𝑅𝕊 and 𝐸𝑢′

𝑖
𝑣′. Since (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐴, it follows that there exists 𝑣 ∈ 𝑉 such that 𝐸𝑢𝑖𝑣

and (𝑣, 𝑣′) ∈ 𝐴. This means that (𝑣, 𝑠′) is a successor to (𝑢𝑖 , 𝑠𝑖) in E(𝔾⟨𝑢⟩,𝕊), which contradicts

our assumption. Thus, (𝑢′
𝑖
, 𝑠′
𝑖
) has no successor in E(𝔾′⟨𝑢′⟩,𝕊).

• 𝐿(𝑢𝑖) = 𝐿′(𝑢′
𝑖
) = ∨. Suppose (𝑣′, 𝑠′) is a successor to (𝑢′

𝑖
, 𝑠′
𝑖
) in E(𝔾′⟨𝑢′⟩,𝕊). This means that

𝑠′
𝑖
= 𝑠𝑖 = 𝑠′ and 𝐸𝑢′

𝑖
𝑣′. Since (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐴, it follows that there exists 𝑣 ∈ 𝑉 such that 𝐸𝑢𝑖𝑣 and

(𝑣, 𝑣′) ∈ 𝐴. This means that (𝑣, 𝑠′) is a successor to (𝑢𝑖 , 𝑠𝑖) in E(𝔾⟨𝑢⟩,𝕊), which contradicts our

assumption. Thus, (𝑢′
𝑖
, 𝑠′
𝑖
) has no successor in E(𝔾′⟨𝑢′⟩,𝕊).

Since (𝑢𝑖 , 𝑠𝑖) has no successor in E(𝔾⟨𝑢⟩,𝕊) and (𝑢′
𝑖
, 𝑠′
𝑖
) has no successor in E(𝔾′⟨𝑢′⟩,𝕊), no move is

possible in either game and the two games end simultaneously.

Now we show that 𝑔′ is indeed a winning strategy. Suppose ∃ follows this strategy. As we have shown above,

the two matches always end simultaneously. There are two possibilities.

1. The matches end after finitely many, say, 𝑛, steps. Let 𝑙 = (𝑢, 𝑠𝐼)(𝑢1 , 𝑠1)...(𝑢𝑛 , 𝑠𝑛) be the match

in E(𝔾′⟨𝑢′⟩,𝕊) and 𝑙′ = (𝑢′, 𝑠′
𝐼
)(𝑢′

1
, 𝑠′

1
)...(𝑢′𝑛 , 𝑠′𝑛) be the match in E(𝔾′⟨𝑢′⟩,𝕊). By a), 𝑠𝑛 = 𝑠′𝑛 and

(𝑢𝑛 , 𝑢′𝑛) ∈ 𝐴. The latter implies that 𝐿(𝑢𝑛) = 𝐿′(𝑢′𝑛) Thus (𝑢𝑛 , 𝑠𝑛) and (𝑢′𝑛 , 𝑠′𝑛) belong to the same player.

Since both matches are full, it follows that the two matches are won by the same player.

2. The matches are infinite. Let 𝑙 = (𝑢, 𝑠𝐼)(𝑢1 , 𝑠1)... be the match in E(𝔾′⟨𝑢′⟩,𝕊) and 𝑙′ = (𝑢′, 𝑠′
𝐼
)(𝑢′

1
, 𝑠′

1
)...

be the match in E(𝔾′⟨𝑢′⟩,𝕊). Since any infinite match is eventually restricted to one cluster on the first

coordinate, it follows that there exists 𝑛, 𝑛′ ∈ 𝜔 such that for all 𝑖 ≥ 𝑛 we have 𝑢𝑖 ∈ 𝐶(𝑢𝑛) and for

all 𝑖 ≥ 𝑛′ we have 𝑢′
𝑖
∈ 𝐶(𝑢′𝑛′). Without loss of generality, assume 𝑛 ≥ 𝑛′. Then for all 𝑖 ≥ 𝑛 we have

𝑢𝑖 ∈ 𝐶(𝑢𝑛) and 𝑢′
𝑖
∈ 𝐶(𝑢′𝑛). Note that we have shown that (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐴 for all 𝑖 ∈ 𝜔. This means that

there exists 𝑚 ∈ 𝜔 such that (𝑢𝑛 , 𝑢′𝑛) ∈ 𝐴𝑚 . By b), there exists 0 ≤ 𝑗 ≤ 𝑚 such that (𝑢𝑛+𝑗 , 𝑢′𝑛+𝑗) ∈ 𝐴0.

By c), (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐴0 for all 𝑖 ≥ 𝑛 + 𝑗. By condition 4 of Definition 3.5, we have

i) Ω(𝑢𝑖 , 𝑠𝑖) ≡2 Ω′(𝑢′
𝑖
, 𝑠′
𝑖
), and

ii) if Ω(𝑢𝑖 , 𝑠𝑖) .2 Ω(𝑢𝑗 , 𝑠 𝑗), then Ω(𝑢𝑖 , 𝑠𝑖) < Ω(𝑢𝑗 , 𝑠 𝑗) if and only if Ω′(𝑢′
𝑖
, 𝑠′
𝑖
) < Ω′(𝑢′

𝑗
, 𝑠′
𝑗
).

By Proposition 2.5, 𝑙 and 𝑙′ have the same winner. Since 𝑙 is a match where ∃ follows strategy 𝑔, it

follows that ∃ is the winner in 𝑙. Thus, ∃ is also the winner in 𝑙′.

Thus, 𝑔′ is a winning strategy for E(𝔾′⟨𝑢′⟩,𝕊).

Union

In this section, we show that Definition 4 is closed under union.

Proposition 5.2 Given two parity formulas 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
), and two bisimula-

tions (𝐴1

𝑖
)𝑖∈𝜔 , (𝐴2

𝑖
)𝑖∈𝜔 from 𝔾 to 𝔾′, it follows that (𝐴′

𝑖
)𝑖∈𝜔 with 𝐴′

𝑖
:= 𝐴1

𝑖
∪ 𝐴2

𝑖
is also a bisimulation.

Proof. We show that (𝐴′
𝑖
)𝑖∈𝜔 satisfies all the conditions in Definition 3.5.

44 5 Definition 4: Properties and Bisimilarity Game

1. For all 𝑖 , 𝑗 ∈ 𝜔 such that 𝑖 < 𝑗, since 𝐴1

𝑖
⊆ 𝐴1

𝑗
and 𝐴2

𝑖
⊆ 𝐴2

𝑗
, we have that

𝐴′𝑖 = 𝐴1

𝑖 ∪ 𝐴
2

𝑖 ⊆ 𝐴
1

𝑗 ∪ 𝐴
2

𝑗 = 𝐴′𝑗 .

2. Since 𝐿(𝑣) = 𝐿′(𝑣′) for all (𝑣, 𝑣′) ∈ 𝐴1
and (𝑣, 𝑣′) ∈ 𝐴2

, it follows that 𝐿(𝑣) = 𝐿′(𝑣′) for all (𝑣, 𝑣′) ∈
𝐴1 ∪ 𝐴2 = 𝐴′.

3. Since for all (𝑣, 𝑣′) ∈ 𝐴1

0
and (𝑣, 𝑣′) ∈ 𝐴2

0
we have Ω(𝑣) ≡2 Ω(𝑣′) and neither 𝐶(𝑣) nor 𝐶(𝑣′) are

degenerate, it follows that for all (𝑣, 𝑣′) ∈ 𝐴1

0
∪ 𝐴2

0
= 𝐴′

0
, Ω(𝑣) ≡2 Ω(𝑣′) and neither 𝐶(𝑣) nor 𝐶(𝑣′) are

degenerate.

4. Suppose 𝑢, 𝑣 ∈ 𝑉 , 𝑢′, 𝑣′ ∈ 𝑉′, 𝑢 ∈ 𝐶(𝑣), 𝑢′ ∈ 𝐶(𝑣′) , (𝑢, 𝑢′), (𝑣, 𝑣′) ∈ 𝐴1

0
∪ 𝐴2

0
and Ω(𝑢) .2 Ω(𝑣).

Without loss of generality, suppose (𝑢, 𝑢′) ∈ 𝐴1

0
. If (𝑣, 𝑣′) ∈ 𝐴1

0
, then by assumption Ω(𝑢) < Ω(𝑣) if

and only if Ω′(𝑢′) < Ω′(𝑣′). Otherwise, (𝑣, 𝑣′) ∈ 𝐴2

0
. Without loss of generality, suppose Ω(𝑢) < Ω(𝑣).

To argue towards contradiction, suppose Ω′(𝑢′) > Ω′(𝑣′). Without loss of generality, also suppose

Ω(𝑢) = 𝑚𝑖𝑛({Ω(𝑤) |𝑤 ∈ 𝐷𝑢})where

𝐷𝑢 := {𝑤 ∈ 𝐶(𝑢) | (𝑤, 𝑤′) ∈ 𝐴1

0
, (𝑥, 𝑥′) ∈ 𝐴2

0
,Ω(𝑤) < Ω(𝑥),Ω′(𝑤′) > Ω′(𝑥′)

for some 𝑥 ∈ 𝐶(𝑢), 𝑤′, 𝑥′ ∈ 𝐶(𝑢′)}).

• Since 𝑢′ ∈ 𝐶(𝑣′) and (𝑢, 𝑢′) ∈ 𝐴1

0
, it follows that there exist two paths 𝑢′→𝐸′ 𝑢

′
1
→𝐸′ ...→𝐸′ 𝑢

′
𝑛 =

𝑣′ and 𝑢 →𝐸 𝑢1 →𝐸 ...→𝐸 𝑢𝑛 for some 𝑛 ∈ 𝜔 such that 𝑢𝑖 ∈ 𝐶(𝑢), 𝑢′𝑖 ∈ 𝐶(𝑢′) and (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐴
1

0

for all 1 ≤ 𝑖 ≤ 𝑛. In particular, 𝑢𝑛 ∈ 𝐶(𝑢), 𝑣′ ∈ 𝐶(𝑢′) and (𝑢𝑛 , 𝑣′) ∈ 𝐴1

0
. Since 𝐴1

0
is a bisimulation,

it follows that Ω(𝑢) > Ω(𝑢𝑛).

• Since 𝑣 ∈ 𝐶(𝑢) and (𝑣, 𝑣′) ∈ 𝐴2

0
, it follows that there exist two paths 𝑣′ →𝐸′ 𝑣

′
1
→𝐸′ ... →𝐸′ 𝑣

′
𝑚

and 𝑣 →𝐸 𝑣1 →𝐸 ...→𝐸 𝑣𝑚 = 𝑢 for some 𝑚 ∈ 𝜔 such that 𝑣𝑖 ∈ 𝐶(𝑣), 𝑣′𝑖 ∈ 𝐶(𝑣′) and (𝑣𝑖 , 𝑣′𝑖) ∈ 𝐴
2

0

for all 1 ≤ 𝑖 ≤ 𝑚. In particular, 𝑢 ∈ 𝐶(𝑣), 𝑣′𝑚 ∈ 𝐶(𝑣′) and (𝑢, 𝑣′𝑚) ∈ 𝐴2

0
. Since 𝐴2

0
is a bisimulation,

it follows that Ω(𝑣′𝑚) < Ω(𝑣′).

• So far, we have gathered enough facts to show that 𝑢𝑛 ∈ 𝐷𝑢 . However, Ω(𝑢𝑛) < Ω(𝑢), which

contradicts our assumption that 𝑢 has the smallest priority in 𝐷𝑢 (red for 𝐴1

0
and blue for 𝐴2

0
in

the demonstration below).

𝑢

𝑣

𝑢′

𝑣′
𝑢𝑛

𝑣′𝑚

><

< >

Thus, Ω′(𝑢′) ≯ Ω′(𝑣′). Since Ω′(𝑢′) ≡2 Ω(𝑢) .2 Ω(𝑣) ≡2 Ω′(𝑣′), it follows that Ω′(𝑢′) ≠ Ω′(𝑣′).
This means that Ω′(𝑢′) < Ω′(𝑣′).

5. Let 𝑖 ∈ 𝜔 and (𝑣, 𝑣′) ∈ (𝐴1

𝑖+1
∪ 𝐴2

𝑖+1
) − (𝐴1

0
∪ 𝐴2

0
). Without loss of generality, suppose (𝑣, 𝑣′) ∈

𝐴1

𝑖+1
− (𝐴1

0
∪ 𝐴2

0
), then (𝑣, 𝑣′) ∈ 𝐴1

𝑖+1
− 𝐴1

0
.

a) For all 𝑢 ∈ 𝑉 such that 𝐸𝑣𝑢, by assumption there exists 𝑢′ ∈ 𝑉′ such that 𝐸′𝑣′𝑢′ and (𝑢, 𝑢′) ∈
𝐴1

𝑖
⊆ 𝐴1

𝑖
∪ 𝐴2

𝑖
= 𝐴′

𝑖
.

b) Similar to (a).

6. Let (𝑣, 𝑣′) ∈ 𝐴1

0
∪ 𝐴2

0
. Without loss of generality, suppose (𝑣, 𝑣′) ∈ 𝐴1

0
.

a) For all 𝑢 ∈ 𝐶(𝑣) such that 𝐸𝑣𝑢, by assumption there exists 𝑢′ ∈ 𝐶(𝑣′) such that 𝐸′𝑣′𝑢′ and

(𝑢, 𝑢′) ∈ 𝐴1

0
⊂ 𝐴1

0
∪ 𝐴2

0
= 𝐴′

0
.

b) Similar to (a).

Fixpoint Formulation & Decision Procedure 45

c) For all 𝑢 ∈ 𝑉 such that 𝐸𝑣𝑢, by assumption there exists 𝑢′ ∈ 𝑉′ such that 𝐸′𝑣′𝑢′ and (𝑢, 𝑢′) ∈
𝐴1 ⊆ 𝐴1 ∪ 𝐴2 = 𝐴′.

d) Similar to (c).

Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
) be two parity formulas. Suppose (𝐴1

𝑖
)𝑖∈𝜔 and (𝐴2

𝑖
)𝑖∈𝜔

are two bisimulations from 𝔾 to 𝔾′. By the proof of Proposition 5.2, we know that (𝐴1

𝑖
∪ 𝐴2

𝑖
)𝑖∈𝜔 is also a

bisimulation. Since there are only finitely many bisimulations from 𝔾 to 𝔾′, it follows that there exists a

largest bisimulation over 𝔾 to 𝔾′.

Definition 5.2 (Bisimilarity) Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
) be two parity formulas.

Denote that largest bisimulation over 𝔾 and 𝔾′ by (A𝑖)𝔾,𝔾
′

𝑖∈𝜔 . When the context is clear, we just write (A𝑖)𝑖∈𝜔 and A.
Note that, for any bisimulation (𝐴𝑖)𝑖∈𝜔 over 𝔾 and 𝔾′, we have 𝐴𝑖 ⊆ A

𝔾,𝔾′

𝑖
for all 𝑖 ∈ 𝜔.

Definition 5.3 Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
) be two parity formulas. Define 𝑟𝔾,𝔾′ :

𝑉 ×𝑉′→ 𝜔 ∪ {+∞} such that for all (𝑣, 𝑣′) ∈ 𝑉 ×𝑉′,

𝑟𝔾,𝔾′(𝑣, 𝑣′) :=

{
min({𝑖 ∈ 𝜔 | (𝑣, 𝑣′) ∈ A𝑖})) if (𝑣, 𝑣′) ∈ A𝔾,𝔾′

+∞ otherwise

When 𝔾 and 𝔾′ are clear, we also write 𝑟𝔾,𝔾′ as 𝑟. Note that 𝑟(𝑣, 𝑣′) = 0 implies that 𝐶(𝑣) and 𝐶(𝑣′) are
non-degenerate but not the other way around.

Definition 5.4 Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) be a parity formula.

• Let ≤𝔾 denote the pre-order over 𝑉 such that for all 𝑢, 𝑣 ∈ 𝑉 , 𝑢 ≤𝔾 𝑣 if and only if 𝑣𝐸∗𝑢.
• Let <𝔾 denote the strict partial order over 𝑉 such that for all 𝑢, 𝑣 ∈ 𝑉 , 𝑢 <𝔾 𝑣 if and only if 𝑢 ≤𝔾 𝑣 and
𝑢 ∉ 𝐶(𝑣).

Note that since 𝐺 is acyclic, it follows that, for any 𝑎, 𝑏 ∈ 𝑁 , if 𝑎𝑅𝑏 then 𝑏 <𝐺 𝑎. Let 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
) be

another parity formula.

• Let ≤𝔾,𝔾′ denote the pre-order over 𝑉 ×𝑉′ such that for all (𝑢, 𝑢′), (𝑣, 𝑣′) ∈ 𝑉 ×𝑉′, (𝑢, 𝑢′) ≤𝔾,𝔾′ (𝑣, 𝑣′) if
and only if 𝑢 ≤𝔾 𝑣 and 𝑢′ ≤𝔾′ 𝑣′.
• Let =𝔾,𝔾′ denote the equivalence relation over𝑉 ×𝑉′ such that for all (𝑢, 𝑢′), (𝑣, 𝑣′) ∈ 𝑉 ×𝑉′, (𝑢, 𝑢′) =𝔾,𝔾′

(𝑣, 𝑣′) if and only if (𝑢, 𝑢′) ≤𝔾,𝔾′ (𝑣, 𝑣′) and (𝑣, 𝑣′) ≤𝔾,𝔾′ (𝑢, 𝑢′).
• Let <𝔾,𝔾′ denote the strict partial order over 𝑉 ×𝑉′ such that for all (𝑢, 𝑢′), (𝑣, 𝑣′) ∈ 𝑉 ×𝑉′, (𝑢, 𝑢′) <𝔾,𝔾′

(𝑣, 𝑣′) if and only if (𝑢, 𝑢′) ≤𝔾,𝔾′ (𝑣, 𝑣′) and (𝑢, 𝑢′) =𝔾,𝔾′ (𝑣, 𝑣′).
• Let <𝔾,𝔾′ ,𝜔 denote the partial order over (𝑉 ×𝑉′) ×𝜔 such that, for any 𝑢, 𝑥 ∈ 𝑉 , 𝑢′, 𝑥′ ∈ 𝑉′ and𝑚, 𝑛 ∈ 𝜔,

we have ((𝑢, 𝑢′), 𝑚) <𝔾,𝔾′ ,𝜔 ((𝑥, 𝑥′), 𝑛) if and only if (𝑢, 𝑢′) <𝔾,𝔾′ (𝑥, 𝑥′) or ((𝑢, 𝑢′) =𝔾,𝔾′ (𝑥, 𝑥′) and
𝑚 < 𝑛).

