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Abstract

Coinduction is the dual of induction. While inductive types are ubiquitous in functional pro-
gramming languages, coinductive types, also known as codatatypes, are considerably less well-
supported. Notably, Lean 4, the latest edition of an interactive theorem prover and dependently
typed functional programming language developed at Microsoft Research, lacks support for coin-
duction.

I have implemented a (co)datatype package for Lean 4, which compiles high-level, definitional
specifications for types, which may mix induction, coinduction and quotients, into a definition of
that type in terms of quotients of polynomial functors. These QPFs were previously formalized
in Lean 3, which I took as a starting point and ported to Lean 4. This thesis describes how the
compilation procedure works, and dives into technical details of the Lean meta-programming
system that influenced the implementation. The package adds data and codata commands
for specifications of inductive, respectively coinductive, types. Additionally, a qpf command
exposes a specific part of the procedure, called the composition pipeline, that is used to define
new QPFs composed of other QPFs.
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Chapter 1

Introduction

Modern logic is primarily built on a framework of induction. It is no surprise, then, that
Lean—an interactive theorem prover / dependently typed, functional programming language—
prominently features induction.

In Lean, new datatypes are generally defined using the inductive keyword, which exposes a
high-level, definitional syntax.

inductive List α
| nil : List α
| cons : α → List α → List α

Read as follows: List has two constructors, i.e., ways to construct a list. List.nil is a constant
representing the empty list; List.cons head tail, where head is of type α and tail is another
list, representing the operation of adding a new element to the front of an existing list. Notice
also that α is a type parameter, meaning that the list is generic over the type of its elements;
List Nat is a list of natural numbers, while List String is a list of strings.

From this description, the datatype is freely generated, as codified by the characteristic principles
that are automatically added by the inductive command. The principle of no confusion states
that different combinations of constructors yield distinct elements of the inductive type, and
the recursion principle embodies structural recursion on that type. For instance, the following
is a simplified signature of a recursion principle for lists:

rec : β → (α → β → β) → (List α → β)

Where the function rec b f maps List.nil to the constant b, and List.cons head tail
to f head (rec f tail). Since Lean is dependently typed, the actual recursion principle is
slightly more involved, but the core idea is the same. This principle also asserts that List.nil
and List.cons are the only ways to obtain elements of type List. This extra assertion is also
sometimes presented separately as the principle of no junk.
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The inductive interpretation means that every element of List consists of only finitely many
applications of its constructors. In particular, it is not possible to construct a list with an infinite
chain of cons applications

cons 0 (cons 1 (cons 2 (cons 3 (cons 4 (cons 5 ...)))))

The recursion must end in nil at some point; List represents only finite lists. That being
said, (countably) infinite lists (also called streams) have a straightforward encoding in Lean, as
functions from natural numbers to the parameter type.

def Stream α := Nat → α

The type of potentially infinite lists is simply the sum of List and Stream.

inductive CoList α
| fin : List α -- a finite list, or
| inf : Stream α -- an infinite list

However, Lean lacks a comprehensive, definitional solution to defining infinite data structures.

To address this, Avigad et al. describe a framework for defining coinductive types (also called
codatatypes) in Lean, basing their constructions on the category theoretical notion of quotients
of polynomial functors (QPF). They also provide a formalization of their work in Lean 3 [1].
However, to define a (co)datatype using this framework directly, a user has to hand-compile
their specification into the provided fundamental operations, making it a not very user-friendly
way to define a type.

The main contribution of this thesis is the description, and prototype implementation, of data
and codata commands, enabling users to write a (co)datatype specification with the familiar,
and more convenient, syntax of inductive, which is then automatically compiled into the
appropriate constructions on QPFs. The implementation of these commands was done in Lean
4; I ported the existing formalization by Avigad et al. to this newer version of Lean.

For example, the following two codata specifications are compiled into coinductive types for
infinite lists and potentially infinite lists, equivalent to the ad hoc definitions we saw above.

codata Stream' α
| cons : α → Stream' α → Stream' α

codata CoList' α
| nil : CoList' α
| cons : α → CoList' α → CoList' α

Similarly, we can redefine inductive (i.e., finite) lists in terms of data.

data List' α
| nil : List' α
| cons : α → List' α → List' α
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The QPF approach is compositional: The data and codata commands recognize when the newly
defined (co)datatype is itself a QPF, and automatically register it as such, enabling its use in
subsequent (co)datatype definitions.

This is not limited to just induction or coinduction; (co)datatypes may be defined with a nested
mix of both. For example, the following defines a potentially infinitely branching (because chil-
dren of a node are stored in a CoList) tree of finite depth (because of the inductive interpretation
of data).

data RoseTree α
| node : α → CoList' (RoseTree α) → RoseTree α

If, instead, we define a coinductive type, we would get trees of infinite depth.

codata CoRoseTree α β
| node : α → CoList' (CoRoseTree α) → CoRoseTree α

We can also define finitely branching trees of infinite depth, by replacing CoList' with List'.

codata CoRoseTree2 α β
| node : α → List' (CoRoseTree2 α) → CoRoseTree2 α

Quotients

Besides inductive types, Lean also supports defining new types as quotients of other types. It
is common, e.g., to define a multiset as the equivalence class of lists with respect to the relation
that equates lists up to permutation.

/-- `List.perm as bs` holds iff `as` is a permutation of `bs` -/
def List.perm : List α → List α → Prop

def Multiset α := Quot.mk (@List.perm α)

We’d like to be able to use Multiset to define the type of unordered trees.

inductive UnorderedTree α
| node : α → Multiset (UnorderedTree α) → UnorderedTree α

Yet, this definition won’t compile; it is not allowed to nest a recursive occurrence of Un-
orderedTree behind a quotient type. Lean’s built-in inductive and quotient types do not com-
pose well.

As the name suggests, QPFs support a notion of quotient types. Our datatype package does
not yet provide user-friendly syntax for defining QPF-based quotient types, but suppose that
Multiset' were manually defined in terms of QPFs, then we can define unordered trees as
follows:
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noncomputable data UnorderedTree' α
| node : α → Multiset' (UnorderedTree' α) → UnorderedTree' α

That is, the compositionality of QPFs extends to arbitrary mixes of inductive, coinductive and
quotient types.

Limitations

The implementation is not complete yet, and in particular, doesn’t yet generate nicely en-
capsulated no confusion and (co)recursion principles. The QPF framework certainly allows for
these principles to be derived, and it is already possible to define (co)recursive functions on
(co)datatypes. However, only by invoking the fundamental operation, exposing the supposedly
internal QPF encoding.

A major opportunity for future work lies in improving this situation, bringing the experience
of writing (co)recursive for data and codata types closer to the equational approach used to
define recursive functions for standard inductive types.

Related Work

The QPF framework by Avigad et al., and the algebraic study of datatypes in general, is based
on the observation that datatypes are generally functorial [1].

Specifically, the QPF constructions are a variant of the notion of bounded natural functors
(BNF), which dates back to an effort to add a definitional package for (co)datatypes to Isabelle—
a different theorem prover [2, 3]. Inspiration has also gone the other direction, with Fürer et al.
studying quotients of BNFs [4].

Lean is developed by de Moura et al. at Microsoft Research, based on the Calculus of Inductive
Constructions [5, 6]. Agda and Coq, two more theorem provers, provide support for coinductive
types and corecursion directly in their trusted kernel [7, 8]. Contrast this with the BNF or QPF
approaches, which are implemented entirely as a library.

Basold and Geuvers [9, 10] studied a dependent type theory with coinductive types separate
from any specific theorem prover. Their approach ensures a computational meaning of the terms.

Organization

Chapter 2 will explain what QPFs are, and illustrate Lean’s syntax in the process. Chapter 3
will dig into the differences between Lean 3 and Lean 4, and detail the process of porting the
QPF formalizations made by Avigad et al. Chapter 4 will describe enhancements made to the
formalizations in the process, which go beyond just porting the existing behaviour. Chapter 5 will
establish the procedure to translate the definitional syntax of data and codata into the proper
constructions in the theory of QPFs. Chapter 6 will go into technical detail about the (proof
of concept) implementation of these commands, and the Lean 4 meta-programming system.
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Chapter 7 will discuss the limitations of the current implementation, and opportunities for
improvement. Finally, chapter 8 concludes the thesis.

Accompanying code can be found at https://github.com/alexkeizer/qpf4. It provides
the data and codata commands discussed so far, alongside a qpf command for the composi-
tion pipeline. A preconfigured environment is also made available at https://gitpod.io#
github.com/alexkeizer/qpf4-example/blob/main/Scratch/Examples.lean, al-
lowing readers to try out data and codata in their browser, with minimal configuration.

The code snippets in this thesis are tested with version leanprover/lean4:nightly-2022-
04-28. The same version was used to develop the code in the linked repository and runs in the
preconfigured environment. The thesis also contains code that (intentionally) does not type-
check. These snippets are typeset with a red line, like so:

def Foo := Bar -- whoops, Bar does not exist

5

https://github.com/alexkeizer/qpf4
https://gitpod.io#github.com/alexkeizer/qpf4-example/blob/main/Scratch/Examples.lean
https://gitpod.io#github.com/alexkeizer/qpf4-example/blob/main/Scratch/Examples.lean


Chapter 2

Background

A key concept for this thesis is the QPF (Quotient of Polynomial Functor), and how QPFs can
be used to encode (co)inductive types. The current chapter serves to illuminate this notion, and
explain relevant parts of the Lean system along the way.

We will assume as little background knowledge as possible, yet, some (minimal) exposure to cat-
egory theory and functional programming concepts will be beneficial to understanding. Readers
can find references at [11, 12] for category theory and [13] for functional programming.

Remark: We will use remarks like this one below code snippets to explain Lean syntax
and concepts that might not be familiar. We don’t assume any knowledge of Lean, but the
interested reader is invited to consult the online documentation, or Functional Programming
in Lean for a more comprehensive introduction [14, 13].

In the interest of consistency, we will use Lean 4 syntax and naming conventions throughout
the whole thesis, even in our current discussion of the general theory and formalizations as
presented by Avigad et al. (in Lean 3). The differences between the Lean definitions presented
here and their original definition in [1] are purely superficial.

The encoding of types as QPFs relies on a key observation; a lot of types are functorial in nature.
Take, for example, the inductive type of lists, specified as

inductive List (α : Type)
| nil : List α
| cons : α → List α → List α

This defines a function List that takes a type, α, and returns a new type, whose elements
represent lists of α. We call such functions type functions.
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2.1 Type universes

Lean is a dependently typed language, so types are terms. In particular, things like Nat and
String are types, but they are also values of type Type. The type of List, then, is Type → Type.
In particular, there is no distinction between type functions and functions that operate on, e.g.,
natural numbers.

