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Introduction 

Categorial inference has been studied in the literature for many different reasons 

and from many different backgrounds, ranging from linguistics and philosophy to 

logic and computer science. In the last decade, various presentations of Catego- 

rial Grammar have emerged within the paradigm of substructural logics. Logical 

calculus that carry the epithet resources-conscious can serve not just as a deduc- 

tive system, but also as a paradigm for sertain styles of grammatical inference. 

This dissertation is about a modal semantic framework for the study of categorial 

inference, allowing one to analyze structural rules as constraints on information 

structures. Three lines of research come together in the following chapters: Cat- 

egorial Grammar, modal logic and labelled deduction. 

Grammar logics: the Lambek paradigm 

Among the logically oriented grammar formalisms, categorial systems have a 

long history, going back to the classical calculi of Ajdukiewicz 1935 and Bar- 

Hillel 1953. The work of Lambek in the late Fifties represents an important 

turning point in the field. Lambek redesigned the earlier calculi (which were 

basically rule-based systems with some small inventory of reduction schemata) 

as grammar logics: systems of inference specifically designed for reasoning about 

grammatical organization. The Lambek calculi were rediscovered in the early 

Eighties. Since then they have been the subject of active research in logic and 

linguistics. The advent of Linear Logic gave an extra impulse to this research: 

it soon became clear that the Lambek systems are in fact the prototypical ex- 

amples of what we now call substructural or resource-conscious logics: logics 

with structure sensitive consequence relation. (Indeed, the Associative Lambek 

Calculus may be viewed just as the non-commutative multiplicative fragement 

of intuitionistic linear logic.) The triad of monographs Moortgat 1988, Van Ben- 

them 1991 and Morrill 1994 offers a good perspective on the development of 
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the Lambek paradigm on the interface of linguistics and logic. Here is a brief 

overview of the main themes of this paradigm. 

The language of Categorial Grammar is obtained by closing some set of basic 

categories under a set of category-forming operators. As basic categories one 

could have familiar parts of speech such as nouns (N), noun phrases (NP), sen- 

tences (S), prepositional phrases (PP), etc. As category-forming operators one 

could have /, e, \, where the semantics of the product connective e tells us how 

to assemble linguistic expressions of category A and B into a structured con- 

figuration of category A e B, whereas the slashes / and \ give us the means of 

disassembling such a structured configuration into its A and B components. The 

language of Categorial Grammar is now obtained if we assign basic categories 

to the atomic expressions, consider categories as formulas and category-forming 

operators as connectives. Finding the category assignment for composite config- 

urations then becomes a problem of logical inference. 

As an example of this kind of ‘grammatical inference’, consider the expression 

‘Andy talks to the sheriff’. Assume the categorial lexicon classifies the name 

‘Andy’ as of category NP, the preposition ‘to’ as PP/NP, the determiner ‘the’ 

as NP/N, the noun ‘sheriff’ as N, and the verb in this construction as (NP\S) 
/PP. Using the basic rules of functional application 

A/BeBl A BeB\Al A 

we conclude that the sequence 

NP o¢((NP\S)/PP)e(PP/NP)e(NP/N)eN 

corresponding to the construction ‘Andy talks to the sheriff’ as a whole im- 

plies category S. This is the basic mechanism proposed already by Ajdukiewicz. 

But in the Lambek setting one can do more using hypothetical reasoning in its 

full generality. If from ‘Andy talks to NP’ we can derive the category S, then 

withdrawing a hypothetical NP assumption, we infer that ‘Andy talks to’ is of 

category S/NP. Hypothetical resoning greatly enhances the expressivity of our 

logic. We could now lexically assign a relative pronoun like ‘whom’ the higher 

order category (N\N)/(S/NP), and infer that the complex expression ‘the sheriff 
whom Andy talks to’ is of category NP. The lexical assignment to ‘whom’ in this 

case triggers the bit of hypothetical reasoning illustrated above, when we try to 

find out whether the relative clause body ‘Andy talks to’ is indeed of category 

S/NP. Hypothetical reasoning thus establishes the link between the relative pro- 

noun and the role it plays in the relative clause body in deductive terms, without 

introducing abstract syntax as we find it in the subscripted he; placeholders of 

Montague Grammar, or the empty categories that populate Chomskyan syntax. 

This simple example has enough structure to stress a number of important 

points, which highlight the need for the general logical approach to Categorial 
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Grammar. We saw above that the product connective stands for structural com- 

position. What structural aspects should one take into account in the composi- 

tion process? Does the order of the components affect syntactic well-formedness? 

Does the hierarchical grouping of the components carry grammatical meaning? 

In fact one can systematically generate a hierarchy of categorial category log- 

ics by considering the basic logic for /, e,\ together with different packages of 

structural rules characterizing the properties of linguistic composition such as 

expressed by the e connective. Linear order and hierarchical grouping are two 

very obvious structural aspects that can affect grammaticality. But one can 

consider many further structurally relevant linguistic dimensions. 

An important theme in current categorial research is the shift of emphasis 

from individual category logics to communicating families of such systems. The 

reason for this shift is that the individual logics are not expressive enough for re- 

alistic grammar development: the grammar writer needs access to the combined 

inferential capacities of a family of logics. Motivation for the move to ‘mixed’ 

categorial architectures can be based on considerations of cross-linguistic varia- 

tion, and on structural variation within one language system. As to the former, 

order sensitivity may be relevant for one language (say, English, where word 

order constraints are rather rigid) but much less relevant for another (say, Latin, 

where changes in word order do not directly affect grammaticality). As to the 

latter, even within a language with very free word order, such as Latin, it may 

be essential to rigidly control the placement of, for example, a preposition as 

coming before its nominal complement, although the phrasal ordering itself is 

very liberal. Linguistic applications of mixed styles of inference can be found 

in the recent publications of Moortgat, Morrill and Oehrle. In line with these 

developments we study different modes of categorial inference first from the per- 

spective of logical semantics for categorial languages in Part I. Then in Part II we 

develop a uniform labelling discipline for the family of categorial logics. Finally 

Part III offers a systematic architecture for categorial grammars using different 

logical systems, allowing different structural rules, which can communicate via 

modal translations. 

Categorial grammars as modal logics 

For the modal connection, we read the category constructors as binary modal 

operators: the left and right slashes /, \ are seen as directed implications —, «. 
The laws of function application then become the modal laws 

Ae(A— B)FB (B+ A)e A+ B 

The basic semantic structures to be used in this thesis to interpret binary modal- 

ities are ternary Kripke frames, originally introduced in the field of relevant logic. 

The ternary accessibility relation interpreting the binary connectives, in the cat- 
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egorial setting, is to be thought of as structural composition of sentence parts. 

In order to unfold the categorial landscape our strategy will be to start with an 

arbitrary ternary relation and to look for the theory of categorial definability of 

its properties. The question that we are interested in may be formulated in two 

ways. First, given a categorial principle, we want to know which requirements 

have to be satisfied by our frames to make the principle valid. And conversely, 

given certain properties of ternary frames, we are also interested just when these 

are definable by means of some suitable set of categorial laws. The two directions 

meet in the notion of ‘frame correspondence’. Our modal paradigm, then, offers 

a semantic characterization of structural rules. The different aspects of struc- 

ture sensitivity of the grammatical consequence relation are captured by frame 

constraints restricting the accessibility relation, i.e., structural composition. 

In applying the techniques of correspondence theory for standard modal logic 

we have to take into account the peculiarities of the categorial languages, which 

lack certain standard facilities, such as unrestricted Booleans. Questions like the 

following then arise: 

e Can we characterize expressive power of categorial languages through ap- 

propriate model and frame constructions supporting preservation theo- 

rems? 

e What are effective methods extracting perspicuous (first-order) frame cor- 

respondents from (second-order) categorial principles, and how does one 

disprove such definability? 

e How does one prove frame completeness results for categorial logics, given 

the expressive peculiarities of categorial languages? 

These issues will be studied in the first three chapters, over standard ternary 

models. In Chapter 4, they will also arise for the special class of two-dimensional 

binary relational models, where completeness can be obtained via the method of 

labelling. 

What we have said so far concerns binary modalities interpreted via a ternary 

accessibility relation. The residuation pattern that holds together the binary 

families 4+ , —+, e can be generalized to families of n-ary connectives interpreted 

with respect to n+l-ary accessibility relations. On the other hand, the standard 

unary modalities will continue to play an important role, too (they may even be 

understood as multiplicatives, akin to structural composition). Unary operators 

will be the key devices to obtain a theory of systematic communication between 

substructural systems. This shows in the existence of faithful modal embeddings 

recovering the inferential capacity of one categorial logic in another. In Chapter 

l we show that non-associative Lambek Calculus can be faithfully embedded 

into bi-modal tense logic. In Chapter 6, we provide general theory of structural 

embeddings for categorial logics.



Categorial inference from a philosophical perspective 

In a broader philosophical perspective, one can adopt an information-oriented 

view of ternary frames. The worlds or states then represent pieces of information: 

either highly structured ones, such as grammatical forms or linguistic signs, or 

more abstract ones. We can focus on the static structure of the information 

pieces, but also on information flow. The dynamic view on ternary frames sug- 

gests an interpretation with worlds standing for transitions between processes. 

Altogether, then, our semantics can be seen as modelling information structure 

via static representations, but it also models information processing via dynamic 

actions. 

If the ternary relation Ra, bc is interpreted as abstract composition of actions 

— g is an outcome of composing b and c — then we can treat logical inference 

dynamically. It will say that A;,..., A, implies A if, for any sequence of infor- 

mation states a, ..., a, where each a; supports A; , the outcome a of sequential 

composition of a,,...,a, supports A. Thus, each premise invites us to change 

a corresponding information state, and the conclusion of logical inference acts 

like a program of transformation of the starting point of the first premise to the 

endpoint of the last one. This framework is introduced in Chapter 1. In Chapter 

2 categorial axioms are systematically studied as semantic constraints on the 

accessibility relation in frames where they hold. Interpreting frames as struc- 

tures of informational tokens then yields a correlation between categorial axioms 

corresponding to structural rules and desired properties of informational compo- 

sition. For example, the intuitive semantic account of Contraction connects this 

structural rule with re-use of informational resources. Correspondence Theory 

makes this precise: it says in which exact frame-semantic sense the metaphor 

holds. Moreover, it shows how different proof-theoretic formulations of Contrac- 

tion may correspond to different frame-semantic shades of meaning. 

In the standard treatement of logical inference, information structures live 

in the semantic realm, and do not appear explicitly in our formalisms. An 

important novelty in current logical investigations, is the use of labeled deduction 

with explicit labels or signs encoding various kinds of relevant information. In 

Part II this explicit informational style of categorial inference will be the central 

theme. The key idea here is to replace the formula as the basic declarative unit 

by a pair z : A, consisting of a label z and a formula A. Sequents then assume 

the form 

zi: Ai; .. Zn : An > y:B 

The label is to be thought of as an extra piece of information added to the 

formula. Rules of inference manipulate not just the formula, but the formula 

plus its label. We then obtain a whole scala of labelling regimes depending on 

the degree of autonomy between formula and label. Chapter 5 offers a general 

method of completeness proofs for labelled categorial systems. 
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A look ahead: chapter overview 

Part I introduces ternary frame semantics and offers basic model theory and 

correspondence theory for categorial languages. 

Chapter 1 is concerned with the logical, philosophical and linguistic motiva- 

tions for ternary frame semantics and choices of languages over ternary models. 

It develops basic model theory using bisimulations as a fundamental tool. Fi- 

nally, it offers ternary frame constructions which can be useful for disproving 

categorial definability of first order principles. 

Chapter 2 is about Correspondence Theory for categorial principles. We prove 

a Sahlgvist-van Benthem theorem for categorial languages and develop some ap- 

sects of a general theory of definability. As an application, we obtain a semantic 

characterisation of structural rules from the perspective of correspondence the- 

ory. To refute first-order definability of categorial principles we propose two 

methods. The first is based on translating categorial formulas into some non- 

first-order definable standard modal formula. The second method is more direct: 

non-first-orderness of categorial formulas shows up in failures of the Lowenheim- 

Skolem theorem. 

In Part II, we pass from the study of pure semantic expressive power to the 

combinatorics of categorial deduction. 

Chapter 3 proposes an analysis of completeness theorems for categorial ax- 

iomatic systems in a perspective of filter representation. Moreover, we prove 

frame incompleteness theorem and distinguish a complete class of categorial 

Sahlqvist formulas. 

Next, we consider labeled formats of deduction, where sequents may carry 

information about linguistic signs. In Chapter 4, we use the method of labelling 

to obtain a rather simple completeness proof of the Lambek Calculus with respect 

to binary relational semantics using suitable pair labels. Finally, in Chapter 

5, we provide a more general labelling discipline for ternary frame semantics, 

relating this method to the earlier correspondence perspective of translation into 

fragments of first-order predicate logic. 

Finally Part II deals with the control of resource management in catego- 

rial systems. We develop a theory of systematic communication between these 

systems. The communication is two-way: we show how one can fully recover 

the structural discrimination of a weaker logic from within a stronger one, and 

how one can reintroduce structural flexibility of stronger categorial logics within 
weaker ones. We show how unary modal operators can be used to obtain struc- 

tural relaxation, or to impose structural constraints. From a logical point of view, 
our contribution consists in some general translation methods, plus a number of 

embedding theorems connecting the main calculi in the categorial landscape.



  

Part I 
Categorial Structures and Frame Semantics 

This Part presents a modal semantics for categorial structures, based on ternary 

possible worlds frames from relevant logic, and develops its model theory and 

correspondence theory along mathematical lines familiar from general modal 

logic. This achieves a systematic view of semantic variety in the landscape of all 

categorial logics.





Chapter 1 

Ternary Frame Semantics and Its Model 
Theory 

  

1.1 Introduction and Motivation 

1.1.1 Model Structures 

In standard modal logic, Kripke semantics employs sets of worlds with a binary 

accessibility relation ( with interpretations such as ‘modal alternatives’, ‘later 

points in time’, ‘extended information states’). The basic semantic structures 

to be used in this thesis are ternary Kripke frames, which may be defined as 

follows. 

1.1.1. DEFINITION. Ternary Frames and Models. 

A ternary frame consists of a non-empty domain W and a ternary accessibility 

relation R. Notation for frames: F = (W, R®). A ternary model M consists of a 
ternary frame plus a valuation V sending proposition letters to sets of worlds. 

‚ Ternary relational frames can have different interpretations. In relevant logic 

(cf. [Dunn 86], [Rout. & Meyer 73]), the basic intuition is that of ‘information 
pieces’, with'ternary accessibility between them guiding the interpretation of 

implications: 

M,aEA—+ B <= VbVe(R’c,ab& b= A= c|= B) 

This move avoids validity of the usual ‘paradoxes of implication’ rejected in the 

literature. One of the more unexpected mathematical realizations of a ternary 

accessibility relation is the operation of addition in vector spaces ([Urquhart 72]). 
For the purposes of categorial logic and semantics, we also adopt the inform- 

ation-oriented view of ternary frames. The ‘worlds’ or ‘states’ represent pieces 

of information: either highly structured ones, such as grammatical forms or 

9



10 Chapter 1. Ternary Frame Semantics and Its Model Theory 

linguistic signs, or more abstract ones, as in Kripke-style semantics for intuition- 

istic logic (cf. [Troel. & van Dalen 88]). Another possible view, following the 
semantics of linear logic, is that of states as linguistic ‘resources’, in the style of 

[Moortgat 94]. But we can also focus on a different aspect of information, namely 

the manner of its flow. Thus, we can also think of ternary frames more dynam- 

ically, with worlds standing for transitions of possible processes. Altogether, 

then, our semantics can be seen as a model for information structure via static 

representations, but it also models information processing via dynamic actions. 

([van Benthem 91a] has a more extensive presentation of this dual view.) Ac- 
cordingly, the ternary relation R3a, bc acquires different informal interpretations, 

too. With linguistic expressions, it might express that a is the concatenation of 

b and c (in that order), or perhaps the result of some more sophisticated merge 

of information structures (cf. [Vermeulen 94]). With resources or information 
pieces, one can think of ‘pooling’. And finally, with transitions, the natural in- 

terpretation is that a is the result of performing b and ¢, successively. In general, 

henceforth, we shall think of ternary R3a, bc as a relation of abstract ‘compo- 

sition’: a is an outcome of composing b and ¢, or conversely, that a can be 

decomposed in b and c. 

There exist natural variations on this ternary frame semantics. These will be 

used occasionally in what follows. For instance, one can fix a distinguished point 

of the domain, yielding ternary frames of the form F' = (W, 0, R) , where 0 is an 

element of W . In relevant logic, models over such frames are often required to 

have only restricted valuation satisfying: 

if a € V(p) and Rb, a0, then b € V(p) 

if a € V(p) and Rb,0a, then b € V(p) 

(Evaluation of formulas in relevant logic is then often restricted to cases where 

this ‘actual world’ 0 plays a distinguished role.) More generally, this example mo- 

tivates the use of so-called general frames carrying certain plausible restrictions 

on the range of their ‘admissible valuations’. (For instance, in intuitionistic logic, 

one requires that all sets of worlds assigned to propositions be upward closed un- 

der passing to richer information states.) But for most of our purposes, the most 

abstract bare frame semantics will do. 

1.1.2 Information-Based Consequence 

The above semantics allows us much greater freedom than usual in defining 

validity for different styles of grammatical inference. For instance, in classical 

logic, A, B - C is semantically valid if, whenever A and B are true at point a in a 

model M , that same point a verifies C . This classical notion can be adopted as 

it stands in ternary frame semantics. But in the latter domain, the more natural 

notion of valid consequence seems the following one. The conclusion should be 

enforced by combining evidence supporting the various premises:
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1.1.2. DEFINITION. Dynamic Validity. 

A, B Fqyn C is valid in a ternary model, if A is true at point a and B is true at 

a possibly different point b with Rc, ab, then C is true at c . 

This is quite different from ordinary consequence. For instance, the ordering 

of the premises A, B may matter to the outcome — and so may the multiplicity 

of their occurrence. This non-standard, resource-sensitive structural behavior — 

of course — is precisely what has been studied in the literature on categorial 

deduction, starting from [Lambek 58]. More generally, semantic validity of an 

inference A1, Á2,...,An H+ A is related to ‘semantical trees’ d with root z and 

leaves z1,...,Zn. Îf the leaves z; (1 < i < n) support the premises A; , then z 

must support A . Thus, with information encoding done by propositions, log- 

ical inference does the job of information processing. An even more dynamic 

interpretation arises here when propositions themselves get a procedural inter- 

pretation as programmable actions transforming informational states. This time, 

think of ternary frames consisting of pairs a = (ao, a;) with starting point ag 

and endpoint a;. The earlier composition of states then becomes the following 

partial function: 

Ra, be iff ag = bo,a1 = C]_,bl = CQ 

Our new notion of logical inference from A;, Á3,..., A to A then says that, 

if the successive premises denote transitions 

aodi, ay@z,...,0n-10n 

then the resulting total transition from input to output state aoan supports B. 

Again, the non-standard structural behavior of categorial inference will be clear 

from this procedural view of the contributions of premises as forming a complex 

instruction for a sequence of actions. 

As we shall see later, this notion of inference matches categorial deduction 

in the basic system of non-associative Lambek Calculus. But also its extensions 

now acquire concrete semantic content. 

1.1.3 Special Frame Classes for Structural Rules 

On the basis of this general model class, we can now model more specific catego- 

rial or dynamic logics by special constraints on the ternary relation. In particu- 

lar, ternary frame semantics provides a semantical characterization of structural 

rules of deduction. This makes it a suitable tool for analyzing various inhabitants 

of the landscape of substructural logics (Lambek Calculus, relevance logics, in- 

tuitionistic logic) which differ from each other mostly in the presence or absence 
of certain structural rules. Here are central examples from the categorial liter- 

ature, concerning the difference between ‘directed’ and ‘non-directed’ Lambek 

Calculus.
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The structural rule of Permutation declares the inference B, A + C valid 

whenever A,B + C is. Semantically, this amounts to ignoring the order of 

composing two information states. Formally, the corresponding ternary frame 

constraint looks like this 

VaVbVc(Ra, be > Ra, cb) 

Analogously, the structural rule of Contraction, which states that a sequent 

A, A C is valid only if A + C is, expresses reflexivity of the ternary relation: 

VaRa, aa. 

Weakening declares the inference B, A + C' valid whenever A F C is. Seman- 

tically this amounts to the identification of two points in a ternary relation: 

Ra,bc > a —=b 

Later on we shall develop a systematic Correspondence Theory which can 

deal with diverse categorial laws, providing a broad picture of various shade of 

structure sensitivity. To make the connections with categorial grammars more 

precise,though, we must introduce a formal modal language accessing our ternary 

models. 

1.1.4 Modal Categorial Languages 

The choice of an appropriate language over ternary models is dictated by in- 

tended applications. One obvious candidate here is a propositional modal logic 

with a binary modality e accessing the composition relation; 

M‚aEAsB <= Jbde(Ra be&M,bE A&M,c E B) 

The usual language ML(e, —, ) of categorial grammar differs from this in two 

respects. On the one hand, it lacks the Booleans. But on the other hand, it has 

two functional slashes accessing ‘converses’ of the composition relation. These 

may be interpreted as follows: 

M,aFA—-B <= Vbc(Rc,ba&k M,b=A = M‚cE B) 

M,aEB+ A <<= Vbc(Rc,ab& M,b=A4 = M,ckE B) 

Moreover, we are going to interpret sequents in such models. We say that sequent 

A - Bis true at point a iff,if M, a = A then M, a = B. In addition we shall 
follow the usual conventions of modal logic. That is, ‘truth in a model’ means 

truth at all worlds in that model, and ‘truth in a frame’ means truth at all worlds 

under all valuations over that frame. 

This categorial language again suggests an enrichment (cf. [Venema 91] of 

the original modal one, with two further binary existential modalities:
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M,al=Ae B <= db3c(Ra,bc & M,b=A & M,c EB B) 

M,al=Ae; B <~ Jode(Rc‚ba & M,bEA & M,c = B) 
M,al=Ae3B <=  Fbdc(Rc,ab & M,bEA & M‚cEB) 

We can define the latter two with slashes and Boolean negation, and vice versa: 

Ae; B is equivalent to -(4 — - B) 
Aez B is equivalent to (3B + A) 
AB is equivalent to (A ©3 3B) 
B+ A is equivalent to —(A o3 = B) 

Thus, the latter language ML(e, —, +, -, &) may also be viewed as the natural 

Boolean completion of the basic categorial language, which can be treated via 

standard modal techniques. The point, however, is that categorial grammar is 

linked intrinsically with fragments of this language — and the peculiarities of the 

latter will give our treatment its special non-routine flavour. 

Further operators 

Over ternary models, futher operators may be plausible, beyond the above set. 

For instance, Relevant Logic has a non-boolean negation ~ , involving a new 

operation of ‘reversal’ for states. The relevant semantic clause is as follows: 

MaE~A iff not M‚r(a) E A 

To get the usual validities of relevant negation out of this, one has to impose 

futher constraints. E.g., the usual Double Negation laws require idempotence, 

in the form Va rr(a) = a. | 
The same move also occurs in the above-mentioned Arrow Logic (cf. [van Ben- 

them 94|, [Venema 93a]). Its language is designed to talk about transitions in 
their own rights, or more picturesquely, about graphical arrows. Besides ternary 

composition of arrows, ‘arrow frames’ contains set I of ‘identity arrows’ (lazy 

transitions that do not change states) and a reversal function r. The three modal 

operators of the language are e, ‚ and id, using composition, converse and iden- 

tity for their semantic interpretation: 

M,al=AeB iff  Jb3c(Ra,bc& M,b|= A & M,c = B) 

M,a = A" ff M‚r(a)E=A 
M,a = id iff I(a) 

The arrow language also has Boolean connectives, interpreted in the usual way. 

This framework also allows us to define the categorial slashes: 

A — B isequivalent to —(A"e —B) 

B4+ A isequivalent to —(53BeA%
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These definitions will validate the usual laws of the Lambek Calculus Ao (4 — 
B) +B and (B + A) e A+ B provided that we impose the following restrictions 
on arrow Írames: 

if Ra,bc, then Rc‚r)a 

if Ra‚bc, then Rb, ar( 

These express the natural shifts of perspective in composition triangles. For 

instance, graphically, if an arrow a is composed out of matching arrows b and 

c ‚ then we can also view b as staring with a and then returning via reverse 

of arrow c . 

Ù - bí'ìr(c) A - T@ZX 

1.1.5 The Lambek Calculus as a minimal modal logic 

Let us now apply our minimal modal logic in ML(e, —, <) to analyze the Lambek 

Calculus (cf. [Lambek 58], [Buszkowski 82], [van Benthem 88b], [Moortgat 88], 
[Moortgat 94]). The latter system has a double character. Logically (though 
with great historical injustice), it can be viewed as a multiplicative fragment of 
non-commutative intuitionistic linear logic. But linguistically, it is an essential 

engine for parsing with categorial grammar. Thus, a logical calculus can serve 

not just as a deductive system, but also as a paradigm for grammatical inference, 

with grammatical analysis becoming proof search for categorial logics. 

The basic principle underlying categorial grammar is the function-argument 

structure inside linguistic expressions. In the basic sentence ‘John reads’, for 

example, ‘John’ can be thought as an argument, supplied to the functor ‘reads’. 

We can make the following categorial type assignment to account for this. ‘John’ 

is of type e (‘entity’), the sentence as a whole is of type t (‘truth value’), and 

the verb ’runs’ is of type e\t (a left-looking function from e to t). By the basic 

categorial rule of function application 

a, a\b - b 

combining e and e\t yields t. Now, think of the left slash \ as a directed impli- 

cation + , and concatenate types for sentence parts using a product modality 

e . That is, read categorial type constructors as modal operators. The modal 

analogue of this function application then becomes the modal formula 

Ae(A— B) + B 

which is clearly valid in all ternary models presented above (by checking the 

above semantic conditions). In Categorial Grammar there is also a functional
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slash / for right combination, and a corresponding functional rule 

b/a, a H b 

In a similar way, the latter becomes the valid modal principle 

(B+ A)e A - B 

Similar observations hold for more complex modes of categorial combination from 

the literature. For instance, the directed Geach composition rule corresponds 

to the valid (in associative models which are going to be defined later) modal 

principle 

(A B)e(B—C) - (A—C) 

whereas its disharmonic variants would be invalid. (The latter fact may be shown 

by means of a simple ternary counter-example.) Likewise, the Montague lifting 

rule corresponds to the valid modal principle 

BF (B+~A)— B 

whereas its disharmonic variant becomes invalid. (one can even explain the 

invariants of [Roorda 91] in this modal way [Moortgat 94]) 
Using this modal perspective on the categorial type inference, we can now 

transcribe the basic categorial calculi as follows ([Dosen 92a]). First, the Non- 
Associative Lambek Calculus (NL) 

NL is axiomatized as follows 

axioms 

AF A 

Ae(A—B)FB (B4+ A)e AFB 
A+HB-(BeA) Al (AeB)« B 

rules 

if A B and C+ D then AeCtBeD 

B-CtHA-B 

C4+ BHD+ A 

if AF- B and B+ C then AFC 

We define semantic validity of sequents A + B as their truth in all ternary models. 

‘Non-associative’ means that we do not assume any equivalence between different 

bracketings of products. 

1.1.3. THEOREM. NL is sound and complete with respect to the class of ternary 

models



16 Chapter 1. Ternary Frame Semantics and Its Model Theory 

Proof 

Soundness follows by a simple inspection of the principles listed in the definition 

of NL. For the completeness part, define a simple Henkin model 

M = (W, R* ), 

where 

e W is the set of all types (categorial formulas) 

e Ra,bciffal-bec 

eacV(p)iffalp 

(This construction can be kept so simple because the categorial language is such 

a small fragment of the full modal language). The usual Truth Lemma states 

that for any «, 

MaEa iff ata 

This is proved by a straightforward induction on the construction of «, where the 

above principle show their role. The completeness result is a direct consequence. 
O 

NL can be also presented as a Gentzen calculus of sequents with one axiom 

and six inference rules. Here A, B, C stand for formulas, Y, X, X,, X2 for non- 

empty finite bracketed sequences of formulas. 

    

    

  
  

  

A=A 

Y = A X[B] = C (A, X) > B 
X[(Y,A—-B) > C X > AB 

Y > A X[B] > C (X,A) > B 
X[(B+AY)] = C X > B+ A 

X[(A,B)] = C X1 > A X, > B 
X[AOB] = C (Xl,Xg) > AeB 

Cut Rule 
X > A Y[A > C 

YX] = C 

Here sequences are bracketed, and this information can not be “flattened” to 

a mere sequence of commas separating the premises. Note, that no structural 

rules appear in this sequence formulation. Moreover no sequent with an empty 

antecedent is derivable. It is known from ([Kandulski 88]) that the Cut Rule is 
conservative in NL.
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For the semantic interpretation of sequents we define an extended valuation V 

over ternary models as follows: 

e Letac W andain ML(e,4+ , ). Thena e V(a) iffa F a 
e Ifa e W and X,Y are non-empty sequences of formulas, then a € 

V([X,Y]) iff there exist b € W and ¢ € W such that b € V(X), c € V(Y) 
and Ra, bc 

e Finally, X > % is true in a ternary model if V(X) C V(Y) 

The non-associative Lambek calculus is a minimal modal logic in the land- 

scape of categorial logics (the analogue of K in the hierarchy of standard modal 

logics). Its theorems do not define any frame constraints. More positively, the 

complete lack of structural rules makes the inference in NL resource sensitive. 

By contrast, already the usual Associative Lambek Calculus L makes semantic 

demands. When formulated in the above axiomatic format, it adds the following 

two principles: 
Ae(BeC)-H(AeB)eC 

(Ae B) e C - Ae(BeC) 

This have a non-trivial frame content, to which we turn now. 

1.1.6 Correspondence Arguments 

The question that we are interested in may be approached in two ways. First, 

given a categorial principle, we are interested in the demand that its validity 

makes on ternary frames. This may be called semantic analysis of categorial 

logics. But conversely, given certain properties of ternary frames, we are also 

interested just when these are definable by means of some set of categorial laws. 

This may be called categorial definability of semantic properties. (We shall 

encounter both positive and negative examples of this.) The two directions meet 

in the notion of ‘frame correspondence’. 

1:1.4. DEFINITION. Frame Correspondence 

A set of categorial formulas ® characterizes or defines a class of ternary frames 

Y iff ¥ = {F|F | afor all @ € ®} 

If ¥ is also defined by some formula % (say, from first order logic, or second order 

logic), then we say that ¥ corresponds to . A class 33 is categorially definable 

if some set of categorial formulas defines it. 

The statement that $ characterizes 3 says that all formulas in $ are true on 

each frame in 3 , while on each frame outside of 3 , at least one formula of & 

can be falsified. Now we turn to some examples. 

Example Analyzing Categorial Laws : Contraction 

In the preceding, we already gave a property of ternary frames corresponding
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to the Permutation rule generating the non-directed Lambek Calculus LP Like- 

wise, we can analyze the Contraction rule via corresponding axioms. The latter 

illustrates an interesting phenomenon. Variants in axiomatic formulations in 

different languages may have similar semantic import. Proofs for these, and the 

above, examples are very much like those found in correspondence theory for 

ordinary modal logic. We merely give a sketch of the style of argument at this 

stage. 

In ML(e),VzRz,zz is defined by prpep 

First, it is easy to check that, if Vz Rz, zz holds in a frame F' ‚ then p - perpis 

true in F. Second, for the opposite direction, suppose that F =pF pep . By 

definition, this means that the latter formula is true everywhere in our frame, 

under every valuation. Now, consider any w € W . Define so called ‘minimal 

valuation’ CV , which singles out the world w as follows: 

u € CV(p) iff u=w. 

Clearly, p is true at w under this valuation. But then, by the frame truth of 

ptpep , we must also have the following truth: 

dz3y (Rw,zy & F,CV,z =p & F,CV,y = p). 

Given the definition of CV , the latter is equivalent to Rw,ww . O 

The same strategy can be used for the following examples. 

e In ML(e, &), 

Vz Rz, zz is defined by p&g H peg 

e In ML(—>, fl), 

Vz Rz, zz is defined by p — (—p) - p 

e In ML(fl, , &) 

VzRz,zz is defined by p&—q F —=(p — q) 

e In ML(V,—,—), 
VzRz,zz is defined by p — g+ (—p) V ¢ 

Finally, here are some examples of ‘cautious contraction’ together with their 
frame equivalents 

(AeA) > B-A— B Vabc(Rc, ba = Jz(Rc, za& Rz, bb)) 
A3(A-B)HA- B Vabc(Rc,ba= Jy(Re, by& Ry, ba)) 

The latter two principles will only be equivalent to the earlier-mentioned reflex- 

ivity Ve Rz, zz in the presence of Associativity Laws. 

The first Associativity principle Ae (Be C) I (A e B) e C defines 

Vabcdz((Ra, bz & Rz, cd) = 3t(Ra,td& Rt, bc))
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c d b c 

Ü - %" 
a a 

The dual principle goes likewise. 

We shall study these correspondence phenomena systematically later on, provid- 

ing general methods and results. 

1.2 Options in Formal Modelling 

The preceding Section has given the main perspective from which we approach 

the analysis of categorial grammar and inference. In this Section, which can be 

skipped without loss of continuity, we prove some technical results concerning 

logical alternatives. First, we ask a question if structure sensitivity of a conse- 

quence relation can be captured not by frame constraints but rather by variations 

of truth conditions. Second, we show that decomposition of ternary relation is 

possible due to the faithful embedding of NL into tense logic. 

1.2.1 Varying Truth Definitions 

Ternary relation semantics provides frame conditions for various categorial ax- 

ioms related to structural rules. But there is another degree of freedom in se- 

mantic modelling (cf. [van Benthem 85]). A natural question to ask is whether 
one can obtain the same effects over arbitrary ternary frames by varying the 

modal truth definition for the categorial type constructors. We shall investigate 

the latter option for the case of Permutation: Ae B+ B e A. 
A natural account of commutative composition says that A e B is true in world 

z iff z can be decomposed into some y and z such that, either z supports A 

and y supports B or z supports B and y supports A. But there is also another, 

more ‘parallel’ view on this order indifference, replacing ‘either … or’ by ‘both 

. and’. These two views of composition describe two procedural interpretations 

of a commutative categorial product: 

(i) combine two resources in an arbitrary order 

(ii) combine them in both orders at once. 

A choice between the two becomes essential if one wants to have both com- 

mutative and non-commutative products around in one multimodal categorial
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inference system. For instance, let * be non-commutative Lambek product and o 

the commutative one. On reading (i), the principle A®B + Ao B has to be valid, 

whereas on reading (ii), it is invalid and its converse Ao B + A° B must hold. 

Can we force a choice here by formal semantic considerations? The answer turns 

out negative. 

The first interpretation of commutativity yields the following truth definition 

over the earlier ternary models: 

M‚a l=1i Aes B iff there are b,c with Ra, bc and 
M,b'zlA & M,C'—_—lBOT 

M,b ':1.B & M,C"—_lA 

M,‚al=i AB iff forall b,c: 

if Re,ba & M,b|=; AthenM,c}=; B 
and 

if Re,ab & M,b|=; A then M,c}; B 

We are going to compare the modal (categorial) theory of the class of all ternary 

models with the new truth definition with that of the old truth definition on the 

class of ternary frames satisfying the earlier frame constraint 

VaVbVe(Ra,bc = Ra, cb) (%) 

1.2.1. ProPosITION. For any M L(e, —) formula ¢, the following two assertions 

are equivalent: 

(i) a is universally valid on ternary models with non-standard evaluation |=; 

(ii) « is universally valid on ternary models satisfying (*) with standard evalu- 

ation = 

Proof 

(ii) = (i). Suppose there is a model M = (W, R, V) which |=;-falsifies ¢ at some 
world a. Consider M* = (W, R*, V) with R defined as follows: 

if (abc) € R, then put (abc) and (acb) in R* 

By a straightforward induction on modal formulas, one shows that 

VyVa(M, a Ei p <= M*,aEd) 

(i)>(ii) Suppose that ¢ is standardly falsified at some ternary model satisfying 
(*). By an easy induction, evaluation via |= and |=; amount to the same thing. 
Hence, ¢ can not be universally |=;-valid either. O 

The second interpretation of commutativity inspires the following truth def- 

inition over the earlier ternary models:
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M‚;‚a l=2 Ae B iff there are b,c with Ra,bc and Ra, c 

MbEs A & M‚ckb2B 

M,‚al=2 AB iff forall b,c: 

if Re,ba & M,‚blk2 A 

then M,c =5 B 

Next, we compare =5 with standard evaluation over ternary frames. 

1.2.2. PROPOSITION. For any ML(e, —) formula ¢, the following two assertions 
are equivalent: 

(i) o is universally valid on ternary models with non-standard evaluation E=2 
(ii) a is universally valid on ternary models satisfying (*) with standard 
evaluation = 

Proof 

(ii) = (i). Suppose there is a model M = (W, R, V) which [=,-falsifies ¢ at some 

world a. Consider M* = (W, R*, V) with R defined as follows: 
if (abc) € R, and (acb) € R then put (abc) and (acb) in R* 
Again, a straightforward induction shows that two models verify the same for- 

mulas at corresponding worlds. Thus, ¢ is not valid in the standard sense over 

commutative frames either. 

(i)=(ii) Suppose that ¢ is standardly falsified at some ternary model satisfying 
(*). As before, evaluation via = and =2 amount to the same thing. Hence, ¢ 

can not be universally |=5-valid either. O 

Thus, the two views on commutative composition can not be distinguished 

in our modal framework. Of course, in a multimodal categorial system with 

standard truth definition, the relation between A°B and A o B can be fixed 

via correlations between their corresponding primitive ternary relations (being 

a.commutative and a non-commutative one). But this is more ad-hoc, and not 

the outcome of our genuine semantic analysis. 

In what follows, we shall stick with the standard truth definition, and let the 

frame constraints vary along the categorial landscape. 