Lemma 5.3 For any parity formulas 𝔾 and 𝔾′, <𝔾, <𝔾,𝔾′ and <𝔾,𝔾′ ,𝜔 are all well-founded.

Proof. Since𝑉 and𝑉′ are finite, it follows that strict partial order <𝔾 and <𝔾′ are well-founded. Since <𝔾 and

<𝔾′ are well-founded, it follows that their Cartesian product <𝔾,𝔾′ is also well-founded. Since both <𝔾,𝔾′ and

< on natural numbers are well-founded, it follows that their lexicographic product is also well-founded.

Fixpoint Formulation & Decision Procedure

Recall the definition of bisimulation for Kripke models:

46 5 Definition 4: Properties and Bisimilarity Game

Definition 5.5 Let 𝕊1 = ⟨𝑆1 , 𝑉1 , 𝑅1⟩ and 𝕊2⟨𝑆2 , 𝑉2 , 𝑅2⟩ be two Kripke models. 𝑍 is a bisimulation over 𝕊1 and
𝕊2 if for any 𝑠1 ∈ 𝑆1, 𝑠2 ∈ 𝑆2, 𝑠1𝑍𝑠2, we have

1) 𝑉1(𝑠1) = 𝑉2(𝑠2);
3) for any 𝑠′

1
∈ 𝑆1, if 𝑅1𝑠1𝑠

′
1

then there exists 𝑠′
2
∈ 𝑆2 such that 𝑠′

1
𝑍𝑠′

2
and 𝑅2𝑠2𝑠

′
2
; and

4) for any 𝑠′
2
∈ 𝑆2, if 𝑅2𝑠2𝑠

′
2

then there exists 𝑠′
1
∈ 𝑆1 such that 𝑠′

1
𝑍𝑠′

2
and 𝑅1𝑠1𝑠

′
1
.

It is well-known that given any Kripke models 𝕊1 = ⟨𝑆1 , 𝑉1 , 𝑅1⟩ and 𝕊2⟨𝑆2 , 𝑉2 , 𝑅2⟩, there exists a largest

bisimulation, i.e. the bisimilarity relation, over 𝕊1 and 𝕊2. Denote this largest bisimulation by Z𝕊1 ,𝕊2
, or when

the context is clear, Z. It has been proven that the bisimilarity relation has the following equivalent fixpoint

account.

Definition 5.6 Let 𝕊1 = ⟨𝑆1 , 𝑉1 , 𝑅1⟩ and 𝕊2 = ⟨𝑆2 , 𝑉2 , 𝑅2⟩ be two Kripke models. Define a function 𝑔𝕊1𝕊2
:

P(𝑆1 × 𝑆2) → P(𝑆1 × 𝑆2) (𝑔 for short) as follows. For any 𝐴 ⊆ 𝑆1 × 𝑆2 and (𝑠1 , 𝑠2) ∈ 𝑆1 × 𝑆2, we have
(𝑠1 , 𝑠2) ∈ 𝑔(𝐴) if and only if

1) 𝑉1(𝑠1) = 𝑉2(𝑠2);
3) for any 𝑠′

1
∈ 𝑆1, if 𝑅1𝑠1𝑠

′
1

then there exists 𝑠′
2
∈ 𝑆2 such that 𝑠′

1
𝐴𝑠′

2
and 𝑅2𝑠2𝑠

′
2
; and

4) for any 𝑠′
2
∈ 𝑆2, if 𝑅2𝑠2𝑠

′
2

then there exists 𝑠′
1
∈ 𝑆1 such that 𝑠′

1
𝐴𝑠′

2
and 𝑅1𝑠1𝑠

′
1
.

Proposition 5.4 Let 𝕊1 = ⟨𝑆1 , 𝑉1 , 𝑅1⟩ and 𝕊2 = ⟨𝑆2 , 𝑉2 , 𝑅2⟩ be two Kripke models. Then,

Z𝕊1 ,𝕊2 = GFP.𝜆𝐴.𝑔(𝐴).

Similarly, we can give a fixpoint account for the bisimilarity relation induced by Definition 4. However, note

that this fixpoint account features a least fixpoint operator instead of a greatest one.

Definition 5.7 Given two parity formulas 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼), 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′𝐼) and a family of base

bisimulations (𝐵𝑖)1≤𝑖≤𝑛 between 𝔾 and 𝔾′, let 𝐵 :=
𝑛⋃
𝑖=1

𝐵𝑖 . Define the function 𝑓𝔾,𝔾′ : P2(𝑉 ×𝑉′) → P(𝑉 ×𝑉′)
(𝑓 for short) as follows. For any 𝐴 ⊆ 𝑉 ×𝑉′ and (𝑣, 𝑣′) ∈ 𝑉 ×𝑉′, we have (𝑣, 𝑣′) ∈ 𝑓 (𝐵, 𝐴) if and only if

1. a) 𝐿(𝑣) = 𝐿(𝑣′), and
b) for all 𝑢 ∈ 𝑉 such that 𝐸𝑣𝑢 there is 𝑢′ ∈ 𝑉′ such that 𝐸′𝑣′𝑢′ and (𝑢, 𝑢′) ∈ 𝐴, and
c) for all 𝑢′ ∈ 𝑉′ such that 𝐸′𝑣′𝑢′ there is 𝑢 ∈ 𝑉 such that 𝐸𝑣𝑢 and (𝑢, 𝑢′) ∈ 𝐴,

or
2. a) (𝑣, 𝑣′) ∈ 𝐵, and

b) for all (𝑤, 𝑤′) ∈ 𝐵 ↾𝐶(𝑣)×𝐶(𝑣′)
i. for any 𝑢 ∈ 𝑉\𝐶(𝑣) such that 𝐸𝑤𝑢, there is 𝑢′ ∈ 𝑉′ such that (𝑢, 𝑢′) ∈ 𝐴 and 𝐸′𝑤′𝑢′, and
ii. for any 𝑢′ ∈ 𝑉′\𝐶(𝑣′) such that 𝐸′𝑤′𝑢′, there is 𝑢 ∈ 𝑉 such that (𝑢, 𝑢′) ∈ 𝐴 and 𝐸𝑤𝑢.

The following proposition is easy to see. We present it without proof.

Proposition 5.5 Let 𝐵 be the union of a family of base bisimulations. 𝜆𝐴. 𝑓 (𝐵, 𝐴) is a monotone function.

Proposition 5.6 Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
) be two parity formulas. Then,

A𝔾,𝔾′ = LFP.𝜆𝐴. 𝑓 (A𝔾,𝔾′

0
, 𝐴).

Proof. We prove both inclusions.

Fixpoint Formulation & Decision Procedure 47

1. A⊆ LFP.𝜆𝐴. 𝑓 (A0 , 𝐴). It suffices to show that for all (𝑣, 𝑣′) ∈ A there exists a natural number 𝑛 such

that (𝑣, 𝑣′) ∈ 𝑓 𝑛(A,∅). To show this, we first define a function # : A→ 𝜔 such that for any (𝑣, 𝑣′) ∈ A,

we have

#(𝑣, 𝑣′) :=

max({#(𝑢, 𝑢′) | (𝑢, 𝑢′) ∈ A, 𝑢 ∉ 𝐶(𝑣) or 𝑢′ ∉ 𝐶(𝑣′), there exists

max({(𝑤, 𝑤′) ∈ A0 ↾𝐶(𝑣)×𝐶(𝑣′) s.t. 𝐸𝑤𝑢 and 𝐸′𝑤′𝑢′}) + 1,

(𝑣, 𝑣′) ∈ A0

max({#(𝑢, 𝑢′) | 𝐸𝑣𝑢, 𝐸′𝑣′𝑢′, (𝑢, 𝑢′) ∈ A𝑖}) + 1, (𝑣, 𝑣′) ∈ A𝑖+1\A0

Here we assume max(∅) = 0. We show that # is indeed well-defined. Suppose the contrary. Since

<𝔾,𝔾′ ,𝜔 is well-founded, let (𝑣, 𝑣′) ∈ A\Dom(#) that is minimal with respect to <𝔾,𝔾′ ,𝜔.

a) Suppose (𝑣, 𝑣′) ∈ A0. Note that by assumption all the elements in

{(𝑢, 𝑢′) | 𝐸𝑤𝑢, 𝐸′𝑤′𝑢′, 𝑤 ∈ 𝐶(𝑣), 𝑤′ ∈ 𝐶(𝑣′), [𝑢 ∉ 𝐶(𝑣) or 𝑢′ ∉ 𝐶(𝑣′)]}

are strictly smaller with respect to <𝔾,𝔾′ ,𝜔, we have that

{(𝑢, 𝑢′) | 𝐸𝑤𝑢, 𝐸′𝑤′𝑢′, 𝑤 ∈ 𝐶(𝑣), 𝑤′ ∈ 𝐶(𝑣′), [𝑢 ∉ 𝐶(𝑣) or 𝑢′ ∉ 𝐶(𝑣′)]} ⊆ Dom(#).

Then, #(𝑣, 𝑣′) is also defined, which contradicts our assumption.

b) Suppose (𝑣, 𝑣′) ∈ A𝑖+1\A0 for some 𝑖 ∈ 𝜔. Note that by assumption all the elements in

{(𝑢, 𝑢′) | 𝐸𝑣𝑢, 𝐸′𝑣′𝑢′, (𝑢, 𝑢′) ∈ A𝑖} are strictly smaller with respect to <𝔾,𝔾′ ,𝜔, we have that

{(𝑢, 𝑢′) | 𝐸𝑣𝑢, 𝐸′𝑣′𝑢′, (𝑢, 𝑢′) ∈ A𝑖} ⊆ Dom(#).

Then, #(𝑣, 𝑣′) is also defined, which contradicts our assumption.

Thus, # is well-defined. Now we claim that for all (𝑣, 𝑣′) ∈ Awe have

(𝑣, 𝑣′) ∈ 𝑓 #(𝑣,𝑣′)(A0 ,∅).

We show this by induction on #(𝑣, 𝑣′).
a) Base case. Note that 𝑓 0(A,∅) = ∅ = {(𝑣, 𝑣′) | #(𝑣, 𝑣′) = 0}.
b) Induction step. Suppose for all (𝑢, 𝑢′) in {(𝑢, 𝑢′) | #(𝑢, 𝑢′) ≤ 𝑛}, we have (𝑢, 𝑢′) ∈ 𝑓 #(𝑢,𝑢′)(A,∅).

Let (𝑣, 𝑣′) ∈ Abe such that #(𝑣, 𝑣′) = 𝑛 + 1.

i. Suppose (𝑣, 𝑣′) ∈ A0. Define

𝐷𝑣,𝑣′ := {(𝑢, 𝑢′) ∈ A | 𝑢 ∉ 𝐶(𝑣) or 𝑢′ ∉ 𝐶(𝑣′), there exists

(𝑤, 𝑤′) ∈ A0 ↾𝐶(𝑣)×𝐶(𝑣′) such that 𝐸𝑤𝑢 and 𝐸′𝑤′𝑢′}.

By the definition of #, #(𝑢, 𝑢′) ≤ 𝑛 for all (𝑢, 𝑢′) ∈ 𝐷𝑣,𝑣′ . By the induction hypothesis,

(𝑢, 𝑢′) ∈ 𝑓 #(𝑢,𝑢′)(A0 ,∅) for all (𝑢, 𝑢′) ∈ 𝐷𝑣,𝑣′ . Recalling basic knowledge of fixpoint theory,

we know that 𝑓 𝑚(A0 ,∅) ⊆ 𝑓 𝑘(A0 ,∅) for any 𝑚 ≤ 𝑘. This means that 𝐷𝑣,𝑣′ ⊆ 𝑓 𝑛(A0 ,∅).
Since (A𝑖)𝑖∈𝜔 is a bisimulation in the sense of Definition 4, it follows from condition 6 of

Definition 4 that for all (𝑤, 𝑤′) ∈ A0 ↾𝐶(𝑣)×𝐶(𝑣′), it holds that

(-) for any 𝑢 ∈ 𝑉\𝐶(𝑣) such that 𝐸𝑤𝑢, there is 𝑢′ ∈ 𝑉′ such that (𝑢, 𝑢′) ∈ Aand 𝐸′𝑤′𝑢′, and

(-) for any 𝑢′ ∈ 𝑉′\𝐶(𝑣′) such that 𝐸′𝑤′𝑢′, there is 𝑢 ∈ 𝑉 such that (𝑢, 𝑢′) ∈ Aand 𝐸𝑤𝑢.

From the definition of 𝐷𝑣,𝑣′ , we can deduce that for all (𝑤, 𝑤′) ∈ A0 ↾𝐶(𝑣)×𝐶(𝑣′), it holds that

(-) for any 𝑢 ∈ 𝑉\𝐶(𝑣) such that 𝐸𝑤𝑢, there is 𝑢′ ∈ 𝑉′ such that (𝑢, 𝑢′) ∈ 𝐷𝑣,𝑣′ and 𝐸′𝑤′𝑢′,
and

(-) for any 𝑢′ ∈ 𝑉′\𝐶(𝑣′) such that 𝐸′𝑤′𝑢′, there is 𝑢 ∈ 𝑉 such that (𝑢, 𝑢′) ∈ 𝐷𝑣,𝑣′ and 𝐸𝑤𝑢.

Note that we have shown that 𝐷𝑣,𝑣′ ⊆ 𝑓 𝑛(A0 ,∅). Given the assumption that (𝑣, 𝑣′) ∈ A0 we

have the following facts.

* (𝑣, 𝑣′) ∈ A0, and

* for all (𝑤, 𝑤′) ∈ 𝐵 ↾𝐶(𝑣)×𝐶(𝑣′)

48 5 Definition 4: Properties and Bisimilarity Game

(–) for any 𝑢 ∈ 𝑉\𝐶(𝑣) such that 𝐸𝑤𝑢, there is 𝑢′ ∈ 𝑉′ such that (𝑢, 𝑢′) ∈ 𝑓 𝑛(A0 ,∅) and

𝐸′𝑤′𝑢′, and

(–) for any 𝑢′ ∈ 𝑉′\𝐶(𝑣′) such that 𝐸′𝑤′𝑢′, there is 𝑢 ∈ 𝑉 such that (𝑢, 𝑢′) ∈ 𝑓 𝑛(A0 ,∅)
and 𝐸𝑤𝑢.

By the definition of 𝜆𝐴. 𝑓 (A0 , 𝐴), this means that

(𝑣, 𝑣′) ∈ 𝑓 (𝑛+1)=#(𝑣,𝑣′)(A0 ,∅).

ii. Suppose (𝑤, 𝑤′) ∈ A𝑖+1\A0 for some 𝑖 ∈ 𝜔. Define

𝐷𝑣,𝑣′ := {(𝑢, 𝑢′) | 𝐸𝑣𝑢, 𝐸′𝑣′𝑢′, (𝑢, 𝑢′) ∈ A𝑖}

By the definition of #, #(𝑢, 𝑢′) ≤ 𝑛 for all (𝑢, 𝑢′) ∈ 𝐷𝑣,𝑣′ . By the induction hypothesis,

(𝑢, 𝑢′) ∈ 𝑓 #(𝑢,𝑢′)(A0 ,∅) for all (𝑢, 𝑢′) ∈ 𝐷𝑣,𝑣′ . Recalling basic knowledge of fixpoint theory,

we know that 𝑓 𝑚(A0 ,∅) ⊆ 𝑓 𝑘(A0 ,∅) for any 𝑚 ≤ 𝑘. This means that 𝐷𝑣,𝑣′ ⊆ 𝑓 𝑛(A0 ,∅).

Since (A𝑖)𝑖∈𝜔 is a bisimulation in the sense of Definition 4, it follows from condition 5 of

Definition 4 that for all (𝑤, 𝑤′) ∈ A0 ↾𝐶(𝑣)×𝐶(𝑣′), it holds that

* for all 𝑢 ∈ 𝑉 such that 𝐸𝑣𝑢, there exists 𝑢′ ∈ 𝑉′ such that 𝐸′𝑣′𝑢′ and (𝑢, 𝑢′) ∈ A𝑖 ;
* for all 𝑢′ ∈ 𝑉′ such that 𝐸′𝑣′𝑢′, there exists 𝑢 ∈ 𝑉 such that 𝐸𝑣𝑢 and (𝑢, 𝑢′) ∈ A𝑖 ;

From the definition of 𝐷𝑣,𝑣′ , we can deduce that for all (𝑤, 𝑤′) ∈ A0 ↾𝐶(𝑣)×𝐶(𝑣′), it holds that

* for all 𝑢 ∈ 𝑉 such that 𝐸𝑣𝑢, there exists 𝑢′ ∈ 𝑉′ such that 𝐸′𝑣′𝑢′ and (𝑢, 𝑢′) ∈ 𝐷𝑣,𝑣′ ;

* for all 𝑢′ ∈ 𝑉′ such that 𝐸′𝑣′𝑢′, there exists 𝑢 ∈ 𝑉 such that 𝐸𝑣𝑢 and (𝑢, 𝑢′) ∈ 𝐷𝑣,𝑣′ ;

Note that we have shown that 𝐷𝑣,𝑣′ ⊆ 𝑓 𝑛(A0 ,∅). Given the assumption that (𝑣, 𝑣′) ∈ Awe

have the following facts.

* 𝐿(𝑣) = 𝐿(𝑣′), and

* for all 𝑢 ∈ 𝑉 such that 𝐸𝑣𝑢 there is 𝑢′ ∈ 𝑉′ such that 𝐸′𝑣′𝑢′ and (𝑢, 𝑢′) ∈ 𝑓 𝑛(A0 ,∅), and

* for all 𝑢′ ∈ 𝑉′ such that 𝐸′𝑣′𝑢′ there is 𝑢 ∈ 𝑉 such that 𝐸𝑣𝑢 and (𝑢, 𝑢′) ∈ 𝑓 𝑛(A0 ,∅),
By the definition of 𝜆𝐴. 𝑓 (A0 , 𝐴), this means that

(𝑣, 𝑣′) ∈ 𝑓 (𝑛+1)=#(𝑣,𝑣′)(A0 ,∅).

