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ABSTRACT. We generalize the (A, V)-canonical formulas of [3] to (A, V)-canonical rules, and prove
that each intuitionistic multi-conclusion consequence relation is axiomatizable by (A, V)-canonical
rules. This provides an intuitionistic analogue of [6], and is an alternative of [19]. It also yields a
convenient characterization of stable superintuitionistic logics introduced in [3].

The (A, V)-canonical formulas are analogues of the (A, —)-canonical formulas of [5], which are
the algebraic counterpart of Zakharyaschev’s canonical formulas for superintuitionistic logics (si-
logics for short). Consequently, stable si-logics are analogues of subframe si-logics. We introduce
cofinal stable intuitionistic multi-conclusion consequence relations and cofinal stable si-logics, thus
answering the question of what the analogues of cofinal subframe logics should be. This is done
by utilizing the (A,V,—)-reduct of Heyting algebras. We prove that every cofinal stable si-logic
has the finite model property, and that there are continuum many cofinal stable si-logics that are
not stable. We conclude with several examples showing the similarities and differences between the
classes of stable, cofinal stable, subframe, and cofinal subframe si-logics.

1. INTRODUCTION

Superintuitionistic logics (si-logics for short) are propositional logics extending the intuitionistic
propositional calculus IPC. Consistent si-logics are also known as intermediate logics as they are
exactly the logics situated between IPC and the classical propositional calculus CPC. By the
Godel translation, si-logics are closely related to modal logics extending S4. A detailed account of
si-logics and how they relate to modal logics can be found in [8].

Finding uniform axiomatizations for si-logics and modal logics has been a significant problem
in the area. First general results in this direction were obtained by Jankov [17, 18], de Jongh
[9], and Fine [13, 14]. They introduced formulas that provide a uniform axiomatization for large
classes of si-logics and transitive modal logics. Zakharyaschev [23, 24] generalized these results
by introducing canonical formulas, which axiomatize all si-logics and all transitive modal logics.
Jerabek [19] further generalized Zakharyaschev’s approach by defining canonical multi-conclusion
rules that axiomatize all intuitionistic multi-conclusion consequence relations and all transitive
modal multi-conclusion consequence relations.

The algebraic counterparts of Zakharyaschev’s canonical formulas for si-logics are the (A, —)-
canonical formulas of [5]. The (A, —)-canonical formula of a finite subdirectly irreducible (s.i.) Heyt-
ing algebra A fully describes the disjunction-free reduct of A, but describes the behavior of the
missing connective V only partially. In fact, the algebraic content of Zakharyaschev’s closed domain
condition (CDC) is encoded by D C A%, where the behavior of V is fully described. The (A, —)-
canonical formulas, though syntactically quite different, serve the same purpose as Zakharyaschev’s
canonical formulas in providing a uniform axiomatization of all si-logics.

One of the main technical tools in developing the theory of (A, —)-canonical formulas is Diego’s
theorem [10] that the disjunction-free reduct of Heyting algebras is locally finite. Another natural
locally finite reduct of Heyting algebras is the bounded lattice reduct. This suggests a different
approach to canonical formulas, which was developed in [3], where (A, V)-canonical formulas were
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introduced. The (A, V)-canonical formula of a finite s.i. Heyting algebra A fully describes the
bounded lattice reduct of A, and only partially the behavior of the missing connective —. In
this case the CDC is encoded by D C A2, where the behavior of — is described fully. As in the
(A, —)-case, the (A, V)-canonical formulas provide a uniform axiomatization of all si-logics.

If D = A2, then both (A,—)- and (A, V)-canonical formulas become equivalent to Jankov for-
mulas, and axiomatize splitting si-logics and their joins. If D = @&, then (A, —)-canonical formulas
axiomatize subframe and cofinal subframe si-logics, depending on whether or not the behavior of
negation is encoded in the formula [5]. If D = @, then (A, V)-canonical formulas axiomatize a new
class of logics, called stable si-logics [3]. Stable si-logics form a well-behaved class of logics having
the finite model property (FMP). Many natural si-logics are stable and there is a continuum of
stable si-logics.

Stable si-logics can be seen as the (A, V)-counterpart of subframe si-logics. But what is the
(A, V)-counterpart of cofinal subframe si-logics? As we pointed out above, for D = &, cofinal
subframe si-logics are axiomatized by (A, —,—)-canonical formulas, while subframe si-logics by
(A, —)-canonical formulas. It is only natural to introduce cofinal stable si-logics as the logics
axiomatized by (A,V,—)-canonical formulas when D = @&. For this we need to work with the
pseudocomplemented lattice reduct of Heyting algebras, instead of the bounded lattice reduct like
in the case of stable logics. Fortunately, the (A, V,—)-reduct of Heyting algebras is locally finite,
and hence the algebraic approach is applicable. However, the (A, V, —)-reduct of Heyting algebras
is much worse behaved than the (A, V)-reduct, which results in subtle differences between stable
si-logics and cofinal stable si-logics. For example, while stable si-logics are axiomatizable by stable
formulas, cofinal stable si-logics are not axiomatizable by cofinal stable formulas, instead cofinal
stable rules are required.

Because of this, we first generalize (A, V)-canonical formulas to (A, V)-canonical rules, which
axiomatize all intuitionistic multi-conclusion consequence relations. The (A, V)-canonical rules are
the intuitionistic counterpart of the stable canonical rules of [6], and are an alternative of Jefabek’s
canonical multi-conclusion rules [19]. We also indicate how to generalize (A, —)-canonical formulas
to (A, —)-canonical rules, which provide another uniform axiomatization of all intuitionistic multi-
conclusion consequence relations.

Next we generalize stable si-logics to intuitionistic stable multi-conclusion consequence relations,
prove that intuitionistic stable multi-conclusion consequence relations have the FMP, and utilize
(A, V)-canonical rules to give a convenient characterization of stable si-logics.

Finally, we generalize (A, V)-canonical rules to (A, V, —)-canonical rules, which give rise to cofinal
stable rules when D = @. We prove that cofinal stable rules axiomatize cofinal stable intuitionistic
multi-conclusion consequence relations and cofinal stable si-logics. However, the corresponding
formulas axiomatize a larger class of si-logics, properly containing the class of cofinal stable si-
logics. A characterization of this class and whether each logic in the class has the FMP remain
open problems.

The class of cofinal stable si-logics provides a new class of si-logics. It contains the class of all
stable si-logics, and we show that there are continuum many cofinal stable si-logics that are not
stable. We conclude the paper with several examples that indicate the similarities and differences
between the classes of stable, cofinal stable, subframe, and cofinal subframe si-logics.

2. INTUITIONISTIC MULTI-CONCLUSION CONSEQUENCE RELATIONS

In this section we recall multi-conclusion rules and multi-conclusion consequence relations. For
more details see [19, 16]. A multi-conclusion rule is an expression of the form I'/A, where I' and
A are finite sets of formulas.

Definition 2.1. An intuitionistic multi-conclusion consequence relation is a set S of multi-conclusion
rules such that
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(1) p/p€S.

(2) g = /Y eS.

(3) /o €S for each theorem ¢ of IPC.

(4) IfT/A €S, then T,T'/A, A" € S.

(5) IfT/A,p €S and T, /A €S, then /A € S.

(6) If T/A € S and s is a substitution, then s(I')/s(A) € S

We denote the least intuitionistic multi-conclusion consequence relation by Sypc, and the com-
plete lattice of multi-conclusion consequence relations extending Sypc by Ext(Sipc). For a set
R of multi-conclusion rules, let Sypc + R be the least intuitionistic multi-conclusion consequence
relation containing R. If § = Stpc + R, then we say that S is axiomatized by R.

Let Ext(IPC) be the complete lattice of si-logics. For an intuitionistic multi-conclusion conse-
quence relation S, let A(S) = {¢ : /¢ € S}, and for a si-logic L, let (L) = Sypc + {/¢ : ¢ € L}.
Then A : Ext(Stpc) — Ext(IPC) and ¥ : Ext(IPC) — Ext(Stpc) are order preserving maps such
that A(X(L)) = L for each L € Ext(IPC) and S D X(A(S)) for each S € Ext(Stpc). We say that
a si-logic L is aziomatized by a set R of multi-conclusion rules if L = A(Spc + R).

