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Abstract

The present thesis studies formal properties of a family of so-called modal
information logics (MILs)—modal logics first proposed in van Benthem (1996) as
a way of using possible-worlds semantics to model a theory of information. They
do so by extending the language of propositional logic with a binary modality
defined in terms of being the supremum of two states.

First proposed in 1996, MILs have been around for some time, yet not much is
known: van Benthem (2017, 2019) pose two central open problems, namely (1) ax-
iomatizing the two basic MILs of suprema on preorders and posets, respectively,
and (2) proving (un)decidability.

The main results of the first part of this thesis are solving these two problems:
(1) by providing an axiomatization [with a completeness proof entailing the two
logics to be the same], and (2) by proving decidability. In the proof of the latter,
an emphasis is put on the method applied as a heuristic for proving decidability
‘via completeness’ for semantically introduced logics; the logics lack the FMP
w.r.t. their classes of definition, but not w.r.t. a generalized class.

These results are build upon to axiomatize and prove decidable the MILs
attained by endowing the language with an ‘informational implication’—in
doing so a link is also made to the work of Buszkowski (2021) on the Lambek
Calculus. Moreover, concluding the study of MILs on preorders and posets, it is
shown that interpreting the modalities based on minimal upper bounds instead
of least upper bounds does not alter the logics.

Broadening the study, the basic MIL of suprema on join-semilattices is axioma-
tized with an infinite scheme. This constitutes the by far most substantive part of
the thesis. Accordingly—as to contribute to the toolbox of techniques for (modal)
completeness proofs—an informal focus is also lend to accenting key ideas.

Finally, as an appendix, the (compactness and) decidability result(s) in Fine
and Jago (2019) are significantly extended, chiefly via defining and proving a
truthmaker analogue of the FMP.
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Preface

In this thesis, preliminary definitions of and basic results about preorders, partial
orders, join-semilattices, modal logics, homomorphisms, congruences and more
are omitted and knowledge thereof is assumed.

Regarding notation, terminology and design choices, two things are worth
mentioning: I (1) largely use the terminology of Blackburn et al. (2001), and
(2) use margin notes for informal comments, typically providing intuition or

Here’s a margin note.recalling notation. I owe my thanks to Levin Hornischer for having shared his
TEX-template with me. Any design choice of your liking is most likely due to
him (and any that isn’t is – of course – my responsibility).
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Introduction

This introduction is divided into two parts. First, we give a more general intro-
duction, forwarding the logics of concern, placing them in the broader landscape
of logics, and motivating their study. Second, we break down the thesis chapter-
by-chapter, outlining the mathematical issues at hand and how they are solved,
ending with a list of the main results achieved in this thesis.

Motivation and general introduction

The ‘fusion connective’ ‘◦’ characterized by its semantics

x ⊩ φ ◦ψ iff there exist y, z such that y ⊩ φ; z ⊩ ψ; and x = sup{y, z}

features in an array of logical systems: as ‘intensional conjunction’ or simply
‘fusion’ in relevance logics (Anderson et al. 1992); as regular conjunction in seman-
tics for exact truthmaking (Fine 2017; van Fraassen 1969); as ‘tensor disjunction’
in the team semantics of Yang and Väänänen (2016, 2017); and as ‘split disjunc-
tion’ in the state-based semantics of Aloni (2022), to name some. Occurring in
such a varied range of settings modeling all sorts of phenomena, it is maybe
somewhat surprising that next to nothing is known about the logic(s) resulting
from enriching classical propositional logic (CL) with the fusion connective; i.e.,
about the modal logic(s) with a binary modality for fusion.1 In a nutshell, this
thesis seeks to fill this gap.

It does so by studying formal properties of a family of so-called modal informa-
tion logics (MILs), not least by providing axiomatizations and proving decidability
results. The name owes to van Benthem (1996). Aiming to model a theory of
information by using the possible-worlds semantics of modal logic, van Ben-
them (1996) introduces a modal logic of a single binary modality ‘⟨sup⟩’ with
the semantics of the fusion connective. The logic is motivated by construing
the ‘worlds’ as information states; the relation as an ordering of the information

1We are aware that some readers might be stumbled by our almost casual identification of the
(somewhat vague) term “logic(s) resulting from enriching classical propositional logic (CL) with
the fusion connective” with (the more well-defined) “modal logic(s) with a binary modality for
fusion”. From one perspective, modal logic is a formal study of intensional notions modeled via
‘possible worlds’, but from another perspective modal logics are nothing but CL enriched with
‘relational connectives’. When making the identification, we are tacitly alluding to this second
perspective.
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states; and the supremum modality ‘⟨sup⟩’ as providing language for speaking of
‘merge’ (or ‘fusion’) of information states. Thus, besides from the more abstract
‘CL-enriched-with-fusion’ interpretation, the modal logics with a binary modality
for fusion have a more concrete informational interpretation. This provides a
second motivation for studying our logics of concern.

To explain our third and last main point of motivation, we must first get clear
on a principal way in which MILs can differ, namely in their notion of ‘fusion’:
on what class of structures do we want to interpret the ‘⟨sup⟩’-modality – what
is our choice of frames? Rather general are preorders where the modality ‘⟨sup⟩’
is defined in terms of quasi-least upper bounds; i.e., ‘merges’ are not unique
but come in clusters. This defines the basic modal information logic denoted
MILPre. Both the informational and the CL-augmented-with-fusion interpretation
further suggest examining the cases where (a) the relation is also anti-symmetric
(resulting in posets) and, moreover, (b) any two worlds (or information states)
have a unique merge (resulting in join-semilattices). We denote the corresponding
logics as MILPos and MILSem, respectively.

Now for the last point of motivation, beginning with the logic MILSem. Studying
modal logics of algebraic structures has recently found a newborn interest (van
Benthem and Bezhanishvili 2022; Wang and Wang 2022), so as a modal logic
of join-semilattices with a modality for the join-operation, a study of MILSem

contributes to this line of research. As regards MILPre and MILPos, even if MILSem

also has been considered by van Benthem (1996, 2017, 2019, Forthcoming), in
these papers it is the former two that takes centre stage of the three of them. In
part, this is because of yet another interesting aspect of these two logics: using
‘⟨sup⟩’ the past-looking modality ‘P’ becomes definable, so by being modal logics
of preorders and posets, they mildly extend S4. Put in this light, MILPre and
MILPos are quite natural extensions of S4 obtained by adding vocabulary for
describing further structure of preorders and posets. Thus, seen from a purely
mathematical angle, these MILs can be motivated by an interest in seeking a
modal perspective on either (a) algebraic structures or (b) rather ubiquitous
mathematical structures (preorders and posets).2

We end this part of the introduction by setting out the remaining MILs we
will be studying. To begin with, this manner of construing MILPre and MILPos

as extensions of S4 also invites investigation of kindred logics: what logics
do we obtain if we likewise extend S4 but through vocabulary for describing
(quasi-)minimal upper bounds instead of (quasi-)least upper bounds? That is,

2This takes on a third perspective on modal logic, namely as a way of studying relational structures
– including viewing algebraic structures as such. Needless to say, as with all other mathematical
concepts, the abstraction involved permits multiple fruitful perspectives – counting many more
than the mentioned three.
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a ‘⟨sup⟩’-formula will be satisfied also in case a world is the (quasi-)minimal
upper bound even if not (quasi-)least. We denote these modal information logics
MILMin

Pre and MILMin
Pos and will be particularly interested in how they relate to MILPre

and MILPos, respectively. For good measure, let us mention that in terms of the
informational viewpoint, they can be seen as formalizing settings in which there
can be multiple incomparable ‘merges’; and in terms of the CL-augmented-with-
fusion viewpoint, they, in a similar vein, formalize how CL can be augmented
with an ‘incomparable fusion connective’ while keeping the semantics for the
propositional connectives classical.

The last kind of logics in the vast space of MILs we will engage with, is obtained
by further enlarging the language with the modality ‘\’ with semantics

y ⊩ φ\ψ iff for all x, z, if z ⊩ φ and x = sup{y, z}, then x ⊩ ψ.

In particular, we will be concerned with the logics attained by enriching MILPre

and MILPos with ‘\’ and denote these as MIL\-Pre and MIL\-Pos, respectively. This
extension was suggested in van Benthem (Forthcoming), and is motivated under
the informational interpretation as an ‘informational implication’: an information
state y ‘satisfies’φ\ψ iff for all information states z and all merges x = sup{y, z} of
information states y, z, if z satisfies φ (the antecedent), then the merge x satisfies
ψ (the consequent).

Once again, to the best of our knowledge, this connective is not well-studied in
a modal setting (if at all), even if connectives with this kind of semantics feature
prominently in several logics: in fact, our informational interpretation is that of
the relevance logic of Urquhart (1972, 1973) where ‘\’ is relevant implication; and
the symbol ‘\’ is the (left) residual of the Lambek Calculus (Lambek 1958) – a
logic we will make a junction with. It should also be noted that ‘\’ compliments
‘⟨sup⟩’ (or ‘◦’) very naturally: if, say, x = sup{y, z}, then ‘\’ accesses this from the
perspective of y (or z) while ‘⟨sup⟩’ accesses it from the perspective of x. It is
thus not surprising that the ‘intensional conjunction’ of Urquhart (1972, 1973)
and the ‘product connective’ of Lambek (1958) are analogues of ‘⟨sup⟩’.

Wrapping up this general introduction, an unsurprising, nonetheless (perhaps
the most) interesting, consequence of MILs essentially being (versions of) CL
extended with a fusion connective,3 is how they connect with other logics. Thus,
the Lambek Calculus is not the only logic we will make a junction with: albeit in
an appendix (B), we, among more, briefly study how the truthmaker logics of
Fine (2017) relate to our MILs.

3And in the case of MIL\-Pre and MIL\-Pos, also with an informational implication.
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Guide to chapters

Zooming in, in the order as they occur in this thesis, we explain the mathematical
problems we will be addressing. Starting off, we examine MILPre and MILPos,
motivated by two central open problems posed by van Benthem (2017, 2019,
Forthcoming), namely (1) axiomatizing the logics and (2) proving (un)decidability.
The first three chapters of this thesis are concerned with these two problems.

In Chapter 1, after having formally defined the logics, we, in particular, show
that MILPre lacks the finite model property (FMP) w.r.t. preorders. This proof
extends to all above mentioned MILs on their respective classes of frames as well.
Although this can be taken as a (clear) indication of undecidability, we end the
chapter by explaining why this need not be, forwarding a method for proving
decidability ‘via completeness’ when dealing with semantically introduced logics
(like MILs). ’Semantically introduced’ as

contrasting logics introduced by a
syntactic (or proof-theoretical)
definition.

In Chapter 2, we provide an axiomatization of MILPre and prove it to be sound
and strongly complete. We do so by, given a consistent set, constructing a model
for it. As the constructed models are, in fact, posets, we get as a corollary that
MILPre = MILPos; thus, solving problem (1) for both logics in one go.

Following the method laid out in Chapter 1, in Chapter 3, we, first, use this
axiomatization to find another class of structures C for which the logic also is
complete. Second, we show that on this class of structures we do, in fact, have the
FMP—allowing us to deduce decidability. As an appendix (A.2) to the chapter,
we show that on C we have the tree model property (TMP). This concludes the
first part of the thesis.

Next, in Chapter 4, we explore the conservative extensions MIL\-Pre and
MIL\-Pos obtained by adding the informational implication ‘\’. Combining ideas
from our study of MILPre = MILPos with some new ones—among which some
are ours and some, more interestingly, are due to work on the Lambek Calculus
of Buszkowski (2021)—we (i) axiomatize the logics, (ii) show that MIL\-Pre =

MIL\-Pos, and (iii) prove them to be decidable. This crossing with the Lam-
bek Calculus sheds one more illuminating light on modal information logics:
MIL\-Pre = MIL\-Pos is the Lambek Calculus (augmented with CL) of suprema on
preorders (or posets).

In Chapter 5, we investigate the logics MILMin
Pre and MILMin

Pos . Perhaps a bit sur-
prising, we show that MILMin

Pre = MILMin
Pos = MILPre and also MILMin

\-Pre = MILMin
\-Pos =

MIL\-Pre.
Chapter 6 concludes our study of modal information logics, primarily in axiom-

atizing MILSem. While MILPre and MILPos coincide and are finitely axiomatizable,
going one step further to join-semilattices triggers an explosion in complexity;
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for instance, in axiomatizing this logic, we employ an infinite extension scheme.
The completeness proof is through model construction, allowing for a corol-
lary in terms of identifying MILSem with the MIL of suprema on the subclass of
join-semilattices having all finite bounded infima.

Lastly, Appendix B deserves mention too. First, through translation, compact-
ness and recursive enumerability of a family of truthmaker logics (TMLs) are
achieved. Second, a ‘truthmaker FMP’ is developed and proven, thus entailing
decidability of many a truthmaker logic. Third and finally, how TMLs and MILs
are related is explored through translations.

In summary, the main results achieved are:

• Axiomatizing MILPre and deducing MILPre = MILPos.

• Proving MILPre decidable.

• Axiomatizing MILMin
\-Pre and deducing MILMin

\-Pre = MILMin
\-Pos.

• Proving MILMin
\-Pre decidable.

• Showing MILMin
Pre = MILMin

Pos = MILPre and MILMin
\-Pre = MILMin

\-Pos = MIL\-Pre.

• Proving the FMP and decidability for a family of truthmaker logics (app).

• Axiomatizing MILSem.

6



1. Modal Information Logics: Preliminaries

We start off this chapter by formally defining the basic modal information logics
(section 1.1). Then we show lacks of properties related to that of decidability, most
notably proving that all of the logics of concern lack the finite model property
w.r.t. their respective classes of definition (section 1.2). Lastly, in section 1.3, we
sketch a general method for proving decidability in cases like ours – a method
which we will employ in Chapter 2 and 3.

1.1. Defining the logics

Definition 1.1 (Language). The basic language LM of modal information logic
is defined using a countable set of proposition letters P and a binary modality
⟨sup⟩. The formulas φ ∈ LM are then given by the following BNF-grammar

φ ::= ⊥ | p | ¬φ | φ∨ψ | ⟨sup⟩φψ,

where p ∈ P and ⊥ is the falsum constant. ⊣

Modal information logics are defined by semantical means; i.e., as sets of
LM-validities on classes of structures. The most general class of interest is that of
preorders; formally, we define as follows:

Definition 1.2 (Frames and models). A (Kripke) preorder frame for LM is a pair
F = (W,⩽) where

• W is a set; and

• ⩽ is a preorder onW, i.e., reflexive and transitive.

A (Kripke) preorder model for LM is a triple M = (W,⩽,V) where

• (W,⩽) is a preorder frame; and

• V is a valuation onW, i.e., a function V : P → P(W). ⊣

For clarity, before defining other classes of structures we will be considering,
we set out the basic modal information logic of preorders in full detail. Having
defined the structures in which to interpret the LM-formulas, we are about to
define the actual semantics. In order to do so, we provide the following definition
generalizing the notion of supremum from partial orders to preorders:

7



Definition 1.3 (Supremum). Given a preorder frame (W,⩽) and worlds u, v,w ∈
W, we say that w is a quasi-supremum (or simply supremum) of {u, v} and write
w ∈ sup{u, v} iff

• w is an upper bound of {u, v}, i.e., u ⩽ w and v ⩽ w; and

• w ⩽ x for all upper bounds x of {u, v}.

In general, sup{u, v} denotes the set of quasi-suprema of {u, v}, and if this happens
to be a singleton {w}, we may write w = sup{u, v}. Note howw ∈ sup⩽{u,v} on a

preorder ⩽ iff
[w] = sup⩽∼

{[u], [v]} on its
‘skeletal’ partial order ⩽∼.

⊣

Definition 1.4 (Semantics). Given a preorder model M = (W,⩽,V) and a world
w ∈W, satisfaction of a formulaφ ∈ LM atw in M (written ‘M,w ⊩ φ’ or ‘w ⊩ φ’
for short) is defined using the following recursive clauses on φ:

M,w ⊮ ⊥,

M,w ⊩ p iff w ∈ V(p),

M,w ⊩ ¬φ iff M,w ⊮ φ,

M,w ⊩ φ∨ψ iff M,w ⊩ φ or M,w ⊩ ψ,

M,w ⊩ ⟨sup⟩φψ iff there exist u, v ∈W such that M,u ⊩ φ; M, v ⊩ ψ;

and w ∈ sup{u, v}.

Notions like global truth, validity, etc. are defined as usual in possible-worlds
semantics (see, e.g., Blackburn et al. (2001, ch. 1)). ⊣

With these notions laid out, we can define the logic as follows:

Definition 1.5. The basic modal information logic of suprema on preorders is
denoted by MILPre, and defined as the set of LM-validities on the class of all
preorder frames; that is,

MILPre := {φ ∈ LM : (W,⩽) ⊩ φ for all preorder frames (W,⩽)}. ⊣

Using the defined notions and semantics, we further define the basic modal in-
formation logics of suprema on posets and join-semilattices, respectively, namely

MILPos, which is the logic of poset frames, i.e., frames (W,⩽) where ‘⩽’ is a partial
order (viz. an antisymmetric preorder); and

MILSem, which is the logic of frames (W,⩽) where ‘⩽’ is a join-semilattice, i.e., a
partial order with all binary suprema. I.e., for all u,v ∈W, there is some

w ∈W s.t. w = sup{u,v}.
Note how these additional logics
arise from a uniqueness and
existence requirement, respectively.

As an appetizer, we end this section remarking what is already known about
how these logics relate.

8



Remark 1.6.
MILPre ⊆ MILPos ⊊ MILSem.

As the notation suggests, these inclusions follow from latter logics being semanti-
cally defined by restricting classes of frames for former logics.

The latter inclusion being strict is witnessed by, e.g., the associativity formula

(As.) ⟨sup⟩(⟨sup⟩pq)r↔ ⟨sup⟩p(⟨sup⟩qr),

which is valid on join-semilattices but not on posets, as the reader can easily
check. The former inclusion is, in fact, an

equality. This will be a corollary of
our completeness proof in Chapter
2.

⊣

1.2. Road to decidability: negative results

Having formally set out these logics and semantics, we continue with some
preliminary remarks. Objective being to get a feel for how the semantics works
by stating a few minor – yet interesting – results, and, most notably, showing
that the logics lack the FMP w.r.t. their respective frames of definition; viz., for
instance, MILPre does not have the FMP w.r.t. preorder frames. Foremost, we
mention how to express the past-looking modality.

Remark 1.7. Besides the connectives ‘∧’, ‘→’, ‘↔’, ‘[sup]’, and ‘⊤’ being definable
in the standard way, the past-looking unary modality ‘P’ is definable as Thus, as promised in the

introduction, MILPre and MILPos

are (quite natural) extensions of S4.
Pφ := ⟨sup⟩φ⊤.

This can be seen by recalling the definition

M,w ⊩ Pφ :iff there exists v ⩽ w such that M, v ⊩ φ,

and observing that also

M,w ⊩ ⟨sup⟩φ⊤ iff there exists v ⩽ w such that M, v ⊩ φ. Since for any v,w:
w ∈ sup{w,v} iff v ⩽w.

⊣

Using this observation, the first contribution of our thesis is to show a lack of
the FMP.

Proposition 1.8. MILPre does not have the FMP w.r.t. preorder frames.

Proof. Consider the formula

ψN := HP⟨sup⟩pp∧HP¬⟨sup⟩pp,

9



where H := ¬P¬ is the dual of P. We claim that ψN only is satisfiable in infinite
models. The subscript ‘N’ is short for

‘negative’, asψN witnesses a
negative property.

First, we show that ψN is, indeed, satisfiable on an infinite model. Accordingly,
let M := (Z−,⩽,V) where

• Z− is the set of negative integers;

• ⩽ is the less-than relation on the negative integers; and

• V(p) is the set of even negative integers.

Then M, clearly, is a preorder model, and for all z ∈ Z−:

M, z ⊩ ⟨sup⟩pp iff z is even. Because for any z1,z2:
sup{z1,z2} = max{z1,z2}.

Thus, for all z ∈ Z−:

M, z ⊩ P⟨sup⟩pp∧ P¬⟨sup⟩pp.

But then ψN must be globally true in M; in particular, ψN is satisfied in M,
proving the first part of the claim

Second, to see that ψN isn’t satisfiable in any finite model, observe that for any
preorder, if two points are situated in the same cluster, For clarity, recall that given a

preorder ⩽,w,v are said to be in
the same cluster :iffw ⩽ v ⩽w.

then they are suprema
of the exact same (sets of) points. It follows that for any preorder model, points
in the same cluster satisfy the exact same ‘⟨sup⟩’-formulas (those are: formulas
with ‘⟨sup⟩’ as main connective).

With this in mind, it is easy to see that the satisfaction of ψN necessitates the
existence of an infinite, strictly descending chain: if some w ⊩ ψN and some
vi ⩽ w satisfies, say, ⟨sup⟩pp, then, in particular, there must be some vi+1 ⩽ vi
s.t. vi+1 ⊩ ¬⟨sup⟩pp, whence vi+1 must be in a cluster strictly below vi. Thus,
ψN cannot be satisfied in any finite model.

Remark 1.9. The above proof applies to the classes of posets and join-semilattices
as well since the frame (Z−,⩽) was, in fact, a join-semilattice, hence neither do
MILPos nor MILSem enjoy the FMP w.r.t. their respective classes of definition. ⊣

Beyond not having the FMP, there are even more indicators of undecidability.
For the purpose of this thesis, these are not central, so we mention them without
(elaborate) proof.

Remark 1.10. MILPre does not have the tree model property (TMP) w.r.t. preorder
frames. That is, there is a formula χN which is satisfiable, but not in a preorder

10



frame (W,⩽) where (W,⩾) is a reflexive and transitive tree.4 ⊣

Proof. The following formula is satisfiable but not in a (converse) tree

χN := p∧ q∧ ⟨sup⟩(p∧ ¬q)(¬p∧ q)

∧H
(
[p∧ ¬q] → P(¬p∧ ¬q)

)
∧H

(
[¬p∧ q] → P(¬p∧ ¬q)

)
∧H

(
⟨sup⟩(¬p∧ ¬q)2 → [¬p∧ ¬q]

)
.

Remark 1.11. Not having the TMP extends to MILPos and MILSem as well. This can
be witnessed by the same formula. And for the case of MILSem, the satisfaction of
χN even implies the existence of a tile; i.e., four pairwise distinct worlds n, s, e,w
s.t. s ⩽ e, s ⩽ w, e ⩽ n,w ⩽ n. ⊣

Observation 1.12. Our modal information logics are neither guarded nor packed
(as, e.g., the guarded and packed fragments do enjoy the FMP). ⊣

1.3. Road to decidability: general idea

At first glance, the results of the previous section might make decidability appear
unlikely. As it turns out, there is an alternative way of proving decidability
circumventing these problems. In this section, we lay out our method for doing
so. This will serve two purposes: by describing the method, we hope to (1),
generally, elucidate how and when our method can work as a heuristic for
proving decidability, and (2), specifically, help the reader get a better grasp of the
underlying ideas and structure of the ensuing two chapters of this thesis.

To help explain this method of proving decidability ‘via completeneness’, we
go by example, designing a thought-experiment:

(1) Sem. def. logic: Imagine wanting to use the basic modal language of one unary modality to
describe the structure of posets. That is, being interested in poset models
M = (W,⩽,V) with semantics

M,w ⊩ ♢φ iff ∃v ∈W(w ⩽ v∧ v ⊩ φ).

One might then wonder whether the problem of determining whether a
formula φ is satisfiable/valid on the class of all poset frames is decidable.

4Consult, e.g., Blackburn et al. (2001, ch. 1, def. 1.7) for the definition of a tree and, in particular, a
reflexive and transitive one.

Additionally, note how we define the TMP in terms of the converse relation ‘⩾’; this is motivated
by the way in which ‘⟨sup⟩’ is backward-looking. Otherwise, for the case of ‘⩽’, a formula like
‘p∧ ⟨sup⟩(q∧¬p)(¬q∧¬p)’ already shows the lack of ‘a TMP’. For now, this suffices: we
return to this as an addendum to Chapter 3 in Appendix A.2.
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(1.5) No FMP: For this, the FMP is highly useful. However, the formula

□ (♢p∧ ♢¬p)

is only satisfiable on infinite partial orders.

(2) Completeness: At first glance, this makes decidability seem farfetched. But, in fact, there
is an alternative road to decidability, beginning by axiomatizing the logic.
Having axiomatized the logic, one realizes that it is also complete with
respect to preorders (because, in fact, what one gets is S4). Instead of first axiomatizing, a

direct ‘p-morphic’-argument would
work as well. In a way, this is the
recipe Chapter 4 will follow.

(3) FMP on other class: And on preorders, one can prove the FMP (via, e.g., the Lemmon filtration),
and then decidability follows easily.

Summarizing the method conveyed by this example, when dealing with logics
introduced by a semantic definition (cf. (1)), not having the FMP (cf. (1.5)) might
not be very telling. The reason being that the resulting logic can very well be
complete w.r.t. to another, bigger class of structures (cf. (2)) for which it does
have the FMP (cf. (3)).

In our case, we will follow this recipe for the cases of MILPre and MILPos. Having
already gone through steps (1) and (1.5), we proceed with step (2) in the coming
chapter where we axiomatize the logics and show that MILPre = MILPos. Using
this axiomatization, in Chapter 3, we find another, bigger class of structures
(where the ternary relation of ⟨sup⟩ won’t necessarily be the supremum relation
of a preorder, but something more general) which is sound and complete w.r.t.
the logic MILPre and, importantly, do enjoy the FMP.
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2. Axiomatizing MILPre

While van Benthem (Forthcoming) obtains an axiomatization of a variant of
MILPre extended with nominals and the global modality, the very same paper
also inquires finding an axiomatization without hybrid extensions. In this chapter,
we answer this inquiry, providing a purely modal axiomatization. In section
2.1, we give a proof-theoretic description of MILPre, prove it to be sound, and lay
some groundwork for the completeness proof of section 2.2, which also allows
us to conclude that MILPre = MILPos.

2.1. Soundness and preparatory lemmas

We begin by syntactically defining a normal modal logic (NML), suggestively
called MILPre. As a convention, we boldface

when having ‘syntactic’
presentations of logics in mind and
italicize when having ‘semantic’
presentations of logics in mind.

Through a soundness and completeness proof, we then show
MILPre exactly is an axiomatization of our semantically defined logic MILPre.

Definition 2.1 (Axiomatization). We define MILPre to be the least normal modal
logic in the language of LM containing the following axioms:

(Re.) p∧ q→ ⟨sup⟩pq (Re.) is short for ‘Reflexivity’; (4) is
the transitivity axiom; (Co.) is
short for ‘Commutativity’; and
(Dk.) is short for ‘Don’t know what
to call this axiom’.

(4) PPp→ Pp (= ⟨sup⟩(⟨sup⟩p⊤)⊤ → ⟨sup⟩p⊤, cf. Remark 1.7)

(Co.) ⟨sup⟩pq→ ⟨sup⟩qp

(Dk.) (p∧ ⟨sup⟩qr) → ⟨sup⟩pq ⊣

Having proof-theoretically defined the logic MILPre, we can promptly show it
to be sound w.r.t. MILPre.

Theorem 2.2 (Soundness). MILPre ⊆ MILPre.

Proof. Standard, tedious task checking that MILPre is a normal modal logic and
that (Re.), (4), (Co.), and (Dk.) all are valid on preorder frames.

As oftentimes is the case, while proving soundness is straightforward, proving
completeness is much more intricate. Our proof will be a construction using
maximal consistent sets (MCSs) for which some preparatory observations and
lemmas are needed.

First hurdle is that the ⟨sup⟩-modality is in a general sense a ‘logical modality’:
although accompanied by a ternary relation (namely the supremum relation) its
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interpretation is fixed given a binary relation (namely a preorder). For starters,
this means that the standard construction of the canonical frame for MILPre

won’t come equipped with a binary relation for interpreting the binary modality
⟨sup⟩—as is the case for the preorder frames of MILPre—but with a ternary one.
Fortunately, defining an underlying preorder from this ternary relation spells no
trouble. This is summarized in the definition below.

Definition 2.3. We denote the set of all maximal consistent MILPre-sets by WPre,
and the ternary relation of the canonical MILPre-frame by CPre.5 That is CPreΓ∆Θ

holds just in case
∀δ ∈ ∆, θ ∈ Θ (⟨sup⟩δθ ∈ Γ) .

From CPre, we define the following binary relation on the canonical frame:

⩽Pre := {(∆, Γ) ∈WPre ×WPre : ∃Θ (CPreΓ∆Θ)}. ⊣

We want to show that⩽Pre actually is a preorder. To do so, we begin by making
two observations.

Observation 2.4. Since MILPre is an NML, we have all the usual lemmas regard-
ing its canonical model. ⊣

Observation 2.5. The formula

(T) p→ Pp

is derivable in MILPre.
In fact, {(T), (4), (Co.), (Dk.)} is an alternative axiomatization of MILPre. ⊣

Proof. Some straightforward syntactical manipulations prove the claim; the key
steps being

(Re.) ⇒ (T): uniformly substitute q for ⊤ in (Re.); and

(T) ⇒ (Re.): use (T) to get p∧ q→ p∧ Pq and then use (Dk.).

Using these observations, in the ensuing lemma, we prove that not only is ⩽Pre

a preorder, but more ‘supremum-like’ properties hold of the canonical relation
CPre.

Lemma 2.6. The following hold:

(a) CPreΓ∆Θ iff CPreΓΘ∆

5Consult Blackburn et al. (2001, ch. 4) for basic definitions, results, and techniques regarding
canonical models for modal logics; we have sought to align our notation and terminology with
this.
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(b) ∆ ⩽Pre Γ
(i)

iff CPreΓΓ∆
(ii)

iff ∀δ ∈ ∆ : Pδ ∈ Γ .

(c) ⩽Pre is a preorder.

(d) CPreΓ∆Θ only if ∆ ⩽Pre Γ ,Θ ⩽Pre Γ .

Proof. Since (Re.), (4), (Co.), (Dk.) all are Sahlqvist, one can prove all but (b)(ii)
via the Sahlqvist-van Benthem algorithm (cf. next chapter’s Lemma 3.1). As
often is the case, though, a direct argument is faster; we provide such here.

(a) Let {θ, δ} ⊆ LM be arbitrary. Then – by (Co.), US of MILPre, and closure
under MP of MCSs ‘US’ stands for ‘uniform

substitution’, and ‘MP’ for ‘modus
ponens’.

– we have

⟨sup⟩θδ ∈ Γ ⇔ ⟨sup⟩δθ ∈ Γ ,

which suffices to prove the claim.

(b) Right-to-left of (i) is immediate (using (a)). For left-to-right, suppose
CPreΓ∆Θ for some Θ ∈ WPre and γ ∈ Γ , δ ∈ ∆. Since ⊤ ∈ Θ, we have
that ⟨sup⟩δ⊤ ∈ Γ , hence (γ∧ ⟨sup⟩δ⊤) ∈ Γ and so we get by (Dk.) (and US
and MP of MCSs) that ⟨sup⟩γδ ∈ Γ—as suffices. Regarding (ii), left-to-right
follows by (a), while right-to-left is proven using (Dk.).

(c) Reflexivity. Let Γ ∈WPre and γ ∈ Γ be arbitrary. By (b), it suffices to show
that Pγ ∈ Γ , but this follows by MILPre ⊢ p→ Pp.

Transitivity. Suppose Γ1 ⩽Pre Γ2 ⩽Pre Γ3 and γ1 ∈ Γ1. Then by applying (b)
twice, we get that PPγ1 ∈ Γ3, hence since MILPre ⊢ PPp→ Pp, we’re done.

(d) Consequence of (a).

2.2. Completeness: constructing our model

Given the previous section’s results – indicating that the canonical frame is well
behaved – one might start wondering whether the canonical relation CPre is, in
fact, the supremum relation on ⩽Pre. If so, we would have completeness in our
pocket. Unfortunately, this is far from being the case: not only is the canonical
relation CPre not the supremum relation on ⩽Pre, it is utterly wild. As to not interlude the

completeness proof, observations
regarding the wildness of the
canonical frame have been put off to
Appendix A.1.

This forces us to make a rather complicated construction where we do not work
with the canonical model per se. Instead, we construct our frame by recursively
repairing so-called ‘defects’ and ‘labeling’ points of a subset of our frame with
MCSs for which we prove a truth lemma. This somewhat generalized approach
is useful since it (a) allows for reuse of the same MCS – i.e., different points of
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the frame might get labeled with the same MCS – and (b) utilizes that, in the
extreme, we only need a truth lemma for one MCS, namely the one extending a
given consistent set; thus, we may and will include (non-labeled) points in our
construction only to ensure that other (labeled) points satisfy formulas dictated
by their MCS-label. That is, we do not care what formulas these points satisfy
themselves—their role is entirely auxiliary.6 This explanation might seem

awfully abstract at first. We
recommend revisiting this
paragraph while/after reading the
rest of this chapter.

To be more concrete, when recursively constructing this frame, we make sure
that at each stage, its corresponding ‘approximating frame’ is determined by a
triple (l,⩽,D) satisfying the definition (of P) below. Specifically, in the recursive
step from, say, n to n + 1, we will make sure that if (ln,⩽n,Dn) ∈ P then also
(ln+1,⩽n+1,Dn+1) ∈ P.7 This is needed for the colimit construction – i.e., the
structure obtained after all finite stages in the recursive construction – to be of
the right form.

Definition 2.7. LetW be countable set, and P the set of all triples (l,⩽,D) such
that

1. l is a partial function fromW to the set of all MCSs,WPre.

2. |dom(l)| < ℵ0. ‘dom(l)’ refers to the domain of l.

3. D ⊆W, |D| < ℵ0.

4. D ∩ dom(l) = ∅. l (short for ‘label’) labels worlds
with MCSs, whileD-worlds (short
for ‘dummy worlds’) sole purpose is
to ensure ‘¬⟨sup⟩’-formulas are
satisfied at dom(l)-worlds.

5. d ∈ D∧ d ⩽ a⇒ a = d.

6. ⩽ is a partial order on dom(l) ∪D, and the diagonal onW \ (dom(l) ∪D).

7. If y ⩽ x then l(y) ⩽Pre l(x) (whenever x,y ∈ dom(l)). ⊣

As mentioned, the recursion is carried out by repeatedly repairing ‘defects’.
Since our goal will be to prove a truth lemma for labeled points, any defect is, in
essence, either

(1) that a point x’s MCS-label Γ dictates that x satisfy some formula ⟨sup⟩φψ;
I.e., ⟨sup⟩φψ ∈ Γ = l(x).or

(2) that a point x’s MCS-label Γ dictates that x satisfy some formula ¬⟨sup⟩φψ.
I.e., ¬⟨sup⟩φψ ∈ Γ = l(x).

