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Chapter 1

Overview

1.1 Motivation

In recent years, there has been a growing interest in tools that facilitate the understanding,
analysis, and debugging of programs. A typical program is extended and/or modified a
number of times in the course of its lifetime due to, for example, changes in the underlying
platform, or its user-interface. Such transformations are often carried out in an ad hoc
manner, distorting the “structure” that was originally present in the program. Taken together
with the fact that the programmers that worked on previous versions of the program may
be unavailable for comment, this causes software maintenance to become an increasingly
difficult and tedious task as time progresses. As there is an ever-growing installed base
of software that needs to undergo this type of maintenance, the development of techniques
that automate the process of understanding, analyzing, and restructuring of software—often
referred to as reverse engineering—is becoming an increasingly important research topic
[21, 117].

This thesis is concerned with tools and techniques that support the analysis of programs.
Instead of directly implementing program analysis tools, our aim is to generate such tools
from formal, algebraic specifications. Our approach has the pleasant property that it is
largely language-independent. Moreover, it will be shown that—to a very large extent—
the information needed to construct program analysis tools is already implicitly present in
algebraic specifications.

Two particular types of program analysis tools are discussed extensively in the following
chapters—tools for source-level debugging and tools for program slicing.

1.2 Source-level debugging

The basic feature of any source-level1 debugger is to perform or simulate the execution of a
program in a step-wise fashion, preferably in some visual way. Figure 1.1 shows a number of
snapshots of such a single-stepping tool. In Figure 1.1 (a) the first statement of the program
is executed; this fact is indicated by highlighting the corresponding statement in the program

1The phrase “source-level” indicates that communication between the debugging tool and the person
debugging the program is done in terms of source-code.

1
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(a) (b)

(c) (d)

Figure 1.1: Snapshots of a source-level debugging tool.

text. In Figure 1.1 (b), the execution of the next statement is visualized, in this case a call
to procedure incr. Figure 1.1 (c) depicts the execution of the statement out := in +
1 that constitutes the body of procedure incr. Finally, in Figure 1.1 (d) execution returns
from the procedure.

Another common feature of a source-level debugger is state inspection, i.e., allowing the
user to query the current values of variables or expressions whenever execution is suspended.
For example, a user might ask for the value of variable in when the execution reaches the
point shown in Figure 1.1 (c). In reaction to this query, the debugging tool will determine
the value 3.

An extremely useful feature that can also be found in most debugging tools is a breakpoint.
In general, a breakpoint may consist of any constraint on the program state that is supplied
by the user. The basic idea is that the user asks to continue execution of the program until
that constraint is met. Control breakpoints consist of locations in the program (typically
statements). When execution reaches such a designated location, the debugging tool will
return control to the user. Control breakpoints can be quite useful to verify whether or not a
certain statement in a program is executed or not. Data breakpoints consist of constraints on
values of expressions. For example, a user may ask the debugging tool to continue execution
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read(n);
i := 1;
sum := 0;
product := 1;
while i �� n do
begin
sum := sum + i;
product := product * i;
i := i + 1

end;
write(sum);
write(product)

read(n);
i := 1;

product := 1;
while i �� n do
begin

product := product * i;
i := i + 1

end;

write(product)

read(n);
i := 1;

product := 1;
while i �� n do
begin

end;

write(product)

(a) (b) (c)

Figure 1.2: (a) Example program. (b) Static slice of the program with respect to the final value
of variable product. (c) Dynamic slice of the program with respect to the final value of variable
product for input n = 0.

of a program until the values of two designated variables are equal.

1.3 Program slicing

Program slicing [147, 136] is a technique for isolating computational threads in programs.
Informally stated, a program slice contains the parts of a program that affect the values
computed at some designated point of interest (typically a statement). An alternate view
on the notion of a program slice is that of an executable projection of a program that
replicates part of its behavior. Traditionally, a distinction between static and dynamic
program slicing techniques is made in the literature. The former notion involves statically
available information only, i.e., no assumptions regarding the inputs of a program are made.
The latter notion, dynamic slicing, assumes a specific execution of the program, i.e., a
specific test-case.

The notion of a program slice is best explained by way of an example. Figure 1.2 (a)
shows a simple program that reads a natural number n, and computes the sum and product
of the first n numbers. Figure 1.2 (b) shows a (static) slice of this program with respect to
the value of variable product that is computed at statement write(product). This
slice consists of all statements in the program that are needed to compute the final value
of product in any execution. Observe that neither of the assignments to variable sum is
present in the slice, because these statements do not have an effect on the computation of
product’s value for any value of n. Figure 1.2 (c) shows a dynamic slice of the program
in Figure 1.2 (a) with respect to the final value of product for the specific test case n = 0.
Note that the entire body of the while loop is omitted from the slice. This is the case because
the loop body is not executed if n has the value 0—therefore these statements cannot have
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an effect on any value computed by the program, and in particular they cannot have an effect
on the final value of variable product. Also observe that the dynamic slice shown in
Figure 1.2 (c) is only valid for input n = 0; this is evident from the fact that the slice will
not terminate for any other value of n. Chapters 3, 5, and 6 present several approaches for
computing program slices such as as the ones shown in Figure 1.2.

The value of program slicing for program understanding (an important aspect of reverse
engineering) should be self-evident: it allows a programmer doing software maintenance
to focus his attention on the statements that are involved in a certain computational thread,
and to ignore potentially large sections of code that are irrelevant at the point of interest. In
a similar way, slicing can be used to examine the effect of modifications to a program, by
determining the parts of a program that may be affected by a change.

1.4 Algebraic specifications

As was mentioned previously, our approach will be to generate program analysis tools
from formal specifications. More precisely, we will use algebraic specifications2 [23] of a
language’s semantics as a basis for tool generation. Two important properties of algebraic
specifications that underlie our approach are:

� Algebraic specifications may be executed by way of term rewriting [95] or term graph
rewriting [17]. This permits us to model the execution of a program abstractly, as a
sequence of terms that arise in a rewriting process.

� In Chapters 2 and 4 we will show that algebraic specifications implicitly define origin
and dynamic dependence relations on the terms that arise in any rewriting process
according to that specification. These relations are the cornerstones for the generation
of various language-specific program analysis tools that will be discussed in Chapters 5
and 6.

An algebraic specification consists of a set of (conditional) equations. For specifications
of the semantics of imperative programming languages, these equations typically define the
“meanings” of statements in terms of transformations of an “environment” or “store”, which
is a representation of the values computed by the program.

For example, Figure 1.3 shows two conditional equations (taken from an algebraic
specification of an interpreter for a small imperative language that will be presented in
Chapter 6). Together, these equations define how the execution of an if–then–else-statement
can be expressed in terms of the execution of the statements in the then-branch or the
else-branch of the if, depending on the result of the evaluation of its control predicate.
The auxiliary function exec used in the two equations specifies how environments are
transformed by the execution of a list of statements. Figure 1.4 schematically depicts how
an application of equation [L16] has the effect of transforming an if-term; dashed lines in

2In this thesis, we will take a rather operational perspective on algebraic specifications by considering these
as an equational high-level programming language.
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[L16] exec(if Exp then StatSeq else StatSeq� end;StatSeq��, Env) = exec(StatSeq��, exec(StatSeq, Env))
when eval(Exp, Env) �� 0

[L17] exec(if Exp then StatSeq else StatSeq� end;StatSeq��, Env) = exec(StatSeq��, exec(StatSeq�, Env))
when eval(Exp, Env) = 0

Figure 1.3: Algebraic specification of the execution of an if-statement.

cond then else

list

list

then

L16

origin relations

env

if

exec

;

exec

exec

env

Figure 1.4: Schematic view of origin relations induced by an application of equation [L16].

the figure indicate the origin relations3 between subterms of the if-term, and the term it is
rewritten to. Tracing back origin relations in the sequence of terms for the execution of some
program is a mechanism for formalizing the notion of a “current locus of execution”. This
enables us to generate a source-level debugging tool from an algebraic specification of an
interpreter.

Figure 1.5 shows two simple axioms for integer arithmetic4. Equation [A1] states that
multiplying the constant 0 with any integer number yields the value 0, and [A2] states that
multiplication is an associative operation. Figure 1.6 depicts how, according to these two
rules, a term intmul�intmul(0, 1)�2� may be rewritten to the constant 0. In this
figure, dotted lines indicate dynamic dependence relations. Intuitively, dynamic relations
indicate which symbols are necessary for producing certain other symbols. By tracing
back dynamic dependence relations from the final term, one may determine which function
symbols in the initial term were necessary for creating it. Observe that in the example
reduction of Figure 1.6, neither of the constants 1 and 2 in the initial term was necessary for
creating the final term 0.

3The reader should be aware that this depiction is a slight simplification—a formal definition of the origin
function follows in Chapter 2.

4This example is an excerpt of a similar example that occurs in Chapter 6.
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[A1] intmul�0�X� = 0
[A2] intmul�intmul(X, Y)� Z� = intmul�X�intmul(Y, Z)�

Figure 1.5: Some equations for integer arithmetic.

A2 A1

intmul

2intmul

0 1

intmul

0 intmul

1 2

0

dynamic dependence relations

Figure 1.6: Schematic view of dynamic dependence relations induced by applications of [A1] and
[A2].

In Chapters 5 and 6, it will be shown that applying the dynamic dependence relation to
specifications of the semantics of programming languages produces various types of program
slices.

In Chapter 6, we present a framework for constructing advanced source-level debuggers
that incorporates the features discussed above, and various others.

1.5 Organization of this thesis

The subsequent chapters of this dissertation (except Chapter 7) were originally written
as a collection of separate articles on related topics. Although these chapters have since
undergone substantial modifications in various places, they can still be read as self-contained
papers. Nonetheless, there are some dependences between the material covered in the
different chapters. In each of these cases, a small amount of overlap (in the form of
reiteration of definitions and examples) was deliberately left in place, for the sake of making
the work more accessible.

The foundations of the work in this thesis consist of two relations, origin tracking and
dynamic dependence tracking, between an original term and a term it rewrites to:

� Origin tracking establishes relations between “equal” terms. In Chapter 2, a formal
definition of the origin relation for arbitrary conditional term rewriting systems is
presented.
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A Survey of Program Chapter 7

Slicing Techniques

Dynamic Dependence
Tracking

Chapter 2

Origin Tracking

Chapter 1

Introduction

Chapter 3

Chapter 4

Generation of Source-Level
Debugging Tools

Parametric Program Slicing
Chapter 5

Chapter 6

Conclusions

Figure 1.7: Dependences between the chapters in this thesis.

� Dynamic dependence tracking, defined in Chapter 4, determines the symbols of the
initial term that are necessary for producing symbols of the rewritten term. For the
casual reader, the formal definition of dynamic dependence tracking in Chapter 4 could
be skipped on an initial reading, as Chapters 5 and 6 contain an informal presentation
of dynamic dependence tracking that may be more accessible.

These relations will be used for the generation of program analysis tools, in particular for
program slicing tools. To put our work in context, related work—in the form of an extensive
survey of the current literature on program slicing and its applications—is presented in
Chapter 3.

Then, two settings are explored in which these relations are exploited for the generation
of tools:

� In Chapter 5, a translational setting is described, in which rewrite rules are used to
translate terms to an intermediate representation called PIM [55]. Then, other rewrite
rules serve to simplify and execute the resulting PIM term. By using different subsets of
PIM’s simplification and execution rules in combination with the dynamic dependence
relation of Chapter 4, various types of program slices are obtained.

� Chapter 6 describes an interpretive setting, where program terms are directly manip-
ulated by a set of rewrite rules. In this setting, the origin relation of Chapter 2 is used
for the definition of a number of source-level debugging features, and the dynamic
dependence relation of Chapter 4 permits the support of dynamic program slicing
features.

Finally, in Chapter 7, conclusions and directions for future work are reported. Figure 1.7
depicts the main interdependences between the chapters that follow.
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1.6 Origins of the chapters

The subsequent chapters of this thesis are derived from a collection of articles that have
previously appeared elsewhere.

Chapter 2, ‘Origin Tracking’ is a slightly modified version of a paper5 that appeared
in a special issue on ‘Automatic Programming’ of the Journal of Symbolic Computation
[47]. This paper was co-authored by Arie van Deursen and Paul Klint. Chapter 3, ‘A
Survey of Program Slicing Techniques’ is an updated version of CWI technical report CS-
R9438 [136], and has also been submitted for journal publication. Chapter 4, ‘Dynamic
Dependence Tracking’ is an extended version of a paper6 entitled ‘Dynamic Dependence
in Term Rewriting Systems and its Application to Program Slicing’ that was presented at
the Sixth International Symposium on Programming Language Implementation and Logic
Programming held in Madrid, Spain from September 14–16, 1994 [58]. This paper was
written jointly with John Field. Chapter 5, ‘Parametric Program Slicing’ is an extended
version of a paper [57] presented at the Twenty-Second ACM Symposium on Principles of
Programming Languages, in San Francisco, California from January 23–25, 1995. This
paper was written jointly with John Field and G. Ramalingam. Chapter 6, ‘Generation
of Source-Level Debugging Tools’ appeared as CWI technical report CS-R9453, entitled
‘Generic Techniques for Source-Level Debugging and Dynamic Program Slicing’ [135], and
will be presented at the Sixth International Joint Conference on the Theory and Practice of
Software Development, to be held in Aarhus, Denmark, May 22–26, 1995. Chapter 6 is also
loosely based on a paper entitled ‘Animators for Generated Programming Environments’ that
was presented at the First International Workshop on Automated and Algorithmic Debugging
held in Linköping, Sweden from May 3–5, 1993 [134].

Some of the papers mentioned above have also appeared as deliverables of the COMPARE

project. For an overview of this project, the reader is referred to [9, 91].

5Academic Press is acknowledged for their permission to reprint parts of this paper.
6Springer-Verlag is acknowledged for their permission to reprint parts of this paper.



Chapter 2

Origin Tracking

(joint work with Arie van Deursen and Paul Klint)

Summary

We are interested in generating interactive programming environments from formal
language specifications and use term rewriting to execute these specifications. Functions
defined in a specification operate on the abstract syntax tree of programs, and the initial
term for the rewriting process will consist of an application of some function (e.g., a
type-checker, evaluator or translator) to the syntax tree of a program. During the term
rewriting process, pieces of the program such as identifiers, expressions, or statements,
recur in intermediate terms. We want to formalize these recurrences and use them,
for example, for associating positional information with messages in error reports,
visualizing program execution, and constructing language-specific debuggers. Origins
are relations between subterms of intermediate terms and subterms of the initial term.
Origin tracking is a method for incrementally computing origins during rewriting.
We give a formal definition of origins, and present a method for implementing origin
tracking.

This chapter is mainly concerned with technical foundations; Chapter 6 will discuss
in detail how origin tracking can be used for the generation of source-level debugging
tools.

2.1 Introduction

We are interested in generating interactive development tools from formal language defi-
nitions. Thus far, this has resulted in the design of an algebraic specification formalism,
called ASF+SDF [23, 68] supporting modularization, user-definable syntax, associative lists,
and conditional equations, and in the implementation of the ASF+SDF Meta-environment
[69, 93].

Given a specification for a programming (or other) language, the Meta-environment
generates an interactive environment for the language in question. More precisely, the Meta-
environment is a tool generator that takes a specification in ASF+SDF and derives a lexical an-
alyzer, a parser, a syntax-directed editor and a rewrite engine from it. The Meta-environment
provides fully interactive support for writing, checking, and testing specifications—all tools

9
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are generated in an incremental fashion and, when the input specification is changed, they
are updated incrementally rather than being regenerated from scratch. A central objective
in this research is to maximize the direct use that is made of the formal specification of a
language when generating development tools for it.

We use Term Rewriting Systems (TRSs) [95] to execute our specifications. A typical
function (such as an evaluator, type checker, or translator) is a specification that operates
on the abstract syntax tree of a program (which is part of the initial term). During the term
rewriting process, pieces of the program such as identifiers, expressions, or statements, recur
in intermediate terms. We want to formalize these recurrences and use them, for example,
for:

� associating positional information with messages in error reports;
� visualizing program execution;
� constructing language-specific debuggers.

Our approach to formalize recurrences of subterms consists of two stages. First, we
define relations for elementary reduction steps ti � ti�1; these relations are described in
Section 2.1.3. Then, we extend these relations to compound reduction sequences t0 � t1 �
��� � tn. In particular, we are interested in relations between subterms of an intermediate
term ti, and subterms of the initial term t0. We will call this the origin relation. Intuitively, it
formalizes from which parts of the initial term a particular subterm originates. The process
of incrementally computing origins we will call origin tracking.

2.1.1 Applications of origin tracking

In TRSs describing programming languages terms such as

program(decls(decl(n,natural)), stats(assign(n,34)))

are used to represent abstract syntax trees of programs. A typical type-check function takes
a program and computes a list of error messages. An example of the initial and final term
when type checking a simple program is shown in Figure 2.1.

The program uses an undeclared variable n1, and the result of the type-checker is a term
representing this fact, i.e., a term with undeclared-var as function symbol and the name
n1 of the undeclared variable as argument. The dashed line represents an origin: it relates
the occurrence of n1 in the result to the n1 in the initial term. One can use this to highlight
the exact position of the error in the source program. Figure 2.2 shows an application of this
technique.

Similarly, program evaluators can be defined. Consider for example a rule that evaluates
a list of statements by evaluating the first statement followed by the remaining statements:

[L1] ev-list(cons(Stat,S-list),Env) � ev-list(S-list,ev-stat(Stat,Env))

The variables (Stat, S-list, and Env) are used to pass information from the left to the right-hand
side. The origins of these variable occurrences in the right-hand side are shown by dashed
lines in Figure 2.3.
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tc

program

decls stats

decl

n natural

assign

n1 34

errorlist� � �

undeclared-var

n1

Figure 2.1: Type-checking a simple program.

Figure 2.2: Highlighting occurrences of errors.
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ev-list

cons

Stat S-list

Env

ev-list

S-list ev-stat

Stat Env

Figure 2.3: One step in the evaluation of a simple program. Dashed lines indicate how the rule
application induces origin relations.

Visualization of program execution is a natural application of origin tracking. The basic
idea is that, during execution, the statement currently being executed is highlighted in the
source text. In the sequel, it will be shown how this can be accomplished by matching redexes
against the pattern ev-stat(Stat, Env); whenever such a match occurs, the origin of the
first argument of ev-stat indicates the statement that is currently being executed. Dinesh
and Tip [49, 134] have shown how, by employing multiple patterns, program execution can
be animated in a very fine-grained manner: the execution of any language construct (e.g.,
expressions, declarations) can be traced. This is particularly useful for applications such as
source-level debugging and tutoring.

In a similar way, various notions of breakpoints can be defined. Source-level debuggers
often have a completely fixed notion of a breakpoint, based on line-numbers, procedure calls
and machine addresses. By contrast, the origin relation enables one to define breakpoints in
a much more uniform and generic way. For instance, a positional breakpoint can be created
by having the user select a certain point in the source text. The path from the root to that
point is recorded and the breakpoint becomes effective when—in this example—the origin
of the first argument of ev-stat equals that path. Position-independent breakpoints can
be defined by using patterns describing statements of a certain form (e.g., an assignment
with x as left-hand side). The breakpoint becomes effective when the argument of ev-stat
matches that pattern; its origin shows the position in the original program. The definition of
these, and other debugging concepts will be further explored in Chapter 6.

2.1.2 Points of departure

Before sketching the origin relation (in Section 2.1.3) we briefly state our points of departure:

� No assumptions should be made regarding the choice of a particular reduction strategy.
� No assumptions should be made concerning confluence or termination; origins can be

established for arbitrary reductions in any TRS.
� The origin relation should be obtained by a static analysis of the rewrite rules.
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4

3

1 1 2

1. common variables
2. common subterms
3. redex-contractum
4. contexts

Figure 2.4: Single-step origin relations.

� Relations should be established between any intermediate term and the initial term.
This implies that relations can be established even if there is no normal form.

� Origins should satisfy the property that if t has an origin t�, then t� can be rewritten to
t in zero or more steps.

� The origin relation should be transitive.
� An efficient implementation should exist.

These requirements do not lead, however, to a unique solution. We will therefore only
present one of the possible definitions of origins, although we can easily imagine alternative
ones.

2.1.3 Origin relations

The definition of the origin relation is based on the transitive and reflexive closure of a number
of single-step origin relations for elementary reductions, which will now be studied in some
detail. In the description that follows it is assumed that a rewrite rule r : t1 � t2 is applied
in context C with substitution �, giving rise to the elementary reduction C#t�1 $ �r C#t�2 $.
Figure 2.4 depicts the four types of single-step origin relations that occur:

common variables. If a variableX appears in both sides, t1 and t2, of rule r, then relations
are established between each function symbol in the instantiation X� of X in C#t�1 $ and the
corresponding function symbol in each instantiated occurrence of X in C#t�2 $.

Figure 2.5 illustrates how the variable X induces relations between corresponding function
symbols for a specific application of the rule f(X) � g(X).

The common variables relation becomes a bit more complicated for left-nonlinear
rules, i.e., rules where some variable X occurs more than once in the left-hand side, e.g.,
plus(X,X) � mul(2, X). In this case, all occurrences of X in the left-hand side give
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f

h

a b

g

h

a b

Figure 2.5: Relations according to a variable occurrence in both sides of a rule.

append

E empty-list

cons

E empty-list

Figure 2.6: Relations according to common subterms rule.

rise to origin relations. In other words, nonlinearity in the left-hand side may cause non-
uniqueness of origins.

common subterms. If a term s is a subterm of both t1 and of t2, then these occurrences of
s give rise to common subterms relations between their instantions. Consider, for example,
the following rules that define how an element is appended to the end of a list:

[A1] append(E,empty-list) � cons(E,empty-list)
[A2] append(E1,cons(E2,L)) � cons(E2, append(E1,L))

Using the common variables relation, several useful origin relations will be constructed.
However, no such relation is present for the constant empty-list that occurs in either
side of [A1]. This relation is established by the common subterms rule, and is depicted
in Figure 2.6. A more elaborate example involving the common subterms relation is the
conditional rule [W1] for evaluating while-statements:

[W1] ev-stat(while(Exp,S-list),Env) �
ev-stat(while(Exp,S-list),ev-list(S-list,Env))

when ev-exp(Exp, Env) = true

When evaluation of Exp yields true, the same while-statement is evaluated in a modified
environment that is obtained by evaluating the body of the while-statement (S-list) in the
initial environment (Env). The common subterms relation links these while-symbols.

redex-contractum. The top symbol of the redex t�1 and the top symbol of its contractum
t�2 are related, as shown in Figure 2.7 for rule [A2]. An essential application of this relation
can be seen in
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append

E1 cons

E2 L

cons

E2 append

E1 L

Figure 2.7: Relations according to redex-contractum rule.

[R1] real-const(Char-list) � real-type

where a real constant containing a list of characters is rewritten to its type denotation
real-type. Observe that the redex-contractum relation may cause non-uniqueness of
origins.

contexts. Relations are established between each function symbol in the context C of the
left-hand side and its counterpart in the context C of the right-hand side.

It is obvious how in a chain of elementary reductions, the transitive closure of the single-
step origin relations can be used to determine the origins of any subterm in the reduction.

In an alternate, more implementation-oriented view, subterms are annotated with their
origins (as sets of paths in the original term). For each reduction, the origins of the redex
are propagated to the contractum in accordance with the single-step origin relations.

Origin tracking for conditional TRSs (CTRSs) is an extension of the origin function for
unconditional TRSs, but is slightly more complicated. The main complications arise from the
fact that we want to be able to determine origins of terms that appear in the (sub)reductions
that are necessary for the evaluation of conditions.

If evaluation of a condition involves reduction of a term t, the origins of the redex are
passed to t, according to the common variables rule and the common subterms rule. These
origins are subsequently propagated to the normal form of t, according to the usual origin
relations. If a condition introduces variables, then these are matched against normal forms
that have already origins associated with them. Such variables may be re-used in other
conditions, and in the right-hand side of the rewrite rule.

2.2 Formal definition

In this section, we present a formal definition of origin tracking. A basic knowledge of term
rewriting systems (TRSs), and conditional term rewriting systems (CTRSs) is assumed. For
a detailed discussion of these, the reader is referred to [95].

The remainder of this section is organized as follows. First, we introduce basic concepts
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and rewriting histories for unconditional TRSs. Subsequently, the origin function for un-
conditional TRSs is defined, and illustrated by way of an example. After discussing basic
concepts and rewriting histories for CTRSs, we consider the origin function for CTRSs.

We have used the formal definition of the origin relation to obtain an executable specifi-
cation of origin tracking. The examples that will be given in this section have been verified
automatically using that specification.

2.2.1 Basic concepts for unconditional TRSs

A notion that will frequently recur is that of a path (occurrence), consisting of a (possibly
empty) sequence of natural numbers between brackets. Paths are used to indicate subterms
of a term by interpreting numbers as argument positions of function symbols. For instance,
(2 1) indicates subterm b of term f(a, g(b, c)). This is indicated by the ‘�’ operator:
f(a, g(b, c))�(2 1) = b. The associative operator ‘�’ concatenates paths, e.g., (2) � (1)
= (2 1). The operators ‘�’, ‘�’, and ‘j’ define the prefix ordering on paths. The fact that p
is a prefix of q is denoted p � q; ‘�’ is the reflexive closure of ‘�’. Two paths p and q are
disjoint (denoted by p j q) if neither one is a prefix of the other.

The set of all valid paths in a term t is O�t�. The set of variables occurring in t is denoted
Vars�t�. We use t� � t to express that t� appears as a subterm of t; the reflexive closure of
‘�’ is ‘	’. The negations of ‘�’ and ‘	’ are ‘
�’ and ‘
	’, respectively. Finally, Lhs(r) and
Rhs(r) indicate the left-hand side and the right-hand side of a rewrite rule r.

2.2.2 A formalized notion of a rewriting history

A basic assumption in the subsequent definitions is that the complete history of the rewriting
process is available. This is by no means essential to our definitions, but has the following
advantages:

� The origin function for CTRSs can be defined in a declarative, non-recursive manner.
We encountered ill-behaved forms of recursion in the definition itself when we exper-
imented with more operational definition methods, due to the convoluted structure of
rewriting histories for CTRSs.

� Uniformity of the origin functions for unconditional TRSs and for CTRSs. The latter
can be defined as an extension of the former.

In the case of unconditional TRSs, the rewriting history H is a single reduction sequence S.
This sequence consists of a list of sequence elementsSi that contain all information involving
the ith rewrite-step. Here, i ranges from 1 to jSj where jSj is the length of sequence S.

Each sequence element is a 5-tuple �n� t� r� p� �� where n is the name of the sequence
element (consisting of a sequence name and a number), t denotes the ith term of sequence
S, r the ith rewrite rule applied, p the path to the redex in t, and � the substitution used in
the application of r. Access functions n�s�, t�s�, r�s�, p�s�, and ��s� are used to obtain the
components of s. The last element of a sequence is irregular, because the term associated
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with this element is in normal form: the rule, path and substitution associated with SjSj
consist of the special value undefined.

Below, s, s�, and s�� denote sequence elements. Moreover, it will be useful to have a
notion H� denoting the history H from which the last sequence element, SjSj, is excluded.
For our convenience, we introduce Lhs�s� and Rhs�s� to denote the left-hand side and
right-hand side of r�s�. Finally, Succ�H� s� denotes the successor of s, for s in H�, and
Start�H� determines the first element of the reduction sequence in H.

2.2.3 The origin function for unconditional TRSs

2.2.3.1 Auxiliary notions

The auxiliary function Com (Definition 2.1 below) is frequently used in the definitions of the
origin functions below, to compute positions of common variables and common subterms.
The arguments of Com are a substitution � and two terms t and t�. The result computed by
Com is a set containing pairs �p� p�� such that either a variable X or a common subterm t��

occurs both at path p in t and at path p� in t�.

Definition 2.1 (Com)

Com��� t� t�� � f �p � q� p� � q� j t�p � Vars�t�� t�p � t��p�� q � O���t�p�� g �
f �p� p�� j t�p 
� Vars�t�� t�p � t��p� g

For one-step reductions, the basic origin relation LR (short for Left-hand side to Right-
hand side) relates common subterms of a redex and its contractum that appear as a result of
the presence of a common variable or a common subterm in the applied rewrite rule.

Definition 2.2 (LR) For s in H�: LR�s� � Com���s�� Lhs�s�� Rhs�s��

2.2.3.2 Definition of ORG

The origin function ORG for unconditional TRSs is defined using LR. Relations are repre-
sented by relate clauses: a clause relate�H� s�� p�� s� p� indicates a relation between the
subterm at path p� in t�s�� and the subterm at path p in t�s� in history H. In (u1), all rela-
tions between symbols in the redex in t�s� and its contractum in t�Succ�H� s�� are defined,
excluding the top symbols of the redex and the contractum. The fact that all symbols in the
context of the redex remain unchanged is expressed in (u2). In addition, the top symbols of
the redex and the contractum are related by (u2).

For s in H and a path p in t�s�, the set of related subterms (according to the transitive
and reflexive closure of relate) in the initial term, t�Start�H��, is denoted ORG�H� s� p�.
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append

b cons

a empty-list

A2

cons

a append

b empty-list

A1

cons

a cons

b empty-list

t�S1�: t�S2�: t�S3�:

Figure 2.8: History Happ for append(b, cons(a, empty-list)). Dashed lines indicate
origin relations.

Definition 2.3 (ORG) For s in H� and s� in H:

�u1� �q� q�� � LR�s� : relate�H� s� p�s� � q� Succ�H� s�� p�s� � q��
�u2� p : �p � p�s�� � �p j p�s�� : relate�H� s� p� Succ�H� s�� p�

ORG�H� s� p� �

�����
����

f p g when s � Start�H�

f p�� j p�� � ORG�H� s�� p���
relate�H� s�� p�� s� p� g

when s 
� Start�H�

In principle, the availability of all relate clauses allows us to determine relationships
between subterms of two arbitrary intermediate terms that occur during the rewriting process.
However, we will focus on relations involving the initial term.

2.2.3.3 Example

As an example, we consider the TRS consisting of the two rewrite rules [A1] and [A2] of
section 2.1.3. Figure 2.8 shows a history Happ, consisting of a sequence S, as obtained by
rewriting the term append(b, cons(a, empty)).

Below, we argue how the origin relations shown in Figure 2.8 are derived from Def-
inition 2.3. For the first sequence element, S1, we have p�S1� � ��, r�S1� = [A2], and
��S1� � f E1 �� b� E2 �� a� L �� empty-list g. As all variable bindings are constants
here, we have: O�E1

��S1�� = O�E2
��S1�� = O�L��S1�� = f �� g. From this, we obtain:

LR�S1� � Com���S1�� Lhs�S1�� Rhs�S1�� � f ��1�� �2 1��� ��2 1�� �1��� ��2 2�� �2 2�� g

In a similar way, we compute:

LR�S2� � Com���S2�� Lhs�S2�� Rhs�S2�� � f ��1�� �1��� ��2�� �2�� g
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From Definition 2.3 we now derive the following relate relationships. (Note that the last
three relationships are generated according to (u1) of Definition 2.3.)

relate�Happ� S1� �1�� S2� �2 1�� relate�Happ� S1� �2 1�� S2� �1��
relate�Happ� S1� �2 2�� S2� �2 2�� relate�Happ� S1� ��� S2� ���
relate�Happ� S2� �2 1�� S3� �2 1�� relate�Happ� S2� �2 2�� S3� �2 2��
relate�Happ� S2� ��� S3� ��� relate�Happ� S2� �1�� S3� �1��
relate�Happ� S2� �2�� S3� �2��

As an example, we compute the subterms related to the constant a at path (1) in t�S3�:

ORG�Happ� S3� �1�� � f p�� j p�� � ORG�Happ� s
�� p��� relate�Happ� s

�� p�� S3� �1�� g
� f p�� j p�� � ORG�Happ� S2� �1�� g
� ORG�Happ� S2� �1��
� f p�� j p�� � ORG�Happ� s

�� p��� relate�Happ� s
�� p�� S2� �1�� g

� f p�� j p�� � ORG�Happ� S1� �2 1�� g
� ORG�Happ� S1� �2 1��
� f �2 1� g

Hence, the constant a at path (1) in t�S3� is related to the constant a at path (2 1) in the initial
term.

We conclude this example with a few brief remarks. First, some symbols in t�S3� are
not related to any symbol of t�S1�. For instance, symbol cons at path (2) in t�S3� is only
related to symbol append in t�S2�; this symbol, in turn, is not related to any symbol in
t�S1�. Second, we have chosen a trivial example where no origins occur that contain more
than one path. Such a situation may arise when a rewrite rule is not left-linear, or when the
right-hand side of a rewrite rule consists of a common variable or a common subterm.

2.2.4 Basic concepts for CTRSs

A conditional rewrite-rule takes the form:

lhs � rhs when l1 � r1� � � � � ln � rn

We assume that CTRSs are executed as join systems [95]: both sides of a condition are
instantiated and normalized. A condition succeeds if the resulting normal forms are syntac-
tically equal. It is assumed that the conditions of a rule are evaluated in left-to-right order.
As an extension, we allow one side of a condition to introduce variables1; we will refer
to such variables as new variables (as opposed to old variables that are bound during the
matching of the left-hand side, or during the evaluation of a previous condition). To avoid
complications in our definitions, we impose the non-essential restriction that no condition
side may contain old as well as new variables. New variables may occur in subsequent
conditions as well as in the right-hand side. Variable-introducing condition sides are not

1An example CTRS with variable-introducing conditions will be discussed in Section 2.2.6.3 below.
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normalized, but matched against the normal form of the non-variable-introducing side (for
details, see [140]). Given the above discussion, conditional term rewriting can be regarded
as the following cyclic 3-phase process:

1. Find a match between a subterm t and the left-hand side of a rule r.
2. Evaluate the conditions of r: instantiate and normalize non-variable-introducing con-

dition sides.
3. If all conditions of r succeed: replace t by the instantiated right-hand side of r.

In will be convenient to introduce some auxiliary notions that formalize the introduction
of variables in conditions. Let jrj be the number of conditions of r. For 1 � j � jrj, the
left-hand side and the right-hand side of the jth condition of r are denoted Side�r� j� left�
and Side�r� j� right�, respectively. Moreover, let left � right and right � left . The
function VarIntro (Definition 2.4) indicates where new variables occur; tuples �h� side� are
computed, indicating that Side�r� h� side� is variable-introducing.

Definition 2.4 (VarIntro)

VarIntro�r� � f �h� side� j X 
	 Lhs�r�� X 	 Side�r� h� side��
j �j � h� side� : X 
	 Side�r� j� side�� g

For convenience, we also define a function NonVarIntro (Definition 2.5) that computes
tuples �h� side� for all non-variable-introducing condition sides.

Definition 2.5 (NonVarIntro)

NonVarIntro�r� � f �h� side� j 1 � h � jrj� side � f left� right g�
�h� side� 
� VarIntro�r� g

2.2.5 Rewriting histories for CTRSs

In phase 2 of the 3-phase process sketched in Section 2.2.4 above, each normalization of
an instantiated condition side is a situation similar to the normalization of the original term,
involving the same 3-phase process. Thus, we can model the rewriting of a term as a tree of
reduction sequences. The initial reduction sequence named Sinit starts with the initial term
and contains sequence elements Sinit

i that describe successive transformations of the initial
term. In addition, H now contains a sequence for every condition side that is normalized
in the course of the rewriting process. Two sequences appear for non-variable-introducing
conditions, but for variable-introducing conditions only one sequence occurs in H (for the
non-variable-introducing side).

Formally, we define the history as a flat representation of this tree of reduction sequences.
A history now consists of two parts:

� A set of uniquely named reduction sequences. Besides the initial sequence, Sinit,
there is a sequence Sk (with k an integer) for every condition side that is normalized
in the course of the rewriting process.
As before, a sequence consists of one or more sequence elements, and each sequence
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element is a 5-tuple �n� t� r� p� ��, denoting the name, term, rule, path, and substitution
involved. As in the unconditional case, access functions are provided to obtain the
components of s. A name of a sequence element is composed of a sequence name and
a number, permitting us to find out to what sequence an element belongs.

� A mechanism indicating the connections between the various reduction sequences.
This mechanism takes the form of a relation that determines a sequence name given
a name of a sequence element s, a condition number j, and a condition side side,
for all �j� side� � NonVarIntro�s�. E.g., a tuple �n�s�� j� side� sn� indicates that a
sequence named sn occurred as a result of the normalization of Side�s� j� side�.

Two functions First and Last are defined, both taking four arguments: the history H, a
sequence element s, a condition number j, and a condition side side. First�H� s� j� side�
retrieves the name of s, determines the name of the sequence associated with side side

of condition j of r�s�, looks up this sequence in H, and returns the first element of this
sequence. Last�H� s� j� side� is similar: it determines the last element of the sequence
associated with side side of condition j of r�s�.

Furthermore, H� now denotes the history H from which all last elements of sequences
are excluded, Succ�H� s� now denotes the successor of s in the same sequence, for s in H�,
and Start�H� determines the first element of the initial sequence in H. Finally, we introduce
the shorthands Side�s� j� side�, VarIntro�s�, and NonVarIntro�s� for Side�r�s�� j� side�,
VarIntro�r�s��, and NonVarIntro�r�s��, respectively.

2.2.6 The origin function for CTRSs

2.2.6.1 Basic origin relations

The basic origin relation LR (Definition 2.2) defines relations between consecutive elements
s and Succ�H� s� of the same sequence. The basic origin relations LC, CR, and CC define
relations between elements of different sequences. Each of these relations reflects the
following principle: common subterms are only related when a common variable or a
common subterm appears at corresponding places in the left-hand side, right-hand side and
condition side of the rewrite rule involved.

Definition 2.6, LC (Left-hand side to Condition side), defines relations that result from
common variables and common subterms of the left-hand side and a condition side of a rule.
An LC-relation connects a sequence element s to the first element s� of a sequence for the
normalization of a condition side of r�s�. The relation consists of triples �q� q�� s�� indicating
a relation between the subterm at path q in the redex and the subterm at path q� in t�s��.

We do not establish LC-relations for variable-introducing condition sides, because such
relations are always redundant. To understand this, consider the fact that we disallow
instantiated variables in variable-introducing condition sides. Thus, LC relations would
always correspond to a common subterm t of the left-hand side and a variable-introducing
condition side. Then, only if t also occurs in a subsequent condition side, or in the right-hand
side of the rule can the relation be relevant for the remainder of the rewriting history. But if
this is the case, this other occurrence of t will be involved in an LC-relation anyway.
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Definition 2.6 (LC) For s in H�:

LC�H� s� � f �q� q�� s�� j �j� side� � NonVarIntro�s�� s� � First�H� s� j� side��
�q� q�� � Com���s�� Lhs�s�� Side�s� j� side�� g

In Definition 2.7 and Definition 2.8 below, the final two basic origin relations, CR (Con-
dition side to Right-hand side) and CC (Condition side to Condition side) are presented.
These relations are concerned with common variables and common subterms in variable-
introducing condition sides. In addition to a variable-introducing condition side, these
relations involve the right-hand side, and a non-variable-introducing condition side, respec-
tively. The following technical issues arise here:

� There are no CR and CC relations for non-variable-introducing conditions, because
both condition sides are normalized in this case, and no obvious correspondence with
the syntactical form of the rewrite rule remains.

� As mentioned earlier, no reduction sequence appears in H for a variable-introducing
condition side. To deal with this issue, the variable-introducing side Side�s� j� side�
is used to indicate relations with the term t�Last�H� s� j� side�� it is matched against.

CR-relations are triples �q� q�� s�� indicating that the subterm at path q in t�s�� is related
to the subterm at path q� in the contractum; CC-relations are quadruples �q� q�� s�� s��� that
express a relation between the subterm at path q in t�s�� and the subterm at path q� in t�s���.

Definition 2.7 (CR) For s in H�:

CR�H� s� � f�q� q�� s�� j �j� side� � VarIntro�s�� s� � Last�H� s� j� side��
�q� q�� � Com���s�� Side�s� j� side�� Rhs�s�� g

Definition 2.8 (CC) For s in H�:

CC�H� s� � f�q� q�� s�� s��� j �j� side� � VarIntro�s�� �h� side�� � NonVarIntro�s��
j � h� s� � Last�H� s� j� side�� s�� � First�H� s� h� side���
�q� q�� � Com���s�� Side�s� j� side�� Side�s� h� side��� g

2.2.6.2 Definition of CORG

The origin function CORG for CTRSs (Definition 2.9) is basically an extension of ORG.
Using the basic origin relations LC, CR, and CC, relations between elements of different
reduction sequences are established in (c1), (c2), and (c3). Again, the origin function
computes a set of paths in the initial term according to the transitive and reflexive closure of
relate. For any sequence element s in H, and any path p in t�s�, CORG computes a set of
paths to related subterms in t�Start�H��.



2.2. Formal definition 23

Definition 2.9 (CORG) For s in H� and s� in H:

�u1� �q� q�� � LR�s� : relate�H� s� p�s� � q� Succ�H� s�� p�s� � q��
�u2� p : �p � p�s�� � �p j p�s�� : relate�H� s� p� Succ�H� s�� p�
�c1� �q� q�� s�� � LC�H� s� : relate�H� s� p�s� � q� s�� q��
�c2� �q� q�� s�� � CR�H� s� : relate�H� s�� q� Succ�H� s�� p�s� � q��
�c3� �q� q�� s�� s��� � CC�H� s� : relate�H� s�� q� s��� q��

CORG�H� s� p� �

�����
����

f p g when s� � Start�H�

f p�� j p�� � CORG�H� s�� p���
relate�H� s�� p�� s� p� g

when s� 
� Start�H�

2.2.6.3 Example

We extend the example of section 2.2.3.3 with the following conditional rewrite rules for a
function rev to reverse lists.

[R1] rev(empty-list) � empty-list
[R2] rev(cons(E, L1)) � append(E, L2) when L2 = rev(L1)

In rule [R2], a variable L2 is introduced in the left-hand side of the condition. Actually, the
use of a new variable is not necessary in this case: we may alternatively write append(E,
rev(L1)) for the right-hand side of [R2]. The new variable is used solely for the sake
of illustration. Figure 2.9 shows the rewriting history Hrev for the term rev(cons(b,
empty-list)). Note that besides the initial sequence, Sinit, only one sequence, S1,
appears for the normalization of the condition of [R2], because it is variable-introducing.

For sequence elementSinit
1 we have p�Sinit

1 � = ��, ��Sinit
1 � = f E �� b, L1 �� empty-

list, L2 �� empty-list g. It follows that O�E��Sinit1 �� = O�L1
��Sinit1 �� = O�L2

��Sinit1 ��
= f �� g. Moreover, VarIntro�Sinit

1 � = f �1� left� g. Consequently, we obtain:

LR�Sinit
1 � � f ��1 1�� �1�� g� LC �Hrev� S

init
1 � � f ��1 2�� �1�� S1

1 � g
CR�Hrev� S

init
1 � � f ���� �1�� S1

2 � g� CC �Hrev� S
init
1 � � �

As a result, the following relationships are generated for Sinit1 :

relate�Hrev� S
init
1 � ��� Sinit

2 � ��� relate�Hrev� S
init
1 � �1 1�� Sinit

2 � �1��
relate�Hrev� S

init
1 � �1 2�� S1

1 � �1�� relate�Hrev� S
1
2 � ��� S

init
2 � �2��

In a similar way, the following relate relationships are computed for Sinit2 and S1
1 :

relate�Hrev� S
init
2 � ��� Sinit

3 � ��� relate�Hrev� S
init
2 � �1�� Sinit

3 � �1��
relate�Hrev� S

init
2 � �2�� Sinit

3 � �2�� relate�Hrev� S
1
1 � ��� S

1
2 � ���

relate�Hrev� S
1
1 � �1�� S

1
2 � ���

Finally, we compute the subterms related to empty-list at path (2) in t�Sinit3 �:
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rev

cons

b empty-list

append

b empty-list

cons

b empty-list

rev

empty-list

empty-list

R2 A1

R1

t�Sinit
1 �: t�Sinit

2 �: t�Sinit
3 �:

t�S1
1 �: t�S1

2 �:

sequence Sinit:

sequence S1:

Figure 2.9: History Hrev for rev(cons(b, empty-list)). Dashed lines indicate origin
relations.

CORG�Hrev� S
init
3 � �2�� �

� f p�� j p�� � CORG�Hrev� s
�� p��� relate�Hrev� s

�� p�� Sinit
3 � �2�� g

� f p�� j p�� � CORG�Hrev� S
init
2 � �2�� g

� CORG�Hrev� S
init
2 � �2��

� � � � � f �1 2� g

Consequently, the constant empty-list in t�Sinit
3 � is related to the constant empty-list

in t�S init
1 �.

2.3 Properties

The origins defined by CORG have the following property: if the origin of some intermediate
term tmid contains a path to initial subterm torg , then torg can be rewritten to tmid in zero or
more reduction steps. This property gives a good intuition of the origin relations that are
established in applications such as error handling or debugging.

To see why this property holds, we first consider one reduction step:

Lemma 2.10 Let H be a rewriting history, s� s� arbitrary sequence elements in H, and p� p�

paths. For any relate�H� s� p� s�� p�� we have t�s� � t�s�� or t�s� � t�s��.
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Informally stated, directly related terms are either syntactically equal or one can be
reduced to the other in exactly one step. This holds because the context, common variables,
and common subterms relations all relate identical terms. Only the redex-contractum relation
links non-identical terms, but these can be rewritten in one step. Since the origin relation
CORG is defined as the transitive and reflexive closure of relate, we now have the desired
property:

Theorem 2.11 Let H be a history. For every term t�s� occurring in some sequence element
s in history H, and for every path p � O�t�s��, we have:

q � CORG�H� s� p� � t�Start�H���q �� t�s��p

One may be interested in the number of paths in an origin. To this end, we introduce:

Definition 2.12 Let o be an origin, and let joj denote the number of paths in o. Then: o is
empty iff joj � 0, non-empty iff joj � 1, precise iff joj � 1, and unitary iff joj � 1.

For some applications, unitary origins are desirable. In animators for sequential program
execution, one wants origins that refer to exactly one statement. On the other hand, when
error-positioning is the application, it can be desirable to have non-unitary origins, as for
instance in errors dealing with multiple declarations of the same variable (see, e.g., the label
declaration in Figure 2.2).

The theorems below indicate how non-empty, precise and unitary origins can be detected
through static analysis of the CTRS. In the sequel r denotes an arbitrary rule, j is a number
of some condition in r, and side � fleft � rightg denotes an arbitrary side. In the sequel, a
term that (possibly) contains variables will be referred to as an open term.

Theorem 2.13 (Non-empty origins) Terms with top symbol f have non-empty origins if for
all open terms u with top function symbol f :

�1� u 	 Rhs�r� � u 	 Lhs�r�
�2� u 	 Side�r� j� side� � u 	 Lhs�r�

This can be proven by induction over all relate clauses, after introducing an ordering on all
sequence elements. Informally, all terms with top symbol f will have non-empty origins
if no f is introduced that is not related to a “previous” f . Note that relations according to
variables have no effect on origins being (non-)empty.

In order to characterize sufficient conditions for precise and unitary origins, we first need
some definitions:

Definition 2.14 Let r be a conditional rewrite rule and u an open term. Then r is an
u-collapse rule if Rhs�r� � u, and u 	 Lhs�r�.

Definition 2.15 For open terms t and u, t is linear in u if u occurs at most once in t.
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Definition 2.16 The predicate LinearIntro�u� r� holds if u has at most one occurrence
in either the left-hand side or any variable-introducing condition side. Formally,
LinearIntro�u� r� � there is (1) at most one t � fLhs�r�g � fSide�r� h� side� j �h� side� �
VarIntro�r�g such that u 	 t, and (2) this t, if it exists, is linear in u.

Theorem 2.17 (Precise origins) Terms with top symbol f have precise origins if the fol-
lowing holds for all open terms u having either f as top symbol or solely consisting of a
variable:

(1) The CTRS does not contain u-collapse rules
(2) u 	 Rhs�r� � LinearIntro�u� r�
(3) u 	 Side�r� j� side� � LinearIntro�u� r�

Again, this theorem can be proven by induction over all relates. The crux is that no
term with top function symbol f is introduced in a way that it is related to more than one
“previous” term.

Theorem 2.18 (Unitary origins) Since “non-empty” and “precise” implies “unitary”, com-
bining the premises of Theorems 2.13 and 2.17 yields sufficient conditions for unitary origins

For many-sorted CTRSs, some special theorems hold. We assume CTRSs to be sort-
preserving, i.e., the redex and the contractum belong to the same sort. Hence, CORG is
sort-preserving. Thus, we have the following theorem (which in the implementation allows
for an optimization—Section 2.4):

Theorem 2.19 relate can be partitioned into subrelations for each sort.

One may be interested whether all terms of some particular sort S have non-empty, pre-
cise, or unitary origins. This happens under circumstances very similar to those formulated
for the single-sorted case (Theorems 2.13 to 2.18). For precise and unitary origins, however,
it is not sufficient to consider only terms of sort S; one also needs to consider sorts T that can
have subterms of sort S (since duplication of T-terms may imply duplication of S-terms).
Hence, we define:

Definition 2.20 For two sorts S and T, we write S v T if terms of sort T can contain
subterms of sort S.

Using this, we can formulate when terms of sort S have precise or unitary origins. This
is similar to the single-sorted case (see Theorem 2.17), but in (1) u must be of sort S, and (2)
and (3) must hold for all u of sort T such that S v T. Unitary origins of sort S are obtained
by combining the premises for the non-empty origins and precise origins.

