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Chapter 1

General Introduction

The main topic of this thesis is the representation of fragments of intuitionistic and

modal propositional logic by (usually �nite) structures, called exact models. One of

the reasons for the interest in properties of fragments with such a �nite representation

is the possibility of designing computer programs to decide derivability within the

fragment. In general, this kind of program, based on checking the validity of formulas

in a model, is much more e�cient than traditional theorem proving. This e�ciency of

`model checking versus theorem proving' has in recent years attracted the attention

of researchers in arti�cial intelligence and knowledge representation [HV 91].

For the bene�ts of model checking we have to pay a price. Theorem provers are

`general purpose' tools, accepting any formula in the language of the logic (obviously

with certain practical limitations). However, �nite representations such as exact

models exist only when we cut down the expressive power of the language.

In this thesis we focus our attention on �nite fragments of propositional logics,

languages with restrictions on the use of atomic subformulas and connectives, that

have a �nite Lindenbaum algebra or diagram as we prefer to call it here.

The structure of these �nite diagrams can be calculated and studied using e�-

cient computer programs based on model checking. Knowledge of the structure of

diagrams can be used in constructing new �nite complete models.

The history of this kind of research into the structure of �nite fragments can be

traced back to the calculation of diagrams by Skolem [Skolem 13] and Lindenbaum's

suggestion to use (equivalence classes of) formulas in semantics [Mostowski 65]. The

discovery of the lattice of the one-variable fragment of intuitionistic propositional

logic by Rieger [Rieger 49] and its rediscovery by Nishimura [Nishimura 60] proves

that, although perhaps not always very prominent, the interest in the subject re-

mained in the years after.

After the introduction of semantic tableaux by Beth [Beth 55], Kanger and Hin-

tikka, and the invention of Kripke semantics for modal as well as intuitionistic logic

by Kripke [Kripke 65] and others, a more systematic investigation of the semantical

�ne structure of fragments seemed possible.

3



4 Chapter 1. General Introduction

As Beth pointed out in [Beth 55], the strongly mechanical character of his seman-

tic tableau procedures suggests the possibility of constructing a logical machine. In

1955 Beth imagined this futuristic `computer' to display its results using a crossbreed

of a tra�c light and a telegraph. A red light would announce a proof, to be produced

on a strip of paper, and a yellow light would announce the machine to print a �nite

counter-example.

The construction of the logical machine would of course depend on the logic used.

Only in those cases where the derivability of a formula from a �nite set of formulas is

decidable, one may expect the machine always to halt after a �nite amount of time.

In the case of predicate logic, adding a green light to the machine announcing

the construction of an in�nite tableau would make the implementation of the speci-

�cations impossible (if on every input the machine has to switch on one of the lights

after a �nite period of time).

Nowadays, at a time where there are probably more computers than tra�c lights

around, it is no problem to implement Beth's logical machines as computer programs.

Of course, if we want the machine to halt on every input, such a computer program

is only possible for decidable logics, such as most propositional logics.

In the early sixties, as soon as computers came within the reach of university

scientists, Beth stimulated his students De Jongh and Kamp to develop computer

programs deciding derivability and compute diagrams in intuitionistic propositional

logic (IpL).

In 1963 De Jongh and Kamp succeeded in making the computer decide correctly

whether a formula was derivable in IpL. If not, the program produced the description

of a Kripke model that served as a counter-example.

However, the program was too time-consuming to be of any practical use in

studying diagrams. In the late seventies, this line of research was picked up by the

author [Hendriks 80] who wrote Algol68 programs that could decide derivability in

IpL and compute small diagrams. Improved results were obtained by Van Riems-

dijk [Riemsdijk 85] with Pascal programs.

These computer programs, using algorithms based on the semantic tableaux

method, realized the kind of logical machine that Beth envisaged 25 years earlier.

By that time the history of the subject had also made a detour in algebra.

Investigating the algebraic structure of diagrams of [!] fragments of IpL, Diego

proved that all diagrams of [!] with a �nite number of propositional variables are

�nite [Diego 66].

Independently, Urquhart gave a simpler prove in [Urquhart 74] and in 1975, De

Bruijn proved the same result for all diagrams of [^;!] [Bruijn 75a]. In this proof

De Bruijn introduced the notion of an exact model . An exact model is a part of

the Lindenbaum algebra, such that the lattice of upward closed subsets of the exact

model (ordered by inclusion) is isomorphic to the entire Lindenbaum algebra.

Let us write [^;!]

n

for the IpL fragment with formulas generated from the

atomic formulas fp

1

; : : : ; p

n

g and the connectives ^ and !. To construct the exact

model of the fragment [^;!]

3

, De Bruijn used a computer. He also published a



5

computer program that used this exact model in deciding derivability in the frag-

ment [Bruijn 75b].

In 1987 De Jongh, Renardel de Lavalette and the author started working on

computer aided research into the structure of diagrams of IpL. With help from

Van Riemsdijk and Tromp new computer programs were developed based on exact

models. The present work re
ects the results of the research that started in this

group.
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1. Figure. The lattice of fragments in IpL.

De Bruijn's concept of exact model was reformulated in the more familiar con-

text of Kripke models, simpli�ed and generalized to compute exact models, not

only of [^;!;:] fragments (see [JHR 91]) but also those of other fragments of

IpL [Hendriks 93]. As a result we are now able to construct a �nite complete Kripke

model for every �nite fragment in the lattice of fragments depicted in �gure 1. Each



6 Chapter 1. General Introduction

node in this diagram stands for a certain set of connectives and hence for an in�nity

of fragments, one for each number of atoms. Note that the double negation (::) is

treated as a primitive operator.

In �gure 1 the fragments with an in�nite diagram (at least for more than one

propositional variable) are denoted by an open circle, the others by a closed circle.

Whenever the fragment (again over a �nite set of atoms) has an exact model, the

closed circle of the fragment is surrounded by an open circle. Fragments with an

exact Kripke model are marked by a square.

As can be seen from the lattice, every fragment considered here with a �nite

diagram is a subfragment of a fragment with an exact Kripke model.

The fragments in the lattice above are obtained by simply deleting one or more

of the usual connectives (on top of the restriction to a �nite set of atoms). For

several reasons, restricting the use of connectives in a more sophisticated way is an

interesting alternative. Observe for example that the interplay of implication and

disjunction cannot be studied in �nite fragments, since in every �nite fragment either

one of them will be absent. Nor is there a non-trivial sequence of these `simple' �nite

fragments which has IpL

n

as its union.

If we turn to modal logic, the situation is even worse. By simply deleting con-

nectives we will not, in general, obtain �nite fragments if the modal operators are

still available, and without them we are left with fragments of classical propositional

logic, CpL.

In modal logic, there are some well-known results concerning formulas with a

restricted modal depth, as the nesting of modal operators is usually called (see in

particular [Fine 74]). In the context of an attempt to characterize formulas in prov-

ability logic using sets of worlds of a certain type in a Kripke model, these results

inspired the introduction of the notion of semantic type. The notion of semantic type

turned out to be a versatile tool also in intuitionistic propositional logic.

Just as the restriction of modal depth in modal logic, the restriction of nesting of

implications in IpL fragments with a �nite number of propositional variables yields

fragments with �nite diagrams that have exact Kripke models. The structure of

these exact models will be studied

1

in Chapter 4. Intuitionistic propositional logic

can be obtained as the limit of a sequence of fragments with an increasing nesting

of implication and an increasing number of propositional variables.

The problem in provability logic, L, that brought us on the trail of the semantic

types was the computation of the exactly provable formulas

2

in the fragment L

1

1

(see

Chapter 5). According to Solovay's theorem on provability interpretations for formu-

las of L [Solovay 76], the theorems of L are those modal formulas that are provable

in Peano arithmetic (PA) under arbitrary arithmetical interpretations (interpreting

2

as the formalized provability predicate in PA). If we �x the arithmetical interpre-

tation of one or more of the propositional variables, the interpreted formulas true in

1

Some of the research was done in cooperation with Zwanenburg [Zwanenburg 94].

2

The term `exact' in `exactly provable' has no relation to its use in `exact models'.



1.1. Outline of the thesis 7

PA form an interpretable theory:

f�(p

1

; : : : ; p

n

) j `

PA

�

�

(A

1

; : : : ; A

n

)g

for certain arithmetic sentences A

1

; : : : ; A

n

.

There are only �nitely many interpretable theories in the fragment L

n

m

, with n

atoms and a nesting of the provability operator less or equal m.

If we introduce the relation � `

�

 for � ^

2

� `  , then we can reformulate the

condition, found by V. Shavrukov, that is both necessary and su�cient for a � in L

to be the axiom of an interpretable theory [Shavrukov 93]:

for all  ; � � `

�

2

 _

2

� ) � `

�

 or � `

�

�:

A � which is the axiom of an interpretable theory in the sense that there is an

interpretation such that:

� `

�

 , `

PA

 

�

is called an exactly provable formula. The strong disjunction property above turns

out to have a characterization in semantical terms by means of which it is possible

to calculate the exactly provable formulas in the fragment L

1

1

.

The results based on these ideas were �rst published in [HJ 96].

1.1 Outline of the thesis

Each chapter starts with a short introduction and a preliminary section. The pre-

liminaries common to all chapters can be found in section 1.2.

Chapter 2 is an introduction into the theory of semantic types and exact models.

Some related results, as from [Fine 74], [Jankov 68] and [De Jongh 70], are

presented in this framework.

Chapter 3 is an overview of �nite fragments of IpL with a restricted set of connec-

tives. For fragments with an exact model the construction of the exact model

is given. Part of these results were published in [JHR 91] and most of them

can also be found in [Hendriks 93]. In this chapter these results are presented

for the �rst time within the framework of semantic types introduced in the

previous chapter.

Chapter 4 deals with the structure of exact Kripke models for fragments of IpL

with restricted nesting of implication.

Chapter 5 applies some of the techniques of the previous chapters to the computa-

tion of exactly provable formulas in provability logic. This chapter is a revised

version of [HJ 96], with an emphasis on the contributions of the present author,

viz. the introduction of semantic types and the computation of the exactly

provable formulas with no nesting of the provability operator.

Chapter 6 describes a family of theorem testers based on semantic tableaux, in-

cluding a tester for IpL and testers for several modal logics and contains a

description of the algorithms to compute diagrams and exact models.
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Appendix A contains some of the more important parts of the computer programs

(in the programming language C), that are described in this thesis.

Appendix B is a collection of examples of the output of the computer programs

that calculated diagrams of fragments and the exactly provable formulas in L

1

1

.

Appendix C contains tables of the number of equivalence classes computed for

several fragments of IpL.

1.2 General preliminaries

The language of classical propositional logic (CpL), intuitionistic propositional logic

(IpL) and modal propositional logic used in the consecutive chapters consists of

the constants ? and > and an in�nite stock of propositional variables fp

1

; p

2

; : : :g,

also called atomic formulas (or simply atoms), together with the usual propositional

connectives f^;_;!;:g (and sometimes ::). In the case of modal logic also

2

and

} are included. We will, in the case of classical (modal) logic, most of the time treat

_;! and } as de�ned from ^;: and

2

(but sometimes _;! and

2

de�ned from

^;: and }). On the other hand, in IpL we will take :� to be de�ned as �!?.

To avoid a plethora of parentheses, in writing our formulas, we de�ne the order

in which the connectives take preference above each other as:

}

2

: ^ _ !:

Hence, :

2

:p!q ^ r _ s is equivalent to :(

2

(:p))!((q ^ r) _ s).

The derivability relation for a logic L will be denoted by `

L

or by ` if the choice

of the logic is obvious from the context. Formulas � and  are called equivalent in

the logic L, � �

L

 (or � �  if L is obvious), if they are interderivable: � `

L

 and

 `

L

�. The derivability relations of the logics treated in the sequel are assumed to

be de�ned by the set of rules and axioms below. Let T and T

0

be sets of formulas

and �;  and � be formulas. We will de�ne ` as a relation between sets of formulas

and formulas, but we will write T; � `  , where more formally T [f�g `  is meant.

The rules for intuitionistic propositional logic are:

1. � 2 T ) T ` �

2. T;  ` � and T

0

`  ) T [ T

0

` �

3. T ` � and T `  , T ` � ^  

4. T; � ` � and T;  ` � , T; � _  ` �

5. T; � `  , T ` �! 

6. ? 2 T ) T ` �

In the case of classical logic we add the axiom:

7. ::� ` �

In the case of the classical modal logic K we add also:
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8. ` � ) `

2

�

9.

2

(�! ) `

2

�!

2

 

For classical and intuitionistic propositional logic, alternative axioms and rules can

also be found for example in [TD 82] and for (other) modal logics one may con-

sult [HC 84].

A fragment is a sublanguage of a logic, obtained by restricting the set of atoms

or the application of connectives (or both). In this thesis we will often restrict the

language to a �nite set of atoms p

1

; : : : ; p

n

. Let F and G be fragments of a logic L.

Then G is called a subfragment of F , if every formula of G is a formula of F (which

will be denoted as G � F ). The diagram, Diag(F ), of a fragment F , is the set of

equivalence classes in F ordered by `.

Let hW;�i be an ordered set (more traditionally: a partially ordered set or poset).

A subset X � W will be called a closed subset of W if for all v and w in W , v 2 X

and v � w implies w 2 X. The set of closed subsets ofW will be denoted by P

�

(W ).

The Kripke model theory used here is fairly standard and can be found, for

example, in [Benthem 83]. A Kripke frame is a tuple hW;Ri, with a domain W (the

set of worlds or nodes) and R � W

2

a binary relation on W . The relation R is called

an accessibility relation. If the accessibility relation is known to be irre
exive, we

will often use < for R. If R is re
exive, we will use � and l < k (or k > l) will be

used as a shorthand for l � k and l 6= k. lRk will sometimes also be written as k

�

Rl.

If k and l are nodes in W and kRl, then l is called a successor of k and k is called

a predecessor of l. A node l is a direct successor of k, kR

1

l (or k <

1

l), if k 6= l and

for all m such that kRm and mRl either m = k or m = l. A node k is the root of a

Kripke model K if k is the only node in K that has at most itself as a predecessor.

A node k is a terminal node if k has at most itself as a successor. So a terminal node

has only itself as a successor or no successors at all.

A Kripke model K = hW;R; atomi is a Kripke frame hW;Ri with a valuation

atom, mapping nodes ofW to sets of propositional variables. As usual we will de�ne

k 
 �, the forcing of a formula � by a node k in a Kripke model K.

The Kripke models de�ned above will be used in (classical) modal logic. For

CpL and IpL we will de�ne special classes of Kripke models.

1.2.0.1. Definition. Let K = hW;R; atomi be a Kripke model.

K is a CpL Kripke model if R is the identity relation.

K is an intuitionistic Kripke model IpL Kripke model for short) if

1. R is re
exive, transitive and anti-symmetric;

2. atom is order preserving.

We will use atom

n

for the restriction of atom to fp

1

; : : : ; p

n

g (nowhere a q 62

fp

1

; : : : ; p

n

g is forced). Note that K = hW;R; atom

n

i is again a Kripke model,

which will be called an n-model.
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In the sequel we will write k 2 K to express that a world k is a node of Kripke

model K, instead of the more pedantic K = hW;R; atomi and k 2 W . If K =

hW;R; atomi and V � W then L = hV;R

�

V; atom

�

V i is called a submodel. The fact

that L is a submodel of K will be written as L � K.

Let us �rst recall the truth de�nition of classical propositional logic, CpL, in

terms of Kripke semantics.

1.2.0.2. Definition. Let K = hW;R; atomi be a Kripke model and k 2 K. De�ne

k 
 �, the node k forces the formula �, inductively as:

� k 
 p , p 2 atom(k) (p atomic);

� k 
  ^ � , k 
  and k 
 �;

� k 
  _ � , k 
  or k 
 �;

� k 
  !� , k 1  or k 
 �;

� k 
 : , k 1  (i.e not k 
  ).

We will say that K models � (K 
 �) (or � holds in K) if for all k 2 K it is true

that k 
 �.

To obtain the Kripke semantics for modal logic we need to add rules for the modal

operators to the rules de�ned for CpL.

1.2.0.3. Definition. Let K = hW;R; atomi be a Kripke model and k 2 K.

� k 


2

 , 8l 2 K(if kRl then l 
  );

� k 
 } , 9l 2 K(kRl and l 
  );

Again K models � (K 
 �) (or � holds in K) if for all k 2 K it is true that k 
 �.

Next we de�ne the forcing relation on intuitionistic Kripke models. Note that in

the Kripke semantics of IpL implication and negation have non-local behaviour, like

the modal operators.

1.2.0.4. Definition. Let K = hW;R; atomi be an intuitionistic Kripke model and

let k 2 K. De�ne k 
 �, inductively as:

� k 
 p , p 2 atom(k) (p atomic);

� k 
  ^ � , k 
  and k 
 �;

� k 
  _ � , k 
  or k 
 �;

� k 
  !� , 8l 2 K(if kRl then l 1  or l 
 �);

� k 
 : , 8l 2 K(if kRl then l 1  ).

And as above, K models � (K 
 �) (or � holds in K) if for all k 2 K it is true that

k 
 �.

Let M be a class of Kripke models. A formula  is a local M-consequence of a

formula �, � j=

M

 , if for every K 2 M and every k 2 K such that k 
 � it is true

that k 
  . A formula  is a global M-consequence of a formula �, � 


�

M

 , if for

every K 2 M such that K 
 � it is true that K 
  .

A propositional logic L is said to be sound for M if for all L-formulas � and  :

� `

L

 implies � j=

M

 . L is said to be complete for M, if for all L-formulas � and
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 such that � j=

M

 it is true that � `

L

 . If we restrict our attention to formulas in

a logic L with all atomic subformulas in the set fp

1

; : : : ; p

n

g, we obtain the fragment

L

n

. If L is sound and complete for a class of Kripke models M, one can, usually

with almost the same proof, obtain also a theorem stating that L

n

is sound and

complete for the n-models in M (i.e. L is n-complete for M). The following well

known soundness and completeness theorems are stated here as facts

3

.

1.2.0.5. Facts.

1. K is sound and complete for the class of �nite Kripke models.

2. CpL is sound and complete for the class of �nite CpL Kripke models.

3. IpL is sound and complete for the class of �nite IpL Kripke models.

For the proofs of these facts we refer to [HC 84] and [TD 88].

If L � K then L is a generated submodel of K if the domain of L is a closed

subset of K. As a notation for the generated submodel above a node we will use

"k = fl j kRlg. For the smallest generated submodel including node k, we will use

the notation "k = fl j kRl or l = kg. If the accessibility relation is known to be

re
exive, then of course "k = "k for all nodes k 2 K. Occasionally we will use #k

for the set of nodes below node k, hence #k = fl j lRkg.

1.2.0.6. Definition. Let K be a Kripke model. The nodes k

1

; : : : ; k

n

2 K form a

cycle in K of length n if k

n

Rk

1

and 1 � i < n implies k

i

Rk

i+1

.

K is called anticyclic if K contains no cycles of length more than 1.

In a �nite anticyclic Kripke model K, we de�ne the depth of a node k 2 K as usual.

1.2.0.7. Definition. If K is a �nite anticyclic Kripke model and k is a node of K,

then �(k), the depth of k is de�ned as

�(k) =

(

0 if kRl implies k = l

maxf�(l) j l 6= k and kRlg + 1 otherwise.

Most of the models in this thesis will be Kripke models. The next de�nition however

introduces a more abstract notion of model. This allows us to call a �nite repre-

sentation of a fragment a model even if it is not a Kripke model. As we will see in

Chapter 3, not all exact models are exact Kripke models.

3

If we designate a proposition as a fact, we will not give a proof, either because it can be found

elsewhere, or because it is rather trivial.
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1.2.0.8. Definition. A structure M = hW;�; !i is called a model for fragment F

if hW;�i is an ordered set and ! : F 7! P

�

(W ), such that for all formulas �;  2 F :

� `  ) !(�) � !( ):

M is called a classical model if � is the identity relation (and hence all subsets

of W are closed: P

�

(W ) = P(W )).

A model M is complete for F if for all � and  in F

!(�) � !( ) ) � `  :

A model M is exact for F if M is complete for F and ! is surjective.

Note that the de�nition the valuation of these abstract models does not require

recursion on the length of the formula �. The valuation ! may be any kind of

mapping from formulas into closed subsets of W , as long as ! is monotone in the

order of derivability.

A Kripke model corresponds to a model hW;�; !i in the sense of the de�nition

above. In classical models the relation � will be the identity, and in intuitionistic

models � coincides with R. In both cases the function [[�]] = fk 2 K j k 
 �g will

map formulas onto (closed) subsets of K, in such a way, that � `  ) [[�]] � [[ ]].

Suppose M = hW;�; !i is a model for fragment F . For w 2 W and � 2 F we

de�ne w 
 �, in a natural way, by

w 
 � , w 2 !(�):

Obviously if � `  and w 
 � we may infer that w 
  .

This de�nition includes models with W � F , � the restriction of a, the converse

of `, to W and ! de�ned as !(�) = f 2 W j  ` �g.

Note that if M = hW;�; !i is an exact model of fragment F , then

hP

�

(W );�i

�

=

Diag(F ):

As it is our intention to use Kripke semantics as a general framework for the

semantics of CpL, IpL as well as modal logics, it may be worthwhile to de�ne

forcing of a formula by a node in a Kripke model with respect to a general language

containing the languages of these logics.

For example, in our computer programs for calculating diagrams of fragments

from exact models there is only a small di�erence between modal logic and intu-

itionistic logic, as will be pointed out in Chapter 2. The rules for calculating the set

of worlds in the exact model that force a certain formula � can easily be explained

using the generalized language and its Kripke semantics.

This generalized language can be de�ned as a language of propositional modal

logic, with the connectives };�;^;_;) and constants ? and >.

The de�nition of k 
 �, a node k forcing a formula �, is as de�nition 1.2.0.2 and

1.2.0.3 for };^ and _. The de�nition below of forcing for � and ) reveals that �

is the classical negation and ) the intuitionistic implication:
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1.2.0.9. Definition.

1. k 
  ) � , 8l 2 K(if kRl then l 1  or l 
 �);

2. k 
�  , k 1  ;

where k 1  is shorthand for not k 
  .

We can turn our generalized language into the language of classical modal propo-

sitional logic, by removing ), de�ning : as � and de�ning �! and

2

as usual

as :� _  and :}:. For the language of CpL we have to remove } and

2

from

the language of classical modal logic. Likewise we can de�ne the language of IpL

by removing } and � from the generalized language, de�ning ! as ) and de�ning

:� = �!?.





Chapter 2

Semantic Types and Exact Models

2.1 Introduction

In this chapter we will introduce the notion of the semantic type of a world in a

Kripke model and explain the relation between semantic types, type formulas and

exact models. Within this framework we will restate some proofs of related classical

theorems about CpL, K and IpL. In the next chapters we will use semantic types

to obtain exact models of �nite fragments of IpL and calculate axioms of interpreted

theories of provability logic.

A semantic type, in some fragment F of modal or intuitionistic propositional

logic, is an abstract representation of a node in a Kripke model. The idea is that the

semantic type of a node k in a Kripke model contains exactly the information that

determine which formulas are forced in k, i.e. if a node l has the same semantic type

as k in F , then k and l force the same formulas in F . We will write Th

F

(k) for the

F -theory of k, de�ned by Th

F

(k) = f� 2 F j k 
 �g. In analogy to the situation in

model theory, cf. [CK 73], Th

F

(k) could be called the type of k (in the language of F ).

If F is �nite and closed under ^, there is formula �

F

(k), unique up to equivalence,

which is a conjunction of representatives of every equivalence class in Th

F

(k). Such

a formula �

F

(k) is an axiom for Th

F

(k) and is written as �

F

(k) �

V

Th

F

(k). Here

we will adopt the terminology of modal logic and call the formula �

F

(k) (or more

precisely its equivalence class) the F -type of k (or the type formula of k in F ). In

modal logic (especially in provability logic) types are also known as the character of

k (in [Bernardi 75] and [GG 90] or as an atom in [Bellissima 84]). The term type was

used in [Shavrukov 93].

For the relation between types and exact Kripke models, recall de�nition 1.2.0.8.

A Kripke model K is an exact Kripke model for a fragment F if K has the following

properties:

1. K is F -complete, i.e. for all �;  2 F :

� `  , [[�]] � [[ ]]:

15
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2. Every closed subset of K is F -de�nable, i.e. for all closed X � K there is a

� 2 F such that:

X = [[�]]:

Observe that by property 2, for every k in an exact Kripke model there is a type

formula for k in F .

For a �nite representation of the fragment F , the types in the exact Kripke

model of F would be su�cient. Recall the generalized notion of model from de�ni-

tion 1.2.0.8. The set of types T (ordered by derivability) is an exact model if we add

the mapping !, de�ned by

!(�) = f 2 T j  ` �g:

If a fragment F has an exact model, the type formulas in an exact model for F can

often be derived from some normal form for the formulas in F . But such an exact

model with a set of formulas as its universe, is less useful for our purpose than an

exact Kripke model. In the calculation of !(�) in a general exact model, one uses

the derivability relation, instead of deciding the derivability of  from � by model

checking, as in an exact Kripke model.

On the other hand, the general exact model almost gives us an exact Kripke

model. We only have to construct a Kripke model K such that for each type � in

the general exact model there is a k 2 K such that � is the type of k (and such that

this mapping of types on worlds of K is 1{1). The core question for this step in the

construction of an exact Kripke model is: `which kind of world does realize type �'.

The answer to this question is a semantic equivalent to the type formula of a

node k, and will be called the semantic type of k in F . The semantic type is an

abstract representation of the node, in such a way that identical semantic types in

F are equivalent in F (i.e. have the same F -theory).

To represent the essential information about a node k in a Kripke model we have

to know:

a. which atoms hold in k;

b. what happens in the successor nodes.

If we use �

F

(k) for the semantic type of k in K, the general format of a semantic

type is

�

F

(k) = hatom

n

(k); T i

where T is a set of semantic types of successors

1

of k in K.

Of course, the semantic types of F have to ful�ll the condition:

�

F

(k) = �

F

(l) , Th

F

(k) = Th

F

(l)

1

As we will see in Chapter 3, sometimes the information about a subset of the successors of k is

su�cient.
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for all k 2 K and l 2 L where K and L are Kripke models used in the semantics of

F . If there is a type formula for each node k in F , a �

F

(k) 2 F that is an axiom

2

for Th

F

(k), the condition above is equivalent to:

�

F

(k) = �

F

(l) , �

F

(k) = �

F

(l):

Of course the distinction between the semantic types in F and the �

F

(k) is just

a matter of point of view.

Note that with the restrictions that apply to the fragment F , regarding the atoms

used and the applicability of connectives, the information we need in the semantic

type of k in K need not be a full description of the submodel of K generated by

k. Otherwise we would not have gained much in switching from Kripke models to

semantic types.

The approach in this thesis to the construction of the exact model of a fragment

F will be to �nd a minimal set of semantic types that is complete for F . First we

will de�ne what kind of objects the semantic types for F are (in some class of Kripke

models). Next we will de�ne a set T of these semantic types such that for each �

and  in F with � 0  there is a type t 2 T available, such that if for a node k in a

Kripke model K, �

F

(k) = t, then k 
 � and k 1  .

If we prove T to be minimal, the construction of our exact Kripke model is almost

complete because the semantic types usually carry in them a natural accessibility

relation. However in modal logic this order relation is not unique, the semantic types

may be ordered in various alternative ways to obtain an exact Kripke model.

Turning to intuitionistic propositional logic, a fragment F will have a �nite exact

model i� Diag(F ) is isomorphic to a set of closed subsets ordered by inclusion, as

was pointed out in the preliminary section of the introduction. Hence, Diag(F ) is a

�nite distributive lattice. Let us use ��  for the representative of the equivalence

class in Diag(F ) that is the join of the classes represented by � and  . Note that if

_ is one of the connectives of F then ��  � � _  .

2.1.0.1. Definition. An equivalence class � will be called join-irreducible

(orirreducible for short) in Diag(F ) if � is not the bottom element of Diag(F ) and

for all  ; � 2 F we have

� `  � � ) � `  or � ` �:

Let us denote the set of join-irreducible classes in Diag(F ) as I(F ). Then I(F )

may be regarded as an ordered set (with a, the reverse of `, as its order relation

3

)

and hence the set of closed subsets P

�

(I(F )) is de�ned. According to Birkho�'s

representation theoremDiag(F ) will be isomorphic to P

�

(I(F )) ordered by inclusion.

2

As is the case if F is �nite.

3

This is more convenient in case we want to turn I(F ) into a Kripke model.
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2.1.0.2. Theorem. (Birkho�) Any �nite distributive lattice is isomorphic to the

lattice of the closed sets of its join-irreducible elements.

Proof. A proof can be found in [DP 90]. a

Hence I(F ) will be a set of types that can be used for an exact model. However in

the intuitionistic case the order of the exact model, given by a, will in general not be

the identity relation. (In classical logic, where we deal with Boolean algebras instead

of Heyting algebras, the di�erent atoms of the algebra exclude each other: if � and

 are irreducible, then � `  ) � �  .)

In intuitionistic propositional logic the general notion of exact model is closer

to that of an exact Kripke model than in classical modal logic. It is not di�cult

to turn an exact model for F into a Kripke model by stipulating the valuation

atom(�) = fp atomic j � ` pg.

However, these notions do not coincide, as we cannot prove in general for the

resulting Kripke model that the node corresponding to type � does indeed force the

formula �. As we will see in Chapter 3 the fragment [_;:]

n

has for each n an exact

model, which is, for n > 1, not an exact Kripke model.

As the order in an exact Kripke model of IpL is induced by the derivability

relation, the exact Kripke model of a fragment F , if it exists, is unique (that is,

isomorphic to the set of irreducibles I(F ) ordered by derivability).

If, as in the case of the [_;:]

n

fragments, an exact Kripke model is out of reach,

but we do have a minimal complete set of semantic types for the fragment F at hand,

we can at least try to �nd a minimal �nite model realizing all of the types in this

set. The resulting model is of course complete for the fragment F and will be called

a universal model for F .

2.2 Preliminaries

In this section we will introduce some useful notations for semantic types, introduce

the important notion of bisimulation between Kripke models and de�ne a layered

variant of this relation. These layered bisimulations are related to the model equiva-

lence in [Fine 74] and play a major rôle in the semantics of fragments with restricted

nesting of modal operators or restricted nesting of implication.

We will take the liberty of using R for the accessibility relation even in those

cases where we are dealing with more than one model. Usually it is clear from the

context which model the relation belongs to.

2.2.0.1. Definition. A relation S between two Kripke models K and L is said to

be a bisimulation i� for all k 2 K and l 2 L such that kSl:

1. atom(k) = atom(l);

2. 8k

0

�

Rk 9l

0

�

Rl (k

0

Sl

0

);

3. 8l

0

�

Rl 9k

0

�

Rk (k

0

Sl

0

).
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A bisimulation relation which is a function is called a p-morphism. If a p-morphism

from K to L is surjective, it is often called a reduction from K to L (also known as

pseudo-epimorphism).

We will use the notation k

-

�

�

�

l to denote that k and l bisimulate each other, that is,

there exists a non-empty bisimulation S such that kSl. That

-

�

�

�

is an equivalence

relation between nodes in Kripke models is obvious.

2.2.0.2. Theorem. (Bisimulation Theorem) If k

-

�

�

�

l and k 
 � then l 
 �.

Proof. For propositional formulas �, both in modal logic and intuitionistic logic, the

theorem is easily proved by induction on the length of �. Note that we could use

the general language from the general preliminaries to prove this theorem for both

logics at once. a

An n-bisimulation is a bisimulation between two n-models (and hence with the �rst

condition of de�nition 2.2.0.1 changed into: atom

n

(k) = atom

n

(l)). If k and l n-

bisimulate each other we will write k

-

�

�

�

n

l.

Spelling out the proof of the bisimulation theorem will reveal that it can easily

be transformed into a proof that if all propositional variables of � are in fp

1

; : : : ; p

n

g,

then k

-

�

�

�

n

l ) k 
 � then l 
 �.

Layered bisimulations also known as bounded bisimulations or n;m-bisimulations,

will be de�ned by induction on m.

2.2.0.3. Definition. A relation S between two Kripke models K and L is said to

be an n; 0-bisimulation i� for all k 2 K and l 2 L such that kSl it is true that

atom

n

(k) = atom

n

(l).

A relation S between two Kripke models K and L is said to be an n;m + 1-

bisimulation i� there is a n;m-bisimulation S

0

such that, for all k 2 K and l 2 L

with kSl,

1. atom

n

(k) = atom

n

(l);

2. 8k

0

�

Rk 9l

0

�

Rl (k

0

S

0

l

0

);

3. 8l

0

�

R l9k

0

�

Rk (k

0

S

0

l)

0

.

We will write k

-

�

�

�

n

m

l if there exists an n;m-bisimulation between k and l.

In the section on modal logic in this chapter, we will prove an n;m-bisimulation

theorem for fragments of modal logic with atomic formulas in fp

1

; : : : ; p

n

g and modal

degree less than or equal to m. In Chapter 4 a similar theorem is proved for IpL

n

m

,

the fragment with atomic formulas in fp

1

; : : : ; p

n

g and the nesting of implication

bounded by m. Fragments with this kind of restriction on the nesting of one of the

connectives are called layered fragments.

It will be clear from these de�nitions that k

-

�

�

�

l implies k

-

�

�

�

n

l, which implies

k

-

�

�

�

n

m

l for each m. Our notation may suggest that k

-

�

�

�

n

l if 8m (k

-

�

�

�

n

m

l). In general

this is not true, as the following counter-example shows.
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2.2.0.4. Example. In the Kripke model below the accessibility relation is irre
exive.

At the right hand side of l there is a copy of the natural numbers in descending order.

No atoms are forced in the nodes of this model. We have k

-

�

�

�

n

m

l for each n and m,

but not k

-

�

�

�

n

l.

r r- -

k l

r r r r r r- - - - - -

0123

: : :

2. Figure. A counter-example against 8m (k

-

�

�

�

n

m

l) ) k

-

�

�

�

n

l.

In case k and l are nodes in �nite Kripke models, 8m (k

-

�

�

�

n

m

l) does imply k

-

�

�

�

n

l.

2.2.0.5. Definition. A Kripke model K is called locally �nite if for every node

k 2 K the set "k = fl 2 K j kRlg is �nite.

2.2.0.6. Theorem. For nodes k and l in locally �nite Kripke models:

8m (k

-

�

�

�

n

m

l) , k

-

�

�

�

n

l:

Proof. Assume k

-

�

�

�

n

m

l for all m. We will prove that the relation S between the

(�nite) models of k and l de�ned as k

0

Sl

0

, 8m(k

0

-

�

�

�

n

m

l

0

) is a bisimulation.

That atom

n

(k) = atom

n

(l), is an immediate consequence of the de�nition of

n;m-bisimulation. As the other two conditions for a bisimulation are symmetric, we

only prove the �rst.

Suppose kRk

0

and let l

1

; : : : ; l

r

be an enumeration of the successors of l. We will

prove that there is an i � r such that k

0

-

�

�

�

n

m

l

i

for all m.

For every i � r such that not 8m (k

0

-

�

�

�

n

m

l

i

) there is a least m, say m

i

, with not

k

0

-

�

�

�

n

m

i

l

i

.

If not 9l

0

�

Rl 8m (k

0

-

�

�

�

n

m

l

0

), then letM = maxfm

i

j m

i

= minfm j not k

0

-

�

�

�

n

m

l

i

gg.

Hence for no l

i

it will be true that k

0

-

�

�

�

n

M

l

i

, for it is easy to prove from the de�nition

of n;m-bisimulation, that k

0

-

�

�

�

n

M

l

i

would imply k

0

-

�

�

�

n

m

l

i

for all m �M .

By assumption we know k

-

�

�

�

n

M+1

l and hence for some l

0

�

Rl it should be true

that k

0

-

�

�

�

n

M

l

0

. From this contradiction we infer that for some l

i

�

Rl it is true that

8m (k

0

-

�

�

�

n

m

l

i

). a

2.2.0.7. Corollary. For nodes k and l in �nite Kripke models:

8m (k

-

�

�

�

n

m

l) , k

-

�

�

�

n

l:

As stated in the introduction of this chapter, the semantic type of a node k in a

Kripke model K will in general be of the form �(k) = hatom(k); T i, where T a set

of types of successors of k. To point out the separate parts of a type we also de�ne

the projections j

0

(t) and j

1

(t) for a tuple t.
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2.2.0.8. Definition. Let t be a tuple, t = hP;Qi. De�ne j

0

(t) = P and j

1

(t) = Q.

In layered fragments (with restricted nesting of modal operators or implication) we

will introduce hierarchies of types, fT

m

j m 2 INg. If t 2 T

0

then j

1

(t) = ; holds,

while for t 2 T

m+1

we will have j

1

(t) � T

m

.

If �

F

(k) = t, then k is said to realize the type t.

2.3 Types in CpL

The main point of introducing (semantic) types and exact models in classical propo-

sitional logic, CpL, is to illustrate the concepts de�ned in the introduction of this

chapter. Some facts about CpL and its types that appear in this section are also

useful in the next sections and chapters.

Recall that CpL

n

is the fragment of CpL formulas of which the atomic sub-

formulas belong to the set fp

1

; : : : ; p

n

g. By the n-completeness theorem a CpL

n

formula � is derivable in CpL i� � is valid in all �nite n-models K.

2.3.0.1. Definition. Let Q � fp

1

; : : : ; p

n

g be a �nite set of atoms. De�ne:

�

n

Q

=

^

Q ^

^

f:q j q 2 fp

1

; : : : ; p

n

g nQg:

The de�nition of the formulas �

n

Q

will also be useful in later chapters.

2.3.0.2. Definition. The type �

n

CpL

(k) of a world k in an n-model K is the for-

mula �

n

atom

n

(k)

.

Only in this section we will write �

n

(k) for �

n

CpL

(k). In other fragments where the

CpL type of a node is used it will be necessary to distinguish the type �

n

CpL

(k) from

the type �

n

(k) in the fragment at hand.

If k is a world in a CpL model, let us write Th

n

(k) for the CpL

n

theory of k,

de�ned by Th

n

(k) = f� 2 CpL

n

j k 
 �g.

2.3.0.3. Lemma. Let k be a node in an n-model and let �

n

(k) be the type of k in

CpL

n

. Then

1. � is an irreducible formula in CpL

n

(see de�nition 2.1.0.1) i� for all formulas

 2 CpL

n

:

� 0  , � ` : :

2. �

n

(k) is irreducible, i.e.:

8 ; � 2 CpL

n

(�

n

(k) `  _ � ) �

n

(k) `  or �

n

(k) ` �):

3. if a CpL

n

formula � is irreducible (in CpL

n

), then � is equivalent to a type

of CpL

n

;

4. the Lindenbaum algebra of CpL

n

is a �nite Boolean algebra with the types of

CpL

n

as its atoms;
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5. if l is a node in an n-model K, then

l 
 �

n

(k) , atom(l) = atom(k):

6. �

n

(k) is an axiom for Th

n

(k).

Proof. 1: Let � 2 CpL

n

be irreducible. Then from � `  _ : infer that � `  

or � ` : . For the other direction, let � `  _ �. If � 0  , then by assumption,

� ` : . Hence we would have � ` �.

2: With a simple induction on the length of formula  2 CpL

n

prove that

�

n

(k) `  or �

n

(k) ` : .

3: Let � 2 CpL

n

be irreducible. According to de�nition 2.1.0.1 � 1 ?. Hence, for

some node k in a CpL n-model, we have k 
 �. Now note that obviously k 
 �

n

(k),

hence �

n

(k) 0 :� and � 0 :�

n

(k). As both � and �

n

(k) are irreducible, this implies

� � �

n

(k).

4: To prove �

n

(k) to be an atom in Diag(CpL

n

), assume that � 2 CpL

n

, � 6� ?

and � ` �

n

(k). As �

n

(k) is irreducible, use 1 to infer from �

n

(k) 0 :� that �

n

(k) � �.

5: By de�nition, if atom

n

(k) = atom

n

(l), then �

n

(k) = �

n

(l). For the other

direction, assume that l 
 �

n

(k). Then both �

n

(k) 0 :�

n

(l) and �

n

(l) 0 :�

n

(k).

From the irreducibility of �

n

(k) and �

n

(l) infer, with 2, that �

n

(k) � �

n

(l) and

hence, by de�nition, atom

n

(k) = atom

n

(l).

6: As �

n

(k) is irreducible, use 1 to prove that k 
 � implies �

n

(k) ` �. On the

other hand, as k 
 �

n

(k), from �

n

(k) ` � infer that � 2 Th

n

(k). a

2.3.0.4. Corollary. Every formula in CpL

n

is equivalent to a disjunction of ir-

reducible formulas in Cpl

n

.

Proof. Obvious, as Diag(CpL

n

) is a Boolean algebra with the irreducible formulas

as its atoms. a

2.3.0.5. Theorem. Let A

n

be the set of types (irreducible formulas) of CpL

n

. Then

A

n

is an exact model of CpL

n

.

Proof. As every formula in CpL

n

is equivalent to a disjunction of irreducible for-

mulas, according to corollary 2.3.0.4, there is a unique correspondence between the

subsets of A

n

and the equivalence classes of CpL

n

. a

According to lemma 2.3.0.3, the type of a world k in an n-model is determined by

the set atom

n

(k).

2.3.0.6. Definition. Let k be a node in a CpL model. Then �

n

(k), the semantic

type of k in CpL

n

is de�ned by

�

n

(k) = hatom

n

(k); ;i:
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The following fact justi�es our choice for the de�nition of semantic type in

CpL

n

. It is a simple consequence of the de�nition of semantic type in CpL

n

and

lemma 2.3.0.3.

2.3.0.7. Fact. Let k and l be nodes in CpL models. Then

�

n

(k) = �

n

(l) , �

n

(k) � �

n

(l) , Th

n

(k) = Th

n

(l):

For K a CpL model, let K

�

be the set of n-types in K. K

�

may be treated as a CpL

model, with atom

n

(�

n

(k)) = atom

n

(k). According to the facts above the models K

and K

�

force the same CpL

n

formulas. Of course the application of this reduction

to K

�

would yield K

�

itself and hence we call K

�

n-irreducible.

Let Exm(CpL

n

) be the set of all CpL

n

types, i.e.

Exm(CpL

n

) = fhQ; ;i j Q � fp

1

; : : : ; p

n

gg:

To make Exm(CpL

n

) into a CpL

n

Kripke model, use j

1

as the atom

n

. If we use k

Q

to denote the world in Exm(CpL

n

) corresponding to the type hQ; ;i, then obviously

atom

n

(k

Q

) = Q.

Clearly every k

Q

corresponds to the type �

n

Q

de�ned above. Note that all subsets

of Exm(CpL

n

) are closed, as the accessibility relation is empty. Every subset X �

Exm(CpL

n

) corresponds to the disjunction of the �

n

Q

such that k

Q

2 X, which

proves that Exm(CpL

n

) is an exact Kripke model of CpL

n

.

The following facts summarize these conclusions.

2.3.0.8. Facts. Let Exm(CpL

n

) be the model de�ned above.

1. Exm(CpL

n

) is (isomorphic to) the exact model of CpL

n

;

2. Exm(CpL

n

) is an exact Kripke model of CpL

n

;

3. if K a CpL n-model that is an exact Kripke model of CpL

n

, then K is iso-

morphic to Exm(CpL

n

);

4. Exm(CpL

n

) has 2

n

nodes and the Lindenbaum algebra of CpL

n

has 2

2

n

equiv-

alence classes.

u u

u u

p p q

q

3. Figure. The exact Kripke model of CpL

2

.

If K has the same set of worlds as Exm(CpL

n

), but a non-empty accessibility

relation (hence K is not a CpL Kripke model), then K is a universal model for

CpL

n

. As every subset of nodes in K corresponds uniquely to an equivalence class

in CpL

n

, K is also an exact Kripke model (where the set of `closed subsets' in the
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de�nition of exact model is taken to be the set of all subsets

4

). Hence there are (up

to isomorphism) 2

2

2n

exact Kripke models of CpL

n

.

Note that Exm(CpL

n

) would not have been a model if we had restricted the

de�nition of a CpL

n

model to single worlds k (or singleton sets), as is usual.

2.4 Types in modal logic

In this section we will introduce fragments of modal logic with restricted nesting of

the box operator. Our logical framework will be the system K, the rules and axioms

of which were given in the general preliminary section of the introduction.

Recall the standard de�nition of modal depth of a formula, also known as modal

degree, which we here prefer to call the level of box nesting in analogy with the level

of nesting of the implication in IpL that will be used later on.

2.4.0.1. Definition. The level of box nesting of a K formula is denoted by the

inductively de�ned function �(�):

p atom: �(p) = 0;

� =  � �: �(�) = maxf�( ); �(�)g if � 2 f^;_;!g;

� = : : �(�) = �( );

� =

2

 : �(�) = �( ) + 1.

The fragment K

n

m

will be the fragment with fp

1

; : : : ; p

n

g as its set of propositional

variables and the nesting of the box operator restricted by the condition �(�) � m.

2.4.0.2. Fact. The Lindenbaum algebra of K

n

m

is a �nite Boolean algebra and the

Lindenbaum algebra of K

n

is an in�nite Boolean algebra.

If L is an extension of K, that is, if L can be derived by adding axioms to K and

L

n

m

is de�ned like K

n

m

above, the above fact is also true for L.

As �nite Boolean algebras are atomic, both the diagrams of K

n

m

and of L

n

m

are

generated by their atoms. As in the case of CpL, treated in the previous section,

these atoms can be proved to be irreducible (see de�nition 2.1.0.1).

Clearly the set of irreducible formulas (or their equivalence classes to be precise)

in K

n

m

is an exact model according to de�nition 1.2.0.8. Every formula in K

n

m

is

equivalent to a disjunction of irreducible formulas and in this way we have a 1{1

correspondence between formulas and sets of irreducible formulas.

The Lindenbaum algebra of K

n

is also an atomic Boolean algebra, but this is

not the case for the L

n

of arbitrary extensions L of K (see [Bellissima 84]). The

set of irreducible formulas in K

n

is not an exact model, as there are in�nite sets of

irreducibles that do not correspond to a formula in K

n

.

De�ne Th

n

m

(k) = f 2 K

n

m

j k 
  g. From the fact that K

n

m

is �nite, we may

conclude that Th

n

m

(k) is a �nite theory and hence we can de�ne a formula �

n

m

(k) in

K

n

m

as �

n

m

(k) =

V

Th

n

m

(k).

4

Recall that in classical (modal) Kripke models the order of the general model of de�nition 1.2.0.8

has nothing to do with the accessibility relation in the Kripke model.
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This formula �

n

m

(k) will be recognized as the type of k in K

n

m

and for every l in

a Kripke model L we have l 
 �

n

m

(k) i� Th

n

m

(k) = Th

n

m

(l).

We will give a more explicit de�nition of the types of K

n

m

in the sequel. First

we try to �nd the semantic types in K

n

m

and a characterization of the exact Kripke

model of K

n

m

. To do so we will rephrase a theorem in [Fine 74] using the layered

bisimulations introduced in the general preliminaries.

2.4.0.3. Definition. Nodes k and l in Kripke models are called n;m-equivalent,

k �

n

m

l, if for all � 2 K

n

m

k 
 � , l 
 �

(and hence Th

n

m

(k) = Th

n

m

(l)).

2.4.0.4. Theorem. Nodes k and l, in Kripke models K and L respectively, are

n;m-equivalent i� k

-

�

�

�

n

m

l.

Proof. By induction on m. For m = 0 note that k

-

�

�

�

n

0

l i� atom

n

(k) = atom

n

(l),

and that Th

n

0

(k) is the set of CpL

n

formulas forced by k. Hence also: Th

n

0

(k) =

Th

n

0

(l) , atom

n

(k) = atom

n

(l).

Now assume the theorem proved for m. Let k

-

�

�

�

n

m+1

l. We will prove k 
 � to

be equivalent with l 
 � for all � 2 K

n

m+1

by showing k 
 � implies l 
 �. We use

induction on the length of �.

The cases in which � is atomic, a conjunction or a negation are obvious. So let

� =

2

 and k 


2

 . Note that as � 2 K

n

m+1

we know that  2 K

n

m

. Let l

1

2 L be

such that lRl

1

. From k

-

�

�

�

n

m+1

l we infer that there is a k

1

2 K such that kRk

1

and

k

1

-

�

�

�

n

m

l

1

. As k

1


  , by our �rst induction hypothesis also l

1


  . Which proves

l 


2

 .

For the other direction, assume k �

n

m+1

l and kRk

1

. We have to prove the

existence of an l

1

�

Rl such that l

1

-

�

�

�

n

m

k

1

, which, according to our induction hypothesis,

is equivalent to l

1

�

n

m

k

1

.

Now let �

n

m

(k

1

) be the type of k

1

in K

n

m

(as pointed out above, �

n

m

(k

1

) =

V

Th

n

m

(k

1

)). As k 
 }�

n

m

(k

1

) and k �

n

m+1

l we will have also l 
 }�

n

m

(k

1

) and

for some l

1

�

Rl it must be true that l

1


 �

n

m

(k

1

). As observed above this implies that

k

1

�

n

m

l

1

.

By interchanging the rôles of k and l the n;m-bisimulation condition in the other

direction is proved in the same way. a

In [Fine 74] Fine only proved one direction of this theorem, i.e.

k

-

�

�

�

n

m

l ) Th

n

m

(k) = Th

n

m

(l):

Fine did not use layered bisimulation, but m-equivalence, a notion that is easily

proved equivalent with our notion of n;m-bisimulation

5

. The analogy with results of

5

That is k and l are m-equivalent according to the de�nition in [Fine 74], i� k and l n;m-

bisimulate each other.
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Fra��ss�e and Ehrenfeucht for �rst order theories, that was mentioned in Fine's article,

will be taken up in the last section of this chapter.

As a simple corollary of theorem 2.4.0.4, for each n and m k

-

�

�

�

n

m

l will be equiva-

lent to k �

n

m

l (or Th

n

m

(k) = Th

n

m

(l)). In general 8m(k �

n

m

l) does not imply k

-

�

�

�

n

l,

as example 2.2.0.4 provides us with a counter-example.

The semantic types that we will de�ne for K

n

m

are quite natural characterizations

of the equivalence classes of the n;m-bisimulations.

2.4.0.5. Definition. Let k be a node in a �nite n-model. Then the semantic n;m-

type of k (in K), �

n

m

(k), is de�ned by:

� �

n

0

(k) = hatom

n

(k); ; i;

� �

n

m+1

(k) = hatom

n

(k); f �

n

m

(l) j kRlgi.

The set of all semantic n;m-types �

n

m

(k) is written T

n

m

.

This de�nition is justi�ed by the following lemma.

2.4.0.6. Lemma. If k; l are nodes in �nite Kripke models then

�

n

m

(k) = �

n

m

(l) , k �

n

m

l:

Proof. We will apply theorem 2.4.0.4 and prove �

n

m

(k) = �

n

m

(l) , k

-

�

�

�

n

m

l. We

will proceed by introducing a relation �

n

m

between K and L, de�ned as k �

n

m

l , �

n

m

(k) = �

n

m

(l), and prove �

n

m

to be an n;m-bisimulation, using induction

on m.

By the de�nition of the semantic n;m-types, k �

n

m

l implies atom

n

(k) =

atom

n

(l). This proves the case that m = 0 and the �rst condition for an n;m-

bisimulation in general. To prove the other conditions for an n;m + 1-bisimulation,

assume k �

n

m+1

l and kRk

0

. From �

n

m+1

(k) = �

n

m+1

(l) it follows that �

n

m

(k

0

) 2

j

1

(�

n

m+1

(l)) and hence there is an l

0

�

Rl such that �

n

m

(k

0

) = �

n

m

(l

0

). As by de�nition

�

n

m

(k

0

) = �

n

m

(l

0

) , k

0

�

n

m

l, this proves the �rst condition of n;m-bisimulation.

The second condition is proved in the same way, interchanging the rôles of k and l

and k

0

and l

0

.

For the proof of the other direction we will also use induction on m. The case

m = 0 is again trivial, so suppose k

-

�

�

�

n

m+1

l. Then obviously it will be true that

atom

n

(k) = atom

n

(l). To prove that also j

1

(�

n

m+1

(k)) = j

1

(�

n

m+1

(l)), let kRk

0

. By the

de�nition of

-

�

�

�

n

m+1

there should be an l

0

�

Rl such that k

0

-

�

�

�

n

m

l

0

. Using the induction

hypothesis, it follows that �

n

m

(k

0

) = �

n

m

(l

0

). Which proves j

1

(�

n

m+1

(k)) � j

1

(�

n

m+1

(l)).

For the other direction of the inclusion, interchange the rôles of k and l. a

In [Bellissima 84], �

n

m

(k), the K

n

m

type of k (n;m-types for short), is de�ned as

follows.

6

(Recall de�nition 2.3.0.1 for �

n

CpL

(k)).

6

This de�nition is essentially the same as that of an m; ~p-type in [Shavrukov 93].
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2.4.0.7. Definition. Let k be a node in a �nite n-model. De�ne �

n

m

(k), the K

n

m

type of k inductively as:

� �

n

0

(k) = �

n

CpL

(k);

� �

n

m+1

(k) = �

n

CpL

(k) ^

V

f}�

n

m

(l) j kRlg ^

2

W

f�

n

m

(l) j kRlg.

Let A

n

m

be the set of (equivalence classes of) n;m-types.

2.4.0.8. Fact. If k is a a node in a �nite n-model, then for all m

k 
 �

n

m

(k):

The proof of this fact is obvious.

The next lemma shows that �

n

m

(k) indeed is an axiom for Th

n

m

(k) (using theorem

2.4.0.6) and hence is a type.

2.4.0.9. Lemma. Let k and l be nodes in �nite n-models. If k 
 �

n

m

(l), then �

n

m

(k) =

�

n

m

(l).

Proof. We will use induction on m. If m = 0, then k 
 �

n

CpL

(l) implies atom

n

(k) =

atom

n

(l) and hence �

n

0

(k) = �

n

0

(l). So assume k 
 �

n

m+1

(l). Then k 
 �

n

CpL

(l) and we

may infer that atom

n

(k) = atom

n

(l). To prove that also j

1

(�

n

m+1

(k)) = j

1

(�

n

m+1

(l)),

we show j

1

(�

n

m+1

(k)) � j

1

(�

n

m+1

(l)).

Let kRr and hence �

n

m

(r) 2 j

1

(�

n

m+1

(k)). From k 
 �

n

m+1

(l), by de�nition 2.4.0.7,

infer that r 


W

f�

n

m

(s) j lRsg. So, for some s

�

Rl we have r 
 �

n

m

(s) and, by the

induction hypothesis, �

n

m

(r) = �

n

m

(s). Which proves �

n

m

(r) 2 j

1

(�

n

m+1

(l)).

To prove j

1

(�

n

m+1

(l)) � j

1

(�

n

m+1

(k)), let lRs and hence �

n

m

(s) 2 j

1

(�

n

m+1

(l)). As

k 
 �

n

m+1

(l), by de�nition 2.4.0.7, we may infer that k 
 }�

n

m

(s). Hence, for some

r

�

Rk, r 
 �

n

m

(s). By the induction hypothesis, this implies �

n

m

(r) = �

n

m

(s), which

proves �

n

(s) 2 j

1

(�

n

m+1

(k)). a

The lemmas 2.4.0.6 and 2.4.0.9 combine into:

2.4.0.10. Theorem. The set T

n

m

of semantic n;m-types corresponds exactly to the

set A

n

m

of types in K

n

m

, in the sense that:

8l 2 K( l 
 �

n

m

(k) , �

n

m

(l) = �

n

m

(k)):

Lemma 2.4.0.10 immediately leads to:

2.4.0.11. Corollary. If K is a Kripke model such that each n;m-type occurs ex-

actly once in K, then the subsets of K correspond exactly to the equivalence classes

of K

n

m

. That is, the following function [[:]] is an isomorphism:

[[�]] = fk 2K j k 
 �g:

It can be proved that such an exact model, in which each subset corresponds to a

formula and vice versa, exists for each K

n

m

.
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2.4.0.12. Theorem. For each n and m there exists an exact Kripke-model

K for K

n

m

, i.e., for each U �K, there is a formula � in L

n

m

such that

fk2K j k 
 �g=U , and K is n;m-complete, in the sense that for all

�;  2 L

n

m

; fk2K j k 
 �g = fk2K j k 
  g i� ` �$  .