Remark: We write f : α → β to say “f has type α → β”. The arrow type α → β stands
for the type of functions taking an argument of type α to produce a value of type β.

We call Type a type universe, i.e., a type whose elements are themselves types. However, Type is
itself also a value, which needs to live in some universe. It cannot be the case that Type : Type;
this leads to Girard’s paradox, which is the type theory analogue of Russel’s paradox [15].

Instead, Lean has an infinite sequence of increasing type universes, so that Type : Type 1,
Type 1 : Type 2, and in general, Type u : Type (u+1). In fact, Type is just a shorthand
for Type 0, the smallest type universe.

Universe levels u are essentially natural numbers, but they are not first-class values, and are
indeed very different from elements of Nat. In particular, when writing Type u, the universe level
u is not a regular term. There is a separate grammar, with some minimal builtin operations,
that defines valid universe levels.

It is possible, and indeed common to be generic over the universe of some type parameter, we
call such definitions universe polymorphic.

For example, the actual definition of lists specifies that the parameter α should live in an
arbitrary universe Type u.

inductive List (α : Type u)
| nil : List α
| cons : α → List α → List α

The type of this version of List is Type u → Type u, for arbitrary universe levels u.

2.2 Functoriality of type functions

Returning to our discussion of List and its functoriality, there is an obvious mapping function
to lift a function f : α → β, for arbitrary types α and β, into a function List α → List β,
by applying f to each element of the argument list. Its signature is written as

map : (f : α → β) → List α → List β

7



Remark: If a function takes multiple arguments, it is idiomatic to write them in a curried
style, so f : α → β → γ says that f is a function that takes two arguments, an α and a
β, to produce a γ. Arrows are right-associative.

Furthermore, (a : α) → β is a dependent arrow; it is a function from α to β, with the
possibility to make the resulting type depend on the value a of the first argument. We
used this syntax in the definition of map above, even though it is a regular, non-dependent
function, just to give a name to the first argument. It would have been equivalent to write
map : (α → β) → List α → List β.

Notice that α and β are arbitrary and thus must also be arguments to map. Nevertheless,
the value of α and β can be inferred from the other arguments and there is no need to
supply values for them when calling map, hence, they can be implicit arguments.

It is possible to explicitly define implicit arguments, using curly brackets {...}.

map: {α β : Type u} → (α → β) → List α → List β

This allows us to call map as map f as and the values of α and β are inferred from the
types of f and as.

Lean will automatically add implicit binders for free variables in a type signature, a feature
called auto-bound implicits. We will generally rely on this feature, adopting the convention
that α and β refer to types.

A type function F : Type u → Type v together with a mapping operation map : (f: α →
β) → F α → F β form a functor, so long as they preserve:

• Identity maps, that is, F (id α) = id (F α), with id β the identity function on arbitrary
types β, and

• Compositions, that is, (map f) ∘ (map g) = map (f ∘ g), where ∘ denotes function
composition

A function 𝑓 ∶ 𝐹(𝛼) → 𝛼, for some fixed carrier type α, is called an F-algebra. Inductive types
correspond to the carrier of an initial such algebra. To clarify, an F-algebra f is initial, if for
every F-algebra 𝑔 ∶ 𝐹(𝛽) → 𝛽 there is exactly one arrow rec ∶ 𝛼 → 𝛽 that makes the left square
of fig. 2.1 commute.

Consider the type of natural numbers, Nat; we’ll show that the constructors for Nat constitute
an initial algebra for functor the 𝐹𝑛𝑎𝑡(𝛼) = Unit⊕ 𝛼, where Unit is the unit type with (unit
: Unit) as its sole inhabitant and ⊕ denotes a sum. On functions 𝑓 ∶ 𝛼 → 𝛽, the obvious choice
of mapping operation 𝐹(𝑓) ∶ 𝐹 (𝛼) → 𝐹(𝛽) is such that 𝐹(𝑓)(unit) = unit and 𝐹(𝑓)(𝑎) = 𝑓(𝑎)
for all 𝑎 ∶ 𝛼.
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𝐹(𝛼) 𝐹(𝛽) 𝐹(𝛼) 𝐹(𝛽)

𝛼 𝛽 𝛼 𝛽

𝑓

𝐹(rec)

𝑔

𝐹(corec)

rec

𝑐 𝑑

corec

Figure 2.1: Commuting square for initial 𝐹 -algebras 𝑓 and final 𝐹 -coalgebras 𝑐

Natural numbers are defined by a constant 0 ∶ Nat and a function succ ∶ Nat → Nat. Let
𝑓 ∶ 𝐹𝑛𝑎𝑡(Nat) → Nat be the 𝐹 -algebra defined as 𝑓(unit) = 0 and 𝑓(𝑖) = succ(𝑖) for all 𝑖 ∶ Nat.

Then, let 𝑔 ∶ 𝐹𝑛𝑎𝑡(𝛼) → 𝛼 be an arbitrary 𝐹 -algebra, and define a function rec ∶ ℕ → 𝛼 such
that rec(0) = 𝑔(unit) and rec(𝑛 + 1) = rec(𝑔(𝑛)), for every 𝑛 ∈ ℕ. The inductive properties of
Nat are exactly what makes this algebra initial.

Conversely, initial algebras are unique up to isomorphism, so any other initial 𝐹𝑛𝑎𝑡-algebra
ℎ ∶ 𝐹𝑛𝑎𝑡(𝛽) → 𝛽 is equivalent to 𝑓 and its carrier, 𝛽, is equivalent to Nat.

Dually, there is a connection between coinductive types and final coalgebras. More concretely, a
𝐹 -coalgebra is a function 𝑐 ∶ 𝛼 → 𝐹(𝛼), with 𝛼 again an arbitrary carrier type, The coalgebra 𝑐
is final if for every other 𝐹 -coalgebra 𝑑 ∶ 𝛽 → 𝐹(𝛽) there is a unique arrow corec: β → α that
makes the right square of fig. 2.1 commute. Finally, the carrier of a final coalgebra corresponds
to a coinductive type.

Alternatively, we know that 𝛼 is the carrier of an initial 𝐹 -algebra (resp. final 𝐹 -coalgebra)
and thus corresponds to an inductive (resp. coinductive) type iff it is the least (resp. greatest)
fixpoint of 𝐹 . We will also call these the fixpoint, resp. cofixpoint, of 𝐹 .

Not all functors, though, have initial algebras, or final coalgebras.

2.3 Polynomial functors

Of special interest are polynomial functors, which, intuitively, are created from just a few prim-
itive operations (constants, sums, products, and exponentials). More formally, we say that a
polynomial functor is defined by a set 𝐴 and an 𝐴-indexed family of sets 𝐵𝑎 as

𝑃(𝑋) = Σ𝑎∈𝐴𝐵𝑎 → 𝑋

That is, 𝑃(𝑋) is the disjoint union of all functions from 𝐵𝑎 to 𝑋, for every 𝑎 ∈ 𝐴. In the theory,
we generally still refer to functors that are not defined in this form, but are isomorphic to a
polynomial functor in the strict sense, as polynomial.

To encode this in Lean, we replace “set” with “type” and obtain the following.

structure PFunctor := (A : Type u) (B : A → Type u)

9



Remark: structure is a simple wrapper around inductive, for when there is only one
constructor. The above type is equivalent to

inductive PFunctor
| mk : (A : Type u) → (B : A → Type u) → PFunctor

Then, the operations on types and functions are straightforward:

/-- Applying `P` to an object of `Type` -/
def PFunctor.Obj (P : PFunctor) (α : Type u)

:= Σ x : P.A, P.B x → α

/-- Applying `P` to a morphism of `Type` -/
def PFunctor.map (P : PFunctor) (f : α → β) : P.Obj α → P.Obj β

:= fun ⟨a, g⟩ => ⟨a, f ∘ g⟩

Remark: Variable P is known to be of type PFunctor, so P.Obj is recognized as PFunc-
tor.Obj P. Similarly, as PFunctor has only one constructor, PFunctor.mk, the anonymous
constructor syntax ⟨a, g⟩ is translated to PFunctor.mk a g. Finally, fun ⟨a, g⟩ => _
defines a function that takes a single argument x : P.Obj α, and immediately deconstructs
it into the constituent elements a : P.A and g : P.B a → α.

So an element of P.Obj α is a (dependent) pair of a shape 𝑎 ∈ 𝐴 and a function 𝑔 ∶ 𝐵𝑎 → 𝛼,
representing the contents. A mapped function P.map f then leaves the shape as is, and pre-
composes 𝑓 with the content 𝑔.

W-types

We already saw that inductive types are freely generated by the constructors. In a sense, an
element of, e.g., Nat is a well-founded (i.e., finite) tree with two kinds of nodes: zero nodes are
leaves, and succ nodes have exactly one child.

The W-type of a polynomial functor P is the type of exactly such trees: shapes 𝑎 ∈ 𝐴 distinguish
different kinds of nodes, and the cardinality of 𝐵𝑎 determines the number of children nodes of
type 𝑎 have. Such trees are easily encoded by an inductive type.

inductive W (P : PFunctor)
| mk (a : P.A) (f : P.B a → W P) : W P

10



By construction, the W-type of 𝑃 is its fixpoint, with W.mk its initial algebra.

It is important to make a distinction between types that are polynomial functors, and types
that are (equivalent to) W-types of polynomial functors. For example, Nat is not a polynomial
functor, but it is the W-type of a polynomial functor (namely, Fnat).

Conversely, List is both. It is a polynomial functor: take 𝐴 = ℕ and 𝐵𝑛 = {0, .., 𝑛 − 1}, then a
list of 𝑛 elements is encoded as a pair with shape 𝑛, and content 𝑓 ∶ {0, .., 𝑛 − 𝑖} mapping each
𝑖 < 𝑛 to the 𝑖-th element of the list. Simultaneously, List α, for every α is also the W-type of a
different polynomial functor, defined by 𝐴 = Unit⊕ 𝛼, where 𝐵 of the unit value is the empty
type and 𝐵𝑎 = Unit for every 𝑎 ∶ 𝛼. The W-type of this polynomial functor consists of trees
where leaves represent the empty list, and internal nodes are labelled with an element of type
α (the head of the list) and have exactly one subtree (the tail of the list).

M-types

Coinductive types are similar, except that the trees they are represented by may be of infinite
depth. Encoding these in Lean is quite a bit more involved.

An M-type of a polynomial functor P is the type of potentially infinite depth trees, where shapes
𝑎 ∈ 𝐴 distinguish different kinds of nodes, and the cardinality of 𝐵𝑎 determines the number of
children nodes of type 𝑎 have.

An approximation of an M-type up to depth 𝑛 is the type of such trees of height at most 𝑛,
where any required subtrees at depth 𝑛 + 1 are replaced with a special “continue” leaf.

