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Abstract

Minimum Bayes risk (MBR) decoding for machine translation is getting renewed attention as it is a principled

approach to neural machine translation that exhibits fewer pathologies than the widely adopted maximum a

posteriori (MAP) decoding. Estimating the MBR objective, however, can be a costly endeavor. In this thesis,

we explore two different approaches for estimating the MBR objective. Lastly, we try to construct the MBR

translation by backpropagating through the utility function. The main approach is to predict the Bayes

Risk with the help of neural models. With this approach, we train a model to regress to an accurate Monte

Carlo (MC) estimate of the Bayes risk. At inference time we can directly estimate the Bayes risk with the

trained model, circumventing expensive MC estimation. These models outperform the 𝑚-MC estimates in

predicting the Bayes Risk for low values of𝑚. Furthermore, they outperform𝑚-MC estimates in terms of both

computation speed and quality of the translation when the models are used as a decision rule. The second

approach is to fit a mixture of Gaussians or students-t to the distributions of the utilities. This approach

achieves similar results as simply regressing to the MC estimate. The last approach is to construct the MBR

translation directly with the help of backpropagation. With this approach, we backpropagate through the

(neural) utility function to find the translation that achieves the lowest Bayes risk. This approach however

resulted in nonsensical translations. Our hope is that these three approaches give an insight into how we

could get towards more efficient minimum Bayes risk decoding.
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1: Posterior probability is a concept from

Bayesian statistics, although we don’t

give a Bayesian treatment to our models,

we will use this name as the terminology

has already been established in Natural

Language Processing literature.

Figure 1.1: An example and illustration

of the inadequacy of the mode given by

Eikema and Aziz [7]. The NMT model

spreads probability mass over several

hypotheses (left) and makes them hard

to distinguish in terms of probability.

While MBR (right) assigns each of these

candidates an expected utility, creating a

better distinction between good and bad

translations.

2: We use ’;’ to split required arguments

from optional arguments

Introduction 1

1.1 Motivation . . . . . . . . . . 1

1.2 Approaches . . . . . . . . . . 2

1.3 Research Questions . . . . . 3

1.4 Contributions . . . . . . . . 5

1.5 Outline . . . . . . . . . . . . 5

In this chapter, we will motivate our research, discuss the research

questions, mention our contributions and give an outline of this thesis.

1.1 Motivation

With neural machine translation (NMT) a neural network is trained to

translate a given source sentence in one language to an appropriate

translation in another language. Often this is done by having the model

learn to assign a probability to a translation given the source. In that case,

the NMT model does not immediately tell us what the best translation is:

it only gives us access to a probability distribution over all the translations.

The way we get a translation from the NMT model is known as a decision
rule.

One popular decision rule is maximum a posteriori (MAP) decoding, in

which the most probable translation (the mode) is used
1
. A major issue

with the mode and other high probable translations is that, in practice,

it is often inadequate, as they are often a poor translation of the source

[1, 2]. Approximating the mode is done with beam search [3]. The search

itself also introduces biases, one such bias is that longer searches do not

improve translation quality as a result of the inadequacy of the mode[4,

5].

An alternative approach that does not exhibit most of the pathologies

that MAP decoding has is minimum Bayes risk (MBR) decoding [2, 6,

7]. However, a drawback of MBR decoding is that it is intractable and

previously explored approximations are computationally expensive [2,

7].

The concept of minimum Bayes risk stems from decision theory [8]

and when applied to machine translation it states that the optimal

translation 𝑦∗ under a probability distribution with probability mass

function 𝑝(𝑦 |𝑥, 𝜃) parameterized by 𝜃 is given by
2
:

𝑦∗ = arg max

ℎ∈H
𝔼𝑝(𝑦 |𝑥,𝜃)[𝑢(𝑌, ℎ; 𝑥)] (1.1)

in which H is the set of all possible translations, 𝑥 is a source sentence,

𝑦 is a translation and 𝑢 is a utility function which assigns an utility to

ℎ given 𝑦 which optionally takes the source 𝑥 into account. The utility

function used measures the similarity between ℎ and 𝑦. When the source

𝑥 is also involved, it measures the quality of the translation ℎ for 𝑥

when 𝑦 is a reference translation. When 𝑢 captures lexical similarity,

such as when 𝑢 is unigram-F1 or chrf++ [9, 10], MBR decoding finds the

translation that is in expectation the most lexically similar to all the other

possible translations under the model. When 𝑢 is a measure of quality,

such as when we use COMET [11] as a utility, MBR decoding finds the
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translation that has the highest quality in expectation when using all the

other translations as reference translations.

Finding 𝑦∗ is intractable as H is unbounded and 𝑝(𝑦 |𝑥, 𝜃) does not make

independence assumptions so approximation schemes are needed. An

approximation proposed by Eikema and Aziz [7] is using Monte Carlo
(MC) estimates in which 𝑚 reference samples are used. However, MC

estimates are expensive in practice. In this research, we explore three

different approaches that could lead to more efficient MBR decoding.

1.2 Approaches

In this thesis, we explore three different approaches for more efficient

MBR decoding. We first treat estimating the Bayes risk as a regression

problem. Secondly, we use probabilistic modeling to first predict the

distribution of the utilities for a given hypothesis and use this distribution

to predict the Bayes risk. Finally, we use backpropagation through the

utility function to directly find 𝑦∗ given by equation 1.1

Our main approach is to treat estimating the Bayes risk as a regression

problem and train a predictive model instead of resorting to the MC

estimate. We precompute robust estimates of the Bayes risk by calculating

a 1000-MC estimate. We train several predictive neural models to predict

those 1000-MC estimates. Predicting the Bayes risk with these trained

models could be less computationally expensive than the robust MC

estimate. We give these neural models access to features that are indicative

of the quality of the translation or tell us something about the distribution

of the translations for a given source such as the hidden states of the

NMT model. These features could be predictive of the Bayes risk and, as

MC estimates do not have access to these features, the predictive models

could outperform MC estimation. After we trained our predictive models

we can construct the MBR translation by using the predictive model as a

decision rule: we predict the Bayes risk for a set of translations and pick

the one with the lowest risk according to our model.

The second approach we take is to frame the problem as a probabilistic

modeling problem in which we want to model the distribution of the

utilities for a given hypothesis 𝑝(𝑢(𝑦, ℎ; 𝑠)). From this probabilistic model,

we can directly estimate the Bayes risk. We use a neural network to predict

the parameters of a mixture model. Besides the features that the neural

network has access to that could be predictive of the Bayes risk we also

give information about the distribution of the utility function during

training. The information about the distribution is not present when

simply regressing to the MC estimate and could help in predicting the

Bayes risk.

For the last part of this thesis, we treat finding the MBR translation as an

optimization problem for which we use backpropagation and gradient

descent. We update a hypothesis ℎ to maximize equation 1.1 in multiple

steps by using backpropagation with respect to some differentiable utility

function 𝑢 and a list of sampled references. As words (and the resulting

tokens) of a translation are discrete we need some kind of relaxation. Both

optimizing directly in the embedding space and continuous-discrete

relaxation are used for this. Constructing the MBR translation this way
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could be more efficient than calculating the Bayes risk for multiple

hypotheses as, hopefully, we don’t need as many evaluations of the utility

function as when doing MC estimation.

1.3 Research Questions

This thesis centers around the three previously mentioned approaches.

To structure the research we focus on 3 main questions each with its

subquestions.

Predictive models

Q1: Can neural models be used to accurately and efficiently predict the
Bayes risk?

To narrow the focus we have three sub-questions:

Q1.1: How does the choice of utility function influence the predictive
model?

The Bayes risk depends on the utility function that is chosen and therefore

we want to explore how the choice of utility function influences the

predictive model. For this, we use three utility functions: unigram-F1,

chrF++, and COMET. We study how good of a substitute the predictive

models are for the 𝑚-MC estimate of the Bayes risk.

Q1.2: Which features are important in approximating the Bayes risk?

To construct a good approximation it is practical to know which features

are predictive of the Bayes risk. Some features are more cheaply com-

putable than others, which may introduce a trade-off between quality

and speed. Different type of features exists, there are NMT model-related

features, such as the hidden state and statistics of the tokens. There are

utility-related features such as the embeddings used in COMET. Lastly,

we could also give access to sampled references and features of those

samples. We compare the capabilities of the different models to get an

idea which features are important for predicting the Bayes risk.

Q1.3: How well do the models perform in practice?

To know if it is practical to use neural models to approximate the Bayes

risk we analyze the models’ capability to predict the Bayes risk, the ability

to rank the translations and the speed of inference. Lastly, we analyze

the usefulness of the models as a decision rule in which we measure the

quality of the translations with the help of the previously mentioned

utility functions and BLEURT [12].
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3: Meaning that the entries of the vector

can take arbitrary real values, which can

be turned into probabilities with help of

the softmax function

Mixture models

Q2: Can neural mixture models be used to predict the Bayes risk?

To find out if this is possible and get a sense of how well this method

works compared to the regression models we look at two subquestions.

The models we trained are based on the best-found model from our

previous question. We analyze the resulting models for the COMET

utility function.

Q2.1: How do mixture models compare to the predictive model?

To see if it is worth predicting the parameters of a mixture model instead

of directly predicting the Bayes risk we compare the mixture models

with the previously found predictive model. For this analysis, we look at

the mean squared error of the predicted Bayes risk and the quality of the

translations when we use the mixture model as a decision rule.

Q2.2: How does the choice of distribution for the mixture model influence
the mixture model?

When creating a mixture model we need to choose the distribution

that is used. We compare the fit and the quality of the translations for

two different distributions, namely the Gaussian distribution and the

student-t distribution. The comparison is done both visually, in terms of

the fit, and as well as the quality of the translations.

Backpropagation

Q3: Can backpropagation through a utility function be used to construct
the MBR translation?

We construct the translations with help of backpropagation. For this,

we use two utility functions: COMET and a sentence similarity network

from Hugging Face called "all-distilroberta-v1". With backpropagation,

we can use several methods to construct the MBR translation. To check

the quality of the constructed translations we do a manual inspection.

Furthermore, we compute the utility with respect to some reference

translation. We focus on two methods and get two subquestions:

Q3.1: Can the MBR translation be constructed by updating the tokens
with the help of continuous-discrete relaxation and straight-through
estimation?

With this method we relax the one-hot encoding of the tokens to "soft"-

encodings
3
. With the help of straight-through estimation, we update the

soft-encoding.

Q3.2: Can the MBR translation be constructed by updating the tokens
in the embedding space of the utility function?

As straight-through estimation is biased we try a second method in

which we update the tokens directly in the embedding space. After the

optimization stabilizes we find the nearest token for each timestep and

use that to construct the final translation.

https://huggingface.co/sentence-transformers/all-distilroberta-v1
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4: In terms of mean squared error, rank-

ing capability and usability as a decision

rule

1.4 Contributions

To summarize our contributions are as follows:

1. We show that neural models can be used to predict the Bayes risk,

but they do not perform better than MC estimation. When they are

used as a decision rule they outperform MC estimation;

2. We show mixture models can be used to predict the Bayes risk but

do not perform better than regression models;

3. Lastly we show that backpropagation through the utility function

does result in nonsensical translations and therefore does not seem

to be fit to be used to construct the Minimum Bayes risk decoding.

1.5 Outline

In this thesis, we will first introduce most of the relevant concepts

Background. In this chapter, we discuss NMT, decision rules, and the

utility functions used. We finish the background chapter by discussing

the pathologies observed in MAP decoding.

In the chapter Predictive Models we look at how we constructed the

predictive models. It discusses the design decisions that come into play

as well as the first validation results of the predictive models.

A more in-depth analysis of the predictive models is done in the chapter

Analysis. We analyze the models both in quality 4
and speed. This analysis

is used to answer Q1 and its subquestions.

The next chapter Mixture models builds upon the previous two chapters

and answers research question Q2. We start this chapter by discussing

mixture models and the relevant background. Then we focus on the fit

and the quality of the translations that are constructed using the mixture

model.

