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Abstract. We investigate the issues of inductive problem-solving and learning by doxas-
tic agents. We provide topological characterizations of solvability and learnability, and we
use them to prove that AGM-style belief revision is “universal”, i.e., that every solvable
problem is solvable by AGM conditioning.

1. Introduction

When in the course of observations it becomes necessary for agents to arrive at a gen-
eralization, they should declare, along with their conjecture, the extent of their certainty.
The problem of induction seems formidable if a standard of absolute certainty is imposed
on the learner. Indeed, as is well-known in Philosophy of Science, the so-called problem
of empirical underdetermination (i.e., the fact that typically the data are compatible with
more than one hypothesis) rules out any chance of obtaining infallible knowledge in empir-
ical research. But apart from the conclusions based on absolute certainty (cf. [13, 10, 15]),
learners can produce hypotheses based on beliefs. It is thus strange that Formal Learning
Theory and Belief Revision Theory developed completely independently from each other,
and that they have generally maintained their distance ever since.

However, there does exist a line of research that combines belief revision with learning-
theoretic notions, line pursued by Kelly [21, 20], Kelly, Schulte and Hendricks [26], Martin
and Osherson [28], Osherson [29] and ourselves [13, 3, 4, 14]. In this paper we continue
this research program, using topological characterizations and methods.

An inductive problem consists of a state space, a family of “potential observations”, and
a “question” (i.e., a partition of the state space). These observations provide data for
learning. The problem is solvable if there exists a learner that, after observing “enough”
pieces of data, eventually stabilizes on the correct answer. A special case of solvability is
learnability in the limit, corresponding to the solvability of the “ultimate” question: ‘What
is the actual state of the world?’. This notion matches the usual learning-theoretic concept
of identifiability in the limit [32, 16, 30].

The aim of the paper is twofold. First, we give topological characterizations of the
notions of solvability (and learnability), in terms of topological separation principles. In-
tuitively, the ability to reliably learn the true answer to a question, is related to the ability
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to “separate” answers by observations. The second goal is to use these topological results
to look at the “solving power” of well-behaved doxastic agents, such as the ones whose
beliefs satisfy the usual KD45 postulates of doxastic logic, as well as the standard AGM
postulates of rational belief-revision [1]. We look at a particularly simple and canonical
type of doxastic agent, who forms beliefs by AGM conditioning.

Our main result is that AGM conditioning is universal for problem-solving, i.e., that
every solvable problem can be solved by AGM conditioning. This means that (contrary to
some prior claims), AGM belief-revision postulates are not an obstacle to problem-solving.
As a special case, it follows that AGM conditioning is also “universal for learning” (every
learnable space can be learned by conditioning).1

The close connections between Epistemology and General Topology have already been
noticed long ago [33, 19]. Based on these connections, Kevin Kelly started a far-reaching
program [19, 22] meant to import ideas and techniques from both Formal Learning Theory
and Topology into mainstream Epistemology, and show their relevance to the induction
problem in Philosophy of Science. A further connection is the one with Ockham’s Razor,
that would

(...) guarantee that always choosing the simplest theory compatible with ex-
perience and hanging on to it while it remains the simplest is both necessary
and sufficient for efficiency of inquiry. [22]

Simplicity has been claimed to have topological characteristics—the simplicity order should
in some way follow the structure imposed on the uncertainty range by possible tests and
observations. It has also been linked with the notion of minimal mind change, where the
learning agent keeps the conjecture changes to a minimum [19, 31].

Taken together, our results can be seen as a vindication both of the general topological
program in Inductive Epistemology [19, 22] and of the AGM Belief Revision Theory [1].
On the first front, our general topological characterizations of learning-theoretic concepts
seem to confirm Kelly’s long-standing claim that Inductive Epistemology can be seen math-
ematically as a branch of General Topology. On the second front, our universality result
seems to vindicate Belief Revision Theory as a canonical form of learning.2

2. Epistemic Spaces and Inductive Problems

Definition 1. An epistemic space is a pair S = (S,O) consisting of a state space S and
a countable (or finite) set of observable properties (“data”) O ⊆ P(S). We denote by by
Os := {O ∈ O | s ∈ O} the set of all observable properties (holding) at a given state s.

One can think of the states in S as “possible worlds”, in the tradition of Kripke and
Lewis.The sets O ∈ O represent properties of the world that are in principle observable:

1This special case is a topological translation of one of our previous results [3, 4]. However, the result
about problem-solving universality is not only new and much more general, but also much harder to prove,
involving new topological notions and results.

2And in the same time (if we adopt a “simplicity” interpretation of the prior), this last result can be
seen as a vindication of Ockham’s razor (in line with Kevin Kelly’s program).
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if true, such a property will eventually be observed (although there is no upper bound on
the time needed to come to observe it).

To keep things simple, we assume that at each step of the learning process only one
property is observed. As for the countability of the set O, it is natural to think of observ-
ables as properties which can be expressed by means of a language or numerical coding
system, generated from a grammar with a finite vocabulary. Any such family O will be (at
most) countable.

We denote by O∩ the family of all finite intersections of observations from O, and
by O∗ the family of all finite sequences of observations. Such a finite sequence σ =
(O0, O1, . . . , Oi) ∈ O∗ is called a data sequence, and its i-th component is denoted by
σi := Oi. It is easy to see that both O∩ and O∗ are countable.

A data stream is a countable sequence ~O = (O0, O1, . . .) ∈ Oω of data from O. (Here, ω is
the set of natural numbers, so Oω is the set of all maps assigning an observable property to

every natural number.) We use the following notation: ~On is the n-th element in ~O; ~O[n] is

the initial segment of ~O of length n, (O0, . . . , On−1); set( ~O) := {O | O is an element of ~O}
is the set of all data in ~O; ∗ is the concatenation operator on strings.

The intuition is that at stage n of a data stream, the agent observes the information in
On. A data stream captures a possible future history of observations in its entirety, while
a data sequence captures only a finite part of such a history.

Given a state s ∈ S, a data stream for s is a stream ~O ∈ Oω such that Os = {O ∈
O |

⋂n
i=0Oi ⊆ O for some n ∈ ω}. Such a stream is “sound” (every data in ~O is true at

s) and “complete” (every true data is entailed by some finite set of observations in ~O).