We refer to [46] for more elaborate discussions of the above results.

2.4 Implementation aspects

An efficient implementation of origin tracking in the ASF+SDF system has been completed.
In this section, we briefly address the principal aspects of implementing origin tracking.
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2.4.1 The basic algorithm

In our implementation, each symbol is annotated with its origin, during rewriting. Two
issues had to be resolved:

� annotation of the initial term
� propagation of origins during rewriting

The first issue is a trivial matter because—by definition—the origin of the symbol at path p
is f p g. The second issue is addressed by copying origins from the redex to the contractum
according to the basic origin relation LR. In a similar way, propagations occur for the basic
origin relations LC, CC, and CR. Observe that no propagations are necessary for the origins
in the context of the redex, as the origins of these symbols remain unaltered.

2.4.2 Optimizations

Several optimizations of the basic algorithm have been implemented:

� All positional information (i.e., the positions of common variables and common sub-
terms) is computed in advance, and stored as annotations of rewrite rules.

� The rewriting engine of the ASF+SDF system explicitly constructs a list of variable
bindings. Origin propagations that are the result of common variables can be imple-
mented as propagations to these bindings. When a right-hand side or condition side is
instantiated, all common variable propagations are handled as a result of the instanti-
ation. The advantage of this approach is that the number of propagations decreases,
because we always propagate to only one subterm for each variable.

� Origins are implemented as a set of pointers to function symbols of the initial term.
The advantages are twofold: less space is needed to represent origins, and set union
becomes a much cheaper operation.

2.4.3 Associative lists

In order to implement origin tracking in the ASF+SDF system, provisions had to be made
for associative lists [69, 140]. Associative lists can be regarded as functions with a variable
arity. Allowing list functions in CTRSs introduces two minor complications:

� A variable that matches a sublist causes relations between arrays of adjacent subterms.
In the implementation, we distinguish between ordinary variables and list variables,
and perform propagations accordingly.

� Argument positions below list functions depend on the actual bindings. Therefore,
when computing the positions of common variables and common subterms, posi-
tions below lists are marked as relative. The corresponding absolute positions are
determined during rewriting.

Consider the following example, where l is a list function, and X* is a list variable that
matches sublists of any length:
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[L1] f(l(X*, a)) � g(l(X*, a))

When we rewrite the redex f(l(b, c, a)) according to [L1], the contractum is g(l(b,
c, a)). Variable X* gives rise to both a relation between the constants b in the redex and
the contractum, and a relation between the constants c in the redex and the contractum.
Moreover, constant a appears at path (1 2) in the left-hand side of [L1], but at path (1 3) in
the redex.

2.4.4 Sharing of subterms

For reasons of efficiency, implementations of CTRSs allow sharing of subtrees, thus giving
rise to DAGs (Directed Acyclic Graphs) instead of trees. The initial term is represented as
a tree, and sharing is introduced by instantiating nonlinear right-hand sides and condition
sides. For every variable, the list of bindings contains a pointer to one of the subterms it was
matched against. Instantiating a right-hand side or condition side is done by copying these
pointers (instead of copying the terms in the list of bindings). Sharing has the following
repercussions for origin tracking:

� No propagations are needed for variables that occur exactly once in the left-hand side
(and for new variables that occur exactly once in the introducing condition). This
results in a radical reduction of the number of propagations.

� Variables that occur nonlinearly in the left-hand side of a rule (and new variables
that occur nonlinearly in the introducing condition) present a problem. When sharing
is allowed in this case, inconsistent origins with respect to the definition may arise
because different origins may be associated with a shared function symbol when it is
“accessed” via different paths. A solution to this problem consists of using a pointer
to a copy of the term matched against such a variable in the list of bindings. This
corresponds to disallowing sharing in a limited number of situations.

2.4.5 Restricting origin tracking to selected sorts

Often, one is only interested in the origins of subterms of a particular sort. A straightforward
result of Property 2.19 is the following: to compute the origins of subterms of sort S, only
propagations for common subterms of sort S, and for common variables of sorts T such that
S v T are necessary.

2.4.6 Time and space overhead of origin tracking

Origins are represented by sets of pointers to symbols of the initial term, and associated with
every symbol is exactly one such set. The size of these sets is bounded by the number of
function symbols in the initial term because, in the worst case, a set contains a pointer to
every symbol in the initial term. Thus, the space overhead of origin tracking is linear in the
size of the initial term. In practice, only small sets arise, resulting in little space overhead.
The use of efficient set representations would reduce this overhead even further.
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We have measured the time overhead caused by origin tracking. In all measurements,
the run-time overhead lies between 10% and 100%, excluding the costs of pre-computing
positional information.

2.5 Related work

In TRS theory, the notion of descendant [95] (or residual [118, 78]) is used to study properties
such as confluence or termination, and to find optimal orders for contracting redexes (see
[112] for some recent results). For a reduction t � t� contracting a redex s 	 t, a different
redex s� 	 t may reappear in the resulting term t�. The occurrences of this s� in t� are called
the descendants of s�.

Descendants are similar to origins, but more restricted. Only relations according to
contexts and common variables are established (Bergstra and Klop [24] also use quasi-
descendants linking the redex and contractum as well). Moreover, descendants are defined
for a smaller class of TRSs; only orthogonal (left-linear and non-overlapping) TRSs without
conditional equations are allowed.

Bertot [27, 26] studies residuals in TRSs and �-calculus, and introduces marking func-
tions to represent the residual relation. He provides a formal language to describe compu-
tations on these marking functions, and shows how the marking functions can be integrated
in formalisms for the specification of programming language semantics (viz. term rewrit-
ing systems and collections of inference rules). Bertot works in the realm of left-linear,
unconditional TRSs and only considers precise origins.

The ideas of Bertot concerning origins in inference rules have been used in the framework
of TYPOL [41], a formalism to specify programming languages, based on natural semantics
[85]. For compositional definitions of evaluators or type-checkers (in which the meaning
of a language construct is expressed in terms of its substructures), the implementation of
TYPOL keeps track of the construct currently processed (the subject). A pointer to the subject
is available in tools derived from the specification, particularly debuggers or error handlers.
In addition to automatic subject tracking, TYPOL has been equipped with special language
constructs to manipulate origins explicitly. This contrasts with our approach, where origin
tracking is invisible at the specification level.

Berry [25] aims at deriving animators from relational rules (similar to operational se-
mantics). He defines a focus that is either equal to the subject (as in TYPOL) or to the result
of the evaluation of some subexpression. The theory he develops uses the concept of an
inference tree, a notion similar to our rewriting histories.

In the context of the PSG system [10], a generator for language-specific debuggers was
described. Debuggers are generated from a specification of the denotational semantics of a
language and some additional debugging functions. Bahlke et al. insist that programs are
explicitly annotated with their position in the initial syntactic structure before running their
semantic tool.
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2.6 Concluding remarks

2.6.1 Achievements

Summarizing the results described in this chapter, we have:

� A definition of origins that does not depend on a particular rewrite strategy, nor on
the confluence or strong-normalization of the underlying CTRS. It establishes only
relations that can be derived from the syntactic structure of the rewrite rules.

� The property that whenever a term tmid has a subterm torg in the initial term as origin,
this term torg can be rewritten to tmid .

� Sufficient criteria that a specification should satisfy to guarantee that an origin con-
sisting of at least one, or exactly one path is associated with each subterm of a given
sort.

� An efficient implementation method for origin tracking.
� A notion of sort-dependent “filtering” of origins, when only the origins of terms of

certain sorts are needed.
� A prospect of applying origin tracking to the generation of interactive language-based

environments from formal language definitions. In particular, generic techniques for
debugging and error reporting have been discussed.

2.6.2 Limitations

The current method for origin tracking has limitations, most of which are related to the
introduction of new function symbols. Some typical problem cases are:

� In the context of translating arithmetic expressions to a sequence of stack machine
instructions, one may encounter an equation of the form

trans(plus(E1,E2)) � seq(trans(E1),seq(trans(E2),add))

The plus of the expression language is translated to the add stack-instruction. It
seems intuitive to relate both seq function symbols to the plus symbol at the left-
hand side. However, the current origin mechanism do not establish this relation.

� In specifications of evaluators it frequently occurs that the evaluation of one construct
is defined by reducing it to another construct, as in

eval(repeat(S,Exp),Env) �
eval(seq(S,while(not(Exp),S)),Env)

where the evaluation of the repeat-statement is defined in terms of the while-
statement. In this example, seq is a constructor for statement sequences. Here again,
the while-statement on the right-hand side does not obtain an origin although the
repeat-statement on the left-hand side would be a good candidate for this.

These examples have the flavor of translating terms from one representation to another and
they illustrate that more origin relations have to be established in these cases. In [45, 44], the
compositional structure of primitive recursive schemes [114, 115] (a well-behaved subclass
of algebraic specifications) is exploited to establish additional origin relations. An alternative
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approach would be to allow user-provided annotations in specifications that indicate more
origin relations.

2.6.3 Applications

The main applications of origin tracking have already been sketched. These applications
can be summarized as follows:

Animation of program execution: Origin tracking has been used successfully for the con-
struction of tools that visualize program execution [49, 134].

Source-level debugging: Chapter 6 describes how origin tracking can be used to generate
powerful source-level debugging tools from algebraic specification of interpreters.

Error reporting: Origin tracking has also been used in conjunction with algebraic spec-
ifications of type-checkers [49, 48, 44] in order to obtain positional information of
type-checkers.
Experience has shown that the origin function that was described in this chapter is
insufficiently powerful to be applicable to any type-checking specification. A solution
to this problem, in the form of a specialized origin function for primitive recursive
schemes is proposed in [45, 44].





Chapter 3

A Survey of Program Slicing Techniques

Summary

The subsequent Chapters 4, 5, and 6 revolve, in one way or another, around the
concept of program slicing. To put this work in perspective, this chapter presents a
comprehensive survey of program slicing and its applications.

A program slice consists of the parts of a program that (potentially) affect the values
computed at some point of interest. Such a point of interest is referred to as a slicing
criterion, and is typically specified by a location in the program in combination with
a subset of the program’s variables. The task of computing program slices is called
program slicing. The original definition of a program slice was presented by Weiser
in 1979. Since then, various slightly different notions of program slices have been
proposed, as well as a number of methods to compute them. An important distinction
is that between a static and a dynamic slice. Static slices are computed without making
assumptions regarding a program’s input, whereas the computation of dynamic slices
relies on a specific test case.

Procedures, unstructured control flow, composite data types and pointers, and con-
currency each require a specific solution. Static and dynamic slicing methods for
each of these features are compared and classified in terms of their accuracy and ef-
ficiency. Moreover, the possibilities for combining solutions for different features are
investigated. Recent work on the use of compiler-optimization and symbolic execution
techniques for obtaining more accurate slices is discussed. The chapter is concluded
with an overview of the applications of program slicing, which include debugging,
program integration, dataflow testing, and software maintenance.

1 slice n�slı̄sn n 1 : a thin flat piece cut from something 2 : a wedge-shaped blade
(as for serving fish) 3 : a flight of a ball (as in golf) that curves in the direction of the
dominant hand of the player propelling it
2 slice vb sliced; slic-ing 1 : to cut a slice from; also to cut into slices 2 : to hit (a ball)
so that a slice results

The Merriam-Webster Dictionary

3.1 Overview

We present a survey of algorithms for program slicing that can be found in the present
literature. A program slice consists of the parts of a program that (potentially) affect the

33
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values computed at some point of interest. Such a point of interest is referred to as a slicing
criterion, and is typically specified by a pair hprogram point� set of variablesi. The parts of
a program that have a direct or indirect effect on the values computed at a slicing criterion
C constitute the program slice with respect to criterion C. The task of computing program
slices is called program slicing.

The original concept of a program slice was introduced by Weiser [144, 145, 147].
Weiser claims that a slice corresponds to the mental abstractions that people make when
they are debugging a program, and advocates the integration of program slicers in debugging
environments. Various slightly different notions of program slices have since been proposed,
as well as a number of methods to compute slices. The main reason for this diversity is
the fact that different applications require different properties of slices. Weiser defined a
program slice S as a reduced, executable program obtained from a program P by removing
statements, such that S replicates part of the behavior of P . Another common definition of
a slice is a subset of the statements and control predicates of the program that directly or
indirectly affect the values computed at the criterion, but that do not necessarily constitute an
executable program. An important distinction is that between a static and a dynamic slice.
The former notion is computed without making assumptions regarding a program’s input,
whereas the latter relies on some specific test case. Below, in Sections 3.1.1 and 3.1.2, these
notions are introduced in some detail.

Features of programming languages such as procedures, unstructured control flow, com-
posite data types and pointers, and concurrency each require a specific solution. Static and
dynamic slicing methods for each of these features are classified and compared in terms
of accuracy and efficiency. In addition, possibilities for integrating solutions for different
language features are investigated. Throughout this survey, slicing algorithms are compared
by applying them to similar examples.

3.1.1 Static slicing

Figure 3.1 (a) shows an example program that asks for a number n, and computes the sum
and the product of the first n positive numbers. Figure 3.1 (b) shows a slice of this program
with respect to criterion (10, product). As can be seen in the figure, all computations not
relevant to the (final value of) variable product have been “sliced away”.

In Weiser’s approach, slices are computed by computing consecutive sets of transitively
relevant statements, according to data flow and control flow dependences. Only statically
available information is used for computing slices; hence, this type of slice is referred to as
a static slice. An alternative method for computing static slices was suggested by Ottenstein
and Ottenstein [120], who restate the problem of static slicing in terms of a reachability
problem in a program dependence graph (PDG) [101, 53]. A PDG is a directed graph
with vertices corresponding to statements and control predicates, and edges corresponding
to data and control dependences. The slicing criterion is identified with a vertex in the
PDG, and a slice corresponds to all PDG vertices from which the vertex under consideration
can be reached. Various program slicing approaches discussed below utilize modified and
extended versions of PDGs as their underlying program representation. Yet another approach
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(1) read(n);
(2) i := 1;
(3) sum := 0;
(4) product := 1;
(5) while i �� n do

begin
(6) sum := sum + i;
(7) product := product * i;
(8) i := i + 1

end;
(9) write(sum);
(10) write(product)

read(n);
i := 1;

product := 1;
while i �� n do
begin

product := product * i;
i := i + 1

end;

write(product)

(a) (b)

Figure 3.1: (a) An example program. (b) A slice of the program w.r.t. criterion (10, product).

was proposed by Bergeretti and Carré [22], who define slices in terms of information-flow
relations, which are derived from a program in a syntax-directed fashion.

The slices mentioned so far are computed by gathering statements and control predicates
by way of a backward traversal of the program’s control flow graph (CFG) or PDG, starting
at the slicing criterion. Therefore, these slices are referred to as backward (static) slices.
Bergeretti and Carré [22] were the first to define the notion of a forward static slice, although
Reps and Bricker [127] were the first to use this terminology. Informally, a forward slice
consists of all statements and control predicates dependent on the slicing criterion, a statement
being “dependent” on the slicing criterion if the values computed at that statement depend on
the values computed at the slicing criterion, or if the values computed at the slicing criterion
determine the fact if the statement under consideration is executed or not. Backward and
forward slices1 are computed in a similar way; the latter requires tracing dependences in the
forward direction.

3.1.2 Dynamic slicing

Although the exact terminology “dynamic program slicing” was first introduced by Korel
and Laski [99], dynamic slicing may very well be regarded as a non-interactive variation of
Balzer’s notion of flowback analysis [15]. In flowback analysis, one is interested in how
information flows through a program to obtain a particular value: the user interactively
traverses a graph that represents the data and control dependences between statements in the
program. For example, if the value computed at statement s depends on the values computed
at statement t, the user may trace back from the vertex corresponding to s to the vertex for t.
Recently, Choi et al. [116, 38] have made an efficient implementation of flowback analysis
for parallel programs.

1Unless stated otherwise, “slice” will denote “backward slice”.
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(1) read(n);
(2) i := 1;
(3) while (i �� n) do

begin
(4) if (i mod 2 = 0) then
(5) x := 17

else
(6) x := 18;
(7) i := i + 1

end;
(8) write(x)

read(n);
i := 1;
while (i �� n) do
begin

if (i mod 2 = 0) then
x := 17

else
;

i := i + 1
end;
write(x)

(a) (b)

Figure 3.2: (a) Another example program. (b) Dynamic slice w.r.t. criterion (n = 2, 81, x).

In the case of dynamic program slicing, only the dependences that occur in a specific
execution of the program are taken into account. A dynamic slicing criterion specifies the
input, and distinguishes between different occurrences of a statement in the execution history;
typically, it consists of triple hinput� occurrence of a statement� variablei. An alternate view
of the difference between static and dynamic slicing is that dynamic slicing assumes fixed
input for a program, whereas static slicing does not make assumptions regarding the input.
A number of hybrid approaches, where a combination of static and dynamic information
is used to compute slices, can be found in the literature. Choi et al. [38], Duesterwald
et al. [51], and Kamkar [87] use static information in order to decrease the amount of
computations that have to be performed at run-time. Venkatesh [137], Ning et al. [117], and
Field, Ramalingam, and Tip (see Chapters 4 and 5) consider situations where only a subset
of the inputs to program are constrained.

Figure 3.2 shows an example program, and its dynamic slice w.r.t. the criterion (n = 2,
81, x), where 81 denotes the first occurrence of statement 8 in the execution history of the
program. Note that for input n = 2, the loop is executed twice, and that the assignments
x := 17 and x := 18 are each executed once. In this example, the else branch of the if
statement may be omitted from the dynamic slice since the assignment of 18 to variable x in
the first iteration of the loop is “killed” by the assignment of 17 to x in the second iteration2.
By contrast, the static slice of the program in Figure 3.2 (a) w.r.t. criterion (8, x) consists of
the entire program.

3.1.3 Applications of slicing

The main application that Weiser had in mind for slicing was debugging [144, 145, 147]:
if a program computes an erroneous value for some variable x at some program point, the

2In fact, one might argue that the while construct may be replaced by the if statement in its body. This type
of slice will be discussed in Section 3.6.
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bug is likely to be found in the slice with respect to x at that point. The use of slicing for
debugging was further explored by Lyle and Weiser [109], Choi et al. [38], Agrawal et al.
[5], Fritzson et al. [59], and Pan and Spafford [121, 122].

A number of other applications has since been proposed: parallelization [146], program
differencing and integration [70, 74], software maintenance [61], testing [51, 88, 65, 20],
reverse engineering [21, 82, 81], and compiler tuning [106]. Section 3.5 contains an overview
of how slicing is used in each of these application areas.

3.1.4 Related work

There are a number of earlier frameworks for comparing slicing methods, as well as some
earlier surveys of slicing methods.

Venkatesh [137] presents formal definitions of several types of slices in terms of de-
notational semantics. He distinguishes three independent dimensions according to which
slices can be categorized: static vs. dynamic, backward vs. forward, and closure vs. exe-
cutable. Some of the slicing methods in the literature are classified according to these criteria
[147, 120, 74, 6, 77, 100].

Lakhotia [102] restates a number of static slicing methods [147, 120, 74] as well as
the program integration algorithm of Horwitz, Prins, and Reps [74] in terms of operations
on directed graphs. He presents a uniform framework of graph slicing, and distinguishes
between syntactic properties of slices that can be obtained solely through graph-theoretic
reasoning, and semantic properties, which involve interpretation of the graph representation
of a slice. Although the paper only addresses static slicing methods, it is stated that some
dynamic slicing methods [6, 100] may be modeled in a similar way.

Gupta and Soffa present a generic algorithm for static slicing and the solution of related
dataflow problems (such as determining reaching definitions) that is based on performing a
traversal of the control flow graph [66]. The algorithm is parameterized with: (i) the direction
in which the CFG should be traversed (backward or forward), (ii) the type of dependences
under consideration (data and/or control dependence), (iii) the extent of the search (i.e.,
should only immediate dependences be taken into account, or transitive dependences as
well), and (iv) whether only the dependences that occur along all CFG-paths paths, or
dependences that occur along some CFG-path should be taken into account. A slicing
criterion is either a set of variables at a certain program point or a set of statements. For
slices that take data dependences into account, one may choose between the values of
variables before or after a statement.

Horwitz and Reps [76] present a survey of the work that has been done at the University
of Wisconsin-Madison on slicing, differencing, and integration of single-procedure and
multi-procedure programs as operations on PDGs [72, 74, 130, 70, 77, 75]. In addition
to presenting an overview of the most significant definitions, algorithms, theorems, and
complexity results, the motivation for this research is discussed in considerable detail.

An earlier classification of static and dynamic slicing methods was presented by Kamkar
[86, 87]. The differences between Kamkar’s work and ours may be summarized as follows.
First, this work is more up-to-date and complete; for instance, Kamkar does not address any
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Start

(10)

read(n) i  := 1 sum := 0 product := 1 i <= n

Stop

i := i + 1

sum :=
sum+i

product*i
product :=

write(product) write(sum)

(1) (2) (3) (4) (5)

(6)

(7)

(8)

(9)

Figure 3.3: CFG of the example program of Figure 3.1 (a).

of the papers that discuss slicing in the presence of unstructured control flow [12, 13, 3, 37]
or methods for computing slices that are based on information-flow relations [22, 62].
Second, the organization of our work and Kamkar’s is different. Whereas Kamkar discusses
each slicing method and its applications separately, this survey is organized in terms of a
number of “orthogonal” dimensions, such as the problems posed by procedures, or composite
variables, aliasing, and pointers. This approach enables us to consider combinations of
solutions to different dimensions. Third, unlike Kamkar we compare the accuracy and
efficiency of slicing methods (by applying them to the same or similar example programs),
and attempt to determine their fundamental strengths and weaknesses (i.e., irrespective of
the original presentation). Finally, Kamkar does not discuss any of the recent approaches
(see Chapter 5 and [52]) for improving the accuracy of slicing by employing compiler-
optimization techniques.

3.1.5 Organization of this chapter

The remainder of this chapter is organized as follows. Section 3.2 introduces the cornerstones
of most slicing algorithms: the notions of data dependence and control dependence. Readers
familiar with these concepts may skip this section and consult it when needed. Section 3.3
contains an overview of static slicing methods. First, we consider the simple case of
slicing structured programs with only scalar variables. Then, algorithms for slicing in
the presence of procedures, unstructured control flow, composite variables and pointers,
and concurrency are considered. Section 3.3.6 compares and classifies methods for static
slicing. Section 3.4 addresses dynamic slicing methods, and is organized in a similar way
as Section 3.3. Applications of program slicing are discussed in Section 3.5. Section 3.6
discusses recent work on the use of compiler-optimization techniques for obtaining more
accurate slices. Finally, Section 3.7 summarizes the main conclusions of this survey.

3.2 Data dependence and control dependence
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Data dependence and control dependence are defined in terms of the CFG of a program. A
CFG contains a node for each statement and control predicate in the program; an edge from
node i to node j indicates the possible flow of control from the former to the latter. CFGs
contain special nodes labeled START and STOP corresponding to the beginning and the end
of the program, respectively.

The sets DEF�i� and REF�i� denote the sets of variables defined and referenced at CFG
node i, respectively. Several types of data dependences can be distinguished, such as flow
dependence, output dependence and anti-dependence [53]. Flow dependences can be further
classified as being loop-carried or loop-independent, depending whether or not they arise as
a result of loop iteration. For the purposes of slicing, only flow dependence is relevant, and
the distinction between loop-carried and loop-independent flow dependences can be ignored.
Intuitively, a statement j is flow dependent on statement i if a value computed at i is used
at j in some program execution. In the absence of aliasing [105, 104], flow dependence
may be defined formally as follows: there exists a variable x such that: (i) x � DEF�i�, (ii)
x � REF�j�, and, (iii) there exists a path from i to j without intervening definitions of x.
Alternatively stated, the definition of x at node i is a reaching definition for node j.

Control dependence is usually defined in terms of post-dominance. A node i in the CFG
is post-dominated by a node by j if all paths from i to STOP pass through j. A node j is
control dependent on a node i if there exists a path P from i to j such that j post-dominates
every node in P , excluding i and j. Determining control dependences in a program with
arbitrary control flow is studied by Ferrante et al. [53]. For programs with structured
control flow, control dependences can be determined in a simple syntax-directed manner
[73]: the statements immediately3 inside the branches of an if or while statement are control
dependent on the control predicate.

As an example, Figure 3.3 shows the CFG for the example program of Figure 3.1 (a).
Node 7 is flow dependent on node 4 because: (i) node 4 defines variable product, (ii)
node 7 references variable product, and (iii) there exists a path 4 � 5 � 6 � 7 without
intervening definitions of product. Node 7 is control dependent on node 5 because there
exists a path 5 � 6 � 7 such that: (i) node 6 is post-dominated by node 7, and (ii) node 5
is not post-dominated by node 7.

Many of the slicing approaches that will be discussed in the sequel use the Program
Dependence Graph (PDG) representation of a program [101, 53]. The vertices of the PDG
correspond to the statements and control predicates of the program, and the edges of a PDG
correspond to data and control dependences between them. The key issue is that the partial
ordering of the PDG vertices induced by the dependence edges must be obeyed to preserve
the semantics of the program.

In the PDGs of Horwitz et al. [73, 74, 75, 77], a distinction is made between loop-carried
and loop-independent flow dependences, and there is an additional type of data dependence
edges named def-order dependence edges. Horwitz et al. argue that their PDG variant is
adequate: if two programs have isomorphic PDGs, they are strongly equivalent. This means

3A statement in a branch of an if statement that occurs within another if statement is only control dependent
on the predicate of the inner if statement.
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product*i

Entry

read(n) i := 1 sum := 0 product := 1 while (i <= n) write(sum) write(product)

sum := sum+i i := i + 1product :=

Figure 3.4: PDG of the program in Figure 3.1 (a).

that, when started with the same input state, they either compute the same values for all
variables, or they both diverge. It is argued that the PDG variant of [73] is minimal in the
sense that removing any of the types of dependence edges, or disregarding the distinction
between loop-carried and loop-independent flow edges would result in inequivalent programs
having isomorphic PDGs. However, for the computation of program slices, only flow
dependences and control dependences are necessary. Therefore, only these dependences
will be considered in the sequel.

As an example, Figure 3.4 shows the PDG of the program of Figure 3.1 (a). In this
figure, the PDG variant of Horwitz, Reps, and Binkley [77] is used. Thick edges represent
control dependences4 and thin edges represent flow dependences. The shading of certain
vertices in the PDG of Figure 3.4 will be explained in Section 3.3.1.3.

3.3 Methods for static slicing

3.3.1 Basic algorithms

In this section, we will study basic algorithms for static slicing of structured, single-procedure
programs with scalar variables. These algorithms essentially compute the same information,
but in different ways.

4The usual labeling of control dependence edges is omitted here, as this is irrelevant for the present
discussion. Furthermore, loop-carried flow dependence edges from a vertex to itself will be omitted, as such
edges are irrelevant for the computation of slices.
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For each edge i�CFG j in the CFG:

R0
C�i� � R0

C�i� � f v j v � R0
C�j�� v �� DEF�i� g � f v j v � REF�i�� DEF�i� �R0

C�j� �� � g

S0
C � fi j �DEF�i� �R0

C�j�� �� �� i�CFG jg

Figure 3.5: Equations for determining directly relevant variables and statements.

3.3.1.1 Dataflow equations

Weiser’s original definition of program slicing [147] is based on iterative solution of dataflow
equations5. Weiser defines a slice as an executable program that is obtained from the original
program by deleting zero or more statements. A slicing criterion consists of a pair hn� V i
where n is a node in the CFG of the program, and V a subset of the program’s variables. In
order to be a slice with respect to criterion hn� V i, a subset S of the statements of program
P must satisfy the following properties: (i) S must be a valid program, and (ii) whenever
P halts for a given input, S also halts for that input, computing the same values for the
variables in V whenever the statement corresponding to node n is executed. At least one
slice exists for any criterion: the program itself. A slice is statement-minimal if no other
slice for the same criterion contains fewer statements. Weiser argues that statement-minimal
slices are not necessarily unique, and that the problem of determining statement-minimal
slices is undecidable.

Weiser describes an iterative algorithm for computing approximations of statement-
minimal slices. It is important to realize that this algorithm uses two distinct “layers” of
iteration. These can be characterized as follows:

1. Tracing transitive data dependences. This requires iteration in the presence of loops.
2. Tracing control dependences, causing the inclusion in the slice of certain control

predicates. For each such predicate, step 1 is repeated to include the statements it is
dependent upon.

The algorithm determines consecutive sets of relevant variables from which sets of
relevant statements are derived; the computed slice is defined as the fixpoint of the latter
set. First, the directly relevant variables are determined: this is an instance of step 1 of the
iterative process outlined above. The set of directly relevant variables at node i in the CFG
is denoted R0

C�i�. The iteration starts with the initial values R0
C�n� � V , and R0

C�m� � �
for any node m 
� n. Figure 3.5 shows a set of equations that define how the set of relevant
variables at the end j of a CFG edge i �CFG j affects the set of relevant variables at the

5Weiser’s definition of branch statements with indirect relevance to a slice contains an error [148]. Therefore,
the modified definition proposed in [107] is followed here. However, we do not agree with the statement in
[107] that ‘It is not clear how Weiser’s algorithm deals with loops’.
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Bk
C � fb j i � Sk

C � i � INFL�b�g

Rk�1
C �i� � Rk

C�i� �
S
b�Bk

C

R0
�b�REF�b��

�i�

Sk�1
C � Bk

C � fi j DEF�i� �Rk�1
C �j� 
� �� i �CFG jg

Figure 3.6: Equations for determining indirectly relevant variables and statements.

NODE # DEF REF INFL R0
C R1

C

1 f n g � � � �
2 f i g � � � f n g
3 f sum g � � f i g f i, n g
4 f product g � � f i g f i, n g
5 � f i, n g f 6, 7, 8 g f product, i g f product, i, n g
6 f sum g f sum, i g � f product, i g f product, i, n g
7 f product g f product, i g � f product, i g f product, i, n g
8 f i g f i g � f product, i g f product, i, n g
9 � f sum g � f product g f product g
10 � f product g � f product g f product g

Table 3.1: Results of Weiser’s algorithm for the example program of Figure 3.1 (a) and slicing
criterion h10� f product gi.

beginning i of that edge. The least fixed point of this process is the set of directly relevant
variables at node i. From R0

C , a set of directly relevant statements, S0
C , is derived. Figure 3.5

shows how S0
C is defined as the set of all nodes i that define a variable v that is a relevant at

a CFG-successor of i.
As mentioned, the second “layer” of iteration in Weiser’s algorithm consists of taking

control dependences into account. Variables referenced in the control predicate of an if
or while statement are indirectly relevant, if (at least) one of the statements in its body is
relevant. To this end, the range of influence INFL�b� of a branch statement b is defined as
the set of statements control dependent on b. Figure 3.6 shows a definition of the branch
statements Bk

C that are indirectly relevant due to the influence they have on nodes i in SkC .
Next, the sets of indirectly relevant variables Rk�1

C �i� are determined. In addition to the
variables inRk

C�i�, R
k�1
C �i� contains variables that are relevant because they have a transitive

data dependence on statements in Bk
C . This is determined by performing the first type of

iteration again (i.e., tracing transitive data dependences) with respect to a set of criteria
hb�REF�b�i, where b is a branch statement in Bk

C (see Figure 3.6). Figure 3.6 also shows a
definition of the setsSk�1

C of indirectly relevant statements in iteration k�1. This set consists
of the the nodes in Bk

C together with the nodes i that define a variable that is Rk�1
C -relevant

to a CFG-successor j.
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�� � �
�� � �
�� � ID

�S1;S2 � �S1 � ��S1 � �S2�
�S1;S2 � ��S1 � �S2� � �S2

�S1;S2 � �S1 � �S2

�v:�e � VARS�e�� f e g
�v:�e � f he� vi g
�v:�e � �VARS�e�� f v g� � �ID � hv� vi�

�if e then S1 else S2 � �VARS�e�� f e g� � �S1 � �S2

�if e then S1 else S2 � �f e g � �DEFS�S1� � DEFS�S2��� � �S1 � �S2

�if e then S1 else S2 � �VARS�e�� �DEFS�S1� � DEFS�S2��� � �S1 � �S2 � ID

�while e do S � ��S � ��VARS�e�� f e g� � �S�
�while e do S � �f e g � DEFS�S�� � �S � ��S � ��VARS�e�� DEFS�S�� � ID�
�while e do S � ��S � ��VARS�e�� DEFS�S�� � ID�

Figure 3.7: Definition of information-flow relations.

The sets Rk�1
C and Sk�1

C are nondecreasing subsets of the program’s variables and state-
ments, respectively; the fixpoint of the computation of the Sk�1

C sets constitutes the desired
program slice.

As an example, consider slicing the program of Figure 3.1 (a) with respect to criterion
h10� f product gi. Table 3.1 summarizes the DEF, REF, INFL sets, and the sets of relevant
variables computed by Weiser’s algorithm. The CFG of the program was shown earlier in
Figure 3.3. From the information in the table, and the definition of a slice, we obtain S0

C �
f2� 4� 7� 8g,B0

C � f5g, and S1
C � f1� 2� 4� 5� 7� 8g. For our example, the fixpoint of the sets

of indirectly relevant variables is reached at set S1
C . The corresponding slice w.r.t. criterion

C � �10� fproductg� as computed by Weiser’s algorithm is identical to the program shown
in Figure 3.1 (b) apart from the fact that the output statement write(product) is not
contained in the slice.

Lyle [108] presents a modified version of Weiser’s slicing algorithm. Apart from some
minor changes in terminology, this algorithm is essentially the same as Weiser’s [147].

Hausler [67] restates Weiser’s algorithm in a functional style. For each type of statement
(empty statement, assignment, statement composition, if, and while) he defines two functions
	 and 
. Roughly speaking, these functions express how a statement transforms the set of
relevant variables Ri

C , and the set of relevant statements SiC , respectively. The functions 	
and 
 are defined in a compositional manner. For empty statements and assignments, 	 and

 can be derived from the statement in a syntax-directed manner. The 	 and 
 functions for
statement sequences and if statements, can be inferred from the 	 and 
 functions for their
components, respectively. The functions for a while statement are obtained by effectively
transforming it into an infinite sequence of if statements.
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EXPRESSION #a POTENTIALLY AFFECTED VARIABLES

1 f n� sum� product� i g
2 f sum� product� i g
3 f sum g
4 f product g
5 f sum� product� i g
6 f sum g
7 f product g
8 f sum� product� i g
9 �
10 �

aExpression numbers correspond to line numbers in Figure 3.1 (a).

Figure 3.8: Information-flow relation � for the example program of Figure 3.1 (a).

3.3.1.2 Information-flow relations

Bergeretti and Carré [22] define a number of information-flow relations that can be used
to compute slices. For a statement (or sequence of statements) S, a variable v, and an
expression (i.e., a control predicate or the right-hand side of an assignment) e that occurs
in S, the relations �S, �S , and �S are defined. These information-flow relations possess the
following properties: hv� ei � �S iff the value of v on entry to S potentially affects the value
computed for e, he� vi � �S iff the value computed for e potentially affects the value of v on
exit from S, and hv� v�i � �S iff the value of v on entry to S may affect the value of v� on
exit from S. The set Ev

S of all expressions e for which he� vi � �S can be used to construct
partial statements. A partial statement of statement S associated with variable v is obtained
by replacing all statements in S that do not contain expressions in Ev

S by empty statements.
Information-flow relations are computed in a syntax-directed, bottom-up manner. For an

empty statement, the relations �S and �S are empty, and �S is the identity. For an assignment
v := e, �S contains hv�� ei for all variables v� that occur in e, �S consists of he� vi, and �S
contains hv�� vi for all variables that occur in e as well as hv��� v��i for all variables v�� 
� v.
Figure 3.7 shows how information-flow relations for sequences of statements, conditional
statements and loop statements are constructed from the information-flow relations of their
constituents. In the figure, � denotes an empty statement, “�” relational join6, ID the identity
relation, VARS�e� the set of variables occurring in expression e, and DEFS�S� the set of
variables that may be defined in statement S. The convoluted definition for while constructs
is obtained by effectively transforming it into an infinite sequence of nested one-branch if
statements. The relation �� used in this definition is the transitive and reflexive closure of �.

A slice w.r.t. the value of a variable v at an arbitrary location can be computed by
inserting a dummy assignment v� :� v at the appropriate place, where v� is a variable that

6The join of two relations R1 and R2 contains all pairs he1� e3i for which there exists an e2 such that
he1� e2i � R1 and he2� e3i � R2.
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did not previously occur in S. The slice w.r.t. the final value of v� in the modified program
is equivalent to a slice w.r.t. v at the selected location in the original program.

Static forward slices can be derived from relation �S in a way that is similar to the method
for computing static backward slices from the �S relation.

Figure 3.8 shows the information-flow relation � for the (entire) program of Figure 3.1
(a)7. From this relation it follows that the set of expressions that potentially affect the
value of product at the end of the program are f 1� 2� 4� 5� 7� 8 g. The corresponding
partial statement is obtained by omitting all statements from the program that do not contain
expressions in this set, i.e., both assignments to sum and both write statements. The result
is identical to the slice computed by Weiser’s algorithm (see Section 3.3.1.1).

3.3.1.3 Dependence graph based approaches

Ottenstein and Ottenstein [120] were the first of many to define slicing as a reachability
problem in a dependence graph representation of a program. They use the PDG [101, 53]
for static slicing of single-procedure programs.

In dependence graph based approaches, the slicing criterion is identified with a vertex v in
the PDG. In Weiser’s terminology, this corresponds to a criterion hn� V i where n is the CFG
node corresponding to v, and V the set of all variables defined or used at v. Consequently,
slicing criteria of PDG-based slicing methods are less general than those of methods based
on dataflow equations or information-flow relations (the fine-grained PDGs of Jackson and
Rollins, discussed below, are a notable exception here). However, in Section 3.3.6.2, it
will be shown how more precise slicing criteria can be “simulated” by PDG-based slicing
methods. For single-procedure programs, the slice w.r.t. v consists of all vertices that can
reach v. The related parts of the source text of the program can be found by maintaining
a mapping between vertices of the PDG and the source text during the construction of the
PDG.

The PDG variant of Ottenstein and Ottenstein [120] shows considerably more detail
than that by Horwitz, Reps, and Binkley [77]. In particular, there is a vertex for each
(sub)expression in the program, and file descriptors appear explicitly as well. As a result,
read statements involving irrelevant variables are not “sliced away”, and slices will execute
correctly with the full input of the original program.

In Figure 3.4 the PDG of the program of Figure 3.1 (a) was shown. Shading is used to
indicate the vertices in the slice w.r.t. write(product).

Jackson and Rollins [82] introduce a variation on the PDG that is distinguished by fine-
grained dependences between individual variables defined or used at program points. An
important advantage of this approach is that it allows one to determine more accurately
which variables are responsible for the inclusion of a particular statement in a slice.

Each vertex consists of a box that contains a separate port for each variable defined at that

7Bergeretti and Carré do not define information-flow relations for I/O statements. For the purposes of this
example, it is assumed that the statement read(n) can be treated as an assignment n := SomeConstant,
and that the statements write(sum) and write(product) should be treated as empty statements.
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program point, as well as for each variable used at that point. Dependence relations between
variables used at a program point p, and variables defined at p are represented by internal
dependence edges inside the box for p. Data dependences between statements are defined
in the usual way, in terms of reaching definitions. Control dependences between statements,
however, are modeled as mock data dependences. To this end, each box has an � port that
represents the “execution of” the associated statement. Control predicates are assumed to
define a temporary value that is represented by a  port. If a statement with box p is control
dependent on a statement with box q, this is modeled by a dependence edge from p’s  port
to q’s � port. Finally, dependences on constant values and input values are represented by �
ports—the role of these ports is irrelevant for the present discussion.

Jackson and Rollins generalize the traditional notion of a slicing criterion to a pair
hsource� sinki, where source is a set of definition ports and sink of a set of use ports. Slicing
is generalized to chopping: determining the subset of the program’s statements that cause
influences of source elements on sink elements. It is argued that conventional notions
slicing of backward and forward slicing can be expressed in terms of chopping. Rather than
defining chopping algorithms in the usual way, as a graph-reachability algorithm, Jackson
and Rollins formally define their algorithm in a relational fashion, as a number of relations
between ports.

3.3.2 Procedures

The main problem posed by interprocedural static slicing is that, in order to compute accurate
slices, the call-return structure of interprocedural execution paths must be taken into account.
Simple algorithms that include statements in a slice by traversing (some representation of)
the program in a single pass have the property that they consider infeasible execution paths,
causing slices to become larger than necessary. Several solutions to this problem, often
referred to as the “calling-context” problem, will be discussed below.

3.3.2.1 Dataflow equations

Weiser’s approach for interprocedural static slicing [147, 148] involves three separate tasks.

� First, interprocedural summary information is computed, using previously developed
techniques [19]. For each procedure P , a set MOD�P � of variables that may be
modified by P is computed, and a set USE�P � of variables that may be used by P . In
both cases, the effects of procedures transitively called by P are taken into account.

� The second component of Weiser’s algorithm is an intraprocedural slicing algorithm.
This algorithm was discussed previously in Section 3.3.1.1. However, it is slightly
extended in order to determine the effect of call-statements on the sets of relevant
variables and statements that are computed. This is accomplished using the summary
information computed in step (1). A call to procedure P is treated as a conditional
assignment statement ‘if �SomePredicate� then MOD�P � := USE�P �’ where ac-
tual parameters are substituted for formal parameters [148]. Worst-case assumptions
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program Main;
� � �

while ( � � � ) do
P(x1, x2, � � �, xn);
x1 := z;
x1 := x2;
x2 := x3;
� � �
x�n�1� := xn

end;
(L) write(z)

end

procedure P( y1, y2, � � �, yn );
begin
write(y1);
write(y2);
� � �

(M) write(yn)
end

Figure 3.9: A program where procedure P is sliced n times by Weiser’s algorithm for criterion
hL� f z gi.

have to be made when a program calls external procedures, and the source-code is
unavailable.

� The third part is the actual interprocedural slicing algorithm that iteratively generates
new slicing criteria with respect to which intraprocedural slices are computed in step
(2). For each procedure P , new criteria are generated for (i) proceduresQ called by P ,
and (ii) procedures R that call P . The new criteria of (i) consist of all pairs �nQ� VQ�
where nQ is the last statement of Q and VQ is the set of relevant variables in P in the
scope of Q (formals are substituted for actuals). The new criteria of (ii) consist of all
pairs �NR� VR� such that NR is a call to P in R, and VR is the set of relevant variables
at the first statement of P that is in the scope of R (actuals are substituted for formals).

Weiser formalizes the generation of new criteria by way of functions UP�S� and DOWN�S�
that map a set S of slicing criteria in a procedure P to a set of criteria in procedures that call
P , and a set of criteria in procedures called by P , respectively. The set of all criteria with
respect to which intraprocedural slices are computed consists of the transitive and reflexive
closure of the UP and DOWN relations; this is denoted �UP � DOWN��. Thus, for an initial
criterion C, slices will be computed for all criteria in the set �UP � DOWN� � �f C g�.

Weiser determines the criteria in this set “on demand” [148]: the generation of new
criteria in step (3) and the computation of intraprocedural slices in step (2) are intermixed; the
iteration stops when no new criteria are generated. Although the number of intraprocedural
slices computed in step (2) could be reduced by combining “similar” criteria (e.g., replacing
two criteria hn� V1i and hn� V2i by a single criterion hn� V1 � V2i), Weiser writes that “no
speed-up tricks have been implemented” [147, page 355, col.2]. In fact, one would expect
that such speed-up tricks would affect the performance of his algorithm dramatically. The
main issue is that the computation of the UP and DOWN sets requires that the sets of relevant
variables are known at all call sites. In other words, the computation of these sets relies on
slicing these procedures. In the course of doing this, new variables may become relevant
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program Example;
begin

(1) a := 17;
(2) b := 18;
(3) P(a,b,c,d);
(4) write(d)

end

procedure P(v,w,x,y);
(5) x := v;
(6) y := w

end

program Example;
begin
a := 17;
b := 18;
P(a,b,c,d);

end

procedure P(v,w,x,y);
;

y := w
end

program Example;
begin

;
b := 18;
P(a,b,c,d);
write(d)

end

procedure P(v,w,x,y);
;

y := w
end

(a) (b) (c)

Figure 3.10: (a) Example program. (b) Weiser’s slice with respect to criterion h4� f d gi. (a) A
slice with respect to the same criterion computed by the Horwitz-Reps-Binkley algorithm.

at previously encountered call sites, and new call sites may be encountered. Consider for
example, the program shown in Figure 3.9. In the subsequent discussion, L denotes the
program point at statement write(z) and M the program point at the last statement in
procedure P. Computing the slice w.r.t. criterion hL� f z gi requires n iterations of the body
of the while loop. During the ith iteration, variablesx1� � � � � xi will be relevant at the call site,
causing the inclusion of criterion hM� f y1� � � � � yi gi in DOWN�Main�. If no precaution is
taken to combine the criteria in DOWN�Main�, procedure P will be sliced n times.

The fact that Weiser’s algorithm does not take into account which output parameters
are dependent on which input parameters is a source of imprecision. Figure 3.10 (a)
shows an example program that manifests this problem. For criterion h4� f d gi, Weiser’s
interprocedural slicing algorithm [147] will compute the slice shown in Figure 3.10 (b). This
slice contains the statement a := 17 due to the spurious dependence between variable a
before the call, and variable d after the call. The Horwitz-Reps-Binkley algorithm that will
be discussed in Section 3.3.2.3 will compute the more accurate slice shown in Figure 3.10
(c).

Horwitz, Reps, and Binkley [77] report that Weiser’s algorithm for interprocedural slicing
is unnecessarily inaccurate, because of what they refer to as the “calling context” problem.
In a nutshell, the problem is that when the computation “descends” into a procedure Q that
is called from a procedure P , it will “ascend” to all procedures that call Q, not only P . This
includes infeasible execution paths that enter Q from P and exit Q to a different procedure.
Traversal of such paths gives rise to inaccurate slices.

Figure 3.11 shows a program that exhibits the calling-context problem. For exam-
ple, assume that a slice is to be computed w.r.t. criterion h10�producti. Using sum-
mary information to approximate the effect of the calls, the initial approximation of the
slice will consist of the entire main procedure except lines 3 and 6. In particular, the
procedure calls Multiply(product, i) and Add(i, 1) are included in the slice,
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program Example;
begin

(1) read(n);
(2) i := 1;
(3) sum := 0;
(4) product := 1;
(5) while i �� n do

begin
(6) Add(sum, i);
(7) Multiply(product, i);
(8) Add(i, 1)

end;
(9) write(sum);
(10) write(product)

end

procedure Add(a; b);
begin

(11) a := a + b
end

procedure Multiply(c; d);
begin

(12) j := 1;
(13) k := 0;
(14) while j �� d do

begin
(15) Add(k, c);
(16) Add(j, 1);

end;
(17) c := k

end

Figure 3.11: Example of a multi-procedure program.

because: (i) the variables product and i are deemed relevant at those points, and (ii)
using interprocedural data flow analysis it can be determined that MOD�Add� � f a g,
USE�Add� � f a, b g, MOD�Multiply� � f c g, and USE�Multiply� � f c, d g.
As the initial criterion is in the main program, we have that UP�f h10�producti g� � �,
and that DOWN�f h10�producti g� contains the criteria h11� f a gi and h17� f c, d gi.
The result of slicing procedure Add for criterion h11� f a gi and procedure Multiply for
criterion h17� f c, d gi will be the inclusion of these procedures in their entirety. Note that
the calls to Add at lines 15 and 16 cause the generation of a new criterion h11� f a, b gi
and thus re-slicing of procedure Add. It can now be seen that the example program exhibits
the “calling context” problem: Since line (11) is in the slice, new criteria are generated for
all calls to Add. These calls include the (already included) calls at lines 8, 15, and 16, but
also the call Add(sum, i) at line 6. The new criterion h6� f sum, i gi that is generated
will cause the inclusion of lines 6 and 3 in the slice. Consequently, the slice consists of the
entire program.

It is our conjecture that the calling context problem of Weiser’s algorithm can be fixed
by observing that the criteria in the UP sets are only needed to include procedures that
(transitively) call the procedure containing the initial criterion8. Once this is done, only
DOWN sets need to be computed. For an initial criterion C, this corresponds to determining
the set of criteria DOWN � �UP � �f C g��, and computing the intraprocedural slices with
respect to each of these criteria. Reps [126] suggested that this essentially corresponds to
the two passes of the Horwitz-Reps-Binkley algorithm (see Section 3.3.2.3) if all UP sets are
computed before determining any DOWN sets.

8A similar observation was made by Jiang et al. [83]. However, they do not explain that this approach only
works when a call to procedure p is treated as a conditional assignment if �SomePredicate� then MOD�P �
:= USE�P �.
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program P3(x1,x2,x3);
begin
t := 0;
P3(x2,x3,t);
P3(x2,x3,t);

(L) x1 := x1 + 1
end;

P

P

P P

P
0

P P

P
0

0
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P P

P
0

P P

P
0

0

(a) (b)

Figure 3.12: (a) Example program. (b) Exponentially long path traversed by the Hwang-Du-Chou
algorithm for interprocedural static slicing for criterion hL�x3i.