6It is worth noting that it is not that we cannot make a construction in which all points are labeled
(as, essentially, is done in our later Lemma 4.20 and Proposition 4.23), but doing so would obscure
the central idea making the construction work.

7Our framework is loosely that of Burgess (1982) with terminology borrowed from Blackburn et al.
(2001, sec. 4.6). More generally, this is a ‘step-by-step’ construction for which an(other) excellent
introduction is the exposition of the ‘construction method C’ in Jongh and Veltman (1999).
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Although this captures the gist of what defects are, as it turns out, for the proof to
work, the precise definitions must be more detailed than this. We proceed giving
these.

Definition 2.8 (⟨sup⟩-defect). Let (l,⩽,D) ∈ P. Then a pair (⟨sup⟩χχ ′, x) denotes
a ⟨sup⟩-defect (of (l,⩽,D)) :iff

(i) x ∈ dom(l), (ii) ⟨sup⟩χχ ′ ∈ l(x),

and (iii) there are no y, z ∈ dom(l) s.t. That is, a ⟨sup⟩-defect is the failure
of a rather strict requirement on a
dom(l)-world x when
⟨sup⟩χχ ′ ∈ l(x).
The ‘upset requirements’ on y,z,
state that – besides from themselves
– if they see a point that x does not,
then that point is ‘incompatible’
with x.

χ ∈ l(y), CPrel(x)l(y)l(z), ↑y = ↑x ∪ {y} ∪ (↑y ∩ {w | ↑w ∩ ↑x = ∅}),

χ ′ ∈ l(z), x = sup{y, z}, ↑z = ↑x ∪ {z} ∪ (↑z ∩ {w | ↑w ∩ ↑x = ∅}),

where ↑w := {v | w ⩽ v}. ⊣

Definition 2.9 (¬⟨sup⟩-defect). Let (l,⩽,D) ∈ P. Then a quadruple
(¬⟨sup⟩ψψ ′, x,y, z) is denoted a ¬⟨sup⟩-defect (of (l,⩽,D)) :iff

x ∈ dom(l), x = sup{y, z}, Note that – by 5. – if x ∈ dom(l)

and x = sup{y,z}, then
y,z ∈ dom(l).

¬⟨sup⟩ψψ ′ ∈ l(x),

ψ ∈ l(y), ψ ′ ∈ l(z). ⊣

With these defects defined, next up is repairing them. Before providing the
actual repair lemmas demonstrating how to coherently repair each of the defects
(making sure that if (ln,⩽n,Dn) ∈ P, then also (ln+1,⩽n+1,Dn+1) ∈ P), we give
an example to convey intuition for the repairs and the general construction.

Example 2.10. Suppose (l,⩽,D) ∈ P and (⟨sup⟩χ0χ
′
0, x) constitutes a ⟨sup⟩-

defect; that is, (i) x ∈ dom(l), (ii) ⟨sup⟩χ0χ
′
0 ∈ l(x), and there are no y, z fulfilling

(iii). Put crudely, the problem is that x’s label l(x) requires x to satisfy ⟨sup⟩χ0χ
′
0,

but x is not the supremum of any y, z s.t. χ0 ∈ l(y),χ ′
0 ∈ l(z). To solve this, we

simply add two fresh points y, z immediately below x. Then using the existence
lemma of the canonical model for the case ⟨sup⟩χ0χ

′
0 ∈ l(x), we get two MCSs

Γy, Γz s.t. CPrel(x)ΓyΓz. Regarding the existence lemma,
recall Observation 2.4.

Setting l(y) := Γy and l(z) := Γz, the defect has been
repaired. The idea is illustrated in the top left corner of the figure below.

Further, if, say, (⟨sup⟩χ1χ
′
1, x) also constitutes a ⟨sup⟩-defect, we simply repeat

the process as illustrated in the top right corner of the figure below.
While these two repairs did solve the problems they intended to, they might

have created new ones. If, say, ¬⟨sup⟩ψψ ′ ∈ l(x),ψ ∈ l(z) and ψ ′ ∈ l(z ′), in
solving these problems they have made (¬⟨sup⟩ψψ ′, x, z, z ′) constitute a ¬⟨sup⟩-
defect. This is where we need the ‘dummies’: to repair this defect, we add a
quasi-blind point d as an incomparable upper bound of {z, z ′} so that x no more
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is the supremum of {z, z ′} (cf. the bottom part of the figure). Note that x does stay a minimal
upper bound of {z,z ′}; we will
come back to this in Chapter 5.

Since d is quasi-
blind—and stays quasi-blind (viz. condition 5.)—whatever formula it satisfies
is of absolutely no influence to the rest of the points: they cannot ‘access’ d. So,
at bottom, adding dummies is a technique for altering the supremum relation
without having to give second thought to what formulas the added points (the
dummies) are to satisfy: they are entirely auxiliary (and, hence, do not get
labeled, cf. condition 4.). And, most importantly, the alteration of a supremum
relation caused by adding a dummy is sufficiently local to not mess up previously
repaired defects; in this simplest of cases, we still have x = sup{y, z} = sup{y ′, z ′}
after having added the dummy d.

x
{⟨sup⟩χ0χ

′
0, ⟨sup⟩χ1χ

′
1} ⊆ l(x)

y

χ0 ∈ l(y)
z

χ ′
0 ∈ l(z)

⟨sup⟩-repair
⇝

⟨sup⟩-repair
⇝

¬⟨sup⟩-repair
⇝

x

y

χ0 ∈ l(y)
z

χ ′
0 ∈ l(z)

z ′

χ ′
1 ∈ l(z ′)

y ′

χ1 ∈ l(y ′)

x
{¬⟨sup⟩ψψ ′} ∈ l(x)

y z

ψ ∈ l(z)
z ′

ψ ′ ∈ l(z ′)
y ′

d

⌟
We continue by making this basic intuition rigorous – starting with providing

the repair lemmas.

Lemma 2.11 (⟨sup⟩-repair lemma). Suppose (⟨sup⟩χχ ′, x) is a ⟨sup⟩-defect of some
(l,⩽,D) ∈ P. Then we can extend to (l ′,⩽ ′,D ′) ∈ P by taking distinct y, z ∈
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W \ (dom(l) ∪D) s.t.

l ′ := l ∪ {(y, Γ), (z,∆)}, ⩽ ′:= ⩽ ∪ {(y,u), (z,u)|x ⩽ u}, D ′ := D,

χ ∈ Γ ,χ ′ ∈ ∆, CPrel(x)Γ∆,

and y, z witness that (⟨sup⟩χχ ′, x) does not constitute a ⟨sup⟩-defect of (l ′,⩽ ′,D ′).

Proof. Define as in the lemma by taking fresh y ̸= z and mapping them to Γ ,∆
obtained via the existence lemma for (⟨sup⟩χχ ′, l(x)). Then the last claim is easily
checked to be satisfied, and (l ′,⩽ ′,D ′) also clearly satisfies 1.-6.; thus, it remains
to show 7. Since (l,⩽,D) ∈ P – and having the definition of ⩽ ′ in mind – it
suffices to consider the subset

{(y,u), (z,u)|x ⩽ u} ⊆ ⩽ ′

and the cases y ⩽ ′ y, z ⩽ ′ z. For these, we find:

(y ⩽ ′ y) l(y) ⩽Pre l(y) follows by ⩽Pre being a preorder, hence reflexive, cf. Lemma
2.6 (c). Observe how the axioms are being

used via Lemma 2.6; each ‘item’
employs an axiom: first (Re.), then
(Dk.), then (4), then (Co.). This
elucidates their role, and why they
are – even if rather weak – adequate:
they need only ‘encode’ this lemma
2.6, which enables extending to
(l ′,⩽ ′,D ′), and then the
‘dummies’ do the rest.

(y ⩽ ′ x) l(y) ⩽Pre l(x) follows by Lemma 2.6 (d).

(y ⩽ ′ u) For u > x, l(y) ⩽Pre l(u) follows by transitivity of ⩽Pre.

(z ⩽ ′ z, x,u) Same as for y.

Lemma 2.12 (¬⟨sup⟩-repair lemma). Suppose (¬⟨sup⟩ψψ ′, x,y, z) is a ¬⟨sup⟩-
defect of some (l,⩽,D) ∈ P. Then we can extend to (l ′,⩽ ′,D ′) ∈ P by taking d ∈
W \ (dom(l) ∪D), letting

l ′ := l, ⩽ ′ := ⩽ ∪ {(u,d), (v,d)|u ⩽ y, v ⩽ z}, D ′ := D ∪ {d},

and getting x ̸= sup⩽′ {y, z}. This is where we add a dummy d,
whose sole purpose is to ensure that
x ̸= sup⩽′{y,z}.Proof. Extend to (l ′,⩽ ′,D ′) as described. It follows that (l ′,⩽ ′,D ′) ∈ P. To show

x ̸= sup ⩽′(y, z),

since d ⩾ ′ y and d ⩾ ′ z, it suffices to show

d ≱ ′ x.

To see this, observe that if x = y, since z ⩽ x, we would have by 7. that
l(z) ⩽Pre l(x) hence (cf. Lemma 2.6 (b))

CPrel(x)l(y)l(z),
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but then (¬⟨sup⟩ψψ ′, x,y, z) couldn’t have been a ¬⟨sup⟩-defect. Same for x = z.
Thus,

y < x and z < x,

whence d ≱ ′ x by definition of ⩽ ′ and ⩽ being a partial order by assumption (cf.
condition 6.).

With all of these preliminaries out of the way, we are finally in a position to
construct the needed frame and prove completeness.

Theorem 2.13 (Completeness). MILPre is strongly complete w.r.t. MILPre. So, in
particular, MILPre ⊇ MILPre.

Proof. Suppose Γ0 is consistent. It suffices to show that Γ0 is satisfiable. As
previously mentioned, to show so, we will construct a model satisfying a truth
lemma for labeled points by taking the colimit of a sequence of models getting
ever closer to satisfying this truth lemma. We begin by extending Γ0 to a maximal
consistent set Γ ⊇ Γ0, and letting ⩽0 be the diagonal on W, D0 := ∅ and l0 :=

{(x0, Γ)} for some x0 ∈W. Then 1.-7. are satisfied, where 7. follows by reflexivity
of ⩽Pre. We continue by constructing a sequence

(l0,⩽0,D0), (l1,⩽1,D0), . . . , (ln,⩽n,Dn), . . .

s.t. for all i ∈ ω
li ⊆ li+1, ⩽i ⊆ ⩽i+1, Di ⊆ Di+1,

using the repair lemmas repeatedly. We do so by enumerating the set of all pairs
(⟨sup⟩χχ ′, x) and all quadruples (¬⟨sup⟩ψψ ′, x,y, z) Such an enumeration exists because

(1)W is countable, and (2) there
are countably many formulas.

. Then at each stage n + 1
we pick the least tuple constituting a defect to (ln,⩽n,Dn), which we repair
obtaining (ln+1,⩽n+1,Dn+1). Letting

(lω,⩽ω,Dω) :=

( ⋃
n∈ω

ln,
⋃
n∈ω

⩽n,
⋃
n∈ω

Dn

)
,

we get that (1) (lω,⩽ω,Dω) satisfies 4.-7.; (2) lω is a (partial) function from W

to the set of all MCSs; and (3) (lω,⩽ω,Dω) neither has any ⟨sup⟩- nor ¬⟨sup⟩-
defects. Only (3) isn’t straightforward. To show this, we prove two claims, and
in order to do so, we need the following observation.

Observation. Let n ∈ ω and {x, v} ⊆ dom(ln) be arbitrary s.t.

↑nv = ↑nx ∪ {v} ∪ (↑nv ∩ {w | ↑nw ∩ ↑nx = ∅}).
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Then for allm ⩾ n:

↑mv = ↑mx ∪ {v} ∪ (↑mv ∩ {w | ↑mw ∩ ↑mx = ∅}),

hence also
↑ωv = ↑ωx ∪ {v} ∪ (↑ωv ∩ {w | ↑ωw ∩ ↑ωx = ∅}).

This is easily seen by induction, using that each (lm+1,⩽m+1,Dm+1) is ob-
tained from (lm,⩽m,Dm) using either of the repair lemmas.

Claim (a). Suppose (⟨sup⟩χχ ′, x) does not constitute a defect for some (ln,⩽n,Dn)
at which (i) x ∈ dom(ln) and (ii) ⟨sup⟩χχ ′ ∈ ln(x). Then this must be witnessed by
some y, z (cf. Definition 2.8). We show that for allm ⩾ n:

(⟨sup⟩χχ ′, x) does not constitute a defect for (lm,⩽m,Dm), witnessed by y, z.

A fortiori, neither does it for (lω,⩽ω,Dω).
By the observation and noting that li ⊆ li+1 for all i ∈ ω, it suffices to show

that for allm ⩾ n:
x = supm{y, z}.

We prove this by induction on m ⩾ n. By assumption, this holds for m = n.
Accordingly, suppose it holds for an arbitrarym ⩾ n. We show it holds form+ 1.
We have two cases, depending on the type of defect being repaired at stagem+ 1.

First, suppose the defect repaired was a ⟨sup⟩-defect for some world s. Since
the corresponding introduced dom(lm+1)-worlds ys, zs have no proper ⩽m+1-
predecessors, the claim follows. Reason being that, cf. the IH and the definition

⩽m+1 := ⩽m ∪ {(ys,u), (zs,u)|s ⩽m u},

ys and zs are the only possible counterexamples to the claim.
Second, suppose (lm+1,⩽m+1,Dm+1) was obtained via ¬⟨sup⟩-repairing some

s,ys, zs by introducing the dummy ds. Notice that, by IH and the definition

⩽m+1 := ⩽m ∪ {(u,ds), (v,ds)|u ⩽m ys, v ⩽m zs},

the only possible counterexample to the claim is ds. Accordingly, suppose
ds ⩾m+1 y, z. Going by cases, we prove that this implies ds ⩾m+1 x:

• If ys ⩾m y, z, then, by IH, ys ⩾m x so ds ⩾m+1 x.

• If zs ⩾m y, z, then as above.
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• If ys ⩾m y and zs ⩾m z, then, by the observation, either (a) ys = y or (b)
ys ⩾m x or (c) ↑mys ∩ ↑mx = ∅. If (b), then ds ⩾m+1 x. And if (c), then
note that as s is a ⩽m-upper bound of {ys, zs}, it must also be a ⩽m-upper
bound of {y, z}, hence, by IH, x ⩽m s – contradicting ↑mys ∩ ↑mx = ∅.
Thus, we may assume (a) ys = y; and, analogously, zs = z. But then
s = sup ⩽m

{ys, zs} = sup ⩽m
{y, z} = x, hence (s,ys, zs) = (x,y, z) couldn’t

have constituted a ¬⟨sup⟩-defect because CPrelm(x)lm(y)lm(z).

• If zs ⩾m y and ys ⩾m z, then as above.

This exhausts all cases, showing ds ⩾m+1 x, which completes the induction. (a)

Claim (b). Suppose n ∈ ω and a,b ∈ (dom(ln)∪Dn) are s.t. a ≱n b. Then for all
m ⩾ n, we have that a ≱m b. A fortiori, a ≱ω b.

Follows by induction on m, noting that if (lm+1,⩽m+1,Dm+1) was obtained
by ⟨sup⟩-repairing some x by introducing some y, z, we would have

⩽m+1 := ⩽m ∪ {(y,u), (z,u) | x ⩽ u};

that is, there is no change in successors of b.
Likewise, if (lm+1,⩽m+1,Dm+1) was obtained by ¬⟨sup⟩-repairing some x,y, z

by introducing a dummy d, there is no change in predecessors of a. This exhaust
the cases, hence proves the claim. (b)

Using (a) and (b), it is straightforward to see (c): If some tuple did constitute a
defect at some stage n, but no longer at some later stagem > n, then it didn’t for
all k ⩾ m.

With these claims at hand, we can show (3) that (lω,⩽ω,Dω) neither has
⟨sup⟩- nor ¬⟨sup⟩-defects. For ⟨sup⟩, let

(⟨sup⟩χχ ′, x)i

be an arbitrary pair in our enumeration s.t. x ∈ dom(lω) and ⟨sup⟩χχ ′ ∈ lω(x).
Then x ∈ dom(ln) for some n ∈ ω, hence

x ∈ dom(lm), ⟨sup⟩χχ ′ ∈ lm(x)

for all m ⩾ n. If, on one hand, (⟨sup⟩χχ ′, x)i didn’t constitute a defect to
(ln,⩽n,Dn) – using claim (a) (and the observation) – we get that it wouldn’t for
(lω,⩽ω,Dω) either. On the other, in case it did, it would no more no later than
at stage n+ i+ 1 (cf. (c)), and henceforth – by claim (c) – remain repaired. Thus,
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(lω,⩽ω,Dω) has no ⟨sup⟩-defects.
For ¬⟨sup⟩, suppose towards contradiction that

(¬⟨sup⟩ψψ ′, x,y, z)i

denotes a ¬⟨sup⟩-defect. Then x ⩾ω y and x ⩾ω z, so there is some n ∈ ω s.t.

x ⩾n y, z.

If
x ̸= sup ⩽m

{y, z}

for somem ⩾ n, there must be some a ∈ (dom(lm)∪Dm) s.t.

y, z ⩽m a ≱m x,

but then – cf. claim (b) –
y, z ⩽ω a ≱ω x ,

which, in particular, shows x ̸= supω{y, z}—contradicting (¬⟨sup⟩ψψ ′, x,y, z)i
being a ¬⟨sup⟩-defect. Thus, we must have

x = sup ⩽m
{y, z}

for all m ⩾ n, implying – and simultaneously contradicting – that the defect
will be repaired no later than at stage n+ i+ 1 (cf. (c)). That is, there can be no
¬⟨sup⟩-defects either.

Finally, setting
V(p) := {x ∈ dom(lω) : p ∈ lω(x)},

we show that for all x ∈ dom(lω) and all φ ∈ LM:

(W,⩽,V), x ⊩ φ iff φ ∈ lω(x). This is our truth lemma.

The proof goes by induction on the complexity of formulas. Base case is by
definition and Boolean cases are straightforward. For the ⟨sup⟩-case, we get

x ⊩ ⟨sup⟩φ1φ2

Def
iff ∃y, z [x = supω{y, z},y ⊩ φ1, z ⊩ φ2]

(IH)
iff ∃y, z [x = supω{y, z},φ1 ∈ lω(y),φ2 ∈ lω(z)]
(i)
iff ⟨sup⟩φ1φ2 ∈ lω(x),
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where we in the left-to-right direction of (IH) use – apart from the induction
hypothesis itself – that (lω,⩽ω,Dω) satisfies 5.-6.; i.e., in particular, neither of
the witnessing y, z are dummies nor inW \ (dom(lω) ∪Dω), and so they must
be in dom(lω). Further, left-to-right of (i) holds by there being no ¬⟨sup⟩-defects,
while right-to-left follows from there being no ⟨sup⟩-defects.

This completes the induction, from which it follows that

(W,⩽ω,V), x0 ⊩ Γ0,

showing that Γ0 is satisfiable in a preorder model and, thus, at long last, finalizing
our proof of completeness.

Corollary 2.14. MILPre = MILPos.

Proof. As noted in Remark 1.6, MILPre ⊆ MILPos, while the other inclusion follows
from the frame constructed in the completeness proof being a partial order.

24



3. Decidability of MILPre

This chapter consists of two parts. In section 3.1, we show that MILPre is complete
w.r.t. another class of structures C. Then, in section 3.2, we show that MILPre

has the FMP w.r.t. C-frames and conclude that MILPre (and MILPos) are, after all,
decidable—solving a problem posed in van Benthem (2017, 2019, Forthcoming).
Lastly, as an addendum, in Appendix A.2, we show that MILPre also enjoys the
TMP w.r.t. C-frames.

3.1. Reinterpreting ⟨sup⟩ on generalized structures C

Following the method of section 1.3, and with an axiomatization of MILPre at
hand, we continue our road to decidability by proving completeness relative to a
different class of structures. These structures will be named C-frames, alluding to
our denoting this class of structures as C.

Before we get that far, though, the first key observation to make is that there is
nothing in the syntactic definition of MILPre implying that the binary modality-
symbol ⟨sup⟩ need be interpreted in terms of the supremum relation on a pre-
order. I.e., there is nothing a priori hindering us from reinterpreting MILPre

through reinterpreting the symbol ⟨sup⟩.
Further, MILPre being an NML means that there might be a canonical reinter-

pretation, namely the one reached through frame correspondence of MILPre on
the class of all pairs (W,C) whereW is a set and C is an arbitrary ternary relation
onW. And, indeed, that is how we proceed.

Lemma 3.1. Let (W,C) be a frame for the modal language with a single binary modality.
Then we have the following frame correspondences:

(i) (W,C) ⊩ (Re.) iff (W,C) ⊨ ∀w (Cwww)

(ii) (W,C) ⊩ (4) iff (W,C) ⊨ ∀w, v, x (Cwvx∧ Cvuy→ ∃z [Cwuz])

(iii) (W,C) ⊩ (Co.) iff (W,C) ⊨ ∀w, v,u (Cwvu→ Cwuv)

(iv) (W,C) ⊩ (Dk.) iff (W,C) ⊨ ∀w, v,u (Cwvu→ Cwwv)

Proof. Standard frame correspondence proofs work, using arguments similar
to the ones in the proof of Lemma 2.6(a), (b)(i), (c) and (d). Alternatively, the
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Sahlqvist-van Benthem algorithm also applies because the formulas are Sahlqvist.

Definition 3.2. We denote the first-order correspondents of (Re.), (4), (Co.) and
(Dk.) as (Re.f), (4f’), (Co.f) and (Dk.f), respectively. ⊣

While (Re.f), (Co.f), and (Dk.f) all match neatly with (Re.), (Co.), and (Dk.),
respectively, (4f’) is a bit ugly FO-correspondent of (4). However, as the following
proposition shows, in the presence of the other axioms, the correspondence
crystallizes.

Proposition 3.3. Let (W,C) be a frame for the modal language with a single binary
modality. Then TFAE:

• (W,C) ⊩MILPre

• (W,C) ⊨ (Re.f)∧ (Co.f)∧ (Dk.f)∧ ∀w, v,u (Cwwv∧ Cvvu→ Cwwu)

In other words, (4f’) and (4f) are equivalent modulo (Re.f), (Co.f) and (Dk.f), In fact, even modulo (Dk.f) and
(Co.f).

where

(4f) := ∀w, v,u (Cwwv∧ Cvvu→ Cwwu) .

Proof. Straightforward consequence of Lemma 3.1.

It now follows that we have obtained a different class of structures, namely C,
which is complete w.r.t. MILPre – as summarized in the ensuing corollary.

Corollary 3.4. MILPre is sound and (strongly) complete w.r.t.

C := {(W,C) ⊨ (Re.f)∧ (Co.f)∧ (Dk.f)∧ (4f)} .

In particular,
MILPre = Log(C),

where Log(C) := {φ ∈ LM | (W,C) ⊩ φ, (W,C) ∈ C} denotes the NML of C.

Proof. The preceding proposition implies soundness, and then our earlier com-
pleteness theorem (2.13) gives us (strong) completeness.

This corollary proven, we have arrived at the final step described in section 1.3:
showing the FMP of MILPre when reinterpreted on C. Before proving this in the
next section, we find it instructive to revisit the formula ψN from Proposition 1.8
and show that, although not satisfiable on a finite preorder frame, it is satisfiable
on a finite C-frame. We do this right after observing the following:
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Observation 3.5. It is not hard to prove that for any (W,C) ∈ C, x ∈W, valuation
V on (W,C) and formula φ, we have that

(W,C,V), x ⊩ Pφ iff ∃y ∈W (Cxxy∧ y ⊩ φ) ,

and hence also

(W,C,V), x ⊩ Hφ iff ∀y ∈W (Cxxy→ y ⊩ φ) . ⊣

Remark 3.6. Although

ψN := HP⟨sup⟩pp∧HP¬⟨sup⟩pp

only is satisfiable on infinite preorder models under the standard interpretation
of ⟨sup⟩ (cf. Proposition 1.8), it is satisfiable on a finite C-frame. ⊣

Proof. Set

W := {w, v} , C := {(w,w,w), (v, v, v), (w,w, v), (w, v,w), (v, v,w), (v,w, v)},

V(p) := {w}. (W,C) can be intuited as a
two-point cluster in which
‘x /∈ sup(y,y)’ when x ̸= y.We claim that (W,C) ∈ C and (W,C,V),w ⊩ ψN.

The former can be seen by a quick (yet tedious) check that (W,C) models the
given first-order conditions [otherwise, our later Remark A.3.1 also implies this].
The latter can be seen by first noting that

(a) w ⊩ ⟨sup⟩pp while (b) v ⊮ ⟨sup⟩pp,

since, respectively, (a) Cwww and w ⊩ p, and (b) ¬Cvww and v ⊮ p.
Moreover, using that (W,C) ∈ C, we get

w ⊩ HP⟨sup⟩pp iff ∀x ∈W (Cwwx→ x ⊩ P⟨sup⟩pp)

iff ∀x ∈W (Cwwx→ ∃y [Cxxy∧ y ⊩ ⟨sup⟩pp]) ,

hence also

w ⊩ HP¬⟨sup⟩pp iff ∀x ∈W (Cwwx→ ∃y [Cxxy∧ y ⊮ ⟨sup⟩pp]) .

With this spelt out, we find that w ⊩ ψN as we have Cwww,Cwwv,Cvvv,Cvvw;
i.e., the existential consequents are always fulfilled.
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3.2. The finite model property

As promised, we go on proving that MILPre enjoys the FMP w.r.t. C and then use
this to deduce decidability of MILPre. The proof of the FMP is done by employing
a filtration-style argument. To this end, we define a notion extending the standard
notion of a set of formulas being subformula closed.

Definition 3.7. We say that a set Σ of LM-formulas is C-closed :iff

(Sub) it is subformula closed;

(Com) ⟨sup⟩φψ ∈ Σ implies ⟨sup⟩ψφ ∈ Σ; and

(S-P) ⟨sup⟩φψ ∈ Σ implies Pφ ∈ Σ.

Moreover, for any set of formulas Σ0, we say that Σ is the C-closure of Σ0 :iff it is
the least C-closed set of formulas extending Σ0. Note that the C-closure of a set of

formulas always exists.
⊣

An immediate consequence of the definition is the following lemma:

Lemma 3.8. Suppose Σ0 is a finite set of LM-formulas. Then its C-closure Σ ⊇ Σ0 is
finite as well.

Less immediate is how to use this notion for a filtration-style argument of
the FMP. This is the content of the following theorem, whose proof contains the
actual definition of a filtration through a C-closed set of formulas.

Theorem 3.9. MILPre admits filtration w.r.t. the class C. Thus,

MILPre = Log(CF),

where Log(CF) denotes the NML of the class of finite C-frames.

Proof. Cf. Lemma 3.8 and the obvious inclusion Log(C) ⊆ Log(CF), it suffices to
show that for any C-model (W,C,V) and C-closed set of formulas Σ, the following
hold:

1. (WΣ,CC
Σ) ∈ C, where our filtered universe is

WΣ := {|x|Σ : x ∈W} |x|Σ denotes the equivalence class
on the set of worldsW defined as
satisfying the same Σ-formulas as
x.

with relation

CC
Σ|x||y||z| :iff ∀⟨sup⟩φψ ∈ Σ

(
[(y ⊩ φ, z ⊩ ψ) ⇒ x ⊩ ⟨sup⟩φψ] and

[(y ⊩ Pφ, z ⊩ Pψ) ⇒ x ⊩ Pφ∧ Pψ]
)
.
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2. For all φ ∈ Σ, x ∈W:

(WΣ,CC
Σ,VΣ), |x| ⊩ φ iff (W,C,V), x ⊩ φ,

where VΣ(p) := {|x| ∈WΣ : x ∈ V(p)} for all p ∈ Σ.

We begin by proving 1.; i.e., showing (WΣ,CC
Σ) ∈ C. This we do as follows:

• (WΣ,CC
Σ) ⊨ (Re.f) can be seen using (W,C) ⊩ (Re.).8

• (WΣ,CC
Σ) ⊨ (Co.f) can be seen using (W,C) ⊩ (Co.) and the (Com)-closure.

• Showing (WΣ,CC
Σ) ⊨ (Dk.f) is a bit more tricky. Accordingly, suppose

CC
Σ|x||y||z| and let ⟨sup⟩φψ ∈ Σ be arbitrary. It then suffices to show

(x ⊩ φ,y ⊩ ψ) ⇒ x ⊩ ⟨sup⟩φψ and (x ⊩ Pφ,y ⊩ Pψ) ⇒ x ⊩ Pφ∧ Pψ.

For the former, since ⟨sup⟩ψ⊤ = Pψ ∈ Σ by (Com)- and (S-P)-closure, we
have that if y ⊩ ψ, then x ⊩ ⟨sup⟩ψ⊤ because CC

Σ|x||y||z|. So if also x ⊩ φ,
then using (W,C) ⊩ (Dk.), we get x ⊩ ⟨sup⟩φψ.

Further, for the latter, if y ⊩ Pψ, using z ⊩ P⊤ because (W,C) ⊩ (T) [and,
again, ⟨sup⟩ψ⊤ = Pψ ∈ Σ and CC

Σ|x||y||z|], we get x ⊩ Pψ.

• Lastly, to prove (WΣ,CC
Σ) ⊨ (4f), supposeCC

Σ|x||x||y|,C
C
Σ|y||y||z| and ⟨sup⟩φψ ∈

Σ. We show that

(x ⊩ φ, z ⊩ ψ) ⇒ x ⊩ ⟨sup⟩φψ and (x ⊩ Pφ, z ⊩ Pψ) ⇒ x ⊩ Pφ∧ Pψ.

For the former, if z ⊩ ψ, then CC
Σ|y||y||z| and ⟨sup⟩⊤ψ ∈ Σ imply y ⊩

⟨sup⟩⊤ψ, hence y ⊩ Pψ by (W,C) ⊩ (Co.). But then this along with x ⊩ P⊤

8Alternatively, below we show that this filtration indeed satisfies the homomorphic filtration
condition: Cxyz⇒ CC

Σ|x||y||z|. From this and surjectivity of x 7→ |x|Σ, (Re.f) follows.
On this node, it is worth (foot)noting that the culprit in hindering this inheritance argument for

the three other FO-conditions are the implications in their respective definitions; e.g., for (Dk.f)
we haveCwvu→ Cwwv ≡ ¬Cwvu∨Cwwv, so when this implication holds by virtue of
the first disjunct, namely ‘¬Cwvu’, we cannot likewise conclude ¬CC

Σ|w||v||u|.
This also explains that the filtration relation and the set of formulas we are filtering through

have been defined to accommodate these three axioms. As for the transitivity axiom, we have
drawn inspiration from the Lemmon filtration.

Lastly, we briefly indicate why FO-conditions with an existential in the consequent of an
implication are much worse [e.g., (one-way) associativity: ∀w,v,x,y,z([Cwvz∧Cvxy] →
∃u[Cwxu ∧ Cuyz])]. When we didn’t have an existential in the consequent, the general
idea was – to use the previous example – to ensure that in cases whereCC

Σ|w||v||u| while also
¬Cwvu, we always had CC

Σ|w||w||v|. Crucially, we had some concrete worlds to try to get
a handle on: the worlds of the consequent appeared in the antecedent. As soon as we have an
existential instead, this ‘handle’ goes down the drain.

While a bit of an aside, we find it an interesting general aspect worth pointing out, and it also
connects with our later Remark A.3.2 and section 6.5 in general.
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and CC
Σ|x||x||y| imply that x ⊩ Pψ. So if also x ⊩ φ, then (W,C) ⊩ (Dk.)

implies x ⊩ ⟨sup⟩φψ.

Further, if z ⊩ Pψ, using z ⊩ P⊤, then y ⊩ Pψ, and in turn x ⊩ Pψ.

This completes our proof of 1. For proving 2., it suffices to show that (WΣ,CC
Σ,VΣ)

is a filtration of (W,C,V) through Σ. That is, we need to check two conditions,
namely

(F1) Cxyz⇒ CC
Σ|x||y||z|; and

(F2) CC
Σ|x||y||z| ⇒ ∀⟨sup⟩φψ ∈ Σ [(y ⊩ φ, z ⊩ ψ) ⇒ x ⊩ ⟨sup⟩φψ].

(F2) follows by definition of our filtration relation. For (F1), suppose Cxyz and
⟨sup⟩φψ ∈ Σ. Then the only non-trivial part is to show that

(y ⊩ Pφ, z ⊩ Pψ) ⇒ x ⊩ Pφ∧ Pψ.

Since (W,C) ⊨ (Dk.f) ∧ (Co.f), we also have Cxxy and Cxxz. Thus, if y ⊩ Pφ
and z ⊩ Pψ, we get that

x ⊩ PPφ∧ PPψ,

hence from (W,C) ⊩ (4), we get

x ⊩ Pφ∧ Pψ

as desired.

Finally, we end this chapter by deducing decidability.9

Corollary 3.10. MILPre is decidable (and so is MILPos).

Proof. Cf. Theorem 2.13 and Corollary 3.4, we know that

MILPre = MILPre = Log(CF).

So since MILPre is a finitely axiomatized NML admitting filtration w.r.t. C, we
get decidability. Similarly, using that our filtration

argument establishes the strong
finite model property, one can prove
decidability.

9For the interested reader, in Appendix A.2 we show that the general heuristic regarding decidability
and the FMP outlined in section 1.3 also applies to the TMP.
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4. MIL with Informational Implication

With MILPre = MILPos axiomatized and proven decidable, this chapter investi-
gates their enrichments, MIL\-Pre and MIL\-Pos, with the ‘informational implica-
tion’ ‘\’. The main goals are to provide an axiomatization and a decidability
proof.

In section 4.1, we formally set out the logics of concern and briefly comment on
the increased expressibility. In section 4.2, we, first, put forward an axiomatiza-
tion and point out on an interesting junction with the Lambek Calculus. Before,
second, pausing our investigation of MIL\-Pre and MIL\-Pos per se, to show that
the proposed axiomatization is sound and complete w.r.t. the class C. Using this
result, in section 4.3, we obtain soundness and completeness w.r.t. our poset
frames through combining two representation results: the first achieved via an
adaptation of ‘bulldozing’, and the second via supplementing the framework
of section 2.2 with an additional defect. We deduce that MIL\-Pre = MIL\-Pos.
Lastly, in section 4.4, we modify the filtration technique of section 3.2 to attain
decidability of MIL\-Pre.