Example 1. Let our epistemic space S = (S,O) be the real numbers, with observable
properties given by open intervals with rational endpoints: S := R, O := {(a, b) | a, b ∈
Q, a ≤ b}, where (a, b) := {x ∈ R | a < x < b}. For instance, observables may represent
measurements of a physical quantity (such as a position along a one-dimensional line) that
takes real numbers as its possible values. In such case, for any state x ∈ R and any two
sequences an, bn ∈ Q of rational numbers, such that an ≤ x ≤ bn and both sequences
converge to x, the sequence (a0, b0), . . . , (an, bn), . . . is a (sound and complete) data stream
for x.

Other examples include standard n-dimensional Euclidean spaces, e.g., S = R3 with O
consisting of all open balls with rational radius and center.

Definition 2. An inductive problem is a pair P = (S,Q) consisting of an epistemic space
S = (S,O) together with a “question” Q, i.e., a partition3 of S. The cells Ai of the partition
Q are called answers. Given s ∈ S, the unique A ∈ Q with s ∈ A is called the answer to
Q at s, and denoted As. We say that a problem P′ = (S,Q′) is a refinement of another
problem P = (S,Q) (or that the corresponding question Q′ is a refinement of the question
Q) if every answer of Q is a disjoint union of answers of Q′.

The most refined question concerns the identity of the real world.

3This means that
⋃

i∈I Ai = S, and Ai ∩Aj = ∅ for all i 6= j.
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Figure 1. A problem P (left-hand side) and its refinement P′ (right-hand
side), see Example 3

Example 2. The learning question on a space S is Q = {{s} | s ∈ S} (‘What is the actual
state?’).

Example 3. Let S = (S,O), where S = {s, t, u, v), O = {U, V, P,Q}, with U = {s, t},
V = {s},P = {u, v},Q = {u}. Take the problem P = (S,Q), given by the question
Q = {{t, u}, {s, v}} depicted on the left-hand side of Figure 1. This can obviously refined
to obtained the problem P′ = (S,Q′) given by the learning question Q = {{s}, {t}, {u}, {v}}
for this space, as depicted on the right-hand side of Figure 1.

3. Learning and Problem-Solving

Definition 3. Let S = (S,O) be an epistemic space and let σ0, . . . , σn ∈ O. An agent (also
known as a “learner”, or a “learning method”) is a map L that associates to any epistemic
space S and any data sequence (σ0, . . . , σn) some family LS(σ0, . . . , σn) ⊆ P(S) of subsets
of S, satisfying a “consistency” condition: ∅ 6∈ LS(σ0, . . . , σn) whenever

⋂n
i=o σi 6= ∅.

Intuitively, after observing the data sequence ~σ = (σ0, . . . , σn), we can say that agent L
believes a proposition P after observing the data sequence ~σ = (σ0, . . . , σn), and write B~σLP
iff P ∈ LS(σ0, . . . , σn). We can also interpret this as a conditional belief, rather than as
revised belief, the agent believes every P ∈ LS(σ0, . . . , σn) conditional on σ0, . . . , σn. But
in the end we are of course interested in the actual revised beliefs after observing the data,
so the assumption in this case is that conditional beliefs guide the agent’s revision strategy:
they “pre-encode” future belief revisions, to use a term coined by J. van Benthem [6]. The
above consistency simply means that each of the agent’s beliefs is consistent whenever the
observed data are consistent.

A doxastic agent is one whose set LS(σ0, . . . , σn) of beliefs forms a (proper) filter on S
when observing consistent data; in other words, her beliefs are (consistent when possible,
and also) inference-closed (i.e., if P ⊆ Q and P ∈ LS(σ0, . . . , σn), then Q ∈ LS(σ0, . . . , σn))
and conjunctive (i.e., if P,Q ∈ LS(σ0, . . . , σn) then (P ∩Q) ∈ LS(σ0, . . . , σn)). Hence, for
any doxastic agent L and every consistent data sequence ~σ, the belief operator B~σL (as
defined above) satisfy the usual KD45 axioms of doxastic logic.
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A standard agent is a doxastic agent L whose beliefs form a principal filter, i.e., all her
beliefs are entailed by one “strongest belief”; formally, a doxastic agent L is standard iff
for every data sequence ~σ over any epistemic space S there exists some set LS(~σ), such that

LS(~σ) = {P ⊆ S | LS(~σ) ⊆ P}.

It is easy to see that in this case, we must have LS(~σ) =
⋂
LS(~σ). Indeed, we can equiv-

alently define a doxastic agent L to be standard iff
⋂
LS(~σ) ∈ LS(~σ) holds for all data se-

quences ~σ. Standard agents are globally consistent whenever possible:
⋂
LS(σ0, . . . , σn) 6= ∅

whenever
⋂n
i=o σi 6= ∅.

Traditional learning methods in Formal Learning Theory correspond to our standard
agents, and they are typically identified with the map L (given by LS(σ0, . . . , σn) :=⋂
LS(σ0, . . . , σn)). From now on we follow this tradition, and refer to standard agents

using the map L. But in general we do not restrict ourselves to standard agents.
An AGM agent is an agent L≤ who forms beliefs by AGM conditioning, i.e., it comes

endowed with a map that associates any epistemic space S some total preorder5 ≤S on S,
called “prior” plausibility relation; and whose beliefs after observing any data sequence
~σ = (σ0, . . . , σn) are given by

L≤S (~σ) := {P ⊆ S | ∃s ∈
n⋂
i=0

σi ∀t ∈
n⋂
i=0

σi (t ≤ s⇒ t ∈ P )}.

Intuitively, t ≤ s means that t is at least as plausible as s (according to our agent). So,
an AGM agent believes P conditional on a data sequence ~σ iff P is true in all the states
(consistent with the data) that are “plausible enough”.

It is easy to see that every AGM agent is a doxastic agent : L≤S (~σ) is a proper filter
whenever

⋂n
i=0 σi 6= ∅; hence, the beliefs of an AGM agent satisfy the usual KD45 axioms

of doxastic logic (when learning any consistent data sequence).
Moreover, it is well-known that in fact, the beliefs of AGM agents satisfy all the so-called

AGM axioms from Belief Revision Theory [1]: if, for any data sequence ~σ = (σ0, . . . , σn), we
set T = L(σ0, . . . , σn), and for any new observation φ ∈ O we set T ∗ φ = L(σ0, . . . , σn, φ),
then the resulting revision operator ∗ satisfies all the AGM postulates. In fact, for any AGM
agent L, if we interpret the operator B~σL (as defined above) as representing a conditional
belief Bσ0∧...∧σn , then the sound and complete logic of these conditional belief operators
is the so-called Conditional Doxastic Logic [8, 5] (which is itself just a repackaging of the
AGM postulates in the language of conditional logic).

