DEGREES OF THE FINITE MODEL PROPERTY:
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AssTRACT. A classic result in modal logic, known as the Blok Dichotomy Theorem, states that the
degree of incompleteness of a normal extension of the basic modal logic K is 1 or 2%°. It is a long-
standing open problem whether Blok Dichotomy holds for normal extensions of other prominent
modal logics (such as S4 or K4) or for extensions of the intuitionistic propositional calculus IPC (see
[11, Prob. 10.5]). In this paper, we introduce the notion of the degree of finite model property (fmp),
which is a natural variation of the degree of incompleteness. It is a consequence of Blok Dichotomy
Theorem that the degree of fmp of a normal extension of K remains 1 or 2%°. In contrast, our
main result establishes the following Antidichotomy Theorem for the degree of fmp for extensions
of IPC: each nonzero cardinal x such that k < Ro or k = 2%° is realized as the degree of fmp of
some extension of IPC. We then use the Blok-Esakia theorem to establish the same Antidichotomy
Theorem for normal extensions of S4 and K4. This provides a solution of the reformulation of [11,
Prob. 10.5] for the degree of fmp.
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1. INTRODUCTION

Since its inception in the late 1950s/early 1960s, Kripke semantics became the most popular tool
to study modal and intuitionistic logics. However, examples of Kripke incomplete logics began
to emerge already in the 1970s (see, e.g., [11, Ch. 6]). In order to shed light on the phenomenon
of Kripke incompleteness, Fine [18] associated with each normal modal logic L a cardinal that
measures the degree of incompleteness of L. More precisely, let Fr(L) be the class of Kripke frames
validating L. We say that the degree of incompleteness of L is the cardinal « if there are exactly s
logics L’ such that Fr(L") = Fr(L). Notice that all but one of these L’ are Kripke incomplete.

Blok [9, 10] gave a very unexpected characterization of degrees of incompleteness, which
became known as Blok Dichotomy Theorem. It states that a normal modal logic L has the degree of
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incompleteness either 1 or 2%°; it is 1 iff L is a join-splitting logic (see Section 3 for the definition);
otherwise it is 2%0. We refer to [34] and [29] for a detailed discussion of Blok Dichotomy and its
importance in modal logic.

Blok’s result implies that some of the most studied normal modal logics, such as K4 (the logic
of transitive Kripke frames) and S4 (the logic of reflexive and transitive Kripke frames), have
the degree of incompleteness 2%0. However, the logics sharing the Kripke frames with K4 and
S4 are not necessarily normal extensions of K4 or S4. Thus, Blok’s result does not automatically
transfer to normal extensions of K4 or S4 (or, more generally, to normal extensions of a given
normal modal logic). There have been several attempts to investigate Blok Dichotomy for normal
extensions of K4 and S4. However, this remains an outstanding open problem in modal logic [11,
Prob. 10.5].

For a logic L, let Fin(L) be the class of finite Kripke frames validating L. We recall that L
has the finite model property (fmp for short) if L is complete with respect to Fin(L). Clearly each
logic with the fmp is Kripke complete. Taking inspiration from degrees of incompleteness, it
is natural to introduce a similar concept for the fmp. We say that the degree of fmp of a logic
L is k provided there exist exactly  logics L’ such that Fin(L’) = Fin(L). As with the degree
of incompleteness, all but one of such L’ lack the fmp. Our main result establishes a complete
opposite of Blok Dichotomy theorem for superintuitionistic logics and transitive (normal) modal
logics. Namely, we prove that if « is a nonzero cardinal such that k < Ngor k = 2% then there
exists a superintuitionistic logic (or a transitive modal logic) L such that the degree of fmp of L is
%. Under the Continuum Hypothesis (CH) this implies that each nonzero x < 2% is realized as
the degree of fmp of some superintuitionistic logic (or some transitive modal logic). For this
reason, we refer to these results as the Antidichotomy Theorems for degrees of fmp (see Theorems 3.2
and 7.3).

In [29, p. 409] Litak asks “if there is any nontrivial completeness notion for which the Blok
Dichotomy does not hold.” Our main result provides such a nontrivial and, in our opinion, very
natural notion for superintuitionistic logics and transitive modal logics. It also provides a solution
of a variant of [11, Prob. 10.5] when the degree of incompleteness is replaced by the degree of
fmp.

To give more context, we recall that superintuitionistic logics are (axiomatic) extensions of the
intuitionistic propositional calculus IPC. They have been studied extensively in the literature (see,
e.g., [11]). In particular, there is a close connection between superintuitionistic logics and normal
extensions of S4. The Gddel translation embeds IPC into S4 fully and faithfully [32]. Thus, each
superintuitionistic logic L is embedded into a normal extension of S4, called a modal companion
of L [11, Sec. 9.6]. Each L has many modal companions, but remarkably each L possesses a
largest modal companion. By Esakia’s theorem [15, 16], the largest modal companion of IPC
is the well-known Grzegorczyk logic Grz. Consequently, the largest modal companion of each
superintuitionistic logic is a normal extension of Grz, and there exists an isomorphism between
the lattice of superintuitionistic logics and the lattice of normal extensions of Grz (the Blok-Esakia
theorem) [8, 15].

Notice that it is a consequence of Blok Dichotomy Theorem that the degree of fmp of a normal
extension of the basic modal logic K remains 1 or 2%o_ Thus, in the lattice of all normal modal
logics the dichotomy holds also for the degrees of fmp (see Theorem 7.1). In contrast, it is a
consequence of our Modal Antidichotomy Theorem that the situation is drastically different for
transitive modal logics (see Corollary 7.4).

We conclude the introduction by discussing how we establish our main results. We first prove
the Antidichotomy Theorem for degrees of fmp of superintuitionistic logics. We heavily rely on
Esakia duality for Heyting algebras [17], as well as on Fine’s completeness theorem for logics of
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bounded width [19] and the theory of splittings [11, Sec. 10.5]. Our proof is broken into two
parts, depending on whether x < X or xk = 2%,

When x < Xy we work with extensions of the superintuitionistic logic KG, which was intro-
duced by Kuznetsov and Ger¢iu [21, 28] and bears their name. The logic KG is the logic of sums
of one-generated Heyting algebras, the combinatorics of which allows to construct extensions of
KG that lack the fmp [28, 26, 3]. First, we use Fine’s completeness theorem to prove that KG is a
join-splitting logic over IPC (for a similar result see [26]). Then we develop a method, utilizing a
technique of [3], that produces an extension L of KG whose degree of fmp is « for every nonzero
cardinal k < Ng.

To show that there exist superintuitionistic logics whose degree of fmp is 2% we work with
superintuitionistic logics of finite width. Transitive modal logics of finite width were introduced
by Fine [19] who showed that each transitive modal logic of finite width has the fmp. The concept
was adapted to superintuitionistic logics by Sobolev [37]. For every positive integer n, let BW,,
be the least superintuitionistic logic of width n. We prove that if n > 2, then the degree of fmp of
BW,, is 2%0. This is done by a careful analysis of the combinatorics of posets of bounded width.

Under CH our results show that for every nonzero cardinal < 2% there exists a superintu-
itionistic logic L whose degree of fmp is &, thus yielding the Antidichotomy Theorem for degrees
of fmp of superintuitionistic logics. Nonetheless, determining the degree of fmp of a given
superintuitionistic logic remains an interesting open problem.

Finally, we transfer our results to the setting of modal logics. Following the notation of [11],
for a normal modal logic L, let Next L be the lattice of normal extensions of L. We first use the
Blok-Esakia theorem to prove our Antidichotomy Theorem for Next Grz. We next show that for
each normal modal logic L C Grz with the fmp, the Antidichotomy Theorem holds for Next L
provided Grz is a join-splitting logic above L. Since S4 and K4 have the fmp and Grz is a join-
splitting logic above both, it follows that the Antidichotomy Theorem holds for Next S4 and
Next K4. We conclude the paper by listing several open problems and possible future research
directions.

2. SUPERINTUITIONISTIC LOGICS

We recall that a superintuitionistic logic, or a si-logic for short, is a set of formulas L containing
IPC and closed under the inference rules of modus ponens and substitution. It is well known
(see, e.g., [11, Thm. 4.1]) that consistent si-logics are exactly the logics situated between IPC
and the classical propositional calculus CPC. Thus, consistent si-logics are often referred to as
intermediate logics. Given a set of formulas 3, we denote by IPC + ¥ the si-logic axiomatized by ¥;
that is, the least si-logic containing .

When ordered by set inclusion, the set of si-logics forms a complete lattice, denoted by Ext IPC,
whose bottom and top are IPC and the inconsistent logic, respectively. The meet and join
operations in Ext IPC are defined as

/\ L; = ﬂ L; and \/ L; = the si-logic axiomatized by U L;.
i€l i€l iel icl
It is a well-known result of Jankov [23] that the cardinality of ExtIPC is 2%.
Kripke semantics for si-logics is given by partially ordered sets (posets for short). For a poset
X,wecall U C X an upset (upward closed set) if
reUandz <yimplyy € U.

A valuation v on X assigns to each propositional letter p an upset of X. For z € X and a formula
¢ we write x |-, ¢ when x satisfies ¢ under v. As usual, the satisfaction relation I is defined by



4 GURAM BEZHANISHVILI, NICK BEZHANISHVILI, AND TOMMASO MORASCHINI

recursion on the construction of formulas:
z W, L
zlk,p iff =€ wv(p)
zlk, oAy iff zlk, pand z Ik, 9
zlk, VY iff xlk, porzlk, ¢
zlk, o= iff Vy(z <yandylk, pimplyylk, ).

A formula ¢ is said to be true in X under v if x I, ¢ for every x € X and it is said to be valid in
X if it is true under each valuation, in which case we write X F ¢.

Algebraic semantics for si-logics is given by Heyting algebras. We recall that a Heyting algebra
A = (A;A,V,—,0,1) is a bounded distributive lattice such that A has a residual — given by

aANb<c<e=a<b—c

forall a,b, c € A.

A valuation v in a Heyting algebra A assigns to each propositional letter an element of A. The
logical connectives are then interpreted as the corresponding operations in A. A formula ¢ is
true in A under v if v(¢) = 1 and it is valid in A if it is true under each valuation, in which case
we write A F .

There is a close connection between Kripke and algebraic semantics for si-logics. For a poset
Xand U C X, let

U ={x € X : Ju € Uwithu < z}
WU ={ze X :JueUwithz < u}.

If U = {z}, we simply write Tz and |z instead of 1{z} and |{z}. Let Up(X) be the set of upsets of
X. Then Up(X) is a Heyting algebra where join and meet are set-theoretic union and intersection,
bottom and top are @ and X, and — is defined by

UsV=X~LU~V)={zeX tanUCCV}.

Conversely, for a Heyting algebra A, let X4 be the poset of prime filters of A ordered by
inclusion. Define y4: A — Up(X4) by

va(a) ={r € Xa:a €z}

Then ~ 4 is a Heyting algebra embedding. To recognize the image of A in Up(X 4), we introduce
the topology 7 on X 4 given by the subbasis

{va(a) :a € A} U{Xa ~v4a(a):ac A}

It is well known that 7 is a Stone topology on X 4 (that is, it is compact, Hausdorff, and zero-
dimensional). The triple A, = (X4, 7, C) is known as the Esakia space of A. The map 74 is
an isomorphism from A onto the Heyting algebra of clopen upsets of A,. Thus, each Heyting
algebra is represented as the algebra of clopen upsets of an Esakia space.

Esakia spaces are characterized abstractly as triples X = (X, 7, <) where 7 is a Stone topology
and < is a partial order on X that, moreover, is continuous in the sense that

(1) Ttz isclosed forall x € X;
(2) U C X is clopen implies |U is clopen.
We point out that the partial order < is continuous iff the corresponding map p : X — VX
from X to the Vietoris space VX, given by p(z) = 1z, is a well-defined continuous map [14, 1,27].
We thus obtain the object level of Esakia duality, namely that there is a one-to-one corre-
spondence between Heyting algebras and Esakia spaces. To extend this correspondence to full
duality, we recall that a p-morphism (or bounded morphism) between two posets X and Y is a map
a: X — Y such that Ta(x) = a(fz) for each z € X.



DEGREES OF THE FINITE MODEL PROPERTY: THE ANTIDICHOTOMY THEOREM 5

Let ES be the category of Esakia spaces and continuous p-morphisms between them. Let also
HA be the category of Heyting algebras and Heyting homomorphisms between them. The two
categories are related as follows [14, 17]:

Theorem 2.1 (Esakia Duality). HA is dually equivalent to ES.

We denote the contravariant functors establishing Esakia duality by (—), : HA — ES and
(=)* : ES — HA. The functor (—). assigns to each Heyting algebra A the Esakia space A,. If
f: A — B is a Heyting homomorphism, define f.: B, — A, by f.(z) = f~1(z) forall = € B..
Then f, is a continuous p-morphism and (—), assigns f. to f.

The functor (—)* assigns to an Esakia space X the Heyting algebra X* of clopen upsets of
X. If a: X — Y is a continuous p-morphism, define o*: Y* — X* by o*(U) = a~1(U) for all
U € Y*. Then o* is a Heyting homomorphism and (—)* assigns a* to .

The topology of a finite Esakia space is discrete (since it is Hausdorff). Therefore, the full
subcategory of ES consisting of finite Esakia spaces is isomorphic to the category of finite posets
and p-morphisms between them. Consequently, in the finite case, Esakia duality restricts to the
following [14, 17]:

Theorem 2.2 (Finite Esakia Duality). The category of finite Heyting algebras and Heyting homomor-
phisms is dually equivalent to the category of finite posets and p-morphisms between them.