Proof. We apply the so-called Henkin method to the (up to equivalence) �nite set of

formulas in K

n

m

, which is closed under taking subformulas. This gives one a Kripke-

model with the maximal consistent sets as its worlds, with �R � de�ned by: for

each

2


 2�, 
 is an element of � and � 
 p

i

by: p

i

2�. The maximal consistent sets

can be replaced by their conjunctions which are exactly the irreducible elements of

K

n

m

. So a subset of the model will correspond to a disjunction of irreducibles, i.e. an

arbitrary formula of K

n

m

. Obviously, non-equivalent formulas are forced on di�erent

subsets of the model. a

The Henkin construction above also works for fragments L

n

m

, where L is an extension

of K. The result in each case is called the canonical exact model . But the frame of

the resulting model is not necessarily a frame for the logic L.

Unlike the exact models of fragments of intuitionistic propositional logic (see

[JHR 91], [Hendriks 93]), not all the exact models of L

n

m

are necessarily isomorphic.
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4. Figure. Two exact models for K

1

1

.

The formulas in the exact models of K

1

1

:

0: :p ^

2

? 4: :p ^ }p ^

2

p

1: p ^

2

? 5: p ^ }p ^

2

p

2: :p ^ }:p ^

2

:p 6: :p ^ }p ^ }:p

3: p ^ }:p ^

2

:p 7: p ^ }p ^ }:p

The accessibility relation de�ned in a canonical exact model corresponds to the

relation between irreducible elements � and � of L

n

m

de�ned as:

�R� , �;}� 0 ?:

It is often possible to restrict this relation. For example in such a way that the Kripke

exact model belongs to a certain subclass of the class of Kripke models (the re
exive

models, well-founded models and so on). Note that in this way the completeness

theorems for K and some of its extensions can be proved (see for example [HC 84]).
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For the in�nite fragmentK

n

there is no exact model in which all subsets determine

a formula, but there is a (in�nite) model which is n-complete. We will give the

construction of such a model and call it ExK

n

. Our ExK

n

is comparable to the

n-complete model given in [Grigolia 83] and [Rybakov 89] for provability logic

7

.

2.4.0.13. Definition. ExK

n

with its R and 
 is de�ned as the union of inductively

de�ned ExK

n

m

for m2!.

� ExK

n

0

= P(fp

1

; � � � ; p

n

g), the elements of ExK

n

0

are all

R-incomparable, and Q 
 p , p 2 Q;

� ExK

n

m+1

= fhQ;Xi j Q � fp

1

; � � � ; p

n

g; X �

S

i�m

ExK

n

i

; X \ ExK

n

m

6= ;g;

hQ;XiR Y , Y 2X, and hQ;Xi 
 p , p2Q;

� ExK

n

=

S

i2!

ExK

n

i

.
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5. Figure. The model ExK

1

0

[ ExK

1

1

.

From this picture it can be calculated that ExK

1

2

will have 504 nodes.

It is obvious from the construction that each n;m-type will be realized by some

k 2ExK

n

. This ensures the n-completeness of ExK

n

.

The above de�nition is such that each node in ExK

n

i

is the root of a �nite reverse

well-founded (and hence irre
exive) Kripke model.

2.4.0.14. Fact. K is complete for �nite reverse well-founded Kripke models.

Let us use the completeness of K for �nite and reverse well-founded Kripke models

to de�ne semantic types in K.

2.4.0.15. Definition. For a node k in a �nite reverse well-founded Kripke model

de�ne the semantic type in K:

�

n

(k) = hatom

n

(k); f�

n

(l) j kRlgi:

As we are dealing with �nite reverse well-founded models we may use �(k), the depth

of node k, to show that de�nition 2.4.0.15 is sound. Obviously �

n

(k) 62 j

1

(�

n

(k)).

Observe that in ExK

n

all semantic n-types of nodes in �nite, reverse well-founded

Kripke models are realized.

The de�nition of semantic types for K

n

would not be of any use without the

following lemma, stating its relation with bisimulation.

7

Similar constructions for fragments in K4Grz and S4 may be found in [Shehtman 78].
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2.4.0.16. Lemma. If k and l are nodes in �nite, irre
exive and reverse well-founded

models, then:

�

n

(k) = �

n

(l) , k

-

�

�

�

n

l:

Proof. De�ne d = maxf�(k); �(l)g. We will proceed by induction on d. In case d = 0,

both k and l are terminal nodes, and then the lemma is trivial as both sides of the

equivalence sign are equivalent to atom

n

(k) = atom

n

(l).

So suppose d > 0. If k

-

�

�

�

n

l then trivially atom

n

(k) = atom

n

(l). To prove

j

1

(�

n

(k)) � j

1

(�

n

(l)), assume kRk

0

. As k and l bisimulate each other there is an

l

0

�

Rl such that k

0

-

�

�

�

l

0

. The maximum of the depth of k

0

and l

0

is less than d and

hence, by the induction hypothesis, �

n

(k

0

) = �

n

(l

0

). So �

n

(k

0

) 2 j

1

(�

n

(l)), which

proves j

1

(�

n

(k)) � j

1

(�

n

(l)). As the proof of j

1

(�

n

(l)) � j

1

(�

n

(k)) is similar, we may

conclude that �

n

(k) = �

n

(l).

If �

n

(k) = �

n

(l) then again trivially atom

n

(k) = atom

n

(l). Assume kRk

0

. Then

�

n

(k

0

) 2 j

1

(�

n

(l)) and so there is an l

0

�

Rl such that �

n

(l

0

) = �

n

(k

0

). By applying the

induction hypothesis infer that k

0

-

�

�

�

n

l

0

. As the other condition for bisimulation is

proved likewise, we conclude that k

-

�

�

�

n

l. a

In general, to be able to construct a universal model (a minimal complete model)

from the semantic types of nodes inM -models, there should not be too many models

in M .

For example, K

n

is complete for the class of �nite n-models, but also for the

subclass of �nite reverse well-founded n-models. Assume that we would have de-

�ned a semantic type �

n

(k) for nodes k in �nite n-models (in general), such that

lemma 2.4.0.16 holds. Then clearly the set of these new semantic types would con-

tain too many semantic types to be the universe of a minimal complete model for

K

n

.

To prove that ExK

n

is a universal model for K

n

(and hence that the class of

�nite reverse well-founded models is small enough) we will de�ne a type �

n

(k) (in

K

n

) for every node in ExK

n

, in such a way that [[�

n

(k)]] = fkg.

The de�nition of these types seems to belong to modal logic folklore (see for

example [Bellissima 84]) and is very similar to the de�nition of the n;m-types above.

2.4.0.17. Definition. Let k be a node in a �nite reverse well-founded Kripke

model. De�ne �

n

(k), the type of k in K

n

, by:

�

n

(k) = �

n

CpL

(k) ^ f}�(l) j kRlg ^

2

W

f�(l) j kRlg:

De�ne

V

; = ? and

W

; = >, and observe that if k is a terminal node, �

n

(k) =

�

n

CpL

^

2

?. That the types we de�ned for K

n

correspond exactly to the semantic

types of K

n

is a corollary of the next theorem.

2.4.0.18. Lemma. If k and l are nodes in �nite reverse well-founded Kripke models,

then k 
 �

n

(l) implies �

n

(k) = �

n

(l).

Proof. We will use lemma 2.4.0.16 and prove k 
 �

n

(l) implies k

-

�

�

�

n

l. We will use

induction on �(k), the depth of k. Note that, as �

n

(l) implies �

n

CpL

(l), we may infer
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that atom

n

(k) = atom

n

(l). Now assume k 
 �

n

(l). In case �(k) = 0,we know that k

is a terminal node and k 


2

?. Note that l will also be a terminal node. For lRl

0

would imply k 
 }�

n

(l

0

) which would make Th

n

(k) inconsistent. For terminal nodes

atom

n

(k) = atom

n

(l) implies k

-

�

�

�

n

l.

So let �(k) > 0. If k

0

�

Rk, then �

n

(l) 0

2

? and hence k

0




W

�

n

(l

i

) (where the

l

i

are the successors of l). Hence, for some l

0

�

Rl, k

0


 �

n

(l

0

). Using the induction

hypothesis we may conclude that k

0

-

�

�

�

n

l

0

.

Now let lRl

0

. Then k 
 }�

n

(l

0

) and hence for some k

0

�

Rk we have k

0


 �

n

(l

0

).

Again by the induction hypothesis we conclude k

0

-

�

�

�

n

l

0

. Which proves k

-

�

�

�

n

l. a

2.4.0.19. Theorem. If k and l are nodes in �nite reverse well-founded Kripke mod-

els, then

k 
 �

n

(l) , �

n

(k) = �

n

(l) , Th

n

(k) = Th

n

(l):

Proof. By lemma 2.4.0.16 �

n

(k) = �

n

(l) is equivalent with k

-

�

�

�

n

l and (by the

bisimulation theorem) hence implies Th

n

(k) = Th

n

(l). As �

n

(l) 2 Th

n

(l), from

Th

n

(k) = Th

n

(l) we may infer that k 
 �

n

(l). On the other hand, by lemma 2.4.0.18,

k 
 �

n

(l) implies �

n

(k) = �

n

(l). a

2.5 Types and reductions in IpL

In the semantics of IpL we con�ne our attention mainly to �nite, transitive, re
exive

and anti-symmetric Kripke models (the �nite IpL models).

2.5.0.1. Definition. Let k be a node in a �nite IpL model. The semantic type of

k in IpL, �

n

(k), is de�ned by induction on �(k), the depth of k.

�

n

(k) = hatom

n

(k); f�

n

(l) j k < l and if atom

n

(k) = atom

n

(l)

then 9k

0

> k(�

n

(k

0

) 6= �

n

(l) ^ �

n

(k

0

) 62 j

1

(�

n

(l)))gi:

De�ne the order of semantic types in IpL as:

t � t

0

, t = t

0

or t

0

2 j

1

(t):

Observe that, as a special case of this de�nition, we have �

n

(k) = hatom

n

(k); ;i if

�(k) = 0. De�nition 2.5.0.1 is rather complex in comparison to de�nition 2.4.0.15,

due to the fact that the accessibility relation is re
exive in this case.

2.5.0.2. Lemma. Let k and l be nodes in a �nite IpL model and k < l. Then

1. if atom

n

(k) 6= atom

n

(l) then �

n

(l) 2 j

1

(�

n

(k));

2. j

1

(�

n

(l)) � j

1

(�

n

(k));

3. �

n

(k) 6= �

n

(l) , �

n

(l) 2 j

1

(�

n

(k));

4. �

n

(k) � �

n

(l).
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Proof. 1: This is a simple consequence of de�nition 2.5.0.1.

2: Let l < l

0

in such a way that �

n

(l

0

) 2 j

1

(�

n

(l)). As obviously k < l

0

, if

atom

n

(k) 6= atom

n

(l

0

) then �

n

(l

0

) 2 j

1

(�

n

(k)). Now suppose that atom

n

(k) =

atom

n

(l

0

). From k < l < l

0

infer that atom

n

(l) = atom

n

(l

0

). From de�ni-

tion 2.5.0.1, infer that 9k

0

> l(�

n

(k

0

) 6= �

n

(l

0

) ^ �

n

(k

0

) 62 j

1

(�

n

(l

0

))). As k < l

also 9k

0

> k(�

n

(k

0

) 6= �

n

(l

0

) ^ �

n

(k

0

) 62 j

1

(�

n

(l

0

))) and from de�nition 2.5.0.1 infer

that �

n

(l

0

) 2 j

1

(�

n

(k)), which proves j

1

(�

n

(l)) � j

1

(�

n

(k)).

3: Obviously �

n

(k) 62 j

1

(�

n

(k)), from which the ( part follows trivially.

To prove the ) part, suppose that �

n

(l) 62 j

1

(�

n

(k)). From the �rst part of the

lemma we may conclude that atom

n

(k) = atom

n

(l). According to de�nition 2.5.0.1,

for every k

0

> k it will be the case that �

n

(k

0

) = �

n

(l) or �

n

(k

0

) 2 j

1

(�

n

(l)). Hence,

if k

0

> k and �

n

(k

0

) 2 j

1

(�

n

(k)) then, by the assumption that �

n

(l) 62 j

1

(�

n

(k)),

�

n

(k

0

) 6= �

n

(l) and so we may conclude that �

n

(k

0

) 2 j

1

(�

n

(l)). Which proves

j

1

(�

n

(k)) � j

1

(�

n

(l)). In combination with the second part of the lemma, we con-

clude that j

1

(�

n

(k)) = j

1

(�

n

(l)) and hence �

n

(k) = �

n

(l).

4: Observe that from �

n

(k) 6= �

n

(l) , �

n

(l) 2 j

1

(�

n

(k)) we may infer that

�

n

(k) = �

n

(l) or �

n

(l) 2 j

1

(�

n

(k)) and hence �

n

(k) � �

n

(l). a

To prove that the semantic types introduced above do indeed satisfy the condition

that �

n

(k) = �

n

(l) implies Th

n

(k) = Th

n

(l), we will use a theorem stating in e�ect

that the semantic types are equivalence classes for n-bisimulation.

2.5.0.3. Theorem. For nodes k and l in �nite IpL models, we have

�

n

(k) = �

n

(l) , k

-

�

�

�

n

l:

Proof. ): We will prove that the relation k �

n

l, de�ned as �

n

(k) = �

n

(l), is an

n-bisimulation. It is trivial that the �rst condition for bisimulation, atom

n

(k) =

atom

n

(l), will apply. As the two remaining conditions are symmetric, we will prove

only the �rst.

Suppose we know that �

n

(k) = �

n

(l) and k � k

0

. We have to show that there

is an l

0

� l such that �

n

(k

0

) = �

n

(l

0

). In case we have �

n

(k

0

) = �

n

(k) of course

l

0

= l will do. So assume that �

n

(k

0

) 6= �

n

(k). Using lemma 2.5.0.2, infer that

�

n

(k

0

) 2 j

1

(�

n

(k)) and hence, as �

n

(k) = �

n

(l), �

n

(k

0

) 2 j

1

(�

n

(l)). So, for some

l

0

> l we have �

n

(k

0

) = �

n

(l

0

).

(: Let k

-

�

�

�

n

l and de�ne d = maxf�(k); �(l)g. With induction on d we will prove

�

n

(k) = �

n

(l). Note that from k

-

�

�

�

n

l we may infer that atom

n

(k) = atom

n

(l). We

will prove j

1

(�

n

(k)) � j

1

(�

n

(l)). The proof of j

1

(�

n

(l)) � j

1

(�

n

(k)) is essentially the

same, interchanging the rôles of k and l. As atom

n

(k) = atom

n

(l), we may conclude

that �

n

(k) = �

n

(l).

Suppose that k < k

1

and �

n

(k

1

) 2 j

1

(�

n

(k)). As k

-

�

�

�

n

l, there is a l

1

� l

with k

1

-

�

�

�

n

l

1

. Assume that �

n

(l

1

) = �

n

(l). Using the, already proved, �rst part

of the theorem, then l

-

�

�

�

n

l

1

and hence also k

1

-

�

�

�

n

k. From k

1

-

�

�

�

n

k we may infer

that atom

n

(k

1

) = atom

n

(k). As �

n

(k

1

) 2 j

1

(�

n

(k)), there is, according to de�ni-

tion 2.5.0.1, a k

2

> k such that �

n

(k

2

) 6= �

n

(k

1

) and �

n

(k

2

) 62 j

1

(�

n

(k

1

)). The

fact that k

1

-

�

�

�

n

k implies that there is a k

3

� k

1

with k

3

-

�

�

�

n

k

2

. Note that both
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k < k

2

and k < k

3

. Hence by the induction hypothesis we have �

n

(k

2

) = �

n

(k

3

). So,

�

n

(k

3

) 6= �

n

(k

1

) and �

n

(k

3

) 62 j

1

(�

n

(k

1

)), contradicting lemma re
emt4.3 applied to

k

1

� k

3

.

From this contradiction we infer that �

n

(l

1

) 6= �

n

(l). As l � l

1

, again by

lemma 2.5.0.2.3, we conclude that �

n

(l

1

) 2 j

1

(�

n

(l)). Hence, we have l < l

1

and

k < k

1

. By the induction hypothesis we infer from k

1

-

�

�

�

n

l

1

that �

n

(k

1

) = �

n

(l

1

) and

so �

n

(k

1

) 2 j

1

(�

n

(l)), what had to proved. a

2.5.0.4. Corollary. Let k be a node in a �nite IpL model and k < l. Then

�

n

(k) = hatom

n

(k); f�

n

(l) j k < l ^ :(k

-

�

�

�

n

l)gi:

Proof. We prove that for k < l we have �

n

(l) 2 j

1

(�

n

(k)) i� :(k

-

�

�

�

n

l). By

lemma 2.5.0.2.3, If k < l, then �

n

(l) 2 j

1

(�

n

(k)) is equivalent to �

n

(k) 6= �

n

(l).

Now apply theorem 2.5.0.3. a

Let us write Th

n

(k) for the IpL

n

theory of a node k in a �nite IpL model. Hence,

Th

n

(k) = f� 2 IpL

n

j k 
 �g.

2.5.0.5. Lemma. Let k and l be nodes in �nite IpL models. If �

n

(k) � �

n

(l) then

Th

n

(k) � Th

n

(l).

Proof. Let �

n

(k) � �

n

(l). If �

n

(k) = �

n

(l), then by the bisimulation theorem, theo-

rem 2.2.0.2, Th

n

(k) = Th

n

(l). On the other hand, if �

n

(k) 6= �

n

(l) then there is a

k

0

> k such that �

n

(k

0

) = �

n

(l) and hence Th

n

(k

0

) = Th

n

(l). In an IpL model, from

k

0

> k infer Th

n

(k) � Th

n

(k

0

). a

By ordering the semantic types in an IpL model K we will construct a new model,

K

�

, a maximal reduction

8

of K.

2.5.0.6. Definition. Let K be a �nite IpL model. De�ne K

�

, the maximal reduc-

tion of K, by:

K

�

= hf�

n

(k) j k 2 Kg;�; j

0

i:

If K and K

�

are isomorphic, K is called an irreducible model.

The proofs of the following facts are straightforward.

2.5.0.7. Facts. Let K be a �nite IpL Kripke model.

1. K

�

is a Kripke model (note that atom

n

(�

n

(k)) = j

0

(�

n

(k)));

2. �

n

is a reduction from K to K

�

;

3. K

�

is irreducible.

8

The reader familiar with [Hendriks 93] will recognise the analogy with the 
-reduction intro-

duced there.
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As in modal logic, the semantic types in IpL

n

correspond to formula types. The

de�nition of the n-type of a node k in a �nite (IpL) Kripke model K is a result of

a theorem of de Jongh (in [De Jongh 68], [De Jongh 70] and [JC 95]).

2.5.0.8. Definition. Let k be a node in a �nite irreducible IpL model. De�ne both

�

n

(k) and �

n

(k) inductively over �(k), the depth of k.

Let

1. Newatom

n

(k) = fq 2 fp

1

; : : : ; p

n

g j k 1 q and 8l > k(l 
 q)g,

2. 	

n

(k) =

W

f�

n

(l) j k <

1

lg,

3. �

n

(k) =

W

f�

n

(l) j k <

1

lg.

Then for

�(k) = 0: �

n

(k) = �

n

CpL

(k); �

n

(k) = :�

n

(k),

�(k) > 0: �

n

(k) =

V

atom

n

(k) ^ (

W

Newatom

n

(k) _	

n

(k)!�

n

(k));

�

n

(k) = �

n

(k)!�

n

(k).

2.5.0.9. Theorem. (Jankov/De Jongh) If k and l are nodes in irreducible �nite

IpL n-models then:

1. l 
 �

n

(k) , k � l,

2. l 1 �

n

(k) , l � k.

Proof. We will prove 1 and 2 simultaneously by induction on the depth of k. In

case �(k) = 0, both 1 and 2 are obvious. Assume the lemma for �(k) � m and let

�(k) = m + 1.

1: ): Let l 
 �

n

(k). If l 
 �

n

(k) then for some h such that k �

1

h we have

l 
 �

n

(h). By the induction hypothesis this would imply k �

1

h � l and hence k � l.

On the other hand, we will show that l 1 �

n

(k) implies k = l. From l 
 �

n

(k)

we may conclude that l 


V

atom

n

(k). As l 1 �

n

(k), we also may conclude l 1

W

Newatom

n

(k) and l 1 	

n

(k). By the induction hypothesis we infer that l � h

for all h such that k �

1

h. So if q 2 atom

n

(l) n atom

n

(k), then we would have

q 2 Newatom

n

(k), contradicting l 1

W

Newatom

n

(k). Hence atom

n

(l) = atom

n

(k).

To prove that l also has the same successors as k, let g have a minimal depth

such that l � g and for all h with k �

1

h, h 6� h. From the induction hypothesis

it follows that g 1 �

n

(k). As g is a successsor of l, we have also g 
 �

n

(k). In the

same way as we proved for l, we may prove for g that atom

n

(g) = atom

n

(k) and

g � h for all h such that k �

1

h. For g there is no proper successor g

0

which is not

a successor of k. Otherwise g

0

would be a successor of l with �(g

0

) < �(g), l � g and

for all h with k �

1

h, h 6� h, contradicting the minimality of (the depth) of g. From

the irreducibility of the model conclude g = k and hence l � g implies k � g. Again

by the irreducibility of the model infer k = l.

1: (: We �rst prove that k 
 �

n

(k). As obviously k 


V

atom

n

(k) we still have

to prove k 


W

Newatom

n

(k) _ 	

n

(k)!�

n

(k). Observe that if k <

1

h then by our

induction hypothesis k 1 �

n

(h). Hence we may conclude that k 1 	

n

(k). Of course,

by the de�nition of Newatom

n

(k), also k 1

W

Newatom

n

(k). So, if we assume k � g

with g 


W

Newatom

n

(k) _ 	

n

(k), then k < g. Hence, g 
 �

n

(h) for some h such
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that k <

1

h and hence g 
 �

n

(k) So infer that k 
 �

n

(k) and apply lemma 2.5.0.5 to

conclude that if k � l, then l 
 �

n

(k).

2: ): Assume that l 1 �

n

(k). Then for some g such that l � g, g 
 �

n

(k) and

g 1 �

n

(k). From the �rst part of this proof infer that k � g and h 6� g for all h such

that k <

1

h. Hence conclude that = k, which proves l � k.

2: (: As k is a node in an irreducible model, we have �

n

(k) 6= �

n

(h) for all h

such that k <

1

h and, by induction hypothesis, k 1 �

n

(h). Hence, as k 
 �

n

(k) it

should be true that k 1 	

n

(k). A fortiori, for l � k it is true that l 1 �

n

(k). a

Recall that �

n

is a reduction from K to K

�

, as de�ned in 2.5.0.6.

2.5.0.10. Definition. For k a node in a �nite IpL model de�ne

�

n

(k) = �

n

(�

n

(k))

and

 

n

(k) = �

n

(�

n

(k)):

2.5.0.11. Theorem. If k and l are nodes in �nite IpL n-models then:

1. l 
 �

n

(k) , �

n

(k) � �

n

(l),

2. l 1  

n

(k) , �

n

(l) � �

n

(k).

Proof. Assume k 2 K and l 2 L and let, in K

�

, k

0

= �

n

(k) and l

0

= �

n

(l). Use

lemma 2.5.0.5 to conclude that Th

n

(k) = Th

n

(k

0

) and Th

n

(l) = Th

n

(l

0

).

1: Observe that l 
 �

n

(k) , l

0


 �

n

(k

0

) and hence l 
 �

n

(k) , k

0

� l

0

.

2: Likewise, from l 1  

n

(k) , l

0

1  

n

(k

0

) conclude l 1  

n

(k) , l

0

� k

0

. a

2.5.0.12. Corollary. If k is a node in a �nite n-model and  is an IpL-formula,

then:

k 
  , �

n

(k) `  :

Let K

�

= hf�

n

(k) j k 2 Kg;`i, then it is easily veri�ed that K

�

, with the obvious

valuation �

n

(k) 
 p , �

n

(k) ` p, is a Kripke model. Recall that by de�ni-

tion 2.5.0.6, K

�

is the maximal reduction of K. Now we are ready to state another

important (and easy to prove) corollary from theorem 2.5.0.9.

2.5.0.13. Corollary. The model K

�

is isomorphic to the model K

�

.

Readers familiar with [Jankov 68] may wonder why Jankov's name has been con-

nected to theorem 2.5.0.9. The following corollary about �nite frames presents what

is usualy known as Jankov's theorem.

Let us call a re
exive, transitive and anti-symmetric frame an IpL frame for short.

To de�ne bisimulation between frames, we simply use de�nition 2.2.0.1 leaving out

the condition on the atoms forced. Likewise we may de�ne k

-

�

�

�

l between nodes k

and l in frames in the obvious way.
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2.5.0.14. Corollary. For every �nite rooted IpL frame "k there is a formula  

k

such that for any �nite IpL frame F we have: F 1  

k

i� for some l 2 F it is true

that k

-

�

�

�

l.

Proof. De�ne a valuation on "k on the set of atoms fp

i

j 1 � i � j"kjg, in such a

way that there is a 1{1 mapping � : "k 7! fp

i

j 1 � i � j"kjg and for l 2 "k we have

l 
 �(m) , l � m. For the formula  

k

in the corollary take  

n

(k) (assuming

j"kj = n). If F 1  

n

(k) then for some model K based on F we will have for some

l

0

2 F that l

0

1  

n

(k). Now apply the theorem to infer that for some l � l

0

we will

have (in K) that �

n

(k) = �

n

(l) and hence, by theorem 2.5.0.3, also k

-

�

�

�

l. a

The Jankov theorem was independently proved by De Jongh in his disserta-

tion [De Jongh 68]. In modal logic Fine in [Fine 85] introduced subframe formulas

for �nite transitive frames for which he proved the modal analogue of the Jankov

theorem, apparently without being aware of theorems in intuitionistic propositional

logic proved by Jankov and De Jongh.

Obviously there are in�nitely many types (and semantic types) in fragments IpL

n

if n � 1.

The diagram of the fragment IpL

1

, see �gure 6, is known as the Rieger-Nishimura

lattice (see [Nishimura 60]) and the ordered set of all non-derivable irreducible types

is the exact Kripke model of this fragment (the set of all elements will correspond to

>).

Note that all semantic types in IpL

1

are realized in this model. Hence it will be

complete for IpL

1

. As every semantic type corresponds to an irreducible formula (its

type) every �nite closed set of irreducible formulas corresponds to an IpL

1

formula

(the disjunction of the set of irreducibles). As the set of all elements is the only

in�nite closed subset of the model and is assigned to >, this proves the model to be

the exact model of IpL

1

.

For n > 1 the fragment IpL

n

will not have an exact model as the diagram of IpL

n

is not a complete distributive lattice for n > 1. For example, let f�

n

(p) j n 2 INg

be a set of representatives of the irreducible equivalence classes in IpL

1

and q an

atomic formula. Then fq ^ �

n

(p) j 0 �

n

(p)g is a closed set of irreducible formulas,

that does not correspond to a formula in IpL

2

.

2.5.0.15. Fact. For n > 1 the fragment IpL

n

does not have an exact model.
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6. Figure. The diagram

9

of IpL

1

(left) and its exact Kripke model (right).

2.6 Calculations in exact models

As explained in the introduction of this chapter and illustrated by the examples

of exact models in the previous sections, the proof of the construction of an exact

Kripke model K for some fragment F is accompanied by a mapping [[:]] of formulas

in F to (closed) subsets of K. A �nite exact Kripke model K and its mapping [[:]]

together provide us with a decision method for formulas in F . The restriction to

closed subsets is necessary only in the case of fragments of IpL. In dealing with

classical propositional logics (CpL or modal systems extending K) all subsets of K

will be considered to be closed. So in topological terms, in classical logic we use the

discrete topology and in intuitionistic logic the topology of upwardly closed subsets

induced by the order of K. Recall the de�nition of the interior operation (rephrased

in the context of Kripke models):

2.6.0.1. Definition. Let K be a Kripke model and X � K. Then X

�

, the interior

of X is de�ned as:

X

�

=

S

fY � X j Y is closedg:

9

Or its dual, according to our de�nition of Diag(F ) in Chapter 1.
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In addition the following de�nition turns out to be useful.

2.6.0.2. Definition. Let K be a Kripke model and X � K. Then X

�

, the prede-

cessor set of X is de�ned as:

X

�

= fk 2 K j 9l 2 X(kRl)g:

It is easily veri�ed that, writing X for the complement of set X, in IpL models the

interior can be calculated as:

X

�

= X nX

�

:

2.6.0.3. Facts. Let K be a �nite Kripke model for fragment F and let [[�]] = fk 2

K j k 
 �g. For all formulas � and  of F (and as far as the connectives are

applicable in F ):

1. [[� ^  ]] = [[�]] \ [[ ]];

2. [[� _  ]] = [[�]] [ [[ ]];

3. [[�! ]] = ((K n [[�]]) [ [[ ]])

�

;

4. [[:�]] = (K n [[�]])

�

;

5. [[}�]] = [[�]]

�

;

6. ` � ) [[�]] = K;

7. � `  ) [[�]] � [[ ]].

All of these facts can be proved by writing out the de�nitions and using well-known

facts about Kripke semantics.

In case K is an exact Kripke model for the fragment F , the implications in the

last two facts above can be changed into equivalences.

Hence [[�]] can be calculated using set theoretic and topological operations on the

exact model.

A computer program to calculate [[�]] on an exact Kripke model will need the

relevant information about the exact model to calculate the set operations and the

predecessor sets. Clearly this can be done in linear time, which makes testing of

formulas using exact models such an e�cient decision procedure.

For exact models of the fragments of CpL

n

we do not need predecessor sets and

the calculation of [[�]] is very much like constructing a truth table for �.

The testing of formulas by calculations in an exact Kripke model of a fragment

F can be used to calculate the diagram of F and all its subfragments. Let G be

a subfragment of F and let K

F

be a �nite exact model of F . To calculate the

diagram of G the algorithm mkDiag is given the [[p]] of all atomic formulas in G.

These atomic formulas are taken as the representatives of their equivalence classes

and the start of a list of elements of the diagram to be constructed. From this list (of

formulas representing equivalence classes already found) the algorithm systematically

picks one or two representatives to make a new formula according to the connectives

available in G. Such a new formula � is taken as a candidate representative of a class

not yet in the list. Using the rules explained above [[�]] is calculated and compared

with the sets corresponding to the classes already found. If � does represent an

equivalence class not yet in the list, � is added to the list of representatives and
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[[�]] to the list of sets corresponding to the representatives. As the diagram of G is

�nite, this procedure terminates. In fact, by testing for each representative � both

[[�]] � [[ ]] and [[ ]] � [[�]] the algorithm does not only determine whether � represents

a new class or not, but also keeps track of the relations in the diagram.

2.7 Games and bisimulations

Let us �nish this chapter with the introduction of Ehrenfeucht games and their

relation to (layered) bisimulations and to semantic types in general. In the next

chapter we will occasionally use this kind of game to decide the equivalence of nodes

in Kripke models for formulas in certain fragments of IpL. For an application of

Ehrenfeucht games to second-order and intensional logic see [Doets 87].

In the present context an Ehrenfeucht game is a game with two Kripke models,

played by two players (player I and player II). At the start player I makes a choice

between the two models, by pointing to a world in one of the models. After this

start of the game, each of the players in turn will point to a world in the player's

model. If a player has chosen world l as the previous move, the l

0

for the present

move has to ful�ll the condition that l � l

0

. If player I made a move by choosing

world k, the world l in the move of player II will also have to meet the condition

that atom(k) = atom(l).

The game is �nished is one of the players is unable to come up with a satisfactory

world. A player that cannot make a valid move in turn has lost.

The idea behind this kind of game is simple. Player II will win the game if able

to simulate each of the moves of player I. As player I may choose models �rst, a

winning strategy for player II is only possible if there is a simulation relation between

the models.

We will use G(K;L) for the Ehrenfeucht game with models K and L de�ned by

the rules above. For player II having a winning strategy we introduce the notation

j= G(K;L).

2.7.0.1. Fact. Let G(K;L) be an Ehrenfeucht game for Kripke models K and L.

Then j= G(K;L) i� there exists a bisimulation S between K and L and S is full

(dom(S) = K and ran(S) = L).

This fact is a simple consequence of the similarity between the de�nition of an Ehren-

feucht game above and the de�nition of a bisimulation in the preliminaries of this

chapter.

In the sequel the Ehrenfeucht games all will be played on �nite n-models. Our

�rst (simple) re�nement of this general scheme of Ehrenfeucht games will be the

introduction of two starting worlds.

In a game G(K;L; hk; li) with starting worlds k 2 K and l 2 L (and K and L

�nite n-models) the �rst move of each player has to be either k or l. As an easy

corollary of fact 2.7.0.1 we have j= G(K;L; hk; li) i� k

-

�

�

�

n

l.

Other re�nements of the scheme of Ehrenfeucht games will be introduced in

Chapter 3.





Chapter 3

Exact Models in IpL

3.1 Introduction

In this chapter we will describe all non-trivial �nite fragments of intuitionistic propo-

sitional logic with atoms in some �nite set fp

1

; : : : ; p

n

g and connectives in the set

f^;_;!;:;::g. Each of these fragments will be denoted by the number of atoms

and the set of connectives used, like [^;_]

2

for the fragment with two atoms and

conjunction and disjunction as its only connectives. Not included are the descrip-

tions of the trivial fragments [:]

n

, [::]

n

and the fragment with n atomic formulas

and no connectives.

Our main task in this chapter will be to show how to construct exact Kripke mod-

els for fragments of IpL

n

, using the notion of semantic type introduced in Chapter

2. In some cases (i.c. the fragments [_;:]

n

and fragments with :: without :) there

exists an exact model, but no exact Kripke model. For these fragments we will show

to construct, via a completion of the exact model, a universal model that can be used

to calculate the diagram (and subdiagrams). Such a completion of the exact model

will be called a Kripke completion.

In the sequel we will de�ne, for each of the fragments F in IpL

n

with an exact

model, semantic types �

F

(k) and corresponding types �

F

(k) for nodes k in a Kripke

model. As it should be clear from the context which is the fragment in question, we

will most often drop the index F .

The fragments of IpL with connectives in the set f^;_;!;:;::g can be pictured

as a lattice (using the inclusion of fragments de�ned in the preliminaries of the

introduction).

The lattice of fragments in the picture below (which was also given in the general

introduction in Chapter 1) provides us with an overview of the (non-trivial) fragments

that can be obtained by restricting the set of connectives.

Recall that fragments with an in�nite diagram (at least in case of more than one

propositional variable) are denoted by an open circle. Finite fragments (in IpL

n

)

are pictured as closed circles and fragments with an exact model have a closed circle

41
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surrounded by an additional open circle. Fragments with an exact Kripke model are

marked by a square.
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7. Figure. The lattice of fragments in IpL.

As was pointed out in Chapter 2, the diagrams of fragments with an exact Kripke

model can be calculated very e�ciently if the model is given. The same is true for the

subfragments of fragments with an exact Kripke model (just restrict the calculations

of formulas and sets according to the restrictions in the subfragment).

As observed in the introduction of Chapter 2, a fragment of IpL has a �nite exact

model i� its diagram is a �nite, distributive lattice.

This criterion may be necessary and su�cient for the existence of an exact model

for a fragment of IpL

n

, but it does not reveal how to obtain an exact model for a

particular fragment.

If we knew the irreducible formulas in a fragment F , we could order them with a

to obtainExm(F ), the exact model of F . But determining the irreducible formulas in
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F may be far from easy. For example in fragments not containing the disjunction (like

the [^;!;:] fragments) it is not immediately clear which formulas are irreducible

in the lattice of Diag(F ).

In the sequel of this chapter we will construct exact models for fragments F by

de�ning an appropriate semantic type and a (straightforward) ordering.

Except for the preliminaries, this chapter has four sections. In the �rst subsection

of each section we describe one of the fragments with an exact Kripke model. The

other subsections deal with subfragments that do not have an exact Kripke model

of their own.

3:3 [^;_]

-

[^] 3:3:1

-

[_] 3:3:1

3:4 [^;_;:]

-

[^;:] 3:4:1

-

[^;::] 3:4:2

-

[^;_;::] 3:4:3

-

[_;:] 3:4:4

-

[_;::] 3:4:5

3:5 [^;!;:]

-

[!;:] 3:5:1

-

[^;!;::] 3:5:2

-

[!;::] 3:5:3

3:6 [^;!]

-

[!] 3:6:1

8. Figure. The structure of this chapter.

The general structure of a subsection about fragment F is �rst to de�ne a class

of Kripke models M, for which the fragment is complete. We then de�ne semantic

types �

F

(k) and type formulas �

F

(k) for the nodes k in the Kripke models in M.

In general, this set of semantic types in F can be turned into a (minimal) complete

model for F . This universal model for F will contain an exact model, if such a model

exists for F . In case F has an exact Kripke model, the exact Kripke model and the

universal model will coincide.

3.2 Preliminaries

If F is a fragment of IpL with a �nite exact model, the elements in such a model

correspond to the irreducible formulas in Diag(F ), as observed in Chapter 2. For
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IpL fragments F this implies that if an exact model exists, it is unique (up to

isomorphism).

To prove this, we will show that the order in the exact model is determined

by the derivability relation. Let � and  be irreducible formulas in F and let k

�

and k

 

denote the corresponding nodes in an exact model Exm(F ). If ! is the

correspondence between formulas and closed subsets in Exm(F ) then clearly:

� `  , !(�) � !( ) , k

 

� k

�

:

A fortiori this is true if F has an exact Kripke model.

3.2.0.1. Fact. If F is a fragment in IpL and F has an exact (Kripke) model, then

this model is unique up to isomorphism.

Because of this fact we will in the sequel, when dealing with exact models in IpL

fragments, simply write `the' exact (Kripke) model instead of `an' exact (Kripke)

model.

As an example of the relationship between the diagram and the exact (Kripke)

model of a fragment, �gure 9 shows the diagram and the exact Kripke model of the

fragment [^;_;:]

1

, where the irreducible elements in the diagram are marked with

an extra circle.
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9. Figure. The diagram of [^;_;:]

1

(left) and its exact Kripke model (right).

In case _ is in the IpL fragment F , _ will naturally act as the join in the diagram of

F . Hence the irreducibles in F will be the _-irreducible formulas (i.e. those formulas

� in F such that for all  and � in F , � `  _ � implies � `  or � ` �).

To characterize the _-irreducible formulas in IpL we will use the Aczel slash (see

for example [TD 88]).

3.2.0.2. Definition. (Aczel slash) Let � be a set of IpL formulas. For an IpL

formula � de�ne � j � inductively as:

1. � j p , � ` p for p atomic or p = ?;

2. � j � ^  , � j � and � j  ;

3. � j � _  , � j � or � j  ;

4. � j �! , � ` �! and (� j � ) � j  ).
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3.2.0.3. Facts. Let � be a set of IpL formulas and let � and  be IpL formulas.

1. ([Kleene 62]) If � 6� ? then � is _-irreducible i� � j �.

2. If � j � then � ` �.

3. If � ` �! and � 0 � then � j �! .

4. All formulas in [^;!;:] are either equivalent to ? or _-irreducible.

5. All formulas :� not equivalent to ? are _-irreducible.

Especially the last two of the above facts will be useful in this chapter.

In the rest of this chapter the Kripke models used will be IpL models (re
exive,

transitive and anti-symmetric). In particular, if we mention n-models in this section

we mean IpL n-models.

3.3 The [^;_] fragments

The structure of the [^;_]

n

fragments is relatively well known (see [DP 90] for ex-

ample):

3.3.0.1. Facts. Let `

c

be the derivability relation in CpL.

1. The [^;_]

n

fragments in IpL and CpL coincide. For formulas � and  in

[^;_]:

� `  , � `

c

 :

2. The diagram of [^;_]

n

is isomorphic to the free distributive lattice over n gen-

erators.

3. Each � 2 [^;_]

n

is equivalent to a �nite disjunction of [^]

n

formulas.

4. All [^]

n

formulas are _-irreducible.

5. The diagram of [^]

n

is dual to the diagram of [_]

n

.

6. For all � 2 [^;_]

n

we have

V

fp

1

; : : : ; p

n

g ` �.

From 3, it follows that the diagram of [^]

n

is almost the exact model of [^;_]

n

.

Almost, as the empty set does not correspond to a formula in [^;_]

n

. On the other

hand, the conjunction of all atoms in [^;_]

n

is the bottom element of the diagram.

By removing this bottom element from the diagram of [^]

n

we get the exact model

of [^;_]

n

(where the empty subset of the exact model corresponds to the bottom of

the diagram).
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10. Figure. The exact Kripke model of [^;_]

3

.
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The model above has 18 closed subsets, from which we may infer that the diagram

of [^;_]

3

has 18 elements.

Note that for a node k in a Kripke model K the formula

V

atom

n

(k) will be the

[^;_]

n

-type of k, an axiom of Th

n

(k), the [^;_]

n

theory of k.

3.3.0.2. Definition. Let k be a node in a Kripke model. The semantic type of k

in [^;_]

n

, �

n

(k) is de�ned as:

�

n

(k) = hatom

n

(k); ;i:

If t and t

0

are semantic types in [^;_]

n

, de�ne:

t � t

0

, j

0

(t) � j

0

(t

0

):

The type formula of k in [^;_]

n

, �

n

(k) is de�ned as:

�

n

(k) =

V

j

0

(�

n

(k)):

The following lemma states that the above de�ned types are indeed semantic types

in [^;_]

n

as described in Chapter 2.

3.3.0.3. Lemma. If k and l are nodes in Kripke models, then

l 
 �

n

(k) , �(k) � �(l) , Th

n

(k) � Th

n

(l) , �

n

(l) ` �

n

(k):

Proof. Obvious. a

It is also obvious that if k and l are nodes in an IpL Kripke model K, then k � l

implies �(k) � �(l).

Note that the type hfp

1

; : : : ; p

n

g; ;i is a special one in [^;_]

n

in that a node with

such a type will force all formulas in the fragment. We will encounter such bottom

types again in the sequel and they will be disregarded in the construction of the exact

Kripke model (or the universal model in some cases). The reason has been stated

above already, for including such a type would prevent the empty set in the exact

model to correspond to the bottom of the diagram.

3.3.0.4. Theorem. The set of types in [^;_]

n

, with exception of the bottom type,

i.e. hfp

1

; : : : ; p

n

g; ;i, ordered by � and taking atom

n

(t) = j

0

(t) for a type t, is the

exact Kripke model of [^;_]

n

.

Proof. From the lemma above and the observations following it, it should be clear

that in the intended model each t realizes its own type, (i.e. �

n

(t) = t). Moreover,

we have t � t

0

i� for all formulas in [^;_]

n

it is true that t 
 � ) t

0


 �. Hence

[[�]] = ft j t 
 �g is a 1� 1 correspondence between closed subsets of the model and

formulas in [^;_]

n

. a

In general the exact Kripke model of [^;_]

n

will have 2

n

� 2 nodes (as there are

2

n

� 2 nonempty proper subsets of a set of n elements).
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Obviously the types in [^;_] are just sets of atoms if we disregard the general

format of semantic types. Hence the exact Kripke model above is isomorphic to the

set of proper nonempty subsets of fp

1

; : : : ; p

n

g, ordered by inclusion.

As the characteristic functions of closed sets in the exact Kripke model of [^;_]

n

are the monotonic functions into f0; 1g, theorem 3.3.0.4 establishes the correspon-

dence between formulas of [^;_]

n

and monotonic functions of 2

n

7! 2. The prob-

lem of determining the number D(n) of these functions (for each n) goes back to

Dedekind and is known in a di�erent, but equivalent, form as the Sperner problem

(see [Kleitman 69], [Kisielewicz 88]).

In [Sloane 73] there is a table

1

(nr. 1 439) for D(n):

n D(n)

1 1

2 4

3 18

4 166

5 7 579

6 7 828 352

7 2 414 682 040 996

Although there is no simple formula known to calculate the number D(n) there is a

simple construction for the exact model of [^;_]

n+1

from the exact model of [^;_]

n

.

Let E

n

be the exact model of [^;_]

n

. To obtain the exact modelE

n+1

, take a copy

of E

n

, denoted as E

n

n+1

, and connect every k 2 E

n

with its twin in k

0

2 E

n

n+1

(hence

k < k

0

). Now change the valuation on E

n

n+1

, so that in every node l 2 E

n

n+1

also the

atom p

n+1

is forced. Next add a new root below E

n

n+1

where only p

n+1

is forced and

add a new node k above all nodes in E

n

in such a way that atom(k) = fp

1

; : : : ; p

n

g.

Clearly the new model exactly realizes all types in [^;_]

n+1

, but for the bottom

type (where all atoms in the fragment would be forced).

The procedure is illustrated in the �gure below, where the exact Kripke model

of [^;_]

4

is constructed from the exact Kripke model of [^;_]

3

.
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11. Figure. The exact Kripke model of [^;_]

4

.

1

It is convenient to de�ne D(0) = 0.
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Note that from this construction it simply follows that the exact Kripke model of

[^;_]

n

is the n-dimensional hypercube without its top and bottom elements.

3.3.1 [^] and [_] fragments

The diagram of [^]

n

, and dually [_]

n

, is of course isomorphic to the powerset of the

nonempty subsets of a set of n elements, ordered by inclusion. Hence the diagram of

[^]

n

(or [_]

n

) will be isomorphic to the n-dimensional hypercube without its bottom

element and have 2

n

� 1 elements.

3.4 The [^;_;:] fragments

Let us start the treatment of the [^;_;:] fragments by de�ning an Ehrenfeucht game

for this fragment (see de�nition 2.7).

3.4.0.1. Definition. Let K and L be �nite Kripke models, k 2 K and l 2 L. The

Ehrenfeucht game for [^;_;:]

n

with starting worlds k and l, G

n

(K;L; hk; li), is a

game between two players, I and II, who each make exactly one move, in turn.

Player I starts by choosing a terminal node m

I

above either k or l. Player II

replies by choosing a terminal node m

II

above k, if l �

L

m

I

, or above l, if k �

K

m

I

.

Player II has won the game if atom

n

(k) = atom

n

(l) and atom

n

(m

I

) =

atom

n

(m

II

).

j= G

n

(K;L; hk; li) will denote that there is a winning strategy for player II in the

game G

n

(K;L; hk; li).

Let Th

n

(k) denote the [^;_;:]

n

theory of node k. For �nite Kripke models K

and L (and k 2 K, l 2 L), we have the following theorem.

3.4.0.2. Theorem. j= G

n

(K;L; hk; li) , Th

n

(k) = Th

n

(l)

Proof. ): By induction on the length of � 2 [^;_;:]

n

we will prove that k 


� , l 
 �. The cases where � is either atomic, a conjunction or a disjunction are

trivial. Assume � = : and k 
 �. Then for no terminal node m above k it will

be true that m 
  . Suppose m

I

is a terminal node such that l � m

I

. If m

I


  

then, as II has a winning strategy for the game G(K;L; hk; li), there is a terminal

node m

II

� k such that atom

n

(m

I

) = atom

n

(m

II

). Which would imply m

II


  ,

a contradiction. This proves that for no terminal node m

I

� l m

I


  , and hence

l 
 : .

(: Note that Th

n

(k) = Th

n

(l) implies atom

n

(k) = atom

n

(l). Suppose player I

choosesm

I

(say inK, above k). Recall the de�nition of �

n

CpL

(m

I

) (de�nition 2.3.0.2).

Then k 1 :�

n

CpL

(m

I

) and, as :�

CpL

(m

I

) is equivalent to a formula in [^;_;:]

n

and Th

n

(k) = Th

n

(l), l 1 :�

n

CpL

(m

I

). So, for some terminal node m

II

� l,

m

II


 �

n

CpL

(m

I

), which implies atom

n

(m

I

) = atom

n

(m

II

). Hence there is a winning

strategy for II in the game G(K;L; hk; li). a
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The proof of the theorem above contains both a suggestion for the de�nition of

�

n

(k), the semantic type in [^;_;:]

n

, and of �

n

(k), the type in [^;_;:]

n

(i.e. an

axiom for Th

n

(k)). Recall the de�nition of �

n

CpL

(k) from de�nition 2.3.0.1.

3.4.0.3. Definition. Let k be a node in a �nite Kripke model and let Ter(k) denote

the set of terminal nodes above k:

Ter(k) = fm � k j m is a terminal nodeg:

De�ne:

�

n

(k) =

8

>

<

>

:

hatom

n

(k); ;i if 8l > k: atom

n

(l) = atom

n

(k)

hatom

n

(k); f�

n

(l) j l 2 Ter(k)gi otherwise.

For semantic types t and t

0

in [^;_;:]

n

de�ne:

t � t

0

, t = t

0

or t

0

2 j

1

(t) or (j

0

(t) � j

0

(t

0

) and ; 6= j

1

(t

0

) � j

1

(t))

�

n

(k) =

8

>

>

>

>

<

>

>

>

>

:

�

n

CpL

(k) if 8l > k: atom

n

(l) = atom

n

(k)

V

j

0

(�

n

(k))^

::

W

f�

n

CpL

(l) j �

n

(l) 2 j

1

(�

n

(k))g otherwise.

Observe that in particular �

n

(k) = hatom

n

(k); ;i if k is a terminal node.

The next lemma shows we are on the right track with these characterizations of

the [^;_;:]

n

theory of a node in a Kripke model.

But let us �rst state as a fact the following simple consequence of the de�nition

of a semantic [^;_;:]

n

type.

3.4.0.4. Fact. If k 2 K and l 2 L are nodes in �nite Kripke models and �

n

(k) =

�

n

(l), then j= G(K;L; hk; li).

The next lemma, in combination with theorem 3.4.0.2, has as a consequence that

for nodes k 2 K and l 2 L in �nite Kripke models K and L also j= G(K;L; hk; li)

implies �

n

(k) = �

n

(l).

3.4.0.5. Lemma. Let k and l be nodes in �nite Kripke models. Then the following

statements are equivalent:

1. l 
 �

n

(k);

2. �

n

(k) � �

n

(l);

3. Th

n

(k) � Th

n

(l);

4. �

n

(l) ` �

n

(k).

Proof. We will prove 1) 2) 3) 4) 1.

1 ) 2: Assume l 
 �

n

(k). If �

n

(k) = �

n

CpL

(k), then clearly for all m � l

we have atom

n

(m) = atom

n

(k) and hence �

n

(l) = hatom

n

(k); ;i = �

n

(k). On the

other hand, if �

n

(k) = hatom

n

(k); f�

n

(l) j l 2 Ter(k)gi, then for l

0

2 Ter(l) we can
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prove that �

n

(l

0

) 2 j

1

(�

n

(k)). Let l

0

2 Ter(l). Then we have, by the de�nition of

�

n

(k), that l

0




W

f�

n

CpL

(m) j �

n

(m) 2 j

1

(�

n

(k))g. Hence l

0


 �

n

CpL

(m) for some

m 2 Ter(k) and, as above, infer that �

n

(l

0

) = �

n

(m). Note that either �

n

(l) = �

n

(l

0

)

for some l

0

2 Ter(l) and thus �

n

(l

0

) 2 j

1

(�

n

(k)), or j

1

(�

n

(l)) 6= ; and we proved

j

1

(�

n

(l)) � j

1

(�

n

(k)). In both cases we may conclude �

n

(k) � �

n

(l) as trivially

atom

n

(k) � atom

n

(l) holds if l 
 �

n

(k).

2 ) 3: Assume �

n

(k) � �

n

(l). Note that if for all m > k we have atom

n

(m) =

atom

n

(k), then from �

n

(k) � �

n

(l) we may infer that �

n

(k) = �

n

(l) = hatom

n

(k); ;i

and hence by fact 3.4.0.4 j= G(K;L

0

; hk; li). Which proves Th

n

(k) = Th

n

(l), using

theorem 3.4.0.2.

So assume there is a k

0

2 Ter(k) with atom

n

(k

0

) 6= atom

n

(k). Let l 2 L and let L

0

be the model constructed from L by adding a new node l

0

with atom

n

(l

0

) = atom

n

(k)

and placed below l and all terminal nodes above k. Note that such a construction

of L

0

as a �nite Kripke model is possible as atom

n

(k) � atom

n

(l), which we may

infer from the assumption. Also from the assumption that �

n

(k) � �

n

(l) we may

conclude that �

n

(l

0

) = �

n

(k). By fact 3.4.0.4 this implies j= G(K;L

0

; hk; l

0

i) and

hence by theorem 3.4.0.2, Th

n

(k) = Th

n

(l

0

). From the construction of L

0

infer that

as a consequence we have Th

n

(k) � Th

n

(l).

3) 4: Note that from the two previous steps we may conclude that �

n

(m) is an

axiom of Th

n

(m) (for any node m in a �nite Kripke model). For suppose � 2 Th

n

(k)

and l 
 �

n

(k). Then by combining the �rst and the second part of this proof we

have Th

n

(k) � Th

n

(l) and hence l 
 �. Which, by the completeness theorem, proves

�

n

(k) ` �.

From the fact that �

n

(m) is an axiom for Th

n

(m) one easily proves that the inclusion

of the theories Th

n

(k) � Th

n

(l) implies the interderivability of their axioms: �

n

(l) `

�

n

(k).

4) 1: As �

n

(l) is the axiom of Th

n

(l), we know that l 
 �

n

(l). And hence from

�

n

(l) ` �

n

(k) we infer l 
 �

n

(k). a

From the de�nition of semantic types in [^;_;:]

n

it is clear that there are only

�nitely many of these types. It is also easy to prove that all tuples of the form hS; T i

such that:

1. T is a set of types hU; ;i, where U � fp

1

; : : : ; p

n

g,

2. if T 6= ; then S �

T

fj

0

(t) j t 2 Tg,

3. if T = fhU; ;ig then S 6= U ,

are types in [^;_;:]

n

.

As each semantic type of [^;_;:] can be realized in a rooted IpL model with

depth less than two, we have established the following fact.

3.4.0.6. Fact. [^;_;:] is complete for rooted IpL models of depth less than two.

An intermediate logic is a conservative extension of a fragment of IpL if for any two

formulas � and  in the fragment  is a consequence of � in the intermediate logic i�

� `

IpL

 . The intermediate logic IpL + ((p!(((q!r)!q)!q))!p)!p, complete

for models of depth less than two, can be proved to be a maximal conservative
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extension of [^;_;:]. But it is not unique. A. Chagrov announced a proof for

the existence of continuum of maximal conservative extensions of [^;_;:]

n

for each

n > 1.

Ordering the types in [^;_;:]

n

, putting hS; T i � hS

0

; T

0

i if S � S

0

and T

0

� T

will yield a Kripke model Exm([^;_;:]

n

) (with atom

n

(t) = j

0

(t)).

Note that as Exm([^;_;:]

n

) realizes all semantic types in Exm([^;_;:]

n

), it is

a complete Kripke model for this fragment. As a consequence of the above lemma

also [[�

n

(k)]] = "k. Hence every closed subset of Exm([^;_;:]

n

) can be obtained as

the valuation of a formula in [^;_;:]

n

. Which proves the following theorem.

3.4.0.7. Theorem. The model Exm([^;_;:]

n

) de�ned above is the exact Kripke

model of [^;_;:]

n

.

As an example, in �gure 12 we give the exact Kripke model of [^;_;:]

2

.
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12. Figure. The exact Kripke model of [^;_;:]

2

.

As all types in [^;_;:]

n

are formulas in [^;:]

n

, we have the following corollary.

3.4.0.8. Corollary. (The [^;:] normal form) In [^;_;:]

n

each formula is equiv-

alent to a disjunction of formulas in [^;:]

n

.

Note that as each formula in [^;:]

n

which is not equivalent to ? is irreducible (use

fact 3.2.0.3.4), each of these formulas will be (equivalent to) a type in [^;_;:]

n

. As

a result, we may state the following fact.