Hwang, Du, and Chou [79] propose an iterative solution for interprocedural static slicing
based on replacing (recursive) calls by instances of the procedure body. From a conceptual
point of view, each iteration comprises of the following two steps. First, procedure calls are
inlined, substituting actual parameters for formal parameters. Then, the slice is re-computed,
where any remaining procedure call is treated as if it were an empty statement (i.e., it is
assumed to have no effect on the flow dependences between its surrounding statements).
This iterative process terminates when the resulting slice is identical to the slice computed in
the previous iteration—i.e., until a fixed point is reached. It is assumed that some mapping
is maintained between the statements in the various expanded versions of the program, and
in the original program.

The approach of Hwang et al. does not suffer from the calling context problem because
expansion of recursive calls does not lead to considering infeasible execution paths. However,
Reps [125, 128] has shown recently that for a certain family Pk of recursive programs, this
algorithm takes time O�2k�, i.e., exponential in the length of the program. An example of
such a program is shown in Figure 3.12 (a). Figure 3.12 (b) shows the exponentially long
path that is effectively traversed by the Hwang-Du-Chou algorithm.

3.3.2.2 Information-flow relations

Bergeretti and Carré [22] explain how the effect of procedure calls can be approximated
in the absence of recursion. Exact dependences between input and output parameters are
determined by slicing the called procedure with respect to each output parameter (i.e.,
computation of the � relation for the procedure). Then, each procedure call is replaced
by a set of assignments, where each output parameter is assigned a fictitious expression
that contains the input parameters it depends upon. As only feasible execution paths are
considered, this approach does not suffer from the calling context problem. A call to a side-
effect free function can be modeled by replacing it with a fictitious expression containing
all actual parameters. Note that the computed slices are not truly interprocedural since no
attempt is done to slice procedures other than the main program.
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For the example program of Figure 3.11, the slice w.r.t. the final value of product
would include all statements except sum := 0, Add(sum,i), and write(sum).

3.3.2.3 Dependence graphs

Horwitz, Reps, and Binkley [77] present an algorithm for computing precise interprocedural
static slices, which consists of the following three components:

1. The System Dependence Graph (SDG), a graph representation for multi-procedure
programs.

2. The computation of interprocedural summary information. This takes the form of pre-
cise dependence relations between the input and output parameters of each procedure
call, and is explicitly present in the SDG in the form of summary edges.

3. A two-pass algorithm for extracting interprocedural slices from an SDG.

We will begin with a brief overview of SDGs. In the discussion that follows it is
important to realize that parameter passing by value-result9 is modeled as follows: (i) the
calling procedure copies its actual parameters to temporary variables before the call, (ii) the
formal parameters of the called procedure are initialized using the corresponding temporary
variables, (iii) before returning, the called procedure copies the final values of the formal
parameters to the temporary variables, and (iv) after returning, the calling procedure updates
the actual parameters by copying the values of the corresponding temporary variables.

An SDG contains a program dependence graph for the main program, and a procedure
dependence graph for each procedure. There are several types of vertices and edges in SDGs
that do not occur in PDGs. For each call statement, there is a call-site vertex in the SDG
as well as actual-in and actual-out vertices that model the copying of actual parameters
to/from temporary variables. Each procedure dependence graph has an entry vertex, and
formal-in and formal-out vertices to model copying of formal parameters to/from temporary
variables10. Actual-in and actual-out vertices are control dependent on the call-site vertex;
formal-in and formal-out vertices are control dependent on the procedure’s entry vertex.
In addition to these intraprocedural dependence edges, an SDG contains the following
interprocedural dependence edges: (i) a control dependence edge between a call-site vertex
and the entry vertex of the corresponding procedure dependence graph, (ii) a parameter-in
edge between corresponding actual-in and formal-in vertices, (iii) a parameter-out edge
between corresponding formal-out and actual-out vertices, and (iv) summary edges that
represent transitive interprocedural data dependences.

9The Horwitz-Reps-Binkley algorithm [77] is also suitable for call-by-referenceparameter passing provided
that aliases are resolved. To this end, two approaches are proposed: transformation of the original program
into an equivalent alias-free program, or the use of a generalized flow dependence notion that takes possible
aliasing patterns into account. The first approach yields more precise slices, whereas the second one—further
explored by Binkley [31]—is more efficient. For a discussion of parameter passing mechanisms the reader is
referred to [7, Section 7.5].

10Using interprocedural data flow analysis [16], the sets of variables that can be referenced or modified by
a procedure can be determined. This information can be used to eliminate actual-out and formal-out vertices
for parameters that will never be modified, resulting in more precise slices.
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The second part of the Horwitz-Reps-Binkley algorithm, computation of summary de-
pendences, involves the construction of an attribute grammar that models the calling rela-
tionships between the procedures (as in a call graph). Then, the subordinate characteristic
graph for this grammar is computed. For each procedure in the program, this graph contains
edges that correspond to precise transitive flow dependences between its input and output
parameters. The summary edges of the subordinate characteristic graph are copied to the
appropriate places at each call site in the SDG. Details of the Horwitz-Reps-Binkley algo-
rithm for determining summary edges are outside the scope of this survey—for details, the
reader is referred to [77].

The third phase of the Horwitz-Reps-Binkley algorithm consists of a two-pass traversal
of the SDG. The summary edges of an SDG serve to circumvent the calling context problem.
Assume that slicing starts at some vertex s. The first phase determines all vertices from which
s can be reached without descending into procedure calls. The transitive interprocedural
dependence edges guarantee that calls can be side-stepped, without descending into them.
The second phase determines the remaining vertices in the slice by descending into all
previously side-stepped calls.

Figure 3.13 shows the SDG for the program of Figure 3.11, where interprocedural
dataflow analysis is used to eliminate the vertices for the second parameters of the procedures
Add and Multiply. In the figure, thin solid arrows represent flow dependences, thick solid
arrows correspond to control dependences, thin dashed arrows are used for call, parameter-in,
and parameter-out dependences, and thick dashed arrows represent transitive interprocedural
flow dependences. The vertices in the slice w.r.t. statement write(product) are shown
shaded; light shading indicates the vertices identified in the first phase of the algorithm, and
dark shading indicates the vertices identified in the second phase. Clearly, the statements
sum := 0, Add(sum, i), and write(sum) are not in the slice.

Slices computed by Horwitz-Reps-Binkley algorithm [77] are not necessarily executable
programs. Cases where only a subset of the vertices for actual and formal parameters are
in the slice correspond to procedures where some of the arguments are “sliced away”; for
different calls to the procedure, different arguments may be omitted. Two approaches are
proposed for transforming such a non-executable slice an executable program. First, several
variants of a procedure may be incorporated in a slice [77]; this has the disadvantage that
the slice is no longer a restriction of the original program. The second solution consists of
extending the slice with all parameters that are present at some call to all calls that occur in
the slice. In addition, all vertices on which the added vertices are dependent must be added
to the slice as well. This second approach is pursued by Binkley [30]. Clearly the second
approach yields larger slices than the first one.

Finally, it is outlined how interprocedural slices can be computed from partial SDGs
(corresponding to programs under development, or programs containing library calls) and
how, using the SDG, interprocedural forward slices can be computed in a way that is very
similar to the previously described method for interprocedural (backward) slicing.
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a := a + b

Enter Example

read(n) i := 1 sum := 0 product := 1 while (i <= n) write(sum) write(product)

Add(sum,i)

a_in := sum b_in := i sum := a_out

Add(i,1)

a_in := i b_in := 1 i:= a_out

Mult.(product,i)

c_in := product d_in := i product:=c_out

c := c_in d := d_in

Enter Multiply

c_out := c

j := 1 k := 0 while (j <= d) c := k

Add(j, 1)

a_in := j b_in := 1 j := a_out

Add(k, c)

a_in := k b_in := c k := a_out

Enter Add

a := a_in b := b_in a_out := a

Figure 3.13: SDG of the program in Figure 3.11.

Recently, Reps et al. [129, 128] proposed a new algorithm for computing the summary
edges of an SDG, which is asymptotically more efficient than the Horwitz-Reps-Binkley al-
gorithm [77] (the time requirements of these algorithms will be discussed in Section 3.3.6.3).
Input to the algorithm is an SDG where no summary edges have been added yet, i.e., a col-
lection of procedure dependence graphs connected by call, parameter-in, and parameter-out
edges. The algorithm uses a worklist to determine same-level realizable paths. Intuitively, a
same-level realizable path obeys the call-return structure of procedure calls, and it starts and
ends at the same level (i.e., in the same procedure). Same-level realizable paths between
formal-in and formal-out vertices of a procedure P induce summary edges between the
corresponding actual-in and actual-out vertices for any call to P . The algorithm starts by
asserting that a same-level realizable path of length zero exists from any formal-out vertex
to itself. A worklist is used to select a path, and extend it by adding an edge to its beginning.
Reps et al. [129] also present a demand version of their algorithm, which incrementally
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determines the summary edges of an SDG.

Lakhotia [103] presents an algorithm for computing interprocedural slices that is also
based on SDGs. This algorithm computes slices that are identical to the slices computed by
the Horwitz-Reps-Binkley algorithm. Associated with every SDG vertex v is a three-valued
tag; possible values for this tag are: “�” indicating that v has not been visited, “�” indicating
that v has been visited, and all vertices from which v can be reached should be visited, and
“�” indicating that v has been visited, and some of the vertices from which v can be reached
should be visited. More precisely, an edge from an entry vertex to a call vertex should
only be traversed if the call vertex is labeled �. A worklist algorithm is used to visit all
vertices labeled � before visiting any vertex labeled �. When this process ends, vertices
labeled either � or � are in the slice. Lakhotia’s algorithm traverses performs a single pass
through the SDG. However, unlike the Horwitz-Reps-Binkley algorithm, the value of a tag
may change twice. Therefore it is unclear if Lakhotia’s algorithm is really an improvement
over the Horwitz-Reps-Binkley two-pass traversal algorithm.

The dependence graph model of Jackson and Rollins [82] (see Section 3.3.1.3) is “mod-
ular”, in the sense that a single box is used for each procedure call. Instead of linking
the individual dependence graphs for the procedures of the program, Jackson and Rollins
represent procedure calls in a more abstract fashion: the internal dependence edges inside
a procedure’s box effectively correspond to the summary edges of Horwitz et al. [77, 128].
Unlike the previously discussed methods, this algorithm side-steps the calling context prob-
lem by only extending slices to called procedures, and not to calling procedures (unless
explicitly requested by the user). Here, ‘extending a slice to a called procedure’ involves
slicing the (separate) dependence graph for that procedure with respect to the appropriate
ports of its exit node (i.e., corresponding to the ports at the point of call that occur in the
slice).

Whereas for simple statements the internal dependence edges between ports of the
associated box in the dependence graph can be computed in a simple syntax-directed manner,
a more elaborate scheme is required for procedures. In the absence of recursion, the internal
summary dependence edges for a procedure are derived from the dependences inside and
between the boxes for the statements that constitute the procedure body. For recursive
procedures, Jackson and Rollins briefly discuss a simple iterative scheme for determining
internal dependence edges, and state that their algorithm is essentially an adaptation of the
solution presented by Ernst [52] (see Section 3.6). The essence of their scheme is that the
internal dependence edges for non-recursive calls are determined in the manner sketched
above, and that there are initially no internal dependence edges for calls in a recursive cycle.
In each subsequent step, the transitive dependences between the input parameters and the
output parameters of a recursive procedure are recomputed by slicing in a graph that contains
the summary edges determined in the previous cycle. Then, summary edges are added to the
graph for those dependences that did not occur in the previous cycle. This iteration process
terminates when no more additional transitive dependences can be found.
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3.3.3 Unstructured control flow

3.3.3.1 Dataflow equations

Lyle [108] reports that (his version of) Weiser’s algorithm for static slicing yields incorrect
slices in the presence of unstructured control flow: the behavior of the slice is not necessarily
a projection of the behavior of the program. He presents a conservative solution for dealing
with goto statements: any goto that has a non-empty set of relevant variables associated
with it is included in the slice.

Gallagher [60] and Gallagher and Lyle [61] also use a variation of Weiser’s method.
A goto statement is included in the slice if it jumps to a label of an included statement11.
Agrawal [3] shows that this algorithm does not produce correct slices in all cases.

Jiang et al. [83] extend Weiser’s slicing method to C programs with unstructured control
flow. They introduce a number of additional rules to “collect” the unstructured control flow
statements such as goto, break, and continue that are part of the slice. Unfortunately, no
formal justification is given for the treatment of unstructured control flow constructs in [83].
Agrawal [3] shows that this algorithm may also produce incorrect slices.

3.3.3.2 Dependence graphs

Ball and Horwitz [12, 13] and Choi and Ferrante [37] discovered independently that conven-
tional PDG-based slicing algorithms produce incorrect results in the presence of unstructured
control flow: slices may compute values at the criterion that differ from what the original
program does. These problems are due to the fact that the algorithms do not determine cor-
rectly when unconditional jumps such as break, goto, and continue statements are required
in a slice.

As an example, Figure 3.14 (a) shows a variant of our example program, which uses a
goto statement. Figure 3.14 (b) shows the PDG for this program. The vertices that have
a transitive dependence on statement write(product) are highlighted. Figure 3.14
(c) shows a textual representation of the program thus obtained. Clearly, this “slice” is
incorrect because it does not contain the goto statement, causing non-termination. In fact,
the previously described PDG-based algorithms will only include a goto if it is the slicing
criterion itself, because no statement is either data or control dependent on a goto.

The solution of [12, 13] and the first solution presented in [37] are remarkably similar:
unconditional jumps are regarded as pseudo-predicate vertices where the “true” branch
consists of the statement that is being jumped to, and the “false” branch of the textually
next statement. Correspondingly, there are two outgoing edges in the augmented control
flow graph (ACFG). Only one of these edges can actually be traversed during execution;
the other outgoing edge is “non-executable”. In constructing the (augmented) PDG, data
dependences are computed using the (original) CFG, and control dependences are computed

11Actually, this is a slight simplification. Each basic block is partitioned into labeled blocks; a labeled block
is a subsequence of the statements in a basic block starting with a labeled statement, and containing no other
labeled statements. A goto is included in the slice if it jumps to a label for which there is some included
statement in its block.
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read(n);
i := 1;
sum := 0;
product := 1;
while true do
begin

if (i > n) then
goto L;

sum := sum + i;
product := product * i;
i := i + 1

end;
L: write(sum);
write(product)

read(n);
i := 1;

product := 1;
while true do
begin

if (i > n) then
;

product := product * i;
i := i + 1

end;

write(product)

read(n);
i := 1;

product := 1;
while true do
begin

if (i > n) then
goto L;

product := product * i;
i := i + 1

end;
L:
write(product)

(a) (c) (e)

product*i

Entry

read(n) i := 1 sum := 0 product := 1 while(true) write(sum) write(product)

if (i > n) sum+i i := i +1

goto L

sum := product:=

(b)

sum+i

Entry

read(n) i := 1 sum := 0 product := 1 while(true) write(sum) write(product)

if (i > n)

goto L

i := i +1product:=
product*i

sum :=

(d)

Figure 3.14: (a) Program with unstructured control flow, (b) PDG for program of (a), (c) incorrect
slice w.r.t. statement write(product), (d) Augmented PDG for program of (a), (e) correct slice
w.r.t. statement write(product).
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using the ACFG. Slicing is defined in the usual way, as a graph reachability problem. Labels
pertaining to statements excluded from the slice are moved to the closest post-dominating
statement that occurs in the slice.

The main difference between the approach by Ball and Horwitz and the first approach of
Choi and Ferrante is that the latter use a slightly more limited example language: conditional
and unconditional goto’s are present, but no structured control flow constructs. Although
Choi and Ferrante argue that these constructs can be transformed into conditional and
unconditional goto’s, Ball and Horwitz show that, for certain cases, this results in overly
large slices. Both groups present a formal proof that their algorithms compute correct slices.

Figure 3.14 (d) shows the augmented PDG for the program of Figure 3.14 (a); vertices
from which the vertex labeled write(product) can be reached are indicated by shading.
The (correct) slice corresponding to these vertices is shown in Figure 3.14 (e).

Choi and Ferrante distinguish two disadvantages of the slicing approach based on aug-
mented PDGs. First, APDGs require more space than conventional PDGs, and their con-
struction takes more time. Second, non-executable control dependence edges give rise to
spurious dependences in some cases. In their second approach, Choi and Ferrante utilize the
“classical” PDG. As a first approximation, the standard algorithm for computing slices is
used, which by itself produces incorrect results in the presence of unstructured control flow.
The basic idea is that for each statement that is not in the slice, a new goto to its immediate
post-dominator is added. In a separate phase, redundant cascaded goto statements are re-
moved. The second approach has the advantage of computing smaller slices than the first.
A disadvantage of it, however, is that slices may include goto statements that do not occur
in the original program.

Yet another PDG-based method for slicing programs with unstructured control flow was
recently proposed by Agrawal [3]. Unlike the methods by Ball and Horwitz [12, 13] and
Choi and Ferrante [37], Agrawal uses unmodified PDGs. He observes that a conditional
jump statement of the form if P then goto L must be included in the slice if predicate
P is in the slice because another statement in the slice is control dependent on it. The
terminology “conventional slicing algorithm” is adopted to refer to the standard PDG-based
slicing method, with the above extension to conditional jump statements.

Agrawal’s key observation is that an unconditional jump statement J should be included
in the slice if and only if the immediate postdominator of J that is included in the slice differs
from the immediate lexical successor of J that is included in the slice. Here, a statement
S � is a lexical successor of a statement S if S textually precedes S� in the program12.
The statements on which the newly added statement is transitively dependent must also be
added to the slice. The motivation for this approach can be understood by considering a
sequence of statements S1;S2;S3 where S1 and S3 are in the slice, and where S2 contains an
unconditional jump statement to a statement that does not have S3 as its lexical successor.
Suppose that S2 were not included in the slice. Then the flow of control in the slice
would pass unconditionally from S1 to S3, though in the original program this need not

12As Agrawal observes, this notion is equivalent to the non-executable edges in the augmented control flow
graphs used by Ball and Horwitz, and Choi and Ferrante.
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always be the case, because the jump might transfer the control elsewhere. Therefore the
jump statement must be included, together with all statements it depends upon. Agrawal’s
algorithm traverses the postdominator tree of a program in pre-order, and considers jump
statements for inclusion in this order. The algorithm iterates until no jump statements can
be added; this is necessary because adding a jump (and the statements it depend upon) may
change the lexical successors and postdominators in the slice of other jump statements, which
may therefore need to be included as well. Although no proof is stated, Agrawal claims that
his algorithm computes correct slices identical to those computed by the Ball-Horwitz and
Choi-Ferrante algorithms.

Agrawal’s algorithm [3] may be simplified significantly if the only type of jump that
occurs in a program is a structured jump, i.e., a jump to a lexical successor. C break,
continue, and return statements are all structured jumps. First, only a single traversal of
the post-dominator tree is required. Second, jump statements have to be added only if they
are control dependent on a predicate that is in the slice. In this case, the statements they are
dependent upon are already included in the slice. For programs with structured jumps, the
algorithm can be further simplified to a conservative algorithm by including in the slice all
jump statements that are control dependent on a predicate that is in the slice.

Agrawal’s algorithm will include the goto statement of the example program of Fig-
ure 3.14 (a) because it is control dependent on the (included) predicate of the if statement.

3.3.4 Composite data types and pointers

Lyle [108] proposes a conservative solution to the problem of static slicing in the presence
of arrays. Essentially, any update to an element of an array is regarded as an update and a
reference of the entire array.

The PDG variant of Ottenstein and Ottenstein [120] contains a vertex for each sub-
expression; special select and update operators serve to access elements of an array.

In the presence of pointers (and procedures), situations may occur where two or more
variables refer to the same memory location—a phenomenon commonly called aliasing.
Aliasing complicates the computation of slices because the notion of flow dependence
depends on which variables are (potential) aliases. Even in the intraprocedural case, the
problem of determining potential aliases in the presence of multiple-level pointers is an NP-
hard problem [105]. However, slices may be computed using conservative approximations of
data dependences that are based on approximate alias information. Conservative algorithms
for determining potential aliases were presented by Landi and Ryder [104], and Choi, Burke,
and Carini [36].

Horwitz, Pfeiffer, and Reps [71] present a slightly different approach for computing flow
dependences in the presence of pointers. Instead of defining (approximate) flow dependences
in terms of definitions and uses of variables that are potentially aliased, the notion of flow
dependence is defined in terms of potential definitions and uses of abstract memory locations.
An algorithm is presented that computes approximations of the memory layouts that may
occur at each program point during execution.

The PDG-based static slicing algorithm proposed by Agrawal, DeMillo and Spafford [4]
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implements a similar idea to deal with both composite variables and pointers. Their solution
consists of determining reaching definitions for a scalar variable v at node n in the flowgraph
by finding all paths from nodes corresponding to a definition of v to n that do not contain
other definitions of v. When composite data types and pointers are considered, definitions
involve l-valued expressions rather than variables. An l-valued expression is any expression
that may occur as the left-hand side of an assignment. Agrawal et al. present a new definition
of reaching definitions that is based on the layout of memory locations potentially denoted
by l-valued expressions. Memory locations are regarded as abstract quantities (e.g., the
array a corresponds to “locations” a#1$, a#2$,� � �). Whereas a definition for a scalar variable
either does or does not reach a use, the situation becomes more complex when composite
data types and pointers are allowed. For a def-expression e1 and a use-expression e2, the
following situations may occur:

Complete Intersection The memory locations corresponding to e1 are a superset of the
memory locations corresponding to e2. An example is the case where e1 defines the
whole of record b, and e2 is a use of b�f .

Maybe Intersection It cannot be determined statically whether or not the memory locations
of a e1 coincide with those of e2. This situation occurs when e1 is an assignment to
array element a#i$ and e2 is a use of array element a#j$. Pointer dereferencing may
also give rise to Maybe Intersections.

Partial Intersection The memory locations of e1 are a subset of the memory locations of
e2. This occurs for example when some array a is used at e2, and some element a#i$ of
a is defined at e1.

Given these concepts, an extended reaching definition function is defined that traverses the
flowgraph until it finds Complete Intersections, makes worst-case assumptions in the case
of Maybe Intersections, and continues the search for the array or record parts that have not
been defined yet in the case of Partial Intersections.

Lyle and Binkley [110] present an approach for slicing in the presence of pointers that is
based on a variation of symbolic execution. Their algorithm consists of two phases. First, all
CFG nodes are determined that introduce addresses (either due to a use of the C ‘&’ operator,
or due to the dynamic allocation of a new object). These addresses are propagated through
the CFG yielding a set of address values for each pointer at each program point. A number
of propagation rules defines how addresses are propagated by assignments statements13. In
the second phase, the information collected in the first phase is used to determine which
statements should be included in a slice. This second phase is essentially a generalization
of Lyle’s slicing algorithm [108].

Jiang, Zhou and Robson [83] present an algorithm for slicing C programs with pointers
and arrays that is based on Weihl’s notion of dummy variables [142]. The basic idea is that
for each pointer p, the dummy variable �1�p denotes the value pointed to by p, and for each
variable x, ��1�x denotes the address of q. Jiang et al. define data dependences in the usual
way, in terms of definitions and uses of (dummy) variables. Unfortunately, this approach

13In their definitions, Lyle and Binkley only address straight-line code, and argue that control-dependence
issues are “orthogonal” to the data-dependence issues raised by pointers.
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(1) p = &x;
(2) *p = 2;
(3) q = p;
(4) write(*q)

# DEF REF R0
C

1 f p g f (-1)x g �
2 f (1)p g f p g f p, (1)q g
3 f q g f p g f p, (1)q g
4 � f q, (1)q g f q, (1)q g

(1) p = &x;
(2) ;
(3) q = p;
(4)

(a) (b) (c)

Figure 3.15: (a) Example program. (b) Defined variables, used variables, and relevant variables
for this program. (c) Incorrect slice w.r.t. criterion C � h4� f q, (1)q gi.

appears to be flawed14. Figure 3.15 shows an example program, the DEF, REF, and R0
C sets

for each statement, and the incorrect slice computed for criterion C � h4� f q, (1)q gi.
The second statement is incorrectly omitted because it does not define any variable that is
relevant at statement 3.

3.3.5 Concurrency

Cheng [35] considers static slicing of concurrent programs using dependence graphs. He
generalizes the notions of a CFG and a PDG to a nondeterministic parallel control flow net,
and a program dependence net (PDN), respectively. In addition to usual PDG edges, PDNs
also contain edges for selection dependences, synchronization dependences, and commu-
nication dependences. Selection dependence is similar to control dependence but involves
nondeterministic selection statements, such as the ALT statement of Occam-2. Synchroniza-
tion dependence reflects the fact that the start or termination of the execution of a statement
depends on the start or termination of the execution of another statement. Communication
dependence corresponds to situations where a value computed at one program point influ-
ences the value computed at another point through interprocess communication. Static slices
are computed by solving a reachability problem in a PDN. Unfortunately, Cheng does not
clearly state the semantics of synchronization and communication dependence, nor does he
state or prove any property of the slices computed by his algorithm.

An interesting point is that Cheng uses a notion of weak control dependence [123] for the
construction of PDNs. This notion subsumes the standard notion of control dependence; the
difference is that weak control dependences exist between the control predicate of a loop,
and the statements that follows it. For example, the statements on lines 9 and 10 of the
program of Figure 3.1 (a) are weakly (but not strongly) control dependent on the control
predicate on line 5.

14The counterexample of Figure 3.15 was provided by Susan Horwitz.
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3.3.6 Comparison

3.3.6.1 Overview

In this section, the static slicing methods that were presented earlier are compared and
classified. The section is organized as follows: Section 3.3.6.1 summarizes the problems
that are addressed in the literature. Sections 3.3.6.2 and 3.3.6.3 compare the accuracy
and efficiency of slicing methods that address the same problem, respectively. Finally, in
Section 3.3.6.4 possibilities for combining algorithms that deal with different problems are
discussed.

Table 3.2 provides an overview of the most significant slicing algorithms that can be found
in the literature. For each paper, the table lists the computation method used and indicates: (i)
whether or not interprocedural slices can be computed, (ii) the control flow constructs under
consideration, (iii) the data types under consideration, and (iv) whether or not concurrency
is considered. It is important to realize that the entries of Table 3.2 only indicate the
problems that have been addressed; the table does not indicate the “quality” of the solutions
(with the exception that incorrect solutions are indicated by footnotes). Moreover, the table
also does not indicate which algorithms may be combined. For example, the Horwitz-
Reps-Binkley interprocedural slicing algorithm [77] could in principle be combined with
any of the dependence graph based slicing methods for dealing with unstructured control
flow [13, 3, 37]. Possibilities for such combinations are investigated to some extent in
Section 3.3.6.4. The work by Ernst [52] and by Field et al. (see Chapters 4 and 5) that occurs
in Table 3.2 relies on substantially different techniques than those used for the static slicing
algorithms discussed previously, and will therefore be studied separately in Section 3.6.

Kamkar [86] distinguishes between methods for computing slices that are executable
programs, and those for computing slices that consist of a set of “relevant” statements. We
agree with the observation by Horwitz et al. [77], that for static slicing of single-procedure
programs this is merely a matter of presentation. However, for multi-procedure programs, the
distinction is significant, as was remarked in Section 3.3.2.3. Nevertheless, we believe that
the distinction between executable and non-executable interprocedural slices can be ignored
in this case as well, because the problems are strongly related: Binkley [30] describes how
precise executable interprocedural static slices can be obtained from the non-executable
interprocedural slices computed by the algorithm of Horwitz et al. [77].

A final remark here concerns I/O statements. The slices computed by Weiser’s algorithm
[147] and the algorithm by Bergeretti and Carré [22] never contain output statements because:
(i) the DEF set of an output statement is empty so that no other statement is data dependent
on it, and (ii) no statement is control dependent on an output statement. Horwitz and Reps
[76] suggest a way for making an output value dependent on all previous output values by
treating a statement write(v) as an assignment output := output || v, where
output is a string-valued variable containing all output of the program, and ‘||’ denotes
string concatenation. Output statements can be included in the slice by including output
in the set of variables in the criterion.
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Weiser [147, 107] D yes S S no
Lyle [108] D no A S, A no
Gallagher, Lyle [60, 61] D no Ad S no
Jiang et al. [83] D yes Ad S, A, Pe no
Lyle, Binkley [110] D no Sf S, P no
Hausler [67] F no S S no
Bergeretti, Carré [22] I yesg S S no
Ottenstein [120] G no S S, A no
Horwitz et al. [74, 130, 75] G no S S no
Horwitz et al. [77] G yes S S no
Binkley [31] G yesh S S no
Binkley [32] G yesi S S no
Jackson, Rollins [82, 81] G yes S S no
Reps et al. [129, 128] G yes S S no
Lakhotia [103] G yes S S no
Agrawal et al. [4] G no S S, A, P no
Ball, Horwitz [12, 13] G no A S no
Choi, Ferrante [37] G no A S no
Agrawal [3] G no A S no
Cheng [35] G no S S yes
Ernst [52] O yes A S, A, P no
Field et al. (Chap. 5) R no S S, P no

aD = dataflow equations, F = functional/denotational semantics, I = information-flow rela-
tions, G = reachability in a dependence graph, O = dependence graphs in combination with
optimization techniques (see Section 3.6). R = dependence tracking in term graph rewriting
systems (see Section 3.6).
bS = structured, A = arbitrary.
cS = scalar variables, A = arrays/records, P = pointers.
dSolution incorrect (see [3]).
eSolution incorrect (see Section 3.3.4).
fOnly straight-line code is considered.
gNon-recursive procedures only.
hTakes parameter aliasing into account.
iProduces slices that are executable programs.

Table 3.2: Overview of static slicing methods.
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3.3.6.2 Accuracy

An issue that complicates the comparison of the static slicing methods discussed previously
is the fact that some methods allow more general slicing criteria than others. For slicing
methods based on dataflow equations and information-flow relations, a slicing criterion
consists of a pair hs� V i, where s is a statement and V an arbitrary set of variables. In
contrast, with the exception of the “modular” PDGs of Jackson and Rollins [82], the slicing
criteria of PDG-based slicing methods effectively correspond to a pair hs�VARS�s�i, where
s is a statement and VARS�s� the set of all variables defined or used at s.

However, a PDG-based slicing method can compute a slice with respect to a criterion
hs� V i for arbitrary V by performing the following three steps. First, the CFG node n
corresponding to PDG vertex s is determined. Second, the set of CFG nodesN corresponding
to all definitions that reach a variable in V at node n are determined. Third, the set of PDG
vertices S corresponding to the set of CFG nodes N is determined; the desired slice consists
of all vertices from which a vertex in S can be reached. Alternatively, one could insert
a statement v:�e at the point of interest, where v is some dummy variable that did not
occur previously in the program, and e is some expression containing all variables in V ,
re-construct the PDG, and slice with respect to the newly added statement. Having dealt
with this issue, some conclusions regarding the accuracy of static slicing methods can now
be stated:

basic algorithms. For intraprocedural static slicing, the accuracy of methods based on
dataflow equations [147] (see Section 3.3.1.1) information-flow relations [22] (see Sec-
tion 3.3.1.2), and PDGs [120] (see Section 3.3.1.3) is essentially the same, although the
presentation of the computed slices differs: Weiser defines his slice to be an executable
program, whereas in the other two methods slices are defined as a subset of statements of
the original program.

procedures. Weiser’s interprocedural static slicing algorithm [147] is inaccurate for two
reasons, which can be summarized as follows. First, the interprocedural summary informa-
tion used to approximate the effect of a procedure call establishes relations between the set
of all input parameters, and the set of all output parameters; by contrast, the approaches
of [22, 77, 79, 129, 128] determine for each output parameter precisely which input pa-
rameters it depends upon. Second, the algorithm fails to take the call-return structure of
interprocedural execution paths into account. These problems are addressed in detail in
Section 3.3.2.1.

The algorithm by Bergeretti and Carré [22] does not compute truly interprocedural
slices because only the main program is being sliced. Moreover, the it is not capable of
handling recursive programs. Bergeretti-Carré slices are accurate in the sense that: (i) exact
dependences between input and output parameters are used, and (ii) the calling-context
problem does not occur.

The solutions of [79, 77, 129, 128] compute accurate interprocedural static slices, and
are capable of handling recursive programs (see Sections 3.3.2.2 and 3.3.2.3). Ernst [52] and
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Jackson and Rollins [82] also present a solution for accurate interprocedural static slicing,
but do not present of proof of correctness.

Binkley extended the Horwitz-Reps-Binkley algorithm [77] in two respects: a solution
for interprocedural static slicing in the presence of parameter aliasing [31], and a solution
for obtaining executable interprocedural static slices [30].

unstructured control flow. Lyle’s method for computing static slices in the presence of
unstructured control flow is very conservative (see Section 3.3.3.1). Agrawal [3] has shown
that the solutions proposed by Gallagher and Lyle [60, 61] and by Jiang et al. are incorrect
[83]. Precise solutions for static slicing in the presence of unstructured control flow have
been proposed by Ball and Horwitz [12, 13], Choi and Ferrante [37], and Agrawal [3] (see
Section 3.3.3.2). It is our conjecture that these three approaches are equally accurate.

composite variables and pointers. A number of solutions for slicing in the presence of
composite variables and pointers were discussed in Section 3.3.4. Lyle [108] presented a
very conservative algorithm for static slicing in the presence of arrays. The approach by
Jiang et al. [83] for slicing in the presence of arrays and pointers was shown to be incorrect.
Lyle and Binkley [110] present an approach for computing accurate slices in the presence of
pointers, but only consider straight-line code. Agrawal et al. propose an algorithm for static
slicing in the presence of arrays and pointers that is more accurate than Lyle’s algorithm
[108].

concurrency. The only approach for static slicing of concurrent programs was proposed
by Cheng (see Section 3.3.5).

3.3.6.3 Efficiency

Below, the efficiency of the static slicing methods that were studied earlier will be addressed:

basic algorithms. Weiser’s algorithm for intraprocedural static slicing based on dataflow
equations [147] can determine a slice in O�v � n � e� time15, where v is the number of
variables in the program, n the number of vertices in the CFG, and e the number of edges in
the CFG.

Bergeretti and Carré [22] report that the �S relation for a statement S can be computed
in O�v2 � n�. From �S, the slices for all variables at S can be obtained in constant time.

Construction of a PDG essentially involves computing all data dependences and control

15Weiser [147] states a bound ofO�n� e� log�e��. However, this is a bound on the number of “bit-vector”
steps performed, where the length of each bit-vector is O�v�. We have multiplied the cost by O�v� to account
for the cost of such bit-vector operations. The problem of determining relevant variables is similar to that
of determining possibly-uninitialized variables. Using the transformation technique of Reps et al. [129] this
information can be computed in O�v � e� time. The process of determining relevant variables is repeated
at most O�n� times due to the inclusion in the slice of branch statements with indirect relevance. Hence, an
improved bound for Weiser’s algorithm is O�v � n� e�.



3.3. Methods for static slicing 65

dependences in a program. For structured programs, control dependences can be determined
in a syntax-directed fashion, in O�n�. In the presence of unstructured control flow, the
control dependences of a single-procedure program can be computed in O�e� in practice
[40, 84]. Computing data dependences essentially corresponds to determining the reaching
definitions for each use. For scalar variables, this can be accomplished in O�e� d�, where
d is the number of definitions in the program (see, e.g., [129]). From d � n it follows that a
PDG can be constructed in O�e� n� time.

One of the self-evident advantages of PDG-based slicing methods is that, once the PDG
has been computed, slices can be extracted in linear time, O�V �E�, where V and E are the
number of vertices and edges in the slice, respectively. This is especially useful if several
slices of the same program are required. In the worst case, when the slice consists of the entire
program, V and E are equal to the number of vertices and edges of the PDG, respectively.
In certain cases, there can be a quadratic blowup in the number of flow dependence edges of
a PDG, e.g., E � O�V 2�. We are not aware of any slicing algorithms that use more efficient
program representations such as the SSA form [8]. However, Yang et al. [149] use Program
Representation Graphs as a basis for a program integration algorithm that accommodates
semantics-preserving transformations. This algorithm is based on techniques similar to
slicing.

procedures. In the discussion below, Visible denotes the maximal number of parameters
and variables that are visible in the scope of any procedure, and Params denotes the maximum
number of formal-in vertices in any procedure dependence graph of the SDG. Moreover,
TotalSites is the total number of call sites in the program; Np and Ep denote the number of
vertices and edges in the CFG of procedure p, and Sitesp the number of call sites in procedure
p.

Weiser does not state an estimate of the complexity of his interprocedural slicing algo-
rithm [147]. However, one can observe that for an initial criterion C, the set of criteria in
(UP � DOWN)*(C) contains at most O�Visible� criteria in each procedure p. An intrapro-
cedural slice of procedure p takes time O�Visible � Np � Ep�. Furthermore, computation
of interprocedural summary information can be done in O�Globals � TotalSites� time [39].
Therefore, the following expression constitutes an upper bound for the time required to slice
the entire program:

O�Globals � TotalSites � Visible2 � Σp�Sitesp �Np � Ep��

The approach by Bergeretti and Carré requires that, in the worst case, the � relation is
computed for each procedure. Each call site is replaced by at most Visible assignments.
Therefore, the cost of slicing a procedure p is O�Visible2 � �n � Visible � Sitesp��, and the
total cost of computing a slice of the main program is:

O�Visible2 � Σp�n� Visible � Sitesp��

As was discussed in Section 3.3.2.1, the approach by Hwang, Du, and Chou may require
time exponential in the size of the program.
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Construction of the individual procedure dependence graphs of an SDG takes time
O�Σp�Ep � Np��. The Horwitz-Reps-Binkley algorithm for computing summary edges
takes time:

O�TotalSites � EPDG � Params � TotalSites � Sites2 � Params4�

where Sites is the maximum number of call sites in any procedure, andEPDG is the maximum
number of control and data dependence edges in any procedure dependence graph. (for
details, see [77, 128]). The Reps-Horwitz-Sagiv-Rosay approach for computing summary
edges requires

O�P � EPDG � Params � TotalSites � Params3�

time [128]. Here, P denotes the number of procedures in the program. Assuming that
the number of procedures P is usually much less than the number of procedure calls
TotalSites, both terms of the complexity measure of the Reps-Horwitz-Sagiv-Rosay approach
are asymptotically smaller than those of the Horwitz-Reps-Binkley algorithm.

Once an SDG has been constructed, a slice can be extracted from it (in two passes) in
O�V � E�, where V and E are the number of vertices and edges in the slice, respectively.
In the worst case, V and E are the number of vertices and edges in the SDG, respectively.

Binkley does not state a cost estimate of his algorithm for interprocedural slicing in the
presence of parameter aliasing [31]. The cost of his “extension” for deriving executable
interprocedural slices [30] from “non-executable” interprocedural slices is linear in the size
of the SDG.

Jackson and Rollins [82], who use an adaptation of Ernst’s algorithm for determining
summary dependences (see Section 3.3.2.3) claim a bound of O�v � n2�, where v denotes
the number of variables, and n the number of ports in the dependence graph. Observe that
each port is effectively a pair hvariable� statementi). In the approach by Jackson and Rollins,
extraction of a slice is done in a single traversal of the dependence graph, which requires
O�V � E� time, where V and E denote the number of vertices (i.e., ports) and edges in the
slice.

unstructured control flow. Lyle [108] presented a conservative solution for dealing with
unstructured control flow. His algorithm is a slightly modified version of Weiser’s algorithm
for structured control flow [147], which requires O�v � n� e� time.

No complexity estimates are stated in [3, 13, 37]. However, the differences between
these algorithms and the “standard” PDG-based slicing algorithm are only minor: Ball and
Horwitz [13] and Choi and Ferrante [37] use a slightly different control dependence subgraph
in conjunction with the data dependence subgraph, and Agrawal [3] uses the standard PDG
in conjunction with a lexical successor tree that can be constructed in linear time, O�n�.
Therefore it is to be expected that the efficiency of these algorithms is roughly equivalent to
that of the standard, PDG-based algorithm discussed above.

composite variables and pointers. Lyle’s approach for slicing in the presence of arrays
[108] has the same complexity bound as Weiser’s solution [147] for scalar variables only,
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Dataflow Weiser [147, 107] Lyle [108] Lyle [108] —
Equations
Inf.-Flow Bergeretti, Carré [22] — — —
Relations

Horwitz et al. [77] Ball, Horwitz [12, 13] Agrawal et al.[4]a Cheng [35]
PDG-based Lakhotia [102] Choi, Ferrante [37]

Reps et al. [129, 128] Agrawal [3]
Binkley [30]

aAlgorithms for computing conservative approximations of data dependences in the
presence of aliasing can be used. See Section 3.3.4.

Table 3.3: Orthogonal dimensions of static slicing.

because the worst-case length of reaching definitions paths remains the same.
The cost of constructing PDGs of programs with composite variables and pointers ac-

cording to the algorithm proposed by Agrawal et al. [4] is the same as that of constructing
PDGs of programs with scalar variables only. This is the case because the worst-case
length of (potential) reaching definitions paths remains the same, and determining Maybe
Intersections and Partial Intersections (see Section 3.3.4) can be done in constant time.

Lyle and Binkley do not state a cost estimate for their approach for slicing in the presence
of pointers [110].

It should be remarked here that more accurate static slices can be determined in the
presence of non-scalar variables if more advanced (but computationally expensive) data
dependence analysis were performed (see, e.g., [113, 150]).

concurrency. Cheng [35] does not state any complexity estimate for determining selection,
synchronization, and communication dependence. The time required for extracting slices is
O�V �E�, where V andE denote the number of vertices and edges in the PDN, respectively.

3.3.6.4 Combining static slicing algorithms

Table 3.3 highlights “orthogonal” dimensions of static slicing: dealing with procedures,
unstructured control flow, non-scalar variables, and concurrency. For each computation
method, the table shows which papers present a solution for these problems. In principle,
solutions to different problems could be combined if they appear in the same row of Table 3.3
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11 read(n)
22 i := 1
33 i <= n /* 1 <= 2 /*
44 (i mod 2 = 0) /* 1 mod 2 = 1 /*
65 x := 18
76 i := i + 1
37 i <= n /* 2 <= 2 /*
48 (i mod 2 = 0) /* 2 mod 2 = 0 /*
59 x := 17
710 i := i + 1
311 i <= n /* 3 <= 2 /*
812 write(x)

DU � f h11� 33i� h11� 37i� h11� 311i�
h22� 33i� h22� 44i� h22� 76i�
h76� 37i� h76� 48i� h76� 710i�
h59� 812i� h710� 311i g

TC � f h33� 44i� h33� 65i� h33� 76i�
h44� 65i� h37� 48i� h37� 59i�
h37� 710i� h48� 59i g

IR � f h33� 37i� h33� 311i� h37� 33i�
h37� 311i� h311� 33i� h311� 37i�
h44� 48i� h48� 44i� h76� 710i�
h710� 76i g

(a) (b)

Figure 3.16: (a) Trajectory for the example program of Figure 3.2 (a) for input n = 2. (b)
Dynamic Flow Concepts for this trajectory.

(i.e., if they apply to the same computation method).

3.4 Methods for dynamic slicing

3.4.1 Basic algorithms

In this section, we will study basic algorithms for dynamic slicing of structured, single-
procedure programs with scalar variables.

3.4.1.1 Dynamic flow concepts

Korel and Laski [99, 100] describe how dynamic slices can be computed. They formalize the
execution history of a program as a trajectory consisting of a sequence of “occurrences” of
statements and control predicates. Labels serve to distinguish between different occurrences
of a statement in the execution history. As an example, Figure 3.16 shows the trajectory for
the program of Figure 3.2 (a) for input n = 2.

A dynamic slicing criterion is specified as a triple hx� Iq� V i where x denotes the input
of the program, statement occurrence Iq is the qth element of the trajectory, and V is a
subset of the variables of the program16. Korel and Laski define a dynamic slice with respect

16Korel and Laski’s definition of a dynamic slicing criterion is somewhat inconsistent. It assumes that a
trajectory is available although the input x uniquely defines this. A self-contained and minimal definition of a
dynamic slicing criterion would consist of a triple hx� q� V i where q is the number of a statement occurrence
in the trajectory induced by input x.
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to a criterion hx� Iq� V i as an executable program S that is obtained from a program P
by removing zero or more statements. Three restrictions are imposed on S. First, when
executed with input x, the trajectory of S is identical to the trajectory of P from which
all statement instances are removed that correspond to statements that do not occur in S.
Second, identical values are computed by the program and its slice for all variables in V at
the point specified in the criterion. Third, it is required that statement I corresponding to
statement instance Iq specified in the slicing criterion occurs in S. Korel and Laski observe
that their notion of a dynamic slice has the property that if a loop occurs in the slice, it is
traversed the same number of times as in the original program.

In order to compute dynamic slices, Korel and Laski introduce three dynamic flow
concepts that formalize the dependences between occurrences of statements in a trajectory.
The Definition-Use (DU) relation associates a use of a variable with its last definition.
Note that in a trajectory, this definition is uniquely defined. The Test-Control (TC) relation
associates the most recent occurrence of a control predicate with the statement occurrences
in the trajectory that are control dependent upon it. This relation is defined in a syntax-
directed manner, for structured program constructs only. Occurrences of the same statement
are related by the symmetric Identity (IR) relation. Figure 3.16 (b) shows the dynamic flow
concepts for the trajectory of Figure 3.16 (a).

Dynamic slices are computed in an iterative way, by determining successive sets Si

of directly and indirectly relevant statements. For a slicing criterion hx� Iq� V i, the initial
approximation S0 contains the last definitions of the variables in V in the trajectory before
statement instance Iq, as well as the test actions in the trajectory on which Iq is control
dependent. Approximation Si�1 is defined as follows:

Si�1 � Si � Ai�1

where Ai�1 is defined as follows:

Ai�1 � fXp j Xp 
� Si� hXp� Y ti � �DU � TC � IR� for some Y t � Si� p � q g

where q is the “label” of the statement occurrence specified in the slicing criterion. The
dynamic slice is easily obtained from the fixpoint SC of this process (as q is finite, this
always exists): any statement X for which an instance Xp occurs in SC will be in the slice.
Furthermore, statement I corresponding to criterion Iq is added to the slice.

As an example, the dynamic slice for the trajectory of Figure 3.16 and the criterion
hn � 2� 812� f x gi is computed. Since the final statement is not control dependent on any
other statement, the initial approximation of the slice consists of the last definition of x:
A0 � f59 g. Subsequent iterations will produce A1 � f37� 48 g, A2 � f76� 11� 33� 311� 44 g,
and A3 � f 22� 710 g. From this, it follows that:

SC � f 11� 22� 33� 44� 76� 37� 48� 59� 710� 311� 812 g

Thus, the dynamic slice with respect to criterion hn � 2� 812� f x gi includes every statement
except statement 5, corresponding to statement 65 in the trajectory. This slice was shown
earlier in Figure 3.2 (b).
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11 read(n)
22 i := 1
33 i <= n
44 (i mod 2 = 0)
65 x := 18
76 i := i + 1
37 i <= n
88 write(x)

DU � f h11� 33i� h11� 37i�
h22� 33i� h22� 44i�
h22� 76i� h65� 88i�
h76� 37i g

TC � f h33� 44i� h33� 65i�
h33� 76i� h44� 65i g

IR � f h33� 37i� h37� 33i g

(a) (b)

read(n);
i := 1;
while (i �� n) do
begin

if (i mod 2 = 0) then
x := 17

else
;

i := i + 1
end;
write(x)

read(n);
i := 1;
while (i �� n) do
begin

if (i mod 2 = 0) then
x := 17

else
;

end;
write(x)

(c) (d)

Figure 3.17: (a) Trajectory of the example program of Figure 3.2 (a) for input n = 1. (b) Dynamic
flow concepts for this trajectory. (c) Dynamic slice for criterion hn � 1� 88� xi. (d) Non-terminating
slice with respect to the same criterion obtained by ignoring the effect of the IR relation.

The role of the IR relation calls for some clarification. Consider the trajectory of the
example program of Figure 3.2 (a) for input n = 1, shown in Figure 3.17 (a). The dynamic
flow concepts for this trajectory, and the slice with respect to criterion hn � 1� 88� f x gi
are shown in Figure 3.17 (b) and (c), respectively. Note that the slice thus obtained is
a terminating program. However, computing the slice without taking the IR relation into
account would yield the non-terminating program of Figure 3.17 (d). The reason for this
phenomenon (and thus for introducing the IR relation) is that the DU and TC relations only
traverse the trajectory in the backward direction. The purpose of the IR relation is to traverse
the trajectory in both directions, and to include all statements and control predicates that are
necessary to ensure termination of loops in the slice. Unfortunately, no proof is provided
that this is always sufficient.

Unfortunately, traversing the IR relation in the “backward” direction causes inclusion
of statements that are not necessary to preserve termination. For example, Figure 3.18
(a) shows a slightly modified version of the program of Figure 3.2 (a). Figure 3.18 (b)
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(1) read(n);
(2) i := 1;
(3) while (i �� n) do

begin
(4) if (i mod 2 = 0) then
(5) x := 17

else
(6) x := 18;
(7) z := x;
(8) i := i + 1

end;
(9) write(z)

11 read(n)
22 i := 1
33 i <= n
44 (i mod 2 = 0)
65 x := 18
76 z := x
87 i := i + 1
38 i <= n
49 (i mod 2 = 0)
510 x := 17
711 z := x
812 i := i + 1
313 i <= n
914 write(z)

(a) (b)

Figure 3.18: (a) Example program. (b) Trajectory for input n = 2.

shows the trajectory for this program. From this trajectory, it follows that h76� 711i � IR,
h65� 76i � DU, and h510� 711i � DU. Therefore, both statements (5) and (6) will be included
in the slice, although statement (6) is neither needed to compute the final value of z nor to
preserve termination.