1.2.2 Trading Ternary Relations for Binary Ones 

It is at least of purely modal interest to see if the work of ternary accessibility 

relation can be done by binary ones. So far, we have analyzed the Lambek 

Calculus NL and its kind as a modal logic with binary modalities. Can we also 

analyze it as a modal logic with only unary modalities? For the case of a modal 

logic having just one unary modality, probably no faithful embedding exists. But 

we can embed into a multimodal temporal logic as follows.
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1.2.3. DEFINITION. Minimal Bi- Tense Logic 

Let Kj , be a minimal tense logic having two ’forward looking operators’ Oy, 

O, (with existential duals ©;, ©3) and two corresponding ’backward looking’ 

operators Di, DÊ (with existential duals OJI', Oi) The modal language of K7, 
has its formulas build up from propositional letters according to the rule: 

¢ == p| 8| 9&| O18| 28| O16| O34 01| 020|071 h| O3 

By standard methods, K}, can be axiomatized using 

Axioms 

e all tautologies of classical propositional logic 

e all modal distribution axioms 

Üi(A ) B) ) (Ü‚'A D Ü.‚:B) and ÜÍ(A ) B) ) (Ü;I'A ) ÜÎB) 

e all tense-logical conversion axioms 

O;DYA D A and A D O;07A 

Rules 

e modus ponens 

e necessitation A/0;A and A/DÌA , where i=1,2. 

A K}, model is an ordinary bimodal model 

M = (W, RÎ: Râ, V) 

with truth definition (i=1,2) 

M,a = 0;A <~  Vb(R;ab = M,b | A) 

M,al=0A <<=  Vb(Rjab = M,bk A) 

A faithful embedding of the non-associative Lambek Calculus into K7 , runs as 
follows: 

p¥ = P 
(A e B)* = O1(014% &O,B¥) 
(A B)# = 0}(0.4% D O B#) 
(A« B)#* = 0O§(0,4% D Ol B#) 

1.2.4. THEOREM. Embedding Theorem The following assertions are equivalent: 

(i) AF B is derivable in NL 

(ii) A* L B* is derivable in K Î2
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Proof 

The direction (i) = (ii) can be proved by an easy induction on the length of 
NL-derivation for A - B. For example, consider the axiom 

A+ B — (Be A) 

Its translation 
A#* F O3(0B* D 010, (01 B* &0, 4%)) 

is derivable in the minimal bi-tense logic K7 ,. For the converse direction (ii) = 

(i), we use a semantical representation argument. Let A + B be underivable in 

NL. By the above completeness of NL with respect to ternary semantics, there 

exists a ternary model M where A } B fails. So, there exists a world k € W which 

verifies A, but falsifies B. We construct a K}, model M = (W*, Ry, Ry, V*) 

where A* + B* fails, as follows: 

e put kin W* 
e if (a,bc) € R, then take a fresh object z, and put (az) and (zb) in R, , 

(zc) in Ra, a,b,c,zin W* 

e set for alla E WNW*, a € V*(p) iff a € V(p) 

1.2.5. CLAIM. For all categorial formulas A, and all a € W N W*, 

M* ak=A* < MalkA 

Proof 

Induction on the length of A. The basic case is a direct consequence of the 

definition of M*. We demonstrate only one typical clause of the inductive step, 

to illustrate this kind of elementary semantic argument over ternary models. 

(1) Suppose M*,a = 03(01 4% D DÏB#) 
We need to show that M,a = A — B. 

(2) Suppose (a) R3c,ba and (b) M,‚bk A 
We need to show that M,c = B 

(3) By the inductive hypothesis : M* b |= A¥. 
By the above construction of M*, (2(a)) yields ; 

(4) (a) Ricz (b) Rizb (c) Rzza 
(5) By the truth definition: 

M*, z "—" <>1A# 

From (1) and (4(c)) 

M*, z = O1A# D O} B# 
Thus M*,z | DJI’B# 

(6) From (4(a)) we get M*,c = B¥ 
and by inductive hypothesis M, ¢ = B.
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Here is the converse argument. Again, we start by successively unpacking what 

needs to be shown. 

(1) Suppose M,a = A — B. 

We need to shaw that M*, a = O}(OA# D OFB#) 
(2) Suppose (a) Roza (b) M*,z = O1A¥ (c) Ribz 

We need to show that M*,b |= B¥ 
(3) By (2(b)) there exists c such that 

(a) Rize and (b) M*,ck A# 
By inductive assumption : 

(c) M,cE= A 
(4) Note, that by the construction of M*, 

Ribz, Rizc, Rsza 

can ’come from’ the unique triangle, namely Rb,ca. 

Then, from (1) and (3(c)), M = B, and therefore 
M*,b = B¥. D 

The preceding Claim implies that any ternary NL-counter-model M for a sequent 

A - B can be transformed into Ki 2 model M* where A* L B*fails. Hence 

A¥ - B¥ is not derivable in K { 3. This proves the faithful embedding. 

Remark Alternative Roules 

The first claim in this proof can also be shown via a semantical representation. 

One start from a bi-tense model, and defines the ternary relation in a suitable 

manner corresponding to the above translation. Also, the shape of the translation 

itself can be varied in several ways without affecting the outcome. 

The preceding method of proof generalizes directly to the earlier full cate- 

gorial language with Booleans. Recall that the latter may also be viewed as an 

ordinary modal language with a ‘versatile’ triple of existential modalities access- 

ing the same ternary relation ([Venema 91]). Indeed, we have proved something 
more general: 

1.2.6. THEOREM. (1) The minimal modal logic of one binary existential 
modality can be faithfully embedded in the minimal bimodal logic. (And 
likewise for poly-modal versions.) 

(2) The minimal modal logic of versatile triples of existential modalities 

can be faithfully embedded into the corresponding minimal poly-tense logic 

with matching future and past operators, via the above translation. 

We believe that a similar reduction is possible from quaternary to ternary rela- 

tions, and so on. As stated before, this leaves the open question if one can also 

perform such an embedding into a non- temporal modal logic?



1.3. Basic Model Theory 25 

1.3 Basic Model Theory 

In this Section, we develop some basic modal model theory for ternary frame 

semantics. First, we concentrate on the basic semantic invariance called ‘bisim- 

ulation’ and define some useful properties of ternary models. Next, we drop 

valuations, and study pure frames. In particular, we are looking for weak forms 

of model and frame constructions which can fit with weak categorial languages. 

1.3.1 Models and Bisimulation 

In modal logic and process theory, bisimulation is the basic notion of seman- 

tic equivalence ([vBen & Berg 93], [vBvESteb 94], [An.vB.Nem. 95]). This is a 
‘process equivalence’ stating when two models represent the ‘same structure’. 

We start with the basic mathematical concept as it applies to the full categorial 

language with Booleans. 

1.3.1. DEFINITION. A Bisimulation 

A bisimulation is a non-empty binary relation Z between two ternary models 

M, = (W1, Ry, V1) and My = (W3, R2, V2) such that the following holds: 

1. Atomic harmony 

If Zwv , then w, v verify the same proposition letters 

2. Ternary Zig 

(a) If R1a, bc and Zaz , then Jydz(R27,yz & Zby & Zez) 
(b) If R;b,ac and Zaz ‚ then Jydz(R2y, zz & Zby & Zez) 

(c) If R;1c‚ba and Zaz ‚ then Jydz(R2z,yz & Zby & Zez) 

3. Ternary Zag 

(a) If R2a, bc and Zaz , then Jydz(R1z,yz & Zby & Zcz) 

(b) If R26, ac and Zaz ‚ then Jydz(R;y, zz & Zby & Zez) 

(c) If Rac,ba and Zaz , then Jy3z(R;z,yz & Zby & Zcz) 

This notion says that structural decompositions made in one representation 

have matching decompositions in the other. Fixing such a notion of seman- 

tic equivalence amounts to deciding on a level of abstraction for processes or 

linguistic structures. The finer-grained and concrete one’s view of what the rel- 

evant structure is, the more ‘sensitive’ will be the preservation clauses in the 

simulation. 

bisimulation turns out to be a natural concept because it fits very well with 

modal languages. An easy induction establishes: 

1.3.2. PROPOSITION. From Bisimulation to Invariance 

Let M; and M be two models, with a bisimulation Z between them such that
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Zaz . Then, for every formula ó in our full Boolean categorial language M L(e, — 

y €5 7, &) j 

MyyaF¢ < MzEó 

1.3.3. PROPOSITION. From Invariance to Bisimulation 

Let M; and M, be two finite models, with worlds a, z, resp., verifying the same 

formulas of M L(e, —, <, -, &) Then there exists a bisimulation Z between these 

models such that Zaz . 

Proof 

By a straightforward analogy with standard modal logic. (Cf. [van Benthem 

and Meyer Viol 94] or [Blackburn de Rijke and Venema 94]). As these references 
show, on infinite models, the situation is somewhat more complex. D 

Now the obvious question is whether the same results hold for our categorial 

fragments, in particular, for ML(e, >,4-) formulas. Proposition 1 evidently 

goes through, but Proposition 2 does not. 

1.3.4. PROPOSITION. Modal equivalence on finite models with respect to M L(e, > 

‚ ) formulas does not guarantee bisimulation. 

Proof 

Consider the following two models: 

M, = (W1, R,, V1) such that W, = {a}, R;a, aa and all atoms are true at a; 

My = (W,, Ry, V3) such that Wy = {z,y}, Rsz, zz, Raz, yz, Raz, zy, all atoms 

are true at z, and the valuation in y is arbitrary 

e Claim 1 

All categorial formulas o are true at z in M, . 

Proof 

Induction on a. We consider three inductive cases in M, . Suppose 

z E a > f. Twocasesoccur: y Ba, z HBorzba, z HB. 

In both cases, z | B gives a contradiction. The same argument works for 

B + a . Finally, z E ae6 ‚ since Rz, zz and, by the inductive hypothesis, 
z=Ba,zEf6. 

A similar argument shows that 

e Claim 2 

All categorial formulas « are true at a in M . 

Nevertheless, we have this final observation: 

e Claim 3 

M; and M, are not bisimilar. 

Proof 

Any bisimulation Z should link y to a . So, R1a, aa and aZy should yield 

a ternary triangle in Ma with y as a root. But no such triangle exists. O
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Thus we have a question what kind of weaker simulation is needed to obtain 

full analogues to the above results for the categorial fragment. (Cf. the discussion 

of weaker modal languages for coarser process simulations in [Hennesy and Milner 

85], or [van Benthem and Bergstra 93].) 

Here we introduce a new notion of directed categorial bisimulation which is 

weaker than the original bisimulation. It helps to draw arrows between models 

when visualizing the clauses to come. 

1.3.5. DEFINITION. Directed Categorial Bisimulation 

Let Z be a directed binary relation between ternary models M, N, i.e., a set of 

ordered pairs (z,y) with z in M and y in N, or vice versa. Such a relation Z is 
called a directed categorial bisimulation if it satisfies the following conditions: 

e if zZy and an atom p holds at z, then it also holds at y 

e if zZy and Rz, uv, then there exist s,t in the model of y with Ry, st and 

uZs , vZt 

o if zZy and Rs,ty, then there exist u, v in the model of z with Ru, vz and 

tZv and uZs 

e if zZy and Rs, yt, then there exist u, v in the model of z with Ru, zv and 

tZv and uZs 

Example Directed Bisimulation Without Bisimulation 

Consider the two models employed in our earlier argument: 

Mi = (Wi, R1, Vh) such that W; = {a} , R1a, aa and all atoms are true at a ; 

M, = (W3, R2, Va) such that Wa = {z,y}, R2z, zz, R2z,yz, R2z, zy, all atoms 

are true at z, and the valuation in y is arbitrary | 

We observed that no bisimulation exists here connecting a to z . But the earlier 

facts can all be explained by seeing that there is a directed categorial bisimulation 

between these two models: 

{(a,2), (2, a),(y,a)} 

1.3.6. PROPOSITION. Directed Preservation 

For all categorial formulas ó , if zZy for some directed categorial bisimulation 
Z between two models M, N, then 

M,z =¢ implies N,y ¢ 

Proof 

By induction on categorial formulas. The above three zigzag clauses were made 

for just these three cases. 0
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Actually, the above inductive invariance argument would also go through for 

conjunctions and disjunctions of categorial formulas. Thus we have come closer 

to the categorial fragment, but we are not yet quite there. But at least, we have 

the following converse. 

1.3.7. PROPOSITION. From Invariance to Directed Bisimulation 

Let M and N be two finite ternary models with z in M and y in N ‚ or-vice 

versa, such that, for all ML(e, >,4+,t, f,&,V) formulas « , if M,z = a then 

N,y E a . Then there exists a directed categorial bisimulation Z between M 

and N such that zZy . 

Proof 

We set aZb iff for any M L(e,—,+,t, f,&,V) formula a, if a € V(a) , then 

b € V(a) (in either direction between the two models M and N). Now, we must 

check all the above clauses. 

(a) Suppose that uZu; and Ru, wv . We have to show that there exist w; and 

v; such that Ru;,w;,v; with wZw;, vZv; . First note that u =t et , whence 

u; = tet . Thus, in the model of u; there is at least one triangle with u; as a 

root. Now suppose that, for 

<'U‚1, albl); S <u17 akbk> 

it is not the case that wZa; (1 < ¢ < k) and for 

<‘U1, C1d1>, … <U1, c‘ndn> 

it is not the case that vZd; (1 < 4 < n). Then there exist M L(e, =, «,t, f, &, V) 

formulas a;,, ..., ak, B1,...,Bn, such that 

e wkEo;buta; oy, foralll1 <:i<k 

e v -f but d H B;, foralll<i<n 

Therefore, w EB oi& .. . &ou and v E Bi&.. . &Bn Hence u E (ai&.. &og)e 

(B1& .. &Bn). But by the definition of these formulas, 

U1 ËÉ (al& … &ak) e (‚31& .… &‚Bn) 

which contradicts the fact that uZu; . 

(b)  Suppose that vZv, and Ru,,w;v;. Note, that v; £ t — f. Therefore 

v £t — f. Thus, there is a least one triangle in the model of v with v for a right 

daughter. Suppose now that for 

<a11 bl”); …. <ak: bk'U) € R1 

it is not the case that w; Zb; (1 < i < k)}, while, for 

(d1,c1v),...,{dn,cnv) € R,
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it is not the case that d;Zu;(1 < 7 < n). Here we assume that 

(a1,b1v),...,{ak, bxv), (d1, c1v), ..., {(dn, cnv) 

are all triangles in the corresponding model with v for a right daughter. Then 

there exist M L(e,—,«+,t, f, &, V) formulas ay, ..., ar, B1,...,Bn, such that 

e wi & a; but b; ( a;, for all 1 <i<k 

e d; BB; but u; H B;, for all 1 <i<n 

Therefore wi B ai& .. .&ox and u = (81 V...V Bn)- 

Since Ru;1, wiv; , we have 

v (& .. . &ag) 3 (B1 V ... V Bn). 

Then, because of the link vZv; , 

v E (or&.. &og) 3 (BiV ... VBn). 

But that means that there exists some ternary decomposition Ra;, b;v or Rd;, c;v 

witnessing this. Thus, either some b; does support a1& .. .&a,, or some d, fails 

to support 8, V...V B, . Both cases yield a contradiction. 

(c) _ The remaining case is quite similar. D 

1.3.2 First-Order Translation 

There is another broad perspective behind the preceding notions. Like standard 

modal languages, categorial languages can be viewed as as fragments of full first- 

order predicate languages via the following transcription of their semantic truth 

definition: 

1.3.8. DEFINITION. Standard Translation 

ST(p) = P(z) 

ST(AeB) = 3Jy,z(Rz,yz& [y/z]ST(A) & [z/z]ST(B)) 

ST(A— B) = Vy,z(~(Rz,yz & [y/z]ST(4)) V [z/z]ST(B)) 

ST(A«B) = Vy,2(~(Rz,zy & [y/z]ST(4)) v [2/z]ST(B)) 

ST(~A) =  -ST(4) 

ST(A&B) =  ST(A)& ST(B)
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The obvious question now is: which fragments of first-order language corresponds 

to categorial languages? The answer is the following preservation result, which 

may be proved by standard modal techniques ([van Benthem 85], [de Rijke 93]) 

1.3.9. THEOREM. Preservation for Bisimulation 

For any first-order formula ó with at most one variable z free, the following two 

assertions are equivalent: 

1. ¢ is equivalent to the standard translation of some categorial formula in 

ML(e,—,+,, &) 
2. ¢ is invariant for bisimulations. 

Notice that all formulas in this fragments have their quantifiers occurring re- 

stricted by ternary atoms. A general study of such restricted-quantifier frag- 

ments of first-order logic is made in [An.vB.Nem. 95], where it is shown how 

their model theory and proof theory is much simpler than that of full first-order 

logic. In particular, complete proof calculi need not invoke the structural rule of 

Contraction. These analogies with categorial inference will be discussed further 

in Chapter 5 below. 

For the moment, we just note that under these translations, categorial deriva- 

tions can also be viewed as first-order deductions with variables ranging over 

information states. 

Example Left Function Application 

The Lambek-derivable sequent A e (A — B) + B corresponds to the valid first- 

order inference 

Jyz(Rz,yz & A(y) & Vuv((Ru,vz & A(v)) — B(u))) E B(z). 

The latter can be proved by completely standard means. 

Example Geach’s Principle 

The well-known L-derivable sequent of ’function composition’ 

(A B)e(B-C)-F(A—C) 

is not derivable in NL . This has to do with its expressing Associativity of 

ternary composition, as we shall see in the correspondence analysis of Chapter 2. 

These facts show up as follows under first-order translation. The Geach sequent 
translates into the first-order formula 

Jyz((Rz, yz & Vuv((Ru, vy & A(v)) — B(u)) 

& Vst((Rs,tz & B(t)) — C(s)) EB 

Vmn((Rm,nz & A(n)) - C(m))
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The latter formula is not first-order valid as it stands. It requires a certain form 

of associativity for R to become so. 

Incidentally, this style of analysis provides a powerful means of finding counter- 

examples to putative categorial principles: translate, and search for standard 

first-order counter-examples in ternary models via any known technique (e.g., 

semantic tableaus). 

1.3.3 Frame Constructions 

Next, we concentrate on ternary frames, and their categorially definable struc- 

tural properties which do not refer to particular valuations. Again, this is a 

known area from modal logic. For the full modal language ML(e, >,+,7,&) 

with Booleans, we have a number of familiar frame constructions preserving 

frame truth. These include so-called generated subframes, disjoint unions, p- 

morphic images and ultrafilter extensions. (Cf. [van Benthem 85], or [Blackburn 
de Rijke and Venema 94].) Such constructions can be used to show that certain 
frame properties are not modally definable: namely, if they fail to be preserved 

under them. In some cases, these properties even characterize the modal lan- 

guage over frames, witness the following definability result from [Goldblatt and 

Thomason 74]: the modally definable first-order classes of frames are precisely 

those which are preserved under taking generated subframes, disjoint unions, 

p—morphic images and whose complement is closed under ultrafilter extensions. 

For classes of finite frames, the first three conditions even suffice. With our 

weaker categorial language without Booleans, this theory essentially generalizes. 

We first consider the most evident cases, namely constructions preserving frame 

truth which are not sensitive to the presence or absence of booleans. Next, we 

add a notion of weak filter extension for categorial language without booleans 

and prove the corresponding antipreservation theorem. 

1,3.10. DEFINITION. Generated Subframes 

Let F = (W, R) be a ternary frame. F' = (W', R') is a generated subframe of F 
if it is a subframe in the ordinary model-theoretic sense (i.e., W’ is a subset of 
W , and R’ is the restriction of R to that subset), which satisfies three additional 

closure properties: 

if z € W’ and Rz, yz, then y,z €¢ W' 
if y€ W' and Rz,yz, then z,z ¢ W' 
if z € W' and Rz, yz, then y,z €¢ W' 

1.3.11. PROPOSITION. If F' is a generated subframe of F and w € W/, then, 
for each formula ¢ in M L(e,—,« ), if F = ¢, then F' = ¢
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Proof 

This result, and the following ones, are easy uniform consequences of the earlier 

invariance for bisimulation. Suppose that ó fails in F’ . I.e., there exists a val- 

uation V' and a w € W' with (F' , V') , w | . But then, the identity relation 

between points in W’ and W is a bisimulation between the two models (F', V) 

and (F, V') connecting w to itself. Therefore, ¢ also fails at w in F , and hence 
F = ¢. O 

Corollary 

VzRz,zz (’non-reflexivity’) is not definable in M L(e, —, ). 
Proof 

Consider two frames F; and F5 defined by 

o F}, = (W1, R;), where W; = {z} and Rz, zz 

o Fy = (W,, Ry) with W, = {a,b,c,z} and Rja,bc; Ryz, zz 

F is a reflexive generated subframe of the non-reflexive F, . This refutes modal 

definability, by the preceding result. D 

Likewise, the disjoint union of a family of ternary frames can be defined taking 

the disjoint union of their domains and their ternary accessibility relations. Note 

that each of these frames lies embedded as a generated subframe of the disjoint 

union. As a consequence of the previous result, we then have: 

1.3.12. PROPOSITION. A M L(e, —,+ ) formula ¢ is true in a disjoint union of 
ternary frames iff ¢ is true in all of them. 

Corollary 

VbVcdaRa,be  (‘existence of compositions’) is not definable in 
ML(e,—,+). 
Proof 

Take a disjoint union of the single reflexive point frame 

({z}; {(z,z,z)}) with itself. O 

1.3.13. DEFINITION. P-Morphism 

Let F = (W, R), F' = (W', R') be ternary Kripke frames. A function f : W — 
W' is a p-morphism from F to F' if 

1. if Ra,‚ be , then R'f(a), f(b) f(c) 

2. e if R'f(a),zy , then there are b,c € W such that f(b) = z; f(c) = y 
and Ra, bc 

e if R'z, f(b)y , then there are a,c € W such that f(a) = z; f(c) =y 
and Ra, bc 

o if R'z,yf(c), then there are a,b € W such that f(a) = z; f(b) = y 
and Ra, bc
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1.3.14. PROPOSITION. If F' is a p-morphic image of F , then for any 

ML(e,—,+) formula ¢ , if F = ¢ then F' = ¢. 

Proof 

Let F' refute ¢ in some world w under some valuation. Use inverse images of 

the p-morphism f to copy this valuation onto F . The result is a bisimulation 

between the two resulting models. Then, again by bisimulation invariance, ó 

will be refuted in any inverse f-image of w. O 

Corollary 

Vz—Rz,zz (irreflexivity’) is not M L(e, —, +) definable. 

Proof 

Compare Fi and #; defined as follows: 

® Fl —= <W1‚R1>, with W1 = {a, b, C} 

and R;a, ac; R;b, ba; Ric, cb 

e H = (W2, R2), with Wa = {z} and R2z,zz. 

Identification with z is a p-morphism from the irreflexive frame F; to the reflexive 

frame H. O 

Finally, we consider the least obvious extension of standard modal preserva- 

tion properties. 

1.3.15. DEFINITION. Weak Filter 

Let I be a non-empty set. A weak filter D over J is a set of non-empty subsets 

of J such that 

) IED 
(ii) f X € Dand X CY,thenY € D 

Next, we define three useful operations on subsets X,Y of any ternary frame F, 

obtained by obvious lifts (borrowed from the completeness arguments ): 

XoY =  {a|Fbc(Ra,bc&k be X & ceY)} 
XY = {a|Vbe((Rc,ba& be X )=> ceY)} 

vyX4Y = {a|Vbe((Re,adb& be X )=> c€Y)} 

It is easy to see that: 

XoYCZ «— YCXbPbZ <— XCZJAY 

The motivation for these operations has to do with our truth definition. Let 

V(%) be the set of worlds in a model where a formula $ holds. Then, we have 
the following equalities:
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V(AeB) = V(A)oV(B) 
V(AB) = V(4) >V(B) 
V(A< B) = V(A)<V(B) 

1.3.16. DEFINITION. Weak Filter Eztensions 

Let F = (W, R) be a ternary frame. The weak filter extension wfe(F) of F is 
the frame F’ = (W', R') where W' is the set of all weak filters over W and R’ is 
defined as follows: 

Ruj,ugug <= VX, Y(X €uy &Y €ug = XoY € uy) 

1.3.17. LEMMA. Let V be a valuation on F = (W, R) , and let V' be the valu- 

ation on wfe(F) defined by 
veV'(p) iff V(p)€u. 

Then, for all u € W' and all categorial formulas $, 
ueV'(g) if V(ó) E u. 

Proof 

Induction on ¢ . We start with the case where ¢ = Ae B : 

1. Suppose u € V'(Ae B) 
2. There are u1, U9 such that 

u € V'(A) u2 € V'(B) R/u, u1u2 

3. By the inductive hypothesis, V(A) € u; and V(B) € u, 

Hence, by the definition of R' : V(A) o V(B) € u. 
By a preceding observation, then, V(A e B) € u. 

Next, conversely, 

1. Suppose V(A e B) € u. 
2. We need to find two suitable weak filters u1, u9. Set: 

u = {X|V(4) C X} us = {X|V(B) C X} 
3. We show that R'u,uju,. Let X € u; and Y € u,. 

Hence, V(A) C X, V(B) C Y and therefore V(4)o V(B) C X oY. 
It follows that V(Ae B) C X oY, and from (1) plus the definition of a weak 
filter, we have X oY € w. 

4. Altogether, the constructed u;, us satisfy what is needed: 

u € V'(A) u2 E V'(B) R'u, ujuy
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We consider one other case, that of ¢ = A — B , giving the main steps without 

extensive annotation: 

1. Suppose V(A — B) € u 
Suppose R'uy,uju and u; € V/(4) 
By the inductive hypothesis, V(A) € u;, hence 

V(4)o V(A — B) € uy 
Since V(A)o V(A — B) C V(B), V(B) € u, 

6. Therefore, u, € V/(B) and u € V/(A — B) 

Conversely, 

1. Suppose V(A — B) ¢ u 
2. We have to construct weak filters u;, us such that 

u E V'(A), R'us,uju and u g V'(B) 
3. Define 

ui ={X C WIV(A) C X} 
'LLZZ{ZÊWIHX,YC_:W(XOY(_:Z&XE'LĲ&YË'U‚)} 

4. V(A) € u; ‚therefore u; € V'(A) 
5. Note that, if X € u; and Y € u, then X oY € uy. Therefore R'uy, u;u 

6. We show that V(B) g u2 by contraposition: Suppose V(B) € u2. 
Then there are X,Y C W such that 

XoYCV(B) Xeu Yeu 

7. Next, since V(A) C X , clearly V(A)oY C X oY 
and V(A)o Y C V(B), whence 
Y C V(A) b V(B) and Y C V(A > B) 
hence V(A — B) E u 

In all, then: 

V(B)§us 2> u ¢ V'(B) > u ¢ V(A — B). D 

o
 0 

N 

Now, we can prove the desired ‘antipreservation result’ for weak filter exten- 

sions: 

1.3.18. THEOREM. For all frames F and all categorial formulas ¢, if ¢ is true 

in wfe(F) , then ¢ is truein F . 

Proof 

Suppose there exists a valuation V on F refuting ¢ in some world. I.e., W -V (¢) 
is non-empty: say, it generates the weak filter u . By the preceding Lemma, we 

have that u is not in V'($) : i.e., ¢ is not true in wfe(F) either. D 

Corollary The first-order formula VadbRb, ba is not categorially definable. 

Proof 

Consider the ternary frame F = (W, R), where W = N (the natural numbers) 
and Ra,bciff a < (b+ c). Clearly, Va3bRb, ba is false in F : consider the number 
0 . By contrast, we have:



36 Chapter 1. Ternary Frame Semantics and Its Model Theory 

Claim Va3bRb, ba, ba is true in wfe(F). 
Proof Let a be an arbitrary weak filter. Define b as {N} , which is a 

weak filter. We still have to check that R’b, ba. Suppose that X € b and 

Y € a. (Note that X = N and that Y must be non-empty.) So, we need 

that N oY = N. But this is trivial, using the definitions of o and R. 

O 

The preceding analysis has given a broader version of modal ultrafilter exten- 

sions, matching our weaker categorial language. Similar generalizations might 

be possible for the three more traditional frame constructions of generated sub- 

frames, disjoint unions and pmorphic images. More generally, we have this ques- 

tion: Can one generalize the Goldblatt-Thomason Definability Theorem to this 

categorial setting? 

Remark Categorial Sequents 

Our categorial analysis will eventually access ternary frames a little differently. 

For, we shall be interpreting categorial sequents A + B, whose truth condition 

referred to truth at all worlds. This corresponds to a (modest) use of the so- 
called ‘universal modality’ (de Rijke 1993), which induces a slightly modified 
perspective on ternary frames (cf. van Benthem 1989 on the resulting form of 

the Goldblatt-Thomason theorem).



Chapter 2 

Correspondence Theory For Categorial 
Principles 

  

2.1 Introduction 

The aim of this Chapter is to demonstrate some methods of modal Correspon- 

dence Theory for use in categorial analysis. In particular, we prove a Sahlqvist 

— van Benthem theorem for categorial languages. Moreover, we develop some 

general theory of definability. 

2.1.1 Correspondence Phenomena 

We now resume the semantic analysis of the frame import of structural princi- 

ples in categorial logics. In the preceding Chapter, we considered frame truth 

of categorial formulas by themselves. But now, we want to analyze the sequents 

A + B that make up categorial calculi. These were true in a ternary frame F', if 

for all valuations V , all worlds verifying the antecedent in the model (F, V) also 
verify the consequent. There is no obvious reduction between the two notions, 

say, via some deduction theorem. 

Example Sequents versus Formulas 

The sequent A + A e A corresponds to the frame property of reflexivity, as we 

have seen before: VzRz,zz . Its closest formula relative 

A > AeA 

corresponds to Vzyz(Rz,yz —> Rz,yy). Reductions will only occur if we intro- 

duce additional vocabulary into the categorial formalism, such as an ‘identity 

type constant’ I satisfying 

A.I:I.A:A 

37
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The latter will allow removal of all antecedents up to I, using Residuation Prin- 

ciple 

As BHC <= BHA3C <+ AFC+ B 

Let us consider some main steps in the Categorial Hierarchy. 

Associativity and Function Composition 

Consider Geach Composition, in one of its many equivalent forms: 

(A— B)F (C - A) + (C B). 

One can derive this as follows: 

First, note that 

(Ce(C — A)e(A— B)FB 

is NL-derivable. Then by Associativity and Cut 

Ce((C— A)e(A—B))FB 
By residuation 

(A— B) (C — A) - (C — B) 

But there is also a converse route. Substitute the following: 

B := (AeB)eC A := AeB C:=A 

Then the Geach Rule yields: 

((Ae B) > ((AeB)e(C))F(A— (AeB)) > (A— ((AeB)e()). 

Now note that the following are N L-derivable: 

CH(AeB)— ((AeB)e() 

BFA— (AeB) 

Using Cut and Residuation, one obtains: 

BeCl(A— ((AeB)e()). 

Again, by Residuation this gives 

Ae(BeC)-(AeB)eC. 

Another way of arriving at this insight, however, is to analyze the semantic 

meaning of these laws.Both express that the composition relation is associative, 

in the sense that 

Vabcde((Re, ba & Ra, de) > 3z(Rc, ze & Rz, bd)). 

Permutation and Contraction 

Similar points can be made concerning the law of Permutation, the structural 

principle which leads to the non-directed Lambek Calculus LP. Its natural prod- 

uct formulation is Ae B B e A. But there are also slash formulations, such 

as the principle which says that functions do not care about the provenance of
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their arguments: A—+ BH B + A. Again, we shall analyze these two, and show 

that their semantic content is the same. On the other hand, we will show that 

there exists a variety of principles expressing Contraction, in forms like 

A-AeA or (A 3(A3B)- (A B). 

Peirce’s Law 

Finally, the principle which collapses resource-sensitive categorial logics into clas- 

sical conditional logic is Peirce’s Law 

((A— B) = A) - AF A. 

We shall study this principle in some detail below. 

2.1.2 Correspondence Theory 

There is an extensive modal theory of frame correspondence (cf. [van Benthem 
84, 85]. Here are some basics. Any modal formula ó(p1, .. . , P) has a second- 

order frame correspondent via the earlier standard translation, which may be 

written as follows: 

VP . VPeVzST($). 

Here, the second-order prefix reflects the quantification over all (relevant) 
valuations in a frame, and the first-order one that over all its worlds. But in 

many cases, a simple first-order equivalent is available. For instance, the well- 

known S4 axioms correspond to reflexivity and transitivity of accessibility. On 

the other hand, the ‘Lob Axiom’ in provability logic expresses transitivity and 

well-foundedness of (converse) accessibility, and hence it is essentially second- 

order. We call a modal formula first-order if it defines a first-order frame 

property. Model-theoretically, modal formulas are first-order if and only if they 

are preserved under ultrapowers. More syntactically, there are also methods for 

extracting first-order equivalents from (suitable) modal formulas. A powerful one 

is the Sahlqvist-van Benthem algorithm, which produces first-order substitutions 

for the above second-order quantifiers VP, ...VP; turning the matrix formula 

ST(¢) into a first-order equivalent for the original modal ¢ (modulo some logical 

transformations), provided that the latter has a suitable form described in the 

Sahlqvist- van Benthem Theorem. 

There is also a converse direction of interest. Given any first-order frame 

property, one can ask whether it is modally definable. Here, the earlier frame 

preservation properties provide constraints (cf. Chapter 1), and indeed the 

Goldblat-Thomason Theorem provided a complete though not syntactically ex- 

plicit description. For further issues and results, we refer to the above three 

references. In particular, current interest revolves around correspondence for
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stronger modal formalisms, with respect to stronger standard languages (includ- 

ing higher-order ones), often using connections with Universal Algebra (cf. also 

[Marx 94]). 
5 

2.2 A Sahlqgvist-van Benthem Theorem for Catego- 

rial Formulas 

Our aim now is to find a version of Sahlqvist-van Benthem algorithm, which when 

input a categorial formula in M L(e, —, ) of a certain form, reduces it to an 

equivalent first-order property of ternary relations via suitable instantiations. 

We start with examples with formulas in M L(e) to illustrate the method in 
action. Then we propose two ways of treating implicative categorial sequents, 

one by reduction and one by direct analysis. These motivate two parts to the 

general Sahlqvist-van Benthem Theorem for categorial language. 

2.2.1 Examples with Product 

We start with some examples involving only the categorial product e. An algo- 

rithm for this class should deal with at least the following axioms related to the 

structural rules: 

(peg)ertnel(ger) Associativity 
pegtgep Permutation 

ptpenp Contraction 

pegtp Weakening 

A small point of notation. In this Chapter, in line with the modal literature, 

we shall often consider single sequents written using proposition letters (e.g., 

pegtqgep), rather than their schematic versions indicated with capital letters 

(compare Ae B Be A). The reason is that frame truth for both amounts to 
the same thing, due to its second-order quantification over all valuations 

2.2.1. PROPOSITION. If both a and 6 are in ML(e), then the sequent a + 8 
corresponds to some first order formula ó which is effectively obtainable from 

al B. 

Proof 

This is a straightforward adaptation of the of minimal substitution algorithm 

in van Benthem 85]. At this stage, we merely illustrate how it works by some 
heuristic examples. O 

Example Permutation 

What does pe g - q e p correspond to? A useful heuristic is to think of some 

‘minimal valuation’ making its antecedent true, and then see what the latter
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says about the consequent. Now, a minimal verification of pe g is some situation 

Rz,yz in a model with y = p and z & q. Nothing more is needed than truth 

of p and g at just these worlds. If this is to imply g e p, then there must exist 

u, v satisfying: (1) Rz,uv, (ii) u E g, (iii) v E p. This can only be the case iff 
u = z and v = y. L.e., frame truth of our sequent implies the already familiar 

Vezyz(Rz,yz — Rz, zy). Moreover, it is easy to check the converse: the latter 

frame property implies that the sequent peg - gep holds under any valuation. O 

Evidently, this style of reasoning can even serve to extract a first-order equiv- 

alent from the given sequent, if none were known beforehand. Here is a more 

extensive explanation of the main steps of this heuristic. 

Example Associativity 

Consider the sequent (pe g)er - pe (qger)(*). The following is a heuristic 
‘derivation’ giving its first-order frame correspondent. 

1. Suppose (*) is true in some arbitrary F. That is, under all valuations, we 
have Va(a E= (peg)er >alkz=pe(ger)). Together with truth conditions 
for e, this transcribes into 

2. Va(Jbcde(Ra,bc & Rb, de & d Ep &e Bg&cEr) > 

> Jzyzu(Ra, zy& Ry,2v&zEp&zE=Eg&vEr)). 

This is logically equivalent to the (more) universal form 

Vabcde((Ra,bc & Rb, de & d Ep &e BEqg&cEr) > 

> Jeyzu(Ra,zy& Ry, zv&z Ep&zE=Eg&vEr)). 

3. Pick up the canonical valuation CV such that 

uE CV(p)iffu=d 
ueCV(g)ifu=e 
ue CV(r)iffu=c 

For convenience, we shall write ‘s =* p’ for ‘s € CV(p)’ henceforth. Then 
by instantiation from [2], 

Vabcde((Ra,bc& Rb de & d B*p&eB*'g&cEB*7) > 

= Jzyzv(Ra,zy & Ry,zv& c ' p& z E* q& v E* 1)). 

Simplifying, we get the equivalent form 

Vabcde((Ra, be & Rb, de) > 

Jzyzu(Ra, zy & Ry,2v& z=d & z=e & v = ¢)).
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This is equivalent to the earlier associativity of composition: 

Vabcde((Ra, be & Rb, de) > Jy(Ra, dy & Ry, ec)). 

To show that there is a way ‘back’, consider any valuation V on our frame 

F, and suppose that 

4. (a) Vabede((Ra,bc & Rb, de & d B*p&eB'g&cB*7) > 

> Jzyzu(Ra,zy& Ry,zv& z ' p& z =" q& v " r)). 

1s true in F 

(b) a = (peq) er for the = associated with V' Thus, there are b, ¢, d and 
e such that 

Ra,bc& Rb,de& dE=p&el=q&cEr 

We have to show that a =pe(ger). 

5. Define a new valuation CV as above, whose corresponding evaluation is 

again denoted by =* . Then we have a =* (p e q) e 7. This again reflects 

the special nature of our antecedents, which can be verified ‘minimally’. 

