
On the Provability Logic of Constructive Arithmetic
The Σ1-provability logics of fragments of Heyting Arithmetic

MSc Thesis (Afstudeerscriptie)
written by

Borja Sierra Miranda
(born June 9th, 1999 in Sevilla, Spain)

under the supervision of Dr Bahareh Afshari and Prof Dr Albert Visser,
and submitted to the Examinations Board in partial fulfillment of the

requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
August 22, 2023 Dr Bahareh Afshari (Supervisor)

Dr Maria Aloni (Chair)
Prof Dr Lev Beklemishev
Dr Benno van der Berg
Prof Dr Albert Visser (Supervisor)





Abstract

We study provability logic in the context of intuitionistic arithmetics. In partic-
ular, we focus on the Σ1-provability logics of subtheories of Heyting Arithmetic
HA. In order to do so, we analyze the tools developed by Visser and Zoethout
in [13] and a method for constructing so-called slow provability predicates in-
troduced by Visser in [12]. We also study a theory distinct from HA, iIΣ+

1 , for
which we can calculate its Σ1-provability logic.
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Chapter 0

Introduction and
Background

Provability logic arises from an interaction between proof theory and modal
logic. The basic idea is to interpret the box in modal logic as provability in some
theory. As an example, the principle K from modal logic, i.e. (𝜙→𝜓)→ 𝜙→ 𝜓
can be understood as saying that the theory we are considering is closed under
modus ponens: if 𝜙→𝜓 is provable then 𝜙 provable implies 𝜓 provable. Note
that box can be applied multiple times. This means that the theory we are
interpreting box in must, in some sense, encode logic and its own axiomatization.
Examples of such theories are theories as strong as ZFC (Zermelo-Fraenkel set
theory), or as weak as EA (elementary arithmetic).
The first great step in provability logic was finding the axioms of GL, Gödel-

Löb’s logic, in 1955 by Löb. At this point this were stated as conditions of
provPA, the provability predicate of Peano Arithmetic, not as a modal logic.
Solovay proved in 1976 of the completeness of GL with respect the arithmetical
semantics. This logic is defined as the minimal (normal) modal logic which
contains the following principle: ( 𝜙→𝜙)→ 𝜙. Although this principle may
appear complex, if we interpret as provability, its meaning is clear. 𝜙→
𝜙 is related to soundness, it can be read as “if 𝜙 is provable then 𝜙 holds
(is true)”. Then, ( 𝜙→𝜙) means that the theory proves soundness for the
particular formula 𝜙. Then, the whole implication, means that if the theory
proves soundness of a formula, then the theory proves the formula. In other
words, the theory only can prove the soundness of the theorems it already
knows to hold. Thanks to Solovay’s result it was proven that the provability
logic of PA is exactly GL. In fact, GL is the provability logic of many arithmetical
theories: any Σ1-sound arithmetical theory 𝑇 extending IΔ0+EXP (induction
for bounded formulas and the exponentiation axiom).
Once the provability logic of PA was found, the question of calculating the

provability logic of Heyting Arithmetic, HA, was a natural step. HA is nothing
more than the same theory as PA, but changing the ambient logic from clas-
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sical to constructive. This problem has been remarkably hard to solve, being
open for four decades. Recently, in [6], Mojtaba Mojtahedi solved the problem,
calculating the provability logic of HA for the first time.
Let us briefly explain the idea behinds Mojtahedi’s proof. In order to do so,

we need to introduce Σ1-provability logic. Note that to fully interpret modal
formulas in another first order theory like PA, it is not enough to give a mean-
ing to . One also need to deal with propositional variables. The idea is
straightforward: give an interpretation that translates propositional variables
into sentences of the theory, in our case arithmetical theories. Σ1-provability
logic is the modal logic that arises if we just keep the interpretations of this
propositional variables to be Σ1-formulas, in other words, a formula starting by
an existential and then having all quantifiers (non-trivially) bounded.
The idea behinds Mojtahedi’s proof is to divide the proof of completeness in

two steps. First, one calculates the Σ1-provability logic of the theory of interest,
then one lifts the result from the Σ1-provability logic to the full provability logic.
In particular, he transforms a realization making a modal formula 𝜙 invalid into
a Σ1-realization making the modal formula also invalid. This clearly signals the
importance of the Σ1-provability logic to the calculation of the full provability
logic, at least in the intuitionistic case.
Our goal is to study provability logic in the context of intuitionistic arith-

metics. In particular, we focus on the Σ1-provability logic of subtheories of HA.
In order to do so, we will use tools develop by Albert Visser and Jetze Zoethout
in [13], which where inspired by the ones developed by Mohammed Ardeshir
and Mojtaba Mojtahedi in [1]. The long term objective of this study, which
is impossible to completely solve in this exploration due to time constrains, is
to check whether the same uniformity of provability logics that occurs in the
classical arithmetical case also holds in the intuitionistic case.
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Chapter 1

Preliminaries

In this chapter we are going to introduce the concepts that form the base of
the text. Clearly. before introducing the concepts of provability logic, we need
some background in arithemtical theories, modal logic and how to formalize
logic in arithmetic. Since we are going to study intuitionistic arithmetic, we
also need to briefly introduce intuitionistic logic. In particular, the structure of
the chapter is as follows:

1. Section 1.1 introduces intuitionistic logic via a Hilbert system.

2. Section 1.2 introduces the concepts we need from Arithmetic and also the
theories we will mainly work with.

3. Section 1.3 introduces the syntax and semantics of intuitionistic modal
logic and the ony modal logic that we are going to need iGLC.

4. Section 1.4 explains how to codify different constructions of logic inside
arithmetical theories.

5. Finally, Section 1.5 introduces the concepts of provability logic that we
need.

Although the reader may be familiar with these concepts already, we encourage
to read Section 1.5. In that section we introduce some notation that will be
heavily used through all the text.

1.1 Intuitionistic Logic
Officially, our formulas are natural numbers, lists of formualas are also natural
numbers and so on. The idea is that we use a codification of these concepts
in natural numbers that can be developed in iEA, i.e. intuitionistic elemen-
tary arithmetic. In this way, we bring the metatheory we reason in and the
arithmetical theory at hand a little closer. For details about these codifications,
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check the last chapter of [5]. In the book it is done in a classical setting, but all
the codification can be performed in intuitinistic arithmetic.
We define a Hilbert system for intuitionistic first order logic, taken from [8].

Definition 1. We define the Hilbert system for intuitionistic predicative logic
iFOL as:
Axioms:

1. ⊥→𝜙;

2. 𝜙∧𝜓→𝜙,𝜙∧𝜓→𝜓;

3. 𝜙→𝜓→𝜙∧𝜓;

4. 𝜙→𝜙∨𝜓,𝜓→𝜙∨𝜓;

5. (𝜙→𝜒)→(𝜓→𝜒)→(𝜙∨𝜓→𝜒);

6. 𝜙→𝜓→𝜙;

7. (𝜙→𝜓→𝜒)→(𝜙→𝜓)→(𝜙→𝜒);

8. (∀𝑥 . 𝜙)→𝜙[𝑥/𝑡], where 𝑡 is free for 𝑥 in 𝜙;

9. (∀𝑥 . 𝜓→𝜙)→𝜓→(∀𝑦 . 𝜙[𝑥/𝑦]), where 𝑥 ∉ fv(𝜓) and 𝑦 = 𝑥 or 𝑦 ∉ fv(𝜙);

10. 𝜙[𝑥/𝑡]→∃𝑥 . 𝜙, where 𝑡 is free for 𝑥 in 𝜙;

11. (∀𝑥 . 𝜙→𝜓)→(∃𝑦 . 𝜙[𝑥/𝑦])→𝜓, where 𝑥 ∉ fv(𝜓) and 𝑦 = 𝑥 or 𝑦 ∉ fv(𝜙);

12. ∀𝑥 . 𝑥 ≈ 𝑥;

13. For any 𝑛-ary function symbol 𝑓 and any 𝑖 ≤ 𝑛 we have the axiom:

∀𝑥0,…,𝑥𝑛 . 𝑥𝑖 ≈𝑥𝑛→𝑓(…,𝑥𝑖,…) ≈ 𝑓(…,𝑥𝑛,…);

14. For any 𝑛-ary relation symbol 𝑅 and any 𝑖 ≤ 𝑛 we have the axiom:

∀𝑥0,…,𝑥𝑛 . 𝑥𝑖 ≈𝑥𝑛→(𝑅(…,𝑥𝑖,…)↔𝑅(…,𝑥𝑛,…)).

Rules:

𝜙→𝜓 𝜙
MP𝜓

𝜙
Gen∀𝑥.𝜙

We will write Γ ⊢ 𝜙 to mean that there is a derivation of with assumptions
in Γ. In this case, for Gen we need the additional condition that 𝑥 ∉ fv(Γ). �
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It is trivially true that Γ ⊢ 𝜙→𝜓 implies Γ,𝜙 ⊢ 𝜓. The reverse direction is
the deduction theorem:

Lemma 2 (Deduction theorem). Γ,𝜙 ⊢ 𝜓 implies that Γ ⊢ 𝜙→𝜓.

A theory will be just a set of sentences of a given signature. Then, saying
that a theory proves a formula will be saying that there is a derivation of the
formula using as assumptions the axioms of the theory. Note that we impose
that the axioms of a theory are sentences because we want to be able to use the
rule Gen when reasoning inside a theory.

Definition 3. A theory 𝑇 consists in a set Ax𝑇 of sentences of a given signature.
We will write Γ ⊢𝑇 𝜙 to mean that there is a finite subset Δ⊆ Ax𝑇 such that
Δ,Γ ⊢ 𝜙. �

1.2 Arithmetical theories
In this text we will mainly work with two types arithmetical theories. The first
kind are formulated in a language with addition, multiplication and exponenti-
ation. The second kind are formulated in a language with all primitive recursive
functions. When there is no danger of confusion, we will write simply ℒ1 to
refer to the first order language. We will assume that all the theories we work
with are in one of these languages and are computably enumerable.
Both of this languages come equipped with a standard model whose domain

is ℕ. If 𝜙 is an arithmetical formula, there is no ambiguity in the meaning of
⊨ℕ 𝜙. Let us define some concepts that are going to be useful for our arithmetical
theories. We start with the definition of the arithmetical hierarchy.

Definition 4. Assume we have a fixed signature with the binary relation symbol
≤. Then we define the class of Δ0 formulas as the smallest class such that:

1. Atomic formulas belong to Δ0.

2. Δ0 is closed under conjunction, disjunction and implication.

3. If 𝜙 is a formula in Δ0, 𝑥 is a variable and 𝜏 is a term (of the given
signature) such that 𝑥 ∉ fv(𝜏), then ∀𝑥 ≤ 𝜏 . 𝜙,∃𝑥 ≤ 𝜏 . 𝜙 are in Δ0. These
are called bounded quantifiers.

One we have the class of Δ0-formulas, we can define Σ0 ∶= Π0 ∶=Δ0 and:

Σ𝑛+1 ∶= {∃𝑥 . 𝜙 ∣ 𝜙 ∈Π𝑛},
Π𝑛+1 ∶= {∀𝑥 . 𝜙 ∣ 𝜙 ∈ Σ𝑛}. �

Definition 5. Let 𝑇 be an arithmetical theory and let Γ be a set of formulas
from the language of 𝑇. We say that:

1. 𝑇 isΔ0-sound (Σ1-sound) if for any sentence 𝜙 ∈Δ0 (𝜙 ∈Σ1), ⊢𝑇 𝜙 implies
⊨ℕ 𝜙.
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2. 𝑇 is Δ0-complete (Σ1-complete) if for any sentence 𝜙 ∈Δ0 (𝜙 ∈Σ1), ⊨ℕ 𝜙
implies ⊢𝑇 𝜙.

3. 𝑇 is Δ0-decidable if for any formula 𝜙 ∈Δ0, we have that ⊢𝑇 𝜙∨¬𝜙.

�

Both languages we are going to consider have a constant 0, representing the
number 0 and function symbols S,+,×, which in the standard model are suc-
cessor, addition and multiplication. Note that with 0 and S alone, we can get a
closed term representing any natural number in the standard model: to repre-
sent the number 𝑛 just apply S 𝑛 times to 0. This is an unary representation of
the natural numbers. For matters that we are going to discuss in Section 1.4,
we need a more efficient coding of natural numbers as terms. For that purpose,
we are going to use a binary representation of the natural numbers.

Definition 6. We define the function ⋅ ∶ℕ⟶Term as follows:

0↦ 0;

1↦ S(0);

2𝑛↦ (1+1)×𝑛, where 𝑛 > 1;

2𝑛+1↦ S((1+1)×𝑛), where 𝑛 > 1.

If 𝑛 ∈ℕ, then 𝑛 is called the numeral of 𝑛. �

Definition 7 (Induction). Given a formula 𝜙 and a variable 𝑥, we define the
sentence 𝐼𝜙,𝑥 as the universal closure of:

𝜙[𝑥/0]∧ (∀𝑥.𝜙→𝜙[𝑥/S𝑥])→∀𝑥.𝜙,

where 𝑥 ∈ fv(𝜙). If Γ is a set of formulas, we define

𝐼Γ = {𝐼𝜙,𝑥 ∣ 𝜙 ∈ Γ and 𝑥 ∈ fv(𝜙)}. �

Definition 8 (Collection). Given a formula 𝜙 and variables 𝑥,𝑦, we define
the sentence 𝐵𝜙,𝑥,𝑦 as the universal closure of:

(∀𝑥 ≤ 𝑢∃𝑦 . 𝜙)→ (∃𝑣∀𝑥 ≤ 𝑢∃𝑦 ≤ 𝑣 . 𝜙),

where 𝑢,𝑣 ∉ fv(𝜙). If Γ is a set of formulas, we define

𝐵Γ = {𝐵𝜙,𝑥,𝑦 ∣ 𝜙 ∈ Γ,𝑥,𝑦 ∈Var}. �

Theories in the elementary language of Arithmetic

Definition 9. We define the elementary language of Arithmetic, ℒexp, as the
first order language with the following symbols:

1. A constant 0, called zero.
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2. Two unary function symbols S,exp, called succesor and exponentiation,
respectively.

3. Two binary function symbols +,×, called addition and multiplication,
respectively.

4. A binary relation symbol ≤.

�

We start with intuitionistic Robinson’s Arithmetic with exponentiation.
This theory only contains the axioms claiming that the successor function is
injective but not surjective; the recursive definitions of addition, multiplication
and exponentiation; and the definition of the order relation.

Definition 10. The theory iQexp is the theory over iFOL in the language of
ℒexp with axioms:

1. ∀𝑥 . S(𝑥) ≉ 0.

2. ∀𝑥,𝑦 . S(𝑥) ≈ S(𝑦)→𝑥 ≈ 𝑦.

3. ∀𝑥 . 𝑥 ≈ 0∨∃𝑦 . 𝑥 ≈ S𝑦.

4. ∀𝑥 . 𝑥+0≈ 𝑥.

5. ∀𝑥,𝑦 . 𝑥+S(𝑦) ≈ S(𝑥+𝑦).

6. ∀𝑥 . 𝑥×0≈ 0.

7. ∀𝑥,𝑦 . 𝑥+S(𝑦) ≈ S(𝑥+𝑦).

8. exp(0)≈ 1.

9. ∀𝑥 . exp(S(𝑥)) ≈ 2× exp(𝑥).

10. ∀𝑥,𝑦 . 𝑥 ≤ 𝑦 ↔∃𝑧 . 𝑥+𝑧 ≈ 𝑦.

11. ∀𝑥,𝑦 . 𝑥 ≈ 𝑦∨𝑥 ≉ 𝑦.

Also, let iQexp
− be the theory with these axioms without 3 and 11. �

We will mainly work with three extensions of this theory. The first one,
intuitionistic Elementary Arithmetic, is just adding Δ0-induction to this theory.
The second one does not have a name, and is just the extension of intuitionistic
Elementary Arithmetic via Σ1-collection. Finally, the last extension we are
going to work with is induction for Σ1-formulas. Let us put the three together
in the following definition.
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Definition 11. We define the following theories over iFOL:

iEA ∶= iQexp
− +𝐼Δ0,

iEA+𝐵Σ1,
iIΣ1 ∶= iQ

exp
− +𝐼Σ1. �

In Chapter 5 we also work with an extension of iIΣ1, but its definition is
postponed until that chapter.

Theories in the language of Primitive Recursive Functions

First, we define the function symbols of the language of Primitive Recursive
Arithmetic.

Definition 12 (Primitive Recursive Function Symbol). We define the set
of primitive recursive function symbols, 𝒫𝓇, as the set with the following
function symbols

1. Zero,S are a unary function symbols in 𝒫𝓇.

2. Proj𝑛𝑖 where 𝑖 < 𝑛 is an 𝑛-ary function symbol in 𝒫𝓇.

3. If 𝑓 is an 𝑛-ary function symbol in 𝒫𝓇 and 𝑔0,…,𝑔𝑛−1 are 𝑚-ary function
symbols in 𝒫𝓇, then Comp𝑓,𝑔0,…,𝑔𝑛−1

is a 𝑚-ary function symbol in 𝒫𝓇.

4. If 𝑓 is an 𝑛-ary function symbol in 𝒫𝓇 and 𝑔 is an 𝑛+2-ary function
symbol in 𝒫𝓇, then Rec𝑓,𝑔 is an 𝑛+1-ary function symbol in 𝒫𝓇.

The first order language consisting in these function symbols, the constant 0
and the binary relation symbol ≤ is denoted as ℒ(𝒫𝓇). �

Once we have the function symbols, we associate an axiom with each function
symbol:

Definition 13. Let 𝑓 be a function symbol in 𝒫𝓇, we define the sentence ax𝑓
recursively in 𝑓 as:

axZero ∶= ∀𝑥 . Zero(𝑥) ≈ 0.

axS ∶= S(0)≉ 0.

axProj𝑛𝑗
∶= ∀𝑥0,…,𝑥𝑛−1 . Proj𝑛𝑗 (𝑥0,…,𝑥𝑛−1) ≈ 𝑥𝑗.

axComp𝑓,𝑔0,…,𝑔𝑛−1
∶= ∀𝑥0,…,𝑥𝑚−1 .

Comp𝑓,𝑔0,…,𝑔𝑛−1
(𝑥0,…,𝑥𝑚−1) ≈ 𝑓(𝑔0(𝑥0,…,𝑥𝑚−1),…,𝑔𝑛−1(𝑥0,…,𝑥𝑚−1)).

axRec𝑓,𝑔 ∶= (∀𝑥1,…,𝑥𝑛 . Rec𝑓,𝑔(0,𝑥1,…,𝑥𝑛)≈ 𝑓(𝑥1,…,𝑥𝑛)) ∧

(∀𝑥0,…,𝑥𝑛 . Rec𝑓,𝑔(S(𝑥0),𝑥1,…,𝑥𝑛) ≈ 𝑔(𝑥0,Rec𝑓,𝑔(𝑥0,𝑥1,…,𝑥𝑛),𝑥1,…,𝑥𝑛)).

�
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Definition 14 (Primitive Recursive Arithmetic). We define the first order
theory iPRA as the theory over iFOL in the language 𝐿(𝒫𝓇) with the following
axioms:

1. For any 𝑓 ∈ 𝒫𝓇, ax𝑓.

2. Induction for quantifier-free formulas, i.e. if 𝜙 is quantifier free the uni-
versal closure of:

𝜙[𝑥/0]∧ (∀𝑥 . 𝜙 →𝜙[𝑥/S𝑥])→∀𝑥 . 𝜙.

�

We remind the Diagonalization lemma, which is a fundamental result for
provability logic.

Lemma 15. Let 𝜙(𝑥0,…,𝑥𝑛−1,𝑦) be a formula. Then there exists a formula
𝜓(𝑥0,…,𝑥𝑛−1) such that

iEA⊢𝜓(𝑥0,…,𝑥𝑛−1)↔𝜙(𝑥0,…,𝑥𝑛−1,𝜓).

Note that if 𝑇 extends iEA then the equivalence also holds in 𝑇.

1.3 Intuitionistic Modal Logic
We are going to introduce some concepts of Intuitionistic Modal Logic (IML)
that we require. We will not write any proofs, but the interested reader should
consult [13]. First, let us introduce the syntax of modal logic that we are going
to use.

Definition 16. We define the modal logic language, ℒm, as the given by the
following BNF:

ℒm ∶ 𝜙 ∶∶= 𝑝 ∣ ⊤ ∣ ⊥ ∣ 𝜙∧𝜙 ∣ 𝜙∨𝜙 ∣ 𝜙→𝜙 ∣ 𝜙,

where 𝑝 is a propositional variable. �

Now we start by defining the models of intuitionistic modal logic.

Definition 17. A frame for intuitionistic modal logic is a triple ℱ= (𝑊,≼,⊏)
where 𝑊 is a non-empty set, ≼,⊏ are binary relations on 𝑊 and we have the
following properties:

1. ≼ is a partial order, i.e. it is reflexive, transitive and antisymmetric.

2. (Model property) For any 𝑤,𝑣,𝑢 ∈ 𝑊 we have that 𝑤 ≼ 𝑣 ⊏ 𝑢 implies
𝑤⊏𝑢.

A model for intuitionistic modal logic is a quadruple ℳ = (𝑊,≼,⊏,𝑉 )
such that:

10



1. (𝑊 ,≼,⊏) is a frame of modal intuitionistic logic.

2. 𝑉 is a relation between 𝑊 and propositional letters.

3. (Preservation of knowledge) If 𝑤,𝑣 ∈ 𝑊 and 𝑝 is a propositional letter
such that 𝑤≼ 𝑣 and 𝑤 𝑉 𝑝, then 𝑣 𝑉 𝑝.

�

The definition of the semantics is straightforward. All the logical connectives
have their usual definition, except for → and . For these connectives we just
need to note that there are two binary relations. For→ we use the usual clause
(in intuitionistic logic) using the intuitionistic relation, i.e.

ℳ,𝑤 ⊨ 𝜙→𝜓 iff for any 𝑣 ≽𝑤, ℳ,𝑣 ⊭ 𝜙 or ℳ,𝑣 ⊨ 𝜓.

And for we use the usual clause using the modal relation, i.e.

ℳ,𝑤 ⊨ 𝜙 iff for any 𝑣 ⊐𝑤, ℳ,𝑣 ⊨ 𝜙.

The preservation of knowledge gives the following result:

Lemma 18. Letℳ= (𝑊,≼,⊏,𝑉 ) be a model for IML. If 𝑤,𝑣 ∈𝑊 and 𝜙 ∈ℒm
such that ℳ,𝑤 ⊨ 𝜙 and 𝑤≼ 𝑣 then ℳ,𝑣 ⊨ 𝜙.

Now we introduce the modal logic we are interested in: iGLC. iGL is the
intuitionistic version of Gödel-Löb logic. As we already discussed in the intro-
duction, the original GL is really important in (classical) provability logic. It
is the provability logic of a wide range of arithmetical theories, such as EA, IΣ1
and PA. The C in iGLC comes from the completeness principle, with are the
formulas of shape 𝜙→ 𝜙.

Definition 19. The set iGLC⊆ℒm is the smallest set that contains:

1. All ℒm-substitution instances of theorems of iPC (intuitionistic proposi-
tional logic).

2. For any 𝜙,𝜓 ∈ℒm, (𝜙→𝜓)→ 𝜙→ 𝜓.

3. For any 𝜙 ∈ℒm, ( 𝜙→𝜙)→ 𝜙.

4. For any 𝜙 ∈ℒm, 𝜙→ 𝜙.

And it is closed under the rules

1. (Modus ponens) If 𝜙→𝜓,𝜙 ∈ iGLC, then 𝜓 ∈ iGLC.

2. (Necessitation) If 𝜙 ∈ iGLC, then 𝜙 ∈ iGLC.

We will write ⊢iGLC 𝜙 to mean that 𝜙 ∈ iGLC and Γ ⊢iGLC 𝜙 to mean that there
is a finite subset Γ0 ⊆Γ such that ⊢iGLC ⋀Γ0→𝜙. �
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We want to have a characterization of the models of iGLC. With that purpose
in mind, we introduce the following properties of IML frames.

Definition 20. Let ℱ= (𝑊,≼,⊏) be a frame for IML.

1. We say that ℱ is irreflexive iff ⊏ is irreflexive.

2. We say that ℱ is transitive iff ⊏ is transitive.

3. We say that ℱ is realistic iff ⊏⊆≼.

4. We say that ℱ is conversely well-founded iff ⊏ is conversely well-founded,
i.e. every non-empty subset of 𝑊 has a ⊏-maximal element.

�

Note that thanks to the model property, any realistic frame is automatically
transitive. We have the following theorem, that characterizes the models of
iGLC.

Theorem 21. Let 𝜙 ∈ℒm. Then

1. If ⊢iGLC 𝜙 then 𝜙 is valid on all realistic and conversely well-founded
frames.

2. ⊢iGLC 𝜙 iff 𝜙 is valid on all finite irreflexive realistic frames.

1.4 Arithmetizing Logic
When we have a function 𝑓 ∶ℕ𝑘 ⟶ℕ it may be possible to represent it inside an
arithmetical theory 𝑇. With this, we mean to have a formula 𝜙𝑓(𝑥0,…,𝑥𝑘−1,𝑦)
such that:

1. ⊢𝑇 ∀𝑥0,…,𝑥𝑘−1∃!𝑦.𝜙𝑓(𝑥0,…,𝑥𝑘−1,𝑦).

2. ⊢𝑇 𝜙𝑓(𝑛0,…,𝑛𝑘−1,𝑚) iff 𝑓(𝑛0,…,𝑛𝑘−1) =𝑚.

Note that this is the minimum we will ask, but depending on the kind of function
that 𝑓 is we may ask more. For example, if 𝑓 is define recursively via equations,
we also add the conditions that these equations are provable in 𝑇. Since our
weakest theory is iEA, we know that all the theories we work with represents
elementary functions. Whenever we have such a function 𝑓 we may write f to
indicate the term representing this function inside 𝑇. In case the name of 𝑓 does
not contain any letter, but just symbols, we will usually add • as a superscript,
resulting in 𝑓•. We will follow a similar approach with predicates and if we
have a predicate P we will write P for the version defined inside arithmetical
theories.
In order to bring the metatheory and the arithmetical theories closer, we

will assume that all the representation of constructions used in the arithmetical
theories are the official definition of those concepts in the metatheory. This
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means that finite lists, formulas or proofs are numbers in the metatheory and
they are defined as we defined them in arithmetical theories. This means that
whenever we have an object defined by a number 𝑛, 𝑛 is a term representing
that object inside the arithmetical theories. As an example, we assume that we
use a representation of formulas that works for iEA. This means that we will
have formulas like term, form,sent claiming that a number is a term, a formula or
a sentence respectively and terms like →•,∧•,∨•,∀•,∃•,⊥•,0

•
,+•,×•. We also

have the usual proof𝛼(𝑝,𝐴) and prov𝛼(𝐴) predicates, where 𝛼 is a formula which
represents some set of sentences. Then proof𝛼(𝑝,𝐴) means that 𝑝 is a proof from
axioms in 𝛼 of the formula 𝐴, and prov𝛼(𝐴) ∶= ∃𝑝 . proof𝛼(𝑝,𝐴). We assume that
proof𝛼(𝑝,𝐴) implies that (𝑝)lenght(𝑝)∸1 ≈𝐴, i.e. that the last element of 𝑝 is 𝐴.
This implies that the proofs are single-conclusion proofs. We will also write
der𝛼(𝑋,𝐴) to symbolize the derivability predicate, in other words, provability
from a (finite) set of assumptions 𝑋.
Some elementary functions that are important in this context are also fv,bv,

of free variables and bound variables of a term/formula. Their respective terms
are fv and bv. Also, the representation of the function defining numeral, which
will be denoted as num. In case it is applied to a variable 𝑥 we will denote it as
�̇�.
Another elementary function that we are going to use widely is the represen-

tation of substitution, subst(𝜙,𝑠0,𝑠1). The idea is that 𝜙 is a term or a formula,
𝑠0 is a sequence of variables and 𝑠1 a sequence of terms, both sequences of the
same length. Then subst(𝜙,𝑠0,𝑠1) means the substitution in 𝜙 of the first vari-
able of 𝑠0 for the first term of 𝑠1, the second variable of 𝑠0 for the second term
of 𝑠1, and so on. In case we write things like subst(𝐴,𝑥0, 𝜏0,…,𝑥𝑛, 𝜏𝑛) where
𝑥𝑖 are variables and 𝜏𝑖 are terms, we mean subst(𝜙,⟨𝑣0,…,𝑣𝑛⟩, ⟨𝜏0,…,𝜏𝑛⟩). The
function can be represented in all the theories we work with, with its recursive
equations, and as we said earlier, we will refer to it as subst.
So, for example, the theories 𝑇 we work with fulfill that:

⊢𝑇 subst(𝜙,⟨𝑥0,…,𝑥𝑛⟩, ⟨𝜏0,…,𝜏𝑛⟩) ≈ subst(𝜙,⟨𝑥0,…,𝑥𝑛⟩, ⟨𝜏0,…,𝜏𝑛),

and
⊢𝑇 num(𝑛) ≈ 𝑛.

More concrete examples of these equalities, are:

⊢𝑇 subst
(
𝑥 ≈ 𝑦,𝑥,𝑥,𝑦,3

)
≈ 𝑥 ≈ 3,

⊢𝑇 num(3)≈ 3,
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and

⊢𝑇 S•
((S•0

•
+• S•0

•
)×

• S•0
•
)≈ S•

((
S0+• S0

)
×• S0

)

≈ S•
(

S0+S0×• S0
)

≈ S•
((

S0+S0)×S0
)

≈ S((S0+S0)×S0)

≈ 3≈ num(3).

Let 𝜙(𝑥0,…,𝑥𝑛−1) be a formula whose free variables are among 𝑥0,…,𝑥𝑛−1.
That formula can be understood as a function 𝜙 ∶Term𝑛 ⟶ Form such that:

(𝜏0,…,𝜏𝑛−1)↦𝜙(𝜏0,…,𝜏𝑛−1).

This function can be arithmetized in iEA, so we have a term 𝜙• such that for
any terms 𝜏0,…,𝜏𝑛−1

⊢iEA 𝜙• (𝜏0,…,𝜏𝑛−1) ≈ 𝜙(𝜏0,…,𝜏𝑛−1).

Similarly, given a term 𝜏(𝑥0,…,𝑥𝑛−1) we have a term 𝜏• such that

⊢iEA 𝜏• (𝜏0,…,𝜏𝑛−1) ≈ 𝜏(𝜏0,…,𝜏𝑛−1).

Finally, let us discuss how to define 𝜙 in the context of arithmetical theo-
ries. Assume we have a formula 𝜙(𝑥,𝑦0,…,𝑦𝑛−1), then we can define a function
box𝜙 ∶ Form×Term𝑛−1 ⟶ Form as

box𝜙(𝜓(𝑧0,…,𝑧𝑚−1),𝜏0,…,𝜏𝑛−1) ∶= 𝜙(subst(𝜓,𝑧0, ̇𝑧0,…,𝑧𝑚−1, ̇𝑧𝑚−1),𝜏0,…,𝜏𝑛−1).

Note that the free variables of box𝜙(𝜓,𝜏0,…,𝜏𝑛−1) are the union of the free
variables of 𝜓,𝜏0,…,𝜏𝑛−1. In case 𝜙 is a formula, whose only free variable is 𝑥,
we will call box𝜙 a box function, and we will usually denote it by or ▵ with
subscripts. For example, if we have a predicate 𝛼 with an associated provability
predicate prov𝛼, we will write 𝛼 for boxprov𝛼

. We will say that box𝜙 is Σ1 to
mean that 𝜙 is Σ1.
Given a formula 𝜙 and the function box𝜙, it can be represented inside iEA.

As usual, the term representing this function will be denoted by box𝜙 and in
case is an alternative notation for box𝜙, • will be an alternative notation for
box𝜙. Let us 𝜙(𝑥) be a formula with only one free variable and denote its box
function. Then we have the following properties:

⊢iEA ∀𝐴 . form(𝐴)→ form( •𝐴).

⊢iEA ∀𝐴 . fv(𝐴) ≈ fv( •𝐴).
⊢iEA ∀𝐴 . sent(𝐴)→proviEA(

•𝐴↔• 𝜙•(�̇�)).
So the usual properties of box𝜙 are iEA-provable.
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1.5 Provability logic
Finally, after introducing the necessary concepts from arithmetical theories and
modal logic, we can introduce the fundamental concepts of provability logic.

1.5.1 Definition of provability logic of a theory
We will be working with a box function that comes from an arithmetical
formula 𝑃(𝑥). We remember that in the previous section we talked about how
to formalized a box function inside a theory 𝑇 obtaining a term •.

Definition 22. A realization is a function 𝜎 from propositional variables to
arithmetical sentences. If ∶ℒ1 ⟶ℒ1, we can extend 𝜎 with to 𝜎 ∶ℒm⟶
Sent as follows:

𝜎 (𝑝) ∶= 𝜎(𝑝),
𝜎 (⊤) ∶=⊤,
𝜎 (⊥) ∶=⊥,
𝜎 (𝜙→𝜓) ∶= 𝜎 (𝜙)→𝜎 (𝜓),
𝜎 (𝜙∧𝜓) ∶= 𝜎 (𝜙)∧𝜎 (𝜓),
𝜎 (𝜙∨𝜓) ∶= 𝜎 (𝜙)∨𝜎 (𝜓),
𝜎 ( 𝜙) ∶= (𝜎 (𝜙)).

When it is clear from context we may drop the parenthesis in 𝜎 (𝜙) and write
𝜎 𝜙 directly.
A Σ1-realization is a realization 𝜎 of shape 𝜎 ∶ℒ1 ⟶Σ1-Sent. �

Note that in the clause 𝜎 ( 𝜙) ∶= (𝜎 (𝜙)) one has to be careful. The at
the left hand side of ∶= is part of the syntax of modal logic. On the contrary,
the at the right hand side of ∶= is a function from arithmetical formulas into
arithmetical formulas. With realizations and its extensions one can define the
provability logic of a theory with a box function.

Definition 23. Let 𝑇 be an arithemtical theory and ∶ℒ1 ⟶ℒ1. We define
the set ℙ𝕃(𝑇 , ) as follows:

ℙ𝕃(𝑇 , ) ∶= {𝜙 ∈ℒm ∣ for any realization 𝜎, ⊢𝑇 𝜎 𝜙}.

We also define the set Σ1-ℙ𝕃(𝑇 , ) as follows:

Σ1-ℙ𝕃(𝑇 , ) ∶= {𝜙 ∈ℒm ∣ for any Σ1-realization 𝜎, ⊢𝑇 𝜎 𝜙}. �

Usually, theories 𝑇 will have a selected provability predicate prov𝑇 (more on
this in Subsection ). When that is the case, we talk about the provability logic
of 𝑇 or the Σ1-provability logic of 𝑇, written ℙ𝕃(𝑇 ) and Σ1-ℙ𝕃(𝑇 ) respectively,
to mean ℙ𝕃(𝑇 , 𝑇) and Σ1-ℙ𝕃(𝑇 , 𝑇).
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1.5.2 Gödel-Löb and Hilbert-Bernays conditions
We define some conditions that we impose to box functions to make them
adequate for provability logic. This conditions are natural conditions that would
be impose to a provability notion. The names of the conditions are the names
of the ones who proposed them first.

Definition 24 (Gödel-Löb conditions). Let 𝑈,𝑇 be theories and be a box
function. Then we define the uniform Gödel-Löb conditions for (𝑈,𝑇 , ) as
the following three conditions:

1. (Necessitation) For any 𝜙 ∈ℒ1, if ⊢𝑇 𝜙 then ⊢𝑈 𝜙.

2. (K) For any 𝜙,𝜓 ∈ℒ1, ⊢𝑈 (𝜙→𝜓)→ 𝜙→ 𝜓.

3. (Trans) For any 𝜙 ∈ℒ1, ⊢𝑈 𝜙→ 𝜙.

We will write GL𝑈,𝑇 , to mean that (𝑈,𝑇 , ) satisfy the uniform Gödel-Löb
conditions. If we restrict the formulas in the conditions to be sentences we
obtain the Gödel-Löb conditions for (𝑈,𝑇 , ). When (𝑈,𝑇 , ) satisfy these
conditions we will write Gl𝑈,𝑇 , . When 𝑈 = 𝑇 we will write GL𝑇 , and Gl𝑇 ,
instead of GL𝑇 ,𝑇 , and Gl𝑇 ,𝑇 , . �

Definition 25 (Hilbert-Bernays conditions). Let 𝑈,𝑇 be theories and be a
box function. Then we define the uniform Hilbert-Bernays conditions for
(𝑈,𝑇 , ) as the uniform Gödel-Löb conditions plus the additional condition

4. (Completeness) For any 𝜙 ∈Σ1, ⊢𝑈 𝜙→ 𝜙.