We conjecture that restricting the IR relation to statement instances that correspond to
control predicates in the program would yield smaller slices. Alternatively, it would be
interesting to investigate if using a dynamic variation of Podgurski and Clarke’s notion of
weak control dependence [123] could be used instead of the IR relation.

3.4.1.2 Dynamic dependence relations

Gopal [62] describes an approach where dynamic dependence relations are used to compute
dynamic slices. He introduces dynamic versions of Bergeretti and Carré’s information-flow
relations17 �S , �S , and �S (see Section 3.3.1.2). The �S relation contains all pairs hv� ei such
that statement e depends on the input value of v when program S is executed. Relation �S
contains all pairs he� vi such that the output value of v depends on the execution of statement
e. A pair hv� v�i is in relation �S if the output value of v� depends on the input value of v. In
these definitions, it is presumed that S is executed for some fixed input.

For empty statements, assignments, and statement sequences Gopal’s dependence rela-
tions are exactly the same as for the static case. The (static) information-flow relations for
a conditional statement are derived from the statement itself, and from the statements that
constitute its branches. For dynamic dependence relations, however, only the dependences
that arise in the branch that is actually executed are taken into account. As in [22], the

17Gopal uses the notation sSv , vSv , and vSs . In order to avoid confusion and to make the relation with Bergeretti
and Carré’s work explicit (see Section 3.3.1.2), we will use �S , �S , and �S instead.
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�� � �
�� � �
�� � ID

�S1;S2 � �S1 � �S1
� �S2

�S1;S2
� �S1

� �S2
� �S2

�S1;S2
� �S1

� �S2

�v:�e � VARS�e�� f e g
�v:�e � f he� vi g
�v:�e � �VARS�e�� f v g� � �ID � hv� vi�

�if e then S1 else S2 �

�
�VARS�e�� f e g� � �S1

�VARS�e�� f e g� � �S2

if e evaluates to true
if e evaluates to false

�if e then S1 else S2
�

�
�f e g � DEFS�S1�� � �S1

�f e g � DEFS�S2�� � �S2

if e evaluates to true
if e evaluates to false

�if e then S1 else S2
�

�
�VARS�e�� DEFS�S1�� � �S1

�VARS�e�� DEFS�S2�� � �S2

if e evaluates to true
if e evaluates to false

Figure 3.19: Definition of dynamic dependence relations.

EXPRESSION #a AFFECTED VARIABLES

1 f i� n� x g
2 f i� x g
3 f i� x g
4 f i� x g
5 f x g
6 �
7 f i� x g
8 �

aExpressions are indicated by the line numbers in Figure 3.2.

Figure 3.20: The � relation for the example program of Figure 3.2 (a) and input n = 2.

dependence relation for a while statement (omitted here) is expressed in terms of depen-
dence relations for nested conditionals with equivalent behavior. However, whereas in the
static case loops are effectively replaced by their infinite unwindings, the dynamic case only
requires that a loop be unwound k times, where k is the number of times the loop executes.
The resulting definitions are very convoluted because the dependence relations for the body
of the loop may differ in each iteration. Hence, a simple transitive closure operation, as was
used in the static case, is insufficient.

Figure 3.19 summarizes Gopal’s dynamic dependence relations. Here, DEFS�S� denotes
the set of variables that is actually modified by executing statement S. Note that this
definition of DEFS is “dynamic” in the sense that it takes into account which branch of an
if statement is executed. Using these relations, a dynamic slice w.r.t. the final value of a
variable v is defined as:

�Pv � fe j he� vi � �Pg

Figure 3.20 (a) shows the information-flow relation � for the (entire) program of Fig-
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read(n);
i := 1;
while (i �� n) do
begin

if (i mod 2 = 0) then

else
x := 18;

end;

read(n);
i := 1;
while (i �� n) do
begin

if (i mod 2 = 0) then
x := 17

else
;

z := x;
i := i + 1

end;

(a) (b)

Figure 3.21: (a) Non-terminating slice computed for example program of Figure 3.2 (a) with
respect to the final value of x, for input n = 1. (b) Slice for the example program of Figure 3.18
(a) with respect to the final value of x, for input n = 2.

ure 3.2 (a)18. From this relation it follows that the set of expressions that affect the value of
x at the end of the program for input n = 2 are f 1� 2� 3� 4� 5� 7 g. The corresponding
dynamic slice is almost identical to the one shown in Figure 3.1 (b), the only difference
being the fact that Gopal’s algorithm excludes the final statement write(x) on line 8.

For certain cases, Gopal’s algorithm may compute a non-terminating slice of a terminat-
ing program. Figure 3.21 (a) shows the slice for the program of Figure 3.2 and input n =
1 as computed according to Gopal’s algorithm.

An advantage of using dependence relations is that, for certain cases, smaller slices are
computed than by Korel and Laski’s algorithm. For example, Figure 3.21 (b) shows the slice
with respect to the final value of z for the example program of Figure 3.18 (a), for input n
= 2. Observe that the assignment x := 18, which occurs in the slice computed by the
algorithm of Section 3.4.1.1, is not included in Gopal’s slice.

3.4.1.3 Dependence graphs

Miller and Choi [116] were the first to introduce a dynamic variation of the PDG, called
the dynamic program dependence graph. These graphs are used by their parallel program
debugger to perform flowback analysis [15] and are constructed incrementally, on demand.
Prior to execution, a (variation of a) static PDG is constructed, and the object code of
the program is augmented with code that generates a log file. In addition, an emulation
package is generated. Programs are partitioned into so-called emulation blocks (typically,
a subroutine). During debugging, the debugger uses the log file, the static PDG, and the

18Gopal does not define information-flow relations for I/O statements. For the purposes of this example, it
is assumed that the statement read(n) can be treated as an assignment n := SomeConstant, and that the
statements write(sum) and write(product) should be treated as empty statements.
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emulation package to re-execute an emulation block, and obtain the information necessary
to construct the part of the dynamic PDG corresponding to that block. In case the user wants
to perform flowback analysis to parts of the graph that have not been constructed yet, more
emulation blocks are re-executed.

Agrawal and Horgan [6] develop an approach for using dependence graphs to compute
dynamic slices. Their first two algorithms for computing dynamic slices are inaccurate, but
useful for understanding their final approach. The initial approach uses the PDG as it was
discussed in Section 3.3.1.319, and marks the vertices that are executed for a given test set.
A dynamic slice is computed by computing a static slice in the subgraph of the PDG that is
induced by the marked vertices. By construction, this slice only contains vertices that were
executed. This solution is imprecise because it does not detect situations where there exists
a flow edge in the PDG between a marked vertex v1 and a marked vertex v2, but where the
definitions of v1 are not actually used at v2.

For example, Figure 3.22 (a) shows the PDG of the example program of Figure 3.2 (a).
Suppose that we want to compute the slice w.r.t. the final value of x for input n = 2.
All vertices of the PDG are executed, causing all PDG vertices to be marked. The static
slicing algorithm of Section 3.3.1.3 will therefore produce the entire program as the slice,
even though the assignment x := 18 is irrelevant. This assignment is included in the slice
because there exists a dependence edge from vertex x := 18 to vertex write(x) even
though this edge does not represent a dependence that occurs during the second iteration of
the loop. More precisely, this dependence only occurs in iterations of the loop where the
control variable i has an odd value.

The second approach consists of marking PDG edges as the corresponding dependences
arise during execution. Again, the slice is obtained by traversing the PDG, but this time
only along marked edges. Unfortunately, this approach still produces imprecise slices in the
presence of loops because an edge that is marked in some loop iteration will be present in all
subsequent iterations, even when the same dependence does not recur. Figure 3.22 (b) shows
the PDG of the example program of Figure 3.18 (a). For input n = 2, all dependence edges
will be marked, causing the slice to consist of the entire program. It is shown in [6] that
a potential refinement of the second approach, consisting of unmarking edges of previous
iterations, is incorrect.

Agrawal and Horgan point out the interesting fact that their second approach for com-
puting dynamic slices produces results that are identical to those of the algorithm proposed
by Korel and Laski (see Section 3.4.1.1). However, the PDG of a program (with option-
ally marked edges) requires only O�n2� space (n denotes the number of statements in the
program), whereas Korel and Laski’s trajectories require O�N� space, where N denotes the
number of executed statements.

Agrawal and Horgan’s second approach computes overly large slices because it does not
account for the fact that different occurrences of a statement in the execution history may
be (transitively) dependent on different statements. This observation motivates their third

19The dependence graphs of [6] do not have an entry vertex. The absence of an entry vertex does not result
in a different slice. For reasons of uniformity, all dependence graphs shown in this thesis have an entry vertex.
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if (i mod 2 = 0)

Entry

read(n) i := 1 while (i <= n) write(x)

i := i + 1

x := 17 x := 18

if (i mod 2 = 0)

Entry

read(n) i := 1 write(z)

z := x i := i + 1

x := 17 x := 18

while (i <= n)

(a) (b)

x := 18

Entry

read(n) i  := 1 write(z)

i := i + 1 i := i + 1

z := x z := x

x := 17

while (i <= n) while (i <= n) while (i <= n)

if (i mod 2 = 0)if (i mod 2 = 0)

(c)

Figure 3.22: (a) PDG of the program of Figure 3.2 (a). (b) PDG of the program of Figure 3.18
(a). (c) DDG of the program of Figure 3.18 (a).

solution: create a distinct vertex in the dependence graph for each occurrence of a statement
in the execution history. This kind of graph is referred to as a Dynamic Dependence Graph
(DDG). A dynamic slicing criterion is identified with a vertex in the DDG, and a dynamic
slice is computed by determining all DDG vertices from which the criterion can be reached.
A statement or control predicate is included in the slice if the criterion can be reached from
at least one of the vertices for its occurrences.

Figure 3.22 (c) shows the DDG for the example program of Figure 3.18 (a). The slicing
criterion corresponds to the vertex labeled write(z), and all vertices from which this
vertex can be reached are indicated by shading. Observe that the criterion cannot be reached
from the vertex labeled x := 18. Therefore the corresponding assignment is not in the
slice.

The disadvantage of using DDGs is that the number of vertices in a DDG is equal to
the number of executed statements. The number of dynamic slices, however, is in the worst
case O�2n�, where n is the number of statements in the program being sliced. Figure 3.23
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program Qn;
read(x1);
� � �
read(xn);
MoreSubsets := true;
while MoreSubsets do
begin
Finished := false;
y := 0;
while not(Finished) do
begin
read(i);
case (i) of
1: y := y + xi;
� � �
n: y := y + xn;

end;
read(Finished);

end;
write(y);
read(MoreSubsets);

end
end.

Figure 3.23: Program Qn with O�2n� different dynamic slices.

shows a program Qn that has O�2n� dynamic slices. The program reads a number of values
in variables xi �1 � i � n�, and allows one to compute the sum

P
x�S x, for any number of

subsets S 	 f x1� � � � � xn g. The crucial observation here is that, in each iteration of the
outer loop, the slice with respect to statementwrite(y)will contain exactly the statements
read(xi) for xi � S. Since a set with n elements has 2n different subsets, program Qn has
O�2n� different dynamic slices.

Agrawal and Horgan propose to reduce the number of vertices in the DDG by merging
vertices for which the transitive dependences map to the same set of statements. In other
words, a new vertex is only introduced if it can create a new dynamic slice. Obviously, this
check involves some run-time overhead. The resulting graph is referred to as the Reduced
Dynamic Dependence Graph (RDDG) of a program. Slices computed using RDDGs have
the same precision as those computed using DDGs.

In the DDG of Figure 3.22 (c), the vertices labeled i := i + 1 and the rightmost
two vertices labeled i <= n have the same transitive dependences; these vertices depend
on statements 1, 2, 3, and 8 of the program of Figure 3.18 (a). Hence, the RDDG for this
program (given input n = 2) is obtained by merging these four DDG vertices into one
vertex.

Agrawal and Horgan [6] present an algorithm for the construction of an RDDG without
having to keep track of the entire execution history. The information that needs to be
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maintained is: (i) for each variable, the vertex corresponding to its last definition, (ii) for
each predicate, the vertex corresponding to its last execution, and (iii) for each vertex in the
RDDG, the dynamic slice w.r.t. that vertex.

3.4.2 Procedures

Agrawal, DeMillo and Spafford [4] consider dynamic slicing of procedures with call-by-
value, call-by-reference, call-by-result, and call-by-value-result parameter-passing. A key
property of their method is that dynamic data dependences are defined in terms of definitions
and uses of memory locations; this has the advantage that global variables do not require
special treatment, and that no alias analysis is necessary. Agrawal et al. describe how each
parameter passing mechanism can be modeled by a set of mock assignments that is inserted
before and/or after each procedure call. In the subsequent discussion, it is assumed that a
procedure P with formal parameters f1� � � � � fn is called with actual parameters a1� � � � � an.
Call-by-value parameter-passing can be modeled by a sequence of assignments f1:�a1;
� � �; fn:�an that is executed before the procedure is entered. In order to determine the
memory cells for the correct activation record, the USE sets for the actual parameters ai are
determined before the procedure is entered, whereas the DEF sets for the formal parameters
fi are determined after the procedure is entered. For Call-by-value-result parameter-passing,
additional assignments of formal parameters to actual parameters have to be performed upon
exit from the procedure. Call-by-reference parameter-passing does not require any actions
specific to dynamic slicing, as the same memory cell is associated with corresponding actual
and formal parameters ai and fi.

An alternative approach for interprocedural dynamic slicing was presented by Kamkar,
Shahmehri, and Fritzson [90, 89]. This work distinguishes itself from the solution by
Agrawal et al. by the fact that the authors are primarily concerned with procedure-level
slices. That is, they study the problem of determining the set of call sites in a program that
affect the value of a variable at a particular call site.

During execution, a (dynamic dependence) summary graph is constructed. The vertices
of this graph, referred to as procedure instances, correspond to procedure activations anno-
tated with their parameters20. The edges of the summary graph are either activation edges
corresponding to procedure calls, or summary dependence edges. The latter type reflects
transitive data and control dependences between input and output parameters of procedure
instances.

A slicing criterion is defined as a pair consisting of a procedure instance, and an input or
output parameter of the associated procedure. After constructing the summary graph, a slice
with respect to a slicing criterion is determined in two steps. First, the parts of the summary
graph from which the criterion can be reached is determined; this subgraph is referred to as
an execution slice. Vertices of an execution slice are partial procedure instances, because

20More precisely, Kamkar refers to the incoming and outgoing variables of a procedure. This notion also
applies to global variables that are referenced or modified in a procedure.
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some parameters may be “sliced away”. An interprocedural program slice consists of all
call sites in the program for which a partial instance occurs in the execution slice.

Three approaches for constructing summary graphs are considered. In the first approach,
intraprocedural data dependences are determined statically: this may result in inaccurate
slices in the presence of conditionals. In the second approach, all dependences are determined
at run-time. While this results in accurate dynamic slices, the dependences for a procedure
P have to be re-computed every time P is called. The third approach attempts to combine
the efficiency of the “static” approach with the accuracy of the “dynamic” approach by
computing the dependences inside basic blocks statically, and the inter-block dependences
dynamically. In all approaches control dependences21 are determined statically. It is unclear
how useful this third approach is in the presence of composite variables and pointers,
where the run-time intra-block dependences cannot be determined statically: additional
alias analysis would have to be performed at run-time.

Kamkar [87] adapts the interprocedural slicing method by Kamkar et al. [90, 89] to
compute statement-level interprocedural slices (i.e., slices consisting of a set of statements
instead of a set of call sites). In essence, this is accomplished by introducing a vertex for
each statement instance (instead of each procedure instance) in the summary graph. The
same three approaches (static, dynamic, combined static/dynamic) for constructing summary
graphs can be used.

Choi, Miller and Netzer [38] discuss an approach for interprocedural flowback analysis.
Initially, it is assumed that a procedure call may modify every global variable; to this end,
the static PDG is augmented with linking edges indicating potential data dependences. In a
second phase, interprocedural summary information is used to either replace linking edges
by data dependence edges, or delete them from the graph. Some linking edges may remain;
these have to be resolved at run-time.

3.4.3 Composite data types and pointers

3.4.3.1 Dynamic flow concepts

Korel and Laski [100] consider slicing in the presence of composite variables by regarding
each element of an array, or field of a record as a distinct variable. Dynamic data structures
are treated as two distinct entities, namely the pointer itself and the object being pointed to.
For dynamically allocated objects, they propose a solution where a unique name is assigned
to each object.

3.4.3.2 Dependence graphs

Agrawal, DeMillo, and Spafford [4] present a dependence graph based algorithm for dynamic
slicing in the presence of composite data types and pointers. Their solution consists of

21Kamkar et al. use a notion of termination-preserving control dependence that is similar to Podgurski and
Clarke’s weak control dependence [123].
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expressing DEF and USE sets in terms of actual memory locations provided by the compiler.
The algorithm of [4] is similar to that for static slicing in the presence of composite data types
and pointers by the same authors (see Section 3.3.4). However, during the computation of
dynamic reaching definitions, no Maybe Intersections can occur—only Complete and Partial
Intersections.

Choi, Miller, and Netzer [38] extend the flowback analysis method by Miller and Choi
[116] (see Section 3.4.1.3) in order to deal with arrays and pointers. For arrays, linking
edges are added to their static PDGs; these edges express potential data dependences that
are either deleted, or changed into genuine data dependences at run-time. Pointer accesses
are resolved at run-time, by recording all uses of pointers in the log file.

3.4.4 Concurrency

3.4.4.1 Dynamic flow concepts

Korel and Ferguson [98] extend the dynamic slicing method of Korel and Laski [99, 100]
to distributed programs with Ada-type rendezvous communication (see, e.g., [18]). For a
distributed program, the execution history is formalized as a distributed program path that,
for each task, comprises: (i) the sequence of statements (trajectory) executed by it, and (ii)
a sequence of triples hA�C�Bi identifying each rendezvous the task is involved in. Here, A
identifies the accept statement in the task, B identifies the other task that participated in the
communication, and C denotes the entry call statement in the task that was involved in the
rendezvous.

A dynamic slicing criterion of a distributed program specifies: (i) the input of each task,
(ii) a distributed program path P , (iii) a taskw, (iv) a statement occurrence q in the trajectory
of w, and (v) a variable v. A dynamic slice with respect to such a criterion is an executable
projection of the program that is obtained by deleting statements from it. However, the
program is only guaranteed to preserve the behavior of the program if the rendezvous in the
slice occur in the same relative order as in the program. (Note that not all rendezvous of the
program need to be in the slice.)

The Korel-Ferguson method for computing slices of distributed programs of is basically
a generalization of the Korel-Laski method, though stated in a slightly different manner. In
addition to the previously discussed dynamic flow concepts (see Section 3.4.1.1), a notion
of communication influence is introduced, to capture the interdependences between tasks.
The authors also present a distributed version of their algorithm that uses a separate slicing
process for each task.

3.4.4.2 Dependence graphs

Duesterwald, Gupta, and Soffa [50] present a dependence graph based algorithm for com-
puting dynamic slices of distributed programs. They introduce a Distributed Dependence
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Graph (DDG)22 for representing distributed programs.

A distributed program P consists of a set of processes P1� � � � � Pn. Communica-
tion between processes is assumed to be synchroneous and nondeterministic and is ex-
pressed by way of send and receive statements. A distributed dynamic slicing criterion
hI1� X1i� � � � � hIn� Xni specifies for each process Pi its input Ii, and a set of statements Xi.
A distributed dynamic slice S is an executable set of processes P �

1� � � � � P
�
n such that the

statements of P �
i are a subset of those of Pi. Slice S computes the same values at statements

in each Xi as program P does, when executed with the same input. This is accomplished
by: (i) including all input statements in the slice, and (ii) replacing nondeterministic com-
munication statements in the program by deterministic communication statements in the
slice.

A DDG contains a single vertex for each statement and control predicate in the program.
Control dependences between statements are determined statically, prior to execution. Edges
for data and communication dependences are added to the graph at run-time. Slices are
computed in the usual way by determining the set of DDG vertices from which the vertices
specified in the criterion can be reached. Both the construction of the DDG and the computa-
tion of slices is performed in a distributed manner; a separate DDG construction process and
slicing process is assigned to each process Pi in the program; these processes communicate
when a send or receive statement is encountered.

Due to the fact that a single vertex is used for all occurrences of a statement in the execu-
tion history, inaccurate slices may be computed in the presence of loops (see Section 3.4.1.1).
For example, the slice with respect to the final value of z for the program of Figure 3.18
with input n = 2 will be the entire program.

Cheng [35] presents an alternative dependence graph based algorithm for computing
dynamic slices of distributed and concurrent programs. The PDN representation of a con-
current program (see Section 3.3.5) is used for computing dynamic slices. Cheng’s algorithm
is basically a generalization of the initial approach proposed by Agrawal and Horgan [6]:
the PDN vertices corresponding to executed statements are marked, and the static slicing
algorithm of Section 3.3.5 is applied to the PDN subgraph induced by the marked vertices.
As was discussed in Section 3.4.1.3, this yields inaccurate slices.

Choi et al. [116, 38] describe how their approach for flowback analysis can be extended
to parallel programs. Shared variables with semaphores, message-passing communication,
and Ada-type rendezvous mechanisms are considered. To this end, a parallel dynamic graph
is introduced that contains synchronization vertices for synchronization operations (such as
P and V on a semaphore) and synchronization edges that represent dependences between
concurrent processes. Choi et al. explain how, by analysis of the parallel dynamic graph,
read/write and write/write conflicts between concurrent processes can be found.

22This abbreviation ‘DDG’ used in Section 3.4.4.2 should not be confused with the notion of a Dynamic
Dependence Graph that was discussed earlier in Section 3.4.1.
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Korel, Laski [99, 100] D yes no S, A, P no
Korel, Ferguson [98] D yes no S, A yes
Gopal [62] I no no S no
Agrawal, Horgan [6] G no no S no
Agrawal et al. [2, 4] G no yes S, A, P no
Kamkar et al. [90, 89] G no yes S no
Duesterwald et al. [50] G yes no S, A, P yes
Cheng [35] G no no S yes
Choi et al. [116, 38] G no yes S, A, P yes
Field et al. (Chap. 5, 6) R yes no S, A, P no

aD = dynamic flow concepts, I = dynamic dependence relations, G = reachability in
a dependence graph. R = dependence tracking in term graph rewriting systems (see
Section 3.6).
bS = scalar variables, A = arrays/records, P = pointers.

Table 3.4: Overview of dynamic slicing methods.

3.4.5 Comparison

In this section, we compare and classify the dynamic slicing methods that were presented
earlier. The section is organized as follows: Section 3.4.5.1 summarizes the problems that are
addressed in the literature. Sections 3.4.5.2 and 3.4.5.3 compare the accuracy and efficiency
of slicing methods that address the same problem, respectively. Finally, Section 3.4.5.4
investigates the possibilities for “combining” algorithms that deal with different problems.

3.4.5.1 Overview

Table 3.4 lists the dynamic slicing algorithms discussed earlier, and summarizes the issues
studied in each paper. For each paper, the table shows: (i) the computation method,
(ii) whether or not the computed slices are executable programs, (iii) whether or not an
interprocedural solution is supplied, (iv) the data types under consideration, and (v) whether
or not concurrency is considered. Similar to Table 3.2, the table only shows problems that
have been addressed. It does not indicate how various algorithms may be combined, and it
also does not give an indication of the quality of the work. The work by Field et al. (see
Chapters 4, 5, and 6) mentioned in Table 3.4 relies on substantially different techniques than
those used for the dynamic slicing algorithms discussed previously, and will therefore be
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studied separately in Section 3.6.
Unlike in the static case, there exists a significant difference between methods that com-

pute executable slices [99, 100, 50, 98], and approaches that compute slices merely consisting
of sets of statements [6, 4, 62]. The latter type of slice may not be executable due to the
absence of assignments for incrementing loop counters23. For convenience, we will hence-
forth refer to such slices as “non-executable” slices. As was discussed in Section 3.4.1.1,
the algorithms that compute executable dynamic slices may produce inaccurate results in the
presence of loops.

Apart from the work by Venkatesh [137], there is very little semantic justification for any
of the methods for computing “non-executable” slices. The algorithms of [116, 6, 90, 35, 89]
are graph-reachability algorithms that compute a set of statements that directly or indirectly
“affect” the values computed at the criterion. Besides the algorithms themselves, little or no
attention is paid to formal characterization of such slices.

3.4.5.2 Accuracy

basic algorithms. The slices computed by Korel and Laski’s algorithm [99, 100] (see
Section 3.4.1.1) are larger than those computed by the algorithms by Agrawal and Horgan
[6] (see Section 3.4.1.3) and Gopal [62] (see Section 3.4.1.2). This is due to Korel and
Laski’s constraint that their slices should be executable.

procedures. Dependence graph based algorithms for interprocedural dynamic slicing were
proposed by Agrawal, DeMillo, and Spafford [4], and by Kamkar et al. [90, 89] (see
Section 3.4.2). It is unclear if one of these algorithms produces more accurate slices than
the other.

composite variables and pointers. Korel and Laski [100] (see Section 3.4.1.1), and
Agrawal, DeMillo, and Spafford (see Section 3.4.1.3) proposed methods for dynamic slicing
in the presence of composite variables and pointers. We are unaware of any difference in
accuracy.

concurrency. Korel and Ferguson [98] (see Section 3.4.4.1) and Duesterwald, Gupta, and
Soffa [50] (see Section 3.4.4.2) compute executable slices, but deal with nondeterminism
in a different way: the former approach requires a mechanism for replaying rendezvous
in the slice in the same relative order as they appeared in the original program, whereas
the latter approach replaces nondeterministic communication statements in the program by
deterministic communication statements in the slice. Cheng [35] and Choi et al. [116, 38]
(see Section 3.4.4.2) do not address this problem because the slices they compute are not
necessarily executable. The dynamic slicing methods by Cheng and Duesterwald et al. are
inaccurate because they are based on “static” dependence graphs in which no distinction

23Of course, such a slice may be executed anyway; however, it may not terminate.
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is made between the different occurrences of a statement in the execution history (see the
discussion in Section 3.4.1.3).

3.4.5.3 Efficiency

Since dynamic slicing involves run-time information, it is not surprising that all dynamic
slicing methods discussed in this section have time requirements that depend on the number
of executed statements (or procedure calls in the case of [90, 89]) N . All algorithms spend
at leastO�N� time during execution in order to store the execution history of the program, or
to update dependence graphs. Certain algorithms (e.g., [99, 100, 98]) traverse the execution
history in order to extract the slice and thus require again at least O�N� time for each
slice, whereas other algorithms require less (sometimes even constant) time. Whenever time
requirements are discussed below, the time spent during execution for constructing histories
or dependence graphs will be ignored. Space requirements will always be discussed in detail.

basic algorithms. Korel and Laski’s solution [99, 100] (see Section 3.4.1.1) requires
O�N� space to store the trajectory, and O�N2� space to store the dynamic flow concepts.
Construction of the flow concepts requires O�N � �v � n�� time, where v and n are the
number of variables and statements in the program, respectively. Extracting a single slice
from the computed flow concepts can be done in O�N� time.

The algorithm by Gopal [62] (see Section 3.4.1.2) requires O�N� space to store the
execution history and O�n� v� space to store the �S relation. The time required to compute
the �S relation for a program S is bounded by O�N2 � v2�. From this relation, slices can be
extracted in O�v� time.

As was discussed in Section 3.4.1.3, the slicing method proposed by Agrawal and Horgan
requires at most O�2n� space, where n is the number of statements in the program. Since
vertices in an RDDG are annotated with their slice, slices can be extracted from it in O�1�.

procedures. The interprocedural dynamic slicing method proposed by Kamkar et al. [90,
89] (see Section 3.4.2) requires O�P 2� space to store the summary graph, where P is the
number of executed procedure calls. A traversal of this graph is needed to extract a slice;
this takes O�P 2� time.

The time and space requirements of the method by Agrawal, DeMillo, and Spafford
[4] are essentially the same as those of the Agrawal-Horgan basic slicing method discussed
above.

composite variables and pointers. The algorithms by Korel and Laski [100] (see Sec-
tion 3.4.3.1) and Agrawal, DeMillo, and Spafford [4] (see Section 3.4.3.2) for slicing in the
presence of composite variables and pointers are adaptations of the basic slicing algorithms
by Korel and Laski and Agrawal and Horgan, respectively (see the discussion above). These
adaptations, which essentially consist of a change in the reaching definitions functions that
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Choi et al. [116, 38]

Table 3.5: Orthogonal dimensions of dynamic slicing.

are used to determine data dependences, do not affect the worst-case behavior of the algo-
rithms. Therefore, we expect the time and space requirements to be the same as in the scalar
variable case.

concurrency. The algorithms by Cheng [35] and Duesterwald et al. [50] are based on
static PDGs. Therefore, only O�n2� space is required to store the dependence graph, and
slices can be extracted in O�n2� time. The distributed slicing algorithm by Duesterwald et
al. [50] uses a separate slicing process for each process in the program; the slicing process
for process Pi requires time O�ei�, where ei is the number of edges in the PDG for process
Pi. The communication overhead between the slicing processes requires at most O�e� time,
where e is the number of edges in the entire graph.

3.4.5.4 Combining dynamic slicing algorithms

Table 3.5 displays solutions to “orthogonal” dimensions of dynamic slicing: dealing with
procedures, composite variables and pointers, and communication between processes. The
algorithms based on dynamic flow concepts for dealing with composite variables/pointers
[100], and concurrency [98] may be integrated with little problems. For dependence graphs,
however, the situation is slightly more complicated because:

� Different graph representations are used. Agrawal et al. [4], Kamkar et al. [90, 89]
and Choi et al. [116, 38] use dynamic dependence graphs with distinct vertices for
different occurrence of statements in the execution history. In contrast, Duesterwald
et al. [50] and Cheng [35] use variations of static PDGs.

� The dynamic slicing by Agrawal et al. [4] is based on definition and use of memory
locations. All other dependence graph based slicing methods are based on definitions
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and uses of variable names.

Furthermore, it is unclear if the combined static/dynamic interprocedural slicing approach by
Kamkar et al. [90, 89] is practical in the presence of composite variables and pointers, because
the intra-block dependences cannot be determined statically in this case, and additional alias
analysis would be required at run-time.

3.5 Applications of program slicing

3.5.1 Debugging and program analysis

Debugging can be a difficult task when one is confronted with a large program, and few
clues regarding the location of a bug. Program slicing is useful for debugging, because it
potentially allows one to ignore many statements in the process of localizing a bug [108].
If a program computes an erroneous value for a variable x, only the statements in the slice
w.r.t. x have (possibly) contributed to the computation of that value. In this case, it is likely
that the error occurs in the one of the statements in the slice. However, it need not always
be the case that the error occurs in the slice, as an error may consist of a statement that is
missing inadvertently. However, in situations like this it is probable that more, or different
statements show up in the slice than one would expect.

Forward slices are also useful for debugging. A forward slice w.r.t. a statement s can
show how a value computed at s is being used subsequently, and can help the programmer
ensure that s establishes the invariants assumed by the later statements. For example, this
can be useful in catching off-by-one errors. Another purpose of forward slicing is to inspect
the parts of a program that may be affected by a proposed modification, to check that there
are no unforeseen effects on the program’s behavior.

Lyle and Weiser [109] introduce program dicing, a method for combining the information
of different slices. The basic idea is that, when a program computes a correct value for
variable x and an incorrect value for variable y, the bug is likely to be found in statements
that are in the slice w.r.t. y, but not in the slice w.r.t. x. This approach is not fail-safe
in the presence of multiple bugs, and when computations that use incorrect values produce
correct values (referred to as coincidental correctness by Agrawal [2]). The authors claim
that program dicing still produces useful results when these assumptions are relaxed.

Bergeretti and Carré [22] explain how static slicing methods can detect “dead” code,
i.e., statements that cannot affect any output of the program. Often, such statements are not
executable due to the presence of a bug. Static slicing can also be employed to determine uses
of uninitialized variables, another symptom of an error in the program. However, there exist
previous techniques for detection of dead code and uses of uninitialized variables [7, 150]
that do not rely on slicing.

In debugging, one is often interested in a specific execution of a program that exhibits
anomalous behavior. Dynamic slices are particularly useful here, because they only reflect the
actual dependences of that execution, resulting in smaller slices than static ones. Agrawal’s
thesis [2] contains a detailed discussion how static and dynamic slicing can be utilized for
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semi-automated debugging of programs [6, 4]. He proposes an approach where the user
gradually “zooms out” from the location where the bug manifested itself by repeatedly
considering larger data and control slices. A data slice is obtained by only taking (static
or dynamic) data dependences into account; a control slice consists of the set of control
predicates surrounding a language construct. The closure of all data and control slices
w.r.t. an expression is the (static or dynamic) slice w.r.t. the set of variables used in
the expression. The information of several dynamic slices can be combined to gain some
insight into the location of a bug. Several operations on slices are proposed to this end,
such as union, intersection, and difference. The difference operation is a dynamic version
of the program “dicing” notion of Lyle and Weiser [109]. Obviously, these operations for
combining slices may produce false leads in the presence of multiple bugs or coincidental
correctness. Agrawal, DeMillo, and Spafford [5] discuss the implementation of a debugging
tool that is based on ideas in previous papers by the same authors [2, 4, 6].

Pan and Spafford [121, 122] present a number of heuristics for fault localization. These
heuristics describe how dynamic slices (variations on the type proposed by Agrawal et al.
[6]) can be used for selecting a set of suspicious statements that is likely to contain a bug.
The approach of Pan and Spafford consists of two phases. First, the program is executed for
an extensive number of test cases, and each test case is classified as being error-revealing
or non-error-revealing, depending on the fact whether or not its reveals the presence of a
bug. The second step consists of the actual heuristic rules for combining the information
contained in dynamic slices for these test cases in various ways. As an example, one might
think of displaying the set of statements that occur in every dynamic slice for an error-
revealing test-case—such statements are likely to contain the bug. Other heuristics depend
on the inclusion frequency or the influence frequency of statements in dynamic slices. The
former denotes the number of slices in which a particular statement occurs, whereas the
latter notion indicates the number of times that a statement in a particular dynamic slice
is “referred to” in terms of data dependence and control dependence. For example, one of
the heuristics given by Pan and Spafford consists of selecting the statements with “high”
influence frequency in a slice for a selected error-revealing test case. Note that this requires a
threshold to be specified by the user that determines the boundary between “high” and “low”
frequencies. It is argued that this boundary can be shifted interactively, thereby gradually
increasing the number of statements under consideration.

Choi, Miller and Netzer [38] describe the design and efficient implementation of a
debugger for parallel programs that incorporates flowback analysis, a notion introduced in the
seminal paper by Balzer [15]. Intuitively, flowback analysis reveals how the computation of
values depends on the earlier computation of other values. The difference between flowback
analysis and (dependence graph based) dynamic slices is that the former notion allows one to
interactively browse through a dependence graph, whereas the latter consists of the set of all
program parts corresponding to vertices of the graph from which a designated vertex—the
criterion—can be reached.

Fritzson et al. use interprocedural static [59] and dynamic [90, 87] slicing for algorithmic
debugging [132, 131]. An algorithmic debugger partially automates the task of localizing
a bug by comparing the intended program behavior with the actual program behavior. The
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intended behavior is obtained by asking the user whether or not a program unit (e.g., a
procedure) behaves correctly. Using the answers given by the user, the location of the bug
can be determined at the unit level. By applying the algorithmic debugging process to a slice
w.r.t. an incorrectly valued variable instead of the entire program, many irrelevant questions
can be skipped.

3.5.2 Program differencing and program integration

Program differencing [70] is the task of analyzing an old and a new version of a program in
order to determine the set of program components of the new version that represent syntactic
and semantic changes. Such information is useful because only the program components
reflecting changed behavior need to be tested. The key issue in program differencing consists
of partitioning the components of the old and new version in a way that two components
are in the same partition only if they have equivalent behaviors. The program integration
algorithm of Horwitz, Prins, and Reps [74] discussed below, compares slices in order to
detect equivalent behaviors. However, an alternative partitioning technique by Yang et al.
[149, 70], which is not based on comparing slices but on comparing smaller units of code,
produces more accurate results because semantics-preserving transformations (e.g., copy
propagation) can be accommodated.

Horwitz, Prins, and Reps [74] use the static slicing algorithm for single-procedure
programs by Horwitz, Reps, and Binkley [77] as a basis for an algorithm that integrates
changes in variants of a program. The inputs of their algorithm consist of a program Base,
and two variants A and B that have been derived from Base. The algorithm consists of the
following steps:

1. The PDGs GBase , GA, and GB are constructed. Correspondences between “related”
vertices of these graphs are assumed to be available.

2. Sets of affected points of GA and GB w.r.t. GBase are determined; these consist of
vertices in GA (GB) that have a different slice in GBase

24.
3. A merged PDG GM is constructed from GA, GB , and the sets of affected points

determined in (2).
4. Using GA, GB, GM , and the sets of affected points computed in (2), the algorithm

determines whether or not the behaviors of A and B are preserved in GM . This is
accomplished by comparing the slices w.r.t. the affected points of GA (GB) in GM

and GA (GB). If different slices are found, the changes interfere and the integration
cannot be performed.

5. If the changes inA andB do not interfere, the algorithm tests if GM is a feasible PDG,
i.e., if it corresponds to some program. If this is the case, program M is constructed
from GM . Otherwise, the changes in A and B cannot be integrated.

A semantic justification for the single-procedure slicing algorithm of Horwitz, Reps,

24These sets of affected points can be computed efficiently by way of a forward slice w.r.t. all directly
affected points, i.e., all vertices in GA that do not occur in GBase and all vertices in that have a different set of
incoming edges in GA and in GBase [76].
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and Binkley [77] and the program integration algorithm of Horwitz, Prins, and Reps [74]
is presented by Reps and Yang [130]. This paper formalizes the relationship between
the execution behaviors of programs, slices of those programs, and between variants of a
program and the corresponding integrated version. The comparison of slices (in step 4)
relies on the existence of a mapping between the different components. If such a mapping
were not available, however, the techniques of Horwitz and Reps [75] for comparing two
slices in time that is linear in the sum of their sizes could be used.

Reps [124] presents an alternative formulation of the Horwitz-Prins-Reps program in-
tegration algorithm that is based on Brouwerian algebras. The algebraic laws that hold in
such algebras are used to restate the algorithm and to prove properties such as associativity
of consecutive integrations.

Binkley, Horwitz and Reps [33] generalize the integration algorithm of Horwitz, Prins,
and Reps [74] to multi-procedure programs. It is shown that such programs cannot be
integrated on a per-procedure basis (program behavior would not be preserved in all cases),
and that a straightforward extension using the Horwitz-Reps-Binkley interprocedural slicing
algorithm is insufficiently powerful (it reports “interference” in too many cases). While a
complete discussion of the theory that underlies the Binkley-Horwitz-Reps multi-procedure
integration algorithm is outside the scope of this survey, it can be remarked here that the
algorithm relies on backward and forward interprocedural slices on the SDG representation
of the program.

3.5.3 Software maintenance

One of the problems in software maintenance consists of determining whether a change at
some place in a program will affect the behavior of other parts of the program. Gallagher and
Lyle [60, 61] use static slicing for the decomposition of a program into a set of components
(i.e., reduced programs), each of which captures part of the original program’s behavior.
They present a set of guidelines for the maintainer of a component that, if obeyed, preclude
changes in the behavior of other components. Moreover, they describe how changes in a
component can be merged back into the complete program in a semantically consistent way.

Gallagher and Lyle use the notion of a decomposition slice for the decomposition of
programs. Intuitively, a decomposition slice captures part of the behavior of a program, and
its complement captures the behavior of the rest of the program. A decomposition slice w.r.t.
a variable v is defined as the set of all statements that may affect the “observable” value of v
at some point; it is defined as the union of the slices w.r.t. v at any statement that outputs v,
and the last statement of the program. An output-restricted decomposition slice (ORD slice)
is a decomposition slice from which all output statements are removed. Two ORD slices are
independent if they have no statements in common; an ORD slice is strongly dependent on
another ORD slice if it is a subset of the latter. An ORD slice that is not strongly dependent
on any other ORD slice is maximal. A statement that occurs in more than one ORD slice is
dependent; otherwise it is independent. A variable is dependent if it is assigned to in some
dependent statement; it is independent if it is only assigned to in independent statements.
Only maximal ORD slices contain independent statements, and the union of all maximal
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ORD slices is equal to the original program (minus output statements). The complement
of an ORD slice is defined as the original program minus all independent statements of the
ORD slice and all output statements.

The essential observation by Gallagher and Lyle [61] is that independent statements in a
slice do not affect the data and control flow in the complement. This results in the following
guidelines for modification:

� Independent statements may be deleted from a decomposition slice.
� Assignments to independent variables may be added anywhere in a decomposition

slice.
� Logical expressions and output statements may be added anywhere in a decomposition

slice.
� New control statements that surround any dependent statements will affect the com-

plement’s behavior.

New variables may be considered as independent variables, provided that there are no name
clashes with variables in the complement. If changes are required that involve a dependent
variable v, the user can either extend the slice so that v is independent (in a way described in
the paper), or introduce a new variable. Merging changes to components into the complete
program is a trivial task. Since it is guaranteed that changes to an ORD slice do not affect
its complement, only testing of the modified slice is necessary.

3.5.4 Testing

A program satisfies a “conventional” data flow testing criterion if all def-use pairs occur in
a successful test-case. Duesterwald, Gupta, and Soffa [51] propose a more rigorous testing
criterion, based on program slicing: each def-use pair must be exercised in a successful test-
case; moreover it must be output-influencing, i.e., have an influence on at least one output
value. A def-use pair is output-influencing if it occurs in an output slice, i.e., a slice w.r.t. an
output statement. It is up to the user, or an automatic test-case generator to construct enough
test-cases such that all def-use pairs are tested. Three slicing approaches are utilized, based
on different dependence graphs. Static slices are computed using static dependence graphs
(similar to the PDGs of Horwitz, Reps, and Binkley [77]), dynamic slices are computed using
dynamic dependence graphs (similar to DDGs of Agrawal and Horgan [6], but instances of
the same vertex are merged, resulting in a slight loss of precision), and hybrid slices are
computed using dependence graphs that are based on a combination of static and dynamic
information. In the hybrid approach, the set of variables in the program is partitioned into
two disjoint subsets in a way that variables in one subset do not refer to variables in the
other subset. Static dependences are computed for one subset (typically scalar variables),
dynamic dependences for the other subset (typically arrays and pointers). The advantage of
this approach is that it combines reasonable efficiency with reasonable precision.

Kamkar, Shahmehri, and Fritzson [88] extend the work of Duesterwald, Gupta, and Soffa
to multi-procedure programs. To this end, they define appropriate notions of interprocedural
def-use pairs. The interprocedural dynamic slicing method by Kamkar et al. [90, 89] is used
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to determine which interprocedural def-use pairs have an effect on a correct output value,
for a given test case. The summary graph representation that was discussed in Section 3.4.2
is slightly modified by annotating vertices and edges with def-use information. This way,
the set of def-use pairs exercised by a slice can be determined efficiently.

Regression testing consists of re-testing only the parts affected by a modification of a
previously tested program, while maintaining the “coverage” of the original test suite. Gupta,
Harrold, and Soffa [65] describe an approach to regression testing where slicing techniques
are used. Backward and forward static slices serve to determine the program parts affected
by the change, and only test cases that execute “affected” def-use pairs need to be executed
again. Conceptually, slices are computed by backward and forward traversals of the CFG of
a program, starting at the point of modification. However, the algorithms by Gupta, Harrold,
and Soffa [65] are designed to determine the information necessary for regression testing
only (i.e., affected def-use pairs).

Binkley [29] describes an approach for reducing the cost of regression testing of multi-
procedure programs by (i) reducing the number of tests that must be re-run,and (ii) decreasing
the size of the program that they must run on. This is accomplished by determining the set
of program points affected by the modification, and the set of preserved program points (see
Section 3.5.2). The set of affected points is used to construct a smaller and more efficient
program that only captures the modified behavior of the original program; all test-cases that
need to be re-run can be applied to this program. The set of preserved points is used to infer
which test-cases need not be re-run.

Bates and Horwitz [20] use a variation of the PDG notion of Horwitz, Prins, and Reps
[74] for incremental program testing. Testing criteria are defined in terms of PDG notions:
i.e., the “all-vertices” testing criterion is satisfied if each vertex of the PDG is exercised by a
test set (i.e., each statement and control predicate in the program is executed). An “all-flow-
edges” criterion is defined in a similar manner. Given a tested and subsequently modified
program, slicing is used to determine: (i) the statements affected by the modification, and
(ii) the test-cases that can be reused for the modified program. Roughly speaking, the
former consists of the statements that did not occur previously as well as any statements that
have different slices. The latter requires partitioning the statements of the original and the
modified program into equivalence classes; statements are in the same class if they have the
same “control” slice (a slightly modified version of the standard notion). Bates and Horwitz
prove that statements in the same class are exercised by the same test cases.

3.5.5 Tuning compilers

Larus and Chandra [106] present an approach for tuning of compilers where dynamic slicing
is used to detect potential occurrences of redundant common subexpressions. Finding such
a common subexpression is an indication of sub-optimal code being generated.

Object code is instrumented with trace-generating instructions. A trace-regenerator reads
a trace and produces a stream of events, such as the read and load of a memory location. This
stream of events is input for a compiler-auditor (e.g., a common-subexpression elimination
auditor) that constructs dynamic slices w.r.t. the current values stored in registers. Larus
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and Chandra use a variation of the approach by Agrawal and Horgan [6]: a dynamic slice
is represented by directed acyclic graph (DAG) containing all operators and operands that
produced the current value in a register. A common subexpression occurs when isomorphic
DAGs are constructed for two registers. However, the above situation only indicates that a
common subexpression occurs in a specific execution. A common subexpression occurs in
all execution paths if its inputs are the same in all executions. This is verified by checking
that: (i) the program counter PC1 for the first occurrence of the common subexpression
dominates the program counter PC2 for the second occurrence, (ii) the register containing
the first occurrence of the common subexpression is not modified along any path between
PC1 and PC2, and (iii) neither are the inputs to the common subexpression modified along
any path between PC1 and PC2. Although the third condition is impossible to verify in
general, it is feasible to do so for a number of special cases. In general, it is up to the
compiler writer to check condition (iii).

3.5.6 Other applications

Weiser [146] describes how slicing can be used to parallelize the execution of a sequential
program. Several slices of a program are executed in parallel, and the outputs of the slices are
spliced together in such a way that the I/O behavior of the original program is preserved. In
principle, the splicing process may take place in parallel with the execution of the slices. A
natural requirement of Weiser’s splicing algorithm is that the set of all slices should “cover”
the execution behavior of the original program. Splicing does not rely on a particular slicing
technique; any method for computing executable static slices is adequate. Only programs
with structured control flow are considered, because Weiser’s splicing algorithm depends on
the fact that execution behavior can be expressed in terms of a so-called program regular
expression. The main reason for this is that reconstruction of the original I/O behavior
becomes unsolvable in the presence of irreducible control flow.

Ott and Thus [119] view a module as a set of processing elements that act together to
compute the outputs of a module. They classify the cohesion class of a module (i.e, the kind
of relationships between the processing elements) by comparing the slices w.r.t. different
output variables. Low cohesion corresponds to situations where a module is partitioned into
disjoint sets of unrelated processing elements. Each set is involved in the computation of a
different output value, and there is no overlap between the slices. Control cohesion consists
of two or more sets of disjoint processing elements each of which depends on a common
input value; the intersection of slices will consist of control predicates. Data cohesion
corresponds to situations where data flows from one set of processing elements to another;
slices will have non-empty intersection and non-trivial differences. High cohesion situations
resemble pipelines. The data from a processing element flows to its successor; the slices of
high cohesion modules will overlap to a very large extent. The paper does not rely on any
specific slicing method, and no quantitative measures are presented.

Binkley [32] presents a graph rewriting semantics for System Dependence Graphs that
is used for performing interprocedural constant propagation. The Horwitz-Reps-Binkley
interprocedural slicing algorithm is used to extract slices that may be executed to obtain
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constant values.
Beck and Eichmann [21] consider the case where a “standard” module for an abstract

data type module is used, and where only part of its functionality is required. Their objective
is to “slice away” all unnecessary code in the module. To this end, they generalize the notion
of static slicing to modular programs. In order to compute a reduced version of a module,
an interface dependence graph (IDG) is constructed. This graph contains vertices for all
definitions of types and global variables, and subprograms inside a module. Moreover, the
IDG contains edges for every def-use relation between vertices. An interface slicing criterion
consists of a module and a subset of the operations of the ADT. Computing interface slices
corresponds to solving a reachability problem in an IDG. Inter-module slices, corresponding
to situations where modules import other modules, can be computed by deriving new criteria
for the imported modules.

Jackson and Rollins present a reverse engineering tool called “Chopshop” in [81] that
is based on the techniques of [82] (see Sections 3.3.1.3 and 3.3.2.3). This tool provides
facilities for visualizing program slices in a graphical manner as diagrams. In addition to
“chopping” (see Section 3.3.1.3), their tool is capable of “abstracting” slices by eliminating
all non-call-site nodes in a graph and resulting in a graph with only call site vertices and
transitive dependence edges between these vertices.

Ning, Engberts, and Kozaczynski [117] discuss a set of tools for extracting components
from large Cobol systems. These tools include facilities for program segmentation, i.e.,
distinguishing pieces of functionally related code. In addition to backward and forward
static slices, condition-based slices can be determined. For a condition-based slice, the
criterion specifies a constraint on the values of certain variables.

