Generation of Program Analysis Tools

Frank Tip

Generation of Program Analysis Tools

ILLC Dissertation Series 1995-5

NG

institute for logic, language and computation

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam
phone: +31-20-5256090
fax: +31-20-5255101
e-mail: illc@fwi.uva.nl

Generation of Program Analysis Tools

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam,
op gezag van de Rector Magnificus
prof. dr PW.M. de Meijer
ten overstaan van een door het college van dekanen
ingestelde commissie in het openbaar te verdedigen
in de Aulader Universiteit
(Oude Lutherse Kerk, ingang Singel 411, hoek Spui),
op vrijdag 17 maart 1995 te 15.00 uur

door

Frank Tip

geboren te Alkmaar.

Promotor: prof. dr P. Klint
Co-promotor: dr J.H. Field
Faculteit: Wiskunde en Informatica

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG
Tip, Frank

Generation of program analysis tools / Frank Tip. -
Amsterdam : Institute for Logic, Language and
Computation. - Ill. - (ILLC dissertation series ; 1995-5)
Proefschrift Universiteit van Amsterdam.

ISBN 90-74795-22-6

NUGI 855

Trefw.: programmeertalen / computerprogramma’s ; analyse.

© 1995, Frank Tip.

Cover design by E.T. Zandstra.
Printed by CopyPrint 2000, Enschede, The Netherlands.

The research presented in this thesis was supported in part by the European Union
under ESPRIT project #5399 (Compiler Generation for Parallel Machines—COMPARE).

1 Overview

1.1
1.2
1.3
1.4
1.5
1.6

2 Origin Tracking

2.1

2.2

2.3
2.4

Contents

1
Motivation 1
Source-level debugging oL 1
Program slicing 3
Algebraic specifications L L Lo 4
Organization of this thesis 6
Origins of the chapters 8

9
Introduction 9
2.1.1 Applications of origin tracking 10
2.1.2 Points of departure 12
2.1.3 Originrelations 13
Formal definition oo 15
2.2.1 Basic concepts for unconditional TRSs 16
2.2.2 A formalized notion of a rewriting history 16
2.2.3 The origin function for unconditional TRSs 17
2.2.4 Basic concepts for CTRSs 19
2.2.5 Rewriting histories for CTRSs 20
2.2.6 The origin function for CTRSs 21
Properties L 24
Implementation aspects 26
2.4.1 The basic algorithm 27
2.4.2 Optimizationso 27
2.4.3 Associative listso Lo 27
2.4.4 Sharing of subtermso 28
2.4.5 Restricting origin tracking to selected sorts 28
2.4.6 Time and space overhead of origin tracking 28

Vil

viii Contents

2.5 Related work 29
2.6 Concluding remarks Lo o 30
2.6.1 Achievements Lo 30
2.6.2 Limitations 30
2.6.3 Applications L 31

3 A Survey of Program Slicing Techniques 33
3.1 OVerviewo e e 33
3.1.1 Static slicing 34
3.1.2 Dynamicslicing oo 35
3.1.3 Applications of slicing 36
3.1.4 Relatedwork oo 37
3.1.5 Organization of this chapter 38

3.2 Data dependence and control dependence 38
3.3 Methods for static slicing oL 40
3.3.1 Basic algorithms oo 40
3.3.2 Procedures. 46
3.3.3 Unstructured control flow 55
3.3.4 Composite data types and pointers 58
3.3.5 CONCUITENCY . . .+« v v v v e e e e e e e e e 60
3.3.6 Comparison 61

3.4 Methods for dynamic slicing 0L 68
3.4.1 Basic algorithms oo oo 68
3.4.2 Procedures. 7
3.4.3 Composite data types and pointers 78
344 CONCUITENCY . . v v v v v e v e e e e e e e e e e e e 79
3.4.5 Comparison e e e 81

3.5 Applications of program slicing 85
3.5.1 Debugging and program analysis 85
3.5.2 Program differencing and program integration 87
3.5.3 Software maintenance. 88
3.0.4 Testing 89
3.5.5 Tuning compilers L 90
3.5.6 Other applications 91

3.6 Recent developments 92
3.7 Conclusions 96
3.7.1 Static slicing algorithms 97
3.7.2 Dynamic slicing algorithms 98
3.7.3 Applications 99

3.7.4 Recent developments 100

Contents

4 Dynamic Dependence Tracking

4.1

4.2

4.3

4.4

4.5
4.6

4.7

4.8
4.9

Introduction
4.1.1 Overview
4.1.2 Motivating examples
4.1.3 Definitionof asliceo oL
4.1.4 Relation to origin tracking
Basic definitions oo Lo
4.2.1 Signatures, paths, context domains
422 Contexts
Term rewriting and related relations
4.3.1 Substitutions and term rewriting systems
4.3.2 Context rewriting
4.3.3 Residuation and creation
A dynamic dependence relation L.
4.4.1 Example
Projections, subreductions
Formal properties of slices
4.6.1 Uniqueness of slices
4.6.2 Preservation of topology
4.6.3 The relation between Slicex and Projectx
4.6.4 Soundness and minimality 000
Nonlinear rewriting systems
4.7.1 Formal definitions for nonlinear systems
4.7.2 Example: slicing in a nonlinear system
4.7.3 Nonlinear systems and optimality
Implementation
Related worko

4.10 Future work

5 Parametric Program Slicing

5.1
5.2

2.3

5.4

Introduction
Overview L
5.2.1 Motivating exampleo
5.2.2 Slicing via rewriting oL
5.2.3 Term slices and parseable slices
5.2.4 More examples
Term rewriting and dynamic dependence tracking
5.3.1 Efficient implementation of term rewriting
PIM + dynamic dependence tracking = slicing
5.4.1 pC-to-PIM translation
54.2 Overviewof PIMo
5.4.3 PIM rewriting and elimination of dependences
5.4.4 Reduction of unconstrained and constrained slices

X

101
101
101
102
105
105
106
106
107
108
108
109
110
112
112
114
116
116
118
120
121
122
123
125
126
128
129
130

Contents

5.4.5 Slicing and reduction strategies 149
5.4.6 Slicing at intermediate program points 150
5.4.7 Conditional constraints 150
5.4.8 Complexity tradeoffs 151
5.5 Variations on a looping theme 151
5.5.1 loop execution rules: pure dynamic slicing 151
5.5.2 ¢ rules: lazy dynamic slicing 152
5.5.3 loop splitting rules: static loop slicing 154
5.5.4 loop invariance rules: invariance-sensitive slicing 156
5.6 Pragmatics 157
5.6.1 Properties of graph reduction 157
5.6.2 Alternative translation algorithms 158
5.6.3 Chainrules o 158
5.7 Related worko 159
5.8 Future worko 160
Generation of Source-Level Debugging Tools 163
6.1 Introduction 163
6.2 Specification of an interpreter 164
6.3 Basic techniques. L Lo 167
6.3.1 Origin tracking L 167
6.3.2 Dynamic dependence tracking 170
6.3.3 Implementation 171
6.4 Definition of debugger features 172
6.4.1 Single stepping/visualization L. 172
6.4.2 Breakpointso 173
6.4.3 State inspectiono 173
6.4.4 Watchpoints 173
6.4.5 Data breakpoints 173
6.4.6 Call stack inspection 0oL 174
6.5 Dynamic program slicing L. 174
6.5.1 Puretermslices Lo 174
6.5.2 Post-processing of term slices 175
6.6 Practical experience 175
6.7 Related work 176
6.8 Conclusions and future work 179
Conclusions 181
7.1 Summary e e e e 181
7.2 Mainresults 182

7.3 Future work 182

Contents

A PIM detalils

A1l PIM™” rules . . .

A.2 PIM;” equations
Bibliography

Samenvatting

xi

185
185
185

189

199

Acknowledgments

Most of the research presented in this dissertation was carried out over the last four
years in Paul Klint’s “Programming Environments” group at CWI. However, part
of this work took place at Mark Wegman’s “Software Environments” group during
a four-month interlude at the IBM T.J. Watson Research Center.

Working for Paul Klint has been a pleasant experience from the very beginning.
Paul has always allowed me a lot of freedom in pursuing my own research interests,
but was never short of good advice in times of confusion. I am deeply grateful to
him for his continuous support, and for being my promotor.

My time at IBM as a research intern was an extremely useful and pleasant learning
experience. [am especially indebted to my co-promotor, John Field, for taking care
of (too) many “administratrivia” that made my stay at IBM possible. I am deeply
grateful to John for actively participating in the realization of this thesis, but his
support as a friend who pointed out the peculiarities of the American Way of Life is
equally much appreciated.

I would like to thank the co-authors of the chapters of this thesis for their part of
the work: Arie van Deursen (Chapter 2), John Field (Chapters 4 and 5), Paul Klint
(Chapter 2), and G. Ramalingam (Chapter 5).

The members of the reading committee—dr Lex Augusteijn, prof. dr Jan Bergstra,
prof. dr Tom Reps, and prof. dr Henk Sips—provided many useful comments. I wish
to thank them for reviewing this thesis.

In addition to those mentioned above, the following persons made a significant
contribution to this work by commenting on parts of it: Yves Bertot (Chapter 2),
T.B. Dinesh (Chapter 6), Susan Horwitz (Chapter 3), J.-W. Klop (Chapter 2), and
G. Ramalingam (Chapter 4). Jan Heering deserves a special acknowledgment for his
constructive comments on various parts of this dissertation, but especially for always
having an open mind (and an open door) to discuss murky research issues.

My colleagues were an essential part of the pleasant environments that I have
worked in. At CWI and the University of Amsterdam: Huub Bakker, Mark van

xiil

Xiv Acknowledgments

den Brand, Mieke Bruné, Jacob Brunekreef, Arie van Deursen, Casper Dik, T.B.
Dinesh, Job Ganzevoort, Jan Heering, Paul Hendriks, Jasper Kamperman, Paul
Klint, Steven Klusener, Wilco Koorn, Elena Marchiori, Emma van der Meulen, Jan
Rekers, Jan Rutten, Susan Uskiidarh, Frank Teusink, Eelco Visser, Paul Vriend,
and Pum Walters. At the IBM T.J. Watson Research Center: John Field, Barry
Hayes, Roger Hoover, Chris Laffra, G. Ramalingam, Jim Rhyne, Kim Solow, Mark
Wegman, and Kenny Zadeck. These persons have influenced my work in many ways.

A special word of thanks goes to Frans Vitalis who really “started” this work by
exposing me to the mysterious world of computers during visits to my father’s office.

Finally I wish to thank my family and friends for their friendship and support in
stressful times.

Frank Tip

Amsterdam, The Netherlands
December 1994

Chapter 1

Overview

1.1 Motivation

In recent years, there has been a growing interest in tools that facilitate the understanding,
analysis, and debugging of programs. A typical program is extended and/or modified a
number of timesin the course of itslifetime due to, for example, changes in the underlying
platform, or its user-interface. Such transformations are often carried out in an ad hoc
manner, distorting the “ structure” that was originally present in the program. Taken together
with the fact that the programmers that worked on previous versions of the program may
be unavailable for comment, this causes software maintenance to become an increasingly
difficult and tedious task as time progresses. As there is an ever-growing installed base
of software that needs to undergo this type of maintenance, the development of techniques
that automate the process of understanding, analyzing, and restructuring of software—often
referred to as reverse engineering—is becoming an increasingly important research topic
[21, 117].

Thisthesisis concerned with tools and techniques that support the analysis of programs.
Instead of directly implementing program analysis tools, our aim is to generate such tools
from formal, algebraic specifications. Our approach has the pleasant property that it is
largely language-independent. Moreover, it will be shown that—to a very large extent—
the information needed to construct program analysis tools is already implicitly present in
algebraic specifications.

Two particular types of program analysistools are discussed extensively in the following
chapters—tools for source-level debugging and toolsfor programdlicing.

1.2 Source-level debugging

The basic feature of any source-level® debugger isto perform or simulate the execution of a
programin astep-wisefashion, preferably in somevisual way. Figure 1.1 showsanumber of
snapshots of such asingle-stepping tool. In Figure 1.1 (a) the first statement of the program
isexecuted; thisfact isindicated by highlighting the corresponding statement in the program

1The phrase “source-level” indicates that communication between the debugging tool and the person
debugging the program is done in terms of source-code.

1

2 Chapter 1. Overview

= = 0] = = 0]
[1 File Display [1 File Display
eval—program { eval—program |
FROGRAM example : PROGRAM example :
LECLARE LECLARE
i 3 IMTEGER: i ¢ IMTEGER:
J : IMTEGER: J t IMTEGER:
PROCEDURE incr ¢ in ¢ IMTEGER: PROCEDURE incr ¢ in ¢ IMTEGER:
YAR out i3 IMTEGER » : VAR out 3 IMTEGER
BEGIM out #= in + 1 END BEGIH BEGIM out := in + 1 EMD BEGIM
iz=3: i = 3:

irmcr © i.j » EMD L2

iner ¢ i, ¥ END .3

(@ (b)

= {o 0] = {ai0]
[] File Display [] File Display
eval —progran | eval —progran |

PROGRAM example g FROGRAM example 2

LECLARE DECLARE
i t INTEGER; i ¢ INTEGER:
i t IMTEGER: J : IMNTEGER:

PROCEDURE incr { in ¢ INTEGER:
WAR out 3 INTEGER » :
BEGIM out $= in + 1 END BEGIH
i o= 3:
incr & i.j » EMD L3

PROCEDURE incr | in ¢ IMTEGER:
YAR out 3 INTEGER » :
BEGIM out := in + 1 EMD BEGIM
i=3:
iner € i,j » EMD .2

(c) (d)

Figure 1.1: Snapshots of a source-level debugging tool.

text. In Figure 1.1 (b), the execution of the next statement is visualized, in this case a call
to procedure incr. Figure 1.1 (c) depicts the execution of the statement out := in +
1 that constitutes the body of procedure incr. Finaly, in Figure 1.1 (d) execution returns
from the procedure.

Another common feature of a source-level debugger is stateinspection, i.e., alowing the
user to query the current values of variablesor expressionswhenever execution issuspended.
For example, a user might ask for the value of variable in when the execution reaches the
point shown in Figure 1.1 (c). In reaction to this query, the debugging tool will determine
the value 3.

Anextremely useful featurethat can al so befound in most debugging toolsisabreakpoint.
In general, a breakpoint may consist of any constraint on the program state that is supplied
by the user. The basic ideais that the user asks to continue execution of the program until
that constraint is met. Control breakpoints consist of locations in the program (typically
statements). When execution reaches such a designated location, the debugging tool will
return control to the user. Control breakpoints can be quite useful to verify whether or not a
certain statement in a program is executed or not. Data breakpoints consist of constraints on
valuesof expressions. For example, auser may ask the debugging tool to continue execution

1.3. Programsdlicing 3

read(n) ; read(n) ; read(n) ;
i:=1; i:=1; i :=1;
sum := 0;
product := 1; product := 1; product := 1;
while 1 <= n do while 1 <= n do while i <= n do
begin begin begin

sum := sum + 1i;

product := product * i; product := product * i;

i =1+ 1 i :=1 + 1
end; end; end;
write (sum) ;
write (product) write (product) write (product)

(a (b) (©)

Figure 1.2: (a) Example program. (b) Static slice of the program with respect to the final value
of variable product. (c) Dynamic dlice of the program with respect to the final value of variable
product forinputn = 0.

of aprogram until the values of two designated variables are equal.

1.3 Program dlicing

Programglicing [147, 136] isatechniquefor isolating computational threadsin programs.
Informally stated, a program slice contains the parts of a program that affect the values
computed at some designated point of interest (typically a statement). An aternate view
on the notion of a program dlice is that of an executable projection of a program that
replicates part of its behavior. Traditionaly, a distinction between static and dynamic
program slicing techniques is made in the literature. The former notion involves statically
availableinformation only, i.e., no assumptions regarding the inputs of a program are made.
The latter notion, dynamic dlicing, assumes a specific execution of the program, i.e., a
specific test-case.

The notion of a program dlice is best explained by way of an example. Figure 1.2 (a)
shows a ssimple program that reads a natural number n, and computes the sum and product
of the first n numbers. Figure 1.2 (b) shows a (static) slice of this program with respect to
the value of variable product that is computed at statement write (product). This
dlice consists of al statements in the program that are needed to compute the final value
of product in any execution. Observe that neither of the assignments to variable sum is
present in the glice, because these statements do not have an effect on the computation of
product’svaue for any value of n. Figure 1.2 (c) shows a dynamic slice of the program
in Figure 1.2 (a) with respect to the final value of product for the specific test casen = 0.
Note that the entire body of thewhileloop is omitted from the dlice. Thisisthe case because
the loop body is not executed if n has the value 0—therefore these statements cannot have

4 Chapter 1. Overview

an effect on any value computed by the program, and in particular they cannot have an effect
on the final value of variable product. Also observe that the dynamic slice shown in
Figure 1.2 (c) isonly valid for input n = 0; thisis evident from the fact that the slice will
not terminate for any other value of n. Chapters 3, 5, and 6 present several approaches for
computing program slices such as as the ones shown in Figure 1.2.

The value of program dlicing for program understanding (an important aspect of reverse
engineering) should be self-evident: it allows a programmer doing software maintenance
to focus his attention on the statements that are involved in a certain computational thread,
and to ignore potentially large sections of code that are irrelevant at the point of interest. In
asimilar way, slicing can be used to examine the effect of modifications to a program, by
determining the parts of a program that may be affected by a change.

1.4 Algebraic specifications

As was mentioned previoudly, our approach will be to generate program analysis tools
from formal specifications. More precisely, we will use algebraic specifications® [23] of a
language's semantics as a basis for tool generation. Two important properties of algebraic
specifications that underlie our approach are:

e Algebraic specifications may be executed by way of termrewriting [95] or termgraph
rewriting [17]. This permits us to model the execution of a program abstractly, as a
sequence of terms that arise in a rewriting process.

e In Chapters 2 and 4 we will show that algebraic specificationsimplicitly define origin
and dynamic dependence relations on the terms that arise in any rewriting process
according to that specification. These relations are the cornerstones for the generation
of variouslanguage-specific program analysistool sthat will be discussed in Chapters5
and 6.

An algebraic specification consists of a set of (conditional) equations. For specifications
of the semantics of imperative programming languages, these equations typically define the
“meanings’ of statementsin terms of transformations of an “environment” or “store”, which
isarepresentation of the values computed by the program.

For example, Figure 1.3 shows two conditional equations (taken from an algebraic
specification of an interpreter for a small imperative language that will be presented in
Chapter 6). Together, these equations define how the execution of an if-then—el se-statement
can be expressed in terms of the execution of the statements in the then-branch or the
else-branch of the if, depending on the result of the evaluation of its control predicate.
The auxiliary function exec used in the two equations specifies how environments are
transformed by the execution of alist of statements. Figure 1.4 schematically depicts how
an application of equation [L 16] has the effect of transforming an if-term; dashed lines in

2Inthisthesis, wewill take arather operational perspective on algebraic specifications by considering these
as an equational high-level programming language.

1.4. Algebraic specifications 5

[L16] exec(if Expthen SatSeq else SatSeq’ end;SatSeq”, Env) = exec(SatSeq”, exec(SatSeq, Env))
when eval(Exp, Env) # 0

[L17] exec(if Expthen SatSeq else SatSeq’ end;SatSeq”’, Env) = exec(SatSeq”, exec(SatSeq', Env))
when eval(Exp, Env) = 0

Figure 1.3: Algebraic specification of the execution of an if-statement.
exec exec

exec

if

~
~
~
N
~ I
~
N !
~ !
S /
~
\\ ~ / / /7
N ~ / / ’
~ So 7 ’ ’
S v 7 7
~ ~
~ 4 ~ 7 4
< ~ - ~So s
~ ~ o - ~ 7/ -
~
~
~

~
~
~
~

origin relations

Figure 1.4: Schematic view of origin relationsinduced by an application of equation [L 16].

the figure indicate the origin relations® between subterms of the if-term, and the term it is
rewrittento. Tracing back origin relationsin the sequence of termsfor the execution of some
program is a mechanism for formalizing the notion of a*“current locus of execution”. This
enables us to generate a source-level debugging tool from an algebraic specification of an
interpreter.

Figure 1.5 shows two simple axioms for integer arithmetic*. Equation [A1] states that
multiplying the constant 0 with any integer number yields the value 0, and [A2] states that
multiplication is an associative operation. Figure 1.6 depicts how, according to these two
rules, aterm intmul(intmul (0, 1),2) may be rewritten to the constant 0. In this
figure, dotted lines indicate dynamic dependence relations. Intuitively, dynamic relations
indicate which symbols are necessary for producing certain other symbols. By tracing
back dynamic dependence relations from the final term, one may determine which function
symbols in the initial term were necessary for creating it. Observe that in the example
reduction of Figure 1.6, neither of the constants 1 and 2 intheinitial term was necessary for
creating the final term 0.

3The reader should be aware that this depiction is a slight simplification—aformal definition of the origin
function follows in Chapter 2.
4This exampleis an excerpt of asimilar example that occursin Chapter 6.

6 Chapter 1. Overview

0
intmul(X, intmul (Y, Z))

[Al] intmul(0,X)
[A2] intmul(intmul (X, Y),2Z)

Figure 1.5: Some equationsfor integer arithmetic.

dynamic dependence relations

Figure 1.6: Schematic view of dynamic dependence relations induced by applications of [A1] and
[A2].

In Chapters 5 and 6, it will be shown that applying the dynamic dependence relation to
specificationsof the semantics of programming languages produces varioustypes of program
slices.

In Chapter 6, we present aframework for constructing advanced source-level debuggers
that incorporates the features discussed above, and various others.

1.5 Organization of thisthesis

The subsequent chapters of this dissertation (except Chapter 7) were originally written
as a collection of separate articles on related topics. Although these chapters have since
undergone substantial modificationsin various places, they can still be read as self-contained
papers. Nonetheless, there are some dependences between the material covered in the
different chapters. In each of these cases, a small amount of overlap (in the form of
reiteration of definitionsand examples) was deliberately |eft in place, for the sake of making
the work more accessible.

The foundations of the work in this thesis consist of two relations, origin tracking and
dynamic dependence tracking, between an original term and aterm it rewritesto:

e Origin tracking establishes relations between “equal” terms. In Chapter 2, a formal
definition of the origin relation for arbitrary conditional term rewriting systems is
presented.

1.5. Organization of thisthesis 7

Chapter 2
Origin Tracking

Chapter 6
Generation of Source-Level
Debugging Tools S~

Chapter 3

Chapter 1 _ /" Chapter 7
N A Survey of Program | - - .
> =~
Introduction Slicing Techniques - Conclusions
Chapter 5 -7
Parametric Program Slicing |~
Chapter 4
Dynamic Dependence

Tracking

Figure 1.7: Dependences between the chaptersin this thesis.

e Dynamic dependence tracking, defined in Chapter 4, determines the symbols of the
initial term that are necessary for producing symbols of the rewritten term. For the
casual reader, theformal definition of dynamic dependencetracking in Chapter 4 could
be skipped on an initial reading, as Chapters 5 and 6 contain an informal presentation
of dynamic dependence tracking that may be more accessible.

These relations will be used for the generation of program analysis tools, in particular for
programslicing tools. To put our work in context, related work—in the form of an extensive
survey of the current literature on program dlicing and its applications—is presented in
Chapter 3.

Then, two settings are explored in which these relations are exploited for the generation
of tools:

e In Chapter 5, a trandational setting is described, in which rewrite rules are used to
trandate terms to an intermediate representation called Pim [55]. Then, other rewrite
rules serveto simplify and executetheresulting Pim term. By using different subsets of
PiM’s simplification and execution rules in combination with the dynamic dependence
relation of Chapter 4, various types of program slices are obtained.

e Chapter 6 describes an interpretive setting, where program terms are directly manip-
ulated by a set of rewrite rules. In this setting, the origin relation of Chapter 2 is used
for the definition of a number of source-level debugging features, and the dynamic
dependence relation of Chapter 4 permits the support of dynamic program slicing
features.

Finally, in Chapter 7, conclusions and directions for future work are reported. Figure 1.7
depicts the main interdependences between the chapters that follow.

8 Chapter 1. Overview

1.6 Originsof the chapters

The subsequent chapters of this thesis are derived from a collection of articles that have
previously appeared elsewhere.

Chapter 2, ‘Origin Tracking' is a dightly modified version of a paper® that appeared
in a special issue on ‘Automatic Programming’ of the Journal of Symbolic Computation
[47]. This paper was co-authored by Arie van Deursen and Paul Klint. Chapter 3, ‘A
Survey of Program Slicing Techniques' is an updated version of CWI technical report CS-
R9438 [136], and has also been submitted for journa publication. Chapter 4, ‘Dynamic
Dependence Tracking' is an extended version of a paper® entitled ‘ Dynamic Dependence
in Term Rewriting Systems and its Application to Program Slicing’ that was presented at
the Sixth International Symposium on Programming Language Implementation and Logic
Programming held in Madrid, Spain from September 14-16, 1994 [58]. This paper was
written jointly with John Field. Chapter 5, ‘Parametric Program Slicing’ is an extended
version of a paper [57] presented at the Twenty-Second ACM Symposium on Principles of
Programming Languages, in San Francisco, California from January 23-25, 1995. This
paper was written jointly with John Field and G. Ramalingam. Chapter 6, ‘Generation
of Source-Level Debugging Tools appeared as CWI technical report CS-R9453, entitled
‘Generic Techniquesfor Source-Level Debugging and Dynamic Program Slicing’ [135], and
will be presented at the Sxth International Joint Conference on the Theory and Practice of
Software Development, to be held in Aarhus, Denmark, May 22—26, 1995. Chapter 6 isalso
loosely based on apaper entitled ‘Animatorsfor Generated Programming Environments’ that
was presented at the First Inter national \Wor kshop on Automated and Algorithmic Debugging
held in Linkoping, Sweden from May 3-5, 1993 [134].

Some of the papers mentioned above have also appeared as deliverables of the COMPARE
project. For an overview of this project, the reader isreferred to [9, 91].

SAcademic Pressis acknowledged for their permission to reprint parts of this paper.
6Springer-Verlag is acknowledged for their permission to reprint parts of this paper.

Chapter 2

Origin Tracking

(joint work with Arie van Deursen and Paul Klint)

Summary

We are interested in generating interactive programming environments from formal
language specificationsand useterm rewriting to execute these specifications. Functions
defined in a specification operate on the abstract syntax tree of programs, and theinitial
term for the rewriting process will consist of an application of some function (e.g., a
type-checker, evaluator or trandlator) to the syntax tree of a program. During the term
rewriting process, pieces of the program such asidentifiers, expressions, or statements,
recur in intermediate terms. We want to formalize these recurrences and use them,
for example, for associating positional information with messages in error reports,
visualizing program execution, and constructing |anguage-specific debuggers. Origins
are relations between subterms of intermediate terms and subterms of the initial term.
Origin tracking is a method for incrementally computing origins during rewriting.
We give aformal definition of origins, and present a method for implementing origin
tracking.

This chapter ismainly concerned with technical foundations; Chapter 6 will discuss
in detail how origin tracking can be used for the generation of source-level debugging
tools.

2.1 Introduction

We are interested in generating interactive development tools from formal language defi-
nitions. Thus far, this has resulted in the design of an algebraic specification formalism,
called ASF+SDF [23, 68] supporting modularization, user-definable syntax, associativelists,
and conditional equations, and in the implementation of the ASF+SDF Meta-environment
[69, 93].

Given a specification for a programming (or other) language, the Meta-environment
generates an interactive environment for the language in question. More precisely, the Meta-
environment isatool generator that takesaspecificationin ASF+SDF and derivesalexical an-
alyzer, aparser, asyntax-directed editor and arewrite enginefromit. The Meta-environment
providesfully interactive support for writing, checking, and testing specifications—all tools

9

10 Chapter 2. Origin Tracking

are generated in an incremental fashion and, when the input specification is changed, they
are updated incrementally rather than being regenerated from scratch. A central objective
in this research is to maximize the direct use that is made of the formal specification of a
language when generating development toolsfor it.

We use Term Rewriting Systems (TRSs) [95] to execute our specifications. A typical
function (such as an evaluator, type checker, or trandator) is a specification that operates
on the abstract syntax tree of a program (which is part of the initial term). During the term
rewriting process, pieces of the program such asidentifiers, expressions, or statements, recur
in intermediate terms. We want to formalize these recurrences and use them, for example,
for:

e associating positional information with messages in error reports,
e Vvisualizing program execution,
e constructing language-specific debuggers.

Our approach to formalize recurrences of subterms consists of two stages. First, we
define relations for elementary reduction steps t; — t;,1; these relations are described in
Section 2.1.3. Then, we extend these relations to compound reduction sequencesto — t; —

.. — t,. In particular, we are interested in relations between subterms of an intermediate
term ¢;, and subtermsof theinitial term ¢o. We will call thisthe originrelation. Intuitively, it
formalizes from which parts of theinitial term a particular subterm originates. The process
of incrementally computing originswe will call origin tracking.

2.1.1 Applicationsof origin tracking

In TRSs describing programming languages terms such as
program(decls (decl (n,natural)), stats(assign(n,34)))

are used to represent abstract syntax trees of programs. A typical type-check function takes
a program and computes a list of error messages. An example of the initial and final term
when type checking a simple program is shown in Figure 2.1.

The program uses an undeclared variablen1, and the result of the type-checker isaterm
representing thisfact, i.e., aterm with undeclared-var asfunction symbol and the name
n1 of the undeclared variable as argument. The dashed line represents an origin: it relates
the occurrence of n1 in the result to the n1 in theinitial term. One can use thisto highlight
the exact position of the error in the source program. Figure 2.2 shows an application of this
technique.

Similarly, program evaluators can be defined. Consider for example arule that evaluates
alist of statements by evaluating the first statement followed by the remaining statements:

[L1] ev-1list (cons (Sat,Slist) ,Env) — ev-list (Slist,ev-stat (Sat, Env))

Thevariables(Sat, Slist, and Env) are used to passinformation from thel eft to the right-hand
side. The origins of these variable occurrences in the right-hand side are shown by dashed
linesin Figure 2.3.

2.1. Introduction 11

tec —» .- —» errorlist
I I
program undeclared-var
I
decls stats nl
I I ///
decl assign ///
/ \ /A ///
n natural nl 34 e

N__ 7

Figure 2.1: Type-checking asimple program.

errors |
PROGEAM test g
IECLARE
n : REAL:
i : IMTEGER:
FROCEDURE =guare ¢ n : INTEGER @
IECLARE » : FEAL:
ztep ¢ LABEL BEGIH

L)

» = 0
step 1= n}
ztep 1= step * 0,01:
HWHILE = < 1,0 D0 WRITE ¢ 1z
WRITE ¢ " "2 = " 3z
WEITE ¢ = = =« iz
WEITE ¢ "““n" iz
step : x 1= x + ztep EMD:

Y

GOTO step:
i o= Qg ﬁ TcErrors § Ausrdpeopledtipddeno/'Errors , err

WHILE i < 0 D

EMD:

sguare (Kol
EMD

o

Figure 2.2: Highlighting occurrences of errors.

12 Chapter 2. Origin Tracking

ev-list — ev-list
/N N
cons Env < _ Slist ev-stat
/ N\ D / A\
Sat Slist ~__ __><C Sat Env

Figure 2.3: One step in the evaluation of a simple program. Dashed lines indicate how the rule
application induces origin relations.

Visualization of program execution isa natural application of origin tracking. The basic
idea is that, during execution, the statement currently being executed is highlighted in the
sourcetext. Inthesequel, it will be shown how thiscan be accomplished by matching redexes
against the pattern ev-stat (Sat, Env); whenever such a match occurs, the origin of the
first argument of ev-stat indicates the statement that is currently being executed. Dinesh
and Tip [49, 134] have shown how, by employing multiple patterns, program execution can
be animated in a very fine-grained manner: the execution of any language construct (e.g.,
expressions, declarations) can be traced. Thisis particularly useful for applications such as
source-level debugging and tutoring.

In a similar way, various notions of breakpoints can be defined. Source-level debuggers
often have acompletely fixed notion of abreakpoint, based on line-numbers, procedure calls
and machine addresses. By contrast, the origin relation enables one to define breakpointsin
amuch more uniform and generic way. For instance, a positional breakpoint can be created
by having the user select a certain point in the source text. The path from the root to that
point is recorded and the breakpoint becomes effective when—in this example—the origin
of the first argument of ev-stat equals that path. Position-independent breakpoints can
be defined by using patterns describing statements of a certain form (e.g., an assignment
with x asleft-hand side). The breakpoint becomes effective when the argument of ev-stat
matches that pattern; its origin showsthe position in the original program. The definition of
these, and other debugging concepts will be further explored in Chapter 6.

2.1.2 Pointsof departure
Before sketching theorigin relation (in Section 2.1.3) we briefly state our pointsof departure:

¢ No assumptionsshould be made regarding the choice of aparticular reduction strategy.

¢ No assumptions should be made concerning confluence or termination; origins can be
established for arbitrary reductionsin any TRS.

e Theorigin relation should be obtained by a static analysis of the rewrite rules.

2.1. Introduction 13

1. common variables
2. common subterms
3. redex-contractum
4. contexts

Figure 2.4: Single-step origin relations.

e Relations should be established between any intermediate term and the initial term.
Thisimpliesthat relations can be established even if there is no normal form.

e Origins should satisfy the property that if ¢ hasan origint’, then ¢’ can be rewritten to
t in zero or more steps.

e The origin relation should be transitive.

e An efficient implementation should exist.

These requirements do not lead, however, to a unique solution. We will therefore only
present one of the possible definitions of origins, although we can easily imagine aternative
ones.

2.1.3 Origin relations

Thedefinition of theoriginrelation isbased on thetransitive and refl exive closure of anumber
of single-step origin relationsfor elementary reductions, which will now be studied in some
detail. In the description that followsit is assumed that arewriterule r : ¢, — t, is applied
in context C with substitution o, giving rise to the elementary reduction C[t{] —, C|[t]].
Figure 2.4 depicts the four types of single-step origin relations that occur:

common variables. If avariable X appearsinboth sides, t; and ¢,, of ruler, then relations
are established between each function symbol in theinstantiation X of X in C[t{| and the
corresponding function symbol in each instantiated occurrence of X in C[t5].

Figure2.5illustrateshow thevariable X inducesrel ations between corresponding function
symbolsfor a specific application of therule £ (X) — g(X).

The common variables relation becomes a bit more complicated for left-nonlinear
rules, i.e., rules where some variable X occurs more than once in the left-hand side, e.g.,
plus (X, X) — mul (2, X).Inthiscase, al occurrences of X in the left-hand side give

14 Chapter 2. Origin Tracking

Figure 2.5: Relations according to a variable occurrencein both sides of arule.

append — cons
/N /N
Eempty-list Eempty-1list

Figure 2.6: Relations according to common subtermsrule.

rise to origin relations. In other words, nonlinearity in the left-hand side may cause non-
uniqueness of origins.

common subterms. If aterm s isasubterm of both ¢; and of ¢,, then these occurrences of
s give rise to common subterms rel ations between their instantions. Consider, for example,
the following rules that define how an element is appended to the end of alist:

[Al] append(E,empty-list) — cons(E,empty-1list)
[A2] append(F1,cons (F>,L)) — cons(F>, append(Fp,L))

Using the common variables relation, several useful origin relations will be constructed.
However, no such relation is present for the constant empty-1ist that occurs in either
side of [A1]. This relation is established by the common subterms rule, and is depicted
in Figure 2.6. A more elaborate example involving the common subterms relation is the
conditional rule [W1] for evaluating whi1le-statements:

[W1] ev-stat(while (Exp, Slist), Env) —
ev-stat (while (Exp, Slist) ,ev-1list (Slist, Env))
when ev-exp (Exp, Env) = true

When evaluation of Exp yields true, the same while-statement is evaluated in a modified
environment that is obtained by evaluating the body of the while-statement (Slist) in the
initial environment (Env). The common subterms relation links these while-symbols.

redex-contractum. The top symbol of the redex ¢] and the top symbol of its contractum
tg arerelated, as shown in Figure 2.7 for rule [A2]. An essential application of thisrelation
can beseenin

2.2. Formal definition 15

append — cons
/ N\ / N\
E, cons E, append
/ N\ / N\
EZ L El L

Figure 2.7: Relations according to redex-contractum rule.

[R1] real-const (Char-list) — real-type

where a real constant containing a list of characters is rewritten to its type denotation
real-type. Observe that the redex-contractum relation may cause non-uniqueness of
origins.

contexts. Relations are established between each function symbol in the context C of the
left-hand side and its counterpart in the context C of the right-hand side.

It isobvioushow in achain of elementary reductions, the transitive closure of the single-
step origin relations can be used to determine the origins of any subterm in the reduction.

In an aternate, more implementation-oriented view, subterms are annotated with their
origins (as sets of paths in the original term). For each reduction, the origins of the redex
are propagated to the contractum in accordance with the single-step origin relations.

Origin tracking for conditional TRSs (CTRSs) is an extension of the origin function for
unconditional TRSs, but isslightly more complicated. Themain complicationsarisefromthe
fact that we want to be able to determine origins of terms that appear in the (sub)reductions
that are necessary for the evaluation of conditions.

If evaluation of a condition involves reduction of aterm ¢, the origins of the redex are
passed to ¢, according to the common variables rule and the common subterms rule. These
origins are subsequently propagated to the normal form of ¢, according to the usual origin
relations. If a condition introduces variables, then these are matched against normal forms
that have already origins associated with them. Such variables may be re-used in other
conditions, and in the right-hand side of the rewrite rule.

2.2 Formal definition

In this section, we present aformal definition of origin tracking. A basic knowledge of term
rewriting systems (TRSs), and conditional term rewriting systems (CTRSs) is assumed. For
adetailed discussion of these, the reader isreferred to [95].

The remainder of this section isorganized asfollows. First, we introduce basic concepts

16 Chapter 2. Origin Tracking

and rewriting histories for unconditional TRSs. Subsequently, the origin function for un-
conditional TRSs is defined, and illustrated by way of an example. After discussing basic
concepts and rewriting historiesfor CTRSs, we consider the origin function for CTRSs.

We have used the formal definition of the origin relation to obtain an executabl e specifi-
cation of origin tracking. The examplesthat will be given in this section have been verified
automatically using that specification.

2.2.1 Basic conceptsfor unconditional TRSs

A notion that will frequently recur is that of a path (occurrence), consisting of a (possibly
empty) sequence of natural numbers between brackets. Paths are used to indicate subterms
of aterm by interpreting numbers as argument positions of function symbols. For instance,
(2 1) indicates subterm b of term £ (a, g(b, c)). Thisisindicated by the‘ /" operator:
f(a, g(b, c))/(21)=b. The associative operator ‘-’ concatenates paths, e.g., (2) - (1)
=(21). Theoperators‘<’, ‘=<', and ‘|’ define the prefix ordering on paths. The fact that p
isaprefix of g isdenoted p < ¢; ‘<X’ isthereflexive closure of ‘ <’. Two pathsp and ¢ are
digoint (denoted by p | ¢) if neither oneisaprefix of the other.

Theset of al valid pathsinaterm ¢ isO(t). The set of variablesoccurring int¢ is denoted
Vars(t). We uset’ C t to express that t' appears as a subterm of ¢; the reflexive closure of
‘C’is‘C’. Thenegationsof ‘C’ and‘C" are‘¢’ and *Z’, respectively. Finaly, Lhs(r) and
Rhs(r) indicate the left-hand side and the right-hand side of arewriterule r.

2.2.2 A formalized notion of arewriting history

A basic assumption in the subsequent definitionsisthat the complete history of the rewriting
processis available. Thisis by no means essential to our definitions, but has the following
advantages:

e Theorigin function for CTRSs can be defined in a declarative, non-recursive manner.
We encountered ill-behaved forms of recursion in the definition itself when we exper-
imented with more operational definition methods, due to the convoluted structure of
rewriting historiesfor CTRSs.

e Uniformity of the origin functions for unconditional TRSs and for CTRSs. The latter
can be defined as an extension of the former.

In the case of unconditional TRSs, the rewriting history H isasingle reduction sequence S.
Thissequence consistsof alist of sequence elements S; that contain all informationinvolving
thei*" rewrite-step. Here, i ranges from 1 to | S| where |S| is the length of sequence S.
Each sequence element isa 5-tuple (n, ¢, r, p, o) where n isthe name of the sequence
element (consisting of a sequence name and a number), ¢ denotes the i** term of sequence
S, r the i** rewrite rule applied, p the path to the redex in ¢, and ¢ the substitution used in
the application of r. Access functionsn(s), t(s), r(s), p(s), and o(s) are used to obtain the
components of s. The last element of a sequence is irregular, because the term associated

2.2. Formal definition 17

with this element is in norma form: the rule, path and substitution associated with ;s
consist of the special value undefined.

Below, s, ¢, and s” denote sequence elements. Moreover, it will be useful to have a
notion <~ denoting the history H from which the last sequence element, S s, is excluded.
For our convenience, we introduce Lhs(s) and Rhs(s) to denote the left-hand side and
right-hand side of r(s). Finally, Succ(H, s) denotes the successor of s, for s in H~, and
Start(H) determinesthe first element of the reduction sequencein H.

2.2.3 Theorigin function for unconditional TRSs
2.2.3.1 Auxiliary notions

Theauxiliary function Com (Definition 2.1 below) isfrequently used in the definitions of the
origin functions below, to compute positions of common variables and common subterms.
The arguments of Com are a substitution ¢ and two terms ¢ and #'. The result computed by
Comisaset containing pairs (p, p') such that either a variable X or a common subterm ¢”
occurs both at path p int and at path p’ in¢'.

Definition 2.1 (Com)

Com(o, t, t') & {(p-q, ¥ q) |t/peNars(t), t/p="1t/p', g € O(a(t/p)) } U
{(p, P) | t/p & Vars(t), t/p=1/p'"}

For one-step reductions, the basic origin relation LR (short for Left-hand side to Right-
hand side) relates common subterms of a redex and its contractum that appear as a result of
the presence of a common variable or a common subterm in the applied rewrite rule.

Definition 2.2 (LR) For sinH: LR(s) 2 Com(o(s), Lhs(s), Rhs(s))

2.2.3.2 Déefinition of ORG

The origin function ORG for unconditional TRSs is defined using LR. Relations are repre-
sented by relate clauses: a clause relate(H, ', p', s, p) indicates a relation between the
subterm at path p' in ¢(s") and the subterm at path p in ¢(s) in history H. In (ul), al rela-
tions between symbolsin the redex in ¢(s) and its contractum in ¢(Succ(H, s)) are defined,
excluding the top symbols of the redex and the contractum. The fact that all symbolsin the
context of the redex remain unchanged is expressed in (u2). In addition, the top symbols of
the redex and the contractum are related by (u2).

For s in H and a path p in t(s), the set of related subterms (according to the transitive
and reflexive closure of relate) in the initial term, ¢(Start(H)), is denoted ORG(H, s, p).

18 Chapter 2. Origin Tracking

HS1): - T S) T T T T T H(Sy):

app/end cons -~~~ 77T --_cons

b cons -~ :0:2_ S ::a append A1 a cons
aempty-list bempty-1list bempty-1list

~ ~
~ - ~ -

Figure 2.8: History H,y, for append (b, cons(a, empty-1list)). Dashedlinesindicate
origin relations.

Definition 2.3 (ORG) For sin H™ and s’ in H:

(ul) Y(q, ¢') € LR(s) : relate(H, s, p(s) - g, Succ(H, s), p(s) - ¢')
(u2) Yp:(p=<p(s))V(p|p(s)): reate(H, s, p, Jucc(H, s), p)

{p} when s = Start(H)
ORG(H, 5:p) 2\ (1| " € ORG(H, o, /), whens # Sart(H)
relate(H, s', p', s, p) }

In principle, the availability of al relate clauses alows us to determine relationships
between subterms of two arbitrary intermediate termsthat occur during the rewriting process.
However, we will focus on relations involving the initial term.

2.2.3.3 Example

As an example, we consider the TRS consisting of the two rewrite rules [A1] and [A2] of
section 2.1.3. Figure 2.8 shows a history H,,,,, consisting of a sequence S, as obtained by
rewriting the term append (b, cons(a, empty)).

Below, we argue how the origin relations shown in Figure 2.8 are derived from Def-
inition 2.3. For the first sequence element, S;, we have p(S;) = (), 7(S1) = [A2], and
0(S1) ={F1+—Db, Ex—a, L+ empty-list }. Asall variablebindingsare constants
here, we have: O(E7()) = O(E,°SV) = O(L°V) = { () }. From this, we obtain:

LR(81) = Com(a(81), Lhs(S1), Rhs(S1)) ={((1), (21)), ((21), (1)), ((22), (22)) }
In asimilar way, we compute:

LR(Sz) = Com(0(S2), Lhs(S2), Rhs(S2)) = { (1), (1)), ((2), (2)) }

2.2. Formal definition 19

From Definition 2.3 we now derive the following relate relationships. (Note that the last
three relationships are generated according to (ul) of Definition 2.3.)

(Happa S1, (1), Sz, (21)) 7“elmfe(Happa S1, (21), S, (1))
relate(Happ, S1, (22), Sz, (22)) relate(Happ, S1, (), S2, ()
relate(Happ, 52, (2) 83, (2 1)) Telate(Happa SZa (2 2)? 537 (2))
relate(Happ, S2, (), Ss, () relate(Happ, Sz, (1), Ss, (1))
relate(Happ, S2, (2), Ss, (2))

As an example, we compute the subtermsrelated to the constant a at path (1) in ¢(S3):

ORG(HGPIM Ss, ()) = {p |p” € ORG(app> s’ p) relate(Happa 5,5 pla Ss, (1))}
={p"[p" € ORG(Happ, S, (1) }
= ORG(app> 52, ())
={p"|p" € ORG(Hypp, &', 1), relate(Happ, ', P', S2, (1)) }
={p"|p" € ORG(H app» 817 (21))}
= ORG(app> S, ())
={(21)}

Hence, the constant a at path (1) in#(S3) isrelated to the constant a at path (2 1) intheinitial
term.

We conclude this example with a few brief remarks. First, some symbolsin ¢(S;) are
not related to any symbol of ¢(S;). For instance, symbol cons at path (2) in ¢(S3) isonly
related to symbol append in ¢(S;); this symbol, in turn, is not related to any symbol in

t(S1). Second, we have chosen atrivial example where no origins occur that contain more
than one path. Such a situation may arise when arewrite rule is not left-linear, or when the
right-hand side of arewrite rule consists of acommon variable or acommon subterm.

2.2.4 Basic conceptsfor CTRSs

A conditional rewrite-rule takes the form:
lhs —rhs when Iy =rq, -+, [, =1,

We assume that CTRSs are executed as join systems [95]: both sides of a condition are
instantiated and normalized. A condition succeeds if the resulting normal forms are syntac-
tically equal. It isassumed that the conditions of arule are evaluated in |eft-to-right order.
As an extension, we allow one side of a condition to introduce variables'; we will refer
to such variables as new variables (as opposed to old variables that are bound during the
matching of the left-hand side, or during the evaluation of a previous condition). To avoid
complications in our definitions, we impose the non-essentia restriction that no condition
side may contain old as well as new variables. New variables may occur in subsequent
conditions as well as in the right-hand side. Variable-introducing condition sides are not

1An example CTRS with variable-introducing conditions will be discussed in Section 2.2.6.3 below.

20 Chapter 2. Origin Tracking

normalized, but matched against the normal form of the non-variable-introducing side (for
details, see [140]). Given the above discussion, conditional term rewriting can be regarded
asthe following cyclic 3-phase process:

1. Find amatch between a subterm ¢ and the left-hand side of arule r.

2. Evaluate the conditions of r: instantiate and normalize non-variable-introducing con-
dition sides.

3. If al conditions of r succeed: replace t by the instantiated right-hand side of r.

In will be convenient to introduce some auxiliary notionsthat formalize the introduction
of variables in conditions. Let |r| be the number of conditionsof . For 1 < j < |r|, the
left-hand side and the right-hand side of the ;% condition of r are denoted Side(r, j, left)
and Side(r, j, right), respectively. Moreover, let left = right and right = left. The
function VarIntro (Definition 2.4) indicates where new variables occur; tuples (h, side) are
computed, indicating that Side(r, h, side) is variable-introducing.

Definition 2.4 (VarIntro)

Varintro(r) 2 { (h, side) | X Z Lhs(r), X C Sde(r, h, side),
Vj(j < h)Vside : X ¢ Sde(r, j, side) }

For convenience, we also define a function NonVarintro (Definition 2.5) that computes
tuples (h, side) for all non-variable-introducing condition sides.

Definition 2.5 (NonVarintro)

NonVarintro(r) £ { (h, side) | 1 < h < |r|, side € { left, right },
(h, side) ¢ VarlIntro(r) }

2.2.5 Rewriting historiesfor CTRSs

In phase 2 of the 3-phase process sketched in Section 2.2.4 above, each normalization of
an instantiated condition side is a situation similar to the normalization of the original term,
involving the same 3-phase process. Thus, we can model the rewriting of aterm as atree of
reduction sequences. Theinitial reduction sequence named S™* starts with the initial term
and contains sequence elements Si"“ that describe successive transformations of the initial
term. In addition, H now contains a sequence for every condition side that is normalized
in the course of the rewriting process. Two sequences appear for non-variable-introducing
conditions, but for variable-introducing conditions only one sequence occurs in H (for the
non-variable-introducing side).

Formally, we define the history as aflat representation of thistree of reduction sequences.
A history now consists of two parts:

e A set of uniquely named reduction sequences. Besides the initial sequence, S,
there is a sequence S* (with & an integer) for every condition side that is normalized
in the course of the rewriting process.

As before, a sequence consists of one or more sequence elements, and each sequence

2.2. Formal definition 21

elementisab-tuple(n, ¢, r, p, o), denoting the name, term, rule, path, and substitution
involved. As in the unconditional case, access functions are provided to obtain the
componentsof s. A name of a sequence element is composed of a sequence name and
a number, permitting us to find out to what sequence an element belongs.

e A mechanism indicating the connections between the various reduction sequences.
This mechanism takes the form of a relation that determines a sequence name given
a name of a sequence element s, a condition number j, and a condition side side,
for all (j, side) € NonVarIntro(s). E.g., atuple (n(s), j, side, sn) indicatesthat a
sequence named sn occurred as aresult of the normalization of Side(s, j, side).

Two functions First and Last are defined, both taking four arguments: the history H, a
sequence element s, a condition number j, and a condition side side. First(H, s, j, side)
retrieves the name of s, determines the name of the sequence associated with side side
of condition j of r(s), looks up this sequence in H, and returns the first element of this
sequence. Last(H, s, j, side) is Similar: it determines the last element of the sequence
associated with side side of condition j of r(s).

Furthermore, H~ now denotes the history H from which all last elements of sequences
are excluded, Succ(’H, s) now denotes the successor of s in the same sequence, for s in’H-,
and Start('H) determinesthefirst element of theinitial sequencein . Finaly, weintroduce
the shorthands Side(s, j, side), VarIntro(s), and NonVarIntro(s) for Side(r(s), j, side),
VarIntro(r(s)), and NonVarIntro(r(s)), respectively.

2.2.6 Theorigin function for CTRSs
2.2.6.1 Bascoriginrelations

Thebasic origin relation LR (Definition 2.2) defines relations between consecutive el ements
s and Succ(H, s) of the same sequence. The basic origin relations LC, CR, and CC define
relations between elements of different sequences. Each of these relations reflects the
following principle: common subterms are only related when a common variable or a
common subterm appears at corresponding places in the left-hand side, right-hand side and
condition side of the rewrite rule involved.

Definition 2.6, LC (Left-hand side to Condition side), defines relations that result from
common variables and common subterms of the left-hand side and a condition side of arule.
An LC-relation connects a sequence element s to the first element s’ of a sequence for the
normalization of acondition sideof r(s). Therelation consistsof triples(q, ¢/, ') indicating
arelation between the subterm at path ¢ in the redex and the subterm at path ¢’ in¢(s').

We do not establish LC-relations for variable-introducing condition sides, because such
relations are aways redundant. To understand this, consider the fact that we disallow
instantiated variables in variable-introducing condition sides. Thus, LC relations would
always correspond to a common subterm ¢ of the left-hand side and a variable-introducing
conditionside. Then, only if ¢ al'so occursin asubsequent condition side, or intheright-hand
side of the rule can the relation be relevant for the remainder of the rewriting history. But if
thisisthe case, this other occurrence of ¢ will be involved in an LC-relation anyway.

22 Chapter 2. Origin Tracking
Definition 2.6 (LC) For s in H:

LC(H, s) £ {(q, ¢, §) | (4, side) € NonVarintro(s), s’ = First(H, s, j, side),
(¢, ¢') € Com(a(s), Lhs(s), Sde(s, j, side)) }

In Definition 2.7 and Definition 2.8 below, the final two basic origin relations, CR (Con-
dition side to Right-hand side) and CC (Condition side to Condition side) are presented.
These relations are concerned with common variables and common subterms in variable-
introducing condition sides. In addition to a variable-introducing condition side, these
relations involve the right-hand side, and a non-variable-introducing condition side, respec-
tively. The following technical issues arise here:

e Thereareno CR and CC relations for non-variable-introducing conditions, because
both condition sides are normalized in this case, and no obvious correspondence with
the syntactical form of the rewrite rule remains.

e As mentioned earlier, no reduction sequence appears in H for a variable-introducing
condition side. To deal with thisissue, the variable-introducing side Side(s, j, side)
isused to indicate relationswith the term ¢(Last (H, s, j, side)) itismatched against.

CR-relations are triples (¢, ¢/, s') indicating that the subterm at path ¢ in ¢(s) is related
to the subterm at path ¢’ in the contractum; CC-relations are quadruples (¢, ¢, s, s”) that
express a relation between the subterm at path ¢ in ¢(s’) and the subterm at path ¢’ in ¢(s").

Definition 2.7 (CR) For s inH™:

CRM.) 2 {(¢. ¢, &) | (j, side) € Varlntro(s), s’ = Last(, s, j, SG8),
(4, ¢') € Com(a(s), Sice(s, j, side), Rns(s)) }

Definition 2.8 (CC) For s inH

CC(H, s) 2 {(q, ¢, ¢, s") | (j, side) € VarIntro(s), (h, sid€) € NonVarIntro(s),
j <h, s =Last(H, s, j, Sde), s” = First(H, s, h, side’),
(4, ¢') € Com(a(s), Sde(s, j, side), Sde(s, h, side)) }

2.2.6.2 Definition of CORG

The origin function CORG for CTRSs (Definition 2.9) is basically an extension of ORG.
Using the basic origin relations LC, CR, and CC, relations between elements of different
reduction sequences are established in (cl), (c2), and (c3). Again, the origin function
computes a set of pathsin theinitial term according to the transitive and reflexive closure of
relate. For any sequence element s in H, and any path p in t(s), CORG computes a set of
paths to related subtermsin ¢(Start(H)).

2.2. Formal definition 23

Definition 2.9 (CORG) For sinH~ and s’ inH:

(ul) V(g¢, ¢') € LR(s) relate(H, s, p(s) - ¢, Succ(H, s), p(s) - ¢')
(u2) Vp:(p=p(s)V(plp(s): relate(H, s, p, ucc(H, s), p)
(cl) V(q, ¢, ') € LC(H, s): relate(H, s, p(s)-q, s, ¢')
(c2) V(q, ¢, s") € CR(H, s): relate(H, s, q, SJCC(H, s), p(s)-¢)
(c3) V(g, ¢, ¢, s") € CC(H, s): reate(H, s, q, s", ¢')
{p} when s = Start(H)

CORG(H, S, p) = {p// | p// € CORG(H, 3’, p’), when s’ 75 Start(H)

relate(H, ', o', s, p) }

2.2.6.3 Example

We extend the example of section 2.2.3.3 with the following conditional rewrite rules for a
function rev to reverselists.

[R1] rev(empty-list) — empty-list

[R2] rev(cons(E, L;)) — append(E, L) whenL, = rev(L1)

Inrule [R2], avariable L, isintroduced in the left-hand side of the condition. Actually, the
use of anew variable is not necessary in this case: we may alternatively write append (E,
rev (Ly)) for the right-hand side of [R2]. The new variable is used solely for the sake
of illustration. Figure 2.9 shows the rewriting history H,.., for the term rev (cons (b,
empty-1list)). Note that besides the initial sequence, S, only one sequence, S?,
appears for the normalization of the condition of [R2], because it is variable-introducing.