We will write HB𝑈,𝑇 , to mean that (𝑈,𝑇 , ) satisfy the uniform Hilbert-Bernays
conditions. If we restrict the formulas in the conditions to be sentences we
obtain the Hilbert-Bernays conditions for (𝑈,𝑇 , ). When (𝑈,𝑇 , ) satisfy
these conditions we will write Hb𝑈,𝑇 , . When 𝑈 = 𝑇 we will write HB𝑇 , and
Hb𝑇 , instead of HB𝑇 ,𝑇 , and Hb𝑇 ,𝑇 , . �

Lemma 26. Let 𝑈,𝑇 be theories and be a Σ1 box function. ThenHB𝑈,𝑇 , .Compl
implies HB𝑈,𝑇 , .Trans. The same holds if instead of HB we have Hb.

Proof. Just notice that if 𝜙 ∈Σ1 then by HB𝑈,𝑇 , .Compl we get ⊢𝑈 𝜙→ 𝜙.
�

Lemma 27. Assume that HB𝑈,𝑇 , . Then, for any 𝜙 ∈ℒ1 if ⊢iFOL 𝜙 then ⊢𝑈 𝜙.

Proof. Trivial, since ⊢iFOL 𝜙 implies ⊢𝑇 𝜙 and then by HB𝑈,𝑇 , we get ⊢𝑈 𝜙.
�
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Lemma 28. Assume that HB𝑈,𝑇 , and for any 𝜙 ∈ℒ1, fv(𝜙) = fv( 𝜙). Then

1. ⊢𝑈 (∀𝑥 . 𝜙)→(∀𝑥 . 𝜙),

2. ⊢𝑈 (∃𝑥 . 𝜙)→ (∃𝑥 . 𝜙).

Proof. Note that ⊢iFOL (∀𝑥 . 𝜙)→𝜙, so by HB𝑈,𝑇 , and Lemma 27 we get

⊢𝑈 (∀𝑥 . 𝜙)→ 𝜙.

By generalization rule we get

⊢𝑈 ∀𝑥. (∀𝑥 . 𝜙)→ 𝜙.

which implies
⊢𝑈 (∀𝑥 . (∀𝑥 . 𝜙))→(∀𝑥 . 𝜙).

But since 𝑥 ∉ fv(∀𝑥 . 𝜙) we have that 𝑥 ∉ fv( (∀𝑥 . 𝜙)). This implies

⊢𝑈 (∀𝑥 . 𝜙)→(∀𝑥 . 𝜙).

The proof of (2) is analogous. �

Lemma 29 (Monotonicity in the conditions). Let 𝐶 be HB or GL (Hb or Gl).
We have that

1. If 𝑈0 ⊆𝑈1, then 𝐶𝑈0,𝑇 , implies 𝐶𝑈1,𝑇 , .

2. If 𝑇0 ⊆𝑇1, then 𝐶𝑈,𝑇1, implies 𝐶𝑈,𝑇0, .

3. Assume that for any formula (sentence) 𝜙, ⊢𝑈 ▵𝜙→ 𝜙 and is a Σ1 box
function. Then, HB𝑈,𝑇 ,▵ (Hb𝑈,𝑇 ,▵) implies HB𝑈,𝑇 , (Hb𝑈,𝑇 , ).

Proof. (1) and (2) are trivial. Let us talk about (3). We only show transitivity
since it is the trickiest. The idea is that since 𝜙 is Σ1 and HB𝑈,𝑇 ,▵ we have
that ⊢𝑈 𝜙→▵ 𝜙. But by assumption ⊢𝑈 ▵ 𝜙→ 𝜙 so we get the desired
⊢𝑈 𝜙→ 𝜙. �

Finally, let us talk about how to formalized this conditions in arithmetical
theories. The idea is that instead of having a triple of two theories and a
function, we have a triple of two unary predicates and a unary term. In this
case we will denote the conditions with sans-serif font. For example, let us have
𝜙(𝑥),𝜓(𝑥) unary predicates and 𝜏(𝑥) an unary term. Then HB𝜙,𝜓,𝜏 denotes the
conjunction of the following four formulas:

1. ∀𝐴.form(𝐴)∧𝜓(𝐴)→𝜙(𝜏(𝐴)).

2. ∀𝐴,𝐵.form(𝐴)∧ form(𝐵)→𝜙(𝜏(𝐴→•𝐵)→• 𝜏(𝐴)→• 𝜏(𝐵)).

3. ∀𝐴.form(𝐴)→𝜙(𝜏(𝐴)→• 𝜏(𝜏(𝐴))).
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4. ∀𝐴.Σ1-form(𝐴)→𝜙(𝐴→• 𝜏(𝐴)).

We do the same with GL to get GL. Note that to get Hb and Gl it suffices to
change form to sent. Then,

⊢𝑇 HB𝜙,𝜓,𝜏

means that 𝑇 shows that (𝜙,𝜓,𝜏) fulfills the Hilbert-Bernays conditons.

1.5.3 Reflection and Absorption
In this subsection we define the reflection and absorption principles. These
princples are a fundamental part of our tools.

Definition 30 (Reflection). Let be a box function, then we define the set
RFN of uniform reflection principles, as

RFN ∶= { 𝜙→𝜙 ∣ 𝜙 ∈ℒ1}.

In case we want to restrict the formulas 𝜙’s to belong to a particular set Γ we
will write Σ1-RFN . Of particular importance is the set of sentential reflection
principles, i.e. Sent-RFN , which we will denote simply as Rfn .
We will write things like RFN𝑇 , and Rfn𝑇 , , where 𝑇 is an arithmetical

theory, to mean that ⊢𝑇 RFN𝑇 , and ⊢𝑇 Rfn , respectively. �

Note that reflection is in some sense an internatization of soundness. One
of our main use for reflection will be to prove another principle that will be
fundamental for our tools: absorption.

Definition 31 (Absorption). Let ,▵ be box functions. We define the set of
sentence Abs ,▵ as:

Abs ,▵ ∶= { ▵𝜙→ 𝜙 ∣ 𝜙 ∈ Sent}.

Also, if Γ ⊆ℒ1, we define the set of sentences Γ-Abs ,▵ as:

Abs ,▵ ∶= { ▵𝜙→ 𝜙 ∣ 𝜙 ∈ Sent∩Γ}.

Finally, we will write Abs𝑇 , ▵ to mean that ⊢𝑇 Abs ,▵ and similarly with
Γ-Abs ,▵. �

Lemma 32. Let be a box function and ▵ be a Σ1 box function. Then, Hb𝑇 ,
and Abs𝑇 , ,▵ implies that for any sentence 𝜙, we have that ⊢𝑇 ▵𝜙→ 𝜙.

Proof. Let 𝜙 be a sentence, we know that ▵𝜙 ∈ Σ1. Then, by Hb𝑇 , , we get
that ⊢𝑇 ▵𝜙→ ▵𝜙. Since Abs𝑇 , ,▵, we also get that ⊢𝑇 ▵𝜙→ 𝜙. Using these
two facts, we get ⊢𝑇 ▵𝜙→ 𝜙, as desired. �
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1.5.4 Fefermanian predicates
Definition 33. Let 𝑈,𝑇 be theories and 𝛼 be a formula. We say that 𝛼 enu-
merates 𝑇 in 𝑈 if

𝜙 ∈Ax𝑇 iff ⊢𝑈 𝛼(𝜙).

We say that 𝛼 truly enumerates 𝑇 if

𝜙 ∈Ax𝑇 iff ⊨ℕ 𝛼(𝜙).

We will say that a theory 𝑇 is 𝑈-arithmetized iff there is a formula 𝛼 such that
𝛼 enumerates 𝑇 in 𝑈. In this case we will refer to the 𝛼 as ax𝑇.
If Γ is a class of formulas, we will say that 𝑇 is (Γ,𝑈)-arithmetized if ax𝑇 ∈ Γ.

In case 𝑈 = 𝑇 we will say that it is self arithmetized and in case there is an 𝛼
that truly enumerates 𝑇 we will say that it is truly arithmetized and we will
refer to this 𝛼 as ax𝑇. �

In the context of an arithmetized theory 𝑇 we will write proof𝑇,prov𝑇 and
𝑇 to mean proofax𝑇

,provax𝑇
and ax𝑇, respectively. We put here some lemmas

that allow us to derive HB conditions from provability predicates defined by
an axiomatization formula that enumerates a theory. We start with the modus
ponens condition.

Lemma 34. Let 𝑇 ,𝑈 be theories such that

1. iEA⊆𝑈.

Then, for any formulas 𝜙,𝜓

⊢𝑈 𝛼(𝜙→𝜓)→ 𝛼𝜙→ 𝛼𝜓.

The necessitation condition, which is proven by induction (performed in the
metatheory) on the proof of ⊢𝑇 𝜙.

Lemma 35. Let 𝑇 ,𝑈 be theories such that

1. iEA⊆𝑈.

2. 𝛼 enumerates 𝑇 in 𝑈.

Then, for any formula 𝜙

⊢𝑇 𝜙 implies ⊢𝑈 𝛼𝜙.

The formalized completeness principle.

Lemma 36. Let 𝑈 be theory in the language of ℒ(exp) such that

1. iEA⊆𝑈.

2. ⊢𝑈 ∀𝐴 . proviQexp(𝐴)→prov𝛼(𝐴).
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Then for any formula 𝜙 ∈Σ1 we have that:

⊢𝑈 𝜙→ 𝛼𝜙.

If we want to have all the HB conditions we need one additional detail. We
need that 𝑈 shows that 𝛼𝜙 is Σ1. There are two alternatives: either 𝛼 is Δ0
or 𝛼 is Σ1 but 𝑈 proves Σ1-collection. Then, we can put this corollary:

Corollary 37. Let 𝑇 ,𝑈 be theories in ℒ(exp) such that

1. Either 𝛼 is Δ0 and iEA⊆𝑈 or 𝛼 is Σ1 and iEA+𝐵Σ1 ⊆𝑈.

2. 𝛼 enumerates 𝑇 in 𝑈.

3. ⊢𝑈 ∀𝐴 . proviQexp(𝐴)→prov𝛼(𝐴).

Then HB𝑈,𝑇 , 𝛼.

In case 𝑈,𝑇 are theories in ℒ(𝒫𝓇) we just need to change iQexp to iQ𝒫𝓇

which is the theory based on iFOL whose axioms are those of PRA without
induction and replacing 0 ≠ S0 for ∀𝑥 . 0 ≠ S𝑥. In particular, HBiPRA, iPRA.
The proofs needed for these lemmas can be carried inside iEA, so

Corollary 38. Let 𝑇 ,𝑈,𝑉 be theories in ℒ(exp) such that

1. 𝑉 is an extension of iEA.

2. We have one of the following:

(a) 𝛼 is Δ0 and ⊢𝑉 proviEA(𝐴)→prov𝑈(𝐴)
(b) 𝛼 is Σ1 and ⊢𝑉 proviEA+𝐵Σ1

(𝐴)→prov𝑈(𝐴).

3. ⊢𝑉 ∀𝐴 . ax𝑇(𝐴)→prov𝑈(𝛼
•(�̇�)).

4. ⊢𝑉 𝑈(∀𝐴 . proviQexp(𝐴)→prov𝛼(𝐴)).

Then ⊢𝑉 HBprov𝑈,prov𝑇,
•
𝛼

Finally, we put two lemmas which allow to change the base theory used for
the enumeration.

Lemma 39. Let 𝑈0,𝑈1 be Δ0-complete and consistent and 𝛼 be Δ0. Then

𝛼 enumerates 𝑇 in 𝑈0 iff 𝛼 enumerates 𝑇 in 𝑈1.

Lemma 40. Let 𝑈0,𝑈1 be Σ1-sound and Σ1-complete. Further, assume that
⊢𝑈𝑖 𝐵Σ1. Then

𝛼 enumerates 𝑇 in 𝑈0 iff 𝛼 enumerates 𝑇 in 𝑈1.
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Truly arithmetized

Now, let us connect theories arithmetized in other theories with truly arithme-
tized theories.

Lemma 41. Let 𝑇 ,𝑈 be theries and 𝛼 ∈ Γ. Assume that 𝑈 is Γ-sound and
Γ-complete. Then

𝛼 enumerates 𝑇 in 𝑈 iff 𝛼 truly enumerates 𝑇 .

Proof. It suffices to show that for any sentence 𝜙,

⊢𝑈 𝛼(𝜙) iff ⊨ℕ 𝛼(𝜙).

But this is trivial since 𝛼 ∈ Γ and 𝑈 is Γ-sound and Γ-complete. �

Lemma 42. Assume that 𝛼 truly enumerates 𝑇. Then for any formula 𝜙,

⊢𝑇 𝜙 iff ⊨ℕ prov𝛼(𝜙).

Proof. Left to right is proven by a simple induction in the proof of 𝜙. For right
to left we know, by definition of prov𝑇, that there is a sequence of formulas
⟨𝜙0,…,𝜙𝑛⟩ such that ⊨ℕ proof(⟨𝜙0,…,𝜙𝑛⟩,𝜙). Then we just need to proceed by
strong induction (in the metatheory) over the length of the sequence. �
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Chapter 2

Translations

In this chapter we give the definition of various known translations of first-order
formulas. With a translation we mean a function from ℒ1 ⟶ ℒ1. All these
translations will have a theorem which claims that, under certain conditions on
the theories, if a theory 𝑇 proves 𝜙 then a theory 𝑈 proves the translation of
𝜙. What is more, all the results we are going to see here are formalizable inside
iIΣ1

1. This is of great importance, since we will use mainly the formalized
version of the theorems in the rest of chapters. All these results are widely
known, we write them here for completeness and because some of them need
light modifications in the condititions, to be more general.
We have only included the proofs related to Visser’s translation, since it

is the most important translation for our purposes. The proofs related to the
rest of the translations can be found in Appendix A. The reader can skip this
chapter in a first reading and consult it only when needed.

2.1 Gödel’s and Friedman’s Translations
First, we define a concept that is going to be fundamental for most of the results
in this chapter.

Definition 43. Let 𝑇 be a theory and 𝑓 ∶ℒ1(𝑇 )⟶ℒ1(𝑇 ). We say that 𝑇 is
closed under 𝑓 iff

For any 𝜙 ∈Ax𝑇, ⊢𝑇 𝑓(𝜙).

�

We define Gödel’s double negation translation. This translation is really
useful to relate classical arithmetical theories with intuitionistic arithmetical
theories.

1In fact, they would also be provable in iEA, but seeing that they are formalizable in iIΣ1 is
straightforward
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Definition 44 (Gödel’s translation, Double negation translation). Let 𝜙 be a
formula. We define recursively the formula (𝜙)G as:

(𝜙)G ∶= 𝜙 if 𝜙 atomic,
(𝜙∧𝜓)G ∶= (𝜙)G∧(𝜓)G,
(𝜙∨𝜓)G ∶= ¬¬((𝜙)G∨(𝜓)G),
(𝜙→𝜓)G ∶= (𝜙)G→(𝜓)G,
(∀𝑥 . 𝜙)G ∶= ∀𝑥 . (𝜙)G,
(∃𝑥 . 𝜙)G ∶= ¬¬(∃𝑥 . (𝜙)G). �

Lemma 45. Let 𝑇 be a Δ0-decidable theory. Then for any 𝜙 ∈ Δ0 we have
that

⊢𝑇 (𝜙)G↔𝜙.

Theorem 46. Let 𝑇 be a theory closed under (_)G and let 𝜙 ∈ℒ1. Then,

⊢FOL,𝑇 𝜙 implies ⊢𝑖FOL,𝑇 (𝜙)G.

This is iIΣ1 verifiable.

Using deduction theorem it is easy to conclude the following corollary.

Corollary 47. Let 𝑇 be a theory closed under (_)G and let Γ ⊆ℒ1 and 𝜙 ∈ℒ1.
Then,

Γ ⊢FOL,𝑇 𝜙 implies (Γ)G ⊢𝑖FOL,𝑇 (𝜙)G.

Now we proceed with the Frieman’s translation. The idea of this transla-
tion is to traverse the formula until it arrives the atomic subformulas and then
introduce a disjunction.

Definition 48 (Friedman’s translation). Let 𝜓 be a formula, we define the
formula (𝜙)𝜓F recursively in 𝜙 as:

(𝜙)𝜓F ∶= 𝜙∨𝜓, if 𝜙 is atomic;

(𝜙0 ∘𝜙1)
𝜓
F ∶= (𝜙0)

𝜓
F ∘ (𝜙1)

𝜓
F, where ∘ ∈ {→,∨,∧};

(𝑄𝑥 . 𝜙)𝜓F ∶= 𝑄𝑥 . (𝜙)𝜓F, where 𝑄 ∈ {∀,∃}. �

We prove a fundamental property of this translation. The idea behind this
property, is the same as the axiom 𝜓→𝜙∨𝜓. Note however, that the equivalent
of 𝜙→𝜙∨𝜓, i.e. 𝜙→(𝜙)𝜓F, does not hold in general.

Lemma 49. Let 𝜙,𝜓 be formulas such that no free variable of 𝜓 occurs bounded
in 𝜙. Then:

⊢𝜓→(𝜙)𝜓F.

Now, two lemmas establishing that for Δ0 or Σ1 formulas and Δ0-decidable
theoreis, the translation is equivalent to the disjunction.
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Lemma 50. Let 𝑇 be a Δ0-decidable theory. Then for any Δ0-formula 𝜙 and
any 𝜓, such that the free variables of 𝜓 are not bounded in 𝜙, we have

⊢𝑇 (𝜙)𝜓F↔𝜙∨𝜓.

Lemma 51. Let 𝑇 be a Δ0-decidable theory. Then, for any Σ1-formula 𝜙 and
any 𝜓, such that no free variable of 𝜓 appears bounded in 𝜙, we have that:

⊢𝑇 (𝜙)𝜓F↔𝜙∨𝜓.

Now we need two technical lemmas, one about variables and the other one
about substitutions.

Lemma 52. For any formulas 𝜙,𝜓, such that no free variable of 𝜓 appears
bounded in 𝜙:

1. fv((𝜙)𝜓F) = fv(𝜙)∪ fv(𝜓).

2. If 𝑥 is free for 𝜏 in 𝜙,𝜓 then 𝑥 is free for 𝜏 in (𝜙)𝜓F.

Lemma 53. Let 𝜙,𝜓 be formulas, 𝜏 a term and 𝑥 a variable. Assume that no
free variable of 𝜓 occurs bounded in 𝜙 and 𝑥 ∉ fv(𝜓). Then

(𝜙[𝑥/𝜏])𝜓F = (𝜙)𝜓F[𝑥/𝜏].

Finally, the main theorem:

Theorem 54. Let 𝜙,𝜓 be formulas. Assume that we have a proof 𝜋 of ⊢ 𝜙 such
that no free variables of 𝜓 appears bounded in the formulas of 𝜋 and that 𝑇 is
closed under (_)𝜓F . Then

⊢𝑇 (𝜙)𝜓F.

Note that in a proof we can always rearrange the name of the bound vari-
ables to make the theorem applicable. As a corollary of the theorem, using the
deduction theorem.

Corollary 55. Assume that 𝑇 is closed under (_)𝜓F and we have a proof 𝜋 of
Γ ⊢𝑇 𝜙 such that no free variable of 𝜓 apears in 𝜋 or in Γ bounded. Then

(Γ)𝜓F ⊢𝑇 (𝜙)𝜓F.

Corollary 56. Let 𝑇 be closed under (_)𝜓F. If we have a proof 𝜋 of ⊢𝑇 𝜙0 ↔𝜙1,
where no free variable of 𝜓 appears bounded in 𝜋, then ⊢𝑇 (𝜙0)

𝜓
F↔(𝜙1)

𝜓
F.

Finally, we state the formalized version inside any extension of iIΣ1.

Corollary 57. Let 𝑈 be a theory such that

1. iIΣ1 ⊆𝑈.
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2. ⊢𝑈 ∀𝐴 . 𝛼(𝐴)→ sent(𝐴).

Then, we have that

∀𝐶 . 𝛼(𝐶)→prov𝛼(𝐶)
𝐵
F ,

∀𝑣 . ¬(𝑣 ∈ fv(𝐴)∧∃𝐶 ∈ 𝑝 . 𝑣 ∈ bv(𝐶)),
proof𝛼(𝑝,𝐴)

⊢𝑈 prov𝛼(𝐴)
𝐵
F .

We note that we have written prov𝛼(𝐶)
𝐵
F instead of prov𝛼((𝐶)

𝐵
F). This kind

of omission of brackets will be used frequently, even with other translations.

Π2-conservativity over classical theory

Finally, this lemma claims that with Gödel’s and Friedman’s translations one
can prove the Π2-conservativity of classical theories over intuitionistic theories.
We note that all of this is provable inside iIΣ1.

Lemma 58. Let 𝑇 be a theory such that it is closed under Gödel’s translation
and under Friedman’s translation for Σ1-formulas. Then, 𝑇 with classical logic
is Π2-conservative over 𝑇 with intuitionistic logic.

2.2 Visser’s Translation
In this section we will define Visser’s translation. This translation will not
only be defined over formulas, but also over theories. Then, the method for
calculating the Σ1-provability logic of a intuitionistic theory that we use here
can be understood as calculating the Σ1-provability logic of the Visser translated
theory and then lift the calculation to the original theory.

2.2.1 Definition and general properties
If we are given a box function , we will define ∶ℒ1 ⟶ℒ1 as

𝜙 ∶= 𝜙∧ 𝜙.

We define the main translation for our purposes: Visser’s translation.
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Definition 59 (Visser’s Translation). Let ∶ Form⟶ Form. We define the
function (_)V ∶ Form⟶ Form by recursion as:

(𝜙)V ∶= 𝜙, if 𝜙 atomic;

(𝜙∧𝜓)V ∶= (𝜙)V∧(𝜓)V;

(𝜙∨𝜓)V ∶= (𝜙)V∨(𝜓)V;

(𝜙 →𝜓)V ∶= ((𝜙)V→(𝜓)V);

(∃𝑥 . 𝜙)V ∶= ∃𝑥 . (𝜙)V;

(∀𝑥 . 𝜙)V ∶= (∀𝑥 . (𝜙)V). �

The following lemma is the fundamental property of Visser’s translation.

Lemma 60. Let 𝑇 be a theory such that HB𝑇 , . Then, for any formula 𝜙

⊢𝑇 (𝜙)V→ (𝜙)V.

Proof. We proceed by induction on the complexity of 𝜙. If 𝜙 is atomic we use
HB𝑇 , .Compl.
Let 𝜙 =𝜙0∧𝜙1. Then by the induction hypothesis

⊢𝑇 (𝜙𝑖)V→ (𝜙𝑖)V.

Then

⊢𝑇 (𝜙0∧𝜙1)V = (𝜙0)V∧(𝜙1)V
→ (𝜙0)V∧ (𝜙1)V (by I.H.)

→ ((𝜙0)V∧(𝜙1)V) (by HB𝑇 , )

= (𝜙0∧𝜙1)V

Let 𝜙 =𝜙0∨𝜙1. Then by the induction hypothesis

⊢𝑇 (𝜙𝑖)V→ (𝜙𝑖)V.

Then

⊢𝑇 (𝜙0∨𝜙1)V = (𝜙0)V∨(𝜙1)V
→ (𝜙0)V∨ (𝜙1)V (by I.H.)

→ ((𝜙0)V∨(𝜙1)V) (by HB𝑇 , )

= (𝜙0∨𝜙1)V
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Let 𝜙 =𝜙0→𝜙1. Then

⊢𝑇 (𝜙0→𝜙1)V = ((𝜙0)V→(𝜙1)V)

→ ((𝜙0)V→(𝜙1)V)

→ ((𝜙0)V→(𝜙1)V) (by HB𝑇 , )

= (𝜙0→𝜙1)V

Let 𝜙 = ∃𝑥 . 𝜙0. Then by the induction hypothesis

⊢𝑇 (𝜙0)V→ (𝜙0)V.

Then

⊢𝑇 (∃𝑥 . 𝜙0)V =∃𝑥 . (𝜙0)V
→∃𝑥 . (𝜙0)V (by I.H.)

→ (∃𝑥 . (𝜙0)V) (by HB𝑇 , )

= (∃𝑥 . 𝜙0)V

Let 𝜙 = ∀𝑥 . 𝜙0. Then

⊢𝑇 (∀𝑥 . 𝜙0)V = (∀𝑥 . (𝜙0)V)

→ (∀𝑥 . (𝜙0)V)

→ (∀𝑥 . (𝜙0)V) (by HB𝑇 , )

= (∀𝑥 . 𝜙0)V

�

We prove multiple lemmas that ease the calculation of the translation of a
formula.

Lemma 61. Let 𝑇 be a theory such that HB𝑇 , . Then:

⊢𝑇 (∀𝑥0,…,𝑥𝑛−1 . 𝜙)V↔ (∀𝑥0,…,𝑥𝑛−1 . (𝜙)V).

Proof. By induction in 𝑛. The case where 𝑛 = 0 is thanks to Lemma 60.
Case 𝑛+1. By the induction hypothesis we have that

⊢𝑇 (∀𝑥1,…,𝑥𝑛 . 𝜙)V↔ (∀𝑥1,…,𝑥𝑛 . (𝜙)V).

Using iFOL reasoning

⊢𝑇 (∀𝑥0 . (∀𝑥1,…,𝑥𝑛 . 𝜙)V)↔ (∀𝑥0 . (∀𝑥1,…,𝑥𝑛 . (𝜙)V)), (i)
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and by HB𝑇 , we also get

⊢𝑇 (∀𝑥0 . (∀𝑥1,…,𝑥𝑛 . 𝜙)V)↔ (∀𝑥0 . (∀𝑥1,…,𝑥𝑛 . (𝜙)V)). (ii)

Then

⊢𝑇 (∀𝑥0,…,𝑥𝑛 . 𝜙)V = (∀𝑥0 . (∀𝑥1,…,𝑥𝑛 . 𝜙)V)

↔ (∀𝑥0 . (∀𝑥1,…,𝑥𝑛 . (𝜙)V)) (by (i) and (ii))
∗↔ (∀𝑥0,…,𝑥𝑛 . (𝜙)V)

Let us show ∗↔ in detail.
∗→. Note that

⊢𝑇 (∀𝑥1,…,𝑥𝑛 . (𝜙)V)→∀𝑥1,…,𝑥𝑛 . (𝜙)V,

so
⊢𝑇 (∀𝑥0 . (∀𝑥1,…,𝑥𝑛 . (𝜙)V))→∀𝑥0,…,𝑥𝑛 . (𝜙)V,

and finally by HB𝑇 , we can conclude:

⊢𝑇 (∀𝑥0 . (∀𝑥1,…,𝑥𝑛 . (𝜙)V))→ (∀𝑥0,…,𝑥𝑛 . (𝜙)V).

∗←. It suffices that we show

⊢𝑇 (∀𝑥0,…,𝑥𝑛 . (𝜙)V)→ (∀𝑥0 . (∀𝑥1,…,𝑥𝑛 . (𝜙)V)) (iii)

Note that by Lemma 28 we have that

⊢𝑇 (∀𝑥0,…,𝑥𝑛 . (𝜙)V)→∀𝑥0 . (∀𝑥1,…,𝑥𝑛 . (𝜙)V).

Then by HB𝑇 , we have that:

⊢𝑇 (∀𝑥0,…,𝑥𝑛 . (𝜙)V)→ (∀𝑥0 . (∀𝑥1,…,𝑥𝑛 . (𝜙)V)).

But ⊢𝑇 (∀𝑥0,…,𝑥𝑛 . (𝜙)
𝑃
V)→ (∀𝑥0,…,𝑥𝑛 . (𝜙)

𝑃
V), so we have (iii). �

Lemma 62. Let 𝑇 be a theory such that HB𝑇 , . Then:

⊢𝑇
(
⋀
𝑖≤𝑛

𝜙𝑖→𝜓𝑖
)V

↔
(
⋀
𝑖≤𝑛

(𝜙𝑖)V→(𝜓𝑖)V)
.

Proof. By induction in 𝑛. If 𝑛 = 0, then it is trivial by definition.
Case 𝑛+1. By the induction hypothesis we have that

⊢𝑇
(
⋀
𝑖≤𝑛

𝜙𝑖→𝜓𝑖
)V

↔
(
⋀
𝑖≤𝑛

(𝜙𝑖)V→(𝜓𝑖)V)
.
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Then

⊢𝑇
(

⋀
𝑖≤𝑛+1

𝜙𝑖→𝜓𝑖
)V

=
(
⋀
𝑖≤𝑛

𝜙𝑖→𝜓𝑖
)V

∧(𝜙𝑛+1→𝜓𝑛+1)V

=
(
⋀
𝑖≤𝑛

𝜙𝑖→𝜓𝑖
)V

∧ ((𝜙𝑛+1)V→(𝜓𝑛+1)V)

↔
(
⋀
𝑖≤𝑛

(𝜙𝑖)V→(𝜓𝑖)V)
∧ ((𝜙𝑛+1)V→(𝜓𝑛+1)V)

(by I.H.)

↔
(

⋀
𝑖≤𝑛+1

(𝜙𝑖)V→(𝜓𝑖)V)
∧

(
⋀

𝑖≤𝑛+1
(𝜙𝑖)V→(𝜓𝑖)V)

(by HB𝑇 , )

=
(

⋀
𝑖≤𝑛+1

(𝜙𝑖)V→(𝜓𝑖)V) �

Lemma 63. Let 𝑇 be such that HB𝑇 , .

⊢𝑇 (∀𝑥 . 𝜙→𝜓)V↔ (∀𝑥 . (𝜙)V→(𝜓)V).

Proof. We have that

⊢𝑇 (∀𝑥 . 𝜙→𝜓)V = (∀𝑥 . (𝜙→𝜓)V)

= (∀𝑥 . ((𝜙)V→(𝜓)V))
∗↔ (∀𝑥 . (𝜙)V→(𝜓)V)

Let us show ∗↔ in detail.
∗→. We have that

⊢𝑇 ((𝜙)V→(𝜓)V)→(𝜙)V→(𝜓)V,

but then by iFOL reasoning

⊢𝑇 (∀𝑥 . ((𝜙)V→(𝜓)V)→(∀𝑥 . (𝜙)V→(𝜓)V), (i)

and then by HB𝑇 , we get

⊢𝑇 (∀𝑥 . ((𝜙)V→(𝜓)V)→ (∀𝑥 . (𝜙)V→(𝜓)V). (ii)

(i) and (ii) give the desire implication.
∗←. It suffices to show that

⊢𝑇 (∀𝑥 . (𝜙)V→(𝜓)V)→ (∀𝑥 . ((𝜙)V→(𝜓)V)). (i)
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First, note that thanks to Lemma 28 we have that

⊢𝑇 (∀𝑥 . (𝜙)V→(𝜓)V)→∀𝑥 . ((𝜙)V→(𝜓)V). (ii)

Then by HB𝑇 , we get

⊢𝑇 (∀𝑥 . (𝜙)V→(𝜓)V)→ (∀𝑥 . ((𝜙)V→(𝜓)V)).

Since ⊢𝑇 (∀𝑥 . (𝜙)V→(𝜓)V)→ (∀𝑥 . (𝜙)V→(𝜓)V) we get

⊢𝑇 (∀𝑥 . (𝜙)V→(𝜓)V)→ (∀𝑥 . ((𝜙)V→(𝜓)V)). (iii)

(ii) and (iii) gives (i). �

With the help of Lemmas 61 and 63 is not hard to give a prove of the
following corollary.

Corollary 64. Let 𝑇 be such that HB𝑇 , .

⊢𝑇 (∀𝑥0,…,𝑥𝑛 . 𝜙→𝜓)V↔ (∀𝑥0,…,𝑥𝑛 . (𝜙)V→(𝜓)V).

Lemma 65. Let 𝑇 be such that HB𝑇 , . Then for 𝑛 ≥ 1 we have that:

⊢𝑇 (𝜙𝑛 →⋯→𝜙0)V↔ ((𝜙𝑛)V→⋯→(𝜙0)V).

Proof. By induction in 𝑛. If 𝑛 = 1, te result is trivial by definition of (_)V.
Now, let us prove the inductive step. So assume, by the induction hypothesis
that:

⊢𝑇 (𝜙𝑛 →⋯→𝜙0)V↔ ((𝜙𝑛)V→⋯→(𝜙0)V),

which implies

⊢𝑇 ((𝜙𝑛+1)V→(𝜙𝑛 →⋯→𝜙0)V)↔((𝜙𝑛+1)V→ ((𝜙𝑛)V→⋯→(𝜙0)V)). (i)

Also, thanks to HB𝑇 , we get

⊢𝑇 ((𝜙𝑛+1)V→(𝜙𝑛 →⋯→𝜙0)V)↔ ((𝜙𝑛+1)V→ ((𝜙𝑛)V→⋯→(𝜙0)V)).
(ii)

Then we have:

⊢𝑇 (𝜙𝑛+1→⋯→𝜙0)V = ((𝜙𝑛+1)V→(𝜙𝑛→⋯→𝜙0)V)

↔ ((𝜙𝑛+1)V→ ((𝜙𝑛)V→⋯→(𝜙0)V))
(by (i) and (ii))

∗↔ ((𝜙𝑛+1)V→⋯→(𝜙0)V).
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Let us show ∗↔ in detail. ∗→ is easy, so let us show ∗←. It suffices to show

⊢𝑇 ((𝜙𝑛+1)V→⋯→(𝜙0)V)→ ((𝜙𝑛+1)V→ ((𝜙𝑛)V→⋯→(𝜙0)V)).

Thanks to HB𝑇 , and ⊢𝑇 ((𝜙𝑛+1)V→⋯→(𝜙0)V)→ ((𝜙𝑛+1)V→⋯→(𝜙0)V)
we have that it suffices to show

⊢𝑇 ((𝜙𝑛+1)V→⋯→(𝜙0)V)→((𝜙𝑛+1)V→ ((𝜙𝑛)V→⋯→(𝜙0)V)). (i)

But (i) is easily proven using Lemma 60, since then ⊢𝑇 (𝜙𝑛+1)V→ (𝜙𝑛+1)V.
�

We prove a pair of lemmas that says that under certain conditions Visser’s
translation over Δ0 and Σ1 formulas is equivalent to the identity.

Lemma 66. Let us have HB𝑇 , . Then, for any 𝜙 ∈Δ0 we have that

⊢𝑇 (𝜙)V ↔𝜙.

Proof. We proceed by induction of the definition of Δ0-formulas. If 𝜙 is atomic
then it is trivial since (𝜙)V =𝜙.
The cases where 𝜙 is a conjunction, disjunction or an existential quantifica-

tion are trivial using the induction hypothesis
Let 𝜙 =𝜙0 →𝜙1. By the induction hypothesis

⊢𝑇 ((𝜙0)V→(𝜙1)V)↔ (𝜙0 →𝜙1) (i)

By HB𝑇 , we also have

⊢𝑇 ((𝜙0)V→(𝜙1)V)↔ (𝜙0 →𝜙1) (ii)

So we can conclude using (i) and (ii)

⊢𝑇 ((𝜙0)V→(𝜙1)V)↔ (𝜙0 →𝜙1).

And the RHS is 𝑇-equivalent to 𝜙0 →𝜙1 thanks to HB𝑇 , .Compl on the formula
𝜙0 →𝜙1, since it is Δ0.
Let 𝜙 ≡ ∀𝑥 ≤ 𝜏.𝜙0. By the induction hypothesis we have that

⊢𝑇 (𝜙0)V↔𝜙0.

Then by iFOL reasoning

⊢𝑇 (∀𝑥 ≤ 𝜏 . (𝜙0)V)↔ (∀𝑥 ≤ 𝜏 . 𝜙0). (i)

By HB𝑇 , we also get

⊢𝑇 (∀𝑥 ≤ 𝜏 . (𝜙0)V)↔ (∀𝑥 ≤ 𝜏 . 𝜙0). (ii)
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And then we can conclude

⊢𝑇 (∀𝑥 ≤ 𝜏 . 𝜙0)V↔ (∀𝑥 . (𝑥 ≤ 𝜏)V→(𝜙0)V) (by Lemma 63)

= (∀𝑥 ≤ 𝜏 . (𝜙0)V)
↔ (∀𝑥 ≤ 𝜏 . 𝜙0). (by (i) and (ii))

�

Corollary 67. Let us have HB𝑇 , . Then, for any 𝜙 ∈Σ1 we have that:

⊢𝑇 (𝜙)V ↔𝜙.