3.4.0.9. Fact. By leaving out ?, the diagram of [^;:]

n

becomes the exact Kripke

model of [^;_;:]

n

.
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We will use the exact Kripke model of [^;_;:]

n

in the proof of the characterization

of the [^;_;:] formulas in IpL. First we introduce the terminal reduction of a rooted

Kripke model.

3.4.0.10. Definition. For a �nite Kripke model K with root k, the submodel ("k)

T

,

with domain fkg[Ter(k) and the accessibility relation and valuation inherited from

K is called the terminal reduction of K.

Obviously, for a node k in a �nite Kripke model K, the semantic type (in [^;_;:]

n

)

of k in K and in ("k)

T

, the terminal reduction of the submodel "k, are the same.

Hence, a rooted Kripke model and its terminal reduction force the same [^;_;:]

formulas (have the same [^;_;:] theory).

3.4.0.11. Theorem. An IpL formula � is equivalent to a [^;_;:] formula i� for

every node k in a �nite Kripke model:

k 
 � , ("k)

T


 �:

Proof. As observed above, the node k in a �nite Kripke model K and the root

of the terminal reduction ("k)

T

, have the same semantic type in [^;_;:]

n

. By

lemma 3.4.0.5 this implies that k and ("k)

T

force the same [^;_;:] formulas. Which

proves one direction of the theorem.

For the other direction, assume � is a formula in IpL

n

and for every k in a �nite

Kripke model it is true that k 
 � , ("k)

T


 �. Let � be the [^;_;:] formula

with [[�]] = [[�]] in Exm([^;_;:]

n

).

We will show that � is equivalent to � by showing (for k a node in a �nite Kripke

model) k 
 � , k 
 �. We �rst use the assumption that k 
 � is equivalent to

("k)

T


 �. The root k in ("k)

T

clearly bisimulates the node �

n

(k) in the terminal re-

duction ("�

n

(k))

T

of the submodel "�

n

(k) in the exact Kripke model Exm([^;_;:]

n

.

Hence, ("k)

T


 � is equivalent to ("�

n

(k))

T


 �. Which, by the assumption about �

is equivalent to �

n

(k) 
 � (in the exact Kripke model) and by de�nition of � also to

�

n

(k) 
 �. As � is a [^;_;:]

n

formula, �

n

(k) 
 � , k 
 �, which proves k 
 �

to be equivalent to k 
 �. a

3.4.1 The [^;:] fragments

We will prove that [^;:] is complete for models based on the simple frame of two

connected worlds (and which will be called 2). We will prove, that, as a consequence,

the IpL fragment [^;:] is in fact the same as the [^;:] fragment of the three valued

Heyting logicH

3

. The construction of the exact models for H

n

3

, the fragments of H

3

with atoms restricted to the set fp

1

; : : : ; p

n

g, serves as an example to show that the

technique of semantic types is also applicable in intermediate logics.

First however, we will compute the number of equivalence classes in [^;:]

n

, using

the Exm([^;_;:]

n

) from the previous subsection. Recall from fact 3.4.0.9 that the

model Exm([^;_;:]

n

) is isomorphic to the diagram of [^;:]

n

, without the bottom

element.
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3.4.1.12. Theorem.

jDiag([^;:]

n

) =

n

X

k=0

 

n

k

!

(2

2

k

� 1) + 1:

Proof. If S � fp

1

; : : : ; p

n

g and jSj = k, then there are 2

n�k

sets U , in such a way that

S � U � fp

1

; : : : ; p

n

g. Excluding the combination of S and hS; ;i, this implies that

there are 2

2

n�k

� 1 semantic types t in [^;_;:]

n

) with j

0

(t) = S. As a consequence,

we have

jDiag([^;:]

n

) =

n

X

k=0

 

n

k

!

(2

2

n�k

� 1) + 1:

Now use

�

n

n�k

�

=

�

n

k

�

to obtain the formula in the theorem. a

Let us �rst prove that [^;:] is complete for 2-models, that is for models based

on the frame 2. In fact the theorem we will prove in the sequel is somewhat stronger

and states that [^;:]

n

is complete for the n-models based on 2.

As a bridge between IpL models and 2-models we �rst de�ne terminal models.

3.4.1.13. Definition. If K is a �nite IpL model K and k; l 2 K we call hk; li a

terminal submodel if l is a terminal node in K and k < l.

Obviously a terminal submodel de�ned in K is a Kripke model in its own right as a

submodel

2

of K.

3.4.1.14. Lemma. Let � be a [^;:] formula, k a node in a �nite IpL model K and

hk; li a terminal submodel in K. If K 
 � then hk; li 
 �.

Proof. By induction on the length of �. If � is atomic or a conjunction the proof

is obvious. Note that in case � = : , we may infer from k 
 : that the terminal

node l will not force  . But the terminal node l above k in K and l in hk; li force

the same formulas. Hence hk; li 
 : . a

3.4.1.15. Lemma. Let � be a [^;:] formula, k a node in a �nite IpL model K. If

k 1 � then for some terminal submodel hk; li in K, hk; li 1 �.

Proof. By induction on the length of �. The atomic and conjunction cases are easy.

In case � = : , we may infer from k 1 : that some terminal node l � k must force

 . Now any terminal model with this l will meet the condition from the lemma. a

3.4.1.16. Theorem. The IpL fragment [^;:] is complete for 2-models.

2

Although not necessarily a generated submodel, as there may be anm 2 "k such thatm 62 hk; li.
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Proof. By combining lemma 3.4.1.14 and 3.4.1.15. a

Let us brie
y introduce the three valued Heyting logic, H

3

. The most concise def-

inition of H

3

would be: H

3

is the logic of the 2-models. If we use 


2

for forcing

in 2-models, � 


2

 if for all k in a 2-model k 


2

� implies k 


2

 , and `

3

for

derivability in H

3

, then H

3

being the logic of 2-models comes down to:

� `

3

 , � 


2

 :

An alternative, and more traditional, de�nition of H

3

introduces `

3

by truth

tables for the connectives:

^ f � t _ f � t ! f � t :

f f f f f f � t f t t t f t

� f � � � � � t � f t t � f

t f � t t t t t t f � t t f

It is left to the reader to check that these matrices correspond to the behavior of the

connectives, according to the de�nition of forcing in IpL models, on the following

2-model. Here the set f0; 1g represents the truth value t, f0g the value � and the

empty set corresponds to the value f.

u

u

1

0

There are several alternative axiomatizations of the three valued Heyting logic.

3.4.1.17. Fact. H

3

can be axiomatized by adding one of the following formulas as

an axiom to the axioms of IpL.

1. (p$ q) _ (p$ r) _ (p$ s) _ (q $ r) _ (q $ s) _ (r $ s);

2. p _ (p!q) _ :q;

3. (((p!(((q!r)!q)!q))!p)!p) ^ ((p!q) _ (q!p));

4. ((p!q)!r)!(((s!p)!r)!r).

The �rst of these axioms is G�odels formula expressing that there are only three truth

values [G�odel 32]. The second is a simpli�ed version of Hosoi's p_:p_(p!q)_(q!r)

in [Hosoi 66]. The �rst conjunct of 3 is the (once) iterated Peirce formula which

is true exactly in the frames of depth less than two ([Gabbay 81]). The second

conjunct is Dummett's axiom for the intermediate logic LC, the logic of linearly

ordered frames[Gabbay 81]. In combination these formulas axiomatize the logic of

linearly ordered frames of depth less than two, that is the frame 2 (and its subframe

with only one world).

Formula 4 stems from Thomas [Thomas 62]. More details can be found

in [Troelstra 65].

The de�nition of semantic types in H

n

3

will not come as a surprise.
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3.4.1.18. Definition. Let k be a node in a 2-model. The semantic type of k in

H

n

3

is de�ned by:

�

n

(k) =

8

>

<

>

:

hatom

n

(k); ;i if 8l > k:atom

n

(k) = atom

n

(l)

hatom

n

(k); f�

n

(l) j k < lgi otherwise.

The order of semantic types t and t

0

in H

n

3

is de�ned by

t � t

0

, t = t

0

or t

0

2 j

1

(t):

De�ne the type, �

n

(k), of k in H

n

3

by:

�

n

(k) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�

n

CpL

(k) if j

1

(�

n

(k)) = ;

V

j

0

(�

n

(k))^

V

f::p j p 2 j

0

(�

n

(l))g^

V

f:p j p 2 fp

1

; : : : ; p

n

g n j

0

(�

n

(l))g^

V

fp$ q j p; q 2 j

0

(�

n

(l)) n j

0

(�

n

(k))g if j

1

(�

n

(k)) = f�

n

(l)g:

Observe that in particular �

n

(k) = hatom

n

(k); ;i if k is a terminal node. Moreover,

if t is a semantic type in H

n

3

and j

1

(t) 6= ;, then j

1

(t) = ft

0

g and j

1

(t

0

) = ;.

Observe also, that if k � l in a 2-model, then �

n

(k) � �

n

(l).

As can be veri�ed easily, the de�nition of �

n

(k) assures that k 
 �

n

(k) for k a

node in a 2-model. Note that if k is a terminal node then �

n

(k) � �

n

CpL

(k).

Now we are ready to prove, like we did in lemma 3.4.0.5 for [^;_;:]

n

, that the

types and semantic types introduced for H

n

3

behave like one would expect. In the

sequel of this subsection we will use Th

n

(k) for the theory of formulas in H

n

3

forced

by k.

3.4.1.19. Lemma. Let k and l be nodes in 2-models. Then the following statements

are equivalent:

1. l 
 �

n

(k);

2. �

n

(k) � �

n

(l);

3. Th

n

(k) � Th

n

(l);

4. �

n

(l) ` �

n

(k).

Proof. We will prove 1) 2) 3) 4) 1.

1 ) 2: We have to prove that either �

n

(k) = �

n

(l) or l is a terminal node and

j

1

(�

n

(k)) = f�

n

(l)g.

In case l and k are both terminal nodes �

n

(k) is a CpL

n

type and obviously

l 
 �

n

(k) implies �

n

(k) = �

n

(l). If l is a terminal node and k is not, let k

0

be

the terminal node above k. We will prove �

n

(l) = �

n

(k

0

). For p 2 atom

n

(k

0

) infer

from the de�nition of the type of k that �

n

(k) ` ::p. As l 
 �

n

(k) this assures

us that p 2 atom

n

(l). Hence atom

n

(k

0

) � atom

n

(l). Likewise, if p 62 atom

n

(k

0

)

then �

n

(k) ` :p and hence p 62 atom

n

(l). Which proves atom

n

(k

0

) = atom

n

(l)

and, as both are terminal nodes, �

n

(k) = �

n

(l). Note that if k is a terminal node
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l 
 �

n

CpL

(k) obviously implies that j

1

(�

n

(l)) = ; and hence �

n

(k) = �

n

(l). So

suppose both j

1

(�

n

(l)) 6= ; and j

1

(�

n

(k)) 6= ;. Then there is an l

0

> l such that

l

0


 �

n

(k). Again we may infer that �

n

(k

0

) = �

n

(l

0

) for the terminal node k

0

above

k. Clearly atom

n

(k) � atom

n

(l) and to prove atom

n

(l) to be a subset of atom

n

(k),

let p 2 atom

n

(l). Now either p 2 atom

n

(k), or p 2 atom

n

(k

0

) n atom

n

(k) or p is

not in atom

n

(k

0

). In the �rst case we are ready and in the third case �

n

(k) ` :p,

contradicting p 2 atom

n

(l). If p 2 atom

n

(k

0

) n atom

n

(k), note that, as j

1

(�

n

(l)) 6= ;

there is a q 2 atom

n

(l

0

) n atom

n

(l). As atom

n

(l

0

) = atom

n

(k

0

) we will have �

n

(k) `

p!q, contradicting p 2 atom

n

(l).

2 ) 3: Assume �

n

(k) � �

n

(l). If j

1

(�

n

(k)) = ;, then obviously k

-

�

�

�

l

and Th

n

(k) = Th

n

(l). On the other hand, if j

1

(�

n

(k)) = f�

n

(k

0

)g, then either

�

n

(l) = �

n

(k

0

) or j

1

(�

n

(l)) = f�

n

(l

0

)g, �

n

(l

0

) = �

n

(k

0

) and atom

n

(k) = atom

n

(l).

As k

0

is a terminal node, from �

n

(l) = �

n

(k

0

) we may conclude l

-

�

�

�

k

0

and hence

Th

n

(k) � Th

n

(k

0

) = Th

n

(l). In case j

1

(�

n

(l)) = f�

n

(l

0

)g, we conclude from

�

n

(l

0

) = �

n

(k

0

), that l

0

-

�

�

�

k

0

. As also atom

n

(k) = atom

n

(l), we may infer that k

-

�

�

�

l

and hence Th

n

(k) = Th

n

(l).

3 ) 4: As in the proof of theorem 3.4.0.5 we conclude from the previous steps

that in general �

n

(m) is an axiom of Th

n

(m). Hence from Th

n

(k) � Th

n

(l) we

conclude that �

n

(l) ` �

n

(k).

4) 1: As observed earlier l 
 �

n

(l) is a simple consequence of de�nition 3.4.1.18.

Hence trivially, �

n

(l) ` �

n

(k) implies l 
 �

n

(k). a

Now de�ne Exm(H

n

3

) as the ordered set of semantic types in H

n

3

. Obviously

Exm(H

n

3

) is a Kripke model if we take atom

n

(t) = j

0

(t) as its valuation. Note

that Exm(H

n

3

) will again be a 2-model.

As Exm(H

n

3

) realizes all semantic types in H

n

3

with lemma 3.4.1.19 one easily

proves that the model is complete for H

n

3

. Moreover, for every node k 2 Exm(H

n

3

)

we have a type formula �

n

(k) such that [[�

n

(k)]] = "k. As closed subsets in Exm(H

n

3

)

correspond to disjunctions of these type formulas we may conclude that Exm(H

n

3

)

is the exact Kripke model of H

n

3

.

3.4.1.20. Theorem. The model Exm(H

3

) de�ned above is the exact Kripke model

of H

n

3

.

u u u

u u u u u

u

�

�

�

@

@

@

0

p

1 2

q

3

p q

4

5

p

6

7

q

8

13. Figure. The exact Kripke model of H

2

3

.

The irreducible formulas in H

2

3

are:
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0: p ^ ::q 3: p ^ q 6::p ^ ::q

1:::p ^ (p$ q) 4:::p ^ :q 7::p ^ q

2:::p ^ q 5: p ^ :q 8::p ^ :q

Note that, in contrast to in IpL, not all [^;:]

2

formulas are irreducible in H

3

.

For example (as can be proved using the exact Kripke model ofH

2

3

): ::p^::q �

(::p ^ (p$ q)) _ (p ^ ::q) _ (::p ^ q).

The model above has been used to calculate the diagram of H

2

3

. A listing of all

162 equivalence classes can be found in appendix B.2.

From the structure of the exact Kripke model ofH

n

3

one can calculate the number

of elements in Exm(H

3

) as

P

n

k=0

2

k

:

�

n

k

�

and the number of classes in Diag(H

n

3

) as:

n

Y

k=0

(2

2

k

�1

+ 1)

(

n

k

)

:

3.4.2 The [^;::] fragments

The [^;::] fragments have rather simple and regular diagrams. The expressive

power of these fragments is too limited to be of very much interest, but each [^;::]

n

fragment `almost' has an exact model. For formulas in [^;::]

n

we have an obvious

normal form.

3.4.2.21. Fact. (The [^;::]

n

normal form) Each formula in [^;::]

n

is equiva-

lent to a formula of the form

V

P ^

V

f::q j q 2 Qg where both P and Q are subsets

of fp

1

; : : : ; p

n

g, P [Q 6= ; and P \Q = ;.

To characterize the semantic types for [^;::]

n

, let us introduce a special type of

IpL models, n-maximal models .

3.4.2.22. Definition. A �nite n-model K is called n-maximal if each k 2 K forces

at least n� 1 atoms.

3.4.2.23. Theorem. If � and  formulas in [^;::]

n

such that � 0  then there is

a node k in an n-maximal model such that k 
 � and k 1  .

Proof. Let

V

P ^

V

f::q j q 2 Qg be the normal form of � and

V

R^

V

f::q j q 2 Sg

the normal form of  . From � 0  we may infer that either there is an r 2 R such

that r 62 P or there is an s 2 S such that s 62 P [Q.

In the �rst case, let atom

n

(k) contain all atoms but r and k < l such that

atom

n

(l) = fp

1

; : : : ; p

n

g. Obviously k 
 � but k 1  .

In the second case, let k be a node forcing all atoms in fp

1

; : : : ; p

n

g ex-

cept s. Let k have two successors l

0

and l

1

, with atom

n

(l

0

) = fp

1

; : : : ; p

n

g and

atom

n

(l

1

) = atom

n

(k). Again k will force � but not  . a

3.4.2.24. Corollary. The fragment [^;::]

n

is complete for n-maximal models.
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Recall the de�nition of Ter(k) from de�nition 3.4.0.3 as the set of all terminal nodes

above the node k. The proof of theorem 3.4.2.23 motivates the following de�nition

of semantic type (in [^;::]

n

) for a node in an n-maximal model.

3.4.2.25. Definition. Let k be a node in an n-maximal model. Then �

n

(k), the

semantic type of k in [^;::]

n

is de�ned by:

�

n

(k) =

8

>

<

>

:

hatom

n

(k); ;i if 8l > k: atom

n

(l) = atom

n

(k)

hatom

n

(k); f�

n

(l) j l 2 Ter(k)gi otherwise.

For semantic types t and t

0

in [^;::]

n

de�ne:

t � t

0

, t = t

0

or t

0

2 j

1

(t) or (j

0

(t) � j

0

(t

0

) and ; 6= j

1

(t

0

) � j

1

(t)):

3.4.2.26. Definition. A node k in an n-maximal model is called a proper node, if

j

1

(�

n

(k)) 6= ;.

Inspection of the proof of the theorem 3.4.2.23 reveals the following fact.

3.4.2.27. Fact. If � and  formulas in [^;::]

n

such that � 0  then there is a

proper node k in an n-maximal model such that k 
 � and k 1  .

Note that the ordered set of semantic types of proper nodes for [^;::]

n

, n disjoint

2-models, is not a Kripke model realizing all the semantic types in [^;::]

n

. By

adding terminal nodes with semantic type hQ; ;i where jQj � n� 1, the ordered set

of types becomes an n-maximal model.

3.4.2.28. Definition. The model Umod([^;::]

n

) is the ordered set of semantic

types in [^;::]

n

.

To prove that Umod([^;::]

n

) is a universal model for [^;::]

n

we will show that it

is the Kripke completion of the exact model of the fragment [^;::;>]

n

, that is the

fragment [^;::]

n

with the formula > added.

In the proof we will need the (formula) types in [^;::]

n

.

3.4.2.29. Definition. If k a proper node in an n-maximal Kripke model, then

�

n

(k), the type of k in [^;::]

n

, is de�ned as:

�

n

(k) =

V

j

0

(�

n

(k)) ^

V

f::q j q 2

T

fj

0

(t) j t 2 j

1

(�

n

(k))gg:

3.4.2.30. Theorem. The model Umod([^;::]

n

) de�ned above is a universal model

for [^;::]

n

and the ordered set of semantic types in [^;::]

n

is an exact model for

[^;::;>]

n

.

Proof. Umod([^;::]

n

) clearly is complete for [^;::]

n

and minimal in realizing all

the semantic types of proper nodes in [^;::]

n

.

Hence our main task will be to prove that we realy need all semantic types in

[^;::]

n

. First note that if k is a node in the intended universal model with a

semantic type in [^;::]

n

, then k 
 �

n

(k). From the de�nition of �

n

(k) it is also



3.4. The [^;_;:] fragments 59

clear that in Umod([^;::]

n

) it is true that l 
 �

n

(k) i� k � l. Hence, for k such

that �

n

(k) is a semantic type in [^;::]

n

we have [[�

n

(k)]] = "k.

Suppose k

1

; : : : ; k

m

is a close subset in the submodel of the proper nodes in

Umod([^;::]

n

). Let � be the formula

� =

VT

m

i=1

j

0

(�

n

(k

i

)) ^

V

f::p j p 2

T

m

i=1

\

fj

0

(t) j t 2 j

1

(�

n

(k

i

)gg:

Note that if k

1

; : : : ; k

m

is the set of all proper nodes in Umod([^;::]

n

), then � = >

(which is not a [^;::]

n

formula).

To prove that [[�]] = "fk

1

; : : : ; k

n

g, let k 2 fk

1

; : : : ; k

n

g. Then

T

m

i=1

j

0

(�

n

(k

i

)) �

j

0

(�

n

(k)) and

T

m

i=1

T

fj

0

(t) j t 2 j

1

(�

n

(k

i

)gg �

T

fj

0

(t) j t 2 j

1

(�

n

(k)gg. From which

we may infer that k 
 �.

On the other hand, if k 
 �, suppose k is a terminal node in Umod([^;::]

n

).

If atom

n

(k) = fp

1

; : : : ; p

n

g, then clearly k

i

> k for all k

i

. If jatom

n

(k)j = n � 1,

then there is exactly one l in Umod([^;::]

n

) such that l < k. Let q 2 fp

1

; : : : ; p

n

g n

atom

n

(k), then l 2 fk

1

; : : : ; k

m

g i� � 0 ::q. Hence, from k 
 � we conclude � 0 ::q

and hence k 2 "fk

1

; : : : ; k

m

g. In case k is a proper node of Umod([^;::]

n

), for

q 2 fp

1

; : : : ; p

n

g n atom

n

(k) we have � 0 q , k 2 fk

1

; : : : ; k

m

g. From k 
 �, we

infer that � 0 q and hence k 2 fk

1

; : : : ; k

m

g.

Hence, we proved that the ordered set of semantic types in [^;::]

n

is an exact

model for [^;::;>]

n

. a

3.4.2.31. Corollary. The exact model of [^;::;>]

n

is isomorphic with n disjoint

copies of 2 (disregarding the valuation in Umod([^;::]

n

)).

Hence the fragment [^;::;>]

n

has 3

n

� 1 equivalence classes.

u
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u
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�
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14. Figure. The diagram of [^;::]

2

and the Kripke completion of its exact model

(with the added terminal nodes encircled).

3.4.3 The [^;_;::] fragments

The construction of the exact model of [^;_;::]

n

from the irreducible formulas in

this fragment is rather straightforward.
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3.4.3.32. Lemma. The irreducible formulas in [^;_;::]

n

are (modulo logical equiv-

alence) of the form

V

Q^:: , where Q is some subset of fp

1

; : : : ; p

n

g and  is some

formula in [^;_]

n

.

Proof. If � =

V

Q ^ :: and � 0 ?, then � is _-irreducible by 3.2.0.3.4. If

� 2 [^;_;::]

n

, it is not di�cult to prove � to be equivalent to a disjunction of

formulas of the form

V

Q ^ :: . Hence, if � is irreducible, � is equivalent to a

formula of the form

V

Q ^ :: . a

3.4.3.33. Corollary. (The [^;_;::]

n

normal form) Every formula in [^;_;::]

is equivalent to a disjunction of formulas of the form

V

Q ^ :: where Q is some

subset of fp

1

; : : : ; p

n

g and  is a formula in [^;_]

n

.

With exception of the fragment with only one atom, these exact models are not

exact Kripke models, as can be seen from the example of [^;_;::]

2

.
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15. Figure. The diagram of [^;_;::]

2

and the Kripke completion of its exact

model (the encircled nodes have been added).

The formulas in the diagram of [^;_;::]

2

:
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1: p ^ q 8: ::(p ^ q) 15: ::q

2: p ^ ::q 9: (p _ q) ^ ::q 16: ::p _ q

3: ::p ^ q 10: ::p ^ (p _ ::q) 17: p _ ::q

4: p 11: p _ q 18: ::p _ ::q

5: ::(p ^ q) ^ (p _ q) 12: (::p _ q) ^ ::q 19: ::(p _ q)

6: q 13: ::p

7: ::p ^ (p _ q) 14: (p _ ::q) ^ (::p _ q)

To �nd the semantic types in [^;_;::]

n

the normal form of the irreducible formulas

suggests the following de�nitions.

3.4.3.34. Definition. A �nite IpL model K is called a proper [^;_;::]

n

model

if for no terminal node l it is true that atom

n

(l) = ; and for every k 2 K which is

not a terminal node, there is a terminal l > k with atom

n

(l) = fp

1

; : : : ; p

n

g.

3.4.3.35. Definition. For k a node in a proper [^;_;::]

n

model de�ne �

n

(k), the

semantic type of k in [^;_;::]

n

, as:

�

n

(k) =

8

>

<

>

:

hatom

n

(k); ;i if 8l > k: atom

n

(l) = atom

n

(k)

hatom

n

(k); f�

n

(l) j l 2 Ter(k)gi otherwise

For semantic types t and t

0

in [^;::]

n

de�ne:

t � t

0

, t = t

0

or t

0

2 j

1

(t) or (j

0

(t) � j

0

(t

0

) and ; 6= j

1

(t

0

) � j

1

(t)):

De�ne �

n

(k), the type of k in [^;_;::]

n

, as:

�

n

(k) =

V

j

0

(�

n

(k)) ^ ::

W

f

V

j

0

(t) j t 2 j

1

(�

n

(k))g

Observe that for each k in a proper [^;_;::]

n

model which is not a terminal node,

we have k 
 �

n

(k).

To prove that each irreducible formula of [^;_;::]

n

is a �

n

(k) for some non-

terminal node k in a proper [^;_;::]

n

model, �rst note that in the normal form

of irreducible formulas in [^;_;::]

n

the part in the scope of :: is a formula of

[^;_] and hence needs for its realization terminal nodes l with atom

n

(l) 6= ;. A

second observation we need is that for  2 [^;_]

n

it is always true that ::( _

V

fp

1

; : : : ; p

n

g) � :: .

So we may infer that [^;_;::]

n

is complete for proper [^;_;::]

n

models, as

every irreducible formula in the fragment can be realized in one of these models.

3.4.3.36. Fact. The fragment [^;_;::]

n

is complete for proper [^;_;::]

n

models.

The ordered set of semantic types in [^;_;::]

n

will provide us with an exact model

of [^;_;::]

n

.

3.4.3.37. Definition. Let Umod([^;_;::]

n

) be the Kripke model constructed from

the ordered set of semantic types hQ; T i, such that Q � fp

1

; : : : ; p

n

g and T a

set of semantic types hU; ;i, such that hfp

1

; : : : ; p

n

g ;i 2 T . The valuation in

Umod([^;_;::]

n

) is de�ned by atom

n

(t) = j

0

(t).



62 Chapter 3. Exact Models in IpL

Obviously this model is a proper [^;_;::]

n

model realizing all semantic types in

the fragment and hence it is complete for [^;_;::]

n

. However, as an exact model

Umod([^;_;::]

n

) is too large. More precisely we do not need the terminal nodes

in this model, as observed earlier. Note that the semantic type hfp

1

; : : : ; p

n

g; ;i,

corresponding to the type

V

fp

1

; : : : ; p

n

g, will only be realized in the model as the

type of a terminal node. However as this type acts as a bottom element in the

diagram of the fragment, it is not needed in the exact model as it will correspond to

the empty set.

3.4.3.38. Theorem. The model Umod([^;_;::]

n

) without its terminal nodes is

the exact model of [^;_;::]

n

.

Proof. As we have seen, every non-terminal element hQ; T i in Umod([^;_;::]

n

)

corresponds to a type

V

Q ^ ::

W

f

V

j

0

(t) j t 2 Tg and every irreducible formula in

[^;_;::]

n

is equivalent to such a type. The only thing we still have to prove is that

di�erent semantic types indeed have di�erent type formulas. This we may infer from

the fact that for t and t

0

semantic types in [^;_;::]

n

and �

t

and �

t

0

the correspond-

ing type formulas it is true that t � t

0

, �

t

0

` �

t

. The proof of this last fact is

straightforward from the de�nitions and is left to the industrious reader. a

3.4.4 The [_;:] fragments

As was already mentioned before, a fragment [_;:]

n

has an exact model. For n > 1

this is not an exact Kripke model, as we will see.

The fragment [_;:]

n

is a subfragment of [^;_;:]

n

, for which we already de�ned

semantic types and constructed an exact Kripke model. As the irreducible formulas

in [_;:]

n

are also irreducible in [^;_;:]

n

we have already met the (semantic) types

in [_;:]

n

: those types in [^;_;:]

n

which are equivalent to a formula in [_;:]

n

(and

the corresponding semantic types).

Of course the only irreducible formulas in [_;:]

n

are the atomic formulas and

the negations. Note also that conjunctions of negations are equivalent to negations

of disjunctions (i.e. :p ^ :q � :(p _ q)), and thus are part of the fragment.

Recall that semantic types in [^;_;:]

n

are of the form:

�

n

(k) =

8

>

<

>

:

hatom

n

(k); ;i if 8l > k: atom

n

(l) = atom

n

(k)

hatom

n

(k); f�

n

(l) j l 2 Ter(k)gi otherwise

The corresponding type �

n

(k) was de�ned as:

�

n

(k) =

8

>

>

>

<

>

>

>

:

�

n

CpL

(k) if 8l > k: atom

n

(l) = atom

n

(k)

V

j

0

(�

n

(k))^

::

W

f�

n

CpL

(l) j �

n

(l) 2 j

1

(�

n

(k))g otherwise

If a formula type �

n

(k) in [^;_;:]

n

corresponds to a formula in [_;:]

n

then
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1. atom

n

(k) is either empty or a singleton;

2. k if atom

n

(k) 6= ; and n > 1 then k is not a terminal node.

Note that in the �rst case, where �

n

(k) is equivalent to an atomic formula p, we have

W

f�

n

CpL

(l) j �

n

(l) 2 j

1

(�

n

(k))g � p. Hence, for all Q 2 fp

1

; : : : ; p

n

g such that p 2 Q,

there is a t 2 j

1

(�

n

(k)) with j

0

(t) = Q. Otherwise, we would have k 
 :�

n

Q

, which

contradicts �

n

(k) � p, as p 0 :�

n

Q

.

As it is not di�cult to see that every formula in [^;_;:]

1

is equivalent to a

formula in [_;:]

1

(see �gure 9), the two fragments have the same diagram. In the

sequel of this subsection we will assume n > 1, without making this exception explicit

every time we should.

The observations above inspired the de�nition of a semantic type in [_;:]

n

.

3.4.4.39. Definition. Let k be a node in a �nite IpL model. Then k is a proper

[_;:]

n

node if atom

n

(k) = ; or atom

n

(k) = fpg for some p 2 fp

1

; : : : ; p

n

g and for

every Q � fp

1

; : : : ; p

n

g such that p 2 Q there is an l 2 Ter(k) with atom

n

(l) = Q.

If k is a proper [_;:]

n

node, then �

n

(k), the semantic type of k in [^;_;:]

n

is

the semantic type of k in [_;:]

n

and �

n

(k), the type formula of k in [^;_;:]

n

, is

the type formula of k in [_;:]

n

.

Let Th

n

(k) in the sequel of this subsection be the [_;:]

n

theory of k, Th

n

(k) = f� 2

[_;:]

n

j k 
 �g.

To see that �

n

(k) is a formula in [_;:]

n

note that either atom

n

(k) = fpg for

some atom p or else �

n

(k) is a negation.

3.4.4.40. Lemma. If k and l are nodes in �nite Kripke models and k and l have

semantic types in [_;:]

n

, then:

�

n

(k) � �

n

(l) , Th

n

(k) � Th

n

(l) , l 
 �

n

(k)

Proof. The lemma is an application of lemma 3.4.0.5, in the special case where k

and l have semantic types in [_;:]

n

and the theories Th

n

(k); Th

n

(l) and the formula

�

n

(k) are in [_;:]

n

. a

By ordering the semantic types in [_;:]

n

, adding the terminal nodes which have no

type in [_;:]

n

, we get a Kripke completion of the exact model of [_;:]

n

as we will

see.

3.4.4.41. Definition. Let Umod([_;:]

n

) = hT;�; j

0

i be the Kripke model con-

structed from the set T of both semantic types in [_;:]

n

and types of the form hQ; ;i,

where Q a nonempty subset of fp

1

; : : : ; p

n

g. The order relation between these types

is de�ned as

t � t

0

, t = t

0

or t

0

2 j

1

(t) or (j

0

(t) � j

0

(t

0

) and ; 6= j

1

(t

0

) � j

1

(t)):

The valuation in Umod([_;:]

n

) is de�ned by atom

n

(t) = j

0

(t).

From the de�nitions and observations above the following fact is a simple conse-

quence.
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3.4.4.42. Fact. The model Umod([_;:]

n

) realizes each semantic type in [_;:]

n

.

3.4.4.43. Theorem. The model Umod([_;:]

n

) is a universal model for the frag-

ment [_;:]

n

and the ordered set of semantic types in [_;:]

n

is the exact model of

[_;:]

n

.

Proof. The irreducible formula classes of [_;:]

n

correspond exactly to the semantic

types in [_;:]

n

. If X is an upwardly closed subset of types f�

n

(k

1

); : : : ; �

n

(k

m

)g,

this X will correspond to the formula

W

f�

n

(k

1

); : : : ; �

n

(k

m

)g (where

W

; = ?).

To realize the semantic types in [_;:]

n

one obviously needs the terminal

nodes forcing non-empty sets of atoms. As these are the only elements added in

Umod([_;:]

n

), this model is a minimal Kripke completion of the exact model. a

The structure of the exact model of [_;:]

n

might also be described as that of the

ordered set of all non-contradictory negations where the atomic formulas are added.

The set of non-contradictory negations is isomorphic to the diagram of the classi-

cal diagram [_;:]

n

CpL

without the tautology and hence also with the 2

n

-dimensional

hypercube without a top.

Hence the universal model of [_;:]

n

will be an n-dimensional hypercube without

a top, where at n corners there have been added nodes that force just one atom and

which have been connected to the 2

n

� 1 terminal nodes outside the exact model.

As an illustration, �gure 16 shows the universal model of [_;:]

2

.
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16. Figure. The universal model of [_;:]

2

. (The encircled nodes have been added

to the exact model.)

Using this model one can compute the diagram of [_;:]

2

which has 385 equivalent

classes.
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3.4.5 The [_;::] fragments

With exception of [_;::]

1

, the fragments [_;::]

n

will not have an exact model.

Note that the minimal elements in the diagram of [_;::]

n

are the atomic formulas

and for n > 1 there will not be a bottom in Diag([_;::]

n

). Hence the diagram of

[_;::]

n

is not a lattice.

But by adding ? to [_;::]

n

we will have a fragment with an exact Kripke model

as we will see.

The fragment [_;::]

1

has a simple diagram (two classes, p and ::p) and has an

exact model (with ::(p) as its only element and p corresponding to the empty set)

which is not an exact Kripke model. In the sequel of this subsection we will assume

n > 1.

There is a simple normal form in [_;::]

n

which we will use in the construction

of this exact Kripke model of [_;::;?]

n

.

3.4.5.44. Fact. (The [_;::]

n

normal form) Every formula in [_;::]

n

is equiva-

lent to a disjunction of formulas that are either atomic or of the form :: , where

 is a disjunction of atomic formulas.

This fact can be straightforwardly proved by induction on the length of the formula.

To characterize the semantic types in [_;::]

n

we will introduce a special type of

IpL models, as we did previously for [^;::]

n

.

3.4.5.45. Definition. A �nite n-model K is called n-minimal if each node in K

forces at most one atom and each terminal node forces at least one atom.

3.4.5.46. Theorem. If � and  are formulas in [_;::]

n

such that � 0  then there

is a node k in an n-minimal model such that k 
 � and k 1  .

Proof. Let

W

P _

W

::

W

Q

i

be the normal form of � and

W

R _

W

::

W

S

j

the normal

form of  (where P;Q

i

; R and the S

j

are subsets of fp

1

; : : : ; p

n

g). As � 0  we have

either some p 2 P which is not an element of R or some Q

i

which is not a subset of

any of the S

j

.

In the �rst case a simple model of one node k such that atom

n

(k) = fpg is

su�cient as a counter-example n-minimal model.

In the second case, let K be the n-minimal model with a root k

0

such that

atom

n

(k

0

) = ; and terminal nodes k

q

for every q 2 Q

i

. Then k

0


 ::

W

Q

i

but

k

0

1

W

R and also for every S

j

, as Q

i

is not a subset of S

j

, we will have k

0

1 ::

W

S

j

.

Hence k

0


 � and k

0

1  as required. a

3.4.5.47. Corollary. The fragment [_;::]

n

is complete for n-minimal models.

As we may con�ne our attention to n-minimal models in constructing an exact Kripke

model for [_;::;?]

n

we will use them in the de�nition of semantic types in [_;::]

n

.

3.4.5.48. Definition. Let k be a node in an n-minimal model. Then �

n

(k), the

semantic type of k in [^;_;:]

n

is the semantic type of k in [_;::]

n

and �

n

(k), the
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type formula of k in [^;_;:]

n

is the type of k in [_;::]

n

. The order of the semantic

types in [_;::]

n

is de�ned by:

t � t

0

, t = t

0

or t

0

2 j

1

(t) or (j

0

(t) � j

0

(t

0

) and ; 6= j

1

(t

0

) � j

1

(t)):

Note that for types in [_;::]

n

we will have �

n

(k) � �

n

(l) if atom

n

(k) = atom

n

(l)

or atom

n

(k) = ; and hatom

n

(l); ;i 2 j

1

(�

n

(k)).

In the de�nition of �

n

(k), the type of k in [_;::]

n

one will recognize the normal

form of the irreducible elements in the fragment.

Note that as k is a node in an n-minimal model �

n

(k) is either equivalent to an

atomic formula or to ::

W

Q where Q is the set of atoms forced in the terminal nodes

above k. Hence modulo equivalence �

n

(k) is indeed a formula in [_;::]

n

.

Let in this subsection Th

n

(k) be the notation for the formulas in [_;::]

n

forced

by k.

3.4.5.49. Lemma. If k and l are nodes in n-minimal models then:

�

n

(k) � �

n

(l) , Th

n

(k) � Th

n

(l) , l 
 �

n

(k):

Proof. That �

n

(k) � �

n

(l) implies Th

n

(k) � Th

n

(l) is a straightforward application

of lemma 3.4.0.5, on n-minimal models. As k 
 �

n

(k), obviously, Th

n

(k) � Th

n

(l)

implies l 
 �

n

(k)

To prove that l 
 �

n

(k) implies �

n

(k) � �

n

(l), let l 
 �

n

(k). As a simple

consequence we have j

0

(�

n

(k)) � j

0

(�

n

(l)). Hence, if atom

n

(k) = fqg, then also

atom

n

(l) = fqg, as both k and l are nodes in n-minimal models. As a consequence,

atom

n

(k) = fqg implies �

n

(k) = �

n

(l). So, assume atom

n

(k) = ;, by the de�nition of

an n-minimal model, k cannot be a terminal node. Observe, that �

n

(k) is a negation,

equivalent to ::

W

f�

n

(m) j m 2 Ter(k)g.

If atom

n

(l) = fqg, then, as l is a node in an n-minimal model, �

n

(l) = hfqg; ;i and

from l 
 �

n

(k) we may conclude l 


W

f�

n

(m) j m 2 Ter(k)g and hence l 
 �

n

(m),

for some m 2 Ter(k). This proves that �

n

(l) 2 j

1

(�

n

(k)).

On the other hand, if atom

n

(l) = ;, then l cannot be (bisimular to) a termi-

nal node in an n-minimal model. Hence j

0

(�

n

(l)) 6= ;. To prove that j

1

(�

n

(l)) �

j

1

(�

n

(k)), and hence �

n

(k) � �

n

(l), let m 2 Ter(l). Suppose atom

n

(m) = fqg,

then, as m 
 �

n

(k), �

n

(k) 0 :q. From the de�nition of �

n

(k) infer that there is a

k

0

2 Ter(k) with atom

n

(k

0

) = fqg. Hence, �

n

(m) = �

n

(k

0

) 2 j

1

(�

n

(k)). So, we have

atom

n

(k) = atom

n

(l) and ; 6= j

1

(�

n

(l)) � j

1

(�

n

(k)). Which, by de�nition, implies

�

n

(k) � �

n

(l). a

By ordering the semantic types in [_;::]

n

we construct a n-minimal model

Exm([_;::;?]

n

) which consists of n terminal nodes, each forcing one of the atoms

in fp

1

; : : : ; p

n

g and non-terminal nodes that force no atomic formulas but are char-

acterized by their set of terminal nodes.

Note that for n > 1 we added ? to the fragment to have a formula corresponding

to the empty set in the exact model.
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17. Figure. The diagram of [_;::;?]

2

and its exact Kripke model.

The formulas in the diagram of [_;::;?]

2

:

1: ? 3: q 5: p _ q 7: ::p _ q 9: ::p _ ::q

2: p 4: ::p 6: ::q 8: p _ ::q 10: ::(p _ q)

3.4.5.50. Theorem. The model Exm([_;::;?]

n

) is the exact Kripke model of the

fragment [_;::;?]

n

.

Proof. Because Exm([_;::;?]

n

) realizes all semantic types in [_;::]

n

), the model

is complete for the fragment. As we have seen, every semantic type corresponds to

a type formula in [_;::;?]

n

) and hence every non-empty closed subset corresponds

exactly to a disjunction of these type formulas in [_;::;?]

n

. For the empty set the

formula ? was added. a

The construction of Exm([_;::;?]

n

) shows that the non-terminal nodes correspond

to non-empty subsets of fp

1

; : : : ; p

n

g ordered by inclusion. Hence Exm([_;::;?]

n

)

is isomorphic to the the n-dimensional hypercube without a top, where the n max-

imal elements are connected to terminal nodes each forcing one of the atoms in

fp

1

; : : : ; p

n

g.



68 Chapter 3. Exact Models in IpL

uP

P

P

P

P
















u

u

uP

P

P

P

P
















u

u

u
















P

P

P

P

P

u

u

u

p

q

r

1

2

3

4

5

6

7

8

9

10

uP

P

P

P

P
















uP

P

P

P

P
















uP

P

P

P

P
















uP

P

P

P

P
















u

P

P

P

P

P














u

u

u

P

P

P

P

P














u

u

u

P

P

P

P

P














u

u

u

u u

u

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

u

u

p

q

r

s

18. Figure. The exact Kripke models of [_;::;?]

3

and [_;::;?]

4

As an example, we give the type formulas of [_;::;?]

3

.

1: p 5: ::q 9: ::(q _ r)

2: q 6: ::r 10: ::(p _ q _ r)

3: r 7: ::(p _ q)

4: ::p 8: ::(p _ r)

Recall from subsection 3.3 that D(k) is the k-th Dedekind number.

3.4.5.51. Theorem.

jDiag([_;::;?]

n

)j =

n

X

k=0

 

n

k

!

(D(k) + 1):

Proof. Observe that every formula in [_;::;?]

n

is equivalent to a disjunction of

atoms and formulas of the form ::

W

R (where

W

; = ?). Let Q � fp

1

; : : : ; p

n

g

and jQj = k. It is not di�cult to see that the set of formulas of the form ::

W

R,

with R 6= ; and R � fp

1

; : : : ; p

n

g, ordered by `, is isomorphic to Diag([_]

n

) (or

equivalently Diag([^])). Hence, the number of equivalence classes in [_;::;?]

n

with a representative of the form

W

Q _ ::

W

R with R nQ 6= ; equals D(n� k).

As there are

�

n

k

�

subsets Q � fp

1

; : : : ; p

n

g with jQj = k, we have, taking in

account the cases where R = ;:

jDiag([_;::;?]

n

)j =

n

X

k=0

 

n

k

!

(D(n� k) + 1):

Now use

�

n

k

�

=

�

n

n�k

�

to obtain the formula of the theorem. a
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3.5 The [^;!;:] fragments

The diagrams of [^;!;:] fragments have been studied by De Bruijn using exact

models in [Bruijn 75a] as a special case of [^;!] fragments

3

. Brie
y stated the

[^;!;:]

n

fragment is like a [^;!]

n+1

fragment, where one of the atoms is treated

as ? (and hence p

n+1

!

V

fp

1

; : : : ; p

n

g will be true).

Using semantic types we may start with the [^;!;:] fragments as the more

`natural' fragment.

Note that it is not trivial that the diagram of [^;!;:]

n

is a �nite distributive

lattice. Diego proved in [Diego 66] that the [^;!]

n

fragments are �nite (and from

the proof one could also infer that the diagram would be distributive). Using the

above cited enbedding of [^;!;:]

n

into [^;!]

n+1

this implies that also [^;!;:]

n

will have a �nite diagram.

As for the lattice operations in the diagram of [^;!;:]

n

, it will be obvious

how ^ will act as \, but for [ there is no simple operation in [^;!;:]

n

as _ is not

de�nable in terms of f^;!;:g. Hence in the following subsections the reader should

be cautious in not taking the irreducible formulas in (subfragments of) [^;!;:]

n

as

_-irreducible formulas.

To de�ne the semantic types in [^;!;:] fragments we will restrict our models

to the \-independent models.

3.5.0.1. Definition. Let K be a �nite IpL-model model and k 2 K. k is \-

independent if k is a terminal node or:

atom(k) 6=

T

fatom(l) j k < lg:

A �nite IpL-model K is \-independent if every node k 2 K is \-independent.

Observe that, in a \-independent n-model, k < l implies atom

n

(k) 6= atom

n

(l).

As is not di�cult to see, \-independentness is preserved under taking submodels.

3.5.0.2. Definition. Let K be a �nite IpL-model. The \-independent reduction

of K is the model K

\

, with the \-independent nodes of K as its worlds and its

accessibility relation inherited from K.

Note that, as \-independentness is preserved by taking submodels, the \-

independent reduction is an \-independent model.

3.5.0.3. Theorem. Let K be a �nite IpL-model and k 2 K, then for all formulas

� 2 [^;!;:]:

k 
 � , ("k)

\


 �:

Proof. By induction on �(k). If �(k) = 0, then the theorem is trivial. So assume

�(k) = m + 1 and apply induction on the length of �. The only interesting case is

� =  !� (including negation as a special case).

3

This was also the approach in [Hendriks 93]
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For the proof in the )-direction, let k 
  !�. To prove ("k)

\


  !�, let

l 2 ("k)

\

and ("l)

\


  . By the induction hypothesis, l 
  . As k � l, we conclude

l 
 � and, again by the induction hypothesis, ("l)

\


 �. Which proves ("k)

\


  !�

For the proof in the(-direction, let ("k)

\


  !�. To prove k 
  !�, let k � l

and l 
  . By the induction hypothesis, ("l)

\


  and as obviously ("l)

\

� ("k)

\

,

("l)

\


 � and, again by the induction hypothesis, l 
 �. Which proves k 
  !�. a

The converse of theorem 3.5.0.3 also holds, as theorem 3.5.0.24 below proves.

3.5.0.4. Theorem. The [^;!;:] fragment is complete for \-independent IpL mod-

els.

Proof. Obvious using theorem 3.5.0.3. a

Now we are ready to de�ne the semantic types for [^;!;:]

n

of nodes in \-

independent IpL-models.

3.5.0.5. Definition. For k a node in a �nite \-independent n-model, we de�ne

�

n

(k), the semantic type of k in [^;!;:]

n

as:

�

n

(k) = hatom

n

(k); f�

n

(l) j k < lgi:

If t and t

0

are semantic types in [^;!;:]

n

then de�ne t � t

0

if t = t

0

or t

0

2 j

1

(t).

The de�nition is sound, as in \-independent n-models k < l implies atom

n

(k) 6=

atom

n

(l) and hence, it is excluded that �

n

(k) 2 j

1

(�

n

(k).

The following simple lemma proves that semantic types in [^;!;:]

n

indeed be-

have as expected.

3.5.0.6. Lemma. For nodes k and l in �nite \-independent n-models, de�ne k � l

if �

n

(k) = �

n

(l). Then � is a bisimulation.

Proof. That k � l implies atom

n

(k) = atom

n

(l) is trivial. As the other conditions

in de�nition 2.2.0.1 are symmetric, we only prove one of them. Let k < k

0

then, by

de�nition, �

n

(k

0

) 2 j

1

(�

n

(k)). From j

1

(�

n

(k)) = j

1

(�

n

(l)) infer that there is a l

0

> l

such that �

n

(k

0

) = �

n

(l

0

). a

3.5.0.7. Corollary. If k and l are nodes in �nite \-independent n-models then

�

n

(k) � �

n

(l) implies Th

n

(k) � Th

n

(l).

Proof. If �

n

(k) = �

n

(l) then we have k

-

�

�

�

n

l and hence Th

n

(k) = Th

n

(l). Otherwise,

from �

n

(l) 2 j

1

(�

n

(k)) infer that there is a k

0

> k such that �

n

(k

0

) = �

n

(l) and hence

Th

n

(k) � Th

n

(k

0

) = Th

n

(l). a

We are almost ready now to introduce the exact Kripke model of [^;!;:]

n

as the

ordered set of semantic types in [^;!;:]

n

.

First however we have to prove that there are only �nitely many semantic types

in [^;!;:]

n

. To do so we use the following lemma.
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3.5.0.8. Lemma. If t is a semantic type in [^;!;:]

n

, then there is a node k in a

�nite \-independent n-model such that �

n

(k) = t and �(k) � n� jj

0

(t)j.

Proof. By a simple induction on d = n � jj

0

(t)j. For d = 0 observe that j

0

(t) =

fp

1

; : : : ; p

n

g. As t has to be a semantic type of a node in an \-independent n-model,

we may infer that j

1

(t) = ;.

If d > 0 then by induction hypothesis every t

0

2 j

1

(t) is realizable by a node k

t

0

with depth at most d� 1 (again using the fact that t must be a type of a node in an

\-independent n-model). Of course if a node k with atom

n

(k) = j

0

(t) is put below

all of these k

t

0

(with t

0

2 j

1

(t)), then �

n

(k) = t and �(k) � d. a

3.5.0.9. Corollary. There are �nitely many semantic types in [^;!;:]

n

.

Proof. Note that there are only �nitely many \-independent n-models with depth

less or equal than n and every semantic type in [^;!;:]

n

can be realized in one of

these models. a

3.5.0.10. Definition. If T is the set of semantic types in [^;!;:]

n

then de�ne

Exm([^;!;:]

n

) = hT;�; j

0

i.

u

u

@

@

@

u

u

@

@

@

u

u

@

@

@

�

�

�

�

�

�

�

�

�

�

�

�

p!p

::p

p

::p!p

:p

?

u u

u

p

19. Figure. The diagram of [^;!;:]

1

and the model Exm([^;!;:]

1

).

Note that we somewhat prematurely baptized the model de�ned as an exact model,

but we will prove this claim in due course. First there are some simple facts to

be arrested. If � a formula in [^;!;:]

n

, then [[�]] will be the valuation of � in

Exm([^;!;:]

n

) (hence [[�]] = fk 2 Exm([^;!;:]

n

) j k 
 �g).

3.5.0.11. Facts.

1. Exm([^;!;:]

n

) is a �nite \-independent n-model;

2. if t a semantic type in [^;!;:]

n

then �

n

(t) = t in Exm([^;!;:]

n

);

3. Exm([^;!;:]

n

) is complete for [^;!;:]

n

: if � and  in [^;!;:]

n

we have

� `  , [[�]] � [[ ]]:
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The �rst two of these facts are established by a close inspection of the construction

of Exm([^;!;:]

n

) from the semantic types in [^;!;:]

n

. The last one is a simple

consequence of the lemmas above.

To prove Exm([^;!;:]

n

) to be the exact model of [^;!;:]

n

, we need a for-

mula in [^;!;:]

n

for every closed subset of Exm([^;!;:]

n

). Unfortunately there

is no known simple construction for such a formula, which is independent of the

construction of the exact model. However, there is an easy way out.

3.5.0.12. Lemma. The diagram of [^;!;:]

n

is �nite.

Proof. Observe that the equivalence class of a [^;!;:]

n

formula � corresponds to

[[�]] in Exm([^;!;:]

n

). That is � �  i� [[�]] = [[ ]]. As Exm([^;!;:]

n

) is �nite,

there are only �nitely many equivalence classes in [^;!;:]

n

. a

De Bruijn proved the �niteness of Diag([^;!;:]

n

) in [Bruijn 75a]. Diego and

Urquhart independently proved that Diag([!]

n

) is �nite (see [Diego 66] and

[Urquhart 74]), from which the �niteness of Diag([^;!;:]

n

) is a simple corollary.

Observe, that using p ^ q!r ^ s � (p!(q!r)) ^ (p!(q!s)), we can prove that

every formula in [^;!;:]

n

is a conjunction of formulas in [!;:]

n

. As obviously

jDiag([!;:]

n

)j � jDiag([!]

n+1

)j, the �niteness of Diag([!]

n

) (for each n) implies

that Diag([^;!;:]

n

) is �nite.

3.5.0.13. Corollary. For every node k in a �nite \-independent n-model there

are, up to equivalence, only �nitely many formulas of [^;!;:]

n

in Th

n

(k).

The corollary justi�es the following de�nitions.

3.5.0.14. Definition. For a node k in a �nite \-independent n-model de�ne,

�

n

(k), the type of k in [^;!;:]

n

as

�

n

(k) =

V

Th

n

(k):

As stated earlier, this is an easy way out and we will return to the construction of type

formulas in the sequel. Obviously �

n

(k) is an axiom for Th

n

(k) and �

n

(k) � �

n

(l)

then l 
 �

n

(k).

3.5.0.15. Lemma. Let k and l be nodes in �nite \-independent n-models. If l 


�

n

(k) then �

n

(k) � �

n

(l).

Proof. Assume l 
 �

n

(k). To prove �

n

(k) � �

n

(l) we will use induction on �(l), the

depth of l. If �(l) = 0 then k 1 :�

n

CpL

(l) and hence there is a k

0

> k such that

k

0


 �

n

CpL

(l). In a \-independent n-model we may infer that k

0

has to be a terminal

node and hence �

n

(k

0

) = �

n

(l). Which proves �

n

(k) � �

n

(l).

If �(l) > 0, let l

0

> l. Then l

0


 �

n

(k) and �(l

0

) < �(l). According to the induction

hypothesis we will have �

n

(k) � �

n

(l

0

). This proves that j

1

(�

n

(l)) � j

1

(�

n

(k)). As

obviously the assumption implies that atom

n

(k) � atom

n

(l), this proves �

n

(k) �

�

n

(l). a
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3.5.0.16. Corollary. If k and l are nodes in �nite \-independent n-models then:

�

n

(k) � �

n

(l) , Th

n

(k) � Th

n

(l) , l 
 �

n

(k):

Proof. Corollary 3.5.0.7 takes care of �

n

(k) � �

n

(l) ) Th

n

(k) � Th

n

(l). As

�

n

(k) is the axiom of Th

n

(k), obviously Th

n

(k) � Th

n

(l) implies l 
 �

n

(k). Finally,

l 
 �

n

(k) ) �

n

(k) � �

n

(l) by lemma 3.5.0.15. a

With corollary 3.5.0.16 we are ready to prove that Exm([^;!;:]

n

) is indeed the

exact Kripke model we were looking for.

3.5.0.17. Theorem. The model Exm([^;!;:]

n

) de�ned above is the exact Kripke

model of [^;!;:]

n

.

Proof. As noted before, Exm([^;!;:]

n

) is complete for [^;!;:]

n

and we have to

prove that every closed subset X in this model corresponds to a formula in [^;!;:]

n

.

To do so we apply essentially use the same trick that was used to de�ne the

types of nodes in [^;!;:]

n

. Let �

n

(X) =

VT

fTh

n

(k) j k 2 Xg. Then clearly, by

de�nition, it will be true that X � [[�

n

(X)]].

To prove the inclusion in the other direction, suppose that k 
 �

n

(X). With

induction on �(k), the depth of k, we will prove that k 2 X. If �(k) = 0 then k is a

terminal node and apparently it is the case that for some l 2 X we had l 1 :�

n

CpL

(k).

As otherwise �

n

(X) would imply :�

n

CpL

(k). Hence for some l 2 X there is a l

0

> l

with l

0


 �

n

CpL

(k). As Exm([^;!;:]

n

) is a \-independent n-model, this l

0

has to be

a terminal node. As the semantic types in Exm([^;!;:]

n

) are unique, we conclude

that k = l

0

. From l 2 X and l < k infer that k 2 X as X is a closed subset of

Exm([^;!;:]

n

).