A Heyting algebra A wvalidates a multi-conclusion rule I'/A provided for every valuation v on A,
if v(y) =1 for all ¥ € I, then v(§) = 1 for some 6 € A. If A validates I'/A, we write A =T"/A. If
F'={¢1,....0n}, A ={¢1,...,¢¥n}, and ¢;(z) and ¢;(z) are the terms in the first-order language
of Heyting algebras corresponding to the ¢; and v, then A |=T'/A iff A is a model of the universal
sentence Vo (AiL; ¢i(z) = 1 — VJL,¢j(z) = 1). Consequently, intuitionistic multi-conclusion
consequence relations correspond to universal classes of Heyting algebras. It is well known (see,
e.g., [7, Thm. V.2.20]) that a class of Heyting algebras is a universal class iff it is closed under
isomorphisms, subalgebras, and ultraproducts.

On the other hand, si-logics correspond to equationally definable classes of Heyting algebras;
that is, models of the sentences Vx ¢(z) = 1 in the first-order language of Heyting algebras. It is
well known (see, e.g., [7, Thm. I1.11.9]) that a class of Heyting algebras is an equational class iff it
is a variety (that is, it is closed under homomorphic images, subalgebras, and products).

For an intuitionistic multi-conclusion consequence relation S, let U(S) be the universal class of
Heyting algebras corresponding to S, and for a universal class of Heyting algebras U, let S(U) be
the intuitionistic multi-conclusion consequence relation corresponding to Y. Then S(U(S)) = S
and U(S(U)) = U. This yields an isomorphism between Ext(Sppc) and the complete lattice U(HA)
of universal classes of Heyting algebras (ordered by reverse inclusion).

Similarly, for a si-logic L, let V(L) be the variety of Heyting algebras corresponding to L, and
for a variety V of Heyting algebras, let L()) be the si-logic corresponding to V. Then L(V(L)) = L
and V(L(V)) =V, yielding an isomorphism between Ext(IPC) and the complete lattice V(HA) of
varieties of Heyting algebras (ordered by reverse inclusion).

Under this correspondence, for an intuitionistic multi-conclusion consequence relation S, the
variety V(A(S)) corresponding to the si-logic A(S) is the variety generated by the universal class
Uus).

3. (A, V)-CANONICAL RULES

We generalize the (A, V)-canonical formulas of [3] to (A, V)-canonical rules, and show that each
intuitionistic multi-conclusion consequence relation is axiomatizable by (A, V)-canonical rules. This
provides an intuitionistic analogue of similar results in [6]. Our proofs are modifications of those
in [6, Sec. 5] and generalize those in [3, Sec. 3]. Therefore, we will only provide their sketches.

Definition 3.1. Let A be a finite Heyting algebra and let D C A%. For every a € A let p, be
a propositional letter, and define the (A,V)-canonical rule p(A, D) associated with A and D as
p(A, D) =T/A, where
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I'={po <> 0} U{p1 > 1}U
{Pave <+ pa Vpy | a,b € A} U
{Pany < pa Ny | a,b € A} U
{Pasb < pa = pv | (a,b) € D}

and

A ={pg <> pp | a,b € A with a # b}.

Proposition 3.2. Let A be a finite Heyting algebra, D C A2, and B be an arbitrary Heyting
algebra. Then B W~ p(A, D) iff there is a bounded lattice embedding h : A — B such that h(a —
b) = h(a) — h(b) for each (a,b) € D.

Proof. (Sketch) Suppose B [~ p(A, D) and let v be a valuation on B witnessing that B [~ p(A, D).
Then v(p) =1 for all ¢ € T" and v(d) # 1 for all 6 € A. It then follows that the map h: A — B
defined by h(a) = v(p,) for all @ € A is a bounded lattice embedding such that h(a — b) =
h(a) — h(b) for all (a,b) € D. Conversely, if h : A — B is a bounded lattice embedding such that
h(a — b) = h(a) — h(b) for each (a,b) € D, then the valuation v on B defined by v(p,) = h(a) for
all a € A witnesses that B [~ p(A, D). O

Proposition 3.3. If Stpc I/ T'/A, then there are finite Heyting algebras Ay ... Ay, and Dy ...D,,
with D; C A? for 1 < i < m, such that for each Heyting algebra B, we have B = T'/A iff there
is 1 < i < m and a bounded lattice embedding h : A; — B with h(a — b) = h(a) — h(b) for all
(CL, b) e D;.

Proof. (Sketch) Let Z be the set of all subformulas of formulas in I' U A. Then = is finite. Let n
be the cardinality of Z. Since the bounded lattice reduct of Heyting algebras is locally finite, up to
isomorphism, there are only finitely many pairs (A, D) satisfying the following two conditions:

(i) A is a finite Heyting algebra that is at most n-generated as a bounded distributive lattice

and A £ T'/A.
(ii)) D :={(v(p),v(v)) | ¢ = ¢ € E}, where v is a valuation on A witnessing A = I'/A.
If (A1,D1),...,(Am, Dy,) is their enumeration, then we show that this collection is as required.

Suppose B is a Heyting algebra with B = I'/A. If v is a valuation witnessing that B [~ I'/A, then
let A be the bounded sublattice of B generated by the set v[Z], and let D := {(v(p),v(¥)) | ¢ —
1 € 2}. Then (A, D) is up to isomorphism one of (A;, D;) and the inclusion from A to B gives rise
to a bounded lattice embedding h : A; — B such that h(a — b) = h(a) — h(b) for all (a,b) € D;.
Conversely, let h : A; — B be a bounded lattice embedding with h(a — b) = h(a) — h(b) for all
(a,b) € D;. Let v be the valuation on A; that gave rise to D; = {(v(¢),v(¥)) | ¢ = ¢ € £}. Then
how is a valuation on B witnessing that B = T'/A. O

Proposition 3.4. Every intuitionistic multi-conclusion consequence relation S is axiomatizable by
(A, V)-canonical rules. Moreover, if S is finitely axiomatizable, then it is aziomatizable by finitely
many (A, V)-canonical rules.

Proof. (Sketch) Suppose S = Sypc + {I'i/A; | i € I} with T';/A; € Sipc. For every I';/A; pick
(Aiys Diy)y -5 (A, D;,,.) according to Proposition 3.3. Then § = Srpc + {p(Ai;, D) |iel, 1<
J < mg}. O

Remark 3.5. The (A, —)-canonical formulas of [5] can also be generalized to (A, —)-canonical
rules. This yields a slightly different axiomatization of all intuitionistic multi-conclusion conse-
quence relations. Namely, let A be a finite Heyting algebra and let D C A2. For every a € A let
pa be a propositional letter, and define the (A, —,0)-canonical rule ((A, D) associated with A and
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D as ((A,D) =T/A, where
L' ={parp <> pa Ay | a,b € A} U

{Pasb <> pa — o | a,b € A}U

{pﬁa > Pq ’ a € A}U

{pa\/b < Pa V Dy | (a,b) € D}
and .

A ={ps <> | a,be Awith a # b}.

Then the results of [5] can be generalized to prove that each intuitionistic multi-conclusion con-
sequence relation S is axiomatizable by (A, —,0)-canonical rules. Moreover, if S is finitely ax-
iomatizable, then it is axiomatizable by finitely many (A, —,0)-canonical rules. In fact, the same
way (A, —)-canonical formulas are an algebraic counterpart of Zakharyaschev’s canonical formulas

for si-logics, (A, —)-canonical rules are an algebraic counterpart of Jefdbek’s canonical rules for
intuitionistic multi-conclusion consequence relations.