In the chapter Minimum Bayes Risk Decoding with Backpropagation we look at

question Q3. We try to construct MBR translations using backpropagation.

A few examples are highlighted and we discuss why this approach fails.

In the final chapter Conclusion we summarize the results one more time

and lay out future work. Lastly, in the Appendix we include additional

training details and some technical details that are important when

working on this problem.
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This chapter gives general background information about machine trans-

lation, neural models, decision rules and the utility functions used in our

research. Furthermore, the pathologies of NMT decoding are discussed.

This chapter finishes by discussing other applications of Minimum Bayes

risk, such as its use in natural language generation

2.1 Preliminaries

In this section, we discuss the Preliminaries. We start by introducing the

neural machine translation framework. Then we introduce the neural

architectures used as well as the NMT model used. We then discuss the

decision rules as well as Minimum Bayes risk decoding. Lastly, we talk

about the utility function used as well as the methods we use to evaluate

the models.

2.1.1 Machine Translation

Given a source sentence 𝑥 ∈ 𝑋 from the set of all possible source sentences,

a trained NMT model parameterized by 𝜃 predicts the conditional

distribution of a translation 𝑦 ∈ 𝑌:

𝑝(𝑦 |𝑥, 𝜃) (2.1)

Often auto-regressive models are used such as in Cho et al. [13], Sutskever,

Vinyals, and Le [3] and Kalchbrenner and Blunsom [14]
1
. Auto-regressive

models use the chain rule of probabilities to factorize the distribution into a

chain of random draws. Let 𝑦 = (𝑦1 , . . . 𝑦𝑚) be a sequence of 𝑚 symbols

belonging to a vocabulary of known target-language symbols, we get:

𝑝(𝑦 |𝑥, 𝜃) =
𝑚∏
𝑖=1

𝑝(𝑦𝑖 |𝑥, 𝑦<𝑖 , 𝜃) =
𝑚∏
𝑖=1

𝑓 (𝑥, 𝑦<𝑖 , 𝑦𝑖 , 𝜃) (2.2)

In which 𝑦<𝑖 is the sequence of tokens before the 𝑖th token. 𝑝(𝑦𝑖 |𝑥, 𝑦<𝑖 , 𝜃)
is the probability of symbol 𝑦𝑖 given the parameters of the NMT model,

the previous symbols, and source sentence 𝑥. Finally, 𝑓 (𝑥, 𝑦<𝑖 , 𝑦𝑖 , 𝜃) is

the function representing our NMT model. It is assumed that the symbols

follow a categorical distribution. Auto-regressive models, therefore, learn

a categorical distribution for the next token given the source and the

previous tokens.

2.1.2 Architectures

For machine translation and its related tasks different types of neural

networks are used such as recurrent neural networks (RNN) [15, 16], attention-



8 2 Background

based networks [17], convolutional neural networks [18] and graph neural
networks [19]. We focus on the first two as they are commonly used.

Recurrent neural networks process a variable-length sequence 𝑥 =

(𝑥1 , 𝑥2 , . . . 𝑥𝑇) by maintaining a hidden state ℎ over time. Then at each

timestep 𝑡 the hidden state ℎ(𝑡) is updated [20]. There are different RNN-

based architectures. These architectures often use either Long-short term
memory (LSTM) components [15, 16] or Gated Recurrent Unit (GRU) [20]

components.

Alternatives to RNNs are attention-based models, which process the

whole sequence at once. The basic building blocks of modern attention

models are Scaled Dot-Product Attention and multi-head attention, which

were first introduced in Vaswani et al. [17]. With this type of attention,

tensors called Query (Q), Keys (K) and Values (V) are used as input. For

each vector in𝑄 we get a vector of weights based on 𝐾. This weight vector

is then used to get a weighted average of the vectors in 𝑉 . Although

attention-based models often times reach state-of-the-art results, they

have as a drawback that they require a quadratic amount of memory

with respect to the input size.

2.1.3 Decoding

When we have an NMT model, we want to actually translate a given

source sentence 𝑥. A first decision rule, that is, a way of deciding which

translation of all possible translations Hto pick is by selecting the mode:

𝑦mode = arg max

ℎ∈H
𝑝(ℎ |𝑥, 𝜃) (2.3)

This search is intractable as H is unbounded (and the NMT model makes

no independence assumptions). To approximate the mode oftentimes

beam search is used:

𝑦beam = arg max

ℎ∈beam(𝑥)
𝑝(ℎ |𝑥, 𝜃) (2.4)

In this setup, we construct 𝑏 translations, denoted by beam(𝑥). The set

beam(𝑥) is constructed by applying a pruned version of breadth-first

search. We keep track of 𝑏 partial translations ordered by the model’s

log probability. Every incomplete translation is expanded into 𝑣 new

(partial) translations with 𝑣 being the size of the vocabulary. The 𝑏

(partial) translations with the highest log probability under the model are

kept. This is done until 𝑏 complete translations are found. The translation

with the highest probability is chosen as the final translation [3].

Minimum Bayes Risk Decoding

Minimum Bayes risk comes from decision theory [8] and is based on the

principle of maximization of expected utility. A utility function 𝑢(𝑦, ℎ)
measures the quality of a choice ℎ ∈ Hwhen 𝑦 ∈ H is the valid decision.

In NMT the utility function 𝑢 measures a notion of similarity between

ℎ and 𝑦. When the source 𝑠 is also involved, it measures the quality of
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2: Interesting to note is that the Bayes

risk depends on two things: the utility

function used and the distribution un-

der the NMT model of the translations.

Later we will use this to determine the

features we want to explore.

3: This to make sure there is no con-

fusion with the 𝑛 from 𝑛-grams (intro-

duced later).

the translation ℎ for some source 𝑠 when 𝑦 is a reference translation. As

we don’t know what the best translation is, we need to decide under

uncertainty. An NMT model is used to inform us about the distribution

of possible translations. This distribution is used to find the translation

with the highest utility in expectation 𝑦MBR
:

𝑦MBR = arg max

ℎ∈H
𝔼[𝑢(𝑌, ℎ; 𝑥)|𝑥, 𝜃]︸                ︷︷                ︸

=:𝜇𝑢 (ℎ,𝑥,𝜃)

(2.5)

As equation 2.5 is intractable, an estimate is needed. Following the work

of Eikema and Aziz [2] we will consider the unbiased estimate of MBR

using Monte Carlo (MC) estimates. First one obtains N independent

samples (𝑦(𝑛) ∼ 𝑌 |𝜃, 𝑥)𝑁
𝑛=1

by drawing samples from the NMT model.

For a hypothesis ℎ the 𝑁-MC estimate of 𝜇𝑢(ℎ, 𝑥, 𝜃) becomes:

�̂�𝑢(ℎ, 𝑥, 𝜃)
𝑀𝐶
:=

1

𝑁

𝑁∑
𝑛=1

𝑢(𝑦(𝑛) , ℎ) (2.6)

which is unbiased for any sample size
2
. In the context of MBR decoding

𝑦(1) . . . 𝑦(𝑁)
are called the references.

From this we get the following decision rule:

𝑦𝑁-𝑏𝑦-𝑁 = arg max

ℎ∈{𝑦(1) ...𝑦(𝑁)}
�̂�𝑢(ℎ, 𝑥, 𝜃) (2.7)

for which we compare N references with N hypothesis. A problem with

this estimate is that it requires 𝑂(𝑁2) evaluation of the utility function.

The paper Eikema and Aziz [7] proposes two methods to speed up

finding the MBR translation. First they propose 𝑀𝐵𝑅𝑁𝐵𝑦𝑆 in which they

use 𝑆 < 𝑁 references decreasing the number evaluations needed to

𝑂(𝑁 · 𝑆). Next they propose 𝑀𝐵𝑅𝐶2𝐹 (coarse to fine MBR) in which they

first use a cheaper proxy utility function to determine 𝑁 good candidates

and use 𝑀𝐵𝑅𝑁𝐵𝑦𝑆 with the target utility function to determine the best

hypothesis. In the rest of this thesis we use 𝑚 ∈ ℕ to refer to the number

of references used in the MC estimate
3
.

2.1.4 Utility functions

For MBR decoding to work well an appropriate utility function is needed.

In MBR decoding the utility function that is used measures the similarity,

or when the source is also involved, the quality of a hypothesis given a

reference. There are many ways to estimate the quality of a translation.

Commonly used metrics for similarity are Bleu [21], Edit distance [22]

or chrF and its extensions [9, 10]. There are neural alternatives such as

BEER [23] and BertScore [24].

Nowadays there also exist learned (neural) metrics such as COMET [11]

and BLEURT [12]. These are trained on datasets in which professional

linguists gave quality assessments of translations, such as the WMT

shared metric task [25]. For this research, we use COMET as it achieves
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4: A multiset is a set that allows for

multiple instances of the elements. For

unigram-F1 we use sets while chrF(++)

uses multisets

5: 𝐹1 is defined to be zero if both preci-

sion and recall are zero

state-of-the-art results [11]. As a very basic utility function, we use

unigram-F1. We also use chrF++ [9] as it is a good performing similarity

measure and it is more complex than the unigram-f1 score.

COMET

COMET is a neural framework for training multilingual machine transla-

tion evaluation models [11]. It uses XLM-RoBERTa [26] as a pre-trained

multi-language encoder to embed the source, hypotheses, and reference.

These embeddings then get pooled and concatenated. The concatena-

tion is forwarded into a feed-forward network which outputs the final

prediction. The comet embedding 𝑒𝐶𝑂𝑀𝐸𝑇 is constructed as:

𝑒COMET = [𝑒ℎ ; 𝑒𝑟 ; 𝑒ℎ ⊙ 𝑒𝑥 ; |𝑒ℎ − 𝑒𝑥 |; 𝑒ℎ ⊙ 𝑒𝑟 ; |𝑒ℎ − 𝑒𝑟 |] (2.8)

Figure 2.1: The comet Architecture.

in which 𝑒𝑥 , 𝑒ℎ , and 𝑒𝑟 are the embeddings of the source, hypothesis, and

reference respectively. The symbol ⊙ is used to denote the elementwise

product. There are different versions of COMET, but we used the one the

authors recommend which is wmt20-comet-da [27].

n-gram-F1

A much simpler utility function is n-gram-F1, which simply computes

the harmonic mean of the precision and recall w.r.t. the n-grams.

Precision captures which percentage of n-grams in the hypotheses are

present in the reference n-grams. Let 𝐻𝑛 and 𝑅𝑛 be the (multi)set
4

containing the n-grams for the hypothesis and a reference respectively.

precision =
|𝑅𝑛 ∩ 𝐻𝑛 |

|𝐻𝑛 |
(2.9)

Recall captures which percentage of the reference n-grams are present in

the hypotheses n-grams:

recall =
|𝑅𝑛 ∩ 𝐻𝑛 |

|𝑅𝑛 |
(2.10)

The 𝐹1 score is then defined as:
5

𝐹1 = 2 · precision · recall

precision + recall

(2.11)

For this research we use unigram-F1, meaning we pick 𝑛 = 1. The

unigrams are based on the tokenization of our NMT model.
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6: 𝑛𝑔𝑟𝐹𝛽 is defined to be zero if both

ngrP and ngrR are zero

7: If we don’t use any word 𝑛-grams we

get the original chrF

chrF++

ChrF++ is an extension of chrF and has good correlation with human

relative rankings [9, 10]. The general formula used for chrF and its

extensions is:

𝑛𝑔𝑟𝐹𝛽 = (1 + 𝛽2) 𝑛𝑔𝑟𝑃 · 𝑛𝑔𝑟𝑅
𝛽2 · 𝑛𝑔𝑟𝑃 + 𝑛𝑔𝑟𝑅 (2.12)

where ngrP and ngrR stand for 𝑛-gram precision and 𝑛-gram recall

arithmetically averaged of all 𝑛-grams used. 𝛽 is a parameter which

assigns 𝛽 times more weight to recall than to precision [9].
6

The 𝑛-grams

used for chrF++ are word 𝑛-grams with 𝑛 = 1, 2 and for the character

𝑛-grams 𝑛 = 1, . . . , 6 is used, lastly 𝛽 is set to 2
7
.