6. By [4.a], we must also have a |=* pe (geo 7). 

7. Next, we exploit our special antecedent. All proposition letters p, g, 7 occur 

positively in (peg)er. Therefore, the latter is semantically monotone . I.e,, 

it will stay true in passing from a valuation where it holds in our frame to 

a valuation assigning (possibly) larger sets of worlds to proposition letters. 

But this is precisely the relationship between C'V and the original valuation 

V. Therefore, we also have a = pe (ge ), and we are done. O 

The first-order equivalent ‘derived’ in this way may also be obtained from 

the second order translation of (*) : 

VPVQVRVa(Jbede( Ra, be & Rb, de & P(d) & Q(e) & R(c)) = 
Jzyzv(Ra,zy & Ry, 2v & P(z) & Q(z) & R(v))). 

Here P, Q, R denote the sets of possible worlds where p, g, 7 hold. The above crit- 

ical valuation CV then provides three syntactical substitutions to be performed 

in the (rearranged) matrix, namely: [u = d/Pul, [u = ¢/Qu], [u = ¢/ Ru]. Further 
transformations are as in the above argument. 

The above analysis actually yields something a little bit stronger. It will work 

for all categorial sequents a + B such that « is in ML(e) and B is an arbitrary 

categorial formula in M L(e, —, +) without negative occurrences of any propo- 

sition letter. To define the latter, we follow the usual convention (cf. Moortgat 
1988): 

Polarity of Occurrence 

A proposition letter p occurs positively in p itself, not at all in other q . Positive
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occurrences in both components of a positive (resp. negative) product, and in 

consequents of positive (resp. negative) implications, remain positive. (resp. 

negative) Occurrences switch polarity positive-negative in antecedents. Thus, in 

positive (resp. negative) function type A — B or B + A, B occurs positively 

(resp. negatively) and A negatively (resp. positively). For example, in the 

Montague Raising of A, being the compound of positive B + (A — B), the first 

occurrence of B as well as that of A are positive, while the second occurrence of 

B is negative. 

2.2.2 Examples With Slashes and Products 

Next, we consider some principles with function type constructors. Consider 

again some intuitive counterparts to structural rules: 

p>grt(r>p) >(r 9) Associativity 

p>grg+-p Permutation 

p>l(p>g)-pPp”g Contraction 

g>rtg>(pÔr7) Weakening 

At first sight, it seems harder to treat principles like this, as no obvious ‘minimal 

valuation’ is suggested by their antecedent. Nevertheless, there is a lot one can 

do by a change of viewpoint. On the one hand, one can try to reduce sequents 

with slashes to its product equivalents. For example, as said, p + q + q + p has 

the same semantical meaning as pe ¢ g e p. On the other hand, one can use a 

direct analysis to analyze sequents with slashes , starting with a contraposition.. 

Later on after we will raise a question if these two methods complement each 

other, or if one of them is subsumed by the other. 

Example Direct Derivation of First-Order Equivalents 

Consider weak contraction sequent p — (p = ¢) - p — q. 

1. Suppose that F =p — (p — q) F p = ¢. That is, for any valuation V' and 

any point @ ,ifa ¢ V((p — g9)), then a g V(p — (p > 9)). Let P and Q 
denote the sets of possible worlds where p and g hold, respectively. This is 

reflected in the corresponding second-order formula 

VPYQVa[3b3c(Rc, ba & P(b) & -Q(c)) > 
JzJy(Ry, za & P(z) & Judv(Rv,uy & P(u) & -Q(v))] 

2. Consider the antecedent of this formula. Move its existential quantifiers to 

the front as universal quantifiers (the justification is provided by predicate 

logic): 

VPYQVaVb, c[(Rc, ba & P(b) & -Q(c)) = 
Jdz3y(Ry, za & P(z) & Juv(Rv,uy & P(u) & —Q(v))]
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3. Fix a fresh variable w . Define a special ‘minimal valuation’ V*, which will 

provide the required first-order condition: 

V*(p) = ({b} 
V*(a9) = {c} 

This corresponds to the syntactic substitution 

P*(w) w=b 

Q*(w) w#c 

. The required frame condition is obtained by instantiation: 

VaVbVe[(Re, ba & P*(b) & -Q*(c)) = 
Jz3y(Ry, za & P*(z) & Juv(Rv, uy & P*(u) & —Q*(v))] 

This is already a first order formula, which can be presented as 

VaVbVc(Rc, ba > 
JzdyduJv(Ry, za&z=b& Rv‚uy&u=b&v=c)) 

which is again equivalent to 

VaVbVc(Rc, ba > Jy(Ry, ba & Rc, by)) 

As universal second-order formulas imply all their instantiations, this shows 

that the original contraction sequent implies this frame property. But also 

conversely, it is easy to see that the sequent p > (p — ¢) F p — ¢ is true 

at each frame satisfying the latter. Even so, to illustrate our general proof 

method, we provide some explicit steps leading ‘backwards’. Consider any 

valuation. Assume that 

Re,ba & P(b) & —Q(c) 

and show that 

Jdz3y(Ry, za & P(z) & Judv(Rv,uy & P(u) & -Q(v)) 

First, we can define the special valuation V* as above. This has the fol- 

lowing effects: 

Rc,ba & P*(b) & -Q*(¢) 
for any z , if P*(z), then P(z) 

for any z , if -Q*(z), then =Q(c).
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Moreover, P, 6Q occur monotone positively in our consequent. Therefore, 

we see that 

Jz3y(Ry, za & P*(z) & Fudv(Rv,uy & P*(u) & Q (v))] 

and together with semantic monotonicity, this implies 

Jz3y(Ry, za & P(z) & Judv(Rv,uy & P(u) & ~Q(v)) 

A similar analysis may be performed on other principles with function type 

constructors related to structural rules. However they also can be analyzed via 

a detour to the broader modal language with all Booleans, or alternatively, with 

three matching categorial products. For convenience, we repeat their definitions: 

M,a=Ae; B <~ db3c(Ra,bec & M,bE A & M‚cEB) 
M‚aEA®;B <~ Jb3c(Rc,ba & M,b=A & M,c = B) 
M,al=Aez3 B <~ db3¢(Rc,ab & M,b=A & M,ck B) 

Example From Slashes to Mized Products 

Consider pe ¢ - g e p. A negated functional consequent —(g + p) is equivalent 

to a product p e3 —9, and a negated antecedent —(p > q) to p e2 ~g. Thus, by 

contraposition, the above principle is also equivalent to 

pe3— gk pe; g 

As we are dealing with a universal quantification over valuations here, working 

with atoms or their negations makes no difference. Thus, this sequent is frame 

equivalent with 

pe3qgt pe®e2g 

The latter principle, too, expresses commutation, as can be seen using the meth- 

ods of the earlier subsection on products. O 

The latter explanation again raises a new issue. How can this implication 

between mixed products be equivalent with a pure sequent axiom for the remain- 

ing product pei g + q e; p? We shall not analyze this matter in detail here, but 

merely state that a precise algorithm for this shift can be worked out from the 

above semantic analysis. 

Instead, we conclude this subsection with some illustrations motivating our 

eventual categorially useful Sahlqvist-van Benthem Theorem. Informally speak- 

ing, there are two ways of dealing with categorial slash sequents. The first uses 

contraposition as above, the second involves a reduction to ML(e) formulas. Here 

are some illustrations of these reductions.
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Example Weak Contraction Principle: from slashes to products 

Claim For any frame F, 

FEs—(s—t)ts—tiff FEpegtpe(peg) 

Proof 

For left to right direction, suppose 

FlEBs>(s>t)ts-t. 
By substituting pe (peg) for t and p for s, 

FEp>(p>(pe(pe9))- p {(pe(pe9)) 
Next, note that q + p — (p —> (pe (peg))) is valid n any frame. Therefore 

FEg-tp+(pe(pe9)). 
Finally, by residuation on frames 

Fl=peghkpe(peg). 

For right to left direction , suppose 

FEpegrtpe(peg) 
By substituting s > (s — t) for ¢ and s for p 

FlEse(s—>(s—t)Fse(se(s— (s 1)), 
whence 

Fl&se(s>{(s—t))Ft. 
Then, by residuation on frames 

Fl&Es>(s—t)ts-t. 

By similar reasoning one obtains: 

F&p—>g-tg+ p < FFqgeptpeg 
FEp>l(g>r)+tg3(p—r7) << FEqge(per)-pe(ger) 

FE=g>rtg>(p->r7) < Flkge(per)tger 

The next result provides a generalization: 

2.2.2. PROPOSITION. Switching between Products and Slashes 

Let q, piy; (1 < 1,j < m), s; z; (1 < t,j < n), z be propositional variables such 

that 

o sk —=sjiff z; —=z;forl<kj<n 

o Pk — Pjifl Yx = yjfor l < k,j < m. 
Then 

FEpm3(p (.. .(Pm>9)) . .)Fsi(82 (.. .(Sn>9)). ) 

iff 

FEzpoo(za10(...(z102))..)Fy1e(y20(...(yme2))..))
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Proof 

From up to down, make the following substitution: 

y10(y20(...(yme2))..)/q z;/s: (1 <i<n) y;/pi (1 < i < m) 

From down to up, make the following substitution: 

p1— (P2 = (... (Pm = 9)) .. )/z si/zi Pifyi. 
It follows that the two sequents have the same first-order frame correspondent. 

Similar reasoning applies to formulas with + . D 

We have found two ways of treating implicative categorial sequents, one by 

reduction and one by direct analysis. These motivate two parts to the general 

Sahlqvist-van Benthem Theorem stated below. Before getting there, we raise 

two questions: 

i Is every implicative Sahlqvist formula reducible to some Sahlqvist equiva- 

lent with a pure product antecedent? 

ii Does every implicative first-order definable allow a direct substitution anal- 

ysis via the above ‘contraposition’? 

For the first question, consider the categorial sequent 

(g>p) > (p g +FpPg 

We doubt that it has a product equivalent of the described kind. Nevertheless, 

it is first-order: reasoning by contraposition and substitutions ends up with an 

equivalent 

Vabe(Re, ba = Jzy(Ry, za& Rc, by&Vzu(Rz,uz > (u=ceVz=b)))). 

For the second question, consider the following implicative version of Associa- 

tivity: 

p>gr(r>p) > (r39). 

We have not been able to find a first-order equivalent for it through our contra- 

position/substitution analysis. Nevertheless, in an earlier subsection, we showed 

that it was NL-inter-derivable with the usual product form of Associativity: 

ze(yez)-(zey)ez. 

The later, of course, had an obvious first-order equivalent and therefore, so has 

the former.
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2.2.3 A Sahlqvist-van Benthem theorem for categorial formulas 

Let us now formulate a broadly useful categorial version of the Sahlqvist-van 

Benthem Theorem. What should be its syntactic conditions? In standard modal 

logic, Sahlqvist formulas are of the form O™(A; D A,), where A, is syntactically 

positive, and where A; is obtained from proposition letters and their negations, 

applying &, V, 0, O in such a way, that no positive occurrence of a variable is in 

a subformula of the form B; V B2 or ©B within the scope of a universal modality 

O . The relevance of all these restrictions becomes clear when analyzing the 

correctness proof for the Sahlgvist-van Benthem substitution algorithm. More- 

over, this formulation is the most general one, in the sense that non-first-order 

examples may be provided for each violation of these syntactic restrictions (cf. 

[van Benthem 85]. Our version will come in two parts. One of them was already 

treated in the preceding Section. 

2.2.3. THEOREM. Product Version 

If a + B is a categorial sequent with an antecedent o constructed entirely out of 

atoms and product, and a consequent 3 in which atoms occur only positively , 

then there exists a first-order formula ó which corresponds effectively to a + f. 

To formulate the second version, we need an auxiliary notion. 

2.2.4. DEFINITION. Nice Formulas 

Nice categorial formulas are constructed using the following rules: 

e proposition letters are nice 

e if x is nice and £ is in ML(e), then £ — x and x + £ are nice. 

Here is a further technical notion: 

e £ is consistent if no proposition letter occurs both positively and negatively 

in £ 

e £ is monotone with respect to x if, for every proposition letter p, either p 

occurs positively in £ and x does not contain only negative occurrences of 

p, or p occurs negatively in é and x does not contain positive occurrences 

ofp 

We might also have used these notions to slightly generalize the preceding result. 

Moreover, the proof to follow essentially works for the above case as well. 

2.2.5. THEOREM. Slash Version 

If a + B is a categorial sequent with a nice consequent 3 and an antecedent a 

which is consistent and monotone with respect to 3, then there is a first-order 

formula ó which corresponds effectively to a + 8. 

Proof 

Let a + 3 be a sequent of the described form We describe the procedure to be
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followed, plus its semantic correctness, relying on earlier examples for its intuitive 

motivation. 

1. Translate a + B into SST(B) D 2ST(a). 
2. Now, we clean up this sequent. First, rewrite ST(a), ST(B), so that no two 

quantifiers occur with the same bound variable. Next, remove predicate 

letters which do not occur on both sides: 

e if P occurs positively (negatively) in 3ST(8) but it does not occur in 
ST(a) , then replace it by T(L) 

e if P occurs positively (negatively) in ST'(a) but it does not occur in 
ST(B) , then replace it by L(T). 

The result is still a frame-equivalent sequent, as may be seen from standard 

(modal) logic. 
3. Since f is nice, there are only existential quantifiers, with distinct bound 

variables in ST(8) . Move all these existential quantifiers to the front of 

the whole formula, by the following prenex principle of first-order logic ( z 

does not occur free in B ): 

dzA(z) DB iff Vz(A(z) D B) 

This is possible because only occurrences of & have to be ‘crossed’ inside 

ST(B). The result is a formula 3' , which leads to a new equivalent of the 
form: 

Vg1 ... Vye(8' D SST(o)) 

4. Fix a variable u not occurring in 3ST(B) D ~ST(a). Define a ‘canonical 
valuation’ C'V for any occurrence |p| of p in £' : 

CV(|p|,8") : wu=a, if P(a) occurs in 8’ 

CV(p,B) : u#a, if —P(a) occurs in 3. 

Let CV(p, 3') be the disjunction of all formulas CV([p|, 8'). 

5. Now, the required Lo-equivalent ó is obtained by substituting the formula 

[z/u]CV (p, B') for each atom Pz (representing an occurrence of the propo- 

sition letter p ) in the above form 

Vyl .. .Vyk(‚Û, ) —\ST(Q)) 

As second-order universal quantifiers imply all their (first-order) substitu- 
tion instances, we have the following implication for frame truth: 

for any frame F, if F,w = at b, then F,w 4. 

Here, the special world w displayed is assigned to the main free variable of 

ó , corresponding to the ‘current world of evaluation’.
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The remainder of the proof consists in showing the converse: 

[\ 
N 

for any frame F, if F‚w l=ó, then FE=oatfB. 

. Suppose that F,w =4, . 

. Let V be any valuation on F with (F, V), w }~ 8. 

. By the truth definition, we have that (F, V), w |= Jy; ... 3yxf’, and hence, 

for some wy,...,wx € W, (F,V) | B'[wy, ..., w). 

‚ Define V* as follows: 

acV*(p) i FECV(p,8)[w, … wk,al, 

where a is assigned to u . 

. Given the form of our formulas, and the definition of C'V, we have that 

(F‚V*\, w | B. Pushing the substitutions into 3’ , and then appealing 

to the truth of ó (assumption [1]), we obtain that the substituted form of 
—ST(a) must hold. Pushing substitutions into the valuation again, we get 

that (F,V*), w [~ a. 
. What remains to be shown, however, is that (F, V), w |E a for the original 

valuation V of assumption [2]. Here, we need our special assumptions of 

monotonicity and consistency. We will be done if we can show that, for 

our relevant proposition letters, either p occurred positively, and we have 

if z =* p, then z = p — or p occurred negatively, and we have: if z * p, 

then z | p. But this requires a simple verification. 

(a) Suppose that z [=* p. Then p occurs negatively in a (recall that we 

are reasoning by contraposition). Since a is monotone with respect to 

B , B has only negative occurrences of p . Therefore, ~ST () contains 

only positive occurrences of P. Thus the canonical valuation for p is 

defined in such a way that u =* piff u = y; or ...or u = y, for each 

y; (1 < j < n), such that y; Ep . Then z = y; for some 1 < i < n, 

and therefore z = p. 
(b) Suppose z [£* p. Then p occurs positively in a . Since a is monotone 

with respect to 3 , f has some positive occurrence of p . Therefore 

ST(B) contains some negative occurrences of P . Thus the canonical 
valuation for p is defined in such a way that u =* piffu = y; or .. .or 

U = Yn OF U # 21 OF ...0r u # 2z, for each z;(1 < j < k), such that 

z; = p . Since z* [~* p, we have z # y; and ...and zy, and z = z, 

and...and z = z;. Hence z [~ p. 

Û 

Another way of establishing the preceding Theorem would be by direct trans- 

lation into the full Boolean categorial language, and then inspecting the resulting 

syntactic forms involving the three matching categorial products e, @3, e3 . Our 

notions of monotonicity and consistency will still be essential (think for example
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of the translation of the Sahlqvist formula (p — ¢) =& (¢ —> p) + q — p). We 

conclude with some questions 

(1) Is the above a most general Sahlqvist Theorem for the categorial fragment 

ML(e,—,+)? 

(2) Can one provide an effective syntactic description of all first-order definable 

forms in M L(e,—,+) (with or without a substitution method)? 

2.2.4 Categorial Applications. Informational Paradigm and Cor- 

respondence Theory 

We want to stress once more the purpose of our present analysis. The general 

picture for categorial logics is like Correspondence Theory for standard modal 

logic. Modal axioms express semantic constraints on the accessibility relation 

in frames where they hold. Interpreting frames as structures of informational 

tokens, as we did in Chapter 1, then yields a correlation between categorial ax- 

ioms corresponding to structural rules and desired properties of informational 

composition. For example, the intuitive account of Contraction connects this 

structural rule with ‘re-use’ of informational resources. Our correspondences 

make this precise: they say in which exact frame-semantic sense the metaphor 

holds. And they do more. Different proof-theoretic formulations of Contrac- 

tion may correspond to different frame-semantic shades of meaning. To make 

the intended informational content of the composition relation more visual, we 

introduce an arbitrary place relation R™a, z as follows, describing ‘composition 

trees’: 

Let a € W and z be a bracketed string of elements of W of length n — 1. We 

set 

(n=2) R2a,b <~ a=b 
(n)2) R"a, zy <= Jb3c(Raa, bc& Rb, z& R, ¢, y) 

where k+ m=n — 1. 

For example, Ra, (bc)(de) is an abbreviation for the first-order description 

Jz3dy(Ra,zy & Rz, bc & Ry, de). 

Now, we state a table of correspondences, obtained by the previous our general 

method. First, we consider categorial variants of Contraction, together with
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their corresponding frame properties: 

prpep VzRz,zz 

p>(p>9g)+-pÔg VaVbVc(Ra, bec > Ra, b(bc)) 

(pep) 2> q)Fp—yg VaVbVe(Ra, be > Ra, (bb)c) 
(g+-p) -prqd+-p VaVbVe(Ra, be > Ra, (bc)c) 

(g (pep)Fg«p VaVbVc(Ra, be > Ra, (b(cc)) 
p + (gt p)rpÔg VaVbVc(Ra, be > Ra, (bc)b) 
(p—>q)phgep VaVbVe(Ra, be > Ra, c(bc)) 

Various restrictions on the order of informational tokens can be expressed 

by categorial axioms related to the Permutation rule. Here is the list of some 

axioms and their frame correspondents expressing the variety of the relaxations 

of order sensitivity. 

p>gtg+- D VaVbVe(Ra, be > Ra, cb) 

p >{(g—r)+g > (p”r7) VaVbVc(Ra, b(ed) > Ra, c(bd)) 
(peg) >rt(gep) r VaVbVc(Ra, (be)d > Ra, (cb)d) 
r+-qg)+-prlr+p)+- g VaVbVc(Ra, (bc)d > Ra, (bd)c)) 
r+ (gep)-r+ (peg) VaVbVc(Ra, b(cd) > Ra, b(de)) 

Finally, the semantical interpretation of the Weakening rule is related to 

‘diminishing sizes ’ of composition trees. 

prp+ q VaVbVc(Ra, bc > a = c) 
prg>p VaVbVc(Ra,bc > a = b) 
pe(ger)tper VaVbVe( Ra, b(ed) > Ra, bc) 

(peg)ertper VaVbVc(Ra, (bc)d) > Ra, bc) 

A similar fine-structure emerges with variants of Associativity. 

2.2.5 Peirce’s Law 

In this section we provide a semantical analysis of Peirce’s Law, being the sequent 

ax1om 

(P 9) 3pFp 
which turn out to play a special role in Correspondence Theory for categorial 

logics. This principle has a reputation as a destroyer of structure sensitivity. 

In intuitionistic correspondence theory (Rodenburg 1986), it imposes a domain 

restriction on binary Kripke frames to single points: Vzy(Rzy > y = z). What 

about its categorial version in ternary frame semantics? 

As it turns out, we can compute a first-order frame condition corresponding 

to the sequent (p — q) = p + p by the method of substitutions in our second 

Sahiqvist Theorem.
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Claim 

Peirce’s Law corresponds to the first-order frame condition 

Va3b(Ra, ba & VzVy(Ry,zb = z = a)). 

This is a strong semantic restriction, though not yet one to single points only. 

Proof 

Assume for any valuation V 

ifa ¢ V(p), then a g V((p > 9) — p). 

Therefore, if a g V (p), then 

3b3c(Re,ba & be V(p— q) & ¢ & V(p)), 

whence 

Va3bJe(Re, ba & VzVy(Ry, zb > (z ¢ V(p) Vy € V(q)) & c g V(p)). 

Define the canonical valuation V* as follows: 

V*(p) = {cle # a} 
V*(g) is the empty set. 

By instantiation, we get 

Va3db3c[Re, ba & VzVy(Ry,zb = (z =aV 1) & ¢ = a]. 

This reduces to the above equivalent 

Va3b[Ra, ba & VzVy(Ry, zb> z —=a)] (}) 

which is the first-order formula we were searching for. 

To show that (p — q) — p + pis true in any frame where this property holds, 

assume that M,a = (p — q) = p, but not M,a = p. By (1), there exists some 

world b € W such that Ra, ba. Therefore, if M,b = (p — ¢), then M, a E p. But 

a does not support p , whence p — q is not true in b . In other words, there exist 

¢z € W and y € W such that Ry,zb and M,z LE p, but y does not support q . 

By ( ) again, Ry, zb implies £ = a. But this is impossible since p is true in z , 

but not in a. D 

To conclude our first-order analysis of Peirce’s Law, here is an interesting con- 

trast. Compare the following two sequents: 

) (p>p) >prp 
(i) (p > 9) Sp-p
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The latter is a Sahlqvist formula, but the former (weaker) is not. Later on we will 

show that (i) is not first order definable at all. The reason is the ‘wrong mixture’ 

of positive and negative occurrences. (Looking at the matter backwards, also 

in modal logic, the phenomenon is known that one can sometimes strengthen a 

non-first-order principle to a first-order one by un-identifying some occurrences 

of the same proposition letter.) 

Does Peirce’s Law really define a restriction of the frame domain? To obtain 

this effect, one also needs the other structural rules. Consider the earlier first- 

order conditions corresponding to Associativity and Permutation: 

Permutation 

Va,b, c(Ra,bc > Ra,cd) (1) 

Associativity 

Va,b(3c(Ra, bc&k Re, de) < Id(Ra,te& Rt, bd))  (11) 

Peirce’s Law 

Va3b(Ra, ba & VzVy(Ry, zb> z=a)) (ftT) 

2.2.6. PROPOSITION. In any frame where (f) — (1 1 f) hold, one also has 

VaVuVw(Ra, vw > v = w = a). 

Proof 

Suppose that Ra,vw. By (11 1), there is a point b € W such that Ra, ba with the 

described property. Moreover, by (1f) , this implies 3t(Ra,tw & Rt,bv). Next, 

by Permutation (1t), we pass from Rt, bv to Rt, vb and then by (t t f), conclude 

to v = a. Therefore, we have VaVvVw(Ra, vw = v = a). Now, applying (1) once 

more, we get VaVuVw(Ra, vw = w = a). O 

2.3 Disproving First-Order Definability 

Through the standard translation of Chapter 1, categorial formulas define con- 

straints on the composition relation in ternary frames. In this Section, we are in- 

terested in non-first-order definable constraints. Two ways of refuting first-order 

definability are presented. The first is based on translating categorial formulas 

into some non-first-order definable standard modal formula. The second method 

is more direct: non-first-orderness of categorial formulas shows up in failures of 

the Lowenheim-Skolem theorem. 

2.3.1 Reduction to Modal Cases 

To refute first-order definability of a categorial formula, one can try to ‘decom- 

pose’ a ternary relation. Here is the general heuristic:
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e Translate the relevant categorial formula a into some standard modal for- 

mula a* which is known to be non-first-order definable 

e Find a suitable construction of a ternary frame F? = (W, R®) such that 
R3 is defined in terms of R, , where F, = (X, R,) is an arbitrary binary 

frame, and prove that F3 | a iff F3 | o®. 

Now, if a were first-order in ternary frame semantics, then a*. would be first- 

order in binary frame semantics. Quod non. 

Example A Peirce Variant 

Consider the sequent (p > p) —>ptp 

e Define a translation ! into modal logic as follows: 

pl=p 
(A B)! — D(A! > DB!) 

This takes care of categorial formulas. To treat categorial sequents, replace 

the outer sequent arrow by a material implication. Thus, the sequent (p — 

p) — p t p translates into the modal formula O(O(p D Op) D Op) D p: a 

variant of the Grzegorczyk Axiom which is known to be non-first-order. 

e Let F? = (X, R?) be any binary frame. Define a ternary frame F° = 

(W, R3®) by setting 

W=X 

R3a,bc iff R?cb and R%ba 

Claim If o isin ML(-) , then F3 E a iff F? | of 
Proof 

Given a ternary (binary) model where a(a!) fails, just copy the valuation 

to define the corresponding binary (ternary) model. Then proceed by a 

straightforward induction on the construction of « . The point is that 

A — B will mean exactly the same as its translation, under this definition 

of R3 ° D 

e As a consequence, the sequent (p — p) — p+ p is non-first-order definable 

on the special ternary frames defined above. This is a direct consequence 

of the non-first-orderness over binary frames of O(O(p D Op) D Op) D p. 
But then, a fortiori, (p —> p) — p + p cannot be first-order over the class 

of all ternary frames. O 

Example One Atom Permutation 

Consider the formulap — p+ p < p , arising out the earlier first-order sequent 

p >qgtg+ p by substitutingpforg . 

e Define a translation ! into tense logic as follows:
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i_ p' —=p 
(A B)! = D(A! > DB!) (A + B)! = OVA! > OB! 

Then (p — p)! I (p + p)! obtains the form 

O(p > Op) D (©'p D Op). 

Now, van Benthem (1983) has an elegant proof showing that the modal 
formula 

O(p D Op) D (©p D Op) 

is not preserved under certain Lo-elementary extensions of the frame F = 

(W, R), where 

— W = IN (i.e., the natural numbers) 
— R = {{(0,n),(n,0),{(n,n+ 1){(n+1,n)|n=1,2,3,...} 

even though it holds in this frame itself. Now, note that this frame is 

symmetric. Hence, z & OA iff z = OYA, for any z € W. It follows that 

O(p D Op) + Otp D Op is not preserved under Lo-elementary extensions 

of F . Hence it cannot be first-order definable either. 

Define again R3a,bc as R?cb & R?ba. An easy extension of the earlier 

argument shows that, for all binary frames F?2 | F3 = a iff F2 = of , for 

all @ in M L(—,+) . As an immediate consequence, we get non-first-order 

definability of p =& pF p «+ p. 

O 

Remark 

This temporal reduction is related to that used in Chapter 1 to reduce ternary 

to binary modalities. 

Example A Categorial McKinsey Aziom 

One can also start from non-first-order modal formulas, and find categorial equiv- 

alents. An example is the well-known McKinsey Axiom OOp F OOp. Let t be a 

new basic type, standing for Boolean ‘true’. I.e., it holds everywhere in ternary 

models. Here is an obvious categorial relative of the modal version: 

t 3 (t > —p) t a(t J A(t J p)). 

To analyze this, define a translation ! as follows: 

p!=p 
(A B)fl = D(Alj D Bfl) 

=T 
4 z A
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Clearly, this takes t — —(t — —p) F —(t — —(t — p)) to the McKinsey Axiom. 
Moreover, the two formulas will evaluate to the same thing under the following 

construction of ternary frames from binary ones: define R3a, bc as Rocb & Rba 

. It follows that our categorial McKinsey Axiom cannot be first-order definable. 
O 

2.3.2 Frame Arguments 

Another general method for refuting first-order definability of a categorial prin- 

ciple a proceeds as follows. One shows that, over the class of ternary frames, 

a lacks some model-theoretic feature which all first-order formulas possess. A 

well-known technique from the modal case is the use of the upward Lowenheim- 

Skolem theorem on elementary subframes. We will show how this technique is 

available for categorial principles, too, by means of three examples. We start 

again with the earlier Peircean variant. 

2.3.1. PROPOSITION. (p — p) — p + p is not first-order definable. 

Proof 

We show that this sequent is not preserved under passing to elementary sub- 

frames. Our argument here treats so-called ‘local validity’ of sequents, in one 

single world but it can be modified so as to deal with ‘global validity’ in all 

worlds. Consider the following uncountable ternary frame F = (W, R): 

Fig.1 

bn1 bn a f a 

z bn, n g(n) a 

W — {a,z,y}U{bn,Cf,bno|nEN}U{CfIf:N—){l,O}} 

R — {(bng,bn,a)|n € N} U {{(z,ct,bn)|n € N}U 

{<bnf(n))y)cf>|n EN,f:N31{1,0}}U 

{(a,c4,9)|f : N — {1,0}} 

Claim1l Fak=(p>p) >prtp 

Proof
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1. Consider any valuation V on F . Suppose that we have (F,V), a E (p — 

p) — p. (For convenience, we will often drop explicit reference to frame 

and valuation.) 
2. Since for all n , (b,,,bn,a) € R, it follows that b, E p 3 p or b,, = p. 

Also, because for any n , (z,bn,,b,) is the only triangle having b, as a 

‘right daughter’, we have b, (E p > piff b,, E p and z { p. Therefore, we 

must have b,, = por by, = p, for all n . Now, pick up any choice function 

f*: N — {1,0} such that brsemy E p for all n. 

3. Since for all n, (bn,-,,;YCf*) is the only triangle where c+ is the right 
daughter and Vn (bn ,, F P), clearly c;: Ep — p. Then a |= p, by [1], [3] 
and the fact that (a,cs+,a) € R. 

We are done. O 

Claim 2 There exists a countable elementary subframe F’ of F such that £/, 

alt(p—p)—pkp 

Proof 

By the downward Lowenheim-Skolem theorem, F has a countable elementary 

substructure F’ whose domain contains at least the worlds a, z, y, by, bn, , Dno(n € 

N (and of course, some worlds c‚(f : N — {1,0}). Because F' is countable, 

some of the uncountably many worlds c; from F will be missing in its domain. 

Fix one of them, say ¢;. Define a valuation V' by setting 

V(p) = {y} U {bn,,In € N} 

Then a |£ p. Let us show that, nevertheless, a E= (p — p) — p : which refutes 

the validity of the sequent (p > p) > p-pin F,a. 

1. Suppose a { (p — p) — p. 

2. The definition of R’ brings two cases to consider: 

(a) There exists k € N such that b = p — p, but by, E p. 
(b) There exists f* : N — 1,0 such that ¢4+ = p — p, and a [~ p. 

Consider the first case. Because by, [~ p, the definition of V' says that 

g(k) = 1, and hence b, = p. Now, since (z, by,,bx) € R’ and b =p — p, 
we get ¢ |= p : but that would contradict the definition of V. 

Consider the second case. Since for all n, (by,. (1 ¥ css) € R and y = p, 

we have b, _. (n) I= p for all n. But then f* and g would coincide, which is 

impossible: as ¢, was missing from F’ . 

O 

We conclude that (p — p) — p+ p is not (locally) first-order definable, not being 

preserved under elementary subframes. 

The following arguments will be sketches in a formal shorthand
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2.3.2. PROPOSITION. —p + ((p — p) — p) — p is not first-order definable. 

Proof 

Consider the following uncountable frame: 

Fig 2 

bn, bn a 

z by, y 

t Cf 

n g(n) a 

W = {a,z,y,z,t}u{bn)bnubno'nEN}U{cf|f:N_>{110}} 

R = {<ywz;a>}u{<bno’bm z)|n€ N}U 

{{z,bp,,bpn)|n € N}U 

nb eg)ln E N, f : N > {1,0}}U 

{{(a,cs,2)|f: N = {1,0}} 

Validity in F . 

Suppose a = —p and a £ ((p =& p) — p) — p. Since a occurs as a ‘right 
daughter’ only in one triangle in R , clearly z = ((p — p) — p). That implies 

Vn(bn Ep > D or b,, F p). Because for any n, (z,b,,,b,) is the only triangle 

having b, as a right daughter, we have Vn(b,, = porbd,, &= p). Now, pick 

any function f* : N — {1,0} such that b, £4(n) = p for all n . Immediately, 

c Ep > p and hence a E p - a contradiction. 

Invalidity in F' . 

In the countable elementary subframe F’, define 

V’(p) — {bng(„)} U {t}, 

where ¢, is a missing world. To show that —p + ((p — p) — p) — p is not true 
at the point a, proceed as follows: 

1. Suppose a |= ((p 3 p) — p) — p. Then, by the definition of V', z | ((p — 

p) + p). 
2. Consider two cases



60 Chapter 2. Correspondence Theory For Categorial Principles 

(a) 3k € N(bx =p — p & b, - D) 
(b) 3f*(cs» Ep— p & a }~ p) 

As above, in both cases we end up with a contradiction. O 

2.3.3. PROPOSITION. p + (p — p) e p is not first-order definable. 

  

Proof - 

Consider the following uncountable ternary frame: 

Fig3 

bn b‘no 

by, a y a 

W = {a,z,y} U {bn, bn; ; bno/n € N}U fe;lf : N S {1,0}} 

B = {(a,bn,bn,)[n € N}U {(bn,, 2,bn)[n € N}U 
{{¥,bn;nysc)Im €N, f: N — {1,0}}U 

{{(a,cs,a)|f: N — {1,0}} 

Validity in F . 

Suppose that a |= p, but a = (p — p) e p. Then either b, = p — p, or b,, 
p.Since (b, ,z,by) is the only triangle where b, is the right daughter, Vn (b, £ 

p = piff by, HE p and z E p). Therefore, Vn (b,, HE p or bn, } p). Now, pick 
any function f* : N — {1,0} such that bn,. (n) t p for all n . Then immediately 

c; Ep p . Now recall that a = p, so a |= (p — p) e p —a contradiction. 

Invalidity in F' . 
For the elementary subframe F’, choose one missing world, say c. Set 

Vi(p) =W — {y} — {bn,,In € N}. 

Therefore a |= p. Suppose a E (p — p) e p. That brings two cases to consider: 

[i]3dke Nbr=p— p & b, = p), and 

ii ] 3f*(cs- EPp—>p&akp). 

If [i] holds, then g(k) = 1, whence b,, |£ p. Therefore z |£ p, but that 
contradicts the definition of V. 
If [ii] holds, then, since y [~ p, we have Vn(b, £o(m) = p). That means g = f*, 
which is impossible. O
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2.3.3 Further Issues in Correspondence 

We conclude with some issues for further research. Evidently, there are further 

mathematical depths of Correspondence Theory that have been left unexplored 

here as their relevance to our intended categorial applications is (too) remote. 
Or, starting with the latter, we have not probed all peculiarities of the categorial 

fragment. In particular, there might be much more than shown here to working 

with weak modal languages without Booleans. Finally, we have not considered 

correspondences for derived rules of inference, stating when one or more sequents 

imply another. Some of these are admissible in, say, the Lambek Calculus, other 

are not and one can also determine what non-valid ones would demand (cf. van 

Benthem 1985 for a first attempt in modal logic). 

On the other hand, Correspondence theory can be extended to various rele- 

vant richer languages. For instance, one can give a correspondence-style analysis 

of the richer vocabularies found in Relevant Logic (living around the Lambek 

Calculus enriched by Contraction). 

Example Relevant Negation 

Recall the major innovation in this field, over and above product and implication, 

viz. the ‘reversal negation’ defined as follows: 

M,a =~ ¢ <= M,r(a) # ò, 

where r is an abstract ‘reversal map’ on our ternary frames. Just as with our 

earlier categorial laws, key principles of relevant negation may then express struc- 

tural constraints on these notions. Here are some illustrations, which may be 

obtained via the earlier minimal substitution analysis for locating first-order 

equivalents. On the functional view, e.g., the Double Negation law will express 

that 7 is idempotent: 

A +nn A defines that Va(rr(a) = a). 

A valid rule of inference, without further ado, will be Contraposition from A + B 

to ~ B -- A-. If the former sequent holds everywhere in a model, so does the 

latter. 

Next, recall the truth condition for relevant implication: 

M,a=A— B <= VbVc(Rc, ab&M,b E A M,‚c E B) 

Clearly, Contraposition of the form 

AB B A 

defines Rc,ab = Rr(),r(@a. This constraint expresses the natural shift of per- 
spective in composition triangles, i.e. graphically if an arrow c is composed out
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of matching arrows a and b, then the reverse of b can be viewed as starting with 

the reverse of c and then returning via arrow d: 

N e 
C 

r 
Finally, a typical relevant invalidity is Ex Falso Sequitur Quodlibet , which ex- 

presses that reversal is an identity map: 

A,~ A B defines that Var(a) = a 

and we revert to classical Boolean negation. 

Yet a richer similarity type is found in Arrow Logic (cf. Venema 1994, Marx 

1995). Thus, van Benthem 1991 analyzes the Lambek Calculus as a dynamic 

logic of arrows. What these amount to in our current perspective, may be illus- 

trated as follows. 

Example Categorial Logic as Arrow Logic 

As said, in Arrow Logic, one reads the categorial slashes as defined operators, 

namely 

A B= —I(AVO —\B) 

B+ A= fl(fiB ° AV). 