Observation 1. Given a total preorder ≤ on S and a subset A ⊆ S, set

Min≤(A) := {s ∈ A | s ≤ t for all t ∈ A}

for the set of ≤-minimal states in A. Let ~σ = (σ0, . . . , σn) be any data sequence such that

Min≤(
⋂n
i=0 σi) 6= ∅. Then L≤S (~σ) is the principal filter generated by Min≤(

⋂n
i=0 σi), i.e.,

5A total preorder on S is a binary relation ≤ on S that is reflexive, transitive, and connected (i.e., for
all s, t ∈ S, we have either s ≤ t or t ≤ s).
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we have

L≤S (σ0, . . . , σn) := {P ⊆ S | Min≤(

n⋂
i=0

σi) ⊆ P}.

In general though, the filter L≤S (~σ) is not principal. So AGM agents are not necessarily
standard agents. But there is an important case when they are standard: whenever the
preorder ≤S is well-founded in every space S (i.e., there are no infinite chains s0 > s1 >
s2 . . . of more and more plausible states). It is easy to see that the map L associated to a
standard AGM agent is given by the set of ≤-minimal states consistent with the data:

L≤S (σ0, . . . , σn) := Min≤(
n⋂
i=0

σi).

Intuitively, this means that a standard AGM agent believes a proposition P iff P is true
in all the “most plausible” states consistent with the data.

The original semantics of AGM belief was given using only standard AGM agents. But
this semantics was in fact borrowed by Grove [18] from Lewis’ semantics for conditionals
[27], which did not assume well-foundedness.7

Definition 4. Let S be an epistemic space. An agent L verifies a proposition A ⊆ S in

the limit if, for every state s ∈ S and every data stream ~O for s, we have s ∈ A iff there

exists some k ∈ ω such that A ∈ LS( ~O[n]) for all n ≥ k. For standard agents, this means

that LS( ~O[n]) ⊆ A for all n ≥ k. A set A ⊆ S is verifiable in the limit if there exists some
agent that verifies A in the limit.8

An agent L falsifies a proposition A ⊆ S in the limit if, for every state s ∈ S and

every data stream for ~O for s, we have s /∈ A iff there exists some k ∈ ω such that

Ac ∈ L(S, ~O[n]) ⊆ Ac for all n ≥ k. (Here, as in the rest of this paper, Xc := S \X stands

for the complement of X.) For a standard agent, this means L(S, ~O[n]) ⊆ Ac for all n ≥ k,
A proposition A ⊆ S is falsifiable in the limit if there exists some agent that falsifies A

in the limit.
A proposition A ⊆ S is decidable in the limit if it is both verifiable and falsifiable in the

limit.
An agent L solves a problem P = (S,Q) if, for every state s ∈ S and every data stream

~O for s, there exists some k ∈ ω such that As ∈ LS( ~O[n]) for all n ≥ k. (Recall that As
is true answer to Q at s.) For a standard agent, this means that LS( ~O[n]) ⊆ As for all
n ≥ k. A problem is solvable (in the limit) if there exists some agent that solves it.

An epistemic space S = (S,O) is learnable (by an agent L) if the (problem given by the)
learning question QS = {{s} | s ∈ S} is solvable (by L).

All the above notions have a standard counterpart, e.g., A is standardly verifiable if
there exist some standard agent that verifies it; P is standardly solvable if it can be solved
by some standard agent, etc.

7Indeed, Lewis’ definition of conditionals has a similar shape to our above definition of (conditional)
beliefs for non-standard AGM agents.

8For a discussion of the relationship between verifiability and learnability see, e.g., [19, 12].
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Note that standard learnability is essentially the same as Gold’s identifiability in the
limit [30, 17].
Examples and Counterexamples: An example of non-learnable space S = (S,O) is
obtained by taking four abstract states S = {s, t, u, w} and two observable properties
O = {V,U}, with V = {s, t, u} and U = {t, u, w}, as depicted in Figure 2. Since states
s and t satisfy the same observable properties, no learning method will ever distinguish
them.

s t u w

UV

Figure 2. A non-learnable space

But even spaces in which no two states satisfy the same observations can still be non-
learnable, e.g., all the n-dimensional Euclidean spaces from Example 1 are not learnable
(though, as we will see, many questions are solvable and many subsets are decidable over
these spaces). Another example of non-learnable space is given in Figure 3: formally,
S = (S,O), where S := {sn | n ∈ ω} ∪ {s∞}, and O = {Oi | i ∈ ω}, and for any i ∈ ω,
Oi := {si, si+1, . . .} ∪ {s∞}.

s0 s1 s2 s3 s∞
O0 O1 O2 O3 . . .

Figure 3. Another non-learnable space

In contrast, an example of learnable space is in Figure 4: formally, S = {sn | n ∈
ω} consists of countably many distinct states, with O = {On | n ∈ ω}, where On =
{s0, s1, s2, . . . , sn}. A standard agent that can learn this space in the limit is given by setting
L(σ1, . . . , σn) to be the maximum number (in the natural order) in

⋂n
i=0 σi, whenever there

is such a maximum number, and settingL(σ1, . . . , σn) :=
⋂n
i=0 σi otherwise.

Proposition 1. Let S be an epistemic space, A ⊆ S a proposition and P = (S,Q) an
inductive problem. Then we have the following:

• A is verifiable (falsifiable, decidable) in the limit iff it is standardly verifiable (fal-
sifiable, decidable) in the limit.
• P is solvable iff it is standardly solvable.
• S is learnable iff it is standardly learnable.
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s0 s1 s2 s3 s4

O0 O1 O2 O3 O4 . . .

Figure 4. A learnable space

Proof. Let A ⊆ S be a set that is verifiable (falsifiable, decidable) by an agent L on an
epistemic space S. We construct a standard agent that does the same thing, by setting,
for every data sequence ~σ ∈ O∗: LS(~σ) := A if A ∈ LS(~σ), LS(~σ) := Ac if A 6∈ LS(~σ) but
Ac ∈ LS(~σ), and LS(~σ) := S otherwise. Also, on any other space S′ = (S′,O′), we set by
default LS′(~σ

′) := S′.
Similarly, let P = (S,Q) be a problem that is solvable by L. Let ≤ be some arbitrary

well-order of the set Q. (Such a well-order exists, by the Well-Ordering Theorem.) We
construct a standard agent who also solves P, by setting LS(~σ) := A if A is the first answer
in Q (according to ≤) such that A ∈ LS(~σ) holds; and LS(~σ) := S if no such answer
exists. (As before, we can extend our agent to any other space S′ = (S′,O′), by setting
LS′(~σ

′) := S′.)
By applying this to the learning problem Q = {{s} | s ∈ S}, we obtain the similar result

for learnability. �

In conclusion, everything that can be learned by any agent can also be learned by some
standard agent. However, this is no longer true when we restrict to more canonical types
of agents (such as AGM agents).