In view of Esakia duality, we can define the notion of validity for Esakia spaces as follows.
We say that a formula ¢ is valid in an Esakia space X, and write X F ¢, when it is valid in the
Heyting algebra X*. This allows us to associate an si-logic with each class of Esakia spaces (resp.
Heyting algebras or posets) as follows.

Definition 2.3. Let K be a class of Esakia spaces (resp. Heyting algebras or posets). The logic of
K, in symbols Log(K), is the set of formulas valid in each member of K.

Notice that Log(K) is always an si-logic. While every si-logic has the form Log(K’) for some
class of Esakia spaces (resp. Heyting algebras), the logics of the form Log(K’) for a class K of
posets are precisely the Kripke complete ones.

We conclude this preliminary section by a brief dual description of homomorphic images and
subalgebras of Heyting algebras. Henceforth, we will freely use these results. To this end, we
recall that if «: X — Y is a p-morphism between posets, the map a~!: Up(Y) — Up(X) is a
Heyting homomorphism that, moreover, is complete (i.e., it preserves arbitrary meets and joins).
For part (1) of the next result see [17, Lem. 3.3.13(3) ], and for part (2) see [12, Thms. 3.4, 3.5,
4.6].

Theorem 2.4. The following conditions hold.

(1) Let X and Y be Esakia spaces, «: X — Y a continuous p-morphism, and a~': Y* — X* the
corresponding Heyting homomorphism. Then o~ is one-to-one iff o is onto, and o~ is onto iff
v is one-to-one.

(2) Let X and Y beposets, a: X — Y ap-morphism, and o=1: Up(Y) — Up(X) the corresponding
complete Heyting homomorphism. Then a~! is one-to-one iff v is onto, and o~ is onto iff a is
one-to-one.

A closed upset of an Esakia space is an Esakia space (see, e.g., [17, Lem. 3.4.11]). Since
one-to-one (continuous) p-morphisms correspond to (closed) upsets, we obtain the following
characterization of quotients. For part (1) see [17, Thm. 3.4.16], and for part (2) see [12, Thms. 3.4,
3.5].

Corollary 2.5. The following conditions hold.
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(1) For an Esakia space X, the map U — U™ is a bijection between the closed upsets of X and the
quotients of X*.

(2) For a poset X, the map U — Up(U) is a bijection between the upsets of X and the complete
quotients of Up(X).

We next describe the kernels of onto (continuous) p-morphisms. To this end, given a binary
relation Ronaset X and U C X, we let

RU)={zx€ X : (y,z) € Rforsomey € U}.

If R is an equivalence relation, then R(U) = U iff U is a union of equivalence classes of R. In
such a case, we say that U is R-saturated.

Definition 2.6.

(1) Let X be an Esakia space. An Esakia partition (or E-partition for short) of X is an equiva-
lence relation R on X satisfying the following conditions:
(a) If (x,y) € Rand x < z, then there is u € X such thaty < wand (z,u) € R;
(b) If (z,y) ¢ R, then there is an R-saturated clopen upset U such thatz € Uandy ¢ U.
(2) Let X be a poset. An E-partition of X is an equivalence relation R on X satisfying
Condition (1a) and the following version of Condition (1b):
(b") If (x,y) ¢ R, then there is an R-saturated upset U such thatz € Uand y ¢ U.

Let X be an Esakia space or a poset. If R is an E-partition of X, we define a partial order <p
on X/R as follows for every z,y € X:

[7] <g [y] <= there are 2’ € [z] and y/’ € [y] such that 2’ < ¢/,

Since R is an E-partition, the partial order <y is well defined and the map « +— [z] is a p-morphism
from X to X/R. Furthermore, when X is an Esakia space, the poset X/R endowed with the
quotient topology (i.e., the open sets of X/R are the R-saturated open sets of X) is an Esakia
space and the map x +— [z] is a continuous p-morphism.

A subalgebra A of a complete Heyting algebra B is called complete when A is also a complete
sublattice of B. Since E-partitions are exactly the kernels of (continuous) p-morphisms, from
Theorem 2.4 we deduce:

Corollary 2.7.

(1) For an Esakia space X, the map R — X/ R is a bijection between the E-partitions of X and the
subalgebras of X*.

(2) Fora poset X, the map R — X /R is a bejection between the E-partitions of X and the complete
subalgebras of Up(X).

For part (1) of the above result see [6, Cor. 2.3.1], and for part (2) see [12, Thm. 4.6].

3. DEGREES OF THE FINITE MODEL PROPERTY

We denote the set of posets validating an si-logic L by Fr(L). The degree of incompleteness of L
is the number of si-logics L” such that Fr(L) = Fr(L’). In this paper we are concerned with the
degree of fmp. Thus, we restrict our attention to finite posets and let Fin(L) be the set of finite
members of Fr(L).

Definition 3.1. Let L be an si-logic.
(1) The fmp span fmp(L) of L is the set of si-logics L” such that Fin(L") = Fin(L).
(2) The degree of fmp deg(L) of L is the cardinality of fmp(L).
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We call a poset X rooted if there is z € X such that X = 1z. Such an « is clearly unique and we
call it the root of X. Given an si-logic L, we denote the class of the rooted members of Fin(L) by
RFin(L). Notice that, for each pair L and L’ of si-logics, we have

Fin(L) = Fin(L) iff RFin(L) = RFin(L").

To see this, suppose that Fin(L) # Fin(L’). By symmetry, we may assume that there is a finite
poset X validating L and refuting L’. Then there is € X such that 1z validates L and refutes L’.
Consequently, 1z is a member of RFin(L) \. RFin(L’), as desired. In view of this, the fmp span of
an si-logic L is the set of si-logics L” such that RFin(L) = RFin(L’). We will use this fact without
further notice.

Since each si-logic L belongs to its own fmp span and there are exactly 2% si-logics, the
obvious lower and upper bounds for deg(L) are 1 and 2%°. The main result of this paper is the
Antidichotomy Theorem stating that these restrictions are indeed optimal in that each nonzero
cardinal » such that x < Rg or x = 280 occurs as the degree of fmp of some si-logic. Thus, under
CH, every cardinal 1 < x < 2% occurs as the degree of fmp of some si-logic.! More precisely, we
will prove the following;:

Theorem 3.2 (Antidichotomy Theorem). For each nonzero cardinal r such that k < Rg or x = 280
there is an si-logic L such that deg(L) = k.

As we pointed out in the introduction, one of the techniques required to prove this theorem is
that of splittings and Jankov formulas. We recall that a pair of elements (a, b) of a lattice L splits
L if L is the disjoint union of ta and b [11, Sec. 9.4]. An si-logic L is a splitting logic if there is an
si-logic M such that the pair (L, M) splits the lattice Ext IPC. An si-logic is join-splitting if it is the
join in Ext IPC of a set of splitting si-logics.

Jankov [22] provided an axiomatization of the join-splitting si-logics. We recall that a Heyting
algebra A is subdirectly irreducible (SI for short) if it has the second largest element (equivalently,
the filter {1} is completely meet-irreducible in the lattice of filters of A). By the Jankov Theorem
[22], with each finite SI Heyting algebra A we can associate a formula 7 (A) (referred to as the
Jankov formula of A) that axiomatizes the least si-logic L such that A ¥ L:

Theorem 3.3 (Jankov Theorem). An si-logic L is a splitting logic iff there exists a finite SI Heyting
algebra A such that L = IPC + J(A). Consequently, L is a join-splitting logic iff L is axiomatizable by
Jankov formulas.

The following lemma governs the behavior of Jankov formulas [24]:

Lemma 3.4 (Jankov Lemma). Let A and B be Heyting algebras with A finite and SI. Then B ¥ J(A)
iff A is a subalgebra of a homomorphic image of B.

It is well known that a Heyting algebra A is SIiff A, has a root which, moreover, is isolated (see,
e.g., [17, Appendix 1.1]). Therefore, the Finite Esakia Duality implies that the finite SI Heyting
algebras are those of the form Up(X) where X is a finite rooted poset. Because of this, given a
finite rooted poset X, we denote by 7 (X)) the Jankov formula of the finite SI Heyting algebra
Up(X). Thus, in view of Theorem 2.4 and Corollary 2.5, the Jankov Lemma can be formulated
dually as follows:

Lemma 3.5 (Dual Jankov Lemma). Let X be a finite rooted poset. For every Esakia space Y we have
Y ¥ J(X) iff X is a continuous p-morphic image of a closed upset of Y.

Notably, the following variant of the Dual Jankov Lemma for posets holds too [19]:

1t is not known whether it is consistent with ZFC that there are si-logics with the degree of fmp « for Xg < x < 2Ro
(see Problem 1 in the Conclusions).
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Lemma 3.6 (Fine Lemma). Let X be a finite rooted poset. For every poset Y we have Y ¥ J(X) iff X
is a p-morphic image of an upset of Y.

The next immediate consequence of the Dual Jankov Lemma governs the interaction between
Jankov formulas and si-logics.

Corollary 3.7. For every finite rooted poset X and si-logic L we have X E Liff 7(X) ¢ L.

We rely on the following folklore result. We provide a full proof of part (2) since we were not
able to find one in the literature.

Lemma 3.8. The following conditions holds.

(1) Let X be a finite rooted poset and K a class of Esakia spaces. Then X E Log(K) iff there is
Y € K such that X is a continuous p-morphic image of a closed upset of Y.
(2) Two si-logics L and L' contain the same Jankov formulas iff Fin(L) = Fin(L’).

Proof. (1) Immediate from the Dual Jankov Lemma.

(2) First suppose that Fin(L) # Fin(L"). Since a poset validates a formula iff each of its
principal upsets does, without loss of generality we may assume that there is a finite rooted
X € Fin(L) \ Fin(L"). By Corollary 3.7 we have J (X)) € L’ \ L. Conversely, suppose that L and L’
do not contain the same Jankov formulas. We may assume without loss of generality that 7 (X) €
L \ L’ for a finite rooted poset X. From Corollary 3.7 it follows that X € Fin(L") \. Fin(L). X

In order to describe fmp spans, it is convenient to introduce the following concept.

Definition 3.9. For an si-logic L, define
(1) Lt = Log(Fin(L));
(2) L= =IPC+{J(X): X ¢ Fin(L)}.

Let [L~, L"] be the interval in the lattice Ext IPC.

Theorem 3.10. For an si-logic L we have:
(1) fmp(L) = [L™,L*]
(2) LT is the only member of fmp(L) that has the fmp.
(3) L™ is the only member of fmp(L) that is axiomatizable by Jankov formulas.

Proof. (1) We begin by proving that L~ € fmp(L). By Lemma 3.8(2), it suffices to show that L
and L~ contain the same Jankov formulas. In view of Corollary 3.7, {7 (X) : X ¢ Fin(L)} is the
set of Jankov formulas in L. Since L™ = IPC+ {J(X) : X ¢ Fin(L)}, every Jankov formula in L
belongs to L~ and L~ C L. The latter implies that every Jankov formula in L~ belongs to L. Thus,
L™ € fmp(L), as desired. Since L™ is axiomatized by Jankov formulas, this implies that it is the
least element of fmp(L).

We next prove that LT is the greatest logic in fmp(L). Clearly Fin(L) C Fin(L™) by the definition
of L*. The other inclusion follows from Lemma 3.8(1) and the fact that Fin(L) is closed under
the formation of upsets and p-morphic images. Thus, Fin(L™) = Fin(L), and so L™ € fmp(L).
Let L’ € fmp(L). Then Fin(L") = Fin(L). Since L* is the logic of Fin(L), we conclude that L’ C L.
Thus, L™ is the greatest element of fmp(L).

It follows from the definition of fmp(L) that fmp(L) is an interval in the lattice of si-logics.
Together with the fact that L~ and L™ are the least and greatest elements of fmp(L), this implies
that fmp(L) = [L—,LT].

(2) By definition, L has the fmp. If L’ € fmp(L) has the fmp, then L’ is the logic of Fin(L’). But
Fin(L') = Fin(L),so L = L. Thus, L™ is the only member of fmp(L) with the fmp.

(3) By definition, L™ is axiomatized by Jankov formulas. Let L’ € fmp(L) be also axiomatized
by Jankov formulas. Since Fin(L") = Fin(L) = Fin(L™), we can apply Lemma 3.8(2) to obtain
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Ficure 1. The Rieger-Nishimura lattice.

that L’ and L~ contain the same Jankov formulas. As both L™ and L’ are axiomatized by Jankov
formulas, we conclude that L~ = L’. Thus, L™ is the only member of fmp(L) axiomatizable by
Jankov formulas. D

As a consequence, we obtain a transparent description of the si-logics whose degree of fmp
is 1.

Corollary 3.11. An si-logic L has the degree of fmp 1 iff it has the fmp and is axiomatizable by Jankov
formulas.

Proof. First suppose that deg(L) = 1. Since L,L™,L" € fmp(L), this implies that L = L~ = L*.
Because L™ has the fmp and L™ is axiomatizable by Jankov formulas, we conclude that L has the
fmp and is axiomatizable by Jankov formulas.

To prove the converse, suppose that L has the fmp and is axiomatizable by Jankov formulas.
By Theorem 3.10, the only member of fmp(L) with the fmp is L™, and the only member of fmp(L)
that is axiomatizable by Jankov formulas is L™. Since L € fmp(L), we obtain thatL = L~ = L™.
Therefore, with an application of Theorem 3.10(1) we conclude that

fmp(L) = [L7, L] = [L,L] = {L},
and hence deg(L) = 1. X

Examples of si-logics with the degree of fmp 1 include locally tabular logics. We recall that an
si-logic L is locally tabular if for each n < ¥, the Lindenbaum-Tarski algebra of L in n variables is
finite. Clearly each locally tabular logic has the fmp. Moreover, each locally tabular si-logic is
axiomatizable by Jankov formulas (see, e.g., [6, Thm. 3.4.24]). Thus, we obtain:

Corollary 3.12. The degree of fmp of locally tabular si-logics is 1.

