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Abstract

We present sound and complete sequent calculi for the modal mu-calculus with converse modalities,
aka two-way modal mu-calculus. Notably, we introduce a cyclic proof system wherein proofs can be
represented as finite trees with back-edges, i.e., finite graphs. The sequent calculi incorporate ordinal
annotations and structural rules for managing them. Soundness is proved with relative ease as is the
case for the modal mu-calculus with explicit ordinals. The main ingredients in the proof of completeness
are isolating a class of non-well-founded proofs with sequents of bounded size, called slim proofs, and a
counter-model construction that shows slimness suffices to capture all validities. Slim proofs are further
transformed into cyclic proofs by means of re-assigning ordinal annotations.

1 Introduction

The modal µ-calculus, introduced in its present form by Kozen [11], is an extension of basic modal logic with
least and greatest fixpoint operators. These fixpoints have a recursive flavour that breaks the locality of first-
order logic. Notably, the calculus can express all bisimulation-invariant monadic second-order properties [9].
As a consequence, well-studied modal logics such as the temporal logics LTL, CTL, CTL∗ and the program
logic PDL can be translated into the µ-calculus. Many theoretical results on the modal µ-calculus have been
established through its connection with automata theory and the theory of infinite games [6], the central
observation being that every formula can be represented as an alternating tree automaton, and vice versa,
such that the automaton accepts an infinite tree if and only if the tree is a model of the formula [8, 20].

The two-way modal µ-calculus, also known as the full µ-calculus, is an extension of the µ-calculus with
modal operators for converses of accessibility relations. Thus, in addition to the standard modalities [a]
and 〈a〉 that quantify over a-successors (states reachable via a single a-labeled transition), the two-way µ-
calculus includes modalities [ă] and 〈ă〉 quantifying over a-predecessors. A central result, due to Vardi [19],
is that the satisfiablity problem for the two-way µ-calculus is decidable in exponential time. To prove this
result, Vardi introduces a notion of (alternating) two-way automaton and shows that for every formula of
the two-way µ-calculus there is a two-way automaton that accepts an infinite tree if and only if the tree
encodes a model of the formula. The decidability result then follows with a construction that provides for
every two-way automaton an equivalent nondeterministic parity tree automaton. Vardi’s construction does
not induce a translation of two-way µ-calculus formulas into equivalent µ-calculus formulas. The translation
merely preserves satisfiability and validity. Indeed, two-way µ-calculus is strictly more expressive than its
‘one-way’ fragment, for instance it lacks the finite model property [17].

We present a sound and complete sequent calculus for the two-way µ-calculus. The proof theory of the
logic appears not to have been extensively explored. It is still an open question whether the calculus is
complete with respect to a Hilbert-style axiomatisation that includes Kozen’s induction rule for the fixpoint
operators. A complete finitary Hilbert-style axiomatisation of “flat” fragments is given in [5]. A sound and
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complete infinitary proof system for the full calculus is provided in [2]. The system we present here is finitary.
More precisely, proofs are represented as finite (cyclic) graphs with a local correctness criterion on simple
cycles.

The proof system we introduce is a variant of systems developed for the modal µ-calculus by Dam and
Gurov [4] and for the first-order µ-calculus by Dam and Sprenger [15]. It further incorporates ideas developed
by Jungteerapanich [10] and Stirling [16], using a derivation rule influenced by the Safra-construction for ω-
automata to formulate the correctness criterion on cycles. This approach has been utilised in [1] to introduce
a path-based cyclic proof system for first-order µ-calculus that is complete for the fragment corresponding
to the one-way µ-calculus.

The distinguishing feature of the proof systems developed by Dam and Gurov is to work in an extended
syntax with explicit variables referring to ordinal approximants of least fixed-points, permitting the expres-
sion of propositions like “the least fixed point of the map x 7→ ϕ(x) is reached at a smaller ordinal than the
least fixed point of x 7→ ψ(x)”. This added expressive power plays a crucial role in our completeness proof,
allowing us to build small saturated sets of formulas, called tiles, from which a tree-like counter-model for
an unprovable formula is constructed step by step. The added difficulty in the counter-model construction
(compared to the modal µ-calculus) is that what is true at a vertex in the tree-model depends on both
successors and predecessors of the vetex, a condition that needs to be taken into account in the saturation
process.

The heart of Vardi’s decision procedure for the two-way µ-calculus is the use of auxiliary second-order
variables as part of an extended alphabet for simulating non-determinism, allowing the simulating automaton
to guess partial information about “loops” that can occur as a result of an alternating two-way automaton
traversing the tree in both directions, i.e., ancestor to descendant or descendant to ancestor. These variables
can then be projected away. In our setting, the “guessing” happens in the form of cuts on formulas that
encode (via ordinal variables) information about fixpoint unfoldings. We do not know whether our system
is complete without the cut rule. A crucial part of our completeness argument, however, shows that the cut
formulas can be chosen to belong to a relatively small finite set. Therefore, although the proof system is not
cut-free, it does support automatic proof search.

Outline The structure of this paper is as follows: In Section 2 we discuss the necessary preliminaries
related to the two-way µ-calculus and annotated formulas. Section 3 contains the definition of our cyclic
proof system. In Section 4 we prove that this system is sound. The completeness proof consists of two parts:
In Section 5 we first show completeness for a particular class of non-wellfounded proofs, which we call slim
proofs. In Section 6 we then show that every slim proof can be transformed into a cyclic proof in our system.

2 Two-way µ-calculus

The syntax of the two-way µ-calculus makes use of the following non-logical symbols: a countably infinite
set Prop of propositional constants or proposition letters (denoted p, q, p0, . . .), with an involution p 7→ p; a
countably infinite set Act of action symbols (denoted a, b, a0, . . .), with an involution a 7→ ă; and a countably
infinite set FV of fixed point variable symbols (denoted x, y, z, . . .).

It will be convenient for us to work with formulas that are in negation normal form. That is, the set of
(plain) two-way µ-calculus formulas is given by the following grammar.

ϕ := p | p | x | ϕ ∧ ϕ | ϕ ∨ ϕ | [a]ϕ | 〈a〉ϕ | µxϕ | νxϕ

We will need the following basic syntactic definitions. The set Sfor(ϕ) of subformulas of ϕ is defined
as usual. The set of variables that occur in ϕ is denoted as Var(ϕ). Since the fixpoint operators µ and
ν bind the variables that they occur with, we can define in a standard way the notions of free and bound
variables; a sentence is a formula without free variables. The unfolding of a fixpoint formula σxϕ is the
formula ϕ[σxϕ/x] that we obtain by substituting σxϕ for x in ϕ; here we ensure that this substitution
never causes variable capture (so that no renaming of variables is needed). The closure Clos(Γ) of a set Γ of
formulas is defined as the smallest set of formulas that is closed under taking boolean subformulas, modal
subformulas, unfoldings of fixpoint formulas, and single negations. It is well-known that for every formula ϕ
the closure Clos({ϕ}) is a finite set.
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The semantics of formulas is given in terms of models M = (W,R, V ), where W is any set, R provides
for every a ∈ Act a relation Ra ⊆W ×W such that Ră is the converse Ră = {(v, w) | (w, v) ∈ Ra} of Ra for
all a ∈ Act, and V : Prop → PW is any function. The elements of W are called worlds, the relation Ra is
the accessibility relation for a and the function V is the valuation function.

The semantic clauses for the two-way µ-calculus are completely standard. The boolean and modal
connectives are interpreted as in modal logic, where the relation Ra is used for the modality 〈a〉. The
semantic value of the fixpoint formulas µxϕ and νxϕ are the least and greatest fixponts of the monotone
map that describes the interpretation of ϕ as depending on an interpretation of the variable x. A precise
formulation of the semantic clauses is given in the following subsection. The two-way µ-calculus introduced
here is a fragment of the language of annotated formulas that is discussed in the following subsection.

2.1 Annotated formulas

The proof systems that we shall introduce here admit formulas with quantified versions of the fixpoint
operators, involving a countable set OV of ordinal variables (denoted κ, λ, κ0, . . .). Since we will also allow
quantifiers over these ordinal variables, the formulas that we work with will be of the following form:

ϕ := p | p | x | ϕ ∧ ϕ | ϕ ∨ ϕ | [a]ϕ | 〈a〉ϕ | µxϕ | νxϕ | µxκ ϕ | νxκ ϕ | ∀κ < λϕ | ∃κ < λϕ

A formula which does not contain any ordinal variables, i.e., a formula of the two-way modal µ-calculus,
is called plain. The underlying plain formula of a formula ϕ, denoted u(ϕ), is the plain formula obtained
from erasing all ordinal annotations and quantifiers from ϕ:

u(x) = x u(ϕ ∧ ψ) = u(ϕ) ∧ u(ψ) u([a]ϕ) = [a]u(ϕ) u(ηxκϕ) = ηx u(ϕ) u(∀λ < κϕ) = u(ϕ)

u(p) = p u(ϕ ∨ ψ) = u(ϕ) ∨ u(ψ) u(〈a〉ϕ) = 〈a〉u(ϕ) u(ηxϕ) = ηx u(ϕ) u(∃λ < κϕ) = u(ϕ)

The semantics of this language can be defined as follows. If f : PW → PW is a monotone function on the
powerset of W we identify two ways of iterating f along ordinals: fκ> ∈ PW denotes the result of iterating
f κ-many times on the starting from W , and fκ⊥ ∈ PW the κ-th iterant of f starting from ∅:

fκ> =
⋂
ξ<κ

f(fξ>) fκ⊥ =
⋃
ξ<κ

f(fξ⊥)

Note, f0
> = W and f0

⊥ = ∅. Given a model M = (W,R, V ), an ordinal assignment is a map o assigning an
ordinal o(κ) to each ordinal variable κ. Then the meaning [[ϕ]]oM of a formula ϕ in this model and under this
assignment is inductively defined as follows. We write [[λx.ϕ]] to express the monotone map Z 7→ [[ϕ]]oM [x 7→Z]

on PW .

• For a propositional variable p, [[p]]oM = V (p).

• Standard clauses for booleans and modalities.

• [[µxκ.ϕ]]oM is the o(κ)-th iterant of [[λx.ϕ]] on ∅, namely [[µxκ.ϕ]]oM = [[λx.ϕ]]
o(κ)
⊥ .

• [[νx.ϕκ]]oM is the o(κ)-th iterant of [[λx.ϕ]] on W , namely [[νxκ.ϕ]]oM = [[λx.ϕ]]
o(κ)
> .

• [[µx.ϕ]]oM is the least fixpoint [[λx.ϕ]], namely [[µx.ϕ]]oM =
⋃
ξ[[λx.ϕ]]ξ⊥.

• [[νx.ϕ]]oM is the greatest fixpoint of [[λx.ϕ]], namely [[νx.ϕ]]oM =
⋂
ξ[[λx.ϕ]]ξ>.

• [[∃λ < κ.ϕ]]oM = {u ∈W | ∃ξ < o(κ) : u ∈ [[ϕ]]
o[λ 7→ξ]
M }.

• [[∀λ < κ.ϕ]]oM = {u ∈W | ∀ξ < o(κ) : u ∈ [[ϕ]]
o[λ 7→ξ]
M }.
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We write M,u �o ϕ if u ∈ [[ϕ]]oM .
We think of negation as an operation on sentences, extending the involution on proposition letters, and

determined by connective duality. Inductively we define the operation ϕ 7→ ϕ for all formulas:

x = x ϕ ∧ ψ = ϕ ∨ ψ [a]ϕ = 〈a〉ϕ µxκϕ = νxκ ϕ ∀λ < κϕ = ∃λ < κϕ

ϕ ∨ ψ = ϕ ∧ ψ 〈a〉ϕ = [a]ϕ νxκϕ = µxκ ϕ ∃λ < κϕ = ∀λ < κϕ

It is routine to show that on the set of sentences this operation indeed behaves as classical negation. Fur-
thermore, observe that this operation is an involution on the set of formulas, and that the negation of a
plain formula is plain.

2.2 Subsumption, well-annotated formulas and active variables

In this subsection we define some notions that are not needed in the definition of the proof systems, but that
do play a key role in our reasoning about the properties of the proof system.

The subsumption order <ρ associated with a formula ρ is the preorder on Var(ρ) defined by putting
x <ρ y if ρ has a subformula σyψ of which x is a free variable. Observe that the subsumption order of a
fixpoint formula is identical to that of its unfolding. By taking, if needed, alphabetic variants (i.e., renaming
the bound variables in ρ) we may always assume that the subsumption order of a given formula is a strict
partial order. It may occasionally be convenient to make the following assumption which is possible without
loss of generality.

Convention 2.1. In some parts of this paper we will restrict attention to a fixed finite set Γ0 of plain
formulas in which distinct occurrences of fixed point quantifiers are associated with distinct variables, and
its closure. We then may assume a strict partial order < on the set of fixpoint variables occurring in Γ0

which is such that < ⊇ <ϕ ∩ (Var(ϕ)×Var(ϕ)), for all ϕ ∈ Clos(Γ0). The order < will be referred to as the
subsumption order.

Definition 2.2. An annotation is a partial function from fixed point variables to ordinal variables. Let
x0, x1, . . . enumerate the fixed point variables in decreasing order with respect to subsumption. Given an
annotation o and n ∈ ω, o � n is the restriction of o to domain {xi | i < n}. Given a plain formula ϕ and
annotation o : FV→ OV define a (nonplain) formula ϕo as follows:

xo = x (ψ ∧ θ)o = ψo ∧ θo ([a]ϕ)o = [a]ϕo

po = p (ψ ∨ θ)o = ψo ∨ θo (〈a〉ϕ)o = 〈a〉ϕo
(ηxiψ)o =

{
ηx

o(xi)
i ψo�i, if xi ∈ domo,

ηxiψ
o�i, otherwise.

Definition 2.3. A formula ϕ is well-annotated if there exists an annotation o such that ϕ = u(ϕ)o. The
annotation o satisfying this equation with smallest domain is named oϕ. ϕ is positively annotated if it is well-
annotated and dom(oϕ) consists only of ν-fixed point variables of ϕ. The negation of a positively annotated
formula is said to be negatively annotated.

Note that plain formulas are positively annotated, and that well-annotated formulas do not contain
quantifiers.

Definition 2.4. Given a set of formulas Γ, we say that an ordinal variable κ is active in Γ if κ occurs free
in some positively annotated formula in Γ. The set of active variables in Γ is denoted as Act(Γ).

2.3 Game semantics

In this section we briefly review the game-theoretic semantics for the two-way µ-calculus; this will prove to
be a useful approach in the completeness argument further on.

The evaluation game E(M,ϕ) of a formula ϕ on a model M = (W,R, V ) is a infinite board game, the
players of which we shall call Verifier and Falsifier. The positions of the game are all pairs of the form (w,ψ),
where w ∈W and ψ ∈ Clos(ϕ). The player to move at a given position and the moves at his or her disposal
are listed in Table 1.
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Position Player Moves
(w, p) for w ∈ V (p) Falsifier ∅
(w, p) for w /∈ V (p) Verifier ∅
(w, p) for w ∈ V (p) Verifier ∅
(w, p) for w /∈ V (p) Falsifier ∅

(w,ϕ ∧ ψ) Falsifier {(w,ϕ), (w,ψ)}
(w,ϕ ∨ ψ) Verifier {(w,ϕ), (w,ψ)}
(w, µxϕ) − {(w,ϕ[µxϕ/x])}
(w, νxϕ) − {(w,ϕ[νxϕ/x])}
(w, 〈a〉ϕ) Verifier {(v, ϕ) | wRav}
(w, [a]ϕ) Falsifier {(v, ϕ) | wRav}

Table 1: The evaluation game E(M,ϕ)

Any match or play of this game consists of a (finite or infinite) sequence (wn, ϕn)n<κ of positions (with
κ ≤ ω). A finite match, i.e., with κ < ω, is won by a player if it is their opponent who is supposed to move
at the last position (wκ−1, ϕκ−1), while there is no move available.

To determine the winner of an infinite match (wn, ϕn)n<ω we observe that the induced sequence (ϕn)n<ω
of formulas is an infinite trace, that is: for every i < ω, either ϕi is a fixpoint formula and ϕi+1 is its
unfolding, or else ϕi+1 is a direct (modal or boolean) subformula of ϕi. It is well known that for every
infinite trace τ = (ϕn)n<ω there is a unique formula that occurs infinitely often on τ and is a subformula of
ϕn for cofinitely many n. We will call this formula, which must be a fixpoint formula, the most significant
formula of τ , and we declare Verifier (Falsifier) to be the winner of an infinite match (wn, ϕn)n<ω if the
most significant formula of the induced trace (ϕn)n<ω is a ν-formula (a µ-formula, respectively). It is well
known that this winning condition can be formulated as a parity condition and that consequently the game
E(M,ϕ) has positional determinacy.

The adequacy of this evaluation game lies in the fact that a plain formula ϕ holds at a world w in a
model M iff Verifier has a winning strategy in the evaluation game E(M,ϕ), starting from position (w,ϕ).

3 Proof systems

In this section we first define the finitary, cyclic proof system that is the subject of this paper and then
discuss infinitary, non-wellfounded proofs that are needed for our completeness argument.

3.1 Sequents and constraints

The sequents in our proof system contain a constraint that describes the relative size of ordinal variables
and keeps track of the order in which they are introduced.

Definition 3.1. A constraint is a tuple O = (O,<, /) where

1. O is a finite set of ordinal variable symbols, called the domain,

2. < is an irreflexive, transitive and upwards linear ordering < (so (O,>) is a finite forest), called the
descendant relation,

3. / is a total linear order on O, called the age relation, consistent with the ancestor relation: κ < λ
implies λ / κ for all κ, λ ∈ O.

