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Abstract. We establish the dichotomy property of [17] for stable canonical multi-conclusion rules
of [1] for IPC, K4, and S4. This yields an alternative proof of existence of explicit bases of
admissible rules for these logics.

1. Introduction

An inference rule is admissible in a given logical system L if no new theorems are derived by
adding this rule to the rules of inference of L. Friedman [9] raised the question whether admissibility
of rules in the intuitionistic propositional calculus (IPC) is decidable. A solution to this problem
for IPC, as well as for well-known systems of modal logic such as K4 and S4, was first given by
Rybakov (see the comprehensive book [23] and the references therein). An alternative solution via
projectivity and unification was supplied in [10, 11]. Explicit bases for admissible rules were built
in [22, 24, 20, 14, 16]. We refer to Goudsmit [13] for a modern historic account of the admissibility
problem.

Recently Jeřábek [17] developed a new technique for building bases for admissible rules by
generalizing Zakharyaschev’s canonical formulas [26] to multi-conclusion canonical rules, and by
developing the dichotomy property for canonical rules. This property states that a canonical multi-
conclusion rule is either admissible or equivalent to an assumption-free rule. Our goal is to establish
the same property for stable multi-conclusion canonical rules for IPC, K4, and S4. These rules
were recently introduced in [1], where it was shown that each normal modal multi-conclusion
consequence relation is axiomatizable by stable multi-conclusion canonical rules. The same result
for intuitionistic multi-conclusion consequence relations was established in [2].

The proof methodology we follow is similar to [17] and goes through a semantic characterization
of non-admissible stable canonical rules in terms of the finite domains they are built from. In spite
of the similarities, the semantic characterization we obtain is different than the one given in [17]. As
a simple corollary of our main theorem, similarly to [17], we obtain decidability of the admissibility
problem for IPC, K4 and S4. Finally, we note that admissibility for the basic modal logic K is a
long standing open problem. While the proofs of this paper do not directly apply to K, we observe
that the method of stable canonical rules, unlike that of canonical rules of [17], is not limited to
the transitive case. Therefore, our method is potentially applicable to non-transitive logics such as
K.

The paper is organised as follows: In Section 2 we recall Esakia duality for Heyting algebras,
multi-conclusion consequence relations and stable canonical rules for IPC. In Section 3 we obtain
an explicit basis of admissible rules for IPC via stable canonical rules and prove that the latter have
the dichotomy property. In Section 4 we recall duality for modal algebras, modal multi-conclusion
consequence relations and stable canonical rules for modal logic. Finally, in Section 5 we obtain
explicit bases of admissible rules for K4 and S4 via stable canonical rules and prove their dichotomy
property.

2. Preliminaries on Heyting algebras and IPC

2.1. Esakia duality for Heyting algebras. We recall that a Heyting algebra is a bounded
distributive lattice with an additional binary operation → that is residual of ∧. For Heyting algebras
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A and B, a Heyting homomorphism is a bounded lattice homomorphism h ∶ A → B such that
h(a→ b) = h(a)→ h(b) for each a, b ∈ A. Let Heyt be the category of Heyting algebras and Heyting
homomorphisms. It is well known (see, e.g., [19, Ch. IX] or [6, Ch. 7]) that Heyting algebras provide
an adequate algebraic semantics for superintuitionistic logics. In fact, there is a dual isomorphism
between the (complete) lattice of superintuitionistic logics and the (complete) lattice of varieties of
Heyting algebras.

In order to introduce topological duality for Heyt, we need to fix some notation for posets. If X
is a poset (partially ordered set), we denote the partial order on X by ⩽. For Y ⊆X, we recall that
the down-set of Y is the set ↓Y = {x ∈ X ∶ ∃y ∈ Y with x ≤ y}. The up-set of Y is defined dually
and is denoted by ↑Y . If Y is a singleton set {y}, then we use ↓y and ↑y instead of ↓{y} and ↑{y},
respectively. We call U ⊆ X an up-set if x ∈ U and x ≤ y imply y ∈ U . A down-set of X is defined
dually. For Y ⊆ X we denote by maxY , resp minY the set of its maximal, resp. minimal points.
That is, maxY = {y ∈ Y ∣ Y ∩ ↑ y = {y}} and minY = {y ∈ Y ∣ Y ∩ ↓ y = {y}}.

An Esakia space is a Priestley space X such that ↓U is clopen for each clopen U of X; recall that
a poset X is a Priestley space if X is a compact space and for each x, y ∈ X, from x ≰ y it follows
that there is a clopen (closed and open) up-set U of X such that x ∈ U and y ∉ U . It follows easily
from e. g. [7, 11.15(i)] that for any Priestley space (X,⩽), any closed subset Y ⊆ X and any y ∈ Y
there are y1 ∈ minY , y2 ∈ maxY with y1 ⩽ y ⩽ y2.

For posets X and Y , a map f ∶ X → Y is order-preserving if x ≤ y implies f(x) ≤ f(y) for all
x, y ∈X; an order-preserving f is said to be a bounded morphism (or p-morphism) iff for each x ∈X
and y ∈ Y , from f(x) ≤ y it follows that there exists z ∈X such that x ≤ z and f(z) = y.

For Esakia spaces X and Y , a map f is an Esakia morphism if it is a bounded morphism which
is also continuous. Let Esa be the category of Esakia spaces and Esakia morphisms.

By Esakia duality [8], Heyt is dually equivalent to Esa (the dual of a Heyting algebra A is
indicated with A∗). The functors (−)∗ ∶ Heyt → Esa and (−)∗ ∶ Esa → Heyt that establish this
dual equivalence are constructed as follows. For a Heyting algebra A, let A∗ = (X,⩽), where X
is the space of all prime filters of A (topologized by the subbasis {α(a),X ∖ α(a) ∶ a ∈ A}, where
α(a) = {x ∈ X ∶ a ∈ x}) and x ⩽ y iff x ⊆ y. For a Heyting algebra homomorphism h, let h∗ = h−1.
For an Esakia space (X,⩽), let (X,⩽)∗ = A, where A is the Heyting algebra of clopen up-sets of
X, with meet and join given by intersection and union respectively and with implication given by
U → V =X ∖ ↓(U ∖ V ). For an Esakia morphism f , let f∗ = f−1.

It follows from Esakia duality that onto Heyting homomorphisms dually correspond to 1-1 Esakia
morphisms, and 1-1 Heyting homomorphisms to onto Esakia morphisms. In particular, homomor-
phic images of A ∈ Heyt correspond to closed up-sets of the Esakia dual of A.

2.2. Intuitionistic multi-conclusion consequence relations. We use greek letters γ, δ, . . . ,
ϕ,ψ, . . . to denote formulas built up from propositional variables using the connectives ¬,∧,∨,→
,�,⊺. A valuation on a Heyting algebra A is a map associating an element of A with every
propositional variable. It is then extended to all formulas in a standard way. An intuitionistic
Kripke model is a triple (X,⩽, V ) where (X,⩽) is a poset and V is a valuation on the Heyting
algebra of its up-sets. We use letters M,N, . . . for Kripke models and the notation M, x ⊧ ϕ to
mean that x belongs to V (ϕ), where V is the valuation on the Kripke model M. The notation
M ⊧ ϕ means that M, x ⊧ ϕ holds for all x from the underlying poset of M.