Recall that — is Boolean complement, e is (arrow-style) relational compo- 

sition, and “ stands for (arrow-style) relational converse, referring to a reversal 

function 7 on arrows. Amongst others, this allows a natural decomposition of 

the above relevant negation — A into (A} (Boolean complement of reversal). 
Under this reading, the categorial laws of Function Application express what 

may also be called natural ’perspective rotations’ in composition triangles: 

Ae (A B)+ B corresponds to Vzyz : Rz,yz — Rz‚r(y)z 

(B + A) e A B corresponds to Vzyz : Rz‚yz — Ry, zr(z). 

ZX _ bíîr(c) Ù _ ‚—(b)íîc



The precise dynamic content of Categorial Grammar in this arrow style re- 

mains to be investigated. 

Finally, we mention possible extensions of categorial languages with modal- 

ities or even temporal operators, as will be used extensively in the richer archi- 

tectures of our final Chapter. The present theory easily extends to such settings, 

with frames now carrying not just a composition relation, but also various ac- 

cessibilities for further modal operators. For instance, one can add a universal 

modality O which refers to a binary accessibility relation R? in the usual way. 

(Chapter 3 has the resulting logic.) The latter semantic structure will be super- 

imposed on our ternary frames, and one gets at least two kinds of correspondence. 

There are ‘pure modal principles’, such as the universally valid inference rule ‘ 

from A+ B to OA F OB.’ But there can also be ‘mixed principles’ relating the 

modality to the categorial base language, such as (perhaps) 

0(A— B)+-0A — OB. 

By our earlier substitution technique, suitably but straightforwardly generalized, 

the latter axiom will express the following interaction between the R> and the 

R? frame structure: 

Vabc(R3c, ba & R?cz — Jzy(R°z,yz & R?az & R?by)). 
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Part II 
Categorial Inference and Labelled Deduction 

In this Part, we pass from the study of pure semantic expressive power to the 

combinatorics of categorial deduction. In Chapter 3, we consider the traditional 

axiomatic format of the field, analysing completeness theorems in a perspec- 

tive of filter representations. Next, we consider labelled formats of deduction, 

where sequents may carry information about linguistic signs. In Chapter 4, we 

prove that the Lambek Calculus is complete for binary relational semantics using 

suitable pair labels. Finally, in Chapter 5, we provide a more general labelling 

for ternary frame semantics, relating this method to the earlier correspondence 

perspective of translation into fragments of first-order predicate logic. 
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Chapter 3 

Axiomatics and Completeness Proofs 
  

3.1 General Background 

In this Chapter, we will analyze completeness proofs for categorial logics. This 

is a vast area, where much has been done already, and we shall only add some 

results ‘rounding off’ the literature at various points. The field lies in between 

two poles. At the top, there is the well-understood completeness theory for 

modal propositional logics, which correspond to categorial logics in a vocabulary 

with Booleans (cf. [Goldblatt 89], [Venema 91], [Roorda 91]). This tradition 
works mostly with Henkin models having maximally consistent sets of formulas 

for their worlds. At the bottom end lies the completeness theory for catego- 

rial logics, which makes do with very simple representations, where formulas 

themselves serve as worlds. Key publications in this area, to which our treat- 

ment is deeply indebted, include [Buszkowski 86], [Dosen 92a]. Finally, there 

are logics in between, such as intuitionistic logic, or lower down, relevant logic 

[Rout. & Meyer 73]. Their completeness theory involves the use of prime filters 

for constructing worlds, or related constructs dealing also with relevant negation. 

For these approaches, standard references are available, which are presupposed 

here: [Troel. & van Dalen 88] provide a compendium of intuitionistic logic, and 

the masterful survey [Dunn 86] provides all necessary insight into relevant logic. 

67
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3.2 Base Representation: Sahlqvist Completeness 

and Incompleteness 

Formulas and the canonical model construction 

3.2.1. THEOREM. NL is sound and complete with respect to the class of ternary 

models 

Proof 

Soundness follows by a simple inspection of the principles listed in the definition 

of NL. For the completeness part, define a simple Henkin model 

M = <W, R37 ':> 

where 

e W is the set of all types (categorial formulas) 
o Ra,bciffal-bec 

e a € V(p) iffatp 

3.2.2. LEMMA. Truth Lemma 

M,aEa iff ata 

Proof 

Induction on « . The statement is clear for atoms, by definition. For products, 

argue as follows. (i) If M,a |= B e C, then there exist b,c with Ra, bc such 

that M,b = B, M,c = C. By the inductive hypothesis, b + B and c + C are 

derivable, and hence sois bec - B e C. As Ra, be, it follows that al- Be C is 

derivable. (ii) If a + B e C is derivable, then we have Ra, BC . Moreover, by the 
inductive hypothesis: M,C = C, M, B = B. It follows that M,a = B e C. For 

slashes, we consider one case. (i) Suppose that M,a = B — C. As before, we 

have M, B = B. Moreover, evidently, R(B e a), Ba. Therefore, M,B e a = C, 
and by the inductive hypothesis, B e a - C is derivable. But then, we can also 

derive the sequent A - B — C. (ii) Conversely, suppose that a +H B 3 C is 

derivable. Consider any b, c such that Rc,ba and M,b |= B. By the inductive 

hypothesis, b - B is derivable. Thus we have the following derivable in NL : 

ctbe A, ct Be(B - C), ct-C. By the inductive hypothesis, then, M, ¢ E C, 

as required. The argument for the other slash is symmetric. O 

Now, completeness follows because non-provable sequents A + B will fail at the 

world A. O 

This representation admits of obvious variations for further calculi upward in 

the Categorial Hierarchy. For, example to prove completeness of the associative
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Lambek Calculus L, suppose Ra,bc and Rc,de. It terms of L-derivability, this 

means a + bec, c + dee, hence by Cut and Associativity Postulate a + (bed) ee. 

It provides the required principle 

3t(Ra, te & Rt, bd). 

The other direction goes likewise. 

By very similar arguments, we can establish the completeness of the Lam- 

bek Calculus with permutation LP. Adding the axiom A e B B e A leads to 

completeness for ternary frames which satisfy permutation of arguments Vabc : 

(Ra,bc — Ra, cb). Likewise, we can treat the case with Contraction A+ Ae A 
added (LC or LPC ) , where the frame satisfies reflexivity: VaRa, aa. The first 

hitch occurs with Weakening A e B - A. No obvious frame argument establishes 

the required property Vabc(Ra,bc — b = a). We shall give an explanation for 

these observations later on. 

Sahlquist Analysis 

In modal logic, the semantic correspondence version of Sahlqvist theorems as 

in Chapter 2 comes with a completeness version, allowing us to predict frame 

completeness for a wide class of logics axiomatized in a suitable manner (cf. 

[Sahiqvist 75], [Venema 91]). The latter result may be stated in several ways. 

For our purposes, we use the following version. If a categorial extension of NL 

uses additional sequent axioms which are in Sahlqvist form, then it is complete 

with respect to the class of ternary frames satisfying the first-order constraint 

computed by the Sahlqvist-van Benthem algorithm. In standard modal logic the 

proof of this result proceeds by analysis of canonical Henkin models for such 

logics, showing how the frame constraints emerges on the underlying Henkin 

frame. An elegant presentation is [Sambin & Vacc. 89]. [Kracht 93b] obtains 
correspondence and completeness results together in a unifying approach to- 

wards definability in standard modal logic. But in our categorial case, there is a 

difficulty. 

Sahlgvist Incompleteness 

Consider the following natural, almost ‘classical’ categorial logic LPW. It con- 

sists of the non-associative Lambek Calculus with the following additional ax- 

ioms: 
AeBFHBeA Permutation 

AeBlF A Weakening 

By the earlier correspondence analysis, ternary LPW. frames have a relation R 

satisfying the following first-order conditions: 

Va,b, c(Ra, bc = Ra, cb) permutation 

Va,b,c(Ra,bc = a = b) weakening
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Taken together, these imply triviality of composition: 

Va,b, c(Ra,bc > a = b = c}) 

A Peirce Variant 

Consider the formula ((p > q) > 9) > (p > 9) Fp — 4, arising out of Peirce’s 

Law (p > g) — p) F p by substituting p — q for p. 

Claim. 

(p—4q) > q) > (p—> 9) + p — qis valid in all LPW models. 
Proof 

Suppose that a = ((p —> q) > 9) = (p = ¢). We must check that ¢ = p — ¢. 

Suppose otherwise, i.e., a } p — ¢. Then there are b and ¢ such that Re, ba, 

b &= p and c £ ¢. By triviality of composition, we conclude that Ra,aa, a = p 

and a [~ ¢q. Next, observe that a = (p — ¢) — ¢ (if not, triviality of composition 

gives a contradiction). Since a = ((p — ¢) = ¢) = (p — ¢), we conclude that 
a = p — ¢, which contradicts our assumption. O 

This observation motivates the following result. 

3.2.3. THEOREM. LPW is frame incomplete. 

Proof 

It suffices to show that our Peirce Variant is not derivable in LPW. For this 

purpose, we introduce a simple proof-theoretic invariant, namely, the following 

‘positive counter’: 

p' is some arbitrary positive natural number; 

(AeB)}Y = Al4 B! 
(AB = Bì Al if B> A 

1, otherwise 

(B < A)! likewise 

Note that all formulas get positive counters in this way. (For categorial uses of 

this numerical technique, cf. [van Benthem 91b], [Roorda 91], [Pentus 92b].) 

Claim 

If « + B is derivable in LPW , then a! > 6!. 

Proof 

By induction on the length of the derivation of a + 3. One first has to check all 

principles of NL. For instance, consider the rule 

AsBHC < BLA-C. 

Suppose that Al + B! > C!. Then either A! < C. and (A C)! = CI - Al< 

B!, or A! > C!, and (A —» C)! = 1, which is always smaller than or equal to
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B!. The argument in the opposite direction is similar. Clearly, Permutation and 

Weakening axioms preserve our numerical invariant. O 

Now, it suffices to show that our Peirce’s Variant 

(P>9) +9) > (=9 btp—oyg 

fails this test. Set 
pfl — 1 qfl — 3 

Then (((p — q) — q)) = (p = 9))! works out to 1 , which is smaller than 

(p—q). 0 

Thus, in Kracht’s terms, completeness theory and correspondence theory for cat- 

egorial inference are not always married. One possible remedy here is increasing 

the inferential power of categorial logics, using additional rules. (Cf. the general 

Sahlqvist completeness theorem in [Venema 91] for rich modal languages, using 

so-called ‘irreflexivity rules’.) We leave this modal route for categorial logics 
unexplored here. Instead, we will be looking at least for a subclass of Sahlqvist 

axioms which do guarantee frame completeness. In view of the earlier examples, 

these should still include many familiar categorial axioms. 

Sahlqvist Completeness 

The heuristics of the earlier completeness proofs over the simple formula repre- 

sentation with (some) additional sequent axioms suggests an analogy with the 
substitution arguments found in Chapter 2. The class of axioms for which this 

works well may be described as follows. 

3.2.4. DEFINITION. Weak Sahlqvist Azioms 

A weak Sahlqvist axiom is a sequent of the form a - 3, where a is a pure product 

formula, associated in any order, without repetitions of proposition letters, and 

B is also a pure product formula containing at least one e, all of whose atoms 

occur in a. 

Né)te, that due to the equivalence between product and slash formulas pointed 

out in Chapter 2, the set of sequents equivalent to weak Sahlqvist axioms is not 

restricted to ML(e). Here are some examples: 

p>qgtp+-g 
po(@—or)Fg—(p—>r) 

(peg)ertpe(ger) 

(peg)ertper 

(r+-p)+- prr+- p 

p+ rrp+ (reg) 

Sahlqvist Completeness Theorem gives the completeness result not just for any 

particular sequent, but the whole class of sequents equivalent to weak Sahlqvist



72 Chapter 3. Aziomatics and Completeness Proofs 

axioms. Moreover, it proves, that adding a weak Sahlqvist axiom to a canonical 

logic does not disturb canonicity. By ‘canonical’ logics, we mean those which 

hold in the underlying frame of their canonical model as constructed in the 

above completeness proof. 

3.2.5. THEOREM. Sahlquist Completeness 

If a + 3 is a weak Sahlqvist axiom, then 

(i) NL + a + 3 is frame complete for the first-order frame condition corre- 
sponding to a - 3 

(ii) X + a + B is a canonical logic, whenever X is a canonical categorial logic. 

In order to prove the Theorem one has to show, that a first order frame corre- 

spondent of an arbitrary weak Sahlqvist formula holds in the canonical model. 

First, we imitate the main steps of the proof reconsidering Associativity Axiom 

in the canonical model construction and then present the general proof as such. 

Consider the weak Sahlqvist axiom (peg)ertpe(ger). 

1. Suppose that (peg)er + pe(ger) is true in the canonical model M . Then 

for all formulas A, B,C 

M | (AeB)eCH Ae(Be() 

2. That is VAVBYCVa(a |= (AeB)e(C = a E Ae(BeC)). 
Together with the truth condition for e , this leads to 

VAVBVCVa(Jbede(Ra, be & Rb,de& d= A& e EB& cE=C) > 
Jzyzv(Ra,zy & Ry,zv&k e = A& z= B & v = C)). 

This is equivalent to 

VAVBVCVabcde((Ra, be & Rb,de & d=A& e =B & cEC) > 
Jzyzv(Ra,zy & Ry, zv&z EBA&zEB&vEC)). 

3. Now, set 

A=d B =c¢e C=c 

Then, by instantiation from the last formula, one gets 

Vabcde((Ra,bc& Rb,de&k dEd&ele& cl=c) = 
Jzyzv(Ra,zy & Ry,zv& z=d& zE e & v = ¢)). 

Using the trivial consequence of the Truth Lemma 3.2.2 that 

Vk(k e W = k = k), 
we can simplify this to obtain 

Vabcde((Ra, be & Rb, de) > 
Jeyzu(Ra, zy & Ry, zv&z+-d&zrte&v-c)).
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By the definition of the canonical model 

Rk,nm <= kt+nem, 

Altogether this implies 

Vabcede((Ra, bc & Rb, de) > Jy(Ra,dy & Ry, ec)). 

Crucially, the latter first-order formula is exactly the same frame condition 

as was achieved in Chapter 2 by the application of the minimal substitution 

algorithm. 

For the general proof of the Theorem, we apply the same trick with small combi- 

natorial complications, following the successive steps of the Sahlqvist-van Ben- 

them algorithm, applied to weak Sahlqvist axiom a - 8. 

(1) 

(i) 

(iii) 

Pure product formulas « have a standard translation ST (a) consisting only 

of atoms, & and J . Thus, one can move all existential quantifiers up 

front. 

Next, compute the canonical valuation CV. The essential point is that 

each unary atom Pu occurs only once (because of the non-iteration of 

proposition letters in a ). Therefore, each such atom will have just one 

identity atom u = a for its substituendum. (Note, that the definition of the 

antecedent of weak Sahlqvist formulas forbids occurrence of disjunctions 

in the canonical valuations) 

Now, the usual equivalent will be obtained by substituting these identity 

atoms into the corresponding positions of the consequent ST'(B). 

Let us now analyze what happens in parallel in the canonical model. 

1. Suppose a } f is true in the canonical model M. Let p1,..., Pn be distinct 

propositional variables which occur in @ and o' + 3’ be obtained from 

a + G by substituting a1,. . .,Qn fÍor p1, . .. ,Pn. Then, for any zoE W 

[a] Va .. Von(Zo E o > zo EB 6°) 

‚ By truth conditions, decode zo EB @' andzy & £' providing that no two 

quantifiers have the same bound variables. This yields 

[6] Vai .. Voan(© > A) 

with 

e © is equivalent to Jz1 .. . JZn4+1(A Rz;, 2;2; & A(Zm E Qm)), where 

1<1 j k<n+landl <m <m and z;, .. .,Zn4; are distinct; 

e A is equivalent to Jy; ...3y:(A Ryi, y;vx & A(¥s F am)) where 1 < 
t,i,7,k < n+1and 1 < s,m < n. Again, y;,...,¥: are distinct, 

moreover if y, &= Qm occurs in A, then y, is a leaf of exactly one 

triangle which belongs to A Ry;, ¥;yk.
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3. Since a is in ML(e), there are only existential quantifiers with distinct 

bound variables in © By standard technique of first order logic, one gets 

[e] Va .. VanVzi, . . Vzt(@/ > A) 

where @' = A Rz;, z;z1 & A(m E Om). 
. Pick up ay,...,a, such that z; = a; (1 < i < n). Eliminate Va; ...Va, 

by the corresponding instantiation. This leads to 

[e] Vzi, . .Vzr((ARz;, z;7j & A(zm E 2m)) > 

Jy1, ..Dy(A R3; yjyk & Ay, E Zm))) 

Next, by Truth Lemma 

[d] Vei,.. . Ve ((A Rzi 2z & A(Zm + Zm)) > 

d41 .. Iy (A Ryi, yime & A(ys F Zm))). 

Recall, that if y, E Zm is in A, then y, occurs uniquely as a leaf in one 

triangle of A Ry;, y;¥kx. Thus, Ry,, ysy» (or Ryp,y,y,) by the definition of 

ternary relation in the canonical model, can be transcribed in y, - y, ® Y 

(or y, I JYs © Yr); taken together with y, + z,,, this yields Ry, z,y, (or 

Ryp, yrZm). Finally, [d] leads to the required first order frame condition [e] 

which turns our to be valid in the canonical model: 

[e] VZ]_, .…. VZk((A Rzi) 23j2!k) = [ayl) . 3yt A Rgi) nyk]* 

where [Jy1, . .Jye A Ry;, y;Yr]* is obtained from J9y1, .. .Jyt A Ry;, v;Vrk by 

substituting Zm for y,, for each y, E Zm occurring in A. 

3.3 A Hierarchy of Filters 

Once again, the point about categorial completeness proofs is this. As we are 

dealing with weak fragments of a full modal language, we are in a spectrum 

of model constructions, where worlds may be constructed in ways ranging from 

single formulas to infinite maximally consistent sets of formulas. Our aim is to 

show this systematically, by means of the following notions. 

3.3.1. DEFINITION. Types of Filters 

The following notions are all relative to some fixed categorial logic driving sequent 

deduction. 

e A set of formulas A is a weak filter iff 

ifae A and al 3,then 8 € A 

e A filter is a weak filter satisfying 

cakpfeAiffac Aandf e A
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e A prime filter is a filter satisfying 

aV eAiffac Aorfe A 

e An ultrafilter is a prime filter satisfying 

acAiffadg A 

Our plan is as follows. First, we reprove the completeness theorem for the 

non-associative base calculus NL using weak filters. (This may be compared 

with the earlier semantic construction of ” weak filter extensions” in Chapter 1.) 

Next,we show how other types of filters determine canonical model construction 

when categorial language is enriched with different connectives. All these results 

will concern ternary frame semantics. Improvements to binary frame semantics 

are possible for certain categorial logics, and some of these will be considered in 

Chapter 4. 

3.3.1 Weak Filter Representation 

We reprove completeness for the basic non-associative Lambek calculus by a 

construction which lifts the earlier formula-based canonical model to one whose 

worlds are sets of formulas. Essentially, what we shall do is apply the weak filter 

extensions of Chapter 1 to the former. The advantage of this is that we set up 

a better platform for future generalizations. We repeat the result 

3.3.2. THEOREM. Completeness for NL 

NL is sound and complete with respect to the class of all ternary models. 

Proof 

As usual, soundness is trivial. Completeness follows by a Truth Lemma for the 

following new construction. The NL-Henkin Model is a quadruple 

M = (W,R* V) 

where 

o W is the set of all weak filters of formulas 

e R3a,bciff bocC a, 

where o is a binary operation on sets defined as follows: 

a € z o y iff there are 3,7 such that 

Bez,yeEyand feyl 

e acV(p)iff p € a. 

We need two observations concerning weak filters. Let |A| denote the set of all 

a such that A - a. 

Fact 

For any M L(e,—,+ ) formula 4, |A| € W.
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IfaecW and be W,thenaobe W 

3.3.3. LEMMA. For any M L(e, —,+) formula a and any a € W, 

M,a k= aiff a € a. 

Proof 

By induction on a. The base case directly follows from the definition of V. We 

demonstrate two cases. 

a=AeB 

From right to left, 

1. 

2. 

Suppose A e B € a. 

The crucial observation is that, then, |A| o |B| C a. To see this, suppose 
that a € |A| o |B|. So, there exist a;, a; such that a; € |A|,a; € |B| and 
a; e as - a. Hence, by Cut, A e B} «, and by [1] we have that a € a. 

. By definition, |A|o|B| C a means that Ra, |A||B|. Now, by the inductive hy- 
pothesis, |A| € A and |B| € B. Hence we have that 3bdc(Ra,bc & M,b € 

A& M,c€ B),ie, M,ac AeB. 

From left to right, 

1. 

2. 

Suppose that M,a € Ae B. 

By the inductive hypothesis and the definition of R, there exist z and y 

such that [ijzoy C a, [] A € z, [iii]B € y. By the definition of o , this 
immediately leads to A e B € a. 

a=A—B 

From left to right, 

1. 

2. 

Suppose that M,a € A — B. 

By the truth definition, VdVe(Re,ba & M,b € A = M,c € B). Since 
R|A|oa,|Ala and M, |A| = A (by the inductive hypothesis), this implies 
M, |Aloa = B. By the inductive hypothesis once more, B € |A| o a. This 
means that some C e D - B is derivable, where A  C is derivable and 

D € a. Hence also Ae D - B is derivable. It follows that D derives A — B, 

whence A — B belongs to the weak filter a, as required. 

From right to left, 

1. Suppose A — B € a. 

2. Suppose Rc,ba and M,b = A. By the inductive hypothesis, one gets A € b, 

and hence by the definition of R, A e (A — B) € c. The latter derives 
B , whence B € c. By the inductive hypothesis, M,c € A, and hence 

M,a€e A— B. 

a
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The Completeness Theorem now follows in the usual way. 

3.3.2 Extension with a Minimal Modality 

M. Moortgat in [Moortgat 94] shows that the formula-based canonical model 

provides a completeness proof for an extension of the Lambek calculus by axioms 

for a minimal temporal logic. But adding just one standard unary modality O 

(without its temporal dual O+) make a difference for the canonical domain. We 
need the preceding weak filter construction to get things right. here are the main 

steps that need to be added. 

The minimal modal extension NL™ of NL is obtained by adding just one prin- 

ciple: 

Modalization Rule 

if AL B then DA+ OB 

Various further extensions arise in obvious ways. As for semantic structures (cf. 
Chapter 2), a NL™ frame is a triple F = (W, R>, R?), where (W, R3) is a ternary 

frame and R? is a binary accessibility relation. A NL™ model is a quadruple 

M = (W, R, R?,V) such that (W, R?, R?) is a NL™ frame with a propositional 

valuation V. The inductive truth definition is as usual, with one extra clause for 

: 

M‚a EDA < Vb(R?ab > M,b E A) 

Definitions of ‘weak filter’, etcetera, remain the same. 

3.3.4. THEOREM. NL™ is sound and complete with respect to the class of all 

NL™ models. 

Proof 

We merely indicate the additional steps, as compared with the previous com- 

pleteness argument. In the Henkin Model, we need one additional clause for 

modal accessibility: 

R%ab <= Vb(OA€a= A€b) 

In the proof of the Truth Lemma, we need one additional case for modalized 

formulas: 

a=0A4 

From left to right, 

1. Suppose that M, a = OA. 

2. Suppose that OA g a.
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3. Define a new class k of ML(-+, e, + , D) formulas as follows: 

k= {a|0a € a} 

4. By definition, Rak, and therefore from [1] combined with the truth defi- 
nition and the inductive hypothesis, A € k. On the other hand, A € k by 

the definition of k. This contradiction shows that OA € a. 

From right to left, 

l. Suppose that OA € a. 

2. Suppose that Rab. Then by the definition of R, A € b. Next, by the induc- 

tive hypothesis, M, b = A, and therefore M, a E A. 

Completeness for other standard modal extensions of the Lambek Calculus, 

such as the above T and K4 versions, require only one additional step, namely 

proving that the corresponding frame condition is valid in the canonical model. 

This can be shown by the usual arguments of standard modal logic. 

3.3.3 Filters and prime filters in Henkin model 

Ertended Vocabularies 

So far,we managed with weak filters. Next, we want to introduce further type- 

forming connectives. We start with a straightforward extension, which does not 

really affect the earlier proofs. 

Conjunction and filters 

Consider the extension NLg of the Lambek calculus NL with the following 

axioms and inference rule: 

A&BH A A&B+ B 

if AbB and AFC, then A+ B&C 

In ternary models, & gets the obvious interpretation as Boolean conjunction. 

This will make these new principles obviously sound. 

3.3.5. THEOREM. NLg is complete for ternary frame semantics. 

Proof 

The only adaptation needed in previous arguments is a change in the Henkin 

worlds. These now become filters, that is, sets of M L(e, —, +, &) formulas X 
such that 

X is a weak filter 
for all ML(e,—,+, &) formulas A and B , 
A€ X and B e X iff A&B € X.
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The rest of the completeness proof for NLg, is straightforward. O 

Disjunctions and Prime Filters 

The next natural question to ask is whether there is a similar complete cate- 

gorial inference system with the other Booleans. But here, some complications 

arise. By technical algebraic methods, [Andreka & Mikulas 93] prove a negative 

result, at least for binary frame semantics (cf. Chapter 4). Informally, the latter 

semantics with categorial product plus all Boolean connectives, has no simple 

complete proof system. Of course, this does not disqualify attempts via ternary 

frame semantics. We shall consider the full Boolean language in a later Section. 

For the moment, we shall rather follow the tradition of Relevant Logic. We can 

introduce disjunction of types into our logics, with standard axioms, and obtain 

completeness via a so-called ’prime filter’ construction. We shall not perform 

this extension separately here. 

Adding “Inverse” Negation 

Instead, we note at once that the prime filter construction can be generalized 

to accommodate at least one well-known kind of negation. More precisely, one 

can construct a sound and complete categorial logic with a set of connectives 

{e,—,+, &,V,~}, where ~ is the special ”inverse negation” from Relevant Logic 

already encountered in Chapter 2. Its semantic explication was that a negation 

~ A is supported by a world z in a ternary model iff the frame inverse z* of z 

does not support A. 

The main deductive calculus LCg \ ~ that we shall study here can be obtained 

from LC' by adding the following axioms: 

A-AVB BHAVB 
n AFA At=n A 

~A& ~Bl~ (AV B) ~(AVB)F~ A& ~B 
~ AV ~ B+~ (A & B) ~(A& B)~ AV~ B 

plus two new inference rules: 

AFrBand C+FHBimply AVCF B 

A B implies ~ Bt~ A 

Next, we turn to semantic interpretation. 

3.3.6. DEFINITION. LCg v ~ Models 

A LCg  ~ is a quadruple M = (W, R,*, V), where W is a non-empty set closed 
under a unary operation *, R is a ternary relation, V is a valuation function, and 

the following postulate of Idempotence holds: for all worlds z, z** = z.
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It is easy to see that the calculus LCyg v ~ is sound for its models. Before turning 

to its completeness, we note some useful properties of the prime filters needed in 

the Henkin construction. Recall the earlier definition: these are filters that split 

their disjunctions. 

3.3.7. LEMMA. Special Lindenbaum Lemma 

Let a, b be filters and c a prime filter containing a o b. 

Then there exist prime filters a’ and b’ such that 

aCad,bCbdlandad obd Ce. 

Proof 

Let a, b be filters and let c be a prime filter, satisfying ao b C c. We will show 

that, for any filter a and prime filter c with a o b C ¢, there exists an extension 

of a to a prime filter a' such that a/ o 6 C c. The prime extension for b then goes 

similarly. The crucial step in our argument appeals to Zorn’s Lemma, appl'ied 

to the family of filters a’ extending a which satisfy a’ ob C ¢ ordered under 
inclusion. There must be maximal such filters, and the following Claim then 

does the job. 

Claim Any maximal filter k satisfying k o b C c is prime. 

Proof 

1. Suppose that k is a maximal filter satisfying ko b C c. 

2. Suppose that e VBE k, but a ¢ k and B ¢ k. 

3. We need an auxiliary definition. Let z be a set of formulas and a a formula 

such that a ¢ z. Define a new set [z, a] via: 

b€ |z,a]iff€zorald 

Here, k is strictly smaller than [k, a],because a g k.Since k is a maximal 

filter satisfying k o b C ¢, we may conclude 

(a) [k, a] o b G c, and likewise, 
(b) [k,G]ob g e. 

4. It follows that there is some formula 9 € [k, a] o b with ¢ ¢ c‚and likewise, 
some formula x € [k, B] o b with x g c. 

5. By the definition of [k, a] o b, there exist 1)y, 13 such that 

Y1 €[k,a] Pa€bd Yreth 

In particular, either ; € k or a + Y. But the first is impossible. Other- 

wise, combining the preceding facts, we get 1) € ko b, and hence 9 € ¢ : 

contradicting the assumption in [4]. Therefore, a + 1);. Analogously, we 

conclude that there exist x1, X2 such that 

Xx1 E [k,B] x2€b 10320 +x
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where G H x;. 

6. Now we derive some successive consequences of [6]: 

p F 9Py 

a y v 

a F(Vx) + (Y2 & x2) 
as well as 

X1 F X + X2 
BFx+X2 
BF(bV x) + (t2 & x2) 

7. Together, in our calculus, the preceding sequents derive o VB H ( V x) - 

(Y2 & x2), and therefore (@ V B) o (Y2 & x2) F Y V x.Now recall that 
aV @ € k, while ¢, & x2 € b(filter property). Then, since ko b C c,we 

get Y V x € c. As c is a prime filter, either ¢ € ¢ or x € ¢, which is a 

contradiction with [4] 

O 

Now, we are ready to prove our main result. 

3.3.8. THEOREM. LCyg v ~ is complete for its ternary models. 

Proof 

The canonical Henkin model is a quadruple M = (W, R, x, V) such that 

W is the set of all prime filters 

a* ={a| ~a &a} 
R3a,bciffbocC a 

a€V(p) iff p € a. 

Truth Lemma 

For all a € W, and all M L(e,—,+, &,V,~) formulas ¢, a = a iff a € a. 

Proof 

Induction on the length of a. The base case is a direct consequence of the defi- 

nition of the valuation V. The case of conjunctions A& B is taken care of by the 

filter requirement as before. Likewise, the case of disjunctions A V B follows by 

the splitting requirement on prime filters. Next, we consider the crucial induc- 

tive step for products Ae B. One direction is as before. Suppose that a = Ae B. 

Then, by the truth definition, the definition of R, and the inductive hypothesis, 

there exist prime filters z and y such that [ij zoy C a, [ii] A € z, [iii] B € y. This 
immediately gives A ¢ B € a. Conversely, suppose that A e B € a. We want to 

show that a = A e B. First note, that, as before, |A| o |B| C a. This time, these 
do not suffice, as there is no guarantee that |A| and |B| are prime filters. Here, 
we appeal to the earlier Lindenbaum Lemma, which gives prime filters z and y 

with |A| C z, |B| C y and z oy C a. Therefore, Jz3y(Ra,zy & A€ z & A € y),
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and by the inductive hypothesis, we get a = A e B, as desired. We omit the 

verification steps for categorial implications. O 

To make the completeness result follow from the Truth Lemma, one has to 

prove that our prime-filter based Henkin model is in fact an LCg v ~ model. 

First, we observe that the set of all prime filters is closed under its unary oper- 

ation *. 

Claim Ifae€ W,thena*eW 

Proof 

Suppose that a € W. Recall that a* = {o| — a g a}. We must check the 
requirements for being a prime filter. (i) To show that a* is deductively closed, 

suppose a € a* and a + 3. If 8 & a*, then ~ f € a. Since a is deductively closed 

and ~ B -~ a, we may conclude that x a € a : which is a contradiction. (ii) 
Next, suppose that a, 8 both belong to a*. Le., ~a & a and ~ 8 ¢ a. Then we 

also have ~ (a & ) ¢ a and hence the conjunction a & B € a*. (Otherwise, 
because ~ (a & B) derives ~ aV — B, the latter disjunction would be in a , 
whence the prime filter a has ~ a € a or ~ 8 € a : quod non.) (iii) Finally, 

suppose that a V3 € a* , but a € a* and 6 # a*. Then we have ~ a € a and 

~ B € a, and therefore (by one of the above De Morgan axioms) ~ a & ~ 3 € a. 

That means ~ (a V ) € a (by deductive closure), but then also aV 8 ¢ a*. O 

Claim  The Henkin model is idempotent. 

Proof 

The following chain of equivalences is justified by the definition of * in the Henkin 

model, plus the Double Negation laws of our calculus: 

Aca" if —Agatiff ~~Acaiff A€a. 

Û 

Here is our final argument. Suppose that A + B is not derivable in LCg v‚ . Then 

clearly B ¢ |A|. Now, the family z of filters extending |A| and not containing B 
is partially ordered by inclusion C . Therefore, by Zorn’s Lemma, there exists a 

maximal filter k satisfying these conditions. 

Claim k is a prime filter. 

Proof 

Suppose that aV 8 € k , but a € k and 8 ¢ k. Construct [k, a] and [k, 8] as in 
the proof of an earlier Claim. Since k is maximal, [k, a] and [k, 8] do not satisfy 

the requirement of omitting B, whence B € [k, a] and B € [k, 8]. Because B ¢ k, 
this implies that a + B and 6 t B. But then also (in our deductive calculus)
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aV B F B. But as we assumed that aV 3 € k, this gives B € k : a contradiction. 
Ù 

For this prime filter k which does not contain B , the Truth Lemma says that 

k I= A , but k } b. Therefore, the non-derivable sequent A + B is not valid in 

all LCg v ~ models. O 

With this method of proof, we can also analyze further categorial logics, 

having additional axioms for negation and disjunction. In particular, a more 

general Sahlqvist completeness theorem is lurking in the background here, whose 

statement we must omit. As an example, Idempotence itself was a Sahlqvist 

axiom, and the above argument for its validity on the Henkin frame can easily 

be generalized to cover other axioms. 

3.3.4 The Full Modal Case 

So far,we managed with weak filters, filters and prime filters. Next, in this Sec- 

tion, we look at the full modal calculus with Booleans. In a natural sense, this 

is the 'limit’ of our considerations. Lambek Calculus was studied from this per- 

spective in [Roorda 91}, and much of what we have done so far consists in a more 

delicate analysis of the ‘categorial fine-structure’ of this broader modal system. 

Recall the basic definitions (cf. also chapter 1). We work with a language 

with three inter-locked products and all Booleans, which is ‘versatile’ in the sense 

of [Venema 91]. This language is interpreted over ternary models as follows: 

M‚aEAeB <= Jbdc(Ra,bc & M,b=A & M,c = B) 
M,a=Ae; B <~ Jode(Rc‚ba & M,bE A & M, c B) 
M,al=Ae3B = 3b3dc(Rc,ab & M,bE= A & M,c = B) 

Re
 &

P 

In particular, this system allows us to define the two categorial slashes via nega- 

tions and products: 

AB isequivalentto —(A e; —B) 

B+ A isequivalent to —(A e3-B) 

The minimal modal logic for this language, with respect to ternary frame seman- 

tics is as follows: 

(i) all axioms and rules of classical propositional logic 
(ii) residuation laws 

Ae;BHFC iff BFA—C iff BFC+ A 
(iii) modal distribution of product over disjunction 

Ae; (BVC)'—(AO,B)V(AO,C)
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(iv) “necessitation” 
if + A then + —(3A eiB) 

where 1 < 1 < 3. 

Below we drop indeces and agree to use e for e; . 

One virtue of this system is that it is an ordinary modal logic, of a well- 

understood kind - which can be used to understand many categorial patterns 

in standard terms, for example 

(A3C)&(B-3)H(AVvB) 3C 

More generally, with practice, one will come to recognize modal principles in 

categorial ones, and also vice versa. 

As a culminating point for the ‘Filter Hierarchy’, we present an outline of the 

standard proof for the basic completeness result. Here, at last, worlds will be 

constructed as ultrafilters, in order to deal with Boolean negation. 

3.3.9. THEOREM. The minimal modal logic of three versatile products is com- 

plete for ternary frame semantics. 

Proof 

The Henkin Model is a quadruple M = (W, R®, V) where 

e W is the set of ultrafilters (maximal consistent sets of formulas) 
e R3a,bciffboc C a, 

e a E V(p) iffp€a. 

The crucial step in our argument appeals to the following 

Claim. 

If Ae B € w then there exist maximal consistent sets z and y such that 

Acz, Bey and Rw,zy 

Let 11, … n; … be an enumeration of all ML(e, &, V, ) formulas. 
Set zo = {a} 0 = {B} 
Let A zn(A yn)denote the conjunction of all formulas which occur in z,(y,). Let 

n a 
Note, that if Az, ¢ Ay, € w, then 

(Azn A (aV-a)) e (Ayn A(aV-a)) €w 
By modal distributivity and properties of ultrafilters 

(/\:cn/\a*) ° (/\y„/\a**) E w
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for some a*, a** equal a or —a 

Define 2,41 = ¢, U {a*}, Yns1 = yn U {a**} 

Next, suppose that z,; is inconsistent. 

Then Az, F —-a* and therefore 

F=(Azn A o*). By“necessitation” rule we have 

+ -n((/\z„Aa*) ° (/\y„ A a**)) 

and that contradicts consistency of w. 

In the countable limit, this construction yields the desired pair of successors 

for w . O 

Arrow Logic as a categorial logic 

As it was mentioned already, two procedures are involved in the semantic inter- 

pretation of the relevant negation A, namely, Boolean negation and ’converse’. 

Arrow Logic contains explicit connectives for both of these, namely classical 

negation — , and a notion of converse ~ interpreted as follows: 

A" is supported by z iff the inverse of z supports A. 

So, as mentioned already, ~ A can be read as 2A", whence we have the following 

translations : 

A—> B =~ (N BOA) = _I(_IBVOA)VZ _‚(A“.-jB) 

B+ A=~ (AO “_ B) = '“I(A ° _'IBV)V = —1(—IB ° AV) 

Thus, Arrow Logic can be viewed as a categorial logic. The presence of full 

Boolean expressivity in Arrow logic determines ultrafilter constructions in the 

canonical model. We refer the reader to [van Benthem 194], [Venema 94] and 
[Marx 95] for more detailed completeness proofs for Arrow Logic. What we shall 
add here is a more finely structured analysis of the ‘amount of Arrow Logic’ 

needed to embed the Lambek Calculus.