Therefore, A⊆ LFP.𝜆𝐴. 𝑓 (A0 , 𝐴).

2. A ⊇ LFP.𝜆𝐴. 𝑓 (A0 , 𝐴). It suffices to show that A is a postfixpoint, i.e., A ⊇ 𝑓 (A0 ,A). Suppose the

contrary. Then there exists (𝑣, 𝑣′) ∈ 𝑓 (A0 ,A)\A. Since A0 ⊆ A, it follows that condition 1 of Definition

4.11 is true for (𝑣, 𝑣′), that is,

a) 𝐿(𝑣) = 𝐿(𝑣′), and

b) for all 𝑢 ∈ 𝑉 such that 𝐸𝑣𝑢 there is 𝑢′ ∈ 𝑉′ such that 𝐸′𝑣′𝑢′ and (𝑢, 𝑢′) ∈ A, and

c) for all 𝑢′ ∈ 𝑉′ such that 𝐸′𝑣′𝑢′ there is 𝑢 ∈ 𝑉 such that 𝐸𝑣𝑢 and (𝑢, 𝑢′) ∈ A.

Let

𝑛 := max{𝑟(𝑢, 𝑢′) | 𝐸𝑣𝑢, 𝐸′𝑣′𝑢′, (𝑢, 𝑢′) ∈ A}.

where 𝑟 is the rank in Definition 5.3.

Define (𝐴𝑖)𝑖∈𝜔 as follows:

𝐴𝑖 :=

{
A𝑖 𝑖 ≤ 𝑛
A𝑖 ∪ {(𝑣, 𝑣′)} 𝑖 > 𝑛

It is easy to see that (𝐴𝑖)𝑖∈𝜔 is a bisimulation that is strictly larger than (A𝑖)𝑖∈𝜔, which contradicts that

fact that the latter is the largest bisimulation between 𝔾 and 𝔾′. Thus, A ⊇ 𝑓 (A0 ,A), and therefore,

A⊇ LFP.𝜆𝐴. 𝑓 (A0 , 𝐴).

Bisimilarity Game 49

This fixpoint account gives us the following decision procedure for bisimilarity. Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) and

𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
) be two parity formulas. Let𝑈𝐶 be the set of non-degenerate clusters in 𝔾 and𝑈𝐶′

the set of non-degenerate clusters in 𝔾′.

1. For each 𝐶 ∈ 𝑈𝐶, 𝐶′ ∈ 𝑈𝐶′, calculate the biggest base bisimulation over 𝐶 × 𝐶′, 𝐵𝐶,𝐶′ . This can

be done by a width-first search in the rooted search tree T = (𝑇, 𝑅, 𝑟) where 𝑇 = P(𝐶 × 𝐶′),
𝑅[𝑆] = {𝑆′ ⊆ 𝑆 | 𝑆′ = 𝑆\{𝑠}, 𝑠 ∈ 𝑆} and 𝑟 = 𝐶 × 𝐶′, the root of the tree.

2. Inductively calculate 𝑓 𝑛(𝐵,∅), where 𝐵 =
⋃

𝐶∈𝑈𝐶,𝐶′∈𝑈𝐶′
𝐵𝐶,𝐶′ , until we reach a fixpoint.

Bisimilarity Game

In this section, we provide a two-player game, parameterized by two parity formulas, in the form of parity

games in which ∃ has a winning strategy if and only if the two parity formulas are bisimilar in the sense of

Definition 4.

Bisimilarity Game: Preliminaries

Before we delve into the details of the bisimilarity game, we introduce some concepts and their properties,

which will help us simplify the definition of the game and the proofs of its properties. First, we introduce the

following concepts from relation lifting.

Definition 5.8 Let 𝑆′ and 𝑇′ be two sets. Let 𝑅 ⊆ 𝑆′ × 𝑇′.

• Define
→
P𝑅 to be the collection of (𝑆, 𝑇) ⊆ 𝑆′ × 𝑇′ such that, 𝑆 ⊆ 𝑆′, 𝑇 ⊆ 𝑇′ and, for any 𝑥 ∈ 𝑆, there is

𝑦 ∈ 𝑇 such that (𝑥, 𝑦) ∈ 𝑅.
• Define

←
P𝑅 to be the collection of (𝑆, 𝑇) ⊆ 𝑆′ × 𝑇′ such that, 𝑆 ⊆ 𝑆′, 𝑇 ⊆ 𝑇′ and, for any 𝑦 ∈ 𝑇, there is

𝑥 ∈ 𝑆 such that (𝑥, 𝑦) ∈ 𝑅.
• Let P𝑅 denote (

→
P𝑅) ∩ (

←
P𝑅).

Following are some properties of

←
P,

→
P and P. These properties are easy to verify, so we present them here

without proof.

Proposition 5.7 Let 𝑆′ and 𝑇′ be two sets. Let 𝑆, 𝑆1 , 𝑆2 ⊆ 𝑆′, 𝑇, 𝑇1 , 𝑇2 ⊆ 𝑇′ and 𝑅, 𝑅1 , 𝑅2 ⊆ 𝑆′ × 𝑇′.

1. If (𝑆, 𝑇1) ∈
→
P𝑅 and 𝑇1 ⊆ 𝑇2, then (𝑆, 𝑇2) ∈

→
P𝑅.

2. If (𝑆1 , 𝑇) ∈
←
P𝑅 and 𝑆1 ⊆ 𝑆2, then (𝑆2 , 𝑇) ∈

←
P𝑅.

3. If (𝑆1 , 𝑇) ∈
→
P𝑅1 and (𝑆2 , 𝑇) ∈

→
P𝑅2, then (𝑆1 ∪ 𝑆2 , 𝑇) ∈

→
P(𝑅1 ∪ 𝑅2).

4. If (𝑆, 𝑇1) ∈
←
P𝑅1 and (𝑆, 𝑇2) ∈

←
P𝑅2, then (𝑆, 𝑇1 ∪ 𝑇2) ∈

←
P(𝑅1 ∪ 𝑅2).

5. If (𝑆, 𝑇) ∈
→
P𝑅1 and 𝑅1 ⊆ 𝑅2, then (𝑆, 𝑇) ∈

→
P𝑅2.

6. If (𝑆, 𝑇) ∈
←
P𝑅1 and 𝑅1 ⊆ 𝑅2, then (𝑆, 𝑇) ∈

←
P𝑅2.

7. P is monotone, that is, given 𝑅1 ⊆ 𝑅2 ⊆ 𝑆′
1
× 𝑆′

2
, if (𝑆1 , 𝑆2) ∈ P𝑅1, then (𝑆1 , 𝑆2) ∈ P𝑅2.

Let 𝑃′ be another set. Let 𝑃 ⊆ 𝑃′ and 𝑄 ⊆ 𝑇′ × 𝑃′.

8. If (𝑆, 𝑇) ∈
←
P𝑅 and (𝑇, 𝑃) ∈

←
P𝑄, then (𝑆, 𝑃) ∈

←
P(𝑅;𝑄).

9. If (𝑆, 𝑇) ∈
→
P𝑅 and (𝑇, 𝑃) ∈

→
P𝑄, then (𝑆, 𝑃) ∈

→
P(𝑅;𝑄).

10. If (𝑆, 𝑇) ∈ P𝑅 and (𝑇, 𝑃) ∈ P𝑄, then (𝑆, 𝑃) ∈ P(𝑅;𝑄).

Now, we define the following three kinds of partial bisimulations.

50 5 Definition 4: Properties and Bisimilarity Game

Definition 5.9 (Local Bisimulation) Let𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) and𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
) be two parity formulas.

Let 𝑣 ∈ 𝑉 and 𝑣′ ∈ 𝑉′. Let LocB(𝑣, 𝑣′) denote the collection of 𝑅 ⊆ 𝑉 ×𝑉′ such that (𝐸[𝑣], 𝐸′[𝑣′]) ∈ P𝑅. We
call elements of LocB(𝑣, 𝑣′) local bisimulations at (𝑣, 𝑣′).

Definition 5.10 (Base Bisimulation) Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
) be two parity

formulas. Let 𝐶 and 𝐶′ be non-degenerate clusters in 𝔾 and 𝔾′, respectively. Let BaseB(C,C′) be the collection of
𝐵 ⊆ 𝐶 × 𝐶′ such that, for all (𝑢, 𝑢′) ∈ 𝐵,

1. 𝐿(𝑢) = 𝐿′(𝑢′);
2. 𝑢 ∈ Dom(Ω) if and only if 𝑢′ ∈ Dom(Ω′);
3. if 𝑢 ∈ Dom(Ω) and 𝑢′ ∈ Dom(Ω′), then Ω(𝑢) ≡2 Ω′(𝑢′);
4. (𝐸[𝑢] ∩ 𝐶, 𝐸′[𝑢′] ∩ 𝐶′) ∈ P𝐵;

and that, for all (𝑢, 𝑢′), (𝑤, 𝑤′) ∈ 𝐵,

5. if Ω(𝑢) .2 Ω(𝑤), then Ω(𝑢) < Ω(𝑤) if and only if Ω′(𝑢′) < Ω′(𝑤′).

We call elements of BaseB(𝐶, 𝐶′) base bisimulations at (𝐶, 𝐶′).

Definition 5.11 (Exit Bisimulation) Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
) be two parity

formulas. Let 𝐵 ∈ BaseB(𝐶, 𝐶′) for some non-degenerate cluster 𝐶 and 𝐶′ in 𝔾 and 𝔾′, respectively. Let ExitB(𝐵)
denote the collection of 𝑅 ⊆ 𝑉 × 𝑉′ such that for all (𝑢, 𝑢′) ∈ 𝐵, it holds that (𝐸[𝑢]\𝐶, 𝐸′[𝑢′]) ∈

→
P𝑅 and

(𝐸[𝑢], 𝐸′[𝑢′]\𝐶) ∈
←
P𝑅. We call elements of ExitB(𝐵) exit bisimulations at 𝐵.

The following propositions demonstrate some useful properties of these partial bisimulations in terms of

how they combine with, or convert to, each other.

Proposition 5.8 Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼), 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′𝐼), and 𝔾′′ = (𝑉′′, 𝐸′′, 𝐿′′,Ω′′, 𝑣′′
𝐼
) be three

parity formulas. Let 𝑣 ∈ 𝑉 , 𝑣′ ∈ 𝑉′ and 𝑣′′ ∈ 𝑉′′. Let 𝑅1 ∈ LocB(𝑣, 𝑣′) and 𝑅2 ∈ LocB(𝑣′, 𝑣′′). Then
𝑅1;𝑅2 ∈ LocB(𝑣, 𝑣′′)

Proof. Since 𝑅1 ∈ LocB(𝑣, 𝑣′) and 𝑅2 ∈ LocB(𝑣′, 𝑣′′), it follows from the definition of local bisimulations that

(𝐸[𝑣], 𝐸′[𝑣′]) ∈ P𝑅1 and (𝐸[𝑣′], 𝐸′[𝑣′′]) ∈ P𝑅2. By 10. of Proposition 5.8, this means that (𝐸[𝑣], 𝐸′′[𝑣′′]) ∈
P(𝑅1;𝑅2), which is precisely the definition for 𝑅1;𝑅2 ∈ LocB(𝑣, 𝑣′′).

Proposition 5.9 Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼), and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
) be two parity formulas. Let 𝐶 and 𝐶′

be non-degenerate clusters in 𝔾 and 𝔾′, respectively. Let 𝐵 ∈ BaseB(𝐶, 𝐶′). Then for all (𝑢, 𝑢′) ∈ 𝐵, we have
𝐵 ∈ BaseB(𝐶(𝑢), 𝐶(𝑢′)).

Proof. Fix (𝑢, 𝑢′) ∈ 𝐵. By the definition of base bisimulations, 𝐵 ⊆ 𝐶 × 𝐶. This means that 𝑢]𝑖𝑛𝐶 and 𝑢′ ∈ 𝐶′,
or equivalently, 𝐶 = 𝐶(𝑢) and 𝐶(𝑢′). Therefore, 𝐵 ∈ BaseB(𝐶(𝑢), 𝐶(𝑢′)).

Proposition 5.10 Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼), and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
) be two parity formulas. Let 𝐶 and 𝐶′ be

non-degenerate clusters in 𝔾 and 𝔾′, respectively. Let 𝐵 ∈ BaseB(𝐶, 𝐶′) and 𝑅 ∈ ExitB(𝐵). Then for all (𝑢, 𝑢′) ∈ 𝐵,
we have (𝑅 ∪ 𝐵) ∈ LocB(𝑢, 𝑢′).

Proof. Since (𝑢, 𝑢′) ∈ 𝐵, it follows from Prop. 5.9 that

(𝐸[𝑢] ∩ 𝐶(𝑢), 𝐸′[𝑢′] ∩ 𝐶(𝑢′)) ∈ P𝐵. (5.1)

Given the definition of exit bisimulations, we have

(𝐸[𝑢]\𝐶(𝑢), 𝐸′[𝑢′]) ∈
→
P𝑅 (5.2)

Bisimilarity Game 51

and

(𝐸[𝑢], 𝐸′[𝑢′]\𝐶(𝑢′)) ∈
←
P𝑅. (5.3)

Combining (5.1) with the definition of P, we have

(𝐸[𝑢] ∩ 𝐶(𝑢), 𝐸′[𝑢′] ∩ 𝐶(𝑢′)) ∈
→
P𝐵 (5.4)

and

(𝐸[𝑢] ∩ 𝐶(𝑢), 𝐸′[𝑢′] ∩ 𝐶(𝑢′)) ∈
←
P𝐵. (5.5)

Combining (5.4) and 1. from Prop. 5.7, we have

(𝐸[𝑢] ∩ 𝐶(𝑢), 𝐸′[𝑢′]) ∈
→
P𝐵. (5.6)

Combining (5.5) and 2. from Prop. 5.7, we have

(𝐸[𝑢], 𝐸′[𝑢′] ∩ 𝐶(𝑢′)) ∈
←
P𝐵. (5.7)

Combining (5.2), (5.6) and 3. from Prop. 5.7, we have

(𝐸[𝑢], 𝐸′[𝑢′]) ∈
→
P(𝑅 ∪ 𝐵). (5.8)

Combining (5.3), (5.7) and 4. from Prop. 5.7, we have

(𝐸[𝑢], 𝐸′[𝑢′]) ∈
←
P(𝑅 ∪ 𝐵). (5.9)

Combining (5.8), (5.9) and the definition of P, we

have

(𝐸[𝑢], 𝐸′[𝑢′]) ∈ P(𝑅 ∪ 𝐵), (5.10)

which is precisely the definition for (𝑅 ∪ 𝐵) ∈
LocB(𝑢, 𝑢′).

Proposition 5.11 Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼), 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′𝐼), and 𝔾′′ = (𝑉′′, 𝐸′′, 𝐿′′,Ω′′, 𝑣′′
𝐼
) be three

parity formulas. Let 𝐶, 𝐶′ and 𝐶′′ be non-degenerate clusters in 𝔾, 𝔾′ and 𝔾′′, respectively. Let 𝐵1 ∈ BaseB(𝐶, 𝐶′)
and 𝐵2 ∈ BaseB(𝐶′, 𝐶′′). Then 𝐵1; 𝐵2 ∈ BaseB(𝐶, 𝐶′′)

Proof. We prove that 𝐵1; 𝐵2 ∈ BaseB(𝐶, 𝐶′′) by show that 𝐵1; 𝐵2 satisfies all the conditions from the definition

of base bisimulations. Fix (𝑢, 𝑢′), (𝑣, 𝑣′) ∈ 𝐵1, (𝑢′, 𝑢′′), (𝑣′, 𝑣′′) ∈ 𝐵2. In this proof, when we mention the

’condition x’ we mean the condition x of the definition of base bisimulations unless it is explicitly stated

otherwise.

1. Note that 𝐿(𝑢) = 𝐿′(𝑢′) and 𝐿′(𝑢′) = 𝐿′′(𝑢′′). This means that (𝐿(𝑢) = 𝐿′′(𝑢′′).

2. Note that 𝑢 ∈ Dom(Ω) if and only if 𝑢′ ∈ Dom(Ω′) if and only if 𝑢′′ ∈ Dom(Ω′′).

3. Suppose 𝑢 ∈ Dom(Ω) and 𝑢′′ ∈ Dom(Ω′′). Since 𝐵1 is a base bisimulation, it follows from condition 2

that 𝑢′ ∈ Dom(Ω′). By condition 3, Ω(𝑢) ≡2 Ω′(𝑢′) ≡2 Ω′′(𝑢′′).

4. By condition 4, we have (𝐸[𝑢] ∩ 𝐶, 𝐸′[𝑢′] ∩ 𝐶′) ∈ P𝐵1 and (𝐸′[𝑢′] ∩ 𝐶′, 𝐸′[𝑢′′] ∩ 𝐶′′) ∈ P𝐵2. By 10.

from Proposition 5.7, (𝐸[𝑢] ∩ 𝐶, 𝐸′′[𝑢′′] ∩ 𝐶′′) ∈ P(𝐵1; 𝐵2).

5. We show that if Ω(𝑢) < Ω(𝑣), then Ω′′(𝑢′′) < Ω′′(𝑣′′). The argument for Ω′′(𝑢′′) < Ω′′(𝑣′′) implying

Ω(𝑢) < Ω(𝑣) is complete symmetric. Let Ω(𝑢) .2 Ω(𝑣) and Ω(𝑢) < Ω(𝑣). To argue towards contra-

diction, suppose Ω′′(𝑢′′) > Ω′′(𝑣′′). Without loss of generality, assume Ω(𝑢) = 𝑚𝑖𝑛({Ω(𝑦) | 𝑦 ∈ 𝐷})
where

𝐷 := {𝑦 ∈ 𝐶 | ∃ 𝑥 ∈ 𝐶, 𝑦′′, 𝑥′′ ∈ 𝐶′′ s.t. (𝑦, 𝑦′′), (𝑥, 𝑥′′) ∈ 𝐵1; 𝐵2 ,Ω(𝑦) < Ω(𝑥),Ω′′(𝑦′′) > Ω′′(𝑥′′)}).