A multi-conclusion rule is an expression Γ/∆, where Γ,∆ are finite sets of formulas. If ∆ = {ϕ},
then Γ/∆ is called a single-conclusion rule and is written Γ/ϕ. If Γ = ∅, then Γ/∆ is called an
assumption-free rule and is written /∆. Assumption-free single-conclusion rules /ϕ can be identified
with formulas ϕ.

Definition 2.1. An intuitionistic multi-conclusion consequence relation is a set S of multiple
conclusion rules such that

(1) ϕ/ϕ ∈ S.
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(2) ϕ,ϕ→ ψ/ψ ∈ S.

(3) /ϕ ∈ S for each theorem ϕ of IPC (i.e. of intuitionistic propositional calculus).

(4) If Γ/∆ ∈ S, then Γ,Γ′/∆,∆′ ∈ S.

(5) If Γ/∆, ϕ ∈ S and Γ, ϕ/∆ ∈ S, then Γ/∆ ∈ S.

(6) If Γ/∆ ∈ S and σ is a substitution, then σ(Γ)/σ(∆) ∈ S.

We denote the smallest intuitionistic multi-conclusion consequence relation by SIPC. For a set R
of multi-conclusion rules, let SIPC +R be the smallest intuitionistic multi-conclusion consequence
relation containing R. If S = SIPC+R, then we say that S is axiomatized by R or that R is a basis
for S. Whenever Γ/∆ belongs to SIPC +R we say that Γ/∆ is derivable from R.

A Heyting algebra A validates a multi-conclusion rule Γ/∆ provided for every valuation v on A,
if v(γ) = 1 for all γ ∈ Γ, then v(δ) = 1 for some δ ∈ ∆. If A validates Γ/∆, we write A ⊧ Γ/∆. The
following result is proved in [17, 4]:

Theorem 2.2. Γ/∆ is derivable from R iff every Heyting algebra validating all rules in R validates
also Γ/∆.

We will say that rules ρ1 and ρ2 are equivalent if ρ1 is derivable from {ρ2} and ρ2 is derivable
from {ρ1}. By Theorem 2.2 this means that a Heyting algebra validates ρ1 if and only if it validates
ρ2.

Derivability should be contrasted with admissibility; we will call a rule Γ/∆ admissible in IPC
(or admissible tout court) iff it is valid in the free Heyting algebra with countably many generators.
It is known (see e. g. [21, 15]) that this is equivalent to either one of the following conditions: (1)
every substitution making all members of Γ a theorem in IPC makes also some member of ∆ a
theorem of IPC, and (2) adding Γ/∆ to IPC does not lead to the derivability of new theorems.

A set of rules R is said to form an admissible basis for a logic L if every rule admissible in L is
derivable from R.

2.3. Closed domain condition and stable canonical rules for Heyting algebras. We recall
some definitions and results from [1].

Definition 2.3. Let X = (X,≤) and Y = (Y,≤) be Esakia spaces and let f ∶ X → Y be a map. We
call f stable if it is continuous and order-preserving.

It can be shown that Definition 2.3 can be dualized in the following way. Let A and B be Heyting
algebras; then h ∶ A→ B is a bounded lattice morphism iff the dual Esakia morphism h∗ ∶ B∗ → A∗

is stable.

Definition 2.4. Let X = (X,≤) and Y = (Y,≤) be Esakia spaces, f ∶ X → Y be a map, and U be a
clopen subset of Y . We say that f satisfies the closed domain condition (CDC) for U if

U ∩ ↑f(x) ≠ ∅⇒ U ∩ f(↑x) ≠ ∅
holds for all x ∈ X. Let D be a collection of clopen subsets of Y . We say that f ∶ X → Y satisfies
the closed domain condition (CDC) for D if f satisfies CDC for each U ∈D.

Stable canonical rules are introduced in the following definition:

Definition 2.5. Let A be a finite Heyting algebra and let D ⊆ A2. For every a ∈ A let pa be
a propositional letter, and define the stable canonical rule ρ(A,D) associated with A and D as
γ(A,D) = Γ/∆, where

Γ ={p0 ↔ 0} ∪ {p1 ↔ 1}∪
{pa∨b ↔ (pa ∨ pb) ∣ a, b ∈ A}∪
{pa∧b ↔ (pa ∧ pb) ∣ a, b ∈ A}∪
{pa→b ↔ (pa → pb) ∣ (a, b) ∈D}
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and

∆ = {pa ↔ pb ∣ a, b ∈ A with a ≠ b}.

Sometimes, if F is the dual space of A, we might write γ(F,D) instead of γ(A,D).

Theorem 2.6. Let A be a finite Heyting algebra, D ⊆ A2, and B be an arbitrary Heyting algebra.
Then the following are equivalent:

(i) B /⊧ γ(A,D);
(ii) there is a bounded lattice embedding h ∶ A → B such that h(a → b) = h(a) → h(b) for each

(a, b) ∈D;
(iii) there is a stable onto map f ∶ B∗ → A∗ satisfying CDC for D ∶= {α(a) ∖ α(b) ∶ (a, b) ∈D}.

The interesting point about stable rules is the following completeness theorem:

Theorem 2.7. [2, Prop. 3.4] Any intuitionistic multi-conclusion consequence relation can be ax-
iomatized by stable canonical rules.

3. Dichotomy property and admissible basis for IPC

Let Vn be the rule:

(Vn)
((⋁n

i=1 pi)→ q)→ ⋁n
i=1 pi

q → p1 ∣ . . . ∣ q → pn

(denoted by V ′

n in [16]).

Theorem 3.1. The rule Vn is admissible for each n ∈ ω.

Proof. We have to show that if σ is a substitution such that none of σq → σp1, ..., σq → σpn is
a theorem of IPC, then (⋁n

i=1 σpi → σq) → ⋁n
i=1 σpi is not a theorem either. By the finite model

property of IPC there are finite rooted Kripke models M1, . . . ,Mn such that M1 ⊧ σq, . . . ,Mn ⊧ σq
and M1 /⊧ σp1, . . . ,Mn /⊧ σpn (a Kripke model is said to be rooted iff its underlying poset has a
root, i. e. a smallest element). Consider the disjoint union of M1, . . . ,Mn and add a new root r
to it. Extend the valuation to the resulting frame by making each variable false at r. Denote the
new model by M. Then M, r /⊧ σp1, . . . , σpn. So, M, r /⊧ ⋁n

i=1 σpi and M, r ⊧ ⋁n
i=1 σpi → σq. Thus

M, r /⊧ (⋁n
i=1 σpi → σq)→ ⋁n

i=1 σpi. Hence (⋁n
i=1 σpi → σq)→ ⋁n

i=1 σpi is not a theorem of IPC. �

Lemma 3.2. Suppose that a stable canonical rule γ(F,D) has the following property. Given an
Esakia space W and a clopen up-set Y ⊆W and a stable surjective map f ∶ Y → F satisfying CDC
for D, there is stable surjective f̄ ∶ W → F with f ⊆ f̄ satisfying CDC for D. Then γ(F,D) is
equivalent to an assumption-free rule.

Proof. Let γ(A,D) be the rule

(1) ϕ

ϕ1 ∣ . . . ∣ ϕn

We will show that under the assumption of the lemma this rule is equivalent to

(2)
ϕ→ ϕ1 ∣ . . . ∣ ϕ→ ϕn

.