Chapter 4 

Relational Completeness of the Lambek 
Calculus 

  

Introduction 

This chapter introduces a labelled format of categorial deduction which inspires 

a special method of proving completeness of the Lambek Calculus with respect to 

two-dimensional dynamic semantics. The chapter is an almost literal reproduc- 

tion of the paper ‘The Lambek Calculus, Relational Semantics and the Method 

of Labelling’ (see [Kurtonina 94]). 

Content 

1. The Lambek Calculus, Relational semantics and the method of labelling: 

the general idea behind the completeness proof. 

2. Weak completeness of the Lambek Calculus with respect to Relational 

semantics. 

3. Strong completeness of the Lambek Calculus with respect to Relational 

semantics. 

4. Concluding remarks and open questions. 

Relational Semantics as it is introduced in [van Benthem 88a], [van Benthem 
91b] and [Busz. & Orl. 86] provides a dynamic interpretation for the Lambek 
Calculus: valuation of formulae is carried out on pairs of points, which can be 

treated as informational states. Propositions can be understood as programs of 

transformation of informational states. In [Andréka & Mikulás 94] the corre- 

sponding Completeness Theorem is obtained by algebraic methods. 

The purpose of this paper is to propose a new, rather simple completeness proof 

by using the method of labelling. The general theory of labelled deductive sys- 

87
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tems is proposed by D.Gabbay. In the labelled version of the Lambek Calculus a 

pair of labels is attached to every formula and the way of labelling reflects corre- 

sponding semantical truth conditions. The straightforward parallelism between 

syntax and semantics enables one to obtain the completeness result. 

4.1 The Lambek Calculus, Relational Semantics and 

the method of labelling: the general idea behind 

the Completeness proof. 

The language of the Lambek Calculus LC is a propositional language with count- 

able set of propositional letters and the binary connectives o, —,+ . We use 

A,B,C,...,A;, B, etc. as schematic letters for formulae. Expressions of the 

form A, ..., A, = B will be called sequents. 

The Lambek Calculus 

LC can be presented by the following axiom and inference rules where A, B,C 

stand for formulae and X, X1, X2,Y, Z stand for finite sequences of formulae 

including the empty sequence. 

    

    

    

  

A= A 

X > A Y, B, Z = « A, X > B 

Y, X, A—> B, Z = « X > AB 

X > A Y, B, Z = « X,A=B 

Y B+ A X,7Z = «a X > B+ A 

X, A B,Y = « X1 > A X2 >B 

X,AeB, Y —>a X1, X2 > AeB 

Adding Cut Rule 

X > A YA Z =>C 

X,Y, Z = C 

1s conservative. 

Relational Semantics 

(i) A Relational Frame is a pair (K, D) where K is a non-empty set and 
D=KxK 

(ii) A Relational Model adds a valuation function 3 which can be extended 
as follows: let a, b, c be elements of K
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abl=p iff ab € ¥(p) 
ab=A— B iff Ve(ca |= A = ¢cb = B) 
abE=B+ A iff Ve(bc = A = ac = B) 
abl=AeB iff de(ac = A & ¢b = B) 

(iii) A sequent A;,..., A, = A (where n > 0) is true in a Relational Model M 
iff, for any a,b € K,if abj= A, e...0 An, then ab = A 

(iv) A sequent = A is true in a Relational Model M iff, for any a € K, aa € A 
(v) A sequent ¢ is valid in Relational Semantics iff it is true in all Relational 

models. 

If LC is considered just as a sequent calculus then the Completeness Theo- 

rem says that every semantically valid sequent ¢ is derivable. We will call this 

theorem the Weak Completeness Theorem. But LC can be also treated as a 

‘sequent-axiomatic’ system with a notion of an inference of a sequent ¢ from 

some sequents premises ¢, ..., @n. In this case the Completeness Theorem says 

that, if ¢, ..., ¢, semantically entails ¢, then ¢ is derivable from the premises 

¢1,...,0,. We will call this theorem the Strong Completeness Theorem. 

To obtain the completeness result we are going to use the Labelled version of the 

Lambek Calculus. By a labelled forfnula we mean an expression of the form ‘a 

pair: formula’: ‘ab : A’. By a labelled sequent we mean an expression of the form 

acy : Ay, c1ca i Ag, ... Cn_1b : Án = ab: A 

The Labelled version of the Lambek Calculus (LLC) 
Let K/ be a set of labels, D/ = K' x K'; a,b,c € K' , a a labelled formula and 

X, X1, X,,Y, Z finite sequences of labelled formulas. 

LLC is defined by the following axiom-scheme and inference rules 

    

    

  
  

ab: A = ab: A 

X =>ca:A Y, cb:B, Z, = a ca:A, X > cb: B (%) 

Y X,ab:A— B, Z, > «a X > ab: AB 

X > bc:A Y,ac: B, Z>a X,A=> B 

Y, ab: B 4, X, Z = a X > ab. Bead © 

(%) X,ac:A,chb:B,Y = a Xy >ac:A X, = cb:B 

X,ab:AeB, Y = a X1,Xs > ab:AeB 

In the rules marked with (x) c is fresh.
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Cut Rule 
X => ab: A Y,ab: A, Z, = C 

X, Y Z; > C 
  

4.1.1. LEMMA. Renaming Lemma 

If a sequent acy : Ay, C1C2 : Ay, ... cn_1b: A, = ab: A is derivable in LLC, 

then any substitution of a fresh label d for c;(i < n —1) or a or b does not disturb 

derivability. 

Proof 

By induction of the length of the derivation O 

4.1.2. DEFINITION. Canonical sequence of labels 

A sequence of labels (a,c;,...,cn,b) is a canonical one iff all its members are 

distinct if n > 0 and a = b if n = 0. 

The following Lemma establishes the obvious connection between LC and 

LLC that we need for the completeness proof. 

4.1.3. LEMMA. If for any canonical sequence of labels (a, ¢y, ..., ¢,, b) a sequent 

acy : Ay, c1ca 1 Ay, ...,Cn_1b: A, = ab: A 

is derivable in LLC, then 

A1, A2,..., An > A 

is derivable in LC. 

Proof 

If there is a derivation of 

acy : Á1, Ci1C2 : Á3, ...; Cn_1b : An > ab: A 

in LLC, then dropping labels we immediately have a derivation of 

Ay, Ay,..., A, = A 

in LC. O 

The general idea of the completeness proof can be expressed as follows: 

(a) Suppose A;, Aa,..., A, = A (where n > 0) is not derivable in LC ; 

(b) According to Lemma 4.1.3 there is a canonical sequence of labels (a, ¢y, ..., Cn, b) 

such that the sequence 

ac; : Ay, c1ca: Ay, ...,cn1b: A, > ab: A 

is not derivable in LLC;
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(c) We mark with T all left labelled formulas of the labelled sequent and with 
F -the right formula. The resulting T' — F set is 

Ao ={Tac; : Ai, Teic2 : A2 ,, T'n_1b : An, Fab : A} 

(d) To prove completeness theorem one has to construct a model such that 

aci = Ay, cic2 E A2, .…. ,Cn _10 EB An, but ab £ A 

4.2 Weak completeness of the Lambek Calculus with 

respect to Relational Semantics 

The method of construction of the canonical model requires the description of 

some properties of the T — F set, i.e. a set of labelled formulas marked with T 

or F. We say that a labelled formula a is a T-member (F-member) of T — F set 
Aiff Ta e A (Fa€ A). 

Properties of T — F' sets 

e The T' — F set A is consistent iff, for any a, if Ta € D, then Fa does not 

belong to A. 

e The T — F set is complete iff, for any a, if Ta € A, then Fa € A. 

e The T — F set is saturated (or Henkin complete) iff (i)-(iii) hold: 

(i) If Fab: A — B belongs to A , then there is ¢ such that T'ca : A and 

Fcb : B belong to A. 

(ii) If Fab : A + B belongs to A, then there is e such that Tbc : A and 
Fac : B belongs to A. 

(iii) If Tab : A e B belongs to A, then there is c such that Tac : A and 
Tcb: B belong to A . 

e The T — F set is deductively closed iff if 11, . , k are T-members of A 

and the sequent +y1, .. , k > 7 is derivable, then Ty belongs to A. 

4.2.1. LEMMA. If A is a consistent, complete, saturated, closed T — F set, then 

there is a model M = (K, D, ¢) such that for any zy € D 

Tzy:ace A iff zyba 

Proof 

Define M = (K, D, ¢) as follows: 

e K is a set of labels that occur in A 

e D=K XK 

o pissuch that zy =piff Tzy:pc A
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The first case: a = A — B 

Suppose ab = A — B but Tab : A 3 B g A. Since A is complete, Fab : 

A B € A and since A is saturated, there is c such that Tca : A € A but 

Tcb : B g A. By the inductive hypothesis we easily get contradiction. Suppose 

Tab: A — B € A and ca = A. By the inductive hypothesis and the closeness of 

A conclude ¢b = B and therefore ab = A — B. 

The second case (@ = A + B) is analogous. 

The third case: a = A ¢ B. 

Suppose ab = A e B. Then there is ¢ such that ac = A and ¢b = B. By the 

inductive hypothesis and the closeness of A we get Tab: Ae B € A. Suppose 

Tab : Ae B € A. Since A is saturated, there is c such that Tac : A € A and 

Tcb : B € A. By the inductive hypothesis we can easily get ab = A ¢ B. O 

Lemmas 4.1.3 and 4.2.1 enable one to claim, that if a sequent 

aci : A1, C1C2 : Á3, ...; Cn_10 : An > ab: A 

is not derivable in LLC and the corresponding T — F set 

Ao = {Tacy, : Ay, Terea: Ay .… , T'n_16 : An, Fab : A} 

can be extended to a consistent, complete, saturated, closed T — F set, then 

there is a model where A;, A,,..., A, = A is falsified. 

To describe how Ag can be extended to a consistent, complete, saturated, closed 

T — F set we need the following definition: 

e The T — F set A is deeply consistent (d.c.) iff, if v1, ..., vk are T-members 

of A and the sequent v;,...,7x = y is derivable in LLC, then F4 does 

not belong to A. 

Remark 

If A is not closed, then consistency and deep consistency do not coincide: the 

second notion is stronger then the first one. 

4.2.2. CLAIM. If a sequent v1,...,7r = 7 is not derivable in LLC and the 

corresponding sequence of labels is a canonical one, then the T — F set Ao = 

{Tv1,...,Tvk, Fv} is deeply consistent. 

Proof 

Since v is the only F-formula that belongs to Ay, the fact that Ag is not d.c. 

means that there is m < k such that v;,...,9m = 7 is derivable in LLC. Then
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the second label of + is equal to the second label of «,,, but if m is different 

from k that is not possible, because the sequence of labels that corresponds to 

Y1,..-.,Yk = Y 1S a canonical one. O 

In order to show how any d.c. set can be extended to a saturated d.c. set we 

are going to describe the method of saturation with Henkin witnesses. 

By adding Henkin witnesses we mean the following procedure. 

Suppose A is a T — F set and Vj is a set of all labels that occur in A. 

(i). If Fab: A — B € A, then add a new label ¢ to V5 and new labelled formulas 
Tca: A and Fcb: B to A. 

(ii). If Fab: A+ B € A, the add a new label c to Va and new labelled formulas 
Tbe : A and Fac: B to A. 

(iii). If Tab: Ae B € A, then add a new label c to Vo and new labelled formulas 
Tac: A and Tch: B to A. 

4.2.3. LEMMA. Adding Henkin witnesses does not disturb deep consistency. 

Proof 

The first case:Fab: A > B € A 

Suppose A is d.c. set and Fab : A — B € A. Let us admit that adding 

a new label ¢ to VAo and new formulas Tca : A and Fcb : B we get a set 

A+Teca : A+ Fcb : B (here and below by A + a we mean A U {a}), which is 
not deeply consistent. That means that there are +y1,. . .,%k, 7 such that 

(i) 91,...,%k are T-members of A + ca : A 
(ii) the sequent 41, .. , k > 7 is derivable in LLC 

(iii) Fy€ A+ Fcb:B 

If there is no ca : A among 7, . ..,7k in (ii), then according to the properties of 

labels there is no c in the label part of 7 since ¢ € V5. That means F+ € A. (see 

(iii) ) and A is not deeply consistent. 

If there is ca : A among 71, ...,7, in (ii), then the only possibility is that v; is 

ca : A, otherwise we could find a formula among v, ...,vx with ¢ as the second 

label, but that is impossible since T'ca : A is the only member of A + Tca : A 

which contains c. But if 1 is ca : A, then according to the property of labels 

the first label of y is c. That means that + is in fact cb : B because that is the 

only F member of A + T'ca : A+ Fcb : B which contains c. 

To sum it all up, (ii) has a form 

ca: A, v, ..., 7k >cb:B



94 Chapter 4. Relational Completeness of the Lambek Calculus 

Since c is fresh 

Yo, -+, Yk = ab: A— B 

is also derivable 

Altogether (i),(iii) in conjunction with our assumptions that A is a d.c. set and 

Fab : A — B € A infer a contradiction. 

The second case: Fab: A+ B e A 

By analogous argument. 

The third case:Tab: Ae B € A 

Suppose A is a d.c. set and Tab: Ae B € A, but adding Henkin witnesses does 

disturb deep consistency and the resulting set A + T'ac : A+ T'cb : B is not d.c. 

That means that there are 11,. . .,%k, such that 

(i) 91,...,%k are T-members of A + Tac: A+Tcb: B 

(ii) the sequent y1,...,%k > 7 is derivable in LLC 

(iii) Fy € A+ Tac: A+ Tcb: B, and therefore Fy € A 

We get four possibilities (a)-(d) to consider: 

(a) Neither ac : A, nor cb : B are among %1, .. .,%k in (ii). From (i)-(iii) 
immediately conclude that A is not d.c. 

(b) ac: A is among 74, ...,7k but ¢b: B is not. Actually this is not possible; 

if it were so, then the second label of y would be c (see (ii) ), but that 
contradicts (iii), because ¢ € V. 

(c) likewise, it is not possible that cò : B is among 11, .. , k but ac : A is not 

(d) both ac:A and cb:B are among %1, .. , %k. Note that this is possible only 

if ac:A and cb:B are neighbors in +1,. . . %k. First, let us assume that the 

pair (ab : A,bc : B) occurs only once in 11, .. , k Then 11,. .. ,7k > 9 

has a form 

11- 7T ac: A,cb: B, ¥iia,..., 7 = 7, 

therefore the sequent 

11; ab: Áe B, Yi42, .. ,%k = v 

is derivable, and from (i) and (iii) we find that A is not deeply consistent. 

If (ac : A,cb: B) occurs more then once in y1,. . .,%k , then c has to be 

renamed once which is possible due to the Renaming Lemma. 

Û 

It remains to demonstrate that any d.c. set can be extended to some complete 

d.c. set.
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4.2.4. LEMMA. Let A be a deeply consistent set and a an arbitrary labelled 

formula such that A + T is not deeply consistent. Then A + Fa is deeply 

consistent. 

Proof 

1. Suppose A + T'a is not d.c. 

2. Suppose A + Fa is not d.c. 

3. From (1) there are 8, ..., Bk, B such that 

(3.1.) B1,-..,Br are T-members of A 4 Ta, 

(3.2.) the sequent By,...,8;_1, @, Bit+1,--.,Bk = B is derivable, 
(3.3.) FB € A + Ta and therefore FB € A. 

Note, that a has to occur in , . , Bk, otherwise A would not be deeply 

consistent. 

4. From (2) there are 1, ..., ¥n, ¥ such that 

(4.1.) ¥y,...,%, are T-members of A + Fa, and therefore of A 

(4.2.) the sequent ¥4, ..., %, = v is derivable, 

(4.3.) FY € A+ Fa 

5. Note, that v is actually a, otherwise by ( 4.3.) Fy € A, and by (4.1.) and 

(4.2.) A is not deeply consistent. 
That means that (4.2.) has actually a form ¥, ..., ¢, = a. 

6. Next, we can apply of the Cut rule to (5) and (3.2.) as many times as 

necessary until we are able to conclude that there is a sequence X of T- 

members of A such that X > B is derivable. Clearly, by (3.3.) A is not 

deeply consistent then. 

Û 

Now we are ready to prove the main lemma. 

4.2.5. LEMMA. Every deeply consistent set can be extended to some complete, 

saturated, consistent, closed T — F set. 

Proof 

Suppose Ay is a d.c. set. 

Let {a;/i € N)be some usual enumeration of labelled formulas. 
Define a sequence of T — F sets (X;/i € N) by setting 
Xo = Ao and 

Xn41 is defined as follows: 

o If X,,+Ta, isd.c., then to obtain Xn+1 add Tan and its Henkin witnesses 

(if they exist) to Xn. 
e If Xn„+T0n is not d.c., then to obtain Xn141 add Fon to X and its Henkin 

witnesses (if they exist).
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Lemmas 3,4 infer that if X,, is d.c., X4 is also d.c. Since X is d.c., each 

X;il(i € N)is d.c.Let X = UX; where ¢ € N. Clearly, X is complete and 

saturated. Next, X is also consistent, otherwise there would be k such that X} is 

not d.c. To show that X is closed, assume that a1,. .. Q} are T' members of X 

and a;,...,ar = Q is a derivable sequent. If Ta g X then by completeness of 

A find Fa € X. That means that X is not d.c. and therefore is not consistent. 

Thus Ta € X and that shows that X is closed. D 

4.2.6. THEOREM. Weak Completeness Theorem 

If Ai,...,An E A (0 < n), then the sequent A,,..., A, = A is derivable in 

the Lambek Calculus. 

Proof 

Suppose A;,..., A, = Aisnot derivable in non-labelled version of the Lambek 

Calculus. If 0 < n, then according to Lemma 4.1.3 there is a canonical sequence 

of labels 

(a,cl ..., cn, b) 

such that 

acy : Ay, c1ea: Ay, ...,cn_1b: A, = ab: A 

is not derivable in LLC That means that the corresponding T — F set 

Ao = {Tac, : Ay, Te1ea: Ay ..., Tcn_1b: A,, Fab: A} 

is deeply consistent . According to the main lemma , Ao can be extended to some 

consistent, complete, saturated, closed T — f set A. By lemma 4.2.1 we can claim 

the existence of a model where zy = a iff Tzy : a € A. Thus A,,..., A, É A 

: a contradiction. If a sequence = A is not derivable in the non-labelled version 

of the Lambek Calculus, then the T — F set { Faa : A} is deeply consistent and 

therefore = A can not be semantically valid. O 

4.3 Strong Completeness of the Lambek Calculus 

with Respect to Relational semantics. 

As it was mentioned already, the Lambek Calculus can be considered as an 

”axiomatic-sequent” calculus with the notion of derivability of a sequent from a 

set of sequents. 

e Let ò be a sequent and T be a set of sequents. I' infers ¢ iff there is a 

sequence of sequents ó1, ... , ón such that each ó; is either an axiom of LC 

or ó; € I', or ó; can be obtained from ó1, .. .,ó;_; by inference rules of LC' 

and ón is ó. 

e Wesay, that T semantically entails ¢ iff in every model where all members 

of I' are true, ¢ is also true.
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e The Lambek calculus is strongly complete with respect to the Relational 

semantics iff T' infers ¢ whenever I' semantically entails ¢ 

The Strong Completeness Theorem will be proved by contraposition, here 

are our main assumptions: Let ' = {¢,, ..., ¢,} We suppose that 

e T' semantically entails $ ; 

e T' does not infer ó 

Adding new azioms 

Define two new systems: LC and LLCtT LCtr can be obtained from LC' 

by adding ¢,, ..., ¢, as axioms. To get LLCt which is the labelled version the 

labelled version of LCr add all labelled versions of ¢4,...,¢, to LLC. By the 

labelled version of A,,..., A, = A we mean the any labelled sequent 

zy: Ais A20...0An >zy:ÀA 

Thus each non-labelled sequent has infinitely many labelled versions. 

To obtain strong completeness from weak completeness we have to reformu- 

late the notions of closed and d.c. set, namely replace derivability in LLC by 

derivability in LLCt in their definitions . 

e T—F set A is deeply consistent (d.c.) ifffor any a1,. .. , Qn, Q if Q1,. . .,On 

are T-members of A and a;,...,a, = Q is derivable in LLCTr, then 

Fa & A. 

o T — F set A is closed iff for any a,,...,a,,aif a1, ..., a, are T-members 

of A and the sequent a;,...,a, = Q is derivable, then Ta € A. 

It is not difficult to see that under these new definitions Lemmas 4.2.1, 4.2.3, 

4.2.4 are still valid. 

4.3.1. THEOREM. Strong Completeness Theorem 

If a sequence of sequents I' semantically entails a sequent ¢, then I' infers ¢ . 

Proof 

1. Suppose I' semantically entails ¢, where I' = {¢1,...,dm} and ¢ 

is 41,...,An = A with (0 < n,m) 

2. Suppose T' does not infer ¢. 

3. That means that A4,,..., A, = A is not derivable in the Lambek Calculus, 

otherwise it were deducible from T in LCTr. 

4. According to Lemma 4.2.1 then there exists a construction of a consistent, 

complete, saturated, closed 7' — F set A and a model M which falsifies ó 

with the following remarkable property: Tzy : a € A iff zy E a. 

5. Let us show that each ó; € T is true in M.



98 Chapter 4. Relational Completeness of the Lambek Calculus 

(a) . If ¢; is of the form B,,...,B, = B with k > 0 and M [~ ¢;, then 

there exist a,b such that ab = B; e ... e B, but ab ¢ B. Hence 

Tab:Bye...e B, € A,but Tab: B ¢ A , which is not possible since 

ab: Bie...e By = ab: B is an axiom of LLCg, and A is closed and 

consistent. 

(b) Likewise if f; is of the form = B and M [ ¢;, then there exists a 

point c with cc { B. Therefore T'ec : B # A, but that is not possible 

since > cc : B is an axiom of LLCG. 

O 

4.4 Concluding remarks and open questions 

The technique of labelling might provide a rather general method of completeness 

proof, since the Lambek Calculus can have different labelled versions which are 

related to different kinds of semantics. In the next chapter we are going to 

present a slightly different method of completeness proof using another version 

of the method of labelled deduction. The advantages and the boundaries of that 

method could become more clear if the following open questions can be answered: 

1. To what degree the procedure of adding Henkin witnesses depends on a 

particular kind of semantics? 

2. The completeness proof described above provides the construction of the 

infinite canonical model. It is still an open question if the Lambek cal- 

culus with Associativity has the finite model property. Can the labelling 

technique help? 

3. What is the precise effect of adding structural rules to LLC? 

4. H.Andréka and S.Mikulás showed that one can not have a completeness 

result for the Lambek Calculus enriched by disjunction with respect to 

Relational Semantics. What about adding other connectives and modal 

operators?



Chapter 5 
  

Labelled Categorial Deduction 

5.1 Labelling for categorial type systems 

In the previous chapter we have studied a particular logic in the categorial hi- 

erarchy - the associative Lambek calculus - and we have developed a labelled 

deductive approach to obtain completeness for the ” dynamic” relational seman- 

tics. In the present chapter we adapt and generalize our methods in order to 

offer a labelling perspective on categorial type logics as they are currently used 

in linguistic description. An important theme in current categorial research is 

the shift of emphasis from individual type logics to communicating families of 

such systems. The reason for this shift is that the individual logics are not ex- 

pressive enough for realistic grammar development: the grammar writer needs 

access to the combined inferential capacities of a family of logics. See [Morrill 94], 
[Moortgat 94| for discussion and motivation. In line with these developments, 
our main objective will be to develop a uniform labelling discipline for the family 

of resource logics NL, L, NLP and LP and a number of generalizations that 

will be discussed in depth in Chapter 6. 

Let us situate our approach with respect to related work, before starting with 

the technicalities. The technique of labelling has been used in the categorial 

literature before, for various reasons. [Buszkowski 86] used labelling as an aux- 

iliary device to obtain his completeness results for the Lambek calculus. V. 

Sanchez in [Sanchez 90] relied on labelling for semantic reasons in his work on 
a categorially-driven theory of natural language reasoning. [Moortgat 91] added 

string labelling to type formulas for syntactic reasons, viz. to overcome the ex- 

pressive limitations of the standard sequent language in capturing discontinuous 

forms of linguistic composition. In a proof theoretic study of categorial logics, 

[Roorda 91] introduced labelling to enforce the well-formedness conditions on 

proof nets. The programmatic introduction of Labelled Deductive Systems as 

99
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a general framework for the study of structure sensitive consequence relations 

in [Gabbay 92] made it possible to re-evaluate these scattered earlier proposals. 

From 1991 on, labelling has been on the categorial agenda on a more system- 

atic level. For recent studies, we refer to [Morrill 94], [Oehrle 94], [Hepple 94], 
[Venema 94|, to mention just a few. 

Consider a consequence relation 

Al’ … | An => B 

representing the fact that a conclusion B can be derived from a database of 

assumptions A;,..., A,. As we have seen in the previous chapter, the central 

idea of the labelled deductive approach is to replace the formula as the basic 

declarative unit by a pair z : A, consisting of a label z and a formula A. Sequents 

then assume the form 

zi: A;. .. 5Zn:An > y:B 

The label is to be thought of as an extra piece of information added to the 

formula. Rules of inference manipulate not just the formula, but the formula 

plus its label. We then obtain a whole scala of labelling regimes depending on 

how we make precise the intuitive notion of an extra piece of information added 

to a formula - depending on the degree of autonomy between the formula and 

the label. 

At the conservative end of the spectrum one can find semantic lambda term 

labelling in the sense of the Curry-Howard correspondence. The labels, in this 

application, simply record the history of the proof - they do not make an inde- 

pendent contribution. At the other end of the spectrum are the labelling systems 

where in the declarative unit z : A the label z and the formula A each make their 

own irreducible contribution. Such systems can best be seen as combinations of 

two logics: the formula logic and the logic governing the labelling algebra. 

Our proposals are somewhere in between these two extremes. In the appli- 

cation to linguistic reasoning which is the subject of this chapter, a consequence 

relation represents a grammaticality judgement: the derivability of an expression 

of type B from a database of assumptions, i.e. expressions of type A1,..., An. 

Derivability, in this linguistic sense, has to take into account the structure of 

the assumptions - for example: their linear order, and the way they are grouped 

intò hierarchical units or constituents. We rely on the labelling algebra to make 

the structure of our linguistic database explicit. In Chapter 1, we have seen how 

one obtains the systems L, NLP, LP from the pure residuation logic NL by 

removing order sensitivity, constituent structure sensitivity or both. In order 

to develop uniform algorithmic proof theory for this family of type logics we 

start from the multiset sequent presentation of their common denominator, the 

Lambek-Van Benthem system LP, and impose t he extra syntactic fine-tuning 

in terms of the labelling regime.
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Labelling, in this sense, is not uncommon in current categorial work, see for 

example [Morrill 94] for descriptive and computational applications. But the 

labelling systems in use are related to groupoid interpretation, not to the more 

general ternary frame semantics which is the subject of this thesis. From the 

perspective of ternary frame semantics, the groupoid models are obtained by 

specializing the accessibility relation Rz,yz to z = y + z, where the binary op- 

eration + imposes functionality. In developing labelling for the abstract ternary 

frame semantics, we implement the labelling discipline in such a way that we can 

manipulate the three components of the triples (zyz) € R, rather than assuming 
that z is determined by y + z. 

Let us finally insist here on the importance of the completeness result for the 

labelled calculus. Labels, just like formulas, are pieces of syntax. Even if the 

rules of a labelled system look very much lzke imitating truth conditions we will 

never have a guarantee that the labelling is really appropriate for the intended 

interpretation unless we present a completeness proof, which requires an explicit 

statement of the relation between the labels and the objects of the domain of 

interpretation. That there are real issues here is shown in the discussion of 

[Venema 94]. 

Outline of the chapter 

The chapter is organized as follows. In Section 5.2 we study abstract labelling. 

We introduce uniform labelled sequent presentation for the logics NL, NLP, L, 

LP and prove completeness with respect to the ternary frame semantics for these 

logics. Labelled sequent calculus is presented in two formats which we show to be 

equivalent. The first format decorates formulas with atomic labels and enriches 

the sequent language with an explicit book-keeping component to record the 

structure of the database. The second format introduces a language of tree- 

terms over the atomic labels, and formulates the labelling discipline as a term 

assignment system. To close the section, we discuss a number of generalizations, 

showing how our results can be applied to multimodal architectures, and to 

logics extended with one-place multiplicative operators. Section 5.3 then moves 

to concrete labelling. We use the labelling algebra to add sortal refinements to 

the type formulas: the sort labels filter out theorems that would b e derivable 

in an unlabelled setting. In Section 5.4. we discuss some connections between 

labelling and Correspondence Theory, linking the material of the present chapter 

with the themes of Chapters 1 and 2.
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5.2 Ternary frame semantics and labelling 

5.2.1 Labelled sequent presentation 

Let us introduce the labelled sequent presentation informally before starting with 

the definitions. The new declarative unit, as we said before, now is the labelled 

formula z : A, rather than the bare formula A. What kind of labels do we want 

to use, and how do we want to interpret them? In our first version of the labelled 

calculus the labels are all taken from some set of atomic markers. In a sense to be 

made precise below, the labels refer to elements of the domain of interpretation 

W. In order to keep track of the way the labels are configured into a structured 

database, we add an explicit book-keeping component to the sequent language. 

Labelled sequents then will be of the general form 

[0]; a1 : Ay,a2: Ag,...,a,: Ap = a: A, 

where each label a;(1 < 7 < n) is a witness of a piece of information attached to A; 

and d fixes the configuration of the labels in a tree such that the succedent label 

a is its root and the antecedent labels a; the leaves. Because the configuration is 

fixed in 4 the sequent antecedent can be treated simply as a multiset of labelled 

formulae. Now for the definitions. 

5.2.1. DEFINITION. Labels and trees. 

Let Lab be a set of atomic labels. We define by simultaneous induction the set 

of trees T over Lab and functions 

root: T — Lab 
leaves: T — P(Lab) 
nodes: T — P(Lab) 

If z € Lab, then z is a tree such that 

leaves(z) = {z} 
root(z) = z 
nodes(z) = {z} 

If (a, bc) € Lab® and a, b, ¢ are distinct, 

then (a, bc) is a tree such that 

root({(a,bc)) = a 
leaves({a, bc)) = {b, c} 
nodes({a, bc)) = {a, b, ¢} 

If 4; and 4, are trees such that 

[] root(ó2) € leaves(d;) and 
[¢¢]) nodes(61) N nodes(62)={root(ó2)} 

then £=(ô1ó2) is a tree and
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root(£)=root(ó;) 
leaves(§)=(leaves(d;) U leaves(62))-{root(62)} 
nodes(£)=nodes(ó1 ) U nodes(ó2) 

Example 

§=(({a, bc){c,de))(d, kn)) is a tree with 

root(§)=a 
leaves(§)={b, k, n, e} 
nodes(§)={a,b,c,d, e, k,n} 

Thus, each tree turns out to be a bracketed string of triangles. As usual we often 

drop the most external pair of brackets. The size () of a tree can be defined as 

follows: 

{(a) =0 
[({a,bc)) =1 

I(Ex) = I(€) +1(X) 

Now we can give precise definitions of a labelled formula and a labelled sequent. 

e a : A is a labelled formula if A is a formula and a € Lab; 

e [6]; a1 : A1,023 : A32,. .. ,Gn : An > a : Ais a labelled sequent if a : A, a; : 

A;(1 < i < n) are labelled formulas, and ó € T with 

— root(ó)—a 
— leaves(6)={a1...@n} 

Note that in a labelled sequent 

[6]; a1 : A1, 02 : A3, ... ,Cn : An >a:ÀA 

ai,...,an,a are distinct since according to the definition all nodes of 4 are dis- 

tinct. Moreover the presence of ó is not conservative, since the rules of the 

labelled Lambek calculus include not only manipulations with formulas and la- 

bels, but also with trees. 

Labelled sequent calculus 

Let a be a labelled formula, X, Y, Z finite multisets of labelled formulas, and let 

01,02, be members of T. 

NL!® has one axiom 

[a]; a:A = a: A 

and the following inference rules provided that all involved sequents are well- 

defined: 

[61]; X =>0b: A [02]; ¢: B,Y = « 
[(62(c, ba))d1]; a: A— B, X,Y > «a 
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[{(c,ba)d);b: A, X = c:B 

6]; X >a:A— B 
  

[61]; X =b: A [62]; ¢: B,Y = a 
[(62(c,ab))dy]); a: A+ B, X, Y = a 
  

[{c,ab)d]; X,b: A= c: B 
[6]; X>a:B+ A 
  

[dla,be)]; b: A,c: B,X—>a 

[6]; a: Ae B, X = « 
  

[0:1]; X1 =b:A [6; Xy = ¢: B 

[({a,be}ó1)ó2]; X1,X2=>a:AeB 
  

L1ab can be obtained from NLlab by adding the Associativity Rule 

6; X>a 

5 X = o 
  

where ó' is obtained from ó by replacing some subtree ({a, bc){c,de)) by a tree 
({a, te){t, bd)) or vice versa provided that t (resp. c) is fresh. 

NLP!2b can be obtained from NL!2P by adding the Permutation Rule 

ó; X>a 

6"; X = «a 
  

where 4’ is obtained from 4 by replacing some subtree ({a, bc)) by a tree ({a, cb)). 

Finally, LP!}aP is obtained from NLlab by adding both Associativity and Per- 

mutation. 

The following sequents give an example of theorems of NL!2b. 

[] [{{z,be), (d‚az)}|a:r + g b:pe:pqg>d:r 
[i3] [{{z,bc), {n,az)}|;a:r + gb6:pe:p>qg>n:r 

Note that the derivation of [ii] can be obtained from the derivation of [i] by 
renaming d for n.
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5.2.2. LEMMA. Renaming Lemma 

This Lemma consists of two claims. 

Claim 1. 

If a sequent [ó]; z; : X1,z2: X2,...,Tn : Xn > z : X is derivable, 

then [S'];z1: Xi, .. y : Xi, .. ,Tn : Xn > z : X where / is obtained from ó 

by replacing z; by y is also derivable. 

Claim 2. 

If a sequent [6]; z1 : X1,272: X2,...,Zn ! Xn > x : X is derivable then 

[6]; 21 : X1,72: X9,...,Zn : Xn > y : X where 6 is obtained from ó by replac- 

ing z by y is also derivable. 

Both Claims can be proved by straightforward induction on the length of the 

derivation. O 

Interpreting labelled sequents 

To obtain an interpretation for our labelled sequents we add to a ternary model 

(W, R, V) a function * which assigns exactly one element of W to each 

a € Lab. 

A sequent [ó]; ai : A1,902 : A2,...,Gn : ÁAn > a : Ais truein M if a* E A 

whenever af = A;(1 < ¢ < n) and for each triangle (z, yz) which occurs in ó, 
Rx* y*z* . A sequent ¢ is semantically valid if it is true in all models. 

Note that although on the syntactic level the labels on the nodes of each triangle 

are distinct, we do not impose such distinctness as a semantic requirement. Since 

* is an arbitrary function it might very well be that in some models the same 

elements of the domain are assigned to distinct node labels of the syntactic tree. 

Thus on the semantic level the definition of a ternary frame realizes an arbitrary 

ternary accessibility relation as required. 

As usual it is easy to prove soundness, i.e. each sequent derivable in NL!2P 

is semantically valid. Completeness is the subject of the following section. 

5.2.2 Completeness for NL!2P 

The general idea behind the completeness proof can be expressed as follows: 

1. Suppose [8]; a; : Aj,a2 : Az,...,a, : A, = a : A is not derivable in 
NLlab. 

2. Mark all labelled formulas on the left hand side with T and a : A with F. 

The resulting T-F set 1s 

Ao——‘{Ta]_ :Al,...,Ta„:A„,Fa:A}.
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Construct a model such that each a supports A;, but a* does not support 

A. In other words, extend Ag to A and prove that z* B XiffTz: X € A. 

To realize this idea of the completeness proof we need to identify some properties 

of T — F sets, i.e sets of labelled formulas marked with T or F. 

Properties of T-F sets 

Let A be a T — F set, Va the set of all labels that occur in A, Ag the set of all 

triangles associated with A, and ô € T (i.e. Ó is a tree). 
We loosely say that ó C A if all triangles that occur in ó are members of A. 

e A is deeply consistent (d.c.) iff whenever ó C AR ‚ 91, -. .,%k are T- 

members of A and [6]; 1, . . .,%k > 7 is derivable, then Fy ¢ A. 
e A is h-complete (Henkin complete) iff 

(i) if Fa : A B € A, then there are z,y € VA such that (y, za) € Ar, 

Tz: ACAand Fy:BEA; 

(ii) if Fa: A+ B € A, then there are z,y € Va such that (y,az) € AR, 

Tz : A€ Aand Fy: B € A; 

(iii) if Ta : Ae B € A, then there are z,y € Va such that (a,zy) € ARp, 

Tz: A€ Aand Ty: B € A. 

e A is r-complete (relatively complete) iff 

(i) if Fa: Ae B € A and (a,zy) € AR, then 

either Fz: A€ Aor Fy: B € A; 

(ii) if Ta: A— B € A and (y,za) € AR, then 
either Fz: A€ AorTy: B € A; 

(iii) if Ta: A+ B € A and (y,az) € AR, then 
either Fr: A€ AorTy: B € A. 

e A is niceiff it is d.c., h-complete, r-complete 

e Let A bea T-F set, z € VA and A be a non-labelled formula. We say that 

A and x are linkedin A iff Te: A€ Aor Fz: A€ A. 

Henkin model 

5.2.3. LEMMA. If A is a nice T — F set, then there exists a model M' = 

(W, R,*,V) such that if € VAo and X are linked in A, then Tz : X € A iff 

z2* = X in M'. 

Proof 

Define M’ as follows: 

W = Va (the set of all labels that occur in A); 

Rz, yz iff (z,yz) € AR.
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forallz e Vp,z* ==z 

Vissuch that Tz :pe A iff z* Epin M'. 

The lemma is proved by induction on the length of X. In the atomic case the 

claim is a direct consequence of the definition. We have to take care of three 

cases when proving the inductive step. 

The first case: X = A ¢ B. 

1. 

2. 

The 

Suppose T'a: Ae B € A. 