4.1. Augmenting with ‘\’

As noted, we seek to study the enrichment of the basic modal information
logic(s), MILPre and MILPos, given by adding an ‘informational implication’ as a
binary modality. In this section we cover some preliminaries, specifically, some
definitions followed by a few comments on expressivity. We start with supplying
the following pertinent definitions:

Definition 4.1 (Language). The language L\-M is given by extending the basic
language of modal information logic LM with a binary modality symbol ‘\ ′.

As a convention we use infix notation for ‘\ ′ instead of prefix/Polish notation;
that is, we write ‘φ\ψ’, rather than ‘\φψ’ (as we, e.g., would do with ‘⟨sup⟩’ and
‘[sup]’). ⊣

Definition 4.2 (Semantics). Given a preorder model M = (W,⩽,V), a world
v ∈W and a formula φ\ψ ∈ L\-M with main connective ‘\’, we let

M, v ⊩ φ\ψ iff for all u,w ∈W, if M,u ⊩ φ and w ∈ sup{u, v}, Notice how ‘\’ is the ‘□-ed’ and
not the ‘♢-ed’ half of a modality
pair.then M,w ⊩ ψ. ⊣
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Definition 4.3 (Logic). We denote the modal information logic on preorders in
the enriched language of L\-M as MIL\-Pre, which – to be explicit – is defined as

MIL\-Pre := {φ ∈ L\-M : (W,⩽) ⊩ φ for all preorder frames (W,⩽)}.

MIL\-Pos is defined analogously. ⊣

Remark 4.4. As a minor interlude, as mentioned in the introduction, the choice
of symbol ‘\’ concurs with standard notation in the Lambek Calculus. With
the semantics given, the reason becomes evident: the interpretation is the same
(given a supremum relation). It is also worth pointing out that the commutativity
of suprema implies that the other Lambek residual – typically denoted by ‘/’ –
collapses into ‘\’ in the sense that φ/ψ ≡ ψ\φ. Lastly, the modality ‘⟨sup⟩’ is
interpreted (again, given a supremum relation) exactly as the binary product ‘·’
is in the Lambek Calculus. In the next section, we expound this connection even
further. ⊣

Now, recall that the primary results we are after are (1) axiomatizing MIL\-Pre

and MIL\-Pos and (2) showing them to be decidable. Once more, we will be
following the heuristic laid out in section 1.3; however, this time our completeness
theorem will not be proven via model constructions but via representation results.
For this to work, we, needlees to say, must (a) have another class of structures
for which we can prove the representation results, and (b) also already have the
logic of this other class axiomatized. Regarding (a), a natural candidate arises:
the C-frames of the previous chapter. Before being able to (b) axiomatize the
logic of this class (as we will in the next section), we must clarify how ‘\’ is to be
interpreted on C-models. This is the content of the following definition:

Definition 4.5. Given a frame (W,C) ∈ C, a valuation V on (W,C), a world
v ∈W and a formula φ\ψ ∈ L\-M with main connective ‘\’, we let

(W,C,V), v ⊩ φ\ψ iff for all u,w ∈W, if (W,C,V),u ⊩ φ and Cwvu,

then (W,C,V),w ⊩ ψ. ⊣

To be precise, we explicate how this generalizes our definition on preorder
frames.

Definition 4.6. Let SPre (resp. SPos) be the class of pairs (W,S⩽) whereW is a set
and S⩽ ⊆W3 is a ternary relation for which there is some preorder (resp. partial
order) ⩽ onW s.t. for all w, v,u ∈W: I.e., S⩽ is the supremum relation

induced by a preorder (resp. poset).

S⩽wvu iff w ∈ sup⩽{u, v}.
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Then the semantics of ‘\’ on a preorder model (W,⩽,V) comes down to

(W,S⩽,V), v ⊩ φ\ψ iff for all u,w ∈W, if (W,S⩽,V),u ⊩ φ and S⩽wvu,

then (W,S⩽,V),w ⊩ ψ,

where S⩽ is the supremum relation induced by ⩽. ⊣

As the last definition of this section, we set forth the logic of C-frames in this
extended language:

Definition 4.7. We write Log\(C) for the logic of C-frames in the language L\-M;
i.e., Log\(C) denotes the set of L\-M-validities on C-frames. ⊣

With these definitions out of the way, we finish up this section with the
promised comments on expressivity. First off, we show that with the addi-
tional vocabulary provided, we are not only able to express the past-looking
unary modality ‘P’, but also the future-looking ‘F’.

Remark 4.8. The future-looking unary modality ‘F’ (i.e., the standard ‘♢’) is
definable as Notice that this places us in a

(rather simple and natural)
extension of temporal S4.

Fφ := ¬(⊤\¬φ).

This can be seen by recalling the definition

M, v ⊩ Fφ :iff ∃w(v ⩽ w,w ⊩ φ),

and observing that also

M, v ⊩ ¬(⊤\¬φ) iff ∃u,w(w ∈ sup{u, v},u ⊩ ⊤,w ⊮ ¬φ)

iff ∃w(v ⩽ w,w ⊩ φ). ⊣

Finally, for good measure, observe that ‘\’ is not expressible in our simpler
language LM. To see this, take, e.g., a two-chain {0, 1} where 0 ⩽ 1 and a one-
chain {0 ′}; and let 0 ⊩ ¬p, 1 ⊩ p, and 0 ′ ⊩ ¬p. Then 0 ⊩ Fp while 0 ′ ⊮ Fp, but for
all φ ∈ LM: 0 ⊩ φ iff 0 ′ ⊩ φ.

4.2. Axiomatizing Log
\
(C)

Now for the promised axiomatization of Log\(C), which – via the representation
results of the next section – entails that it even is an axiomatization of MIL\-Pre

and MIL\-Pos.
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Definition 4.9 (Axiomatization). We define MIL\-Pre to be the least set of L\-M-
formulas that (i) is closed under the axioms and rules of MILPre; (ii) contains the
K-axioms for \; (iii) contains the axioms

(I1) ⟨sup⟩p(p\q) → q, and ‘(I1)’ and ‘(I2)’ are short for
‘inverses’: they capture how ‘⟨sup⟩’
and ‘\’ relate.(I2) p→ q\(⟨sup⟩pq);

and (iv) is closed under the rule

(N\) if ⊢\-Pre φ, then ⊢\-Pre ψ\φ. ‘(N\)’ is short for ‘necessitation’.
Observe that the other necessitation
rule is not validity preserving. We,
e.g., have Log\(C) ⊩ ⊤ but we do
not have Log\(C) ⊩ ⊤\⊥.

⊣

Before showing that MIL\-Pre is sound and strongly complete w.r.t. C-frames,
some remarks are due.

Remark 4.10 (Lambek Calculus of suprema on preorders). In its basic version,
the Lambek Calculus only contains the three binary connectives ‘·’, ‘\’ and ‘/’, of
which the first matches our ‘⟨sup⟩’ and the last two, modulo (Co.), both match our
‘\’. It is defined proof-theoretically with the constitutive rules of the connectives
(when given in our language) being

(L1) if ⊢ ⟨sup⟩φψ→ χ, then ⊢ ψ→ φ\χ; and its converse

(L1) if ⊢ ψ→ φ\χ, then ⊢ ⟨sup⟩φψ→ χ. ‘(L1)’ and ‘(L2)’ are short for
‘Lambek’.

Unsurprisingly, both of these rules are derivable in our Hilbert system for
MIL\-Pre. We refer the reader to Buszkowski (2021) for a proof; in this paper,
Buszkowski considers the extensions of both the associative and non-associative
Lambek Calculus—which he denotes L and NL, respectively—with the classical
propositional calculus, resulting in the logical systems L-CL and NL-CL, respec-
tively. It is his proof of derivability of (L1) and (L2) in his Hilbert system for
NL-CL that readily applies to our MIL\-Pre. Reason being that MIL\-Pre turns
out to be nothing but an extension of NL-CL with the axioms (Re.), (4), (Co.),
and (Dk.)—shedding another interesting light on modal information logics and,
especially, MIL\-Pre (and MIL\-Pos) when having in mind that we end up proving
that MIL\-Pos = MIL\-Pre = MIL\-Pre. In other words, MIL\-Pre is the Lambek
Calculus (augmented with CL) of suprema on preorders (or on posets). ⊣

Remark 4.11. Besides from Buszkowski (2021) being a recent gem in the literature
on the Lambek Calculus extended with CL (i.e., essentially, studying it as a
classical modal logic with three binary modalities), it has received some newborn
attention: in Buszkowski and Farulewski (2009) NL-CL is denoted BFNL, and
in Kaminski and Francez (2014) L-CL and NL-CL are denoted PL and PNL,
respectively. ⊣
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We continue with the pledged completeness proof.

Theorem 4.12. MIL\-Pre is sound and strongly complete w.r.t. the class C. Thus, in
particular, MIL\-Pre = Log\(C).

Proof. Soundness MIL\-Pre ⊆ Log\(C) is routine. Nevertheless, for soundness, to
understand how ‘\’ and ‘⟨sup⟩’
capture different aspects of the same
relation, it might be instructive for
the reader to check that (I1) and (I2)
are valid on C-frames.

For strong completeness, we define the canonical frame as we did in Definition
2.3, but now defined w.r.t. the language L\-M instead; i.e., we letW\-Pre denote
the set of MIL\-Pre-MCSs, and set C\-PreΓ∆Θ :iff

∀δ ∈ ∆, θ ∈ Θ (⟨sup⟩δθ ∈ Γ) .

Note that Lindenbaum’s Lemma and standard properties of MCSs hold, since
our logic contains all classical propositional tautologies and is closed under MP
and US. As in Lemma 2.6, we then get that (W\-Pre,C\-Pre) ∈ C.

Thus, it suffices to show the standard truth lemma. The base and Boolean cases
are straightforward by standard properties of MCSs, and since ‘[sup]’ is a normal
modality and C\-Pre is defined in terms of it(s dual), the corresponding inductive
step of the truth lemma goes through. Therefore, it only remains to cover the
inductive step for ‘\’.10 To this end, the following two claims will suffice:

• Claim: If φ\ψ ∈ ∆,φ ∈ Θ and C\,PreΓ∆Θ, then ψ ∈ Γ .

Proof. Assume φ\ψ ∈ ∆,φ ∈ Θ and C\,PreΓ∆Θ. By definition of C\,Pre, we
would have that ⟨sup⟩(φ\ψ)φ ∈ Γ . ψ ∈ Γ then follows by (I1), (Co.), US,
and MP of MCSs.

• Claim: If ¬(φ\ψ) ∈ ∆, then there are some Θ, Γ s.t. φ ∈ Θ,¬ψ ∈ Γ and
C\,PreΓ∆Θ. This is the existence lemma for ‘\’.

Proof. Assume ¬(φ\ψ) ∈ ∆. Then

Γ0 := {⟨sup⟩δφ | δ ∈ ∆} ∪ {¬ψ}

is consistent because if not, then

⊢\-Pre

∧
i⩽k

⟨sup⟩δiφ→ ψ

10For another, more elaborate proof of a truth lemma which resembles ours, see the one given for the
canonical model of NL-CL (their PNL) in Kaminski and Francez (2014).
We provide our own proof and keep it brief, assuming familiarity with the techniques involved.
This will be done in the terminology of Blackburn et al. (2001, ch. 4), which also is an excellent
resource for an explication of arguments and details sufficiently similar to the ones we will omit.

35



for some finite {δ0, . . . , δk} ⊆ ∆, hence (a)

⊢\-Pre ⟨sup⟩δ̂φ→ ψ

where δ̂ :=
∧
i⩽k δi. Moreover, since δ̂ ∈ ∆, we get by (I2), US, and MP of

MCSs that (b) φ\(⟨sup⟩δ̂φ) ∈ ∆. Thus, since all MCSs extend MIL\-Pre and
the monotonicity rule

if ⊢\-Pre α0 → α1, then ⊢\-Pre β\α0 → β\α1

is easily derived, we get by (a), (b), US and MP of MCSs that φ\ψ ∈ ∆ –
contradiction. Consequently, Γ0 must be consistent.

Now, let χ0,χ1, . . . be an enumeration of all L\-M-formulas, and define

Θ0 := {φ},

and

Θn+1 :=

Θn ∪ {χn}, if {⟨sup⟩δ(Θ̂n ∧ χn) | δ ∈ ∆} ∪ {¬ψ} is consistent

Θn ∪ {¬χn}, otherwise.

We claim that the set

{⟨sup⟩δΘ̂n | δ ∈ ∆} ∪ {¬ψ}

is consistent for all n ∈ ω. For the base case, notice that Γ0 being consistent
precisely means that

{⟨sup⟩δΘ̂0 | δ ∈ ∆} ∪ {¬ψ}

is consistent.

So assume
{⟨sup⟩δΘ̂n | δ ∈ ∆} ∪ {¬ψ}

is consistent for some n ∈ ω. If

{⟨sup⟩δ(Θ̂n ∧ χn) | δ ∈ ∆} ∪ {¬ψ}

is consistent, we are done, so suppose not. Enumerating the formulas of ∆
as δ0, δ1, . . . and setting δ ′i := {δj : j ⩽ i}, there must then be some k ∈ ω s.t.
for allm ⩾ k:

⊢\-Pre ⟨sup⟩δ̂ ′m(Θ̂n ∧ χn)∧ ¬ψ→ ⊥. (∗)

36



Furthermore, since by the IH

{⟨sup⟩δΘ̂n | δ ∈ ∆} ∪ {¬ψ}

is consistent, using Lindenbaum, we can extend it to an MCS Λn. For this
MCS Λn, we must then have for all i ∈ ω:

⟨sup⟩δ̂ ′i(Θ̂n ∧ [χn ∨ ¬χn]) ∈ Λn.

So for all i ∈ ω:

⟨sup⟩δ̂ ′i(Θ̂n ∧ χn) ∈ Λn or ⟨sup⟩δ̂ ′i(Θ̂n ∧ ¬χn) ∈ Λn.

Thus, combining this with (∗) [and having in mind that ¬ψ ∈ Λn], we get
that for allm ⩾ k:

⟨sup⟩δ̂ ′m(Θ̂n ∧ ¬χn) ∈ Λn.

But this entails that(
{⟨sup⟩δ(Θ̂n ∧ ¬χn) | δ ∈ ∆} ∪ {¬ψ}

)
⊆ Λn,

wherefore {⟨sup⟩δΘ̂n+1 | δ ∈ ∆} ∪ {¬ψ} is consistent, as required for the
induction proof.

From this, one easily sees that (1)

Γω :=
⋃
n∈ω

{⟨sup⟩δΘ̂n | δ ∈ ∆} ∪ {¬ψ}

is consistent, and (2)
Θ :=

⋃
n∈ω

Θn

is an MCS. Extending Γω ⊆ Γ to an MCS, we get that φ ∈ Θ0 ⊆ Θ,¬ψ ∈ Γ
and C\,PreΓ∆Θ, which precisely shows the claim.

With these claims at our disposal, the inductive step regarding ‘\’ in a proof of
the truth lemma is immediate (the two claims cover one direction each). Since
this was the last obstacle for proving the truth lemma, and we have already noted
that (W\-Pre,C\-Pre) ∈ C, we can deduce strong completeness—finishing not only
our proof, but also this section.
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4.3. Bulldozing and completeness-via-representation

With Log\(C) axiomatized, next up is showing Log\(C) = MIL\-Pre = MIL\-Pos

via representation; i.e., via onto ‘p-morphisms’. Another commonly used term for
‘p-morphism’ is ‘bounded
morphism’.

Importantly, to find the technique of onto p-morphisms in our arsenal of
validity-preserving techniques, when dealing with preorder frames, we have to
define the ‘back’- and ‘forth’-conditions in terms of the accompanying ternary
(and not binary) relations.11 For ease of reference, let us spell this out:

Definition 4.13. Given any two frames {(W,C), (W ′,C ′)} ⊆ C, a function

f :W ′ →W

is denoted a p-morphism if it satisfies the following conditions:

(forth) if C ′x ′y ′z ′, then Cf(x ′)f(y ′)f(z ′); and

(⟨sup⟩-back) if Cf(x ′)yz, then there exist {y ′, z ′} ⊆ W ′ s.t. f(y ′) = y, f(z ′) = z and
C ′x ′y ′z ′.

If f additionally satisfies

(\-back) if Cxf(y ′)z, then there exist {x ′, z ′} ⊆ W ′ s.t. f(x ′) = x, f(z ′) = z and
C ′x ′y ′z ′,

we denote it a \-p-morphism. Note the symmetry in the two back
clauses: this is caused by ‘\’ and
‘⟨sup⟩’ referring to the same
relation, but from different
perspectives.

When dealing with preorder frames (W,⩽), [\-]p-morphisms are defined in
terms of the induced (W,S⩽) ∈ SPre ⊆ C. ⊣

Now to be clear, onto p-morphisms preserve validity (and, generally, conse-
quences) of LM-formulas, while onto \-p-morphisms even preserve validity (and
consequences) of L\-M-formulas. This means we have a formal framework for
developing representation results. In this section (and in the next chapter), this is
a substantial part of what we will be doing.12

First up is our plighted proof that any C-frame (W,C) is the \-p-morphic
image of a poset frame (W ′,S ′

⩽) ∈ SPos, entailing that with MIL\-Pre we have
achieved an axiomatization of both MIL\-Pre and MIL\-Pos. This representation is
obtained by composing two other representations; the first of which generalizes
‘bulldozing’ from the usual unary modality setting to our binary modality setting.

11As also noted in Observation A.2.3.
12Regarding \-p-morphisms, it is important to have in mind that they are also required to meet

(⟨sup⟩-back). A notion for simply meeting (forth) and (\-back) would appear appropriate, but
we will not be needing such since we do not deal with modal logics having only the modality ‘\’.
In general, of course, the results of this chapter have these modal logics as special cases; e.g., our
decidability proof in the next section.
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To explain how this works, we briefly (re-)observe the following (cf. Observation
A.2.1):

Observation 4.14. For any (W,C) ∈ C, let ⩽C and ⩽ ′
C be given as follows:

⩽C := {(y, x) : Cxxy}, ⩽ ′
C := {(y, x) : ∃z(Cxyz∨ Cxzy)}.

Then, by definition of the class C, it is not too hard to see that (a) ⩽C = ⩽ ′
C, and

(b) ⩽C is a preorder onW.
Moreover, if C happened to be the supremum relation of some preorder I.e.,Cxyz iff x ∈ sup⩽{y,z}.⩽,

then ⩽C = ⩽. ⊣

With this observed, we are ready for the first representation result, mending
C-frames (W,C) so that ⩽C becomes a partial order.

Proposition 4.15 (Bulldozing). Let (W,C) ∈ C. Then (W,C) is the \-p-morphic
image of some (W ′,C ′) ∈ C for which ⩽C′ is a partial order.

Proof. Let (W,C) ∈ C be arbitrary. We construct (W ′,C ′) by adapting the well-
known bulldozing technique from the binary-relation setting to our ternary-
relation setting. More precisely, let K denote the set of maximal non-degenerate
clusters of (W,C) w.r.t. the preorder ⩽C. We then define the underlying set as

W ′ :=

(
W \

⋃
K∈K

K

)
∪
⋃
K∈K

(K× Z),

and let the function
f :W ′ →W

be given by

f(x) =

x, x ∈
(
W \

⋃
K∈K K

)
k, x = (k, z) ∈ K× Z,K ∈ K

.

To define the relation C ′, fix some linear order ⩽K for each K ∈ K, and for all
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x,a,b ∈W ′, let C ′xab :iff

Cf(x)f(a)f(b) and

(
(i) x ∈W \

⋃
K∈K

K, or

(ii) x = (k, z) ∈ K× Z; (K× Z) ∩ {a,b} = ∅, or

(iii) x = (kx, zx) ∈ K× Z ∋ (ka, za) = a;b /∈ K× Z; [zx > za or (zx = za and kx ⩾K ka)], or

(iv) x = (kx, zx) ∈ K× Z ∋ (kb, zb) = b;a /∈ K× Z; [zx > zb or (zx = zb and kx ⩾K kb)], or

(v) {x,a,b} ⊆ K× Z; x = (kx, zx),a = (ka, za),b = (kb, zb);

[zx > za or (zx = za and kx ⩾K ka)]; [zx > zb or (zx = zb and kx ⩾K kb)]

)
.

We claim that (1) (W ′,C ′) ∈ C; (2) (W,C) is a \-p-morphic image of (W ′,C ′)

witnessed by f; and (3) ⩽C′ is a partial order.
We begin by proving (1) (W ′,C ′) ∈ C. We have that

(Re.f) is satisfied because (a) (W,C) ⊨ (Re.f) by assumption and (b) for all K ∈ K:
⩽K is, as a (weak) linear order, in particular, reflexive;

(4f) can be seen to be satisfied by a straightforward, but tedious check using
(W,C) ⊨ (4f). Only non-trivial case is when C ′xxa by virtue of (iii): there
one must observe that if C ′aab then f(b) cannot be in the same cluster as
f(x) by maximality of clusters K ∈ K;

(Co.f) is satisfied because (a) (W,C) ⊨ (Co.f) and (b) the definition of C ′ is
symmetrical in the two last arguments; and

(Dk.f) is satisfied because (a) (W,C) ⊨ (Dk.f) and (b) if C ′xab holds by virtue of
(i), then C ′xxa holds by virtue of (i); if C ′xab holds by virtue of (ii) or (iv),
then C ′xxa holds by virtue of (iii); if C ′xab holds by virtue of (iii), then
C ′xxa holds by virtue of (v); and if C ′xab holds by virtue of (v), then C ′xxa

holds by virtue of (v).

Having proven (1), we continue by proving (2). f is clearly (a) surjective and (b)
a homomorphism. Therefore, it remains to show that (c) the back conditions are
satisfied. Beginning with (⟨sup⟩-back), suppose Cf(x)a ′b ′ for arbitrary x ∈W ′,
{a ′,b ′} ⊆W. We then have to find a,b ∈W ′ s.t. C ′xab, f(a) = a ′, and f(b) = b ′.
We go by cases:

(i) If x ∈
(
W \

⋃
K∈K K

)
, pick any a ∈ f−1(a ′) and b ∈ f−1(b ′) using surjectiv-

ity of f.

(ii) If x = (k, z) ∈ K × Z and {a ′,b ′} ∩ K = ∅, pick any a ∈ f−1(a ′) and
b ∈ f−1(b ′).
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(iii) If x = (kx, zx) ∈ K× Z and a ′ ∈ K ̸∋ b ′, set a := (a ′, zx − 1) and pick any
b ∈ f−1(b ′).

(iv) If x = (kx, zx) ∈ K × Z and b ′ ∈ K ̸∋ a ′, set b := (b ′, zx − 1) and pick any
a ∈ f−1(a ′).

(v) If x = (kx, zx) ∈ K × Z and a ′ ∈ K ∋ b ′, set a := (a ′, zx − 1) and b :=

(b ′, zx − 1).

This exhausts all cases, hence f satisfies the (⟨sup⟩-back) condition, thus is a
p-morphism. Continuing with (\-back), suppose Cxf(a ′)b for some a ′ ∈W ′ and
{x,b} ⊆W. Again, we go by cases:

(i) If a ′ ∈ W \
⋃
K∈K K or [a ′ = (ka, za) ∈ K × Z and x /∈ K], then pick any

x ′ ∈ f−1(x). Then Cf(x ′)f(x ′)b, so by the ⟨sup⟩-back condition and the
definition of C ′, we can find a b ′ ∈ W ′ s.t. C ′x ′x ′b ′ and f(b ′) = b. It
follows that C ′x ′a ′b ′.

(ii) And if a ′ = (ka, za) ∈ K × Z and x ∈ K, then setting x ′ := (x, za + 1), we,
again, get that Cf(x ′)f(x ′)b, hence we can find a b ′ ∈W ′ s.t. C ′x ′x ′b ′ and
f(b ′) = b. Thus, we get that C ′x ′a ′b ′, as required.

This covers all cases—completing our proof of f being an onto \-p-morphism.

Lastly, we show that (3) ⩽C′ is a partial order. Reflexivity and transitivity are
consequences of (W ′,C ′) ∈ C. To show anti-symmetry, let x,y ∈W ′ be arbitrary
s.t. C ′xxy and C ′yyx. We have to show that x = y. Going by cases we find that:

• If {x,y} ⊆
(
W \

⋃
K∈K K

)
, then Cxxy and Cyyx by definition of f and C ′,

so since
(
W \

⋃
K∈K K

)
contains no non-degenerate clusters by definition,

we must have x = y.

• If x ∈
(
W \

⋃
K∈K K

)
and y = (k, z) ∈ K × Z, then Cxxk and Ckkx so

x ∈ K—contradicting x ∈
(
W \

⋃
K∈K K

)
.

• If y ∈
(
W \

⋃
K∈K K

)
and x = (k, z) ∈ K× Z, then as above.

• If x = (kx, zx) ∈ K×Z and y = (ky, zy) ∈ K ′ ×Z for K ̸= K ′, then Ckxkxky
and Ckykykx so kx ∈ K ′—contradicting maximality of the clusters (which
implies that whenever K ̸= K ′, we even have K ∩ K ′ = ∅).

• If x = (kx, zx) ∈ K×Z ∋ (ky, zy) = y, then x = y follows by anti-symmetry
of our lexicographical ordering (since the ordering of the integers is linear
and so is ⩽K).
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Thus, we’ve shown ⩽C′ to be anti-symmetric, which completes our proof of (3)
⩽C′ being a partial order, thus finalizing our bulldozing proof.

Using this representation, we continue further mending C-frames (W,C) into
real poset frames (i.e., frames whose ternary relation is the supremum relation of
a partial order). We do so through another representation, which is obtained by
adopting the framework of the completeness proof of Chapter 2 (2.13). In brief,
in the proof to come, we will also be constructing a poset frame recursively by
repairing defects. However, this time, the defects will be determined by an onto
function, which we iteratively extend seeking to make it an onto \-p-morphism.
And, although the ⟨sup⟩- and ¬⟨sup⟩-defects only need minor revision, we do
need to include a third kind of defect corresponding to (\-back).

Many of the arguments will be almost identical to the ones of the completeness
proof of Chapter 2, and so will be omitted or only hinted at. But – although the
general set-up is very similar – there are some differences, and since we will also
reuse this set-up in the next chapter, it is worth spelling out. We proceed doing
so.

Definition 4.16. Given any (W,C) ∈ C, we let E be some set disjoint fromW of
cardinality max{|W|,ℵ0}, and P(W,C) be the set of all quadruples (f,D,X,⩽) such
that

1.’ f is an onto function from (W ∪D ∪ X) toW;

2.’ |D ∪ X| < |E|;

3.’ (D ∪ X) ⊆ E;

4.’ D ∩ X = ∅;

6.’ ⩽ is a partial order on (W ∪D ∪ X); and

7.’ if y ⩽ x then f(y) ⩽C f(x). The only significant change is the
present deletion of what was
condition 5. of Definition 2.7.

⊣

Next, we define the revised versions of the ⟨sup⟩- and ¬⟨sup⟩-defects and their
complementary revised repair lemmas, before subsequently stating and proving
the last defect/repair pair.

Definition 4.17 ((⟨sup⟩-back)-defect). Let (W,C) ∈ C and (f,D,X,⩽) ∈ P(W,C).
Then a triple (x ′,y, z) ∈ (W ∪ E) × W × W denotes a (⟨sup⟩-back)-defect (of
(f,D,X,⩽)) :iff

(i) x ′ ∈ (W ∪D ∪ X), (ii) Cf(x ′)yz,
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and (iii) there are no y ′, z ′ ∈ (W ∪D ∪ X) s.t. x ′ = sup{y ′, z ′} and Notice the similarity between
(⟨sup⟩-back)-defects and
⟨sup⟩-defects (2.8).

f(y ′) = y, ↑y ′ = ↑x ′ ∪ {y ′} ∪ (↑y ′ ∩ {w ′ | ↑w ′ ∩ ↑x ′ = ∅}),

f(z ′) = z, ↑z ′ = ↑x ′ ∪ {y ′} ∪ (↑z ′ ∩ {w ′ | ↑w ′ ∩ ↑x ′ = ∅}). ⊣

Definition 4.18 ((forth)-defect). Let (W,C) ∈ C and (f,D,X,⩽) ∈ P(W,C). Then
a triple (x ′,y ′, z ′) ∈ (W ∪ E)× (W ∪ E)× (W ∪ E) is denoted a (forth)-defect (of
(f,D,X,⩽)) :iff And between (forth)-defects and

¬⟨sup⟩-defects (2.9).

{x ′,y ′, z ′} ⊆ (W ∪D ∪ X), x ′ = sup{y ′, z ′}, ¬Cf(x ′)f(y ′)f(z ′). ⊣

Lemma 4.19 ((⟨sup⟩-back)-repair lemma). Suppose (x ′,y, z) is a (⟨sup⟩-back)-defect
of some (f,D,X,⩽) ∈ P(W,C). Then we can extend to (f ′,D,X ′,⩽ ′) ∈ P(W,C) by
taking distinct y ′, z ′ ∈ E \ (D ∪ X) and setting

f ′ := f ∪ {(y ′,y), (z ′, z)}, X ′ := X ∪ {y ′, z ′},

⩽ ′ := ⩽ ∪ {(y ′,u), (z ′,u) | x ′ ⩽ u} ∪ {(y ′,y ′), (z ′, z ′)}.

Then, witnessed by y ′ and z ′, (x ′,y, z) does not constitute a (⟨sup⟩-back)-defect of
(f ′,D,X ′,⩽ ′).

Proof. Defining as described, the proof of (f ′,D,X ′,⩽ ′) ∈ P(W,C) resembles the
one of Lemma 2.11: 1.’-6.’ are obvious, and 7.’ is shown using Cf ′(x ′)f ′(y ′)f ′(z ′)

and (W,C) ∈ C.
Moreover, the latter claim is immediate.

Lemma 4.20 ((forth)-repair lemma). Suppose (x ′,y ′, z ′) is a (forth)-defect of some
(f,D,X,⩽) ∈ P(W,C). Then we can extend to (f ′,D ′,X,⩽ ′) ∈ P(W,C) by (a) taking
d ′ ∈ E \ (D ∪ X), (b) letting

f ′ := f ∪ {(d ′, f(x ′))}, D ′ := D ∪ {d ′},

⩽ ′ := ⩽ ∪ {(u,d ′), (v,d ′) | u ⩽ y ′, v ⩽ z ′} ∪ {(d ′,d ′)},

and (c) getting x ′ ̸= sup⩽′ {y ′, z ′}. Now ‘d ′’ is no longer short for
‘dummy’, but for ‘duplicate’ (of x ′):
f ′(d ′) = f(x ′). We stress: this is
key.
(However, this is only a good
intuition for theD-worlds
introduced in this repair
lemma—not for those in the next.)

Proof. Extending to (f ′,D ′,X,⩽ ′) as described, it follows similarly to the proof
of Lemma 2.12 that (f ′,D ′,X,⩽ ′) satisfies 1.’-7.’ and x ′ ̸= sup⩽′ {y ′, z ′}. Only two
things are worth mentioning: (1) for proving 7.’, we use that if u < ′ d ′ then u ⩽
x ′, hence f ′(u) = f(u) ⩽C f(x ′) = f ′(d ′), and (2) for proving x ′ ̸= sup⩽′ {y ′, z ′},
we need that ⩽ is a partial order (this is where we use bulldozing).

Our third and last defect, naturally, bears much resemblance to the (⟨sup⟩-
back)-defect. It is defined as follows:
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Definition 4.21 ((\-back)-defect). Let (W,C) ∈ C and (f,D,X,⩽) ∈ P(W,C). Then
a triple (x,y ′, z) ∈W × (W ∪ E)×W denotes a (\-back)-defect (of (f,D,X,⩽)) :iff

(i) y ′ ∈ (W ∪D ∪ X), (ii) Cxf(y ′)z,

and (iii) there are no x ′, z ′ ∈ (W ∪D ∪ X) s.t. x ′ = sup{y ′, z ′} and

f(x ′) = x, ↑y ′ = ↑x ′ ∪ {y ′} ∪ (↑y ′ ∩ {w ′ | ↑w ′ ∩ ↑x ′ = ∅}),

f(z ′) = z, ↑z ′ = ↑x ′ ∪ {z ′} ∪ (↑z ′ ∩ {w ′ | ↑w ′ ∩ ↑x ′ = ∅}). ⊣

This new defect is repaired in this fashion:

Lemma 4.22 ((\-back)-repair lemma). Suppose (x,y ′, z) is a (\-back)-defect of some
(f,D,X,⩽) ∈ P(W,C). Then we can extend to (f ′,D ′,X ′,⩽ ′) ∈ P(W,C) by taking
distinct x ′, z ′ ∈ E \ (D ∪ X) and setting

f ′ := f ∪ {(x ′, x), (z ′, z)}, D ′ := D ∪ {x ′}, X ′ := X ∪ {z ′},

⩽ ′ := ⩽ ∪ {(u, x ′) | u ⩽ y ′} ∪ {(x ′, x ′), (z ′, z ′), (z ′, x ′)}.

Then, witnessed by x ′ and z ′, (x,y ′, z) does not constitute a \-back defect of (f ′,D ′,X ′,⩽ ′

).

Proof. A matter of going over the definition.

Employing these repairs, we are ready to prove the desired representation
result.

Proposition 4.23. Every (W,C) ∈ C for which ⩽C is a partial order, is a \-p-morphic
image of a poset frame.

Proof. Let (W,C) ∈ C be arbitrary s.t. ⩽C is a partial order. For the sake of
simplicity, assume W is countable: as oftentimes is the case, the adjustments
of the ensuing proof needed for the case where |W| > ℵ0 are conceptually
insignificant The adjustments in case

|W| >ℵ0 are doing transfinite
recursion and induction instead.

but notationally taxing. Besides, by a ‘standard translation’ and the
Löwenheim-Skolem Theorem, C has the countable model property w.r.t. L\-M-
formulas, so, for instance, starting with a countable frame, we can bulldoze it
into a countable C-frame whose underlying preorder is a partial order.

As in the completeness proof of Chapter 2, using the repair lemmas repeatedly,
we will be constructing a sequence

(f0,D0,X0,⩽0), (f1,D1,X1,⩽1), . . .
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such that for all i ∈ ω

(fi,Di,Xi,⩽i) ∈ P(W,C), fi ⊆ fi+1, Di ⊆ Di+1, Xi ⊆ Xi+1, ⩽i ⊆ ⩽i+1.

We begin the sequence by setting

f0 := Id :W →W, D0 := X0 := ∅, ⩽0 := ⩽C.