Proposition 2. There exist spaces that are learnable, but not learnable by standard AGM
agents. (Hence, there exist solvable problems that are not solvable by standard AGM
agents.)

Proof. Here is a counterexample from [13, 3, 4]. Take the epistemic model from Figure 4.
This space is learnable, and thus learnable by AGM conditioning, but it is not learnable
by standard conditioning. Indeed, this space is learnable by conditioning only with respect
to the following non-wellfounded prior: s0 > s1 > . . . > sn > sn+1 > . . . �

4. The Observational Topology

In this section, we assume familiarity with the following notions: topology τ (identified
with its family of open subsets) over a set S of points, topological space (S, τ), open sets,
closed sets, interior Int(X) and closure X of a set X, (open) neighborhood of a point s,
base of a topology and local base (of neighborhoods) at a point. We use letters U , U ′, etc.,
for open sets in τ , and letters C, C ′, etc., for closed sets.
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A space is said to be second-countable if its topology has a countable base. Given a
topological space (S, τ), the specialization preorder v ⊆ S × S is defined in the following
way: for any s, t ∈ S, we set

s v t iff ∀U ∈ τ (s ∈ U ⇒ t ∈ U).

Separation Principles. In this paper we use four key topological separation notions. The
first is the well-known separation axiom T0, which will be satisfied by all the topologies
that arise in our setting. The second is the separation axiom TD. This condition (together
with countability) will be shown to characterize learnable spaces. The next two notions
are analogues of TD separation for questions. Instead of asking for open sets that separate
points (states), these conditions require the existence of open sets that separate answers
(to the same question). The concept of locally closed questions is a first analogue of TD,
and it will be shown to characterize in some sense solvable problems. Finally, the notion of
linearly separated questions is a stronger analogue of TD for questions, which characterizes
a stronger type of solvability, what we will call direct solvability by (AGM) conditioning.

Definition 5. A topological space (S, τ) satisfies the separation axiom T0 if the specializa-
tion preorder is actually a partial order, i.e., it is antisymmetric: s v t v s implies s = t.
Equivalently, if s 6= t, then there exists some “separating” open U , such that either s ∈ U ,
t 6∈ U , or s 6∈ U , t ∈ U .

The space (S, τ) satisfies the separation axiom TD iff for every point s ∈ S, there is an
open Ux 3 x such that y 6v x for all y ∈ Ox \ {x}. Equivalently: for every s ∈ S there is

an open U ∈ τ such that {s} = U ∩ {s}.
Essentially, T0 says that every two points s 6= t can be separated (by an open U) one

way or another (i.e., either s ∈ U , t 6∈ U , or s 6∈ U , t ∈ U), while TD essentially says that
every point s can be separated (by an open neighborhood) from all the points t 6= s that
are inseparable from s.10

Definition 6. Given a topological space (S, τ), a set A ⊆ S is locally closed if it is the
intersection A = U ∩ C of an open set U with a closed set C. Equivalently, if it is of the
form A = U ∩A for some open U .

A set is ω-constructible if it is a countable union of locally closed sets.
A question Q (partition of S) is locally closed if all its answers are locally closed. A

problem P is locally closed if its associated question is locally closed.

Essentially, locally closed questions are partitions with the property that every “answer”
(i.e., partition cell) A can be separated (by an open neighborhood) from all the non-A-states
that are inseparable from A.11

Definition 7. A question Q is linearly separated if there exists some total order E on
the answers in Q, such that A ∩

⋃
BCAB = ∅. In other words, every answer A can be

10A point y is “inseparable” from x if every open neighborhood of y contains x, i.e. y and x are in the
topological refinement order y v x.

11Here, a state t is said to be “inseparable” from a set A if there is no open neighborhood U 3 t that is
disjoint from A.
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separated (by some open UA ⊇ A) from the union of all the previous answers: UA ∩B = ∅
for all B CA.

Essentially, a linearly separated question is one whose answers can be totally ordered
by a “plausibility” (or “simplicity”) order, in such a way that every answer A can be
separated (by an open neighborhood UA ⊇ A) from all answers that are “more plausible”
(or “simpler”) than A.

Definition 8. The observational topology τS associated with an epistemic space S = (S,O)
is the topology generated by O (i.e., the smallest collection of subsets of S, that includes
O ∪ {∅, S} and is closed under finite intersections and arbitrary unions).

From now on, we will always implicitly consider our epistemic spaces S to also be topo-
logical spaces (S, τS), endowed with their observational topology τS. Every topological
property possessed by the associated topological space will thus be also attributed to the
epistemic space.

Observation 2. Every epistemic space is T0 and second-countable. A (sound and com-
plete) data stream for s is the same as a local neighborhood base at s.

Proposition 3. Every ω-constructible set can be written as a disjoint countable union of
locally closed sets.

Proof. In order to prove this, we first recall some standard topological notions and results:
A set is called constructible if it is a finite disjoint union of locally closed sets. Obviously,
all locally closed sets are constructible. It is known that constructible sets form a Boolean
algebra, i.e., the family of constructible sets is closed under complementation, finite unions,
and finite intersections.

Suppose A =
⋃
i∈ω Ai, where all Ai are locally closed. Then we can rewrite A as a

disjoint union A =
⋃
i∈ω Bi, where we have set Bi = Ai \ (

⋃
k<iAk) = Ai ∩

⋂
k<iA

c
k, for

every i. Since Bi’s are generated from locally closed sets using complementation and finite
intersections, they must be constructible. Hence, each Bi can be written as disjoint finite
unions of locally closed sets Bi =

⋃
1≤j≤iBij . Hence, we can write A =

⋃
i∈ω
⋃

1≤j≤iBij
as a disjoint countable union of locally closed sets. �

Definition 9. A pseudo-stratification is a finite or ω-long sequence of locally closed sets
〈Ai | i < λ〉 (where λ ∈ ω ∪ {ω}), which form a partition of S satisfying the following
condition:

if j < i then either Ai ∩Aj = ∅ or Ai ⊆ Aj.

Proposition 4. Every countable locally closed question can be refined to a pseudo-
stratification.