2.1.5 Dataset

In this research we use the Tatoeba dataset [28]. This relatively small

dataset contains a little more than 300.000 short German source sentences

with English translations. The translations are gathered from the website

https://tatoeba.org/.

Table 2.1: Example data

Source Target

Tom hat fein säuberlich gekämmtes Haar. Tom’s hair is neatly combed.

Ich verstehe nicht, was du sagst. I don’t understand what you’re saying.

Der Astronaut ist im Weltraum über der

Erde.

The astronaut is in orbit around the Earth.

Der Baum dort ist nicht so hoch wie

dieser hier.

That tree is not so tall as this.

Ich weiß, warum Tom in Schwierigkeiten

steckt.

I know why Tom is in trouble.

The dataset was chosen because of the size and familiarity of the re-

searcher with both languages. There are many other datasets used for

machine translation and in the future, it would be interesting to see

how the choice of the dataset as well as the choice of the language pair

influences the predictive models.

2.1.6 Evaluation

To evaluate the predictive capabilities of the trained models we use

the well-known Mean Squared Error (MSE). Additionally, we also use

Kendall’s 𝜏 coefficient [29] to measure the ranking capabilities and

BLEURT to assess the quality of the translations.

https://tatoeba.org/
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Kendall’s 𝜏

Kendall’s 𝜏 coefficient measures the correspondence between two rank-

ings in which 1 signifies total agreement while −1 signifies total disagree-

ment. There exist different formulations of Kendall’s 𝜏. The formulation

that is used is:

𝜏𝑏 =
𝑛𝑐 − 𝑛𝑑√

(𝑛𝑐 + 𝑛𝑑 + 𝑛𝑡1) · (𝑛𝑐 + 𝑛𝑑 + 𝑛𝑡2)
(2.13)

In which 𝑛𝑐 is the number of concordant pairs, 𝑛𝑑 is the number of

discordant pairs, 𝑛𝑡1 is the number of ties in the first ranking while 𝑛𝑡2
is the number of ties in the second ranking. When there are no ties 𝜏𝑏
reduces to 𝜏𝑎 :

𝜏𝑎 =
𝑛𝑐 − 𝑛𝑑

𝑛(𝑛 − 1)/2

(2.14)

With 𝑛 being the number of elements ranked.

BLEURT

BLEURT [12] is a learned evaluation metric based on BERT [30]. The key

approach taken with BLEURT is that BERT is pre-trained on syntactic

data and then finetuned on the WMT Metrics Shared Task to-English

language pairs in which the models are tasked to predict the quality of

translations. BERT itself makes use of a [CLS] token. This token is used

to attend to the whole sequence. BLEURT adds a linear layer on top of

the [CLS] token to predict the quality rating. BLEURT yields competitive

results for the WMT metrics shared task for the years 2017, 2018, and

2019.

2.2 Pathologies in NMT Decoding

Müller and Sennrich [6] give a good overview of known deficiencies of

NMT models and beam search decoding. Beam search decoding has a

length bias: beam search produces, on average, shorter translations than

the target translations [1, 4, 31]. Furthermore, there is also a problem with

skewed word frequencies. Beam search produces translations in which com-

mon tokens are overrepresented while rare tokens are underrepresented

[5]. Translations can also suffer from the beam search curse. Increasing the

beam size during beam search decreases the quality of the translations [4,

5]. This is likely due to the inadequacy of the mode, in many cases, the mode

seems to be the empty sequence [1]. Furthermore, the mode doesn’t have

to be representative of many other sequences as the model distribution is

distributed over an extensive region of the output space [2]. NMT models

are prone to copy noise such as from misaligned sentences, misordered

words and untranslated sentences [5, 32]. These problems mainly occur

when less structured datasets, such as web pages, are used. Lastly, NMT

models can completely break down when there is a domain shift, the

models can start to hallucinate unrelated words. Therefore NMT models

seem to have low domain robustness [4, 33, 34].
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2.3 Relevant literature

As MBR decoding is getting renewed attention we discuss some of the

recent work that has been done in this field. Freitag et al. [35] apply MBR

decoding with the use of a number of different neural utility functions.

They show that using neural utility functions significantly improves the

translation quality as measured with human evaluation when compared

to beam search. Interestingly, the generated translations have a much

lower model likelihood and are less favored by surface metrics like

Blue.

To get a broader picture of how MBR decoding relates to other de-

coding techniques Fernandes et al. [36] compare various candidate

generation and ranking methods across different datasets and models.

In particular, they use MBR decoding and fixed 𝑁−best reranking and

tuned 𝑁-best reranking. With both 𝑁-best reranking methods various

reference-free metrics are used to rank the best models. They find that

their quality-aware decoding approaches consistently outperform MAP-

based decoding, according to both state-of-the-art metrics (COMET and

BLEURT) and human assessments. In particular, they show that tuned

𝑁-best reranking has a small edge over MBR decoding.

Lastly, MBR decoding can also be used in a variety of Natural-language

generation tasks. Suzgun, Melas-Kyriazi, and Jurafsky [37] demonstrate

that MBR decoding improves results across a variety of tasks, includ-

ing summarization, data-to-text, translation, and textual style transfer,

achieving new state-of-the-art results on two datasets, WebNLG and

WMT16.1.

2.4 Conclusion

In this chapter, we introduced the relevant concepts for this thesis. We

also discussed pathologies in NMT systems when beam search is used.

Next up we will discuss which models we trained as well as how we

trained those models.
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In this chapter, we introduce the models that we trained. We discuss

the design decisions, how we trained the models and give an overview

of the validation results. An in-depth analysis will be done in the next

chapter.

3.1 Introduction

As a first approach to predicting the Bayes risk, we explore different

neural models that predict the Bayes risk directly. The focus of this

chapter is on discussing the design decisions and process of constructing

these neural models. During the design process, we do need to think

about which data to use, how to train our models, and how to perform a

hyperparameter search, but most importantly, we need to think about

which features and architectures to use.

We distinguish between two "styles" of models. First, we have quality
estimation style models, which only have access to features related to

the source and the hypothesis we try to assess. In contrast, we have

reference style models, which additionally have access to features of sampled

reference translations. The main features that we look at come from the

NMT model, such as the hidden states or statistical information about

the output of the NMT model. The idea is that this gives information

about the certainty of the model as well as information about the other

translations the model was considering. We can also give features that are

related to the utility function. For this, we use features used in COMET

1
.

Designing the models takes an iterative approach, we learn what does

and doesn’t work from previous designs and try to improve upon those.

For the analysis of the models, we use the mean squared error (MSE)

on the validation set. More in-depth analysis will be done in the next

chapter.

3.1.1 Contributions

In this chapter, we give insight into the design decisions that need to

be taken when designing the predictive models. We take an iterative

approach to train models which are used in the rest of this thesis. The

first validation results give insight into which features are important.

In general, it seems that token statistic information carries a lot of

information about the Bayes risk. When COMET is used as a utility

function, it seems essential that COMET related features are used. A

more in-depth analysis will be done in the next chapter.
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2: This may seem small, but for every

datapoint we generate 100 hypotheses,

increasing the size of the dataset substan-

tially

3.1.2 Outline

We start by discussing how the predictive model can be used to do

more efficient Bayes risk decoding. Next, we discuss our approach

which includes the design decisions. We then discuss how we find

hyperparameters as well as how the models are trained. We finish this

chapter with a discussion of the validation results.

3.2 More Efficient Bayes Risk Decoding

Our goal is to find a neural model that is both faster than the MC estimate

for estimating the Bayes risk and good enough to be used in practice.

With the most basic form of MC-estimation, we have a running time of

𝑂(𝑁2 ·𝑈 +𝑁 · 𝐺) in which 𝑁 is the number of hypotheses,𝑈 is the cost

of our utility function and 𝐺 is the cost of generating the samples. After

training a predictive model we use it as rule. The model will be used as

follows: we generate several hypotheses and let our model score each

hypothesis. Then we simply pick the highest scoring hypothesis. This

way we have a running time of 𝑂(𝑁 ·𝐶 +𝑁 ·𝐺), in which 𝐶 is the cost of

our model. As long as the computational cost 𝐶 is low enough we could

get more efficient MBR decoding.

3.3 Approach

To get a good predictive model we have several design decisions to make.

We discuss the different design decisions as well as which decisions we

concretely took. First, we need to think about what data we are going to

use. This is not only about the dataset that we use, but also about how

many hypotheses we use, how we generate those hypotheses, and what

values the model should predict. Secondly, we need to think about the

architecture of the model as well as which features the model has access

to.

3.3.1 Data

To get the data for our predictive model we first need an NMT model and

a dataset from which we get our source and translations. For the NMT

model, we train an attention-based German-English Opus model and use

the same hyperparameters as in Tiedemann and Thottingal [38]. For our

dataset we chose the German English Tatoeba dataset [28]. This dataset

is chosen because we understand both German and English reasonably

well and the dataset size was not too large. The size of the dataset is

important to keep the computational costs manageable.

The dataset itself has no predefined splits. We split the dataset into 5

parts:

1. For NMT training (90 % of the data)

2. For predictive model training (∼ 7.5%)
2

3. For evaluating the NMT model (2500 samples)
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3: So much so that, when not careful,

training times can become a practical

limitation.

4: In chapter 5 we revisit this idea to see

and explore the models that are used to

predict the distribution in more depth.

4. For evaluating the predictive model (2500 samples)

5. For testing (2500 samples)

These splits give us enough data to train the NMT model on. Furthermore,

because we can generate a lot of hypotheses for each source sentence we

also get a lot of training data for the predictive model.
3

Other splits and

setups are of course possible.

After we trained the NMT model we need to generate the hypotheses and

get an approximation of the Bayes risk. We have a unique situation as we

have access to the data-generating process. In theory, we could produce

as many hypotheses as we would like. To generate the hypotheses we

could use ancestral sampling, nucleus sampling [39], top-k sampling [40],

beam-search or any other sampling technique.

As we intended to train a robust model for all situations we choose to use

ancestral-sampling [41], which is simply generating the tokens one by

one by randomly selecting the next token based on the probability given

by the NMT model. When we know beforehand the generation strategy

for the hypotheses we could obtain better results by training our model

with hypotheses given by that generation strategy.

To get a good amount of hypotheses and a robust MC estimate we chose

to train the predictive models with 100 hypotheses and calculate the MC

estimate using 1000 references for each source.

Other training objectives one could try are predicting the distribution

of the utilities for a fixed hypothesis or learning to rank. During the

early stages of research, we found that predicting the distribution did

not perform better than regressing to the mean and thus we used the

latter.
4

Learning to rank was outside the scope of this research.

3.3.2 Features and architectures

Another important choice to make is which features our neural models

have access to. When looking at the Bayes Risk we see that it is determined

by the following:

1. The distribution of the translations under the NMT model;

2. The utility function used.

We explore the following features to predict the Bayes Risk:

1. Probability of the hypothesis.

2. Entropy of the tokens at each time step.

3. The probability of the top 𝑛 most likely tokens at each time step.

4. The hidden states of the NMT model.

5. Ancestral sampled references.

For the references, we could also include relevant features, such as the

probability and entropy information. Furthermore, when we have access

to references we could also provide utility scores or features used in the

utility function, such as the embeddings used in COMET. It is important

to note that some features are more predictive for the Bayes risk than

others, but are also more expensive to compute. These are all practical

considerations when training and using the predictive models.
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When we know which features we want to use we can design the neural

models. As the features are often of variable lengths, such as the hidden

states of the NMT model, we have to use deep-learning models that

are able to process sequence data, for this, we use LSTM-based models.

Whenever we have a sequence that doesn’t have an order, such as an

embedding for each reference, we use attention-based models as they

can process the sequence without being influenced by the order of the

sequence.

3.3.3 Loss Function

To train the predictive models we use the well-known Mean Squared

Error (MSE) loss function:

𝑀𝑆𝐸(𝑎, �̂�) = 1

𝑛

𝑛∑
𝑖=1

(𝑎(𝑖) − �̂�(𝑖))2 (3.1)

in which 𝑎(𝑖) for 1 ≥ 𝑖 ≥ 𝑛 are values we want to estimate and �̂�(𝑖) are

estimates of those values.