Then (f0,D0,X0,⩽0) ∈ P(W,C).
At each stage n + 1, we then pick the least tuple constituting a defect to

(fn,Dn,Xn,⩽n)—according to a fixed enumeration of the set of all triples (x ′,y, z) ∈
(W ∪E)×W×W and all triples (x ′,y ′, z ′) ∈ (W ∪E)3 and all triples13 (x,y ′, z) ∈
W × (W ∪ E)×W—and repair it to obtain (fn+1,Dn+1,Xn+1, ln+1). Letting

(fω,Dω,Xω,⩽ω) :=

( ⋃
n∈ω

fn,
⋃
n∈ω

Dn,
⋃
n∈ω

Xn,
⋃
n∈ω

⩽n

)
,

we get that (1) (fω,Dω,Xω,⩽ω) satisfies 1.’ and 3.’-7.’, and (2) (fω,Dω,Xω,⩽ω)
has no defects whatsoever. Again, only (2) is not straightforward, and, again, for
proving (2) two claims and an observation are helpful.

Observation’. Let n ∈ ω and {x, v} ⊆ (W ∪Dn ∪ Xn) be arbitrary s.t.

↑nv ′ = ↑nx ′ ∪ {v ′} ∪ (↑nv ′ ∩ {w ′ | ↑nw ′ ∩ ↑nx ′ = ∅}).

Then for allm ⩾ n:

↑mv ′ = ↑mx ′ ∪ {v ′} ∪ (↑mv ′ ∩ {w ′ | ↑mw ′ ∩ ↑mx ′ = ∅}),

hence also

↑ωv ′ = ↑ωx ′ ∪ {v ′} ∪ (↑ωv ′ ∩ {w ′ | ↑ωw ′ ∩ ↑ωx ′ = ∅}).

This follows by an easy induction, using that each (fm+1,Dm+1,Xm+1,⩽m+1)

is obtained from (fm,Dm,Xm,⩽m) using one of the repair lemmas.

13For simplicity of argument, we assume all (x0,y0,x0) ∈ (W ∪E)×W ×W to be distinct from
all (x1,y1,z1) ∈ (W ∪E)3 – and so forth.
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Claim (a’). Let n ∈ ω and {x ′,y ′, z ′} ⊆ (W ∪Dn ∪ Xn) be arbitrary s.t.

x ′ = supn{y ′, z ′}, Cfn(x
′)fn(y

′)fn(z
′),

↑ny ′ = ↑nx ′ ∪ {y ′} ∪ (↑ny ′ ∩ {w ′ | ↑nw ′ ∩ ↑nx ′ = ∅}),

↑nz ′ = ↑nx ′ ∪ {z ′} ∪ (↑nz ′ ∩ {w ′ | ↑nw ′ ∩ ↑nx ′ = ∅}).

Then for allm ⩾ n:
x ′ = supm{y ′, z ′};

a fortiori, x ′ = supω{y
′, z ′}.

We prove the claim by induction. By assumption, it holds form = n, so assume
it holds for some m ⩾ n. We show it holds for m + 1. This time we have three
cases, depending on the type of defect being repaired at stagem+ 1. The cases
of a (⟨sup⟩-back)-repair and (forth)-repair are the exact same as in Theorem 2.13.

Consequently, suppose stage m+ 1 was obtained by (\-back)-repairing some
(s,y ′

s, zs) through introducing the worlds s ′, z ′s. Then s ′ is the only possible
counterexample to x ′ = supm+1{y

′, z ′}, so assume y ′ ⩽m+1 s
′ ⩾m+1 z

′. Then we
must have y ′ ⩽m y ′

s ⩾m z
′, so by the IH x ′ ⩽m y ′

s, hence x ′ ⩽m+1 s
′. Claim (a’)

Claim (b’). Let n ∈ ω and suppose that a,b ∈ (W ∪ Dn ∪ Xn) are s.t. a ≱n b.
Then for allm ⩾ n, we have that a ≱m b. A fortiori, a ≱ω b.

Once again by induction on m ⩾ n with no change concerning the cases of
(⟨sup⟩-back)-repairs and (forth)-repairs. Therefore, assume (lm+1,⩽m+1,Dm+1)

was obtained by (\-back)-repairing some (x,y ′, z) by introducing x ′, z ′. Then
there is no change in predecessors of a, which suffices for the claim. Claim (b’)

Finally, from these claims we likewise get (c): If some tuple did constitute a
defect at some stage n, but no longer at some later stagem > n, then it didn’t for
all k ⩾ m.

Noteworthy is the overlap between our definitions of (⟨sup⟩-back)-defects and
(\-back)-defects, which assures that claim (a’) applies to both types of defects.
And using (c) along with claim (a’) and (b’) in an analogous manner to what we
did in the completeness proof, we get that (fω,Dω,Xω,⩽ω) neither has (forth)-,
(⟨sup⟩-back)- nor (\-back)-defects.

Lastly, the fact that there are no defects, entails that fω is a \-p-morphism
from (W ∪Dω ∪ Xω,⩽ω) to (W,C), so since fω also is onto, we’ve shown the
desired.

At long last, combining the two representations, we can deduce that we have
achieved the axiomatization we were seeking.
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Theorem 4.24. Every (W,C) ∈ C is a \-p-morphic image of a poset frame.
Thus, MIL\-Pre is sound and strongly complete w.r.t. preorder frames, and, in particu-

lar,
MIL\-Pre = MIL\-Pos = MIL\-Pre.

Additionally, as a special case, we get another proof of MILPre being sound and strongly
complete w.r.t. preorder frames, and, particularly

MILPre = MILPos = MILPre.

Proof. The first assertion follows from propositions 4.15 and 4.23 because onto
\-p-morphisms are closed under composition.

Soundness and strong completeness is the upshot of onto \-p-morphisms
preserving the consequence relation of a frame and the fact that SPos ⊆ SPre ⊆ C;
so also, in particular

MIL\-Pre = MIL\-Pos = MIL\-Pre.

Lastly, since \-p-morphisms are p-morphisms and LM ⊆ L\-M, this also restricts
to the special case of the basic modal information language.

4.4. Decidability

The problem of axiomatizing our conservative extension(s), MIL\-Pre = MIL\-Pos,
of the basic modal information logic(s), MILPre = MILPos, solved, the biggest
remaining problem is, arguably, that of decidability. As already mentioned, we
continue being guided by the procedure outlined in section 1.3, thus showing
decidability qua a proof of the FMP w.r.t. another class of frames, which, of
course, is C anew. Albeit the LM-filtration through a C-closed set of formulas (cf.
section 3.2) is not an L\-M-filtration—that is, through a C-closed set of formulas it
does not preserve satisfaction of L\-M-formulas, but only of LM-formulas—we
are not at a loss: only some minor modifications are needed.

Borrowing the idea of a suitable set of formulas from Buszkowski (2021), we
define a notion extending our notion of a C-closed set of formulas.

Definition 4.25. We say that a set Σ of L\-M-formulas is C-suitably closed :iff

(C) it is C-closed; and

(Suit) φ\ψ ∈ Σ implies ⟨sup⟩φ(φ\ψ) ∈ Σ.

Moreover, for any set of L\-M-formulas Σ0, we say that Σ is the C-suitable closure
of Σ0 :iff it is the least C-suitably closed set of formulas extending Σ0. Note that the C-suitable closure of a

set of formulas always exists.
⊣
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Afresh, an immediate consequence is:

Lemma 4.26. For any finite set of L\-M-formulas Σ0, its C-suitable closure Σ ⊇ Σ0,
too, is finite.

As the last ingredient for achieving decidability, we show that when filtrating
through C-suitably closed sets of formulas, the LM-filtration of Theorem 3.9 lifts
to an L\-M-filtration:

Theorem 4.27. MIL\-Pre admits filtration w.r.t. the class C. Consequently,

MIL\-Pre = Log\(CF),

where Log\(CF) denotes the logic of the class of finite C-frames in the language of L\-M.

Proof. Let (W,C,V) be an arbitrary C-model; Σ an arbitrary C-suitably closed set
of formulas; and (WΣ,CC

Σ,VΣ) be the filtration of (W,C,V) through Σ defined in
Theorem 3.9. Then, as shown in the proof of said theorem, (WΣ,CC

Σ) ∈ C and the
filtration conditions (F1) and (F2) hold for the modality ‘⟨sup⟩’. Thus, because of
Lemma 4.26 and the inclusion Log\(C) ⊆ Log\(CF), we need only show that the
synonymous filtration conditions for the modality ‘\’ likewise are met.

The former, homomorphism condition is evidently the same, while the latter
becomes

(F2’) CC
Σ|x||y||z| ⇒ ∀φ\ψ ∈ Σ [(y ⊩ φ\ψ, z ⊩ φ) ⇒ x ⊩ ψ]. Recall that ‘\’ is a ‘□-ed’ modality;

therefore, this presentation of the
second filtration clause.Consequently, all that remains to be proven is (F2’).14 So assume CC

Σ|x||y||z|, and
let φ\ψ ∈ Σ be arbitary s.t. y ⊩ φ\ψ and z ⊩ φ. By (Suit), ⟨sup⟩φ(φ\ψ) ∈ Σ
so by (Com) we have that ⟨sup⟩(φ\ψ)φ ∈ Σ. But then (F2) entails that x ⊩
⟨sup⟩(φ\ψ)φ, whence x ⊩ ⟨sup⟩φ(φ\ψ) by (W,C) ⊨ (Co.f), so finally since
(W,C) ⊩ (I1), we have x ⊩ ψ as required.

Using this, we can conclude that the basic modal information logic of preorders
(or posets) endowed with the informational implication is decidable.

Corollary 4.28. MIL\-Pre is decidable (and so is MIL\-Pos).

Proof. We have shown that

MIL\-Pre = MIL\-Pre = Log\(CF),

so since MIL\-Pre is finitely axiomatizeable and complete w.r.t. a recursively
enumerable (r.e.) class of finite frames [simply check for satisfaction of the
14The proof of Lemma 2 in Buszkowski (2021) pertains to showing the satisfaction of (F2’) in our

present setting, so the ensuing argument is only given for the sake of completeness of the current
proof—we claim no originality whatsoever.
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first-order formulas (Re.f), (4f), (Co.f), and (Dk.f)], we obtain decidability of
MIL\-Pre.

Closing off this chapter, we state the following corollary:

Corollary 4.29. Let L♢-M be the extension of the basic language LM with the unary
modality ‘♢’, and let the semantics for ‘♢’ be the usual one, namely those of the forward-
looking modality ‘F’ given in Remark 4.8. Then letting MIL♢-Pre and MIL♢-Pos be the
MILs of this language on preorders and posets, respectively, we get that both are decidable.

Proof. A decision procedure is given as follows: For any L♢-M-formula φ, trans-
late it into a formula t(φ) ∈ L\-M in accordance with Remark 4.8, and then use
the decision procedure of the preceding corollary.
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5. MIL of Minimal Upper Bounds

So far we have been concerned with modal vocabulary for capturing the structure
of (quasi-)least upper bounds on preorders and posets. In this chapter, we change
the interpretation to that of (quasi-)minimal upper bounds, with the aim of (a)
giving the resulting logics (MILMin

Pre , MILMin
Pos , MILMin

\-Pre, and MILMin
\-Pos) the attention

they deserve on their own merits, and not least (b) studying how this different
minimal-perspective relates to the more standard least-perspective.

In section 5.1, we define the logics of concern in the basic language of MIL,
show soundness w.r.t. MILPre, and end with a cautionary remark regarding
completeness. Section 5.2 continues in the spirit of the preceding chapter: via
representation it is proven that MILMin

Pre = MILMin
Pos = MILPre, which then is gener-

alized to show MILMin
\-Pre = MILMin

\-Pos = MIL\-Pre.

5.1. Introducing the logics

Before defining the actual ‘minimal MILs’ of the basic language LM, for the sake
of completeness, we first get clear on what a quasi-minimal upper bound is:

Definition 5.1. For any preorder (W,⩽) and any w, v,u ∈W, we say that w is a
quasi-minimal upper bound – or simply a minimal upper bound – of {u, v} and write
w ∈ min{u, v} :iff

• w is an upper bound of {u, v}, i.e. u ⩽ w and v ⩽ w; and

• x ≰ w or w ⩽ x, for all upper bounds x of {u, v}.

Note that if ⩽ is a partial order, w is a quasi-minimal upper bound iff it is a
minimal upper bound in the usual sense. ⊣

We proceed by defining these MILs of (quasi-)minimal upper bounds on
preorders/posets.

Definition 5.2. We define MPre to be the class of pairs (W,M⩽) whereW is a set
andM⩽ is a ternary relation onW for which there is some preorder ⩽ onW s.t
for all w, v,u ∈W: I.e.,M⩽ is the

minimal-upper-bound relation
induced by a preorder (resp. poset).

M⩽wvu iff w ∈ min⩽{u, v}.

MPos is defined analogously. ⊣
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Definition 5.3. The modal information logics of minimal upper bounds on
preorders and posets, respectively, are defined as follows:

MILMin
Pre := {φ ∈ LM : (W,M⩽) ⊩ φ for all (W,M⩽) ∈ MPre},

and

MILMin
Pos := {φ ∈ LM : (W,M⩽) ⊩ φ for all (W,M⩽) ∈ MPos}. ⊣

The logics having been defined, we can show soundness of MILPre.

Theorem 5.4 (Soundness). MILPre ⊆ MILMin
Pre .

Proof. Routine check that MILMin
Pre is a normal modal logic validating (Re.), (4),

(Co.), and (Dk.).

As hinted at earlier, the converse inclusion – i.e., completeness – will be a
consequence of a representation result, showing that any poset frame is a p-
morphic image of an MPos-frame. Before plunging into this, a warning might be
in place.

Remark 5.5 (Caution). While it is the case that for any preorder (W,⩽), we have
that S⩽ ⊆M⩽ where

S⩽ := {(w, v,u) ∈W3 : w ∈ sup{u, v}}, M⩽ := {(w, v,u) ∈W3 : w ∈ min{u, v}},

it is a (natural) misunderstanding to think that this implies MILMin
Pre ⊆ MILPre. To

conclude so—rather than, given any preorder, having the inclusion S⩽ ⊆M⩽—
one would need the inclusion SPre ⊆ MPre. And this inclusion is easily seen to fail.
To exemplify, consider the below depicted Hasse diagram of a preorder (W,⩽):

u

wm

v

While, of course, on one hand S⩽ ⊆M⩽. On the other—since, e.g., sup{u, v} ̸∋
w ∈ min{u, v}—the induced ternary relations are distinct, so because they are
induced by the same preorder, we get that SPre ∋ (W,S⩽) /∈ MPre, which shows
SPre ̸⊆ MPre as desired. ⊣
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5.2. Collapsing the minimal-u.b. relation

With this last clarification of the previous section, it perhaps, contrarily, now
appears a bit surprising that we soon will show that MILMin

Pos = MILPos—especially
having in mind the way we repaired ¬⟨sup⟩-defects (and (forth)-defects): by
introducing incomparable upper bounds, so-called dummies (or duplicates),
which do, indeed, ensure that if x = supn{y, z}, then x ̸= supn+1{y, z}, but,
contrariwise, do not change that x is a minimal upper bound of {y, z}. Recall Example 2.10.I.e., when
dealing with the induced supremum relation of a preorder/poset, the dummies
did repair the defects, but had it been the induced minimal-u.b. relation, dummy
repairs would not have worked.

Before embarking on the principal lemma allowing us to deduce MILMin
Pos =

MILPos, we provide some intuition for it—also gesturing at why the fact that
MILMin

Pos = MILPos actually is not so surprising when further analyzed.

Intuition for representation construction. Given any poset frame (W,⩽) we know
that S⩽ ⊆M⩽. The basic idea then is to transform the frame so thatM⩽ collapses
into S⩽; i.e., we get an equality S⩽ = M⩽, hence whether the binary modality
refers to the supremum or the minimial-u.b. relation does not matter: the same
formulas are satisfied.

We will make this transformation by exploiting the fact that there are two ways
for an upper bounded set {u, v} to not have a supremum:

(i) incomparable u.b.s; vs.

(ii) infinitely descending chain(s) of u.b.s.

Essentially, the idea is to transform all cases of (i) into (also being) cases of (ii).
In this way, we transform all cases where sup{u, v} ̸= w ∈ min{u, v} into cases
where sup{u, v} = min{u, v} = ∅, thus collapsing the relation M⩽ into S⩽. Put
naively, we will be shooting in points as illustrated below:
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u

wm

v

⇝

u

wm

v

w0
⇝ · · ·⇝

u

wm

v

w0m0

w1

⇝ · · ·⇝

u

wm

v

w0m0

w1m1 ...
...

This transformation will take place in a stepwise manner, adding one point
of the infinitely descending chain at a time (first w0, then w1, etc.). We will
need our transformation to be satisfaction-preserving, whence the worlds of a
constructed infinitely descending chain w0,w1, . . . below, say, w are constructed
as to satisfy the same formulas as w. Exactly because of this, the idea conveyed
by the illustration above does not work in general; it conveys the very basic idea
but is, as-such, too naive and runs into the following problems:

• w (or m) might be the supremum of some other worlds, hence only ‘du-
plicating’ w is not enough. Our solution will be to duplicate its downset,
and placing each member of the duplicated downset right below the corre-
sponding ‘original’.

• When shooting in, say,w0, not only do {u, v} get a new upper bound, but so
do, say, {y, z} where y ⩽ u and z ⩽ v. Problem then is that, although {u, v}
does not have a supremum, {y, z} could have some supremum x. So for x
to stay supremum of {y, z}, it does not suffice to make (everything below) u
and v see w0: we must also make x see w0. Taking this line of argument to
its ultimate conclusion, w0 must be seen by any world in the least downset
containing {u, v} and closed under binary suprema. We will be denoting this setA.

Hopefully, the depiction has illuminated the (naive) spirit of the argument, We recommend revisiting the
bulletpoints during/after studying
the lemma below.

and
the two bullet points some intuition for the actual, more complicated construction
taking place. It is all made rigorous in the the following lemma:
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Lemma 5.6. Let (W,⩽) be a poset frame and {w,u, v} ⊆ W s.t. w ∈ min{u, v} but
w ̸= sup{u, v}. Then (W,⩽) is the p-morphic image of a poset frame (W ′,⩽ ′) s.t.

1. W ⊆W ′, |W ′| ⩽ max{ℵ0, |W|};

2. ⩽ ′ ∩ (W ×W) = ⩽;

3. if x = sup{y, z}, then x = sup ′{y, z};

4. w /∈ min ′{u, v}.

Proof. LetW ′ :=W ⊔ ↓w = {(x, 0), (y, 1) | x ∈W,y ∈ ↓w}, and We write ↓w := {v | v ⩽w}.

f :W ′ →W

be the function given by
f(x, i) = x

for all x ∈W, i ∈ {0, 1}.
To define the relation ⩽ ′, first, let A ⊆W be the least downset containing {v,u}

and closed under binary suprema. I.e., A =
⋃
n∈ωAn, where A0 = ↓v ∪ ↓u, and

An+1 = ↓
(
An ∪

{
sup{bn, cn} | {bn, cn} ⊆ An

})
.

Then for all (x, i), (y, j) ∈W ′, we let (y, j) ⩽ ′ (x, i) iff

(i) i = 0 and y ⩽ x, or

(ii) j = i = 1 and y ⩽ x, or

(iii) j = 0, i = 1,y ∈ A and x = w.

We claim that (1) (W ′,⩽ ′) is a poset frame; (2) 1.-4. are satisfied; and (3) f is an
onto p-morphism.

To prove so, we begin by proving the following claims in the order they appear:

(a) if y ∈ A, then y < w; and

(b) f is order-preserving.

To show (a), note that since w ∈ min{u, v} but w ̸= sup{u, v}, there must be some
m ⩾ u, v s.t. m and w are incomparable. Using this, we show that for all n ∈ ω,
An ⊊ ↓w and An ⊊ ↓m, which suffices to prove the claim.

Since w and m are incomparable upper bounds, we must have d < e for
d ∈ {u, v} and e ∈ {w,m}, which shows the base case. Accordingly, assume
for some n ∈ ω that An ⊊ ↓w and An ⊊ ↓m, and let {bn, cn} ⊆ An be arbi-
trary s.t. sup{bn, cn} exists. It then suffices to show that sup{bn, cn} < w and
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sup{bn, cn} < m. Since both w and m are upper bounds of {bn, cn} by the IH,
we have that sup{bn, cn} ⩽ w and sup{bn, cn} ⩽ m. And because w and m are
incomparable, the inequalities must be strict—finalizing our proof of (a).

Now, to show (b), assume (y, j) ⩽ ′ (x, i). If i = 0 or j = i = 1, we have that
f(y, j) = y ⩽ x = f(x, i), showing the required. And if j = 0, i = 1,y ∈ A and
x = w, then, by the previous claim, f(y, j) = y < w = x = f(x, i), which covers
the last case.

With these claims proven, we’re ready to tackle (1), (2), and (3), beginning with
(1): showing that ⩽ ′ is a partial order.

Reflexivity follows by reflexivity of ⩽ and (i), (ii).
Transitivity: Suppose (z,k) ⩽ ′ (y, j) ⩽ ′ (x, i). By (b), z ⩽ y ⩽ x, so, since ⩽

is transitive, z ⩽ x. Thus, if i = 0 or k = i = 1, then (z,k) ⩽ ′ (x, i) as required.
And if k = 0 and i = 1, we must show z ∈ A and x = w. If j = 0, then since
(y, j) ⩽ ′ (x, i), we have that y ∈ A and x = w, so because z ⩽ y and A is a
downset, we also have z ∈ A. Lastly, if j = 1, then since (z,k) ⩽ ′ (y, j), we have
that z ∈ A and y = w, so since y ⩽ x and x ∈ ↓w, it must also be that x = w.

Anti-symmetry: Suppose (y, j) ⩽ ′ (x, i) and (x, i) ⩽ ′ (y, j). If j = i, we’re done
by anti-symmetry of ⩽. Moreover, we cannot have j ̸= i, since if, say, j = 0, i = 1,
then y ∈ A and x = w, so by (a), y < x, but by (b) we also have x ⩽ y  .

Having proven (1), we continue by proving (2), namely that 1.-4. are satisfied.
1. and 2. are clearly satisfied: It is only a matter of notational convenience

that we have defined W ′ to be the disjoint union of W and ↓w; we could just
as well have defined W ′ to be an ‘actual extension’ of W. To be clear, what is
then meant in 3. and 4. is that: if x = sup{y, x}, then (x, 0) = sup ′{(y, 0), (z, 0)};
and (w, 0) /∈ min{(u, 0), (v, 0)}. For the latter, simply note that (w, 1) ⩽ ′ (w, 0),
and since {u, v} ⊆ A, we also have (u, 0), (v, 0) ⩽ ′ (w, 1); therefore, (w, 0) /∈
min{(u, 0), (v, 0)}. Regarding the former, if x = sup{y, z}, we have that (x, 0) is
an upper bound of {(y, 0), (z, 0)}. Accordingly, suppose that (s, i) is an upper
bound of {(y, 0), (z, 0)}. We then have to show that (x, 0) ⩽ ′ (s, i). By (b) and
x = sup{y, z}, we know that x ⩽ s. So if i = 0, we are done. And if i = 1, we must
show that x ∈ A and s = w. Since (s, 1) is an upper bound of {(y, 0), (z, 0)}, we
have that {y, z} ⊆ A and s = w. But then since A is closed under binary suprema
and x = sup{y, z} by assumption, we also have x ∈ A, Notice how condition 3. is met by

reason of our definition ofA, cf. the
latter of the two bullet points
preceding this lemma.

which completes the proof
of (2).

It remains to show (3): f is an onto p-morphism. It is certainly onto, so we
need only show that the back and forth clauses hold. We begin with the latter.
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Forth. Suppose (x, i) = sup ′{(y, j), (z,k)}. By (b), we know that x is an upper
bound of {y, z}. So assume that s is also an upper bound. Then (s, 0) is an
upper bound of {(y, j), (z,k)}, hence (x, i) ⩽ ′ (s, 0), so by another application
of (b), we get that x ⩽ s, which exactly shows that f(x, i) = x = sup{y, z} =

sup{f(y, j), f(z,k)}.
Back. Suppose f(x, i) = x = sup{y, z} for some y, z ∈ W. Going by cases, we

get:

• If i = 0, we have, by 3., that (x, i) = sup ′{(y, 0), (z, 0)}, which shows the
required since, clearly, f(y, 0) = y, f(z, 0) = z.

• If i = 1, then x ∈ ↓w, hence {y, z} ⊆ ↓w. Thus, {(y, 1), (z, 1)} ⊆ W ′.
Besides, clearly, f(y, 1) = y, f(z, 1) = 1, so we need only show (x, 1) =

sup ′{(y, 1), (z, 1)}. Since x = sup{y, z}, we know that (x, 1) is an upper
bound of {(y, 1), (z, 1)}. So suppose (s, j) also is an upper bound of {(y, 1), (z, 1)}.
Then s is an upper bound of {y, z}, therefore x ⩽ s, and, thus (x, 1) ⩽ ′ (s, j)
as required.

This completes our proof of (3), hence of the lemma.

With this key lemma at our disposal, we can deduce the succeeding two results.

Proposition 5.7. Every poset frame (W,⩽) is the p-morphic image of a poset frame
(W ′,⩽ ′) satisfying

∀w ′, v ′,u ′ ∈W ′ (w ′ ∈ min{u ′, v ′} ⇒ w ′ = sup{u ′, v ′}) . I.e., S⩽ =M⩽.

Proof. Follows by using a formal framework similar to the one presented in
the completeness-via-representation proof of the previous chapter. To be a bit
more concrete, the construction is as follows: w.l.o.g. we assume that (W,⩽) is
countable; then we enumerate all triples (w, v,u) possibly constituting a “min-
defect”: w ∈ min{u, v} but w ̸= sup{u, v}; and then we repeatedly use the
previous lemma as our repair lemma to obtain a sequence (W,⩽, Id) = (W0,⩽0

, f0), (W1,⩽1, f1), . . . from which we define (Wω,⩽ω, fω).
Importantly, the fns are obtained by composing the onto p-morphisms ob-

tained via the previous lemma, and it then remains to show that (1) their union fω
is an onto p-morphism from (Wω,⩽ω) to (W,⩽); (2) (Wω,⩽ω) is, in fact, a poset
frame; and (3) (Wω,⩽ω) satisfies the condition of the proposition description
(i.e., S⩽ω

=M⩽ω
).

The argument for (1) goes: fω is clearly an onto function; the forth condition
follows using 2. of the previous lemma and the forth condition of the fns; and the
back condition follows using the back condition of the fns and 3. of the previous
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lemma. (2) is, as always, easily shown. Lastly, (3) follows by the enumeration
of triples potentially constituting a min-defect and 2. and 4. of the foregoing
lemma.

Finally, we can deduce the following:

Theorem 5.8. MILMin
Pre = MILMin

Pos = MILPre.

Proof. We have that
MILMin

Pre ⊆ MILMin
Pos

because the latter logic is defined by restricting the class of frames of the former
logic. Moreover,

MILPre ⊆ MILMin
Pre

since MILPre = MILPre ⊆ MILMin
Pre , cf. Theorem 5.4. Thus, since we also know that

MILPre = MILPos, it suffices to show that

MILMin
Pos ⊆ MILPos.

We claim that this is an immediate implication of the proposition just proven.
It showed that all poset frames (W,⩽) are a p-morphic image of a poset frame
(W ′,⩽ ′) satisfying

∀w ′, v ′,u ′ ∈W ′ (w ′ ∈ min{u ′, v ′} ⇒ w ′ = sup{u ′, v ′}) ,

which means S⩽′ =M⩽′ . That is, all poset frames (W,⩽) are a p-morphic image
of a frame (W ′,M⩽′) ∈ MPos, exactly as required.

Corollary 5.9. MILMin
Pre is decidable (and so is MILMin

Pos ).

With this proven and the previous chapter in mind, a most natural follow-up
is what happens when we include the informational implication ‘\’ and consider
the resulting logics MILMin

\-Pre and MILMin
\-Pos. As is the content of the proceeding

theorem, the short answer is: nothing really.

Theorem 5.10. MILMin
\-Pre = MILMin

\-Pos = MIL\-Pre.

Proof. Examining the proofs of Theorem 5.8, Proposition 5.7 and Lemma 5.6, it
becomes clear that all we need to show is that the p-morphism f of Lemma 5.6 is,
in fact, a \-p-morphism. And since we have shown it to be a p-morphism, it is
enough to show the \-back clause.
\-back. Accordingly, suppose x = sup{f(y, j), z} for some x, z ∈ W. Going by

cases, we get:
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• If j = 0, we have, by 3. (cf. 5.6), that (x, 0) = sup ′{(y, 0), (z, 0)} – showing
the desired.

• If j = 1 and x ∈ ↓w, then also z ∈ ↓w. Thus, {(x, 1), (z, 1)} ⊆ W ′, and
(x, 1) is an upper bound of {(y, 1), (z, 1)}. So suppose (s, i) also is an upper
bound of {(y, 1), (z, 1)}. It then suffices to show that (x, 1) ⩽ ′ (s, i). Since f
is order-preserving, we have that y ⩽ s ⩾ z, so by assumption x ⩽ s, hence
(x, 1) ⩽ ′ (s, i).

• If j = 1 and x /∈ ↓w, then we claim that (x, 0) = sup ′{(y, 1), (z, 0)}. Since
x = sup{f(y, j), z} by assumption, (x, 0) is an upper bound of {(y, 1), (z, 0)}.
Assume (s, i) also is an upper bound of {(y, 1), (z, 0)}. Then y ⩽ s ⩾ z, so
x ⩽ s. Thus, s /∈ ↓w, hence we must have i = 0, whence (x, 0) ⩽ ′ (s, i) as
required.

Thus, we have shown the \-back condition of the function f defined in Lemma
5.6, hence we may conclude that Lemma 5.6, Proposition 5.7 and Theorem 5.8 all
extend to our present richer setting.

Corollary 5.11. MILMin
\-Pre is decidable (and so is MILMin

\-Pos).

One might conclude that, on preorders and posets, the landscape of MILs is
both uniform and decidable:

MILPre = MILPos = MILMin
Pre = MILMin

Pos , MIL\-Pre = MIL\-Pos = MILMin
\-Pre = MILMin

\-Pos

However, even if the suprema and minima interpretations neither come apart in
the basic MIL-setting nor in the \-augmented setting, our central proof method
does suggest a setting where they might do.

To see this, summing up, our proof(s) fundamentally relied on there being two
distinct ways for an upper bounded set {u, v} not to have a supremum: (i) incom-
parable u.b.s vs. (ii) infinitely descending chain(s) of u.b.s. And, importantly, us
being able to ‘eliminate’ (i)—or, rather, make sure that (ii) is the case whenever
(i) is—so that any {u, v} has a supremum iff it has a minimal upper bound. In
light of this, it is not only (a) not surprising that beyond MILMin

Pre = MILPre also
MILMin

\-Pre = MILMin
\-Pos = MIL\-Pre, but also (b) further suggestive of a place where

the differing interpretations do result in differing logics; we end this chapter with
a comment on this:

Remark 5.12. Suggested by the preceding paragraph, although the two inter-
pretations (min. u.b. vs. least u.b.) result in the same logics when defined
on arbitrary preorders/posets, the logics come apart when restricting to finite
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structures. This is witnessed by the formula

(Pp∧ Pq) → P⟨sup⟩pq,

which is easily seen valid on the class of finite MPre-frames, but not on the class
of finite SPre-frames. Reason being that making sure that (ii) is the case whenever
(i) is the case requires adding an infinite chain. ⊣
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6. Axiomatizing MILSem

This chapter is the most comprehensive chapter of this thesis—but for counting
the sheer number of results proven because those are few. Having fairly thor-
oughly studied modal information logics on preorders and posets, we expand
this line of inquiry to join-semilattices. The central goal being axiomatizing
MILSem, which, intriguingly, turns out to be an intricate manner. For this rea-
son, the chapter begins with a section (6.1) solely concerned with providing
intuition and highlighting key ideas of the subsequent two sections. Section 6.2
then proceeds to supply the actual infinite axiomatization and prove soundness,
before the completeness proof of section 6.3. Using the completeness proof, in
section 6.4, it is shown that MILSem also is the logic of join-semilattices with all
lower-bounded binary meets, but not all binary meets simpliciter (i.e., lattices).
This concludes our actual study of modal information logics; section 6.5 ends the
chapter with a direction for future work.15

6.1. Axiomatization: conceptual solution

Arguably, the axiomatization of this chapter contains the most complex ideas of
the thesis. We recommend further consulting

this section both during and after
reading the subsequent sections 6.2
and 6.3.

While all accompanying proofs are verifiable without prior insight
into these ideas, doing so could feel like navigating by GPS: one follows the
instructions given and does end up in the right place, but is not really sure how
one got there. This is not to say that the proofs themselves do not convey these
ideas – they must do – but untangling some of the ideas from the get-go amplifies
the salient points and, like studying the map before starting the car, provides
intuition for where we are heading.

For that reason, we continue by informally highlighting key ideas, showing
how they solve particular problems in the setting of attempting an axiomatization.
The method being working out what axioms are needed to construct a model
satisfying some MCS Γ0 ⊇ X0 extending some consistent set X0.16

15As the only chapter of the thesis, this chapter presumes familiarity with basic notions and results
from universal algebra. If ever needed, the reader may consult Burris and Sankappanavar (1981).

16We assume familiarity with such axiomatization practice, but, even so, we are aware that what
follows still (probably) requires significant effort to properly understand. In this vein, let us finally
stress that what follows is not clear-cut mathematical arguments, but heuristic guidance. It is
not intended to be ‘literally true’ but ‘metaphorically helpful’—hopefully not least for applying
similar ideas and drawing inspiration in other axiomatization settings.
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Starting off, we define the single-state join-semilattice ({{∗}}, {({∗}, {∗})}) and
label l({∗}) = Γ0. For later convenience, we let the

single state be a singleton {∗} itself.
Constructing our model stepwise, the objective is then to prove

a truth lemma. If, say, {⟨sup⟩φ0φ
′
0, ⟨sup⟩φ1φ

′
1} ⊆ Γ0, we would want to add

corresponding points—for convenience called {φ0}, {φ′
0}, {φ1}, {φ′

1}—as in the left
part of the figure below, and label them according to the existence lemma so that
φ0 ∈ l({φ0}), etc.

The first complication then becomes that although, e.g., ‘CSem’ referring to the ternary
relation of the canonical frame of
the sought axiomatization.

{∗} = sup{{φ′
0}, {φ

′
1}},

we need not have CSemΓ0l({φ
′
0})l({φ

′
1}). Therefore, we would want a formula

π1 ∈ MILSem somehow enabling us to add a point, {φ′
0,φ′

1}, and label it s.t. not
only CSeml({φ

′
0,φ′

1})l({φ
′
0})l({φ

′
1}) but also CSemΓ0l(φ0)l({φ

′
0,φ′

1}) and
CSemΓ0l(φ1)l({φ

′
0,φ′

1}). Observe that adding dummies
would not work: we are
constructing a join-semilattice, so
{φ′

0} and {φ′
1} must have a join,

and this must be below the upper
bound {∗}.