(2) ⇒ (1) is clear. Now assume that (the Heyting algebra dual to the Esakia space) W does not
validate (2). We show that then it does not validate (1). Let V be a valuation on W such that
V (ϕ) /⊆ V (ϕ1), . . . , V (ϕ) /⊆ V (ϕn). We set Y = V (ϕ) ⊆ W . Then Y /⊧ (1). This means that there
is a stable surjective f ∶ Y → F . By the condition of the lemma f is extended to stable surjective
f̄ ∶W → F , implying W /⊧ (1). �
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The following definition will be our main ingredient for a semantic characterization of admissi-
bility of a stable canonical rule:1

Definition 3.3. A stable canonical rule γ(A,D) is called trivial if for all S ⊆ A∗ there is x ∈ A∗

such that

(1) S ⊆ ↑x
(2) For all d ∈D if d ∩ ↑x ≠ ∅, then d ∩ ({x} ∪ ↑S) ≠ ∅.

We will see below that the triviality condition plays the same role for stable canonical rules as
the existence of tight predecessors in the context of [17, Theorem 4.9 (iv)].

Theorem 3.4. The following are equivalent:

(1) γ(A,D) is admissible.
(2) γ(A,D) is derivable from {Vn ∶ n ∈ ω}.
(3) γ(A,D) is not trivial.
(4) γ(A,D) is not equivalent to an assumption-free rule.

Proof. (2) ⇒ (1). We know that all Vn are admissible, i. e. valid in the free Heyting algebra on
infinitely many generators. Since moreover γ(A,D) is derivable from {Vn ∶ n ∈ ω}, we conclude
that γ(A,D) is also valid on this algebra, i. e. is admissible.

(3) ⇒ (2). Let F = A∗ and suppose γ(F,D) is not derivable from {Vn ∶ n ∈ ω}. Then, by
Theorem 2.2, there is an Esakia space W validating all Vn’s and refuting γ(F,D). The latter means
that there is a stable surjective f ∶W → F satisfying CDC for D. We will now show that γ(F,D) is
trivial. In what follows, we will employ the Heyting algebra W ∗; in particular, implication will be
understood in the sense of this algebra. Fix S ⊆ F . For s ∈ S let ps = f−1(F ∖↓ s) ⊆W , q = f−1(↑S).
Since f is stable, ps and q are up-sets. For all s ∈ S we have q /⊆ ps. Indeed, if xs ∈ f−1(s), then we
have that xs ∈ q but xs ∉ ps.

Since W validates the rules Vn for each n ∈ ω, and none of q → ps are the whole of W , it follows
that neither ((⋃s∈S ps)→ q)→ ⋃s∈S ps is the whole of W ; in particular, ((⋃s∈S ps)→ q)∖(⋃s∈S ps) is
not empty. As the topology on F is discrete, ps and q are clopen sets. Thus both (⋃s∈S ps)→ q and

⋃s∈S ps are clopen too, and we may actually pick a maximal element y of ((⋃s∈S ps)→ q)∖⋃s∈S ps.
We claim that then for each y′ > y we have y′ ∈ q. Indeed since (⋃s∈S ps) → q is an upset and y

belongs to it, also y′ will belong to it. But then y′ ∉ ⋃s∈S ps is impossible by maximality of y, so
y′ ∈ ⋃s∈S ps, hence y′ ∈ q.

Let us now check that f(y) fulfils the triviality conditions for S. For the first condition just note
that y ∉ ⋃s∈S ps iff for all s ∈ S we have y ∉ f−1(F ∖ ↓ s), i. e. y ∈ ⋂s∈S f

−1(↓ s), which is equivalent
to ↑ f(y) ⊇ S. For the second condition, suppose d ∩ ↑f(y) ≠ ∅ for d ∈D, then by the CDC of f we
have that there is y′ ≥ y such that f(y′) ∈ d. Thus, either y′ = y and then f(y′) = f(y) ∈ d ∩ {f(y)}
or y′ > y and then, as we have seen, y′ ∈ q = f−1(↑S), so f(y′) ∈ d ∩ ↑S. Thus γ(A,D) is trivial.

(4) ⇒ (3) Suppose γ(A,D) is trivial. We show that then it is equivalent to an assumption-free
rule. We use Lemma 3.2. Let W be an Esakia space, Y ⊆W a clopen up-set and f ∶ Y → F a stable
surjective map satisfying CDC for D. We extend f to some f l ∶W → F with the same properties.
For w ∈W let fw = f(Y ∩ ↑w). If S ⊆ F is of the kind fw, let YS ⊆W be YS = {w ∈W ∖Y ∶ fw = S}.
We take a minimal S ⊆ F such that YS ≠ ∅ and extend f to Y ∪ YS .

Claim 3.5. Y ∪ YS is a clopen up-set.

Proof. It follows from the minimality of S that Y ∪YS is an up-set. Indeed, if x ∈ Y ∪YS and x ⩽ y,
then either y ∈ Y and then we are done, or, provided y ∉ Y , in view of minimality of S, fy = S.

1The triviality notion below was independently introduced by J. Goudsmit in his thesis [13, Def. 4.76] under the
name of ‘adequate extendibility’. The author uses this notion when revisiting Rybakov results on admissible rules
via universal (finite variable) models.
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Indeed since Y is an up-set, y ∉ Y implies x ∉ Y , so x ∈ YS , i. e. fx = S. Moreover ↑y ⊆ ↑x, hence

fy = f(Y ∩ ↑ y) ⊆ f(Y ∩ ↑x) = fx = S,

thus, as S is minimal, fy = S, i. e. y ∈ YS .
To show that Y ∪ YS is clopen it suffices to show that YS is clopen. Now for any w ∈W we have

that w ∈ (W ∖ ↓f−1(F ∖S))∖Y if and only if f(Y ∩ ↑w) ⊆ S and w ∉ Y , which by minimality of S is
equivalent to f(Y ∩ ↑w) = S and w ∉ Y . Thus YS = (W ∖ ↓f−1(F ∖ S))∖Y is clopen. This finishes
the proof of the claim. �

We now extend f to f̄ with dom(f̄) = Y ∪ YS . We put

f̄(w) =
⎧⎪⎪⎨⎪⎪⎩

f(w), if w ∈ Y,
s, if w ∉ Y,

where s is such that S ⊆ ↑s and for all d ∈D, d ∩ ↑s ≠ ∅⇒ d ∩ ({s} ∪ ↑S) ≠ ∅.

It is easy to see that f̄ is order-preserving. Now we also show that f̄ is continuous. Indeed,
for every x ∈ F we have f̄−1(x) = f−1(x) or f̄−1(x) = f−1(x) ∪ YS . Since YS is a clopen set the
continuity follows.

Finally, we show that f̄ satisfies CDC. The relevant case is when d∩↑f̄(w) ≠ ∅ for d ∈D, w ∈ YS .
Now ↑f̄(w) = ↑s. Thus, we have d∩({s}∪↑S) ≠ ∅ by the choice of s. Hence either f̄(w) ∈ d or there
is s′ ∈ S with d ∩ ↑s′ ≠ ∅. But fw = S (because w ∈ YS), hence f(Y ∩ ↑w) = S. So there is w′ ≥ w
such that w′ ∈ Y and f(w′) = s′. We can then apply CDC for f to get w′′ ≥ w′ with f(w′′) ∈ d.
Thus, w′′ ≥ w and f̄(w′′) = f(w′′) ∈ d.