/-- `CofixA P n` is an `n` level approximation of an M-type -/
inductive CofixA (P : PFunctor) : Nat → Type u
| continu : CofixA 0
| intro {n} : (a : P.A) → (P.B a → CofixA P n) → CofixA P (succ n)

Then, we define what it means for approximations agree — either the first approximation must
be a “continue” leaf or both approximations have nodes of the same kind as root, and the
corresponding subtrees recursively agree — whence an M-type is just an infinite series of ap-
proximations of increasing depth where every approximation agrees with the next.

inductive Agree : ∀ {n : Nat}, CofixA P n → CofixA P (n + 1) → Prop
| continu (x : CofixA P 0) (y : CofixA P 1) : Agree x y
| intro {n} {a} (x : F.B a → CofixA P n)

(x' : F.B a → CofixA P (n + 1))
: (∀ i : F.B a, Agree (x i) (x' i))
→ Agree (CofixA.intro a x) (CofixA.intro a x')

structure M (P : PFunctor) :=
(approx : ∀ n, CofixA P n)
(consistent : ∀ n, Agree (approx n) (approx (n+1)))

The M-type of a polynomial functor is, by construction, its cofixpoint.
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2.4 Quotients

As mentioned in the introduction, Lean also supports quotients of types. Recall the example of
multisets, defined as a quotient on lists.

/-- `List.perm as bs` holds iff `as` is a permutation of `bs` -/
def List.perm : List α → List α → Prop

def Multiset α := Quot (@List.perm α)

Polynomial functors cannot represent such quotients. Thus, we generalize to quotients of poly-
nomial functors, QPFs.

Intuitively, a functor 𝐹 is the quotient of some polynomial functor 𝑃 when there is a surjective
natural transformation abs from 𝑃 to 𝐹 . We can think of abs𝛼 as mapping abstract objects in
𝐹(𝛼) to their concrete representations in 𝑃(𝛼), for every 𝛼. Recall that every functor is equipped
with a mapping operation on functions 𝑓 ∶ 𝛼 → 𝛽. To say that abs is a natural transformation
is to say that it respects this functorial structure. That is to say, the square of fig. 2.2 should
commute for all arrows 𝑓 ∶ 𝛼 → 𝛽.

𝑃(𝛼) 𝑃(𝛽) 𝛼 𝛽

𝐹(𝛼) 𝐹(𝛽)

𝑎𝑏𝑠𝛼

𝑃(𝑓)

𝑎𝑏𝑠𝛽

𝑓

𝐹(𝑓)

Figure 2.2: Commuting square for natural transformation 𝑎𝑏𝑠 ∶ 𝑃 ⟹ 𝐹

Formally, we can show that abs is surjective by providing, for every 𝛼, a function repr ∶ 𝐹 (𝛼) →
𝑃(𝛼) and proving that it is a right-inverse. This is specified in Lean with the QPF typeclass.

class Qpf (F : Type u → Type u) [Functor F] where
P : PFunctor
abs : ∀ {α}, P.Obj α → F α
repr : ∀ {α}, F α → P.Obj α
abs_repr : ∀ {α} (x : F α), abs (repr x) = x
abs_map : ∀ {α β} (f : α → β) (p : P.Obj α),

abs (f <$> p) = f <$> abs p

Where f <$> x is Lean syntax for applying mapG f to x (the functor G is inferred from the
type of x), abs_repr shows that repr is a right-inverse of abs, and abs_map is the naturality
condition of abs.
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Fixpoint and cofixpoint

Crucially, every QPF still has an initial algebra; if 𝐹 is the quotient of some polynomial functor
𝑃 , then the least fixed point of 𝐹 can be constructed as a quotient of 𝑃 ’s W-type over a
suitable relation. Similarly, the greatest fixed point (thus, the final coalgebra) of a QPF 𝐹 can
be constructed as a quotient of 𝑃 ’s M-type.

The exact details of this construction are not relevant for the rest of this thesis, we merely need
to know that there is some way to construct these fixed points. Nonetheless, the full construction
can be found in the work of Avigad et al.. [1].

2.5 Multivariate functors

Other common examples of functors are sums (α ⊕ β) and products (α × β). These functors
take two arguments (both α and β), yet, we’ve only discussed univariate functors (i.e., functors
with a single argument).

One could see, e.g., the product functor as one of two univariate functors, (α × ⋅) or (⋅ ×
β), effectively choosing to fix one of the arguments. However, this limits compositionality. To
illustrate, consider a type of binary trees.

data BinaryTree α
| node : (BinaryTree α × BinaryTree α) → TreeOfProd α
| leaf : α → TreeOfProd α

Because BinaryTree α is used as both arguments to the product, this specification is only
well-formed if the product functor is functorial in both arguments (simultaneously). Thus, we
generalize the definitions presented so far to multivariate functors.

It is difficult to reason about 𝑛-ary curried functions, where 𝑛 is arbitrary, so instead an uncurried
representation of multivariate, universe polymorphic, type functions is used.

def TypeFun (n : Nat) := (TypeVec.{u} n) → Type v

Conceptually, TypeVec (short for type vector) is a list of exactly 𝑛 elements of Type u. We define
type vectors as functions from a canonical finite type Fin2 n, which has exactly 𝑛 inhabitants,
to types.

def TypeVec (n : Nat) := (i : Fin2 n) → Type u

Notice that all arguments to a TypeFun live in the same universe 𝑢, but the result lives in a
potentially different universe 𝑣. Most constructions require that these universes coincide, which
can be written as TypeFun.{u,u}.

Suppose that Sum' is the uncurried version of sums, then Sum' ![α1, α2] would mean α1 ⊕
α2. A multivariate map operation now takes not one function, but a vector of 𝑛 functions, each
going from αi to βi. We define the type of such vectors of functions as,

13



def Arrow (v1 v2 : TypeVec n) := (i : Fin2 n) → (v1 i → v2 i)

We generally write v1 ⟹ v2 instead of Arrow v1 v2, leading to the following signature for
multivariate map.

map : {v1 v2 : TypeVec n} → (v1 ⟹ v2) → F v1 → F v2

Remark: Objects of type TypeVec n, for some fixed but arbitrary length 𝑛, and arrows
(⋅ ⟹ ⋅) form a category. Multivariate type functors are in fact nothing more than (uni-
variate) functors from the category of type vectors to the category of types.

Thus, if f1 : α1 → β1 and f2 : α2 → β2, then Sum'.map ![f1, f2] yields a function from
Sum' ![α1, α2] to Sum' ![β1, β2].

Finally, the functoriality constraints have an obvious generalization to the multivariate case.

Multivariate polynomial functors

An 𝑛-ary, polynomial functor is still defined with a shape 𝐴 as before, but the content now
maps 𝑎 ∈ 𝐴 not to a single type, but to a vector of 𝑛 types.

structure MvPFunctor (n : Nat) := (A : Type u) (B : A → TypeVec.{u} n)

The generalization proceeds relatively straightforwardly.

def MvPFunctor.Obj (P : MvPFunctor.{u} n) : TypeFun.{u,u} n
:= fun (α : TypeVec n) => Σ a : P.A, P.B a ⟹ α

def MvPFunctor.map (P : MvPFunctor.{u} n)
(f : v₀ ⟹ v1)

: P.Obj v₀ → P.Obj v1
:= fun ⟨a, g⟩ => ⟨a, TypeVec.comp f g⟩

Where TypeVec.comp is the pointwise composition of two vectors of functions.

Remark: Implicit variables are not limited to types, we will use n and m for natural numbers
and v, v₀, v1, ... for type vectors.
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Multivariate M- and W-types

The multivariate W-type is a fixed point with respect to only the last variable. Suppose 𝑃 is
an 𝑛 + 1-ary polynomial functor given by shapes 𝐴 and contents 𝐵, then its W-type is itself an
𝑛-ary polynomial functor.

The shape of 𝑊 is given by data-less, well-founded trees, whose nodes are labelled with 𝑎 ∈ 𝐴
and whose children are indexed by 𝑙𝑎𝑠𝑡(𝐵𝑎), the last type in the vector of types 𝐵𝑎. That is,
the shapes of 𝑊 are elements of the univariate W-type given by 𝐴 and 𝑙𝑎𝑠𝑡(𝐵𝑎).
The content for a given tree, then, is given by valid paths to the nodes in this tree.

/-- A path from the root of a tree to one of its nodes -/
inductive WPath : P.last.W → Fin2 n → Type u
| root (a : P.A) (f : P.last.B a → P.last.W) (i : Fin2 n) (c : P.drop.B a i) :

WPath ⟨a, f⟩ i
| child (a : P.A) (f : P.last.B a → P.last.W) (i : Fin2 n) (j : P.last.B a)

(c : W_path (f j) i) :
WPath ⟨a, f⟩ i

Note that P.last denotes the (univariate) polynomial functor given by 𝐴 and 𝑙𝑎𝑠𝑡(𝐵𝑎), the
last type in vector 𝐵𝑎, and P.drop is the (multivariate) polynomial functor given by 𝐴 and
𝑑𝑟𝑜𝑝(𝐵𝑎), the result of removing the last type of the vector 𝐵𝑎.

To conclude, an element of the multivariate W-type is a pair of a tree and a function from
(paths to) nodes in that tree to the data contained at that node.

def Wp (P : MvPFunctor (n+1)) : MvPFunctor n :=
{ A := P.last.W, B := P.WPath }

The M-type is defined analogously, except, the shapes are non-well-founded trees. That is, given
by a univariate M-type.

def Mp (P : MvPFunctor (n+1)) : MvPFunctor n :=
{ A := P.last.M, B := P.WPath }

Multivariate QPFs

The definition of multivariate QPFs is not very different from the univariate case. We merely
replace (polynomial) functors with multivariate (polynomial) functors.

class MvQpf {n : ℕ} (F : TypeFun.{u,_} n) [MvFunctor F] where
P : MvPFunctor.{u} n
abs : ∀ {v}, P.Obj v → F v
repr : ∀ {v}, F v → P.Obj v
abs_repr : ∀ {v} (x : F v), abs (repr x) = x
abs_map : ∀ {v₀ v1} (f : v₀ ⟹ v1) (p : P.Obj v₀),

abs (f <$$> p) = f <$$> abs p
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Where f <$$> p is the multivariate analogue of f <$> p, i.e., applying (F.map f) to p.

Again, the initial algebra or final coalgebra of a multivariate QPF can be constructed as a
quotient of the underlying polynomial functor’s W- or M-type.

2.6 Inductive families

It is important to clarify that we’re only considering inductive types, for which the recursive
occurrences of the type being declared must not use other values for the type parameters. Lean
also has inductive families of types for which this restriction does not hold.