Proof. Since 𝜙 is a Σ1 formula we have that 𝜙 ≡ ∃𝑥.𝜙0 for some Δ0-formula
𝜙0. By lemma 66 we have that ⊢𝑇 𝜙0 ↔𝜙0 from which we can derive by iFOL
reasoning that ⊢𝑇 (∃𝑥.𝜙0 )↔ (∃𝑥.𝜙0), as desired. �

We need to prove some technical lemmas related to the behaviour of Visser’s
translation with variables and subtitutions. In order to do so, we first need to
prove the following lemma about the behaviour of box functions and substitu-
tions.

Lemma 68 (Substitution). Assume HB𝑈,𝑇 , . Then, for any formula 𝜙, vari-
able 𝑥 and term 𝜏 free for 𝑥 in 𝜙:

⊢𝑈 ( 𝜙)[𝑥/𝜏]↔ (𝜙[𝑥/𝜏]).

Proof. First, let us assume that 𝑥 ∉ fv(𝜏). By HB𝑈,𝑇 , .Compl we have that

⊢𝑈 𝜏 ≈ 𝑥→ (𝜏 = 𝑥). (i)

We also have that ⊢iFOL 𝜏 ≈ 𝑥 → (𝜙[𝑥/𝜏] ↔ 𝜙). Using HB𝑈,𝑇 , and Lemma 27
we get that

⊢𝑈 (𝜏 = 𝑥)→ ( (𝜙[𝑥/𝜏])↔ 𝜙). (ii)

(i) and (ii) implies that ⊢𝑈 𝜏 ≈ 𝑥→ ( (𝜙[𝑥/𝜏])↔ 𝜙). But then

⊢𝑈 𝜏 ≈ 𝜏→ ( (𝜙[𝑥/𝜏])↔ 𝜙)[𝑥/𝜏],

where we used that 𝑥 ∉ fv(𝜏). Using 𝑥 ∉ fv(𝜏) again, we get the following
equality of formulas

( (𝜙[𝑥/𝜏])↔ 𝜙)[𝑥/𝜏] = (𝜙[𝑥/𝜏])↔ ( 𝜙)[𝑥/𝜏],

so we get the desired conclusion (since 𝜏 ≈ 𝜏 is provable).
If 𝑥 ∈ fv(𝜏), first we do the same proof for 𝜓 ∶= 𝜙[𝑥/𝑦] where 𝑦 is a new

variable and then note that 𝜓[𝑦/𝜏] = 𝜙[𝑥/𝜏] and ( 𝜓)[𝑦/𝜏] = ( 𝜙)[𝑥/𝜏]. �
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Finally, the technical lemma about variables and substitutions.

Lemma 69. For any formula 𝜙, variable 𝑥, and term 𝜏, if HB𝑇 , then

1. 𝜙 and (𝜙)V have the same free variables.

2. 𝜏 free for 𝑥 in 𝜙 iff 𝜏 free for 𝑥 in (𝜙)V.

3. If 𝜏 free for 𝑥 in 𝜙, then ⊢𝑇 (𝜙)V[𝑥/𝜏]↔ (𝜙[𝑥/𝜏])V.

Proof. Each of the statemens is proved by induction in 𝜙. The first two are
trivial and for the third it suffices to use Lemma 68. �

2.2.2 Translating theories
As we said in the introduction to this chapter, we want to show a theorem
claiming that if 𝑈 proves a formula 𝜙, then a theory 𝑇 proves the formula
(𝜙)V. For Gödel’s translation 𝑈 is the classical version of 𝑇 and for Friedman’s
translation 𝑈 =𝑇. In case of Visser’s translation we need to define a new theory.

Definition 70. Let 𝑇 be theory and be a box function. Then we define the
arithmetized theory (𝑇)V as:

(𝑇)V ∶= 𝑇 +{𝜙 ∈ Sent ∣ ⊢𝑇 (𝜙)V}.

In addition, if 𝑇 is an arithmetizable theory, we define the formula:

ax(𝑇)V
(𝐴) ∶= ax𝑇(𝐴)∨prov𝑇(𝐴)

•

V , �

The following result follows directly from the definition of (𝑇)V.

Lemma 71. For any formula 𝜙,

⊢𝑇 (𝜙)V implies ⊢(𝑇)V
𝜙.

Proof. By definition of (𝑇)V we will have that 𝜙 ∈Ax(𝑇)V
. �

And now the desired result. It is the reverse direction of Lemma 71.

Theorem 72. Let 𝑇 be a theory such that HB𝑇 , and let 𝑇 be closed under
(_)V. For any formula 𝜙, we have that

⊢(𝑇)V
𝜙 implies ⊢𝑇 (𝜙)V.
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Proof. We proceed by strong induction in the length of the proof of ⊢(𝑇)V
𝜙 and

cases in the justification for the last formula. Note that thanks to the hypothesis
if 𝜙 is a non-logical axiom of (𝑇)V we are covered. We need to check all logical
axioms.
Propositional logic axioms (1 to 7) are easy, using Lemma 65 when necessary

to simplify the calculation of the translation.
Let us assume we have the axiom (∀𝑥 . 𝜙)→𝜙[𝑥/𝜏] where 𝑥 is free for 𝜏 in

𝜙. The translation gives

((∀𝑥 . 𝜙)V→(𝜙[𝑥/𝜏])V),

since HB𝑇 , it suffices to show

⊢𝑇 (∀𝑥 . 𝜙)V→(𝜙[𝑥/𝜏])V.

Note that thanks to Lemma 69 we know that 𝑥 is free for 𝜏 in (𝜙)V. Then we
have:

⊢𝑇 (∀𝑥.𝜙)V = (∀𝑥 . (𝜙)V)

→∀𝑥 . (𝜙)V
→(𝜙)V[𝑥/𝜏] (since 𝑥 free for 𝜏 in (𝜙)V)

↔(𝜙[𝑥/𝜏])V (by Lemma 69)

Let us assume we have the axiom (∀𝑥 . 𝜓→𝜙)→𝜓→(∀𝑦 . 𝜙[𝑥/𝑦]) where
𝑥 ∉ fv(𝜓) and (𝑥 = 𝑦 or 𝑦 ∉ fv(𝜙)). Using Lemma 65 and that HB𝑇 , we know
that it suffices to show that:

(∀𝑥 . 𝜓→𝜙)V→(𝜓)V→(∀𝑦 . 𝜙[𝑥/𝑦])V.

Using Lemma 63 we know that this is 𝑇-equivalent to

(∀𝑥 . (𝜓)V→(𝜙)V)→(𝜓)V→ (∀𝑦 . (𝜙[𝑥/𝑦])V).

Thanks to Lemma 69 and HB𝑇 , we get that this is 𝑇-equivalent to

(∀𝑥 . (𝜓)V→(𝜙)V)→(𝜓)V→ (∀𝑦 . (𝜙)V[𝑥/𝑦]). (i)

Notice that thanks to Lemma 69 we have that 𝑥 ∉ fv((𝜓)V) and, using the same
lemma, if 𝑦 ≠ 𝑥 we have that 𝑥 ∉ fv((𝜙)V). This means that

(∀𝑥 . (𝜓)V→(𝜙)V)→(𝜓)V→(∀𝑦 . (𝜙)V[𝑥/𝑦]), (ii)

since it is another instance of the same logical axiom. In addition, thanks to
HB𝑇 , and (ii), we have that

(∀𝑥 . (𝜓)V→(𝜙)V)→ (𝜓)V→ (∀𝑦 . (𝜙)V[𝑥/𝑦]),
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Thanks to Lemma 69 we have that ⊢𝑇 (𝜓)V→ (𝜓)V. From this we get

(∀𝑥 . (𝜓)V→(𝜙)V)→(𝜓)V→ (∀𝑦 . (𝜙)V[𝑥/𝑦]), (iii)

and (ii) and (iii) gives the desired (i).
The existential quantifier axioms are analogous to the universal quantifier

axioms.
All equality axioms are a block of universal quantifiers and a Δ0 formula 𝜙.

But if 𝜙 is Δ0 then

⊢𝑇 (∀𝑥0,…,𝑥𝑛−1.𝜙)V↔ (∀𝑥0,…,𝑥𝑛−1.(𝜙)V) (by Lemma 61)
↔ (∀𝑥0,…,𝑥𝑛−1.𝜙) (by HB𝑇 , and Lemma 66)

But the last formula of the equivalence is clearly provable in 𝑇 using HB𝑇 , .
Modus ponens. So assume that we have ⊢𝑇 𝜙 and we have shorter proofs of

⊢𝑇 𝜓 and ⊢𝑇 𝜓→𝜙. Applying the induction hypothesis to this shorter proofs we
obtain that ⊢𝑇 (𝜓)V and ⊢𝑇 (𝜓→𝜙)V, in other words, ⊢ ((𝜓)V→(𝜙)V). From
these is easy to derive ⊢𝑇 (𝜙)V using iFOL reasoning.
Generalization. Assume that we have ⊢𝑇 ∀𝑥.𝜙 and there is a shorter proof of

⊢𝑇 𝜙. By the induction hypothesis we obtain that ⊢𝑇 (𝜙)V, using generalization
we derive that ⊢𝑇 ∀𝑥.(𝜙)V. Since HB𝑇 , , we also have that ⊢𝑇 (∀𝑥.(𝜙)V) so we
can conclude that ⊢𝑇 (∀𝑥.𝜙)V, as desired. �

A corollary that is easy to prove thanks to the deduction theorem.

Corollary 73. Let 𝑇 be a theory such that HB𝑇 , and let 𝑇 be closed under
(_)V. Then

Γ ⊢(𝑇)V
𝜙 implies (Γ)V ⊢𝑇 (𝜙)V

Theorem 72 also allows to establish a conservativity result from (𝑇)V to 𝑇.

Corollary 74. Let us have a theory 𝑇 such that HB𝑇 , and 𝑇 is closed under
(_)V. For any 𝜙 Σ1-formula

⊢(𝑇)V
𝜙 implies ⊢𝑇 𝜙.

In particular:

𝑇 is consistent if and only if (𝑇)V is consistent.

Proof. Thanks to invariance of Σ1 formulas under translation (Lemma 67) and
Theorem 72. �
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And finally, the formalized version of the theorem.

Corollary 75. Let 𝑇 ,𝑈 be theories and let be the box function of a Σ1-
formula with one free variable. Assume that

1. iIΣ1 ⊆𝑈.

2. ⊢𝑈 HBprov𝑇,
•.

3. ⊢𝑈 ∀𝐴 . ax𝑇(𝐴)→prov𝑇(𝐴)
•

V .

Then
⊢𝑈 ∀𝐴.prov(𝑇)▵V

(𝐴)↔ prov𝑇(𝐴)
▵•

V .

Proof. We can replicate the arguments of the section of Visser translation gen-
eral properties and the theorem of translating theories but inside of 𝑈, since
in the metatheory we only need Σ1-induction to show these arguments. The
conclusion, is just the formalization of the Theorem 72. �

2.2.3 Translating a provability predicate
From provability predicates of 𝑇 we need to be able to construct provability
predicates suitable for (𝑇)▵V. The following definition explains how.

Definition 76. Let us have two formulas 𝑃(𝑥),𝑄(𝑥), where 𝑥 is a designated
variable of the formula and ,▵ its box translations respectively. We define the
formula 𝑃𝑄(𝐴) as 𝑃(𝐴)▵

•

V . The box function of this formula will be denoted as
▵𝜙. �

Note that if 𝑃 is Σ1 then 𝑃𝑄 is Σ1, since Visser’s translation is primitive
recursive.
With this lemma we prove that the new constructed box function ▵ is

suitable for (𝑇)▵V.

Lemma 77. Let us have box functions and ▵, such that

1. ,▵ are Σ1.

2. HB𝑇 , and HB𝑇 ,▵.

3. 𝑇 is closed under (_)▵V.

Then we have that Hb𝑇 , ▵ and Hb(𝑇)▵V, ▵.

Proof. Since is Σ1 we know that ▵ is also Σ1, so to check that Hb𝑇 , ▵,Hb(𝑇)▵V, ▵

it suffices to check necessity, formalized modus ponens and formalized complete-
ness. Since 𝑇 ⊆ (𝑇)▵V it is easy to see that it suffices to check formalized modus
ponens and formalized Σ1-completeness for 𝑇 and necessity in the form:

⊢(𝑇)▵V
𝜙 implies ⊢𝑇

▵𝜙.
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Necessity. Let 𝜙 be a sentence such that ⊢(𝑇)▵V
𝜙. By Theorem 72 we have

that ⊢𝑇 (𝜙)▵V and since HB𝑇 , we get ⊢𝑇 (𝜙)▵V. But since 𝜙 is a sentence, we
get ⊢𝑇

▵𝜙, as desired.
Formalized modus ponens. Let 𝜙,𝜓 be sentences, we have to show that

⊢𝑇
▵(𝜙→𝜓)→ ▵𝜙→ ▵𝜓. (i)

We have that:

⊢𝑇 (𝜙)
▵•

V
≈ (𝜙)▵V,

⊢𝑇 (𝜓)
▵•

V
≈ (𝜓)▵V,

⊢𝑇 (𝜙→𝜓)
▵•

V
≈ (𝜙→𝜓)▵V,

so (i) is equivalent to show that

⊢𝑇 (𝜙→𝜓)▵V→ (𝜙)▵V→ (𝜓)▵V,

but this is easy to show by definition of (_)▵V, HB𝑇 , and a little of iFOL
reasoning.

Σ1-completeness. We have to show that for any Σ1-sentence

⊢𝑇 𝜙→ ▵𝜙.

Since 𝜙 is a sentence, it is equivalent to show that

⊢𝑇 𝜙→ (𝜙)▵V.

Since 𝜙 is Σ1, by Lemma 67 with the assumption that HB𝑇 ,▵ we obtain ⊢𝑇 𝜙↔
(𝜙)▵V. By HB𝑇 , we have ⊢𝑇 𝜙↔ (𝜙)▵V, so it suffices to show

⊢𝑇 𝜙→ 𝜙,

which holds by HB𝑇 , .Compl. �

2.2.4 Formulas whose translation implies the original for-
mula

For reasons that will become clear in Chapter 4, we need to study when the
Visser’s translation of a formula implies the original formula. In other words,
we want to prove that for certain class of formulas, we have that ⊢𝑇 (𝜙)V→𝜙.
With that purpose, we define the class of formulas 𝒜.
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Definition 78. Let 𝒜 be the set of ℒ1-formulas described by the following
Backus-Naur form:

𝒜 ∶∶= 𝜙 ∣𝒜∧𝒜 ∣𝒜∨𝒜 ∣ ∀𝑥 .𝒜 ∣ ∃𝑥 .𝒜 ∣ 𝜓→𝒜,

where 𝜙 is an atomic formula, 𝑥 is a variable and 𝜓 is a Σ1-formula. �

With this definition we can prove the desired lemma.

Lemma 79. Let 𝜙 ∈𝒜 and also assume that HB𝑇 , . We have that:

⊢𝑇 (𝜙)V→𝜙.

Proof. We proceed by induction in 𝜙. If it is atomic the result is trivial. The
cases of conjunction, disjunction and universal or existential quantification are
easy using the induction hypothesis. Let us show the implication case. We have
that 𝜙 = 𝜙0→𝜙1, where 𝜙0 is Σ1 and 𝜙1 is 𝒜. By the induction hypothesis
we have that ⊢𝑇 (𝜙1)V→𝜙1 and since 𝜙0 is Σ1, by Lemma 67 we have that
⊢𝑇 𝜙0 ↔ (𝜙0)V. We also have that ⊢𝑇 (𝜙0→𝜙1)V→(𝜙0)V→(𝜙1)V, so using
these three deductions we conclude

⊢𝑇 (𝜙0→𝜙1)V→𝜙0→𝜙1. �

2.3 De Jongh’s Translation
The last translation needed for our purposes is De Jongh’s translation. First,
let us define it. Note that it is similar to Visser’s translation, but with two
differences. The first one is that it requires an extra formula 𝜓. The second
difference, and the one which makes Visser’s translation and De Jongh’s trans-
lation different in their nature, is that the translation is not recursively applied
inside .

Definition 80 (De Jongh’s Translation). Let 𝜙,𝜓 be formulas and let be a
box function. We define [𝜓] 𝜙 recursively in 𝜙 as:

[𝜓] 𝜙 = 𝜙, if 𝜙 is atomic,
[𝜓] (𝜙0∧𝜙1) = [𝜓] 𝜙0∧[𝜓] 𝜙1,
[𝜓] (𝜙0∨𝜙1) = [𝜓] 𝜙0∨[𝜓] 𝜙1,
[𝜓] (𝜙0→𝜙1) = ([𝜓] 𝜙0→[𝜓] 𝜙1)∧ (𝜓→𝜙0→𝜙1),
[𝜓] (∀𝑥.𝜙) = (∀𝑥 . [𝜓] 𝜙)∧ (𝜓→∀𝑥.𝜙),
[𝜓] (∃𝑥 . 𝜙) = ∃𝑥 . [𝜓] 𝜙. �

First, we establish a lemma that proves the fundamental property of De
Jongh’s translation.
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Lemma 81. Assume that HB𝑈,𝑇 , . Let 𝜙,𝜓 ∈ ℒ1 such that there is no free
variable of 𝜓 bounded in 𝜙. Then:

⊢𝑈 [𝜓] 𝜙→ (𝜓→𝜙).

We establish some lemmas that ease the calculation of De Jongh’s transla-
tion.

Lemma 82. Assume that HB𝑈,𝑇 , . Then we have that:

⊢𝑈 [𝜒]
(

𝑚

⋀
𝑖=0

𝜙𝑖→𝜓𝑖
)
↔

(

𝑚

⋀
𝑖=0

[𝜒] 𝜙𝑖→[𝜒] 𝜓𝑖
)
∧

(
𝜒→

(

𝑚

⋀
𝑖=0

𝜙𝑖→𝜓𝑖
))

.

Lemma 83. Let HB𝑈,𝑇 , and 𝑥0,…,𝑥𝑚 be variables not free in 𝜒. Then we
have that:

⊢𝑈 [𝜒] (∀𝑥0,…,𝑥𝑚.𝜙)↔ (∀𝑥0,…,𝑥𝑚.[𝜒] 𝜙)∧ (𝜒→∀𝑥0,…,𝑥𝑚.𝜙).

Lemma 84. Let HB𝑈,𝑇 , and assume that 𝑥 ∉ fv(𝜒). Then

⊢𝑈 [𝜒] (∀𝑥.𝜙→𝜓)↔ (∀𝑥.[𝜒] 𝜙→[𝜒] 𝜓)∧ (𝜒→∀𝑥.𝜙→𝜓).

Lemma 85. Let HB𝑈,𝑇 , , then

⊢𝑈 [𝜒] (𝜙𝑚→⋯→𝜙0)↔ ([𝜒] 𝜙𝑚→⋯→[𝜒] 𝜙0)∧ (𝜒→𝜙𝑚→⋯→𝜙0)

A pair of lemmas proving that under certain conditions De Jongh’s transla-
tion for Δ0 and Σ1 formulas is equivalent to the identity.

Lemma 86. Assume that HB𝑈,𝑇 , . Let 𝜙 ∈Δ0, such that no free variable of 𝜒
appears bounded in 𝜙. Then

⊢𝑈 𝜙↔ [𝜒] 𝜙.

Lemma 87. Assume that HB𝑈,𝑇 , . Let 𝜙 ∈Σ1, such that no free variable of 𝜒
appears bounded in 𝜙. Then

⊢𝑈 𝜙↔ [𝜒] 𝜙.

Two technical lemmas proving properties of De Jongh translation related to
variables and substitutions.

Lemma 88. We have that

1. fv([𝜒] 𝜙) ⊆ fv(𝜒)∪ fv(𝜙).

2. 𝑥 is free for 𝜏 in 𝜙 iff 𝑥 is free for 𝜏 in [𝜒] 𝜙.

Lemma 89. Assume that HB𝑈,𝑇 , . Let 𝑥 be free for 𝜏 in 𝜙, and 𝑥 ∉ fv(𝜒).
Then

⊢𝑈 ([𝜒] 𝜙)[𝑥/𝜏]↔ [𝜒] 𝜙[𝑥/𝜏].
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The main theorem of the De Jongh’s translation.

Theorem 90. Let 𝜒 be a formula, let 𝑇 be such that if 𝜙 ∈Ax𝑇 then ⊢𝑈 [𝜒] (𝜙)
and HB𝑈,𝑇 , . Then if 𝜋 is a proof of ⊢𝑇 𝜙 where no free variable of 𝜒 appears
bounded, we have that

⊢𝑈 [𝜒] 𝜙.

An easy corollary using the deduction theorem.

Corollary 91. Let 𝜒 be a sentence, let 𝑇 and 𝑈 be such that 𝜙 ∈Ax𝑇 implies
⊢𝑈 [𝜒] 𝜙 and HB𝑈,𝑇 , . Assume that we have a proof 𝜋 of Γ ⊢𝑇 𝜙 such that no
free variable of 𝜓 appears bounded in 𝜋 or in Γ. Then

[𝜒] Γ ⊢𝑈 [𝜒] 𝜙.

And finally the formalized version of the main theorem for De Jongh’s trans-
lation.

Corollary 92. Let 𝑉 ,𝑈,𝑇 be theories and be a box function of a formula (so
• exists). Assume that

1. iIΣ1 ⊆𝑉.

2. ⊢𝑉 HBprov𝑈,prov𝑇,
•.

Then

∀𝐶 . ax𝑇(𝐶)→prov𝑈([𝐵] •𝐶),
∀𝑣 . ¬(𝑣 ∈ fv(𝐴)∧∃𝐶 ∈ 𝑝 . 𝑣 ∈ bv(𝐶)),
proof𝑇(𝑝,𝐴)
⊢𝑉 prov𝑈([𝐵] •𝐴).

2.3.1 Auxiliary translations
Let us define some translations resembling De Jongh translation, but from
propositional formulas to first-order formulas. These definitions will be use-
ful in Chapter 4.

Definition 93. Let 𝜙,𝜓 ∈ℒp, 𝜎 be a realization and be a box function. Then,
we define [𝜓,𝜎] 𝜙 ∈ℒ1 recursively in 𝜙 as:

[𝜓,𝜎] 𝑝 ∶= 𝜎(𝑝),
[𝜓,𝜎] ⊤ ∶=⊤,
[𝜓,𝜎] ⊥ ∶=⊥,
[𝜓,𝜎] (𝜙0∧𝜙1) ∶= [𝜓,𝜎] 𝜙0∧[𝜓,𝜎] 𝜙1,
[𝜓,𝜎] (𝜙0∨𝜙1) ∶= [𝜓,𝜎] 𝜙0∨[𝜓,𝜎] 𝜙1,
[𝜓,𝜎] (𝜙0→𝜙1) ∶= ([𝜓,𝜎] 𝜙0→[𝜓,𝜎] 𝜙1)∧ (𝜎𝜓→𝜎𝜙0→𝜎𝜙1).
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Similarly, we define [𝜓,𝜎]∘𝜙 ∈ℒ1 recursively in 𝜙 as:

[𝜓,𝜎]∘𝑝 ∶= 𝜎(𝑝),
[𝜓,𝜎]∘⊤ ∶=⊤,
[𝜓,𝜎]∘⊥ ∶=⊥,
[𝜓,𝜎]∘(𝜙0∧𝜙1) ∶= [𝜓,𝜎]∘𝜙0∧[𝜓,𝜎]∘𝜙1,
[𝜓,𝜎]∘(𝜙0∨𝜙1) ∶= [𝜓,𝜎]∘𝜙0∨[𝜓,𝜎]∘𝜙1,
[𝜓,𝜎]∘(𝜙0→𝜙1) ∶= (𝜎𝜓→𝜎𝜙0→𝜎𝜙1). �

The following lemmas are needed in Chapter 4.

Lemma 94. Let HB𝑈,𝑇 , . Then for any 𝜙,𝜓 ∈ℒp and any Σ1-realization 𝜎 we
have

⊢𝑈 [𝜎𝜓] 𝜎𝜙↔ [𝜓,𝜎] 𝜙.

Lemma 95. Let 𝜙,𝜓 ∈ℒp, 𝜎 be a realization and ∶ℒ1 ⟶ℒ1. Then

⊢𝑈 [𝜓,𝜎] 𝜙→[𝜓,𝜎]∘𝜙.

Lemma 96. Assume that Rfn𝑈, . Then, for any 𝜙,𝜓 ∈ ℒp and realization 𝜎
we have

⊢𝑈 [𝜓,𝜎]∘𝜙→𝜎([𝜓]𝜙).

Lemma 97. Let be Σ1 and 𝜎 a Σ1-realization. Then [𝜓,𝜎]∘𝜙 is 𝑈-provably
equivalent to a Σ1-formula.
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Chapter 3

Solovay in the
Intuitionistic Case

In this chapter we will introduce the method from [13]. It adapts the Solovay’s
construction from classical logic to intuitionistic logic. Since in intuitionistic
modal logic there are two binary relations, an intuitionistic relation and a modal
relation, we will need two provability predicates. In addition, we will ned that
they fulfill the absorption law for Σ1-sentence, i.e. ▵𝜙→ 𝜙 where 𝜙 is a Σ1-
sentence. For this reason we include a section with a method from construcing
▵ from that satisfies the absorption law. Informally, we call ▵ a slow version
of . This is since thanks to the definition we have that ▵𝜙→ 𝜙, while ▵
representing the same provability predicate as in the standard arithmetical
model. The trick is that the arithmetical theory is incapable of showing that
they are the same provability predicate.
The idea behind this construction of the slow predicate is taken from [12].

While originally this construction was used to construct non-uniform provability
predicates (i.e. predicates that only fulfill Hb), we show that it also work for
constructing uniform predicates. Finally, we will apply the intuitionistic Solovay
construction and create a slow version of iPRA, called 𝒮iPRA, to prove that

ℙ𝕃((iPRA) 𝒮iPRA
V ) = iGLC.

3.1 Equivalence of completeness and strong Löb
First, we are going to define two principles that we will need: the completeness
principle (the C of iGLC) and the Strong Solovay principle. We will show that
in fact, both are equivalent under some standard assumptions.

Definition 98. We define the set of formulas of the sentential completeness
principle for , Cp as the set:

Cp ∶= {𝜙→ 𝜙 ∣ 𝜙 ∈ Sent}.
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Similarly, we define the set of formulas of the strong Löb’s principle for ,
Slp , as the set:

Slp ∶= {( 𝜙→𝜙)→𝜙 ∣ 𝜙 ∈ Sent}.

If 𝑇 is an arithmetical theory, we will write Cp𝑇 , to mean ⊢𝑇 Cp and Slp𝑇 ,
to mean ⊢𝑇 Slp . �

Now we show Löb’s rule using his reasoning.

Lemma 99. Assume Gl𝑇 , and let 𝜙 be a sentence. Then,

⊢𝑇 𝜙→𝜙 implies ⊢𝑇 𝜙.

Proof. Assume that is the box function of 𝑃(𝑥). We start using diagonaliza-
tion in 𝑇 for the formula 𝑃(𝑥)→𝜙. With this we obtain a sentence 𝜓 such that
⊢𝑇 𝜓↔ ( 𝜓→𝜙) (i). In particular ⊢𝑇 𝜓→ 𝜓→𝜙, using that Gl𝑇 , it is easy to
derive that ⊢𝑇 𝜓→ 𝜓→ 𝜙 (ii). But since ⊢𝑇 𝜓→ 𝜓, by Gl𝑇 , .Trans,
we have that from (ii) we can derive ⊢𝑇 𝜓→ 𝜙. Since ⊢𝑇 𝜙→𝜙 we also
have that ⊢𝑇 𝜓→𝜙 (iii), but by (i), this implies ⊢𝑇 𝜓. By necessitation, we
get ⊢𝑇 𝜓, so using (iii) we can conclude that ⊢𝑇 𝜙, as wanted. �

We remind the reader that Gl are the sentential Gödel-Löb conditions. These
are weaker conditions than Hb, and are explained in Section 1.5.
By an analogous reasoning, but having two sentences 𝜙0 ,𝜙1 and 𝜓 being the

fixpoint of 𝑃(𝑥)→ 𝜙0→𝜙1, we obtain a variation of the rule:

Lemma 100. Assume Gl𝑇 , and 𝜙 be a sentence. Then

⊢𝑇 𝜙0→ 𝜙1→𝜙1 implies ⊢𝑇 𝜙0→𝜙1.

Using this strengthened version, we can show Löb’s axiom.

Lemma 101. Assume Gl𝑇 , and let 𝜙 be a sentence. Then

⊢𝑇 ( 𝜙→𝜙)→ 𝜙.

Proof. Just note that by Gl𝑇 , .K we have that ⊢𝑇 ( 𝜙→𝜙)→ 𝜙→ 𝜙 and
using Lemma 100 directly give us: ⊢𝑇 ( 𝜙→𝜙)→ 𝜙. �

The second part of the following proof follows Dick de Jongh’s proof of axiom
4 from Löb’s principle.

Lemma 102. Let Gl𝑇 , , then we have that Cp𝑇 , and Slp𝑇 , are equivalent.

Proof. Let us assume that Cp𝑇 , . Since Gl𝑇 , , we have that by Lemma 101:

⊢𝑇 ( 𝜙→𝜙)→ 𝜙.
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So, by Cp𝑇 , , we also have:

⊢𝑇 ( 𝜙→𝜙)→ 𝜙.

And using intuitionistic propositional reasoning we can conclude

⊢𝑇 ( 𝜙→𝜙)→𝜙.

Let us assume that Slp𝑇 , . Since Gl𝑇 , , we have that

⊢𝑇 (𝜙∧ 𝜙)→ 𝜙,

so
⊢𝑇 𝜙→( (𝜙∧ 𝜙)→𝜙∧ 𝜙).

Using Slp𝑇 , we have that
⊢𝑇 𝜙→𝜙∧ 𝜙,

so we can conclude by intuitionistic propositional reasoning that

⊢𝑇 𝜙→ 𝜙. �

3.2 Good pair theorem
In this section we are going to closely follow [13]. We just need to guarantee
the following restrictions:

1. The base theory is iEA, instead of iIΣ1.

2. Instead of assuming Fefermanian predicates we just require Hilbert-Bernays
predicates.

Definition 103. Let 𝑇 be a theory and ,▵ be Σ1 box functions. We say that
( ,▵) is a good pair for 𝑇 iff

1. Hb𝑇 , ,Hb𝑇 ,▵.

2. For any sentence 𝜙, if ⊨ℕ 𝜙 then ⊢𝑇 𝜙.

3. Slp𝑇 ,▵.

4. Σ1-Abs𝑇 , ,▵, i.e. the Σ1 sentential absorption principle.

�

We note that in the previous definition all the principles we use, apply to
sentences only. For the rest of this section we assume that ( ,▵) is a good pair
for 𝑇, a Δ0-decidable extension of iEA.
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Note that since ,▵ are Σ1 box functions we have Σ1 formulas 𝑃(𝑥),𝑄(𝑥)
such that is the box function of 𝑃(𝑥) and 𝑄(𝑥). Then 𝑃(𝑥) ∶= ∃𝑝 . 𝑃0(𝑝,𝑥)
and 𝑄(𝑥) ∶= ∃𝑝 . 𝑄0(𝑝,𝑥), where 𝑃0 and 𝑄0 are Δ0. We will refer to them as
proof (𝑝,𝑥) and proof▵(𝑝,𝑥), respectively.
We know that iGLC is sound and complete with respect to finite irreflexive

realistic models. That means the following:

Theorem 104. Let 𝜙 be a modal formula. Then

⊢iGLC 𝜙 iff {ℱ ∣ℱ is finite, irreflexive and realistic} ⊨ 𝜙.

For our purposes let us assume that 𝜙 is a formula such that �⊢iGLC𝜙. This
means that there is a finite, irreflexive and realistic modelℳ0 = (𝑀0,⊏0,≼0,𝑉0)
and a world 𝑟 such that ℳ0,𝑟 ⊭ 𝜙. Since the model is finite we are going to
assume, without loss of generality, that its worlds are the set {1,…𝑟}. We will
extend this model, calling the resulting model ℳ:

𝑀 ∶=ℕ,

⊏∶=⊏0 ∪{(0,𝑗) ∣ 0 < 𝑗}∪{(𝑖,𝑗) ∣ 𝑟 < 𝑖 and 1 ≤ 𝑗 < 𝑖},

≼∶=≼0 ∪{(0,𝑗) ∣ 𝑗 ∈ℕ}∪{(𝑖,𝑗) ∣ 𝑟 < 𝑖 and 1 ≤ 𝑗 ≤ 𝑖},

𝑉 (𝑝) ∶= 𝑉0(𝑝).

Note that the idea behind this definition is to add a tail to the original finite
model. We can picture this new model as:

⋮

𝑟

𝑟+1

0

𝑟+2

The triangle represents the original modem ℳ0, with root at 𝑟. The arrows
represents both, the modal and intuitionistic relation and we have to imagine
them as beein transitively closed. The dots (the new words) have a reflexive
intuitionistic arrow but neither have a modal reflexive arrow. The 0 is the new
root of the model, and thanks to transitivity it has an arrow to any other node.

45



𝑇 has Δ0-definitions of the modal and intuitionistic relations of ℳ, defined
as:

𝑥≼ 𝑦 =⎛
⎝

⋁
(𝑖,𝑗)∈≼0

𝑥 ≈ 𝑖∧𝑦 ≈ 𝑗⎞
⎠

∨𝑥 ≈ 0∨(𝑟 < 𝑥∧1≤ 𝑦 ≤ 𝑥),

𝑥 ⊏ 𝑦 =
(

⋁
(𝑖,𝑗)∈⊏0

𝑥 ≈ 𝑖∧𝑦 ≈ 𝑗
)
∨(𝑥 ≈ 0∧𝑦 > 0)∨(𝑟 < 𝑥∧1≤ 𝑦 < 𝑥).

In particular 𝑇 knows that:

1. ≼ is a partial order, i.e. 𝑇 proves the conjunction of the following formulas:

∀𝑥 . 𝑥 ≼ 𝑥,
∀𝑥,𝑦 . 𝑥 ≼ 𝑦∧𝑦≼ 𝑥→𝑥 ≈ 𝑦,
∀𝑥,𝑦,𝑧 . 𝑥 ≼ 𝑦∧𝑦≼ 𝑧→𝑥≼ 𝑧.

2. ⊏ is irreflexive:
⊢𝑇 ∀𝑥 . 𝑥�⊏𝑥.

3. The model property holds:

⊢𝑇 ∀𝑥,𝑦,𝑧 . 𝑥 ≼ 𝑦∧𝑦⊏ 𝑧→𝑥⊏ 𝑧.

4. The frame is realistic:

⊢𝑇 ∀𝑥,𝑦 . 𝑥 ⊏ 𝑦→𝑥≼ 𝑦.

If the reader wants to remind what was the definitions of the model property
or of a frame being realistic, we remember that these are defined in Section 1.3.
Let us define the formulas 𝜒0(𝑠,𝑥,𝐴),𝜒1(𝑠,𝑥,𝐴),𝜒2(𝑠,𝑥,𝐴) as:

𝜒0(𝑠,𝑥,𝐴) ∶= (𝑠)𝑥∸1 ⊏ (𝑠)𝑥∧

proof (𝑥∸1,∃•𝑠∃•𝑧 ≤• length•(𝑠) . 𝐴∧•¬•(𝑠)•𝑧 ⊑
• num((𝑠)𝑥)),

𝜒1(𝑠,𝑥,𝐴) ∶= (𝑠)𝑥∸1 ≺ (𝑠)𝑥∧

proof▵(𝑥∸1,∃•𝑠∃•𝑧 ≤• length•(𝑠) . 𝐴∧•¬•(𝑠)•𝑧 ⊑
• num((𝑠)𝑥)),

𝜒2(𝑠,𝑥,𝐴) ∶= ¬𝜒0(𝑠,𝑥,𝐴)∧¬𝜒1(𝑠,𝑥,𝐴)∧(𝑠)𝑥∸1 ≈ (𝑠)𝑥.

Now we define the formula 𝜙(𝑠,𝐴) as:

𝜙(𝑠,𝐴) ∶= seq(𝑠)∧ length(𝑠) > 0∧(𝑠)0 ≈ 0∧

(∀𝑥 < length(𝑠) . 𝑥 ≉ 0→𝜒0(𝑠,𝑥,𝐴)∨𝜒1(𝑠,𝑥,𝐴)∨𝜒2(𝑠,𝑥,𝐴)).