3.4 Training

In this section, we describe the training procedure. We first describe

the data that we used as well as the NMT model. As the computational

costs of training a predictive model tend to be very high, because of the

amount of data points we generate, we also describe a general strategy

for our hyperparameter search.

3.4.1 Training Data for the Predictive Model

To get training data for the predictive model we first need to train an

NMT model. To train the NMT model we used the same training setup

as the original opus model, but then with label smoothing disabled[38].

The original model is trained on the large repository OPUS [28] and test

scores are available for the Tatoeba dataset. The reported chrF score is

0.707 [42]. After training, our model gets a chrF score of 0.717 on our

custom validation set, indicating that our model is properly trained.

We use this NMT model to generate samples. We generate sets of 10, 100,

and 1000 samples used for the training, evaluating and testing of the

predictive models. We then generate two sets of data for both the training

and evaluation subset. A small dataset containing 10 hypotheses with a

100-MC estimate of the Bayes risk for each source and a larger one for 100

hypotheses with a 1000-MC estimate for each source. The smaller one

will be used for getting good hyperparameters while the larger one is

used for full training. Lastly, we generate 100 hypotheses with 1000-MC

estimate of the Bayes risk for the test data. We create these datasets for

each utility function used.
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3.4.2 Hyperparameter Search and Training

To find decent hyperparameters we use a hyperparameter search. We

describe the general setup of the hyperparameter search and training.

For more details see appendix A.2.

Our first concern with the hyperparameter search is to keep the compu-

tational cost low. As previously mentioned, we use the 10 hypotheses

100-MC estimate data instead of the full 100 hypotheses and 1000-MC

estimate data. Furthermore, we apply a median pruner to prune non-

promising trials and we use a Tree-structured Parzen Estimator (TPE)

based sampler for sampling promising hyperparameters [43]. We do a

hyperparameter search once for each model on the COMET dataset and

use the found hyperparameters for each utility function. For the reference

style model (defined below) we will do the hyperparameter search for

𝑚 = 5. The resulting hyperparameters can be found in the configuration

files of the repository that contains the code for this thesis. After finding

good hyperparameters we do the full training on the 100 hypotheses,

1000-MC estimate dataset. We use early stopping to make sure we do not

overfit.

3.5 Models

Our models can be divided into two types: quality estimation style and

reference style. In the first approach, we do not give any access to reference

information, we only give the predictive model access to the source,

hypothesis and relevant features. With the reference style models, we

give access to reference information. The models are designed iteratively

based on the validation results of the previous models.

First a small note on notation. 𝜃part is used to denote the parameters of

the model for that specific part (e.g 𝜃Dec denotes the parameters for the

decoder). 𝑒 is used to denote embeddings. For completeness we use the

following notations:

𝜃 parameters of the model

𝑒 refers to embedding

𝑥, ℎ, 𝑟 refers to source, hypothesis and reference

𝑥stat , 𝑟stat refers to the token statistics of a hypothesis and reference respectively

𝐷𝑒𝑐(𝑖) refers to the 𝑖th layer of the decoder of the NMT model

𝐹𝐹 is a feed forward network

𝐵𝑖𝐿𝑆𝑇𝑀 is a bidirectional LSTM network

3.5.1 Quality Estimation Style Models

For the quality estimation style models, we implemented several models.

First, we implemented a baseline model which is an LSTM-based model

that has as an input the source and hypothesis concatenated. This gives a
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5: We will refer to "the entropy of the

token distribution of each time step" sim-

ply as the entropy of the tokens, from here

onward.

6: The decoder model contains an em-

bedding layer and 6 attention layers,

which we numbered 0, . . . , 6

(naive) baseline and is used as a sanity check. Next, we used 4 different

features:

1. Last hidden states of the NMT decoder of each time step

2. All hidden states of the NMT decoder of each time step

3. Token statistics of each time step

4. Embedding of the source and hypothesis used in COMET

For the token statistics, we use the probability of the selected token as well

as the entropy of the token distribution of each time step
5
. Furthermore,

we give access to the probabilities of the top 5 most likely tokens at each

time step, which gives some additional information about the distribution

of the tokens.

Next, we give an overview of the models used. Important to note is

that for each utility function, we use a different activation function after

the last layer. For both the unigram-F1 and chrF++ we use the sigmoid

activation as the Bayes risk is bounded between 0 and 1 for those utility

functions. COMET scores are unbounded in theory but in practice, they

lay between -2.5 and 2.5, therefore we use the tanh activation function

multiplied by 2.5 when COMET is used as a utility function. These

activation functions are denoted by 𝑓act.

Baseline Model. The Baseline model consists of two embedding layers,

one for the source and one for the hypothesis. The embeddings are

concatenated and fed into a bi-directional LSTM. The final hidden states

are then used as features for a feed-forward layer. The output is put

through the appropriate activation function.

𝑒𝑥 = 𝐸𝑚𝑏𝑥(𝑥, 𝜃𝐸𝑚𝑏𝑥 )
𝑒ℎ = 𝐸𝑚𝑏ℎ(ℎ, 𝜃𝐸𝑚𝑏ℎ )
feat = 𝐵𝑖𝐿𝑆𝑇𝑀([𝑒𝑥 , 𝑒ℎ], 𝜃𝑙𝑠𝑡𝑚)
�̃� = 𝑓act(𝐹𝐹(feat, 𝜃𝐹𝐹))

Last Hidden State Model. The first attempt to get a good model is to use

the last hidden state of the decoder. The idea is that the last hidden state

contains information about the distribution of the tokens, which in turn

could give information about the distribution of translations under the

NMT model
6
.

𝑒ℎ = Dec(𝑥, 𝜃𝐷𝑒𝑐)(6)

featℎ = 𝐵𝑖𝐿𝑆𝑇𝑀(𝑒ℎ , 𝜃𝑙𝑠𝑡𝑚)
�̃� = 𝑓act(𝐹𝐹(featℎ , 𝜃𝑙𝑠𝑡𝑚))

Token Statistics Model. To improve on the Last Hidden State Model

we use the token statistics. Using the token statistics directly could give

more information about the Bayes risk than the last hidden states as it

directly gives access to the statistics about the distribution of the tokens

(such as the entropy of the tokens). The token statistics model uses the

token statistics ℎ𝑠𝑡𝑎𝑡 . It first maps them to a higher dimensional space
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and then feeds it through a BiLSTM model:

𝑒ℎstat
= 𝐹𝐹1(ℎstat , 𝜃𝐹𝐹1

)
feat = 𝐵𝑖𝐿𝑆𝑇𝑀(𝑒ℎstat

, 𝜃𝑙𝑠𝑡𝑚)
�̃� = 𝑓act(𝐹𝐹2(ℎstat , 𝜃𝐹𝐹2

))

Full Decoder Model. To use the full information that is hidden in the

decoder model we can also use all the hidden states of the decoder

model. The hope is that the earlier hidden states contain some sort of

information about alternative translations the model was considering.

The full decoder model uses the token statistics ℎ𝑠𝑡𝑎𝑡 as well as all the

hidden states of the decoder part of the NMT model:

𝑒stat = 𝐹𝐹1(ℎstat , 𝜃𝐹𝐹1
)

𝑒ℎ𝑖 = Dec(𝑥, 𝜃𝐷𝑒𝑐)(𝑖) for 𝑖 ∈ {0, . . . , 6}
feat𝑖 = 𝐵𝑖𝐿𝑆𝑇𝑀𝑖(𝑒ℎ𝑖 , 𝜃𝑙𝑠𝑡𝑚𝑖

) for 𝑖 ∈ {0, . . . , 6}
featstat = 𝐵𝑖𝐿𝑆𝑇𝑀(𝑒𝑠𝑡𝑎𝑡 , 𝜃𝑙𝑠𝑡𝑚𝑠𝑡𝑎𝑡

)
�̃� = 𝑓act(𝐹𝐹2([ℎ𝑠𝑡𝑎𝑡 , 𝑒ℎ0

, . . . , ℎ𝑒ℎ
6

], 𝜃𝐹𝐹2
))

Full Decoder Model - no token statistics. As you can see in table 3.1

the full decoder model has a lower MSE than the token statistics model.

To understand the influence of the token statistics we train a similar

model as the full decoder model but remove the token statistics from the

input:

ℎ𝑖 = Dec(𝑥, 𝜃𝑁𝑀𝑇)(𝑖) for 𝑖 ∈ {0, . . . , 6}
𝑓 𝑒𝑎𝑡𝑖 = 𝐵𝑖𝐿𝑆𝑇𝑀𝑖(𝑒ℎ𝑖 , 𝜃𝑙𝑠𝑡𝑚𝑖

) for 𝑖 ∈ {0, . . . , 6}
�̃� = 𝑓act(𝐹𝐹2([ 𝑓 𝑒𝑎𝑡ℎ0

, . . . , 𝑓 𝑒𝑎𝑡ℎ6
], 𝜃𝐹𝐹2

))

COMET Feature Model. Lastly, we want to explore what happens if we

use features that are important for the utility function. For this, we look

at COMET. The COMET feature model uses the same embeddings for

the source (𝑒s-comet) and the hypothesis (𝑒h-comet) as used in the COMET

model. We take the element-wise dot product and calculate the absolute

difference between the two embeddings similar to the COMET paper

[11].

𝑒comet = [𝑒h-comet , 𝑒s-comet , 𝑒h-comet ⊙ 𝑒s-comet , |𝑒h-comet − 𝑒s-comet |]
�̃� = 𝑓act(𝐹𝐹(𝒆comet))

Full Decoder COMET Feature Model. A drawback of the COMET feature

model is that it doesn’t have access to features that are indicative of the

distribution of the translations. Therefore we combine the full decoder

model with the COMET feature model to get the last quality estimation

model:
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7: Early experiments showed that if we

predicted the value directly, the predic-

tive model would perform badly when

m is large.

�̃� = 𝑓act(𝐹𝐹([𝑒comet , 𝑒ℎstat
, 𝑒ℎ0

, . . . , 𝑒ℎ6
]))

The validation results of the quality estimation models are in table 3.1.

In this table, we can observe that the Full Decoder model has one of the

lowest MSE for both unigram-F1 and chrF++. Adding COMET features is

of great benefit when using COMET as a utility function. For unigram-F1

it seems to degrade performance while for chrF++ it improves it by a

little. From the NMT features, the token statistics seem to be the most

important, as when we remove them, the MSE suffers quite a lot for all

three utility functions.

Table 3.1: Models validation MSE for unigram-F1, chrF++ and COMET. The bold entries are the best scores for that particular utility

function.

Model Unigram-F1 chrF++ COMET

Basic Model 1.2e-02 2.0e-02 2.8e-01

Last Hidden State Model 6.9e-03 1.2e-02 1.6e-01

Token Statistics Model 3.5e-03 6.1e-03 1.0e-01

Full Dec Model 2.5e-03 3.8e-03 8.6e-02

Full Dec Model (no stats) 5.9e-03 1.0e-02 1.3e-01

Comet feature model 7.8e-03 1.2e-02 4.8e-02

Decoder Comet feature model 2.7e-03 3.7e-03 3.0e-02

3.5.2 Reference style models

For reference style models we try out two different models. First, we

have a basic model that we give access to the 𝑚-MC estimate and try to

approve upon it. Next, we give a model access to 𝑚 references as well

as the 𝑚-MC estimate. The hope is that these 𝑚 references give extra

information which the model can use to get an accurate prediction.

Basic reference model For the basic reference model, we build upon the

full decoder model and give it access to the 𝑚-MC estimate. The final

prediction will be of the form:

�̃� = �̃�𝛿 + �̃�𝑚 (3.2)

Where �̃� is our final prediction, �̃�𝛿 is the model’s prediction and �̃�𝑚 is the

𝑚-MC estimate for a given hypothesis. This way we still have the model

learn to predict the Bayes risk, but we provide stability by giving it access

to the 𝑚-MC estimate. We concatenate the 𝑚-MC estimate to the features

we get from the decoder. This is then put through a feed-forward network

with tanh as a final activation function to get a correction value �̃�𝛿

between −1 and 1. Then equation 3.2 is used to get a final prediction. The

model thus learns to ’correct’ the given 𝑚-MC estimate.
7

For unigram-F1

and chrF++ we bound the final prediction between 0 and 1.