So we extended f to f̄ on Y ∪ YS . We need to show that by repeating this procedure we cover
the whole of W . This holds since the following is true: if some S ⊆ F has been used for further
extension of the map according to the above procedure, then this same S can never occur again
during any subsequent extensions.

Indeed let fk, resp. fn be any further extensions of f to Y k, resp. Y n, k < n < ω. Suppose we
have used some S for fk; then it cannot happen that S can be also used for fn.

Suppose, to the contrary, that S occurs as one of the candidates to build fn. Then in particular
S = fn−1w for some w ∈ Y n ∖ Y n−1. Then also w ∉ Y k, so S ≠ fk−1w (since Y k = Y k−1 ∪ Y k−1

S and Y k−1
S

consists precisely of those v for which fk−1v = S). In fact by the minimality of S, fk−1w cannot be
included in S, so fk−1w ∖ S is nonempty. Now note that since fn−1 is an extension of fk−1, one has
fn−1w ⊇ fk−1w , hence also fn−1w ∖ S is nonempty, which contradicts the equality S = fn−1w above.

It thus follows that after each next extension at least one subset of F is excluded from all
subsequent extension steps. Thus after some step n there will be no w ∉ Y n and no S left with the
property fnw = S. Which just means that there is no w outside Y n, i. e. Y n =W .

(1) ⇒ (4) Suppose γ(A,D) is admissible and equivalent to an assumption-free rule /∆. Then by
the definition of admissibility any substitution makes one of the formulas in ∆ a theorem of IPC.
Hence /∆ is valid on any Heyting algebra. However, A /⊧ γ(A,D), which is a contradiction. �

Corollary 3.6. A stable canonical rule γ(A,D) has the following dichotomy property: it is either
admissible or equivalent to an assumption-free rule.

Corollary 3.7. Admissibility in IPC is decidable.

Proof. Given a rule ρ, we effectively compute the stable canonical rules γ(A1,D1), . . . , γ(An,Dn)
which are equivalent to ρ over IPC [1, 2]. Hence ρ is admissible if and only if each of the
γ(A1,D1), . . . , γ(An,Dn) is admissible. By Theorem 3.4, each γ(Ai,Di) is admissible iff it is
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not trivial. Obviously, triviality of a rule γ(Ai,Di) can be checked in finite time. The result
follows.2 �

Corollary 3.8. The rules {Vn ∶ n ∈ ω} form an admissible basis for IPC.

Proof. By Theorem 2.7 and the above. �

4. Preliminaries on modal algebras and modal logics

4.1. Duality for modal algebras. We use [6, 18, 5, 25] as our main references for the basic theory
of normal modal logics, including their algebraic and relational semantics, and the dual equivalence
between modal algebras and modal spaces (descriptive Kripke frames).

A modal algebra is a pair A = (A,◇), where A is a Boolean algebra and ◇ is a unary operator
on A that commutes with finite joins. As usual, the dual operator ◻ is defined as ¬◇ ¬. A modal
homomorphism between two modal algebras is a Boolean homomorphism h satisfying h(◇a) =
◇h(a). Let MA be the category of modal algebras and modal homomorphisms.

A modal space (or descriptive Kripke frame) is a pair X = (X,R), where X is a Stone space (zero-
dimensional compact Hausdorff space) and R is a binary relation on X satisfying the conditions:

R[x] ∶= {y ∈X ∶ xRy}

is closed for each x ∈X and

R−1[U] ∶= {x ∈X ∶ ∃y ∈ U with xRy}

is clopen (closed and open) for each clopen U of X. A bounded morphism (or p-morphism) f ∶ X→Y
between two modal spaces is a continuous map f ∶ X → Y such that f(R[x]) = R[f(x)] for all
x ∈X. Let MS be the category of modal spaces and bounded morphisms.

It is a well-known theorem in modal logic that MA is dually equivalent to MS. The functors
(−)∗ ∶ MA → MS and (−)∗ ∶ MS → MA that establish this dual equivalence are constructed as
follows. For a modal algebra A = (A,◇), let A∗ = (A∗,R), where A∗ is the Stone space of A (that
is, the set of ultrafilters of A topologized by the basis {β(a) ∶ a ∈ A}, where β(a) = {x ∈ A∗ ∶ a ∈ x})
and xRy iff (∀a ∈ A)(a ∈ y ⇒ ◇a ∈ x). We call R the dual of ◇. For a modal homomorphism h,
let h∗ = h−1. For a modal space X = (X,R), let X∗ = (A,◇), where A is the Boolean algebra of
clopens of X and ◇(U) = R−1[U]. For a bounded morphism f , let f∗ = f−1.

Let A = (A,◇) be a modal algebra and let X = (X,R) be its dual space. Then it is well known
that R is reflexive iff a ⩽ ◇a for all a ∈ A, and R is transitive iff ◇◇a ⩽ ◇a for all a ∈ A. A modal
algebra A is a K4-algebra if ◇◇a ⩽ ◇a holds in A, and it is an S4-algebra if in addition a ⩽ ◇a
holds in A. S4-algebras are also known as closure algebras, interior algebras, or topological Boolean
algebras. Let K4 be the full subcategory of MA consisting of K4-algebras, and let S4 be the full
subcategory of K4 consisting of S4-algebras. A modal space X = (X,R) is a transitive space if R is
transitive, and it is a quasi-ordered space if R is reflexive and transitive.

For a clopen subset Y ⊆ X of a transitive space (X,R), a point y ∈ Y is called quasi-maximal
if for any x ∈ Y with yRx we have xRy. It is known that any point of any clopen subset sees a
quasi-maximal point of this subset (see e. g. [6, Theorem 10.36]).

Let TS be the full subcategory of MS consisting of transitive spaces, and let QS be the full
subcategory of TS consisting of quasi-ordered spaces. Then the dual equivalence of MA and MS
restricts to the dual equivalence of K4 and TS, which restricts further to the dual equivalence of S4
and QS.

2An alternative proof can be given as follows: rule admissibility is Π0
1 and derivability from a recursive set of rules

{Vn ∶ n ∈ ω} is Σ0
1. Thus, admissibility is decidable.
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4.2. Multi-conclusion modal rules. We use greek letters γ, δ, . . . , ϕ,ψ, . . . to denote formulas
built up from propositional variables using the connectives ¬,∧,∨,→,�,⊺,◇. A valuation on a
modal algebra A = (A,◇) is a map associating an element of A with every propositional variable.
It is then extended to all modal formulas in a standard way. A Kripke frame is a pair (X,R)
where X is a set and R is a binary relation on X. A Kripke model is a triple (X,R,V ), where
(X,R) is a Kripke frame and V is a valuation on the powerset Boolean algebra of X with ◇ ∶= R−1.
We use letters M,N, . . . for Kripke models and the notation M, x ⊧ ϕ to mean that x belongs to
V (ϕ), where V is the valuation of the Kripke model M. The notation M ⊧ ϕ (’ϕ is valid in M’)
means that M, x ⊧ ϕ holds for all x from the underlying frame of M. We let K,K4,S4 stand for
the set of formulas which are valid in all modal algebras, K4-modal algebras, S4-modal algebras,
respectively (as it is well-known, we can equivalently use validity in the corresponding classes of
Kripke models).