Since there are continuum many locally tabular si-logics, the above corollary implies that there
are also continuum many si-logics whose degree of fmp is 1. We point out that there are si-logics
that are not locally tabular and yet have the degree of fmp 1. For example, IPC is such a logic.
More examples will be given in Example 4.11.

4. Tue Kuznersov-GERCIU LOGIC

In this section we briefly review the si-logic of Kuznetsov and Ger¢iu [21, 28]. We start by
recalling (see [35,33]) that the one-generated free Heyting algebra, known as the Rieger-Nishimura
lattice RN, is the Heyting algebra depicted in Figure 1.
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Py Py P3
Ficure 2. The posets P, P, and Ps.

Let A and B be Heyting algebras. The sum A + B is the Heyting algebra obtained by pasting
A below B and gluing the top element of A to the bottom element of B [17, Appendix A.9]. As
+ is clearly associative, there is no ambiguity in writing A; + - - - + A, for finitely many Heyting
algebras Aq,..., A,, each glued to the next.

Definition 4.1. The Kuznetsov-Gerciu logic KG is the si-logic of all Heyting algebras of the form
A +---+ A, where Ay,..., A, are one-generated.

We will utilize that KG is a subframe logic. We recall that the theory of subframe modal logics
was developed by Fine [20], and that Zakharyaschev [38] studied subframe si-logics. For the
present purpose, we concentrate on subframe si-logics.

With each finite rooted poset X we can associate a formula §(.X) in the language of IPC, called
the subframe formula of X. Bearing in mind that frame and poset are synonyms in the context of
si-logics, the next result motivates this terminology.

Theorem 4.2 (Fine & Zakharyaschev). Let X be a finite rooted poset.

(1) For every Esakia space Y we have Y ¥ [(X) iff X is a continuous p-morphic image of some
clopen Z C X.
(2) For every poset Y we have Y ¥ B(X) iff X is a p-morphic image of some Z C Y.

Proof. See [11, Thm. 9.40(ii) |. Our formulation of the result differs from that of [11, Thm. 9.40(ii) |
in that we require Z to be clopen (as opposed to a subframe). The fact that this is harmless
follows from the proof of the result (see also [6, Thm. 3.3.16]). X

An si-logic is a subframe logic if it is axiomatizable by subframe formulas.
Theorem 4.3 (Fine & Zakharyaschev). Each subframe si-logic has the fmp.
Proof. See, e.g., [11, Thm. 11.20]. X

As we pointed out earlier in the section, KG is axiomatizable by subframe formulas (see, e.g.,
[25] or [6, Thm. 4.3.4]):

Theorem 4.4. KG is axiomatized by the subframe formulas of the posets in Figure 2.

For our purposes it is crucial that KG is also axiomatizable by Jankov formulas. For this we
tirst recall the notion of width for posets.

Definition 4.5. Let 1 < n < X,. The width of a rooted poset X is n if
n = max{k : k is the cardinality of an antichain of X }.

The width of a poset X is n if all principal upsets of X have width < n and there is a principal
upset of width n. The empty poset will be assumed to have width zero.

We next define the notion of width for Heyting algebras.
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Ficure 3. The poset F}, .

Definition 4.6. Let n < X,. A Heyting algebra A has width n if A, has width n. Let
W, = {A € HA: A has width < n}.

Definition 4.7. For n < N let

n

bw,, = \/(pi — \/pj)

i=0 i
and define
BW,, = IPC 4+ bw,,.

Sobolev [37] proved that a Heyting algebra A validates bw,, iff A € W,,. Thus, the members
of W,, are exactly the algebraic models of BW,,.

Theorem 4.8 (Fine & Zakharyaschev). Each si-logic BW,, is axiomatized by the subframe formula of
the poset depicted in Figure 3. Thus, each BW,, has the fmp.

Proof. See [20, 38]. X

We will use the following result of Kracht [26, Prop. 23].

Theorem 4.9 (Kracht). The logic BW; is axiomatized by the Jankov formulas of the posets in Figure 4.

Proof. Kracht proved this result in the setting of normal modal logics extending S4. A natural
adaptation of the proof yields the analogous result for si-logics. X

We use Theorem 4.9 to prove that KG is also axiomatizable by Jankov formulas:
Theorem 4.10. KG is axiomatizable by Jankov formulas.

Proof. Since a similar result was sketched by Kracht in [26, Sec. D] (again in the setting of normal
modal logics extending S4) and because full proofs require lengthy combinatorial arguments,
they are moved to the Appendix. X

Example 4.11. The above theorem provides further examples of si-logics that are not locally
tabular, but have the degree of fmp 1. Let RN be the logic of the Rieger-Nishimura lattice RIN. It
is well known that both KG and RN have the fmp: for KG this follows from Theorems 4.3 and 4.4,
while for RN see, e.g., [3, Thm. 5.35]. Moreover, RN is axiomatizable relative to KG by Jankov
formulas [3, Thm. 4.33]. Therefore, by Theorem 4.10, both KG and RN are axiomatizable by
Jankov formulas. Thus, by Corollary 3.11, both logics have the degree of fmp 1. Clearly neither
logic is locally tabular since RN = RN, KG.
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FIGURE 4. The eleven posets whose Jankov formulas axiomatize Wa.

5. THE COUNTABLE CASE OR “ANYTHING GOES”

In this section we establish the countable case of the Antidichotomy Theorem. We do this by
exhibiting for each cardinal 1 < k < N, an si-logic L such that deg(L) = . As we will see below,
L can be chosen to be an extension of KG. More precisely, we will prove the following:

Theorem 5.1. For each cardinal 1 < k < N there exists an si-logic L O KG such that deg(L) = k.

We will rely on several known facts about the Reieger-Nishimura lattice. We will use [6]
as our main reference, but these results can also be found in [3]. The Esakia dual £ of the
Rieger-Nishimura lattice RIN, often called the Rieger-Nishimura ladder, is depicted in Figure 5,
where the topology can be described as follows: a subset of £ is open iff either it misses w or it is
cofinite. In other words, each w,, is an isolated point and w is the only limit point.

Using the labeling of Figure 5, for each n > 0 let £,, be the subspace of £ whose underlying set
is the upset Tw,. Let also 1 be the one-point Esakia space and 2 the Esakia space consisting of
two incomparable elements.

For two Esakia spaces X and Y, we denote by X © Y the Esakia space obtained by pasting Y
below X . If Ay, Ay are Heyting algebras with Esakia duals X, X5, then X; @ X5 is the dual of the
sum Ag + A; (seee.g., [6, Thm. 4.1.16]). We will use this construction to produce models of KG.

Definition 5.2. For m > 0 and n > 1, define
Crn=10---91 and &, =10 LD L1 D C,,.

m—times

The poset underlying &,, is depicted in Figure 6. Notice that &,, is the dual of the sum of
Heyting algebras
By +---+ By+£+ RN + By,
———
n—times
where B is the two-element Boolean algebra. Since each of the algebras By, RN, and £} is
one-generated, the Heyting algebra in the above display is a model of KG, from which we deduce:
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wo w1
w9 w3
W4y Ws
We wr
ws W9
w10 w11

Ficure 5. The Rieger-Nishimura ladder £.

%
:

n

Ficure 6. The poset underlying &,,.

Lemma 5.3. For each n > 1, we have &,, = KG.
We will rely on the following concept:

Definition 5.4. For eachn > 1, let R,, be the class of all finite rooted posets that (when endowed
with the discrete topology) are continuous p-morphic images of closed upsets of &,,.

From Lemma 3.8(1) we deduce:
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Lemma 5.5. R,, = RFin(Log(&,,)).
We will make extensive use of the following class of Esakia spaces:

Definition 5.6. An Esakia space is said to be simple if it is a (possibly empty) finite sum of 1
and 2.

On the other hand, we say that a finite Esakia space X is complex if X F KG and X is not
isomorphic to S ® £, for any simple Esakia space S and k > 0. The next result is a straightforward
adaptation of [6, Thm. 4.5.1]:

Lemma 5.7. Let X, Y be finite rooted Esakia spaces with'Y complex. The following are equivalent.

(1) X is a continuous p-morphic image of a closed upset of 1 © £ D Y.
(2) X is isomorphic to 1 & S @ £, or it is a continuous p-morphic image of a rooted upset of
16 S®1aY for some simple Esakia space S and k > 0.

As a consequence, we obtain:

Theorem 5.8. For n > 1, if X is a finite rooted continuous p-morphic image of a closed upset of &, then
there are a simple Esakia space S, k > 0, and m < n such that X is isomorphic to

1S L, or 1501 LLDE,.

Proof. The Esakia space Y = £4 @ €, is not isomorphic to S @ £, for any simple Esakia space
S and k > 0. On the other hand, since Y F KG, we can apply Lemma 5.7 to obtain that a finite
rooted Esakia space X is a continuous p-morphic image of a closed upset of

6,=10L3Y

iff it is isomorphic to 1 & S @ £, or it is a continuous p-morphic image of a rooted upset U of
1¢S5 @1aY for some simple Esakia space S and & > 0.

In the former case, there is noting to prove. In the latter case, as U is a rooted upset of
1S3 1aY,itis of the form

16Se1eL,0¢, or 1S5 @1

for some m < n and simple Esakia space S’. Since the continuous p-morphic images of the
Esakia spaces in the above display are of the form

1oS"@lor 165" ®10L40¢
for some simple Esakia space S” and k < m < n, the result follows. X
As a consequence, we obtain the following characterization of the posets in R,,.
Corollary 5.9. A finite rooted poset X belongs to R, iff X is isomorphic to
1050 L, or 1ESD1BLLDE,
for some simple Esakia space S, k > 0, and m < n.
Definition 5.10. For n > 1 define:
Lo = Log(Rn»);
L1 = Log(R, U{®1});
Ly = Log(R, U {&2});

L, = Log(R, U {®,}) = Log(&,),
where the equality Log(R,, U {®,,}) = Log(®,,) holds by Lemma 5.5.
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In view of Lemma 5.3 we have:
Lemma 5.11. Lo, ..., L, are extensions of KG.

Our aim is to prove that the fmp span of Log(®,,) is precisely the set {Lo, ..., L,}, and hence
that the degree of fmp of Log(®,,) is n + 1. Since n > 1 was arbitrary and we already proved
that KG has the degree of fmp 1, this will show that there are extensions of KG with an arbitrary
finite degree of fmp.

We begin by the following simple observation.

Lemma 5.12. The following conditions hold.
(1) If m < n, then &,, is a continuous p-morphic image of &,,.
(2) Foreachn > 1 the Esakia space 1 © £4 ® &, is a continuous p-morphic image of &,.

Proof. (1) Define a: &,, — &,, by sending the least n — m points of &, to the root of &,, and any
other point in &,, to its copy in &,,. It is straightforward to check that « is an onto continuous
p-morphism.

(2)Let X =1@ £4@ ¢, and let a: &,, — X be the map that sends 1 @ £ to the top element of
X and is the identity on the rest of &,,. It is straightforward to check that « is an onto continuous
p-morphism. X

We will show that the L; form a descending chain of logics with the same finite models.

Lemma 5.13. The following conditions hold.
(1) Lo S - € Lo.
(2) Forall i < n we have R,, = RFin(L;).

Proof. (1) By Lemma 5.12(1) we have the inclusions L,, C - - - C L. To show that these inclusions
are proper, for each 0 < i < n — 1 consider the subframe formula 3(£;) for some k£ > 6 and let

Pi = B(’Qk) \ j(l b Ly P ¢i+1)~

It is sufficient to show that ¢; € L; \ Li1. To see that ¢; ¢ L;;1, it is enough to show that
®it1 ¥ ;. Since £ is a clopen subset of &;,1, Theorem 4.2(1) implies that &;,1 ¥ 5(£).
Moreover, 1 & £4 & €;4 is a continuous p-morphic image of ;,; by Lemma 5.12(2). Thus,
Git1 F J(1 & L4 & Ci4q) by the Jankov Lemma. Since a disjunction holds in a rooted Esakia
space iff one of the disjuncts does, we conclude that ;1 ¥ ¢;, and hence ¢; ¢ L;11.

To prove that ¢; € L, it is sufficient to show that R, U {&;} F ¢;. From Theorem 5.8 it follows
that 1 ® £4 @ ¢;41 is not a contionuous p-morphic image of a closed upset of &,. Therefore,
®; EJ(1® £4 @ ¢11) by the Dual Jankov Lemma, and hence &, F ¢;. Next, let X € R,,. If X F
J(1®L4®C 1), then X F ¢; as desired. Therefore, we may assume that X ¥ J(1¢£4®¢;41). By
the Fine Lemma, 1® £4® €, 1 is a p-morphic image of an upset of X . Together with Corollary 5.9,
this implies that

X210S®13 L4 C,,

for some simple Esakia space S and i+1 < m < n (because the other configuration in Corollary 5.9
cannot have 1® £4® €, 4 as a p-morphic image of one of its upsets [6, Thm. 4.4.12(1)]). Ask > 6,
the above display guarantees that £ is not a p-morphic image of a subposet of X. Therefore,
X F B(£k) by Theorem 4.2(2), and hence X F ¢;. Thus, R, U {®;} F ¢;, yielding that the
inclusions are proper.

(2) By the definition of L; we have that R,, C RFin(L;). Let X € RFin(L;). Since X ¥ J(X),
we have J(X) ¢ L;. Since L; = Log(R,, U {®;}), either there exists some Y € R,, such that
Y E J(X)or®; ¥ J(X). By the Dual Jankov Lemma, X is a continuous p-morphic image of a
closed upset of either some Y € R,, or &;. In the former case it is clear that X € R,,. In the latter
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case, apply Lemma 5.12(1) to obtain that X is a continuous p-morphic image of a closed upset
of a p-morphic image of &,,. This easily implies that X is also a continuous p-morphic image of
a closed upset of &,,, and hence is a member of R,,. X

Together with Lemma 5.5 this yields that RFin(Log(®,,)) = RFin(L;) for every i < n. As a
consequence, we obtain the following.