4. STABLE MULTI-CONCLUSION CONSEQUENCE RELATIONS

Let A be a finite Heyting algebra and let D C A2. Then there are two obvious extreme cases,
when D = A% and when D = @. If D = A2, then we call the (A, V)-canonical rule p(A, D) a Jankov
rule. As follows from [19, Sec. 6] (see also [6, Sec. 7]), Jankov rules axiomatize splittings and join
splittings in the lattice of all intuitionistic multi-conclusion consequence relations.

If D = @, then we call p(A, D) a stable rule and denote it by p(A). In this section we show that
stable rules axiomatize stable multi-conclusion consequence relations, thus generalizing the results
of [3, Sec. 6], and providing intuitionistic analogues of the results of [6, Sec. 7].

Definition 4.1.
(1) We call a class K of Heyting algebras stable provided for all Heyting algebras A, B, if A is
isomorphic to a bounded sublattice of B and B € K, then A € K.
(2) We call an intuitionistic multi-conclusion consequence relation S stable provided its corre-
sponding universal class U(S) is stable.

The next proposition is immediate from the previous section.

Proposition 4.2. Let A be a finite Heyting algebra. For every Heyting algebra B, we have B £
p(A) iff there is a bounded lattice embedding h : A — B.

Suppose B is a Heyting algebra, v is a valuation on B, and I' is a set of formulas. We write
v(l) = 1ifv(y) = 1forall y € T, and v(I") # 1 if v(y) # 1 for all v € . The next lemma
generalizes [3, Lem. 3.6].

Lemma 4.3. If a Heyting algebra B refutes a multi-conclusion rule T'/A, then there is a finite
Heyting algebra A such that A is a bounded sublattice of B and A refutes T'/A.

Proof. Since B [~ T'/A, there is a valuation vg on B such that vg(I') = 1 and vg(A) # 1. Let = be
the set of subformulas of formulas in 'UA, and let A be the bounded sublattice of B generated by
vp[Z]. Since = is finite and bounded distributive lattices are locally finite, we see that A is finite.
Therefore, A is a finite Heyting algebra, where a —4 b = \/{zx € A | a Az < b} for all a,b € A.
It is then easy to see that for all a,b € A, we have a -4 b < a -pbanda -4 b=a —p b
provided a —p b € A. Define the valuation v4 on A by va(p) = vg(p) for p € E and va(p) is
an arbitrary element of A otherwise. It is then straightforward that v4(¢) = vg(p) for all ¢ € E.
Thus, v4(T') = 14 and v4(A) # 14, and hence A = T/A. O

As an immediate corollary, we obtain that stable multi-conclusion consequence relations have
the FMP.
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Proposition 4.4. Fvery stable multi-conclusion consequence relation has the FMP.

Proof. Suppose S is a stable multi-conclusion consequence relation and S t/ I'/A. Then there is
B € U(S) with B [~ T'/A. By Lemma 4.3, there is a bounded lattice embedding A — B with A
finite and A £ I'/A. Since U(S) is stable, A € U(S). Thus, S has the FMP. O

We conclude this section by proving that stable multi-conclusion consequence relations are ex-
actly the multi-conclusion consequence relations that are axiomatizable by stable rules. This gen-
eralizes [3, Thm. 6.11] and is an intuitionistic analogue of [6, Thm. 7.3].

Proposition 4.5. An intuitionistic multi-conclusion consequence relation S is stable iff it is az-
tomatizable by stable rules.

Proof. First suppose that S is stable. We show that S = Sipc + {p(4) | A finite, A ¢ U(S)}.
Let B = S. If there is finite A € U(S) such that B [~ p(A), then by Proposition 4.2, there is a
bounded lattice embedding A — B. Since U(S) is stable, A € U(S), a contradiction. Therefore,
B E {p(A) | A finite, A & U(S)}. Conversely, if B |~ S, then there is a rule I'/A in § such
that B [~ I'/A. By Lemma 4.3, there is a finite Heyting algebra A such that A is a bounded
sublattice of B and A (£ I'/A. Therefore, A = S. By Proposition 4.2, B [~ p(A). Thus,
B}~ Sipc + {p(A) | A finite, A £ U(S)}.

Next suppose that S = Sgpc + {p(A4;) | ¢ € I}. Let A, B be Heyting algebras such that A is
isomorphic to a bounded sublattice of B and B € U(S). If A € U(S), then there is i € I such that
At~ p(A;). By Proposition 4.2, there is a bounded lattice embedding A; < A. Therefore, there is
a bounded lattice embedding A; < B, so applying Proposition 4.2 again yields B [~ p(A;). Thus,
B ¢ U(S), a contradiction. This shows that A € U(S), so U(S) is a stable class, and hence S is
stable. O

5. STABLE LOGICS

In the previous section we saw that stable multi-conclusion consequence relations provide a
generalization of stable si-logics introduced in [3]. As we will see now, stable multi-conclusion
consequence relations also aid in obtaining a number of convenient characterizations of stable si-
logics.

Recall from [3] that for a finite s.i. Heyting algebra A and D C A2, the (A, V)-canonical formula
associated with A and D is v(A,D) = AT - \/ A. If D = &, then v(A, D) is denoted by ~v(A),
and is called the stable formula associated with A.

A si-logic L is stable provided for arbitrary s.i. Heyting algebras A, B, if A is isomorphic to a
bounded sublattice of B and B |= L, then A = L. By [3, Sec. 6], stable si-logic have the FMP, and
a si-logic L is stable iff it is axiomatizable by stable formulas.

In [3, Thm. 6.3] it is proved that if A, B are s.i. Heyting algebras with A finite, then B [~ v(A)
iff A is isomorphic to a bounded sublattice of B. We show that in the theorem the condition that
B is s.i. can be weakened to B being well-connected.

Proposition 5.1. Let A, B be Heyting algebras with A finite and s.i. and B well-connected. Then
B = v(A) iff A is isomorphic to a bounded sublattice of B.

Proof. First suppose that A is isomorphic to a bounded sublattice of B. The same argument as in
the proof of [3, Thm. 6.3] shows that there is a valuation v on B refuting v(A) so that v(y) = 1p
for each v € T and v(9) # 1p for each § € A. Therefore, since B is well-connected and I'; A are
finite, v(AT) = A{v(v) : v €T} =1 and v(\/ A) = \/{v(0) : 6 € A} # 1p. Thus, B = v(A).

For the converse, we prove a stronger statement, that for an arbitrary B, from B [~ ~v(A) it
follows that A is isomorphic to a bounded sublattice of B.

Claim 5.2. Let A, B be Heyting algebras with A finite and s.i. If B I~ v(A), then A is isomorphic
to a bounded sublattice of B.
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Proof of claim. If B [ v(A), then by [3, Lem. 3.6], there is a finite Heyting algebra B’ such that
B’ is a bounded sublattice of B and B’ [~ v(A). By [3, Thm. 3.4], there is a homomorphic image
C of B’ and a bounded lattice embedding f : A — C. Since B’ is finite, applying [3, Lem. 6.2]
yields a bounded lattice embedding f’: A — B’. Thus, A is isomorphic to a bounded sublattice of
B. O

This completes the proof of the proposition. O

We are ready to prove the main result of the section. For a variety V of Heyting algebras, let
Vwe be the class of well-connected members of V.

Theorem 5.3. For a si-logic L and the corresponding variety V of Heyting algebras, the following
are equivalent:

(1) L is stable.
(2) L is axiomatizable by stable formulas.

(3) L is axiomatizable by stable rules.

(4) Ve is stable.

(5) V is generated by a stable universal class.
(6) V is generated by a stable class.

Proof. (1) < (2): This is proved in [3, Thm. 6.11].

(2) = (4): By (2), there is a family {A4; : @ € I} of finite s.i. Heyting algebras such that
L =TIPC+ {v(A;) : i € I}. Let A, B be Heyting algebras with B € V. and A isomorphic to a
bounded sublattice of B. Since bounded sublattices preserve well-connectedness, we see that A is
also well-connected. Therefore, it remains to prove that A € V. If not, then there is ¢ € I such that
A = v(4;). By Proposition 5.1, A; is isomorphic to a bounded sublattice of A. By transitivity, 4;
is isomorphic to a bounded sublattice of B. Since B is well-connected, applying Proposition 5.1
again yields B [~ v(4;), a contradiction. Thus, A € V..