If �(k) > 0 then for k

0

> k we conclude from k

0


 �

n

(X) and the induction

hypothesis that k

0

2 X. As Exm([^;!;:]

n

) is a \-independent n-model, there is a

q 2 atom

n

(k) n

T

fatom

n

(l) j k < lg. Note that for k < l we have l 
 �

n

(k)!q but

k 1 �

n

(k)!q. Now suppose that l 2 X and l 
 �

n

(k) then by lemma 3.5.0.15 we

have k � l. Hence (�

n

(k)!q) 2 X i� k 62 X. As k 
 �

n

(X) infer that k 2 X. a

The model Exm([^;!;:]

n

) can stagewise be constructed as the minimal \-

independent n-model realizing all semantic types in [^;!;:]

n

. Let us de�ne the

n + 1 stages E

n

i

needed in the construction. Recall that P

�

(X) is the set of closed

subsets in X.

3.5.0.18. Definition. De�ne E

n

0

as the set of 2

n

terminal nodes with semantic type

hQ; ;i such that Q � fp

1

; : : : ; p

n

g.

Now inductively de�ne:

E

n

m+1

= E

n

m

[ fhQ; Si j S 2 P

�

(E

n

m

) and Q �

T

fj

0

(t) j t 2 Sg 6= Qg:

The order in E

n

m

is the order of types in [^;!;:]

n

.

Note that the construction of E

n

m

is only possible for m � n.
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3.5.0.19. Facts. From the construction of E

n

n

the following facts are obvious:

1. E

n

n

is a �nite \-independent n-model;

2. Every semantic type of [^;!;:]

n

is realized in E

n

n

exactly once;

3. E

n

n

= Exm([^;!;:]

n

).

Let us return to the type formulas in [^;!;:]

n

. Recall the de�nition of �

n

(k) in

de�nition 3.5.0.14.

3.5.0.20. Definition. Let k be a node in a �nite \-independent n-model and X �

fp

1

; : : : ; p

n

g. De�ne:

1. Newatom

n

(k) = fq j q 2

T

fatom

n

(l) j k < lg n atom

n

(k)g;

2. �X =

V

fp!q j p; q 2 Xg;

3.  

n

(k) =

8

>

<

>

:

:�

n

CpL

(k) if �(k) = 0

�

n

(k)!q, where q 2 Newatom

n

(k) otherwise.

The proper de�nition of  

n

(k) of course requires a choice of q 2 Newatom

n

(k). As

this choice will not make any di�erence in the sequel, one may take for example the

p

i

with the least i such that p

i

2 Newatom

n

(k).

3.5.0.21. Lemma. If k and l are nodes in �nite \-independent n-models then:

l 1  

n

(k) , �

n

(l) � �

n

(k):

Proof. If k is a terminal node, the lemma is rather trivial. So, assume �(k) > 0.

To prove l 1  

n

(k) ) �

n

(l) � �

n

(k), let l 1  

n

(k). As  

n

(k) = �

n

(k)!q,

this implies, for some l

0

� l, that l

0


 �

n

(k) and l

0

1 q, where q 2 Newatom

n

(k).

According to corollary 3.5.0.16, l

0


 �

n

(k) implies �

n

(k) � �

n

(l

0

). In �nite \-

independent models, it is not di�cult to prove that if �

n

(k) � �

n

(m) (i.e. �

n

(k) �

�

n

(m) but �

n

(k) 6= �

n

(m)), then m 
 q, for q 2 Newatom

n

(k). As l

0

1 q and

obviously from l � t

0

we may conclude that �

n

(l) � �

n

(l

0

), we have �

n

(l) � �

n

(l

0

) =

�

n

(k).

To prove �

n

(l) � �

n

(k) ) l 1  

n

(k), observe that by de�nition k 1 q. So, if

�

n

(l) � �

n

(k), then l 
  

n

(k) would imply, by corollary 3.5.0.16, that k 
  

n

(k). As

k 
 �

n

(k), we would have k 
 q, a contradiction. Hence, we conclude l 1  

n

(k). a

We are now ready for a characterization of �

n

(k), the type of k in [^;!;:]

n

.

An analogous characterization was used, as a de�nition, in [De Jongh 68] (also

in [De Jongh 70], [De Jongh 80] and [JHR 91]). We will use the exact model of

[^;!;:]

n

in the characterization. Note that as for every semantic type in a �nite

\-independent n-model, there is a node in the exact model with the same semantic

type, theorem 3.5.0.23 is more generally applicable.
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3.5.0.22. Definition. If k is a node in Exm([^;!;:]

n

) and q 2 Newatom

n

(k)

then de�ne:

�

n

(k) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�

n

CpL

(k) if �(k) = 0

V

atom

n

(k) ^�Newatom

n

(k)^

V

f 

n

(l)!q j k <

1

lg^

V

f 

n

(m) j not (m � k) and

T

fatom

n

(l) j k < lg � atom

n

(m)g if �(k) > 0.

3.5.0.23. Theorem. If k is a node in Exm([^;!;:]

n

) then �

n

(k) � �

n

(k).

Proof. If k is a terminal node, then it is rather obvious that �

n

(k) = �

n

CpL

(k) and

hence the theorem is true by de�nition. So assume �(k) > 0.

To prove �

n

(k) ` �

n

(k) we show that k 
 �

n

(k). That k 


V

atom

n

(k) ^

�Newatom

n

(k)^ is rather obvious. For k < l we have l 
 q and k 1  

n

(l) by

lemma 3.5.0.21. According to the same lemma k 
  

n

(m) if not m � k, which

proves that k will also force the last of the conjunctions in �

n

(k).

For the proof of the other direction, assume l 
 �

n

(k). We will show that as a

consequence k � l and hence l 
 �

n

(k). As Exm([^;!;:]

n

) is the exact model of

[^;!;:]

m

, this proves �

n

(k) ` �

n

(k).

Suppose Newatom

n

(k) � atom

n

(l). Then, using the last part in the conjunction

of �

n

(k), not k � l implies �

n

(k) `  

n

(l). As l 1  

n

(l), infer that k � l and hence

l 
 �

n

(k). If Newatom

n

(k) is not a subset of atom

n

(l), then l 1 q for every q 2

Newatom

n

(k) (because l 
 �Newatom

n

(k)). Hence if k <

1

k

0

then, using the third

conjunct in �

n

(k), we have l 1  

n

(k

0

). By lemma 3.5.0.21 this implies that l � k

0

.

Hence atom

n

(l) will be included in atom

n

(k) [ Newatom

n

(k). From atom

n

(k) �

atom

n

(k

0

) and Newatom

n

(k) \ atom

n

(l) = ; infer that atom

n

(l) = atom

n

(k) and

hence �

n

(k) = �

n

(l). As semantic types are unique in Exm([^;!;:]

n

), we conclude

k = l and trivially l 
 �

n

(k). a
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20. Figure. The exact Kripke model of [^;!;:]

2

.
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This model has 2 134 upwards closed subsets, corresponding to the 2 134 equivalence

classes of [^;!;:]

2

.

The type formulas in [^;!;:]

2

are:

1: p ^ q 9: (q!p) ^ (:q!p) ^ (::q!q)

2: p ^ ::q 10: (p$ q) ^ ::p

3: p ^ :q 11: (p!q) ^ (:p!q) ^ (::p!p)

4: q ^ :p 12::(q!p)

5: q ^ ::p 13: (::p!q) ^ ((::p!p)!q)

6:::q ^ ((p!q)!p) 14:::p ^ ((q!p)!q)

7: (::q!p) ^ ((::q!q)!p) 15::p ^ :q

8::(p!q)
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21. Figure. Part of the model Exm([^;!;:]

3

). The 6 386 nodes k with

atom

n

(k) = ; have been omitted. The order in the model is from the outside in-

wards.

We may now use the exact model of the fragment [^;!;:]

n

to prove the converse

of theorem 3.5.0.3. This was suggested �rst by Albert Visser.

3.5.0.24. Theorem. If � is an IpL formula such that for every node k in a �nite

Kripke model:

k 
 � , ("k)

\


 �
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then � is equivalent to a formula in [^;!;:]

n

.

Proof. Let � be a formula in IpL

n

with the property that for every Kripke model

K and every node k 2 K, k 
 � , ("k)

\


 �. Let � 2 [^;!;:]

n

be the formula

with [[�]] = [[�]] in Exm([^;!;:]

n

). For a node k in a �nite \-independent model

we have, using lemma 3.5.0.6: k 
 � , k 
 �.

As � is a formula in [^;!;:]

n

, by theorem 3.5.0.3, k 
 � , ("k)

\


 �. Hence

we have:

k 
 � , ("k)

\


 � , ("k)

\


 � , k 
 �:

Which proves � � �. a

3.5.1 The [!;:] fragments

To calculate the diagram of [!;:]

n

we have to use the exact Kripke model of

[^;!;:]

n

, as Diag([!;:]

n

) for n > 1 is not a lattice and hence does not have

an exact model of its own.

3.5.1.25. Lemma. Every formula in [^;!;:]

n

is equivalent to a conjunction of

formulas in [!;:]

n

Proof. We proceed by induction on the length of �. Only the cases in which �

is a negation or an implication are non-trivial. If � = : , then according to the

induction hypothesis  is a conjunction of formulas in [!;:]

n

. Now apply the IpL

theorem :(A ^ B) � A!:B to show that � is equivalent to a formula in [!;:]

n

.

In the case that � =  !�, we use the induction hypothesis �rst to infer that � is

equivalent to a conjunction of formulas of the form  !�

i

, where � =

V

�

i

and every

�

i

is a formula in [!;:]

n

. Again applying both the induction hypothesis and the

theorem A ^B!C � A!(b!C), we conclude that � is equivalent to a conjunction

of formulas in [!;:]

n

. a

3.5.1.26. Lemma. An IpL formula � is equivalent to a formula in [!;:]

n

i� � �

: or � �  !p, for some  2 [^;!;:]

n

and p 2 fp

1

; : : : ; p

n

g.

Proof. That every formula � 2 [!;:]

n

is equivalent to either a negation or a formula

 !p with  2 [^;!;:]

n

and p 2 fp

1

; : : : ; p

n

g can easily be proved by induction on

the length of �. If � =  !�, note that by the induction hypothesis � � �!p and

hence � �  ^ �!p.

For the other direction of the lemma, note that if � �  !p with � 2 [^;!;:]

n

,

then  is, according to lemma 3.5.1.25 equivalent to a conjunction of formulas in

[!;:]

n

. Now apply A ^ B!C � A!(B!C). a

For the calculation of the number of classes in Diag([!;:]

n

), it is more convenient

to work with the complement of [[�]] in Exm([^;!;:]

n

).
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3.5.1.27. Definition. Let [[�]] be the valuation of formulas in Exm([^;!;:]

n

).

De�ne �

n

(�) = Exm([^;!;:]

n

) n [[�]].

3.5.1.28. Lemma. Let � and  be formulas in [^;!;:]

n

. Then

1. �

n

(�) � �

n

( ) ,  ` �;

2. �

n

(� ^  ) = �

n

(�) [ �

n

( );

3. �

n

(�! ) = #(�

n

( ) n �

n

(�));

4. �

n

(:�) = #(Exm([^;!;:]

n

) n �

n

�) = #[[�]].

Proof. The proofs of the �rst two propositions in the lemma are straightforward.

The last part of the lemma is a simple corollary of the third.

For proof of the third statement in the lemma, observe that by the de�nition of

�

n

: k 2 �

n

(�! ) i� for some l � k both l 
 � and l 1  . Hence k 2 �

n

(�! )

i� for some l � k we have l 2 �

n

(�) n �

n

( ). But the latter is equivalent to

k 2 #(�

n

( ) n �

n

(�)). a

3.5.1.29. Definition. For a formula � in [^;!;:]

n

we de�ne ucv

n

(�), the upper

carrier of �, as the set of maximal elements in �

n

(�).

The upper carrier valuation was introduced in [Bruijn 75a]. Using the dual of our

exact models, De Bruijn, called it the lower carrier valuation. Observe that �

n

(�) =

#ucv

n

(�) and ucv

n

(�) is the smallest subset in Exm([^;!;:]

n

) with this property.

3.5.1.30. Lemma. For � 2 [^;!;:]

n

let An

n

(�) be the set of equivalence classes in

[^;!;:]

n

that have a representative of the form  !�, with  2 [^;!;:]

n

. Then

jAn

n

(�)j = jP(ucv

n

(�))j = 2

jucv

n

(�)j

:

Proof. As �

n

( !�) = #(�

n

( ) n �

n

(�)) = #(ucv

n

(�) n �

n

( )), every  !� 2

[^;!;:]

n

corresponds to a subset in ucv

n

(�).

For every subset X � ucv

n

(�) there is a formula  2 [^;!;:]

n

such that

�

n

( ) = #(ucv

n

(�) nX), because Exm([^;!;:]

n

) is the exact model of [^;!;:]

n

.

Infer that �

n

( !�) = #X and hence every subset of ucv

n

(�) corresponds to an

equivalence class representable by a formula of the form  !�. a

The following theorem is a simple generalization of the technique used in [Bruijn 75a]

to calculate the number of equivalence classes in [!]

3

.

3.5.1.31. Theorem. Let N(n; 0) = 0 and N(n; k) = 2

j

T

fucv

n

(p

i

)ji�kgj

for k > 0.

Moreover, let M(n; 0) = 2

jucv

n

(?)j

and M(n; k) = 2

jucv

n

(?)\

T

fucv

n

(p

i

ji�kgj

. Then:

jDiag([!;:]

n

)j =M(n; 0) +

n

X

k=1

(�1)

k�1

 

n

k

!

(N(n; k)�M(n; k)):

Proof. According to lemma 3.5.1.26 and lemma 3.5.1.30 every formula in [!;:]

n

corresponds exactly to a subset of ucv

n

(?) or ucv

n

(p) for some p 2 fp

1

; : : : ; p

n

g. In
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general these upper carrier valuations are not disjoint. So, in order to count their

subsets, we have to use the rule jP(A)[P(B)j = jP(A)j+ jP(B)j � jP(A \ B)j. So:

jDiag([!;:]

n

)j = jP(ucv

n

(?))j+

j

S

fP(ucv

n

(p

i

)) j i � ngj �

jP(ucv

n

(?)) \

S

fP(ucv

n

(p

i

)) j i � ngj

Using the symmetry in Exm([^;!;:]

n

), we have

j

S

fP(ucv

n

(p

i

)) j i � ngj =

n

X

k=1

(�1)

k�1

 

n

k

!

N(n; k)

and

jP(ucv

n

(?)) \

S

fP(ucv

n

(p

i

)) j 1 � i � ngj =

n

X

k=1

(�1)

k

 

n

k

!

M(n; k):

From which the equation follows. a

3.5.1.32. Corollary. The number of elements in [!;:]

2

is:

2

4

+ 2(2

8

� 2

2

)� (2

2

� 2) = 518:

Proof. In Exm([^;!;:]

2

) (see �gure 20) we have ucv

2

(?) = f1; 3; 4; 15g, ucv

2

(p) =

f4; 5; 6; 7; 8; 9; 10; 15g and ucv

2

(q) = f2; 3; 10; 11; 12; 13; 14; 15g. So we can calcu-

late ucv

2

(?) \ ucv

2

(p) = f4; 15g, ucv

2

(p) \ ucv

2

(q) = f10; 15g and ucv

2

(?) \

ucv

2

(p) \ ucv

2

(q) = f15g. According to theorem 3.5.1.31, then jDiag([!;:]

2

j =

2

4

+ 2(2

8

� 2

2

)� (2

2

� 2) a

The 518 elements of the diagram of [!;:]

2

have been calculated using the model

Exm([^;!;:]

n

). They are listed in appendix B.1.

Applying the method of theorem 3.5.1.31 on Exm([^;!;:]

3

), Renardel de

Lavalette calculated the cardinality of Diag([!;:]

3

).

3.5.1.33. Fact. jDiag([!;:]

3

)j = 3:2

2 148

� 546

3.5.2 The [^;!;::] fragments

The fragment [^;!;::]

n

does have an exact model which is not an exact Kripke

model. This is even true if n = 1, see �gure 22, where the irreducible classes in

the diagram correspond to the formulas ::p and ::p!p. The exact model needs a

Kripke completion to force ::p in the appropriate node.
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22. Figure. The diagram of [^;!;::]

1

and its universal model. (The encircled

node has been added.)

As we will see, for each n there is universal model for [^;!;::]

n

that is a simple

Kripke extension of the exact model of [^;!;::]

n

.

As [^;!;::]

n

is a subfragment of [^;!;:]

n

, the following fact is a simple con-

sequence of theorem 3.5.0.4.

3.5.2.34. Fact. The fragment [^;!;::]

n

is complete for �nite \-independent n-

models.

Obviously, a node k in a �nite \-independent n-model with atom

n

(k) = fp

1

; : : : ; p

n

g

will force every formula in [^;!;::]

n

.

3.5.2.35. Definition. A �nite \-independent n-model K is a proper [^;!;::]

n

model if for every k 2 K with �(k) > 0, there is a l > k such that atom

n

(l) =

fp

1

; : : : ; p

n

g

In this subsection Th

n

(k) will denote the set of formulas in [^;!;::]

n

forced by k.

3.5.2.36. Lemma. The fragment [^;!;::]

n

is complete for proper [^;!;::]

n

models.

Proof. We will prove that for �;  2 [^;!;::]

n

such that � 0  , there is a k in a

proper [^;!;::]

n

model with k 
 � and k 1  .

Let �;  2 [^;!;::]

n

and � 0  . According to fact 3.5.2.34, there is a k in

a \-independent n-model with k 
 � and k 1  . By induction on the depth of k

we will prove that we can extend the submodel "k to a proper [^;!;::]

n

model,

without changing the [^;!;::]

n

theory of k.

If �(k) = 0, then "k is already a proper [^;!;::]

n

model. For the induction step,

add a terminal node k

n

to "k, such that atom

n

(k

n

) = fp

1

; : : : ; p

n

g and for all l � k

with l 62 Ter(k), l > k

n

. Using induction on the length of formula � 2 [^;!;::]

n

it is straightforward to prove that k 
 � i� k forces � in the extended model. From

which we conclude that the [^;!;::]

n

theory of k in both models is the same. a

The semantic types in [^;!;::]

n

will be de�ned as the semantic types of [^;!;:]

n

restricted to proper [^;!;::]

n

models.

3.5.2.37. Definition. Let k be a node in a proper [^;!;::]

n

model then �

n

(k),

the semantic type of k in [^;!;::]

n

is de�ned by:

�

n

(k) = hatom

n

(k); f�

n

(l) j k < lgi:
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If t and t

0

are semantic types in [^;!;:]

n

then de�ne t � t

0

if t = t

0

or t

0

2 j

1

(t).

The proofs of the following facts are the same as in section 3.5.

3.5.2.38. Facts. Let k and l be nodes in proper [^;!;::]

n

models.

1. �

n

(k) = �

n

(l) , k

-

�

�

�

n

l;

2. �

n

(k) � �

n

(l) ) Th

n

(k) � Th

n

(l).

Let us now de�ne the model Umod([^;!;::]

n

), that will be proved in the sequel

to be the universal model for [^;!;::]

n

.

3.5.2.39. Definition. We de�ne Umod([^;!;::]

n

) = hT;�; j

0

i, where T is the

set of semantic types in [^;!;::]

n

.

3.5.2.40. Facts.

1. Umod([^;!;::]

n

) is a proper [^;!;::]

n

model;

2. if t a semantic type in [^;!;::]

n

then �

n

(t) = t in Umod([^;!;::]

n

);

3. Umod([^;!;::]

n

) is complete for [^;!;::]

n

: if � and  in [^;!;::]

n

we

have

� `  , [[�]] � [[ ]]:

As proper [^;!;::]

n

models are �nite \-independent n-models, we may use

Newatom

n

(k), �Newatom

n

(k) as de�ned in de�nition 3.5.0.20. Observe that, as

Diag([^;!;::]

n

) is obviously �nite, the following de�nition is allowed.

3.5.2.41. Definition. For a node k in a proper [^;!;::]

n

model de�ne �

n

(k),

the type of k in [^;!;::]

n

as:

�

n

(k) =

V

Th

n

(k):

3.5.2.42. Lemma. Let k and l be nodes in proper [^;!;::]

n

models. If l 
 �

n

(k)

then �

n

(k) � �

n

(l) or atom

n

(l) = fp

1

; : : : ; p

n

g.

Proof. Assume l 
 �

n

(k) and atom

n

(l) 6= fp

1

; : : : ; p

n

g. To prove �

n

(k) �

�

n

(l) we will use induction on �(l), the depth of l. If �(l) = 0 then k 1

V

atom

n

(l) ^ �Newatom

n

(l)!

V

fp

1

; : : : ; p

n

g and hence there is a k

0

> k such that

k

0




V

atom

n

(l) ^ �Newatom

n

(l) and k

0

1

V

fp

1

; : : : ; p

n

g. In a proper [^;!;::]

n

model we may infer that k

0

has to be a terminal node and hence �

n

(k

0

) = �

n

(l).

Which proves �

n

(k) � �

n

(l).

If �(l) > 0, let l

0

> l. Then l

0


 �

n

(k) and �(l

0

) < �(l). According to the induc-

tion hypothesis we will have �

n

(k) � �

n

(l

0

). This proves that j

1

(�

n

(l)) � j

1

(�

n

(k)).

As obviously the assumption implies that atom

n

(k) � atom

n

(l), we may infer that

�

n

(k) � �

n

(l). a

3.5.2.43. Corollary. Let k and l be nodes in proper [^;!;::]

n

models, then:

�

n

(k) � �

n

(l) , Th

n

(k) � Th

n

(l) , l 
 �

n

(k):
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To prove Umod([^;!;::]

n

) to be an universal model for [^;!;::]

n

we will use

the next lemma. We will write k

n

to refer to the node in Umod([^;!;::]

n

) with

atom

n

(k

n

) = fp

1

; : : : ; p

n

g.

3.5.2.44. Lemma. Let X be a closed subset in Umod([^;!;::]

n

), containing k

n

.

De�ne �

n

(X) =

VT

fTh

n

(l) j l 2 Xg. Then for every node k in Umod([^;!;::]

n

):

k 2 X , k 
 �

n

(X):

Proof. That k 2 X implies k 
 �

n

(X) is clear from the de�nition of �

n

(X). For

the other direction, like in theorem 3.5.0.17 we proceed by induction over �(k), the

depth of k.

So assume k 
 �

n

(X). If �(k) = 0, then �Newatom

n

(k) ` p!q for every

p and q in fp

1

; : : : ; p

n

g. Either k = k

n

and k 2 X by de�nition, or �

n

(X) 0

V

atom

n

(k) ^ �Newatom

n

(k)!

V

fp

1

; : : : ; p

n

g. Suppose k 6= k

n

. Then for some

l 2 X there is a l

0

� l such that l

0


 �

n

(X) 0

V

atom

n

(k) ^ �Newatom

n

(k) and

l

0

1

V

fp

1

; : : : ; p

n

g. As Umod([^;!;::]

n

) is a proper [^;!;::]

n

model, this implies

that l

0

is a terminal node and atom

n

(k) = atom

n

(l). As semantic types are unique

in Umod([^;!;::]

n

), infer that k = l

0

. The set X was supposed to be closed, so,

from l � k we conclude that k 2 X.

If �(k) > 0 then for k

0

> k we conclude from k

0


 �

n

(X) and the induction

hypothesis that k

0

2 X. As Umod([^;!;::]

n

) is a proper [^;!;::]

n

model, there

is a q 2 atom

n

(k) n

T

fatom

n

(l) j k < lg. Note that for k < l we have l 
 �

n

(k)!q

but k 1 �

n

(k)!q. Now suppose that l 2 X and l 
 �

n

(k) then by lemma 3.5.2.42

we have k � l. Hence (�

n

(k)!q) 2 X i� k 62 X. As k 
 �

n

(X) infer that k 2 X. a

3.5.2.45. Theorem. Umod([^;!;::]

n

) is a universal model for [^;!;::]

n

).

Proof. Umod([^;!;::]

n

) is a complete model for [^;!;::]

n

, according to fact 3.

By lemma 3.5.2.44 we have an exact correspondence between equivalence classes

in [^;!;::]

n

and closed subsets of Umod([^;!;::]

n

) that include the node k

n

.

Deleting k

n

from Umod([^;!;::]

n

) and assigning the empty set to

V

fp

1

; : : : ; p

n

g,

we have an exact correspondence between members of Diag() and closed subsets in

the resulting model. Clearly Umod([^;!;::]

n

) is a minimal complete model for

[^;!;::]

n

. a

3.5.2.46. Corollary. The exact model of [^;!;::]

n

is (isomorphic to)

Umod([^;!;::]

n

), after deleting k

n

.
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23. Figure. The model Umod([^;!;::]

n

). The encircled node has been added to

the exact model of [^;!;::]

2

.

The exact model has 676 upward closed subsets, corresponding to the 676 equivalence

classes of [^;!;::]

2

.

The type formulas in [^;!;::]

2

are:

1: p ^ ::q 5:::q ^ ((p!q)!p) 9: (q!::p)!(p ^ q)

2: p ^ (::q!q) 6: (::q!(p ^ q))!p) 10: (::p!(p ^ q))!q)

3: q ^ (::p!p) 7: (p!::q)!(p ^ q) 11:::p ^ ((q!p)!q)

4:::p ^ q 8: (p!q) ^ (q!p) ^ ::p 12: ((q!p)!::p)!(p ^ q)

3.5.3 The [!;::] fragments

The diagram of [!;::]

n

is not a lattice (it does not have a bottom element) if n > 1.

For n = 1 we have, of course, Diag([!;::]

1

)

�

=

Diag([^;!;::]

1

) (see �gure 22).

To calculate the diagram of [!;:]

n

we will use the universal model of [^;!;::]

n

.

3.5.3.47. Lemma. Every formula in [^;!;::]

n

is equivalent to a conjunction of

formulas in [!;::]

n

Proof. The proof is much like that of lemma 3.5.1.25. We proceed by induction on the

length of �. Only the cases in which � is a double negation or an implication are non-

trivial. If � = :: , then according to the induction hypothesis  is a conjunction

of formulas in [!;::]

n

. Now apply the IpL theorem ::(A ^ B) � :(A!:B) to

show that � is equivalent to a formula in [!;:]

n

.

In the case that � =  !�, the proof runs like in 3.5.1.25. a

3.5.3.48. Lemma. An IpL formula � is equivalent to a formula in [!;::]

n

i�

� �  !p for some  2 [^;!;::]

n

and p 2 fp

1

; : : : ; p

n

g.

Proof. The proof is essentially the same as that of lemma 3.5.1.26. Observe that

double negations can be treated as implications, using ::� � (::�!�)!�. a
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As in subsection 3.5.1, for the calculation of the number of classes in Diag([!;::]

n

)

it is more convenient to work with the complement of [[�]] in Umod([^;!;::]

n

).

3.5.3.49. Definition. Let [[�]] be the valuation of formulas in Umod([^;!;::]

n

).

De�ne �

n

(�) = Umod([^;!;::]

n

) n [[�]].

The proof of the following facts is exactly the same as for lemma 3.5.1.28.

3.5.3.50. Facts. Let � and  be formulas in [^;!;::]

n

. Then

1. �

n

(�) � �

n

( ) ,  ` �;

2. �

n

(� ^  ) = �

n

(�) [ �

n

( );

3. �

n

(�! ) = #(�

n

( ) n �

n

(�));

4. �

n

(::�) = #Umod([^;!;::]

n

) n (#Umod([^;!;::]

n

) n dar�

n

(�)) =

#Umod([^;!;::]

n

) n #[[�]].

3.5.3.51. Definition. For a formula � in [^;!;::]

n

we de�ne ucv

n

(�), the upper

carrier of �, as the set of maximal elements in �

n

(�).

Observe that the element k

n

in Umod([^;!;::]

n

), with atom

n

(k

n

) = fp

1

; : : : ; p

n

g,

is in [[�]] for every � 2 [^;!;::]

n

and hence in no �

n

(�) or ucv

n

(�).

3.5.3.52. Lemma. For � 2 [^;!;::]

n

let An

n

(�) be the set of equivalence classes

in [^;!;::]

n

that have a representative of the form  !� with  2 [^;!;::]

n

.

Then

jAn

n

(�)j = jP(ucv

n

(�))j = 2

jucv

n

(�)j

:

Proof. The proof is essentially the same as for lemma 3.5.1.30. a

3.5.3.53. Theorem.

jDiag([!;::]

n

)j =

n

X

k=1

(�1)

k�1

 

n

k

!

N(n; k):

where N(n; k) = 2

j

T

fucv

n

(p

i

)ji�kgj

.

Proof. The proof is a simpli�ed version of the proof of theorem 3.5.1.31, using the

symmetry in Umod([^;!;::]

n

). a

3.5.3.54. Corollary. The number of elements in [!;::]

2

is:

2:2

7

� 2

2

= 252:

Proof. In Umod([^;!;::]

n

(see �gure 23) we have ucv

2

(p) = f3; 4; 5; 6; 7; 8; 12g

ucv

2

(q) = f1; 2; 8; 9; 10; 11; 12g. So we have ucv

2

(p) \ ucv

2

(q) = f8; 12g. According

to theorem 3.5.3.53, then jDiag([!;:]

2

j = 2:2

7

� 2

2

a

Applying the method of theorem 3.5.1.31 on Exm([^;!;:]

3

), Renardel de Lavalette

calculated the cardinality of Diag([!;::]

3

).

3.5.3.55. Fact. jDiag([!;::]

3

)j = 3:2

689

� 380
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3.6 The [^;!] fragments

The [^;!]

n

fragments of IpL are much like the [^;!;:]

n

fragments

4

.

As we will see, the only di�erence between the semantic types in [^;!;:]

n

and

[^;!]

n

is that in the later the semantic types with j

0

(k) = fp

1

; : : : ; p

n

g are redun-

dant. Observe that a node with such a semantic type (i.e. where all the atoms hold),

forces all formulas in [^;!]

n

.

3.6.0.1. Definition. A �nite \-independent n-model K is a proper [^;!]

n

model

if for no k 2 K we have atom

n

(k) = fp

1

; : : : ; p

n

g.

Any \-independent n-model can easily be turned into a proper [^;!]

n

model.

3.6.0.2. Definition. Let K be a \-independent n-model. Then K

-

is the model

resulting from K after leaving out all nodes k with atom

n

(k) = fp

1

; : : : ; p

n

g.

3.6.0.3. Lemma. Let K be a �nite \-independent n-model and k 2 K

-

. Then for

all � 2 [^;!]

n

:

k 


K

� , k 


K

-

�:

Proof. Let us use 


0

for forcing inK

-

in contrast to 
 for forcing inK. We proceed by

induction on the length of �. The cases where � is either atomic or a conjunction are

trivial. So let � =  !�. Suppose k 
 � and let l 2 K

-

such that k � l and l 


0

 .

Using the induction hypothesis we conclude that l 
  and hence l 
 �. Again by the

induction hypothesis, we infer that l 


0

�. Which proves 8l � k(l 


0

 ) l 


0

�),

i.e. k 


0

�.

Now suppose k 


0

� and l 2 K with both k � l and l 
  . If atom

n

(l) =

fp

1

; : : : ; p

n

g then l forces all formulas of [^;!]

n

and hence also l 
 �. Otherwise, we

have l 2 K

-

. By the induction hypothesis l 


0

 and, as k 


0

�, also l 


0

�. Again

with the induction hypothesis, we conclude l 
 �. Which proves k 
 �. a

The following theorem justi�es our de�nition of proper [^;!]

n

models.

3.6.0.4. Theorem. The fragment [^;!]

n

is complete for proper [^;!]

n

models.

Proof. Let � and  be formulas in [^;!]

n

, such that � 0  . As [^;!]

n

is a sub-

fragment of [^;!;:]

n

, by application of theorem 3.5.0.4, there is a node k in a

\-independent n-model K with k 
 � and k 1  . From k 1  infer that k 2 K

-

.

As K

-

is a proper [^;!]

n

model and according to lemma 3.6.0.2 k 
 � and k 
  in

K

-

. a

3.6.0.5. Definition. For a node k in a proper [^;!]

n

model de�ne the semantic

type of k in [^;!]

n

as:

�

n

(k) = hatom

n

(k); f�

n

(l) j k < lgi:

4

As an alternative notation of [^;!;:]

n

we could have taken [^;!;?]

n

.
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Semantic types in [^;!]

n

are a special case of semantic types in [^;!;:]

n

and they

are ordered in the same way. Obviously there are only �nitely many semantic types

in [^;!]

n

.

For the proof of the following facts one only has to modify slightly the corre-

sponding proofs in section 3.5. Obviously Th

n

(k) in this section means the theory

of node k in [^;!]

n

.

3.6.0.6. Facts. Let k and l be nodes in proper [^;!]

n

models.

1. �

n

(k) = �

n

(l) , k

-

�

�

�

n

l;

2. �

n

(k) � �

n

(l) ) Th

n

(k) � Th

n

(l).

3.6.0.7. Definition. If T is the set of semantic types in [^;!]

n

, then de�ne

Exm([^;!]

n

) = hT;�; j

0

i.
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24. Figure. The fragment [^;!]

2

and the model Exm([^;!]

n

).

The formulas in Diag([^;!]

2

):
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1: p ^ q 10: q!p

2: p 11: (p!q)!q

3: (p!q) ^ (q!p) 12: (((p!q)!p)!p) ^ (((q!p)!q)!q)

4: q 13: (q!p)!p

5: (p!q)!p 14: p!q

6: ((p!q)!q)!p 15: ((q!p)!q)!q

7: ((p!q)!q) ^ ((q!p)!p) 16: ((p!q) ^ (q!p))!p

8: ((q!p)!p)!q 17: ((p!q)!p)!p

9: (q!p)!q 18: p!p

As in section 3.5 the following facts are rather simple consequences of the de�nition

of Exm([^;!]

n

).

3.6.0.8. Facts.

1. Exm([^;!]

n

) is a proper [^;!]

n

model;

2. for t a semantic type in [^;!]

n

we have �

n

(t) = t in Exm([^;!]

n

);

3. Exm([^;!]

n

) is complete for [^;!]

n

: for � and  in [^;!]

n

we have

� `  , [[�]] � [[ ]]:

As Diag([^;!]

n

) is �nite, the following de�nition is allowed.

3.6.0.9. Definition. For a node k in a proper [^;!]

n

model de�ne �

n

(k), the type

of k in [^;!]

n

as

�

n

(k) =

V

Th

n

(k):

3.6.0.10. Lemma. Let k and l be nodes in proper [^;!]

n

models. If l 
 �

n

(k) then

�

n

(k) � �

n

(l).

Proof. Assume l 
 �

n

(k). We will use induction on �(l), the depth of l.

If �(l) = 0 then l is a terminal node. We may conclude that the formula

V

atom

n

(l)!

V

fp!

V

fp

1

; : : : ; p

n

g j p 2 fp

1

; : : : ; p

n

g n atom

n

(l)g does not belong to

Th

n

(k). Hence for some terminal node k

0

with k � k

0

we have atom

n

(k

0

) = atom

n

(l),

which proves �

n

(l) = �

n

(k).

If �(l) > 0, let l

0

> l. Then l

0


 �

n

(k) and �(l

0

) < �(l). According to the induction

hypothesis we will have �

n

(k) � �

n

(l

0

). This proves that j

1

(�

n

(l)) � j

1

(�

n

(k)). As

the assumption implies that atom

n

(k) � atom

n

(l), this proves �

n

(k) � �

n

(l). a

3.6.0.11. Corollary. If k and l are nodes in proper [^;!]

n

models then:

�

n

(k) � �

n

(l) , Th

n

(k) � Th

n

(l) , l 
 �

n

(k):

3.6.0.12. Theorem. The model Exm([^;!]

n

) de�ned above is the exact Kripke

model of [^;!]

n

.

Proof. Exm([^;!]

n

) is complete for [^;!]

n

according to fact 3.6.0.8. We still have

to prove that every closed subset X in this model corresponds to a formula in [^;!]

n

.

The proof is very much like that of theorem 3.5.0.17.
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Let �

n

(X) =

VT

fTh

n

(k) j k 2 Xg. Then clearly, by de�nition, it will be true

that X � [[�

n

(X)]].

To prove the inclusion in the other direction, suppose that k 
 �

n

(X). With

induction on �(k), the depth of k, we will prove that k 2 X. If �(k) = 0 then k is

a terminal node and apparently it is the case that for some l 2 X we had l 1 �(k),

where �(k) =

V

atom

n

(k)!

V

fp!

V

fp

1

; : : : ; p

n

g j p 2 fp

1

; : : : ; p

n

g n atom

n

(k)g.

As in the proof of lemma 3.6.0.10 infer that for some l 2 X there is a terminal

node l

0

> l with atom

n

(l) = atom

n

(k). As the semantic types in Exm([^;!]

n

) are

unique, we conclude that k = l

0

. From l 2 X and l < k infer that k 2 X as X is a

closed subset of Exm([^;!]

n

).

If �(k) > 0 then for k

0

> k we conclude from k

0


 �

n

(X) and the induction

hypothesis that k

0

2 X. As Exm([^;!]

n

) is a proper [^;!]

n

model, there is a

q 2 atom

n

(k) n

T

fatom

n

(l) j k < lg. Note that for k < l we have l 
 �

n

(k)!q but

k 1 �

n

(k)!q. Now suppose that l 2 X and l 
 �

n

(k) then by lemma 3.6.0.10 we

have k � l. Hence (�

n

(k)!q) 2 X i� k 62 X. As k 
 �

n

(X) infer that k 2 X. a

Like Exm([^;!;:]

n

), the model Exm([^;!]

n

) can stagewise be constructed as the

minimal proper [^;!]

n

model realizing all semantic types in [^;!]

n

. Let us de�ne

the n+1 stages E

n

i

needed in the construction. Recall that P

�

(X) is the set of closed

subsets in X.

3.6.0.13. Definition. De�ne E

n

0

as the set of 2

n

terminal nodes with semantic type

hQ; ;i such that Q � fp

1

; : : : ; p

n

g 6= Q.

Now inductively de�ne:

E

n

m+1

= E

n

m

[ fhQ; Si j S 2 P

�

(E

n

m

) and Q �

T

fj

0

(t) j t 2 Sg 6= Qg:

Where the order in E

n

m

is the order of types in [^;!]

n

.

Note that the construction of E

n

m

is only possible for m � n. From the construction

of E

n

n

the following facts are obvious:

3.6.0.14. Facts.

1. E

n

n

is a proper [^;!]

n

model;

2. Every semantic type of [^;!]

n

is realized in E

n

n

exactly once;

3. E

n

n

= Exm([^;!]

n

).

Let us return to the type formulas in [^;!]

n

.

3.6.0.15. Definition. Let k be a node in a proper [^;!]

n

model and X �

fp

1

; : : : ; p

n

g. De�ne:

1. Newatom

n

(k) = fq j q 2

T

fatom

n

(l) j k < lg n atom

n

(k)g;

2. �X =

V

fp!q j p; q 2 Xg;

3.  

n

(k) = �

n

(k)!q, where q 2 Newatom

n

(k);

4.  

n

(k) =

8

>

<

>

:

�

n

(k)!

V

fp

1

; : : : ; p

n

g if �(k) = 0

�

n

(k)!q, where q 2 Newatom

n

(k) otherwise.
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The proper de�nition of  

n

(k) of course requires a choice of q 2 Newatom

n

(k). As

this choice will not make any di�erence in the sequel one may take for example the

p

i

with the least i such that p

i

2 Newatom

n

(k). If k is a terminal node, by de�ning

T

; = fp

1

; : : : ; p

n

g, we have Newatom

n

(k) = fp

1

; : : : ; p

n

g n atom

n

(k).

3.6.0.16. Lemma. If k and l nodes in proper [^;!]

n

models then:

l 1  

n

(k) , �

n

(l) � �

n

(k):

Proof. If k is a terminal node, the lemma is rather trivial. So, assume �(k) > 0.

To prove l 1  

n

(k) ) �

n

(l) � �

n

(k), let l 1  

n

(k). As  

n

(k) = �

n

(k)!q,

this implies, for some l

0

� l, that l

0


 �

n

(k) and l

0

1 q, where q 2 Newatom

n

(k).

According to corollary 3.5.0.16, l

0


 �

n

(k) implies �

n

(k) � �

n

(l

0

). In �nite \-

independent models, it is not di�cult to prove that if �

n

(k) � �

n

(m) (i.e. �

n

(k) �

�

n

(m) but �

n

(k) 6= �

n

(m)), then m 
 q, for q 2 Newatom

n

(k). As l

0

1 q and

obviously from l � t

0

we may conclude that �

n

(l) � �

n

(l

0

), we have �

n

(l) � �

n

(l

0

) =

�

n

(k).

To prove �

n

(l) � �

n

(k) ) l 1  

n

(k), observe that by de�nition k 1 q. So, if

�

n

(l) � �

n

(k), then l 
  

n

(k) would imply, by corollary 3.5.0.16, that k 
  

n

(k). As

k 
 �

n

(k), we would have k 
 q, a contradiction. Hence, we conclude l 1  

n

(k). a

We are now ready for a characterization of �

n

(k), the type of k in [^;!;:]

n

.

An analogous characterization was used, as a de�nition, in [De Jongh 68] (also

in [De Jongh 70], [De Jongh 80] and [JHR 91]). We will use the exact model of

[!;:]

n

in the characterization.

3.6.0.17. Definition. If k is a node in Exm([^;!]

n

) and q 2 Newatom

n

(k) then

de�ne:

�

n

(k) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

V

atom

n

(k) ^�Newatom

n

(k) if �(k) = 0

V

atom

n

(k) ^�Newatom

n

(k)^

V

f 

n

(l)!q j k <

1

lg^

V

f 

n

(m) j not (m � k) and

T

fatom

n

(l) j k < lg � atom

n

(m)g if �(k) > 0.

3.6.0.18. Theorem. If k is a node in Exm([^;!]

n

) then �

n

(k) � �

n

(k).

Proof. If k is a terminal node, �rst observe that trivially k 
 �

n

(k) as Exm([^;!]

n

)

is a proper [^;!]

n

model. If l 2 Exm([^;!]

n

) and l 
 �

n

(k) then clearly

atom

n

(k) � atom

n

(l) and, again because Exm([^;!]

n

) is a proper [^;!]

n

model,

for no l

0

� l it will be true that l

0


 p for some p 62 atom

n

(k). Hence l has to be a

terminal node with atom

n

(l) = atom

n

(k), which proves �

n

(k) = �

n

(l), so k = l.

So assume �(k) > 0. To prove �

n

(k) ` �

n

(k) we show that k 
 �

n

(k). That

k 


V

atom

n

(k) ^ �Newatom

n

(k)^ is rather obvious. For k < l we have l 
 q and

k 1  

n

(l) by lemma 3.6.0.16. According to the same lemma k 
  

n

(m) if not m � k,

which proves that k will also force the last of the conjunctions in �

n

(k).
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For the proof of the other direction, assume l 
 �

n

(k). We will show that as

a consequence k � l and hence l 
 �

n

(k). As Exm([^;!]

n

) is the exact model of

[^;!]

m

, this proves �

n

(k) ` �

n

(k).

Suppose Newatom

n

(k) � atom

n

(l). Then, using the last part in the conjunction

of �

n

(k), not k � l implies �

n

(k) `  

n

(l). As l 1  

n

(l), infer that k � l and hence

l 
 �

n

(k).

If Newatom

n

(k) is not a subset of atom

n

(l), then l 1 q for every q 2

Newatom

n

(k) (because l 
 �Newatom

n

(k)). Hence if k <

1

k

0

then, using the

third conjunction in �

n

(k), we have l 1  

n

(k

0

). By lemma 3.6.0.16 this implies

that l � k

0

. Hence atom

n

(l) will be included in atom

n

(k) [ Newatom

n

(k). From

atom

n

(k) � atom

n

(k

0

) and Newatom

n

(k) \ atom

n

(l) = ; infer that atom

n

(l) =

atom

n

(k) and hence �

n

(k) = �

n

(l). As semantic types are unique in Exm([^;!]

n

),

we conclude k = l and l 
 �

n

(k). a

We may now use the exact model of the fragment [^;!]

n

to prove a characterization

of the [^;!] formulas in IpL. Recall the de�nition of K

-

from de�nition 3.6.0.2.

3.6.0.19. Theorem. If � is an IpL formula, then � is equivalent to a [^;!] for-

mula if for every node k in a �nite Kripke model:

k 
 � , (("k)

\

)

-


 �:

Proof. For � 2 [^;!] we have by theorem 3.5.0.3 that k 
 � , ("k)

\

) 
 �. Using

theorem 3.6.0.3 we may infer that k 
 � , (("k)

\

)

-


 �.

To prove the other direction, let � be a formula in IpL

n

with the property that

for every �nite Kripke model K and every node k 2 K, k 
 � , (("k)

\

)

-


 �.

Let � 2 [^;!;:]

n

be the formula with [[�]] = [[�]] in Exm([^;!]

n

). For a node k in

a proper [^;!] model we have, using fact 3.6.0.6.1: k 
 � , k 
 �. Hence we

have:

k 
 � , ("k)

\


 � , ("k)

\


 � , k 
 �:

Which proves � � �. a

3.6.1 The [!] fragments

The [!] fragments are the most expressive fragments in IpL with only one connec-

tive. For example [!]

3

has 25 165 802 equivalence classes, whereas the fragments

with three atoms and exactly one of the other connectives in f^;_;:;::g all have

less then 10 classes.

To calculate the diagram of [!]

n

we have to use the exact Kripke model of

[^;!]

n

, for example, as Diag([!]

n

) for n > 1 is not a lattice and hence does not

have an exact model of its own.
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14

25. Figure. The diagram of [!]

2

.

The formulas in Diag([!]

2

):

1: p 6: (q!p)!q 11: ((q!p)!q)!q

2: q 7: q!p 12: (((p!q)!q)!p)!p

3: (p!q)!p 8: (p!q)!q 13: ((p!q)!p)!p

4: ((p!q)!q)!p 9: (q!p)!p 14: p!p

5: ((q!p)!p)!q 10: p!q

To calculate the number of classes inDiag([!]

n

) we will proceed much like in subsec-

tion 3.5.1. The proofs of the following lemma's, preparing for theorem 3.6.1.26, are

omitted, as they are essentially the same as for the lemma's 3.5.1.25 up to 3.5.1.30.

3.6.1.20. Lemma. Every formula in [^;!]

n

is equivalent to a conjunction of for-

mulas in [!]

n

3.6.1.21. Lemma. An IpL formula � is equivalent to a formula in [!]

n

i� � �  !p

for some  2 [^;!]

n

and p 2 fp

1

; : : : ; p

n

g.

As in subsection 3.5.1, in the calculation of the number of equivalence classes in

[^;!]

n

it is more convenient to work with the dual of [[�]] in Exm([^;!]

n

).

3.6.1.22. Definition. Let [[�]] be the valuation of formulas in Exm([^;!]

n

). De-

�ne �

n

(�) = Exm([^;!]

n

) n [[�]].
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3.6.1.23. Lemma. Let � and  be formulas in [^;!]

n

. Then

1. �

n

(�) � �

n

( ) ,  ` �;

2. �

n

(� ^  ) = �

n

(�) [ �

n

( );

3. �

n

(�! ) = #(�

n

( ) n �

n

(�)).

3.6.1.24. Definition. For a formula � in [^;!]

n

we de�ne ucv

n

(�), the upper

carrier of �, as the set of maximal elements in �

n

(�).

3.6.1.25. Lemma. For � 2 [^;!]

n

let An

n

(�) be the set of equivalence classes in

[^;!]

n

that have a representative of the form  !�, with  2 [^;!]

n

. Then

jAn

n

(�)j = jP(ucv

n

(�))j = 2

jucv

n

(�)j

:

3.6.1.26. Theorem. The number of equivalence classes in [!]

n

is:

n

X

k=1

(�1)

k�1

 

n

k

!

N(n; k)

where N(n; k) = 2

j

T

fucv

n

(p

i

)ji�kgj

.

Proof. As in the case of theorem 3.5.1.31, we have to calculate the number of di�er-

ent subsets in the ucv

n

(p

i

), a union of non-disjunct subsets. The summation above

uses the symmetry in Exm([^;!]

n

). a

3.6.1.27. Corollary. The number of elements in [!]

3

is:

3:2

23

� 3:2

3

+ 1:2 = 25 165 802:

Proof. Use Exm([^;!]

3

) and determine ucv

3

(p), ucv

3

(q) and ucv

3

(r) and their in-

tersections, to calculate N(3; 1) = 23, N(3; 2) = 3 and N(3; 3) = 1. The corollary is

a result of the substitution of these values in the formula of theorem 3.6.1.26. a

Applying theorem 3.6.1.26 on Exm([^;!]

4

), Renardel de Lavalette calculated the

cardinality of Diag([!]

4

).

3.6.1.28. Fact. jDiag([!]

4

)j = 2

623 662 965 552 393

� 50 331 618



Chapter 4

Restricted nesting of implication in IpL

4.1 Introduction

In Chapter 2 we introduced fragments of modal logic with restricted nesting of

2

and

showed how in the hierarchy of fragments K

n

m

the types and semantic types of nodes

in �nite Kripke models could be de�ned. Semantic types were used to construct

exact Kripke models of the fragments K

n

m

.

In IpL we will introduce a similar strati�cation of fragments IpL

n

m

to obtain

exact Kripke models. With the exception of IpL

1

(and IpL

0

, which is the trivial

fragment of the classes > and ?), an exact model for IpL

n

cannot exist (fact 2.5.0.15

in Chapter 2).

In the sequel we will show that restricting the nesting of implication to a maxi-

mum of m and con�ning the propositional variables to the fp

1

; : : : ; p

n

g yields frag-

ments IpL

n

m

with a �nite exact Kripke model.

4.2 Preliminaries

4.2.0.1. Definition. The level of nesting of the implication, �(�), of an IpL for-

mula � is de�ned inductively as:

� �(p) = 0 if p is an atomic formula;

� �( � �) = maxf�( ); �(�)g if � 2 f^;_g;

� �(: ) = �( ) + 1;

� �( !�) = maxf�( ); �(�)g+ 1.

The fragment IpL

n

m

is de�ned as the fragment of IpL formulas � with propositional

variables restricted to fp

1

; : : : ; p

n

g, such that �(�) � m.

93
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4.3 Semantic types in IpL

n

m

The de�nition of a semantic type in IpL

n

m

much resembles the de�nition in modal

logic in Chapter 2.

4.3.0.1. Definition. Let K be a �nite IpL Kripke model. For k 2 K de�ne in-

ductively:

1. �

n

0

(k) = hatom

n

(k); ;i;;

2. �

n

m+1

(k) = hatom

n

(k); f�

n

m

(l) j k � lgi.

As in previous chapters, we de�ne Th

n

m

(k) = f� 2 IpL

n

m

j k 
 �g.

4.3.0.2. Theorem. Let K and L be �nite IpL Kripke models. If k 2 K and l 2 L

then:

�

n

m

(k) = �

n

m

(l) , Th

n

m

(k) = Th

n

m

(l):

Proof. By induction on m. ): Form = 0 the proof is obvious as we have atom

n

(k) =

atom

n

(l) i� for all � 2 IpL

n

0

: k 
 � , l 
 �. (Note that the fragment IpL

n

0

is

the fragment [^;_]

n

in the previous chapter).

Assume the theorem to be true for m and let �

n

m+1

(k) = �

n

m+1

(l). To prove

Th

n

m+1

(k) = Th

n

m+1

(l) we will show for all � 2 IpL

n

m+1

we have k 
 � , l 
  .

Apply induction on the length of �. In case � is atomic, a conjunction or a

disjunction the proof that k 
 � , l 
 � is straightforward. So let � =  !� and

assume k 
  !�. Note that both  and � will be formulas in IpL

n

m

.

Let l � h and h 
  . As by de�nition �

n

m

(h) 2 j

1

(�

n

m+1

(l)) and j

1

(�

n

m+1

(k)) =

j

1

(�

n

m+1

(l)), for some h

0

such that k � h

0

we have �

n

m

(h) = �

n

m

(h

0

). From the �rst

induction hypothesis (�

n

m

(k) = �

n

m

(l) ) Th

n

m

(k) = Th

n

m

(k)) infer that h

0


  . As

k 
  !� and k � h

0

also h

0


 �. Again by the �rst induction hypothesis we may

conclude that h 
 �. From which we conclude l 
  !�.

By interchanging the role of k and l this proof can also be used to prove the other

direction: l 
 � ) k 
 �.

As the case that � is a negation is treated likewise, this completes the proof that

for all � 2 IpL

n

m+1

we have k 
 � , l 
  .

(: Assume for all � 2 IpL

n

m+1

that k 
 � , l 
 �. We will again apply

induction on m to prove �

n

m+1

(k) = �

n

m+1

(l). Obviously atom

n

(k) = atom

n

(l) and

hence the case that m = 0 is simple.

For the induction step, assume k � h. So we may infer that �

n

m

(h) 2 j

1

(�

n

m+1

(k)).

We will prove that for some h

0

such that l � h

0

it is true that �

n

m

(h) = �

n

m

(h

0

). In

this way we show that j

1

(�

n

m+1

(k)) � j

1

(�

n

m+1

(l)). As the proof for the inclusion in

the other direction is in fact the same (interchanging k and l) and as atom

n

(k) =

atom

n

(l), this proves �

n

m+1

(k) = �

n

m+1

(l).

As L is a �nite model, let fl

0

; : : : ; l

r

g be the �nite set of successors of l (including

l itself). For each l

i

such that �

n

m

(l

i

) 6= �

n

m

(h), there is, by the induction hypothesis,

some formula �

i

2 IpL

n

m

such that h 
 �

i

or l 
 �

i

but not both.

De�ne � =

V

f�

i

j h 
 �

i

g and 	 =

W

f�

i

j h 1 �

i

g. Clearly �!	 2 IpL

n

m+1

. If

�

n

m

(h) would be di�erent from all �

n

m

(l

i

) then we would have l 
 �!	. So by our
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n

m

95

assumption that l and k force the same IpL

n

m

formulas, also k 
 �!	. But this

would imply h 
 �!	. As obviously h 
 � and h 1 	 this is a contradiction. Hence

we may conclude that for some l

i

will have the same n;m-type as h. a

4.3.0.3. Definition. De�ne the order � between n;m-types as:

1. �

n

0

(k) � �

n

0

(l) if atom

n

(k) � atom

n

(l);

2. �

n

m+1

(k) � �

n

m+1

(l) if �

n

m+1

(k) = �

n

m+1

(l) or �

n

m

(l) 2 j

1

(�

n

m+1

(k)).

4.3.0.4. Corollary. Let K and L be �nite IpL models such that k 2 K and l 2 L.

Then �

n

m

(k) � �

n

m

(l) implies Th

n

m

(k) � Th

n

m

(l).

Proof. Let k

0

be a new node, having k and l (and hence their successors) as its

successors. Moreover let atom

n

(k

0

) = atom

n

(k). Note that as �

n

m

(k) � �

n

m

(l) also

atom

n

(k) � atom

n

(l) and hence we may take "k

0

as a new Kripke model. Obviously

�

n

m+1

(k

0

) = �

n

m+1

(k) and Th

n

m+1

(k

0

) � Th

n

m+1

(l). Theorem 4.3.0.2 assures us that

Th

n

m+1

(k

0

) = Th

n

m+1

(k). a

Before de�ning the type formulas �

n

m

(k) in IpL

n

m

let us draw some conclusions from

this theorem for the structure of the exact Kripke model of IpL

n

m

and give an exam-

ple.

Let T

n

m

be the set of n;m-types in IpL

n

m

and let Th

n

m

(k) = f� 2 IpL

n

m

j k 
 �g.

Obviously T

n

m

is �nite.

4.3.0.5. Definition. De�ne Exm(IpL

n

m

) as the Kripke model with T

n

m

as its do-

main, � as its accessibility relation and atom

n

(t) = j

0

(t) as its valuation.

4.3.0.6. Theorem. Exm(IpL

n

m

) is the exact Kripke model of IpL

n

m

.