3.6 Recent developments

This section is concerned with recent work on improving the precision of slicing meth-
ods, which relies on the removal of two important restrictions characteristic of the slicing
algorithms discussed previously:

1. The fact that a slice consists of a subset of the statements of the original program,
sometimes with the additional constraint that a slice must constitute a syntactically
valid program.

2. The fact that slices are computed by tracing data and control dependences.

Both of these “restrictions” adversely affect the accuracy of the computed slices. Moreover,
it is important to realize that these issues are strongly interrelated in the sense that, in many
cases, dismissing the former constraint is a prerequisite for being able to dismiss the latter
one.

Weiser already observed some problems caused by the first constraint in his dissertation
[144, page 6], where he states that ‘good source language slicing requires transformations
beyond statement deletion’. This remark can easily be understood by considering a situation
where a programming language does not allow if statements with empty branches, but where
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read(n);
i := 1;
if (i > 0) then
n := n + 1

else
n := n * 2;

write(n)

read(n);
i := 1;
if (i > 0) then
n := n + 1

else
;

write(n)

read(n);

n := n + 1

;
write(n)

(a) (b) (c)

Figure 3.24: (a) Example program = static slice with respect to statement write(n). (b)
Accurate slice obtained by employing constant propagation. (c) Minimal slice.

a slicing algorithm would exclude all statements in such a branch. Taken to the extreme, such
statements can never be removed from a slice because the result would not be a syntactically
valid program. Hwang et al. [80] discuss a number of related problems and conclude that,
in practice, statement deletion alone is an inadequate method for deriving slices.

The second constraint—the fact that slices are to be computed by tracing data and control
dependences alone—has to be removed as well, if the singular objective is to compute slices
that are as small as possible. To see this, consider the example program of Figure 3.24
(a). Here, the static slice with respect to statement write(n) as computed by any of the
“conventional” slicing algorithms consists of the entire program25. However, if constant
propagation [141] or similar optimization techniques could be used in slicing, the resulting
slices might be more accurate. In the program of Figure 3.24 (a), for example, one can
determine that the value of i is constant, and that the else branch of the conditional is never
selected. Therefore, computation of the more accurate slice of Figure 3.24 (b) is conceivable.
Moreover, if replacement of an entire if statement by one of the statements in its branches is
allowed, one can imagine that the minimal slice of Figure 3.24 (c) is determined.

Other compiler optimization techniques26, symbolic execution, and a variety of semantics-
preserving operations can also be of use for obtaining more accurate slices. For example,
Figure 3.25 (a) shows another example program, which is to be sliced with respect to its
final statement write(y). Once again, traditional slicing algorithms will fail to omit any
statements. A more accurate slice for this example can be acquired by “merging” the two if
statements. The effect of this semantics-preserving transformation is shown in Figure 3.25
(b). Clearly, a slicing algorithm that can (conceptually) perform this transformation is in
principle capable of determining the more accurate slice of Figure 3.25 (c).

Approaches that use optimization techniques for obtaining more accurate slices, such as
the ones shown in Figures 3.24 and 3.25, were presented by Field, Ramalingam, and Tip
(see Chapter 5), and by Ernst [52]. At the conceptual level, these slicing approaches rely on
the following components:

25Some algorithms [147, 22] would omit the write statement.
26See, e.g., [150] for a comprehensive overview.
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read(p);
read(q);
if (p = q) then

x := 18
else
x := 17;

if (p �� q) then
y := x;

else
y := 2;

write(y)

read(p);
read(q);
if (p = q) then

begin
x := 18;
y := 2

end
else

begin
x := 17;
y := x

end
write(y)

read(p);
read(q);
if (p = q) then

;
else
x := 17;

if (p �� q) then
y := x;

else
y := 2;

write(y)

(a) (b) (c)

Figure 3.25: (a) Example program = static slice with respect to the statement write(y). (b)
Transformed program. (c) More accurate slice obtained by slicing in the transformed program.

� Translation of the program to a suitable intermediate representation (IR).
� Transformation and optimization of the IR.
� Maintaining a mapping between the source-text, the original IR, and the optimized IR.
� Extraction of slices from the IR.

Field et al. (see Chapter 5) use an intermediate representation for imperative programs
named PIM [55] as a basis for their slicing approach. Both the translation of a program
to its PIM representation, and subsequent optimizations of PIM graphs are defined by an
equational logic, which can be implemented by term rewriting [95] or graph rewriting
[17]. Correspondences between the source text of a program, its initial PIM graph, and
the subsequently derived optimized PIM graph are automatically maintained by a technique
called dynamic dependence tracking (see Chapter 4). This technique, which is defined for
arbitrary term rewriting systems, keeps track of the way in which new function symbols
that are dynamically created in a rewriting process are dependent upon symbols that were
previously present. These source correspondences are stored in PIM graphs as annotations of
function symbols; in a sense this is similar to the way information is stored in the Reduced
Dynamic Dependence Graphs of Agrawal et al. [6] (see Section 3.4.1.3). Extracting a
slice with respect to a designated expression involves maintaining a pointer to the PIM-
subgraph for that expression, and retrieving the dynamic dependence information stored
in that PIM-subgraph. For details as to how this is accomplished, the reader is referred to
Chapter 5.

Both PIM and dynamic dependence tracking have been implemented using the ASF+SDF
Meta-environment, a programming environment generator [93] developed at CWI. Recent
experiments have produced promising results. In particular, the (accurate) slices of Fig-
ures 3.24 (b) and 3.25 (c) have been computed. Recently, Tip has shown that dynamic
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dependence tracking can also be used to compute accurate dynamic slices from a simple
algebraic specification [23] that specifies an interpreter (see Chapter 6).

Ernst [52] uses the Value Dependence Graph (VDG) [143] as an intermediate represen-
tation for his slicing technique. The nodes of a VDG correspond to computations, and the
edges represent values that flow between computations. The most prominent characteristics
of VDGs are: (i) control flow is represented as data flow, (ii) loops are modeled by recur-
sive function calls, and (iii) all values and computations in a program, including operations
on the heap and on I/O streams, are explicitly represented in the VDG. The transforma-
tion/optimization of VDGs is discussed in some detail in [143]. Ernst refers to the problem
of maintaining a correspondence between the VDG and the source code graph throughout
the optimization process, but no details are presented as to how this is accomplished. For
the extraction of slices from a VDG, Ernst uses a simple and efficient graph reachability
algorithm similar to the one used by Ottenstein and Ottenstein [120].

We are currently unable to provide an in-depth comparison of the approaches by Field
et al. and by Ernst due to the elaborate optimizations that are involved, and the absence of
any information regarding the “source correspondences” used by Ernst. A few differences
between these works are obvious, however:

� The language considered by Ernst is substantially larger than the one studied in Chap-
ter 5. Ernst has implemented a slicer for the full C language (including recursive
procedures—see Section 3.3.2.3), whereas Field et al. do not (yet) address the prob-
lems posed by procedures and unstructured control flow.

� The approach by Field et al. permits the use of a number of variations of the PIM logic
for treating loops, corresponding to different “degrees of laziness” in the language’s
semantics. Depending on the selected option, the computed slices will resemble the
“non-executable” slices computed by Agrawal and Horgan [6], or the “executable”
slices computed by Korel and Laski [100]. It is unclear from Ernst’s paper if his
approach provides the same degree of flexibility.

� Field et al. permit slices to be computed given any set of constraints on a program’s
inputs, and define the corresponding notion of a constrained slice, which subsumes the
traditional concepts of static and dynamic slices. This is accomplished by rewriting
PIM graphs that contain variables (corresponding to unknown values) according to
PIM-rules that model symbolic execution. Ernst does not discuss a similar capability
of his slicer.

� Field et al. define slices as a subcontext of (i.e., a “connected” set of function symbols
in) a program’s AST. Statements or expressions of the program that do not occur in the
slice are represented by “holes” (i.e., missing subterms) in a context. Although this
notion of a slice does not constitute an executable program in the traditional sense, the
resulting slices are executable in the sense that such as slice can be rewritten to a PIM

graph containing the same value for the expression specified in the slicing criterion,
given the same constraints on the program’s inputs.
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*(ptr = &a) = ?A;
b = ?B;
x = a;
if (a < 3)
ptr = &y;

else
ptr = &x;

if (b < 2)
x = a;

(*ptr) = 20;

*( = &a) = ?A;
b = ;
x = a;
if (a < 3)
ptr = &y;

else

if ( < )
x = a;

(*ptr) = ;

*( = &a) = ?A;
b = ;
x = ;
if (a < 3)

else
ptr = &x;

if ( < )
x = ;

(*ptr) = 20;

(a) (b) (c)

Figure 3.26: (a) An example program. (b) Constrained slice with respect to the final value of x
given the constraint ?A :� 2. (c) Conditional constrained slice with respect to the final value of x
given the constraint ?A � 5.

Figure 3.26 shows an example program (taken from Chapter 5), and some constrained
slices of it obtained using the approach by Field et al.27. The intuition behind these slices is
quite simple: a “boxed” expression in a slice may be replaced by any other expression without
affecting the computation of the value specified in the slicing criterion, given the specified
constraints on the program’s inputs. Although absurdly contrived, the example illustrates
several important points. By not insisting that a slice be a syntactically valid program,
distinctions can be made between assignment statements whose R-values are included but
whose L-values are excluded and vice versa, as Figure 3.26 (b) shows. Observe that it is
possible to determine that the values tested in a conditional are irrelevant to the slice, even
though the body is relevant. In general, this permits a variety of fine distinctions to be made
that traditional slicing algorithms cannot.

3.7 Conclusions

We have presented a survey of the static and dynamic slicing techniques that can be found
in the present literature. As a basis for classifying slicing techniques we have used the
computation method, and a variety of programming language features such as procedures,
unstructured control flow, composite variables/pointers, and concurrency. Essentially, the
problem of slicing in the presence of one of these features is “orthogonal” to solutions for each
of the other features. For dynamic slicing methods, an additional issue is the fact whether

27In this figure, expressions that begin with a question mark, e.g., ‘?A’, represent unknown values or inputs.
Subterms of the program’s AST that do not occur in the slices of Figure 3.26 (b) and (c) are replaced by a box.
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or not the computed slices are executable programs that capture a part of the program’s
behavior. Wherever possible, different solutions to the same problem were compared by
applying each algorithm to the same example program. In addition, the possibilities and
problems associated with the integration of solutions for “orthogonal” language features
were discussed.

3.7.1 Static slicing algorithms

In Section 3.3.6, algorithms for static slicing were compared and classified. Besides listing
the specific slicing problems studied in the literature, we have compared the accuracy and,
to some extent, the efficiency of static slicing algorithms. The most significant conclusions
of Section 3.3.6 can be summarized as follows:

basic algorithms. For intraprocedural static slicing in the absence of procedures, unstruc-
tured control flow, composite data types and pointers, and concurrency, the accuracy of
methods based on dataflow equations [147], information-flow relations [22], and program
dependence graphs [120] is essentially the same. PDG-based algorithms have the advantage
that dataflow analysis has to be performed only once; after that, slices can be extracted in
linear time. This is especially useful when several slices of the same program are required.

procedures. The first solution for interprocedural static slicing, presented by Weiser [147],
is inaccurate for two reasons. First, this algorithm does not use exact dependence relations
between input and output parameters. Second, the call-return structure of execution paths
is not taken into account. The solution by Bergeretti and Carré [22] does not compute
truly interprocedural slices because no procedures other than the main program are sliced.
Moreover, the approach by Bergeretti and Carré is not sufficiently general to handle recursion.
Exact solutions to the interprocedural static slicing problem have been presented by Hwang,
Du, and Chou [79], Reps, Horwitz and Binkley [77], Reps, Horwitz, Sagiv, and Rosay [129,
128], Jackson and Rollins [82], and Ernst [52]. The Reps-Horwitz-Sagiv-Rosay algorithm
for interprocedural static slicing is the most efficient of these algorithms. Binkley studied
the issues of determining executable interprocedural slices [30], and of interprocedural static
slicing in the presence of parameter aliasing [31].

unstructured control flow. Lyle was the first to present an algorithm for static slicing in
the presence of unstructured control flow [108]. The solution he presents is conservative: it
may include more goto statements than necessary. Agrawal [3] has shown that the solutions
proposed by Gallagher and Lyle [60, 61] and by Jiang et al. [83] are incorrect. Precise
solutions for static slicing in the presence of unstructured control flow have been proposed
by Ball and Horwitz [12, 13], Choi and Ferrante [37], and Agrawal [3]. It is not clear how
the efficiency of these algorithms compares.
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composite data types/pointers. Lyle [108] presented a conservative algorithm for static
slicing in the presence of arrays. The algorithm proposed by Jiang et al. in [83] is incorrect.
Lyle and Binkley [110] presented an algorithm for static slicing in the presence of pointers,
but only for straight-line code. Agrawal, DeMillo, and Spafford [4] propose a PDG-based
algorithm for static slicing in the presence of composite variables and pointers.

concurrency. The only approach for static slicing of concurrent programs was proposed
by Cheng [35]. Unfortunately, Cheng has not provided a justification of the correctness of
his algorithm.

3.7.2 Dynamic slicing algorithms

Algorithms for dynamic slicing were compared and classified in Section 3.4.5. Due to
differences in computation methods and dependence graph representations, the potential for
integration of the dynamic slicing solutions for “orthogonal” dimensions is less clear than
in the static case. The conclusions of Section 3.4.5 may be summarized as follows:

basic algorithms. Methods for intraprocedural dynamic slicing in the absence of proce-
dures, composite data types and pointers, and concurrency were proposed by Korel and Laski
[99, 100], Agrawal and Horgan [6], and Gopal [62]. The slices determined by the Agrawal-
Horgan algorithm and the Gopal algorithm are more accurate than the slices computed by
the Korel-Laski algorithm, because Korel and Laski insist that their slices be executable
programs. The Korel-Laski algorithm and Gopal’s algorithm require an amount of space
proportional to the number of statements that was executed because the entire execution
history of the program has to be stored. Since slices are computed by traversing this history,
the amount of time needed to compute a slice depends on the number of executed statements.
A similar statement can be made for the flowback analysis algorithm by Choi et al. [116, 38].
The algorithm proposed by Agrawal and Horgan based on Reduced Dynamic Dependence
Graphs requires at most O�2n� space, where n is the number of statements in the program.
However, the time needed by the Agrawal-Horgan algorithm also depends on the number of
executed statements because for each executed statement, the dependence graph may have
to be updated.

procedures. Two dependence graph based algorithms for interprocedural dynamic slicing
were proposed by Agrawal, DeMillo, and Spafford [4], and by Kamkar, Shahmehri, and
Fritzson [90, 89]. The former method relies heavily on the use of memory cells as a basis
for computing dynamic reaching definitions. Various procedure-passing mechanisms can
be modeled easily by assignments of actual to formal and formal to actual parameters at
the appropriate moments. The latter method is also expressed as a reachability problem
in a (summary) graph. However, there are a number of differences with the approach of
[4]. First, parts of the graph can be constructed at compile-time. This is more efficient,
especially in cases where many calls to the same procedure occur. Second, Kamkar et al.
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study procedure-level slices; that is, slices consisting of a set of procedure calls rather than
a set of statements. Third, the size of a summary graph depends on the number of executed
procedure calls, whereas the graphs of Agrawal et al. are more space efficient due to “fusion”
of vertices with the same transitive dependences. It is unclear if one algorithm produces
more precise slices than the other.

unstructured control flow. As far as we know, dynamic slicing in the presence of unstruc-
tured control flow has not been studied yet. However, it is our conjecture that the solutions
for the static case [12, 13, 3, 37] may be adapted for dynamic slicing.

composite data types/pointers. Two approaches for dynamic slicing in the presence of
composite data types and pointers were proposed, by Korel and Laski [100], and Agrawal,
DeMillo, and Spafford [4]. The algorithms differ in their computation method: dynamic
flow concepts vs. dependence graphs, and in the way composite data types and pointers are
represented. Korel and Laski treat components of composite data types as distinct variables,
and invent names for dynamically allocated objects and pointers whereas Agrawal, DeMillo,
and Spafford base their definitions on definitions and uses of memory cells. It is unclear
how the accuracy of these algorithms compares. The time and space requirements of both
algorithms are essentially the same as in the case where only scalar variables occur.

concurrency. Several methods for dynamic slicing of distributed programs have been pro-
posed. Korel and Ferguson [98] and Duesterwald, Gupta, and Soffa [50] compute slices that
are executable programs, but have a different way of dealing with nondeterminism in dis-
tributed programs: the former approach requires a mechanism for replaying the rendezvous
in the slice in the same relative order as they occurred in the original program whereas
the latter approach replaces nondeterministic communication statements in the program by
deterministic communication statements in the slice. Cheng [35] and Choi et al. [116, 38]
do not consider this problem because the slices they compute are not executable programs.
Duesterwald, Gupta, and Soffa [50] and Cheng [35] use static dependence graphs for com-
puting dynamic slices. Although this is more space-efficient than the other approaches, the
computed slices will be inaccurate (see the discussion in Section 3.4.1.1). The algorithms
by Korel and Ferguson and by Choi et al. both require an amount of space that depends on
the number of executed statements. Korel and Ferguson require their slices to be executable;
therefore these slices will contain more statements than those computed by the algorithm of
[116, 38].

3.7.3 Applications

Weiser [144] originally conceived of program slices as a model of the mental abstractions
made by programmers when debugging a program, and advocated the use of slicing in
debugging tools. The use of slicing for (automated) debugging was further explored by Lyle
and Weiser [109], Choi et al. [38], Agrawal et al. [5], Fritzson et al. [59], and Pan and
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Spafford [121, 122]. Slicing has also proven to be of use for a variety of other applications
including: parallelization [146], program differencing and integration [70, 74], software
maintenance [61], testing [51, 88, 65, 20], reverse engineering [21, 82, 81], and compiler
tuning [106]. Section 3.5 contains a detailed overview of how slicing is used in each of these
application areas.

3.7.4 Recent developments

Two important characteristics of conventional slicing algorithms adversely affect the accu-
racy of program slices:

� The fact that slices consist of a subset of the original program’s statements, sometimes
with the additional constraint that a slice must be a syntactically valid program.

� The fact that slices are computed by tracing data and control dependences.

Section 3.6 discusses recent work by Field, Ramalingam, and Tip (see Chapter 5) and by Ernst
[52] for computing more accurate slices, where these “restrictions” are removed. In essence,
these slicing algorithms compute more accurate slices due to the use of compiler-optimization
techniques, symbolic execution, and a variety of semantics-preserving transformations for
eliminating spurious dependences. At the conceptual level, the algorithms by Field et al.
and Ernst consist of the following components:

� Translation of a program to a suitable intermediate representation (IR).
� Transformation and optimization of the IR.
� Maintaining a mapping between the source text, the original IR, and the optimized IR.
� Extraction of slices from the IR.

Although Field et al. and Ernst have reported promising results, much work remains to be
done in this area.
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Chapter 4

Dynamic Dependence Tracking

(joint work with John Field)

Summary

Program slicing is a useful technique for debugging, testing, and analyzing pro-
grams. A program slice consists of the parts of a program that (potentially) affect the
values computed at some point of interest. With rare exceptions, program slices have
hitherto been computed and defined in ad-hoc and language-specific ways. The princi-
pal contribution of this chapter is to show that general and semantically well-founded
notions of slicing and dependence can be derived in a simple, uniform way from term
rewriting systems (TRSs). Our slicing technique is applicable to any language whose
semantics is specified in TRS form. Moreover, we show that our method admits an
efficient implementation.

In Chapter 5, dynamic dependence tracking is “applied to” PIM, an intermediate
representation for imperative programs with an accompanying equational logic (which
is implemented by rewriting). It will be shown that this permits the computation
of various types of highly accurate program slices. Chapter 6 describes how the
application of dynamic dependence tracking to algebraic specifications of interpreters
yields a useful notion of dynamic program slicing in that context.

4.1 Introduction

4.1.1 Overview

Program slicing is a useful technique for debugging, testing, and analyzing programs.
A program slice consists of the parts of a program that (potentially) affect the values
computed at some point of interest, referred to as the slicing criterion. As originally
defined by Weiser [147], a slicing criterion was the value of a variable at a particular
program point and a slice consisted of an “executable” subset of the program’s original
statements. Numerous variations on the notion of slice have since been proposed, as well as
many different techniques to compute them (see Chapter 3), but all reduce to determining
dependence relations among program components. Unfortunately, with rare exceptions,
the notion of “dependence” has been defined in an ad-hoc and language-specific manner,
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resulting in algorithms for computing slices that are notoriously difficult to understand,
especially in the presence of pointers, procedures, and unstructured control flow. The
contributions of this chapter are as follows:

� We define a general notion of slice that applies to any unconditional term rewriting
system (TRS). Our definition uses a relation on contexts derived from the reduction
relation on terms. This relation makes precise the dynamic dependence of function
symbols in terms in a reduction sequence on symbols in previous terms in that sequence.
Our notion of dependence does not require labeled terms [27, 28, 111, 112], and is
distinguished by its ability to treat (normally problematic) TRSs with left-nonlinear
rules.

� Our notion of slicing subsumes most of those defined in previous work on program
slicing. The distinction traditionally made between “static” and “dynamic” slicing can
be modeled by reduction of open or closed terms, respectively. Partial instantiation
of open terms yields a useful intermediate notion of constrained slicing. Although
Venkatesh defines a similar notion abstractly [137], he does not indicate how to
compute such slices.

� We describe an algorithm by which slices can be efficiently computed in practice by
systematically transforming the original TRS to gather dependence information. The
overhead required to compute this information is linear in the size of the initial term.
This algorithm produces minimal slices for left-linear systems, and sound (but not
always minimal) slices for left-nonlinear systems.

Finally, for the case of left-linear systems, we present proofs that our definitions yield
minimal and sound slices.

In Chapter 5, we will show how our techniques can be applied to standard programming
languages, and compare these techniques to other algorithms in the literature. Chapter 6
discusses how the dynamic dependence relation defined in this chapter can be used for
providing dynamic slicing facilities in generated source-level debugging tools. Here, we
will concentrate primarily on technical foundations.

4.1.2 Motivating examples

Consider the program in Figure 4.1 (a) below, written in a tiny imperative programming
language, P. The semantics of P are similar to those of many imperative programming
languages with pointers. A do construct is executed by evaluating its statement list, and
using the computed values to evaluate its in expression. Expressions of the form ‘x’ are
atoms, and play the dual role of basic values and addresses that may be assigned to using
‘:�’. Addresses are explicitly dereferenced using ‘�’. The distinguished atoms t and f
represent boolean values.

We evaluate P programs by applying the rewriting rules of Figure 4.2 to the term
consisting of the program’s syntax tree until no further rules are applicable. This reduction
process produces a sequence of terms ending with a normal form that denotes the result
of the evaluation. The program in Figure 4.1 (a) reduces to the normal form ‘result t’.
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program
do x :� a; w :� x; z :� b;

if w � � � x �
then y :� x �
else y :� b

in y � � x �

program
do x :� �; w :� x; z :� �;

if w � � � x �
then y :� x �
else�

in y � � x �

(a) (b)

Figure 4.1: (a) Example P Program. (b) Minimal slice with respect to the entire normal form of
(a).

[P1] X � X 	 t
[P2] a � b 	 f for all constants a, b such that a �� b

[P3] if t then X else Y 	 X

[P4] if f then X else Y 	 Y

[P5] doX in Y 	 Y
[P6] doX in Y � Z 	 �doX in Y � � �doX in Z�
[P7] doX ;A :� E in �B �� 	 if �doX ;A :� E in B� � �doX in A�

then �do X inE�
else doX in ��do A :� E in B� ��

[P8] doA :� E in �B �� 	 if �doA :� E in B� � A

thenE
else ��doA :� E in B� ��

[P9] doX ; ifA thenB else C in E 	 if �doX in A�
then �do X ;B inE�
else �doX ;C in E�

[P10] do ifA thenB else C in E 	 ifA then �do B in E� else �do C in E�
[P11] doX in if A then B else C 	 if �doX in A�

then �do X inB�
�doX in C�

[P12] program X 	 result X

Figure 4.2: Rewriting Semantics of P.
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[B1] X 
 �Y � Z��	 �X 
 Y �� �X 
 Z� [B3] X 
 ff�	 ff
[B2] X 
 tt�	X [B4] X �X �	 ff

Figure 4.3: Boolean TRS B.

ff 
 �tt� tt� � T0
[B1]
�	 �ff 
 tt�� �ff 
 tt� � T1

[B2]
�	 ff� �ff 
 tt� � T2

[B2]
�	 �ff� ff� � T3

[B4]
�	 ff � T4

Figure 4.4: A B-reduction; redexes are underlined.

Figure 4.1 (b) depicts the slice of the example program with respect to this normal form.
The symbol ‘�’ represents subterms of the program that do not affect its result.

It should be clear that a program slice is valuable for understanding which program
components depend critically on the slicing criterion—even in the small example of Fig-
ure 4.1, this is not immediately obvious. Slicing information can be used to determine what
statements might have to be changed in order to correct an error or to alter the value of
the criterion. The techniques we describe also allow the programmer the option of binding
various inputs to values or leaving them undefined, allowing the effects of various initial
conditions to be precisely traced. This significant capability is unique to our approach, and
derives from its generality. In addition, by defining different (TRS-based) semantics for the
same language, different sorts of slices can be derived. For instance, by using variants of the
semantics in [54], we can compute both traditional “static” and “dynamic” (see Chapter 3
for a more thorough discussion of the distinction between these notions) slices for the same
language.

We believe that our notion of a slice should also prove useful as an adjunct to theorem-
proving systems, since it yields certain universally quantified equations from derivations of
equations on closed terms. Consider, for example, the simple TRS B in Figure 4.3, which
defines a few boolean identities (‘�’ denotes conjunction, ‘�’ exclusive-or). Figure 4.4
shows how B-termff��tt�tt� can be reduced toff. Observe that in deriving the theorem
ff� �tt� tt� � ff, we actually derive the more general theorem P � �tt� tt� � ff,
for arbitrary P . From the point of view of slicing, the slice with respect to the normal form
ff is the subcontext � � �tt� tt� of the initial term. To determine such a slice, we must
pay careful attention to the behavior of left-nonlinear rules such as [B4] and [P1], which
many authors on reduction-theoretic properties of TRSs do not treat. In the sequel, we show
how slices can be obtained by examining the manner in which rules create new function
symbols, and residuate, or “move around” old ones.
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4.1.3 Definition of a slice

In general, we will define a slice as a certain context contained in the initial term of some
reduction. Intuitively, a context may be viewed as a connected (in the sense of a tree) subset
of function symbols taken from a term. For instance, if f�g�a� b�� c� � T is a term, then one
of several contexts contained in T is g��� b� � C. C contains an omitted subterm, or hole1,
denoted by ‘�’. This hole results from deleting the subterm ‘a’ of T . We denote the fact
that C is a subcontext of T by C v T ; contexts as well as terms may contain subcontexts.

In a slice, holes denote subterms that are irrelevant to the computation of the criterion.
Figure 4.1 (b) depicts the minimal subcontext of the original program that yields the slicing
criterion via a “subreduction” of the original reduction. Informally, the holes in the slice
could be replaced by any P-expression and the same criterion could be produced by a
P-reduction.

Definition 4.1 below makes precise our notion of slice. We will formalize the notion of
“subreduction” of a sequence of reduction steps � using a set Project��, which is a collection
of triples of the form hC� ��� C �i. Informally, such a triple denotes the fact that context C
reduces to a context that is isomorphic to C� by a reduction �� derived from rule applications
that also occur in �. We discuss Project�� further in Section 4.5. Two contexts are isomorphic
if they have the same “structure” (though they may appear at different locations). This notion
will be formalized in Section 4.2.

Definition 4.1 (Slice) Let � : T ��� T � be a reduction. Then a slice with respect to a
subcontext C � of T � is a subcontext C of T with the property that there exists a reduction
�� such that (i) �� : C ���D� for some D� w E �, (ii) E � and C � are isomorphic, and (iii)
hC� ��� D�i � Project��. Slice C is minimal if there is no slice with respect to criterion C �

that contains fewer function symbols.

Definition 4.1 is rendered pictorially in Figure 4.5.
The notion of TRS-based slice we define in the sequel can be used for any language

whose operational semantics is defined by a TRS. Many languages whose semantics are
traditionally defined via extended lambda-calculi or using structural operational semantics
also have corresponding rewriting semantics [1, 54]. In [55], it is shown how many traditional
program constructs may be modeled by an appropriate TRS.

4.1.4 Relation to origin tracking

At this point, the reader might wonder why any additional machinery is required beyond
the origin relation that was defined in Chapter 2. Unfortunately, the origin relation does not
provide information that is appropriate for computing program slices. The main reasons for
this being the case are:

� The origin relation was designed with a different objective in mind: to trace recurrences
of the “same” subterm in a term rewriting process. This notion is too “weak” for

1Some authors require that contexts contain exactly one hole; we will not.
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Figure 4.5: Depiction of the definition of a slice.

computing slices, where one needs to determine those parts of the initial term that are
necessary for producing some designated subterm. The problem is that the slice (i.e.,
the parts of the initial term are not necessarily the same as (or even similar in structure
to) the slicing criterion.

� A related issue is that not every subterm has a non-empty origin. In fact, all subterms
that are “created” by the rewriting process have empty origins. It is evident that any
notion of dependence in a rewriting process should take into account the creation of
new function symbols as well as the “residuation” of symbols that occurred previously;
otherwise, “empty” origins would occur frequently.

In Section 7.3, the connections between the origin relation and the dynamic dependence
relation are discussed at somewhat greater length.

4.2 Basic definitions

In this section, we make precise the notion of a context introduced informally in the previous
section. This notion will be the cornerstone of our formalization of slicing and dependence.
Instead of deriving contexts from the usual definition of a term, we view terms as a special
class of contexts. Contexts will be defined as connected fragments of trees decorated with
function symbols and variables. We begin with a few preliminary definitions, most of which
are standard.

4.2.1 Signatures, paths, context domains

A signature Σ is a finite set of function symbols; associated with each function symbol f � Σ
is a natural number arity�f�, its number of arguments. We will assume the existence of
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a denumerable set of variables V such that Σ � V � �. By convention, for each variable
X � V , arity�X� � 0. Lower-case letters of the form f� g� h� � � � will denote function
symbols and upper-case letters of the form X� Y� Z� � � � will represent variables.

A path is a sequence of positive integers that designates a particular function symbol or
subtree by encoding a walk from the tree’s root. The empty path, ‘��’, designates the root of
a tree; path �i1 i2 � � � im� designates the ithm subtree (counted from left to right) of the subtree
indicated by path �i1 i2 � � � i�m�1��. The operation ‘�’ denotes path concatenation. Path p is
a prefix of path q, denoted by p � q, if there exists an r such that q � p � r; if r 
� �� then
p � q.

A context domain P is a set of paths designating a connected fragment of a tree. This
means that P must (i) possess a unique root, root�P �� such that for all p � P , root�P � � p,
and (ii) have no “gaps,” i.e., for all p� q� r such that p � q � r and p� r � P it must be the
case that q � P .

4.2.2 Contexts

We can now define a context as a total mapping from a context domain to function symbols
and variables:

Definition 4.2 (Context) Let Σ be a signature, V be a set of variables, and P be a context
domain. Let � be a total mapping from P to �Σ � V� and p be a path. Then a pair hp� �i is
a ΣV-context if and only if:

(i) For all q � P and s � Σ � V such that ��q� � s, q � i � P for some i implies that
i � arity�s�.

(ii) If P 
� �, then p � root�P�.

Clause (i) of Definition 4.2 ensures that every child of a function symbol f must have an
ordinal number less than or equal to the arity of f . Clause (ii) ensures that the root of the
context is the same as the root of its underlying domain, except when the domain is empty; in
the latter case, we will say that the context is empty. The definition is specifically designed
to admit empty contexts, which will be important in the sequel for describing the behavior of
collapse rules, i.e., rewriting rules whose right hand sides are single variables. Given context
C � hp� �i, root�C� denotes the path p, and O�C� the domain of �. The path corresponding
to a “missing child” in a context will be referred to as a hole occurrence; an empty context
is also a hole. The set of hole occurrences in a context C will be denoted by O��C�. We
will use Cont�Σ�V� to denote the set of all ΣV-contexts.

For any contextC and a path p, p � C denotes an isomorphic context rooted at p obtained
by rerootingC. This notation is used to represent contexts textually; e.g., p � f��� g�a����
represents a context rooted at p with two holes (‘�’), binary function symbols f and g and a
constant a. p � � represents an empty context rooted at p. We will say that contexts C and
D are isomorphic, written C �

� D, if �� � � C� � �� � � D�
A context C is a term if: (i) C has no hole occurrences, and (ii) root�C� � ��. Although

the restriction of root�C� to be �� is not strictly necessary, it results in a definition that agrees
most closely with that used by other authors. We will use Term�Σ� to denote the set of terms
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over signature Σ. Letters C�D� � � � will generally denote arbitrary contexts, and S� T� � � �
terms. Whenever convenient, we ignore the distinction between a variable X and the term
consisting of that variable. Some convenient operations on contexts are introduced next.

For a context C, and S a subset of Σ � V , OS�C� denotes the set of paths to elements of
S in C; Ofsg�C� is abbreviated by Os�C�. The set of variable occurrences in a ΣV-context
C, i.e., OV�C�, is denoted VARS�C�, and Vars1�C� is the set of variables that occur exactly
once in C.

Two contexts are compatible if all paths common to both of their domains are mapped to
the same symbol. If C and D are compatible, C is a subcontext of D, denoted by C v D, if
and only if one of the following holds: (i) C and D are nonempty and O�C� 	 O�D�, (ii) C
and D are empty and C � D, or (iii) C is empty, D is nonempty, root�C� � q � i � O�D�,
and q � O�D�. The third clause states that an empty contextC is a subcontext of a nonempty
context D only if its root is “sandwiched” between adjacent nodes in D. This property will
greatly simplify a number of definitions in the sequel. Contexts D and E are disjoint if and
only if there exists no context C such that C v D and C v E. If C and D are contexts
such that root�D� � �O�C� � O��C��, C#D$ denotes the context C where the subcontext
or hole at root�D� is replaced by D. Note that for all C v D, D#C$ � D. A context C is
elementary iff jO�C�j � 1.

A context forest is a set of mutually disjoint contexts. Forest S is a subforest of forest
T , denoted S v T , if and only if for all contexts C � S, there exists a context D � T
such that C v D. Some convenient set-like operations on context forests can be defined as
follows: Let S and T be compatible context forests. Then their union, denoted by S t T ,
is the smallest forest U such that S v U and T v U ; their difference, denoted S � T , is the
smallest forest U such that U v S and S v �T t U�. If P is a set of paths, C �P is the
forest containing subcontexts of C rooted at paths in P . The notion of context replacement
is easily generalized to a forest S. In the sequel, we allow simple contexts to be used as
operands of context forest operations; such contexts are coerced to singleton forests. For
example, ‘C tD’ denotes ‘f C g t fD g’.

4.3 Term rewriting and related relations

In this section, we formalize standard term rewriting-related notions using operations on
contexts; we then define the important related ideas of creation and residuation, which
are derived from the rewriting relation. We will first consider only left-linear TRSs; this
restriction will be removed in in Section 4.7.

4.3.1 Substitutions and term rewriting systems

A substitution is a finite partial map from V to Cont�Σ�V�, where Σ is a signature and V a
set of variables. A substitution � is extended to a mapping on contexts by replacing each
subcontext CX v C consisting solely of a variable X by the context (root�CX� � ��X�),
for all X on which � is defined. A term rewriting system R over a signature Σ is a set of
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pairs hL�Ri such that L and R are terms over Σ, L does not consist of a sole variable, and
VARS�R� 	 VARS�L�; hL�Ri is called a rewrite rule and is commonly denoted by L � R.
For 
 � L � R � R we define L� � L and R� � R. A rewrite rule 
 is left-linear if
VARS�L�� � Vars1�L��. If R is a TRS, then we define an R-contraction A to be a triple
hp� 
� �i, where p is a path, 
 is a rule of R, and � is a substitution.

We use pA, 
A, LA, RA, and �A to denote p, 
, L�A , R�A , and �, respectively. Moreover,
LA and RA will denote the contexts �pA � LA� and �pA � RA�, respectively. The R-
contraction relation, ��R , is defined by requiring thatT ��R T

� if and only if a contraction
A exists such that T � T #�A�LA�$ and T � � T #�A�RA�$, for terms T , T �. The subcontext
�A�LA� of C is an 
A-redex, and the context �A�RA� is an 
A-reduct; these contexts are
abbreviated respectively by RedexA and ReductA. We will feel free to drop the subscript R
of a contraction ��R in cases where it is clear which TRS we are referring to, and simply
write ��� . For clarity, contraction arrows will frequently be labeled explicitly with the

contraction A that is involved: A
�� . As usual, ��� is the reflexive, transitive closure of

�� . A reduction � is a sequence of contractions A1A2 � � �An such that if � is nonempty,
there exist terms T0� T1� � � � � Tn where:

T0
A1�� T1

A2�� T2 � � �Tn�1
An�� Tn

This reduction is abbreviated by � : T0 ��
� Tn. A reduction � is a reduction of term T if

there exists T � such that � : T ��� T �. The reduction of length 0 is denoted by �; for all
terms T , we adopt the convention that � : T ��� T .

Given the definitions above, the B-reduction depicted in Figure 4.4 may be described
formally by the following sequence of contractions:

h��� �B1�� �X :� ff� Y :� tt� Z :� tt�i; h�1�� �B2�� �X :� ff�i; h�2�� �B2�� �X :� ff�i;
h��� �B4�� �X :� ff�i

Most of the new relations defined in the sequel are parameterized with a reduction �A,
in which the final contraction is highlighted. Several definitions are concerned with the
last contraction A only; however, when our definitions are generalized in Section 4.7, the
“history” contained in � will become relevant. Whenever we define a truly inductive relation
on �A, we will append a ‘�’ to the name of the relation.

4.3.2 Context rewriting

In order to generalize term rewriting to context rewriting, a few auxiliary definitions are
needed. A variable instantiation of a context C is a term T that can be obtained from C by
replacing each hole with a variable that does not occur in C. A variable instantiation is a
linear instantiation if each hole is replaced by a distinct variable. A context C rewrites to
a context C �, denoted C ���C �, if and only if T ��� T �, where T is a linear instantiation
of C and T � is a variable instantiation of C �. Note that context reduction is not defined as
the transitive closure of a single-step contraction relation on contexts; this is necessary to
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correctly account for the way in which a reduction causes distinct holes to be moved and
copied, particularly in the case of left-nonlinear rules.

4.3.3 Residuation and creation

In order to formalize our notion of slice, we must first reformulate the standard notion of
residual and the somewhat less standard notion of creation in terms of contexts. Each of
these will use Definition 4.3, which formalizes how an application of a contraction A has
the effect of “copying,” “moving,” or “deleting” contexts bound to variable instances in LA
when RA is instantiated. The elements of the set VarPairs�A are pairs hS1�S2i of context
forests, such that contextsC1 � S1 andC2 � S2 are corresponding subcontexts of the context
bound to some variable in 
A.

Definition 4.3 (VarPairs) Let �A be a reduction. Then

VarPairs�A � f hS1�S2i j X � V�
C v ��� � �A�X�� or C � ��� � ���
q � root�C��
S1 � f�pL � q � C� j pL � OX�LA�g�
S2 � f�pR � q � C� j pR � OX�RA�g g

In left-linear systems, for any pair hS1�S2i � VarPairs�A, S1 is always a singleton. This will
not, however, be the case when we generalize the definition for left-nonlinear systems.

As mentioned, the � parameter of relation VarPairs (and of the relations Resid, Creating,
Created, and CreateResid that follow) is irrelevant for left-linear systems. This parameter
is relevant in the definition of VarPairs for left-nonlinear systems (Definition 4.23). The �
parameter is included in the definitions of this section solely for reasons of uniformity.

Definition 4.4 is the standard notion of residual, in relational form. For a contraction
A : C��C �, Resid associates each subcontext of C that is not affected by A with the
corresponding subcontext of C�. Moreover, for each hS1�S2i � VarPairs�A, C1 � S1, and
C2 � S2, C1 is related to C2. If S2 is empty, this will have the effect that no pairs are added
to Resid�A.

Definition 4.4 (Resid) Let �A be a reduction. Then

Resid�A � f hD1� D2i j D1 � S1� D2 � S2� hS1�S2i � VarPairs�A g �
f hD�Di j D and RedexA are disjoint g

The reflexive, transitive closure of Resid is defined by

Resid�� � f hC�Ci j C � Cont�Σ� g
Resid��A � Resid�� � Resid�A

Here, the operation ‘ �’ denotes relational join.
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Figure 4.6: Illustration of selected relations and contexts derived from the B-reduction of Figure 4.4.

Figure 4.6 depicts Resid and several other definitions we will encounter in the sequel, as
they apply to the initial and final contractions of the reduction in Figure 4.4, involving the
left-linear rule [B1] and the left-nonlinear rule [B4] of TRS B, respectively.

Definition 4.5 describes the creating and the created contexts associated with a contrac-
tion A. Intuitively, if contraction A is applied to term T , the creating context is the minimal
subcontext of T needed for the left-hand side of A’s rule to match; the created context is the
corresponding minimal context “constructed” by the right-hand side of the rule. The former
is defined as the context derived by subtracting from RedexA all contexts D1 � S1 such that
hS1�S2i � VarPairs�A. The latter is the context derived by subtracting from ReductA all
contexts D2 � S2 such that hS1�S2i � VarPairs�A.

Definition 4.5 (Creating and Created) Let �A be a reduction. Then

Creating�A � RedexA �
F
fS1 j hS1�S2i � VarPairs�Ag

Created�A �

�
ReductA �

F
fS2 j hS1�S2i � VarPairs�Ag when RA 
� V

pA � � otherwise

While Creating�A and Created�A could have been defined in a more direct way from the
structure of LA, RA, and pA without using VarPairs�A at all, the approach we take here will
be much easier to generalize when we consider left-nonlinear systems.

Combining Definitions 4.4 and 4.5, we arrive at the relation CreateResid, formalized in
Definition 4.6. Every pair of terms hT� T �i � CreateResid has the property that T �� T �.
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The difference between the contraction relation ‘�� ’ and relation CreateResid is that the
latter is derived from the former. Roughly speaking, CreateResid�A may be regarded as the
“restriction” of ‘�� ’ to the specific contraction A.

Definition 4.6 (CreateResid) Let �A be a reduction. Then

CreateResid�A � f hC1� C2i j R 	 Resid�A�
hC�Di � R and hC�D�i � Resid�A

imply hC�D�i � R�
C1 and C2 are contexts such that:
C1 � Creating�A t

F
f C j hC�C �i � R g�

C2 � Created�A t
F
f C � j hC�C �i � R g g

Note that it is impossible to have both hC1� Di � Resid�A and hC2� Di � CreateResid�A, for
any nonempty C1� C2� D; these relations may, however, overlap on empty contexts.

4.4 A dynamic dependence relation

In this section, we will derive our dynamic dependence relation, Slice�, using the concepts
introduced in Section 4.3. For the empty reduction, Slice� is defined as the identity relation.
For a criterion D, the inductive case determines the minimal super-context D� w D for
which there is a C such that hC�D�i � �Resid�A � CreateResid�A�; then the slice for this
C in reduction � is determined.

Definition 4.7 (Slice�) Let �A be a reduction. Then

Slice�� � f hC�Ci j C � Cont�Σ� g
Slice��A � Slice�� � f hC�Di j there exists a minimal D� w D

such that hC�D�i � �Resid�A � CreateResid�A� g

Since Resid�A and hC2� Di � CreateResid�A only overlap for empty contexts, it is easy to
see that the slice with respect to any nonempty criterion is uniquely defined. Empty contexts
may have multiple slices, which arise from the application of collapse rules.

4.4.1 Example

In the example that follows, we will frequently use set comprehension to avoid unwieldy
notation. We will consider the following B-reduction � = A1A2A3:

S � �ff � �ff � tt�� � tt
A1�� �ff � ff� � tt

A2�� ff � tt
A3�� ff � T

Note that for contraction A1, we have pA1
= (1 2), LA1 = �1 2� � X �tt, RA1 = �1 2� � X ,

RedexA1 = �1 2� � ff � tt, and ReductA1 = �1 2� � ff. This results in the following
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relations for A1:

VarPairsA1 � f hf �1 2 1� � ff g� f �1 2� � ff gi� hf �1 2 1� � � g� f �1 2� � � gi g
ResidA1 � f h�1 2 1� � ff� �1 2� � ffi� h�1 2 1� � �� �1 2� � �i�

h�� � �� �� � �i� h�1 2� � �� �1 2� � �i g �
f C j C v �� � �ff 	�� 	 tt g

CreatingA1 � �1 2� � �� 	 tt�
CreatedA1 � �1 2� � �

CreateResidA1 � f h�1 2� � �� 	 tt�� �1 2� � �i� h�1� � � 	 �ff 	 tt�� �1� � � 	 ffi�
h�1� � ff 	 �ff 	 tt�� �1� � ff 	 ffi�
h�� � �� 	 �ff 	 tt�� 	�� �� � �ff 	 ff� 	�i�
h�� � �� 	 �ff 	 tt�� 	 tt� �� � �ff 	 ff� 	 tti�
h�� � �ff 	 �ff 	 tt�� 	�� �� � �ff 	 ff� 	�i�
h�� � �ff 	 �ff 	 tt�� 	 tt� �� � �ff 	 ff� 	 tti g

For contraction A2, we have pA2
= (1), LA2 = �1� � X � ff, RA2 = �1� � ff, RedexA2 =

�1� � ff � ff, and ReductA2 = �1� � ff. Therefore, we have:

VarPairsA1A2 � f hf �1 1� � ff g� �i� hf �1 1� � � g� �i g
ResidA1A2 � f h�� � �� �� � �i� h�1� � �� �1� � �i g �

f hC�Ci j C v �� � � 	 ff g

CreatingA1A2 � �1� � �� 	 ff�
CreatedA1A2 � �1� � ff

CreateResidA1A2 � f h�1� � �� 	 ff�� �1� � ffi� h�� � �� 	 ff� 	�� �� � ff 	�i�
h�� � �� 	 ff� 	 tt� �� � ff 	 tti g

For the third contraction, A3, we have pA3
= (), LA3 = �� � X � tt, RA3 = �� � X ,

RedexA3 = �� � ff � tt, and ReductA3 = �� � ff. The following relations are computed
for A1A2A3:

VarPairsA1A2A3 � f hf �1� � ff g� f �� � ff gi� hf �1� � � g� f �� � � gi g
ResidA1A2A3 � f h�1� � ff� �� � ffi� h�1� � �� �� � �i� h�� � �� �� � �i g

CreatingA1A2A3 � �� � �� 	 tt�
CreatedA1A2A3 � �� � �

CreateResidA1A2A3 � f h�� � �� 	 tt�� �� � �i g

From the above and Definition 4.7 it follows that we have the following dynamic dependence
relations between subcontexts of S and T :

Slice
A1A2A3 � f h�1� � � 	 �ff 	 tt�� �� � ffi� h�� � �� �� � �i g
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Thus, the slice with respect to �� � ff v T is �1� � � � �ff � tt� v S. This is the
minimal context for which there exists a subreduction of � that yields the criterion. In this
case, the projection consists of the first two contractions.

The above example also illustrates why Slice� is defined on contexts rather than on
context domains: collapse rules require special treatment in order to produce minimal slices.
Note that the example exhibits two applications of collapse rule [B2]. Intuitively, the first
one created the criterion, whereas the second one merely affects its location. We achieve
this differentiation by: (i) having a collapse rule create an empty context pA � � instead
of the context consisting of the function symbol at path pA (the approach of [94]), and (ii)
defining an empty context p � � to be a subcontext of a nonempty context only if the latter
“surrounds” the former.

4.5 Projections, subreductions

In this section, we formalize the notion of a projection of a reduction on a subcontext of
its initial term. It will be convenient to define simultaneously the initial context C and the
final context D to which a projection corresponds along with the projected “subreduction”
� itself. We therefore define the set of projection triples as follows:

Definition 4.8 (Projection Triples) Let R be a TRS over signature Σ. Then the set of R
projection triples is inductively defined as follows:

Project�� � f hB� �� Bi j B � Cont�Σ� g

Project��A � fhB� �A� D�i j hB� �� Ci � Project���
hC�Di � CreateResid�A�
D� v D g �

(i)

fhB� ��D�i j hB� �� Ci � Project���
hC�Di � Resid�A�
D� v D g

(ii)

The interesting cases in Definition 4.8 are numbered. Intuitively, these cases behave as
follows:

� In case (i), the context D� that constitutes the third element of the triple is entirely
contained in a context D that is involved in a CreateResid�A–relation. In this case,
contraction A is deemed applicable to D�, and the construction continues recursively
with the context C that contracted to D, and reduction �.

� In case (ii), D� is a subcontext of some context D that residuated from a context C.
In this case, contraction A was not applicable to D�, and the construction continues
recursively with the context C from which D residuated, and reduction �.
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T0 � �ff � ff� � �tt	 tt�
A [B1]
�� ��ff � ff� � tt�	 ��ff � ff� � tt�

A [B3]
�� � ff � tt�	 � �ff � ff� � tt� � T2

Figure 4.7: Example of projections.

Note that each residual D of a context C gives rise to the construction of a new projection
triple. This reflects the fact that different residuals of a context may be reduced differently,
causing the construction of different subreductions.