Lemma 5.14. Ly, ..., L, are n + 1 distinct elements of the fmp span of Log(®,,).

To show that there are no other logics in the fmp span of Log(®,,), we rely on the following
observations.

Lemma 5.15. Let X, Y, Z be Esakia spaces. The following conditions hold.

(1) X @ £ Z is a continuous p-morphic imageof X @ LBY & Z.
(2) If X,ZEKG, thenLog(X @ L L ® Z) =Log(X ® £® 2).

Proof. (1) Themapa: X® LY & Z — X @& £ @ Z that sends the points of Y to the bottom
element of £ and is the identity on the rest of the points is an onto continuous p-morphism.

(2) By (1) we have that X & £ @ Z is a continuous p-morphic image of X & £ ® £ @ Z. Thus,
Log(X®LpLaZ) C Log(X @ £& Z). The reverse inclusion follows from [6, Lem 4.4.9(4)]. X

Consider the si-logic
RN.KC = RN + (—p V =—p).

It is well known that a rooted Esakia space X validates RN.KC iff it validates RN and it has a
maximum. In other words, X F RN.KC iff X £ RN and X is of the form 1 @ Y for some rooted
Esakia space Y.

Now, for each si-logic L, let FGR(L) be the class of Esakia spaces X such that X* is finitely
generated, SI, and X F L. Clearly FGR(IPC) is the class of all Esakia spaces X with an isolated
root such that X* is finitely generated.

Theorem 5.16. The following conditions hold for each X € FGR(IPC).

(1) X E KGiff X is isomorphicto X1 & - -- & X, ® 1, where each X; is isomorphic to £ or to a finite
upset of £.

(2) X E RN iff X is isomorphic to X1 @ - -- ® X, ® L, where k > 0 and each X is isomorphic to
1,2, 0r L.

(3) X E RN.KC iff X is isomorphic to 1 & X1 @ --- & X,, ® L, where k > 0 and each X, is
isomorphic to 1, 2, or £

(4) If X is infinite and X F RN.KC, then Log(X) = Log(1 & £) and Log(X) has the fmp.

Proof. (1) By [6, Thm. 4.3.9], X F KG iff X is isomorphicto X; & --- ® X,, ® £, where k > 0
and each X is isomorphic to £ or to a finite upset of £. Next observe that if k£ € {0, 1}, then £ is
isomorphic to 1; if k = 2, then £, is isomorphic to 1 & 1; and if k£ > 2, then £, is isomorphic to
Y @ 1 where Y is the upset of & generated by {wy_2, wi—3}. Thus, £ is always isomorphic to
Z @ 1 for a (possibly empty) finite upset Z of £.

(2) This is [6, Thm. 4.4.12(1)].

(3) This follows from (2) by observing that a rooted Esakia space validates —p vV =—p iff it has
the maximum.

(4) We recall that Log(1 @ £) = RN.KC (see [6, Thm. 4.6.4]). Therefore, from X = RN.KC it
follows that Log(1 & £) C Log(X). Because X is infinite, it follows from (3) that X is isomorphic
toldY @£ Z P Ly, where k > 0 and Y and Z are possibly empty Esakia spaces. By
Lemma 5.15(1), 1®Y @ £is a continuous p-morphic image of 1®Y @ £® Z ® £;,. Next identify the
points in Y with the maximum to obtain that 1 ® £ is a continuous p-morphic imageof 1Y @ £.
Thus, 1 & £ is also a continuous p-morphic image of X, and hence Log(X) C Log(1 & £).
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This shows that Log(X) = Log(1 @ £). Finally, since every extension of RN has the fmp [6,
Thm. 4.4.13], we conclude that Log(X') has the fmp. X

Lemma 5.17. [6, Cor. 4.2.7] If S is a simple Esakia space, then S © £ and S & 1 are continuous p-morphic
images of £.

We are ready for the key result of this section.
Theorem 5.18. Let L be an extension of KG. If L € fmp(Log(®,,)), then L = L; for some i < n.

Proof. Let L be an extension of KG such that L € fmp(Log(®,,)). Then RFin(L) = R,, by Lemma 5.5.
Since L’ = Log(FGR(L")) for every si-logic L/, this implies that
L = Log(FGR(L)) = (){Log(R. U{X}) : X € FGR(L)}.

Thus, in order to prove that L = L; for some i < n, it is sufficient to show that for each X € FGR(L),
there is j < n with Log(R, U {X}) = L;. For in this case, we can take i to be the maximum of
the j by Lemma 5.13(1).

Let X € FGR(L). First suppose that X is finite. Then X € R,,, which implies that

Log(R, U{X}) =Log(R.) = Lo.

Next suppose that X is infinite. By Theorem 5.16(1) we may assume that X = X, ®---® X,,, ®1,
where m > 1 and each Xj is either £ or a finite upset of £.

Claim 5.19. X; = 1.

Proof of the Claim. We first show that X has a maximum. If not, then a finite rooted upset of £
containing two maximal points is a rooted upset of X, so it is in R,,. But by Corollary 5.9, these
do not belong to R,,, a contradiction. Thus, we may assume that X is either 1 or the two-element
chain £5. But £; is isomorphic to 1 & 1. So without the loss of generality, we may assume that
X1 = 1 (otherwise we renumber the summands: the new X, becomes 1, the new X3 becomes
the old X5, etc.). X

Since X is infinite, one of the X}, must be £. Let k be the least such. Then
X=150L8 X1 @ X D1,
where 51 = Xo @ - B Xp_1.
Claim 5.20. S, is a simple Esakia space.

Proof of the Claim. 1f not, then S; = X5 @ --- & Xj,_; has a finite non-simple upset of £ as one
of its summands. Let x € £ be such that x = w,, for n > 4 (see the labelling of Figure 5). By
viewing £ as a subframe of 1 @ S; @ £, we take the upset of X generated by x. This is a finite
principal upset of X, hence it belongs to RFin(L). But it contains two nonsimple finite upsets of £
as its summands, which contradicts Corollary 5.9. Thus, S is a simple Esakia space. X

Iterating the argument described above, we obtain the following:

Claim 5.21. One of the following conditions holds.
(1) There exist simple Esakia spaces Sh, . .., .Sy such that

X=1050L05%¢ - 0L®S,d1;

(2) There exist simple Esakia spaces S1, . . ., S, and finite upsets X;, . .., Xy, of £ with X; non-simple
such that

X=1050L05%® - BLDSBX; B & X, @ 1.
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Suppose first that Condition (1) of Claim 5.21 holds. Then X E RN.KC by Theorem 5.16(3).
By Condition (4) of the same theorem we obtain that Log(X) has the fmp. Now, from the
assumption that X € FGR(L) and RFin(L) = R,, it follows that RFin(Log(X)) C RFin(L) = R,,.
As Log(X) has the fmp, this implies that Log(R,, U {X}) = Log(R.,) = Lo.

It only remains to consider the case where Condition (2) of Claim 5.21 holds. If there exists
k > 0 such that

X=10510LDS52D---DLDS, D L,

then we can repeat the argument detailed above. Therefore, we may assume that there is no
k > 0 for which the above holds. Under this assumption, we will prove the following:

Claim 5.22. There exists k < n such that
X=10510LD5 D - DLDS,DLsD .
Proof of the Claim. Recall from Condition (2) of Claim 5.21 that
X=1050LDS5d - LDS,X;D--- X, D1,

where each S is simple, each X is a finite upset of £, and X; is not simple. We may also assume
that each X is nonempty.

We have two cases depending on whether there exists some X; with j > i. First suppose that
there is no such j. Then

X=10510LD50---DLDS, DX;D1.

Since we assumed that X isnotof the form 1 & S1 @ LE S @ --- LD S, @ £ forany k > 0,
the non-simple finite upset X; of £ must be rooted (otherwise X; & 1 = £ for some k > 0).
Therefore, X; = £ for some k > 0. Because X is not simple, we must have k£ > 4. If k = 4, then

X=10510LD5d - DLDS, DL D

and, since n > 1 by assumption, there is nothing to prove. We will show that the case where
k > 4 cannot happen. Suppose the contrary. Then

X=1050LDS5HD---DLDS, DL DL,

Therefore, 1 ® £;, @ 1 is a continuous p-morphic image of X obtained by collapsing the top part
of X. Since X F L, we have 1 ® £; & 1 € RFin(L) = R,,. Together with k > 5, this contradicts
Corollary 5.9.

It only remains to consider the case where there exists some X; with j > i. We begin by
proving that

Xi1® - ©Xn®1=2¢, (1)
for some ¢ > 2. Suppose the contrary. Then there exists some j > i which contains two

incomparable elements. In this case, one of the following is a continuous p-morphic image of X,
depending on whetheri +1 < jori+1 = j:

1@Xi@1@XjEB1 or 1@X¢@X]’@1.

Now, since X is a finite upset of £ containing two incomparable points, X; must contain the
two maximal elements of £. It is therefore easy to show that if X; consists of two disjoint points
or of the disjoint union of the two element chain and a point, then 2 is a continuous p-morphic
image of X, and in all other cases 2 @ 1 is a continuous p-morphic image of X ;. By collapsing
the summand X in this manner in the Esakia spaces in the above display, we obtain that one of
the following is a continuous p-morphic image of X:

10X, 210201 or 1 X;91020101 or 1X;2®1 or 19X;02011.
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Since the finite continuous p-morphic images of X belong to RFin(L) = R,,, one of the Esakia
spaces above should belong to R,,. As none of them is of the form 1 & S & 1 @ £4 & €, for some
k < n, by Corollary 5.9 one of them must be of the form 1 & S @ £, for some k£ > 0. But this is
false because X; is a not a simple finite upset of £. This establishes Condition (1).
Consequently, we obtain that

X=1050LDS5HD - DLDLS,DX; D, (2)
for some ¢ > 2. From the above display it follows that 1 & X; @& ¢,_o @ 1 @ 1 is a continuous
p-morphic image of X, and so belongs to R,,. Since 1 & X; ® €,_2» ® 1 & 1 is not of the form
1® S @ £ for any k£ > 0 (because X; is a non-simple finite upset of £), from Corollary 5.9 it
follows that

10X;0¢,=10X;0¢, 20101=105010 L4 D¢

for some k < n. Since X is a non-simple finite upset of £ we have two cases: either (X; = £4 and
q =k < n) or (X; is the upset {wo, w1, w2} of £and ¢ = k+1). Inboth cases, X; & €; = £, ® ;.
Together with Condition (2) this impliesthat X =1® 5, @ L0 S @ - LD S, L4 DE,. K

Now, recall from Claim 5.22 that there is k¥ < n such that
X=1050Lp5Hd - dLDS, DLy .

Therefore, 1 © £ © £4 ® ¢, is a continuous p-morphic image of X obtained by identifying
1S 0LDS LD - ® Sy—1 with the maximum of X and S, with the minimum of the
remaining copy of £. Since &, =1 & £ & £4 @ €, this implies that Log(X) C Log(®y). To see
that the other inclusion also holds, recall from Lemma 5.17 that S;, and each S; ® £ are continuous
p-morphic images of £. This implies that X is a continuous p-morphic image of

Y =10L0 - ®LDLL© .
o
p—times
Therefore, Log(Y) € Log(X). Since at least one copy of £ appears as a summand of X (be-
cause X is infinite), and hence the same holds in the above decomposition of Y, we can apply
Theorem 5.15(2) to obtain that
Log(Y) =Log(1® £ ® £4 ® €;) = Log(&y).

Thus, Log(®,) = Log(Y) C Log(X), and hence Log(X) = Log(®y,). Since k < n, we conclude
that
Log(R, U{X}) =Log(R, U{®)) = Ly. X

As a consequence, we obtain our desired result:
Theorem 5.23. The fmp span of Log(®y,) is {Lo, ..., L, } and its degree of fmp is n + 1.

Proof. In view of Lemma 5.14, in order to prove that
fmp(Log(®,)) = {Lo,...,L,} and deg(Log(®,)) =n + 1,
it suffices to show that if L € fmp(Log(®,,)), then L = L; for some i < n.

Let L € fmp(Log(®,,)). We first show that L is an extension of KG. In view of Theorem 4.10,
it suffices to prove that L contains all the Jankov formulas in KG. Let X be a finite rooted poset
such that 7 (X) € KG. Since Fin(L) = Fin(Log(®,,)), from Lemma 5.3 it follows that Fin(L) F KG.
Because J(X) € KG, we obtain Fin(L) F J(X). By the Fine Lemma, X ¢ Fin(L). The application
of the Dual Jankov Lemma now yields J(X) € L, and hence KG C L. Therefore, we can invoke
Theorem 5.18 to conclude that L = L; for some 7 < n. X

As we mentioned earlier, this establishes the following.

Theorem 5.24. For each 1 < n < Xy, there exists an si-logic L with deg(L) = n.
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To complete the proof of Theorem 5.1, we require the following.
Theorem 5.25. There exists an si-logic L such that deg(L) = N,.