Proof. Obviously Exm(IpL

n

m

) is a �nite IpL n-model. By induction on m is easily

proved that if t 2 T

n

m

is an n;m-type, in Exm(IpL

n

m

) we have �

n

m

(t) = t. Hence

Exm(IpL

n

m

) is a model realizing exactly all n;m-types in IpL

n

m

. a

4.3.0.7. Corollary. The exact Kripke model of IpL

n

m

is unique up to isomor-

phism.

Proof. If M is some exact Kripke model of IpL

n

m

the mapping �

n

m

: M 7!

Exm(bfIpL

n

m

) is an isomorphism. a
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26. Figure. Exm(IpL

2

1

), the exact Kripke model of IpL

2

1

.

The irreducible formulas in the exact model of IpL

2

1

are:

1: p ^ q 5: p 9: q 13: p!p

2: p ^ :q 6: :q 10: q!p

3: :p ^ :q 7: p$ q 11: :(p ^ q)

4: :p ^ q 8: :p 12: p!q

The exact model of IpL

2

1

was �rst constructed by Zwanenburg, using the subset

of ^-irreducible formulas in the set of _-irreducible formulas of IpL

2

1

as a `skele-

ton' [Zwanenburg 94].

The exact model can be used to calculate the 98 equivalence classes in the diagram

of IpL

2

1

, as listed in appendix B.3.

The exact model of IpL

2

2

has 718 elements.

4.4 The n;m-types in IpL

As in case of modal logic we will introduce formulas �

n

m

(k) for the n;m-type of a

node k in a �nite Kripke model. We �rst will de�ne the �

n

m

(k) and then prove that

such a formula is indeed an axiom of Th

n

m

(k), the theory of n;m-formulas forced by

the node k.

4.4.0.1. Definition. For a node k in a �nite IpL model, de�ne �

n

m

(k) inductively

as:

1. �

n

0

(k) =

V

atom

n

(k);

2. �

n

m+1

(k) =

V

f�

n

m

(l)!

W

f�

n

m

(h) j k � h and �

n

m

(l) 0 �

n

m

(h)g j �

n

m+1

(k) 6� �

n

m+1

(l)g.

4.4.0.2. Lemma. Let K and L be �nite IpL Kripke models. Assume that k 2 K

and l 2 L. Then �

n

m

(k) � �

n

m

(l) implies Th

n

m

(k) � Th

n

m

(l)

Proof. The case m = 0 is obvious. For m > 0, by the de�nition of � we have

�

n

m

(k) � �

n

m

. So apply corollary 4.3.0.4. a
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4.4.0.3. Theorem. Let K and L be �nite IpL Kripke models such that k 2 K and

l 2 L. Then:

l 
 �

n

m

(k) , �

n

m

(k) � �

n

m

(l):

Proof. By induction on m. The case m = 0 is simple.

So assume l 
 �

n

m+1

(k) and let �

n

m+1

(k) 6� �

n

m+1

(l). From the induction hypothesis

we know that l 
 �

n

m

(l). By de�nition of �

n

m+1

(k), infer that l 


W

f�

n

m

(h) j k �

h and �

n

m

(l) 0 �

n

m

(h)g.

Hence for some h such that k � h we have l 0 �

n

m

(h) and l 
 �

n

m

(h). This

is a contradiction as l 
 �

n

m

(h) implies �

n

m

(l) ` �

n

m

(h). To prove this, take g a

node in some IpL Kripke model such that g 
 �

n

m

(l). By induction hypothesis

�

n

m

(l) � �

n

m

(g). So, by the previous lemma, conclude that g 
 �

n

m

(h). Hence, by the

completeness theorem for IpL, it follows that �

n

m

(l) ` �

n

m

(h). So l 
 �

n

m+1

(k) implies

�

n

m+1

(k) � �

n

m+1

(l).

For the other direction, assume that �

n

m+1

� �

n

m+1

(l). We will use the previous

lemma and show k 
 �

n

m+1

(k) to prove that l 
 �

n

m+1

(k).

Let k � h. If h 
 �

n

m

(l) then, by induction hypothesis, we know �

n

m

(l) � �

n

m

(h).

Assume �

n

m

(l) 
 �

n

m

(h). Then l 
 �

n

m

(h) and so, again by induction hypothesis,

�

n

m

(h) � �

n

m

(l). Hence we would have Th

n

m

(h) = Th

n

m

(l) and by the theorem in the

previous section, �

n

m

(h) = �

n

m

(l). Obviously this implies �

n

m

(k) � �

n

m

(l).

Hence h 
 �

n

m

(h) and �

n

m

(l) ` �

n

m

(h). So, for �

n

m+1

(k) 6� �

n

m+1

(l) we have:

k 
 �

n

m

(l)!

W

f�

n

m

(k) j k � h and �

n

m

(l) 0 �

n

m

(k)g:

Which we had to prove. a

4.4.0.4. Corollary. For a node k in a �nite IpL Kripke model K the formula

�

n

m

(k) is an axiom of the theory Th

n

m

(k).

Proof. Let  2 Th

n

m

(k) and assume for some node l in a �nite IpL Kripke model L

that l 
 �

n

m

(k). By the theorem above we have �

n

m

(k) � �

n

m

(l) and so l 
  . a

4.4.0.5. Corollary. If �

n

m

(k) � �

n

m

(l) then �

n

m

(k) = �

n

m

(l).

Proof. Obvious, as Th

n

m

(k) = Th

n

m

(l). a





Chapter 5

Exactly provable L formulas

5.1 Introduction

In this chapter we will study the exactly provable formulas in fragments of prov-

ability logic L (GL in [Boolos 93], PRL in [Smory�nski 85]). According to Solovay's

theorem [Solovay 76] on provability interpretations the theorems of the provability

logic L are precisely those modal formulas that are provable in PA under arbitrary

arithmetical interpretations (interpreting

2

as the formalized provability predicate

in PA). The logic L is also known to be the logic of the diagonizable algebras,

recently also called Magari algebras. Here, we are concerned with the �nitely gener-

ated Magari algebras that are embeddable in the Magari algebra of Peano Arithmetic.

Shavrukov [Shavrukov 93] characterized these subalgebras, which are recursively enu-

merable, as having the so-called strong disjunction property.

In the context of the present work the terminology of propositional theories (i.e.

sets of propositional modal formulas closed under modus ponens and necessitation)

is more convenient.

Let us introduce a new derivability relation to distinguish between the usual

modal theories (closed under modus ponens) and the modal theories that are in

addition closed under necessitation.

5.1.0.1. Definition. Let � and  be modal formulas. De�ne:

� `

�

 , � ^

2

� `  :

A propositional theory in L will here be a set of propositional formulas closed under

`

�

. Rephrased in the terminology of propositional theories, we study those theories T

over L in a �nite number of propositional variables that are (faithfully) interpretable

in PA. Theories correspond to � -�lters in the free Magari algebras and interpretabil-

ity to embeddability as a subalgebra. Interpretable theories T in p

1

; � � � ; p

n

are those

propositional theories in p

1

; � � � ; p

n

for which there is a sequence of arithmetical sen-

tences A

1

; � � � ;A

n

such that an L formula  is an `

�

consequence of T i�  

�

is a

theorem of PA in the arithmetical interpretation � in which the atomic formula p

i

is

99
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interpreted as A

i

(see e.g. [Solovay 76], [Boolos 93] or [Smory�nski 85]). Written out:

T axiomatizes an arithmetically interpreted theory:

f j T `

�

 g = f j `

PA

 

�

(A

1

; � � � ; A

n

)g:

The faithfully interpretable propositional theories T in L

n

(i.e., L restricted to

the language of p

1

; � � � ; p

n

) are according to Shavrukov the consistent recursively

enumerable (r.e.) theories that satisfy the strong disjunction property: T `

�

2

 _

2

�

implies T `

�

 or T `

�

�. (Parenthetically: interpretable theories in in�nitely many

propositional variables need not be r.e.) The strong disjunction property may be

thought of as being composed out of the simple disjunction property: T `

�

2

 _

2

�

implies T `

�

2

 or T `

�

2

�, and !-consistency: T `

�

2

 implies T `

�

 .

An older concept to which this can be related is the concept of exact provability

introduced in [De Jongh 82] (see also [JC 95]): in the terminology used here

1

a

formula can be de�ned to be exactly provable if it axiomatizes an interpretable

theory. That means that an exactly provable formula of L is a formula � which

axiomatizes an arithmetically interpreted propositional theory:

f j � `

�

 g = f j `

PA

 

�

(A

1

; � � � ; A

n

)g:

One of the objects of our research is to get an overview of exactly provable for-

mulas of low complexity aided by computerized calculations. For that purpose the

semantic characterizations in terms of Kripke-models and (semantic) types developed

in the previous chapters will be applied to interpretable theories and exactly provable

formulas. It turns out that an important role is played by maximal exactly provable

formulas, i.e. exactly provable formulas that are not implied by any other exactly

provable formula, and, more in general, by maximal theories with the strong disjunc-

tion property. The characterizations of these concepts discussed in this chapter make

heavy use of the relationship between exactly provable formulas in provability logic

and sets of �nite types of modal formulas as introduced in Chapter 2.

This chapter is built up as follows. After a preliminary section 5.2, characteriza-

tions of interpretable theories and exactly provable formulas are given in section 5.3.

Maximal exactly provable formulas are discussed in section 5.4. In the last section

5.5, it is shown how the theory was applied to calculate the 62 exactly provable for-

mulas in one propositional variable of modal complexity 1, and the 8 maximal ones

among them.

5.2 Preliminaries

The provability logic L is the modal propositional logic with as its axioms the ones of

classical propositional logic as well as all formulas of the forms

2

(�! )!(

2

�!

2

 )

and

2

(

2

�!�)!

2

�, and the inference rules modus ponens and necessitation. As

1

In [HJ 96] exactly provable formulas were called exact formulas. In the present context this

terminology might suggest a connection with exact models which does not exist.



5.2. Preliminaries 101

usual } is de�ned as :

2

: , and we will use the abbreviation �� for the formula

� ^

2

�. Note that in L � `

�

 is equivalent to �� `  .

We say `� is interderivable with  ' and write � �  for the conjunction of � `

�

 

and  `

�

�. Note that this implies that always � � ��. We reserve the terminology

`� is equivalent to  ' for ` �$  .

Propositional theories in L

n

will here be sets of propositional formulas closed

under `

�

. Such a propositional theory T is called consistent if T 0?.

By its completeness theorem, L is the logic of all �nite, transitive and irre
exive

Kripke-models (a proof can be found in [Boolos 93] and [Smory�nski 85]).

Recall from Chapter 2 the de�nition of �(�), the modal degree of a formula �.

The de�nition of semantic types and type formulas in L

n

m

will be essentially the same

as in K

n

m

(see Chapter 2).

5.2.0.1. Definition. Let k be a node in a �nite, transitive and irre
exive Kripke

model. Then, �

n

m

(k), the n;m-type of k (in L) is de�ned by:

� �

n

0

(k) = hatom

n

(k); ; i;

� �

n

m+1

(k) = hatom

n

(k); f �

n

m

(l) j kRlgi.

The set of all such n;m-types is written T

n

m

. De�ne �

n

m

(k), the L

n

m

type of k induc-

tively as:

� �

n

0

(k) = �

n

CpL

(k)

� �

n

m+1

(k) = �

n

CpL

(k) ^

V

f}�

n

m

(l) j kRlg ^

2

W

f�

n

m

(l) j kRlg

One easily veri�es that the n;m+1-type of k, �

n

m+1

(k) uniquely determines the n;m-

type of k. If t is an n;m+ 1-type, let us write t

�

m for the corresponding n;m-type.

The following fact will be useful in the sequel of this chapter.

5.2.0.2. Fact. Let k be a node in a �nite, transitive and irre
exive Kripke model.

If m � l then �

n

m

(k) = �

n

l

(k)

�

m.

As in that chapter was done for K, the fragment L

n

m

will be the fragment of for-

mulas � in L

n

such that �(�) � m. It can be proved that there exists an exact model

for each L

n

m

.

u u

u u u u u u�
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�

�

�
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�

�

�
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S

S
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C

C

C

C

S

S

S

S

S

S

p

p p p

27. Figure. The construction of ExL

1

0

and ExL

1

1

.

For the in�nite fragment L

n

there is no such exact model, but as in case of K in

Chapter 2, there is a canonical (in�nite) model ExL

n

which is n-complete. It gives

considerable insight into the free Magari algebra over n generators.

It is convenient to us to execute most of our constructions inside this model.

Many of these constructions are applicable more generally, however.
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Let us write

2

0

� = � and

2

n+1

� =

22

n

�. The following facts about the nodes

of ExL

n

will be useful in the sequel.

5.2.0.3. Facts.

1. �(k) = m , k 
 :

2

m

? ^

2

m+1

?;

2. If �(k); �(l) � m and �

n

m

(k) = �

n

m

(l), then k = l;

3. If �(k) = m and l 
 �

n

m

(k) ^ :

2

m

? ^

2

m+1

?, then k = l.

These facts suggest a kind of normal form for the irreducible formulas corresponding

to the elements of ExL

n

.

5.2.0.4. Definition. Let k 2 ExL

n

and assume �(k) = m.

Then �

n

(k) = �

n

m

(k) ^ :

2

m

? ^

2

m+1

?.

From the n-completeness of ExL

n

we conclude that for k2ExL

n

the �

n

(k) are the

irreducible elements in L

n

.

5.3 Exactly provable formulas in L

n

As stated in the introduction, Shavrukov's theorem in [Shavrukov 93] gives a char-

acterization of the exactly provable formulas in L.

5.3.0.1. Fact. A formula �2L is exactly provable i� � is not a contradiction and

has the strong disjunction property (is s.d.):

8 ; �2L (� `

�

2

 _

2

� ) � `

�

 or � `

�

�):

The property in this fact is called steady by Shavrukov [Shavrukov 93]. Whether

a formula �2L

n

m

is steady or not, Shavrukov [Shavrukov 93] also proved, depends

only on its behavior with regard to other formulas in L

n

m

:

5.3.0.2. Fact. A formula � 2 L

n

m

is exactly provable i� � is not a contradiction

and is s.d. for formulas in L

n

m

:

8 ; �2L

n

m

(� `

�

2

 _

2

� ) � `

�

 or � `

�

�)

For a simple proof of this last fact see [Zambella 94]. We will transform this char-

acterization of exact provability into a semantic one. This characterization does not

work if we are not only interested in exactly provable formulas, but want to study

interpretable theories in general (see [HJ 96]).

5.3.0.3. Definition. !

n

(�) = fk2ExL

n

j k 
 ��g.

If T is a propositional theory in L

n

, then !

n

(T ) = fk 2ExL

n

j k 
 Tg:

Obviously !

n

(�) and !

n

(T ) will always be closed upwards in the sense that, if e.g.

k 2!

n

(�) and k < l, then l2!

n

(�).

5.3.0.4. Theorem. A formula �2L

n

is exactly provable i� !

n

(�) is non-empty and

downwards directed, i.e. 8k; l2!

n

(�) 9h2!

n

(�) ( h < k & h < l ).
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Proof. ): Let � be an exactly provable formula in L

n

. As � unequals the con-

tradiction by de�nition, we have !

n

(�) 6= ; by the completeness of ExL

n

. To

prove the second condition, let k; l2!

n

(�), and �

n

(k); �

n

(l) be (representatives of)

the irreducible classes in L

n

corresponding to k and l. Assume that, if h2!

n

(�)

and h<k, then h 6< l. Then, again by the completeness of ExL

n

, we would have

� `

�

}�

n

(k)!

2

:�

n

(l), or equivalently � `

�

2

:�

n

(k) _

2

:�

n

(l). As � is supposed to

be exactly provable, � would either prove :�

n

(k) or :�

n

(l), in contradiction with the

assumption that k; l2!

n

(�). Hence, there should be an h2!

n

(�) such that h<k

and h< l.

(: Let  ; �2L

n

and � `

�

2

 _

2

�, and assume there are k; l2!

n

(�) such that k 1  

and l 1 �. By the last condition of the theorem, there is an h2!

n

(�) such that h<k

and h< l. As we would then have h 1

2

� _

2

 , we obtain a contradiction. Hence,

we proved that � `

�

 or � `

�

�. a

By the completeness of L non-interderivable � and  give rise to distinct !

n

(�) and

!

n

( ). This is in general not so for theories. An example is the theory axiomatized

by p on the one hand, and the theory T

1

axiomatized by

2

m

?!p for each m, on

the other. The sets !

1

(p) and !

1

(T

1

) are the same, consisting of all nodes that

together with all their successors force p, but clearly the theories are not: p is not

a consequence of T

1

. Similarly, the theory T

2

=

2

m

?!

2

p _

2

:p for each m can

be shown to have the strong disjunction property. But not all pairs of nodes in

!

1

(T

2

) have a common predecessor in ExL

1

, because !

1

(T

2

) consists of those nodes

that together with all their successors force p and those nodes that together with

all their successors don't force p. This shows that the semantic characterization of

exact provability does not generalize to interpretability of non-�nitely axiomatizable

theories, at least if one doesn't freely use in�nite models. For a restricted class of

theories that does respect the characterization see [HJ 96].

Note that the !

n

(�) of an exactly provable �2L

n

is in�nite by the conditions of

the characterization. On the other hand there is a simple correspondence between

such an in�nite set and a �nite set of n;m-types in ExL

n

:

5.3.0.5. Definition. Let � be an L

n

formula.

Then T

n

m

(�) = f�

n

m

(k) j k 2ExL

n

; k 
 ��g.

5.3.0.6. Lemma. Let � and  be L

n

m

formulas.

Then T

n

m

(�) = T

n

m

( ) i� � �  .

Proof. For the non-trivial direction, from left to right, let T

n

m

(�) = T

n

m

( ), and as-

sume k 
 ��. Then �

n

m

(k)2T

n

m

(�)=T

n

m

( ). Hence �

n

m

(k) = �

n

m

(k

0

) for some k

0

that

forces � . So, k

0


  and, since  2L

n

m

, k 
  . The rest is evident. a

5.3.0.7. Lemma. Let � be an L

n

m+k

formula.

Then T

n

m

(�) = ft

�

m j t 2 T

n

m+k

(�)g.

Proof. Obvious, considering fact 5.2.0.2. a
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5.3.0.8. Lemma. For each L

n

formula � and each m there is a �nite upwardly

closed subset K of !

n

(�) such that the elements of K exactly realize T

n

m

(�), i.e.,

T

n

m

(�)=f�

n

m

(k)j k 2Kg.

Proof. Just take any �nite subset of !

n

(�) such that its elements exactly realize

T

n

m

(�). The upward closure of this set will do, because its elements also force ��.a

To �nd the sets of n;m-types suitable for exactly provable formulas �, we have to

translate the conditions on the !

n

(�) of exactly provable � into conditions on the

underlying set of n;m-types. For example, for a �nite T

n

m

(�) to correspond to an

in�nite !

n

(�), it is necessary that some type in T

n

m

(�) can have itself as a successor.

To describe this kind of re
exivity we introduce the notion of a re
exive type.

5.3.0.9. Definition. A type t2T

n

m+1

is called re
exive if t

�

m2 j

1

(t).

The following theorem is related to lemma 5.13 of [Shavrukov 93].

5.3.0.10. Theorem. A formula �2L

n

m

with m> 0 is exactly provable i� there is a

type t2T

n

m

(�) such that j

1

(t)=T

n

m�1

(�), which, of course, makes t a re
exive type.

Proof. ): Let �2L

n

m

be an exactly provable formula. Note that T

n

m�1

(�) is

a �nite set of types. Let K �!

n

(�) be �nite and closed upwards such that

f�

n

m

(k) j k2Kg=T

n

m

(�), as guaranteed to exist by lemma 5.3.0.8. According to theo-

rem 5.3.0.4 we can �nd an h2!

n

(�) below all of the elements ofK. By lemma 5.3.0.7

this h must have a type as required.

(: Assume � and t to ful�ll the conditions given. As T

n

m

(�) 6=; , also !

n

(�) 6= ; . Sup-

pose k; l2!

n

(�). Let K be a �nite upwardly closed subset of !

n

(�) such that k; l2K

and f�

n

m�1

(k

0

) j k

0

2Kg=T

n

m�1

(�) (compare lemma 5.3.0.8). Consider a world h just

below this K such that fp2P

n

jh 
 pg = j

0

(t). It will be clear that �

n

m

(h)= t and

(since � is assumed to be an L

n

m

formula) this proves h2!

n

(�). Of course, h<k

and h< l, so the conditions of theorem 5.3.0.4 apply to !

n

(�). a

The theory developed in this chapter and in Chapter 2 has enabled us to calculate

the exactly provable formulas in L

1

1

. This will be explained in more detail in the last

section. It will be shown that already in this very �rst small fragment there are 62

non-interderivable members. It turned out that it was worthwile to single out the 8

maximal elements of these 62.

5.4 Maximal exactly provable formulas

This section will be devoted to maximal exactly provable formulas. First we will

have to sharpen our semantic characterization of exactly provable formulas. Let us

exploit the relationship between irreducible formulas and semantic types to write

�

n

m

(t) for the �

n

m

(k) with �

n

m

(k) = t.

5.4.0.1. Definition. Let C be a set of n;m-types.

Then �

n

m

(C) =

W

f�

n

m

(t) j t 2 Cg.
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Recall that T

n

m

(�) = f�

n

m

(k) j k 
 ��g.

5.4.0.2. Lemma. If �2L

n

m

, then � � �

n

m

(T

n

m

(�)).

Proof. Immediate from lemma 5.3.0.6 as soon as one realizes that

T

n

m

(�

n

m

(T

n

m

(�)))=T

n

m

(�): a

5.4.0.3. Lemma. If C �T

n

m

(m> 0), then C =T

n

m

(�) for an exactly provable for-

mula �2L

n

m

i�

1. There is a �nite upwards closed K �ExL

n

such that

C = f�

n

m

(k) j k2Kg (we will call C upwards closed realizable)

2. There is t2C such that 8t

0

2C (t

0

�

(m�1)2 j

1

(t)). Such a type t will be called

an enveloping type for C.

Moreover, in that case � � �

n

m

(C).

Proof. ): If �2L

n

m

is exactly provable, then T

n

m

(�) will have the required property

1 by the de�nition of T

n

m

(�), property 2 by theorem 5.3.0.10, and satis�es the �nal

requirement by lemma 5.4.0.2.

(: We prove that �

n

m

(C) is an exactly provable formula. To apply theorem 5.3.0.10

to �

n

m

(C), we have to �nd an appropriate re
exive n;m-type. By the assumption

on C, there is an n;m-type t2C such that 8t

0

2C (t

0

�

(m�1)2 j

1

(t)). Let K be the

upwardly closed realization of the types in C as assumed in the �rst conditon of

this lemma. Note that K realizes precisely the n;m�1-types in ft

0

�

(m�1) j t

0

2Cg

(compare lemma 5.3.0.7). Let k be a (new) root immediately below K such that k

forces exactly the elements of j

0

(t). Then �

n

m

(k)= t. So, k 
 ��

n

m

(C) and, hence, t

is a member of T

n

m

(�

n

m

(C))�C and a type appropriate for the application of theo-

rem 5.3.0.10. a

We will prove that the maximal exactly provable formulas in L

n

correspond to what

we will call tail models in ExL

n

. Clearly this is a result that is, to a large extent,

bound to the particular model ExL

n

.

5.4.0.4. Definition. K �ExL

n

is called a tail model i�:

1. K is closed upwards;

2. there is an m2! such that fk 2K j �(k)�mg is linearly ordered by < and all

nodes of this set force the same atoms.

If k 2ExL

n

, then we write "k# for the tail model consisting of "k and a tail descend-

ing from k with the forcing of the atoms as in k.

Our de�nition of tail model slightly di�ers from the one in [Visser 84] in that Visser's

tail models are equipped with a minimal (in�nite-depth) element.

5.4.0.5. Lemma. If �2L

n

m

, k2!

n

(�) and k has a re
exive n;m-type, then

"k#�!

n

(�).
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Proof. First note that all elements of the tail have the same n;m-type as k. Hence,

all these nodes force �, and consequently ��. a

5.4.0.6. Lemma. If K �ExL

n

is a tail model, then K =!

n

(�) for some � in L

n

.

Proof. Let K be "k#, k having depth m, and let � be the conjunction of the propo-

sitional variables and negations of propositional variables as they are forced on k.

Then K =!

n

(�) for � de�ned as the conjunction of

2

m+1

?!

W

f�

n

(k

0

) jk� k

0

g and

:

2

m+1

?! � ^ }�

n

(k). a

5.4.0.7. Lemma. If �2L

n

and !

n

(�) is a tail model, then � is maximal exactly

provable.

Proof. Assume !

n

(�) is a tail model and �2L

n

m

. Since !

n

(�) is in�nite and T

n

m�1

(�)

�nite it is obvious that the tail has to contain elements appropriate for an applica-

tion of theorem 5.3.0.10. This shows that � has to be exactly provable. Assume  

to be an exactly provable formula such that  `

�

�, i.e., such that !

n

( )�!

n

(�).

Then, because !

n

( ) is non-empty and downwards directed it has to contain the tail

elements from a certain node downwards, and, because it it is closed upwards it has

to contain all other elements of !

n

(�), which means that � and  are interderivable.

Hence, � is maximal exactly provable. a

5.4.0.8. Lemma. If �2L

n

, then there exists a formula  2L

n

such that

!

n

( )�!

n

(�) and !

n

( ) is a tail model.

Proof. Let �2L

n

and assume t2T

n

m

(�) is a re
exive type with the properties guar-

anteed to exist by theorem 5.3.0.10. Now, take as in the proof of lemma 5.4.0.3(()

k 2!

n

(�) with n;m-type t such that �

n

m

("k)=T

n

m

(�). By lemma 5.4.0.5, "k#�!

n

(�).

By lemma 5.4.0.6, there exists a  with !

n

( )="k#�!

n

(�). a

From lemma 5.4.0.8 it follows immediately that any L

n

formula � is determined

uniquely (up to interderivability) by the maximal exactly provable L

n

formulas that

imply it. Certainly this does not generalize to interpretable theories. The s.d. theory

T

1

axiomatized by

2

n

?!p for each n that was introduced after theorem 5.3.0.4

provides a counter-example. Its only maximal s.d. extension is the one axiomatized

by p. Also, lemma 5.4.0.8 does not, in general imply that � is equivalent to a �nite

disjunction of maximal exactly provable formulas (each preceded by �), although

that may very well be the case. A counter-example is provided by the formula >.

5.4.0.9. Theorem. If �2L

n

, then � is maximal exactly provable in L

n

i� !

n

(�) is

a tail model in ExL

n

.

Proof. The direction from right to left follows from lemma 5.4.0.7. The other direc-

tion from 5.4.0.8 using the simple fact that, if one tail model is part of another, they

have to be equal. a
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From lemma 5.4.0.6 and theorem 5.4.0.9 it is clear that there is a one-one correspon-

dence between maximal exactly provable formulas and tail models.

Also from theorem 5.4.0.9, it follows that maximal exactly provable formulas in p

cannot be symmetric with regard to p and :p as the tail is always asymmetric. We

follow with some additional properties and problems concerning maximal exactly

provable formulas.

5.4.0.10. Theorem. If a formula �2L

n

m

is maximal exactly provable, then there is

precisely one re
exive type t in T

n

m

(�). Moreover, T

n

m�1

(�) = j

1

(t).

Proof. The last part follows immediately from theorem 5.3.0.10. Assume �2L

n

m

with

m> 0 is maximal exactly provable. Assume s and s

0

to be two distinct n;m-types in

T

n

m

(�). If k and k

0

in !

n

(�) realize s and s

0

respectively, then, by lemma 5.4.0.5, "k#

and "k

0

# are two distinct tail models within !

n

(�). This contradicts the fact that

!

n

(�) is a tail model. a

Examples of non-maximal exactly provable L

1

1

formulas with exactly one re
exive

1; 1-type will be given in the table in the last section.

5.4.0.11. Definition. An exactly provable L

n

m

formula � is called n;m-maximal

exactly provable i�, for all exactly provable  2L

n

m

such that  `

�

�,  � �.

It will turn out in the last section that the 1; 1-maximal exactly provable formulas

in L

1

are maximal exactly provable. In general, however, not all the n;m-maximal

exactly provable formulas in L

n

m

are maximal exactly provable. To construct counter-

examples the following insight derived from lemma 5.4.0.3 and the fact that, by

lemma 5.3.0.6, L

n

m

formulas are, up to �, determined by their n;m-types was used.

5.4.0.12. Fact. The m-maximal exactly provable L

n

m

-formulas are the ones with

a set of types C that contains exactly one re
exive n;m-type t and for which C is

minimal upwardly closed realizable, in the sense that, C is upwardly closed realizable,

but this is not the case for any proper subset of C containing t.

The simplest counter-example we found uses a set of 3; 2-types with exactly one min-

imal enveloping type in the sense of the previous fact. Such a set of 3; 2-types will

correspond to a 3; 2-maximal exactly provable formula. The following two models,

both built using only this set of types, show there is a real choice in ordering it.
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28. Figure. Two models built from the set of 3; 2-types corresponding to a 3; 2-

maximal exactly provable formula.

The models above can be extended to tail models corresponding to di�erent maximal

exactly provable L

3

3

formulas. From both of these formulas the 3; 2-maximal exactly

provable formula corresponding to the set of 3; 2-types is derivable. Hence this 3; 2-

maximal exactly provable formula is clearly not maximal exactly provable.

A further conjecture is that the set of n;m-types of an arbitrary exactly provable

L

n

m

formula � is the union of the sets of types of the n;m-maximal exactly provable

L

n

m

formulas from which � is derivable. That such a union always is the set of

types of an exactly provable formula if a common enveloping type is present, follows

immediately from the next lemma.

5.4.0.13. Lemma. If C is the union of sets C

1

; � � � ; C

k

of n;m types corresponding

to exactly provable L

n

m

formulas �

1

; � � � ; �

k

with an enveloping type t for all of C,

then there exists a �2L

n

m

such that T

n

m

(�)=C.

Proof. It su�ces to note that, if K

1

; � � � ; K

k

are upwards closed realizations of

C

1

; � � � ; C

k

, then K

1

[ � � � [ K

k

is an upwardly closed realization of C, and then

to apply lemma 5.4.0.3. a

It is certainly not true that any union of types of n;m-maximal exactly provable

formulas is the set of n;m-types of some exactly provable L

n

m

formula. A counter-

example is provided by the sets of types belonging to p and to :p, both 0; 1-maximal

exactly provable formulas, which cannot be combined to an exactly provable formula,

even for m=1. A common enveloping type is needed, and is obviously not available

for p and :p (see section 5.5).

5.5 Calculating exactly provable formulas

In this section the calculation of the exactly provable formulas in L

1

1

will be discussed.

It will be shown that already in this very �rst small fragment there are 62 non-

interderivable members with 8 maximal elements. Of the next fragment L

1

2

even the



5.5. Calculating exactly provable formulas 109

cardinality of the set of maximal exactly provable elements has eluded us so far. The

fragment L

1

3

is de�nitely too large to attack in this manner.

To calculate the exactly provable formulas in L

1

1

we use sets of 1; 1-types. The

1; 1-types can be ordered into an exact Kripke model Exm(L

1

1

):

u u

u u u u u u�
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29. Figure. An exact Kripke model of L

1

1

.

This exact model corresponds to the �rst two layers (ExL

1

0

and ExL

1

1

) in the con-

struction of ExL

1

. In ordering the types into an exact model other choices could

have been made, resulting in di�erent models. In fact, in the calculation of exactly

provable formulas the choice of the exact model is arbitrary. In the sequel we will

denote the 1; 1-types by their number in the exact model above.

In the previous section we proved that �2L

1

1

is exactly provable i�

1. T

1

1

(�) is upwards closed realizable;

2. there is a t2T

1

1

(�) such that 8t

0

2T

1

1

(�)(t

0

�

02 j

1

(t)).

These criteria are easily translated into a test on a set of 1; 1-types C. The �rst

condition of this test requires C to be upwards closed realizable (in ExL

1

not nec-

essarily in the model above) and the second condition demands an enveloping type

in C. Let �2L

1

1

and C = T

1

1

(�). Then � is exactly provable i�

1. if 22C or 32C, then 02C

if 4 2 2C or 52C, then 12C

if 62C or 72C, then C \ f0; 2; 4g 6=; and C \ f1; 3; 5g 6=;;

2. 62C or 72C or C = f0; 2g or C = f1; 5g.

The sets of 1; 1-types corresponding to exactly provable formulas in L

1

can be found

in applying the above test to the 255 non-empty subsets of T

1

1

. We prefer however

to calculate the exactly provable formulas together with their corresponding sets of

1; 1-types. To do so, the exact model above will be used to calculate all L

1

1

formulas

in the following manner.

Our computer program generates a list of formulas and sets. It starts with the

formulas ? and p and the sets [[?]] = ; and [[p]] = f1; 3; 5; 7g (where [[�]] = fk 2

Exm(L

1

1

) j k 
 �g).

The list of formulas � and sets [[�]] is extended by systematically applying the

connectives (:;^;_;!;2) and the corresponding set operations, adding a pair con-

sisting of a formula and its set only if the set does not yet occur in the list. In this

way we ensure that no two distinct interderivable formulas will occur in the list.

Note that this computation of the Lindenbaum algebra of an exact Kripke model is

similar to the calculation described in Chapter 2.
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In generating the list of formulas and sets the test de�ned above is applied to

distinguish the exactly provable formulas in L

1

1

.

The exactly provable formulas in L

1

1

have been listed in appendix B.4.

To �nd the 1; 1-maximal exactly provable formulas � in the list, one has to look

for the minimal sets T

1

1

(�) (i.e. those that do not occur as a proper subset of some

T

1

1

( ) in the list).

The sets of types of this kind are:

1: f1; 5g 3: f0; 1; 7g 5: f1; 4; 7g 7: f0; 3; 7g

2: f0; 2g 4: f0; 1; 6g 6: f1; 4; 6g 8: f0; 3; 6g

It turns out that each of these 1; 1-maximal exactly provable formulas is maximal

exactly provable. The corresponding tail models can be found, using the model

below, by extending the submodels "k downward with a tail of copies of k for each

of the numbered elements.

u u

u u u u u u

u u u u u u u u�
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30. Figure. Extending ExL

1

1

to �nd tail models.

We will give these maximal exactly provable formulas in L

1

1

a more informative form:

1: p

2: :p

3: (2p!2?) ^ (2:p!2?) ^ (:p!2:p)

4: (2p!2?) ^ (2:p!2?) ^ (p!2p)

5: p$ }:p _ 2?

6: p$ 2:p

7: p$ :2p

8: p$ 2:p _ :2?

Formulas 1 and 2 correspond to provable and refutable sentences in PA. Formulas

6 and 7 can be (faithfully) interpreted by G�odel-sentences and their duals in PA.

Similarly, formulas 3 and 4 correspond to Rosser-sentences and their duals in PA.

The only small surprise is formed by formula 8 and its dual 5. It is easy to see that 8

is interderivable with p$ 22?^:2? and thus, of course, 5 with p$ (22?!2?).
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These two formulas are not L

1

1

, but can apparently interderivably be given as such.

Note also that, by the �xed point theorem of L (see e.g., [Smory�nski 85], [Boolos 93]),

there is no surprise in the fact that in the equivalences of 5 and 8 the p in the right

hand side can be eliminated in favor of the ?, but only in the fact that by using p

instead of ? one can push down the complexity.





Chapter 6

A family of propositional testers

6.1 Introduction

The common origin of the theorem testers treated here is the semantic tableau

method introduced by Beth in 1955 [Beth 55]. Beth de�ned semantic tableaux both

for classical and intuitionistic (predicate) logic. Restricting these methods to proposi-

tional formulas yields decision procedures for the classical propositional logic (CpL)

and the intuitionistic propositional logic (IpL). By appropriately changing the rules,

the semantic tableau method can also be used in modal logic.

Algorithms to decide for a given logic L and a given formula A whether `

L

A

are called formula testers here, whereas the (usual) term theorem prover is reserved

for algorithms that produce a proof (for example in natural deduction style) if the

given formula is a theorem. In [Hendriks 80] for example, a theorem prover is given,

based on the tableau method for CpL.

6.2 Preliminaries

A tableau is an ordered set of sequents L � R, where L and R are structures of

sequences of formulas. A tableau method de�nes what shall be considered as a sequent

and gives a set of rules to derive new sequents from a given sequent (thus de�ning

the order of the tableau). In those cases where application of a rule results in more

than one sequent, the tableau is said to branch into subtableaux.

A sequent L � R is closed if L \ R 6= ;. Here we used the intersection of L and

R as if they were sets. In the sequel we will treat L and R as sets if in the context

there is no risk of confusion. Let us write #X for the number of elements in X and

Sub(X) for the set of subformulas of formulas in X.

The rules of a tableau method resemble a system of derivation rules for sequents

in a system of sequent calculus. Treatment of a sequent results in a �nite directed

acyclic graph. If all terminal sequents are closed, the resulting tableau is a proof,

but upside down, as the tableau method started with the conclusion of the proof and

113
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the closed sequents correspond to axioms.

All formula testers presented here are based on a tableau method. In the rest of

this chapter we will use the following convention of writing:

p an atomic formula

A;B;C formulas

K;M;N; S; T; U sequences of formulas, not containing duplicates

L;R ordered pairs of sequences of formulas

To test whether or not the formula A is derivable, one starts with a sequent �A and

applies the rules, until all sequents are either closed or no rule can be applied. If

enough sequents close, the tableau is said to close and A is derivable. Otherwise the

tableau is said to stay open and A is not derivable. In the description of the tableaux

algorithms we will use rewriting rules on socalled split sequents L�R, where L and R

are �nite sequences of �nite sequences of formulas, separated by additional symbols

(like ; and ,). If L�R is a split sequent, A;L�R is the split sequent where A is added

on the left hand side of the leftmost sequence in L. Also we will write L � R;A for

adding A to the right of R. However, we will assume that before adding a formula

A to a sequence X in a split sequent, a check is performed whether A is already an

element of X. So, if A 2 X then A;X and X;A are equal to X.

6.3 CpLtest: a CpL tester

The simplest member of our family is CpLtest, a formula tester for CpL.

The split sequents of CpLtest are of the form M ;N � S;T . To test whether A

is derivable, one starts with the split sequent ; �A;. Hence A is a formula in S,

the sequence of righthand side formulas to be treated. The CpLtest rules below are

applied to a split sequent by treating the leftmost formula of S or the rightmost

formula of N . If N = S = ; treatment stops. In treating a formula A subformulas

of A are placed in S or in N . A formula in S (N) is placed in sequence T (M) to

facilitate recognition of a closure, i.e. a formula A occurring both in L and in R.

The rules of the tester CpLtest are:

(pR)

L � p; R

L � R; p

(pL)

L; p � ;T

p; L � ;T

(:R)

L � :A;R

L;A � R;:A

(:L)

L;:A � ;T

:A;L � A;T

(^R)

L � A ^B;R

L � A;R;A ^B L � B;R;A ^B

(^L)

L;A ^ B � ;T

A ^B;L;A;B � ;T
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(_R)

L � A _B;R

L � A;B;R;A _ B

(_L)

L;A _B � ;T

A _B;L;A � ;T A _B;L;B � ;T

(!R)

L � A!B;R

L;A � B;R;A!B

(!L)

L;A!B � ;T

A!B;L � A;T A!B;L;B � ;T

None of the CpLtest rules is applicable to a closed split sequent.

Note that all L-rules require that S = ;. So for each split sequent at most one rule

is applicable and hence the algorithm CpLtest is deterministic. We de�ne measures

of complexity that will strictly decrease with each application of a CpLtest rule.

6.3.0.1. Definition. Let X be a set of split sequents.

1. 
(p) = 0;

2. 
(:A) = 
(A) + 1;

3. 
(A �B) = 
(A) + 
(B) + 2 if � 2 f^;_;!g;

4. �(M ;N � S;T ) = �f
(A) + 1 j A 2 Ng+ �f
(A) + 1 j A 2 Sg;

5. �(M ;N � S;T ) = #Sub(N) + #Sub(S);

6. �(X) = �f2

�(L�R)

� �(L �R) j L �R 2 Xg.

6.3.0.2. Lemma. If L � R is a split sequent then �(L � R) � 0. If L � R is a

split sequent derived from split sequent L

0

� R

0

by application of one of the CpLtest

rules, then

�(L � R) < �(L

0

� R

0

)

If X is a set of split sequents then �(X) � 0. If X

0

is a set of split sequents derived

from X by application of one of the CpLtest rules (replacing the split sequent treated

by the result(s) of the application of the CpLtest rule), then

�(X

0

) < �(X)

Proof. By checking the rules. a

The measure �(X) provides us with an upper bound to the number of steps it may

take CpLtest to treat all split sequents in X (and the resulting sequents and so on)

until no rule of CpLtest is applicable (hence N = S = ;).

6.3.0.3. Definition. A split sequent L � R is open if it is not closed and no

CpLtest rule is applicable. A split sequent L � R is closing if it is closed or if a

CpLtest rule is applicable and the resulting split sequent(s) are closing. We will write

L

�

R if L � R is closing.

Note that the de�nition of closing is sound because the algorithm is terminating.

6.3.0.4. Lemma. L

�

R is closing i� L `

W

R.
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Proof. If L � R is closed then of course L `

W

R. If L � R is open, de�ne a modelM

by takingM j= p , p 2 L for atomic formulas p. Using the fact that all formulas

in N and S in the split sequent are treated by one of the rules, one proves M j=

V

L

and M 6j=

W

R.

As the tableau for a split sequent is a �nite tree of split sequents, we can proceed

by induction on the depth of the sequent (closed split sequents having depth zero).

By checking the CpLtest rules, observe that they correspond to equivalent state-

ments about the derivability relation ofCpL as stated in lemma 6.3.0.4. For example

for the _L-rule one can prove

A _ B ` C , A _ B;A ` C and A _ B;B ` C

in CpL. a

We now present CPLtest as a pseudo-code program, called Ctest. In the pseudo-

code language the notation of the sequence operation A;X introduced earlier, will be

replaced by hA;Xi, writing A for hA; ;i and hA;B;Xi for hA; hB;Xii. Ctest(; ; �; ),

the program Ctest, with as its input the formula �, will return the value true if

`

CpL

� and the value false otherwise.

Ctest(M;N; S; T : sequence of formula) : bool

if S 6= ;

then let S = hA; S

0

i

if A 2M [N then true

else in case A

atomic : Ctest(M;N; S

0

; hA; T i)

:B : Ctest(M; hB;Ni; S

0

; hA; T i)

B ^ C : if Ctest(M;N; hB; S

0

i; hA; T i)

then Ctest(M;N; hC; S

0

i; hA; T i)

else false

B _ C : Ctest(M;N; hB;C; S

0

i; hA; T i)

B!C : Ctest(M; hB;Ni; hC; S

0

i; hA; T i)

else if N 6= ;

then let N = hA;N

0

i

if A 2 T then true

else in case A

atomic : Ctest(hA;Mi; N

0

; ; T )

:B : Ctest(hA;Mi; N

0

; B; T )

B ^ C : Ctest(hA;Mi; hA;B;N

0

i; ; T )

B _ C : if Ctest(hA;Mi; hB;Ni; ; T )

then Ctest(hA;Mi; hC;Ni; ; T )

else false

B!C : if Ctest(hA;Mi; N;B; T )

then Ctest(hA;Mi; hC;Ni; ; T )

else false

else false
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To calculate an upper bound to the amount of time needed to calculate Ctest(; ; �; ),

we can make use of the measure � de�ned above, as �(f; � �; g) is an upper bound

to the number of calls to the Ctest procedure.

6.3.0.5. Fact. Let j�j be the length of formula �, i.e. the number of atoms and

connectives in �. Then

1. 
(�) < j�j;

2. �(; � �; ) � j�j;

3. �(; � �; ) < j�j;

4. �(; � �; ) < j�j:2

j�j

.

Next we need an upper bound to the time it takes to respond to a call of Ctest. In

the worst case the procedure Ctest involves the following steps:

1. determine whether S = ; and N = ;,

2. splitting a sequence X as hA;X

0

i,

3. determine whether a formula is in M [N or T ,

4. decompose a formula A into its principal subformulas,

5. concatenating a formula A and a sequence X into hX;Ai, which should result

in the sequence X if A is already a member of X.

We assume that placing a (new) call to Ctest will take a small constant amount of

time. Let us assume that X is the largest sequence and D is the longest formula in

the Ctest call we are dealing with.

The �rst step will only take a small constant amount of time, as will the second

step if sequences are represented as linked lists for example.

To determine equality of two formulas A and B will cost, at the most,

minfjAj; jBjg steps. Hence, as an upper bound for the third step we can use #X�jDj.

Step four can be done in a number of steps linear in the length of the formula

treated. Step �ve may occur thrice and each time we may use #X�jDj as an upper

bound.

From the rules of Ctest it is clear that the original � from the input is the longest

formula appearing in any of the consecutive calls to Ctest. Hence in the formulas

above we can replace D by �. Also, from the rules of Ctest we can �nd as an

upper bound for the largest sequence of subformulas in the input formula �. Hence

#X � j�j. As a result we have found an upper bound

4:j�j

2

+ c

1

:j�j+ c

2

for the time needed to answer one call to Ctest as part of the calculation of

Ctest(; ; �; ), c

1

and c

2

being (implementation dependent) constants.

By combining the two upper bounds calculated above, we found the upper bound

to the amount of time needed in the calculation of Ctest(; ; �; ) as a whole to be of

the order 4:j�j

3

:2

j�j

.
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As for the upper bound to the space needed in calculating Ctest(; ; �; ), note

that in the worst case a call to Ctest is replaced by two other calls plus a command

to process the results. As the number of calls is �(f; ; ��; g) and a call will take

2#X � jDj on the stack at the most (as each occurence of a subformula of � will

occur at most twice in the split sequent) an upper bound for the stack is 2:j�j

3

:2

j�j

.

We assume that to calculate a call to Ctest one needs to keep the initial sequences

in the memory. As we also have to produce (at most) three new sequences and need

some space for (at most) three formulas, a fair upper bound for the space needed in

one call is 4:#X � jDj+ 3:jDj or 4:j�j

2

+ 3:j�j. Hence the order of space needed to

calculate Ctest(; ; �; ) is 2:j�j

3

:2

j�j

.

6.4 IpLtest: an IpL tester

The split sequents of IpLtest are of the formK;M ;N � S;T ;U orK;M ;N � S;T ;U .

As in the previous section, we will use the abbreviations L and R in describing the

rules of IpLtest. Here L = K;M ;N and R = S;T ;U . The notation L � R will be

used to denote either L � R or L � R.

Testing the derivability of formula A starts with the split sequent ; ; � A; ;.

Formulas to be treated are placed in N or S, those already treated are placed in K

or U (and kept to facilitate the recognition of closure of a sequent). In IpLtest we

have to take special care of implications and negations. Treatment on the righthand

side (i.e. if implications or negations appear in S) is postponed; the implications and

negations are placed in T . Formulas in T will only be treated if everything else fails.

On the lefthand side implications and negations may have to be treated more

than once. After being treated, implications and negations are not moved from N to

K, but to M . If N = S = ;, then IpLtest may try all formulas in M again (by the

RL-rule). To avoid IpLtest to go on with repeating the formulas in M inde�nitely,

there is a mechanism to keep track of the changes in the set of atoms on the lefthand

side of the split sequent. We will write L � R if there have not been introduced

new atoms on the lefthand side since the last treatment of a formula in T . After

the introduction of a `new' atomic formula on the lefthand side, the split sequent is

written as L � R. L � R becomes L

0

� R

0

via the RL-rule.

As in case of CpLtest a split sequent L � R is closed if L \R 6= ;. As before we

will assume that no IpLtest rules are applicable to a closed split sequent. Let p be

an atomic formula. The rules of IpLtest are:

(pR)

L � p; R

L � R; p

(pL1)

L; p� ;T ;U

p; L� ;T ;U

((pL2)

L; p � ;T ;U

L � ;T ;U

p 2 L (pL3)

L; p � ;T ;U

p; L� ;T ;U

p 62 L

(:R)

L � :A; S;T ;U

L � S;T;:A;U

(:L)

K;M ;N;:A � ;T ;U

K;:A;M ;N � A;T ;U
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(^R)

L � A ^ B;R

L � A;R;A ^B L � B;R;A ^ B

(^L)

L;A ^ B � ;T ;U

A ^B;L;A;B � ;T ;U

(_R)

L � A _B;R

L � A;B;R;A _ B

(_L)

L;A _ B � ;T ;U

A _ B;L;A � ;T ;U A _ B;L;B � ;T ;U

(!R)

L � A!B; S;T ;U

L � S;T;A!B;U

(!L)

K;M ;N;A!B � ;T ;U

K;A!B;M ;N � A;T ;U K;A!B;M ;N;B � ;T ;U

RL

K;M ; � ;T ;U

;K;M � ;T ;U

:RR

K;M ; � ;:A; T ;U

K;M ;A � ; ; K;M ; � ;T ;U

!RR

K;M ; � ;A!B; T ;U

K;M ;A � B; ; K;M ; � ;T ;U

IpLtest, like CpLtest, has an L- and an R-rule for each of the connectives. :R and

!R postpone the treatment of negations and implications until all other rules but

:RR or !RR have failed. The RR-rules are special in that they may decrease

the number of formulas in the split sequent. The RL-rule enforces treatment of all

implications and negations on the lefthand side of the split sequent. The RL-rule

causes the sequence M (the implications and negations to be repeated) to make up

the new sequence N (of formulas to be treated).

Note that for each split sequent at most one of the IpLtest rules is applicable.

Hence the algorithm IpLtest is deterministic. To prove IpLtest to terminate on every

split sequent we again de�ne a measure of complexity on split sequents, as we did

for CpLtest. This time however the de�nition is more complex.

6.4.0.1. Definition. Let p be an atomic formula A an IpL formula, L � R a split

sequent (such that L = K;M ;N and R = S;T ;U) and X a set of split sequents.

1. 
(p) = 0;

2. 
(:A) = 
(A) + 2;

3. 
(A �B) = 
(A) + 
(B) + 3 if � 2 f^;_g;

4. 
(A!B) = 
(A) + 
(B) + 4;

5. �(L � R) = �f
(A) + 2 j A 2 Ng + �f
(A) + 2 j A 2 Sg+

�f
(A) + 1 j A 2 Tg;

6. �(L � R) = �(L � R) + 1;

7. �(L � R) = �f
(A) + 2 j (A = B!C or A = :B) and A 2 Sub(L [ R)g;

8. �(L � R) = #Sub(M [N) + #Sub(S) + #Sub(T );
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9. n(L � R) = #fp atomic j p 2 Sub(L [R)g;

10. m(L � R) = #fp atomic j p 2 Kg;

11. �(L � R) = (n(L � R)�m(L � R)):�(L � R) + �(L � R);

12. �(X) = �f2

�(L�R)

� �(L �R) j L �R 2 Xg.

6.4.0.2. Lemma. If L � R a split sequent then �(L � R) � 0. If L � R is derived

from split sequent L

0

� R

0

by application of one of the IpLtest rules, then

�(L � R) < �(L

0

� R

0

)

If X a set of split sequents then �(X) � 0. If X

0

a set of split sequents derived from

X by application of one of the IpLtest rules (replacing the split sequent treated by

the result(s) of the application of the IpLtest rule) then

�(X

0

) < �(X)

Proof. By checking the rules. In most cases application of a rule wille decrease the

� of the split sequent. Only the RL-rule increases the �. However, for a given split

sequent the pL3-rule can only be applied n � m-times (as n is the total number

of atoms in the split sequent and m the number of atoms in K). Hence, also the

RL-rule can only be applied n � m times. The number �, as de�ned above, is an

upper bound on the increase of � by an application of the RL-rule. a

6.4.0.3. Definition. A split sequent L �R is closing (L

�

R) if

1. L �R is closed (i.e. L \R 6= ;);

2. one of the RR-rules is applicable and one of the resulting split sequents is

closing;

3. one of the other rules is applicable and its resulting split sequent(s) is (are)

closing.

To prove IpLtest to be sound and complete we will prove

L

�

R , L `

_

R

In order to do so, we need the following de�nition and some facts.

6.4.0.4. Definition. A split sequent L � R is reduced if it is not closed and no

other rules but the RR-rules are applicable. If L � R a split sequent that is not

closing, application of the IpLtest rules, with the exception of the RR-rules, will

result in one or more reduced split sequents that will be called reductions of L �R.

Note that a split sequent is reduced if not closed and N = S = ;.

6.4.0.5. Fact. If L �R is a reduced split sequent then:

1: A ^ B 2 L ) A 2 L and B 2 L;

2: A _ B 2 L ) A 2 L or B 2 L;

3: :A 2 L ) A 62 L;

4: A!B 2 L ) A 62 L or B 2 L;

5: A ^ B 2 R ) A 2 R or B 2 R;

6: A _ B 2 R ) A 2 R and B 2 R.
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The truth of this fact can be established by observation of the IpLtest rules. No rule

changes the monotone increase of the set of formulas L and only with the RR-rules

do formulas disappear from R. Note that a reduced split sequent is always of the

form K;M ; �;T ;U .

6.4.0.6. Lemma. L

�

R implies L `

W

R (in IpL).

Proof. For a closed split sequent the lemma is obvious. As the tableau for a split

sequent is a �nite tree of split sequents, we can proceed by induction on the depth

of the sequent (closed split sequents having depth zero).

According to the IpLtest rules L

�

A ^ B;R i� both L

�

A;R;A ^ B and

L

�

B;R;A ^ B. By induction hypothesis we may infer L ` A _ (A ^ B) _

W

R

and L ` B _ (A ^ B) _

W

R. Hence in IpL one can derive L ` (A ^ B) _

W

R.

All IpLtest rules can be treated in the same way. For the RR-rules observe that

only one of the consequents of the rules has to be closing.

For the RR!-rule for example: if L;A

�

B then by induction hypothesis L;A ` B

and hence L ` A!B. Otherwise if L

�

R and hence L `

W

R, then of course also

L ` A!B _

W

R. For the RR:-rule, in case R = ;, note that

W

; = ?. a

To prove L � R is not closing implies L 0

W

R, we will extract from the non-closing

tableau a Kripke model K forcing all formulas in L and none of those in R. In the

de�nition of the Kripke model we will make use of the concept of the leftmost non-

closing reduction of a split sequent. In �nding this reduction one chooses to follow

the leftmost non-closing conclusion of each IpLtest rule.

6.4.0.7. Definition. Let L�R be a non-closing split sequent. The Kripke model K

associated with L �R is de�ned as the ordered set of (leftmost) non-closing reduced

split sequents:

1. the leftmost non-closing reduction of L �R is the root of K;

2. if k

l

2 K corresponds to the split sequent L

0

�;A!B; T ;U and T 6= ;, then the

leftmost non-closing reductions of L

0

; A�B; ; and L

0

�;T ;U are nodes of K, say

respectively k

m

and k

n

, such that k

l

� k

m

and k

l

� k

n

;

3. if k

l

2 K corresponds to the split sequent L

0

�;A!B; T ;U and T = ;, then the

leftmost non-closing reduction of L

0

; A �B; ; is a node of K, say k

m

, such that

k

l

� k

m

;

4. if k

l

2 K corresponds to the split sequent L

0

�;:A; T ;U and T 6= ;, then the

leftmost non-closing reductions of L

0

; A�; ; and L

0

�;T ;U are nodes of K, say

respectively k

m

and k

n

, such that k

l

� k

m

and k

l

� k

n

;

5. if k

l

2 K corresponds to the split sequent L

0

�;:A; T ;U and T = ; then the

leftmost non-closing reduction of L

0

; A�; ; is a node of K, say k

m

, such that

k

l

� k

m

;

6. the order relation � is re
exive and transitive;

7. if k

l

2 K is the node corresponding to L

0

�R

0

, then k

l


 p for atomic formulas

p i� p 2 L.
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6.4.0.8. Lemma. If L�R is a non-closing split sequent and K its associated Kripke

model, with root k

0

, then for each formula A we have A 2 L ) k

0


 A and

A 2 R ) k

0

1 A.

Proof. First observe that if L

0

�R

0

is the leftmost non-closing reduction of L�R, and

for each formula A we would have A 2 L

0

) k

0


 A and A 2 R

0

) k

0

1 A,

then the lemma is a consequence of the IpLtest rules (all except the RR-rules are

reversible).

