
TAMING LOGICS 

SZABOLCS MIKULAS



ILLC Dissertation Series 1995-12 

institute for logic, language and computation 

For further information about ILLC-publications, please contact 

Institute for Logic, Language and Computation 

Universiteit van Amsterdam 

Plantage Muidergracht 24 

1018 TV Amsterdam 

phone: +31-20-5256090 

fax: +31-20-5255101 

e-mail: illc@fwi.uva.nl



TAMING LOGICS 

Academisch Proefschrift 

ter verkrijging van de graad van doctor aan de 

Universiteit van Amsterdam, 

op gezag van de Rector Magnificus 

Prof.dr P.W.M. de Meijer 

in het openbaar te verdedigen in de 

Aula der Universiteit 

(Oude Lutherse Kerk, ingang Singel 411, hoek Spui) 

op vrijdag 8 september 1995 te 11.30 uur 

door 

Szaboles Mikulas 

geboren te Kecskemét.



Promotors: 

Prof.dr. H. Andréka 

Prof.dr. J. van Benthem 

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG 

Mikulas, Szabolcs 

Taming logics / Szabolcs Mikulás. - Amsterdam : Institute 
for Logic, Language and Computation, Universiteit van 
Amsterdam. - Ill. - (ILLC dissertation series ; 1995-12) 

Proefschrift Universiteit van Amsterdam. - Met lit. opg. 
ISBN 90-74795-33-1 
Trefw.: wiskundige logica / computerlinguistiek. 

Copyright © 1995 by Szabolcs Mikulas 

On the cover “Does humor belong in logic?” by Pal Toth. 

ISBN: 90-74795-33-1



CONTENTS 

Acknowledgments 

Intro 

1 The beasts and the whip 

11 Logics .. 1... eee eeen 

1.1.1 Logic in general. ...............0 0.02000 ees 

1.1.2 Distinguished logics... .........0..0 000 ee eee 

1.1.3 Metalogical notions 

Algebras... 1 1. ee 

Bridge between logics and algebras 

1.3.1 Hilbert-style completeness 

1.3.2 Weak completeness 

1.3.3 Decidability 

1.2 

1.3 

The Lambek calculus 

2.1 Completeness of the Lambek calculus ................... 

2.1.1 Completeness w.r.t. relativized relational semantics ....... 

2.1.2 Extensions of the Lambek calculus ................ 

2.1.3 Completeness w.r.t. square relational semantics ......... 

2.1.4 Language models ............... 0000 eee eeae 

2.2 Representation of ordered residuated semigroups............. 

2.2.1 Representation with transitive relations. ............. 

2.2.2 Extending the similarity type 

2.2.3 Representation with squares 

2.3 The Lambek bridge 

Counting arrows 

3.1 Arrow logic with graded modalities ..................4., 

3.2 Relativized relation algebras with counting operations 

3.2.1 Axiomatization of WAD 

3.2.2 Axiomatization of WAS® .......0.0..0.0. 0.000000 oe 
3.2.3 Decidability of (RlyRRA)“® 

Squares and rectangles 

4.1 Weak soundness and completeness .. ........e 28004 

4.1.1 First-order logic... 

4.1.2 Arrow logic eee 

4.2 Representation of rectangularly dense algebras .............. 

vil 

em
d



VI ACKNOWLEDGMENTS 

4.2.1 Cylindric and quasi-polyadic algebras. .............. 94 

4.2.2 Boolean monoids and relation algebras .............. 105 

Extro 113 

Bibliography 115 

Samenvatting 121



ACKNOWLEDGMENTS 

I am deeply indebted to my supervisors: Hajnal Andréka and Johan van Benthem. 

Johan, besides being a nice football partner, helped me score a few goals, by stimulating 

discussions and his intensive care. Hajnal taught me many things: algebra, logic 

(algebraic and other), persistence, drawing pictures, etc. She, together with Istvan 

Németi and Ildikó Sain, has been a nice teacher, and they have been my “pótapuka” 

as well. Thanks to all of you for your moral and scientific support! 

I would like to thank my co-authors: Hajnal Andréka, Steven Givant, Maarten 

Marx, Istvan Németi, and András Simon. Steven Givant, Agnes Kurucz, Maarten 

Marx, and Yde Venema read various parts of the dissertation. I found their comments 

very useful. 

I would like to express my gratitude to all my teachers and colleagues at the Sym- 

bolic Logic Department of ELTE and at the Mathematical Institute in Budapest, and 

at the Department of Mathematics and Computer Science of the University of Ams- 

terdam. It has been a great help to work in an inspiring atmosphere and that I could 

present my (sometimes half-cooked) ideas in the “snelkookpan” sessions in Amsterdam 

and at the seminars of the Logic Graduate School in Budapest. Thanks are due to 

everybody who attended these talks and/or showed interest in my work. 

I would also like to thank the following people for various reasons: Natasha Alechina, 

Patrick Blackburn, Frank de Boer, Peter de Jong, Marco Hollenberg, Marianne Kals- 

beek, Natasha Kurtonina, Agnes Kurucz, Anna Madarasz, Andras Máté, the Pijls 

family, Krisztina Polgardi, László Pólos, Maarten de Rijke, Jan Rutten, Imre Ruzsa, 

Jerry Seligman, Daniele Turi, Yde Venema. Special thanks are due to Guszti Eiben 

and Maarten Marx. Very special thanks are due to Monique for playing darts (which 

helped me understand the nature of arrows) and other nice games with me. 

Thanks are due for financial support to the Hungarian National Foundation for 

Scientific Research, to TEMPUS and to the Department of Mathematics and Computer 

Science of the University of Amsterdam. 

Finally, I would like to emphasize that, in spite of the title, no creature was harmed 

by any means in connection with the writing of the dissertation. 

Halfway between Amsterdam and Budapest Szabolcs Mikulás 

July, 1995. 

vil





INTRO 

“What is your conceptual continuity?” 

Frank Zappa 

This dissertation is about algebraic logic, i.e., about algebras, logics, and their connec- 

tion. In particular, we will investigate modal logics with dynamic character, predicate 

logics, and the corresponding classes of algebras of relations. Further, we will develop 

a “bridge” connecting logics and algebras, and associating metalogical and algebraic 

properties. 

Let us have a closer look at the connection between logics and algebras. Given a 

logic L, we may consider the corresponding class Alg(L) of algebras. Metalogical prop- 

erties have their algebraic counterparts too, e.g., completeness of a logic corresponds to 

finite axiomatizability on the algebra side, and the decidability of the set of validities 

of L is equivalent to the decidability of the equational theory of Alg(L). Such a bridge 

between logics and algebras enables us to investigate logics by investigating their al- 

gebraic counterparts, and by translating the algebraic result yielding an answer to our 

(purely) logical question. This approach has the following advantage: the algebraic 

counterparts of metalogical properties are well-investigated algebraic properties, and 

we can use the well-developed techniques of (universal) algebra to find the solutions 

to our problems. On the other hand, logical methods can be used to prove algebraic 

theorems. Such example is the decidability of the equational theories of certain classes 

of algebras proved by filtration, cf., e.g., [Ma95]. 

TAMING. In this dissertation, our main hobbyhorse will be “taming”?, i.e., finding 

well-behaved versions of well-investigated logics. We will achieve this goal by applying 

the powerful machinery of algebraic logic and universal algebra, and by using the bridge 

described above. 

The problem with many logics is that they have some undesirable metalogical prop- 

erties such as incompleteness, undecidability, or the lack of the Beth definability and 

the Craig interpolation properties. We will apply several taming strategies to find 

versions of logics such that these tamed versions behave much nicer than the original 

logics. 

Our main strategy to find tamed versions of logics will be the following. Given a 

logic L, we will consider its algebraic counterpart Alg(L). Alg(L) may have undesirable 

properties reflecting some ugly feature of L. Using the techniques, e.g., relativization 

(see Section 1.2 and Chapter 3), of algebraic logic, we will define another class K of 

algebras such that (i) K is rather “close” to Alg(L) and (ii) K has nicer properties than 

1Taming is a classical topic in literature, cf. [Sh], but it was hardly ever used in connection with 

logics.



2 INTRO 

Alg(L) has. That version of L which corresponds to K has nicer-metalogical propertie: 

and its (expressive) power is still large. 

ORGANIZATION. The organization of the dissertation reflects the strategy of using th 

bridge. In Chapter 1, we will introduce the logics we are going to investigate: severe: 

versions of arrow logic AL, and (finite variable fragments of) classical first-order logi 

FOL. Then we recall some basic definitions and results of algebras, and work ou 

the bridge between logics and algebras. In this dissertation, we will concentrate o 

completeness and decidability. But the bridge between logics and algebras, and th 

idea of taming are not restricted to these metalogical properties. See [AKNS] fc 

developing the bridge for more metalogical properties and [Ma95] and [MMN94] fc 
taming. 

In the other chapters we will develop three taming strategies. These chapter 

contain a section about logics and another section about algebras. Usually, the re 

sults of the logic section will follow from the corresponding algebraic results using th 

bridge described in Chapter 1. In the logic sections, we will state (in)completenes 

and (un)decidability results for arrow logics and predicate logics. The algebraic sec 

tions will contain the corresponding (non-)finite axiomatizability and (un)decidabilit 
theorems for algebras of relations. 

In Chapter 2, we will apply the following taming strategy. We will consider frac 

ments of pair arrow logic PAL, and state completeness and decidability results for thes 

versions, while the full version of pair arrow logic lacks these properties. The idea be 

hind this approach is that the undecidability and incompleteness of PAL are cause 

by the interaction of two connectives: composition and disjunction. We will conside 

fragments in which only one of them (composition) is present. This approach has th 

advantage that the meanings of the connectives are the original ones. For instance 

composition remains an associative connective. The most important logic of this char 

ter is the Lambek calculus LC. The main result is the completeness of LC with respec 

to relational semantics. This result provides us with a new perspective on LC: beside 

its linguistic applications, it is a substructural logic with a dynamic character. Th 

corresponding algebraic result is the representability of (semilattice-)ordered residuate 

semigroups as algebras of binary relations. 

In Chapter 3, we will consider relativized versions of arrow logic AL. First, w 

will widen the class of models for the pair version PAL, and then (re-)introducin 

connectives that are not definable in the weakened version. The advantage of thi 

approach is that all of the connectives of the original logic are present. Moreover, w 

can add connectives that are not definable even in the original version. For instance, w 

will define complete and decidable versions of PAL in which the difference operator an: 

the graded modalities are definable. The price we have to pay for these results is tha 

some of the connectives have slightly different meanings than in the original version 

The most important difference is that instead of (full) associativity of compositior 

only its weakened version holds. The corresponding algebraic results are the finit 

axiomatizability and decidability of expansions of weakly associative relation algebra 

and other relativized versions of representable relation algebras.
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In Chapter 4, we will prove completeness results for the original versions of PAL 

and FOL. That is, in this case, we will not reduce their power. However, this requires 

to allow inference systems with more complicated rules: we have to make some easily 

decidable, syntactic restriction on the application of some inference rules. The alge- 

braic counterpart of this kind of completeness results is that those Boolean monoids, 

relation, cylindric, and quast-polyadic (equality) algebras which satisfy a certain density 

condition are representable as algebras of relations. 

Finally, we will mention some open problems connected to the dissertation, related 

results, and possible further directions.
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THE BEASTS AND THE WHIP 

The aim of this chapter is to introduce the basic definitions of logics and algebras and 

to explain the connections between metalogical and algebraic properties. First, we give 

the definitions of the logics we are going to investigate — the beasts to be tamed —, 

then recall some basic definitions and results from universal algebra — the whip we 

will use to tame —, and build a “bridge” between logics and algebras. We will use this 

bridge to convert algebraic results to theorems about logics. The techniques of algebraic 

logic and universal algebra will help us solve difficult logical problems. Moreover, we 

can use these tools to design logical systems with nice metalogical properties and large 

(expressive) power. 
The following chapters will be based on this chapter in the sense that we will use 

the bridge theorems of Section 1.3 to prove metalogical theorems. To understand the 

connection between logics and algebras it is not absolutely necessary to be familiar with 

all the technical details of the proofs of these theorems. Although, it may help to get 

insights about the taming strategies. 

1.1 LoGics 

In this section, we give the definition of logic in general, and define several logics that 

we will investigate later. Then we recall the definitions of some metalogical notions. 

1.1.1 LOGIC IN GENERAL 

The following definition of logic is slightly narrower than the notion of strongly nice 

logic in [AKNS]. However, this amount of generality will be sufficient for our purpose, 

i.e., almost all of the logics investigated later satisfy the conditions of Definition 1.1.1. 

Some of the logics in Chapter 2 are not logics in the sense of Definition 1.1.1, that is 

why we develop the algebraization of these logics in Section 2.3. 

Most of the logics we will consider extend classical propositional logic, i.e., the 

connectives of propositional logic are definable, and they have their usual meanings. 

That is why we use the symbols T and 4 in the following definition. This does not 

imply that true, and biconditional of classical propositional logic must be definable in a 

logic. However, in the logics of this section, T and <> are indeed true and biconditional, 

respectively. We also note that, instead of the constant T, we could use the formula 

yp >p (wp any formula). 

Definition 1.1.1. (Logic, L) By a logic we mean an ordered tuple 

LS (FML, Et, mean,) 

9



6 THE BEASTS AND THE WHIP 

satisfying the following conditions. 

1. There is a set Cn(L), the set of logical connectives of L, and every c € ( 

has a rank r, € w.! We will denote the set of logical connectives with ri 

by Cn,(L). There is a set P, the set of propositional variables, or param 

or atomic formulas, such that F, is the smallest set satisfying the followin 

conditions. 

(a) P C Fi. 

(b) If c € Cn‚(L) and go,..., e-1 € Fr, then c(~o,..., pr-1) € FL. 

The algebra 31 def (FL, c)ceen(u) is called the formula algebra of L. 

2. My is some class, called the class of models. 

3. mean, is a function with domain F, x M,, and, for every Jt € M,, the fur 

mean)” def (mean, (p, Dt) : p € Fi) is a homomorphism from ¥,. Or, in 

words, the relation p ~ defined by mean?!(p) = mean?!(W) is a congr 
relation on 1. 

4. EL is a binary relation, called truth, between models and formulas: FL C M 

5. There are a binary connective + and a zero-ary connective T such that 

(a) (VIN € M_)(Vy, w € FL)(meanc(y, Dt) = mean, (y, Wt) <= Mt Er wp + 
(b) (VIE ML)(Vy~ € FL)(IN EL. p= ME pT). 

6. (Vd, po, Pr Ee Fi) (Vpo, Pr E P)((VIN € M.) 90 FL (p) => (\ 

MM Er o(p/G)), where ~(p/G) denotes the formula given by simultan 
substituting p; for every occurrence of p; (t < k) in v. 

7. (VON € Mi) (Voo, -++)> PRE Fi) (Voo, ‚Dr € PAN € ML) (Vp € Fi) 

mean, (4, It) = mean, (~(p/P), M). 

We say that a formula w is a semantical consequence of the set I’ of formulas, in sy 

TE p, iff, for every model M, 

ME TME p 

where MN FE, T abbreviates that, for every w € T, Mt E_ w. A formula p is valid 

if it is a semantical consequence of the empty set of formulas. 5 

Sometimes, in the definition of a logic, we will omit some of the components 

ordered tuple above. We can do it without loss of generality, cf. [ANS94]. 
confusion is likely, we will omit the subscript L form Fi, etc. 

1.1.2 DISTINGUISHED LOGICS 

Now we give the definitions of several logics. It is easy to check that all of these 

satisfy the conditions of Definition 1.1.1. 

1The symbol w denotes the set of natural numbers, or, equivalently, the set of finite ordir 
will consider every element n of w as the set of all natural numbers smaller than n: n = {0,1,.. 
In particular, 0 = 9.
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First we recall the definition of a multimodal logic, called arrow logic AL, cf. [vB94], 

[Ve91], and [Ve92]. Later we will define several versions of AL, e.g., we will consider 

fragments, or we will expand the set of connectives, or restrict the class of models, etc. 

For more on arrow logic, we refer to [AKNSS], [Ma95] [MMNS], [MMN94], [Mi92b] and 
[Si92]. 

Definition 1.1.2. (Arrow logic, AL) Arrow logic AL is defined as 

AL (Fact, Mac, Fat, meanaL) 

where Far, Mat, Fat, and meana, are defined as follows. 

1. Cn(AL) = {A,7,¢,@, +6} where cd is a O-ary connective, — and ® are unary 
and A, e are binary connectives. That is, Fa, is the smallest set satisfying the 

following four closure conditions: 

PC Far 

pe Far => 0, OP € Fat 

pp E Far > (PAY), (wed) € Far 
Ld € Fac. 

We will also use the well-known derived connectives +, «+, V, and the formulas 

false (1) and true (T). 
2. An arrow frame for AL is a Kripke frame with three accessibility relations cor- 

responding to the extra-Boolean connectives. That is, it is an ordered tuple 

(W,C,R,I), where W, called the set of arrows, is a non-empty set, and C, R, 

and J are ternary, binary, and unary relations on W, respectively; Le, C C 

WxWxwWw,RCWxW,andI CW. 

An arrow model for AL is an arrow frame enriched with a valuation v. More 

precisely, it is an ordered tuple (W,C,R,JI,v), where v : P —> P(W), ie, to 

every parameter, v associates a subset of W. Maz is the class of all arrow models. 

3. (Local) Truth of a formula p at an arrow w € W in a model (W,C,R, I, v), 

denoted as wl y, is defined by recursion as follows. 

e IfpeP, then w lt p <> we v(p). 

wit (PAY) > (wit yg &wit y). 
wit np EE not w IF p (also denoted as w If p). 

e wit (pe) es (Sw, we € W)(Cwwwe & wi Ik p & we IF). 

wit @p (dw, € W)(Rww, & wi Ik p). 

e wit & Tw. 

(Global) Truth in a model and validity in a frame are defined in the usual way. 

That is, 

e (W,C,R,I,v) Far ¢ &5 for every arrow w € W,‚ wl 

e (W‚C,R,I Ep EB for every valuation v, (W,C,R,I,v) Far ¢.
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4. The function meana, is defined as follows. For every model M = (W,C, R, 

Mat and formula p € Far, 

meanat(y, IN) 2 {w EW: wl p}. 

In the following definition, we restrict the class of models for AL to binary rel 

and interpret the accessibility relations in a natural way. 

Definition 1.1.3. (Pair arrow logics: PAL, PALy, and PAL,,) 

1. Patr arrow logic PAL is defined as 

PAL © (Feat, Mpat, Frat, meanpat) 

where Feat, Mpat, Frat, and meanpa, are defined as follows. 

The set of formulas coincide with that of AL: Fpa, = Far. 

An arrow frame for PAL, also called a pair frame, is an ordered tuple (W, C 

where W is a non-empty set of ordered pairs, i.e., W is a binary relatic 

C, R, and I are relation composition, converse, and identity relativized 

respectively: that is, for every (x, 2’), (y, y’), (z, 2’) € W, 

C(x, 2'){y, y’) (2, 2’) & r=yky=zdr=z! 

Ray) > zer =y 
I(x, 2’) & rar’ 

An arrow model for PAL, a pair model, is an arrow frame enriched with a va. 

v. The definitions of the other notions are the usual. 

Note that it follows that the interpretations of the extra-Boolean connecti 

as below. 

e (x,y) IF (pep) => Fz((z,z), (z,y) EW & (z,z) Ik p & (z,y) IF y). 
e (x,y) IF Op => ((y,z) EW & (y,z) IF p). 
e (zy) lk ib r= y. 

. Let r, s, and t abbreviate ‘reflexive’, ‘symmetric’, and ‘transitive’, respe: 

and let H C {r,s,t}. 
‘ By PALy we mean that version of PAL where the universes of the frames 

the conditions in H. Thus, e.g., PAL;,,; denotes that pair arrow logic 

every frame has a symmetric and reflexive universe. 

. By the square version PAL,, we mean that version of PAL where the fran 

Cartesian spaces, i.e., they have the form U x U. 

Next we define several versions of classical first-order logic. We will consider fra; 

with n variables, their restricted versions where the order of the variables in pri 

symbols is fixed, and their equality-free fragments, cf. [HMT85] 4.3.
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Definition 1.1.4. (First-order logics with n variables: L,~, "L,~, L„” and 

*L,*) Let n be a natural number. 
Ordinary first-order logic with n variables with equality is defined as the ordered 

tuple 

LE (F, M, F, mean) 

for which the following conditions hold. 

1. Let V = {vp,-..-;Un—1} be the set of variables. Let P denote the set of atomic 

formulas, i.e., P def {r(Vj5)---)Vjn_1) 27 E RE jo,---,jn-1 E n} for some set R; 

the symbols r (r € R) are called relation or predicate symbols. Then the set F of 

formulas is the smallest set H satisfying: 

e PCH 

e uv; =v; € H for every 1,7 En 

e VEH iEen(pAw),-p, duy € A. 

Sometimes we will use the notation 4;9 instead of Jv;p, and ó;; instead of v; = vj. 

By the set of connectives of L,~, Cn(Ln~), we mean the set {A, 7, 5;,6;; : 4,7 € 

2. The class M of models is defined by 

ME {(M,1):M#0,I:R— P("M)} 

where "M = {(z0,...,Zn-1) : Zo,---)Zn-1 € M}. If Mt = (M,I) € M, then M is 

called the universe of M. 

3. Let ke "M. We will consider k as an evaluation of the variables such that, for 

every i € n, the value given to the variable v; by k is k(1). We define local truth 

(Nt, k) IH p (sometimes also denoted by I lt p[k], or by k lt p) by induction on 
the complexity of ¢: 

© (MN, k) Ik r(vio, vs) <=> (k(Jo),---.kGn-1)) EI(r) (r € R) 
e (Mk) Iku, =v; ES kli) =k(j) (4,7 En) 
e if W,U € F andz En, then 

def 
(ON, k) Ik mp, <= > not (MM, k) lk yy 

(NK) by Abe SS (MK) IF yy & (M, k) Ib eo 
(OM, k) Ik Bu, ES (A © ™M) (V5 #i)k'(G) = blj) & (MK!) IF dh. 

If (St, k) IH p, then we say that the evaluation k satisfies the formula p in the 

model It. We say that IN satisfies, or validates y, or that wp is true in M, in 

symbols MM E= p, iff for every k E "M, (M,k) lt p. 

4. The interpretation, or meaning, of a formula p in a model IN is defined as 

mean(w, M) = {kE"M : (M,k) lk p}. 

Instead of mean(p, IM) sometimes we will use the notation y™.
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Restricted first-order logic with n variables with equality, "L„”, differs from the cor- 

responding ordinary logic in the following: in restricted logic the order of the variables 

in atomic formulas r(vo,..., Un_1) is fixed. That is, the set of atomic formulas of "L,~ 

is {r(vo,.--;Tn-1): 7 € R}. 

L,* and "L„” denote the equality-free fragment of L,~ and "L,~, respectively, i.e, 

in this case, ó;; is not in the set of connectives. 1 

In the above definition we assumed that the language does not contain any constant 

or function symbol. We assumed also that every relation symbol r has arity n. These 

are not severe restrictions, a well-known fact. 

Later we will define (equivalent) modal versions of first-order logics, cf. Chapter 4. 

Then the quantifier 4; will be treated as a Ò type modality and 6,; as a modal constant. 

In the following definition, we define extensions of logics with counting and graded 

modalities, cf. [FC85], [Sa88], [vdH92], [dR93], and [HR93]. In many cases, these 
extensions are equivalent, cf. Theorem 1.1.6 below. We will assume that local truth IF 

can be defined, which holds fo: the above logics. We note that the graded modalities 

sometimes are defined using an accessibility relation (i.e, (n)p holds at w if there are 

at least n worlds accessible from w that make p true), and that Theorem 1.1.6 remains 

true if we use this definition. 

Definition 1.1.5. (Graded and counting logics: *L9"*, *L°“") Let « be w or a 

natural number greater than 0, i.e., Kk € {w} Uw \ 1, and let L be a logic where the 
relation |F is defined. 

1. The graded logic "L9™* is defined by adding a new unary connective (n), for every 

n € k, to the connectives of L. That is, in the definition of the set of formulas, 

we further require that (n) is a formula whenever so is y. The class of models 

is the same as for L. The interpretation of (n) is: 

wit (n)p S (Awo,.--,Wn-1)|{wWo,---, Wn-1}| =n & (Vi E n)w; IF p. 

The definitions of the other notions are the usual. 

2. The counting logic *L°"™ is defined by adding a new n-ary connective ©,, for 

every n € Kk, to the connectives of L. That is, in the definition of the set of 

formulas, we further require that On(Yo,..., Yn—1) is a formula whenever so are 

Y0,--+;Yn—-1- The class of models is the same as that of L. The interpretation of 

On Is: 

wit On(o,---) Pn—1) at, (Swo,..-,Wn-1) 

|{wo,---;Wn-1}| =n & (Wi € n)w; IF Gy. 

The definitions of the other notions are the usual. 

a 

Note that the truth of (n)p does not depend on the actual choice of w. That is, given 

a model and two “worlds” w and w’, w Ik (n)p <=> w' Ik (n)p. The same holds for 
On:
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Note that, for « > 3, "L9* is not a modal logic in the following sense. (n) does not 

distribute over disjunction for n > 1, i.e, the following is not a valid formula of *L9"°%: 

(n)(p VP) + ((n)p V (n)y¥). 

On the other hand, “L°"™ is a modal logic, since the following is valid: 

On(Yo, oy Pi V Pi, ve Yn-1) > (On($o, oy Pij- eey Pn-i) V On(Po, "ej Pi, sey Yn-1)) 

for every 1 € n and n € K. However, as it is shown in [ANS95], the two logics KL grad 

and *L°""* are equivalent in the following sense. 

Theorem 1.1.6. Let L be a logic extending propositional logic. Then to each formula 

y of | 9rad there is a formula y’ of "L@“" such that truth is preserved: w | p iff 

wit y’ for every w. The same holds with "L9* and “L°“™ interchanged. Moreover, 

the function p +> p! is computable. 

Proof: It is easy to see that (n)y can be defined in “L®“”** by the formula ©, (,..., ¢). 
For the other direction we show that the following formula p defines ©, (@o,..., n—1): 

ND: ien} A AL{(2)(GiV 95) ij en big j}A….A (n)(po VV pn-i). 

To see this we use a basic combinatorial result, the so-called Marriage Theorem’, cf. 

[Br77] Theorem 8.1.1. This theorem says that the family Ao,...,An-1 of sets has a 

system of distinct representatives, i.e., there is a set {ao,...,@n_,} such that 

|{ao, a ,On—1}| =n& (vi € n)a; € Aj, 

iff 

(Vk E n)(VOS ig <... << ie <n)lAi, U...U Aj, | > k. (1.1) 

Now, let IN be a fixed model, and let A; of {w: wit p;}. Then, for every w, w lt p iff 

Aop,...,An satisfy the formula 1.1 above iff we can find distinct w,’s from the A,’s for 

each 7 € n, ie, iff wit Ò(@o,...,@n-1)- 1 

In the following definition, we extend logics by adding the difference operator D, cf., 

e.g., (Se76], [Sa88], [GPT87], and [Ko92]. Then we prove that adding D is equivalent 
to adding the graded modalities (1) and (2). 

Definition 1.1.7. (Logic of difference, LP) Let L be a logic where IF is definable. 
The logic LP is defined by adding a new unary connective D, and interpreting D as: 

w Ik Dy & Jw'(w 4 w’ & w' Ik p). 

| 

Proposition 1.1.8. Let L be a logic extending propositional logic. Then the logics 

LP and 3L9™ are equivalent in the sense of Theorem 1.1.6. 

Proof: It is easy to see that we can define (1)y by Dy V 9, and (2)y by D(Dp A @). 

For Dy the following definition works: ((1)p A =p) V (2)y. 1 

2My girl-friend drew my attention to this theorem with this remarkable name.



12 THE BEASTS AND THE WHIP 

1.1.3 METALOGICAL NOTIONS 

Now we give definitions of some metalogical notions, and enumerate some metalog 

properties that we will investigate later. 

Definition 1.1.9. (Formula schema) Let L be a logic with the set Cn(L) of log 
connectives. Fix a countable set A = {A; : i < w}, called the set of formula varial 
The set Fms, of formula schemata of L is the smallest set satisfying the condit 

below. 