• Since 𝑢′′ ∈ 𝐶′′, it follows from the definition of clusters that there exists a path 𝑢′′→𝐸′′ 𝑢
′′
1
→𝐸′′

...→𝐸′′ 𝑢
′′
𝑛 = 𝑣′′ such that 𝑢′′

𝑖
∈ 𝐶′′ for all 1 ≤ 𝑖 ≤ 𝑛. Since (𝑢′, 𝑢′′) ∈ 𝐵2, it follows from condition

4 that there exist a path 𝑢′ →𝐸′ 𝑢
′
1
→𝐸′ ... →𝐸′ 𝑢

′
𝑛 such that 𝑢′

𝑖
∈ 𝐶′ and (𝑢′

𝑖
, 𝑢′′

𝑖
) ∈ 𝐵2 for all

1 ≤ 𝑖 ≤ 𝑛. In particular, 𝑢′𝑛 ∈ 𝐶′, 𝑣′′ ∈ 𝐶′′ and (𝑢′𝑛 , 𝑣′′) ∈ 𝐵2. By condition 5, Ω(𝑢′) > Ω(𝑢′𝑛). Since

(𝑢, 𝑢′) ∈ 𝐵1, it follows from condition 4 that there exists a path 𝑢 →𝐸 𝑢1 →𝐸 ...→𝐸 𝑢𝑛 such that

𝑢𝑖 ∈ 𝐶, and (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐵1 for all 1 ≤ 𝑖 ≤ 𝑛. In particular, 𝑢𝑛 ∈ 𝐶, 𝑢′𝑛 ∈ 𝐶′ and (𝑢𝑛 , 𝑢′𝑛) ∈ 𝐵1. By

condition 5, Ω(𝑢) > Ω(𝑢𝑛). Since (𝑢𝑛 , 𝑢′𝑛) ∈ 𝐵1 and (𝑢′𝑛 , 𝑣′′) ∈ 𝐵2, it follows that (𝑢𝑛 , 𝑣′′) ∈ 𝐵1; 𝐵2.

52 5 Definition 4: Properties and Bisimilarity Game

• Since 𝑣 ∈ 𝐶 it follows from the definition of clusters that there exists a path 𝑣 →𝐸 𝑣1 →𝐸′ ...→𝐸

𝑣𝑚 = 𝑢 such that 𝑣𝑖 ∈ 𝐶 for all 1 ≤ 𝑖 ≤ 𝑛. Since and (𝑣, 𝑣′) ∈ 𝐵1, it follows from condition 4

that there exists a path 𝑣′ →𝐸′ 𝑣
′
1
→𝐸′ ... →𝐸′ 𝑣

′
𝑚 such that 𝑣′

𝑖
∈ 𝐶′ and (𝑣𝑖 , 𝑣′𝑖) ∈ 𝐵1 for all

1 ≤ 𝑖 ≤ 𝑚. In particular, 𝑢 ∈ 𝐶, 𝑣′𝑚 ∈ 𝐶′ and (𝑢, 𝑣′𝑚) ∈ 𝐵1. Since 𝐵1 is a bisimulation, it follows

that Ω(𝑣′𝑚) < Ω(𝑣′). Since (𝑣′, 𝑣′′) ∈ 𝐵2, it follows from condition 4 that there exists a path

𝑣′′→𝐸′′ 𝑣
′′
1
→𝐸′′ ...→𝐸′′ 𝑣

′′
𝑚 such that 𝑣′′

𝑖
∈ 𝐶′′, and (𝑣′

𝑖
, 𝑣′′

𝑖
) ∈ 𝐵2 for all 1 ≤ 𝑖 ≤ 𝑚. In particular,

𝑣′′𝑚 ∈ 𝐶′′, 𝑣′𝑚 ∈ 𝐶′ and (𝑣′𝑚 , 𝑣′′𝑚) ∈ 𝐵2. By condition 5, Ω(𝑣′′𝑚) < Ω(𝑣′′). Since (𝑢, 𝑣′𝑚) ∈ 𝐵1 and

(𝑣′𝑚 , 𝑣′′𝑚) ∈ 𝐵2, it follows that (𝑢, 𝑣′′𝑚) ∈ 𝐵1; 𝐵2.

• In the two bullet points above we have shown thatΩ(𝑢) > Ω(𝑢𝑛), (𝑢𝑛 , 𝑣′′) ∈ 𝐵1; 𝐵2,Ω(𝑣′′𝑚) < Ω(𝑣′′)
and (𝑢, 𝑣′′𝑚) ∈ 𝐵1; 𝐵2. This means that 𝑢𝑛 ∈ 𝐷. However, Ω(𝑢𝑛) < Ω(𝑢), which contradicts our

assumption that 𝑢 has the smallest priority in 𝐷 (red for 𝐵1 and blue for 𝐵2 in the demonstration

below).

𝑢

𝑣

𝑢′′

𝑣′′
𝑢𝑛

𝑣′′𝑚
><

< >

Thus, Ω′′(𝑢′′) ≯ Ω′′(𝑣′′). Since Ω′′(𝑢′) ≡2 Ω(𝑢) .2 Ω(𝑣) ≡2 Ω′′(𝑣′′), it follows that Ω′′(𝑢′′) ≠
Ω′′(𝑣′′). This means that Ω′′(𝑢′′) < Ω′′(𝑣′′).

To sum up, we have shown that 𝐵1; 𝐵2 ∈ BaseB(𝐶, 𝐶′′).

Proposition 5.12 Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼), 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′𝐼), and 𝔾′ = (𝑉′′, 𝐸′′, 𝐿′′,Ω′′, 𝑣′′
𝐼
) be three

parity formulas. Let 𝐶, 𝐶′ and 𝐶′′ be non-degenerate clusters in 𝔾, 𝔾′ and 𝔾′′, respectively. Let 𝐵1 ∈ BaseB(𝐶, 𝐶′)
and 𝐵2 ∈ BaseB(𝐶′, 𝐶′′). Let 𝑅1 ∈ ExitB(𝐵1) and 𝑅2 ∈ ExitB(𝐵2). Then(

𝑅1; (𝐵2 ∪ 𝑅2)
)
∪
(
(𝐵1 ∪ 𝑅1);𝑅2

)
∈ ExitB(𝐵1; 𝐵2).

Proof. Let (𝑢, 𝑢′) ∈ 𝐵1 and (𝑢′, 𝑢′′) ∈ 𝐵2. From the

definition of exit bisimulations, we have

(𝐸[𝑢]\𝐶, 𝐸′[𝑢′]) ∈
→
P𝑅1 (5.11)

and

(𝐸′[𝑢′], 𝐸′′[𝑢′′]\𝐶) ∈
←
P𝑅2 (5.12)

By the proof of Proposition 5.10, we have

(𝐸[𝑢], 𝐸′[𝑢′]) ∈ P(𝐵1 ∪ 𝑅1),

which implies

(𝐸[𝑢], 𝐸′[𝑢′]) ∈
←
P(𝐵1 ∪ 𝑅1), (5.13)

and

(𝐸′[𝑢′], 𝐸′′[𝑢′′]) ∈ P(𝐵2 ∪ 𝑅2),

which implies

(𝐸′[𝑢′], 𝐸′′[𝑢′′]) ∈
→
P(𝐵2 ∪ 𝑅2), (5.14)

Combining (5.11), (5.14) and 9. from Prop. 5.7, we have

(𝐸[𝑢]\𝐶, 𝐸′′[𝑢′′]) ∈
→
P(𝑅1; (𝐵2 ∪ 𝑅2)) (5.15)

Combining (5.12), (5.13) and 8. from Prop. 5.7, we

have

(𝐸[𝑢], 𝐸′′[𝑢′′]\𝐶) ∈
←
P((𝐵1 ∪ 𝑅1);𝑅2) (5.16)

Combining (5.15) and 5. from Prop. 5.7, we have

(𝐸[𝑢], 𝐸′′[𝑢′′]\𝐶) ∈
←
P
(
(𝑅1; (𝐵2 ∪ 𝑅2)) ∪ ((𝐵1 ∪ 𝑅1);𝑅2)

)
. (5.17)

Bisimilarity Game 53

Combining (5.16) and 6. from Prop. 5.7, we have

(𝐸[𝑢]\𝐶, 𝐸′′[𝑢′′]) ∈
→
P
(
(𝑅1; (𝐵2 ∪ 𝑅2)) ∪ ((𝐵1 ∪ 𝑅1);𝑅2)

)
(5.18)

Note that (5.17) and (5.18) is precisely the definition for(
𝑅1; (𝐵2 ∪ 𝑅2)

)
∪
(
(𝐵1 ∪ 𝑅1);𝑅2

)
∈ ExitB(𝐵1; 𝐵2).

Bisimilarity Game: Definition

We now come to the definition of the bisimilarity game.

Definition 5.12 (Bisimilarity Game) Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
) be two parity

formulas. The bisimilarity game B(𝔾,𝔾′) is a parity game played by two players: ∃ (0) and ∀ (1). Positions and
possible moves of each player are shown in Table 5.1. The game starts from position (𝑣𝐼 , 𝑣′𝐼). A player loses if it is
their turn to move and the set of admissible moves is empty. Infinite matches are always won by ∀.

Table 5.1: Positions and possible moves of each player in B(𝔾,𝔾′)

Position Player Admissible moves

(𝑣, 𝑣′) ∈ 𝑉 ×𝑉′

𝐿(𝑣) ≠ 𝐿′(𝑣′) ∃ ∅

𝐿(𝑣) = 𝐿′(𝑣′)

𝐶(𝑣) or 𝐶(𝑣′)
degenerate

∃ {(∅, 𝑅) | 𝑅 ∈ LocB(𝑣, 𝑣′)}

𝐶(𝑣) and 𝐶(𝑣′)
non-degenerate

∃

{(∅, 𝑅) | 𝑅 ∈ LocB(𝑣, 𝑣′)}⋃
{(𝐵, 𝑅) | (𝑣, 𝑣′) ∈ 𝐵 ∈ BaseB(𝐶(𝑣), 𝐶(𝑣′)),

𝑅 ∈ ExitB(𝐵)}
(𝐵, 𝑅), 𝐵, 𝑅 ⊆ 𝑉 ×𝑉′ ∀ 𝑅

To form an intuitive understanding of this definition, recall the definition for local bisimulations and the

bisimilarity game for Kripke models (c.f. Def. 3.2):

Definition 5.13 (Local Bisimulation) Let 𝕊 = ⟨𝑆,𝑉, 𝑅⟩ and 𝕊′⟨𝑆′, 𝑉′, 𝑅′⟩ be two Kripke models. Let 𝑠 ∈ 𝑉
and 𝑣′ ∈ 𝑉′. Let LocB𝐾(𝑠, 𝑠′) denote the collection of 𝑍 ⊆ 𝑆 × 𝑆′ such that (𝑅[𝑠], 𝑅′[𝑠′]) ∈ P𝑍. We call elements
of LocB𝐾(𝑠, 𝑠′) local bisimulations at (𝑠, 𝑠′).

Definition 5.14 Let𝕊 = ⟨𝑆,𝑉, 𝑅⟩ and𝕊′⟨𝑆′, 𝑉′, 𝑅′⟩ be two Kripke models. The bisimilarity gameB((𝕊, 𝑠𝐼), (𝕊′, 𝑠′𝐼))
is a parity game played by two players: ∃ and ∀. Positions and possible moves of each player are shown in Table 5.2.
The game starts from position (𝑠𝐼 , 𝑠′𝐼). A player loses if it is their turn to move and the set of admissible moves is
empty. Infinite matches are always won by ∃.

Table 5.2: Positions and possible moves of each player in B(𝕊,𝕊′)

Position Player Admissible moves

(𝑠, 𝑠′) ∈ 𝑆 × 𝑆′ 𝑉(𝑠) ≠ 𝑉′(𝑠′) ∃ ∅
𝑉(𝑠) = 𝑉′(𝑠′) ∃ {𝑍 ⊆ 𝑆 × 𝑆′ | 𝑍 ∈ LocB𝐾(𝑠, 𝑠′)}

𝑍 ⊆ 𝑆 × 𝑆′ ∀ 𝑍

One can notice some immediate similarities between the two definitions for bisimulation. To start with,

both games process in an alternatioin between ∃’s turns and ∀’s turns, with similar admissible moves for

54 5 Definition 4: Properties and Bisimilarity Game

each player: ∃ provides a partial bisimulation at each of her turn, and ∀ pick one element from that partial

bisimulation. Also, local bismulations feature in both games as admissible moves for ∃. Furthermore, at

a position that is a pair whose labeling/valuation does not complete match, ∃ immediately loses. These

similarities reflect the shared idea behind the two definitions, which is to depict equivalence in global

behaviors by a collection of equivalence in local behaviors.

However, the differences between these two definitions could help us understand Def. 5.12 even better.

First, note that infinite games are always won by ∀ in Def. 5.12 while they are always won by ∃ in Def. 5.14.

Second, sometimes it is allowed for ∃ to propose a base bisimulation together with a exit bismulation. These

differences illustrate the dissimilar approaches of handling behaviors of infinite nature. Def. 5.14 is a classic

example of defining bisimulation by coinduction, and as we have mentioned in the previous chapter, the

resulting bisimilarity relation is a greatest fixpoint. This is in syn with the fact that infinite matches are won

by ∃.

In contrast, Bisimilarity in the sense of Definition 4 is defined by induction with base bisimulations, which

are defined by neither induction nor coinduction as the base case. As we have mentioned in the previous

section, this results in the bisimilarity relation in the sense of Definition 4 being a least fixpoint. This means

that from any two bisimilar nodes, ∃ can always force the token to a position that is in a base bisimulation or

a dead end within finitely many steps. In the former case, ∃ can use an exit bisimulation exit at least one of

the two clusters that the base bisimulation is based on. This can only happen finitely many times given the

finite partial order among clusters in a parity formula that we will establish in the next section. In the latter

case, ∀ loses immediately for being stuck. This is why infinite matches are always won by ∀ in Def. 5.12.

Bisimilarity Game: Strategy Graph

Before we delve into the details of the proof of adequacy for the bisimilarity game, we first define some

auxilary concepts and proof their properties.

Definition 5.15 Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
) be two parity formulas. Given a positional

∃-strategy, 𝑔 : 𝑉 ×𝑉′→ (P(𝑉 ×𝑉′))2 in B(𝔾,𝔾′), define the strategy graph

𝐺 = (𝑁, 𝐵 : 𝑁 → P(𝑉 ×𝑉′), 𝑅 : 𝑁 → P(𝑉 ×𝑉′))

where 𝑁 = {(𝑢, 𝑢′) ∈ 𝑉 × 𝑉′ | (𝑣𝐼 , 𝑣′𝐼)𝑅∗(𝑢, 𝑢′)} and for each (𝑢, 𝑢′) ∈ 𝑁 , 𝐵(𝑢, 𝑢′) = 𝜋1(𝑔(𝑢, 𝑢′)) and
𝑅(𝑢, 𝑢′) = 𝜋2(𝑔(𝑢, 𝑢′)).

Note that for any (𝑢, 𝑢′) ∈ 𝑁 , 𝑅(𝑢, 𝑢′) is precisely the set of admissible moves for∀ after ∃make the suggested

move 𝑔(𝑢, 𝑢′) = (𝐵(𝑢, 𝑢′), 𝑅(𝑢, 𝑢′)). This means that 𝑁 is precisely the collection of possibly positions for ∃
given that she plays according to strategy 𝑔. One implication of this observation is that if 𝑔 is a winning

strategy, then all the positions in 𝑁 are winning for ∃. Another implication is that if 𝑔 is a winning strategy,

then 𝐺𝑔 is acyclic.

Definition 5.16 Let 𝐺 = (𝑁, 𝐵, 𝑅) be an acyclic strategy graph.

• Let ≤𝐺 denote that pre-order such that, for any 𝑎, 𝑏 ∈ 𝑁 , 𝑎 ≤𝐺 𝑏 if and only if 𝑏𝑅∗𝑎.
• Let =𝐺 denote that equivalence relation such that, for any 𝑎, 𝑏 ∈ 𝑁 , 𝑎 =𝐺 𝑏 if and only if 𝑎 = 𝑏.
• Let <𝐺 be the strict partial order such that, for any 𝑎, 𝑏 ∈ 𝑁 , 𝑎 <𝐺 𝑏 if and only if 𝑎 ≤𝐺 𝑏 and 𝑎 ≠𝐺 𝑏.

Let 𝐺′ = (𝑁′, 𝐵′, 𝑅′) be another acyclic strategy graph.

• Let <𝐺,𝐺′ denote the partial order over 𝑁 × 𝑁′ such that, for any (𝑎, 𝑎′), (𝑏, 𝑏′) ∈ 𝑁 × 𝑁′, we have
(𝑎, 𝑎′) <𝐺,𝐺′ (𝑏, 𝑏′) if and only if (𝑎 ≤𝐺 𝑏 and 𝑎′ <𝐺′ 𝑏′) or (𝑎 <𝐺 𝑏 and 𝑎′ ≤𝐺′ 𝑏′).

Bisimilarity Game 55

Lemma 5.13 Let 𝐺 = (𝑁, 𝐵, 𝑅) be a strategy graph induced by a positional winning strategy. Then 𝐺 is acyclic and
<𝐺 is well-founded. Let 𝐺′ = (𝑁′, 𝐵′, 𝑅′) be a strategy graph induced by a positional winning strategy. Then <𝐺,𝐺′
is well-founded.

Proof. Since 𝑔 is a winning ∃-strategy and every infinite match (which corresponds to a branch in 𝐺) is won

by ∀, it follows that 𝐺 has no infinite branches, and therefore is acyclic. Since 𝑁 is finite and <𝐺 is a pre-order,

it follows that <𝐺 is well-founded. Since both <𝐺 and <𝐺′ are well-founded, <𝐺,𝐺′ is also well-founded.

Bisimilarity Game: Adequacy

For the rest of this section, we prove the adequacy of the bisimularity game.