With induction on the length of formula A we will prove that if k

l

2 K corre-

sponds to the reduced split sequent L

0

� R

0

, then A 2 L

0

implies k

l


 A and A 2 R

0

implies k

l

1 A.

The cases where A is atomic, a conjunction or a disjunction are obvious (using

fact 6.4.0.5).

Let A = B!C and A 2 L

0

. Let k

l

� k

m

and k

m

2 K correspond to a reduced

split sequent L

00

� R

00

and k

m


 B. As formula A has been treated in the derivation

of L

00

� R

00

, there is a k

n

2 K, k

m

� k

n

and k

n

1 B or k

n


 C such that k

m

and

k

n

force the same atoms. This is due to the fact that the RL-rule would have been

applied between the sequents of k

n

and k

m

if there was a di�erence in the atoms

forced. By a simple lemma on Kripke models k

m

and k

n

force the same formulas and

hence k

m


 C, which proves k

l


 B!C.

Let A = B!C and A 2 R

0

. Note that A 2 T and the split sequent L

0

; B � C; ;

(appearing after one or more applications of an RR-rule) will not be closing. Hence,

if k

m

corresponds to the leftmost non-closing reduction of L

0

; B �C; ;, by the induc-

tion hypothesis k

m

1 A. As we have k

l

� k

m

we infer that k

l

1 A. a

6.4.0.9. Theorem. A split sequent L � R is closing, using the IpLtest rules, i�

L `

W

R.

Proof. By combining the previous two lemmas. a

The following pseudo-code program, Itest is an implementation of the IpLtest al-

gorithm. For the language conventions see the Ctest program in the previous sec-

tion. To test whether a formula � is a theorem of IpL, one calls the program

Itest(; ; ; �; ; ; false), where the input corresponds to the initial sequent ; ; � �; ; for

IpLtest.
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Itest(K;M;N; S; T; U : sequence of formula; d : bool) : bool

if S 6= ;

then let S = hA; S

0

i

if A 2 K [M [N then true

else in case A

atomic : Itest(K;M;N; S

0

; T; hA;Ui; d)

:B : Itest(K;M;N; S

0

; hA; T i; U; d)

B ^ C : if Itest(K;M;N; hB; S

0

i; T; hA;Ui; d)

then Itest(K;M;N; hC; S

0

i; T; hA;Ui; d)

else false

B _ C : Itest(K;M;N; hB;C; S

0

i; T; hA;Ui; d)

B!C : Itest(K;M;N; S

0

; hA; T i; U; d)

else if N 6= ;

then let N = hA;N

0

i

if A 2 T [ U then true

else in case A

atomic : if A 62 K

then Itest(hA;Ki;M;N

0

; ; T; U; true)

else Itest(K;M;N

0

; ; T; U; d)

:B : Itest(K; hA;Mi; N

0

; B; T; U; d)

B ^ C : Itest(hA;Ki;M; hA;B;N

0

i; ; T; U; d)

B _ C : if Itest(hA;Ki;M; hB;N

0

i; ; T; U; d)

then Itest(hA;Ki;MhC;N

0

i; ; T; U; d)

else false

B!C : if Itest(K; hA;Mi; N

0

; B; T; U; d)

then Itest(K; hA;Mi; hC;N

0

i; ; T; U; d)

else false

else if d then Itest(K; ;M; ; T; U; false)

else if T 6= ;

then let T = hA; T

0

i

in case A

:B : if Itest(K;M;B; ; ; ; d) then true

else Itest(K;M; ; ; T

0

; U; d)

B!C : if Itest(K;M;B;C; ; ; d) then true

else Itest(K;M; ; ; T

0

; U; d)

else false

6.5 Ktest: a tester for K

In this section and the following we will introduce tableaux testers for modal propo-

sitional logic.

The �rst tester to be described is Ktest, a tester for the modal logic K, that

will act as the minimal system for the modal logics in this section. The axioms of
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K are those of classical propositional logic CpL plus 2(A!B)!(2A!2B) and

necessitation (` A ) ` 2A) as an extra derivation rule.

Split sequents of Ktest are of the form K;M ;N �S;T ;U . The rules for Ktest are

the rules of CpLtest, with rules added to deal with 2 and }:

(pR)

L � p; R

L � R; p

(pL)

L; p � ;T ;U

p; L � ;T ;U

(:R)

L � :A;R

L;A � R;:A

(:L)

L;:A � ;T ;U

:A;L � A;T ;U

(^R)

L � A ^ B;R

L � A;R;A ^ B L � B;R;A ^ B

(^L)

L;A ^B � ;T ;U

A ^B;L;A;B � ;T ;U

(_R)

L � A _ B;R

L � A;B;R;A _B

(_L)

L;A _ B � ;T ;U

A _ B;L;A � ;T A _ B;L;B � ;T ;U

(!R)

L � A!B;R

L;A � B;R;A!B

(!L)

L;A!B � ;T ;U

A!B;L � A;T A!B;L;B � ;T ;U

(

2

R)

L �

2

A; S;T ;U

L � S;T;

2

A;U

(

2

L)

K;M ;N;

2

A � ;T ;U

K;

2

A;M ;N � ;T ;U

(}R)

K;M ;N � }A; S;T ;U

K;

2

:A;M ;N � S;T ;U;}A

(}L)

L;}A � ;T ;U

}A;L � ;T;

2

:A;U

The NW-rule

K;M ; � ;

2

A; T ;U

; ;M

�

� A; ; K;M ; � ;T ;U

where M

�

= fB j 2B 2 Mg

The NW-rule (the new world rule) plays the same role as the RR-rules in IpLtest. If

the algorithm is regarded as a method of systematically constructing a Kripke model

(that is a counterexample to the formula tested and failure of which proves that it

is a theorem is true) this rule forces the introduction of a new world in the model

construction.

The rules in Ktest for the possibility operator di�er from the other rules (in Ktest,

IpLtest or CpLtest), as in treating the formula}A, we not only use the subformula A,

but in the result of the }-rules there appears a formula

2

:A. This is best understood

as treating } as an abbreviation of :2:. In this way we somewhat restricted the
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number of rules. From the rules above it can be proved that we get an equivalent

system by adding a new }NW-rule:

K;M;}A; � ; ;U

; ;M

�

; A � ; ; K;M ; � ; ;U

where M

�

= fB j 2B 2Mg

and replacing the } rules above by:

(}R)

L � }A; S;T ;U

L � S;T;}A;U

(}L)

K;M ;N;}A � ;T ;U

K;}A;M ;N � ;T ;U

De�ne a Ktest split sequent L � R to be closed if L\R 6= ;. None of the Ktest rules

is applicable to a closed split sequent.

The rules of Ktest are named according to the kind of formula treated and its

position. Hence we have a pL- and a pR-rule, an !L- and an !R-rule and so on.

Note that at most one rule is applicable to any split sequent and hence the

algorithm Ktest is deterministic. To prove the algorithm Ktest to terminate on each

split sequent, we de�ne a measure of complexity on a set X of split sequents, �(X)

that will strictly decrease with each application of a Ktest rule on a member of X.

Application of a Ktest rule to X has as its result a new set of split sequents X

0

,

where the split sequent treated in X is replaced by the result from the application

of the Ktest rule.

6.5.0.1. Definition. Let p be an atomic formula, A a K formula L � R a split

sequent (such that L =M ;N and R = S;T ) and X a set of split sequents.

1. 
(p) = 0;

2. 
(:A) = 
(A) + 1;

3. 
(A �B) = 
(A) + 
(B) + 2 if � 2 f^;_;!g;

4. 
(

2

A) = 
(A) + 1;

5. 
(}A) = 
(A) + 3;

6. �(L � R) = �f
(A) + 1 j A 2 Ng + �f
(A) j A 2Mg+

�f
(A) + 1 j A 2 Sg+ �f
(A) j A 2 Tg;

7. �(L � R) = #Sub(M) + #Sub(N) + #Sub(S) + #Sub(T );

8. �(X) = �f2

�(L�R)

� �(L �R) j L �R 2 Xg.

6.5.0.2. Lemma. If L � R a split sequent then �(L � R) � 0. If L � R is a split

sequent derived from split sequent L

0

� R

0

by application of one of the Ktest rules,

then

�(L � R) < �(L

0

� R

0

)

If X a set of split sequents then �(X) � 0. If X

0

a set of split sequents derived from

X by application of one of the Ktest rules (replacing the split sequent treated by the

result(s) of the application of the Ktest rule) then

�(X

0

) < �(X)
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Proof. By simply checking the rules. a

6.5.0.3. Definition. A split sequent L �R is closing (L

�

R) if

1. L �R is closed;

2. the NW-rule is applicable and one of the resulting split sequents is closing;

3. the R̂-, _L- or !L-rule is applicable and both the resulting split sequents are

closing;

4. one of the other rules is applicable and its resulting split sequent is closing.

To prove Ktest to be sound and complete we will prove

L

�

R , L `

_

R

But to do so we need the following de�nition and facts.

6.5.0.4. Definition. A split sequent L � R is reduced if it is not closed and N =

S = ; (no other rules but the NW-rule are applicable). If L�R is a split sequent that

is not closing, application of the Ktest rules, with the exception of the NW-rule, will

result in one or more reduced split sequents that will be called reductions of L �R.

A fortiori a split sequent is reduced if it is not closed and no Ktest rule applies to it.

6.5.0.5. Fact. If L �R is a reduced split sequent then:

1: A ^ B 2 L ) A 2 L and B 2 L;

2: A _ B 2 L ) A 2 L or B 2 L;

3: :A 2 L ) A 2 R;

4: A!B 2 L ) A 2 R or B 2 L;

5: A ^ B 2 R ) A 2 R or B 2 R;

6: A _ B 2 R ) A 2 R and B 2 R;

7: :A 2 R ) A 2 L;

8: A!B 2 R ) A 2 L and B 2 R.

The truth of this fact can be established by observation of the Ktest rules. Observe

that only the NW-rule changes the monotonic increase of the sets of formulas L and

R.

6.5.0.6. Lemma. If a split sequent L�R is closing (by the Ktest rules) then L `

W

R

(in K).

Proof. For a closed split sequent the lemma is obvious. As the tableau for a split

sequent is a �nite tree of split sequents, we can proceed by induction on the depth

of the sequent (closed split sequents having depth zero).

According to the Ktest rules L

�

A ^ B;R i� both L

�

A;R;A ^ B and

L

�

B;R;A^B. By the induction hypothesis we may infer L ` A_A^B _

W

R and

L ` B _ A ^B _

W

R. Hence in K one can derive L ` A ^ B _

W

R.

All Ktest rules can be treated in the same way. For the NW-rule observe that

only one of the consequents of the rule has to be closing.
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As M contains only boxed formulas, from M

�

` A infer (by necessitation) that

M `

2

A. Hence we may conclude that K;M `

2

A _

W

T _

W

U . If on the other

hand it should be the case that K;M `

W

T _

W

U then obviously we would have

K;M `

2

A _

W

T _

W

U . a

To prove that if L�R is not closing, then L 0

W

R we will extract from the non-closing

tableau a Kripke model K forcing all formulas in L and none of those in R. In the

de�nition of the Kripke model we will make use of the concept of the leftmost non-

closing reduction of a split sequent as we did for IpLtest. In �nding this reduction

one chooses to follow the leftmost non-closing conclusion of each Ktest rule for which

there is a choice.

6.5.0.7. Definition. Let L � R be a non-closing split sequent. The Kripke model

K associated with L � R is de�ned as a set of (leftmost) non-closing reduced split

sequents, with an irre
exive relation <:

1. the leftmost non-closing reduction of L �R is the root of K;

2. if k

l

2 K corresponds to the split sequent K;M ; �;T ;U and T =

f

2

A

1

; : : :

2

A

t

g 6= ; then the leftmost non-closing reductions of ; ;M

�

� A

i

; ;

(where M

�

= fB j

2

B 2 Mg and

2

A

i

2 T ) are nodes of K, say respectively

l

1

; : : : ; l

t

, such that for all i such that 1 � i � t: k

l

< l

i

;

3. if k

l

2 K corresponds to the split sequent K;M ; �; ;U (hence T = ;) then k

l

is

a terminal node in K.

4. if k

l

2 K is the node corresponding to L

0

�R

0

, then k

l


 p for atomic formulas

p i� p 2 L.

6.5.0.8. Lemma. If L�R is a non-closing split sequent and K its associated Kripke

model, with root k

0

, then for each formula A we have A 2 L ) k

0


 A and

A 2 R ) k

0

1 A.

Proof. First observe that if L

0

�R

0

is the leftmost non-closing reduction of L�R, and

for each formula A we would have A 2 L

0

) k

0


 A and A 2 R

0

) k

0

1 A,

then the lemma is a consequence of the Ktest rules (all except the NW-rule are

reversible).

With induction on the length of formula A we will prove that if k

l

2 K corre-

sponds to the reduced split sequent L

0

� R

0

, then A 2 L

0

implies k

l


 A and A 2 R

0

implies k

l

1 A.

The cases where A is atomic, a conjunction, a disjunction or an implication are

obvious (using fact 6.5.0.5).

Let A =

2

B and A 2 L

0

. As L

0

� R

0

is reduced A will be a member of M . Let

k

l

< k

m

and k

m

2 K correspond to a reduced split sequent L

00

� R

00

. Then L

00

� R

00

will be a result of the application of the NW-rule and hence we will have B 2 L

00

.

By induction hypothesis conclude that k

m


 B. Which proves that k

l




2

B. Note

that if k

l

is a terminal node then, as K has been de�ned in such a way that it is

irre
exive, trivially k

l




2

B.

If A =

2

B and A 2 R

0

then A will be in T and application of the NW-rule (and

reduction) will result in a node k

m

corresponding to a reduced split sequent L

00

�R

00
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such that k

l

< k

m

and B 2 R

00

. Using the induction hypothesis we conclude k

m

1 B

and hence k

l

1

2

B. a

6.5.0.9. Theorem. A split sequent L � R is closing, using the Ktest rules, i� L `

W

R.

Proof. By combining the previous two lemmas. a

Like we did previously for CpLtest and IpLtest, we will give a pseudo-code trans-

lation of the algorithm KMtest.

KMtest(K;M;N; S; T; U : sequence of formula) : bool

if S 6= ;

then let S = hA; S

0

i

if A 2 J [K [M [N then true

else in case A

atomic : KMtest(K;M;N; S

0

; T; hA;Ui)

:B : KMtest(K;M; hB;Ni; S

0

; T; U)

B ^ C : if KMtest(K;M;N; hB; S

0

i; T; hA;Ui)

then KMtest(K;M;N; hC; S

0

i; T; hA;Ui)

else false

B _ C : KMtest(K;M;N; hB;C; S

0

i; T; hA;Ui)

B!C : KMtest(K;M; hB;Ni; hC; S

0

i; T; hA;Ui)

2

B : KMtest(K;M;N; S

0

; hA; T i; U)

}B : KMtest(K;M;N; S

0

; h:B; T i; U)

else if N 6= ;

then let N = hA;N

0

i

if A 2 T [ U then true

else in case A

atomic KMtest(hA;Ki;M;N

0

; ; T; U)

:B : KMtest(hA;Ki;M;N

0

; B; T; U)

B ^ C : KMtest(hA;Ki;M; hA;B;N

0

i; ; T; U)

B _ C : if KMtest(hA;Ki;M; hB;Ni; ; T; U)

then KMtest(hA;Ki;MhC;Ni; ; T; U)

else false

B!C : if KMtest(hA;Ki;M;N;B; T; U)

then KMtest(hA;Ki;M; hC;Ni; ; T; U)

else false

2

B : KMtest(K; hA;Mi; N; ; T; U)

}B : KMtest(K;M;N; ; hT;Ai; U)

else if T 6= ;

then let T = h

2

A; T

0

i and M

�

= fB j

2

B 2Mg

if KMtest(; ;M

�

; A; ; ) then true

else KMtest(K;M; ; ; T; U)

else false
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6.6 Other testers for modal propositional logic

Testers for other modal propositional logics can be derived from Ktest by changing

some of the rules (mainly the NW-rule). In this section we will indicate for several

modal logics how a tester algorithm may be obtained.

6.6.1 Ttest: a T tester

The modal logic T has as its axioms and rules those of K plus the axiom 2�!�. T

is complete for �nite re
exive Kripke models (a proof can be found in [HC 84]).

To obtain Ttest, a tester for the modal logic T, we only have to change the

2

L-rule in Ktest.

6.6.1.1. Definition. The tester Ttest has the same rules as Ktest, except for the

2

L-rule that is replaced by:

(T

2

L)

K;M ;N;

2

A � ;T ;U

K;

2

A;M ;N;A � ;T ;U

:

6.6.1.2. Theorem. A split sequent L � R is closing, using the Ttest rules, i� L `

W

R.

Proof. The proof is essentially as for theorem 6.5.0.9, using amended versions of

lemma 6.5.0.6 and lemma 6.5.0.8.

As for lemma 6.5.0.6, note that in T, using

2

A ` A, from L;

2

A;A `

W

R we

may infer L;

2

A `

W

R.

To prove an amended version of lemma 6.5.0.8, we have to change the de�nition

of an associated Kripke model, de�nition 6.5.0.7, in such a way that the resulting

model is always re
exive. Note that the change in the

2

L-rule re
ects the axiom

2�!� of T. If L � R is a split sequent and

2

A 2 L, then in the leftmost non-closing

reduction of L � R, by the

2

L-rule, we will have A 2 L. This is exactly what we

need to change the proof of lemma 6.5.0.8 to apply to T. a

6.6.2 K4test: a K4 tester

The modal logicK4 has as its axioms and rules those ofK plus the axiom2�!22�.

A proof that K4 is complete for �nite transitive Kripke models can be found

in [HC 84]. For the de�nition of K4test, a tester for the modal logic K4, we

will extend the split sequents of Ktest. A split sequent of K4test is of the form

K;M ;N (w;W ) S;T ;U , where K;M ;N � S;T ;U is a split sequent of Ktest, w a

world, a tuple hX; Y i, with X and Y sets of formulas, and W a sequence of worlds.

The algorithm of K4test, given below, is obtained by amending the rules of Ktest

for the split sequents of K4test, changing the NW-rule and adding a new rule re-

stricting the applicability of the K4test rules.
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The K4NW-rule is

K;M ; (w;W ) ;

2

A; T ;U

;M ;M

�

(w

0

;W;w) A; ; K;M ; (w;W ) ;T ;U

where M

�

= fB j 2B 2 Mg.

This rule re
ects the transitivity of the frames where the axiom 2�!22� is

valid, by repeating all boxed formulas that have appeared on the left-hand side of

the reduced split sequent.

The new rule of non-applicability declares that for a sequent L(w;W )R with

w 2 W no rule of K4test is applicable. In particular this may be the result of the

K4NW-rule, if the world w

0

= hM [M

�

; fAgi already occures in the list W;w of

worlds that appeared above this split sequents in its construction from the starting

split sequents, using the K4test-rules.

For the rules of K4test we use the same conventions as for Ktest and we will

abbreviate K;M ;N (w;W ) S;T ;U by L (w;W ) R.

(pR)

L (w;W ) p; R

L (w;W ) R; p

(pL)

L; p (w;W ) ;T ;U

p; L (w;W ) ;T ;U

(:R)

L (w;W ) :A;R

L;A (w;W ) R;:A

(:L)

L;:A (w;W ) ;T ;U

:A;L (w;W ) A;T ;U

(^R)

L (w;W ) A ^ B;R

L (w;W ) A;R;A ^B L (w;W ) B;R;A ^ B

(^L)

L;A ^B (w;W ) ;T ;U

A ^B;L;A;B (w;W ) ;T ;U

(_R)

L (w;W ) A _ B;R

L (w;W ) A;B;R;A _ B

(_L)

L;A _ B (w;W ) ;T ;U

A _ B;L;A (w;W ) ;T A _B;L;B (w;W ) ;T ;U

(!R)

L (w;W ) A!B;R

L;A (w;W ) B;R;A!B

(!L)

L;A!B (w;W ) ;T ;U

A!B;L (w;W ) A;T A!B;L;B (w;W ) ;T ;U

(

2

R)

L (w;W )

2

A; S;T ;U

L (w;W ) S;T;

2

A;U

(

2

L)

K;M ;N;

2

A (w;W ) ;T ;U

K;

2

A;M ;N (w;W ) ;T ;U

(}R)

K;M ;N (w;W ) }A; S;T ;U

K;

2

:A;M ;N (w;W ) S;T;

2

A;U

(}L)

L;}A (w;W ) ;T ;U

L (w;W ) ;T;

2

:A;U
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The K4NW-rule

K;M ; (w;W ) ;

2

A; T ;U

;M ;M

�

(hM [M

�

; fAgi;W;w) A; ; K;M ; (w;W ) ;T ;U

where M

�

= fB j 2B 2 Mg.

Note that the top sequent of the K4NW-rule will be called closing if one of the

resulting split sequents is closing.

6.6.2.3. Lemma. The algorithm K4test is deterministic and terminates on the input

of any split sequent.

Proof. To see that K4test is deterministic, it can be veri�ed that for each split sequent

at most one rule of K4test is applicable.

To prove that K4test terminates on every split sequent, we can de�ne a measure

of complexity, �(X), on a set X of split sequents, like we did for Ktest in de�ni-

tion 6.5.0.1. We will not spell out this de�nition here, but the only di�erence with

the one for Ktest will be a contribution for the (w;W ) part in the split sequent.

Let the initial sequent be L(w;W )R. The worlds that may appear in the ap-

plication of the K4test rules to this sequent (and its resulting sequents) are tuples

hM;Ai, where M [ A is a set of subformulas in the initial sequent L(w;W )R. If

m is the number of these world-like tuples that may be made out of L(w;W )R and

n the number of worlds in W in the initial sequent, then for every split sequent

L

0

(w

0

;W

0

)R

0

that may be developed out of L(w;W )R we have measure

�(L

0

(w

0

;W

0

)R

0

) = m+ n�#W

0

+ 1

that is strictly decreasing after each non-closing application of the K4NW-rule.

Taking this � into account, one can construct a strictly decreasing measure of

complexity on a set of split sequents, as in de�nition 6.5.0.1. a

To prove the counterpart of theorem 6.5.0.9 for K4test, we proceed as in section 6.5.

6.6.2.4. Lemma. If a split sequent L(w;W )R is closing (by the K4test rules) then

L `

W

R (in K4).

Proof. For a closed split sequent the lemma is obvious. As the tableau for a split

sequent is a �nite tree of split sequents, we can proceed by induction on the depth

of the sequent (closed split sequents having depth zero).

All K4test rules can be treated as in the proof of lemma 6.5.0.6, except for the

rule K4NW.

If K;M ; (w;W ) ;T ;U is closing then, by the induction hypothesis, K;M `

W

T _

W

U . Then obviously also K;M `

2

A _

W

T _

W

U .

On the other hand, if ;M ;M

�

(hM [ M

�

; fAgi;W;w) A; ; is closing, then, by

the induction hypothesis, M;M

�

` A. Applying the necessitation rule, infer that

M `

2

A, as M = f

2

B j B 2M

�

g and by the K4 axiom M `

2

V

M . a

For the proof of the following lemma, we will, as in section 6.5, associate a Kripke

model to a non-closing split sequent L(w;W )R.
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6.6.2.5. Definition. Let L(w;W )R be a non-closing split sequent. The Kripke

model K associated with L(w;W )R is de�ned as a set of (leftmost) non-closing

reduced split sequents, with a transitive relation �:

1. the leftmost non-closing reduction of L(w;W )R is the root of K;

2. if k

l

2 K corresponds to the split sequent K;M ; (w;W );T ;U and T =

f

2

A

1

; : : :

2

A

t

g 6= ; then the leftmost non-closing reductions of ;M ;M

�

� A

i

; ;

(where M

�

= fB j

2

B 2 Mg and

2

A

i

2 T ) are nodes of K, say respectively

l

1

; : : : ; l

t

, such that for all i such that 1 � i � t: k

l

�l

i

;

3. if L(w;W )R is non-closing because of w 2 W and w was introduced in W by

application of the K4NW-rule to L

0

(w;W

0

)R

0

, then, if L

0

(w;W

0

)R corresponds

to k

l

and L(w;W )R corresponds to k

m

, we identify k

l

and k

m

.

4. if k

l

2 K corresponds to the split sequent K;M ; (w;W ); ;U (hence T = ;) then

k

l

is a terminal node in K.

5. if k

l

2 K is the node corresponding to L

0

(w;W )R

0

, then k

l


 p for atomic

formulas p i� p 2 L.

6.6.2.6. Lemma. If L(w;W )R is a non-closing split sequent and K its associated

Kripke model, with root k

0

, then for each formula A we have A 2 L ) k

0


 A

and A 2 R ) k

0

1 A.

Proof. First observe that if L

0

(w;W )R

0

is the leftmost non-closing reduction of

L(w;W )R, and for each formula A we would have A 2 L

0

) k

0


 A and

A 2 R

0

) k

0

1 A, then the lemma is a consequence of the Ktest rules (all

except the K4NW-rule are reversible).

With induction on the length of formula A we will prove that if k

l

2 K corre-

sponds to the reduced split sequent L

0

(w;W )R

0

, then A 2 L

0

implies k

l


 A and

A 2 R

0

implies k

l

1 A.

The cases where A is atomic, a conjunction, a disjunction or an implication are

obvious (using fact 6.5.0.5).

Let A =

2

B, A 2 L

0

and (as L

0

(w;W )R

0

is reduced) L

0

= K

0

;M

0

;. Observe that

A will be a member ofM

0

and application of the K4NW-rule will result in a leftmost

split sequent containing both A and B. Repeated applications of the K4NW-rule

hereafter will result in (leftmost) spliting sequents with the same property.

Let k

l

�k

m

and let k

m

2 K correspond to a reduced split sequent L

00

(w

00

;W

00

)R

00

.

Now either w

0

2 W

0

or L

00

(w

00

;W

00

)R

00

is the result of (repeated) application of the

K4NW-rule. From the observation above infer that in either case B 2 L

00

. By

induction hypothesis conclude that k

m


 B. Which proves that k

l




2

B.

Note that if no K4test rule is applicable for L

0

(w;W )R

0

and w 62 W , then k

l

is

an irre
exive terminal node and trivially k

l




2

B.

If A =

2

B and A 2 R

0

then A will be in T and application of the K4NW-rule

(and reduction) will result in a node k

m

corresponding to a reduced split sequent

L

00

(w

00

;W

00

)R

00

such that k

l

< k

m

and B 2 R

00

. Using the induction hypothesis we

conclude k

m

1 B and hence k

l

1

2

B. a
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6.6.2.7. Theorem. A split sequent L(w;W )R is closing, using the K4test rules, i�

L `

W

R.

Proof. By combining the previous two lemmas. a

For the di�erences between K4test and Ktest one may compare the pseudo-code of

KMtest with following pseudo-code program, K4Mtest, for the algorithm K4test.

K4Mtest(K;M;N; S; T; U : sequence of formula

w : world, W : sequence of world): bool

if S 6= ;

then let S = hA; S

0

i

if A 2 J [K [M [N then true

else in case A

atomic : K4Mtest(K;M;N; S

0

; T; hA;Ui; w;W )

:B : K4Mtest(K;M; hB;Ni; S

0

; T; U; w;W )

B ^ C : if K4Mtest(K;M;N; hB; S

0

i; T; hA;Ui; w;W )

then K4Mtest(K;M;N; hC; S

0

i; T; hA;Ui; w;W )

else false

B _ C : K4Mtest(K;M;N; hB;C; S

0

i; T; hA;Ui; w;W )

B!C : KMtest(K;M; hB;Ni; hC; S

0

i; T; hA;Ui; w;W )

2

B : K4Mtest(K;M;N; S

0

; hA; T i; U; w;W )

}B : K4Mtest(K;M;N; S

0

; h:B; T i; U; w;W )

else if N 6= ;

then let N = hA;N

0

i

if A 2 T [ U then true

else in case A

atomic K4Mtest(hA;Ki;M;N

0

; ; T; U; w;W )

:B : K4Mtest(hA;Ki;M;N

0

; B; T; U; w;W )

B ^ C : K4Mtest(hA;Ki;M; hA;B;N

0

i; ; T; U; w;W )

B _ C : if K4Mtest(hA;Ki;M; hB;Ni; ; T; U; w;W )

then K4Mtest(hA;Ki;MhC;Ni; ; T; U; w;W )

else false

B!C : if K4Mtest(hA;Ki;M;N;B; T; U; w;W )

then K4Mtest(hA;Ki;M; hC;Ni; ; T; U; w;W )

else false

2

B : K4Mtest(K; hA;Mi; N; ; T; U; w;W )

}B : K4Mtest(K;M;N; ; hT;Ai; U; w;W )

else if T 6= ;

then let T = h

2

A; T

0

i and M

�

= fB j

2

B 2Mg

and w

0

= hM [M

�

; fAgi

if w

0

2 W [ fw

0

g then K4Mtest(K;M; ; ; T; U; w;W )

else K4Mtest(;M;M

�

; A; ; ; w

0

; hw;W i)

else false
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6.6.3 S4test: an S4 tester

The modal logic S4 has as its axioms and rules those of K4 plus the axiom of T,

2�!�. A proof that S4 is complete for �nite re
exive and transitive Kripke models

can be found in [HC 84]. The tester S4test is obtained by replacing the

2

L-rule in

K4test by the Ttest-rule de�ned above.

6.6.3.8. Definition. The tester S4test has the same rules as K4test, except for the

2

L-rule that is replaced by the T

2

L-rule.

6.6.3.9. Theorem. A split sequent L(w;W )R is closing, using the S4test rules, i�

L `

W

R.

Proof. The proof is essentially as for theorem 6.6.2.7. The de�nition of the Kripke

model associated with a non-closing sequent has to be changed in such a way that the

model is always re
exive. Note that the change in the

2

L-rule re
ects the addition

of the T axiom and the re
exivity of the associated models. a

6.6.4 Ltest: an L tester

The modal logic L has as its axioms and rules those of K, plus the L�ob axiom

2

(

2

A!A)!

2

A. As in L the theorem

2

A `

22

A is derivable, L is an extension

of K4. A proof that L is complete for �nite, transitive reverse well-founded Kripke

models can be found in [Smory�nski 85] and [Boolos 93]. The split sequents of the L

tester Ltest will be of the same form as those for K.

6.6.4.10. Definition. The tester Ltest has the same rules as Ktest, except for the

NW-rule that is replaced by the LNW-rule:

K;M ; � ;

2

A; T ;U

;M ;M

�

;

2

A � A; ; K;M ; (w

0

;W:w) ;T ;U

where M

�

= fB j 2B 2Mg.

6.6.4.11. Lemma. The algorithm Ltest is deterministic and terminates on the input

of any split sequent.

Proof. The proof is essentially the same as for K4test in lemma 6.6.2.3

6.6.4.12. Lemma. If a split sequent L�R is closing (by the Ltest rules) then L `

W

R

(in L).

Proof. For a closed split sequent L �R the lemma is obvious.

As the tableau for a split sequent is a �nite tree of split sequents, we can proceed

by induction on the depth of the sequent (closed split sequents having depth zero).

All Ltest rules can be treated as in the proof of lemma 6.5.0.6, except for the rule

LNW, for which we can proceed as in the proof of lemma 6.6.2.4. a

For Ltest we de�ne the Kripke model associated with a non-closing split sequent as

in de�nition 6.6.2.5, omitting the looping back rule 3.
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6.6.4.13. Lemma. If L�R is a non-closing split sequent and K its associated Kripke

model, with root k

0

, then for each formula A we have A 2 L ) k

0


 A and

A 2 R ) k

0

1 A.

Proof. First observe that if L

0

�R

0

is the leftmost non-closing reduction of L�R, and

for each formula A we would have A 2 L

0

) k

0


 A and A 2 R

0

) k

0

1 A,

then the lemma is a consequence of the Ktest rules (all except the LNW-rule are

reversible).

With induction on the length of formula A we will prove that if k

l

2 K corre-

sponds to the reduced split sequent L

0

� R

0

, then A 2 L

0

implies k

l


 A and A 2 R

0

implies k

l

1 A.

The cases where A is atomic, a conjunction, a disjunction or an implication are

obvious (using fact 6.5.0.5).

Let A =

2

B, A 2 L

0

and (as L

0

� R

0

is reduced) L

0

= K

0

;M

0

;. Observe that,

as in case of the K4NW-rule, A will be a member of M

0

and application of the

LNW-rule will result in a leftmost split sequent containing both A and B. Repeated

applications of the LNW-rule hereafter will result in (leftmost) spliting sequents with

the same property.

Hence, for the proof of this lemma we can proceed as in the proof of lemma 6.6.2.4

(omitting the case where w

0

2 W

0

). a

The pseudo-code program LMtest for the algorithm Ltest only di�ers slightly from

the program K4Mtest in subsection 6.6.2.
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LMtest(K;M;N; S; T; U : sequence of formula): bool

if S 6= ;

then let S = hA; S

0

i

if A 2 J [K [M [N then true

else in case A

atomic : LMtest(K;M;N; S

0

; T; hA;Ui)

:B : LMtest(K;M; hB;Ni; S

0

; T; U)

B ^ C : if LMtest(K;M;N; hB; S

0

i; T; hA;Ui)

then LMtest(K;M;N; hC; S

0

i; T; hA;Ui)

else false

B _ C : LMtest(K;M;N; hB;C; S

0

i; T; hA;Ui)

B!C : KMtest(K;M; hB;Ni; hC; S

0

i; T; hA;Ui)

2

B : LMtest(K;M;N; S

0

; hA; T i; U)

}B : LMtest(K;M;N; S

0

; h:B; T i; U)

else if N 6= ;

then let N = hA;N

0

i

if A 2 T [ U then true

else in case A

atomic LMtest(hA;Ki;M;N

0

; ; T; U)

:B : LMtest(hA;Ki;M;N

0

; B; T; U)

B ^ C : LMtest(hA;Ki;M; hA;B;N

0

i; ; T; U; )

B _ C : if LMtest(hA;Ki;M; hB;Ni; ; T; U)

then LMtest(hA;Ki;MhC;Ni; ; T; U)

else false

B!C : if LMtest(hA;Ki;M;N;B; T; U)

then LMtest(hA;Ki;M; hC;Ni; ; T; U)

else false

2

B : LMtest(K; hA;Mi; N; ; T; U)

}B : LMtest(K;M;N; ; hT;Ai; U)

else if T 6= ;

then let T = h

2

A; T

0

i and M

�

= fB j

2

B 2Mg

if LMtest(;M; h

2

A;M

�

i; A; ; ) then true

else LMtest(K;M; ; ; T; U)

else false



Appendix A

Computer programs

A.1 Preliminaries

The computer programs in this appendix, written in the programming language C,

all make use of a module that contains the types, functions and procedures that are

common to the mkDiag program described in section 2.6 and the family of testers

treated in Chapter 6. Parts of this module, supporting the understanding of the

C-programs in the sequel, are listed below.

In the computer programs in this appendix formulas are represented by (pointers

to) structures of the form:

struct formType

{ char type; /* -,&,|,:,L,M else the atom */

struct formType *an;

struct formType *co;

unsigned treated : 1;

unsigned revisit : 1;

};

typedef struct formType *formula;

The type of a formula is denoted by its main connective. The list of possible

connectives -, &, |, :, L, M corresponds with the list :;^;_;!;

2

;}. If the

type character is not in this list, the formula is assumed to be atomic.

If a formula is not atomic, the main subformula(s) is (are) represented in the

structure by a pointer to this (these) formula(s). The 
ags `treated' and `revisit' are

used in the programs to mark the formulas as treated or as to be revisited.

Lists of formulas are represented by simple linked lists:

struct flistType

{ formula element;

struct flistType *next;

};

typedef struct flistType *formlist;

137
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The utility module de�nes procedures for making and printing formulas (either

on screen or in a �le). For example the procedures mkatom, mkNegation, mkCon-

junction and mkNecessarily, to make atomic formulas, negations, conjunctions and

necessitations are de�ned as:

formula mkAtom( char c )

{ formula form = newForm();

form->type = findAtom( c );

form->an = NULL;

form->co = NULL;

form->treated = 1;

return form;

}

formula mkNegation( formula x )

{ formula form = newForm();

form->type = '-';

form->an = x;

return form;

}

formula mkConjunction( formula x, formula y )

{ formula form = newForm();

form->type = '&';

form->an = x;

form->co = y;

return form;

}

formula mkNecessarily( formula x )

{ formula form = newForm();

form->type = 'L';

form->an = x;

return form;

}

The function newForm allocates for a pointer the memory to be used to store the

apointed formula structure. The function findAtom assigns a numeric character to

the type of an atomic formula. This is not really needed for the programs described

in this appendix.

A.2 The mkDiag program

A description of themkDiag program can be found in section 2.6. The programmakes

use of a representation of a Kripke model K and an IpL fragment F to compute the

equivalence classes in the fragment in the theory of the model. Hence two formulas

� and  are equivalent if

K 
 �$  :

In the program, the IpL fragment F is given by the values of the con-

stants NEG, DNEG, CON, DIS, IMP and MaxMu, corresponding to the connectives
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:;::;^;_;! and the maximum level of nesting of the implication in F . The value

of a connective-constant will be one or zero, depending on whether the corresponding

connective is or is not in F .

The information on the Kripke model K is encoded in the constants

NE, NEM, ALL0, ALLl and in the functions:

eset comp( eset x);

eset neg( eset x);

The constants NE, NEM, ALL0 and ALLl all are involved in the representation of

sets of worlds in K. The constants NE and NEM are related: NE = NEM + 1. A subset

in K is called an eset (element set) in the program and is represented by an array

of NE integers (r[0] to r[NEM]), each a binary encoding of a part of the model K.

For 0 � i � NEM we have ALL0 as an upper bound, 0 � r[i] � ALL0. For the last

part we have 0 � r[NEM] � ALLl. In general it will be the case that ALL1 � ALL0.

With this information comp(s), the complement of an eset s, can simply be

calculated.

The order in K (the accessibility relation) is encoded in the function neg, com-

puting the complement of the predecessor set as de�ned in de�nition 2.6.0.2. In

section 2.6 it has been explained how the interior of a set in an IpL model can be

calculated using complements and predecessor sets.

Apart from these procedures and those in the utility module (as described in the

previous section), the program makes use of the following procedures:

void classTest( char s, unsigned an, unsigned co, unsigned mu );

unsigned noSet( eset x );

eset meet( eset x, eset y );

eset join( eset x, eset y );

unsigned Inc( eset x, eset y);

void fprintSet( FILE *f, eset x );

void fprintVal( void );

The procedure classTest makes a new formula, computes the set of worlds in K

where this formula is forced and tests (using the function noSet) whether or not this

set already exists (in the list of formulas and sets E). The functions meet and join

compute the meet and join of two sets and Inc(x, y) checks whether or not the set

x is a subset of y. The procedure fprintSet prints a set (in a readable format) into

a (text) �le.

The result of the program mkdiag is an array E of pairs of sets and formulas

de�ned as:

struct { eset set;

formula form;

unsigned mu;

} E[Dnr];

where mu can be used to calculate the nesting of the implication in the formulas and

Dnr is the maximal number of classes E can contain. The number of classes in E is

denoted by the variable Emax.
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The output of the program is

1. a text �le recording the equivalence classes found and their corresponding sub-

sets in the model;

2. a �le with formulas. Depending on one of the run-time parameters for the

program, either the formulas in Diag(F ) or the representatives of the join-

irreducible classes in the diagram are printed in this �le;

3. a �le describing the order of either the diagram or the set of join-irreducible

elements in the diagram (again depending on a run-time parameter).

The last two �les are made by the procedure fprintVal (not reprinted here).

The procedure main below is the main routine in the program mkDiag. Its

listing is followed by the listings of the most important procedures used in main (i.e.

classTest, noSet, meet, join and Inc).

main()

{ unsigned i, j, mu;

char c;

DiagramStart = 1 - NEG;

if ( init() )

{ for ( mu=0; mu <= MaxMu; mu++ )

{ printf( "-------------\n mu= %d \n-------------\n", mu );

fprintf( out, "-------------\n mu= %d \n-------------\n", mu );

for ( i=DiagramStart; i <= Emax; i++)

if ( E[i].mu == mu )

{ printf( "%5d ", i );

printForm( E[i].form );

printf( "\n" );

fprintf(out, "%5d ", i );

fprintForm( out, E[i].form );

fprintSet( out, E[i].set );

}

for ( j = 2; j <= Emax; j++ )

{ if ( NEG && E[j].mu == mu - 1 ) classTest('-', j, i, mu);

if ( DNEG && E[j].mu == mu - 2 ) classTest('d', j, i, mu);

for ( i = 2; i < j && Emax < Dnr; i++ )

{ if ( E[j].mu == mu )

{ if ( !Inc(E[i].set, E[j].set) )

{ if ( IMP && E[i].mu < mu ) classTest( ':', i, j, mu );

if ( !Inc(E[j].set, E[i].set) )

{ if ( CON ) classTest( '&', i, j, mu );

if ( DIS ) classTest( '|', i, j, mu );

}

}

}

else

{ if ( IMP )

{ if ( E[i].mu == mu-1 && !Inc(E[i].set, E[j].set))

classTest( ':', i, j, mu );

if ( !Inc(E[j].set, E[i].set)

&& ( E[i].mu == mu || E[j].mu == mu-1 ) )
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classTest( ':', j, i, mu );

}

}

}

}

}

fclose(out);

fprintVal();

}

}

void classTest( char s, unsigned an, unsigned co, unsigned mu )

{ unsigned counter, i, n = Emax + 1;

eset nset;

void *oldheaptop = getHeapTop();

/* may be the form made is not needed, so remember HeapTop */

unsigned buz = 1, more, less;

formula form, fan = E[an].form, fco = E[co].form;

if ( n == Dnr )

{ printf( "there are too much classes: MaxHeap is too small\n" );

fprintf( out,

"there are too much classes: MaxHeap is too small\n" );

fclose(out);

exit(4);

}

switch ( s )

{ case '-' : form = mkNegation( fan );

nset = neg( E[an].set ); break;

case 'd' : form = mkNegation(mkNegation( fan ) );

nset = neg(neg( E[an].set )); break;

case '&' : form = mkConjunction( fan, fco );

nset = meet( E[an].set, E[co].set ); break;

case '|' : form = mkDisjunction( fan, fco );

nset = join( E[an].set, E[co].set ); break;

case ':' : form = mkImplication( fan, fco );

nset = neg(comp(join( comp(E[an].set),

E[co].set))); break;

}

if ( noSet(nset) )

{ E[n].form = form;

E[n].set = nset;

E[n].mu = mu;

Emax = n;

printf( "%5d ", n );

printForm( form );

printf( "\n" );

fprintf(out, "%5d ", n );

fprintForm(out, form );

fprintSet(out, nset );

fprintf(out, "\n" );

}
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else /* we don't need form anymore */

setHeapTop( oldheaptop );

}

unsigned noSet( eset x )

{ unsigned i, j, res=1;

for (i=0; i<NE && res; i++) res = x.r[i] == 0;

if ( res ) return E[0].mu > MaxMu;

res = 1;

for (i=0; i<NEM && res; i++) res = x.r[i] == ALL0;

if ( res && x.r[NEM] == ALLl ) return E[1].mu <= MaxMu ? 0 : 1;

res = 0;

for ( i=2; i <= Emax && !res; i++ )

{ res = 1;

for ( j=0; j < NE && res ; j++) res = (E[i].set.r[j] == x.r[j]);

}

return !res;

}

eset meet( eset x, eset y )

{ eset res;

unsigned i;

for (i=0; i < NE; i++) res.r[i] = x.r[i] & y.r[i];

return res;

}

eset join( eset x, eset y )

{ eset res;

unsigned i;

for (i=0; i < NE; i++) res.r[i] = x.r[i] | y.r[i];

return res;

}

unsigned Inc( eset x, eset y)

{ unsigned i;

for (i=0; i<NE && x.r[i] == (x.r[i] & y.r[i]); i++);

if (i<NE) return 0;

else return 1;

}

A.3 A simple CpL tester

In chapter 6 we calculated the complexity of the algorithm Ctest. For comparison

we specify an algorithm Cval based on truth tables and calculate its complexity.

This algorithm assumes a representation of atoms p

i

such that calculating i from p

i

is simple (i.e. linear in the size of p

i

).
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For natural numbers i and N , i 2 N means that if N is taken as a binary number

representing some subset S of f0; : : : ; n� 1g, that i 2 S.

We will assume that the indices of the atoms in a formula to be tested form some

sequence f0; : : : ; n� 1g.

Global N : IN

Cval(A : formula) : bool

Calculate n the number of atoms in A

N = 0

while N < 2

n

and SubV al(A)

N := N + 1

if N < 2

n

then false else true

SubV al(A : formula) : bool

in case A

p

i

: if i 2 N then true

else false

:B : if SubV al(B) then false

else true

B ^ C : if SubV al(B) then SubV al(C)

else false

B _ C : if SubV al(B) then true

else SubV al(C)

B!C : if SubV al(C) then true

else if SubV al(C) then false

else true

To calculate Cval(�) for some formula � note that:

1. the main part of Cval needs storage for � and three numbers;

2. the number of atoms in � can be calculated in time and space both linear in

j�j;

3. in SubV al the formula is to be split in its principal subformulas, which takes

time in the order of j�j;

4. SubV al needs space to store three formulas;

5. the number of atoms in � is at most j�j and hence there will be at most 2

j�j

calls to SubV al (which is also an upperbound of the number of items on stack;

Disregarding the small constants this amounts in an upper bound on the time

needed to calculate Cval(�) of order j�j:2

j�j

. Likewise the upper bound on the

amount of space needed is of the order 3:j�j:2

j�j

.
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A.4 The IpLtest program

The IpLtest program is a rather straightforward implementation of the algorithm

IpLtest (and the pseudo-code program Itest) in Chapter 6.

Many of the utilities used in this program do exactly what one would expect

them to do.

For example copy does make a copy of a formula and notDisjunct checks whether

or not two formula lists have a common formula. Both putRight and putLeft add

a formula to a formula list, but in the procedure putLeft, if the added formula is

atomic and does not occurs in the list as an already treated formula, the global 
ag

LeftChange is set (compare the rule pL3 in the de�nition of IpLtest in Chapter 6.

Note that we use a variable oldvalue to keep the previous value of LeftChange in

store if needed.

The procedure markRevisit marks the formulas in a list as to be revisited and the

function untreatedFormula takes an untreated formula out of a formula list (taking

value NULL if there is no such formula in the list). In the same way revisitLeftside

has as its result the list of all formulas marked to be revisited, out of a given formula

list. And the function revisitRightside takes a formula marked to be revisited

out of a formula list (again, with value NULL if there is no such formula in the list).

The main procedure, refutable, has as its input two lists of formulas, left

and right and returns the value zero i� none of the formulas in the list right is a

consequence (in IpL) of the formulas in the list left.

If necessary the program writes error messages to an output �le (for which a

pointer out is used).

/* FUNCTIONS */

int refutable( formlist left, formlist right )

{formula form, cform;

formlist flist;

int oldval = LeftChange, res;

if ( notDisjunct( left, right ) ) res = 0;

else

{ if ( form = untreatedFormula( right ), form )

{ form->treated = 1;

switch( form->type )

{ case '-' : form->revisit = 1;

res = refutable( left, right );

form->revisit = 0;

break;

case '&' : res = refutable(left, putRight(form->an,right))

? 1

: refutable(left, putRight(form->co,right));

break;

case '|' : res = refutable(left,

putRight(form->an,

putRight(form->co, right)));

break;

case '=' : res = refutable(left,

putRight(
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mkConjunction(

mkImplication(form->an, form->co),

mkImplication(form->co, form->an))

right) );

break;

case ':' : form->revisit = 1;

res = refutable( left, right );

form->revisit = 0;

break;

}

form->treated = 0;

}

else

{ if ( form = untreatedFormula( left ), form )

{ form->treated = 1;

switch( form->type )

{ case '-' : form->revisit = 1;

res = refutable(left,

putRight(copy( form->an ),right));

form->revisit = 0;

break;

case '&' : res = refutable(putLeft(form->an,

putLeft(form->co, left)), right);

break;

case '|' : res = refutable(putLeft(form->an, left), right)

? 1

: ( LeftChange = oldval,

refutable(putLeft(form->co, left), right)

);

break;

case '=' : res = refutable(

putLeft(

mkConjunction(

mkImplication(form->an, form->co),

mkImplication(form->co, form->an)),

left),

right );

break;

case ':' : if ( refutable(putLeft(form->co,left), right) )

res = 1;

else

{ LeftChange = oldval;

form->revisit = 1;

res = refutable(left,

putRight(copy( form->an),

right));

form->revisit = 0;

}

form->revisit = 0;

break;

}

form->treated = 0;

}

else
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{ flist = revisitLeftside( left );

if ( flist )

{ LeftChange = 0;

res = refutable( left, right );

LeftChange = 1;

markRevisit( flist );

}

else

{ form = revisitRightside( right );

if ( form )

{ form->revisit = 0;

switch( form->type )

{ case '-' : if ( refutable(putLeft(form->an, left), NULL) )

{ LeftChange = oldval;

res = refutable(left, right );

}

else res = 0;

break;

case ':' : if ( refutable(putLeft(form->an,left),

putRight(form->co,NULL)) )

{ LeftChange = oldval;

res = refutable(left, right);

}

else res = 0;

break;

}

form->revisit = 1;

}

else res = 1;

}

}

}

}

LeftChange = oldval;

return res;

}

A.5 Testers for modal logic

The modal testers described in Chapter 6 have been implemented in one module.

Depending on the setting of the constants T, K4, S5, L and Grz the module is

compiled as a tester for K, T, K4, L, S4, S5 or Grzegorczyk's logic K4Grz (the

last two not treated in this thesis).

#define T 0 /* Lp->p */

#define K4 0 /* Lp->LLp S4 == T + K4 */

#define S5 0 /* S5 == 1 => S4 == 1 */

#define L 0 /* L(Lp->p)->Lp, L == 1 => K4 == 1 */

#define Grz 0 /* L(L(p->Lp)->p)->p, Grz == 1 => K4 == 1 */

Many of the procedures in the program for the modal testers are the same (at

least in principle) as in the IpLtest program above. Some noteworthy exceptions are
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put, simply adding a formula to a formula list, and the procedures dealing with (lists

of) worlds. Both for worlds and lists of worlds we use pointers:

struct worldType

{ formlist wleft;

formlist wright;

};

typedef struct worldType *world;

struct wlistType

{ world element;

struct wlistType *next;

};

typedef struct wlistType *worldlist;

The structure of worlds and their rôle in the algorithm K4test has been explained

in subsection 6.6.2.

The procedures newWorld and newWorldList allocate memory needed to store

the data of appointed world structures and worldlist structures. To add worlds

to a list of worlds, there is a procedure addWorld and to �nd out whether a given

world is in a given list of worlds, there is a procedure memberworld.

Again, the main procedure for the program for the formula tester(s) is

refutable(left, right, worlds), returning the value 1 i� there is a Kripke model

starting with the list of worlds worlds, forcing all the formulas in the list left and

no formula in the list right.

formlist revisitLeftside( formlist x )

{ formlist res = NULL;

formula an, el;

if ( LeftChange)

{ while ( x )

{ el = x->element;

if ( el->revisit )

{ an = el->an;

if (!member(an, res)) /* K */

res = add( copy(an), res );

#if K4 == 1

if (!member(el, res))

res = add( copy(el), res );

#endif

#if K5 == 1

else res = put(mkPossibly(el), res);

#endif

}

x = x->next;

}

}

return res;

}
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formula revisitRightside( formlist x )

{ formula res = NULL;

while ( !res && x )

{ if ( (x->element)->revisit ) res = x->element;

else x = x->next;

}

return res;

}

formlist addModal( formula f, formlist x)

{ formula g;

formlist l, y;

l = x;

y = add(f->an, NULL);

while ( l )

{ g = l->element;

if ( g->revisit && g != f ) y = add(g, y);

l = l->next;

}

return y;

}

int refutable( formlist left, formlist right, worldlist worlds )

{ formula form,

cform;

formlist flist,

glist;

int oldval = LeftChange,

putback,

res = 1;

world nwworld;

worldlist nwworlds; /* wlist to debug */

if ( notDisjunct( left, right ) ) res = 0;

else

{ if ( form = untreatedFormula( right ), form )

{ form->treated = 1;

switch( form->type )

{ case '-' : res = refutable( put(form->an, left), right, worlds );

break;

case 'L' : form->revisit = 1;

res = refutable( left, right, worlds );

form->revisit = 0;

break;

case 'M' : res = refutable(

put( mkNecessarily(mkNegation(form->an)), left ),

right, worlds );

break;

case '&' : res = refutable(left, put(form->an, right), worlds)

? 1

: refutable(left, put(form->co, right), worlds);

break;

case '|' : res = refutable(left, put(form->an,
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put(form->co, right)), worlds);

break;

case '=' : res = refutable( left, put(

mkConjunction(

mkImplication(

form->an,

form->co),

mkImplication(

form->co,

form->an)),

right), worlds );

break;

case ':' : res = refutable( put(form->an, left),

put(form->co, right), worlds );

break;

}

form->treated = 0;

}

else

{ if ( form = untreatedFormula( left ), form )

{ form->treated = 1;

switch( form->type )

{ case '-' : res = refutable(left, put(copy( form->an ), right)

, worlds);

break;

#if T == 1

case 'L' : LeftChange = 1;

form->revisit = 1;

res = refutable(put(form->an, left), right, worlds);

form->revisit = 0;

break;

#else

case 'L' : LeftChange = 1;

form->revisit = 1;

res = refutable(left, right, worlds);

form->revisit = 0;

break;

#endif

case 'M' : res = refutable(

left,

put(mkNecessarily(mkNegation(form->an)),

right), worlds );

break;

case '&' : res = refutable( put(

form->an,

put(form->co, left)),

right, worlds );

break;

case '|' : res = refutable( put(form->an, left), right, worlds )

? 1

: ( LeftChange = oldval,

refutable( put(form->co, left), right, worlds ));

break;

case '=' : res = refutable( put(
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mkImplication(form->an, form->co),

put(

mkImplication(form->co, form->an),

left)),

right, worlds);

break;

case ':' : if ( refutable(put(form->co, left), right, worlds ))

res = 1;

else

{ LeftChange = oldval;

/* form->revisit = 1; */

res = refutable(left, put(copy(form->an), right),

worlds);

}

break;

}

form->treated = 0;

}

else

{ if (LeftChange)

{ form = revisitRightside( right );

if (form)

{ form->revisit = 0;

#if T == 1

res = member(form->an, right);

/* if res then the branch will stay open */

if (!res)

{

#endif

flist = revisitLeftside( left );

LeftChange = 0;

glist = put(form->an, NULL);

#if S5 == 1

glist = addModal(form, right);

#endif

#if L == 1

if (!member(form, flist)) flist = add(copy(form), flist);

#endif

#if K4 == 0 || L == 1

res = refutable(flist, glist, worlds);

#else

nwworld = newWorld();

nwworld->wleft = flist;

nwworld->wright = glist;

res = memberworld(nwworld, worlds);

/* if res then the branch will stay open */

if (!res)

{ nwworlds = addWorld(nwworld, worlds);

res = refutable(flist, glist, nwworlds);

}

#endif

#if Grz == 1

else res = 0;

#endif
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#if T == 1

}

#endif

if (res)

{ LeftChange = oldval;

res = refutable(left, right, worlds);

}

else res = 0;

LeftChange = 1;

form->revisit = 1;

}

else res = 1;

}

else res = 1;

}

}

}

LeftChange = oldval;

return res;

}
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Output of computer programs

B.1 The diagram of the IpL fragment [!;:]
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was treated in subsection 3.5.1. The diagram of [!;:]
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below, was computed using the exact Kripke model of [^;!;:]
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31. Figure. The exact model of [^;!;:]

2

.