Embedded Reference Model The final model that we train is a model

that gets access to 𝑚 references as well as the 𝑚-MC estimate. We embed

these references as well as the hypotheses with the help of the embedding

layer of the decoder model. The hope is that these embeddings give

additional information that the 𝑚-MC estimate doesn’t contain.
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𝑒𝑟𝑖 = Mean(EmbDec(𝑟𝑖)) for 1 ≤ 𝑖 ≤ 𝑚

𝑒ℎ = Mean(EmbDec(ℎ))
𝑒𝑟 = [𝑒𝑟1 , . . . , 𝑒𝑟𝑚 ]
𝑒 = 𝐴𝑇𝑇(𝑒ℎ , 𝑒𝑟 , 𝑒𝑟)
�̃�𝛿 = 𝑡𝑎𝑛ℎ(𝐹𝐹([𝑒 , �̃�𝑚]))
�̃� = �̃�𝛿 + �̃�𝑚

This model thus uses the references to correct the 𝑚-MC estimate. Other

models that incorporate reference information are possible. But we leave

those for future research. During training, we ran into memory issues

whenever there were too many references, therefore for practical reasons

we decided to limit the number of references by having 1 ≤ 𝑚 ≤ 5.

Table 3.2: Basic reference model validation MSE for different values of 𝑚. Increasing the number of references always results in better

Bayes Risk estimates.

m unigram-F1 chrF++ COMET

1 2.0e-03 3.1e-03 4.1e-02

2 1.6e-03 2.4e-03 2.8e-02

3 1.4e-03 2.0e-03 2.2e-02

4 1.2e-03 1.8e-03 1.7e-02

5 1.0e-03 1.6e-03 1.5e-02

10 7.0e-04 1.0e-03 7.9e-03

25 3.0e-04 5.0e-04 3.3e-03

50 2.0e-04 2.0e-04 1.7e-03

100 9.5e-05 1.0e-04 9.0e-04

Table 3.3: Embedded reference model validation MSE for different values of 𝑚. Increasing the number of references always results in

better Bayes Risk estimates. To ensure we don’t have memory issues we keep the number of references small.

m Unigram-F1 chrF++ COMET

1 6.2e-03 8.8e-03 7.2e-02

2 3.7e-03 5.2e-03 3.9e-02

3 2.7e-03 3.7e-03 2.7e-02

4 2.1e-03 2.9e-03 2.1e-02

5 1.7e-03 2.4e-03 1.7e-02

In table 3.2 we see the results of the Basic reference model for the

different numbers of references. In table 3.3 we can see the results

for the Embedded Reference model. We observe that increasing the

number of references 𝑚 always decreases the MSE. The decrease slows

down as the number of references increases. The Basic Reference model

outperforms the Embedded Reference model by quite a large margin, e.g.

for unigram-F1 and chrF++ the embedded reference model with 𝑚 = 4

is comparable with the basic reference model with 𝑚 = 1. Lastly, the

reference style models seem to outperform the quality estimation models,

which indicates that adding reference information increases the quality

of the models.
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3.5.3 Summary of Validation Results

From the validation results, we see that the best models, in terms of

validation MSE, are the one that incorporates features from all the hidden

states of the decoder model and possibly the COMET features. The token

statistics are one of the most important features for unigram-F1 and

chrF++, while COMET features seem to be crucial for the COMET utility

function. Lastly, adding reference information improves the performance

of the model, but has decreasing returns as the number of references

used increases.

3.6 Conclusion

In this chapter, we gave an overview of the design decision, hyperparam-

eter search, and training of the models. We iteratively build predictive

models and found that using all the hidden states of the decoder model

(with possibly COMET features) gives the best model in terms of valida-

tion MSE. Furthermore, the token statistics seem to be one of the most

important features for unigram-F1 and chrF++ while for COMET the

COMET features seem crucial. However, the validation loss is not the

whole story. In the next chapter, we analyze the models in more depth to

understand their capabilities.
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In this chapter, we analyze the models that we trained. We analyze the

models both in terms of quality and computational cost. This analysis is

then used to answer the research question Q1 and its subquestions.

4.1 Introduction

In the previous chapter, we trained a number of models and got some first

results based on the validation dataset. In this chapter, we will analyze

these models in more depth.

First, we look at the quality of the model. The primary task of the models

is to predict the Bayes risk, therefore we asses how good the model is

at predicting the Bayes risk by computing the mean squared error and

Kendall 𝜏 statistics. As we want to use the model as a decision rule to

find the MBR translation, we also analyze the quality of the translations

that are picked based on the Bayes risk given by the models. Quality

however is not the whole story. To see if the model actually results in

a speed up we look at the computation complexity and the practical

computation time. To combine quality and computational speed we finish

the chapter by comparing the speed and quality at the same time, giving

us a good view of which and when our models outperform MC estimates.

After this analysis, we are able to answer research question Q1 and its

subquestions.

4.1.1 Contributions and outline

In this chapter, we show that it is possible to predict the Bayes risk using

neural models, but they only outperform the 𝑚-MC estimates for low

values of 𝑚 when looking at the mean squared error and the ranking

capabilities. The best-performing models however outperform 𝑚-MC

estimates when looking at the quality
1

of the translations they pick when

used as a decision rule for every value of 𝑚.

In the first section, we test the quality of the predictive models by

computing the mean squared error of its predictions and computing

the rank correlations. We use the model as a decision rule and measure

the quality of the selected translations. We compare the quality of those

translations with the ones we pick when using 𝑚-MC estimation. Lastly

to evaluate the computational cost we compute the mean speed of the

estimations for an individual hypothesis and compare that with the

computational cost of the 𝑚-MC estimate. We plot the computation time

and several metrics in to get an idea about the trade-off between speed

and performance. We end this chapter by answering research question

Q1.
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4.2 Quality

To test the quality of the models we look at three metrics. First, we look

at the mean squared error (MSE) to get an indication of how well the

models were able to fit the data. Next, the median of the Kendall 𝜏 is

computed to see how good a model is at ranking the different hypotheses

for a given source. The median is used as the models have outliers as

you can observe in figure 4.3. Lastly, to check how well the model works

in practice we use it as a decision rule. We compare these scores with

the 𝑚-MC estimate. The comparison with the 𝑚-MC estimate is made

because that is the approach we try to improve upon.

4.2.1 Mean Squared Error

Figure 4.1: The MSE of the different models for the three utilities (lower is better). The straight lines represent the quality estimation

models. For the other models as well as the m-MC estimate the dots represent the MSE for that value of 𝑚 and the lines in between are

an interpolation.

In figure 4.1 the MSE of the different models is shown as well as the

𝑚-MC estimate. When we look at the quality estimation models we see

that the best models are the models that use the full decoder information.

For unigram-F1 and chrF++ adding COMET features doesn’t seem to

improve the model that much. Interestingly for COMET the COMET

features make a really big difference. Most of the quality estimation

models that don’t use COMET features aren’t even able to beat the 1-MC

estimate. Therefore it seems that the 1000-MC estimate of the unigram-F1

and chrF++ are easier to predict than those of COMET. When looking at

unigram-F1 and chrF++ we see that the models are able to beat about

the same 𝑚-MC estimate. So for example when we look at the Full Dec

Model both for unigram-F1 and chrF++ this model has an MSE which is

between the 4 and 5-MC estimate.

Another interesting thing to note is that the token statistic model outper-

forms the Last Hidden State Model and the model that uses the hidden

state of the decoder but not the token statistics. This shows the token

statistics alone already capture a lot of relevant information about the
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Bayes risk and the hidden states of the NMT model don’t add that much

extra information.

For the reference style models, we see an interesting pattern: increasing

the number of samples the model has access to decreases the MSE. The

decrease however doesn’t keep up with the decrease of the MSE of the

𝑚-MC estimate, resulting in a convergence between the MSE of the𝑚-MC

estimate and that of the reference style models.

4.2.2 Kendall 𝜏

For the Kendall 𝜏 statistics we compute the Kendall 𝜏 statistic for every

source, comparing the ranking of the hypotheses for a given model with

those of the 1000-MC estimate. The median of these statistics is then

calculated. The median is used as the Kendall 𝜏 statistics are skewed,

see figure 4.2. Some sources only had 1 hypothesis, these sources were

dropped for this analysis. The results are in figure 4.3.

Figure 4.2: Distribution of the Kendall

𝜏 statistics of the basic reference model.

The red line indicates the mean, while

the red dashed line indicates the median.

Figure 4.3: The median Kendall 𝜏 of the different models for the three utilities. (Higher is better) The straight lines represent the quality

estimation models. For the other models as well as the m-MC estimate the dots represent the median Kendall 𝜏 measured for that value

of 𝑚 and the lines in between are an interpolation.

For the Kendall 𝜏 statistics we see a similar pattern emerging as from the

MSE results. We see again that the models using all the hidden states

perform the best. For COMET it seems that the COMET features are

really indicative for the ranking of the different hypotheses, evidenced

by the fact that the two models incorporating the comet features have

a high median Kendall 𝜏, namely around 0.8, while the other quality

estimation models don’t reach 0.65. For unigram-f1 and chrF++ the

quality estimation models do not cross a median of 0.72. Again the

reference models perform above the 𝑚-MC estimate and converge when

𝑚 is increasing. Lastly, the embedded reference model does not really

seem to improve when we increase the number of references the model

has access to.
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2: Independent as in: not related to the

utility used.

4.2.3 Decision Rule

To finish the analysis of the quality of the model we will look at how

well the models perform when the models are used as a decision rule.

For each model, we look at two scores, the utility score that was used for

training the model and BLEURT. We use BLEURT to get an independent

score
2

indicative of the quality of the selected hypotheses.

When we look at the utility scores in figure 4.4 we observe that the

Full Decoder Model and the Comet Feature Decoder model work best

for both the unigram-F1 and chrF++ utilities. For COMET the models

that incorporate the COMET features work best. Interestingly the Dec

Comet feature model outperforms the 1000-MC estimate. For the models

that incorporate reference information, we see that they outperform the

MC estimate and converge to the MC estimate as 𝑚 increases. When

we look at the BLEURT scores in figure 4.5 we see a similar pattern

emerge, models with a high utility score also have high BLEURT scores.

The models trained for COMET have higher BLEURT scores in general,

which is probably due to that BLEURT and COMET both have higher

correlation with human judgment than unigram-F1 and chrF++.

Figure 4.4: The utility scores of the different models when used as a decision rule for the three utilities. (Higher is better). The straight

lines represent the quality estimation models. For the other models as well as the 𝑚-MC estimate the dots represent the utility score

measured for that value of 𝑚 and the lines in between are an interpolation. Note that for unigram-F1 the Full Dec model and the Token

Statistics model get the same unigram-F1 score.
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Figure 4.5: The BLEURT scores of the different models when used as a decision rule for the three utilities. (Higher is better). The straight

lines represent the quality estimation models. For the other models as well as the 𝑚-MC estimate the dots represent the BLEURT score

measured for that value of 𝑚 and the lines in between are an interpolation.

4.3 Computation time

To get the computational speed we check how fast the model works in

practice, we again compare this with the 𝑚-MC estimates. We graph the

computation speed of the different models. First, we give some theoretical

notion of how fast the different models are, then we measure the real

computation time.

4.3.1 Theoretical Computational Complexity

For the theoretical computational complexity, we look at the cost of getting

an approximation of the Bayes risk for one individual hypothesis.

MC estimation The cost of the MC estimate for a single hypothesis consists

of getting the references and calculating the utility between a hypothesis

and the references. Thus the computation time is 𝑂(𝑚 ·𝑈 + 𝑚 · 𝐺) with

𝑈 being the cost of the utility function and 𝐺 being the cost of generating

the references. In the implementation we keep track of references that

occur multiple times and do the utility calculation for those references

only once, reducing the cost of the procedures whenever the NMT model

is certain of its predictions.