For sequenceelement S;** wehavep(S;™) = (), 0(Si**)={ E — b, L1 ~— empty-
list, L, — empty-list }. Itfollowsthat O(E"1 Mt)) O(L17(51™)) = O(L,7(51™))
={ () }. Moreover, VarIntro(Si**) = { (1, left) }. Consequently, we obtain:

LR(S7™) ={((11), (1)) }, LC(MHyew, S7) =1{((12), (1), S) }
CR(Hreva S:ZLMt) = { (()7 (1)7 S%) }7 CC(Hrev; SJZ_Mt) =0

As aresult, the following relationships are generated for S;™:

relate(Hyey, S, (), S5, () relate(Hyew, Si™, (11), S5, (1))

relate(Hyey, Si", (12), St, (1)) relate(H,en, Sa, () St (2))

In a similar way, the following relate relationships are computed for S and Si:
relate(Hyen, S, (), S5, () relate(Hye, S, (1), S5, (1))

relate(Hm,, th, () th, ()) 'relate(Hrev; 5117 ()7 8217 ())
relate(Hrey, ST, (1), 83, ()

Finally, we compute the subterms related to empty-1ist at path (2) in ¢(S§):

24 Chapter 2. Origin Tracking

tSh): _22(8\21):

L rev R1 empEy—list
sequence S+ | —
empty-list _--~

S HSP):(SE:
- S~ _ - / ~
it rev ,' R2 append K Al cons
sequence S | ! — N
cons/ll/" b empty-list b empty-list

- |
AN e
s

bempty-1list

Figure 2.9: History H,., for rev (cons (b, empty-1list)). Dashed linesindicate origin
relations.

CORG(H,.,. Si™, (2)) =
={p"|p" € CORG(H,ev, §', 1), relate(Hyeo, s', p', S5, (2)) }
={p"|p" € CORG(H,eo, S, (2)) }
= CORG(Hrev, S5, (2))
- = {12}

Consequently, the constant empty-11ist in¢(Si") isrelated to the constant empty-1ist
int(Sini),

2.3 Properties

Theoriginsdefined by CORG havethefollowing property: if theorigin of someintermediate
term ¢,,;; contains a path to initial subterm ¢,,,, then ¢,,,, can be rewrittento ¢,,;4 in zero or
more reduction steps. This property gives a good intuition of the origin relations that are
established in applications such as error handling or debugging.

To see why this property holds, we first consider one reduction step:

Lemma 2.10 Let H bearewriting history, s, s’ arbitrary sequence elementsin H, and p, p’
paths. For any relate(H, s, p, s', p') we havet(s) = t(s') or t(s) — t(s).

2.3. Properties 25

Informally stated, directly related terms are either syntactically equal or one can be
reduced to the other in exactly one step. This holds because the context, common variables,
and common subtermsrelationsall relateidentical terms. Only the redex-contractum relation
links non-identical terms, but these can be rewritten in one step. Since the origin relation
CORG is defined as the transitive and reflexive closure of relate, we now have the desired

property:

Theorem 2.11 Let H beahistory. For every term¢(s) occurring in some sequence element
s in history H, and for every path p € O(t(s)), we have:

q € CORG(H, s,p) = t(Sart(H))/q —* t(s)/p

One may be interested in the number of pathsin an origin. To this end, we introduce:

Definition 2.12 Let o be an origin, and let |o| denote the number of pathsin o. Then: o is
empty iff |o| = 0, non-empty iff |o| > 1, preciseiff |o| < 1, and unitary iff |o| = 1.

For some applications, unitary originsare desirable. In animatorsfor sequential program
execution, one wants origins that refer to exactly one statement. On the other hand, when
error-positioning is the application, it can be desirable to have non-unitary origins, as for
instance in errors dealing with multiple declarations of the same variable (see, e.g., the label
declaration in Figure 2.2).

The theorems bel ow indicate how non-empty, precise and unitary origins can be detected
through static analysis of the CTRS. In the sequel r denotes an arbitrary rule, 5 isanumber
of some condition in r, and side € {left, right} denotes an arbitrary side. In the sequel, a
term that (possibly) contains variables will be referred to as an open term.

Theorem 2.13 (Non-empty origins) Termswithtop symbol f have non-empty originsif for
all open terms » with top function symbol f:

(1) w C Rhs(r) = u C Lhs(r)
(2) u C Sde(r, j, side) = u C Lhs(r)

This can be proven by induction over al relate clauses, after introducing an ordering on all
sequence elements. Informally, al terms with top symbol f will have non-empty origins
if no f isintroduced that is not related to a “previous’ f. Note that relations according to
variables have no effect on origins being (non-)empty.

In order to characterize sufficient conditionsfor precise and unitary origins, wefirst need
some definitions:

Definition 2.14 Let r be a conditional rewrite rule and « an open term. Then r is an
u-collapserule if Rhs(r) = u, and u C Lhs(r).

Definition 2.15 For opentermst and u, t islinear in « if u occurs at most oncein t.

26 Chapter 2. Origin Tracking

Definition 2.16 The predicate Linearintro(u,r) holds if « has at most one occurrence
in either the left-hand side or any variable-introducing condition side. Formally,
LinearIntro(u, r) < thereis (1) at most onet € {Lhs(r)} U {Sde(r, h, side) | (h,side) €
VarIntro(r)} suchthat « C ¢, and (2) thist, if it exists, islinear in u.

Theorem 2.17 (Precise origins) Terms with top symbol f have precise origins if the fol-
lowing holds for all open terms « having either f as top symbol or solely consisting of a

variable:
(1) The CTRSdoes not contain u-collapse rules

(2) u C Rhs(r) = LinearIntro(u, r)
(3) w C Sde(r, j, side) = LinearIntro(u,)

Again, this theorem can be proven by induction over al relates. The crux is that no
term with top function symbol f isintroduced in away that it is related to more than one
“previous’ term.

Theorem 2.18 (Unitary origins) Snce" non-empty” and“ precise” implies” unitary” , com-
bining the premises of Theorems 2.13 and 2.17 yields sufficient conditionsfor unitary origins

For many-sorted CTRSs, some special theorems hold. We assume CTRSs to be sort-
preserving, i.e., the redex and the contractum belong to the same sort. Hence, CORG is
sort-preserving. Thus, we have the following theorem (which in the implementation allows
for an optimization—Section 2.4):

Theorem 2.19 relate can be partitioned into subrelations for each sort.

One may be interested whether al terms of some particular sort S have non-empty, pre-
cise, or unitary origins. This happens under circumstances very similar to those formulated
for the single-sorted case (Theorems 2.13 to 2.18). For precise and unitary origins, however,
itisnot sufficient to consider only terms of sort S; one also needsto consider sorts T that can
have subterms of sort S (since duplication of T-terms may imply duplication of s-terms).
Hence, we define:

Definition 2.20 For two sorts S and T, we write S C T if terms of sort T can contain
subterms of sort S.

Using this, we can formulate when terms of sort S have precise or unitary origins. This
issimilar to the single-sorted case (see Theorem 2.17), but in (1) « must be of sort S, and (2)
and (3) must hold for all « of sort T such that S C T. Unitary origins of sort S are obtained
by combining the premises for the non-empty origins and precise origins,

We refer to [46] for more elaborate discussions of the above resullts.

2.4 Implementation aspects

An efficient implementation of origin tracking in the ASF+SDF system has been compl eted.
In this section, we briefly address the principal aspects of implementing origin tracking.

2.4. Implementation aspects 27

24.1 Thebasicalgorithm

In our implementation, each symbol is annotated with its origin, during rewriting. Two
issues had to be resolved:

e annotation of theinitial term
e propagation of origins during rewriting

Thefirst issue is atrivial matter because—nby definition—the origin of the symbol at path p
is{ p }. The second issueis addressed by copying origins from the redex to the contractum
according to the basic origin relation LR. In asimilar way, propagations occur for the basic
originrelations LC, CC, and CR. Observe that no propagations are necessary for the origins
in the context of the redex, as the origins of these symbols remain unaltered.

2.4.2 Optimizations

Several optimizations of the basic algorithm have been implemented:

e All positional information (i.e., the positions of common variables and common sub-
terms) is computed in advance, and stored as annotations of rewrite rules.

e The rewriting engine of the ASF+SDF system explicitly constructs a list of variable
bindings. Origin propagations that are the result of common variables can be imple-
mented as propagations to these bindings. When aright-hand side or condition sideis
instantiated, all common variable propagations are handled as a result of the instanti-
ation. The advantage of this approach is that the number of propagations decreases,
because we always propagate to only one subterm for each variable.

e Origins are implemented as a set of pointers to function symbols of the initial term.
The advantages are twofold: less space is needed to represent origins, and set union
becomes a much cheaper operation.

2.4.3 Associativelists

In order to implement origin tracking in the ASF+SDF system, provisions had to be made
for associative lists [69, 140]. Associative lists can be regarded as functions with a variable
arity. Allowing list functionsin CTRSs introduces two minor complications:

o A variablethat matchesasublist causesrelations between arraysof adjacent subterms.
In the implementation, we distinguish between ordinary variables and list variables,
and perform propagations accordingly.

e Argument positions below list functions depend on the actual bindings. Therefore,
when computing the positions of common variables and common subterms, posi-
tions below lists are marked as relative. The corresponding absolute positions are
determined during rewriting.

Consider the following example, where 1 is a list function, and X* is a list variable that
matches sublists of any length:

28 Chapter 2. Origin Tracking

[L1] £(1(X*, a)) — g(l(X*, a))

When we rewritetheredex £ (1 (b, <, a)) according to [L 1], the contractumisg (1 (b,
c, a)). Variable X* givesrise to both arelation between the constants b in the redex and
the contractum, and a relation between the constants ¢ in the redex and the contractum.
Moreover, constant a appears at path (1 2) in the left-hand side of [L 1], but at path (1 3) in
the redex.

2.4.4 Sharing of subterms

For reasons of efficiency, implementations of CTRSs allow sharing of subtrees, thus giving
rise to DAGs (Directed Acyclic Graphs) instead of trees. The initial term is represented as
atree, and sharing is introduced by instantiating nonlinear right-hand sides and condition
sides. For every variable, thelist of bindings contains a pointer to one of the subtermsit was
matched against. Instantiating a right-hand side or condition side is done by copying these
pointers (instead of copying the terms in the list of bindings). Sharing has the following
repercussions for origin tracking:

¢ No propagations are needed for variablesthat occur exactly once in the left-hand side
(and for new variables that occur exactly once in the introducing condition). This
resultsin aradical reduction of the number of propagations.

e Variables that occur nonlinearly in the left-hand side of a rule (and new variables
that occur nonlinearly in the introducing condition) present a problem. When sharing
Is allowed in this case, inconsistent origins with respect to the definition may arise
because different origins may be associated with a shared function symbol when it is
“accessed” viadifferent paths. A solution to this problem consists of using a pointer
to a copy of the term matched against such a variable in the list of bindings. This
corresponds to disallowing sharing in alimited number of situations.

2.4.5 Restricting origin tracking to selected sorts

Often, oneisonly interested in the origins of subtermsof aparticular sort. A straightforward
result of Property 2.19 is the following: to compute the origins of subterms of sort s, only
propagations for common subterms of sort S, and for common variables of sorts T such that
S C T are necessary.

2.4.6 Timeand space overhead of origin tracking

Originsare represented by sets of pointersto symbolsof theinitial term, and associated with
every symbol is exactly one such set. The size of these sets is bounded by the number of
function symbols in the initial term because, in the worst case, a set contains a pointer to
every symbol in theinitial term. Thus, the space overhead of origin tracking islinear in the
size of theinitial term. In practice, only small sets arise, resulting in little space overhead.
The use of efficient set representations would reduce this overhead even further.

2.5. Related work 29

We have measured the time overhead caused by origin tracking. In al measurements,
the run-time overhead lies between 10% and 100%, excluding the costs of pre-computing
positional information.

2.5 Related work

In TRStheory, the notion of descendant [95] (or residual [118, 78]) isused to study properties
such as confluence or termination, and to find optimal orders for contracting redexes (see
[112] for some recent results). For areduction ¢ — ¢’ contracting aredex s C ¢, adifferent
redex s’ C t may reappear in the resulting term ¢'. The occurrences of this s’ int' are called
the descendants of s'.

Descendants are similar to origins, but more restricted. Only relations according to
contexts and common variables are established (Bergstra and Klop [24] aso use quasi-
descendants linking the redex and contractum as well). Moreover, descendants are defined
for asmaller class of TRSs; only orthogonal (Ieft-linear and non-overlapping) TRSs without
conditional equations are allowed.

Bertot [27, 26] studies residuals in TRSs and A-calculus, and introduces marking func-
tions to represent the residual relation. He provides a formal language to describe compu-
tations on these marking functions, and shows how the marking functions can be integrated
in formalisms for the specification of programming language semantics (viz. term rewrit-
ing systems and collections of inference rules). Bertot works in the realm of |eft-linear,
unconditional TRSs and only considers precise origins.

Theideasof Bertot concerning originsin inference rules have been used in the framework
of TypoL [41], aformalism to specify programming languages, based on natural semantics
[85]. For compositional definitions of evaluators or type-checkers (in which the meaning
of a language construct is expressed in terms of its substructures), the implementation of
TyPoL keepstrack of the construct currently processed (the subject). A pointer to the subject
isavailable in tools derived from the specification, particularly debuggers or error handlers.
In addition to automatic subject tracking, TyPOL has been equipped with special language
constructs to manipulate origins explicitly. This contrasts with our approach, where origin
tracking isinvisible at the specification level.

Berry [25] aims at deriving animators from relational rules (similar to operational se-
mantics). He defines afocusthat is either equal to the subject (asin TYPoL) or to the result
of the evaluation of some subexpression. The theory he develops uses the concept of an
inference tree, a notion similar to our rewriting histories.

In the context of the PSG system [10], a generator for language-specific debuggers was
described. Debuggers are generated from a specification of the denotational semantics of a
language and some additional debugging functions. Bahlke et a. insist that programs are
explicitly annotated with their position in the initial syntactic structure before running their
semantic tool.

30 Chapter 2. Origin Tracking
2.6 Concluding remarks

2.6.1 Achievements

Summarizing the results described in this chapter, we have:

e A definition of origins that does not depend on a particular rewrite strategy, nor on
the confluence or strong-normalization of the underlying CTRS. It establishes only
relations that can be derived from the syntactic structure of the rewrite rules.

e The property that whenever aterm ¢,,;, hasasubterm¢,,, intheinitial term asorigin,
thisterm ¢,,, can be rewritten to ¢,,,,,.

e Sufficient criteria that a specification should satisfy to guarantee that an origin con-
sisting of at least one, or exactly one path is associated with each subterm of a given
sort.

¢ An efficient implementation method for origin tracking.

e A notion of sort-dependent “filtering” of origins, when only the origins of terms of
certain sorts are needed.

e A prospect of applying origin tracking to the generation of interactive language-based
environments from formal language definitions. In particular, generic techniques for
debugging and error reporting have been discussed.

2.6.2 Limitations

The current method for origin tracking has limitations, most of which are related to the
introduction of new function symbols. Some typical problem cases are:

e In the context of trandating arithmetic expressions to a sequence of stack machine
instructions, one may encounter an equation of the form
trans (plus (E1, F?)) — seqg(trans (F1),seq(trans (F>) ,add))
The plus of the expression language is tranglated to the add stack-instruction. It
seems intuitive to relate both seq function symbols to the plus symbol at the left-
hand side. However, the current origin mechanism do not establish thisrelation.
e In specifications of evaluatorsit frequently occurs that the evaluation of one construct
is defined by reducing it to another construct, asin
eval (repeat (S, Exp) ,Env) —
eval (seq(S,while (not (Exp),S)) , Env)
where the evaluation of the repeat-statement is defined in terms of the while-
statement. In thisexample, seq isaconstructor for statement sequences. Here again,
the while-statement on the right-hand side does not obtain an origin athough the
repeat-statement on the left-hand side would be a good candidate for this.

Theseexampleshavetheflavor of transl ating termsfrom onerepresentation to another and
they illustrate that more origin rel ations have to be established in these cases. In[45, 44], the
compositional structure of primitive recursive schemes[114, 115] (a well-behaved subclass
of algebraic specifications) isexploited to establish additional originrelations. Anaternative

2.6. Concluding remarks 31

approach would be to allow user-provided annotations in specifications that indicate more
originrelations.

2.6.3 Applications

The main applications of origin tracking have already been sketched. These applications
can be summarized as follows:

Animation of program execution: Origin tracking has been used successfully for the con-
struction of tools that visualize program execution [49, 134].

Source-level debugging: Chapter 6 describes how origin tracking can be used to generate
powerful source-level debugging toolsfrom algebraic specification of interpreters.

Error reporting: Origin tracking has also been used in conjunction with algebraic spec-
ifications of type-checkers [49, 48, 44] in order to obtain positional information of
type-checkers.
Experience has shown that the origin function that was described in this chapter is
insufficiently powerful to be applicable to any type-checking specification. A solution
to this problem, in the form of a specialized origin function for primitive recursive
schemes is proposed in [45, 44].

Chapter 3
A Survey of Program Slicing Technigues

Summary

The subsequent Chapters 4, 5, and 6 revolve, in one way or another, around the
concept of program slicing. To put this work in perspective, this chapter presents a
comprehensive survey of program slicing and its applications.

A programslice consistsof the parts of aprogram that (potentially) affect thevalues
computed at some point of interest. Such a point of interest is referred to asa dlicing
criterion, and is typically specified by alocation in the program in combination with
a subset of the program’s variables. The task of computing program dlices is called
program slicing. The original definition of a program dslice was presented by Weiser
in 1979. Since then, various dightly different notions of program slices have been
proposed, as well as a number of methods to compute them. An important distinction
isthat between a static and adynamic slice. Static slices are computed without making
assumptions regarding a program'’s input, whereas the computation of dynamic slices
relies on a specific test case.

Procedures, unstructured control flow, composite data types and pointers, and con-
currency each require a specific solution. Static and dynamic slicing methods for
each of these features are compared and classified in terms of their accuracy and ef-
ficiency. Moreover, the possibilities for combining solutions for different features are
investigated. Recent work on the use of compiler-optimization and symbolic execution
techniques for obtaining more accurate slices is discussed. The chapter is concluded
with an overview of the applications of program slicing, which include debugging,
program integration, dataflow testing, and software maintenance.

1 dice \'slis\ n 1: athin flat piece cut from something 2 : a wedge-shaped blade
(asfor serving fish) 3: aflight of aball (asin golf) that curvesin the direction of the
dominant hand of the player propelling it

2 dicevb dliced; slic-ing 1 to cut aslice from; alsoto cutinto slices 2 to hit (aball)
so that a dlice results

The Merriam-Webster Dictionary

3.1 Overview

We present a survey of algorithms for program dslicing that can be found in the present
literature. A program slice consists of the parts of a program that (potentially) affect the

33

34 Chapter 3. A Survey of Program Sicing Techniques

values computed at some point of interest. Such a point of interest isreferred to asadicing
criterion, and is typically specified by a pair (program point, set of variables). The parts of
a program that have a direct or indirect effect on the values computed at a slicing criterion
C' constitute the program slice with respect to criterion C'. The task of computing program
dicesiscaled programdlicing.

The origina concept of a program slice was introduced by Weiser [144, 145, 147].
Weiser claims that a slice corresponds to the mental abstractions that people make when
they are debugging a program, and advocates the integration of program slicersin debugging
environments. Variousdightly different notions of program slices have since been proposed,
as well as a number of methods to compute slices. The main reason for this diversity is
the fact that different applications require different properties of slices. Weiser defined a
program slice S as areduced, executable program obtained from a program P by removing
statements, such that S replicates part of the behavior of P. Another common definition of
adlice is a subset of the statements and control predicates of the program that directly or
indirectly affect the values computed at the criterion, but that do not necessarily constitute an
executable program. An important distinction is that between a static and a dynamic slice.
The former notion is computed without making assumptions regarding a program’'s input,
whereas the latter relies on some specific test case. Below, in Sections 3.1.1 and 3.1.2, these
notions are introduced in some detail.

Features of programming languages such as procedures, unstructured control flow, com-
posite data types and pointers, and concurrency each require a specific solution. Static and
dynamic slicing methods for each of these features are classified and compared in terms
of accuracy and efficiency. In addition, possibilities for integrating solutions for different
language features are investigated. Throughout this survey, slicing algorithms are compared
by applying them to similar examples.

311 Staticdicing

Figure 3.1 (a) shows an example program that asks for a number n, and computes the sum
and the product of the first n positive numbers. Figure 3.1 (b) shows adlice of this program
with respect to criterion (10, product). Ascan be seen in the figure, all computations not
relevant to the (final value of) variable product have been “diced away”.

In Weiser’'s approach, slices are computed by computing consecutive sets of transitively
relevant statements, according to data flow and control flow dependences. Only statically
available information is used for computing slices; hence, this type of dlice isreferred to as
adtatic dice. An alternative method for computing static sliceswas suggested by Ottenstein
and Ottenstein [120], who restate the problem of static dlicing in terms of a reachability
problem in a program dependence graph (PDG) [101, 53]. A PDG is a directed graph
with vertices corresponding to statements and control predicates, and edges corresponding
to data and control dependences. The dlicing criterion is identified with a vertex in the
PDG, and adlice correspondsto all PDG vertices from which the vertex under consideration
can be reached. Various program slicing approaches discussed below utilize modified and
extended versionsof PDGsastheir underlying program representation. Yet another approach

3.1. Overview 35

(1) read(n) ; read(n) ;

(2) i :=1; i = 1;

(3) sum := 0;

(4) product := 1; product := 1;

(5) while 1 <= n do while i <= n do
begin begin

(6) sum := sum + 1i;

(7) product := product * i; product := product * i;

(8) i :=1 + 1 i =1+ 1
end; end;

(9) write (sum) ;

10) write(product) write (product)

(@ (b)

Figure 3.1: (a) Anexample program. (b) A slice of the program w.r.t. criterion (10, product).

was proposed by Bergeretti and Carré [22], who define dices in terms of information-flow
relations, which are derived from a program in a syntax-directed fashion.

The slices mentioned so far are computed by gathering statements and control predicates
by way of abackward traversal of the program’s control flow graph (CFG) or PDG, starting
at the dicing criterion. Therefore, these dlices are referred to as backward (static) slices.
Bergeretti and Carré [22] were thefirst to define the notion of aforward static slice, although
Reps and Bricker [127] were the first to use this terminology. Informally, a forward dlice
consistsof all statementsand control predicates dependent onthedlicing criterion, astatement
being “dependent” on the slicing criterion if the values computed at that statement depend on
the values computed at the slicing criterion, or if the values computed at the slicing criterion
determine the fact if the statement under consideration is executed or not. Backward and
forward dlices are computed in a similar way; the latter requires tracing dependences in the
forward direction.

3.1.2 Dynamicdlicing

Although the exact terminology “dynamic program slicing” was first introduced by Korel
and Laski [99], dynamic slicing may very well be regarded as a non-interactive variation of
Balzer's notion of flowback analysis [15]. In flowback analysis, one is interested in how
information flows through a program to obtain a particular value: the user interactively
traverses a graph that represents the data and control dependences between statementsin the
program. For example, if the value computed at statement s depends on the values computed
at statement ¢, the user may trace back from the vertex corresponding to s to the vertex for ¢.
Recently, Choi et al. [116, 38] have made an efficient implementation of flowback analysis
for parallel programs.

1Unless stated otherwise, “slice” will denote “backward slice”.

36 Chapter 3. A Survey of Program Sicing Techniques

(1) read(n) ; read(n) ;
(2) i :=1; i = 1;
(3) while (i <= n) do while (i <= n) do
begin begin
(4) if (1 mod 2 = 0) then if (1 mod 2 = 0) then
(5) X := 17 X = 17
else else
(6) x := 18;
(7) i =1 + 1 i =1+ 1
end; end;
(8) write (x) write (x)
(@ (b)

Figure 3.2: (a) Another example program. (b) Dynamic slicew.r.t. criterion (n = 2, 8, x).

In the case of dynamic program dslicing, only the dependences that occur in a specific
execution of the program are taken into account. A dynamic glicing criterion specifies the
input, and distingui shes between different occurrences of astatement in the execution history;
typicaly, it consists of triple (input, occurrence of a statement, variable). An alternate view
of the difference between static and dynamic slicing is that dynamic slicing assumes fixed
input for a program, whereas static slicing does not make assumptions regarding the input.
A number of hybrid approaches, where a combination of static and dynamic information
is used to compute dlices, can be found in the literature. Choi et a. [38], Duesterwald
et a. [51], and Kamkar [87] use static information in order to decrease the amount of
computationsthat have to be performed at run-time. Venkatesh [137], Ning et a. [117], and
Field, Ramalingam, and Tip (see Chapters 4 and 5) consider situations where only a subset
of the inputs to program are constrained.

Figure 3.2 shows an example program, and itsdynamic slicew.r.t. thecriterion(n = 2,
8%, x), where 8! denotes the first occurrence of statement 8 in the execution history of the
program. Note that for input n = 2, theloop is executed twice, and that the assignments
x := 17andx := 18 areeach executed once. In this example, the else branch of the if
statement may be omitted from the dynamic slice since the assignment of 18 to variable x in
thefirst iteration of the loopis“killed” by the assignment of 17 to x in the second iteratior?.
By contrast, the static slice of the program in Figure 3.2 (a) w.r.t. criterion (8, x) consists of
the entire program.

3.1.3 Applicationsof dicing

The main application that Weiser had in mind for slicing was debugging [144, 145, 147]:
if a program computes an erroneous value for some variable x at some program point, the

2Infact, one might argue that the while construct may be replaced by theif statement inits body. Thistype
of dicewill be discussed in Section 3.6.

3.1. Overview 37

bug is likely to be found in the slice with respect to x at that point. The use of dlicing for
debugging was further explored by Lyle and Weiser [109], Choi et al. [38], Agrawal et al.
[5], Fritzson et a. [59], and Pan and Spafford [121, 122].

A number of other applications has since been proposed: parallelization [146], program
differencing and integration [70, 74], software maintenance [61], testing [51, 88, 65, 20],
reverseengineering[21, 82, 81], and compiler tuning[106]. Section 3.5 containsan overview
of how dlicing is used in each of these application areas.

3.1.4 Redated work

There are a number of earlier frameworks for comparing slicing methods, as well as some
earlier surveysof slicing methods.

Venkatesh [137] presents formal definitions of several types of slices in terms of de-
notational semantics. He distinguishes three independent dimensions according to which
dlices can be categorized: static vs. dynamic, backward vs. forward, and closure vs. exe-
cutable. Some of the dlicing methodsin theliterature are classified according to these criteria
[147, 120, 74, 6, 77, 100].

Lakhotia [102] restates a number of static slicing methods [147, 120, 74] as well as
the program integration algorithm of Horwitz, Prins, and Reps [74] in terms of operations
on directed graphs. He presents a uniform framework of graph dlicing, and distinguishes
between syntactic properties of slices that can be obtained solely through graph-theoretic
reasoning, and semantic properties, which involve interpretation of the graph representation
of adlice. Although the paper only addresses static slicing methods, it is stated that some
dynamic slicing methods [6, 100] may be modeled in a similar way.

Gupta and Soffa present a generic algorithm for static slicing and the solution of related
dataflow problems (such as determining reaching definitions) that is based on performing a
traversal of the control flow graph [66]. Thealgorithmisparameterized with: (i) thedirection
in which the CFG should be traversed (backward or forward), (ii) the type of dependences
under consideration (data and/or control dependence), (iii) the extent of the search (i.e.,
should only immediate dependences be taken into account, or transitive dependences as
well), and (iv) whether only the dependences that occur along all CFG-paths paths, or
dependences that occur aong some CFG-path should be taken into account. A dlicing
criterion is either a set of variables at a certain program point or a set of statements. For
slices that take data dependences into account, one may choose between the values of
variables before or after a statement.

Horwitz and Reps [76] present a survey of the work that has been done at the University
of Wisconsin-Madison on dlicing, differencing, and integration of single-procedure and
multi-procedure programs as operations on PDGs [72, 74, 130, 70, 77, 75]. In addition
to presenting an overview of the most significant definitions, agorithms, theorems, and
complexity results, the motivation for this research is discussed in considerable detail.

An earlier classification of static and dynamic slicing methods was presented by Kamkar
[86, 87]. The differences between Kamkar’s work and ours may be summarized as follows.
First, thiswork is more up-to-date and complete; for instance, Kamkar does not address any

38 Chapter 3. A Survey of Program Sicing Techniques

product :=
product*i

Figure 3.3: CFG of the example program of Figure 3.1 (a).

of the papersthat discuss slicing in the presence of unstructured control flow [12, 13, 3, 37]
or methods for computing slices that are based on information-flow relations [22, 62].
Second, the organi zation of our work and Kamkar’sis different. Whereas Kamkar discusses
each slicing method and its applications separately, this survey is organized in terms of a
number of “orthogonal” dimensions, such asthe problemsposed by procedures, or composite
variables, aliasing, and pointers. This approach enables us to consider combinations of
solutions to different dimensions. Third, unlike Kamkar we compare the accuracy and
efficiency of dlicing methods (by applying them to the same or similar example programs),
and attempt to determine their fundamental strengths and weaknesses (i.e., irrespective of
the original presentation). Finally, Kamkar does not discuss any of the recent approaches
(see Chapter 5 and [52]) for improving the accuracy of dlicing by employing compiler-
optimization techniques.

3.1.5 Organization of thischapter

Theremainder of thischapter isorganized asfollows. Section 3.2 introducesthe cornerstones
of most dicing algorithms: the notions of data dependence and control dependence. Readers
familiar with these concepts may skip this section and consult it when needed. Section 3.3
contains an overview of static dslicing methods. First, we consider the simple case of
dlicing structured programs with only scalar variables. Then, agorithms for dlicing in
the presence of procedures, unstructured control flow, composite variables and pointers,
and concurrency are considered. Section 3.3.6 compares and classifies methods for static
dlicing. Section 3.4 addresses dynamic slicing methods, and is organized in a similar way
as Section 3.3. Applications of program glicing are discussed in Section 3.5. Section 3.6
discusses recent work on the use of compiler-optimization techniques for obtaining more
accurate slices. Finally, Section 3.7 summarizes the main conclusions of this survey.

3.2 Datadependence and control dependence

3.2. Data dependence and control dependence 39

Data dependence and control dependence are defined in terms of the CFG of a program. A
CFG contains anode for each statement and control predicate in the program; an edge from
node ¢ to node j indicates the possible flow of control from the former to the latter. CFGs
contain special nodes labeled START and Stop corresponding to the beginning and the end
of the program, respectively.

The sets DEF(7) and ReF(7) denote the sets of variables defined and referenced at CFG
node i, respectively. Several types of data dependences can be distinguished, such as flow
dependence, output dependence and anti-dependence [53]. Flow dependences can be further
classified as being loop-carried or loop-independent, depending whether or not they arise as
aresult of loop iteration. For the purposes of slicing, only flow dependence is relevant, and
the distinction between loop-carried and |oop-independent flow dependences can beignored.
Intuitively, a statement j is flow dependent on statement : if a value computed at i is used
at j in some program execution. In the absence of aiasing [105, 104], flow dependence
may be defined formally as follows: there exists avariable = such that: (i) x € DEF(4), (ii)
x € Rer(j), and, (iii) there exists a path from i to j without intervening definitions of x.
Alternatively stated, the definition of x at node i is areaching definition for node ;.

Control dependenceis usually defined in terms of post-dominance. A node in the CFG
is post-dominated by a node by ; if al paths from ¢ to Stop pass through j. A node j is
control dependent on anode: if there existsapath P from i to 5 such that j post-dominates
every node in P, excluding i and j. Determining control dependences in a program with
arbitrary control flow is studied by Ferrante et al. [53]. For programs with structured
control flow, control dependences can be determined in a simple syntax-directed manner
[73]: the statementsimmediately? inside the branches of an if or while statement are control
dependent on the control predicate.

As an example, Figure 3.3 shows the CFG for the example program of Figure 3.1 (a).
Node 7 is flow dependent on node 4 because: (i) node 4 defines variable product, (ii)
node 7 references variable product, and (iii) there existsapath 4 — 5 — 6 — 7 without
intervening definitions of product. Node 7 is control dependent on node 5 because there
existsapath5 — 6 — 7 such that: (i) node 6 is post-dominated by node 7, and (ii) node 5
is not post-dominated by node 7.

Many of the dlicing approaches that will be discussed in the sequel use the Program
Dependence Graph (PDG) representation of a program [101, 53]. The vertices of the PDG
correspond to the statements and control predicates of the program, and the edges of aPDG
correspond to data and control dependences between them. The key issueis that the partial
ordering of the PDG vertices induced by the dependence edges must be obeyed to preserve
the semantics of the program.

Inthe PDGs of Horwitz et al. [73, 74, 75, 77], adistinction is made between | oop-carried
and loop-independent flow dependences, and there is an additional type of data dependence
edges named def-order dependence edges. Horwitz et al. argue that their PDG variant is
adequate: if two programs have isomorphic PDGs, they are strongly equivalent. Thismeans

3A statement in abranch of anif statement that occurswithin another if statement isonly control dependent
on the predicate of the inner if statement.

40 Chapter 3. A Survey of Program Sicing Techniques

o{@m

S N

Figure 3.4: PDG of the program in Figure 3.1 (a).

that, when started with the same input state, they either compute the same values for all
variables, or they both diverge. It is argued that the PDG variant of [73] is minimal in the
sense that removing any of the types of dependence edges, or disregarding the distinction
between |oop-carried and |oop-independent flow edgeswould result ininequival ent programs
having isomorphic PDGs. However, for the computation of program dlices, only flow
dependences and control dependences are necessary. Therefore, only these dependences
will be considered in the sequel.

As an example, Figure 3.4 shows the PDG of the program of Figure 3.1 (a). In this
figure, the PDG variant of Horwitz, Reps, and Binkley [77] is used. Thick edges represent
control dependences® and thin edges represent flow dependences. The shading of certain
verticesin the PDG of Figure 3.4 will be explained in Section 3.3.1.3.

3.3 Methodsfor static dlicing

3.3.1 Basicalgorithms

Inthissection, wewill study basic algorithmsfor static slicing of structured, single-procedure
programswith scalar variables. These algorithmsessentially compute the same information,
but in different ways.

4The usual labeling of control dependence edges is omitted here, as this is irrelevant for the present
discussion. Furthermore, loop-carried flow dependence edges from a vertex to itself will be omitted, as such
edges are irrelevant for the computation of dlices.

3.3. Methods for static dlicing 41

For each edge i —cfg j inthe CFG:
RA(i) = RY(i) U {v|veR%(Y), v ¢DeF()} U {v]|veRer(i), DEF(i) N R (j) # 0 }

S¢ = {i| (DEF(i) NR(j)) #0,i —cF j}

Figure 3.5: Equationsfor determining directly relevant variables and statements.

3.3.1.1 Dataflow equations

Weiser'soriginal definition of program slicing [147] isbased on iterative sol ution of dataflow
equations’. Weiser defines aslice as an executable program that is obtained from the original
program by deleting zero or more statements. A dlicing criterion consists of a pair (n, V')
where n isanode in the CFG of the program, and V' a subset of the program’svariables. In
order to be a slice with respect to criterion (n, V'), asubset S of the statements of program
P must satisfy the following properties: (i) S must be a valid program, and (ii) whenever
P halts for a given input, .S also halts for that input, computing the same values for the
variables in V' whenever the statement corresponding to node n is executed. At least one
dice exists for any criterion: the program itself. A dlice is statement-minimal if no other
dlicefor the same criterion containsfewer statements. Weiser argues that statement-minimal
slices are not necessarily unique, and that the problem of determining statement-minimal
dlicesisundecidable.

Weiser describes an iterative algorithm for computing approximations of statement-
minimal slices. It isimportant to realize that this algorithm uses two distinct “layers’ of
iteration. These can be characterized as follows:

1. Tracing transitive data dependences. This requires iteration in the presence of 1oops.

2. Tracing control dependences, causing the inclusion in the slice of certain control
predicates. For each such predicate, step 1 is repeated to include the statementsit is
dependent upon.

The agorithm determines consecutive sets of relevant variables from which sets of
relevant statements are derived; the computed dlice is defined as the fixpoint of the latter
set. First, the directly relevant variables are determined: thisis an instance of step 1 of the
iterative process outlined above. The set of directly relevant variables at node : in the CFG
is denoted R% (7). Theiteration starts with the initial values R%(n) = V, and R%(m) = 0
for any node m # n. Figure 3.5 shows a set of equations that define how the set of relevant
variables at the end j of a CFG edge i —cpg j affects the set of relevant variables at the

SWei ser’ s definition of branch statementswithindirect relevanceto aslice containsanerror [148]. Therefore,
the modified definition proposed in [107] is followed here. However, we do not agree with the statement in
[107] that ‘It is not clear how Weiser’'s algorithm deal s with loops'.

42 Chapter 3. A Survey of Program Sicing Techniques

Bt = {b|ie SE, ielINFL(D)}
REH() = RE() U Usens, B, Rer, (1)
Skl = BEU{i| DEF() N RETN(j) # 0,1 —crg 5}

Figure 3.6: Equationsfor determining indirectly relevant variables and statements.

NoDE # | DEF | Rer | INFL | RY | RE

1 {n} 0 0 0 0

2 {i} 0 0 0 {n}

3 {sum})) {1} {i, n}

4 {product } | 0 0 {1} {i, n}

5 0 {i, n} {6,7,8} | {product, i} |{product, i, n}
6 {sum} {sum, i}) {product, i} | {product, i, n}
7 {product } | {product, i} | @ {product, i} | {product, i, n}
8 {1} {i}) {product, i} | {product, i, n}
9 0 { sum} 0 {product } { product }

10 0 {product } 0 {product } {product }

Table 3.1: Results of Weiser's algorithm for the example program of Figure 3.1 (a) and slicing
criterion (10, { product }).

beginning ¢ of that edge. The least fixed point of this processis the set of directly relevant
variablesat nodei. From R2, aset of directly relevant statements, S2, isderived. Figure 3.5
shows how S?, is defined as the set of all nodes i that define a variable v that isarelevant at
a CFG-successor of ;.

As mentioned, the second “layer” of iteration in Weiser's algorithm consists of taking
control dependences into account. Variables referenced in the control predicate of an if
or while statement are indirectly relevant, if (at least) one of the statementsin its body is
relevant. To this end, the range of influence INFL(b) of a branch statement b is defined as
the set of statements control dependent on b. Figure 3.6 shows a definition of the branch
statements B, that are indirectly relevant due to the influence they have on nodes i in S¥.
Next, the sets of indirectly relevant variables RE (i) are determined. In addition to the
variablesin R% (i), RE () containsvariablesthat are relevant because they have atransitive
data dependence on statements in BE. Thisis determined by performing the first type of
iteration again (i.e., tracing transitive data dependences) with respect to a set of criteria
(b, REF(D)), where b is a branch statement in Bf, (see Figure 3.6). Figure 3.6 also shows a
definition of the sets S&™ of indirectly relevant statementsiniteration k£ + 1. Thisset consists
of the the nodes in B together with the nodes i that define avariable that is k5 -relevant
to a CFG-successor ;.

3.3. Methods for static dlicing 43

Ae = 0 /\51;52 = ASI u (psl : A52) Av=e = VARS(@) X {e}
pe = 0 nsys, = (msy-ps) U ps, | Ho=e = {{ev)}
pe = 1D PS8, = PS1PS; pri=e = (VARS(e) x {v}) U (ID— (v,v))

(VARS(e) x {e}) U Ag, U Ag,
({e} x (DEFS(S1) U DEFS(S2))) U ps, U ps,
(VARS(e) x (DEFS(S1) U DEFS(S2))) U ps, U ps, U ID

Aif e then S dse S5
Hif ¢ then Sy else 5,
Pif e then S1 else S5

Awhile e do S = ps ((VARS(e) x {e}) U Ag)
Hwhilee do § = ({e} xDEFS(S)) U us - p% - ((VARS(e) x DEFS(S)) U ID)
Pwhilee do § = p% - ((VARS(e) x DEFS(S)) U ID)

Figure 3.7: Definition of information-flow relations.

The sets kY and SE™ are nondecreasing subsets of the program’s variables and state-
ments, respectively; the fixpoint of the computation of the S&™ sets constitutes the desired
program dlice.

As an example, consider slicing the program of Figure 3.1 (a) with respect to criterion
(10, { product }). Table 3.1 summarizes the DEF, REF, INFL sets, and the sets of relevant
variables computed by Weiser's algorithm. The CFG of the program was shown earlier in
Figure 3.3. From the information in the table, and the definition of aslice, we obtain S& =
{2,4,7, 8}, BY = {5},and S% = {1, 2, 4, 5, 7, 8}. For our example, thefixpoint of the sets
of indirectly relevant variablesis reached at set S%. The corresponding slice w.r.t. criterion
C' = (10, { product }) ascomputed by Weiser’salgorithmisidentical to the program shown
in Figure 3.1 (b) apart from the fact that the output statement write (product) is not
contained in the slice.

Lyle [108] presents a modified version of Weiser’'s slicing algorithm. Apart from some
minor changes in terminology, this agorithmis essentially the same as Weiser's [147].

Haudler [67] restates Weiser’s algorithm in afunctional style. For each type of statement
(empty statement, assignment, statement composition, if, and while) hedefinestwo functions
6 and .. Roughly speaking, these functions express how a statement transforms the set of
relevant variables R%,, and the set of relevant statements S¢., respectively. The functions 6
and « are defined in a compositional manner. For empty statements and assignments, 6 and
« can be derived from the statement in a syntax-directed manner. The 6 and « functionsfor
statement sequences and if statements, can be inferred from the 6 and « functions for their
components, respectively. The functions for a while statement are obtained by effectively
transforming it into an infinite sequence of if statements.

44 Chapter 3. A Survey of Program Sicing Techniques

EXPRESSION #* || POTENTIALLY AFFECTED VARIABLES

{n, sum, product, i}
{ sum, product, i}
{sum}

{product }

{ sum, product, i}
{sum}

{product }

{ sum, product, i}

0

0 0

2O 0| N[O 0l W N

@Expression numbers correspond to line numbersin Figure 3.1 (a).

Figure 3.8: Information-flow relation p. for the example program of Figure 3.1 (a).

3.3.1.2 Information-flow relations

Bergeretti and Carré [22] define a number of information-flow relations that can be used
to compute dlices. For a statement (or sequence of statements) S, a variable v, and an
expression (i.e., a control predicate or the right-hand side of an assignment) e that occurs
in S, therelations \g, 115, and ps are defined. These information-flow relations possess the
following properties: (v, e) € \g iff thevalue of v on entry to S potentially affects the value
computed for e, (e, v) € ug iff the value computed for e potentially affects the value of v on
exit from S, and (v,v") € pgs iff the value of v on entry to S may affect the value of +' on
exitfrom S. The set EY, of all expressionse for which (e, v) € ug can be used to construct
partial statements. A partial statement of statement S associated with variable v is obtained
by replacing all statementsin S that do not contain expressionsin E¢ by empty statements.

Information-flow relations are computed in a syntax-directed, bottom-up manner. For an
empty statement, therelations A and .5 are empty, and ps istheidentity. For an assignment
v = e, Ag contains (v', e) for all variables v’ that occur in e, g consists of (e, v), and pg
contains (v', v) for al variables that occur in e aswell as (v",v") for al variables v" # v.
Figure 3.7 shows how information-flow relations for sequences of statements, conditional
statements and loop statements are constructed from the information-flow relations of their
constituents. In the figure, e denotes an empty statement, “-” relational join®, ID the identity
relation, VARS(e) the set of variables occurring in expression e, and DEFS(.S) the set of
variablesthat may be defined in statement .S. The convoluted definition for while constructs
is obtained by effectively transforming it into an infinite sequence of nested one-branch if
statements. Therelation p* used in this definition is the transitive and reflexive closure of p.

A dlice w.rt. the value of a variable v at an arbitrary location can be computed by
inserting a dummy assignment v’ := v at the appropriate place, where v’ is a variable that

5The join of two relations R; and R, contains al pairs (e1, e3) for which there exists an e, such that
<61, €2> € R, and <62, €3> € Ry.

3.3. Methods for static dlicing 45

did not previously occur in S. The dlicew.r.t. thefinal value of +" in the modified program
isequivalent to aslicew.r.t. v at the selected location in the original program.

Static forward slicescan be derived fromrelation \s inaway that issimilar to the method
for computing static backward slices from the . relation.

Figure 3.8 shows the information-flow relation 4 for the (entire) program of Figure 3.1
(@)’. From this relation it follows that the set of expressions that potentially affect the
value of product at the end of the programare { 1, 2, 4, 5, 7, 8 }. The corresponding
partial statement is obtained by omitting all statements from the program that do not contain
expressionsinthisset, i.e., both assignmentsto sum and bothwr i te statements. Theresult
isidentical to the slice computed by Weiser’s algorithm (see Section 3.3.1.1).

3.3.1.3 Dependence graph based approaches

Ottenstein and Ottenstein [120] were the first of many to define dlicing as a reachability
problem in a dependence graph representation of a program. They use the PDG [101, 53]
for static dicing of single-procedure programs.

In dependence graph based approaches, the dlicing criterionisidentified withavertex v in
the PDG. In Weiser’'s terminol ogy, this correspondsto acriterion (n, V') where n isthe CFG
node corresponding to v, and V' the set of all variables defined or used at v. Consequently,
dicing criteria of PDG-based slicing methods are less general than those of methods based
on dataflow equations or information-flow relations (the fine-grained PDGs of Jackson and
Rollins, discussed below, are a notable exception here). However, in Section 3.3.6.2, it
will be shown how more precise dlicing criteria can be “simulated” by PDG-based dlicing
methods. For single-procedure programs, the slice w.r.t. v consists of al vertices that can
reach v. The related parts of the source text of the program can be found by maintaining
a mapping between vertices of the PDG and the source text during the construction of the
PDG.

The PDG variant of Ottenstein and Ottenstein [120] shows considerably more detail
than that by Horwitz, Reps, and Binkley [77]. In particular, there is a vertex for each
(sub)expression in the program, and file descriptors appear explicitly as well. As aresult,
read statementsinvolvingirrelevant variables are not “ sliced away” , and slices will execute
correctly with the full input of the original program.

In Figure 3.4 the PDG of the program of Figure 3.1 (a) was shown. Shading is used to
indicate the verticesinthe dicew.r.t. write (product).

Jackson and Rollins [82] introduce a variation on the PDG that is distinguished by fine-
grained dependences between individual variables defined or used at program points. An
important advantage of this approach is that it allows one to determine more accurately
which variables are responsible for the inclusion of a particular statement in aslice.

Each vertex consists of abox that containsaseparate port for each variable defined at that

"Bergeretti and Carré do not define information-flow relations for 1/0 statements. For the purposes of this
example, it is assumed that the statement read (n) can be treated as an assignment n : = SomeConstant,
and that the statementsSwrite (sum) andwrite (product) should be treated as empty statements.

46 Chapter 3. A Survey of Program Sicing Techniques

program point, as well asfor each variable used at that point. Dependence relations between
variables used at a program point p, and variables defined at p are represented by internal
dependence edges inside the box for p. Data dependences between statements are defined
in the usual way, in terms of reaching definitions. Control dependences between statements,
however, are modeled as mock data dependences. To this end, each box has an e port that
represents the “execution of” the associated statement. Control predicates are assumed to
define atemporary value that is represented by a port. If a statement with box p is control
dependent on a statement with box ¢, thisis modeled by a dependence edge from p’s 7 port
to ¢’s e port. Finally, dependences on constant values and input values are represented by ~
ports—therole of these portsisirrelevant for the present discussion.

Jackson and Rollins generalize the traditional notion of a dlicing criterion to a pair
(source, sink), where source is a set of definition ports and sink of a set of use ports. Slicing
is generalized to chopping: determining the subset of the program’s statements that cause
influences of source elements on sink elements. It is argued that conventional notions
dlicing of backward and forward slicing can be expressed in terms of chopping. Rather than
defining chopping algorithms in the usual way, as a graph-reachability algorithm, Jackson
and Rollins formally define their algorithm in a relational fashion, as a number of relations
between ports.

3.3.2 Procedures

Themain problem posed by interprocedural static slicingisthat, in order to compute accurate
slices, the call-return structure of interprocedural execution paths must be taken into account.
Simple algorithms that include statements in a slice by traversing (some representation of)
the program in a single pass have the property that they consider infeasible execution paths,
causing slices to become larger than necessary. Severa solutions to this problem, often
referred to as the “calling-context” problem, will be discussed below.

3.3.2.1 Dataflow equations
Weiser’s approach for interprocedural static slicing [147, 148] involves three separate tasks.

e First, interprocedural summary information is computed, using previously developed
techniques [19]. For each procedure P, a set MoD(P) of variables that may be
modified by P iscomputed, and a set USE(P) of variables that may beused by P. In
both cases, the effects of procedures transitively called by P are taken into account.

e The second component of Weiser’s algorithm is an intraprocedural dlicing algorithm.
This agorithm was discussed previously in Section 3.3.1.1. However, it is sightly
extended in order to determine the effect of call-statements on the sets of relevant
variables and statements that are computed. Thisis accomplished using the summary
information computed in step (1). A call to procedure P is treated as a conditional
assignment statement ‘if <SomePredicate> then MoD(P) := USg(P)’ where ac-
tual parameters are substituted for formal parameters[148]. Worst-case assumptions

3.3. Methods for static slicing 47

program Main;

‘While (---) do procedure P(yi, Y2, ***/ Yn)i
begin
P(x1, X2, - -, Xn);)
X1 1= Z; write(yq) ;
X, := x2,‘ write (ys) ;
o (M) write (y,)
end
X(n-1) = Xn
end;
(L) write (z)
end

Figure 3.9: A program where procedure P is sliced n times by Weiser's algorithm for criterion

(L {z})

have to be made when a program calls external procedures, and the source-code is
unavailable.

e Thethird part isthe actual interprocedural slicing algorithm that iteratively generates
new dlicing criteria with respect to which intraprocedural slices are computed in step
(2). For each procedure P, new criteriaare generated for (i) procedures @ called by P,
and (ii) procedures R that call P. The new criteriaof (i) consist of al pairs (ng, Vg)
where n(isthe last statement of @ and V;; isthe set of relevant variablesin P in the
scope of) (formals are substituted for actuals). The new criteria of (ii) consist of all
pairs (Ng, V) suchthat Npisacall to P in R, and Vy isthe set of relevant variables
at thefirst statement of P that isin the scope of R (actuals are substituted for formals).

Weiser formalizesthegeneration of new criteriaby way of functionsUp(S) and DOWN(S)
that map aset S of dicing criteriain aprocedure P to a set of criteriain procedures that call
P, and a set of criteriain procedures called by P, respectively. The set of all criteria with
respect to which intraprocedural slices are computed consists of the transitive and reflexive
closure of the Up and DownN relations; thisis denoted (Up U DowN)x. Thus, for aninitial
criterion C, sliceswill be computed for all criteriain the set (Up U DOWN) x ({ C' }).

Weiser determines the criteria in this set “on demand” [148]: the generation of new
criteriain step (3) and the computation of intraprocedural slicesin step (2) areintermixed; the
iteration stops when no new criteria are generated. Although the number of intraprocedural
slices computed in step (2) could be reduced by combining “similar” criteria (e.g., replacing
two criteria (n, V1) and (n, V) by asingle criterion (n, Vi U V5)), Weiser writes that “no
speed-up tricks have been implemented” [147, page 355, col.2]. In fact, one would expect
that such speed-up tricks would affect the performance of his agorithm dramatically. The
main issue isthat the computation of the Up and DOWN sets requires that the sets of relevant
variables are known at al call sites. In other words, the computation of these sets relies on
dlicing these procedures. In the course of doing this, new variables may become relevant

48 Chapter 3. A Survey of Program Sicing Techniques

program Example; program Example; program Example;

begin begin begin
(1) a := 17; a := 17; ;
(2) b := 18; b := 18; b := 18;
(3) P(a,b,c,d); P(a,b,c,d); P(a,b,c,d);
(4) write (d) write (d)

end end end

procedure P(v,w,x,y); | procedure P(v,w,x,y); | procedure P(v,w,x,vy) ;
(5) X 1= v; ; H
(6) Vo= W Yy 1= W Yy 1= W

end end end

(@) (b) (©

Figure 3.10: (a) Example program. (b) Weiser's slice with respect to criterion (4, { d }). (a) A
dlice with respect to the same criterion computed by the Horwitz-Reps-Binkley algorithm.

at previously encountered call sites, and new call sites may be encountered. Consider for
example, the program shown in Figure 3.9. In the subsequent discussion, L denotes the
program point at statement write (z) and M the program point at the last statement in
procedure P. Computing the slicew.r.t. criterion (L, { z }) requires n iterations of the body
of thewhileloop. Duri ngtheith iteration, variablesxy, - - -, x; will berelevant at thecall site,
causing the inclusion of criterion (M, { vy, ---, v; }) inDOWN(Main). If no precautionis
taken to combine the criteriain DOWN(Main), procedure P will be sliced n times.

The fact that Weiser’'s algorithm does not take into account which output parameters
are dependent on which input parameters is a source of imprecision. Figure 3.10 (a)
shows an example program that manifests this problem. For criterion (4, { d }), Weiser's
interprocedural dlicing algorithm [147] will computethe slice showninFigure3.10 (b). This
dlice contains the statement a : = 17 due to the spurious dependence between variable a
before the call, and variable d after the call. The Horwitz-Reps-Binkley agorithm that will
be discussed in Section 3.3.2.3 will compute the more accurate slice shown in Figure 3.10
(©.

Horwitz, Reps, and Binkley [77] report that Wei ser’ salgorithm for interprocedural slicing
is unnecessarily inaccurate, because of what they refer to as the “ calling context” problem.
In anutshell, the problem is that when the computation “descends’ into a procedure () that
iscalled from aprocedure P, it will “ascend” to all proceduresthat call ¢, not only P. This
includes infeasi ble execution paths that enter ¢ from P and exit () to a different procedure.
Traversal of such paths givesrise to inaccurate slices.

Figure 3.11 shows a program that exhibits the calling-context problem. For exam-
ple, assume that a dlice is to be computed w.r.t. criterion (10, product). Using sum-
mary information to approximate the effect of the calls, the initial approximation of the
dlice will consist of the entire main procedure except lines 3 and 6. In particular, the
procedure calls Multiply (product, i) and Add (i, 1) areincluded in the dlice,

3.3. Methods for static dlicing 49

program Example; procedure Add(a; b);

. begin
begin (11) a :=a + b
(1) read (n) ; end
(2) i :=1;
Ez; ;zzd;to’:: L. procedure Multiply(c; d);
(5) while i <= n do begin
. (12) § := 1;
begin (13) k := 0;
(6) Add (sum, 1i); L
. . (14) while § <= 4 do
(7) Multiply (product, 1) ; begin
(8) Add(i, 1) €
end s (15) Add(k, c);
L (16) Add(j, 1);
(9) write(sum) ; end
(10) Zrl]r(;.te(product) (17) ¢ := k
end

Figure 3.11: Example of amulti-procedure program.

because: (i) the variables product and i are deemed relevant at those points, and (ii)
using interprocedural data flow analysis it can be determined that Mob(2add) = { a },
Use(add) = {a, b}, MoD(Multiply) = {c }, and UsE(Multiply) ={c, d}.
As theinitial criterion isin the main program, we have that Up({ (10, product) }) = 0,
and that DowN({ (10, product) }) contains the criteria (11,{ a }) and (17,{c, d}).
The result of slicing procedure Add for criterion (11, { a }) and procedure Multiply for
criterion (17, { ¢, 4 }) will betheinclusion of these proceduresin their entirety. Note that
the calls to Add at lines 15 and 16 cause the generation of a new criterion (11,{a, b})
and thus re-dlicing of procedure Add. It can now be seen that the example program exhibits
the “calling context” problem: Since line (11) isin the slice, new criteria are generated for
all callsto Add. These callsinclude the (already included) calls at lines 8, 15, and 16, but
dsothecal Add (sum, i) atline6. Thenew criterion (6, { sum, i }) thatisgenerated
will cause the inclusion of lines 6 and 3 in the dlice. Consequently, the slice consists of the
entire program.

It is our conjecture that the calling context problem of Weiser’s algorithm can be fixed
by observing that the criteria in the Up sets are only needed to include procedures that
(transitively) call the procedure containing the initial criterion®. Once this is done, only
DownN sets need to be computed. For an initial criterion C, this corresponds to determining
the set of criteria DOwN = (UP x ({ C' })), and computing the intraprocedural slices with
respect to each of these criteria. Reps [126] suggested that this essentially corresponds to
the two passes of the Horwitz-Reps-Binkley algorithm (see Section 3.3.2.3) if all Up setsare
computed before determining any DOWN sets.

8A similar observation was made by Jiang et al. [83]. However, they do not explain that this approach only
works when a call to procedure p is treated as a conditional assignment if <SomePredicate> then MoD(P)
:= Use(P).

50 Chapter 3. A Survey of Program Sicing Techniques

g e D/%—i\\‘\\
o o Y an
Vas T ///m\\ ///m\\ /// =\ // \\,

(@)

Figure3.12: (a) Exampleprogram. (b) Exponentially long path traversed by the Hwang-Du-Chou
algorithm for interprocedural static dicing for criterion (L, x3).

