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Abstract. Finite Turing computation has a fundamental symmetry be-
tween inputs, outputs, programs, time, and storage space. Standard mod-
els of transfinite computational break this symmetry; we consider ways
to recover it and study the resulting model of computation. This model
exhibits the same symmetry as finite Turing computation in universes
constructible from a set of ordinals, but that statement is independent
of von Neumann-Gödel-Bernays class theory.

1 Introduction

A fundamental feature of the theory of computation is that the constituents of
computability, viz. in-/output, programs, time, and storage space can be consid-
ered to be the same type of object: natural numbers (if necessary, via coding). A
Turing machine receives a finite string of symbols as input, has a finite string of
symbols as its program, and produces a finite string of symbols as output. More-
over, both its tape and its time flow are indexed by natural numbers. Therefore,
since finite strings of symbols can be coded as a natural number, all these objects
are of the same type.

We shall refer to this feature as symmetry. Various aspects of symmetry per-
meate the general theory of computation: the symmetry between inputs and
programs is the reason for the software principle (the existence of universal
machines) and the s-m-n Theorem; the symmetry between programs and time
underlies the zigzag method that allows us to parallelise infinitely many compu-
tations into one by identifying the cartesian product of the program space and
time with N ×N and using Cantor’s zigzag function.

The oldest model of transfinite computation are the Hamkins-Kidder ma-
chines or Infinite Time Turing Machines (ITTM), defined in [9]. These machines
have a storage space of order type ω, but allow computation to be of arbitrary



2 L. Galeotti, E. S. Lewis, B. Löwe

transfinite ordinal length, thereby breaking the symmetry between time and
space. This asymmetry makes their complexity theory vastly different from or-
dinary complexity theory, as discussed in [20, 11, 5, 17, 23, 24].

In [13, 14], Koepke symmetrised Hamkins-Kidder machines and defined what
is now known as Koepke machines or Ordinal Turing Machines: Koepke ma-
chines have a class-sized tape indexed by ordinals and run through ordinal time,
thereby re-establishing the symmetry between time and storage space.1 However,
Koepke machines do not have the full symmetry that we find in finite Turing
computation: while time and storage space are represented by arbitrary ordinals,
programs are still finite objects.

In this paper, we shall provide a general framework for models of computation
and computability that allows us to phrase the quest for symmetry in abstract
terms; this is done in § 3. In this framework, we shall define the relevant models of
computability, i.e., ordinary Turing computability, Hamkins-Kidder computabil-
ity, Koepke computability, and our new notion called symmetric computability
in § 4. We study basic properties of symmetric computability in § 5, and finally
show that the full symmetry of symmetric computability cannot be proved in
von Neumann-Gödel-Bernays class theory (NBGC) in § 6: symmetry holds if and
only if the universe is constructible from a set of ordinals.

This paper contains results from the second author’s Master’s thesis [16]
written under the supervision of the first and the third author. These results are
cited in [2, 8, 3] and [1, Exercise 3.9.7].

2 Class theories

In this paper, we work in von Neumann-Gödel-Bernays class theory.2 The lan-
guage is the usual language of set theory L∈ with a single binary relation sym-
bol ∈. We define a unary predicate set(x) ∶= ∃y(x ∈ y). Using this predicate,
we can define the two set quantifiers ∃setxφ ∶= ∃x(set(x) ∧ φ) and ∀setxφ ∶=
∀x(set(x) → φ). A formula is called set theoretic if all of its quantifiers are set
quantifiers. In this context we denote by AC the axiom of choice for sets, i.e.,
the statement that “Every set x has a choice function” and contrast it with the
axiom of Global Choice which is the statement “There is a global choice class
function”. We write NBG for von Neumann-Gödel-Bernays class theory without
the axiom of Global Choice [12, p. 70: Axioms A–D] and NBGC for the theory
obtained from NBG adding the axiom of Global Choice [12, p. 70: Axioms A–E].
It is a well-known result due to Easton that if NBG is consistent, then NBG+AC
does not prove the axiom of Global Choice (cf., e.g., [6, Theorem 3.1]).