Proof. Suppose Π = {Ai | i ∈ ω} is a countable locally closed question (partition of S).
We first show the following:

Claim. There exists a family {(Πi, <i) | i ∈ ω}, satisfying

(1) each Πi is a finite partition of Ai into locally closed sets;
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(2) each <i is a total order on Πi;
(3) if j < i, E ∈ Πj , B ∈ Πi, then either B ⊆ E or B ⊆ Ec;
(4) if B,E ∈ Πi, E <i B, then B ⊆ Ec.

Proof of Claim: We construct (Πn, <n) by recursion: for n = 0, set Π0 := {A0}, with
<0 trivial. For the step n + 1: assume given {(Πi, <i) | i ≤ n} satisfying the above four
conditions (for i ≤ n). We set

Πn+1 := {Bf | f :

n⋃
i=1

Πi → {0, 1}},

where for each function f :
⋃n
i=1 Πi → {0, 1} we have set

Bf := An+1 ∩
⋂
{E | E ∈ f−1(0)} ∩

⋂
{Ec | E ∈ f−1(1)}.

It is obvious that the Bf ’s are locally closed (given that An+1 is locally closed) and that
they form a partition of An+1. So condition (1) is satisfied.

It is also easy to check condition (2) for i = n+1: let j < n+1, E ∈ Πj and Bf ∈ Πn+1.

Then we have either f(E) = 0, in which case Bf ⊆ E (by construction of Bf ), or else

f(E) = 1, in which case Bf ⊆ E
c
.

To construct the order <n+1, observe first that there is a natural total order <(n) on the
disjoint union

⋃n
i=1 Πi, namely the one obtained by concatenating the orders <0, <1, . . . ,

<n. (More precisely, if, for every B ∈
⋃n
i=1 Πi, we set i(B) to be the unique index i ≤ n

such that B ∈ Πi, then the order <(n) is given by setting: B <(n) E iff either i(B) < i(E),
or else i(B) = i(E) and B <i(B) E.)

Now, the order <n+1 on Bf ’s is given by the lexicographic order induced by <(n) on the
functions f (thought as “words” written with the letters 0 and 1). More precisely, we set:

Bf <n+1 Bg

iff there exists some set E ∈
⋃n
i=1 Πi such that(

∀E′ <(n) E f(E′) = g(E′), but f(E) < g(E)
)
,

where < is the usual order 0 < 1 on {0, 1}. Clearly, <n+1 is a total order on Πn+1, so
condition (2) is satisfied.

Finally, we check condition (4) for n+ 1, let Bf , Bg ∈ Πn+1 such that Bf <n+1 Bg. By
definition of the order <n+1, this means that there exists some E ∈

⋃n
i=1 Πi such that for

all E′ <(n) E we have f(E′) = g(E′) but f(E) < g(E), i.e., f(E) = 0 and g(E) = 1. By
the construction of Bf ’s, f(E) = 0 implies that Bf ⊆ E, from which we get Bf ⊆ E, and

thus E
c ⊆ Bf

c
. Similarly, g(E) = 1 implies that Bg ⊆ E

c
. So we have Bg ⊆ E

c ⊆ Bf
c
,

and thus by transitivity of inclusion we get Bg ⊆ Bf
c
. This completes the proof of our

Claim.

Given now the above Claim, we can prove our Lemma by taking as our refined partition

Π′ :=
⋃
i∈ω

Πi.
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Clearly, Π′ is a refinement of Π consisting of locally closed sets. We now define a well-order
<′ on Π′ as the concatenation of all the ≤i’s.13 Obviously, <′ is a total order of type ≤ ω
on Π′, so we get finite or ω-long sequence that enumerates Π′. The above properties (3)
and (4) ensure that this is a pseudo-stratification. �

Lemma 1. Given a pseudo-stratification 〈Ai | i < λ〉 (of length λ ≤ ω), there exists a
λ-long sequence of open sets 〈Ui | i < λ〉, satisfying:

(1) Ui ∩Ai = Ai;
(2) if j < i and Ui ∩Aj 6= ∅, then Ai ⊆ Aj.

Proof. We know that each Ai is locally closed, so there exists some open set UAi ∈ τ such
that UAi ∩Ai = Ai. Now, for all i ∈ ω set

Ui := UAi ∩
⋂
{Aj

c | j < i,Ai ⊆ Aj
c}.

Let us first check that the sequence 〈Ui | i < λ〉 satisfies condition (1):

Ui ∩Ai = (UAi ∩
⋂
{Aj

c | j < i,Ai ⊆ Aj
c}) ∩Ai

= (Ui ∩Ai) ∩
⋂
{Aj

c | j < i,Ai ⊆ Aj
c}

= Ai ∩
⋂
{Aj

c | j < i,Ai ⊆ Aj
c} = Ai

Second, let us check condition (2): Suppose that we have j < i and Ui ∩ Aj 6= ∅, but

Ai 6⊆ Aj . Since (Ai)i<λ is a pseudo-stratified sequence, from j < i and Ai 6⊆ Aj we can

derive Ai ⊆ Aj
c
. By the construction of Ui, this implies that Ui ⊆ Aj

c
, and hence that

Ui∩Aj ⊆ Aj
c∩Aj ⊆ Aj

c∩Aj = ∅, which contradicts the assumption that Ui∩Aj 6= ∅. �

Lemma 2. Every pseudo-stratification is linearly separated.

Proof. Let Π = {Ai | i < λ} be a pseudo-stratification (with λ ≤ ω), and let 〈Ui | i < λ〉
be a sequence satisfying the conditions of Lemma 1. It is clear that, in order to prove our
intended result, it is enough to construct a total order E on the set {i ∈ ω|i < λ} = λ ⊆ ω,
such that

Ui ∩Aj 6= ∅ ⇒ iE j.

For this, we first define a reflexive relation R on λ, by setting

iRj ⇐⇒ Ui ∩Aj 6= ∅.
Claim: There are no non-trivial cycles

i1R · · · inRi1 (with distinct ik’s).

Proof of Claim: Let i1R · · · inRi1 be a non-trivial cycle of minimal length n ≥ 2. There
are two cases:

13Once again, one can specify this more precisely by first defining i : Π′ → ω by choosing i(B) to be the
unique index i such that B ∈ Πi, and finally defining: B <′ E iff either i(B) < i(E), or else i(B) = i(E)
and B <i(B) E.
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Case 1: n = 2, i.e., i1Ri2Ri1 with i2 6= i1. We must have either i1 < i2 or i2 < i1.
Without loss of generality, we can assume i1 < i2 (otherwise, just swap i1 and i2, and use
the cycle i2Ri1Ri2). From i2Ri1, we get Ui2 ∩Ai1 6= ∅. This together with i1 < i2, gives us
Ai2 ⊆ Ai1 (by condition (2) from Lemma 2), and hence Ui1 ∩Ai2 ⊆ Ui1 ∩Ai1 = Ai1 . From
this, we get that Ui1 ∩ Ai2 = (Ui1 ∩ Ai2) ∩ Ai2 ⊆ Ai1 ∩ Ai2 = ∅ (since i1 6= i2, so Ai1 and
Ai2 are different answers, hence disjoint), so we conclude that Ui1 ∩ Ai2 = ∅. But on the
other hand, from i1Ri2 we get Ui1 ∩Ai2 6= ∅. Contradiction.