Let 𝜃(𝑠) be the fixpoint of this formula given by the diagonal lemma. In other
words, we have that:

⊢𝑇 𝜃(𝑠)↔𝜙(𝑠,𝜃(𝑠)). (H0)
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Let us explain the meanin of 𝜃. Basically, 𝜃(𝑠) holds iff 𝑠 is a sequence calculating
an initial part of Solovay’s function. There is a little different, now Solovay’s
function can move in two different relations: the intuitionistic and the modal.
It moves through the modal relation when the input codes a -proof claiming
that it will not stay in its position. Similarly, it moves through the intuitionistc
relation when the input codes a ▵-proof claiming that it will not stay in its
position. In case the input codes neither, it stays in its position.
Thanks to H0, we know that 𝜃(𝑠) is equivalent in 𝑇 to a Δ0-formula. One

trivial consequence of the definition of 𝜃 is:

⊢𝑇 ∀𝑠0,𝑠1 . 𝑠0 ⊆ 𝑠1∧𝜃(𝑠1)→𝜃(𝑠0). (H1)

Now, we can show (using induction) that

⊢𝑇 ∀𝑠0,𝑠1 . length(𝑠0) ≈ length(𝑠1)∧𝜃(𝑠0)∧𝜃(𝑠1)→𝑠0 ≈ 𝑠1. (H2)

⊢𝑇 ∀𝑥∃𝑠 . length(𝑠) ≈ 𝑥∧𝜃(𝑠). (H3)

To show the first formula we use induction in:

∀𝑘∀𝑠0,𝑠1 <𝑘 . length(𝑠0) ≈ length(𝑠1)∧𝜃(𝑠0)∧𝜃(𝑠1)→𝑠0 ≈ 𝑠1.

For the second, we need to bound 𝑠. The idea is to show that 𝑠 ≤ (0,1,2,…,𝑥)
and show that the function 𝑥↦ (0,…,𝑥) exists inside 𝑇, which does since iEA⊆
𝑇 and this function is of order 𝑥𝑥.
Now, let us define a function ℎ such that:

ℎ(𝑥) ≈ 𝑦 ∶= ∃𝑠 . length(𝑠) > 𝑥∧𝜃(𝑠)∧𝑦 ≈ (𝑠)𝑥.

Thanks to H0, H1, H2 and H3 we have that

⊢𝑇 ∀𝑥∃!𝑦 . ℎ(𝑥) ≈ 𝑦.

So ℎ(𝑥) ≈ 𝑦 defines a Σ1-function inside 𝑇. Informally, we can understand
ℎ ∶ℕ⟶ℕ as defined by ℎ(0) = 0 and:

ℎ(𝑘+1) =

⎧⎪⎪⎪

⎨⎪⎪⎪
⎩

𝑚 if ℎ(𝑘) ⊏𝑚 and proof (𝑘,∃𝑥 . ¬(ℎ(𝑥) ⊑𝑚)),

𝑛 if ℎ(𝑘) ≺ 𝑛 and proof▵(𝑘,∃𝑥 . ¬(ℎ(𝑥) ≼ 𝑛)),
ℎ(𝑘) otherwise.

Inside 𝑇 we can show that

⊢𝑇 ∀𝑠∀𝑥0,𝑥1 < length(𝑠) . 𝜃(𝑠)∧𝑥0 <𝑥1→(𝑠)𝑥0 ≼ (𝑠)𝑥1.

Which easily implies

⊢𝑇 ∀𝑥0,𝑥1 . 𝑥0 ≤𝑥1→ℎ(𝑥0) ≼ ℎ(𝑥1). (H4)
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Since 𝑇 knows that the frame is realistic it can easily show that for any 𝑘 ∈ℕ:

⊢𝑇 (∃𝑦 . ¬ℎ(𝑦) ≼ 𝑘)→(∃𝑥 . ¬ℎ(𝑥) ⊏ 𝑘)

But then using that HB𝑇 ,▵ we have that:

⊢𝑇 ▵(∃𝑦 . ¬ℎ(𝑦) ≼ 𝑘)→▵(∃𝑥 . ¬ℎ(𝑥) ⊏ 𝑘).

Since (∃𝑥 . ¬ℎ(𝑥) ⊏ 𝑘) is equivalent to a Σ1 formula modulo 𝑇 we have that we
have absorption for it. Then by Hb𝑇 , we have that

⊢𝑇 ▵(∃𝑥 . ¬ℎ(𝑥) ⊏ 𝑘)→ ▵(∃𝑥 . ¬ℎ(𝑥) ⊏ 𝑘),

which by absorption we conclude that:

⊢𝑇 ▵(∃𝑦 . ¬ℎ(𝑦) ≼ 𝑘)→ (∃𝑥 . ¬ℎ(𝑥) ⊑ 𝑘). (H5)

We also have the following two results for 𝑖 ∈ℕ:

⊢𝑇 ¬(𝑥≼ 𝑖)↔ ⋁
𝑗∈𝑀,𝑗�≼𝑖

𝑥 ≈ 𝑗, (H6)

⊢𝑇 ¬(𝑥⊏ 𝑖)↔ ⋁
𝑗∈𝑀,𝑗�⊏𝑖

𝑥 ≈ 𝑗. (H7)

Note that this is defined since given 𝑖 there are only finitely many 𝑗 such that
𝑗�≼𝑖 or 𝑗�⊏𝑖.
By definition of ℳ we have that:

Lemma 105. Given any formula 𝜙 either J𝜙Kℳ is finite or J𝜙Kℳ =ℕ.

The previous lemma justifies this definition:

Definition 106. For any sentence 𝜙 ∈ℒm, we define the ℒ1-sentence [𝜙] as:

[𝜙] =
{

⋁𝑖∈J𝜙Kℳ ∃𝑥 . ℎ(𝑥) ≈ 𝑖 if J𝜙Kℳ is finite,
⊤ if J𝜙Kℳ =ℕ. �

From now own we will omit the ℳ in J𝜙Kℳ and simply write J𝜙K. After all
this work we are ready for the main part of the proof. We want to show that
[_] commutes with all the operators in propositional modal logic.

Lemma 107 (Disjunction). For any 𝜙,𝜓 ∈ℒm, we have that

⊢𝑇 [𝜙∨𝜓]↔ [𝜙]∨ [𝜓].

Proof. If J𝜙K=ℕ then J𝜙∨𝜓K=ℕ and then the equivalence is trivial. If J𝜓K=ℕ
it is analogous, so the only case left is J𝜙K and J𝜓K finite. However, this case is
trivial by definition of [_]. �
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Lemma 108 (Conjunction). For any 𝜙,𝜓 ∈ℒm, we have that

⊢𝑇 [𝜙∧𝜓]↔ [𝜙]∧ [𝜓].

Proof. Suppose that J𝜙K is ℕ. Then [𝜙] = ⊤ and J𝜙∧𝜓K = J𝜙K∩ J𝜓K = J𝜓K, so
[𝜙∧𝜓] = [𝜓]. Then

⊢𝑇 [𝜙∧𝜓] = [𝜓]
↔⊤∧[𝜓]
= [𝜙]∧ [𝜓].

The case of J𝜓K=ℕ is analogous, so assume that both J𝜙K and J𝜓K are finite.
→ is trivial, so we only show ←. For this direction it suffices to show that

if 𝑖 ∈ J𝜙K and 𝑗 ∈ J𝜓K

⊢𝑇 (∃𝑥 . ℎ(𝑥) ≈ 𝑖)∧(∃𝑦 . ℎ(𝑦) ≈ 𝑗)→[𝜙∧𝜓]. (i)

First, we show that

⊢𝑇 (∃𝑥 . ℎ(𝑥) ≈ 𝑖)∧(∃𝑦 . ℎ(𝑦) ≈ 𝑗)→𝑖≼ 𝑗∨𝑗 ≼ 𝑖. (ii)

We reason inside 𝑇. So assume we have 𝑥,𝑦 such that ℎ(𝑥) ≈ 𝑖 and ℎ(𝑦) ≈ 𝑗.
Since 𝑥 ≤ 𝑦∨𝑦 ≤ 𝑥 using Lemma H4 we have that ℎ(𝑥) ≼ ℎ(𝑦)∨ℎ(𝑦) ≼ ℎ(𝑥)
which implies 𝑖 ≼ 𝑗∨𝑗 ≼ 𝑖. We leave 𝑇.
If 𝑖 and 𝑗 are incomparable, by Σ1-completeness, we have that ⊢𝑇 ¬(𝑖 ≼

𝑗∨𝑗 ≼ 𝑖). By (ii) we get ⊢𝑇 ¬((∃𝑥 . ℎ(𝑥) ≈ 𝑖)∧(∃𝑦 . ℎ(𝑦) ≈ 𝑗)) in which case
(i) is trivial. If 𝑖, 𝑗 are comparable, without loss of generality assume 𝑖 ≼ 𝑗. By
knowledge persistance (outside 𝑇), 𝑗 ∈ J𝜙∧𝜓K, so

⊢𝑇 (∃𝑥 . ℎ(𝑥) ≈ 𝑖)∧(∃𝑦 . ℎ(𝑦) ≈ 𝑗)→(∃𝑦 . ℎ(𝑦) ≈ 𝑗)
→[𝐵∧𝐶]. (by 𝑗 ∈ J𝜙∧𝜓K)

�

Lemma 109 (Implication). For any 𝜙,𝜓 ∈ℒm, we have that

⊢𝑇 [𝜙→𝜓]↔ ([𝜙]→[𝜓]).

Proof. If J𝜙→𝜓K = ℕ, then J𝜙K ⊆ J𝜓K. By simple propositional reasoning, we
can show that ⊢𝑇 ([𝜙]→ [𝜓]) ↔⊤, so we will have the desired equivalence. So
we can assume that [𝜙→𝜓] is finite.
First we prove left to right. We always have that J(𝜙→𝜓)∧𝜙K⊆ J𝜓K. So by

simple propositional reasoning

⊢𝑇 [(𝜙→𝜓)∧𝜙]→[𝜓].
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By Lemma 108 we have that

⊢𝑇 [𝜙→𝜓]∧ [𝜙]→[(𝜙→𝜓)∧𝜙],

and from this and the previous implication we get the left to right direction.
Now we prove right to left. Thanks to Slp𝑇 ,▵, it suffices to show that

⊢𝑇 ([𝜙]→[𝜓])→▵[𝜙→𝜓]→[𝜙→𝜓]. (i)

We show (i). Let 𝑗0,…,𝑗𝑠−1 be the maximal elements of 𝑀 that do not belong
to J𝜙→𝜓K (by the shape of the model we know that these exist and that there
are only finitely many). In particular, this implies that 𝑗𝑡 ∈ J𝜙K and 𝑗𝑡 ∉ J𝜓K.
Using that 𝑀 is conversely well-founded and preservation of knowledge, we can
show that for any 𝑖 ∈𝑀,

𝑖 ∈ J𝜙→𝜓K iff (for any 𝑡 < 𝑠, 𝑖�≼𝑗𝑡). (ii)

Note that if 𝑖 ∈ J𝜙→𝜓K we get, for any 𝑡 < 𝑠, ⊢𝑇 ℎ(𝑥) ≈ 𝑖→¬(ℎ(𝑥) ≼ 𝑗𝑡) thanks
to (ii). Using this and iFOL reasoning we can derive that for any 𝑡 < 𝑠:

⊢𝑇 [𝜙→𝜓]→(∃𝑦 . ¬(ℎ(𝑦) ≼ 𝑗𝑡)).

Using this, Hb𝑇 ,▵ we get that for any 𝑡 < 𝑠:

▵[𝜙→𝜓] ⊢𝑇 ▵(∃𝑦 . ¬(ℎ(𝑦) ≼ 𝑗𝑡)). (iii)

Now we work inside 𝑇. Assume that [𝜙]→[𝜓] and ▵[𝜙→𝜓], we have thanks to

(iii), that there are 𝑘𝑡 (for any 𝑡 < 𝑠) such that proof▵(
𝑘𝑡,∃𝑦 . ¬(ℎ(𝑦) ≼ 𝑗𝑡))

.

Inside 𝑇 we have that for any 𝑡 < 𝑠, ℎ(𝑘𝑡) ≺ 𝑗𝑡∨ℎ(𝑘𝑡) = 𝑗𝑡∨¬(ℎ(𝑘𝑡) ≼ 𝑗𝑡), since
𝑥≼ 𝑦 is a Δ0-formula. This allows us to separate the rest of the proof in 3 cases.

1. For some 𝑡 < 𝑠, ℎ(𝑘𝑡) ≺ 𝑗𝑡. By definition of ℎ, we get ℎ(𝑘𝑡+1) ≈ 𝑗𝑡. But
𝑗𝑡 ∈ J𝜙K so [𝜙] holds. Since [𝜙]→ [𝜓] we have that [𝜓] holds and since
J𝜓K⊆ J𝜙→𝜓K we can conclude that [𝜙→𝜓] holds.

2. For some 𝑡 < 𝑠, ℎ(𝑘𝑡) ≈ 𝑗𝑡. Then, [𝜙→𝜓] follows similarly to the previous
case.

3. For all 𝑡 < 𝑠, ¬(ℎ(𝑘𝑡) ≼ 𝑗𝑡). Let 𝑘 ≈max(𝑘0,…,𝑘𝑠−1). Then, we also have
that

for all 𝑡 < 𝑠,¬(ℎ(𝑘) ≼ 𝑗𝑡). (iv)

Let us see why. Let 𝑡 < 𝑠 such that ℎ(𝑘) ≼ 𝑗𝑡. Since 𝑘𝑡 ≤ 𝑘 we have by
H4 that ℎ(𝑘𝑡) ≼ ℎ(𝑘) ≼ 𝑗𝑡. Since 𝑇 knows that ≼ is transitive, we get that
ℎ(𝑘𝑡) ≼ 𝑗𝑡, contrary to this case assumption. But then, using H6 we get:

⋁
𝑗∈𝑀,𝑗�≼𝑗𝑡

ℎ(𝑘) ≈ 𝑗.
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And putting these together for each 𝑡 < 𝑠 , modulo some iFOL reasoning,
we have that

⋁
𝑗∈𝑀, for any t < s∶𝑗�≼𝑗𝑡

ℎ(𝑘) ≈ 𝑗.

But note that, outside 𝑇, {𝑗 ∈ 𝑀 ∣ for any 𝑡 < 𝑠.𝑗�≼𝑗𝑡} = J𝜙→𝜓K by (ii).
Then, inside 𝑇, we got [𝜙→𝜓].

�

For the case of box we need two auxiliary lemmas:

Lemma 110. Let 𝑖 ∈𝑀 −{0}. Then,

⊢𝑇 (∃𝑥 . ℎ(𝑥) ≈ 𝑖)→ (∃𝑦 . 𝑖 ≺ ℎ(𝑦)).

Proof. To show the desired lemma we are going to show two auxiliary facts.

⊢𝑇 (∃𝑦 . ¬(ℎ(𝑦) ≼ 𝑖))∧(∃𝑥 . ℎ(𝑥) ≈ 𝑖)→(∃𝑦 . 𝑖 ≺ ℎ(𝑦)). (i)

⊢𝑇 (∃𝑦 . ℎ(𝑦) ⊑ 𝑖)∧(∃𝑥 . ℎ(𝑥−̇1)≈ 𝑖∧ℎ(𝑥) ⊏ 𝑖)→(∃𝑦 . 𝑖 ≺ ℎ(𝑦)). (ii)

Proof of lemma from (i) and (ii). We reason inside 𝑇. We assume
that ∃𝑥 . ℎ(𝑥) ≈ 𝑖. There exists an 𝑥 which is the minimum number such that
ℎ(𝑥) ≈ 𝑖. Note that taking this minimum is allowed in 𝑇, since ∃𝑥 . ℎ(𝑥) ≈ 𝑖
means that there is a sequence 𝑠 such that 𝜃(𝑠) and (𝑠)𝑥 ≈ 𝑖. Then, it suffices by
the properties of 𝜃 and the definition of ℎ to find the least 𝑥 such that (𝑠)𝑥 ≈ 𝑖,
which can be done in iEA. Since 𝑖 > 0 we have that 𝑥 > 0 and then by the
definition of ℎ, ℎ(𝑥−̇1) ≺ 𝑖. We make a case distinction in ℎ(𝑥−̇1) ⊏ 𝑖, since
𝑥⊏ 𝑦 is a Δ0-formula.

1. Assume ¬(ℎ(𝑥−̇1) ⊏ 𝑖). Then since ℎ(𝑥) ≈ 𝑖, by definition of ℎ this

implies that ▵(∃𝑦 . ¬(ℎ(𝑦) ≼ 𝑖)). Since ∃𝑥 . ℎ(𝑥) ≈ 𝑖 is a Σ1-sentence,

we have that ▵(∃𝑥 . ℎ(𝑥) ≈ 𝑖). Using (i) and Hb𝑇 ,▵ we can conclude

▵(∃𝑦 . 𝑖 ≺ ℎ(𝑦)). Since ∃𝑦 . 𝑖 ≺ ℎ(𝑦) is a Σ1-sentence, we also have that

▵(∃𝑦 . 𝑖 ≺ ℎ(𝑦))→ (∃𝑦 . 𝑖 ≺ ℎ(𝑦)) by H5, so we can conclude the desired

(∃𝑦 . 𝑖 ≺ ℎ(𝑦)).

2. Asssume ℎ(𝑥−̇1) ⊏ 𝑖. Since ℎ(𝑥) ≈ 𝑖 by definition of ℎ we have that

(∃𝑥 . ¬ℎ(𝑥) ⊑ 𝑖) or ▵(∃𝑥 . ¬ℎ(𝑥) ≼ 𝑖). Using Lemma H5 we can get

that (∃𝑥 . ¬ℎ(𝑥) ⊑ 𝑖) in both cases. By assumption of the case, we have
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∃𝑥 . ℎ(𝑥) ≈ 𝑖∧ℎ(𝑥−̇1)⊏ 𝑖 and since this is a Σ1-sentence we conclude

(∃𝑥 . ℎ(𝑥) ≈ 𝑖∧ℎ(𝑥−̇1) ⊏ 𝑖). Finally, using (ii) and Hb𝑇 , we conclude

the desired (∃𝑦 . 𝑖 ≺ ℎ(𝑦)).

Proof of (i). First, we show that

⊢𝑇 ¬(ℎ(𝑦) ≼ 𝑖)∧ℎ(𝑥) ≈ 𝑖→𝑖≺ ℎ(𝑦). (iii)

We reason inside 𝑇. Assume that ¬(ℎ(𝑦) ≼ 𝑖)∧ℎ(𝑥) ≈ 𝑖. If 𝑦 < 𝑥 by Lemma

H4 we have that ℎ(𝑦) ≼ ℎ(𝑥) ≈ 𝑖, which is impossible. So 𝑥 ≤ 𝑦, which again by
lemma H4 we have that 𝑖 ≈ ℎ(𝑥) ≼ ℎ(𝑦). But since ¬(ℎ(𝑦) ≼ 𝑖) we must have

that ¬(ℎ(𝑦) ≈ 𝑖) so from 𝑖 ≼ ℎ(𝑦) we conclude 𝑖 ≺ ℎ(𝑦) and we have proven
(iii). From (iii) and some reasoning in iFOL we can conclude (i).
Proof of (ii). First, we show that

⊢𝑇 ¬(ℎ(𝑦) ⊑ 𝑖)∧ℎ(𝑥) ≈ 𝑖∧ℎ(𝑥−̇1)⊏ 𝑖→𝑖≺ ℎ(𝑦). (iv)

We reason in 𝑇, assume ¬(ℎ(𝑦) ⊑ 𝑖)∧ℎ(𝑥) ≈ 𝑖∧ℎ(𝑥−̇1) ⊏ 𝑖. Now, suppose

that 𝑦 < 𝑥, then 𝑦 ≤ 𝑥−̇1, so by Lemma H4 we have that ℎ(𝑦) ≼ ℎ(𝑥−̇1) ⊏ 𝑖.

Since 𝑇 shows the model property, we have that ℎ(𝑦) ⊏ 𝑖, contradiction. Then
𝑦 ≥ 𝑥, so again by Lemma H4 we have that 𝑖 ≈ ℎ(𝑥) ≼ ℎ(𝑦) and ¬(𝑖 ≈ ℎ(𝑦)),

so 𝑖 ≺ ℎ(𝑦). This establishes (iv), and from it and some iFOL reasoning we can
conclude (ii). �

Lemma 111. Let 𝑖, 𝑗 ∈ℕ such that 𝑖 ≺ 𝑗 and 𝑖�⊏𝑗. Then

⊢𝑇 (∃𝑥 . ℎ(𝑥) ≈ 𝑖)∧(∃𝑦 . ℎ(𝑦) ≈ 𝑗)→▵(∃𝑧 . 𝑗 ≺ ℎ(𝑧)).

Proof. If 𝑖 ≺ 𝑗 and 𝑖�⊏𝑗 then since 𝑇 extends iEA we have (by Σ1-completeness)
that ⊢𝑇 𝑖 ≺ 𝑗∧¬(𝑖 ⊏ 𝑗). We reason inside 𝑇 and assume that (∃𝑥 . ℎ(𝑥) ≈ 𝑖)
and (∃𝑦 . ℎ(𝑦) ≈ 𝑗). As we did in the proof of Lemma 110 we can consider the

least 𝑦 such that ℎ(𝑦) ≈ 𝑗. Since 𝑖 ≺ 𝑗 (outside 𝑇) we have that 𝑗 > 0 (outside
𝑇), but by Σ1-completeness we have that 𝑗 > 0 inside 𝑇. Then, inside 𝑇, we
have that 𝑦 > 0 by the definition of ℎ. By the definition of ℎ we also have
that ℎ(𝑦−̇1) ≺ 𝑗. By assumption, we have an 𝑥 such that ℎ(𝑥) ≈ 𝑖. Assume

that 𝑦 ≤ 𝑥, then by lemma H4 we have that 𝑗 ≈ ℎ(𝑦) ≼ ℎ(𝑥) ≈ 𝑖 ≺ 𝑗. But then
since 𝑇 knows that ≼ is antisymmetric we would conclude 𝑖 ≈ 𝑗, which is a
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contradiction since 𝑖 ≺ 𝑗 inside 𝑇. Then 𝑥 < 𝑦, so 𝑥 ≤ 𝑦−̇1 and then by H4 we
have that 𝑖 ≈ ℎ(𝑥) ≼ ℎ(𝑦 −1).
If ℎ(𝑦−1) ⊏ 𝑗, then 𝑖 ≼ ℎ(𝑦−1) ⊏ 𝑗, so 𝑖 ⊏ 𝑗. But we also have that ¬(𝑖 ⊏ 𝑗),

a contradiction, so it must be the case that ¬(ℎ(𝑦 −1) ⊏ 𝑗). Following the same

reasoning as in Lemma 110 in 1. we can conclude ▵(∃𝑧 . 𝑗 ≺ ℎ(𝑧)), as desired.
�

Finally, we show the case. In the proof we can notice the motivation of
making the model infinite to be able of establishing the equivalence.

Lemma 112 (Box). For any 𝜙 ∈ℒm, we have that

⊢𝑇 [ 𝜙]↔ [𝜙].

Proof. If J𝜙K = ℕ, then J 𝜙K = ℕ and the equivalence is trivial by definition.
Assume that J𝜙K is finite. This implies that

0 ∉ J 𝜙K, (i)

since 0 has infinitely many successors.
First we show right to left. Let 𝑗0,…,𝑗𝑠−1 be the ⊏-maximal elements 𝑗 of

𝑀 such that 𝑗 ∉ J𝜙K. Note that for any 𝑡 < 𝑠, 𝑗𝑡 ≠ 0, since if 𝑗𝑡 = 0 is maximal
not belonging to J𝜙K, then any 𝑛 > 0 belongs to J𝜙K. This implies that 0 ∈ J 𝜙K,
contrary to (i). Also, note that there are only finitely many maximal 𝑗 such
that 𝑗 ∉ J𝜙K by the shape of the model. Finally, note that for any 𝑡 < 𝑠 we have
that

𝑗𝑡 ∈ J 𝜙K, (ii)

by the definition of the 𝑗𝑡’s.
Let us show that

for any 𝑡 < 𝑠,⊢𝑇 [𝜙]→∃𝑥 . ¬(ℎ(𝑥) ⊑ 𝑗𝑡). (iii)

It suffices to show that 𝑖 ∈ J𝜙K then 𝑖�⊑𝑗𝑡. So let 𝑖 ∈ J𝜙K but 𝑖 ⊑ 𝑗𝑡. Since the
frame is realistic, 𝑖 ≼ 𝑗𝑡 and by preservation of knowledge 𝑗𝑡 ∈ J𝜙K. This is a
contradiction with the definitions of 𝑗𝑡, as wanted.
We also have the following property:

(for all 𝑡 < 𝑠,𝑖�⊑𝑗𝑡) implies that 𝑖 ∈ J𝜙K. (iv)

This can be shown using that ⊏ is transitive and conversely well-founded.
Finally, we reason inside 𝑇. Suppose that [𝜙], By (iii) and Hb𝑇 , we get

that for all 𝑡 < 𝑠, (∃𝑥 . ¬(ℎ(𝑥) ⊑ 𝑗𝑡)). So we have that for each 𝑡 < 𝑠 there

exists 𝑘𝑡 be such that proof
(
𝑘𝑡,∃𝑥 . ¬(ℎ(𝑥) ⊑ 𝑗𝑡))

. Since 𝑥⊑ 𝑦 is Δ0 formula,

we can distinguish 3 cases:
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1. For some 𝑡 < 𝑠, ℎ(𝑘𝑡) ⊏ 𝑗𝑡. By the definition of ℎ, we get ℎ(𝑘𝑡−̇1) ≈ 𝑗𝑡,
and [ 𝜙] follows thanks to (ii).

2. For some 𝑡 < 𝑠, ℎ(𝑘𝑡) ≈ 𝑗𝑡. Then [ 𝜙] follows thanks to (ii).

3. For all 𝑡 < 𝑠, ¬(ℎ(𝑘𝑡) ⊑ 𝑗𝑡). Let 𝑘 ≈max(𝑘0,…,𝑘𝑠−1). If ℎ(𝑘) ≈ 𝑗𝑡 for some
𝑡 < 𝑠 we get a contradiction to the hypothesis of the case (in particular
we would be in case 2.). Similarly, if ℎ(𝑘) ⊏ 𝑗𝑡 for some 𝑡 < 𝑠, thanks to
H4 we get that ℎ(𝑘𝑡) ≼ ℎ(𝑘) ⊏ 𝑗𝑡. Since 𝑇 knows that 𝑀 fulfills the model
property, we have that ℎ(𝑘𝑡) ⊏ 𝑗𝑡 which contradicts the hypothesis of the
case (it returns to case the first case). We can conclude that for any 𝑡 < 𝑠,

¬(ℎ(𝑘) ⊑ 𝑗𝑡).

By H7 we get that for any 𝑡 < 𝑠

⋁
𝑗∈𝑀,𝑗�⊑𝑗𝑡

ℎ(𝑘) ≈ 𝑗.

Using iFOL reasoning we get that

⋁
𝑗∈𝑀, for all 𝑡<𝑠∶𝑗�⊑𝑗𝑡

ℎ(𝑘) ≈ 𝑗.

Outside 𝑇 we have that {𝑗 ∈ 𝑀 ∣ for all 𝑡 < 𝑠 ∶ 𝑗�⊑𝑗𝑡} = J𝜙K ⊆ J 𝜙K, the
inclusion thanks to ℳ being realistic. So, inside 𝑇, we conclude [ 𝜙].

Now we show the left to right direction, i.e ⊢𝑇 [ 𝜙]→ [𝜙]. Let 𝑖 ∈ J 𝜙K, by
(i) we have that 𝑖 > 0. By Lemma 110 we get that

⊢𝑇 (∃𝑥 . ℎ(𝑥) ≈ 𝑖)→ (∃𝑦 . 𝑖 ≺ ℎ(𝑦)). (v)

By the shape of ℳ, we know that any 𝑘 > 0 there is a greatest 𝑛 ∈ℕ such that
there exists a sequence 𝑘 = 𝑘0 ≺ 𝑘1 ≺⋯≺ 𝑘𝑛. We call this 𝑛 the ≺-rank of 𝑘.
Let 𝑎 be the ≺-rank of 𝑖. For any 𝑏 ∈ℕ we define the set:

𝑈𝑏 = {𝑗 ∈ℕ ∣ 𝑖 ≺ 𝑗, 𝑖�⊏𝑗 and ≺ -rank(𝑗) < 𝑏}.

Note that for any 𝑏, 𝑈𝑏 is finite since 𝑖 ≠ 0 implies that there are only finitely
many 𝑗 such that 𝑖 ≺ 𝑗. By the definition of ≺ we know that

⊢𝑇 𝑖 ≺ ℎ(𝑦)→ ⋁
𝑗∶ 𝑖≺𝑗

ℎ(𝑦) ≈ 𝑗. (vi)

But 𝑖 ≼ 𝑗 implies that ≺ -rank(𝑗) <≺ -rank(𝑖). This means that if 𝑖 ≼ 𝑗 and 𝑖�⊏𝑗
we get that 𝑗 ∈ 𝑈𝑎 and if 𝑖 ⊏ 𝑗 then 𝑗 ∈ J𝜙K. So (vi) can be written as

⊢𝑇 𝑖 ≺ ℎ(𝑦)→⎛
⎝

⋁
𝑗∈J𝜙K

ℎ(𝑦) ≈ 𝑗⎞
⎠

∨
(
⋁
𝑗∈𝑈𝑎

ℎ(𝑦) ≈ 𝑗
)
.
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By iFOL reasoning we get

⊢𝑇 (∃𝑦 . 𝑖 ≺ ℎ(𝑦))→[𝜙]∨
(
⋁
𝑗∈𝑈𝑎

∃𝑦 . ℎ(𝑦) ≈ 𝑗
)
.

This together with (v) and thanks to Hb𝑇 , we get

⊢𝑇 (∃𝑥 . ℎ(𝑥) ≈ 𝑖)→ (
[𝜙]∨⋁

𝑗∈𝑈𝑎

∃𝑦 . ℎ(𝑦) ≈ 𝑗
)
. (vii)

Our objective now will be to get rid of the right disjunction inside in (vii).
Let 𝑗 ∈ 𝑈𝑏 for some 𝑏 ≥ 1. By Lemma 111 we have that

⊢𝑇 (∃𝑥 . ℎ(𝑥) ≈ 𝑖)∧(∃𝑦 . ℎ(𝑦) ≈ 𝑗)→▵(∃𝑧 . 𝑗 ≺ ℎ(𝑧)). (viii)

Also, as we did previously for 𝑖, we have that

⊢𝑇 (∃𝑧 . 𝑗 ≺ ℎ(𝑧))→[𝜙]∨
(

⋁
𝑘∈𝑈𝑏−1

∃𝑧 . ℎ(𝑧) ≈ 𝑘
)

Using (viii) and Hb𝑇 ,▵ we get that

⊢𝑇 (∃𝑥 . ℎ(𝑥) ≈ 𝑖)∧(∃𝑦 . ℎ(𝑦) ≈ 𝑗)→▵
(
[𝜙]∨ ⋁

𝑘∈𝑈𝑏−1

∃𝑧 . ℎ(𝑧) ≈ 𝑘
)

This holds for any 𝑗 ∈ 𝑈𝑏, so (changing also the name of some bound variables)

⊢𝑇 (∃𝑥 . ℎ(𝑥) ≈ 𝑖)∧(
⋁
𝑗∈𝑈𝑏

∃𝑦 . ℎ(𝑦) ≈ 𝑗
)
→▵

(
[𝜙]∨ ⋁

𝑗∈𝑈𝑏−1

∃𝑦 . ℎ(𝑦) ≈ 𝑗
)

Since [𝐵] is 𝑇-equivalent to a Σ1-sentence, we have that ⊢𝑇 [𝜙]→▵[𝜙]. Also
⊢𝑇 ▵[𝜙]→▵([𝜙]∨⋁𝑗∈𝑈𝑏−1

∃𝑦 . ℎ(𝑦) ≈ 𝑗), so

⊢𝑇 (∃𝑥 . ℎ(𝑥) ≈ 𝑖)∧(
[𝜙]∨⋁

𝑗∈𝑈𝑏

∃𝑦 . ℎ(𝑦) ≈ 𝑗
)
→▵

(
[𝜙]∨ ⋁

𝑗∈𝑈𝑏−1

∃𝑦 . ℎ(𝑦) ≈ 𝑗
)
.

(ix)
We also have that ∃𝑥 . ℎ(𝑥) ≈ 𝑖 is 𝑇-equivalent to a Σ1-sentence, so thanks to
Hb𝑇 , we have that ⊢𝑇 (∃𝑥 . ℎ(𝑥) ≈ 𝑖)→ (∃𝑥 . ℎ(𝑥) ≈ 𝑖). With this we can
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perform the following reasoning:

⊢𝑇(∃𝑥 . ℎ(𝑥) ≈ 𝑖)∧ (
[𝜙]∨⋁

𝑗∈𝑈𝑏

∃𝑦 . ℎ(𝑦) ≈ 𝑗
)

→
((∃𝑥 . ℎ(𝑥) ≈ 𝑖)∧(

[𝜙]∨⋁
𝑗∈𝑈𝑏

∃𝑦 . ℎ(𝑦) ≈ 𝑗
))

→ ▵
(
[𝜙]∨ ⋁

𝑗∈𝑈𝑏−1

∃𝑦 . ℎ(𝑦) ≈ 𝑗
)

(by (ix))

→
(
[𝜙]∨ ⋁

𝑗∈𝑈𝑏−1

∃𝑦 . ℎ(𝑦) ≈ 𝑗
)

(Σ1-absorption)

where for the last implication we used that [𝜙] ∨⋁𝑗∈𝑈𝑏−1
∃𝑦 . ℎ(𝑦) ≈ 𝑗 is 𝑇-

equivalent to a Σ1-sentence.
If we apply this reasoning to (vii) for 𝑏 = 𝑎,…,1 we end getting

⊢𝑇 (∃𝑥 . ℎ(𝑥) ≈ 𝑖)→ (
[𝜙]∨⋁

𝑗∈𝑈0

∃𝑦 . ℎ(𝑦) ≈ 𝑗
)
.

But 𝑈0 =∅, so in fact we get

⊢𝑇 (∃𝑥 . ℎ(𝑥) ≈ 𝑖)→ ([𝜙]∨⊥)

↔ [𝜙].

This holds for any 𝑖 ∈ J 𝜙K, so we can conclude that ⊢𝑇 [ 𝜙]→ [𝜙]. �

Theorem 113. Let 𝜎 be the Σ1-realization given by 𝜎(𝑝) = [𝑝]. For any 𝜙 ∈ℒm
we have that:

⊢𝑇 𝜎 (𝜙)↔ [𝜙].

Proof. By induction in 𝜙 using lemmas 107, 108, 109 and 112. �

We establish one fundamental property of Solovay’s function: in the stan-
dard model it can be shown that it never advances from the starting node.

Lemma 114. Suppose that 𝑇 is Σ1-sound. Then ⊨ℕ ℎ(𝑥) ≈ 0.

Proof. Since 𝑀 is conversely well-founded, we know that ℎ must have a certain
limit 𝑖 ∈𝑀. Then (∃𝑥 . ℎ(𝑥) ≈ 𝑖) is a true Σ1-sentence, so by Σ1-completeness

of 𝑇 we get that ⊢𝑇 ∃𝑥 . ℎ(𝑥) ≈ 𝑖. Now, assume that 𝑖 > 0. By Lemma 110 we
get that ⊢𝑇 (∃𝑦 . 𝑖 ≺ ℎ(𝑦)). Since (∃𝑦 . 𝑖 ≺ ℎ(𝑦)) is a Σ1-sentence and 𝑇 is

Σ1-sound we have that ⊨ℕ (∃𝑦 . 𝑖 ≺ ℎ(𝑦)) and then, by assumption of good
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pair, we get ⊢𝑇 ∃𝑦 . 𝑖 ≺ ℎ(𝑦) and since this sentence is Σ1 and 𝑇 is Σ1-sound
we get ⊨ℕ ∃𝑦 . 𝑖 ≺ ℎ(𝑦). This is impossible, since 𝑖 is the limit of ℎ. So 𝑖 ≤ 0,
i.e. 𝑖 = 0, and thanks to Lemma H4 it must be the case that ℎ is the constant
function 0. �

Theorem 115. Let 𝑇 be a Σ1-sound theory. Let ( ,▵) be a good pair for 𝑇
and assume that CP𝑇 , . Then:

Σ1-ℙ𝕃(𝑇 , ) =ℙ𝕃(𝑇 , ) = iGLC.