We can transform a formula φ in the language L∈ into a set theoretic formula
φset by recursively replacing all quantifiers with the corresponding set quantifiers.

1 Carl argues in [1, Chapter 9] that Koepke machines are the natural infinitary ana-
logue for finitary computation and complexity theory and this was explored in detail
in [4].

2 For more details, cf., e.g., [18, Chapter 4].
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This allows us to formulate the famous conservativity theorem for NBGC (cf.,
e.g., [6, Corollary 4.1 & Theorem 4.2]):3

Theorem 1. If φ is a sentence in L∈, then ZFC ⊢ φ if and only if NBGC ⊢ φset

if and only if NBG +AC ⊢ φset.

We define the axiom of constructibility from a set of ordinals as the statement
“there is a set of ordinals x such that V=L[x]”. This is a set theoretic sentence
and implies the axiom of Global Choice; thus Theorem 1 implies the following
result.

Theorem 2. If NBGC is consistent, then NBGC does not prove nor disprove the
axiom of constructibility from a set of ordinals.

3 The general framework of Turing computation and
computability

We shall frame our discussion of symmetry in a general context that makes
the relavent models of computability special cases of a general framework. Our
general framework will work on the class Ord of all ordinals and refer to the class
V of all sets as potential programs for these machines. All models of computation
in this paper will be variants of Turing machines: they have a single class-length
tape indexed by ordinals,4 a read/write head that moves on the tape according
to a program. We fix a finite alphabet Σ with at least two elements 0 and 1 for
the remainder of the paper.

Turing hardware & computations. At the highest level of abstraction, we
deal with the Turing hardware: the tape and the head, including the description
of how they work. We assume that the tape is always indexed by ordinals, split
up into discrete cells in which a symbol from Σ can be written; also, we assume
that time is considered as discrete points in time, indexed by ordinals, and that
at each point in time, the head is located at one of the cells; finally, we assume
that we have discrete states, indexed by ordinals.

For classes X and Y , we write f ∶X 99K Y for “f is a class function with
dom(f) ⊆ X and ran(f) ⊆ Y ” and f(x)↓ if and only if x ∈ dom(f) and f(x)↑
otherwise. We represent the tape content by arbitrary partial class functions
from Ord to Σ; we write Σ(Ord) for the class of these objects. We shall consider
a number of relevant subclasses of this class: Σ<Ord ∶= {x ∈ Σ(Ord) ; dom(x) ∈
Ord}, ΣFS ∶= {x ∈ Σ(Ord) ; dom(x) is finite}, Σω ∶= {x ∈ Σ(Ord) ; dom(x) = ω},
Σ∗ = Σ<ω ∶= {x ∈ Σ(Ord) ; dom(x) ∈ ω}, and ΣO ∶= {x ∈ Σ(Ord) ; ∣dom(x)∣ =
1 and ran(x) = {0}}.

3 We refer the reader to [6, p. 242] and [7, p. 381] for more information on the history
of this theorem.

4 For most models of computability, the number of tapes does not matter; however,
in the case of Hamkins-Kidder machines, 1-tape machines and 3-tape machines dif-
fer (cf. [10]). Since we do not discuss Hamkins-Kidder machines in detail, this is
immaterial for our context.
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The classesΣO andΣFS are our representations of the classes Ord and Ord<ω,
respectively. The classes Ord and ΣO have a canonical bijection; the classes ΣFS

and Ord<ω can be identified via the Gödel pairing function.5 Furthermore, the
Gödel pairing function yields a definable bijection between Ord and Ord<ω and
a bijection (w, v)↦ w ∗ v∶Σ<Ord ×Σ<Ord → Σ<Ord.

A snapshot of the machine consists of the tape content, a state, and a position
of the head, i.e., a tuple from Snap ∶= Σ(Ord) ×Ord ×Ord.