Proposition 5.14 Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
) be two parity formulas and let 𝑣 ∈ 𝑉 and

𝑣′ ∈ 𝑉′. If (𝑣, 𝑣′) ∈ A𝔾,𝔾′ , then (𝑣, 𝑣′) ∈ Win∃(B(𝔾⟨𝑣⟩,𝔾′⟨𝑣′⟩)). In particular, if (𝑣, 𝑣′) ∈ A𝔾,𝔾′

0
, then∃ has a

positional winning strategy in B(𝔾⟨𝑣⟩,𝔾′⟨𝑣′⟩) that starts with a move (𝐵, 𝑅) where 𝐵 ≠ ∅.

Proof. Suppose (𝑣, 𝑣′) ∈ A. The following describes a positional winning strategy for ∃,

𝑔A : A→ P2(𝑉 ×𝑉′), (𝑥, 𝑥′) ↦→ (𝐵𝑥,𝑥′ , 𝑅𝑥,𝑥′).

Suppose the token is at position (𝑥, 𝑥′) ∈ 𝑉 ×𝑉′ and 𝑟𝔾,𝔾′(𝑥, 𝑥′) < +∞.

1. If 𝑟𝔾,𝔾′(𝑥, 𝑥′) = 𝑖 + 1 for some 𝑖 ∈ 𝜔, then ∃ chooses the move (𝐵𝑥,𝑥′ = ∅, 𝑅𝑥,𝑥′)where

𝑅𝑥,𝑥′ := {(𝑢, 𝑢′) ∈ A𝑖 | 𝑢 ∈ 𝐸[𝑥], 𝑢′ ∈ 𝐸′[𝑥′]}.

By condition 5 of Definition 3.5, this is an admissible move. Note that here for any (𝑢, 𝑢′) ∈ 𝑅𝑥,𝑥′ , we

have 𝑟𝔾,𝔾′(𝑢, 𝑢′) < +∞, (𝑢, 𝑢′) ≤𝔾,𝔾′ (𝑥, 𝑥′) and 𝑟𝔾,𝔾′(𝑢, 𝑢′) < 𝑟𝔾,𝔾′(𝑥, 𝑥′).

2. If 𝑟𝔾,𝔾′(𝑥, 𝑥′) = 0, then ∃ chooses the move (𝐵𝑥,𝑥′ , 𝑅𝑥,𝑥′)where 𝐵𝑥,𝑥′ := A0 ↾𝐶(𝑥)×𝐶(𝑥′) and

𝑅𝑥,𝑥′ :=
⋃
(𝑢,𝑢′)∈𝐵

(
(𝐸[𝑢]\𝐶(𝑢) × 𝐸′[𝑢′]) ∪ (𝐸[𝑢] × 𝐸′[𝑢′]\𝐶(𝑢′)

)
∩A.

By condition 3 and 6 of Definition 3.5, this is an admissible move. Note that here for any (𝑢, 𝑢′) ∈ 𝑅𝑥,𝑥′ ,
we have 𝑟𝔾,𝔾′(𝑢, 𝑢′) < +∞ and (𝑢, 𝑢′) <𝔾,𝔾′ (𝑥, 𝑥′).

Since (𝑣, 𝑣′) ∈ A, it follows that 𝑟𝔾,𝔾′(𝑣, 𝑣′) < +∞. As we have seen, at any position (𝑥, 𝑥′) ∈ A, the strategy

above gives a move (𝐵𝑥,𝑥′ , 𝑅𝑥,𝑥′) such that 𝑅𝑥,𝑥′ ⊆ A, so no matter which element (𝑢, 𝑢′) ∈ 𝑅𝑥,𝑥′ ∀ chooses,

we will have 𝑟𝔾,𝔾′(𝑢, 𝑢′) < +∞. Thus, 𝑔A is a well-defined strategy.

Now we show that this is a winning strategy. We have already shown that this strategy provides an

admissible move at any reachable position where it is ∃’s turn to move. What is left to show is that the

game always ends within finitely many steps. Note that at any position (𝑥, 𝑥′), for all (𝑢, 𝑢′) ∈ 𝑅𝑥,𝑥′ , we have

((𝑢, 𝑢′), 𝑟𝔾,𝔾′(𝑢, 𝑢′)) <𝔾,𝔾,𝜔 ((𝑥, 𝑥′), 𝑟𝔾,𝔾′(𝑥, 𝑥′)). Since <𝔾,𝔾,𝜔 is well-founded, it follows that each match is

finite.

Finally, let us now consider the special case where (𝑣, 𝑣′) ∈ A0. In this case, 𝑟𝔾,𝔾′ = 0. By the case b)

above, we have 𝐵 := A0 ↾𝐶(𝑣)×𝐶(𝑣′). Since (𝑣, 𝑣′) ∈ A0 ↾𝐶(𝑣)×𝐶(𝑣′), we know that 𝐵 ≠ ∅. This means that the

positional winning strategy above provides (𝐵, 𝑅) for some 𝐵 ≠ ∅ as the first move in B(𝔾⟨𝑣⟩,𝔾′⟨𝑣′⟩). Thus,

if (𝑣, 𝑣′) ∈ A0, then ∃ has a positional winning strategy in B(𝔾⟨𝑣⟩,𝔾′⟨𝑣′⟩) that starts with a move (𝐵, 𝑅)
where 𝐵 ≠ ∅.

56 5 Definition 4: Properties and Bisimilarity Game

𝜖 |0

𝜖 |1

𝜖 |0

𝜖 |1

𝜖

𝑎

𝑏

𝑎′

𝑏′

𝑥′

𝔾 𝔾′

0

0

1

(𝑏, 𝑥′);∅

(𝑎, 𝑎′); {(𝑎, 𝑎′), (𝑏, 𝑏′)}

Figure 5.1: A𝔾,𝔾′
and a strategy tree for 𝑔

A𝔾,𝔾′

Example 5.1 Consider 𝔾, 𝔾′ and 𝔾′′ in Figure 5.1 and 5.2. The bisimilarity relation A𝔾,𝔾′
, A𝔾′ ,𝔾′′

are shown

with the number denoting the rank of the link. The strategy tree for 𝑔A𝔾,𝔾′ and 𝑔A𝔾′ ,𝔾′′ are shown in the

same figures. The nodes in the strategy tree are shown in the format ’(𝑢, 𝑢′); 𝐵(𝑢, 𝑢′)’, and 𝑅 is represented

by the solid directed arrows.

Proposition 5.15 Let 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼) and 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′
𝐼
) be two parity formulas and let 𝑣 ∈ 𝑉

and 𝑣′ ∈ 𝑉′. Then (𝑣, 𝑣′) ∈ A𝔾,𝔾′ if (𝑣, 𝑣′) ∈ Win∃(B(𝔾⟨𝑣⟩,𝔾′⟨𝑣′⟩)). In particular, (𝑣, 𝑣′) ∈ A
𝔾,𝔾′

0
if ∃ has a

positional winning strategy in B(𝔾⟨𝑣⟩,𝔾′⟨𝑣′⟩) that starts with a move (𝐵, 𝑅) where 𝐵 ≠ ∅.

Proof. Suppose that ∃ has a positional winning strategy 𝑔 : 𝑉 ×𝑉′→ (P(𝑉 ×𝑉′))2 in B(𝔾⟨𝑣⟩,𝔾′⟨𝑣′⟩). Let

𝐺 = (𝑁, 𝐵, 𝑅) be the strategy graph induced by 𝑔. Define a bisimulation (𝐴𝑖)𝑖∈𝜔 from 𝔾 to 𝔾′ as follows.

𝐴0 :=
⋃

(𝑢,𝑢′)∈𝑁
𝐵(𝑢, 𝑢′), 𝐴𝑖+1 := {(𝑢, 𝑢′) ∈ 𝑁 | 𝑅(𝑢, 𝑢′) ⊆ 𝐴𝑖} ∪ 𝐴0

First, note that 𝐴 = 𝑁 ∪ ⋃
(𝑢,𝑢′)∈𝑁

𝐵(𝑢, 𝑢′). We show this from both directions.

• Since 𝐺 is acyclic and connected, and all the (𝑢, 𝑢′) ∈ 𝑁 that have no successors in 𝐺 are in 𝐴1 by

definition, it is easy to show by induction on the structure of 𝐺 that (𝑢, 𝑢′) ∈ 𝐴 for all (𝑢, 𝑢′) ∈ 𝑁 . That

is, 𝑁 ⊆ 𝐴. By definition, 𝐵(𝑢, 𝑢′) ⊆ 𝐴0 for all (𝑢, 𝑢′) ∈ 𝑁 . Thus,

𝐴 ⊇ 𝑁 ∪
⋃

(𝑢,𝑢′)∈𝑁
𝐵(𝑢, 𝑢′).

• By definition, 𝐴0 ⊆
⋃

(𝑢,𝑢′)∈𝑁
𝐵(𝑢, 𝑢′) and 𝐴𝑖 ⊆ 𝑁 ∪ 𝐴0 for all 𝑖 > 0. Thus

𝐴 ⊆ 𝑁 ∪
⋃

(𝑢,𝑢′)∈𝑁
𝐵(𝑢, 𝑢′).

We claim that (𝐴𝑖)𝑖∈𝜔 is a bisimulation in the sense of Definition 3.5.

1. It suffices to show that 𝐴𝑖 ⊆ 𝐴𝑖+1 for all 𝑖 ∈ 𝜔. We show this by induction on 𝑖. The base case where

𝑖 = 0 is true by definition. For the induction step, suppose (𝑢, 𝑢′) ∈ 𝐴𝑖 for some 𝑖 > 0. We make the

following two case distinctions.

• (𝑢, 𝑢′) ∈ 𝐴0. Then by definition (𝑢, 𝑢′) ∈ 𝐴𝑖+1.

• (𝑢, 𝑢′) ∉ 𝐴0. Since (𝑢, 𝑢′) ∉ 𝐴0 and (𝑢, 𝑢′) ∈ 𝐴𝑖 , it must be the case that 𝑖 > 0 and 𝑅(𝑢, 𝑢′) ⊆ 𝐴𝑖−1.

By the induction hypothesis, 𝐴𝑖−1 ⊆ 𝐴𝑖 . This means that 𝑅(𝑢, 𝑢′) ⊆ 𝐴𝑖 and thus, (𝑢, 𝑢′) ∈ 𝐴𝑖+1.

Bisimilarity Game 57

𝜖 |0

𝜖 |1

𝜖 |0

𝜖 |1

𝜖𝜖

𝜖

𝜖

𝑎′

𝑏′

𝑎′′

𝑏′′

𝑦′′

𝑧′′

𝑥′′𝑥′

𝔾′ 𝔾′′

0

0

1

1

2

3

(𝑥′, 𝑧′′);∅

(𝑎′, 𝑦′′);∅

(𝑏′, 𝑥′′);∅

(𝑎′, 𝑎′′); {(𝑎′, 𝑎′′), (𝑏′, 𝑏′′)}

Figure 5.2: A𝔾′ ,𝔾′′
and a strategy tree for 𝑔

A𝔾′ ,𝔾′′

2. Note that if the token arrives at a position (𝑢, 𝑢′) where 𝐿(𝑢) ≠ 𝐿′(𝑢′), then ∃ loses. As we have

observed, if 𝐺 = (𝑁, 𝐵, 𝑅) is the strategy graph induced by a winning strategy, then all positions in

𝑁 are winning. This means that 𝐿(𝑢) = 𝐿′(𝑢′) for all (𝑢, 𝑢′) ∈ 𝑁 . Also, from the definitioin of base

bisimulations, it follows that that 𝐿(𝑢) = 𝐿′(𝑢′) for all (𝑢, 𝑢′) ∈ 𝐵(𝑤, 𝑤′) for all (𝑤, 𝑤′) ∈ 𝑁 . Since

𝐴 = 𝑁 ∪⋃(𝑤,𝑤′)∈𝑁 𝐵(𝑤, 𝑤′), it follows that 𝐿(𝑢) = 𝐿′(𝑢′) for all (𝑢, 𝑢′) ∈ 𝐴.

3. Let (𝑢, 𝑢′) ∈ 𝐴0. According to the definition of (𝐴𝑖)𝑖∈𝜔, since 𝐴0 is the union of base bisimulations, it

must be the case that there exists 𝐵 ∈ BaseB(𝐶(𝑢), 𝐶(𝑢′)) such that (𝑢, 𝑢′) ∈ 𝐵. By the definition of

base bisimulations, we have that neither 𝐶(𝑢) nor 𝐶(𝑢′) are degenerate, 𝑢 ∈ Dom(Ω) ⇔ 𝑢′ ∈ Dom(Ω′),
and if 𝑢 ∈ Dom(Ω), then Ω(𝑢) ≡2 Ω′(𝑢′)

4. Suppose (𝑢, 𝑢′), (𝑥, 𝑥′) ∈ 𝐴0, 𝑢 ∈ 𝐶(𝑥), 𝑢′ ∈ 𝐶(𝑥′), and Ω(𝑢) .2 Ω(𝑥). By the definition of 𝐴0, there

exist 𝑛1 , 𝑛2 ∈ 𝑁 such that (𝑢, 𝑢′) ∈ 𝐵(𝑛1) and (𝑥, 𝑥′) ∈ 𝐵(𝑛2). Without loss of generality, suppose

Ω(𝑢) < Ω(𝑥). To argue towards contradiction, assume Ω′(𝑢′) > Ω′(𝑥′). Without loss of generality, also

suppose Ω(𝑢) = 𝑚𝑖𝑛({Ω(𝑤) |𝑤 ∈ 𝐷𝑢})where

𝐷𝑢 := {𝑤 ∈ 𝐶(𝑢) | (𝑤, 𝑤′) ∈ 𝐵(𝑛1), (𝑥, 𝑥′) ∈ 𝐵(𝑛2),Ω(𝑤) < Ω(𝑥),Ω′(𝑤′) > Ω′(𝑥′)
for some 𝑥 ∈ 𝐶(𝑢), 𝑤′, 𝑥′ ∈ 𝐶(𝑢′)}).

• Since 𝑢′ ∈ 𝐶(𝑥′) and (𝑢, 𝑢′) ∈ 𝐵(𝑛1), it follows that there exist two paths 𝑢′→𝐸′ 𝑢
′
1
→𝐸′ ...→𝐸′

𝑢′𝑛 = 𝑥′ and 𝑢 →𝐸 𝑢1 →𝐸 ... →𝐸 𝑢𝑛 for some 𝑛 ∈ 𝜔 such that 𝑢𝑖 ∈ 𝐶(𝑢), 𝑢′𝑖 ∈ 𝐶(𝑢′) and

(𝑢𝑖 , 𝑢′𝑖) ∈ 𝐵(𝑛1) for all 1 ≤ 𝑖 ≤ 𝑛. In particular, 𝑢𝑛 ∈ 𝐶(𝑢), 𝑥′ ∈ 𝐶(𝑢′) and (𝑢𝑛 , 𝑥′) ∈ 𝐵(𝑛1). By the

last condition for base bisimulations, Ω(𝑢) > Ω(𝑢𝑛).
• Since 𝑥 ∈ 𝐶(𝑢) and (𝑥, 𝑥′) ∈ 𝐵(𝑛2), it follows that there exist two paths 𝑥′→𝐸′ 𝑣

′
1
→𝐸′ ...→𝐸′ 𝑣

′
𝑚

and 𝑥 →𝐸 𝑣1 →𝐸 ... →𝐸 𝑣𝑚 = 𝑢 for some 𝑚 ∈ 𝜔 such that 𝑣𝑖 ∈ 𝐶(𝑥), 𝑣′
𝑖
∈ 𝐶(𝑥′) and

(𝑣𝑖 , 𝑣′𝑖) ∈ 𝐵(𝑛2) for all 1 ≤ 𝑖 ≤ 𝑚. In particular, 𝑢 ∈ 𝐶(𝑥), 𝑣′𝑚 ∈ 𝐶(𝑥′) and (𝑢, 𝑣′𝑚) ∈ 𝐵(𝑛2). By the

last condition for base bisimulations, Ω(𝑥′) > Ω(𝑣′𝑚).
• So far, we have gathered enough facts to show that 𝑢𝑛 ∈ 𝐷𝑢 . However, Ω(𝑢𝑛) < Ω(𝑢), which

contradicts our assumption that 𝑢 has the smallest priority in 𝐷𝑢 (red for 𝐵(𝑛1) and blue for 𝐵(𝑛2)
in the demonstration below).

58 5 Definition 4: Properties and Bisimilarity Game

𝑢

𝑣

𝑢′

𝑣′
𝑢𝑛

𝑣′𝑚

><

< >

Thus, Ω′(𝑢′) ≯ Ω′(𝑥′). Since Ω′(𝑢′) ≡2 Ω(𝑢) .2 Ω(𝑣) ≡2 Ω′(𝑥′), it follows that Ω′(𝑢′) ≠ Ω′(𝑥′).
This means that Ω′(𝑢′) < Ω′(𝑥′).

5. Suppose (𝑢, 𝑢′) ∈ 𝐴𝑖+1−𝐴0. By definition, 𝑅(𝑢, 𝑢′) ⊆ 𝐴𝑖 . Note that , for all (𝑤, 𝑤′) ∈ 𝑁 , if 𝐵(𝑤, 𝑤′) ≠ ∅,

then by the definition of the admissible moves for ∃, we have (𝑤, 𝑤′) ∈ 𝐵(𝑤, 𝑤′). This means that for all

(𝑤, 𝑤′) ∈ 𝑁 such that 𝐵(𝑤, 𝑤′) ≠ ∅, we have (𝑤, 𝑤′) ∈ 𝐴0. Since (𝑢, 𝑢′) ∋ 𝑛𝐴0, it follows that 𝐵(𝑢, 𝑢′) =
∅. By definition, this means that 𝑅(𝑢, 𝑢′) ∈ LocB(𝑢, 𝑢′), and thus, (𝐸[𝑢], 𝐸′[𝑢′]) ∈ P(𝑅(𝑢, 𝑢′)). Given

that P is monotone and that 𝑅(𝑢, 𝑢′) ⊆ 𝐴𝑖 , we have (𝐸[𝑢], 𝐸′[𝑢′]) ∈ P(𝐴𝑖), which is precisely condition

5.