Proof. First, let us focus in Σ1-ℙ𝕃. Tt is easy to show that ⊇, i.e. sound-
ness. Note that to prove soundness of the completness principle we need Cp𝑇 , ,
even if we are dealing only with Σ1-realizations (thanks to be dealing with Σ1-
realization we do not need it for 𝑝→ 𝑝, but we need it for ¬𝑝→ (¬𝑝), for
example). We focus in proving ⊆, i.e. completeness.
Let 𝜙 ∈ ℒm such that �⊢iGLC𝜙. By Theorem 104 we have that there exist

a finite, irreflexive, realistic model ℳ0 and an 𝑟 ∈ ℳ0 such that ℳ0,𝑟 ⊭ 𝜙.
It is clear that going from ℳ0 to ℳ, we will still have an intuitionistic iGLC
conversely well-founded, irreflexive and realistic model and 𝜙 is still not true at
𝑟, i.e. ℳ,𝑟 ⊭ 𝜙. We want to show that there exists a realization 𝜎 such that
�⊢𝑇𝜎 𝜙.

We define the Solovay function ℎ as described previously and the Σ1-realization
𝜎 as 𝜎(𝑝) = [𝑝]. Assume that ⊢𝑇 𝜎 𝜙. By Theorem 113, we have that ⊢𝑇 [𝜙].
Since [𝜙] is equivalent to a Σ1-sentence in 𝑇 and 𝑇 is Σ1-sound we have that
ℕ ⊨ [𝜙]. By Lemma 114 we also have that ℕ ⊨ ℎ(𝑥) ≈ 0. This implies that
0 ∈ J𝜙K, but 0 ≼ 𝑟 and, by preservation of knowledge, we get that 𝑟 ∈ J𝜙K. But
by assumption 𝑟 ∉ J𝜙K, a contradiciton. So �⊢𝑇𝜎 𝜙, as wanted.
Let us see why it also holds for ℙ𝕃 with the extra assumption. To show

completeness we have shown that if �⊢iGLC𝜙 then there exists a Σ1-realization 𝜎
such that �⊢𝑇𝜎 (𝜙). This trivially implies that there exists a realization 𝜎 such
that �⊢𝑇𝜎 (𝜙), so we have completeness. We also need soundness. Clearly, the
only worrying axiom is the completeness principle, but since we have Cp𝑇 , it
is sound. �

3.3 Theories with provability logic iGLC
First, we are going to use the good pair theorem to show a general method to
obtain predicates whose (Σ1-)ℙ𝕃 is iGLC.

Theorem 116. Assume that

1. 𝑇 is a Σ1-sound, Σ1-complete, Δ0-decidable. We also assume that 𝑇 is
Δ0-self arithmetizable and extends iEA or that 𝑇 is Σ1-self arithmetizable
and extends iEA+𝐵Σ1.
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2. Let ▵ be a Σ1 box function and assume that HB𝑇 ,▵.

3. For any Σ1-sentence 𝜙, ⊢𝑇 𝑇▵𝜙→ 𝑇𝜙.

4. For any sentence 𝜙, ⊢𝑇 ▵𝜙→ 𝑇𝜙.

5. 𝑇 is closed under (_)▵V.

Then
Σ1-ℙ𝕃((𝑇)

▵
V,

▵
𝑇) =ℙ𝕃((𝑇)

▵
V,

▵
𝑇) = iGLC.

Proof. Note that iEA⊆𝑇 ⊆ (𝑇)▵V, so (𝑇)
▵
V is an extension of iEA. Our objective

is to apply Theorem 115. We divide the proof in 3 parts.
( ▵

𝑇 ,▵▵) is a (𝑇)▵V-good pair. First note that the assumption of self-arithmetization
of 𝑇 gives us that ▵

𝑇 is Σ1 and also that HB𝑇 , 𝑇. The assumption that ▵ is Σ1
gives us that ▵▵

𝑇 is Σ1.
Thanks to Lemma 77 we have that Hb(𝑇)▵V, ▵

𝑇
and Hb(𝑇)▵V,▵▵.

Let 𝜙 be a sentence such that ⊨ℕ ▵
𝑇 𝜙. Since 𝜙 is a sentence this means that

⊨ℕ (𝜙)▵V. Since by the assumption of self-arithmetization of 𝑇 and that 𝑇 is
Σ1-sound and Σ1-complete, we get by Lemma 41 that 𝑇 is truly arithmetizable.
This means by Lemma 42 that ⊨ℕ 𝑇 (𝜙)

▵
V implies ⊢𝑇 (𝜙)▵V. Then 𝜙 ∈ Ax(𝑇)▵V

,
so ⊢(𝑇)▵V

𝜙, as wanted.
Let 𝜙 be a sentence and let us show that ⊢(𝑇)▵V

𝜙→▵▵𝜙. Using Lemma 71

we know that it suffices to show that ⊢𝑇 (𝜙→▵▵𝜙)▵V. But, thanks to HB𝑇 ,▵,
it suffices to show ⊢𝑇 (𝜙)▵V→(▵▵𝜙)▵V. Since ▵▵𝜙 is Σ1, thanks to Lemma 67
we get that we only need to show ⊢𝑇 (𝜙)▵V→▵▵𝜙. Since 𝜙 is a sentence, this is
equivalent to showing ⊢𝑇 (𝜙)▵V→▵(𝜙)▵V. But this is just Lemma 60.
Finally, we need to show Σ1-Abs(𝑇)▵V, ▵

𝑇 ,▵▵. So let 𝜙 be a sentence, we have
that:

⊢𝑇
▵
𝑇▵▵𝜙↔ 𝑇 (▵▵𝜙)▵V (since 𝜙 is a sentence)

↔ 𝑇▵▵𝜙 (by Lemma 67 since ▵▵𝜙 is Σ1 and Hb𝑇 , 𝑇
)

↔ 𝑇▵(𝜙)
▵
V (since 𝜙 is a sentence)

↔ 𝑇▵𝜙 (by Lemma 67 since 𝜙 is Σ1, Hb𝑇 , 𝑇
and Hb𝑇 ,▵)

→ 𝑇𝜙 (by Σ1-Abs𝑇 , 𝑇,▵)

↔ 𝑇 (𝜙)
▵
V (by Lemma 67 since 𝜙 is Σ1 and Hb𝑇 , 𝑇

)
↔ ▵

𝑇 𝜙. (since 𝜙 is a sentence)

This suffices, since 𝑇 ⊆ (𝑇)▵V.
(𝑇)▵V is Σ1-sound. This is direct since 𝑇 is Σ1-sound and we can apply

Corollary 74.
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Cp(𝑇)▵V, ▵
𝑇
. Let 𝜙 be a sentence. Since it is a sentence it suffices to show

that ⊢(𝑇)▵V
𝜙→ 𝑇 (𝜙)

▵
V. While proving that (

▵
𝑇 ,▵▵) is a good pair for (𝑇)▵V we

showed that ⊢(𝑇)▵V
𝜙→▵(𝜙)▵V. Since ⊢𝑇 ▵𝜓→ 𝑇𝜓 for any sentence 𝜓, we have

that ⊢𝑇 ▵(𝜙)▵V→ 𝑇 (𝜙)
▵
V and then it is easy to get the desired result. �

Let us show that this result can also give us theories whose Σ1-provability
logic is iGLC or whose full provability logic is iGLC. The main idea is we need to
guarantee that ▵

𝑇 and (𝑇)▵V
are provably equal. We have the following lemma:

Lemma 117. Let 𝑇 be a theory such that

1. 𝑇 is Δ0 self arithmetizable and extends iEA or 𝑇 is Σ1 self arithmetizalbe
and extends iEA+𝐵Σ1.

2. HB𝑇 ,▵.

3. For any sentence 𝜙,
⊢(𝑇)▵V (𝑇)▵V

𝜙↔ ▵
𝑇 𝜙.

Then
Σ1-ℙ𝕃((𝑇)

▵
V,

▵
𝑇) =Σ1-ℙ𝕃((𝑇)

▵
V).

and
ℙ𝕃((𝑇)▵V,

▵
𝑇) =ℙ𝕃((𝑇)

▵
V).

Proof. It suffices to show that for any realization 𝜎 and any 𝜙 ∈ℒm, we have
that

⊢(𝑇)▵V
𝜎 ▵

𝑇
𝜙↔𝜎

(𝑇)▵V
𝜙.

We proceed by induction in 𝜙. The case of 𝜙 a propositional variable or ⊥ is
trivial. The cases where 𝜙 is a conjunction, disjunction of implication are easy
thanks to the induction hypothesis. Finally, let us assume that 𝜙 = 𝜙0. By
induction hypothesis we have that

⊢(𝑇)▵V
𝜎 ▵

𝑇
𝜙0 ↔𝜎

(𝑇)▵V
𝜙0.

By Lemma 77, we have that Hb(𝑇)▵V, (𝑇)▵V

. With this we get

⊢(𝑇)▵V (𝑇)▵V
(𝜎 ▵

𝑇
𝜙0)↔ (𝑇)▵V

(𝜎
(𝑇)▵V

𝜙0).

Thanks to the assumption applied to the left hand side

⊢(𝑇)▵V
▵
𝑇(𝜎 ▵

𝑇
𝜙0)↔ (𝑇)▵V

(𝜎
(𝑇)▵V

𝜙0),

in other words
⊢(𝑇)▵V

𝜎 ▵
𝑇
( 𝜙0)↔ 𝜎

(𝑇)▵V
( 𝜙0),

as desired. �
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We put the previous theorem and the previous lemma together in a corollary:

Corollary 118. Assume that

1. 𝑇 is a Σ1-sound, Σ1-complete, Δ0-decidable theory extending iEA. We
also assume that 𝑇 is Σ1-self arithmetizable and ⊢𝑇 𝐵Σ1 or 𝑇 is Δ0-self
arithmetizable.

2. We have a Σ1 box function ▵ and assume that HB𝑇 ,▵.

3. For any Σ1-sentence 𝜙, ⊢𝑇 𝑇▵𝜙→ 𝑇𝜙.

4. For any sentence 𝜙, ⊢𝑇 ▵𝜙→ 𝑇𝜙.

5. 𝑇 is closed under (_)▵V.

6. For any sentence 𝜙, ⊢(𝑇)▵V (𝑇)▵V
𝜙↔ ▵

𝑇 𝜙.

Then
Σ1-ℙ𝕃((𝑇)

▵
V) =ℙ𝕃((𝑇)

▵
V) = iGLC.

3.4 Constructing predicates with absorption
We start with a provability predicate and we want to construct a provability
predicate ▵ such that Abs ,▵ holds. In order to do this we use the construction
proposed by Visser in [12]. Note that the construction proposed by Visser is
more general that ours. This is because, due to the nature of the examples we
are going to study, our particular case suffices.
Let true be the Σ1-truth predicate, definable in iEA. It is of shape ∃𝑦 .

true0(𝑦,𝑥), where true0 is Δ0(exp). We will write true𝑧(𝑥) ∶= ∃𝑦 ≤ 𝑧 . true0(𝑦,𝑥).

Definition 119. Let 𝛼(𝑥) be a Δ0-formula such that ⊢iEA ∀𝐴 . 𝛼(𝐴)→ sent(𝐴).
We define:

1. prov𝛼,(𝑥)(𝑦) ∶= ∃𝑝 ≤ 𝑥 . proof𝛼(𝑝,𝑦). We will denote its box function as
(_)(_) ∶Term×Form⟶ Form.

2. Σ1-refl𝛼(𝑥) ∶= ∀𝑆 . Σ1-sent(𝑆)∧prov𝛼,(𝑥)(𝑆)→ true(𝑆).

3. 𝒮𝛼(𝑥) ∶= ∃𝑧∀𝑆 ≤ 𝑥 . Σ1-sent(𝑆)∧prov𝛼,(𝑥)(𝑆)→ true𝑧(𝑆).

�

𝒮𝛼 will be our fundamental tool to construct the new provability predicate.
Note that the definition can be seen as a modification of Σ1-refl, i.e. Σ1-reflection.
The modification is needed to work without 𝐵Σ1, as the following lemma shows.
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Lemma 120. We have that

⊢iEA ∀𝑥 .𝒮𝛼(𝑥)→Σ1-refl𝛼(𝑥),
⊢iEA+𝐵Σ1 ∀𝑥 .𝒮𝛼(𝑥)↔Σ1-refl𝛼(𝑥).

Proof. Let us omit the subscript 𝛼 for the proof. The first statement is trivial.
So it suffices that we prove:

⊢iEA+𝐵Σ1 ∀𝑥 . Σ1-refl(𝑥)→𝒮(𝑥).

Let us show the equivalent Σ1-refl(𝑥) ⊢iEA+𝐵Σ1 𝒮(𝑥). First note that Σ1-refl is
the following formula:

∀𝑆 . Σ1-sent(𝑆)∧prov(𝑥)(𝑆)→∃𝑧 . true𝑧(𝑆). (i)

Since Σ1-sent(𝑆)∧prov(𝑥)(𝑆) is Δ0-formula we have that iEA+𝐵Σ1 proves that
it is decidable. Then we have that (i) is iEA-equivalent to

∀𝑆∃𝑧 . Σ1-sent(𝑆)∧prov(𝑥)(𝑆)→ true𝑧(𝑆). (ii)

And note since part of the antecedent of the implication is prov(𝑥)(𝑆), we have
that 𝑆 ≤ 𝑥 and then (ii) is iEA-equivalent to

∀𝑆 ≤ 𝑥∃𝑧 . Σ1-sent(𝑆)∧prov(𝑥)(𝑆)→ true𝑧(𝑆). (iii)

Using 𝐵Σ1 then (iii) implies:

∃𝑦∀𝑆 ≤ 𝑥∃𝑧 ≤ 𝑦 . Σ1-sent(𝑆)∧prov(𝑥)(𝑆)→ true𝑧(𝑆), (iv)

where 𝑦 is a new variable. But since, ⊢iEA 𝑧0 ≤ 𝑧1→true𝑧0(𝑥)→true𝑧1(𝑥) we can
conclude from (iv) that:

∃𝑧∀𝑆 ≤ 𝑥 . Σ1-sent(𝑆)∧prov(𝑥)(𝑆)→ true𝑧(𝑆). �

The idea is that, if we are given a theory 𝑇, we are going to axiomatize a new
theory 𝒮𝑇. In the metatheory both theories coincide, inside iEA we only have
prov𝒮𝑇(𝐴)→prov𝑇(𝐴) but not the reverse implication. Even 𝑇 cannot show the
reverse implication. The idea for doing this is take the axiomatization of 𝑇 and
put as axioms of 𝒮𝑇 the axioms of 𝑇 that are “small”. Small is nothing more
that the arithmetical predicate 𝒮𝛼(𝑥) carefully designed for which ⊢𝑇 𝒮𝛼 (𝑛)
holds for any 𝑛 ∈ ℕ but �⊢𝑇∀𝑥 . 𝒮𝛼(𝑥). This makes that in the metatheory 𝑇
and 𝒮𝑇 have the same axiomatization, but 𝑇 is not aware of this.
For technical reasons we will assume that the axioms of the theory 𝑇 are split

in two, the 𝛼-axioms and the 𝛽-axioms. The idea is that when constructing 𝒮𝑇
we only require the 𝛽-axioms to be small. This distinction is used in Chapter
5.
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Definition 121. Let 𝛾(𝑥) ∶= (𝛼(𝑥),𝛽(𝑥)), where 𝛼,𝛽 are Δ0. Assume that
⊢iEA ∀𝐴.𝛼(𝐴)∨𝛽(𝐴)→ sent(𝐴) and ⊢iEA ∀𝐴.proviEA(𝐴)→ prov𝛾(𝐴). Then we
define the formulas:

ax𝛾(𝐴) ∶= 𝛼(𝐴)∨𝛽(𝐴),
ax𝒮𝛾(𝐴) ∶= 𝛼(𝐴)∨(𝛽(𝐴)∧𝒮𝛾(𝐴)),
ax𝛾≤𝑥(𝐴) ∶= 𝛼(𝐴)∨(𝛽(𝐴)∧𝐴 ≤ 𝑥). �

Note that ax𝛾≤𝑥 is nothing more that the axiomatization provided by taking
all the 𝛼-axioms and only the 𝛽-axioms of ax𝛾 which are smaller than 𝑥. The
idea of this theory is similar the the theory consisting in taking all the 𝛼-axioms
and only the first 𝑥 𝛽-axioms of ax𝛾.
For the rest of the section we will assume that we have an arbitrary fixed

𝛾 that fulfills the conditons of the previous definition. We need the following
result from [12].

Lemma 122. We have that

⊢iEA ∀𝑥. 𝛾𝒮𝛾(𝑥).

Now, there are two ways of making a small theory from 𝛾. We can say
that all the 𝛽-axioms are small, as in ax𝒮𝛾; or we can say that all the 𝛽-axioms
are bounded by a small number. The following lemma proves that the two
approaches are, in fact, equivalent.

Lemma 123. We have that

⊢iEA ∀𝐴.prov𝒮𝛾(𝐴)↔ ∃𝑥.prov𝛾≤𝑥(𝐴)∧𝒮𝛾(𝑥).

Proof. We work inside iEA. Let us show left to right. Let 𝑝 be a witness of
prov𝒮𝛾(𝐴). Since 𝛼(𝑥) and 𝛽(𝑥) are Δ0 we can pick the biggest axiom in 𝑝
that fulfills 𝛽 but not 𝛼, let it be 𝐵. Note that by definition of 𝒮𝛾 it must be
the case that 𝒮𝛾(𝐵). For any other axiom 𝐶 in 𝑝 we have that either 𝛼(𝐶) or
𝛽(𝐶)∧𝐶 ≤𝐵. This implies that 𝑝 is also a witness of prov𝛾≤𝐵. Since 𝒮𝛾(𝐵) we
can conclude that 𝑝 is a witness of ∃𝑥.prov𝛾≤𝑥(𝐶)∧𝒮𝛾(𝑥), as wanted.
Finally, let us show right to left. Let 𝑥 be such that prov𝛾≤𝑥(𝐴) ∧𝒮𝛾(𝑥)

and let 𝑞 be a witness of prov𝛾≤𝑥(𝐴). Since iEA knows that 𝒮𝛾(𝑥) is downward
persistent, we can conclude that 𝑞 is also a witness of prov𝒮𝛾, as wanted. �

The following theorem allows us to show that 𝒮𝛾 fulfills the absorption
principle with respect to 𝛾 in the cases we use this construction.

Theorem 124 (Absorption). Assume that HBiEA, 𝛾 and let 𝜙 be a sentence.
We have that:

∀𝑥. 𝛾 𝛾≤𝑥𝜙→ 𝛾𝜙 ⊢iEA 𝛾 𝒮𝛾𝜙→ 𝛾𝜙.
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Proof. We use diagonalization to find a sentence 𝜒 such that

⊢iEA 𝜒 ↔ (∃𝑥 . 𝛾≤𝑥𝜙∧∀𝑦 ≤ 𝑥 . ¬proof𝛾(𝑦,𝜒)).

Note that 𝜒 is a Σ1-sentence.
Since 𝛾,(𝑥)𝜒 is a Δ0-formula, we have that

⊢iEA 𝛾,(𝑥)𝜒∨¬ 𝛾,(𝑥)𝜒. (i)

But we have that ⊢iEA Σ1-sent(𝜒). Then

⊢iEA 𝒮𝛾(𝑥)→Σ1-refl𝛾(𝑥)
= (∀𝑆 . Σ1-sent(𝑆)∧prov𝛾,(𝑥)(𝑆)→ true(𝑆))

→Σ1-sent(𝜒)∧ 𝛾,(𝑥)𝜒→ true(𝜒)
→ 𝛾,(𝑥)𝜒→𝜒 (𝜒 is a Δ0-sentence)

in other words
𝒮𝛾(𝑥), 𝛾,(𝑥)𝜒⊢iEA 𝜒. (ii)

We also have that

¬ 𝛾,(𝑥)𝜒⊢iEA ∀𝑦 ≤ 𝑥 . ¬proof𝛾(𝑦,𝜒),

so, thanks to the fixpoint equivalence of 𝜒, we have that

𝛾≤𝑥𝜙,¬ 𝛾,(𝑥)𝜒⊢iEA 𝜒. (iii)

(i), (ii) and (iii) together gives us that

𝒮𝛾𝜙 ⊢iEA 𝜒.

By assumption, we have that HBiEA, 𝛾, so

𝛾 𝒮𝛾𝜙 ⊢iEA 𝛾𝜒. (iv)

We have that

⊢iEA 𝛾𝜒→∃𝑝 . proof𝛾 (𝑝,𝜒)

→∃𝑝 . 𝛾,(𝑝)𝜒
→∃𝑝 . 𝛾 𝛾,(𝑝)𝜒. (thanks to HBiEA, 𝛾)

Let us call this implication (v). Also by definition of 𝜒 and using HBiEA, 𝛾,

𝛾𝜒⊢iEA 𝛾(∃𝑥 . 𝛾≤𝑥𝜙∧∀𝑦 ≤ 𝑥 . ¬proof𝛾 (𝑦,𝜒)). (vi)

By (v), (vi) and the upward persistence of 𝛾≤𝑥, provable inside iEA, we get
that

𝛾𝜒⊢iEA ∃𝑝 . 𝛾 𝛾≤𝑝𝜙.
Then

𝛾𝜒⊢iEA+(∀𝑥. 𝛾 𝛾≤𝑥𝜙→ 𝛾𝜙) 𝛾𝜙.
This with (iv) gives us the desired

𝛾 𝒮𝛾𝜙 ⊢iEA+(∀𝑥. 𝛾 𝛾≤𝑥𝜙→ 𝛾𝜙) 𝛾𝜙. �
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The following lemma is needed in Chapter 5 for technical purposes.

Lemma 125 (Formalized Hilbert-Bernays from base). Let 𝑇 be an extension
of iEA. Let 𝛼 enumerate 𝑇 in 𝑇 and assume that HB𝑇 , 𝛼 and ⊢𝑇 HB𝛼, •

𝛼. Then

⊢𝑇 HBprov𝛼,
•
𝒮𝛾
.

Proof. Since 𝑇 is an extension of iEA and 𝛼 enumerates 𝑇 in 𝑇, it is easy to see
that

⊢𝑇 ∀𝐴,𝐵 . prov𝛼(
•
𝒮𝛾(𝐴→•𝐵)→• •

𝒮𝛾𝐴→• •
𝒮𝛾𝐵)

just by definition of 𝒮𝛾.
Since ⊢𝑇 HB𝛼, 𝛼 we have that

⊢𝑇 ∀𝐴.Σ1-form(𝐴)→prov𝛼(𝐴→• •
𝛼𝐴). (i)

Also, note that
⊢𝑇 ∀𝐴.prov𝛼(𝐴)→prov𝒮𝛾(𝐴),

and since HB𝑇, 𝛼 we have that

⊢𝑇 𝛼(∀𝐴.prov𝛼(𝐴)→prov𝒮𝛾(𝐴)).

This gives
⊢𝑇 ∀𝐴.prov𝛼(

•
𝛼𝐴→• •

𝒮𝛾𝐴). (ii)

(i) and (ii) gives

⊢𝑇 ∀𝐴.Σ1-form(𝐴)→prov𝛼(𝐴→• •
𝒮𝛾𝐴).

Since ⊢𝑇 HB𝛼, •
𝛼 we have that

⊢𝑇 ∀𝐴 . prov𝛼(𝐴)→prov𝛼(
•
𝛼(𝐴)). (iii)

But (iii) with (ii) implies that

⊢𝑇 ∀𝐴 . prov𝛼(𝐴)→prov𝛼(
•
𝒮𝛾(𝐴)). �

Apart from the absoprtion principle we want that 𝒮𝛾 fulfills the uniform
Hilbert-Bernays conditons. In fact, we need that these conditions are provable
in certain arithmetical theories, as the following theorem establishes.

Theorem 126 (Formalized uniform Hilbert Bernays). Assume that:

1. iEA⊆𝑈.

2. HBiEA, 𝛾.

3. ⊢𝑈 ∀𝐴 . Σ1-form(𝐴)→∃𝑥 . prov𝛾(𝐴→• •
𝛾≤�̇�𝐴).
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Then:
⊢𝑈 HBprov𝛾,

•
𝒮𝛾
.

Proof. We need to check three properties. Let us start with necessitation, we
have to show that

⊢𝑈 ∀𝐴 . prov𝛾(𝐴)→prov𝛾(
•
𝒮𝛾(𝐴)). (i)

Note that thanks to Lemma 123, HBiEA,𝛾 and iEA⊆𝑈 we get that

⊢𝑈 𝛾(∀𝐴.prov𝒮𝛾(𝐴)↔ ∃𝑥 . prov𝛾≤𝑥(𝐴)∧𝒮(𝑥)).

This implies that to show (i) it suffices to show

⊢𝑈 ∀𝐴 . prov𝛾(𝐴)→prov𝛾(∃
•𝑥 . •

𝛾≤𝑥𝐴∧•𝒮•(𝑥)).

But for this it suffices to show:

⊢𝑈 ∀𝐴 . prov𝛾(𝐴)→∃𝑥 . prov𝛾(
•
�̇�𝐴∧•𝒮•(�̇�)).

Thanks to Lemma 122, to show this we just need

⊢𝑈 ∀𝐴 . prov𝛾(𝐴)→∃𝑥 . prov𝛾(
•
�̇�𝐴).

But note that:

⊢𝑈 prov𝛾(𝐴)→prov𝛾(uc(𝐴))

= ∃𝑝 . proof𝛾(𝑝,uc(𝐴))

→∃𝑝 . prov𝛾≤𝑝(uc(𝐴))

→∃𝑝 . prov𝛾(prov•𝛾≤�̇�(num(uc(𝐴)))) (by HBiEA, 𝛾)

→∃𝑝 . prov𝛾(
•
𝛾≤�̇�𝐴). (instantiation inside prov•𝛾≤�̇�)

Now, we need to check that

⊢𝑈 ∀𝐴,𝐵 . prov𝛾
•
𝒮𝛾(𝐴→•𝐵)→• •

𝒮𝛾𝐴→• •
𝒮𝛾𝐵.

But this is straightforward by definition of •
𝒮𝛾.

Finally, to show that

⊢𝑈 ∀𝐴 . Σ1-form(𝐴)→prov𝛾(𝐴→• •
𝒮𝛾𝐴),

we just need to use the third assumption of the theorem and perform a similar
reasoning to the one performed for the necessition rule. The essence of both rea-
sonings is that, thanks to lemmas 122 and 123, with the hypothesis of HBiEA, 𝛾;
it is easy to show that

⊢iEA prov𝛾(
•
𝛾≤�̇�𝐴→• •

𝒮𝛾𝐴) �

If the theory 𝑈 that we use to establish this theorem is sound we get the
usual uniform Hilbert-Bernays conditions.
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3.5 Application: iPRA
Let us apply the intuitionistic Solovay construction to iPRA. iPRA was chosen
since we need a theory with at least Σ1-reflection with respect to its finite
subtheories. This does not hold with finite axiomatizable theories of HA like
iEA or iIΣ1.

Slow predicate

We will construct a slow predicate for iPRA using the construction of Section
3.4. In this case we will not need any 𝛼-axioms.
Definition 127. We define

ax𝒮iPRA(𝐴) ∶= ax(⊥,axiPRA)(𝐴),
axiPRA≤𝑥(𝐴) ∶= ax(⊥,axiPRA)≤𝑥(𝐴). �

We start by proving a lemma that will give the desired Σ1-absorption.1

Lemma 128 (Formalized Σ1-reflection of iPRA). We have that:

⊢iPRA ∀𝐴,𝑥 . Σ1-form(𝐴)→proviPRA(
•
iPRA≤�̇�𝐴→•𝐴).

Proof. Note that the sentence we want to prove in iPRA is iPRA-equivalent to
a Π2 sentence. By Π2-conservativity of PRA over iPRA it suffices to show that

⊢PRA ∀𝐴,𝑥 . Σ1-form(𝐴)→proviPRA(
•
iPRA≤�̇�𝐴→•𝐴).

Note however, that PRA is capable of showing the Π2-conservativity of PRA
over iPRA, since it only needs to use Gödel’s and Friedman’s translation. In
other words, we have that:

⊢PRA ∀𝐴 . Π2-sent(𝐴)∧provPRA(𝐴)→proviPRA(𝐴).

PRA can show that •
iPRA≤�̇�𝐴→• 𝐴 is proviPRA-equivalent to a Π2-formula,

thanks to Σ1-form(𝐴). Then, it suffices that we show:

⊢PRA ∀𝐴,𝑥 . Σ1-form(𝐴)→provPRA(uc( •
iPRA≤�̇�𝐴→•𝐴)). (i)

Let us reason inside PRA. Let 𝐴 be a Σ1-formula, then (note that since we are
reasoning inside PRA, ⊢PRA should be understood as provPRA):

⊢PRA
•
iPRA≤�̇�𝐴→• •

PRA≤�̇�𝐴
→•𝐴

Where the last implication holds thanks to Σ1-reflection principle of PRA with
respect to it finite subtheories. This principle can be formalized in PRA (in
particular, it can be formalized in EA, as it is said in [3], page 103 Example 7).
Clearly, from the provability of this formula we can derive the provability of the
universal closure which will give us (i) �

1We will use some conservativity results of iPRA and iIΣ1 over its classical versions. These results
can be shown with the tools provided by Gödel’s and Friedman’s translations. The intereseted
reader can find the proofs in [14]
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We have used some conservativity principles over classical theories to prove
the result we were interested in. Developing a direct proof of this or checking
whether the original proof can be carried to the intuitionistic setting would be
interesting as future work.

Corollary 129. Let 𝜙 be a Σ1-sentence. Then

⊢iPRA iPRA 𝒮iPRA𝜙→ iPRA𝜙.

Proof. We want to apply Theorem 124. Note that iPRA is (Δ0, iEA)-arithmetizable,
so HBiEA,iPRA, iPRA. But since iEA ⊆ iPRA we get that HBiEA, iPRA. So all we
need to show is that for any Σ1-sentence 𝜙,

⊢iPRA ∀𝑥 . iPRA iPRA≤𝑥𝜙→ iPRA𝜙.

In particular, we have to show that:

⊢iPRA ∀𝑥 . proviPRA(
subst

(
proviPRA≤𝑥(𝜙),𝑥, �̇�))

→proviPRA(𝜙),

but thanks to properties of subst this is equivalent to showing

⊢iPRA ∀𝑥 . proviPRA(
subst

(
proviPRA≤𝑥 (𝐴),𝑥, �̇�,𝐴,𝜙))

→proviPRA(𝜙).

But instantiating 𝐴 as 𝜙 in Lemma 128, and since 𝜙 is a sentence, we obtain

⊢iPRA proviPRA(
prov•iPRA≤�̇�(

𝜙
)
→•𝜙

)

i.e.
⊢iPRA proviPRA(

subst
(

proviPRA≤𝑥(𝐴),𝑥, �̇�,𝐴,𝜙)
→•𝜙

)
which clearly implies the desired formula. �

Lemma 130. We have that:

⊢iPRA HBproviPRA,
•
𝒮iPRA

As a corollary, since iPRA is sound, we can conclude that HBiPRA, 𝒮iPRA.

Proof. We want to apply Theorem 126. We have that iEA ⊆ iPRA, and we
also have that iPRA is (Δ0, iEA)-arithmetizable, which gives HBiEA,iPRA, iPRA, so
HBiEA, iPRA. All left to show is that

⊢iPRA ∀𝐴 . Σ1-form(𝐴)→∃𝑥 . proviPRA(𝐴→• •
iPRA≤�̇�𝐴).

Note that this sentence is Π2, so it suffices to show it in iIΣ1.
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Let us do an unformalized proof of this, which is straightforward to formalize
in iPRA. So let 𝜙 be a Σ1-formula and we have to show that there is an 𝑛 such
that

⊢iPRA 𝜙→ iPRA≤𝑛𝜙.
Since this formula is Π2, we note that the idea to prove this is the same as
the classical idea to show formalized completeness in PA: use induction in 𝜙
and use that we have all the recursive axioms of the function symbols. The
induction is no problem, since it would be a Σ1-induction in iIΣ1. The problem
arises when we want all the axioms of the function symbols in 𝜙. We should be
careful here, in the traditional PA case there are finitely many function symbols
in the language, so for any formula 𝜙 we can find an uniform 𝑛 that fulfills the
requirements. This is not the case in iPRA.
In this case we must go through the formula 𝜙, find the biggest function

symbol and take a big enough 𝑛 to have the axioms of this function symbol and
all the axioms of smaller function symbols. This will be enough, because in case
we have a function symbols whose axioms depend on other function symbol by
how we defined our language the second function symbol will be smaller than
the first one. It is not hard to see that the calculation of this 𝑛 can be carried
in iPRA. Just to measure how big the axioms of a function symbol can be
depending on the size of the function symbol and take an upper bound for the
biggest function symbol in 𝜙. �

Closure under Visser translation

Lemma 131. iPRA is closed under (_) 𝒮iPRA
V . This is verifiable in iIΣ1.

Proof. First, remember that thanks to Lemma 130 we have that HBiPRA, 𝒮iPRA
and this is iIΣ1 verifiable.
All non-induction axioms of iPRA are of shape ∀𝑥0,…,𝑥𝑛−1 . 𝜙0 where 𝜙0 is

Δ0. Then by Lemma 61, we have that

⊢iPRA (∀𝑥0,…,𝑥𝑛−1 . 𝜙0) 𝒮iPRA
V ↔ 𝒮iPRA(∀𝑥0,…,𝑥𝑛−1 . (𝜙0) 𝒮iPRA

V ).

It suffices to show ⊢iPRA ∀𝑥0,…,𝑥𝑛−1 . 𝜙 𝒮iPRA
0 . Thanks to 𝜙0 being Δ0 and

Lemma 66, we have that ⊢iPRA (𝜙0) 𝒮iPRA
V ↔ 𝜙0, so we can derive the desired

result.
Finally, let us assume that 𝜙 is an induction axiom. Then, we have a

quantifier-free formula 𝜓 such that

𝜙 =𝜓[𝑥/0]∧ (∀𝑥 . 𝜓→𝜓[𝑥/S(𝑥)])→(∀𝑥 . 𝜓).

To show that ⊢iPRA (𝜙) 𝒮iPRA
V , by Lemma 63 and HBiPRA, 𝒮iPRA, it suffices to

show that:

⊢iPRA (𝜓) 𝒮iPRA
V [𝑥/0]∧ 𝒮iPRA(∀𝑥 . (𝜓) 𝒮iPRA

V →(𝜓) 𝒮iPRA
V [𝑥/S(𝑥)])

→ 𝒮iPRA(∀𝑥 . (𝜓) 𝒮iPRA
V )
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Since 𝜓 is Δ0 we have that ⊢iPRA (𝜓) 𝒮iPRA
V ↔𝜓, it suffices to show:

⊢iPRA 𝜓[𝑥/0]∧ 𝒮iPRA(∀𝑥 . 𝜓→𝜓[𝑥/S(𝑥)])→ 𝒮iPRA(∀𝑥 . 𝜓). (i)

Since it is an induction axiom, we already have that

⊢iPRA 𝜓[𝑥/0]∧ (∀𝑥 . 𝜓→𝜓[𝑥/S(𝑥)])→(∀𝑥 . 𝜓). (ii)

Using HBiPRA, 𝒮iPRA we also get:

⊢iPRA 𝒮iPRA(𝜓[𝑥/0])∧ 𝒮iPRA(∀𝑥 . 𝜓→𝜓[𝑥/S(𝑥)])→ 𝒮iPRA(∀𝑥 . 𝜓). (iii)

Since 𝜓[𝑥/0] is Δ0, by HBiPRA, 𝒮iPRA.Compl we also get

⊢iPRA 𝜓[𝑥/0]→ 𝒮iPRA(𝜓[𝑥/0]). (iv)

Clearly (ii), (iii) and (iv) gives (i).
For verifiability inside iIΣ1, we note that all the lemmas used in the proof

are iIΣ1 verifiable. �

Lemma 132. We have that:

⊢iPRA ∀𝐴 . prov(iPRA) 𝒮iPRA
V

(𝐴)↔ proviPRA(𝐴)
•
𝒮iPRA

V .

Proof. Note that right to left is trivial by definition of ax(iPRA) 𝒮iPRA
V

. It suffices
that we show:

⊢iPRA ∀𝐴 . prov(iPRA) 𝒮iPRA
V

(𝐴)→proviPRA(𝐴)
•
𝒮iPRA

V .