Informally, the occurrence of a triple hB� ��D�i in relation Project�� indicates that context
B reduces to a context D that “contains” D�. Moreover, it does so by a reduction that is
derived from the contractions of � specified in �1. Therefore � can justifiably be deemed a
subreduction of �. In Section 4.6, we will prove this property of projections. In addition, we
will show that Slice�� computes slices that correspond to minimal projections by effectively
selecting the minimal supercontextD ofD� (in each construction step) for which there exists
a pair hC�Di in �Resid�A � CreateResid�A�.

As an example of the behavior of Project�, consider the B-reduction in Figure 4.7. As
usual, we have underlined each redex. We use A [B1] and A [B3] to denote the contractions
that use rules [B1] and [B3], respectively. Some typical, minimal elements of the set
Project�A [B1]A [B3] are:

h �� � �ff 	 ff� 	 ����� � A [B1]A [B3] � �� � �ff 	��� ��ff 	 ff� 	�� i
h �� � � 	 ����� � A [B1] � �� � �� 	��� �� 	�� i
h �1� � ff 	 ff � A [B3] � �1 1� � ff i
h �1� � ff 	 ff � � � �2 1� � ff 	 ff i

Observe that the last two of these projection triples “apply to” the subcontext �1� �
�ff�ff� of T0; this subcontext is shown boxed in Figure 4.7. The projections of the boxed
subcontext of T0 are also shown boxed (in T2). Clearly, these triples correspond to the two
different “paths through the reduction” taken by the boxed subterm of T0. One residual is
contracted in a subsequent step, the other is not.

The difference between the Slice� and Project� relations is best illustrated by a non-
minimal element of the set Project�A [B1]A [B3] that does not occur in Slice�A [B1]A [B3] , such
as:

h �� � �ff � ff� � ��� �� � A [B1]A [B3] � �1 1� � ffi

1It is important to realize that the occurrence of a triple hB� ��D�i in relation Project� does not imply that

that B
�
�	 D�. This is the case because the root and substitution components of � are copied unmodified in

the process of constructing �. While � could in principle be constructed in such a way that it “applies” directly
to (i.e., is a reduction of) context B, this is not necessary for our purpose of proving that some reduction exists
(see Lemma 4.18); moreover it would substantially complicate the construction process of � in the definition
of Project.
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4.6 Formal properties of slices

We can now state some theorems describing the most important properties of slices. In the
sequel, all TRSs are assumed to be left-linear.

4.6.1 Uniqueness of slices

In order to prove that Slice� is a many-to-one mapping for non-empty contexts (that is, each
context has a unique slice), we will first prove a few lemmas.

Lemma 4.9 Let B
�

��� C
A
�� D be a reduction. Then for any non-empty D� v D there

is at most one C � v C such that hC �� D�i � Resid�A. Moreover, if it exists, this C � will be
non-empty.

Proof. Let D� v D be a non-empty context such that hC�� D�i � Resid�A for some C � v C.
There are two cases:

1. root�D�� � root�Created�A� and D� and Created�A are disjoint.
Then it follows from Definition 4.4 that C � � D� is the unique subcontext of C such
that hC �� D�i � Resid�A. This C � is non-empty because D� is non-empty.

2. D� � �pR � q � A� where pR � OX�RA�, A v ��� � �A�X��, and q � root�A� for
some variable X .
From left-linearity it follows that there is a unique path pL such that fpL g � OX�LA�.
From Definitions 4.3 and 4.4 it follows thatC � � �pL �q � A� is the unique subcontext
of C such that hC �� D�i � Resid�A. Since rerooting a context does not affect its (non-
)emptyness, C � will be a non-empty context. �

Lemma 4.10 Let B
�

��� C
A
�� D be a reduction. Then for any non-empty D� v D

there is at most one C � v C such that hC �� D�i � CreateResid�A. Moreover, if it exists, this
C � will be non-empty.

Proof. Let D� v D be a non-empty context such that hC�� D�i � CreateResid�A for some
C � v C.

From Definition 4.6 it follows that there exists a unique subset R of Resid�A such that:

D� � Created�A t
G
f E � j hE�E �i � R g

and also that there exists a unique context

C � � Creating�A t
G
f E j hE�E �i � R g

such that hC �� D�i � CreateResid�A. Since the left-hand side of a rewrite rule is not a single
variable, Creating�A is non-empty, causing this C � to be non-empty as well. �

Lemma 4.11 Let B
�

��� C
A
�� D be a reduction. It is impossible to have hC1� D

�i �
Resid�A and hC2� D

�i � CreateResid�A for any C1� C2 v C and any non-empty D� v D.
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Proof. Assume that hC2� D
�i � CreateResid�A for some C2 v C, and some non-empty

D� v D. From Definition 4.6 it follows that Creating�A v C2 and Created�A v D�.
From Definitions 4.4 and 4.5 it follows that for any pair hC1� D1i � Resid�A withC1 v C,

D1 v D, we have that C1 and Creating�A are disjoint and D1 and Created�A are disjoint.
From Creating�A v C2 and Creating�A 
v C1 it follows that C2 
� C1. �

Lemma 4.12 Let � : B
��

��� C
A
�� D be a reduction, and let D�� be a non-empty

subcontext of D. Then there exists a unique minimal D� such that D�� v D� v D and
hC �� D�i � �Resid� � CreateResid�� for some non-empty C � v C. Moreover,

hB�� C �i � Slice��
�

� hB�� D�i � Slice�� � hB�� D��i � Slice��

where B� v B.

Proof. The theorem holds trivially if hC �� D��i � �Resid� � CreateResid��, for someC � v C.
Assume that there exists no C � v C such that hC �� D��i � �Resid� � CreateResid��.

From Definitions 4.3 and 4.4, it follows that D�� and Created�A are not disjoint—otherwise,
D�� would be involved in a Resid�-relation. From the fact that D�� is not involved in a
CreateResid� relation either, we have that one or both of the following hold:

� Created� 
v D��,
� D���Created�A �

F
fE � j hE�E �i � R g, for some R � Resid� such that there exist

hA�Bi � R, hA�B�i � Resid� for which hA�B�i 
� R.

Define:
R� � R � f hA�B�i j hA�Bi � R� hA�B�i � Resid� g
D� � D� t Created� t f E � j hE�E �i � R� g

Clearly, D� is the minimal supercontext of D�� for which hC �� D�i � CreateResid�, where

C � � Creating� t
G
f E j hE�E �i � R� g v C

Since Creating� is always non-empty, C � is non-empty as well.
From Definition 4.7 it follows that

hB�� C �i � Slice��
�

� hB�� D�i � Slice�� � hB�� D��i � Slice��

where B� v B. �

Theorem 4.13 (Uniqueness of Slices) Let � : B
�

��� D be a reduction, and let D� v D
be non-empty. Then there exists a unique non-empty B� v B such that hB�� D�i � Slice��.

Proof. By induction on the length of the reduction �.
For � � �, we have fB� j hB�� D�i � Slice�� g � fD� g according to Definition 4.7.

For the inductive case, assume that � � ��A such that B
��

��� C
A
�� D, and let

D� v D be a non-empty context. According to Lemma 4.12, we may assume without loss
of generality that hC �� D�i � �Resid�

�A � CreateResid�
�A�, for some C � v C.
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According to Lemma 4.11, we have either hC�� D�i � Resid�
�A or hC �� D�i �

CreateResid�
�A.

Lemmas 4.9 and 4.10 state that both Resid and CreateResid map any non-empty context
D� v D to a unique non-empty C � v C. By induction, there exists a unique non-empty
B� v B such that hB�� C �i � Slice��

�

.
From Definition 4.7 it follows that this B� is the unique non-empty subcontext of B such

that hB�� D�i � Slice��. �

Given Theorem 4.13, we will be able to write C � Slice���D� instead of hC�Di �
Slice��, for non-empty D.

4.6.2 Preservation of topology

The following lemma states that slices may be computed by repeatedly determining a unique
related subcontext of the previous context in the reduction.

Lemma 4.14 Let � : B
��

��� C
A
�� D be a reduction, and let D�� v D be a non-empty

context. Moreover, let D� be the unique minimal super-context of D�� for which there exists
a non-empty context C� v C such that hC �� D�i � �Resid� � CreateResid��. Then

Slice��
�

�C �� � Slice���D��� � Slice���D��

Proof. Follows immediately from Definition 4.7, Lemma 4.12, and Theorem 4.13. �

Lemma 4.15 states that any pair of contexts hC�Di in the Resid relation can be “split”
into a set S of pairs of elementary contexts in a way that each pair of elementary contexts
hC �� D�i in S also occurs in the Resid relation. This result will be used in the proof of the
Inclusion Lemma, which follows below.

Lemma 4.15 Let C and D be contexts such that hC�Di � Resid�, for some reduction �.
Then there exists a set S of pairs of elementary contexts such that all of the following hold:

1.
F
f C � j hC �� D�i � S g � C,

2.
F
fD� j hC �� D�i � S g � D,

3. hC �� D�i � S implies that hC �� D�i � Resid�.

Proof. Follows trivially from Definition 4.4. �

The next lemma and theorem demonstrate that slices effectively preserve the topology of
their corresponding criteria. This is important in showing that slices are minimal projections.

Lemma 4.16 (Inclusion Lemma) Let �A be a reduction such that B
�

��� C
A
�� D,

and let D�� v D� v D be non-empty contexts such that there exist pairs hC�� D�i �
�Resid�A � CreateResid�A�, and hC ��� D��i � �Resid�A � CreateResid�A�. Then C �� v C �.

Proof. There are three cases:

1. hC �� D�i � Resid�A and hC ��� D��i � Resid�A.
From Definition 4.4 it follows that there are two cases:
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(a) root�D�� � Created�A, D� and Created�A are disjoint, root�D��� � Created�A,
and D�� and Created�A are disjoint. Then C � � D� and C �� � D��, and therefore
C �� v C �.

(b) D� � �pR � q� � A��, D�� � �pR � q�� � A��� where pR � OX�RA�, A� v ��� �
�A�X��, A�� v ��� � �A�X��, q� � root�A��, q�� � root�A���, for some variable
X .
From Definitions 4.3 and 4.4 and left-linearity, it follows that there exists a unique
occurrence pL of X in LA such that C � � �pL � q� � A��, C �� � �pL � q�� � A���.
D�� v D� implies q� � q��, A�� v A� and therefore that C�� v C �.

2. hC �� D�i � CreateResid�A and hC ��� D��i � CreateResid�A.
From Definition 4.6 it follows that

D� � Created�A t
F
f E � j hE�E �i � R� g

D�� � Created�A t
F
f E � j hE�E �i � R�� g

C � � Creating�A t
F
f E j hE�E �i � R� g

C �� � Creating�A t
F
f E j hE�E �i � R�� g

for R�� R�� 	 Resid�A. According to Lemma 4.15, we may assume without loss of
generality that for all hE�E�i � R�� R��, bothE andE � are elementary. FromD�� v D�

it follows that R�� 	 R� and therefore that C�� v C �.
3. hC �� D�i � CreateResid�A and hC ��� D��i � Resid�A

According to Definition 4.6, we have that

D� � Created�A t
F
f E � j hE�E �i � R g

C � � Creating�A t
F
f E j hE�E �i � R g

for some R 	 Resid�A. According to Lemma 4.15, we may assume without loss of
generality that for all hE�E�i � R, both E and E � are elementary. From D�� v D�,
and the disjointness of Created�A and D�� it follows that there exists a subset R� 	 R
such that

D�� �
G
f E � j hE�E �i � R� g

Using an argument similar to that in case 1, it follows that

C �� �
G
f E j hE�E �i � R� g

Consequently C �� v C �.

Note that the case where hC�� D�i � Resid�A and hC ��� D��i � CreateResid�A is impossible,
given D�� v D�. �

Theorem 4.17 (Inclusion Theorem) Let � : B
�

��� D be a reduction, let D�� v D� v D,
and let D�� be non-empty. Then Slice���D��� v Slice���D��.

Proof. By induction on the length of the reduction �.
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For � � �, we trivially have:

Slice���D��� � D�� v D� � Slice���D��

For the inductive case, assume that � � ��A such that B
��

��� C
A
�� D, and let

D�� D�� be subcontexts of D such that D�� v D� v D and D�� is non-empty. According to
Lemmas 4.12 and 4.14 we may assume without loss of generality that there exist non-empty
contexts C �� C �� v C such that

hC �� D�i � �Resid� � CreateResid��� Slice���D�� � Slice��
�

�C ��

and
hC ��� D��i � �Resid� � CreateResid��� Slice���D��� � Slice��

�

�C ���

According to Lemma 4.16, D�� v D� implies C �� v C �. By induction, C �� v C � implies
Slice��

�

�C ��� v Slice��
�

�C ��. Consequently, it follows that Slice���D��� v Slice���D��. �

4.6.3 The relation between Slice� and Project�

Lemma 4.18 formally justifies the relationship between a reduction and the components of
a projection triple.

Lemma 4.18 Let � be a reduction, and let hB� ��D��i � Project��. Then there exist contexts
E � and D such that B ��� D, E � v D, and E � �� D��.

Proof. By induction on the length of �.
According to Definition 4.8, hB� ��D��i � Project�� implies that � � � and thatB � D��.

From this it follows trivially that B ��� D, for D � D��.
For the inductive case, assume that � � ��A, and hB� ��D��i � Project��. From

Definition 4.8 it follows that two cases can be distinguished:

1. D�� v D�, hC �� D�i � CreateResid�, and hB� ��� C �i � Project��.
By induction, there exists a reduction B ��� C for some C w F �, where F � �� C �.

From Definition 4.6 it follows that C � A
�� D�. Therefore we have that

B� ��� C � C#F �$ ��� C#E �$ � D

where E� � �root�F �� � D��. Since D� and E� are isomorphic, and D�� v D�, it
follows that D�� �� E �� for some E�� v E � v D.

2. D�� v D�, hC �� D�i � Resid�, and hB� ��� C �i � Project��.
By induction, there exists a reduction B ��� C for some C w F �, where F � �� C �.
From Definition 4.4 it follows that C � �� D�. Therefore we have that

B� ��� C � C#F �$ � C#E �$ � D

where E� � �root�F �� � D��. Since D� and E� are isomorphic, and D�� v D�, it
follows that D�� �� E �� for some E�� v E v D. �
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The lemma below establishes a connection between the relations Slice�� and Project��.

Lemma 4.19 Let � be a reduction such that B
�

��� D, and let B� � Slice���D�� for some
non-empty D� v D. Then there exists a triple hB�� ��D�i � Project��.

Proof. By induction on the length of reduction �.
Let � � �. From Definition 4.7 it follows that B� � Slice���D�� implies B� � D�.

Moreover, from Definition 4.8 it follows that hB�� �� D�i � Project�� implies B� � D� as
well, so that the lemma trivially holds.

For the inductive case, assume that � � ��A such that B
��

��� C
A
�� D, and let

B� � Slice���D���, for some non-emptyD�� v D. According to Lemmas 4.12 and 4.14 there
exists a unique D� w D�� such that hC �� D�i � �Resid� � CreateResid�� and Slice���D��� �
Slice���D�� � Slice��

�

�C �� � B�.
By induction there exists a triple hB�� ��� C �i � Project��

�

. From Lemma 4.11, it follows
that there are two cases:

1. hC �� D�i � Resid�. SinceD�� v D� it follows from Definition 4.8 that that hB�� ��� D��i �
Project��.

2. hC �� D�i � CreateResid�. Since D�� v D� it follows from Definition 4.8 that
hB�� ��A� D��i � Project��. �

4.6.4 Soundness and minimality

The soundness theorem states that the Slice� relation computes slices that comply with
Definition 4.1.

Theorem 4.20 (Soundness) Let � be a reduction such that B
�

��� D. Moreover, let
B� � Slice���D��� for some non-empty D�� v D. Then there exists a reduction � such that:

1. hB�� ��D��i � Project��, and

2. B�
�

��� D� such that there exists an E�� v D� for which E�� �� D��.

Proof. Follows immediately from Lemmas 4.18 and 4.19. �

Our final theorem states that a slice is the minimal initial component of some projection
triple whose final component contains the slicing criterion:

Theorem 4.21 (Minimality) Let � be a reduction, and let B�
s � Slice���D�

s� for some
non-empty D�

s. Then hB�
p� ��D

�
pi � Project�� and D�

p w D�
s together imply that B�

p w B�
s.

Proof. By induction on the length of reduction �.
For � � �, Definition 4.8 states that hB�

p� ��D
�
pi � Project�� implies � � � andB�

p � D�
p.

Moreover, according to Definition 4.7 we have that B�
s � Slice���D�

s� implies B�
s � D�

s.
Therefore D�

p w D�
s implies that B�

p w B�
s.
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For the inductive case, assume that � � ��A, let B�
s � Slice���D�

s� for some non-empty
D�
s, and let hB�

p� ��D
�
pi � Project�� such that D�

p w D�
s. Then by Definition 4.8, there exists

aDp w D�
p such that hCp� Dpi � �Resid�

�A�CreateResid�
�A�, and hB�

p� �
�� Cpi � Project��

�

.
According to Lemmas 4.12 and 4.14, there exists a unique minimal super-context Ds of

D�
s such that hCs� Dsi � �Resid� � CreateResid�� and:

Slice��
�

�Cs� � Slice���Ds� � Slice���D�
s� � Bs

By induction, hB�
p� �

�� Cpi � Project��
�

and Cp w Cs together imply that Bp w Bs. Conse-
quently it suffices to show that Cp w Cs.

From (i) the fact that Ds is the minimal super-context of D�
s that is related in a

CreateResid�-relation, (ii) the fact that Dp is some supercontext of D�
s that is involved

in a CreateResid�-relation, and (iii) Definition 4.6, it follows that Dp w Ds. According
to Lemma 4.16, we therefore have Cp w Cs. This concludes the proof of the minimality
theorem. �

Together, Theorems 4.20 and 4.21 imply that our construction of slices agrees with
Definition 4.1.

4.7 Nonlinear rewriting systems

Unfortunately, our previous definitions do not extend trivially to left-nonlinear TRSs2, be-
cause they do not account for the fact that nonlinearities in the left-hand side of a rule
constrain the set of contexts for which the rule is applicable. For example, when rule [B4]
of TRS B of Figure 4.3 is applied to ff� ff, this results in a contraction

T � ff� ff
A
�� ff � T �

Our previous definitions yield C � �� � ��� �� v T as the slice with respect to criterion
D � �� � ff v T �. This is not a valid slice, because some instantiations ofC do not reduce
to a context containing D; e.g., �� � tt� ff does not. A related problem is that multiple
contexts may be related to a single criterion in the presence of left-nonlinear collapse rules;
this conflicts with our objective that a slice with respect to a context consist of a single
context.

A simple solution for nonlinear TRSs would be to restrict VarPairs to variables that occur
at most once in the left-hand side of a rule. However, this would yield larger slices than
necessary. For instance, for the reduction of Figure 4.4 the non-minimal sliceff��tt�tt�
would be computed. The immediate cause for this inaccuracy is the fact that the subcontexts
�1� � ff and �2� � ff of T3 are deemed responsible for the creation of term T4. However,
they are residuals of the same subcontext C � �1� � ff v T0. This being the case, C may
be replaced by an arbitrary context without affecting the applicability of the left-nonlinear
rule.

2The definition of the Slice relation for nonlinear systems in [58] contained an error. The definitions in
this section therefore supersede the earlier ones.



4.7. Nonlinear rewriting systems 123

We can account for this fact by modifying the VarPairs relation as follows: if, for a rule

, all occurrences of a variable X in L� are matched against a set of “equivalent” contexts
S that are residuals of a common context (one that occurs earlier in the reduction sequence),
then the contexts in S are deemed to be residuated by 
 (assuming X occurs in R��. All
other cases cause creation: those subcontexts matched against X that are not residuals of a
common context are deemed creating, and the corresponding subcontexts matched against
X in R� are created.

4.7.1 Formal definitions for nonlinear systems

If a context D is created at some point in a reduction, and D has a residual C that occurs
later in the reduction, we will say that D is a progenitor of C. This concept will be useful
for formulating an adequate notion of slice for nonlinear TRSs. Formally, we have:

Definition 4.22 (Progenitor) LetT be a term, � and  be reductions such that� : U ��� T
for some term U , and D be a subcontext of T . Then we will say that a context C is a ��  -
progenitor of D if hC�Di � Resid�� , and either C v CreateResid� or � � �.

We will say that a context forest S has common �� –progenitor C if for all D � S, D has
�� –progenitor C. Note that an empty context may have more than one progenitor, due
to collapse rules, which have the effect of combining existing empty contexts as well as
creating new ones. Also note that the progenitor of a context C created by the last step of
reduction � has �� �–progenitor C.

We can now revise Definition 4.3 to account for common residuals in subterms matched
nonlinearly:

Definition 4.23 (VarPairs for nonlinear TRSs) Let �A be a reduction. Then

VarPairs�A � f hS1�S2i j X � V�
C v ��� � �A�X�� or C � ��� � ���
q � root�C��
S1 � f�pL � q � C� j pL � OX�LA�g�
S2 � f�pR � q � C� j pR � OX�RA�g�
S1 has a common �� –progenitor�
� � � g

For linear TRSs, Definition 4.23 reduces to Definition 4.3, since S1 is always a singleton and
thus has a trivial common progenitor.

In nonlinear TRSs, certain empty contexts at the “edge” of Creating and Resid have a
creating effect that does not occur in the linear case; the definition of Slice� for nonlinear
systems must therefore be modified accordingly. More specifically, in the linear case, the
empty contexts between Creating and Resid are irrelevant to the applicability of the redex.
However, in the nonlinear case, they are indeed relevant, since if these “glue” contexts were
not empty, the nonlinear match would not occur (unless, as with other contexts matched
nonlinearly, the edge contexts have a common progenitor).
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The following definition computes the union of the slices with respect to relevant edge
empty contexts:

Definition 4.24 (EdgeSlices) Let �A be a reduction. Then

EdgeSlices�A �
F
f C j hS1�S2i � VarPairs�A�

�p � �� � �S1 � O��Creating�A���
D is a �� –progenitor of �p � ���
D is not a common �� –progenitor of S1�
hC�Di � CreatedSlice���
� � � g

(The relation CreatedSlice�, defined formally below, is a subrelation of Slice� in which the
second elements are created by the last step of the reduction; this yields a slice specific to the
progenitor in the definition when more than one progenitor exists). Definition 4.24 yields
the union of slices with respect to empty context criteria at the “edge” between Creating
and Resid that are not derived from a progenitor common to all the contexts associated with
a given variable. Note that EdgeSlices�A is always empty for linear TRSs, since for such
systems, the forest S1 in the definition is always a singleton.

Our definition of Slice� in the nonlinear case is essentially the same as that for the linear
case, except that we must add the information in EdgeSlices where appropriate:

Definition 4.25 (Slice� for nonlinear TRSs) Let �A be a reduction. Then

Slice�� � f hC�Ci j C � Cont�Σ� g
Slice��A � ResidSlice��A � CreatedSlice��A

where

ResidSlice��A � Slice�� � Resid�A

CreatedSlice��A � f hC�Ei j E and Created�A are not disjoint�
hC �� Di � Slice���
there exists a minimal E� w E such that

hD�E �i � CreateResid�A�
C � C � t EdgeSlices�A g

Definition 4.25 is complicated by the necessity of splitting the pure residuation case from
the creation case—the two cases both apply only when created and residuated information
overlap exactly; i.e., when A is a collapse rule application.

While Definition 4.25, along with the auxiliary definitions, may appear rather compli-
cated, testing whether two contexts have a common progenitor can be performed cheaply
in practice if reduction is implemented using term graph rewriting techniques [17]. Graph
rewriting causes terms that are created by contraction of sets of residuals of previous reduc-
tions to be shared in a graphical data structure. If such an implementation is used, testing
whether two contexts have a common progenitor reduces to determining whether the contexts
are represented by a common shared subgraph.
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4.7.2 Example: slicing in a nonlinear system

Recall the reduction used in the example of Figure 4.4:

ff 	 �tt� tt� � T0
A1� �ff 	 tt�� �ff 	 tt� � T1

A2� ff� �ff 	 tt� � T2

A3� �ff� ff� � T3
A4� ff � T4

We have denoted the contractions in the reduction above by A1, A2, A3, and A4. In the
sequel, we will abbreviate the reduction sequence A1A2A3 by  .

Applying the definitions of the previous section to this example, we find that the most
interesting step is the contraction A4, which uses nonlinear rule [B4]. In Figure 4.6, the
two ff subterms in the term matched by contraction A4 have the same progenitor in the
initial term, indicated by dotted lines. Definition 4.23 thus implies that the ff subterms are
components of VarPairs. Consequently, the Creating context for the [B4] contraction does
not include the ff subterms. Taken together, these facts allow us to conclude that the final
term of the reduction of Figure 4.6 does not depend on the ff subterm of the initial term of
the reduction.

It is instructive to observe the effect of the formal definitions of Section 4.7.1 with respect
to contraction A4. In order to determine whether the contexts bound to the nonlinearly
matched variable X are derived from a common source, we must first consider the common
progenitors of the contexts in VarPairs�A4 , which are:

f �1� � ff� �2� � ff g v T3 has common �� �–progenitor �1� � ff v T0

f �1� � �� �2� � � g v T3 has common �� �–progenitor �1� � � v T0

Since the contexts bound to the nonlinearly matched variable X (namely, �1� � ff,
�2� � ff, �1� � �, and �2� � �) have a common progenitor, they are included in VarPairs:

VarPairs�A4 � f hf�1� � ff� �2� � ffg� �i� hf�1� � �� �2� � �g� �i g
Resid�A4 � h�� � �� �� � �i

Using VarPairs, we can eliminate the nonlinearly matched contexts from Creating and
Created:

Creating�A4 � �� � ���
Created�A4 � �� � ff

However, before we can compute the Slice� relation, we must consider slices with respect
to the “edge” empty contexts �1� � � and �2� � �, which separate Creating from elements
of Resid. Their progenitor information is as follows:

�1� � � v T3

���
��

has A1A2�A3–progenitor
has A1�A2A3–progenitor
has �� �–progenitor

�1� � � v T2

�1� � � v T1

�1� � � v T0

�2� � � v T3

���
��

has �� �–progenitor
has A1�A2A3–progenitor
has �� �–progenitor

�2� � � v T3

�2� � � v T1

�1� � � v T0
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�1 : �ff � ff� � �tt	 tt� � T0
[B3]
�� ff � �tt	 tt� � T1 ��� ff	 ff � T4

[B4]
�� ff � T5

�2 : �ff � ff� � �tt	 tt� � T0
[B1]
�� ��ff � ff� � tt�	 ��ff � ff� � tt� � T �1

��� �ff � ff� 	 �ff � ff� � T �2
[B3]
�� ff	 �ff � ff� � T �3

[B3]
�� ff	 ff � T �4

[B4]
�� ff � T �5

Figure 4.8: Sensitivity of nonlinear slicing to reduction strategy.

�1� � � and �2� � � each have three progenitors because the collapse rule [B2] (applied
in contractions A2 and A3) has the effect of combining the empty contexts above and below
the matched part of the redex, as well as creating a “new” empty context.

For the purpose of computing EdgeSlices�A4 , we need consider only those progenitors
not common to both �1� � � v T3 and �2� � � v T3. These are: �1� � � v T1,
�2� � � v T1, �1� � � v T2, and �2� � � v T3. The CreatedSlice� subrelations relevant
to the latter contexts are as follows:

f h�� � � 	 ������ �1� � �i� h�� � � 	 ������ �2� � �i g � CreatedSlice
A1

h�� � � 	 �tt���� �1� � �i � CreatedSlice
A1A2

h�� � � 	 ��� tt�� �2� � �i � CreatedSlice
A1A2A3

Taking the context union of the CreatedSlice� information above, we get:

EdgeSlices�A4 � �� � � 	 ����� t �� � � 	 �tt��� t �� � � 	 ��� tt�
� �� � � 	 �tt� tt�

Combining the information computed above and using Definition 4.25, we finally have:

Slice
�A4 � f h�� � �� �� � �i� h�� � � 	 �tt� tt�� �� � ffi g

Consequently, the slice � � �tt� tt� v T0 is computed for criterion �� � ff v T4.

4.7.3 Nonlinear systems and optimality

Although the approach to nonlinear slicing developed in the previous section is sound, it
does not always yield minimal slices. To see this, consider the B reductions in Figure 4.8.

Although both �1 and �2 start and end at the same term, using the definitions of Sec-
tion 4.7.1, the slice with respect to criterion T5 is �� � ff� � �tt� tt�, whereas the slice
with respect to criterion T �5 is �ff � ff� � �tt� tt�, i.e., the entire initial term.

The difference in the slices results from the order in which redexes were contracted in the
two reductions. In �1, the �ff�ff� � S0 subterm of T0 is contracted immediately, and two
residuals of its contractum, ff, subsequently appear in term T4. In �2, however, S0 is not
immediately contracted. Instead, the reduction produces an intermediate term T �2 containing
two residuals of S0. These residuals are contracted in subsequent steps, ultimately yielding
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the term T �
4. However, unlike T4, the two ff subterms of T �

4 are not residuals of any previous
term. Since theff subterms of T4 have a common progenitor, the definitions of Section 4.7.1
allow information common to the slices of the ff subterms of T4 to be omitted when the
nonlinear rule [B4] is applied. In the case of T �4, however, the ff subterms have no common
progenitor, and thus no information can be omitted.

It should be clear from the example of Figure 4.8 that the notion of progenitor is dependent
upon reduction order. One way to avoid the problems illustrated by Figure 4.8 is to use an
innermost reduction strategy, in which all redexes are contracted before they are residuated.
However, if we do not wish to impose restrictions on allowable reduction strategies, we must
take into account the behavior of reductions such as �2, in which terms that have no common
progenitor could have had a common progenitor if the redexes were contracted in a different
order.

Put another way, we must treat sets of terms that are all “derived in the same way” from a
set of residuals with a common progenitor as equivalent to sets of terms with a true common
progenitor. Maranget [111, 112] defines a notion of equivalence modulo permutation of
redexes that could, if extended to non-orthogonal systems, be used for determining when
classes of terms are or could have been residuals of a common term. However, if reduction
is implemented using term graph rewriting techniques, terms that have common progenitors
and terms that could have common progenitors are indistinguishable. In the case of the
example in Figure 4.8, both term T4 and term T �

4 would be represented by identical graphs
in which the ff subterms would be shared.

Unfortunately, even graph rewriting does not eliminate the possibility of computing
suboptimal slices for nonlinear systems. Consider, for instance, the following TRS E:

[E1] f�X�� eq�g�X�� h�X�� [E4] k�a�� b
[E2] h�X�� k�X� [E5] eq�X�X�� c
[E3] g�X�� k�X�

Note in particular that rule [E5] is nonlinear. Now consider the following E-reduction:

� : f�a�
[E1]
� eq�g�a�� h�a��

[E2]
� eq�k�a�� h�a��

[E3]
� eq�k�a�� k�a��

[E4]
� eq�b� k�a��

[E4]
� eq�b� b� � T

[E5]
� c

In principle, we ought to be able to determine that the slice with respect to the final term c of
� is f���, since we can attain the same final term by omitting the fourth and fifth reduction
steps entirely. However it is difficult to see how any information short of maintaining the
entire reduction history could be used to determine that this is the case. In particular, note
that the b subterms of the intermediate term T in � do not have a common progenitor, nor
are they derived in an “equivalent” way from the sets of residuals. Therefore, we cannot
use information about the derivations of the b subterms in isolation as a means for allowing
common slice information to be omitted when rule [E5] is applied.

We are led to conclude that short of maintaining information about an entire reduction
history, the only systematic way to treat nonlinear rules is to eliminate information asso-
ciated with nonlinearly-matched subterms possessing a common progenitor (generalized
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using graph reduction techniques to account for “potential progenitors”). It is conceivable,
however, that a restricted class of reduction systems or reduction strategies could eliminate
the problems exhibited in the example of Figure 4.8. We leave it to future work to explore
these possibilities further.

4.8 Implementation

In principle, one could implement slicing by storing information about every step of a
reduction �, and then computing relation Slice�� based on this information. In practice, such
an approach is infeasible since it would require space and time proportional to the length
of � for each choice of criterion. Since our reasons for investigating dependence relations
are eminently practical, we use an alternative method that allows slices to be computed as a
“side-effect” of the reduction process, in a way that efficiently yields slices with respect to
any chosen criterion. During the reduction process, our method maintains (i) the slices for
all elementary subcontexts of a term, and (ii) the context union of the slices with respect to
any empty context. (Recall that Slice�� is not necessarily single-valued on empty contexts.)
The latter information is associated with the non-empty elementary context (i.e., function
symbol) with the same root. Using this information, a slice with respect to any non-empty
contextD can be determined by computing the context union of the slices with respect to all
elementary and empty contexts that are a subcontext of D.

This simple scheme has been implemented in the rewriting engine of the ASF+SDF
Meta-environment [93]. Slices for elementary and empty contexts are stored as annotations
of function symbols. More precisely, each function symbol has two slices associated with
it: the slice with respect to the elementary context consisting of that function symbol, and
the slice with respect to the empty context “above” that function symbol. Each rewrite step
that is performed by the rewriting engine has the effect of propagating “slice” information
from the symbols in the redex to the symbols in the reduct. These propagations effectively
compute for each symbol in the reduct the context union of the slices of a set of symbols in
the redex.

The implementation of the Slice� relation for nonlinear rewriting systems is much
simpler in practice than one might infer from the definitions in Section 4.7. Recall that the
main problem addressed in that section consists of defining the notion of a progenitor, and
determining whether or not two contexts have progenitors in common. As the term rewriting
engine of the ASF+SDF Meta-environment actually performs term graph rewriting, the
check for common progenitors corresponds to testing whether or not two subterms are
shared. For certain ill-behaved rewriting systems that feature a combination of nonlinear
and collapse rules, our implementation produces sub-optimal results. In practice, this does
not pose any problems.

Slices are efficiently represented by bit-vectors, whose size is proportional to the size of
the initial term. Using bit-vectors, set union operations can be performed in time linear in
the length of the vector. The number of unions per reduction step is bounded by the number
of function symbols that need to be matched. Consequently, the overhead per reduction step
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is linear in the size of the initial term. In other words, performing dynamic dependence
tracking has the effect of slowing down the execution (i.e., the term rewriting process) by a
factor proportional to the size of the initial term. We have implemented dynamic dependence
tracking in the ASF+SDF system [93], and conducted some performance measurements. In
our experiments, the term rewriting engine of the ASF+SDF system is never slowed down
by more than one order of magnitude.

4.9 Related work

The term “slice” was first coined by Weiser [147], and defined for imperative programming
languages using dataflow analysis. Subsequent work, beginning with that of Ottenstein and
Ottenstein [120], has focused on use of program dependence graphs [53] for computing
slices. Cartwright and Felleisen [34] and Venkatesh [137] discuss the denotational foun-
dations of dependence and slicing, respectively for similar classes of languages; however,
they do not provide an operational means to compute slices. Chapter 3 provides a survey of
current work on program slicing.

A number of authors have considered various “labeling” or “tracking” schemes that
propagate auxiliary information in conjunction with reduction systems; these schemes are
similar in some respects to the method we will use to implement slicing. Bertot [27, 28]
defines an origin function, which is a generalization of the classic notions of residual and
descendant in the lambda-calculus and TRSs. He applies this idea to the implementation of
source-level program debuggers for languages implemented using natural semantics [85].
Van Deursen, Klint and Tip addressing similar problems, define a slightly expanded class
of “origin” information for the larger class of conditional TRSs (see Chapter 2). However,
slicing is not considered in these works, nor do these “tracking” algorithms propagate
information appropriate for computing slices.

In [94, page 85], Klop presents a “tracing relation” that is very similar to our dynamic
dependence notion, and observes that it can be used to distinguish the needed prefix and the
non-needed part of a term. In our terminology, the needed part is the slice with respect to
the entire normal form, and the non-needed parts correspond to the “holes” in this slice. In
other words, replacing the non-needed parts by arbitrary subterms will result in the same
normal form. There are two main differences with our work. First, Klop’s tracing relation is
only defined for orthogonal TRSs. Second, for collapse rules the top symbol of the reduct is
considered to be “created”. As we discussed earlier (see the last paragraph of Section 4.4),
this gives rise to slices being non-minimal. Finally, Klop does not study the use of tracing
relations for program slicing, nor does he give an algorithm to compute his relation efficiently
in practice.

In certain respects, our technique is the dual of strictness analysis in lazy functional
programming languages, particularly the work of Wadler and Hughes [138] using projections.
Strictness analysis is used to characterize those subcomponents of a function’s input domain
that are always needed to compute a result; we instead determine subcomponents of a
particular input that are not needed. However, there are significant differences: strictness
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analysis is concerned with domain-theoretic approximations of values, usually requires
computation by fixpoint iteration, and rarely addresses more than a few core functional
primitives. By contrast, we perform exact analysis on a particular input (although we can
effectively perform some approximate analyses by reduction of open terms), compute our
results algebraically, and can address any construct expressible in TRS form.

Maranget [111, 112] provides a comprehensive study of lazy and optimal reductions
in orthogonal TRSs using labeled terms. Although Maranget’s label information could in
principle be used to compute slices, he does not discuss such an application, nor does he
provide any means by which such labels could be used to implement slicing. Like Klop,
Maranget also only considers orthogonal TRSs. Our approach covers a larger class of TRSs,
and provides a purely relational definition of slice that does not require labeling.

4.10 Future work

An important question for future work is to define classes of TRSs for which slices are
independent of the reduction actually used. While orthogonal systems certainly have this
property, we believe it should be possible to characterize non-orthogonal systems for which
this property also holds.



Chapter 5

Parametric Program Slicing

(joint work with John Field and G. Ramalingam)

Summary

Program slicing is a technique for isolating computational threads in programs. In
this chapter, we show how to mechanically extract a family of practical algorithms for
computing slices directly from semantic specifications. These algorithms are based on
combining the notion of dynamic dependence tracking in term rewriting systems, which
was introduced in Chapter 4, with a program representation whose behavior is defined
via an equational logic [55]. Our approach is distinguished by the fact that changes
to the behavior of the slicing algorithm can be accomplished through simple changes
in rewriting rules that define the semantics of the program representation. Thus, e.g.,
different notions of dependence may be specified, properties of language-specific data
types can be exploited, and various time, space, and precision tradeoffs may be made.
This flexibility enables us to generalize the traditional notions of static and dynamic
slices to that of a constrained slice, where any subset of the inputs of a program may
be supplied.

5.1 Introduction

Program slicing is an important technique for program understanding and program analysis.
Informally, a program slice consists of the program parts that (potentially) affect the values
of specified variables at some designated program point—the slicing criterion. Although
originally proposed as a means for program debugging [147], it has subsequently been used
for performing such diverse tasks as program integration and “differencing” [74], software
maintenance and testing [61, 51], compiler tuning [106], and parallelization of sequential
code [146].

In this chapter, we describe how a family of practical slicing algorithms can be derived
directly from semantic specifications. The title of this chapter is a triple entendre, in the
sense that our technique is “parameterized” in three respects:

� We generalize the traditional notions of static and dynamic slices to that of a con-
strained slice. Static and dynamic slices have previously been computed by different
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techniques. By contrast, our approach provides a generic algorithm for computing
constrained slices.

� Given a well-defined specification of a translation from a programming language
to a common intermediate representation called PIM [55], we automatically extract
a semantically well-founded language-specific algorithm for computing constrained
slices. An advantage of this approach is that only the PIM translation is language
dependent; the mechanics of slicing itself are independent of the language.

� PIM’s semantics (and thus that of the source language via translation) is defined by a set
of rewriting rules. These rules implicitly carry out many techniques used in optimizing
compilers, e.g., conditional constant propagation and dead code elimination. The slices
we obtain are thus often more precise than those computed by previous algorithms.
By choosing different subsets of rules or adding additional rules, the precision of the
analysis, as well as its time and space complexity, may be readily varied. We illustrate
the flexible nature of our approach by defining several extensions to PIM’s core logic.
These variants describe differing treatments of loop semantics, and consequently define
differing slice behaviors.

One of the primary contributions of this chapter is an algorithm for computing constrained
slices. Despite the myriad variations on the theme of slicing that can be found in the
literature (see Chapter 3), almost all existing slicing algorithms fall into one of two classes:
static slicing algorithms, which make no assumptions about the inputs to the program, and
consequently compute slices that are valid for all possible input instances, and dynamic
slicing algorithms, which accept a specific instantiation of all inputs, and compute slices
valid only for that specific case. A constrained slice is valid for all instantiations of the inputs
that satisfy a given set of constraints. In the sequel, we will primarily consider constraints
that specify the values of some subset of the input parameters of the program.

The relation between constrained slicing, static slicing, and dynamic slicing is straight-
forward: a fully constrained slice (with every input a fixed constant) is a dynamic slice,
and a fully unconstrained slice is a static slice. We believe that constrained slicing can be
more useful than static or dynamic slicing in helping programmers understand programs,
by enabling the programmer to supply a variety of plausible input scenarios that the slicing
system can exploit to simplify the slice obtained.

While Venkatesh has defined a notion of a quasi-static slice [137] similar to that of
a constrained slice, we know of no previous work that describes how such slices may be
computed. In a recent paper [117], Ning et al. describe a reverse engineering tool that
permits users to specify constraints on variables and extract conditional slices, but they do
not specify how these slices are computed or how powerful the constraints can be. One might
consider combining partial evaluation of programs with static slicing to compute constrained
slices, but, as will be explained later, this does not lead to satisfactory results.

The feasibility of the ideas in this chapter has been demonstrated by a successful prototype
implementation of the PIM logic and translators for significant subsets of such disparate
languages as C and Cobol using the ASF+SDF Meta-environment [93], a programming
environment generator based on algebraic specifications.
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5.2 Overview

In this section, we will give a brief overview of our approach using examples. Details will
follow in subsequent sections.

5.2.1 Motivating example

Figure 5.1 (a) shows an example program written in �C, a C subset that we will use for all the
examples in this chapter. �C has the standard C syntax and semantics, with one extension:
meta-variables like ?P and ?Q are used to represent unknown values or inputs. All data in
�C are assumed to be integers or pointers; we also assume that no address arithmetic is used.
When we discuss loops in Section 5.5, we will for simplicity further restrict our analysis to
programs containing only constant L-values.

The example of Figure 5.1 (a) is not entirely trivial, due to manipulation of pointers in a
conditional statement. The static slice with respect to the final value of result consists of
the entire program. The dynamic slice with respect to the final value of result for input p
= 5, q = 3 is shown in Figure 5.1 (d); note that it does not immediately reveal the effect
of each input. The effect of input p = 5 is illustrated by the constrained slice of Figure 5.1
(b); clearly it causes the aliasing of *ptr to y, and thereby makes both assignments to x
obsolete. In Figure 5.1 (c), the effect of the other input, q = 3 is shown: the statements in
the first branch of the second if statement become irrelevant. Note that in general, it is not
the case that a slice with respect to multiple constraints consists of the “intersection” of the
slices with respect to each constraint.

In examples in the sequel, we will use the double box notation of Figure 5.1 to denote
a slicing criterion and the constraints, if any, on meta-variables. We will also use the
terminology “slice of P at x [given C]” to denote the slice of P with respect to the final
value of variable x [given meta-variable constraints C]. Slicing with respect to arbitrary
expressions at intermediate program points will be discussed in Section 5.4.6.

5.2.2 Slicing via rewriting

PIM [55] consists of a rooted directed acyclic graph program representation1 and an equational
logic that operates on PIM graphs. These graphs can also be interpreted (or depicted) as
terms after “flattening”. A subsystem of the full PIM logic defines a rewriting semantics for a
program’s PIM representation. Rewriting rules can be used not only to execute programs, but
also to perform various kinds of analysis by simplification of a program’s PIM representation;
each simplification step consists of the application of a rule of PIM’s logic.

To compute the slice of a program with respect to the final value of a variable x, we
begin with a term that “encodes” (i) the abstract syntax tree (AST) of the program, (ii) the
variable x that represents the slicing criterion, and (iii) a (possibly empty) set of additional

1Although loops and recursive procedures admit a PIM graph representation with cycles, we will use a
simpler DAG representation for such constructs in this chapter.
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p = ?P;
q = ?Q;
if (p > 0)
ptr = &y;

else
ptr = &x;

if (q < 0) f
x = 17;
y = 18;

g else f
x = 19;
y = 20;

g
result = *ptr;

p = ?P;
q = ?Q;
if (p > 0)
ptr = &y;

else
;

if (q < 0) f
;

y = 18;
g else f

;
y = 20;

g
result = *ptr;

p = ?P;
q = ?Q;
if (p > 0)
ptr = &y;

else
ptr = &x;

if (q < 0)

; else f
x = 19;
y = 20;

g
result = *ptr;

result
result

given ?P :� 5
result

given ?Q :� 3

(a) (b) (c)

p = ?P;
q = ?Q;
if (p > 0)
ptr = &y;

else
;

if (q < 0)

; else f
;

y = 20;
g
result = *ptr;

p = ?P;
q = ?Q;
if (p > 0)
ptr = &y;

else

if (q < 0) f

g else f
x = ;
y = 20;

g
result = *ptr;

result
given ?P :� 5�?Q :� 3

result
given ?P :� 5�?Q :� 3

(d) (d�)
Figure 5.1: (a) Example program (= static slice). (b) Constrained slice with ?P :� 5. (c)
Constrained slice with ?Q :� 3. (d) Constrained slice with ?P :� 5�?Q :� 3 (= dynamic slice). (d�)
Non-postprocessed term slice corresponding to (d).
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Figure 5.2: Overview of our approach.

constraints. Next, we translate the AST to a graph comprising its PIM representation. This
translation is assumed to be defined by a rewriting system (although it need not necessarily
be implemented that way). The resulting graph is then simplified by repeated application
of sets of rewriting rules derived from the PIM logic. This reduction process is carried out
using the technique of term graph rewriting [17]. The graph that results from the reduction
process represents the final value of variable x (in terms of the unconstrained meta-variables).
During the reduction process, we maintain dynamic dependence relations (see Chapter 4)
that relate nodes of the graph being manipulated to the AST. These relations are defined
in a simple way directly from the structure of each rewriting rule, and will be discussed in
more detail in Section 5.3. By tracing the dynamic dependence relations from the simplified
PIM-graph back to the AST, we finally derive the slice of the AST with respect to x. The
steps involved in the slicing process are depicted in Figure 5.2.

This basic slicing algorithm is unusually flexible, in that it can be adapted to new
languages simply by providing a source-to-PIM translator for the language. In addition,
simple alterations to the rules or rewriting strategy can be used to affect the kind of slice
produced, as well as the time or space complexity of the reduction process. The ease with
which we can handle constrained slices is due principally to the fact that the reduction
process adapts itself to the presence or absence of information represented by constraints.
As more information is available, more rules are applicable that have the potential to further
simplify the slice.

5.2.3 Term slices and parseable slices

Formally, our slices are contexts derived from the program’s AST, i.e., a connected set of
AST nodes in which certain subtrees are omitted, leaving “holes” behind. By interpreting
these contexts as open terms, all of the slices we compute are “executable” via the PIM

rewriting semantics, in the sense that any syntactically valid substitution for the holes in a
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term slice yields a program with the same behavior with respect to the slicing criterion2.
It is often the case, however, that one wishes obtain a parseable representation of the

slice (i.e., a syntactically well-formed AST without missing subtrees). Therefore, term slices
may be optionally postprocessed in various ways to obtain parseable programs with identical
behavior3.

Figure 5.1 (d�) depicts the term slice corresponding to Figure 5.1 (d) before postprocess-
ing. Certain fine details are present in this term slice that do not appear in Figure 5.1 (d),
e.g., the L-values but not the R-values of certain assignment statements appear in the term
slice.

The advantage of term slices is that they have a consistent semantic interpretation, and
are oblivious to a language’s syntactic quirks. This is particularly important in a language
like C, where virtually any expression can have a side-effect, and thus for which some parts
of an expression can be relevant to a slice while others are not.

Unfortunately, term slices often introduce a certain amount of “clutter” not present in
more ad-hoc algorithms; thus for the sake of clarity, most of the example slices we use in
the sequel will be minimally postprocessed, primarily by replacing assignments with a hole
in the right-hand side by empty statements. We will distinguish parseable slices from term
slices by using boxes in the latter to represent holes.

5.2.4 More examples

The example in Figure 5.3 illustrates the flexibility of our technique by showing some of the
differing treatments of loops that are possible (loops will be further studied in Section 5.5).
Figure 5.3 (b) depicts what we will call a pure dynamic slice at result, given ?N :� 5
and ?P :� 1. Note that this slice includes the while loop though it computes no value
relevant to the criterion. This is the case because the underlying slicing algorithm faithfully
reflects the standard semantics, under which there is a dependence between the while loop
and the subsequent assignment to result. This phenomenon is noted in Cartwright and
Felleisen’s discussion of demand and control dependence [34]. This notion of dependence
is also closely related to the notion of weak control dependence discussed by Podgurski
and Clarke [123]. The slice in Figure 5.3 (c), similar to the kind computed by Agrawal
and Horgan [6], results from adding some simple equational rules to be discussed later.
The same variant of the slicing algorithm produces the result in Figure 5.3 (d), though
the program is non-terminating for the constraints specified under the standard semantics.
Previous dynamic slicing algorithms [6, 100] will not terminate for this input constraint. In

2More precisely, the term “encoding” the original program and the slicing criterion and the term “encoding”
the slice (with any syntactically valid substitution for the holes) and the slicing criterion both reduce to the
same term/value.