Hwang, Du, and Chou [79] propose an iterative solution for interprocedural static slicing
based on replacing (recursive) calls by instances of the procedure body. From a conceptual
point of view, each iteration comprises of the following two steps. First, procedure calls are
inlined, substituting actual parametersfor formal parameters. Then, thesliceisre-computed,
where any remaining procedure call is treated as if it were an empty statement (i.e., it is
assumed to have no effect on the flow dependences between its surrounding statements).
Thisiterative process terminates when the resulting sliceisidentical to the slice computed in
the previous iteration—i.e., until afixed point is reached. It is assumed that some mapping
is maintained between the statements in the various expanded versions of the program, and
in the original program.

The approach of Hwang et al. does not suffer from the calling context problem because
expansion of recursive callsdoesnot |ead to considering infeasi ble execution paths. However,
Reps [125, 128] has shown recently that for a certain family P* of recursive programs, this
agorithm takes time O(2*), i.e., exponential in the length of the program. An example of
such a program is shown in Figure 3.12 (a). Figure 3.12 (b) shows the exponentially long
path that is effectively traversed by the Hwang-Du-Chou algorithm.

3.3.2.2 Information-flow relations

Bergeretti and Carré [22] explain how the effect of procedure calls can be approximated
in the absence of recursion. Exact dependences between input and output parameters are
determined by dlicing the called procedure with respect to each output parameter (i.e.,
computation of the p relation for the procedure). Then, each procedure cal is replaced
by a set of assignments, where each output parameter is assigned a fictitious expression
that contains the input parameters it depends upon. As only feasible execution paths are
considered, this approach does not suffer from the calling context problem. A call to aside-
effect free function can be modeled by replacing it with a fictitious expression containing
all actual parameters. Note that the computed slices are not truly interprocedural since no
attempt is done to slice procedures other than the main program.

3.3. Methods for static dlicing 51

For the example program of Figure 3.11, the sice w.r.t. the final value of product
would include all statementsexcept sum := 0,Add(sum,i),andwrite (sum).

3.3.2.3 Dependence graphs

Horwitz, Reps, and Binkley [77] present an algorithm for computing precise interprocedural
static slices, which consists of the following three components:

1. The System Dependence Graph (SDG), a graph representation for multi-procedure
programs.

2. The computation of interprocedural summary information. Thistakestheform of pre-
cise dependence rel ations between the input and output parameters of each procedure
call, and is explicitly present in the SDG in the form of summary edges.

3. A two-pass agorithm for extracting interprocedural slices from an SDG.

We will begin with a brief overview of SDGs. In the discussion that follows it is
important to realize that parameter passing by value-result® is modeled as follows: (i) the
calling procedure copiesits actual parametersto temporary variables before the call, (ii) the
formal parameters of the called procedure are initialized using the corresponding temporary
variables, (iii) before returning, the called procedure copies the final values of the formal
parametersto the temporary variables, and (iv) after returning, the calling procedure updates
the actual parameters by copying the values of the corresponding temporary variables.

An SDG contains a program dependence graph for the main program, and a procedure
dependence graph for each procedure. There are several types of verticesand edgesin SDGs
that do not occur in PDGs. For each call statement, there is a call-site vertex in the SDG
as well as actual-in and actual-out vertices that model the copying of actual parameters
to/from temporary variables. Each procedure dependence graph has an entry vertex, and
formal-in and formal-out verticesto model copying of formal parametersto/from temporary
variables'®. Actual-in and actual-out vertices are control dependent on the call-site vertex;
formal-in and formal-out vertices are control dependent on the procedure’s entry vertex.
In addition to these intraprocedural dependence edges, an SDG contains the following
interprocedural dependence edges: (i) a control dependence edge between a call-site vertex
and the entry vertex of the corresponding procedure dependence graph, (ii) a parameter-in
edge between corresponding actual-in and formal-in vertices, (iii) a parameter-out edge
between corresponding formal-out and actual-out vertices, and (iv) summary edges that
represent transitive interprocedural data dependences.

9TheHorwitz-Reps-Binkley algorithm [77] isalso suitablefor call-by-referenceparameter passing provided
that aliases are resolved. To this end, two approaches are proposed: transformation of the original program
into an equivalent alias-free program, or the use of a generalized flow dependence notion that takes possible
aliasing patterns into account. The first approach yields more precise slices, whereas the second one—further
explored by Binkley [31]—is more efficient. For a discussion of parameter passing mechanisms the reader is
referred to [7, Section 7.5].
OUsing interprocedural data flow analysis [16], the sets of variables that can be referenced or modified by
a procedure can be determined. Thisinformation can be used to eliminate actual-out and formal-out vertices
for parametersthat will never be modified, resulting in more precise slices.

52 Chapter 3. A Survey of Program Sicing Techniques

The second part of the Horwitz-Reps-Binkley algorithm, computation of summary de-
pendences, involves the construction of an attribute grammar that models the calling rela-
tionships between the procedures (asin a cal graph). Then, the subordinate characteristic
graph for thisgrammar is computed. For each procedure in the program, this graph contains
edges that correspond to precise transitive flow dependences between its input and output
parameters. The summary edges of the subordinate characteristic graph are copied to the
appropriate places at each call site in the SDG. Details of the Horwitz-Reps-Binkley algo-
rithm for determining summary edges are outside the scope of this survey—for details, the
reader isreferred to [77].

The third phase of the Horwitz-Reps-Binkley algorithm consists of a two-pass traversal
of the SDG. The summary edges of an SDG serveto circumvent the calling context problem.
Assumethat dlicing startsat somevertex s. Thefirst phasedeterminesall verticesfromwhich
s can be reached without descending into procedure calls. The transitive interprocedural
dependence edges guarantee that calls can be side-stepped, without descending into them.
The second phase determines the remaining vertices in the slice by descending into al
previously side-stepped calls.

Figure 3.13 shows the SDG for the program of Figure 3.11, where interprocedural
dataflow analysisisused to eliminate the verticesfor the second parameters of the procedures
AddandMultiply. Inthefigure, thin solid arrowsrepresent flow dependences, thick solid
arrows correspond to control dependences, thin dashed arrows are used for call, parameter-in,
and parameter-out dependences, and thick dashed arrows represent transitiveinterprocedural
flow dependences. The verticesinthe dlicew.r.t. statement write (product) are shown
shaded; light shading indicates the vertices identified in the first phase of the algorithm, and
dark shading indicates the vertices identified in the second phase. Clearly, the statements
sum := 0,Add(sum, 1i),andwrite (sum) arenotinthedice.

Slices computed by Horwitz-Reps-Binkley algorithm [77] are not necessarily executable
programs. Cases where only a subset of the vertices for actual and formal parameters are
in the dlice correspond to procedures where some of the arguments are “sliced away”; for
different calls to the procedure, different arguments may be omitted. Two approaches are
proposed for transforming such a non-executabl e slice an executable program. First, several
variants of a procedure may be incorporated in a dice [77]; this has the disadvantage that
the dlice is no longer arestriction of the original program. The second solution consists of
extending the slice with all parameters that are present at some call to all calls that occur in
the dice. In addition, all vertices on which the added vertices are dependent must be added
to the dlice as well. This second approach is pursued by Binkley [30]. Clearly the second
approach yields larger dlices than thefirst one.

Finally, it is outlined how interprocedura slices can be computed from partial SDGs
(corresponding to programs under development, or programs containing library calls) and
how, using the SDG, interprocedural forward slices can be computed in a way that is very
similar to the previously described method for interprocedura (backward) slicing.

3.3. Methods for static dlicing 53

Figure 3.13: SDG of the programin Figure 3.11.

Recently, Reps et al. [129, 128] proposed a new algorithm for computing the summary
edges of an SDG, which isasymptotically more efficient than the Horwitz-Reps-Binkley al-
gorithm [77] (thetimerequirements of these algorithmswill be discussed in Section 3.3.6.3).
Input to the algorithm is an SDG where no summary edges have been added yet, i.e., a col-
lection of procedure dependence graphs connected by call, parameter-in, and parameter-out
edges. The algorithm uses aworklist to determine same-level realizable paths. Intuitively, a
same-level realizable path obeys the call-return structure of procedure cals, and it starts and
ends at the same level (i.e., in the same procedure). Same-level realizable paths between
formal-in and formal-out vertices of a procedure P induce summary edges between the
corresponding actual-in and actual-out vertices for any call to P. The agorithm starts by
asserting that a same-level realizable path of length zero exists from any formal-out vertex
toitself. A worklistisused to select apath, and extend it by adding an edge to its beginning.
Reps et al. [129] aso present a demand version of their algorithm, which incrementally

54 Chapter 3. A Survey of Program Sicing Techniques

determines the summary edges of an SDG.

Lakhotia [103] presents an algorithm for computing interprocedural slices that is also
based on SDGs. Thisalgorithm computes slices that are identical to the slices computed by
the Horwitz-Reps-Binkley algorithm. Associated with every SDG vertex v isathree-valued
tag; possiblevaluesfor thistagare: “ 1" indicating that v hasnot beenvisited, “ T” indicating
that v has been visited, and all vertices from which v can be reached should be visited, and
“3” indicating that v has been visited, and some of the vertices from which » can be reached
should be visited. More precisely, an edge from an entry vertex to a call vertex should
only be traversed if the call vertex islabeled T. A worklist agorithm is used to visit all
vertices labeled T before visiting any vertex labeled 3. When this process ends, vertices
labeled either T or 3 areinthe dlice. Lakhotia's algorithm traverses performs a single pass
through the SDG. However, unlike the Horwitz-Reps-Binkley algorithm, the value of atag
may change twice. Therefore it is unclear if Lakhotia's algorithm isreally an improvement
over the Horwitz-Reps-Binkley two-pass traversal algorithm.

The dependence graph model of Jackson and Rollins[82] (see Section 3.3.1.3) is“mod-
ular”, in the sense that a single box is used for each procedure cal. Instead of linking
the individual dependence graphs for the procedures of the program, Jackson and Rollins
represent procedure calls in a more abstract fashion: the internal dependence edges inside
a procedure’s box effectively correspond to the summary edges of Horwitz et al. [77, 128].
Unlike the previously discussed methods, this algorithm side-steps the calling context prob-
lem by only extending slices to called procedures, and not to calling procedures (unless
explicitly requested by the user). Here, ‘extending a slice to a called procedure’ involves
dlicing the (separate) dependence graph for that procedure with respect to the appropriate
ports of its exit node (i.e., corresponding to the ports at the point of call that occur in the
dice).

Whereas for simple statements the internal dependence edges between ports of the
associated box in the dependence graph can be computed in asimple syntax-directed manner,
amore elaborate schemeis required for procedures. In the absence of recursion, the internal
summary dependence edges for a procedure are derived from the dependences inside and
between the boxes for the statements that constitute the procedure body. For recursive
procedures, Jackson and Rollins briefly discuss a simple iterative scheme for determining
internal dependence edges, and state that their algorithm is essentially an adaptation of the
solution presented by Ernst [52] (see Section 3.6). The essence of their scheme is that the
internal dependence edges for non-recursive calls are determined in the manner sketched
above, and that there are initially no internal dependence edgesfor callsin arecursive cycle.
In each subsequent step, the transitive dependences between the input parameters and the
output parameters of arecursive procedure are recomputed by slicingin agraph that contains
the summary edges determined in the previous cycle. Then, summary edges are added to the
graph for those dependences that did not occur in the previous cycle. Thisiteration process
terminates when no more additional transitive dependences can be found.

3.3. Methods for static dlicing 55

3.3.3 Unstructured control flow
3.3.3.1 Dataflow equations

Lyle[108] reports that (his version of) Weiser’'s algorithm for static slicing yields incorrect
dlicesinthe presence of unstructured control flow: the behavior of the sliceisnot necessarily
aprojection of the behavior of the program. He presents a conservative solution for dealing
with goto statements. any goto that has a non-empty set of relevant variables associated
withitisincluded in the slice.

Gallagher [60] and Gallagher and Lyle [61] also use a variation of Weiser's method.
A goto statement is included in the dlice if it jumps to a label of an included statement!?.
Agrawal [3] showsthat this algorithm does not produce correct slicesin all cases.

Jiang et al. [83] extend Weiser’s slicing method to C programs with unstructured control
flow. They introduce a number of additional rulesto “collect” the unstructured control flow
statements such as goto, break, and continue that are part of the slice. Unfortunately, no
formal justification is given for the treatment of unstructured control flow constructsin [83].
Agrawal [3] showsthat this agorithm may also produce incorrect slices.

3.3.3.2 Dependence graphs

Ball and Horwitz [12, 13] and Choi and Ferrante [37] discovered independently that conven-
tional PDG-based slicing algorithms produceincorrect resultsin the presence of unstructured
control flow: dlices may compute values at the criterion that differ from what the original
program does. These problems are due to the fact that the algorithms do not determine cor-
rectly when unconditional jumps such as break, goto, and continue statements are required
inaglice.

As an example, Figure 3.14 (a) shows a variant of our example program, which uses a
goto statement. Figure 3.14 (b) shows the PDG for this program. The vertices that have
a transitive dependence on statement write (product) are highlighted. Figure 3.14
(c) shows a textual representation of the program thus obtained. Clearly, this “dlice” is
incorrect because it does not contain the goto statement, causing non-termination. In fact,
the previously described PDG-based algorithms will only include a goto if it is the slicing
criterion itself, because no statement is either data or control dependent on a goto.

The solution of [12, 13] and the first solution presented in [37] are remarkably similar:
unconditional jumps are regarded as pseudo-predicate vertices where the “true’” branch
consists of the statement that is being jumped to, and the “false” branch of the textually
next statement. Correspondingly, there are two outgoing edges in the augmented control
flow graph (ACFG). Only one of these edges can actually be traversed during execution;
the other outgoing edge is “non-executable’. In constructing the (augmented) PDG, data
dependences are computed using the (original) CFG, and control dependences are computed

B Actually, thisisaslight simplification. Each basic block is partitioned into labeled blocks; alabeled block
is a subsequence of the statements in a basic block starting with a labeled statement, and containing no other
labeled statements. A goto is included in the dice if it jumps to a label for which there is some included
statement in its block.

56 Chapter 3. A Survey of Program Sicing Techniques
read (n) ; read (n) ; read (n) ;
i :=1; i :=1; i :=1;
sum := 0;
product := 1; product := 1; product := 1;
while true do while true do while true do
begin begin begin
if (1 > n) then if (1 > n) then if (1 > n) then
goto L; goto L;
sum := sum + 1;
product := product * 1i; product := product * 1i; product := product * i;
i :=1 + 1 i :=1 + 1 i :=1+ 1
end; end; end;
L: write (sum) ; L:
write (product) write (product) write (product)
(a (©) (e)
o
TR ,
7 ‘!..5‘/
(b)
(d)
Figure3.14: (a) Program with unstructured control flow, (b) PDG for program of (a), () incorrect

dicew.r.t. statementwrite (product), (d) Augmented PDG for program of (a), (€) correct slice
w.r.t. statement write (product).

3.3. Methods for static dlicing 57

using the ACFG. Slicing isdefined in the usual way, as a graph reachability problem. Labels
pertaining to statements excluded from the slice are moved to the closest post-dominating
statement that occursin the slice.

The main difference between the approach by Ball and Horwitz and the first approach of
Choi and Ferrante isthat the | atter use adlightly morelimited examplelanguage: conditional
and unconditional goto’s are present, but no structured control flow constructs. Although
Choi and Ferrante argue that these constructs can be transformed into conditional and
unconditional goto's, Ball and Horwitz show that, for certain cases, this results in overly
large slices. Both groups present aformal proof that their al gorithms compute correct dlices.

Figure 3.14 (d) shows the augmented PDG for the program of Figure 3.14 (a); vertices
fromwhichthevertex labeled write (product) canbereached areindicated by shading.
The (correct) slice corresponding to these verticesis shown in Figure 3.14 (e).

Choi and Ferrante distinguish two disadvantages of the slicing approach based on aug-
mented PDGs. First, APDGs require more space than conventional PDGs, and their con-
struction takes more time. Second, non-executable control dependence edges give rise to
spurious dependences in some cases. In their second approach, Choi and Ferrante utilize the
“classical” PDG. As a first approximation, the standard algorithm for computing slices is
used, which by itself producesincorrect resultsin the presence of unstructured control flow.
The basic ideaisthat for each statement that is not in the slice, anew goto to itsimmediate
post-dominator is added. In a separate phase, redundant cascaded goto statements are re-
moved. The second approach has the advantage of computing smaller slices than the first.
A disadvantage of it, however, is that slices may include goto statements that do not occur
in the original program.

Yet another PDG-based method for slicing programs with unstructured control flow was
recently proposed by Agrawal [3]. Unlike the methods by Ball and Horwitz [12, 13] and
Choi and Ferrante [37], Agrawal uses unmodified PDGs. He observes that a conditional
jump statement of the form if P then goto L must be included in the dlice if predicate
P isin the dlice because another statement in the slice is control dependent on it. The
terminology “conventional slicing algorithm” is adopted to refer to the standard PDG-based
slicing method, with the above extension to conditional jump statements.

Agrawal’skey observation isthat an unconditional jump statement .J should be included
inthesdliceif and only if theimmediate postdominator of .J that isincluded inthe dlicediffers
from the immediate lexical successor of J that isincluded in the slice. Here, a statement
S’ is a lexical successor of a statement S if S textually precedes S’ in the program®.
The statements on which the newly added statement is transitively dependent must also be
added to the slice. The motivation for this approach can be understood by considering a
sequence of statements S3; S,; Sz where S; and S3 arein the slice, and where S, contains an
unconditional jump statement to a statement that does not have S; as its lexical successor.
Suppose that S, were not included in the dlice. Then the flow of control in the dlice
would pass unconditionally from S; to Sz, though in the original program this need not

12As Agrawal observes, this notion is equivalent to the non-executable edges in the augmented control flow
graphs used by Ball and Horwitz, and Choi and Ferrante.

58 Chapter 3. A Survey of Program Sicing Techniques

always be the case, because the jump might transfer the control elsewhere. Therefore the
jump statement must be included, together with all statements it depends upon. Agrawal’s
algorithm traverses the postdominator tree of a program in pre-order, and considers jump
statements for inclusion in this order. The algorithm iterates until no jump statements can
be added; thisis necessary because adding ajump (and the statements it depend upon) may
changethelexical successorsand postdominatorsintheslice of other jump statements, which
may therefore need to be included aswell. Although no proof is stated, Agrawal claims that
his algorithm computes correct slices identical to those computed by the Ball-Horwitz and
Choi-Ferrante algorithms.

Agrawal’s algorithm [3] may be simplified significantly if the only type of jump that
occurs in a program is a structured jump, i.e., a jump to a lexical successor. C break,
continue, and return statements are al structured jumps. First, only asingle traversal of
the post-dominator tree is required. Second, jump statements have to be added only if they
are control dependent on a predicate that isin the slice. In this case, the statementsthey are
dependent upon are already included in the slice. For programs with structured jumps, the
algorithm can be further simplified to a conservative algorithm by including in the dlice all
jump statements that are control dependent on a predicate that isin the dlice.

Agrawal’s algorithm will include the goto statement of the example program of Fig-
ure 3.14 (a) because it is control dependent on the (included) predicate of the if statement.

3.3.4 Compositedatatypesand pointers

Lyle [108] proposes a conservative solution to the problem of static slicing in the presence
of arrays. Essentially, any update to an element of an array is regarded as an update and a
reference of the entire array.

The PDG variant of Ottenstein and Ottenstein [120] contains a vertex for each sub-
expression; special select and update operators serve to access elements of an array.

In the presence of pointers (and procedures), situations may occur where two or more
variables refer to the same memory |ocation—a phenomenon commonly called aliasing.
Aliasing complicates the computation of slices because the notion of flow dependence
depends on which variables are (potential) aliases. Even in the intraprocedural case, the
problem of determining potential aliases in the presence of multiple-level pointersisan NP-
hard problem[105]. However, slicesmay be computed using conservative approximations of
data dependences that are based on approximate alias information. Conservative algorithms
for determining potential aliaseswere presented by Landi and Ryder [104], and Choi, Burke,
and Carini [36].

Horwitz, Pfeiffer, and Reps[71] present adlightly different approach for computing flow
dependencesinthe presence of pointers. Instead of defining (approximate) flow dependences
in terms of definitions and uses of variables that are potentially aliased, the notion of flow
dependenceisdefined intermsof potential definitionsand uses of abstract memory locations.
An agorithm is presented that computes approximations of the memory layouts that may
occur at each program point during execution.

The PDG-based static slicing algorithm proposed by Agrawal, DeMillo and Spafford [4]

3.3. Methods for static dlicing 59

implementsasimilar ideato deal with both composite variablesand pointers. Their solution
consistsof determining reaching definitionsfor ascalar variable v at node n in the flowgraph
by finding all paths from nodes corresponding to a definition of v to n that do not contain
other definitions of v. When composite data types and pointers are considered, definitions
involve|-valued expressions rather than variables. An |-valued expression isany expression
that may occur astheleft-hand side of an assignment. Agrawal et al. present anew definition
of reaching definitions that is based on the layout of memory locations potentially denoted
by I-valued expressions. Memory locations are regarded as abstract quantities (e.g., the
array a correspondsto “locations’ a[1], a[2],- - -). Whereas a definition for a scalar variable
either does or does not reach a use, the situation becomes more complex when composite
data types and pointers are allowed. For a def-expression e; and a use-expression e,, the
following situations may occur:

Complete Intersection The memory locations corresponding to e; are a superset of the
memory locations corresponding to e,. An example is the case where e; defines the
whole of record b, and e, isause of b.f.

Maybe I nter section It cannot be determined statically whether or not the memory locations
of ae; coincide with those of e,. This situation occurs when e; is an assignment to
array element a[i] and e, is a use of array element a[j]. Pointer dereferencing may
also give rise to Maybe Intersections.

Partial Intersection The memory locations of e; are a subset of the memory locations of
ez. Thisoccursfor example when some array a isused at e,, and some element a[i| of
a isdefined at e;.

Given these concepts, an extended reaching definition function is defined that traverses the
flowgraph until it finds Complete Intersections, makes worst-case assumptions in the case
of Maybe Intersections, and continues the search for the array or record parts that have not
been defined yet in the case of Partial Intersections.

Lyleand Binkley [110] present an approach for dlicing in the presence of pointersthat is
based on avariation of symbolic execution. Their algorithm consists of two phases. First, all
CFG nodes are determined that i ntroduce addresses (either dueto auseof theC* &’ operator,
or due to the dynamic allocation of a new object). These addresses are propagated through
the CFG yielding a set of address values for each pointer at each program point. A number
of propagation rules defines how addresses are propagated by assignments statements'®. In
the second phase, the information collected in the first phase is used to determine which
statements should be included in adlice. This second phase is essentially a generalization
of Lyle’'s slicing algorithm [108].

Jiang, Zhou and Robson [83] present an algorithm for dlicing C programs with pointers
and arrays that is based on Weihl’s notion of dummy variables[142]. The basic ideais that
for each pointer p, the dummy variable (1)p denotes the value pointed to by p, and for each
variable z, (—1)x denotes the address of ¢. Jiang et al. define data dependencesin the usual
way, in terms of definitions and uses of (dummy) variables. Unfortunately, this approach

13In their definitions, Lyle and Binkley only address straight-line code, and argue that control-dependence
issues are “orthogona” to the data-dependenceissues raised by pointers.

60 Chapter 3. A Survey of Program Sicing Techniques

|| DEF | Rer | RY,
(1) p = &x; (1) p = &x%;
(2) *p = 2; 1)|1{p} {(-1)x} 0 (2) i
(3) g = p; 2 {@p} | {p} {p, (1)g} (3) g = p;
(4) write(*q) | 3 || {a} {p} {p, (1)a} (4)
a0 {a. Wa}|{a, (Dag}
(@ (b) (©)

Figure 3.15: (a) Example program. (b) Defined variables, used variables, and relevant variables
for this program. (c) Incorrect dicew.r.t. criterionC' = (4, { g, (1)qg}).

appears to be flawed™. Figure 3.15 shows an example program, the DEF, RerF, and R, sets
for each statement, and the incorrect slice computed for criterion C' = (4,{ g, (1)q}).
The second statement is incorrectly omitted because it does not define any variable that is
relevant at statement 3.

3.3.5 Concurrency

Cheng [35] considers static slicing of concurrent programs using dependence graphs. He
generalizes the notions of a CFG and a PDG to a nondeterministic parallel control flow net,
and a program dependence net (PDN), respectively. In addition to usual PDG edges, PDNs
also contain edges for selection dependences, synchronization dependences, and commu-
nication dependences. Selection dependence is similar to control dependence but involves
nondeterministic selection statements, such asthe ALT statement of Occam-2. Synchroniza-
tion dependence reflects the fact that the start or termination of the execution of a statement
depends on the start or termination of the execution of another statement. Communication
dependence corresponds to situations where a value computed at one program point influ-
encesthe value computed at another point through interprocess communication. Static slices
are computed by solving a reachability problem in a PDN. Unfortunately, Cheng does not
clearly state the semantics of synchronization and communication dependence, nor does he
state or prove any property of the slices computed by his algorithm.

Aninteresting point isthat Cheng uses a notion of weak control dependence[123] for the
construction of PDNs. This notion subsumes the standard notion of control dependence; the
difference is that weak control dependences exist between the control predicate of a loop,
and the statements that follows it. For example, the statements on lines 9 and 10 of the
program of Figure 3.1 (a) are weakly (but not strongly) control dependent on the control
predicate on line 5.

14The counterexample of Figure 3.15 was provided by Susan Horwitz.

3.3. Methods for static dlicing 61

3.3.6 Comparison
3.36.1 Overview

In this section, the static slicing methods that were presented earlier are compared and
classified. The section is organized as follows: Section 3.3.6.1 summarizes the problems
that are addressed in the literature. Sections 3.3.6.2 and 3.3.6.3 compare the accuracy
and efficiency of slicing methods that address the same problem, respectively. Finally, in
Section 3.3.6.4 possibilities for combining algorithms that deal with different problems are
discussed.

Table3.2 providesan overview of themost significant slicing algorithmsthat can befound
intheliterature. For each paper, thetableliststhe computation method used and indicates: (i)
whether or not interprocedural slices can be computed, (ii) the control flow constructs under
consideration, (iii) the data types under consideration, and (iv) whether or not concurrency
is considered. It is important to realize that the entries of Table 3.2 only indicate the
problems that have been addressed; the table does not indicate the “quality” of the solutions
(with the exception that incorrect solutions are indicated by footnotes). Moreover, the table
also does not indicate which algorithms may be combined. For example, the Horwitz-
Reps-Binkley interprocedural slicing algorithm [77] could in principle be combined with
any of the dependence graph based slicing methods for dealing with unstructured control
flow [13, 3, 37]. Possibilities for such combinations are investigated to some extent in
Section 3.3.6.4. Thework by Ernst [52] and by Field et a. (see Chapters 4 and 5) that occurs
in Table 3.2 relies on substantially different techniques than those used for the static slicing
algorithms discussed previously, and will therefore be studied separately in Section 3.6.

Kamkar [86] distinguishes between methods for computing slices that are executable
programs, and those for computing slices that consist of a set of “relevant” statements. We
agree with the observation by Horwitz et a. [77], that for static slicing of single-procedure
programsthisismerely amatter of presentation. However, for multi-procedure programs, the
distinction is significant, as was remarked in Section 3.3.2.3. Nevertheless, we believe that
the distinction between executabl e and non-executabl e interprocedural slices can be ignored
in this case as well, because the problems are strongly related: Binkley [30] describes how
precise executable interprocedural static slices can be obtained from the non-executable
interprocedural slices computed by the algorithm of Horwitz et al. [77].

A final remark here concerns /O statements. The slices computed by Weiser’s algorithm
[147] and the algorithm by Bergeretti and Carré[22] never contain output statements because:
(i) the DEF set of an output statement is empty so that no other statement is data dependent
on it, and (ii) no statement is control dependent on an output statement. Horwitz and Reps
[76] suggest away for making an output value dependent on all previous output values by
treating a statement write (v) as an assignment output := output || v, where
output isastring-valued variable containing al output of the program, and ‘| |’ denotes
string concatenation. Output statements can be included in the slice by including output
in the set of variables in the criterion.

Chapter 3. A Survey of Program Sicing Techniques

a b c

§8| TS5 23| =& ¢

85| §2| 5| °F| E

23| 88| © S

£ S c

@] o 8

O =

=
Weiser [147, 107] D yes S S no
Lyle[108] D no A S A no
Gallagher, Lyle[60, 61] D no Al S no
Jiang et al. [83] D yes Al S A, P no
Lyle, Binkley [110] D no s/ S P no
Hausler [67] F no S S no
Bergeretti, Carré [22] I yes? S S no
Ottenstein [120] G no S S A no
Horwitz et a. [74, 130, 75] G no S S no
Horwitz et al. [77] G yes S S no
Binkley [31] G yes® S S no
Binkley [32] G yes' S S no
Jackson, Rollins [82, 81] G yes S S no
Repset al. [129, 128] G yes S S no
Lakhotia[103] G yes S S no
Agrawal et a. [4] G no S S AP no
Ball, Horwitz [12, 13] G no A S no
Choi, Ferrante [37] G no A S no
Agrawal [3] G no A S no
Cheng [35] G no S S yes
Ernst [52] @) yes A S AP no
Fieldet a. (Chap. 5) R no S S P no
*D = dateflow equations, F = functional/denotational semantics, | = information-flow rela-

tions, G = reachability in a dependence graph, O = dependence graphs in combination with
optimization techniques (see Section 3.6). R = dependence tracking in term graph rewriting
systems (see Section 3.6).

S = structured, A = arbitrary.

¢S=scalar variables, A = arrays/records, P = pointers.

4Solution incorrect (see [3]).

¢ Solution incorrect (see Section 3.3.4).

fOnly straight-line code is considered.

9Non-recursive procedures only.

hTakes parameter aliasing into account.

Produces slices that are executable programs.

Table 3.2: Overview of static slicing methods.

3.3. Methods for static dlicing 63

3.3.6.2 Accuracy

An issue that complicates the comparison of the static slicing methods discussed previously
is the fact that some methods allow more general dlicing criteria than others. For dlicing
methods based on dataflow equations and information-flow relations, a slicing criterion
consists of a pair (s,V’), where s is a statement and V' an arbitrary set of variables. In
contrast, with the exception of the “modular” PDGs of Jackson and Rollins[82], the dlicing
criteria of PDG-based dlicing methods effectively correspond to a pair (s, VARS(s)), where
s isastatement and VARS(s) the set of all variables defined or used at s.

However, a PDG-based slicing method can compute a slice with respect to a criterion
(s, V) for arbitrary V' by performing the following three steps. First, the CFG node n
corresponding to PDG vertex s isdetermined. Second, the set of CFG nodes N corresponding
to al definitions that reach avariablein V' at node » are determined. Third, the set of PDG
vertices S corresponding to the set of CFG nodes N is determined; the desired slice consists
of all vertices from which a vertex in S can be reached. Alternatively, one could insert
a statement v:=e at the point of interest, where v is some dummy variable that did not
occur previoudly in the program, and e is some expression containing all variablesin V/,
re-construct the PDG, and slice with respect to the newly added statement. Having dealt
with this issue, some conclusions regarding the accuracy of static dlicing methods can now
be stated:

basic algorithms. For intraprocedural static dicing, the accuracy of methods based on
dataflow equations [147] (see Section 3.3.1.1) information-flow relations [22] (see Sec-
tion 3.3.1.2), and PDGs [120] (see Section 3.3.1.3) is essentially the same, although the
presentation of the computed slices differs: Weiser defines his slice to be an executable
program, whereas in the other two methods dlices are defined as a subset of statements of
the original program.

procedures. Weiser's interprocedural static slicing algorithm [147] is inaccurate for two
reasons, which can be summarized as follows. First, the interprocedural summary informa-
tion used to approximate the effect of a procedure call establishes relations between the set
of all input parameters, and the set of all output parameters; by contrast, the approaches
of [22, 77, 79, 129, 128] determine for each output parameter precisely which input pa-
rameters it depends upon. Second, the algorithm fails to take the call-return structure of
interprocedural execution paths into account. These problems are addressed in detail in
Section 3.3.2.1.

The algorithm by Bergeretti and Carré [22] does not compute truly interprocedural
slices because only the main program is being sliced. Moreover, the it is not capable of
handling recursive programs. Bergeretti-Carré slices are accurate in the sense that: (i) exact
dependences between input and output parameters are used, and (ii) the calling-context
problem does not occur.

The solutions of [79, 77, 129, 128] compute accurate interprocedural static slices, and
are capable of handling recursive programs (see Sections 3.3.2.2 and 3.3.2.3). Ernst [52] and

64 Chapter 3. A Survey of Program Sicing Techniques

Jackson and Rollins [82] also present a solution for accurate interprocedural static slicing,
but do not present of proof of correctness.

Binkley extended the Horwitz-Reps-Binkley algorithm [77] in two respects: a solution
for interprocedural static dicing in the presence of parameter aliasing [31], and a solution
for obtaining executable interprocedural static slices[30].

unstructured control flow. Lyle's method for computing static slices in the presence of
unstructured control flow is very conservative (see Section 3.3.3.1). Agrawal [3] has shown
that the solutions proposed by Gallagher and Lyle [60, 61] and by Jiang et a. are incorrect
[83]. Precise solutions for static slicing in the presence of unstructured control flow have
been proposed by Ball and Horwitz [12, 13], Choi and Ferrante [37], and Agrawal [3] (see
Section 3.3.3.2). It isour conjecture that these three approaches are equally accurate.

composite variables and pointers. A number of solutions for slicing in the presence of
composite variables and pointers were discussed in Section 3.3.4. Lyle [108] presented a
very conservative algorithm for static dlicing in the presence of arrays. The approach by
Jiang et a. [83] for dicing in the presence of arrays and pointers was shown to be incorrect.
Lyleand Binkley [110] present an approach for computing accurate slicesin the presence of
pointers, but only consider straight-line code. Agrawal et al. propose an algorithm for static
dicing in the presence of arrays and pointers that is more accurate than Lyle's algorithm
[108].

concurrency. The only approach for static slicing of concurrent programs was proposed
by Cheng (see Section 3.3.5).

3.3.6.3 Efficiency
Below, the efficiency of the static slicing methodsthat were studied earlier will be addressed:

basic algorithms. Weiser's algorithm for intraprocedural static slicing based on dataflow
equations [147] can determine a slice in O(v x n x ¢) time™, where v is the number of
variablesin the program, » the number of verticesin the CFG, and e the number of edgesin
the CFG.
Bergeretti and Carré [22] report that the u5 relation for a statement .S can be computed
in O(v? x n). From pug, the slicesfor all variablesat S can be obtained in constant time.
Construction of a PDG essentially involves computing all data dependences and control

S\Weiser [147] states abound of O(n x e x log(e)). However, thisis abound on the number of “bit-vector”
steps performed, where the length of each bit-vector is O(v). We have multiplied the cost by O(v) to account
for the cost of such bit-vector operations. The problem of determining relevant variables is similar to that
of determining possibly-uninitialized variables. Using the transformation technique of Reps et al. [129] this
information can be computed in O(v x e) time. The process of determining relevant variables is repeated
at most O(n) times due to the inclusion in the dlice of branch statements with indirect relevance. Hence, an
improved bound for Weiser's algorithmis O(v x n x e).

3.3. Methods for static dlicing 65

dependencesin aprogram. For structured programs, control dependences can be determined
in a syntax-directed fashion, in O(n). In the presence of unstructured control flow, the
control dependences of a single-procedure program can be computed in O(e) in practice
[40, 84]. Computing data dependences essentially corresponds to determining the reaching
definitions for each use. For scalar variables, this can be accomplished in O(e x d), where
d isthe number of definitionsin the program (see, e.g., [129]). From d < = it followsthat a
PDG can be constructed in O(e x n) time.

One of the self-evident advantages of PDG-based slicing methodsis that, once the PDG
has been computed, slices can be extracted inlinear time, O(V + E), where V and E are the
number of vertices and edges in the dlice, respectively. Thisis especially useful if severa
dlicesof the same programarerequired. Intheworst case, whenthedlice consistsof theentire
program, V and E are equal to the number of vertices and edges of the PDG, respectively.
In certain cases, there can be a quadratic blowup in the number of flow dependence edges of
aPDG, eg., F = O(V?). Weare not aware of any slicing agorithmsthat use more efficient
program representations such as the SSA form [8]. However, Yang et al. [149] use Program
Representation Graphs as a basis for a program integration algorithm that accommodates
semantics-preserving transformations. This algorithm is based on techniques similar to
dicing.

procedures. In the discussion below, Visible denotes the maxima number of parameters
and variablesthat are visibleinthe scope of any procedure, and Params denotesthe maximum
number of formal-in vertices in any procedure dependence graph of the SDG. Moreover,
TotalStesis the total number of call sitesin the program; N, and E,, denote the number of
verticesand edgesin the CFG of procedure p, and Sites, the number of call sitesin procedure
p.

Weiser does not state an estimate of the complexity of his interprocedural slicing algo-
rithm [147]. However, one can observe that for an initial criterion C, the set of criteriain
(Up U DowN)*(C) contains at most O(Msible) criteria in each procedure p. An intrapro-
cedural slice of procedure p takes time O(Misible x N, x E,). Furthermore, computation
of interprocedural summary information can be donein O(Globals x Total Stes) time [39].
Therefore, the following expression constitutes an upper bound for the time required to slice
the entire program:

O(Globals x TotalSites+ Visible? x Z,(Stes, x N, x E,))

The approach by Bergeretti and Carré requires that, in the worst case, the i relation is
computed for each procedure. Each call site is replaced by at most Visible assignments.
Therefore, the cost of slicing a procedure p is O(Misiblé x (n + Misible x Stes,)), and the
total cost of computing a slice of the main programis:

O(Misible? x Z,(n + Visible x Stes,))

Aswasdiscussed in Section 3.3.2.1, the approach by Hwang, Du, and Chou may require
time exponential in the size of the program.

66 Chapter 3. A Survey of Program Sicing Techniques

Construction of the individual procedure dependence graphs of an SDG takes time
O(Z,(E, x N,)). The Horwitz-Reps-Binkley algorithm for computing summary edges
takestime:

O(TotalSites x E7PC x Params + Total Sites x Sites? x Params?)

where Sitesisthe maximum number of call sitesin any procedure, and EPPC isthe maximum
number of control and data dependence edges in any procedure dependence graph. (for
details, see [77, 128]). The Reps-Horwitz-Sagiv-Rosay approach for computing summary
edges requires

O(P x EPPC x Params + TotalSites x Params’)

time [128]. Here, P denotes the number of procedures in the program. Assuming that
the number of procedures P is usually much less than the number of procedure cals
Total Stes, both terms of the complexity measure of the Reps-Horwitz-Sagiv-Rosay approach
are asymptotically smaller than those of the Horwitz-Reps-Binkley algorithm.

Once an SDG has been constructed, a slice can be extracted from it (in two passes) in
O(V + E), where V' and E are the number of vertices and edges in the dlice, respectively.
In the worst case, V and E are the number of vertices and edges in the SDG, respectively.

Binkley does not state a cost estimate of his algorithm for interprocedural dlicing in the
presence of parameter aliasing [31]. The cost of his “extension” for deriving executable
interprocedural slices [30] from “non-executable” interprocedural slicesislinear in the size
of the SDG.

Jackson and Rollins [82], who use an adaptation of Ernst’s algorithm for determining
summary dependences (see Section 3.3.2.3) claim a bound of O(v x n?), where v denotes
the number of variables, and n the number of portsin the dependence graph. Observe that
each port iseffectively apair (variable, statement)). In the approach by Jackson and Rallins,
extraction of a dliceis done in a single traversal of the dependence graph, which requires
O(V + E) time, where V and E denote the number of vertices (i.e., ports) and edgesin the
dlice.

unstructured control flow. Lyle[108] presented a conservative solution for dealing with
unstructured control flow. Hisagorithmisasdlightly modified version of Weiser’salgorithm
for structured control flow [147], which requires O(v x n x e) time.

No complexity estimates are stated in [3, 13, 37]. However, the differences between
these algorithms and the “ standard” PDG-based dlicing algorithm are only minor: Ball and
Horwitz[13] and Choi and Ferrante[37] useadlightly different control dependence subgraph
in conjunction with the data dependence subgraph, and Agrawal [3] uses the standard PDG
in conjunction with a lexical successor tree that can be constructed in linear time, O(n).
Thereforeit isto be expected that the efficiency of these algorithmsis roughly equivalent to
that of the standard, PDG-based algorithm discussed above.

composite variables and pointers. Lyle's approach for dlicing in the presence of arrays
[108] has the same complexity bound as Weiser’'s solution [147] for scalar variables only,

3.3. Methods for static dlicing 67

8 B 2 L8 %)

5 =l o B o

-8 o _ Qo .= =

Q > © E & =

(@) E f= S > Q

o c 5 O 5

DO @)
Dataflow Weiser [147, 107] Lyle[108] Lyle[108] —
Equations
Inf.-Flow Bergeretti, Carré[22] — — —
Relations
Horwitz et a. [77] Ball, Horwitz [12, 13] | Agrawal et a.[4]* | Cheng[35]
PDG-based Lakhotia[102] Choi, Ferrante [37]
Repset al. [129, 128] Agrawal [3]
Binkley [30]

*Algorithms for computing conservative approximations of data dependences in the
presence of aliasing can be used. See Section 3.3.4.

Table 3.3: Orthogonal dimensions of static slicing.

because the worst-case length of reaching definitions paths remains the same.

The cost of constructing PDGs of programs with composite variables and pointers ac-
cording to the algorithm proposed by Agrawal et a. [4] isthe same as that of constructing
PDGs of programs with scalar variables only. This is the case because the worst-case
length of (potential) reaching definitions paths remains the same, and determining Maybe
Intersections and Partial Intersections (see Section 3.3.4) can be done in constant time.

Lyleand Binkley do not state acost estimate for their approach for dicing in the presence
of pointers[110].

It should be remarked here that more accurate static slices can be determined in the
presence of non-scalar variables if more advanced (but computationally expensive) data
dependence analysis were performed (see, e.g., [113, 150]).

concurrency. Cheng[35] doesnot state any complexity estimatefor determining selection,
synchronization, and communication dependence. The timerequired for extracting slicesis
O(V +E),whereV and E denote the number of verticesand edgesin the PDN, respectively.

3.3.6.4 Combining static dicing algorithms

Table 3.3 highlights “orthogonal” dimensions of static slicing: dealing with procedures,
unstructured control flow, non-scalar variables, and concurrency. For each computation
method, the table shows which papers present a solution for these problems. In principle,
solutionsto different problems could be combined if they appear in the samerow of Table 3.3

68 Chapter 3. A Survey of Program Sicing Techniques

1 DU = { <11 33)7 <11 37>’ <11 311>
2 5o (22,39, (22,4, (22,79),
¥ i oo m Jx 1 o<m 2 Jx <7Z 32, <761048>il<76 710y,
4 (imod2=0) /*1mod2=1/* (5°,8%), (77,3%) }
6° = 18
Poiisie1 TC o= (@49, (3.6, @7,
3’ i <=n /* 2 <= 2 /* <47’6lg <3 8427 <3 5>:
4 (imod2=0) /*2mod2=0 /* (35,77), (4,5°) }

9 .

o F i R = { (@3), (@3, @),
314 ‘_ /* 3 <= 2 /* <37 311> (311 33> <311a37>a

1 <=1 <= 44 48 48 4% 76 710
82 yrite (x) ()5), (7°,7°),
<71°,76> }
(@ (b)

Figure 3.16: (a) Traectory for the example program of Figure 3.2 (a) for input n = 2. (b)
Dynamic Flow Concepts for thistrajectory.

(i.e., if they apply to the same computation method).

3.4 Methodsfor dynamic dicing

3.4.1 Basicalgorithms

In this section, we will study basic algorithms for dynamic slicing of structured, single-
procedure programs with scalar variables.

3.4.1.1 Dynamic flow concepts

Korel and Laski [99, 100] describe how dynamic slices can be computed. They formalizethe
execution history of a program as atrajectory consisting of a sequence of “occurrences’ of
statementsand control predicates. Labels serve to distinguish between different occurrences
of a statement in the execution history. As an example, Figure 3.16 shows the trajectory for
the program of Figure 3.2 (a) for inputn = 2.

A dynamic dlicing criterion is specified as atriple (x, I?, V') where = denotes the input
of the program, statement occurrence 19 is the ¢! element of the trajectory, and V' is a
subset of the variables of the program’®. Korel and Laski define adynamic slice with respect

16K orel and Laski’s definition of a dynamic slicing criterion is somewhat inconsistent. It assumes that a
trgjectory is available although the input 2 uniquely defines this. A self-contained and minimal definition of a
dynamic slicing criterion would consist of atriple (z, ¢, V') where ¢ is the number of a statement occurrence
in the trajectory induced by input x.

3.4. Methods for dynamic slicing 69

to a criterion (z, 17, V') as an executable program S that is obtained from a program P
by removing zero or more statements. Three restrictions are imposed on S. First, when
executed with input z, the trgjectory of S is identical to the trgectory of P from which
all statement instances are removed that correspond to statements that do not occur in S.
Second, identical values are computed by the program and its slice for all variablesin V' at
the point specified in the criterion. Third, it is required that statement I corresponding to
statement instance 7¢ specified in the slicing criterion occursin S. Korel and Laski observe
that their notion of a dynamic slice has the property that if aloop occurs in the dlice, it is
traversed the same number of timesasin the origina program.

In order to compute dynamic dlices, Korel and Laski introduce three dynamic flow
concepts that formalize the dependences between occurrences of statementsin atrajectory.
The Definition-Use (DU) relation associates a use of a variable with its last definition.
Note that in atrajectory, this definition is uniquely defined. The Test-Control (TC) relation
associates the most recent occurrence of a control predicate with the statement occurrences
in the trgjectory that are control dependent upon it. This relation is defined in a syntax-
directed manner, for structured program constructs only. Occurrences of the same statement
are related by the symmetric Identity (IR) relation. Figure 3.16 (b) shows the dynamic flow
concepts for the trajectory of Figure 3.16 (a).

Dynamic slices are computed in an iterative way, by determining successive sets S°
of directly and indirectly relevant statements. For a slicing criterion (x, I9, V'), the initia
approximation S° contains the last definitions of the variablesin V' in the trajectory before
statement instance /¢, as well as the test actions in the trajectory on which 79 is control
dependent. Approximation Si*! is defined as follows:

Si+1 — Sz U Ai+l
where A1 isdefined as follows:
AT =L XP | XP ¢ S' (XPY') € (DUUTCUIR) forsomeY' € S', p < ¢}

where ¢ is the “label” of the statement occurrence specified in the dlicing criterion. The
dynamic dlice is easily obtained from the fixpoint S of this process (as ¢ is finite, this
always exists): any statement X for which an instance X? occursin S¢ will bein the dlice.
Furthermore, statement I corresponding to criterion 79 is added to the slice.

As an example, the dynamic dlice for the trgjectory of Figure 3.16 and the criterion
(n=2,82 {x})iscomputed. Since the final statement is not control dependent on any
other statement, the initial approximation of the dlice consists of the last definition of x:
A% = {59}, Subsequent iterationswill produce A* = {37, 48}, A2 = {76 1% 33 3! 4%},
and A% = {22, 71}, From this, it follows that:

SC _ { 117 22, 337 44, 767 37, 487 59, 7107 3117 812}

Thus, the dynamic slice with respect to criterion (n = 2,82, { = }) includes every statement
except statement 5, corresponding to statement 6° in the trajectory. This slice was shown
earlier in Figure 3.2 (b).

70 Chapter 3. A Survey of Program Sicing Techniques

_ 1 23 1 77
11 read(n) DU = { <12v33>v (12v34>v
22 i =1 (22v3>v (2 v4>v
33 i <= n <26,7$>, (65,88>a
4* (1 mod 2 = 0) (7,87}
5 -
o r T TC = { (34, (&6),
7 i :=1 + 1 3 -6 4 a5
37 i <= n <3a7>a <4a6> }
3 .
g write() R = { (&3), @3 }
(@ (b)
read (n) ; read (n) ;
i :=1; i :=1;
while (i <= n) do while (i <= n) do
begin begin
if (1 mod 2 = 0) then if (1 mod 2 = 0) then
X := 17 X := 17
else else
1 :=1 + 1
end; end;
write (x) write (x)
(©) (d)

Figure3.17: (a) Trajectory of the example program of Figure 3.2 (a) for input n=1. (b) Dynamic
flow conceptsfor thistrajectory. (c) Dynamic slice for criterion (n = 1, 8%,). (d) Non-terminating
slice with respect to the same criterion obtained by ignoring the effect of the IR relation.

The role of the IR relation calls for some clarification. Consider the trgjectory of the
example program of Figure 3.2 (a) for input n = 1, shown in Figure 3.17 (a). The dynamic
flow concepts for this trajectory, and the slice with respect to criterion (n = 1,8, { z })
are shown in Figure 3.17 (b) and (c), respectively. Note that the slice thus obtained is
a terminating program. However, computing the slice without taking the IR relation into
account would yield the non-terminating program of Figure 3.17 (d). The reason for this
phenomenon (and thus for introducing the IR relation) is that the DU and TC relations only
traverse thetrajectory in the backward direction. The purpose of the IR relationisto traverse
the trgjectory in both directions, and to include all statements and control predicates that are
necessary to ensure termination of loops in the slice. Unfortunately, no proof is provided
that thisis always sufficient.

Unfortunately, traversing the IR relation in the “backward” direction causes inclusion
of statements that are not necessary to preserve termination. For example, Figure 3.18
(a) shows a dlightly modified version of the program of Figure 3.2 (a). Figure 3.18 (b)

3.4. Methods for dynamic slicing 71

n)
(1) read (n) ; 22 i:=1
(2) i := 15 3® i<=n
(3) while (i <= n) do 44 (i mod2 = 0)
begin 6° x := 18
(4) if (1 mod 2 = 0) then| 7° 2z := x
(5) X := 17 8’ i :=1 + 1
else 3B i1 <=n
(6) x := 18; 4% (i mod2 = 0)
(7) Z 1= X; 50 »x .- 17
(8) i :=1 + 1 7z = x
end; 812 {1 .= i+ 1
(9) write(z) 38 i <= n
9 write(z)
(@ (b)

Figure 3.18: (a) Example program. (b) Trajectory for input n = 2.

shows the trajectory for this program. From this trajectory, it follows that (76, 71!) € IR,
(6°,75) € DU, and (5%, 711) € DU. Therefore, both statements (5) and (6) will beincluded
in the dlice, although statement (6) is neither needed to compute the final value of z nor to
preserve termination.

We conjecture that restricting the IR relation to statement instances that correspond to
control predicates in the program would yield smaller dlices. Alternatively, it would be
interesting to investigate if using a dynamic variation of Podgurski and Clarke's notion of
weak control dependence [123] could be used instead of the IR relation.

3.4.1.2 Dynamic dependencerelations

Gopal [62] describes an approach where dynamic dependence relations are used to compute
dynamic slices. He introduces dynamic versions of Bergeretti and Carr€'s information-flow
relations'’ \s, 115, and ps (See Section 3.3.1.2). The g relation containsall pairs (v, e) such
that statement e depends on the input value of v when program S is executed. Relation 7ig
containsall pairs (e, v) such that the output value of v depends on the execution of statement
e. A par (v,v') isinrelation pg if the output value of v" depends on the input value of v. In
these definitions, it is presumed that S is executed for some fixed input.

For empty statements, assignments, and statement sequences Gopal’s dependence rela
tions are exactly the same as for the static case. The (static) information-flow relations for
a conditional statement are derived from the statement itself, and from the statements that
constitute its branches. For dynamic dependence relations, however, only the dependences
that arise in the branch that is actually executed are taken into account. Asin [22], the

"Gopal usesthenotation sy, v, and v5 . Inorder to avoid confusion and to maketherelation with Bergeretti
and Carréswork explicit (see Section 3.3.1.2), we will use A g, fig, and pg instead.

72 Chapter 3. A Survey of Program Sicing Techniques

XE = 0 XSI;SZ = X.Sl U Ppg, - XSZ Xu::e = VARS(e) X {e}

ﬁe = w ﬁsl;SZ = ﬁSl ‘552 U ﬁSZ ﬁv::e = { (e,'U) }

p. = ID | Pss, = Ps, Ps, Po—e = (VARS(c)x {v}) U (ID—(v,v))
% _ (VARS(e) x {e}) U Ag, if e evaluatesto true

fethenSide S = 1 (VARs(e) x {e}) U Xs, if e evaluatesto false

_ _ ({ e} x DEFS(S1)) U Tig, if e evaluatesto true
Hifethenidsesa = 1 (fe} x DEFS(S2)) U Tig, if ¢ evaluatesto false
_ _ (VARs(e) x DEFS(S1)) U pg, if e evaluatesto true
Pitethen SidseS; = | (VARs(e) x DEFS(S2)) U pg, if e evaluatesto false

Figure 3.19: Definition of dynamic dependencerelations.

EXPRESSION #* || AFFECTED VARIABLES

{i,n, x}
{i =}
{i,x}
{i, =}

O N|O| A W DN -

*Expressions are indicated by the line numbersin Figure 3.2.

Figure 3.20: The7 relation for the example program of Figure 3.2 (a) andinputn = 2.

dependence relation for a while statement (omitted here) is expressed in terms of depen-
dence relations for nested conditionals with equivalent behavior. However, whereas in the
static case loops are effectively replaced by their infinite unwindings, the dynamic case only
requires that aloop be unwound & times, where k is the number of times the loop executes.
The resulting definitions are very convol uted because the dependence relations for the body
of theloop may differ in each iteration. Hence, a simple transitive closure operation, aswas
used in the static case, isinsufficient.

Figure 3.19 summarizes Gopal’s dynamic dependence relations. Here, DEFS(.S) denotes
the set of variables that is actually modified by executing statement S. Note that this
definition of DEFS is “dynamic” in the sense that it takes into account which branch of an
if statement is executed. Using these relations, a dynamic slice w.r.t. the final value of a
variable v is defined as:

o, ={e| (e, v) € 7ip}

Figure 3.20 (a) shows the information-flow relation 7 for the (entire) program of Fig-

3.4. Methods for dynamic slicing 73

read(n) ; read(n) ;
i :=1; i :=1;
while (i <= n) do while (i <= n) do
begin begin
if (1 mod 2 = 0) then if (i mod 2 = 0) then
X := 17
else else
X := 18;
Z 1= X;
end; i :=1 + 1
end;
(@ (b)

Figure 3.21: (a) Non-terminating slice computed for example program of Figure 3.2 (a) with
respect to the final value of x, for inputn = 1. (b) Slice for the example program of Figure 3.18
(a) with respect to the final value of x, forinputn = 2.

ure 3.2 (a)'8. From thisrelation it follows that the set of expressionsthat affect the value of
x at the end of the program for inputn = 2 are{ 1, 2, 3, 4, 5, 7 }. The corresponding
dynamic dlice is almost identical to the one shown in Figure 3.1 (b), the only difference
being the fact that Gopal’s algorithm excludes the final statement write (x) online8.

For certain cases, Gopal’s algorithm may compute a non-terminating slice of aterminat-
ing program. Figure 3.21 (a) shows the slice for the program of Figure 3.2 and input n =
1 as computed according to Gopal’s algorithm.

An advantage of using dependence relationsis that, for certain cases, smaller slices are
computed than by Korel and Laski’salgorithm. For example, Figure 3.21 (b) showsthedlice
with respect to the final value of z for the example program of Figure 3.18 (a), for input n
= 2. Observe that the assignment x := 18, which occurs in the slice computed by the
algorithm of Section 3.4.1.1, isnot included in Gopal’s slice.

3.4.1.3 Dependence graphs

Miller and Choi [116] were the first to introduce a dynamic variation of the PDG, called
the dynamic program dependence graph. These graphs are used by their parallel program
debugger to perform flowback analysis [15] and are constructed incrementally, on demand.
Prior to execution, a (variation of a) static PDG is constructed, and the object code of
the program is augmented with code that generates a log file. In addition, an emulation
package is generated. Programs are partitioned into so-called emulation blocks (typically,
a subroutine). During debugging, the debugger uses the log file, the static PDG, and the

18Gopal does not define information-flow relations for 1/0 statements. For the purposes of this example, it
is assumed that the statement read (n) can be treated as an assignment n : = SomeConstant, and that the
statementswrite (sum) and write (product) should be treated as empty statements.

74 Chapter 3. A Survey of Program Sicing Techniques

emulation package to re-execute an emulation block, and obtain the information necessary
to construct the part of the dynamic PDG corresponding to that block. In case the user wants
to perform flowback analysisto parts of the graph that have not been constructed yet, more
emulation blocks are re-executed.