6. Suppose (𝑢, 𝑢′) ∈ 𝐴0. According to the definition of 𝐴0, there exists (𝑤, 𝑤′) ∈ 𝑁 such that (𝑢, 𝑢′) ∈
𝐵(𝑤, 𝑤′). Since 𝐵(𝑤, 𝑤′) is non-empty, it follows that 𝐵(𝑤, 𝑤′) is a base bisimulation. Furthermore, by

Proposition 5.9, 𝐵(𝑤, 𝑤′) is a base bisimulation at (𝐶(𝑢), 𝐶(𝑢′)). By the condition 4 of the definition for

base bisimulations, we have

(𝐸[𝑢] ∩ 𝐶(𝑢), 𝐸′[𝑢′] ∩ 𝐶(𝑢′)) ∈ P(𝐵(𝑤, 𝑤′)).

Given the fact that P is monotone and that 𝐵(𝑤, 𝑤′) ⊆ 𝐴0, we have

(𝐸[𝑢] ∩ 𝐶(𝑢), 𝐸′[𝑢′] ∩ 𝐶(𝑢′)) ∈ P𝐴0.

This means that the conditions 6a) and 6b) are satisfied.

Now we show that the conditions 6c) and 6d) are also satisfied. Since 𝐵(𝑤, 𝑤′) ≠ ∅, it follows from the

admissive moves that 𝑅(𝑤, 𝑤′) ∈ ExitB(𝐵(𝑤, 𝑤′)). Since (𝑢, 𝑢′) ∈ 𝐵(𝑤, 𝑤′), it follows from the proof of

Proposition 5.10 that

(𝐸[𝑢], 𝐸′[𝑢′]) ∈ P(𝑅(𝑤, 𝑤′) ∪ 𝐵(𝑤, 𝑤′)). (5.19)

Note that

𝑅(𝑤, 𝑤′) ∪ 𝐵(𝑤, 𝑤′) ⊆ 𝑁 ∪ 𝐵(𝑤, 𝑤′) ⊆ 𝑁 ∪
⋃
(𝑥,𝑥′)∈𝑁

𝐵(𝑥, 𝑥′) = 𝐴 (5.20)

Combining 5.19 and 5.20 and 5. from Propositioin 5.7, we have

(𝐸[𝑢], 𝐸′[𝑢′]) ∈ P𝐴.

This means that the conditions 6c) and 6d) are satisfied.

To sum up, we have shown that (𝐴𝑖)𝑖∈𝜔 is a bisimulation in the sense of Definition 4. Note that

(𝑣, 𝑣′) ∈ 𝑁 ⊆ 𝐴 ⊆ A.

Thus, (𝑣, 𝑣′) ∈ A if (𝑣, 𝑣′) ∈ Win∃(B(𝔾⟨𝑣⟩,𝔾′⟨𝑣′⟩)).

Finally, let us now consider the special case where 𝐵(𝑣, 𝑣′) ≠ ∅. In this case, by the definition of base

bisimulations, we have (𝑣, 𝑣′) ∈ 𝐵(𝑣, 𝑣′), and by the definition of (𝐴𝑖)𝑢∈𝜔, we have 𝐵(𝑣, 𝑣′) ⊆ 𝐴0. Note that

𝐴0 ⊆ A0. Thus, (𝑣, 𝑣′) ∈ A0 if ∃ has a positional winning strategy in B(𝔾⟨𝑣⟩,𝔾′⟨𝑣′⟩) that starts with a move

(𝐵, 𝑅)where 𝐵 ≠ ∅.

Composition 59

Composition

Now that we have proven the adequacy of the bisimilarity game, we can show that Definition 4 is closed

under composition. An example that demonstrates the construction described in proof of the following

proposition can be found in Appendix B.

Proposition 5.16 Given three parity formulas 𝔾 = (𝑉, 𝐸, 𝐿,Ω, 𝑣𝐼), 𝔾′ = (𝑉′, 𝐸′, 𝐿′,Ω′, 𝑣′𝐼) and 𝔾′′ = (𝑉′′, 𝐸′′,
𝐿′′,Ω′′, 𝑣′′

𝐼
), we have A𝔾,𝔾′

; A𝔾′ ,𝔾′′ ⊆ A𝔾,𝔾′′ .

Proof. We show an equivalent proposition: A𝔾,𝔾′
; A𝔾′ ,𝔾′′ ⊆ A𝔾,𝔾′′

. Let (𝑣, 𝑣′) ∈ A𝔾,𝔾′
and (𝑣′, 𝑣′′) ∈ A𝔾′ ,𝔾′′

.

Strategy. Like some of the proofs we have seen in this thesis, we prove the statement by constructing a

winning ∃-strategy in B(𝔾⟨𝑣⟩,𝔾′′⟨𝑣′′⟩) employing the technique of ’shadow playing’. Recall that ’shadow

playing’ is a technique used for constructing winning strategy for a player Π in a two-player game, which we

call the ’main game’, utilizing given winning strategies for Π in one or more ’shadow games’. While playing

a match in the main game, player Π also simultaneously updates the position of the token in each of the

shadow games. At each of her turns, she plays according to the current positions of the tokens in the shadow

games as well as the given winning strategies for the shadow games. After either player has moved the token

in the main game, she moves the token in the shadow games accordingly. Specific ways in which player

Π performs these actions may differ given the different circumstances under which the shadow playing

technique is applied.

In this specific case, the main game is B(𝔾⟨𝑣⟩,𝔾′′⟨𝑣′′⟩) and we utilize two shadow games, B(𝔾⟨𝑣⟩),𝔾′⟨𝑣′⟩)
and B(𝔾′⟨𝑣′⟩,𝔾′′⟨𝑣′′⟩)). Since (𝑣, 𝑣′) ∈ A𝔾,𝔾′

and (𝑣′, 𝑣′′) ∈ A𝔾′ ,𝔾′′
, it follows from Proposition 5.14 that ∃

has a positional winning strategy 𝑔 : 𝑉 × 𝑉′ → P2(𝑉 × 𝑉′) in B(𝔾⟨𝑣⟩,𝔾′⟨𝑣′⟩) and a positional winning

strategy 𝑔′ : 𝑉′ ×𝑉′′ → P2(𝑉′ ×𝑉′′) in B(𝔾′⟨𝑣′⟩,𝔾′′⟨𝑣′′⟩). Recall that in a bisimilarity game, ∃’s and ∀’s
turns alternates and the first turn always belongs to ∃. In our construction, the way ∃ updates the positions

of tokens in the shadow games depends on ∀’s moves in the main game, so ∃ does not update the positions

of the tokens after her own moves, but only after ∀’s moves. When she updates the position of either of the

two shadow tokens, she either does not move it, or she moves it from a ∃-position to another ∃-position,

omitting the intermediate situation where the tokens are at ∀-positions. The key to this construction is that we

make a shadow token wait in the base bisimulation after it arrives at one, if the other shadow token has not

arrived at a base bisimulation. The specific structure of a match in B(𝔾′⟨𝑣′⟩,𝔾′′⟨𝑣′′⟩)where ∃ employs the

technique of ’shadow playing’ is shown in Figure 5.3. We call each node in Figure 5.3 a stage. The following is

a summary of the stages in Figure 5.3.

INIT: ∃ sets the initial positions for the two shadow tokens, (𝑥, 𝑥′) and (𝑦′, 𝑦′′), as well as a

helper node 𝑢′
0
∈ 𝑉 .

PLAY∃: ∃makes a move from position (𝑢, 𝑢′′) in the main game according to 𝑔(𝑥, 𝑥′) and 𝑔′(𝑦, 𝑦′).
PLAY∀: ∀makes a move.

UPDATE: ∃ picks out 𝑢′. With the help of 𝑢′, ∃ updates (𝑥, 𝑥′) and (𝑦′, 𝑦′′).

We use (𝑢𝑖 , 𝑢′′𝑖) to denote the position of the token in the main game after ∀ has made 𝑖 moves, and we use

(𝑥𝑖 .𝑥′𝑖) and (𝑦′
𝑖
, 𝑦′′

𝑖
) to denote positions of the shadow tokens after 𝑖 times UPDATE. We call the process of

going from stage 2 to stage 3, then to stage 4, and then back to stage 2, one step. Now we flesh out the details of

INIT, PLAY and UPDATE in the 𝑖 + 1’th step. Let 𝐺𝑔 = (𝑁𝑔 , 𝐵𝑔 , 𝑅𝑔) and 𝐺𝑔′ = (𝑁𝑔′ , 𝐵𝑔′ , 𝑅𝑔′) be the strategy

graph induced by 𝑔 and 𝑔′, respectively.

INIT: At the start of the game, ∃ sets 𝑥0 := 𝑣, 𝑥′
0
= 𝑦′

0
:= 𝑣′, 𝑦′′

0
:= 𝑣′′ and 𝑢′

0
= 𝑣′. Note that in the begining of

the the main game, 𝑢0 = 𝑣 and 𝑢′′
0
= 𝑣′′.

PLAY∃: In the 𝑖 + 1’th step, ∃moves the token to (𝐵𝑖 , 𝑅𝑖). Here we assume

a) (𝑥𝑖 , 𝑥′𝑖) ∈ 𝑁𝑔 and (𝑦′
𝑖
, 𝑦′′

𝑖
) ∈ 𝑁𝑔′ ;

60 5 Definition 4: Properties and Bisimilarity Game

1.INIT

2. PLAY∃
(AM∃ non-empty? [y/N])

3. PLAY∀
(AM∀ non-empty? [y/N])

4. UPDATE

5. ∃ loses

6. ∀ loses

y

y

N

N

Figure 5.3: Structure of a match with ’shadow playing’; AMΠ=the set of admissible moves for player Π

With these assumptions, we can define

𝐵𝑖𝑔 := 𝐵𝑔(𝑥𝑖 , 𝑥′𝑖), 𝐵𝑖𝑔′ := 𝐵𝑔′(𝑦′𝑖 , 𝑦
′′
𝑖), 𝑅𝑖𝑔 := 𝑅𝑔(𝑥𝑖 , 𝑥′𝑖), 𝑅𝑖𝑔′ := 𝑅𝑔′(𝑦′𝑖 , 𝑦

′′
𝑖)

We also assume

b) if (𝑥𝑖 , 𝑥′𝑖) ≠ (𝑢𝑖 , 𝑢
′
𝑖
), then (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐵𝑖𝑔 , and if (𝑦′

𝑖
, 𝑦′′

𝑖
) ≠ (𝑢′

𝑖
, 𝑢′′

𝑖
), then (𝑢′

𝑖
, 𝑢′′

𝑖
) ∈ 𝐵𝑖𝑔′ ;

c) if 𝐵𝑖𝑔 ≠ ∅, then (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐵𝑖𝑔 ; if 𝐵𝑖𝑔′ ≠ ∅, then (𝑢′
𝑖
, 𝑢′′

𝑖
) ∈ 𝐵𝑖𝑔′ .

It is easy to see that these assumptions are true when 𝑖 = 0.

a) True by definition.

b) True since the antecidents are true.

c) If 𝐵𝑔(𝑣, 𝑣′) = 𝐵0

𝑔 ≠ ∅, then by the definition of admissible moves, we have (𝑢0 , 𝑢
′
0
) = (𝑣, 𝑣′) ∈

𝐵𝑔(𝑣, 𝑣′) = 𝐵0

𝑔 .

Later, in the description of UPDATE, we will see that if these assumptions hold true for 𝑖 = 𝑛, then they

also hold true for 𝑖 = 𝑛 + 1.

Define 𝐵𝑖 := 𝐵𝑖𝑔 ; 𝐵
𝑖
𝑔′ . We make the following case distinction for defining 𝑅𝑖 . We also show for each

case that (𝐵𝑖 , 𝑅𝑖) is an admissible move for ∃ at (𝑢𝑖 , 𝑢′′𝑖).
• 𝐵𝑖𝑔 = 𝐵𝑖𝑔′ = ∅. Define 𝑅𝑖 := 𝑅𝑖𝑔 ;𝑅

𝑖
𝑔′ .

Since 𝐵𝑖𝑔 = 𝐵𝑖𝑔′ = ∅, it follows from 𝑏) that (𝑥𝑖 , 𝑥′𝑖) = (𝑢𝑖 , 𝑢′𝑖) and (𝑦′
𝑖
, 𝑦′′

𝑖
) = (𝑢′

𝑖
, 𝑢′′

𝑖
). By

the definition of the admissible moves, 𝑅𝑖𝑔 ∈ LocB(𝑥𝑖 , 𝑥′𝑖) and 𝑅𝑖𝑔′ ∈ LocB(𝑦′
𝑖
, 𝑦′′

𝑖
). Combining

these two observations, we have 𝑅𝑖𝑔 ∈ LocB(𝑢𝑖 , 𝑢′𝑖) and 𝑅𝑖𝑔′ ∈ LocB(𝑢′
𝑖
, 𝑢′′

𝑖
). By Propostion 5.8,

𝑅𝑖 ∈ LocB(𝑢𝑖 , 𝑢′′𝑖) and therefore, (𝐵𝑖 , 𝑅𝑖) an admissible move for ∃ at (𝑢𝑖 , 𝑢′′𝑖).
• 𝐵𝑖𝑔 , 𝐵𝑖𝑔′ ≠ ∅. Define 𝑅𝑖 := (𝑅𝑖𝑔 ; (𝐵𝑖𝑔′ ∪ 𝑅𝑖𝑔′)) ∪ ((𝐵𝑖𝑔 ∪ 𝑅𝑖𝑔);𝑅𝑖𝑔′).

Since 𝐵𝑖𝑔 ≠ ∅, it follows from 𝑐) that (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐵𝑖𝑔 . By Proposition 5.9, 𝐵𝑖𝑔 ∈ BaseB(𝐶(𝑢𝑖), 𝐶(𝑢′𝑖)).
Similarly, 𝐵𝑖𝑔′ ∈ BaseB(𝐶(𝑢′

𝑖
), 𝐶(𝑢′′

𝑖
)). By Proposition 5.11, 𝐵𝑖 𝑖 ∈ BaseB(𝐶(𝑢𝑖), 𝐶(𝑢′′𝑖)). By Proposi-

tion 5.12, 𝑅𝑖 ∈ ExitB(𝐵𝑖). Therefore, (𝐵𝑖 , 𝑅𝑖) an admissible move for ∃ at (𝑢𝑖 , 𝑢′′𝑖).
• 𝐵𝑖𝑔 = ∅, 𝐵𝑖𝑔′ ≠ ∅. Define 𝑅𝑖 := 𝑅𝑖𝑔 ; (𝐵𝑖𝑔′ ∪ 𝑅𝑖𝑔′).

i. Since 𝐵𝑖𝑔′ ≠ ∅, it follows form 𝑐) that (𝑢′
𝑖
, 𝑢′′

𝑖
) ∈ 𝐵𝑖𝑔′ . By Proposition 5.10, 𝐵𝑖𝑔′ ∪ 𝑅𝑖𝑔′ ∈

LocB(𝑢′
𝑖
, 𝑢′′

𝑖
).

ii. Since 𝐵𝑖𝑔 = ∅, it follows from 𝑏) that (𝑥𝑖 , 𝑥′𝑖) = (𝑢𝑖 , 𝑢
′
𝑖
), and from the definition of admissible

moves that 𝑅𝑖𝑔 ∈ LocB(𝑥𝑖 , 𝑥′𝑖). This means that 𝑅𝑖𝑔 ∈ LocB(𝑢𝑖 , 𝑢′𝑖).
By Propostion 5.8, 𝑅𝑖 = 𝑅𝑖𝑔 ; (𝐵𝑖𝑔′ ∪ 𝑅𝑖𝑔′) ∈ LocB(𝑢𝑖 , 𝑢′′𝑖), and therefore, (𝐵𝑖 , 𝑅𝑖) is an admissible

move for ∃ at (𝑢𝑖 , 𝑢′′𝑖).

Composition 61

• 𝐵𝑖𝑔 ≠ ∅, 𝐵𝑖𝑔′ = ∅. Define 𝑅𝑖 := (𝐵𝑖𝑔 ∪ 𝑅𝑖𝑔);𝑅𝑖𝑔′ .
i. Since 𝐵𝑖𝑔′ ≠ ∅, it follows form 𝑐) that (𝑢𝑖 , 𝑢′𝑖) ∈ 𝐵𝑖𝑔 . By Proposition 5.10, 𝐵𝑖𝑔 ∪𝑅𝑖𝑔 ∈ LocB(𝑢𝑖 , 𝑢′𝑖).

ii. Since 𝐵𝑖𝑔′ = ∅, it follows from 𝑏) that (𝑦′
𝑖
, 𝑦′′

𝑖
) = (𝑢′

𝑖
, 𝑢′′

𝑖
), and from the definition of admissible

moves that 𝑅𝑖𝑔′ ∈ LocB(𝑦′
𝑖
, 𝑦′′

𝑖
). This means that 𝑅𝑖𝑔′ ∈ LocB(𝑢′

𝑖
, 𝑢′′

𝑖
).

By Propostion 5.8, 𝑅𝑖 = (𝐵𝑖𝑔 ∪ 𝑅𝑖𝑔);𝑅𝑖𝑔′ ∈ LocB(𝑢𝑖 , 𝑢′′𝑖), and therefore, (𝐵𝑖 , 𝑅𝑖) is an admissible

move for ∃ at (𝑢𝑖 , 𝑢′′𝑖).

PLAY∀: ∀ picks (𝑢𝑖+1 , 𝑢
′′
𝑖+1
) ∈ 𝑅𝑖 .

UPDATE. In the 𝑖+1’th step, ∃ picks out a 𝑢′
𝑖+1
∈ 𝑉′ in a certain way. With the help of 𝑢′

𝑖+1
, ∃ updates the positions

of the two shadow tokens to (𝑥𝑖+1 , 𝑥
′
𝑖+1
) and (𝑦′

𝑖+1
, 𝑦′′

𝑖+1
). The following case distinction are made for

the definition of 𝑢′
𝑖+1

. Note that since (𝑢𝑖+1 , 𝑢
′′
𝑖+1
) ∈ 𝑅𝑖 ≠ ∅, it follows that, in each case distinction, a

node in 𝑉′ that satisfies the description always exists.

• 𝐵𝑖𝑔 = 𝐵𝑖𝑔′ = ∅. Let 𝑢′
𝑖+1

be a node in 𝑉′ such that (𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝑅𝑖𝑔 and (𝑢′

𝑖+1
, 𝑢′′

𝑖+1
) ∈ 𝑅𝑖𝑔′ .