Given a constraint O = (O,<O, /O), we write OV(O) for O, the set of ordinal variables appearing in O.
When there is no risk of confusion, we identify the constraint O with the set OV(O), writing κ ∈ O rather
than the formally precise κ ∈ OV(O). The reflexive closure of <O is denoted ≤O. We write O ` κ � λ in
place of κ�O λ where � is one of <, ≤ or /.
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Definition 3.2. A sequent is an expression O : Γ where O is a constraint and Γ is a finite set of formulas
whose free ordinal variables are elements of O. We sometimes write a sequent O : Γ as just Γ, denoting O
by O(Γ).

Given a constraint O and κ ∈ O, a descendant of κ is any λ ∈ O satisfying O ` λ < κ, in which case κ
is called an ancestor of λ (in O). We say λ is a child of κ, or that κ is the parent of λ, if O ` λ < κ and
there is no ρ ∈ O such that O ` λ < ρ and O ` ρ < κ. Every κ ∈ O has at most one parent, but may have
multiple children. If O ` κ / λ we say that κ is older than λ (relative to O).

A substitution on ordinal variables is simply a map σ : OV → OV. With respect to a constraint O we
call a substitution σ increasing if λ ≤O σ(λ) for all λ, and decreasing if σ(λ) ≤O λ for all λ.

For later use we introduce two auxiliary relations on a constraint O. First of all, we say that λ is to the
left of ρ if λ and ρ are incomparable with respect to ≤O and O ` λ′ / ρ′, where λ′ is the <-greatest ancestor
of λ that is not an ancestor of ρ and ρ′ is the <-greatest ancestor of ρ that is not an ancestor of λ. We then
define λ ≺O ρ if λ <O ρ or λ is to the left of ρ, and we sometimes denote λ <O ρ as O ` λ ≺ ρ. As we will
see later, ≺O is in fact a strict linear order.

To simplify notation we introduce a special symbol ? and write o(x) = ? for an annotation o if x /∈ dom(o).
Given an ordinal constraint O, we extend the order <O to O∪{?} by setting κ <O ? for every ordinal variable
κ in O. Note that ≺O, with its definition extended to incorporate ?, is still a linear order over O ∪ {?} and
κ ≺O ? for every ordinal variable κ in O.

The semantics of sequents is given as follows.

Definition 3.3. Let M = (W,R, V ) be a model, A sequent O : Γ holds in M if for all ordinal assignments
o such that o(κ) < o(λ) whenever κ <O λ we have that

⋃
{[[ϕ]]oM | ϕ ∈ Γ} = W . We say that an ordinal

assignment o refutes O : Γ in M if o(κ) < o(λ) whenever κ <O λ, but
⋃
{[[ϕ]]oM | ϕ ∈ Γ} 6= W .

3.2 Rules and derivations

The sequent calculus we introduce makes use of three operations on constraints: The operation denoted
O + λ extends O by a fresh variable λ as the youngest element and makes no change to the descendant
relation. As a variation, in O +κ λ the variable λ is also added as a child of κ. That is, for O = (O,<, /),
λ /∈ O and κ ∈ O:

O + λ = (O ∪ {λ}, <, / ∪ {(ρ, λ) | ρ ∈ O})
O +κ λ = (O ∪ {λ}, < ∪ {(λ, κ′) | κ ≤ κ′}, / ∪ {(ρ, λ) | ρ ∈ O})

In both the above constructions it is a requirement that λ does not occur already in O.
The third construction is the restriction of a constraint to a set of ordinal variables. Given O as above

and V ⊆ O, we define O \ V to be the constraint

O \ V = (O′, < ∩ (O′ ×O′), / ∩ (O′ ×O′)) where O′ = O \ V

Using these operations we can define the inference rules of our sequent calculus. These are presented in
Table 2, where we use the expression O(λ < κ) to refer to a constraint O such that O ` λ < κ. A tree
constructed by applications of these rules, and labelled with sequents and names of the rules applied, will
be called a derivation. We shall reserve the term proof for derivations satisfying one of several syntactic
criteria guaranteeing validity, defined in the following sections. Given a derivation Π and a vertex m in Π,
the sequent labelling m is denoted Π(m).

Note that these rules feature no side conditions, besides the obvious constraint that all sequents involved
in a rule instance must be bona fide sequents. This means that the ∀-rule satisfies the usual eigenvariable
condition: the variable λ appearing in the premiss cannot occur in the conclusion. If it had occurred in some
formula, then by definition of a sequent it should also appear in the constraint, meaning that the constraint
O +κ λ appearing in the premiss would not be well-defined. A similar eigenvariable constraint holds for the
rule ν(κ), and for the same reason. In the same vein, observe that in an application of lw, for the premise
to be a well-formed sequent, no ordinal variable in the set V may occur free in Γ.

The reader may have noticed that the cut rule also has a hidden restriction due to the definition of a
sequent: the cut formula will never contain an ordinal variable that does not occur in the conclusion. This
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>
O : p, p

O : Γ, ϕ O : Γ, ψ
∧

O : Γ, ϕ ∧ ψ

O + κ : Γ, νxκψ
κ : x

O : Γ, νxψ

O : Γ, ϕ, ψ
∨

O : Γ, ϕ ∨ ψ

O : Γ, ϕ[ηxϕ/x]
η ∈ {µ, ν}

O : Γ, ηxϕ

O : [ă]
∨

Γ, ϕ,Ψ
mod

O : Γ, [a]ϕ, 〈a〉Ψ

O +κ λ : Γ, ϕ[νxλϕ/x]
ν(κ)

O : Γ, νxκϕ

O(λ < κ) : Γ, ϕ[µxλϕ/x]
µ(κ)

O(λ < κ) : Γ, µxκϕ

O +κ λ : Γ, ϕ[λ/ρ]
∀

O : Γ,∀ρ < κ : ϕ

O(λ < κ) : Γ, ϕ[λ/ρ]
∃

O(λ < κ) : Γ,∃ρ < κ : ϕ

O \ V : Γ
lw

O : Γ

O : Γ
rw

O : Γ, ϕ

O : Γ, ϕ O : Γ, ϕ
cut

O : Γ

Table 2: Rules of sequent calculus

is not as restrictive as it may at first seem. Cuts can still be used to introduce new ordinal variables in
proof search, since the cut formulas may contain quantifiers which can then be instantiated, such as in the
following:

...

O +κ λ : Γ, ϕ[λ/ρ]

O : Γ,∀ρ < κ : ϕ

...

O : Γ,∃ρ < κ : ϕ
cut

O : Γ
The calculus does not feature a rule for introducing an unapproximated least fixed point from an approximant,
for instance,

O : Γ, µxκ.ϕ
µ

O : Γ, µx.ϕ

Although sound, the above rule is not necessary for a complete sequent calculus. Without such a rule,
derivations have the property that explicitly approximated least fixed points only arise from premises of the
cut rule.

Proposition 3.4. Let R be an instance of any of the derivation rules except cut, with conclusion O : Γ. If
every formula in Γ is well-annotated, then every formula appearing in a premise of R is well-annotated.

Proof. By inspection of the proof rules.

Further on we shall frequently need to employ the following minimization rule.

O : Γ,∃λ < κ : ϕ[µxλψ/z] O +κ κ0 : Γ, ϕ[νxκ0ψ/z]
min

O : Γ

This rule is easily derived via a cut:

O : Γ,∃λ < κ : ϕ[µxλ.ψ/z]

O +κ κ0 : Γ, ϕ[νxκ0ψ/z]
∀

O : Γ,∀λ < κ : ϕ[νxλψ/z]
cut

O : Γ

In the sequel we shall assume that the minimization rule is a rule of our proof systems.
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3.3 Cyclic proofs

We now present our main notion of a valid proof, which is based on ‘cyclic’ derivations, which can be seen
as finite representations of infinite but regular, non-wellfounded proof trees. It is straightforward to show
that having no restrictions on allowed cycles trivialises the calculus, allowing any sequent to be derived by
a cyclic proof. The notion of cyclic proof therefore comes equipped with a condition on cycles, called the
correctness criterion, ensuring only valid sequents are derivable. First, we define more precisely what is
meant by a “cycle”.

Definition 3.5. A derivation with back-edges is a pair (Π, c) where Π is a derivation and c is a partial
function from the leaves of Π to inner nodes of Π, called the companion function, such that that for every
leaf l ∈ domc,

• l and c(l) are labelled by the same sequent, i.e., Π(l) = Π(c(l)), and

• l is an ancestor of c(l).

We call c(l) the companion of l.

Note that our requirement that a leaf l is labelled by the same sequent as its companion c(l) entails
more than just the same formulas occurring in the leaf and companion. It also implies that the constraints
are identical, which means in particular that the relative ages of ordinal variables in leaf and companion
are the same. This plays a dual role. On one hand, it facilitates proof search, and will be used extensively
in our completeness argument. For this purpose however, it is not clear that the age ordering needs to be
incorporated directly into the definition of a valid proof. We shall see that, in fact, the age ordering also
plays a crucial role in ensuring that the proof system is sound. It is for this reason that it is explicitly part
of the proof system, rather than just an auxiliary technical device used to prove completeness.

It remains to formulate a criterion for distinguishing valid cyclic proofs from invalid derivations. For
our purposes, the correctness criterion can be formulated as a particular instance of the structural rule lw
occurring on the path between companion and leaf. We thus begin with isolating these special instances of
weakening, henceforth called resets.

Definition 3.6. The reset rule is any instance of constraint weakening of the form

O \K : Γ
reset(κ)

O : Γ

such that

1. κ ∈ O and κ does not occur in Γ;

2. K is the set of children of κ in O.

Note, since derivations are assumed to be well formed, the children of κ, namely the variables in K above,
do not occur in Γ.

Definition 3.7. Let (Π, c) be a derivation with back-edges and l ∈ domc be labelled by a sequent O : Γ.
An ordinal variable κ ∈ O is a reset variable for l if

1. κ occurs in the constraint at every vertex on the path from c(l) to l;

2. An instance of reset(κ) occurs on this path.

A leaf of Π is successful if some variable is a reset variable for the leaf.

We can now stipulate the correctness criterion for cyclic proofs.

Definition 3.8. A cyclic proof is a finite derivation with back-edges (Π, c) such that domc contains all
non-axiomatic leaves of Π and every leaf in domc is successful. We write ` O : Γ to express the existence of
a cyclic proof with root labelled by O : Γ.

Given a plain formula ρ, a cyclic proof of ρ is a cyclic proof with end sequent ∅ : ρ, where ∅ denotes the
empty constraint, i.e. the unique constraint in which the underlying set of ordinal variables is empty. We
write ` ρ to say there exists a cyclic proof of ρ.
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>
∅ : p, p

lw, rw
κκ0 : p, p, 〈a〉Y

>
∅ : p, p

lw, rw
κκ0κ1 : p, p, 〈a〉Y

>
∅ : p, p

lw, rw
κκ1κ0 : p, p, 〈a〉Y

∗
κκ0 : Y

κ0 , Y
reset(κ)

κκ1κ0 : Y
κ0 , Y

mod, rw
κκ1κ0 : [a]Y

κ0 , p, 〈a〉Y
∧,∨

κκ1κ0 : p ∧ [a]Y
κ0 , p ∨ 〈a〉Y

ν(κ1), µ
κκ1 : Y

κ1 , Y
reset(κ)

κκ0κ1 : Y
κ1 , Y

mod, rw
κκ0κ1 : [a]Y

κ1 , p, 〈a〉Y
∧,∨

κκ0κ1 : p ∧ [a]Y
κ1 , p ∨ 〈a〉Y

ν(κ0), µ
κκ0 : Y

κ0 , Y (∗)
mod, rw

κκ0 : [a]Y
κ0 , p, 〈a〉Y

∧,∨
κκ0 : p ∧ [a]Y

κ0 , p ∨ 〈a〉Y
ν(κ), µ

κ : Y
κ
, Y

y : κ
∅ : Y , Y

Figure 1: Cyclic proof of the sequent µy. p ∨ 〈a〉y, µy. p ∨ 〈a〉y. The relation of non-axiomatic leaves to
companions is denoted by ∗. The proof employs the following abbreviations: Y and Y κ denote the formulas
µy. p ∨ 〈a〉y and µyκ. p ∨ 〈a〉y respectively; constraints are abbreviated to κ for ({κ}, ∅, ∅), κκ′ for κ +κ κ

′

and κκ′κ′′ for (κκ′) +κ′ κ
′′.

Examples of cyclic proofs are given in Figures 1 and 2. The former presents a simple case of excluded
middle for the formula µy. p∨ 〈a〉y. The proof involves a single non-axiomatic leaf, denoted by ∗. Along the
path from this leaf to its companion (also marked ∗), the variable κ appears in every constraint and is reset.
Hence, this path is successful. A cyclic proof of the formula p→ νx. [ă]x ∧ µy. p ∨ 〈a〉y is given in Figure 2.
This formula expresses the property that for every ă-path there is a ‘returning’ a-path. The proof in Figure 2
also displays a single non-axiomatic leaf whose companion is the inner sequent marked as †, though each
of the five omitted subproofs of Y , Y also involves an internal leaf-companion pair as per Figure 1. As the
variable κ occurs in the constraint of every sequent along the connecting path, this leaf is successful.

For certain proofs in the following, it will be convenient to consider a conditional notion of cyclic proof,
i.e., cyclic proofs from assumptions. For this notion of proof it is important to restrict the application of
structural rules on paths from the conclusion to assumptions.

Definition 3.9. Let S ∪ {O : Γ} be a set of sequents. A (cyclic) proof of O : Γ from assumptions S is a
finite derivation with back-edges (Π, c) such that every leaf l ∈ domc is successful and every leaf l /∈ domc
is either an axiom, or else (i) it is labelled by a sequent in S, and (ii) there is no application of lw (including
reset rules) on the path from the root of Π to l.

We are now ready to state our main result:

Theorem 3.10 (Soundness and Completeness). Let ρ be any plain formula of the two-way µ-calculus. Then
ρ is valid if, and only if, it has a cyclic proof.

The remainder of the paper is devoted to proving Theorem 3.10. Section 4 culminates in the proof of
soundness. Completeness is the subject of Sections 5 and 6.

The proof of completeness of the cyclic proof system relies on completeness of non-wellfounded proofs,
where the correctness condition on infinite branches is stipulated in terms of infinite descending chains
of ordinal variables in the controls of sequents along infinite paths. In their most general formulation,
completeness for such proofs is easy to prove, but not very helpful towards proving the main theorem since
non-wellfounded proofs can be highly non-regular without any bound on the size of sequents in a proof tree.

Therefore, we isolate a sub-class of non-wellfounded proofs, called slim proofs, which, although not finitely
presentable in general, are in an important sense closer to the finitary notion of provability: in slim proofs,
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>
∅ : p, p

rw, µ
∅ : p, Y

...

κκ0 : [a]Y , Y

...

∅ : Y , Y
mod

∅ : [a]Y , 〈a〉Y
rw,∨, µ

∅ : [a]Y , Y
lw

κκ1 : [a]Y , Y

†
κκ0 : Y , [ă]Xκ0

reset(κ)
κκ1κ0 : Y , [a]Xκ0

...

κκ1κ0 : Y , Y
∧, ν(κ1)

κκ1 : Y ,Xκ1

cut
κκ1 : [a]Y ,Xκ1

mod
κκ1 : Y , [ă]Xκ1

reset(κ)
κκ0κ1 : Y , [ă]Xκ1

...

κκ0κ1 : Y , Y
∧, ν(κ1)

κκ0 : Y ,Xκ0

cut
κκ0 : [a]Y ,Xκ0

mod
† κκ0 : Y , [ă]Xκ0

...

κκ0 : Y , Y
∧

κκ0 : Y , [ă]Xκ0 ∧ Y
ν(κ)

κ : Y ,Xκ

x : κ
∅ : Y ,X

cut
∅ : p,X

∨
∅ : p ∨X

Figure 2: Cyclic proof of the formula p ∨ νx. [ă]x ∧ µy. p ∨ 〈a〉y. Subproofs of the sequent ∅ : Y , Y are as
in Figure 1 and omitted. The relation of non-axiomatic leaves to companions is denoted by †. The proof
employs the same abbreviations as Figure 1 with, in addition, X and Xκ denoting formulas νx. [ă]x∧Y and
νxκ. [ă]x ∧ Y respectively.

the number of formulas that can appear in sequents is bounded. Constraints, however, can grow without
bound. Finitising the constraints is the second step towards obtaining a cyclic proof for a valid sequent.
Completeness with respect to slim proofs is established via a two-player game that we call the mosaic game,
in which one player (Prover) tries to construct a proof of the root formula, and the opposing player (Refuter)
attempts to build a counter-model by selecting certain ‘saturated’ sequents called tiles.

With completeness of slim proofs in place, the next step is to insert uses of the reset rule in order to bound
the size of constraints. This transformation alters the correctness condition on infinite paths from an infinite
descent condition to an infinitary version of the reset condition from cyclic proofs: every infinite branch
features some ordinal variable that is reset infinitely often. The final step of the completeness argument is
to show that any non-wellfounded slim derivation satisfying the infinite reset condition can be pruned to a
finite, cyclic proof.

3.4 Non-wellfounded proofs

In the proof of completeness for cyclic derivations we will make extensive use of an intermediate notion of
proof based on infinite, or non-wellfounded, derivations. In analogy with the case of cyclic proofs, an infinite
derivation will be considered a proof provided every infinite path in the derivation fulfils a syntactic criterion.
Later we will consider infinite proofs where correctness is based on an (infinitary) notion of reset variable.
For now we introduce the concept of an infinite descent proof where the requirement on infinite paths is
that the sequence of constraints in the path induces an infinite descending sequence of ordinal variables.