(4) = (5): The class Vy. is universal since it is definable over V by the universal formula
Vey(zxVy=1— (x =1Vy=1)). By (4), Vi is stable. Since V,,. contains all s.i. members of V,
we see that V. generates V.

(5) = (6): This is obvious.

(6) = (2): Suppose that V is generated by a stable class K. First we show that L has the FMP.

Claim 5.4. If ¢ ¢ L, then there is a finite A € KC with A}~ ¢. In particular, L has the FMP.

Proof of claim. If ¢ ¢ L, then there is B € K with B [~ ¢. By [3, Lem. 3.6], there is a finite
Heyting algebra A such that A is a bounded sublattice of B and A }~ ¢. Since K is stable, A € K.
Thus, L has the FMP. O

Let L' = IPC + {y(A) | A is finite, s.i., and A ¢ V}. We claim that L = L'. By Claim 5.4, L
has the FMP, and by [3, Sec. 6], L' has the FMP. Therefore, it is sufficient to show that for each
finite s.i. Heyting algebra B, we have B |= L iff B |= L’. Suppose B is a finite s.i. Heyting algebra.
If B |£ L', then there is a finite s.i. Heyting algebra A ¢ V such that B [~ v(A).

Claim 5.5. v(A) € L.

Proof of claim. If v(A) ¢ L, then since V is generated by K, there is C' € K with C' }£ ~v(A).
By Claim 5.2, A is isomorphic to a bounded sublattice of C. Since K is stable, A € K, which
contradicts to A ¢ V. Thus, v(A) € L. O

By Claim 5.5, v(A) € L. Therefore, B £ L, showing that L' C L. Conversely, suppose that
B £ L. By definition, v(B) € L'. Since B [~ v(B), it follows that B [~ L'. This shows that L C L'.
Thus, L = L, which yields that L is axiomatizable by stable formulas.
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(3) = (5): Suppose L is axiomatizable by stable rules. Then there is a family {A4; : i € I} of
finite Heyting algebras such that L = A(S), where S = Stpc + {p(4i) | i € I}. Therefore, V is
generated by U(S), which by Proposition 4.5 is a stable universal class.

(5) = (3): Suppose V is generated by a stable universal class U. Let S be the intuitionistic
multi-conclusion consequence relation corresponding to Y. By Proposition 4.5, S = Sipc + {p(A) |
A finite, A ¢ U}. Therefore, since V is generated by U, we see that L = A(S). Thus, L is
axiomatizable by stable rules. O

Remark 5.6. Let L be a si-logic and let V be the corresponding variety of Heyting algebras. By
Theorem 5.3, L is stable iff V is generated by a stable class. This, however, does not mean that
Y itself is a stable class. In fact, the variety of all Heyting algebras is the only nontrivial stable
variety of Heyting algebras. This can be seen as follows. Suppose V is a nontrivial stable variety
of Heyting algebras. Since V is nontrivial, it contains the variety of Boolean algebras. Let A be an
arbitrary Heyting algebra, and let B(A) be the free Boolean extension of A (see, e.g., [1, Ch. V.4]).
Then B(A) is a Boolean algebra and A is isomorphic to a bounded sublattice of B(A). Therefore,
B(A) € V, and since V is stable, A € V. Thus, V is the variety of all Heyting algebras.

Remark 5.7. Let {A; : i € I} be a family of finite s.i Heyting algebras. Then IPC + {y(4;) | i €
A} = A(Stpc + {p(A;) | i € I}); that is, the si-logic axiomatized by the stable formulas {v(A;) :
i € I} is the same as the si-logic axiomatized by the corresponding stable rules {p(A;) : i € I'}. This
can be seen as follows. By [3, Thm. 6.3] and Proposition 4.2, for every s.i. Heyting algebra B, we
have B = v(4;) iff B = p(A;). Therefore, the universal class U corresponding to the intuitionistic
multi-conclusion consequence relation Sypc + {p(4;) | ¢ € I} and the variety V corresponding to
the si-logic IPC + {v(4;) | i« € A} contain the same s.i. members. Thus, V is generated by U,
yielding the result. As we will see in Remark 7.14, this does not generalize to a similar statement
about (A, V)-canonical formulas and (A, V)-canonical rules.

6. COFINAL STABLE MULTI-CONCLUSION CONSEQUENCE RELATIONS

While the theories of (A,V)- and (A, —)-canonical rules and formulas have many similarities,
there is one important difference. Namely, in the (A, —)-case, since — is preserved, preserving 0
implies preserving —. This is not true in the (A, V)-case. Therefore, in the (A, —)-case, when 0 is
preserved, putting D = @ yields cofinal subframe rules and formulas. To obtain subframe rules
and formulas, along with D = &, we also have to take out {p—, <> —p, : @ € A} from I'. Since in
the (A, V)-case {p-q <> —ps : a € A} is not part of I', by taking D = & we only obtain stable rules
and formulas, which are analogues of subframe rules and formulas. In order to obtain analogues
of cofinal subframe rules and formulas, we have to add {p-, <> —ps : @ € A} to I'. Thus, instead
of working with bounded distributive sublattices of Heyting algebras, we will have to work with
pseudocomplemented sublattices. This is what we do next.

We recall that a pseudocomplemented distributive lattice is a bounded distributive lattice L with
an additional unary operation — : L — L satisfying a A b = 0 iff a < —b (see, e.g., [1, Ch. VIII]).
Let PDLat be the class of pseudocomplemented distributive lattices. Clearly PDLat is contained in
the class DLat of bounded distributive lattices and contains the class HA of Heyting algebras.

It is well known that PDLat is a variety. We will require that PDLat is a locally finite variety.
Since we were unable to find a proof of this result in the literature, we give a proof of it below.

Theorem 6.1. PDLat is locally finite.

Proof. We utilize the criterion of local finiteness from [2, Thm. 3.7] stating that a variety V of
finite signature is locally finite iff for each n € N there is m(n) € N such that the cardinality
of all n-generated s.i. members of V is bounded above by m(n). It is well known (see, e.g., [1,
Thm. VIIL.5.1]) that s.i. members of PDLat are of the form B & 1, where B is a Boolean algebra
and —@1 is the operation of adjoining a new top. We claim that the cardinality of each n-generated
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s.i. A € PDLat is bounded above by m(n) = 22" + 1. Indeed, suppose A = B @ 1 is generated by
Ji,---,9n. Without loss of generality we may assume that ¢1,...,9, € B. Therefore, g1,...,9n
generate B as a Boolean algebra. Thus, the cardinality of B is bounded above by 22". This yields
that the cardinality of A is bounded above by 22" 4 1. Consequently, the criterion applies. O

We are ready to define cofinal stable classes of Heyting algebras and cofinal stable rules.

Definition 6.2.
(1) We call a class K of Heyting algebras cofinal stable provided for Heyting algebras A, B, if
A is isomorphic to a pseudocomplemented sublattice of B and B € IC, then A € K.
(2) Let A be a finite Heyting algebra. The cofinal stable rule associated with A is the rule
o(A) =T/A, where
I'= {po — 0} U
{Pavb <> pa Vipp | a,b € AYU
{Parb <> Pa Ay | a,b € AYU
{pﬂa <> Pa | ac A}

and A= {ps < py|abe A with a#b}.

Remark 6.3. There is no need to add p; <> 1 to I" because p—g <> =0 is contained in {p-q <> —py |
a€ A}.

Using that PDLat is locally finite, the statements and proofs of Section 4 generalize to the setting
of cofinal stable rules. Namely, Proposition 4.2 generalizes to the following proposition.

Proposition 6.4. Suppose A, B are Heyting algebras with A finite. Then B = o(A) iff A is
isomorphic to a pseudocomplemented sublattice of B.

Also, Proposition 4.5 generalizes to the following proposition.