The behaviour of the head is governed by the transition rule, a class function
that describes what the head will do given its past behaviour and a program p.
For now, we still allow all sets to be programs (we consider this specification to be
part of the software), so a transition function is a class function T ∶Snap<Ord

×

V → Snap. Once a transition function T is fixed, given a program p and a
snapshot s = (x,α, β), we define an ordinal-length sequence of snapshots by
recursion: Cp,s(0) ∶= s, and Cp,s(γ) ∶= T (Cp,s↾γ, p) for γ > 0. We shall call this
the computation of program p with initial snapshot s.

In this paper, we shall only consider two different transition functions, the
finite transition function Tf which is used by ordinary Turing machines and
Hamkins-Kidder machines and the transfinite transition function Tt which is
used by Koepke machines (for definitions, cf. § 4).

Turing software. A model of computation consists of hardware (i.e., a tran-
sition function T ) and a class of programs P that can be used for computing.
Specifying the class of programs identifies which of the computations are com-
putations according to a program in P .

In this paper, we shall only consider two classes of programs, the class of
finite programs Pf and the class of transfinite programs Pt (for definitions, cf.
§ 4).

Computability. A model of computation determines a class of computations,
but does not yet tell us what they do. To illustrate this, consider the ordinary
notion of Turing computation: for each program and snapshot, we get an infi-
nite sequence of snapshots, but there are many ways to interpret these infinite
sequences. Following Turing’s original seminal definition [21, § 2], we designate
start and halt states, give a definition of halting computations and then interpret
the computation as producing a partial function (for definitions, cf. § 4).

Abstractly, we say that an interpretation consists of a partial class function
I that assigns to a transition function T and each program p ∈ P a partial
function I(T, p)∶Σ(Ord) 99K Σ(Ord) and a class D ⊆ Σ(Ord) called the domain of
the interpretation. A model of computability is a model of computation (i.e., a
transition function T and a class of programs P ) together with an interpretation.
We say that f ∶D 99K D is computable according to this model of computability
if there is a p ∈ P such that f = I(T, p)↾D.

Note that for a given model of computation and a fixed interpretation func-
tion, there is some freedom to choose D. E.g., usually, for ordinary Turing com-

5 The Gödel pairing function is an absolutely definable class bijection between Ord
and Ord2; cf. [12, pp. 30–31].
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putations with the usual textbook interpretation, we let D = Σ∗ and thus, com-
putability is a property of partial functions f ∶Σ∗ 99K Σ∗. However, we could
consider D = Σω, i.e., letting the Turing machine operate on arbitrary tape con-
tents of length ω, obtaining a different model of computability.6 On the other
hand, if you fix the model of computation and the type of interpretation func-
tion, D cannot be chosen entirely freely: the class D needs to be closed under
the operations I(T, p) for p ∈ P . E.g., if our model of computation is Koepke ma-
chines with the usual interpretation, we cannot choose D = Σ∗ or even D = Σω

since there are programs with which a Koepke machine would produce an output
that is not in D anymore.

In this paper, we shall consider two types of interpretation function, the finite
interpretation If and the transfinite interpretation It (for definitions, cf. § 4).

4 Concrete models of computation

Programs. We fix three motion tokens MT ∶= {◀,▼,▶} that represent the
instructions for the head movements (“move left”, “do nothing”, and “move
right”) and use m as variable for motion tokens. Among the states (indexed by
ordinals), we single out three particular states: the start state indexed by 0, the
halt state indexed by 1, and the limit state indexed by 2. We write Σ○ ∶= Σ ∪{○}
where ○ is a special symbol representing an empty cell. All of our programs will
be partial functions p∶Ord ×Σ○ 99K Ord ×Σ○ ×MT. We call a program finite if
its domain is finite and transfinite if its domain is a set. The classes of finite and
transfinite programs are denoted by Pf and Pt, respectively.

Via the canonical identification of the classes Ord, Ord×Σ○, and Ord×Σ○ ×
MT, we can encode programs as elements of Σ(Ord). Under our encoding, we
identify Pf with the class ΣFS and Pt with the class Σ<Ord.