Proof. Define
R=|JRn and Lj=TLog(R).
1<n
Clearly L is an si-logic. We show that its degree of fmp is Xy. For this, consider the following
extensions of KG, wheren > 1:

Ly, = Log(RU{&,.});
L =Log(RU{®, : 1 < n}).
A proof similar to that of Lemma 5.13 shows that
L GGG G LG L, (3)
and that all the logics in the above display belong to fmp(L{)). Therefore, in order to prove that
deg(Ly) = Ry, it suffices to show that
fmp(Lg) € {L;, :n > 0} U{LS ) (4)
An argument similar to the one in the proof of Theorem 5.18 shows that for each extension L
of KG such that RFin(L) = R and for each X € FGR(L), we have Log(R U {X}) = L} for some
J = 0, where j may possibly be cc. This, by (3), implies that L = L}, for
p=max({q € {0,1,2,...,00} : Log(RU{X}) = L, for some X € FGR(L)}).
Therefore, every extension of KG in fmp(L{) belongs to {L} : n > 0} U {L} }. As every member

of fmp(Lj) is an extension of KG (which can be shown as in the proof of Theorem 5.23), we
conclude that (4) holds. X

6. THE CONTINUUM CASE

In order to complete the proof of the antidichotomy theorem, it suffices to exhibit an si-logic
whose degree of fmp is 2%0. We will do this by proving the following:

Theorem 6.1. If2 < n < N, then deg(BW,,) = 2%,

To establish the above result, let 2 < n < R and let Z™ be the set of positive integers. For each
m € ZF, let X,,, be the poset in Figure 7 (we point out that 1, is infinite and |b,, is finite).>

We define a topology on X, by letting a subset U of X,,, be open provided b,, € U implies U
is cofinite. Therefore, b,, is the only limit point of X,, and all the other points are isolated. It is
routine to verify that this turns X,,, into an Esakia space, which we also denote by X,.

For each subset M of Z* let L) be the si-logic of the class of Heyting algebras

{X;, :me M}yU{A €W, : Ais finite}.
In order to prove Theorem 6.1, it suffices to establish the following.
Proposition 6.2. The set {Ly; : M C Z*} has the cardinality 280 and is a subset of fmp(BW,,).

We split the proof of the above proposition in two parts, first showing that the cardinality of
{Las : M C Z*} is 2% and then that {Ly; : M C Z*} is a subset of fmp(BW,,).

In order to prove that the cardinality of {Ly; : M C 7t} is 2% recall that F, 41 is the poset
depicted in Figure 3. We let Y;,, = |d. It is enough to establish the following result.

2Posets similar to the upper part of X,, have been considered in the literature (see, e.g., [11, p. 319]).
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Lemma 6.3. Let M, N C Z* and m € M ~ N. Then 3(Fp+1) V J(Ym) € Ly ~ Las.

Proof. We first show that 3(Fy,+1) V J (Ys,) is refuted on X,,,. Since X, is rooted, it suffices to
show that neither 3(F,,11) nor J(Y;,) is valid in X,,,. First, as X,,, has width n + 1 and 3(F},)
axiomatizes the si-logic BW,, of Esakia spaces of w1dth < n, we obtain that X,,, ¥ (F,,4+1). On
the other hand, when endowed with the discrete topology, Y;, is a continuous p-morphic image
of X,, obtained by collapsing all the elements of 1y to y. By the Dual Jankov Lemma, this yields
that X,,, # J(Y:,). Thus, 8(F,11) V J (Yy) does not belong to L.

It remains to prove that 3(F,4+1) V J (Y,,) belongs to L. By the definition of Ly, it suffices to
show that 5(Fj,+1) V J (Ys,) is valid in the class of algebras

{X;:ke NJU{A e W, : Ais finite}.
Since (Fy,+1) axiomatizes BW,,, the disjunction 3(F,+1) V J (Y,) holds in the finite members of
W,,. Therefore, it only remains to show that 5(F,,+1) V J(Y;,) is valid in { X}, : k € N}.
Suppose the contrary, with a view to contradiction. Then there exists k& € N such that
Xk ¥ B(Fny1) V I (Yr). As a consequence, Xj, ¥ J(Y,,). By the Dual Jankov Lemma there exist

a closed upset U of X} and a surjective continuous p-morphism «: U — Y;,, where the poset Y,
is endowed with the discrete topology.

We will show that
ail({e+7 677 f+7 f77 g+7 gi}) = {€+7 677 f+7 f77 g+7 gi}' (5)
To prove the inclusion from left to right, consider » € o~ ({e™,e™, f*, f, g, g‘}) By symmetry,

we may assume that a(x) € {e*, e }. Since a: U — Y,,, is surjective, there are :Uf,a:f ol gy €U
such that
al@p)=f" alzy)=f" alzy)=g" alz;)=g".

Furthermore, as « is a p-morphism and e, e™, f, f~, g* and g~ are not maximal, the elements
T, x]’f, Ty, x;, z, are also not maximal. Now, since « is order preserving, f (x) € {eT,e"}, and
e, e are incomparable with f*, /=, ¢" and ¢g~, the element 2 must be incomparable with
a;;{, Ty, l‘;- and z;. By the same token, x}“, Ty are incomparable with xg , 2, . In brief, x is a
nonmaximal element that is incomparable with four distinct nonmaximal elements x7 FoTs 33‘+

9 Examining the pictorial definition of Xm,

it is easy to see that

and x, such that 2} % are incomparable with T, Ty

€ G {e+7 6_7 f+’ f_7g+’g_}'
This establishes the inclusion from left to right in (5).

We prove the reverse inclusion by contradiction. By symmetry, we may assume that there
exists x € {et,e™, ft, f~,9", g7} such that either x ¢ U or (z € U and a(x) = d or a(x) < py).
By symmetry, we may assume that z € {¢~,e"}. First suppose that z € U and «(z) = d. The
monotonicity of o implies that o(y) = d for each y € U such that y > z. Since a: U — Y, is
surjective, this implies that the restriction a: (U \ 1z) — (Y, \ {d}) is also surjective. But the
assumption that z € {e*, e} implies that

U~ ta] < US| < Yol =2 < [Vin N {d}],

a contradiction to the surjectivity of a: (U \ 1z) — (Y, \ {d}). Therefore, a(z) < p1 <e™, f™.
Since « is a p-morphism and e~, f~ are non-maximal, there must be two incomparable non-
maximal elements y, z > = such that a(y) = ¢~ and a(z) = f~. From x € {e*, e} it follows
that a,, < y, z for some p € Z*. Moreover, since {f*, f~} and {¢™, g~ } are two-element chains
in Y;,, that are incomparable with each other and with a(y) = e~, the surjectivity of a implies
the existence of two two-element chains in U that are incomparable with each other as well as
with y. But the fact that y > a, makes this impossible. Therefore, it only remains to consider the
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case when z ¢ U. Since U is an upset of Xy, from z € {e*, e} it follows that U C t{e™, f~, g™ }.
Together with the assumption that a.: U — Y7, is a surjective p-morphism, this guarantees the
existence of some p € Z* and y > a,, such that a(y) = e™. This allows us to repeat the argument
detailed above to obtain the desired contradiction. Thus, the inclusion from right to left in (5)
holds.

Now, given a subset V of X, and W C V, let

YW ={zxeV:z>yforsomeyc W} and |VW = {z €V :2 <yforsomey e W}.

Letalso A = {eT,e™, f*, f7,g", g~} and notice that A C U by (5). Moreover, U can be par-
titioned into the disjoint sets |V A and 1Vd. Since a: U — Yy, is order preserving, from (5) it
follows that a(JY A) C | A. Because d € Y;, ~ [""Aand a: U — Yy, is surjective, we obtain
that d € a(1Yd). We show that a(1Yd) C {d}. Suppose the contrary. As d is the maximum
of Y;,, and « is order preserving, this implies a(d) < d. By the definition of Y, we obtain that
a(d) € Y™ A. By symmetry, we may assume that a(d) < e*. Moreover, recall from (5) that
a(A) = A. Let x € Abe such that a(z) = f*. Since z € A, we have x < d. Because « is order
preserving, this implies f* = a(z) < a(d) < e™, a contradiction. Therefore, we conclude that
a(tYd) C {d}; thatis, a(1Yd) = {d}.

In brief, o sends all elements of |V A to elements of Y,, that are strictly less than d and all
elements of td to d. Since d is an upper bound of A in U, this implies that the restriction
a: ({dy UV A) - Y, is a surjective p-morphism. Because {d} U Y A = Y} N U, we obtain that
the map a: (Y, NU) — Y, is also a surjective p-morphism. But, inspecting Figure 7, it is easy to
see that m # k makes this impossible. Hence, we conclude that the disjunction 5(F},+1) V J (Yin)
isvalidin {Xy : k € N}. X

The second part of Proposition 6.2 requires to prove that {Ly; : M C Z"} is a subset of the
fmp span of BW,,, which amounts to the following.

Lemma 6.4. For each M C 7 and finite poset X,
X EBW, iff X F Ly.

Proof. Let M C Z7F. For the left to right implication, if X F BW,,, then X has width < n, and
hence Up(X) is a finite member of W,,. Together with the definition of Lj;, this implies that
X E L.

For the right to left implication, it suffices to prove that if X is a finite poset such that X F Ly,
then X F BW,,. Suppose the contrary, with a view to contradiction. Then there exists a finite
rooted poset X of width > n such that X F L;;. Since X is finite and rooted, we can consider
the Jankov formula 7 (X). Now, from X F L), it follows that Ly, ¥ 7 (X). The definition of L,
implies that 7 (X) fails either in some X, with m € M or in some finite member of W,,. Since
W,, E J(X) because Up(X) ¢ W,,, we conclude that there exists m € M such that X,,, ¥ 7 (X).
Therefore, the Dual Jankov Lemma implies that there exist a closed upset U of X,, and an E-
partition R of U such that U/R is isomorphic to X. As X is rooted, we may assume that U is also
rooted.

Furthermore, as X is not of width < nand U/R = X, the set U contains an (n + 1)-element
antichain. An inspection of the pictorial definition of X,,, shows that U must contain an antichain
of the form {T1,..., Tp_2, ak, bx, cx} for some k € Z*. Bearing in mind that U is rooted, this
implies that U contains d and, therefore, 7d C U because U is an upset. In brief, U is a rooted
upset of X, such that td C U and R is an E-partition of U such that U/R is finite and has an
(n + 1)-element antichain.
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Examining again the pictorial definition of X,,, it is easy to see that there must be some k € Z*
such that {ay, b, cx} C U and

{[ak]> [bk]a [Ck]’ [Tl]a sy [Tan]} (6)

is an (n + 1)-element antichain of U/R (notice that T1,..., T,,—2 € U because 1d C U). Conse-
quently, {[ax], [bk], [ck]} is a three-element antichain.

Claim 6.5. There exists the largest j € Z* such that {[a;],[b;], [c;]} is a three-element antichain.

Proof of the Claim. Suppose the contrary and recall that 1b,, C U. We show that the equivalence
class [b,] does not contain any a;, b;, or ¢; for i € Z*. If [b,,] contains = > b, then it also contains
the interval [b,,, z]. In particular, if [b,] contains a;, b; or ¢;, then [b,,, ai;2] C [b,]. This means that
for each ¢ > ¢ + 2 we have [a;] = [b:] = [c¢t] = [bo]|. Hence,

pi=max{t € Z" : t < i+ 2and {[as], [b], [ct]} is a three-element antichain}

exists (because k < i + 2 and {[ax], [bx], [ck]} is a three-element antichain) and is the largest
positive integer ¢ such that {[a¢], [b¢], [} is a three-element antichain. The obtained contradiction
proves that [b,,] does not contain any of a;, b; or ¢;.
As a consequence,
[bw] - {bwv —I—la sy Tn*Z} U \Ldv

whence [b,] is finite. Now, recall that U/R = X and that the topology of X is discrete because
X is finite. Therefore, [b,] is an isolated point of U/R. Since the map = — [z] is a continuous
p-morphism from U to U/R, it follows that [b,,] is a clopen subset of U. But since U is a closed
upset of X, containing 1b,,, the definition of the topology of X,,, guarantees that [b,,] must contain
infinitely many elements of 1b,,. Therefore, [b,] is infinite, a contradiction. X

Let j be the largest positive integer such that {[a;], [b;], [¢;]} is a three element-antichain, which
exists by the Claim. Then {[a; 1], [bj+1], [cj+1]} is not a three element antichain. By symmetry,
we may assume that

[aj41] < [bj41]-
From b1 < ¢; it follows that [bj 1] < [¢;], and so [a;+1] < [¢;]. Therefore, there exist x € [a;1]

and y € [¢;] such that < y. Since [a;41] = [z] and = < y, the definition of an E-partition
guarantees the existence of some z € U such that a;1; < z and [z] = [y]. Since [y] = [¢;], we
obtain

aj+1 < zand [z] = [¢;].

Notice that every element of Ta;; is comparable with a; or b;. In particular, 2 must be comparable
with a; or b;. Together with [z] = [¢;], this implies that [c;] is comparable with [a;] or [b;]. But
this contradicts the assumption that {[a;], [b;], [¢c;]} is a three element antichain.

From Lemmas 6.3 and 6.4 it follows that Proposition 6.2 holds. Therefore, deg(BW,,) = 2%0.
Since we proved this equality for an arbitrary 2 < n < Ry, this establishes Theorem 6.1. Together
with Theorem 5.1, this concludes the proof of the Antidichotomy Theorem.

We close this section with an observation about the logics BW,,.

Proposition 6.6. For each n < Xy, the logic BW,, can be axiomatized by Jankov formulas iff n < 2.

Proof. Since BW(, is the trivial variety, it is axiomatizable by the Jankov formula of the two-element
Boolean algebra. Also, since BW; is the Godel-Dummett logic [13], it is well known that BW; is
axiomatizable by the Jankov formulas of the posets in Figure 8 (see, e.g., [2, Thm. 4.23(4)]).

If n = 2, then it follows from Theorem 4.9 that BW is also axiomatizable by Jankov formulas.
Finally, let n > 2. By Theorem 4.8, BW,, has the fmp. Since BW,, has the degree of fmp 2% by
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-

FiGure 8. The two posets whose Jankov formulas axiomatize BW;.