(i) A C F MSL, 

(ii) if c € Cn,(L) and ®,,...,®, € Fms,, then c(®,,...,®,) € Fms,. 

An instance of a formula schema is given by substituting formulas for the forr 

variables in it. 1 

Definition 1.1.10. (Inference system, |) Let L be a logic. An inference rule 

L is a pair (((By,..., Bn), Bo), CW), where every B; (i < n) is a formula schema an 

is some condition. This inference rule will be denoted by 

Bi,...,Bn 
Bo 

provided C. 

An instance of an inference rule is given by substituting instances of the forr 

schemata occurring in the rule such that the formulas satisfy the condition C. 

An inference system, or calculus, for L, denoted by Ff, is a finite set of fori 

schemata, called aziom schemata or azioms, together with a finite set of infer 

rules. 

A Hilbert-style inference system is a calculus such that the condition C is emp 

each rule. 1 

Note that every axiom schema is in fact an inference rule such that the hypot. 

(Bi, B‚) of the rule is empty. 

The well-known motivation for calculi is that we would like to mimic the sem 

cal consequence relation by purely syntactical means, cf. Definition 1.1.11 and 1 

below. Besides historical reasons, we distinguished Hilbert-style calculi because o 

following. Because of their (syntactical) simplicity it is easier to investigate Hil 

style completeness, cf. Theorem 1.3.7, and to apply them for proving theorems o 

logic. In addition, sound Hilbert-style calculi are in fact strongly sound in many c 

cf., e.g., classical propositional logic and the modal logic 55. Non-Hilbert-style cz 

sometimes are called Gabbay-style®, cf. [Mi93], or unorthodoz, cf. [Ve91]. 

Definition 1.1.11. (Derivability) Let L be a logic, and let + be an inference sy 
for L. Assume ZU {py} C Fi. We say that p is + -derivable, or + -provable, from 

there is a finite sequence (1,...,(@n) of formulas, at -proof of p from 5, such th: 

is y, and, for every 1 <1 Sn, 

3The reason for this name is that [Ga81] initiated completeness investigations using not nece: 
Hilbert-style calculi.
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e 9; € Lor 

e p; is an instance of an axiom schema (an aziom, for short) of H or 

e there are 7,..., 7, <t, and there is an inference rule of H such that Pek is an 

instance of this rule. 

We write © Hp if p is H-provable from ©. (We will often identify an inference system 

H with the corresponding derivability relation.) 1 

Definition 1.1.12. (Completeness and soundness) Let L be a logic, and let + be 

an inference system for L. Then 

e | is weakly complete for L iff Vp € Fy, 

Fe>tk 9; 

e | is finitely complete for L iff (Vi C Fi)(Vp € Fi) 

IZ]}<wk&U EF ys dr gs 

H is strongly complete for L iff (Vi C F.)(Vy € Fr) 

LE psy, 

e | is weakly sound for L iff Vp € Fr 

rp Fe; 

H is finitely sound for L iff (VE C Fi)(Vp € Fi) 

S]|}<w& TF ysaLlte yg; 

H is strongly sound for L iff (Vi C FL)(Vy € FL) 

LEpsautey. 

Definition 1.1.13. (Decidability) Let L be a logic. We say that L is decidable if 
the set {p : E= p} of valid formulas is a decidable set. 1 

1.2 ALGEBRAS 

We assume familiarity with the basic definitions and results of universal algebra, cf. 

[HMT85], [BS81], and [ANS94]. However, we will give some of the most frequently used 
definitions and results in this section. We will also prove a theorem (Theorem 1.2.6) 
that we will use several times in the sequel. 

Given a class K of algebras of the same similarity type, we will denote the class 

of isomorphic copies, subalgebras, isomorphic copies of products, homomorphic copies, 

and ultraproducts of elements of K by IK, SK, PK, HK, and UpK, respectively.
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Definition 1.2.1. (Ps, Sir, and Sim) Let 2 be an algebra. 

1. By a subdirect decomposition of A we understand a system (h; : i € I) of surjective 

homomorphisms h; : A — %; such that 

(Va,b € A)(a #b = (ai € I)h;(a) # h;(b)). 

Then we say that 2 is a subdirect product of the ®B‚’s (i € J). 

2. A subdirect decomposition is called non-trivial if (Vi € I) h; is not an isomor- 

phism. 

3. Wis called subdirectly irreducible iff A has no non-trivial subdirect decomposition. 

4. Mis called simple iff it has only two congruences. 

Given a class K of algebras, we denote the class of subdirect products of the elements 

of K by PsK. SimK and SirK denotes the class of simple and subdirectly irreducible 

members of K, respectively. 1 

Let K and K’ be two classes of algebras. We say that an element of K is representable (as 

a member of K’) if there is an element of K’ such that the two algebras are isomorphic. 

Usually, K is an axiomatically given class, i.e., K = Mod(Z) for some set © of formulas 

in the language of K, while K’ is a class of set algebras, i.e., K’ consists of algebras 

whose elements are sets of sets, and the operations are “natural” operations on sets. 

We will not need the precise definition of set algebras, but we note that the algebraic 

counterparts Alg(L) of the logics L of this dissertation are set algebras. 

By Eq(K) we denote the class of equations valid in the elements of K. We recall 

that a class K of similar algebras is a variety if K can be defined by a set of equations, 

i.e., K = Mod(E) for some set E of equations, and that the variety generated by K 

is the smallest variety containing K. By Birkhoff’s theorem, this is is HSPK. By 

quasi-equations we mean equational implications, i.e., formulas of the form (o, = 

n & ... & On = Tr) > 00 = 7. In other words, a quasi-equation is a Horn clause 

using only identity atoms. A class K of similar algebras is a quast-variety if K can 

be defined by a set of quasi-equations, ie, K = Mod(Q) for some set Q of quasi- 

equations. The quasi-variety generated by K, i.e., the smallest quasi-variety containing 

K, is SPUpK. We note that these definability theorems are the algebraic counterparts 

of preservation theorems of model theory. We recall that every variety V is generated 

by its subdirectly irreducible members in the following sense (cf. [BS81]): 

V = PsSirV. 

We will denote the variety of Boolean algebras by BA. Usually, we will consider BA’s 

as algebras with a unary (—) and a binary (-) operation, corresponding to complement 

and meet. We can do this, since the other Boolean connectives can be defined by 

means of — and -. Usually, we will denote Boolean join, top, and bottom by +, 1, and 

0, respectively. However, if we want to emphasize the connection with (propositional) 

logic, we will denote meet, join, complement, top, and bottom by A, V, 7, T, and L, 

respectively.
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We say that an algebra U has a Boolean reduct if — and - are term definable in A, 

and they satisfy the Boolean axioms. The set of atoms of an algebra A with a Boolean 

reduct is denoted by At(2). 
We will use the following technique, called relativization, cf. [HMT85] 2.2, rather 

frequently. Let A = (A,-,c;)ier be an algebra, and let a € A. Then the function RI, is 

defined as follows: 

RLA) EF ({z-a: 2 € A} cer 

where c*(a-1,..., GT) = a:ci(1, En) for every n-ary connective c; and zj,..., Zn € 

A. Then we say that NI, (A) is obtained by relativizing A with a. 
A class K of similar algebras is a discriminator class if there is a term 7 in the 

language of K such that, in every member of K, 

_fuiüfzrz=y 
T(z,‚y, u,v) = v otherwise. 

Such a 7 is called a discriminator term. A variety V is a discriminator variety if there 

is a discriminator class K such that V = HSPK. We note that the existence of a 

discriminator term corresponds to the deduction theorem on the logic side, cf. [Si92]. 

Note that, for a discriminator variety V, SirV = SimV (2 always holds, while C fol- 

lows from the following: if z and y are different congruent elements, then 7(z, y, u,v) = 

vand T(z, zr, u, v) = u are congruent as well). If K is a class of algebras with a Boolean 

reduct, then K is a discriminator class iff there is a term Oz in the language of K such 

that, in every element of K, 

0 ifz=0 

Or = | 1 otherwise. 

Indeed, Oz can be defined as 7(z,0,0,1), and 7(z, y, u,v) can be defined as (O(4 @y) - 

v) + (u: -Ò(r®y)), where ® denotes symmetric difference. 
The following theorem will be useful many times, the proof can be found, e.g., in 

[Né94]. 

Theorem 1.2.2. Let K be a discriminator class. Then 

SPUpK = HSPK. 

By the above theorem, the quasi-varieties generated by discriminator classes are in fact 

varieties. This also enables us to code quasi-equations as equations. 

Next we recall the definition of Boolean algebras with operators (BAO’s) from 

[JT52]. The notion of BAO is important in algebraic logic because the algebraic coun- 

terparts of many (modal) logics are classes of BAO’s. We also define a special subclass 

SBAO of BAO’s. 

Definition 1.2.3. (BAO, SBAO) The class BAO of Boolean algebras with operators 
is defined as follows. An algebra 2 = (A, -,—, f;)icy is a BAO if 

(i) (A,-,—) is a Boolean algebra,
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(ii) the operations f; (i € I) are additive in every coordinate, ie, if f; has arity n, 

then (Vj € n) 

fi(Zo, - Lj + Yi, En-i) = filZo,...,2j,-- -)Zn-1) + fi(zo,.. ‚Yr: …,En-1). 

An A € BAO is said to be normal if every extra-Boolean operation f; (i € J) is normal 

in each argument, i.e, (Vj € n) 

zj =0 filzo, ‚Tj, Eni) = 0. 

Let A € BAO be a normal algebra. 21 € SBAO if the following holds. There is a 

term-definable operation © on A such that 

(i) © is a complemented closure operator, i.e, 

r<Or<O(t@t+y) & OOr<Or & O-OLK< -Ôr, 

(ii) for the extra-Boolean operations f; (2 € I), 

filzo,.--,2n-1) < O%o-...* Oona 

: 

We will use the following fact rather frequently. 

Proposition 1.2.4. If QA is an algebra with a Boolean reduct, and there is a comple- 

mented closure operator © on YA, then the following holds. 

1. $0 =0. 

2. Or: Oy) = Ór: Oy. 
3. Of + y) = Or + Oy. 

Proof: ©0 = O-1 = O-901 = —O1 = —1 = 0. Item 2 is proved in [Ve91] Proposition 
3.5.6, and 3 easily follows from 2, cf. [HMT85] Theorem 1.2.6. 1 

Definition 1.2.5. (Density) Let K be a class of algebras of the same similarity type 

with a Boolean reduct, and let A € K. Let 7 be any property. We say that 2 is T-dense 

if 

(VO <ae A)(30< bE A)(b<a&r(b)). 

We denote the class of T-dense elements of K by DK. 18 

We recall the following theorem about dense BAO’s from [AGMNS]. As we will see, 
(representability of) dense algebras play an important role in weak completeness of 

logics, cf. Theorem 1.3.11. 

Theorem 1.2.6. Let K be variety of SBAO'’s, and let DK be the class of T-dense 

elements of K for some property Tt preserved under homomorphisms. Assume that 

2% € DK and A is countable: |A| < w. Then there are simple algebras A, € SimDK 
(0 < a € A) such that Ac SP{A, :0<ae A}.
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Proof: Let |A| < w, and a € A be an arbitrary non-zero element. We will define a 

r-dense simple algebra A, and a homomorphism f, : A —> A, such that f,(a) # 0. 

Let the elements of A be enumerated: {a;:i € w}. Since a # 0, thereisa0 #b <a 

such that 7(b) holds. Let by = Ob. 
Now assume that bg > ... > 6, > 0 are already defined. Take the next element a, 

of A. If a - bp = 0, then let bay1 S bn. If an bn # 0, then there is a0 £014, S an «br 
such that 7(b,,,). Let ba41 er 6b,,,. This way we can define a descending chain of 
©-closed non-zero elements: bo > .… > bn 2... 

We claim that, for every n € w, a-b, #0. Indeed, 0 # b, = Ob, < Ob < Oa, 

whence 0 4 b, = bn -Oa = Ob, - Oa = O(O8, - a) = O(b, - a). Thus b,-a #0. 
Let I, be the Boolean ideal generated by {—}, :n € w}. Then 

I, = {y: (Ak, LEW) y < —b, +...+—be,} = {y: (An € w)y < —dy}. 

Since b, is closed under ©, so is —b,. Then y € J, implies Oy € J,. This implies that 

fi(zo,---,4,---, Le) € Ig whenever y € Iz. Then by [Sa82], J, is an ideal in A. Since 

a+b, #0 for every n €w,a ¢ Iq, i.e., Ig is proper. 

Let 2, be the factor algebra modulo J, of 2, and let f, be the canonical homomor- 

phism: 

ASAI, & f(z) z/L 

for every x € A. We have to show that 2, is a simple element of DK. 

Assume that e ¢ J,. We show that —Oe € J,. Since e ¢ I, for every n € w, 

e-b, #0. Let e be the kth element of A. Then e-b, # 0, so there isa0< b.,, <e- 

such that 7(b,,,). Then we put —b,,1 = —Ob,,, into the set generating J,. Since 
brai < Oe, we have —Ce € I,. This implies that 2, has the following property: 

Oz = 1 whenever 0 < x. This implies that 2, has only two congruences, i.e., U, is 

simple. 

Since f, is a homomorphism, 2%, € K. It remains to show that 2, is 7-dense. 

Let b € A/I, be an arbitrary non-zero element. Then b’ = f,(b) for some b ¢ I. 
Then, for every n € w, b £ —by, ie., b-b, #0. Assume that bis the kth element of 

A. Then b- b, # 0 implies that we chose a 0 < bj, below b- 6, such that 7(b,,,). 
Then bri = Ob,4;, SO —Ob,,, © Ig. Since 7 is preserved under homomorphism, 
falbiii) = 6,4,/Ia has property 7. Clearly, b,,,;/Ja < b/I, = 6’. Further, since 
Oba F Ja, 0 # fol Obi) = Ofalbisi) = O(O,4,/Ta). Hence ,,,;/la # 0. Thus, for 
arbitrary non-zero 6’, we found a non-zero T-element below it. 

We make the same construction for every 0 < a € A. That is, we define simple 

T-dense algebras A, (a € A) such that, for each O < a € A, fa: A — A, is a 

homomorphism with f(a) # 0. 
Now we embed & into P{A, : 0 <a E€ A}. Let, for every z € A, 

f(z) ee (fa(z):04a€e A). 

Clearly, f isa homomorphism. Moreover, since f(z) # 0 whenever 0 < z, f is one-one. 

Thus 2 is the subdirect product of the A‚’s. Thus we have proved Theorem 1.2.6. 1
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1.3 BRIDGE BETWEEN LOGICS AND ALGEBRAS 

In this section, we define the algebraic counterparts of logics, and give algebraic char- 

acterizations of metalogical properties. Most of the results of this section are based on 

[AKNS]. Since less generality is needed for our investigations, we could simplify some 

of the proofs, and state new theorems as well. 

The connection between logics und algebras enables us to prove metalogical theo- 

rems using the machinery of algebras. Actually, most of the results about logics in this 

dissertation are proved in algebraic setting, and then using this bridge we get the answer 

for our logical problem. We will use these bridge theorems to prove (in)completeness 

and (un)decidability of logics: these properties follow immediately once we proved that 

the corresponding classes of algebras have the corresponding (non-)finite axiomatizabil- 

ity and (un)decidability properties. 

We note that the bridge between logics and algebras are not restricted to com- 

pleteness and decidability properties. For instance, several kinds of compactness, Beth 

definability and Craig interpolacion properties can be characterized by algebraic means, 

cf. [AKNS] for developing these connections, and [Ma95] for applying them. 

Definition 1.3.1. (Alg) Let L = (F.,Mz, EL, mean) be a logic in the sense of Defi- 
nition 1.1.1. Let us recall that the formula algebra §, of L is defined as: 

3. (Fi,c:c€ Cn(L)). 

The algebraic counterpart Alg(L) of L is defined as: 

Alg(L) & {mean””’S, : ME Mi}, 

i.e., we take the (homomorphic) image of the formula algebra §, along the meaning 

function meanj”, for every Ite Mi. 1 

Remark 1.3.2. In [AKNS] another algebraization of logics is defined. Let Alg,(L) be 
the class of the semantical Lindenbaum-Tarski algebras (i.e., we factor out the formula 

algebra by the semantical equivalence relation). The two kinds of algebraizations are 

related: SPAlg(L) = IAlg,(L). 1 

Note that Alg(L) has the same similarity type as §,. Thus the formulas of L are terms 

of Alg(L). Our first theorem ensures that semantical consequence in L and validity of 

quasi-equations in Alg(L) correspond to each other. 

Theorem 1.3.3. Let L = (F,M, -, mean) be a logic. 

(i) For any formulas po, 1, .--, Pk; 

{oi} EG. => Alg(l) (or: =T&... &=T) > 00 =T. 

(ii) For any quasi-equation q of form (7; = 0, & ... & 7 = 04) > Tj = 09, 

Alg(L) Eq => {mH o,:1<s<k} EMH oO.
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Proof: (i): Assume po,...,p; are the only atomic formulas occurring in @o,..., Yr, 

and assume that 

{21 (Pos - Pt), Pr (Pos DI) } FE Yo(Po, -- +5 Pt): 

Let A € Alg(L). Then A = mean” for some Me M. Let a € PA be arbitrary. For 

ai every 1 < l, we set a; de a(p;). Clearly, for every i < 1, a; = mean”'(7;) for some 74; € F. 

For every s < k, 

ps[ao, ey a,” = ps[mean” (yo), sey mean” (1)}* = mean” (wo. (vo, sy yi), 

since mean”! is a homomorphism. 

Assume that, for every 1 <s <k, AF y, = T[a]. Then 

mean” (p,(7o,---,1)) = mean” (T) (1<s<k). 

By Definition 1.1.1, there exists an Mt € M such that 

il ™"ps(yo,---.n)) (OSs<k), mean” (@, (po, P1)) = mean 

whence 

mean” (‚(po,-….,pi)) = mean” (T) (1<s<k). 

Hence 

NF vs(po,---, Pt) (l<s<hk), 

and then, by assumption, 

N E Yo(Po, cee Pt): 

Thus 

mean” (yo(po, ..., Pr)) = mean™(T), 

whence 

mean” (wo(7o,---,%)) = mean” (T), 

that is, 

AE po = T [a], 

proving Theorem 1.3.3(i), since a was chosen arbitrarily. 
(ii): Assume that, for every A € Alg(L), and, for every valuation a € FA, 

AF gla). 

Let IM € M such that ME {7, 0, :1 Ss < k}. Then mean”! (r‚) = mean” (o,) for 

each 1 << s < k. Now let A a mean™”=, and let a € PA be such that, for each p € P, 
def M . 

a(p) = mean™(p). Then 

AE (71 = 0, & see & 7 = o,)(a], 

which implies, by our assumption, that A F (7) = oo)|al. This is the same as 
mean™ (79) = mean” (a), thus, ME 7) > oo, which proves Theorem 1.3.3(ii). 1 

It is worth stating the following special case of the above theorem.
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Corollary 1.3.4. Let L be a logic. 

(i) For any formula ¢, 

Fo = Alg(L) Fe=T. 

(ii) For any equation 7 = o, 

Alg(L) Rr=o => ETH <0. 

Proof: It is a straightforward consequence of Theorem 1.3.3. 1 

1.3.1 HILBERT-STYLE COMPLETENESS 

We turn to investigating algebraic characterizations of several kinds of completeness 

for logics. Roughly speaking, completeness of a logic is equivalent to the finite axiom- 

atizability of its algebraic counterpart. We can build up a hierarchy according to how 

much of the semantical consequence relation we would like to mimic by purely syn- 

tactical means. That is, we can consider necessary and sufficient conditions for weak, 

finite, and strong completeness and soundness. On the other hand, we can character- 

ize inference systems by their forms as well. We already distinguished Hilbert-style 

inference systems. We can make a finer distinction by considering the type of the 

Hilbert-style rules occurring in a calculus. For instance, in Definition 1.3.6(i) below, if 
Ar is a set of equations, then the corresponding calculus F 4, contains only some simple 

rules ensuring that + is a congruence relation on the formula algebra‘, and that ¢ is 

provably equivalent to p 4+ T. If Az contains quasi-equations, then we have to add 

more complex rules to the calculus, cf. below. 

First we define a translation between quasi-equations in the language of Alg(L) and 

Hilbert-style inference rules for L. 

4These rules correspond to the rules of equational logic.
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Definition 1.3.5. Let T = (zo,...,2n) be a sequence of (algebraic) variables, and let 

T = (Wo,..., Un) be a sequence of formula variables. 

(i) Let q be 

(1(Z) = 01(Z) & ... & %&(Z) = o4(F)) > (ZF) = oo(T) 

‘a quasi-equation in the language of Alg(L). The Hilbert-style inference rule r, 

corresponding to q is 

Gil
 

6 (U) 4 or ( 

To 

) + o;,(WV) ) Til 

) > ool ‘el
 

Ie
 

(ii) Let r be n n 
(U), EEN TU) 

79(W) 
a Hilbert-style inference rule for L. The corresponding quasi-equation q, is defined 

as 

(1(t)=T&... & (FE) = T) > (FZ) =T. 

i 

Now we extend the above translation to sets of quasi-equations and Hilbert-style in- 

ference systems. 

Definition 1.3.6. (i) Let Az be a finite set of quasi-equations in the language 

of Alg(L). The corresponding Hilbert-style inference system / 4, is defined as 
follows. 

AXIOM SCHEMATA: Po © @o, and, for every equation e of Az, the axiom r, 

corresponding to e. 

INFERENCE RULES: For every quasi-equation q of Az, the rule r, corresponding 

to g. Other rules are: rules corresponding to equational logic, cf. [BS81], 

Dy > Oy, Dd, + ® 

Do > Dg 

Po > O, 

8, > By’ 

9,0Y,,..., 0,0 VY; 

c(%,,...,8) > c(W,..., U)’ 

and rules ensuring that p and y + T are provably equivalent 

(Vc € C'n,(L)) 

Po T 

By °
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(ii) Let + be a Hilbert-style inference system for L. The set Az; of quasi-equations 

is defined as follows. For every axiom (and inference rule) r of f, let the corre- 

sponding (quasi-)equation g, belong to Az-. Az; also contains the following two 

quasi-equations: (zo = zi) > (zo zi) = T and (zo zi) = T > (zo = 2}). 
i 

Now we are in the position to state equivalence theorems for Hilbert-style completeness. 

Theorem 1.3.7. Assume L is a logic and Cn(L) is finite.” 
(I) There is a finite set of quasi-equations Ax such that Alg(L) C Mod(Ar) C 

HSPAlg(L) iff there is a strongly sound and weakly complete Hilbert-style calculus for 

L. In more detail: 

(i) if Alg(L) C Mod(Az) C HSPAlg(L) for a finite set Ax of quasi-equations, then 
the Hilbert-style calculus 4, is strongly sound and weakly complete for L; 

(ii) given +, Alg(L) C Mod(Az-_) C HSPAlg(L). 

(II) SPUpAlg(L) is a finitely axiomatizable quasi-variety iff there is a strongly 

sound and finitely complete Hilbert-style calculus + for L. In more detail: 

(i) if SPUpAlg(L) = Mod(Az) for a finite set Ax of quasi-equations, then the 
Hilbert-style calculus 4, is strongly sound and finitely complete for L; 

(ii) given +, SPUpAlg(L) = Mod(Az_). 

(III) Assume that SPAlg(L) is a quasi-variety. Then SPAlg(L) is finitely axioma- 
tizable iff there exists a Hilbert-style calculus + such that | is strongly complete and 

strongly sound for L. In more detail: 

(i) if SPAlg(L) = Mod(Az) for a finite set Ar of quasi-equations, then the Hilbert- 
style calculus 4, is strongly sound and strongly complete for L; 

(ii) given +, SPUpAlg(L) = Mod( Az). 

In this dissertation, we only use Theorem 1.3.7(III), that is why we will only sketch 
the proofs for the other items. These proofs consist of three essential steps: (a) Theo- 

rem 1.3.3 above, (b) that the derivability relation (in equational logic) determined by 
Az (and by Az-) and F4, (and +) correspond to each other, and (c) completeness of 
equational logic. 

Proof of Theorem 1.3.7: Let ®o,®,,... denote formula variables, 7), 7,,... denote 

formula schemata, ® denote sequence of formula variables, and Z denote sequence of 

variables. 

The proof of items (i) goes, mutatis mutandis, as follows. Let Az be the set of quasi- 

equations satisfying the conditions of the theorem, and let 4, be the corresponding 

calculus. We have to prove that F 4, is sound and complete w.r.t. L. 

SOUNDNESS: The soundness of F4, can be proved by induction on the length of the 

H4--proof of po (from X). We only show one part of the induction step, namely the case 

5One can eliminate the assumption of Cn(L) being finite. Then the finitary character of a Hilbert- 
style inference system has to be ensured in a more subtle way. Also, ‘finitely axiomatizable’ must be 
replaced by ‘finite schema axiomatizable’, cf., e.g., [Mo69], [Né94], and [SG95].
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when o is obtained by one of the inference rules corresponding to a quasi-equation 

qe Az. Say q has the form 

(m1(Z) = )(z) & ... & 7,(Z) = 7,(Z)) > 70(Z) = 79(Z), 

where Z = (%1,...,2z). Then the corresponding inference rule is 

Assume that is obtained with the help of this rule by substituting the members of the 

sequence ¥ = (71,-.-,Yz) of formulas for the members of the sequence ® = (®,,..., ®,) 

of formula variables, i.e., po has the form 7(7) + 79(7). 

Now fix a model WM, and assume that 

MF 1(7) + (7), „DE (7) © 7,(1)- 

We have to show that ME 79(7) © 79(7). 

Let AE mean™"% € Alg(L), and let a be a valuation into A such that, for every 

l<u<z, a(zy) ead mean” (+,). Since 

(V1 < j < r)mean™(7;(7)) = mean™'(7;(7)), 

we have 

AE (1 (FZ) =7,(Z) & … & 7,(Z%) = 7, (Z)) fal. 

Then, by Alg(L) E Az, 

UF (ro(£) = 79(Z)) [a], 

whence 

ME 70(Y) + 79(7). 

This finishes the proof of the soundness of F 4;. 

COMPLETENESS: To prove completeness, we need a claim. For any set & of formulas, 

we define 

prey ES Eat ey’. 

Note that, by the definition of H4, and by the definition of derivability, “5 is a con- 

gruence relation on the formula algebra § for any &. Thus, we can define the factor 

algebra &$/-v5, called the (syntactical) Lindenbaum-Tarski algebra of L corresponding 

to © (defined by F4»). 

Claim 1.3.8. For any & C F, 

(i) (Vp € X)(B/~z) FY =T, 
(ii) (3/~z) F Az.
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Proof: (i): For every y € X, the following holds: % ky, y, whence Lk yz p <> T, Le, 

pry I. 
(ii): Let g € Az, and assume that q is of the form 

(7,(Z) = 7, (%) & ... & % (FZ) = 7,(F)) > (EF) = 79(Z). 

Let AE (§/~s). We want to prove that, for every valuation a of the variables into A, 

A F gla). 
So let a be an arbitrary valuation into A. Then, for every i, a(z;) = 9;/~z for 

some y; € F. Assume that 

UE nilp/~a] = Tile/~a & … & relp/~a] = 1ilp/es). 
Then 

(71(P))/~2= (71 (P))/~s, …, (t(D) /~a= (7% (9))/~2, 
since vs is a congruence on §. Then 

n(@) vs 71(H),---,T(P) vr (9), 

that is, 

Dhar (7(@) + 7/(@):1< j < kh, 
by the definition of ~y. In H4,, we have the following rule (corresponding to the 

quasi-equation q): _ _ _ _ 

71(®) 4 71(®),...,%(®) > 7, (®) 

(®) + 7) (®) 

By this rule, we get that © H4s (%) © 79(G). Then 70(@) ~s (9%), whence 
(70(G))/~s= (79(P))/~z, that is, AE tolp/~s] = Tolp/ “zl which implies A FE 
(79(Z) = 7(z))[a). By this we proved Claim 1.3.8. 1 

Now completeness in cases (J), (II) can be proved as follows. In case (III), since we 
have to prove strong completeness, i.e., we consider % == p for infinite X’s, we need a 

modified version of the argument below. By Theorem 1.3.3, 

TEy => Alg(L)E&{o=T: cE LC} Sy=T SS 
<> ArE&{o=T:c0€ YL} Sy9=TS 

[by Claim 1.3.8] > $/~-rsEFy=T = 
— LF Ar Y. 