Consider, for example, Fin2, the type of natural numbers less than 𝑛.

inductive BadFin2 (n : Nat)
| fz : BadFin2 (n+1)
| fs : BadFin2 n → BadFin2 (n+1)

This won’t compile, because this defines an inductive type, and the constructors mention
BadFin2 (n+1), while they are only allowed to mention BadFin2 n.

The syntax for an inductive family is very similar; we can promote n from parameter to index
by removing the binder, and giving a type signature.

inductive Fin2 : Nat → Type
| fz : Fin2 (n+1)
| fs : Fin2 n → Fin2 (n+1)

Inductive families do not correspond to initial algebras in the same way that inductive types
do, and the constructions as QPFs fundamentally don’t support inductive families, nor the
coinductive analogue. Hence, we shall limit ourselves to just (co)inductive types.
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Chapter 3

Porting the QPF formalization
from Lean 3 to Lean 4

Development of Lean was started by Leonardo de Moura at Microsoft Research [5, 14]. As an
in-progress research project, there explicitly are no stability guarantees. Indeed, Lean 4 is not
backward compatible with Lean 3, meaning that the QPF formalizations by Avigad et al. ([1])
were not directly usable for this project. The current chapter details my efforts to port these
formalizations to Lean 4.

Lean 3 has a comprehensive, community-maintained mathematics library, mathlib ([16]), which
also functions as its unofficial, de-facto standard library, and to which Avigad et al. contributed
their formalization of QPFs. Mathlib4 is the (in-progress) port of this library to Lean 4 ([17]),
and I am currently in the process of contributing the ported QPF formalization back to mathlib4.

3.1 Mathport & changes from Lean 3

Lean 4 is not just a new version of the language; most of the code base has been rewritten.
There were some changes in the syntax and naming convention, but most importantly, the
meta-programming in Lean 4 has been completely reworked.

To help with porting code, the mathlib community developed the mathport tool ([18]), which
(best-effort) translates Lean 3 source code into Lean 4 source code. This takes care of superficial
syntax and naming changes, but the translation is far from perfect. In particular, mathport did
reasonably well in translating declaration signatures, but the translated proofs were full of errors.
This is primarily because mathport (intentionally) does not deal with meta-programming code
at all and a lot of tactics (proof automation meta-programs) provided by mathlib were still
missing from mathlib4.
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3.2 Inference of implicit arguments

Lean relies heavily on inference to reduce verbosity, falling back on explicitly provided values or
annotations when types or arguments are wrongly inferred. Lean 4 sometimes inferred something
sufficiently different from Lean 3 that the result no longer typechecked.

For example, in the following theorem, Lean 4 couldn’t figure out the right types for f ::: g
and f' ::: g'. Explicit type annotations, which look like (f ::: g : _), had to be added.

theorem append_fun_inj {α α' : Typevec n} {β β' : Type _}
{f f' : α ⟹ α'} {g g' : β → β'} :

(f ::: g : (α ::: β) ⟹ _) = (f' ::: g' : (α ::: β) ⟹ _)
→ f = f' ∧ g = g'

Similarly, Lean has a different inference algorithm for so-called eliminators. Lean 3 (and more
recent versions of Lean 4) support an @[elab_as_eliminator] attribute on user-defined func-
tions that instructs Lean to use this specialized eliminator inference, but the version we’re using
does not have that. This came up, e.g., in the proof of Cofix.bisim_aux. The Lean 3 proof
simply used

apply quot.inductionOn c

Where quot.inductionOn is marked with elab_as_eliminator. In Lean 4 we had to explicitly
provide the motive (which determines the induction hypothesis), since it was being inferred
incorrectly.

apply Quot.inductionOn (motive := fun c => ∀b, r c b →
Quot.lift (Quot.mk r') h1 c = Quot.lift (Quot.mk r') h1 b) c

The tricky part is that the proof generally doesn’t throw an error at Quot.inductionOn when
it infers the wrong motive; it just produces a different proof state, tripping up later tactics.
Catching this involved stepping through both the Lean 3 and Lean 4 proof states to find out
where, exactly, the proof states diverged, and then explicitly providing the desired motive.

By default, the pretty printer used to show intermediate proof states will omit any implicit
arguments in the term, to closely resemble whatever was written in the source code. However,
we can instruct it to be more verbose (both in Lean 3 and in Lean 4):

set_option pp.implicit true -- print implicits, or
set_option pp.all true -- set all options ()

This problem was hard to diagnose but relatively easy to remedy. Once the divergence was
found, we can readily see from the Lean 3 proof state what the motive should be.
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3.3 Missing tactics

Conversely, the issue of missing tactics was easy to diagnose, but harder to fix. The long-term
best solution would have been to implement missing tactics. However, there were quite a few,
and implementing them would probably have taken a long time.

Instead, proofs that used such missing tactics were changed to use the lower-level tactics that
were available. For example, the congr tactic was missing, but easily replaced with either apply
congr, apply congrArg, or apply congrFun.

Notably, mathlib4 has made much progress in implementing such missing tactics in more recent
versions, so these proofs can now be changed back to use the higher-level tactics.
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Chapter 4

Enhancing the QPF formalization

Besides directly porting the formalization of QPFs from Lean 3 to Lean 4, I also identified and
implemented various enhancements. This chapter serves to elaborate on those changes which
are too big to be considered just porting but don’t fall strictly under the (co)datatype synthesis
and meta-programming parts of the project.

4.1 Curried functions

Like most functional languages, it is idiomatic to write Lean functions in their curried form, so
f : Type → Type → Type, rather than f : (Type × Type) → Type. However, the formal-
izations are done in terms of vectors of types and uncurried type functions.

def TypeFun (n : Nat) := TypeVec n → Type v

There is an obvious translation from TypeFun to a curried type function and, vice versa, from a
curried function taking 𝑛 types from the same universe and returning a type, to a TypeFun n.
These conversions were implemented as TypeFun.curried and TypeFun.ofCurried, respec-
tively, and it was proven that these functions are inverses.

To wit, they behave as expected:

variable (F : TypeFun 2) (F' : Type 1 → Type 1 → Type 2)
example : F.curried α β = F ![α, β] := by rfl
example : F' α β = (TypeFun.ofCurried F') ![α, β] := by rfl

The type CurriedFun α β n is a recursively defined alias for α → ... → α → β, taking 𝑛
arguments of type α to produce an element of β.

def CurriedFun (α : Type u) (β : Type v) : Nat → Type (max u v)
| 0 => PUnit.{u+1} → β
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| 1 => α → β
| n+1 => α → CurriedFun α β n

Intuitively one might expect a CurriedFun taking no arguments (so, 𝑛 = 0) to be equal to just
β, but that does not typecheck—Type v and Type (max u v) are not, in general, the same
type.1 In any case, functions without arguments are not particularly interesting for our purposes,
so a simpler solution was chosen. Functions that take no arguments are seen as functions from
the universe polymorphic unit type PUnit.

A curried type function is just an instance of CurriedFun.

def CurriedTypeFun := CurriedFun (Type u) (Type v)

Considering all this complexity, it is easy to see why Avigad et al. made all the formalizations and
constructions in terms of uncurried functions. Still, uncurried functions feel very unidiomatic
and users will rightfully expect their (co)datatypes to function as curried type functions. It
would be interesting to see whether it is possible to reformulate the formalization of QPFs in
terms of curried functions. For the time being, we’ll satisfy ourselves with hiding these details
through TypeFun.curried and TypeFun.ofCurried conversions.

4.2 Typeclass extensions

The following change might feel underwhelming, but it presents a considerable quality of life
improvement for the MvQpf typeclass. The latter was originally defined as

class MvQpf {n : Nat} (F : TypeFun n) [MvFunctor F] where
-- ...

This makes sense, since F can only be a QPF if it is a functor in the first place. However, when
declared like this, the type of MvQpf is

{n : Nat} → (F : TypeFun n) → [MvFunctor F] → Type _

In particular, this means that MvQpf F does not name a type unless an instance of MvFunctor
F can be inferred. For concrete QPFs this is generally not problematic, but when F is a variable,
this restriction becomes annoying.

For example, if we wish to formalize “Let F be an 𝑛-ary QPF”, we would like to simply write
“F is an 𝑛-ary type function, and there is an instance of MvQpf F”. Like so

variable (F : TypeFun n) [MvQpf F]
1Note that Lean’s universes are non-cumulative, meaning that elements of Type v are not automatically

part of higher universe Type (v + 1).

21



This doesn’t work, we have to explicitly assume a [MvFunctor F] bound as well. Even worse,
in some situations, different mentions of MvQpf F could infer different MvFunctor F instances
for the implicit argument, causing surprising type mismatches. So, the definition was changed
to extend MvFunctor, rather than taking an argument.

class MvQpf {n : Nat} (F : TypeFun n) extends MvFunctor F where
-- ...

Which roughly means that the MvFunctor F instance becomes one of the fields of the MvQpf
typeclass. Hence, MvQpf F has no more implicit arguments (the value for n is fixed by F), which
fixes these issues.

4.3 Typeclass inference for vectors

Composition of an 𝑛-ary functor F with 𝑚-ary functors G₀, G1, ..., Gn-1 originally took the
following variables.

variable {n m : Nat}
(F : TypeVec.{u} n → Type _)
[fF : MvFunctor F]
[q : MvQpf F]
(G : Fin2 n → TypeVec.{u} m → Type u)
[fG : ∀ i, MvFunctor (G i)]
[q' : ∀ i, MvQpf (G i)]

Firstly, by the preceding section, we can leave out the MvFunctor assumptions, since they are
now part of the MvQpf assumptions.

Secondly, the last variable, q', states that G i, for every i of type Fin2 n, is a QPF. The square
brackets indicate that it is a typeclass variable, which should be filled in by typeclass inference.

As there are only 𝑛 inhabitants of Fin2 n, the universally quantified inference problem ∀ i,
MvQpf (G i) neatly reduces to 𝑛 non-qualified inference problems MvQpf (G 0), MvQpf (G
1), etc.

However, Lean’s inference engine does not seem to be able to make this step by itself, failing to
infer an instance for ∀ i, MvQpf (G i) even if an instance of MvQpf can be inferred for each
individual type function Gi.

So, we introduce a new typeclass, VecMvQpf, which wraps the universally quantified typeclass
problem.

class VecMvQpf (G : Vec (TypeFun m) n) where
prop : ∀ i, MvQpf (G i)

Then we can register instances by recursion on the size 𝑛 of the vector 𝐺. For the base case
𝑛 = 0, the vector G is empty, and it is vacuous to say all elements are QPFs.
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instance instNil (G : Vec (TypeFun m) 0) : VecMvQpf G
:= /- ... -/

For 𝑛 + 1, we recurse in the succ typeclass variable.

instance instSucc (G : Vec (TypeFun m) (n + 1))
[zero : MvQpf (G .fz)]
[succ : VecMvQpf (fun i => G i.fs)] :

VecMvQpf G
:= /- ... -/

There is no need to write typeclass variables in terms of VecMvQpf because of the following
instance.

instance instUnbox [inst : VecMvQpf G] :
∀i, MvQpf (G i)

Note that we could write instNil and instSucc directly in terms MvQpf, e.g.,

instance instSucc' (G : Vec (TypeFun m) (n + 1))
[zero : MvQpf (G .fz)]
[succ : ∀ i, G i.fs] :

∀ i, G i
:= /- ... -/

This is accepted, but won’t actually help to derive instances for larger vectors G. It seems that
Lean puts a limit on recursion depth when trying to infer a universally quantified typeclass
problem, whereas it will recurse deeper for VecMvQpf.