Definition 3.11. Let P = (Oi)i<ω be an infinite sequence of constraints.
We say that P has an infinite <-descending chain of ordinals if there are an infinite sequence (κi)i<ω of

ordinal variables and an increasing function σ : ω → ω such that such that for every i Oσ(i) ` κi+1 < κi and
κi+1 ∈ OV(Ol) for all l ∈ {σ(i), σ(i) + 1, . . . , σ(i+ 1)}. An infinite ≺-descending chain of ordinals is defined
analogously.
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An infinite derivation is said to be an infinite descent proof if every leaf is an axiom, and every infinite
path is such that the sequence of constraints through this path has an infinite <-descending chain of ordinal
variables.

Definition 3.12. A finite proof tree is said to be a wellfounded proof if every leaf is labelled by a sequent
of the form O : ϕ,ϕ.

4 Soundness

In this section we show how to prove soundness for the cyclic and non-wellfounded variants of the proof
system that is defined in the previous section. We start with the soundness proof for the cyclic proof system.

Definition 4.1. A strongly connected component, abbreviated SCC, in a cyclic proof tree is a set X of nodes
which is connected, seen as a subgraph of the proof tree, where the (directed) edge relation is given as the
union of the parent-child and the back-edge relation.

It is clear that every strongly connected component X of a cyclic proof tree has a lowest element, i.e. a
unique element with the shortest path to the root of the proof tree, which must be the companion node of
some leaf. We call this the root of X. (Note that we imagine trees as growing upwards, with the root at the
bottom, in line with the way that we depict proof trees.)

The following characterization of cyclic proofs will be useful:

Proposition 4.2. Let Π be a cyclic proof tree. Then Π is a valid cyclic proof if, and only if, for every SCC
X of Π there is some ordinal variable κX that appears in the constraint of each sequent in X, and is reset
in at least one vertex of X.

Proof. For right to left, it suffices to note that for every leaf l, the path from the companion of l to l is a
strongly connected component of Π.

For left to right, let Π be a valid cyclic proof.

Claim 1. Let X be any SCC of Π. Then there exists an ordinal variable κX that belongs to the constraint
of every vertex in X, and is equal to the variable κl associated with some leaf l.

Proof of claim. We prove this by induction on the number of non-axiom leaves in X. The base case consists
of the case where X is a single cycle (comprising all nodes on the path to a leaf l from its companion), and
in this case we just take κX = κl.

Now, suppose that X has more than one non-axiom leaf. Consider the set S of vertices in X that are
ancestors of all non-axiom leaves in X. It is clear that any two vertices in this set are comparable with
respect to the descendant relation, so we can pick the maximum element s of the set, i.e. s ∈ S and s is a
descendant of every member of S. We call s the splitting point of X. Because all proof rules have at most
two premises it follows that s has exactly two children, a left child and a right child. Every non-axiom leaf is
a descendant of either the left child of s or the right child of s. In the first case we speak of a left leaf and in
the second case a right leaf. Note that some leaf of X must have the root of X as companion, and this leaf
must be either a left or right leaf. We may assume without loss of generality that it is a left leaf, the other
case is symmetrical. Note that some right leaf must have a companion that is an ancestor of s, since X is
strongly connected. Let c denote the lowest ancestor of s (closest to the root of X) that is the companion
of some right leaf. Let X0 be the set of vertices that lie on a path from the root of X to some left leaf, and
let X1 be the set of vertices that lie on a path from c to some right leaf. Then X0 ∪X1 = X, and both X0

and X1 are SCC’s with fewer non-axiom leaves than X (note that c is the root of X1). So by the induction
hypothesis, there are variables λ0, λ1 such that λ0 appears in the constraint of every vertex in X0 and λ1

appears in the constraint of every vertex in X1. In particular, since c ∈ X0 ∩X1, both λ0 and λ1 appear in
the constraint of c. We now consider two cases.
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Case 1: λ0 is older than λ1 in the constraint of c. By assumption λ0 appears in the constraint of
every vertex in X0. We define the depth of a right leaf l as the number of leaves passed on the shortest path
from the leaf to c. More precisely, if the companion of l is c then l has depth 0. Otherwise the depth of l
is the smallest number k + 1 such that the companion of l belongs to the path from the companion of l′ to
l′, where l′ is some right leaf of depth k. We prove by induction on the depth of a leaf l that λ0 belongs to
the constraint of every vertex on the path from the companion of l to l, and furthermore is older than λ1 in
every such constraint.

For depth = 0, suppose l has c as companion. If there is some u on the path from c to l in which λ0 does
not appear in the constraint, then it has to be re-introduced later since the label of l is equal to that of c.
But since λ1 is on the constraint of every vertex on the path from c to l, λ0 can only be re-introduced as a
younger variable than λ1, and remain so. So the label of l cannot equal that of c after all, contradiction.

For depth = k + 1, suppose l has companion v that is on the path from the companion of l′ to l′, where
l′ has depth k. Then again, λ0 is introduced as a younger variable than λ1 in the companion v, and we can
repeat the same argument.

Case 2: λ1 is older than λ0 in c. Then in fact, λ1 must appear in the constraint of the root of X,
since λ0 belongs to the constraint of every vertex on the path from the root of X to c, and so if λ1 were
introduced on this path it would have to be younger than λ0. With this observation in place we can repeat
the whole argument from the previous case, but with the root of X in place of c.

To finish the proof, take any connected component X of Π, and let κX be the variable provided by the
Claim. Then κX = κl for some leaf l. By definition of a valid cyclic proof, κl is reset at least once on the
path from the companion of l to l. But this path is contained in X, so κX = κl is reset in some vertex in
X.

Proposition 4.3. If ρ has a cyclic proof then ρ is valid.

Proof. Let Π be a cyclic proof of ρ.
Assume for a contradiction that there is some model M , a world w in M and an ordinal assignment

o such that M,w 2o ρ. Our strategy is to find an infinite walk through the cyclic proof Π, inducing a
series of ordinal assignments, from which we can read off an infinitely descending sequence of ordinals. This
contradiction then gives the proposition. We construct the walk by induction as follows. We define a vertex
vn of Π, an element wn of W and an ordinal assignment on by induction on n. We shall maintain the
invariant that for each n, on refutes the label of vn (henceforth denoted Γn) at wn. Note that this means
that we never reach a leaf labelled by an axiom. For the base case, we define v0 to be the root of the proof
tree labelled ` ρ, set w0 = w, and set o0 = o. Note that o can be taken to be the empty assignment if ρ
does not contain any ordinal variables. The assignment o0 refutes the sequent ` ρ at w0 by the assumption
that M,w 2o ρ. The inductive step is by case distinction depending on the rule applied at the vertex vn.
We distinguish between applications of the left weakening rule that correspond to the reset of a variable
from other applications of left weakening. These need to be treated separately as they allow us to build the
decreasing chain of ordinals.

Case vn is the conclusion of an application of κ : x. Here, κ is a fresh variable and the principal
formula of the rule is of the form ϕ(νx.ψ), which is replaced by ϕ(νxκψ). We define on+1 to be the extension
of on obtained by mapping κ to the closure ordinal of the map ψonM , and set vn+1 to be the premise of vn
and wn+1 = wn.

Case vn is the conclusion of an application of the modal rule. Let the principal formula be [a]ϕ.
Since on refutes the label of Γn at wn, it is clear that there is some a-successor w′ at which on refutes the
premise. So we set wn+1 = w′, vn+1 to be the premise of the rule application and on+1 = on.

Case vn is the conclusion of an application of the cut rule. Since on refutes Γn at wn, it has to
refute one of the premises at wn also. We pick vn+1 to be this premise, and set wn+1 = wn, on+1 = on.

Case vn is the conclusion of an application of the ∧-rule. Since on refutes Γn at wn, it has to
refute one of the premises at wn also. We pick vn+1 to be this premise, and set wn+1 = wn, on+1 = on.

Case vn is the conclusion of an application of the ∨-rule, η-rule or ∃-rule. We set vn+1 to be
the premise, and set wn+1 = wn and on+1 = on. The invariant is easily seen to be maintained.
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Case vn is the conclusion of an application of µ(κ). We define wn+1 = wn and on+1 = on. By
assumption we have that wn /∈ [[µxκϕ]]on = fon(κ)(W ), where f is the monotone map with f(Z) = [[ϕ]]onM [x 7→Z].

If we now consider any λ such that on(λ) < on(κ) we have that fon(λ)+1(∅) ⊆ fon(κ)(∅), because on(λ) + 1 ≤
on(κ). Thus it follows that wn+1 = wn /∈ fon(λ)+1(∅) = f(fon(λ)(∅)) = [[ϕ[µxλ.ϕ/x]]]on . Thus the invariant
is maintained.

Case vn is the conclusion of an application of the ∀-rule. Let λ < κ be the fresh variable
introduced. Since on refutes Γn at wn there must be some ξ < on(κ) such that on[λ 7→ ξ] refutes the premise
at wn. So we set vn+1 to be the premise of vn, wn+1 = wn and on+1 = on[λ 7→ ξ].

Case vn is the conclusion of an application of the ν(κ)-rule. Let λ < κ be the fresh variable
introduced. Since on refutes Γn at wn we have that wn /∈ [[νxκ.ϕ]]on . If we write f for the monotone map
with f(Z) = [[ϕ]]onM [x 7→Z] this means that wn /∈ fon(κ)(W ). By the definition of fon(κ) we have that

fon(κ)(W ) =
⋂
ζ<κ

f(fon(ζ)(W )).

Thus there exists some ordinal ζ < on(κ) such that wn /∈ f(fζ(W )). We set wn+1 = wn and on+1 = on[λ 7→
ζ]. This refutes the premise because wn+1 = wn /∈ f(fζ(W )) = [[ϕ[νxλ.ϕ/x]]]on+1 .

Case vn is a leaf with companion v′. We set on+1 = on, and set wn+1 = wn, vn+1 = v′. The invariant
is obviously maintained.

Case vn is the conclusion of an application of left weakening in which the variable κ is reset.
This means that neither κ nor any of its children appear on the right-hand side of Γn, and all children of κ
are removed. List the children of κ as λ1, ..., λm. We define the new assignment on+1 by setting:

on+1(κ) = max(on(λ1), ..., on(λm)),

and on+1(λ) = on(λ) for λ 6= κ. We set wn+1 = wn and we set vn+1 to be the premise of the rule application.
We need to check that the new assignment on+1 refutes Γn+1 at wn+1. Since none of the variables κ, λ1, ..., λm
appear on the right-hand side of Γn or Γn+1, it suffices to show that the new assignment is consistent with
the constraint On+1 of Γn+1.

First, note that on+1(κ) < on(κ), since we have on(λi) < on(κ) for each i ∈ {1, ...,m} and since on+1(κ)
was defined as max(on(λ1), ..., on(λm)) (this observation will be important later!). Hence if κ′ is the parent
of κ in On+1 then:

on+1(κ) < on(κ) < on(κ′) = on+1(κ′)

as required. Now, suppose ξ is a child of κ in On+1. Then there must be some λi, i ∈ {1, ...,m}, such that
ξ was a descendant of λi in the constraint of Γn. Hence we get:

on+1(ξ) = on(ξ)

< on(λi)

≤ max(on(λ1), ..., on(λm))

= on+1(κ),

so on+1(ξ) < on+1(κ) as required.
Other cases. The other cases of left or right weakening are trivial.

With this construction in place, consider the infinite walk v0v1v2 . . . through Π that we obtain in the
limit. Let X be the set of all vertices that are visited infinitely many times on Π. This is obviously a strongly
connected component, so since Π was a valid cyclic proof, by Proposition 4.2 there is some κ that appears in
the constraint of every vertex in X, is reset on the path from the root of X to one of its leaves. Hence, it is
clear that the value assigned to κ by the ordinal assignments oi never increases, and decreases every time the
walk passes through the vertex at which κ is reset. So the successive values that these ordinal assignments
give to κ produce an infinite descending series of ordinals, which is impossible. This contradiction concludes
the proof.

We now briefly sketch to adapt the soundness proof for the cyclic system to non-wellfounded proofs.
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Proposition 4.4. If ρ has a non-wellfounded proof then ρ is valid.

Proof sketch. The argument is similar to the proof of Proposition 4.3: Let Π be a non-wellfounded proof
of ρ. We assume for contradiction that there is some model M , world w in M and an ordinal assignment
o such that M,w 6|=o ρ. We find an infinite path v0, v1 through Π and ordinal assignments o0, o1, . . . such
that oi refutes Oi : Γi, where Oi : Γi is the sequent at vi. The construction of this infinite path is similar as
in the proof of Proposition 4.3. We can omit the case for leafs with companions and treat all instances of
left weakening as left weakenings that do not correspond to a reset. In the end a contradiction arises from
an infinite descending chain of ordinals that can be read of from the sequence o1, o2, . . . using the condition
from Definition 3.11.

5 Completeness for infinite proofs

In this section we will prove completeness for infinite non-wellfounded proofs, as the first step towards
our main result, i.e. completeness for cyclic proofs. More precisely, we introduce a special class of non-
wellfounded proofs that we call slim proofs and prove that any valid formula has a slim proof. Slim proofs
are genuinely infinite (non-regular), and can contain infinitely many different sequents. However, they do
have the property that there is a fixed bound on the number of formulas occurring in any sequent, although
the constraints can grow without bound. This property will be important later when we transform slim
proofs into finite, cyclic proofs.

5.1 Slim proofs

We start by defining the notion of a slim proof.

Definition 5.1. Let Γ be a set of plain formulas. The set QC(Γ) consists of Clos(Γ), together with all
formulas of the form Qκ < λ : ϕ, where Q ∈ {∀,∃} and the underlying formula of ϕ belongs to the closure
of Γ. The extended closure EC(Γ) of Γ consists of QC(Γ), together with all formulas of the form [a]

∨
∆ or∨

∆, where ∆ is a subset of QC(Γ).
A proof tree Π is said to be slim if (1) all formulas in Π belong to the extended closure of Γ, (2) any

sequent in Π which is not minimal with respect to its constraint is the conclusion of an application of right
weakening, (3) there is no application of left weakening in Π, and (4): in any application of the cut rule,
µ(κ) or ∃, all ordinal variables occurring free in the cut formula or minor formula of the rule application are
active variables in the conclusion.

Observe that because infinite branches in slim proofs do not contain applications of lw the set of ordinal
variables in the constraint only grows as we move along the branch. We can thus define the following notion
of the limit constraint of a branch:

Definition 5.2. Fix an infinite branch β = v0, v1, . . . of a slim proof and let Oi = (Oi, <i, /i) be the
constraint at vi for all i ∈ ω. Define the infinite set Oβ =

⋃
i∈ω Oi, and the orders <β , /β and ≺β over Oi

such that �β =
⋃
i�i for � ∈ {<,≤, /}.

It is clear that in slim proofs an infinite <-descending chain of ordinals in a branch β, according to
Definition 3.11 is the same as an infinite descending chain in the order <β , according to the usual definition
of an infinite descending chain in some order. The same holds for infinite ≺-descending chains.

Proposition 5.3. Let β = v0, v1, . . . be an infinite branch in a slim proof. Then:

1. <β is irreflexive, transitive and upwards linear.

2. /β is a linear order.

3. ≺β is a linear order.

4. <β is conversely well-founded and /β is well-founded.

5. λ ≺β κ iff λ <β κ or λ is to the left of κ with respect to the orders <β and /β .
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Proof. First observe that left weakening is never applied on β because by assumption it is a branch in a slim
proof. It follows then from an inspection of the proof rules that for all i ∈ ω it holds that either Oi+1 = Oi,
Oi+1 = Oi + λ, or Oi+1 = Oi +κ λ, for some ordinal variable λ. Thus, in every step there is at most one
variable λ added; this λ is made maximal in /i+1, and it is either a new leaf in <i+1 or <i+1-incomparable
to all existing variables. Using this observation it is relatively straightforward to verify items 1–4.

For item 5 first recall that λ is to the left of κ with respect to the orders orders <β and /β if λ and κ are
<β-incomparable and λ′ /β κ

′ holds, where λ′ is the <β-greatest <β-ancestor of λ that is not an <β-ancestor
of κ and κ′ is the <β-greatest <β-ancestor of κ that is not an <β-ancestor of λ. Note that the <β-greatest
node with some property is well-defined because <β is conversely well-founded.

The details of the proof of item 5 are left to the reader. The crucial step in the argument is to show that
the following are equivalent:

1. λ′ is the <β-greatest <β-ancestor of λ that is not a <β-ancestor of κ;

2. for some i, λ′, λ, κ exist and λ′ is the <i-greatest <i-ancestor of λ that is not a <i-ancestor of κ.

The proof of this equivalence relies on the observation that when moving from Oi to Oi+1 only new leafs or
new roots are added to the order <i+1. Thus, variables that are comparable at stage i stay comparable at
stage i+ 1, and variables that exist in Oi and are incomparable stay incomparable.

Proposition 5.4. Let β be an infinite branch of a slim proof tree Π. Then it contains an infinite ≺-
descending chain of ordinal variables if, and only if, it contains an infinite <-descending chain of ordinal
variables.

Proof. It is clear that it suffices to prove this result for the orders ≺β and <β from Definition 5.2. We write
O,≺, < and / for Oβ ,≺β , <β , and /β , respectively. The direction from right to left follows directly from the
definitions of <β and ≺β and the relation between <i and ≺i at any finite i ∈ ω.

For the direction from left to right assume that we have an infinite descending chain κ0 � κ1 � . . . of
ordinal variables in O. The aim is to use König’s Lemma to prove that there is an infinite descending chain
in <Oβ .

Consider the following set of variables from O:

F = {λ ∈ O | λ ≥ κi for some i ∈ ω}.