• 𝐵𝑖𝑔 , 𝐵𝑖𝑔′ ≠ ∅. Let 𝑢′
𝑖+1

be a node in 𝑉′ such that (𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝑅𝑖𝑔 and (𝑢′

𝑖+1
, 𝑢′′

𝑖+1
) ∈ 𝐵𝑖𝑔′ ∪ 𝑅𝑖𝑔′ , or

(𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝐵𝑖𝑔 ∪ 𝑅𝑖𝑔 and (𝑢′

𝑖+1
, 𝑢′′

𝑖+1
) ∈ 𝑅𝑖𝑔′ .

• 𝐵𝑖𝑔 = ∅, 𝐵𝑖𝑔′ ≠ ∅. Let 𝑢′
𝑖+1

be a node in 𝑉′ such that (𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝑅𝑖𝑔 and (𝑢′

𝑖+1
, 𝑢′′

𝑖+1
) ∈ 𝐵𝑖𝑔′ ∪ 𝑅𝑖𝑔′ .

• 𝐵𝑖𝑔 ≠ ∅, 𝐵𝑖𝑔′ = ∅. Let 𝑢′
𝑖+1

be a node in 𝑉′ such that (𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝐵𝑖𝑔 ∪ 𝑅𝑖𝑔 and (𝑢′

𝑖+1
, 𝑢′′

𝑖+1
) ∈ 𝑅𝑖𝑔′ .

Now we update (𝑥, 𝑥′) and (𝑦′, 𝑦′′)with the help of 𝑢′
𝑖+1

.

(𝑥𝑖+1 , 𝑥
′
𝑖+1
) :=

{
(𝑢𝑖+1 , 𝑢

′
𝑖+1
), (𝑢𝑖+1 , 𝑢

′
𝑖+1
) ∈ 𝑅𝑖𝑔

(𝑥𝑖 , 𝑥′𝑖), (𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝐵𝑖𝑔\𝑅𝑖𝑔 ,

(𝑦′𝑖+1
, 𝑦′′𝑖+1
) :=

{
(𝑢′
𝑖+1
, 𝑢′′

𝑖+1
), (𝑢′

𝑖+1
, 𝑢′′

𝑖+1
) ∈ 𝑅𝑖𝑔′

(𝑦′
𝑖
, 𝑦′′

𝑖
), (𝑢′

𝑖+1
, 𝑢′′

𝑖+1
) ∈ 𝐵𝑖𝑔′\𝑅𝑖𝑔′ .

Now we show that if 𝑎)-𝑐) are true for 𝑖 = 𝑛, then they are also true for 𝑖 = 𝑛 + 1. Suppose 𝑎)-𝑑) are

true for 𝑖 = 𝑛. We only show the first half of each statement since the argument for the other half is

complete analoguous.

a) We make the following two case distinctions.

i. (𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝑅𝑖𝑔 . In this case, (𝑥𝑖+1 , 𝑥

′
𝑖+1
) = (𝑢𝑖+1 , 𝑢

′
𝑖+1
). Since (𝑢𝑖+1 , 𝑢

′
𝑖+1
) ∈ 𝑅𝑖𝑔 ⊆ 𝑁𝑔 , it

follows that (𝑥𝑖+1 , 𝑥
′
𝑖+1
) ∈ 𝑁𝑔 .

ii. (𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝐵𝑖𝑔\𝑅𝑖𝑔 . By the induction hypothesis, (𝑥𝑖 , 𝑥′𝑖) ∈ 𝑁𝑔 , and (𝑥𝑖+1 , 𝑥

′
𝑖+1
) = (𝑥𝑖 , 𝑥′𝑖) ∈

𝑁𝑔 .

b) Suppose (𝑥𝑖+1 , 𝑥
′
𝑖+1
) ≠ (𝑢𝑖+1 , 𝑢

′
𝑖+1
), then (𝑥𝑖+1 , 𝑥

′
𝑖+1
) = (𝑥𝑖 , 𝑥′𝑖) and (𝑢𝑖+1 , 𝑢

′
𝑖+1
) ∈ 𝐵𝑖𝑔\𝑅𝑖𝑔 . The latter

implies that 𝐵𝑖𝑔 ≠ ∅. This means that 𝐵𝑖+1

𝑔 = 𝐵𝑔(𝑥𝑖+1 , 𝑥
′
𝑖+1
) = 𝐵𝑔(𝑥𝑖 , 𝑥′𝑖) = 𝐵𝑖𝑔 ≠ ∅.

c) Suppose 𝐵𝑖+1

𝑔 ≠ ∅. In other words, 𝐵𝑔(𝑥𝑖+1 , 𝑥
′
𝑖+1
) ≠ ∅. By the definition of admissible moves, this

means that (𝑥𝑖+1 , 𝑥
′
𝑖+1
) ∈ 𝐵𝑔(𝑥𝑖+1 , 𝑥

′
𝑖+1
). We make the following two case distinctions.

i. (𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝑅𝑖𝑔 . In this case, (𝑥𝑖+1 , 𝑥

′
𝑖+1
) = (𝑢𝑖+1 , 𝑢

′
𝑖+1
). Then

(𝑢𝑖+1 , 𝑢
′
𝑖+1
) = (𝑢𝑖+1 , 𝑢

′
𝑖+1
) ∈ 𝐵𝑔(𝑥𝑖+1 , 𝑥

′
𝑖+1
) = 𝐵𝑖+1

𝑔

ii. (𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝐵𝑖𝑔\𝑅𝑖𝑔 . In this case, (𝑥𝑖+1 , 𝑥

′
𝑖+1
) = (𝑥𝑖 , 𝑥′𝑖). Then

(𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝐵𝑖𝑔 = 𝐵𝑔(𝑥𝑖 , 𝑥′𝑖) = 𝐵𝑔(𝑥𝑖+1 , 𝑥

′
𝑖+1
) = 𝐵𝑖+1

𝑔 .

Correctness. We claim that the strategy we have just described is a winning strategy. We have already shown

that this strategy provides an admissible move at any reachable position where it is ∃’s turn to move. What

is left to show is that the game always ends within finitely many steps. We show this by pointing out that(
(𝑥𝑖 , 𝑥′𝑖), (𝑦

′
𝑖
, 𝑦′′

𝑖
)
)
𝑖 applicable

forms a strictly decreasing sequence in terms of <𝐺𝑔 ,𝐺𝑔′ .

Since both 𝑔 and 𝑔′ are winning strategies for ∃, as we have observed before, both 𝐺𝑔 and 𝐺𝑔′ are

acyclic. By definition, (𝑧, 𝑧′) <𝐺𝑔 (𝑤, 𝑤′) for all (𝑧, 𝑧′), (𝑤, 𝑤′) ∈ 𝑁𝑔 such that (𝑤, 𝑤′)𝑅𝑔(𝑧, 𝑧′). Recall that

𝑅𝑖𝑔 := 𝑅𝑔(𝑥𝑖 , 𝑥′𝑖). When comparing (𝑥𝑖+1 , 𝑥
′
𝑖+1
) and (𝑥𝑖 , 𝑥′𝑖), we distinguish the following two cases.

62 5 Definition 4: Properties and Bisimilarity Game

1. If (𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝑅𝑖𝑔 , then (𝑢𝑖+1 , 𝑢

′
𝑖+1
) ∈ 𝑅𝑔 , and therefore, (𝑥𝑖+1 , 𝑥

′
𝑖+1
) <𝐺𝑔 (𝑥𝑖 , 𝑥′𝑖).

2. If (𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝐵𝑖𝑔\𝑅𝑖𝑔 , then (𝑥𝑖+1 , 𝑥

′
𝑖+1
) = (𝑥𝑖 , 𝑥′𝑖), which implies (𝑥𝑖+1 , 𝑥

′
𝑖+1
) =𝐺𝑔 (𝑥𝑖 , 𝑥′𝑖).

Similarly, we can deduce that

3. If (𝑢′
𝑖+1
, 𝑢′′

𝑖+1
) ∈ 𝑅𝑖𝑔′ , then (𝑦′

𝑖+1
, 𝑦′′

𝑖+1
) <𝐺𝑔′ (𝑦′𝑖 , 𝑦

′′
𝑖
).

4. If (𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝐵𝑖𝑔′\𝑅𝑖𝑔′ , then (𝑦′

𝑖+1
, 𝑦′′

𝑖+1
) =𝐺𝑔′ (𝑦′𝑖 , 𝑦

′′
𝑖
).

Finally, observe that, due to the definition of𝑅𝑖 , for all applicable 𝑖, either (𝑢𝑖+1 , 𝑢
′
𝑖+1
) ∈ 𝑅𝑖𝑔 or (𝑢′

𝑖+1
, 𝑢′′

𝑖+1
) ∈ 𝑅𝑖𝑔′ .

Summarizing these facts, we have arrive at the conclusion that, for all 𝑖,(
(𝑥𝑖+1 , 𝑥

′
𝑖+1
), (𝑦′𝑖+1

, 𝑦′′𝑖+1
)
)
<𝐺𝑔 ,𝐺𝑔′

(
(𝑥𝑖 , 𝑥′𝑖), (𝑦

′
𝑖 , 𝑦
′′
𝑖)
)
.

Since <𝐺𝑔 ,𝐺𝑔′ is well-founded, the match ends after finitely many steps.

Conclusion and Future Work 6
This thesis is an investigation into how to define the notion of bisimulations over parity formulas. We provided

and argued for a list of criteria against which we could judge how good such a definition is. In general, a

notion of bisimulation should be sound, closed under union and composition, easily decidable and as close

to being complete as possible. It should also guarantee the existence of a largest bisimulation, namely the

bisimilarity relation. Particular to the situation with parity formulas, a good bisimulation should also have a

’relative flavor’ in its handling of the priority condition. We proposed four definitions of bisimulations over

parity formulas and evaluated them according to those criteria. We especially argued for Definition 4 to be

the best by far, since it satisfies all qualitative criteria and lies in a relatively good position on the ’spectrum of

completeness’. We also provided an adequate bisimilarity game for Definition 4 which makes it easier to

work with the notion.

In terms of future work, it would be interesting to look into whether Definition 4 could give us a way to take

quotients of, or minimize, parity formulas. It also remains to be investigated what notion of equivalence it

would give us if we call two 𝜇ML formulas equivalent if their parity formula translation are bisimilar. Given

the close relation among parity formulas, parity games and parity automata, it would not be surprising if

Definition 4 could be translated to the setting of the latter two.

Recall that, in Section 4 of [6], the authors implemented a sound definition of bisimulation over parity games,

utilizing the idea of power bisimulation [7]. In a power bisimulation, for two nodes to be bisimilar, it is

not enough for their successors to satisfy the canonical ’zig-zag’ condition, but rather, there must be for

both nodes in question a particular set of nodes that together satisfy the ’zig-zag’ condition. It is left to be

investigated whether we can employ power bisimulation similarly to provide a notion of bisimulation over

parity formulas.

The final note is on a more conceptual level. Note that the best notion we have come up with so far uses

inductive definition and a non-trivial base case. It is not clear how the base case itself could be represented

in an inductive or co-inductive way. This goes against the strong association between bisimulation and

co-induction. What this shows is that parity formulas are not coalgebras and the priority condition of parity

formulas is intrinsically a global condition. More works needs to be done to capture the essence of such

structures, whose winning/accepting condition has a global flavor.

Appendix

A
Example for Semantics of Parity Formulas

Consider the parity formula 𝔾 shown in Example 2.1. As we have mentioned, this parity formula is equivalent

to the modal 𝜇-formula 𝜇𝑥.□𝑥∨ 𝑝. The latter is usually interpreted to mean ’on any infinite path, 𝑝 eventually

holds. Consider pointed Kripke models

𝕊1 = (𝑆1 = {𝑎, 𝑏}, 𝑉1 = {(𝑝, {𝑏})}, 𝑅1 = {(𝑎, 𝑏), (𝑏, 𝑎)})

and

𝕊2 = (𝑆2 = {𝑐, 𝑑}, 𝑉2 = ∅, 𝑅2 = {(𝑐, 𝑑), (𝑑, 𝑐)}).

We show E(𝔾, (𝕊1 , 𝑎)) and E(𝔾, (𝕊2 , 𝑐)) as follows.

This is the start position (𝑤, 𝑎) for E(𝔾, (𝕊1 , 𝑎)).

𝜖 |0

∨

□ 𝑝

𝑤

𝑥

𝑦 𝑧

• 𝑝

𝕊1

𝑎 𝑏

Since 𝐿(𝑤) = 𝜖, by definition it is neither

of the players’ turn and the token moves on

automatically to the only legitimate successor

(𝑥, 𝑎).

𝜖 |0

∨

□ 𝑝

𝑤

𝑥

𝑦 𝑧

• 𝑝

𝕊1

𝑎 𝑏

Since 𝐿(𝑥) = ∨, it is ∃’s turn, and she can

choose to move the token to (𝑦, 𝑎) or (𝑧, 𝑎).
Note that (𝑧, 𝑎) is a dead end. Since 𝐿(𝑧) = 𝑝

and 𝑎 ∉ 𝑉(𝑝), it follows that it is ∃’s turn

again at (𝑧, 𝑎). This means that ∃ will lose

immediately for being stuck. So any winning

strategy 𝑓 , if there is any, will suggests that ∃
goes to (𝑦, 𝑎). So the token moves to (𝑦, 𝑎).

68 A Example for Semantics of Parity Formulas

𝜖 |0

∨

□ 𝑝

𝑤

𝑥

𝑦 𝑧

• 𝑝

𝕊1

𝑎 𝑏
Since 𝐿(𝑦) = □, it follows that it is ∀’s turn

now. Note that (𝑦, 𝑎) has only one successor

(𝑤, 𝑏), so ∀ moves the token to (𝑤, 𝑏).

𝜖 |0

∨

□ 𝑝

𝑤

𝑥

𝑦 𝑧

• 𝑝

𝕊1

𝑎 𝑏

Since 𝐿(𝑤) = 𝜖, by definition it is neither

of the players’ turn and the token moves on

automatically to the only legitimate successor

(𝑥, 𝑏).

𝜖 |0

∨

□ 𝑝

𝑤

𝑥

𝑦 𝑧

• 𝑝

𝕊1

𝑎 𝑏

Since 𝐿(𝑥) = ∨, it is ∃’s turn, and she can

choose to move the token to (𝑦, 𝑏) or (𝑧, 𝑏).
Note that (𝑧, 𝑏) is a dead end. Since 𝐿(𝑧) = 𝑝

and 𝑏 ∈ 𝑉(𝑝), it follows that it is ∀’s turn

again at (𝑧, 𝑏). This means that at (𝑧, 𝑏), ∃ will

win immediately for making ∀ stuck.

𝜖 |0

∨

□ 𝑝

𝑤

𝑥

𝑦 𝑧

• 𝑝

𝕊1

𝑎 𝑏

So ∃ moves the token to (𝑧, 𝑏) and wins.

This analysis shows that 𝕊1 , 𝑎 |= 𝔾. This fits our expectation because 𝕊1 , 𝑎 |= 𝜇𝑥.□𝑥 ∨ 𝑝.

Now let us look at E(𝔾, (𝕊2 , 𝑐)).

69

Following is the start position (𝑤, 𝑐) for

E(𝔾, (𝕊2 , 𝑐)). Since 𝐿(𝑤) = 𝜖, by definition

it is neither of the players’ turn and the token

moves on automatically to the only legitimate

successor (𝑥, 𝑐).

𝜖 |0

∨

□ 𝑝

𝑤

𝑥

𝑦 𝑧

• •

𝕊2

𝑐 𝑑

Since 𝐿(𝑥) = ∨, it is ∃’s turn, and she can

choose to move the token to (𝑦, 𝑐) or (𝑧, 𝑐).
Note that (𝑧, 𝑐) is a dead end. Since 𝐿(𝑧) = 𝑝

and 𝑐 ∉ 𝑉(𝑝), it follows that it is ∃’s turn

again at (𝑧, 𝑐). This means that ∃ will lose

immediately for being stuck. So any winning

strategy 𝑓 , if there is any, will suggests that ∃
goes to (𝑦, 𝑐). So the token moves to (𝑦, 𝑐).

𝜖 |0

∨

□ 𝑝

𝑤

𝑥

𝑦 𝑧

• •

𝕊2

𝑐 𝑑

Since 𝐿(𝑦) = □, it follows that it is ∀’s turn

now. Note that (𝑦, 𝑐) has only one successor

(𝑤, 𝑑), so ∀ moves the token to (𝑤, 𝑑).

𝜖 |0

∨

□ 𝑝

𝑤

𝑥

𝑦 𝑧

• •

𝕊2

𝑐 𝑑

Since 𝐿(𝑤) = 𝜖, by definition it is neither

of the players’ turn and the token moves on

automatically to the only legitimate successor

(𝑥, 𝑑).

𝜖 |0

∨

□ 𝑝

𝑤

𝑥

𝑦 𝑧

• •

𝕊2

𝑐 𝑑

70 A Example for Semantics of Parity Formulas

Since 𝐿(𝑥) = ∨, it is ∃’s turn, and she can

choose to move the token to (𝑦, 𝑑) or (𝑧, 𝑑).
Note that (𝑧, 𝑑) is a dead end. Since 𝐿(𝑧) = 𝑝

and 𝑑 ∉ 𝑉(𝑝), it follows that it is ∃’s turn

again at (𝑧, 𝑑). This means that ∃ will lose

immediately for being stuck. So any winning

strategy 𝑓 , if there is any, will suggests that ∃
goes to (𝑦, 𝑑). So the token moves to (𝑦, 𝑑).

𝜖 |0

∨

□ 𝑝

𝑤

𝑥

𝑦 𝑧

• •

𝕊2

𝑐 𝑑

Since 𝐿(𝑦) = □, it follows that it is ∀’s turn

now. Note that (𝑦, 𝑑) has only one successor

(𝑤, 𝑐), so the ∀ moves the token to (𝑤, 𝑐).

𝜖 |0

∨

□ 𝑝

𝑤

𝑥

𝑦 𝑧

• •

𝕊2

𝑐 𝑑

Note that now we are at the starting position

again, and ∃ has no way to break out from

this repetition without losing. Also note that

the only priority visited in this repetition is 0.