0 :(p!p) fg

1 (p!p) f0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

2 p f10; 11; 14g

3 q f12; 13; 14g

4 :p f0; 7; 12g

5 :q f0; 3; 11g

6 (p!q) f0; 5; 6; 7; 8; 9; 12; 13; 14g

7 (q!p) f0; 1; 2; 3; 4; 5; 10; 11; 14g

8 (q!:p) f0; 3; 7; 11; 12g

9 ::p f1; 2; 3; 4; 5; 9; 10; 11; 13; 14g

10 (:p!q) f1; 2; 3; 4; 5; 6; 8; 9; 10; 11; 12; 13; 14g

11; ::q f1; 5; 6; 7; 8; 9; 10; 12; 13; 14g

12; (:q!p) f1; 2; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

13; (:p!:q) f0; 1; 2; 3; 4; 5; 9; 10; 11; 13; 14g

14 (:q!:p) f0; 1; 5; 6; 7; 8; 9; 10; 12; 13; 14g

153
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15 :(p!q) f3; 11g

16 ((p!q)!p) f1; 2; 3; 4; 10; 11; 14g

17 ((p!q)!q) f1; 2; 3; 4; 10; 11; 12; 13; 14g

18 :(q!p) f7; 12g

19 ((q!p)!p) f6; 7; 8; 9; 10; 11; 12; 13; 14g

20 ((q!p)!q) f6; 7; 8; 9; 12; 13; 14g

21 :(q!:p) f1; 5; 9; 10; 13; 14g

22 ((q!:p)!p) f1; 2; 4; 5; 9; 10; 11; 13; 14g

23 ((q!:p)!q) f1; 5; 6; 8; 9; 10; 12; 13; 14g

24 (:q!::p) f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

25 ((q!p)!:(p!q)) f3; 7; 11; 12g

26 ((q!p)!((p!q)!p)) f1; 2; 3; 4; 6; 7; 8; 9; 10; 11; 12; 13; 14g

27 (::p!p) f0; 6; 7; 10; 11; 12; 14g

28 (::p!q) f0; 6; 7; 8; 12; 13; 14g

29 (::p!(q!p)) f0; 1; 2; 3; 4; 5; 6; 7; 10; 11; 12; 14g

30 :(:p!q) f0g

31 ((:p!q)!p) f0; 10; 11; 14g

32 ((:p!q)!q) f0; 7; 12; 13; 14g

33 (::q!p) f0; 2; 3; 4; 10; 11; 14g

34 (::q!q) f0; 3; 4; 11; 12; 13; 14g

35 (::q!(p!q)) f0; 3; 4; 5; 6; 7; 8; 9; 11; 12; 13; 14g

36 (::q!(:p!q)) f0; 1; 2; 3; 4; 5; 6; 8; 9; 10; 11; 12; 13; 14g

37 ((:q!p)!p) f0; 3; 10; 11; 14g

38 ((:q!p)!q) f0; 12; 13; 14g

39 (::p!(:q!p)) f0; 1; 2; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

40 ((:p!:q)!p) f6; 7; 10; 11; 12; 14g

41 ((:p!:q)!q) f6; 7; 8; 12; 13; 14g

42 ((:q!:p)!p) f2; 3; 4; 10; 11; 14g

43 ((:q!:p)!q) f3; 4; 11; 12; 13; 14g

44 (((p!q)!p)!p) f0; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

45 (::p!((p!q)!p)) f0; 1; 2; 3; 4; 6; 7; 10; 11; 12; 14g

46 ((:p!q)!((p!q)!p)) f0; 1; 2; 3; 4; 10; 11; 14g

47 ((:p!:q)!((p!q)!p)) f1; 2; 3; 4; 6; 7; 10; 11; 12; 14g

48 (((p!q)!q)!p) f0; 5; 10; 11; 14g

49 (::p!((p!q)!q)) f0; 1; 2; 3; 4; 6; 7; 8; 10; 11; 12; 13; 14g

50 ((:p!q)!((p!q)!q)) f0; 1; 2; 3; 4; 7; 10; 11; 12; 13; 14g

51 (::q!((p!q)!q)) f0; 1; 2; 3; 4; 10; 11; 12; 13; 14g

52 ((:p!:q)!((p!q)!q)) f1; 2; 3; 4; 6; 7; 8; 10; 11; 12; 13; 14g

53 (((q!p)!p)!q) f0; 5; 12; 13; 14g

54 (::p!((q!p)!p)) f0; 6; 7; 8; 9; 10; 11; 12; 13; 14g

55 (::q!((q!p)!p)) f0; 2; 3; 4; 6; 7; 8; 9; 10; 11; 12; 13; 14g

56 ((:q!p)!((q!p)!p)) f0; 3; 6; 7; 8; 9; 10; 11; 12; 13; 14g

57 ((:q!:p)!((q!p)!p)) f2; 3; 4; 6; 7; 8; 9; 10; 11; 12; 13; 14g

58 (((q!p)!p)!((p!q)!q)) f0; 1; 2; 3; 4; 5; 10; 11; 12; 13; 14g

59 (::p!((q!p)!q)) f0; 6; 7; 8; 9; 12; 13; 14g

60 (::q!((q!p)!q)) f0; 3; 4; 6; 7; 8; 9; 11; 12; 13; 14g

61 ((:q!:p)!((q!p)!q)) f3; 4; 6; 7; 8; 9; 11; 12; 13; 14g

62 (:(q!:p)!p) f0; 2; 3; 4; 6; 7; 10; 11; 12; 14g

63 (:(q!:p)!q) f0; 3; 4; 6; 7; 8; 11; 12; 13; 14g

64 ((:p!q)!:(q!:p)) f0; 1; 5; 9; 10; 13; 14g

65 (((q!:p)!p)!p) f0; 3; 6; 7; 10; 11; 12; 14g

66 ((:p!q)!((q!:p)!p)) f0; 1; 2; 4; 5; 9; 10; 11; 13; 14g

67 (((q!:p)!q)!q) f0; 3; 4; 7; 11; 12; 13; 14g

68 ((:q!p)!((q!:p)!q)) f0; 1; 5; 6; 8; 9; 10; 12; 13; 14g

69 (::p!((q!p)!((p!q)!p))) f0; 1; 2; 3; 4; 6; 7; 8; 9; 10; 11; 12; 13; 14g

70 (((p!q)!q)!(::p!p)) f0; 5; 6; 7; 10; 11; 12; 14g

71 (((q!p)!p)!(::p!q)) f0; 5; 6; 7; 8; 12; 13; 14g

72 (((q!p)!q)!(::p!q)) f0; 1; 2; 3; 4; 5; 6; 7; 8; 10; 11; 12; 13; 14g

73 (((q!p)!p)!((:p!q)!q)) f0; 5; 7; 12; 13; 14g

74 (((q!p)!q)!((:p!q)!q)) f0; 1; 2; 3; 4; 5; 7; 10; 11; 12; 13; 14g

75 (((p!q)!p)!(::q!p)) f0; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

76 (((p!q)!q)!(::q!p)) f0; 2; 3; 4; 5; 10; 11; 14g

77 (((q!p)!p)!(::q!q)) f0; 3; 4; 5; 11; 12; 13; 14g

78 (((p!q)!p)!((:q!p)!p)) f0; 3; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

79 (((p!q)!q)!((:q!p)!p)) f0; 3; 5; 10; 11; 14g

80 ((:q!:p)!((:p!:q)!p)) f2; 3; 4; 6; 7; 10; 11; 12; 14g

81 ((:q!:p)!((:p!:q)!q)) f3; 4; 6; 7; 8; 11; 12; 13; 14g

82 (:(q!:p)!(((p!q)!q)!p)) f0; 2; 3; 4; 5; 6; 7; 10; 11; 12; 14g
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83 (((q!:p)!p)!(((p!q)!q)!p)) f0; 3; 5; 6; 7; 10; 11; 12; 14g

84 (:(q!:p)!(((q!p)!p)!q)) f0; 3; 4; 5; 6; 7; 8; 11; 12; 13; 14g

85 (((q!:p)!q)!(((q!p)!p)!q)) f0; 3; 4; 5; 7; 11; 12; 13; 14g

86 ((::p!p)!q) f5; 8; 9; 12; 13; 14g

87 ((::p!p)!((p!q)!q)) f1; 2; 3; 4; 5; 8; 9; 10; 11; 12; 13; 14g

88 ((::p!p)!((q!p)!q)) f5; 6; 7; 8; 9; 12; 13; 14g

89 ((::p!q)!p) f1; 2; 3; 4; 5; 10; 11; 14g

90 ((::p!q)!q) f1; 2; 3; 4; 5; 9; 10; 11; 12; 13; 14g

91 ((::p!(q!p))!p) f9; 10; 11; 13; 14g

92 ((::p!(q!p))!q) f8; 9; 12; 13; 14g

93 ((::p!(q!p))!((p!q)!p)) f1; 2; 3; 4; 9; 10; 11; 13; 14g

94 ((::p!(q!p))!((p!q)!q)) f1; 2; 3; 4; 8; 9; 10; 11; 12; 13; 14g

95 ((::p!(q!p))!((:p!q)!p)) f0; 9; 10; 11; 13; 14g

96 ((::p!p)!((:p!q)!q)) f0; 5; 7; 8; 9; 12; 13; 14g

97 ((::p!q)!((:p!q)!q)) f0; 1; 2; 3; 4; 5; 7; 9; 10; 11; 12; 13; 14g

98 ((::p!(q!p))!((:p!q)!q)) f0; 7; 8; 9; 12; 13; 14g

99 ((::q!p)!p) f1; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

100 ((::q!p)!(::p!p)) f0; 1; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

101 ((::p!(q!p))!(::q!p)) f0; 2; 3; 4; 9; 10; 11; 13; 14g

102 ((::q!q)!p) f1; 2; 5; 10; 11; 14g

103 ((::q!q)!((q!p)!p)) f1; 2; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

104 ((::p!p)!(::q!q)) f0; 3; 4; 5; 8; 9; 11; 12; 13; 14g

105 ((::q!q)!(::p!p)) f0; 1; 2; 5; 6; 7; 10; 11; 12; 14g

106 ((::p!q)!(::q!q)) f0; 1; 2; 3; 4; 5; 9; 10; 11; 12; 13; 14g

107 ((::p!(q!p))!(::q!q)) f0; 3; 4; 8; 9; 11; 12; 13; 14g

108 ((::q!q)!((:p!q)!p)) f0; 1; 2; 5; 10; 11; 14g

109 ((::q!(p!q))!p) f1; 2; 10; 11; 14g

11; 0((::q!(p!q))!q) f1; 10; 12; 13; 14g

11; 1((::q!(p!q))!((q!p)!p)) f1; 2; 6; 7; 8; 9; 10; 11; 12; 13; 14g

11; 2;((::q!(p!q))!((q!p)!q)) f1; 6; 7; 8; 9; 10; 12; 13; 14g

11; 3;((::q!(p!q))!(::p!p)) f0; 1; 2; 6; 7; 10; 11; 12; 14g

11; 4((::q!(p!q))!(::p!q)) f0; 1; 6; 7; 8; 10; 12; 13; 14g

11; 5((::q!(p!q))!((:p!q)!p)) f0; 1; 2; 10; 11; 14g

11; 6((::q!(p!q))!((:p!q)!q)) f0; 1; 7; 10; 12; 13; 14g

11; 7((::q!(:p!q))!q) f7; 12; 13; 14g

11; 8((::q!(:p!q))!((p!q)!q)) f1; 2; 3; 4; 7; 10; 11; 12; 13; 14g

11; 9((::p!(q!p))!((:q!p)!p)) f0; 3; 9; 10; 11; 13; 14g

12; 0((::q!p)!((:q!p)!p)) f0; 1; 3; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

12; 1((::q!q)!((:q!p)!p)) f0; 1; 2; 3; 5; 10; 11; 14g

12; 2((::q!(p!q))!((:q!p)!p)) f0; 1; 2; 3; 10; 11; 14g

12; 3((::p!p)!((:q!p)!q)) f0; 5; 8; 9; 12; 13; 14g

12; 4((::p!(q!p))!((:q!p)!q)) f0; 8; 9; 12; 13; 14g

12; 5((::q!(p!q))!((:q!p)!q)) f0; 1; 10; 12; 13; 14g

12; 6((::p!(:q!p))!p) f3; 10; 11; 14g

12; 7((::p!(:q!p))!((q!p)!p)) f3; 6; 7; 8; 9; 10; 11; 12; 13; 14g

12; 8(((:p!:q)!p)!((p!q)!q)) f0; 1; 2; 3; 4; 5; 8; 9; 10; 11; 12; 13; 14g

12; 9((::p!q)!((:p!:q)!p)) f1; 2; 3; 4; 5; 6; 7; 10; 11; 12; 14g

13; 0((::q!q)!((:p!:q)!p)) f1; 2; 5; 6; 7; 10; 11; 12; 14g

13; 1((::q!(p!q))!((:p!:q)!p)) f1; 2; 6; 7; 10; 11; 12; 14g

13; 2((::p!(:q!p))!((:p!:q)!p)) f3; 6; 7; 10; 11; 12; 14g

13; 3((::q!(p!q))!((:p!:q)!q)) f1; 6; 7; 8; 10; 12; 13; 14g

13; 4((::p!(q!p))!((:q!:p)!p)) f2; 3; 4; 9; 10; 11; 13; 14g

13; 5(((:q!:p)!q)!((q!p)!p)) f0; 1; 2; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

13; 6((::p!p)!((:q!:p)!q)) f3; 4; 5; 8; 9; 11; 12; 13; 14g

13; 7((::p!(q!p))!((:q!:p)!q)) f3; 4; 8; 9; 11; 12; 13; 14g

13; 8(((:p!q)!p)!((:q!:p)!q)) f3; 4; 5; 6; 7; 8; 9; 11; 12; 13; 14g

13; 9((::q!(:p!q))!((:q!:p)!q)) f3; 4; 7; 11; 12; 13; 14g

140 ((::p!((p!q)!p))!p) f5; 9; 10; 11; 13; 14g

141 ((::p!((p!q)!p))!((q!p)!p)) f5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

142 ((::p!((p!q)!p))!((:p!q)!p)) f0; 5; 9; 10; 11; 13; 14g

143 ((::p!((p!q)!p))!(::q!p)) f0; 2; 3; 4; 5; 9; 10; 11; 13; 14g

144 ((::p!((p!q)!p))!((:q!p)!p)) f0; 3; 5; 9; 10; 11; 13; 14g

145 ((::p!((p!q)!p))!((:q!:p)!p)) f2; 3; 4; 5; 9; 10; 11; 13; 14g

146 ((::p!(q!p))!((:p!q)!((p!q)!p))) f0; 1; 2; 3; 4; 9; 10; 11; 13; 14g

147 (((:p!q)!((p!q)!p))!((:q!:p)!p)) f2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

148 ((::p!((p!q)!q))!p) f5; 10; 11; 14g

149 ((::p!((p!q)!q))!q) f5; 9; 12; 13; 14g

150 ((::p!((p!q)!q))!((:p!q)!q)) f0; 5; 7; 9; 12; 13; 14g
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151 ((::p!((p!q)!q))!(::q!q)) f0; 3; 4; 5; 9; 11; 12; 13; 14g

152 ((::p!((p!q)!q))!((:q!p)!q)) f0; 5; 9; 12; 13; 14g

153 ((::p!((p!q)!q))!((:p!:q)!p)) f5; 6; 7; 10; 11; 12; 14g

154 ((::p!((p!q)!q))!((:q!:p)!p)) f2; 3; 4; 5; 10; 11; 14g

155 ((::p!((p!q)!q))!((:q!:p)!q)) f3; 4; 5; 9; 11; 12; 13; 14g

156 (((:p!q)!((p!q)!q))!q) f5; 6; 8; 9; 12; 13; 14g

157 ((::p!p)!((:p!q)!((p!q)!q))) f0; 1; 2; 3; 4; 5; 7; 8; 9; 10; 11; 12; 13; 14g

158 ((::p!(q!p))!((:p!q)!((p!q)!q))) f0; 1; 2; 3; 4; 7; 8; 9; 10; 11; 12; 13; 14g

159 (((:p!q)!((p!q)!q))!(::q!q)) f0; 3; 4; 5; 6; 8; 9; 11; 12; 13; 14g

160 (((:p!q)!((p!q)!q))!((:q!p)!q)) f0; 5; 6; 8; 9; 12; 13; 14g

161 (((:p!q)!((p!q)!q))!((:q!:p)!q)) f3; 4; 5; 6; 8; 9; 11; 12; 13; 14g

162 ((::p!(q!p))!(::q!((p!q)!q))) f0; 1; 2; 3; 4; 8; 9; 10; 11; 12; 13; 14g

163 ((::q!(p!q))!(((q!p)!p)!q)) f0; 1; 5; 10; 12; 13; 14g

164 ((::p!((q!p)!p))!q) f5; 12; 13; 14g

165 ((::p!((q!p)!p))!((p!q)!q)) f1; 2; 3; 4; 5; 10; 11; 12; 13; 14g

166 ((::q!(p!q))!(::p!((q!p)!p))) f0; 1; 2; 6; 7; 8; 9; 10; 11; 12; 13; 14g

167 ((::p!((q!p)!p))!((:p!:q)!q)) f5; 6; 7; 8; 12; 13; 14g

168 ((::p!((q!p)!p))!((:q!:p)!q)) f3; 4; 5; 11; 12; 13; 14g

169 ((::p!((q!p)!p))!((:p!:q)!((p!q)!q))) f1; 2; 3; 4; 5; 6; 7; 8; 10; 11; 12; 13; 14g

170 ((::q!((q!p)!p))!p) f1; 5; 10; 11; 14g

171 ((::q!((q!p)!p))!(::p!p)) f0; 1; 5; 6; 7; 10; 11; 12; 14g

172 ((::q!((q!p)!p))!((:p!q)!p)) f0; 1; 5; 10; 11; 14g

173 ((::q!((q!p)!p))!((:q!p)!p)) f0; 1; 3; 5; 10; 11; 14g

174 ((::q!((q!p)!p))!((:p!:q)!p)) f1; 5; 6; 7; 10; 11; 12; 14g

175 (((:q!p)!((q!p)!p))!p) f1; 2; 4; 5; 10; 11; 14g

176 (((:q!p)!((q!p)!p))!(::p!p)) f0; 1; 2; 4; 5; 6; 7; 10; 11; 12; 14g

177 (((:q!p)!((q!p)!p))!((:p!q)!p)) f0; 1; 2; 4; 5; 10; 11; 14g

178 ((::q!q)!((:q!p)!((q!p)!p))) f0; 1; 2; 3; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

179 ((::q!(p!q))!((:q!p)!((q!p)!p))) f0; 1; 2; 3; 6; 7; 8; 9; 10; 11; 12; 13; 14g

180 (((:q!p)!((q!p)!p))!((:p!:q)!p)) f1; 2; 4; 5; 6; 7; 10; 11; 12; 14g

181 ((::q!(p!q))!(::p!((q!p)!q))) f0; 1; 6; 7; 8; 9; 10; 12; 13; 14g

182 ((::q!((q!p)!q))!q) f1; 5; 10; 12; 13; 14g

183 ((::q!((q!p)!q))!(::p!q)) f0; 1; 5; 6; 7; 8; 10; 12; 13; 14g

184 ((::q!((q!p)!q))!((:p!q)!q)) f0; 1; 5; 7; 10; 12; 13; 14g

185 ((::q!((q!p)!q))!((:p!:q)!q)) f1; 5; 6; 7; 8; 10; 12; 13; 14g

186 ((:(q!:p)!p)!p) f1; 5; 9; 10; 11; 13; 14g

187 ((:(q!:p)!p)!((:p!q)!p)) f0; 1; 5; 9; 10; 11; 13; 14g

188 ((:(q!:p)!p)!((:q!p)!p)) f0; 1; 3; 5; 9; 10; 11; 13; 14g

189 ((:(q!:p)!q)!q) f1; 5; 9; 10; 12; 13; 14g

190 ((:(q!:p)!q)!((:p!q)!q)) f0; 1; 5; 7; 9; 10; 12; 13; 14g

191 ((:(q!:p)!q)!((:q!p)!q)) f0; 1; 5; 9; 10; 12; 13; 14g

192 ((::q!q)!(((q!:p)!p)!p)) f0; 1; 2; 3; 5; 6; 7; 10; 11; 12; 14g

193 ((::q!(p!q))!(((q!:p)!p)!p)) f0; 1; 2; 3; 6; 7; 10; 11; 12; 14g

194 ((::q!((q!p)!p))!(((q!:p)!p)!p)) f0; 1; 3; 5; 6; 7; 10; 11; 12; 14g

195 ((::p!p)!(((q!:p)!q)!q)) f0; 3; 4; 5; 7; 8; 9; 11; 12; 13; 14g

196 ((::p!(q!p))!(((q!:p)!q)!q)) f0; 3; 4; 7; 8; 9; 11; 12; 13; 14g

197 ((::p!((p!q)!q))!(((q!:p)!q)!q)) f0; 3; 4; 5; 7; 9; 11; 12; 13; 14g

198 ((((q!p)!p)!(::p!q))!q) f1; 2; 3; 4; 9; 10; 11; 12; 13; 14g

199 ((((q!p)!p)!(::p!q))!((:p!q)!q)) f0; 1; 2; 3; 4; 7; 9; 10; 11; 12; 13; 14g

200 ((((q!p)!p)!(::p!q))!(::q!q)) f0; 1; 2; 3; 4; 9; 10; 11; 12; 13; 14g

201 ((((q!p)!q)!(::p!q))!q) f9; 12; 13; 14g

202 ((((q!p)!q)!(::p!q))!((:p!q)!q)) f0; 7; 9; 12; 13; 14g

203 ((((q!p)!q)!(::p!q))!(::q!q)) f0; 3; 4; 9; 11; 12; 13; 14g

204 ((((q!p)!q)!(::p!q))!((:q!p)!q)) f0; 9; 12; 13; 14g

205 ((((q!p)!q)!(::p!q))!((:q!:p)!q)) f3; 4; 9; 11; 12; 13; 14g

206 ((((q!p)!q)!(::p!q))!(((q!:p)!q)!q)) f0; 3; 4; 7; 9; 11; 12; 13; 14g

207 ((((q!p)!p)!((:p!q)!q))!q) f1; 2; 3; 4; 6; 8; 9; 10; 11; 12; 13; 14g

208 ((((q!p)!p)!((:p!q)!q))!(::q!q)) f0; 1; 2; 3; 4; 6; 8; 9; 10; 11; 12; 13; 14g

209 ((((q!p)!q)!((:p!q)!q))!q) f6; 8; 9; 12; 13; 14g

210 ((((q!p)!q)!((:p!q)!q))!(::q!q)) f0; 3; 4; 6; 8; 9; 11; 12; 13; 14g

211; ((((q!p)!q)!((:p!q)!q))!((:q!p)!q)) f0; 6; 8; 9; 12; 13; 14g

212; ((((q!p)!q)!((:p!q)!q))!((:q!:p)!q)) f3; 4; 6; 8; 9; 11; 12; 13; 14g

213; ((((p!q)!p)!(::q!p))!p) f1; 10; 11; 14g

214 ((((p!q)!p)!(::q!p))!((q!p)!p)) f1; 6; 7; 8; 9; 10; 11; 12; 13; 14g

215 ((((p!q)!p)!(::q!p))!(::p!p)) f0; 1; 6; 7; 10; 11; 12; 14g

216 ((((p!q)!p)!(::q!p))!((:p!q)!p)) f0; 1; 10; 11; 14g

217 ((((p!q)!p)!(::q!p))!((:q!p)!p)) f0; 1; 3; 10; 11; 14g

218 ((((p!q)!p)!(::q!p))!((:p!:q)!p)) f1; 6; 7; 10; 11; 12; 14g
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219 ((((p!q)!p)!(::q!p))!(::p!((q!p)!p))) f0; 1; 6; 7; 8; 9; 10; 11; 12; 13; 14g

220 ((((p!q)!p)!(::q!p))!((:q!p)!((q!p)!p))) f0; 1; 3; 6; 7; 8; 9; 10; 11; 12; 13; 14g

221 ((((p!q)!p)!(::q!p))!(((q!:p)!p)!p)) f0; 1; 3; 6; 7; 10; 11; 12; 14g

222 ((((p!q)!p)!((:q!p)!p))!p) f1; 2; 4; 10; 11; 14g

223 ((((p!q)!p)!((:q!p)!p))!((q!p)!p)) f1; 2; 4; 6; 7; 8; 9; 10; 11; 12; 13; 14g

224 ((((p!q)!p)!((:q!p)!p))!(::p!p)) f0; 1; 2; 4; 6; 7; 10; 11; 12; 14g

225 ((((p!q)!p)!((:q!p)!p))!((:p!q)!p)) f0; 1; 2; 4; 10; 11; 14g

226 ((((p!q)!p)!((:q!p)!p))!((:p!:q)!p)) f1; 2; 4; 6; 7; 10; 11; 12; 14g

227 ((((p!q)!p)!((:q!p)!p))!(::p!((q!p)!p))) f0; 1; 2; 4; 6; 7; 8; 9; 10; 11; 12; 13; 14g

228 ((::p!((p!q)!q))!((:q!:p)!((:p!:q)!p))) f2; 3; 4; 5; 6; 7; 10; 11; 12; 14g

229 ((::p!((q!p)!p))!((:q!:p)!((:p!:q)!q))) f3; 4; 5; 6; 7; 8; 11; 12; 13; 14g

230 ((:(q!:p)!(((p!q)!q)!p))!p) f1; 9; 10; 11; 13; 14g

231 ((:(q!:p)!(((p!q)!q)!p))!((:p!q)!p)) f0; 1; 9; 10; 11; 13; 14g

232 ((:(q!:p)!(((p!q)!q)!p))!((:q!p)!p)) f0; 1; 3; 9; 10; 11; 13; 14g

233 ((((q!:p)!p)!(((p!q)!q)!p))!p) f1; 2; 4; 9; 10; 11; 13; 14g

234 ((((q!:p)!p)!(((p!q)!q)!p))!((:p!q)!p)) f0; 1; 2; 4; 9; 10; 11; 13; 14g

235 ((:(q!:p)!(((q!p)!p)!q))!q) f1; 9; 10; 12; 13; 14g

236 ((:(q!:p)!(((q!p)!p)!q))!((:p!q)!q)) f0; 1; 7; 9; 10; 12; 13; 14g

237 ((:(q!:p)!(((q!p)!p)!q))!((:q!p)!q)) f0; 1; 9; 10; 12; 13; 14g

238 ((((q!:p)!q)!(((q!p)!p)!q))!q) f1; 6; 8; 9; 10; 12; 13; 14g

239 ((((q!:p)!q)!(((q!p)!p)!q))!((:q!p)!q)) f0; 1; 6; 8; 9; 10; 12; 13; 14g

240 ((::q!(p!q))!((::p!p)!q)) f1; 5; 8; 9; 10; 12; 13; 14g

241 ((::q!(:p!q))!((::p!p)!q)) f5; 7; 8; 9; 12; 13; 14g

242 (((:q!:p)!((q!p)!q))!((::p!p)!q)) f0; 1; 5; 8; 9; 10; 12; 13; 14g

243 (((:q!p)!((q!:p)!q))!((::p!p)!q)) f3; 4; 5; 7; 8; 9; 11; 12; 13; 14g

244 ((::q!(:p!q))!((::p!p)!((p!q)!q))) f1; 2; 3; 4; 5; 7; 8; 9; 10; 11; 12; 13; 14g

245 ((::q!(:p!q))!((::p!q)!q)) f1; 2; 3; 4; 5; 7; 9; 10; 11; 12; 13; 14g

246 ((::q!q)!((::p!(q!p))!p)) f1; 2; 5; 9; 10; 11; 13; 14g

247 ((::q!(p!q))!((::p!(q!p))!p)) f1; 2; 9; 10; 11; 13; 14g

248 ((::p!(:q!p))!((::p!(q!p))!p)) f3; 9; 10; 11; 13; 14g

249 (((:q!:p)!q)!((::p!(q!p))!p)) f0; 1; 2; 5; 9; 10; 11; 13; 14g

250 ((::q!(p!q))!((::p!(q!p))!q)) f1; 8; 9; 10; 12; 13; 14g

251 ((::q!(:p!q))!((::p!(q!p))!q)) f7; 8; 9; 12; 13; 14g

252 (((:q!p)!((q!:p)!q))!((::p!(q!p))!q)) f3; 4; 7; 8; 9; 11; 12; 13; 14g

253 ((::q!(:p!q))!((::p!(q!p))!((p!q)!q))) f1; 2; 3; 4; 7; 8; 9; 10; 11; 12; 13; 14g

254 ((::q!(p!q))!((::p!(q!p))!((:p!q)!p))) f0; 1; 2; 9; 10; 11; 13; 14g

255 ((::q!(p!q))!((::p!p)!((:p!q)!q))) f0; 1; 5; 7; 8; 9; 10; 12; 13; 14g

256 ((::q!(p!q))!((::p!(q!p))!((:p!q)!q))) f0; 1; 7; 8; 9; 10; 12; 13; 14g

257 ((::p!(:q!p))!((::q!p)!p)) f1; 3; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

258 ((::p!(:q!p))!((::q!q)!p)) f1; 2; 3; 5; 10; 11; 14g

259 (((:p!q)!((q!:p)!p))!((::q!q)!p)) f1; 2; 3; 5; 6; 7; 10; 11; 12; 14g

260 ((::p!(:q!p))!((::q!q)!((q!p)!p))) f1; 2; 3; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

261 ((::p!(:q!p))!((::q!(p!q))!p)) f1; 2; 3; 10; 11; 14g

262 (((:p!q)!((q!:p)!p))!((::q!(p!q))!p)) f1; 2; 3; 6; 7; 10; 11; 12; 14g

263 ((::q!(:p!q))!((::q!(p!q))!q)) f1; 7; 10; 12; 13; 14g

264 ((::p!(:q!p))!((::q!(p!q))!((q!p)!p))) f1; 2; 3; 6; 7; 8; 9; 10; 11; 12; 13; 14g

265 ((::p!((p!q)!q))!((::q!(:p!q))!q)) f5; 7; 9; 12; 13; 14g

266 ((::p!((q!p)!p))!((::q!(:p!q))!q)) f5; 7; 12; 13; 14g

267 ((::p!((q!p)!q))!((::q!(:p!q))!q)) f1; 2; 3; 4; 5; 7; 10; 11; 12; 13; 14g

268 ((::q!((q!p)!q))!((::q!(:p!q))!q)) f1; 5; 7; 10; 12; 13; 14g

269 ((:(q!:p)!q)!((::q!(:p!q))!q)) f1; 5; 7; 9; 10; 12; 13; 14g

270 ((((q!p)!p)!(::p!q))!((::q!(:p!q))!q)) f1; 2; 3; 4; 7; 9; 10; 11; 12; 13; 14g

271 ((((q!p)!q)!(::p!q))!((::q!(:p!q))!q)) f7; 9; 12; 13; 14g

272 ((:(q!:p)!(((q!p)!p)!q))!((::q!(:p!q))!q)) f1; 7; 9; 10; 12; 13; 14g

273 ((::q!q)!((::p!(q!p))!((:q!p)!p))) f0; 1; 2; 3; 5; 9; 10; 11; 13; 14g

274 ((::q!(p!q))!((::p!(q!p))!((:q!p)!p))) f0; 1; 2; 3; 9; 10; 11; 13; 14g

275 ((::q!(p!q))!((::p!(q!p))!((:q!p)!q))) f0; 1; 8; 9; 10; 12; 13; 14g

276 ((::p!((p!q)!p))!((::p!(:q!p))!p)) f3; 5; 9; 10; 11; 13; 14g

277 (((:p!q)!((p!q)!p))!((::p!(:q!p))!p)) f3; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

278 ((::p!((p!q)!q))!((::p!(:q!p))!p)) f3; 5; 10; 11; 14g

279 ((::q!((q!p)!p))!((::p!(:q!p))!p)) f1; 3; 5; 10; 11; 14g

280 ((:(q!:p)!p)!((::p!(:q!p))!p)) f1; 3; 5; 9; 10; 11; 13; 14g

281 ((((p!q)!p)!(::q!p))!((::p!(:q!p))!p)) f1; 3; 10; 11; 14g

282 ((((p!q)!q)!(::q!p))!((::p!(:q!p))!p)) f1; 3; 6; 7; 8; 9; 10; 11; 12; 13; 14g

283 ((:(q!:p)!(((p!q)!q)!p))!((::p!(:q!p))!p)) f1; 3; 9; 10; 11; 13; 14g

284 ((::p!((p!q)!q))!((::p!(:q!p))!((:p!:q)!p))) f3; 5; 6; 7; 10; 11; 12; 14g

285 ((::q!((q!p)!p))!((::p!(:q!p))!((:p!:q)!p))) f1; 3; 5; 6; 7; 10; 11; 12; 14g

286 ((((p!q)!p)!(::q!p))!((::p!(:q!p))!
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((:p!:q)!p))) f1; 3; 6; 7; 10; 11; 12; 14g

287 ((::p!((p!q)!q))!((::q!(:p!q))!((:q!:p)!q))) f3; 4; 5; 7; 9; 11; 12; 13; 14g

288 ((::p!((q!p)!p))!((::q!(:p!q))!((:q!:p)!q))) f3; 4; 5; 7; 11; 12; 13; 14g

289 ((((q!p)!q)!(::p!q))!((::q!(:p!q))!

((:q!:p)!q))) f3; 4; 7; 9; 11; 12; 13; 14g

290 ((::q!(:p!q))!((::q!(p!q))!((::p!p)!q))) f1; 5; 7; 8; 9; 10; 12; 13; 14g

291 ((::p!(:q!p))!((::q!q)!((::p!(q!p))!p))) f1; 2; 3; 5; 9; 10; 11; 13; 14g

292 ((::p!(:q!p))!((::q!(p!q))!((::p!(q!p))!p))) f1; 2; 3; 9; 10; 11; 13; 14g

293 ((::q!(:p!q))!((::q!(p!q))!((::p!(q!p))!q))) f1; 7; 8; 9; 10; 12; 13; 14g

294 (((::p!p)!q)!q) f0; 1; 2; 3; 4; 6; 7; 10; 11; 12; 13; 14g

295 (((::p!p)!q)!(((q!p)!p)!q)) f0; 1; 2; 3; 4; 5; 6; 7; 10; 11; 12; 13; 14g

296 (((::p!p)!((p!q)!q))!q) f0; 6; 7; 12; 13; 14g

297 (((::p!p)!((p!q)!q))!(::q!q)) f0; 3; 4; 6; 7; 11; 12; 13; 14g

298 (((::p!p)!((p!q)!q))!(((q!p)!p)!q)) f0; 5; 6; 7; 12; 13; 14g

299 (((::p!p)!((p!q)!q))!(((q!p)!p)!(::q!q))) f0; 3; 4; 5; 6; 7; 11; 12; 13; 14g

300 (((::p!p)!q)!((::p!q)!q)) f0; 1; 2; 3; 4; 5; 6; 7; 9; 10; 11; 12; 13; 14g

301 (((::p!p)!((:p!q)!q))!q) f1; 2; 3; 4; 6; 10; 11; 12; 13; 14g

302 (((::p!p)!((:p!q)!q))!(::q!q)) f0; 1; 2; 3; 4; 6; 10; 11; 12; 13; 14g

303 (((::p!p)!((:p!q)!q))!(((q!p)!p)!q)) f0; 1; 2; 3; 4; 5; 6; 10; 11; 12; 13; 14g

304 (((::p!p)!((:p!q)!q))!((::p!q)!q)) f1; 2; 3; 4; 5; 6; 9; 10; 11; 12; 13; 14g

305 (((::p!q)!((:p!q)!q))!q) f6; 8; 12; 13; 14g

306 (((::p!q)!((:p!q)!q))!((p!q)!q)) f1; 2; 3; 4; 6; 8; 10; 11; 12; 13; 14g

307 (((::p!q)!((:p!q)!q))!(::q!q)) f0; 3; 4; 6; 8; 11; 12; 13; 14g

308 (((::p!q)!((:p!q)!q))!((:q!p)!q)) f0; 6; 8; 12; 13; 14g

309 (((::p!q)!((:p!q)!q))!((:q!:p)!q)) f3; 4; 6; 8; 11; 12; 13; 14g

310 (((::p!q)!((:p!q)!q))!(::q!((p!q)!q))) f0; 1; 2; 3; 4; 6; 8; 10; 11; 12; 13; 14g

311; (((::p!q)!((:p!q)!q))!(((q!p)!p)!q)) f0; 5; 6; 8; 12; 13; 14g

312; (((::p!q)!((:p!q)!q))!(((q!p)!p)!((p!q)!q))) f0; 1; 2; 3; 4; 5; 6; 8; 10; 11; 12; 13; 14g

313; (((::p!q)!((:p!q)!q))!(((q!p)!p)!(::q!q))) f0; 3; 4; 5; 6; 8; 11; 12; 13; 14g

314 (((::p!(q!p))!((:p!q)!q))!q) f1; 2; 3; 4; 5; 6; 10; 11; 12; 13; 14g

315 (((::q!q)!p)!p) f0; 3; 4; 6; 7; 8; 9; 10; 11; 12; 13; 14g

316 (((::q!q)!p)!(((p!q)!p)!p)) f0; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

317 (((::q!q)!p)!((::q!p)!p)) f0; 1; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

318 (((::q!q)!((q!p)!p))!p) f0; 3; 4; 10; 11; 14g

319 (((::q!q)!((q!p)!p))!(::p!p)) f0; 3; 4; 6; 7; 10; 11; 12; 14g

320 (((::q!q)!((q!p)!p))!(((p!q)!q)!p)) f0; 3; 4; 5; 10; 11; 14g

321 (((::q!q)!((q!p)!p))!(((p!q)!q)!(::p!p))) f0; 3; 4; 5; 6; 7; 10; 11; 12; 14g

322 (((::q!q)!((q!p)!p))!((::p!(q!p))!p)) f0; 3; 4; 9; 10; 11; 13; 14g

323 (((::p!p)!(::q!q))!q) f1; 6; 7; 10; 12; 13; 14g

324 (((::p!p)!(::q!q))!((p!q)!q)) f1; 2; 3; 4; 6; 7; 10; 11; 12; 13; 14g

325 (((::p!p)!(::q!q))!((:p!q)!q)) f0; 1; 6; 7; 10; 12; 13; 14g

326 (((::p!p)!(::q!q))!(((q!p)!p)!q)) f0; 1; 5; 6; 7; 10; 12; 13; 14g

327 (((::p!p)!(::q!q))!((::p!q)!q)) f1; 2; 3; 4; 5; 6; 7; 9; 10; 11; 12; 13; 14g

328 (((::q!q)!(::p!p))!p) f3; 4; 9; 10; 11; 13; 14g

329 (((::q!q)!(::p!p))!((q!p)!p)) f3; 4; 6; 7; 8; 9; 10; 11; 12; 13; 14g

330 (((::q!q)!(::p!p))!(((p!q)!q)!p)) f0; 3; 4; 5; 9; 10; 11; 13; 14g

331 (((::q!q)!(::p!p))!((::q!p)!p)) f1; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

332 (((::p!p)!((:p!q)!q))!((::p!q)!(::q!q))) f0; 1; 2; 3; 4; 5; 6; 9; 10; 11; 12; 13; 14g

333 (((::p!(q!p))!(::q!q))!q) f1; 5; 6; 7; 10; 12; 13; 14g

334 (((::p!(q!p))!(::q!q))!((p!q)!q)) f1; 2; 3; 4; 5; 6; 7; 10; 11; 12; 13; 14g

335 (((::p!q)!((:p!q)!q))!((::q!(p!q))!q)) f1; 6; 8; 10; 12; 13; 14g

336 (((::q!(p!q))!(::p!p))!p) f3; 4; 5; 9; 10; 11; 13; 14g

337 (((::q!(p!q))!(::p!p))!((q!p)!p)) f3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

338 (((::q!p)!((:q!p)!p))!p) f2; 4; 10; 11; 14g

339 (((::q!p)!((:q!p)!p))!((q!p)!p)) f2; 4; 6; 7; 8; 9; 10; 11; 12; 13; 14g

340 (((::q!p)!((:q!p)!p))!(::p!p)) f0; 2; 4; 6; 7; 10; 11; 12; 14g

341 (((::q!p)!((:q!p)!p))!((:p!q)!p)) f0; 2; 4; 10; 11; 14g

342 (((::q!p)!((:q!p)!p))!((:p!:q)!p)) f2; 4; 6; 7; 10; 11; 12; 14g

343 (((::q!p)!((:q!p)!p))!(((p!q)!p)!p)) f0; 2; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

344 (((::q!p)!((:q!p)!p))!(((p!q)!q)!p)) f0; 2; 4; 5; 10; 11; 14g

345 (((::q!p)!((:q!p)!p))!(::p!((q!p)!p))) f0; 2; 4; 6; 7; 8; 9; 10; 11; 12; 13; 14g

346 (((::q!p)!((:q!p)!p))!(((p!q)!q)!(::p!p))) f0; 2; 4; 5; 6; 7; 10; 11; 12; 14g

347 (((::q!p)!((:q!p)!p))!((::p!(q!p))!p)) f2; 4; 9; 10; 11; 13; 14g

348 (((::q!p)!((:q!p)!p))!((::p!(q!p))!((:p!q)!p)))f0; 2; 4; 9; 10; 11; 13; 14g

349 (((::q!q)!((:q!p)!p))!p) f4; 6; 7; 8; 9; 10; 11; 12; 13; 14g

350 (((::q!q)!((:q!p)!p))!(::p!p)) f0; 4; 6; 7; 8; 9; 10; 11; 12; 13; 14g

351 (((::q!q)!((:q!p)!p))!(((p!q)!p)!p)) f0; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

352 (((::q!q)!((:q!p)!p))!((::q!p)!p)) f1; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g
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353 (((::q!q)!((:q!p)!p))!((::q!p)!(::p!p))) f0; 1; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

354 (((::q!(p!q))!((:q!p)!p))!p) f4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

355 (((::p!q)!((:p!q)!q))!((::q!(p!q))!((:q!p)!q))) f0; 1; 6; 8; 10; 12; 13; 14g

356 ((((:p!:q)!p)!((p!q)!q))!q) f6; 7; 12; 13; 14g

357 ((((:p!:q)!p)!((p!q)!q))!((:q!:p)!q)) f3; 4; 6; 7; 11; 12; 13; 14g

358 ((((:q!:p)!q)!((q!p)!p))!p) f3; 4; 10; 11; 14g

359 ((((:q!:p)!q)!((q!p)!p))!((:p!:q)!p)) f3; 4; 6; 7; 10; 11; 12; 14g

360 (((::q!p)!((:q!p)!p))!((::p!((p!q)!p))!p)) f2; 4; 5; 9; 10; 11; 13; 14g

361 (((::q!p)!((:q!p)!p))!((::p!((p!q)!p))!

((q!p)!p))) f2; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

362 (((::q!p)!((:q!p)!p))!((::p!((p!q)!p))!

((:p!q)!p))) f0; 2; 4; 5; 9; 10; 11; 13; 14g

363 (((::q!p)!((:q!p)!p))!((::p!((p!q)!q))!p)) f2; 4; 5; 10; 11; 14g

364 ((((:q!:p)!q)!((q!p)!p))!((::p!((p!q)!q))!p)) f3; 4; 5; 10; 11; 14g

365 (((::p!p)!((p!q)!q))!((::p!((p!q)!q))!q)) f0; 5; 6; 7; 9; 12; 13; 14g

366 (((::p!p)!(::q!q))!((::p!((p!q)!q))!q)) f1; 5; 6; 7; 9; 10; 12; 13; 14g

367 ((((:p!:q)!p)!((p!q)!q))!((::p!((p!q)!q))!q)) f5; 6; 7; 9; 12; 13; 14g

368 (((::p!p)!((:q!:p)!q))!((::p!((p!q)!q))!q)) f0; 1; 5; 6; 7; 9; 10; 12; 13; 14g

369 (((::p!p)!((p!q)!q))!((::p!((p!q)!q))!(::q!q))) f0; 3; 4; 5; 6; 7; 9; 11; 12; 13; 14g

370 (((::q!p)!((:q!p)!p))!((::p!((p!q)!q))!

((:p!:q)!p))) f2; 4; 5; 6; 7; 10; 11; 12; 14g

371 ((((:q!:p)!q)!((q!p)!p))!((::p!((p!q)!q))!

((:p!:q)!p))) f3; 4; 5; 6; 7; 10; 11; 12; 14g

372 ((((:p!:q)!p)!((p!q)!q))!((::p!((p!q)!q))!

((:q!:p)!q))) f3; 4; 5; 6; 7; 9; 11; 12; 13; 14g

373 (((::p!p)!((:p!q)!((p!q)!q)))!q) f6; 12; 13; 14g

374 (((::p!p)!((:p!q)!((p!q)!q)))!(::q!q)) f0; 3; 4; 6; 11; 12; 13; 14g

375 (((::p!p)!((:p!q)!((p!q)!q)))!((:q!p)!q)) f0; 6; 12; 13; 14g

376 (((::p!p)!((:p!q)!((p!q)!q)))!((:q!:p)!q)) f3; 4; 6; 11; 12; 13; 14g

377 (((::p!p)!((:p!q)!((p!q)!q)))!(((q!p)!p)!q)) f0; 5; 6; 12; 13; 14g

378 (((::p!p)!((:p!q)!((p!q)!q)))!(((q!p)!p)!

(::q!q))) f0; 3; 4; 5; 6; 11; 12; 13; 14g

379 (((::p!p)!((:p!q)!((p!q)!q)))!((::q!(p!q))!q)) f1; 6; 10; 12; 13; 14g

380 (((::p!p)!((:p!q)!((p!q)!q)))!((::q!(p!q))!

((:q!p)!q))) f0; 1; 6; 10; 12; 13; 14g

381 (((::p!p)!((:p!q)!((p!q)!q)))!((::p!

((p!q)!q))!q)) f5; 6; 9; 12; 13; 14g

382 (((::p!p)!((:p!q)!((p!q)!q)))!((::p!((p!q)!q))!

(::q!q))) f0; 3; 4; 5; 6; 9; 11; 12; 13; 14g

383 (((::p!p)!((:p!q)!((p!q)!q)))!((::p!((p!q)!q))!

((:q!p)!q))) f0; 5; 6; 9; 12; 13; 14g

384 (((::p!p)!((:p!q)!((p!q)!q)))!((::p!((p!q)!q))!

((:q!:p)!q))) f3; 4; 5; 6; 9; 11; 12; 13; 14g

385 (((::p!(q!p))!((:p!q)!((p!q)!q)))!q) f5; 6; 12; 13; 14g

386 (((::p!(q!p))!((:p!q)!((p!q)!q)))!((:q!:p)!q)) f3; 4; 5; 6; 11; 12; 13; 14g

387 (((::p!(q!p))!((:p!q)!((p!q)!q)))!((::q!

(p!q))!q)) f1; 5; 6; 10; 12; 13; 14g

388 (((::p!(q!p))!((:p!q)!((p!q)!q)))!((::q!

(:p!q))!q)) f5; 6; 7; 12; 13; 14g

389 (((::p!(q!p))!((:p!q)!((p!q)!q)))!((::q!(p!q))!

((:q!p)!q))) f0; 1; 5; 6; 10; 12; 13; 14g

390 (((::p!(q!p))!((:p!q)!((p!q)!q)))!((::q!(:p!q))!

((:q!:p)!q))) f3; 4; 5; 6; 7; 11; 12; 13; 14g

391 (((::p!q)!((:p!q)!q))!((::q!(p!q))!

(((q!p)!p)!q))) f0; 1; 5; 6; 8; 10; 12; 13; 14g

392 (((::p!q)!((:p!q)!q))!((::p!((q!p)!p))!q)) f5; 6; 8; 12; 13; 14g

393 (((::p!((p!q)!q))!((:p!q)!q))!((::p!

((q!p)!p))!q)) f1; 2; 3; 4; 5; 6; 8; 10; 11; 12; 13; 14g

394 (((::p!q)!((:p!q)!q))!((::p!((q!p)!p))!

((:q!:p)!q))) f3; 4; 5; 6; 8; 11; 12; 13; 14g

395 (((::q!q)!((q!p)!p))!((::q!((q!p)!p))!p)) f0; 1; 3; 4; 5; 10; 11; 14g

396 (((::q!q)!(::p!p))!((::q!((q!p)!p))!p)) f1; 3; 4; 5; 9; 10; 11; 13; 14g

397 (((::q!q)!((:p!:q)!p))!((::q!((q!p)!p))!p)) f0; 1; 3; 4; 5; 9; 10; 11; 13; 14g

398 ((((:q!:p)!q)!((q!p)!p))!((::q!((q!p)!p))!p)) f1; 3; 4; 5; 10; 11; 14g

399 (((::q!q)!((q!p)!p))!((::q!((q!p)!p))!(::p!p)))f0; 1; 3; 4; 5; 6; 7; 10; 11; 12; 14g

400 ((((:q!:p)!q)!((q!p)!p))!((::q!((q!p)!p))!

((:p!:q)!p))) f1; 3; 4; 5; 6; 7; 10; 11; 12; 14g

401 (((::q!q)!((:q!p)!((q!p)!p)))!p) f4; 10; 11; 14g
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402 (((::q!q)!((:q!p)!((q!p)!p)))!(::p!p)) f0; 4; 6; 7; 10; 11; 12; 14g

403 (((::q!q)!((:q!p)!((q!p)!p)))!((:p!q)!p)) f0; 4; 10; 11; 14g

404 (((::q!q)!((:q!p)!((q!p)!p)))!((:p!:q)!p)) f4; 6; 7; 10; 11; 12; 14g

405 (((::q!q)!((:q!p)!((q!p)!p)))!(((p!q)!q)!p)) f0; 4; 5; 10; 11; 14g

406 (((::q!q)!((:q!p)!((q!p)!p)))!(((p!q)!q)!

(::p!p))) f0; 4; 5; 6; 7; 10; 11; 12; 14g

407 (((::q!q)!((:q!p)!((q!p)!p)))!((::p!(q!p))!p)) f4; 9; 10; 11; 13; 14g

408 (((::q!q)!((:q!p)!((q!p)!p)))!((::p!(q!p))!

((:p!q)!p))) f0; 4; 9; 10; 11; 13; 14g

409 (((::q!q)!((:q!p)!((q!p)!p)))!((::p!

((p!q)!p))!p)) f4; 5; 9; 10; 11; 13; 14g

410 (((::q!q)!((:q!p)!((q!p)!p)))!

((::p!((p!q)!p))!((:p!q)!p))) f0; 4; 5; 9; 10; 11; 13; 14g

411; (((::q!q)!((:q!p)!((q!p)!p)))!

((::p!((p!q)!q))!p)) f4; 5; 10; 11; 14g

412; (((::q!q)!((:q!p)!((q!p)!p)))!

((::p!((p!q)!q))!((:p!:q)!p))) f4; 5; 6; 7; 10; 11; 12; 14g

413; (((::q!q)!((:q!p)!((q!p)!p)))!

((::q!((q!p)!p))!p)) f1; 4; 5; 10; 11; 14g

414 (((::q!q)!((:q!p)!((q!p)!p)))!

((::q!((q!p)!p))!(::p!p))) f0; 1; 4; 5; 6; 7; 10; 11; 12; 14g

415 (((::q!q)!((:q!p)!((q!p)!p)))!

((::q!((q!p)!p))!((:p!q)!p))) f0; 1; 4; 5; 10; 11; 14g

416 (((::q!q)!((:q!p)!((q!p)!p)))!

((::q!((q!p)!p))!((:p!:q)!p))) f1; 4; 5; 6; 7; 10; 11; 12; 14g

417 (((::p!q)!((:p!q)!q))!((::q!

((q!p)!q))!q)) f1; 5; 6; 8; 10; 12; 13; 14g

418 (((::q!q)!((:q!p)!((q!p)!p)))!

((:(q!:p)!p)!p)) f1; 4; 5; 9; 10; 11; 13; 14g

419 (((::q!q)!((:q!p)!((q!p)!p)))!

((:(q!:p)!p)!((:p!q)!p))) f0; 1; 4; 5; 9; 10; 11; 13; 14g

420 (((::p!p)!((:p!q)!((p!q)!q)))!

((:(q!:p)!q)!q)) f1; 5; 6; 9; 10; 12; 13; 14g

421 (((::p!p)!((:p!q)!((p!q)!q)))!

((:(q!:p)!q)!((:q!p)!q))) f0; 1; 5; 6; 9; 10; 12; 13; 14g

422 (((::p!p)!q)!((((q!p)!p)!(::p!q))!q)) f0; 1; 2; 3; 4; 6; 7; 9; 10; 11; 12; 13; 14g

423 (((::p!p)!((:p!q)!q))!((((q!p)!p)!(::p!q))!q)) f1; 2; 3; 4; 6; 9; 10; 11; 12; 13; 14g

424 (((::p!p)!(::q!q))!((((q!p)!p)!(::p!q))!q)) f1; 2; 3; 4; 6; 7; 9; 10; 11; 12; 13; 14g

425 (((::p!p)!((:p!q)!q))!((((q!p)!p)!

(::p!q))!(::q!q))) f0; 1; 2; 3; 4; 6; 9; 10; 11; 12; 13; 14g

426 (((::p!p)!((p!q)!q))!((((q!p)!q)!(::p!q))!q)) f0; 6; 7; 9; 12; 13; 14g

427 (((::p!p)!(::q!q))!((((q!p)!q)!(::p!q))!q)) f1; 6; 7; 9; 10; 12; 13; 14g

428 ((((:p!:q)!p)!((p!q)!q))!((((q!p)!q)!

(::p!q))!q)) f6; 7; 9; 12; 13; 14g

429 (((::p!p)!((:q!:p)!q))!((((q!p)!q)!(::p!q))!q)) f0; 1; 6; 7; 9; 10; 12; 13; 14g

430 (((::p!p)!((:p!q)!((p!q)!q)))!

((((q!p)!q)!(::p!q))!q)) f6; 9; 12; 13; 14g

431 (((::p!p)!(((q!:p)!q)!q))!((((q!p)!q)!

(::p!q))!q)) f1; 6; 9; 10; 12; 13; 14g

432 (((::p!p)!((p!q)!q))!((((q!p)!q)!

(::p!q))!(::q!q))) f0; 3; 4; 6; 7; 9; 11; 12; 13; 14g

433 (((::p!p)!((:p!q)!((p!q)!q)))!

((((q!p)!q)!(::p!q))!(::q!q))) f0; 3; 4; 6; 9; 11; 12; 13; 14g

434 (((::p!p)!((:p!q)!((p!q)!q)))!

((((q!p)!q)!(::p!q))!((:q!p)!q))) f0; 6; 9; 12; 13; 14g

435 (((::p!p)!(((q!:p)!q)!q))!

((((q!p)!q)!(::p!q))!((:q!p)!q))) f0; 1; 6; 9; 10; 12; 13; 14g

436 ((((:p!:q)!p)!((p!q)!q))!

((((q!p)!q)!(::p!q))!((:q!:p)!q))) f3; 4; 6; 7; 9; 11; 12; 13; 14g

437 (((::p!p)!((:p!q)!((p!q)!q)))!

((((q!p)!q)!(::p!q))!((:q!:p)!q))) f3; 4; 6; 9; 11; 12; 13; 14g

438 (((::q!q)!p)!((((p!q)!p)!(::q!p))!p)) f0; 1; 3; 4; 6; 7; 8; 9; 10; 11; 12; 13; 14g

439 (((::q!q)!((q!p)!p))!((((p!q)!p)!(::q!p))!p)) f0; 1; 3; 4; 10; 11; 14g

440 (((::q!q)!(::p!p))!((((p!q)!p)!(::q!p))!p)) f1; 3; 4; 9; 10; 11; 13; 14g

441 (((::q!q)!((:p!q)!p))!((((p!q)!p)!(::q!p))!p)) f1; 3; 4; 6; 7; 8; 9; 10; 11; 12; 13; 14g

442 (((::q!q)!((:q!p)!p))!((((p!q)!p)!(::q!p))!p)) f1; 4; 6; 7; 8; 9; 10; 11; 12; 13; 14g

443 (((::q!q)!((:p!:q)!p))!((((p!q)!p)!(::q!p))!p))f0; 1; 3; 4; 9; 10; 11; 13; 14g

444 ((((:q!:p)!q)!((q!p)!p))!((((p!q)!p)!
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(::q!p))!p)) f1; 3; 4; 10; 11; 14g

445 (((::q!q)!((:q!p)!