Because by Proposition 5.3 < is upwards linear and conversely well-founded we can consider F to be a forest
under the order <. The set F is infinite because it contains the infinitely many distinct κi for i ∈ ω. We
first show that there is an infinite subset T ⊆ F that is a tree under <.

Claim 2. There are only finitely many <-maximal elements in F .

Proof of Claim 2. First, note that because F is upwards closed in < the concepts of being <-maximal and of
being <-maximal in F coincide. Assume then for a contradiction that there are infinitely many <-maximal
elements in F . Because / is a linear order and it is well-founded this means that we can build an infinite
chain δ0 / δ1 / . . . of <-maximal elements in F . By definition of F we have for each i ∈ ω some ki ∈ ω such
that κki ≤ δi. It follows by item 5 of Proposition 5.3 that there is an infinite ascending κk0 ≺ κk1 ≺ . . . . But
because of the infinite descending chain κ0 � κ1 � . . . , this contradicts the fact that ≺ is a partial order.

It follows by the pigeonhole principle that there must be one <-maximal element r below which there
are infinitely many elements from F . We define the set T ⊆ F to be all those elements from F that are
<-smaller than r. The set T is an infinite tree under the order <. The claim of the proposition then follows
by König’s Lemma if we can show that this tree T is finitely branching. This is shown in the following claim:

Claim 3. Every variable λ ∈ T has only finitely many <-children in T .

Proof of Claim 3. Assume for a contradiction that some λ ∈ T has infinitely many <-children in T . Because
/ is a linear order and it is well-founded this means that we can build an infinite chain δ0 / δ1 / . . . of
<-children of λ with δi ∈ T for all i. By the definition of T we can find, for every i ∈ ω, some ki ∈ ω such
that κki ≤ δi. It follows by item 5 of Proposition 5.3 that κk0 ≺ κk1 ≺ . . . , because as the δi are <-siblings
they must be <-greatest ancestors of the κki without being each others ancestors. But this contradicts the
fact that ≺ is a partial order and the assumption that κ0 � κ1 � . . . .

15



This finishes the proof of Proposition 5.4.

A basic property of slim proofs that will be useful is the provability of the following generalized version
of excluded middle:

Proposition 5.5. Let ϕ be a positively annotated formula, and let σ be an increasing substitution. Then
there is slim proof for any sequent O : ϕ,ϕ[σ].

Proof. The proposition is proved by a formula induction, which we illustrate by considering the case where
ϕ = νxκ0ψ.

By the inductive hypothesis there is a slim proof Π for any sequent O′ : ψ′, ψ′[σ], where ψ′ is the formula
ψ[p/x], for some fresh proposition letter p. Let Π′ be the derivation we obtain from Π by replacing every
occurrence of p with the formula νxκ1ψ, and every occurrence of p with the formula µxκ0ψ[σ]. Now consider
the following derivation Π1 (where we write λ for σ(κ0)):

Π′
...

O +κ0
κ1 : ψ(νxκ1ψ), ψ[σ](µxκ0ψ[σ])

ν(κ0)
O : νxκ0ψ,ψ[σ](µxκ0ψ[σ])

µ
O : νxκ0ψ, µxλψ[σ]

Note that Π1 need not be a proof, since there may be leaves in Π1, that were labeled in Π′ by an axiom
O′ : p, p, but in π1 are labeled with the sequent O′ : νxκ1ψ, µxκ0ψ[σ]. However, to any such leaf we may apply
the same construction that we just described, with σ[κ0/κ1] taking the role of σ. Iterating this procedure we
arrive at a slim proof in which any newly created infinite branch carries an infinitely descending sequence of
variables · · · < κ2 < κ1 < κ0.

The following is an immediate corollary of Proposition 5.5

Proposition 5.6 (Excluded middle). Let ϕ be a positively annotated formula. Then there is slim proof for
any sequent O : ϕ,ϕ.

5.2 Pre-tiles and tiles

Our completeness proof for slim proofs will build a counter-model for an unprovable formula out of building
blocks that we call tiles, which are essentially “small” but saturated sequents. The precise notion of “sat-
urated” that we will use is quite technical, since a näıve concept of saturation would be incompatible with
maintaining a bound on the number of formulas appearing in a sequent. It will be convenient to first define
the notion of a “pre-tile” to capture the general structure of the sequents that we will be working with, and
then define a tile as a pre-tile that satisfies appropriate saturation conditions.

Definition 5.7. Let O : Γ be any sequent and let o0 and o1 be any annotations that have their range is
in OV(O). We write O ` o0 ≺x o1 if O ` o0(x) ≺ o1(x) while, for all y higher ranking than x, we have
o0(y) = o1(y). We write O ` o0 ≺ o1 if there is some ordinal variable x such that O ` o0 ≺x o1.

Definition 5.8. Let O : Γ be any sequent, and let ϕ,ψ ∈ Γ be positively annotated formulas. We write
ϕ ≺O ψ, or just ϕ ≺ ψ when O is clear from context, if u(ϕ) = u(ψ) and, O ` oϕ ≺ oϕ.

We write �O as shorthand for “≺O or =”. A formula ϕ is minimal with respect to a constraint O if
there is no formula ψ such that ψ ≺O ϕ.

Definition 5.9. Let O be a constraint and o0, o1 annotations. We write O ` o0 ≺x o1 if O ` o0(x) ≺ o1(x)
and, for all y higher ranking than x, we have o0(y) = o1(y).

Definition 5.10. A ρ-pre-tile is a sequent O : Γ where Γ admits a partition into three disjoint subsets Γ+,
Γ−, Γµ such that:

• Every formula ϕ ∈ Γ+ is positively annotated and u(ϕ) belongs to the closure of ρ.
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• Every formula ϕ ∈ Γ− is the negation of a positively annotated formula ψ such that u(ψ) belongs to
the closure of ρ, and every ordinal variable that occurs freely in ψ is active in Γ+.

• Every formula ϕ ∈ Γµ is of the form ∃λ < κ : ψ[λ/κ] where ψ ∈ Γ+ and κ appears in ψ.

The sets Γ+,Γ−,Γµ are called the positive part, the negative part and the minimality assumptions of Γ
respectively. The ρ-pre-tile is said to be small if every formula in Γ+ is minimal with respect to O.

Observe that, for every plain formula ϕ, adding the empty constraint yields an example of a pre-tile, viz.,
∅ : ϕ.

Proposition 5.11. For every constraint O = (O,<O, /O) the order ≺O is a strict linear order over ordinal
variables.

Proof. It is obvious from the definition that ≺O is irreflexive.
To show that ≺O is transitive assume that κ ≺O λ and λ ≺O δ. Because of the disjunctive definition

of ≺O one has to distinguish four cases. We only consider the case where κ is to the left of λ and λ is
to the left of δ. Let κ′ be the <O-maximal <O-ancestor of κ that is not a <O-ancestor of λ, α be the
<O-maximal <O-ancestor of λ that is not a <O-ancestor of κ, β the <O-maximal <O-ancestor of λ that is
not a <O-ancestor of δ, and δ′ the <O-maximal <O-ancestor of δ that is not a <O-ancestor of λ. From the
assumption we have that κ′ /O α and β /O δ

′. Moreover, we have that κ′ and α either have the same parent
in <O or they are both <-maximal and similarly for β and δ′. Because <O is upwards-linear we have that
either α = β, α <O β or β <O α. We consider all these cases.

If α = β then it follows that either κ′ and δ′ have the same parent in <O or that they are both <O-
maximal. It follows that κ′ is also the <O-maximal <O-ancestor of κ that is not a <O-ancestor of δ and
similarly δ′ is also the <O-maximal <O-ancestor of δ that is not a <O-ancestor of κ. Moreover, by the
transitivity of /O we also get that κ′ /O λ

′. Hence, κ is to the left of λ and κ ≺O λ follows by the definition
of ≺O

If α <O β then β is a <O-ancestor of κ because α was the <O-maximal <O-ancestor of λ that is not an
<O-ancestor of κ. It follows that either the common parent of β and δ′ is a <O-ancestor of both κ and δ,
or that β and δ′ are both <O-maximal. Because we already know that β and δ′ have the same parent or
are both <O-maximal it follows that β is the <O-maximal <O-ancestor of κ that is not a <O-ancestor of δ,
and δ′ is the <O-maximal <O-ancestor of δ that is not a <O-ancestor of κ. Hence we get κ ≺O δ because
β /O δ

′.
If β <O α then α is a <O-ancestor of δ because β was the <O-maximal <O-ancestor of λ that is not an

<O-ancestor of δ. It follows that either the common parent of κ′ and α is a <O-ancestor of both κ and δ,
or that κ′ and β are both <O-maximal. Because we already know that κ′ and α have the same parent or
are both <O-maximal it follows that κ′ is the <O-maximal <O-ancestor of κ that is not a <O-ancestor of
δ, and α is the <O-maximal <O-ancestor of δ that is not a <O-ancestor of κ. Hence we get κ ≺O δ because
κ′ /O β.

To show that ≺O is linear consider any κ 6= λ. We need to show that either κ ≺O λ or λ ≺O κ. First,
distinguish cases depending on whether κ and λ are comparable in the strict partial order <O. If they are
comparable then we have either κ <O λ or λ <O κ. It thus follows immediately from the definition of ≺O
that then κ ≺O λ or λ ≺O κ. In the other case κ and λ are <O-incomparable it follows also that they are
≤O-incomparable since we assume κ 6= λ. There then must exists the <O-maximal <O-ancestor κ′ of κ that
is not an <O-ancestor of λ and, similarly, there exists the <O-maximal <O-ancestor λ′ of λ that is not a
<O-ancestor of κ. It is clear that λ′ and κ′ must be distinct. Because /O is a strict linear order it follows
that either κ /O λ or λ /O κ. In the former case we get that κ ≺O λ and in the latter that λ ≺O κ.

Proposition 5.12. Let O : Γ be any pre-tile and ϕ any propositional formula. Then ≺O is a strict linear
order over the set {ψ ∈ Γ+ | u(ψ) = ϕ}.

Proof. Fix ϕ and restrict ≺O to the set {ψ ∈ Γ+ | u(ψ) = ϕ}.
Observe that if ψ, χ ∈ Γ+ with u(ψ) = u(χ) then the domains of oψ and oχ must be the same. This is

the case because by Definition 5.10 ψ, χ ∈ Γ+ entails that both ψ and χ are positively annotated, which by
Definition 2.3 means that all greatest fixpoint variables are annotated, and both formulas contain the same
greatest fixpoint variables because u(ψ) = u(χ).
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It follows from this observation that the restriction of the order ≺O from Definition 5.8 to formulas from
{ψ ∈ Γ+ | u(ψ) = ϕ} is just the lexicographic extension of the order ≺O over ordinal variables to finite
sequences, where each position in the sequence corresponds to one greatest fixpoint variable in ϕ. It is clear
that this yields a strict linear order, because as shown in Proposition 5.11 ≺O is a strict linear order of
ordinal variables.

We can now prove that small ρ-pre-tiles are indeed small in the sense that there is a bound on the number
of formulas that they contain.

Proposition 5.13. Let ρ be any formula. Then there is a bound n such that, for any small ρ-pre-tile O ` Γ,
there are at most n distinct formulas in Γ (up to renaming of bound ordinal variables).

Proof. Because the ρ-pre-tile Γ is small, Γ+ contains only positively annotated formulas that are minimal
with respect to the order ≺O. From Proposition 5.12 we know that among annotated formulas ϕ,ψ with the
same underlying plain formula u(ϕ) = u(ψ). It follows that Γ+ contains at most one annotated formula ϕ for
every underlying plain formula u(ϕ), equal to u(ϕ)o for some annotation o. This means that Γ+ is bounded
by the size m of the closure of ρ. This also means that the number of active ordinal variables in Γ has a
fixed upper bound, since every annotated formula θo in Γ+ can at most have one ordinal variable assigned
to each fixpoint variable by the annotation o. Since every formula in Γ− is the negation of some annotated
formula, whose underlying plain formula is in the closure of ρ, it follows that the number of formulas in
Γ− is bounded by m · k|V ar(ρ)|, where k is the fixed upper bound on the number of active ordinal variables.
(Note that k|V ar(ρ)| bounds the number of annotations of fixpoint variables in ρ by active ordinal variables
in Γ.) For Γµ, since each of the formulas in Γµ is of the form ∃λ < κ : ϕ[λ/κ] where ϕ ∈ Γ+, the number of
distinct such formulas up to renaming of bound variables is bounded by m · k. Since the formula part of Γ
is Γ+ ∪ Γ− ∪ Γµ, the result follows.

We sometimes abuse notation by writing just Γ instead of O : Γ. In such cases we let O(Γ) denote O.
From now on, without further mention we will equate formulas that differ only by a renaming of bound
variables, and similarly we count two pre-tiles as the same if they are equal up to renaming of bound ordinal
variables.

Definition 5.14. Let O ` Γ be a (small) ρ-pre-tile. We say that this pre-tile is propositionally saturated if
it satisfies the following condition:

1. If ϕ is positively annotated, u(ϕ) is in the closure of ρ and all ordinal variables appearing in ϕ are
active in Γ+, then either ϕ ∈ Γ− or ϕ′ ∈ Γ+ for some ϕ′ �O ϕ.

If, in addition, O ` Γ sastifies the conditions below, we call it a (small) ρ-tile:

2. νxϕ /∈ Γ+ for all formulas of the form νxϕ (outermost ν-fixpoints must be annotated).

3. If νxκϕ ∈ Γ+ then for some κ0 with O ` κ0 < κ and for some ϕ′ �O ϕ(νxκ0ϕ), we have ϕ′ ∈ Γ+.

4. If all variables in ϕ(νxκψ) are active in Γ and the underlying plain formula is in the closure of ρ, and
θ ∈ Γ+ for some θ �O(Γ) ϕ(νxκψ), then either ∃λ < κ : ϕ(µxλψ) ∈ Γµ, or for some κ0 with O ` κ0 < κ
and some θ′ �O ϕ(νxκ0ψ) we have θ′ ∈ Γ+.

The collection of small ρ-tiles is denoted as Tρ.

The last condition in Definition 5.14 expresses a saturation condition corresponding to the minimization
rule. We can understand it semantically as follows: suppose we wish to construct a counter-model for
the unprovable sequent O : Γ, where ϕ(νxκψ) ∈ Γ (or some �-smaller formula belongs to Γ). By the
minimization rule, either O : Γ,∃λ < κ : ϕ(µxλψ) is unprovable, or O +κ κ0 : Γ, ϕ(νxκ0ψ) is unprovable. In
either of these two sequents, we have more information about the ordinal variable κ must be evaluated in
a refuting model. In any counter-model for O : Γ,∃λ < κ : ϕ(µxλψ), we know that κ has to be evaluated
as the smallest ordinal that refutes ϕ(νx.ψκ). Otherwise it would not be a counter-model, as the formula
∃λ < κ : ϕ(µxλψ) would be true. In a counter-model for the sequent O +κ κ0 : Γ, ϕ(νxκ0ψ), the opposite
holds: there is some ordinal smaller than the value of κ that refutes the formula ϕ(νx.ψκ), and we have
introduced a fresh name κ0 for this ordinal.
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In the next subsection we will show how an unprovable pre-tile can be “saturated” to an unprovable tile.
For technical reasons it will be necessary to be careful with how this saturation is carried out, so that a given
pre-tile stands in a suitable relationship to the corresponding tiles. This relationship � is spelled out in the
following definition; intuitively, we can read Ψ � Γ as “Ψ is at least as saturated as Γ”.

Definition 5.15. Let Γ,Ψ be pre-tiles, and let L be a set of ordinal variables. We write Ψ �L Γ if the
following conditions hold:

1. OV(O(Ψ)) = OV(O(Γ)) ] L.

2. For all λ, λ′ ∈ OV(O(Γ)) it holds that O(Ψ) ` λ < λ′ iff O(Γ) ` λ < λ′, and that O(Ψ) ` λ / λ′ iff
O(Γ) ` λ / λ′.

3. Act(Ψ) ⊆ Act(Γ) ] L.

4. O(Ψ) ` κ / λ for all κ ∈ OV(O(Γ)) and λ ∈ L.

5. No variable in L is an <O(Γ)-ancestor of any variable in O(Γ).

6. If λ ∈ L, κ ∈ O(Γ) and O(Ψ) ` λ < κ, then there is some κ′ ∈ Act(Γ) such that O(Ψ) ` λ < κ′ ≤ κ.

7. For every formula ϕ ∈ Γ+ there is some formula ϕ′ ∈ Ψ+ such that ϕ′ �O(Ψ) ϕ.

We write Ψ � Γ if there is some L such that Ψ �L Γ.

Proposition 5.16. The relation � over tiles is a pre-order.

Proof. Reflexivity is trivial (Γ �∅ Γ), so we check transitivity. Let Γ2 �L1 Γ1 �L0 Γ0. We show that
Γ2 �L0]L1 Γ0, checking each condition individually.

1. We have:

OV(O(Γ2)) = OV(O(Γ1)) ] L1

= OV(O(Γ0)) ] L0 ] L1

2. Straightforward.
3. We have:

Act(Γ2) ⊆ Act(Γ1) ] L1

⊆ Act(Γ0) ] L0 ] L1

4. No variable in L0 is older than any variable in O(Γ0), and no variable in L1 is older than any variable
in O(Γ1). But O(Γ1) = O(Γ0)]L0, so this means that no variable in L1 is older than any variable in O(Γ0).
Hence no variable in L0 ] L1 is older than any variable in O(Γ0).