Quality estimation models For the quality estimation models, the only

computational cost is putting the features through the model, which

gives us a computation time of 𝑂(𝐶 + 𝐹), in which 𝐶 is simply the cost

of the model and 𝐹 is the cost of getting the features. In the situation

that the hypotheses are coming from the NMT model and we use NMT

model features, the cost of 𝐹 can be dropped as we can get the features

during the generation of the hypotheses, resulting in a computation time

of 𝑂(𝐶).

Reference style models For the basic reference model the computational

costs consist of putting the features through the model as well as through

the utility function, resulting in a computation time of 𝑂(𝐶 + 𝐹 + 𝑚 ·
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3: This results in 3616 hypotheses being

used.

4: The graphical card that was used is an

NVidia RTX A4000 and as a processor,

an Intel-12700KF was used.

𝑈 + 𝑚 · 𝐺), and when we have the NMT features as a given we get

𝑂(𝐶+𝑚 ·𝑈+𝑚 ·𝐺). For the embedded references model the computation

time is𝑂(𝑚 ·𝐶+𝑚 ·𝐹+𝑚 ·𝑈 +𝑚 ·𝐺) in which the computational cost of

the model and that of getting the embeddings scales linearly with 𝑚.

4.3.2 Practical Computation Time

For each approach, the computation time is calculated by taking every

hypothesis for the first 100 sources of the test set
3

and we calculate the

approximate Bayes risk one by one whilst measuring the computation

time. We average to get the mean computation time. We also keep track of

the time it takes to get the features out of the NMT model. Additionally,

for the reference style models and 𝑚-MC estimate, we keep track of the

time it takes to generate 𝑚 references. The computation time is, of course,

dependent on both the implementation and the hardware it runs on
4

and the size of the models used. The times should primarily be taken as

indicative.

Figure 4.6: The computation time of the

quality estimation models (Lower is bet-

ter). Note that the full decoder model

and the last hidden state model almost

have the same computation time.

Quality Estimation Style Models

In figure 4.6 we can see that most quality estimation models are faster than

the 𝑚-MC estimate, with the exception of the models that incorporate

the COMET features. For COMET we see that the best performing

model, namely the Dec Comet feature model is faster than the 10-MC

estimate while for unigram-F1 and chrF++ it is faster than approximately

the 30-MC estimate. This difference can be due to efficient parallelism

used when doing the 𝑚-MC estimation, as the utility scores can be
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calculated in parallel, while the Dec Comet feature model computes the

features from COMET and the decoder model sequential. More efficient

implementation could increase the computation speed.

Reference Style Models

For the reference style model, we only plot the Basic reference model, as

the Embedded Reference model doesn’t incur meaningful extra computa-

tion time over the 𝑚-MC estimate. In figure 4.7 we see that these models

basically incur constant time increases compared to the MC estimate,

which is because the hypothesis has to go through the Full Dec model to

get the final prediction.

Figure 4.7: The computation time of the

basic reference models and the MC esti-

mates. (Lower is better)

4.3.3 Computation Time versus Quality

In this last section, we compare the computation time and the quality of

the models. This gives us a clear picture of when the models outperform

MC estimation in both computational speed and quality. We graph the

computation time and compare it to the MSE, median Kendall 𝜏, utility

scores and BLEURT scores.

Results

First, when looking at the MSE (figure 4.8) and the median Kendall 𝜏
(figure 4.9) we see the same pattern two times. The models outperform

the MC estimates in terms of speed but perform worse when looking at
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Figure 4.8: The computation time compared to the Mean Squared Error. For both MSE and the computation time lower is better. The

quality estimation style models tend to be faster but incur greater errors than the MC estimates.

Figure 4.9: The computation time compared to the median Kendall 𝜏 scores. The best models should have high Kendall 𝜏 scores and low

computation times. The quality estimation style models tend to be faster, but MC estimation gets better Kendall Tau scores.

5: In technical terms, we can say that the

quality estimation style models form a

Pareto front[44]

the errors or ranking capabilities. When we look at the utility scores in

figure 4.10 and the BLEURT scores in figure 4.11 we get a different picture.

The quality estimation models outperform the MC estimates, that is,

for every 𝑚 MC estimate we can find a model that is both faster and

achieves better scores
5
. In particular, the Token Statistic model performs

really well in all cases. The Dec Comet Feature model is a bit slower but

generally achieves better scores. For the reference style models, we see

that they tend to perform slightly worse or comparable with the 𝑚-MC

estimates.
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Figure 4.10: The computation time compared to the utility scores. The quality estimation style models outperform the MC estimates. For

each 𝑚 we can find a quality estimation model that takes less computational time and get better utility scores than that 𝑚-MC estimate

Figure 4.11: The computation time compared to the BLEURT scores. The quality estimation style models outperform the MC estimates.

For each 𝑚 we can find a quality estimation model that takes less computational time and gets better BLEURT scores
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4.4 Research questions

First, we answer the subquestions and then we summarize our findings

in the main question.

How does the choice of utility function influence the predictive model?

In general, it seems that the Bayes risk is easier to predict when unigram-

F1 or chrF++ is used compared to COMET. This is evident by the fact

that more models are able to outperform the 𝑚-MC estimates for low m

when using unigram-F1 or chrF++ compared to when COMET is used.

However, the quality of the chosen translations when the model is used

as a decision rule is higher when COMET is used as a utility function

than when unigram-F1 or chrF++ is used.

Which features are important in approximating the Bayes risk?

In general, token statistics seem to be important. Removing these worsen

the performance, this happens for every utility function. Information

from the other hidden states also helps, but the token statistics seem to

do most of the heavy lifting. For the COMET utility, the COMET features

seem to be really important as it improves model performance on all

metrics used. For unigram-F1 and chrF++ COMET does not seem to

matter that much in predicting the Bayes risk, but does help in picking

translations with higher BLEURT scores. The reference style models

perform better in terms of MSE and Kendall 𝜏 but perform worse when

we look at the quality of the chosen translations.

How well do the models perform in practice?

The quality style models perform well in practice. They outperform the

𝑚-MC estimates. To be precise, for every 𝑚-MC estimate we can find a

quality estimation model that performs better (is both faster and gives

higher quality translations) than that 𝑚-MC estimate. The reference style

models however seem to only be slightly better than 𝑚-MC estimation

and achieve the best scores when the number of references used is low.

Can neural models be used to accurately and efficiently predict the Bayes risk?

Neural models outperform𝑚-MC estimates for𝑚 ≤ 5 in terms of ranking

capabilities and MSE. When the models are used as a decision rule they

outperform MC estimation in both speed and quality of the chosen

translations.

4.5 Conclusion

In this chapter, we performed a more in-depth analysis of the models.

We found out that some models can be better than MC estimation when

used for Bayes risk decoding. In the following two chapters, we look at

the two other approaches for Bayes risk decoding: using neural mixture
models and by applying Backpropagation.
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In this chapter, we explore the idea of fitting a mixture model to the

distribution of the utilities for a given hypothesis. We compare this

approach with regressing to the 1000-MC estimate.

5.1 Introduction

As an alternative for regressing to the MC estimate we explore fitting a

neural mixture model to the distribution of the utilities of the hypotheses.

We motivate this approach and give an overview of the contributions as

well as an outline of this chapter.

5.1.1 Motivation

When calculating the Bayes risk we have access to the full distribution

of the utilities. However, sampling from this distribution is very costly.

For a given source and hypothesis pair, we first need to sample the

references and then for each reference, we need to calculate the utility.

Instead of using the true distribution of the utilities we could use a proxy

distribution of the utilities. If this approximate distribution is cheap to

construct, cheap to sample from and follows the true distribution closely,

we might be able to approximate the Bayes risk more efficiently.

The choice of the proxy distribution is important to make sure we can

properly fit to the distribution of the hypotheses. In figure 5.1 we can see

the distribution of the utilities of 4 source hypothesis pairs. One main

observation is important: the distributions are multimodal
1
. Fitting a

unimodal distribution therefore will never be able to adequately capture

the utility distribution. We, therefore, fit a mixture of distributions as

a mixture can be multimodal. A neural network is used to get the

parameters of the mixture for a given source hypothesis pair.

An interesting note is that at the start of this thesis, we started out with

fitting mixture models, but the mixture models performed worse when

used to predict the Bayes risk than the models that regressed to the

1000-MC estimate. Therefore we focused on regressing to the 1000-MC

estimate. Now we revisit this approach with the Dec Comet model (see

chapter 3 and 4) to see how our best-performing model performs when

used to predict the parameters of a mixture model. We focus on the

quality of the model, asses the fit how well the model is able to predict

the Bayes risk and how well the model performs when used as a decision

rule.

5.1.2 Contributions

The contributions in this chapter are as follows:



36 5 Mixture Models

1. We show that mixture models perform on-par with regressing to

the mean when used to predict the Bayes-risk.

2. We compare a mixture of Gaussians with a mixture of student-t

distributions and show that although the student-t mixture has a

better fit, it doesn’t result in better predictions.

We conclude by answering the question " Can mixture models be used

to predict the Bayes risk? " by saying that it is possible to predict the

Bayes risk with this approach but it is not better than the alternative of

predicting the 1000-MC estimate directly.

5.1.3 Outline

In this chapter we first discuss the relevant background, then we discuss

the approach taken. We analyze the resulting model in terms of the fit

and several metrics such as MSE with the 1000-MC estimate, Kendall

𝜏, and quality of the translations when using this model as a decision

rule. During this analysis, we compare the mixture model with the

original model that predicts the 1000-MC estimate directly. We finish by

summarizing the results and discussing future steps.

Figure 5.1: The distribution of the COMET score for 4 different source hypothesis pairs. 1000 references are sampled for each source

hypothesis pair. The distributions appear multi-modal.

5.2 Background

As most of the relevant concepts are introduced in chapter 2, we only

discuss mixture models and the loss function used for training.

5.2.1 Mixture Models

A mixture model "mixes" several distributions into one new distribution

in which each distribution 𝑔𝑘 for 𝑥 with parameters Θ𝐾 is weighted by

𝑤𝑘 . The distributions are usually taken from one family of distributions

[ghojoghfitting].

A mixture of distributions is defined as follows:
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2: Important to note is that for 𝑣 < 1

the mean is undefined and for 𝑣 < 2

the variance is infinite. When we sample

from a student-t distribution to calculate

the mean we need to make sure that

𝑣 > 2, as otherwise, the variance in our

samples could be too high to reliably

estimate the mean.

𝑓 (𝑥;Θ1 , . . . ,Θ𝐾) =
𝐾∑
𝑘=1

𝑤𝑘 𝑔𝑘(𝑥;Θ𝑘)

subject to

𝐾∑
𝑘=1

𝑤𝑘 = 1

(5.1)

For our case, we used two families of distributions: Gaussian and Student-

t. The well-known Gaussian distribution is defined for some location

parameter 𝜇 and scale parameter 𝜎2
as

𝑓 (𝑥) = 1

𝜎
√

2𝜋
exp

(
1

2

(𝑥 − 𝜇)2
𝜎2

)
(5.2)

The Student-t distribution is related to the Gaussian, besides the location

and scale parameter it has a degree of freedom parameter 𝑣. It is defined

as:

𝑔(𝑥) = 𝑐 · 1

𝜎

(
1 + 1

𝑣

(𝑥 − 𝜇)2
𝜎2

) 1

2
(𝑣+1)

(5.3)

With 𝑐 is a constant:

𝑐 =
1

√
𝑣𝐵( 𝑣

2
, 1

2
)

(5.4)

With B being the Beta function. A main difference between the Gaussian

and the student-t distribution is that the student-t distribution allows for

heavier tails.
2

5.2.2 Negative Log Likelihood

To measure how well the model is able to capture the distribution of the

utility we use the log-likelihood loss. For a distribution with likelihood

function 𝑝(𝑦 |Θ) that is parameterized by Θ the loss for a given 𝑦 is

defined as follows:

loss(Θ |𝑦) = −
𝑚∑
𝑖=0

log(𝑝(𝑢(𝑦, 𝑟𝑖)|Θ)) (5.5)

where 𝑢(𝑦, 𝑟𝑖) is the utility between the hypotheses and the reference

𝑟𝑖 . The loss measures how likely the utilities are given the predicted

parameters.