A transitive normal modal multi-conclusion consequence relation is a set S of modal rules such
that

(1) ϕ/ϕ ∈ S.
(2) ϕ,ϕ→ ψ/ψ ∈ S.
(3) ϕ/ ◻ ϕ ∈ S.
(4) /ϕ ∈ S for each ϕ in K4.
(5) If Γ/∆ ∈ S, then Γ,Γ′/∆,∆′ ∈ S.
(6) If Γ/∆, ϕ ∈ S and Γ, ϕ/∆ ∈ S, then Γ/∆ ∈ S.
(7) If Γ/∆ ∈ S and σ is a substitution, then σ(Γ)/σ(∆) ∈ S.

We denote the least transitive normal modal multi-conclusion consequence relation by SK4. For
a set R of multi-conclusion modal rules, let SK4 +R be the least transitive normal modal multi-
conclusion consequence relation containing R. If S = SK4 +R, then we say that S is axiomatized
by R or that R is a basis for S. Whenever Γ/∆ belongs to SK4 +R we say that Γ/∆ is derivable
from R.

A K4 algebra A validates a multi-conclusion rule Γ/∆ provided for every valuation v on A, if
v(γ) = 1 for all γ ∈ Γ, then v(δ) = 1 for some δ ∈ ∆. If A validates Γ/∆, we write A ⊧ Γ/∆. The
following result is proved in [17, 4]:

Theorem 4.1. Γ/∆ is derivable from R iff every K4-algebra validating all rules in R also validates
Γ/∆.

Admissibility of rules in modal calculi is defined similarly to the intuitionistic case (described in
2.2) and has similar properties.

4.3. Closed domain conditions and stable canonical rules for modal algebras. We now
introduce the key concepts of stable homomorphisms and the closed domain condition, and show
how the two relate to each other. For the proofs of the results stated in this subsection, the reader
is referred to [1].

Definition 4.2. Let A = (A,◇) and B = (B,◇) be K4-algebras and let h ∶ A → B be a Boolean
homomorphism. We call h a stable homomorphism provided ◇h(a) ⩽ h(◇a) for each a ∈ A.

It is easy to see that h ∶ A→ B is stable iff h(◻a) ≤ ◻h(a) for each a ∈ A. Stable homomorphisms
were considered in [3] under the name of semi-homomorphisms and in [12] under the name of
continuous morphisms.

Definition 4.3. Let X = (X,R) and Y = (Y,R) be transitive modal spaces and let f ∶ X → Y be a
map. We call f stable if it is continuous and xRy implies f(x)Rf(y).

Lemma 4.4. Let A = (A,◇) and B = (B,◇) be K4-algebras, X = (X,R) be the dual of A,
Y = (Y,R) be the dual of B, and h ∶ A→ B be a Boolean homomorphism. Then h ∶ A→ B is stable
iff h∗ ∶ Y →X is stable.



ADMISSIBLE BASES VIA STABLE CANONICAL RULES 9

Definition 4.5. Let X = (X,R) and Y = (Y,R) be transitive modal spaces, f ∶ X → Y be a map,
and U be a clopen subset of Y . We say that f satisfies the closed domain condition (CDC) for U
if

R[f(x)] ∩U ≠ ∅⇒ f(R[x]) ∩U ≠ ∅.
Let D be a collection of clopen subsets of Y . We say that f ∶ X → Y satisfies the closed domain
condition (CDC) for D if f satisfies CDC for each U ∈D.

Theorem 4.6. Let A = (A,◇) and B = (B,◇) be K4-algebras, h ∶ A → B be a stable homomor-
phism, and a ∈ A. The following two conditions are equivalent:

(1) h(◇a) =◇h(a).
(2) h∗ ∶ B∗ → A∗ satisfies CDC for β(a).

Theorem 4.6 motivates the following definition.

Definition 4.7. Let A = (A,◇) and B = (B,◇) be K4-algebras and let h ∶ A → B be a stable
homomorphism.

(1) We say that h satisfies the closed domain condition (CDC) for a ∈ A if h(◇a) =◇h(a).
(2) We say that h satisfies the closed domain condition (CDC) for D ⊆ A if h satisfies CDC

for each a ∈D.

We now come to stable canonical rules:

Definition 4.8. Let A = (A,◇) be a finite K4-algebra and let D be a subset of A. For each a ∈ A
we introduce a new propositional letter pa and define the stable canonical rule ρ(A,D) associated
with A and D as Γ/∆, where:

Γ = {pa∨b ↔ pa ∨ pb ∶ a, b ∈ A} ∪
{p¬a ↔ ¬pa ∶ a ∈ A} ∪
{◇pa → p◇a ∶ a ∈ A} ∪
{p◇a →◇pa ∶ a ∈D},

and

∆ = {pa ∶ a ∈ A,a ≠ 1}.
Stable canonical rules are characterized in terms of refutations as follows:

Theorem 4.9. Let A = (A,◇) be a finite K4-algebra, D ⊆ A, and B = (B,◇) be a K4-algebra.
Then B /⊧ ρ(A,D) iff there is a stable embedding h ∶ A↣ B satisfying CDC for D.

It was proved in [1] that every multi-conclusion consequence relation above K is axiomatizable
by stable canonical rules (relative to arbitrary finite modal algebras - not only to those validating
K4-axiom). The same proof can easily be extended to our multi-conclusion consequence relations
above K4. Thus, we have the following theorem.

Theorem 4.10. Any transitive normal modal multi-conclusion consequence relation can be axiom-
atized by canonical rules ρ(A,D) (where A = (A,◇) is a finite K4-algebra and D ⊆ A).

5. Dichotomy property and admissible basis for K4

From now on, all Kripke frames and modal spaces are assumed to be transitive. Below ◻+ϕ
abbreviates ϕ ∧ ◻ϕ; in a transitive Kripke frame/modal space (X,R), R+ abbreviates R ∪ id and
↥S stands for {w ∈ X ∣ ∃s ∈ S sR+w}. We may also use the notation ↑S for {w ∈ X ∣ ∃s ∈ S sRw}.
When we say that S is an up-set we mean S = ↥S. If S is a singleton set {y}, then we use ↑y and ↥y
instead of ↑{y} and ↥{y}, respectively. Notations ↧S, ↓S, ↓{y} and ↧{y} are defined dually (notice
that R−1(S) is the same as ↓S).
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Let F = (W,R) be a frame dual to a finite K4-algebra A = (A,◇). We denote the set {β(a) ∶ a ∈
D} by D. We will also denote (abusing notation) the stable canonical rule ρ(A,D) by ρ(F,D).

Let S`,m
n be the rule:

(S`,m
n )

(⋀`
l=1(◻vl → vl) ∧⋀m

k=1 ◻(rk → ◻(rk ∨ ◻+q)))→ ⋁n
i=1 ◻pi

◻+q → p1 ∣ ⋯ ∣ ◻+q → pn

and Tm
n be the rule:

(Tm
n ) ⋀m

k=1(◇rk →◇(rk ∧ ◻+q))→ ⋁n
i=1 ◻pi

◻+q → p1 ∣ ⋯ ∣ ◻+q → pn

Theorem 5.1.

(1) The rule (S`,m
n ) is admissible in K4 for each n,m, ` ∈ ω.