In case (III), the following proof works. Assume © — p. We want LF az p. 

First we prove that if & F= wp, then the corresponding “infinitary” quasi-equation 

is valid in SPAlg(L). Let A € SPAlg(L), and let k be an arbitrary valuation into 
A. Assume that, for every W € ©, AE 4 = T[k]. Let J and A; (2 € J) be such 

that AC P{A,: ie I&A € Alg(L)}. Then, for every i: € J, AE pw = T[k;), 
where k;(z) = k(z)(i) for every variable z. We know that, for every i € J, A; is 
the mean™:-image of § (for some Mt; € M), and that there are y;,,...,~;, such that
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mean? (;,) = ki(zj) (7 < 1). Moreover, M; = v(B/t;), by U KE b = T [ki]. Let, for 

every i€ 1, WM; EM such that 

mean”: (W(p)) = mean” (W(P/W;)). 

Then, for every 7 € J, and for every W € XL, MN; F= Wp). Hence, for every i € J, 

Ni; E p(p). That 1S, M, E p(p/yi). Hence, QL; E p= T [ki], thus 2 E p= T[k). 

By Claim 1.3.8(ii), &/-“5 F Az, whence $/v5 € SPUpAlg(L) = SPAlg(L). By 

Claim 1.3.8(i), ¥/~s F 4 = T for every w € 5. Then, by the previous paragraph, 

3/vE I p= Tq, 1.€., > Fas Pp. 

To prove items (ii) of Theorem 1.3.7, assume that F is a complete and sound Hilbert- 

style inference system for the logic L, and let Az, be the corresponding set of quasi- 

equations. The following claim ensures that Az; is valid in Alg(L). 

Claim 1.3.9. Alg(L) = Az. 

Proof: It is easy to see that the quasi-equations (zo = zi) > (zo © zi) = T and 

(zo ++ 21) = T > (zo = 21) are valid in Alg(L). 
Let &{7,(Z) = T:1 <5 <k} > n(f) = T € Az, be a quasi-equation correspond- 

ing to a rule of F. Let A € Alg(L), and let a be an arbitrary valuation of the variables 
into A. Let M be such that 2 = mean” "F. Then, for every i, a(z;) = mean™(y;) for 
some y; € F. Assume that 

AE &{7,(Z) =T:1<s<k}{al. 

Then 

ME 7, (21/91,..-,22/¢%2) (foreach l1<s<k). 

Bn) is an inference rule of +, therefore {7,(),...,7(@)} + 7o(p). This implies, 

by the strong soundness of F, that {7,(9),...,7(@)} F 7o(p). Then M E 79(G), hence 
AF To(E) = T[a), as desired. 

Validity of equations can be proved similarly. 1 

It remains to prove that every (quasi-)equation valid in Alg(L) is a consequence of Az. 
In case (I), this easily follows from the fact that we only have to consider equations. 

In cases (II), (III), the following claim will help. 

Claim 1.3.10. For any formulas po, @1,-.., 9k, 

{oi Pe} po > ANME(W=T&... &o=T) > (p= T). 

Proof: The proof is by induction on the length of the H-proof of wo from {1,.., pr} 

We only show one part of the induction step, namely the case when wg is obtained 

by an inference rule le, where © = (6,,...,®,). Then there are formulas 

Y1---,’Yz such that po is 7(71,.--, 72), and, for every 1 <1 <r, {1,..., Pr} HF (7). 

By the induction hypothesis, 

Ax - &{y, =T:1<s<k} >7(7) =T (foreach 1 <1 <r).
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By the definition of Az}, the following quasi-equation belongs to Az: 

&{7n(Z)=T:1<l<r}sn(z)=T. 

Let B be an algebra such that ®B | Az,, and let b be any valuation of the variables 

into B. Now we can define a valuation b' with b'(z,) Sy [B]? (1 < v < z). Then, for 
every 0 <1 <r, 7(Z)[b']}® = 7(7)[b'?. Thus 

BE (&{y, =T:1<s<k} ny) = T)[b), 

as desired. 1 

Now we can prove that each (quasi-)equation which holds in Alg(L) is a consequence 
of Ar. Assume that 

Alg(L) EF (n= & … & 74 = 7) >) = To. 

Then, by Theorem 1.3.3(ii), 

{7,0 T,:1<s<k} Enon, 

whence, by (strong) completeness, 

{7,0 7T,:1<s<k} non. 

By Claim 1.3.10, 

Are F &{(7, OF) =T:1 Ss <k}= (nj On) =T. 

Since we added the quasi-equations (zo = zi) > (zo © zi) = T and (zo © zi) = 
T > (zo = 21) to Az;, we have 

Ary - &{7, = Th: 1<s<k} onan 

completing the proof of Theorem 1.3.7. 1 

1.3.2 WEAK COMPLETENESS 

Now we turn to investigating weak completeness of logics by not necessarily Hilbert- 

style calculi. This kind of calculi are frequently used in (modal) logic, especially when 

Hilbert-style completeness is impossible. See, e.g., [Ga81] and [Ve91]. Below we will 
give a sufficient condition in terms of algebras for weak soundness and completeness 

by calculi that contain only one non-Hilbert-style rule. Moreover, the condition C in 

this rule is that a certain atomic formula does not occur in the conclusion of the rule, 

an easily decidable syntactic condition. 

The theorem below states that this kind of completeness can be obtained if the 

SP-closure of Alg(L) coincide with the SP-closure of the subclass K of dense elements 

of a finitely axiomatizable discriminator variety K’.
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Let us recall that density is defined as follows, cf. Definition 1.2.5. Let R be a 

property, and let an algebra A be R-dense if 

Va(0 <a > (Jb <a)R(b) & b #0). 

This is equivalent to 

Va(Vb < a)(b = 0 or not R(b)) > —-a = 1. 

We can write this in a rule format: 

—(b-a) =1 or not R(b-a) 

a = 0 

The corresponding logical rule (using p and -¢ instead of b and a, respectively) is 

F a(p A =p) V =R(p A =p) 
Hp 

Indeed, we will add this rule with the condition that p does not occur in ¢ to the Hilbert- 

style calculus defined by the discriminator variety K' above, and prove completeness. 

Let L = (F,M,,mean) be a logic. Assume that the Boolean connectives are 
definable in L, and that the universal modality © is expressible in L, that is, for every 

model Mt and formula p, if M WE —p, then M FE Oy. Then we say that L extends 

the modal logic 55. Below ® stands for Boolean symmetric difference, i.e, zr ® y 

abbreviates (z A sy) V (yA 72). Let 7 be a term, and let an algebra be 7-dense if 
(Va # 0)(4b #0)b << a & Or(b) = 1. 

Theorem 1.3.11. Let L be a logic extending S5 such that there are infinitely many 

atomic formulas. Let K' be a finitely axiomatizable discriminator variety such that K' D 

SPAlg(L), and the discriminator term is defined as (O(t@y)Av)V(uA70O(r@y)). Let K 
be the Or-dense members of K'. Assume that Or(.L) = T and that SPK = SPAlg(L). 
Then there is a weakly sound and complete calculus | for L. | 

We will use the above theorem for proving completeness results for the finite variable 

fragments of classical first-order logic and for the square version of arrow logic, cf. 

Chapter 4. 

Usually, the density condition can be expressed by a universal-existential equation: 

Vrdyy for some equation p. We conjecture that representability of algebras satisfying 

such conditions can be used to prove more completeness results. It is an intriguing open 

question whether these representation theorems are necessary as well, i.e., whether this 

kind of completeness results imply algebraic representation theorems. 

Proof of Theorem 1.3.11: Let the inference system + be defined as follows. Let 

Az be the finite set of equations axiomatizing K’. Then the axiom schemata and rules 

of inference of + are those of 4, in Definition 1.3.6 plus the following rule 

F a(p A =p) V SÔT(p A 79) 
rp 

provided p ¢ »
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where p ¢ p denotes that p is an atomic formula not occurring in wp. 

SOUNDNESS: This amounts to prove that We p implies / —(p A =p) V 2ÒT(p A =p) 
whenever p ¢ p. 

Assume |£ p. Then, by Corollary 1.3.4, Alg(L) Ep = T, ie, Alg(L) A =p = L. By 

SPAlg(L) = SPK, there is a B € K such that B =p = L. Then, for some valuation 
k, BE -~y # L[k]. Since B is Or-dense, BE (1 < rt < -yp & Or(z) = T)fk] 
for some variable x. By B € K C SPAlg(L), there are algebras A; € Alg(L) (2 € J) 
such that B C P,<;A%;. Then, for every i € J, A; FE («& < =p & Or(x) = T)I[kil, 

where k;(y) = k(y)(z) for every variable y. Further, by the definition of direct product, 
for some j € J, A; | tr A L[k;). Thus, we found an algebra A; € Alg(L) and 
a valuation k; such that A; FE (Ll < « < =p & Or(z) = T)|k,]. Then, by the 
same argument as in the proof of Theorem 1.3.3(i), there is a model IN such that 

ME (4 — =p) AÒT(Y) for some formula w. Let p be an atomic formula not occurring 

in y, and let p be evaluated to ~™: mean™(p) = mean™ (yw). Note that Dt KE ap, by 
mean™(p) = mean™() = z[k;}* # L[kj]™ = mean™(_). 

Now, if we assume that M | —(p A =p) V AOr(p A =p), then, by ME (p > 
ay) A O7(p) and propositional logic, we get I | —p. This is a contradiction. 

COMPLETENESS: First we show that the syntactical Lindenbaum-Tarski algebra 2 of 

L is in K. Clearly A € K’, by Claim 1.3.8(ii). It remains to show that 2 is O7-dense. 

Assume p # L in A. This implies =p. Then  ->(pAy)V70O7 (pA) whenever p ¢ p, 

Le, AK (PAY) AOCT(pAY) = L. Clearly (p Ap) AÒT(pAp) <p. We have to show 

that (pA vy) AOr(pAy) has property Or. We will show that K’ FE Or(zA Or(z)) = T 
for any variable z. By assumption K’ is a variety, so it suffices to show that in the 

subdirectly irreducible algebras Or(x\O7(z)) = T. Since K’ is a discriminator variety, 
in SirK’, Oy € {1, T}, whence the above equation follows (here we use that 1 has 

property Or, i.e., Or(L) = T). Thus Ais O7-dense, whence 2 € K. 
Now assume lp. Then U yw = T. Since by the previous paragraph AEK C 

SPK, and by assumption SPK = SPAlg(L), we have SPAlg(L) EF » = T. Then 

Alg(L) FE » =T. Thus, by Corollary 1.3.4, p is not valid. u 

1.3.3 DECIDABILITY 

Finally, we state that decidability of a logic is equivalent to the decidability of the 

equational theory of its algebraic counterpart. 

Theorem 1.3.12. Let L be a logic. The set of valid formulas is a decidable set iff the 

equational theory Eq(Alg(L)) is decidable. 

Proof: By Corollary 1.3.4. 1



2 

THE LAMBEK CALCULUS 

In this chapter’, our main concern is (several versions of) the Lambek calculus, LC, cf. 

[La58), on the logic side, and ordered residuated semigroups on the algebra side. We will 

prove several finite axiomatizability theorems in Section 2.2 which yield completeness 

results for LC w.r.t. the so-called relational semantics, cf. Section 2.1. The logics of 

this chapter are not in the scope of Definition 1.1.1, that is why we build a bridge 

between the logics and the algebras of this chapter in Section 2.3. 

LC gives us a good opportunity to introduce our first strategy for taming logics. 

This strategy, probably the most obvious one, amounts to finding well-behaved frag- 

ments of interesting logics with nasty behavior. The situation can be described as 

follows. 
Let us consider the transitive version PALy (t € H) of pair arrow logic, cf. Defini- 

tion 1.1.3. PALy is undecidable by [AKNSS], and incomplete, cf. [Mo69], [An88] and 

Theorem 2.1.10, Theorem 2.2.5, and Remark 2.2.6. Roughly speaking, the reason for 

this ugly behavior of PALy is that composition is an associative connective distributing 

over disjunction. Thus, one natural try to find nice versions of PALy is to consider 

such fragments in which (a) composition has its original meaning, e.g., it is associative, 
and (b) disjunction is not a connective. Completeness of LC w.r.t. transitive (or rela- 
tivized) and square relational semantics, Theorem 2.1.5 and Theorem 2.1.13, provides 
us decidable? and complete fragments of PAL. The connectives of these fragments are 

composition with its two residuals®, and implication: e, \,/,—. It is a natural ques- 
tion whether we can strengthen these logics by adding more connectives without losing 

the nice properties. We will show (Theorem 2.1.9) that adding conjunction does not 

ruin the nice behavior, while disjunction cannot be added without losing completeness 

and decidability. An intriguing open problem is whether identity can be added while 
preserving completeness and decidability. 

2.1 COMPLETENESS OF THE LAMBEK CALCULUS 

The Lambek calculus was introduced in [La58] with both linguistic and logical moti- 

vations. It has been intensively investigated since then, e.g., because of its connections 

to categorial grammar and context-free languages, and because it is an example of 

substructural logics. The book [vB91] gives a good picture on these investigations. See 

also [Bu86], [Do92], [Ro91], [Ga92], and [Pe93]. 

1This chapter is based on [AM94], and the results are joint with Hajnal Andréka. 
*The decidability of these logics follows from the cut-elimination proof in (La58). 
3The residuals are not among the basic connectives of arrow logic, but they are term definable in 

frames with symmetric and transitive universes, cf. below. 

29
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The so-called relational semantics for the Lambek calculus first appeared in print 

in [Or88] and [vB89], where plenty of motivation is given for this semantics. Clearly, 

relational semantics is strongly motivated by dynamic semantics for natural languages. 

We quote the “slogan” behind dynamic semantics from [vB91]: “Natural language is 

a programming language for effecting cognitive transitions between information states 

of its users.” It is proved in [vB91] that the Lambek calculus is sound w.r.t. rela- 

tional semantics, and it was asked whether it was also complete. In this section we 

prove (Theorem 2.1.5) that the Lambek calculus is indeed complete w.r.t. relational 

semantics. 

In order to prove this completeness, we had to allow relativized relational mod- 

els, i.e., models with transitive (and not necessarily symmetric or reflexive) universes, 

because the original Lambek calculus is not complete w.r.t. “unrelativized” relational 

models, cf. Definition 2.1.3 and Definition 2.1.11. The question naturally arises: what 

strengthening of the Lambek calculus would be complete w.r.t. the more natural un- 

relativized, or square relational semantics? It turns out that the Lambek calculus can 

be modified in two very natural ways, both modifications making it complete w.r.t. the 

stronger relational semantics (see Theorem 2.1.13). 

We also investigate connection with another kind of semantics for the Lambek 

calculus, the so-called language-model semantics. This semantics reflects the original 

(syntactic) motivation behind LC. We will concentrate on language models where we 

admit languages with the empty word. We show that the Lambek calculus is not weakly 

complete, and that there is no strengthening of the Lambek calculus which is sound 

w.r.t. relational semantics and would be strongly complete w.r.t. the language models 

of the above kind. Weak completeness of the Lambek calculus w.r.t. language models 

without the empty word had long been an intriguing open problem. Interesting results 

in this line can be found, e.g., in [Bu86] and in [Ga92]. [Pe93] gave a positive solution. 

We also investigate what happens if we introduce new connectives in the Lambek 

calculus, moving towards the language of linear logic. We find that structural (or 

additive, or static, or Boolean) conjunction does not cause any problem, however, 

structural disjunction makes a strongly complete strengthening impossible. (Weak 

completeness is still possible.) 

Now we recall the definition of the Lambek calculus from [La58). 

Definition 2.1.1. (Lambek calculus, LC) We define the language of the Lambek 

calculus, LC, as follows. Given a denumerable set P of primitive symbols, we let the set 

Formyc of formulas be the smallest set containing every primitive symbol and closed 

under \, /, and e, ie, if A, B € Formyc, then A\B, A/B, Ae B € Formyc. The set of 

sequents is the set of all expressions of the form A,,..., An — Ao where n is a positive 

integer and A; € Formyc for each 1 < n. 

LC is given by the following axiom and rules of inference, where A, B,C’ stand for 

formulas and 2, y, z stand for finite sequences of formulas including the empty sequence 

unless the contrary is asserted. 

AXIOM: 

(LCO) A-A.
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RULES OF INFERENCE: 

(LC1) 7 a B Tt non-empty 

(LC er) arin 5 ze x,y non-empty 

AE ET: 
(LC\r) ae AD rt non-empty 

(LC\l) al = ner ger x non-empty 

(LC/r) =A = a x non-empty 

(LC/U) TOA y Bz x non-empty. 
y, B/A,z,z9C 

A theorem of LC is a sequent deducible in LC (yc), i.e., by the usual recursive 

definition, a sequent is a theorem iff it is an instance of (LCO), or it is given by some 

rule of inference from some theorem(s). More generally, let [ be a set of sequents and 
p be a sequent. We say that p is LC-deducible from T', [ Fuc ¢, iff 

1. pe Lor 

2. p is an instance of (LCO) or 
3. there is a set A of sequents each of whose elements is LC-deducible from I, and 

there is an inference rule such that Pr is an instance of this rule. 

Note that if we consider only derivations from the empty set, then, in the definition 

of LC, (ZC1) is superfluous, a result of [La58]. (ZC1) is really the cut-rule, and the 

result of Lambek is a cut-elimination theorem. As an immediate consequence, LC is 

decidable. On the other hand, if we want to have strong completeness, i.e., we are 

dealing with derivations of the form I yc ¢ (I arbitrary set of sequents), then (LCI) 
is needed. (Indeed, let A,B,C € Pand {A— B, B+ C}=TY. Then, as we will see 

soon, A — C is a semantical consequence of I. Since each rule but (LC'1) introduces 
a new connective in the sequent to be derived, T Hic A > C uses (LC1).) 

The rules (LC er) and (LC el) ensures that composition e is an associative con- 
nective. There are non-associative versions of LC as well, cf. [Ka88]. 

Remark 2.1.2. If the set of primitive symbols is the set of basic types, then the 

formulas are types and, roughly speaking, — of LC corresponds to the derivability 

relation of a version of categorial grammar. At the same time, if P is considered as a
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do Vc Vc 
\ JN IN 

/ \ / \ A NB “> Are XB 
/ N / \ a AeB _N a A\B > b a A/B Sb 

Figure 2.1: RelSem 

set of propositional variables, then LC is a Gentzen type inference system, and hence 

it is a fragment of linear logic. u 

Now we recall the intended dynamic semantics for LC from [vB91]. 

Definition 2.1.3. (Relational semantics, RelSem) By a (relativized) relational 
model for LC we mean an ordered tuple (W,C,v) such that W is a transitive binary 

relation, C C *W is relational composition, i.e, 

C (zo, £1) (Yo, Yi) (zo, zi) > To = yo KT =u KY = zo, 

and v is a mapping of the set P of primitive symbols into the powerset P(W) of W. 

Next we define local truth, or the satisfaction relation. Let W = (W,C,v) be a 

relational model for LC, and let A,B, Apo, A1,..., An € Formyc for any n > 0. Let 

xz € W be arbitrary. We define z It p for formulas and sequents p inductively. 

zit p iff zEv(p), for pe P, 

ri Ae B iff there are y,z € W such that Cryz and 

| ylk A, zit B, 

zit A\B iff for all y,z € W such that Czyz and yl- A, 

we have z | B, 

zi A/B iff for all y,z € W such that Cyrz and z | B, 

we have y | A, 

zit (Ay,...,;An > Ao) iff (zl ((A; @ A2)...e A„) implies z |H Ao). 

We say that a sequent p of LC is true in a model YJ, in symbols WM 5 9, iff x Ik p 

for allz € W. A sequent is valid with respect to RelSem iff it is true in every relational 

model. We denote this by Er p. We say that p is a (RelSem) consequence of I’, in 

symbols [ Fr 9, iff, for every relational model W of LC, W ET implies WE p 

(25 ET abbreviates that, for every PET, WE). 1 

We note that, like in the case of arrow logic, there are more abstract relational type 

semantics for LC, cf. [Ku95] for abstract ternary frame semantics. She proved complete- 

ness of LC w.r.t. this abstract semantics using Henkin-style methods with witnesses, 

cf. also [Ku94]. 
The following remark may be skipped for the first reading.
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Remark 2.1.4. (Duals and conjugates) The residuals \ and / are a kind of conju- 
gates of duals of e. Indeed, if we fix one argument, then the modality \ is related to the 

modality e in a similar fashion as the temporal modality always-in-the-past, denoted 
as [P], is related to sometime-in-the-future, denoted as (F), cf. [ANS91] and [Go87]. 
In [ANS91], (P) is called the conjugate of (F') and [P] is the dual of (P). Then \ is 
a conjugate of a dual of e, cf. below. It is instructive to meditate over the two steps 

leading to \ from e. 
We obtain a conjugate modality in temporal logic by reversing the accessibility 

relation, this corresponds to permuting the arguments of the ternary accessibility re- 

lation C, and we obtain a dual modality by passing from an existential quantifier to 

a universal one (more precisely, by replacing the arguments with their negations and 

then negating the whole expression). So the obvious dual of e would be ©) defined as 

rit AUB iff for all y, z such that Cryz, 

either y | A or zl B. 

We can get another dual & of e by fixing (i.e, not negating) the first argument as 

zi AWB iff for all y,z such that Cryz, 

y |k A implies z IF B. 
Lo 

We then get a conjugate & by interchanging the first and third arguments of C obtain- 

ing 

z | ASB iff for all y, z such that Czyz, 

y lk A implies z IF B. 

> > 

Then one can see that & is just \, i.e., zl A\B iff z lk AWB. This is what we meant 
by saying that the slashes \, / are certain conjugates of duals of e. 4 

See [Ro91] for a multimodal logic extending the Lambek calculus and containing the 
existential versions of the residuals. See also [Mi92b] and [Ma95). 

We also note that the residuals are term-definable in the symmetric and transitive 

version of pair arrow logic: z lt A\B iff z Ik ~(@Ae-B) and z It A/B iff z IH 
a(AA @ @B). 

2.1.1 COMPLETENESS W.R.T. RELATIVIZED RELATIONAL SEMANTICS 

Now we are ready to formulate the strong completeness of LC w.r.t. its relational 

semantics. 

Theorem 2.1.5. For any set T of sequents, and for any sequent p, 

Tricp iff TEr¢. 

The proof of Theorem 2.1.5 will be based on an algebraic representation theorem 

(Theorem 2.2.3) which ensures that the Lindenbaum-Tarski algebra of LC (reflecting 

Kc) is isomorphic to an algebra of binary relations (reflecting Fr).
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First we define the Lindenbaum-Tarski algebras of LC. Let ¥ = (Formrc,e, \, /) 

be the formula algebra, where e, \, / are the natural operations on Formyc. Let T be 

any set of sequents. We define the relations <p and =r on Formyc as follows. For any 

A,B € Formyc, 
A<rB iff FhrycA4—B 

A= B if (A<p Band B <,y A). 

Lemma 2.1.6. For any set [ of sequents, 

(i) =p is a congruence relation on § and 

(ii) for any A, B, A’, B' such that A =p A’ and B =r B', we have 

A<rB iff A'’<;B’. 

Proof: (i): <p is reflexive and transitive by (LCO0) and (LCI), so =r is an equivalence 
relation. To show congruence, assume that A =r A’, B =, B'. First we want to 

show Ae B =; A’e B’. By Hic A> A’, T Hic B > B' and (LC er), we obtain 

[Fy A,B > A’ e B', from which we obtain Hic Ae B > A’ e B' by using (LC el), 

ie, Ae B <p A’ eB’. We obtain A’e B’ <p Ae B similarly, so Ae B =, A'e B' as 

desired. The proofs for \, / are completely analogous, therefore we omit them. So =r 

is a congruence relation. 

(ii): Assume now further that A <p B. Then A’ <p A and B <r B', by A =r A’ 

and B =r B’, so by transitivity of <p we obtain A’ <p B’. 1 

For A € Formyc, A/=r denotes the equivalence class of =p A is in. 

Definition 2.1.7. (Lindenbaum-Tarski algebra of LC) Fix [. The Lindenbaum- 
Tarski algebra* Ly of LC is defined as 

Lr = (L, e,\,/, <), 

where (L,e,\,/) is the factor algebra §/=r, and < is the image of <p, ie., 

L def Formrc/ =r= {A/ zr: AE Formyc}, 

and tet 

(A/=r) ¢ (B/=r) = (Ae B)/=r, 
and similarly for /, \, and 

a 

Proof of Theorem 2.1.5: Theorem 2.1.5 will follow from Lemma 2.3.2 and Theorem 

2.2.3 in the following way. 

In the next section, we will define two classes, ORS and RRS, of (ordered) algebras. 

As we shall see, ORS reflects very closely the syntactic derivations of LC, (actually, 

4The Lindenbaum-Tarski algebra of LC is in fact an ordered algebra.
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we will prove that, for any I, Cr € ORS) while RRS reflects very closely relational 

semantics of LC. Completeness of LC w.r.t. relational semantics will then be based 

on the algebraic representation theorem saying that ORS and RRS coincide, up to 

isomorphisms (see Theorem 2.2.3). 

To make the above ideas more concrete, for any subclass K of ORS, we will define 

a semantics Fx for LC (this semantics will be invariant under isomorphism, i.e, K and 

IK define the same consequence relation). Then the overall idea of our completeness 

proof will be the following. For any set [ of sequents, and for any sequent p, we prove 

(1) Ficgy iff T Fors ¢, 
(2) ORS = IRRS, 

(3) CEerrs¢ iff T Erg. 

In the above, (1), (3) are more or less trivial (because ORS is “very close” to the 
definition of LC, while RRS is “very close” to the definition of relational semantics), 

cf. Lemma 2.3.2. The hard part will be step (2), cf. Theorem 2.2.3. 1 

Remark 2.1.8. (GS-semantics) In [Bu86], a semantics called GS-semantics, is in- 
troduced and completeness of LC w.r.t. GS-semantics is proved. Here we show that 

Theorem 2.1.5 is a strengthening of this theorem. Namely, we show that RelSem is a 

kind of “subsemantics” of GS-semantics. 

Let W be a transitive relation. We define a semigroup as follows. Let u be a new 

element, not a pair and not in W, and let Wt = W U {u}. We define the binary 

operation . on W* as follows: for any z,y € WT, 

| (a,c) if r=(a,b),y = (b,c) for some a, b,c 
T.y= 

u otherwise. 

For any RC W let us define h(R) = RU {u}. Then it is easy to check that h is 
an isomorphic embedding of the RRS (P(W),o, \w, /w, GC) (cf. Definition 2.2.1) into 
the r. semigroup spread over (Wt,=,.). This shows that completeness w.r.t. GS- 

semantics follows from completeness w.r.t. RelSem. Since h also preserves intersection, 

completeness w.r.t. ]GS-semantics in §4.1 of [Bu86] also foliows from our Theorem 2.1.9 
(which we shall state later). 1 

2.1.2 EXTENSIONS OF THE LAMBEK CALCULUS 

We will investigate what happens if we add static conjunction A, and static disjunction 

V to LC. 

Let LCC denote the Lambek calculus enriched with static conjunction. This means 

the following: in the language of LCC we have one more binary connective A, ie, 

AAB € Formycc whenever A, B € Formycc. Otherwise, Formycc and the sequents 

are defined as above. The models for LCC are those for LC. Let (W, C, v) be a relational 

model for LC, x € W, and let A, B € Formycc. Then 

zit AAB iff (cit A& alt B).
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This conjunction is sometimes called structural, or Boolean (e.g., in [vB91]), or additive 
(e.g., in [Ro91]) versus multiplicative. We adopted the term ‘static’ (versus ‘dynamic’) 
from [Pr92]. 

The axioms and rules of LCC are those of LC together with the following two 

axioms, and rule: 

(Al) AAB —A AAB —B 
rs zB 

(Ar) SAKE rt non-empty, 

Otherwise everything is defined as in the case of LC. 