Proposition 6.5. An intuitionistic multi-conclusion consequence relation S is axiomatizable by
cofinal stable rules iff the corresponding universal class U(S) of Heyting algebras is cofinal stable.

We leave the proofs out since they are virtually the same as the relevant proofs in Section 4, but
use local finiteness of PDLat instead of local finiteness of DLat.

Remark 6.6. Not only stable rules have an obvious generalization to cofinal stable rules, but also
(A, V)-canonical rules have an obvious generalization to (A, V,—)-canonical rules. Suppose A is a
finite Heyting algebra and D C A%. For every a € A let p, be a propositional letter, and define the
(A, V,—)-canonical Tule ((A, D) associated with A and D as 0(A, D) =T /A, where
I'={po +» 0}U

{Panb <> pa Ay | a;b € AU

{Pave <> pa Vipp | a,b € AU

{p-a > o |a€ AU

{pa—>b < Pa —7 Py | (a7b) € D}

and

A = {py <> pp | a,b € A with a # b}.
All proofs from Section 3 have an obvious translation to the (A, V,—)-setting by utilizing the
local finiteness of the pseudocomplemented bounded lattice reduct instead of the bounded lattice
reduct. Consequently, (A, V,—)-canonical rules provide yet another uniform axiomatization of all
intuitionistic multi-conclusion consequence relations.
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7. COFINAL STABLE LOGICS

The same way we generalized stable rules to cofinal stable rules, we can generalize stable formulas
to cofinal stable formulas. However, unlike the stable case, it is no longer true that cofinal stable
logics are axiomatizable by cofinal stable formulas. This mismatch is essentially due to the fact
that the analogue of [3, Lem. 6.2] fails for the (A, V, —)-reducts of Heyting algebras. Nevertheless,
we will show that cofinal stable logics are axiomatizable by cofinal stable rules.

Let A be a finite s.i. Heyting algebra, and let o(A) = I'/A be the cofinal stable rule associated
with A. We define the cofinal stable formula associated with A as §(A) = AT — V A. Then [3,
Thm. 3.4] has an obvious generalization to the following proposition.

Proposition 7.1. Let A, B be Heyting algebras with A finite and s.i. Then B [~ §(A) iff there is a
s.i. homomorphic image C of B such that A is isomorphic to a pseudocomplemented sublattice of

C.

If B is well-connected and we work with v(A) instead of §(A), then as is shown in Proposition 5.1,
the homomorphic image C can be omitted from the consideration. We will see that this is no longer
true if we work with §(A). However, one implication of the proposition remains true, with the same
proof.

Lemma 7.2. Let A, B be Heyting algebras with A finite and s.i. and B well-connected. If A is
isomorphic to a pseudocomplemented sublattice of B, then B I~ 6(A).

To see that the converse of Lemma 7.2 does not hold, we recall the representation theorem
for pseudocomplemented distributive lattices. Since pseudocomplemented distributive lattices are
situated between bounded distributive lattices and Heyting algebras, their representation is closely
related to the Priestley representation of bounded distributive lattices and the Esakia representation
of Heyting algebras.

We call a subset U of a (partially) ordered set X an upset if x € U and = < y imply y € U; we
define downsets dually. For U C X, let TU be the upset and JU be the downset generated by U.
If U = {«}, then we write Tx and |z, respectively. A Priestley space is a compact ordered space
X such that £ y implies that there is a clopen (closed and open) upset of X containing z and
missing y. A map between Priestley spaces is a Priestley morphism if it is continuous and order
preserving. By Priestley duality [20, 21], the category DLat of bounded distributive lattices and
bounded lattice homomorphisms is dually equivalent to the category Pries of Priestley spaces and
Priestley morphisms.

An FEsakia space is a Priestley space in which |U is open for each open set U. Amap f: X =Y
between Esakia spaces is an Fsakia morphism if it is a continuous p-morphism, where we recall that
f is a p-morphism provided f (tz) = 1f(x). By Esakia duality [11], the category HA of Heyting
algebras and Heyting homomorphisms is dually equivalent to the category Esa of Esakia spaces and
Esakia morphisms.

Since pseudocomplemented distributive lattices are situated between Heyting algebras and boun-
ded distributive lattices, dual spaces of pseudocomplemented distributive lattices are situated be-
tween Esakia spaces and Priestley spaces. They were characterized by Priestley in [22]. For a
subset U of an ordered set X, let max(U) be the set of maximal points of U (m € max(U) provided
Vy e U)(x <y =z =y)). We call a Priestley space X a PC-space if U is open for each open
upset U. Clearly each Esakia space is a PC-space, but the converse is not true in general. We call
amap f: X — Y between ordered spaces a g-morphism if max? f(x) = f (maxtz). By [22], the
category PDLat of pseudocomplemented distributive lattices and pseudocomplemented lattice ho-
momorphisms is dually equivalent to the category PCS of PC-spaces and continuous g-morphisms.

The next lemma gives several characterizations of g-morphisms.

Lemma 7.3. Let f : X — Y be a Priestley morphism between PC-spaces. The following are
equivalent.
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(1) f is a g-morphism.

(2) For all x € X, we have max?1 f(z) C f (maxTz).

(3) Forallx € X andy €Y, from f(x) <y it follows that there is ' € X with x < 2’ and
y < f(a).

(4) For every upset A CY, we have f~1 (L A) = | f~1(A).

(5) For everyy € Y, we have f~+ (| Ty) =11 (1y).

Proof. (1) = (2): This is obvious.

(2) = (3): Suppose z € X,y €Y, and f(z )
there is ¢’ € max 1 f(z )Wlthygy. By (2), v/
x <z’ and f(z') =y’ > y. This shows (3).

(3) = (1): Let x € X. We first show that max? f(z) C f(maxTz). Suppose y € max? f(x).
By (3), there is 2/ € X with < 2/ and y < f(2/). Since y is a maximal point, y = f(z). As
X is a Priestley space, there is 2”7 € maxtx with 2/ < 2. Since f is order preserving and y is
maximal, f(z”) = y. Thus, y € f (max?Tz). Next we show that f(maxtz) C max? f(z). First
note that every map satisfying (3) maps maximal points to maximal points. For let x € X be
maximal and suppose z is mapped to a non-maximal y € Y. Then there is ¢/ in Y with y < /.
However, since z is maximal, there is no 2’ with < 2’ that is mapped to y’. So Condition (3)
is violated for z. Now suppose y € f(max?tz). Then there is 2’ € max 1z such that f(z') = y.
Since f is order preserving, f(z) < f(2’). By the above, 2’ is mapped to a maximal point, so
f(2') =y € max? f(x). Thus, f is a g-morphism.

(3) = (4): Let A CY be an upset. Since f is order preserving, | f~1(A) C f~1 (L A). We show
Y A) CLfL(A). Suppose z € f71 (L A). Then there is y € A with f(:n) < y. By (3), there is
2’ >z with y < f(2'). Since A is an upset, f(2) € A, yielding x € | f~1(A).

(4) = (5): This is obvious since 1y is an upset.

(5) = (3): Let z € X,y €Y, and f(z) <y. Then f(z) € |ty soz € f~1({Ty). By (5),
x € | f~1 (Ty). This implies that there is 2’ > = with y < f(2'), which proves (3). O

Remark 7.4. Conditions (1) and (2) are not locally equivalent; that is, it is not true that for a
given € X we have max 1 f(z) = f(max 1 z) iff max?t f(x) C f(max1z).

We are ready to see that the converse of Lemma 7.2 does not hold. For this we must find
Heyting algebras A, B such that A is finite and s.i., B is well-connected, B = 6(A), and yet A is
not isomorphic to a pseudocomplemented sublattice of B. By Proposition 7.1, B [~ §(A) iff there is
a s.i. homomorphic image C' of B such that A is isomorphic to a pseudocomplemented sublattice of
C'. Thus, we want A to be isomorphic to a pseudocomplemented sublattice of a s.i. homomorphic
image C' of B, and yet not to be isomorphic to a pseudocomplemented sublattice of B itself. We
do this by passing to the dual picture.