Transition functions. Given a program p, we shall now define the transition
functions Tf (“finite transition function”) and Tt (“transfinite transition func-
tion”). They are identical on sequences of successor length and coincide there
with the ordinary transition function defined by Turing for his machines; they
differ for sequences of limit length.

If s⃗ = (sξ ; ξ < γ + 1) is a sequence of snapshots of successor length, the
transition function will only depend on sγ = (x,α, β), the final snapshot in the
list. Thus, x ∈ Σ(Ord) is the tape content at time γ, α is the state at time γ,
and β is the location of the head at time γ. If p(α,x(β)) is undefined, we let
T (s⃗) ∶= sγ ; otherwise, let p(α,x(β)) = (δ, σ,m). Then T (s⃗) = (y,α

+, β+) where
α+ ∶= δ,

6 This is a curious model of computability that exhibits a discrepancy between 1-tape
and 3-tape machines (cf. Footnote 4): since only finitely many cells are changed in
halting computations, for 1-tape machines the identity function is computable and
constant functions are not; in contrast, for 3-tape machines constant functions with
value w ∈ Σ∗ are computable, but other constant functions or the identity function
are not.
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y(η) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

x(η) if η ≠ β,

σ if η = β,
and β+ ∶=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

β − 1 if m =◀ and β is a successor,

0 if m =◀ and β is a limit,

β + 1 if m =▶,

β if m =▼.

If s⃗ = (sξ ; ξ < λ) with sξ = (xξ, αξ, βξ) is a sequence of snapshots of limit
length λ, the two transition functions agree in their definition of the tape content,
but disagree in their treatment of the head position and state. Let us write
Tf(s⃗) = (y,αf , βf) and Tt(s⃗) = (y,αt, βt). For the tape content, we assume that
we have a total ordering on Σ and define y(η) ∶= liminf{xξ(η) ; ξ < λ}.

The finite transition function Tf moves the head to cell 0, moves to the limit
state (indexed by 2), i.e., αf ∶= 2 and βf ∶= 0. Note that in any computation
using the finite transition function, the head will never reach a cell indexed by
an infinite ordinal.

The transfinite transition function Tt moves both the head and the cell to the
inferior limit of the ordinals occurring in the sequence, i.e., αt ∶= liminf{αξ ; ξ <
λ} and βt ∶= liminf{βξ ; ξ < λ ∧ αξ = αt}.

Interpretations. We define our two interpretation functions uniformly for arbi-
trary tape contents x ∈ Σ(Ord). Both interpretations take a tape content x and a
program p, define the initial snapshot s ∶= (x,0,0), and produce the computation
Cp,s of program p with initial snapshot s.

The finite interpretation If considers a computation as halting if there is a
natural number n such that the state of Cp,s(n) is 1 (i.e., the halting state);
the transfinite interpretation It considers a computation as halting if there is
an ordinal α such that the state of Cp,s(α) is 1. If it exists, the smallest such
number is called the halting time of the computation. This implicitly defines the
time considered by these models of computability: in general, we say that the
time relevant for a model of computability is the supremum of its halting times.
This is at most ω for models with the finite interpretation and at most Ord
for models with the infinite interpretation. We let Ω ⊆ D be a subclass that is
identified with the time relevant of the model, e.g., Ω = ΣO if the relevant time
is Ord.

If a computation is halting, we say that the tape content at its halting time
is the output of the computation. Finally, for I = If or I = It and the appropriate
notion of halting, we let I(T, p)(x) ∶= y if Cp,s is halting and y is its output, and
I(T, p)(x)↑ otherwise.

Models of computability. Using our finite specifications Tf , Pf , and If and our
transfinite specifications Tt, Pt, and It, we can now recover the known models
of computability (and a new one) as special cases.

First observe that if the transition function is finite, then any tape content
beyond the cells indexed by natural numbers will be immaterial for the compu-
tation since the head never moves to these cells. So, the relevant input domain
has to be Σ∗ or Σω. Moreover, if the interpretation function is finite, then all
computations that go on to ω or beyond will be disregarded in the interpreta-
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tion, so we can assume, without loss of generality, that the transition function
is finite as well. This leads to the models of computability listed in Table 1.