Theorem 2.1.9. For each sequent p of the language of LCC, and for each set I of 

sequents of LCC, 

r rec p iff r Er p. 

Proof: The proof of Theorem 2.1.9 is based on Theorem 2.2.4, exactly the same way 

as the proof of Theorem 2.1.5 was based on Theorem 2.2.3. 1 

Now we turn to investigating adding static disjunction V to LCC. In relational seman- 

tics, we interpret V as follows. Let (W,C,v) be any relational model for LC, and let 

ze W. Then 

zik AVB iff (clk Aorzl FB). 

In view of the above, the natural thing would be if adding V to LCC, we would get 

completeness by adding the following two axioms and rule: 

(Vr) A->AVB Bo AVB 
(vl) AC BoC 

AVB 

This is not the case as, e.g., Theorem 2.1.10 below shows, where we prove that no 

finitely many axioms or rules can ensure strong completeness if we add V to the set of 

operations of LCC. 

Theorem 2.1.10. Let Q denote any extension (in the expanded language) of LCC 

with a finite set of axioms or sequent rules for V. Then Q cannot be sound and strongly 

complete w.r.t. relational semantics. 

Proof: Let Q be any extension of LCC with a finite set of axioms and sequent rules 

for V. We denote derivability in Q by Hg, and Fr denotes consequence in relational 

semantics as before. Assume that Q is sound, ie, Hg p implies Fr p. It can be 

shown that Hg is not strongly complete, i.e., there are I’ and p such that 

P ER p but r a Pp, 

in the following way. 

In the next section, we will define a class RRD of (ordered) algebras that reflects 

relational semantics, cf. Lemma 2.3.4(i): 

[Fry iff T Erep 9.
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Given Q, we can define a class QRS of algebras that reflects Hg, i.e., for any [ and wp, 

Crap iff T Fars. 

We will prove that the quasi-equational theory of RRD is not finitely axiomatizable, 

j.e., there is a quasi-equation q such that 

RRD Eq and QRS Eg, 

cf. Theorem 2.2.5. Then, by Lemma 2.3.4(ii), there are [ and p such that 

[ Erro y but T Kars 9. 

1 

We note that Theorem 2.1.10 remains true when we add any set containing V of 

connectives definable in (the full language of) square arrow logic. We also note that 

Theorem 2.1.10 above remains true if we replace ‘relational semantics’ in it with ‘square 

relational semantics’ (which will be defined below). 

2.1.3 COMPLETENESS W.R.T. SQUARE RELATIONAL SEMANTICS 

In the definition of relational models (W, C, v) for LC, we required W to be transitive 

only. The reason for this is that transitivity ensures that composition is associative. 

The question of what other nice properties of W in a relational model we can require 

naturally arises. Below we will show that if we require W to be reflexive, or a Cartesian 

space (a square), then we lose completeness of LC. The other natural question that 

arises is what happens if we omit the conditions of x,y,z being non-empty in the 

definition of LC. It turns out that if we allow generalized sequents of the form — A, 

i.e., delete the conditions on being non-empty in the definition of LC, then this version 

LC? of the Lambek calculus is still decidable (the original cut-elimination proof in 

[La58] works) and complete w.r.t. square relational semantics, cf. Theorem 2.1.13(ii). 
We will show that another strengthening, LC*, by adding four new rules is complete 

w.r.t. square RelSem as well®, cf. Theorem 2.1.13(i). 

Definition 2.1.11. (Square relational semantics, RelSem*) Let W = (W,C,v) 
be a relational model for LC. We say that 20 is a square model if W is a Cartesian 

space, ie., W = U x U for some set U. Let RelSem* denote relational semantics for 

LC where we allow only: square relational models. Let I’ be a set of sequents, and let p 

be a sequent of LC. Then Fg+ y denotes that p is true in all square relational models 
of LC, and similarly, T Ep+ p denotes that p is true in every square relational model 

of LC in which T' is also true. 1 

Proposition 2.1.12. LC is not complete w.r.t. RelSem*. 

5 We conjecture that the cut-elimination proof can be modified so that it works in this case as well.
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Proof: Let us consider the sequent p = p — pe (p\p), where p is a propositional 

variable. We will show that Fr+ p while not Hrc wp. 

Indeed, let W = (W,C,v) be any square model with W = U x U. Let Id = {(u, u): 

u € U}. Then Id C v(p\p), thus v(p) = v(p)old C v(p)ov(p\p), showing W FE p. This 
shows F=r+ @. 

On the other hand, if z — Ae B is a theorem of LC, then must be a compound 

formula by (LC er). 1 

The odd behavior of the above sequent was already known in the literature, see [Do92]. 

By Theorem 2.1.13 below, (in this respect) these are the only “odd” sequents. (So this 
means that the second kind of “odd” sequents (P\P)\Q — Q, mentioned in [Do92], 
can be derived from the first ones.) 

Now we define two strengthenings, LC* and LC®, of the Lambek calculus. Let LC* 

be LC together with the following four rules. The intuitive idea behind these rules is 

that if we have two binary relations A and B such that A C B, then A\B and B/A 
contain the identity relation. 

A— B A — B 

C > Ce(A\B) C —(A\B)eC 

AB A — B 

C — Ce (B/A) C > (B/A)eC 

We introduce another strengthening, LC®, of LC. Let Ao, A1,...,An € Formyc. We 

call Aj,..., An — Ao a generalized sequent (or sequent in the wider sense), if n > 0. 

That is, we allow n = 0 as well. These sequents with n = 0 will be denoted by — Ap. 

Let W = (W,C,v) be a relational model for LC, and let (u, u’) € W. Then we define 
satisfaction of the generalized sequent — A as 

(uu) lk SA iff (u=u => (u,u’) IF A). 

The motivation coming from dynamic semantics for natural languages is the following. 

If starting from a state u we did not move at all (n = 0), then this transition (i.e., 
(u, u)) is in A, cf. [vB89b]. Let LC? denote the calculus we obtain from LC by omitting 
all the conditions stating non-emptyness in it, and where at the same time by a sequent 

we mean a sequent in the wider sense. 

Theorem 2.1.13. Both LCt and LC® are strongly complete w.r.t. RelSem*. That 

is, (i), (ii) below hold. 

(i) Let p be a (non-generalized) sequent and TI be a set of (non-generalized) sequents 
of LC. Then 

r Fict YY iff T Er+ Pp. 

(ii) Let p be a generalized sequent and let T be a set of generalized sequents. Then 

r Fyc0 p iff r Er+ Pp.
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The proof of Theorem 2.1.13 is based on algebraic representation theorems, just as 

in earlier cases. The proof of Theorem 2.1.13(i) will be a close parallel to that of 

Theorem 2.1.5, while the proof of Theorem 2.1.13(ii) will be a refined version of that. 

Definition 2.1.14. Let I be an arbitrary set of generalized sequents. We define an 

analogue, £2, of the Lindenbaum-Tarski algebra, Lp, of LC. 
Let e,0,1 be three new elements not in Formyc, and let T = Formrc U {e, 0, 1}.® 

Let 

t= (T,\,/,¢, <r, e, 0) 

where the definitions of the operations and the relation <p go as follows. On A, B € 

Formyc these are defined as before, ie, A <p Biff f Fyco A —> B. For every z € T 

and A € Formrc, let 0 <p z <p 1 and e <r e, and lete <p A iff f Fypo — A. Let 

Oer=re0l =0Oandeer=ree=z,and if z #0, then let lex =zel =1. Let 

O\z = 1 and e\z = z, and if z # 0, then let z\0 = 0. Further, if z ¢ {e, 0}, then let 

z\e = 0 and z\1 = 1. Finally, if z # 1, then let 1\z = 0. The other slash, /, can be 

defined in a similar way. Let . 

z=ry iff (rz SryandySrz), 

and let £2 = (T/=r). u 

Proof of Theorem 2.1.13: The proof of (i) proceeds exactly as the proof of Theo- 

rem 2.1.5, but now we use Theorem 2.2.7 instead of Theorem 2.2.3. 

(ii): Soundness of LC? w.r.t. RelSem* is easy to check. To prove strong complete- 

ness, let I’ be a set of generalized sequents, p be a generalized sequent, and assume 

that T Epr+ p. We want to show that [Fy ¢0 p. 
Let us consider the Lindenbaum-Tarski algebra £2. We will turn this algebra into a 

square relational model 29 such that LC?-provability from I will coincide with validity 

in this model. By Lemma 2.3.3 and Theorem 2.2.9, £° is isomorphic to an RRS°, where 

RRS? denotes the class of algebras (of binary relations) corresponding to relational 
semantics of LC®, cf. next section. Let h : £2 —+ M be such an isomorphism, where 
M = (M,o,\,/,|d,0,C) € RRS°. To turn M into a relational model, let W = U x U 

where U = {u: (u,u) € R for some R € M}, and let v(p) = h(p/ =r) for all p € P. 
Then W = (W,C,v) is a square relational model of LC. Then, by Lemma 2.3.5, for 
every generalized sequent A — B, 

h(A/=r) Ch(B/=r) iff WE (A- B). 

By h being an isomorphism, we have 

(+) Try y iff Wey 
for any generalized sequent . 

Recall that T Ee+ p. By (+) we have W FI, hence WE p byl Ee+ y. Then 

applying (+) once more we get 'ty¢o y, and we are uone. § 

Remark 2.1.15. We note that if we add the axioms (Al) and the rule (Ar) to LCT, 
then we get completeness theorem for this expanded language, just as in the case of 

Theorem 2.1.9, cf. Remark 2.2.8. 1 

°The element 1 has a role only in the definitions of the operations on the algebra.
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2.1.4 LANGUAGE MODELS 

Now we prove that LC is not weakly complete w.r.t. language models (LM) and that 

there is no extension of LC which is sound w.r.t. U x U type relational semantics and 

is strongly complete w.r.t. LM. First, we recall the definition of language models from 

[vB91] p.189. 

Definition 2.1.16. (Language model) A language is a set of finite, possibly empty, 

sequences. A family of languages is a set {L; : i € I}, where. L; is a set of finite 

sequences (words) over a finite alphabet. 
A language model is a family of languages enriched with the following operations. 

Lael, © {ry:2€ La, ye Lo} 
La\L, © {x: (Wye La)yx € Ls} 
Lilla = {x: (Wy € La)zy € Ly} 

_A sequent A,,..., A, — Ap is true in a language model if 

v(Ai)e...e v(A„) C v(Ao) 

where v is the valuation function defined in the obvious way. The consequence relation 

Erm is the usual as well. 1 

Proposition 2.1.17. LC is not weakly complete w.r.t. language models. 

Proof: By the definition of \, the empty sequence is in L\L for every language L. 

Thus + — ze (r\r) is valid in every language model. On the other hand, it is not a 

theorem of LC, cf. the proof of Proposition 2.1.12. 1 

Proposition 2.1.18. There is no calculus containing LC which is strongly complete 

w.r.t. language models and sound w.r.t. RelSem*. 

Proof: We will show that there are a set [ of sequents and a sequent p such that 

r p+ p but [ ELM Pp. 

It is easy to check that 

{c> rer, yor} Er-y rey 

(let v(x) = {(1,0), (0,0)} and u(y) = {(1,0)}). 
On the other hand, 

{z zer, y>zt}Fimy>rey 

because of the following. Let L,,L, be two languages and assume that L, C L, e 

Lz, Ly C Lz. We want to show L, C Lee Ly. If L, = 0, then Ly = 0, and we 
are done. So we can assume that L, #4 0. Let w € Lz. Then, since Lz, C Lie Lz, 

there are ui,vi € L‚ such that w = u,v,. By the same argument, for each number 1, 

there are ui+1, Vi41 € Le with u; = uj;41v;41. Sooner or later, since w is a finite string, 

either u; or v; is the empty sequence. That is, L, contains the empty sequence. Hence 

LyC L,eLy. 1
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Corollary 2.1.19. LC®, that version of the Lambek Calculus where we admit se- 

quents with empty antecedent, is not strongly complete w.r.t. LM. 

Proof: LC® contains LC. 1 

We note that S-semantics of [Bu86] differs from our LM-semantics in that in S- 

semantics the empty word is not allowed in any language. A version of Proposi- 

tion 2.1.18 is proved in [Bu86], Lemma 11, for S-semantics instead of LM-semantics. 

We note that the sequent P — Pe (P\P) is LM-valid but not S-valid. (This shows 
also, by the results in [Bu86], that the calculus LSC, of [Bu86] is not a conservative 
extension of LC, an interesting fact.) 

2.2 REPRESENTATION OF ORDERED RESIDUATED SEMI- 

GROUPS 

In this section, we turn to investigating the finite axiomatizability of the classes of 

algebras corresponding to the logics of the previous section.’ 

The class RRA of representable relation algebras (cf. Definition 3.2.1) is not finitely 

axiomatizable, cf. [Mo69], reflecting the fact that square arrow logic does not have 
a strongly sound and complete Hilbert-style calculus. However, there are relativized 

versions of RRA (cf. Chapter 3) that are finitely axiomatizable. In this section, we 
choose another way to find finitely axiomatizable versions of classes of algebras of 

binary relations. We will consider reducts of RRA, and prove finite axiomatizability 

theorems. The advantage of this approach is that the operations keep their original 

meanings. Thus, composition remains an associative operation, while in relativized 

RRA’s usually only a weakened version of associativity holds. 

Below, we will investigate ordered algebras (RRS’s) of binary relations the opera- 
tions of which are relational compositions, and its two residuals (and sometimes inter- 

section). The main results of this section are Theorem 2.2.3 and Theorem 2.2.7 stating 

the finite axiomatizability of the classes of transitive and square versions of RRS’s. 

Definition 2.2.1. (Representable ordered residuated semigroup, RRS) Let W 
be a transitive binary relation and let R,S C W be subrelations of W. The left and 

right residuals relative to (or relativized to) W are defined as follows: 

R\wS E {(x, y) EW :Vz((z,r) € R= (z,y) € S)} 

R/w S a (x,y) EW: V2z({y,z) € S > (z,z) € R)} 

and o denotes relation composition, i.e., 

RoS © {(z,y) : delle.) € R& (z,y) € S)}. 

"In this section, we use the same symbols for the operations of the algebras as for the connectives 
of the logics of the previous section. This way we would like to emphasize the connection between the 
algebras and the logics of this chapter.
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We will deal with ordered algebras whose elements are binary relations, whose 

operations are o, \w,/w, and whose ordering is the set-theoretical inclusion relation 

C. We will call such structures representable. In more detail, we call 2 = (A, e, \, /, <) 
a representable ordered residuated semigroup, an RRS, iff 

1. A is a set of binary relations, 

2. ©, \,/ are binary operations on A, < is a binary relation on A, 

3. e,\, /,< coincide on A with o, \w, /w, C, respectively, where 

W =| JA={(s,y): (ARE A)(z,y) € R}. 

We note that W is not necessarily reflexive or symmetric. If A = (A, 09, \v, /v, C) 

is an algebra for an arbitrary transitive V such that A C P(V), then V can be 

taken to be W = JA, ie., for all R,S € A we have R\yS = R\wS, R/yS = 

R/wS. 

We will often omit the index W from \w,/w. 1 

We note that the operations \ and / are highly dependent on W, i.e., R\wS changes if 

we change W but leave R, S fixed. This relative behavior is inherent in \, / just as in 

Boolean complementation. However, later we will speak of unrelativized \ and /. By 

this we will understand that we choose W in a natural way (to be a Cartesian space). 

On the other hand, transitivity of W ensures that o does not change if consider larger 

relations, e.g., U XU DW. 

Definition 2.2.2. (Ordered residuated semigroup, ORS) (i) We call an algebra 
with three binary operations and a binary relation on it an RS. We usually denote the 

operations of an RS by e, \, / and its relation by <. Thus A = (A,e,\,/,<) € RS iff 
A is an arbitrary non-empty set, e, \, / are arbitrary binary operations on A, and < is 

an arbitrary binary relation on A. 

(ii) © denotes the following set (A1)—(A7) of formulas (in the first-order language 
with equality of RS), where z, y, z, u are variables. 

(I) < is an ordering, ie, 
(Al) zr <z 
(A2) rS<ykys<zrs<z 
(A3) rz S<yky<r>r=y. 

(II) e is a semigroup operation which is monotonic in both arguments w.r.t. <, i.e., 

(A4) (rey)ez=re(yez) 
(A5)r<y&z<usarez<yeu. 

(III) \ and / are the so-called left and right residuals of e, i.e., 
(A6) zey <z y<r\z 

(A7) rey< z= zrK<z/y. 

If AE RS, then A | ¥ denotes that the set & of (open) formulas is valid in A, ie, 
that the universal closures of elements of & are valid in M. For instance, A Fr < z iff 

AE Vr(r < x). If AE DU, then we call A an ordered residuated semigroup (see, e.g., 
[Bu86]), and ORS denotes the class of all ordered residuated semigroups. 1
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The operations \,/ of taking residuals in semigroups have long been investigated in 

semigroup theory. In algebraic logic, they correspond to some kinds of implications, 

see, e.g., [Pr90]. Recently, they came into focus in several works, see, e.g., [Pr92], 

(JT92], [JIR92], [Ji92]. 

9.2.1 REPRESENTATION WITH TRANSITIVE RELATIONS 

We are ready to formulate the following representation theorem, which states that the 

two classes RRS and ORS coincide (up to isomorphism). 

Theorem 2.2.3. ORS = IRRS, 1.e., for every QA € RS, 

AEL iff Ae IRRS. 

Proof: It is easy to check that % is valid in every RRS. 

For the other direction, let us assume that WU € RS and A FX. Step by step we will 

build a directed graph G = (U, E, £) the edges (E) of which will be labeled (2) by the 
elements of our structure 21. We will use this graph to define a representation function 

rep, which will be an isomorphism from & to a structure of binary relations on U. 
In each step a, we will define a directed graph Ge = (Uz, Ea, la), where U, is the 

set of nodes, Ea C Us x Ua is the set of edges, 2, : E, — A is the labeling function 

(A is the universe of 21) such that 

(I) ZE, is irreflexive and transitive 

(II) (z,y), (y,z) € Ea implies ,(z, z) < la(z, y) e £4 (y, 2). 

The final graph, G, will have the following additional properties ensuring that the 

labeling respects composition and the residuals: 

(III) (Wa € A)(Vz € U)(Su € U/e(u, rz) =a 
(IV) (Va e€ A)(Vy € U)(Av € U)L(y, v) =a 
(V) (Va,b‚cE A)(Vz,y EU) (z,y) Ee FE & &z,y) =chhcS<aeb> 

(Az € U)(E(z,z) =a & L(z, y) =b)|. 

When building G step by step, we will “maintain” properties (I), (II) and will 

“bring-about” (III)-(V) by putting in appropriate points. 

We will need a “scheduling” function o which will help us in the construction of G. 

Choose an infinite cardinal « such that |A| < «x. Let V be a set of cardinality «, and 

leto:« —>3Ax?V x 3 be such that 

(V(a,b,c,2,y,1) ESA x 27V x 3)(WA < K)(Av < K)[A Sv & olv +1) = (a,b,c, 2, y,2)). 

To see that there is such a function o, let f :« — 2A x?V x 3 X « be a bijection. 
If we fix a,b,c,x,y,%, then, for « many ordinals y, f(y) = (a,b,c,z,y,1,6) for some 

6 < Kk. So, for each A < «, there is vy > A such that f(v) = (a,b,c, z, y,i, 6’) for some 

<x. Letg:3Ax?Vx3xK — 3Ax?V x3 with g(a,b,c, 2, y,i, A) = (a,b,c, z, y, i) 
for each A < «. If we define o(v + 1) = g(f(v)) and o(v) arbitrary for limit v < x, 
then o meets the requirements.
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We will build G in « steps, V will be a universe from which we will choose our new 

elements to put into U, and o will be the “scheduling” for building the graph: o(A) is 

the “task” to take care of in the Ath step. The condition on a is that each task recurs 

after each step (this will be needed because we will care for a task only if its conditions 

are already met). If o(A) = (a,b,c,z,y,7), then in the Ath step we will examine the 

edge (z,y) from the point of view of labels a,b,c, and i indicates the “type of the 

activity” to be carried through. 

OTH STEP. For each element c of A, we choose two different elements from V, say u, 

and v, such that u,, v, are all different for different c’s. Let Up = {uc, ue: c € A}. We 

can assume that |V \ Up| = «. Let Ey = {(ue, ve) : c € A} and 4olue, ve) = c. Clearly, 
(I) and (II) hold. 

a+i1stT STEP. Let o(a +1) = (c,a,6,z,y,1). If (z,y) € Ea or lalz,y) # c, then let 
Gai = Ga. Otherwise we have three subcases according to the value of 1. 

1 = 0. See Figure 2.2. Choose an element from V ~ U,, say, u. Let 

Ua+1 = U. U {u} 

Foti = EaU{(u,p): (zp) € Ea} U {(u, x)} 

lott = faU{((u,p),a0l,(x,p)) : (x, p) € Ea} U {((u, 2), a)}. 

a, ~N 
Q a ™N ac 

L a / “N 
/ ~N 

al 6 < > 
/ 

d aed 

VE 
P 

Figure 2.2: 1 = 0 

1 = 1. See Figure 2.3. Choose an element from V \ U,, say, v. Let 

Ua+1 = U U {v} 

Ear = EU {(q, v) (9, y) E Ee} U {(y, v)} 

lott = la U {((q, v), La(9; y) ° a) (q, y) € Ea} U {((y, v), a)}. 

1 = 2. See Figure 2.4. If c g aeb, then let Goii = Ga. Otherwise let z € V \ Ug, 

and let 

Uri = U. U {z} 

Ear = EU {(r,z): (7,2) € Ea} U {(z, 5) : (y, 8) € Ba} U {(z, z), (z, y)} 

lott ba U {((z, z), a), ((z, y), b) }U 

{((r, 2), La(r‚z)e a) : (r‚z) € Ba} U {((2, 8), be Laly, s)) : (y, 8) € Ea}.
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Figure 2.3: 1 =1 

a NS 

a NOON 
7 / N ~~ 

a / C N DEN x < > 4 
A / N 

d „dea bee N e 

Figure 2.4: 1 = 2 
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It is easy to check that property (I) is preserved in the a + Ist step. 

We also have to prove that the new transitive triangles constructed in the a + Ist 

step have property (II). We have to check only the new triangles, i.e., triangles in which 

new edges occur. We have three cases according to the value of 2 above. 

1 = 0. The new edges are {(u, p) : p= x or (z,p) € E,}. The typical situation is 

represented in Figure 2.5, where the two kinds of new triangles are the ones determined 

by uxp,, and by up;ps. We have to show that a, < aea, and as < a4ea3. By the 

construction of the graph we have a4 = ae aj, ds = ae az; and by our induction 

hypothesis that (II) holds for Eg we have that az < aj ea3. Thus a4 < ae a; by (Al) 

(reflexivity of <), and a; = aeaz < ae(ajea3) = (aea,) ea3 = a4e az by (A5), (Al), 
(A4) (i.e., monotonicity and associativity of e). 

Figure 2.5: triangles (i = 0) 

1 = 1. This case is completely analogous to the case 1 = 0. 

1 = 2. The new edges are {(r,z) : r =< or (r,z) € Ey} U{(z,s): 5s =y or (y,s) € 
Ea}, and the typical situation is represented on Figure 2.6. The new triangles to be 

Figure 2.6: triangles (2 = 2)
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checked are the ones determined by the following triples of points: rizz, roer,z, rzy, 
£281, T1ZY, T1281, ZYS1, 28152. Checking these is very similar to the previous cases. 

As an example, we check the triangle r;zs,;. We show that a3 < as eag. By the 

construction of the graph we have as = a, ea, ag = bead, c < aeb and by our 

induction hypothesis on E, we have a3 < a4 © az and a4 < a, ec. So a3 < a4® as < 

(a; @ c) @ a2 < (a, © (ae b)) ea, = (a, oa) e (be as) = as © ag by monotonicity and 

associativity of e. 

Thus G41 satisfies (II) as well. 

LIMIT STEP. If a is a limit ordinal, then let Ue = ge Us, Ea = Use, Ep and 
Lo = Use lg. 

Let G = Gx, Le., 

U=|(JU.. E=lJE, and ¢l=|J&. 
a<K ack a<cK 

Clearly, G satisfies (I) and (II), and (III)-(V) hold by the construction. 
Now, we are ready to define the representation function rep. For every c € A, let 

rep(c) = {(u, v) : £(u, v) < c}. 

We have to show that rep is an isomorphism from X to a structure whose elements are 

binary relations on the set of nodes of our graph. Clearly, rep(c) is a binary relation 

on U for any c € A. 

We prove that rep is an isomorphism w.r.t. <, i.e., 

a<b iff rep(a) C rep(b). 

Indeed, if £(u, v) < a, then, by transitivity of <, 2(u,v) < b, so (u,v) € rep(a) implies 
(u,v) € rep(b). If rep(a) C rep(b), then for every (u,v) € EB, if &(u,v) < a, then 
&(u,v) <b. Since U(u,, va) = a (see the Oth step), we have a < b. 

Now we show that rep is one-one, i.e., 

a#b implies rep(a) # rep(b). 

Assume rep(a) = rep(b). Then rep(a) C rep(b) and rep(b) C rep(a), soa < band b <a 
by the previous paragraph, thus a = b by (A3) (antisymmetry of <). 

We check that rep preserves the operations too. 

Checking the operation e: 

rep(aeb) = {(u,v):4(u,v) <a0eb} = 
[by (7) below] = {(u,v):Adz(e(u,z) <a & &(z,v) < b)} = 

= {(u,z): L(u,z) < a}o {(z,v) : &(z,v) <b} = 
= rep(a) o rep(b). 

(i): C: By property (V). In more detail: let c = (u,v). Then, for some a + 1, 

a(a+1) = (c,a,b, u,v, 2). So in the a + Ist step we put a z into the graph such that
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€(u, z) =a and &(z,v) = b. 2: By properties (I) and (II), by the transitivity of <, and 
by (A5). 

Checking the operation \: 

rep(a\b) = {(u,v): (u,v) < a\b} = 
[by (&)) = {(u,v):ael(u,v) <b} = 

[by (422)] = {(u,v):Vz(l(z,u) Sa => l(z,u)el(u,v) < b)} = 
[by (tv)} = {(u,v):Vzll(z,u) <a> &(z,v) <b)} = 

= rep(a)\rep(b). 

(it): c< a\b iff aec < b by (A6). 
(itz): C: By monotonicity of e. 2: By property (III), the triangle in Figure 2.7 is 

in the graph. 

(iv): C: By properties (I) and (II). D: The triangle in Figure 2.7 is in G, so if 
&(z,u) <a, then £(z,u) e £(u,v) < ae l(u,v) = £(z', u) e L(u, v) = L(2',v) <b. 

z! 

a &<u,v> 

e<u,u> 

Figure 2.7: (iii), (iv) 

Checking the operation /: 

rep(b/a) = {(u,v): (u,v) < b/a} = 

[by (v)] = {(u,v):&(u,v)ea< b}= 
[by (vz)] = {(u,v): Vz(llv,z) <a => Llu, v) @ l(v,z) < b)} = 

[by (vii)) = {{u,v):Vzlllv,z) Sa llu,z) <b)} = 
= rep(b)/rep(a). 

(v): By (A7). 
(vi): C: By monotonicity of e. 2: By property (IV), Figure 2.8 is in G. 

(vii): C: By properties (I) and (II). 2: By Figure 2.8, £(u,v) ea < b. 

Thus rep is the desired isomorphism, since the rep-image of 2, 

({rep(a) : a € A},\,/,°,€), 

is in RRS. Thus Theorem 2.2.3 is proved. 1
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ve Ecu, U) su 

Figure 2.8: (vz), (viz) 

9.2.2 EXTENDING THE SIMILARITY TYPE 

Let RRC denote the class of all RRS’s endowed with the operation of taking intersection. 

That is, an ordered algebra (A, 09, \, /,N, C) is in RRC iff (A, o, \, /, C) € RRS and A is 

closed under taking intersection, i.e., for all R,S € A, we have RNS € A. 

Let © be & together with the following axiom: 

(A8) (z<r&z<y) Sz rAy. 

Thus 2  O means that 2 is a semilattice-ordered residuated semigroup. 