3Whether or not this is always possible strongly depends on the language under consideration. E.g.,
in languages where an if-statement with empty branches is not allowed, removal of all statements from
the if-branches is clearly a problem. We believe that, in cases like this, term slices are an improvement
over “conventional” program slices, as they are capable of conveying more accurate information. A similar
observation was made by Ernst [52].
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this sense, our dynamic slicing algorithm is “more consistently lazy”.
As a final example, consider the program in Figure 5.4. Although absurdly contrived,

the example illustrates several important points. By not insisting that the slice be parseable,
we can make distinctions between assignment statements whose R-values are included but
whose L-values are excluded and vice versa, as Figure 5.4 (b) shows. We also see that it is
possible to determine that the values tested in a conditional are irrelevant to the slice, even
though the body is relevant. In general, our approach can make a variety of fine distinctions
that other algorithms cannot.

Figure 5.4 (c) gives an example of a conditional constraint. Such constraints can be
handled by straightforward extensions to our basic algorithm, and will be discussed briefly
in Section 5.4.7.

5.3 Term rewriting and dynamic dependence tracking

Our approach to slicing is based on extending the generic notion of dynamic dependence
tracking in term rewriting systems (see Chapter 4) to realistic programming languages. In
this section, we review dynamic dependence tracking and the basic ideas behind term and
graph rewriting. For further details on term rewriting, the reader is referred to the excellent
tutorial survey of Klop [95].

We begin by considering two PIM rewriting rules that define simple boolean identities:

�hT � pi �� T �B10�
�h�hp1 � p2i � p3i �� �hp1 � �hp2 � p3ii �B14�

A rewriting rule is used to replace a subterm of a term that matches the rule’s left hand side
by the rule’s right hand side. Variables (here, p, p1, p2, and p3) match any subterm; all other
symbols must match exactly. By applying the rules above, the term

�h�h�hT � Fi � �hF � Tii � Fi

may be rewritten as follows (subterms affected by rule applications are underlined):

T0 � �h�h�hT � Fi � �hF � Tii � Fi�� (B14)

T1 � �h�hT � �hF � �hF � Tiii � Fi�� (B10)

T2 � �hT � Fi

Observe in the example above that the outer context �h� � Fi (‘�’ denotes a missing
subterm) is not affected at all, and therefore occurs in T0, T1, and T2. Furthermore, the
occurrence of variables p1, p2, and p3 in both the left-hand side and the right-hand side of
(B14) causes the subterms T, F, and �hF � Ti of the underlined subterm of T0 to reappear
in T1. Also note that variable p occurs only in the left-hand side of (B10): consequently,
the subterm (of T1) �hF � �hF � Tii matched against p does not reappear in T2. Thus, the
subterm matched against p is irrelevant for producing the constant T in T2: the “creation”
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n = ?N;
i = 1;
sum = 0;
while (i != n) f
sum = sum + i;
i = i + 1;

g
if (?P)
result = n*(n-1)/2;

else
result = sum;

n = ?N;
i = 1;

;
while (i != n) f

;
i = i + 1;

g
if (?P)
result = n*(n-1)/2;

else
;

result
given ?N :� 5�?P :� 1

(a) (b)

n = ?N;
;
;

;
if (?P)
result = n*(n-1)/2;

else
;

n = ?N;
;
;

;
if (?P)
result = n*(n-1)/2;

else
;

result
given ?N :� 5�?P :� 1

result
given ?N :� 0�?P :� 1

(c) (d)

Figure 5.3: (a) An example program. (b) Pure dynamic slice at result given ?N :� 5, ?P :� 1.
(c) Lazy dynamic slice at result given ?N :� 5, ?P :� 1. (d) Lazy dynamic slice at result
given ?N :� 0, ?P :� 1.
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*(ptr = &a) = ?A;
b = ?B;
x = a;
if (a < 3)
ptr = &y;

else
ptr = &x;

if (b < 2)
x = a;

(*ptr) = 20;

*( = &a) = ?A;
b = ;
x = a;
if (a < 3)
ptr = &y;

else

if ( < )
x = a;

(*ptr) = ;

*( = &a) = ?A;
b = ;
x = ;
if (a < 3)

else
ptr = &x;

if ( < )
x = ;

(*ptr) = 20;

x
given ?A :� 2

x
given ?A � 5

(a) (b) (c)
Figure 5.4: (a) An example program. (b) Constrained slice at x given ?A :� 2. (c) Conditional
constrained slice at x given ?A � 5.

of this subterm T only requires the presence of the matched symbols ‘�’ and ‘T’. This
observation is the keystone of our reduction-based slicing technique: We “track” those
subterms that are relevant to each reduction step; subterms that are relevant to no reduction
step can then be eliminated from the slice.

The tracking process determines not only which subterms are relevant to a given reduction
step, but also how subterms are combined and propagated by the reduction as a whole. To
accomplish this task, we define for each reduction step that takes a term Ti and yields a new
term Ti�1 the notions of creation and residuation. These are binary relations between the
nodes of Ti and the nodes of Ti�1. The creation relation relates the new symbols in Ti�1

produced by the rewriting step to the nodes of Ti that matched the symbols in the left-hand
side of the rewriting rule (making the rewriting step possible). The residuation relation
relates every other node in Ti�1 to the corresponding occurrence of the same node in the
Ti�1. The dynamic dependence relation for a multi-step reduction r then consists, roughly
speaking4, of the transitive closure of creation and residuation relations for the rewriting
steps in r. Figure 5.5 shows all the relations for the example reduction discussed above.

For any reduction r that transforms a term T into a term T �, a term slice with respect to
some subcontextC of T � is defined as the subcontext S of T that is found by tracing back the
dynamic dependence relations fromC. The term sliceS satisfies the following properties: (i)

4The notions of creation and residuation become more complicated in the presence of so-called left-
nonlinear rules and collapse rules. The exact problems posed by these rules are extensively discussed in
Chapter 4.
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Figure 5.5: Example of creation and residuation relations.

S reduces to a termC� containing contextC via a reduction r�, and (ii) r� is a subreduction of
r. These properties are rendered pictorially in Figure 5.6, and have the important implication
that all the slices computed by our technique are effectively “executable” with respect to the
rewriting semantics.

Our implementation maintains the transitive dependence relations between the nodes of
the initial term and the nodes of the current term of the reduction by storing with each node
n in the current term its term slice, which is the set of nodes in the initial term to which n is
related. (The dependence relations associated with individual rewriting steps are not stored.)
The term slice with respect to a subgraph S of T is then defined as the union of term slices
with respect to the nodes in S.

Returning to the example of Figure 5.5, we can determine the term slice with respect
to the constant T in T2 by tracing back all creation and residuation relations to T0. By
following the transitive relations in Figure 5.5; the reader may verify that this slice consists
of the subcontext �h�hT � �i � �i.

5.3.1 Efficient implementation of term rewriting

We implement term rewriting using the technique of term graph rewriting [17]. This
technique extends the basic idea of term rewriting from labeled trees to rooted, labeled
graphs, or term graphs. A term graph may be viewed as a term by traversing it from its
root and replacing all shared subgraphs by separate copies of their term representations.
For clarity, we will frequently depict PIM term graphs or subgraphs in “flattened” form
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Figure 5.6: The concept of dynamic dependence.

as terms. (The flattened representation of the graph T2 in Figure 5.7, for instance, is
�h�hT � Fi � �hT � Tii.)

For certain kinds of rewriting rules, term graph rewriting has the effect of creating shared
subgraphs where none existed previously. Consider following PIM boolean rule:

�hp1 � �hp2 � p3ii � �h�hp1 � p2i � �hp1 � p3ii (B22)

In rule (B22), the variable p1 appears twice on the right-hand side. Although the left-hand
side instance of p1 in (B22) matches only a single subterm, the result of the rule application
must contain two instances of the subterm matched by p1. Rather than duplicating such a
term, it can be shared, as illustrated by the example in Figure 5.7, in which rule (B22) is
applied to term T0 � �h�hT � Fi � �hF � Tii. We see also from Figure 5.7 that the result of
a single application of reduction rule (here, rule (B10)) inside a shared subterm can also be
shared, thus giving the effect of multiple reductions for the price of one.

In general, graph rewriting is performed by replacing the subgraph matched by a rule
with the graph corresponding to the rule’s right hand side. The nodes in a replaced subterm
that are not accessible from elsewhere in the graph are reclaimed by a memory manager.
Since the PIM representation of programs contains many shared subgraphs, a graph rewriting
implementation is critical to acceptable performance of the algorithm in practice.
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Figure 5.7: Creation of shared subgraphs and a shared reduction step using a graph rewriting
implementation.

5.4 PIM + dynamic dependence tracking = slicing

PIM was designed to generalize and rationalize many of the properties of commonly used
graphical representations for imperative programs such as SSA-form [40] and PDGs [53],
and to provide a semantically sound but mechanizable framework for performing program
analysis and optimization. PIM’s formal progenitor is Cartwright and Felleisen’s notion of
lazy store [34], interpreted operationally rather than denotationally. Unlike SSA-form and
PDGs, computations on addresses required for arrays or pointers are “first-class citizens,”
and procedures and functions are integral parts of the formalism.

5.4.1 �C-to-PIM translation

Figure 5.8 depicts a very simple �C program, P1, its corresponding PIM representation, and
several slicing-related structures.

The graph depicted in Figure 5.8, denoted by Slice�P1�x� hi�, is generated by translating
P1 to its corresponding PIM representation and embedding the resulting graph (labeled
SP1) in a graph corresponding to the slicing criterion x. Slice�P1�x� hi� is simply the PIM

expression denoting the final value of the variable x. Only a small number of graph edges,
primarily those connecting shared subgraphs to multiple parents are shown explicitly in
Figure 5.8; we have flattened most other subgraphs for clarity. Parent nodes in the graph are
depicted below their children to emphasize the correspondence between program constructs
and corresponding PIM subgraphs.

SP1 is generated by a simple syntax-directed translation. A representative subset of the
translation rules appears in Figure 5.9. The translation is specified in the Natural Semantics
style [85] for clarity; however, the translation is implemented by a pure rewriting system5.

5A rewriting system can be derived from simple classes of Natural Semantics specifications such as the one
in Figure 5.8 in a purely mechanical fashion.
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located side-by-side.
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The translation uses several sequent forms corresponding to the principal C syntactic com-
ponents. The general form for these sequents is:

s � c � t

Such a sequent may be read as “�C construct c translates to PIM term t, given initial (PIM)
store s. ‘�’ is subscripted by ‘Pgm’, ‘Exp’, or ‘LValue’, depending on whether a statement,
expression, or L-value (address), respectively, is being translated. Pure expressions (those
having no side-effects) and unpure expressions are distinguished in the translation process;
subscripts p and u are used to denote the two types. The shared subgraphs in SP1 arise from
repeated instances of store variables in the antecedents of the translation rules in Figure 5.9,
as illustrated in Figure 5.7.

The translation process establishes transitive dependence relations between nodes of the
program’s AST and the PIM graph SP1 , as described in Section 5.3. Figure 5.8 depicts a
representative subset of these relations for the root nodes of certain subtrees of the syntax
tree of P1. We have used vestigial arrows in the syntax tree to indicate that nodes are referred
to by some set of nodes in the PIM graph. We have also depicted statements of P1 and their
corresponding PIM subgraphs side-by-side.

5.4.2 Overview of PIM

In this section, we briefly outline the function of various PIM substructures using program
P1 and its PIM translation, SP1 .

The graph SP1 as a whole is a PIM store structure6, essentially an abstract term representa-
tion of memory. SP1 is constructed from the sequential composition (using the ‘ ’ operator)
of substores corresponding to the statements comprising P1. The subgraphs accessible from
boxes labeled S1–S4 in Figure 5.8 correspond to the four assignment statements in P1. The
simplest form of store is a cell such as

S1 � faddr�p� �� #T � PV $g

A store cell associates an address expression (here addr�p�) with a merge structure, (here
#T �PV $). Constant addresses such as addr�p� represent ordinary variables. More generally,
address expressions are used when addresses are computed, e.g., in pointer references. ‘�s’
is used to denote the empty store.

Merge structures are a special kind of conditional construct containing ordered guarded
expressions. The simplest form of merge expression is a merge cell such as #T � PV $,
in which some boolean predicate (here, T) guards a value (here, the free PIM variable PV
representing the �C meta-variable ?P). The formal consequence of the presence of a free
variable is that any subsequent rewriting-based analysis is valid for any instantiation of the
free variable.

6For clarity, Figure 5.8 does not depict certain empty stores created by the translation process; this elision
will be irrelevant in the sequel.
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(P )
�s � Stmt �Stmt u

� Stmt �Pgm u

(S1)
s � f StmtList g �Stmt u�

s � u � Stmt �Stmt u
�

s � f StmtList Stmt g �Stmt u � u�

(S2)
s � Exp �Exp hv� ui
s � Exp; �Stmt u

(S3)

s � Exp �Exp hvE � uEi�
s � uE � Stmt �Stmt uS
s � if ( Exp ) Stmt �Stmt

uE � �v�E � uS�

v�E � �h�hvE � 0i i

(S4)

xS � Exp �Exp hvE � uEi�
s� � Stmt �Stmt uS

s � while ( Exp) Stmt �Stmt

Loop��xS �body�uE � v�E � uS�� s�

s� � xS � uE
v�E � �h�hvE � 0i i

(E1)
s � Expp �Exp

p
v

s � Expp �Exp hv� �si

(E2)
s � Expu �Exp

u
hv� ui

s � Expu �Exp hv� ui

(Ep1) s � Id �Exp
p

�s @ addr�Id�� !

(Ep2) s � ?Id �Exp
p

IdV

(Eu1)
s � Exp �Exp hv� ui

s � * Exp �Exp
u
h��s � u� @ v� !� ui

(Eu2)
s � LValue �LValue hv� ui
s � & LValue �Exp

u
hv� ui

(Eu3)

s � Exp �Exp
u
hvE � uEi�

s � uE � LValue �LValue hvL� uLi
s � LValue = Exp �Exp

u

hvE � uE � uL � fvL �	 �T � vE �gi

(Eu4)

s � Exp1 �Exp
u
hv1� u1i�

s � u1 � Exp2 �Exp
u
hv2� u2i

s � Exp1 + Exp2 �Exp
u

h�hv1 � v2i� u1 � u2i

(Lp) s � Id �LValuep addr�Id�

(Lu)
s � Exp �Exp

u
hv� ui

s � * Exp �LValueu hv� ui

Figure 5.9: Representative translation rules for �C.
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Merge expressionsm1 andm2 may be composed into ordered lists of the formm1  m m2,
in which the rightmost guarded cell takes precedence. Such lists correspond roughly to Lisp
cond expressions, and represent information similar to SSA-form � nodes [40], particularly
the gated SSA variant of [14]. Unlike normal conditional expressions, however, merges
cannot evaluate to values unless they are referred to in a special context represented by the
selection operation, ‘!’. Among other places, this operator is used in the translation of every
variable reference. SP1 contains no non-trivial merge structures, but such structures will arise
in the simplification process. �m denotes the null merge structure. In the sequel, we will
often drop subscripts distinguishing related store and merge constructs when no confusion
will arise.

In addition to guards in merge cells, stores such as S5 (which corresponds to the ‘if’
statement as a whole) may also be guarded. The guard expression V1 corresponds to the
if’s predicate expression. Consistent with standard C semantics, the guard V1 tests whether
the value of the variable p is nonzero.

The general form for the PIM graph constructed for a slice of program P at x given
constraints

?X1 :� Exp1� � � � �?Xn :� Expn

is
Slice�P�x� h?X1 :� Exp1� � � � �?Xn :� Expni�

� ��SP@addr�x��!� #X1V :� v1� � � � � XnV :� vn$

where SP is the PIM store to which P compiles, the X1V are free variables corresponding to
the meta-variables and the vi are PIM graphs corresponding to the value of the Expi (ignoring
side-effects). Slice�P�x� h� � �i� is the PIM representation of the value of x after execution of
P , with substitutions for free variables defined by the constraints.

5.4.3 PIM rewriting and elimination of dependences

PIM’s equational logic consists of an “operational” subsystem, PIM�, plus a set of additional
non-oriented equational rules for reasoning about operational equivalences in PIM�, in-
stances of which can also be oriented for use in analysis. PIM� is confluent and normalizing
(assuming an appropriate strategy), thus it can be viewed as defining an operational seman-
tics or interpreter for PIM terms. An important subsystem of PIM� that defines the semantics
of programs without loops or procedures, PIM�

t , is canonical, that is, strongly normalizing
as well as confluent. PIM� can be enriched with certain oriented instances of rules in (PIM�
PIM�) in such a way that confluence is preserved on closed terms, and such that unique
normal forms for open terms exist up to certain trivial permutations. In the sequel, we will
refer to the enriched rewriting system as COREPIM�. PIM’s rules and subsystem structure
are described in detail in [55]; key subsystems are reviewed in Appendix A.

Given a program P and a slicing criterion x, we use normalizing sets of oriented PIM

equations to simplify Slice�P�x� h� � �i� graphs by reducing them to normal (i.e., irreducible)
forms. From the point of view of slicing, the goal of this simplification process is to eliminate
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in a sound, systematic way, as many subgraphs of Slice�P�x� h� � �i� as possible that do not
affect its behavior.

5.4.4 Reduction of unconstrained and constrained slices

Figure 5.10 depicts key steps in the reductions ofSlice�P1�x� h?P :� 0i� andSlice�P1�x� hi�,
the slices of P1 that result from these reductions, and certain dependence relations for
reduction steps that are critical to producing the slices. These reductions share a common
initial subsequence that is independent of the substitution generated in the constrained
case. We have numbered certain important intermediate graphs in the reductions. The
interpretation of several of these graphs (depicted in flattened form) is as follows:

Graph (1) is the flattened and abbreviated form of Slice�P1�x� hi�. Graph (2) results
from multiple applications of the rule

�s1  s s2� @ v �� �s1 @ v�  m �s2 @ v� �S4�

which have the effect of distributing the reference to the variable x, addr�x�, to the sequence
of substores S1, S2, S3, S5. Graph (3) results from applications of the rule

fv1 �� mg @ v2 �� �hv1 � v2i �m m �S1�

to all but the rightmost subgraph. (S1) has the effect of converting references to store cells
into conditional tests comparing the cell and dereferencing addresses; these predicates guard
the merge cells M1, M2, M3, and M4, which are part of the original PIM graph SP1 . Graph
(4) results from evaluation of address comparisons. The comparison fails for assignments
represented by S1 and S2 (which are irrelevant to x) and succeeds in the case of S2 and S4

(which both contain assignments to x). At (5), references to irrelevant assignments have
been reduced to null merges. At (6), after eliminating null stores, the remaining expressions
essentially represent the two definitions of x that “reach” its final value. Graph (7) is
derived by first simplifying the expression containing merge structure M3, yielding a merge
cell containing the free meta-variable ?P, then combining the PIM expression representing
the predicate guarding the if statement, V1, with a predicate derived from the address
comparison for the nested store for the assignment in store S4 (representing the result of the
assignment inside the if).

The reduction thus far has the effect of eliminating all assignments irrelevant to the final
value of x. At this point, the reductions in the constrained and unconstrained cases diverge:

5.4.4.1 Constrained case: Slice�P1�x� h?P :� 0i�

In the constrained case, PV is bound to 0, i.e., is false. In step (8a), the highlighted application
of the rule

F �� l �� �� (L6)

has the effect of eliminating the body of the if from the final slice. This can be seen in
detail in the “exploded” (L6) rule application in Figure 5.10. In this case, the only transitive
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Figure 5.10: Reduction of Slice�P1�x� hi� and Slice�P1�x� h?P :� 0i�. Steps in which removal of
dependence edges eliminates constructs from slices are highlighted along with the resulting slices.
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dependence edges linking the constructs in the body of the if statement and the identifier
p in the assignment y = p; have their origin in the subgraph S4. When this subgraph is
eliminated by the application of (L6), the constructs effectively disappear from the slice.

While it may appear that the slice results entirely from the application of a single rule,
this rule is only the last of several rules that eliminate transitive edges from PIM nodes to the
omitted constructs inP1. Only when the last edges are eliminated does the construct disappear
from the slice. Other rules have the effect of combining dependence edges emanating from
several intermediate nodes into a single node (as the two single-step dependence edges in
the depiction of rule (L6) illustrate).

5.4.4.2 Unconstrained case: Slice�P1�x� hi�

The unconstrained case is somewhat more interesting than the constrained case: although
we do not know the value of PV and thus cannot effectively evaluate the if statement in P1,
we discover that the two reaching definitions for x both assign the same value to x, namely,
PV . Application of several rules allows us to combine guards of merge cells with the same
guarded value into the disjunctive expression shown in (11b).

The next step, the reduction of (11b) to (12b), discovers that the predicate’s value itself
is irrelevant to the final value of x. As the exploded view of this rewrite step illustrates, there
is no transitive dependence between the predicate p of the source AST and any of the nodes
in the resulting term (12b) (or the final term (13b)). Consequently, the unconstrained slice
does not contain the predicate of the if statement, though it does contain the assignment
statement within the if statement.

Slices that contain statements from the arms of a conditional statement but not its
predicate, are unusual enough to deserve some discussion. Such slices indicate that the
value of the predicate itself is irrelevant, even though the conditional statement contains
some relevant statement, e.g., an assignment to some relevant variable. Such situations can
arise in realistic programs. Consider, for example, the statement

if (P) f(foo); else f(bar);

where the procedure f has some side-effect on some variable x of interest, and where
this side-effect itself is independent of the argument to the procedure. Here, the two call
statements are relevant to the final value of x, though the predicate itself is irrelevant. This
reflects a kind of reasoning that programmers do use when analyzing a program backwards,
and can result in substantially smaller slices because of the elimination of the statements that
the predicate itself depends on. The possibilities for computing more precise slices in this
fashion are even greater in the case of constrained slicing.

5.4.5 Slicing and reduction strategies

As PIM� is a confluent rewriting system, reductions may be performed anywhere in a graph
without affecting the final term produced (assuming the reduction terminates at all). This
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“stateless” property of reduction systems accommodates a variety of performance tradeoffs
derived from varying the reduction strategy. We use an outermost or “lazy” strategy, which
ensures that only steps that contribute to a final result are performed. (Note, however, that
the reduction depicted in Figure 5.10 uses a strategy that is not strictly outermost to better
illustrate the properties of certain intermediate terms). Alternatively, the PIM representation
of the entire program could be normalized “eagerly” prior to the specification of any slicing
criterion; those steps specific to the criterion or constraints could be performed later.

Reduction strategies can also have an effect on slices. In the constrained case, both of the
reductions depicted in Figure 5.10 are valid, and, consequently both of the slices depicted are
also valid. Slices are therefore not necessarily unique, even when the underlying reduction
system is confluent. However, our reduction strategy favors the left reduction over the right
one in the constrained case. Intuitively, this favors a “standard” execution semantics that
corresponds most closely with results of traditional program slicing algorithms.

5.4.6 Slicing at intermediate program points

Although our discussion thus far has concentrated on computing slices with respect to the
final values of variables, our approach is capable of computing slices with respect to any
expression at any program point. Conceptually, a slice with respect to a �C expression e
(assumed to be side-effect free) at some specific program point can be computed as follows:
First, introduce a new variable v and an assignment of the form

v = ophv � ei;

at the program point of interest, where op is an abstract, uninterpreted operator. Then,
compute the slice with respect to the final value ofv. Variablevhas the effect of accumulating
the sequence of values the expression takes on at the desired program point.

In practice, it is not necessary to alter the program in order to compute slices at interme-
diate points. An implementation can instead construct and maintain a reference to the PIM

store subgraph sp corresponding to every program point p (note that the graphs representing
these stores will generally have many nodes in common). The slice with respect to the pro-
gram point of interest is then computed by normalizing the PIM expression corresponding to
the translation of e in initial store sp.

5.4.7 Conditional constraints

A slice with respect to a conditional constraint such as that depicted in Figure 5.4 (c) can be
computed by constructing a PIM graph roughly equivalent to that which would be produced
by inserting the body of the program in a conditional statement where the predicate is the
conjunction of all such constraints.

The effectiveness of our slicing algorithm in handling conditional constraints depends
primarily on its ability to reason about the operations allowed in such constraints. The exten-
sible nature of our approach makes it easy to augment the slicing algorithm by incorporating
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sophisticated reasoning capabilities about particular domains into the slicing algorithm, as
it only involves adding rewrite rules characterizing the appropriate domains. For example,
in the case of Figure 5.4 (c), rudimentary rules for reasoning about arithmetic inequalities
suffice to compute the slice shown.

5.4.8 Complexity tradeoffs

Use of different normalizing subsets of PIM equations allows various accuracy/time tradeoffs
in the analysis process. For instance, pointer-induced alias analysis is NP-complete even
in the absence of loops and procedures [104], although such analysis is usually tractable
in practice. By including or excluding appropriate PIM rules, one can effectively choose
more precise (but potentially slow) or more conservative (but guaranteed fast) pointer anal-
ysis. For instance, eliminating rule (M3) (see Figure A.1) effectively inhibits propagation of
symbolic addresses representing pointer values, thus preventing these expressions involving
these addresses from being resolved or simplified. Rule (L11) has the effect of joining com-
mon results of common expression propagation (including address expressions) in different
branches of a conditional, and can be enabled, disabled, or restricted to prevent or allow
such propagation.

The result of more accurate pointer analysis in slicing is manifested by elimination of
more subgraphs of the program representation that are irrelevant to the slicing criterion. A
similar phenomenon occurs with simplification of boolean predicates involved in condition-
als.

5.5 Variations on a looping theme

This section discusses a number of PIM variants suitable for computing slices in loops.
These sets of rules may be used as building blocks for generating a variety of different
slicing algorithms without changing the underlying algorithmic framework. In the sequel,
we will use COREPIM� to denote those PIM rules that are not loop related and are common
to the slicing variants we will present. While the COREPIM� rules allow addresses to be
stored as values and manipulated, the analysis rules presented in this section assume for
simplicity that no pointers are used. The ideas in this section can be adapted easily to
produce conservative slices in the presence of pointers; more precise pointer analysis is also
possible, but requires more sophisticated rules for reasoning about address equivalence.

5.5.1 loop execution rules: pure dynamic slicing

Loops are represented in PIM by terms of the form

Loop��xS �body�uE� vE� uS�� s�

Informally, uE is a store representing the side-effects of evaluating the loop predicate, vE
represents the value of the predicate, uS is a store representing the side-effects of the loop
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Loop��xS 	body�uE � vE � uS�� s� �
S�� Y �fL�xS 	

�uE �s �vE �s �uS �s
S�fL �xS �s uE �s uS����� � s� �loop�

(where fL �� �FV�uE� � FV�uS� � FV�vE���

��x	f� g � f �x :� g� �
�
�Y f� � f �Y f� �recursion�

Figure 5.11: Loop execution rules.

body, all as functions of the store xS at the beginning of a loop iteration. The second
argument s is the incoming store. The term Loop��xS �body�uE� vE� uS�� s� itself denotes
the store representing the side-effects of executing the loop until the predicate evaluates to
false. The rewriting rules in Figure 5.11, which we will refer to as loop execution rules,
specify this behavior formally. Consider the underlined subterm of the right-hand side of the
rule (loop). The underlined subterm may be read as: the side-effects of evaluating the loop
predicate and—if the predicate evaluates to true, the side-effects of executing the loop body
once—composed with the side-effects of executing the same loop with an appropriately
updated store, namely, xS  s uE  s uS . The rest of the term serves to express the recursion
using the recursion combinator Y. f #x :� g$ represents the result of substituting g for free
occurrences of x in f (with the usual provisos about variable capture and renaming), FV ��
is the set of free variables in a term  , and ‘S’ is a technicality—a “sort coercion” operator
that has no semantic content. [54] shows how the � rule and substitution can be encoded as
pure rewriting rules.

Utilizing these rules and COREPIM� during the simplification phase leads to a straightfor-
ward dynamic slicing algorithm that we call a pure dynamic slicing algorithm. Section 5.2.4
discusses an example (Figure 5.3 (b)) of this sort of slice.

5.5.2 � rules: lazy dynamic slicing

Figure 5.12 depicts a set of rules, the � rules, that statically simplify PIM stores generated by
loops. The effect of � rules on the PIM representation is essentially to introduce an SSA-form
� node [40] for every variable that might be assigned a value inside the loop. In terms of
slicing, these rules have the effect of permitting loops to be removed from slices if it can be
determined (statically) that the loop cannot assign to any “variable of interest”.

We will refer to the slicing algorithm obtained by using both the loop execution rules
and the � rules in conjunction with COREPIM� as a lazy dynamic slicing algorithm. This
slicing algorithm computes traditional dynamic slices, such as Figure 5.3 (c), as well as the
somewhat more unusual result in Figure 5.3 (d).

The slices produced by our lazy dynamic slicing algorithm are closer to the slices
produced by the Agrawal-Horgan algorithm [6] than to the slices produced by the Korel-
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Loop��xS 	body�uE � vE � uS�� s� �
Project� Loop��xS 	body�uE � vE � uS�� s��

AssignedVars�uE �s uS� � �LA1�

Project�s� fg� � �s �LA2�
Project�s� fvg � r� � �v �� s @ v� �s Project�s� r� �LA3�

...
rules for computing AssignedVars�s�,

the set of variables assigned to in the store s
...

Figure 5.12: � rules.

x = ?X;
y = x;
if (x < 0)
x = -x;

z = x;

x = ?X;
;

if (x < 0)
;

z = x;

z
given ?X :� 5

(a) (b)

Figure 5.13: (a) Example program. (b) Dynamic slice at z given ?X :� 5.

Laski algorithm [100]. The Korel-Laski slices tend to be larger than the Agrawal-Horgan
slices since they, unlike the Agrawal-Horgan slices, are executable. Our dynamic slices,
though not executable under the “standard semantics”, are executable with respect to the
semantics specified by the rewriting rules.

Figure 5.13 (a) illustrates an important difference between our algorithm and previous
dynamic slicing algorithms. Since the if predicate evaluates to false, previous dynamic
slicing algorithms exclude the predicate (and any of the statements the predicate evaluation
is dependent upon) from the dynamic slice with respect to z. However, as has been observed
before [100, 121], the predicate does “affect” the final value of z, in the sense that the
predicate must be executed in order to ensure that the value of x, and thus z, is not negated.
In other words, the result of the predicate evaluation has an effect on the final result, even
though the statement guarded by the predicate is not executed. In applications such as
debugging it is useful to include these statements in the slice [121, 122]. In this sense, our
slicing algorithm produces a slice that is semantically more consistent than existing dynamic
slicing algorithms.
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5.5.3 loop splitting rules: static loop slicing

Figure 5.14 contains the essential subset of a collection of rules that we will refer to as loop
splitting rules, which can be used in conjunction with COREPIM� to compute a classical
static slice. The goal of these rules is quite simple. Consider the PIM term

Slice�while�i � 10�fj � j � 2; i � i � 1; g� i� hi�

This reduces to a term of the form

Loop��xS �body�uE� vE� uS�� s� @ addr�i�

where uS, representing the loop body, is the store

faddr�j� �� T �v �h�xS @ addr�j��! � 2ig
 s faddr�i� �� T �v �h�xS @ addr�i��! � 1ig

Intuition suggests that this term should be reducible to

Loop��xS �body�uE� vE� uS
��� s� @ addr�i�

where uS � is the store

faddr�i� �� T �v �h�xS @ addr�i��! � 1ig

Such reductions are crucial to computing static (and constrained) slices. In general, we
would like to reduce a term of the form

Loop��xS �body�s1� p� s2�� s3� @ a

to a term
Loop��xS �body�s1

�� p� s2
��� s3

�� @ a

where each si
� is a “restriction” of the original store si to the addresses that are relevant,

given that we are interested only in the final value at address a. We need to do two things
here. First, we need to identify the set r of relevant addresses (variables), second, we need
to perform the actual restriction of the stores to the relevant variables.

The rules in Figure 5.14 show the essence of what we need to do. Rule (SA1) simply
transforms a dereference operation on a store computed by a loop into a corresponding
dereference operation on a restriction of the loop-computed store. This leaves the bulk of
the work to the operator ‘@@’, whose purpose is to restrict a store to a set of addresses of
interest. Rule (SA2) is the key rule defining the behavior of this operator. (The operator �
may be interpreted as denoting the usual set-theoretic member function.)

The rule of primary interest is (SA6), which performs the restriction operation for a store
generated by a loop. Restricting a loop-computed store with respect to a set l of addresses
requires restricting the loop body store and the initial incoming store with respect to a set
of addresses r. The set r is a superset of the set l, and effectively accounts for loop-carried
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Loop��xS 	body�uE � vE � uS�� s� @ v �
�Loop��xS 	body�uE � vE � uS�� s� @@ fvg� @ v �SA1�

�a �� m� @@ l � �a � l� �s �a �� m� �SA2�

�s @@ l � �s �SA3�
�s1 �s s2� @@ l � �s1 @@ l� �s �s2 @@ l� �SA4�
�g �s s� @@ l � g �s �s @@ l� �SA5�

r � � l � Demand�vE � xS� � Demand�uE @@ r� xS�
� Demand�uS @@ r� xS� � � T

Loop��xS 	body�uE � vE � uS�� s� @@ l �
Loop��xS 	body�uE @@ r� vE � uS @@ r�� s @@ r� �SA6�

...
rules for computing Demand�s� xS�, the set of

addresses dereferencing free instances of xS in s
...

Figure 5.14: Loop splitting rules.

dependences. The antecedent of rule (SA6) specifies the condition this set r has to satisfy,
namely that the set of variables r should include the set l, the set of variables required to
compute the loop predicate, and the set of variables necessary to compute values assigned
to the variables in r within the loop. Put another way, the antecedent of (SA6) ensures
that the set of variables r is transitively closed with respect to loop-carried dependences.
The auxiliary function Demand�t� xS�, roughly, identifies “upwards exposed” variables in t.
More formally, given a store or merge t, Demand�t� xS� identifies dereferences of the free
store variable xS in t and collects the address operands of such dereferences.

Rule (SA6) is not a pure rewriting rule, since the variable r in the antecedent of the rule
is not bound in the left-hand side of the rewrite rule. Applying rule (SA6) thus requires
computing some solution r to the constraint expressed by the antecedent. The computation
of the least solution of this constraint can be performed easily using rewriting rules that
compute an iterative computation of the constraint’s least fixed point.

Rules expressed in a “constraint” style such as (SA6) have the advantage that they can
accommodate analysis algorithms implemented by non-rewriting means (and thus for which
dependence tracking cannot be performed). Observe that (SA6) is valid for every possible
instantiation of the variable r—thus, one may view (SA6) as a rule schema describing
infinitely many rewriting rules. One may then use any mechanism whatsoever to choose an
instantiation for the rule, treating the instantiation as an ordinary rewriting rule with respect
to dependence tracking. This approach ensures that the dependence information is computed
correctly, notwithstanding the use of an external analysis algorithm.
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5.5.4 loop invariance rules: invariance-sensitive slicing

We now turn our attention to the final set of rules, which we will refer to as loop invariance
rules. We will refer to the slicing algorithm obtained by using these rules, the COREPIM�

rules, and the loop splitting rules, as an invariance sensitive slicing algorithm. If the loop
execution rules are used as well, we obtain a � invariance-sensitive algorithm. The primary
difference between the two algorithms is that the latter will execute (i.e., unfold) a loop as
long as its predicate evaluates to a constant. Figure 5.15 illustrates this behavior. The �
invariance-sensitive slicing algorithm, by executing the loop, discovers that two of the three
assignments to y in the loop are irrelevant for the given input constraint ?N :� 5. The
simpler algorithm avoids unfolding the loop; however, by effectively performing constant
propagation, it discovers that one of the three assignment statements is irrelevant.

We describe the goals of the loop invariance rules below. Consider a store of the form

Loop��xS �body�uE� vE� uS�� s� @ a

The store uS represents the loop body, and free occurrences of xS in uS denote the store at
the beginning of a specific loop iteration. In the presence of loop invariants, one can simplify
the store uS further. For instance, consider the example in Figure 5.15 (c). The store uS
compiled for the loop body will contain subterms of the form �xS @ addr�x��!, denoting the
value of variable x in a particular iteration. Since the value of x is a loop-invariant constant 6
(given the constraint ?N :� 5), we would like to replace this term by 6. This replacement, in
turn, will allow further simplifications of the store, and ultimately lead to the slice depicted
in the figure.

Achieving this kind of simplification requires us to do two things: we must identify the
loop-invariant component of the store, and we must specialize the loop body (and the loop
predicate) with respect to the loop invariant component of the store. The second task is
relatively trivial. Once the loop invariant component sinv of the store has been identified,
we can replace the free occurrences of xS in the loop body by xS  s sinv. The rest of PIM

will then take care of the specialization.
The rules in Figure 5.16 formalize these intuitions. The most important rule is (IA1),

a conditional rule in the style of rule (SA6) (Figure 5.14). The consequent of the rule
specializes the loop body and loop predicate of a loop-computed store with respect to the
loop-invariant part of the store, namely sinv. The antecedent guarding the applicability of
the rule “defines” what it means for a part of the store to be loop invariant. This definition
is stated in terms of a subsumption relationship ‘!’ between program stores. A store s1

subsumes a store s2, if for every variable x assigned a value v in store s2, x is also assigned
the same value v in store s1. The subsumption relation is concisely defined by the equational
axiom (IA2). Rules (IA2.1) through (IA2.3) represent a conservative approximation to
‘!’ that is more “directly computable,” since it is defined inductively. Less conservative
approximations to (IA2) can also be defined that allow inference of more complex loop
invariants.

Returning to the notion of a loop-invariant store, the store sinv is considered to be loop
invariant if (i) The incoming store s (the store before the loop begins its first iteration)
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n = ?N; z = ?Z;
x = n + 1;
i = 1; y = 0;
while (i < n) f
if (x > 100)
y = y + 100;

else if (y < 99)
y = y + x;

else
y = y + 50;

z = z + y;
i = i + 1;

g

n = ?N; z = ?Z;
x = n + 1;
i = 1; y = 0;
while (i < n) f
if (x > 100)

;
else if (y < 99)
y = y + x;

else
;

z = z + y;
i = i + 1;

g

n = ?N; z = ?Z;
x = n + 1;
i = 1; y = 0;
while (i < n) f
if (x > 100)

;
else if (y < 99)
y = y + x;

else
y = y + 50;

z = z + y;
i = i + 1;

g

z
given ?N :� 5

z
given ?N :� 5

(a) (b) (c)

Figure 5.15: (a) Example program. (b) 
 invariance-sensitive slice at z given ?N :� 5. (c)
Simple invariance-sensitive slice at z given ?N :� 5.

subsumes sinv, and (ii) The loop body uE  s uS, specialized for an incoming store xS  s sinv
that subsumes sinv, and then composed with sinv results in a store that subsumes sinv.

As with rule (SA6) discussed in the section on static slicing, rule (IA1) cannot be used
directly by the dependence tracking system. However, we can use the rule in conjunction with
any algorithm for identifying loop invariants, such as the conditional constant propagation
algorithm of Wegman et al. [141].

5.6 Pragmatics

A prototype implementation of our methods has been completed using the ASF+SDF Meta-
environment [93]. The results obtained from this prototype have been encouraging, and we
are now engaged in implementing a “free-standing” reduction-based slicing system using
the most efficient possible implementation techniques. In this section, we briefly touch on
several pragmatic issues that arise in implementing our approach.

5.6.1 Properties of graph reduction

Term graph reduction is a simple technique that can be implemented efficiently when an
automaton-based matching algorithm and outermost reduction strategies are used. This leads
us to believe that it should scale well to relatively large programs. Graph reduction also
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s � sinv � T�
s� � �xS �s sinv��

sinv �s ��uE �s uS��xS :� s��� � sinv � T
Loop��xS 	body�uE � vE � uS�� s� �

Loop��xS 	body�uE�xS :� s���
vE�xS :� s���
uS�xS :� s���� s� �IA1�

s1 �s s2 � s1

s1 � s2 � T �IA2�

s � �s � T �IA2	1�

s � s1 � T� s � s2 � T
s � �s1 �s s2� � T �IA2	2�

�h�s @ a�! � m!i � T
s � fa �� mg � T �IA2	3�

Figure 5.16: Loop invariance rules.

has the advantage that results of reductions performed in shared subgraphs are immediately
available to all supergraphs from which they are accessible. This means, e.g., that a slice can
be computed in a subprogram (such as a procedure), and the results later used in computing
the slice with respect to the entire program. It also means that reduction steps that are
independent of a given criterion, but dependent on the program, can be shared and reused
when new criteria are supplied.

5.6.2 Alternative translation algorithms

As alluded to in Section 5.2.2, it is not strictly necessary to use a rewriting system to translate
a source program to PIM. Any algorithm to perform the translation suffices, provided that the
dynamic dependence relations between the source AST and its PIM translation are correctly
initialized. However, the correctness of these initial relations must be established by hand.

5.6.3 Chain rules

Chain rules in a language’s abstract syntax can be used to distinguish classes of syntactically
related program constructs that have differing semantic properties. For instance, in our C
grammar, we distinguish between “pure” expressions and those that may have side-effects.
Dependences traced by CR-tracking to such nodes can be used to single out a particular
property of a construct that causes it to be included or excluded from a slice.
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x = ?X;
y = ?Y;
if (x < 0)
y = -y;

z = y;

;
y = ?Y;

;
z = y;

x = ?X;
y = ?Y;
if (x < 0)

;
z = y;

z
given ?X :� 5

z
given ?X :� 5

(a) (b) (c)

Figure 5.17: (a) Example program. (b) Example program after optimization using constant
propagation and dead code elimination, given ?X :� 5. The static slice of the optimized program at
z is the optimized program itself. (c) Our constrained slice at z given ?X :� 5.

5.7 Related work

PIM was introduced as a semantically sound internal representation for program analysis in
[55]. The theoretical underpinnings of the notion of dynamic dependence were developed
in Chapter 4 for arbitrary term rewriting systems. In this chapter, we have augmented PIM’s
logic (particularly for loop analysis), and applied the notion of dynamic dependence to it
to develop a family of extensible slicing algorithms for standard programming languages,
exploiting in particular the possibility of computing slices with respect to constraints.

Some previous algorithms [38, 51, 89] combine both static and dynamic information to
compute slices, but primarily to combine the efficiency of static slicing algorithms with the
accuracy of dynamic slicing algorithms. The notion of constrained slices is not studied in
these papers.

Constrained slicing and partial evaluation of programs are closely related, in a manner
similar to the relationship between dynamic slicing and standard program evaluation. How-
ever, constrained slices cannot be obtained simply by partially evaluating a program, then
computing a static slice from the residual program that results—one must also relate slices
in the partially evaluated program to the source program; this is not necessarily a trivial task.

Consider the example in Figure 5.17. Given the input constraint ?X :� 5, the program
in Figure 5.17 (a) can be simplified using constant propagation and dead code elimination
to yield the program shown in Figure 5.17 (b). However, a static slice of this optimized
program at z fails to provide the same information as our constrained slice of the original
program with respect to the same criterion (Figure 5.17 (c)). This is due to the fact that the
predicate of the if statement (which evaluates to false) is relevant to the computation of the
final value of z, and should therefore be included in the slice. Slicing is intended to indicate
how the value of a variable or expression is computed, not merely what its value may be.
For further details on the relation between previous work on partial evaluation and PIM, see
[55].
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Ernst [52] presents an algorithm for static slicing that is similar to our algorithm in
certain respects. In particular, Ernst describes how conventional program optimization
techniques can be used to produce smaller and better slices. The internal representation that
Ernst uses, the value dependence graph (VDG), has similarities with PIM, and the process
of optimization itself consists of transforming the VDG. Ernst refers to the problem of
maintaining a correspondence between the VDG and the source code graph throughout the
optimization process, and mentions that this correspondence enables a history mechanism
for explaining the transformations that were performed. No details are presented as to how
this is done, but this aspect of Ernst’s work appears to be the analogue of the notion of
dynamic dependence used in our work to maintain a similar correspondence.

In Chapter 6, it is shown that dynamic dependence tracking can be used to compute
accurate dynamic slices from a simple “interpreter-style” semantics for a language, and that
these techniques are useful for debugging.

While we have yet to undertake a formal comparison of the complexity of our approach
with that of earlier methods based on dataflow analysis or dependence graphs, informal anal-
ysis indicates that for comparable types of slices, our approach should be quite competitive
with previous techniques. One characteristic of our approach that must be kept in mind in
any complexity analysis is that aspects of both intermediate representation construction and
analysis using the intermediate representation are combined into reduction steps. For in-
stance, in comparing our work with PDG-based algorithms, it is apparent that there is a close
correspondence between most steps involved in PDG construction and certain PIM rewriting
steps. The computation of the slice itself in PDG-based approaches requires a graph traversal
that corresponds roughly to traversing the set of dynamic dependence relations in a reduced
PIM term.

One advantage of our approach over PDG-based methods is that by using an outermost
“lazy” graph reduction strategy, the analysis performed is effectively demand-driven. Thus
only those reduction steps directly relevant to the slicing criterion are performed. In this
respect, our approach has the potential to outperform prior techniques that may eagerly
compute dataflow information that is never used.

5.8 Future work

There are several areas for future research: we are currently exploring the issues involved in
extending our techniques to handle arbitrary control flow,arrays, address arithmetic, dynamic
memory allocation, and procedures. We also intend to study various PIM subsystems and
reduction strategies in isolation to determine their worst-case complexity versus their ability
to make slices more precise. This study can assist in designing a set of stratified subsystems
that let the user decide on an appropriate tradeoff between precision and speed. Finally,
it would be would be interesting to attempt to extend the notion of dynamic dependence
to more powerful theorem-proving techniques, such as those incorporating higher-order or
equational unification or resolution.

There are many areas in which our techniques could be generalized or expanded. Some
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subjects of ongoing research include:

Arbitrary control flow: We are investigating techniques for translating programs with ar-
bitrary control flow to PIM, and the effects of such a translation on slicing.

Interprocedural and higher-order slicing: The techniques used for loop analysis (which
are essentially a form of abstract interpretation in disguise) ought to be adaptable to
the more general problem of analysis of procedures and functions.

Arrays, address arithmetic, and dynamic allocation: Proper treatment of these constructs
requires a more complicated model of memory than simple symbolic addresses.

Other symbolic analysis techniques: It would be useful to be able to adapt our notion of
dynamic dependence to more powerful theorem-proving techniques, such as those
incorporating higher-order or equational unification or resolution.

Complexity of strategies and subsystems: Various PIM subsystems and reduction strate-
gies need to be carefully studied in isolation to determine their worst-case complexity
versus their ability to make slices precise. A set of stratified subsystems should
be designed to enable users to make decisions interactively about tradeoffs between
precision and speed.





Chapter 6

Generation of Source-Level
Debugging Tools

Summary

Algebraic specifications have been used successfully as a formal basis for software
development. The contribution of this chapter is to show that the origin relation,
defined in Chapter 2, and the dynamic dependence relation, defined in Chapter 4, that are
implicitly defined by an algebraic specification can be used to define powerful language-
specific tools. In particular, it is shown how tools for source-level debugging and
dynamic program slicing can be derived from algebraic specifications of interpreters.

6.1 Introduction

Algebraic specifications [23] have been used successfully for the generation of a variety
of software development tools, such as type-checkers [42], interpreters [49], and program
analysis tools [55] (see also Chapter 5). In this chapter, it is shown how two language-
independent techniques, origin tracking (see Chapter 2) and dynamic dependence tracking
(see Chapter 4), can be used to derive powerful language-specific debugging tools from
algebraic specifications of interpreters. In particular, we show that—in addition to “standard”
debugger features such as single-stepping, state inspection, and breakpoints—a variation of
dynamic program slicing [6, 100, 89] can be defined with surprisingly little effort. The main
contribution of our work is to show that the information required to construct such debugging
tools is to a very large extent language-independent and implicitly present in a language’s
specification. Hence, we do not require the specification writer to add extensive descriptions
for constructing them.

It is assumed that specifications are executed as conditional term rewriting systems [95].
Specifically, an algebraic specification of an interpreter expresses the execution of a program
as the rewriting of a term consisting of a function execute applied to the abstract syntax
tree of that program1. Rewriting this term will produce a sequence of terms that effectively
represent the consecutive internal states of the interpreter. Origin tracking is a method

1Of course, interpreters can be specified in different “styles” than the one used here. However, the approach
pursued here is highly suitable for the purpose of origin tracking, and experience has shown that realistic
languages can easily be specified in this way [49, 134].
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Program ::= declare DeclSeq begin StatSeq end
DeclSeq ::= Decl; DeclSeq j 	d
StatSeq ::= Stat; StatSeq j 	s
Decl ::= Var
Stat ::= Var := Exp j if Exp then StatSeq else StatSeq end j while Exp do StatSeq end
Exp ::= Constant j Var j � Exp + Exp � j � Exp - Exp � j � Exp * Exp � j � Exp = Exp �

Figure 6.1: Syntax of L.

for tracing occurrences of the same subterm in a sequence of terms, and will be used for
the definition of single-stepping and breakpoints. Dependence tracking establishes certain
minimal dependence relations between terms in a rewriting sequence, and will be used to
obtain dynamic slices.

We illustrate our ideas by way of a very simple example language whose execution
semantics are defined in Section 6.2. In Section 6.3, origin tracking and dependence tracking
are presented in some detail. In Section 6.4 and 6.5, we discuss how language-specific tools
for debugging and program slicing can be implemented using the language-independent
techniques of Section 6.3. Practical experience with our approach is discussed in Section 6.6.
Section 6.7 reviews other generic approaches for obtaining language-specific debuggers.
Conclusions and directions for future work are reported in Section 6.8.