Agrawal and Horgan [6] develop an approach for using dependence graphs to compute
dynamic slices. Their first two algorithms for computing dynamic slices are inaccurate, but
useful for understanding their final approach. The initial approach uses the PDG as it was
discussed in Section 3.3.1.3'°, and marks the vertices that are executed for a given test set.
A dynamic dlice is computed by computing a static slice in the subgraph of the PDG that is
induced by the marked vertices. By construction, this slice only contains vertices that were
executed. This solution isimprecise because it does not detect situations where there exists
aflow edge in the PDG between a marked vertex v, and a marked vertex v, but where the
definitions of v, are not actually used at v,.

For example, Figure 3.22 (a) shows the PDG of the example program of Figure 3.2 (a).
Suppose that we want to compute the slice w.r.t. the final value of x for input n = 2.
All vertices of the PDG are executed, causing all PDG vertices to be marked. The static
slicing algorithm of Section 3.3.1.3 will therefore produce the entire program as the slice,
eventhoughtheassignment x := 18 isirrelevant. Thisassignmentisincludedintheslice
because there exists a dependence edge from vertex x := 18 to vertex write (x) even
though this edge does not represent a dependence that occurs during the second iteration of
the loop. More precisaly, this dependence only occurs in iterations of the loop where the
control variable 1 hasan odd value.

The second approach consists of marking PDG edges as the corresponding dependences
arise during execution. Again, the dlice is obtained by traversing the PDG, but this time
only along marked edges. Unfortunately, this approach still producesimprecise slicesin the
presence of loops because an edge that is marked in some loop iteration will be presentin all
subsequent iterations, even when the same dependence does not recur. Figure 3.22 (b) shows
the PDG of the example program of Figure 3.18 (a). Forinputn = 2, al dependence edges
will be marked, causing the dlice to consist of the entire program. It is shown in [6] that
a potential refinement of the second approach, consisting of unmarking edges of previous
iterations, isincorrect.

Agrawal and Horgan point out the interesting fact that their second approach for com-
puting dynamic slices produces results that are identical to those of the algorithm proposed
by Korel and Laski (see Section 3.4.1.1). However, the PDG of a program (with option-
ally marked edges) requires only O(n?) space (n denotes the number of statements in the
program), whereas Korel and Laski’s trajectories require O(N) space, where N denotes the
number of executed statements.

Agrawal and Horgan's second approach computes overly large slices because it does not
account for the fact that different occurrences of a statement in the execution history may
be (transitively) dependent on different statements. This observation motivates their third

19The dependence graphs of [6] do not have an entry vertex. The absence of an entry vertex does not result
inadifferent dice. For reasons of uniformity, all dependencegraphs shownin thisthesis have an entry vertex.

3.4. Methods for dynamic slicing 75

Figure 3.22: (a) PDG of the program of Figure 3.2 (a). (b) PDG of the program of Figure 3.18
(@). (c) DDG of the program of Figure 3.18 (a).

solution: create adistinct vertex in the dependence graph for each occurrence of a statement
in the execution history. Thiskind of graph is referred to as a Dynamic Dependence Graph
(DDG). A dynamic dlicing criterion is identified with a vertex in the DDG, and a dynamic
dliceiscomputed by determining all DDG vertices from which the criterion can be reached.
A statement or control predicate isincluded in the sliceif the criterion can be reached from
at least one of the vertices for its occurrences.

Figure 3.22 (c) showsthe DDG for the example program of Figure 3.18 (a). The dlicing
criterion corresponds to the vertex labeled write (z), and al vertices from which this
vertex can be reached are indicated by shading. Observe that the criterion cannot be reached
from the vertex labeled x := 18. Therefore the corresponding assignment is not in the
dlice.

The disadvantage of using DDGs is that the number of verticesin a DDG is equa to
the number of executed statements. The number of dynamic slices, however, isin the worst
case O(2"), where n isthe number of statementsin the program being sliced. Figure 3.23

76 Chapter 3. A Survey of Program Sicing Techniques

program Q";
read (x1) ;
read (x,) ;
MoreSubsets := true;
while MoreSubsets do
begin
Finished := false;
y = 0;
while not (Finished) do
begin
read (i) ;
case (i) of
l: v =y + X;;
n: Y =Y + Xpnj;
end,-
read (Finished) ;
end;
write(y) ;
read (MoreSubsets) ;
end
end.

Figure 3.23: Program Q" with O(2") different dynamic slices.

shows a program Q™ that has O(2") dynamic slices. The program reads a number of values
invariablesx; (1 < i < n), and allows one to compute the sum >_, ¢ x, for any number of
subsets S C { %3, ---, x, }. Thecrucial observation here isthat, in each iteration of the
outer loop, the slice with respect to statement write (y) will contain exactly the statements
read (x;) forx; € S. Sinceaset with n elements has 2™ different subsets, program Q" has
O(2") different dynamic slices.

Agrawal and Horgan propose to reduce the number of vertices in the DDG by merging
vertices for which the transitive dependences map to the same set of statements. In other
words, anew vertex is only introduced if it can create a new dynamic slice. Obvioudly, this
check involves some run-time overhead. The resulting graph is referred to as the Reduced
Dynamic Dependence Graph (RDDG) of a program. Slices computed using RDDGs have
the same precision as those computed using DDGs.

In the DDG of Figure 3.22 (), the verticeslabeled 1 := i + 1 and the rightmost
two verticeslabeled 1 <= n have the same transitive dependences; these vertices depend
on statements 1, 2, 3, and 8 of the program of Figure 3.18 (a). Hence, the RDDG for this
program (given input n = 2) is obtained by merging these four DDG vertices into one
vertex.

Agrawal and Horgan [6] present an algorithm for the construction of an RDDG without
having to keep track of the entire execution history. The information that needs to be

3.4. Methods for dynamic slicing 77

maintained is. (i) for each variable, the vertex corresponding to its last definition, (ii) for
each predicate, the vertex corresponding to its last execution, and (iii) for each vertex in the
RDDG, the dynamic slice w.r.t. that vertex.

3.4.2 Procedures

Agrawal, DeMillo and Spafford [4] consider dynamic dlicing of procedures with call-by-
value, call-by-reference, cal-by-result, and call-by-value-result parameter-passing. A key
property of their method isthat dynamic data dependences are defined in terms of definitions
and uses of memory locations; this has the advantage that global variables do not require
special treatment, and that no alias analysisis necessary. Agrawal et al. describe how each
parameter passing mechanism can be modeled by a set of mock assignmentsthat isinserted
before and/or after each procedure call. In the subsequent discussion, it is assumed that a
procedure P with formal parameters f1, - - -, f,, iscalled with actual parametersag, - - -, a,.
Call-by-value parameter-passing can be modeled by a sequence of assignments fi:=aq;

-+ fni=a, that is executed before the procedure is entered. In order to determine the
memory cells for the correct activation record, the USE sets for the actual parameters q; are
determined before the procedure is entered, whereas the DEF sets for the formal parameters
f; are determined after the procedureisentered. For Call-by-value-result parameter-passing,
additional assignmentsof formal parametersto actual parameters have to be performed upon
exit from the procedure. Call-by-reference parameter-passing does not require any actions
specific to dynamic slicing, asthe same memory cell isassociated with corresponding actual
and formal parameters a; and f;.

An aternative approach for interprocedural dynamic slicing was presented by Kamkar,
Shahmehri, and Fritzson [90, 89]. This work distinguishes itself from the solution by
Agrawal et al. by the fact that the authors are primarily concerned with procedure-level
dlices. That is, they study the problem of determining the set of call sitesin a program that
affect the value of avariable at a particular call site.

During execution, a (dynamic dependence) summary graph is constructed. The vertices
of this graph, referred to as procedure instances, correspond to procedure activations anno-
tated with their parameters®. The edges of the summary graph are either activation edges
corresponding to procedure calls, or summary dependence edges. The latter type reflects
transitive data and control dependences between input and output parameters of procedure
instances.

A dicing criterionis defined as a pair consisting of a procedure instance, and an input or
output parameter of the associated procedure. After constructing the summary graph, adlice
with respect to adlicing criterion is determined in two steps. First, the parts of the summary
graph from which the criterion can be reached is determined; this subgraph is referred to as
an execution slice. Vertices of an execution slice are partial procedure instances, because

DMore precisely, Kamkar refers to the incoming and outgoing variables of a procedure. This notion also
appliesto global variables that are referenced or modified in a procedure.

78 Chapter 3. A Survey of Program Sicing Techniques

some parameters may be “sliced away”. An interprocedural program slice consists of all
call sitesin the program for which a partial instance occurs in the execution slice.

Three approachesfor constructing summary graphs are considered. In thefirst approach,
intraprocedural data dependences are determined statically: this may result in inaccurate
dlicesinthe presenceof conditionals. Inthe second approach, al dependencesare determined
at run-time. While this results in accurate dynamic dlices, the dependences for a procedure
P haveto be re-computed every time P is called. The third approach attempts to combine
the efficiency of the “static” approach with the accuracy of the “dynamic” approach by
computing the dependences inside basic blocks statically, and the inter-block dependences
dynamically. In all approaches control dependences® are determined statically. It isunclear
how useful this third approach is in the presence of composite variables and pointers,
where the run-time intra-block dependences cannot be determined statically: additional
alias analysis would have to be performed at run-time.

Kamkar [87] adapts the interprocedural slicing method by Kamkar et al. [90, 89] to
compute statement-level interprocedural slices (i.e., slices consisting of a set of statements
instead of a set of call sites). In essence, this is accomplished by introducing a vertex for
each statement instance (instead of each procedure instance) in the summary graph. The
samethree approaches (static, dynamic, combined static/dynamic) for constructing summary
graphs can be used.

Choi, Miller and Netzer [38] discuss an approach for interprocedural flowback analysis.
Initialy, it is assumed that a procedure call may modify every global variable; to this end,
the static PDG is augmented with linking edges indicating potential data dependences. Ina
second phase, interprocedural summary information is used to either replace linking edges
by data dependence edges, or delete them from the graph. Some linking edges may remain;
these have to be resolved at run-time.

3.4.3 Compositedatatypesand pointers
3.4.3.1 Dynamic flow concepts

Korel and Laski [100] consider slicing in the presence of composite variables by regarding
each element of an array, or field of arecord as adistinct variable. Dynamic data structures
are treated as two distinct entities, namely the pointer itself and the object being pointed to.
For dynamically allocated objects, they propose a solution where a unique name is assigned
to each object.

3.4.3.2 Dependence graphs

Agrawal, DeMillo, and Spafford [4] present adependence graph based algorithm for dynamic
dicing in the presence of composite data types and pointers. Their solution consists of

2K amkar et al. use anotion of termination-preserving control dependence that is similar to Podgurski and
Clarke's weak control dependence [123].

3.4. Methods for dynamic slicing 79

expressing DerF and UsE setsin terms of actual memory locations provided by the compiler.
Thealgorithm of [4] issimilar to that for static slicingin the presence of composite datatypes
and pointers by the same authors (see Section 3.3.4). However, during the computation of
dynamic reaching definitions, no Maybe I ntersections can occur—only Complete and Partial
I ntersections.

Choi, Miller, and Netzer [38] extend the flowback analysis method by Miller and Choi
[116] (see Section 3.4.1.3) in order to deal with arrays and pointers. For arrays, linking
edges are added to their static PDGs; these edges express potential data dependences that
are either deleted, or changed into genuine data dependences at run-time. Pointer accesses
are resolved at run-time, by recording all uses of pointersin the log file.

3.4.4 Concurrency
3.4.4.1 Dynamic flow concepts

Korel and Ferguson [98] extend the dynamic slicing method of Korel and Laski [99, 100]
to distributed programs with Ada-type rendezvous communication (see, e.g., [18]). For a
distributed program, the execution history is formalized as a distributed program path that,
for each task, comprises: (i) the sequence of statements (trajectory) executed by it, and (ii)
asequence of triples (A, C, B) identifying each rendezvous the task isinvolved in. Here, A
identifies the accept statement in the task, B identifies the other task that participated in the
communication, and C' denotes the entry call statement in the task that was involved in the
rendezvous.

A dynamic dlicing criterion of adistributed program specifies. (i) theinput of each task,
(i) adistributed program path P, (iii) atask w, (iv) astatement occurrence g in the trajectory
of w, and (v) avariablev. A dynamic slice with respect to such a criterion is an executable
projection of the program that is obtained by deleting statements from it. However, the
program is only guaranteed to preserve the behavior of the program if the rendezvousin the
dlice occur in the same relative order asin the program. (Note that not all rendezvous of the
program need to be in the dlice.)

The Korel-Ferguson method for computing slices of distributed programs of isbasically
a generalization of the Korel-Laski method, though stated in a dightly different manner. In
addition to the previously discussed dynamic flow concepts (see Section 3.4.1.1), a notion
of communication influence is introduced, to capture the interdependences between tasks.
The authors also present a distributed version of their algorithm that uses a separate slicing
process for each task.

3.4.4.2 Dependence graphs

Duesterwald, Gupta, and Soffa [50] present a dependence graph based algorithm for com-
puting dynamic slices of distributed programs. They introduce a Distributed Dependence

80 Chapter 3. A Survey of Program Sicing Techniques

Graph (DDG)? for representing distributed programs.

A distributed program P consists of a set of processes Py, ---, P,. Communica
tion between processes is assumed to be synchroneous and nondeterministic and is ex-
pressed by way of send and receive statements. A distributed dynamic dlicing criterion
(I, X1), ---, (I, X,,) specifiesfor each process F, itsinput I;, and a set of statements X;.
A distributed dynamic sice S is an executable set of processes P, ---, P such that the
statements of P/ are a subset of those of P,. Slice S computes the same values at statements
in each X; as program P does, when executed with the same input. This is accomplished
by: (i) including all input statements in the slice, and (ii) replacing nondeterministic com-
munication statements in the program by deterministic communication statements in the
dice.

A DDG containsasingle vertex for each statement and control predicate in the program.
Control dependences between statements are determined statically, prior to execution. Edges
for data and communication dependences are added to the graph at run-time. Slices are
computed in the usual way by determining the set of DDG vertices from which the vertices
specified in the criterion can be reached. Both the construction of the DDG and the computa-
tion of slicesisperformed in adistributed manner; aseparate DDG construction process and
slicing process is assigned to each process P; in the program; these processes communicate
when a send or receive statement is encountered.

Dueto thefact that asinglevertex isused for al occurrences of a statement in the execu-
tion history, inaccurate slices may be computed in the presence of loops (see Section 3.4.1.1).
For example, the dlice with respect to the final value of z for the program of Figure 3.18
withinputn = 2 will bethe entire program.

Cheng [35] presents an alternative dependence graph based algorithm for computing
dynamic slices of distributed and concurrent programs. The PDN representation of a con-
current program (see Section 3.3.5) isused for computing dynamic slices. Cheng’salgorithm
is basically a generalization of the initial approach proposed by Agrawal and Horgan [6]:
the PDN vertices corresponding to executed statements are marked, and the static slicing
algorithm of Section 3.3.5 is applied to the PDN subgraph induced by the marked vertices.
Aswas discussed in Section 3.4.1.3, thisyields inaccurate slices.

Choi et al. [116, 38] describe how their approach for flowback analysis can be extended
to paralel programs. Shared variables with semaphores, message-passing communication,
and Ada-type rendezvous mechanismsare considered. To thisend, aparallel dynamic graph
isintroduced that contains synchronization vertices for synchronization operations (such as
P and V' on a semaphore) and synchronization edges that represent dependences between
concurrent processes. Choi et al. explain how, by analysis of the parallel dynamic graph,
read/write and write/write conflicts between concurrent processes can be found.

2This abbreviation ‘DDG’ used in Section 3.4.4.2 should not be confused with the notion of a Dynamic
Dependence Graph that was discussed earlier in Section 3.4.1.

3.4. Methods for dynamic slicing 81

a b
[8) c ©

58| 3 ts5| 58| g

B8 | < g3 x| ¢

a=| 3 S @ 3

e o s c

) o

O Joi O

=

Korel, Laski [99, 100] D yes no S AP no
Korel, Ferguson [98] D yes no S A yes
Gopal [62] I no no S no
Agrawal, Horgan [6] G no no S no
Agrawal et d. [2, 4] G no yes S AP no
Kamkar et al. [90, 89] G no yes S no
Duesterwald et a. [50] G yes no S AP yes
Cheng [35] G no no S yes
Choi et a. [116, 38] G no yes S AP yes
Field et a. (Chap. 5, 6) R yes no S AP no

*D = dynamic flow concepts, | = dynamic dependence relations, G = reachability in
a dependence graph. R = dependence tracking in term graph rewriting systems (see
Section 3.6).

S = scalar variables, A = arrays/records, P = pointers.

Table 3.4: Overview of dynamic dlicing methods.

345 Comparison

In this section, we compare and classify the dynamic glicing methods that were presented
earlier. Thesectionisorganized asfollows: Section 3.4.5.1 summarizesthe problemsthat are
addressed in the literature. Sections 3.4.5.2 and 3.4.5.3 compare the accuracy and efficiency
of dicing methods that address the same problem, respectively. Finally, Section 3.4.5.4
investigates the possibilitiesfor “combining” algorithmsthat deal with different problems.

3451 Overview

Table 3.4 lists the dynamic slicing algorithms discussed earlier, and summarizes the issues
studied in each paper. For each paper, the table shows. (i) the computation method,
(ii) whether or not the computed slices are executable programs, (iii) whether or not an
interprocedural solutionis supplied, (iv) the datatypes under consideration, and (v) whether
or not concurrency is considered. Similar to Table 3.2, the table only shows problems that
have been addressed. It does not indicate how various agorithms may be combined, and it
also does not give an indication of the quality of the work. The work by Field et al. (see
Chapters 4, 5, and 6) mentioned in Table 3.4 relies on substantially different techniquesthan
those used for the dynamic dlicing algorithms discussed previously, and will therefore be

82 Chapter 3. A Survey of Program Sicing Techniques

studied separately in Section 3.6.

Unlikein the static case, there exists a significant difference between methods that com-
pute executableslices[99, 100, 50, 98], and approachesthat compute slicesmerely consisting
of sets of statements [6, 4, 62]. The latter type of slice may not be executable due to the
absence of assignments for incrementing loop counters?. For convenience, we will hence-
forth refer to such dlices as “non-executable” slices. As was discussed in Section 3.4.1.1,
the algorithmsthat compute executabl e dynamic slices may produce inaccurate resultsin the
presence of loops.

Apart from thework by Venkatesh [137], thereisvery little semantic justification for any
of the methodsfor computing “non-executable” slices. Theagorithmsof [116, 6, 90, 35, 89]
are graph-reachability algorithmsthat compute a set of statements that directly or indirectly
“affect” the values computed at the criterion. Besides the algorithmsthemselves, little or no
attention is paid to formal characterization of such slices.

3.4.5.2 Accuracy

basic algorithms. The slices computed by Korel and Laski’'s algorithm [99, 100] (see
Section 3.4.1.1) are larger than those computed by the algorithms by Agrawal and Horgan
[6] (see Section 3.4.1.3) and Gopal [62] (see Section 3.4.1.2). This is due to Korel and
Laski’s constraint that their slices should be executable.

procedures. Dependence graph based algorithmsfor interprocedural dynamicslicingwere
proposed by Agrawal, DeMillo, and Spafford [4], and by Kamkar et al. [90, 89] (see
Section 3.4.2). It isunclear if one of these algorithms produces more accurate slices than
the other.

composite variables and pointers. Korel and Laski [100] (see Section 3.4.1.1), and
Agrawal, DeMillo, and Spafford (see Section 3.4.1.3) proposed methodsfor dynamic slicing
in the presence of composite variables and pointers. We are unaware of any difference in
accuracy.

concurrency. Korel and Ferguson [98] (see Section 3.4.4.1) and Duesterwald, Gupta, and
Soffa [50] (see Section 3.4.4.2) compute executable slices, but deal with nondeterminism
in a different way: the former approach requires a mechanism for replaying rendezvous
in the dice in the same relative order as they appeared in the original program, whereas
the latter approach replaces nondeterministic communication statements in the program by
deterministic communication statements in the slice. Cheng [35] and Choi et al. [116, 38]
(see Section 3.4.4.2) do not address this problem because the slices they compute are not
necessarily executable. The dynamic slicing methods by Cheng and Duesterwald et a. are
inaccurate because they are based on “static” dependence graphs in which no distinction

230f course, such a slice may be executed anyway; however, it may not terminate.

3.4. Methods for dynamic slicing 83

is made between the different occurrences of a statement in the execution history (see the
discussion in Section 3.4.1.3).

3.4.5.3 Efficiency

Since dynamic dicing involves run-time information, it is not surprising that al dynamic
slicing methods discussed in this section have time requirements that depend on the number
of executed statements (or procedure callsin the case of [90, 89]) N. All algorithms spend
at least O(N) time during execution in order to store the execution history of the program, or
to update dependence graphs. Certain algorithms (e.g., [99, 100, 98]) traverse the execution
history in order to extract the dice and thus require again at least O(NV) time for each
dlice, whereas other algorithms require | ess (sometimes even constant) time. Whenever time
requirements are discussed bel ow, the time spent during execution for constructing histories
or dependence graphswill beignored. Space requirementswill always be discussed in detail.

basic algorithms. Korel and Laski’s solution [99, 100] (see Section 3.4.1.1) requires
O(N) space to store the trajectory, and O(IN?) space to store the dynamic flow concepts.
Construction of the flow concepts requires O(N x (v + n)) time, where v and n are the
number of variables and statements in the program, respectively. Extracting a single dlice
from the computed flow concepts can be donein O(XN) time.

The algorithm by Gopal [62] (see Section 3.4.1.2) requires O(N) space to store the
execution history and O(n x v) spaceto storethe7ig relation. Thetime required to compute
the i relation for aprogram S isbounded by O(N? x v?). From thisrelation, slices can be
extracted in O(v) time.

Aswasdiscussed in Section 3.4.1.3, the slicing method proposed by Agrawal and Horgan
requires at most O(2") space, where n is the number of statements in the program. Since
verticesin an RDDG are annotated with their dlice, slices can be extracted from it in O(1).

procedures. Theinterprocedural dynamic slicing method proposed by Kamkar et al. [90,
89] (see Section 3.4.2) requires O(P?) space to store the summary graph, where P is the
number of executed procedure calls. A traversal of this graph is needed to extract a dlice;
thistakes O(P?) time.

The time and space requirements of the method by Agrawal, DeMillo, and Spafford
[4] are essentially the same as those of the Agrawal-Horgan basic glicing method discussed
above.

composite variables and pointers. The algorithms by Korel and Laski [100] (see Sec-
tion 3.4.3.1) and Agrawal, DeMillo, and Spafford [4] (see Section 3.4.3.2) for dicing in the
presence of composite variables and pointers are adaptations of the basic slicing algorithms
by Korel and Laski and Agrawal and Horgan, respectively (see the discussion above). These
adaptations, which essentially consist of a change in the reaching definitions functions that

84 Chapter 3. A Survey of Program Sicing Techniques

d 28 8
g 28 :
o E B 3
(@) S > 8
X O S
@)
Dyn. Flow — Korel, Laski [99, 100] | Korel, Ferguson [98]
Concepts
Dyn. Dependence Gopal [62] — —
Relations
Dependence Agrawa et a. [4] Agrawal et a. [4] Duesterwald et al. [50]
Graphs Kamkar et al. [90, 89] Cheng [35]
Choi et al. [116, 38]

Table3.5: Orthogonal dimensions of dynamic dlicing.

are used to determine data dependences, do not affect the worst-case behavior of the ago-
rithms. Therefore, we expect the time and space requirementsto be the same asin the scalar
variable case.

concurrency. The algorithms by Cheng [35] and Duesterwald et al. [50] are based on
static PDGs. Therefore, only O(n?) space is required to store the dependence graph, and
dlices can be extracted in O(n?) time. The distributed slicing algorithm by Duesterwald et
al. [50] uses a separate dlicing process for each process in the program; the slicing process
for process P, requirestime O(e;), where e; isthe number of edgesin the PDG for process
P;. The communication overhead between the slicing processes requires at most O(e) time,
where e isthe number of edgesin the entire graph.

3.4.5.4 Combining dynamic dicing algorithms

Table 3.5 displays solutions to “orthogonal” dimensions of dynamic dlicing: dealing with
procedures, composite variables and pointers, and communication between processes. The
algorithms based on dynamic flow concepts for dealing with composite variables/pointers
[100], and concurrency [98] may be integrated with little problems. For dependence graphs,
however, the situation is slightly more complicated because:

e Different graph representations are used. Agrawal et a. [4], Kamkar et al. [90, 89]
and Choi et al. [116, 38] use dynamic dependence graphs with distinct vertices for
different occurrence of statements in the execution history. In contrast, Duesterwald
et a. [50] and Cheng [35] use variations of static PDGs.

e The dynamic dlicing by Agrawal et a. [4] is based on definition and use of memory
locations. All other dependence graph based slicing methods are based on definitions

3.5. Applications of programdlicing 85

and uses of variable names.

Furthermore, itisunclear if the combined static/dynamic interprocedural slicing approach by
Kamkar etal. [90, 89] ispractical inthe presence of compositevariablesand pointers, because
theintra-block dependences cannot be determined statically in this case, and additional alias
analysiswould be required at run-time.

3.5 Applicationsof program dlicing

3.5.1 Debugging and program analysis

Debugging can be a difficult task when one is confronted with a large program, and few
clues regarding the location of a bug. Program dlicing is useful for debugging, because it
potentially alows one to ignore many statements in the process of localizing a bug [108].
If a program computes an erroneous value for a variable x, only the statements in the slice
w.r.t. x have (possibly) contributed to the computation of that value. In thiscase, itislikely
that the error occurs in the one of the statements in the slice. However, it need not always
be the case that the error occurs in the dlice, as an error may consist of a statement that is
missing inadvertently. However, in situations like thisit is probable that more, or different
statements show up in the slice than one would expect.

Forward dlices are also useful for debugging. A forward slice w.r.t. a statement s can
show how a value computed at s is being used subsequently, and can help the programmer
ensure that s establishes the invariants assumed by the later statements. For example, this
can be useful in catching off-by-one errors. Another purpose of forward dlicing isto inspect
the parts of a program that may be affected by a proposed modification, to check that there
are no unforeseen effects on the program’s behavior.

Lyleand Weiser [109] introduce programdicing, amethod for combining theinformation
of different dlices. The basic idea is that, when a program computes a correct value for
variable x and an incorrect value for variable y, the bug is likely to be found in statements
that are in the slice w.r.t. y, but not in the slice w.r.t. z. This approach is not fail-safe
in the presence of multiple bugs, and when computations that use incorrect values produce
correct values (referred to as coincidental correctness by Agrawal [2]). The authors claim
that program dicing still produces useful results when these assumptions are rel axed.

Bergeretti and Carré [22] explain how static slicing methods can detect “dead” code,
i.e., statements that cannot affect any output of the program. Often, such statements are not
executable dueto the presence of abug. Static slicing can aso be employed to determineuses
of uninitialized variables, another symptom of an error in the program. However, there exist
previous techniques for detection of dead code and uses of uninitialized variables [7, 150]
that do not rely on dicing.

In debugging, one is often interested in a specific execution of a program that exhibits
anomalousbehavior. Dynamic slicesare particularly useful here, becausethey only reflect the
actual dependences of that execution, resulting in smaller dlices than static ones. Agrawal’s
thesis [2] contains a detailed discussion how static and dynamic slicing can be utilized for

86 Chapter 3. A Survey of Program Sicing Techniques

semi-automated debugging of programs [6, 4]. He proposes an approach where the user
gradually “zooms out” from the location where the bug manifested itself by repeatedly
considering larger data and control slices. A data slice is obtained by only taking (static
or dynamic) data dependences into account; a control slice consists of the set of control
predicates surrounding a language construct. The closure of all data and control slices
w.r.t. an expression is the (static or dynamic) slice w.r.t. the set of variables used in
the expression. The information of several dynamic slices can be combined to gain some
insight into the location of a bug. Several operations on slices are proposed to this end,
such as union, intersection, and difference. The difference operation is a dynamic version
of the program “dicing” notion of Lyle and Weiser [109]. Obviously, these operations for
combining slices may produce false leads in the presence of multiple bugs or coincidental
correctness. Agrawal, DeMillo, and Spafford [5] discuss the implementation of a debugging
tool that is based on ideas in previous papers by the same authors |2, 4, 6].

Pan and Spafford [121, 122] present a number of heuristicsfor fault localization. These
heuristics describe how dynamic slices (variations on the type proposed by Agrawal et al.
[6]) can be used for selecting a set of suspicious statements that is likely to contain a bug.
The approach of Pan and Spafford consists of two phases. First, the program is executed for
an extensive number of test cases, and each test case is classified as being error-revealing
or non-error-revealing, depending on the fact whether or not its reveals the presence of a
bug. The second step consists of the actual heuristic rules for combining the information
contained in dynamic slices for these test cases in various ways. As an example, one might
think of displaying the set of statements that occur in every dynamic sice for an error-
revealing test-case—such statements are likely to contain the bug. Other heuristics depend
on the inclusion frequency or the influence frequency of statementsin dynamic slices. The
former denotes the number of dices in which a particular statement occurs, whereas the
latter notion indicates the number of times that a statement in a particular dynamic slice
is“referred to” in terms of data dependence and control dependence. For example, one of
the heuristics given by Pan and Spafford consists of selecting the statements with *high”
influencefrequency in aslicefor aselected error-revealing test case. Notethat thisrequiresa
threshold to be specified by the user that determinesthe boundary between “high” and “low”
frequencies. It is argued that this boundary can be shifted interactively, thereby gradually
increasing the number of statements under consideration.

Choi, Miller and Netzer [38] describe the design and efficient implementation of a
debugger for parallel programsthat incorporatesflowback analysis, anotionintroducedin the
seminal paper by Balzer [15]. Intuitively, flowback analysis reveals how the computation of
values depends on the earlier computation of other values. The difference between flowback
analysisand (dependence graph based) dynamic slicesisthat the former notion allowsoneto
interactively browse through a dependence graph, whereas the latter consists of the set of all
program parts corresponding to vertices of the graph from which a designated vertex—the
criterion—can be reached.

Fritzson et al. useinterprocedural static [59] and dynamic[90, 87] dlicing for algorithmic
debugging [132, 131]. An agorithmic debugger partially automates the task of localizing
a bug by comparing the intended program behavior with the actual program behavior. The

3.5. Applications of programdlicing 87

intended behavior is obtained by asking the user whether or not a program unit (e.g., a
procedure) behaves correctly. Using the answers given by the user, the location of the bug
can be determined at the unit level. By applying the algorithmic debugging processto adlice
w.r.t. anincorrectly valued variable instead of the entire program, many irrelevant questions
can be skipped.

3.5.2 Program differencing and program integration

Program differencing [70] is the task of analyzing an old and a new version of aprogramin
order to determine the set of program components of the new version that represent syntactic
and semantic changes. Such information is useful because only the program components
reflecting changed behavior need to betested. Thekey issuein program differencing consists
of partitioning the components of the old and new version in a way that two components
are in the same partition only if they have equivalent behaviors. The program integration
algorithm of Horwitz, Prins, and Reps [74] discussed below, compares dlices in order to
detect equivalent behaviors. However, an alternative partitioning technique by Yang et al.
[149, 70], which is not based on comparing slices but on comparing smaller units of code,
produces more accurate results because semantics-preserving transformations (e.g., copy
propagation) can be accommodated.

Horwitz, Prins, and Reps [74] use the static dlicing algorithm for single-procedure
programs by Horwitz, Reps, and Binkley [77] as a basis for an algorithm that integrates
changes in variants of a program. The inputs of their algorithm consist of a program Base,
and two variants A and B that have been derived from Base. The algorithm consists of the
following steps:

1. The PDGS Gpyse, G4, and G are constructed. Correspondences between “related”
vertices of these graphs are assumed to be available.

2. Sets of affected points of G4 and G w.rt. Gp,,. are determined; these consist of
verticesin G4 (Gp) that have adifferent dicein G o, 2*.

3. A merged PDG G, is constructed from G4, G, and the sets of affected points
determined in (2).

4. Using G4, G, Gy, and the sets of affected points computed in (2), the algorithm
determines whether or not the behaviors of A and B are preserved in G;. Thisis
accomplished by comparing the slices w.r.t. the affected pointsof G4 (Gg) in Gy,
and G4 (Gp). If different dlices are found, the changes interfere and the integration
cannot be performed.

5. If thechangesin A and B do not interfere, thealgorithmtestsif G, isafeasible PDG,
i.e., if it corresponds to some program. If thisisthe case, program M is constructed
from G;;. Otherwise, the changesin A and B cannot be integrated.

A semantic justification for the single-procedure slicing algorithm of Horwitz, Reps,

These sets of affected points can be computed efficiently by way of a forward slice w.r.t. all directly
affected points, i.e., al verticesin G 4 that do not occur in Ggase and al verticesin that have a different set of
incoming edgesin G 4 and in Gase [76].

88 Chapter 3. A Survey of Program Sicing Techniques

and Binkley [77] and the program integration algorithm of Horwitz, Prins, and Reps [74]
is presented by Reps and Yang [130]. This paper formalizes the relationship between
the execution behaviors of programs, slices of those programs, and between variants of a
program and the corresponding integrated version. The comparison of dlices (in step 4)
relies on the existence of a mapping between the different components. If such a mapping
were not available, however, the techniques of Horwitz and Reps [75] for comparing two
dicesin timethat islinear in the sum of their sizes could be used.

Reps [124] presents an alternative formulation of the Horwitz-Prins-Reps program in-
tegration algorithm that is based on Brouwerian algebras. The algebraic laws that hold in
such algebras are used to restate the algorithm and to prove properties such as associativity
of consecutive integrations.

Binkley, Horwitz and Reps [33] generalize the integration algorithm of Horwitz, Prins,
and Reps [74] to multi-procedure programs. It is shown that such programs cannot be
integrated on a per-procedure basis (program behavior would not be preserved in all cases),
and that a straightforward extension using the Horwitz-Reps-Binkley interprocedural slicing
algorithm is insufficiently powerful (it reports “interference” in too many cases). While a
complete discussion of the theory that underlies the Binkley-Horwitz-Reps multi-procedure
integration algorithm is outside the scope of this survey, it can be remarked here that the
algorithm relies on backward and forward interprocedural slices on the SDG representation
of the program.

3.5.3 Software maintenance

One of the problems in software maintenance consists of determining whether a change at
someplacein aprogram will affect the behavior of other parts of the program. Gallagher and
Lyle[60, 61] use static dicing for the decomposition of a program into a set of components
(i.e., reduced programs), each of which captures part of the original program’s behavior.
They present a set of guidelinesfor the maintainer of a component that, if obeyed, preclude
changes in the behavior of other components. Moreover, they describe how changes in a
component can be merged back into the compl ete program in a semantically consistent way.

Gallagher and Lyle use the notion of a decomposition slice for the decomposition of
programs. Intuitively, a decomposition slice captures part of the behavior of a program, and
itscomplement captures the behavior of therest of the program. A decompositionslicew.r.t.
avariable v isdefined asthe set of all statementsthat may affect the observable” value of v
at some point; it is defined as the union of the slicesw.r.t. v a any statement that outputs v,
and the last statement of the program. An output-restricted decomposition slice (ORD dlice)
isadecomposition slice from which all output statements are removed. Two ORD dlicesare
independent if they have no statements in common; an ORD dlice is strongly dependent on
another ORD dliceif it isasubset of the latter. An ORD dlice that is not strongly dependent
on any other ORD dliceis maximal. A statement that occurs in more than one ORD dliceis
dependent; otherwise it isindependent. A variable is dependent if it is assigned to in some
dependent statement; it is independent if it is only assigned to in independent statements.
Only maxima ORD slices contain independent statements, and the union of all maximal

3.5. Applications of programdlicing 89

ORD dlicesis equal to the original program (minus output statements). The complement
of an ORD dliceis defined as the original program minus all independent statements of the
ORD dlice and all output statements.

The essential observation by Gallagher and Lyle [61] isthat independent statementsin a
dlice do not affect the data and control flow in the complement. Thisresultsin the following
guidelines for modification:

¢ Independent statements may be deleted from a decomposition slice.
e Assignments to independent variables may be added anywhere in a decomposition

dice.
e Logical expressionsand output statementsmay be added anywhere in adecomposition
dice.

e New control statements that surround any dependent statements will affect the com-
plement’s behavior.

New variables may be considered as independent variables, provided that there are no name
clashes with variables in the complement. If changes are required that involve a dependent
variable v, the user can either extend the dlice so that v isindependent (in away described in
the paper), or introduce a new variable. Merging changes to components into the complete
program isatrivia task. Since it is guaranteed that changes to an ORD slice do not affect
its complement, only testing of the modified slice is necessary.

354 Testing

A program satisfies a* conventional” data flow testing criterion if all def-use pairs occur in
a successful test-case. Duesterwald, Gupta, and Soffa [51] propose a more rigorous testing
criterion, based on program slicing: each def-use pair must be exercised in a successful test-
case; moreover it must be output-influencing, i.e., have an influence on at least one output
value. A def-use pair isoutput-influencing if it occursin an output slice, i.e., aslicew.r.t. an
output statement. It isup to the user, or an automatic test-case generator to construct enough
test-cases such that all def-use pairs are tested. Three dlicing approaches are utilized, based
on different dependence graphs. Static slices are computed using static dependence graphs
(smilar tothe PDGs of Horwitz, Reps, and Binkley [77]), dynamic slicesare computed using
dynamic dependence graphs (similar to DDGs of Agrawal and Horgan [6], but instances of
the same vertex are merged, resulting in a slight loss of precision), and hybrid dlices are
computed using dependence graphs that are based on a combination of static and dynamic
information. In the hybrid approach, the set of variables in the program is partitioned into
two digoint subsets in a way that variables in one subset do not refer to variables in the
other subset. Static dependences are computed for one subset (typically scalar variables),
dynamic dependences for the other subset (typically arrays and pointers). The advantage of
this approach is that it combines reasonabl e efficiency with reasonable precision.

Kamkar, Shahmehri, and Fritzson [88] extend thework of Duesterwald, Gupta, and Soffa
to multi-procedure programs. To thisend, they define appropriate notions of interprocedural
def-use pairs. Theinterprocedural dynamic slicing method by Kamkar et al. [90, 89] isused

90 Chapter 3. A Survey of Program Sicing Techniques

to determine which interprocedural def-use pairs have an effect on a correct output value,
for agiven test case. The summary graph representation that was discussed in Section 3.4.2
is dightly modified by annotating vertices and edges with def-use information. This way,
the set of def-use pairs exercised by a dlice can be determined efficiently.

Regression testing consists of re-testing only the parts affected by a modification of a
previously tested program, while maintaining the“ coverage” of theoriginal test suite. Gupta,
Harrold, and Soffa[65] describe an approach to regression testing where slicing techniques
are used. Backward and forward static slices serve to determine the program parts affected
by the change, and only test cases that execute “affected” def-use pairs need to be executed
again. Conceptually, slices are computed by backward and forward traversals of the CFG of
aprogram, starting at the point of modification. However, the algorithms by Gupta, Harrold,
and Soffa [65] are designed to determine the information necessary for regression testing
only (i.e., affected def-use pairs).

Binkley [29] describes an approach for reducing the cost of regression testing of multi-
procedure programsby (i) reducing the number of teststhat must bere-run, and (ii) decreasing
the size of the program that they must run on. Thisis accomplished by determining the set
of program points affected by the modification, and the set of preserved program points (see
Section 3.5.2). The set of affected pointsis used to construct a smaller and more efficient
program that only captures the modified behavior of the original program,; all test-cases that
need to be re-run can be applied to this program. The set of preserved pointsis used to infer
which test-cases need not be re-run.

Bates and Horwitz [20] use a variation of the PDG notion of Horwitz, Prins, and Reps
[74] for incremental program testing. Testing criteria are defined in terms of PDG notions:
i.e., the“all-vertices’ testing criterion is satisfied if each vertex of the PDG isexercised by a
test set (i.e., each statement and control predicate in the program is executed). An “all-flow-
edges’ criterion is defined in a similar manner. Given a tested and subsequently modified
program, slicing is used to determine: (i) the statements affected by the modification, and
(i) the test-cases that can be reused for the modified program. Roughly speaking, the
former consists of the statementsthat did not occur previously aswell as any statements that
have different dices. The latter requires partitioning the statements of the original and the
modified program into equivalence classes; statements are in the same classif they have the
same “control” slice (a dlightly modified version of the standard notion). Bates and Horwitz
prove that statementsin the same class are exercised by the same test cases.

3.55 Tuning compilers

Larusand Chandra[106] present an approach for tuning of compilerswhere dynamic slicing
is used to detect potential occurrences of redundant common subexpressions. Finding such
acommon subexpression is an indication of sub-optimal code being generated.

Object codeisinstrumented with trace-generating instructions. A trace-regenerator reads
atrace and produces astream of events, such astheread and load of amemory location. This
stream of eventsisinput for a compiler-auditor (e.g., a common-subexpression elimination
auditor) that constructs dynamic slices w.r.t. the current values stored in registers. Larus

3.5. Applications of programdlicing 91

and Chandra use a variation of the approach by Agrawa and Horgan [6]: a dynamic slice
is represented by directed acyclic graph (DAG) containing all operators and operands that
produced the current value in aregister. A common subexpression occurs when isomorphic
DAGs are constructed for two registers. However, the above situation only indicates that a
common subexpression occurs in a specific execution. A common subexpression occurs in
all execution pathsif its inputs are the same in all executions. Thisis verified by checking
that: (i) the program counter PC1 for the first occurrence of the common subexpression
dominates the program counter PC2 for the second occurrence, (ii) the register containing
the first occurrence of the common subexpression is not modified along any path between
PC1 and PC2, and (iii) neither are the inputs to the common subexpression modified along
any path between PC1 and PC2. Although the third condition is impossible to verify in
general, it is feasible to do so for a number of special cases. In genera, it is up to the
compiler writer to check condition (iii).

3.5.6 Other applications

Weiser [146] describes how slicing can be used to parallelize the execution of a sequential
program. Several slicesof aprogram are executed in parallel, and the outputsof the slicesare
spliced together in such away that the I/O behavior of the original program is preserved. In
principle, the splicing process may take place in parallel with the execution of the dlices. A
natural requirement of Weiser’s splicing algorithm is that the set of all slices should “cover”
the execution behavior of the original program. Splicing does not rely on aparticular slicing
technique; any method for computing executable static slices is adequate. Only programs
with structured control flow are considered, because Weiser’s splicing algorithm depends on
the fact that execution behavior can be expressed in terms of a so-called program regular
expression. The main reason for this is that reconstruction of the original 1/0 behavior
becomes unsolvable in the presence of irreducible control flow.

Ott and Thus [119] view a module as a set of processing elements that act together to
compute the outputs of amodule. They classify the cohesion class of amodule (i.e, the kind
of relationships between the processing elements) by comparing the slices w.r.t. different
output variables. Low cohesion corresponds to situations where amodule is partitioned into
digoint sets of unrelated processing elements. Each set isinvolved in the computation of a
different output value, and there is no overlap between the slices. Control cohesion consists
of two or more sets of disjoint processing elements each of which depends on a common
input value; the intersection of slices will consist of control predicates. Data cohesion
corresponds to situations where data flows from one set of processing el ements to another;
dliceswill have non-empty intersection and non-trivial differences. High cohesion situations
resemble pipelines. The data from a processing element flows to its successor; the slices of
high cohesion modules will overlap to a very large extent. The paper does not rely on any
specific slicing method, and no quantitative measures are presented.

Binkley [32] presents a graph rewriting semantics for System Dependence Graphs that
is used for performing interprocedural constant propagation. The Horwitz-Reps-Binkley
interprocedural slicing algorithm is used to extract slices that may be executed to obtain

92 Chapter 3. A Survey of Program Sicing Techniques

constant values.

Beck and Eichmann [21] consider the case where a “ standard” module for an abstract
datatype moduleisused, and where only part of itsfunctionality isrequired. Their objective
isto“diceaway” all unnecessary codeinthe module. To thisend, they generalize the notion
of static dlicing to modular programs. In order to compute a reduced version of a module,
an interface dependence graph (IDG) is constructed. This graph contains vertices for all
definitions of types and global variables, and subprograms inside a module. Moreover, the
IDG containsedgesfor every def-userelation between vertices. Aninterfacedlicing criterion
consists of amodule and a subset of the operations of the ADT. Computing interface slices
correspondsto solving areachability probleminan IDG. Inter-module slices, corresponding
to situationswhere modul esimport other modul es, can be computed by deriving new criteria
for the imported modules.

Jackson and Rollins present a reverse engineering tool called “Chopshop” in [81] that
is based on the techniques of [82] (see Sections 3.3.1.3 and 3.3.2.3). This tool provides
facilities for visualizing program slices in a graphical manner as diagrams. In addition to
“chopping” (see Section 3.3.1.3), their tool is capable of “abstracting” dlices by eliminating
all non-call-site nodes in a graph and resulting in a graph with only call site vertices and
transitive dependence edges between these vertices.

Ning, Engberts, and Kozaczynski [117] discuss a set of tools for extracting components
from large Cobol systems. These tools include facilities for program segmentation, i.e.,
distinguishing pieces of functionally related code. In addition to backward and forward
static slices, condition-based slices can be determined. For a condition-based dlice, the
criterion specifies a constraint on the values of certain variables.

3.6 Recent developments

This section is concerned with recent work on improving the precision of slicing meth-
ods, which relies on the removal of two important restrictions characteristic of the slicing
algorithms discussed previously:

1. The fact that a slice consists of a subset of the statements of the original program,
sometimes with the additional constraint that a slice must constitute a syntactically
valid program.

2. Thefact that dlices are computed by tracing data and control dependences.

Both of these “restrictions’ adversely affect the accuracy of the computed slices. Moreover,
it isimportant to realize that these issues are strongly interrelated in the sense that, in many
cases, dismissing the former constraint is a prerequisite for being able to dismiss the latter
one.

Weiser already observed some problems caused by the first constraint in his dissertation
[144, page 6], where he states that ‘ good source language slicing requires transformations
beyond statement deletion’. Thisremark can easily be understood by considering asituation
where aprogramming language does not allow if statementswith empty branches, but where

3.6. Recent developments 93

read(n) ; read(n) ; read(n) ;
i :=1; i :=1;
if (1 > 0) then if (1 > 0) then

n :=n + 1 n :=n + 1 n :=n + 1
else else

n :=n * 2; ; ;
write (n) write (n) write (n)

(@ (b) (c)

Figure 3.24: (a) Example program = static slice with respect to statement write (n). (b)
Accurate slice obtained by employing constant propagation. (c) Minimal dice.

adlicing algorithmwould exclude all statementsin such abranch. Taken to the extreme, such
statements can never be removed from a slice because the result would not be a syntactically
valid program. Hwang et al. [80] discuss a number of related problems and conclude that,
in practice, statement deletion alone is an inadequate method for deriving slices.

The second constraint—thefact that slicesare to be computed by tracing data and control
dependences alone—hasto be removed aswell, if the singular objective isto compute slices
that are as small as possible. To see this, consider the example program of Figure 3.24
(a). Here, the static slice with respect to statement write (n) as computed by any of the
“conventional” slicing algorithms consists of the entire progran?®. However, if constant
propagation [141] or similar optimization techniques could be used in slicing, the resulting
slices might be more accurate. In the program of Figure 3.24 (a), for example, one can
determine that the value of i is constant, and that the el se branch of the conditional is never
selected. Therefore, computation of the more accurate slice of Figure 3.24 (b) isconceivable.
Moreover, if replacement of an entireif statement by one of the statementsin its branchesis
allowed, one can imagine that the minimal slice of Figure 3.24 (c) is determined.

Other compil er opti mi zati on techniques’®, symbolic execution, and avariety of semantics-
preserving operations can also be of use for obtaining more accurate slices. For example,
Figure 3.25 (a) shows another example program, which is to be sliced with respect to its
final statement write (y). Once again, traditiona slicing algorithmswill fail to omit any
statements. A more accurate slice for this example can be acquired by “merging” the two if
statements. The effect of this semantics-preserving transformation is shown in Figure 3.25
(b). Clearly, a dicing algorithm that can (conceptually) perform this transformation isin
principle capable of determining the more accurate slice of Figure 3.25 (c).

Approaches that use optimization techniques for obtaining more accurate slices, such as
the ones shown in Figures 3.24 and 3.25, were presented by Field, Ramalingam, and Tip
(see Chapter 5), and by Ernst [52]. At the conceptual level, these slicing approaches rely on
the following components:

2Some algorithms [147, 22] would omit the write statement.
%See, e.9., [150] for acomprehensive overview.

9 Chapter 3. A Survey of Program Sicing Techniques

read (p) ; read (p) ; read (p) ;
read (q) ; read (q) ; read (q) ;
if (p = q) then if (p = q) then if (p = q) then

x := 18 begin ;
ese X := 18; ese

X := 17; y = 2 X := 17;
if (p <> q) then end if (p <> q) then

y 1= X ese y 1= X
ese begin ese

y 1= 2; x := 17 y = 2
write (y) y 1= X write (y)

end
write (y)
(a) (b) (©)

Figure 3.25: (a) Example program = static slice with respect to the statement write (y). (b)
Transformed program. (c) More accurate slice obtained by dicing in the transformed program.

Tranglation of the program to a suitable intermediate representation (IR).
Transformation and optimization of the IR.

M ai ntai ning a mapping between the source-text, the origina IR, and the optimized IR.
Extraction of slices from the IR.

Field et al. (see Chapter 5) use an intermediate representation for imperative programs
named PiM [55] as a basis for their dlicing approach. Both the trandation of a program
to its PIM representation, and subsequent optimizations of PiM graphs are defined by an
equational logic, which can be implemented by term rewriting [95] or graph rewriting
[17]. Correspondences between the source text of a program, its initial PIm graph, and
the subsequently derived optimized PiMm graph are automatically maintained by a technique
called dynamic dependence tracking (see Chapter 4). This technique, which is defined for
arbitrary term rewriting systems, keeps track of the way in which new function symbols
that are dynamically created in a rewriting process are dependent upon symbols that were
previously present. These source correspondences are stored in PiM graphs as annotations of
function symbols; in a sense thisis similar to the way information is stored in the Reduced
Dynamic Dependence Graphs of Agrawal et al. [6] (see Section 3.4.1.3). Extracting a
slice with respect to a designated expression involves maintaining a pointer to the Pim-
subgraph for that expression, and retrieving the dynamic dependence information stored
in that PIM-subgraph. For details as to how this is accomplished, the reader is referred to
Chapter 5.

Both Pim and dynamic dependence tracking have been implemented using the ASF+SDF
Meta-environment, a programming environment generator [93] developed at CWI. Recent
experiments have produced promising results. In particular, the (accurate) dlices of Fig-
ures 3.24 (b) and 3.25 (c) have been computed. Recently, Tip has shown that dynamic

3.6. Recent developments 95

dependence tracking can aso be used to compute accurate dynamic slices from a simple
algebraic specification [23] that specifies an interpreter (see Chapter 6).

Ernst [52] uses the Value Dependence Graph (VDG) [143] as an intermediate represen-
tation for his slicing technique. The nodes of a VDG correspond to computations, and the
edges represent val ues that flow between computations. The most prominent characteristics
of VDGs are: (i) control flow is represented as data flow, (ii) loops are modeled by recur-
sive function calls, and (iii) all values and computationsin a program, including operations
on the heap and on 1/0 streams, are explicitly represented in the VDG. The transforma-
tion/optimization of VDGs is discussed in some detail in [143]. Ernst refers to the problem
of maintaining a correspondence between the VDG and the source code graph throughout
the optimization process, but no details are presented as to how this is accomplished. For
the extraction of dlices from a VDG, Ernst uses a ssimple and efficient graph reachability
algorithm similar to the one used by Ottenstein and Ottenstein [120].

We are currently unable to provide an in-depth comparison of the approaches by Field
et a. and by Ernst due to the elaborate optimizations that are involved, and the absence of
any information regarding the “source correspondences’ used by Ernst. A few differences
between these works are obvious, however:

e Thelanguage considered by Ernst is substantially larger than the one studied in Chap-
ter 5. Ernst has implemented a dlicer for the full C language (including recursive
procedures—see Section 3.3.2.3), whereas Field et al. do not (yet) address the prob-
lems posed by procedures and unstructured control flow.

e Theapproach by Field et al. permitsthe use of anumber of variations of the PiM logic
for treating loops, corresponding to different “degrees of laziness’ in the language's
semantics. Depending on the selected option, the computed slices will resemble the
“non-executable”’ slices computed by Agrawa and Horgan [6], or the “executable”
slices computed by Korel and Laski [100]. It is unclear from Ernst’s paper if his
approach provides the same degree of flexibility.

e Field et al. permit slices to be computed given any set of constraints on a program’s
inputs, and define the corresponding notion of a constrained slice, which subsumesthe
traditional concepts of static and dynamic slices. This is accomplished by rewriting
PiM graphs that contain variables (corresponding to unknown values) according to
PimM-rules that model symbolic execution. Ernst does not discuss a similar capability
of hisdlicer.

e Fieldetal. define dlicesasasubcontext of (i.e., a“connected” set of function symbols
in) aprogram’s AST. Statements or expressions of the program that do not occur in the
dlice are represented by “holes’ (i.e., missing subterms) in a context. Although this
notion of aslice does not constitute an executable program in the traditional sense, the
resulting slices are executable in the sense that such as dlice can be rewritten to a Pim
graph containing the same value for the expression specified in the dlicing criterion,
given the same constraints on the program’s inputs.

96 Chapter 3. A Survey of Program Sicing Techniques

* (ptr = &a) = ?A; *(= &) = ?A; *(= &) = ?A;
b = ?B; b = b =
X = a; X = a; X =i
if (a < 3) if (a < 3) if (a < 3)
ptr = &y; ptr = &y; —
else else else
ptr = &x — ptr = &x
if (b < 2) if (|:| < D) if (|:| < |:|)
X = a; X = a; X = [];
(*ptr) = 20; (*ptr) = —; (*ptr) = 20;
(a) (b) (©)

Figure 3.26: (a) An example program. (b) Constrained slice with respect to the final value of x
given the constraint ?A := 2. (c) Conditional constrained slice with respect to the final value of x
given the congtraint ?A > 5.

Figure 3.26 shows an example program (taken from Chapter 5), and some constrained
dices of it obtained using the approach by Field et a.?”. Theintuition behind these slicesis
guitesimple: a“boxed” expressioninaslice may bereplaced by any other expression without
affecting the computation of the value specified in the slicing criterion, given the specified
constraints on the program’s inputs. Although absurdly contrived, the example illustrates
several important points. By not insisting that a slice be a syntactically valid program,
distinctions can be made between assignment statements whose R-values are included but
whose L-values are excluded and vice versa, as Figure 3.26 (b) shows. Observe that it is
possible to determine that the values tested in a conditional are irrelevant to the slice, even
though the body isrelevant. In general, this permits avariety of fine distinctionsto be made
that traditional slicing algorithms cannot.

3.7 Conclusions

We have presented a survey of the static and dynamic slicing techniques that can be found
in the present literature. As a basis for classifying slicing techniques we have used the
computation method, and a variety of programming language features such as procedures,
unstructured control flow, composite variables/pointers, and concurrency. Essentially, the
problem of slicinginthepresenceof oneof thesefeaturesis* orthogonal” to solutionsfor each
of the other features. For dynamic slicing methods, an additional issue is the fact whether

2Inthisfigure, expressionsthat begin with aquestion mark, e.g., ‘ ?2’, represent unknown values or inputs.
Subterms of the program’s AST that do not occur in the slices of Figure 3.26 (b) and (c) are replaced by abox.

3.7. Conclusions 97

or not the computed slices are executable programs that capture a part of the program’s
behavior. Wherever possible, different solutions to the same problem were compared by
applying each agorithm to the same example program. In addition, the possibilities and
problems associated with the integration of solutions for “orthogonal” language features
were discussed.