Case 2: n > 2. Since all the ik’s are distinct, there must exist a (unique) smallest index
in the cycle. Without loss of generality (since otherwise we can rearrange the indices,
permuting the cycle), we can assume that i3 is the smallest index. (Note that, since n > 2,
there must be at least three distinct successive indices i1, i2, i3.) So i3 < i1 and i3 < i2.
From i2Ri3 we get Ui2 ∩ Ai2 6= ∅. Since i3 < i2, it follows that Ai2 ⊆ Ai3 (by Lemma
2). But on the other hand, i1Ri2 gives us Ui1 ∩ Ai2 6= ∅. We hence obtain Ui1 ∩ Ai3 6= ∅.
This, together with i3 < i1, gives us Ai1 ⊆ Ai3 (again by Lemma 2). From this, we derive
Ai1 ⊆ Ui1 ∩Ai3 (since Ai ⊆ Ui for all i). Let now s ∈ Ai1 be any state satisfying the answer
Ai1 ⊆ Ui1 ∩Ai3 . So we have s ∈ Ui1 and s ∈ Ai3 , which together imply that Ui1 ∩Ai3 6= ∅
(since s ∈ Ai3 implies that every open neighborhood of s intersects Ai3). Hence, we have
i1Ri3, which means we can shorten the cycle by eliminating i2, we obtain contradiction.

Given the above Claim, it follows that the transitive closure R∗ is a partial order on λ
(which obviously includes R). By the Order Extension Principle, we can extend R∗ to a
total order E on λ, which still includes R. �

5. Topological Characterization of Solvability

Definition 10. Let S = (S,O) be an epistemic space, L be a standard agent, A ⊆ S, and
s ∈ A. An A-locking sequence for s (with respect to L) is a data sequence σ = (O1, . . . , Ok),
such that:

(1) σ is sound for s, i.e., s ∈
⋂

1≤i≤k Oi;

(2) if δ is any data sequence sound for s, then L(S, σ ∗ δ) ⊆ A.

For a given data sequence σ, we denote by LσA the set of all states in A having σ as an
A-locking sequence, i.e.,

LσA := {s ∈ A | σ is an A-locking sequence for s wrt L}.

Lemma 3. If A is verifiable in the limit by a standard agent L, then
⋃
σ∈O∗ L

σ
A = A.

Proof. Suppose not. Let A be verifiable in the limit, but such that A 6=
⋃
σ∈O∗ L

σ
A. Since

all LσA ⊆ A, his means that A 6⊆
⋃
σ∈O∗ L

σ
A, i.e., there exists some state s ∈ A for which

there is no A-locking sequence. This means that every data sequence σ that is sound for s
can be extended to a sequence δ that is also sound for s and has L(δ) 6⊆ A.

Let now ~O be a (sound and complete) data stream for s. We construct a new infinite

data stream ~V , by defining increasingly longer initial segments δk of ~O, in countably many
stages: we first set V0 = O0, thus obtaining an initial segment δ0 = (O0) = (V0); at the k+1-
th stage, given some initial segment δk = (V0, V1, . . . , Vnk

) (of some length nk), we built our
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next initial segment by taking any extension δk+1 of the sequence σk = (V0, . . . , Vnk
, On+1)

that is sound for s and has L(σk) 6⊆ A. The resulting infinite stream ~V is a (sound and

complete) stream for s (the completeness of ~V with respect to s follows the fact that this

stream includes all the elements of ~U), but which contains arbitrarily long initial segments
σk with L(σk) 6⊆ A. Since s ∈ A, this contradicts the assumption that A is verifiable in
the limit. �

Lemma 4. If A ⊆ S is verifiable in the limit by a standard agent L, then for every data
sequence σ = (O1, . . . Ok), the set LσA is locally closed.

Proof. Let O :=
⋂k
i=1Oi be the intersection of all the observations in σ. We will show that

O ∩ LσA = LσA,

from which the desired conclusion follows.
(⊇) If s ∈ LσA, then σ is an A-locking sequence for s, hence σ is sound for s, and thus

s ∈
⋂n
i=1Oi = O.

(⊆) Suppose that s ∈ O ∩ LσA. We prove two claims:

Claim 1: For every data sequence δ that is sound for s and extends σ, we have LS(δ) ⊆ A.
Proof of Claim 1 : Let δ = (δ1, . . . , δn) be a data sequence that is sound for s (i.e., s ∈ δi

for all i = 1, . . . , n) and extends σ, i.e., n ≥ k and Ui = Oi for all i ≤ k). Hence,
⋂n
i=1 δi

is an open neighborhood of s, and s ∈ LσA, so there must exist some t ∈
⋂n
i=1 δi such that

t ∈ LσA. Hence, t ∈ A and σ is an A-locking sequence for t. But δ extends σ and is sound
for t, so (by the definition of σ being an A-locking sequence for t), we have that L(δ) ⊆ A,
which concludes the proof of Claim 1.

Claim 2: We have s ∈ A.
Proof of Claim 2 : Let ~V be a stream for s that extends σ (such a stream must exist,

since σ is sound for s: just take any stream for s and prefix it with σ). Then, for every
n ≥ k, the sequence δn = (V1, . . . , Vn) is sound for s and extends σ. Hence, by the above
Claim, we must have that LS(V1, . . . , Vn) ⊆ A for all n ≥ k. But we assumed that A is
verifiable in the limit, so we must have s ∈ A, which concludes the proof of Claim 2.

From Claims 1 and 2 together, we conclude that σ is an A-locking sequence for s ∈ A,
hence s ∈ LσA. �

Theorem 1. Given an epistemic space (S,O), a set A ⊆ S is verifiable in the limit iff it
is ω-constructible.