Transition Programs Interpretation In-/Output

(a) Finite Finite Finite Σ∗ ordinary Turing machines
(b) Finite Finite Transfinite Σω Hamkins-Kidder machines

(c) Transfinite Finite Transfinite Σ<Ord Koepke machines

(d) Transfinite Transfinite Transfinite Σ<Ord symmetric machines; cf. § 5

Table 1. The considered models of computability

We briefly discuss the choice of in-/output for the described models:

Table 1 (a). Since the transition function is finite, only Σ∗ and Σω make sense as
choice of in-/output. However, since the interpretation is also finite, no halting
computation will ever be able to read an entire infinite tape, so Σ∗ is the natural
choice for in-/output. ChoosingΣω leads to the model of computability discussed
in Footnote 6. The time relevant for this model of ω.

Table 1 (b). Similarly in this case, the finite transition function means that we can
only choose Σ∗ or Σω as input; however, Σ∗ is not closed under the operation
of the interpretation (a Hamkins-Kidder machine can fill the entire tape and
then halt), so Σω is the only remaining natural choice. The time relevant for
Hamkins-Kidder machines has been investigated in [9, 22].

Table 1 (c). In analogy to the argument given for line (a), a halting Koepke
machine will only consider a set of cells on the tape. Thus, the natural choice of
in-/output is Σ<Ord. Similarly to (a), it makes sense to consider D = Σ(Ord) in
which case the discussion of Footnote 6 applies. The time relevant for Koepke
computability is the class Ord of all ordinals. If p ∈ Σ<Ord, we say that a partial
function f ∶Σ<Ord 99K Σ<Ord is Koepke computable with parameter p if the partial
function p ∗ w ↦ f(w) is Koepke computable. We shall prove in Proposition 4
that this notion is equivalent to the new notion introduced in line (d).

Table 1 (d). The notion of computability introduced in line (d), called symmetric
computability, corrects the lack of symmetry for transfinite computability. In
this model, time, space, and programs are all transfinite. The time relevant for
symmetric computability is the class Ord of all ordinals.

5 Symmetric machines

In Table 1, we defined the model of symmetric computability to be given by the
transfinite transition function, transfinite programs, and the transfinite inter-
pretation, using Σ<Ord as input and output. We call the corresponding model
of computation symmetric machines. In contrast to Hamkins-Kidder machines
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(who have considerably more time than space) and Koepke machines (whose
programs are tiny compared to the time and space they have available), sym-
metric machines have set-sized time, space, and programs. They are the model of
computability that systematically replaces the word “finite” in ordinary Turing
computation with “set-sized”.

Proposition 3. If f ∶ Σ<Ord 99K Σ<Ord is a set, then f is symmetrically com-
putable.

Proof sketch. Clearly, if x ∈ Σ<Ord, there is a transfinite program p that produces
x upon empty input (just explicitly specify the values of x).

Since f is a set, find some ξ and Σ(ξ) ∶= {w ∈ Σ(Ord) dom(w) ⊆ ξ} such that
both dom(f) ⊆ Σ(ξ) and ran(f) ⊆ Σ(ξ). By AC, let g be a bijection between some
ordinal λ and Σ(ξ). We define xf ∶λ ⋅ ξ ⋅ 2 99K Σ by letting xf(α,β,0) ∶= g(α)(β)
and xf(α,β,1) ∶= f(g(α))(β).

Now find a program that writes xf on the tape. Upon input w ∈ Σ(ξ), we can
now determine f(w) as follows: search through the 0-components of xf until you
find w; when you found w at index α, output {(β,xf(α,β,1)) ; β < ξ}. q.e.d.

Proposition 4. A partial function f ∶Σ<Ord 99K Σ<Ord is symmetrically com-
putable if and only of there is a p ∈ Σ<Ord such that f is Koepke computable in
parameter p.

Proof sketch. By Proposition 3, any parameter p is symmetrically computable,
so if f is Koepke computable in parameter p, it is symmetrically computable as
follows: upon input w, first compute p, then w ∗ p, then f(p ∗w).