5. No variable in L0 is an ancestor of any variable in O(Γ0), and no variable in L1 is an ancestor of any
variable in O(Γ1). But O(Γ1) = O(Γ0)]L0, so this means that no variable in L1 is ancestor of any variable
in O(Γ0). Hence no variable in L0 ] L1 is an ancestor of any variable in O(Γ0).

6. Suppose κ ∈ O(Γ0) and λ ∈ L0 ] L1, where O(Γ2) ` λ < κ. If λ ∈ L0 then since Γ1 �L0
Γ0 it follows

that there is some λ′ ∈ Act(Γ0) such that O(Γ1) ` λ < λ′ ≤ κ. But then O(Γ2) ` λ < λ′ ≤ κ as well. If
λ ∈ L1, then since κ ∈ O(Γ1) and Γ2 �L1 Γ1, there is some λ′ ∈ Act(Γ1) such that O(Γ2) ` λ < λ′ ≤ κ. But
Act(Γ1) ⊆ Act(Γ0) ] L0. If λ′ ∈ Act(Γ0) then we are done. If λ′ ∈ L0, then O(Γ1) ` λ′ < κ and so since
Γ1 �L0

Γ0 there is some λ′′ ∈ Act(Γ0) such that O(Γ1) ` λ′ < λ′′ ≤ κ. But then we have:

O(Γ2) ` λ < λ′ < λ′′ ≤ κ

and so we are done.
7. Let ϕ ∈ Γ+

0 . Since Γ1 � Γ0 there is some formula ϕ′ ∈ Γ+
1 such that ϕ′ �O(Γ1) ϕ. Since Γ2 � Γ1

there is some formula ϕ′′ ∈ Γ+
2 such that ϕ′′ �O(Γ2) ϕ

′. But clearly ϕ′ �O(Γ1) ϕ entails ϕ′ �O(Γ2) ϕ, so
transitivity of �O(Γ2) we get ϕ′′ �O(Γ2) ϕ.
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Proposition 5.17. Suppose Ψ �L Γ. If λ ∈ L and κ ∈ Act(Γ) are such that λ is to the left of κ in O(Ψ),
then there is an ordinal variable λ′ ∈ Act(Γ) such that O(Ψ) ` λ < λ′ and λ′ is also to the left of κ in O(Ψ).

Proof. Suppose λ ∈ L and κ ∈ Act(Γ), and λ is to the left of κ in O(Ψ). Then there are ancestors κ0, λ0

of κ, λ respectively such that O(Ψ) ` λ0 / κ0. Since κ ∈ O(Γ), we have κ0 ∈ O(Γ) since O(Ψ) = O(Γ) ] L
and no variable in L is an ancestor of any variable in O(Γ). Since O(Ψ) ` λ0 / κ0 we have λ0 ∈ O(Γ) since
O(Ψ) = O(Γ) ] L and no variable in L is older than any variable in O(Γ). It follows that O(Ψ) ` λ < λ0

since λ ∈ L, λ0 ∈ O(Γ) and λ0 was an ancestor of λ. Since Ψ �L Γ, there is some λ′ ∈ Act(Γ) with
O(Ψ) ` λ < λ′ ≤ λ0. It follows that λ′ is to the left of κ, and so we are done.

Definition 5.18. Let Γ be a ρ-tile. A ρ-tile Ψ is said to be an (a, ϕ, L)-successor of Γ if [a]ϕ ∈ Γ+ and

Ψ �L (O(Γ) : {ϕ} ∪ {ψ | 〈a〉ψ ∈ Γ+}).

We say that Ψ is an a-successor of Γ if it is an (a, ϕ, L)-successor of Γ for some ϕ and L. An a-successor Ψ
of Γ is said to be a non-trivial a-successor if the sequent O(Ψ) : [ă]

∨
Γ,Ψ is not provable by a slim proof.

Similarly, we say that Ψ is an a-successor of Γ, relative to some formula ϕ, and we write Γ→a,ϕ Ψ, if Ψ
is an (a, ϕ, L)-successor of Γ for some L.

Proposition 5.19. Suppose Ψ is a (a, ϕ, L)-succesor of Γ. If λ ∈ L and κ ∈ Act(Γ) are such that λ is to
the left of κ in O(Ψ), then there is an ordinal variable λ′ ∈ Act(Γ) such that λ < λ′ and λ′ is also to the left
of κ in O(Ψ).

Proof. Immediate from Proposition 5.17.

5.3 Technical results on tiles and pre-tiles

In this subsection we will prove several observations on the relations between tiles pre-tiles, that will be
relevant to the mosaic game that we introduce later as the main tool for our completeness proof.

The following proposition shows that provability of a given pre-tile can be reduced to provability of a
(finite) set of tiles. From the dual perspective, any non-provable pre-tile can be saturated to some non-
provable tile.

Proposition 5.20. Let O : Γ be any small ρ-pre-tile, and let ∆ be any finite set of formulas. Then there
is a (possibly infinite) slim proof tree Π with root labelled O : Γ,∆, in which every non-axiom leaf is of
the form O′ : Ψ,∆ for some small ρ-tile O′ : Ψ with Ψ � Γ, and every infinite branch in Π has an infinite
descending <-chain of ordinal variables.

Proof. Throughout the proof we assume ∆ = ∅, for notational convenience. The proof for the general case
is not different in any significant respect.

We construct the proof tree Π in a step-by-step manner, as the limit of a series of approximations (Πi)i<ω,
where each leaf in each approximant Πi is propositionally saturated. Let Π0 be the finite proof tree having
Γ as its root sequent, followed by enough applications of the cut rule to ensure that all the leaves of Π0 are
propositionally saturated.

Given that the proof tree Πi has been constructed, consider a leaf of Πi labelled by the sequent Ψ. We
say that χ in the closure of ρ is a defect of Ψ if one of the following conditions hold:

• χ is of the form νxϕ.

• χ belongs to Ψ+, is of the form νxκϕ, and there are no κ0 and ϕ ∈ Ψ+ such that O(Ψ) ` κ0 < κ and
ϕ′ �O(Γ) ϕ(νxκ0ϕ).

• χ is of the form ϕ(νxκψ), all free ordinal variables of χ are active in Γ, the formula ∃λ < κ : ϕ(µxλψ)
does not belong to Ψµ, and there are no κ0 and ϕ′ ∈ Ψ+ with O(Ψ) ` κ0 < κ and ϕ′ �O(Γ) ϕ(νxκ0ψ).

Clearly, a leaf of Πi is a tile if it is propositionally saturated and has no defects. If every leaf in Πi is a tile
then we stop the process and set Π = Πi. Otherwise, we pick a leaf l in Πi and a defect of its label Ψ, and
extend Πi to Πi+1 according to the following steps:
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1. Apply the appropriate rule (the minimization rule, the rule x : κ adding the formula νxκϕ ≺O(Πi)+κ ϕ,
or the ν(κ)-rule) depending on the type of defect, adding one or two children for l in which the chosen
formula is no longer a defect.

2. Use right weakening to remove all non-minimal formulas in the positive part of each new leaf. Note
that this step removes any formula of the form νx.ϕ that was the principal formula of the rule x : κ
applied in the first step.

3. Finally, apply cuts until all leaves above l are propositionally saturated.

To be precise, the choice of which defect to deal with in each step of the construction has to follow a fair
scheduling procedure to ensure that each defect is eventually taken care of, but this is rather trivial since
there are only finitely many defects to choose from at each stage. Given that we implement fair scheduling,
we ensure that each leaf in the proof tree Π that we produce as the limit of the sequence (Πi)i<ω is a tile, so
it remains only to show that every infinite branch in Π has an infinite descending chain of ordinal variables.

So let β be an infinite branch of Π. For each i < ω, let β|Πi denote the initial segment of β that is a
branch from the root to a leaf of Πi, and let Γi denote the last sequent on β|Πi. For each i < ω we write Oi
for O(Γi). Since β is infinite there are infinitely many i such that β|Πi is a proper initial segment of β|Πi+1;
we say that such an index i is a growth point for β.

The following claim shows that the procedure maintains the invariant that, if Ψ′ is a descendant of Ψ in
Πi, then Ψ′ � Ψ.

Claim 4. Let L = O(Γi+1) \ O(Γi). Then,

1. O(Γi+1) = O(Γi) ] L.

2. Act(Γi+1) ⊆ Act(Γi) ] L.

3. No variable in L is older than any variable in OV(O(Γi)), and every variable in L is a root (has no
ancestors) or a child of some variable in Act(Γi).

4. If ϕ ∈ Γ+
i , then there is some formula ϕ′ ∈ Γ+

i+1 with ϕ′ �Oi+1
ϕ.

Proof of Claim 4. The proof of items (1) and (2) are trivial since the construction never removes variables
from the constraint and never makes pre-existing non-active variables active. For the proof of item (3), we
just need to inspect the construction of Γi+1: it is obvious that no variable in O(Γi+1) \ O(Γi) is older than
any variable in O(Γi), by inspection of the rules applied. Furthermore, we note that any variable in L must
have been added either as a new root or as a child of some active variable of Γi; the rule x : κ adds κ as a new
root, the minimization rule is only applied to formulas all of whose variables are active, and the ν(κ)-rule is
only applied to formulas that actually appear in Γ+

i , which certainly means all variables of that formula are
active. Applications of right weakening or cuts do not introduce any new ordinal variables at all.

The proof of item (4) is easy, since the only steps in the construction of Γi+1 that removes formulas in
Γi are applications of weakening where we pick the minimal formulas.

Given an index i let u(Γ)i denote the set {u(ϕ) | ϕ ∈ Γ+
i }. It is clear from Claim 4 that u(Γ)i ⊆ u(Γ)j

whenever i ≤ j. So since the set of underlying plain formulas in Γ+
i is bounded by the size of the closure

of the root formula ρ, there is some index i with u(Γ)i = u(Γ)j for all j ≥ i. We may as well assume i = 0
since otherwise we can just consider a final segment of β suitably re-indexed. With this assumption in place
we can now prove:

Claim 5. For every growth point i of β, either there is some formula ϕ ∈ Γ+
i and some formula ϕ′ in

Γ+
i+1 \ Γ+

i with ϕ′ ≺Oi+1 ϕ, or Γi+1 has strictly fewer defects than Γi.

Proof of Claim 5. Let i be a growth point. We make a case distinction according to how Γi+1 follows a fix
of some defect. There are the following possible cases to consider:

Case 1: Γi is the conclusion of an application of the x : κ-rule in which the principal formula
νxϕ is a defect. Then Γ+

i+1 contains a the formula νxκϕ ≺O(Γi+1) νxϕ. Furthermore, νxκϕ cannot be in

Γ+
i because then νxϕ would not be minimal.
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Case 2: Γi is the conclusion of an application of the ν(κ)-rule in which the principal formula
νxκϕ is a defect. The premise of this rule application then contains ϕ[νxκ

′
ϕ/x] where Oi+1 ` κ′ < κ. Let

ψ be the unique formula in Γi such that u(ψ) = u(ϕ[νxκ
′
.ϕ/x]). We cannot have ψ �Oi+1

ϕ[νxκ
′
ϕ/x], since

then νxκϕ was not a defect of Γi. So ϕ[νxκ
′
ϕ/x] ≺Oi+1

ψ, and since ψ ∈ Γ+
i we are done.

Case 3: Γi is the conclusion of an application of the minimization rule, and Γi+1 is a
descendant of the left premise. Since no formulas in Γ+

i or Γ−i are removed in the left premise, and no
new active variables are introduced, we see that the left premise is already a propositionally saturated small
pre-tile and therefore equal to Γi+1. So in this case the defect is fixed and no new defects are introduced,
meaning that Γi+1 has strictly fewer defects than Γi.

Case 4: Γi is the conclusion of an application of the minimization rule, and Γi+1 is a
descendant of the right premise. The defect that is to be fixed is of the form ϕ(νxκψ), where all
variables of this formula are active in Γi, θ ∈ Γ+

i for some θ �Oi ϕ(νxκψ), and the right premise contains

ϕ(νxκ
′
ψ) for some κ′ with Oi+1 ` κ′ < κ. Either ϕ(νxκ

′
ψ) ∈ Γ+

i+1, or it is replaced by some ≺Oi+1
-smaller

formula θ′ ∈ Γ+
i+1. Note that in the latter case we cannot have θ ≺Oi+1 θ′, since then θ′ would not be

minimal. By linearity of �Oi+1
we get θ′ �Oi+1

θ. If θ′ = θ then clearly Γi+1 contains strictly fewer defects
than Γi since no new formulas were introduced, and in the other case we have θ′ ≺Oi+1

θ as required.

This concludes the proof of the Claim.

Let ϕ be the underlying plain formula of some formula in Γ+
0 . Say that ϕ is improved at index i if, for

ϕ′ denoting the unique formula in Γ+
i with u(ϕ′) = ϕ and ϕ′′ denoting the unique formula in Γ+

i+1 with
u(ϕ′′) = ϕ, we have ϕ′′ ≺Oi+1

ϕ′.
From Claim 5 and the pigeonhole principle (there is only a fixed finite number of underlying plain

formulas), it follows that some formula is improved at infinitely many indices. This gives us an infinite
≺-descending chain of formulas on β and therefore, by considering the highest ranking variable in ϕ whose
annotation changes infinitely many times, an infinite ≺-descending chain of ordinal variables. By Proposition
5.4, this ensures that we find an infinite <-descending chain of ordinal variables on β.

Finally, from Claim 4 it clearly follows that Γi+1 � Γi for all i. Together with Proposition 5.16, it follows
that Ψ � Γ for any leaf Ψ in the proof tree Π that we have constructed.

As a corollary we get:

Proposition 5.21. Let O : Γ be any small ρ-tile and suppose [a]ϕ ∈ Γ. Then there is a (possibly infinite)
slim proof tree Π, in which every leaf Ψ is a non-trivial small a-successor of Γ containing ϕ′ for some
ϕ′ ≺O(Ψ) ϕ, and every infinite branch has an infinite descending chain of ordinal variables.

Proof. We first note that, where {[a]ϕ}∪ {〈a〉ψ | ψ ∈ Ψ} ⊆ Γ, the following is an instance of the modal rule:

O : [ă]
∨

Γ, ϕ,Ψ

O : Γ

Now, apply Proposition 5.20 to the sequent O : [ă]
∨

Γ, ϕ,Ψ, producing a slim proof tree in which every leaf
is labelled by some sequent of the form O′ : [ă]

∨
Γ,Θ where O′ : Θ is an a-successor of Γ. Finally, for each

such leaf labelled O′ : [ă]
∨

Γ,Θ, if the a-successor O′ : Θ is non-trivial then extend it by an application
of weakening, leaving O′ : Θ as the label of the new leaf, and otherwise, plug in a wellfounded proof of
O′ : [ă]

∨
Γ,Θ. The resulting proof tree now has the properties required by the proposition.

Next we draw some consequences of the saturation conditions of a tile. The following proposition shows
that an unprovable tile behaves in accordance with the local conditions for a counter-model:

Proposition 5.22. Let Γ be a small tile which does not have a slim proof. The following properties hold.

1. If ϕ ∧ ψ ∈ Γ+ then ϕ′ ∈ Γ+ for some ϕ′ �O(Γ) ϕ or ψ′ ∈ Γ+ for some ψ′ �O(Γ) ψ.

2. If ϕ ∨ ψ ∈ Γ then ϕ′ ∈ Γ+ for some ϕ′ �O(Γ) ϕ and ψ′ ∈ Γ+ for some ψ′ �O(Γ) ψ.

3. If µx.ϕ ∈ Γ then θ ∈ Γ+ for some θ �O(Γ) ϕ[µx.ϕ/x].
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Proof. For item (1), suppose that ϕ ∧ ψ ∈ Γ+ but there is no ϕ′ �O(Γ) ϕ with ϕ′ ∈ Γ+ and no ψ′ �O(Γ) ψ

with ψ′ ∈ Γ. Then since all ordinal variables in both ϕ and ψ are active in Γ, we get ϕ ∈ Γ and ψ ∈ Γ. Thus
we can provide a slim proof of Γ as follows:

Proposition 5.6

O(Γ) : ϕ,ϕ
rw

O(Γ) : ϕ,ϕ, ψ

Proposition 5.6

O(Γ) : ψ,ψ
rw

O(Γ) : ψ,ϕ, ψ
∧

O(Γ) : ϕ ∧ ψ,ϕ, ψ
rw

O(Γ) : Γ

The proofs of items (2) and (3) are similar.

Next, we prove two crucial propositions about a-successors of a tile, both involving the “backwards
modalities” for the converse action ă.

Proposition 5.23. Let Γ be a small ρ-tile and let Ψ be a non-trivial small a-successor of Γ. Suppose
〈ă〉ψ ∈ Ψ+, and suppose every ordinal variable in ψ is active in Γ. Then ψ′ ∈ Γ+ for some ψ′ �O(Γ) ψ.

Proof. Since 〈ă〉ψ ∈ Ψ+ the underlying plain formula of ψ belongs to the closure of ρ, and by assumption all
its ordinal variables are active in Γ. Hence, since Γ is a tile, either ψ′ ∈ Γ+ for some ψ′ �O(Γ) ψ or ψ ∈ Γ−.
But in the latter case, we can easily construct a wellfounded proof of the sequent O(Ψ) : [ă]

∨
Γ,Ψ:

Proposition 5.6

O(Ψ) : ψ,ψ

O(Ψ) : ψ,
∨

Γ
mod

O(Ψ) : 〈ă〉ψ, [ă]
∨

Γ

O(Ψ) : Ψ, [ă]
∨

Γ

This contradicts the assumption that Ψ was a non-trivial a-successor.