Theorem 6.1, we can use Corollary 3.11 to deduce that BW,, cannot be axiomatized by Jankov
formulas. X

In view of the Antidichotomy Theorem, every nonzero cardinal  such that x < R or x = 2%
may occur as the degree of fmp of some si-logic. An opposite scenario appears if we restrict our
attention to the logics BW,,.

Theorem 6.7 (Width Dichotomy Theorem). For each n < Y, we have

1 ifn<2

Proof. By Theorem 4.8, each BW,, has the fmp. Therefore, from Proposition 6.6 and Corollary
3.11 it follows that if n < 2, then deg(BW,,) = 1. The case where n > 2 is a consequence of
Theorem 6.1. X

7. DEGREES OF FMP FOR MODAL LOGICS

In this section we investigate the degree of fmp for normal extensions of some prominent modal
logics. To this end, we denote the class of Kripke frames (resp. finite Kripke frames) validating a
normal modal logic L by Fr(L) (resp. Fin(L)). The degree of incompleteness (resp. the degree of fmp)
of L is the number of normal modal logics L’ such that Fr(L) = Fr(L’) (resp. Fin(L) = Fin(L')).

As a consequence of the Blok Dichotomy Theorem, we obtain a dichotomy theorem for the
degree of fmp of normal extensions of the basic modal logic K.

Theorem 7.1 (FMP Dichotomy Theorem). The degree of the fmp of a normal modal logic L is either 1
or 2%,

Proof. Let L be a normal modal logic. By Blok Dichotomy Theorem, its degree of incompleteness
is either 1 or 2%0. First suppose that the degree of incompleteness of L is 2%°. Then there are 2™
normal modal logics L’ such that Fr(L’) = Fr(L). Since Fin(L) C Fr(L), it follows that Fin(L") =
Fin(L). Thus, the degree of fmp of L is also 2%°.

Next suppose that the degree of incompleteness of L is 1. Then L is a join-splitting logic (see,
e.g., [11, Thm. 10.59]), and hence L has the fmp (see, e.g., [11, Thm. 10.54]).

Recall that a Kripke frame X is said to be cycle free if there is no path of length n > 0 from
a point of X to itself. For each finite rooted cycle-free Kripke frame X we denote by 7 (X) an
analogue of the Jankov formula in the language of modal logic [11, p. 362]. The join-splitting
normal modal logics are precisely those axiomatized by formulas of the form 7 (X) where X
is a finite rooted cycle free Kripke frame (see, e.g., [11, Thm. 10.53]). In particular, since L is a
join-splitting logic, L = K+ {J(X;) : ¢ € I} for some set {X, : i € I} of finite rooted cycle free
Kripke frames.

Let L' be a normal modal logic such that Fin(L) = Fin(L"). We show that L = L’. Since L has
the fmp, from Fin(L) = Fin(L’) it follows that L’ C L. On the other hand, the modal analogue of
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Lemma 3.8(2) yields that J(X;) € L’ for each i € I. Therefore, L C L/, and hence L = L’. Thus,
the dichotomy theorem holds for degrees of fmp. X

However, the situation changes dramatically if we relativize the notion of the degree of fmp to
stronger normal modal logics. Following the terminology of [11], given a normal modal logic L,
let Next L be the lattice of normal extensions of L.

Definition 7.2. For a normal extension L of a normal modal logic M, let
fmp,,(L) = {L" € NextM : Fin(L") = Fin(L)};
degy, (L) = |fmpy, (L)].
Recall that the Grzegorczyk logic Grz is the normal extension of S4 by the formula
0(@(p — Op) = p) — Op)
(see, e.g., [11, pp. 74 and 93]).
Theorem 7.3 (Modal Antidichotomy Theorem). Let M C Grz be a normal modal logic with the fmp

such that Grz is a join-splitting in Next M. For each nonzero cardinal  such that k < Rg or = 280
there is a normal extension L of M with deg,,(L) = k.

Before proving the Modal Antidichotomy Theorem, we point out that it holds for S4 and K4.
For recall that Grz is a join-splitting in Next S4 [39, Exmp. 1.11] and that S4 is a join-splitting in
Next K4 [11, Exmp. 10.48]. Consequently, Grz is also a join-splitting in Next K4. Since both S4
and K4 have the fmp, we obtain that the modal antidichotomy theorem holds in both Next S4
and Next K4:

Corollary 7.4. For each nonzero cardinal k such that k < Xg or k = 280 there is L € Next S4 with
deg,,(L) = degg,(L) = k.

In order to prove the Modal Antidichotomy Theorem, we recall that the Gddel translation,
associating with each intuitionistic formula ¢ the modal formula ', is defined recursively as
follows:

p' = Op for each propositional variable p
=1
(xAe)' =x" Ay
(x Vo) =x"vy'
(x =)' =00 = ¥).
By [32], for each intuitionistic formula ¢, we have
@ € IPC iff ¢ € S4.

Let L be an si-logic and M a normal extension of S4. Following the standard terminology (see, e.g.,
[11, Sec. 9.6]), we say that M is a modal companion of L provided for each intuitionistic formula ¢,
we have
oL iff o' e M.

Notably, each si-logic L has the least and greatest modal companions, denoted by 7(L) and o(L).
For example, 7(IPC) = S4 and o(IPC) = Grz. More generally, 7(L) = S4 + {¢' : ¢ € L} and
o(L) = Grz+ {p' : p € L} (see, e.g., [11, Sec. 9.6]). The latter is a consequence of an important
result in modal logic, known as the Blok-Esakia theorem.

Theorem 7.5 (Blok-Esakia Theorem). The map o : ExtIPC — Next Grz is an isomorphism.
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Proof. See Blok [8] and Esakia [15, 16]. X
When dealing with the degree of fmp, the following observation will also be useful.

Proposition 7.6. For every si-logic L,
Fin(L) = Fin(co(L)).

Proof. We recall from [17, Cor. 3.5.10] that Fin(Grz) is the class of all finite posets. This yields the
result together with the fact that a finite poset validates an intuitionistic formula ¢ iff the same
poset, when viewed as a Kripke frame, validates the modal formula ' X

Proposition 7.7. For each nonzero cardinal k such that k < R or k = 20 there is a normal extension L
of Grz with deg,,(L) = k.

Proof. Consider a nonzero cardinal « such that K < Ny or x = 2%. By the Antidichotomy
Theorem, there is an si-logic L such that deg(L) = . To complete the proof, it suffices to show
that deg ,(c(L)) = . Since o: ExtIPC — Next Grz is an isomorphism, it is enough to prove that

fmp¢,(o(L)) = {o(L) : L € fmp(L)}.
The inclusion from right to left is an immediate consequence of Proposition 7.6. Indeed, if
L and L’ share the class of finite posets, then o(L) and o(L’) also share the same class of finite
Kripke frames by Proposition 7.6.
To prove the other inclusion, let S € fmp,,(o(L)). By the Blok-Esakia Theorem, there is a
unique L” € ExtIPC such that S = o(L’). Moreover, Fin(S) = Fin(L) by Proposition 7.6. Therefore,

Fin(L) = Fin(o(L)) = Fin(S) = Fin(L").
Thus, L’ € fmp(L), which together with o(L") = S yields that S € {o(L’) : L’ € fmp(L)}. X
We are now ready to prove the Modal Antidichotomy Theorem.

Proof. Consider a nonzero cardinal  such that x < Rg or k = 2%. By Proposition 7.7, there exists
a normal extension L of Grz such that deg (L) = x. Therefore, to conclude the proof it suffices
to show that

fmp,,(L) = fmp, (L).

The inclusion from right to left is obvious because M C Grz by assumption. To prove the other
inclusion, consider L’ € fmp,,(L). Since Fin(L") = Fin(L), in order to prove that L’ € fmp (L) it
remains to show that L’ extends Grz.

Since M has the fmp and Grz is a join-splitting in Next M, it follows from a general result of
McKenzie [30, Thm. 4.3] that there exists a set K of finite rooted Kripke frames validating M
such that Grz is the least normal extension N of M with Fin(N) N K’ = @. In particular, since L is
an extension of Grz, we have Fin(L) N K = @. Together with the assumption that Fin(L) = Fin(L’),
this yields that Fin(L’) N K = @. As L’ is a normal extension of M, we conclude that Grz C L’ as
desired. X

8. CoNCLUSIONS

In this paper, we introduced the notion of the degree of fmp for superintuionistic and modal
logics in analogy with the classic notion of the degree of incompleteness for these logics. We
proved the Antidichitomy Theorem for the degree of fmp for superintuionistic and transitive
modal logics. Namely, for every nonzero cardinal « such that x < Rg or £ = 2% there is a
superintuitionistic or transitive modal logic L such that the degree of fmp of L is x. We conclude
by discussing possible future research directions that could originate from this work.
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(1) By assuming the Continuum Hypothesis (CH), our results show that every nonzero
r < 2% is the degree of fmp of some si-logic or transitive modal logic. However, for
proving this result the power of CH may not be necessary. We leave it as an open problem
whether the assumption of CH can be avoided.

(2) In this paper we determined what cardinalities can be realized as degrees of fmp for
superintuitionistic and modal logics. However, it still remains an open problem to
characterize the degree of fmp of a given si-logic or an extension of 5S4 or K4. Note that
for an extension L of K, the degree of fmp, as well as the degree of incompleteness of L, is
determined by the Blok Dichotomy Theorem: If L is join-splitting, then it is 1; otherwise
it is 2%, In analogy with this, we showed that if a logic L has the fmp and is join-splitting,
then its degree of fmp is 1. But if these conditions are not met, it is still unclear what is
the degree of fmp of L.

(3) The first step to answer (2) would be to determine the degree of fmp of a given extension
of KG. In particular, it is still unclear whether the continuum degree of fmp can occur
above KG.

(4) We also find it interesting to study the degree of fmp for other prominent deductive
systems such as bi-intuionistic logic, tense and temporal logics, and fixpoint logics such
as PDL and the modal ji-calculus. In fact, one can define and investigate the degree of
fmp for any logic (or a variety of algebras thereof) that has finite models.

More generally, one can apply this perspective to other logically interesting properties. For a
given logic L, let S be a semantics of L. In other words, let S be a class of models of L (relational,
topological, algebraic, etc.). Also, let P be a property of S-models. Then the P-degree of the
S-semantics is the cardinality of the set of logics L’ such that L and L’ share the same class of
S-models satisfying property P. The degree of fmp is then the P-degree of the S-semantics
when the S-semantics is Kripke semantics and P is the property of being finite. Note that being
finite can be replaced by other properties; for example, by being countable, etc.

Since every si-logic or modal logic L is complete with respect to its algebraic semantics, the
P-degree of the S-semantics of each L is always 1 when the S-semantics is the algebraic semantics
and P is any property true in each algebraic model. Indeed, in this case two logics have the same
P-degree if they have the same class of algebraic models. Every such logic is complete with
respect to its algebraic models. Hence, every logic has the P-degree 1. However, if S-semantics
is the topological semantics, then the situation changes drastically since it is well known that
there exist topologically incomplete modal logics (see, e.g., [36]) and it remains an outstanding
open problem whether there exist topologically incomplete si-logics. In a recent paper [5], it
was shown that there exist (continuum many) extensions of the bi-intuitionistic logic that are
topologically incomplete.

In topological semantics of modal logic, it is customary to interpret < as topological closure.
Under such interpretation, S4 is the least topologically complete modal logic, and the degree
of topological fmp coincides with the degree of fmp in NExt S4 since finite topological spaces
are in one-to-one correspondence with finite S4-frames. On the other hand, if we interpret < as
topological derivative [31, Appendix I] (the so-called d-semantics; see [4]), then it makes sense
to investigate the degree of topological fmp (which modal logics have the same class of finite
topological models).

In our opinion, the study of P-degrees of S-semantics for non-classical logics is a promising
direction for future research.
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APPENDIX

The aim of the Appendix is to prove Theorem 4.10 that KG is axiomatizable by Jankov formulas.
For this we utilize the following classic result of Fine [19]. For n > 1 we say that an si-logic L
is of width < n if each Esakia space X validating L is of width < n (see Definition 4.5 for the
definition of the width of a poset). We call L of finite width if there is n such that L is of width
< n. Clearly L is of finite width provided BW,, C L for some n.

We recall that a poset is Noetherian if it has no infinite strictly ascending chains. We then have
(see, e.g., [11, Thm. 10.45]):

Theorem 8.1 (Fine Completeness Theorem). If L is an si-logic of width < n, then there is a class K
of rooted Noetherian posets of width < n such that L = Log(K).

The proof of Theorem 4.10 is based on the following two combinatorial observations.

Lemma 8.2. A rooted Noetherian poset X of width < 2 validates §(Ps) iff it validates the Jankov formulas
of the posets in Figure 9.

Lemma 8.3. Let X be a rooted Noetherian poset validating 5(P>). Then X validates 5(Ps) iff it validates
the Jankov formulas of the posets in Figure 10.

We point out that the posets K3 and K4 are obtained by adding a new top to K; and K>,
respectively. Moreover, Gz and G4 are obtained in a similar manner from G5 and G1.

In order to shorten the proofs of Lemmas 8.2 and 8.3, we use the following equivalent formu-
lation of Condition (1a) of Definition 2.6 (see [7, Rem. 3.1]):
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JQUTE

Ficure 10. The posets G1, ..., Gs.
a b

c d

L
Ficure 11. The poset P, viewed as a subposet of X.

(1a’) Suppose that (z,y) € Rand z,y € X are distinct. If there is z > x such that y £ z and
(x,z) ¢ R, then there is u € X such thaty < wand (z,u) € R.

We will also use repeatedly that for every poset X and upset U, identifying U into a point is
an E-partition on X.