Theorem 2.2.4. Every semilattice-ordered residuated semigroup is isomorphic to a 

representable one, i.e., for any algebra X (of the right similarity type), 

AKO iff A € IRRC. 

Proof: We use the construction in the proof of Theorem 2.2.3. We have to show that 

the function rep defined there is an isomorphism w.r.t. the operation A as well. Indeed, 

by (A8), 

rep(a A b) {(u,v) : Ulu, v) SaAb}= 
{(u,v) : Ulu, v) Sa} N{(u,v): l(u,v) < b} = 

rep(a) N rep(b). 

Note that the above rep does not work for disjunction V. The reason for this is that 

a < bVc does not imply that a < bora < c. Thus, it may happen that (u,v) € rep(bVc) 

while (u,v) ¢ rep(b) U rep(c). 
Now we give the necessary definitions and the non-finite axiomatizability theorem 

that we used in the proof of Theorem 2.1.10. 

Let RRD denote the class of all RRC’s endowed with the operation of taking union. 

That is, an ordered algebra (A,o, \, /,N, U, C) is in RRD iff (A, 0, \,/,n, C) € RRC and 

A is closed under taking union. 

The axioms and sequent rules of Q (cf. Theorem 2.1.10) translate into a finite set A 

of equational implications (or, in other words, quasi-equations) in the language of RRD,
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by using the standard techniques in algebraic logic (see Section 1.3). For example, the 

sequent rule (V/) would translate into the quasi-equation 

preiz&y<z>(rVvy) <z. 

Then A defines a class QRS of algebras which is analogous to ORS in that it reflects 

Hg, Le. for any [ and p, 

r HQ p ff Tr E=qQrs p. 

Soundness of Q implies that RRD E= A, i.e., that RRD C QRS. 

Next we show that results of [An91] imply that the quasi-equational theory of RRD 
is not finitely axiomatizable, i.e, there is a quasi-equation q such that 

RRDFq and QRS Hg. 

Theorem 2.2.5. The quasi-equational theory of RRD is not finitely axiomatizable. 

Proof: Let us assume that there is a finite set A of quasi-equations axiomatizing the 

quasi-equational theory of RRD. 

In the proof of Theorem 4 in [An91], a sequence of algebras A,, and quasi-equations 

Qn are defined for which the following hold: 

e the operations of A, are V,A,e,—,~,0,1' the first three being binary, the next 

two unary, and the last two are constants; 

e q contains only the operation symbols V, A,e, and RRD F q,, while A4, qn; 

e any non-principal ultraproduct of the Q's is isomorphic to a relation set algebra 

on some set U, i.e., to an algebra 8 = (B,U,N,0,~,~1, 0, Id) where B is a set of 

binary relations on U, ~ denotes the operation of taking complement w.r.t. U XU, 

~' denotes the operation of taking converse of a relation (ie, R7' = {(a,)) : 

(b,a) € R}), and ld is the identity relation on U (i.e., Id = {(u, u) : u € U}). 

For any n, we define the ordered algebra 4, as follows: 

A, = (Anse, \,/,A,V,S) 

where A,, is the universe of 2,,, V,A,e are the original operations of U, while \,/, < 

are defined from the original operations of 2,, as follows: 

a\b = (ae (-)) 
a/b = —((—a) e b~) 

a<b iff aAb=a. 

Let 8’ denote the algebra we obtain from ®% likewise. Then 8’ € RRD, ® is isomorphic 

to a non-principal ultraproduct of the 2's and WU, Eg. By 8’ € RRD we have 
B' — A, and then by A being finite we have U, E A for some n, ie, U, € QRS. Let 
q =qn. Then QRS K q by A, Eg, but RRD FE q, contradiction. 1 

Remark 2.2.6. We note that the above theorem remains true if we add any operation 

expressible in relation set algebras, i.e., expressible from U,NM,0,~', and Id, to the set 

of operations of RRD. 1s
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22.3 REPRESENTATION WITH SQUARES 

Let RRS* be the square version of RRS: AU = (A,e,\, /,<) € RRS* iff there is a set U 
such that 

1. A is a set of binary relations on U, 

2. e,\,/ are binary operations on A coinciding with 9, \uxv, /uxu, respectively, 

3. < is a binary relation on A coinciding with C. 

We note that in general W = |J)A #U x U, all we can know is that W is a reflexive, 

transitive relation on U (ie, {(u,u):ueU} CW andWoW CW). Yet, R\wS = 
R\vxvS for all R‚S € A, by R\vxuS C W. Thus, RRS* C RRS. 

Let &* be & together with the following four formulas. 

T<yz<zel(z\y) T<y>z<(r\y)ez 

T<y>z<zel(y/z) T<yzs<(y/r)ez 

The following theorem says that RRS* is axiomatized by the above four axioms 

together with the axioms for RRS. 

Theorem 2.2.7. For every A € RS, 

AL yt iff Ae IRRSt. 

Proof: The ‘if’ part is easy and omitted. 

Assume that 2 Xt. We will construct, as in the case of Theorem 2.2.3, a directed 
and labeled graph, and we will define the representation function using this graph. 

Let G = (V,E, 2), where V is the set of nodes, E = V x V is the set of edges 

and { : E —+ P(A) is the labeling function. So one difference from the proof of 

Theorem 2.2.3 is that G is a full graph, and another difference is that we label with 

sets of elements of A, and not only with elements of A. 

G will have the following five properties. (I) and (II) ensure that the labeling 
respects composition. (III) and (IV) take care of the residuals, and (V) corresponds to 
the new axioms: a\b and b/a contain the identity relation whenever a < b. 

(I) (Vu,v,w € V)(Va, b)(a € L(u,w) & bE L(w,v) > 
de(c< aeb&ceE ku, v))) 

(II) (Vu,v € V)(Va,b,c E€ A)(a< bec& ae &u,v) > 
(dw €E V)bE Lu, w) & cE L(w, v)) 
(Vu € V)(Va € A)Jw(a € Uw, u) & 
(VvE Vu pv L(w,v) = {aeh: he &(u,v)}) 

(IV) (Yv € V)(Va € A)dwla € Liv, w) & 
(Vue V)urv=llu,w)={hea:heEl(u,v)}) 
(Vu € V)£(u, u) 2 I, where J = {a\b: a < b} U{b/a:a< }} 

We will define G by recursion. Let « and o be as in the proof of Theorem 2.2.3. We 

will use the following notation. If X,Y C A, then we let XeY = {rey:rE X, yEY}.
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OTH STEP. Let Vo = {ua,va : a € A}, Ey = Vo x Vo and W = {(ua, va), (ua, Ua), 

(va, Va) : a € A} where ug, ve (a € A) are all different. Moreover, let lo(ua, va) = {a} 
and £9(ta, Ua) = £0(Va, Va) = 1, and let Lo(u,v) = @ if (u,v) € (Vo x Vo) <W. 

(I) holds because of the new formulas in L*, and (V) is satisfied as well. 

a+1sT STEP. Let o(a+1) = (a,b,c, z,y, 1). We have three subcases according to the 

value of 1. 

12 = 0. See Figure 2.9. Let z be a new point (z ¢ V,), and let 

Var = Va U {z} 

Bott = Var X Vesti 

fot = la U {((z, 2), 1), { z,x), {a} e l,(z, x) U {a}) }U 
{((z,p), {a} ef, (2, p)): pe Vy & pH z}U {((p, z), 0): pe Va}. 

( \ I 
Ne 

Z_\ 
alu(laB-l),  latelucp 

/ \ 

/ \ 

PA Lo <X N 
0 <*,x> 6; halle De P 5) bu <P, p> 

Figure 2.9: 2 = 0 

2 = 1. See Figure 2.10. Let z be a new point, and let 

Vat = Va U {z} 

Bett = Vai X Var 

la U {({z,z),I), ((y,2), Laly, y) © {a} U {a})}U 
{((q, 2), £a(q,y) © {a}) :qaE Va & g@F#y}VU {((z,q), 0): q € Va}. 

lott 

1 = 2. See Figure 2.11. Ifa Z bec, ora ¢ £,(z,y), then let Gay; = Ga. Otherwise 

let z be a new point, and let 

Vo41 = Va U {z} 

Ba+1 Var X Var 

loti = La U {((z, z), {c} ° ACE xr) e {b} U I)}U 
{((r,z),fa(r,z)e{b}): rev, &r # z}U 
{((z,s), {c}e Laly, s)) : s € Va & s#y}U 

{((z, 2), La(z, x) @ {b} U {b})}U {((z,y), {c} © La (y, y) U {c})}.
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R 
CS, De lat, fetollsss>elat) 

/ \ 

/ \ 

\ 
Eke ® mA buck 419? > uv) ba g> 

Figure 2.10: 4 = 1 
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AD Gr x > J £<4.9> 
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Le <5, XD 

esn) / \ b.<4,5> 

OEREN behe Uks 5) 

Figure 2.11: 2 = 2
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LIMIT STEP. If a is a limit ordinal, then let 

Va=(JVs, Exo=(JEs, f= WU %. 
B<a B<a B<a 

We note that, if in the case i = 2 we have x = y, then £,.4;(2,z) # O, la41(z, 2) # 

@, hence we may not assume that G is directed in the sense that (Vu,v € V‚u # 

v)(2(u, v) = @ or Uv, u) = 0). Because of this, in the case i = 2, we also may have 
| a] (z, z) DI. 

Let G = G,. Clearly, G satisfies (V). G also satisfies (I), since in each step this 
property was preserved; checking this is a mechanical and tiresome calculation. As an 

example, we check one case. Assume we are in case 2 = 2, with the above notation, we 

want to check the triangle zzz. Assume d € £,(y, z), we want to show that e < be(ced) 
for some e € £,(z,2x). (See Figure 2.12.) Indeed, a € £,.(x, y), thus e < aed for some 
e € £,(x,z) by our induction hypothesis, thus e < aed < (bec) ed = be (ced) by 
a<becand &*. Further, (II), (III) and (IV) hold for G by the construction. 

Figure 2.12: checking (I) 

Let, for every a € A, 

rep(a) = {(u,v) : (Ah € L(u,v))h < a}. 

Then rep clearly preserves <, and is one-one because of the Oth step in the construction. 

Now we show that rep is a homomorphism. First we show that 

rep(a) o rep(b) = rep(ae b). 

Indeed, if (u,v) € rep(a) o rep(b), then 

Jw((Ih, € Ulu, w))ha Sa & (Shy € L(w, v))h, < b) 

and, by (I), 

dw(Sh € £(u,v))(She € £(u, w)) (ah, € £(w, v))h << hgeh, Saeb, 

Le, (u,v) € rep(aeb). The other direction is a straightforward consequence of (II).
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We also have 

rep(a\8) C rep(a)\rep(6), 
since if (u,v) € rep(a\b), then (Sh € L(u, v))h < a\b, so, by (I), 

Vw((dha € £(w, u))ha Sa => (Ah € L(w,v))h' < ae (a\b) <b), 

j.e., Vw(w,u) € rep(a) > (w,v) € rep(b), whence (u,v) € rep(a)\rep(b). 
To show that 

rep(a)\rep(b) C rep(a\b) 
we have to distinguish two cases. In the first case, we assume that u # v and (u,v) € 
rep(a)\rep(b). Then 

Vw((w, u) € rep(a) => (w,v) € rep(b)), 

1.€., 

Vw((Ah, € €(w, u))ha Sa => (Shy € L(w, v)) hy < b), 

so, by (III), 
dw((Sh € Lu, v)) (Sh, € &(w, v) )aeh = hy Sb). 

Thus (Jh € &(u, v))aeh < b, so (Ah € U(u,v))h < a\b, ie., (u,v) € rep(a\b). 
Now we assume that u = v, ie, (u,u) € rep(a)\rep(b). By the construction 

Jw (e(w, u) = {a} e £(u, u) U {a}), so we conclude that 

Jw(a < bor (Sh E &(u, u)) (Shy € Uw, u))ae h= hy Sb). 

Then, by (V), and because @(u, u) C I, (Ah € &(u, u))h < a\b, ie., (u, u) € rep(a\b). 
Similar argument, using (IV), shows that 

rep(a/b) = rep(a)/rep(b). 

Let B = {rep(a) : a € A}. Then B is a set of binary relations on V, by the definition 
of rep. Also, B is closed under the operations o, \vxv, /vxv because & is closed under 

e, \, / and rep is a homomorphism w.r.t. these operations. (That is, we checked that 

rep(a\b) = rep(a)\vxvrep(b) etc. for all a,b € A). Thus B = (B,o,\,/,C) € RRS*, 
and rep is an isomorphism between A and ®B. Therefore, Theorem 2.2.7 has been 

proved. 1 

Remark 2.2.8. We note that, just in the case of ORS, we can add A to the set of 

operations without losing finite axiomatizability. Actually, U+ plus (A8) works as a 

set of axioms. 

On the other hand, we cannot add V without losing finite axiomatizability, since 

the algebras defined in the proof of Theorem 2.2.5 have U x U top elements. 1 

In the representation theorem we used to prove Theorem 2.1.13(ii), we have two addi- 

tional constants e, 0 denoting the identity relation and the empty relation, respectively. 

RRS° denotes the class of all RRS’s expanded with Id, @ as constants, i.e. 

Y= (A,e,\, /,e,0,<) € RRS°
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iff (A,e,\,/,<) € RRS* and e = Id = {(u,u) : (AR € A)(u,u) € R} and 0 is the 
empty set @. 

RS° denotes the class of all ordered algebras expanded with two constants, i.e., 

A= (A,e,\,/,e,0,<) € RS° iff (A,e,\,/,<) ERS and e‚ 0E A. 

Let XP be X together with 

eer=ree=r Oer=zel) =0 0O<z. 

Let A be the set of the following formulas 

rey=0 <> (rx =0ory=0) 
Tey<es>(r=0ory=0orr=y=e). 

Note that A is not valid in RRS° (while ©? is). That is why, in the following theorem, 
only one direction is stated. 

Theorem 2.2.9. For every A € RS°, 

AL Y°UA implies A € IRRS®. 

Proof: We make essentially the same construction as in the proof of Theorem 2.2.7 

with some modifications. 

We will construct a directed and labeled graph, G = (V, E,£), satisfying the fol- 

lowing six properties. Properties (I), (II) and (V) will be the same as in the proof of 
Theorem 2.2.7. We require properties (III) and (IV) only for a € AN {e,0}. The graph 
will have this feature too: 

(VI) (V(u,v) € E)O & Ulu, v) & (e € Lu, v) > u=v). 

Let o and « be as before. We define the graph by recursion using the original con- 

struction in the proof of Theorem 2.2.7. 

OTH STEP. This is the same as before, we just choose va and u, for a € AN {e, 0} only. 

a+1ST STEP. Let o(a+1) = (a,b,c,z,y,1). We have three subcases according to the 

value of 2 again. 

t = 0 ori = 1. Do the original construction, provided a ¢ {0,e}. Otherwise, let 
Go41 = Ga. 

i=2. Ifa £ bec, ora & lolz, y), then let Gai; = Ga. Otherwise, by property 

(VI), we have that 0 ¢ {b,c}. If b =e or c=e, then let Gai; = Ga. Otherwise, by A, 

bZeandc <e. In this case, do the original construction. 

LIMIT STEP. Take the union as before. 

Let G = G,. Then properties (I)-(V) are achieved. (This is an easy consequence of 

the original construction.) Further, (VI) is clearly preserved in each step. 
Let 

rep(a) = {(u,v) : (Ah € L(u, v))h < a}. 

It is easy to prove, using property (VI), that rep(e) = {(u,u):u eV}, rep(0) = @ and 
rep(0\y) = rep(z/0) = V x V. The other cases, in checking that rep is an isomorphism, 

are the same as in the proof of Theorem 2.2.7. 1s
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92.3 ‘THE LAMBEK BRIDGE 

In this section, we state and prove several lemmas explaining the connections between 

the logics and the algebras of this chapter. 

First we show that the Lindenbaum-Tarski algebra of LC is in the class ORS, cf. 

Definition 2.1.7 and Definition 2.2.2. 

Lemma 2.3.1. Lp is an ordered residuated semigroup, i.e., Sr FX, for any set T of 

sequents. 

Proof: <r is an ordering on L because it is reflexive and transitive by (ZC0), (LC1), 
and it is asymmetric because we factorized by =r. 

Later in this proof we will use the following (*) several times: for any A,B,C € 

Formtc, 

(*) PtEpco A, BOC iff Tre Ae BC. 

Indeed, the ‘only if’ direction follows immediately by using (LC el), while the other 

direction follows from (LCO), (LC el), (LCI). 
To show associativity of e, we get TI Hrc A, B,C — (Ae B)eC by using (LC0), (LCe 

r), then we get I' Hrc Ae(BeC) > (Ae B)eC by using (LC el) twice. The proof of 
Try (Ae B)eC—- Ae (Be) is similar. 

Monotonicity of e: From [ Hic A — B by (LCO) and (LC er) we get T Frc 
A,C + BeC, from which T Hrc Ae C > Be C by (*). To show monotonicity in the 
other argument is similar. 

Residual property: Assume DT Hic Ae B — C. Then Hrc A,B > C by (+), 

hence T Hic B — A\C by (LC\r). Assume now [ Hic B > A\C. Then [ Frc 

Ae B — Ae (A\C) by monotonicity of e. By (LCO), (LC\!) it is easy to show 
F Hic Ae (A\C) > C, so one application of (LCI) gives Hrc Ae B + C. The proof 
for / is completely analogous. 1 

For any class K C RS we define a semantics Fk for LC, as follows. A K-model for 

LC is a pair (6, v) where © € K and v : § —> G is a homomorphism (we recall that 

3 is the formula algebra of LC), ie, if 6 = (G,e,\,/,<), then v : Formic — G 

such that for any A,B € Formic, v(Ae B) = v(A)e v(B), v(A\B) = v(A)\v(B), 
v(A/B) = v(A)/v(B). M(K) denotes the class of all K-models of LC. Let y be a 
sequent, say, p is Aj,...,An — Ao, and let Mt = (B,v) € M(K). Then we define 

ME piff v((Aye A2)...e An) < v(Ao) in B. Let T be a set of sequents, p a sequent 
of LC. Then M ET iff ME for all p ET, andT Ex p iff M — p for all ME M(K) 
such that St FI. We note that K and IK define the same semantical consequence 

relation. 

Lemma 2.3.2. Let I be a set of sequents and let p be a sequent of LC. Then (i), 

(ii) below hold. 

(i) Frese iff T Ere. 
(ii) Tr Fors Pp iff T Fic p.
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Proof: (i): Assume I’ Fr p and let It € M(RRS) be such that MM FI. We want to 
show It — p. Let M= (G6, v) with B = (G,o, \w,/w,C) € RRS, W =UG. Then 
W is a transitive relation, hence 20 = (W,C,v’) is a relational model for LC (here, v' 
denotes the restriction of v to P: v[P). For any A € Formrc define 

w(A) = {(a,b) € W: (a,b) Ik A}. 

Then by the definition of lk we immediately have that w(A eB) = w(A) o w(B), 
w(A\B) = w(A)\ww(B), w(A/B) = w(A)/ww(B). Thus w = v because w[P = v[P 
and v is a homomorphism. Hence M FE w iff W | , for any sequent 7 of LC. Thus 

MW ET by MET, hence WE p by F Er p,‚ hence Mt E p by WE p, and we are 
done. The proof of the other direction is very similar, we omit it. 

(ii): Assume [ Fors y, we want to show T Hic p. Let v(B) = B/ =r for any 
B € Formyc. Then Mt = (Lp, v) € M(ORS) by Lemma 2.3.1. Let w be any sequent 
of LC of the form Aj,...,A, — Ao, and let A = ((Aje Ag)... A,). By definition, 
ME wp iff (A/=p < Ao/=r) in Lp. By a generalization of (*) in the proof of Lemma 
2.3.1, we also have that [ Hrc A — Ao iff [ Hic w. Thus for any sequent 7, 

(x) MEL iff Prey. 

Now 92 ET by (x), since T Hrc wp for any w € T, thus Mt E p by I Fors p and 

M € M(ORS), and then [ Hic p by (x) again. The proof of the other direction goes 
by an easy induction along the steps of the Fyc-derivation. We omit that part. 1 

Next, we show that the Lindenbaum-Tarski algebra £°% satisfies the axioms D° U A, 

thus it is representable as an RRS®, cf. Definition 2.1.14 and Theorem 2.2.9. 

Lemma 2.3.3. 

LE DPUA. 

Proof: It is easy to check, using the definition, that Sr is a partial ordering, and that 

e is an associative operation which is monotonic w.r.t. <p. It is not difficult to show, 

by case distinction, that if a <p band c <p d, then aec <p bed. The rest of X° is 

easy, by the definitions of the slashes, and A holds, by the definition of e, as well. 1 

Now we show how QRS and RRD reflects Fg and Fr, respectively, cf. Theorem 2.1.10 

and Theorem 2.2.5. 

Lemma 2.3.4. (i) For any set TU {p}, 

Fey iff T ors 9 

T Erp iff T Errp p. 

(ii) For any quasi-equation q, there is a set T U {p} of sequents such that 

QRS Eq iff T Fors p 
RRD E q iff T ERRD Y.
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Proof: (i): It is easy to see, just as before, that for any [ and gp, 

CFry iff IT Errp 9 

and 

Cray iff T Fars ¢. 

(ii): Let q be a quasi-equation. By [cx = y iff (zr < y & y < z)l, we may 

assume that q is of the form (nj < a, & … & Tm < on) > To < Go. Now, by the 

standard translation techniques, 7;, 0; translate into formulas A;, B; (by just replacing 

the variables with primitive symbols in P). Let T = {Ai > B,,...,An — By} and 

p be Ao — Bo. Then RRD F q means that [ Frrp p, while QRS | q means that 

[Fors p- 1 

Lemma 2.3.5. Leth: £2 — M= (M‚o,\, /,Id,0, C) € RRS? be an isomorphism. 
Then there is a square relational model W = (W,C,v) such that, for every generalized 

sequent A — B, 

h(A/=r) Ch(B/=r) iff WEA B. 

Proof: Let W = U x U where U = {u: (u,u) € R for some R € M}, and let 
v(p) = h(p/=r) for all p € P. Then W is a square relational model. It is easy to check 
by induction that, for all z € W and A € Formro, 

(ee) cit A iff zE h(A/=r). 
Let A,B € Formyc. By the definition of £2, we have that T Hyco (A — B) iff 

(A/=r) < (B/=r) in £}, and by h being an isomorphism the second statement holds 
iff h(A/=r) C h(B/=r). By (**) we have that h(A/=r) C h(B/=r) iff WE A — B. 

Now look at the sequent — B. The above argument remains valid if we replace A 

with the empty sequence, and (A/=r) with e (of £2) in it. Thus we get 

Dro (+B) iff WE (—B). 

Let finally % be any sequent of form Aj,..., An — B with n > 1, and let A = 

((Aje A2)e...e A„). Then, it is easy to see that (cf. (*) in the proof of Lemma 2.3.1) 

and clearly W — iff WE (A — B), thus we obtained 

Prov iff Wk y, 

for any generalized sequent %. 1
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COUNTING ARROWS 

In this chapter’, we will introduce our second (and more sophisticated) taming strategy. 

We will apply this strategy to find well-behaved versions of pair arrow logic. 

The situation concerning pair arrow logic can be described as follows. Let us 

consider its square version, PAL,,, cf. Definition 1.1.3. PAL,, has undesirable meta- 

logical properties: its validities form an undecidable set (cf., e.g., [AKNSS]), there is 
no Hilbert-style calculus which is strongly complete and strongly sound for PAL,, (cf. 

[Mo64] for the equivalent algebraic result), and the Craig interpolation and Beth de- 

finability properties fail (cf., e.g., [Ma95]). Our aim is to find such a version of pair 
arrow logic that (a) its power is close to that of PAL,,, and (b) it has nicer metalogical 
properties. The taming strategy will consist of two major steps. 

(i) First, we will define weakened versions of pair arrow logic by widening the class 
of models of PAL,,, and recall results from the literature stating that these weak- 

ened versions have nice properties: decidability, Hilbert-style completeness, Beth 

definability and Craig interpolation properties. 

(ii) Next, we will strengthen these logics by (re-)introducing connectives (the dif- 
ference operator and graded modalities) that are not definable after weakening. 

Of course, our goal is to make these strengthenings in such a way that (some 

of) the nice properties are preserved. We will concentrate on decidability and 

completeness, and prove that these features indeed remain true. 

The (variety generated by the) algebraic counterpart of PAL,, is the class of repre- 

sentable relation algebras, RRA, cf. Definition 3.2.1. Although RRA is a variety, it is 

not finitely axiomatizable, and its equational theory is undecidable, reflecting the fact 

that PAL,, is incomplete and undecidable. We will define relativized versions of RRA 

(cf. Definition 3.2.1) that form finitely axiomatizable and decidable varieties. Then we 
will expand the similarity type of these algebras, and show that the above properties 

hold for this enriched language as well. 

3.1 ARROW LOGIC WITH GRADED MODALITIES 

Arrow logic as defined in [vB94] is intended to be the authentic basic “computational 
core” for logical systems used for reasoning about dynamic aspects of the subject 

matter of our thinking, e.g., about processes, actions, and programs. See also [Ve92] 

for linguistic motivations for arrow logic. 

1This chapter is (partially) based on the following papers: [MMN94], [AMN94], and [MMNSi]. 

61
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Since arrow logic is intended to “speak” about transitions, it is natural to give 

a semantics where the worlds are ordered pairs, reflecting the dynamic character of 

the logic. Further, it is a natural idea to define the frames for this pair version of 

arrow logic as Cartesian spaces, i.e., the universes have the form U x U. The bad 

news is that the square version PAL, of pair arrow logic defined in the above way, 

cf. Definition 1.1.3, does not behave in a nice way. As we mentioned above, PAL,, is 

undecidable, Hilbert-style incomplete, etc. 

Thus, it is a natural question whether pair arrow logic has versions such that (a) 

they have nicer properties and (b) their power is close to PAL,,. The results of [AKNSS] 

and Theorem 2.1.10 suggest that associativity of composition makes pair arrow logic 

undecidable and incomplete. If we insist on the transitivity of the frames for pair 

arrow logic (as in the case of PAL,,), then composition is associative. Thus, to find 
nicer versions of pair arrow logic, one should apply to “non-square” approach. 

FIRST TAMING STEP. First we widen the class of models by allowing frames whose 

universes are not necessarily Cartesian spaces. In the logics PALy (H C {r,s}), cf. 

Definition 1.1.3, associativity of composition does not hold, since the universes are 

arbitrary or reflexive and/or symmetric relations, and so are not necessarily transitive. 

Thus, there is a chance that these relativized versions have nicer properties. Indeed, for 

HC {r,s}, PALy has desirable metalogical properties as the following theorem states. 

For proofs and precise references we refer to [Ma95]. 

Theorem 3.1.1. Let H C {r,s,t} be arbitrary. Then 

1. PALy has a strongly sound and strongly complete Hilbert-style calculus ifft ¢ H; 

2. PALy is decidable iff t ¢ H; 
3. PALy has the Craig interpolation property iff t ¢ H; 

4, PALy has the Beth definability property ifft ¢ H. 

We mention that the above negative results hold for PAL,, as well, for the logics PAL,, 

and PAL (+) are equivalent. 
This way we achieved our first goal, i.e., we found well-behaved versions of pair 

arrow logic. The problem is that the above relativized versions PALy are remarkably 

weaker than PAL,,. An example is the universal modality Oy that is definable in 

PAL,, as T epe |, but cannot be expressed on non-square frames. © is important 

from theoretical point of view, since the deduction term is definable by means of ©, cf. 

[Si92] for more details. This example motivates the following. 

SECOND TAMING STEP. In this phase of taming, we try to strengthen the weak- 

ened logics by introducing new connectives. We will add the difference operator D 

to PALy, and show that Hilbert-style completeness and decidability are preserved, cf. 

Theorem 3.1.2 and Theorem 3.1.4. We will also expand the similarity type by the 

graded modalities. Decidability holds in this case too, cf. Theorem 3.1.4. Hilbert- 

style completeness is an open problem for these graded logics, but we will show that 

non-Hilbert-style weak completeness can be achieved, cf. Theorem 3.1.3.
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Let us recall that the logics graded pair arrow logic “PALS and counting pair arrow 

logic KPALGU" are defined using PALy as L in Definition 1.1.5. PALO is defined in a 

similar way, using Definition 1.1.7. By Theorem 1.1.6, graded and counting PALy’s are 

equivalent, and the same holds for PAL? H and 3PALST4, 

Now, let us formulate the main results of this section. 