The next proposition is more subtle, and will play a key role in our completeness proof for slim proofs.
First a definition:

Definition 5.24. Let Γ be a small ρ-tile and let Ψ be a non-trivial small a-successor of Γ. Suppose 〈ă〉ψ ∈ Ψ+

and suppose x is the highest ranking ν-variable of ψ such that λ = oψ(x) is not active in Γ, assuming such
a variable exists. Let κ be an active variable of Γ such that λ ≺O(Ψ) κ. Let σ : Act(Ψ) → Act(Γ) be some
substitution on ordinal variables such that:

1. σ(ξ) = ξ for each ξ that is active in Γ,

2. σ(λ) ≺O(Γ) κ,

3. ψ′ ∈ Γ+ for some ψ′ �O(Γ) ψ[σ].

Then we say that the substitution σ preserves progression from κ to 〈ă〉ψ (relative to Γ and Ψ). If ϕ is
a formula in Γ+ and σ preserves progression from oϕ(x) to 〈ă〉ψ, then we say the substitution σ preserves
progression from ϕ to 〈ă〉ψ.

Proposition 5.25. Let Γ be a small ρ-tile and let Ψ be a non-trivial small a-successor of Γ. Suppose
〈ă〉ψ ∈ Ψ+. Let o be any annotation whose range is contained in Act(Γ) and suppose x is a fixpoint variable
such that O(Ψ) ` oψ ≺x o and oψ(y) ∈ Act(Γ) for all y higher ranking or equal to x. Then there is a formula
θ such that:

• θ ∈ Γ+,

• u(θ) = u(ψ), and
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• O(Γ) ` oθ ≺y o for some y higher ranking or equal to x.

Proof. We first define a substitution τ : Act(Ψ)→ Act(Γ) as follows: for each variable λ ∈ Act(Ψ), τ maps
λ to its <O(Ψ)-smallest ancestor in Act(Γ). Note that this is well-defined by definition of an a-successor, and
note that τ(κ) = κ for κ ∈ Act(Γ) ∩Act(Ψ), and therefore τ(oψ(y)) = oψ(y) = o(y) for all y higher ranking
or equal to x.

Claim 6. There is some formula θ ∈ Γ+ such that O(Γ) ` θ � ψ[τ ].

Proof of Claim 6. Otherwise we have ψ[τ ] ∈ Γ−, and we can derive O(Ψ) : Ψ, [ă]
∨

Γ as follows:

Proposition 5.5
(τ increasing)

O(Ψ) ` ψ,ψ[τ ]

O(Ψ) ` ψ,
∨

Γ
(basic modal logic)

O(Ψ) ` 〈ă〉ψ, [ă]
∨

Γ

O(Ψ) ` Ψ, [ă]
∨

Γ

Since O(Ψ) ` oψ(x) ≺ o(x) we have two different cases to consider.
Case 1: oψ(x) is to the left of o(x). Since Ψ was an a-successor, we have oψ(x) ∈ L for some L such

that O(Ψ) = O(Γ)]L. By Proposition 5.19 there is some variable κ ∈ Act(Γ) such that oψ(x) <O(Ψ) κ and
κ is to the left of o(x) in O(Ψ) (equivalently in O(Γ)). By definition of τ it follows that τ(oψ(x)) is also to
the left of o(x) in O(Γ). Hence τ(oψ(x)) ≺O(Γ) o(x). By Claim 6 there is some formula θ ∈ Γ+ such that
O(Γ) ` θ � ψ[τ ]. It easily follows that O(Γ) ` oθ ≺y o for some y higher ranking or equal to x.

Case 2: O(Ψ) ` oψ(x) < o(x). Let us write ψ as α(νxoψ(x)β) so that ψ[τ ] is α[τ ](νxτ(oψ(x))β[τ ]).

Claim 7. ∃ξ < o(x) : α[τ ](µxξβ[τ ]) /∈ Γµ.

Proof of Claim 7. By assumption we have O(Ψ) ` oψ(x) < o(x), so if the displayed formula were in Γµ then
we could prove O(Ψ) : Ψ, [ă]

∨
Γ as follows:

Proposition 5.5
τ increasing

O(Ψ) : α(νxoψ(x)β), α[τ ](µxoψ(x)β[τ ])
O(Ψ) ` oψ(x) < o(x)

O(Ψ) : α(νxoψ(x)β),∃ξ < o(x) : α[τ ](µxξβ[τ ])

O(Ψ) : α(νxoψ(x)β),
∨

Γ

O(Ψ) : 〈ă〉α(νxoψ(x)β), [ă]
∨

Γ

O(Ψ) : Ψ, [ă]
∨

Γ

Since θ ∈ Γ+ and O(Ψ) ` θ � ψ[τ ], the saturation condition of a tile with respect to the minimization
rule ensures that there is some λ <O(Γ) o(x) and some formula θ′ ∈ Γ+ such that θ′ �O(Γ) α[τ ](νxλβ[τ ]). Let

o′ be the annotation of the formula α[τ ](νxλβ[τ ]), so that o′(x) = λ <O(Γ) o(x), hence O(Γ) ` o′(x) ≺ o(x).
Furthermore, for all y ranking higher than or equal to x we have:

o′(y) = oψ[τ ](y)

= τ(oψ(y))

= o(y)

where the last inequality is due to oψ(y) being active in Γ (since x was the highest ranking variable with
oψ(x) non-active in Γ). Now let o′′ be the annotation of θ′. Since θ′ �O(Γ) α[τ ](νxλβ[τ ]) it follows by
definition that O(Γ) ` o′′ ≺y o′ for some y. Either y is higher ranking than or equal to x in which case
o′′(y) ≺O(Γ) o

′(y) �O(Γ) o(y), or y is lower ranking than x in which case o′′(x) = o′(x) ≺O(Γ) o(x). In either
case the desired conclusion follows.
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Position Player Moves
ρ Refuter {Γ ∈ Tρ | ρ ∈ Γ+}

Γ ∈ Tρ Prover {(Γ, [a]ϕ) | [a]ϕ ∈ Γ+}
(Γ, [a]ϕ) ∈ Tρ × Clos(ρ) Refuter {Ψ ∈ Tρ | Γ→a,ϕ Ψ}

Table 3: Moves in the mosaic game

5.4 Completeness

The goal of this section is to show that every valid formula ρ has a slim proof. We will do so using a two-
player game that we call the mosaic game, played between two players called “Prover” and “Refuter”. Our
strategy is as follows: We first prove the determinacy of the mosaic game, that is, the fact that either Prover
or Refuter has a winning strategy. It then suffices to show that Refuter cannot have a winning strategy if ρ
is valid, and ρ has a slim proof if the mosaic game is a win for Prover.

We now define the mosaic game for the given formula ρ. The two players in the mosaic game are called
Prover and Refuter. There are three kinds of positions in this game: the fixed formula ρ, used as the starting
position, ρ-tiles and pairs (Γ, [a]ϕ) where Γ is a ρ-tile and [a]ϕ ∈ Γ+. Ownership of positions and legal
moves of the game are specified in Table 3, where we recall that Tρ denotes the set of ρ-tiles, and we write
Γ →a,ϕ Ψ if Ψ is an a-successor of Γ, relative to ϕ (cf. Definition 5.18). In words, the mosaic game for ρ
starts at the formula ρ itself, which is a position for Refuter. After Refuter’s initial move, which consists of
a ρ-tile containing the formula ρ, the two players take turns. At a ρ-tile Γ, Prover has to select a formula
[a]ϕ ∈ Γ+, and at a position of the form (Γ, [a]ϕ), Refuter has to pick a witness in the form of an a-successor
of Γ, relative to ϕ.

Prover wins an infinite play if the play contains an infinite descending ≺-chain of ordinal variables,
otherwise Refuter wins the play. More formally, if (Oi : Γi)i<ω enumerates the ρ- tiles occurring in an
infinite play, then this play is won by Prover iff there exists k < ω and an infinite sequence of ordinal
variables (κi)i<ω such that Ok+i ` κi+1 � κi for all i, and Ok+i ` κi+1 ≺ κi for infinitely many i. (Note
that if Γ0,Γ1 are tiles such that Γ1 is reachable from Γ0 via some partial play in the mosaic game, then the
constraint of Γ1 contains that of Γ0. This is a direct consequence of the definition of an a-successor and the
relation �L over pre-tiles.) Finite plays are lost by the player who got stuck.

Proposition 5.26. The mosaic game is determined.

Proof. Fix a formula ρ. Fix an injection of the set of positions into the natural numbers, so that every play
in the mosaic game for ρ corresponds to a unique function from N to N, i.e., an element of the Baire space
NN. Let P ⊆ NN be the subset that describes all finite plays in the mosaic game up to some position owned
by Refuter which is immediately followed by any position that is not a legal next move (and any sequence
of positions thereafter). Furthermore, let W ⊆ NN describe the set of infinite plays in the mosaic game for
ρ that are winning for Prover.

Recall that Prover and Refuter take alternating turns in the mosaic game; it is then not hard to see
that Prover has a winning strategy in the mosaic game for ρ iff Player I (i.e., the player that plays first)
has a winning strategy in the Gale–Stewart game on the Baire space with winning set P ∪W . We claim
that this winning set is Borel, whence determinacy of the mosaic game is a consequence of Martin’s Borel
Determinacy Theorem [12]. Being a union of open sets, P is clearly Borel. The set W0 of (all) infinite plays
in the mosaic game for ρ is a countable intersection of open sets, so also Borel. For each n > 0, let Wn ⊆W0

be the set of infinite plays that pass through a ρ-tile whose constraint set contains a ≺-chain of length n. So
W ⊆

⋂
nWn. As the relation ≺ on constraints is increasing along the sequence of tiles occurring in a play,

each Wn is an open set. Moreover, as new ordinal variables only get added to the ‘left’ of the ≺ relation we
have W ⊇

⋂
nWn. So P ∪W is Borel.

With Proposition 5.26 in place, we want to prove that a winning strategy for Prover yields a slim proof,
and on the other hand, a winning strategy for Refuter yields a counter-model. We begin with the first
statement.

Proposition 5.27. If Prover has a winning strategy in the mosaic game for ρ, then the formula ρ has a
slim proof.
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Proof. Let σ be a winning strategy for Prover in the mosaic game for ρ. We show how to construct a slim
proof for an arbitrary small ρ-tile Γ � {ρ} as Proposition 5.20 ensures this is sufficient to establish that ρ
admits a slim proof. Consider the tree of maximal plays consistent with σ starting from Γ. By assumption,
all such plays are winning for Prover. We now let Π be the tree of positions owned by Prover in these plays.
These positions are precisely the small ρ-tiles in the σ-plays starting from Γ. We can thus view Π as a
derivation with root Γ in the calculus consisting only of rules

{Ψ ∈ Tρ | Φ→a,ϕ Ψ}
[a]ϕ ∈ Φ

Φ

where we write Φ→a,ϕ Ψ to denote that Ψ is an a-successor of Φ relative to the formula ϕ (cf. Definition 5.18).
Moreover, as σ is winning, every infinite path through the derivation contains an infinite ≺-decreasing chain
of ordinal variables through the sequence of constraints on the path. All that remains is to replace each of
above rules by the corresponding slim derivation guaranteed by Proposition 5.21 and Proposition 5.4: The
restriction on applications of lw in slim derivations guarantees that the induced expansion of Π is a slim
proof.

We now come to the key technical result of the paper, showing that winning strategies for Refuter indeed
correspond to counter-models.

Proposition 5.28. Suppose Refuter has a winning strategy in the mosaic game for ρ. Then ρ is not valid.

Proof. Fix a winning strategy σ for Refuter, and let Γ be the tile containing ρ chosen by the first move of
Refuter according to σ. We construct a counter-model Mσ = (Wσ, Rσ, V σ) as follows: Wσ is the set of
σ-guided partial plays whose last position belong to Prover, i.e. the last position is a small tile. In the sequel
we may write π v π′ (π @ π′) if π is an initial segment of π′ (a proper initial segment of π′, respectively).
Given an action label a, and plays π0, π1 ∈Wσ, we set (π0, π1) ∈ Rσa if and only if either

1. π1 extends π0 with a choice of a formula [a]ϕ by Prover, followed by a choice of a non-trivial a-successor
Ψ of the last position on π0 containing some ϕ′ ≺O(Ψ) ϕ, according to the strategy σ of Refuter, or

2. π0 extends π1 with a choice of a formula [ă]ϕ by Prover, followed by a choice of a non-trivial ă-successor
Ψ of the last position on π1 containing some ϕ′ ≺O(Ψ) ϕ, according to the strategy σ of Refuter.

Note that π0R
σ
aπ1 iff π1R

σ
ăπ0. For the valuation V σ, we set π ∈ V σ(p) if and only if p ∈ Θ, where Θ is the

last position of π.
Note that (Γ, ρ) is a position in the evaluation game for ρ in Mσ, since Γ ∈ Wσ (more precisely, the

partial play consisting only of the position Γ is in Wσ). We shall provide a winning strategy σ′ for Falsifier
in the evaluation game at this position. While constructing the strategy σ′ we shall inductively maintain
the condition that for any σ′-guided partial play (π0, ϕ0)...(πn, ϕn), the partial plays π0, ..., πn are σ-guided,
and furthermore there is a sequence of positively annotated formulas (ϕ′0, ..., ϕ

′
n) such that, if we denote the

last sequent on each play πi as Θi and its constraint set as Oi, then:

1. ϕ′i ∈ Θ+
i .

2. u(ϕ′i) = ϕi.

3. If i < n, ϕi = ψ0 ∨ ψ1 and ϕi+1 = ψj where j ∈ {0, 1}, then πi = πi+1, ϕ′i is of the form ψ′0 ∨ ψ′1 and
ϕ′i+1 �Oi ψ′j .

4. If i < n, ϕi = ψ0 ∧ ψ1 and ϕi+1 = ψj where j ∈ {0, 1}, then πi = πi+1, ϕ′i is of the form ψ′0 ∧ ψ′1 and
ϕ′i+1 �Oi+1 ψ

′
j .

5. If i < n, ϕi = µx.ψ and ϕi+1 = ψ[µx.ψ/x], then πi = πi+1, ϕ′i is of the form µx.ψ′ and ϕ′i+1 �Oi+1

ψ′[µx.ψ′/x].

6. If i < n, ϕi = νx.ψ and ϕi+1 = ψ[νx.ψ/x], then πi = πi+1, ϕ′i is of the form νxκθ and ϕ′i+1 �Oi+1

θ[νxκ0θ/x] for some κ0 such that Oi+1 ` κ0 < κ.
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7. If i < n, ϕi = [a]ψ and ϕi+1 = ψ, then πi @ πi+1, (πi, πi+1) ∈ Rσa , and ϕ′i is of the form [a]ψ′ where
ϕ′i+1 �Oi+1 ψ

′.

8. If i < n, ϕi = 〈a〉ψ, ϕi+1 = ψ, then (πi, πi+1) ∈ Rσa , ϕ′i is of the form 〈a〉ψ′ and either

(a) πi @ πi+1 and ϕ′i+1 �Oi+1
ψ′, or

(b) πi+1 @ πi, and letting k be the greatest index less than i+ 1 with πk = πi+1, we have, either:

i. all ordinal variables in ψ′ are active in Θi+1, and ϕ′i+1 �Oi+1 ψ
′, or

ii. some ordinal variable in ψ′ is not active in Θi+1, Oi 0 oψ′ ≺x oϕ′k where x is the highest
ranking fixpoint variable with oψ′(x) /∈ Act(Θi+1), and ϕ′i+1 �Oi+1 ψ

′[τ ] for some substitution
τ with τ(κ) = κ for all κ ∈ Act(Θi+1), or

iii. some ordinal variable in ψ′ is not active in Θi+1, Oi ` oψ′ ≺x oϕ′k where x is the highest
ranking fixpoint variable with oψ′(x) /∈ Act(Θi+1), and for some y higher ranking or equal to
x we have Oi+1 ` oϕi+1

≺y oψ′ .

Suppose the strategy σ′ has been defined on all partial plays of length < n, and let (π0, ϕ0)...(πn, ϕn)
be a play of length n. We show how to define the strategy σ′ on this play, if the last position belongs
to Falsifier, and we show how to maintain the inductive invariant for each σ′-guided play of length n + 1
extending (π0, ϕ0)...(πn, ϕn). The construction is carried out on a case-by-case basis depending on the shape
of the last position.

Case ϕn is of the form p or p for some propositional variable p. Then there are no available
moves, so we need not define the strategy σ′ here and the inductive invariant is trivially maintained for all
extensions of the play.

Case ϕn is of the form α∧β. This position belongs to Falsifier. By the induction hypothesis ϕ′n ∈ Θ+
n ,

and u(ϕ′n) = α ∧ β. Hence ϕ′n is of the form α′ ∧ β′ where u(α′) = α and u(β′) = β. By Proposition 5.22,
α′′ ∈ Θ+

n for some α′′ �On α′ or β′′ ∈ Θ+
n for some β′′ �On β′ (or both). In the first case we define σ′ so

that Falsifier chooses (πn, α) and set ϕ′n+1 = α′′, and in the second case we define σ′ so that Falsifier chooses
(πn, β) and set ϕ′n+1 = β′′ (and if both cases hold the choice can be defined arbitrarily). The inductive
invariant is clearly maintained.

Case ϕn is of the form α∨β. This position belongs to Verifier. By the induction hypothesis ϕ′n ∈ Θ+
n ,

and u(ϕ′n) = α ∨ β. Hence ϕ′n is of the form α′ ∨ β′ where u(α′) = α and u(β′) = β. By Proposition 5.22,
α′′ ∈ Θ+

n for some α′′ �On α′ and β′′ ∈ Θ+
n for some β′′ �On β′. So clearly, given any extension of the play

(π0, ϕ0)...(πn, ϕn) in which Verifier chooses (πn, γ) with γ ∈ {α, β}, we can choose γ′ so that the inductive
invariant is maintained.