((q!p)!p)))!((((p!q)!p)!(::q!p))!p)) f1; 4; 10; 11; 14g

446 (((::q!q)!(((q!:p)!p)!p))!

((((p!q)!p)!(::q!p))!p)) f1; 4; 9; 10; 11; 13; 14g

447 (((::q!q)!((q!p)!p))!

((((p!q)!p)!(::q!p))!(::p!p))) f0; 1; 3; 4; 6; 7; 10; 11; 12; 14g

448 (((::q!q)!((:q!p)!p))!

((((p!q)!p)!(::q!p))!(::p!p))) f0; 1; 4; 6; 7; 8; 9; 10; 11; 12; 13; 14g

449 (((::q!q)!((:q!p)!

((q!p)!p)))!((((p!q)!p)!(::q!p))!(::p!p))) f0; 1; 4; 6; 7; 10; 11; 12; 14g

450 (((::q!q)!((:q!p)!

((q!p)!p)))!((((p!q)!p)!(::q!p))!((:p!q)!p))) f0; 1; 4; 10; 11; 14g

451 (((::q!q)!(((q!:p)!p)!p))!

((((p!q)!p)!(::q!p))!((:p!q)!p))) f0; 1; 4; 9; 10; 11; 13; 14g

452 ((((:q!:p)!q)!((q!p)!p))!

((((p!q)!p)!(::q!p))!((:p!:q)!p))) f1; 3; 4; 6; 7; 10; 11; 12; 14g

453 (((::q!q)!((:q!p)!((q!p)!p)))!

((((p!q)!p)!(::q!p))!((:p!:q)!p))) f1; 4; 6; 7; 10; 11; 12; 14g

454 ((((::p!p)!q)!((::p!q)!q))!q) f8; 12; 13; 14g

455 ((((::p!p)!q)!((::p!q)!q))!((p!q)!q)) f1; 2; 3; 4; 8; 10; 11; 12; 13; 14g

456 ((((::p!p)!q)!((::p!q)!q))!((:p!q)!q)) f0; 7; 8; 12; 13; 14g

457 ((((::p!p)!q)!((::p!q)!q))!(::q!q)) f0; 3; 4; 8; 11; 12; 13; 14g

458 ((((::p!p)!q)!((::p!q)!q))!((:q!p)!q)) f0; 8; 12; 13; 14g

459 ((((::p!p)!q)!((::p!q)!q))!((:q!:p)!q)) f3; 4; 8; 11; 12; 13; 14g

460 ((((::p!p)!q)!((::p!q)!q))!((:p!q)!((p!q)!q))) f0; 1; 2; 3; 4; 7; 8; 10; 11; 12; 13; 14g

461 ((((::p!p)!q)!((::p!q)!q))!(::q!((p!q)!q))) f0; 1; 2; 3; 4; 8; 10; 11; 12; 13; 14g

462 ((((::p!p)!q)!((::p!q)!q))!(((q!p)!p)!q)) f0; 5; 8; 12; 13; 14g

463 ((((::p!p)!q)!((::p!q)!q))!

(((q!p)!p)!((p!q)!q))) f0; 1; 2; 3; 4; 5; 8; 10; 11; 12; 13; 14g

464 ((((::p!p)!q)!((::p!q)!q))!(((q!:p)!q)!q)) f0; 3; 4; 7; 8; 11; 12; 13; 14g

465 ((((::p!p)!q)!((::p!q)!q))!

(((q!p)!p)!((:p!q)!q))) f0; 5; 7; 8; 12; 13; 14g

466 ((((::p!p)!q)!((::p!q)!q))!

(((q!p)!q)!((:p!q)!q))) f0; 1; 2; 3; 4; 5; 7; 8; 10; 11; 12; 13; 14g

467 ((((::p!p)!q)!((::p!q)!q))!

(((q!p)!p)!(::q!q))) f0; 3; 4; 5; 8; 11; 12; 13; 14g

468 ((((::p!p)!q)!((::p!q)!q))!

(((q!:p)!q)!(((q!p)!p)!q))) f0; 3; 4; 5; 7; 8; 11; 12; 13; 14g

469 ((((::p!p)!q)!((::p!q)!q))!((::q!(p!q))!q)) f1; 8; 10; 12; 13; 14g

470 ((((::p!p)!q)!((::p!q)!q))!

((::q!(p!q))!((:p!q)!q))) f0; 1; 7; 8; 10; 12; 13; 14g

471 ((((::p!p)!q)!((::p!q)!q))!((::q!(:p!q))!q)) f7; 8; 12; 13; 14g

472 ((((::p!p)!q)!((::p!q)!q))!

((::q!(:p!q))!((p!q)!q))) f1; 2; 3; 4; 7; 8; 10; 11; 12; 13; 14g

473 ((((::p!p)!q)!((::p!q)!q))!

((::q!(p!q))!((:q!p)!q))) f0; 1; 8; 10; 12; 13; 14g

474 ((((::p!p)!q)!((::p!q)!q))!

((::q!(:p!q))!((:q!:p)!q))) f3; 4; 7; 8; 11; 12; 13; 14g

475 ((((::p!p)!q)!((::p!q)!q))!

((::q!(p!q))!(((q!p)!p)!q))) f0; 1; 5; 8; 10; 12; 13; 14g

476 ((((::p!p)!q)!((::p!q)!q))!

((::p!((q!p)!p))!q)) f5; 8; 12; 13; 14g

477 ((((::p!p)!q)!((::p!q)!q))!

((::p!((q!p)!p))!((p!q)!q))) f1; 2; 3; 4; 5; 8; 10; 11; 12; 13; 14g

478 ((((::p!p)!q)!((::p!q)!q))!

((::p!((q!p)!p))!((:q!:p)!q))) f3; 4; 5; 8; 11; 12; 13; 14g

479 ((((::p!p)!q)!((::p!q)!q))!

((::q!((q!p)!q))!q)) f1; 5; 8; 10; 12; 13; 14g

480 ((((::p!p)!q)!((::p!q)!q))!

((::q!((q!p)!q))!((:p!q)!q))) f0; 1; 5; 7; 8; 10; 12; 13; 14g

481 ((((::p!p)!q)!((::p!q)!q))!

((::q!(:p!q))!((::q!(p!q))!q))) f1; 7; 8; 10; 12; 13; 14g

482 ((((::p!p)!q)!((::p!q)!q))!

((::p!((q!p)!p))!((::q!(:p!q))!q))) f5; 7; 8; 12; 13; 14g

483 ((((::p!p)!q)!((::p!q)!q))!

((::p!((q!p)!q))!((::q!(:p!q))!q))) f1; 2; 3; 4; 5; 7; 8; 10; 11; 12; 13; 14g

484 ((((::p!p)!q)!((::p!q)!q))!
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((::q!((q!p)!q))!((::q!(:p!q))!q))) f1; 5; 7; 8; 10; 12; 13; 14g

485 ((((::p!p)!q)!((::p!q)!q))!

((::p!((q!p)!p))!((::q!(:p!q))!((:q!:p)!q)))) f3; 4; 5; 7; 8; 11; 12; 13; 14g

486 ((((::q!q)!p)!((::q!p)!p))!p) f2; 10; 11; 14g

487 ((((::q!q)!p)!((::q!p)!p))!((q!p)!p)) f2; 6; 7; 8; 9; 10; 11; 12; 13; 14g

488 ((((::q!q)!p)!((::q!p)!p))!(::p!p)) f0; 2; 6; 7; 10; 11; 12; 14g

489 ((((::q!q)!p)!((::q!p)!p))!((:p!q)!p)) f0; 2; 10; 11; 14g

490 ((((::q!q)!p)!((::q!p)!p))!((:q!p)!p)) f0; 2; 3; 10; 11; 14g

491 ((((::q!q)!p)!((::q!p)!p))!((:p!:q)!p)) f2; 6; 7; 10; 11; 12; 14g

492 ((((::q!q)!p)!((::q!p)!p))!(((p!q)!p)!p)) f0; 2; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

493 ((((::q!q)!p)!((::q!p)!p))!(((p!q)!q)!p)) f0; 2; 5; 10; 11; 14g

494 ((((::q!q)!p)!((::q!p)!p))!(::p!((q!p)!p))) f0; 2; 6; 7; 8; 9; 10; 11; 12; 13; 14g

495 ((((::q!q)!p)!((::q!p)!p))!((:q!p)!((q!p)!p))) f0; 2; 3; 6; 7; 8; 9; 10; 11; 12; 13; 14g

496 ((((::q!q)!p)!((::q!p)!p))!(((q!:p)!p)!p)) f0; 2; 3; 6; 7; 10; 11; 12; 14g

497 ((((::q!q)!p)!((::q!p)!p))!(((p!q)!q)!(::p!p)))f0; 2; 5; 6; 7; 10; 11; 12; 14g

498 ((((::q!q)!p)!((::q!p)!p))!

(((p!q)!p)!((:q!p)!p))) f0; 2; 3; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

499 ((((::q!q)!p)!((::q!p)!p))!

(((p!q)!q)!((:q!p)!p))) f0; 2; 3; 5; 10; 11; 14g

500 ((((::q!q)!p)!((::q!p)!p))!

(((q!:p)!p)!(((p!q)!q)!p))) f0; 2; 3; 5; 6; 7; 10; 11; 12; 14g

501 ((((::q!q)!p)!((::q!p)!p))!((::p!(q!p))!p)) f2; 9; 10; 11; 13; 14g

502 ((((::q!q)!p)!((::q!p)!p))!

((::p!(q!p))!((:p!q)!p))) f0; 2; 9; 10; 11; 13; 14g

503 ((((::q!q)!p)!((::q!p)!p))!

((::p!(q!p))!((:q!p)!p))) f0; 2; 3; 9; 10; 11; 13; 14g

504 ((((::q!q)!p)!((::q!p)!p))!((::p!(:q!p))!p)) f2; 3; 10; 11; 14g

505 ((((::q!q)!p)!((::q!p)!p))!

((::p!(:q!p))!((q!p)!p))) f2; 3; 6; 7; 8; 9; 10; 11; 12; 13; 14g

506 ((((::q!q)!p)!((::q!p)!p))!

((::p!(:q!p))!((:p!:q)!p))) f2; 3; 6; 7; 10; 11; 12; 14g

507 ((((::q!q)!p)!((::q!p)!p))!

((::p!((p!q)!p))!p)) f2; 5; 9; 10; 11; 13; 14g

508 ((((::q!q)!p)!((::q!p)!p))!

((::p!((p!q)!p))!((q!p)!p))) f2; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

509 ((((::q!q)!p)!((::q!p)!p))!

((::p!((p!q)!p))!((:p!q)!p))) f0; 2; 5; 9; 10; 11; 13; 14g

510 ((((::q!q)!p)!((::q!p)!p))!

((::p!((p!q)!p))!((:q!p)!p))) f0; 2; 3; 5; 9; 10; 11; 13; 14g

511; ((((::q!q)!p)!((::q!p)!p))!

((::p!((p!q)!q))!p)) f2; 5; 10; 11; 14g

512; ((((::q!q)!p)!((::q!p)!p))!

((::p!((p!q)!q))!((:p!:q)!p))) f2; 5; 6; 7; 10; 11; 12; 14g

513; ((((::q!q)!p)!((::q!p)!p))!

((::p!(:q!p))!((::p!(q!p))!p))) f2; 3; 9; 10; 11; 13; 14g

514 ((((::q!q)!p)!((::q!p)!p))!

((::p!((p!q)!p))!((::p!(:q!p))!p))) f2; 3; 5; 9; 10; 11; 13; 14g

515 ((((::q!q)!p)!((::q!p)!p))!

(((:p!q)!((p!q)!p))!((::p!(:q!p))!p))) f2; 3; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g

516 ((((::q!q)!p)!((::q!p)!p))!

((::p!((p!q)!q))!((::p!(:q!p))!p))) f2; 3; 5; 10; 11; 14g

517 ((((::q!q)!p)!((::q!p)!p))!

((::p!((p!q)!q))!((::p!(:q!p))!((:p!:q)!p)))) f2; 3; 5; 6; 7; 10; 11; 12; 14g
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B.2 The diagram of H

2

3

The logic H

3

was introduced in subsection 3.4.1. In the computation of the diagram

of the fragment H

2

3

the exact model of this fragment was used:
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32. Figure. The exact model of H

2

3

.

Listed are the formulas in H

2

3

and their valuations in this model.

0 (p ^ :p) fg

1 (p!p) f0; 1; 2; 3; 4; 5; 6; 7; 8g

2 p f0; 3; 5g

3 q f1; 3; 7g

4 (p ^ q) f3g

5 (p _ q) f0; 1; 3; 5; 7g

6 :p f6; 7; 8g

7; :q f4; 5; 8g

8 (p!q) f1; 2; 3; 6; 7; 8g

9 (q!p) f0; 2; 3; 4; 5; 8g

10 :(p ^ q) f4; 5; 6; 7; 8g

11 :(p _ q) f8g

12 ((p _ q)!(p ^ q)) f2; 3; 8g

13 (p _ :p) f0; 3; 5; 6; 7; 8g

14 (q ^ :p) f7g

15 (q _ :p) f1; 3; 6; 7; 8g

16 ((p ^ q) _ :p) f3; 6; 7; 8g

17 ((p _ q) _ :p) f0; 1; 3; 5; 6; 7; 8g

18 (p ^ :q) f5g

19 (p _ :q) f0; 3; 4; 5; 8g

20 (q _ :q) f1; 3; 4; 5; 7; 8g

21 ((p ^ q) _ :q) f3; 4; 5; 8g

22 ((p _ q) _ :q) f0; 1; 3; 4; 5; 7; 8g

23 (p _ (p!q)) f0; 1; 2; 3; 5; 6; 7; 8g

24 (:q _ (p!q)) f1; 2; 3; 4; 5; 6; 7; 8g

25 (q _ (q!p)) f0; 1; 2; 3; 4; 5; 7; 8g

26 (:p _ (q!p)) f0; 2; 3; 4; 5; 6; 7; 8g

27 (p _ :(p ^ q)) f0; 3; 4; 5; 6; 7; 8g

28 (q _ :(p ^ q)) f1; 3; 4; 5; 6; 7; 8g

29 ((p ^ q) _ :(p ^ q)) f3; 4; 5; 6; 7; 8g

30 ((p _ q) ^ :(p ^ q)) f5; 7g

31 ((p _ q) _ :(p ^ q)) f0; 1; 3; 4; 5; 6; 7; 8g

32 (p _ :(p _ q)) f0; 3; 5; 8g

33 (q _ :(p _ q)) f1; 3; 7; 8g

34 ((p ^ q) _ :(p _ q)) f3; 8g

35 ((p _ q) _ :(p _ q)) f0; 1; 3; 5; 7; 8g

36 (p _ ((p _ q)!(p ^ q))) f0; 2; 3; 5; 8g

37 (q _ ((p _ q)!(p ^ q))) f1; 2; 3; 7; 8g

38 ((p _ q) _ ((p _ q)!(p ^ q))) f0; 1; 2; 3; 5; 7; 8g

39 (:p _ ((p _ q)!(p ^ q))) f2; 3; 6; 7; 8g

40 (:q _ ((p _ q)!(p ^ q))) f2; 3; 4; 5; 8g

41 (:(p ^ q) _ ((p _ q)!(p ^ q))) f2; 3; 4; 5; 6; 7; 8g

42 (q ^ (p _ :p)) f3; 7g

43 ((p _ q) ^ (p _ :p)) f0; 3; 5; 7g

44 (:q ^ (p _ :p)) f5; 8g

45 (:(p ^ q) ^ (p _ :p)) f5; 6; 7; 8g



164 Appendix B. Output of computer programs

46 (((p _ q)!(p ^ q)) _ (p _ :p)) f0; 2; 3; 5; 6; 7; 8g

47 (:q _ (q ^ :p)) f4; 5; 7; 8g

48 ((q!p) _ (q ^ :p)) f0; 2; 3; 4; 5; 7; 8g

49 (:(p _ q) _ (q ^ :p)) f7; 8g

50 (((p _ q)!(p ^ q)) _ (q ^ :p)) f2; 3; 7; 8g

51 (q _ (p ^ :q)) f1; 3; 5; 7g

52 ((p ^ q) _ (p ^ :q)) f3; 5g

53 ((p!q) _ (p ^ :q)) f1; 2; 3; 5; 6; 7; 8g

54 (((p _ q)!(p ^ q)) _ (p ^ :q)) f2; 3; 5; 8g

55 ((q _ :p) _ (p ^ :q)) f1; 3; 5; 6; 7; 8g

56 (((p ^ q) _ :p) _ (p ^ :q)) f3; 5; 6; 7; 8g

57 ((q ^ :p) _ (p _ :q)) f0; 3; 4; 5; 7; 8g

58 (((p _ q)!(p ^ q)) _ (q _ :q)) f1; 2; 3; 4; 5; 7; 8g

59 ((p _ :p) ^ (q _ :q)) f3; 5; 7; 8g

60 (((p ^ q) _ :p) ^ (q _ :q)) f3; 7; 8g

61 (((p _ q) _ :p) ^ (q _ :q)) f1; 3; 5; 7; 8g

62 ((p _ :p) ^ ((p ^ q) _ :q)) f3; 5; 8g

63 ((q ^ :p) _ ((p ^ q) _ :q)) f3; 4; 5; 7; 8g

64 ((p _ :p) ^ ((p _ q) _ :q)) f0; 3; 5; 7; 8g

65 ((p _ q) ^ ((p ^ q) _ :(p ^ q))) f3; 5; 7g

66 (:(p _ q) _ ((p _ q) ^ :(p ^ q))) f5; 7; 8g

67 (((p _ q)!(p ^ q)) _ ((p _ q) ^ :(p ^ q))) f2; 3; 5; 7; 8g

68 ((q ^ :p) _ (p _ ((p _ q)!(p ^ q)))) f0; 2; 3; 5; 7; 8g

69 ((p ^ :q) _ (q _ ((p _ q)!(p ^ q)))) f1; 2; 3; 5; 7; 8g

7; 0 ((p ^ :q) _ (:p _ ((p _ q)!(p ^ q)))) f2; 3; 5; 6; 7; 8g

7; 1 ((q ^ :p) _ (:q _ ((p _ q)!(p ^ q)))) f2; 3; 4; 5; 7; 8g

7; 2 ::p f0; 1; 2; 3; 4; 5g

7; 3 (:p!q) f0; 1; 2; 3; 4; 5; 7g

7; 4 ::q f0; 1; 2; 3; 6; 7g

7; 5 (:q!p) f0; 1; 2; 3; 5; 6; 7g

7; 6 (:p!:q) f0; 1; 2; 3; 4; 5; 8g

7; 7 (:q!:p) f0; 1; 2; 3; 6; 7; 8g

7; 8 :(p!q) f4; 5g

7; 9 ((p!q)!p) f0; 3; 4; 5g

80 ((p!q)!q) f0; 1; 3; 4; 5; 7g

81 :(q!p) f6; 7g

82 ((q!p)!p) f0; 1; 3; 5; 6; 7g

83 ((q!p)!q) f1; 3; 6; 7g

84 ::(p ^ q) f0; 1; 2; 3g

85 (:(p ^ q)!p) f0; 1; 2; 3; 5g

86 (:(p ^ q)!q) f0; 1; 2; 3; 7g

87 (:(p ^ q)!(p _ q)) f0; 1; 2; 3; 5; 7g

88 ::(p _ q) f0; 1; 2; 3; 4; 5; 6; 7g

89 (:(p ^ q)!:(p _ q)) f0; 1; 2; 3; 8g

90 :((p _ q)!(p ^ q)) f4; 5; 6; 7g

91 (((p _ q)!(p ^ q))!p) f0; 1; 3; 4; 5; 6; 7g

92 ((p _ :p)!q) f1; 2; 3; 7g

93 ((p _ :p)!(p ^ q)) f1; 2; 3g

94 ((p _ :p)!((p _ q)!(p ^ q))) f1; 2; 3; 8g

95 ((p!q)!(q ^ :p)) f4; 5; 7g

96 ((q _ :p)!p) f0; 2; 3; 4; 5g

97 (((p _ q) _ :p)!(p ^ q)) f2; 3g

98 ((q!p)!(p ^ :q)) f5; 6; 7g

99 ((p _ :q)!q) f1; 2; 3; 6; 7g

100 ((q _ :q)!p) f0; 2; 3; 5g

101 ((q _ :q)!(p ^ q)) f0; 2; 3g

102 ((q _ :q)!((p _ q)!(p ^ q))) f0; 2; 3; 8g

103 ((q _ :q)!((p ^ q) _ :p)) f0; 2; 3; 6; 7; 8g

104 ((p _ :p)!((p ^ q) _ :q)) f1; 2; 3; 4; 5; 8g

105 ((:q _ (p!q))!q) f0; 1; 3; 7g

106 ((:q _ (p!q))!(p ^ q)) f0; 3g

107 ((:q _ (p!q))!(q _ :p)) f0; 1; 3; 6; 7; 8g

108 ((:q _ (p!q))!((p ^ q) _ :p)) f0; 3; 6; 7; 8g

109 ((:p _ (q!p))!p) f0; 1; 3; 5g

110 ((:p _ (q!p))!(p ^ q)) f1; 3g

111 ((:p _ (q!p))!(p _ :q)) f0; 1; 3; 4; 5; 8g

112 ((:p _ (q!p))!((p ^ q) _ :q)) f1; 3; 4; 5; 8g

113 (:(p ^ q)!(p _ :(p _ q))) f0; 1; 2; 3; 5; 8g
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114 ((:p _ (q!p))!(p _ :(p _ q))) f0; 1; 3; 5; 8g

115 (:(p ^ q)!(q _ :(p _ q))) f0; 1; 2; 3; 7; 8g

116 ((:q _ (p!q))!(q _ :(p _ q))) f0; 1; 3; 7; 8g

117 ((:q _ (p!q))!((p ^ q) _ :(p _ q))) f0; 3; 8g

118 ((:p _ (q!p))!((p ^ q) _ :(p _ q))) f1; 3; 8g

119 ((:p _ ((p _ q)!(p ^ q)))!p) f0; 1; 3; 4; 5g

120 ((:q _ ((p _ q)!(p ^ q)))!q) f0; 1; 3; 6; 7g

121 ((:(p ^ q) _ ((p _ q)!(p ^ q)))!(p ^ q)) f0; 1; 3g

122 ((:(p ^ q) _ ((p _ q)!(p ^ q)))!((p ^ q) _ :(p _ q))) f0; 1; 3; 8g

123 ((p!q)!(q ^ (p _ :p))) f0; 3; 4; 5; 7g

124 ((q _ :p)!(q ^ (p _ :p))) f0; 2; 3; 4; 5; 7g

125 (((p _ q) _ :p)!(q ^ (p _ :p))) f2; 3; 7g

126 ((q _ :q)!(q ^ (p _ :p))) f0; 2; 3; 6; 7g

127 (((p _ q) _ :q)!(q ^ (p _ :p))) f2; 3; 6; 7g

128 ((:q _ (p!q))!(q ^ (p _ :p))) f0; 3; 7g

129 ((q _ (q!p))!(q ^ (p _ :p))) f3; 6; 7g

130 ((q _ :(p ^ q))!(q ^ (p _ :p))) f0; 2; 3; 7g

131 ((q _ :(p _ q))!(q ^ (p _ :p))) f0; 2; 3; 4; 5; 6; 7g

132 ((q _ ((p _ q)!(p ^ q)))!(q ^ (p _ :p))) f0; 3; 4; 5; 6; 7g

133 ((q _ :q)!((p _ q) ^ (p _ :p))) f0; 2; 3; 5; 6; 7g

134 ((q _ (q!p))!((p _ q) ^ (p _ :p))) f0; 3; 5; 6; 7g

135 ((q _ :(p ^ q))!((p _ q) ^ (p _ :p))) f0; 2; 3; 5; 7g

136 ((:q _ (p!q))!(((p _ q)!(p ^ q)) _ (q ^ :p))) f0; 2; 3; 7; 8g

137 ((q!p)!(q _ (p ^ :q))) f1; 3; 5; 6; 7g

138 ((p _ :p)!(q _ (p ^ :q))) f1; 2; 3; 4; 5; 7g

139 ((p _ :q)!(q _ (p ^ :q))) f1; 2; 3; 5; 6; 7g

140 ((p _ (p!q))!(q _ (p ^ :q))) f1; 3; 4; 5; 7g

141 ((p _ :(p ^ q))!(q _ (p ^ :q))) f1; 2; 3; 5; 7g

142 ((p _ :(p _ q))!(q _ (p ^ :q))) f1; 2; 3; 4; 5; 6; 7g

143 ((p _ ((p _ q)!(p ^ q)))!(q _ (p ^ :q))) f1; 3; 4; 5; 6; 7g

144 ((p _ :p)!((p ^ q) _ (p ^ :q))) f1; 2; 3; 4; 5g

145 (((p _ q) _ :p)!((p ^ q) _ (p ^ :q))) f2; 3; 4; 5g

146 (((p _ q) _ :q)!((p ^ q) _ (p ^ :q))) f2; 3; 5g

147 ((p _ (p!q))!((p ^ q) _ (p ^ :q))) f3; 4; 5g

148 ((:p _ (q!p))!((p ^ q) _ (p ^ :q))) f1; 3; 5g

149 ((p _ :(p ^ q))!((p ^ q) _ (p ^ :q))) f1; 2; 3; 5g

150 ((((p _ q)!(p ^ q)) _ (p _ :p))!((p ^ q) _ (p ^ :q))) f1; 3; 4; 5g

151 ((:p _ (q!p))!(((p _ q)!(p ^ q)) _ (p ^ :q))) f1; 2; 3; 5; 8g

152 ((((p _ q)!(p ^ q)) _ (q _ :q))!(q ^ (p _ :p))) f0; 3; 6; 7g

153 ((:q _ (p!q))!(((p ^ q) _ :p) ^ (q _ :q))) f0; 3; 7; 8g

154 ((:p _ (q!p))!((p _ :p) ^ ((p ^ q) _ :q))) f1; 3; 5; 8g

155 (((p _ q) _ :p)!((p _ q) ^ ((p ^ q) _ :(p ^ q)))) f2; 3; 4; 5; 7g

156 (((p _ q) _ :q)!((p _ q) ^ ((p ^ q) _ :(p ^ q)))) f2; 3; 5; 6; 7g

157 ((p _ (p!q))!((p _ q) ^ ((p ^ q) _ :(p ^ q)))) f3; 4; 5; 7g

158 ((q _ (q!p))!((p _ q) ^ ((p ^ q) _ :(p ^ q)))) f3; 5; 6; 7g

159 (((p _ q) _ :(p ^ q))!((p _ q) ^ ((p ^ q) _ :(p ^ q)))) f2; 3; 5; 7g

160 (((p _ q) _ :(p _ q))!((p _ q) ^ ((p ^ q) _ :(p ^ q)))) f2; 3; 4; 5; 6; 7g

161 (((p _ q) _ ((p _ q)!(p ^ q)))!((p _ q) ^ ((p ^ q) _ :(p ^ q)))) f3; 4; 5; 6; 7g
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B.3 The diagram of the fragment IpL

2

1

The fragment IpL

n

m

with restricted nesting of implication was treated in Chapter 4.

The diagram of IpL

2

1

, listed below, was computed using the exact Kripke model of

the fragment (compare �gure 26):
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33. Figure. The exact model of IpL

2

1

.

��������������������������

mu = 0

��������������������������

2 p f4; 9; 12g

3 q f8; 11; 12g

4 (p ^ q) f12g

5 (p _ q) f4; 8; 9; 11; 12g

� � ������������������������

mu = 1

��������������������������

0 (p ^ :p) fg

1 (p!p) f0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12g

6 :p f7; 10; 11g

7 :q f5; 9; 10g

8 (p!q) f3; 6; 7; 8; 10; 11; 12g

9 (q!p) f1; 4; 5; 6; 9; 10; 12g

10 :(p ^ q) f2; 5; 7; 9; 10; 11g

11 :(p _ q) f10g

12 ((p _ q)!(p ^ q)) f6; 10; 12g

13 (p _ :p) f4; 7; 9; 10; 11; 12g

14 (q ^ :p) f11g

15 (q _ :p) f7; 8; 10; 11; 12g

16 ((p ^ q) _ :p) f7; 10; 11; 12g

17 ((p _ q) _ :p) f4; 7; 8; 9; 10; 11; 12g

18 (p ^ :q) f9g

19 (p _ :q) f4; 5; 9; 10; 12g

20 (q _ :q) f5; 8; 9; 10; 11; 12g

21 ((p ^ q) _ :q) f5; 9; 10; 12g

22 ((p _ q) _ :q) f4; 5; 8; 9; 10; 11; 12g

23 (:p _ :q) f5; 7; 9; 10; 11g

24 (p _ (p!q)) f3; 4; 6; 7; 8; 9; 10; 11; 12g

25 (:q _ (p!q)) f3; 5; 6; 7; 8; 9; 10; 11; 12g

26 (q _ (q!p)) f1; 4; 5; 6; 8; 9; 10; 11; 12g

27 (:p _ (q!p)) f1; 4; 5; 6; 7; 9; 10; 11; 12g

28 ((p!q) _ (q!p)) f1; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12g

29 (p _ :(p ^ q)) f2; 4; 5; 7; 9; 10; 11; 12g

30 (q _ :(p ^ q)) f2; 5; 7; 8; 9; 10; 11; 12g

31 ((p ^ q) _ :(p ^ q)) f2; 5; 7; 9; 10; 11; 12g

32 ((p _ q) ^ :(p ^ q)) f9; 11g

33 ((p _ q) _ :(p ^ q)) f2; 4; 5; 7; 8; 9; 10; 11; 12g
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34 ((p!q) _ :(p ^ q)) f2; 3; 5; 6; 7; 8; 9; 10; 11; 12g

35 ((q!p) _ :(p ^ q)) f1; 2; 4; 5; 6; 7; 9; 10; 11; 12g

36 (p _ :(p _ q)) f4; 9; 10; 12g

37 (q _ :(p _ q)) f8; 10; 11; 12g

38 ((p ^ q) _ :(p _ q)) f10; 12g

39 ((p _ q) _ :(p _ q)) f4; 8; 9; 10; 11; 12g

40 (p _ ((p _ q)!(p ^ q))) f4; 6; 9; 10; 12g

41 (q _ ((p _ q)!(p ^ q))) f6; 8; 10; 11; 12g

42 ((p _ q) _ ((p _ q)!(p ^ q))) f4; 6; 8; 9; 10; 11; 12g

43 (:p _ ((p _ q)!(p ^ q))) f6; 7; 10; 11; 12g

44 (:q _ ((p _ q)!(p ^ q))) f5; 6; 9; 10; 12g

45 (:(p ^ q) _ ((p _ q)!(p ^ q))) f2; 5; 6; 7; 9; 10; 11; 12g

46 (q ^ (p _ :p)) f11; 12g

47 ((p _ q) ^ (p _ :p)) f4; 9; 11; 12g

48 (:q ^ (p _ :p)) f9; 10g

49 (:q _ (p _ :p)) f4; 5; 7; 9; 10; 11; 12g

50 (:(p ^ q) ^ (p _ :p)) f7; 9; 10; 11g

51 (((p _ q)!(p ^ q)) _ (p _ :p)) f4; 6; 7; 9; 10; 11; 12g

52 (:q _ (q ^ :p)) f5; 9; 10; 11g

53 ((q!p) _ (q ^ :p)) f1; 4; 5; 6; 9; 10; 11; 12g

54 (:(p _ q) _ (q ^ :p)) f10; 11g

55 (((p _ q)!(p ^ q)) _ (q ^ :p)) f6; 10; 11; 12g

56 (:q _ (q _ :p)) f5; 7; 8; 9; 10; 11; 12g

57 ((q!p) _ (q _ :p)) f1; 4; 5; 6; 7; 8; 9; 10; 11; 12g

58 (((p _ q)!(p ^ q)) _ (q _ :p)) f6; 7; 8; 10; 11; 12g

59 (:q _ ((p ^ q) _ :p)) f5; 7; 9; 10; 11; 12g

60 (:q _ ((p _ q) _ :p)) f4; 5; 7; 8; 9; 10; 11; 12g

61 (((p _ q)!(p ^ q)) _ ((p _ q) _ :p)) f4; 6; 7; 8; 9; 10; 11; 12g

62 (q _ (p ^ :q)) f8; 9; 11; 12g

63 ((p ^ q) _ (p ^ :q)) f9; 12g

64 ((p!q) _ (p ^ :q)) f3; 6; 7; 8; 9; 10; 11; 12g

65 (((p _ q)!(p ^ q)) _ (p ^ :q)) f6; 9; 10; 12g

66 ((q _ :p) _ (p ^ :q)) f7; 8; 9; 10; 11; 12g

67 (((p ^ q) _ :p) _ (p ^ :q)) f7; 9; 10; 11; 12g

68 ((p!q) _ (p _ :q)) f3; 4; 5; 6; 7; 8; 9; 10; 11; 12g

69 (((p _ q)!(p ^ q)) _ (p _ :q)) f4; 5; 6; 9; 10; 12g

70 ((q ^ :p) _ (p _ :q)) f4; 5; 9; 10; 11; 12g

71 (((p _ q)!(p ^ q)) _ (q _ :q)) f5; 6; 8; 9; 10; 11; 12g

72 ((p _ :p) ^ (q _ :q)) f9; 10; 11; 12g

73 (((p ^ q) _ :p) ^ (q _ :q)) f10; 11; 12g

74 (((p _ q) _ :p) ^ (q _ :q)) f8; 9; 10; 11; 12g

75 ((p _ :p) ^ ((p ^ q) _ :q)) f9; 10; 12g

76 ((q ^ :p) _ ((p ^ q) _ :q)) f5; 9; 10; 11; 12g

77 (((p _ q)!(p ^ q)) _ ((p _ q) _ :q)) f4; 5; 6; 8; 9; 10; 11; 12g

78 ((p _ :p) ^ ((p _ q) _ :q)) f4; 9; 10; 11; 12g

79 (((p _ q)!(p ^ q)) _ (:p _ :q)) f5; 6; 7; 9; 10; 11; 12g

80 (:(p ^ q) _ (p _ (p!q))) f2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12g

81 (:(p ^ q) _ (q _ (q!p))) f1; 2; 4; 5; 6; 7; 8; 9; 10; 11; 12g

82 (:(p ^ q) _ ((p!q) _ (q!p))) f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12g

83 (((p _ q)!(p ^ q)) _ (p _ :(p ^ q))) f2; 4; 5; 6; 7; 9; 10; 11; 12g

84 (((p _ q)!(p ^ q)) _ (q _ :(p ^ q))) f2; 5; 6; 7; 8; 9; 10; 11; 12g

85 ((p _ q) ^ ((p ^ q) _ :(p ^ q))) f9; 11; 12g

86 (:(p _ q) _ ((p _ q) ^ :(p ^ q))) f9; 10; 11g

87 (((p _ q)!(p ^ q)) _ ((p _ q) ^ :(p ^ q))) f6; 9; 10; 11; 12g

88 (((p _ q)!(p ^ q)) _ ((p _ q) _ :(p ^ q))) f2; 4; 5; 6; 7; 8; 9; 10; 11; 12g

89 ((q ^ :p) _ (p _ ((p _ q)!(p ^ q)))) f4; 6; 9; 10; 11; 12g

90 ((:p _ :q) _ (p _ ((p _ q)!(p ^ q)))) f4; 5; 6; 7; 9; 10; 11; 12g

91 ((p ^ :q) _ (q _ ((p _ q)!(p ^ q)))) f6; 8; 9; 10; 11; 12g

92 ((:p _ :q) _ (q _ ((p _ q)!(p ^ q)))) f5; 6; 7; 8; 9; 10; 11; 12g

93 ((:p _ :q) _ ((p _ q) _ ((p _ q)!(p ^ q)))) f4; 5; 6; 7; 8; 9; 10; 11; 12g

94 ((p ^ :q) _ (:p _ ((p _ q)!(p ^ q)))) f6; 7; 9; 10; 11; 12g

95 ((q ^ :p) _ (:q _ ((p _ q)!(p ^ q)))) f5; 6; 9; 10; 11; 12g

96 ((:q _ ((p _ q)!(p ^ q))) _ ((p _ q) ^ (p _ :p))) f4; 5; 6; 9; 10; 11; 12g

97 ((q _ ((p _ q)!(p ^ q))) _ (:(p ^ q) ^ (p _ :p))) f6; 7; 8; 9; 10; 11; 12g
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B.4 The exactly provable formulas in L

1

1

The exactly provable formulas in L

1

1

where computed using the exact model:
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34. Figure. An exact model of L

1

1

.

An explanation of the calculation of the list below can be found in section 5.5

For each formula the corresponding set of 1; 1-types is given on the right. Note

that for the bracketing the priority of ^ is higher than _ and !. Likewise _ has a

higher priority than !.

1: p!p f0, 1, 2, 3, 4, 5, 6, 7g

2: p!

2

? f0, 1, 2, 4, 6g

3: p _

2

? f0, 1, 3, 5, 7g

4: p!

2

p f0, 1, 2, 4, 5, 6g

5: p ^

2

p f1, 5g

6: p _

2

p f0, 1, 3, 4, 5, 7g

7: p!

2

:p f0, 1, 2, 3, 4, 6g

8: p _

2

:p f0, 1, 2, 3, 5, 7g

9: :p ^

2

:p f0, 2g

10:

2

?_ :

2

p f0, 1, 2, 3, 6, 7g

11:

2

:p!

2

p f0, 1, 4, 5, 6, 7g

12: p ^

2

p!

2

? f0, 1, 2, 3, 4, 6, 7g

13: p ^

2

:p!

2

? f0, 1, 2, 4, 5, 6, 7g

14:

2

:p!p ^

2

? f1, 4, 5, 6, 7g

15:

2

p!(p _

2

?) f0, 1, 2, 3, 5, 6, 7g

16:

2

:p!(p _

2

?) f0, 1, 3, 4, 5, 6, 7g

17:

2

p!:p ^

2

? f0, 2, 3, 6, 7g

18:

2

:p _ (p!

2

p) f0, 1, 2, 3, 4, 5, 6g

19:

2

:p _ p ^ :

2

p f0, 1, 2, 3, 7g

20:

2

:p _ (p _

2

p) f0, 1, 2, 3, 4, 5, 7g

21: (p _

2

p)!

2

:p f0, 1, 2, 3, 6g

22: (p _

2

?) ^ :(p ^

2

p) f0, 3, 7g

23:

2

p _ p ^ :

2

:p f0, 1, 4, 5, 7g

24: (p _

2

:p)!

2

p f0, 1, 4, 5, 6g

25: :(p ^

2

p) ^ (p _

2

:p) f0, 2, 3, 7g

26: p ^

2

?_ :(p _

2

:p) f1, 4, 6g

27: p ^

2

p _ :(p _

2

:p) f1, 4, 5, 6g

28:

2

?_ :(p _

2

p) f0, 1, 2, 6g

29:

2

?_ p ^ :

2

p f0, 1, 3, 7g

30: p ^ (

2

p _

2

:p)!

2

? f0, 1, 2, 4, 6, 7g

31: (

2

p _

2

:p)!(p _

2

?) f0, 1, 3, 5, 6, 7g

32:

2

?_ :(p _

2

:p) f0, 1, 4, 6g

33:

2

?_ p ^ :

2

:p f0, 1, 5, 7g

34:

2

?_ :(

2

p _

2

:p) f0, 1, 6, 7g

35: (p _

2

p) ^ (p ^

2

p!

2

?) f0, 1, 3, 4, 7g

36:

2

?_ :(

2

:p _ p ^

2

p) f0, 1, 4, 6, 7g

37: (p _

2

:p) ^ (p ^

2

:p!

2

?) f0, 1, 2, 5, 7g

38:

2

?_ :(

2

p _ p ^

2

:p) f0, 1, 2, 6, 7g

39: (p _

2

p) ^ (

2

:p!p ^

2

?) f1, 4, 5, 7g

40: p ^

2

?_ :(

2

:p _ p ^

2

p) f1, 4, 6, 7g

41: (p _

2

p)!

2

p ^ (p _

2

?) f0, 1, 2, 5, 6g

42: (

2

p _

2

:p)!

2

p ^ (p _

2

?) f0, 1, 5, 6, 7g
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43:

2

?_ (

2

p!p) ^ :(p ^

2

:p) f0, 1, 2, 5, 6, 7g

44: (p _

2

:p)!

2

:p ^ (p _

2

?) f0, 1, 3, 4, 6g

45:

2

?_ :

2

p ^ (

2

:p!p) f0, 1, 3, 6, 7g

46:

2

?_ :(p ^

2

p) ^ (

2

:p!p) f0, 1, 3, 4, 6, 7g

47: (p _

2

p)!

2

:p ^ :(p ^

2

?) f0, 2, 3, 6g

48: (

2

p _

2

:p)!(p _

2

?) ^ :(p ^

2

p) f0, 3, 6, 7g

49: (p _

2

p)!(

2

:p _ p ^

2

p) f0, 1, 2, 3, 5, 6g

50: (p _

2

:p)!(

2

p _ p ^

2

:p) f0, 1, 3, 4, 5, 6g

51:

2

:p _ (p _

2

p) ^ :(p ^

2

p) f0, 1, 2, 3, 4, 7g

52:

2

?_ p ^ :(

2

p _

2

:p) f0, 1, 7g

53: (p _

2

:p) ^ (p ^ (

2

p _

2

:p)!

2

?) f0, 1, 2, 7g

54:

2

p _ (p _

2

:p) ^ :(p ^

2

:p) f0, 1, 2, 4, 5, 7g

55:

2

?_ :(

2

:p _ (p _

2

p)) f0, 1, 6g

56:

2

:p ^ (p _

2

?) _ :(

2

:p _ (p _

2

p)) f0, 1, 3, 6g

57: (p _

2

p) ^ (p ^ (

2

p _

2

:p)!

2

?) f0, 1, 4, 7g

58:

2

p ^ (p _

2

?) _ :(

2

:p _ (p _

2

p)) f0, 1, 5, 6g

59: (

2

:p _ (p _

2

p)) ^ (p ^ (

2

p _

2

:p)!

2

?) f0, 1, 2, 4, 7g

60: (p _

2

p) ^ (p ^

2

?_ :(

2

:p _ p ^

2

p)) f1, 4, 7g

61: (

2

:p _ (p _

2

p))!(p _

2

?) ^ (

2

p _

2

:p) f0, 1, 3, 5, 6g

62: (p!

2

:p ^ :

2

?) ^ ((

2

p _

2

:p)!(p _

2

?)) f0, 3, 6g
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Table of fragments in IpL

For each fragment F of IpL in the table below, the number of equivalence classes

of F

1

; F

2

, F

3

and F

4

have been calculated (if possible). In some cases only a lower

bound of the number of elements in the diagram could be given.

fragment n = 1 n = 2 n = 3 n = 4

[^] 1 3 7 15

[_] 1 3 7 15

[^;_] 1 4 18 166

[:] 3 6 9 12

[::] 2 4 6 8

[^;:] 5 23 311 66 659

[_;:] 7 385 > 2

70

[^;_;:] 7 626 > 2

70

[^;::] 2 8 26 80

[_;::] 2 9 40 281

[^;_;::] 2 19 1 889

[!] 2 14 25 165 802 2

623 662 965 552 393

�50 331 618

[^;!] 2 18 623 662 965 552 330

[_;!] 2 1 1 1

[^;_;!] 2 1 1 1

[!;:] 6 518 3� 2

2 148

� 546

[^;!;:] 6 2 134 G

[_;!;:] 1 1 1 1

[^;_;!;:] 1 1 1 1

[!;::] 4 252 3� 2

689

� 380

[^;!;::] 4 676 > 2

6 383

[_;!;::] 5 1 1 1

[^;_;!;::] 5 1 1 1

171
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Most of the numbers for F

1

; F

2

and F

3

in the tables above can also be found

in [JHR 91]. Exceptions are jDiag([!;:]

3

)j and Diag(j[!;::]

3

)j, which have been

calculated by G. Renardel, and jDiag([^;_;::]

3

)j which has been computed by one

of the programs of the author.

The number G (which approximately equals 2

6 385

and has 1 923 digits) was cal-

culated by G. Renardel using a Mathematica program. The outcome of the program:

2385351090480492390853646413339133747025615299710901627960612470750032688502

8160633374326102851405827074085958557851857316972228706343515481647745510067

3005344615205148074997868754881393923444865679964852452325439433729138822091

6098391913867598073806389545947608903608155768791241781137739941904366215669

2475822999274057730123131714346501488572861062936699042596092725378572868491

2727120126756875551999208899378036731240684008111556867571467496386597453419

6639734352524036934304177304456570282321152101220432826978038593549587195612

9831811878934587983823475113519990750027976172097989085031955489803857128812

6387890256799333328705949050768971152190911269757807980550012371275543962052

0944274159250068847435305296595661994571943613671505170184414276367350905171

1680613376498354254366179877403670873176841923864088831349074573862390086523

1463501660157371767123051619018114441461150013224920279100064724918386404585

2362977616094414762999993096165017734442678516227452375506290087364604513146

8625073787337004447927030524156059024181381821779631041877411331313443793531

6573299754930440874865583477327660932604455374223117461731779709935281902018

3117687000447391980301631226240785745841846388391474813267681770574727454215

1439824203308859517469910490858730437804621971785778601804184276982651560872

1303793816082124571771381482585476984496988963204119188869627498008746051248

5777693593436069517395277231345407828098980787933234903875965383757843614426

5401046170222543436682016112844965439494799065532425819749482642048348803493

7460587870807503895520346988328053802689058378517830839398571718840621183909

0144108267526149335250474209390709830483545863841099431401775305058158120254
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Samenvatting

Dit proefschrift doet verslag van een onderzoek naar de semantiek van de

intu��tionistische en de modale propositielogica. Dit onderzoek is voor een belangrijk

deel ge��nspireerd en mogelijk gemaakt door het experimenteren met computerpro-

gramma's.

De oudste van deze computerprogramma's zijn zogenaamde stellingtesters, pro-

gramma's waarmee kan worden uitgerekend of uit een bewering A de bewering B

logisch volgt. Daarbij wordt alleen gebruik gemaakt van de vorm van de beweringen

A en B. De computer hoeft dan geen verstand te hebben van sterrenkunde, om uit

de bewering `De Maan is niet van groene kaas' af te leiden: `Als de Maan van groene

kaas is, dan draait Venus om de Aarde'. In Hoofdstuk 6 worden diverse programma's

beschreven om, voor verschillende logische systemen, te berekenen of B uit A volgt.

De belangrijkste onderdelen van deze programma's zijn opgenomen in Appendix A.

Door de formele taal van de propositielogica, waarin de beweringen kunnen wor-

den geformuleerd, voldoende te beperken krijgt men een zogenaamd fragment waarin

slechts eindig veel logisch verschillende beweringen mogelijk zijn. Voorbeelden van

de beperkingen die men kan opleggen zijn het toelaten van slechts eindig veel basis-

beweringen en het verbieden van een of meerdere van de connectieven (voegwoorden)

uit de rij `en' (^), `of' (_), `als : : : dan' (!), `niet' (:), `mogelijk' (}) en `noodza-

kelijk' (

2

). Daarbij maakt het ook nogal wat verschil welke logische a
eidingsregels

men in het fragment toelaat. Zo heeft [^;_;!;:]

1

CpL

, het fragment uit de klassieke

propositielogica logica met precies �e�en basisbewering en met als connectieven ^;_;!

en :, vier echt verschillende beweringen (A, :A, A ^ :A en A!A). Maar het frag-

ment [^;_;!;:]

1

IpL

in de intu��tionistische propositielogica, IpL, telt oneindig veel

verschillende beweringen. Dit geldt voor alle fragmenten in IpL die zowel _ als !

bevatten.

Als er maar eindig veel verschillende beweringen in een fragment zijn, kunnen we,

in principe, alle echt verschillende beweringen uit het fragment berekenen, met be-

hulp van een computerprogramma dat kan uitmaken of een bewering A gelijkwaardig

is met de bewering B. Ook de onderlinge relaties tussen deze beweringen (wat volgt

er uit wat) kunnen we op die manier in kaart brengen. Zo'n kaart van een fragment,
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met daarop alle beweringen uit het fragment en hun onderlinge relaties, noemen we

in dit proefschrift een diagram.

Hieronder is een voorbeeld van zo'n diagram getekend, in dit geval van het frag-

ment [^;_;:]

1

in de intu��tionistische propositielogica, met basisbewering p:
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u
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u
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�

�

�
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�

�
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�

u

p ^ :p

:pp

p _ :p::p

:p _ ::p

p!p

In dit voorbeeld kan het diagram nog met de hand worden berekend. Voor di-

agrammen met meer dan twintig beweringen is dat al haast niet meer doenlijk

en moet bijvoorbeeld een beroep gedaan worden op een van de eerder genoemde

stellingtesters. Uit de eerste experimenten met het berekenen van diagrammen met

deze stellingtesters, eind jaren zeventig en begin jaren tachtig, bleek al snel dat zo

alleen `kleine' fragmenten (met hooguit zo'n honderd echt verschillende beweringen)

in redelijke tijd in kaart te brengen zijn.

Exacte modellen

Gelukkig bestaat er ook een alternatief voor de stellingtesters, namelijk pro-

gramma's die gebruik maken van exacte Kripke-modellen. Kripke-modellen zijn in

de intu��tionistische en modale logica bekende hulpmiddelen om bijvoorbeeld situaties

(en hun onderlinge relaties) mee te beschrijven waarin een bepaalde bewering A geldt

en de bewering B juist niet. Dat geeft dan een tegenvoorbeeld tegen de bewering

dat B uit A volgt.

Een exact Kripke-model van een fragment beschrijft precies alle tegenvoorbeelden

die we nodig hebben om voor een fragment uit te maken voor welke beweringen geldt

dat B uit A volgt. Elke bewering uit het fragment heeft in het exacte Kripke-model

een gebied waar deze bewering geldig is. Als het gebied waar A geldig bevat is in

het gebied waar B geldt, dan is B blijkbaar een logisch gevolg van A.

Het berekenen van diagrammen van fragmenten met behulp van exacte modellen

gaat vele malen sneller dan met behulp van de eerder genoemde stellingtesters. Lang

niet alle fragmenten hebben echter een exact Kripke-model (de situatie in IpL is

weergegeven in �guur 1 in hoofdstuk 1). Daar staat tegenover dat we veel fragmenten

kunnen beschouwen als onderdeel van een fragment dat wel een exact model heeft.

Voorbeelden van de berekeningen van diagrammen met behulp van exacte modellen

zijn opgenomen in Appendix B.
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Hoofdstuk 3 van dit proefschrift is gewijd aan de berekening van de diagrammen

van de eindige fragmenten in de intu��tionistische propositie logica. Daarbij wordt

niet alleen gebruik gemaakt van exacte Kripke-modellen, bij de fragmenten die zich

daarvoor lenen wordt ook aangegeven hoe deze exacte modellen kunnen worden

geconstrueerd. Zoals uit de tabel in Appendix C blijkt worden de diagrammen van

eindige fragmenten van IpL al bij een klein aantal basisbeweringen in het algemeen

al snel astronomisch groot. Het werkelijk laten berekenen van de formules die bij de

verschillende beweringen uit de fragmenten horen is in dat geval praktisch uitgesloten

en het inzicht in de structuur van de exacte Kripke-modellen is dan vooral van

theoretisch belang.

In de modale logica levert, ook met een eindig aantal basisbeweringen, het

beperken van de gebruikte voegwoorden in het algemeen nog geen eindige frag-

menten op. Een bekende ingreep om toch te komen tot eindige diagrammen is

het beperken van de mate waarin het `mogelijk' en `noodzakelijk' in een bewering

gestapeld voorkomen. Bij een grens van �e�en zou bijvoorbeeld de bewering

22

A (het

is noodzakelijk dat het noodzakelijk is dat A') niet meer tot het fragment horen.

In Hoofdstuk 4 van dit proefschrift wordt iets soortgelijks gedaan voor de

intu��tionistische propositielogica. Door het beperken van de stapeling van ! leidt

het samenspel van `of' (_) en `als : : : dan' (!) ook in IpL niet langer tot oneindig

veel verschillende beweringen. Aangetoond wordt hoe voor deze fragmenten met

beperkte stapeling van de implicatie exacte Kripke-modellen geconstrueerd kunnen

worden.

Semantische typen

Om de exacte modellen voor fragmenten van propositielogica's te kunnen bereke-

nen is nader onderzocht welke situaties en relaties nodig zijn om alle gewenste tegen-

voorbeelden in een Kripke-model te kunnen weergeven. Wat maakt, met andere

woorden, een bewering geldig in een bepaalde situatie in een Kripke-model? Het

antwoord op deze vraag hangt af van de logica en van het fragment binnen die logica

waarmee we werken. In het algemeen kunnen we een volledig beeld geven van een

situatie met behulp van een opsomming van de basisbeweringen die er gelden, samen

met een overzicht van de andere situaties die vanuit deze situatie `denkbaar' zijn

1

.

De combinatie van deze opsommingen noemen we een semantisch type.

Situaties die voor een bepaald fragment van een propositielogica hetzelfde se-

mantische type hebben, gedragen zich logisch gezien eender en er gelden dezelfde

beweringen uit het fragment. Het opsporen van de semantische typen voor een

bepaald fragment blijkt een heel geschikte methode om een Kripke-model te maken

waarin alle voor een fragment nodige tegenvoorbeelden voorhanden zijn. Vaak is

zo'n model te groot om een mooi exact Kripke-model te zijn, maar als basis voor een

computerprogramma om een diagram mee te berekenen voldoet het prima.

1

Wat `denkbaar' is, welke relaties de situaties in een model kunnen hebben, hangt van de logica

in kwestie af.
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In Hoofdstuk 2 van dit proefschrift wordt de theorie over de semantische typen

uiteengezet en in verband gebracht met een aantal reeds bekende resultaten over

modellen en beweringen uit de klassieke, de intu��tionistische en de modale proposi-

tielogica.

Formele rekenkunde

In Hoofdstuk 5 van het proefschrift wordt de theorie van de semantische typen

toegepast op een probleem uit de formele rekenkunde, de Peano-rekenkunde PA. In

de rekenkundige taal zelf kunnen we de bewering formuleren dat een rekenkundige

zin bewijsbaar is. Als A een rekenkundige bewering is, dan wordt de rekenkundige

bewering `bewijsbaar A' ook wel geschreven als

2

A. De regels die voor deze vorm

van `bewijsbaarheid' gelden vormen een bijzondere modale propositielogica, de be-

wijsbaarheidslogica L.

Nemen we voor een basisbewering p in de bewijsbaarheidslogica een bepaalde

rekenkundige zin (bijvoorbeeld `7 heeft 64 verschillende delers'), dan noemen we

de verzameling beweringen die we kunnen maken in het fragment van L met �e�en

basisbewering en die geldig zijn in de rekenkunde als we voor de basisbewering een

rekenkundige zin nemen, de L

1

-theorie van die rekenkundige zin.

Een L

1

-theorie heeft als axioma de bewering A, als A zelf een bewering uit de

theorie is en alle andere beweringen in de theorie logische gevolgen zijn van A.

Zelfs bij een beperking van het fragment van L waarbij alleen beweringen worden

toelaten waarin

2

maar �e�en keer gestapeld mag voorkomen (de stapelgrens in dit

fragment is dus 2), was tot voor kort niet bekend hoeveel verschillende axioma's voor

L

1

2

-theorie�en er zijn.

Zoals in Hoofdstuk 5 wordt aangetoond (en uiteindelijk met de computer kon

worden berekend) zijn er precies 62 verschillende axioma's voor dit soort theorie�en.

Net als bij het berekenen van het aantal verschillende beweringen in de eindige

fragmenten van IpL is zo'n getal als uitkomst uiteindelijk niet het belangrijkste.

Wat telt is dat we zoveel inzicht hebben gekregen in de structuur van fragmenten

van propositielogica's dat we computerprogramma's kunnen maken om dergelijke

berekeningen uit te voeren.
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