Theorem 3.1.2. There exist strongly sound and strongly complete Hilbert-style cal- 

culi for ®PAL{™,, SPALG2S and PALF, ,. 

Theorem 3.1.3. LetO0<K<w. “PAL and “PALE have weakly sound a weakly 
complete calculi. 

Note that, in the case of x = w, the languages of “PALS? and “PAL”! contain 
infinitely many connectives. Thus, it is impossible to give a finite calculus (in the sense 

of Definition 1.1.10) for these logics. But we can slightly generalize the definition of a 

calculus by defining instances of formula schemata by allowing substitutions not just 

formulas (for formula variables) but connectives as well. For instance, the instances of 

the formula schema (N)A — (N + 1)A are the formulas (n)p — (n + 1)y for every 
formula p and natural number n. Completeness for “PALS? and “PAL?"" is meant 
in this sense in the theorem above. For Kk < w the original definition works. 

Theorem 3.1.4. Let 0<« <w. Then the logics “PALS? “PAL@"" and PAL? are 

decidable iff t ¢ H. 

The proofs of the above theorems are based on the corresponding algebraic results of 

the following section, using the bridge developed in Section 1.3. 

The following proposition tells us what the algebraic counterparts of different ver- 

sions of PALy are, cf. Definition 3.2.1 for the definitions of the classes of algebras. 

Proposition 3.1.5. 1. Alg(PALE) = S(RI7RRA)P. 
2. Alg(“PALS°*) = S(R1RRA)<*. 

Proof: Straightforward. 1 

Now we are in the position to prove the main theorems of this section. The idea of the 

completeness proof is to use the completeness theorem for PAL, and then duplicating 

the worlds in the (canonical) model so that the accessibility relation of D becomes 

inequality. 

Proof of Theorem 3.1.2: By Theorem 3.2.3 and Proposition 3.1.5 we get that 

SPAlg(PAL‘,, sy) = SPWAD (cf. Definition 3.2.1) is a finitely axiomatizable variety. 

Then, by the equivalence Theorem 1.3.7, the logic PAL‘. s} has a strongly sound and 

strongly complete Hilbert-style calculus. Then so do the equivalent logics SPAL I and 

SPALUn. 1 
{r,s} ° 

The following proof depends on the fact that every model for PALS, s} can be considered 

as a model for "PALIT {r,s) PY interpreting the connectives (n) in the standard way.
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Proof of Theorem 3.1.3: This is an easy consequence of Theorem 3.2.17 and the 

bridge Theorem 1.3.11. 1 

The idea of the decidability proof is to construct a model from finitely many “small” 

partial models (called mosaics). Note that this method does not prove finite model 
property, since one mosaic may be used infinitely many times during the construction 

of the model. Actually, the finite model property is open even for PALy (H any subset 

of {r, s}). 

Proof of Theorem 3.1.4: By Theorem 3.2.24 and Proposition 3.1.5, the equational 

theory of Alg(*PAL*) = S(RlRRA)<* is decidable iff t ¢ H. Then, by the equiva- 
lence Theorem 1.3.12, “PAL is decidable iff t ¢ H. Since “PAL%f** is equivalent to 
*PALS"™ the same holds for the latter logic. We already saw, cf. Proposition 1.1.8, 

that PALS is equivalent to 3PALST thus the theorem holds for PALS, as well. 1 

3.2 RELATIVIZED RELATION ALGEBRAS WITH COUNTING 

OPERATIONS 

The algebraic counterpart of PAL,, generates the variety RRA of representable relation 

algebras, cf. Definition 3.2.1. The unit of an RRA is an equivalence relation, which guar- 

antees the associativity of composition. Associativity seems to cause both non-finite 

axiomatizability, cf., e.g., Theorem 2.1.10, and undecidability, cf. [AKNSS]. Indeed, 

if we allow not necessarily transitive units, then we get a finitely axiomatizable and 

decidable class, cf. [Kr91] and [Ma95] for proofs and a survey of related results. This 
class is called relativized representable relation algebras RIRRA. Moreover, if we re- 

quire that the unit is a symmetric and/or reflexive relation, finite axiomatizability and 

decidability remain true. These classes are denoted by RI#RRA where H C {r,s}, 

and r and s abbreviate ‘reflexive’ and ‘symmetric’, respectively. If H = {r,s}, then 

we get the class of weakly associative relation algebras WA, since instead of the asso- 

ciativity axiom zo (yo z) = (x0 y) oz only its weakened version holds where one of 
the arguments is less than identity.2 The reason for this is that in a RIRRA the com- 

position of two elements a and b is computed relativized to the unit W of the algebra: 

aob={(u,v) EW: Jw((u,w) € a & (w, v) € b)}. 

Thus, completeness and decidability can be regained. But what was the price that 

we had to pay for this? Well, we had to abandon associativity, a necessary sacrifice. 

But we also lost the discriminator term. Indeed, in RRA, 1oxol defines a complemented 

closure operator, whence RRA is a discriminator variety.? On the other hand, in WA, 

10 (201) = (102) o1 does not hold and the discriminator term is not definable. 

But a discriminator term is really useful, e.g., using it we can code quasi-equations as 

Using the notation above WA = Rlj,,,,RRA. 
3In SirRRA the discriminator term 7 and the complemented closure operator © are mutually 

term-definable: 7(z,y, u,v) = (O(z ® y)-v) + (u: —-O(z @ y)) and Oz = 7(z,0,0, 1).
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equations.* Moreover, the complemented closure operator corresponds to the universal 

modality of the logic, and we already mentioned that expressibility of the universal 

modality implies the deduction theorem. Thus, the question of whether the loss of the 

discriminator term is a “must” naturally arises. 

In this section, we will add the unary operations at least n-times, (n), (n € w \ 
1) and the difference operator D to RlyRRA, yielding the classes (RlyRRA)<” and 

(RlRRA)”, respectively. We will also investigate reducts (Rly RRA)<" of (RlyRRA)<” 
where the operations (2) are included only to a certain bound n € w\ 1. If we consider 

WA instead of RlyRRA, then we get the classes WA<”, WAD, and WA", respectively. 
See Definition 3.2.1 below. 

We will prove that the equational theories of WA<” and WAS” are decidable, which 

will yield the same result for WAD. An easy modification of this decidability proof 

yields the decidability of the classes obtained by replacing WA by RI4RRA, where H 

is any subset of {r,s}. On the other hand, if t € H (i.e., we relativize with transitive 

units); then decidability does not hold. Further, we will show that WAD (and the 

term-equivalent WA<*) generates a finitely axiomatizable discriminator variety, while 

the same question for WAS” (n > 3) and (RlyRRA)<” (2 < n and H C {r,s}) is 
still open. For w only finite schema axiomatizability may hold, an interesting open 

problem. However, we will prove that the SP-closure of WA<* (a < w) coincides with 

the SP-closure of the subclass of singleton-dense (i.e., where there is a singleton atom 

below every non-zero element) members of a finitely schema axiomatizable variety. 

Using D we can express the complemented closure operator Ox, also denoted as 

(1)z, (as x + Dz), once (1!)z (as O(x -—Dz)) and at least twice (2)x (as D(z - Dx) 
that cannot be defined in WA. The expressive power of WAS" is even stronger. With 
(1) and (2) we can define D: Dr = (—x - (1)x) + (2)z; and we can express precisely 
k-times as well: (k!)x = (k)x -—(k + 1)x (for k +1 <n). 

Below we will define RRA (cf. [HMT85]), its relativized versions, and expansions 
with the difference operator and graded modalities. 

Definition 3.2.1. (Set algebras of relations) 

1. By a relation set algebra, an Rs, we mean an algebra 

AC (P(W),N, ~, 0,73, Id) 

where W = U x U is a non-empty set, N is intersection, ~ is complement w.r.t. 

U x U, o is relational composition, ~! is relational converse, and Id is the identity 

relation on U. More formally, aob = {{u, v) € W : dw((u, w) € a & (w,v) € b)}, 

a! = {(u,v) € W: (v,u) € a} and Id = {(u,v) € W: u=v}. We denote the 
class of all relation set algebras by Rs. 

2. Let the class RRA of representable relation algebras be defined as 

RRA É SPRs. 

“n= & ...& m= On) > To = Qo is equivalent, on subdirect irreducible algebras, to 
To ® oo S (ni Boi) +... + Ot, Boe).
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3. Let r, s, t abbreviate ‘reflexive’, ‘symmetric’, and ‘transitive’, respectively, and let 

HC {r,s,t}. Mis a full RlyRRA, a full relativized representable relation algebra, 

if 

A = (P(W), M, ™; o, 7, Id), 

where W is a non-empty binary relation satisfying the condition H. If H = {r, s}, 

we get the class of (full) weakly associative relation algebras WA. 

4. The class (RlyRRA)® of algebras is defined as {(2,D) : A a full set Rl,RRA}, 
where the difference operator D on 2 is defined as 

0 ifa=0 
Daf va if |a| = 1 

W otherwise 

and W denotes the unit of 2. 

5. The class (RlyRRA)<” is defined as {(2, (n))new 1 : Aa full set RlyRRA}, where 

(na @ iflal<n 
__\ W otherwise 

with unit W of Q. 

6. The class (RlyRRA)<" (n € w \ 1) is defined as the appropriate reduct of the 
class (Rl;,RRA)<’: 

(R1yRRA)<" = UIA, (k)) ren: : A full set RlyRRA}. 

Substituting WA for RlyRRA, we get the classes WAD, WAS“, and WAS", respectively. 
| 

3.2.1 AXIOMATIZATION OF WAD 

Below we give a finite set Ax of equations axiomatizing the variety SPWAD generated 

by WAD. Let -,+,@, and — denote Boolean meet, join, symmetric difference, and 

complement, respectively. We will denote abstract composition, converse, and identity 

by ;,~, and id, respectively. Throughout, Oz B rt Dz, domz er (z;1) - id and 

ranz © (1;z) ‘id. Instead of the equation z - y = z, we will use z < y. We note that 

axioms (1) and (D1)-(D4) axiomatize the class BAD of Boolean set algebras with the 
difference operator (defined analogously to WAD). 

Definition 3.2.2. (WAD-axioms) Let Az consist of the following equations: 

1. axioms of WA: 

(1) Boolean axioms 

(z+y);z=(z;z) + (y;z)
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9. axioms for the difference operator ensuring that D is a modality and that © is a 

complemented closure operator: 

(Di) D(z + y) = Dz + Dy 
(D2) DDz < Oz 
(D3) Or < -D— Ox 
(D4) Dz - Oy = D(z: Oy) 

3. axioms ensuring that the relativization with Oa is a homomorphism (cf. Proposi- 

tion 3.2.6), and describing the connection between D, and ran and dom (for more 

intuition on (Dc) and (Dd) see the beginning of the proof of Theorem 3.2.3): 

(Da) (x;y) - Oz = (z: Oz); (y- Oz) 
(Db) 2“ < Or 
(Dc) O(Ddomz ® —domz) + O(Dranz ® —ranz) = O(Dz @ —z) 
(Dd) ((dom(zx; domy); 1) - (1; rany)) ® (x; y) < O(Ddomy @ —domy). 

Since in the above definition of WAD we did not close it under subalgebras and products, 

WAD itself cannot be a variety. That is why we have to take its SP-closure. 

Theorem 3.2.3. SPWAD is a finitely axiomatizable discriminator variety: 

SPWAD = Mod(Az). 

That is, an algebra (A,-,—,;,~,id,D) satisfies the above axioms iff it is (isomorphic 

to) a subalgebra of a direct product of WAD’s. 

Corollary 3.2.4. SPWAS is a finitely axiomatizable variety. 

Proof of Corollary 3.2.4: This is an immediate consequence of Theorem 3.2.3, 

since the classes WAD and WA“° are term-definitionally equivalent (as we pointed out 

above). 1 

In the following proof we will use the following axiomatization theorem for WA, cf. 

[Ma82]. 

Theorem 3.2.5. 

TWA = Mod((1) — (8)). 

First we will represent an abstract WAD as a set WA (with an abstract D on it), and 

then modify the representation so that it behaves correctly w.r.t. D as well. 

Proof of Theorem 3.2.3: It may be useful (to gain some intuition) to reformulate 

the axioms (Dc) and (Dd). The following formulas are equivalent to the corresponding 

equations on subdirectly irreducible algebras.” Below we say that an element z is a 

singleton iff Dr = —z. (Dc) says that an element is a singleton iff both its domain and 

its range are singletons: 

Dr = —z <> Ddomz = —domz & Dranz = —ranz. 

SHere we use the standard technique of discriminator varieties explained above.
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(Dd) ensures that we can form the composition of two arrows (i.e., ordered pairs) if 
the range of the first one (x) and the domain of the second one (y) intersect the same 
singleton element (domy): 

Ddomy = —domy > (dom(z; domy); 1) - (1; rany) = 2; y. 

We will need this axiom when we want to collapse different points in the representation 

of a singleton element. 

It is easy to check that Az is valid in WAD, and so in SPWAD. It may help to check 

the equations only in the subdirectly irreducible algebras, and use their reformulation 

above. 

To prove the other direction we show that every subdirectly irreducible algebra 2% 

satisfying Ax can be represented as a subalgebra of a WAD. This is enough, since 

every element of Mod(Az) is a subdirect product of subdirectly irreducible members 

of Mod(Az). Since the class SirMod(Az) of the subdirectly irreducible members of 
Mod(Az) is a discriminator class (cf. Proposition 3.2.6 below), Mod(Az) is a discrim- 
inator variety. 

First we note some straightforward consequences of the axioms. 

1. © is a complemented closure operator, i.e., z < Or < O(r+y), OOx < Oz, and 

Oo -O2n < -Or. 

2. DO = 0. 

Proposition 3.2.6. Let AE SirMod(Az) anda € A. Then 0 < a implies Oa = 1. 
Thus, on every subdirectly irreducible member of Mod(Az), there is a discriminator 

term. 

Proof: It is easy to show that relativizing & with Oa (and with —Oa) is a homomor- 

phism. Thus 2{ can be embedded into the product of the relativizations of A with Oa 

and with —Oa. Further, this is a subdirect embedding. Thus one of the algebras must 

be isomorphic to 2. This yields Oa = 1. Then the discriminator term 7 can be easily 
def 

defined: r(x, y,u,v) = (Ò(zBy)-v) +(u--O(z @y)). 1 

Claim 3.2.7. Let AE SirMod(Az) anda € A. Then the following hold. 

(i) Da € {0, —a, 1}; if Da = —a, then a is an atom; if 0 < Dz, then 0 < z. 

(ii) If |A| > 2, then D1 = 1, and 0 < zr implies 0 < Dz. 

Proof: This is an easy calculation using the fact that, in subdirectly irreducible alge- 

bras, Dr + x = Or = 1 whenever O< cz. 1 

Clearly, any two-element algebra ({0,1},...) € Mod(Az) can be represented (choose 
W = {(0,0)} or W = {(0, 0), (1,1)} according to whether D1 = 0 or D1 = 1). Thus, 
from now on, we may assume that |A] > 2. 

Let A E Mod(Az) be a subdirectly irreducible algebra and Ay be the D-free (ie, 
WA-) reduct of 2. By the WA-representation Theorem 3.2.5, there are a reflexive 

and symmetric relation W C U x U for some set U, and an algebra A, such that 
Ay ZAC (P(W),N,~, 0,1, Id). For a € A we denote its representation by a’.
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First we show that there is a reflexive and symmetric relation W~ C U” x U” for 

some set U” such that there is an embedding g : A — (P(W~),N,~,0, 71, Id), and 
that, for every z € A, if D(x) = —z, then g(x) = {w} for some w € W-. This is of 

course not the end of the story, since there still may be elements such that Dy = 1 and 

lg(y)| = 1, but we will deal with that problem later. 

FIRTS STEP. We define the relation = on U to collapse those distinct pairs which 

are in the representation of a singleton element. It is enough to consider those single- 

ton elements which are below the identity, because (Dc) ensures that singletons have 

singleton ranges and domains. 

Definition 3.2.8. Define the relation = on U as follows: for u,v € U, u = v iff (i) 
u =v or (ii) there is a y € A such that D(y) = —y and (u, u), (v,v) € y’. Note that y 
must be an atom, and thus it is below the identity, and = is an equivalence relation. 

Let U- © U/= and W- 2 (u/=, v/=) : (u,v) € W}. 
Let g be the function mapping A to P(W”) defined by the formula 

g(a) = {(u/=, v/=) : (Au) € u/=)(av’ € v/=)(u', v') € a’}. 

| 

It is easy to see that W” is indeed a reflexive and symmetric relation. 

Claim 3.2.9. If (u,v), (u'‚v') € W and u = u,v = v’, then (u,v) € a’ implies 

(u'‚v') E a’, for every a € A. 

Proof: We have four cases according to whether u = wu’ and v = v’. To avoid triviality, 

let us assume u # u’ or v # VW’. 

First let u # u’ and v # v'. By the definition of =, there are identity atoms 

y,z such that Dy = —y, Dz = —z, (u,u),(u’,u’) € y' and (v‚v), (v'‚v') € 2’. Let 

b = (y;1)- (1; z). Note that then (u,v), (u’, v’) € b'. Since y and z are atoms, domb = y 
and ranb = z, so we have D(b) = —b because of axiom (Dc). Then b is an atom in YA, 
and, since b-a £0, (u'‚v') Ea’. 

Now let u = u’ and v # v’. Then there is an identity atom z such that Dz = —z 

and (v,v), (v'‚v') € z'. Assume (u,v’) ¢ a’. Let x = a- (1;z) and y = (—a)~ - (z;1). 
Then domy = z, whence Ddomy = —domy and (v, v) € domy’. Thus (u, u) € dom(z’ o 
domy’)oW. On the other hand, (u, u) € Worany/, since (v’, u) € y’. Then (u, u) € z'oy’ 
by (Dd). Since z;y < a; (—a)” and (a; (—a)~) - id = 0, we derived a contradiction. 

Fu # u’ and v = v’, the above argument shows that (v, u’) € (a’)~', ie., (u’,v) € a’. 
1 

Proposition 3.2.10. g is an embedding of Ag into (P(W—),N, v‚o,7!, Id). 

Proof: The only problematic case is composition. For the other connectives use the 

previous claim. 

g(a; b) C g(a)og(b) is easy. For the other direction let us assume (u/=, v/=) € g(a)o 
g(b). Then Jw/=((u/=, w/=) € gla) & (w/=,v/=) € g(b) & (u/=,v/=) € W-),
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Le, Jw/=(Su, u,v, v')(Ju',w" € w/=)u =u &v=0' & (u,v) ECW & (uw) € 
a’ & (w",v') EB. 

CASE 1: w' 4 w". Then (DU = —l & (w'‚w'), (w",w") € I’). First we show that 
there are t and t’ such that (u,t) € a’, (t’,v) €b andt=t. 

Ifu=w' and v =v’, then t = w and t/ = w' will do. So assume that u # u’. Then 

dk(Dk = —k & (u,u), (u',u’) € k’). Let z = a- ((k;1)- (1;1)). Then (w’,w’) € 2’, 
whence (u’,u’) € domz’. Hence (u, u) € domz’, since k' Ndomz’ # @. Thus there exists 
t such that (u,t) € zt! C a’, whence (t,t) € l', ie, t = w’. By the same argument we 

can find y and t such that t! = w” and (t’,v) Ey’ CU. 
By (t,t) € l'! = domy’, we have (u,t) € x’ odomy’, whence (u, u) € dom(z’ odomy’). 

Thus we have (u,v) € (dom(z’ o domy’) o W) N (W orany’). Then, by (Dd), we get 
(u,v) € 2! oy! = (x; y)’ C (a;b)’, ie, (u/=, v/=) € g(a; d). 

CASE 2: w’ = w". Ifu= u & v = v’, then (u,v) € (a; b)’, whence (u/=, v/=) € g(a; 5). 
Now assume that u # u', i.e, Jk Dk = —k and (u, u), (u’, u’) € k’. Let c = (k;1)-a. 

Then domz = k. By case 1, (w',v’) € (z~)! o W, whence Ju” (w',u'’) € (x~)' and 
(u”,w') € W. Then (u",w’) € 2’, and u’ = u by (u",u") € domz’ = k’. Thus (u”, v’) € 
z' ob! Ca’ ob! by (w’,v’) € b'. Since u" = u and v' = v, we have (u/=, v/=) € g(a;b). 

Thus we proved that (u/=, v/=) € g(a) o g(b) implies (u/=, v/=) € g(a;b), finishing 
the proof. 1 

Proposition 3.2.11. Ifa € A and D(a) = —a, then |g(a)| = 1. 

Proof: Since a # 0, there is a pair (u,v) € a’. We claim that g(a) = {(u/=, v/=)}. 2 
is true by the definition of g. Now suppose that (u'/=,v'/=) € g(a). Then for some 
u" € u'/= and v" € v'/=, (u",v") € a’ by the definition of g. Now D(a) = —a gives 
D(doma) = —doma and D(rana) = —rana by axiom (Dc). Since (u, u), (u, u”) € doma’ 
and (v,v), (v",v") € rana’, we have u = u" and v = v”", by the definition of =. So 

(u' /=, v' /=) = (u/=, v/=), finishing the proof. 1 

SECOND STEP. Now we have to achieve our second goal, to find a symmetric and re- 

flexive relation Wt such that there is an embedding h of Ap into (P(W*),/N, ~, 0, ~!, Id) 

with the following properties: (i) if Da = —a, then |h(a)| = 1 and (ii) if Da = 1, then 
|h(a)| > 1. We need this, because there may be elements a € A such that Da = 1 while 
|g(a)| = 1. Below we will duplicate those points u for which {(u, u)} = g(a) for some 
non-singleton a. 

Definition 3.2.12. Let 

xe {ue U” : dal{(u,u)} = g(a) & Da = 1)} 

and let ~ be a 1-1 function with range disjoint from U”. Let X < {z: 2 € X}, 

U+SU-UX and 

Wt S Ww- uU{(z,z) 2 € X}U {(u,2), (Zu): (uz) EW &uFzE X}.
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Clearly W* is a reflexive and symmetric relation. For every a € A, let 

f(g(a)) = g(a) U fo(g(a)) U fr(g(a)) U falla) 
where 

fo(g(a)) = WUZE): (x, x) € g(a) &  € X} 
fi(g(a)) = Eu): (z,u) € g(a) kurre X} 
fo(g(a)) S {(u,z): (ux) € g(a) kurre X}. 

Proposition 3.2.13. (i) If Da =1, then |f(g(a))| > 1. 
(ii) If Da = —a, then |f(g(a))| = 1. 

(iii) f is an embedding. 

Proof: (i): By (Dc), Ddoma = 1 or Drana = 1. W.l.o.g. we can assume Ddoma = 1. 
If |g(a)| > 1, then so is |f(g(a))|. Now assume g(a) = {(z,y)}. Then g(doma) = 
{(x,z)}. By the definition of X, x € X, and then not just (z,y) € f(g(a)) but 

(Z,y) € filg(a)) S F(g(a)) or (Z,2) € fo(g(a)) © f(gla)) according to whether x = y, 
or x and y are different. 

(ii): By (Dc), Ddoma = —doma and Drana = —rana. Thus if g(a) = {(z, y)}, then 
{(xz,x)} = g(doma) and {(y, y)} = g(rana), whence neither z nor y is in X. That is, 

f(gla)) = gla). 
(iii): This is a somewhat long but easy calculation. We just give hints. Complement 

is easy. Preservation of N follows from f;(g(a) N g(b)) = fi(g(a)) A fi(g(b)) for 1 € 3. 
The case of o amounts to prove: 

g(a) og(b) = gla)og(b) U fo(g(a)) o f1(9(b)) 
folgla)og(b)) = folgla))o fo(g()) U filg(a)) o f2(9(b)) 
filgla)o g(b)) = folgla))o filglb)) U fi(gla)) © 9(b) 
falgla)og(b)) = fe(g(a)) > folglb)) U gla) © f2(9(b)) 

For ~! it suffices to show: 

fo((9(a))~*) = (fo(g(a)))~™ and fi((9(a))~) = (F;(9(@))) ~~ ({4,. 9} = {1, 2}). 

Finally, 

f(g(id)) = g(id) U {(z, Z) : (x, 2) € g(id)} = 1d27*2". 

where Id?“ *U* denotes the identity relation on Ut. u 

Now let h be the composition of f and g, i.e., h(a) ES f(g(a)). Then h is the desired 

embedding of A, into (P(W*),N, ~, 0, 71, Id) € WA. 

Let Bo be the h-image of Ag and B 2 (Bo, D) where D is the restriction of the 

difference operator defined on P(W*) to B. Then A = B, ie, we embedded A into 

(P(Wt),A,~,0, 71 ‚Id, D) € WAD. This finishes the proof of Theorem 3.2.3. 1 

Remark 3.2.14. We conjecture that the above theorem can be extended to any 

(Rl,RRA)<* with H C {r,s}. For axiomatization of (RlyRRA)<? with H C {r,s} 
see [Ma95]. z
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3.2.2 AXIOMATIZATION OF WA“® 

As we will see SPWA“<“ is a variety for any a < w, cf. Theorem 3.2.16. It is an 

open problem whether these varieties can be axiomatized by finitely many (universal) 

equations, provided 3 < a. If a = w, then finite axiomatization is impossible, since the 

language is infinite, there are infinitely many (n)’s. Then a natural question is whether 

one can find finitely many schemata, formulas containing variables for which terms can 

be substituted, axiomatizing the class. 

From now on, let 3 < a. We will show that SPWA“° is finitely axiomatizable 

as an ezistential variety. By this we mean the following. We will define a variety 

K axiomatizable by finitely many schemas. Then we will add one more existential 

equation, i.e., an equation of the form Vridy(t = o) for some terms o and 7. This 
defines a subclass DK of K, and we will show that SPWA<* = SPDK. We note that if 

a is finite, then the set of schemata yields a finite set of axioms. 

The meaning of the above-mentioned existential equation is that an algebra satisfy- 

ing it has a density property: below every non-zero element there is a special element. 

Representation of this kind of algebras has been investigated extensively, cf. [HMT85] 

and Chapter 4, since these representation theorems yield completeness results for logics. 

In the proof of Theorem 3.2.3, we had a relatively easy task: after representing the 

WA-reduct we modified the representation so that it worked for D as well. Since by D 

we can express only (1) and (2), in the second step it did not matter how many copies 

we made. On the other hand, if we have all the (n)’s in the similarity type, than we have 

to be more careful with the copying. It is not clear how to make, say, precisely three 

copies of a pair (preserving isomorphism). In spite of this, we can apply Theorem 3.2.3 

to achieve a representation theorem for (abstract) algebras with all the (n)’s. Namely, 
we will represent those algebras in which, below every element, there is a singleton 

element — the representations of the singletons will induce the representations for the 

elements above the singletons. 

Definition 3.2.15. Let &, be the following set of equations: 

1. finitely many equations axiomatizing SPWA“<°, 

2. equations axiomatizing the counting operations: 

(C1) (I){n)z S(n)z (n <a) 
(C2) (n+1)z < (n)z (n+1<a) 

(C3) (n)z S(n)(z+y)  (n<a) 
(C4) —(1)(z-y)- (mia - (n!)y < (mt n)!)(z + y) (m+n+1<a) 

(C5) —(1)(z-y)-(m)z-(n)ys (Ur ty)  (lmn<ak&l<m+n) 
where (k!)z abbreviates (k)z - —(k + 1)z. 

Let K, = Mod(X,) and DK, = Mod(, + (d)), where 

(d)  (WO<a€ A\(30< bE A)b<a& (2)b=0. 

The intuitive meaning of the above (d) is that below every non-zero element a, there 
is a singleton element b, i.e., (d) expresses a density property.
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We note that, for a = w, (C5) is superfluous both in the proof of Lemma 3.2.21 
and of Theorem 3.2.17 below. 

First let us prove that SPWA“<“ is a variety. The main result is Theorem 3.2.17 

below. 

Theorem 3.2.16. SPWA“° is a variety. 