Taking this argument a step further, we would want
π1 to enable freely generating a join-semilattice modulo the requirements {∗} =
sup{φ0,φ′

0} and {∗} = sup{φ1,φ′
1} (i.e., the RHS semilattice of the figure below)

so that whenever x = sup{y, z}, it is also the case that CSeml(x)l(y)l(z).

{∗}

{φ0} {φ′
0} {φ′

1} {φ1}

⇝

{∗}

{φ0} {φ′
0} {φ′

1} {φ1}

Now, it is obviously false that whenever some w ⊩ ⟨sup⟩φ0φ
′
0 ∧ ⟨sup⟩φ1φ

′
1

in some join-semilattice model, the sub-join-semilattice generated by w and
witnesses for {⟨sup⟩φ0φ

′
0, ⟨sup⟩φ1φ

′
1} is isomorphic to the RHS join-semilattice.

But it is true that this sub-join-semilattice will be the (join-semilattice) homorphic
image of the RHS join-semilattice. Moreover, this can adequately be encoded into
the formula π1 and will suffice for dealing with this first complication. This helps
explain the following parts of the coming axiomatization:

• The axioms, like π1, will be implications that can be intuited as follows:
given the satisfaction of some formulas (the antecedent), a certain sub-join-
semilattice is the homomorphic image of a certain other join-semilattice
which is freely generated modulo some specified requirements (the conse-
quent).

• To define formulas like π1, we must, first, define this “certain other join-
semilattice” which is “freely generated modulo specified requirements”. In
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particular, we will formalize this by taking freely generated join-semilattices
P(S) \ {∅} and quotienting out under the least congruence relations ∼

meeting the given requirements.

Continuing the stepwise construction, suppose, say, ⟨sup⟩ψψ ′ ∈ l({φ0}). Again,
simply adding corresponding worlds {ψ}, {ψ′} labeled using the existence lemma
for l({φ0}) does not do the job. Because then, for instance, {∗} = sup{{ψ′}, {φ′

0}}

while we need not have CSeml({∗})l({ψ′})l({φ′
0}). Once more, the solution must

be to have some formula π2 ∈ MILSem enabling us to construct an extended
join-semilattice freely generated modulo the obvious requirements so that, cru-
cially, x = sup{y, z} implies CSeml(x)l(y)l(z). This brings about a second (minor)
complication: since ⟨sup⟩ψψ ′ ∈ l({φ0}), it is instinctive to want to find a formula
π2 ∈ MILSem ascertaining this when ‘evaluated at’ l({φ0}); however, our join-
semilattice interpretation of LM-formulas can, clearly, only express properties of
worlds below any given world of evaluation. Thus, there can be no formula π2

expressing the desired when evaluated at l({φ0}). Fortunately, a solution can be
found: l({∗}) = Γ0 is all-seeing (backwardly), so we should (and will) be able to
express the desired with a formula π2 evaluated at l({∗}) = Γ0. Before going any
further, let us summarize the key take-aways.

• To achieve the truth lemma, we will need to unboundedly extend the
join-semilattice under construction. This explains one way in which our ax-
iomatization will be infinite: having, e.g., defined the RHS join-semilattice(
P(S1) \ {∅},∪

)
/∼1 using the formula π1, if, e.g., ⟨sup⟩ψψ ′ ∈ l({φ0}), we

will need to construct an extended join-semilattice
(
P(S2)\{∅},∪

)
/∼2 using a

formula π2. And then an extended one using a formula π3, etc. That is, we
must be able to ascertain that an ever-increasing sub-join-semilattice is the
homormorphic image of a correspondingly ever-increasing join-semilattice
freely generated modulo ever-more specified requirements. Visually, I like to imagine the

formulas π1,π2, . . . as ascertaining
we can set an ‘image resolution’ of
level 1, 2, . . ., respectively—both
regarding the sub-join-semilattices
and the complementary
join-semilattices of which they are
homomorphic images.

• In a sense, the item above explains a way in which we must include ax-
ioms for each ‘depth’ n ∈ ω. On top of that, we must also include axioms
for each ‘width’ n ∈ ω: the join-semilattice freely generated modulo re-
quirements of {∗} = sup{φ0,φ′

0} and {∗} = sup{φ1,φ′
1} is obviously smaller

than the one generated modulo requirements of {∗} = sup{{φ0}, {φ′
0}}, {∗} =

sup{{φ1}, {φ′
1}} and {∗} = sup{{φ2}, {φ′

2}}, etc.

• When constructing the model to ensure that x = sup{y, z} always implies
CSeml(x)l(y)l(z), we have to label all points with MCSs obtained by evalu-
ating the formulas π1,π2, . . . at the top MCS l({∗}) = Γ0.

Continuing, although solving one problem, this last solution of evaluating at
l({∗}) inevitably constructs another (major) problem: having first labeled, e.g.,
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{φ0} via evaluating the formula π1 at Γ0, we now relabel {φ0} via evaluating
another formula π2 at Γ0. How then are we to ascertain that π2 and π1 agree on
the labeling; i.e., that, e.g., l2({φ0}) = l1({φ0})? If we by using formulas somehow
could ‘name’ the MCSs of the labeling induced by π1, we could construct π2

using these ‘names’ as to ensure that the labeling of {φ0} induced by π2 agrees
with the labeling of π1; thus, solving the problem. Evidently, (without nominals)
there can be no way of doing so when dealing with MCSs. There is an alternative,
though: while an MCS Θ is equivalently defined as an infinite conjunction Θ̂, a
finite set of formulas ΘF is equivalently defined as a finite conjunction Θ̂F; We write Θ̂F :=

∧
θ∈Θf

θ.i.e., in
some sense, going finite facilitates ‘naming’. This suggests the following idea:

• Instead of starting out with some (possibly infinite) consistent set X0, we
go for weak completeness and start with a consistent formula φ which
we extend to the least subformula-closed set Φ containing {φ}. Strong completeness will be an easy

consequence of weak completeness,
in any case (as we also will show).

We then
label our worlds according to which Φ-formulas they satisfy instead of
with MCSs. In this way, using finite conjunctions, we can contain the
labeling in the formula π1, and then also in the extended formula π2, etc.
We then get that (1) x = sup{y, z} implies CSemΓxΓyΓz for some Γi ⊇ l(i),
and, importantly, (2) l1(x) = l2(x). Notice that (1) is simply the ‘finite

version’ of the previous:
x = sup{y,z} implies
CSeml(x)l(y)l(z).

Yet again, solving one problem we have caused another: how can π1 also contain
the information determining what Φ-formulas the worlds are to satisfy and still
be valid: that, say, some w ⊩ ⟨sup⟩φ0φ

′
0 does not determine what Φ-formulas

the witnessing φ0- and φ ′
0-worlds satisfy. Key here is that Φ is finite, so there

are only finitely many ‘names’ over Φ, and we do know that the witnessing φ0-
and φ ′

0-worlds must have some ‘Φ-name’. Therefore, the consequent of π1 will
not state that one particular sub-join-semilattice is the homomorphic image of
one particular other join-semilattice, but instead disjunctively quantify over all
such options induced by all possible Φ-names. This brings us to our final point
of elaboration:

• If the consequents of the formulas π1,π2, . . . consist of disjunctions defining
distinct join-semilattices, which disjunct shall we choose when stepwise
extending our join-semilattice as to satisfy the truth lemma? To answer this,
it is helpful recalling how π2 is to ‘extend’ π1. Essentially, we want π2 to
encode how a bigger sub-join-semilattice must also be the homomorphic
image of another bigger join-semilattice. So since each disjunct of the
consequent of π1 encodes how a sub-join-semilattice is the homomorphic
image of another join-semilattice, π2 must encode the extended claim for
each disjunct. To do so, π2 must, in particular, split each disjunct of π1

into further disjunctions to quantify over all possibleΦ-names for the ‘new
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worlds’ of the extended join-semilattices. And so forth as for π3, . . ..

What we are left with is a tree where each node at each layer i, in particular,
defines a join-semilattice (the one that a given sub-join-semilattice must be
the homomorphic image of) and also a corresponding disjunct of a formula
πi, and the edges mark ‘extension’ of both join-semilattices and formulas.
The main observations are then (1) the tree is finitely branching, and (2)
we can assure that at each layer at least one disjunct must be ‘satisfied’,
allowing for an infinite subtree where König’s Lemma applies to supply an
infinite chain of join-semilattice models of which its colimit is our satisfying
join-semilattice model. So instead of the more common

‘deterministic’, linear construction
of a model, as in, e.g., Theorem 2.13,
we construct a tree of models and
then let König do the work of
picking out a linearly constructed
model.

This concludes our ‘study guide’ for the axiomatization to come. While it is in
no way exhaustive and should be treated as nothing but an informal heuristical
guide, we hope that by having called attention to particular features, we have
(1) made what comes more edible, and (2) called to the fore ideas potentially
applicable in other axiomatization settings.

6.2. Soundness

We proceed with the actual definitions and proofs. To axiomatize MILSem, we use
an infinite extension scheme for which we need the following definition:

Definition 6.1. Given any set of formulas Φ ⊆ LM, we say that A ⊆ LM is a
maximal theory overΦ just in case there is someΦ ′ ⊆ Φ s.t.

A = Φ ′ ∪
{
¬φ ∈ LM | φ ∈ (Φ \Φ ′)

}
.

We writeMT(Φ) for the set of all maximal theories overΦ. Think ofMT(Φ) as the set of all
possible (and impossible)
‘Φ-names’.

⊣

Besides from this definition, in order to define the formulas, we will need
auxiliary constructions, namely trees. We continue by defining these.

Definition 6.2 (Extension scheme: trees). For any finite, subformula-closed set of
formulasΦ ⊆ LM and maximal theory A ∈MT(Φ), we define a tree TΦ,A with
layers TΦ,A

k for all k ∈ ω. We do so recursively, going layer by layer specifying
the immediate successors of any tk ∈ TΦ,A

k as a set TΦ,A
k+1 (tk) and then setting

TΦ,A
k+1 :=

⋃
tk∈TΦ,A

k

TΦ,A
k+1 (tk).

For layer k = 0, it will be notationally convenient to first define

S−1 := ∼−1 := l−1 := ∅, TΦ,A
−1 := {(S−1, ∼−1, l−1)}, ‘l’ is, again, short for ‘labeling’,

while each Sk and ∼k will define a
join-semilattice.
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then abbreviate t−1 := (S−1, ∼−1, l−1) and use it to define

S0 := {∗}, l0 : P(S0) \ {∅} →MT(Φ), {∗} 7→ A,

∼0= {({∗}, {∗})}, TΦ,A
0 (t−1) := {(S0, ∼0, l0)}, TΦ,A

0 := {(S0, ∼0, l0)},

for some symbol ∗. I.e., at layer k = 0, our tree consists of the root (S0, ∼0, l0).
For layer k = n + 1, assume that for all tn = (Sn, ∼n, ln) ∈ TΦ,A

n there is a
unique tn−1 = (Sn−1, ∼n−1, ln−1) ∈ TΦ,A

n−1 such that tn ∈ TΦ,A
n (tn−1). Further,

assume that these satisfy the following conditions:

• Sn ⊇ Sn−1, ∼n ⊇ ∼n−1, ln ⊇ ln−1;

• ∼n is a congruence relation on join-semilattice
(
P(Sn) \ {∅},∪

)
, and ∼n−1 is

a congruence relation on join-semilattice
(
P(Sn−1) \ {∅},∪

)
;

• ln : P(Sn) \ {∅} →MT(Φ), ln−1 : P(Sn−1) \ {∅} →MT(Φ); and

• if Y ∼n Y
′, then ln(Y) = ln(Y ′).

For each
tn = (Sn, ∼n, ln) ∈ TΦ,A

n ,

we continue defining its set of successors TΦ,A
n+1(tn). Accordingly, suppose tn ∈

TΦ,A
n (tn−1) for some

tn−1 = (Sn−1, ∼n−1, ln−1) ∈ TΦ,A
n−1,

and consider their corresponding set

N(tn) :=
{
Y ∈

(
P(Sn)\{∅}

)
\
(
P(Sn−1)\{∅}

)
| ¬∃Y ′ (Y ∼n Y

′, Y ′ ∈
(
P(Sn−1) \ {∅}

))}
.

‘N’ is short for ‘new worlds’.Clearly, if Y ∈ N(tn), then [Y]n ⊆ N(tn). Therefore, we can (a) consider each of
these equivalence classes [Y]n ⊆ N(tn), (b) let

⟨sup⟩φY0φY0 ′, . . . , ⟨sup⟩φYmY
φYmY

′

denote all formulas χ ∈ ln(Y) with main connective ‘⟨sup⟩’ and (c) define

S
[Y]n
n+1

′ :=
{
φY

0 ,φY
0
′, . . . ,φY

mY
,φY

mY

′}
assuring that all such boldface symbols for formulas are pairwise distinct.

Using this, we further define

S ′
n+1 :=

⋃
[Y]n⊆N(tn)

S
[Y]n
n+1

′,
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and
Sn+1 := S ′

n+1 ∪ Sn.

Then
(
P(Sn+1) \ {∅},∪

)
is a join-semilattice on which we let ∼n+1 be the least

congruence relation satisfying

1. if Y ∼n Y
′, then Y ∼n+1 Y

′; and

2. ∀[Y]n ⊆ N(tn) ∀
{
φY

i ,φY
i
′} ⊆ S[Y]nn+1

′ :
{
φY

i ,φY
i
′} ∼n+1 Y.

Lastly, while the elements of TΦ,A
n+1(tn) (i.e. the successors of tn) agree on the first

two components (namely Sn+1 and ∼n+1), they disagree on the last: the labeling.
This we define by considering17

Ln+1(tn) :=
{
ln+1 : P(Sn+1) \ {∅} →MT(Φ) | ln+1↾(P(Sn) \ {∅}) = ln, [Y ∼n+1 Y

′ ⇒ ln+1(Y) = ln+1(Y
′)],

∀[Y]n ⊆ N(tn) ∀
{
φY

i ,φY
i
′} ⊆ S[Y]nn+1

′ : φYi ∈ ln+1
({
φY

i

})
,φYi

′ ∈ ln+1
({
φY

i
′})},

and then letting

TΦ,A
n+1(tn) := {(Sn+1, ∼n+1, ln+1) | ln+1 ∈ Ln+1(tn)} . In case S ′

n+1 = ∅, we would get
Sn+1 = Sn,∼n+1 = ∼n. This
pseudo-problem can be
circumvented in multiple ways;
w.l.o.g. we act as if any such tn+1

is formally distinct from any other
node previously constructed
(formally, the disjoint union, e.g.,
achieves this, but this clutters
notation).

Defining so for all tn ∈ TΦ,A
n , we set

TΦ,A
n+1 :=

⋃
tn∈TΦ,A

n

TΦ,A
n+1(tn),

which completes the recursive step, whence the definition as well. ⊣

To see that the recursive step actually was well-defined, we assert that our
assumption used when defining the successor nodes was granted.

Lemma 6.3. For any finite, subformula-closed set of formulasΦ ⊆ LM, maximal theory
A ∈MT(Φ), and tn ∈ TΦ,A

n , there is a (unique) tn−1 ∈ TΦ,A
n−1 such that

tn ∈ TΦ,A
n (tn−1).

Moreover, whenever tn ∈ TΦ,A
n (tn−1), then

tn = (Sn, ∼n, ln) and tn−1 = (Sn−1, ∼n−1, ln−1)

for some Sn, ∼n, ln,Sn−1, ∼n−1, ln−1 such that

• Sn ⊇ Sn−1, ∼n ⊇ ∼n−1, ln ⊇ ln−1;

17In this chapter—for clarity, but compromising aesthetics—we have allowed for overflows.
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• ∼n is a congruence relation on join-semilattice
(
P(Sn) \ {∅},∪

)
, and ∼n−1 is a

congruence relation on join-semilattice
(
P(Sn−1) \ {∅},∪

)
;

• ln : P(Sn) \ {∅} →MT(Φ), and ln−1 : P(Sn−1) \ {∅} →MT(Φ); and

• if Y ∼n Y
′, then ln(Y) = ln(Y ′).

Proof. Follows by an easy induction, scrutinizing the preceding definition.

Even if immediate by definition, explicitly including the following lemma
underlines and elucidates important aspects of the previous definition:

Lemma 6.4. For any finite, subformula-closed set of formulasΦ ⊆ LM, maximal theory
A ∈MT(Φ), and tn = (Sn, ∼n, ln) ∈ TΦ,A

n we have that

• Sn is finite; and

• if [Y]n ⊆ N(tn) and ⟨sup⟩φYi φYi ′ ∈ ln(Y), then for all successors of tn – i.e., all
tn+1 = (Sn+1, ∼n+1, ln+1) ∈ TΦ,A

n (tn) – it is the case that

φYi ∈ ln+1
({
φY

i

})
, φYi

′ ∈ ln+1
({
φY

i
′}) ,

and [{
φY

i

}]
n+1 ∪∼n+1

[{
φY

i
′}]

n+1 = [Y]n+1,

where ‘∪∼n+1 ’ refers to the join of the join-semilattice
(
P(Sn+1) \ {∅},∪

)
/∼n+1 .

Proof. Doing an induction, the proof becomes immediate by definition.

Although it will not be needed until our much later completeness proof, it is
instructive to have explicated this second assertion of the lemma to understand
our tree definition. Now, put in the light of a model construction for completeness,
informally speaking, it spells out that whenever a world [Y]n is ‘new’ (i.e. [Y]n ⊆
N(tn)), if the labeling function ln requires [Y]n to satisfy some ⟨sup⟩φYi φYi ′ ∈
ln(Y), then this requirement is met in all successor steps tn+1; i.e., in all successor
models.

To gain even more familiarity with these trees, we additionally prove the
following lemma, although it, too, only will be needed in the completeness proof:

Lemma 6.5. For any TΦ,A, sequence t0, . . . , tn satisfying ti+1 ∈ TΦ,A
i+1 (ti), and

Y ∈ P(Sn) \ {∅}, there are X ∈ P(Sn) \ {∅} andm ⩽ n such that

Y ∼n X and X ∈ N(tm). In essence, this lemma asserts that
all worlds will have been ‘new
worlds’ at some stagem, hence at
stagem+ 1 their ‘⟨sup⟩-defects’
will have been fixed.
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Proof. We prove the claim by induction on n. For n = 0, it holds because ∼0 is
reflexive and

P(S0) \ {∅} = {{∗}} = N(t0).

For n > 0, if Y ∈ N(tn), we are done by reflexivity of ∼n. And if not, by definition
of N(tn), there is some Y ′ ∈ P(Sn−1) \ {∅} such that Y ∼n Y

′. By IH, there must
be some X ∈ P(Sn−1) \ {∅} and m ⩽ (n− 1) such that Y ′ ∼n−1 X and X ∈ N(tm).
But then Y ′ ∼n X, so – by transitivity of ∼n – Y ∼n X, which proves the claim.

Picking up where we left, we define the formulas of our extension scheme
using the auxiliary trees.

Definition 6.6 (Extension scheme: formulas). For any finite, subformula-closed
set of formulas Φ ⊆ LM, maximal theory A ∈ MT(Φ) and k ∈ ω, we define a
formula πΦ,A

k .
To do so, we will need to first define formulas αtk[Sk]k

, for each tk ∈ TΦ,A
k ,

which, in turn, are build from other formulas αtk[Y]k .
Accordingly, for each tk = (Sk, ∼k, lk) and [Y]k ∈

(
P(Sk) \ {∅},∪

)
/∼k

, define
the set Ck[Y]k consisting of the pairs of congruence classes ([Ya]k, [Yb]k) strictly
below [Y]k and of which it is the join; that is,

Ck[Y]k := {([Ya]k, [Yb]k) | [Y]k = [Ya]k ∪∼k
[Yb]k, [Ya]k ̸= [Y]k ̸= [Yb]k},

and use it to define the formula

αtk[Y]k := l̂k(Y)∧
∧

([Ya]k,[Yb]k)∈Ck[Y]k

⟨sup⟩αtk[Ya]k
αtk[Yb]k

∧
∧

[Y]k>k[X]k

Pαtk[X]k . The part ‘l̂k(Y)’ is our ‘naming’
facilitated by ‘finiteness’; the latter
two parts deal with the encoding of
being the homomorphic image of the
join-semilattice(
P(Sk) \ {∅},∪

)
/∼k

.

To see that the formulas αtk[Y]k are well-defined, notice that

([Ya]k, [Yb]k) ∈ Ck[Y]k

implies that
[Y]k >k [Ya]k, [Yb]k.

Consequently, since the partial order >k induced by the join-semilattice
(
P(Sk) \

{∅},∪
)
/∼k

is well-founded (because it is on a finite set), the formulas are well-
defined.

Using these formulas, we set

πΦ,A
k := Â→

∨
(Sk,∼k,lk)∈Tk

Φ,A

α
(Sk,∼k,lk)
[Sk]k

, I.e., each node
tk = (Sk,∼k, lk) ∈ TΦ,A

k

corresponds to a disjunct in the
consequent of πΦ,A

k .
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which completes our definition. ⊣

Definition 6.7. For any finite, subformula-closed set of formulasΦ ⊆ LM and
maximal theory A ∈MT(Φ), we write ΠΦ,A := {πΦ,A

k | k ∈ ω}. ⊣

Having defined the formulas of our extension scheme, we are in a place to
proof-theoretically define a logic, MILSem, which we will show to be an axiomati-
zation of MILSem.

Definition 6.8 (Axiomatization). We define MILSem to be the least normal modal
logic in the language of LM which (a) extends MILPre and (b) contains ΠΦ,A

for all finite subformula-closed sets of formulas Φ ⊆ LM and maximal theories
A ∈MT(Φ). ⊣

Prior to proving soundness, let us show how the associativity axiom

(As.) ⟨sup⟩(⟨sup⟩pq)r↔ ⟨sup⟩p(⟨sup⟩qr),

of Remark 1.6 is derived in MILSem. Because it is not derivable in MILPre, it must
be derivable by virtue of the tree formulas. Thus, its derivation serves as an
obvious way of further elucidating this extension scheme – this time by giving a
concrete example.

Example 6.9. To show that MILSem ⊢ (As.), it is enough to show one direction

MILSem ⊢ ⟨sup⟩(⟨sup⟩pq)r→ ⟨sup⟩p(⟨sup⟩qr),

since the converse direction then follows by (Co.), propositional tautologies, US
and MP. To this end, let Φ := {⟨sup⟩(⟨sup⟩pq)r, (⟨sup⟩pq),p,q, r}, and observe
that Φ is subformula closed and finite. Further, note that

MILSem ⊢ ⟨sup⟩(⟨sup⟩pq)r→
∨

{Â | ⟨sup⟩(⟨sup⟩pq)r ∈ A ∈MT(Φ)}.

Thus, it suffices to show that for any maximal theory A ∈MT(Φ) which contains
⟨sup⟩(⟨sup⟩pq)r, we have that

MILSem ⊢ Â→ ⟨sup⟩p(⟨sup⟩qr).

To show this, given any A ∈ MT(Φ) s.t. ⟨sup⟩(⟨sup⟩pq)r ∈ A, we will be con-
structing (some of) the formula πΦ,A

2 .18 Consequently, we have to construct layer
2 of the corresponding tree; that is, TΦ,A

2 . Following the recursive construction,

18For the sake of keeping the example within reasonable length, we will be omitting quite some
details and only include the steps illuminating the bare workings.

69



the base case is given as follows:

S−1 :=∼−1:= l−1 := ∅, TΦ,A
−1 := {(S−1, ∼−1, l−1)},

and

S0 := {∗}, l0 : P(S0) \ {∅} →MT(Φ), {∗} 7→ A,

∼0 = {({∗}, {∗})}, TΦ,A
0 (t−1) := {(S0, ∼0, l0)}, TΦ,A

0 := {(S0, ∼0, l0)},

where t−1 := (S−1, ∼−1, l−1). For layer 1, since TΦ,A
0 is a singleton, we only

need to construct the successors of t0 = (S0, ∼0, l0). Since N(t0) = {{∗}} and
⟨sup⟩(⟨sup⟩pq)r ∈ A = l0({∗}), we know that

{⟨sup⟩pq, r} ⊆ S[{∗}]0
1

′ ⊆ S1,

hence
{⟨sup⟩pq, r} ∼1 {∗},

and for all l1 ∈ L1(t0):

⟨sup⟩pq ∈ l1 ({⟨sup⟩pq}) , r ∈ l1 ({r}) .

Knowing this regarding TΦ,A
1 is adequate for our purposes. Because now for any

t1 = (S1, ∼1, l1) ∈ TΦ,A
1 , we find that

{⟨sup⟩pq} ∈ N(t1),

hence by similar reasoning to before: for all t1 = (S1, ∼1, l1) ∈ TΦ,A
1 ,

{p,q} ∼2 {⟨sup⟩pq}, ∀l2 ∈ L2(t1) : p ∈ l2 ({p}) ,q ∈ l2 ({q}) .

Again this is adequate concerning TΦ,A
2 . It is then not too hard to check that for

all t2 ∈ TΦ,A
2 ,

p ∈∧ α
t2
[{p}]2

, q ∈∧ α
t2
[{q}]2

, r ∈∧ α
t2
[{r}]2

,

([{q}]2, [{r}]2) ∈ C2[{q, r}]2, ([{p}]2, [{q, r}]2) ∈ C2[S2]2,

whence

⟨sup⟩αt2
[{q}]2

αt2
[{r}]2

∈∧ α
t2
[{q,r}]2

and ⟨sup⟩αt2
[{p}]2

αt2
[{q,r}]2

∈∧ α
t2
[S2]2

,

where the occurrence of ‘∈∧’ in, e.g., p ∈∧ αt2
[{p}]2

denotes that ‘p’ occurs as a
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conjunct of a conjunction ‘∧’ occurring as a main connective in ‘αt2
[{p}]2

’. So, e.g.,
φ ∈∧ [q0 ∧φ∧ (q2 ∨q3)].

Therefore,
by normality, we get that

MILSem ⊢ αt2
[S2]2

→ ⟨sup⟩p(⟨sup⟩qr).

Lastly, since (1) this holds for all t2 ∈ TΦ,A
2 , and (2)

MILSem ∋ πΦ,A
2 := Â→

∨
(S2,∼2,l2)∈T2

Φ,A

α
(S2,∼2,l2)
[S2]2

,

we get that
MILSem ⊢ Â→ ⟨sup⟩p(⟨sup⟩qr)

as sufficed. ⌟
Now for showing soundness. For this, we will need a preliminary result, which

we have split into two lemmas: the latter being what we need, and the former
being helpful in proving the latter.

Lemma 6.10. Suppose (W,∨) has a greatest element w and is a sub-join-semilattice of
(V ,∨). Further, suppose there is an onto (join-semilattice) homomorphism

h :
(
P(S) \ {∅},∪

)
/∼ →

(
W,∨

)
for some set S, and that

h([X0]∼) = u0 ∨ v0

for some [X0]∼ ∈
(
P(S) \ {∅},∪

)
/∼ and {u0, v0} ⊆ V . Then the following hold.

• The structure

(
W ′,∨

)
:=
({
x1 ∨ · · ·∨ xk : k ⩾ 1, {x1, ..., xk} ⊆W ∪ {u0, v0}

}
,∨
)
,

is a sub-join-semilattice of (V ,∨) with greatest element w.

• Define
S ′ := {u0, v0}

assuring u0 ̸= v0 (note that we need not have u0 ̸= v0) and S ′ ∩ S = ∅, and let
∼ ′ be the least congruence relation on the join-semilattice

(
P(S ∪ S ′) \ {∅},∪

)
satisfying

0. if X ∼ Y then X ∼ ′ Y; and

1. X0 ∼ ′ {u0, v0}.
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Then sending
[{u0}]∼′ 7→ u0, [{v0}]∼′ 7→ v0

and, for all ∅ ̸= X ⊆ S, sending

[X]∼′ 7→ h([X]∼)

defines a partial function which canonically extends to an onto homorphism

h ′ :
(
P(S ∪ S ′) \ {∅},∪

)
/∼′ →

(
W ′,∨

)
.

Proof. For the former claim, all we need is that (1)w ⩾ h([X0]∼) = u0 ∨ v0 and (2)
the set {

x1 ∨ · · ·∨ xk : k ⩾ 1, {x1, ..., xk} ⊆W ∪ {u0, v0}
}

is closed under taking joins, which both clearly are the case.
For the latter, observe that sending

{u0} 7→ u0, {v0} 7→ v0,

and for all ∅ ̸= X ⊆ S
X 7→ h([X]∼)

defines a partial function since u0 ̸= v0 and S ∩ S ′ = ∅. In fact, it generates the
function

f ′ :
(
P(S ∪ S ′) \ {∅},∪

)
→
(
W ′,∨

)
which is well-defined by being defined on all atoms; a homomorphism because
h is; and onto because (a) it is onto onW (because h is), (b) it is onto on {u0, v0},
and (c) it is a homomorphism and W ′ consists of finite joins of elements from
W ∪ {u0, v0}.

Thus, f ′ induces another congruence relation ∼f′ on
(
P(S ∪ S ′) \ {∅},∪

)
given

as
X ∼f′ Y iff f ′(X) = f ′(Y).

Importantly, ∼f′ satisfies the defining conditions 0.-1. of ∼ ′. 0. because if X ∼ Y,
then

f ′(X) = h([X]∼) = h([Y]∼) = f
′(Y),

and 1. because

f ′(X0) = h([X0]∼) = u0 ∨ v0 = f ′({u0})∨ f
′({u0}) = f

′({u0} ∪ {u0}) = f
′({u0, v0}).

72



Thus,
∼ ′ ⊆ ∼f′ ,

which suffices to prove the claim.

Generalizing this result, we prove the needed lemma.

Lemma 6.11. Suppose (W,∨) has a greatest element w and is a sub-join-semilattice of
(V ,∨). Further, suppose there is an onto homomorphism

h :
(
P(S) \ {∅},∪

)
/∼ → (W,∨)

for some set S, and that

1. h([X0]∼) = u
0
0 ∨ v

0
0 = · · · = u0

n0
∨ v0

n0

...
...

...

m. h([Xm]∼) = u
m
0 ∨ vm0 = · · · = umnm

∨ vmnm
,

for some {
[X0]∼, . . . , [Xm]∼

}
⊆
(
P(S) \ {∅},∪

)
/∼

and
R ′ := {u0

0, v0
0, . . . ,u0

n0
, v0
n0

, . . . ,um0 , vm0 , . . . ,umnm
, vmnm

} ⊆ V .

Then the following hold.

• The structure

({
x1 ∨ · · ·∨ xk : k ⩾ 1, {x1, ..., xk} ⊆W ∪ R ′},∨

)
,

is a sub-join-semilattice of (V ,∨) with greatest element w.

• Define
S ′ := {u0

0, v0
0, . . . , u0

n0
, v0

n0
, . . . , um

0 , vm
0 , . . . , um

nm
, vm

nm
}

assuring all elements are pairwise distinct (this need not be the case foru0
0, v0

0, . . . ,umnm
, vmnm

,
so essentially we’re considering a multiset) and S ′ ∩ S = ∅, and let ∼ ′ be the least
congruence relation on the join-semilattice

(
P(S ∪ S ′) \ {∅},∪

)
satisfying

0. if X ∼ Y then X ∼ ′ Y;

1. X0 ∼ ′ {u0
0, v0

0} ∼
′ · · · ∼ ′ {u0

n0
, v0

n0
};

...
...

...

m. Xm ∼ ′ {um
0 , vm

0 } ∼ ′ · · · ∼ ′ {um
nm

, vm
nm
}.
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Then sending

[{u0
0}]∼′ 7→ u0

0, [{v0
0}]∼′ 7→ v0

0, . . . , [{u0
n0
}]∼′ 7→ u0

n0
, [{v0

n0
}]∼′ 7→ v0

n0
, . . . ,

[{um
0 }]∼′ 7→ um0 , [{vm

0 }]∼′ 7→ vm0 , . . . , [{um
nm
}]∼′ 7→ umnm

, [{vm
nm
}]∼′ 7→ vmnm

,

and, for all ∅ ̸= X ⊆ S, sending

[X]∼′ 7→ h([X]∼)

defines a partial function which canonically extends to an onto homorphism

h ′ :
(
P(S ∪ S ′) \ {∅},∪

)
/∼′ →

(
W ′,∨

)
.

Proof. As before, the former of the claims is basically by definition.
For the latter, we use the previous lemma repeatedly. To be precise, first, we

list
{u0

0, v0
0}, . . . , {u0

n0
, v0

n0
}, . . . , {um

0 , vm
0 }, . . . , {um

nm
, vm

nm
}

so that

S ∪ S ′ = S ∪
(
{u0

0, v0
0} ∪ · · · ∪ {u0

n0
, v0

n0
} ∪ · · · ∪ {um

0 , vm
0 } ∪ · · · ∪ {um

nm
, vm

nm
}
)

=
(
· · ·
(
· · ·
(
· · ·
(
S ∪ {u0

0, v0
0}
)
∪ · · · ∪ {u0

n0
, v0

n0
}
)
∪ · · · ∪ {um

0 , vm
0 }
)
∪ · · · ∪ {um

nm
, vm

nm
}
)
.

Second, iteratively defining congruence relations

∼0
0 ⊆ · · · ⊆ ∼0

n0
⊆ · · · ⊆ ∼m0 ⊆ · · · ⊆ ∼mnm

and corresponding target join-semilattices
(
W0

0 ,∨
)
, . . . ,

(
Wm
nm

,∨
)

as given in the
previous lemma – and using that the corresponding homomorphisms ‘extend’
each other – that exact lemma gives us an onto homomorphism hmnm

. It is then an
easy matter to check that ∼mnm

= ∼ ′,
(
Wm
nm

,∨
)
=
(
W ′,∨

)
, and that hmnm

satisfies
the given conditions.

Using this lemma, we continue by proving soundness.

Theorem 6.12 (Soundness). MILSem ⊆ MILSem.

Proof. We show that for any finite, subformula-closed set of formulasΦ ⊆ LM,
maximal theory A ∈MT(Φ), and k ∈ ω, it is the case that

πΦ,A
k ∈ MILSem.

Therefore, suppose (W,∨,V) = M is a join-semilattice model, and w is a world
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such that
M,w ⊩ Â.