Since A is h-complete there are z,y € Va such that (a,zy) € Ag, Tz : 

AcAandTy: B € A. 

Therefore Ra,zy;z = A and y = B (by inductive assumption) and a 

AeB 

Thus a* = Ae B 

. Suppose a* = A e B and therefore a |= A o B. 

. Then there are z,y € W such that Ra,zy;z = A and y & B. 

. Since a and Ae B are linked in A, either Ta: AeB c Aor Fa: AeB € A. 

Let us suppose that F'a: Ae B € A. 

. Since A is r-complete, Fa: Ae B € A and (a,zy) € Ag (because Ra, zy) 

imply that either Fz : AC A or Fy : B € A; in both cases we get a 

contradiction with [2.]. 
Thus Ta: Ae B € A. 

second case: X = A - B 

Suppose Ta: A — B € A. 

Suppose Rc,ba and b = A 

Then (c,ba) € Agand Tb: A€ A 
Since A is r-complete, [1.] [2.] and [3.] imply Tc : B € A, and therefore 

by the inductive assumption ¢ = B 

Hence, a* = A B 

. Suppose a* ZA — B 

. Suppose Ta : A + B g A. Then since a and A — B are linked in A, 

Fa:A— BeA 

. By h-completeness of A, there are b, c € V5 such that 

Tb: A€ A Fc:B € A and (c‚ba) € AR 
. By inductive assumption, get a contradiction. 

Therefore Ta: A BEA 

The third case can be left to the reader O
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Lemma 5.2.3 enables one to claim that if a sequent u : A = u : B is not derivable 

and the corresponding T — F set {Tu : A, Fu : B} can be extended to a nice 
one, then there exists a model where u : A = u : B is falsified. Now we have 

to define how to make the relevant extensions of d.c. sets. We start with the 

definition of saturation with h-witnesses and then r-witnesses. 

Harmless witnesses 

Formulas of the form Fa : A > B, Fa: A+ B, Ta: A e B will be called 

h-formulas (Henkin formulas). 

Let A be a d.c. set. By adding h-witnesses we refer to the following procedure: 

(i) if Fa: A — B € A, then add new labels b and ¢ to Va; {c, ba) to Ag and 
new labelled formulas Tb : A and Fc: B to A; 

(ii) if Fa: A+ B € A, then add new labels b and c to VA ; {(c,ab) to Ar and 
new labelled formulas T'6 : A and Fc: B to A; 

(iii) if Ta : Ae B € A, then add new labels 6 and c to Va; (a,bc) to Ag and 

new labelled formulas Tb : A and Tc: B to A. 

We say that in (i)-(iii) the point a generates points b and c. The set of successors 
of a point z (X.) is defined by (iv)-(v): 

(iv) if z generates y, then y € X; 
(v) if u € Z. and u generates w, then w € 3. 

To saturate some T — F set A with r-witnesses perform (i)-(iii) 
(i) if Fa : Ae B € A and (a,zy) € AR, then add Fz : A to A if it does not 
disturb d.c. of A, otherwise add Fy : B; 

(i) if Ta: A B E A and (y,za) € AR, then add Fz : A to A if it does not 
disturb d.c. of A, otherwise add Ty : B ; 

(iii) if Ta : A + B € A and (y,az) € AR, then add Fz : A to A if it 

does not disturb d.c. of A, otherwise add Ty : B. Formulas of the form 

Fa : Ae B, Ta : A 3 B, Ta : A + B will be called r-formulas. We say 

that an r-formula Fa : Ae B (resp. Ta: A — B,Ta: A «+ B) is active in A if 
there are b, c € Va such that (a,bc) € Ag (resp. (c,ba) € AR, (c,ab) € Ag). 

Let A be a T — F set, VA be a set of labels that occur in A and Ag be a set 

of triangles associated with A such that each member of A is a result of some 

h-decomposition. Then the following propositions hold. 

5.2.4. PROPOSITION. If z € Va and X is the set of all successors of x, then all 

members of X are distinct. 

Proof 

Direct consequence of the definition of adding h-witnesses. O
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5.2.5. PROPOSITION. If ó C Ar, then ó is generated by a single point. 

Proof 

Straightforward induction on the size of ó. 

Indeed, if ó = (a, bc), then it is generated by a single point according to the 

definition of adding h-witnesses. 

Claim 

If ó = £16é2, and z is their common point, then either £; or £2 is generated by z 

Proof 

If in both £; and £; z is a generated point, then z has to be generated twice: as 

a daughter and as a root, which is not possible, since by the definition of adding 

h-witnesses every point in ARg is uniquely generated. Thus, at least in one of 

this trees z is a generator. 

Next, suppose ó = £162, z is their common point, and £; is generated by z, while 

€; (t,j = 1,2) is generated by y. Then either z = y or z is a successor of y or 

vice versa. In all this cases ó —= £162, is generated by a single point. O 

5.2.6. PROPOSITION. Let 4;,d; C Ag with root (ó2) € leaves (4;). 

Then (5152 Q AR 

Proof. We have to show that 4,9, is a well defined tree, or in other words, that 

d; and 4, have no other points in common besides z. Reasoning by analogy with 

the proof of the Proposition 5.2.5, conclude, that z generates 4; or 4, or both of 

them. If z generates ó, and y generates ó2, then no matter if z is a successor of y 

or vice versa, the successor would always generate fresh points , therefore ó; and 

ô2 can not share any points besides z. If z generates both ó; and ó2, then in one 

case the set of successors would be generated by z as a root (and therefore, by a 

formula of the form T'a : Ae B) while the second set would be generated by z as 

a daughter (and therefore by formula of the form Fa: A + Bor Fa: A+ B), 
thus two latter sets can not share any members. O 

5.2.7. LEMMA. Let A be a d.c. set, and each member of A is a result of some 

h-decomposition. If 3 is an active r-formula in A, then there always exists an 

r-witness of 3 which can be added to A without disturbing its deep consistency. 

Proof 

The first case: Fa: As BEA 

Let 3 be Fa : Ae B and (a,bc) € Ag. Suppose that neither A + Fb : A, nor 

A+ Fec: B is d.c. Then clearly
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(1) there exist ó; C Anr and T-members of A +1, . .. ‚ %n such that 

(*) 4] 1.. > 

is derivable in NL!2P and y is an F-member of A + Fb : A. Since A is d.c., 

y is nothing else but b : A;, and (*) has actually the form 

(*) [61]1 71‚---‚‘)’n=>b:a 

Thus, b is the root of 4, 

(2) there exist 3 C Ar and T-members of A a1,...,0n such that 

(x%) [ó]; o1,. . .m ZQ 

is derivable in NLI2P and « is an F-member of A + Fc : B. Once again, 

since A is d.c., a is nothing else but c : B; whence 

(%) [6]; o1,. .. ,On —>c:B 

is derivable and therefore c is the root of 4, 

According to Proposition 5.2.6 ({a, bc}ó1)ô2 is a well defined tree, thus by (1) 
and (2) 

[(<a7 bc>61)52]1 71, - '17k1.a1; ey Qn = AeB 

is derivable. Since ({a, bc)d;1)d2 C Ag and 7v1,...,7, @1,..., @, are T-members 

of A but a: A e B is an F-member of A, A can not be d.c.. 

The second case: Ta: A BEA 

Let Ta : A + B € A and (c,ba) € Ag. Suppose neither A + Fb : A nor 

A+ Tc: B isd.c. Then clearly 

(1) there exist ; C Agr and T-members of A v, ..., v, such that 

Ó); 1.. > 

is derivable in NL!2P and v is an F-member of A + Fb : A. Since A isd.c., 

y is obviously b : A; 

(2) there exist 4, C Ag and T-members of A+Tc: B a1,...,Qn such that 

[62]; o1, -. ,0n > e 

is derivable in NL/2P and a is an F-member of A. Since A is d.c., there 

exists an index z such that o; coincides with c : B;
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Clearly c is a leaf of ó2 and b is a root of ó;. According to Proposition 5.2.6 

(62(c, ba}))é; is a well defined tree. Therefore the sequent 

[(62(0, ba>)51]) Q; 5Qi 1;1; .1 %k10 : A B‚C!H_]_, ..:On > Q 

turns out to be derivable and A can not be d.c.. 

The last case (o :=Tb: A «+ B) is left to the reader. O 

5.2.8. LEMMA. Adding h-witnesses does not disturb d.c.. 

Proof. 

Suppose Fa : A — B belongs to a d.c. set A. Suppose that adding (c, ba) (where 
b and c are fresh) to Anr and adding T6 : A and Fc : B to A does disturb d.c.. 

Therefore, there exists a derivable sequent 

( [6]; y1,-- - 27 

such that 6 C Ag U {(c,ba)}; 71,-..,7n are T-members of A + Tb: A and y is 

an F-member of A + Fc : B. Note, that if (c‚ ba) does not occur in 4, then A is 

not d.c.. Thus 4 = {c, ba)d;, for some §; C Ag, moreover b and c can occur only 

once in a tree, generated by 4. Therefore + coincides with c : B and +; coincides 

with b : A, hence the sequent ({) has actually the form 

[(c,ba)éd1]; b: A,y2,...,7n=>c: B 

Thus 

61]; 72,.. .y Yn=>a:A—> B 

is also derivable, and since é; C AR, 71,...,7n are T-membersof A,anda: A — 

B is an F-member of A, A can not be d.c.. In the case of adding h-witnesses of 

Fa:B+ AorTa:Ae B our argument would not be much different. O 

From deeply consistent set to a nice set. Completeness proof 

Recall our initial assumption: a: A = a : B is not derivable in N L!®?. Define 

Ao,. . An, . .(n € N) as follows: 

Ao ={Ta: A,Fa : B}. 
An+1: add all possible h-witnesses to A,, 

corresponding triangles to AR, 

An+2: add all possible r-witnesses to An+:1. 

By Lemma 5.2.7 and Lemma 5.2.8, A = UA;(i € N) is nice. Now our 
Completeness Theorem becomes just a direct consequence of the previous results. 

Completeness theorems for NLP!I2P plab and LP/2P require the additional 

proof that taking the associative or permutational closure of some d.c. set does
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not disturb its deep consistency. But this is guaranteed due to the presence 

of the corresponding structural rule in the sequent presentation of the labelled 

version of the Lambek Calculus. Note, that the Cut rule was not used in our 

completeness proof, which means that we have obtained semantical proof of Cut 

Elimination theorem. For the constructive procedures of Cut Elimination we 

refer to [Kurtonina 95] 

5.2.3 Labelling with Kripke tree terms 

The labelling preceding subsection decorated the formulas always with atomic 

labels: the structure of the database was accounted for by adding to the sequent 

language an explicit representation of the tree configuration of the atomic labels. 

The alternative labelling regime to be introduced below has a term language to 

build structured labels out of the atomic labels. The term language now directly 

captures the structure of the database, so that we can remove the book-keeping 

component from the sequent language. 

5.2.9. DEFINITION. Elementary tree terms, tree terms, proper tree terms. 

(i) If z € Lab, then z is an elementary tree term 
(ii) If x is an elementary tree term, then x is a tree term,; 

(iii) If £, x are tree terms and z € Lab,, then r(z, &, x) is a tree term. 

A tree term t is called proper if all its elementary subterms are distinct. 

We define the size (1) of the tree term as follows: 
(i) if z is an elementary tree term, then I{z) =0 

(ii) U(r(=,€ x)) =UE) +Ux)+1 

Example r(a,r(z,r(y,bc),d)e) is a proper tree term which corresponds to the 

following tree: ({a, ze){z,y, d))(y, b, c). 

To prove that each proper tree term corresponds to some tree and vice versa, 

one proceeds by induction on the length of a tree term for one direction and on 

the length of a tree for the other one. 

5.2.10. DEFINITION. Labelled sequents 

Let a,b,c be elementary tree terms, and t,u, v proper tree terms. A labelled 

sequent is an expression of the form 

a : A1,02 : A3,. .. ,On : An > t:A 

where each a;(1 < 1 < n) is an elementary tree term and t is a proper tree term. 

Labelled sequent calculus. 

Let X,Y be finite multisets of formulas labelled with elementary tree terms. And 

let a, b, c be elementary tree terms, ¢, u, v proper tree terms as before. We write
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t = t'[u/v] if t is obtained from the proper tree term t' by replacing the subterm 
v by u. 

The labelled sequent presentation for the basic system NLlab has one axiom- 

scheme and the following inference rules: 

    

a:A > a:A 

X>t :A c:BY>h:o b: A, X = r(c,bt): B 

a: A 3 B, X,Y>—t:oa X>t:A—B 

where t = t2[r(c,‚t1a)/c] 

X >ti:A c: B,Y>t3:a b: A,X = r(c,bt): B 

a:A+- B, X, Y= t:a«a X=>a:B+ A 

where t = t5[r(c, aty)/c] 

    

b:Ac.: B, X=>1 :«a Xi=>t: A X9 = t,: B 
    

a:AeB, X =>t:«a X1, X2 > r(a,tit;): Ae B 

where t = t;1[a/r(a, bc)| 

As before, one obtains labelled presentation for the systems L, NLP and LP by 

adding Associativity, Permutation or their combination. 

Associativity Rule 

X=>t:A 

X=>t: A 

where t' can be obtained from t by replacing a subterm r(a,t,, r(b,tot3)) by a 

tree term r(a, r(c, t1t2)ts), provided that c is fresh. 

Permutation Rule 

X=>t: A 

X=>t:A 

where t' can be obtained from t by replacing a subterm r(a, t;¢3) by a tree term 

r(a, t2t1 ) . 

Clearly via translation of proper tree terms into trees and vice versa one can 

easily prove the equivalence of the two formulations of the Lambek Calculus. 

A direct consequence of this fact is soundness and completeness of the Lambek 

Calculus with tree terms as labels with respect to ternary relation semantics.
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5.2.4 Generalizations 

In the preceding section we have looked at the systems NL, L, NLP, LP and 

presented uniform labelled sequent calculus for these logics, with completeness 

results for the relevant classes of ternary frames. The methods used are quite gen- 

eral: they can be straightforwardly applied to a number of related systems. Two 

generalizations seem especially relevant in view of current linguistic applications: 

the move from unimodal to multimodal architectures, and the introduction of 

unary multiplicative operators in addition to the familiar binary ones. We dis- 

cuss these in turn. 

Multimodal architectures 

In the preceding paragraphs, we have studied the systems NL, L, NLP, LP 

in isolation: each of these systems characterizes a distinct resource management 

regime in terms of a package of structural rules - rules for the manipulation of 

labels in our labelled presentation. It has been argued in the linguistic literature 

(see for example [Moort. & Morrill 91], [Moort. & Oehrle 94], [Morrill 94] and 
[Moortgat 94] that for purposes of actual grammar development, one wants to 

have access to the combined inferential capacity of these various systems. 

On the model-theoretic level, such a mixed style of inference requires a move from 

unimodal frames (W, R) to multimodal frames (W, { Ri}ier). We now distinguish 
a family of accessibility relations: each of these R; can have its own individual 

resource management properties, or if R; and R; have the same resource man- 

agement regime they can still be kept distinct in virtue of their indexes ¢ and 

j. 

On the syntactic level, we also index the connectives with z € I, so that we can 

interpret each e; (and its residual implications —; and ;) in terms of its own 

accessibility relation R;. Structural postulates, and the corresponding frame con- 

ditions, are relativized to the mode indexes. Apart from the standard structural 

options differentiating NL, L, NLP and LP , the multimodal architecture sup- 

ports mixed forms, where Associativity or Commutativity apply when two modes 

are in construction with each other. Such mixed structural principles greatly en- 

hance the linguistic expressivity of the framework. See [Moort. & Oehrle 94], 

[Morrill 94] for concrete illustrations. We will treat the labelled version of such 
principles in a moment. 

Our framework for labelled deduction directly accommo-dates the multi- 

modal categorial architecture. We sketch the necessary changes for the tree 

term labelling. In the definition of tree terms, we now have a family of term 

constructors r; instead of the one r of the unimodal setting. 

5.2.11. DEFINITION. Multimodal systems: elementary tree terms, tree terms, 

proper tree terms. 

Let Lab, be a set of atomic markers, as before, and I a set of resource manage-
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ment mode indices. (i) If z € Lab, then z is an elementary tree term (ii) If x 
is an elementary tree term, then X is a tree term; (iii) If £, x are tree terms , 

z € Lab, and z € I, then r(z,â,x) is a tree term. 

Similarly, in the definition of the multimodal labelled sequent calculus, we har- 

monize the mode information on the connectives and on the associated tree term 

labels. Below the logical rules for the connectives. 

X=t:4 c:B,Y =1t :«a b: A, X = ri(c,bt): B . 

a:A—» B, X, Y=>t:«a X=>t:A—; B 

where t = t3[r;(c, t1a)/c] 

    

X>t :A c:BY =t «a b: A, X = ric,bt): B 

a:A+—; B, X, Y>> t:«a X=>a:B—; A 

where t = t3[r;(c, at1)/c] 

    

b:A,c:B, X =1 : Xi=>t:A X9 = t2: B 
    

a:Ae; B X =>t:a X1, X2 > r;(a,tit2) : Ae; B 

where t = t,[a/r;(a, bc)] 

The structural rules, in the multimodal setting, are mode restricted: they refer to 

specific resource management mode labels. Our earlier versions of Associativity 

and Permutation would now assume the following form (for obvious mode labels). 

Associativity Rule 
X=>t: A 

X=>t: A 

where t' can be obtained from t by replacing a subterm 7ass(4, t1, Tass(b, t2t3)) 

by a tree term 7ass(4, Tass(C‚ tit2)t3), provided that c is fresh. 

Permutation Rule 
X=>t: A4 

X>t:A 

where t' can be obtained from ¢ by replacing a subterm 7perm(4, t1t2) by a tree 

term Tperm(a, t2t1). 

Apart from these familiar unimodal structural options, our language is now 

expressive enough to also formulate mixed version for situations where different 

modes are in construction with each other. As an illustration, we present versions



116 Chapter 5. Labelled Categorial Deduction 

of Mixed Associativity and Mixed Commutativity for communication between 

modes z and j. The structural postulates are as follows. 

Mixed Commutativity Aes;(Be;C)-Be;(As;C) 
Mixed Associativity Aes;(Be;C)t-(Ae;B)e;C) 

Translated in the labelling format, these structural postulates become rules for 

manipulating term labels: 

Mixed Associativity Rule 
X >t:ÀA 

X=>t: A 

where t’ can be obtained from t by replacing a subterm r;(a,t1, r;(b,t2t3)) by a 

tree term r;(a, r;(c‚t1t2)t3), provided that c is fresh. 

Permutation Rule 
X —>t:A 

X=>t: A 

where t' can be obtained from ¢ by replacing a subterm r;(a,t1, r;(b, t2t3)) by a 

tree term 7;(g, t2r;(c‚t1t3)). 

For a linguistic application of this type of communication principle, the reader 

can turn to Moortgat and Oehrle 93, whe give a multimodal analysis of head- 

adjunction phenomena such as can be found in the Germanic Verb-Raising con- 

struction. In a sentence such as 

dat Jan (een boek (wil lezen)) 
(that J. a book wants read) i.e. 
that John wants to read a book 

the verb wil (want) has to be combined semantically with the combination of 
the main verb lezen (read) and its direct object een boek (a book). But on the 
syntactic level, wil does not combine with the phrase een boek lezen but just 

with its head, viz. lezen. Let the main verb combine with its arguments in 

mode i, and the modal auxiliary wil in mode j, then the Mixed Commutativity 

rule makes it possible to proceed from the surface syntactic organization to the 

configuration required for semantic interpretation. 

Unary multiplicatives 

The labelling method and completeness proof of the previous sections was 

formulated for families of binary residuated connectives and their ternary acces- 

sibility relation. Residuation can of course be generalized to n-ary families of 

connectives interpreted with respect to n+1-ary accessibility relations, [Dunn 91]
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for an excellent survey. Our labelling approach can be applied straightforwardly 

in the generalized residuation setting. 

Especially relevant for the linguistic applications is the case of unary resid- 

uated operators, interpreted with respect to a binary accessibility relation. We 

have already encountered these operators in Chapter 1 and 2. In Chapter 6 they 

will play a central role for establishing communication between various catego- 

rial systems. The basic residuation pattern for the unary operators assumes the 

following form: 

OCA= B if A= O'B 

Semantically, we have the usual truth conditions below: 

z = CAiff Jy(Rzy & y = A) 

z |= OYA iff Vy(Ryz = y = A) 

Labelled sequent calculus: unary residuated connectives. 

Labelled sequent presentation for unary multiplicatives requires a generalization 

of the notion of a tree term to include binary tree terms built with the constructor 

r2 next to the ternary case we had before: if £ is a tree terms, ¢ € Lab, then 

rè(z,Ê) is a tree term. The logical rules for the new connectives ©, OA then 

assume the following form. 

b: A, X > t :B X > r?(a,t): A 

a: D X,>t:B X>t:D+%A 

where t = t,[r%(}, a) /] 

    

b: A, X=>1t :B X>t:A 

a: OA X >t:B X > r?(a,t) : OA 
where t = t,[a/r%(a, )] 

    

5.3 Digression: Concrete Labelling 

The use of labelling in the previous section is still on the conservative side: we 

have given a uniform presentation for a family of categorial type logics with 

different resource management properties by introducing a division of labour be- 

tween the sequent language and the labelling discipline: the sequent language is 

kept uniform, and the syntactic fine-tuning is taken care of by the labels. 

In this section we want to give a very simple illustration of a form of labelling 

where the label has acquired a greater degree of independence from the formula, 

i.e. where the label allows one to incorporate additional information relevant to



118 Chapter 5. Labelled Categorial Deduction 

the process of linguistic inference. We show how one can decorate simple type 

assignment with labels capturing morphophonological sortal information. The 

sortal decoration makes it possible to rule out derivations that would go through 

if we restricted the attention to unlabelled type assignments. 

Compare the adjective modifier very and the prefix un-. On the syntactic level, 

they are both functors taking adjectives into adjectives. We could assign them 

the type a + a and type a to happy. But given this type assignment both 

the grammatical very unhappy and the ungrammatical un-very happy are 

derivable according to the scheme 

a+ a,a+ a,a=>a 

Can we refine the type assignment in such a way as to take into account the 

different combinatory possibilities of affix, words, and phrases? To block the 

undesired derivation and to keep the desired one we decorate the type formulas 

with sort labels, characterizing very and happy as syntactic words and un- as 

an affix. Our assignments in labelling format could take the form 

very word : a+ a 

un- afix : a+ a 

happy word : a 

Moreover, we have to impose constraints on the composition relation in order to 

characterize the well-formed combinations on the morphophonological sort level: 

(i) (word, affix word) 
(ii) (phrase, word phrase) 
(ii1) (phrase, word word) 

Next, to express the fact that a syntactic word can do the duty as a phrasal 

expression (but not vice versa, of course) we adopt the following rule: 

Let Y be a set of constraints and a triangle ó € Y has a root —-word, then 

there exists ô' € Y with the same leaves as ó and with the root-phrase. 

In our case that means that (i) adds one more triangle to the set of constraints: 
(i) (word, affix word) 

Now using suitable abbreviations and marks to distinguish tree points we can 

present a derivation of very unhappy: 

phi :a = ph; :a pha:a—>ph:a 

WI :40 > w:a (ph2,wophi)]|w2 : a + a,phi: a > pha : a 

[{ph2,waphi)(ph1, afwi)];w2:a + a,af:a0+ a,w; : a = phy : a 

  

  

On the other hand un- very unhappy turns out to be underivable since our 

constraints on composition relation do not allow to combine affix with phrase.
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Formally passing from the abstract style of labelling to the concrete style 

exemplified here we have to specify the definition of a model (W, R, V) of inter- 

pretation by taking W as a set of sorts and imposing frame constraints on R 

which are indicated above. 

Thus on the level of interpretation, filtering out derivations that would be 

valid in the non-labelled setting is realized by restricting the class of all ternary 

models to those satisfying the constraints formulated above. 

As we remarked at the beginning of this paragraph, our objective here was 

just to provide a simple illustration of ‘autonomous’ forms of labelling. For an 

elaboration of this style of labelling on a much more fundamental and wide- 

ranging level, we can refer to R.Kempson’s work on combining syntactic and 

semantic inference [Kempson 95]. 

5.4 Discussion: Labelling and Correspondence Trans- 

lations 

There are some obvious connections between the method of Labelling developed 

in Chapters 4, 5, and the earlier perspective of Correspondence and translation 

into fragments of first-order logic (Chapters 1, 2). The aim of this discursive Sec- 
tion is to point out a few analogies, and possible switches. Generally speaking, 

one can say that labelled systems live somewhere in the gap between pure modal 

or categorial logics and their translated versions powered by a full first-order 

engine of deduction. 

First Ezample Binary Lambek Calculus 

The relational semantics of Chapter 4 may also be viewed as an effective trans- 

lation taking categorial formulas A to first-order formulas T;n(A4)(z,y) having 
two free state variables z, y. Its recursive clauses transcribe the truth definition: 

Toin(A e B) = 32(Thin(4)(2, 2) & Tein(B)(z, y)) 
Tbín(A > B) — VZ(Tbin(A)(zy :B) — Tbin(B)(z) y)) 

Tb‚'„(B — A) = VZ(Tb,‘„(A)(y, Z) — Tb,'n(B)(:B, Z)) 

The completeness theorem for the associative Lambek Calculus (Chapter 4) may 

then also be read as a proof-theoretic reduction using Godel’s Completeness 

Theorem for first-order logic: 

A t B is L-derivable iff its translation Tp;n(A) > Toin(B) 
is provable in first-order predicate logic. 

One can even find analogies at the level of effective comparison between concrete 

proof steps in both calculi (see below). Note that the predicate-logical formulas 

employed in this translation display explicit ‘labels’, being tuples of state vari- 

ables. They may also encode constraints on these labels, by additional conditions
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on binary atoms. 

Second Ezample Ternary Lambek Calculus 

Likewise, the ternary model semantics leads to the following translation from 

categorial formulas A into first-order formulas Ttern(A)(z) having one free state 
variable z : 

Ttern(A ° B) — ayy Z(RZB, Yz & Ttern(A) (’.ll) & Ttern(B)(z)) 

Ttern(A — B) = Vy, z2(Ry, 22Ttern(A)(2) = Tiern(B)(¥)) 

Tiern(B + A) = Vy, z(Ry, zz & Tiern(A)(2) 3 Tiern(B)(y)) 

Now, the key Completeness Theorem says 

A + B is L-derivable iff its translation Tiern(A) — Tiern(B) 

is provable in first-order predicate logic. 

This result can be extended to other categorial logics which are frame-complete 

with respect to more restricted first-order frame classes. The associative Lambek 

Calculus is itself an example: A - B is L-derivable iff its translation Tiern(A) > 

Ttern(B) is provable in first-order predicate logic from the formulas expressing 

associativity of the ternary relation R . 

Let us now observe some general issues which arise here. First, one can 

go deeper, and consider combinatorial proof-theoretic aspects of this correspon- 

dence. For instance, how do cut-free sequent proofs in the Lambek Calculus 

compare with cut-free sequent proofs in the usual first-order style for their trans- 

lations? For our modest purposes, however, some general observations will suf- 

fice. We focus on the role played by the structural rules. In categorial derivation 

with the standard associative Lambek Calculus, it was essential to avoid classical 

structural rules such as Permutation or Contraction. But on the other hand, in 

first-order derivations for translated categorial sequents, no such care is needed. 

(We are allowed unlimited use of every classical first-order facility.) How can this 

be? The answer here is that, by and large, it does not matter. The first-order 

representation takes categorial formulas to a fragment of the first-order language 

which is somewhat insensitive to the precise choice of structural rules. Roughly 

speaking, the more explicit information is put into our representation of catego- 

rial signs, the less important the role of our structural constraints. 

Analogies with Modal Logic 

It is useful to bring in some lessons here from the related field of Modal Logic 

(cf.[An.vB.Nem. 95]). Modal languages typically involve restricted quantifiers 

under their first-order translation and so do their categorial fragments. Thus, the 

natural first-order representation of modal reasoning is inside so-called ‘bounded’
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or ‘restricted’ fragments of first-order logic, whose general model-theoretic prop- 

erties tend to be very much like those of predicate logic as a whole. The reason 

is that much of classical model theory can be redone with modal bisimulation 

taking the place of first-order partial isomorphism (cf. also [de Rijke 93]). In- 
cidentally, this analogy may be less straightforward for non-Boolean categorial 

fragments of modal logics. An example is the Craig Interpolation Theorem. 

The latter has straightforward proofs for basic modal logic, but its proof for the 

Lambek Calculus in [Roorda 91] (cf. also [Pentus 92a]) involves delicate new 
proof-theoretic arguments. 

In a sense, first-order translations for modal logics tend to explain ‘difficile 

per difficilius’. Decidable calculi are ’reduced’ to a logic which is undecidable, 

by Church’s Theorem. What is going on? The reason is that universal validity 

in a predicate logic restricted to expressively powerful bounded fragments is of- 

ten decidable. ([An.vB.Nem. 95] have strong theorems to this effect.) Indeed, 
the above categorial translation Tiern is of this kind, ending up in a decidable 

bounded fragment of predicate logic (even for the full Boolean version of NL ). 
By contrast, the translation T;n essentially employs unrestricted quantification 

in its clauses, whence the decidability of the associative Lambek Calculus really 

requires additional work. (The above ternary reduction with explicit premises 

for frame associativity does not help either: as we do not know a priori whether 

the latter axioms have a decidable set of restricted first-order consequences.) A 
proof-theoretic way of seeing that translated modal or categorial logics are often 

decidable goes as follows. For instance, in deriving modal or categorial sequents, 

the structural rule of Contraction is redundant. We may use it, but it does 

not produce new derivable principles. And as is well-known without the latter 

structural rule, the remainder of predicate-logical deduction in sequent style has a 

finite proof search space, and hence it is decidable. Again, this stratospheric per- 

spective does not answer every concrete question concerning categorial inference. 

For instance, the relevant calculus LPC adding Permutation and Contraction to 

the associative Lambek Calculus is decidable (with high complexity, and by a 

non-constructive argument). Can this be accounted for by the previous consid- 

erations? 

What Is Labelling? 

On the view outlined here, labelling is a way of operating in the gap between 

bare categorial systems and their translations in a full predicate-logical language. 

The idea has been to use essentially the old categorial formulas, with a modicum 

of ’decoration’, using labels (referring to semantic objects) as well as some con- 

straints on these. Apart from the uses of labelling in linguistic applications which 

we mentioned at the beginning of this chapter, there are also many logical pre- 

decessors for this move, before Gabbay made it into a general program. E.g., in
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Relational Algebra, the use of explicit pair labels in deduction had already been 

proposed in [Wadge 75], [Orlowska 92], to overcome some infelicities of the usual 

algebraic format. Similar motives have driven extended modal formalisms with 

’names’ or ’distinguished worlds’ (cf. [Blackburn 93]). As we have seen, there 
is a great freedom of operation here: labels will give a fragment of first-order 

logic, and allow some, though not all first-order ’semantic calculation’. Labelled 

calculi will show the same phenomena as observed above. For instance, the more 

explicit the labelling, the less becomes our need for a strict structural regime 

of deduction. We have worked out this theme of the division of labour between 

the structural regime and the labelling system in Section 5.2. To make some of 

these points more concrete for the logical reader, here are some labelled systems 

of modal logic, in between the standard sequent calculus presentation and a full 

first-order version. 

Example Labelled Modal Deduction 

We use sequents of the form ‘C| ë + A’ | where C is a set of atomic conditions 

of the form Rzy, and 3, A are sets of labelled modal formulas z : A. The rules 

of such systems are very simple. For the propositional base, we transcribe the 

standard Gentzen rules for left and right introduction of Boolean connectives. 

E.g., 

Clz: A XFA C|z:B,XFA Clz:AX+-A,z:A,z:B 

Clz:AVB,XFA ClX+A,z: AV B, 
    

As for structural rules, we have a great variety. For instance, we can allow or 

forbid Monotonicity in three independent positions (C ‚ 3 and A ) . Let us 

assume all standard ones (Contraction is redundant in what follows). Now, say, 

an existential modality is really a restricted existential quantifier. Thus, we have 

several ways of designing its rules on standard first-order analogies. Here are 

two possible forms: 

C+Rzy|ly:AXFA ClEFA,z: A 

Clz:0A4,XFA C + Rzz/3 t A,z:QA4 

where y is fresh 

    

It is easy to show that this system is complete for deduction in the minimal 

modal logic. Moreover, it can easily be adapted to deal with deduction in the 

basic temporal logic, without a need for any special residuation axioms. This 

completeness would not be affected if we added further rules, such as a converse 

to the left introduction rule for the modality © . We conclude with an example 

of deduction in this intermediate style.



Modal Distribution 

Iy:AFy:A Jy:B-y:B 

Jy:AFy:A :B Jy:B+y:A :B 

Iy:AVBFy:A,v:B 

Rzy, Rzeyly: AVB+z:9A4, z:QOB 

—|z:C(AVB)Fz:0A,z: OB 

    

  

  

  

The calculi that we have developed for categorial deduction in the main body of 

this Chapter can all be viewed as similar designs. They go half-way toward full 

first-order translation, leaving some standard first-order inferential steps masked 

all for the purpose of striking some optimum of representation and tractability. 

Thus, once again, labelling gives us a spectrum of possible formats for deduc- 

tion ‘in between’ pure categorial calculi and their first-order ‘completions’ arising 

from making their semantics explicit. And of course, what we have observed is 

that linguistic convenience may be on this side, as labels acquire independent 

importance as vehicles for various forms of syntactic, semantic or phonological 

information. 
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Part ITI 
Categorial Architecture and Modal Embed- 
dings 

We develop a theory of systematic communication between categorial type logics. 

The communication is two-way: we show how one can fully recover the struc- 

tural discrimination of a weaker logie from within a stronger one, and how one 

can reintroduce structural flexibility of stronger categorial logics within weaker 

ones. We show how unary modal operators can be used to obtain structural 

relaxation, or to impose structural constraints. From a logical point of view, 

our contribution consists in some general translation methods, plus a number of 

embedding theorems connecting the main calculi in the categorial landscape. 
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Chapter 6 
  

Structural Control 

In this chapter! we study Lambek systems as grammar logics: logics for reasoning 

about structured linguistic resources. The structural parameters of precedence, 

dominance and dependency generate a cube of resource-sensitive categorial type 

logics. From the pure logic of residuation NL, one obtains L, NLP and LP 

in terms of Associativity, Commutativity, and their combination. Each of these 

systems has a dependency variant, where the product is split up into a left-headed 

and a right-headed version. 

We develop a theory of systematic communication between these systems. 

The communication is two-way: we show how one can fully recover the structural 

discrimination of a weaker logic from within a system with a more liberal resource 

management regime, and how one can reintroduce the structural flexibility of 

a stronger logic within a system with a more articulate notion of structure- 

sensitivity. 

In executing this programme we follow the standard logical agenda: the cate- 

gorial formula language is enriched with extra control operators, so-called struc- 

tural modalities, and on the basis of these control operators, we prove embedding 

theorems for the two directions of substructural communication. But our results 

differ from the Linear Logic style of embedding with S4-like modalities in that we 

realize the communication in both directions in terms of a minimal pair of struc- 

tural modalities. The control devices &, O used here represent the pure logic of 

residuation for a family of binary multiplicatives: they do not impose any restric- 

tions on the binary accessibility relation interpreting the unary modalities, unlike 

the S4 operators which require a transitive and reflexive interpretation. With 

the more delicate control devices we can avoid the model-theoretic and proofthe- 

  

1 This chapter is based on joint work with Michael Moortgat. It will appear as an independent 

article under the same title as [Kurton. & Moort. 95]. The notational conventions are slightly 

different in ways explained in the text. 
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oretic problems one encounters when importing the Linear Logic modalities in a 

linguistic setting. 

6.1 Logics of structured resources 

This paper is concerned with the issue of communication between categorial type 

logics of the Lambek family. Lambek calculi occupy a lively corner in the broader 

landscape of resource-sensitive systems of inference. We study these systems 

here as grammar logics. In line with the ‘Parsing as Deduction’ slogan, we 

present the key concept in grammatical analysis — well-formedness — in logical 

terms, i.e. grammatical well-formedness amounts to derivability in our grammar 

logic. In the grammatical application, the resources we are talking about are 

linguistic expressions — multidimensional form-meaning complexes, or signs as 

they have come to be called in current grammar formalisms. These resources 

are structured in a number of grammatically relevant dimensions. For the sake 

of concreteness, we concentrate on three types of linguistic structure of central 

importance: linear order, hierarchical grouping (constituency) and dependency. 

The structure of the linguistic resources in these dimensions plays a crucial role 

in determining well-formedness: one cannot generally assume that changes in the 

structural configuration of the resources will preserve well-formedness. In logical 

terms, we are interested in structure-sensitive notions of linguistic inference. 

Fig 6.1 charts the eight logics that result from the interplay of the structural 

parameters of precedence, dominance and dependency. The systems lower in the 

cube exhibit a more fine-grained sense of structure-sensitivity; their neighbours 

higher up loose discrimination for one of the structural parameters we distinguish 

here. 

Let us present the essentials (syntactically and semantically) of the frame- 
work we are assuming before addressing the communication problem. For a 

fuller treatment of multimodal categorial architecture, the reader can turn to 

[Moortgat 94, Moort. & Oehrle 94, Moort. & Morrill 91, Moort. & Oehrle 93, 

Morrill 94]. Consider the standard language of categorial type formulae F freely 

generated from a set of atomic formulae A: F .= A | F/F | FeF | F\F. The 
most general interpretation for such a language can be given in terms of Kripke 

style relational structures — ternary relational structures (W, R3) in the case 

of the binary connectives (cf. [Dosen 92a]). W here is to be understood as the 
set of linguistic resources (signs) and the accessibility relation R as representing 

linguistic composition. From a ternary frame we obtain a model by adding a 

valuation V sending prime formulae to subsets of W and satisfying the clauses
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LP 

NLP L 

DNLP DL 

DNL 

Figure 6.1: Resource-sensitive logics: precedence, dominance, dependency 

below for compound formulae. 