𝜖 |0

∨

□ 𝑝

𝑤

𝑥

𝑦 𝑧

• •

𝕊2

𝑐 𝑑

This means that ∀ (player 0) can force an infinite match where the biggest priority visited infinitely many

times is 0. This means that ∀ ,instead of ∃, has a winning strategy at (𝑤, 𝑐), and thus 𝕊2 , 𝑐 ̸ |= 𝔾. This fits our

prediction because 𝕊2 , 𝑐 ̸ |= 𝜇𝑥.□𝑥 ∨ 𝑝.

B
Example for Composing Winning Strategies

As an example of how the construction in Proposition 5.16 works, we revisit 𝔾, 𝔾′ and 𝔾′′ from Example

5.1, and illustrate how to build a winning strategy for ∃ in B(𝔾,𝔾′′)@(𝑏, 𝑧′′) using 𝑔A𝔾,𝔾′ (𝑔 for short) and

𝑔A𝔾′ ,𝔾′′ (𝑔′ for short) as the positional winning strategy in B(𝔾,𝔾′′)@(𝑏, 𝑥′) and B(𝔾′,𝔾′′)@(𝑥′, 𝑧′′). Figure

B.1, B.2, B.3 and B.4 show the positions of the token (𝑥, 𝑥′), (𝑦′, 𝑦′′), (𝑢, 𝑢′′) and the helper node 𝑢′, as well as

where the two shadow tokens are located with respect to the strategy graph of the two positional winning

strategy.

INIT: ∃ sets 𝑥0 := 𝑏, 𝑥′
0
= 𝑦′

0
:= 𝑥′, 𝑦′′

0
:= 𝑧′′ and 𝑢′

0
= 𝑥′. Note that in the begining of the the main game,

𝑢0 = 𝑏 and 𝑢′′
0
= 𝑧′′. This is shown in Figure B.1.

Step 1:

PLAY∃: Since 𝐵0

𝑔 = 𝐵𝑔(𝑥0 , 𝑥
′
0
) = ∅ and 𝐵0

𝑔′ = 𝐵𝑔′(𝑦′
0
, 𝑦′′

0
) = ∅, ∃moves the token to (∅, 𝑅0), where

𝑅0

:= 𝑅0

𝑔 ;𝑅
0

𝑔′ = {(𝑎, 𝑎′)}; {(𝑎, 𝑦′′)} = {(𝑎, 𝑦′′)}.

PLAY∀: Since 𝑅0
is a singleton, ∀ has no choice but move the token to its only element, (𝑎, 𝑦′′). This means

that 𝑢1 = 𝑎 and 𝑢′′
1
= 𝑦′′.

UPDATE: Since 𝐵0

𝑔 = 𝐵0

𝑔′ = ∅, ∃ needs to find 𝑢′
1

such that (𝑎, 𝑢′
1
) ∈ 𝑅0

𝑔 = {(𝑎, 𝑎′)} and (𝑢′
1
, 𝑎′′) ∈ 𝑅0

𝑔′ =

{(𝑎′, 𝑦′′)}. It is easy to see that it has to be the case that 𝑢′
1
= 𝑎′. Since (𝑢1 , 𝑢

′
1
) = (𝑎, 𝑎′) ∈ 𝑅0

𝑔 and

(𝑢′
1
, 𝑢′′

1
) = (𝑎′, 𝑦′′) ∈ 𝑅0

𝑔′ , we let (𝑥1 , 𝑥
′
1
) := (𝑢1 , 𝑢

′
1
) = (𝑎, 𝑎′) and (𝑦′

1
, 𝑦′′

1
) := (𝑢′

1
, 𝑢′′

1
) = (𝑎′, 𝑦′′).

This is shown in Figure B.2.

Step 2:

PLAY∃: Since 𝐵1

𝑔 = 𝐵𝑔(𝑥1 , 𝑥
′
1
) ≠ ∅ and 𝐵1

𝑔′ = 𝐵𝑔′(𝑦′
1
, 𝑦′′

1
) = ∅, ∃moves the token to (∅, 𝑅1), where

𝑅1

:= (𝐵1

𝑔 ∪ 𝑅1

𝑔);𝑅1

𝑔′ = {(𝑎, 𝑎′), (𝑏, 𝑏′)}; {(𝑏′, 𝑥′′)} = {(𝑏, 𝑥′′)}.

PLAY∀: Since 𝑅1
is a singleton, ∀ has no choice but move the token to its only element, (𝑏, 𝑥′′). This means

that 𝑢2 = 𝑏 and 𝑢′′
2
= 𝑥′′.

UPDATE: Since 𝐵1

𝑔 ≠ ∅ and 𝐵1

𝑔′ = ∅, ∃ needs to find 𝑢′
2

such that (𝑢2 = 𝑏, 𝑢′
1
) ∈ 𝐵1

𝑔 ∪ 𝑅1

𝑔 = {(𝑎, 𝑎′), (𝑏, 𝑏′)}
and (𝑢′

2
, 𝑢′′

2
= 𝑥′′) ∈ 𝑅1

𝑔′ = {(𝑏′, 𝑥′′)}. It is easy to see that it has to be the case that 𝑢′
2
= 𝑏′. Since

(𝑢2 , 𝑢
′
2
) = (𝑏, 𝑏′′) ∈ 𝐵1

𝑔\𝑅1

𝑔 , it follows that (𝑥2 , 𝑥
′
2
) := (𝑥1 , 𝑥

′
1
) = (𝑎, 𝑎′). Since (𝑢′

2
, 𝑢′′

2
) = (𝑏′, 𝑥′′) ∈

𝑅1

𝑔′ , it follows that (𝑦′
2
, 𝑦′′

2
) := (𝑢′

2
, 𝑢′′

2
) = (𝑏′, 𝑥′′). This is shown in Figure B.3.

Step 3:

PLAY∃: Since 𝐵2

𝑔 = 𝐵𝑔(𝑥2 , 𝑥
′
2
) ≠ ∅ and 𝐵2

𝑔′ = 𝐵𝑔′(𝑦′
2
, 𝑦′′

2
) = ∅, ∃moves the token to (∅, 𝑅2), where

𝑅2

:= (𝐵2

𝑔 ∪ 𝑅2

𝑔);𝑅2

𝑔′ = {(𝑎, 𝑎′), (𝑏, 𝑏′)}; {(𝑎′, 𝑎′′)} = {(𝑎, 𝑎′′)}.

PLAY∀: Since 𝑅2
is a singleton, ∀ has no choice but move the token to its only element, (𝑎, 𝑎′′). This means

that 𝑢3 = 𝑎 and 𝑢′′
3
= 𝑎′′.

72 B Example for Composing Winning Strategies

𝜖 |0

𝜖 |1

𝜖 |0

𝜖 |1

𝜖

𝑎

𝑥0 =𝑢0 =𝑏

𝑎′

𝑏′

𝑥′
0
= 𝑦′

0
=𝑢′

0
=𝑥′

𝔾 𝔾′

𝜖 |0

𝜖 |1

𝜖

𝜖

𝜖

𝑎′′

𝑏′′

𝑦′′

𝑦′′
0
=𝑢′′

0
=𝑧′′

𝑥′′

𝔾′′

(b, x′);∅

(𝑎, 𝑎′); {(𝑎, 𝑎′), (𝑏, 𝑏′)}

(x′, z′′);∅

(𝑎′, 𝑦′′);∅

(𝑏′, 𝑥′′);∅

(𝑎′, 𝑎′′); {(𝑎′, 𝑎′′), (𝑏′, 𝑏′′)}

𝐺𝑔

𝐺𝑔′

Figure B.1: Composition: INIT

𝜖 |0

𝜖 |1

𝜖 |0

𝜖 |1

𝜖

𝑥1 =𝑢1 =𝑎

𝑏

𝑥′
1
= 𝑦′

1
=𝑢′

1
=𝑎′

𝑏′

𝑥′

𝔾 𝔾′

𝜖 |0

𝜖 |1

𝜖

𝜖

𝜖

𝑎′′

𝑏′′

𝑦′′
1
=𝑢′′

1
=𝑦′′

𝑧′′

𝑥′′

𝔾′′

(𝑏, 𝑥′);∅

(a, a′); {(𝑎, 𝑎′), (𝑏, 𝑏′)}

(𝑥′, 𝑧′′);∅

(a′, y′′);∅

(𝑏′, 𝑥′′);∅

(𝑎′, 𝑎′′); {(𝑎′, 𝑎′′), (𝑏′, 𝑏′′)}

𝐺𝑔

𝐺𝑔′

Figure B.2: Composition: step 1

73

𝜖 |0

𝜖 |1

𝜖 |0

𝜖 |1

𝜖

𝑥2 =𝑎

𝑢2 =𝑏

𝑥′
2
=𝑎′

𝑦′
2
=𝑢′

2
=𝑏′

𝑥′

𝔾 𝔾′

𝜖 |0

𝜖 |1

𝜖

𝜖

𝜖

𝑎′′

𝑏′′

𝑦′′

𝑧′′

𝑦′′
2
=𝑢′′

2
=𝑥′′

𝔾′′

(𝑏, 𝑥′);∅

(a, a′); {(𝑎, 𝑎′), (𝑏, 𝑏′)}

(𝑥′, 𝑧′′);∅

(𝑎′, 𝑦′′);∅

(b′, x′′);∅

(𝑎′, 𝑎′′); {(𝑎′, 𝑎′′), (𝑏′, 𝑏′′)}

𝐺𝑔

𝐺𝑔′

Figure B.3: Composition: step 2

UPDATE: Since 𝐵2

𝑔 ≠ ∅ and 𝐵2

𝑔′ = ∅, ∃ needs to find 𝑢′
3

such that (𝑢3 = 𝑎, 𝑢′
3
) ∈ 𝐵2

𝑔 ∪ 𝑅2

𝑔 = {(𝑎, 𝑎′), (𝑏, 𝑏′)}
and (𝑢′

3
, 𝑢′′

3
= 𝑎′′) ∈ 𝑅2

𝑔′ = {(𝑎′, 𝑎′′)}. It is easy to see that it has to be the case that 𝑢′
2
= 𝑎′. Since

(𝑢3 , 𝑢
′
3
) = (𝑎, 𝑎′) ∈ 𝐵1

𝑔\𝑅1

𝑔 , it follows that (𝑥3 , 𝑥
′
3
) := (𝑥2 , 𝑥

′
2
) = (𝑎, 𝑎′). Since (𝑢′

3
, 𝑢′′

3
) = (𝑎′, 𝑎′′) ∈

𝑅2

𝑔′ , it follows that (𝑦′
3
, 𝑦′′

3
) := (𝑢′

3
, 𝑢′′

3
) = (𝑎′, 𝑎′′). This is shown in Figure B.4.

Step 4:

PLAY∃: Since 𝐵3

𝑔 = 𝐵𝑔(𝑥2 , 𝑥
′
2
) ≠ ∅ and 𝐵3

𝑔′ = 𝐵𝑔′(𝑦′
3
, 𝑦′′

3
) ≠ ∅, ∃moves the token to (𝐵3 , 𝑅3), where

𝐵3

:=𝐵3

𝑔 ; 𝐵
3

𝑔′

={(𝑎, 𝑎;), (𝑏, 𝑏′)}; {(𝑎′, 𝑎′′), (𝑏′, 𝑏′′)}
={(𝑎, 𝑎′′), (𝑏, 𝑏′′)}

𝑅3

:=(𝑅3

𝑔 ; (𝐵3

𝑔′ ∪ 𝑅3

𝑔′)) ∪ ((𝐵3

𝑔 ∪ 𝑅3

𝑔);𝑅3

𝑔′)
=(∅; (𝐵3

𝑔′ ∪ 𝑅3

𝑔′)) ∪ ((𝐵3

𝑔 ∪ 𝑅3

𝑔);∅)
=∅.

PLAY∀: Since 𝑅3
is a singleton, the set of admissible moves for ∀ is empty and ∀ loses for getting stuck.

74 B Example for Composing Winning Strategies

𝜖 |0

𝜖 |1

𝜖 |0

𝜖 |1

𝜖

𝑥3 =𝑢3 =𝑎

𝑏

𝑥′
3
= 𝑦′

3
=𝑢′

3
=𝑎′

𝑏′

𝑥′

𝔾 𝔾′

𝜖 |0

𝜖 |1

𝜖

𝜖

𝜖

𝑦′′
3
=𝑢′′

3
=𝑎′′

𝑏′′

𝑦′′

𝑧′′

𝑥′′

𝔾′′

(𝑏, 𝑥′);∅

(a, a′); {(𝑎, 𝑎′), (𝑏, 𝑏′)}

(𝑥′, 𝑧′′);∅

(𝑎′, 𝑦′′);∅

(𝑏′, 𝑥′′);∅

(a′, a′′); {(𝑎′, 𝑎′′), (𝑏′, 𝑏′′)}

𝐺𝑔

𝐺𝑔′

Figure B.4: Composition: step 3

Bibliography

[1] Dexter Kozen. ‘Results on the Propositional 𝜇-Calculus’. In: Theor. Comput. Sci. 27 (1983), pp. 333–354

(cited on pages 1, 29, 30).

[2] Clemens Kupke, Johannes Marti, and Yde Venema. ‘Size matters in the modal 𝜇-calculus’. In:

arXiv:2010.14430 (2022) (cited on page 1).

[3] Javier Esparza. Automata theory: An algorithmic approach (lecture notes). 2017 (cited on page 2).

[4] J. van Benthem. ‘Modal Correspondence Theory’. PhD thesis. University of Amsterdam, 1976 (cited on

page 2).

[5] Clemens Kupke, Johannes Marti, and Yde Venema. ‘Size Measures and Alphabetic Equivalence in the

𝜇-Calculus’. In: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS

’22. Haifa, Israel: Association for Computing Machinery, 2022. doi: 10.1145/3531130.3533339 (cited

on page 3).

[6] Christian Kissig and Yde Venema. ‘Complementation of coalgebra automata’. In: International Conference
on Algebra and Coalgebra in Computer Science. Springer. 2009, pp. 81–96 (cited on pages 3, 63).

[7] Johan Van Benthem. ‘Extensive games as process models’. In: Journal of logic, language and information
11.3 (2002), pp. 289–313 (cited on pages 3, 63).

[8] Sebastian Enqvist, Fatemeh Seifan, and Yde Venema. ‘Completeness for 𝜇-calculi: A coalgebraic

approach’. In: Annals of Pure and Applied Logic 170.5 (2019), pp. 578–641. doi: https://doi.org/10.

1016/j.apal.2018.12.004 (cited on page 3).

[9] Vincenzo Ciancia and Yde Venema. ‘Stream Automata Are Coalgebras’. In: Coalgebraic Methods
in Computer Science. Ed. by Dirk Pattinson and Lutz Schröder. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2012, pp. 90–108 (cited on page 3).

[10] R. Borbely, Kousha Etessami, and Thomas Wilke. ‘Fair Simulation Relations, Parity Games, and State

Space Reduction for Buechi Automata’. In: July 2001. doi: 10.1007/3-540-48224-5_57 (cited on

page 3).

[11] Carsten Fritz and Thomas Wilke. ‘Simulation relations for alternating parity automata and parity

games’. In: International Conference on Developments in Language Theory. Springer. 2006, pp. 59–70 (cited

on page 3).

[12] Christof Löding and Andreas Tollkötter. ‘State Space Reduction For Parity Automata’. In: 28th EACSL
Annual Conference on Computer Science Logic (CSL 2020). Ed. by Maribel Fernández and Anca Muscholl.

Vol. 152. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020, 27:1–27:16. doi: 10.4230/LIPIcs.CSL.2020.27

(cited on page 3).

[13] Yde Venema. Lectures on the modal 𝜇-calculus (lecture notes). 2020 (cited on pages 11, 13, 14, 18, 22, 30).

[14] Oliver Friedmann. ‘Recursive algorithm for parity games requires exponential time’. In: RAIRO-
Theoretical Informatics and Applications-Informatique Théorique et Applications 45.4 (2011), pp. 449–457

(cited on page 11).

[15] Clemens Kupke, Johannes Marti, and Yde Venema. ‘Succinct Graph Representations of 𝜇-Calculus

Formulas’. In: 30th EACSL Annual Conference on Computer Science Logic (CSL 2022). Ed. by Florin Manea

and Alex Simpson. Vol. 216. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,

Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 29:1–29:18. doi: 10.4230/LIPIcs.

CSL.2022.29 (cited on page 17).

https://doi.org/10.1145/3531130.3533339
https://doi.org/https://doi.org/10.1016/j.apal.2018.12.004
https://doi.org/https://doi.org/10.1016/j.apal.2018.12.004
https://doi.org/10.1007/3-540-48224-5_57
https://doi.org/10.4230/LIPIcs.CSL.2020.27
https://doi.org/10.4230/LIPIcs.CSL.2022.29
https://doi.org/10.4230/LIPIcs.CSL.2022.29

	Contents
	Introduction
	Why Parity Formulas?

	Why Parity Formulas?
	Why Bisimulations?

	Why Bisimulations?
	Related Work

	Related Work
	Outline of the Thesis

	Outline of the Thesis
	Preliminaries
	Modal -calculus

	Modal -calculus
	Syntax
	Graph Representations
	Algebraic Semantics for Modal -calculus
	Board Games

	Board Games
	Parity Games
	Game Semantics for modal -calculus
	Parity Formula

	Parity Formula
	Syntax
	Semantics
	From ML Formula to Parity Formula
	From Parity Formula to ML Formula
	Criteria and Evaluation
	Definition 1

	Definition 1
	Definition 2

	Definition 2
	Definition 3

	Definition 3
	Definition 4

	Definition 4
	Definition 3: Special cases
	Case 1: Morphism

	Case 1: Morphism
	Expansion as Morphism
	Case 2: Parity Formulas with One Cluster

	Case 2: Parity Formulas with One Cluster
	Definition 4: Properties and Bisimilarity Game
	Soundness

	Soundness
	Union

	Union
	Fixpoint Formulation & Decision Procedure

	Fixpoint Formulation & Decision Procedure
	Bisimilarity Game

	Bisimilarity Game
	Bisimilarity Game: Preliminaries
	Bisimilarity Game: Definition
	Bisimilarity Game: Strategy Graph
	Bisimilarity Game: Adequacy
	Composition

	Composition
	Conclusion and Future Work
	Appendix
	Example for Semantics of Parity Formulas
	Example for Composing Winning Strategies

	Bibliography