Proof. (⇐) Assume A =
⋃
n(Un ∩ Cn) is a countable disjoint union of (mutually disjoint)

locally closed sets Un ∩ Cn (with Un open and Cn closed). We define a standard agent
L for A on finite data sequences δ = (O1, . . . , Ok), by setting L(S, δ) = Ac, if we have⋂
j Oj 6⊆ Un for all n ∈ ω; L(S, δ) = Ac (where Ac is the complement of A), if

⋂
j Oj ⊆ Ccn

holds for the first index n ∈ ω such that
⋂
j Oj ⊆ Un; and L(S, δ) = A otherwise. Then it

is easy to see that L verifies A in the limit.
(⇒) Suppose that A is verifiable in the limit. By Proposition 1, it is then verifiable by a

standard agent L. By Lemma 1, A is the union of all sets LσA for all finite data sequences σ.
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But there are only countably many such sequences, so this is a countable union. Moreover,
by Lemma 2, each LσA is locally closed. Hence A is a countable union of locally closed sets,
i.e., an ω-constructible set. �

Corollary 1. A is decidable in the limit iff both A and Ac are ω-constructible.

Proof. Follows trivially from the above results. �

Theorem 2. Let P = (S,Q) be an inductive problem on an epistemic space S. The
following are equivalent:

(1) P is solvable (in the limit);
(2) the associated question Q is an (at most) countable family of ω-constructible an-

swers;
(3) Q has an (at most) countable locally closed refinement.

Proof. (1) ⇒ (2) : Let P be a solvable problem. By Proposition 1, there exists some
standard agent that solves it. Let L be such a standard agent that solves P.
Claim: Every answer A ∈ Q is verifiable in the limit.

Proof of Claim: Let A ∈ Q be an answer. We construct a standard agent LA that
verifies it, by setting LAS (σ) := A iff LS(σ) ⊆ A, and LAS (σ) := Ac otherwise. It is easy to

see that LA verifies A.

Using the Claim and Lemma 3, we obtain that, for each answer A ∈ Q, there exists
some data sequence σ ∈ O∗ such that LS(σ) ⊆ A. But O∗ is countable, so there can be
only countably many answers in Q.

By the claim above, Lemma 3 and Lemma 4, we obtain that every answer A ∈ Q is a
countable union of locally closed sets, hence it is ω-constructible.

(2) ⇒ (3) : By (2), Q is (at most) countable, say Q = {Ai | i ∈ ω}, and also each
answer AI ∈ Q is ω-constructible, hence it can be written as a countable disjoint union of
locally closets A =

⋃
k∈ω A

k
i (where all Aki ’s locally closed and mutually disjoint). Then

the question {Aki | i ∈ ω, k ∈ ω} is a refinement of Q, which is countable and locally closed.

(3)⇒ (1) : Let Q′ = {Bi | i ∈ ω} be a countable closed refinement of Q′. By Corollary 1,
every answer B ∈ Q′ is decidable, and so by Proposition 1, we can choose for each Bi ∈ Q
some standard agent Li that decides Bi. We define now a new standard agent L, by:

LS(σ) :=
⋃
{Bi | i ∈ ω such that Li(σ) ⊆ Bi}.

It is easy to see that this agent L solves Q′, and since Q′ is a refinement of Q, L also solves
Q. �

Corollary 2. An epistemic space S = (S,O) is learnable in the limit iff it is countable and
satisfies the TD separation axiom.

Proof. Apply Theorem 2 to the learning question {{s} | s ∈ S}, noticing that the fact that
all its answers are ω-constructible is equivalent to all singletons being locally closed, which
is just another formulation of the TD axiom. �
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6. Universality of Conditioning

Our aim in this section is to show that AGM conditioning is “universal”: every solvable
problem can be solved by some AGM agent. First, we introduce an auxiliary notion, that
of a problem being directly solvable by AGM conditioning.

Given a question Q on an epistemic space (S,O), any total order E ⊆ Q × Q on (the
answers of) the question Q induces in a canonical way a total preorder ≤⊆ S×S, obtained
by:

s ≤ t iff As EAt
(where As is the unique answer As ∈ Q such that s ∈ As).

Definition 11. A problem P = (S,Q) is directly solvable by conditioning if it is solvable
by AGM conditioning with respect to (a prior ≤ that is canonically induced, as explained
above, by) a total order E ⊆ Q×Q on (the answers of) the question Q.

Direct solvability by conditioning essentially means that the problem can be solved
by a conditioning agent who does not attempt to refine the original question: she forms
beliefs only about the answers to the given question, and is thus indifferent between states
satisfying the same answer. Direct solvability by conditioning is thus a very stringent
condition, and unsurprisingly this form of conditioning is not universal.

Proposition 5. ( K. Genin, personal communication) Not every solvable problem is directly
solvable by conditioning.

Proof. Let P be the problem in Example 3, depicted on the left-hand side of Figure 1. It
is easy to see that this problem cannot be directly solvable by conditioning! (Indeed, if
{t, u} C {s, v} then v is not learnable by C-conditioning; if {s, v} < {t, u} then t is not
learnable by C-conditioning; while if {t, u} and {s, v} are equally plausible, then neither t
nor v are learnable.)

But P can be refined to a directly solvable problem, namely the “learning question” P′
(depicted on the right-hand side of Figure 1), which can be directly solvable (e.g. if we set
{t}C{s}C{v}C{u}). As a consequence, P can itself be solved by (non-direct) conditioning
(with respect to the order t < s < v < u). �

This counterexample suggests a way to prove our intended universality result: it is
enough to show that every solvable problem has a refinement that is directly solvable by
conditioning. To do this, we first need a structural characterization of direct solvability.

Lemma 5. (Topological Characterization of Direct Solvability by Conditioning) A problem
P = (S,Q) is directly solvable by conditioning iff Q is linearly separated.

Proof. Left-to-right implication: Suppose that P is directly solvable by conditioning with
respect to (a prior ≤ that is canonically induced by) a total order E ⊆ Q × Q. Then,

for every s ∈ S choose some sound and complete data stream ~OS = (Osn)n∈ω for s (with
Ons ∈ O ⊆ τS). Direct solvability by conditioning implies then that there exists some Ns

such that Min≤(Os1, . . . , O
s
Ns

) ⊆ As. Set Us :=
⋂Ns
i=1O

s
i ∈ τS, so that we have s ∈ Us

and Min≤Us ⊆ As. Then set UA :=
⋃
s∈A Us ∈ τS for every answer A ∈ Q. We claim
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that UA “separates” A from the union of all the answers B C A (as linear separation
demands): indeed, by the construction of UA, it is obvious that (1) A ⊆ UA, and also that
Min≤UA ⊆ A. By unfolding the last clause in terms of E, we obtain that: AEB holds for
all B ∈ Q such that UA ∩ B 6= ∅. Since E is a total order on Q, this is equivalent to: (2)
UA ∩B = ∅ for all BCA. By (1) and (2) together, we obtain that Q is linearly separated.