6.2 Specification of an interpreter

The techniques of this chapter will be illustrated by way of a simple imperative language
L that features assignment statements, if statements, while statements, and statement se-
quences. L-expressions are constructed from constants, variables, arithmetic operators ‘+’,
‘-’, and ‘*’, and the equality test operator ‘=’. Figure 6.1 shows a BNF grammar for the
language L.

Figure 6.2 shows an algebraic specification that defines the execution of L-programs.
The execution of an L-program P corresponds to the rewriting of the term execute(tP)
according to the specification of Figure 6.2, where tP is the term that constitutes the abstract
syntax tree (AST) of P . The result of this rewriting process is a term that represents a list
containing the final value of each variable.

Term rewriting may be regarded as a cyclic process. Each cycle involves determining a
subterm t and a rule l � r such that t and l match. This is the case if a substitution � can be
found that maps every variable X in l to a term ��X� such that t � ��l� (� distributes over
function symbols). For rewrite rules without conditions, the cycle is completed by replacing
t by the instantiated right-hand side ��r�. A term for which no rule is applicable for any
of its subterms is called a normal form; the process of rewriting a term to its normal form
(if it exists) is referred to as normalizing. A conditional rewrite rule (such as [L16]) is only
applicable if all its conditions succeed; this is determined by instantiating and normalizing
the left-hand side and the right-hand side of each condition. A positive condition (of the
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/* top-level function for execution of programs */

[L1] execute(declare DeclSeq begin StatSeq end) = exec(StatSeq, create(DeclSeq, 	e))

/* functions for creation and manipulation of environments */

[L2] create(	d, Env) = Env
[L3] create(Var;DeclSeq, Env) = create(DeclSeq, Var �	 0; Env)
[L4] lookup(Var �	 Constant;Env, Var) = Constant
[L5] lookup(Var �	 Constant;Env, Var�) = lookup(Env, Var�) when Var �� Var�

[L6] update(Var �	 Constant;Env, Var, Constant�) = Var �	 Constant�;Env
[L7] update(Var �	 Constant;Env, Var�, Constant�) = Var �	 Constant; update(Env, Var�, Constant�)

when Var �� Var�

/* evaluation of expressions */

[L8] eval(Constant, Env) = Constant
[L9] eval(Var, Env) = lookup(Var, Env)
[L10] eval((Exp + Exp�), Env) = intadd(eval(Exp, Env), eval(Exp�, Env))
[L11] eval((Exp - Exp�), Env) = intsub(eval(Exp, Env), eval(Exp�, Env))
[L12] eval((Exp * Exp�), Env) = intmul(eval(Exp, Env), eval(Exp�, Env))
[L13] eval((Exp = Exp�), Env) = inteq(eval(Exp, Env), eval(Exp�, Env))

/* execution of (lists of) statements */

[L14] exec(	s, Env) = Env
[L15] exec(Var := Exp;StatSeq, Env) = exec(StatSeq, update(Env, Var, eval(Exp, Env)))

[L16] exec(if Exp then StatSeq else StatSeq� end;StatSeq��, Env) = exec(StatSeq��, exec(StatSeq, Env))
when eval(Exp, Env) �� 0

[L17] exec(if Exp then StatSeq else StatSeq� end;StatSeq��, Env) = exec(StatSeq��, exec(StatSeq�, Env))
when eval(Exp, Env) = 0

[L18] exec(while Exp do StatSeq end; StatSeq�, Env) =
exec(while Exp do StatSeq end; StatSeq�, exec(StatSeq, Env))
when eval(Exp, Env) �� 0

[L19] exec(while Exp do StatSeq end; StatSeq�, Env) = exec(StatSeq�, Env)
when eval(Exp, Env) = 0

Figure 6.2: Algebraic specification of an L-interpreter.
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declare
i; s; p;

begin
i := 5;
s := 0;
p := 1;
while i do
s := (s + i);
p := (p * i);
i := (i - 1);

end;
end

p �	 120;
s �	 15;
i �	 0;

(a) (b)

Figure 6.3: (a) Example L-program. (b) Environment obtained by executing the program of (a)
according to the specification of Figure 6.2.

form t1 � t2) succeeds if and only if the resulting normal forms are syntactically equal, a
negative condition (t1 
� t2) if they are syntactically different.

The specification of Figure 6.2 is based on the manipulation of an environment, i.e., a
list containing the current value for each variable in the program. Rule [L1] defines the top-
level function execute in terms of two other functions, create and exec. The former,
create, uses the declarations in the program to create an initial environment, where each
variable is initialized with the value 0 (rules [L2] and [L3])2. The latter, exec, specifies
the execution of a list of statements; it “uses” the functions lookup (rules [L4]–[L5])
for retrieving a value from an environment, and update (rules [L6]–[L7]) for updating
the value of a variable in an environment. Rules [L8]–[L13] define a recursive function
eval for evaluating L-expressions. The specification of the operations intadd, intsub,
intmul, andinteq on integer constants has been omitted. Rule [L14] states that executing
an empty list of statements has the effect of leaving the environment unchanged. In rules
[L15]–[L19], the cases are specified where the list of statements is non-empty. Rule [L15]
defines the execution of an assignment statement in terms of the evaluation of its right-hand
side expression, and an update of the environment. In [L16]–[L17] the execution of a non-
empty list of statements beginning with an if–then–else statement is defined by conditional
rules; [L16] and [L17] correspond to situations where the control predicate evaluates to any
non-zero value and zero, respectively. The execution of a while statement is specified in
a similar way (rules [L18]–[L19]). Observe that in the case where the control predicate
evaluates to a non-zero value, a new while statement is “generated” by the right-hand side
of the rule.

Figure 6.3 (a) shows an example L-program. By applying the equations of Figure 6.2,
the environment of Figure 6.3 (b) is produced.

2This specification assumes that every variable is properly declared.
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6.3 Basic techniques

In this section, we will briefly present the origin and dependence relations that are implicitly
defined by the specification of Figure 6.2. Figure 6.4 depicts some of the relations established
by origin tracking and dynamic dependence tracking as a result of executing the program
of Figure 6.3. The figure shows the initial term S, the final term T and an intermediate
term U that occur in the process of executing the program according to the specification of
Figure 6.2. The intermediate term U corresponds to the situation where the while loop is
entered for the first time.

Subterms of U and S that are related by the origin relation are indicated by dashed lines
in Figure 6.4.

Also shown in Figure 6.4 is a subcontext S� of S that is related to the subterm U � of
U via the dynamic dependence relation. Observe that S� excludes the right-hand sides of
two of the assignment statements in the program. One of the key properties of the dynamic
dependence relation is that replacing these right-hand sides by any L-expression will yield
a term that can be rewritten (via a subreduction of r) to a term that contains a subcontext p
�� 1.

Although origin and dependence relations are computed in a similar manner, using similar
information as input, the nature of these relations is different. This is mainly due to the fact
that these relations were designed with different objectives in mind. Origin information
always involves equal terms. In the example of Figure 6.4, origin tracking establishes
relations between a number of syntactically3 equal terms; in this case corresponding to the
statements of the program. Equality (via convertibility of terms) also plays an important
role in the notion of dependence tracking. Dynamic dependence relations are in principle
defined for any subcontext of any term that occurs in a rewriting process: associated with a
subcontext s is the minimal subcontext of the initial term that was necessary for “creating”
a term that contains s. In the sequel, we are primarily interested in the dynamic dependence
relations for subcontexts that represent values computed by a program (such as the subterm
U � in Figure 6.4). It will be shown below that for these subcontexts, the dynamic dependence
relation will compute information that is similar to the notion of a dynamic program slice.

6.3.1 Origin tracking

In the discussion below, it is assumed that a term S is rewritten to a term T in zero or more
steps: S �� T . In Chapter 2, the origin relation is formally defined as a relation between
subterms of S and subterms of T ; associated with every subterm T � of T is a set of subterms,
OriginOf�T ��, of the initial term S—the origin of T �. The principal properties of the origin
relation may be summarized as follows:

3For the purpose of debugging, origin relations rarely involve terms that are not syntactically equal.
Examples of origin relations involving terms not syntactically equal are mainly to be found in the area of
error-reporting [49, 48, 44].
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Figure 6.4: Illustration of origin and dynamic dependence relations.
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Figure 6.5: Origin relations.

� Relations involve equal terms (in the sense of rewriting): for each subterm S� �
OriginOf�T �� we have S� �� T �.

� Relations are defined in an inductive manner. For a reduction of length zero, the origin
relation is the identity relation; for a multi-step reduction S �� T

r
� U , the origin of

a subterm U � of U is defined in terms of the origins of subterms of T , and the structure
of the applied rule, r.

As an example, Figure 6.5 partially shows the term U of Figure 6.4, and the term V it
rewrites to via an application of [L18]. Dotted lines in the figure indicate origin relations.
The relation labeled (1) is the relation between the root ofU and V —such a relation is always
present. Variables that occur in both the left-hand side and the right-hand side of [L18] cause
more origin relations to appear—variable Exp gives rise to the relation labeled (6), variable
StatSeq to the sets of relations labeled (5) and (7), and variable Env to the relations labeled
(4). The relation labeled (3) is caused by the occurrence of a subterm while Exp do StatSeq
end in both the left-hand side and the right-hand side of [L18]. Relation (2) is also caused
by a common subterm.

Note that the rightmost exec function symbol in term V is not related to any symbol
in U—its origin is the empty set. In general, a term will have a non-empty origin if it
was derived directly from a subterm of the initial term (here: the abstract syntax tree of a
program). In Chapter 2, a number of sufficient constraints on specifications is stated that
guarantee that origin sets of subterms with a specific root function symbol, or of a specific
sort, contain at least one, or exactly one element. The specification of Figure 6.2 satisfies
the constraints necessary to guarantee that each “statement” subterm will have an origin set
containing exactly one element. For specifications that do not conform to these constraints,
the origin relation of [43, Chapter 7] may be used, which is applicable to any specification
of a compositional nature.
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6.3.2 Dynamic dependence tracking

We introduce dynamic dependence tracking by considering a few simple rules for integer
arithmetic:

[A1] intmul�0�X� = 0
[A2] intmul�intmul(X, Y)� Z� = intmul�X�intmul(Y, Z)�

By applying these rules, the term intsub(3, intmul(intmul(0, 1), 2)) may be
rewritten as follows (subterms affected by rule applications are underlined):

T0 � intsub�3�intmul(intmul(0, 1), 2)� �� [A2]

T1 � intsub�3�intmul(0, intmul(1, 2))� �� [A1]

T2 � intsub�3�0�

By carefully studying this example reduction, we can make the following observations:

� The outer context intsub(3,�) of T0 (‘�’ denotes a missing subterm) is not affected
at all, and therefore reappears in T1 and T2.

� The occurrence of variables X, Y, and Z in both the left-hand side and the right-hand
side of [A2] causes the respective subterms 0, 1, and 2 of the underlined subterm of
T0 to reappear in T1.

� Variable X only occurs in the left-hand side of [A1]. Consequently, the subterm (of T1)
intmul(1, 2) matched against X does not reappear in T2. In fact, we can make the
stronger observation that the subterm matched against X is irrelevant for producing
the constant 0 in T2: the “creation” of this subterm 0 only requires the presence of the
context intmul(0, �) in T1.

The above observations are the cornerstones of the dynamic dependence relation that is
defined in Chapter 4. Notions of creation and residuation are defined for single rewrite-
steps. The former involves function symbols that are produced by rewrite rules whereas the
latter corresponds to situations where symbols are copied, erased, or not affected by rewrite
rules4. Figure 6.6 shows all residuation and creation relations for the example reduction
discussed above.

Roughly speaking, the dynamic dependence relation for a multi-step reduction � consists
of the transitive closure of creation and residuation relations for the individual rewrite steps
in �. In Chapter 4, the dynamic dependence relation is defined as a relation on contexts, i.e.,
connected sets of function symbols in a term. The fact that C is a subcontext of a term T is
denoted C v T . For any reduction � that transforms a term T into a term T �, a term slice
with respect to some C � v T � is defined as the subcontext C v T that is found by tracing
back the dynamic dependence relations from C�. The term slice C satisfies the following
properties:

1. C can be rewritten to a term D� w C � via a reduction ��, and

4The notions of creation and residuation become more complicated in the presence of so-called left-
nonlinear rules and collapse rules. This is discussed at greater length in Chapter 4.
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Figure 6.6: Example of creation and residuation relations.

2. �� is a subreduction of the original reduction �. Intuitively, �� contains a subset of the
rule applications in �.

For precise definitions of contexts, subcontexts, and subreductions, the reader is referred to
Chapter 4. The definition of a term slice is rendered pictorially in Figure 6.7.

In cases where no confusion arises, we will simply write C � SliceOf�C�� to indicate
that C is the term slice with respect to C � for some reduction � : T��T �, C v T , and
C � v T �.

Returning to the example of Figure 6.6, we can determine the term slice with respect to
the entire term T2 by tracing back all creation and residuation relations to T0; the reader may
verify that intsub(3, intmul(intmul(0, �), �)) = SliceOf(intsub(3, 0)).

6.3.3 Implementation

Origin tracking and dynamic dependence tracking have been implemented in the rewrite
engine of the ASF+SDF Meta-environment [93]. All function symbols of all terms that arise
in a rewriting process are annotated with their associated origin and dependence information;
this information is efficiently represented by way of bit-vectors. Whenever a rewrite rule
is applied to a term t, and a new term t� is created, origin and dependence information is
propagated from t to t�. These propagations are expressed in terms of operations on sets. In
Chapters 2 and 4, it is argued that the cost of performing these propagation steps is at worst
linear in the size of the initial term of the reduction.
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Figure 6.7: Depiction of the definition of a term slice.

6.4 Definition of debugger features

Below, we describe how a number of debugger features can be defined using the techniques of
the previous section. We will primarily concentrate on the mechanisms needed for defining
debugger features, and ignore issues related to a debugger’s user-interface.

6.4.1 Single stepping/visualization

Step-wise execution of a program at the source code level is the basic feature of any debugger.
Observe that in the specification of Figure 6.2, the execution of a statement corresponds

to the rewriting of a term of the following form:

exec(Stat;StatList, Env)

where Stat represents any statement, StatList any list of statements, and Env any environment.
Consequently, the fact that some statement is executed can be detected by matching the above
pattern against the current redex5.

Origin tracking can be used to determine which statement is currently being executed. We
assume that the rewriting process is suspended whenever a redexT matches the above pattern.
At this point, the subterm T � of T that is matched against variable Stat is determined. The
origin ofT �, OriginOf�T ��, will consist of the subtree of the program’s AST that represents the
currently executed statement. Thus, program execution can be visualized at the source-level
by highlighting this subterm of the AST.

5We will use the term “redex” (short for reducible expression) to denote the subterm that has been matched
against some equation. For conditional rules, it is assumed that no conditions have been evaluated yet.
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6.4.2 Breakpoints

Another standard feature of source-level debuggers is the breakpoint. The general idea is that
the user selects a statement s in the program, and execution is continued until this statement
is executed.

A breakpoint on a statement s can be implemented as follows. Let Ts be the subterm of
the AST that corresponds to s. Then the rewriting process should be suspended when: (i)
a redex T matches the pattern exec(Stat;StatList, Env) (indicating that some statement is
being executed), and (ii) Ts � OriginOf�T ��, where T � is the subterm of T matched against
variable Stat.

6.4.3 State inspection

At any moment that execution is suspended, either while single-stepping or due to a break-
point, one may wish to inspect the values of variables or, more generally, arbitrary source-
level expressions.

State inspection may be implemented as follows. We assume that execution was sus-
pended at the moment that some statement was executed, i.e., a redex T matches the pattern
exec(Stat;StatList, Env) Let Tz be the subterm of T that was matched against variable
Env. Then an arbitrary source-level expression e (with an AST Te) can be evaluated by
rewriting the term eval(Te, Tz) according to the specification of Figure 6.2. The result of
this rewriting process will be a term representing the “current” value of expression e.

6.4.4 Watchpoints

Watchpoints [133] are a generalization of breakpoints. The user supplies a source-level
expression e (with AST Te), and execution continues until the value of that expression
changes.

A watchpoint may be implemented as follows. First, an initial value u (with AST Tu) of
expression e is computed (using the technique of Section 6.4.3) and stored by the debugger.
Whenever a statement is executed, the current value v (with AST Tv) of e is determined
and is compared with u by rewriting a term inteq(Tu, Tv). Execution (i.e., the rewriting
process) is suspended when this test fails (i.e., yields the value zero).

6.4.5 Data breakpoints

A data breakpoint [139] is yet another variation on the breakpoint theme. A data breakpoint
on a variable v (with AST Tv) is effective when that variable is referenced (or modified).

Data breakpoints can be implemented by suspending the rewriting process when a redex
matches the pattern lookup(Tv �� Constant;Env, Tv) (for a data breakpoint on a reference
to v), or update(Tv �� Constant;Env, Tv , Constant�) (for a data breakpoint on an update to
v).
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6.4.6 Call stack inspection

In the presence of procedures, the notion of an “environment” needs to be generalized to a
stack of activation records, where each record contains the values of the local variables and
parameters for a procedure call. Call-stack inspection can be defined in way that is similar
to the techniques of Section 6.4.3, by visualizing the procedure calls in each record. One
can easily imagine a tool that allows interactive traversal of the stack of activation records,
and enables one to inspect the values of arbitrary source-level expressions in each scope.

6.5 Dynamic program slicing

Myriad variations on the notion of a dynamic program slice [6, 100, 89] can be found in
the literature—see Chapters 3 and 5. For the purposes of this chapter, we define a dynamic
slice with respect to the current value of a variable v to be the parts of the program that
are necessary for obtaining the current value of v. To see why dynamic slicing is useful for
debugging, consider a situation where an unintended value is computed for some variable
v—only the statements in the dynamic slice with respect to v had an effect on the value of
v. This allows one to ignore many statements in the process of localizing a bug6.

Below we present a two-phase approach for computing dynamic slices. Section 6.5.1
discusses the nature of the “raw” information provided by the dynamic dependence relation
we described in Section 6.3.2. In Section 6.5.2, we present an heuristic approach for post-
processing this information, in order to obtain dynamic slices similar to those of [6, 100].

6.5.1 Pure term slices

We assume that execution was suspended at a moment that some statement was executed, i.e.,
a redex T matches the pattern exec(Stat;StatList,Env). Let Tz be the subterm of T that
was matched against Env, and let Tp be the subterm of Tz that constitutes the variable-value
pair for variable x. Then, the dynamic dependence relation of Section 6.3.2 will associate
with Tp a minimal set of function symbols, SliceOf�Tp�, in the program’s AST.

Figure 6.8 (a) shows a (textual representation of) the term slice that is determined for
the final value of variable p as obtained by executing the example program of Figure 6.3.
Observe that the two holes in this term slice can be replaced by any L-expression without
affecting the computation of the value 120 for variable p.

One may wonder why the assignments to variable s are not completely omitted in the
term slice of Figure 6.8 (a). This is best understood by keeping in mind that any hole in a
term slice may be replaced by any syntactically valid L-term. Note that the assignments to
s cannot be replaced by any other assignment; e.g., they can certainly not be replaced by
any assignment to p. Thus, informally stated, the left-hand sides of the assignments to s are
in the slice because they cannot be replaced by assignments to p.

6Even in cases where a statement is missing inadvertently, dynamic slices may provide useful information.
In such a case, it is likely that more statements show up in the slice than one would expect.
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declare
i; s; p;

begin
i := 5;
s := �;
p := 1;
while i do
s := �;
p := (p * i);
i := (i - 1);

end
end

declare
i; s; p;

begin
i := 5;
p := 1;
while i do
p := (p * i);
i := (i - 1);

end;
end

(a) (b)

Figure 6.8: (a) Term slice with respect to the final value of p. (b) Post-processed slice with
respect to the final value of p.

[P1] Var := � = �

[P2] �;StatSeq = StatSeq

Figure 6.9: Specification for post-processing of term slices.

6.5.2 Post-processing of term slices

While term slices provide information that is semantically sound, they may contain a cer-
tain amount of “clutter”, in the form of uninteresting information. An example of such
information are the two partial assignments to variable s in the term slice of Figure 6.8 (a).

In order obtain dynamic slices similar to those in [6, 100], one may post-process term
slices by: (i) transforming any statement whose right-hand side is irrelevant into an irrelevant
statement (rule [P1]), and (ii) removing irrelevant statements from statement lists (rule [P2]).
A specification of this post-processing is shown in Figure 6.9. Rewriting the term slice of
Figure 6.8 (a) according to this specification yields the slice of Figure 6.8 (b).

The specification of Figure 6.9 is minimal—it only removes irrelevant assignments. In
practice, one would like more sophisticated post-processing that, for example, removes all
irrelevant declarations from the program. Post-processing becomes nontrivial in the presence
of procedures, where situations may occur in which different parameters are omitted at
different call sites.

6.6 Practical experience

To a large extent, the ideas in this chapter have been implemented using the ASF+SDF Meta-
environment [93], a programming environment generator. In particular, origin tracking,
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(a) (b)

(c) (d)

Figure 6.10: Generated language-specific single-stepping tool.

dynamic dependence tracking, and the matching of language-specific patterns have been
implemented successfully.

Figure 6.10 shows a snapshots of a language-specific single-stepping tool for the language
CLaX [49, 134], a substantial subset of Pascal that features procedures with nested scopes,
unstructured control flow, and multi-dimensional arrays. This tool has been implemented
according to the techniques of Section 6.4.1.

Figure 6.11 shows a screen dump of a dynamic slicing tool for the language CLaX, that
was created using the technique of Section 6.5. In this figure, the dynamic slice with respect
to the final value of variable ‘product’ is shown, both in pure “term slice” form (here, ‘�?�’
indicates a missing subterm), and in post-processed form.

6.7 Related work

The work that is most closely related to ours was done in the context of the PSG system
[11]. A generator for language-specific debuggers was described in [10]. Language-specific
compilers are generated by compiling denotational semantics definitions to a functional
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Figure 6.11: Generated language-specific dynamic slicing tool.
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language. A standard, language-independent interpreter is used to execute the generated
functional language fragments. The behavior of a debugger is specified using a set of built-
in debugging concepts. In particular, trace functions are provided for the visualization of
execution. Other notions enable one to inspect the state of the interpreter, and to define
breakpoints.

Bahlke et al. write that “correspondences between the abstract syntax tree and the
terms of the functional language are established in both directions”. These correspondences
are used to determine a language-specific notion of a step. However, the nature of these
“correspondences” is not described, making it impossible to conclude how powerful these
correspondences are, or what constraints on specifications they imply7. By contrast, our
method for keeping track of correspondences, origin tracking (see Chapter 2, is well-defined,
and has proven to be sufficiently powerful for realistic languages [134].

A second difference between the work by Bahlke et al. is the information that is used
to define debugger features. In our approach, debugger features are defined in terms of
specification-level patterns in conjunction with language-independent origin information.
That is, the specification of the interpreter and the specification of debugger features are
uniform. It is unclear to what extent the debugging concepts of [10] are similar to the
interpreter’s specification.

Finally, Bahlke et al. do not consider more advanced debugger features such as watch-
points, data breakpoints, and dynamic slices.

Bertot [26] contributes a technique called subject tracking to the specification language
Typol [85, 41], for animation and debugging purposes. A key property of Typol specifications
is that the meaning of a language construct is expressed in terms of its sub-constructs. A
special variable, Subject, serves to indicate the language construct currently processed.
This variable may be manipulated by the specification writer when different animation or
debugging behavior is required.

Bertot does not consider other debugger features besides single-stepping, animation, and
simple breakpoints.

Berry [25] presents an approach where animators are generated from structured opera-
tional semantics definitions. These specifications are augmented with semantic display rules
that determine how to perform animation when a particular semantic rule is being processed.
Various views of the execution of a program can be obtained by defining the appropriate
display rules. Static views consist of parts of the abstract syntax tree of a program, and
dynamic views are constructed from the program state during execution. As an example of
a dynamic view, the evaluation of a control predicate may be visualized as the actual truth
value it obtains during execution.

Although Berry considers highly sophisticated animation features, he does not consider
debugger features such as breakpoints and dynamic program slices.

7The subset of Pascal that is considered in [10] does not contain goto statements. It is unclear what
complications these statements would cause.
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6.8 Conclusions and future work

We have presented a generic approach for deriving debugging and dynamic program slicing
tools from algebraic specifications. The main conclusion of this chapter is that the informa-
tion needed for implementing such tools is to a very large extent language-independent and
implicitly present in the language’s specification. The three “building blocks” we used to
define debugger features are:

1. matching of patterns,
2. rewriting of terms, and
3. computation of origin/dependence information.

The first two items consist of functionality that is, at least in principle, already provided by
any rewriting engine. As was described in Section 6.3, the information used in the third item
can be computed automatically, as a side-effect of rewriting.

The only additional language-dependent information that is required to define debugging
and slicing features consists of the specification of a set of language-specific patterns, and
the actions that should be performed when a match with such a pattern occurs.

The emphasis of this chapter has been on generic techniques for constructing debugging
tools; we have ignored all aspects that have to do with user-interfacing. In the future, we plan
to develop a formalism in which one can specify such tools together with their user-interfaces.





Chapter 7

Conclusions

7.1 Summary

We have presented an approach to generating program analysis tools from formal specifi-
cations. In particular, the generation of tools for source-level debugging and for computing
various types of program slices has been addressed in detail. We have discussed how such
tools can be of practical use for software maintenance, reverse engineering, and various other
applications.

Instead of “directly” implementing program analysis tools, we require that a language’s
semantics be formally specified by way of an executable algebraic specification. This permits
us to view the execution of a program as a term rewriting process, or, more abstractly, as
a sequence of terms. Two generic, specification-level techniques serve as the cornerstones
of our approach for constructing program analysis tools: origin tracking and dynamic
dependence tracking. Origin tracking establishes relations between recurrences of certain
terms that occur in a rewriting process, and is used to formalize the notion of a “current
locus” of program execution. Dynamic dependence tracking establishes certain dependence
relations between terms that occur in a rewriting process, and is used to compute various
notions of program slices. A crucial property of these techniques is the fact that:

All information needed for computing origin relations and dynamic dependence
relations is implicitly present in the specification of the language’s semantics.

Moreover, these relations can be computed automatically and efficiently, as a side-effect of
term rewriting.

Once origin and dynamic dependence relations have been computed, only a very small
amount of additional language-specific information is needed to construct program analysis
tools. This information mainly consists of a small set of language-specific patterns and
associated actions. We have argued that the specification of these patterns and actions is
very similar to the specification of the language’s semantics itself, and therefore easy to
write.

Some prototypes of program analysis tools have been generated according to our tech-
niques using the ASF+SDF Meta-environment, a programming environment generator [93].
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7.2 Main results

The main results of this thesis can be summarized as follows:

� We have presented a generic approach to generating program analysis tools that re-
quires very little language-specific information other than a specification of a lan-
guage’s semantics, and the language-independent origin and dynamic dependence
relations implicitly defined by that specification.
Moreover, the additional information needed for constructing program analysis tools
can be regarded as an extension to the language’s specification (which itself may have
been developed previously).

� The method for program slicing presented in Chapter 5 subsumes the traditional notions
of static and dynamic program slicing, by allowing arbitrary sets of constraints on the
inputs of a program. The precision of the (static) slices computed according to our
approach compares favorably to that of previous slicing methods.

� We have conducted several experiments with automatically generated program analysis
tools. Although current performance is rather poor (especially for programs over 50
lines), this is mainly due to a combination of two factors:

1. The use of an interpreted term rewriting engine, and
2. The fact that origin tracking and dynamic dependence tracking slow down exe-

cution (i.e., the term rewriting process) by a factor proportional to the size of the
initial term.

Current work on compiling specifications to efficient C code [92] is expected to
overcome the first problem.
Another effort towards greater efficiency is an efficient ML implementation of the
slicing approach of Chapter 5 that is currently being developed at the IBM T.J. Watson
Research Center.

The main contribution of this dissertation has been to explore semantic notions behind
program slicing and debugging operations. One might justifiably remark that interpreters
based on term rewriting are bound to be much slower than interpreters that are constructed
by other means. However, given the recent advances in (rewriting) technology discussed
above and the fact that efficiency is not the primary raison d’être of interpreters to begin
with, we are mildly optimistic about the practicality of the work presented in this thesis.

7.3 Future work

We foresee a number of directions for extending and applying the work in this thesis:

� For certain applications, (e.g., determining positions of type-errors for type-checkers),
different or stronger origin relations are desired [49, 48, 45, 43]. This is an area of
research where much work remains to be done.

� Although defined in different ways, the origin relation and the dynamic dependence
relation clearly have many similarities. A more systematic comparison of these
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relations is required. We believe that a potential outcome of such a comparison could
consist of a generic framework for specifying origin-like relations. One could imagine
that, in such a framework, the origin relation is parameterized with a function defining
the type of relations to be established, and that its properties are expressed in terms of
this parameter.

� An issue related to the previous one is the fact that the origin relation and the dynamic
dependence relation both rely on the combination of a notion of residuation [78] with
“other information”. In the case of origin tracking, the latter consists of the relations
between redex and contractum, and between common subterms. For dependence
tracking, it consists of a notion of “creation”. We conjecture that it should be possible
to redefine origin tracking and dependence tracking in a more consistent way, as
relations that have a “residuation” subrelation in common.

� The dynamic dependence relation defined in Chapter 4 may produce slightly non-
optimal results in the presence of left-nonlinear rewriting rules. Although this non-
optimality does not seem to pose any problems in practice, we are currently investigat-
ing whether an approach based on graph rewriting (see, e.g., [17]) would yield more
accurate results.

� The dynamic dependence relation is in certain respects similar to the information
that is used by Field [54, 56] for the purpose of incremental rewriting. It would be
interesting to determine exactly how these different concepts are related.

� We intend to experiment with the application of dynamic dependence tracking to spec-
ifications of the static semantics of a language (i.e., specifications of type-checkers).
In principle, this would yield a “reduced” program that contains the same type-errors,
but excludes all type-correct constructs.

� As was discussed earlier, the information needed for generating language-specific
program analysis tools is to a very large extent language-independent. However, a
small part of this information (e.g., the patterns and associated actions in Chapter 6)
is language-dependent.
A logical continuation of the work in this thesis would be the development of a formal-
ism/language to express this language-specific information. Ideally, this formalism
would also allow the description of the user-interface of the generated tools. The work
by Koorn [96, 97] may be a good starting-point.

� In our current implementation, origin tracking and dynamic dependence tracking are
implemented by way of a modification of the ASF+SDF system’s rewrite engine. In
order to gain performance, current work in this area includes a compiler of ASF+SDF
specifications to efficient stand-alone C programs [92]. Rather than re-implementing
origin tracking and dynamic dependence tracking in this new setting, it would be inter-
esting to compute these relations by way of a systematic transformation on algebraic
specifications.
Some experiments in this area have been performed, but were unsuccessful due to
the inefficient implementation of low-level set operations by way of “pure” rewriting.
We conclude that an escape-mechanism (such as the hybrid specifications of [140]) is
needed to compute these operations more efficiently.



184 Chapter 7. Conclusions

� In this dissertation, we have mainly explored program slicing for purposes of program
analysis and program understanding. It would be interesting to investigate whether
slicing can be of use for program restructuring as well. The work by Griswold and
Notkin [64, 63], who pursue a PDG-based method for program restructuring, may be
relevant in this respect.
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PIM details

In this appendix, we briefly review the PIM term structure and the most important subsets of
PIM rules. Additional rules used primarily for performing induction are described in [55];
these rules are the foundation for the loop analysis rules presented in Section 5.5. In general,
PIM is augmented with rules defining the semantics of language-specific data types such as
integers.

PIM terms are constructed over an order-sorted signature. PIM sorts distinguish among
fundamentally incompatible syntactic structures corresponding to observable values, merge
structures, store structures, and lambda expressions; however, sorts should not be interpreted
as types in the usual sense.

A.1 PIM� rules

The rules of PIM�
t are given in Figure A.1. Variables v, m, s, and f will be used in the rules

to refer to observable values, merge structures, store structures, and lambda-expressions,
respectively. Equations (L1)–(L8) are generic to merge or store structures. Thus, each of
the operators labeled � is to be interpreted as one of s or m. (E1) and (E2) are schemes for
an infinite set of equations. Equation (C1) only applies if the argument of ‘S���’ is of sort S.
The rules of PIM� consist of those of PIM�

t , along with the rules depicted in Figure 5.11.

A.2 PIM=
t equations

The rules of PIM=
t are those of PIM�

t along with those given in Figure A.2. As before, � in
rules (L9)–(L11) is assumed to be one of m or s. In rule (M9), CV # $ denotes an arbitrary
strict context of value sort; this rule could also be less perspicuously rendered as a family of
rules, one for each value-sorted function symbol.
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��  � l �� l (L1)
l  � �� �� l (L2)

l1  � �l2  � l3� �� �l1  � l2�  � l3 (L3)
p �� �� �� �� (L4)
T �� l �� l (L5)
F �� l �� �� (L6)

p �� �l1  � l2� �� �p �� l1�  � �p �� l2� (L7)
p1 �� �p2 �� l� �� �hp1 � p2i �� l (L8)

fv1 �� mg @ v2 �� �hv1 � v2i �m m (S1)
fv �� �mg �� �s (S2)

�s @ v �� �m (S3)
�s1  s s2� @ v �� �s1 @ v�  m �s2 @ v� (S4)
p �s fv �� mg �� fv �� �p �m m�g (S5)

�hk1 � k2i �� T� ki constants� k1 � k2 (E1)
�hk1 � k2i �� F� ki constants� k1 
� k2 (E2)

#F � v$ �� �m (M1)
�m  m #T � v$�! �� v (M2)

#T � v$! �� v (M3)
�m! �� ? (M4)

p1 �m #p2 � v$ �� #�hp1 � p2i � v$ (M5)

"hT i �� F (B1)
"hF i �� T (B2)

"h"h p i i �� p (B3)
�hT � pi �� p (B4)
�hp � Ti �� p (B5)
�hF � pi �� F (B6)
�hp � Fi �� F (B7)

�h�hp1 � p2i � p3i �� �hp1 � �hp2 � p3ii (B8)
"h�hp1 � p2i i �� �h"h p1 i � "h p2 ii (B9)

�hT � pi �� T (B10)
�hp � Ti �� T (B11)
�hF � pi �� p (B12)
�hp � Fi �� p (B13)

�h�hp1 � p2i � p3i �� �hp1 � �hp2 � p3ii (B14)
"h�hp1 � p2i i �� �h"h p1 i � "h p2 ii (B15)

S�s� �� s (C1)

Figure A.1: Equations of PIM�
t .
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�hv � vi � T (E3)

l2  � l1  � l2 � l1  � l2 (L9)

�hp1 � p2i � F
�p1 �� l1�  � �p2 �� l2���p2 �� l2�  � �p1 �� l1� (L10)

�p1 �� l�  � �p2 �� l� � ��hp1 � p2i� �� l (L11)

fv �� m1g  s fv �� m2g � fv �� �m1  m m2�g (S6)
�hv1 � v2i � F

fv1 �� m1g  s fv2 �� m2g�fv2 �� m2g  s fv1 �� m1g (S7)

�"h p i �m m1  m
m2  m #p � v$ �m1  m m2  m #p � v$ (M6)

#p �m!$ � #p � ?$  m �p �m m� (M7)
�#T � ?$  m m�! �m! (M8)

CV # m! $ � �m n ��xV�CV # xV $�� !�
xV 
� FV �CV# $� (M9)

�m1  m m2� n f � �m1 n f�  m �m2 n f� (M10)
#p � v$ n f � #p � �f v�$ (M11)

�m n f � �m (M12)
�p �m m� n f � p �m �m n f� (M13)
�m n�x�v� n f �m n�x�fv (M14)

�hp1 � p2i � �hp2 � p1i (B16)
�hp � pi � p (B17)

�hp � "h p ii � F (B18)
�hp1 � p2i � �hp2 � p1i (B19)
�hp � pi � p (B20)

�hp � "h p ii � T (B21)
�hp1 � �hp2 � p3ii � �h�hp1 � p2i � �hp1 � p3ii (B22)
�hp1 � �hp2 � p3ii � �h�hp1 � p2i � �hp1 � p3ii (B23)
#p � ��hp � qi�$ � #p � q$ (B24)

Figure A.2: Additional equations of PIM=
t .
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Samenvatting

Over het onderwerp van dit proefschrift

Het is een bekend fenomeen dat een programma moeilijker te begrijpen wordt naarmate
het “ouder” wordt, en er meerdere malen wijzigingen in zijn aangebracht. Redenen voor
dergelijke wijzigingen zijn voor de hand liggend:

� Het kan nodig zijn de functionaliteit van een programma uit te breiden.
� Programma’s moeten soms worden aangepast wegens overschakeling op een ander

type computer of bedrijfssysteem.
� Verbetering van het mens/machine interface kan gewenst zijn.

Helaas wordt dit soort software-onderhoud niet altijd als een volwaardige activiteit be-
schouwd, en vindt het plaats onder grote tijdsdruk. Dergelijk programmeerwerk wordt dan
ook veelal op een ad-hoc manier uitgevoerd, waarbij de “structuur” die oorspronkelijk in
het programma aanwezig was grotendeels verloren gaat. Ook worden het ontwerp en de
documentatie die bij het programma horen vaak niet op adequate wijze aangepast. Een
programmeur die met een dergelijk programma wordt geconfronteerd, en de opdracht heeft
daarin nogmaals een wijziging aan te brengen, kan hierdoor grote moeite hebben met het
begrijpen ervan. Dit geldt in het bijzonder als de programmeurs die betrokken zijn geweest
bij eerdere versies van het programma niet meer aanwezig zijn voor tekst en uitleg, en de
source-tekst de enige beschikbare informatie omtrent het programma is.

Dit proefschrift gaat over technieken en hulpmiddelen om programma’s automatisch
te analyzeren, met andere woorden, over hulpmiddelen (“tools”) die het begrijpen van
programma’s vergemakkelijken. Hierbij ligt de nadruk op het genereren van programma-
analyse tools uit algebraı̈sche specificaties, in plaats van deze direct te implementeren in een
specifieke programmeertaal. Een belangrijk voordeel van deze aanpak is dat deze grotendeels
taal-onafhankelijk is. De nadruk ligt op twee specifieke technieken voor programma-analyse:
source-level debugging en program slicing.

199



200 Samenvatting

Source-level debugging

Onder het begrip “debugging” (letterlijk: ontluizing) worden technieken verstaan voor het
opsporen van fouten in programma’s. Een “debugger” is een tool dat op deze technieken is
gebaseerd. Als de communicatie tussen de debugger en de gebruiker plaatsvindt in termen
van de oorspronkelijke tekst van het programma (de zgn. “source-code”), spreekt men van
een “source-level debugger”. Functionaliteit die typisch door een debugger wordt geboden
omvat:

Single stepping: het stapsgewijs uitvoeren van de instructies van het programma, of het
simuleren hiervan.

State inspection: het inspecteren van de waarden die door het programma worden berekend
op een door de gebruiker aangewezen punt.

Breakpoints: hierbij wordt de uitvoering van de instructies van het programma voortgezet
totdat een vooraf gespecificeerde conditie geldt. Als voorbeeld van condities valt te
denken aan het bereiken van een bepaalde locatie in de programma-tekst (“control
breakpoints”), of het moment waarop een door de gebruiker gespecificeerde expressie
een bepaalde waarde aanneemt (“data breakpoints”).

Program slicing

Programmasegmentatie (“program slicing”) is een techniek voor het opsplitsen van een
programma in een aantal deelprogramma’s die ieder corresponderen met een specifieke be-
rekening. Dit is het best te begrijpen door een eenvoudig voorbeeld te bestuderen. Figuur S.1
(a) toont een programma dat de gebruiker om een getal n vraagt, vervolgens de som en het
produkt van de eerste n getallen berekent, en deze waarden afdrukt. Figuur S.1 (b) toont een
program slice ten opzichte van de instructie write(produkt), de laatste regel van het
programma. Het idee is nu om alle instructies die niet van belang zijn voor het berekenen van
de waarde van variabele produkt op dit punt uit het programma te verwijderen. Aangezien
de berekeningen van de som en het produkt hier “onafhankelijk” zijn, zijn alle instructies die
te maken hebben met variabele som niet meer aanwezig in de program slice van Figuur S.1
(b). Programmasegmenten die berekend worden zonder aannames omtrent de invoer van
een programma worden ook wel statische programmasegmenten genoemd (“static program
slices”).

Bij dynamische programmasegmentatie (“dynamic program slicing”) wordt er gebruik
gemaakt van het feit dat bepaalde afhankelijkheden in een programma niet worden geac-
tiveerd voor specifieke invoerwaarden. Zo toont Figuur S.1 (c) een dynamic program slice
ten opzichte van de eindwaarde van variabele produkt, voor de specifieke invoerwaarde n
= 0. Aangezien de instructies in de while-lus nooit worden uitgevoerd voor invoerwaarde
n = 0 hoeven deze niet in het dynamische programma segment te worden opgenomen.
Dergelijke dynamische programma segmenten zijn meestal veel kleiner dan de invoeron-
afhankelijke statische programma segmenten.

Het nut van programmasegmentatie voor het begrijpen van een programma is evident:
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read(n);
i := 1;
som := 0;
produkt := 1;
while i �� n do
begin
som := som + i;
produkt := produkt * i;
i := i + 1

end;
write(som);
write(produkt)

read(n);
i := 1;

produkt := 1;
while i �� n do
begin

produkt := produkt * i;
i := i + 1

end;

write(produkt)

read(n);
i := 1;

produkt := 1;
while i �� n do
begin

end;

write(produkt)

(a) (b) (c)

Figuur S.1: (a) Voorbeeldprogramma. (b) Statisch programma segment van het programma ten
opzichte van de eindwaarde van variabele produkt. (c) Dynamisch programma segment van het
programma ten opzichte van de eindwaarde van variabeleprodukt voor de specifieke invoerwaarde
n = 0.

het stelt de programmeur in staat de aandacht te concentreren op een bepaalde berekening,
en instructies die daar niet mee te maken hebben te negeren. Dynamische programmaseg-
mentatie is nuttig als debugging techniek. Als immers een onjuiste waarde wordt berekend
op een bepaald punt in het programma, kunnen alleen de instructies in de dynamische slice
ten opzichte van dat programma-punt van belang zijn geweest voor de berekening van de
onjuiste waarde1. In het algemeen kan worden gesteld dat program slicing nuttig is voor het
begrijpen van programma’s omdat het het overzicht helpt te vergroten.

Hoofdstuk 3 bevat een uitgebreid overzicht van de huidige vakliteratuur op het gebied
van program slicing, en de toepassingen daarvan.

Algebraı̈sche specificaties

Zoals eerder genoemd bestaat de aanpak van dit proefschrift uit het genereren van
programma-analyse tools uit algebraı̈sche specificaties. Een algebräısche specificatie bestaat
uit een verzameling van (conditionele) vergelijkingen die gezamenlijk de “betekenis” van
instructies en programma’s formeel definiëren. Als voorbeeld wordt in Figuur S.2 de exe-
cutie van een if-instructie gespecificeerd (dit voorbeeld komt uitgebreid aan de orde in
Hoofdstuk 6). Gezamenlijk definiëren deze twee vergelijkingen hoe de executie van een if-
instructie kan worden uitgedrukt in de executie van ofwel de instructies in de then-tak, ofwel

1Zelfs in gevallen waar de fout bestaat uit de afwezigheid van een bepaalde instructie kunnen programma-
segmenten van nut zijn. In dergelijke gevallen is het waarschijnlijk dat het segment andere instructies bevat
dan men zou verwachten.
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[L16] exec(if Exp then StatSeq else StatSeq� end;StatSeq��, Env) = exec(StatSeq��, exec(StatSeq, Env))
when eval(Exp, Env) �� 0

[L17] exec(if Exp then StatSeq else StatSeq� end;StatSeq��, Env) = exec(StatSeq��, exec(StatSeq�, Env))
when eval(Exp, Env) = 0

Figuur S.2: Algebraı̈sche specificatie van de executie van een if-instructie.

cond then else

list

list

then

L16

env

if

exec

;

exec

exec

origin relaties

env

Figuur S.3: Illustratie van termherschrijving en de origin relatie.

de instructies in de else-tak, al naar gelang het resultaat van de evaluatie van de controle-
expressie van de if. De hulpfunctie exec die in beide vergelijkingen voorkomt beschrijft
het effect van de executie van een lijst van instructies op de “status” van een programma.

Algebraı̈sche specificaties kunnen worden uitgevoerd (“geëxecuteerd”) door middel van
termherschrijving: het van links naar rechts toepassen van vergelijkingen2. Figuur S.3 laat
zien hoe een if-term kan worden herschreven door vergelijking [L16] uit Figuur S.2 toe te
passen.

In Figuur S.3 zijn met stippellijnen een aantal origin relaties aangegeven. Intuitief
gezien relateert de origin relatie “gelijke” termen aan elkaar. Hoofdstuk 2 bevat een formele
definitie van origin tracking, een techniek om dergelijke origin relaties automatisch uit een
specificatie af te leiden. In Hoofdstuk 6 wordt origin tracking gebruikt om het huidige punt
van de programma-executie te kunnen traceren, en source-level debugging tools te genereren.

Een andere relatie die in dit proefschrift veelvuldig aan de orde komt is de dynamische
afhankelijkheidsrelatie (“dynamic dependence relation”). Figuur S.4 toont twee eenvoudige
vergelijkingen voor berekeningen met natuurlijke getallen. Vergelijking [A1] zegt dat de
vermenigvuldiging van het getal 0 met een willekeurig ander getal het resultaat 0 oplevert,

2Dit concept wordt iets ingewikkelder als vergelijkingen conditioneel zijn. Conditioneel termherschrijven
komt uitgebreid aan de orde in Hoofdstuk 2.



Samenvatting 203

[A1] intmul�0�X� = 0
[A2] intmul�intmul(X, Y)� Z� = intmul�X�intmul(Y, Z)�

Figuur S.4: Vergelijkingen voor berekeningen met natuurlijke getallen.

A2 A1

intmul

2intmul

0 1

intmul

dynamische afhankelijkheids relaties

0 intmul

1 2

0

Figuur S.5: Dynamische afhankelijkheidsrelaties die optreden bij toepassing van vergelijkingen
[A1] en [A2].

en vergelijking [A2] beschrijft het feit dat vermenigvuldiging een associatieve operatie is.
Figuur S.5 laat zien hoe de term intmul(intmul(0, 1), 2) kan worden herschreven
door toepassing van vergelijkingen [A1] en [A2]. De gestippelde lijnen in Figuur S.5
geven dynamische afhankelijkheden weer. Intüıtief gezien beschrijven deze relaties welke
functiesymbolen in de term hebben geleid tot de “creatie” van een bepaald functiesymbool.
Dit kan in het voorbeeld van Figuur S.5 worden ingezien door de afhankelijkheidsrelaties
vanaf het eindresultaat 0 terug te traceren: hieruit blijkt dat het optreden van deze waarde
niet afhankelijk is van de waarden 1 en 2 in de beginterm.

Hoofdstuk 4 bevat een formele definitie van “dynamic dependence tracking”, een tech-
niek om dynamische afhankelijksrelaties automatisch uit een algebräısche specificatie af
te leiden. In Hoofdstuk 5 wordt dynamic dependence tracking gecombineerd met het
formalisme PIM [55], een equationele logica voor het beschrijven van de betekenis van
programma’s ontwikkeld aan het IBM T.J. Watson Research Center. In Hoofdstuk 5 wordt
uitvoerig beschreven hoe het traceren van de dynamische afhankelijkheden vanuit een waarde
die berekend is door een programma, zeer accurate program slices oplevert. In Hoofdstuk 6
wordt de dynamische afhankelijkheidsrelatie toegepast op een algebräısche specificatie van
een interpreter om dynamische programmasegmenten te berekenen.
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Resultaten van dit onderzoek

De belangrijkste resultaten van het in dit proefschrift beschreven onderzoek kunnen als volgt
worden samengevat:

� Hoofdstukken 2 en 4 bevatten formele definities van respectievelijk de origin relatie
en de dynamische afhankelijksheidsrelatie. Verder worden hier een aantal nuttige
eigenschappen van deze relaties bewezen, en wordt aangegeven hoe ze op efficïente
wijze geı̈mplementeerd kunnen worden.

� In Hoofdstuk 5 wordt de dynamische afhankelijkheidsrelatie “toegepast op” het PIM

formalisme. Dit blijkt overeen te komen met een algemene, flexibele, en zeer precieze
vorm van program slicing.

� Hoofdstuk 3 bevat een uitgebreid literatuuronderzoek over het onderwerp program
slicing.

� In Hoofdstuk 6 worden de origin relatie en de dynamische afhankelijkheidsrelatie
toegepast op algebraı̈sche specificaties van interpreters. Hierbij wordt beschreven hoe
op basis van de origin relatie een aantal zeer krachtige debugging concepten op een-
voudige wijze kan worden gedefiniëerd, en hoe de dynamische afhankelijkheidsrelatie
het mogelijk maakt dynamische programmasegmenten te berekenen.

De technieken die zijn beschreven in dit proefschrift zijn gëımplementeerd met behulp van
de ASF+SDF Meta-Environment [93], een generator voor programmeeromgevingen die
ontwikkeld is door onderzoeksgroepen bij het Centrum voor Wiskunde en Informatica en bij
de Universiteit van Amsterdam.
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