Proof of Lemma 8.2. Let X be a rooted Noetherian poset of width < 2. Suppose first that X =
B(P,). Consider a nonnegative integer i < 7. By the Fine Lemma, to show that X F J(Kj;), it
suffices to prove that K; is not a p-morphic image of any upset of X. Suppose the contrary. Then
there exists an upset U of X and a surjective p-morphism a: U — K;. As a consequence, K;
validates all the formulas valid in X and, in particular, 3(%). But in view of Theorem 4.2(2)
this is false because P, is isomorphic to a subposet of Kj, as it can be checked by inspecting the
posets in Figure 9.

To prove the converse, assume that X validates the Jankov formulas of the posets K7, ..., K7
in Figure 9 and suppose, with a view to contradiction, that X ¥ (). By Theorem 4.2(2) this
implies that P is isomorphic to a p-morphic image of a subposet of X. The definition of a
p-morphism and the structure of P, imply that actually P is isomorphic to a subposet of X. We
name the elements of this subposet as in Figure 11.

As X is Noetherian and every element in the interval [c, a] is incomprable with b and d, we may
assume that c is an immediate predecessor of a (otherwise we replace c by a maximal element in
[c,a)). Similarly, we may assume that d is an immediate predecessor of b. By the same token, we
may assume that L is maximal in |c N |d, whence we obtain that for every = € X,

(if L<z<e¢ thenz £ d) and (if L <z <d, thenz £ ¢). (7)
Lastly, as the upset of X generated by _L validates all the formulas valid in X, we may also assume

that L is the minimum of X (otherwise we replace X by 1.1).
Since (1{a, b})€ is an upset, the following relation is an E-partition of X:

R={{z,y) e X xX:x=yorx,y ¢ |[{a,b}}.
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T
T T
a b a b a b
c d c d c d
1 1 L
X1 Xo X3

Ficure 12. The posets X1, Xo and X3.

Notice that the subposet of X/R with the universe {[al, [0], [c], [d], [L]} is isomorphic to the
subposet of X with the universe {a, b, ¢,d, L}. Therefore, since X/R validates all the formulas
valid in X, we may assume that R is the identity relation (otherwise we replace X by X/R).
Consequently,
either ([{a,b}) =@ or ({{a,b})*={T}

for some element T € X.

Notice that if (}{a,b})* = {T}, then obviously T £ aand T & b. As X is a rooted poset
of width < 2 and @ and b are incomparable, by symmetry we may assume that b and T are

comparable which, together with T £ b, yields b < T. Therefore, one of the following Conditions
holds.

(1) (Ha,b}) = o;
(2) a,b< T;
(3) aand T are incomparable and b < T.

If (J{a,b})¢ = {T}, the subposet of X with the universe {_L,a,b,c,d, T} is one of the three X;
depicted in Figure 12. Thus,

X = {a,b} or (X ={T}Ul{a,b}and the poset {L,a,b,c,d, T} isone of the X;). (8)
As a and b are incomparable, this implies that for every z € X,
ifa<zxorb<uz thenx=T >b. 9)

Given a pair y;, y2 of elements of a poset Y, we denote by (y1,y2) the open interval {z € Y :
y1 < z < y2}. We will prove that
X — {L,a,b,c,d}U(L,c)U(L,d) if T does not exist (10)
| {Ll,a,b,¢,d, THU(L,e)U(L,d) if T exists.
The inclusion from right to left is obvious. To prove the other inclusion, consider some z € X
other than T. In view of Condition (8), we have x < aor z < b. If z € {a,b}, we are done.
Therefore, we may assume that
eitherz < a or = <b.
Now, if x € |c U |d, we are done because |cU |d C {L,¢,d} U (L,c)U(L,d). Consequently, we
may assume that = ¢ |{c, d}. Since c and d are incomparable and X is a rooted poset of width
< 2, this yields
c<x or d<uw.
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As a and c are incomparable with b and d, the two displays above imply that
eitherc <z <a or d<x <b.

But this contradicts the assumption that ¢ (resp. d) is an immediate predecessor of a (resp. b).
Hence, Condition (10) holds as desired.
Now, we consider the sets

Yi = (L~ (1T UD);
Yo = ((Lye N T < 4bs
Y3 = (L,c]Nlb;
Yy = (L,d] \ la;
Ys = (L,d|Nnla

If T does not exist, the expression | T in the above definition should be interpreted as denoting
the empty set.

Claim 8.4. The following relation is an E-partition of X:
S={(z,y) e X x X :x=yorx,y €Y, forsomei < 5}.

Proof of the Claim. Since the various Y; are pairwise disjoint, S is an equivalence relation on X.
To prove that it is also an E-partition, it suffices to show that there are no distinct =,y € X such
that (z,y) € S and there exists z € X such thatx < zand y £ z and (z, z) ¢ S (see Condition
(1a") if necessary). Suppose the contrary, with a view to contradiction. Since = and y are distinct
and related by .S, we have

Il<z,y<cor L<ay<d

Suppose first that 1. < z,y < ¢. Asd £ ¢, we have d & z,y. Furthermore, from Condition (7)
it follows that 2,y £ d. Thus, z and y are incomparable with d. As X is a rooted poset of width
< 2, this implies that  and y are comparable. Since by assumption < z and y % z, we conclude
that z < y. Now, by applying the assumption that X has width < 2 to the fact that y and d
are incomparable, we obtain that z is comparable with either y or d. We will prove that z is
incomparable with y. On the one hand, by assumption y % z. On the other hand, if z < y, then
we would have z < z < y, because = < z by assumption. Since (z,y) € S, the equivalence class
[] contains the interval (z,y). In particular, (z, z) € S, a contradiction. Thus, we conclude that
z & y. Consequently, y and z are incomparable, which in turn means that d and z are comparable.
Since z and d and incomparable and = < z, this means that d < z. A similar argument shows
thatif 1 < z,y < d, then ¢ < z. Thus, we obtain that

(L<zyy<candd<z) or (L <z,y<dandc< z2).

We need to prove that both cases lead to a contradiction. First suppose that | < z,y < cand
d < z. Since d < z, by Condition (10) we obtain that z € {b, T}. Recall that z,y € Y; for some
i < b because z and y are different and related by S. Furthermore, as 1. < z < ¢, Condition (7)
implies that Y; is Y3, Y3, or Y3. We have two cases: either z =borz=T.If 2z = T, thenY; # YV}
because z € Y;and x < z = T and Y7 C (| T)¢. Therefore, Y; is Y or V3. Since Yo UY3 C [T = |2
and y € Y;, we obtainy < T = z, a contradiction. If z = b, then Y; = Yz becausez € Y;, z < z = b,
and Y7 UY; C (Jb)°. As a consequence, y € Y; = Y3. Since Y3 C |b = |z, this implies that y < z,
a contradiction.

Next we consider the case where | < z,y < d, and ¢ < z. Since ¢ < z, Condition (10) implies
thatz = Torz =a. If z = T, then z > d > y, a contradiction. Suppose that z = a. Recall
that z,y € Y; for some ¢ < 5 because x and y are distinct and related by S. As 1 < z < 4,
Condition (7) implies that Y; is Y4 or Y5. But,asz € Y}, < z = @, and Ys C (la)¢, we must have
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Y; = Y5. Consequently, y € Y; = Y5 C |a. This yields that y < a = 2, a contradiction. Hence, we
conclude that S is an E-partition of X. X

Claim 8.5. Forevery x,y € {L,a,b,c,d, T},
<y [z] <[y]

Proof of the Claim. The implication from left to right is obvious. To prove the other implication,
suppose that [z] < [y]. The definition of S guarantees that

[L={L}t [TI=A{T}t laf={a} [l={0} [d=(Ld~la
and

] = (L,cJ~4b if T doesnotexistoritexistsand ¢ < T
Tl (L, NI4T if Texistsandc £ T.

Consequently, y is the maximum of the equivalence class [y]. Therefore, the assumption that
[z] < [y] guarantees the existence of some =’ € [z] such that 2’ < y. If the equivalence class [z] is
a singleton, then z < y and we are done. Otherwise, in view of the above displays, = is either ¢
or d. As | is maximal in |c¢ N |d, the above displays guarantee that [c] and [d] are incomparable.
Then we may assume that z € {c¢,d} andy € {1, T,a,b}.

We begin by the case where z = d. If y € {b, T}, then clearly z < y. Therefore, we consider
the case where y € {_L,a}. As the set [z] = [d] = (L, d] \ la does not contain any element below
1 or a, this case never happens and we are done.

Then we turn our attention to the case where = = c. If y = q, then clearly z < y. Moreover,
[z] = [¢] C (L,¢], and hence [z] does not contain any element below L or b. Together with
[L] = {L}and [b] = {b}, this yields that y ¢ {b, L}. It only remains to consider the case where
y = T. But the above display guarantees that if [¢] contains an element below T, then ¢ < T, and
hence = < y as desired. X

Together with the fact that X/S validates all the formulas valid in X, Claim 8.5 allows us to
assume that S is the identity relation (otherwise we replace X by X/S).

Claim 8.6. One of the following conditions holds.
(M1) (L, C) =9
(M2) (L, ¢) = {x} for some x such that tx = {z,a,c} U1b;
(M3) T exists, ¢ £ T,and (L, c) = {«} for some x such that Tz = {x,a,¢, T};
(M4) T exists, ¢ £ T, and (L,c) = {x,y} for x and y such that ty = {y,a,c, T} and tz =
{z,y,a,b,c, T}

Proof of the Claim. First, if (L, c¢) is empty, Condition (M1) holds. Suppose (L,c) # @. The
definition of the various Y; guarantees that (L, ¢] C Y7 U Y3 U Y3. Bearing in mind that each Y; is
either empty or a singleton (since S is the identity relation), this implies that (L, ¢] has at most
three elements, which in turn means that (L, ¢) has at most two. Furthermore,

{{$} T E (J_,C]} - {Yl,YQ,YEJ,}. (11)

First suppose that (L, ¢) has precisely two elements = and y. By Condition (7), z and y are
incomparable with d. As X is a rooted poset of width < 2, this yields that both = and y must be
comparable. Without loss of generality we may assume that 1. < <y < c. From Condition (11)
it follows that

{Hz} {y} {c}} = V1, Y2, Y3}

Together with < y < ¢ and the definition of the various Y}, this implies that
Yi={c Ya={y} Ys={z}.



DEGREES OF THE FINITE MODEL PROPERTY: THE ANTIDICHOTOMY THEOREM 35

-
a T T
a b a b c b a b
c d c d T d c d
T Y T Y Y z T Y
1 1 1 1
Z1 ZQ Z3 Z4

Ficure 13. The posets 71, Z», Z3, and Zj.

This, in turn, guarantees that T exists and that
r<b y<T y&b cLT.

Together with Condition (10) and the facts that (L,¢) = {z,y}, L <z <y < ¢ and z,y,c £ d,
this implies that
tr ={z,y,a,b,c, T} Ty ={y,a,c, T}

Therefore, Condition (M4) holds.

It only remains to consider the case where (L, c) = {«} for some x € X. First suppose that
z < b. As before, Condition (7) implies that z £ d. Together with Condition (10) and the
assumption that (L, ¢) = {z}, this implies that = = {z, a, ¢} U 10. Hence, Condition (M2) holds.
Next suppose that 2 £ b. Since z, ¢ £ b, both [c] and [z] are different from Y3. By Condition (11)
and the fact that ¢ # z, this implies that {{c}, {z}} = {¥1,Y2}. As 2 < ¢, the definition of the
various Y; guarantees that ¢ € Y7 and € Y5. Consequently, T exists and

ck T < T z £ b.

Bearing in mind that z £ d by Condition (7), we conclude that tz = {z,a,c, T}. Therefore,
Condition (M3) holds as desired. X

A similar (but shorter) argument yields the following:

Claim 8.7. One of the following conditions holds.
(N1) (L,d) = ;
(N2) (L,d) = {x} for some x such that Tz = {z,a} U1d.

At last, we are ready to give a more concrete description of the poset X. First, the order
structure of the subposet {_L,a,b, c,d} of X is that of Figure 11 and, if T exists, the subposet
{L,a,b,c,d, T} is one of those depicted in Figure 12. By Condition (10), the elements of X other
thana,b,c,d, T,and L liein (L, ¢)U(L, d). But recall from Claim 8.6 that one of Conditions (M1)-
(M4) holds and that each of them gives a complete description of the interval (L, ¢). Similarly,
one of (N1) or (N2) holds by Claim 8.7 and each of them gives a complete description of the
interval (L, d).

As a consequence, we obtain that X is a subposet of one of the rooted posets in Figure 13.
Moreover, X contains L, a,b,c,d plus T if T appears in the corresponding picture.
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Now, recall that X validates the Jankov formulas of K, ..., K;. Therefore, none of these
posets is a p-morphic image of an upset of X. Bearing this in mind, we begin by considering
the case where X is a subposet of Z; containing 1, a, b, ¢, and d. Notice that X # {1,a,b,¢c,d},
otherwise we would obtain X = K, a contradiction. Then X contains z or y. If X does not
contain both, it is isomorphic to K against the assumptions. Therefore, we conclude that X
contains both = and y. But this is also impossible as in this case K3 is a p-morphic image of X.

The case where X is a subposet of Z containing L, a, b, ¢, d, and T leads to a contradiction in
a similar way (where K3 takes the role of K; and K, that of K»).

Next we consider the case where X is a subposet of Z3 containing 1, a, b, ¢,d, and T. Notice
that X contains one of z,y, and z (otherwise K is a p-morphic of X, which is impossible). If
x and z or y and z belong to X, then K3 is a p-morphic image of X, which is also false. More
precisely, when z,z € X, we collapse {a,b, T} if y ¢ X and we collapse {a,b,c, T} if y € X.
In both cases, we obtain a p-morphic image of X isomorphic to K3. On the other hand, when
y,z € X butz ¢ X, we collapse {a, b, T}, thus obtaining a p-morphic image of X isomorphic to
K. Therefore, we may assume that the universe of X is the union of A := {1, a,b,c,d, T} with
{z} or {y} or {z,y} or {z}. We will show that each of these cases leads to a contradiction.