Dually finite Heyting algebras correspond to finite posets (partially ordered sets). If A is a
finite Heyting algebra and X is its dual finite poset, then homomorphic images of A correspond
to upsets of X, subalgebras of A to p-morphic images of X, pseudocomplemented sublattices of
A to g-morphic images of X, and bounded sublattices of A to order preserving images of X (see
[11, 22, 21]). In addition, A is s.i. iff A is well-connected, which happens iff X is rooted (that is,
X =tz for some x € X) [12, 4]. Therefore, it is sufficient to find two finite rooted posets X,Y
such that X is a g-morphic image of an upset U of Y, but X is not a g-morphic image of Y.

Then y € 1 f(x). Since Y is a Priestley space,

<Y
€ f(max?tx). Therefore, there is 2’ € X such that

Example 7.5. Let X and Y be the finite rooted posets drawn below.
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Clearly X is isomorphic to the upset Ty of Y. Therefore, X is a g-morphic image of an upset of
Y. On the other hand, we show that X is not a g-morphic image of Y. First observe that an onto
g-morphism f : Y — X would map the maximal points of Y onto the maximal points of X. Now,
z € Y sees two maximal points of Y, so since f is order preserving, f(z) would need to be the root
of X. But as X has three maximal points, the maximal points above z are not mapped onto the
maximal points above f(z). Thus, f cannot be a g-morphism.

We next define cofinal stable si-logics by directly generalizing the definition of stable si-logics of
[3].
Definition 7.6. We call a si-logic L cofinal stable provided for all s.i. Heyting algebras A, B, if A
is isomorphic to a pseudocomplemented sublattice of B and B |= L, then A |= L.

Proposition 7.7. If L is cofinal stable, then L is axiomatizable by cofinal stable formulas.

Proof. We prove that L = IPC+{0(A) | A finite and s.i. , A = L}. Suppose that B is a s.i Heyting
algebra with B |= L. Let A be a finite s.i. Heyting algebra with A = L. If B [~ §(A), then
by Proposition 7.1, there is a s.i. homomorphic image C of B such that A is isomorphic to a
pseudocomplemented sublattice of C'. Since B = L and C' is a homomorphic image of B, we see
that C' = L. As L is cofinal stable, from C |= L it follows that A = L. The obtained contradiction
proves that B = §(A). Conversely, suppose that B is a s.i. Heyting algebra with B & L. Then
there is ¢ € L with B £~ . As in the proof of [3, Lem. 3.6], but using that the variety of
pseudocomplemented distributive lattices is locally finite, we can construct a finite s.i. Heyting
algebra A such that A is a pseudocomplemented sublattice of B and A [~ ¢. Therefore, A [~ L.
Using Proposition 7.1 again yields B [~ §(A). O

Remark 7.8. The proof above also shows that all cofinal stable logics have the FMP.

Unlike the case of stable logics, the converse of Proposition 7.7 does not hold in general, as the
following example shows.

Example 7.9. Let X,Y, Z be the finite rooted posets drawn below.

:j w w/

X Y A

Let A, B, C be the dual Heyting algebras of X,Y, Z, respectively, and let L := ITIPC+§(A). Then L
is axiomatized by a cofinal stable formula. On the other hand, we show that L is not cofinal stable.
First observe that X is not a g-morphic image of Y. Indeed, if there were an onto g-morphism
f:Y — X, then f would map the maximal points of ¥ onto the maximal points of X. But
y € Y sees exactly two maximal points, while X has no point with this property. This violates the
g-morphism condition at y, a contradiction. Since each rooted upset of Y has smaller cardinality
than X, it follows that there is no rooted upset U of Y such that X is a q-morphic image of U.
From this we conclude by Proposition 7.1 that B = §(A), so B = L. On the other hand, Z is
a g-morphic image of Y, witnessed by the map that identifies w and w’ in Y. Therefore, C is
isomorphic to a pseudocomplemented sublattice of B. It is also obvious that X is isomorphic to
an upset of Z, so by Proposition 7.1, C' = 6(A). Thus, C & L. Since B = L, C' is isomorphic to a
pseudocomplemented sublattice of B, and C' [~ L, we conclude that L is not a cofinal stable logic.

Remark 7.10. Although as pointed out in Remark 7.8 cofinal stable logics have the FMP, we do
not know whether all logics axiomatized by cofinal stable formulas have the FMP. Neither do we
know a convenient characterization of this class of logics.
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As follows from Example 7.9, Theorem 5.3 does not fully generalize to the setting of cofinal stable
logics as the analogue of Condition (2) of the theorem is not equivalent to Condition (1). Never-
theless, we will prove that all the conditions of the theorem but Condition (2) are still equivalent
in the cofinal stable setting. In fact, some of the proofs will have a straightforward generalization,
while others will require additional work.

Theorem 7.11. Let L be a si-logic and let V be the corresponding variety of Heyting algebras. The
following are equivalent.

(1') L is a cofinal stable logic.

(2") Ve is cofinal stable.

(3") V is generated by a cofinal stable universal class U.
(4") V is generated by a cofinal stable class K.

(5') L is axiomatizable by cofinal stable rules.

/
/

Proof. The proof of (2') = (3') is the same as the proof of (4) = (5) in Theorem 5.3, and the proof
of (3') = (4') is obvious.

(4") = (2'): Let V be generated by a cofinal stable class K. Suppose B, C are Heyting algebras
such that C' € V. and B is isomorphic to a pseudocomplemented sublattice of C'. Then B is also
well-connected, so it remains to prove that B € V. If B ¢ V), then there is ¢ € L with B [~ . We
can find a finite pseudocomplemented sublattice B” of B with B’ [~ ¢. Clearly B’ |~ L. Since B is
well-connected, so is B’, and as B’ is finite, it is s.i. Next we require an analogue of Claim 5.5. But
the proof in the stable case makes use of [3, Lem. 6.2], whose analogue, as we saw, does not hold
in the cofinal stable case. Nevertheless, we can derive the desired result using the following claim
instead.

Claim 7.12. Suppose A, B are finite Heyting algebras such that A is isomorphic to a pseudocom-
plemented sublattice of a homomorphic image of B. Then there is a finite Heyting algebra C such
that C' is isomorphic to a pseudocomplemented sublattice of B and A is a homomorphic image of

C.

Proof of claim. Suppose A is isomorphic to a pseudocomplemented sublattice of a homomorphic
image of B. Since B is finite, homomorphic images of B are up to isomorphism quotients of B
by principal filters. Clearly B/1b = [0,b], and the isomorphism h : B/1b — [0,b] is given by
h(z) = b A z. Therefore, we may assume that A is isomorphic to a pseudocomplemented sublattice
of [0,b], and we identify A with its image in [0,b]. Let C = h~!(A). It is obvious that C is
a pseudocomplemented sublattice of B. We claim that the restriction of h to C is a Heyting
homomorphism onto A. For this it is sufficient to check that h preserves Heyting implication. Let
x,y € C. Since C is finite and A commutes with joins,

h(a:—>cy):\/{h(c)|cECandx/\cSy}:\/{C/\McGC’andm/\cSy}
A A

and
h(z) »ah(y) = \/{z€ A| (wAb) Az <y}
A

It is easy to see that {c Ab|ce CandazAc <y} C{ze€ A| (zAb) Az <y} Forthe reverse
inclusion, let z € A with (x Ab) Az < y. Since z € A C [0, b], we see that z = zAb = h(z),s0z € C
and tAz = xA(bAz) <y. This shows that {z € A | (xAb)Az <y} C{cAb|ce Cand xAc < y}.
Therefore, h(z —¢ y) = h(x) —4 h(y). Thus, the restriction of h to C' is a Heyting homomorphism
and it is clearly onto. O

Claim 7.13. IfV is generated by a cofinal stable class K, then for every finite s.i. Heyting algebra
A, from A W= L it follows that 6(A) € L.
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Proof of claim. Suppose A is a finite s.i. Heyting algebra and A [~ L. Since V is generated by a
cofinal stable class I, a similar argument to Claim 5.4 yields that each non-theorem of L is refuted
on a finite member of K. In particular, L has the FMP. Therefore, if 6(A) ¢ L, then there is a finite
B € K with B [~ §(A). By Proposition 7.1, there is a s.i. homomorphic image B’ of B such that A
is isomorphic to a pseudocomplemented sublattice of B’. By Claim 7.12, there is a Heyting algebra
A’ such that A’ is isomorphic to a pseudocomplemented sublattice of B and A is a homomorphic
image of A’. Since B € K and K is cofinal stable, A" € K, so A’ = L. As A is a homomorphic
image of A’, we see that A = L. The obtained contradiction proves that 6(A) € L. O

We are ready to complete the proof of (4') = (2/). Since B’ is a finite s.i. Heyting algebra
such that B’ [~ L, by Claim 7.13, §(B’) € L. As C is well-connected and B’ is isomorphic to
a pseudocomplemented sublattice of C', Lemma 7.2 yields C' & 6(B’). Since §(B’') € L, this
contradicts C' = L. The obtained contradiction proves that B € V.