4.4 Universe polymorphic finite type

Originally, Fin2 was defined as the following, straightforward, inductive family, as seen in sec-
tion 2.6.

inductive Fin2 : Nat → Type
| fz : Fin2 (n+1)
| fs : Fin2 n → Fin2 (n+1)

However, this definition forces Fin2 to live in Type. During the project, a need arose for a finite
type with exactly 𝑛 inhabitants, but in arbitrary universes. Thus, the universe polymorphic
PFin2 type was added.

inductive PFin2 : Nat → Type u
| fz : PFin2 (n+1)
| fs : PFin2 n → Fin2 (n+1)

Whence Fin2 was changed to just be an alias for PFin2.{0}. Most theorems and definitions
for Fin2 were easily restated in terms of PFin2.
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Chapter 5

Designing a procedure for
synthesizing QPFs from
specifications

This chapter will establish a procedure that compiles a specification of a (co)datatype into
the proper constructions on QPFs. It will do so in the abstract, focusing on the details of the
procedure, rather than the implementation details of the Lean meta-programming system, which
will be covered in the next chapter.

5.1 Shape types

Arguably the simplest, and most fundamental, inductive types are Sum α β and Prod α β,
representing “either α or β” and “a pair of α and β”, respectively. They can be defined as

inductive Sum α β
| inl : α → Sum α β
| inr : β → Sum α β

inductive Prod α β
| mk : α → β → Prod α β

They are also examples of what we will call shape types.

Definition: A shape type is an inductive type Foo α_1 … α_n, where each constructor takes
only arguments of types in {𝛼1, … , 𝛼𝑛}.

That is, each constructor’s arguments must be typed as one of the parameters of the shape type.
Let’s make this a bit clearer by looking at examples that are not shape types.

inductive List α
| nil : List α
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| cons : α → List α → List α

inductive ListWrapper α
| mk : List α → ListWrapper α

inductive NatWrapper
| mk : Nat → NatWrapper

The only parameter to List is α, but the cons constructor takes a List α as second argument,
so List is not a shape type. Similarly, ListWrapper.mk (resp. NatWrapper.mk) takes an argu-
ment of type List α (resp. Nat), which are not type parameters, so these types are not shapes
either.

Notice that shape types are non-recursive and do not depend on any other types, as a direct
consequence of the definition. This makes them easy to translate into a polynomial functor.

Remark: One way to do this translation is to realize that all shape functors can be defined
as a composition of sums and products. This is similar to what the datatype package for
Isabelle/HOL in [3] does. We’ll use a different, slightly more monolithic approach.

Recall that (multivariate) polynomial functors are defined as

structure MvPFunctor (n : Nat) :=
(A : Type u) (B : A → TypeVec n)

Let us return to the example of sum and product types. For the head type (A in the definition),
we will take a type that has exactly as many constructors as the shape type, but such that each
constructor is a constant (i.e., takes no arguments). Note that the head type does not take any
type parameters.

inductive Sum.HeadT
| inl : HeadT
| inr : HeadT

inductive Prod.HeadT
| mk : HeadT

The child family of types (B in the definition) maps each constructor 𝑐 to a vector of types α_c.
What is most important is the cardinality of each type α_c i, because that is what determines
the number of arguments of the 𝑖-th type parameter needed to use constructor 𝑐.

The concrete structure of these types is not relevant, so we’ll always use PFin2 m (see sec-
tion 4.4), the type of natural numbers less than 𝑚, to construct a type with cardinality 𝑚.
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Remark: We could have used PFin2 for the head type as well, rather than generating
bespoke inductive types. However, the current approach has the benefit that it’s very clear
which element of HeadT represents which constructor.

Let us start by counting for each constructor and each parameter type, how many times the
constructor takes an argument of that type.

Constructor α β

Sum.inl 1 0
Sum.inr 0 1
Prod.mk 1 1

Figure 5.1: Constructor argument bookkeeping

Using the counts of fig. 5.1, we define the child family of types.

def Sum.ChildT : Sum.HeadT → TypeVec 2
| .inl => ![PFin2 1, PFin2 0] -- the counts of α and β for Sum.inl
| .inr => ![PFin2 0, PFin2 1] -- the counts of α and β for Sum.inr

def Prod.ChildT : Prod.HeadT → TypeVec 2
| .mk => ![PFin2 1, PFin2 1]

Remark: If Lean knows which type to expect, say Sum.HeadT, and we write an identi-
fier with a leading dot, like .inl, then it will automatically add the type as namespace,
concluding that we must mean Sum.HeadT.inl.

From here on, the construction is the same for both types; we’ll show it just for Sum.

def Sum.P : MvPFunctor 2 := MvPFunctor.mk Sum.HeadT Sum.ChildT

def QpfSum.Uncurried : TypeFun 2 := MvPFunctor.Obj Sum.P
def QpfSum : Type → Type → Type := TypeFun.curried QpfSum.Uncurried

And we’re done! However, these QPF-based versions of the types are still not very nice to use.
For example, if we want to construct a pair in QpfProd, we have to go through MvPFunctor.mk,
which encodes its arguments in a not user-friendly way. Namely, to construct Sum α β from an
(a : α), i.e., use the inl constructor, it expects something of type
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(Sum.ChildT .inl) ⟹ ![α, β]

Recalling that ⟹ is shorthand for a vector of functions, we get

(i : PFin 2) → (![PFin2 1, PFin 0] i → ![α, β] i)

That is, inl expects a function f : PFin2 1 → α together with a function g : PFin2 0 →
β.

Remark: Note that vectors are indexed right-to-left, so ![α, β] 0 is β and ![α, β] 1 is
α

Recall that we defined vectors of size 𝑛 as functions PFin2 n → α, so, equivalently, f is a vector
of αs of length 1 and g is a trivial empty vector. So, really, the inl constructor only needs a
single argument of type α, as desired. We can define a more convenient version of inl as follows:

def QpfSum.inl {α β} (a : α) : QpfSum α β :=
MvPFunctor.mk .inl (fun (i : PFin 2) => match i with

| 1 => ![a]
| 0 => ![]

)

Similarly, the inr constructor needs only a single argument of type β.

def QpfSum.inr {α β} (b : β) : QpfSum α β :=
MvPFunctor.mk .inr (fun (i : PFin 2) => match i with

| 1 => ![]
| 0 => ![b]

)

By defining these constructors, we can make QpfSum behave a bit more like the analogous
inductive type. Nonetheless, it is not possible to do pattern matching with these constructor
wrappers, making QpfSum slightly harder to use than the inductive version.

Shape types as inductive types

Because of the simplicity of shape types, i.e., their lack of any (co)induction or composition,
they can just be defined as regular inductive types. However, to use shape types in subsequent
constructions, e.g., taking a (co)fixpoint, needed to define more complicated (co)datatypes, we
do need to show that it is a QPF.
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It stands to reason that if P is a polynomial functor, and F is isomorphic to P, then F is at the
very least a QPF.1 This observation is formalized as MvQpf.ofPolynomial.

def ofPolynomial {F : TypeFun n}
(P : MvPFunctor n)
(box : ∀{α}, F α → P.Obj α)
(unbox : ∀{α}, P.Obj α → F α)
(box_unbox_id : ∀{α} (x : P.Obj α), box (unbox x) = x)
(unbox_box_id : ∀{α} (x : F α), unbox (box x) = x)

: MvQpf F

In the case of our Sum example, we instantiate ofPolynomial with F := TypeFun.ofCurried
Sum and P := Sum.P. To generate box and unbox we expand our bookkeeping a bit. For each
constructor argument we generate a fresh identifier, and while doing so we keep two lists: a list
of all identifiers, in the order they were introduced, and a separate list for each parameter type,
with just the identifiers for that type.

To illustrate, consider the following, slightly artificial, type

inductive SumOfPairs α β γ where
| pairA : α → α → SumOfPairs α β γ
| pairCandB : γ → β → SumOfPairs α β γ -- note the order of β and γ

Following the procedure introduced at the start of this section, we obtain a corresponding
polynomial functor.

inductive SumOfPairs.HeadT where
| pairA : HeadT
| pairCandB : HeadT

def SumOfPairs.ChildT : SumOfPairs.HeadT → TypeVec 3
| .pairA => ![PFin2 2, PFin2 0, PFin2 0]
| .pairCandB => ![PFin2 0, PFin2 1, PFin2 1]

def SumOfPairs.P : MvPFunctor 3 :=
⟨SumOfPairs.HeadT, SumOfPairs.ChildT⟩

Let us use a₀ and a1 for the arguments to the first constructor, and c and b for the second
constructor. Then, we separate the arguments by their type.

The definition of box follows fairly directly from fig. 5.2, namely

def SumOfPairs.box : SumOfPairs α β γ → SumOfPairs.P.Obj ![α, β, γ]
-- we pattern match using all variables for this constructor
| .pairA a₀ a1 => MvPFunctor.mk .pairA fun i => match i with
| 2 => ![a₀, a1] -- α

1Informally, we would call F polynomial. But, recall that we formalized polynomial functors with a specific
structure that might not be preserved by the isomorphism, so formally F might not be considered polynomial.
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Type pairA pairCandB
all [a₀, a1] [c, b]
α [a₀, a1] []
β [] [b]
γ [] [c]

Figure 5.2: Identifier bookkeeping for SumOfPairs constructors

| 1 => ![] -- β
| 0 => ![] -- γ

| .pairCandB c b => MvPFunctor.mk .pairCandB fun i => match i with
| 2 => ![] -- α
| 1 => ![b] -- β
| 0 => ![c] -- γ

Logically, unbox does the reverse, using the bookkeeping in fig. 5.2 to determine that for pairA
its arguments are stored at child 2 0 and child 2 1—where the first index corresponds to
the type (α, β, or γ, indexed right-to-left) and the second number indexes the list of arguments
specific to that type—while for pairCandB the arguments are found at child 0 0 and child
1 0.

def SumOfPairs.unbox : SumOfPairs.P.Obj ![α, β, γ] → SumOfPairs α β γ
:= fun ⟨head, child⟩ => match head with

| .pairA => SumOfPairs.pairA (child 2 0) (child 2 1)
| .pairCandB => SumOfPairs.pairCandB (child 0 0) (child 1 0)

The proof that these two functions are inverses is a straightforward mix of case distinction and
reflexivity. Finally, ofPolynomial can be used to show that SumOfPairs is a QPF.