(2) The rule (Tm
n ) is admissible in K4 for all m ∈ ω.

Proof. The foregoing proof is essentially an adjustment of the proof of Theorem 3.1.
(1) We have to show that if σ is a substitution such that none of ◻+σq → σp1, . . . ,◻+σq → σpn
is a theorem of K4, then (⋀`

l=1(◻σvl → σvl) ∧⋀m
k=1 ◻(σrk → ◻(σrk ∨ ◻+σq))) → ⋁n

i=1 ◻σpi is not a
theorem either.

By the finite model property of K4 there are finite rooted Kripke models M1, . . . ,Mn such that
Mi ⊧ ◻+σq and Mi /⊧ σpi for all i = 1, ..., n. Consider the disjoint union of M1, . . . ,Mn and add a
new reflexive root % to it. Extend the valuation to the resulting frame by making each variable false
at %. Denote the new model by M. Then by reflexivity of % we will have M, % ⊧ ⋀`

l=1(◻σvl → σvl).
Moreover M, % /⊧ ⋁n

i=1 ◻σpi, because for every i, % sees a point in Mi where σpi is not true. Thus
we will be done if M, % ⊧ ⋀m

k=1 ◻(σrk → ◻(σrk ∨ ◻+σq)). This means that for any k and any w in
M with M,w ⊧ σrk one has M,w′ ⊧ σrk ∨◻+σq for all w′ with wRw′. But any such w′ is either in
some Mi and then M,w′ ⊧ ◻+σq, or w′ = %, and then because of wRw′ also w = %, so M,w′ ⊧ σrk.
In both cases M,w′ ⊧ σrk ∨ ◻+σq.
(2) The rule (Tm

n ) is proved to be admissible in a similar way (this time, an irreflexive extra root
is needed). �

Lemma 5.2. Suppose that a stable canonical rule ρ(F,D) has the following property. Given a
transitive modal space (W,R) and a clopen up-set Y ⊆ W and a stable surjective map f ∶ Y → F
satisfying CDC for D, there is stable surjective f̄ ∶W → F with f ⊆ f̄ satisfying CDC for D. Then
ρ(F,D) is equivalent to an assumption-free rule.

Proof. Let ρ(A,D) be the rule

(1) ϕ

ϕ1 ∣ ⋯ ∣ ϕn

We will show that under the assumption of the lemma this rule is equivalent to

(2) ◻+ϕ→ ϕ1 ∣ ⋯ ∣ ◻+ϕ→ ϕn

(2) ⇒ (1) is clear. Now assume that a transitive modal space (W,R) does not validate (2).
We show that then it does not validate (1). Let V be a valuation on W such that V (◻+ϕ) /⊆
V (ϕ1), . . . , V (◻+ϕ) /⊆ V (ϕn). We set Y = V (◻+ϕ) ⊆ W . Then Y /⊧ (1). This means that there
is a stable surjective f ∶ Y → F satisfying CDC for D. By the condition of the lemma f can be
extended to a stable surjective map f̄ ∶W → F satisfying CDC for D, implying W /⊧ (1). �

The following is a modal analogue of Definition 3.3.

Definition 5.3. A stable canonical rule ρ(A,D) is called trivial○ if for all S ⊆ A∗ there is a reflexive
x○ ∈ A∗ such that

(1): S ⊆ ↑x○
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(2): For all d ∈D, if d ∩ ↑x○ ≠ ∅ then d ∩ ({x○} ∪ ↥S) ≠ ∅.

A stable canonical rule ρ(A,D) is called trivial● if for all S ⊆ A∗ there is x● ∈ A∗ such that

(3): S ⊆ ↑x●
(4): For all d ∈D, if d ∩ ↑x● ≠ ∅ then d ∩ ↥S ≠ ∅.

A stable canonical rule ρ(A,D) is called trivial iff it is both trivial○ and trivial●.3

Theorem 5.4. The following are equivalent:

(1) ρ(A,D) is admissible.

(2) ρ(A,D) is derivable from {S`,m
n ∶m,n, ` ∈ ω} ∪ {Tm

n ∶m,n ∈ ω}.
(3) ρ(A,D) is not trivial.
(4) ρ(A,D) is not equivalent to an assumption-free rule.

Proof. (2) ⇒ (1): We know that all S`,m
n and Tm

n are admissible, i. e. valid in the free K4-algebra

on infinitely many generators. Since moreover ρ(A,D) is derivable from {S`,m
n , Tm

n ∶ `,m,n ∈ ω},
we conclude that ρ(A,D) is also valid on this algebra, i. e. is admissible.

(3) ⇒ (2):

Suppose ρ(F,D) is not derivable from {S`,m
n ∶ m,n, ` ∈ ω} ∪ {Tm

n ∶ m,n ∈ ω} with F = A∗. Then

there is a transitive modal space (W,R) validating all S`,m
n ’s and all Tm

n ’s and refuting ρ(F,D).
The latter means that there is a stable surjective f ∶W → F satisfying CDC for D. Fix S ⊆ F .

We will first show that there exist x○ and x● satisfying the conditions of Definition 5.3(1)-(2).
In what follows we are working in the modal algebra (W,R)∗; all connectives and modal operators
are taken in this algebra. For s ∈ S let ps = W ∖ f−1(s) ⊆ W , let q = f−1(↥S) and let rk = f−1(k)
for k ∈ F . Let C = {v1, . . . , v`} be a finite set of clopens of W . Since f is continuous and F is
discrete, ps and rk are clopens, while q is a clopen up-set in W since f is also stable. In particular,
q and ◻+q have the same underlying set. Moreover, for all s ∈ S we have ◻+q ⊈ ps. Indeed, for
any ws ∈ f−1(s) we have that ws ∈ q but ws ∉ ps = W ∖ f−1(s). This means that the conclusion

of the rule S`,m
n is falsified on W . It follows that W falsifies the premise of that rule as well.

Hence there exists wC ∈ W such that wC ∈ ⋂`
l=1(◻vl → vl), wC ∈ ⋂k∈F ◻(rk → ◻(rk ∪ ◻+q)) and

wC ∉ ⋃s∈S ◻ps. The latter can be equivalently written as wC ∈ ⋂s∈S◇f−1(s). We thus obtain
that the set {◻v → v ∣ v ∈W ∗} ∪ {⋂k∈F ◻(rk → ◻(rk ∪ ◻+q)) ∩ ⋂s∈S◇f−1(s)} of clopens of W has
finite intersection property. Since W is compact, the intersection of all these clopens is nonempty,
i. e. there is w ∈ W that belongs to all of these clopens. That is, w belongs to all clopens of
the form ◻v → v (which means that w is reflexive), and also w ∈ ⋂k∈F ◻(rk → ◻(rk ∪ ◻+q)) and
w ∈ ⋂s∈S◇f−1(s). By the latter, we have that for every s ∈ S there is a w′ such that wRw′ and
f(w′) = s. In other words, f being stable, ↑f(w) ⊇ S. Let x ∶= f(w). Then condition (1) of
Definition 5.3 is met (notice that x is reflexive because w is reflexive and f is stable). We now show
that condition (2) is met as well.