Proof: We will show that IWA“° is a pseudoaxiomatizable class, i.e, it is a reduct of 

first-order axiomatizable class. Hence, it is closed under ultraproducts: UpWA*<* = 

IWA<*. Then SPWAS* = SPUpWA<*. Since IWA“<* is a discriminator class, the 
quasi-variety SPUpWA*<* = SPWA“° generated by it is a variety. 

First let us prove that WA“° is a discriminator class. Indeed, the term T(z, y, u, v) def 

((1)(z®y)-v) + (u-—(1)(z®y)) is a discriminator term, since (1)z = 1 for any element 
z> 0. 

To: show that IWA“<* is closed under Up, we define two-sorted structures. Let 

A € WA<* and U be the base of A: AC P(U x U). Then we will describe the class of 
structures of the form 

(A,U,N,~, 0, 1, Id, (n), €)neont 

where the {U, €}-free reduct is a WA“* and A C P(U x U) and € C (U xU) x A is the 
(set-theoretic) element relation. Indeed, the following set of first-order formulas does 

the job: 

1. a formula expressing the extensionality of €: for every two distinct elements a, b 

of A, there is an element w of U x U such that exactly one of the following holds: 

w€a, or wE b; 

2. formulas ensuring that A is a WA-universe and that the operations work properly 

on A (below, 1 denotes the top element of 2): 

Vu, v((u,v) € 1 = (u,u), (v‚v), (v, u) € 1) 
(V(u,v) € 1)((u,v) Er Ny => (u,v) Er & (u,v) Ey) 

(V(u, v) € 1)((u, v) En rt <> (u,v) € Zz) 

(V(u, v) € 1)({u,v) Ee roy => JAuw((u,w) € z & (w, v) € y)) 

(V(u,v) € 1)((u,v) € 2) <> (v,u) Ez) 

(V(u, v) € 1)({u, v) € Id => u =v) 

(V(u,v) € 1)((u,v) € (n)z <=> ug, Vo, , Un—1) Un-1 
I{ (up, v0), - (Uni, Un—1) }| = n & (up, vo) Ez & ... & (Un-1, Un-1) € Z) 

for every Nn€ awl. 

Then a two-sorted structure satisfies the above formulas iff its appropriate ({U, €}-free) 

reduct is in WA“®. 4 

Although, we do not know whether SPWA“* is a finitely (schema) axiomatizable va- 

riety, we can prove the following. 

Theorem 3.2.17. SPWA<* = SPDK,.
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Proof: C: Let A € WAS®. An easy verification shows that A € Mod(%,). Further, let 
a € A and |a| = 1 (note that 2 is a full algebra). Then (2)a = 0, whence A € DK. 
Hence SPWA<* C SPDK 

>: Now, let U € DK,. We will show U € SPWAS®. Assume that 4 ¢ SPWA“<°. 
By Theorem 3.2.16 above, SPWA“° is a variety. Thus, there is an equation e valid in 

SPWA<* that is not valid in 2, i.e., for some assignment k of variables of e, A  e[k]. 

By the downward Lowenheim-Skolem theorem, there is a countable subalgebra % of 

UA such that (i) BK e[k], and (ii) B € DKg, since (d) is a first-order property. By 
Theorem 3.2.20 below, every countable element of DK, is representable as a SPWA“*. 

Thus B € SPWA“°, whence B Fe, a contradiction. 1 

It remains to prove that every countable DK, is representable as a SPWA“<“. First we 

prove that representability holds for simple algebras. 

Theorem 3.2.18. Let AE DK, be a simple algebra. Then A € ISWA“°. 

Proof: Let A € DK, be a simple algebra. Then A satisfies the WA“*-axioms. These 

axioms together with (C2) ensures that DK, is in a discriminator variety. This yields 

that (VO < z € A)(1)x = 1. Then (d) guarantees that (VO < a € A)(30 < bE A)(b < 

a & Db = —b) (recall that Dz 2 (—x-(1)r)+(2)xr). Since A satisfies the WA<*-axioms, 
Db = —b=> be At(A). Thus A is atomic and (Va € At(M))(Da = —a). 

Let &’ be the {(n) : 2 <n < a}-free reduct of A. Since A' satisfies the SPWA<°*- 
axioms, it can be represented as a subalgebra of a WA“?, cf. Corollary 3.2.4: 

UC (P(W),N,~,0, TE, Id, (1), (2)). 

Let us denote this embedding by rep. We will show that rep works for the other (n)’s 

as well. 

First we need a claim. We note that, in simple algebras, (n)z € {0,1} by (C1) and 
(C2). 

Claim 3.2.19. (n!)z = 1 iff there are precisely n atoms below z. 

Proof: Let us assume that (n!)z = 1. If n = 1, then z is an atom. Now, assume 
n > 2, and that there are less than n, say k, atoms below z: 2),...,2,. Then, 

applying (C4) k — 1 times, we get (k!)z = 1, Le, (k + 1)z = 0, a contradiction. 
If there were at least n + 1 atoms below z, then, applying (C4) n times, we get 

1= (n + 1!)(a1 +... +2n41) < (n+ 1) (use (C3) for <), a contradiction. 
If there are exactly n atoms below z, then, applying (C4) n — 1 times, we get 

(niic=1. 1 

Let x be an arbitrary element of A. We have two cases. 

Assume there exists n such that (n!)z = 1. Then, by Claim 3.2.19, there are exactly 

n atoms below x, and these atoms are singletons: |rep(z;)| = 1 for all i € n. Since 

rep(z) = LJ{rep(z;) : 1 € n}, we have |rep(x)| = n. Then, for every k < n, rep((k)r) = 
rep(1) = W = (k)rep(z) by (C2). Since rep((k)x) = rep(0) = @ = (k)rep(x) (n < k) 
(again, use (C2)), rep works for every (k).
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Now assume that, for all n, (n)z = 1. Then, by Claim 3.2.19, there are infinitely 

many atoms below z. This yields |rep(x)| > w, whence rep((k)z) = rep(1) = W = 
(k)rep(z) for every k. This finishes the proof of Theorem 3.2.18. 1 

Theorem 3.2.20. Let A € DK, be a countable algebra, |A| < w. Then A € 
SPWA“®, 

Proof: Let A € DK, be a countable algebra. We would like to apply Theorem 1.2.6, 

j.e., to find simple (thus representable) algebras A; such that AC SP{A, : 7 € J}. 

But the (n)’s are not additive. To overcome this difficulty, we will define another 
(equivalent) class of algebras of the right similarity type. (The situation will be similar 

to the case of Boolean algebras, when both {-,—} and {+,—} can be taken as the 
set of primitive connectives.) The only problem is that we have to ensure that the 

extra-Boolean operations are additive. We will need two lemmas to achieve the above 

goal. — 

Let 5, be the following set of formulas: axioms from Definition 3.2.15 for Boolean 

algebras, those ensuring that (1) is a complemented closure operator, and (C'1)-(C5). 
Let the class BA<® be defined as WA“° using the class of full Boolean set algebras 
instead of the class of full set WA’s, cf. Definition 3.2.1. 

Lemma 3.2.21. Mod(Dz) = SPBA“®. 

Proof: This is a well-known result. See, e.g., [HR93], where this result (with a slightly 

different axiomatization) is proved in a logical form. However, we give a sketch how to 

prove the lemma in purely algebraic setting. 

As usual, we will represent the subdirect irreducible members of Mod(%;), and 

then the lemma follows. So let A € SirMod(Xz). Since, (1) is a complemented closure 
operator, 0 < x > (1)x =1. Then, by (C1), (C2) (n)z € {0,1} for every z and n. 

Since QA satisfies the Boolean axioms, it can be represented as a field of sets, say by 

the Stone-representation rep. We will modify rep so that it works for the extra-Boolean 

operations as well. First we correct rep on the atoms. We know that, for every atom 

a, |rep(a)| = 1. Let kg = max{k : (k)a = 1}. Let rep’(a) be such that |rep'(a)| = k and 
rep'(a) MN rep'(b) = @ for distinct atoms a and b. This can be easily done, e.g., by just 

putting new elements into the old representations (this technique is called splitting in 

algebraic logic, cf. [HMT85]). Now we extend rep’ in the obvious way: 

rep (zr) = | ){rep’(a) :a € At(M) & a< x} Urep(z) 

for every x € A. 

It is easy to see that rep’ works properly on atoms. Now let z be arbitrary. If z is 

the sum of finitely many atoms, then a similar argument as in the proof of Claim 3.2.19 

shows that the (n)’s are preserved. If x is not a sum of finitely many atoms, then there 

are infinitely many disjoint elements below it, and, since these elements y are not zero, 

|rep(y)| > 1. This yields that |rep'(z)| > w. On the other hand, let n € a be arbitrary. 

Then, applying (C5) n — 1 times for n disjoint elements below z, we have (n)z = 1. 
This shows that rep’ works in this case as well. 1
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Lemma 3.2.22. Let AE DK, and |A| <w. Then there are U, € SimDK, such that 

Ae SP{AW;:ie€ I}. 

Proof: We will define classes K’, and DK(, such that 

(i) K‚ and DK, satisfy the conditions of Theorem 1.2.6, 

(ii) there are operations Rd and Kd’ such that VA € DK, and VA’ € DK), 

) 9d" (2) € DK’, & Ro(U') € DK. & (A! = RO'(U) & |A| <w > |A'| <w) 
b) SRO(9td!()) > A & Ro'(Ro(A')) > U 
c) AE SimDK!, > Ro(A') € SimDK, 

(d) UESP{A: ie I} > Ro(U') € SPIR) : ie I}. 

Assume that (i) and (ii) are achieved. Let 21 € DK, and |A| < w. Then there is an 
U € DK, such that Ro'(2) = A! and |A’| < w. Then, by (i), U € SP{A : i € I} 
for some I and 2, € SimDK,. Let A = Hd(A‘), for every i € J. Then, by (ii)(c), 
A; € SimDKg, and, by (ii)(d), AE SP{A; : 2 EI}. 

It remains to fulfill (i) and (ii). First we define the n-ary operations ©,, as 

On(Z0,---;In-1) = (1)z9-..-+ (L)En—1° 
(2) (zo + 21)-...+ (2)(Lp_g + Eni): ° (n) (ao +... + En) 

and the unary operations (n)’z as 

(nz 2 O,(2,...,2). 

Let x! be defined by substituting O,(x,...,z) for (n)z in Xa. Let Ki, be the class of 
algebras of the form 

(A, ER EE 7, id, On)o<n<a 

satisfying D!,: Ki, = Mod(x/,); and let DK, be the class of singleton-dense elements of 
Ki: DK, = Mod(X/, + (d)’) where (d)' is defined by substituting ©2(b, 6) for (2)b in 

(d). 
Let SRO and RO’ be defined by 

Ro (A) = Ro'((A, is 5 id, (n))) = (A, "TT 7, id, On) 

and 

Rd ( 2’) — Ro((A’, "399 7, id, On)) = (A’, Sin id, (n)’). 

It is easy to check that (ii)(b) holds and that the cardinality of the algebras are preserved 
under Rd’. By the definition of X71, 

(VA € DK.) Rd'(A) € Mod(Xy, + (d)’) 

and 

(VA € DK) RDA) € Mod(X, + (d)), 

whence (ii)(a) holds. 
Now we check (i). Let A € K‚. We have to show that
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1. every ©, is additive (we know this for ; and ~ by the WA-axioms); 

2. ©, is a complemented closure operator; 

3. f(r0,---;Zn-1) < O120+...*O1£n-1 for every n-ary extra-Boolean operation f. 

2 and 3 hold by the definition of Xi, and ©). To prove 1, we use Lemma 3.2.21. Since 

RIA) € Ka, Ro(A) € Mod(%,). This implies that the {;,~,id}-free reduct of A' 
can be represented as a Boolean set algebra with the operations ©, defined as 

On(z zn) = Ww if dyn,.--,yn(l{yi,---,ynt]h =n &y Ex, & ... & yn € zn) 

nes ® otherwise 

for arbitrary elements 2),...2, (with top element W) — an easy way to prove this 

is to repeat the proof of Theorem 1.1.6, i.e., to show that the definition of ©, by the 

(k)’s work on set algebras. Since the additivity axioms hold in set algebras, they are 

valid in Ki, as well. 
(ii)(c) follows from 

UAESimDK, <> (VO <ae A)Oia=1 <=> 
<> (W0<ae A)(lha=1<— 
<> 0(2') € SimDK,. 

Finally, (ii)(d) follows from the fact that (n)' was defined by an equation, and that 
equations are preserved under SP. 18 

Now we are in the position to finish the proof of Theorem 3.2.20. Let A € DK, 

and |A| < w. By Lemma 3.2.22, we can embed A into a product of simple elements 

of DK,. Since simple algebras are representable by Theorem 3.2.18, so is A. Thus 

Theorem 3.2.20 has been proved. 1 

Remark 3.2.23. In the following chapter, we will prove a similar result for RRA: 

there are a finitely axiomatizable variety RA and a property called rectangularity such 

that the rectangularly dense elements of RA are representable. In RA, (1) and (2) are 

expressible. We conjecture that, by a similar argument as above, the same result holds 

for RRA“°. 1 

3.2.3 DECIDABILITY OF (RlyRRA)<° 

Below, we will prove that the equational theory of WAS® (a < w) is decidable. 
Easy modifications in the proof yield the same result for the other relativizations 

(Rly7RRA)<* (a < wand H C {r,s}). We will use the so-called mosaic method, 
cf. [Né86], [Né92], and [Né95]. 

Theorem 3.2.24. Let H C {r,s,t}, and let n € w\ 1. The equational theories of 
Rl,RRA<”, RlyRRA<", and RlyRRA® are decidable iff t ¢ H. 

To prove Theorem 3.2.24 we need some definitions.
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CONVENTION. By a graph we mean a directed, symmetric and reflexive graph. That 

is, if E is the set of edges, then (u,v) € E implies (u, u), (u,v), (v,u) € E. A labeled 
graph is G = (EF, £) where E is a graph and 4: E — P(X) for some set X. 

Definition 3.2.25. (Consistently labeled graph, CLG) Let G = (E,£) be a la- 

beled graph. Then G is a consistently labeled graph, G € CLG, if the following holds. 

The edges are labeled with WA“°*-terms, i.e., 2: E — P(X) for some set X of 

WA<*-terms, and for every (u,v) =e € FE, 2z,yeE Xandneaxnl, 

(A1) T‚yEl(e) <> z-yeE &e) 
(A2) rele) <> —r ¢ Le) 
(A3) Tr” Ellu,v) <> re &v,u) 
(A4) ide L(u,v) > u=v 
(A5) —(z;y) € Llu,v) => Bwlrellu,w) &ye Lw, v)) 

(A6)  (n)z,-(n+ijzel(e) =>  (Aleo,...,€n-1 € E)(Vi,j En) 
(2 # je: te&relle) 

(A7) —(n)z €k(e) => (feo,...,en—-1 € E)(Vi,j € n) 
(iF jefe; & rE Le) 

(A8) (n)\c €L(e) => (We € E)(n)r € Le’) 
(A9) —-ln)rEel(e) = (VeLEE) — (n)r € &(e’) 

(A10) (n)zEel(e) = (Ve € E)(Vk € n)(k)z € U(e!) 

provided that the corresponding terms are in X. We recall that for (n)z-—(n + 1)z 
we use the abbreviation (n!)z. 1 

Definition 3.2.26. (Mosaic) Let u = (m, 2) be a finite CLG. We say that u is 
a mosaic if the following holds, cf. Figure 3.1. We can divide m into three parts: 

m = Mo Um, U mz for some sets mg, mi, and mz satisfying the conditions below. 

1. mo consists of “distinguished” arrows, i.e., 

mo = {(u,v) Em: u,v € py} 

where 

Pp = {u: dvaz(An Ea 1)(z- (n!)z € Uu, v) U Lv, u)}; 

2. mz consists of arrows connecting mp and mj, 1.e., 

(V(u, v) € me) ((u E py & (v,v) E mj) or (v E py & (u, u) € m,)). 

Two mosaics u and v are tsomorphic, in symbols u = v, if there is a label-preserving 

graph-isomorphism f between them, f : ~— v. 

We say that p is a submosaic of v, in symbols u C v, if the labeling set X is the 

same, Mp = No, Mi C nj, Ma C No, | 

(V(u, v) € n)((u, u) € m & (v,v) Em) > (u,v) Em 

and the labels of the common edges agree, cf. Figure 3.2. 1
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Figure 3.1: a mosaic 
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Figure 3.2: submosaic



80 COUNTING ARROWS [3.2 

Note that a mosaic may contain some “defects”. That is, there may be an edge e such 

that x;y or (n)z is in the label {(e) of e, but there are no edges with the appropriate 

labels witnessing the label of e. That is why we define good set of mosaics (GSM) 

below. The idea of a GSM is that all of the defects of each element of a GSM disappear 

if we put the members of the GSM together in an appropriate way. 

Definition 3.2.27. (Good set of mosaics, GSM) A finite set M of mosaics is a 
good set of mosaics, M € GSM, if the following conditions hold. 

1. The m, part of every mosaic is a triangle: for all u € M, 

mi = *{u,v, w} 

for not necessarily distinct points u, v, and w. 

2. Condition for composition, cf. Figure 3.3: 

(Vu € M)(Ve € m)(Vr;y € X)z;y € L(e) > 
(Aw € M)(Av, v’,v" mosaics) (Sh, h’ isomorphisms) 
h:pov&h: pov &vCow &r Cv" & 

(Seo, €1,€2 € m’) (Su, v, w)h'(eo) = Ale) = (u,v) & 
h'(e,) = (u, w) & h'(e2) = (w‚v) & zE U(ei) & y € Lea). 

y uw 

» oT Me2nh nie) n'(e2) i 

| EN 
u_ 3 > U | 

| | h(e) =h(e‚) | 

| | 

LD | 

Figure 3.3: composition condition 

3. Condition for (n), cf. Figure 3.4: 

(Vu € M)(Ve € m)(V(n)x € X)(n)z € L(e) > 
(Ap, ...,w"-) € M)(av,v,...,v™ mosaics) 
(Sh, ho,...,hn-1 isomorphisms) (Vi € n)h; : pb) — vO & 

h:p—ov&evov &ypM9 CY & 

(seo, wae en-—i)e: € mi) & rE £(e;) & (vj + t)h;(e;) # h;(e;). 

4. M is closed under submosaics: 

(Vu € M)(Vy' mosaic)y’ C p> u' € M.
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Figure 3.4: condition for (n) 

Now we can turn to proving Theorem 3.2.24. Sometimes we will not distinguish between 

isomorphic copies of the same mosaic. 

Proof of Theorem 3.2.24: By [AKNSS], any non-trivial extension of RlyRRA has 
an undecidable equational theory whenever t € H. Thus the equational theories of 

(RIHRRA)“”, (RlyRRA)<", and (RlyRRA)? are undecidable provided t € H. 
For the other direction we give the precise proof for H = {r,s}. For the other 

choices of H, one should consider different kinds of graphs (not symmetric and/or 

reflexive ones), and modify the definitions of CLG and mosaic. Apart from this obvious 

modification the same proof works. 

The decidability of WAD follows from that of WA“, since the two classes are term- 

definitionally equivalent. To decide whether an equation of WA“” is valid, it is enough 

to check whether it holds in every WA“! where / is an upper bound for those k’s such 

that (k) occurs in the equation in question. Thus to prove the theorem, it suffices to 

decide the equational theory of WAS! for every 1 € w \ 1. 

Let 1 € w\ 1 be fixed, and o = 7 be an equation in the language of WA<'. Our 

goal is to decide whether o = 7 is valid in WA“. The above equation is valid iff so is 

o OT = 0. Thus it is enough to check whether the value of a term is empty in every 

WAS. 

Instead of a term € we can decide €-Oz where z is a variable not occurring in € and 

Oz abbreviates z - (1!)z, since the two terms are equivalent. So let £ be given. Then 

we define an appropriate closure set X of terms: 

Xo = subterms of €-Oz-id 

Xi = {(nl)r: dc(ak > n)(k)r € Xo} UX 

X2 = subterms of X, 

X = Boolean closure of Xo. 

Note that X is a finite set of terms. 

We say that a term is satisfiable if there is a WA“! such that the value of this term 

is not empty. We will have two steps in deciding whether a term is satisfiable: (i)
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Lemma 3.2.28 ensures that it is a decidable procedure to find out if there is a good set 

of mosaics for a given term and (ii) Lemma 3.2.29 guarantees that a term is satisfiable 
iff there is a good set of mosaics for this term. 

Lemma 3.2.28. Given € and X above, it is decidable whether there is a GSM M 

labeled with X for which (Au € M)(de € m)E- Oz € U(e). 

Proof: If there is a GSM M satisfying the conditions of Lemma 3.2.28, then the 

size of the mosaics of M is bounded. Indeed, let s be the size of X. Given a term 

(n!)z-r € X and a mosaic u, we can (and have to) write the term on precisely n edges, 

cf. Definition 3.2.25. Let k be the upper bound for {n : dx((n)x € Xo)}. Then there 
are at most ks edges labeled by terms of the form (n!)z-z. Thus (Vu € M)|p,| < 2ks. 

Since for every u € M, the m, part is a “triangle”, i.e., it contains at most three points, 

every mosaic has size not greater than (2ks + 3). So the size of every mosaic in M 

is bounded. And there are only finitely many graphs of this size (up to isomorphism), 

and they can be labeled by X only in finitely many ways, since X is finite. That is, 

we have to check only finitely many finite sets of mosaics whether at least one of them 

satisfies the conditions of Lemma 3.2.28, and this is a decidable procedure. 1 

Thus to prove Theorem 3.2.24 it suffices to prove Lemma 3.2.29 below. 

Lemma 3.2.29. &- Oz is satisfiable <— there is a GSM M for X such that (Ap € 

M)(de € m)€ - Oz € U(e). 

Proof: >: It is not hard to see that we can “cut out” the appropriate set of mosaics 

from a A € WA“! satisfying £- Oz. Let W C U x U be the top element of A, and let 

the labeling function 2: W — P(X) be defined as 

rellw sewer”. 

Then A = (W, £) is a CLG without defects. For every edge e = (u,v) € W and w € U, 
let the mosaic p(w) = (m, £) be defined as follows. Let mg be the smallest WA-unit 
generated by the pairs labeled by (n!)z : z terms. Let mj be the triangle defined by 

{u,v, w}, and let mz be the set of edges of W connecting the mp and m, parts. Since 

each p(w) (e € W, w EU) is in the same CLG A without defects, and their union is 
A', they satisfy the conditions of Definition 3.2.27. 

<=: First, using the elements of M as building blocks, we will construct a CLG G,, = 

(E.,,£.) without “defects”, i.e., for every z;y and (n)z label there will be “witnessing” 

edges for these labels. More precisely, the following two conditions will hold: 

(*) TYE lolu,v) => JwlrEllu,w) & ye b,(u, v)) 

(++) (n)retl,(e) => (Seo,...en-1 € E)(Vi € n)r € £,(e;) & (Vj Ave; Fes. 

Then we will define a WAS! satisfying € - Oz. 

OTH STEP: Take a mosaic 4 € M such that (Je € m)é- Oz € l(e). 

2n+1ST STEP: By induction hypothesis, the finite mosaic Gan = (Ean, lan) constructed 

so far consists of members of M, ie, (Ve € Ea„)(Ju € M)e € m and u C Gon.
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Enumerate all the edges (u’, uv’) = e’ € Eo, such that (Az;y € X)ax;y € lon(e’), but 
there are no witnesses for this labeling, ie, Aw(x € Lo, (u',w) & y € Lon (w,v')). 

Take the first e = (u’,v’) € Eon of this kind. Take u € M such that e € m and 

u C Gon. Then, by the definition of a GSM, there is yw’ € M with witnesses that can 

be added to p in the sense of Definition 3.2.27. We will add a submosaic of v’ to Gon, 

cf. Definition 3.2.27 for notation. 

Consider v’. It contains points u,v,w such that z;y € (u,v), z € U(u,w) and 

y € £(w,v). We claim that (w,w) ¢ nj. Assume otherwise. Then (w,w) € no, since 
v and v' are submosaics of the same mosaic v" (that we get when we put u and u’ 

together in the sense of Definition 3.2.27). Thus (u,u),(w,w) € n and (u,w) En". 
Then, by v Cv”, (u,w) € n. Similarly, (w,v) € n. That is, we have witnesses already 

in v for the label z;y € (u,v). Since u & v, there are witnesses in u as well, a 

contradiction. 

Let p = (r, £) be the smallest submosaic of v containing *{u, v, w}: 

r=n, U {u,v, w} U ((py x {u, v, w}) Nn’) U (({u, v, w} x py) Nn’) 

and the labels in p agree with the labels in v’. It is easy to see that p is indeed a 

submosaic, whence p € M. 

We will add p to Gan, yielding a new mosaic G' = (E’, é’) satisfying the induction 

hypothesis, in such a way that in G’ there are witnesses for z;y € f(e). Since u = v, 
there is an isomorphism f : v —> p such that f(u,v) = (u’,v’). This f induces a map 

fo between the set of nodes of v and that of u: fo(s) = s’ iff f(s,t) = (s', t') for some 

tand t’. Now let w’ be a brand new point not occurring in the set of nodes of Go, 

and fo(w) = w’. Then fo induces an isomorphism from p: f(s,t) = (fo(s), fo(t)) and 
(f(s, t)) = &(s,t) for (s,t) € r. Let the f-image of p be denoted by pl = (r’,£). We 
will add the triangle u'w'v' to Go, with the necessary reflexive, converse and connecting 

edges with their labels in p: 

B® Eur 

LS LuL(F(s,t), €(s,t)) : (s,t) er), 
cf. Figure 3.5. 

We have to check that G’ satisfies the induction hypothesis. Let e € E’ \ Eon. 

Then e € r’, and pl = p€ M, i.e., E' consists of members of M. 

For G' being a mosaic we check that “unintended” triangles are not constructed, 

Le., every triangle not in FE, is in p’. Indeed, we added only triangles of the form 

uwv, uw's, w'vs and syw'ss where 5,1, S2 € py, and all of them are in p’. Thus 

conditions (Al) — (A5) of Definition 3.2.25 hold. 
To check that (A6) — (A10) hold we use the fact that, in E2,, there is an edge, 

say e, with (1!)z- z label. (Actually, this is the reason why we decide the term € - Oz 

instead of €.) Then e € r'N Eon, since e € mo = ro. 

Let us check (A7). Let —(j)z € /'(e!) for some z and e’ € E'. Let i = max{k : (Je € 
E'(k)r € £'(e)}. Then « < j because of the following. If there were an edge e” such 
that (j)z € /(e“), then, by (A8) for p’ or Gon according to where e” is, (j)z € 4'(e). 
Then, by (A8) for p/ or Gon according to where e’ is, (j)z € £(e’), a contradiction.
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Figure 3.5: the new graph G’ in the 2n + Ist step 

CASE 1: i #0. This means that there is e” € E' such that (d)r € f(e”). Then by 
(A6) both in p/ and in Go, exactly 2 edges are labeled by z. And these edges are in 

the distinguished part 76, since their labels include (i!)z - z. That is, these edges are 

in Eo, Nr’. Now, if there were another (an 7 + Ist) edge labeled with z, then either p/ 
or Gon would violate (A6). That is, there are at most 2 edges in E’ labeled by z. 

CASE 2: 1 = 0, ie, (Ve € E’)(1)x ¢ !'(e). Then, by (A7) for pl and Gon, there is no 
edge labeled by z. 

Conditions (A6) and (A8) — (A10) can be checked in a similar way using the distin- 
guished edge e above as a bridge between the two mosaics pl and G2,. Thus the new 

labeled graph E’ is a mosaic. 

We make the same construction with this new graph and the second enumerated 

edge without witnesses, etc. In finitely many steps this construction terminates, and 

we get a mosaic Go,41 satisfying the induction hypothesis. 

2n + 2ND STEP: We enumerate the edges e € Eon41 for which (A(k)r € X)(k)r € 
lon+1(e) but without witnesses, i.e., (Heo,...,€k-1 € Eonsi1)(Wi € k)r € fon4i(e;). Take 

the first such e. Then by induction hypothesis (Ju € M)e € m & u C Gonsi. By 

the definition of GSM, (Sp,..., u*-)) € M) satisfying the (k)-condition of Defini- 
tion 3.2.27. Let this new mosaic consisting of u, u,..., u(*-D) be denoted by v), cf. 
the notation in Definition 3.2.27. Our task is to define a mosaic G’ = (E’, é’) such that 
in G' there are witnesses for (k)z € £'(e). 