5.2 Recursive and corecursive types

If a type is recursive but otherwise does not mention other types, it is not strictly a shape
type. Nevertheless, by adding an extra type parameter ρ and substituting ρ for all (co)recursive
occurrences of the type to be defined, we obtain a shape type.

For example, the shape corresponding to List α (as defined in section 5.1) is

inductive List.Shape α ρ
| nil : Shape α ρ
| cons : α → ρ → Shape α ρ

To get rid of the extra variable ρ, we then take the fixpoint. Notice that it is required to show
that List.Shape is a QPF before we can do this. List.Shape is a shape type, so we can derive
an instance of MvQpf following the procedure of the last section, whence the following defines
the type of finite lists:
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def QpfList.Uncurried : TypeFun 2
:= MvQpf.Fix (TypeFun.ofCurried List.Shape)

Conversely, suppose we wish to define CoList, the coinductive type of potentially infinite lists.
We introduced this type in the introduction with a specification that is similar to List, but
mandates a corecursive interpretation.

codata CoList α
| nil : CoList α
| cons : α → CoList α → CoList α

There is no difference in the procedure to obtain the corresponding shape, we just replace all
occurrences of CoList α as constructor argument type with a new type parameter ρ, obtaining
the exact same shape as for List.

inductive CoList.Shape α ρ
| nil : Shape α ρ
| cons : α → ρ → Shape α ρ

But rather than taking the fixpoint, we take the cofixpoint for a coinductive interpretation.

def CoList.Uncurried : TypeFun 2
:= MvQpf.CoFix (TypeFun.ofCurried CoList.Shape)

5.3 Composition pipeline

The running example for this section will be the rose tree. Leaves of this tree are labelled with
α, while internal nodes are labelled with β and can have a finite, non-zero number of children.

data QpfTree α β
| leaf : α → QpfTree α β
| node : β → QpfTree α β → QpfList (QpfTree α β) → QpfTree α β

The type is recursive, so we introduce the fresh parameter as before, taking care to also substitute
it in subexpressions.

data QpfTree.Nonrecursive α β ρ
| leaf : α → Nonrecursive α β ρ
| node : β → ρ → QpfList ρ → Nonrecursive α β ρ

However, the result is not quite a shape type yet, we also have to get rid of QpfList ρ as an
argument type. To do so, we simply introduce more parameters, while remembering which type
these new parameters are supposed to stand for.

inductive QpfTree.Shape α β ρ σ1
| leaf : α → QpfTree α β ρ σ1
| node : β → ρ → σ1 → QpfTree α β ρ σ1
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Then, proceed as in section 5.1 to show that QpfTree.Shape is a QPF.

Remark: When doing this substitution, we can reuse the same parameter for multiple
occurrences of the same type. Suppose we had a constructor that takes two lists, like

| node2 : β → ρ → QpfList ρ → QpfList ρ → QpfTree α β ρ

Then we can reuse the same fresh parameter σ1 for both occurrences.

| node2 : β → ρ → σ1 → σ1 → QpfTree α β ρ σ1

On the other hand, if a non-parameter type also occurs as a subexpression of another type,
then we will not substitute it with the same parameter. The example gets a bit contrived,
but suppose nodes consist of both a list of children and a nested list of lists of children.

| node₃ : β → ρ → QpfList ρ → QpfList (QpfList ρ) → QpfTree α β ρ

This is translated to

| node₃ : β → ρ → σ1 → σ2 → QpfTree α β ρ σ1 σ2

Where σ1 stands for QpfList ρ, as before, and σ2 stands for QpfList (QpfList ρ), not
QpfList σ1.

Do note that this does not apply when we are adding a new parameter for recursive oc-
currences in the very first step (like we did by adding ρ to obtain the Nonrecursive
specification), such variables do get substituted in all subexpressions.

Returning to QpfTree.Shape, parameter σ1 is supposed to stand for QpfList ρ, so we’re aiming
to define a QPF which satisfies:

Base α β ρ = QpfTree.Shape α β ρ (QpfList ρ)

The composition pipeline translates such an equation to a definition of Base in terms of the
appropriate construction on QPF, such that: (a) Base is known to be a 3-ary QPF, and (b)
the desired equality indeed holds. The composition pipeline is not just an internal detail of the
procedure, we also expose it through the qpf command, whose syntax is inspired by def.

qpf Base α β ρ := QpfTree.Shape α β ρ (QpfList ρ)

As the name composition pipeline alludes, we are interested in defining compositions of QPFs.
Formally, MvQpf.Comp has the signature:
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TypeFun n → Vec (TypeFun m) n → TypeFun m

That is, an 𝑛-ary type function F is composed with an 𝑛-sized vector of 𝑚-ary type functions,
resulting in an 𝑚-ary type function. The composition is essentially defined as

(Comp F ![G1, ..., Gn]) ![α1, ..., αm]
= F ![G1 ![α1, ..., αm], ..., Gm ![α1, ..., αm]]

All arguments αi are broadcast to all functors Gj, meaning we don’t have to worry about
argument duplication or reordering.

Continuing with the motivating example, we are going to define Base as Comp QpfTree.Shape
![G1, G2, G₃, G₄], for some functors G1, G2, G₃ and G₄, satisfying the following equalities:

qpf G1 α β ρ := α qpf G₃ α β ρ := ρ
qpf G2 α β ρ := β qpf G₄ α β ρ := (QpfList ρ)

Which we will recursively determine. Before we continue, it should be clarified that the compo-
sition pipeline is not able to satisfy all equations. For example, it is impossible to define a QPF
that satisfies

qpf H α β := α → β

This is because the arrow type constructor (⋅ → ⋅) is not functorial. At least, it is not functorial
in both arguments. If instead, we fix any value α for the first argument, we obtain (α → ⋅),
which is a QPF. More generally, we say that in α → β, the variable α is dead, since it occurs
as a non-functorial argument, while β is a live variable.

By default, the composition pipeline assumes arguments are live, but we can explicitly mark
some as dead by giving a type ascription.

qpf H (α : Type u) β = α → β

The result is a family of QPFs, which means H is not a QPF, but H a, for arbitrary values a :
α is.

Remark: Recall that the live parameters to a functor must all live in the same universe
Type u, where u can be either some fixed level, or universe polymorphic. To make the im-
plementation simpler, we don’t allow any type ascription for live variables in the prototype
implementation, instead relying on inference to determine what universe they should live
in. This frees up the type ascription as a simple (to implement) way of distinguishing live
and dead variables.

In a more polished future implementation, we should probably move to a more explicit
syntax to mark dead variables, to minimize the risk of variables that could be live uninten-
tionally being marked dead.
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Continuing on, the composition pipeline does support these three kinds of functors:

• Projections: The target expression is just a parameter, as in G1 α β ρ = α.

• Constants: The target expression does not mention the live parameters at all, e.g., G α
β = Nat or G (n : Nat) β = PFin2 n.

• Compositions: The target expression is an application of a QPF.

This notably excludes dependent arrows (a : α) → _, anonymous functions fun γ => _,
and applications that cannot be appropriately broken down (such as α → β when α is a live
parameter).

Projections are trivial to identify and are represented with MvQpf.Prj n i, where 𝑛 is the arity
and 𝑖 the index of the parameter to project to (counted right-to-left).

qpf G1 α β ρ := α --> def G1 := @MvQpf.Prj 3 2
qpf G2 α β ρ := β --> def G2 := @MvQpf.Prj 3 1
qpf G₃ α β ρ := ρ --> def G₃ := @MvQpf.Prj 3 0

For constants, we only have to verify that the target expression does not depend on live pa-
rameters, then we translate them into @MvQpf.Const n τ, with 𝑛 again the arity and τ the
constant type.

qpf C1 α β γ := Nat --> def C1 := @MvQpf.Const 3 Nat

qpf C2 (n : Nat) α := PFin2 n
--> def C2 (n : Nat) := @MvQpf.Const 1 (PFin2 n)

In the second example, PFin2 n is not strictly a constant—it depends on n—but it is still
represented with a constant functor because 𝑛 is marked a dead variable.

The last kind of supported expressions are applications G e1 ... ek where G is a 𝑘-ary QPF that
doesn’t depend on live parameters, for arbitrary 𝑘. This is the kind of expression we discussed
at the start of this section. We can represent them as MvQpf.Comp with recursively determined
functors representing arguments ei. Note that G is allowed to be an application itself, so long
as it fits the set criteria (it is a QPF and does not depend on live variables), so this breakdown
is not necessarily unique.

As an optimization, we don’t have to generate def declarations for all intermediate functors,
we can just inline them.

qpf G₄ α β ρ := QpfList ρ
--> def G₄ α β ρ := MvQpf.Comp QpfList ![@MvQpf.Prj 3 0]

qpf Base α β ρ := QpfTree.Shape α β ρ (QpfList ρ)
--> def Base α β ρ := MvQpf.Comp QpfTree.Shape ![
--> @MvQpf.Prj 3 2, -- G1
--> @MvQpf.Prj 3 1, -- G2
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--> @MvQpf.Prj 3 0, -- G₃
--> MvQpf.Comp QpfList ![@MvQpf.Prj 3 0], -- G₄
--> ]

Finally, the desired type is obtained by taking the fixpoint. Here, too, we can inline the definition
of Base.

def QpfTree α β : TypeFun 2 :=
MvQpf.Fix (MvQpf.Comp QpfTree.Shape ![

@MvQpf.Prj 3 2, -- G1
@MvQpf.Prj 3 1, -- G2
@MvQpf.Prj 3 0, -- G₃
MvQpf.Comp QpfList ![@MvQpf.Prj 3 0], -- G₄

])

5.4 Auxiliary constructions

After constructing the (co)datatype, there are a few extra definitions we want to add to make
the result more usable. To begin with, we want to generate a function for each constructor in
the specification, with the same name and type. Generating these is relatively straightforward.
For example, let us recall the specification for lists.

data List α
| nil : List α
| cons : α → List α → List α

Following the steps described so far defines List in terms of a generated shape type List.Shape
and a fixpoint. The constructors we want to generate are simple wrappers around these.

def List.nil : List α
:= MvQpf.Fix.mk List.Shape.nil

def List.cons : α → List α → List α
:= fun a as => MvQpf.Fix.mk (List.Shape.cons a as)

Effectively, we are just applying Fix.mk to the result of the corresponding constructor of
List.Shape. The same method applies to codatatypes, using CoFix.mk instead.