V(AeB) = {z|Jzy[Rzzy&ze V(A) &ye V(B)]} 
V(C/B) = {z |VyVz[(Rzzy & ye V(B))= z€ V(C)]} 
V(A\C) = {y|VzVz[(Rzzy & z€ V(A)) = z€ V(C)]} 

With no restrictions on R, we obtain the pure logic of residuation known as NL. 

RES(2) A—-C/B < AsBC <= B-— A\C 

And with restrictions on the interpretation of R, and corresponding structural 

postulates, we obtain the systems NLP, L and LP. Below we give the struc- 

tural postulates of Associativity (A) and Permutation (P) and the corresponding 
frame conditions F(A) and F(P). Notice that the structural discrimination gets 
coarser as we impose more constraints on the interpretation of R. In the presence 

of Permutation, well-formedness is unaffected by changes in the linear order of 

the linguistic resources. In the presence of Associativity, different groupings of 

the linguistic resources into hierarchical constituent structures has no influence 

on derivability. 

(A) Ae(Be(C)«— (AeB)eC(C 
F(A) (Vzyz € W) dt.Rzyt & Rtzu < Jv.Rvyz & Rzvu 

(P) AeB > BeA 

F(P) (Vzyz € W) Rzyz © Rzzy
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What we have said so far concerns the upper face of the cube of Fig 6.1. To 

obtain the systems at the lower face, we split the connective e in left-headed @; 

and right-headed e,, taking into account the asymmetry between heads and de- 

pendents. It is argued in [Moort. & Morrill 91] that the dependency dimension 

should be treated as orthogonal in principle to the functor/argument asymmetry. 

The distinction between left-headed e; and right-headed e, (and their residual 

implications) makes the type language articulate enough to discriminate between 

head/complement configurations, and modifier/head or specifier/head configu- 

rations. A determiner, for example, could be typed as np/rn. Such a declaration 

naturally accounts for the fact that determiners act semantically as functions 

from n-type meanings to np-type meanings, whereas in the form dimension they 

should be treated as dependent on the common noun they are in construction 

with, so that they can derive their agreement properties from the head noun. 

In the Kripke models, the lower plane of Fig 6.1 is obtained by moving from 

unimodal to multimodal (in this case: bimodal) frames (W, R?, R3), with a dis- 
tinct accessibility relation for each product. Again, we have the pure (bimodal) 

logic of residuation DNL, with an arbitrary interpretation for R?, R3, and its 

relatives DNLP, DL, DLP, obtained by imposing associativity or (dependency- 

preserving!) commutativity constraints on the frames. The relevant structural 

postulates are given below. The distinction between the left-headed and right- 

headed connectives is destroyed by the postulate (D). 

(Ar) Ae;(BeC)«— (Ae;B)e C 

(A,) Ae.(Be.C)+— (Ae.B)e.C 

(Pl’,.) AqB(—)BO,A 

(D) ÁqB(——)AO,B 

It will be clear already from the foregoing that in presenting the grammar for 

a given language, we will in general not be in a position to restrict ourselves to 

one particular type logic — we want to have access to the combined inferential 

capacities of the different logics, without destroying their individual character- 

istics. For this to be possible we need a theory of systematic communication 

between type systems. The structural postulates presented above do not have 

the required granularity for such a theory of communication: they globally de- 

stroy structure sensitivity in one of the relevant dimensions, whereas we would 

like to have lezical control over resource management. Depending on the direc- 

tion of communication, one can develop two perspectives on controlled resource 

management. On the one hand, one would like to have control devices to license 

limited access to a more liberal resource management regime from within a sys- 

tem with a higher sense of structural discrimination. On the other hand, one 

would like to impose constraints on resource management in systems where such 

constraints are lacking by default. For discussion of linguistic phenomena moti- 

vating these two types of communication, the reader can turn to the papers in
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[Barry & Morrill 90] where the licensing perspective was originally introduced, 

and to [Morrill 94] where apart from licensing of structural relaxation one can 
also find discussion of constraints with respect to the associativity dimension. 

We give an illustration for each type of control, drawing on the references just 

mentioned. 

LICENSING STRUCTURAL RELAXATION. For the licensing type of communi- 

cation, consider type assignment to relative pronouns like that in the sentences 

below. 

the book that John read 

the book that John read yesterday 

L+ 7/(s/np), np, (np\s)/np > 7 
LY 7/(s/np), np, (np\s)/np, s\s > 

NL / (r/(s/np), (np, (np\s)/np)) > 7 

Suppose first we are dealing with the associative regime of L, and assign the 

relative pronoun the type r/(s/np), abbreviating n\n as r, i.e. the pronoun looks 

to its right for a relative clause body missing a noun phrase. The first example 

is derivable? (because ‘John read np’ indeed yields s), the second is not (because 
the hypothetical np assumption in the subderivation ‘John read yesterday np’ is 

not in the required position adjacent to the verb ‘read’). We would like to refine 

the assignment to the relative pronoun to a type 7/(s/npt), where np! is a noun 

phrase resource which has access to Permutation in virtue of its -! decoration. 

Similarly, if we change the default regime to NL, already the first example fails on 

the assignment r/(s/np) with the indicated constituent bracketing: although the 
hypothetical np in the subcomputation ‘((John read) np)’ finds itself in the right 

position with respect to linear order requirements, it cannot satisfy the direct 

object role for ‘read’ being outside the clausal boundaries. A refined assignment 

r/(s/npt) here could license the marked np! a controlled access to the structural 
rule of Associativity which is absent in the NL default regime. 

IMPOSING STRUCTURAL CONSTRAINTS. For the other direction of communica- 

tion, we take an example from [Morrill 94] which again concerns relative clause 

formation, but this time in its interaction with coordination. Assume we are 

dealing with an associative default regime, and let the conjunction particle ‘and’ 

be polymorphically typed as (X \X)/X. With the instantiation X = s/np we can 

derive the first example. But, given Associativity and an instantiation X = s, 

nothing blocks the ungrammatical second example: ‘Melville wrote Moby Dick 

and John read np’ derives s, so that withdrawing the np hypothesis indeed gives 

s/np, the type required for the relative clause body. 

  

2The Appendix gives axiomatic and Gentzen style presentation of the logics under discussion.
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the book that Melville wrote and John read 

L+ r/(s/np), np, (np\s)/np, (X\X)/X, np, (np\s)/np > 7T (X = s/np) 
*the book that Melville wrote Moby Dick and John read 

L+ r/(s/np), np, (np\s)/np, np, (X\X)/X, np, (np\s)/np > r (X =s) 

To block this violation of the so-called Coordinate Structure Constraint, while 

allowing Across-the-Board Extraction as exemplified by our first example, we 

would like to refine the type assignment for the particle ‘and’ to (X\X)/X, 

where the intended interpretation for the marked X now would be the following: 

after combining with the right and the left conjuncts, the ’ decoration makes the 

complete coordination freeze into an island configuration which is inaccessible to 

extraction under the default associative resource management regime. 

MINIMAL STRUCTURAL MODALITIES. Our task in the following pages is to 

give a logical implementation of the informal idea of decorating formulas with a 

label (-)! or (-)°, licensing extra flexibility or imposing a tighter regime for the 
marked formulae. The original introduction of the licensing type of communica- 

tion in [Barry & Morrill 90] was inspired by the modalities ‘!,?’ of Linear Logic 

— unary operators which give marked formulae access to the structural rules of 

Contraction and Weakening, thus making it possible to recover the full power 

of Intuitionistic or Classical Logic from within the resource sensitive linear vari- 

ants. On the proof-theoretic level, the ‘!,?’ operators have the properties of S4 

modalities. It is not self-evident that 54 behaviour is appropriate for substruc- 

tural systems weaker than Linear Logic — indeed [Venema 93b] has criticized 

an S4 ‘I’ in such settings for the fact that the proof rule for ‘I’ has undesired 

side-effects on the meaning of other operators. On the semantic level it has been 

shown in [Versmissen 93] that the 54 regime is incomplete with respect to the 

linguistic interpretation which was originally intended for the structural modal- 

ities — a subalgebra interpretation in a general groupoid setting, cf. [Morrill 94] 
for discussion. 

Given these model-theoretic and proof-theoretic problems with the use of 

Linear Logic modalities in linguistic analysis, we will explore a different route 

and develop an approach attuned to the specific domain of application of our 

grammar logics — a domain of structured linguistic resources. 

[Moortgat 94] proposes an enrichment of the type language of categorial logics 

with unary residuated operators, interpreted in terms of a binary relation of 

accessibility. These operators will be the key devices in our strategy for controlled 

resource management. If we were talking about temporal organization, © and 

O+ could be interpreted as future possibility and past necessity, respectively. But 

in our grammatical application, R? just like R3 is to be interpreted in terms of 

structural composition. Where a ternary configuration (zyz) € R3 interpreting
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the product connective abstractly represents putting together the components y 

and z into a structured configuration z in the manner indicated by R3, a binary 

configuration (zy) € R? interpreting the unary © can be seen as the construction 

of the sign z out of a structural component y in terms of the building instructions 

referred to by R2. 

RES(1) CA— B<= A— O'B 

V(OCA) ={z | Jy(R*zy N y e V(A)} 
V(OVA) = {z | Vy(R%yz = y € V(4)} 

From the residuation laws RES(1) one directly derives the monotonicity laws 
below and the properties of the compositions of & and O+: 

AB implies OA 9OB and DA 3 DB 

OOVA — A A 3 DOA 

In the Appendix, we present the sequent logic for these unary operators. It 

is shown in [Moortgat 94] that the Gentzen presentation is equivalent to the 

axiomatic presentation, and that it enjoys Cut Elimination. For our examples 

later on we will use decidable sequent proof search. 

Semantically, the pure logic of residuation for &, 0% does not impose any 

restrictions on the interpretation of R?. As in the case of the binary connectives, 

we can add structural postulates for © and corresponding frame constraints on 

R?. With a reflexive and transitive R?, one obtains an S4 system. Our objective 

here is to show that one can develop a systematic theory of communication, both 

for the licensing and for the constraining perspective, in terms of the minimal 

structural modalities, i.e. the pure logic of residuation for ©, D+. 

COMPLETENESS. The communication theorems to be presented in the follow- 

ing sections rely heavily on semantic argumentation. The cornerstone of the 

approach is the completeness of the logics compared, which guarantees that syn- 

tactic derivability - A — B and semantic inclusion V (A} C V(B) coincide for the 
classes of models we are interested in. For the F(/,e,)\) fragment, [Dosen 92a) 

shows that NL is complete with respect to the class of all ternary models, and L, 

NLP, LP with respects to the classes of models satisfying the frame constraints 

for the relevant packages of structural postulates. The completeness results are 

obtained on the basis of a simple canonical model construction which directly 

accommodates bimodal dependency systems with F(/;, e;,\;) (z € {l,7}). And it 
is shown in [Moortgat 94] that the construction also extends unproblematically 

to the language enriched with ©, D+ as soon as one realizes that © can be seen 

as a ‘truncated’ product and O its residual implication.
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6.1.1. DEFINITION. Define the canonical model for mixed (2,3) frames as M = 
(W, R?, R3), where 

W is the set of formulae F(/;, o;, \;, ©, DY) 

R3(A,B,C)iff - A— Be;C, R*(A,B) ifft A— OB 
AeV(p)iff- A—p. 

The Truth Lemma then states that, for any formula ¢, M, A E ¢ iff - A — ¢. 

Now suppose V(A) C V(B) but H A B. If 7 A B with the canonical 
valuation on the canonical frame, A € V(A) but A g V(B) so V(A) € V(B). 
Contradiction. 

We have to check the Truth Lemma for the new compound formulae ©A, 

OVA. Below the direction that requires a little thinking. 

(©) Assume A € V(OB). We have to show + A 3 OB. A € V(9OB) implies 
JA' such that R2AA' and A! € v(B). By inductive hypothesis, - A’ > B. By 

Isotonicity for © this implies H OA' + OB. We have F A —+ OA' by (Def R?) 

in the canonical frame. By Transitivity, + A — OB. 

(D%) Assume A € V(O/B). We have to show - A — OVB. A € V(OVB) implies 
that VA’ such that R2A’A we have A’ € V(B). Let A’ be OA. R?A’'A holds 
in the canonical frame since H ©OA 3 OGA. By inductive hypothesis we have 

- A’ - B, i.e. - ©OA — B. By Residuation this gives + A — DYB . 

Apart from global structural postulates we will introduce in the remainder of this 

paper ‘modal’ versions of such postulates — versions which are relativized to the 

presence of O control operators. The completeness results extend to these new 

structural postulates. Syntactically, they consist of formulas built up entirely in 

terms of the e operator and its truncated one-place variant ©. This means they 

have the required shape for a generalized Sahlqvist-van Benthem theorem and 

frame completeness result which is proved in Chapter 3 of this dissertation: 

If R. : A B is a modal version of a structural postulate, then 

there exists a first order frame condition effectively obtainable from 

R,, and any logic £ + R, is complete if L is complete. 

EMBEDDING THEOREMS: THE METHOD IN GENERAL. In the sections that 

follow, we consider pairs of logics Lo, L; where Lg is a ‘southern’ neighbour of 

L. Let us write £LO for a system £ extended with the unary operators ©, OV 

with their minimal residuation logic. For the 12 edges of the cube of Fig 6.1, 

we define embedding translations (-)° : F(Lo) + F(L19) which impose the 
structural discrimination of Lo in L; with its more liberal resource management, 

and () : F(L1) = F(LoC) which license relaxation of structure sensitivity in 
Lo in such a way that one fully recovers the flexibility of the the coarser L.
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Our strategy for obtaining the embedding results is quite uniform. It will 

be helpful to present the recipe first in abstract terms, so that in the following 

sections we can supply the particular ingredients with reference to the general 

scheme. The embedding theorems have the format shown below. We call £ the 

source logic, £' the target. 

LAB iff L'O(+R) t AI B! 

For the constraining perspective, (-)P is (-)P with £ = Lo and L' = [£,. For the 
licensing type of embedding, (-)! is (-)! with £ = £; and £' = Lo. The embed- 
ding translation (-)P decorates critical subformulae in the target logic with the 
operators O, 0%. The translations are defined on the product e of the source 

logic: their action on the implicational formulas is fully determined by the resid- 

uation laws. A e configuration of the source logic is mapped to the composition 

of © and the product of the target logic. The elementary compositions are given 

below (writing o for the target product). They mark the product as a whole, or 

one of the subtypes with the © control operator. 

O(-0-) ((9-)o-)  (-0(9-)) 

Sometimes the modal decoration in itself is enough to obtain the required 

structural control. We call these cases pure embeddings. .In other cases real- 

izing the embedding requires the addition of R, — the modalized version of a 

structural rule package discriminating £ from L’. Typically, this will be the case 

for communication in the licensing direction: the target logics lack an option for 

structural manipulation that is present in the source. 

The proof of the embedding theorems comes in two parts. 

(=) Soundness of the embedding. The (=) half is the easy part. Using the 
Lambek-style axiomatization of 6.5.1 we obtain this direction of the embedding 

by a straightforward induction on the length of derivations in L. 

(<=) Completeness of the embedding. For the proofs of the (<) part, we reason 

semantically and rely on the completeness of the logics compared. To show that 

- A% — BP in £'O implies - A — B in £ we proceed by contraposition. Suppose 

L ¥ A — B. By completeness, there is an £ model M = (F, V) falsifying A — B, 

i.e. there is a point a such that M,a = A but M, a £ B. We obtain the proof 
for the (<) direction in two steps. 

Model construction. From M, we construct an £'O model M! = (F', V'), 
For the valuation, we set V'(p) = V(p). For the frames, we define a 
mapping between the Rî configurations in F and corresponding mixed 

R? R3 configurations in F'. We make sure that the mapping reflects the 

properties of the translation schema, and that it takes into account the 

different frame conditions for F and H.
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Truth preservation lemma. We prove that foranyae WNW', M,al= A 

iff M’,a = Al i.e. that the construction of M’ is truth preserving. 

Now, if M is a countermodel for A — B, so is M’ for A% - BY. Soundness then 

leads us to the conclusion that £/'© H Al — B!. 

With this proof recipe in hand, the reader is prepared to tackle the sections 

that follow. Recovery of structural discrimination is the subject of §6.2. In 

§6.3 we turn to licensing of structural relaxation. In §6.4 we reflect on general 

logical and linguistic features of the proposed architecture, signaling some open 

questions and directions for future research. 

6.2 Imposing structural constraints 

Let us first look at the embedding of more discriminating logics within systems 

with a less fine-grained sense of structure sensitivity. Modal decoration, in this 

case, serves to block structural manipulation that would be available by default. 

The section is organized as follows. In §6.2.1, we give a detailed treatment 

of a representative case for each of the structural dimensions of precedence, 

dominance and dependency. This covers the edges connected to the pure logic of 

residuation, NL. With minor adaptions the embedding translations of §6.2.1 can 

be extended to the remaining edges, with the exception of the four associative 

logics at the right back face of the cube. We present these generalizations in 

§6.2.2. This time we refrain from fully explicit treatment where extrapolation 

from §6.2.1 is straightforward. The remaining systems are treated in §6.2.3. They 

share associative resource management but differ in their sensitivity for linear 

order or dependency structure. We obtain the desired embeddings in these cases 

via a tactical manoeuvre which combines the composition of simple translation 

schemata and the reinstallment of Associativity via modally controlled structural 

postulates. 

6.2.1 Simple embeddings 

Associativity 

Consider first the pair NL versus LO. Let us subscript the symbols for the 

connectives in NL with 0 and those of L with 1. The L family /;, e;,\; has an 

associative resource management. We extend L with the operators ¢, 0% and 

recover control over associativity by means of the following translation.
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NLP L 

    

  

Prop 6.2.0\ Prop 6.2.2: 
Commutativit Associativity 

NL 

Prop 6.2.4: 
Dependency 

DNL 

Figure 6.2: Imposing constraints: precedence, dominance, dependency 

6.2.1. DEFINITION. Translation - : F(NL) + F(LX) as below. 

p =p 
(Aoo B)’ = O(A) e; B') 

(4/0B)t = 0V4/,B 
(B\oA)® = B"\,0+4’ 

6.2.2. PROPOSITION. 

NL+-A— B if LOFA— B 

Proof. (=) Soundness of the embedding.  For the left-to-right direction we 
use induction on the length of derivations in NL on the basis of the Lambek- 

style axiomatization given in the Appendix, where apart from the identity ax- 

iom and Transitivity, the Residuation rules are the only rules of inference. As- 

sume Aeg B — C is derived from A — C/¢B in NL. By inductive hypothe- 

sis, L + AP > (C/1B)P, i.e. () A* - O%C*/,B’. We have to show (}) L + 
(Ae; B)) —+ C° i.e. O(AD e; B°) — C°. By RES(2) we have from (1) AP e; B° — DC 
which derives () by REs(1). For the other side of the residuation inferences, as- 
sume A — C/oB is derived from A eg B — C. By inductive hypothesis, L I 

(Aey BY) — CP ie. (t) O(A e B°) — C®. We have to show L + AP — C/,BP, 

ie. (f) A) — D4C°/,BP. By RES(1) we have from (f) A? e; B° — DCP which 
derives (1) by RES(2). The residual pair (eg, \o) is treated in a fully symmetrical 
way. O 

(<) Completeness of the embedding. We apply the method outlined in §6.1. 
From a falsifying model M = (W, R3,V) for A — B in NL we construct M’ = 
(W', R}, R2,V'). We prove that the construction is truth preserving, so that we 

can conclude from Soundness that M' falsifies A) — B’ in LO.
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Model construction. Let W, be a set such that WNW; =@ and f: R} — W, 

a bijection associating each triple (abc) € R3 with a fresh point f((abc)) € W‚. 
M' is defined as follows: 

W' = WUW; 

R, = {(a'bc) | Ja.Roabc A f((abc)) = a'} 
R, = {(ad') | 3Jbc.Rgabc A f((abc)) = a'} 

Viip) = V(p) 

The following picture will help the reader to visualize how the model construction 

relates to the translation schema. 

AeoB “ O(Ale B') 

We have to show that M' is an appropriate model for L, i.e. that the construction 

of M' realizes the frame condition for associativity: 

F(A) Vzyzw e W'(Zt(R;iwzt A Rityz) <= ' (Rywt'z A Rit'zy)) 

F(A) is satisfied automatically because, by the construction of M/, there are 
no z,y,z,w € W' that fulfill the requirements: for every triple (zyz) € R3, the 

point z is chosen fresh, which implies that no point of W' can be both the root 

of one triangle and a leaf in another one. 

Lemma: Truth Preservation. By induction on the complexity of A we show 

that for anyaE W 

M,al=A if M aE A 

We prove the biconditional for the product and for one of the residual implica- 

tions. 

(=). Suppose M, a |= Aeg B. By the truth conditions for eg, there exist b, ¢ 

such that (i) Roabc and (ii) M, b = A, (iii) M, c = B. By inductive hypothesis, 

from (ii) and (iii) we have (ii’) M',b = A® and (iii’) M',c = B’. By the 
construction of M’, we conclude from (i) that there is a fresh a’ € W; such that 

and from (iv) M',a = O(A® e; B) . 
(<=). Suppose M', a & O(AP e, B°). From the truth conditions for e, O, we 

know there are z,y,z € W' such that (i) R.az, (ii) Rizyz and (iii) M/, y = A° 
and M’, z |= B’. In he construction of M’ the function f is a bijection, so that
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we can conclude that the configuration (i,ii) has a unique preimage, namely (iv) 

Roayz. By inductive hypothesis, we have from (iii)) M,y = A, and M, z | B, 

which then with (iv) gives M,a = A ¢ B. 

(=). Suppose (i) M,a & A\0B. We have to show M’ a = A°\;O+B". 
Suppose we have (ii) Riyza such that M’z = A®. It remains to be shown 

that M',y = OYB”. Suppose we have (iii) Ro,zy. It remains to be shown that 

of M', namely Rozza. By inductive hypothesis from (ii) we have M,z = A 

which together with (i) leads to M, z = B and, again by inductive hypothesis 

M'‚z = B, as required. 

(<). Suppose (i) M',a |= A*\;O'B". We have to show M‚a E A\oB. 
Suppose we have (ii) Rocba such that M,b = A. To be shown is whether 
M, c = B. By the model construction and inductive hypothesis we have R,cc/, 

Ric'ba and M',b | A). Hence by (i) M’,c |= OVB® and therefore M',c = B’. 
By inductive hypothesis this leads to M, c |= B as required. O 

ILLUSTRATION: ISLANDS. For a concrete linguistic illustration, we return to 

the Coordinate Structure Constraint violations of §6.1. The translation schema 

of Def 6.2.1 was originally proposed by [Morrill 92], who conjectured on the 
basis of this schema an embedding of NL into L extended with a pair of unary 

‘bracket’ operators closely related to <&, 0%. Whether the conjecture holds for 

the bracket operators remains open. But it is easy to recast Morrill’s analysis 

of island constraints in terms of &, 0. We saw above that on an assignment 

(X\X)/X to the particle ‘and’, both the grammatical and the illformed examples 
are L derivable. Within LO, we can refine the assignment to (X\OVX)/X. The 
relevant sequent goals now assume the following form (omitting the associative 

binary structural punctuation, but keeping the crucial (-)°): 

(f) the book that Melville wrote and John read 

L r/(s/np), (np, (np\s)/np, (X\O*X)/X, np, (np\s)/np)°=r (X = s/np) 
(f) *the book that Melville wrote Moby Dick and John read 

LOVY r/(s/np), (np, (np\s)/np, np, (X\O¥X)/X, np, (np\s)/np)° = r (X = s) 

The (X\O¥X)/X assignment allows the particle ‘and’ to combine with the left 
and right conjuncts in the associative mode. The resulting coordinate structure is 

of type OvX. To eliminate the O+ connective, we have to close off the coordinate 

structure with © (or the corresponding structural operator (-)° in the Gentzen 
presentation) — recall that OOX — X. The Accross-the-Board case of extrac- 

tion (1) works out fine, the island violation (}) fails because the hypothetical gap 

np assumption finds itself outside the scope of the (-)° operator.
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Dependency 

For a second straightforward application of the method, we consider the depen- 

dency calculus DNL of [Moort. & Morrill 91] and show how it can be emdedded 
in NL. Recall that DNL is the pure logic of residuation for a bimodal system 

with asymmetric products e;, e, for left-headed and right-headed composition 

respectively. The distinction between left- and right-headed products can be 

recovered within NLO, where we have the unary residuated pair &, 0% next 

to a symmetric product e and its implications. For the embedding translation 

(-), we label the head subtype of a product with ©. The residuation laws then 

determine the modal decoration of the implications. 

6.2.3. DEFINITION. The embedding translation (-)° : F(DNL) m F(NLO) is 
defined as follows. 

pb_ 
=P 

(Aeo; B)) =OA"e B’ (Ae.B)’ =A'e OB 

(A/1B) = 0Y(A*/B") (A/,B)’ = A*/OB’ 
(B\1A) = ©B\A*  (B\,4)’ = 0}(B"\4") 

6.2.4. PROPOSITION. 

DNL+-A— B if NLO-HA B 

Proof. (=) Soundness of the embedding. The soundness half is proved by induc- 

tion on the length of the derivation of A — B in DNL. We trace the residuation 

inferences under the translation mapping for the pair (e;,/;). The remaining 

cases are completely parallel. 

OAP e B° — C 

OAP + C°/B) NL 

A" — O¥(C*/B%) 

    Ae;B—C (Ae B} - C 
DNL > 

A—)C/zB Ab—) (C'/(B)b 

        

    

(<) Completeness of the embedding. Suppose DNL H# A + B. By complete- 
ness, there is a model M = (W, R?, R3, V) falsifying A — B. From M, we want 

to construct a model M’ = (W', R3, R2, V') which falsifies A* — B’. Then from 
soundness we will be able to conclude NLO H AP — B’. 

Model construction. Let W‚Wi, W, be disjoint sets and f : R} + W and 

g : R3 + W, bijective functions. M’ is defined as follows: 

W' WUWMUW, 
R, = {(ab'c) | Jb.Rjabc A f((abc)) = b} U 

{(abe') | Je.R;abc A g((abc)) = c'} 
R, = {(e'c) | Jab.R5abe A g((abc)) = c} U 

{(b'd) | Jac.Riabe A f ((abc)) = b'} 

V'(p) = V(p)
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We comment on the frames. For every triple (abc) € R?, we introduce a fresh 

b’ and put the worlds a,b,b’,c € W', (b'b) € R? and (ab'c) € R3. Similarly, for 

every triple (abc) € R2, we introduce a fresh ¢’ and put the worlds a, b, ¢, ¢’ € W', 
(c'c) € R? and (abc’) € R3. In a picture (with dotted lines for the dependent 
daughter for R;, R,): 

b 

b c | 
M \ . ~ b c M! 

a \/ 
a 

C 

b /c , I: 

M “ C M' S TN 

Lemma: truth preservation. By induction on the complexity of A, we show that 

for any a € W, M,a = A iff M',a = A*. We prove the biconditional for the 

left-headed product. The other connectives are handled in a similar way. 

(=>). Suppose M,a |= A ¢; B. By the truth conditions for e;, there exist 
b, ¢ such that (i) Rjabc and (ii) M, b = A, (iii) M, c = B. By the construction 
of M’, we conclude from (i) that there is a fresh b’ € W' such that (iv) R2b'b 
and (v) R3ab'c. By inductive hypothesis, from (ii) and (iii) we have M’ b = A’ 
and M',c = B®. Then, from (iv) we have M', b’ = O A’ and from (v), M',a 
OAD e B!. 

(<). Suppose M'‚a } OA) e B*. From the truth conditions for e, ©, we 

know there are d’,d, e € W' such that (i) R2d'd, (ii) R3ad'e and (iii) M',d E AP 
and M’, e = B®. From the construction of M’, we may conclude that d/ = , d = 
b,e = c, since every triple (abc) € R} is keyed to a fresh world &' € W'. So we 
actually have (i’) R2b'd, (ii’) R3ab'c and (iii’) M',b = A* and M/, c EB B°. (j) 
and (ii’) imply Rjabc. By inductive hypothesis, we have from (iii’) M, b = A, 

and M,c = B. But then M,al=Ae¢; B. O 

ILLUSTRATION. Below two instances of lifting in DNL. The left one is derivable, 

the right one is not. 

  

  
  

    

A" = A) 

(4")° = OAP OR p p \L ) 

(OAB >P UAPP 
(A°)° > B°/(OANB!) (A°)° > B° /D A\B') 

A) > DH(B°/(QA°\B°)) ? R A* = O¥(Bb/O4(4%\ B")) 
A= B/[(A\IB) . A= B/[(A\,.B) 
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Commutativity 

We can exploit the strategy for modal embedding of the dependency calculus to 

recover control over Permutation. Here we look at the pure case: the embedding 

of NL into NLP <. In §6.2.2 we will generalize the result to the other cases where 

Permutation is involved. For the embedding, choose one of the (asymmetric) 
dependency product translations for e in NL. Permutation in NLP spoils the 

asymmetry of the product. Whereas one could read the © label in the cases of 

Def6.2.3 as a head marker, in the present case © functions as a marker of the 

first daughter. 

6.2.5. DEFINITION. The embedding translation * : F(NL) + F(NLPX) is 
defined as follows. 

p =D 
(Ae B} ZOA g B’ 
(4/B)! = D(A)o-B') 
(B\A)® = OB" oA’ 

6.2.6. PROPOSITION. 

NLHA B if NLPORA B 

Proof sketch. _ The (=) part again is proved straightforwardly by induction 
on the length of the derivation of A — B in NL. We leave this to the reader. 

For the (<=) direction, suppose NL H# A —+ B. By completeness, there is a 

model M = (W, R3,V) falsifying A — B. From M, we now have to construct 

a commutative model M' = (W', Rg, R2, V') which falsifies A) - B*. From 

soundness we will conclude that NLPO H AP — B!. 

The construction of the frame for M’ in this case proceeds as follows. For 

every triple (abc) € R3, we introduce a fresh b’ and put the worlds a, b, b’,c € W', 
(b'b) € R2 and both (ab’c), (acd’) € R3. The construction makes the frame for 
M' commutative. But because every commutative triple (ab’c) depends on a 
fresh b’ €¢ W' — W, the commutativity of M’ has no influence on M. For the 

valuation, we set V/(p) = V(p). Now for any a € W N W', we can show by 
induction on the complexity of A that M,a = A iff M’,a = A® which then 

leads to the proof of the main proposition in the usual way. 

ILLUSTRATION. Below first a theorem of NL, followed by a non-theorem. We 

compare their image under ’ in NLPO. And we notice that the second example
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1s derivable in NLP. 

B Bì A)— A 
(A°o-B*, B*)® = A’ 

VL (D( B),B)e > 4 
b b b ‚ o R (Di(A o -B°))° > A’o B . 

O 0H (4P B*) = OY (Ao B*) & 
(Ü‘L(Abo—Bb))o - OD'L(AI’O—-BI’) Ab - Ab 

((O4(APo-B*))°, OO¥(APo— B") o0 A4")® = A 
O_ 

C# B) °2 A (O0H4’o B° o4) ° , 
O 

O(A' B°) = O¥(A’o—(COH(A’o-B") o4%)) | R 
NL+ 4/B > A/((A/B)\A) : 

  oL 

  

  

  

  

  oL 

  

  

  

” 

(OH(Aro-B)), 04 (Ao (OB'—oA))® > 4 
(O4(A%o- Bb))® = APo— (O¥(APo— (OBP— AY)) | 

O(Abo B°) = OV(APo— (0¥ (4P (OB - 4%))) Î] R 

NL !# A/B = A/(A/(B\A)) ' 

  

  

  

  

B=B A=A 

(Ao B,B)® > A 

(B, 40 B)® — A 

A B> B>A °f 4A 
(Ao (B-o0A), Ao B)® > A 

(Ao B, Ao (B-04))® — A 

NLP - Ao—B = Ao (Ao-(B-0A)) 

o—L   

  

  

  o—L 

  

  o—R 

6.2.2 Generalizations 

The results of the previous section can be extended with minor modifications to 

the five edges that remain when we keep the Associativity face for §6.2.3. 

What we have done in Prop 6.2.4 for the pair DNL versus NLO can be 

adapted straightforwardly to the commutative pair DNLP versus NLPO. Re- 

call that in DNLP, the dependency products satisfy head-preserving commuta- 

tivity (P:-), whereas in NLP we have simple commutativity (P). 

P,: A® B« B® A 
P: A®B+B8A 

Accommodating the commutative products, the embedding translation is that 

of Prop 6.2.4: © marks the head subtype.
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6.2.7. DEFINITION. Translation (-)? : F(DNLP) + F(NLPO): 

p =p 
(A®1B)’ =OA @B (A®- B} = ALQ OB' 
(Ao—B)’ = O%(A’0-B*) (Ao—,B)’ = A'c-CB’ 
(B—ojA)’ = OB*—©A’®  (B—o,A) = O¥(B"—o4") 

6.2.8. PROPOSITION. 

DNLP HAB iff NLPO} A 5 B 

For the proof of the (<=) direction, we combine the method of construction 

of Prop 6.2.4 with that of Prop 6.2.6. For a configuration R?abc in M, we 

take fresh b' and put the configurations Ro6'b, Rgab'c, Rgacb! in M'. Similarly, 

for a configuration R®abc in M, we take fresh ¢’ and put the configurations 

Roc'c, Rgabc’, Rgac'd in M’'. The commutativity property of ® is thus realized 
by the construction. 

M 7/ ~ b 
| 

a \/ T N\/ 
Let us check the truth preservation lemma. This time a configuration (x) in M’ 
does not have a unique pre-image: it can come from Ri@zyz or R®zzy. But 

because of head-preserving commutativity (DP), these are both in M. 

| 
x z ¥ 

\z/ 

Similarly, the embedding construction presented in Prop 6.2.6 for the pair NL 

versus NLP < can be generalized directly to the related pair DNL versus DNLPO. 

This time, we want the embedding translation to block the structural postulate 

of head-preserving commutativity in DNLP. The translation below invalidates 

the postulate by uniformly decorating with ©, say, the left subtype of a product.
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6.2.9. DEFINITION. Define (-)* : F(DNL) 5 F(DNLPO) as follows. 

b p =p 
(AB =OA' ®; B)  (Ae, B) =OA g, B' 

(4/B ’ =D0(Al1B)  (4/}B)’ = O0¥(A’o-, B’) 
(B\1A)’ = OB*—;A* (B\,A) = OB, A 

We then have the following proposition. The proof is entirely parallel to that 

of Prop 6.2.6 before. 

6.2.10. PROPOSITION. 

DNL HAB if DNLPO+ AP — B° 

The method of Prop 6.2.2 generalizes to the following cases with some simple 

changes. 

6.2.11. DEFINITION. Translation (:)° : F(NLP) > F(LP<) as below. 

P =p 
(A®B)’ = O(A' @ BY) 
(Ao—-B)’ = 0t Abo— B’ 

(B—oA)’ = B* o0t A 

6.2.12. PROPOSITION. 

NLP+-A— B iff LPOk A B° 

The only difference with Prop 6.2.2 is that the product in input and target 

logic are commutative. Commutativity is realized automatically by the construc- 

tion of M/. 

6.2.13. PROPOSITION. 

DNLHA- B if DLO- A — B° 

6.2.14. PROPOSITION. 

DNLP HAB if DLPOt A — B°
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6.2.3 Composed translations 

The remaining cases concern the right back face of the cube, where we find the 

systems DL, L, LP, and DLP. These logics share associative resource manage- 

ment, but they differ with respect to one of the remaining structural parameters 

— sensitivity for linear order (L versus LP, DL versus DLP) or for dependency 

structure (DL versus L, and DLP versus LP). We already know how to handle 

each of the structural dimensions individually. We use this knowledge to obtain 

the embeddings for systems with shared Associativity. Our strategy has two 

components. First we neutralize direct appeal to Associativity by taking the 

composition of the translation schema blocking Associativity with the schema 

responsible for control in the structural dimension which discriminates between 

the source and target logics. This first move does not embed the source logic, but 

its non-associative neighbour. The second move then is to reinstall associativity 

in terms of © modally controlled versions of the Associativity postulates. 

ASSOCIATIVE DEPENDENCY CALCULUS. We work out the ‘rear attack’ ma- 

noeuvre first for the pair DL versus L. In DNL we have no restrictions on the 

interpretation of e;, e,. In DL we assume e;, e are interpreted on (bimodal) asso- 

ciative frames, and we have structural associativity postulates A(l), A(r) on top 
of the pure logic of residuation for e;,e,. In L we cannot discriminate between 

e; and e; — there is just one e operator, which shares the associative resource 

management with its dependency variants. The objective of the embedding is 

to recover the distinction between left- and right-headed structures in a system 

which has only one product connective. 

A(l): (Ae;B)e;C +— Ae; (B e () 

A(r): Ae.(Be,C)— (Ao, B)e,.C 

For the embedding translation, we compose the mappings of Def 6.2.3 embedding 

DNL into NL and Def 6.2.1 embedding NL into L. 

6.2.15. DEFINITION. 

p =p 
(A; B} =O(OAle B’) (Ae, B)’ = O(A) e OB!) 
(A/1B)’ = 0Y(0tA*/B")  (4/,B)* = DA’ /OB 
(B\1A)! = OBh\O+4A* (B\,A)’ = O+(B"\O+4) 

From the proof of the embedding of NL into L we know that © neutralizes the 

effects of the associativity of e in the target logic L: the frame condition for 

Associativity is satisfied vacuously. To realize the desired embedding of DL into 

L, we reinstall modal versions of the associativity postulates. 

A(I)° : O(OO(OAe B) e C +9 O(CAe O(CBe () 
A(r)° : O(A e OO(B e OC)) + O(O(Ae OB) e OC)
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Figure 6.3 is a graphical illustration of the interplay between the composed trans- 

lation schema and the modal structural postulate. f is the translation schema 

(-)b of Def 6.2.1, g that of Def 6.2.3. 

  
DNL 

Figure 6.3: Rear Attack Embedding DL into L. 

Modalized structural postulates: frame completeness. The modalized structural 

postulates A(l,7)° introduce a new element in the discussion. Semantically, these 
postulates require frame constraints correlating the binary and ternary relations 

of structural composition. Fortunately we know, from the generalized Sahlqvist- 

van Benthem Theorem and frame completeness result discussed in §6.1, that 

from A(l,7)° we can effectively obtain the relevant first order frame conditions, 

and that completeness of LO extends to the system augmented with A(Z, r)°. We 
check completeness for A(l})° here as an illustration — the situation for A(r)° is 
entirely similar. Fig 4 gives the frame condition for A({)°. 