3.7.1 Staticdlicingalgorithms

In Section 3.3.6, algorithms for static slicing were compared and classified. Besides listing
the specific dicing problems studied in the literature, we have compared the accuracy and,
to some extent, the efficiency of static slicing algorithms. The most significant conclusions
of Section 3.3.6 can be summarized as follows:

basicalgorithms. For intraprocedural static slicing in the absence of procedures, unstruc-
tured control flow, composite data types and pointers, and concurrency, the accuracy of
methods based on dataflow equations [147], information-flow relations [22], and program
dependence graphs[120] isessentially the same. PDG-based a gorithms have the advantage
that dataflow analysis has to be performed only once; after that, slices can be extracted in
linear time. Thisis especially useful when several dlices of the same program are required.

procedures. Thefirst solutionfor interprocedural static slicing, presented by Weiser [147],
isinaccurate for two reasons. First, this algorithm does not use exact dependence relations
between input and output parameters. Second, the call-return structure of execution paths
is not taken into account. The solution by Bergeretti and Carré [22] does not compute
truly interprocedural slices because no procedures other than the main program are sliced.
Moreover, the approach by Bergeretti and Carréisnot sufficiently general to handlerecursion.
Exact solutionsto the interprocedural static slicing problem have been presented by Hwang,
Du, and Chou [79], Reps, Horwitz and Binkley [77], Reps, Horwitz, Sagiv, and Rosay [129,
128], Jackson and Rollins [82], and Ernst [52]. The Reps-Horwitz-Sagiv-Rosay agorithm
for interprocedural static dlicing is the most efficient of these algorithms. Binkley studied
theissues of determining executableinterprocedural slices[30], and of interprocedural static
dicing in the presence of parameter aliasing [31].

unstructured control flow. Lyle was the first to present an algorithm for static dlicing in
the presence of unstructured control flow [108]. The solution he presentsis conservative: it
may include more goto statements than necessary. Agrawal [3] has shown that the solutions
proposed by Gallagher and Lyle [60, 61] and by Jiang et al. [83] are incorrect. Precise
solutions for static dlicing in the presence of unstructured control flow have been proposed
by Ball and Horwitz [12, 13], Choi and Ferrante [37], and Agrawal [3]. It isnot clear how
the efficiency of these algorithms compares.

98 Chapter 3. A Survey of Program Sicing Techniques

composite data types/pointers. Lyle [108] presented a conservative algorithm for static
dlicing in the presence of arrays. The algorithm proposed by Jiang et al. in[83] isincorrect.
Lyle and Binkley [110] presented an algorithm for static slicing in the presence of pointers,
but only for straight-line code. Agrawal, DeMillo, and Spafford [4] propose a PDG-based
algorithm for static dlicing in the presence of composite variables and pointers.

concurrency. The only approach for static slicing of concurrent programs was proposed
by Cheng [35]. Unfortunately, Cheng has not provided a justification of the correctness of
his algorithm.

3.7.2 Dynamic dlicing algorithms

Algorithms for dynamic slicing were compared and classified in Section 3.4.5. Due to
differencesin computation methods and dependence graph representations, the potential for
integration of the dynamic slicing solutions for “orthogonal” dimensionsis less clear than
in the static case. The conclusions of Section 3.4.5 may be summarized as follows:

basic algorithms. Methods for intraprocedural dynamic slicing in the absence of proce-
dures, composite datatypesand pointers, and concurrency were proposed by Korel and L aski
[99, 100], Agrawal and Horgan [6], and Gopal [62]. The slices determined by the Agrawal-
Horgan algorithm and the Gopal algorithm are more accurate than the slices computed by
the Korel-Laski algorithm, because Korel and Laski insist that their slices be executable
programs. The Korel-Laski algorithm and Gopal’s agorithm require an amount of space
proportional to the number of statements that was executed because the entire execution
history of the program has to be stored. Since slices are computed by traversing this history,
the amount of time needed to compute a slice depends on the number of executed statements.
A similar statement can be made for the flowback analysisalgorithm by Choi et a. [116, 38].
The agorithm proposed by Agrawal and Horgan based on Reduced Dynamic Dependence
Graphs requires at most O(2") space, where n is the number of statementsin the program.
However, the time needed by the Agrawal-Horgan algorithm a so depends on the number of
executed statements because for each executed statement, the dependence graph may have
to be updated.

procedures. Two dependence graph based algorithmsfor interprocedural dynamic slicing
were proposed by Agrawal, DeMillo, and Spafford [4], and by Kamkar, Shahmehri, and
Fritzson [90, 89]. The former method relies heavily on the use of memory cells as a basis
for computing dynamic reaching definitions. Various procedure-passing mechanisms can
be modeled easily by assignments of actual to formal and formal to actual parameters at
the appropriate moments. The latter method is also expressed as a reachability problem
in a (summary) graph. However, there are a number of differences with the approach of
[4]. First, parts of the graph can be constructed at compile-time. This is more efficient,
especially in cases where many calls to the same procedure occur. Second, Kamkar et al.

3.7. Conclusions 99

study procedure-level dlices; that is, slices consisting of a set of procedure calls rather than
aset of statements. Third, the size of a summary graph depends on the number of executed
procedure calls, whereasthe graphs of Agrawal et al. are more space efficient dueto “fusion”
of vertices with the same transitive dependences. It is unclear if one algorithm produces
more precise dices than the other.

unstructured control flow. Asfar aswe know, dynamic dlicing inthe presence of unstruc-
tured control flow has not been studied yet. However, it is our conjecture that the solutions
for the static case [12, 13, 3, 37] may be adapted for dynamic slicing.

composite data types/pointers. Two approaches for dynamic slicing in the presence of
composite data types and pointers were proposed, by Korel and Laski [100], and Agrawal,
DeMillo, and Spafford [4]. The agorithms differ in their computation method: dynamic
flow concepts vs. dependence graphs, and in the way composite data types and pointers are
represented. Korel and Laski treat components of composite data types as distinct variables,
and invent namesfor dynamically allocated objects and pointerswhereas Agrawal, DeMillo,
and Spafford base their definitions on definitions and uses of memory cells. It is unclear
how the accuracy of these algorithms compares. The time and space requirements of both
algorithms are essentially the same as in the case where only scalar variables occur.

concurrency. Several methodsfor dynamic slicing of distributed programs have been pro-
posed. Korel and Ferguson [98] and Duesterwald, Gupta, and Soffa[50] compute slices that
are executable programs, but have a different way of dealing with nondeterminism in dis-
tributed programs: the former approach requires a mechanism for replaying the rendezvous
in the dice in the same relative order as they occurred in the original program whereas
the latter approach replaces nondeterministic communication statements in the program by
deterministic communication statements in the slice. Cheng [35] and Choi et al. [116, 38]
do not consider this problem because the slices they compute are not executable programs.
Duesterwald, Gupta, and Soffa [50] and Cheng [35] use static dependence graphs for com-
puting dynamic slices. Although this is more space-efficient than the other approaches, the
computed slices will be inaccurate (see the discussion in Section 3.4.1.1). The algorithms
by Korel and Ferguson and by Choi et al. both require an amount of space that depends on
the number of executed statements. Korel and Ferguson requiretheir slicesto be executable;
therefore these slices will contain more statements than those computed by the algorithm of
[116, 38].

3.7.3 Applications

Weiser [144] originally conceived of program slices as a model of the mental abstractions
made by programmers when debugging a program, and advocated the use of dicing in
debugging tools. The use of dicing for (automated) debugging was further explored by Lyle
and Weiser [109], Choi et al. [38], Agrawal et a. [5], Fritzson et al. [59], and Pan and

100 Chapter 3. A Survey of Program Sicing Techniques

Spafford [121, 122]. Slicing has also proven to be of use for a variety of other applications
including: parallelization [146], program differencing and integration [70, 74], software
maintenance [61], testing [51, 88, 65, 20], reverse engineering [21, 82, 81], and compiler
tuning [106]. Section 3.5 contains adetailed overview of how slicing isused in each of these
application areas.

3.7.4 Recent developments

Two important characteristics of conventional slicing algorithms adversely affect the accu-
racy of program dlices:

e Thefact that slices consist of a subset of the original program’s statements, sometimes
with the additional constraint that a slice must be a syntactically valid program.
e Thefact that dices are computed by tracing data and control dependences.

Section 3.6 discussesrecent work by Field, Ramalingam, and Tip (see Chapter 5) and by Ernst
[52] for computing more accurate slices, where these “restrictions’ are removed. 1n essence,
these dlicing algorithms compute more accurate slicesdueto the use of compiler-optimization
techniques, symbolic execution, and a variety of semantics-preserving transformations for
eliminating spurious dependences. At the conceptual level, the algorithms by Field et al.
and Ernst consist of the following components:

Trandation of a program to a suitable intermediate representation (IR).
Transformation and optimization of the IR.

M ai ntai ning a mapping between the source text, the original IR, and the optimized IR.
Extraction of slicesfrom the IR.

Although Field et a. and Ernst have reported promising results, much work remains to be
donein thisarea.

Acknowledgements

Tom Reps provided the program and picture of Figure 3.12. Susan Horwitz provided the
program of Figure 3.15. The programs shown in Figures 3.2 and 3.18 are adaptations of
example programsin [2].

Chapter 4

Dynamic Dependence Tracking

(joint work with John Field)

Summary

Program dlicing is a useful technique for debugging, testing, and analyzing pro-
grams. A program dlice consists of the parts of a program that (potentially) affect the
values computed at some point of interest. With rare exceptions, program slices have
hitherto been computed and defined in ad-hoc and language-specific ways. The princi-
pal contribution of this chapter is to show that general and semantically well-founded
notions of slicing and dependence can be derived in a simple, uniform way from term
rewriting systems (TRSs). Our slicing technique is applicable to any language whose
semantics is specified in TRS form. Moreover, we show that our method admits an
efficient implementation.

In Chapter 5, dynamic dependence tracking is “applied to” Pim, an intermediate
representation for imperative programs with an accompanying equational logic (which
is implemented by rewriting). It will be shown that this permits the computation
of various types of highly accurate program dlices. Chapter 6 describes how the
application of dynamic dependence tracking to algebraic specifications of interpreters
yields a useful notion of dynamic program slicing in that context.

4.1 Introduction

41.1 Overview

Program dlicing is a useful technique for debugging, testing, and analyzing programs.
A program dlice consists of the parts of a program that (potentially) affect the values
computed at some point of interest, referred to as the dicing criterion. As originally
defined by Weiser [147], a dicing criterion was the value of a variable at a particular
program point and a slice consisted of an “executable” subset of the program’s original
statements. Numerous variations on the notion of slice have since been proposed, aswell as
many different techniques to compute them (see Chapter 3), but all reduce to determining
dependence relations among program components. Unfortunately, with rare exceptions,
the notion of “dependence”’ has been defined in an ad-hoc and language-specific manner,

101

102 Chapter 4. Dynamic Dependence Tracking

resulting in algorithms for computing slices that are notoriously difficult to understand,
especialy in the presence of pointers, procedures, and unstructured control flow. The
contributions of this chapter are asfollows:

e We define a general notion of dlice that applies to any unconditional term rewriting
system (TRS). Our definition uses a relation on contexts derived from the reduction
relation on terms. This relation makes precise the dynamic dependence of function
symbolsintermsin areduction sequence on symbolsin previoustermsinthat sequence.
Our notion of dependence does not require labeled terms [27, 28, 111, 112], and is
distinguished by its ability to treat (normally problematic) TRSs with left-nonlinear
rules.

e Our notion of glicing subsumes most of those defined in previous work on program
dlicing. Thedistinction traditionally made between “ static” and “dynamic” slicing can
be modeled by reduction of open or closed terms, respectively. Partial instantiation
of open terms yields a useful intermediate notion of constrained slicing. Although
Venkatesh defines a similar notion abstractly [137], he does not indicate how to
compute such slices.

e We describe an agorithm by which slices can be efficiently computed in practice by
systematically transforming the original TRS to gather dependence information. The
overhead required to compute thisinformation is linear in the size of the initial term.
This algorithm produces minimal slices for left-linear systems, and sound (but not
aways minimal) slicesfor left-nonlinear systems.

Finally, for the case of left-linear systems, we present proofs that our definitions yield
minimal and sound slices.

In Chapter 5, we will show how our techniques can be applied to standard programming
languages, and compare these techniques to other algorithms in the literature. Chapter 6
discusses how the dynamic dependence relation defined in this chapter can be used for
providing dynamic dlicing facilities in generated source-level debugging tools. Here, we
will concentrate primarily on technical foundations.

4.1.2 Motivating examples

Consider the program in Figure 4.1 (a) below, written in a tiny imperative programming
language, P. The semantics of P are similar to those of many imperative programming
languages with pointers. A do construct is executed by evaluating its statement list, and
using the computed values to evaluate its in expression. Expressions of the form ‘X’ are
atoms, and play the dual role of basic values and addresses that may be assigned to using
“:=’. Addresses are explicitly dereferenced using ‘1’. The distinguished atoms t and £
represent boolean values.

We evaluate P programs by applying the rewriting rules of Figure 4.2 to the term
consisting of the program’s syntax tree until no further rules are applicable. This reduction
process produces a sequence of terms ending with a normal form that denotes the result
of the evaluation. The program in Figure 4.1 (a) reduces to the normal form ‘result t’.

4.1. Introduction 103
program program
doxX:=3, w:=%, Z:=b dox:=@® wi=% z2:=8@;
if w11 =%1 if w11 =%1
then y:=% 1 then y:=% 1
dse vi=b glse®
inyl=xT inyft==x1
(a) (b)
Figure4.1: (a) Example P Program. (b) Minimal slice with respect to the entire normal form of
(a).

[P1]
[P2] =
[P3] iftthen X elseY
[P4] if fthen X elseY
[P5] doXinY

[P6] doXinY =2

[P7] doX;A:=FEin(B17)

[l
Ll
ol X

[P8] doA:=FEin(B1)

[P9] doX;ifAthenBelseCinE

[P10] doif AthenBelseCinE
[P11] doX inif Athen BelseC

[P12] programX

A A

1

—

for al constantsa, b suchthat a # b

I Sl Tl

(doXinY)=(doXinZ)

if (doX;A:=FEinB)=(doXinA)
then (do X in E)

esedoX in((doA:=FEinB)1)
if(doA:=FEinB)=A

then £

else((doA:=FEinB) 1)

if (doXinA)

then (do X; Bin E)

ese(do X;CinE)

if Athen (doBin E)ese(doCin E)
if (doXinA)

then (do X in B)

(doXinC)

result X

Figure 4.2: Rewriting Semantics of P.

104 Chapter 4. Dynamic Dependence Tracking

Bl XA aeZ)—(XAY)®(XAZ) [B3] XAff— ff
[B2] XAtt— X B4 XoX-—ff

Figure 4.3: Boolean TRSB.

[B1] [B2]
— —

fEEA(tt D tt) =Th (fEAtt)®(fEALE)=Th

LA rrpre) =T & rr=Ty

ffER(fEALE) =T,

Figure 4.4: A B-reduction; redexes are underlined.

Figure 4.1 (b) depicts the slice of the example program with respect to this normal form.
The symbol ‘ @’ represents subterms of the program that do not affect its result.

It should be clear that a program dlice is valuable for understanding which program
components depend critically on the dlicing criterion—even in the small example of Fig-
ure4.1, thisis not immediately obvious. Slicing information can be used to determine what
statements might have to be changed in order to correct an error or to ater the value of
the criterion. The techniques we describe aso allow the programmer the option of binding
various inputs to values or leaving them undefined, allowing the effects of various initial
conditions to be precisely traced. This significant capability is unique to our approach, and
derivesfrom its generality. In addition, by defining different (TRS-based) semantics for the
same language, different sorts of slices can be derived. For instance, by using variants of the
semantics in [54], we can compute both traditional “static” and “dynamic” (see Chapter 3
for amore thorough discussion of the distinction between these notions) slices for the same
language.

We believe that our notion of a slice should also prove useful as an adjunct to theorem-
proving systems, since it yields certain universally quantified equations from derivations of
equations on closed terms. Consider, for example, the smple TRS B in Figure 4.3, which
defines a few boolean identities (* A’ denotes conjunction, ‘@’ exclusive-or). Figure 4.4
showshow B-term £ £A(tt@tt) canbereducedto £ £. Observethatin deriving thetheorem
fEA(tt @ tt) = ££, weactually derive the more general theorem P A (tt @ tt) = £1£,
for arbitrary P. From the point of view of slicing, the slice with respect to the normal form
f £ isthe subcontext ® A (tt @ tt) of theinitial term. To determine such a slice, we must
pay careful attention to the behavior of left-nonlinear rules such as [B4] and [P1], which
many authors on reduction-theoretic properties of TRSs do not treat. In the sequel, we show
how glices can be obtained by examining the manner in which rules create new function
symbols, and residuate, or “move around” old ones.

4.1. Introduction 105

4.1.3 Definition of a dlice

In general, we will define a dlice as a certain context contained in the initial term of some
reduction. Intuitively, acontext may be viewed as a connected (in the sense of atree) subset
of function symbolstaken from aterm. For instance, if f(g(a,b), ¢c) = T isaterm, then one
of several contexts contained in T is g(®,b) = C. C contains an omitted subterm, or holet,
denoted by ‘®’. This hole results from deleting the subterm ‘o’ of 7. We denote the fact
that C' isasubcontext of 7' by C' C T'; contexts as well as terms may contain subcontexts.

In adice, holes denote subterms that are irrelevant to the computation of the criterion.
Figure 4.1 (b) depictsthe minimal subcontext of the original programthat yields the sicing
criterion via a “ subreduction” of the original reduction. Informally, the holesin the slice
could be replaced by any P-expression and the same criterion could be produced by a
P-reduction.

Definition 4.1 below makes precise our notion of slice. We will formalize the notion of
“subreduction” of asequence of reduction steps p using aset Project«”, which isacollection
of triples of the form (C, o/, C"). Informally, such a triple denotes the fact that context C
reducesto a context that isisomorphic to C’ by areduction p’ derived from rule applications
that also occur in p. We discuss Project«” further in Section 4.5. Two contextsareisomorphic
if they have the same“ structure” (though they may appear at different locations). Thisnotion
will be formalized in Section 4.2.

Definition 4.1 (Slice) Let p : T"—*T" be a reduction. Then a glice with respect to a
subcontext C’ of 1" is a subcontext C' of 1" with the property that there exists a reduction
p' such that (i) p' : C —* D’ for some D' 1 F’, (ii) £’ and C" are isomorphic, and (iii)
(C,p,D") € Project«”. Sice C' isminimal if there is no slice with respect to criterion C’
that contains fewer function symbols.

Definition 4.1 isrendered pictorially in Figure 4.5.

The notion of TRS-based dlice we define in the sequel can be used for any language
whose operational semantics is defined by a TRS. Many languages whose semantics are
traditionally defined via extended lambda-calculi or using structural operational semantics
also have corresponding rewriting semantics[1, 54]. In[55], itisshown how many traditional
program constructs may be modeled by an appropriate TRS.

4.1.4 Relation toorigin tracking

At this point, the reader might wonder why any additional machinery is required beyond
the origin relation that was defined in Chapter 2. Unfortunately, the origin relation does not
provide information that is appropriate for computing program slices. The main reasons for
this being the case are:

e Theoriginrelation wasdesigned with adifferent objectivein mind: totracerecurrences
of the “same” subterm in a term rewriting process. This notion is too “weak” for

1Some authors require that contexts contain exactly one hole; we will not.

106 Chapter 4. Dynamic Dependence Tracking

Figure 4.5: Depiction of the definition of aslice.

computing slices, where one needs to determine those parts of the initial term that are
necessary for producing some designated subterm. The problem isthat the slice (i.e.,
the parts of the initial term are not necessarily the same as (or even similar in structure
to) the dlicing criterion.

e A related issueisthat not every subterm has a non-empty origin. Infact, all subterms
that are “created” by the rewriting process have empty origins. It is evident that any
notion of dependence in a rewriting process should take into account the creation of
new function symbolsaswell asthe*residuation” of symbolsthat occurred previoudly;
otherwise, “empty” origins would occur frequently.

In Section 7.3, the connections between the origin relation and the dynamic dependence
relation are discussed at somewhat greater length.

4.2 Basc definitions

In this section, we make precise the notion of a context introduced informally in the previous
section. Thisnotion will be the cornerstone of our formalization of slicing and dependence.
Instead of deriving contexts from the usual definition of aterm, we view terms as a special
class of contexts. Contexts will be defined as connected fragments of trees decorated with
function symbols and variables. We begin with afew preliminary definitions, most of which
are standard.

4.2.1 Signatures, paths, context domains

A signature X isafinite set of function symbols; associated with each function symbol f € X
is a natural number arity(f), its number of arguments. We will assume the existence of

4.2. Basic definitions 107

a denumerable set of variables V such that XNV = (). By convention, for each variable
X €V, arity(X) = 0. Lower-case letters of the form f, g, h,--- will denote function
symbols and upper-case letters of theform X, Y, 7, - - - will represent variables.

A path is a sequence of positive integers that designates a particular function symbol or
subtree by encoding awalk from the tree’sroot. The empty path, ‘()’, designates the root of
atree; path (i i, - - - 4,,) designatesthe i" subtree (counted from Ieft to right) of the subtree
indicated by path (i1 42 - - - i(m-—1)). The operation ‘- denotes path concatenation. Path p is
aprefix of path ¢, denoted by p < ¢, if there existsan r such that ¢ = p - r; if r # () then
P <gq.

A context domain P is a set of paths designating a connected fragment of atree. This
means that P must (i) possess a unique root, root(P), such that for al p € P, root(P) < p,
and (ii) have no “gaps,” i.e., for al p,q,r suchthat p < ¢ < r and p,r € P it must be the
casethat ¢ € P.

422 Contexts

We can now define a context as a total mapping from a context domain to function symbols
and variables:

Definition 4.2 (Context) Let X be a signature, V be a set of variables, and P be a context
domain. Let 1 be a total mapping from P to (£ U V) and p be a path. Then a pair (p,) is
aXV-context if and only if:

(i) Forall g € Pands € ZU V such that u(q) = s, ¢ - ¢ € P for some i implies that
i < arity(s).
(ii) If P # 0, then p = root(P).

Clause (i) of Definition 4.2 ensures that every child of a function symbol f must have an
ordinal number less than or equal to the arity of f. Clause (ii) ensures that the root of the
context isthe same asthe root of itsunderlying domain, except when the domainisempty; in
the latter case, we will say that the context is empty. The definition is specifically designed
to admit empty contexts, which will be important in the sequel for describing the behavior of
collapserules, i.e., rewriting ruleswhose right hand sides are single variables. Given context
C = (p,), root(C') denotesthe path p, and O(C') the domain of x. The path corresponding
to a“missing child” in a context will be referred to as a hole occurrence; an empty context
isalso ahole. The set of hole occurrences in a context C' will be denoted by O,(C'). We
will use Cont(Z, V) to denote the set of all £V-contexts.

For any context C' and apath p, p «+ C denotesanisomorphic context rooted at p obtained
by rerooting C'. Thisnotation isused to represent contextstextualy; e.g.,p <— f(®, g(a, ®))
represents a context rooted at p with two holes (‘®’), binary function symbols f and g and a
constant a. p < @ represents an empty context rooted at p. We will say that contexts C' and
D are isomorphic, written C' = D, if (() — C) = (() < D)

A context C'isatermif: (i) C' has no hole occurrences, and (ii) root(C') = (). Although
therestriction of root(C') to be () isnot strictly necessary, it resultsin adefinition that agrees
most closely with that used by other authors. We will use Term(X) to denote the set of terms

108 Chapter 4. Dynamic Dependence Tracking

over signature . Letters C, D, - - - will generally denote arbitrary contexts, and S, T, - - -
terms. Whenever convenient, we ignore the distinction between a variable X and the term
consisting of that variable. Some convenient operations on contexts are introduced next.

For acontext C', and S asubset of XU V, Os(C') denotes the set of paths to elements of
SinC; O,y (C) isabbreviated by O,(C'). The set of variable occurrences in a X)-context
C,i.e, Oy(C), isdenoted VARS(C'), and Vars (C) is the set of variables that occur exactly
onceinC.

Two contexts are compatibleif al paths common to both of their domains are mapped to
the same symbol. If C and D are compatible, C' isasubcontext of D, denoted by C' C D, if
and only if one of thefollowing holds: (i) C'and D are nonempty and O(C') C O(D), (ii) C
and D areempty and C' = D, or (iii) C' isempty, D is nonempty, root(C') = ¢ -i € O(D),
andq € O(D). Thethird clause statesthat an empty context C' isasubcontext of anonempty
context D only if itsroot is*sandwiched” between adjacent nodesin D. This property will
greatly simplify a number of definitionsin the sequel. Contexts D and E are digoint if and
only if there exists no context C' suchthat C = D and C C E. If C and D are contexts
such that root(D) € (O(C) U O,(C)), C[D] denotes the context C' where the subcontext
or hole at root(D) isreplaced by D. Notethat for al C C D, D[C] = D. A context C'is
elementary iff |O(C)| = 1.

A context forest is a set of mutually digoint contexts. Forest S is a subforest of forest
7T, denoted S C 7, if and only if for al contexts C € S, there existsa context D € 7
suchthat C' C D. Some convenient set-like operations on context forests can be defined as
follows. Let S and 7 be compatible context forests. Then their union, denoted by S LI 7,
isthe smallest forest ¢/ suchthat S C U/ and 7 C U; their difference, denoted S — 7, isthe
smallest forest ¢/ suchthat C Sand S C (7 U U). If P isaset of paths, C'/ P isthe
forest containing subcontexts of C' rooted at pathsin P. The notion of context replacement
is easily generalized to a forest S. In the sequel, we allow simple contexts to be used as
operands of context forest operations; such contexts are coerced to singleton forests. For
example,‘'C LU D’ denotes‘{ C' } LU { D}

4.3 Termrewriting and related relations

In this section, we formalize standard term rewriting-related notions using operations on
contexts; we then define the important related ideas of creation and residuation, which
are derived from the rewriting relation. We will first consider only left-linear TRSs; this
restriction will be removed inin Section 4.7.

4.3.1 Substitutionsand term rewriting systems

A substitution is a finite partial map from V' to Cont(X, V), where £ isasignatureand V a
set of variables. A substitution o is extended to a mapping on contexts by replacing each
subcontext C'y T C' consisting solely of avariable X by the context (root(C'y) < o(X)),
for al X onwhich o isdefined. A termrewriting system R over a signature X is a set of

4.3. Termrewriting and related relations 109

pairs (L, R) such that L and R are terms over X, L does not consist of a sole variable, and
VARS(R) C VARS(L); (L, R) iscalled arewrite rule and is commonly denoted by L — R.
Fora =L — R € Rwedefinel, = L and R, = R. A rewriterule « is left-linear if
VARS(L,) = Varsi(L,). If R isaTRS, then we define an R-contraction A to be a triple
{(p,a, o), where p isapath, v isarule of R, and ¢ isa substitution.

Weusep,, a4, L4, R4, ando 4 todenotep, o, L, ,, R, ,, and o, respectively. Moreover,
L4 and R4 will denote the contexts (p, « L4) and (p, <« R4), respectively. The R-
contractionrelation, — % , isdefined by requiringthat 7'— % 7" if and only if acontraction
Aexistssuchthat T = To4(L4)] and T" = T[o4(R4)], for termsT', T'. The subcontext
o4(Ly) of Cisan ay-redex, and the context o4(R4) is an a.4-reduct; these contexts are
abbreviated respectively by Redex, and Reduct 4. We will feel free to drop the subscript R
of acontraction — % in caseswhereit is clear which TRS we are referring to, and simply

write —* . For clarity, contraction arrows will frequently be labeled explicitly with the

contraction A that is involved: i . Asusual, —* isthe reflexive, transitive closure of

— . A reduction p is a sequence of contractions . 4;.A;. ...A,, such that if p is nonempty,
thereexistterms 1o, 11, . . ., 1,, where:

TO ﬂ) Tl ﬁ) TZ"'Tn—l ﬂ) Tn

This reduction is abbreviated by p : To —* T,,. A reduction p is areduction of term 7' if
there exists 7" such that p : T'—*T". The reduction of length O is denoted by ¢; for all
terms 7', we adopt the conventionthat e : 7' —* T'.

Given the definitions above, the B-reduction depicted in Figure 4.4 may be described
formally by the following sequence of contractions:

(0),[BY,[X := ££,Y :=tt, Z = tt]); {((1),[B2],[X := ££]); ((2),[B2],[X := ££]);
(0, [B4], [X = ££])

Most of the new relations defined in the sequel are parameterized with a reduction pA,
in which the final contraction is highlighted. Several definitions are concerned with the
last contraction A only; however, when our definitions are generalized in Section 4.7, the
“history” contained in p will becomerelevant. Whenever we define atruly inductiverelation
on pA, wewill append a‘x’ to the name of the relation.

4.3.2 Context rewriting

In order to generalize term rewriting to context rewriting, a few auxiliary definitions are
needed. A variable instantiation of acontext C' isaterm 7' that can be obtained from C' by
replacing each hole with a variable that does not occur in C. A variable instantiation is a
linear instantiation if each hole is replaced by a distinct variable. A context C' rewrites to
acontext C’, denoted C —* ', if and only if T'—* 1", where T" is a linear instantiation
of C'and 7" is avariable instantiation of C’. Note that context reduction is not defined as
the transitive closure of a single-step contraction relation on contexts; this is necessary to

110 Chapter 4. Dynamic Dependence Tracking

correctly account for the way in which a reduction causes distinct holes to be moved and
copied, particularly in the case of left-nonlinear rules.

4.3.3 Resduation and creation

In order to formalize our notion of slice, we must first reformulate the standard notion of
residual and the somewhat less standard notion of creation in terms of contexts. Each of
these will use Definition 4.3, which formalizes how an application of a contraction A has
the effect of “copying,” “moving,” or “deleting” contexts bound to variable instancesin L 4
when R, is instantiated. The elements of the set VarPairg* are pairs (81, S,) of context
forests, such that contextsCy € S; and C, € S, are corresponding subcontexts of the context
bound to some variablein o 4.

Definition 4.3 (VarPairs) Let pA be a reduction. Then

VarPairg 2 {(8,S,) | X €V,
CE(() —oulX)) or C=(() <),
q = root(C),
S1={(pr-a<C) | pr € Ox(La)},

S2={(pr-q < C) | pr € Ox(R4)} }

In |eft-linear systems, for any pair (S;, S,) € VarPairg*, S; isalwaysasingleton. Thiswill
not, however, be the case when we generalize the definition for left-nonlinear systems.

Asmentioned, the p parameter of relation VarPairs (and of the relations Resid, Creating,
Created, and CreateResid that follow) is irrelevant for |eft-linear systems. This parameter
is relevant in the definition of VarPairs for left-nonlinear systems (Definition 4.23). The p
parameter isincluded in the definitions of this section solely for reasons of uniformity.

Definition 4.4 is the standard notion of residual, in relational form. For a contraction
A C— (', Resid associates each subcontext of C' that is not affected by .4 with the
corresponding subcontext of C’. Moreover, for each (S, S,) € VarPairg4, C; € Sy, and
C, € S,, Cyisrdaed to Cy. If S, isempty, thiswill have the effect that no pairs are added
to Resicd’*.

Definition 4.4 (Resid) Let p.A be areduction. Then

Residt* 2 {(Dy,D,) | D1 € 81, Dy € Sy, (S1,S5) € VarPairg” } U
{(D,D) | D and Redex, aredigoint }

The reflexive, transitive closure of Resid is defined by

Resid«*
Resick"

{(C,C) | C € Cont(X) }
Resids* - Resich*

A
A

Here, the operation “ - denotes relational join.

4.3. Termrewriting and related relations 111

Creating

Creating ' Created
[B4] <{
—_—

,,,,,,,,,, connects components of Resid pairs
,,,,,,,,,,,,,,,, connects contexts to their progenitor

Figure4.6: lllustration of selected relations and contexts derived from the B-reduction of Figure4.4.

Figure 4.6 depicts Resid and several other definitionswe will encounter in the sequel, as
they apply to the initial and final contractions of the reduction in Figure 4.4, involving the
left-linear rule [B1] and the left-nonlinear rule [B4] of TRS B, respectively.

Definition 4.5 describes the creating and the created contexts associated with a contrac-
tion A. Intuitively, if contraction A isapplied to term 7', the creating context is the minimal
subcontext of 7' needed for the left-hand side of .A’srule to match; the created context isthe
corresponding minimal context “constructed” by the right-hand side of the rule. The former
is defined as the context derived by subtracting from Redex 4 all contexts D; € S; such that
(81,8) € VarPairg*. The latter is the context derived by subtracting from Reduct, all
contexts D, € S, such that (S;, S,) € VarPairg.

Definition 4.5 (Creating and Created) Let p.A be areduction. Then
Creating” 2 Redexs — [1{S1 | (S1,S2) € VarPairg4}

Credted® & { Reducts — U{Sz | (S1,82) € VarPairs} when Ry ¢V
py<— ® otherwise
While Creating’* and Createc”* could have been defined in a more direct way from the
structure of L 4, R4, and p,, without using VarPairg’* at all, the approach we take here will
be much easier to generalize when we consider left-nonlinear systems.
Combining Definitions 4.4 and 4.5, we arrive at the relation CreateResid, formalized in
Definition 4.6. Every pair of terms (T, 7") € CreateResid has the property that 7 — T".

112 Chapter 4. Dynamic Dependence Tracking

The difference between the contraction relation * — ' and relation CreateResid is that the
|atter is derived from the former. Roughly speaking, CreateResic’* may be regarded as the
“restriction” of * — ’ to the specific contraction A.

Definition 4.6 (CreateResid) Let p.A be areduction. Then

CreateResid’* 2 { (C1,C5) | R C Resid’4,
(C,D) € R and (C,D') € Resid’*
imply (C,D') € R,
(1 and C, are contexts such that:
C, = Creating* L |{ C | (C,C") € R},
C, = Created?* LI [{ C" | (C,C"Y e R} }

Notethat it isimpossible to have both (Cy, D) € Resid™* and (Cs, D) € CreateResicP*, for
any nonempty Cy, C», D; these relations may, however, overlap on empty contexts.

4.4 A dynamic dependence relation

In this section, we will derive our dynamic dependence relation, Slicex, using the concepts
introduced in Section 4.3. For the empty reduction, Slicex isdefined as the identity relation.
For a criterion D, the inductive case determines the minimal super-context D' 1 D for
which thereisa C such that (C, D) € (Resid™* U CreateResid™); then the slice for this
C'inreduction p is determined.

Definition 4.7 (Slicex) Let p.A be areduction. Then

Slicex*
SlicexA

{(C,C) | C € Cont(X) }
Slicex” - { (C,D) | thereexisssaminimal D' J D
suchthat (C, D") € (Resid” U CreateResidP*) }

A
A

Since Resid’* and (C», D) € CreateResicP* only overlap for empty contexts, it is easy to
see that the slice with respect to any nonempty criterion isuniquely defined. Empty contexts
may have multiple slices, which arise from the application of collapse rules.

44.1 Example

In the example that follows, we will frequently use set comprehension to avoid unwieldy
notation. We will consider the following B-reduction p = A;.A>As:

S=(f£EA(EEALtL))ALL ﬂ (EEAEE)AEE ﬁ ffALEL ﬁ fE=T

Note that for contraction .A;, wehavep, =(12), L4, = (12) «— X Att, Ry, =(12) « X,
Redexs, = (12) «— ££ A tt, and Reducts, = (12) < ££. Thisresultsin the following

4.4. A dynamic dependence relation 113

relationsfor A;:
VarPairs™s = {({(12) —f£1,{(12)—£f£}), ({(121) — @}, {(12) — @ })}
Resids = {(azn«_ffuznyf>«1zne_q(2) — @),
() —0,()—@®),(12) —e(12) —@)}U

{C] Cl:()<—(ff/\o)/\tt}
Creatings = (12) — (@ Att)
Created™t = (12)— @
CreateResids = { 2) — (@ALtL),(12) — @), (1) — @A (FEALL), (1) — @ AEFE),

(1
(1) — £EEA(EEALL), (1) « ££EAEE),

() — (®A(EEALL))A®, () — (EEAEE) A ®),
() — (®A(EEAEL)) AL, ()« (E£AEE) AtE),
(D —(EEA(EEALEE)) N @, () — (EEAEE) A @),
(O —(FEEAN(EEAEE))ALE, () — (EEAEE)ALL) }

For contraction Az, wehave p,, = (1), L4, = (1) < X A ££, Ry, = (1) «— £f, Redexy, =
(1) «— ££ A ££, and Reduct4, = (1) < ££. Therefore, we have:

VarPairs'142 = {({ @Y < ££}0), <{(11)<—0}®>}
Resict142 = {{(0—o0,()—@®), (1) o0 (l)—e)}U
{(C, >|CE()<—°Aff}
Creating“14 = (1) — (® A£F)
Created142 = (1) « ff
CreateResid > = { ((1) — (@ A££),(1) — ££), () — (@ AEE)A @, () — FEA @),

() — (@ANEE)AEEL, () — EEALL) }

For the third contraction, As, we have p,. = (), L4, = () «— X Att, Ry, = () « X,
Redexs, = () < ££ A tt, and Reduct 4, = 3 — f£f. Thefollowing relations are computed
for A1A2A3Z

VarPairs'i424s = {{@Q £} {0—£fft}h, {(D -0}, {()—o®})}
Resict1424s = {((1) «££,() — ££), (1) — ®,() — @), {() — ®,() — @) }
Creating 1243 = () —(®AtL)

Createqt1424s = ()—o

CreateResid 14243 = [(() — (@ Att),() — @)}

Fromthe above and Definition 4.7 it followsthat we have the following dynamic dependence
relations between subcontexts of S and 1°:

Slicexi24s — { (1) — @ A(EEALL), () — ££), () —®,() — @)}

114 Chapter 4. Dynamic Dependence Tracking

Thus, the slice with respectto () < £f£ C T'is(1) — @ A (E£ A tt) C S. Thisisthe
minimal context for which there exists a subreduction of p that yields the criterion. In this
case, the projection consists of the first two contractions.

The above example also illustrates why Slicex is defined on contexts rather than on
context domains: collapserules require special treatment in order to produce minimal slices.
Note that the example exhibits two applications of collapse rule [B2]. Intuitively, the first
one created the criterion, whereas the second one merely affects its location. We achieve
this differentiation by: (i) having a collapse rule create an empty context p, < ® instead
of the context consisting of the function symbol at path p, (the approach of [94]), and (ii)
defining an empty context p < ® to be a subcontext of a nonempty context only if the latter
“surrounds’ the former.

4.5 Projections, subreductions

In this section, we formalize the notion of a projection of a reduction on a subcontext of
itsinitial term. It will be convenient to define simultaneoudly the initial context C' and the
final context D to which a projection corresponds along with the projected “ subreduction”
o itself. We therefore define the set of projection triples as follows:

Definition 4.8 (Projection Triples) Let R be a TRS over signature X. Then the set of R
projection triplesisinductively defined as follows:

Project« £ {(B,¢,B) | B € Cont(Z) }

Projects** 2 {(B,0A,D') | (B,o,C) € Projects’, (i)
(C, D) € CreateResid’,
D'CED} U

{(B,o,D") | (B,0,C) € Projects”, (i)
(C, D) € Resid*,
D'CD}

The interesting cases in Definition 4.8 are numbered. Intuitively, these cases behave as
follows:

e In case (i), the context D' that constitutes the third element of the triple is entirely
contained in a context D that is involved in a CreateResicP"—relation. In this case,
contraction A is deemed applicable to D', and the construction continues recursively
with the context C' that contracted to D, and reduction p.

e In case (ii), D' is a subcontext of some context D that residuated from a context C.
In this case, contraction .4 was not applicable to D', and the construction continues
recursively with the context C' from which D residuated, and reduction p.

4.5. Projections, subreductions 115

A A
To=[(Eenee) A (et @ee) "B ((FEAEE) Ate) @ ((FE A £E) Att) (/\tt)@(MA tt) = 1Tp

Figure 4.7: Example of projections.

Note that each residual D of a context C' gives rise to the construction of a new projection
triple. Thisreflects the fact that different residuals of a context may be reduced differently,
causing the construction of different subreductions.

Informally, the occurrenceof atriple (B, o, D') inrelation Project«” indicatesthat context
B reduces to a context D that “contains’ ’. Moreover, it does so by a reduction that is
derived from the contractions of p specified in o*. Therefore o can justifiably be deemed a
subreduction of p. In Section 4.6, we will provethis property of projections. In addition, we
will show that Slicex” computes slicesthat correspond to minimal projections by effectively
selecting the minimal supercontext D of D’ (in each construction step) for which there exists
apair (C, D) in (Resid’* U CreateResid™).

As an example of the behavior of Project«, consider the B-reduction in Figure 4.7. As
usual, we have underlined each redex. We use A ; and A 5 to denote the contractions
that use rules [B1] and [B3], respectively. Some typical, minimal elements of the set
Projects™ a4 B3 gre;

(D= (FENEE)N (@D @), ApyApy, () — (EEN@) B ((EENEE)N@))
(0N (0 @) Ap,, () — (0NO)D(ONG))

((1) «— £ENEE, Apy, (11) — ££)

((1) — £ENEE, €, (21) — £ENEE)

Observe that the last two of these projection triples “apply to” the subcontext (1) «
(££ A ££) of To; thissubcontext is shown boxed in Figure 4.7. The projections of the boxed
subcontext of Ty are also shown boxed (in 7). Clearly, these triples correspond to the two
different * paths through the reduction” taken by the boxed subterm of 7. One residual is
contracted in a subsequent step, the other is not.

The difference between the Slicex and Projectx relations is best illustrated by a non-
minimal element of the set Projects" 14 B3 that does not occur in Slicex" #1483 sych
as.

(D= (EEAEE)A (0D @), ApyApy, (11) — ££)

Litisimportant to realize that the occurrence of atriple (B, o, D') inrelation Project«” does not imply that

that B -2+ D'. Thisis the case because the root and substitution components of p are copied unmodified in
the process of constructing . While o could in principle be constructed in such away that it “applies’ directly
to (i.e., isareduction of) context B, thisis not necessary for our purpose of proving that some reduction exists
(see Lemma 4.18); moreover it would substantially complicate the construction process of o in the definition
of Projectx.

116 Chapter 4. Dynamic Dependence Tracking

4.6 Formal propertiesof dlices

We can now state some theorems describing the most important properties of dices. In the
sequel, all TRSs are assumed to be left-linear.

4.6.1 Uniquenessof dices

In order to provethat Slicex isamany-to-one mapping for non-empty contexts (that is, each
context has a unique slice), we will first prove afew lemmas.

P
Lemma49 Lee B —* C A D beareduction. Then for any non-empty D' C D there
isat most one C' C C such that (C', D') € Resid?*. Moreover, if it exists, this C” will be
non-empty.

Proof. Let D' = D be anon-empty context such that (C’, D') € Resid®* for some C' C C.
There are two cases:

1. root(D'") < root(Created’*) and D’ and Created?* are digjoint.
Then it follows from Definition 4.4 that C' = D' is the unique subcontext of C' such
that (C', D') € Resid*. ThisC" is non-empty because D’ is non-empty.

2. D' = (pr-q — A)where pg = Ox(Ra), A € (() « 04(X)), and ¢ = root(A) for
some variable X.
From left-linearity it followsthat thereisaunique path p;, suchthat { p, } = Ox (L).
From Definitions4.3and 4.4 it followsthat C' = (py,-q < A) istheunique subcontext
of C suchthat (C', D') € Resid”*. Since rerooting a context does not affect its (non-
Jemptyness, C” will be a non-empty context. O

P
Lemma4.10 Let B —* C A, D be a reduction. Then for any non-empty D' C D
thereis at most one C’' C C such that (C', D') € CreateResid”*. Moreover, if it exists, this
C" will be non-empty.

Proof. Let D' C D be a non-empty context such that (C’, D) € CreateResicP* for some
'
¢ I%rgrﬁ Definition 4.6 it follows that there exists a unique subset R of Resic? such that:
D' = Created U| [{E' | (E,E") € R}
and also that there exists a unique context
C' = Cregting* U| {E | (E,E') € R}
suchthat (C’, D) € CreateResicP*. Since the left-hand side of arewrite ruleisnot asingle
variable, Creating’* is non-empty, causing this C” to be non-empty as well. O
A

P
Lemma4.1l Let B —* C == D beareduction. Itisimpossibleto have (C, D’) €
Resic”* and (Cs, D') € CreateResid’* for any Cy, C, C C and any non-empty D' C D.

4.6. Formal properties of dlices 117

Proof. Assume that (Cy, D') € CreateResid”* for some C, C C, and some non-empty
D' C D. From Definition 4.6 it follows that Creating®* T C, and Created* C D',
From Definitions4.4and 4.5it followsthat for any pair (Cy, D) € Resid®* withC, C C,
D, C D, we havethat C; and Creating?”* are disjoint and D; and Createc?” are digjoint.
From Creating®* T C, and Creating’* Z C, it followsthat C;, # C. O

p/
Lemmad4.12 Let p : B —* C A D be a reduction, and let D" be a non-empty

subcontext of D. Then there exists a uniqgue minimal D' such that D” C D' C D and
(C',D'") € (Resid® U CreateResid’) for some non-empty C' T C'. Moreove,

(B',C"y € Slicex” < (B',D') € Slicex” < (B', D") € Slicex”
where B' C B.

Proof. Thetheorem holdstrivially if (C’, D") € (Resic? U CreateResicP’), for someC’ C C.

Assume that there exists no C' C C' such that (C', D") € (Resid® U CreateResid’).
From Definitions 4.3 and 4.4, it followsthat D" and CreatedP”* are not disjoint—otherwise,
D" would be involved in a Resid’-relation. From the fact that D” is not involved in a
CreateResid’ relation either, we have that one or both of the following hold:

e Created’ Z D",
o D"~ Created = | |{E' | (E,E') € R}, forsome R C Resic’ such that there exist
(A,B) € R, (A, B") € Resid’ for which (A, B') ¢ R.

Define:
R2RU{(AB) | (A B)€R, (A, B') € Resd }
D' £ D' Created U{FE' | (E,E") € R'}

Clearly, D' isthe minimal supercontext of D" for which (C’, D') € CreateResid’, where
C' = Creating U| [{E | (B,E"Y)e R} EC

Since Creating’ is dways non-empty, C' is non-empty as well.
From Definition 4.7 it follows that

(B',C"y € Slicex” < (B',D') € Slicex” < (B',D") ¢ Slicex”
where B’ C B. O

P
Theorem 4.13 (Uniqueness of Slices) Let p : B —* D beareduction, andlet D' = D
be non-empty. Then there exists a unique non-empty B' = B suchthat (B’, D') € Slicex”.

Proof. By induction on the length of the reduction p.
Forp=¢,wehave{ B' | (B',D') € Slicex* } = { D' } according to Definition 4.7.
/

p
For the inductive case, assume that p = A such that B —* C A D, and let

D' C D be anon-empty context. According to Lemma 4.12, we may assume without 10ss
of generality that (C', D) € (Resid’* U CreateResid”*), for some C' C C.

118 Chapter 4. Dynamic Dependence Tracking

According to Lemma 4.11, we have either (C',D') € Resid’* or (C',D') €
CreateResid’' .

Lemmas 4.9 and 4.10 state that both Resid and CreateResid map any non-empty context
D' T D to aunique non-empty C' C C. By induction, there exists a unique non-empty
B' C B suchthat (B',C") € Slicex” .

From Definition 4.7 it followsthat this B’ is the unique non-empty subcontext of B such
that (B', D') € Slicex’. 0

Given Theorem 4.13, we will be able to write C = Slicex”(D) instead of (C, D) €
Slicex”, for non-empty D.

4.6.2 Preservation of topology

Thefollowing lemma statesthat slices may be computed by repeatedly determining aunique
related subcontext of the previous context in the reduction.

/

P
Lemmad.l4 Letp: B —* C A> D be areduction, and let D" = D be a non-empty

context. Moreover, let D' be the unique minimal super-context of D" for which there exists
anon-empty context C' C C' such that (C', D') € (Resid” U CreateResid’). Then

Slice«” (C") = Slicex*(D") = Slicex”(D")

Proof. Followsimmediately from Definition 4.7, Lemma4.12, and Theorem 4.13. O

Lemma 4.15 states that any pair of contexts (C, D) in the Resid relation can be “split”
into aset S of pairs of elementary contextsin a way that each pair of elementary contexts
(C',D") in S aso occurs in the Resid relation. This result will be used in the proof of the
Inclusion Lemma, which follows bel ow.

Lemma4.15 Let C and D be contexts such that (C, D) € Resic’, for some reduction p.
Then there existsa set S of pairs of elementary contexts such that all of the following hold:

1 {c | (¢',DYeS}=C,
2. l{D' | (C',D)eS}=D,
3. (C',D') € Simpliesthat (C', D') € Resicl.

Proof. Followstrivially from Definition 4.4. O

The next lemmaand theorem demonstrate that slices effectively preserve the topology of
their corresponding criteria. Thisisimportant in showing that slicesare minimal projections.
Lemma 4.16 (Incluson Lemma) Let p.A be a reduction such that B —p>* C A D,
and let D" C D’ C D be non-empty contexts such that there exist pairs (C', D') €
(Resid”* U CreateResicb*), and (C", D") € (Resid”* U CreateResicP*). Then C" C (.

Proof. There are three cases:

1. (C", D) € Resid”* and (C", D") € Resid™.
From Definition 4.4 it follows that there are two cases;

4.6. Formal properties of dlices 119

(8) root(D') < Created’*, D' and Created”* are digjoint, root(D") < Created’,
and D" and Created”” are disjoint. Then C' = D’ and C” = D", and therefore
c'C .

(b) D' = (pr-q « A"), D" = (pr-q" « A") where pp € Ox(Ra), A’ C (() «
o4(X)), A" C (() « 04(X)), ¢ = root(A"), ¢" = root(A"), for some variable
X.

From Definitions4.3 and 4.4 and | eft-linearity, it followsthat there existsaunique
occurrence py, of X inL 4 suchthat C' = (p, - ¢/ — A"),C" = (pr - ¢" — A").
D" C D'impliesq’ < ¢", A” C A’ and therefore that C” C C".
2. (C",D') € CreateResicd* and (C", D") ¢ CreateResidP*.
From Definition 4.6 it follows that

D' = Created’* U||{E' | (E,E") € R'}
D" = CreatedP* U||{F' | (E,E') € R"}
C' = Creating* U||{ F | <E E'Ye R}
C" = Creating* U|[{F | (E,E")€ R"}

for R', R" C Resid®*. According to Lemma 4.15, we may assume without oss of
generaity that for al (£, E') € R', R", both E and E' are elementary. From D" C D’
it followsthat R” C R’ and thereforethat C" C C’.

3. (C',D') € CreateResicd’* and (C", D") ¢ Resicb*
According to Definition 4.6, we have that

D/
Cf/

Created* U | [{ ' | (E,E'Y€ R}
Creating* U|[{ E | (E,E"Y € R}

for some R C Resicd’*. According to Lemma 4.15, we may assume without 10ss of
generality that for all (£, E') € R, both E and E' are elementary. From D" C D',
and the disjointness of Createc”” and D" it follows that there exists a subset R’ C R
such that

D'=|[{F | (E,F)€R}
Using an argument similar to that in case 1, it follows that
C"=|{E | (E,E)eR}

Consequently C” C C".
Note that the case where (C", D) € Resid”* and (C", D") € CreateResid™ isimpossible,
given D" C D', O
P
Theorem 4.17 (Inclusion Theorem) Let p: B —* D beareduction, let D" C D' C D,
and let D" be non-empty. Then Slicex”(D") C Slicex”(D').

Proof. By induction on the length of the reduction p.

120 Chapter 4. Dynamic Dependence Tracking

For p = ¢, wetrividly have:
Slicex‘(D") = D" C D' = Slicex*(D")

/

p
For the inductive case, assume that p = A such that B —* C A D, and let

D', D" be subcontexts of D suchthat D" C D' T D and D" is non-empty. According to
Lemmas4.12 and 4.14 we may assume without loss of generality that there exist non-empty
contexts C’, C" C C such that

(C",D') € (Resid’ U CreateResicP), Slicex”(D') = Slicex”' (C")

and
(C". D" € (Resicd? U CreateResic’), Slicex”(D") = Slicex” (C")

According to Lemma4.16, D" C D' impliesC” C C’. By induction, C” C C’ implies
Slice«” (C") C Slice«” (C"). Consequently, it followsthat Slice«”(D") C Slicex”(D'). O

4.6.3 Therelation between Slicex and Projectx

Lemma 4.18 formally justifies the relationship between a reduction and the components of
aprojection triple.

Lemma4.18 Let p beareduction, andlet (B, o, D") € Project«”. Then there exist contexts
E'and D suchthat B —* D, E'C D,and E' = D".

Proof. By induction on the length of p.

Accordingto Definition4.8, (B, o, D") € Project«“ impliesthat o = eandthat B = D"
Fromthisit followstrivially that B —* D, for D = D".

For the inductive case, assume that p = p'A, and (B, o, D") € Project«". From
Definition 4.8 it follows that two cases can be distinguished:

1. D"C D', (C',D") € CreateResid’, and (B, o', C") € Projects’.

By induction, there existsareduction B —* C' for some C J F’, where F' = C".

From Definition 4.6 it follows that C’ A D'. Therefore we have that

B —* C=C[F'] —* C[E'|=D

where E' = (root(F') <« D'). Since D’ and E’ are isomorphic, and D" C D', it
followsthat D" = E” forsome E” C E' C D.

2. D"C D', (C'D') € Resid’, and (B, o', C") € Project«".
By induction, there existsareduction B —* C for some C J F’, where F' = C".
From Definition 4.4 it followsthat C’' = D’. Therefore we have that

B —* C=C[F|=C[E]=D

where E' = (root(F') «— D'). Since D’ and E’ are isomorphic, and D" C D', it
followsthat D” = E” forsome E” C E C D. O

4.6. Formal properties of dlices 121
The lemma bel ow establishes a connection between the relations Slice«” and Project«”.

P
Lemma4.19 Let p beareductionsuchthat B —* D, andlet B’ = Slicex”(D') for some
non-empty D' C D. Then thereexistsatriple (B', o, D') € Project«”.

Proof. By induction on the length of reduction p.

Let p = e. From Definition 4.7 it follows that B’ = Slicex‘(D’) implies B’ = D'.
Moreover, from Definition 4.8 it follows that (B', e, D') € Project«* implies B’ = D' as
well, so that the lemmatrivialy holds.

/

P
For the inductive case, assume that p = p'A suchthat B —* C A D, and let

B' = Slicex”(D"), for somenon-empty D" C D. According to Lemmas4.12 and 4.14 there
existsaunique D' J D" suchthat (C', D') € (Resid’ U CreateResid’) and Slicex”(D") =
Slicex”(D') = Slicex” (C") = B'.

By induction there existsatriple (B, o', C") € Project+” . From Lemma4.11, it follows
that there are two cases:

1. (C",D') € Resict. Since D" C D' itfollowsfrom Definition4.8thatthat (B', o', D") €

Project«”.
2. (C',D') € CreateResid’. Since D" C D' it follows from Definition 4.8 that
(B',0' A, D") € Projects". O

4.6.4 Soundnessand minimality

The soundness theorem states that the Slicex relation computes slices that comply with
Definition 4.1.

P
Theorem 4.20 (Soundness) Let p be a reduction such that B —* D. Moreover, let
B' = Slicex”(D") for some non-empty D" T D. Then there exists a reduction ¢ such that:

1. (B',0,D") € Project«’, and
g
2. B —* D' suchthat thereexistsan £ C D’ for which £ = D".

Proof. Followsimmediately from Lemmas 4.18 and 4.19. O
Our final theorem states that a slice is the minimal initial component of some projection
triple whose final component contains the slicing criterion:

Theorem 4.21 (Minimality) Let p be a reduction, and let B, = Slicex’(D") for some
non-empty D;. Then (B, 0, D)) € Project+” and D], 3 Dy together imply that B, J B;.

Proof. By induction on the length of reduction p.

For p = ¢, Definition 4.8 statesthat (B, 0, D,)) € Project«* implieso = eand B, = D,
Moreover, according to Definition 4.7 we have that B, = Slicex“(D’) implies B, = D..
Therefore D;, 1 D! impliesthat BI’, 1 B!

122 Chapter 4. Dynamic Dependence Tracking

For the inductive case, assumethat p = ¢/ A, let B! = Slice<”(D!) for some non-empty
D, andlet (B),0,D,) € Projects” suchthat D) 2 D;. Then by Definition 4.8, there exists
aD, J D! suchthat (C,, D,) € (Resid”4 U CreateResic’*), and (B}, o', C,,) € Projects"".

According to Lemmas 4.12 and 4.14, there exists a unique minimal super-context D, of
D’ suchthat (Cs, D,) € (Resid® U CreateResid’) and:

Slicex”' (C,) = Slicex”(D,) = Slicex”(D") = B,

By induction, (B, 0", C,) € Project+* and C,, 3 C, together imply that B, J B,. Conse-
quently it suffices to show that C,, 1 C.

From (i) the fact that D, is the minimal super-context of D’ that is related in a
CreateResicd’-relation, (ii) the fact that D, is some supercontext of D! that is involved
in a CreateResid’-relation, and (iii) Definition 4.6, it follows that D, O D,. According
to Lemma 4.16, we therefore have C, 3 C,. This concludes the proof of the minimality
theorem. O

Together, Theorems 4.20 and 4.21 imply that our construction of dlices agrees with
Definition 4.1.

4.7 Nonlinear rewriting systems

Unfortunately, our previous definitions do not extend trivialy to left-nonlinear TRSS, be-
cause they do not account for the fact that nonlinearities in the left-hand side of a rule
constrain the set of contexts for which the rule is applicable. For example, when rule [B4]
of TRSB of Figure4.3 isappliedto ££ @ £ £, thisresultsin a contraction
T=ffoff A =1

Our previous definitionsyield C' = () < (@ @ ®) T T asthe slice with respect to criterion
D = ()« ££ C T'. Thisisnot avalid slice, because someinstantiationsof C' do not reduce
to acontext containing D; e.g., () < tt @& ££ doesnot. A related problem is that multiple
contexts may be related to a single criterion in the presence of |eft-nonlinear collapse rules;
this conflicts with our objective that a slice with respect to a context consist of a single
context.