At this point, we would also want to generate specialized (co)recursion principles and noCon-
fusion theorems, but as mentioned in the introduction, we don’t support doing so yet.

5.5 Final overview

To sum up, we can give a high-level overview of the procedure in the following steps.
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1. Make the specification non-recursive by introducing a new parameter (section 5.2)

2. Introduce more parameters, to obtain a shape type Shape (section 5.3)

3. Show that Shape is a QPF, by (section 5.1)

(a) Deriving an equivalent polynomial functor, and
(b) Showing that this polynomial functor is isomorphic to Shape

4. Use the composition pipeline to solve for the intended values for parameters introduced
in step 2, producing the Base functor (section 5.3)

5. Take the fixpoint (or cofixpoint) of Base, getting rid of the parameter introduced in step
1 and producing the desired functor (section 5.2)

6. Generate auxiliary constructions (section 5.4)

Steps 1 and 5 can be omitted if the specification is not (co)recursive, and steps 2 and 4 may
be omitted if the input is already a shape type, but it is also fine to forgo such analysis and
perform all steps anyway.
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Chapter 6

Implementing the procedure as a
proof of concept

In the preceding chapter, we explored how to translate definitional specifications of (co)datatypes
to the fundamental constructions that can encode (co)datatypes as QPFs. In the current chapter,
we will discuss the technical details of implementing this procedure in Lean 4, as data and
codata commands.

To that end, we’re going to dig deeper into parts of the meta-programming system. Nonetheless,
we will focus on only the parts that are relevant to our implementation, for a more comprehensive
introduction to meta-programming in Lean 4, the interested reader is invited to consult [19, 20].

We still won’t assume knowledge of Lean specifics, but do require some more familiarity with
functional programming (roughly, readers should be somewhat familiar with monads, and how
they are used for side effects, as explained in, e.g., [13]).

6.1 Extending Lean’s syntax

Like many modern theorem provers, Lean has facilities that allow us to register custom syntax
for specific functions. For example, the following macro allows us to write Γ ⊢ 0 : Nat in the
familiar syntax for some type checking relation Typing Γ 0 Nat we might define.

macro Γ:term " ⊢ " e:term " : " t:term : term => `(Typing $Γ $e $t)

Actually, this macro declaration is just syntactic sugar for the following two parts.

syntax term " ⊢ " term " : " term : term
macro_rules
| `($Γ ⊢ $e : $t) => `(Typing $Γ $e $t)
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Firstly, syntax defines a parser extension. Lean’s grammar does not have a clearly delimited
macro invocation syntax, instead, macros can freely extend Lean’s syntax, influencing how the
parser transforms source code into an abstract syntax tree (AST). The result of parsing, this
AST, is represented in Lean as an object of type Syntax.

Remark: In more recent versions of Lean, the Syntax type has been replaced by TSyntax
cat, where cat is the (statically known) syntax category (e.g., term or command). Our code
was written before this overhaul, thus we generally refer to the old way in this chapter.

In this example, the parser extension states that three terms (bound to Γ, e and t), interspersed
with ⊢ and : symbols form a new term.

Then, the macro_rules part defines the semantics of the macro, as a substitution. We both
match on, and create new syntax trees, using syntax quotations (written as `()). We can use a
variable of type Syntax in a syntax quotation as, e.g, `($Γ), this is called an anti-quotation. By
substituting on the level of syntax trees, grouping and precedence are preserved. For example,
Γ ⊢ 1 + 2 * 3 : Nat is correctly translated to Typing Γ (1 + 2 * 3) Nat.

Clearly, though, data and codata would be hard to define in terms of such substitutions. We
could, in theory, replace the right-hand side of a macro_rules match arm with arbitrary code
that produces a Syntax object, and in this way, define a procedural macro. This is, however, not
idiomatic; complex commands are usually defined as an elaborator.

Data and codata Syntax

Before we get to what an elaborator is, we’ll take a few steps back and consider how to define
the parser extensions for data and codata.

The flexibility and extensibility of Lean are not just for users. The Lean 4 compiler is mostly
written in Lean 4 itself, and it turns out that a lot of the language syntax is implemented with
the meta-programming system. Amongst them, inductive, whose syntax is defined with the
following parser extension.

def «inductive» := leading_parser "inductive " >> declId >> optDeclSig
>> optional (symbol " :=" <|> " where")
>> many ctor
>> optDeriving

Remark: Notice how we wrote «...» around inductive; these brackets allow us to use
reserved keywords as identifiers.
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Where leading_parser is a still lower-level macro to define a parser extension than the syntax
declaration we saw before, and declId, optDeclSig, etc. are all parsers, or parser combinators.
Combinators a >> b and a <|> b mean “first parse a, then b” and “parse a or b”, respectively.

This parser accepts an "inductive" atom (or, literal), followed by a declaration identifier
(declId), an optional signature (optDeclSig), optionally a " :=" or "where" atom, followed by
zero or more (many) constructor specifications (ctor), and finally, an optional list of typeclasses
to derive (optDeriving).

This Parser instance is then used in the declaration parser.

@[builtinCommandParser] def declaration := leading_parser
declModifiers false >> (/- ... -/ <|> «instance» <|> /- ... -/)

The builtinCommandParser attribute registers declaration as a builtin syntax extension for
the command category.

Remark: There are many syntax categories, of which term and command are by far the
most common. The former, term, is the syntax category for terms, e.g., x + y or Type →
Nat → Type, whereas command is the category for top-level commands, such as inductive,
but also definitions (def), theorems (theorem), etc.

We want data to be (mostly) suitable as a drop-in replacement for inductive, so we copy the
latter’s parser verbatim, replacing the "inductive" atom with "data". Similarly, codata also
uses the same syntax, except the command is now "codata".

def inductive_like (cmd : String) : Parser
:= leading_parser cmd >> declId >> optDeclSig

>> Parser.optional (symbol " :=" <|> " where")
>> many ctor
>> optDeriving

def data := inductive_like "data "
def codata := inductive_like "codata "

Remark: The syntax highlighting is slightly misleading. At this point the parser does not
know about data and codata as commands yet, so they don’t need to be enclosed with
«...» brackets to be used as identifiers.

Since we are not defining builtin syntax, we use the commandParser attribute to define the
parser extension rather than builtinCommandParser.
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@[commandParser] def declaration := leading_parser
declModifiers false >> (data <|> codata)

After this definition, Lean knows how to successfully parse datatype specifications such as

data Foo α
| foo : α → Foo α

However, we only defined the syntax, not the semantics. The code above still fails, complaining
that we did not define an elaboration function for declaration.

Unsupported syntax

Note that parser extensions are not strictly about which syntax is supported. Instead, they
declare which syntax this command is responsible for. Suppose, for example, that a user tried
to derive a typeclass for their datatype.

data Foo α
| foo : α → Foo α
deriving BEq

Although this syntax is accepted by the data parser, we don’t actually support deriving type-
classes yet.

Removing the >> optDeriving part from the parser definition would bring the accepted syntax
closer to what is actually supported, making Foo as written above lead to a generic parse error.

Nevertheless, the user is clearly trying to invoke our data command, and inductive does
support such a deriving statement, so it is to be expected that users will try to use it. The
generic parse errors are quite obscure and bad at communicating to the user that deriving
statements are not supported; a user might reasonably think the parse error is because of some
(non-existent) typo.

So instead, we have the parser accept exactly the same syntax as inductive, and in the elabora-
tor we then throw a custom, informative error when a user tries to use unsupported constructs.
In this way, data is truly a drop-in replacement for inductive, syntax-wise, and any errors
will guide the user and explain unsupported syntax.

6.2 Defining the semantics of a command

With the parser extension in place, the next step is to give our commands their semantics, by
defining a corresponding command elaborator. That is, we have to define the Lean code that is
run when a data or codata command is invoked.

We already mentioned that the two main syntax categories are terms and commands. Both have
a slightly different kind of elaborator.
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Elaborating a term means to translate it to an expression of the core logic of Lean (as encoded by
the Expr type). A term elaborator is thus a function Syntax → TermElabM Expr, where Ter-
mElabM is the term elaboration monad. This monad gives (read-only) access to the environment
(i.e., declarations and imports that the term can refer to) and metavariable context (roughly
speaking, a metavariable represents a hole in the program that should be synthesized/inferred
at some point during compilation).

Commands, on the other hand, are not translated but used for their side effect. Hence, the type
of a command elaborator is Syntax → CommandElabM Unit, where the CommandElabM monad
allows for four kinds of side effects:

1. Modifying the environment (e.g., inductive, def, theorem),

2. Logging messages to inform the user (e.g., #check, #print, #eval),

3. Performing IO, and

4. Throwing errors

Although TermElabM neither extends nor is extended by CommandElabM, it is common to elab-
orate terms as part of a command elaborator, e.g., by using liftTermElabM or runTermElabM.

Elaborator registration

Besides defining a function of the appropriate type, an elaborator also needs to be decorated
with a commandElab attribute.

@[commandElab declaration] def elabData : Syntax → CommandElabM Unit

The argument to the attribute, declaration, refers to the parser we defined in the preceding
section, which is how Lean knows to use this elaborator for data and codata commands. Before
going further into the implementation of elabData, we’ll go over some high-level choices that
were made, and their trade-offs.

6.3 Elaborating inductive declarations

For the elaborator, too, we draw inspiration from how inductive is implemented. Elaboration
starts in the generic declaration elaborator, which checks what kind of declaration it is given,
and defers to elabInductive (in case of an inductive declaration). The latter, in turn, calls
inductiveSyntaxToView to transform the Syntax object into a InductiveView and defers to
elabInductiveViews.

This InductiveView is a thin wrapper around the syntax tree, allowing us to refer to the
different parts of an inductive declaration by name, rather than offset, but crucially, still stores,
e.g., constructor types as Syntax objects.
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At this point, auto-bound implicit variables are added, the constructor type terms are elabo-
rated, and type universes are inferred (if needed), to produce an elaborated InductiveType
object. Finally, the InductiveType is wrapped in a Declaration, added to the environment,
and auxiliary constructions are generated with mkAuxConstructions.

Most of this work, besides the steps that modify the environment, is also relevant for data and
codata declarations.

An attempt was made to copy the code of elabInductiveViews (and all private or protected
functions it called) and factor out all work that is relevant for both inductive and data/codata
declarations into a common function. However, it turned out that some elaboration steps needed
to produce the InductiveType object were not desirable for then running the procedure of
chapter 5 on.

For example, type parameters are added to constructor types as implicit arguments during the
elaboration steps.

inductive Foo α β
| mk : α → β → Foo α β

inductive Bar α
| mk : {β : Type} → α → β → Bar α

-- Foo.mk has type `{α: Type} → {β: Type} → α → β → Foo α β`
-- Bar.mk has type `{α: Type} → {β: Type} → α → β → Bar α`

However, we would like to give as input to the procedure just (expressions corresponding to)
types α → β → Foo α β and β : Type → α → β → Bar α. It is, of course, possible to
detect which of the implicit argument are type parameters, by looking at which variables are
passed to Foo, resp. Bar, but this adds complexity.