Further, let k ∈ ω be arbitrary. We prove the claim by constructing a sequence of
tuples

t−1 = (S−1, ∼−1, l−1), t0 = (S0, ∼0, l0), t1 = (S0, ∼0, l0), . . . , tk = (Sk, ∼k, lk)

such that for all 0 ⩽ i ⩽ k
ti ∈ TΦ,A

i (ti−1),

and then showing that
M,w ⊩ αtk[Sk]k

.

The sequence of tuples will be constructed using a concurrent construction of
onto homomorphisms

hi :
(
P(Si) \ {∅},∪

)
/∼i

→
(
Wi,∨

)
,

where
(
Wi,∨

)
0⩽i⩽k constitutes a chain of sub-join-semilattices of

(
W,∨

)
all with

greatest element w, and such that

li(Y) = ||hi([Y]i)|| ∩ (Φ ∪ ¬Φ)

for all Y ∈ P(Si) \ {∅}. Recall that given any M,x, we
denote and abbreviate the truthset
of x (w.r.t. M) as
||x|| := {φ | M,x ⊩ φ}.

Base case. t−1 and t0 are already given, and the unique function

h0 :
(
P(S0) \ {∅},∪

)
/∼0 →

(
{w},∨

)
is obviously an onto homomorphism such that

l0(Y) = ||h0([Y]0)|| ∩ (Φ ∪ ¬Φ) Recall that, by their very definitions
(6.2), S0 := {∗} and
l0({∗}) :=A.for all Y ∈ P(S0) \ {∅}.

Recursive step. Suppose for some i < k that we have constructed

t−1 = (S−1, ∼−1, l−1), t0 = (S0, ∼0, l0), t1 = (S0, ∼0, l0), . . . , ti = (Si, ∼i, li)

and a corresponding chain of onto homomorphisms and sub-join-semilattices.
By definition, we know that

Si+1 := S ′
i+1 ∪ Si,
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where
S ′
i+1 :=

⋃
[Y]i⊆N(ti)

S
[Y]i
i+1

′,

and
S
[Y]i
i+1

′ :=
{
φY

0 ,φY
0
′, . . . ,φY

nY
,φY

nY

′}
arise from the formulas χ ∈ li(Y) with main connective ‘⟨sup⟩’ for all [Y]i ⊆ N(ti).
Enumerating representatives of these equivalence classes as Y1, . . . , Ym, we get a
list {

φY1
0 ,φY1

0
′
}

, . . . ,
{
φY1

nY1
,φY1

nY1

′
}

, . . . ,
{
φYm

0 ,φYm

0
′
}

, . . . ,
{
φYm

nYm
,φYm

nYm

′
}

such that

Si+1 = Si ∪
({
φY1

0 ,φY1
0

′
}
∪ · · · ∪

{
φY1

nY1
,φY1

nY1

′
}
∪ · · · ∪

{
φYm

0 ,φYm

0
′
}
∪ · · · ∪

{
φYm

nYm
,φYm

nYm

′
})

.

Since, by IH,
li(Y) = ||hi([Y]i)|| ∩ (Φ ∪ ¬Φ)

for all Y ∈ P(Si) \ {∅}, we, in particular, have that for all 1 ⩽ j ⩽ m:

hi([Yj]i) ⊩
∧

a⩽nYj

⟨sup⟩φYj
a φ

Yj
a

′,

hence it must be witnessed by some

uja ⊩ φ
Yj
a , vja ⊩ φ

Yj
a

′

such that hi([Yj]i) = u
j
a ∨ vja.

Consequently, cf. the preceding lemma and the IH, these witnessing worlds
together withWi generate a sub-join-semilattice

(
Wi+1,∨

)
with greatest element

w that is a homomorphic image through

hi+1 :
(
P(Si+1) \ {∅},∪

)
/∼i+1 →

(
Wi,∨

)
,

where [{
φ

Yj
a

}]
∼i+1

7→ uja,
[{
φ

Yj
a

′
}]

∼i+1

7→ vja

for all 1 ⩽ j ⩽ m and a ⩽ nYj
. Because of this latter fact, and since also (a) hi+1

‘extends’ hi, and (b) (Φ ∪ ¬Φ) is subformula closed (becauseΦ is), letting

li+1 :
(
P(Si+1) \ {∅},∪

)
→MT(Φ)
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be given by
li+1(Y) = ||hi+1([Y]i+1)|| ∩ (Φ ∪ ¬Φ),

defines an element ti+1 ∈ TΦ,A
i+1 (ti), which finishes the recursive step and, thus,

our construction of the sequence.
It therefore remains to show that

w ⊩ α(Sk,∼k,lk)
[Sk]k

.

We do so by induction on the join-semilattice
(
P(Sk) \ {∅},∪

)
/∼k

showing that
for all [Y]k:

hk([Y]k) ⊩ α
(Sk,∼k,lk)
[Y]k

.

For atoms [Y]k of
(
P(Sk) \ {∅},∪

)
/∼k

, using that

lk(Y) = ||hk([Y]k)|| ∩ (Φ ∪ ¬Φ),

this amounts to
hk([Y]k) ⊩ ||hk([Y]k)|| ∩ (Φ ∪ ¬Φ),

which obviously is the case. So let [Y]k be arbitrary so that the claim holds for
all points [Ya]k <k [Y]k and [Yb]k <k [Y]k. Again, this is well-defined since <k is
well-founded (because our join-semilattice is finite). Clearly,

hk([Y]k) ⊩ l̂k(Y),

while

hk([Y]k) ⊩
∧

([Ya]k,[Yb]k)∈Ck[Y]k

⟨sup⟩αtk[Ya]k
αtk[Yb]k

∧
∧

[Y]k>k[X]k

Pαtk[X]k

follows by (1) induction hypothesis, (2) hk being a join-semilattice homomor-
phism – hence preserving joins and (weak) order – and (3)

(
Wk,∨

)
being a

sub-join-semilattice of (W,∨).
This finalizes the induction; a fortiori, since hk is onto and [Sk]k and w are the

greatest elements of
(
P(Sk) \ {∅},∪

)
and

(
Wk,∨

)
, respectively, we get

w = hk([Sk]k) ⊩ α
(Sk,∼k,lk)
[Sk]k

,

as desired.
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6.3. Completeness

Having shown soundness, next task is to show completeness. As with soundness,
we begin with some preliminary results; the first of which we have split into two
lemmas: once again, the latter being what we need, and the former being useful
in proving the latter.

Lemma 6.13. Suppose S,S ′, {a,b} are sets such that {a,b} ∩ S = ∅,S ′ = {a,b} ∪ S,
and ∼ is a congruence relation on

(
P(S) \ {∅},∪

)
.

Then mapping
[Y]∼ 7→ [Y]∼′

for all ∅ ̸= Y ⊆ S, defines an embedding

e :
(
P(S) \ {∅},∪

)
/∼ →

(
P(S ′) \ {∅},∪

)
/∼′ ,

where ∼ ′ is the least congruence relation satisfying

1. if X ∼ Y then X ∼ ′ Y; and

2. {a,b} ∼ ′ Z,

for some ∅ ̸= Z ⊆ S.

Proof. First, note that since S ⊆ S ′ and ∼ ⊆ ∼ ′ (cf. 1.), the map

e : [Y]∼ 7→ [Y]∼′

is well-defined.
Second, to see that e is a homomorphism, observe that for any [X]∼, [Y]∼, we

have that

e ([X]∼ ∪∼ [Y]∼) = e ([X ∪ Y]∼) = [X ∪ Y]∼′ = [X]∼′ ∪∼′ [Y]∼′

= e ([X]∼) ∪∼′ e ([Y]∼) .

Third, we have to show that e is injective; i.e., the converse of condition 1.,
namely that

for all X, Y ∈ P(S) \ {∅}, if X ∼ ′ Y then X ∼ Y.

To show so, it suffices to find another relation ∼ ′′ ⊇ ∼ ′ Although not needed for the time
being, we will even show that
∼ ′′ = ∼ ′, since this will be of use
in the (much) later Lemma 6.23

for which this holds.
Consequently, consider the relation on P(S ′) \ {∅} given by X ∼ ′′ Y :iff
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either (i) (X ∩ {a,b}) = (Y ∩ {a,b}),
(
(X \ {a,b}) ∼ (Y \ {a,b}) or (X \ {a,b}) = (Y \ {a,b}) = ∅

)
or (ii)

(
((X \ {a,b}) ∪ Z) ∼ (X \ {a,b}) or X ⊇ {a,b}

)
,
(
((Y \ {a,b}) ∪ Z) ∼ (Y \ {a,b}) or Y ⊇ {a,b}

)
,

((X \ {a,b}) ∪ Z) ∼ ((Y \ {a,b}) ∪ Z) .

for all {X, Y} ⊆ P(S ′) \ {∅}. Observe that the ‘or’ in (i) is
exclusive.We show that ∼ ′′ extends ∼ ′. First, observe that (i) implies condition 1. in the

definition of ∼ ′, and (ii) implies condition 2. in the definition of ∼ ′. Thus, for
showing ∼ ′′ ⊇ ∼ ′, it is enough to show that ∼ ′′ is a congruence relation. Reflexivity
is an easy consequence of (i) and ∼ being reflexive, and symmetry is an easy
consequence of ∼ being symmetric. For transitivity, suppose

X ∼ ′′ Y ∼ ′′ W.

If X
(i)
∼ ′′ Y

(i)
∼ ′′ W (that is, X ∼ ′′ Y ∼ ′′ W by virtue of fulfilling condition (i)), then

X
(i)
∼ ′′ W follows by transitivity of ∼, so suppose instead that X

(ii)
∼ ′′ Y

(ii)
∼ ′′ W. Then

((X \ {a,b}) ∪ Z) ∼ ((Y \ {a,b}) ∪ Z) ∼ ((W \ {a,b}) ∪ Z) ,

hence X
(ii)
∼ ′′ W follows by transitivity of ∼. Now suppose X

(i)
∼ ′′ Y

(ii)
∼ ′′ W. Then

Y
(ii)
∼ ′′ W implies that either (1) Y ⊇ {a,b} or (2) ((Y \ {a,b}) ∪ Z) ∼ (Y \ {a,b}). In

case of (1), also X ⊇ {a,b} because X
(i)
∼ ′′ Y. If even Y = {a,b}, we have X = Y,

hence
((X \ {a,b}) ∪ Z) = ((Y \ {a,b}) ∪ Z) ∼ ((W \ {a,b}) ∪ Z) ,

so X
(ii)
∼ ′′ W. And if (X \ {a,b}) ∼ (Y \ {a,b}), then since Z ∼ Z, we get

((X \ {a,b}) ∪ Z) ∼ ((Y \ {a,b}) ∪ Z) ∼ ((W \ {a,b}) ∪ Z)

by ∼ being a congruence relation, hence, in particular, compatible with ‘∪’. Thus,

X
(ii)
∼ ′′ W. In case of (2), we find that

((X \ {a,b}) ∪ Z) ∼ ((Y \ {a,b}) ∪ Z) ∼ (Y \ {a,b}) ∼ (X \ {a,b}).

Thus, ((X \ {a,b})∪Z) ∼ (X \ {a,b}). Moreover, transitivity and ((Y \ {a,b})∪Z) ∼
((W \ {a,b}) ∪ Z) entail that

((X \ {a,b}) ∪ Z) ∼ ((W \ {a,b}) ∪ Z),
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showing X
(ii)
∼ ′′ W. Finally, for the remaining case, X

(ii)
∼ ′′ Y

(i)
∼ ′′ W, we use symmetry

to get that W
(i)
∼ ′′ Y

(ii)
∼ ′′ X, for which the previous proof shows W

(ii)
∼ ′′ X, so by

symmetry X
(ii)
∼ ′′ W. Thus, we’ve shown ∼ ′′ to be transitive.

Lastly, we have to show that ∼ ′′ is compatible with taking unions. Accordingly,
suppose

X1 ∼ ′′ Y1, X2 ∼ ′′ Y2.

Then we are to show (X1 ∪ X2) ∼
′′ (Y1 ∪ Y2). If X1

(i)
∼ ′′ Y1 and X2

(i)
∼ ′′ Y2, then using

that
(X1 \ {a,b}) ∼ (Y1 \ {a,b}), (X2 \ {a,b}) ∼ (Y2 \ {a,b})

entail

((X1 ∪ X2) \ {a,b}) = (X1 \ {a,b}) ∪ (X2 \ {a,b})

∼ (Y1 \ {a,b}) ∪ (Y2 \ {a,b}) = ((Y1 ∪ Y2) \ {a,b})

by ‘∪’-compatibility of ∼, we find that (X1 ∪ X2)
(i)
∼ ′′ (Y1 ∪ Y2) follows easily. And

if X1

(ii)
∼ ′′ Y1 and X2

(ii)
∼ ′′ Y2, then to see that (X1 ∪ X2)

(ii)
∼ ′′ (Y1 ∪ Y2), simply observe

that (1)

(((X1 ∪ X2) \ {a,b}) ∪ Z) =
(
((X1 \ {a,b}) ∪ Z) ∪ ((X2 \ {a,b}) ∪ Z)

)
∼
(
((Y1 \ {a,b}) ∪ Z) ∪ ((Y2 \ {a,b}) ∪ Z)

)
= (((Y1 ∪ Y2) \ {a,b}) ∪ Z),

and (2a) (Xi ⊇ {a,b} ⇒ (X1 ∪ X2) ⊇ {a,b}), while (2b)

((X1 \ {a,b}) ∪ Z) ∼ (X1 \ {a,b}), ((X2 \ {a,b}) ∪ Z) ∼ (X2 \ {a,b})

entail

(((X1 ∪ X2) \ {a,b}) ∪ Z) = ((X1 \ {a,b}) ∪ Z) ∪ ((X2 \ {a,b}) ∪ Z)

∼ (X1 \ {a,b}) ∪ (X2 \ {a,b}) ∼ ((X1 ∪ X2) \ {a,b}).

And, analogously, for Y1, Y2, the arguments of (2a) and (2b) go through, hence we

get (X1 ∪ X2)
(ii)
∼ ′′ (Y1 ∪ Y2). Therefore, suppose X1

(i)
∼ ′′ Y1 and X2

(ii)
∼ ′′ Y2. Then

(
((X1 ∪ X2) \ {a,b}) ∪ Z

)
=
(
(X1 \ {a,b}) ∪ ((X2 \ {a,b}) ∪ Z)

)
∼
(
(Y1 \ {a,b}) ∪ ((Y2 \ {a,b}) ∪ Z)

)
=
(
((Y1 ∪ Y2) \ {a,b}) ∪ Z

)
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because (1)
((X2 \ {a,b}) ∪ Z) ∼ ((Y2 \ {a,b}) ∪ Z),

and (2)

either (X1 \ {a,b}) ∼ (Y1 \ {a,b}) or (X1 \ {a,b}) = (Y1 \ {a,b}) = ∅.

Thus, if (X1 ∪ X2) ⊇ {a,b} and (Y1 ∪ Y2) ⊇ {a,b}, we’re done. So suppose
(X1 ∪ X2) ⊉ {a,b}. Then

((X2 \ {a,b}) ∪ Z) ∼ (X2 \ {a,b}),

hence

(((X1 ∪ X2) \ {a,b}) ∪ Z) = (X1 \ {a,b}) ∪ ((X2 \ {a,b}) ∪ Z)

∼ (X1 \ {a,b}) ∪ (X2 \ {a,b}) = ((X1 ∪ X2) \ {a,b}).

The case {Y1, Y2} ⊉ {a,b} is analogous; thus, (X1 ∪ X2)
(ii)
∼ ′′ (Y1 ∪ Y2). Finally, the

remaining case, X1

(ii)
∼ ′′ Y1 and X2

(i)
∼ ′′ Y2, is covered by the exact same reasoning

using commutativity of ‘∪’.
Summarizing, this shows that ∼ ′′ ⊇ ∼ ′, so to show injectivity of e, it suffices to

show that
for all X, Y ∈ P(S) \ {∅}, if X ∼ ′′ Y then X ∼ Y.

Accordingly, let X, Y ∈ P(S) \ {∅} be arbitrary such that X ∼ ′′ Y. Notice that then

(X∩ {a,b}) = ∅ = (Y∩ {a,b}). So if X
(i)
∼ ′′ Y, we have both (X∩ {a,b}) = (Y∩ {a,b})

and – since X ̸= ∅ ̸= Y –

X = (X \ {a,b}) ∼ (Y \ {a,b}) = Y

as required.

And if X
(ii)
∼ ′′ Y, we have

X = (X \ {a,b}) ∼ ((X \ {a,b}) ∪ Z) ∼ ((Y \ {a,b}) ∪ Z) ∼ ((Y \ {a,b}) = Y,

completing our proof of injectivity, hence completing our proof of the lemma.

As stated, even though it is of no concrete use for the time being, we will show
that the converse inclusion holds as well; that is, ∼ ′′ ⊆ ∼ ′. We show this because
not only does an unraveled characterization of ∼ ′ as ∼ ′′ provide some intuition,
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but, more importantly, it will also be of explicit reference in the proof of Lemma
6.23.

Consequently, first, suppose X
(i)
∼ ′′ Y. Then (X ∩ {a,b}) = (Y ∩ {a,b}). So if

(X \ {a,b}) = (Y \ {a,b}) = ∅, we must have X = Y, hence X ∼ ′ Y by reflexivity.
And if (X \ {a,b}) ∼ (Y \ {a,b}), we get by compatibility with unions and ∼ ′ ⊇ ∼

that

X = (X \ {a,b}) ∪ (X ∩ {a,b}) = (X \ {a,b}) ∪ (Y ∩ {a,b})

∼ ′ (Y \ {a,b}) ∪ (Y ∩ {a,b}) = Y.

Second, suppose X
(ii)
∼ ′′ Y. If (1) X ⊇ {a,b}, then

X = X ∪ {a,b} ∼ ′ X ∪ Z = (X \ {a,b}) ∪ Z ∪ {a,b}

∼ ′ (X \ {a,b}) ∪ Z ∪ Z = (X \ {a,b}) ∪ Z

by repeated use of {a,b} ∼ ′ Z and compatibility with unions. And if (2) ((X \

{a,b}) ∪ Z) ∼ (X \ {a,b}), then, using that

Z = Z ∪ Z ∼ ′ Z ∪ {a,b} ⊇ Z ∪ (X ∩ {a,b}),

so
Z ∼ ′ Z ∪ (Z ∪ (X ∩ {a,b})) = Z ∪ (X ∩ {a,b}),

we get

X = (X \ {a,b}) ∪ (X ∩ {a,b}) ∼ ′ ((X \ {a,b}) ∪ Z) ∪ (X ∩ {a,b})

= (X \ {a,b}) ∪ (Z ∪ (X ∩ {a,b})) ∼ ′ (X \ {a,b}) ∪ Z.

I.e., in either case we get that

X ∼ ′ (X \ {a,b}) ∪ Z.

Analogously, we get
Y ∼ ′ (Y \ {a,b}) ∪ Z,

whence
X ∼ ′ (X \ {a,b}) ∪ Z ∼ (Y \ {a,b}) ∪ Z ∼ ′ Y,

so X ∼ ′ Y as required, finishing our proof of ∼ ′′ ⊆ ∼ ′ and, therefore, allowing us
to conclude ∼ ′′ = ∼ ′.

Employing this lemma, we prove the following:
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Lemma 6.14. Let Φ ⊆ LM be a finite, subformula-closed set of formulas and A
a maximal theory over Φ. Then for any n ∈ ω, tn = (Sn, ∼n, ln) ∈ TΦ,A

n and
tn+1 = (Sn+1, ∼n+1, ln+1) ∈ TΦ,A

n+1(tn), mapping

[Y]∼n
7→ [Y]∼n+1

defines an embedding

e :
(
P(Sn) \ {∅},∪

)
/∼n

→
(
P(Sn+1) \ {∅},∪

)
/∼n+1. I.e., this lemma formalizes and

proves how the generated
join-semilattices extend each other
(cf. section 6.1).

Proof. As in the soundness proof, we know that

Sn+1 := S ′
n+1 ∪ Sn,

where
S ′
n+1 :=

⋃
[Y]n⊆N(tn)

S
[Y]n
n+1

′,

and
S
[Y]n
n+1

′ :=
{
φY

0 ,φY
0
′, . . . ,φY

nY
,φY

nY

′}
arise from the formulas χ ∈ ln(Y) with main connective ‘⟨sup⟩’ for all [Y]n ⊆
N(tn). Therefore, we can enumerate representatives of these equivalence classes
as Y1, . . . , Ym and using each of their corresponding enumerations of pairs of
formulae {φ

Yj
a ,φYj

a
′}, we get a list{

φY1
0 ,φY1

0
′
}

, . . . ,
{
φY1

nY1
,φY1

nY1

′
}

, . . . ,
{
φYm

0 ,φYm

0
′
}

, . . . ,
{
φYm

nYm
,φYm

nYm

′
}

such that

Sn+1 = Sn ∪
({
φY1

0 ,φY1
0

′
}
∪ · · · ∪

{
φY1

nY1
,φY1

nY1

′
}
∪ · · · ∪

{
φYm

0 ,φYm

0
′
}
∪ · · · ∪

{
φYm

nYm
,φYm

nYm

′
})

=

(
· · ·
(
· · ·
(
· · ·
(
Sn ∪

{
φY1

0 ,φY1
0

′
})

∪ · · · ∪
{
φY1

nY1
,φY1

nY1

′
})

∪ · · · ∪
{
φYm

0 ,φYm

0
′
})

∪ · · · ∪
{
φYm

nYm
,φYm

nYm

′
})

Iteratively defining corresponding congruence relations

∼Y1
0 ⊆ · · · ⊆ ∼Y1

nY1
⊆ · · · ⊆ ∼Ym

0 ⊆ · · · ⊆ ∼Ym
nYm

as given in the previous lemma, and using that embeddings compose, that exact
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lemma gives us that
[Y]∼n

7→ [Y]∼Ym
nYm

is an embedding from (
P(Sn) \ {∅},∪

)
/∼n

to (
P(Sn+1) \ {∅},∪

)
/∼Ym

nYm

.

Moreover, an easy induction shows that

∼Ym
nYm

= ∼n+1,

which completes the proof.

In addition to the preceding lemma, we will also need the following:

Lemma 6.15. Let TΦ,A, tn = (Sn, ∼n, ln) ∈ TΦ,A
n and tn+1 = (Sn+1, ∼n+1, ln+1) ∈

TΦ,A
n+1(tn) be arbitrary. Then for any ∅ ̸= Y ⊆ Sn, it is the case that

α
tn+1
[Y]n+1

→ αtn[Y]n ∈ MILSem. Note how this shows in what way
the axioms ‘extend’ each other.

Proof. We prove the claim by induction on the join-semilattice
(
P(Sn),∨

)
/∼n

. If
[Y]n is an atom, then

αtn[Y]n = l̂n(Y),

so since ln+1 ⊇ ln, it follows by uniform substitution on a propositional tautology
that

α
tn+1
[Y]n+1

→ αtn[Y]n ∈ MILSem.

Now suppose it holds for all [Ya]n <n [Y]n and [Yb]n <n [Y]n. By the preceding
lemma,

[X]n 7→ [X]n+1

defines an embedding, hence

([Ya]n, [Yb]n) ∈ Cn[Y]n ⇒ ([Ya]n+1, [Yb]n+1) ∈ Cn+1[Y]n+1

and
[Y]n >n [X]n ⇒ [Y]n+1 >n+1 [X]n+1,

from which it easily follows by (1) IH, (2) ln+1 ⊇ ln, and (3) normality of MILSem

that
α
tn+1
[Y]n+1

→ αtn[Y]n ∈ MILSem,
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exactly as required.

With these results at hand, we embark on the actual completeness proof.

Theorem 6.16 ((Weak) Completeness). MILSem ⊇ MILSem.

Proof. Suppose φ ∈ LM is MILSem-consistent, and let Φ be the least subformula-
closed set of formulas containing φ. Extend {φ} to a MILSem-MCS Γ0, and let

X0 := Γ0 ∩ (Φ ∪ ¬Φ).

Then Φ is finite, and X0 is a maximal theory over Φ containing φ. We show
that X0 is satisfiable on a join-semilattice model. We construct this model by
constructing a tree in which every node is a join-semilattice embedding into all
of its successor nodes. The tree will be infinite, but finitely branching, hence
König’s Lemma asserts the existence of an infinite branch, and taking the colimit
of the models on the infinite branch then gives us our join-semilattice model.

Since Φ is finite, and X0 is a maximal theory overΦ, we get a tree

TΦ,X0 :=
⋃
n∈ω

TΦ,X0
n .

While this is a finitely branching, infinite tree, it is not quite what we seek: it is too
‘big’ in the sense of containing ‘incoherent’ nodes or, more precisely, ‘incoherent’
generated subtrees. To explicate, in order to show that X0 is satisfiable, we will
need a truth lemma, which – loosely speaking – asserts that for any node tn at
layer n the truth lemma is (partially) satisfied up to ‘depth’ n. To ensure this, we
have to get rid of some nodes and we, therefore, cut the tree by restricting the
layers as follows:

TΦ,X0
n

′ :=
{
(Sn, ∼n, ln) ∈ TΦ,X0

n | α
(Sn,∼n,ln)
[Sn]n

∈ Γ0

}
This is the way in which we label all
points with MCSs by evaluating
the formulas at the top MCS, Γ0, cf.
section 6.1.

for all n ∈ ω. To see that this, indeed, defines a subtree TΦ,X0 ′ ⊆ TΦ,X0 , it suffices
to show that if TΦ,X0

n+1
′ ∋ tn+1 ∈ TΦ,X0

n+1 (tn) then tn ∈ TΦ,X0
n

′. However, this
follows by (1) closure under modus ponens of MCSs; (2) the preceding Lemma
6.15 which, in particular, implies

α
tn+1
[Sn]n+1

→ αtn[Sn]n
∈ MILSem ⊆ Γ0;

and (3) the easily provable fact that [Sn]n+1 = [Sn+1]n+1.
Moreover, TΦ,X0 ′ is clearly finitely branching (because TΦ,X0 is), but also

infinite since
ΠΦ,X0 ⊆ MILSem ⊆ Γ0, X0 ⊆ Γ0,
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and MCSs enjoy the disjunction (and converse conjunction) property and are
closed under modus ponens. I.e., this entails that for each n ∈ ω, there is a
tn ∈ TΦ,X0

n
′, so |TΦ,X0

n
′| ⩾ ℵ0.

Thus, by König’s Lemma, there must be an infinite branch

t0 = (S0, ∼0, l0), . . . , tn = (Sn, ∼n, ln), . . . ,

for which we have that tn+1 ∈ TΦ,X0
n+1 (tn) and α(Sn,∼n,ln)

[Sn]n
∈ Γ0 for all n ∈ ω. Our

satisfying join-semilattice will be the colimit of the join-semilattices correspond-
ing to each tn and the embeddings between them.

To explicate how the colimit is constructed, first note that, cf. Lemma 6.14, for
eachm ⩽ n, we have an embedding

em,n :
(
P(Sm) \ {∅}

)
/∼m

→
(
P(Sn) \ {∅}

)
/∼n

given by I.e., we tacitly use that embeddings
compose, and form = n, em,n

becomes the identity.
em,n([Y]m) = [Y]n

for all [Y]m ∈
(
P(Sm) \ {∅}

)
/∼m

. Thus, we can take the disjoint union

W ′ :=
⊔
n∈ω

(
P(Sn) \ {∅}

)
/∼n

=
{
([Y]n,n) | n ∈ ω, [Y]n ∈

(
P(Sn) \ {∅},∪

)
/∼n

}
,

quotient out under the equivalence relation

([X]m,m) ∼ ([Y]n,n) iff em,n([X]m) = [Y]n or en,m([Y]n) = [X]m,

write
[
[Y]n,n

]
for an equivalence class

[
([Y]n,n)

]
∼

, and let

W :=W ′/ ∼

be the underlying set of a join-semilattice
(
W,∨

)
for which

[
[X]k,k

]
=
[
[Y]m,m

]
∨
[
[Z]n,n

]
:iff [X]p = [Y]p ∪∼p

[Z]p, where p = max{k,m,n}.

It is then (tedious but) straightforward to check that (1) this object
(
W,∨

)
is,

indeed, a join-semilattice; (2) it – together with the maps

eWn :
(
P(Sn) \ {∅}

)
/∼n

→
(
W,∨

)
given by sending [Y]n 7→

[
[Y]n,n

]
– is the colimit of the chain; and (3) eWn even

are embeddings.
While this defines our join-semilattice frame, we still need to prove three
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preparatory claims before defining the valuation and subsequently proving a
truth lemma.

Claim (a). Suppose ⟨sup⟩ψψ ′ ∈ ln(Y) for some tn. Then there exist [Ya]n+1, [Yb]n+1

such that
[Y]n+1 = [Ya]n+1 ∪∼n+1 [Yb]n+1

and ψ ∈ ln+1(Ya),ψ ′ ∈ ln+1(Yb).
Proof of claim (a). We first prove the claim for the subcase where Y ∈ N(tn).

In those cases, we have that

{ψ,ψ′} ⊆ S[Y]nn+1
′,

so, by definition of ∼n+1,

{ψ} ∪ {ψ′} = {ψ,ψ′} ∼n+1 Y.

Thus,
[Y]n+1 = [{ψ}]n+1 ∪∼n+1 [{ψ

′}]n+1 ,

and since ln+1 ∈ Ln+1(tn), it must satisfy

ψ ∈ ln+1 ({ψ}) , ψ ′ ∈ ln+1 ({ψ
′})

as required.
Using this, we prove the general claim. By Lemma 6.5, we know that there

are X ∈ P(Sn) \ {∅} and m ⩽ n such that Y ∼n X and X ∈ N(tm). So there are
[Ya]m+1, [Yb]m+1 such that

[X]m+1 = [Ya]m+1 ∪∼m+1 [Yb]m+1

and ψ ∈ lm+1(Ya),ψ ′ ∈ lm+1(Yb). But then

[Y]n+1 = em+1,n+1([X]m+1) = em+1,n+1 ([Ya]m+1 ∪∼m+1 [Yb]m+1)

= em+1,n+1([Ya]m+1) ∪∼n+1 em+1,n+1([Yb]m+1) = [Ya]n+1 ∪∼n+1 [Yb]n+1,

and since ln+1 ⊇ lm+1, this proves the claim. Claim (a)

Claim (b). For all n ∈ ω and ∅ ̸= Y ⊆ Sn, there is an MCS ΓY such that

ΓY ∋ αtn[Y]n .
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Hence, in particular, ΓY ⊇ ln(Y).
Proof of claim (b). To prove this, we go by cases. If [Y]n = [Sn]n then Γ0 ∋

αtn[Sn]n
= αtn[Y]n .

And if [Y]n ̸= [Sn]n then [Y]n <n [Sn]n, hence

Pαtn[Y]n ∈∧ α
tn
[Sn]n

∈ Γ0,

where the occurrence of ‘∈∧’ in ‘Pαtn[Y]n ∈∧ α
tn
[Sn]n

’ denotes that ‘Pαtn[Y]n ’ occurs

as a conjunct of a conjunction ‘∧’ occurring as a main connective in ‘αtn[Sn]n
’. Recall the notation of Example 6.9.

Thus, Pαtn[Y]n ∈ Γ0, so, by the existence lemma for the canonical MILSem-frame,
there is some ΓY ∋ αtn[Y]n .

Lastly, the last part of the claim follows from ln(Y) ⊆∧ α
tn
[Y]n

∈ ΓY . Claim (b)

Claim (c). Suppose

[
[X]k, k

]
=
[
[Y]m,m

]
∨
[
[Z]n,n

]
.

That is,
[X]p = [Y]p ∪∼p

[Z]p, where p = max{k,m,n}.

Then there are MCSs ΓX ⊇ lp(X), ΓY ⊇ lp(Y), ΓZ ⊇ lp(Z) such that

CSemΓXΓYΓZ,

where CSem denotes the ternary relation of the canonical MILSem-frame.
Proof of claim (c). We prove the claim going by cases.

• If [X]p = [Y]p = [Z]p, then, by claim (b), there is ΓX ⊇ lp(X), so since (Re.)
is Sahlqvist hence canonical, the claim follows.

• If [X]p = [Y]p ̸= [Z]p, then Pαtp[Z]p ∈∧ α
tp
[X]p

∈ ΓX, so it follows by the
existence lemma and canonicity of (Dk.).

• If [X]p = [Z]p ̸= [Y]p, then same as before and using canonicity of (Co.).

• If [Y]p ̸= [X]p ̸= [Z]p, then ⟨sup⟩αtp[Y]pα
tp
[Z]p

∈∧ α
tp
[X]p

∈ ΓX, so, by the exis-

tence lemma, there are ΓY , ΓZ such that CSemΓXΓYΓZ and lp(Y) ⊆∧ α
tp
[Y]p

∈
ΓY , lp(Z) ⊆∧ α

tp
[Z]p

∈ ΓZ. Claim (c)

With these claims proven and our satisfying join-semilattice frame defined, we
continue by defining the satisfying valuation:

V(p) :=
{[
[X]k,k

]
∈W : p ∈ lk(X)

}
.
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Note that this is well-defined because (a) ln ⊇ lm for all n ⩾ m and (b) X ∼n X
′

implies ln(X) = ln(X ′). We then wish to show that for all ψ ∈ (Φ ∪ ¬Φ) and all[
[X]k,k

]
∈W:

(
W,∨,V

)
,
[
[X]k,k

]
⊩ ψ iff ψ ∈ lk(X). This is our truth lemma.

The proof goes by induction on the complexity of formulas. Base case is by defi-
nition and Boolean cases are straightforward using properties of MCSs (enabled
by claim (b)) and having in mind that (Φ ∪ ¬Φ) is subformula closed because Φ
is.

For the ⟨sup⟩-case, we have

[
[X]k, k

]
⊩ ⟨sup⟩ψ1ψ2 iff ∃

[
[Y]m,m

]
,
[
[Z]n,n

]
s.t. [X]p = [Y]p ∪∼p

[Z]p, where p = max{k,m,n},[
[Y]m,m

]
⊩ ψ1, and

[
[Z]n,n

]
⊩ ψ2

(IH)
iff ∃

[
[Y]m,m

]
,
[
[Z]n,n

]
s.t. [X]p = [Y]p ∪∼p

[Z]p, where p = max{k,m,n},

ψ1 ∈ lm(Y) and ψ2 ∈ ln(Z)

iff ∃
[
[Y]m,m

]
,
[
[Z]n,n

]
s.t. [X]p = [Y]p ∪∼p

[Z]p, where p = max{k,m,n},

ψ1 ∈ lp(Y) and ψ2 ∈ lp(Z)
(i)
iff ∃k ′ ∈ ω : ⟨sup⟩ψ1ψ2 ∈ lk′(X)

iff ⟨sup⟩ψ1ψ2 ∈ lk(X),

where we in the left-to-right direction of (i) use that – cf. claim (c) – there
are MCSs ΓX ⊇ lp(X), ΓY ⊇ lp(Y), ΓZ ⊇ lp(Z) such that CSemΓXΓYΓZ, hence
ψ1 ∈ lp(Y),ψ2 ∈ lp(Z) imply ⟨sup⟩ψ1ψ2 ∈ lp(X). Further, right-to-left of (i)
holds by claim (a).