A simple solution for nonlinear TRSswould beto restrict VarPairsto variablesthat occur
at most once in the left-hand side of a rule. However, this would yield larger slices than
necessary. For instance, for thereduction of Figure4.4thenon-minimal slicef£A(tt®tt)
would be computed. Theimmediate cause for thisinaccuracy isthe fact that the subcontexts
(1) « ££ and (2) «— ££ of T3 are deemed responsiblefor the creation of term 7,. However,
they are residuals of the same subcontext C' = (1) < ££ C T,. Thisbeing the case, C' may
be replaced by an arbitrary context without affecting the applicability of the left-nonlinear
rule.

2The definition of the Slicex relation for nonlinear systems in [58] contained an error. The definitions in
this section therefore supersede the earlier ones.

4.7. Nonlinear rewriting systems 123

We can account for this fact by modifying the VarPairsrelation as follows: if, for arule
«, al occurrences of avariable X in L, are matched against a set of “equivalent” contexts
S that are residuals of acommon context (one that occurs earlier in the reduction sequence),
then the contexts in S are deemed to be residuated by « (assuming X occursin R,). All
other cases cause creation: those subcontexts matched against X that are not residuals of a
common context are deemed creating, and the corresponding subcontexts matched against
X in R, are created.

4.7.1 Formal definitionsfor nonlinear systems

If a context D is created at some point in a reduction, and D has aresidual C' that occurs
later in the reduction, we will say that D is a progenitor of C'. This concept will be useful
for formulating an adequate notion of slice for nonlinear TRSs. Formally, we have:

Definition 4.22 (Progenitor) LetT beaterm, o andr bereductionssuchthator : U —* T
for someterm U, and D be a subcontext of 7". Then we will say that a context C isa o, 7-
progenitor of D if (C, D) € Residk", and either C' C CreateResid” or o = e.

We will say that a context forest S has common o, 7—progenitor C' if foral D € S, D has
o, T—progenitor C'. Note that an empty context may have more than one progenitor, due
to collapse rules, which have the effect of combining existing empty contexts as well as
creating new ones. Also note that the progenitor of a context C' created by the last step of
reduction p has p, e—progenitor C.

We can now revise Definition 4.3 to account for common residual sin subterms matched
nonlinearly:

Definition 4.23 (VarPairsfor nonlinear TRSs) Let p.A be areduction. Then

VarPairg* 2 {(5,S,) | X €V,
CLE(() —oulX)) or C=(() — @),
q = root(C'), o
S1=A{(pr-q—C) | pr € Ox(La)},
S2={(pr-q < C) | pr € Ox(R4)},
&1 has a common o, T—progenitor,

oT=p }

For linear TRSs, Definition 4.23 reducesto Definition 4.3, since S; isalways asingleton and
thus has atrivial common progenitor.

In nonlinear TRSs, certain empty contexts at the “edge’ of Creating and Resid have a
creating effect that does not occur in the linear case; the definition of Slicex for nonlinear
systems must therefore be modified accordingly. More specifically, in the linear case, the
empty contexts between Creating and Resid are irrelevant to the applicability of the redex.
However, in the nonlinear case, they are indeed relevant, sinceif these “glue” contexts were
not empty, the nonlinear match would not occur (unless, as with other contexts matched
nonlinearly, the edge contexts have a common progenitor).

124 Chapter 4. Dynamic Dependence Tracking

The following definition computes the union of the slices with respect to relevant edge
empty contexts:

Definition 4.24 (EdgeSlices) Let p.A be areduction. Then

EdgeSlices* 2 | |{ C | (81,S,) € VarPairg?,
(p — ®) € (81N O, (Creating™)),
D isao, T—progenitor of (p — @),
D isnot a common o, T—progenitor of Sy,
(C, D) € CreatedSlicex’,
or=p }

(The relation CreatedSlicex, defined formally below, is a subrelation of Slicex in which the
second elements are created by the last step of the reduction; thisyields aslice specific to the
progenitor in the definition when more than one progenitor exists). Definition 4.24 yields
the union of slices with respect to empty context criteria at the “edge” between Creating
and Resid that are not derived from a progenitor common to all the contexts associated with
agiven variable. Note that EdgeSlices” is always empty for linear TRSs, since for such
systems, the forest S; in the definition is always a singleton.

Our definition of Slicex inthe nonlinear caseis essentially the same asthat for the linear
case, except that we must add the information in EdgeSlices where appropriate:

Definition 4.25 (Slicex for nonlinear TRSs) Let p.A be a reduction. Then

Slicex*
Slicex4

((C,C) | C e Cont(x)}
ResidSlices”* U CreatedSlices"*

s
s

where

ResidSlices"*
CreatedSlicex"*

Slicex” - Resid’*
{(C,E) | F and Created®* are not digjoint,
(C', D) e Slicex’,
there exisssa minimal £/ J F such that
(D, E') € CreateResicb*,
C = C' U EdgeSlices’* }

Definition 4.25 is complicated by the necessity of splitting the pure residuation case from
the creation case—the two cases both apply only when created and residuated information
overlap exactly; i.e., when A isa collapse rule application.

While Definition 4.25, along with the auxiliary definitions, may appear rather compli-
cated, testing whether two contexts have a common progenitor can be performed cheaply
in practice if reduction isimplemented using term graph rewriting techniques [17]. Graph
rewriting causes terms that are created by contraction of sets of residuals of previous reduc-
tions to be shared in a graphical data structure. If such an implementation is used, testing
whether two contexts have acommon progenitor reducesto determining whether the contexts
are represented by a common shared subgraph.

4.7. Nonlinear rewriting systems 125

4.7.2 Example: dicingin anonlinear system
Recall the reduction used in the example of Figure 4.4:

ffEA(tt@tt) =Tp Ay (fEAtE) D (EEALL) =T Az fED(EEALL) =T
A3 Ay

= (ff@ff)ETg—)ffET4

We have denoted the contractions in the reduction above by A;, A,, Az, and A4. In the
sequel, we will abbreviate the reduction sequence A;.4,.A3 by 7.

Applying the definitions of the previous section to this example, we find that the most
interesting step is the contraction 4,4, which uses nonlinear rule [B4]. In Figure 4.6, the
two f£f subtermsin the term matched by contraction A4 have the same progenitor in the
initial term, indicated by dotted lines. Definition 4.23 thusimpliesthat the £ £ subterms are
components of VarPairs. Consequently, the Creating context for the [B4] contraction does
not include the £ £ subterms. Taken together, these facts allow us to conclude that the final
term of the reduction of Figure 4.6 does not depend on the £ £ subterm of the initial term of
the reduction.

Itisinstructiveto observethe effect of the formal definitionsof Section 4.7.1 with respect
to contraction A4. In order to determine whether the contexts bound to the nonlinearly
matched variable X are derived from a common source, we must first consider the common
progenitors of the contextsin VarPairs 4+, which are:

{() « ££, (2) — ££} C T3 hascommone,r—progenitor (1) «— ££ C Tp
{1)«—e (2)—@} C T3 has common ¢, T—progenitor (1) — ® C Tp

Since the contexts bound to the nonlinearly matched variable X (namely, (1) «— ff,
(2) — ££,(1) — ®,and(2) — @) haveacommon progenitor, they areincludedin VarPairs.

VarPairs A+ = { ({(1) — ££,(2) — ££},0), ({(1) — ®,(2) — ®},0) }
Resd = (()«— @,() «— @)

Using VarPairs, we can eliminate the nonlinearly matched contexts from Creating and
Created:

Creating = ()— @0 ®

Created™* = ()« ff

However, before we can computethe Slicex relation, we must consider sliceswith respect
to the“edge” empty contexts(1) < @ and (2) < @, which separate Creating from elements
of Resid. Their progenitor information is as follows:

has A1.A,, As—progenitor 1l)—e C Ty
(1) — @ C T3 has A1, A As—progenitor (1) —e@ C Ty
has e, T—progenitor (1)—e® C Tp
has 7, e-progenitor 2)—@ C T3
(2)— @ C T3 has A1, A As—progenitor 2)—e@ C Ty
has e, T—progenitor (1)—e® C Tp

126 Chapter 4. Dynamic Dependence Tracking

B B4]
P (ff/\ff)/\(tt@tt)zTo[jff/\(tt@tt)le —* ff@ffET4[—JffET5

p2: (EEAEE)A(tt B tE) =To [Bj (FEANEE)AEE) D ((FEEAEE)ALE) =TY
—*(ELAFE) @ (EEAEE) =T} (B3] fED(EEAFE) =T3 (B3]

4

B
ff@ffET‘{[—> ££ =T}

Figure 4.8: Sensitivity of nonlinear dlicing to reduction strategy.

(1) — @ and (2) — @ each have three progenitors because the collapse rule [B2] (applied
in contractions .4, and .43) has the effect of combining the empty contexts above and below
the matched part of the redex, aswell as creating a“new” empty context.

For the purpose of computing EdgeSlices+, we need consider only those progenitors
not common to both (1) «— @ C 753 and (2) «— @ C 73. These are: (1) «— @ C T,
(2)— @@L Ty, (1) «— @ LC Ty and(2) «— @ C T3. The CreatedSlicex subrelations relevant
to the latter contexts are as follows:

CreatedSlicex*
CreatedSlicex*142
CreatedSlice«*1A2As

{{0—on(ece)(l)—@) ()—0A(0D@)(2)— @)}
() —oA(ttD @), (1) — @)
() —oNn(®@DtL),(2) — @)

N 1N 1N

Taking the context union of the CreatedSlicex information above, we get:

EdgeSlices™ = ()—OA(00®) U () —OA(tt®®) LI () — OA(®DtL)
= () — @A (tt D tt)

Combining the information computed above and using Definition 4.25, we finally have:
Sices™ = {(() — @,() — ®), () — ®A(ct D tt),() — ££) }

Consequently, theslice® A (tt @ tt) C Tp iscomputed for criterion () «— ££ C 7).

4.7.3 Nonlinear systems and optimality

Although the approach to nonlinear slicing developed in the previous section is sound, it
does not always yield minimal slices. To seethis, consider the B reductionsin Figure 4.8.
Although both p; and p, start and end at the same term, using the definitions of Sec-
tion 4.7.1, the slice with respect to criterion 75 is (® A ££) A (tt @ tt), whereasthe dlice
with respect to criterion T2 is(E£ A ££) A (tt @ tt), i.e, theentireinitial term.
Thedifferencein the slicesresultsfrom the order in which redexeswere contracted in the
two reductions. In p,, the (E£ A ££) = Sp subterm of T is contracted immediately, and two
residuals of its contractum, f £, subsequently appear in term 7. In p,, however, Sy is not
immediately contracted. Instead, the reduction produces an intermediate term 75, containing
two residuals of Sp. These residuals are contracted in subsequent steps, ultimately yielding

4.7. Nonlinear rewriting systems 127

theterm 7};. However, unlike 7;, thetwo £ £ subtermsof 7}, are not residuals of any previous
term. Sincethe £ £ subtermsof 7 have acommon progenitor, the definitionsof Section4.7.1
alow information common to the dlices of the £ £ subterms of 7, to be omitted when the
nonlinear rule [B4] isapplied. In the case of T}, however, the £ £ subterms have no common
progenitor, and thus no information can be omitted.

It should beclear from the example of Figure 4.8 that the notion of progenitor isdependent
upon reduction order. One way to avoid the problems illustrated by Figure 4.8 isto use an
innermost reduction strategy, in which all redexes are contracted before they are residuated.
However, if we do not wish to impose restrictions on allowable reduction strategies, we must
take into account the behavior of reductions such as p,, in which termsthat have no common
progenitor could have had acommon progenitor if the redexes were contracted in a different
order.

Put another way, we must treat sets of termsthat are all “ derived in the sameway” froma
set of residuals with acommon progenitor as equivalent to sets of terms with atrue common
progenitor. Maranget [111, 112] defines a notion of equivalence modulo permutation of
redexes that could, if extended to non-orthogonal systems, be used for determining when
classes of terms are or could have been residuals of acommon term. However, if reduction
isimplemented using term graph rewriting techniques, terms that have common progenitors
and terms that could have common progenitors are indistinguishable. In the case of the
example in Figure 4.8, both term 7, and term 7, would be represented by identical graphs
inwhich the £ £ subterms would be shared.

Unfortunately, even graph rewriting does not eliminate the possibility of computing
suboptimal slices for nonlinear systems. Consider, for instance, the following TRS E:

[El] £(X)— eq(g(X), h(X)) [E4] k(a) —Db
[E2] h(X)— k(X) [E5] eq(X,X)— c
[E3] g(X) —k(X)

Notein particular that rule [E5] is honlinear. Now consider the following E-reduction:

p: fa) B eq(g(a), ha)) B eqk(a), h(a)) B eq(k(a), k(a))
B eqb, k(a)) B eqb,p)=7 ©&

In principle, we ought to be able to determine that the slice with respect to thefinal term ¢ of
pis £(®), since we can attain the same final term by omitting the fourth and fifth reduction
steps entirely. However it is difficult to see how any information short of maintaining the
entire reduction history could be used to determine that thisis the case. In particular, note
that the b subterms of the intermediate term 7" in p do not have a common progenitor, nor
are they derived in an “equivalent” way from the sets of residuals. Therefore, we cannot
use information about the derivations of the b subtermsin isolation as a means for allowing
common slice information to be omitted when rule [E5] is applied.

We are led to conclude that short of maintaining information about an entire reduction
history, the only systematic way to treat nonlinear rules is to eliminate information asso-
ciated with nonlinearly-matched subterms possessing a common progenitor (generalized

128 Chapter 4. Dynamic Dependence Tracking

using graph reduction techniques to account for “potential progenitors’). It is conceivable,
however, that a restricted class of reduction systems or reduction strategies could eliminate
the problems exhibited in the example of Figure 4.8. We leave it to future work to explore
these possibilities further.

4.8 Implementation

In principle, one could implement dlicing by storing information about every step of a
reduction p, and then computing relation Slicex” based on thisinformation. In practice, such
an approach is infeasible since it would require space and time proportional to the length
of p for each choice of criterion. Since our reasons for investigating dependence relations
are eminently practical, we use an alternative method that allows dlices to be computed as a
“side-effect” of the reduction process, in away that efficiently yields slices with respect to
any chosen criterion. During the reduction process, our method maintains (i) the slices for
all elementary subcontexts of aterm, and (ii) the context union of the slices with respect to
any empty context. (Recall that Slice«” isnot necessarily single-valued on empty contexts.)
The latter information is associated with the non-empty elementary context (i.e., function
symbol) with the same root. Using thisinformation, a slice with respect to any non-empty
context D can be determined by computing the context union of the sliceswith respect to all
elementary and empty contexts that are a subcontext of D.

This simple scheme has been implemented in the rewriting engine of the ASF+SDF
Meta-environment [93]. Slicesfor elementary and empty contexts are stored as annotations
of function symbols. More precisely, each function symbol has two slices associated with
it: the slice with respect to the elementary context consisting of that function symbol, and
the dlice with respect to the empty context “above’ that function symbol. Each rewrite step
that is performed by the rewriting engine has the effect of propagating “dlice” information
from the symbolsin the redex to the symbols in the reduct. These propagations effectively
compute for each symbol in the reduct the context union of the slices of a set of symbolsin
the redex.

The implementation of the Slicex relation for nonlinear rewriting systems is much
simpler in practice than one might infer from the definitions in Section 4.7. Recall that the
main problem addressed in that section consists of defining the notion of a progenitor, and
determining whether or not two contexts have progenitorsin common. Astheterm rewriting
engine of the ASF+SDF Meta-environment actually performs term graph rewriting, the
check for common progenitors corresponds to testing whether or not two subterms are
shared. For certain ill-behaved rewriting systems that feature a combination of nonlinear
and collapse rules, our implementation produces sub-optimal results. In practice, this does
not pose any problems.

Slices are efficiently represented by bit-vectors, whose size is proportional to the size of
theinitial term. Using bit-vectors, set union operations can be performed in time linear in
the length of the vector. The number of unions per reduction step is bounded by the number
of function symbolsthat need to be matched. Consequently, the overhead per reduction step

4.9. Related work 129

is linear in the size of the initial term. In other words, performing dynamic dependence
tracking has the effect of slowing down the execution (i.e., the term rewriting process) by a
factor proportional to the size of theinitial term. We have implemented dynamic dependence
tracking in the ASF+SDF system [93], and conducted some performance measurements. In
our experiments, the term rewriting engine of the ASF+SDF system is never slowed down
by more than one order of magnitude.

49 Reated work

Theterm “dlice” wasfirst coined by Weiser [147], and defined for imperative programming
languages using dataflow analysis. Subsequent work, beginning with that of Ottenstein and
Ottenstein [120], has focused on use of program dependence graphs [53] for computing
dlices. Cartwright and Felleisen [34] and Venkatesh [137] discuss the denotational foun-
dations of dependence and dlicing, respectively for similar classes of languages, however,
they do not provide an operational means to compute slices. Chapter 3 provides a survey of
current work on program slicing.

A number of authors have considered various “labeling” or “tracking” schemes that
propagate auxiliary information in conjunction with reduction systems; these schemes are
similar in some respects to the method we will use to implement slicing. Bertot [27, 28]
defines an origin function, which is a generalization of the classic notions of residual and
descendant in the lambda-calculus and TRSs. He applies thisideato the implementation of
source-level program debuggers for languages implemented using natural semantics [85].
Van Deursen, Klint and Tip addressing similar problems, define a dightly expanded class
of “origin” information for the larger class of conditional TRSs (see Chapter 2). However,
dlicing is not considered in these works, nor do these “tracking” algorithms propagate
information appropriate for computing slices.

In [94, page 85], Klop presents a “tracing relation” that is very similar to our dynamic
dependence notion, and observes that it can be used to distinguish the needed prefix and the
non-needed part of aterm. In our terminology, the needed part is the dlice with respect to
the entire normal form, and the non-needed parts correspond to the “holes” in thisdlice. In
other words, replacing the non-needed parts by arbitrary subterms will result in the same
normal form. There are two main differences with our work. First, Klop’stracing relationis
only defined for orthogonal TRSs. Second, for collapse rules the top symbol of thereduct is
considered to be “created”. Aswe discussed earlier (see the last paragraph of Section 4.4),
this givesrise to slices being non-minimal. Finally, Klop does not study the use of tracing
relationsfor program slicing, nor does he give an algorithm to compute hisrelation efficiently
in practice.

In certain respects, our technique is the dual of strictness analysis in lazy functional
programming languages, particularly thework of Wadler and Hughes[138] using projections.
Strictness analysisis used to characterize those subcomponents of afunction’sinput domain
that are always needed to compute a result; we instead determine subcomponents of a
particular input that are not needed. However, there are significant differences. strictness

130 Chapter 4. Dynamic Dependence Tracking

analysis is concerned with domain-theoretic approximations of values, usually requires
computation by fixpoint iteration, and rarely addresses more than a few core functional
primitives. By contrast, we perform exact analysis on a particular input (although we can
effectively perform some approximate analyses by reduction of open terms), compute our
results algebraically, and can address any construct expressiblein TRS form.

Maranget [111, 112] provides a comprehensive study of lazy and optimal reductions
in orthogonal TRSs using labeled terms. Although Maranget’s label information could in
principle be used to compute dlices, he does not discuss such an application, nor does he
provide any means by which such labels could be used to implement dlicing. Like Klop,
Maranget also only considers orthogonal TRSs. Our approach coversalarger classof TRSs,
and provides apurely relational definition of slice that does not require labeling.

4.10 Futurework

An important question for future work is to define classes of TRSs for which dlices are
independent of the reduction actually used. While orthogonal systems certainly have this
property, we believe it should be possible to characterize non-orthogonal systems for which
this property also holds.

Chapter 5

Parametric Program Slicing

(joint work with John Field and G. Ramalingam)

Summary

Program dlicing is a technique for isolating computational threadsin programs. In
this chapter, we show how to mechanically extract afamily of practical algorithms for
computing slices directly from semantic specifications. These algorithms are based on
combining the notion of dynamic dependencetrackingin term rewriting systems, which
was introduced in Chapter 4, with a program representation whose behavior is defined
via an equational logic [55]. Our approach is distinguished by the fact that changes
to the behavior of the dicing algorithm can be accomplished through simple changes
in rewriting rules that define the semantics of the program representation. Thus, e.g.,
different notions of dependence may be specified, properties of language-specific data
types can be exploited, and various time, space, and precision tradeoffs may be made.
This flexibility enables us to generalize the traditional notions of static and dynamic
slices to that of a constrained slice, where any subset of the inputs of a program may
be supplied.

5.1 Introduction

Program slicing is an important technique for program understanding and program analysis.
Informally, a program slice consists of the program parts that (potentially) affect the values
of specified variables at some designated program point—the dlicing criterion. Although
originally proposed as a means for program debugging [147], it has subsequently been used
for performing such diverse tasks as program integration and “differencing” [74], software
maintenance and testing [61, 51], compiler tuning [106], and parallelization of sequential
code [146].

In this chapter, we describe how a family of practical slicing algorithms can be derived
directly from semantic specifications. The title of this chapter is a triple entendre, in the
sense that our technique is“ parameterized” in three respects.

e We generalize the traditional notions of static and dynamic slices to that of a con-
strained slice. Static and dynamic slices have previously been computed by different

131

132 Chapter 5. Parametric Program Sicing

techniques. By contrast, our approach provides a generic algorithm for computing
constrained slices.

e Given a well-defined specification of a translation from a programming language
to a common intermediate representation called Pim [55], we automatically extract
a semantically well-founded language-specific algorithm for computing constrained
dlices. An advantage of this approach is that only the Pim trandation is language
dependent; the mechanics of slicing itself are independent of the language.

e PiM’ssemantics(and thusthat of the sourcelanguage viatrandlation) isdefined by a set
of rewritingrules. Theserulesimplicitly carry out many techniquesused in optimizing
compilers, e.g., conditional constant propagation and dead codeelimination. Theslices
we obtain are thus often more precise than those computed by previous algorithms.
By choosing different subsets of rules or adding additional rules, the precision of the
analysis, aswell asitstime and space complexity, may bereadily varied. Weillustrate
the flexible nature of our approach by defining several extensionsto Pim’s core logic.
Thesevariantsdescribe differing treatmentsof loop semantics, and consequently define
differing dlice behaviors.

Oneof the primary contributionsof thischapter isan algorithm for computing constrained
dices. Despite the myriad variations on the theme of dlicing that can be found in the
literature (see Chapter 3), almost all existing slicing algorithmsfall into one of two classes:
static dicing algorithms, which make no assumptions about the inputs to the program, and
consequently compute dlices that are valid for al possible input instances, and dynamic
dlicing algorithms, which accept a specific instantiation of all inputs, and compute slices
valid only for that specific case. A constrained sliceisvalidfor all instantiationsof theinputs
that satisfy a given set of constraints. In the sequel, we will primarily consider constraints
that specify the values of some subset of the input parameters of the program.

The relation between constrained dlicing, static dicing, and dynamic dlicing is straight-
forward: a fully constrained slice (with every input a fixed constant) is a dynamic dlice,
and a fully unconstrained slice is a static slice. We believe that constrained dlicing can be
more useful than static or dynamic slicing in helping programmers understand programs,
by enabling the programmer to supply avariety of plausible input scenarios that the slicing
system can exploit to ssimplify the slice obtained.

While Venkatesh has defined a notion of a quasi-static dlice [137] similar to that of
a constrained dlice, we know of no previous work that describes how such slices may be
computed. In a recent paper [117], Ning et al. describe a reverse engineering tool that
permits users to specify constraints on variables and extract conditional slices, but they do
not specify how these slices are computed or how powerful the constraintscan be. Onemight
consider combining partial evaluation of programswith static slicing to compute constrained
gdlices, but, as will be explained later, this does not lead to satisfactory results.

Thefeasibility of theideasin thischapter has been demonstrated by asuccessful prototype
implementation of the Pim logic and trandators for significant subsets of such disparate
languages as C and Cobol using the ASF+SDF Meta-environment [93], a programming
environment generator based on algebraic specifications.

5.2. Overview 133

5.2 Overview

In this section, we will give a brief overview of our approach using examples. Details will
follow in subsequent sections.

5.2.1 Maotivating example

Figure5.1 (a) showsan example program writtenin 1.C, aC subset that we will usefor all the
examplesin this chapter. 1C has the standard C syntax and semantics, with one extension:
meta-variableslike ? P and ?Q are used to represent unknown values or inputs. All datain
uC are assumed to be integers or pointers; we also assume that no address arithmetic is used.
When we discuss loops in Section 5.5, we will for simplicity further restrict our analysisto
programs containing only constant L-values.

The example of Figure 5.1 (a) is not entirely trivial, due to manipulation of pointersin a
conditional statement. The static slice with respect to the final value of result consists of
the entire program. The dynamic slice with respect to the final value of result for input p
= 5, g = 3isshowninFigure5.1(d); notethat it does not immediately reveal the effect
of each input. Theeffect of inputp = 5 isillustrated by the constrained slice of Figure 5.1
(b); clearly it causes the aliasing of *ptr to y, and thereby makes both assignments to x
obsolete. In Figure 5.1 (c), the effect of the other input, g = 3 isshown: the statementsin
the first branch of the second 1 £ statement become irrelevant. Note that in general, it is not
the case that a slice with respect to multiple constraints consists of the “intersection” of the
slices with respect to each constraint.

In examples in the sequel, we will use the double box notation of Figure 5.1 to denote
a dicing criterion and the constraints, if any, on meta-variables. We will also use the
terminology “dlice of P at x [given C]” to denote the dlice of P with respect to the final
value of variable x [given meta-variable constraints C']. Slicing with respect to arbitrary
expressions at intermediate program points will be discussed in Section 5.4.6.

5.2.2 Slicingviarewriting

Pim [55] consistsof arooted directed acyclic graph program representation' and an equational
logic that operates on PiM graphs. These graphs can also be interpreted (or depicted) as
termsafter “flattening”. A subsystem of thefull Pim logic definesarewriting semanticsfor a
program’s PiM representation. Rewriting rules can be used not only to execute programs, but
alsoto perform variouskinds of analysis by simplification of aprogram’s Pim representation;
each ssimplification step consists of the application of arule of PIM’slogic.

To compute the dlice of a program with respect to the final value of a variable x, we
begin with a term that “encodes’ (i) the abstract syntax tree (AST) of the program, (ii) the
variable x that represents the slicing criterion, and (iii) a (possibly empty) set of additional

1Although loops and recursive procedures admit a PiM graph representation with cycles, we will use a
simpler DAG representation for such constructsin this chapter.

134 Chapter 5. Parametric Program Sicing

p = ?P; p = ?P; p = ?P;
q = ?0Q; qg = ?Q; g = ?Q;
if (p > 0) if (p > 0) if (p > 0)
ptr = &y; ptr = &y; ptr = &y;
else else else
ptr = &x; ; ptr = &x;
if (g < 0) { if (g < 0) { if (g < 0)
X = 17; ;
y = 18; y = 18;
} else { } else { ; else {
x = 19; ; x = 19;
y = 20; y = 20; y = 20;
} } }
result = *ptr; result = *ptr; result = *ptr;
result result
given?p =5 given?Q:=3
(@ (b) (0)
p = ?P; p = ?P;
q = ?Q; q = ?2Q;
if (p > 0) if (p > 0)
ptr = &y; ptr = &y;
else else
, i —
if (g < 0) if (g < 0) {
; else { } else {
H X = [
y = 20; y = 20;
} }
result = *ptr; result = *ptr;
result result

given?P:=5,7?0:=3

given?pP:=5,?0:=3

(d) (d)
Figure 5.1. (a) Example program (= static dlice). (b) Constrained slice with ?P := 5. (c)
Constrained slicewith ?Q := 3. (d) Constrained sicewith ?p := 5, 2Q := 3 (= dynamic dlice). (d')
Non-postprocessed term slice corresponding to (d).

5.2. Overview 135

extract dice 0
LT e
' y S term slice
... simplify
ST ! optional

v post-processing

absxract/wntax tree | constraints Pim graph simplified Pim graph
slicing criterion
i term graph rewriting

/"% dynamic dependence relations

parseable slice

Figure 5.2: Overview of our approach.

constraints. Next, we tranglate the AST to a graph comprising its PiM representation. This
trandation is assumed to be defined by a rewriting system (although it need not necessarily
be implemented that way). The resulting graph is then simplified by repeated application
of sets of rewriting rules derived from the Pim logic. This reduction process is carried out
using the technique of term graph rewriting [17]. The graph that results from the reduction
processrepresentsthefinal value of variable x (intermsof the unconstrained meta-variables).
During the reduction process, we maintain dynamic dependence relations (see Chapter 4)
that relate nodes of the graph being manipulated to the AST. These relations are defined
in asimple way directly from the structure of each rewriting rule, and will be discussed in
more detail in Section 5.3. By tracing the dynamic dependence relations from the simplified
PimM-graph back to the AST, we finally derive the slice of the AST with respect to x. The
stepsinvolved in the dicing process are depicted in Figure 5.2.

This basic dicing algorithm is unusually flexible, in that it can be adapted to new
languages simply by providing a source-to-PiM trandlator for the language. In addition,
simple alterations to the rules or rewriting strategy can be used to affect the kind of dlice
produced, as well as the time or space complexity of the reduction process. The ease with
which we can handle constrained dlices is due principally to the fact that the reduction
process adapts itself to the presence or absence of information represented by constraints.
Asmoreinformation is available, more rules are applicable that have the potential to further
simplify the dlice.

5.2.3 Term dicesand parseable slices

Formally, our slices are contexts derived from the program’s AST, i.e., a connected set of
AST nodes in which certain subtrees are omitted, leaving “holes’ behind. By interpreting
these contexts as open terms, al of the slices we compute are “executable” via the Pim
rewriting semantics, in the sense that any syntactically valid substitution for the holesin a

136 Chapter 5. Parametric Program Sicing

term slice yields a program with the same behavior with respect to the slicing criterior?.

It is often the case, however, that one wishes obtain a parseable representation of the
dice(i.e., asyntactically well-formed AST without missing subtrees). Therefore, term slices
may be optionally postprocessed in variousways to obtain parseable programswith identical
behavior.

Figure 5.1 (d') depictsthe term slice corresponding to Figure 5.1 (d) before postprocess-
ing. Certain fine details are present in this term slice that do not appear in Figure 5.1 (d),
e.g., the L-values but not the R-values of certain assignment statements appear in the term
dlice.

The advantage of term slicesis that they have a consistent semantic interpretation, and
are oblivious to a language’s syntactic quirks. Thisis particularly important in a language
like C, where virtually any expression can have a side-effect, and thus for which some parts
of an expression can be relevant to a slice while others are not.

Unfortunately, term glices often introduce a certain amount of “clutter” not present in
more ad-hoc algorithms; thus for the sake of clarity, most of the example slices we use in
the sequel will be minimally postprocessed, primarily by replacing assignments with a hole
in the right-hand side by empty statements. We will distinguish parseable slices from term
slices by using boxesin the latter to represent holes.

524 Moreexamples

The examplein Figure 5.3 illustrates the flexibility of our technique by showing some of the
differing treatments of loops that are possible (loops will be further studied in Section 5.5).
Figure 5.3 (b) depicts what we will call a pure dynamic dlice at result, given ?N ;=5
and ?P := 1. Note that this slice includes the while loop though it computes no value
relevant to the criterion. Thisisthe case because the underlying slicing algorithm faithfully
reflects the standard semantics, under which there is a dependence between the while loop
and the subsequent assignment to result. This phenomenon is noted in Cartwright and
Felleisen’s discussion of demand and control dependence [34]. This notion of dependence
is also closely related to the notion of weak control dependence discussed by Podgurski
and Clarke [123]. The dlice in Figure 5.3 (c), similar to the kind computed by Agrawal
and Horgan [6], results from adding some simple equational rules to be discussed later.
The same variant of the dlicing algorithm produces the result in Figure 5.3 (d), though
the program is non-terminating for the constraints specified under the standard semantics.
Previous dynamic dlicing algorithms[6, 100] will not terminate for thisinput constraint. In

2More precisely, theterm“ encoding” the original program and the slicing criterion and the term “ encoding”
the dlice (with any syntactically valid substitution for the holes) and the slicing criterion both reduce to the
same term/value.

3Whether or not this is always possible strongly depends on the language under consideration. E.g.,
in languages where an if-statement with empty branches is not alowed, removal of al statements from
the if-branches is clearly a problem. We believe that, in cases like this, term slices are an improvement
over “conventional” program dlices, as they are capable of conveying more accurate information. A similar
observation was made by Ernst [52].

5.3. Termrewriting and dynamic dependence tracking 137

this sense, our dynamic slicing algorithm is “more consistently lazy”.

As afina example, consider the program in Figure 5.4. Although absurdly contrived,
the exampleillustrates several important points. By not insisting that the slice be parseable,
we can make distinctions between assignment statements whose R-values are included but
whose L-values are excluded and vice versa, as Figure 5.4 (b) shows. We also seethat it is
possible to determine that the values tested in a conditional are irrelevant to the slice, even
though the body isrelevant. In general, our approach can make a variety of fine distinctions
that other algorithms cannot.

Figure 5.4 (c) gives an example of a conditional constraint. Such constraints can be
handled by straightforward extensions to our basic algorithm, and will be discussed briefly
in Section 5.4.7.

5.3 Termrewriting and dynamic dependencetracking

Our approach to dlicing is based on extending the generic notion of dynamic dependence
tracking in term rewriting systems (see Chapter 4) to realistic programming languages. In
this section, we review dynamic dependence tracking and the basic ideas behind term and
graph rewriting. For further details on term rewriting, the reader is referred to the excellent
tutorial survey of Klop [95].

We begin by considering two Pim rewriting rules that define simple boolean identities:

(T, py — T (B10)
V(V(p1, p2), p3) — V(p1, V(p2, p3)) (Bl4)

A rewriting rule is used to replace a subterm of aterm that matches the rule's left hand side
by the rule'sright hand side. Variables (here, p, p1, p2, and p3) match any subterm; all other
symbols must match exactly. By applying the rules above, the term

ANVV(T, B, AM(FLT)) L F)
may be rewritten as follows (subterms affected by rule applications are underlined):

To= ANV(V(T,F), A(F, T)), F)— (B14
T, = ANV(T, V(E, A(F, T))), F) — (B10)
I = AT, F)

Observe in the example above that the outer context A(® , F) (‘®’ denotes a missing
subterm) is not affected at all, and therefore occurs in Ty, 73, and T,. Furthermore, the
occurrence of variables p;, p,, and ps3 in both the left-hand side and the right-hand side of
(B14) causes the subterms T, F, and A(F, T) of the underlined subterm of 7 to reappear
in T7. Also note that variable p occurs only in the left-hand side of (B10): consequently,
the subterm (of 73) V(F , A(F, T)) matched against p does not reappear in 7,. Thus, the
subterm matched against p isirrelevant for producing the constant T in 75: the “creation”

138

Chapter 5. Parametric Program Sicing

n = ?N; n = ?N;
i=1; i=1;
sum = 0; ;
while (i != n) { while (i != n) {
sum = sum + 1i; ;
i=14+1; i=14+1;
} }
if (?P) if (?P)
result = n*(n-1)/2; result = n*(n-1)/2;
else else
result = sum; ;
result
given?N:=5?p:=1
(@ (b)
n = ?N; n = ?N;
if (?P) if (?P)
result = n*(n-1)/2; result = n*(n-1)/2;
else else
result result

given?N:=57?p:=1

given?N:=0,?P:=1

(©)
Figure5.3:

(d)

() Anexample program. (b) Puredynamic dliceat result given?N =5, ?p := 1.

(c) Lazy dynamic dlice at result given ?N := 5, ?P := 1. (d) Lazy dynamic dice a result

given ?N:=0, ?P := 1.

5.3. Termrewriting and dynamic dependence tracking 139

(ptr = &a) = ?A; () = &) = ?A; * (] = &a) = ?A;
b = ?B; b = —; b =
X = a; X = a; X =i
if (a 3) if (a < 3) if (a < 3)
ptr = &y; ptr = &y; —
else else else
ptr = &x; —— ptr = &x;
if (b < 2) if (|:| < |:|) if (|:| < |:|)
X = a X = a; X =i
(*ptr) = 20 (*ptr) =, (*ptr) = 20
X X
given ?A =2 given ?A > 5
(@ (b) (©)

Figure5.4: (a) An example program. (b) Constrained slice at x given ?A := 2. (c) Conditional
constrained slice at x given ?A > 5.

of this subterm T only requires the presence of the matched symbols ‘v’ and ‘T’. This
observation is the keystone of our reduction-based dicing technique: We “track” those
subterms that are relevant to each reduction step; subterms that are relevant to no reduction
step can then be eliminated from the slice.

Thetracking process determinesnot only which subtermsarerelevant to agiven reduction
step, but also how subterms are combined and propagated by the reduction as a whole. To
accomplish thistask, we define for each reduction step that takes aterm 7; and yields a new
term T}, ; the notions of creation and residuation. These are binary relations between the
nodes of T; and the nodes of 7;,1. The creation relation relates the new symbolsin 7;, 1
produced by the rewriting step to the nodes of T; that matched the symbolsin the left-hand
side of the rewriting rule (making the rewriting step possible). The residuation relation
relates every other node in 7;,; to the corresponding occurrence of the same node in the
T;.1. The dynamic dependence relation for a multi-step reduction » then consists, roughly
speaking?, of the transitive closure of creation and residuation relations for the rewriting
stepsin r. Figure 5.5 shows all the relations for the example reduction discussed above.

For any reduction r that transforms aterm 1" into aterm 7", aterm slice with respect to
some subcontext C' of 7" is defined as the subcontext .S of 1" that is found by tracing back the
dynamic dependencerelationsfrom C'. Thetermdlice S satisfiesthefollowing properties: (i)

4The notions of creation and residuation become more complicated in the presence of so-called left-
nonlinear rules and collapse rules. The exact problems posed by these rules are extensively discussed in
Chapter 4.

140 Chapter 5. Parametric Program Sicing

¥\ credtion relation
¥ "7 residuation relation
¥7% " . dynamic dependence relation

Figure 5.5: Example of creation and residuation relations.

S reducesto aterm C” containing context C' viaareduction 7/, and (ii) r’ isasubreduction of
r. These propertiesarerendered pictorially in Figure 5.6, and have theimportant implication
that all the slices computed by our technique are effectively “executable” with respect to the
rewriting semantics.

Our implementation maintains the transitive dependence relations between the nodes of
theinitial term and the nodes of the current term of the reduction by storing with each node
n in the current term its term slice, which isthe set of nodesin theinitial term to which n is
related. (The dependence relations associated with individual rewriting steps are not stored.)
The term dlice with respect to a subgraph S of 71" is then defined as the union of term slices
with respect to the nodesin S.

Returning to the example of Figure 5.5, we can determine the term dlice with respect
to the constant T in 7>, by tracing back all creation and residuation relations to 7;. By
following the transitive relations in Figure 5.5; the reader may verify that this slice consists
of the subcontext V(V(T , @) , @).

5.3.1 Efficient implementation of term rewriting

We implement term rewriting using the technique of term graph rewriting [17]. This
technique extends the basic idea of term rewriting from labeled trees to rooted, labeled
graphs, or term graphs. A term graph may be viewed as a term by traversing it from its
root and replacing al shared subgraphs by separate copies of their term representations.
For clarity, we will frequently depict PiIM term graphs or subgraphs in “flattened” form

5.3. Termrewriting and dynamic dependence tracking 141

dynamic dependence relations

S

r 7

Figure 5.6: The concept of dynamic dependence.

as terms. (The flattened representation of the graph 75 in Figure 5.7, for instance, is
VINT, F), AT, T)))

For certain kinds of rewriting rules, term graph rewriting hasthe effect of creating shared
subgraphs where none existed previously. Consider following Pim boolean rule:

ANpr, V(p2, p3)) = V(AP1, p2), Np1, p3)) (B22)

In rule (B22), the variable p, appears twice on the right-hand side. Although the left-hand
side instance of p; in (B22) matches only a single subterm, the result of the rule application
must contain two instances of the subterm matched by p;. Rather than duplicating such a
term, it can be shared, as illustrated by the example in Figure 5.7, in which rule (B22) is
appliedtoterm 7o = A(V(T , F), V(F, T)). We seealso from Figure 5.7 that the result of
asingle application of reduction rule (here, rule (B10)) inside a shared subterm can also be
shared, thus giving the effect of multiple reductions for the price of one.

In general, graph rewriting is performed by replacing the subgraph matched by arule
with the graph corresponding to the rule'sright hand side. The nodesin areplaced subterm
that are not accessible from elsewhere in the graph are reclaimed by a memory manager.
Sincethe PimM representation of programs contains many shared subgraphs, agraph rewriting
implementation is critical to acceptable performance of the algorithm in practice.

142 Chapter 5. Parametric Program Sicing

T, T T,
A v v
A (B22) A (B10) A
/v\ /v\ A A A A
T F F T F T F T

AN

Figure 5.7: Creation of shared subgraphs and a shared reduction step using a graph rewriting
implementation.

54 Pim + dynamic dependence tracking = dlicing

PIM was designed to generalize and rationalize many of the properties of commonly used
graphical representations for imperative programs such as SSA-form [40] and PDGs [53],
and to provide a semantically sound but mechanizable framework for performing program
analysis and optimization. Pim’s formal progenitor is Cartwright and Felleisen’s notion of
lazy store [34], interpreted operationally rather than denotationally. Unlike SSA-form and
PDGs, computations on addresses required for arrays or pointers are “first-class citizens,”
and procedures and functions are integral parts of the formalism.

54.1 uC-to-PimM trandation

Figure 5.8 depicts avery simple 1.C program, P, its corresponding PiM representation, and
severa dlicing-related structures.

The graph depicted in Figure 5.8, denoted by Slice(Py, x, ()), isgenerated by translating
Py to its corresponding PiM representation and embedding the resulting graph (labeled
Sp,) in agraph corresponding to the slicing criterion x. Slice(Py, %, ()) is simply the PimM
expression denoting the final value of the variable x. Only a small number of graph edges,
primarily those connecting shared subgraphs to multiple parents are shown explicitly in
Figure 5.8; we have flattened most other subgraphs for clarity. Parent nodesin the graph are
depicted below their children to emphasi ze the correspondence between program constructs
and corresponding Pim subgraphs.

Sp, s generated by a simple syntax-directed tranglation. A representative subset of the
trandation rules appearsin Figure 5.9. The trandation is specified in the Natural Semantics
style [85] for clarity; however, the translation is implemented by a pure rewriting systenr.

SA rewriting system can be derived from simple classes of Natural Semantics specifi cations such as the one
in Figure 5.8 in a purely mechanical fashion.

5.4. Pim + dynamic dependence tracking = dlicing

143

Pim Trandation

(@ addr(x))| =Sice(R

% ()

initial transitive dependence relations

; between C syntax tree and Pim graph

"/ (only asubset of edges are depicted)

© denotes root node of enclosed graph

Figure5.8: P; andits Pim representation, Sp,. Major corresponding structuresin P, and Sp, are

located side-by-side.

144 Chapter 5. Parametric Program Sicing

The trangation uses several sequent forms corresponding to the principal C syntactic com-
ponents. The general form for these sequentsis:

sk c =t

Such a sequent may be read as “1.C construct ¢ trandates to Pim term ¢, given initia (Pim)
stores. ‘=" issubscripted by ‘Pgm’, ‘Exp’, or ‘' LValue', depending on whether a statement,
expression, or L-value (address), respectively, is being translated. Pure expressions (those
having no side-effects) and unpure expressions are distinguished in the translation process;
subscripts p and « are used to denote the two types. The shared subgraphsin Sp, arise from
repeated instances of store variables in the antecedents of the trandation rulesin Figure 5.9,
asillustrated in Figure 5.7.

The trangl ation process establishes transitive dependence relations between nodes of the
program’'s AST and the Pim graph Sp,, as described in Section 5.3. Figure 5.8 depicts a
representative subset of these relations for the root nodes of certain subtrees of the syntax
treeof P;. We have used vestigial arrowsin the syntax treeto indicate that nodes are referred
to by some set of nodesin the Pim graph. We have also depicted statements of P, and their
corresponding PiM subgraphs side-by-side.

5.4.2 Overview of PIM

In this section, we briefly outline the function of various PIM substructures using program
P, and itsPim trandlation, Sp, .

Thegraph Sp, asawholeisaPiM storestructure?, essentially an abstract term representa-
tion of memory. Sp, is constructed from the sequential composition (using the ‘o’ operator)
of substores corresponding to the statements comprising P;. The subgraphs accessible from
boxes labeled S;—S, in Figure 5.8 correspond to the four assignment statementsin P;. The
simplest form of storeisacell such as

S]_ = {addr(p) — [T > Pv]}

A store cell associates an address expression (here addr(p)) with a merge structure, (here
[T > Py]). Constant addresses such asaddr(p) represent ordinary variables. Moregeneraly,
address expressions are used when addresses are computed, e.g., in pointer references. ‘(),’
is used to denote the empty store.

Merge structures are a special kind of conditional construct containing ordered guarded
expressions. The simplest form of merge expression is a merge cell such as [T > Py,
in which some boolean predicate (here, T) guards a value (here, the free Pim variable p),
representing the 4C meta-variable ?P). The formal consequence of the presence of a free
variable is that any subsequent rewriting-based analysisis valid for any instantiation of the
free variable.

SFor clarity, Figure 5.8 does not depict certain empty stores created by the translation process; this elision
will beirrelevant in the sequel.

5.4. Pim + dynamic dependence tracking = dlicing 145

05 F Stmt —>smt U
F Stmt =pPgm U

s F{StmtList } =smt v,
(S1) souk Stmt = gmt @’
sk { StmtList Stmt } =gme w o u'

(P)

sk Exp =pp (v, u)
sk EXp; =sm u

(52)

sk EXp :>Exp <UE, uE>,
soug F StMt =gmt ug o,
(5) sFif (Exp) SMt =sm vp = ~(=(vz, 0))

ug o (Vg > ug)

s [EXp :>Exp (’UE, ’U,E>,

(S) s’l—Stmt:>3mtuS s’:zsouE
Y “sFwhile (Exp) SIMt = sm vhy = =(=(vg , 0))
Loop(Azs.body(ug, v, us), s)
sk EXp, =Exp v
E p D
(1) sk Exp, =g (v, 05)
(E) s EXp, =Exp, (v, u)

stk Exp, =exp (v, u)
(Bpy) st 1d =pg (s @addr(ld)) !
(EPZ) sk 2Id = Exp, Idy,

sk ExXp =pp (v, u)

(Eul) sk * EXp :>Expu (((5 o u) @’U) !, U>
(Ear) s Lvaue =pvawe (v, u)
u2 sk &Lvaue =ggp, (v, u)
sk Exp = Exp, ('UE'a uE)v
(Eua) s oupg F LValue = vaue (vr, ur)
u3)/

s LValue = EXp =gxp,
(vg, ug our o {vg — [T >wvgl})

s = EXp; = e, (v1, u1),
s 0 uy - EXp, = Exp, (v2, u2)

(Eua) s FEXpy + EXpy =Exp,

(+(v1, v2), u1 o uz)
(Lyp) st 1d =Lvaue, addr(ld)
(L) s EXp =pp, (v, u)

sk * EXp =Lvauwe, (v, u)

Figure5.9: Representativetrandation rulesfor xC.

146 Chapter 5. Parametric Program Sicing

Merge expressionsm, and m, may be composed into ordered listsof theform m, o,,, mo,
inwhich the rightmost guarded cell takes precedence. Such lists correspond roughly to Lisp
cond expressions, and represent information similar to SSA-form ¢ nodes [40], particularly
the gated SSA variant of [14]. Unlike normal conditional expressions, however, merges
cannot evaluate to values unless they are referred to in a special context represented by the
selection operation, ‘!". Among other places, this operator is used in the translation of every
variablereference. Sp, containsno non-trivial merge structures, but such structureswill arise
in the simplification process. (), denotes the null merge structure. In the sequel, we will
often drop subscripts distinguishing related store and merge constructs when no confusion
will arise.

In addition to guards in merge cells, stores such as Ss (which corresponds to the ‘i £’
statement as a whole) may also be guarded. The guard expression V; corresponds to the
i f’spredicate expression. Consistent with standard C semantics, the guard V; tests whether
the value of the variable p is honzero.

The general form for the PIM graph constructed for a slice of program P at x given
constraints

?X1 = EXpy, ..., ?X, = EXp,

SﬁCG(P, X, <?X1 = EXpl, o, 2 Xy = EXpn>)
£ ((Sp@wdr(}{))') [le =1, Ky = Un]

where Sp isthe PimM store to which P compiles, the X;,, are free variables corresponding to
the meta-variables and the v; are Pim graphs corresponding to the value of the Exp, (ignoring
side-effects). Slice(P, x, (- - -)) isthe PiM representation of the value of x after execution of
P, with substitutions for free variables defined by the constraints.

5.4.3 PiMrewriting and elimination of dependences

PIM’s equational logic consists of an “operational” subsystem, PiM™, plusa set of additional
non-oriented equational rules for reasoning about operational equivalences in PIM™, in-
stances of which can also be oriented for usein analysis. PIM~ is confluent and normalizing
(assuming an appropriate strategy), thusit can be viewed as defining an operational seman-
ticsor interpreter for PIM terms. Animportant subsystem of PiM~ that defines the semantics
of programs without |oops or procedures, PimM,~, is canonical, that is, strongly normalizing
aswell as confluent. PIM™ can be enriched with certain oriented instances of rulesin (PIM—
PIM™) in such a way that confluence is preserved on closed terms, and such that unique
normal forms for open terms exist up to certain trivial permutations. In the sequel, we will
refer to the enriched rewriting system as COREPIM™. PiM’s rules and subsystem structure
are described in detail in [55]; key subsystems are reviewed in Appendix A.

Given a program P and a dlicing criterion x, we use normalizing sets of oriented Pim
equationsto simplify Slice(P, %, (- - -)) graphs by reducing them to normal (i.e., irreducible)
forms. From the point of view of slicing, thegoal of thissimplification processisto eliminate

5.4. Pim + dynamic dependence tracking = dlicing 147

in a sound, systematic way, as many subgraphs of Slice(P, %, (- - -)) as possible that do not
affect its behavior.

5.4.4 Reduction of unconstrained and constrained slices

Figure5.10 depictskey stepsinthereductionsof Slice(Py, x, (?P := 0)) and Slice(P, %, ()),
the dlices of P; that result from these reductions, and certain dependence relations for
reduction steps that are critical to producing the slices. These reductions share a common
initial subsequence that is independent of the substitution generated in the constrained
case. We have numbered certain important intermediate graphs in the reductions. The
interpretation of several of these graphs (depicted in flattened form) is as follows:

Graph (1) is the flattened and abbreviated form of Slice(Py, x,()). Graph (2) results
from multiple applications of the rule

(5105 82) @v — (51 @) om (52 @) (SA)

which have the effect of distributing the reference to the variable x, addr(x), to the sequence
of substores Sy, S, S3, Ss. Graph (3) results from applications of the rule

{v—=m}@v, — =(vy, v2) Byym (SL)

to al but the rightmost subgraph. (S1) has the effect of converting references to store cells
into conditional tests comparing the cell and dereferencing addresses; these predicates guard
the merge cells M3, M,, M3, and M,, which are part of the original Pim graph Sp,. Graph
(4) results from evaluation of address comparisons. The comparison fails for assignments
represented by .S; and S, (which are irrelevant to x) and succeeds in the case of .S, and S,
(which both contain assignments to x). At (5), references to irrelevant assignments have
been reduced to null merges. At (6), after eliminating null stores, the remaining expressions
essentially represent the two definitions of x that “reach” its final value. Graph (7) is
derived by first smplifying the expression containing merge structure M3, yielding a merge
cell containing the free meta-variable ? P, then combining the PiIM expression representing
the predicate guarding the if statement, V3, with a predicate derived from the address
comparison for the nested store for the assignment in store S, (representing the result of the
assignment inside the 1 £).

The reduction thus far has the effect of eliminating al assignmentsirrelevant to the final
value of x. At this point, the reductionsin the constrained and unconstrained cases diverge:

54.4.1 Constrained case: Slice(P, %, (?P = 0))

Inthe constrained case, P, isboundtoO, i.e., isfalse. Instep (8a), the highlighted application
of therule
Fe,l — 0, (L6)

has the effect of eliminating the body of the i £ from the final slice. This can be seen in
detail in the “exploded” (L6) rule application in Figure 5.10. In this case, the only transitive

148 Chapter 5. Parametric Program Sicing

® ((3°%°5°%) @) !
@ ((S,@ addr(x)) © (5@ addi(x) $ (5,@ addr(x)) . (VS @addi(x))) !
@ (= addr(p), addr(x)) > My o (=(add(y) , addr(x)) &> M) ¢ (=(addr(x) , addr(x)) > My) © (V> '8) @ addr(x)))!
@ ((F> M) ° (F> M) ¢ (T M) . (VS @ addr(x))) !
® [. g ¢ (T M) . (V,>) @ addr(x))) !
® ((To> M) o §v1>54)@addr(x))!
» (LT5p] o (H=py,0)) & §) @9) !
7@ ([T>0] $(~<:<0,0>> > S,) @ addr(x)) ! @™ ([T eyl ; (<(=(py,0)) > §,) @addr(x)) !
o (e 01(<Lg)> S @ad)) ! @ ([T 5] v [A(= addr(x) , addr(x)) , ~(=(Py, 0))) > V5]) !
o (1Te0] ‘?Lgf/‘@ addr(x)) ! @ ([Teopy] ¢ INT, ~(=(py,0))) >V1) !
oo ((TE0] iﬂ) ! o) ([T py] I [~(=(Py,0)) > Py])!
Jwa [Trol ! e [T o 0D e el
(122) 0 (az) [Ti> By]!
(130) P%,

T e |

i

4, transitive dynamic dependence relations
~ (not al edges are depicted)
#~ , single-step dynamic dependence relations
,,,Q,,,

dependence edge deleted during reduction
(not al edges are depicted)

denotes root node of enclosed graph

denotes all nodesin enclosed graph

Figure5.10: Reduction of Slice(Py, %, ()) and Slice(Py, x, (?P := 0)). Stepsinwhich removal of
dependence edges eliminates constructs from slices are highlighted along with the resulting slices.

5.4. Pim + dynamic dependence tracking = dlicing 149

dependence edges linking the constructs in the body of the i f statement and the identifier
p intheassignment y = p; have their originin the subgraph S;. When this subgraph is
eliminated by the application of (L6), the constructs effectively disappear from the slice.

While it may appear that the dlice results entirely from the application of a singlerule,
thisruleisonly the last of several rulesthat eliminate transitive edges from PiM nodesto the
omitted constructsin P;. Only whenthelast edgesareeliminated doesthe construct di sappear
from the slice. Other rules have the effect of combining dependence edges emanating from
several intermediate nodes into a single node (as the two single-step dependence edges in
the depiction of rule (L6) illustrate).

5.4.4.2 Unconstrained case: Slice(P, x, ())

The unconstrained case is somewhat more interesting than the constrained case: athough
we do not know the value of P, and thus cannot effectively evaluate the i £ statement in P,
we discover that the two reaching definitions for x both assign the same value to x, namely,
Py,. Application of several rules allows us to combine guards of merge cells with the same
guarded value into the digunctive expression shown in (11b).

The next step, the reduction of (11b) to (12b), discoversthat the predicate’s value itself
isirrelevant to thefinal value of x. Asthe exploded view of thisrewrite stepillustrates, there
is no transitive dependence between the predicate p of the source AST and any of the nodes
in the resulting term (12b) (or the final term (13b)). Consequently, the unconstrained slice
does not contain the predicate of the i f statement, though it does contain the assignment
statement within the 1 £ statement.

Slices that contain statements from the arms of a conditional statement but not its
predicate, are unusual enough to deserve some discussion. Such dlices indicate that the
value of the predicate itself is irrelevant, even though the conditional statement contains
some relevant statement, e.g., an assignment to some relevant variable. Such situations can
arisein realistic programs. Consider, for example, the statement

if (P) f(foo); else f (bar);

where the procedure £ has some side-effect on some variable x of interest, and where
this side-effect itself is independent of the argument to the procedure. Here, the two call
statements are relevant to the final value of x, though the predicate itself isirrelevant. This
reflects akind of reasoning that programmers do use when analyzing a program backwards,
and can result in substantially smaller slices because of the elimination of the statementsthat
the predicate itself depends on. The possibilities for computing more precise slices in this
fashion are even greater in the case of constrained slicing.