Since w ∈ ⋂k∈F ◻(rk → ◻(rk ∪◻+q)), in particular we have w ∈ ◻(rx → ◻(rx∪◻+q)). Since w ∈ rx,
we obtain that w ∈ ◻(rx ∪ ◻+q) = ◻(¬rx → ◻+q). This means that any w′ such that wRw′ and
f(w′) ≠ x will be necessarily in ◻+q.

Now if d∩ ↑x ≠ ∅ for some d ∈D, then as x = f(w), by the CDC of f there is w′ such that wRw′

and f(w′) ∈ d. Then, either f(w′) = x and then f(w′) ∈ d ∩ {x}, or f(w′) ≠ x and then as we have
seen f(w′) ∈ ↥S. Thus f(w′) ∈ d∩ ({x}∪ ↥S), so that d∩ ({x}∪ ↥S) ≠ ∅. This implies that ρ(F,D)
is trivial○ (putting x○ = x).

Next we show that there exists an x● satisfying the conditions of Definition 5.3(3)-(4). As above,
for s ∈ S let ps = W ∖ f−1(s) ⊆ W , let q = f−1(↥S) and let rk = f−1(k) for k ∈ F . Again, the
conclusion of the rule Tm

n is falsified on W and consequently W falsifies the premise of that rule as

3Notice that the points x○ and x● may coincide.
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well. Thus there is w ∈ ⋂k∈F (◇rk →◇(rk ∧◻+q)) and w ∉ ⋃s∈S ◻ps. By the latter, we have that for
every s ∈ S there is a w′ such that wRw′ and f(w′) = s. In other words, f being stable, ↑f(w) ⊇ S.
Let x ∶= f(w). Then condition (3) of Definition 5.3 is met. For condition (4), consider d ∈ D such
that d ∩ ↑f(w) ≠ ∅. Then, since f satisfies CDC for D, there is an u ∈W with wRu and f(u) ∈ d.
Thus w ∈ ◇rk for k = f(u), as rk = f−1(k); since w ∈ ◇rk → ◇(rk ∧ ◻+q), there is w′ such that
wRw′ and w′ ∈ rk ∩ ◻+q, which means in particular that f(w′) = k ∈ d ∩ ↥S, as wanted. Putting
x● = x we deduce that ρ(F,D) is trivial● and hence, trivial.

(4) ⇒ (3):
Suppose ρ(A,D) is trivial. We show that then it is equivalent to an assumption-free rule. Using

Lemma 5.2, it suffices to extend any stable surjective map f ∶ Y → F from a clopen up-set Y ⊆W
of a transitive modal space (W,R) to F satisfying CDC for D to an f̄ ∶ W → F with the same
properties.

For w ∈W let fw = f(Y ∩↥w). If S ⊆ F is of the kind fw, let YS ⊆W be YS = {w ∈W∖Y ∶ fw = S}.
We take a minimal S ⊆ F such that YS ≠ ∅ (i. e. that S = fw for some w ∉ Y ) and extend f to
Y ∪ YS .

Claim 5.5. Y ∪ YS is a clopen up-set.

Proof. That Y ∪ YS is an up-set follows from minimality of S. Indeed, if x ∈ Y ∪ YS and xRy, then
either y ∈ Y and then we are done, or, provided y ∉ Y , then, since Y is an up-set, also x ∉ Y , so
x ∈ YS , i. e. fx = S. Moreover ↥y ⊆ ↥x, hence

fy = f(Y ∩ ↥y) ⊆ f(Y ∩ ↥x) = fx = S,
so by minimality of S necessarily fy = S. The latter means y ∈ YS , so y ∈ Y ∪ YS . Thus Y ∪ YS is
an up-set.

To show that Y ∪ YS is clopen it suffices to show that YS is clopen. Indeed, for any w ∈ W we
have that w ∈ (◻+(Y → f−1S))∖Y if and only if f(Y ∩ ↥w) ⊆ S and w ∉ Y , which by minimality of
S implies that actually f(Y ∩ ↥w) = S. Thus YS = (◻+(Y → f−1S))∖Y is clopen. This finishes the
proof of the claim. �

We now extend f to f̄ with Y ⫋ domf̄ = Y ∪ YS . Recall that, by the triviality of (F,D), there
exist two (not necessarily distinct) points s●, s○ such that (i) S ⊆ ↑s● and d ∩ ↑s● ≠ ∅⇒ d ∩ ↥S ≠ ∅
for all d ∈ D; (ii) s○ is reflexive, S ⊆ ↑s○ and d ∩ ↑s○ ≠ ∅ ⇒ d ∩ ({s○} ∪ ↥S) ≠ ∅ for all d ∈ D. We
distinguish two cases, depending whether S has a reflexive root or not.

Case (I): S has a reflexive root s ∈ S. We put:

f̄(w) =
⎧⎪⎪⎨⎪⎪⎩

f(w), if w ∈ Y,
s, if w ∈ YS ∖ Y.

It is easy to see that f̄ is stable (s is reflexive). Now we also show that f̄ is continuous. Indeed,
for every x ∈ F we have f̄−1(x) = f−1(x) (if x ≠ s) or f̄−1(x) = f−1(x)∪YS (if x = s). Since the latter
is a clopen set, continuity follows. Also, f̄ satisfies CDC: the relevant case is when d ∩ ↑f̄(w) ≠ ∅
for d ∈D, w ∈ YS . We have f̄(w) = s. But fw = S (because w ∈ YS), i. e. f(Y ∩↥w) = S. Thus, there
is w′ ∈ Y with wR+w′ and f(w′) = s. Since w ∉ Y and w′ ∈ Y , we have wRw′. We can use the fact
that f satisfies the CDC: since w′ ∈ Y = dom(f) and ↑f̄(w) = ↑s = ↑f(w′), we get ↑f(w′) ∩ d ≠ ∅
and also f(↑w′) ∩ d ≠ ∅; as a consequence f̄(↑w) ∩ d is also not empty.

Case (II): S does not have a reflexive root. We further distinguish two sub-cases, depending
whether there are irreflexive R+-quasi-maximal points in YS or not. Notice that such points form
the clopen antichain Y ●

S = YS∖↓YS .
Subcase (II.1): suppose Y ●

S = ∅, i. e. there are no irreflexive quasi-maximal points in YS . Then,
as noted above, every point in YS can see a quasi-maximal reflexive point in it. We put:
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f̄(w) =
⎧⎪⎪⎨⎪⎪⎩

f(w), if w ∈ Y,
s○, if w ∈ YS .

It is easy to see that f̄ is stable (s○ is reflexive). Now we also show that f̄ is continuous. Indeed,
for every x ∈ F we have f̄−1(x) = f−1(x) (if x ≠ s○) or f̄−1(x) = f−1(x) ∪ YS (if x = s○). Since
the latter is a clopen set, continuity follows. Also, f̄ satisfies CDC: the relevant case is when
d ∩ ↑f̄(w) ≠ ∅ for d ∈D, w ∈ YS . We have f̄(w) = s○ by construction and d ∩ ({s○} ∪ ↥S) ≠ ∅ by the
choice of s○. That is, either (i) s○ ∈ d or (ii) there is an s′ ∈ S such that d ∩ ↥s′ ≠ ∅. In case (i), we
pick a quasi-maximal reflexive w′ in YS such that wR+w′: since f̄(w′) = s○, we have that f̄(↑w)∩d
contains s○ and is not empty. In case (ii), recall that fw = S (because w ∈ YS), i. e. f(Y ∩ ↥w) = S.
So there is w′ such that wR+w′, w′ ∈ Y and f(w′) = s′. Since w ∉ Y , we must have wRw′. We can
then apply CDC for f to get w′′ such that w′Rw′′ with f(w′′) ∈ d. Thus, wRw′′ by transitivity
and f̄(w′′) = f(w′′) ∈ d: again, f̄(↑w) ∩ d is not empty.