But note that the sentence is iPRA-equivalent to a Π2-sentence (as it is the
universal quantification of an implication of Σ1-formulas). By Π2 conservativity
of iIΣ1 over iPRA we get that it suffices to show:

⊢iIΣ1 ∀𝐴 . prov(iPRA) 𝒮iPRA
V

(𝐴)→proviPRA(𝐴)
•
𝒮iPRA

V .

But we obtain this from applying Corollary 75, and lemmas 130 and 131 provide
the necessary hypothesis. �

Σ1-provability logic

Finally, we are able to apply Solovay’s construction.

Theorem 133.

Σ1-ℙ𝕃((𝑖PRA) 𝒮iPRA
V ) =ℙ𝕃((iPRA) 𝒮iPRA

V ) = iGLC.
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Proof. First, let us apply Theorem 116 to obtain that

Σ1-ℙ𝕃((iPRA) 𝒮iPRA
V , 𝒮iPRA

iPRA ) =ℙ𝕃((iPRA) 𝒮iPRA
V , 𝒮iPRA

iPRA ) = iGLC. (i)

Note that iPRA is a sound theory, Δ0-decidable and Σ1-complete extending iEA.
Also, it is self Δ0-arithmetizable. By Lemma 130 we have that HBiPRA, 𝒮iPRA.
By Corollary 129 we get that absorption law for Σ1-sentences. By definition of
ax𝒮iPRA, we have that for any sentence 𝜙, ⊢iPRA 𝒮iPRA𝜙→ iPRA𝜙. Finally, by
Lemma 131 we have that it is closed under (_) 𝒮iPRA

V .
Now, thanks to Lemma 132 we get that for any sentence 𝜙,

⊢iPRA (iPRA) 𝒮iPRA
V

𝜙↔ 𝒮iPRA
iPRA 𝜙. (ii)

(ii) and Lemma 117 gives us that:

Σ1-ℙ𝕃((iPRA) 𝒮iPRA
V , 𝒮iPRA

iPRA ) =Σ1-ℙ𝕃((iPRA) 𝒮iPRA
V ). (iii)

ℙ𝕃((iPRA) 𝒮iPRA
V , 𝒮iPRA

iPRA ) =ℙ𝕃((iPRA) 𝒮iPRA
V ). (iv)

Using (i),(iii) and (iv) gives the desired result. �
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Chapter 4

NNIL Algorithm

In this chapter we are going to see how to calculate the Σ1-provability logic
of 𝑇 from the Σ1-provability logic of ((𝑇)

▵
V,

▵
𝑇). For this we will need to use

the NNIL algorithm. The definition of this algorithm and the proof of its main
properties is from [11].

4.1 Σ1-provability logic of 𝑇 from (𝑇)▵V
In this section we will see how assuming two conditions, 𝒜𝑇 , 𝑇 and ℬ𝑇 , 𝑇,▵, we
get the Σ1-provability logic of 𝑇 from the Σ1-provability logic of ((𝑇)V,

▵
𝑇).

We introduce the class of NNIL propositional formulas, No Nestings of
Implications to the Left.

Definition 134. We define the classes NNIL⊆ℒp and NI⊆ℒp (No Implications)
of propositional formulas with the following Back-Naus form:

NNIL ∶ 𝜙 ∶∶= 𝑝 ∣ ⊥ ∣ ⊤ ∣ 𝜙∧𝜙 ∣ 𝜙∨𝜙 ∣ 𝜓→𝜙,
NI ∶ 𝜓 ∶∶= 𝑝 ∣ ⊥ ∣ ⊤ ∣ 𝜓∧𝜓 ∣ 𝜓∨𝜓. �

The NNIL algorithm is an elementary function (_)∗ ∶ ℒp ⟶ NNIL, which
has the following properties:

1. For any 𝜙, ⊢IPC 𝜙∗→𝜙.

2. For any 𝜙 ∈ℒp, 𝜓 ∈NNIL if ⊢IPC 𝜓→𝜙 then ⊢IPC 𝜓→𝜙∗.

Definition 135. Let us have box functions ,▵. We define the sets:

𝒜 = { (𝜎𝜙)↔ (𝜎𝜙∗) ∣ 𝜙 ∈ℒp,𝜎 ∈ Σ1-real},

ℬ ,▵ = { (𝜎𝜙)↔ ▵(𝜎𝜙) ∣ 𝜙 ∈NNIL,𝜎 ∈ Σ1-real},
where Σ1-real is the set of Σ1 realizations.
If 𝑇 is a theory, we will write 𝒜𝑇 , to mean ⊢𝑇 𝒜 and ℬ𝑇 , ,▵ to mean

⊢𝑇 ℬ ,▵. �
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Having𝒜𝑇 , 𝑇 andℬ𝑇 , 𝑇,▵ are going to be fundamental to lift the calculation
of Σ1-ℙ𝕃 from ((𝑇)▵V,

▵
𝑇) to (T).

We need to define an extension of the NNIL-algorithm to modal formulas.
In order to define it we need to define what it means that a propositional logic
formula 𝜓 is a propositional skeleton of a modal logic formula 𝜙.

Definition 136 (Propositional skeleton). Let 𝜙(�⃗�) be a modal formula. We
say that a propositional formula 𝜓(�⃗�,𝑞0,…,𝑞𝑛−1) (with the list of 𝑞 variables in
that order) is a propositional skeleton of 𝜙 iff there are unique 𝜒0,…,𝜒𝑛−1 ∈ℒm
distinct with

𝜙 =𝜓(�⃗�, 𝜒0,…, 𝜒𝑛−1).

�

Note that propositional skeletons are unique up to renaming of 𝑞0,…,𝑞𝑛−1
variables by other variables not appearing in the modal formula.
We extend the definition of NNIL formulas to modal logic. This class is going

to be called TNNIL, Thoroughly No Nestings of Implications to the Left.

Definition 137 (TNNIL). We define the classes TNNIL⊆ℒm and NI⊆ℒm (No
Outside Implications) of modal formulas with the following Back-Naus form:

TNNIL ∶ 𝜙 ∶∶= 𝑝 ∣ ⊥ ∣ ⊤ ∣ 𝜙∧𝜙 ∣ 𝜙∨𝜙 ∣ 𝜓→𝜙 ∣ 𝜙,
NOI ∶ 𝜓 ∶∶= 𝑝 ∣ ⊥ ∣ ⊤ ∣ 𝜓∧𝜓 ∣ 𝜓∨𝜓 ∣ 𝜒,

where 𝜒 is any ℒm formula. �

With this we can extend the NNIL algorithm to the modal case.

Definition 138. We define the TNNIL-algorithm by recursion. Let 𝜙(�⃗�) ∈ℒm,
let 𝜓(�⃗�,𝑞0,…,𝑞𝑛−1) be a propositional skeleton of 𝜙 and 𝜒0,…,𝜒𝑛−1 be the only
modal formulas satisfying the skeleton condition. Then we define

𝜙+ =𝜓∗(�⃗�, 𝜒+
0 ,…, 𝜒+

𝑛−1). �

According to our definition the TNNIL-algorithm is not an algorithm. These
comes from 2 problems:

1. A formula has infinitely many propositional skeletons, which may cause
distinct outputs depending on the choice of propositional skeleton.

2. We do not indicate how to calculate a propositional skeleton of a modal
formula.

It is easy to see that the particular choice of propositional skeletons that we
make is unimportant for the resulting formula, so in fact the first objection is
not a problem. The second objection is not a problem neither, since it is easy
to came up with algorithms to calculate a propositional skeleton of a modal
formula.
We have the following lemmas related to the TNNIL-algorithm:
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Lemma 139. Assume that

1. 𝒜𝑇 , .

2. Gl𝑇 , .

Then for any 𝜙 ∈ℒp and 𝜎 ∈Σ1-real, we have that:

⊢𝑇 (𝜎 𝜙)↔ (𝜎 𝜙+).

Proof. We proceed by strong induction in the box depth of 𝜙. If 𝜙 has no
boxes, this is simply the assumption 𝒜𝑇 , . Let 𝜓 be a propositional skeleton
of 𝜙 and 𝜓(�⃗�, 𝜒0,…, 𝜒𝑛−1) = 𝜙(�⃗�). By induction hypothesis we have that for
any 𝑖 < 𝑛:

⊢𝑇 (𝜎 𝜒𝑖)↔ (𝜎 𝜒+
𝑖 ). (i)

We define the following Σ1-realization:

𝜏(𝑝𝑖) = 𝜎(𝑝𝑖),
𝜏(𝑞𝑖) = (𝜎 (𝜒𝑖)).

We have the following equalites:

𝜎 𝜙= 𝜎 (𝜓(�⃗�, 𝜒0,…, 𝜒𝑛−1))
= 𝜓(𝜎(�⃗�), (𝜎 𝜒0),…, (𝜎 𝜒𝑛−1))
= 𝜏𝜓

𝜎 𝜙+ =𝜎 (𝜓∗(�⃗�, 𝜒+
0 ,…, 𝜒+

𝑛−1))
= 𝜓∗(𝜎(�⃗�), (𝜎 𝜒+

0 ),…, (𝜎 𝜒+
𝑛−1))

𝜏𝜓∗ =𝜓∗(𝜏(�⃗�),𝜏(�⃗�))
= 𝜓∗(𝜎(�⃗�), (𝜎 𝜒0),…, (𝜎 𝜒𝑛−1))

With these equalities in mind, we have the following equivalences:

⊢𝑇 (𝜎 𝜙+)↔ (𝜏𝜓∗) (by (i) and Gl𝑇 , )
↔ (𝜏𝜓) (by 𝒜𝑇 , )
= (𝜎 𝜙).

�

Lemma 140. Assume ℬ𝑇 , ,▵ and Gl𝑇 , ▵. Then, for any 𝜙 ∈ TNNIL and 𝜎 ∈
Σ1-real, we have that

⊢𝑇 (𝜎 𝜙)↔ ▵(𝜎 ▵𝜙).

Proof. We proceed by strong induction in the box depth of 𝜙. If 𝜙 has no
boxes, this is simply the assumption ℬ𝑇 , ,▵. Now, assume that 𝜓(�⃗�, �⃗�) is a
propositional skeleton of 𝜙(�⃗�) and 𝜓(�⃗�, 𝜒0,…, 𝜒𝑛−1) = 𝜙, which thanks to
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𝜙 ∈ TNNIL implies that 𝜓 ∈ NNIL and 𝜒0,…,𝜒𝑛−1 ∈ TNNIL. By the induction
hypothesis we have that for any 𝑖 < 𝑛:

⊢𝑇 (𝜎 𝜒𝑖)↔ ▵(𝜎 ▵𝜒𝑖). (i)

We define 𝜏, a Σ1-real, as

𝜏(𝑝𝑖) = 𝜎(𝑝𝑖),
𝜏(𝑞𝑖) = (𝜎 𝜒𝑖).

We have the following equalities:

𝜎 𝜙= 𝜎 (𝜓(�⃗�, 𝜒0,…, 𝜒𝑛−1))
= 𝜓(𝜎(�⃗�), (𝜎 𝜒0),…, (𝜎 𝜒𝑛−1))
= 𝜏𝜓.

𝜎 ▵𝜙= 𝜎 ▵(𝜓(�⃗�, 𝜒0,…, 𝜒𝑛−1))
= 𝜓(𝜎(�⃗�), ▵(𝜎 ▵𝜒0),…, ▵(𝜎 ▵𝜒𝑛−1))

With these equalities in mind, we have the following equivalences:

⊢𝑇
▵(𝜎 ▵𝜙)↔ ▵(𝜏𝜓) (by (i) and Gl𝑇 , ▵)

↔ (𝜏𝜓) (by ℬ𝑇 , ,▵)
= (𝜎 𝜙).

�

Theorem 141. Assume that

1. The theory 𝑇 is Σ1-complete, Δ0-decidable and Π2-sound. Also, assume
that either 𝑇 is a self Δ0-arithmetizable extension of iEA or 𝑇 is a self
Σ1-arithmetizable extension of iEA+𝐵Σ1.

2. HB𝑇 ,▵.

3. 𝒜𝑇 , 𝑇,ℬ𝑇 , 𝑇,▵.

4. 𝑇 is closed under (_)▵V.

Then
Σ1-ℙ𝕃(𝑇 ) = {𝜙 ∈ℒm ∣ 𝜙+ ∈Σ1-ℙ𝕃((𝑇)

▵
V,

▵
𝑇)}.

Proof. We have to show that

𝜙 ∈Σ1-ℙ𝕃(𝑇 ) iff 𝜙+ ∈Σ1-ℙ𝕃((𝑇)
▵
V,

▵
𝑇). (i)

By Corollary 37, we have that HB𝑇 , 𝑇; and by Lemma 77, we get Hb𝑇 , ▵
𝑇
. Also,

by Lemma 42, we get that for any sentence 𝜓,

⊢𝑇 𝜓 iff ⊨ℕ 𝑇𝜓. (ii)
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Let 𝜎 be a Σ1-realization and 𝜙 ∈ℒm, we have that:

⊢𝑇 𝑇(𝜎 𝑇𝜙)↔ 𝑇(𝜎 𝑇𝜙
+) (by Lemma 139)

↔ ▵
𝑇(𝜎 ▵

𝑇
𝜙+). (by Lemma 140)

We will denote this equivalence as (iii).
With this we can conclude:

⊢𝑇 𝜎 𝑇𝜙 iff ⊨ℕ 𝑇(𝜎 𝑇𝜙) (by (ii))
iff ⊨ℕ ▵

𝑇(𝜎 ▵
𝑇
𝜙+) (by (iii) and Π2-soundness)

iff ⊨ℕ 𝑇(𝜎 ▵
𝑇
𝜙+

)
▵

V
(since 𝜎 ▵

𝑇
𝜙+ is a sentence)

iff ⊢𝑇 (𝜎 ▵𝜙+)▵V (by (ii))

iff ⊢(𝑇)▵V
𝜎 ▵

𝑇
𝜙+. (by Theorem 72)

Finally, thanks to 𝜎 and 𝜙 begin arbitrary, we have proven (i) so we can
conclude the desired result. �

4.2 How to get 𝒜
In this section we are going to study some conditions under which we can ensure
𝒜𝑇 , 𝑇. In other words, how to prove that for any formula 𝜙 and Σ1-realization
𝜎 we have that:

⊢𝑇 𝑇(𝜎𝜙)↔ 𝑇(𝜎𝜙∗).

First, we establish a little lemma that guarantees the right to left direction.

Lemma 142. Let 𝑇 be a theory such that Hb𝑇 , . Then for any propositional
formula 𝜙 and Σ1-realization 𝜎 we have that:

⊢𝑇 (𝜎𝜙∗)→ (𝜎𝜙).

Proof. By the properties of the NNIL-algorithm we know that ⊢iPC 𝜙∗ →𝜙.
Then it is clear that:

⊢𝑇 𝜎𝜙∗→𝜎𝜙.

Finally, using Hb𝑇 , it is easy to conclude

⊢𝑇 (𝜎𝜙∗)→ (𝜎𝜙).

�
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Now we focus in getting the left to right direction of 𝒜. In order to prove
it, we need to introduce some definitions and results from [11]. First, we define
a translation between propositional formulas:

Definition 143. We define the function [_]_ ∶ ℒp×ℒp ⟶ ℒp recursively in
the second argument as:

[𝜓]𝜙 ∶= 𝜙 if 𝜙 atomic,
[𝜓](𝜙0∧𝜙1) ∶= [𝜓]𝜙0∧[𝜓]𝜙1,
[𝜓](𝜙0∨𝜙1) ∶= [𝜓]𝜙0∨[𝜓]𝜙1,
[𝜓](𝜙0→𝜙1) ∶= 𝜓→𝜙0→𝜙1. �

And we also need the concept of 𝜎-relation:

Definition 144. A 𝜎-relation is a binary relation ⊳⊆ℒp×ℒp such that:

1. 𝜙 ⊢iPC 𝜓 implies 𝜙 ⊳ 𝜓.

2. 𝜙 ⊳ 𝜓,𝜓 ⊳ 𝜒 implies 𝜙 ⊳ 𝜒.

3. 𝜒 ⊳ 𝜙,𝜒 ⊳ 𝜓 implies 𝜒 ⊳ 𝜙∧𝜓.

4. 𝜙 ⊳ 𝜒,𝜓 ⊳ 𝜒 implies 𝜙∨𝜓 ⊳ 𝜒.

5. Let us have propositional formulas 𝜙0,…,𝜙𝑘,𝜓0,…,𝜓𝑘−1, then

(
⋀
𝑖<𝑘

𝜙𝑖→𝜓𝑖
)
→𝜙𝑘 ⊳⋁

𝑖≤𝑘 [
⋀
𝑖<𝑘

𝜙𝑖→𝜓𝑖
]
𝜙𝑖.

6. 𝜙 ⊳ 𝜓 implies (𝑝→𝜙) ⊳ (𝑝→𝜓).

The smallest 𝜎-relation will be denoted ▶𝜎. �

We have the following result from [11]:

Theorem 145. For any 𝜙 ∈ℒp we have that

𝜙▶𝜎 𝜙∗.

As a corollary, we have that for any 𝜎-relation ⊳,

𝜙 ⊳ 𝜙∗.

We need one more ingredient:

Definition 146. Let 𝜙,𝜓 ∈ℒp. Then, we say that 𝜙 ⊳𝑇 𝜓 iff

For any 𝜒 ∈Σ1-sent and any 𝜎 ∈Σ1-real, 𝜒⊢𝑇 𝜎𝜙 implies 𝜒⊢𝑇 𝜎𝜓.
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We also define the formalization of this relation, defining the formula:

𝐴 ⊳𝑇 𝐵 ∶= ∀𝐶,𝑓 . Σ1-sent(𝐶)∧Σ1-real(𝑓, fv(𝐴)∪• fv(𝐵))∧der𝑇(𝐶,𝑓(𝐴))
→der𝑇(𝐶,𝑓(𝐵)).�

To define the formula 𝐴 ⊳𝑇 𝐵 we need to use a the formula Σ1-real(𝑓,𝑋).
This formula claims that 𝑓 is a Σ1-realization whose domain is the finite set 𝑋.
We need to specify its domain as a finite set, since only finite functions can be
represented as a number.
We note that, following [11], ⊳𝑇 is just a preservativity relation. For classical

theories, preservativity and conservativity are dual notions. The insterested
reader should consult Remark 4.1 at page 11 in [11].
If we are capable of showing that ⊳𝑇𝑇 = {(𝜙,𝜓) ∣ ⊢𝑇 𝜙 ⊳𝑇 𝜓} is a 𝜎-relation

we would finish, since then by Theorem 145:

⊢𝑇 𝑇(⊤→𝜎𝜙)→ 𝑇(⊤→𝜎𝜙∗).

But if Hb𝑇 , 𝑇
we can conclude

⊢𝑇 𝑇(𝜎𝜙)→ 𝑇(𝜎𝜙∗),

which is the desired result. It is clear, that if we prove the internalized versions of
properties 1 to 6 of 𝜎-relations inside 𝑇 we would have that ⊳𝑇𝑇 fulfills properties
1 to 6, and then it is a 𝜎-relation.
To avoid making things too dense we are going to do the following. First,

we are going to show what conditions are necessary to show that ⊢𝑇 fulfills
properties 1 to 6. Then, we will see which conditions must have 𝑇 to have
those arguments formalized inside 𝑇. With all this done, we will put our results
together in a theorem.

Lemma 147 (Property 1).

𝜙 ⊢iPC 𝜓 implies 𝜙 ⊳𝑇 𝜓.

Proof. This lemma is trivial, since our theories are formulated in iFOL so the
assumptions implies that 𝜎(𝜙) ⊢𝑇 𝜎(𝜓). From this and some propositional rea-
soning we can easily conclude that 𝜒→𝜎(𝜙) ⊢𝑇 𝜒→𝜎(𝜓), which implies the
desired result. �

Lemma 148 (Property 2).

If 𝜙0 ⊳𝑇 𝜙1 and 𝜙1 ⊳𝑇 𝜙2, then 𝜙0 ⊳𝑇 𝜙2.

Proof. Assume that 𝜙0 ⊳𝑇 𝜙1 (i), 𝜙1 ⊳𝑇 𝜙2 (ii) and 𝜒⊢𝑇 𝜎𝜙0 (iii). Using (i) and
(iii) we get that 𝜒 ⊢𝑇 𝜎𝜙1 and using this and (ii) we get the desired 𝜒 ⊢𝑇 𝜎𝜙2.

�
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Lemma 149 (Property 3).

If 𝜙 ⊳𝑇 𝜓0 and 𝜙 ⊳𝑇 𝜓1, then 𝜙 ⊳𝑇 (𝜓0∧𝜓1).

Proof. Assume that 𝜙 ⊳𝑇 𝜓0 (i), 𝜙 ⊳𝑇 𝜓1 (ii) and 𝜒 ⊢𝑇 𝜎𝜙 (iii). From (i) and
(iii) we obtain that 𝜒 ⊢𝑇 𝜎𝜓0 and from (ii) and (iii) that 𝜒 ⊢𝑇 𝜎𝜓1. But then,
concatenating both proofs and doing a little of propositional reasoning we obtain
𝜒⊢𝑇 𝜎𝜓0∧𝜎𝜓1, i.e. 𝜒⊢𝑇 𝜎(𝜓0∧𝜓1) as wanted. �

Properties 4 and 5 are going to be harder to prove. The idea is that we
will need a Σ1-predicate 𝑄 with box function ▵ such that Rfn𝑇 ,▵ and use the
relation of ⊳𝑇 with Σ1-formulas. Clearly, we cannot have that ▵ = 𝑇, since
then ⊢𝑇 𝑇⊥→⊥, i.e. ⊢𝑇 ¬ 𝑇⊥, contraty to Gödel’s incompleteness theorems.
For this reason we will need to work with theories 𝑇𝑛 ⊂𝑇, but at the same time
we will need that ⋃𝑛∈ℕ𝑇𝑛 =𝑇. This last equality will be needed since the idea
will be to assume that ⊢𝑇 𝜙 and then get that for some 𝑛 ∈ ℕ, ⊢𝑇𝑛 𝜙. With
this we will be allowed to use De Jongh translation, which will be fundamental
to put 𝑇𝑛 in crucial places and then eliminate it via Rfn𝑇 , 𝑇𝑛

. We start with
property 41:
Lemma 150 (Property 4). Let us have theories 𝑇 ,(𝑇𝑛)𝑛∈ℕ, such that:
1. ⋃𝑛∈ℕ𝑇𝑛 =𝑇.

2. For any 𝑛, HB𝑇 ,𝑇𝑛, 𝑇𝑛
.

3. For any 𝑛, 𝜙 ∈Ax𝑇𝑛 implies ⊢𝑇 [⊤] 𝑇𝑛
(𝜙) (translation defined in 2.3).

4. For any 𝑛, Rfn𝑇 , 𝑇𝑛
.

Then
𝜙0 ⊳𝑇 𝜓 and 𝜙1 ⊳𝑇 𝜓 implies 𝜙0∨𝜙1 ⊳𝑇 𝜓.

Proof. Let us assume that 𝜙0 ⊳𝑇 𝜓 and 𝜙1 ⊳𝑇 𝜓, and 𝜒 ⊢𝑇 𝜎𝜙0∨𝜎𝜙1 where 𝜒
is a Σ1-formula. Then, we know thanks to ⋃𝑛∈ℕ𝑇𝑛 = 𝑇 that for some 𝑛 ∈ ℕ,
𝜒⊢𝑇𝑛 𝜎𝜙0∨𝜎𝜙1. Then by Theorem 90 we have that

[⊤] 𝑇𝑛
𝜒⊢𝑇 [⊤] 𝑇𝑛

𝜎𝜙0∨[⊤] 𝑇𝑛
𝜎𝜙1. (i)

Thanks to 𝜒 being a Σ1-formula and Lemma 87 we have that ⊢𝑇 [⊤] 𝑇𝑛
𝜒 ↔𝜒

and using Lemma 81 with HB𝑇 ,𝑇𝑛, 𝑇𝑛
we have that ⊢𝑇 [⊤] 𝑇𝑛

𝜙𝑖→ 𝑇𝑛𝜙𝑖 so from
(i) we obtain:

𝜒⊢𝑇 𝑇𝑛(𝜎𝜙0)∨ 𝑇𝑛(𝜎𝜙1). (ii)
Finally, note that by Rfn𝑇 , 𝑇𝑛

we have that 𝑇𝑛(𝜎𝜙𝑖) ⊢𝑇 𝜎𝜙𝑖 and using that 𝜎 is a
Σ1-realization, 𝑇𝑛(𝜎𝜙𝑖) is a Σ1-formula and 𝜙𝑖 ⊳𝑇 𝜓 we get that 𝑇𝑛(𝜎𝜙𝑖) ⊢𝑇 𝜎𝜓.
This means that from (ii) we can conclude

𝜒⊢𝑇 𝜎𝜓,

as wanted. �
1Property 4 has also an alternative proof using 𝑞-realizability, see [11]
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Lemma 151 (Property 5). Let us have theories 𝑇 ,(𝑇𝑛)𝑛∈ℕ and propositional
formulas 𝜙0,…,𝜙𝑘,𝜓0,…,𝜓𝑘−1. Let us define 𝐼 ∶=⋀𝑖<𝑘𝜙𝑖→𝜓𝑖 and
𝐻 ∶=⋁𝑖≤𝑘[𝐼 ,𝜎]

∘
𝑇𝑛
𝜙𝑖. Assume that we have

1. ⋃𝑛∈ℕ𝑇𝑛 =𝑇.

2. For any 𝑛, HB𝑇 ,𝑇𝑛, 𝑇𝑛
.

3. For any 𝑛, 𝜙 ∈Ax𝑇𝑛 implies ⊢𝑇 [𝐼 ] 𝑇𝑛
(𝜙) (translation defined in 2.3).

4. For any 𝑛, Rfn𝑇 , 𝑇𝑛
.

5. 𝑇 is closed under (_)𝐻F (translation defined in 2.1).

Then

(
⋀
𝑖<𝑘

𝜙𝑖→𝜓𝑖
)
→𝜙𝑘 ⊳𝑇 ⋁

𝑖≤𝑘 [
⋀
𝑖<𝑘

𝜙𝑖→𝜓𝑖
]
𝜙𝑖.

Proof. Assume that

𝜒⊢𝑇
(
⋀
𝑖<𝑘

𝜎𝜙𝑖→𝜎𝜓𝑖
)
→𝜎𝜙𝑘,

where 𝜒 is a Σ1-formula and 𝜎 a Σ1-realization. Since ⋃𝑛∈ℕ𝑇𝑛 = 𝑇 we have
that there is a 𝑛 ∈ℕ such that

𝜒⊢𝑇𝑛 (
⋀
𝑖<𝑘

𝜎𝜙𝑖→𝜎𝜓𝑖
)
→𝜎𝜙𝑘,

and then, using Theorem 90, we have

[𝜎𝐼 ] 𝑇𝑛
𝜒⊢𝑇𝑛 [𝜎𝐼 ] 𝑇𝑛 (

⋀
𝑖<𝑘

𝜎𝜙𝑖→𝜎𝜓𝑖
)
→[𝜎𝐼] 𝑇𝑛

𝜎𝜙𝑘. (i)

Since 𝜒 is a Σ1-formula by Lemma 87 we have that ⊢𝑇 [𝜎𝐼 ] 𝑇𝑛
𝜒 ↔𝜒. Also, by

Lemma 82 we have that

[𝜎𝐼 ] 𝑇𝑛 (
⋀
𝑖<𝑘

𝜎𝜙𝑖→𝜎𝜓𝑖
)
↔

(
⋀
𝑖<𝑘

[𝜎𝐼 ] 𝑇𝑛
𝜎𝜙𝑖→[𝜎𝐼] 𝑇𝑛

𝜎𝜓𝑖
)
∧ 𝑇𝑛(𝐼→𝐼).

But since HB𝑇 ,𝑇𝑛, 𝑇𝑛
we have that ⊢𝑇 𝑇𝑛(𝐼→𝐼). So from (i) we get

𝜒⊢𝑇𝑛 (
⋀
𝑖<𝑘

[𝜎𝐼 ] 𝑇𝑛
𝜎𝜙𝑖→[𝜎𝐼] 𝑇𝑛

𝜎𝜓𝑖
)
→[𝜎𝐼] 𝑇𝑛

𝜎𝜙𝑘. (ii)
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But, by Lemma 94, we have that ⊢𝑇 [𝜎𝐼 ] 𝑇𝑛
𝜎𝜙𝑖 ↔ [𝐼,𝜎] 𝑇𝑛

𝜙𝑖 and by Lemma 95
we have that ⊢𝑇 [𝐼 ,𝜎] 𝑇𝑛

𝜙𝑖→[𝐼,𝜎]∘𝑇𝑛𝜙𝑖. So from (ii) we get

𝜒⊢𝑇𝑛 (
⋀
𝑖<𝑘

[𝐼 ,𝜎]∘𝑇𝑛𝜙𝑖→[𝜎𝐼] 𝑇𝑛
𝜎𝜓𝑖

)
→[𝐼,𝜎]∘𝑇𝑛𝜙𝑘. (iii)

Now, using Theorem 54, we get:

(𝜒)𝐻F ⊢𝑇𝑛 (
⋀
𝑖<𝑘

([𝐼 ,𝜎]
∘
𝑇𝑛
𝜙𝑖)

𝐻

F
→([𝜎𝐼] 𝑇𝑛

𝜎𝜓𝑖)
𝐻

F)
→([𝐼 ,𝜎]

∘
𝑇𝑛
𝜙𝑘)

𝐻

F
. (iv)

For any 𝑖 ≥ 𝑘 we note that [𝐼 ,𝜎]∘𝑇𝑛𝜙𝑖 is 𝑇-equivalent to a Σ1-formula so

⊢𝑇 ([𝐼 ,𝜎]
∘
𝑇𝑛
𝜙𝑖)

𝐻

F
↔ [𝐼,𝜎]∘𝑇𝑛𝜙𝑖∨𝐻 (by Lemma 51)

↔𝐻. (by definition of 𝐻)

Also ⊢𝑇 (𝜒)𝐻F ↔𝜒∨𝐻. So in fact (iv) gives

𝜒∨𝐻⊢𝑇
(
⋀
𝑖<𝑘

𝐻→([𝜎𝐼 ] 𝑇𝑛
𝜎𝜓𝑖)

𝐻

F)
→𝐻. (v)

Since ⊢𝑇 𝜒→𝜒∨𝐻 and by Lemma 49 ⊢𝑇 𝐻→([𝜎𝐼 ] 𝑇𝑛
𝜎𝜓𝑖)

𝐻

F
. Then (v) gives

𝜒⊢𝑇 𝐻,

in other words
𝜒⊢𝑇 ⋁

𝑖≤𝑘
[𝐼 ,𝜎]∘𝑇𝑛𝜙𝑖.

Then by Lemma 96 𝜒⊢𝑇 ⋁𝑖≤𝑘[𝐼 ,𝜎]𝜙𝑖, i.e 𝜒⊢𝑇 𝜎([𝐼 ]𝜙𝑖), as wanted. �

Lemma 152 (Property 6). For any propositional formulas 𝜙0,𝜙1 and any
propositional variable 𝑝 we have that

𝜙0 ⊳𝑇 𝜙1 implies (𝑝→𝜙0) ⊳𝑇 (𝑝→𝜙1).

Proof. Assume that 𝜙 ⊳𝑇 𝜓 and 𝜒⊢𝑇 𝜎(𝑝)→𝜎𝜙0 (i), where 𝜎 is a Σ1-realization
and 𝜒 is a Σ1-sentence. Let us define 𝜓 ∶= 𝜎(𝑝), note that it is a Σ1-sentence.
By (i) we have that

𝜒∧𝜓⊢𝑇 𝜎𝜙0. (ii)

But since iEA⊆𝑇, using codified pairs we know that 𝜒∧𝜓 is 𝑇-equivalent to a
Σ1-sentence. Then, using that 𝜙0 ⊳𝑇 𝜙1 and (ii) we get

𝜒∧𝜓⊢𝑇 𝜎𝜙1,
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which implies the desired
𝜒⊢𝑇 𝜓→𝜎𝜙1,

in other words
𝜒⊢𝑇 𝜎(𝑝)→𝜎𝜙1.

�

If iEA ⊆𝑈, lemmas 147, 148, 149 are easily provable inside 𝑈. For property
6 we need that 𝑈 is capable of proving that:

⊢𝑈 ∀𝐴,𝐵.Σ1-sent(𝐴)∧Σ1-sent(𝐵)→∃𝐶.Σ1-sent(𝐶)∧prov𝑇(𝐴∧•𝐵 ↔• 𝐶).

But again, if 𝑈 extends iEA, it is capable of showing this. Finally, let us analyze
properties 4 and 5. Notice that we need the lemmas and main theorem of
the De Jongh translation. We have already seen that in order to have those
lemmas having Σ1-induction suffices2. So if the hypothesis of the theorems are
provable in 𝑈 and 𝑈 can perform Σ1-induction we will have the formalizations
of properties 4 and 5 inside 𝑈. So, we have the following lemma:

Lemma 153. Let 𝑈 be a theory extending iIΣ1 such that:

1. ax𝑇 enumerates 𝑇 over 𝑈.

2. ⊢𝑈 ∀𝐴 . ax𝑇(𝐴)↔ ∃𝑥 . ax𝑇𝑥(𝐴).

3. ⊢𝑈 ∀𝑥 .HBprov𝑇,prov𝑇𝑥,
•
𝑇𝑥
.

4. ⊢𝑈 ∀𝑥,𝐴,𝐵 . sent(𝐵)∧ax𝑇𝑥(𝐴)→prov𝑇([𝐵] •
𝑇�̇�
𝐴).

5. ⊢𝑈 ∀𝐴,𝐵 . sent(𝐵)∧ax𝑇(𝐴)→prov𝑇(𝐴)
𝐵
F .

6. ⊢𝑈 ∀𝐴,𝑥 . sent(𝐴)→prov𝑇(
•
𝑇�̇�

𝐴→•𝐴).

Then ⊳𝑈𝑇 is a 𝜎-relation.

4.3 How to get ℬ
We want to see how we can prove ℬ𝑇 , 𝑇,▵, i.e. that for any 𝜙 ∈ NNIL and
Σ1-realization 𝜎:

⊢𝑇 (𝜎𝜙)↔ ▵(𝜎𝜙).

First, we focus in the right to left direction. We will check that under weak
conditions, in particular conditions that were already necessary to apply the
first part of the construction i.e. Theorem 116, are enough.

2In fact, it can be shown that iEA suffices, since the existential variable of the formula where we
perform Σ1-induction is exponentially bounded. We do not assert this because we do not want to
enter in the burden of proving it, and it is not necessary for the theories we work with.
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Lemma 154. Let 𝜙 ∈NI and 𝜎 be a Σ1-realization. Then 𝜎𝜙 is iEA-equivalent
to a Σ1-formula.

Proof. By induction in the formula 𝜙. If it is an atomic propositional formula
the result is trivial. The cases of conjunction and disjunction are easy, using
that the class of Σ1-formulas is closed under conjunction and disjunction up to
iEA-equivalence. �

Lemma 155. Let 𝜙 ∈ NNIL and 𝜎 be a Σ1-realization. Then 𝜎𝜙 is iEA-
equivalent to a 𝒜 formula.

Proof. If 𝜙 is an atomic propositional formula the result is trivial, since Σ1
formulas are iEA-equivalent to 𝒜-formulas. The case where 𝜙 is a conjunction
or a disjunction is trivial. We can just use the induction hypothesis and that
𝒜 is closed under conjunction and disjunction. Finally, for the implication case
we have that 𝜙 = 𝜙0 →𝜙1 where 𝜙0 ∈ NI and 𝜙1 ∈ NNIL. By the induction
hypothesis we get that there is a formula 𝜓1 ∈𝒜 such that

⊢iEA 𝜎𝜙1 ↔𝜓1.

Also, by Lemma 154 there is a 𝜓0 ∈Σ1 such that

⊢iEA 𝜎𝜙0 ↔𝜓0.

But then,
⊢iEA (𝜙0→𝜙1)↔ (𝜓0→𝜓1),

and 𝜓0→𝜓1 ∈𝒜. �

Lemma 156. Let 𝜙 ∈NNIL and 𝜎 be a Σ1-realization. Let 𝑇 be such that:

1. 𝑇 is a theory Δ0-decidable, Σ1-complete and extends iEA. In addition, 𝑇
is self Δ0-arithmetizable or ⊢𝑇 𝐵Σ1 and 𝑇 is self Σ1-arithmetizable.

2. HB𝑇 ,▵.

3. 𝑇 is closed under (_)▵V.

Then
⊢𝑇

▵(𝜎𝜙)→ (𝜎𝜙).