5.4.5 Slicing and reduction strategies

AsPiM~ isa confluent rewriting system, reductions may be performed anywhere in agraph
without affecting the final term produced (assuming the reduction terminates at all). This

150 Chapter 5. Parametric Program Sicing

“stateless’ property of reduction systems accommodates a variety of performance tradeoffs
derived from varying the reduction strategy. We use an outermost or “lazy” strategy, which
ensures that only steps that contribute to afinal result are performed. (Note, however, that
the reduction depicted in Figure 5.10 uses a strategy that is not strictly outermost to better
illustrate the properties of certain intermediate terms). Alternatively, the PiM representation
of the entire program could be normalized “eagerly” prior to the specification of any dicing
criterion; those steps specific to the criterion or constraints could be performed later.
Reduction strategies can also have an effect on slices. I1n the constrained case, both of the
reductionsdepicted in Figure 5.10 are valid, and, consequently both of the slicesdepicted are
also valid. Slices are therefore not necessarily unique, even when the underlying reduction
system is confluent. However, our reduction strategy favors the left reduction over the right
one in the constrained case. Intuitively, this favors a “standard” execution semantics that
corresponds most closely with results of traditional program slicing algorithms.

5.4.6 Slicing at intermediate program points

Although our discussion thus far has concentrated on computing slices with respect to the
final values of variables, our approach is capable of computing slices with respect to any
expression at any program point. Conceptually, a slice with respect to a uC expression e
(assumed to be side-effect free) at some specific program point can be computed as follows:
First, introduce a new variable v and an assignment of the form

Vo= Op(V, €>;

at the program point of interest, where op is an abstract, uninterpreted operator. Then,
computethedlicewith respect to thefinal valueof v. Variablev hastheeffect of accumulating
the sequence of values the expression takes on at the desired program point.

In practice, it is not necessary to alter the program in order to compute slices at interme-
diate points. An implementation can instead construct and maintain a reference to the Pim
store subgraph s,, corresponding to every program point p (note that the graphs representing
these stores will generally have many nodes in common). The slice with respect to the pro-
gram point of interest isthen computed by normalizing the Pim expression corresponding to
the translation of e ininitial store s,,.

5.4.7 Conditional constraints

A dlice with respect to a conditional constraint such as that depicted in Figure 5.4 (c) can be
computed by constructing a Pim graph roughly equivalent to that which would be produced
by inserting the body of the program in a conditional statement where the predicate is the
conjunction of all such constraints.

The effectiveness of our dlicing algorithm in handling conditional constraints depends
primarily onitsability to reason about the operations allowed in such constraints. The exten-
sible nature of our approach makesit easy to augment the slicing algorithm by incorporating

5.5. Variationson a looping theme 151

sophisticated reasoning capabilities about particular domains into the slicing algorithm, as
it only involves adding rewrite rules characterizing the appropriate domains. For example,
in the case of Figure 5.4 (c), rudimentary rules for reasoning about arithmetic inequalities
suffice to compute the slice shown.

5.4.8 Complexity tradeoffs

Use of different normalizing subsets of Pim equations allows various accuracy/time tradeoffs
in the analysis process. For instance, pointer-induced alias analysis is NP-complete even
in the absence of loops and procedures [104], although such analysis is usualy tractable
in practice. By including or excluding appropriate PIM rules, one can effectively choose
more precise (but potentially slow) or more conservative (but guaranteed fast) pointer anal-
ysis. For instance, eliminating rule (M3) (see Figure A.1) effectively inhibits propagation of
symbolic addresses representing pointer values, thus preventing these expressionsinvolving
these addresses from being resolved or ssimplified. Rule (L11) has the effect of joining com-
mon results of common expression propagation (including address expressions) in different
branches of a conditional, and can be enabled, disabled, or restricted to prevent or alow
such propagation.

The result of more accurate pointer analysis in dlicing is manifested by elimination of
more subgraphs of the program representation that are irrelevant to the dlicing criterion. A
similar phenomenon occurs with simplification of boolean predicates involved in condition-
as.

5.5 Variationson alooping theme

This section discusses a number of PiM variants suitable for computing slices in loops.
These sets of rules may be used as building blocks for generating a variety of different
dlicing algorithms without changing the underlying algorithmic framework. In the sequel,
we will use COREPIM™ to denote those PiM rules that are not loop related and are common
to the dlicing variants we will present. While the COREPIM™ rules allow addresses to be
stored as values and manipulated, the analysis rules presented in this section assume for
simplicity that no pointers are used. The ideas in this section can be adapted easily to
produce conservative dlices in the presence of pointers; more precise pointer analysisis also
possible, but requires more sophisticated rules for reasoning about address equivalence.

5.5.1 loop execution rules:. puredynamic slicing
Loops are represented in PIM by terms of the form
Loop(A\zs.body(ug, vg, us), s)

Informally, u is a store representing the side-effects of evaluating the loop predicate, vy
represents the value of the predicate, us is a store representing the side-effects of the loop

152 Chapter 5. Parametric Program Sicing

Loop(Axs.body(up,vg,usg),s) —
SI(Y Modas.
(up o5 (vE Dy (us o5
S(fz (ws o5 up o5 us)))))) s) (loop)
(Where fr & (FV(ug) U FV(us) U FV(vg))

)
(Ae.f) g — [fle:=g] (B)
Y f) — f (Y f) (recursion)

Figure 5.11: Loop execution rules.

body, all as functions of the store x5 at the beginning of a loop iteration. The second
argument s is the incoming store. The term Loop(A\zs.body (ug, vg, us), s) itself denotes
the store representing the side-effects of executing the loop until the predicate evaluates to
false. The rewriting rules in Figure 5.11, which we will refer to as loop execution rules,
specify thisbehavior formally. Consider the underlined subterm of the right-hand side of the
rule (loop). The underlined subterm may be read as: the side-effects of evaluating the loop
predicate and—if the predicate evaluatesto true, the side-effects of executing the loop body
once—composed with the side-effects of executing the same loop with an appropriately
updated store, namely, zs o, up oy ug. Therest of the term serves to express the recursion
using the recursion combinator Y. f[z := g| represents the result of substituting ¢ for free
occurrences of z in f (with the usual provisos about variable capture and renaming), FV (1)
isthe set of free variablesin aterm 7, and *S” is a technicality—a “ sort coercion” operator
that has no semantic content. [54] shows how the /3 rule and substitution can be encoded as
pure rewriting rules.

Utilizing theserulesand CorREPIM ™ during the simplification phase leadsto astraightfor-
ward dynamic dlicing algorithm that we call a pure dynamic dlicing algorithm. Section 5.2.4
discusses an example (Figure 5.3 (b)) of this sort of dlice.

55.2 ¢rules: lazy dynamic dlicing

Figure5.12 depictsa set of rules, the ¢ rules, that statically simplify PIM stores generated by
loops. Theeffect of ¢ rulesonthe PIM representation isessentially to introduce an SSA-form
¢ node [40] for every variable that might be assigned a value inside the loop. In terms of
dlicing, these rules have the effect of permitting loops to be removed from dlicesif it can be
determined (statically) that the loop cannot assign to any “variable of interest”.

We will refer to the slicing algorithm obtained by using both the loop execution rules
and the ¢ rules in conjunction with COREPIM™ as a lazy dynamic slicing algorithm. This
glicing algorithm computes traditional dynamic slices, such as Figure 5.3 (¢), aswell asthe
somewhat more unusual result in Figure 5.3 (d).

The dlices produced by our lazy dynamic dlicing algorithm are closer to the dlices
produced by the Agrawal-Horgan algorithm [6] than to the slices produced by the Korel-

5.5. Variationson a looping theme 153

Loop(Azs.body(ug,vE,us),s) —
Project(Loop(Axs.body(ug,vE,us), s),
AssignedVar(ug o5 ug)) (LA1)

Project(s,{}) — 0 (LA2)
Project(s,{v} Ur) — (v s @v) o, Project(s,r) (LA3)

rules for computing Assignedvars(s),
the set of variables assigned to in the store s

Figure5.12: ¢ rules.

x = ?X; x = ?X;
y = X; i
if (x < 0) if (x < 0)
X = -X; ;
Z = X Z = X
Z
given?xX:=5
(@) (b)

Figure5.13. (a) Example program. (b) Dynamic dlice at z given ?X := 5,

Laski algorithm [100]. The Korel-Laski slices tend to be larger than the Agrawal-Horgan
dlices since they, unlike the Agrawal-Horgan dlices, are executable. Our dynamic dlices,
though not executable under the “standard semantics’, are executable with respect to the
semantics specified by the rewriting rules.

Figure 5.13 (a) illustrates an important difference between our algorithm and previous
dynamic dlicing algorithms. Since the i £ predicate evaluates to false, previous dynamic
slicing algorithms exclude the predicate (and any of the statements the predicate eval uation
is dependent upon) from the dynamic slice with respect to z. However, as has been observed
before [100, 121], the predicate does “affect” the final value of z, in the sense that the
predicate must be executed in order to ensure that the value of x, and thus z, is not negated.
In other words, the result of the predicate evaluation has an effect on the final result, even
though the statement guarded by the predicate is not executed. In applications such as
debugging it is useful to include these statementsin the dlice [121, 122]. In this sense, our
dlicing algorithm produces adlice that is semantically more consistent than existing dynamic
slicing algorithms.

154 Chapter 5. Parametric Program Sicing

5.5.3 loop splitting rules: static loop dicing

Figure 5.14 contains the essential subset of a collection of rules that we will refer to as loop
splitting rules, which can be used in conjunction with CoREPIM™ to compute a classical
static slice. The goal of these rulesis quite smple. Consider the PiIM term

Slice(while(i < 10){j =j+2i=i+ 1 },i,())
Thisreduces to aterm of theform
Loop(A\xs.body (ug,vg, us), s) @ addr(7)
where ug, representing the loop body, isthe store

{addr(j) — T 1>, +((zs @ addr(j))!, 2)}
o, {addr(i) — T 1>, +((zs @ addr(i))!, 1)}

Intuition suggests that this term should be reducible to
Loop(Axs.body(ug,vg, us'), s) @ addr(i)
where ug' isthe store
{addr(i) — T >, +((zs @ addr(3))!, 1)}

Such reductions are crucial to computing static (and constrained) dlices. In genera, we
would like to reduce a term of the form

LOOp()\l'S.bOdY(Sl,p, 82)7 83) @ a

toaterm
Loop(Azs.body(s1, p,s5'),s3') @ a

where each s;' is a “restriction” of the original store s; to the addresses that are relevant,
given that we are interested only in the final value at address a. We need to do two things
here. First, we need to identify the set r of relevant addresses (variables), second, we need
to perform the actual restriction of the storesto the relevant variables.

The rules in Figure 5.14 show the essence of what we need to do. Rule (SA1) simply
transforms a dereference operation on a store computed by a loop into a corresponding
dereference operation on a restriction of the loop-computed store. This leaves the bulk of
the work to the operator ‘ @@’ , whose purpose is to restrict a store to a set of addresses of
interest. Rule (SA2) isthe key rule defining the behavior of this operator. (The operator €
may be interpreted as denoting the usual set-theoretic member function.)

Theruleof primary interest is (SA6), which performs the restriction operation for astore
generated by aloop. Restricting aloop-computed store with respect to a set [of addresses
requires restricting the loop body store and the initial incoming store with respect to a set
of addresses . The set r isasuperset of the set [, and effectively accounts for |oop-carried

5.5. Variationson a looping theme 155

Loop(Azs.body(ug,vE,us),s) @v —

(Loop(Azs.body(ug,vE,us),s) @@ {v}) @v (SAl)

(a—m) @@ — (a€l) >s(ar—m) (SA2)
s @@1 — 0O (SA3)

(5105 52) Q@1 — (51 @@1) o, (52 @@ 1) (SA4)
(9 >ss) @@L — g >, (s @QI) (SA5)

r 2 (lUDemand(vg,xs) U Demand(ur @@ ,zs)
UDemand(us @@ r,zs)) = T
Loop(Azs.body(ug,vg,ug),s) @@ —
Loop(Azs.body(up @@ r,vp,us @@ 1),s @@ 1) (SAB)

rules for computing Demand(s, zs), the set of
addresses dereferencing free instancesof zs in s

Figure 5.14: Loop splitting rules.

dependences. The antecedent of rule (SA6) specifies the condition this set » has to satisfy,
namely that the set of variables r should include the set [, the set of variables required to
compute the loop predicate, and the set of variables necessary to compute values assigned
to the variables in r within the loop. Put another way, the antecedent of (SA6) ensures
that the set of variables r is transitively closed with respect to loop-carried dependences.
Theauxiliary function Demand(t, xs), roughly, identifies “upwards exposed” variablesin t.
More formally, given a store or merge ¢, Demand(t, zs) identifies dereferences of the free
store variable zs in ¢ and collects the address operands of such dereferences.

Rule (SA6) is not a pure rewriting rule, since the variable r in the antecedent of therule
is not bound in the left-hand side of the rewrite rule. Applying rule (SA6) thus requires
computing some solution r to the constraint expressed by the antecedent. The computation
of the least solution of this constraint can be performed easily using rewriting rules that
compute an iterative computation of the constraint’s least fixed point.

Rules expressed in a “constraint” style such as (SA6) have the advantage that they can
accommodate analysis al gorithmsimplemented by non-rewriting means (and thus for which
dependence tracking cannot be performed). Observe that (SA6) is valid for every possible
instantiation of the variable r—thus, one may view (SA6) as a rule schema describing
infinitely many rewriting rules. One may then use any mechanism whatsoever to choose an
instantiation for the rule, treating the instantiation as an ordinary rewriting rule with respect
to dependencetracking. Thisapproach ensuresthat the dependenceinformation iscomputed
correctly, notwithstanding the use of an external analysis algorithm.

156 Chapter 5. Parametric Program Sicing

5.5.4 loop invariancerules: invariance-sensitive dicing

We now turn our attention to the final set of rules, which we will refer to asloop invariance
rules. We will refer to the slicing algorithm obtained by using these rules, the COREPIM™
rules, and the loop splitting rules, as an invariance sensitive slicing algorithm. If the loop
execution rules are used as well, we obtain a 3 invariance-sensitive algorithm. The primary
difference between the two algorithms is that the latter will execute (i.e., unfold) a loop as
long as its predicate evaluates to a constant. Figure 5.15 illustrates this behavior. The
invariance-sensitive dlicing algorithm, by executing the loop, discovers that two of the three
assignments to y in the loop are irrelevant for the given input constraint ?N := 5. The
simpler algorithm avoids unfolding the loop; however, by effectively performing constant
propagation, it discoversthat one of the three assignment statementsisirrelevant.
We describe the goals of the loop invariance rules below. Consider a store of the form

Loop(\zs.body(ug, vg, us), s) @ a

The store u g represents the loop body, and free occurrences of x5 in ug denote the store at
the beginning of aspecific loop iteration. I1nthe presence of loop invariants, one can simplify
the store ug further. For instance, consider the example in Figure 5.15 (). The store ug
compiled for theloop body will contain subterms of theform (zs @ addr(x))!, denoting the
value of variable x inaparticular iteration. Sincethe value of x isaloop-invariant constant 6
(giventhe constraint ?N := 5), wewould like to replace thisterm by 6. Thisreplacement, in
turn, will allow further simplifications of the store, and ultimately lead to the slice depicted
in the figure.

Achieving thiskind of simplification requires us to do two things: we must identify the
loop-invariant component of the store, and we must specialize the loop body (and the loop
predicate) with respect to the loop invariant component of the store. The second task is
relatively trivial. Once the loop invariant component s;,,, of the store has been identified,
we can replace the free occurrences of xs in the loop body by x5 o, s;,,. Therest of Pim
will then take care of the specialization.

The rules in Figure 5.16 formalize these intuitions. The most important rule is (IAL),
a conditional rule in the style of rule (SA6) (Figure 5.14). The consequent of the rule
specializes the loop body and loop predicate of a loop-computed store with respect to the
loop-invariant part of the store, namely s;,,. The antecedent guarding the applicability of
the rule “defines” what it means for a part of the store to be loop invariant. This definition
is stated in terms of a subsumption relationship ‘=" between program stores. A store s;
subsumes a store s,, if for every variable x assigned avalue v in store s,, x isaso assigned
the samevaluewv in store s;. The subsumption relation is concisely defined by the equational
axiom (IA2). Rules (IA2.1) through (IA2.3) represent a conservative approximation to
‘> that is more “directly computable,” since it is defined inductively. Less conservative
approximations to (IA2) can also be defined that allow inference of more complex loop
invariants.

Returning to the notion of a loop-invariant store, the store s;,,, is considered to be loop
invariant if (i) The incoming store s (the store before the loop begins its first iteration)

5.6. Pragmatics 157

n = 2?N; z = ?Z; n = 2?N; z = ?2; n = 2?N; z = ?%Z;
X =n + 1; X =n + 1; X =n + 1;
i=1; v = 0; i=1; v = 0; i=1; v = 0;
while (i < n) { while (i < n) { while (i < n) {

if (x > 100) if (x > 100) if (x > 100)

else if (y < 99) else if (y < 99) else 1if (y < 99)

Yy =Y + X; Yy =Y + X; VY =Y + X;
else else else
vy =y + 50; ; vy =y + 50;
Z = Z + V; zZ =2z +Y; z =2z +Y;
i=14+ 1; i=1+ 1; i =1+ 1;
} } }
z z
given?N =5 given?N =5
(a) (b) (©)

Figure 5.15. (a) Example program. (b) /3 invariance-sensitive slice at z given ?N := 5. ()
Simple invariance-sensitive dice at z given ?N ;= 5.

subsumes s;,,.,, and (ii) Theloop body u g o, ug, Specialized for anincoming store xs o, Siny
that subsumes s;,,,,, and then composed with s;,,,, resultsin a store that subsumes s;,,., .

Aswith rule (SA6) discussed in the section on static dlicing, rule (IA1) cannot be used
directly by thedependencetracking system. However, we can usetherulein conjunctionwith
any algorithm for identifying loop invariants, such as the conditional constant propagation
algorithm of Wegman et al. [141].

5.6 Pragmatics

A prototype implementation of our methods has been completed using the ASF+SDF Meta-
environment [93]. The results obtained from this prototype have been encouraging, and we
are now engaged in implementing a “free-standing” reduction-based dlicing system using
the most efficient possible implementation techniques. In this section, we briefly touch on
several pragmatic issues that arise in implementing our approach.

5.6.1 Propertiesof graph reduction

Term graph reduction is a simple technique that can be implemented efficiently when an
automaton-based matching algorithm and outermost reduction strategiesare used. Thisleads
us to believe that it should scale well to relatively large programs. Graph reduction also

158 Chapter 5. Parametric Program Sicing

57 Sipy =1,
s’ = (xS Og Sinv)a
Sinv Os ((UE Og US)[IS = 3,]) > Siny = T
Loop(A\zs.body(ug,vE,us),s) —
Loop(Azs.body(ug[rs = §],

= 5]7
us[rs = §']), s) (I1A1)

§1 05 S2 = $1

$1 >~ S — T (IAZ)
sr0s — T (IA2.1)
srms1=T,s=8=T
s¥(s1058) — T (IA2.2)
=((s@a)!,m") =T
s={a—m} — T (IA2.3)

Figure 5.16: Loop invariancerules.

has the advantage that results of reductions performed in shared subgraphs are immediately
availableto all supergraphsfrom which they are accessible. Thismeans, e.g., that aslice can
be computed in a subprogram (such as a procedure), and the results later used in computing
the dice with respect to the entire program. It also means that reduction steps that are
independent of a given criterion, but dependent on the program, can be shared and reused
when new criteria are supplied.

5.6.2 Alternativetrandation algorithms

Asaludedtoin Section 5.2.2, itisnot strictly necessary to use arewriting systemto translate
asource programto PiM. Any a gorithm to perform the trandl ation suffices, provided that the
dynamic dependence relations between the source AST and its PiM tranglation are correctly
initialized. However, the correctness of these initial relations must be established by hand.

5.6.3 Chainrules

Chainrulesin alanguage' sabstract syntax can be used to distinguish classes of syntactically
related program constructs that have differing semantic properties. For instance, in our C
grammar, we distinguish between “pure”’ expressions and those that may have side-effects.
Dependences traced by CR-tracking to such nodes can be used to single out a particular
property of a construct that causesit to be included or excluded from a dlice.

5.7. Related work 159

x = ?X; ; x = ?X;
y = ?Y; y = ?Y; y = ?Y;
if (x < 0) if (x < 0)
Yy = Y i
z =Y z =Y z =Y
Z Z
given?x:=5 given?x:=5
(@ (b) (©

Figure 5.17: (a) Example program. (b) Example program after optimization using constant
propagation and dead code elimination, given ?X := 5. The static dice of the optimized program at
z isthe optimized program itself. (c) Our constrained dice at z given ?X := 5.

5.7 Related work

Pim was introduced as a semantically sound internal representation for program analysisin
[55]. The theoretical underpinnings of the notion of dynamic dependence were developed
in Chapter 4 for arbitrary term rewriting systems. In this chapter, we have augmented PIM’s
logic (particularly for loop analysis), and applied the notion of dynamic dependence to it
to develop a family of extensible dicing algorithms for standard programming languages,
exploiting in particular the possibility of computing slices with respect to constraints.

Some previous algorithms [38, 51, 89] combine both static and dynamic information to
compute dlices, but primarily to combine the efficiency of static slicing algorithms with the
accuracy of dynamic dlicing algorithms. The notion of constrained slices is not studied in
these papers.

Constrained dlicing and partial evaluation of programs are closely related, in a manner
similar to the relationship between dynamic slicing and standard program evaluation. How-
ever, constrained slices cannot be obtained simply by partially evaluating a program, then
computing a static slice from the residual program that results—one must also relate slices
inthe partially evaluated program to the source program; thisis not necessarily atrivial task.

Consider the examplein Figure 5.17. Given the input constraint ?X := 5, the program
in Figure 5.17 (a) can be simplified using constant propagation and dead code elimination
to yield the program shown in Figure 5.17 (b). However, a static dlice of this optimized
program at z fails to provide the same information as our constrained dlice of the original
program with respect to the same criterion (Figure 5.17 (¢)). Thisis due to the fact that the
predicate of the i £ statement (which evaluatesto false) isrelevant to the computation of the
final value of z, and should therefore be included in the slice. Slicing isintended to indicate
how the value of a variable or expression is computed, not merely what its value may be.
For further details on the relation between previous work on partial evaluation and PiM, see
[55].

160 Chapter 5. Parametric Program Sicing

Ernst [52] presents an algorithm for static dlicing that is similar to our algorithm in
certain respects. In particular, Ernst describes how conventional program optimization
techniques can be used to produce smaller and better slices. The internal representation that
Ernst uses, the value dependence graph (VDG), has similarities with Pim, and the process
of optimization itself consists of transforming the VDG. Ernst refers to the problem of
maintaining a correspondence between the VDG and the source code graph throughout the
optimization process, and mentions that this correspondence enables a history mechanism
for explaining the transformations that were performed. No details are presented as to how
this is done, but this aspect of Ernst’s work appears to be the analogue of the notion of
dynamic dependence used in our work to maintain a similar correspondence.

In Chapter 6, it is shown that dynamic dependence tracking can be used to compute
accurate dynamic slices from asimple “interpreter-style” semantics for alanguage, and that
these techniques are useful for debugging.

While we have yet to undertake aformal comparison of the complexity of our approach
with that of earlier methods based on dataflow analysis or dependence graphs, informal anal-
ysisindicates that for comparable types of dices, our approach should be quite competitive
with previous techniques. One characteristic of our approach that must be kept in mind in
any complexity analysisis that aspects of both intermediate representation construction and
analysis using the intermediate representation are combined into reduction steps. For in-
stance, in comparing our work with PDG-based algorithms, it is apparent that thereisaclose
correspondence between most stepsinvolved in PDG construction and certain Pim rewriting
steps. The computation of thedliceitself in PDG-based approachesrequiresagraph traversal
that corresponds roughly to traversing the set of dynamic dependence relationsin a reduced
PimM term.

One advantage of our approach over PDG-based methods is that by using an outermost
“lazy” graph reduction strategy, the analysis performed is effectively demand-driven. Thus
only those reduction steps directly relevant to the dlicing criterion are performed. In this
respect, our approach has the potentia to outperform prior techniques that may eagerly
compute dataflow information that is never used.

5.8 Futurework

There are several areas for future research: we are currently exploring theissuesinvolvedin
extending our techniquesto handlearbitrary control flow, arrays, address arithmetic, dynamic
memory allocation, and procedures. We aso intend to study various PIM subsystems and
reduction strategiesin isolation to determine their worst-case complexity versustheir ability
to make slices more precise. Thisstudy can assist in designing a set of stratified subsystems
that let the user decide on an appropriate tradeoff between precision and speed. Finally,
it would be would be interesting to attempt to extend the notion of dynamic dependence
to more powerful theorem-proving techniques, such as those incorporating higher-order or
equational unification or resolution.

There are many areas in which our techniques could be generalized or expanded. Some

5.8. Futurework 161

subjects of ongoing research include:

Arbitrary control flow: We are investigating techniques for trandlating programs with ar-
bitrary control flow to Pim, and the effects of such atrandation on slicing.

I nterprocedural and higher-order dlicing: The techniques used for loop analysis (which
are essentially a form of abstract interpretation in disguise) ought to be adaptable to
the more general problem of analysis of procedures and functions.

Arrays, address arithmetic, and dynamic allocation: Proper treatment of these constructs
requires a more complicated model of memory than simple symbolic addresses.
Other symbolic analysistechniques. It would be useful to be able to adapt our notion of
dynamic dependence to more powerful theorem-proving techniques, such as those

incorporating higher-order or equational unification or resolution.

Complexity of strategies and subsystems: Various PiIM subsystems and reduction strate-
gies need to be carefully studied inisolation to determine their worst-case complexity
versus their ability to make dlices precise. A set of stratified subsystems should
be designed to enable users to make decisions interactively about tradeoffs between
precision and speed.

Chapter 6

Generation of Source-L evel
Debugging Tools

Summary

Algebraic specifications have been used successfully asaformal basisfor software
development. The contribution of this chapter is to show that the origin relation,
definedin Chapter 2, and the dynami c dependencerel ation, definedin Chapter 4, that are
implicitly defined by an algebrai ¢ specification can be used to define powerful language-
specific tools. In particular, it is shown how tools for source-level debugging and
dynamic program slicing can be derived from algebraic specifications of interpreters.

6.1 Introduction

Algebraic specifications [23] have been used successfully for the generation of a variety
of software development tools, such as type-checkers [42], interpreters [49], and program
analysis tools [55] (see aso Chapter 5). In this chapter, it is shown how two language-
independent techniques, origin tracking (see Chapter 2) and dynamic dependence tracking
(see Chapter 4), can be used to derive powerful language-specific debugging tools from
algebraic specificationsof interpreters. In particular, we show that—in additionto “ standard”
debugger features such as single-stepping, state inspection, and breakpoints—a variation of
dynamic program slicing [6, 100, 89] can be defined with surprisingly little effort. Themain
contribution of our work isto show that the information required to construct such debugging
toolsis to a very large extent language-independent and implicitly present in a language's
specification. Hence, we do not require the specification writer to add extensive descriptions
for constructing them.

It is assumed that specifications are executed as conditional term rewriting systems[95].
Specifically, an algebraic specification of an interpreter expresses the execution of aprogram
as the rewriting of a term consisting of a function execute applied to the abstract syntax
tree of that program'. Rewriting thisterm will produce a sequence of termsthat effectively
represent the consecutive internal states of the interpreter. Origin tracking is a method

10Of course, interpreters can be specified in different “ styles” than the one used here. However, the approach
pursued here is highly suitable for the purpose of origin tracking, and experience has shown that realistic
languages can easily be specified in this way [49, 134].

163

164 Chapter 6. Generation of Source-Level Debugging Tools

Program := declare DeclSeq begin SatSeq end

DeclSeq := Decl; DeclSeq | €4

SatSeq = Sat; SatSeq | e

Decl = Var

Sat = Var := Exp | if Exp then SatSeq else StatSeq end | while Exp do StatSeq end
Exp 1= Constant | Var | (Exp+Exp) | (Exp - Exp) [(Exp* Exp) | (Exp = Exp)

Figure 6.1: Syntax of L.

for tracing occurrences of the same subterm in a sequence of terms, and will be used for
the definition of single-stepping and breakpoints. Dependence tracking establishes certain
minimal dependence relations between terms in a rewriting sequence, and will be used to
obtain dynamic slices.

We illustrate our ideas by way of a very simple example language whose execution
semanticsare defined in Section 6.2. 1n Section 6.3, origin tracking and dependence tracking
are presented in some detail. In Section 6.4 and 6.5, we discuss how language-specific tools
for debugging and program dlicing can be implemented using the language-independent
techniquesof Section 6.3. Practical experiencewith our approach isdiscussedin Section 6.6.
Section 6.7 reviews other generic approaches for obtaining language-specific debuggers.
Conclusions and directions for future work are reported in Section 6.8.

6.2 Specification of an interpreter

The techniques of this chapter will be illustrated by way of a simple imperative language
L that features assignment statements, if statements, while statements, and statement se-
guences. L -expressions are constructed from constants, variables, arithmetic operators ‘ +’,
‘-7, and ‘*’, and the equality test operator ‘=". Figure 6.1 shows a BNF grammar for the
language L.

Figure 6.2 shows an algebraic specification that defines the execution of L-programs.
The execution of an L-program P corresponds to the rewriting of theterm execute (tp)
according to the specification of Figure 6.2, where ¢ isthe term that constitutesthe abstract
syntax tree (AST) of P. The result of this rewriting process is a term that represents a list
containing the final value of each variable.

Term rewriting may be regarded as a cyclic process. Each cycle involves determining a
subterm ¢ and arule! = r such that ¢ and [match. Thisisthe caseif a substitution o can be
found that maps every variable X inltoaterm o(X) suchthat t = o (1) (o distributes over
function symbols). For rewrite ruleswithout conditions, the cycle is completed by replacing
t by the instantiated right-hand side o (7). A term for which no rule is applicable for any
of its subterms s called a normal form; the process of rewriting a term to its normal form
(if it exists) isreferred to asnormalizing. A conditional rewrite rule (such as[L 16]) isonly
applicableif al its conditions succeed; this is determined by instantiating and normalizing
the left-hand side and the right-hand side of each condition. A positive condition (of the

6.2. Jecification of an interpreter 165

/* top-level function for execution of programs*/
[L1] execute(declareDeclSeqbegin SatSeq end) = exec(SatSeq, create(DeclSeq, €.))
/* functionsfor creation and manipulation of environments*/

[L2] create(eq, EnV) = Env

[L3] create(Var;DeclSeq, Env) = create(DeclSeq, Var — 0; Env)

[L4] 1lookup(Var — Constant;Env, Var) = Constant

[L5] 1lookup(Var — Constant;Env, Var') = 1ookup(Env, Var’) when Var # Var'

[L6] update(Var — Constant;Env, Var, Constant’) = Var — Constant’;Env

[L7] update(Var — Constant;Env, Var’, Constant’) = Var — Constant; update(Env, Var’, Constant’)
when Var # Var'

/* evaluation of expressions*/

[L8] eval(Constant, Env) = Constant

[L9] eval(Var, Env) = lookup(Var, Env)

[L10] eval((Exp+ Exp’), Env) = intadd(eval (Exp, Env),eval (Exp’, Env))
[L11] eval((Exp - Exp’), EnV) = intsub(eval (Exp, Env),eval (Exp’, Env))
[L12] eval((Exp* Exp'), EnV) = intmul(eval (Exp, Env), eval (Exp’,))
[L13] eval((Exp=Exp’), Env) = integ(eval (Exp, Env),eval (Exp’, Env))

/* execution of (lists of) statements */

[L14] exec(es, Env) = Env
[L15] exec(Var := Exp;SatSeq, Env) = exec(SatSeq, update(Env, Var, eval(Exp, Env)))

[L16] exec(if Expthen SatSeq else SatSeq’ end;SatSeq”, Env) = exec(SatSeq”, exec(SatSeq, Env))
when eval(Exp, Env) # 0

[L17] exec(if Expthen SatSeq else SatSeq’ end;SatSeq”’, Env) = exec(SatSeq”, exec(SatSeq', Env))
when eval(Exp, Env) = 0

[L18] exec(while Exp do SatSeq end; SatSeq’, Env) =
exec(while Exp do StatSeq end; SatSeq', exec(SatSeq, Env))
when eval(Exp, Env) £ 0

[L19] exec(while Exp do SatSeq end; SatSeq', Env) = exec(SatSeq’, Env)
when eval(Exp, Env) = 0

Figure 6.2: Algebraic specification of an L -interpreter.

166 Chapter 6. Generation of Source-Level Debugging Tools

declare
i; s; p;
begin
i :=5;
ISD i i' p — 120;
while i do s = 13
. 1= 0;
s := (8 + 1)
p := (p * 1)
i := (1 - 1)
end,-
end
(@ (b)

Figure6.3: (a) Example L-program. (b) Environment obtained by executing the program of (a)
according to the specification of Figure 6.2.

form ¢, = t,) succeeds if and only if the resulting normal forms are syntactically equal, a
negative condition (¢, # t,) if they are syntactically different.

The specification of Figure 6.2 is based on the manipulation of an environment, i.e., a
list containing the current value for each variablein the program. Rule [L 1] defines the top-
level function execute in terms of two other functions, create and exec. The former,
create, uses the declarations in the program to create an initial environment, where each
variable is initialized with the value 0 (rules[L2] and [L3])?. The latter, exec, specifies
the execution of a list of statements; it “uses’ the functions 1ookup (rules [L4]-{L5])
for retrieving a value from an environment, and update (rules [L6]-{L7]) for updating
the value of a variable in an environment. Rules [L8]{L 13] define a recursive function
eval for evaluating L -expressions. The specification of the operations intadd, intsub,
intmul, and inteqgoninteger constantshasbeen omitted. Rule[L 14] statesthat executing
an empty list of statements has the effect of leaving the environment unchanged. In rules
[L15]L 19], the cases are specified where the list of statementsis non-empty. Rule [L 15]
defines the execution of an assignment statement in terms of the evaluation of its right-hand
side expression, and an update of the environment. In [L 16]—{L 17] the execution of a non-
empty list of statements beginning with an if-then—else statement is defined by conditional
rules; [L 16] and [L 17] correspond to situations where the control predicate evaluates to any
non-zero value and zero, respectively. The execution of a while statement is specified in
a similar way (rules [L18]-{L19]). Observe that in the case where the control predicate
evaluates to a non-zero value, a new while statement is “generated” by the right-hand side
of therule.

Figure 6.3 (a) shows an example L -program. By applying the equations of Figure 6.2,
the environment of Figure 6.3 (b) is produced.

2This specification assumes that every variableis properly declared.

6.3. Basic techniques 167

6.3 Basictechniques

In this section, we will briefly present the origin and dependence relations that are implicitly
defined by the specification of Figure6.2. Figure 6.4 depicts someof therelationsestablished
by origin tracking and dynamic dependence tracking as a result of executing the program
of Figure 6.3. The figure shows the initial term S, the final term 7" and an intermediate
term U that occur in the process of executing the program according to the specification of
Figure 6.2. The intermediate term U corresponds to the situation where the while loop is
entered for the first time.

Subterms of U and S that are related by the origin relation are indicated by dashed lines
in Figure 6.4.

Also shown in Figure 6.4 is a subcontext S” of S that is related to the subterm U’ of
U viathe dynamic dependence relation. Observe that .S" excludes the right-hand sides of
two of the assignment statementsin the program. One of the key properties of the dynamic
dependence relation is that replacing these right-hand sides by any L -expression will yield
aterm that can be rewritten (via a subreduction of r) to aterm that contains a subcontext p
— 1.

Although origin and dependencerel ations are computed in asimilar manner, using similar
information as input, the nature of these relationsis different. Thisis mainly due to the fact
that these relations were designed with different objectives in mind. Origin information
always involves equal terms. In the example of Figure 6.4, origin tracking establishes
relations between a number of syntactically® equal terms; in this case corresponding to the
statements of the program. Equality (via convertibility of terms) also plays an important
role in the notion of dependence tracking. Dynamic dependence relations are in principle
defined for any subcontext of any term that occurs in arewriting process: associated with a
subcontext s is the minimal subcontext of the initial term that was necessary for “creating”
aterm that contains s. In the sequel, we are primarily interested in the dynamic dependence
relations for subcontexts that represent values computed by a program (such as the subterm
U’ inFigure6.4). 1t will be shown below that for these subcontexts, the dynamic dependence
relation will compute information that is similar to the notion of a dynamic program dlice.

6.3.1 Origin tracking

In the discussion below, it is assumed that aterm S isrewritten to aterm 7" in zero or more
steps. S —* T. In Chapter 2, the origin relation is formally defined as a relation between
subterms of .S and subterms of 7'; associated with every subterm 7" of T isa set of subterms,
OriginOf(7"), of theinitial term S—the origin of 7". The principal properties of the origin
relation may be summarized as follows:

3For the purpose of debugging, origin relations rarely involve terms that are not syntactically equal.
Examples of origin relations involving terms not syntactically equal are mainly to be found in the area of
error-reporting [49, 48, 44].

168 Chapter 6. Generation of Source-Level Debugging Tools

execute

-\-=> dynamic dependence relations
“-= origin relations

Figure 6.4: Illustration of origin and dynamic dependence relations.

6.3. Basic techniques 169

Figure 6.5: Origin relations.

e Relations involve equal terms (in the sense of rewriting): for each subterm S’ €
OriginOf(7") we have S" —* T".

e Relationsare defined in an inductive manner. For areduction of length zero, the origin
relation isthe identity relation; for amulti-step reduction S —* 7' = U, the origin of
asubterm U’ of U isdefined in terms of the origins of subterms of 1", and the structure
of the applied rule, .

As an example, Figure 6.5 partially shows the term U of Figure 6.4, and the term V" it
rewrites to via an application of [L18]. Dotted lines in the figure indicate origin relations.
Therelation labeled (1) istherelation between theroot of U and VV—such arelationisalways
present. Variablesthat occur in both the left-hand side and the right-hand side of [L 18] cause
more origin relations to appear—variable Exp givesrise to the relation labeled (6), variable
SatSeq to the sets of relations labeled (5) and (7), and variable Env to the relations label ed
(4). Therelation labeled (3) is caused by the occurrence of a subterm while Exp do SatSeq
end in both the left-hand side and the right-hand side of [L 18]. Relation (2) is aso caused
by a common subterm.

Note that the rightmost exec function symbol in term V" is not related to any symbol
in U—its origin is the empty set. In general, a term will have a non-empty origin if it
was derived directly from a subterm of the initial term (here: the abstract syntax tree of a
program). In Chapter 2, a number of sufficient constraints on specifications is stated that
guarantee that origin sets of subterms with a specific root function symbol, or of a specific
sort, contain at least one, or exactly one element. The specification of Figure 6.2 satisfies
the constraints necessary to guarantee that each “ statement” subterm will have an origin set
containing exactly one element. For specifications that do not conform to these constraints,
the origin relation of [43, Chapter 7] may be used, which is applicable to any specification
of acompositional nature.

170 Chapter 6. Generation of Source-Level Debugging Tools

6.3.2 Dynamic dependencetracking

We introduce dynamic dependence tracking by considering a few simple rules for integer
arithmetic:

[Al] intmul(0,X) =0
[A2] intmul(intmul (X, Y),2) intmul(X, intmul (Y, Z))

By applying these rules, the term intsub(3, intmul (intmul (0, 1), 2)) may be
rewritten as follows (subterms affected by rule applications are underlined):

To= intsub(3,intmul (intmul (0, 1), 2)) — [A2]
T; = intsub(3,intmul (0, intmul (1, 2))) — [Al]
T, = intsub(3,0)

By carefully studying this example reduction, we can make the following observations:

e Theouter context int sub(3, ®) of 7T, (‘ ® denotesamissing subterm) isnot affected
at al, and therefore reappearsin 7; and 7.

e The occurrence of variables X, Y, and Z in both the left-hand side and the right-hand
side of [A2] causes the respective subterms 0, 1, and 2 of the underlined subterm of
To to reappear in 17.

e Variable X only occursin theleft-hand side of [A1]. Consequently, the subterm (of 73)
intmul(1, 2) matched against X does not reappear in 7. In fact, we can make the
stronger observation that the subterm matched against X is irrelevant for producing
the constant 0 in1%: the“creation” of this subterm 0 only requires the presence of the
context intmul(0, ®) in77.

The above observations are the cornerstones of the dynamic dependence relation that is
defined in Chapter 4. Notions of creation and residuation are defined for single rewrite-
steps. The former involves function symbolsthat are produced by rewrite rules whereas the
latter corresponds to situations where symbols are copied, erased, or not affected by rewrite
rules’. Figure 6.6 shows all residuation and creation relations for the example reduction
discussed above.

Roughly speaking, the dynamic dependence relation for amulti-step reduction p consists
of the transitive closure of creation and residuation relations for the individual rewrite steps
in p. In Chapter 4, the dynamic dependence relation is defined as arelation on contexts, i.e.,
connected sets of function symbolsin aterm. The fact that C isasubcontext of aterm 7' is
denoted C' C T'. For any reduction p that transforms aterm 7" into aterm 7", aterm slice
with respect to some C' C 7" is defined as the subcontext C' C T that is found by tracing
back the dynamic dependence relations from C’. The term dlice C' satisfies the following
properties:

1. C canberewrittentoaterm D’ 1 C”’ viaareduction p’, and

4The notions of creation and residuation become more complicated in the presence of so-called left-
nonlinear rules and collapserules. Thisis discussed at greater length in Chapter 4.

6.3. Basic techniques 171

T L R T,
Ym%b\/ TR }%’\ Ynt%
REEETIN TR S E

'3 7/ intgul el 3 7 THnemul 3 >y
TN my e a)
— = S - — =

Vo

ol 2 L Tl

creation
residuation

Figure 6.6: Example of creation and residuation relations.

2. p' isasubreduction of the original reduction p. Intuitively, o’ contains a subset of the
rule applicationsin p.

For precise definitions of contexts, subcontexts, and subreductions, the reader isreferred to
Chapter 4. The definition of aterm sliceisrendered pictorialy in Figure 6.7.

In cases where no confusion arises, we will simply write C' = SiceOf(C") to indicate
that C' is the term dlice with respect to ' for some reduction p : T—*T', C C T, and
cC'CT.

Returning to the example of Figure 6.6, we can determine the term slice with respect to
the entire term 7, by tracing back all creation and residuation relationsto 1p; the reader may
verify that intsub(3, intmul (intmul (0, ®), ®@))=SiceOf(intsub(3, 0)).

6.3.3 Implementation

Origin tracking and dynamic dependence tracking have been implemented in the rewrite
engine of the ASF+SDF Meta-environment [93]. All function symbolsof all termsthat arise
inarewriting process are annotated with their associated origin and dependence information;
this information is efficiently represented by way of bit-vectors. Whenever a rewrite rule
is applied to aterm ¢, and a new term ¢’ is created, origin and dependence information is
propagated from ¢ to ¢’. These propagations are expressed in terms of operations on sets. In
Chapters 2 and 4, it is argued that the cost of performing these propagation stepsis at worst
linear in the size of the initial term of the reduction.

172 Chapter 6. Generation of Source-Level Debugging Tools

Figure 6.7: Depiction of the definition of aterm slice.

6.4 Definition of debugger features

Below, we describe how anumber of debugger features can be defined using the techniques of
the previous section. We will primarily concentrate on the mechanisms needed for defining
debugger features, and ignore issues related to a debugger’s user-interface.

6.4.1 Singlestepping/visualization

Step-wise execution of aprogram at the source code level isthe basic feature of any debugger.

Observe that in the specification of Figure 6.2, the execution of a statement corresponds
to the rewriting of aterm of the following form:

exec(Sat;SatList, Env)

where Sat represents any statement, StatList any list of statements, and Env any environment.
Conseguently, thefact that some statement isexecuted can be detected by matching the above
pattern against the current redex®.

Origintracking can be used to determinewhich statement iscurrently being executed. We
assumethat the rewriting processis suspended whenever aredex 7' matchesthe above pattern.
At this point, the subterm 7" of 7" that is matched against variable Sat is determined. The
originof 7", OriginOf(T"), will consist of the subtree of the program’sAST that representsthe
currently executed statement. Thus, program execution can be visualized at the source-level
by highlighting this subterm of the AST.

SWe will use the term “redex” (short for reducible expression) to denote the subterm that has been matched
against some equation. For conditional rules, it is assumed that no conditions have been evaluated yet.

6.4. Definition of debugger features 173

6.4.2 Breakpoints

Another standard feature of source-level debuggersisthebreakpoint. Thegeneral ideaisthat
the user selects a statement s in the program, and execution is continued until this statement
is executed.

A breakpoint on a statement s can be implemented as follows. Let 7T, be the subterm of
the AST that corresponds to s. Then the rewriting process should be suspended when: (i)
aredex T matches the pattern exec(Sat;SatList, Env) (indicating that some statement is
being executed), and (ii) 7; € OriginOf(7"), where T" is the subterm of 7" matched against
variable Sat.

6.4.3 Stateinspection

At any moment that execution is suspended, either while single-stepping or due to a break-
point, one may wish to inspect the values of variables or, more generally, arbitrary source-
level expressions.

State inspection may be implemented as follows. We assume that execution was sus-
pended at the moment that some statement was executed, i.e., aredex T matches the pattern
exec(Sat;SatList, Env) Let T, be the subterm of 7' that was matched against variable
Env. Then an arbitrary source-level expression e (with an AST 7,) can be evaluated by
rewriting the term eval(7,, 1) according to the specification of Figure 6.2. The result of
this rewriting process will be aterm representing the “ current” value of expression e.

6.4.4 Watchpoints

Watchpoints [133] are a generalization of breakpoints. The user supplies a source-level
expression e (with AST T,), and execution continues until the value of that expression
changes.

A watchpoint may be implemented asfollows. First, aninitial value u (with AST T,,) of
expression e is computed (using the technique of Section 6.4.3) and stored by the debugger.
Whenever a statement is executed, the current value v (with AST T,) of e is determined
and is compared with « by rewriting aterm inteq(7,, T,). Execution (i.e., the rewriting
process) is suspended when thistest fails (i.e., yields the value zero).

6.4.5 Databreakpoints

A data breakpoint [139] isyet another variation on the breakpoint theme. A data breakpoint
on avariable v (with AST T,) is effective when that variable is referenced (or modified).
Data breakpoints can be implemented by suspending the rewriting process when a redex
matches the pattern 1ookup(7, — Constant;Env, T,) (for a data breakpoint on a reference
tov), or update(T, — Constant;Env, T,,, Constant’) (for a data breakpoint on an update to

v).

174 Chapter 6. Generation of Source-Level Debugging Tools

6.4.6 Call stack inspection

In the presence of procedures, the notion of an “environment” needs to be generalized to a
stack of activation records, where each record contains the values of the local variables and
parameters for a procedure call. Call-stack inspection can be defined in way that is similar
to the techniques of Section 6.4.3, by visualizing the procedure calls in each record. One
can easily imagine atool that alows interactive traversal of the stack of activation records,
and enables one to inspect the values of arbitrary source-level expressionsin each scope.

6.5 Dynamic program dlicing

Myriad variations on the notion of a dynamic program slice [6, 100, 89] can be found in
the literature—see Chapters 3 and 5. For the purposes of this chapter, we define a dynamic
dlice with respect to the current value of a variable v to be the parts of the program that
are necessary for obtaining the current value of v. To see why dynamic slicing is useful for
debugging, consider a situation where an unintended value is computed for some variable
v—only the statements in the dynamic slice with respect to v had an effect on the value of
v. This allows one to ignore many statementsin the process of localizing a bugP.

Below we present a two-phase approach for computing dynamic slices. Section 6.5.1
discusses the nature of the “raw” information provided by the dynamic dependence relation
we described in Section 6.3.2. In Section 6.5.2, we present an heuristic approach for post-
processing thisinformation, in order to obtain dynamic slices similar to those of [6, 100].

6.5.1 Pureterm dices

We assumethat execution was suspended at amoment that some statement was executed, i.e.,
aredex T matches the pattern exec (Stat; SatList, Env) . Let T, be the subterm of 7" that
was matched against Env, and let 7, be the subterm of 7, that constitutes the variable-value
pair for variable z. Then, the dynamic dependence relation of Section 6.3.2 will associate
with 7, aminimal set of function symbols, SiceOf(7},), in the program’s AST.

Figure 6.8 (a) shows a (textual representation of) the term slice that is determined for
the final value of variable p as obtained by executing the example program of Figure 6.3.
Observe that the two holes in this term slice can be replaced by any L -expression without
affecting the computation of the value 120 for variable p.

One may wonder why the assignments to variable s are not completely omitted in the
term dlice of Figure 6.8 (a). Thisis best understood by keeping in mind that any holein a
term slice may be replaced by any syntactically valid L-term. Note that the assignments to
s cannot be replaced by any other assignment; e.g., they can certainly not be replaced by
any assignment to p. Thus, informally stated, the left-hand sides of the assignmentsto s are
in the slice because they cannot be replaced by assignmentsto p.

5Even in cases where a statement is missing inadvertently, dynamic slices may provide useful information.
Insuch acase, it is likely that more statements show up in the slice than one would expect.

6.6. Practical experience 175

declare
i; s; p; declare
begin i; s; p
i:=5; begin
S := ., i = 5;
p :=1; p :=1;
while 1 do while 1 do
s := @; p := (p * i)
p := (p * 1) i:= (1 - 1)
i := (1 - 1); end;
end end
end
@ (b)

Figure 6.8: (a) Term dlice with respect to the fina value of p. (b) Post-processed slice with
respect to the final value of p.

[Pl] Var :- ® = @

[P2] ®;SatSeq - SatSeq

Figure 6.9: Specification for post-processing of term dlices.

6.5.2 Post-processing of term dlices

While term dlices provide information that is semantically sound, they may contain a cer-
tain amount of “clutter”, in the form of uninteresting information. An example of such
information are the two partial assignmentsto variable s in the term slice of Figure 6.8 (a).

In order obtain dynamic slices similar to those in [6, 100], one may post-process term
dliceshy: (i) transforming any statement whose right-hand sideisirrelevant into an irrelevant
statement (rule[P1]), and (ii) removing irrel evant statements from statement lists (rule [P2]).
A specification of this post-processing is shown in Figure 6.9. Rewriting the term slice of
Figure 6.8 (a) according to this specification yields the slice of Figure 6.8 (b).

The specification of Figure 6.9 is minima—it only removes irrelevant assignments. In
practice, one would like more sophisticated post-processing that, for example, removes all
irrelevant declarationsfrom the program. Post-processing becomesnontrivial inthe presence
of procedures, where situations may occur in which different parameters are omitted at
different call sites.

6.6 Practical experience

To alarge extent, the ideasin this chapter have been implemented using the ASF+SDF Meta
environment [93], a programming environment generator. In particular, origin tracking,

176 Chapter 6. Generation of Source-Level Debugging Tools

= = i0] = 0]
[1 File Display [1 File Display
eval—program { eval—program |

FROGRAM example : PROGRAM example :
LECLARE LECLARE
i 3 IMTEGER: i ¢ IMTEGER:
J : IMTEGER: J t IMTEGER:
PROCEDURE incr ¢ in ¢ IMTEGER: PROCEDURE incr ¢ in ¢ IMTEGER:
YAR out i3 IMTEGER » : YAR out i IMTEGER » :
BEGIM out #= in + 1 END BEGIH BEGIM out = in + 1 EMD BEGIM
iz=3: i = 3:

imcr ¢ i.j » EWD iner ¢ i, ¥ END .3

(@ (b)

= =0 = =0
[] File Display [] File Display
eval —progran | eval —progran |
PROGRAM example g FROGRAM example 2
LECLARE LDECLARE
i ¢ IMTEGER: i 3 IMTEGER:
J t IMTEGER: J : IMNTEGER:
FROCEDURE incr ¢ in ¢ IMTEGER: FROCEDURE incr ¢ in ; IMTEGER:
WAR out 3 INTEGER » : WAR out 3 INTEGER » :
BEGIM out $= in + 1 END BEGIH BEGIM out := in + 1 END BEGIM
i o= 3: iz=3
incr § i.j » EMD

iner ¢ i, » END .3

(c) (d)

Figure 6.10: Generated language-specific single-stepping tool.

dynamic dependence tracking, and the matching of language-specific patterns have been
implemented successfully.

Figure6.10 showsasnapshotsof alanguage-specific single-stepping tool for thelanguage
CLaX [49, 134], asubstantial subset of Pascal that features procedures with nested scopes,
unstructured control flow, and multi-dimensional arrays. This tool has been implemented
according to the techniques of Section 6.4.1.

Figure 6.11 shows a screen dump of a dynamic slicing tool for the language CLaX, that
was created using the technique of Section 6.5. Inthisfigure, the dynamic slice with respect
to thefinal value of variable ‘ product’ is shown, both in pure “term slice” form (here, ‘ <?>’
indicates a missing subterm), and in post-processed form.

6.7 Related work

The work that is most closely related to ours was done in the context of the PSG system
[11]. A generator for language-specific debuggers was described in [10]. Language-specific
compilers are generated by compiling denotational semantics definitions to a functional

6.7. Related work

177

[1 tree text expand help

Execute

[1 tree text expand help

PROGEAM SumAndProduct
MECLARE

i ¢ IMTEGER:
zum ¢ IMTEGER:

[1 tree text expand help

product : INTEI Slice

15 [product. 2 120/n 3 5

i: 6B =sum

n i INTEGER PostProcessedSlic

e

BEGIM

no:= br

i =1

sum = O

product 1= 1;

WHILE i <= n DO
UM 3= =um o+ i
product 3= product = i
i=1i+1

CLITI

[1 tree text expand help

i

n

BEGT
n
i

EMD,

PROGRAM <722
LECLARE

sum 3
product 3

LR
product. §= 1;
WHILE i <= n DO

EMD

AP

ez
P
HERAT

H

1= B;

= 1:

= i

sum 1= Pr:
product = product = iz
i=1i+1

PROGEAM SumAncdProduct @
LECLARE

i : INTEGER:

product ; IMTEGER

n : INTEGER

BEGIM

no:= b;

i =13

product. 3= 1:

WHILE i <= n DO
product 3= product = i
i=1i+1

EMD

EMD,

Figure6.11: Generated language-specific dynamic slicing tool.

178 Chapter 6. Generation of Source-Level Debugging Tools

language. A standard, language-independent interpreter is used to execute the generated
functional language fragments. The behavior of a debugger is specified using a set of built-
in debugging concepts. In particular, trace functions are provided for the visualization of
execution. Other notions enable one to inspect the state of the interpreter, and to define
breakpoints.

Bahlke et al. write that “correspondences between the abstract syntax tree and the
terms of the functional language are established in both directions’. These correspondences
are used to determine a language-specific notion of a step. However, the nature of these
“correspondences’ is not described, making it impossible to conclude how powerful these
correspondences are, or what constraints on specifications they imply’. By contrast, our
method for keeping track of correspondences, origin tracking (see Chapter 2, iswell-defined,
and has proven to be sufficiently powerful for realistic languages [134].

A second difference between the work by Bahlke et al. is the information that is used
to define debugger features. In our approach, debugger features are defined in terms of
specification-level patterns in conjunction with language-independent origin information.
That is, the specification of the interpreter and the specification of debugger features are
uniform. It is unclear to what extent the debugging concepts of [10] are similar to the
interpreter’s specification.

Finally, Bahlke et al. do not consider more advanced debugger features such as watch-
points, data breakpoints, and dynamic slices.

Bertot [26] contributes a technique called subject tracking to the specification language
Typol [85, 41], for animation and debugging purposes. A key property of Typol specifications
is that the meaning of a language construct is expressed in terms of its sub-constructs. A
special variable, Subject, serves to indicate the language construct currently processed.
This variable may be manipulated by the specification writer when different animation or
debugging behavior is required.

Bertot does not consider other debugger features besides single-stepping, animation, and
simple breakpoints.

Berry [25] presents an approach where animators are generated from structured opera-
tional semanticsdefinitions. These specifications are augmented with semantic display rules
that determine how to perform animation when a particular semantic ruleis being processed.
Various views of the execution of a program can be obtained by defining the appropriate
display rules. Static views consist of parts of the abstract syntax tree of a program, and
dynamic views are constructed from the program state during execution. As an example of
a dynamic view, the evaluation of a control predicate may be visualized as the actual truth
value it obtains during execution.

Although Berry considers highly sophisticated animation features, he does not consider
debugger features such as breakpoints and dynamic program slices.

"The subset of Pascal that is considered in [10] does not contain goto statements. It is unclear what
complications these statements would cause.

6.8. Conclusions and future work 179

6.8 Conclusions and future work

We have presented a generic approach for deriving debugging and dynamic program slicing
tools from algebraic specifications. The main conclusion of this chapter isthat the informa-
tion needed for implementing such toolsisto a very large extent |anguage-independent and
implicitly present in the language’s specification. The three “building blocks’ we used to
define debugger features are:

1. matching of patterns,
2. rewriting of terms, and
3. computation of origin/dependence information.