(3') = (5'): Suppose V is generated by a cofinal stable universal class . Let S be the in-
tuitionistic multi-conclusion consequence relation corresponding to /. By Proposition 6.5, S =
Stpc + {0(A) | A finite, A ¢ U}. Therefore, since V is generated by U, we see that L = A(S).
Thus, L is axiomatizable by cofinal stable rules.

(5") = (3'): Suppose L is axiomatizable by cofinal stable rules. Then there is a family {4; : i € I}
of finite Heyting algebras such that L = A(S), where S = Sypc + {0(4;) | i € I}. Therefore, V is
generated by U(S), which by Proposition 6.5 is a cofinal stable universal class.

The proof of (2') = (1') is easy.

(1') = (4'): Let Vyg be the class of finite s.i. members of V. We show that Vys; is a cofinal
stable class generating V. Since L is cofinal stable, as we pointed out in Remark 7.8, L has the
FMP. Therefore, V is generated by Vy,. To see that Vy, is cofinal stable, let A, B be Heyting
algebras such that A is isomorphic to a pseudocomplemented sublattice of B and B € V. Since
B is finite, B is well-connected, so A is well-connected, and as A is finite, we conclude that A is
s.i. Therefore, by (1), A € Vys;, showing that V¢ is cofinal stable. O

Remark 7.14. The analogue of Remark 5.7 does not hold in the cofinal stable case. To see this, let
X, Y, Z be the finite rooted posets of Example 7.9 and let A, B, C be their dual Heyting algebras. It
is easy to see that X is not a g-morphic image of Z. Therefore, C' |= 0(A), so C = A (Stpc + o(4)).
On the other hand, we saw in Example 7.9 that C' [~ 6(A). Thus, IPC +6(A) # A (Stpc + o(4)).
The same example shows that Remark 5.7 cannot be generalized to (A, V)-canonical formulas and
rules. In fact, the same reasoning as above shows that IPC + (A, D) # A(Stpc + p(A4, D)), where
D :={(a,0) |a € A} C A2

8. CARDINALITY

It is clear that each stable multi-conclusion consequence relation is a cofinal stable multi-
conclusion consequence relation, and that each stable logic is a cofinal stable logic, but the converse
is not true in general. It was shown in [3, Thm. 6.13] that there are continuum many stable logics.
We show that there are continuum many cofinal stable logics that are not stable logics. It follows
that there are continuum many cofinal stable multi-conclusion consequence relations that are not
stable multi-conclusion consequence relations.

Consider the sequence of finite posets drawn below. It is well known that no member of this
sequence is a p-morphic image of an upset of some other member. We will show that the same
result holds if we replace p-morphisms with g-morphisms.
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X1 x2 x3 r1 Tn
Y1 Y3 Y1 Yn
r T
X3 Xn

In each X,, we have z; < y; iff i # j and r is the root.
Lemma 8.1. For n,m > 3, if n # m, then X,, is not a g¢-morphic image of any upset of X,,.

Proof. Let m,n > 3 with n # m. Clearly if m < n, then X, cannot be a g-morphic image of
an upset of X,,. Suppose n < m. Let r, be the root of X,, and r,, be the root of X,,. Also,
let x;,y; be the elements of X,, and z},y! be the elements of X,,. Suppose there is an onto g-
morphism f from an upset U of X,, onto X,,. First we show that max(X,,) C U. Since f is
an onto g-morphism, the maximal elements of U have to be mapped onto the maximal elements
of Xp, so f(maxU) = max(X,). As n > 3, this implies that U contains y;,y; for i # j. But
max(X,,) C T{yg,yg.} C U. Next we observe that no y, € U is mapped to some z;. For suppose
there is y, € U with f(y}) = x;. Since y sees all but one maximal elements of X,,,, we see that f
maps all but one maximal elements to z;. As X,, has at least 3 maximal elements, this contradicts
to the fact that f (max X,,) = max(X,,). Therefore, each y; € U is mapped to some y; or to 7.
Now suppose f maps two maximal elements z and x; to the same maximal element xy. If y} € U,
then max® f(y)) = f (max1y]) = max(X,). This means that f maps y, to the root r,. A similar
argument gives that if y € U, then f(y}) = 7. Since m > n, by the pigeonhole principle, there is
at least one maximal element of X, that has two f-preimages. Therefore, there are at most n — 1
maximal elements of X,, that have a unique f-preimage. This in turn means that there are at most
n — 1 candidates y; € U that f could map to some element of depth 2 of X,,. But then f cannot
be onto. The obtained contradiction proves that there is no g-morphism from an upset of X,,, onto
Xn. O

On the other hand, we have the following lemma.
Lemma 8.2. If m > 2n, then there is an onto order preserving map [ : Xp;m — Xn.

Proof. Using the same notation as in the previous lemma, define f : X,, — X,, as follows. For
i < n, send z} to x;, a;;wri to y;, and send the rest of the points in X,, to the root r, of X,,. It is
straightforward to see that such f is an onto order preserving map. O

We are ready to prove the main result of this section. To simplify notation, for n > 3, we denote
the cofinal stable formula of the dual Heyting algebra of X,, by §(X,,).

Proposition 8.3. There are continuum many cofinal stable si-logics that are not stable.

Proof. For n > 3, suppose K,, is the class of q-morphic images of X,,. Let I = {n € N | n > 3}, and
for J C I, let L(J) be the logic of | J,,c; KCs. Since J,,c; K0y is closed under g-morphic images, the
corresponding class of finite Heyting algebras is cofinal stable. Thus, L(J) is a cofinal stable logic.

Claim 8.4. For S,T C I, if S # T, then L(S) # L(T).

Proof of claim. We may assume without loss of generality that there isn € S\T. Then X,, = L(S),
which implies that §(X,,) &€ L(S) since X,, & §(X,). We prove that §(X,,) € L(T). If 6(X,,) & L(T),
then thereism € T and Y € K,,, with Y |~ §(X,,). By the dual statement of Proposition 7.1, there
is a rooted upset Z of Y such that X, is a g-morphic image of Z. Now Y € K, means that Y is a
g-morphic image of X,,. Let f : X, — Y be an onto q-morphism, and let U = f~(Z). Then U is
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an upset of X, and the restriction of f to U is a g-morphism onto Z. Therefore, Z is a g-morphic
image of an upset of X,,, and hence X,, is a g-morphic image of an upset of X,,,. Since n € T, we
have m # n. This contradicts Lemma 8.1. Thus, §(X,,) € L(T'), and so L(S) # L(T). O

Let A:={J C1I|Jand I\ J are infinite}. By Claim 8.4, {L(J) | J € A} provides continuum
many cofinal stable logics. It remains to be shown that L(J) is not stable for each J € A. Let
J € A. Then there is n € I\ J. By the proof of Claim 8.4, §(X,) € L(J). Therefore, since
Xn = 0(X5), we see that X, = L(J). Now there is m € J with m > 2n. As m € J, we have
Xm = L(J). By Lemma 8.2, X,, is a stable image of X,,,. Because X,, = L(J), we conclude that
L(J) is not stable. O

Remark 8.5. Let Y,, be obtained from X, by removing the root. Then the same proof as above, but
using the cofinal stable rules o(Y,) instead of the cofinal stable formulas 6(X,,) yields a continuum
of cofinal stable multi-conclusion consequence relations of depth 2. This shows that cofinal stable
multi-conclusion consequence relations have much more complicated structure than cofinal stable
logics as there are only countably many cofinal stable logics of depth 2.