Proof. By Corollary 37, we get HB𝑇 , 𝑇. By Lemma, 155 there is 𝜓 ∈𝒜 such
that ⊢𝑇 𝜎𝜙↔𝜓. Since 𝜓 ∈𝒜, by Lemma 79 we know that ⊢𝑇 (𝜓)▵V→𝜓. Note
that ⊢𝑇 𝜎𝜙 ↔ 𝜓 implies, by Theorem 72 , that ⊢𝑇 (𝜎𝜙↔𝜓)▵V, which implies
⊢𝑇 (𝜎𝜙)▵V↔(𝜓)▵V. Then, we have that

⊢𝑇 (𝜎𝜙)▵V→𝜎𝜙.

Finally, using that HB𝑇 , 𝑇 and that 𝜎𝜙 is a sentence, we can conclude:

⊢𝑇
▵
𝑇(𝜎𝜙)→ 𝑇(𝜎𝜙). �
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To get the left to right direction of ℬ𝑇 , ,▵, we can use Corollary 75 together
with ⊢iEA prov𝑇(𝐴)→prov(𝑇)▵V

(𝐴), which holds by definition of (𝑇)▵V.
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Chapter 5

iIΣ1 adding sentential
reflection

In Chapters 3 and 4 we have provided a method for calculating the Σ1-provability
logic of intuitionistic theories. We have noticed that in both chapter we needed
sentential reflection of the theory for its finite subtheories. This principle is
fulfilled by HA, but it is not fulfilled by finite axiomatizable theories such as
iEA or iIΣ1. For this reason, it is hard to find another theory for which the
method can be applied.
In this chapter, we define such a theory. The theory will be iIΣ1 plus senten-

tial reflection for iIΣ1. This results in a theory, iIΣ+
1 , that proves its sentential

reflection princple for its finite subtheories. We apply the method to obtain its
Σ1-provability logic.

5.1 Definition and basic properties
In this section we define iIΣ+

1 and we prove that some box functions fulfill the
Hilbert-Bernays conditions with respect this theory.

Definition 157. We define the theory

iIΣ+
1 ∶= iIΣ1+Rfn iIΣ1

.

Let us define a (𝛼,𝛽)-arithmetization of this theory as:

𝛼(𝐴) ∶= axiIΣ1(𝐴),
𝛽(𝐴) ∶= ∃𝐵 ≤𝐴 . sent(𝐵)∧𝐴 ≈ •

iIΣ1
𝐵→•𝐵.
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We assume that axiIΣ1(𝐴) is a self Δ0-arithmetization of iIΣ1. We will write

axiIΣ+
1
(𝐴) ∶= 𝛼(𝐴)∨𝛽(𝐴),

ax𝒮iIΣ+
1
(𝐴) ∶= 𝛼(𝐴)∨(𝛽(𝐴)∧𝒮iIΣ+

1
(𝐴)),

axiIΣ+
1 ≤𝑥(𝐴) ∶= 𝛼(𝐴)∨(𝛽(𝐴)∧𝐴 ≤ 𝑥). �

Lemma 158. axiIΣ+
1
(𝐴) enumerates iIΣ+

1 in iIΣ1.

Proof. This is straightforward by definition of axiIΣ+
1
(𝐴). �

Corollary 159. Let 𝑇 be a Δ0-complete and consistent extension of iEA. Then
axiIΣ+

1
(𝐴) enumerates iIΣ+

1 in 𝑇. This implies that HB𝑇 ,iIΣ+
1 , iIΣ+1

.

Proof. Just use lemmas 158 and 39. The Hilbert-Bernays property can be
shown using Corollary 37. �

Lemma 160. We have that

1. ⊢iIΣ1 HBproviIΣ+1
, •

𝒮iIΣ+1
.

2. ⊢iIΣ1 HBproviIΣ1,
•
𝒮iIΣ+1

.

Proof. Proof of (1). We want to apply Theorem 126. We have that iEA⊆ iIΣ1,
thanks to Corollary 158 we get HBiEA, iIΣ+1

. All left to show is

⊢iIΣ1 ∀𝐴 . Σ1-form(𝐴)→∃𝑥 . proviIΣ+
1
(𝐴→• •

iIΣ+
1 ≤�̇�𝐴). (i)

But since ⊢iIΣ1 HBproviIΣ1,
•
iIΣ1
we have that

⊢iIΣ1 ∀𝐴 . Σ1-form(𝐴)→proviIΣ1
(𝐴→• •

iIΣ1
𝐴). (ii)

But ⊢iIΣ1 ∀𝐴 . proviIΣ1
(𝐴)→proviIΣ+

1 ≤0(𝐴), so by HBiIΣ1, iIΣ1
we get

⊢iIΣ1 ∀𝐴 . proviIΣ1
( •
iIΣ1

𝐴→• •
iIΣ+

1 ≤0̇
𝐴) (iii)

But (ii) and (iii) gives (i).
Proof of (2). We want to apply Lemma 125. Note that iEA ⊆ iIΣ1, axiIΣ1

enumerates iIΣ1 in iIΣ1, HBiIΣ1, iIΣ1
and ⊢iIΣ1 HBproviIΣ1,

•
iIΣ1
. So all the properties

are fulfilled. �
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Lemma 161. We have that

⊢iIΣ1 ∀𝑥 .HBproviIΣ1,proviIΣ+1 ≤𝑥,
•
iIΣ+1 ≤𝑥

.

Proof. Necessitation. We have to show that

⊢iIΣ1 ∀𝐴 . proviIΣ+
1 ≤𝑥(𝐴)→proviIΣ1

( •
iIΣ+

1 ≤�̇�𝐴).

This is provable by induction in the formula

⊢iIΣ1 ∀𝑝∀𝐴 ≤ 𝑝 . proofiIΣ+
1 ≤𝑥(𝑝,𝐴)→∃𝑞 . proofiIΣ1

(𝑞,prov•iIΣ+
1 ≤�̇�(�̇�)),

using that
⊢iIΣ1 ∀𝑥,𝐴 . axiIΣ+

1 ≤𝑥(𝐴)→proviIΣ1
(ax•iIΣ+

1 ≤�̇�(�̇�)),

by HBiIΣ1, iIΣ1
.Compl.

Modus ponens. We have to show that

⊢iIΣ1 ∀𝐴,𝐵 . proviIΣ1
( •
iIΣ+

1 ≤�̇�(𝐴→•𝐵)→• •
iIΣ+

1 ≤�̇�𝐴→• •
iIΣ+

1 ≤�̇�𝐵).

This is easily provable just by definition of •
iIΣ+

1 ≤�̇�.
Completeness. We have to show that

⊢iIΣ1 ∀𝐴 . proviIΣ1
(𝐴→• •

iIΣ+
1 ≤�̇�𝐴). (i)

Note that ⊢iIΣ1 ∀𝐴 . proviIΣ1
(𝐴→• •

iIΣ1
𝐴) since ⊢iIΣ1 HBproviIΣ1,

•
iIΣ1
. Also, by

definition, is easy to show that ⊢iIΣ1 proviIΣ1
( •
iIΣ1

𝐴→• •
iIΣ+

1 ≤�̇�𝐴). These gives
the desired (i). �

5.2 Closure under translations
We prove the closure of iIΣ+

1 under the translations defined in Chapter 2.

5.2.1 Closure under Visser translation

Lemma 162. iIΣ1 is closed under (_)
𝒮iIΣ+1
V . This is verifiable in iIΣ1.

Proof. Thanks to Lemma 160 we have that ⊢iIΣ1 HBproviIΣ1,
•
𝒮iIΣ+1

. Since iIΣ1 is

sound we also get HBiIΣ1, 𝒮iIΣ+1
. Note that all the axioms distinct from induction

are of shape ∀𝑥0,…,𝑥𝑛 . 𝜙 where 𝜙 is Δ0. Proving that the translation of this
axioms is provable is easy using HBiIΣ1, 𝒮iIΣ+1

with lemmas 61 and 66.
The translation of the induction axioms is also easy using HBiIΣ1, 𝒮iIΣ+1

and
lemmas 63 and 67. Note that for this we use that the induction axiom is only
of Σ1-formulas. �
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Corollary 163. For any sentence 𝜙, ⊢iIΣ1 iIΣ1𝜙→ iIΣ1
(𝜙) 𝒮iIΣ+1

V . This is veri-
fiable in iIΣ1.

Proof. By Lemma 162 we have that

⊢iIΣ1 ∀𝐴 . axiIΣ1(𝐴)→proviIΣ1
(𝐴)

•
𝒮iIΣ+1

V . (i)

We also have by Lemma 160

⊢iIΣ1 HBproviIΣ1,
•
𝒮iIΣ+1

. (ii)

Then by Corollary 75 with (i) and (ii) we get

⊢iIΣ1 ∀𝐴 . prov
(iIΣ1)

𝒮iIΣ+1
V

(𝐴)↔ proviIΣ1
(𝐴)

•
𝒮iIΣ+1

V .

Since ⊢iIΣ1 proviIΣ1
(𝐴)→prov

(iIΣ1)
𝒮iIΣ+1
V

(𝐴) by definition, we get

⊢iIΣ1 ∀𝐴 . proviIΣ1
(𝐴)→proviIΣ1

(𝐴)
•
𝒮iIΣ+1

V , (i)

so if 𝜙 is a sentence, instantiating 𝐴 with 𝜙 we get

⊢iIΣ1 iIΣ1𝜙→ iIΣ1
(𝜙) 𝒮iIΣ+1

V .

From (i), using HBiIΣ1, iIΣ1
and Lemma 28, we get the verifiability in iIΣ1.

�

Theorem 164. iIΣ+
1 is closed under (_)

𝒮iIΣ+1
V . This is verifiable in iIΣ1.

Proof. Thanks to iIΣ1 ⊆ iIΣ+
1 and Lemma 162 we only need to worry about the

axioms of iIΣ+
1 that are not axioms of iIΣ1. In particular, let 𝜙 be a sentence

we have to show that the translation of iIΣ1𝜙→𝜙 is iIΣ+
1 -provable.

Now, by Lemma 160 and since iIΣ1 is sound we have that HBiIΣ+
1 , 𝒮iIΣ+1

.

Using this we get that it suffices to show:

⊢iIΣ+
1 ( iIΣ1𝜙)

𝒮iIΣ+1

V
→(𝜙) 𝒮iIΣ+1

V .

But using Lemma 67 since iIΣ1𝜙 is a Σ1 formula, we note that it suffices to
show

⊢iIΣ+
1 iIΣ1𝜙→(𝜙) 𝒮iIΣ+1

V .
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But we have

⊢iIΣ+
1 iIΣ1𝜙→ iIΣ1

(𝜙) 𝒮iIΣ+1
V (by Corollary 163)

→(𝜙) 𝒮iIΣ+1
V . (by axiom of iIΣ+

1 )

The reasoning is clearly verifiable in iIΣ1 and all the results used are verifiable
in iIΣ1. Some of them are originally verifiable in iIΣ1 and used in the proof using
sound, in the formalized proof we will use them without applying soundness.

�

5.2.2 Closure under Friedman translation
Lemma 165. Let 𝜓 be a sentence. Then iIΣ1 is closed under (_)

𝜓
F. This is

verifiable in iIΣ1.

Proof. This is simple using Lemma 51 and that iIΣ1 is Δ0-decidable, both
things are iIΣ1-verifiable. �

Corollary 166. Let 𝜙,𝜓 be sentence. Then

⊢iIΣ1 iIΣ1𝜙→ iIΣ1
(𝜙)𝜓F.

This is verifiable in iIΣ1.

Proof. Thanks to Lemma 165 we can apply Corollary 57 to obtain that

⊢iIΣ1 ∀𝐴,𝐵 . sent(𝐵)∧proviIΣ1
(𝐴)→proviIΣ1

(𝐴)𝐵F . (i)

Then, the desired results comes from instantiating 𝐴 with 𝜙 and 𝐵 with 𝜓.
Verifiabilty in iIΣ1 comes from (i) with HBiIΣ1, iIΣ1

and Lemma 28. �

Theorem 167. Let 𝜓 be a sentence. iIΣ+
1 is closed under (_)

𝜓
F. This is verifiable

in iIΣ1.

Proof. Since iIΣ1 is closed under (_)
𝜓
F we only need to worry about the axioms

of iIΣ+
1 that are not axioms of iIΣ1. Let 𝜙 be a sentence, note that the translation

of iIΣ1𝜙→𝜙 is ( iIΣ1𝜙)
𝜓

F
→(𝜙)𝜓F. But iIΣ1𝜙 is Σ1, so by Lemma 51 this formula

is iIΣ1-equivalent to
iIΣ1𝜙∨𝜓→(𝜙)𝜓F. (i)

By Lemma 49 we have that ⊢iIΣ1 𝜓→(𝜙)𝜓F. Then, to show (i) it suffices that we
show

⊢iIΣ+
1 iIΣ1𝜙→(𝜙)𝜓F.
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And we have the following reasoning proving this

⊢iIΣ+
1 iIΣ1𝜙→ iIΣ1

(𝜙)𝜓F (by Corollary 166)

→(𝜙)𝜓F. (axiom of iIΣ+
1 )

�

5.2.3 Closure under De Jongh translation
Lemma 168. Let 𝜓 be a sentence and 𝑛 ∈ℕ. iIΣ1 is closed under [𝜓] iIΣ+1 ≤𝑛

(_).
This is verifiable in iIΣ1.

Proof. By Lemma 161 and soundness of iIΣ1, we have that HBiIΣ1,iIΣ1≤𝑛, iIΣ1≤𝑛
.

Then, for non-induction axioms, since these are the universal closure of Δ0-
formulas, we just need to use Lemmas 83 and 86. For the induction axioms we
just need to use Lemmas 84 and 87.
For the verifiability in iIΣ1, just use Lemma 161 without applying soundness

and the sames lemmas about the De Jong’s translation, since they are verifiable
in iIΣ1. �

Corollary 169. Let 𝜙,𝜓 be sentences and 𝑛 ∈ℕ. Then

⊢iIΣ1 iIΣ1𝜙→ iIΣ1(
[𝜓]

iIΣ+1 ≤𝑛
𝜙
)
.

This is verifiable in iIΣ1.

Proof. Using Lemmas 161 and 168 to get the hypothesis of Corollary 92, we
get that

⊢iIΣ1 ∀𝐴,𝐵,𝑥 . sent(𝐵)∧proviIΣ+
1 ≤𝑥(𝐴)→proviIΣ1

([𝐵] •
iIΣ+1 ≤�̇�

𝐴). (i)

If 𝜙,𝜓 are sentences and 𝑛 ∈ℕ, instantiation 𝐴 with 𝜙, 𝐵 with 𝜓 and 𝑥 with 𝑛
we get

⊢iIΣ1 iIΣ+
1 ≤𝑛𝜙→ iIΣ1([𝜓] iIΣ+1 ≤𝑛

𝜙),

as desired.
From (i), using HBiIΣ1, iIΣ1

and Lemma 28, we get the verifiability in iIΣ1.
�

Theorem 170. Let 𝑛 ∈ℕ and 𝜙,𝜓 be sentences such that 𝜙 ∈AxiIΣ+
1 ≤𝑛. Then

⊢iIΣ+
1
[𝜓]

iIΣ+1 ≤𝑛
𝜙. This is verifiable in iIΣ1.
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Proof. Thanks to Lemma 168, we know that we only need to worry about the
axioms of shape iIΣ1𝜒→𝜒, where 𝜒 is a sentence. We need to show two things:

⊢iIΣ+
1
[𝜓]

iIΣ+1 ≤𝑛
( iIΣ1𝜒)→[𝜓]

iIΣ+1 ≤𝑛
𝜒, (i)

and
⊢iIΣ+

1 iIΣ+
1 ≤𝑛(𝜓→ iIΣ1𝜒→𝜒). (ii)

(ii) is trivial thanks to HBiIΣ1,iIΣ+
1 ≤𝑛, iIΣ+1 ≤𝑛

and to iIΣ1𝜒→𝜒 being an axiom

of iIΣ+
1 ≤ 𝑛. To show (i) we just need to use Corollary 169 and Lemma 87,

in a similar way we did in the proof of this theorem for Visser’s translation
(Theorem 164).
This proof can be carried in iIΣ1 straightforwardly, since one the results we

are iIΣ1 verifiable. �

5.3 Σ1-provability logic
Finally, using the results of the previous sections, we are able to calculate the
Σ1-provability logic of iIΣ+

1 .
The following lemma just expresses that iIΣ+

1
+ proves the sentential reflec-

tion principles for iIΣ+
1 for the subtheories iIΣ+

1 ≤ 𝑛. Note that this theories
have all the axioms of iIΣ1 but just a finite amount of the axioms of shape
iIΣ1𝜓→𝜓.

Lemma 171 (Reflection).

⊢iIΣ+
1
∀𝐴,𝑥 . sent(𝐴)→proviIΣ+

1
( •
iIΣ+

1 ≤�̇�𝐴→•𝐴).

Proof. We show the unformalized version of this. From the proof it will become
clear that it can be shown inside iIΣ1, so also in iIΣ+

1 . So let us have a sentence
𝜙 and a number 𝑛. We have that

⊢iIΣ+
1 iIΣ+

1 ≤𝑛𝜙→ iIΣ1
⎛
⎝

⋀
𝜓∈{𝜒∈Sent ∣ ( iIΣ1𝜒→𝜒)≤𝑛}

( iIΣ1𝜓→𝜓)→𝜙⎞
⎠

→ ⋀
𝜓∈{𝜒∈Sent ∣ ( iIΣ1𝜒→𝜒)≤𝑛}

( iIΣ1𝜓→𝜓)→𝜙 (axiom of iIΣ+
1 )

→𝜙 (axiom of iIΣ+
1 )

Let us explain why the first implication holds. We work inside iIΣ+
1 , assume 𝑝

is a witness of iIΣ+
1 ≤𝑛𝜙. Then, the same 𝑝 is a witness of

deriIΣ1({ iIΣ1𝜓→𝜓 ∣ 𝜓 ∈ {𝜒 ∈ Sent ∣ ( iIΣ1𝜒→𝜒)≤𝑛}}
•
,𝜙

)
.
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Using some propositional reasoning we obtain a witness 𝑞 of

deriIΣ1
⎛
⎝

⋀
𝜓∈{𝜒∈Sent ∣ ( iIΣ1𝜒→𝜒)≤𝑛}

iIΣ1𝜓→𝜓,𝜙⎞
⎠
.

Then, we can obtain a proof of the desired formula using the formalized deduc-
tion theorem. �

Lemma 172 (Absorption). Let 𝜙 be a sentence, then

⊢iIΣ+
1 iIΣ+

1 𝒮iIΣ+
1
𝜙→ iIΣ+

1
𝜙.

Proof. Let 𝜙 be a sentence. We want to apply Theorem 124. We have that
HBiEA, iIΣ+1

thanks to Corollary 159. So all we need to show is

⊢iIΣ+
1
∀𝑥 . iIΣ+

1 iIΣ+
1 ≤𝑥𝜙→ iIΣ+

1
𝜙.

But this is a consequence of Lemma 171. �

Lemma 173. iIΣ+
1 is sound.

Proof. iIΣ1 is sound, so we only need to show that for any sentence 𝜙,
⊨ℕ iIΣ1𝜙→𝜙. Assume that ⊨ℕ iIΣ1𝜙, thanks to Lemma 42 we get that ⊢iIΣ1 𝜙.
Since iIΣ1 is sound we conclude ⊨ℕ 𝜙, as desired. �

Theorem 174. We have that:

Σ1-ℙ𝕃((
iIΣ+

1 ) 𝒮iIΣ+1
V

, 𝒮iIΣ+1
iIΣ+

1 )
=ℙ𝕃

((
iIΣ+

1 ) 𝒮iIΣ+1
V

, 𝒮iIΣ+1
iIΣ+

1 )
= iGLC.

Proof. We want to apply Theorem 116. Note that iIΣ+
1 is Σ1-complete, Δ0-

decidable and extends iEA. Also, it is sound by Lemma 173 and it is self
Δ0-arithmetizable by Corollary 159.
By Lemma 160 and thanks to soundness of iIΣ1 we get that HBiIΣ+

1 , 𝒮iIΣ+1
.

We also have absortion, i.e. AbsiIΣ+
1 , iIΣ+1

, 𝒮iIΣ+1
, by Lemma 172. By Lemma 32

we also get that for any sentence 𝜙, ⊢iIΣ+
1 𝒮iIΣ+

1
𝜙→ iIΣ+

1
𝜙. Finally, by Lemma

164, iIΣ+
1 is closed under (_)

𝒮iIΣ+1
V . �

Lemma 175. We have that 𝒜iIΣ+
1 , iIΣ+1

.

Proof. Right to left direction is trivial by HBiIΣ+
1 , iIΣ+1

and Lemma 142.

For left to right direction our objective is to apply Lemma 153. The arith-
metization condition is clear by Lemma 158. It is also clear that ⊢iIΣ1 ∀𝐴 .
axiIΣ+

1
(𝐴)↔ ∃𝑥 . axiIΣ+

1 ≤𝑥(𝐴). By Lemma 161 we get ⊢iIΣ1 ∀𝑥 .HBproviIΣ+1
,proviIΣ+1 ≤𝑥,

•
iIΣ+1 ≤𝑥

.

Conditions related to closure under translations are fulfilled by lemmas 167
and 170. Finally, formalized reflection is thanks to Lemma 171. �
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Lemma 176. We have that ℬiIΣ+
1 , iIΣ+1

, 𝒮iIΣ+1
.

Proof. We show the two directions of ℬiIΣ+
1 , iIΣ+1

, 𝒮iIΣ+1
. Left to right is proven

just using that iIΣ1 proves that iIΣ+
1 is closed under Visser translation and

Lemma 160 with Corollary 75
For the right to left direction we just apply Lemma 156. �

Theorem 177.
Σ1-ℙ𝕃(iIΣ+

1 ) = {𝜙 ∈ℒ𝑚 ∣ 𝜙+ ∈ iGLC}.

Proof. Our objective is to apply Theorem 141. Note that iIΣ+
1 is Σ1-complete,

Δ0-decidable and, by Lemma 173, it is also sound. In addition, by Lemma 159
it is self Δ0-arithmetizable.
By Lemma 160 and soundness of iIΣ1 we get HBiIΣ+

1 , 𝒮iIΣ+1
. By Lemma 175

we get 𝒜iIΣ+
1 , iIΣ+1

and by Lemma 176 we get ℬiIΣ+
1 , iIΣ+1

, 𝒮iIΣ+1
. By Theorem 164,

we also have that iIΣ+
1 is closed under (_)

𝒮iIΣ+1
V .

With this we get that

Σ1-ℙ𝕃(iIΣ+
1 ) ={

𝜙 ∈ℒ𝑚 ∣ 𝜙+ ∈Σ1-ℙ𝕃((
iIΣ+

1 ) 𝒮iIΣ+1
V

, 𝒮iIΣ+1
iIΣ+

1 )}
.

But by Theorem 174 we get the desired result. �
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Chapter 6

Conclusions and future
work

Conclusions

This work initiates the study of provability logic of subtheories of Heyting Arith-
metic, after the advances made by Mojtahedi in [6], where he calculated the
provability logic of Heyting Arithmetic. Due to restriction of time, we have
mainly studied Σ1-provability logic instead of full provability logic. We hope
this work helps to solve in the future if the provability logic of subtheories of
Heyting Arithmetic is as uniform as in the classical case.
In Chapter 2, we have defined some well known translations in Intuitionistic

Arithmetic with some of its fundamental properties. This translations provides
the basic conditions for the rest of the method.
In Chapter 3, we have lifted some conditions of the intuitionistic Solovay’s

construction from [13] to a more general setting. In particular, we have weak-
ened the minimum theory from iIΣ1 to iEA (as it was already known that this
change was possible) and we have rewritten the assumptions of some lemmas
and theorems to use the Hilbert-Bernays conditions, since these offer a little of
more generality. We have also used the construction of [12] to construct pred-
icates with absorption (as it was suggested by Pakhomov in page 733, Remark
42 of [13]). Finally, we have used all of this to construct a logic, (iPRA) 𝒮iPRA

V ,
whose (Σ1-)provability logic is iGLC.
In Chapter 4, we have analyzed which properties of the NNIL algorithm al-

lows us to calculate the Σ1-provability logic of a theory 𝑇 from the Σ1-provability
logic of (𝑇) 𝒮𝑇

V .
Finally, in Chapter 5, we have constructed a theory for which the whole

method is applicable, both the intuitionistic Solovay’s construction and the
NNIL algorithm part. For this, we have added a principle that during the
writing of Chapter 3 and Chapter 4 we found in essential parts of the proofs:
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sentential reflection. With this, we have provided a theory whose Σ1-provability
logic is the same as the Σ1-provability logic of HA.

Future work

Our initial aim was to calculate the Σ1-provability logic of more mainstream
arithmetical theories, such as iEA or iIΣ1. However, during our research we
have found that the actual method is really hard to apply to these theories.
The main problem is that both theories are finitely axiomatizable, and as we
found sentential reflection for the finite subtheories seems to be essential in
both parts of the methods. However, finite axiomatizable theories cannot show
this principle, due to Gödel’s second incompleteness theorem. Then, the biggest
open question is to study a way of calculating the Σ1-provability logic of finitely
axiomatized subtheories of HA. After this study, it is unknown to us if they will
have the same Σ1-provability logic as HA or if the finite axiomatizability will
change the Σ1-provability logic in the intuitionistic setting.
A more amenable open question which is the calculation of the Σ1-provability

logic if iPRA. We have just applied the first half of the method, obtaining
the Σ1-provability of (iPRA) 𝒮iPRA

V . This was possible since for this part of
the method only Σ1-reflection is needed. For now, the NNIL part needs full
sentential reflection. We believe that the NNIL part of the method can be
improved and that then it will be applicable to iPRA, obtaining that it has the
same Σ1-provability logic as HA.
Finally, an easy endevour that was not done here due to lack of time is to

generalize the construction of Chapter 5. In that chapter we add sentential re-
flection as axioms to iIΣ1. This was in order to create a theory distinct from HA
for which the method of intuitionistic Solovay’s construction + NNIL algorithm
can be applied. It seems that the choice of iIΣ1 is largely non-fundamental and
it was done just for matters of time and concreteness. Rewritting the section to
generalize iIΣ1 to an arbitrary theory 𝑇 and see what conditons are needed to
apply the result of Chapter 5 can put some light over the method. Also, harder
tasks, are to study if it is possible to obtain some information about the Σ1-
provability logic of 𝑇 from the Σ1-provability logic of 𝑇 +Rfn

𝑇
and to study if

the method of intuitionistic Solovay + NNIL is applicable to 𝑇 +⋃𝑛∈𝜔Rfn 𝑇≤𝑛
,

which is a weaker theory than 𝑇 +Rfn
𝑇
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Appendix A

Proofs about translations

A.1 Gödel’s and Friedman’s Translations
Lemma 45. Let 𝑇 be a Δ0-decidable theory. Then for any 𝜙 ∈ Δ0 we have
that

⊢𝑇 (𝜙)G↔𝜙.

Proof. This is a simple induction in the shape of 𝜙. �

Theorem 46. Let 𝑇 be a theory closed under (_)G and let 𝜙 ∈ℒ1. Then,

⊢FOL,𝑇 𝜙 implies ⊢𝑖FOL,𝑇 (𝜙)G.

This is iIΣ1 verifiable.

Proof. This is proved by a simple induction in the proof witnessing ⊢FOL,𝑇 𝜙.
�

Lemma 49. Let 𝜙,𝜓 be formulas such that no free variable of 𝜓 occurs bounded
in 𝜙. Then:

⊢𝜓→(𝜙)𝜓F.

Proof. By induction in 𝜙. If 𝜙 is atomic, a conjunction, or a disjunction the
result is trivial.
Case 𝜙 = 𝜙0→𝜙1. By the induction hypothesis, we have that ⊢ 𝜓→(𝜙1)

𝜓
F.

From this, ⊢𝜓→(𝜙0)
𝜓
F →(𝜙1)

𝜓
F, i.e. ⊢𝜓→(𝜙0→𝜙1)

𝜓
F as wanted.

Case 𝜙 = ∀𝑥 . 𝜙0. By assumption, we have that 𝑥 ∉ fv(𝜓). By the induction
hypothesis, we have ⊢ 𝜓→(𝜙0)

𝜓
F. Since 𝑥 ∉ fv(𝜓) from this we can conclude

that ⊢𝜓→∀𝑥 . (𝜙0)
𝜓
F, i.e. ⊢𝜓→(∀𝑥 . 𝜙0)

𝜓
F as wanted.

Case 𝜙 = ∃𝑥 . 𝜙0. By the induction hypothesis, we have that ⊢ 𝜓→(𝜙0)
𝜓
F.

By iFOL reasoning, ⊢ (𝜙0)
𝜓
F →∃𝑥 . (𝜙0)

𝜓
F. Putting these two facts together we

get that ⊢𝜓→∃𝑥 . (𝜙0)
𝜓
F, in other words, ⊢𝜓→(∃𝑥 . 𝜙0)

𝜓
F, as wanted. �
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Lemma 50. Let 𝑇 be a Δ0-decidable theory. Then for any Δ0-formula 𝜙 and
any 𝜓, such that the free variables of 𝜓 are not bounded in 𝜙, we have

⊢𝑇 (𝜙)𝜓F↔𝜙∨𝜓.

Proof. We proceed by induction on the shape of Δ0 formulas. The case where
𝜙 is atomic is trivial.
Case 𝜙 =𝜙0∨𝜙1. By the induction hypothesis, we have that

⊢𝑇 (𝜙𝑖)
𝜓
F ↔𝜙𝑖∨𝜓.

So we have

⊢𝑇 (𝜙0∨𝜙1)
𝜓
F = (𝜙0)

𝜓
F∨(𝜙1)

𝜓
F

↔(𝜙0∨𝜓)∨(𝜙1∨𝜓) (by I.H.)
↔(𝜙0∨𝜙1)∨𝜓.

Case 𝜙 =𝜙0∧𝜙1. By induction hypothesis, we have that

⊢𝑇 (𝜙𝑖)
𝜓
F↔𝜙𝑖∨𝜓.

So we have

⊢𝑇 (𝜙0∧𝜙1)
𝜓
F = (𝜙0)

𝜓
F∧(𝜙1)

𝜓
F

↔(𝜙0∨𝜓)∧(𝜙1∨𝜓) (by I.H.)
↔(𝜙0∧𝜙1)∨𝜓.

Case 𝜙 = 𝜙0→𝜙1. Before proving this case we need a little lemma. If 𝜙,𝜒
are Δ0-formulas and 𝜓 is any formula, then

⊢𝑇 (𝜙∨𝜓→𝜒∨𝜓)↔ ((𝜙→𝜒)∨𝜓). (i)

The implication from right to left is easy, so we will only prove the other. Note
that:

𝜒⊢𝑇 𝜙→𝜒,
¬𝜙 ⊢𝑇 𝜙→𝜒,
𝜙∨𝜓→𝜒∨𝜓,𝜙,¬𝜒 ⊢𝑇 𝜓.

From these we can conclude that:

𝜙∨𝜓→𝜒∨𝜓,𝜙∨¬𝜙,𝜒 ∨¬𝜒⊢𝑇 (𝜙→𝜒)∨𝜓.

But using that 𝜙,𝜒 are Δ0, so ⊢𝑇 𝜙∨¬𝜙 and ⊢𝑇 𝜒∨¬𝜒, we can conclude that:

𝜙∨𝜓→𝜒∨𝜓⊢𝑇 (𝜙→𝜒)∨𝜓.
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Now, we can show the implication case as follows. By the induction hypoth-
esis, we have that

⊢𝑇 (𝜙𝑖)
𝜓
F↔𝜙𝑖∨𝜓.

So

⊢𝑇 (𝜙0→𝜙1)
𝜓
F = (𝜙0)

𝜓
F→(𝜙1)

𝜓
F

↔𝜙0∨𝜓→𝜙1∨𝜓 (by I.H.)
↔(𝜙0→𝜙1)∨𝜓. (by (i))

Case 𝜙 = ∀𝑥 ≤ 𝜏 . 𝜙0. We assume that 𝑥 ∉ fv(𝜓) and by induction hypothesis
we have that

⊢𝑇 (𝜙0)
𝜓
F↔𝜙𝑖∨𝜓.

We will use the lemma (i) proven in the previous case. Also we need the following
lemma: let 𝜙 be aΔ0-formula, 𝜓 be a formula and 𝜏 a term such that 𝑥 ∉ fv(𝜓,𝜏),
we have that

⊢𝑇 (∀𝑥 . (𝑥 ≤ 𝜏→𝜙)∨𝜓)↔ (∀𝑥 ≤ 𝜏 . 𝜙)∨𝜓. (ii)

Right to left is trivial. For left to right note that ∀𝑥 ≤ 𝜏 . 𝜙 is a Δ0-formula so we
know that ⊢𝑇 (∀𝑥 ≤ 𝜏 . 𝜙)∨¬(∀𝑥 ≤ 𝜏 . 𝜙). Also, ⊢𝑇 ¬(∀𝑥 ≤ 𝜏 . 𝜙)→∃𝑥 ≤ 𝜏 . ¬𝜙
which holds because we can do cases in ∃𝑥 ≤ 𝜏 . ¬𝜙 (since it is a Δ0-formula)
and since in intuitionistic logic we have that ⊢ ¬(∃𝑥 . 𝜒)→(∀𝑥 . ¬𝜒) (and also
since ⊢𝑇 𝜙∨¬𝜙 we have that ⊢𝑇 ¬¬𝜙→𝜙). Now, if assume ∀𝑥 ≤ 𝜏 . 𝜙 the left to
right is trivial, otherwise we can assume the negation which implies ∃𝑥 ≤ 𝜏 . ¬𝜙,
but note that:

𝑥 ≤ 𝜏∧¬𝜙,∀𝑥 . (𝑥 ≤ 𝜏→𝜙)∨𝜓⊢𝑇 𝜓.

But since 𝑥 ∉ fv(𝜓) we have that

∃𝑥 ≤ 𝜏 . ¬𝜙,∀𝑥 . (𝑥 ≤ 𝜏→𝜙)∨𝜓⊢𝑇 𝜓.

With the lemmas (i) and (ii) we are finally able to prove this case:

⊢𝑇 (∀𝑥 ≤ 𝜏 . 𝜙0)
𝜓
F = (∀𝑥 . (𝑥 ≤ 𝜏)𝜓F→(𝜙)𝜓F)

= (∀𝑥 . 𝑥 ≤ 𝜏∨𝜓→(𝜙)𝜓F)
↔ (∀𝑥 . 𝑥 ≤ 𝜏∨𝜓→𝜙∨𝜓) (by I.H.)
↔(∀𝑥 . (𝑥 ≤ 𝜏→𝜙)∨𝜓) (by (i))
↔((∀𝑥 ≤ 𝜏 . 𝜙)∨𝜓). (by (ii))

Case 𝜙 = ∃𝑥 ≤ 𝜏 . 𝜙0. By the induction hypothesis, we have that:

⊢𝑇 (𝜙0)
𝜓
F↔𝜙0∨𝜓.
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Then:

⊢𝑇 (∃𝑥 ≤ 𝜏 . 𝜙0)
𝜓
F = (∃𝑥 . (𝑥 ≤ 𝜏∨𝜓)∧(𝜙0)

𝜓
F)

↔ (∃𝑥 . (𝑥 ≤ 𝜏∨𝜓)∧(𝜙0∨𝜓)) (by I.H.)
↔(∃𝑥 . (𝑥 ≤ 𝜏∧𝜙0)∨𝜓)
↔ ((∃𝑥 ≤ 𝜏 . 𝜙0)∨𝜓).

Where in the last equivalence we used that 𝑥 is not free in 𝜓. �

Lemma 51. Let 𝑇 be a Δ0-decidable theory. Then, for any Σ1-formula 𝜙 and
any 𝜓, such that no free variable of 𝜓 appears bounded in 𝜙, we have that:

⊢𝑇 (𝜙)𝜓F↔𝜙∨𝜓.

Proof. Let 𝜙 be a Σ1-formula. Then it is of shape ∃𝑥 . 𝜙0 where 𝜙0 is a Δ0-
formula. We have that:

⊢𝑇 (∃𝑥 . 𝜙0)
𝜓
F = (∃𝑥 . (𝜙0)

𝜓
F)

↔ ∃𝑥 . 𝜙0∨𝜓 (by lemma 50)
↔(∃𝑥 . 𝜙0)∨𝜓. (since 𝑥 ∉ fv(𝜓))

�

Lemma 52. For any formulas 𝜙,𝜓, such that no free variable of 𝜓 appears
bounded in 𝜙:

1. fv((𝜙)𝜓F) = fv(𝜙)∪ fv(𝜓).