The first two items consist of functionality that is, at least in principle, already provided by
any rewriting engine. Aswas described in Section 6.3, the information used in the third item
can be computed automatically, as a side-effect of rewriting.

The only additional language-dependent information that isrequired to define debugging
and dlicing features consists of the specification of a set of language-specific patterns, and
the actions that should be performed when a match with such a pattern occurs.

The emphasis of this chapter has been on generic techniques for constructing debugging
tools, we haveignored all aspectsthat haveto do with user-interfacing. Inthefuture, we plan
to develop aformalisminwhich one can specify such tool stogether with their user-interfaces.

Chapter 7

Conclusions

7.1 Summary

We have presented an approach to generating program analysis tools from formal specifi-
cations. In particular, the generation of tools for source-level debugging and for computing
various types of program slices has been addressed in detail. We have discussed how such
toolscan be of practical usefor software maintenance, reverse engineering, and various other
applications.

Instead of “directly” implementing program analysis tools, we require that alanguage’s
semanticsbeformally specified by way of an executableal gebraic specification. Thispermits
us to view the execution of a program as a term rewriting process, or, more abstractly, as
a sequence of terms. Two generic, specification-level techniques serve as the cornerstones
of our approach for constructing program analysis tools. origin tracking and dynamic
dependence tracking. Origin tracking establishes relations between recurrences of certain
terms that occur in a rewriting process, and is used to formalize the notion of a “current
locus” of program execution. Dynamic dependence tracking establishes certain dependence
relations between terms that occur in a rewriting process, and is used to compute various
notions of program slices. A crucial property of these techniquesis the fact that:

All information needed for computing origin relations and dynamic dependence
relationsisimplicitly present in the specification of the language's semantics.

Moreover, these relations can be computed automatically and efficiently, as a side-effect of
term rewriting.

Once origin and dynamic dependence relations have been computed, only a very small
amount of additional language-specific information is needed to construct program anaysis
tools. This information mainly consists of a small set of language-specific patterns and
associated actions. We have argued that the specification of these patterns and actions is
very similar to the specification of the language's semantics itself, and therefore easy to
write.

Some prototypes of program analysis tools have been generated according to our tech-
niques using the ASF+SDF Meta-environment, a programming environment generator [93].

181

182 Chapter 7. Conclusions

7.2 Main results

The main results of thisthesis can be summarized as follows;

e We have presented a generic approach to generating program analysis tools that re-
quires very little language-specific information other than a specification of a lan-
guage’'s semantics, and the language-independent origin and dynamic dependence
relations implicitly defined by that specification.

Moreover, the additional information needed for constructing program analysis tools
can be regarded as an extension to the language’ s specification (which itself may have
been developed previously).

e Themethodfor program slicing presented in Chapter 5 subsumesthetraditional notions
of static and dynamic program slicing, by allowing arbitrary sets of constraints on the
inputs of a program. The precision of the (static) slices computed according to our
approach compares favorably to that of previous slicing methods.

e Wehave conducted severa experimentswith automatically generated programanalysis
tools. Although current performance is rather poor (especially for programs over 50
lines), thisis mainly due to a combination of two factors:

1. The use of an interpreted term rewriting engine, and
2. The fact that origin tracking and dynamic dependence tracking slow down exe-
cution (i.e., theterm rewriting process) by afactor proportional to the size of the
initial term.
Current work on compiling specifications to efficient C code [92] is expected to
overcome the first problem.
Another effort towards greater efficiency is an efficient ML implementation of the
slicing approach of Chapter 5 that is currently being developed at the IBM T.J. Watson
Research Center.

The main contribution of this dissertation has been to explore semantic notions behind
program slicing and debugging operations. One might justifiably remark that interpreters
based on term rewriting are bound to be much slower than interpreters that are constructed
by other means. However, given the recent advances in (rewriting) technology discussed
above and the fact that efficiency is not the primary raison d’étre of interpreters to begin
with, we are mildly optimistic about the practicality of the work presented in thisthesis.

7.3 Futurework

We foresee a number of directionsfor extending and applying the work in this thesis:

e For certain applications, (e.g., determining positions of type-errorsfor type-checkers),
different or stronger origin relations are desired [49, 48, 45, 43]. Thisis an area of
research where much work remains to be done.

e Although defined in different ways, the origin relation and the dynamic dependence
relation clearly have many similarities. A more systematic comparison of these

7.3. Futurework 183

relationsisrequired. We believe that a potential outcome of such a comparison could
consist of ageneric framework for specifying origin-likerelations. One couldimagine
that, in such aframework, the origin relation is parameterized with afunction defining
the type of relationsto be established, and that its properties are expressed in terms of
this parameter.

e Anissuerelated to the previous one isthe fact that the origin relation and the dynamic
dependence relation both rely on the combination of anotion of residuation [78] with
“other information”. In the case of origin tracking, the latter consists of the relations
between redex and contractum, and between common subterms. For dependence
tracking, it consists of anotion of “creation”. We conjecture that it should be possible
to redefine origin tracking and dependence tracking in a more consistent way, as
relations that have a“residuation” subrelation in common.

e The dynamic dependence relation defined in Chapter 4 may produce slightly non-
optimal results in the presence of left-nonlinear rewriting rules. Although this non-
optimality does not seem to pose any problemsin practice, we are currently investigat-
ing whether an approach based on graph rewriting (see, e.g., [17]) would yield more
accurate results.

e The dynamic dependence relation is in certain respects similar to the information
that is used by Field [54, 56] for the purpose of incremental rewriting. It would be
interesting to determine exactly how these different concepts are related.

¢ Weintend to experiment with the application of dynamic dependence tracking to spec-
ifications of the static semantics of a language (i.e., specifications of type-checkers).
In principle, thiswould yield a“reduced” program that contains the same type-errors,
but excludes all type-correct constructs.

e As was discussed earlier, the information needed for generating language-specific

program analysis tools is to a very large extent language-independent. However, a
small part of thisinformation (e.g., the patterns and associated actions in Chapter 6)
is language-dependent.
A logical continuation of the work in thisthesiswould be the devel opment of aformal-
ism/language to express this language-specific information. ldeally, this formalism
would also allow the description of the user-interface of the generated tools. The work
by Koorn [96, 97] may be a good starting-point.

e In our current implementation, origin tracking and dynamic dependence tracking are

implemented by way of a modification of the ASF+SDF system'’s rewrite engine. In
order to gain performance, current work in this areaincludes a compiler of ASF+SDF
specifications to efficient stand-alone C programs [92]. Rather than re-implementing
origin tracking and dynamic dependence tracking in this new setting, it would be inter-
esting to compute these relations by way of a systematic transformation on algebraic
specifications.
Some experiments in this area have been performed, but were unsuccessful due to
the inefficient implementation of low-level set operations by way of “pure’ rewriting.
We conclude that an escape-mechanism (such as the hybrid specifications of [140]) is
needed to compute these operations more efficiently.

184 Chapter 7. Conclusions

¢ Inthisdissertation, we have mainly explored program slicing for purposes of program
analysis and program understanding. It would be interesting to investigate whether
glicing can be of use for program restructuring as well. The work by Griswold and
Notkin [64, 63], who pursue a PDG-based method for program restructuring, may be
relevant in this respect.

Appendix A

PiM detalls

In this appendix, we briefly review the PIM term structure and the most important subsets of
Pim rules. Additional rules used primarily for performing induction are described in [55];
these rules are the foundation for the loop analysisrules presented in Section 5.5. In general,
Pim is augmented with rules defining the semantics of language-specific data types such as
integers.

PIM terms are constructed over an order-sorted signature. PIM sorts distinguish among
fundamentally incompatible syntactic structures corresponding to observable values, merge
structures, store structures, and |ambda expressions; however, sorts should not be interpreted
astypesin the usual sense.

A.1 PiM~ rules

Therulesof PiM, aregivenin Figure A.1. Variablesv, m, s, and f will be used in the rules
to refer to observable values, merge structures, store structures, and lambda-expressions,
respectively. Equations (L1)—L8) are generic to merge or store structures. Thus, each of
the operators labeled p isto be interpreted as one of s or m. (E1) and (E2) are schemes for
aninfinite set of equations. Equation (C1) only appliesif the argument of * S(-)’ isof sort S.
Therules of PIM™ consist of those of Pim, ", along with the rules depicted in Figure 5.11.

A.2 PIM; equations
The rules of PiM;~ are those of Pim;~ along with those given in Figure A.2. Asbefore, pin
rules (L9)—(L11) is assumed to be one of m or s. Inrule (M9), C)[| denotes an arbitrary

strict context of value sort; this rule could aso be less perspicuously rendered as afamily of
rules, one for each value-sorted function symbol.

185

186

Appendix A. PimM details

0,0,

Lo, 0,

ll Op (lz Op 13)
p >, 0,
T,

Fp,l

p P, (liop l)
p1 Py (p2 >y)

{ve — m} @ v,
{v 0.}

h, @v

(5104 52) @

p s {v—m}
=(k1, k2)
=(k1, k2)

[F > o]

(m op [T > o))!
T > o)!

0,

P1 B [p2 >0
~(T)

—~(F)

~(~(p))

AT, p)

ANp, T)

ANF, p)

ANp, F)
ANNp1, p2) , P3)
—(A(p1, p2))
V(T , p)

Vip, T)

V(F, p)

Vip, F)
V(V{p1, p2), p3)
=(V{(p1, p2))
S(s)

—~ S~ o~

ll Op lz) Op 13

=
hs)

B>y l1) Op (p >y I2)
<pl) p2> Dpl
V1, V2) pm

I >=s 7

—~

1@7)) Om (82@?))

= (p Bpmom)}
k; constants, ki =k,
k; constants, kq # k»

V)

A Ee=
3 »

N < @?J—I\.—' =

>

(p1, p2) >

(p1, Np2, p3))

(=(p1), ~(p2))

(1, Vip2, p3))

(=(p1), ~(p2))

S IVV A4 >TSS A

(L1)
(L2)
(L3)
(L4)
(LS)
(L6)
(L7)
(L8)
(S1)
(82)
()
($4)
(S5)
(E1)
(E2)
(M1)
(M2)
(M3)
(M4)
(M3)
(BY)
(B2
(B3)
(B4)
(BS)
(B6)
(B7)
(B8)
(B9)
(B10)
(B11)
(B12)
(B13)
(B14)
(B15)

(C1)

Figure A.1: Equationsof Pim;”.

A.2. PIM; equations 187

=(v,v)=T (E3)
[Cp l1 Cp lo=1 Cp l2 (Lg)
Ap1, p2) =F
(p1 >p l1) ©p (p2 >y l2)=(p2 >p l2) ©p (p1 >p l1) (L10)
(p1 B, 1) 0, (P2 B, 1) = (V{p1, p2)) B, (L11)
{v—=mq} o, {v—my}={vr (mygo, my)} (S6)
:<7}1, 7}2> = F

{ve = ma} o5 {v2 = mo}={v2 = ma} o5 {v1 — ma} (S7)

(=(p) Pmmioy

M2 Oy [p B> V] = My Oy M2 Oy [p 1> V] (M6)
[p l>m!]:[p [>?]Om (p |>mm) (M7)
([T > 7 op m)! =m! (M8)

Cy[m!] = (m\ (Azy.Cy[zy])) !,
zy & FV(Cy[]) (M9)

(m1 o m2) \ [= (m1\ f) o (m2)\) (M10)
[p > o]\ f=p>(f v) (M11)
D\ f =00, (M12)

(p Bmm)\ f=p Bu(m\[) (M13)
(m\ Az.v)\ f=m\ \z.fo (M14)
Np1, p2) = Np2, p1) (B16)
Np,p)=p (B17)

ANp, =(p))=F (B18)
V(p1, p2) = V(p2, p1) (B19)

Vi{p, p)=p (B20)

Vip, ~(p) =T (B21)
A(p1, V(p2, p3)) = V{A(p1, p2) , A(p1, P3)) (B22)
V(p1, N(p2, P3>)§ = A(V(p1, P2), V(P1, P3)) (B23)

p > (AP, o)l =1[p > g (B24)

Figure A.2: Additiona equations of Pim; .

(1]

(2]

(3]

[4]

(5]

6]

(7]

8]

[9]

[10]

[11]

Bibliography

ACETO, L., BLOOM, B., AND VAANDRAGER, F. Turning SOS rulesinto equations. In Proc. IEEE Symp.
on Logic in Computer Science (Santa Cruz, CA, 1992), pp. 113-124.

AGRAWAL, H. Towards automatic debugging of Computer Programs. PhD thesis, Purdue University,
1991.

AGRAWAL, H. On dlicing programs with jump statements. In Proceedings of the ACM SIGPLAN' 94
Conference on Programming Language Design and Implementation (Orlando, Florida, 1994), pp. 302—
312. SIGPLAN Notices 29(6).

AGRAWAL, H., DEMILLO, R., AND SPAFFORD, E. Dynamic dlicing in the presence of unconstrained
pointers. In Proceedings of the ACM Fourth Symposium on Testing, Analysis, and Verification (TAV4)
(1991), pp. 60-73. Also Purdue University technical report SERC-TR-93-P.

AGRAWAL, H., DEMILLO, R., AND SPAFFORD, E. Debugging with dynamic slicing and backtracking.
Software—Practice and Experience 23, 6 (1993), 589-616.

AGRAWAL, H., AND HORGAN, J. Dynamic program slicing. In Proceedings of the ACM SIGPLAN'90
Conference on Programming Language Design and Implementation (1990), pp. 246-256. SIGPLAN
Notices 25(6).

AHO, A., SETHI, R., AND ULLMAN, J. Compilers. Principles, Techniques and Tools. Addison-Wesley,
1986.

ALPERN, B., WEGMAN, M., AND ZADECK, F. Detecting equality of variablesin programs. In Conference
Record of the Fifteenth ACM Symposium on Principles of Programming Languages (San Diego, 1988),
pp. 1-11.

ALT, M., ASSMANN, U., AND VAN SOMEREN, H. Cosy compiler phase embedding with the cosy compiler
model. In Compiler Construction '94 (1994), P. A. Fritzson, Ed., vol. 786 of LNCS, Springer-Verlag,
pp. 278-293.

BAHLKE, R., MORITZ, B., AND SNELTING, G. A generator of language-specific debugging systems. In
Proceedings of the ACM S GPLAN' 87 Symposium on Interpreters and I nter pretive Techniques (1987),
pp. 92-101. SIGPLAN Notices 22(7).

BAHLKE, R., AND SNELTING, G. The PSG system: from formal language definitions to interactive
programming environments. ACM Transactions on Programming Languages and Systems 8, 4 (1986),
547-576.

189

190

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Bibliography

BALL, T. The Use of Control-Flow and Control Dependence in Software Tools. PhD thesis, University
of Wisconsin-Madison, 1993.

BALL, T., AND HORWITZ, S. Slicing programs with arbitrary control-flow. In Proceedings of the First
International Workshop on Automated and Algorithmic Debugging (1993), P. Fritzson, Ed., vol. 749 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 206-222.

BALLANCE, R. A., MACCABE, A. B., AND OTTENSTEIN, K. J. The program dependence Web: A
representation supporting control-, data-, and demand-driven interpretation of imperative languages.
In Proc. ACM SIGPLAN Conference on Programming Language Design and Implementation (White
Plains, NY, 1990), pp. 257-271.

BALZER, R. EXDAMS - Extendable Debugging And Monitoring System. In Proceedings of the AFIPS
SICC (1969), vol. 34, pp. 567-586.

BANNING, J. An efficient way to find the side effects of procedure calls and the aliases of variables.
In Conference Record of the Sxth ACM Symposium on Principles of Programming Languages (1979),
pp. 29-41.

BARENDREGT, H., VAN EEKELEN, M., GLAUERT, J., KENNAWAY, J., PLASMEIJER, M., AND SLEEP, M. Term
graphrewriting. In Proc. PARLE Conference, Vol. I1: Parallel Languages (Eindhoven, The Netherlands,
1987), vol. 259 of Lecture Notesin Computer Science, Springer-Verlag, pp. 141-158.

BARNES, J. Programming in Ada, second ed. International Computer Science Series. Addison-Wesley,
1982.

BARTH, J. A practical interprocedural data flow analysis algorithm. Communications of the ACM 21, 9
(1978), 724-736.

BATES, S., AND HORWITZ, S. Incremental program testing using program dependencegraphs. In Confer-
ence Record of the Twentieth ACM Symposium on Principles of Programming Languages (Charleston,
SC, 1993), pp. 384-396.

BECK, J., AND EICHMANN, D. Program and interface slicing for reverse engineering. In Proceedings of
the 15th International Conference on Software Engineering (Baltimore, 1993).

BERGERETTI, J.-F., AND CARRE, B. Information-flow and data-flow analysis of while-programs. ACM
Transactions on Programming Languages and Systems 7, 1 (1985), 37—61.

BERGSTRA, J., HEERING, J., AND KLINT, P, Eds. Algebraic Specification. ACM Press Frontier Series.
The ACM Press in co-operation with Addison-Wesley, 1989.

BERGSTRA, J., AND KLOP, J. Conditional rewriterules. confluenceand termination. Journal of Computer
and System Sciences 32, 3 (1986), 323-362.

BERRY, D. Generating Program Animators from Programming Language Semantics. PhD thesis,
University of Edinburgh, 1991.

BERTOT, Y. Occurrencesin debugger specifications. In Proceedings of the ACM SSGPLAN' 91 Conference
on Programming Language Design and I mplementation (1991), pp. 327—337. SIGPLAN Notices 26(6).

BERTOT, Y. Une Automatisation du Calcul des Résidus en Sémantique Naturelle. PhD thesis, INRIA,
Sophia-Antipalis, 1991. In French.

BEeRTOT, Y. Origin functionsin lambda-cal culusand term rewriting systems. In Proceedings of the 17th
Colloguium on Trees in Algebra and Programming (CAAP '92) (1992), J.-C. Raoult, Ed., vol. 581 of
LNCS, Springer-Verlag.

BINKLEY, D. Using semantic differencing to reduce the cost of regression testing. In Proceedings of the
| EEE Conference on Software Maintenance (Orlando, Florida, November 1992).

Bibliography 191

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

BINKLEY, D. Precise executable interprocedural slices. ACM Letters on Programming Languages and
Yystems 2, 14 (1993), 31-45.

BINKLEY, D. Slicing in the presence of parameter aiasing. In Proceedings of the Third Software
Engineering Research Forum (Orlando, Florida, November 1993), pp. 261-268.

BINKLEY, D. Interprocedural constant propagation using dependence graphs and a data-flow model. In
Proceedings of the 5th International Conference on Compiler Construction—CC'’ 94 (Edinburgh, UK,
1994), P. Fritzson, Ed., vol. 786 of LNCS, pp. 374-388.

BINKLEY, D., HORWITZ, S., AND REPS, T. Program integration for languageswith procedurecalls, 1994.
Submitted for publication.

CARTWRIGHT, R., AND FELLEISEN, M. The semantics of program dependence. In Proceedings of
the ACM 1989 Conference on Programming Language Design and I mplementation (Portland, Oregon,
1989), pp. 13-27.

CHENG, J. Slicing concurrent programs — a graph-theoretical approach. In Proceedings of the First
International Workshop on Automated and Algorithmic Debugging (1993), P. Fritzson, Ed., vol. 749 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 223-240.

CHol, J.-D., BURKE, M., AND CARINI, P. Efficient flow-sensitive interprocedural computation of pointer-
induced aliases and side effects. In Conference Record of the Twentieth ACM Symposium on Principles
of Programming Languages (1993), ACM, pp. 232-245.

CHol, J.-D., AND FERRANTE, J. Static slicing in the presence of goto statements. ACM Transactions on
Programming Languages and Systems 16, 4 (July 1994), 1097-1113.

CHol, J-D., MILLER, B., AND NETZER, R. Techniques for debugging parallel programs with flowback
analysis. ACM Transactions on Programming Languages and Systems 13, 4 (1991), 491-530.

COOPER, K., AND KENNEDY, K. Interprocedural side-effect analysisin linear time. In Proceedings of
the ACM SSGPLAN' 88 Conference on Programming Language Design and Implementation (Atlanta,
Georgia, 1988), pp. 57-66. S GPLAN Notices 23(7).

CYTRON, R., FERRANTE, J., ROSEN, B. K., AND WEGMAN, M. N. Efficiently computing static single
assignment form and the control dependence graph. ACM Transactions on Programming Languages
and Systems 13, 4 (1991), 451-490.

DEsPEYROUX, T. Typol: aformalism to implement natural semantics. Tech. Rep. 94, INRIA, 1988.

DEURSEN, A. v. An algebraic specification for the static semantics of Pascal. Report CS-R9129, Centrum
voor Wiskunde en Informatica (CWI), Amsterdam, 1991.

DEURSEN, A. v. Executable Language Definitions—Case Studies and Origin Tracking Techniques. PhD
thesis, University of Amsterdam, 1994.

DEURSEN, A. V. Origin tracking in primitive recursive schemes. Report CS-R9401, Centrum voor
Wiskunde en Informatica (CWI), 1994.

DEURSEN, A. V., AND DINESH, T. Origintracking for higher-order term rewriting systems. In Proceedings
of the International Workshop on Higher-Order Algebra, Logic and Term Rewriting (Amsterdam,
September 1993), J. Heering, K. Meinke, B. Moller, and T. Nipkow, Eds., vol. 816 of LNCS.

DEURSEN, A. V., KLINT, P, AND TIR, F. Origintracking. Report CS-R9230, Centrum voor Wiskunde en
Informatica (CWI), Amsterdam, 1992.

DEURSEN, A. V., KLINT, P, AND TIR, F. Origin tracking. Journal of Symbolic Computation 15 (1993),
523-545.

192

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

Bibliography

DINESH, T. Type checking revisited: Modular error handling. In International Workshop on Semantics
of Specification Languages (1993).

DINESH, T., AND TIR, F. Animatorsand error reportersfor generated programming environments. Report
CS-R9253, Centrum voor Wiskunde en Informatica (CWI), Amsterdam, 1992.

DUESTERWALD, E., GUPTA, R., AND SOFFA, M. Distributed slicing and partial re-executionfor distributed
programs. In Proceedings of the fifth workshop on Languages and Compilers for Parallel Computing
(New Haven, Connecticut, 1992), pp. 329-337.

DUESTERWALD, E., GUPTA, R., AND SOFFA, M. Rigorous dataflow testing through output influences. In
Proceedings of the Second Irvine Software Symposium | SS 92 (California, 1992), pp. 131-145.

ERNST, M. Practical fine-grained static slicing of optimized code. Tech. Rep. M SR-TR-94-14, Microsoft
Research, Redmond, WA, 1994.

FERRANTE, J., OTTENSTEIN, K., AND WARREN, J. The program dependence graph and its use in
optimization. ACM Transactions on Programming Languages and Systems 9, 3 (1987), 319-349.

FIELD, J. On laziness and optimality in lambda interpreters: Tools for specification and analysis.
In Proceedings of the Seventeenth ACM Symposium on Principles of Programming Languages (San
Francisco, 1990), pp. 1-15.

FIELD, J. A simplerewriting semanticsfor realistic imperative programs and its application to program
analysis. In Proceedings of the ACM S GPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation (1992), pp. 98-107. Published as Yae University Technical Report
YALEU/DCS/RR-909.

FIELD, J. A graph reduction approach to incremental rewriting. In Proceedings of the 5th International
Conference on Rewriting Techniques and Applications (1993), C. Kirchner, Ed., vol. 690 of LNCS
pp. 259-273.

FIELD, J., RAMALINGAM, G., AND TIP, F. Parametric program slicing. In Conference Record of the
Twenty-Second ACM Symposiumon Principles of Programming Languages (San Francisco, CA, 1995).
To appear.

FIELD, J., AND TIP, F. Dynamic dependence in term rewriting systems and its application to program
dicing. In Proceedingsof the Sxth Inter national Symposiumon Programming Language | mplementation
and Logic Programming (1994), M. Hermenegildo and J. Penjam, Eds., vol. 844, Springer-Verlag,
pp. 415-431.

FRITZSON, P, SHAHMEHRI, N., KAMKAR, M., AND GYIMOTHY, T. Generalized algorithmic debugging
and testing. ACM Letters on Programming Languages and Systems 1, 4 (1992), 303-322.

GALLAGHER, K. Using Program Sicing in Software Maintenance. PhD thesis, University of Maryland,
1989.

GALLAGHER, K., AND LYLE, J. Using program slicing in software maintenance. |EEE Transactions on
Software Engineering 17, 8 (1991), 751-761.

GoraL, R. Dynamic program slicing based on dependencerelations. In Proceedings of the Conference
on Software Maintenance (1991), pp. 191-200.

GRiswoLD, W. G. Direct update of dataflow representations for a meaning-preserving program re-
structuring tool. In Proceedings of the ACM SIGSOFT ' 93 Symposium on the Foundations of Software
Engineering (December 1993), pp. 42-55.

GRISWOLD, W. G., AND NOTKIN, D. Automated assi stance for program restructuring. ACM Transactions
on Software Engineering and Methodology 2, 3 (July 1993), 228-2609.

Bibliography 193

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[79]

[76]

[77]

[78]

[79]

(80]

(81]

[82]

GupPTA, R., HARROLD, M., AND SOFFA, M. An approach to regression testing using dicing. In
Proceedings of the Conference on Software Maintenance (1992), pp. 299-308.

GUPTA, R., AND SOFFA, M. A framework for generalized slicing. Technical report TR-92-07, University
of Pittsburgh, 1992.

HAUSLER, P. Denotational programdlicing. In Proceedingsof the 22nd Hawaii | nter national Conference
on System Sciences (Hawaii, 1989), pp. 486-494.

HEERING, J., HENDRIKS, P, KLINT, P,, AND REKERS, J. The syntax definitionformalism SDF - reference
manual. SIGPLAN Notices 24, 11 (1989), 43-75.

HENDRIKS, P. Implementation of Modular Algebraic Specifications. PhD thesis, University of Amster-
dam, 1991.

HorwITZ, S. Identifying the semantic and textua differencesbetween two versionsof aprogram. In Pro-
ceedings of the ACM S GPLAN' 90 Conference on Programming Language Design and I mplementation
(White Plains, New York, 1990), pp. 234-245. S GPLAN Notices 25(6).

HorwITZ, S., PFEIFFER, P, AND REPS, T. Dependence analysis for pointer variables. In Proceedings of
the ACM 1989 Conference on Programming Language Design and I mplementation (Portland, Oregon,
1989). SSGPLAN Notices 24(7).

HorwITZ, S, PRINS, J., AND REPS, T. Integrating non-interfering versions of programs. In Conference
Record of the ACM SIGSOFT/S GPLAN Symposium on Principles of Programming Languages (1988),
pp. 133-145.

HorwITZ, S., PRINS, J., AND REPS, T. On the adequacy of program dependence graphs for representing
programs. In Conference Record of the Fifteenth Annual ACM Symposiumon Principles of Programming
Languages (1988), ACM, pp. 146-157.

HORwWITZ, S., PRINS, J., AND REPS, T. Integrating noninterfering versionsof programs. ACM Transactions
on Programming Languages and Systems 11, 3 (1989), 345-387.

HorRwITZ, S., AND REPs, T. Efficient comparison of program slices. Acta Informatica 28 (1991),
713-732.

HorwITZ, S., AND ReEPS, T. The use of program dependence graphs in software engineering. In
Proceedings of the 14th International Conference on Software Engineering (Melbourne, Australia,
1992), pp. 392411.

HorwITZ, S., REPS, T., AND BINKLEY, D. Interprocedural slicing using dependence graphs. ACM
Transactions on Programming Languages and Systems 12, 1 (1990), 26-61.

HUET, G., AND LEVY, J.-J. Computationsin orthogonal rewriting systemspart | and I1. |n Computational
Logic; essaysin honour of Alan Robinson, J.-L. Lassez and G. Plotkin, Eds. MIT Press, 1991, pp. 395—
443.

HWANG, J., Du, M., AND CHou, C. Finding program slices for recursive procedures. In Proceedings of
the 12th Annual International Computer Software and Applications Conference (Chicago, 1988).

HwANG, J.,, Du, M., AND CHou, C. The influence of language semantics on program slices. In
Proceedings of the 1988 I nter national Conference on Computer Languages (Miami Beach, 1988).

JACKSON, D., AND ROLLINS, E. J. Abstraction mechanisms for pictorial dlicing. In Proceedings of the
| EEE Workshop on Program Comprehension (Washington, November 1994).

JACKSON, D., AND ROLLINS, E. J. A new model of program dependences for reverse engineering. In
Proceedings of the Second ACM SIGSOFT Conference on Foundations of Software Engineering (New
Orleans, LA, December 1994).

194

[83]

[84]

[85]

[86]

(87]

(8]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

Bibliography

JANG, J., ZHou, X., AND RoOBSON, D. Program dlicing for C - the problems in implementation. In
Proceedings of the Conference on Software Maintenance (1991), pp. 182—190.

JOHNSON, R., PEARSON, D., AND PINGALI, K. The program structure tree: Computing control regions
inlinear time. In Proceedings of the ACM SIGPLAN' 94 Conference on Programming Language Design
and Implementation (Orlando, Florida, 1994), pp. 171-185. SIGPLAN Notices 29(6).

KAHN, G. Natural semantics. |n Fourth Annual Symposiumon Theoretical Aspects of Computer Science
(1987), F. Brandenburg, G. Vidal-Naquet, and M. Wirsing, Eds., vol. 247 of LNCS, Springer-Verlag,
pp. 22-39.

KAMKAR, M. An overview and comparative classification of static and dynamic program slicing.
Technical Report LiTH-IDA-R-91-19, Linkoping University, Linkdping, 1991. To appear in Journal of
Systems and Software.

KAMKAR, M. Interprocedural Dynamic Sicing with Applicationsto Debugging and Testing. PhD thesis,
Linkoping University, 1993.

KAMKAR, M., FRITZSON, P, AND SHAHMEHRI, N. Interprocedural dynamic slicing applied to inter-
procedural data flow testing. In Proceedings of the Conference on Software Maintenance (Montreal,
Canada, 1993), pp. 386-395.

KAMKAR, M., FRITZSON, P, AND SHAHMEHRI, N. Three approachesto interprocedural dynamic dlicing.
Microprocessing and Microprogramming 38 (1993), 625—-636.

KAMKAR, M., SHAHMEHRI, N., AND FRITZSON, P. Interprocedural dynamic slicing and its application
to generalized al gorithmic debugging. In Proceedings of the I nter national Conference on Programming
Language Implementation and Logic Programming, PLILP '92 (1992).

KAMPERMAN, J., DINESH, T., AND WALTERS, H. An extensible language for the generation of parallel
data manipulation and control packages. In Proceedings of the Poster Session of Compiler Construction
'94 (1994), P. Fritzson, Ed. Appeared as technical report LiTH-IDA-R-94-11, Link 6ping University.

KAMPERMAN, J., AND WALTERS, H. ARM — Abstract Rewriting Machine. In Computing Sciencein the
Netherlands (1993), H. Wijshoff, Ed. Also appeared as CWI report CS-R9330.

KLINT, P. A meta-environment for generating programming environments. ACM Transactions on
Software Engineering and Methodology 2, 2 (1993), 176-201.

KLoP, J. Term rewriting systems. Report CS-R9073, Centrum voor Wiskunde en Informatica (CWI1),
Amsterdam, 1990.

KLop, J. Term rewriting systems. In Handbook of Logic in Computer Science, Volume 2. Background:
Computational Structures, S. Abramsky, D. Gabbay, and T. Maibaum, Eds. Oxford University Press,
1992, pp. 1-116.

KOORN, J. Connecting semantic toolsto a syntax-directed user-interface. Report P9222, Programming
Research Group, University of Amsterdam, 1992.

KOORN, J. Generating uniform user-interfaces for interactive programming environments. PhD thesis,
University of Amsterdam, 1994.

KOREL, B., AND FERGUSON, R. Dynamic dlicing of distributed programs. Applied Mathematics and
Computer Science 2, 2 (1992), 199-215.

KOREL, B., AND LAsSKI, J. Dynamic program dlicing. Information Processing Letters 29, 3 (1988),
155-163.

KOREL, B., AND LASKI, J. Dynamic dlicing of computer programs. Journal of Systems and Software 13
(1990), 187-195.

Bibliography 195

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]
[118]

[119]

Kuck, D., KuHN, R., PADUA, D., LEASURE, B., AND WOLFE, M. Dependence graphs and compiler
optimizations. In Conference Record of the Eighth ACM Symposium on Principles of Programming
Languages (1981), pp. 207-218.

LAKHOTIA, A. Graph theoretic foundationsof programslicing and integration. Report CACSTR-91-5-5,
University of Southwestern Louisiana, 1991.

LAKHOTIA, A. Improved interprocedura slicing algorithm. Report CACS TR-92-5-8, University of
Southwestern Louisiana, 1992.

LANDI, W., AND RYDER, B. A safe approximate algorithm for interprocedural pointer aliasing. In
Proceedings of the 1992 ACM Conference on Programming Language Design and | mplementation (San
Francisco, 1992), pp. 235-248. SSGPLAN Notices 27(7).

LANDI, W., AND RYDER, B. G. Pointer-induced aliasing: A problem classification. In Proceedings of
the Eighteenth ACM Symposiumon Principles of Programming Languages (January 1991), pp. 93-103.

LARUS, J., AND CHANDRA, S. Using tracing and dynamic slicing to tune compilers. Computer sciences
technical report #1174, University of Wisconsin-Madison, 1993.

LEUNG, H., AND REGHBATI, H. Comments on program dlicing. |EEE Transactions on Software
Engineering SE-13, 12 (1987), 1370-1371.

LYLE, J. Evaluating Variationson Program Sicing for Debugging. PhD thesis, University of Maryland,
1984.

LYLE, J., AND WEISER, M. Automatic bug location by program slicing. In Proceedings of the Second
Inter national Conference on Computersand Applications(Beijing (Peking), China, 1987), pp. 877-883.

LyLE, J. R., AND BINKLEY, D. Program slicing in the presence of pointers. In Proceedings of the Third
Software Engineering Research Forum (Orlando, Florida, November 1993), pp. 255-260.

MARANGET, L. Optimal derivationsin weak lambda-calculi and in orthogonal term rewriting systems.
In Proceedings of the Eighteenth ACM Symposium on Principles of Programming Languages (1991),
pp. 225-269.

MARANGET, L. La Stratégie paresseuse. PhD thesis, I’ Université Paris VI, Paris, 1992. In French.

MAYDAN, D., HENNESSY, J., AND LAM, M. Efficient and exact datadependenceanalysis. In Proceedings
of the ACM SIGPLAN' 91 Conference on Programming Language Design and I mplementation (1991),
pp. 1-14. SIGPLAN Notices 26(6).

MEULEN, E. v. D. Deriving incremental implementations from algebraic specifications. Report CS-
R9072, Centrum voor Wiskunde en Informatica (CWI), Amsterdam, 1990.

MEULEN, E. v. D. Deriving incremental implementations from algebraic specifications. In Proceedings
of the Second International Conference on Algebraic Methodology and Software Technology (1992),
Workshops in Computing, Springer-Verlag, pp. 277-286.

MILLER, B., AND CHol, J.-D. A mechanism for efficient debugging of parallel programs. In Proceedings
of the ACM SIGPLAN' 88 Conference on Programming Language Design and | mplementation (Atlanta,
1988), pp. 135-144. SIGPLAN Notices 23(7).

NING, J., ENGBERTS, A., AND KozAczYNsKI, W. Automated support for legacy code understanding.
Communications of the ACM 37, 3 (1994), 50-57.

O'DONNELL, M. Computing in Systems Described by Equations, vol. 58 of Lecture Notes in Computer
Science. Springer-Verlag, 1977.

OrtT, L. M., AND THUSS, J. The relationship between slices and module cohesion. In Proceedings of the
11th International Conference on Software Engineering (1989), pp. 198-204.

196

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]
[133]

[134]

[135]

[136]

[137]

[138]

Bibliography

OTTENSTEIN, K., AND OTTENSTEIN, L. The program dependence graph in a software development
environment. In Proceedings of the ACM SS.GSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments (1984), pp. 177-184. SSGPLAN Notices 19(5).

PaN, H. Software Debugging with Dynamic Intrumentation and Test-Based Knowledge. PhD thesis,
Purdue University, 1993.

PAN, H., AND SPAFFORD, E. H. Fault localization methodsfor software debugging. Journal of Computer
and Software Engineering (1994). To appear.

PODGURSKI, A., AND CLARKE, L. A forma model of program dependences and its implications for
software testing, debugging, and maintenance. IEEE Transactions on Software Engineering 16, 9
(1990), 965-979.

Reps, T. Algebraic properties of program integration. Science of Computer Programming 17 (1991),
139-215.

Reps, T. On the sequential nature of interprocedural program-analysis problems. Unpublished report,
University of Copenhagen, 1994.

REepPs, T. Private communication, 1994.

REPS, T., AND BRICKER, T. lllustrating interferenceininterfering versions of programs. In Proceedings of
the Second International Workshop on Software Configuration Management (Princeton, 1989), pp. 46—
55. ACM SIGSOFT Software Engineering Notes Vol.17 No.7.

Reps, T., HORWITZ, S., SAGIV, M., AND RosAY, G. Speeding up slicing. In Proceedings of the Second
ACM S GSOFT Conference on Foundations of Software Engineering (New Orleans, LA, December
1994). To appear.

REPs, T., SAGIV, M., AND HORWITZ, S. Interprocedural dataflow analysis viagraph reachability. Report
DIKU TR 94-14, University of Copenhagen, Copenhagen, 1994.

REPs, T., AND YANG, W. The semantics of program slicing and program integration. In Proceedings
of the Colloquium on Current Issues in Programming Languages (1989), vol. 352 of Lecture Notes in
Computer Science, Springer Verlag, pp. 60—74.

SHAHMEHRI, N. Generalized Algorithmic Debugging. PhD thesis, LinkOping University, 1991.
SHAPIRO, E. Algorithmic Program Debugging. MIT Press, 1982.

STALLMAN, R., AND PEscH, R. Using GDB, A guideto the GNU Source-Level Debugger. Free Software
Foundation/Cygnus Support, 1991. Version 4.0.

TIR, F. Animators for generated programming environments. In Proceedings of the First International
Workshop on Automated and Algorithmic Debugging (1993), P. Fritzson, Ed., vol. 749 of LNCS,
Springer-Verlag, pp. 241-254.

Tip, F. Generic techniquesfor source-level debugging and dynamic program slicing. Report CS-R9453,
Centrum voor Wiskunde en Informatica (CWI), 1994. Accepted for TAPSOFT’ 95.

TiIR, F. A survey of program dlicing techniques. Report CS-R9438, Centrum voor Wiskunde en
Informatica (CWI), 1994.

VENKATESH, G. The semantic approach to program slicing. In Proceedings of the ACM SSGPLAN'91
Conference on Programming Language Design and Implementation (1991), pp. 107-119. SGPLAN
Notices 26(6).

WADLER, P, AND HUGHES, R. Projections for strictness analysis. In Proc. Conf. on Functional
Programming and Computer Architecture (Portland, OR, 1987), vol. 274 of LNCS, pp. 385-406.

Bibliography 197

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]
[148]
[149]

[150]

WAHBE, R., LUCCO, S., AND GRAHAM, S. Practical data breakpoints; Design and implementation. In
Proceedings of the ACM S GPLAN’ 93 Conference on Programming Language Design and Implemen-
tation (Albuguerque, NM, 1993), pp. 1-12. SSGPLAN Notices 28(6).

WALTERS, H. On Equal Terms, Implementing Algebraic Specifications. PhD thesis, University of
Amsterdam, 1991.

WEGMAN, M., AND ZADECK, F. Constant propagation with conditional branches. ACM Transactions
on Programming Languages and Systems 13, 2 (1991), 181-210.

WEIHL, W. Interprocedural data flow analysis in the presence of pointers, procedure variables, and
label variables. In Conference Record of the Seventh ACM Symposium on Principles of Programming
Languages (1980), pp. 83-94.

WEISE, D., CREW, R., ERNST, M., AND STEENSGAARD, B. Vaue dependence graphs. Representa
tion without taxation. In Conference Record of the Twenty-First ACM Symposium on Principles of
Programming Languages (Portland, OR, 1994), pp. 297-310.

WEISER, M. Program dlices: formal, psychological, and practical investigations of an automatic
program abstraction method. PhD thesis, University of Michigan, Ann Arbor, 1979.

WEISER, M. Programmers use slices when debugging. Communications of the ACM 25, 7 (1982),
446-452.

WEISER, M. Reconstructing sequential behavior from parallel behavior projections. Information Pro-
cessing Letters 17, 3 (1983), 129-135.

WEISER, M. Program slicing. |EEE Transactions on Software Engineering 10, 4 (1984), 352-357.
WEISER, M. Private communication, 1994.

YANG, W., HORWITZ, S., AND ReEPS, T. A program integration algorithm that accommodates semantics-
preserving transformations. In Proceedings of the Fourth ACM SSGSOFT Symposium on Software
Development Environments (Irvine, CA, December 1990), pp. 133-143. ACM S GSOFT Software
Engineering Notes \VVol.15 No.6.

ZIMA, H., AND CHAPMAN, B. Supercompilersfor Parallel and Vector Computers. ACM Press Frontier
Series. ACM Press, New York, 1991.

Samenvatting

Over het onderwerp van dit proefschrift

Het is een bekend fenomeen dat een programma moeilijker te begrijpen wordt naarmate
het “ouder” wordt, en er meerdere malen wijzigingen in zijn aangebracht. Redenen voor
dergelijke wijzigingen zijn voor de hand liggend:

e Het kan nodig zijn de functionaliteit van een programma uit te breiden.

e Programma’s moeten soms worden aangepast wegens overschakeling op een ander
type computer of bedrijfssysteem.

e Verbetering van het mens/machine interface kan gewenst zijn.

Helaas wordt dit soort software-onderhoud niet altijd als een volwaardige activiteit be-
schouwd, en vindt het plaats onder grote tijdsdruk. Dergelijk programmeerwerk wordt dan
ook veelal op een ad-hoc manier uitgevoerd, waarbij de “structuur” die oorspronkelijk in
het programma aanwezig was grotendeels verloren gaat. Ook worden het ontwerp en de
documentatie die bij het programma horen vaak niet op adequate wijze aangepast. Een
programmeur die met een dergelijk programma wordt geconfronteerd, en de opdracht heeft
daarin nogmaals een wijziging aan te brengen, kan hierdoor grote moeite hebben met het
begrijpen ervan. Dit geldt in het bijzonder als de programmeurs die betrokken zijn geweest
bij eerdere versies van het programma niet meer aanwezig zijn voor tekst en uitleg, en de
source-tekst de enige beschikbare informatie omtrent het programmais.

Dit proefschrift gaat over technieken en hulpmiddelen om programma’s automatisch
te analyzeren, met andere woorden, over hulpmiddelen (“tools’) die het begrijpen van
programma’s vergemakkelijken. Hierbij ligt de nadruk op het genereren van programma-
analysetools uit algebraische specificaties, in plaats van deze direct te implementerenin een
specifieke programmeertaal. Een belangrijk voordeel van deze aanpak isdat deze grotendeel s
taal-onafhankelijk is. Denadruk ligt op twee specifieketechnieken voor programma-analyse:
source-level debugging en programsdlicing.

199

200 Samenvatting

Source-level debugging

Onder het begrip “debugging” (letterlijk: ontluizing) worden technieken verstaan voor het
opsporen van fouten in programma’s. Een “debugger” is een tool dat op deze technieken is
gebaseerd. Als de communicatie tussen de debugger en de gebruiker plaatsvindt in termen
van de oorspronkelijke tekst van het programma (de zgn. “ source-code”), spreekt men van
een “source-level debugger”. Functionaliteit die typisch door een debugger wordt geboden
omvat:

Single stepping: het stapsgewijs uitvoeren van de instructies van het programma, of het
simuleren hiervan.

State inspection: het inspecteren van de waarden die door het programmaworden berekend
op een door de gebruiker aangewezen punt.

Breakpoints: hierbij wordt de uitvoering van de instructies van het programma voortgezet
totdat een vooraf gespecificeerde conditie geldt. Als voorbeeld van condities valt te
denken aan het bereiken van een bepaalde locatie in de programma-tekst (*control
breakpoints’), of het moment waarop een door de gebruiker gespecificeerde expressie
een bepaal de waarde aanneemt (“ data breakpoints”).

Program dlicing

Programmasegmentatie (“program sicing”) is een techniek voor het opsplitsen van een
programmain een aantal deelprogramma’s die ieder corresponderen met een specifieke be-
rekening. Ditishet best te begrijpen door een eenvoudig voorbeeld te bestuderen. Figuur S.1
(a) toont een programma dat de gebruiker om een getal n vraagt, vervolgens de som en het
produkt van de eerste n getallen berekent, en deze waarden afdrukt. Figuur S.1 (b) toont een
program dlice ten opzichte van de instructie write (produkt), de laatste regel van het
programma. Het ideeisnu om alleinstructiesdie niet van belang zijn voor het berekenen van
dewaarde van variabele produkt op dit punt uit het programmate verwijderen. Aangezien
de berekeningen van de som en het produkt hier “onafhankelijk” zijn, zijn alleinstructiesdie
te maken hebben met variabele som niet meer aanwezig in de program dlice van Figuur S.1
(b). Programmasegmenten die berekend worden zonder aannames omtrent de invoer van
een programmaworden ook wel statische programmasegmenten genoemd (“ static program
dices’).

Bij dynamische programmasegmentatie (“dynamic program slicing”) wordt er gebruik
gemaakt van het feit dat bepaalde afhankelijkheden in een programma niet worden geac-
tiveerd voor specifieke invoerwaarden. Zo toont Figuur S.1 (c) een dynamic program slice
ten opzichte van de eindwaarde van variabele produkt, voor de specifieke invoerwaarde n
= 0. Aangezien de instructies in de while-lus nooit worden uitgevoerd voor invoerwaarde
n = 0 hoeven deze niet in het dynamische programma segment te worden opgenomen.
Dergelijke dynamische programma segmenten zijn meestal veel kleiner dan de invoeron-
afhankelijke statische programma segmenten.

Het nut van programmasegmentatie voor het begrijpen van een programmais evident:

Samenvatting 201

read(n) ; read(n) ; read(n) ;
i:=1; i:=1; i :=1;
som := 0;
produkt := 1; produkt := 1; produkt := 1;
while 1 <= n do while 1 <= n do while i <= n do
begin begin begin

som := som + 1i;

produkt := produkt * i; produkt := produkt * i;

i =1+ 1 i :=1 + 1
end; end; end;
write (som) ;
write (produkt) write (produkt) write (produkt)

(a (b) (©)

Figuur S.1. (a) Voorbeeldprogramma. (b) Statisch programma segment van het programma ten
opzichte van de eindwaarde van variabele produkt. (c) Dynamisch programma segment van het
programmaten opzichte van de eindwaarde van variabele produkt voor de specifiekeinvoerwaarde
n = 0.

het stelt de programmeur in staat de aandacht te concentreren op een bepaal de berekening,
en instructies die daar niet mee te maken hebben te negeren. Dynamische programmaseg-
mentatie is nuttig als debugging techniek. Alsimmers een onjuiste waarde wordt berekend
op een bepaald punt in het programma, kunnen aleen de instructies in de dynamische dlice
ten opzichte van dat programma-punt van belang zijn geweest voor de berekening van de
onjuistewaarde!. In het algemeen kan worden gesteld dat program slicing nuttig is voor het
begrijpen van programma’s omdat het het overzicht helpt te vergroten.

Hoofdstuk 3 bevat een uitgebreid overzicht van de huidige vakliteratuur op het gebied
van program slicing, en de toepassingen daarvan.

Algebraische specificaties

Zoals eerder genoemd bestaat de aanpak van dit proefschrift uit het genereren van
programma-anal ysetool s uit algebraische specificaties. Een agebraische specificatie bestaat
uit een verzameling van (conditionele) vergelijkingen die gezamenlijk de “betekenis’ van
instructies en programma’s formeel definiéren. Als voorbeeld wordt in Figuur S.2 de exe-
cutie van een if-instructie gespecificeerd (dit voorbeeld komt uitgebreid aan de orde in
Hoofdstuk 6). Gezamenlijk definiéren deze twee vergelijkingen hoe de executie van een if-
instructie kan worden uitgedrukt in de executie van ofwel deinstructiesin dethen-tak, ofwel

176 fsin gevallen waar de fout bestaat uit de afwezigheid van een bepaal de instructie kunnen programma-
segmenten van nut zijn. In dergelijke gevallen is het waarschijnlijk dat het segment andere instructies bevat
dan men zou verwachten.

202 Samenvatting

[L16] exec(if Expthen SatSeq else SatSeq’ end;SatSeq”, Env) = exec(SatSeq”, exec(SatSeq, Env))
when eval(Exp, Env) # 0

[L17] exec(if Expthen SatSeq else SatSeq’ end;SatSeq”’, Env) = exec(SatSeq”, exec(SatSeq', Env))
when eval(Exp, Env) = 0

Figuur S.2: Algebraische specificatie van de executie van een if-instructie.

exec exec

T

; exec
T o S
if l

<
~
~ - -
~
~

~
~
~
~

_ - originrelaies

Figuur S.3: Illustratie van termherschrijving en de origin relatie.

de instructies in de else-tak, a naar gelang het resultaat van de evaluatie van de controle-
expressie van de if. De hulpfunctie exec die in beide vergelijkingen voorkomt beschrijft
het effect van de executie van een lijst van instructies op de “ status’ van een programma.

Algebraische specificaties kunnen worden uitgevoerd (“ gegxecuteerd”) door middel van
termherschrijving: het van links naar rechts toepassen van vergelijkinger?. Figuur S.3 laat
zien hoe een if-term kan worden herschreven door vergelijking [L 16] uit Figuur S.2 toe te
passen.

In Figuur S.3 zijn met stippellijnen een aantal origin relaties aangegeven. Intuitief
gezienrelateert de originrelatie “gelijke”’ termen aan elkaar. Hoofdstuk 2 bevat een formele
definitie van origin tracking, een techniek om dergelijke origin relaties automatisch uit een
specificatie af te leiden. In Hoofdstuk 6 wordt origin tracking gebruikt om het huidige punt
van de programma-executiete kunnen traceren, en source-level debugging toolstegenereren.

Een andere relatie die in dit proefschrift veelvuldig aan de orde komt is de dynamische
afhankelijkheidsrelatie (“ dynamic dependence relation™). Figuur S.4 toont twee eenvoudige
vergelijkingen voor berekeningen met natuurlijke getallen. Vergelijking [A1] zegt dat de
vermenigvuldiging van het getal 0 met een willekeurig ander getal het resultaat 0 oplevert,

2Dit concept wordt iets ingewikkelder als vergelijkingen conditioneel zijn. Conditioneel termherschrijven
komt uitgebreid aan de orde in Hoofdstuk 2.

Samenvatting 203

0
intmul(X, intmul (Y, Z))

[Al] intmul(0,X)
[A2] intmul(intmul (X, Y),2Z)

Figuur S.4: Vergelijkingen voor berekeningen met natuurlijke getallen.

e e e)
intmul"“ 2. i 0 i 0
/\ .

dynamische afhankelijkheids relaties

Figuur S.5: Dynamische afhankelijkheidsrelaties die optreden bij toepassing van vergelijkingen
[Al] en[AZ2].

en vergelijking [A2] beschrijft het feit dat vermenigvuldiging een associatieve operatie is.
Figuur S.5 laat zien hoe de term intmul(intmul (0, 1), 2) kan worden herschreven
door toepassing van vergelijkingen [Al] en [A2]. De gestippelde lijnen in Figuur S.5
geven dynamische afhankelijkheden weer. Intuitief gezien beschrijven deze relaties welke
functiesymbolen in de term hebben geleid tot de “creatie” van een bepaald functiesymbool.
Dit kan in het voorbeeld van Figuur S.5 worden ingezien door de afhankelijkheidsrelaties
vanaf het eindresultaat 0 terug te traceren: hieruit blijkt dat het optreden van deze waarde
niet afhankelijk isvan de waarden 1 en 2 in de beginterm.

Hoofdstuk 4 bevat een formele definitie van “dynamic dependence tracking”, een tech-
niek om dynamische afhankelijksrelaties automatisch uit een algebraische specificatie af
te leiden. In Hoofdstuk 5 wordt dynamic dependence tracking gecombineerd met het
formalisme Pim [55], een equationele logica voor het beschrijven van de betekenis van
programma’s ontwikkeld aan het IBM T.J. Watson Research Center. In Hoofdstuk 5 wordt
uitvoerig beschreven hoe het traceren van de dynamische af hankel ijkheden vanuit een waarde
die berekend is door een programma, zeer accurate program slices oplevert. In Hoofdstuk 6
wordt de dynamische afhankelijkheidsrel atie toegepast op een algebraische specificatie van
een interpreter om dynamische programmasegmenten te berekenen.

204 Samenvatting

Resultaten van dit onder zoek

De belangrijkste resultaten van het in dit proefschrift beschreven onderzoek kunnen alsvolgt
worden samengevat:

e Hoofdstukken 2 en 4 bevatten formele definities van respectievelijk de origin relatie
en de dynamische afhankelijksheidsrelatie. Verder worden hier een aantal nuttige
eigenschappen van deze relaties bewezen, en wordt aangegeven hoe ze op efficiente
wijze geimplementeerd kunnen worden.

e In Hoofdstuk 5 wordt de dynamische afhankelijkheidsrelatie “toegepast op” het Pim
formalisme. Dit blijkt overeen te komen met een algemene, flexibele, en zeer precieze
vorm van program slicing.

e Hoofdstuk 3 bevat een uitgebreid literatuuronderzoek over het onderwerp program
dlicing.

e In Hoofdstuk 6 worden de origin relatie en de dynamische afhankelijkheidsrelatie
toegepast op algebraische specificaties van interpreters. Hierbij wordt beschreven hoe
op basis van de origin relatie een aantal zeer krachtige debugging concepten op een-
voudige wijze kan worden gedefiniéerd, en hoe de dynamische afhankelijkheidsrelatie
het mogelijk maakt dynamische programmasegmenten te berekenen.

De technieken die zijn beschreven in dit proefschrift zijn geimplementeerd met behulp van
de ASF+SDF Meta-Environment [93], een generator voor programmeeromgevingen die
ontwikkeld is door onderzoeksgroepen bij het Centrum voor Wiskunde en Informatica en bij
de Universiteit van Amsterdam.

Titlesin the ILL C Dissertation Series.

Transsentential Meditations; Ups and downs in dynamic semantics
Paul Dekker
ILLC Dissertation series 1993-1

Resource Bounded Reductions
Harry Buhrman
ILLC Dissertation series 1993-2

Efficient Metamathematics
Rineke Verbrugge
ILLC Dissertation series 1993-3

Extending Modal Logic
Maarten de Rijke
ILLC Dissertation series 1993-4

Studied Flexibility
Herman Hendriks
ILLC Dissertation series 1993-5

Aspects of Algorithms and Complexity
John Tromp
ILLC Dissertation series 1993-6

The Noble Art of Linear Decorating
Harold Schellinx
ILLC Dissertation series 1994-1

Generating Uniform User-Interfaces for Interactive Programming Environments
Jan Willem CornelisKoorn
ILLC Dissertation series 1994-2

Process Theory and Equation Solving
Nicoline Johanna Drost
ILLC Dissertation series 1994-3

Calculi for Constructive Communication, a Sudy of the Dynamics of Partial Sates
Jan Jaspars
ILLC Dissertation series 1994-4

Executable Language Definitions, Case Studies and Origin Tracking Techniques
Arievan Deursen
ILLC Dissertation series 1994-5

206 Samenvatting

Chapters on Bounded Arithmetic & on Provability Logic
Domenico Zambella
ILLC Dissertation series 1994-6

Adventuresin Diagonalizable Algebras
V. Yu. Shavrukov
ILLC Dissertation series 1994-7

Learnable Classes of Categorial Grammars
Makoto Kanazawa
ILLC Dissertation series 1994-8

Clocks, Trees and Starsin Process Theory
Wan Fokkink
ILLC Dissertation series 1994-9

Logics for Agents with Bounded Rationality
Zhisheng Huang
ILLC Dissertation series 1994-10

On Modular Algebraic Prototol Specification
Jacob Brunekreef
ILLC Dissertation series 1995-1

I nvestigating Bounded Contraction
Andregja Prijatélj
ILLC Dissertation series 1995-2

Relativized Algebras of Relations and Arrow Logic
Maarten Marx
ILLC Dissertation series 1995-3

Sudy on the Formal Semantics of Pictures
Dguan Wang
ILLC Dissertation series 1995-4

Generation of Program Analysis Tools
Frank Tip
ILLC Dissertation series 1995-5