If X =AU {z}or X = AU {y}, then K} is a p-morphic image of X obtained by collapsing
{b,d, T}. Moreover, if X = AU {z, y}, then K¢ is a p-morphic image of X obtained by collapsing
{a,c}. Lastly, if X = AU {z}, then K> is a p-morphic image of X obtained by collapsing {b, T }.

It remains to consider the case where X is a subposet of Z; containing L,a,b,c,d, and T.
Observe that X # {1,a,b,c,d, T} (otherwise X = K5, which is false). Therefore, « or y belong
to X. If both z and y belong to X, then K3 is a p-morphic image of X obtained by collapsing
{a,b, T}, against the assumptions. Thus, X is A together with z or y. If X = A U {z}, then
X = Kg, which is false. On the other hand, if X = A U {y}, then X = K7, which is also false.
Hence, we reach the desired contradiction. X

Proof of Lemma 8.3. Let X be a rooted Noetherian poset of width < 2 validating 3(/). By The-
orem 4.2(2), from X F 3(P,) it follows that P is not a p-morphic image of any subposet of X.
This fact will be used repeatedly in the proof.

First suppose that X F 5(P3) and consider a nonnegative integer i < 6. By the Fine Lemma, to
show that X validates [J(G;), it suffices to prove that G; is not a p-morphic image of any upset
of X. Suppose the contrary. Then there exist an upset U of X and a surjective p-morphism
a: U — G;. As a consequence, G; validates all the formulas valid in X and, in particular, 5(F3).
But in view of Theorem 4.2(2) this is false because P; is isomorphic to a subposet of G;, as it can
be checked by inspecting the posets in Figure 10.

To prove the converse, assume that X validates the Jankov formulas of the posets G1,...,Gg
in Figure 10 and suppose, with a view to contradiction, that X ¥ §(P3). By Theorem 4.2(2)
this implies that P; is isomorphic to a p-morphic image of a subposet of X. The definition of a
p-morphism and the structure of P; imply that actually P is isomorphic to a subposet of X. We
name the elements of this subposet as in Figure 14.

We may assume that L is the minimum of X (otherwise we replace X by 1_L). In addition,
since X is Noetherian, we may assume that

1 is maximal in Ja N |d and b (resp. ¢) is an immediate successor of ¢ (resp. d). (12)

Claim 8.8. We may assume, without loss of generality, that either X = |{a,b} or X = {T} U [{a,b}
for some T € X such that the subposet of X with the universe {L,a,b,c,d, T} is one of the posets X;
depicted in Figure 15.
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FiGure 14. The poset P3 viewed as a subposet of X.
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Ficure 15. The posets X; and Xo.

Proof of the Claim. If X = |{a,b}, we are done. Suppose X # |{a,b}. Since (}{a,b})" is an upset,
the following relation is an E-partition of X:

R={(z,yy e X xX:x=yorz,y ¢ |{a,b}}.

Notice that the subposet of X/R with the universe {[al, [0], [c], [d], [L]} is isomorphic to the
subposet of X with the universe {a,b,c,d, L}. Therefore, since X/R validates all the formulas
valid in X, we may assume that R is the identity relation (otherwise we replace X by X/R).
Consequently, being nonempty by assumption, the set ({{a, b})¢ is an equivalence class of the
identity relation R. Therefore, (l{a,b})* = {T} for some T € X. This implies that X =
{T}Ua,b}.

It only remains to prove that the subposet of X with the universe {_L,a,b,c,d, T} is one of the
posets X;. First, recall that T ;{ a, b. Since X is a rooted poset of width < 2, this yields that either
a<Torb< T.Ifa,b< T,then the subposet {L,a,b,c,d, T} is isomorphic to X; and we are
done. Supposea £ T orb £ T. Since T £ a, b, we have that

(a and T are incomparable and b < T) or (band T are incomparable and a < T).

First suppose that a and T are incomparable and b < T. Since 1b is an upset, the following
relation is an E-partition of X:

S={{z,y) e X xX:x=yorb< x,y}.

Notice that S does not alter the order relation between L, a, b, c, d. Together with the fact that
X/S validates all the formulas valid in X, this means that X/S is a poset of width < 2 that
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validates 5(P) and the various J(G;). Moreover, X/S contains a subposet isomorphic to P,
namely {[ L], [a], [b], [c], [d]}. Therefore, in our proof we may replace X by X /S and each element
1,a,b,c,dby its equivalence class. Furthermore, since b < T, the definition of S ensures that
[T] = [b]. Bearing in mind that X = {T} U |{a, b}, this means that X/S = |{[a], [b]}. Because of
this, by replacing X by X/S, we may assume that X = |{a, b} as desired.

Therefore, it only remains to consider the case where b and T are incomparable and a < T.
We will prove that ¢ < T. Suppose the contrary. Then ¢ and T are incomparable because by
assumption ¢ < band T £ b. Therefore, both ¢ and b are incomparable with T. By assumption,
they are also incomparable with a. Together with the fact that L < a < Tand L < ¢ <},
this implies that {_L,a,b,c, T} is a subposet of X isomorphic to P». But this contradicts the
assumption that X validates §(P,). Hence, we conclude that ¢ < T as desired. Bearing in mind
that band T are incomparable, that a < T, and that the structure of the poset {_L, a,b, ¢, d} is as
in Figure 14, this implies that the subposet of X with universe {_L,a,b,¢c,d, T} is Xo. X

Claim 8.9. We have that
¥ {L,a,b,c,d}U(len(L,a))U(L,d) if T does not exist
| {L,a,b,6,d, T}U(en(L,a))U(L,d) if T exists.

Proof of the Claim. The inclusion from right to left is obvious. To prove the other inclusion, con-
sider some x € X \ {L,a,b,c,d} other than T. In view of the Claim 8.8, either X = |{a,b} or
X ={T}Ul{a,b}. Since z is different from a, b, T and from the minimum L, we have two cases:
x € (L,a)orz e (L,b).

First suppose that z € (L, a). To prove that = belongs to the set in the right hand side of the
statement, it suffices to show that = < c¢. Suppose the contrary, with a view to contradiction. Since
z < aand ¢ £ a, this means that 2 and ¢ are incomparable. Furthermore, since L is maximal in
lan]dby Condition (12) and L < = < a, we obtain £ d. In addition, d £ z because = < a and
d & a. Thus, z is also incomparable with d. Therefore, L < 2 < aand L < d < cand z,a are
incomparable with d, c. Consequently, {_L, a, b, ¢, d} is a subposet of X isomorphic to . But this
contradicts the assumption that X F §(P).

Next suppose that € (L,b). We may assume that # £ a (otherwise z € (L,a) and we
repeat the argument of the previous case). Consequently, in order to prove that a and z are
incomparable, it suffices to show that a £ z. But this is clear because by assumption z < b and
a & b. Furthermore, by assumption, a is incomparable with ¢ and d. Together with the facts that
a is incomparable with x and that X has width < 2, this implies that = is comparable with both
cand d. If x < d, then z € (L, d), and hence z belongs to the right hand side of the statement.
Suppose x £ d. Since x and d are comparable and distinct, this means that d < z. Together
with the assumption in Condition (12) that ¢ is an immediate successor of d and the fact that
x # ¢, this implies that z £ c¢. Since z and ¢ are comparable, we obtain that ¢ < z. But then
we have ¢ < x < b, a contradiction to the assumption that b is an immediate successor of ¢ (see
Condition (12)). X

Now, we consider the relation
T={{z,y) e XxX:z=yorz,y€ (L,a)Nlcorz,yec (L,d},
where (L, d] stands for {x € X : 1L < < d}.
Claim 8.10. The relation T is an E-partition of X.

Proof of the Claim. Since L maximal in |a N |d by Condition (12), the sets (L, a)N]cand (L, d] are
disjoint, and hence 7' is an equivalence relation on X. We will prove that it is also an E-partition.

To this end, it suffices to show that there are no distinct ,y € X such that (z,y) € T and for
which there exists an element z € X such that 2 < zand y £ z and (z, z) ¢ T. Suppose the
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contrary, with a view to contradiction. Since = and y are distinct and related by 7', we have that
z,y € (L,a)N}corz,y € (L,d].

First suppose that z,y € (L,a) N Jc. From Claim 8.9 it follows that z € {1,a,b,¢,d, T} U
((L,a)Nlc)U(L,d). Clearly, z ¢ (L,a)N]c (otherwise (x, z) ¢ T contradicting the assumption).
Moreover, z ¢ (L,d] because otherwise L < z < z < d and by assumption L < z < a,
contradicting the maximality of L in Ja N |d (see Condition (12)). Therefore, z € {_L,a,b,c, T}.
Since by assumption y £ z and y € (L,a) N Jc, we obtain that z ¢ {a,c,b, T}. Consequently,
z = L. But this contradicts the assumption that 1. < z < z.

Next suppose that z,y € (L,d]. Since y £ z, this implies that d £ z. Furthermore, z £ d
(otherwise 1. < z < z < d, and hence (z,z) € T, a contradiction). Therefore, z and d are
incomparable. Since a and d are also incomparable and X is a rooted poset of width < 2, we
conclude that z and a are comparable. As L is maximal in |a N |d by Condition (12) and
1 < z < d, we obtain that z ¢ a. Together with 2 < z, this implies that z £ a. Thus, since z and a
are comparable, we musthave a < z. As {1, a,b,c,d, T} is one of the posets depicted in Figure 15,
we conclude that z = T. But since y < d < T, this implies that y < 2, a contradiction. X

Lastly, we will make use of the following.
Claim 8.11. Forevery x,y € {L,a,b,c,d, T},
<y = [zl < [y)

Proof of the Claim. The implication from left to right is obvious. To prove the other one, suppose
that [z] < [y]. The definition of T guarantees that

L={Ly [T=A{T} la={a} [Bl={b} [d={c [d=(Ld]
In view of the above display, if z,y # d, then [z] = {z} and [y] = {y}, whence [z] < [y] implies
x < y as desired. Therefore, we consider the case where either x = d or y = d. First suppose that
x=d. Ify e {b,c,d, T}, thenz = d < yand we are done. Thus, it suffices to show thaty ¢ { L, a}.
Since there is no element in [y] = [d] = (L, d| below _L or a (the latter, by the maximality of L
in Ja N ]d; see Condition (12)), the fact that [ L] = {L} and [a] = {a} implies that [y] & [L],[a],
thus preventing y from being L or a as desired. Next suppose that y = d. If x = d, we are done.
Therefore, we suppose that z € {1, a,b,c, T}. In this case, [x] = {z}, thus the assumption that
{z} =[z] < [y] = [d] = (L, d] implies that x < d = y. X

Together with the fact that X /T validates all the formulas valid in X, this allows us to assume
that T is the identity relation (otherwise we replace X by X/T"). Consequently, Claim 8.9
specializes to the following:

¥ {L,a,b,c,d}U (Jen(L,a)) if T does not exist
| {L,a,b,6,d, THU (Len(L,a)) if T exists,

where |cN (L, a) is either empty or a singleton. Bearing in mind that if T exists, then the subposet
of X with the universe {_L, a, b, ¢, d, T} is one of the posets depicted in Figure 15, we conclude that
X is a subposet of one of the posets depicted in Figure 16 containing L, a, b, ¢, and d. Furthermore,
when we identify X with a subposet of Z; or Z3 we assume that it contains T, otherwise we
identify it with a subposet of Z;.

Now, recall that X validates the Jankov formulas of Gy, . . . , Gg, and hence none of these posets
is a p-morphic image of an upset of X by the Fine Lemma. Bearing this in mind, we begin by
considering the case where X is a subposet of Z; containing L, a, b, ¢, and d. In this case, X is
isomorphic to either G; or G35, a contradiction. Next we consider the case where X is a subposet
of Zy (resp. Z3) containing |, a, b, c,d, and T. In this case, X is isomorphic to either G3 or G4
(resp. G5 or Gg), which is also false. Hence, we reach the desired contradiction. X

(13)
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Ficure 16. The posets Z;, Z5, and Zs.

We are now ready to prove that KG can be axiomatized by Jankov formulas.

Proof of Theorem 4.10. Let X be the union of the set of Jankov formulas that axiomatize BW; and
the set of Jankov formulas of the posets in Figures 9 and 10. We will prove that > axiomatizes KG.
Suppose the contrary. Since sums of one-generated Heyting algebras have width < 2, we have
that BW, C KG, and hence the Jankov formulas axiomatizing BW; belong to KG. Furthermore,
observe that the posets in Figures 9 and 10 are not models of KG (because each of them contains
one of the posets Py, P», P3 in Figure 2 as a subposet and KG is axiomatized by 5(Py), B(F2), B(Ps)
by Theorem 4.4). Therefore, in view of the Dual Jankov Lemma, the Jankov formulas of these
posets belong to KG. As a consequence, we obtain that > C KG. Since by assumption ¥ does not
axiomatize KG, this yields that the si-logic L axiomatized by X is strictly contained in KG.

From Theorem 4.9 it follows that BW, C L. By Fine Completeness Theorem, there is a class K
of rooted Noetherian posets of width < 2 such that L = Log(K). Since KG ¢ L, by Theorem 4.4
there is a poset X € K refuting 3(FP;) for some i < 3. Because X has width < 2, we have that
X E B(Py). Therefore, either X ¥ 3(F») or X ¥ 5(P3). By Lemmas 8.2 and 8.3, there is a poset Y’
in Figure 9 or 10 such that X ¥ J7(Y). Since X € K and L = Log(K), we obtain that 7(Y") does
not belong to L. The obtained contradiction proves that KG = IPC + X. X
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