2. If 𝑥 is free for 𝜏 in 𝜙,𝜓 then 𝑥 is free for 𝜏 in (𝜙)𝜓F.

Proof. By induction in 𝜙 both statements are easy to show. �

Lemma 53. Let 𝜙,𝜓 be formulas, 𝜏 a term and 𝑥 a variable. Assume that no
free variable of 𝜓 occurs bounded in 𝜙 and 𝑥 ∉ fv(𝜓). Then

(𝜙[𝑥/𝜏])𝜓F = (𝜙)𝜓F[𝑥/𝜏].

Proof. By induction in 𝜙. �
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Theorem 54. Let 𝜙,𝜓 be formulas. Assume that we have a proof 𝜋 of ⊢ 𝜙 such
that no free variables of 𝜓 appears bounded in the formulas of 𝜋 and that 𝑇 is
closed under (_)𝜓F . Then

⊢𝑇 (𝜙)𝜓F.

Proof. We do induction in the proof of ⊢ 𝜙. We need to check that for logical
axioms 𝜙 we have that ⊢ 𝜙𝜓. We consider each logical axiom subsequently.
Assume we have the logical axiom ⊥→𝜙, after the translation it is ⊥∨𝜓→

(𝜙)𝜓F. Thanks to lemma 49 we have that ⊢ 𝜓→(𝜙)𝜓F, so we find the desired
formula.
The other propositional axioms are easy since they are axiom schemas, and

after the translation we obtain another formula of the axiom schema.
Assume we have the logical axiom (∀𝑥.𝜙)→𝜙[𝑥/𝜏] where 𝜏 is free for 𝑥

in 𝜙. After the translation, we have the formula (∀𝑥.(𝜙)𝜓F)→ (𝜙[𝑥/𝜏])𝜓F. By
assumption we have that 𝑥 ∉ fv(𝜓) so we can apply lemma 53 and then it is
enough to show that:

⊢ (∀𝑥.(𝜙)𝜓F)→(𝜙)𝜓F[𝑥/𝜏],

but this is just an instance of the same logical axiom.
Assume we have the logical axiom (∀𝑥.𝜙0→𝜙1)→𝜙0→(∀𝑦.𝜙1[𝑥/𝑦]) where

𝑥 ∉ fv(𝜙0) and (𝑦 = 𝑥 or 𝑦 ∉ fv(𝜙1)). After the translation we have that formula:

(∀𝑥.(𝜙0)
𝜓
F→(𝜙1)

𝜓
F)→(𝜙0)

𝜓
F→(∀𝑦.(𝜙1)

𝜓
F[𝑥/𝑦]),

where we used that 𝑥 ∉ fv(𝜓) with lemma 53. Since we assume that in the
proof no bounded variable appears in 𝜓, we have that 𝑥,𝑦 ∉ fv(𝜓). Then,
𝑥 ∉ fv(𝜙0) ∪ fv(𝜓) = fv((𝜙0)

𝜓
F) by Lemma 52. Now, we have that either 𝑦 = 𝑥

or 𝑦 ∉ fv(𝜙1), so again by Lemma 52 𝑦 ∉ fv((𝜙1)
𝜓
F). In any case, after the

translation the formula is just another instance of the same logical axiom.
The existential axioms have a similar proof to the universal axioms.
Finally, let us treat about the equality axioms. However, note that (∀𝑥.𝑥 ≈ 𝑥)𝜓F =

(∀𝑥.𝑥 ≈ 𝑥∨𝜓) is easily provable. Let us show an example of the functional equal-
ity axiom and other of the relational equality axiom. Let 𝑓(𝑥,𝑦) be a binary
function symbol, we have the axiom

∀𝑥,𝑦,𝑧.𝑦 ≈ 𝑧→𝑓(𝑥,𝑦) ≈ 𝑓(𝑥,𝑧).

After the translation we get:

∀𝑥,𝑦,𝑧.𝑦 ≈ 𝑧∨𝜓→𝑓(𝑥,𝑦) ≈ 𝑓(𝑥,𝑧)∨𝜓,

but this is clearly provable by doing cases in the disjunction of the antecedent
of the implication. Let 𝑅(𝑥,𝑦) be a binary relation symbol and assume we have
the axiom

∀𝑥,𝑦,𝑧.𝑦 ≈ 𝑧→(𝑅(𝑥,𝑦)↔𝑅(𝑥,𝑧)).
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After the translation it is

∀𝑥,𝑦,𝑧.𝑦 ≈ 𝑧∨𝜓→(𝑅(𝑥,𝑦)∨𝜓↔𝑅(𝑥,𝑧)∨𝜓)

It suffices that we show that the following formula is provable

∀𝑥,𝑦,𝑧.𝑦 ≈ 𝑧∨𝜓→(𝑅(𝑥,𝑦)∨𝜓→𝑅(𝑥,𝑧)∨𝜓)

But note that:
𝑦 ≈ 𝑧,𝑅(𝑥,𝑦) ⊢ 𝑅(𝑥,𝑧)

thanks to the equality axiom. By doing cases in the disjunctions of the an-
tecedent of the implication the result is easy to prove.
Now, assume that ⊢ 𝜙 where there is a 𝜒 such that ⊢ 𝜒 and ⊢ 𝜒→𝜙 with

shorter proofs. By induction hypotheis ⊢ (𝜒)𝜓F and ⊢ (𝜒)𝜓F→(𝜙)𝜓F. So by apply-
ing MP we have that ⊢ (𝜙)𝜓F, as wanted.
Finally, assume that ⊢ ∀𝑥.𝜙 where there is a shorter proof of ⊢ 𝜙. Then

by induction hypothesis ⊢ (𝜙)𝜓F . Finally, we can conclude using generalization
that ⊢ ∀𝑥.(𝜙)𝜓F, in other words, ⊢ (∀𝑥.𝜙)𝜓F. �

Corollary 56. Let 𝑇 be closed under (_)𝜓F. If we have a proof 𝜋 of ⊢𝑇 𝜙0 ↔𝜙1,
where no free variable of 𝜓 appears bounded in 𝜋, then ⊢𝑇 (𝜙0)

𝜓
F↔(𝜙1)

𝜓
F.

Proof. Just applying Corollary 55. �

Π2-conservativity over classical theory

Lemma 58. Let 𝑇 be a theory such that it is closed under Gödel’s translation
and under Friedman’s translation for Σ1-formulas. Then, 𝑇 with classical logic
is Π2-conservative over 𝑇 with intuitionistic logic.

Proof. First, let us show that for any 𝜙 ∈Δ0 we have that

⊢iFOL,𝑇 ¬¬∃𝑦 . 𝜙 implies ⊢iFOL,𝑇 ∃𝑦 . 𝜙.

Note that we can assume that no free variable of ∃𝑦 . 𝜙 occurs bounded in
the proof of ⊢iFOL,𝑇 ¬¬∃𝑦 . 𝜙 since we can suitably rename bounded variables.
Then, by Theorem 54, we have that

⊢iFOL,𝑇 (¬¬∃𝑦 . 𝜙)∃𝑦.𝜙F ,

equivalently
⊢iFOL,𝑇 ((∃𝑦 . 𝜙)∃𝑦.𝜙F →∃𝑦 . 𝜙)→∃𝑦 . 𝜙.

Thanks to Lemma 51 we have that

⊢iFOL,𝑇 (∃𝑦 . 𝜙)∃𝑦.𝜙F ↔(∃𝑦 . 𝜙)∨(∃𝑦 . 𝜙),
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so we get
⊢iFOL,𝑇 (𝑞𝑢𝑎𝑛𝑡∃𝑦𝜙→∃𝑦 . 𝜙)→∃𝑦 . 𝜙.

But the antecedent of the implication is clearly provable, so

⊢iFOL,𝑇 ∃𝑦 . 𝜙.

Now, assume that ⊢FOL ∀𝑥∃𝑦 . 𝜙 where 𝜙 ∈ Δ0. Then ⊢FOL ∃𝑦 . 𝜙. By
Theorem 46 and Lemma 45,

⊢iFOL,𝑇 ¬¬∃𝑦 . 𝜙,

but thanks to previous result

⊢iFOL,𝑇 ∃𝑦 . 𝜙.

By generalization we get the desired

⊢iFOL,𝑇 ∀𝑥∃𝑦 . 𝜙. �

A.2 De Jongh Translation
Lemma 81. Assume that HB𝑈,𝑇 , . Let 𝜙,𝜓 ∈ ℒ1 such that there is no free
variable of 𝜓 bounded in 𝜙. Then:

⊢𝑈 [𝜓] 𝜙→ (𝜓→𝜙).

Proof. By induction in 𝜙. If 𝜙 is atomic, then we have that, by HB𝑈,𝑇 , .Compl,
⊢𝑈 𝜙→ 𝜙. Also, by Lemma 27 and HB𝑈,𝑇 , , ⊢𝑈 𝜙→ (𝜓→𝜙), we can conclude
⊢𝑈 𝜙→ (𝜓→𝜙).
Let 𝜙 =𝜙0∧𝜙1, by the induction hypothesis for 𝑖 = 0,1:

⊢𝑈 [𝜓] 𝜙𝑖→ (𝜓→𝜙𝑖).

Then

⊢𝑇 [𝜓] (𝜙0∧𝜙1) = [𝜓] 𝜙0∧[𝜓] 𝜙1
→ (𝜓→𝜙0)∧ (𝜓→𝜙1) (by I.H.)
→ ((𝜓→𝜙0)∧ (𝜓→𝜙1)) (by Lemma 27 and HB𝑈,𝑇 , )
→ (𝜓→𝜙0∧𝜙1). (by Lemma 27 and HB𝑈,𝑇 , )

Let 𝜙 =𝜙0∨𝜙1, by the induction hypothesis for 𝑖 = 0,1:

⊢𝑈 [𝜓] 𝜙𝑖→ (𝜓→𝜙𝑖).

Note that using Lemma 27 and HB𝑈,𝑇 ,

⊢𝑈 (𝜓→𝜙𝑖)→ (𝜓→𝜙0∨𝜙1),
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Then

⊢𝑈 [𝜓] (𝜙0∨𝜙1) = [𝜓] 𝜙0∨[𝜓] 𝜙1
→ (𝜓→𝜙0∨𝜙1).

Let 𝜙 = ∃𝑥.𝜙0, by the induction hypothesis

⊢𝑈 [𝜓] 𝜙0→ (𝜓→𝜙0).

Then

⊢𝑈 [𝜓] (∃𝑥 . 𝜙0) = ∃𝑥 . [𝜓] 𝜙0
→∃𝑥 . (𝜓→𝜙0) (by I.H.)
→ (∃𝑥 . 𝜓→𝜙0) (by Lemma 27 and HB𝑈,𝑇 , )
→ (𝜓→∃𝑥 . 𝜙0). (by Lemma 27 and HB𝑈,𝑇 , )

In the last implication we used that 𝑥 ∉ fv(𝜓).
The cases of implication and universal quantification are trivial. �

Lemma 82. Assume that HB𝑈,𝑇 , . Then we have that:

⊢𝑈 [𝜒]
(

𝑚

⋀
𝑖=0

𝜙𝑖→𝜓𝑖
)
↔

(

𝑚

⋀
𝑖=0

[𝜒] 𝜙𝑖→[𝜒] 𝜓𝑖
)
∧

(
𝜒→

(

𝑚

⋀
𝑖=0

𝜙𝑖→𝜓𝑖
))

.

Proof. By induction in 𝑚. If 𝑚= 0, then it is trivial by definition. Assume it
is true for 𝑚, we need to show the case 𝑚+1. We have:

⊢𝑈 [𝜒]
(

𝑚+1

⋀
𝑖=0

𝜙𝑖→𝜓𝑖
)
= [𝜒]

((

𝑚

⋀
𝑖=0

𝜙𝑖→𝜓𝑖
)
∧(𝜙𝑚+1→𝜓𝑚+1)

)

= [𝜒]
(

𝑚

⋀
𝑖=0

𝜙𝑖→𝜓𝑖
)
∧[𝜒] (𝜙𝑚+1→𝜓𝑚+1)

↔
(

𝑚

⋀
𝑖=0

[𝜒] 𝜙𝑖→[𝜒] 𝜓𝑖
)
∧

(
𝜒→

(

𝑚

⋀
𝑖=0

𝜙𝑖→𝜓𝑖
))

∧([𝜒] 𝜙𝑚+1→[𝜒] 𝜓𝑚+1)∧ (𝜒→𝜙𝑚+1→𝜓𝑚+1)

↔
(

𝑚+1

⋀
𝑖=0

[𝜒] 𝜙𝑖→[𝜒] 𝜓𝑖
)

∧
((

𝜒→
(

𝑚

⋀
𝑖=0

𝜙𝑖→𝜓𝑖
))

∧(𝜒→𝜙𝑚+1→𝜓𝑚+1)
)

↔
(

𝑚+1

⋀
𝑖=0

[𝜒] 𝜙𝑖→[𝜒] 𝜓𝑖
)
∧

(
𝜒→

(

𝑚+1

⋀
𝑖=0

𝜙𝑖→𝜓𝑖
)) �
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Lemma 83. Let HB𝑈,𝑇 , and 𝑥0,…,𝑥𝑚 be variables not free in 𝜒. Then we
have that:

⊢𝑈 [𝜒] (∀𝑥0,…,𝑥𝑚.𝜙)↔ (∀𝑥0,…,𝑥𝑚.[𝜒] 𝜙)∧ (𝜒→∀𝑥0,…,𝑥𝑚.𝜙).

Proof. By induction in m. If 𝑚=0 it is trivial by definition. Now, assume that
it is true for 𝑚 let us show the case for 𝑚+1.

⊢𝑈 [𝜒] (∀𝑥0,…,𝑥𝑚+1.𝜙) = (∀𝑥0.[𝜒] (∀𝑥1,…,𝑥𝑚+1.𝜙))∧ (𝜒→∀𝑥0,…,𝑥𝑚+1.𝜙)
↔ (∀𝑥0,…,𝑥𝑚+1.[𝜒] 𝜙)∧(∀𝑥0. (𝜒→∀𝑥1,…,𝑥𝑚+1.𝜙))

∧ (𝜒→∀𝑥0,…,𝑥𝑚+1.𝜙)
↔ (∀𝑥0,…,𝑥𝑚+1.[𝜒] 𝜙)∧ (𝜒→∀𝑥0,…,𝑥𝑚+1.𝜙)

For the last equivalence, to show right to left we used HB𝑈,𝑇 , and 𝑥0 ∉ fv(𝜒).
�

Lemma 84. Let HB𝑈,𝑇 , and assume that 𝑥 ∉ fv(𝜒). Then

⊢𝑈 [𝜒] (∀𝑥.𝜙→𝜓)↔ (∀𝑥.[𝜒] 𝜙→[𝜒] 𝜓)∧ (𝜒→∀𝑥.𝜙→𝜓).

Proof.

⊢𝑈 [𝜒] (∀𝑥.𝜙→𝜓)= (∀𝑥.[𝜒] (𝜙→𝜓))∧ (𝜒→∀𝑥.𝜙→𝜓)
= (∀𝑥.[𝜒] 𝜙→[𝜒] 𝜓)∧(∀𝑥. (𝜒→𝜙→𝜓))∧ (𝜒→∀𝑥.𝜙→𝜓)
↔ (∀𝑥.[𝜒] 𝜙→[𝜒] 𝜓)∧ (𝜒→∀𝑥.𝜙→𝜓)

For the last equivalence we use that HB𝑈,𝑇 , and that 𝑥 ∉ fv(𝜒). �

Lemma 85. Let HB𝑈,𝑇 , , then

⊢𝑈 [𝜒] (𝜙𝑚→⋯→𝜙0)↔ ([𝜒] 𝜙𝑚→⋯→[𝜒] 𝜙0)∧ (𝜒→𝜙𝑚→⋯→𝜙0)

Proof. If 𝑚=0 it is trivial by definition, so let us show the inductive case. By
the induction hypothesis we have that

⊢𝑈 [𝜒] (𝜙𝑚→⋯→𝜙0)↔ ([𝜒] 𝜙𝑚→⋯→[𝜒] 𝜙0)∧ (𝜒→𝜙𝑚→⋯→𝜙0).

Then

⊢𝑈 [𝜒] (𝜙𝑚+1→⋯→𝜙0) = ([𝜒] 𝜙𝑚+1→[𝜒] (𝜙𝑚→⋯→𝜙0))∧ (𝜒→𝜙𝑚+1→⋯𝜙0)

↔ ([𝜒] 𝜙𝑚+1→([𝜒] 𝜙𝑚→⋯→[𝜒] 𝜙0)∧ (𝜒→𝜙𝑚→⋯→𝜙0))
∧ (𝜒→𝜙𝑚+1→⋯→𝜙0) (by I.H.)

↔([𝜒] 𝜙𝑚+1→[𝜒] 𝜙𝑚→⋯→[𝜒] 𝜙0)
∧ ([𝜒] 𝜙𝑚+1→ (𝜒→𝜙𝑚→⋯→𝜙0))
∧ (𝜒→𝜙𝑚+1→⋯→𝜙0) (by iFOL reasoning)

↔∗ ([𝜒] 𝜙𝑚+1→⋯→[𝜒] 𝜙0)∧ (𝜒→𝜙𝑚+1→⋯→𝜙0)
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Let us show ↔∗ in detail. Left to right is trivial, to show right to left let us
prove that

(𝜒→𝜙𝑚+1→⋯→𝜙0), [𝜒] 𝜙𝑚+1 ⊢𝑈 (𝜒→𝜙𝑚→⋯→𝜙0). (i)

Note that by Lemma 81 we have that

[𝜒] 𝜙𝑚+1 ⊢𝑈 (𝜒→𝜙𝑚+1).

Then, using Lemma 27 and HB𝑈,𝑇 ,

(𝜒→𝜙𝑚+1→⋯→𝜙0), [𝜒] 𝜙𝑚+1 ⊢𝑈 (𝜒→𝜙𝑚+1∧(𝜙𝑚+1→⋯→𝜙0)) (ii)

By another application of Lemma 27 and HB𝑈,𝑇 , , we get

(𝜒→𝜙𝑚+1∧(𝜙𝑚+1→⋯→𝜙0)) ⊢𝑈 (𝜒→𝜙𝑚→⋯→𝜙0). (iii)

Clearly (ii) and (iii) gives (i). �

Lemma 86. Assume that HB𝑈,𝑇 , . Let 𝜙 ∈Δ0, such that no free variable of 𝜒
appears bounded in 𝜙. Then

⊢𝑈 𝜙↔ [𝜒] 𝜙.

Proof. By induction in 𝜙. If 𝜙 is an atom it is trivial. Conjunction, disjunction
and bounded existential are easy applying the induction hypothesis.
Case 𝜙 =𝜙0→𝜙1. By the induction hypothesis

⊢𝑈 𝜙𝑖 ↔ [𝜒] 𝜙𝑖.

Then

⊢𝑈 [𝜒] (𝜙0→𝜙1) = ([𝜒] 𝜙0→[𝜒] 𝜙1)∧ (𝜒→𝜙0→𝜙1)
↔ (𝜙0→𝜙1)∧ (𝜒→𝜙0→𝜙1) (by I.H.)
↔(𝜙0→𝜙1),

where we used:

⊢𝑈 (𝜙0→𝜙1)→ (𝜙0→𝜙1) (Σ1-completeness)
→ (𝜒→𝜙0→𝜙1). (by Lemma 27 and HB𝑈,𝑇 , )

Case 𝜙 = ∀𝑥 < 𝜏.𝜙0. By Lemma 84, since 𝑥 ∉ fv(𝜒), it suffices to show that

⊢𝑈 ∀𝑥 < 𝜏.[𝜒] 𝜙0∧ (𝜒→∀𝑥 < 𝜏.𝜙0).

By the induction hypothesis,

⊢𝑈 𝜙0 ↔ [𝜒] 𝜙0.

Then
⊢𝑈 (∀𝑥 < 𝜏.𝜙0)↔ (∀𝑥 < 𝜏.[𝜒] 𝜙0).

All left to show is that

⊢𝑈 (∀𝑥 < 𝜏.𝜙0)→ (𝜒→∀𝑥 < 𝜏.𝜙0).

But this is trivial using HB𝑈,𝑇 , and Lemma 27. Note that in calculating the
translation we are using Lemma 84. �
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Lemma 87. Assume that HB𝑈,𝑇 , . Let 𝜙 ∈Σ1, such that no free variable of 𝜒
appears bounded in 𝜙. Then

⊢𝑈 𝜙↔ [𝜒] 𝜙.

Proof. Applying previous lemma. �

Lemma 88. We have that

1. fv([𝜒] 𝜙) ⊆ fv(𝜒)∪ fv(𝜙).

2. 𝑥 is free for 𝜏 in 𝜙 iff 𝑥 is free for 𝜏 in [𝜒] 𝜙.

Proof. The first point is a simple induction in 𝜙. Let us show the second point,
also by induction in 𝜙. If it is an atom it is trivial, conjunction and disjunction
are trivial by the induction hypothesis. For the implication case it suffices to
apply the induction hypothesis and note that for any formula 𝜙, 𝑥 is free for any
term in 𝜙 (here we assume that we rename the bound variables of the formula
defining if necessary). Now, let 𝜙 = ∃𝑦.𝜙0, and assume that 𝑥 is free for 𝜏 in 𝜙
and 𝑥 ∉ fv(𝜒). If 𝑥 = 𝑦, the result trivially holds since [𝜓] ∃𝑦.𝜙0 =∃𝑦.[𝜓] 𝜙0. If
𝑥 ≠ 𝑦 we have that 𝑥 is free for 𝜏 in 𝜙0 and 𝑦 ∉ fv(𝜏). By induction hypothesis we
have that 𝑥 is free for 𝜏 in [𝜒] 𝜙0, so it is also free for 𝜏 in ∃𝑦.[𝜒] 𝜙0 = [𝜒] ∃𝑦.𝜙0.
The case where 𝜙 = ∀𝑥.𝜙0 is as ∃𝑥.𝜙, but again we need to use that 𝑥 is

free for any term in (𝜒→∀𝑦.𝜙0) (module renaming bounded variables of the
formula defining ). �

Lemma 89. Assume that HB𝑈,𝑇 , . Let 𝑥 be free for 𝜏 in 𝜙, and 𝑥 ∉ fv(𝜒).
Then

⊢𝑈 ([𝜒] 𝜙)[𝑥/𝜏]↔ [𝜒] 𝜙[𝑥/𝜏].

Proof. We proceed by induction in 𝜙. If 𝜙 is atomic the result is trivial.
Conjunction and disjunction are easy using the induction hypothesis. Let
𝜙 =𝜙0→𝜙1, by the induction hypothesis we have that:

⊢𝑈 ([𝜒] 𝜙𝑖)[𝑥/𝜏]↔ [𝜒] 𝜙𝑖[𝑥/𝜏].

Also note that:

⊢𝑈 (𝜒→𝜙0→𝜙1)[𝑥/𝜏]↔ ((𝜒→𝜙0→𝜙1)[𝑥/𝜏]) (by Lemma 68)
= (𝜒→𝜙0[𝑥/𝜏]→𝜙1[𝑥/𝜏]) (since 𝑥 ∉ fv(𝜒))

Let us call this equivalence (i). Then:

⊢𝑈 [𝜒] (𝜙0→𝜙1)[𝑥/𝜏] = ([𝜒] 𝜙0[𝑥/𝜏]→[𝜒] 𝜙1[𝑥/𝜏])∧ (𝜒→𝜙0→𝜙1)[𝑥/𝜏]
↔ ([𝜒] 𝜙0[𝑥/𝜏]→[𝜒] 𝜙1[𝑥/𝜏])∧ (𝜒→𝜙0[𝑥/𝜏]→𝜙1[𝑥/𝜏])

(by I.H. and (i))
= [𝜒] (𝜙0[𝑥/𝜏]→𝜙1[𝑥/𝜏])
= [𝜒] ((𝜙0→𝜙1)[𝑥/𝜏])
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If 𝜙 = ∃𝑦.𝜙0 we have two cases. If 𝑥 = 𝑦 the result is trivial, if 𝑥 ≠ 𝑦 it
suffices to apply the inductive hypothesis. Note that to do this is fundamental
that if 𝑥 is free for 𝜏 in ∃𝑦.𝜙0 and 𝑥 ≠ 𝑦 then 𝑥 is free for 𝜏 in 𝜙0.
Finally, if 𝜙 = ∀𝑦.𝜙0 is a mixture between the existential and the implication

case. First, if 𝑥 = 𝑦 the result is trivial and if 𝑥 ≠ 𝑦 we proceed similarly to the
implication case. Again, we need to use the induction hypothesis which we can
apply since if 𝑥 ≠ 𝑦 and 𝑥 is free for 𝜏 in ∀𝑦.𝜙0 we can conclude that 𝑥 is free
for 𝜏 in 𝜙0. �

Theorem 90. Let 𝜒 be a formula, let 𝑇 be such that if 𝜙 ∈Ax𝑇 then ⊢𝑈 [𝜒] (𝜙)
and HB𝑈,𝑇 , . Then if 𝜋 is a proof of ⊢𝑇 𝜙 where no free variable of 𝜒 appears
bounded, we have that

⊢𝑈 [𝜒] 𝜙.

Proof. By induction in the proof of ⊢𝑇 𝜙. If 𝜙 is a non-logical axiom we have
the desired result by hypothesis. Let us prove the case where 𝜙 is a logical
axiom. For that we check all the logical axioms individually.

1. Case ⊥→𝜙. After the translation we have the formula

(⊥→[𝜒]𝑛𝜙)∧ 𝑛(𝜒→⊥→𝜙).

The left conjunct is another instance of the axiom, so it is provable. The
right conjunct is provable thanks to HB𝑈,𝑇 , and Lemma 27.

2. Case 𝜙∧𝜓→𝜙. Thanks to Lemma 85 it suffices to show

⊢𝑈 ([𝜒] 𝜙∧ [𝜒] 𝜓→[𝜒] 𝜙)∧ (𝜒→𝜙∧𝜓→𝜙).

The left conjunct is another instance of the axiom, so it is clearly 𝑇-
provable. For the right conjunct we just need to use HB𝑈,𝑇 , .

3. Case 𝜙→𝜓→𝜙∧𝜓. Similar proof to the two first cases.

4. Case 𝜙→𝜙∨𝜓. Similar proof to the two first cases.

5. Case (𝜙0→𝜓)→(𝜙1→𝜓)→(𝜙0∨𝜙1→𝜓). Thanks to Lemma 85 it suffices
to show that

⊢𝑈 [𝜒] (𝜙0→𝜓)→[𝜒] (𝜙1→𝜓)→[𝜒] (𝜙0∨𝜙1→𝜓) (i)

and
⊢𝑈 (𝜒→(𝜙0→𝜓)→(𝜙1→𝜓)→(𝜙0∨𝜙1→𝜓)) (ii)

(ii) is clearly provable using HB𝑈,𝑇 , . Let us show (i). But, to show (i) it
suffices to show:

⊢𝑈 ([𝜒] 𝜙0→[𝜒] 𝜓)→([𝜒] 𝜙1→[𝜒] 𝜓)→([𝜒] 𝜙0∨[𝜒] 𝜙1→[𝜒] 𝜓), (iii)
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and

⊢𝑈 (𝜒→𝜙0→𝜓)→ (𝜒→𝜙1→𝜓)→ (𝜒→(𝜙0∨𝜙1)→𝜓) (iv)

The formula in (iii) is just another instance of the axiom, so it is provable.
To show (iv) it suffices to use HB𝑈,𝑇 , .

6. Case 𝜙→𝜓→𝜙. Similar proof to the two first cases.

7. Case (𝜙→𝜓→𝜒)→(𝜙→𝜓)→(𝜙→𝜒). Similar proof to case 5.

8. Case (∀𝑥 . 𝜙)→𝜙[𝑥/𝜏], where 𝜏 is free for 𝑥 in 𝜙. After the translation we
get the formula

([𝜒] ∀𝑥 . 𝜙→[𝜒] 𝜙[𝑥/𝜏])∧ ()

The right conjunct is proved by HB𝑈,𝑇 , and Lemma 27. Let us show the
left conjunct in 𝑈-provable. Since 𝑥 is free for 𝜏 in 𝜙 and by assumption
𝑥 ∉ fv(𝜒), by Lemma 89 we have that it suffices to show

⊢𝑈 (∀𝑥 . [𝜒] 𝜙)∧ (𝜒→∀𝑥 . 𝜙)→([𝜒] 𝜙)[𝑥/𝜏].

However, (∀𝑥 . [𝜒] 𝜙)→ ([𝜒] 𝜙)[𝑥/𝜏] is another instance of this logical
axiom. In order to have this, we use that 𝑥 is free for 𝜏 in [𝜒] 𝜙 and
Lemma 88.

9. Case (∀𝑥.𝜓→𝜙)→𝜓→(∀𝑦.𝜙[𝑥/𝑦]), where 𝑥 ∉ fv(𝜓) and 𝑦 = 𝑥 or 𝑦 ∉ fv(𝜙).
By Lemma 85 it suffices to show that

⊢𝑈 [𝜒] (∀𝑥 . 𝜓→𝜙)→[𝜒] 𝜓→[𝜒] (∀𝑦 . 𝜙[𝑥/𝑦]) (i)

and
⊢𝑈 (𝜒→(∀𝑥 . 𝜓→𝜙)→𝜓→(∀𝑦 . 𝜙[𝑥/𝑦])). (ii)

(ii) can be easily proven using HB𝑈,𝑇 , and Lemma 27. Thanks to Lemma
84, to show (i) it suffices to show

⊢𝑈 (∀𝑥 . [𝜒] 𝜓→[𝜒] 𝜙)→[𝜒] 𝜓→∀𝑦 . [𝜒] (𝜙[𝑥/𝑦]) (iii)

and
⊢𝑈 (𝜒→∀𝑥 . 𝜓→𝜙)→[𝜒] 𝜓→ (𝜒→∀𝑦 . 𝜙[𝑥/𝑦]). (iv)

(iv) can be proven using HB𝑈,𝑇 , and lemmas 27 and 81. All left to show
is (iii). Notice that, since 𝑥 ∉ fv(𝜓) and 𝑥 ∉ fv(𝜒) due to 𝑥 appearing
bounded in the proof, we can conclude via Lemma 88 that 𝑥 ∉ fv([𝜒] 𝜓).
Then if 𝑥 = 𝑦 (iii) is an instance of the same logical axiom, so it is prov-
able. Otherwie 𝑦 ∉ fv(𝜙), which again using Lemma 88 implies that
𝑦 ∉ fv([𝜒] 𝜙. This makes the formula an instance of the same logical
axiom.

10. Case 𝜙[𝑥/𝑡]→∃𝑥.𝜙, where 𝑡 is free for 𝑥 in 𝜙. Similar proof to case 8.
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11. Case (∀𝑥.𝜙→𝜓)→(∃𝑦.𝜙[𝑥/𝑦])→𝜓, where 𝑥 ∉ fv(𝜓) and 𝑦 = 𝑥 or 𝑦 ∉ fv(𝜙).
Similar proof to case 9.

12. Finally, let us cover the equality axioms together. Notice that all the
equality axioms are of shape ∀𝑥0,…,𝑥𝑛.𝜙0, where 𝜙0 is Δ0. This makes
easy to prove them using lemmas 83 and 86.

Assume that 𝜙 is obtained by modus ponens of 𝜓→𝜙 and 𝜓. By I.H. we
have that:

⊢𝑈 [𝜒] (𝜓→𝜙), (i)

⊢𝑈 [𝜒] 𝜓. (ii)

Then by (i):
⊢𝑈 [𝜒] 𝜓→[𝜒] 𝜙,

so we can conclude the desired conclusion by (ii) and MP.
Assume that the last step is generalization of 𝑥 in 𝜙, so ⊢𝑇 𝜙 with a shorter

proof. By the induction hypothesis we have that:

⊢𝑈 [𝜒] 𝜙.

We can apply generalization to obtain:

⊢𝑈 ∀𝑥 . [𝜒] 𝜙. (i)

Note also that by assumption of this case ⊢𝑇 ∀𝑥 . 𝜙, so ⊢𝑈 (∀𝑥 . 𝜙) and then

⊢𝑈 (𝜒→∀𝑥 . 𝜙) (ii)

(i) and (ii) gives the desired result. �

Corollary 91. Let 𝜒 be a sentence, let 𝑇 and 𝑈 be such that 𝜙 ∈Ax𝑇 implies
⊢𝑈 [𝜒] 𝜙 and HB𝑈,𝑇 , . Assume that we have a proof 𝜋 of Γ ⊢𝑇 𝜙 such that no
free variable of 𝜓 appears bounded in 𝜋 or in Γ. Then

[𝜒] Γ ⊢𝑈 [𝜒] 𝜙.

Proof. Just use the deduction theorem and Theorem 90. �

A.2.1 Auxiliary translations
Lemma 94. Let HB𝑈,𝑇 , . Then for any 𝜙,𝜓 ∈ℒp and any Σ1-realization 𝜎 we
have

⊢𝑈 [𝜎𝜓] 𝜎𝜙↔ [𝜓,𝜎] 𝜙.
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Proof. By induction in 𝜙. If it is ⊤ or ⊥ the result is trivial. If 𝜙 = 𝑝, by
Lemma 87, we get ⊢𝑈 [𝜎𝜓] 𝜎(𝑝)↔ 𝜎(𝑝). Then

⊢𝑈 [𝜎𝜓] 𝜎(𝑝)↔ 𝜎(𝑝)
= [𝜓,𝜎] 𝑝.

Conjunction and disjunction are trivial by the induction hypothesis. Finally,
let 𝜙 =𝜙0→𝜙1. By the induction hypothesis we get

⊢𝑈 [𝜎𝜓] (𝜎𝜙0→𝜎𝜙1) = ([𝜎𝜓] 𝜎𝜙0→[𝜎𝜓] 𝜎𝜙1)∧ (𝜎𝜓→𝜎𝜙0→𝜎𝜙1)
↔ ([𝜓,𝜎] 𝜙0→[𝜓,𝜎] 𝜙1)∧ (𝜎𝜓→𝜎𝜙0→𝜎𝜙1)

(by I.H.)
= [𝜓,𝜎] (𝜙0→𝜙1). �

Lemma 95. Let 𝜙,𝜓 ∈ℒp, 𝜎 be a realization and ∶ℒ1 ⟶ℒ1. Then

⊢𝑈 [𝜓,𝜎] 𝜙→[𝜓,𝜎]∘𝜙.

Proof. By definition in 𝜙. If 𝜙 is an atomic propositional formula the result
is trivial. If it is a conjunction or disjunction it is trivial using the induction
hypothesis.
Finally, let 𝜙 =𝜙0→𝜙1. Then

⊢𝑈 [𝜓,𝜎] (𝜙0→𝜙1) = ([𝜓,𝜎] 𝜙0→[𝜓,𝜎] 𝜙1)∧ (𝜎𝜓→𝜎𝜙0→𝜎𝜙1)
→ (𝜎𝜓→𝜎𝜙0→𝜎𝜙1)
= [𝜓,𝜎]∘(𝜙0→𝜙1). �

Lemma 96. Assume that Rfn𝑈, . Then, for any 𝜙,𝜓 ∈ ℒp and realization 𝜎
we have

⊢𝑈 [𝜓,𝜎]∘𝜙→𝜎([𝜓]𝜙).

Proof. By induction in 𝜙. In case 𝜙 is an atomic propositional formula the
result is clear. The cases of conjunction and disjunction are easy applying the
induction hypothesis.
Let 𝜙 =𝜙0→𝜙1. Then

⊢𝑈 [𝜓,𝜎]∘(𝜙0→𝜙1) = (𝜎𝜓→𝜎𝜙0→𝜎𝜙1)
→𝜎𝜓→𝜎𝜙0→𝜎𝜙1 (by Rfn𝑈, )
=𝜎([𝜓](𝜙0→𝜙1)). �

Lemma 97. Let ∶ ℒ1 ⟶ Σ1 and 𝜎 be a Σ1-realization. Then [𝜓,𝜎]∘𝜙 is
iEA-equivalent to a Σ1-formula.
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Proof. By induction in 𝜙, if it is a propositional atomic formula then it is trivial.
The conjunction and disjunction are easy the by induction hypothesis. For the
conjunction we need to use the codification of pairs. Finally, if 𝜙 =𝜙0→𝜙1 we
have that

[𝜓,𝜎]∘(𝜙0→𝜙1) = (𝜎𝜓→𝜎𝜙0→𝜎𝜙1),

which is Σ1 by hypothesis. �
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