This completes the induction, from which it follows that

(W,∨,V),
[
[S0]0, 0

]
⊩ X0

showing that φ ∈ X0 is satisfiable in a join-semilattice model and, thus, at long
last, finalizing our proof of completeness.

As an immediate follow-up, we deduce strong completeness.

Corollary 6.17. MILSem is strongly complete w.r.t. MILSem.

Proof. Since MILSem is sound and weakly complete w.r.t. MILSem, it suffices
to show compactness of MILSem: for any set Γ ⊆ LM, if all finite subsets of Γ
are satisfiable then Γ is satifisable. However, this is an easy consequence of (1)
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compactness of first-order logic; (2) a standard translation for LM-formulas; and
(3) the fact that being a join-semilattice is a first-order definable property.

Remark 6.18. An alternative, more overt way of proving strong completeness is
the following:

• Suppose Γ ⊆ LM is MILSem-consistent.

• For each finite subset ΓF ⊆ Γ , get a join-semilattice model using the colimit
construction of the completeness proof.

• Obtain a join-semilattice model of all of Γ using the standard ultrafilter-
compactness construction. ⊣

In addition to the question of strong completeness we just addressed, our
(weak) completeness proof naturally sparks some further questions and inquiries.

Firstly, while we did explicitly use (Re.), (Co.), (Dk.) and, of course, formulas
from the infinite extension scheme in the completeness proof, the reader might
have noticed that we did not explicitly use (4). Although this seems peculiar, it is
actually not, as is explained by the following remark:

Remark 6.19. Let Λ be an arbitrary NML for the modal language with a single
binary modality containing the axiom (As.). Then Λ ⊢ (4).

To see this, recall that

(4) = PPp→ Pp = ⟨sup⟩(⟨sup⟩p⊤)⊤ → ⟨sup⟩p⊤,

and use that

⟨sup⟩(⟨sup⟩p⊤)⊤ (As.)→ ⟨sup⟩p(⟨sup⟩⊤⊤) and ⟨sup⟩⊤⊤ → ⊤. ⊣

Secondly, after axiomatizing MILPre, we could promptly deduce that MILPre =

MILPos because the constructed frame of the completeness proof was not only a
preorder but, in fact, a poset. Likewise, it is reasonable to inquire whether our
constructed model, beyond being a member of the class of join-semilattices, is a
member of some interesting subclass of structures. This is the subject matter of
the next section.

Thirdly, having axiomatized MILSem, echoing our work in the setting of pre-
orders, axiomatizing the augmented MIL\-Sem is an interesting follow-up. We
have not attempted so but leave it for future work.

Lastly, exploring the connected properties of decidability, finite axiomatizability
and the FMP w.r.t. the class

CSem := {(W,C) | (W,C) ⊩MILSem},
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constitutes an extremely intriguing direction for future work. In the last section
of this chapter, we expand on this and draw similarities with longstanding open
problems in relevance logic.

6.4. Join-semilattices with finite (bounded) infima

As outlined, in this section, similar to how we showed MILPre = MILPos ⊊ MILSem,
we explore how far the logic MILSem stays constant when considering subclasses
of join-semilattices. In particular, we show that the logic stays constant just short
of the class of lattices: we can have all lower-bounded binary meets, but not all
binary meets simpliciter. First, we show the former, for which it suffices to prove
that the model of the completeness proof is finite lower bounded complete; that
is:

Definition 6.20. A poset (W,⩽) is finite lower bounded complete :iff any finite
subset A ⊆W which has a lower bound, has a greatest lower bound. For context, a poset is (upper)

bounded complete :iff any subset
which has some upper bound has a
least upper bound.

⊣

To prove finite lower bounded completeness of the colimit, we will need that
(1) any object of the diagram is lower bounded complete, and (2) the embeddings,
em,n, preserve infima. This is the content of the two ensuing lemmas, respectively.
When proving these, we will frequently be needing the following observation:

Observation 6.21. For any n ∈ ω and any [X]n ∈
(
P(Sn) \ {∅},∪

)
/∼n

, the
following hold:

•
⋃
{X ′ ⊆ Sn | X ′ ∼n X} ∼n X; and

• if X ′ ∼n X, then X ′ ⊆
⋃
{X ′ ⊆ Sn | X ′ ∼n X}.

While the latter is obvious, the former holds because P(Sn) \ {∅} is finite and ∼n

is a a congruence relation on
(
P(Sn) \ {∅},∪

)
– hence compatible with unions. ⊣

Lemma 6.22. For anyn ∈ ω and any two elements {[X]n, [Y]n} ⊆
(
P(Sn)\{∅},∪

)
/∼n

,
we have: inf {[X]n, [Y]n} exists iff

⋃
{X ′ ⊆ Sn | X ′ ∼n X} ∩

⋃
{Y ′ ⊆ Sn | Y ′ ∼n Y} ̸= ∅.

And if so, then

inf {[X]n, [Y]n} =
[⋃

{X ′ ⊆ Sn | X ′ ∼n X} ∩
⋃
{Y ′ ⊆ Sn | Y ′ ∼n Y}

]
n

.

A fortiori, all
(
P(Sn) \ {∅},∪

)
/∼n

are lower bounded complete.
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Proof. (⇒) First, suppose inf{[X]n, [Y]n} = [I]n exists. Then, in particular,

[⋃
{X ′ ⊆ Sn | X ′ ∼n X}

]
n
= [X]n = [X]n ∪∼n

[I]n = [X ∪ I]n,

cf. the foregoing observation. Hence,

⋃
{X ′ ⊆ Sn | X ′ ∼n X} ∼n X ∪ I,

so ⋃
{X ′ ⊆ Sn | X ′ ∼n X} ⊇ I ̸= ∅.

Similarly, ⋃
{Y ′ ⊆ Sn | Y ′ ∼n Y} ⊇ I ̸= ∅.

Thus, ⋃
{X ′ ⊆ Sn | X ′ ∼n X} ∩

⋃
{Y ′ ⊆ Sn | Y ′ ∼n Y} ⊇ I ̸= ∅,

which not only shows the left-to-right direction of the first claim, but also implies
the second claim; that is,

inf{[X]n, [Y]n} = [I]n =
[⋃

{X ′ ⊆ Sn | X ′ ∼n X} ∩
⋃
{Y ′ ⊆ Sn | Y ′ ∼n Y}

]
n

because join-semilattice homomorphisms preserve (weak) order.
(⇐) Second, suppose

⋃
{X ′ ⊆ Sn | X ′ ∼n X} ∩

⋃
{Y ′ ⊆ Sn | Y ′ ∼n Y} ̸= ∅.

Then the congruence class of this intersection exists, and it is a lower bound of
{[X]n, [Y]n}. To see that it is the greatest lower bound, given any lower bound
[I]n, simply replicate the reasoning above. This completes the proof of the
biimplication.

Lastly, given any two elements [X]n, [Y]n which have some lower bound [I]n,
the previous reasoning also shows that

⋃
{X ′ ⊆ Sn | X ′ ∼n X} ∩

⋃
{Y ′ ⊆ Sn | Y ′ ∼n Y} ⊇ I ̸= ∅,

hence

inf {[X]n, [Y]n} =
[⋃

{X ′ ⊆ Sn | X ′ ∼n X} ∩
⋃
{Y ′ ⊆ Sn | Y ′ ∼n Y}

]
n

.

Consequently,
(
P(Sn) \ {∅},∪

)
/∼n

is “binary lower bounded complete”, so since
P(Sn) \ {∅} is finite, it follows by a standard induction argument that it is lower
bounded complete since also inf(∅) = [Sn]n.
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Lemma 6.23. For allm ⩽ n, the embedding em,n preserves infima.

Proof. Fix somem < n. Again, since P(Sm) \ {∅}, P(Sn) \ {∅} are finite, it suffices
to show that em,n preserves binary infima. Therefore, cf. the preceding lemma,
we need only show that for any {[X]m, [Y]m} ⊆

(
P(Sm) \ {∅},∪

)
/∼m

, if

⋃
{X ′ ⊆ Sm | X ′ ∼m X} ∩

⋃
{Y ′ ⊆ Sm | Y ′ ∼m Y} ̸= ∅,

then

(
⋃
{X ′ ⊆ Sm | X ′ ∼m X} ∩

⋃
{Y ′ ⊆ Sm | Y ′ ∼m Y}) ∼n (

⋃
{X ′ ⊆ Sn | X ′ ∼n X} ∩

⋃
{Y ′ ⊆ Sn | Y ′ ∼n Y}) ,

since the congruence class of the left-hand side is infm{[X]m, [Y]m}, and the con-
gruence class of the right-hand side is infn{[X]n, [Y]n} (because the right-hand
side extends the left-hand side and, consequently, must be non-empty).

Assuming the antecedent, we will prove the consequent by showing that

(
⋃
{X ′ ⊆ Sm | X ′ ∼m X} ∩

⋃
{Y ′ ⊆ Sm | Y ′ ∼m Y}) ∼m+1 (

⋃
{X ′ ⊆ Sm+1 | X ′ ∼m+1 X} ∩

⋃
{Y ′ ⊆ Sm+1 | Y ′ ∼m+1 Y}) ∼m+2 · · ·

∼n (
⋃
{X ′ ⊆ Sn | X ′ ∼n X} ∩

⋃
{Y ′ ⊆ Sn | Y ′ ∼n Y}) .

Therefore, let k ∈ {m, . . . ,n− 1} be arbitrary. As in the proof of Lemma 6.14, we
can construct a sequence of sets with corresponding congruence relations

∼k ⊆ ∼Y1
0 ⊆ · · · ⊆ ∼Y1

nY1
⊆ · · · ⊆ ∼

Yp

0 ⊆ · · · ⊆ ∼
Yp
nYp

= ∼k+1,

where the congruence relations ∼Y1
0 , . . . , ∼Yp

nYp
are defined as in the proof of Lemma

6.13; i.e., in terms of their predecessor in this chain of congruence relations.
Then, by (1) letting ∼j ∈

{
∼k, ∼Y1

0 , . . . , ∼Yp

nYp−1

}
be arbitrary; (2) denoting its

successor in the above chain ∼j+1; and (3) denoting their matching sets Sj and
Sj+1, respectively; it is enough to show that (4)

(
⋃
{X ′ ⊆ Sj | X ′ ∼j X} ∩

⋃
{Y ′ ⊆ Sj | Y ′ ∼j Y}) ∼j+1 (

⋃
{X ′ ⊆ Sj+1 | X ′ ∼j+1 X} ∩

⋃
{Y ′ ⊆ Sj+1 | Y ′ ∼j+1 Y}) .

For this purpose, we begin by proving that

(
⋃
{X ′ ⊆ Sj | X ′ ∼j X} ∩

⋃
{Y ′ ⊆ Sj | Y ′ ∼j Y}) = (

⋃
{X ′ ⊆ Sj+1 | X ′ ∼j+1 X} ∩

⋃
{Y ′ ⊆ Sj+1 | Y ′ ∼j+1 Y})\{a,b},

where ‘a’ and ‘b’ denote the boldface formula-symbols for which Sj+1 = Sj ∪
{a,b} and ∼j+1 is defined to be the least congruence relation extending ∼j and
satisfying {a,b} ∼j+1 Z for some ∅ ̸= Z ⊆ Sj. Using the alternative characteriza-
tion of ∼j+1 given in the proof of Lemma 6.13, I.e., ‘the ∼ ′′ characterization’.we prove this going inclusion by
inclusion.
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“⊆” is a consequence of ∼j ⊆ ∼j+1 and {a,b} ∩ Sj = ∅. For “⊇”, suppose

X ′′ ∼j+1 X. If X ′′ (i)
∼j+1 X, then also X ′′ ∼j X. And if X ′′ (ii)

∼j+1 X, then since
X ∩ {a,b} = ∅, we have that

X = X \ {a,b} ∼j (X \ {a,b}) ∪ Z ∼j (X
′′ \ {a,b}) ∪ Z.

Therefore, in any case,

X ′′ \ {a,b} ⊆
⋃
{X ′ ⊆ Sj | X ′ ∼j X} .

Analogously, for any Y ′′ ∼j+1 Y, we find that

Y ′′ \ {a,b} ⊆
⋃
{Y ′ ⊆ Sj | Y ′ ∼j Y} ,

so we get “⊇” as well, whence we have proven the equality, showing that these
two intersections agree on the complement of {a,b}.

Using this, we find that if they also agree on {a,b}, then

(
⋃
{X ′ ⊆ Sj | X ′ ∼j X} ∩

⋃
{Y ′ ⊆ Sj | Y ′ ∼j Y})

(i)
∼j+1 (

⋃
{X ′ ⊆ Sj+1 | X ′ ∼j+1 X} ∩

⋃
{Y ′ ⊆ Sj+1 | Y ′ ∼j+1 Y}) .

So suppose they don’t. Then we must have

(
⋃
{X ′ ⊆ Sj+1 | X ′ ∼j+1 X} ∩

⋃
{Y ′ ⊆ Sj+1 | Y ′ ∼j+1 Y}) ∩ {a,b} ̸= ∅,

so, in particular, there is some X ′ ∼j+1 X s.t. X ′ ∩ {a,b} ̸= ∅. Thus, because

X ∩ {a,b} = ∅, we must have X ′ (ii)
∼j+1 X, so

X = X \ {a,b} ∼j (X \ {a,b}) ∪ Z = X ∪ Z.

Consequently,
Z ⊆

⋃
{X ′ ⊆ Sj | X ′ ∼j X} ,

and, likewise,
Z ⊆

⋃
{Y ′ ⊆ Sj | Y ′ ∼j Y} ,

so
Z ⊆ (

⋃
{X ′ ⊆ Sj | X ′ ∼j X} ∩

⋃
{Y ′ ⊆ Sj | Y ′ ∼j Y}) .

Therefore,

(
⋃
{X ′ ⊆ Sj | X ′ ∼j X} ∩

⋃
{Y ′ ⊆ Sj | Y ′ ∼j Y})\{a,b} =

(
(
⋃
{X ′ ⊆ Sj | X ′ ∼j X} ∩

⋃
{Y ′ ⊆ Sj | Y ′ ∼j Y})\{a,b}

)
∪Z,
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and

⋃
{X ′ ⊆ Sj | X ′ ∼j X} ∩

⋃
{Y ′ ⊆ Sj | Y ′ ∼j Y} = (

⋃
{X ′ ⊆ Sj+1 | X ′ ∼j+1 X} ∩

⋃
{Y ′ ⊆ Sj+1 | Y ′ ∼j+1 Y}) \ {a,b}

=
(
(
⋃
{X ′ ⊆ Sj+1 | X ′ ∼j+1 X} ∩

⋃
{Y ′ ⊆ Sj+1 | Y ′ ∼j+1 Y}) \ {a,b}

)
∪ Z,

which exactly imply that

(
⋃
{X ′ ⊆ Sj | X ′ ∼j X} ∩

⋃
{Y ′ ⊆ Sj | Y ′ ∼j Y})

(ii)
∼j+1 (

⋃
{X ′ ⊆ Sj+1 | X ′ ∼j+1 X} ∩

⋃
{Y ′ ⊆ Sj+1 | Y ′ ∼j+1 Y}) ,

completing our proof of the embeddings em,n preserving infima.

With these lemmas at our disposal, we are ready to prove finite lower bounded
completeness of the colimit.

Lemma 6.24. The colimit is finite lower bounded complete; i.e., any finite set of worlds
which has a lower bound has a greatest lower bound.

Proof. Since inf(∅) =
[
[S0]0, 0

]
, it suffices to show that it is binary lower bounded

complete; that is, whenever two worlds
[
[X]k,k

]
,
[
[Y]m,m

]
have some lower

bound
[
[Z]n,n

]
, they have a greatest lower bound. Accordingly, suppose

[
[X]k,k

]
,
[
[Y]m,m

]
⩾
[
[Z]n,n

]
.

Then, by definition,

[X]p1 ⩾p1 [Z]p1 and [Y]p2 ⩾p2 [Z]p2 ,

where p1 = max{k,n} and p2 = max{m,n}. Hence, for p = max{p1,p2}, we find
that

[X]p, [Y]p ⩾p [Z]p,

so
inf p{[X]p, [Y]p} =

[⋃
{X ′ ⊆ Sp | X ′ ∼p X} ∩

⋃
{Y ′ ⊆ Sp | Y ′ ∼p Y}

]
p

,

and, particularly,

[
inf p{[X]p, [Y]p},p

]
⩽
[
[X]k,k

]
,
[
[Y]m,m

]
.

Moreover, for any lower bound
[
[B]b,b

]
⩽
[
[X]k,k

]
,
[
[Y]m,m

]
, we find that

[B]l ⩽l [X]l, [Y]l
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for l = max{b,p}, so by the foregoing lemma

[B]l ⩽l inf l{[X]l, [Y]l} =
[⋃

{X ′ ⊆ Sp | X ′ ∼p X} ∩
⋃
{Y ′ ⊆ Sp | Y ′ ∼p Y}

]
l
,

whence [
[B]b,b

]
⩽
[

inf p{[X]p, [Y]p},p
]
,

which completes the proof by allowing us to conclude

inf
{[
[X]k,k

]
,
[
[Y]m,m

]}
=
[

inf p{[X]p, [Y]p},p
]

as desired.

With this shown, we may now conclude the following:

Corollary 6.25. Let MILFLBC-Sem denote the modal information logic of finite lower
bounded complete join-semilattices in the language LM. Then

MILSem = MILFLBC-Sem.

Although the term ‘finite lower bounded complete join-semilattice’ is clumsy,
its denotation nearly rhymes with the denotation of the term ‘lattice’: we have
binary joins and binary bounded meets—can we have binary meets simpliciter?
The answer is no, as we now demonstrate.

Remark 6.26 (MILSem ⊊ MILLat). The formula

PHp∧ PH¬p

is satisfiable in a join-semilattice, but not in any lattice, whence – already in
the language LM – the modal information logic of lattices properly extends the
modal information logic of join-semilattices. ⊣

Albeit it would not be entirely uninteresting to axiomatize the MIL of suprema
on lattices, it seems (a lot) more fitting to have vocabulary for not only talking
about joins (i.e., our ‘⟨sup⟩’) but also for meets (i.e., an additional ‘⟨inf⟩’-modality).
In fact, this exact study has been initiated in a very recent paper, namely in Wang
and Wang (2022, sec. 5) where the authors axiomatize the MIL over lattices in
the language LM extended with an ‘⟨inf⟩’-modality and nominals. While we
have not tried—given the symmetry between, on one hand: join-semilattices
and the ‘⟨sup⟩’-modality and, on the other: lattices and both the ‘⟨sup⟩’- and
‘⟨inf⟩’-modality—it seems likely that our methods from this chapter adapt to
axiomatize this MIL of lattices without the hybrid extension of nominals. We
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leave this for future work.

Having mentioned the ‘⟨inf⟩’-modality, we end by including this remark:

Remark 6.27. All results obtained also obtain in a dual form if one substitutes the
modality of suprema ‘⟨sup⟩’ with the modality of infima ‘⟨inf⟩’ and substitutes
all mentions of suprema/joins with infima/meets (and alike). ⊣

6.5. On decidability and S: a direction for future work

Out of several potential future lines of research, we find one particularly en-
ticing, deserving more than a mention in passing, namely the one centering
around the problem of decidability of MILSem and the ancillary problems of finite
axiomatizability and the FMP w.r.t. CSem = {(W,C) | (W,C) ⊩ MILSem}. To
us, there is something alluring about the (seemingly) paradoxical increase in
complexity caused by chaffing away most of the posets to only consider the more
well-behaved ones with all binary joins. For this reason, we use this section to
set forth this line of research amplifying salient points—not least what appears
to be a deep connection with relevance logic.

Practically foreseen by van Benthem (Forthcoming), the problem of decidability
of MILSem and its two ancillary problems resound enduring open problems in
the relevance logic of positive join-semilattice semantics, usually denoted S and
introduced by Urquhart (1972, 1973). Thus, getting clear on the problems of
one logic, might very well necessitate/entail getting clear on the problems of
the other. Accordingly, we continue by detailing this connection—primarily
through exhibiting how these three problems of MILSem all have counterparts
in S. Secondarily, but first off, it is in place to set out S as to illuminate the
similarities already occurring in the very definitions of the logics.

S is defined semantically with the frames, like MILSem, being join-semilattices
but, unlike MILSem, with a least element 0. The formulas are formed standardly
based on propositional variables and the three connectives ‘∧’, ‘∨’ and ‘\’ with
semantics as in this thesis; In the relevance logic literature, the

symbol ‘→’ is typically used
instead of our ‘\’.

valuations are standard (i.e., with the powerset as
codomain for all propositional variables). S is then defined as the set of formulas
satisfied at 0 in all models. Besides from the similarity in frames [join-semilattices
vs. join-semilattices with least element] and connectives [‘⟨sup⟩’ vs. ‘\’], it is
worth noting that Urquhart (1972, 1973), like van Benthem (1996), motivates the
semantics with an informational interpretation, namely (basically) the one we
mentioned in the introduction.
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This displays similarity in the basic framework; now for the counterparts
of the three mentioned problems and some comments on how one might ap-
proach these. First, the problem of axiomatizing S was solved by Fine (1976)
and worked out in detail by Charlwood (1981). Interestingly, the axiomatization,
like our MILSem, is infinite,19 and it is (to the best of our knowledge) an open
problem whether S is finitely axiomatizable. Plausibly, this partly owes to the
fact that it hardly could be—the same goes for MILSem which we (strongly) con-
jecture to not be finitely axiomatizable.20 Although showing MILSem and/or S
to not be finitely axiomatizable would be rather unsurprising per se, it could—
beyond being novel—very well serve as an excellent stepping stone in a proof of
(un)decidability: perhaps especially through a resulting better understanding of
CSem-frames and/or some generalized class of S-frames.

Second, this brings us to the S-counterpart of whether MILSem has the FMP
w.r.t. CSem-frames. Most prominently, it is still an open problem whether S
has the FMP w.r.t. its class of definition.21 Less prominently, since S, too, is
semantically defined and already has been axiomatized, the heuristic of section
1.3 could pertain; that is, using the axiomatizing to reinterpret the formulas on
another class of structures for which one can prove the FMP.

Regarding MILSem and the FMP w.r.t. CSem-frames, we have not attempted
a proof/refutation yet, but scratching the surface two things become clear that
are worth mentioning: (1) the formula ψN from Proposition 1.8 is satisfiable
on a finite CSem-frame—i.e., ψN does not immediately eradicate hope of the
FMP w.r.t. CSem—and (2) the Theorem 3.9 filtration fails for CSem-frames—i.e.,
contrarily, we do not immediately get the FMP either (see Appendix A.3 for
quick proofs of these claims). In fact, (2) was already suggested by results
covered in the overview paper by Kurucz et al. (1995), where the authors
gather and prove (un)decidability results for various modal logics with a binary
modality—including that the least NML of a single associative binary modality
is undecidable. Recall the mention of associativity

and filtration in footnote 8 (3.2).

On this node, we, third, begin directly commenting on the last, and most

19Contrariwise, there seems to be no similarity qua proof methods.
20We have not worked on this problem in particular, but we have a clear strategy in mind: It suffices

to show that MILSem is not axiomatizable by any finite subset of our infinite axiomatization, and
any such subset must have finite ‘depth’ and ‘width’ (cf. 6.1). Using this, it should then be
possible to construct a counterframe validating these axioms but not an axiom of greater depth
(and width). In the process of axiomatizing MILSem, we constructed a C-frame validating (As.)
but not an axiom of greater depth; if the reader is interested in pursuing this, feel free to reach out
and we will happily send our proof to draw inspiration from for proving the general case.

21In a recent paper, Yale Weiss (2021) shows that after augmenting with a connective ‘¬i’ for
intuitionistic negation, the resulting logic lacks the FMP.
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central, of the three problems: decidability. As for MILSem, the fact that it extends
the least associative NML is cause for concern (or hope) that it is undecidable:
albeit the techniques of Kurucz et al. (1995) do not directly apply to MILSem, their
general idea of encoding the Post correspondence problem might still work;
i.e., encoding the quasi-equational theory of semigroups (which is undecidable).
This would be an algebraic manner of attempting an undecidability proof. For
a relational manner, ‘tiling’ might work, cf. Remark 1.11 where we noted that
the formula χN when satisfied in a join-semilattice implies the existence of a tile.
Lastly, even with said strategies for proving undecidability in mind, our intuition
on whether MILSem is decidable is not strong at all: it might also be decidable.22

To the contrary, the fact that many a relevant logic have been proven undecidable
while S has escaped these techniques (Urquhart 1984), suggests that S maybe is
decidable, as Urquhart (2016) conjectures. So if MILSem and S truly are intimately
connected and Urquhart (2016) is right, then MILSem could be decidable as well.

This concludes our exposition of this research direction—hopefully serving
not only as inspiration for others, but also as an initial guide for such study.

22It should be (foot)noted that in Appendix B, we show that the (tiny and) positive first-degree
fragment of MILSem is decidable.
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Conclusion and Future Work

Our exploration of modal information logics has come to an end. We summarize
this inquiry, clarify where it leaves us, and point to future lines of research.

First, we examined the basic modal information logics of suprema on preorders
and posets, namely MILPre and MILPos. We showed that – even if they do not
enjoy the FMP w.r.t. their frames of definition – they are decidable. This was
shown ‘via completeness’ by (1) axiomatizing them; (2) deducing that they are
one and the same logic; and (3) obtaining another class of frames C complete
w.r.t. the logic(s), which, importantly, did enjoy the FMP.

Second, we tackled these same problems but for the enriched logics MIL\-Pre

and MIL\-Pos and achieved analogous results. However now, already having a
clear candidate for a generalized class of frames, namely C, we could axiomatize
this logic first, and subsequently solve the problem of axiomatization of MIL\-Pre

and MIL\-Pos through representation.
Third, we considered modal information logics of minimal upper bounds on

preorders and posets, and showed that no change occurs in the resulting logics;
on preorders and posets, the landscape of MILs is decidable and uniform:

MILPre = MILPos = MILMin
Pre = MILMin

Pos , MIL\-Pre = MIL\-Pos = MILMin
\-Pre = MILMin

\-Pos

Fourth and last, we expanded our inquiry to include the class of join-semilattices,
and so from the savanna of preorders and posets a mountain appeared: we
axiomatized MILSem using an infinite extension scheme and left the problem of
decidability wide open.

This brings us to directions for further research. In no particular order, we
conclude this thesis by mentioning a few:

• Proving (un)decidability of MILSem and solving the ancillary problems of
finite axiomatizability and the FMP w.r.t. CSem, cf. section 6.5.

• Applying the axiomatization ideas of this thesis in other settings—not least
those of Chapter 6, which, in particular, could be directly transferable to
axiomatize the MIL of lattices with both a ‘⟨sup⟩’- and an ‘⟨inf⟩’-modality;
thus, continuing the work of Wang and Wang (2022), which achieves an
axiomatization of this logic with nominals.
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• Further examining how MILs relate to other logics, including those men-
tioned in the introduction. This could shed new perspicuous lights on not
only MILs but also the logics of comparison (cf. 4.10 and B.4).

hofd
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Appendix

A. Various addenda

A.1. Wildness of canonical frames

As an informal addendum to Chapter 2, we briefly remark that the canonical
relation CPre of the canonical frame for MILPre is not the supremum relation of
⩽Pre.

Remark A.1.1. The following hold:

1. There are MCSs Γ ,∆ s.t. CPreΓ∆∆ even if Γ ≰Pre ∆. In other words, although
Γ and∆ aren’t in the same cluster (Γ ≰Pre ∆), Γ ‘claims’ to be the ‘supremum’
of ∆.

2. In fact, there are continuum many such MCSs Γi all claiming to be the
supremum of ∆. Poor∆ :(⊣

Proof. Consider the model depicted below where the worlds satisfy all and only
the proposition letters shown.

w ⊩ p

v1 ⊩ ¬p v2 ⊩ ¬p

Then ||v1||, ||v2||, ||w|| are MCSs where ||x|| := {φ ∈ LM | x ⊩ φ}. Moreover,
Pp /∈ ||v1|| = ||v2||, so (a) since p ∈ ||w|| we have that Γ := ||w|| ≰Pre ||v1|| =: ∆, and
(b) since w = sup{v1, v2} we also have CPreΓ∆∆, which proves the first claim.

For the second, simply change the valuation of w for proposition letters q ̸= p
to get the same results for different MCSs Γi. Since there are countably many
proposition letters (so continuum many subsets of proposition letters), we get
continuum many MCSs claiming to be supremum of ∆ = ||v1|| = ||v2||. Evidently, this technique can be

adapted to quickly show many more
‘absurdities’; for instance, an
infinite strictly ascending chain of
MCSs all claiming to be the
supremum of two MCSs below.
Even if amusing, by now, this
becomes too much of a sidetrack
(even for an appendix), so we leave
this as an activity for the reader.

Observation A.1.2. The above depicted frame is, in fact, a join-semilattice, hence
the claims extend to the canonical frame for MILSem. ⊣
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A.2. The tree model property

Having shown that MILPre – although not enjoying the FMP w.r.t. preorder
frames – does enjoy the FMP w.r.t. the generalized C-frames (cf. section 3.2),
an analogous inquiry regarding the tree model property arises most naturally.
However, given that trees are defined in terms of a binary relation, and C-frames
(W,C) come equipped with a ternary relation, one might wonder whether ‘to
have the tree model property w.r.t. C-frames’ even is a well-formed predicate.
We begin by showing that it is: all C-frames (W,C) canonically induce binary
relations ⩽C.

Observation A.2.1. For any (W,C) ∈ C, let ⩽C and ⩽ ′
C be given as follows:

⩽C := {(y, x) : Cxxy}, ⩽ ′
C := {(y, x) : ∃z(Cxyz∨ Cxzy)}.

Then, by definition of the class C, it is not too hard to see that (a) ⩽C = ⩽ ′
C, and

(b) ⩽C is a preorder onW.
Moreover, if C happened to be the supremum relation of some preorder ⩽,

I.e.,Cxyz iff x ∈ sup⩽{y,z}.then ⩽C = ⩽. ⊣

As alluded to, this enables us to state what it should mean for MILPre to have
the tree model property w.r.t. C-frames, namely: whenever a formula φ ∈ LM is
satisfiable, it is satisfiable in some frame (W,C) where (W,⩾C′) is a (reflexive
and transitive) tree.

As we did when concerned with the FMP, before showing the TMP in general,
we revisit the formula χN from Remark 1.10.

Remark A.2.2. Although

χN := p∧ q∧ ⟨sup⟩(p∧ ¬q)(¬p∧ q)

∧H
(
[p∧ ¬q] → P(¬p∧ ¬q)

)
∧H

(
[¬p∧ q] → P(¬p∧ ¬q)

)
∧H

(
⟨sup⟩(¬p∧ ¬q)2 → [¬p∧ ¬q]

)
witnesses that MILPre lacks the TMP w.r.t. preorder (and poset) frames, it is
satisfiable on a C-frame whose underlying preorder ⩽C defines a (converse
reflexive and transitive) tree. ⊣
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Proof. Let

W := {w, v,u, xv, xu} , V(p) := {w,u},V(q) := {w, v},

C := {(w,w,w), (v, v, v), (u,u,u), (xv, xv, xv), (xu, xu, xu); (w,w, v), (w, v,w);

(w,w,u), (w,u,w); (w,w, xv), (w, xv,w); (w,w, xu), (w, xu,w);

(v, v, xv), (v, xv, v); (u,u, xu), (u, xu,u); (w, v,u), (w,u, v)}.

We claim that (1) (W,C) ∈ C; (2) (W,⩾C) is a (reflexive and transtive) tree; and
(3) (W,C,V),w ⊩ χN.

Showing (1) is routine, and regarding (2), it is straightforward to check that
the Hasse diagram of ⩽C is the one depicted below, which certainly is a converse
tree. Notice how this isn’t a preorder

frame: e.g.,w = sup⩽C
{u,xv}

yet ¬Cwuxv.

up

wp,q

xu xv

vq

Lastly, to see that (3) holds, (i) recall Observation 3.5, (ii) have the Hasse
diagram in mind, and (iii) observe that

V(p∧ q) = {w}, V(p∧ ¬q) = {u}, V(¬p∧ q) = {v},

V(¬p∧ ¬q) = {xu, xv}, Cwuv. We define
V(φ) := {y | y ⊩ φ}.

Then (W,C,V),w ⊩ χN follows by an easy check.

When proving the general case – i.e. the TMP – we will be using the satisfaction-
preserving technique of taking generated submodels. Because of this, ahead of
the actual proof and for the sake of completeness, we include the following
observation:

Observation A.2.3. The standard results regarding generated submodels (and
-frames), p-morphisms, etc. apply to C-models (and -frames). Another commonly used term for

‘p-morphism’ is ‘bounded
morphism’.

OBS: When we are dealing with preorder frames (W,⩽,V), the notion of p-
morphism must be defined in terms of the supremum relation induced by ⩽ –
and not in terms of⩽ per se; otherwise, we do not get the sought invariance result.
That said, coincidentally, defining the notion of generated submodel in terms
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of ⩾ does give us satisfaction-preservation because, by pure happenstance, the
resulting model is identical with the one defined in terms of taking the generated
submodel w.r.t. the supremum relation. ⊣

With this observation in mind, we close off this addendum by showing that
our discussion in section 1.3 applies just as well to the case of the TMP: when
dealing with semantically introduced logics not having the TMP (w.r.t. the class
of structures of definition) need not be very telling: although our logic does
not enjoy the TMP w.r.t. preorder/poset frames, it does enjoy the TMP w.r.t.
C-frames.

Proposition A.2.4. MILPre has the TMP w.r.t. C-frames.

Proof. Suppose φ is satisfiable. Then {φ} is consistent, so we can apply our
completeness proof (2.13) to obtain a poset model (W,⩽ω,V) and world x0 ∈W
s.t.

(W,⩽ω,V), x0 ⊩ φ.

Now, let S⩽ω
be the supremum relation induced by ⩽ω; that is,

S⩽ω
wvu :iff w = supω{v,u},

and define

C ′ := S⩽ω
∩ (↓ωx0 × ↓ωx0 × ↓ωx0), V ′(p) := V(p) ∩ ↓ωx0, for all p ∈ P.

Then, cf. the preceding observation,

(↓ωx0,C ′,V ′), x0 ⊩ φ.