5.3 Approach

We used the best model found in chapter 3 for the COMET utility, however

this time we train this model to predict the distribution of the utilities.
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3: Kurtosis controls how "sharp" a peak

is.

4: 2.1 is chosen to make sure we stay "far"

away from 2 to keep numerical stability.

5.3.1 Fitting a Distribution

When fitting a mixture model, the choice of the family the distribution

comes from is important. A first choice of distributions to use in the

mixture is the Gaussian or the Student-t distribution, as they are symmet-

rical and have a non-zero probability for any real value. The student-t

distribution has as an added benefit over the Gaussian, namely that we

can control the kurtosis
3
. To capture the skew, other distributions could

be used, such as the Weibull distribution. But during training, this can

lead to problems as it can assign zero probability to utility values which

in turn could lead to infinite loss.

For a mixture model with 𝑙 ∈ ℕ Gaussians the neural model predicts 3 · 𝑙
parameters: the location and scale parameter for each Gaussian as well

as the weights of each distribution. When using a student-t distribution,

4 · 𝑙 parameters are predicted. We predict the same parameters as the

Gaussian and additionally, the degrees of freedom (𝑣) are computed.

For the location, a tanh activation function multiplied by 2.5 is used to

make sure the location stays in the range of observed utilities. For both

the scale and 𝑣 parameters the softplus activation function is used. For

the 𝑣 parameter, 2.1 is added. Approximating the mean with sampling

when the 𝑣 is smaller than 2 becomes impossible. When 𝑣 < 1 the mean

is undefined. When 𝑣 < 2 the variance is infinite
4
. The weights are

computed with the help of a Softmax function.

5.3.2 Model, Hyperparameter Search, and Training

We train the full decoder COMET model to fit a mixture with 𝑛 = 2 and

𝑛 = 3 components for both the Gaussian and Student’s-t distribution. We

keep most of the hyperparameters we found for the regression model,

but we search for reasonable learning rate, batch size, gradient clip

value, gamma, and the dropout rate with the 10 hypotheses 100 reference

dataset. The models are trained to optimize equation 5.5. After the

hyperparameter search is completed we use the best found parameters

and train on the full dataset with 100 hypotheses and 1000 references.

5.4 Results

The models are evaluated on the test dataset. The negative log-likelihood

(NLL) and the mean squared error (MSE) are computed as well as the

Kendall 𝜏 statistics. Furthermore, we use the model as a decision rule.

Lastly, we graph the learned density versus the density of the samples

for visual inspection for some randomly picked samples.

5.4.1 Statistics

In table 5.1 you see the loss on the test set of the models as well as the MSE

and the Kendall 𝜏 statistics. We first note that the Student-t has a lower

NLL and thus fits the data better than the Gaussians, but this doesn’t

translate to lower MSE, a higher median Kendall 𝜏, or better COMET
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and BLEURT scores. There is also no big difference between the mixture

models and the regression model. Furthermore using more components

also decreases the NLL loss but doesn’t result in better scores on the

other metrics.

Table 5.1: Statistics for the mixture models on the test set. The NLL loss, MSE, and Kendall 𝜏 are shown. All the models attain very

similar scores.

Model NLL MSE Kendall 𝜏

Regression - 3.1e-2 0.831

Gaussian - 2 7.9e-2 2.9e-2 0.825

Gaussian - 3 4.3e-2 3.1e-2 0.818

Student-t - 2 -7.5e-3 3.1e-2 0.829

Student-t - 3 -5.8e-2 3.0e-2 0.824

Table 5.2: COMET and BLEURT scores for mixture models when used as a decision rule. Note that all models achieve very similar

COMET and BLEURT scores.

Model COMET BLEURT

Regression 0.76 0.60

Gaussian - 2 0.77 0.61

Gaussian - 3 0.76 0.62

Student-t - 2 0.76 0.61

Student-t - 3 0.77 0.62

5.4.2 Sampled Distributions

In figure 5.2 we can see the distribution when we get 1000 samples

from the true distribution, underneath are samples from the different

mixture models. From these graphs, we can see that the mixture of

student t-distributions is both better at capturing the multi-modality

of the distribution and has more steep peaks than the mixtures using

Gaussians. This could explain why the student-t mixtures have a lower

loss than the mixture of Gaussians. Although some mixtures have a

better fit to the distribution than others, the means do not vary that much,

explaining why a better fit does not necessarily result in better Bayes risk

predictions.
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Figure 5.2: The distribution according to the mixture models. The red line indicates the mean of the samples. Note that the top-left

distribution has one very large single peak underneath the red line. although some models capture the distribution better than others,

the mean doesn’t vary much.

5.5 Research Questions

To finish this chapter we answer the research question Q2 and its sub-

questions.

Q2.1: How do mixture models compare to the predictive model?

We can conclude that mixture models are not a meaningful improvement

over the regression model. This is likely due to the fact that although the

model may be able to capture the distribution, it doesn’t change much

about the capabilities in predicting the mean.

Q2.2: How does the choice of distribution for the mixture model influence
the mixture model?

The choice of distribution as well as the number of components influence

the negative log-likelihood loss. The mixtures of student-t distributions

do have a better fit than the mixtures of Gaussians. Unfortunately, a

better fit does not translate into better estimates for the Bayes risk.

Q2: Can neural mixture models be used to predict the Bayes risk?

Neural mixture models can be used to predict the Bayes risk, but they

don’t outperform the regression model.
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5.6 Conclusion

In this chapter we looked at another approach for predicting the Bayes

risk, namely fitting a mixture of distributions. As it turns out the models

do not improve in actually predicting the Bayes risk compared to simply

regressing to the 1000-MC estimate. This could be due to the fact that

lower negative log likelihoods don’t necessarily translate into meaningful

changes in the predicted Bayes risk. In the next chapter we will look at

our last attempt to construct the MBR translation: directly searching for

it by applying backpropagation.
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In this chapter, we discuss an approach for constructing the minimum

Bayes risk translation with the help of backpropagation. As we quickly

found out that this approach wouldn’t work out we started working on

the methods discussed in the previous chapter. We, however, still find

it an interesting approach and worth mentioning what we tried and

explain why this approach doesn’t work.

6.1 Introduction

Instead of first approximating the Bayes risk of a number of hypotheses

and then picking the hypothesis with the lowest Bayes risk, we could also

directly construct the Bayes risk translation. In this section, we motivate

this approach, briefly touch upon our result and give an outline of this

chapter.

6.1.1 Motivation

As discussed, calculating the Bayes risk is computationally expensive. A

way to find the minimum Bayes risk (MBR) translation is by constructing

it directly without, explicitly, calculating the Bayes risk of multiple

hypotheses. The hope is that constructing the MBR translation is more

efficient than calculating the Bayes risk for multiple hypotheses.

One possible approach to construct the MBR translation is to use gradient

descent. This can be done whenever the utility function 𝑢 is differentiable,

which can be the case when a neural utility function is used. The tokens

themselves are discrete, therefore we need continuous-discrete relaxation.

This is done with the help of straight-through estimation [45]. Another

approach we tried is optimizing directly in the embedding space of the

utility function and mapping back to nearby tokens.

6.1.2 Contributions and outline

The contribution of this chapter is that we show that constructing the

MBR translation with the help of back-propagation doesn’t seem possible

unless the utility is aware of the distribution of the translations. To be

precise we show that:

1. Using back-propagation through COMET to find the MBR transla-

tion results in nonsensical translations

2. COMET has regions in its embedding space that correspond to

high COMET scores but do not have meaningful sentences in the

neighborhood.

3. This problem does not seem to be unique to COMET as a neu-

ral similarity measurement based on DistilRoberta has the same

problems.
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1: The symbol ◦ indicates function com-

position

In this chapter, we first discuss the relevant background as well as

relevant literature. Next, we discuss our approach in detail and then

show a random sample of the translations that we found. We finish by

arguing why backpropagation does not work and what possible solutions

could be.

6.2 Background

In this background section, we discuss relevant concepts not previ-

ously discussed in the past chapters. Furthermore, we discuss relevant

literature.

6.2.1 Preliminaries

Straight-through estimation

When we have a function that is non-differentiable, such as the argmax

function, gradients are not defined. A way to tackle this is to use straight-

through estimation.

Let some vector 𝑣 be the input of ℎ = 𝑔 ◦ 𝑓 1
, with 𝑔 being differentiable

while 𝑓 isn’t. For straight-through (ST) estimation we use the following

derivative:

𝛿𝑣

𝛿(𝑔 ◦ 𝑓 )
ST≈ 𝛿 𝑓 (𝑣)

𝛿𝑔
(6.1)

Thus when calculating the gradient for 𝑣 we use the gradients of the

vector 𝑓 (𝑣) and thus act as if 𝑓 is the identity function [45].

Distance measures

To measure the distance between two token embeddings, cosine simi-

larity and euclidean distance were used. The cosine similarity of two

embeddings 𝑒1 and 𝑒2 is defined as:

distcos(𝑒(1) , 𝑒(2)) =
𝑒(1) · 𝑒(2)

| |𝑒(1) | | | |𝑒(2) | |
(6.2)

and always falls on an interval of [-1, 1]. For cosine similarity, the mag-

nitude of the two vectors is not important, but the angle between them

is.

The definition of Euclidean distance is:

distEuclidean(𝑒(1) , 𝑒(2)) =

√
𝑑∑
𝑖=1

(𝑒(1) − 𝑒(2))2 (6.3)

and can be any real value.
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6.2.2 Relevant literature

Using gradient information by backpropagating through a neural net-

work to find an input with a desired property is not a new concept. For

image classification it is used to construct adversarial examples [46].

Similar ideas can also be used to influence the output of natural language

processing models. For example, prompt tuning [47] can be used to con-

struct new tokens that will be prepended to the input to fine-tune a large

language model for language understanding. However, with prompt-

tuning the embedding of these new tokens is updated, while the rest of

the model stays frozen. The paper of Hambardzumyan, Khachatrian, and

May [48] uses a similar approach called WARP (Word-level Adversarial

ReProgramming) to fine-tune models for language understanding. The

difference is that WARP doesn’t update the embedding space of new

tokens but instead uses existing tokens.

Another example of backpropagation through the model is given by

Ebrahimi, Lowd, and Dou [49]. In their work, they use small character-

level perturbations of the input to find adversarial examples. Backprop-

agation is used to find out which perturbations change the output the

most. Lastly, Wallace et al. [50] finds prompts to find adversarial trigger

words that influence the model to output inflammatory language.

A last interesting example is the work from Dathathri et al. [51]. In

their paper, they train (neural) attribute models to predict attributes of

a sentence such as sentiment from the last hidden state of the decoder.

These models then can be used to update the last hidden state by

backpropagation to control the attributes of the generated output.

6.3 Approach

With this approach, we want to directly find a hypothesis ℎ such that

equation 2.6 is maximized. We do this as follows: one starts with 𝑛

random sentences with different lengths. These get fed through the

utility function together with 𝑚 references and, if applicable, the source.

The derivative with respect to the tokens/embeddings is taken and the

tokens/embeddings are updated by applying stochastic gradient descent.

To be precise we want to find a sequence of tokens ℎ = ℎ1 . . . ℎ𝑙 such that

�̂�𝑢(ℎ, 𝑥, 𝜃) is maximized.

First, we note that the tokens ℎ1 . . . ℎ𝑙 are discrete and represented by

one-hot vectors, using discrete relaxation makes them continuous. We

thus allow for tokens to be arbitrary real vectors. Before feeding the

vectors into the model we use the softmax function followed by the

argmax function to get the index of the most likely token. The softmax

function is applied to make sure the weights are normalized and lay

between 0 and 1. The straight-through estimator is then used to update

the token vectors. We do this until the tokens do not change anymore.