In the end, the required changes were deemed to require too much engineering effort. Since the
implementation is intended purely as a prototype, a simpler approach was taken: most steps of
the procedure are performed on the level of syntax, rather than on elaborated expressions. The
composition pipeline is an exception: for that step we do have to elaborate the provided terms.

Concretely, a DataView structure was defined as a thin wrapper around a data or codata
syntax tree, just like InductiveView. This structure is then passed around to the different
steps of the procedure, to represent the specification.

6.4 Adding declarations to the environment

A key part of elabData is to generate declarations and add them to the environment. This can
be done in multiple ways, in roughly increasing order of both robustness and complexity:

1. Generate source code as a String

2. Generate a Syntax or InductiveView object
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3. Generate a fully elaborated Declaration object

The first approach, while easy, is too brittle. There exists a function, runFrontend, that can
be used to parse and elaborate the code in a string, but it is designed to be called with the
content of a .lean file of user-written source code, not with code generated during command
elaboration.

The last approach requires full elaboration of all terms involved, which, as discussed in the
previous section, was deemed too complicated for our prototype.

Therefore, the second approach was chosen, relying on syntax quotations to simplify the gen-
eration of syntax trees. Since InductiveView is just a thin wrapper around syntax trees, we
consider it as being part of the syntactic approach.

For example, if we want to define Foo as the string "Bar", this could be done with

let stx : Syntax ← `(def Foo := "Bar")
elabCommand stx

The variable stx stores the parsed syntax tree, and elabCommand is a builtin function Syntax
→ CommandElabM Unit that takes a command syntax tree and calls the elaborator that was
registered for that particular kind of command.

By default, a syntax quotation will try to parse whatever code we write as either a command
or a term. There are situations, however, where we want to build up a command (or term)
incrementally, requiring us to generate syntax that, by itself, is not a complete command (or
term). Imagine, for example, that, given some array [`A, `B, `C] of names, we want to
generate the following inductive type:

inductive Baz
| A : Baz
| B : Baz
| C : Baz

The code to do so might look as follows:

open Lean.Parser.Command in
def inductiveFromNames (names : Array Name) : CommandElabM Unit := do
let Baz := mkIdent `Baz
let ctors ← names.mapM fun name =>
let ctorIdent := mkIdent name

`(ctor|
| $ctorIdent:ident : $Baz:ident

)

elabCommand (←`(
inductive $id:ident
$[$ctors:ctor]*

))

42



Of special interest is the `(ctor| ...) syntax quotation, which specifies that the syntax should
be parsed with the ctor parser.

The shape of the syntax tree produced by a quotation is determined statically, not at runtime,
so the parser cannot examine the values of the ctorIdent and ident anti-quotations, it treats
them as opaque blobs of syntax. We have to help it a bit by specifying the syntax category
explicitly, as :ident. Similarly, in the final inductive syntax quotation, we specify that ctors
is an array of syntax trees of the ctor category.

Remark: With the overhaul we mentioned at the start of this section, syntax categories
are now tracked in the type system, making such hints obsolete in newer versions of Lean.

The $[...]* part is called a splice, and it allows us to use an array of syntax objects whenever
a parser expects a whitespace-separated list of things (as is the case with the many parser
combinator used in the inductive parser).

Take note that we have to create the identifier Baz with the mkIdent function if we want it
to be accessible. By default, Lean’s macros are hygienic (see [20]), meaning that an identifier
Baz written directly into a syntax quotation is not accessible outside the macro, making sure
they don’t accidentally clash or shadow other identifiers at the call-site. The mkIdent function
allows us to opt out of hygiene so that the identifier is just Baz as intended.

6.5 Implementing the elaborator

Now that we have a general idea of the meta-programming system of Lean, and a high-level
implementation strategy, let us briefly examine how elabData, the elaborator for data and
codata is implemented. By design, the steps of the procedure we described in section 5.5 closely
correspond to the different functions that make up the elabData implementation. We will now
describe roughly the same overview, but with a focus on which functions implement which step.

First, makeNonRecursive takes a DataView and returns a new, non-recursive DataView (step 1).
Then, mkShape takes this non-recursive view, defines Shape as an inductive type (step 2) and
calls mkQpf to derive the corresponding polynomial functor and establish its isomorphism with
Shape (step 3).

Continuing, elabQpfComposition is the entry point into the composition pipeline (step 4),
and is used to obtain a syntax tree that represents the Base functor. Nothing is added to the
environment at this step.

Depending on which command was called, mkType will take either the fixpoint or cofixpoint of
Base, and add the result to the environment (step 5). It will do so first in the uncurried form, as
F.Uncurried, and then define F as @TypeFun.curried n F.Uncurried, where F is whatever
identifier the user supplied and 𝑛 is the arity. Finally, mkConstructors will derive the expected
constructor functions (step 6)
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Chapter 7

Limitation and future work

As mentioned before, the implementation is not yet complete. This chapter will explain some
limitations in what is implemented so far, and discuss directions for future implementation
efforts.

7.1 Universe polymorphism

Recall from section 5.1 that the procedure starts with synthesizing a head type, roughly like
the following:

inductive HeadT
| CtorA : HeadT
| CtorB : HeadT

The names and number of constructors will differ, but crucially Lean will generate a non universe
polymorphic type. That is, HeadT lives in Type 0, and only Type 0. As a result, any QPF defined
with data/codata will not be universe polymorphic. Recall the running example of lists,

data List α
| nil : List α
| cons : α → List α → List α

The inductive analogue of this definition is polymorphic, but because of this limitation, List
defined in terms of data is not.

The solution is fairly simple, we can explicitly state that we want HeadT to be polymorphic—
noting that the child family of types is already universe polymorphic because of the use of PFin2
(see sections 4.4 and 5.1).

inductive HeadT : Type u
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| CtorA : HeadT
| CtorB : HeadT

However, there is a bug in the version of Lean we’re using (nightly-2022-04-28) which
causes it to reject the above. Newer versions of Lean 4 don’t exhibit this bug, so it is easy to
remove this limitation after updating our code to be compatible.

7.2 Characteristic theorems

The formalizations of Avigad et al. provide (co)recursion principles, such as Fix.drec and
Cofix.corec. However, because of how these are defined, their signature is quite obscure and
not directly suitable for end-users.

#check @MvQpf.Fix.drec _ List.Internal _
-- {α : TypeVec 0} →
-- {β : MvQpf.Fix List.Internal α → Type} →
-- ((x : List.Internal (α :::� Sigma β)) →
-- β (MvQpf.Fix.mk ((TypeVec.id ::: Sigma.fst) <$$> x))
-- ) →
-- (x : MvQpf.Fix List.Internal α) → β x

In contrast, the inductive version of List defines its recursion principle as

def List.rec {α : Type _} {motive : QpfList α → Sort _} :
motive QpfList.nil

→ ((head : α) → (tail : QpfList α) → motive tail
→ motive (QpfList.cons head tail))

→ (t : QpfList α)
→ motive t

The latter recursion principle is a lot easier to read by comparison. To make our datatypes
behave as similarly to Leans native inductive types, we should generate the same recursion
principles as Lean would. In this particular case, the second recursion principle is fairly easily
defined in terms of MvQpf.Fix.drec.

def List.rec {α : Type _} {motive : QpfList α → Sort _} : /- ... -/ :=
fun nil cons => MvQpf.Fix.drec (fun x =>
match x with
| .nil => nil
| .cons head tail => cons head tail.fst tail.snd

)

However, once we involve nested induction, the recursion principle generated by Lean becomes
more complex.
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inductive Tree (α : Type) where
| node : α → List (Tree α) → Tree α

#check @Tree.rec
-- {α : Type} → {motive_1 : Tree α → Sort u_1} →
-- {motive_2 : List (Tree α) → Sort u_1} →
-- ((a : α) → (a_1 : List (Tree α))
-- → motive_2 a_1 → motive_1 (Tree.node a a_1)) →
-- motive_2 [] →
-- ((head : Tree α) → (tail : List (Tree α))
-- → motive_1 head → motive_2 tail → motive_2 (head :: tail)) →
-- (t : Tree α) → motive_1 t

More work is required to determine how we can synthesize such specialized recursion principles
from a datatype specification with nested induction, and it should be investigated how mixed
induction/coinduction interacts with such recursors.

Similarly, we should generate no confusion theorems; proving that different combinations of
constructors produce different elements.

7.3 User-friendly (co)recursion and (co)induction

If we just want to do structural recursion on a single variable, it’s relatively easy to do so directly
in terms of the fundamental recursion principle. For example, determining the length of a list.

def List.length : List α → Nat :=
MvQpf.Fix.rec fun as => match as with
| .nil => 0
| .cons a (as : Nat) => as + 1

It is important that Lean can statically determine that recursive functions terminate for all
arguments.1 For this example, termination is straightforward, but Lean also has a sophisticated
equation compiler that makes it easy to define functions that recurse on multiple variables, with
support for termination hints, to help when the system fails to automatically prove termination.

It would be interesting to see if the existing equation compiler mechanisms can be re-used to
also provide a high-level way of defining recursive functions for QPFs, so that users can write
recursive functions on QPF-based datatypes in the same as they would for a regular inductive
type.

The dual of termination of recursive functions is productivity of corecursive functions. Guarded
corecursion is the trivially productive analogue of structured recursion, and supporting an easy
syntax for defining guarded corecursive functions would be a great first step. Further steps
might focus on a more general strategy for proving productivity of non-guarded corecursion,
such as [21] did for Isabelle.

1Lean can admit non-terminating functions when they’re marked partial, but partial functions are not allowed
to be used in proofs
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Chapter 8

Conclusion

In this thesis, I presented the procedure behind, and implementation of, a (co)datatype package
for Lean 4. The package enables users to ergonomically define coinductive types to Lean 4 in a
compositional way, with support for mixed induction, coinduction, and quotients.

The package is based on the category theoretical notion of a quotient of polynomial functor.
An existing formalization of QPFs and their constructions was ported from Lean 3 to Lean 4.
The updated formalizations will eventually be made available as part of the mathlib4 project,
the port of Leans community-maintained, comprehensive mathematics library.

The prototype implementation makes extensive use of Leans meta-programming system. Specif-
ically, the data and codata commands accept the same syntax as Leans standard inductive
type specifications. We also discuss the details of elaborating both commands in Lean, and
weighed the trade-offs involved with synthesizing new declarations.

That being said, defining a type is only part of the equation. More work is needed to simplify
the definition of (co)recursive functions. We have briefly outlined some strategies that future
work might pursue.
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