The models for L are structures (W, R2, R3, V). Now consider (=) in Figure 

4 below. Given the canonical model construction of Def 6.1.1 the following are 

derivable by the definition of RZ, R3: 

a— b, e— Of, 

b—>ced, f >geh, 

c— e, g— . 

From these we can conclude + a = O(OO(Cie h) e d)), i.e. a € V(O(OO(Oie 
h) e d))), given the definition of the canonical valuation (x). For (}) we have to 
find b' c/, d' e/, f! such that 

a— Ob, d — Oé, 

b~ ced, e — fled, 
! 3 O1, f' > Oh.



148 Chapter 6. Structural Control 

Let us put 

f = Oh, 
e' = f’.d: Oh.d, 

d’ = Oe! = O(©hed), 
¢ = <Ot 

b =ced =Oie O(Ohed). 

Together they imply F a =& O(O©ie O(Ohed)), ie. a € V(O(Oie O(Oh e d))) 
can be shown to follow from (x). Similarly for the other direction. 

f h 
g /h ]l, 4 

\ \ / 
2 

_
.
 

() (1) 

N/ 
a 

a 

F(A()°): Jbcefg(Roab A Rebed A Roce A Roef A Refgh A Reogi) <= 
We'd'e' f'(Roab! A Reb'c'd! A Rocli A Rod'e! A Roe'f'd A Rof'h) 

Figure 6.4: Frame condition for A(1)° 

Now for the embedding theorem. 

6.2.16. PROPOSITION. 

DL+-A— B iff LO+ A(l,r)°+ A" — B 

Model construction.  Suppose DL H# A B. Then there is a model M = 

(W, Ri, R+,V) where A — B fails. From M we construct M' as follows. For 

every triple (abc) € R; we take fresh a’, 6' and put (aa') € R, (a'b'c) € R. , (b'b) € 

R. Similarly, for every triple (abc) € R, we take fresh a' c' and put (aa’) € 
R,, (a'bc') € R,,(c'c) € R.. 

We have to check whether M’ is an appropriate model for LO + A(l, 7)., 

specifically, whether the frame condition of Fig 4 is satisfied. Suppose (1) holds,
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and let us check whether (1). Note that a configuration R‚ab’, Reb'c'd', Roc'i can 

only hold in M’ ifin M we had Rjaid’ (x). And a configuration R.d'e’, Rse' f'd, R.f'h 

can be in M/’ only if in M we had Rid'hd (xx). The frame for M is associa- 
tive. Therefore, from (x,*x) we can conclude M also contains a configuration 
R;aed, Rieih for some e € W.. Applying the M' construction to that configura- 

tion we obtain (1). Similarly for the other direction. 
From here on, the proof of Prop 6.2.16 follows the established path. 

GENERALIZATION. The rear attack strategy can be generalized to the remain- 

ing edges. Below we simply state the embedding theorems with the relevant 

composed translations and modal structural postulates. We give the salient in- 

gredients for the construction of M’, leaving the elaboration as an exercise to 

the reader. 

Consider first embedding of L into LP. The discriminating structural param- 

eter is Commutativity. For the translation schema, we compose the translations 

of Def 6.2.11 and Def 6.2.5. Associativity is reinstalled in terms of the structural 

postulate Ag. 

A%: O(OO(CA®B)®C +— O(CAR® O(OB®C)) 

6.2.17. DEFINITION. Embedding translation (-)° : F(L) — F(LPO). 

pP=p 
(A e B) = O(0A"® B 
(A/B)" = 04D A" B") 
(B\A)® = OB’ DO+ A 

6.2.18. PROPOSITION. 

LFA—- B iff LPO+A3 -A B 

Semantically, the commutativity of Rg is realized via the construction of M/, 

as in the case of Prop 6.2.6: 

b c b c C 

M\a/«»\/+\/M' 

For the pair DL versus DLP, again Commutativity is the discriminating 

structural parameter, but now in a bimodal setting. We compose the translations
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for the embedding of DNLP into DLP and DNL into DNLP The structural 

postulates Ag, and Ag, are the dependency variants of A above. 

AZ; : S(SO(OA®: B) B C +— (OAB S(OB @; C)) 
Ag 1 O(OO(CA®, B) @, C +— O(CAR, O(COB R, C)) 

6.2.19. DEFINITION. Embedding translation (-)* : F(DL) — F(DLPO). 

P = 
(Ae; B =O(0A @ B?)  (Ae, B)) = O(CA'®, BY) 
(A/;B) = O¥(OV Ao BY)  (A/.B)’ = oY (OVAo—,B) 

(B\A4) = OB*—«0¢A"  (B\,A)’ = OB*—o, 04 

6.2.20. PROPOSITION. 

DL+ A— B if DLPO+ (Ag,,4g,)F A" 3 B 

Finally, for the pair DLP versus LP, the objective of the embedding is 

to recapture the dependency distinctions. We compose the translations of Def 

6.2.11 and Def 6.2.7. The modal structural postulates A(l,r)g are obtained from 

A(l,7)° by replacing e by ®. 

6.2.21. DEFINITION. Embedding translation * : F(DLP) — F(LPO). 

b p —=p 
(A® B)! = O(0A*® B’) (A®, B)’ =0(4"® OB’ 
(Ao—;B)’ = O¥(0%A’o-B*) (Ao-,B)" = DVAbo OB 
(B-o1A)) = OB'o0tAl  (B-o,A)" = O¥(B*—o0O+4") 

6.2.22. PROPOSITION. 

DLP+A— B if LPO+A(l,r)y+ A* — B 

6.2.4 Constraining embeddings: summary 

We have completed the tour of the landscape and shown that the connectives 

¢, O% can systematically reintroduce structural discrimination in logics where on 

the level of the binary multiplicatives such discrimination is destroyed by global 

structural postulates. In Fig 6.5 we label the edges of the cube with the numbers 

of the embedding theorems.
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DNL 

Figure 6.5: Embedding translations: recovering resource control 

6.3 Licensing structural relaxation 

In the present section we shift the perspective: instead of using modal decorations 

to block structural options for resource management, we now take the more 

discriminating logic as the starting point and use the modal operators to recover 

the flexibility of a neighbouring logic with a more liberal resource management 

regime from within a system with a more rigid notion of structure-sensitivity. 

Licensing of structural relaxation has traditionally been addressed (both in 

logic [Dosen 88,89] and in linguistics [Morrill 94]) in terms of a single universal 
O modality with S4 type resource management. Here we stick to the mini- 

malistic principles set out at the beginning of this paper, and realize also the 

licensing embeddings in terms of the pure logic of residuation for the pair ¢, 0¥ 

plus modally controlled structural postulates. In §6.3.1 we present an external 

strategy for modal decoration: in the scope of the & operator, products of the 

more discriminating logics gain access to structural rules that are inaccessible in 

the non-modal part of the logic. In §6.3.2 we develop a complementary strategy 

for internal modal decoration, where modal versions of the structural rules are 

accessible provided one or all of the immediate substructures are labelled with <. 

We present linguistic considerations that will affect the choice for the external 

or internal approach.
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6.3.1 Modal labelling: external perspective 

Licensing structural relaxation is simpler than recovering structural control: the 

target logics for the embeddings in this section lack an option for structural 

manipulation which can be reinstalled straightforwardly in terms of a modal 

version of the relevant structural postulate. We do not have to design specific 

translation strategies for the individual pairs of logics, but can do with one 

general translation schema. 

6.3.1. DEFINITION. General translation schema (-)! : F(£;) — F(Lo<) embed- 
ding a stronger logic £ into a weaker logic Lo extended with O, O+, 

pi=p 
(A#; B)! = O(A! og Bf) 
(4/,1B)! = D Al/oB! 
(B\1A)! = BI\01 Al 

The embedding theorems we are interested in now have the general format 

shown below, where R. is (a package of) the modal translation(s) Al — B! of 
the structural rule(s) A — B which differentiate(s) £, from L,. 

Li+HA B if L90+ R Al — B! 

We look at the dimensions of dependency, precedence and dominance in general 

terms first, discussing the relevant aspects of the model construction. Then we 

comment on individual embedding theorems. 

RELAXATION OF DEPENDENCY SENSITIVITY. For a start let us look at a pair of 

logics Lo,L1, where Lo makes a dependency distinction between a left-dominant 

and a right-dominant product, whereas L; cannot discriminate these two. There 

is two ways of setting up the coarser logic £,. Either we present £; as a bimodal 

system where the distinction between right-dominant e, and left-dominant e; 

collapses as a result of the structural postulate (D). 

[:12 AO,B(—)AOIB (D) 

Or we have a unimodal presentation for £; and pick an arbitrary choice of the 

dependency operators for the embedding translation. We take the second option 

here, and realize the embedding translation as indicated below. 

p!=p 
(Ae B)f = O(Ale, BY) 
(A/B)" — D¢Au/r3u 

(B\4)! = B\, A!
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Relaxation of dependency sensitivity is obtained by means of a modally con- 

trolled version of (D). Corresponding to the structural postulate (D,) we have 
the frame condition F(D, ) as a restriction on models for the more discriminating 
logic. 

Lo : O(A o, B) Ô O(A o] B) (Do) 

F(D,): (Vzyz € Wo) 3t(Rozt A R,tyz) & t'(Rozt’ A R,t'y2) 

Model construction. To construct an Lo model (Wo, R2, R?, R3, Vo)} from a model 

(W1, R3, V1) for L, we proceed as follows. For every triple (zyz) € R; we take 

fresh points z1,Z32, put z,z;, 2,9,z in Wy with (zz;) € R,, (ziyz) € R; and 

(zz2) E Ro, (z2yz) € R. 

Mi: \ / > zll. + .32 : Mo 

To show that the generated model Mo satisfies the required frame condition 

F(D,), assume there exists b € Wy such that R,ab and R,bcd. Such a configura- 

tion has a unique preimage in M; namely R;acd. By virtue of the construction 

of M, this means there exists b’ € Wy such that R.ab’ and R;b'cd, as required 

for F(D,). 
Truth preservation of the model construction is unproblematic. The proof of 

the following proposition then is routine. 

6.3.2. PROPOSITION. 

NL+A - B iff DNLO+ D, Al — B! 

RELAXATION OF ORDER SENSITIVITY. Here we compare logics £; and Lg 

where the structural rule of Permutation is included in the resource management 

package for L1, but not in that of Lo. Controlled Permutation is reintroduced in 

Lo in the form of the modal postulate (P,). The corresponding frame condition 
on Lo models My is given as F(P,).
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Eli A.OlB(—')B.1A (P) 

Lo: (Ao B) «— O(BegA) (P,) 

F(P,): (Nzyz € Wo) 3t(Rozt A Rotyz) > It'(R.zt' A Rot'zy) 

To generate the required model My from M; we proceed as follows. If 

(zyz) € R; we take fresh z;,z, and put both (zz;) € R, and (z,yz) € R and 

(zz2) € R, and (z2zy) € Ro. 
We have to show that the generated model M, satisfies F/(P,). Assume there 

exists b € Wy such that R,ab and Robcd. Because of the presence of Permutation 

in £, this configuration has two preimages, Riacd and Rj;adc. By virtue of the 

construction algorithm for Mg each of these guarantees there exists b’ € Wy such 

that R.ab’ and Rozdec. 

6.3.3. PROPOSITION. 

NLPHA-B if NLO+ P, At — B! 

RELAXATION OF CONSTITUENT SENSITIVITY. Next compare a logic £; where 

Associativity obtains with a more discriminating logic without global Associa- 

tivity. We realize the embedding by introducing a modally controlled form of 

Associativity (A,) with its corresponding frame condition F(A,). 

Li: Aej(BejC)+— (Ae1B)e; C (4) 

Lo: O(AegO(Beg()) «+— O(O(AegB)egC) (A,)
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F(As): (Nzyzw € Wo) 

Jtuv(Rozv A Rovuw A Rout A Rotyz) < Wu'v'(Rozv! A Rov'yu! A Rou't! A Rot'zw) 

The Mo model is generated from M; in the familiar way. For every triple 

(zyz) € R;, we take a fresh point z’, and put z,z’,y,z € Wy, with (zz') € R, 

and (z'yz) € Ro. 
We have to show that the frame condition F(A,) holds in the generated 

model. Suppose (1) Roab and Robcd and (1) Roce and Roefg. We have to show 

that there are z,y,z € Wo such that Rsaz and Rozfy and Rsyz and Rozgd. 

Observe that the configurations (t) and (}) both have unique preimages in M, 
Riacd and Ricfg respectively. Because R; is associative, there exists y € W; 

such that Rijafy and R;ygd. But then, by the construction of My, also y € Wy 

and there exist ¢, z € Wy such that R.az, Roz fy, R.yz and Rgzgd, as required. 

6.3.4. PROPOSITION. 

L-A— B iff NLO+ A, A!' — B! 

GENERALIZATIONS. The preceding discussion covers the individual dimensions 

of structural organization. Generalizing the approach to the remaining edges of 

Fig 6.1 does not present significant new problems. Here are some suggestions to 

assist the tenacious reader who wants to work out the full details. 

The embeddings for the lower plane of Fig 6.1 are obtained from the parallel 

embeddings in the upper plane by doubling the construction from a unimodal 

product setting to the bimodal situation with two dependency products. 

Embeddings between logics sharing associative management, but differing 

with respect to order or dependency sensitivity require modal associativity A, 

in addition to P, or D, for the more discriminating logic: as we have seen in 

§6.2, the external © decoration on product configurations pre-empts the condi- 

tions of application for the non-modal associativity postulate. We have already 

come across this interplay between the translation schema and modal structural 

postulates in §6.2.3. For the licensing type of embedding, concrete instances 

are the embedding of LP into LO + A, + P,, and the embedding of L into 

DLO + A + D. 

EXTERNAL DECORATION: APPLICATIONS. Linguistic application for the exter- 

nal strategy of modal licensing will be found in areas where one wants to induce 

structural relaxation in a configuration from the outside. The complementary 

view, where a subconfiguration induces structural relaxation in its context, is ex- 

plored in 86.3.2 below. For the outside perspective, consider a non-commutative
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L 

Prop 6.3.4: 
Associativity 

  

NL 

Prop 6.3.2: 

Dependency 

"DNL 

Figure 6.6: Licensing structural relaxation: precedence, dominance, dependency 

default regime with P, for the modal extension. Collapse of the directional im- 

plications is underivable, I/ A/B +«— B\ A, but the modal variant below is. In 

general terms: a lexical assignment A/0+O B will induce commutativity for the 

argument subtype. 

B>B (4)° > QOA 

((4/B,B)°)° > OA 
((B,4/B)°)° > OA î 

(B, A/B) > DO A 7 
\R 

A/B > B\OVCA 

  /L 
  

  

  

Similarly, in the context of a non-associative default regime with A, for the 

modal extension, one finds the following modal variant of the Geach rule, which 

remains underivable without the modal decoration. 

  

C>C (DIB)°—B JL 

(0¥B/C,C)*)° = B (A)° > OA 

((4/B,((@*B/C,C)")°)*)* = CA 
((((A/B,0¥B/C)*)°, C)*)° = O A 
(((A/B,0+B/C)*)°,C)* = O+CA 

((A/B,0+B/C)*)° = OO A/C 

(A/B,0+B/C)* = OYO¥OA/C) 

A/B = 0Y(O*CA/C)/(0B/C) 

  /L 
° 

  

  

  /R 

OR 

/R 
  

  

6.3.2 Modal labelling: the internal perspective 

The embeddings discussed in the previous section license special structural be- 

haviour by ezternal decoration of product configurations: in the scope of the ©



6.3. Licensing structural relazation 157 

operator the product gains access to a structural rule which is unavailable in the 

default resource management of the logic in question. In view of the intended 

linguistic applications of structural modalities we would like to complement the 

external modalization strategy by an internal one where a structural rule is 

applicable to a product configuration provided one of its subtypes is modally 

decorated. In fact, the examples of modally controlled constraints we gave at 

the beginning of this paper were of this form. For the internal perspective, the 

modalized versions of Permutation and Associativity take the form shown below. 

(P)) OAeB Be0A 
(Al) A;e(Aje A3) «— (A1 e Ay)e Az (provided 4; = OA,1 <1< 3) 

We prove embedding theorems for internal modal decoration in terms of the 

following translation mapping, which labels positive (proper) subformulae with 

the modal prefix OO+ and leaves negative subformulae undecorated. 

6.3.5. DEFINITION. Embedding translations (-)%, (-)7 : F(L£i) H F(Lo9) for 
positive and negative formula occurrences. 

()t = p P) = p 
(Ae; Bt = <>EJ¢(A)+ o <>DJ'(B)+ (Ae; B)” = (A)” g (B)~ 

(A/1B)t = OOv(A)t/o(B)™ (A/1B)- = (A)~/oCD¥(B)* 
(B\tA)t = (B) \oOOHA)* (B\14)~ OOH(B) \o(4)" 

The theorems embedding a stronger logic £; into a more discriminating sys- 

tem Lo now assume the following general form, where R', is the modal version 

of the structural rule package discriminating between £; and Lo. 

6.3.6. PROPOSITION. 

LiFA— B iff £0<>+R’°Í_A+ — B~ 

As an illustration we consider the embedding of L into NLO which involves 

licensing of Associativity in terms of the postulate (A}). The frame construction 

method we employ is completely general: it can be used unchanged for the other 

cases of licensing embedding one may want to consider. 

The proof of the (=) direction of Prop 6.3.6 is by easy induction. We present 

a Gentzen derivation of the Geach rule as an example. The type responsible for 

licensing A’ in this case is COY(B/C)*.
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CS C 

(DC+)° > CT 
oo¥Ct = C- OOYBt = B~ L/ 

OOvBt /C~, 00Vt = B° 
((O¥(OD¥B* /C7))°, o0vCt) = B~ OOvAt = A~ 

(CO*At /B, ((OH(ODOYB*/C7))°, 00 CY)) = A~ , 
((0O+At/B—, (OH(©OO+BT /C7))°), o0 CH) = 4~ ° 

(COVA* /B, GOHOOVBY /C)), OOVC) = A- Ê/OR ; 
OOVAt /B~ = (A~ /OOVCH) /OO (OOvBt /C ) () L ()- 

(4/B)* = ((A/C)/(B/C))~ ’ 

  LD 
    

  

    L 
  L/ 
  

  

  

  

For the (<=) direction, we proceed by contraposition. Suppose L # A B. 

Completeness tells us there exists an L model M; = (W), Ry, V1) with a point 

a € W such that M;,a = A but M;,a [£ B. From M; we want to construct 

an NLO + Al model My = (W, R,, Ry, Vo) such that AT — B~ fails. Recall 
that Ro has to satisfy the frame conditions for the modal versions A of the 

Associativity postulate. We give one instantiation below. 

(A]) OAeg(BegC)+— (OA oo B) oo C 

y 
:l|/ z\ /w tl' 

u \ / 
AL z \ / 

(1) (Vzyzw € Wo) 
Jtu(Roztu A Roty A Rouzw) & H/u'(Rozu/w A Rou't/z A Rot'y) 

The model construction proceeds as follows. We put the falsifying point a € Wo, 

and for every triple (zyz) € R; we put z,y,z € Wo and (zyz) € Ro, (yy) € R., 

(zz) € R,. 

y 
| 

A / 
T 

N
—
N
 

’y 2 

M, \z/ _ Mo 

We have to show that the model construction realizes the frame condition () 
(and its relatives) in Mo. Suppose Jzy(Roazy A Rozb A Roycd). By the model
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construction, z — b, so Roaby which has the pre-image R;iaby. The pre-image 

of Roycd is Riycd. The combination of these two R; triangles satisfies the 

Associativity frame condition of L, so that we have a point ¢ such that R;atd A 

Ritbc. Again by the model construction, this means in Mo we have dz, t(RotzcA 

RozbA Roatd), as required. 

c d b b 

, \y/ \ / b c 
M1 <~ t d n \ / MO VAR VIR a a \a/ 

The central Truth Preservation Lemma now is that for any a € W; N W,, 

MiaBA if MoaBAt if Mo,aBA 

We concentrate on the (-)+ case — the (-)7 case is straightforward. 

(=>) Suppose M1,a = Ae; B. We have to show that Mg, a = OOVAT g OOYBT. 
By assumption, there exist b, c such that R;abc, and M,,b = A, M;,c = B. 

By inductive hypothesis and the model construction algorithm, we have in M, 

C 

¢ MoblA* Mok BY 
/ 

a 

/
G
"
—
G
"
 

Observe that if z is the only point accessible from z via R, (as is the case in M), 

then for any formula ¢, z E ó if z E O¢ iff z |= OV¢ iff 2 = OOV¢. Therefore, 

from the above we can conclude My, b |= OOVAt and My, ¢ = OOVBT, hence 

Mo, d l‘: ÔÜ'I'A_" ©9 ÓÜ'LB'*'. 

(<) Suppose Mo,a E ODVAt oo OOYBt. We show that M;,a = A e; B. By 
assumption, there exist b, c such that Roabc, and Mo,b = OOVAT, My, c 
ODOYB*. In My all triangles are such that the daughters have themselves and 

only themselves accessible via R. Using our observation again, we conclude that 

Mo, b = AT, Mo, c = BT, and by inductive assumption M;,a |= A e B. 

We leave the implicational formulas to the reader. 

COMMENT: FULL INTERNAL LABELING. Licensing of structural relaxation is 

implemented in the above proposal via modal versions of the structural pos- 

tulates requiring at least one of the internal subtypes to be & decorated. It
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makes good sense to consider a variant of internal licensing, where one requires 

all relevant subtypes of a structural configuration to be modally decorated — 

depending on the application one has in mind, one could choose one or the 

other. Embeddings with this property have been studied for algebraic models by 

[Venema 93b, Versmissen 93]. In the terms of our minimalistic setting, modal 

structural postulates with full internal labeling would assume the following form. 

(P!) OAe OB 43 OB e OA 
(A)) SOAe(OBe OC) + (OA OB) e OC 

One obtains the variant of the embedding theorems for full internal labeling on 

the basis of the modified translation (-)** which marks all positive subformulae 
with the modal prefix OO+. (Below we abbreviate ODY to u.) In the model 
construction, one puts (zz) € R, (and nothing more) for every point z that has 

to be put in Wo. 

()t = up ()~ = p 
(Aey B)tT = p(u(4)tt oou(B)**) (4#1B) —= (4) oo (B)° 
(A/1B)*t = p(u(A)**/o(B)7) (A/1B)~ = (A) /ou(B)*™ 
(B\14)*™t = p((B)"\ou(4)**) (B\14)~ = u(B)t*\o(4) 

6.3.7. PROPOSITION. 

LI HAB if LeO+R'GEH AT 3 B° 

ILLUSTRATION: EXTRACTION. For a concrete linguistic illustration of OD* la- 

beling licensing structural relaxation, we return to the example of extraction from 

non-peripheral positions in relative clauses. The example below becomes deriv- 

able in NLO + (A%, P}) given a modally decorated type assignment 7 /(s/X0tnp) 

to the relative pronoun, which allows the hypothetical &O%np assumption to find 

its appropriate location in the relative clause body via controlled Associativity 

and Permutation. We give the relevant part of the Gentzen derivation, abbrevi- 

ating (np\s)/np as tv. 

...that ((John read) yesterday) 
NLO+(A,, P) - (r/(s/O0%np), ((np, (np\s)/np), s\s)) = r



6.4. Discussion 161 

  
((np, (tv, np)), s\s) > s 
  

  

  

  

  

  

  

(np, (10, (Om} 9) 2 s L 
(9. t0), (Omp)°), 3\5) > 5 ¢ 
((mp,tv), ((Dnp)°, s\s) > 5 
((np,t0) (s\s,(Cnp)) 2 e 
(((29,t0),s\9), (E} 2 s 1° 
(((np, tv), s\s), OO'np) = s R/ 

((np, tv), s\s) > s/O0%np 

Comparing this form of licensing modal decoration with the treatment in terms 

of a universal O operator with S4 structural postulates, one observes that on the 

proof-theoretic level, the OO* prefix is able to mimick the behaviour of the 54 

O modality, whereas on the semantic level, we are not forced to impose transi- 

tivity and reflexivity constraints on the interpretation of R. With a translation 

(OA)~ = OO¥(A)~, the characteristic T and 4 postulates for O become valid 

type transitions in the pure residuation system for &, O¥, as the reader can check. 

T: OAA “+ ODA 3 A 

4: 0OA— 004 ~ 904 S ontontA4 

6.4 Discussion 

In this final section, we reflect on some general logical and linguistic aspects of 

the proposed architecture, and raise a number of questions for future research. 

Linear Logic and the sublinear landscape. In order to obtain controlled ac- 

cess to Contraction and Weakening, Linear Logic extends the formula language 

with operators which on the proof-theoretic level are governed by an S4-like 

regime. The ‘sublinear’ grammar logics we have studied show a higher degree of 

structural organization: not only the multiplicity of the resources matters, but 

also the way they are put together into structured configurations. These more 

discriminating logics suggest more delicate instruments for obtaining structural 

control. We have presented embedding theorems for the licensing and for the 

constraining perspective on substructural communication in terms of the pure 

logic of residuation for a set of unary multiplicatives ©, O. In the frame seman- 

tics setting, these operators make more fine-grained structural distinctions than 

their S4 relatives which are interpreted with respect to a transitive and reflexive 

accessibility relation. But they are expressive enough to obtain full control over 

grammatical resource management. Our minimalistic stance is motivated by lin- 

guistic considerations. For reasons quite different from ours, and for different
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types of models, a number of recent proposals in the field of Linear Logic proper 

have argued for a decomposition of the ‘!,?’ modalities into more elementary 

operators. For comparison we refer the reader to [Bucalo 94] , [Girard 95]. 

Multiplicatives versus Booleans. 

The price of diamonds. We have compared logics with a ‘standard’ language of 

binary multiplicatives with systems where the formula language is extended with 

the unary logical constants &, 0%. The unary operators, one could say, are the 

price one has to pay to gain structural control. Do we really have to pay this 

price, or could one faithfully embed the systems of Fig 6.1 as they stand? For 

answers in a number of specific cases, one can turn to [van Benthem 91b]. 

A question related to the above point is the following. Our embeddings 

compare the logics of Fig 6.1 pairwise, adding a modal control operator for each 

translation. This means that self-embeddings, from £ to £' and back, end up 

two modal levels higher, a process which reaches equilibrium only in languages 

with infinitely many ©, D+ control operators. Can one stay within some finite 

modal repertoire? We conjecture the answer is positive, but a definitive result 

would require a deeper study of the residuation properties of the <&, O+ family. 

Pure embeddings versus modal structural rules. The embedding results presented 

here are globally of two types. One type — what we have called the pure em- 

beddings — obtains structural control solely in terms of the modal decoration 

added in the translation mapping. The other type adds a relativized structural 

postulate which can be accessed in virtue of the modal decoration of the transla- 

tion. For the licensing type of communication, the second type of embedding is 

fully natural. The target logic, in these cases, does not allow a form of structural 

manipulation which is available in the source logic: in a controlled form, we want 

to regain this flexibility. But the distinction between the two types of embedding 

does not coincide with the shift from licensing to constraining communication. 

We have seen in §6.2.3 that imposing structural constraints for logics sharing 

associative resource management requires modalized structural postulates, in 

addition to the modal decoration of the translation mapping. In these cases, the 

© decoration has accidentally damaged the potential for associative rebracket- 

ing: the modalized associativity postulates repair this damage. We leave it as an 

open question whether one could realize pure embeddings for some of the logics 

of §6.2.3. A related question can be raised for the same family of logics under 

the licensing perspective: in these cases, we find not just the modal structural 

postulate for the parameter which discriminates between the logics, but in addi- 

tion modal associativity, again because the translation schema has impaired the 

normal rebracketing. 

Uniform versus customized translations. Another asymmetry that may be noted 

here is our implementation of the licensing type of communication in terms
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of a uniform translation schema, versus the constraining type of embeddings 

where the translations are specifically tailored towards the particular structural 

dimension one wants to control. Could one treat the constraining embeddings 

of §6.2 also in terms of a uniform translation scheme? And if so, would such a 

scheme be cheaper or more costly than the individual schemes in the text? 

Complezity. A final set of questions relates to issues of computational complex- 

ity. For many of the individual logics in the sublinear cube complexity results 

(pleasant or unpleasant) are known. Do the embeddings allow transfer of such 
results to systems where we still face embarrassing open questions (such as: the 

issue of polynomial complexity for L)? In other words: what is the computational 

cost of the translations and modal structural postulates proposed? We conjec- 

ture that modalized versions of structural rules have the same computational 

cost as corresponding structural rules themselves. 

Notice furthermore that all given reductions can be extended from the pure 

categorial language to its Boolean completion. By boolean completion we mean 

the system which can be obtained from the corresponding Lambek system by 

adding booleans and translating slashes into their product versions. Our se- 

mantic arguments can be easily extended with routine clauses for booleans due 

to the completeness proof given in Chapter 3. Here we have one confirmation 

of the above conjecture. Full boolean categorial logic with associative product 

now can be embedded into the modal version of non-associative Lambek Calcu- 

lus with booleans and a modal associativity postulate. Since the first logic is 

undecidable (Andréka, Mikulás}, the modal associativity postulate should bring 

undecidability to the second logic. 

Embeddings: linguistic relevance. We close with a remark for the reader with a 

linguistics background. The embedding results presented in this paper may seem 

somewhat removed from the daily concerns of the working grammarian. Let us 

try to point out how our results can contribute to the foundations of grammar 

development work. In the literature of the past five years, a great variety of 

‘structural modalities’ has been introduced, with different proof-theoretic be- 

haviour and different intended semantics. It has been argued that the defects of 

particular type systems (either in the sense of overgeneration, or of undergener- 

ation) can be overcome by refining type assignment in terms of these structural 

modalities. The accounts proposed for individual linguistic phenomena are of- 

ten ingenious, but one may legitimately ask what the level of generality of the 

proposals is. The embedding results of this paper show that the operators ©, D+ 

provide a general logic of constraints in the dimensions of order, dominance and 

dependency.



164 Chapter 6. Structural Control 

6.5 Appendix. Axiomatic and Gentzen presentation 

In this Appendix we juxtapose the axiomatic presentations and the Gentzen for- 

mulation of the logics under discussion. The Lambek and Dosen style axiomatic 

presentations are two equivalent ways of characterizing &, 0%, o,/ and e,\ as 

residuated pairs of operators. For the equivalence between the axiomatic and 

the Gentzen presentations, we refer to [Moortgat 94]. This paper also establishes 

a Cut Elimination result for the language extended with <, O*. 

6.5.1. DEFINITION. Lambek-style axiomatic presentation. 

AB B-—C 

AC 
  AA 

OA B<> ADB 

A—-C/B <= AsB3C < B3A\C 

6.5.2. DEFINITION. Dosen style axiomatization. 

  

    

AB B-—C 

A— 4 AC 

ODVA 3A A DOA 

A/BeB — A A— (AeB)/B 

BeB\A— A A — B\(BeA) 

AB AB 

OA OB OVA — DYB 

AB CD 

Ae(C - BeD 
  

AB CD AB CD 

A/D — B/C D\A —> C\B 
    

The formulations of Def 6.5.1 and Def 6.5.2 give the pure residuation logic 

for the unary and binary families. The logics of Fig 6.1 are then obtained by 

adding different packages of structural postulates, as discussed in 86.1. 

6.5.3. DEFINITION. Gentzen presentation. Sequents I' = A with T a structured 

database of linguistic resources, A a formula. Structured databases are induc- 

tively defined as terms 7 ::= F | (7, 7)™ | (T)°, with binary (-, -)™ or unary (-)° 
structural connectives corresponding to the (binary, unary) logical connectives.
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We add resource management mode indexing for logical and structural connec- 

tives to keep families with different resource management properties apart. This 

strategy goes back to [Belnap 82] and has been applied to modal display logics in 

[Kracht 93a], [Wansing 92], two papers which are related in a number of respects 

to our own efforts. 

I'=>A A[A]=C 
  

    

    

[Ax] A5 A AT = C [Cut] 

., I'=> A I'[(A)°]= B | 
RO (T)° > OA T[OA4A] >B IL9] 

[ROY (T)° > A I['[A]= B [L[I]i] 

TS DA TD 4)° |> B 

(T,B)">A T=>B A[A=>C 
RS 77B ATA/zB, Tym S C /m 

    

(B,T)7" > A I'=>B A[4=>C, L 
T > B\,A A[(T, B\mA4)7] > C ! \ml 
    [R \m 

T[(4,B)"| > C T>A A>B 1 ) 

Lom T AenB 3C (T,A)" = Aen B 1o 
    

Structural postulates, in the axiomatic presentation, have been presented as tran- 

sitions A — B where A and B are constructed out of formula variables pq, ..., p, 

and logical connectives e,,, ©. For structure variables Ay, ..., A, and structural 

connectives (-, )™, (-)°, define the structural equivalent o(A) of a formula A as 

indicated below (cf [Kracht 93a]): 

o(pi) = Ai o(Aen B) =(0(4),0(B))" o(Q4)= (9(4))° 

The transformation of structural postulates into Gentzen rules allowing Cut 

Elimination then is straightforward: a postulate A — B translates as the Gentzen 

rule 

  

I'e(B)] = C 

I'e(A)] = C 

In the cut elimination algorithm, one shows that if a structural rule precedes 

a Cut inference, the order of application of the inferences can be permuted, 

pushing the Cut upwards. See [Dosen 88,89] for the case of global structural 
rules, [Moortgat 94| for the © cases.
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In the multimodal setting, structural rules are relativized to the appropriate 

resource management modes, as indicated by the mode index. An example is 

given below (for k a commutative and / an associative regime). Where no con- 

fusion is likely to arise, in the text we use the conventional symbols for different 

families of operators, rather than the official mode indexing on one generic set 

of symbols. 

  r[(A2,A,)*] > 4 p T[((A1,42),A3)] > 4 
O E (A (82, A) A   

CfACkB—)BOkA CfÁOl(BOlC)—-)(AOlB)OlC
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Samenvatting 

Categoriale afleidingsbegrippen zijn in de literatuur om vele redenen en vanuit 

verschillende achtergronden van taalwetenschap en filosofie tot logica en infor- 

matica bestudeerd. In de laatste tien jaar hebben Categoriale Grammatica’s 

hun plaats gekregen in de bredere context van zg resource-gevoelige substruc- 

turele afleidingssystemen. In deze dissertatie wordt een modaal-semantische ba- 

sis geconstrueerd voor de studie van categoriale afleidingsbegrippen die ons in 

staat stelt de structurele regels te representeren als beperkingen opgelegd aan 

informatie-structuren. In de volgende hoofdstukken ontmoeten drie onderzoeks- 

lijnen elkaar: categoriale type-systemen, modale logica and gelabelde deductie. 

Deel I introduceert de ternaire frame-semantiek en geeft een basis voor een 

modeltheorie en een correspondentietheorie voor categoriale talen. Hoofdstuk 1 

behandelt de logische, filosofische and linguistische achtergronden van de ternaire 

frame-semantiek en de beweegredenen voor de keuzes van de talen over ternaire 

modellen. Een simpele modeltheorie wordt ontwikkeld met het begrip bisimulatie 

als fundament. Daarna worden ternaire frame-constructies besproken die nuttig 

kunnen zijn bij het bewijzen van de categoriale ondefinieerbaarheid van bepaalde 

eerste-orde principes. Hoofdstuk 2 gaat over Correspondentietheorie voor cate- 

goriale principes. We bewijzen een Sahlqvist-van Benthemstelling voor catego- 

riale talen en geven een aanzet tot een algemene definieerbaarheidstheorie. Als 

toepassing verkrijgen we een semantische karakterisering van structurele regels 

vanuit het perspectief van de correspondentietheorie. We stellen twee methodes 

voor om te bewijzen dat categoriale principes niet eerste-orde definieerbaar zijn. 

De eerste is gebaseerd op het vertalen van categoriale formules in een niet eerste- 

orde definieerbare standaard modale formule. De tweede methode is directer: het 

niet eerste-orde zijn van categoriale formulas uit zich in het niet opgaan van de 

Lowenheim-Skolemstelling. 

In Deel II we stappen we over van de studie van zuiver semantische uit- 
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drukkingskracht naar de combinatoriek van categoriale deductie. Hoofdstuk 

3 stelt een analyse voor van de volledigheidsstellingen voor de categoriale ax- 

iomasystemen in het perspectief van filterrepresentatie. Bovendien bewijzen we 

een onvolledigheidsstelling m.b.t. frames en onderscheiden we een wel volledige 

klasse van categoriale Sahlqvist-formules. Vervolgens beschouwen we gelabelde 

deductie. Daarin kunnen sequenten dragers zijn van informatie over linguistis- 

che tekens. In Hoofdstuk 4 gebruiken we de methode van het labelen bij het 

verkrijgen van een vrij simpel volledigheidsbewijs voor de Lambek Calculus met 

betrekking tot de binaire relatie-semantiek door gebruik te maken van passende 

labelparen. In Hoofdstuk 5 tenslotte, geven we een meer algemene labelmethode 

voor ternaire frame-semantiek tezamen met het leggen van een verband tussen 

deze methode en het eerdere correspondentie-perspectief van het vertalen naar 

fragmenten van de eerste-orde predicatenlogica. 

Het laatste deel, Deel III, houdt zich bezig met de beheersing en besturing van 

de talige ‘resources’ in categoriale systemen. We ontwikkelen een theorie van sys- 

tematische communicatie tussen deze systemen. De communicatie is tweezijdig: 

we laten zien hoe men de structurele onderscheidingen van een zwakkere logica 

binnen een sterkere kan terughalen en hoe men de structurele flexibiliteit van 

sterkere categoriale logica’s in zwakkere kan herintroduceren. Verder laten we 

zien hoe unaire modale operatoren gebruikt kunnen worden om structuurgevoe- 

ligheid af te zwakken of juist op te leggen. Vanuit logisch standpunt bestaat 

onze bijdrage uit een aantal algemene vertaalmethoden plus een aantal inbed- 

dingsstellingen die een verband leggen tussen de belangrijkste formele systemen 

in het categoriale landschap. 
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