To get the final tokens we simply apply the softmax and then argmax

method to find the token that maximizes �̂�𝑢(ℎ, 𝑥, 𝜃) for each timestep.

As the straight-through estimator is biased [45] we also try optimizing

directly in embedding space. To optimize in the embedding space we start

with a sequence of token embeddings: 𝑒 = (𝑒(1) , . . . 𝑒(𝑙)). We then directly
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2: There were hard to fix font display

issues due to the wide variety of fonts

used in the different languages, therefore

figures are used instead of LaTeX tables.

optimize the individual embeddings with help of backpropagation. After

the embeddings do not change anymore we check for each embedding

what the nearest embedding is from all the tokens from the vocabulary.

For a measure of distance, both Euclidean distance and cosine similarity

were tried. The tokens with the nearest embeddings are then used for

the final translation.

We took some sentences from the ISWLT2017 validation set [52] for

German to English sentences. We used a pre-trained transformer-based

NMT model provided by the FairSeq sequence modeling toolkit[53] to

generate 5 reference sentences for each source. We checked for two neural

utilities, COMET [11] and a sentence similarity network from Hugging

Face called "all-distilroberta-v1". COMET itself uses XlM-Roberta which

works with multiple languages, and as we will see, this could result in that

tokens from outside the target language being introduced. The sentence

similarity network is only used for English sentences and therefore

doesn’t have that problem.

6.4 Results

When we tried to backpropagate to create a translation, we quickly found

out that it didn’t work. We directly saw that this approach generated

nonsensical sentences. Two examples are listed in figure 6.1 and 6.2
2
.

The utility refers to the utility of the 5-MC estimate of the given sentence.

The utility embedding refers to the utility when we use the embeddings

instead of the nearest tokens. Interestingly the utility in embedding space

is relatively high while when we pick the nearest token we end up with a

low utility.

Figure 6.1: Figure showing the constructed translation as well as the utility scores. Source: Das ist ein glücklicher Mensch, Target: That is

a happy person. Note that the utility scores are relatively high, but the sentences are nonsensical.

https://huggingface.co/sentence-transformers/all-distilroberta-v1
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Figure 6.2: Figure showing the constructed translation as well as the utility scores. Source: Sie wächst im Winter und schrumpft im

Sommer. Target: It expands in winter and contracts in summer. Note that the utility scores are relatively high, but the sentences are

nonsensical.

6.5 Discussion

First, we give some remarks on why this approach fails, then we answer

the research question Q3.

6.5.1 Why Does This Approach Fail?

Unfortunately, it turned out that this approach did not work at all. The

resulting sentences turned out to be nonsensical. We could think of at

least two reasons why this is the case.

First of all, the number of sentences both models are trained on is very

sparse compared to the number of possible sentences. For example,

the DistillRoberta model has more than 50.000 different tokens in its

vocabulary. When we have a sentence containing 2 tokens there already

exist more than 50.000
2 ≈ 2.5𝑒11 different possible sentences, but only a

small portion of those are meaningful. The model gives a score to every

input it gets, but it only sees a small portion of the space of possibilities

when training. Even if the model is able to generalize for a large part,

there still can be cases in which the model assigns a too high utility score

for out-of-distribution sentences. This problem is more apparent when

looking at the utility of the embeddings when doing backpropagation

directly in the embedding space. In the tables, you can see that the utility

assigned by the models is very high compared to when we construct

the translation by finding the nearest neighbor. For example, in table

6.2 we see that the resulting sentence gets a utility score of 3.45 in the

embedding space while the resulting sentence gets a utility of −1.93. An

idea to fix this is to incorporate the sentence likelihood to make the model

regress to a sentence that is both likely and has high utility. However, as

the NMT model and the utility function have non-matching embedding
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spaces we couldn’t think of a way to make this approach work for the

given utility functions.

Secondly, COMET has an input space with more languages than only

English. For example, it also accepts tokens from the Arabic alphabet. As

we can observe in tables 6.1 and 6.2 this method results in non-English

tokens. The DistilRoberta model doesn’t have this problem.

6.5.2 Research Questions

To conclude we answer the research questions.

Q3.1: Can the MBR translation be constructed by updating the tokens
with the help of continuous-discrete relaxation and straight-through
estimation?

The MBR translation can not be constructed this way. The main problem

is that the tokens want to move somewhere in embedding space where

the utility is high, but the translation itself is nonsensical.

Q3.2: Can the MBR translation be constructed by updating the tokens
in the embedding space of the utility function?

The MBR translation can not be constructed by directly updating the

tokens in embedding space. The embeddings end up someplace in the

embedding space that results in high utility scores, but when picking the

closest tokens the utility drops significantly.

Q3: Can backpropagation through a utility function be used to construct
the MBR translation?

It doesn’t seem possible to use backpropagation to directly construct the

MBR translation. If the likelihood of the translation could be taken into

account it might be possible.

6.6 Future Work

When we create our own utility function, we could use an approach such

as plug-and-play models [51] to construct sentences that are both likely

and have a high utility. With this approach, the attribute models assign

the utility of the translation based on the final hidden state of the decoder

given some reference and optionally the source. However, this requires

training a simple model that would fit on top of the NMT model we use.

This is a way less general approach as not every utility function can be

used: it seems that for every NMT model, a new utility function has to

be trained.

There is of course a chance that we missed something and there is a way

to incorporate the probability of a translation for arbitrary (neural) utility

functions. So any attempt to combine the sentence likelihood with the

utility function could be interesting to try.
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6.7 Conclusion

It doesn’t seem possible to use backpropagation to construct the MBR

translation unless the utility function is aware of the likelihood of a

given translation or the utility function doesn’t assign high values to

out-of-distribution sentences. In the last chapter, we discuss our findings

and point to possible future work.
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In this chapter, we briefly summarize the results, give directions for

future work, and conclude this thesis.

7.1 Summary

In this thesis, we explored possibilities for finding the MBR translation.

The main approach taken was predicting the Bayes Risk by regressing to

the 1000-MC estimate. This approach can be used to create models that

can be used as effective decision rules, however, and outperform 𝑚-MC

estimation in terms of MSE and ranking capabilities when 𝑚 is small.

Using mixture models doesn’t seem to have any benefit over regressing

to the mean, which seems to be due to the mean being relatively stable

under different mixture models. Lastly using backpropagation to directly

find the MBR translation doesn’t work as the utility function doesn’t take

the likelihood of the sentences into account.

7.2 Future work

In this work, we trained the predictive models "only" for one NMT model

trained on one dataset. Trying this approach on multiple datasets with

different NMT models and different sizes of splits of the data could

be an interesting next step to see how those results differ from ours.

Furthermore, an autoregressive model was used, but there also exist non-

autoregressive models, for which MBR decoding is possible. Predictive

models could be built on top of these types of models and their hidden

states and/or token statistics.

We didn’t explore features for the reference style models in full detail.

Maybe more powerful models can be made when certain features of

sampled references are used.

Another approach that one can take is to perform learning to rank instead

of regression or fitting a mixture model. In this approach, a model gets

two hypotheses, and features about those hypotheses, and has to predict

which of the two hypotheses has a lower Bayes risk. Given such a model

we are able to rank a list of hypotheses to select the one with the lowest

Bayes risk.

Another approach we thought about is to train a model to directly

construct the MBR translation. For example, a policy network could be

trained to learn to select tokens with a low expected Bayes risk. As MC

estimation can be computationally expensive, a predictive model could

be used to predict the Bayes risk during training.

Lastly, one major reason for choosing MBR decoding over beam search

decoding is that it exhibits fewer pathologies. However, when using

these kinds of models, it could be the case that the pathologies are either
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1: As long as the Kendall 𝜏 statistic is

not 1 because when it is 1 we are certain

that the predictive models give the same

ranking, and thus the same translation

as the 1000-MC estimate

reintroduced or new pathologies are added
1
. An in-depth analysis of the

output of these models could be done to see if and how these models

influence the observed pathologies.

7.3 Conclusion

In this thesis, we explored two different approaches for estimating the

MBR objective and one approach for constructing the MBR translation

directly. Most notable we found several models that outperform MC

estimation when used as a decision rule. These models can be an in-

teresting starting point for more research. We hope that this research

gives additional insights into Bayes risk decoding and points towards

interesting research questions to further understand Bayes risk decoding

and how it can be made more efficient.
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1: The value −1 indicates that the size

is dependent on the input of the linear

layers

2: The table contains the practical

batch size which equals 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 ×
𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒 𝑔𝑟𝑎𝑑𝑏𝑎𝑡𝑐ℎ𝑒𝑠

A
Appendix

A.1 Practicalities

For this research, we had a relatively small multi-language dataset,

but nonetheless when training the predictive model we encountered

computational and memory issues. Generating the hypotheses and

references during training and computing the Bayes Risk is way too

computationally expensive to have normal training times. We, therefore,

opted to generate and compute as much as possible prior to training.

Storing the generated sentences in a dictionary together with the count

was necessary to keep the resulting data small. We did the same for the

calculated COMET scores.

When using expensive features, such as hidden states of the NMT model

or features used in COMET, it is possible to precompute those. Although

it might be necessary to split the dataset into subsets to be able to work

with it during training. All in all these practicalities are important when

training the predictive model and take some engineering effort on the

part of the researcher as training can be significantly slow down, or even

be infeasible, if this is not properly taken care of.

A.2 Hyperparameter

In table A.1 we show the general hyperparameters used during the

hyperparameter search. For the feed-forward layers, we used 3 sizes:

small, medium, and large
1
. The dimensions are mentioned in table A.2

2
.

There are also model-specific hyperparameters which are discussed in the

sections below. The difference in hyperparameters stems from the fact that

the models use different features and thus the inputs have different dimen-

sions. More details as well as the found parameters can be found in the

code repository of this project: https://github.com/gersonfoks/towards-

efficient-bayes-risk-decoding

Table A.1: General Hyperparameters

Parameter Values Scale

Learning Rate [1.0𝑒 − 4, 1.0𝑒 − 2] log

Weight Decay [1.0𝑒 − 9, 1.0𝑒 − 5] log

Dropout [0.01, 0.9] uniform

Gamma [0.5, 1.0] uniform

Practical Batch size {128, 256, 512} -

Gradient clip value [1.0, 5.0] uniform

https://github.com/gersonfoks/towards-efficient-bayes-risk-decoding
https://github.com/gersonfoks/towards-efficient-bayes-risk-decoding
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Table A.2: Feed forward layer sizes

Size dimensions

Small [−1, 128, 1]
Medium [−1, 256, 128, 1]
Large [−1, 512, 256, 128, 1]

Baseline model For the baseline model, we have two additional parame-

ters: the embedding size and the hidden state size of the BiLSTM. For

this we have embedding size ∈ {128, 256, 512} and hidden state size

∈ {128, 256, 512}

Last Hidden State Model As the embedding size is already determined

we only have an additional hidden state size for the BiLSTM for which

we have hidden state size ∈ {256, 512}

Token Statistics Model For the token statistics model, we need to em-

bed the statistics and again have a hidden state for the BiLSTM. For

this we have embedding size ∈ {64, 128, 256} and hidden state size

∈ {64, 128, 256}

Full Decoder Model As the embedding size is already determined we

only have an additional hidden state size for the BiLSTM for which we

have hidden state size ∈ {64, 128, 256, 512}

Full Decoder Model - no token statistics The full decoder model -

no token statistics uses the same hyperparameters as the Full Decoder

Model.

COMET Feature Model The COMET feature model has one additional

size for the feed-forward layer, namely "extra large", which has dimensions

[−1, 1024, 512, 256, 128, 1]

Full Decoder COMET Feature Model This model uses the same dimen-

sions for the BiLSTM as for the Full Decoder model but leaves the other

hyperparameters open.

Basic reference model The basic reference model uses the same hyper-

parameters as the Full Decoder model in its search.

Embedded Reference Model The embedded reference model is an

attention model, therefore additional hyperparameters are the number

of heads used. The number of heads is picked from the set {2, 4, 8}. The

rest of the parameters stay the same.
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