Thus, it suffices to show that (1) (↓ωx0,⩾C′) is a tree, and (2) (↓ωx0,C ′) ∈ C.
We begin with (1). Observe that ⩽C′ = ⩽ω ∩ (↓ωx0 ×↓ωx0), so we are to show

that
(↓ωx0,⩾ω ∩ (↓ωx0 × ↓ωx0))

is a tree. We do so by showing, by induction, that for all n ∈ ω:

(↓nx0,⩾n ∩ (↓nx0 × ↓nx0)) is a tree with root x0.

For n = 0, this is clear. Moreover, the induction step is an easy matter as well:
use the IH and that stage n+ 1 is obtained by either ⟨sup⟩- or ¬⟨sup⟩-repairing.

Regarding (2), from the definition of C ′ as being the restriction of S⩽ω
to

the ↓ωx0-worlds and the fact that (W,C) ⊨ (Re.f) ∧ (4f) ∧ (Co.f) ∧ (Dk.f), we
immediately get (↓ωx0,C ′) ⊨ (Re.f) ∧ (4f) ∧ (Co.f) ∧ (Dk.f), which completes
the proof and concludes this addendum.
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A.3. On the FMP of MILSem w.r.t. CSem.

This addendum contains proofs of the results mentioned in section 6.5, namely (1)
that the formula ψN from Proposition 1.8 does not witness non-FMP for MILSem

w.r.t. CSem-frames, and (2), to the contrary, that the filtration of Theorem 3.9 fails
for CSem-frames.

Remark A.3.1. Although

ψN := HP⟨sup⟩pp∧HP¬⟨sup⟩pp

only is satisfiable on infinite join-semilattices (cf. Remark 1.9), it is satisfiable on
a finite CSem-frame. ⊣

Proof. It suffices to show that the frame (W,C) from Remark 3.6 is a CSem-frame.
To this end, we consider the chain (Z−,⩽) from Proposition 1.8 consisting of
the negative integers with the less-than relation. We show that (W,C) is the p-
morphic image of (Z−,⩽), which proves the claim because (a) onto p-morphisms
preserve validities, and (b) (Z−,⩽) is a join-semilattice, whence, in particular, a
CSem-frame.

Consequently, let
f : Z− →W

be the function given by setting

f(z) =

w if |z| is odd

v otherwise
.

Then f is clearly onto. Further, it meets the forth condition because z = sup{x,y}
implies z ∈ {x,y}. Lastly, ifCf(z)ab for some {a,b} ⊆ {w, v}, then also f(z) ∈ {a,b},
so w.l.o.g. f(z) = a. Besides, we have that either f(z) = b or f(z − 1) = b, so in
any case we find some z ′ ∈ Z− s.t. z = sup{z, z ′}, f(z ′) = b and Cf(z)f(z)f(z ′).
This shows the back condition, thus completing the proof.

Remark A.3.2. Let (W,C,V) be a CSem-model, Σ a C-closed set of formulas, and
(WΣ,CC

Σ,VΣ) the filtration of (W,C,V) through Σ as defined in Theorem 3.9.
Then, even if we do have (WΣ,CC

Σ) ∈ C, we need not have (WΣ,CC
Σ) ∈ CSem. ⊣

Proof. In order to show this, we provide a counterexample showing that the
filtration does not preserve associativity even given the additional conditions
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demanded by (W,C) ∈ CSem. Accordingly, let

Σ := {⊤,p0,p1,p2,p,q, r, ⟨sup⟩qr, ⟨sup⟩rq,Pq, ⟨sup⟩⊤q,Pr, ⟨sup⟩⊤r,

⟨sup⟩pp1, ⟨sup⟩p1p,Pp, ⟨sup⟩⊤p,Pp1, ⟨sup⟩⊤p1},

and let (W,⩽,V) be the join-semilattice model depicted below where the worlds
satisfy all and only the proposition letters shown in the figure.

w ⊩ p0

u ⊩ p1

v ⊩ p2

x ⊩ p y ⊩ q

z ⊩ r

Then Σ is C-closed, and (W,⩽,V) is, in particular, a CSem-model. However, in
the filtrated model, we have CC

Σ|w||v||z| and CC
Σ|v||x||y|, but there is no |a| s.t.

CC
Σ|a||y||z| and CC

Σ|w||x||a|; that is, the filtrated model do not validate (As.). To
expound, only for |a| = |u| do we get CC

Σ|a||y||z|, but CC
Σ|w||x||u| fails because

x ⊩ p and u ⊩ p1 yet w ⊮ ⟨sup⟩pp1.
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B. Truthmaker logics

The present appendix does two things. Foremost, it studies formal properties of
truthmaker logics (TMLs), specifically compactness and decidability. While com-
pactness and decidability of a variant of truthmaker logic already were proven
in Fine and Jago 2019, an alternative proof method general enough to obtain
compactness and decidability of a family of truthmaker logics is put forward.
The fundamental results enabling these proofs are (1) ‘standard translations’ into
first-order logic, and (2) a truthmaker analogue of the finite model property.
Second, it studies how TMLs relate to MILs through translations using the one
of van Benthem (2019), with the aim of (1) casting an interesting light on either
logic in terms of the other, and (2) allowing for transfer of results.

This work is structured as follows: B.1 defines several TMLs; B.2 achieves
compactness and recursive enumerability through standard translations; B.3
develops and proves the FMP for TMLs and concludes decidability; and B.4
investigates how TMLs connect with MILs through translations.

B.1. Defining the logics

Before presenting the actual compactness and decidability proofs of this first
part of the appendix, we set the stage by formally laying out various truthmaker
logics.

Definition B.1.1 (Language). The language LT of truthmaker logics is defined
using a countable set of proposition letters P. The formulas φ ∈ LT are then
given by the following BNF-grammar

φ ::= p | ¬φ | φ∨ψ | φ∧ψ,

where p ∈ P. ⊣

Truthmaker logics are defined semantically and rather commonly in terms of
join-semilattices.23 Formally we define as follows:

Definition B.1.2 (Frames and models). A frame for LT is a pair F = (S,⩽) where

• S is a set; and

• ⩽ is a join-semilattice onW.

A model for LT is a quadruple M = (S,⩽,V+,V−) where

23Quite frequently, TMLs are also defined on other structures than join-semilattices; we will get back
to this later.
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• (S,⩽) is a frame; and

• V+ and V− are valuations on S, that is: functions V+,V− : P → P(S). ⊣

In some truthmaker logics valuations do not go to the powerset, but have
additional requirements. The following alterations are frequently used in the
literature:

• Valuations are required to be closed under binary joins.

• Valuations must be such that no state both ‘truthmakes’ and ‘falsitymakes’
a propositional letter; i.e., V+(p) ∩ V−(p) = ∅ for all p ∈ P.

• Each proposition letter is required to be made true and/or false somewhere;
i.e., V+(p) ̸= ∅ for all p ∈ P and/or V−(p) ̸= ∅ for all p ∈ P.

Besides differing on the valuations, truthmaker logics can differ on the actual
semantics. One version is the following:

Definition B.1.3 (Semantics). Given a model M = (S,⩽,V+,V−) and a state
s ∈ S, truthmaking and falsitymaking of a formula φ ∈ LT at s in M (written
M, s ⊩+ φ and M, s ⊩− φ, respectively) are defined by the following recursive
clauses:

M, s ⊩+ p iff s ∈ V+(p).

M, s ⊩− p iff s ∈ V−(p).

M, s ⊩+ ¬φ iff M, s ⊩− φ.

M, s ⊩− ¬φ iff M, s ⊩+ φ.

M, s ⊩+ φ∧ψ iff there exist u, v ∈ S such that M,u ⊩+ φ, M, v ⊩+ ψ,

and s = sup{u, v}.

M, s ⊩− φ∧ψ iff M, s ⊩− φ or M, s ⊩− ψ.

M, s ⊩+ φ∨ψ iff M, s ⊩+ φ or M, s ⊩+ ψ.

M, s ⊩− φ∨ψ iff there exist u, v ∈ S such that M,u ⊩− φ, M, v ⊩− ψ,

and s = sup{u, v}.

Notions like global truth(making), validity, consequence, etc. are defined as usual in
possible-worlds semantics. In particular, consequence Γ ⊩+ φ for Γ ⊆ LT ∋ φ is
defined distributively. That is, Γ ⊩+ φ holds iff whenever M, s ⊩+ γ for all γ ∈ Γ ,
M, s ⊩+ φ.24 ⊣
24Note that decidability of the distributive reading has as a special case decidability of the collective

reading, which is where Γ ⊩+ φ holds iff whenever M,s ⊩+
∧
γ∈Γ γ, M,s ⊩+ φ (this is,

of course, only defined for finite Γ [which suffices for decidability], but the definition can be
canonically extended to the infinite case).
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This semantics is ‘non-inclusive’. Alterations, we are aware of, are:

• ‘Inclusive’ semantics where (1) M, s ⊩+ φ∧ψ also suffices for M, s ⊩+ φ∨ψ,
and, analogously, (2) M, s ⊩− φ∨ψ also suffices for M, s ⊩− φ∧ψ.

• Semantics where the disjunction is defined in terms of infimum instead –
mirroring how conjunction is defined in terms of supremum.25

B.2. Compactness and r.e.

With these various definitions laid out, we, first, present the compactness and
decidability results proved by Fine and Jago (2019) before, second, presenting
our results and methods of proof.

Theorem B.2.1 (Compactness (Fine and Jago 2019)). The truthmaker logic of join-
semilattices with valuations closed under binary joins and inclusive semantics is compact;
that is, if Γ ⊩+ φ, then ΓF ⊩+ φ for some finite ΓF ⊆ Γ .

Theorem B.2.2 (Decidability (Fine and Jago 2019)). The truthmaker logic of join-
semilattices with valuations closed under binary joins and inclusive semantics is decid-
able; that is, for finite ΓF it is decidable whether ΓF ⊩+ φ.26

In what follows, we (1) provide another way of obtaining these results, and
(2) show how this method generalizes to prove compactness and decidability of
several truthmaker logics. We begin with compactness.

Essentially, the idea is the following: Since being a join-semilattice is first-order
definable and the truth- and falsitymaking clauses of the truthmaker logics are
as well, we get standard translations into FOL, and then compactness of FOL
implies compactness of the truthmaker logics.

Spelt out a bit more, the key things are: (a) the translation uses a double
recursion trick [as the one van Benthem (2019) use to translate TML into MIL] to
reduce two consequence relations (truth- and falsitymaking) to one consequence
relation; (b) contrary to truthmaker logics, the object logic FOL can speak about
‘not truthmaking’ (hence, also ‘not falsitymaking’) through regular first-order
negation; and (c) everything is first-order definable.

We now present the translation into FOL, which can be thought of as the
standard translation for TMLs. Or, alternatively, as basically the composition
of the translation given in van Benthem (2019) from TMLs into MILs with a
standard translation of MILs into FOL.

25Note that, under the ‘disjunction-as-infimum’ definition, it might be natural to require the frame to
not only be a join-semilattice but also a meet-semilattice, or, in other words: a lattice.

26It should be noted that the proofs of these two theorems given in Fine and Jago 2019 (1) do
somewhat generalize to other truthmaker logics, and (2) are of independent interest, nevertheless.
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Definition B.2.3. The target FO-language is with equality, contains a binary
relation symbol ‘⩽’, and two unary predicate symbols ‘PT ’, ‘PF’ for each propo-
sitional letter p ∈ P. The translation is then given by these double recursive
clauses:

ST+x (p) = PTx

ST−x (p) = PFx

ST+x (¬ϕ) = ST−x (ϕ)

ST−x (¬ϕ) = ST+x (ϕ)

ST+x (ϕ∧ψ) = ∃y, z
(
x = sup{y, z} ∧ ST+y (ϕ)∧ ST

+
z (ψ)

)
ST−x (ϕ∧ψ) = ST−x (ϕ)∨ ST

−
x (ψ)

ST+x (ϕ∨ψ) = ST+x (ϕ)∨ ST
+
x (ψ)

ST−x (ϕ∨ψ) = ∃y, z
(
x = sup{y, z} ∧ ST−y (ϕ)∧ ST

−
z (ψ)

)
where x = sup{y, z} is short for y ⩽ x∧ z ⩽ x∧ ∀u([y ⩽ u∧ z ⩽ u] → x ⩽ u). ⊣

Examining the translation, the succeeding proposition is almost self-explanatory
(see Blackburn et al. (2001, ch. 2) for similar results in the setting of modal logics).

Proposition B.2.4 (Correspondence). For all models M and all φ ∈ LT , we have:

(Loc.) For all states s ∈ M: (i) M, s ⊩+ φ iff M ⊨ ST+x (φ)[s]; and

(ii) M, s ⊩− φ iff M ⊨ ST−x (φ)[s].

(Glo.) (i ′) M ⊩+ φ iff M ⊨ ∀xST+x (φ).

(ii ′) M ⊩− φ iff M ⊨ ∀xST−x (φ).

To be clear, on the right-hand side of the ‘iff’s, strictly speaking, ‘M’ refers to the corre-
sponding first-order definition of the truthmaker model M.

Proof. An easy induction shows (i) and (ii), which then imply (i ′) and (ii ′),
respectively.

Definition B.2.5. Denote the FO-formula defining being a join-semilattice J; i.e.,
J is the conjunction of the formulas for refl., tr., anti-symm., and having all binary
joins. ⊣

Theorem B.2.6 (Compactness). All versions of truthmaker logics mentioned above are
compact.

Proof. First, we give the compactness proof for the truthmaker logic of join-
semilattices with valuations going to the powerset and the non-inclusive seman-
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tics of Definition B.1.3. Second, we outline how the proof is modified to apply to
other truthmaker logics.

Let (Γ ∪ {φ}) ⊆ LT be arbitrary, and set ST+x (Γ) := {ST+x (γ) | γ ∈ Γ }. Then

Γ ⊩+ φ
(i)
iff ST+x (Γ) ∪ {J} ⊨ ST+x (φ)

(c)
iff ST+x (ΓF) ∪ {J} ⊨ ST+x (φ)

(i)
iff ΓF ⊩

+ φ

where ΓF is a finite subset of Γ obtained via compactness of FOL in the step (c),
and (i) follows from the first assertion of the above-stated proposition. This
shows compactness. Note that a symmetric argument

argument shows compactness w.r.t.
the falsitymaking consequence
‘⊩−’.

The reasons this proof lifts to all of the truthmaker variants mentioned previ-
ously (and more) are:

(Sem) The various sorts of semantics for the connectives all admit a standard
translation so that Proposition B.2.4 holds.

(Val) For any propositional variable p ∈ P, all of the listed potential conditions
on its valuation can be defined by a first-order formula, denote it Vp. Thus,
for the proof to go through, it is simply a matter of changing the first-order
premise ‘{J}’ to ‘{J} ∪ {Vp | p ∈ P}’ in the just-proven sequence of ‘iff’s.

Now for decidability of the truthmaker logics. First off, we observe that
we achieve recursive enumerability (r.e.) through our standard translations
connecting truthmaker logics to first-order logic.

Proposition B.2.7 (Recursive enumerability). All versions of truthmaker logics
mentioned above are recursively enumerable; that is, there is an effective procedure for
enumerating the pairs (ΓF,φ) s.t. ΓF ⊩+ φ for finite ΓF.

Proof. Once again, we begin by covering the case of our set out truthmaker logic,
before explaining how the proof generalizes to the other mentioned TMLs.

For this, simply observe that for any such (ΓF,φ), we have that

ΓF ⊩
+ φ iff ST+x (ΓF) ∪ {J} ⊨ ST+x (φ)

(ii)
iff ⊨

∧
(ST+x (ΓF) ∪ {J}) → ST+x (φ),

where (ii) follows by there being finitely many premises and the first-order
semantics for conjunction and implication; i.e., essentially, the deduction theorem
of FOL in a semantic disguise.

Now, since FOL is r.e. (and this procedure of constructing the formula∧
(ST+x (ΓF) ∪ {J}) → ST+x (φ) from a pair (ΓF,φ), evidently, is effective), we have

attained r.e.
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Albeit the argument of (Sem) still go through to account for why this proof
generalizes to other TMLs, the argument given in (Val) pertaining to potential
requirements on valuations does not generalize straight away. The problem
is that the set {Vp | p ∈ P} is infinite. Fortunately, we can restrict this set to
the propositional variables occurring in ΓF ∪ {φ}, thus obtaining a finite set of
formulas instead, which is adequate for the proof to apply to these truthmaker
logics restricting the admissible valuations.

B.3. FMP and co-r.e.

Now, to establish decidability, it remains to prove co-r.e.; viz., giving an effective
procedure for enumerating the pairs (ΓF,φ) s.t. ΓF ⊮+ φ for finite ΓF. This will be
our main concern in this section.

In many a logic, not least in modal logic, the most common way of establishing
co-r.e. is by means of proving the FMP. Mirroring this, we develop and prove
what, arguably, is the truthmaker analogue of the FMP.

Before doing so, notice that a direct analogue of the FMP, namely that whenever
a formula is made true (resp. false) [or truth-refuted (resp. falsity-refuted)] it
is made true (resp. false) [or truth-refuted (resp. falsity-refuted)] in a finite
model, is trivial and unhelpful for the purpose at hand: the single-state model
making true and false all propositional letters [or none at all], makes true and
false all formulas [or none at all] in general. And, importantly, this does nothing
for proving co-r.e. Instead, we must prove an ‘FMP’ that—just like the FMP
of, e.g., modal logic—allows for a model-theoretical proof of co-r.e. via some
sort of finite-model checking. To do so, we need two preparatory lemmas and a
definition.

Lemma B.3.1. Suppose M0 = (S0,⩽0,V+
0 ,V−

0 ) and M1 = (S1,⩽1,V+
1 ,V−

1 ) are
models s.t. (i) (S1,⩽1) is a sub-join-semilattice of (S0,⩽0), and (ii) for all p ∈ P:

V+
1 (p) = V+

0 (p) ∩ S ′, V−
1 (p) = V−

0 (p) ∩ S ′.

Then for all formulas φ ∈ LT and all states s1 ∈ S1, we have that

M0, s1 ⊮+ φ ⇒ M1, s1 ⊮+ φ

and
M0, s1 ⊮− φ ⇒ M1, s1 ⊮− φ.

Proof. By induction on φ ∈ LT . Base cases are by definition and the inductive
steps follow by use of the IH and (S1,⩽1) being a sub-join-semilattice of (S0,⩽0).
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To illuminate, we cover the inductive case of not truthmaking φ = ψ ∧ χ. So
suppose

M0, s1 ⊮+ ψ∧ χ,

and let (u1, v1) ∈ S1 × S1 be arbitrary s.t. s1 = sup1{u1, v1}. Since (S1,⩽1) is a sub-
join-semilattice of (S0,⩽0), the inclusion mapping i : S1 ↪→ S0 is a join-semilattice
homomorphism, hence s1 = sup0{u1, v1}. But then since M0, s1 ⊮+ ψ ∧ χ, we
must have that

M0,u1 ⊮+ ψ or M0, v1 ⊮+ χ,

whence, by the IH,

M1,u1 ⊮+ ψ or M1, v1 ⊮+ χ,

which suffices for the claim since (u1, v1) was arbitrary.

Observe that this proof goes through for all of the previously mentioned
semantics.27

Definition B.3.2. For any model M, state s ∈ M and formula γ ∈ LT s.t. M, s ⊩+

γ (resp. M, s ⊩− γ), we define a set T(γ, s) (resp. F(γ, s)), which we denote a
T-selection w.r.t. (γ, s) (resp. F-selection), by the following recursive clauses: The intuition for T(γ,s) (resp.

F(γ,s)) is that it is a set of states
by virtue of which s ⊩+ γ (resp.
s ⊩− γ).

T(γ, s) = {s} iff γ = p.

F(γ, s) = {s} iff γ = p.

T(γ, s) = {s} ∪ F(φ, s) iff γ = ¬φ.

F(γ, s) = {s} ∪ T(φ, s) iff γ = ¬φ.

T(γ, s) = {s} ∪ T(φ,u) ∪ T(ψ, v) iff γ = φ∧ψ and M,u ⊩+ φ,

M, v ⊩+ ψ, s = sup{u, v}.

F(γ, s) =

{s} ∪ F(φ, s), M, s ⊩− φ

{s} ∪ F(ψ, s), otherwise
iff γ = φ∧ψ.

T(γ, s) =

{s} ∪ T(φ, s), M, s ⊩+ φ

{s} ∪ T(ψ, s), otherwise
iff γ = φ∨ψ.

F(γ, s) = {s} ∪ F(φ,u) ∪ F(ψ, v) iff γ = φ∨ψ and M,u ⊩− φ,

M, v ⊩− ψ, s = sup{u, v}.

Clearly, this need not define unique sets because, e.g., the truthmaking case of
γ = φ∧ψ might be satisfied by multiple choices of u, v; for the purpose of what
27If one also deals with infima and, e.g., requires the underlying frames to be lattices, one shall

assume (S ′,⩽ ′) to be a sublattice of (S,⩽).
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we are to prove, this is irrelevant: any choice will do, so no reason to complicate
the definition.28 ⊣

Lemma B.3.3. For any model M, state s ∈ M and formula γ ∈ LT s.t. M, s ⊩+ γ

(resp. M, s ⊩− γ), the corresponding set T(γ, s) (resp. F(γ, s)) contains {s} and is finite.

Proof. By induction on γ ∈ LT .

With these results at hand, we can prove our truthmaker analogue of the FMP.

Proposition B.3.4 (Truthmaker FMP). For any model M0 = (S0,⩽0,V+
0 ,V−

0 ), state
s ∈ S0, and finite set of formulas ΓF ⊆ LT s.t.

M0, s ⊩+ ΓF,

there is a finite submodel M1 s.t. (a)

M1, s ⊩+ ΓF,

and (b) for all φ ∈ LT :

M0, s ⊮+ φ ⇒ M1, s ⊮+ φ. Notice that this proposition implies
the analogous proposition stated in
terms of falsitymaking, qua
negating all formulas.

Proof. For each γ ∈ ΓF, choose a set T(γ, s) according to the previous definition,
and let (S1,⩽1) be the sub-join-semilattice generated by

⋃
γ∈ΓF T(γ, s). Since ΓF is

finite, the set of generators
⋃
γ∈ΓF T(γ, s) is finite by the preceding lemma, hence

S1 is finite.
Further, as in Lemma B.3.1, define V+

1 and V−
1 as the restrictions of V+

0 and V−
0 ,

respectively. Then M1 := (S1,⩽1,V+
1 ,V−

1 ) is a model.29 By Lemma B.3.1, we have
that (b) for all φ ∈ LT ,

M0, s ⊮+ φ ⇒ M1, s ⊮+ φ.

It remains to show (a)
M1, s ⊩+ ΓF.

To show so, we prove that for all formulas φ ∈ LT and all generator states
s ′ ∈

⋃
γ∈ΓF T(γ, s): if there is some T-selection T(φ, s ′) ⊆

⋃
γ∈ΓF T(γ, s) (resp.

28For other semantics (e.g. inclusive), we make a likewise modification of this definition.
29In case we require, e.g., all V+(p) ̸= ∅, the proof goes through by simply adding a state sp+ ∈
V+

0 (p) to the set of generators for all propositional letters occurring in the formulas ΓF ∪ {φ}.
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F-selection F(φ, s ′) ⊆
⋃
γ∈ΓF T(γ, s)), then

M0, s ′ ⊩+ φ ⇒ M1, s ′ ⊩+ φ

(resp. M0, s ′ ⊩− φ ⇒ M1, s ′ ⊩− φ).

The proof is by structural induction on φ. The base cases follow by definition of
V+

1 and V−
1 , and all of the Boolean cases are straightforward as well. Again, for

clarity, we consider the case of truthmaking φ = ψ∧ χ.
Accordingly, suppose s ′ ∈

⋃
γ∈ΓF T(γ, s) and there is some T-selection T(ψ∧

χ, s ′) ⊆
⋃
γ∈ΓF T(γ, s). By definition of a T-selection, there must be some {u ′, v ′} ⊆

S0 s.t. (i) M0,u ′ ⊩+ ψ; (ii) M0, v ′ ⊩+ χ; (iii) s ′ = sup0{u
′, v ′}; and (iv)

T(ψ∧ χ, s ′) = {s ′} ∪ T(ψ,u ′) ∪ T(χ, v ′).

So by (i), (ii) and the IH, we get that

M1,u ′ ⊩+ ψ and M1, v ′ ⊩+ χ.

Moreover, cf. the preceding lemma and (iv), we have that

u ′ ∈ T(ψ,u ′) ⊆ T(ψ∧ χ, s ′) ⊆
⋃
γ∈ΓF

T(γ, s) ⊇ T(ψ∧ χ, s ′) ⊇ T(χ, v ′) ∋ v ′,

whence {u ′, v ′, s ′} ⊆ S1, and, thus, s ′ = sup1{u
′, v ′} because of (iii) and the fact

that (S1,⩽1) is a sub-join-semilattice of (S0,⩽0). Consequently, M1, s ′ ⊩ ψ∧ χ –
exactly as we wanted. This completes the induction, which entails (a) as a special
case; consequently, completing the proof.

Again, using the canonical modifications, this proof works for all truthmaker
logics mentioned so far. With this proven, we got co-r.e., hence also decidability,
in our pocket.

Theorem B.3.5 (Decidability). All versions of truthmaker logics mentioned above are
decidable.

Proof. Since we have proven r.e. in Proposition B.2.7, it suffices to provide an
effective procedure for the case of ΓF ⊮+ φ for finite ΓF. This is done as follows:

1. Enumerate all finite join-semilattices.

2. For each such finite join-semilattice, check the finitely many valuations
(ΓF∪ {φ} is finite, so only finitely many proposition letters occurs in ΓF∪ {φ})
and states for whether we witness ΓF ⊮+ φ.
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This suffices because, by the previous proposition, we have that if M0, s ⊩+ ΓF

and M0, s ⊮+ φ, then there is a finite model M1 s.t. M1, s ⊩+ ΓF and M1, s ⊮+

φ.

Coming to a close, we end with a few remarks on (a) other truthmaker logics
that might be of philosophical interest and for which our proof methods apply,
and (b) a general limitation of our proof methods.

Remark B.3.6 (TMLs with non-FO-conditions). We begin with the latter: in both
our compactness and decidability proof we have made use of the conditions being
first-order definable. An immediate limitation, thus, becomes when conditions
are not; our proof methods for compactness and r.e. do not, e.g., apply to a
truthmaker logic where the frames are taken to be posets with all (non-empty)
joins because it is not first-order definable. And this is, indeed, a version of TMLs
quite frequently considered in the literature – so as regards to (compactness
and) r.e. our proof method falls short. That said, our proof of the FMP does not
rely on something being FO-definable, and for, e.g., the case of posets with all
(non-empty) joins we do get the FMP, hence co-r.e. ⊣

Remark B.3.7 (TMLs of preorders and posets). Inversely, there are also cases
where our compactness and r.e. proofs apply, but our proof of the FMP does
not. If one were to consider a truthmaker logic where the frames simply are
taken to be preorders or posets (if one, e.g., wants to consider a philosophical
setting where any pair of states need not have a ‘fusion’), our proofs adapt
straightforwardly to obtain both compactness and r.e.; however, our proof of the
FMP does not. Problem being that these frames are not algebraic, so we cannot
generate subframes algebraically. Fortunately, there is a way of circumventing
this problem combining a few ideas from this thesis. We sketch it here.

As in the FMP proof, for each γ ∈ ΓF, choose a set T(γ, s), but instead let

(S1,⩽1) :=

 ⋃
γ∈ΓF

T(γ, s),⩽0 ∩

 ⋃
γ∈ΓF

T(γ, s)

2
 .

Now, whenever (x,y, z) ∈ S3
1 is s.t. sup1{y, z} = x ̸= sup0{y, z}, add a ‘dummy’ d

(cf. Lemma 2.11) seen by all and only the states in the least downset containing
{y, z} and closed under suprema (cf. Lemma 5.6). This results in the desired finite
model. ⊣

Remark B.3.8 (Language enrichment). As a last remark of this section, another
kind of truthmaker logic for which our proofs straightforward are seen to apply
are those defined by enriching the vocabulary with a binary connective ∧c
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with the semantics of classical conjunction. Also including constants for falsum
‘⊥’ and verum ‘⊤’, stays within the
realm of our proof methods.

Philosophically this enrichment can
be motivated by, for instance, wanting to examine the interplay between the
statements

(1) “[s exactly makes true φ] and [s exactly makes true ψ]”

(2) “s exactly makes true [φ and ψ]” I.e., the pertinent point of
discussion is whether/when exact
truthmaking distributes over
conjunction.

Without the extra connective “∧c”, these would be ‘formalized’ as

(1’) M, s ⊩+ φ and M, s ⊩+ ψ

(2’) M, s ⊩+ φ∧ψ.

But with the extra connective, we enable the object language to make this distinc-
tion by formalizing (1) as

(1”) M, s ⊩+ φ∧c ψ. ⊣

B.4. Fragments of MILs

The last two remarks of the foregoing section were not only interesting in their
own right, they also served as teasers for the forthcoming and last study of this
appendix: exploring how TMLs relate to MILs.

Our goal is two-fold: (1) to elucidate how TMLs can be seen as {∨, ⟨sup⟩}-
fragments of MILs or, vice versa, how MILs can be seen as augmenting TMLs
with classical negation ‘¬c’, and (2) to instantiate how this connection allows for
transfer of results by showing that the positive first-degree fragment of MILSem is
decidable.

We begin by presenting the translation of van Benthem (2019) from TMLs to
MILs.

Definition B.4.1. The target language is LM but where we have two propositional
variables for each propositional variable p ∈ LT , namely pT and pF.30 The
translation is then given by these double recursive clauses:

(p)+ = pT , (p)− = pF,

(¬φ)+ = φ−, (¬φ)− = φ+,

(φ∧ψ)+ = ⟨sup⟩φ+ψ+, (φ∧ψ)− = φ− ∨ψ−,

(φ∨ψ)+ = φ+ ∨ψ+, (φ∨ψ)− = ⟨sup⟩φ−ψ−. ⊣

Inspecting the translation,31 as van Benthem (2019) notes, we see that
30From a purely mathematical perspective, we can w.l.o.g. think of these as corresponding to whether
pT [resp. pF] was even [odd] in our original enumeration of the propositional variables of LM.

31For, e.g., inclusive semantics the translation modifies canonically.
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Proposition B.4.2 (Correspondence). For all models M and all φ ∈ LT , we have:

(Loc.) For all states s ∈ M: (i) M, s ⊩+ φ iff M, s ⊩ (φ)+; and

(ii) M, s ⊩− φ iff M, s ⊩ (φ)−.

(Glo.) (i ′) M ⊩+ φ iff M ⊩ (φ)+.

(ii ′) M ⊩− φ iff M ⊩ (φ)−.

To be perfectly clear, on the right-hand side of the ‘iff’s, ‘M’ refers to the corresponding
MIL-definition of the truthmaker model M, and ‘⊩’ to MIL-satisfaction.

It, thus, becomes obvious that for ‘complementary’ TMLs and MILs,32 we get
the following proposition (as stated in van Benthem (2019)):

Proposition B.4.3. For all (Γ ∪ {φ}) ⊆ LT :

Γ ⊩± φ iff (Γ)± ⊩ (φ)±,

where (Γ)± := {(γ)± | γ ∈ Γ }.

With these results re-capped, we explore this translation a bit more. As stated,
most glaring is that it, in a way, licenses us to characterize TMLs as the {∨, ⟨sup⟩}-
fragment of MILs—or MILs as augmenting TMLs with classical negation. To
explicate this a bit further, consider the following translation:

Definition B.4.4. Let L{pT ,pF,∨,⟨sup⟩}
M ⊆ LM be the fragment of the language of

basic modal information logic restricted to the propositional letters, connective
‘∨’ and modality ‘⟨sup⟩’. Then for all φ ∈ L

{pT ,pF,∨,⟨sup⟩}
M , we recursively define

its translation (φ)• into LT as follows:

(pT )• = p, (pF)• = ¬p,

(⟨sup⟩φψ)• = φ• ∧ψ•, (φ∨ψ)• = φ• ∨ψ•. ⊣

Once again, we can immediately deduce a correspondence proposition.

Proposition B.4.5 (Correspondence). For all models M and all φ ∈ L
{pT ,pF,∨,⟨sup⟩}
M ,

we have:

(Loc.) For all states s ∈ M: (i) M, s ⊩ φ iff M, s ⊩+ (φ)•.

(Glo.) (i ′) M ⊩ φ iff M ⊩+ (φ)•. Symmetric results for falsitymaking
are achieved by a symmetric
translation.32I.e., whenever the logics are defined on the same class of structures with the same admissible

valuations, and we do not have, say, disjunction in the TML defined in terms of infima without
also having an infimum-modality in the MIL. So, for example, the main TML of the previous
chapter is complementary to MILSem but not to MILPre.
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Thus, the translations (·)+ and (·)• are, essentially, each other’s ‘inverses’:

For all φ ∈ LT and all M, s: M, s ⊩+ φ iff M, s ⊩+
(
φ+
)• .

For all φ ∈ L
{pT ,pF,∨,⟨sup⟩}
M and all M, s: M, s ⊩ φ iff M, s ⊩ (φ•)+ .

Corollary B.4.6 (Characterization). TMLs are (at least, in a mathematical precise
sense) the {∨, ⟨sup⟩}-fragments of MILs, or alternatively, MILs arise from augmenting
TMLs with classical negation.

Besides providing a perspicuous view on both TMLs and MILs, these transla-
tions are also mathematically conducive; e.g., enabling us to transfer decidability
results. We close off this appendix by quickly exemplifying this, showing that
the ‘positive first-degree’ fragment of MILSem is decidable.

Definition B.4.7. We say that a formula φ ∈ L
{⊤,⊥,⟨sup⟩,∧,∨}

M is positive; that is, if
it is constructed from propositional letters, ⊤, and ⊥ by applying ∨, ⟨sup⟩,∧.

Further, we call a formula φ→ ψ ∈ LM a positive first-degree formula :iff φ and
ψ are positive.

Lastly, we define the positive first-degree fragment (of LM) as the set of positive
first-degree formulas. ⊣

Corollary B.4.8. MILSem restricted to the positive first-degree fragment (of LM) is
decidable.

Proof. Given any such formula φ→ ψ, we have that

MILSem ⊩ φ→ ψ iff (φ)• ⊩+ (ψ)•

where (·)• refers to the translation given previously, canonically extended for
⊤,⊥ and ∧ [which goes to ⊤,⊥ and ∧c; i.e., we use the last remark of the previous
section]. Since this translation is effective, and we have shown the translated
problem to be decidable, we have proven the claim.
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