For the other direction, observe that in terms of hardware and interpretation,
Koepke machines are just symmetric machines. Therefore, the universal Koepke
machine is also a universal symmetric machine, i.e., there is a Koepke machine
u such that for all transfinite programs p and all w ∈ Σ<Ord, we have

It(Tt, u)(p ∗w) = It(Tt, p)(w).

Thus, if a partial function f is symmetrically computed by a program p, it is
Koepke computable with parameter p. q.e.d.

As usual, we can define the halting problem by

K ∶= {v ∗w ∈ Σ<Ord ; It(Tt, v)(w)↓}

(where v is interpreted as a transfinite program). The usual proof shows that K
is not symmetrically computable.

We shall now have a closer look at the symmetry properties for symmetric
computability and ask whether it is the precise analogue of the symmetry ex-
hibited by ordinary Turing computability. For ordinary Turing machines, time
and space are indexed by natural numbers; however, programs and in-/output
are not prima facie natural numbers; they are finite sequences of elements of a
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finite set, i.e., via some encoding elements of Σ∗. In this case, the symmetry is
given by the fact that there is a computable encoding function that identifies
Σ∗ and ω. Via such an encoding, we can see all four different parameters of the
model of computability as the same type of object.

In the case of symmetric computation, the word “finite” is systematically
replaced by “set-sized”, so time and space are indexed by ordinals and programs
and in-/outputs are (up to encoding) elements of Σ<Ord. Alas, in general, we
cannot identify Σ<Ord and Ord: The encodings between the classes Ord, Ord<ω,
ΣO, and ΣFS mentioned in § 3 can be performed by Koepke machines (see, e.g.,
[13, Section 4]), but the class Σ<Ord is a very different type of object: among
other things, it contains the entire Cantor space (functions f ∶ω → Σ), so any
computable encoding of elements Σ<Ord as ordinals would yield a computable
wellordering of the reals. As a consequence, the existence of such a class function
cannot be proved without additional set theoretic assumptions.

6 The symmetry condition

We give definitions of the notions of semidecidability and computable enumer-
ability within our abstract framework. For the model of ordinary Turing com-
putability, these definitions coincide with the usual definitions.

Definition 5. Suppose that a model of computability is given by a transition
function T , a class of programs P , and an interpretation I with domain class D.
Let A ⊆ D be a non-empty class and let ψA be a function such that ψA(w) = 0
if w ∈ A and ψA(w)↑ otherwise (the pseudocharacteristic function). Then A is
called semidecidable if ψA is computable. Fixing some Ω ⊆ D representing the
relevant time of the model, we say that A is computably enumerable if there is a
program p ∈ P such that A = {I(T, p)(w) ; w ∈ Ω}.

Theorem 6 (Folklore). For the model of ordinary Turing computability and
any non-empty set A ⊆ Σ∗, the following hold:

(i) the set A is semidecidable if and only if it is the range of a partial com-
putable function f ∶Σ∗ 99K Σ∗ and

(ii) the set A is computably enumerable if and only if it is semidecidable.

The equivalence (i) is a classical textbook argument [19, Theorem V]; in
equivalence (ii), the forwards direction is a trivial consequence of (i) and the
backwards direction uses the computable bijection between Σ∗ and the relevant
time ω. So, adapting this proof to the case of symmetric computability will
preserve the equivalence (i) and the forwards direction of (ii).

Theorem 7. For the model of symmetric computability and any non-empty
class A ⊆ Σ<Ord, the following hold:

(i) the class A is semidecidable if and only if it is the range of a computable
class function f ∶Σ<Ord 99K Σ<Ord and
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(ii) if the class A is computably enumerable, then it is semidecidable.

In comparison to Theorem 6, the converse of (ii) is missing in Theorem 7; it
turns out that this difference is crucial for our quest for the desired symmetry
from § 5. We write SC for the statement “the class Σ<Ord is symmetrically com-
putably enumerable”, call this the symmetry condition, and note that it is a set
theoretic sentence in the sense of § 2.