9. EXAMPLES

In this final section we give examples comparing cofinal stable, stable, subframe, and cofinal
subframe si-logics. In the previous section we saw that there are continuum many cofinal stable
logics that are not stable. In this section we show that each logic of depth 2 is a cofinal stable logic,
while none of these but one is a stable logic. Examples of stable logics that are neither splitting
nor subframe logics, as well as examples of splitting and subframe logics that are not stable logics
were given in [3, Thm. 7.4]. We give an example of a stable logic that is not a cofinal subframe
logic. We also give an example of a cofinal stable logic that is neither stable nor cofinal subframe
logic.

For a finite poset X, let depth(X) denote the depth of X. We recall that depth(X) = n if
X contains a chain of length n, but no chain of bigger length. Let BD, be the si-logic of all
finite ordered sets of depth < n and let LC,, be the si-logic of finite chains of depth < n. Then
CPC = BD; = LCy, and a si-logic L is of depth n iff BD,, C L C LC,,.

It was shown in [3, Thm. 7.4] that each BD,,, for n > 2, is not stable.

Proposition 9.1. Suppose L is a si-logic containing BDs. Then L is cofinal stable, and it is stable
iff LCy C L.

Proof. 1t is well known (see, e.g., [15]) that BDy is the logic of all finite forks §, drawn below,
that LCy is the logic of the two element chain §1, and that each L in the interval [BDg, LCs] is
the logic of the n-fork §, for some n > 1.

w1 w2 Wp—1 Wy

NS

r

Sn

It follows from the proof of [3, Thm. 7.4] that no si-logic L that contains BDs and is properly
contained in LCs is stable. The only other si-logics containing BDy are LCy, CPC, and the
inconsistent logic. It is easy to see that each of these is stable. We prove that each L containing BD»
is cofinal stable. Since g-morphisms map maximal elements to maximal elements, it is immediate
to see that every g-morphic image of the n-fork is either the one-point poset or the m-fork for
m < n. Therefore, for each L O BDs, the class of finite rooted L-frames is closed under g-morphic
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images. This means that the class of finite s.i. L-algebras is cofinal stable, and it generates the
variety corresponding to L. Thus, by Theorem 7.11, L O BDs is cofinal stable. (|

We next show that BDgy can be axiomatized by the cofinal stable formula of the dual Heyting
algebra of the three-element chain €3 = {w;, w9, w3}, where w; < wy < ws. For convenience, we
write §(C3) for the cofinal stable formula of the Heyting algebra dual to €5. (Clearly this Heyting
algebra is the four-element chain.)

Lemma 9.2. Suppose X is a finite rooted poset. Then depth(X) < 2 iff €3 is not a g-morphic
image of X.

Proof. We prove that depth(X) > 3 iff €3 is a g-morphic image of X. First suppose that
depth(X) > 3. Then X contains a chain x; < x9 < x3. Define f : X — €3 by setting

w1 if y € lzg

fly)=qws ifye o)\ o,
w3 otherwise.

It is easy to see that f is an onto g-morphism (in fact, it is an onto p-morphism). Conversely,
suppose f : X — €3 is an onto g-morphism. We show that X contains a chain of three elements.
Since f is onto, the root r of X is mapped by f to w;. Using again that f is onto, we find z > r
with f(z) = wa. Since f(z) = w2 < w3 and ws € max(€3), there is y > x such that f(y) = ws.
Thus, r < z < y is a three element chain in X. O

Proposition 9.3. BDy = IPC + §(¢3).

Proof. Suppose §, is the n-fork. By Lemma 9.2, €3 is not a g-morphic image of a rooted upset of
§n- By the dual statement of Proposition 7.1, §, = 6(€3). Since BDy is the logic of all n-forks, we
conclude that IPC+§(€3) C BDs. Conversely, suppose X is an Esakia space such that X = BDas.
Since BDy = IPC + bdz, where bd2 = ¢V (¢ — (pV —p)), we see that X [~ bda. By dualizing
the end of the proof of Proposition 7.7, we can construct a finite rooted poset Y such that Y is a
continuous g-morphic image of X and Y [~ bda. It follows that depth(Y) > 3. By Lemma 9.2,
€3 is a g-morphic image of Y. Therefore, €3 is a continuous g-morphic image of X. Thus, by the
dual statement of Proposition 7.1, X [~ §(€3). As every si-logic L is complete with respect to the
Esakia spaces validating L, we conclude that BDy C IPC + §(€3). O

For n > 3, the logics BD,, are neither stable nor cofinal stable. The following picture shows an
onto g-morphism from a rooted poset of depth 3 to a rooted poset of depth 4. We infer that the
class of finite rooted posets of depth 3 is not closed under g-morphic images, which entails that
BDs is not cofinal stable. Clearly similar examples can be constructed to show that BD,, is not
cofinal stable for all n > 3.

e
\,///,__>
/F7777>
F--=-=--= >

We next construct a tabular stable logic that is not a cofinal subframe logic. Let §, ®, and $ be
the posets drawn below. We let St(F) := {& | & is an order preserving image of §} and Lgg) be
the logic of St(F). Since the class of Heyting algebras corresponding to the class St(F) is stable,
Lgy(3) is a stable logic.
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§ 9

Lemma 9.4. The logic Lgyz) is not a cofinal subframe logic.

Proof. Suppose Lg; ) is a cofinal subframe logic. It is easy to see that & is a cofinal subframe of
T, 80 & = Lgy). Since @ is rooted and St(F) is finite, the dual statement of Jénsson’s Lemma
yields that & is isomorphic to an upset of a p-morphic image of a member of St(F). But St(F) is
closed under order preserving images, hence it is closed under p-morphic images. Therefore, there
is an onto order preserving map f : § — R such that & is an upset of & Since K is an order
preserving image of §, we see that & has at most two maximal points. But & is an upset of &, so
R has precisely two maximal points, and f maps the maximal points of § to the maximal points
of R. Note that § has only one element of depth 2, which is a cover of the maximal elements of §.
It follows that K also has only one element of depth 2. However, & has two elements of depth 2.
Thus, & cannot be an upset of & The obtained contradiction proves that Lgy ) is not a cofinal
subframe logic. O

()

Our final example is a tabular cofinal stable logic that is neither cofinal subframe nor stable. Let
cSt(§) = {R | R is a g-morphic image of F}, and let L.gy ) be the logic of cSt(F). Since the class
of Heyting algebras corresponding to the class ¢St(F) is cofinal stable, L.gy ) is a cofinal stable
logic.

Lemma 9.5. The logic L.gyg) is neither cofinal subframe nor stable.

Proof. Since cSt(F) C St(J), the same proof as in Lemma 9.4 gives that L.gz) is not a cofinal
subframe logic. In order to see that L.g) is not stable, observe that $) is an order preserving
image of §, so if L.g(3) were stable, we would have $) = Lg(5), and the same argument as in the
proof of Lemma 9.4 would yield that ) is an upset of a member of ¢St(F). Clearly § is not an
upset of §, and every proper g-morphic image of § contains at most five elements. Since $ has six
elements, § is not an upset of a member of cSt(§). Thus, L.g ) is not stable. O

The following table summarizes the above comparison of stable, cofinal stable, subframe, and
cofinal subframe logics.

l [ subframe [ cof. subframe [ stable [ cof. stable ]

LC, v v v v
BD, v - v
BD,,n >3 v v - -
Lst(3) - - v v
Lest(3) - - - v
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