Case ϕn is of the form [a]α. This position belongs to Falsifier. The shadow formula ϕ′n is of the
form [a]α′ where u(α′) = α, and we have [a]α′ ∈ Θ+

n by the induction hypothesis. Let Prover play the
formula [a]α′, and let Ψ be the non-trivial small a-successor of Θn chosen by Refuter in response to this
move according to the strategy σ. By definition of an admissible move for Refuter there is some α′′ ∈ Ψ+

such that α′′ �O(Ψ) α
′. We set σ′ so that Falsifier chooses (πn ·Ψ, α). Since α′′ ∈ Ψ and u(α′′) = u(α′) = α,

the inductive invariant is maintained.
Case ϕn is of the form 〈a〉α. This position belongs to Verifier, and we have to show that the inductive

invariant is maintained for every possible move of Verifier. Every choice of Verifier at this position is of the
form (π′, α) where one of the following two cases holds: (i) π′ is of the form (πn ·Ψ) where Ψ is a non-trivial
a-successor of Θn, or (ii) πn is of the form π′ · Θn where Θn is a non-trivial ă-successor of the last tile on
π′. In either case, ϕ′n is of the form 〈a〉β where u(β) = α. In case (i), we must have some α′ ∈ Ψ+ with
α′ �O(Ψ) β by definition of an a-successor, and the inductive invariant is maintained. In case (ii), denote the
last tile on π′ by Θ′. Clearly, this means that there must be some index k < n for which πk = π′, so let k be
the largest such index. If all ordinal variables of β are active in Θ′ then pick α′ to be some formula in (Θ′)+

with α′ �O(Θ′) β, which exists by Proposition 5.23. If some ordinal variable of β is non-active in Θ′ then
let x be the highest ranking variable with oβ(x) /∈ Act(Θ′). If O(Θn) 0 oβ ≺x oϕ′k then let the substitution
τ be as in the proof of Proposition 5.25. Then we pick ϕ′n+1 so that ϕ′n+1 �O(Θn) β[τ ] as provided in the
same proof. Finally if O(Θn) ` oβ ≺x oϕ′k then pick ϕ′n+1 so that O(Θ′) ` oϕ′n+1

≺y oϕ′k for some y higher
ranking or equal to x, as provided by Proposition 5.25.
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Case ϕn is of the form νxα. Then the unique next position in any extension of this play is (πn, α[νxα/x]).
The formula ϕ′n ∈ Θ+

n is νxκβ for some κ and some β with u(β) = α. By the definition of a tile there is
some κ0 such that O(Θn) ` κ0 < κ and there is some formula γ ∈ Θ+

n such that γ �O(Θn) β[νxκ0β/x]. Since
clearly u(γ) = u(β[νxκ0β/x]) = α[νx.α/x], the invariant is maintained.

Case ϕn is of the form µxα. Then the unique next position in any extension of this play is (πn, α[µxα/x]).
The formula ϕ′n ∈ Θn is µxβ for some β with u(β) = α. By the definition of a tile we have γ �On β[µxβ/x]
for some γ ∈ Θn. Since clearly u(γ) = u(β[µxβ/x]) = α[µxα/x], the invariant is maintained.

We now show that σ′ is indeed a winning strategy for Falsifier. First we show that every full finite
σ′-guided play is won by Falsifier. The last position of such a play must take one of the following forms: (i)
(π, p) for some propositional variable p with π ∈ V σ(p), (ii) (π, p) for some propositional variable p with
π /∈ V σ(p), or (iii) (π, [a]ϕ) with π not having an a-successor.

Now the latter case cannot occur — this is a more or less direct consequence of our construction of the
relation Rσa , based on Refuter’s winning strategy σ in the mosaic game. In the other two cases we reason
as follows, denoting the last tile on π by Θ. If the last position of the play is (π, p) and π ∈ V σ(p) then
p ∈ Θ by definition of V σ. But p ∈ Θ by the invariant of σ′-guided plays, so we get an instance of excluded
middle which contradicts the definition of a non-trivial tile. On the other hand, if the last position is (π, p)
and π /∈ V σ(p) then p /∈ Θ by definition. This contradicts the invariant of σ′-guided plays, which says that
p ∈ Θ. So in each case the assumption that the finite full play is lost by Falsifier leads to a contradiction,
and we have established that Falsifier wins every full finite σ-guided play.

In the remainder of the proof we will argue that every infinite σ′-guided play is won by Falsifier as well.
Let (πi, ϕi)i<ω be an infinite σ′-guided play, and assume for a contradiction that this play is lost by Falsifier.
As an immediate consequence of the following claim (cf. our discussion of the evaluation game in section 2.3),
this means that the highest ranking variable that is unfolded infinitely many times in the play is a ν-variable.

Claim 8. Let (ϕi)i<ω be an infinite trace starting from ϕ0 = ρ, and let ηxψ be its most significant formula.
Then for any other formula λz χ that occurs infinitely often on this trace, we have x <ρ z, i.e., x ranks
higher than z in the subsumption order of ρ.

Proof of Claim (sketch). While the statement of the claim is rather intuitive, the details of its proof are quite
tedious. Define the relation vC on the fixpoint formulas in the set Clos(ρ) by putting α vC β if there is a
finite trace from α to β such that α is a subformula of every formula on the trace. It then follows from the
assumptions of the claim that the formula ηxψ is vC-minimal among all fixpoint formulas appearing on the
trace (ϕi)i<ω. Now consider Kozen’s expansion map exp from Sfor(ρ) to Clos(ρ) [11]; the key observation
is that for any two bound variables x, y ∈ Var(ρ) we have that x <ρ y iff exp(x) @C exp(y).

To contradict the assumption that σ was a winning strategy for Refuter, we shall now construct an
infinite σ-guided play containing an infinite progressing chain of ordinal variables,

We denote the last sequent on each partial play πi by Θi, and we denote O(Θi) by Oi. Consider the
infinite sequence of “shadow formulas” (ϕ′i)i<ω. Given a fixpoint variable x, say that the index i is a progress
point for x if πi is an initial segment of πi+1 and oϕ′i+1

(x) 6= oϕ′i(x). We refer to the highest ranking ν-

variable that has infinitely many progress points on (ϕ′i)i<ω as the dominant variable of the sequence and
denote it by Z. Note that at least one ν-variable has infinitely many progress points, since by clause (6)
in the construction of the shadow formulas ϕ′i, every index at which a ν-variable is unfolded on the play
(πi, ϕi)i<ω must be a progress point either for that variable or some higher ranking variable, and since there
is a ν-variable unfolded infinitely many times in the play (πi, ϕi)i<ω.

Claim 9. There is an index k < ω such that:

• πk is an initial segment of πm for all m > k,

• no higher ranking ν-variable than Z has any progress point after k,

• no higher ranking variable than Z is unfolded at any point after k.
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Proof of Claim. Let k0 be some index for which no higher ranking ν-variable than Z has any progress points
after k0, and no higher ranking fixpoint variable than Z is unfolded after k0. Such an index exists by
definition of Z (and since Z must be higher ranking or equal to the highest ranking variable that is unfolded
infinitely many times on (πi, ϕi)i<ω, since that variable is a ν-variable by assumption and has infinitely many
progress points). Now consider the set of σ-guided partial plays of the form πm with m ≥ k0. It is clear that
this set is downwards directed with respect to the initial segment order, so we find a shortest σ-guided play
π′ belonging to this set. We set k to be the smallest index ≥ k0 for which πk = π′.

We assume that k = 0 in the previous claim, since otherwise we can just re-index the play (πi, ϕi)i<ω.
For each index i we let ξi denote the ordinal variable oϕ′i(Z).

Claim 10. Suppose that i ≤ j < ω are indices such that πi = πk = πj for all i ≤ k ≤ j. If Z has a progress
point k with i ≤ k < j then ξj ≺Oj ξi, and otherwise ξj = ξi.

Proof of Claim. This is proved by induction on the difference j − i, the case for j − i = 0 being trivial. For
the induction step, supposing that the induction hypothesis holds for j − i, consider the index j + 1. It
suffices to prove that ξj+1 �Oj ξj ; it then follows that ξj+1 ≺Oj ξj if j is a progress point. We have to
consider several cases for the shape of ϕj and ϕj+1. Note that by our assumption that πi = πj = πj+1, ϕj
cannot be of the form [a]ψ or 〈a〉ψ.

Case ϕj is of the form α∧β and ϕj+1 is either α or β. Say ϕj+1 = α. Then the shadow formula ϕ′j
is of the form α′ ∧ β′ where u(α′) = α and u(β′) = β, and ϕ′j+1 �Oj α′. By assumption no variable ranking
higher than Z has a progress point at j, so we get:

oϕ′j+1
(Z) �Oj+1 oα′(Z)

= oα′∧β′(Z)

= oϕ′j (Z)

Hence ξj+1 �Oj+1
ξj as required.

Case ϕj is of the form α ∨ β. This is similar to the previous case.
Case ϕn is of the form νxα. Then the formula ϕ′j is νxκβ for some κ and some β with u(β) = α. Then

there is some κ0 such that ϕ′j+1 �Oj β[νxκ0β/x]. Since no variable ranking higher than Z has a progress
point at j, we get:

oϕ′j+1
(Z) �Oj+1

oβ[νxκ0β/x](Z)

�Oj+1
oνxκβ(Z)

= oϕ′j (Z)

Hence ξj+1 �Oj+1
ξj as required.

Case ϕn is of the form µxα. This is similar to the previous case.

Claim 11. Suppose that i ≤ j < ω are indices such that for all i ≤ k < j, πk is an initial segment of πk+1.
If Z has a progress point k with i ≤ k < j then ξj ≺Oj ξi, and otherwise ξj = ξi.

Proof of Claim. This is proved by induction on the difference j − i, in the same manner as Claim 10. The
case for j − i = 0 is trivial, and for the induction step we show that ξj+1 �Oj ξj . The only difference is that
we now have to consider the cases where ϕj is of the form [a]ψ or 〈a〉ψ. We focus on the latter case since
they are treated in the same way: if ϕj = 〈a〉ψ then ϕ′j is of the form 〈a〉ψ′ where u(ψ′) = ψ. Furthermore,
since we assumed that πj is an initial segment of πj+1, the last tile on πj+1 must be an a-successor of the
last tile on πj , and ϕ′j+1 �Oj+1

ψ′. Hence we get:

oϕ′j+1
(Z) �Oj+1 oψ′(Z)

= o〈a〉ψ′(Z)

= oϕ′j (Z)

So ξj+1 �Oj+1
ξj as required.
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Claim 12. Suppose that i ≤ j < ω are indices such that πi = πj and πi is an initial segment of πk for all
i < k < j. If Z has a progress point k with i ≤ k < j then ξj ≺Oj ξi, and otherwise ξj �Oj ξi.

Proof of Claim. We prove this by induction on the difference j − i. If j − i = 0 then i = j and so ξi = ξj .
Now suppose j − i > 0, and suppose the statement holds for all i′ ≤ j′ with j′ − i′ < j − i. If πi = πk for all
i ≤ k ≤ j then the statement follows directly from Claim 10. Otherwise, it is clear that we can find indices
i′, j′ such that i < i′ ≤ j′ < j, πi′ = πj′ , πi = πi′−1, πj = πj′+1, Θi′ = Θj′ is a non-trivial a-successor of Θi

for some a, and the partial play (πi, ϕi)...(πj , ϕj) has the shape:

(π, ϕi)...(π, ϕi′−1)(π ·Θ, ϕi′)...(π ·Θ, ϕj′)(π, ϕj′+1)...(π, ϕj)

where π = πi = πi′−1 = πj′+1 = πj , and Θ = Θi′ = Θj′ .
We shall prove the following statements:

1. If Z has a progress point m with i ≤ m < i′ − 1 then ξi′−1 ≺Oi′−1
ξi and otherwise ξi′−1 �Oi′−1

ξi.

2. If Z has a progress point m with j′ + 1 ≤ m < j then ξj ≺Oj ξj′+1 and otherwise ξj �Oj ξj′+1

3. If Z has a progress point m with i′ ≤ m < j′ then ξj′ ≺Oj′ ξi′ and otherwise ξj′ �Oj′ ξi′ .

4. If i′ − 1 is a progress point for Z then ξi′ ≺Oi′ ξi′−1, and otherwise ξi′ �Oi′ ξi′−1.

5. If ξj′ ≺Oj′ ξi′−1 then ξj′+1 ≺Oj′+1
ξi′−1.

6. If ξj′ �Oj′ ξi′−1 then ξj′+1 �Oj′+1
ξi′−1.

Items (1–3) are immediate from the induction hypothesis.
For the proof of item (4), first suppose that i′ − 1 is a progress point for Z; then ξi′ ≺Oi′ ξi′−1 by Claim

11 applied to the indices i′ − 1, i′, so that we are done. On the other hand, if i′ − 1 is not a progress point
for Z, we reason as follows. First note that ϕ′i′−1 must be of the form [a]ψ or 〈a〉ψ for some formula ψ such
that either ϕ′i′ = ψ or ϕ′i′ ≺Oi′ ψ. If ψ = ϕ′i′ then (with © ∈ {[a], 〈a〉}):

ξi′ = oϕ′
i′

(Z) = oψ(Z) = o©ψ(Z) = oϕ′
i′−1

(Z) = ξi′−1.

Finally, if ϕ′i′ ≺Oi′ ψ, then there is some fixpoint variable y such that oϕ′
i′

(y) ≺Oi′ oψ(y) and oϕ′
i′

(z) = oψ(z)

for all z ranking higher than y. But then i′ − 1 is a progress point for y, hence by our choice of Z, the
variable Z is higher ranking than y. Hence oϕ′

i′
(Z) = oψ(Z), and by the same reasoning as above we can

show that oψ(Z) = oϕ′
i′−1

(Z). Hence oϕ′
i′

(Z) = oϕ′
i′−1

(Z) as required.

For the proof of item (5), suppose ξj′ ≺Oj′ ξi′−1. We recall that Θj′+1 = Θi′−1, so ξi′−1 is an active
variable of Θj′+1, and Θj′ is a non-trivial a-successor of Θj′+1. By our assumption on Z being the highest
ranking fixpoint variable with any progress points, this means that Oj′ ` oϕ′

j′
≺Z oϕ′

i′−1
, hence Oj′+1 `

oϕ′
j′+1
≺y oϕ′

i′−1
for some y higher ranking or equal to Z. But then y = Z, again by our assumption that Z

is the highest ranking variable with any progress points. In other words we have oϕ′
j′+1

(Z) ≺Oj′+1
oϕ′

i′−1
(Z),

i.e. ξj′+1 ≺Oj′+1
ξi′−1 as required.

For the proof of item (6) suppose ξj′ = ξi′−1. Then ξj′ is an active variable of Θi′−1 = Θj′+1. Write
ϕ′j′ = 〈a〉ψ′. If all variables in ψ′ are active in Θj′+1 then ϕ′j′+1 �Oj′+1

ψ′, and since Z was the highest
ranking variable with any progress point it follows that

ξj′+1 = oϕ′
j′+1

(Z)

�Oj′+1
oψ′(Z)

= ξj′

= ξi′−1

as required. On the other hand if some variable oψ′(y) of ψ′ is not active in Θj′+1 = Θi′−1 then either
ϕ′j′+1 �Oj′+1

ψ′[τ ] for some substitution τ that is the identity on all active variables of Θj′+1, including
ξi′−1, or Oj′+1 ` oϕ′

j′+1
≺y oϕoϕ′

i′−1
for some fixpoint variable y. Since Z was the highest ranking variable
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with any progress point, in either case we get oϕ′
j′+1

(Z) �Oj′+1
oψ′(Z) and therefore ξj′+1 �Oj′+1

ξi′−1 as

before.

We now proceed to finish the proof of the claim using items (1–6). If Z has a progress point m with
i′ − 1 ≤ m < j′ then either m = i′ − 1 or i′ ≤ m < j. So combining items (3) and (4):

7. If Z has a progress point m with i′ − 1 ≤ m < j′, then ξj′ ≺Oj′ ξi′−1, and otherwise ξj′ �Oj′ ξi′−1.

Combining items (5–7), we immediately obtain:

8. If Z has a progress point m with i′ − 1 ≤ m < j′, then ξj′+1 ≺Oj′+1
ξi′−1, and otherwise ξj′+1 �Oj′+1

ξi′−1.

The index j′ cannot be a progress point for Z since π′j is not an initial segment of πj′+1 So if Z has a progress
point m with i′− 1 ≤ m < j, then either i′− 1 ≤ m < j′ or j′+ 1 ≤ m < j. So combining items (8) and (2):

9. If Z has a progress point m with i′ − 1 ≤ m < j, then ξj ≺Oj ξi′−1, and otherwise ξj �Oj ξi′−1.

Finally, if Z has a progress point m with i ≤ m < j, then either i ≤ m < i′ − 1 or i′ − 1 ≤ m < j. So
combining items (9) and (1), we have:

10. If Z has a progress point m with i ≤ m < j, then ξj ≺Oj ξi, and otherwise ξj �Oj ξi.

But item (10) is the conclusion we aimed to prove, so the proof is finished.

Claim 13. Let N ⊆ ω be a set of indices such that πi = πj for all i ∈ N . Then N is finite.

Proof of Claim. Say that a play π′ of the mosaic game is visited infinitely many times if the set N = {i <
ω | πi = π′} is infinite. We want to show that no π′ is visited infinitely many times.