Right-to-left implication: Suppose Q is linearly separated. Let E be a total order on
Q that linearly separates it. This means that, for every answer A ∈ Q, there exists some
open set UA ∈ τS such that A ⊆ UA and UA ∩B = ∅ for all B CA. For each s ∈ S, we set
Us := UAs (where As is the unique answer As ∈ Q with s ∈ As).

Let ≤ be the total preorder on S canonically induced by the order E ⊆ Q × Q (by
s ≤ t iff As EAt). We show now that P is directly solvable by conditioning with respect to

≤. For this, let s ∈ S be any state, and ~O = (On)n∈ω be a sound and complete stream
for s. Completeness of the stream implies that there must exist some N ∈ ω such that⋂N
i=1Oi ⊆ Us.
To conclude our proof, it is enough to show the following

Claim: For every n ≥ N , we have

s ∈Min≤(
n⋂
i=1

Oi) ⊆ As.

First, let us see why this Claim is enough to give us direct solvability by conditioning.
The fact that s ∈ Min≤(

⋂n
i=1Oi) implies that Min≤(

⋂n
i=1Oi) 6= ∅, for all n ≥ N . A

previous observation tells us that, when applied to such data streams, the AGM agent L≤
produces a “principal filter”, given by

L≤(O1, . . . , On) = {P ⊆ S | Min≤(
n⋂
i=1

Oi) ⊆ P}.

By the Claim above we have Min≤(
⋂n
i=1Oi) ⊆ As, and hence we obtain As ∈

L≤(O1, . . . , On), for all n ≥ N .

Proof of Claim: Let n ≥ N . To prove the Claim, it is enough to show the following two
implications (for all states t):

(1) t ∈
⋂n
i=1Oi ⇒ s ≤ t;

(2) t ∈Min≤(
⋂n
i=1Oi) ⇒ At = As.

To show (1), let t ∈
⋂n
i=1Oi. Then t ∈ Us (since

⋂n
i=1Oi ⊆

⋂N
i=1Oi ⊆ Us), so Us∩At 6= ∅.

Hence (by linear separation) we must have As EAt, i.e., s ≤ t.
To show (2), let t ∈ Min≤(

⋂n
i=1Oi). This implies that t ≤ s (since s ∈

⋂n
i=1Oi). But

by (1), we also have s ≤ t, and hence s ≤ t ≤ s. This means that As E At E As. But E is
a total order on Q, so it follows that At = As. �

Theorem 3. AGM conditioning is a universal problem-solving method, i.e., every solvable
problem is solvable by some AGM agent.
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Proof. Let P be a solvable problem. From Theorem 2, Proposition 3 and Lemma 2, it
follows that P has a linearly separated refinement P′. By Lemma 5, that refinement is
(directly) solvable by an AGM agent L≤. It is obvious (from the definition of solvability)
that any doxastic agent which solves the more refined problem P′ solves also the original
problem P. �

Corollary 3. AGM conditioning is a universal learning method, i.e., every learnable space
is learnable by some AGM agent.

Proof. Apply the previous result to the finest question Q := {{s} | s ∈ S}. �

In contrast, recall that the counterexample in Proposition 2 showed that standard AGM
agents have a very limited problem-solving power. Standard conditioning is not a uni-
versal learning method (while general AGM conditioning is universal). This means that
allowing prior plausibility orders that are non-wellfounded is essential for achieving uni-
versality of conditioning. Beliefs generated in this way may occasionally fail to be globally
consistent. (Indeed, note that in the counterexample from Proposition 2, the beliefs of
the non-standard AGM agent who learns the space are initially globally inconsistent. In
conclusion, occasional global inconsistencies are the unavoidable price for the universality
of AGM conditioning.

7. Conclusions and Connections to Other Work

The general topological setting for problem-solving assumed here is a variation of the
one championed by Kelly in various talks [23] and in unpublished work [24, 25], though
until recently we did not realize this close similarity. Our topological characterizations of
verifiable, falsifiable and decidable properties are generalizations of results by Kelly [19],
who proved characterizations for the special case of Baire spaces.18 Our result on learning-
universality (Corollary 3) is also a generalization of analogue results by Kelly [21, 20], and
Kelly, Schulte and Hendricks [26]. But our generalization to arbitrary spaces is highly
non-trivial, requiring the use of the TD characterization. (In contrast, the Baire space
satisfies the much stronger separation axiom T1, which trivializes the specialization order,
and so the proof of learning-universality is much easier in this special case: any total ω-like
ordering of the space can be used for conditioning.) Nevertheless, in a sense, this result is
just a topological re-packaging of one of our own previous results [13, 3, 4].

While writing this paper, we learned that our TD characterization of learnability (Corol-
lary 2) was independently re-proven by Konstantin Genin ([11], unpublished manuscript),
soon after we announced its proof. This characterization is actually a topological trans-
lation of a classical characterization of identifiability in the limit [2], and in fact it also
follows from a result by de Brecht and Yamamoto [9], who prove it for so-called “concept
spaces”.

18In unpublished work [25] the authors claim a characterization of solvability in a general setting. Their
characterization is sightly “looser” than ours, and can be easily obtained from ours. Our tighter character-
ization is the one needed for proving universality.
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Our key new results are far-reaching and highly non-trivial: the topological character-
ization of solvability (Theorem 2), and the universality of AGM condition for problem-
solving (Theorem 3). They required the introduction of new topological concepts (e.g.,
pseudo-stratifications and linearly separated partitions), and some non-trivial proofs of
new topological results.

Philosophically, the importance of these results is that, on the one hand they fully
vindicate the general topological program in Inductive Epistemology started by Kelly and
others [19, 31], and on the other hand they reassert the power and applicability of the
AGM Belief Revision Theory against its critics.

To this conclusion, we need to add an important proviso: our results show that, in order
to achieve problem-solving universality, AGM agents need to (a) be “creative”, by going
beyond the original problem (i.e., finding a more refined problem that can be solved directly,
and forming prior beliefs about the answer to this more refined question), and (b) admit
non-standard priors, which occasionally will lead to beliefs that are globally inconsistent
(although still locally consistent). Such occasional global inconsistencies can give rise to a
type of “infinite Lottery Paradox”. But this is the price that AGM agents have to pay in
order to be able to solve every solvable question.

Whether or not this is a price that is worth paying is a different, more vague and more
“ideological” question, although a very interesting one. But this question lies beyond the
scope of this paper.
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