Proposition 8. The symmetry condition SC is equivalent to the statement
“every symmetrically semi-decidable class is symmetrically computably enumer-
able”.

Proof sketch. Clearly, Σ<Ord is semi-decidable, so “⇐” is obvious. For “⇒”, let
g ∶ ΣO → Σ<Ord be a computable enumeration and A be any semi-decidable
class By Theorem 7, we have a computable surjection f ∶ Σ<Ord → A. Then f ○ g
enumerates A. q.e.d.

The symmetry condition expresses that the classes Σ<Ord and Ord can be
identified via the computable listing provided by SC. Therefore, assuming SC,
time, space, programs, and in-/outputs can be considered the same type of ob-
ject, and the model of symmetric computability has the symmetry exhibited by
ordinary Turing computability.

We shall now see that SC is independent from NBG and characterise under
which circumstances SC holds. A crucial ingredient to prove our characterisation
is the following result which is a straightforward relativisation of [13, Theorem
6.2].

Theorem 9 (Koepke). Let x be a set of ordinals. Then any w ∈ Σ<Ord is in
L[x] if and only if there is a finite program p and v ∈ ΣO such that the Koepke
computation of p with input v and parameter x halts and produces the output w.

Proof sketch. The backwards direction follows from the fact that a Koepke com-
putation from a parameter x is absolutely defined. Thus, if a Koepke machine
produces the output w upon input x ∗ v, then w lies in every model containing
both x and v. Since v ∈ ΣO ⊆ L[x], we have w ∈ L[x]. For the forwards direc-
tion, assume w ∈ L[x] and let α be an exponentially closed ordinal such that
w ∈ Lα[x]. Then by [15, Theorem 7 (a)], w is α-Koepke computable, and thus
Koepke computable from the parameter giving α, i.e., Koepke computable from
a parameter in ΣO ⊆ ΣFS. q.e.d.

Lemma 10. If x is a set of ordinals and Σ<Ord ⊆ L[x], then V=L[x].

Proof sketch. Assume that Σ<Ord ⊆ L[x]. Assume by contradiction that V ≠
L[x]. Let A be an ∈-minimal set not in L[x], i.e., A ∉ L[x], but A ⊆ L[x].
There is a bijection G ∶ Ord → L[x] definable from x, (cf., e.g., [12, p. 193]).
Define w(α)↓ = 0 if and only if G(α) ∈ A; then w ∈ Σ<Ord ⊆ L[x]. But then
A = {G(α) ∈ L[x];w(α) = 0} and therefore A ∈ L[x]. q.e.d.
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Theorem 11. The symmetry condition SC holds if and only if the universe is
constructible from a set of ordinals.

Proof sketch. For “(ii)⇒(i)”, use the (computable) Gödel pairing function to get
a computable bijection C ∶ ΣO → ΣO × ΣFS and identify the finite programs
with ΣFS. If u ∈ ΣO, let C(u) = (v, p), and let F (u) be the result of running the
finite program p on input v. By Theorem 9, F enumerates Σ<Ord.

For “(i)⇒(ii)”, assume SC. Let p be the program of the computable enumer-
ation of Σ<Ord (which can be encoded as a set of ordinals). By Lemma 10, it is
enough to show that Σ<Ord ⊆ L[p]. But this follows from the fact that p defines
a class surjection from Ord onto Σ<Ord. q.e.d.

It follows from Theorems 2 & 11 that SC is independent from NBGC. We
note that in the special case of V=L, Koepke computability and symmetric com-
putability are equivalent (cf. [1, Exercise 3.9.7 (d)]); however, if we take any
nonconstructible set of ordinals z, then L[z] is a model of SC by Theorem 11,
the set z is symmetrically computable (by Proposition 3), but not Koepke com-
putable by Theorem 9 (letting x = ∅), so the two models of computability are
different. This also answers [16, Question 5.12] about separating the stronger
versions SCκ (“Σ<Ord is computably enumerable by a program of size <κ”): e.g.,
if x is a non-constructible real, then SCℵ1 holds in L[x], but not SCℵ0 .
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