It is easy to see that the set of plays π′ of the mosaic game that are visited infinitely many times is
downwards directed with respect to the initial segment ordering. Assume for contradiction that this set is non-
empty then it contains some π′ that is visited infinitely many times, and for any π′′ that is visited infinitely
many times, π′ is an initial segment of π′′. Hence for some k < ω, π′ is an initial segment of πm for all m ≥ k.
Furthermore, by the pigeonhole principle there is a formula ψ such that (πm, ϕm) = (π′, ψ) for infinitely
many m < ω. Consequently there must be infinitely many k0, k1, k2, ... < ω for which (πki , ϕki) = (π′, ψ), π′

is an initial segment of πm for ki ≤ m ≤ ki+1, and Z has a progress point m with ki ≤ m < ki+1. But then,
it follows immediately from Claim 12 that for each ki, we have ξki+1 ≺O ξki , where O is the constraint of
the last sequent on π′. Hence we find an infinite set of distinct ordinal variables in the same tile, which is
impossible since the constraint of a sequent is always finite.

Claim 14. There is a (unique) infinite σ-guided play π∞ and a sequence S = (li, ri)i<K of pairs of indices
(where K ≤ ω), such that the following conditions hold for each i < K:

• li < ri, and ri < li+1 (if i+ 1 < K);

• πli = πri v π∞;

• πli v πm for each m with li ≤ m ≤ ri;

• πm v πm+1, for all m with ri ≤ m < li+1 (if i+ 1 < K).

Furthermore, if K < ω then

• πm v πm+1 and πm @ π∞, for all m ≥ rK−1.

We can view the play π∞ as a limit of the partial plays (πi)i<ω in the mosaic game appearing in the
infinite play (πi, ϕi)i<ω in the evaluation game, not in the sense that πi v π∞ for all i < ω, but for infinitely
many i < ω. Intuitively, Claim 14 says that the infinite play (πi, ϕi)i<ω looks as displayed in Figure 3 below.
The dotted arrow shows how the play (πi, ϕi)i<ω traverses the tree of σ-guided plays, and the shaded branch
to the left shows the infinite σ-guided play π∞.
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Figure 3: The play π∞ of Claim 14.

Proof of Claim. We begin by showing that there is an infinite σ-guided play π∞ such that every finite initial
segment of π∞ is equal to πi for some i < ω. Consider the set Π of partial σ-guided plays π′ such that every
finite initial segment of π′ is equal to πi for some i < ω. This set is clearly downwards closed under the
initial segment order, so it forms a finitely branching tree in which π′′ is considered as a child of π′ iff it is
a minimal partial play in Π of which π′ is a proper initial segment. Thus, by König’s lemma it suffices to
prove that this tree is infinite. But clearly, πi belongs to Π for every i < ω. So if the set Π were finite, by
the pigeonhole principle it would have to contain some member π′ which is equal to πi for infinitely many
i < ω, and this contradicts claim 13.

We now show that the play π∞ must satisfy the constraints listed in the Claim. We define, by induction
on the length of an initial segment π′ of π∞, a set S(π′) of pairs of indices as follows. Suppose that π′ is an
initial segment of π∞ and that S(π′′) has been defined for all proper initial segments π′′ of π′. Let S′ be the
union of all S′(π′′) for π′′ a proper initial segment of π′. We define S(π′) by a case distinction. If there are
no two distinct indices i < j < ω for which π′ = πi = πj , then we set S(π′) = S′. Otherwise, let l be the
smallest index such that π′ = πl, and let r be the greatest index for which π′ = πr. The latter must exist by
Claim 13. Then l < r. We set S(π) = S′ ∪ {(l, r)}.

With this construction in place, we set S to be the union of all S(π′) where π′ is an inital segment of
π∞. It is not hard to see that the constraints of the Claim are met with this definition of S.

We now show that the σ-guided play π∞ is lost by Refuter, which gives a contradiction. As a consequence
of Claim 12, for every i < K we have ξri ≺Ori ξli if Z has a progress point m with li ≤ m < ri, and ξri = ξli
otherwise. Furthermore, by Claim 11, it follows that for each i with i+ 1 < K we have ξli+1 ≺Oli+1

ξri if Z
has a progress point m with ri ≤ m < li+1, and ξli+1 = ξri otherwise. Also by Claim 11, if K is finite then
for each m with m ≥ rK−1, if m is a progress point for Z then ξm+1 ≺Om+1

ξm, and ξm+1 = ξm otherwise.
Putting these observations together, since Z has infinitely many progress points by assumption, there

must be a strictly increasing sequence of indices i0, i1, i2, ... such that πij v π∞ and ξij+1
≺Oij+1

ξij for each

j < ω. Hence π∞ is lost by Refuter, contradicting the assumption that σ was a winning strategy for Refuter.
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We can now conclude that Falsifier wins every σ′-guided infinite play.

Theorem 5.29. If ρ is valid then it has a slim proof.

Proof. If ρ is valid, then by Proposition 5.28, Refuter does not have a winning strategy in the mosaic game
for ρ, so that by Proposition 5.26, it is Prover who has a winning strategy. It then follows by Proposition 5.27
that ρ is provable.

6 From slim proofs to cyclic proofs

With completeness for slim proofs in place, we proceed to show that the existence of a slim proof for root
formula ρ implies that there also exists a (finite) cyclic proof of that formula. In other words, we want a
procedure to transform a given slim proof into a cyclic proof. It will be convenient to split this transformation
into two steps, first introducing an infinitary analogue of cyclic proofs that will be called infinitely reset proofs,
and then showing how such an infinite proof can be pruned into a finite proof tree which, with suitable back
edges added, forms a cyclic proof.

6.1 Infinitely reset proofs

We first define the notion of an infinitely reset proof.

Definition 6.1. An infinite proof tree Π for root formula ρ is said to be infinitely reset if, for every infinite
branch β on Π, there is some ordinal variable κ that appears non-active in every sequent in some final
segment of β, and is reset infinitely many times on β.

We want to show that a slim proof can be transformed into an infinitely reset proof containing only
finitely many sequents. In order to do that, we have tame the growth of constraints in the proof tree using
the constraint weakening rule, and inserting instances of the reset rule when possible. In order for this to
work we have to keep track of which ordinal variables we want to keep in order to possibly be reset later,
and which ones we want to simply throw away. The following definition captures this distinction:

Definition 6.2. Let O : Γ be a sequent and κ an ordinal variable in O. Then κ is said to be redundant if
it is non-active and all of its descendants are non-active.

We are now ready to state and prove the result.

Proposition 6.3. If ρ has a slim proof then it has an infinitely reset proof in which only finitely many
distinct sequents appear.

Proof. Let Π be a slim proof of ρ. We construct an infinite proof tree Π′ together with a map f : Π′ → Π
as the union of finite approximants Π′i and fi, for i < ω, defined as follows. First, we set Π′0 to consist of a
single vertex, labelled with the end sequent of Π, and we let f0 map this single vertex to the root of Π. Now
suppose the approximants Π′i and fi have been defined, so that for every vertex v of Π′i labelled Ov : Γv,
the label of fi(v) is of the form Ofi(v) : Γfi(v) where Γv = Γfi(v) and Ov = Ofi(v) \ V for some set V of
non-active variables of Ofi(v). We construct Π′i+1 and fi+1 by doing the following for each non-axiom leaf v
of Π′i:

• If the constraint of v contains redundant ordinal variables, make v the conclusion to an application of
left weakening that removes all these redundant variables and let fi+1 map the new premiss to fi(v).

• If the constraint of v contains no redundant ordinal variables but there is an instance of the reset rule
with conclusion matching v, make v the conclusion to such an instance of reset and let fi+1 map the
new premiss to fi(v).

• If neither of the two previous cases apply, then make v the conclusion of the same rule instance as
fi(v) and let fi+1 map each new premiss w to the corresponding premiss of fi(v).
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Note that the last case of this construction can be carried out thanks to the assumption that Π was a
slim proof. In particular, we are relying here on the restriction on the cut rule, µ(κ) or ∃, that all ordinal
variables occurring free in the cut formula or minor formula of the rule application are active variables in
the conclusion. For example, suppose fi(v) is the conclusion to an instance of the ∃-rule of the form:

O(λ < κ) : Γ, ϕ[λ/ξ]

O(λ < κ) : Γ,∃ξ < κ.ϕ

By assumption the constraint of v is of the form O \ V for some set of non-active variables V of O. The
constraint on applications of the ∃-rule in slim proofs ensures that λ is active in Γv and thus cannot belong
to V . Hence λ belongs to O\V and we can safely make v the conclusion to the corresponding rule instance:

(O \ V )(λ < κ) : Γ, ϕ[λ/ξ]

(O \ V )(λ < κ) : Γ,∃ξ < κ.ϕ

We claim that the limit Π′ obtained from this construction is an infinitely reset proof.

Claim 15. Let O : Γ be a sequent such that O contains at most n active variables, and suppose O contains
a chain κ0, ..., κ2n+1 of 2n + 2 different ordinal variables such that κ2n+1 <O ... <O κ0. Then there is an
instance of the reset rule with conclusion O : Γ in which one of the variables κ0, ..., κ2n+1 is reset.

Proof of claim 15. Since the length of the chain is 2n + 2 it contains a chain of n + 2 different non-active
variables. Clearly, as these variables are all part of a chain, at least n+ 1 of these non-active variables have
a non-empty set of children. Finally, as the sets of children of two different variables are disjoint, at most
n of these variables can have an active child. So the chain must contain at least one non-active variable κ
with a non-empty set of children, all of which are non-active. This variable can be reset.

Claim 16. Let β = Γ0Γ1Γ2... be an infinite branch of Π′ with corresponding sequence of constraints
O0O1O2... and let f [β] be the corresponding branch of Π. If f [β] has an infinite descending chain κ0, κ1, κ2...
of ordinal variables, then there is an index k < ω and variable λ in Ok such that:

1. λ belongs to Oi for all i ≥ k, and

2. λ is reset infinitely many times on β.

Proof of claim 16. We write f [β] = Γf0Γf1Γf2 ... and let Of0O
f
1O

f
2 ... denote the corresponding sequence of

constraints. We assume that κ0 occurs in Of0 since otherwise we can just drop the prefix of the sequence
before the first occurrence of κ0 and re-index. For each i < ω we denote by g(i) the highest index such that

κg(i) appears in Ofi . Note that κg(i) must be active in Γfi , since there must be some descendant Γfj with
j > i that is the conclusion to either a ν-rule or ∀-rule in which κg(i) occurs in the principal formula. So

κg(i) is active in Γfj and hence, because Π is a slim proof, in Γfi . Note that g is monotone in the sense that
i ≤ j implies g(i) ≤ g(j), since there are no applications of left weakening in Π.

For each i < ω we denote by Si the set of variables λ in Oi such that:

Stability: No proper ancestor of λ is reset in any constraint Oj with j ≥ i, and

Ancestor: Oi ` κg(i) < λ.

We note that Si is non-empty for all sufficiently large i, since eventually κg(i) must have at least one proper
ancestor, and the <Oi-largest ancestor of κg(i) must satisfy Stability since it has no proper ancestors. Note
that if λ ∈ Si then the Ancestor condition entails that Oj ` κg(j) < λ for all j ≥ i such that λ belongs to Oj .
Together with the Stability condition this entails that λ ∈ Si belongs to Oj for all j ≥ i, since an ancestor
of κg(j) is never redundant and hence can only be removed by resetting its parent.

Now pick an index i0 for which Si0 is non-empty, and pick λ0 ∈ Si0 . Since, by Stability, λ0 belongs to Oj
for all j ≥ i0, we are done if λ0 is reset infinitely many times. Otherwise, there is some k > i0 such that λ0

is never reset in any constraint Oj for j ≥ k. Let i1 be the first index after k such that λ0 has a child in Oi1
which is an ancestor of κg(i1); such an index obviously exists since κ0κ1κ2... is an infinite descending chain.
We let λ1 denote this child of λ0 in Oi1 . Since λ0 is never reset after i1, λ1 satisfies the Stability and Ancestor
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conditions with respect to the index i1. Now repeat the same argument; eventually, we must find a variable
that belongs to Oj for all sufficiently large j and is reset infinitely many times. For, suppose not; then, let
m be the maximum number of active variables that can appear in any constraint in Π′. By repeating the
previous argument sufficiently many times we eventually find a chain of 2m+ 2 variables λ2m+1, ..., λ0 such
that Oi2m+1

` λ2m+1 < ... < λ0, none of which can be reset. This contradicts Claim 15, so the proof is
done.

It follows immediately from Claim 16 that the proof tree Π′ has the desired property, that on every infinite
branch there is some variable that eventually appears in every constraint and is reset infinitely many times.
Furthermore, whenever the number of non-active variables in the constraint exceeds a certain bound, then
since the number of active variables is bounded either there are redundant variables (that are immediately
removed by left weakening) or there is a sufficiently long chain of variables so that the reset rule can be
applied (by Claim 15). It follows that the proof tree Π′ has only finitely many sequents up to renaming of
ordinal variables. So by suitably renaming ordinal variables, we can produce an infinitely reset proof Π′′ in
which only finitely many sequents appear.

6.2 Completeness of cyclic proofs

We are now ready for the final step of the completeness proof, showing that any infinitely reset proof
containing finitely many sequents can be folded to a cyclic proof. We recall that a cyclic proof tree is a finite
proof tree together with a back edge for each non-axiom leaf l, the target of which is called the companion of
the leaf, such that the label of each non-axiom leaf l is identical with the label of its companion. Furthermore,
such a cyclic proof tree is a valid cyclic proof if for every non-axiom leaf l there is some ordinal variable κl
such that κl belongs to the constraint of every vertex on the path from the companion of l to l, and is reset
at least once on this path.

Proposition 6.4. Let Π be an infinite reset proof for the formula ρ, and assume that only finitely many
distinct sequents appear in Π. Then ρ has a cyclic proof.

Proof. Let Π and ρ be as in the formulation of the Proposition.
Consider an arbitrary infinite branch β of Π. Since Π is an infinite reset proof, we may associate an

ordinal variable κβ with β which appears non-active in every sequent in some final segment of β and is
reset infinitely often in β. But then by the pigeonhole principle it follows from the additional assumption
on Π that β contains two nodes, cβ and lβ , labelled with the same sequent, and such that lβ is a (proper)
descendant of cβ , the variable κβ is a non-active element of the constraint of every sequent on the path from
cβ to lβ , and κβ is reset at least once on this path.

Now we prune the underlying tree of Π as follows. Let L be the set of first repeats of Π, that is, those
nodes of the form lβ for some infinite branch β that do not have a proper ancestor of the form lα for some
other infinite branch α. Define ΠL as the proof tree we obtain by pruning all descendants of nodes in L; in
other words, the leaves of ΠL are either axiomatic or elements of L.

The key observation is that ΠL is finite. To see this, suppose otherwise, then by König’s Lemma ΠL

contains an infinite branch β. By construction β must be an infinite branch of Π as well, so that we may
consider the node lβ . Since lβ belongs to ΠL, it cannot have a proper ancestor in L. It follows that lβ itself
must be a first repeat and thus belongs to L. But then ΠL cannot contain any descendant of lβ , which
contradicts the assumption that β is an infinite branch in ΠL.

We claim that in fact ΠL is a cyclic proof for ρ. For this purpose we need to define a companion map on
ΠL, so consider an arbitrary non-axiomatic leaf l of ΠL. By construction we may fix some infinite branch β
of Π such that l = lβ . Now define the companion of l to be the node cβ . It is then straightforward to verify
that with this companion map, ΠL is indeed a cyclic proof for ρ.

Putting our results together, we now get:

Proposition 6.5. If a plain formula ρ is valid, then it has a cyclic proof.

Proof. Let ρ be valid, then it has a slim proof by Theorem 5.29. As a direct consequence of Proposition 6.3
and Proposition 6.4 we may conclude that ρ has a cyclic proof as well.

Finally, Theorem 3.10 now follows immediately from Proposition 4.3 and Proposition 6.5.
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7 Conclusion

We have presented a sound and complete cyclic proof system for the two-way µ-calculus. The defining
feature of the system is the use of ordinal variables for detecting successful branches and ordinal quantifiers
for handling the effect of two-way traces. The sequent calculus builds on two strong and successful formalisms
for modal µ-calculus: explicit ordinal approximants [15, 4, 14] and name signatures [10, 16].

One can view the move from modal µ-calculus to two-way µ-calculus as a first step towards finitary proof
systems for guarded fragments of first-order fixed point logic [7, 18, 3]. The cyclic calculus of the present
paper is subsumed in the cyclic proof system for the first-order µ-calculus of [1]. Looking forward, we thus
hope that insights from the present work can yield complete systems for larger (guarded) fragments of the
first-order µ-calculus.

There is an apparent connection between two-way µ-calculus and model-checking infinite-state processes.
It is well known that the two-way µ-calculus lacks the finite model property, although any satisfiable formula
has a model that can be represented as a regular tree [19]. But even a regular tree model is in general
infinite-state from the perspective of the two-way µ-calculus, as the appropriate notion of bisimulation will
distinguish infinitely many states, all satisfying different formulas in the language. A calculus for model-
checking context-free infinite-state processes was proposed by Schöpp and Simpson [13] which is similar to
our own in the way it builds on [4]. As an example of an infinite-state process, Schöpp and Simpson consider
a context-free system that represents a transition system with two actions converse to each other.

To date, there are no known complete Hilbert-style axiomatisation of the two-way µ-calculus. Indeed,
the only sound and complete proof systems are the ω-branching well-founded proofs of [2] and the cyclic
proofs of this article. An obvious question is whether either system sheds light on a Hilbert axiomatisation.
One can also ask how the two proof systems are related. Aside from the difference in language (ordinals are
external to the logical language in [2]), the crucial use of cut in the present work is a non-trivial hurdle in
any comparison. As noted, we leave open whether our calculi are complete in the absence of cut.
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