Subcase (II.2): Y ●

S is not empty, i. e. YS has irreflexive quasi-maximal points. Here we first make
a preliminary extension f0 of f to Y ∪ Y ●

S in order to include such points into the domain of the
map. We then extend the new f0 to f̄ on YS ∖ ↓Y ●

S .
Notice that s● ∉ S because S ⊆ ↑s● and S does not have a reflexive root. We put:

f0(w) =
⎧⎪⎪⎨⎪⎪⎩

f(w), if w ∈ Y,
s●, if w ∈ Y ●

S .

It is easy to see that f0 is stable (points in Y ●

S are irreflexive). Now we also show that f0 is
continuous. Indeed, for every x ∈ F we have (f0)−1(x) = f−1(x) (if x ≠ s●) or (f0)−1(x) = f−1(x)∪Y ●

S
(if x = s●). Since the latter is a clopen set, continuity follows. Also, f0 satisfies CDC: the relevant
case is when d ∩ ↑f0(w) ≠ ∅ for d ∈ D, w ∈ Y ●

S . We have f0(w) = s● by construction. From
d ∩ ↑s● ≠ ∅ we get that there is an s′ ∈ d ∩ ↥S, i. e. there is s′′ ∈ S such that s′′Rs′ ∈ d. Then,
since S = fw = f(Y ∩ ↥w), there is w′′ such that w′′ ∈ Y , wR+w′′ and f(w′′) = s′′. Since w ∉ Y , in
fact we have wRw′′ and by the CDC for f (w′′ ∈ dom(f) = Y ), since f(w′′) = s′′Rs′ ∈ d, we get
f(↑w′′) ∩ d ≠ ∅. Thus ↑f0(w) ∩ d ⊇ ↑f0(w′′) ∩ d = ↑f(w′′) ∩ d ≠ ∅.

If we compute YS with f0 instead of f , we now get Y ′

S = YS ∖ ↧Y ●

S instead of YS : since s● ∉ S,
for any w we will have f0((Y ∪ Y ●

S ) ∩ ↥w) = S if and only if f(Y ∩ ↥w) = S and ↥w ∩ Y ●

S = ∅, i. e.
w ∈ YS ∖ ↧Y ●

S . It follows that quasi-maximal points in Y ′

S are all reflexive. We then can continue as
in Subcase (II.1) above and get an extension f̄ .

So we extended f to f̄ . We need to show that by repeating this procedure we cover the whole
of W . This holds since the following is true: if some S ⊆ F has been used for further extension
of the map according to the above procedure, then this same S can never occur again during any
subsequent extensions.

Indeed let fk, resp. fn be any further extensions of f to Y k, resp. Y n, k < n. Suppose we have
used some S for fk; then it cannot happen that S can be also used for fn.

Suppose, to the contrary, that S occurs as one of the candidates to build fn. Then in particular
S = fn−1w for some w ∈ Y n ∖ Y n−1. Then also w ∉ Y k, so S ≠ fk−1w (since Y k = Y k−1 ∪ Y k−1

S and Y k−1
S

consists precisely of those v ∉ Y k−1 for which fk−1v = S). In fact by minimality of S, fk−1w cannot be
included in S, so fk−1w ∖ S is nonempty. Now note that since fn−1 is an extension of fk−1, one has
fn−1w ⊇ fk−1w , hence also fn−1w ∖ S is nonempty, which contradicts the equality S = fn−1w above.

It thus follows that after each next extension at least one subset of F is excluded from all
subsequent extension steps. Thus after some step n there will be no w ∉ Y n and no S left with the
property fnw = S. Which just means that there is no w outside Y n, i. e. Y n =W .

(1) ⇒ (4): The proof is exactly the same as in Theorem 3.4.
�
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Corollary 5.6. A canonical rule ρ(F,D) has the following dichotomy property: it is either ad-
missible or equivalent to an assumption-free rule.

Corollary 5.7. Admissibility is decidable for K4.

Proof. The proof is similar to the proof of Corollary 3.7. �

Corollary 5.8. The rules {S`,m
n ∶m,n ∈ ω} ∪ {Tm

n ∶m ∈ ω} form an admissible basis for K4.

Proof. The proof is similar to the proof of Corollary 3.8. �

To conclude, we mention that the above results also hold for S4, with the following modifications:

(i) rules (Tm
n ) should be removed from the admissible basis; (ii) rules (S`,m

n ) are kept, but can be
simplified (we do not need the parameter ` either, because the conjuncts ⋀`

l=1(◻vl → vl) are now
valid formulas); (iii) in Definition 5.3, conditions (3)-(4) are removed (thus a stable canonical rule
is trivial in the new S4 sense iff it was just trivial○ in the old sense).

Remark 5.9. Recall that an algebra P in a variety V is called projective if for any surjective
homomorphism p ∶ A↠ B of V-algebras and any homomorphism b ∶ P → B in the diagram

A

P B

p

b

a

there exists a lift, i. e. a homomorphism a ∶ P → A with b = pa. It is well known that free algebras
are projective, that a retract of a projective algebra is projective, and that an algebra is projective
if and only if it is a retract of a free algebra.

For modal and Heyting algebras we can generalise the notion of projectivity to D-projectivity.
We will discuss only the modal K4-case here. Let (P,D) be a pair where P is a K4-algebra and
D ⊆ P . For brevity, let us call a map h ∶ P → A a D-morphism if h is a stable homomorphism
satisfying CDC for D. We will denote D-morphisms by h ∶ P A.

For a subset D ⊆ P of a K4-algebra P we will call the algebra P D-projective if any diagram

A

P B

p

b

a

of K4-algebras has a D-lift, that is, for any surjective modal homomorphism p and any D-morphism
b there is a D-morphism a with pa = b. It can be shown that P is D-projective if and only if it
is a D-retract of a free K4-algebra. The latter means that there exists a modal homomorphism
p ∶ F → P from a free K4-algebra to P and a D-morphism f ∶ P F with pf = idP .

Then our main theorem 5.4 is nothing but a characterisation of finite D-projective K4-algebras.
Namely it follows from the main theorem that for a finite K4-algebra P and D ⊆ P , TFAE: (1) P
is D-projective, (2) ρ(P,D) is not admissible, (3) The dual of P satisfies the triviality conditions
of Definition 5.3. Thus, in terms of D-projectivity we have the following dichotomy property: for
any finite K4-algebra P and any subset D ⊆ P , the stable canonical rule ρ(P,D) is not admissible
if and only if P is D-projective.

Remark 5.10. Admissibility and unification over the basic (non-transitive) modal logic K are long-
standing open problems. Although the proofs of this paper do not apply to K directly, we note
that unlike the canonical rules of [17], stable canonical rules axiomatize consequence relations over
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K. It remains open whether stable canonical rules could be applicable in analysing admissibility
for non-transitive logics. In particular, whether they could be used in obtaining some dichotomy
property for K.
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