Let, for every i € k, p“) = (r™, 2) be the smallest submosaic of vl} containing 
h;(e:) = (ui, vi): 

i) def (i i i r® = ni) U Aus, vi} U ((pyw x {us vi) An) U (({uj, vj} X pypw) A n™) 

and the labels agree with those in v(Ò. It is easy to check that pl C v, whence 
pd € M. 

As in the previous step, there is an isomorphism f :v — u. Again, let fo be the 

map determined by f. Let U be the union of the sets of nodes of pl) (i € k). For every 

u € U, let go(u) = fo(u) if u is a node of v and a brand new point otherwise. Let g be 
the isomorphism induced by go: for every (u,v) € r® (i € k), glu, v) = (go(u), go(v))
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and £(g(u,v)) = (u,v). Let G’ = (E’, £’) be defined as follows: 

E © Bony1U {g(u, v) : (Hi € k)(u, v) € rd} 

US bona U {(g(u,v), Lu, v)) : (Bi € k) (u,v) € 1}, 
cf. Figure 3.6. It is easy to see that in G’ there are witnesses for the label (k)z € £(e). 

Ca | 7 “a | 

MH | <k>x | 
e Pal 

| | 

Lm } 
be 

Figure 3.6: the new graph G’ in the 2n + 2nd step 

It remains to check that G’ satisfies the induction hypothesis. Clearly every new 

edge is in (the g-image of) one of the p“)’s. As we mentioned, pl) € M. It is easy to see 
that every new triangle ?{u,v, w} (which is in E’ but not in E2„+1) is in (the g-image 

of) p) for some i € k. That is, every triangle constructed in this step is in v‘*). Since 
v‘*) is a mosaic, it satisfies (A5). Then every triangle of E’ satisfies (A5). (Al) — (A4) 
hold because we constructed G’ from mosaics. Finally, conditions (A6) — (A10) can be 
checked precisely in the same way as in the 2n + Ist step. 

Take the next enumerated edge, and make the same construction, etc. Again, in 

finitely many steps this procedure terminates yielding a mosaic Gon49. 

WTH STEP: Take the union of the already constructed mosaics. Then we get a (probably 

infinite) CLG G,, = (Eu, 4.) without defects, i.e., G,, satisfies conditions (*) and (**). 

Let 

A= (P(E,,),A,~, 0, 7}, Id, (Dier € WAS 

and the valuation k’ be defined as 

k'(y) = {(u,v) € By: y € £,(u, v)} 

for every variable y. Let k be the obvious extension of k’: for variable y and terms 

k(y) = k'(y) 
k(x-2') = k(z)Nk(z’) 

kK(—z) = ~k(z) 
k(id) = ld 

k(z”) = (k(x))7 
k(z;z!) = k(x) ok(z’) 

k((i)x) = (klz).
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Proposition 3.2.30. For every x € X, k(x) = {(u,v) € Ey: € £,(u, v) }. 

Proof: It is an easy induction on the complexity of z. For every connective use the 

corresponding condition of CLG without defects: for -, —, id, ~, ;, and (2) use (Al), 

(A2), (A4), (A3), (A5) and (*), and (A7) and (**), respectively. 1 

By the previous proposition we have that the value of €- Oz in 2 is not empty, ie., 

€ - Oz is satisfiable. 1 

As we mentioned above this finishes the proof of Theorem 3.2.24. 1



4 

SQUARES AND RECTANGLES 

In this chapter,’ we will introduce our third taming strategy to obtain completeness 

results. 

The situation can be described as follows. We saw that the square version of pair 

arrow logic does not have a strongly sound and complete Hilbert-style inference system. 

Or, equivalently, the class RRA of representable relation algebras forms a non-finitely 

axiomatizable (quasi-)variety. A similar result holds for (the finite variable fragment 
of) classical first-order logic (if there are at least three variables). Recall that in the 

definition of first-order logic we require that a valuation of the variables is any member 

of "U, where U is the universe of the model and n is the number of variables. That is, 

the set of all valuations is a Cartesian space "U, or, in other words, a square. 

In the previous section, we described how to define nice versions of pair arrow 

logic applying the non-square approach. There, we allowed models with non-square 

universes. The same strategy can be applied to first-order logic as well, cf. [Né92] and 
[Mi95]. The disadvantage of that approach is that we cannot preserve the full power 

of the logic. For a more syntactic approach to finding nice versions of first-order logic 

see [ABN95]. 

Below we will show how to obtain completeness results for the square versions of 

pair arrow logic and classical first-order logic. To achieve such results we have to allow 

calculi that are not Hilbert-style. Indeed, we will consider inference rules that can 

be applied only if some easily decidable syntactic condition is met. Namely, we will 

require that some atomic formula does not occur as a subformula in the conclusion of 

the rule. 

Let us have a look at the algebraic side. If we consider the square versions of our 

logics, then the algebraic counterparts consist of algebras of relations with Cartesian 

space units (of the form "U). Both in the cases of arrow logic and of first-order logic, the 

(quasi-)varieties generated by these algebras form non-finitely axiomatizable classes. To 

overcome this difficulty we will do the following. We will define finitely axiomatizable 

varieties and a property called rectangularity. We call an algebra rectangularly dense 

if below every non-zero element, there is a non-zero rectangular element. We will show 

that rectangularly dense members of the above-mentioned varieties are representable 

as algebras of relations with square top elements. 

These representability results imply completeness of the logics, cf. Theorem 1.3.11. 

In fact, we will define a rule corresponding to rectangular density, and the non-Hilbert- 

style calculi defined by this rule are weakly sound and complete w.r.t. our logics. 

1This chapter is (partially) based on the papers [AGMNS] and [Mi93). 
This kind of calculi are called Gabbay-style in [Mi93], or unorthodox in [Ve91]. 
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4.1 WEAK SOUNDNESS AND COMPLETENESS 

As we mentioned above, the finite variable fragment of first-order logic and the square 

version of pair arrow logic do not have strongly sound and complete Hilbert-style 

inference systems. 

In this section, we will show that weak soundness and completeness is possible. 

However, these calculi will not be Hilbert-style, since there is an inference rule that 

can be applied only if a certain, easily decidable syntactic condition is met. That is, 

we will consider non-Hilbert-style calculi to prove completeness theorems for classical 

first-order logic and pair arrow logic without weakening their power. 

We mention that there is another, more adventurous, approach to the problem of 

Hilbert-style incompleteness of logics. This amounts to re-define the logic in such a 

way that (i) the power of the logic does not become weaker, and (ii) Hilbert-style 
(strong) soundness and completeness holds. This may be achieved, e.g., by choosing 

another similarity type such that the old connectives with their standard meanings are 

definable, while the logic becomes Hilbert-style complete. See [Né94] and [Si93] for 
this approach under the name finitization, and [Sa87], [Sa92], [Sa94], and [SG95] for 
solutions to first-order logic. 

4.1.1 FIRST-ORDER LOGIC 

Below we will consider several versions of the finite variable fragment of classical first- 

order logic: ordinary and restricted versions with and without equality. Let us recall 

that these logics were defined in Definition 1.1.4 in Chapter 1. We will define non- 

Hilbert-style calculi and prove weak soundness and completeness w.r.t. three of them. 

As a corollary, we will get completeness results for the corresponding first-order logics 

with infinitely many variables: since every formula p uses only finitely many variables, 

say n, p is valid iff p is valid in the n-variable fragment iff p can be derived using the 

calculus for the finite variable fragment. 

As usual, the results will follow from the corresponding algebraic representation 

theorems using the bridge Theorem 1.3.11. Thus, we have to define the appropriate 

algebraizations of these logics. To achieve this, we will define modal versions of first- 

order logics that will turn out to be equivalent to the original formalizations. 

Let us formulate our main result. We note that Yde Venema proved similar results 

for first-order logics with equality, cf. [Ve91] and [Ve94]. 

Theorem 4.1.1. Let L be one of the following logics: 

1. ordinary first-order logic with n variables with equality, L„”, 

2. restricted first-order logic with n variables with equality, "L,_ , 

3. ordinary first-order logic with n variables without equality, Lr. 

Let us assume that there are infinitely many relation symbols in the language of L. 

Then there is a weakly sound and complete inference system for L. 

We conjecture that the above theorem can be extended to "L„”.
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Proof of Theorem 4.1.1: This a straightforward consequence of Corollary 4.1.6 and 

Theorem 4.1.8 below. 1 

To define the algebraic counterpart of first-order logic, it is convenient to consider it 

as a multimodal logic, cf., e.g., [Ve94]. 

Let W be a set of n-tuples, 1.e., W C"U for some set U. Let, for every i < n, the 

binary relation 7; on W be defined as: 

(Vw, w’ € Www <> w[n~ {i} = w'[n~ {3}, 

ie, (V7 # t)w(y) = w'(j). Let 7 € "n, ie, 7 be a map from n into n. For every 
T €™n, let the binary relation S, on W be defined as: 

(Vw, w' € W)wS,w' <> w' = wor, 

i.e., wl = (w’(0),...,w'(n — 1)) = (w(7(0)),..., w(7(n — 1))). For every 1,7 € n, the 
unary relation D;; on W is defined as: 

(Vw € W)Dijw <> w(i) = wlj). 

We are ready to define the modal versions of first-order logics. We note that our 

definition slightly differs from the definition in [Ve94]. 

Definition 4.1.2. (Modal versions of L,~, "L,~, L,7 and "L,7: MLIQS,, MLIQ,, 

MLQS,, and MLQ,,) The n-dimensional modal logic of identity, quantification and 

substitution MLIQS, is defined as the ordered tuple (F,M, =) for which the following 
hold. 

F is the set of formulas built up from a set R of propositional variables using the 

Boolean connectives, the unary connectives O; (2 € n) and o, (rt € "n), and the 
constants ó;; (2,7 € n). The symbols o, and 6;; are called substitution and identity, 
respectively. 

A frame for MLIQS, is an ordered tuple (W,T;,5,, Di; : i,j En & r € "n) such 

that W = "U for some set U. A model is a frame—evaluation pair, where an evaluation 

I: R —> P(W) is a map associating a subset of W to every propositional variable 

r € R. M denotes the class of models. 

Let M be a model, and let w € W be an element of the universe of 9. We define 

the local truth (ON, w) Ik p by induction on the complexity of y: 

e (MN, w) lk r <= > w € I(r) for every r € R, 
e (IN, w) IF bi; — Dijw, 

e if V1, Wa € F, then 

(Mt, w) lk ap, <> not (Mw) lk yr, 
(OM, w) lk db Av. <— > (Mt, w) lk yy & (Mi, w) lk wo, 

(MN, w) lk On, > (Aw € W(wT;w' & (MN, w’) lk ij), 
(IN, w) lk od, <> (Sw’ € W)(wS,w' & (Mt, w’) Ik ij).
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Truth in a model (F=) and the semantical consequence relation are defined in the usual 

way (cf. Definition 1.1.4). 

The logic MLIQ,, is defined as the substitution-free fragment of MLIQS,,. The logics 

MLQS, and MLQ, are the ó;;-free fragments of MLIQS, and MLIQ,, respectively. 1 

In [Ve94], instead of o, (r € "n), only the transpositions (i.e., permutations swapping 

two elements and leaving every other element in its place) are used, since the other 

substitutions can be defined by means of transpositions and identities. We used the 

above similarity type, since this formalism works for the equality-free fragment of first- 

order logic as well. 

It is easy to see, and is well known, that every 7 € ™n can be expressed as a 

composition of transpositions [ij] and replacements [2/7], where 

[ij](0,...,%,...,j,...,n-1) = (0,...,9,...,4,...,n—-1) 

and 

[i/j](0,...,%,...,j,.-..n—1) = (0, jj n= 1). 

Thus, instead of all the o,’s (r € "n) it is enough to add the connectives o;;) and 

O1i/;) (4,7 € n). We will denote these connectives by 7;; and oi, respectively. Their 

interpretations are as follows. If 1 # 7: 

(Mt, k) op — (Ak! € W) (VI # i)(k(L) = (U) & h'(ú) = k'(9) & (M,R!) Fg), 

and 

(Mk) F orp > (M,k) F p. 

The interpretation of permutation mj is as follows. 

(Mk) Fmijp > (Ak eW)(V ¢€ {i,7}) 
(K(U) = k(L) & k(t) = k'(j) & k(j) = k'(i) & (MK!) Fy). 

Next we define a translation between modal and first-order formalisms.
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Definition 4.1.3. The translation ST from the set of modal formulas onto the set of 

first-order formulas is defined by recursion on the complexity of the modal formulas: 

ST(r) = r(vo,.--;Un-1) 

ST (dij) = (vi =v;) 
ST(-y) = -~ST¢ 

ST(pAp) = ST(@)AST(H) 
ST(Oi~) = Av:ST(¢) 
ST(o,r) = r(vr0),--+5 Ur(n—1)) 

ST(076i3) = (vra = Ur) 
ST(o,7-~) = =ST(o,p) 

ST(o-(pA$)) = ST(o-0) \ST(o,¥) 
ST(aj;0i~) = ST(Ò;0) 
ST(0j9;p) = ST(O;¢) 
ST(ojOn~) = ST(Onojp) (k ¢ {i,5}) 
ST(mjOi~) = ST(Ojmijp) 
ST(n;;©;0) = ST (Oi) 

ST (mij Op) = ST (Onm;9) (k ¢ {i, 7}). 

The above translation is not one-one, i.e., there are different modal formulas (AO 

and ©;y) mapped to the same first-order formula (4u;ST(y)). But we would like ST 
to preserve truth. This is guaranteed by the following. 

Proposition 4.1.4. For every model 9 and formulas p, , 

ST(y) = ST(p) > (MF p= ME y). 

Proof: It is an easy induction following the definition of ST. We show the only non- 

trivial case. Assume that, for every w, (JM, w) It TOF". Let w’ be arbitrary. We 

want (Mt, w’) Ik Op. Let w” = w'o[i/j). By assumption, (ML, w") Ik 05O;p. Then 
(IN, w") Ik Op, since w” = w" o [i/7]. Since w'T;w”, we have (IM, w’) Ik O;p as well. 
The other direction can be proved similarly. 1 

We note that, in the above proposition, we cannot substitute Ik for F, as the above 

example shows. 

The following proposition ensures that the first-order formalism and the modal 

formalism are equivalent. 

Proposition 4.1.5. Let p be any formula of MLIQS,. Let U #9 and] : R — 

P("U). Then 

FUT SDi, 1) Ep (UI) E ST(@) 
The same holds for MLIQ,, MLQS,,, and MLQ,,. 

Proof: It is a straightforward induction on the complexity of y. 1 

The above proposition ensures that completeness results for modal logics can be con- 

verted to completeness results for their first-order versions. Let + be an inference
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system in the language of the modal logic. Let Fs, denote the calculus defined by 

substituting the translations of the formulas for the formulas occurring in the axioms 

and inference rules of the calculus.° 

Corollary 4.1.6. Lett bea sound and complete calculus for MLIQS, (MLIQ,, MLQ,, 

or MLQS,). Then k sr is a sound and complete calculus for L,~ ("L,7, L,*, or "L,*). 

Proof: + » => ST(I) Fsr ST(¢) and ("U, T;, S,, Di;,T) Ep <> (U, I) FE ST (@). 
i 

The following proposition tells us what the algebraic counterparts of our logics are. 

For definitions see Definition 4.2.2. 

Proposition 4.1.7. 1. SPAlg(MLIQS,,) = RQPEA,,. 

2. SPAlg(MLQS,,) = RQPA,,. 
3. SPAlg(MLIQ,,) = RCA,. 

Proof: Straightforward. 1 

The following theorem states completeness of the modal versions of first-order logics. 

Theorem 4.1.8. Let L be one of the following logics: MLIQS,, MLIQ,, and MLQS,,. 

Let us assume that there are infinitely many relation symbols in the language of L. 

Then there is a weakly sound and complete inference system for L. 

Proof: The theorem follows from Theorem 1.3.11 and Theorem 4.2.4. 1 

Remark 4.1.9. In this remark we give the calculus that is weakly sound and complete 

w.r.t. MLIQ,,. The other calculi can be defined analogously. 

Let Az be a finite set of equations axiomatizing CA,, cf. Definition 4.2.2. Note that 

by 5 below the diamonds commute, that is why we can make the following abbreviation: 

O({yo..%}) Stands for O,,...O,,. Let the inference system | be defined as follows. Its 

set of axioms is the translations* of the elements of Az into the language of MLIQ,: 

for every 1,7,k < n, 

1. enough propositional tautologies, 

2. 7O;1, 

3. yp OP, 

4. o:(¢ A Oi) ara Oi A Oi, 

9. OA, > 050, 

6. dii, 

7. dik > © 5 (45; A O54) if 7 ¢ {1, k}, 

8. 2(O;(di5 AY) A Gidi A) ft FI, 

3Since we defined calculi for formula schemata and not for formulas, we have to substitute the 

translations of schemata for schemata. This translation between schemata is given by a straightforward 
modification of ST’. 

4This translation is defined by substituting formula schemata for algebraic variables, and replacing 
algebraic operations by the corresponding logical connectives. 
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its inference rules are Modus Ponens, Universal Generalization and the following rule: 

k (pAT(pA=p)) >p 
Hp 

provided p & p 

where 7(p A =p) is 

=O (\ Oms (PA 78) V (p A 79), 
iEn 

and p ¢ p denotes that p is an atomic formula not occurring in the formula p. For 

intuition about the last rule see the discussion at Theorem 1.3.11. In the above rule, 

T is the translation of the term expressing rectangularity. 

We note that Theorem 1.3.11 gives us a slightly different calculus (with other in- 

ference rules). But Modus Ponens and Universal Generalization are strong enough to 

“derive” the other rules. We also note that the axioms 2-4 ensures that © is an S5 

modality, while the other axioms describe the interaction between the modalities and 

the constants. 

Note that this calculus is only weakly sound. Indeed, let p be a non-valid formula, 

and let p and IN be such that ME =p — —p. Clearly, op FE (pAT(pA-y)) > vy. On 
the other hand, =p # y. 1 

4.1.2 ARROW LOGIC 

Let us recall that pair arrow logic PAL and its square version PAL,, were defined in Def- 

inition 1.1.3. Below, we formulate a completeness result for PAL, and its converse-free 

fragment. We note that Yde Venema proved a similar completeness result for square 

PAL in [Ve91] using a Henkin-style completeness argument. Since the completeness 

theorem yields a representability result about RRA’s, Venema’s proof shows that the 

bridge between logics and algebras is not one-way. 

Theorem 4.1.10. Let L be one of square PAL, or its @-free fragment. Assume that 

there are infinitely many propositional variables in the language of L. Then there is a 

weakly sound and complete calculus for L. 

Proof: It is easy to see that 

SPAlg(PAL,,) = RRA 

and that the algebraic counterpart of the ®-free fragment generates the variety of 

RBM, cf. Definition 4.2.20. Then the theorem follows from Theorem 1.3.11 and Theo- 

rem 4.2.23. 1 

4.2. REPRESENTATION OF RECTANGULARLY DENSE AL- 

GEBRAS 

Given a (quasi-)variety of (set) algebras the problem of axiomatizing it by a finite set 
of (quasi-)equations naturally arises. Unfortunately, in many interesting cases, such
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a characterization is impossible. Then one may try to find “simple”, necessary and 

sufficient conditions for representability. Below we will show that for several classes of 

algebras of relations rectangular density is such a condition. That is, we will show that 

an algebra is representable iff it can be embedded into a product of rectangularly dense 

algebras. Luckily, this property can be expressed by an existential equation that can be 

translated to a rule of the corresponding logic, cf. Chapter 1. Thus, these representation 

theorems yield logical completeness results. For representability of dense algebras and 

its connection with completeness of logics see [HMT85] 3.2. 

4.2.1 CYLINDRIC AND QUASI-POLYADIC ALGEBRAS 

First we recall the definitions of several kinds of algebras of relations of higher arity, 

cf. [HMT85] and [ST91]. 

Definition 4.2.1. (Cs and RCA, QPEs and RQPEA, QPs and RQPA) Let a be an 

ordinal. 

1. By a cylindric set algebra of dimension a, a Csg, we mean an algebra 

AC (P(PU),N, ~, Ci, Dij)i,je0 

such that U # @ is any set, is intersection, ~ is the operation taking complement 

w.r.t °U, for any a € P(°U) andi € a, 

Cia = {x € U: (Ar! € a)(Vj # i)z(j) = 2'(9)}, 

and, for every 2,7 € a, 

Di; = {x € °U : z(t) = z(j)}. 

We denote the class of cylindric set algebras of dimension a by Cs, and the class 

of all cylindric set algebras by Cs. 

The class RCA, of representable cylindric algebras of dimension a is defined as 

RCA, É SPCs,. 

RCA denotes the class of all representable cylindric algebras. 

2. By a quasi-polyadic set algebra of dimension a, a QPs,, we mean an algebra 

AC (P(*U),N,~, Ci, Si, Pij)i,jeo 

such that (P(“U),/N, ~, C;, ) is the Di;-free reduct of a Cs, and, for any a € P(*U) 

and 2,7 € a, 

Sia = {x € °U: (Ax! € a)(Vk F ijz(k) = 2'(k) & z(t) = 2'(y)f, 

and 
Pija = {x e U: (Az' E a)(Vk ¢ {i, j}) 

z(k) = 2!(k) & 2(i) = 2'(j) & zj) =2'(s)}. 
We denote the class of quasi-polyadic set algebras of dimension a by QPs,, and 

the class of all quasi-polyadic set algebras by QPs.
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The class RQPA, of representable quasi-polyadic algebras of dimension a is de- 

fined as 

RQPA, = SPQPs,. 

RQPA denotes the class of all representable quasi-polyadic algebras. 

By a quasi-polyadic equality set algebra of dimension a, a QPEs,, we mean an 

algebra 

AC (P(*UV),N, ~, Ci, Diz, Sj, Pij)i jea 

such that (P(°U),N, ~,C;,Di;) € Cs, and (P(EU)‚n, >, Gi, Si, P.;) € QPs,. We 

will use the notation QPs (and QPs,) for the class of quasi-polyadic set algebras 

(of dimension a). 
The class RQPEA, of representable quasi-polyadic equality algebras of dimension 

a is defined as 

RQPEA, = SPQPEs,. 
RQPEA denotes the class of all RQPEA, (a any ordinal). 

For a > 2, RCA,, RQPEA, and RQPA, are non-finitely (Monk type schema) axiomati- 

zable varieties, cf. [Mo69] Theorem 1.20 (for finite «) and Theorem 2.2 (for infinite a), 
[Jo69] Theorem 3.5 and [ST91] Theorem 2 for non-finite axiomatizability, and [HMT85) 
Theorem 3.1.103. and [Né94] for being varieties. We also note that, for a < w, these 

classes are discriminator varieties (use Co... Ca-1r as Oz, cf. Section 1.2). 

In the literature, there are axiomatically given classes of algebras approximating 

the above classes of representable algebras. We recall the following definitions from 

[HMT85] and [ST91]. 

Definition 4.2.2. (CA, QPA, and QPEA) Let a be any ordinal. 

1. By a cylindric algebra of dimension a, a CAg, we mean an algebra 

A= (A, 7, Ci, dij)ijea 

such that d;; is a constant (for every 7,7 € a), — and c; are unary operations (for 

every i € a), - is a binary operation, and such that the following postulates are 

satisfied, for any z,y € A and 1,9,k Ea: 

(CO) (A,-,—) € BA, ie, it is a Boolean algebra, 

(C1) c;0 = 0, 

(C2)rS<cr,ie,T:-GT=r, 
(C3) c;(z , cy) = GT" Cy, 

(C4) ciejr = cjC;z, 
(C5) dj; =] 

(C6) if 2 4 J, k, then di = c;(d;; . dix), 

(C7) if 2 # J, then c;(d;; . zr) . c;(d;; . —r) = 0. 

The class of all cylindric algebras is denoted by CA, and the class of all cylindric 

algebras of dimension a by CA. The element d;; is called diagonal element, and 

the operation c; is called cylindrification.
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2. By a quast-polyadic algebra of dimension a, a QPA,, we mean an algebra 

A= (A, "> 7) Ci, s;, Pij)ijea 

such that —, c;, si and p;; are unary operations (for every i,7 € a), - is a binary 

operation, and such that the following postulates are satisfied, for any z,y € A 

and 21,7,k € a: 

(QO) (A,-,—) € BA, siz = pir =z, and Pig = PjiZ, 
(Q1) x < cz, 
(Q2) cil +y) =aar+ cy, 
(Q3) sci = cia, 

(Q4) if i 1 # j, then cis; C= Siz, 

(Q5) if k € {2,3}, then SICT = CkS)T, 
(Q6) si and p;; are Boolean endomorphisms, 

(Q7) pijpijz = 2, 
(Q8) if 1, j,k are all distinct, then p,jpiez = p;kPijZ, 

(Q9) pis? = StL. 
The class of all quasi-polyadic algebras is denoted by QPA, and the class of all 

quasi-polyadic algebras of dimension a by QPA,. The operations oy and pi; are 

called substitution and permutation, respectively. 

3. By a quasi-polyadic equality algebra of dimension a, a QPEA,, we mean an algebra 

A= (B,di;)ijea such that B € QPA,, the dj;’s are new constants, and the 
following equations are valid, for every x € A and 1,97 € a: 

(Q11) zr: di; < StL. 

The class of all quasi-polyadic equality algebras is denoted by QPEA, and the 

class of all quasi-polyadic equality algebras of dimension a by QPEA,. 

In the sequel, we will use the following abbreviations: for a finite subset [ = {0,..., Yn} 

of a, e(r)T def Con E def Cao +.-Cy,2. For T = 0, we set cqryx = x. Note that this ab- 

breviation makes sense in CA, QPA and QPEA, since the above axioms guarantee that 

the cylindrifications commute. 

It is well known that, for finite a, CA,, QPA,, and QPEA, are discriminator vari- 

eties. As an immediate consequence of this, in simple algebras, 0 < x => cr = 1. 

It is easy to check that RCA, C CA,, RQPA, C QPA,, and RQPEA, C QPEA,. As 

we mentioned above, > does not hold in either case. That is why we have to consider 

special subclasses of the axiomatically given classes to obtain representation results. 

Below for a given class V of algebras, we denote by RV the class of representable 

algebras of V. 

Definition 4.2.3. (Rectangularity, rectangular density) Let a be any ordinal, 

and let V, be one of CA,, QPA,, or QPEA,. Let UE V, and a € A. We say that a is 

rectangular iff 

C(r)@ . C(A)a = C(rnA)@
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for all finite subsets [’ and A of a. 

We say that U is rectangularly dense iff 

(VO Aa € A)(30 4 bE A)(b< a & bis rectangular). 

For a given class V of algebras, we denote the class of rectangularly dense elements 

of V by DV. 1 

The term rectangularity originates from Css. Indeed, in a Cso, a rectangular element 

has the shape of a (generalized) rectangle, cf. Figure 4.1. We also note that, in a Cs,, 

| | 

Gale | / 7 
| 

| | 

| 

a 
| C,@ | 

Figure 4.1: rectangularity 

an element is rectangular iff it has the form Ho x... x Hy_1. 

Now we are ready to formulate the main result of this section, a representation 

theorem for rectangularly dense algebras. We note that these results were known for 

atomic algebras, cf. [HMT85] 3.2.16, and 5.4.36. The novelty of the following theorem 
is that we could get rid of the condition of atomicity. This was important for the 

applications, because it is not clear how to use the result stated only for atomic algebras 

for obtaining completeness results for the corresponding logics. We recall the following 

theorem from [AGMNS]. 

Theorem 4.2.4. Let a be any ordinal and V, € {CAg, QPA,, QPEA,}. Then 

RV, = SPDV,. 

Remark 4.2.5. The above theorem can be extended to the permutation-free reducts 

of QPA and QPEA, cf. [AGMNS]. An interesting open problem is the case of the 

diagonal-free reduct of CA. 1 

The proof of the theorem for CA and QPEA consists of four steps, corresponding to 

the next four theorems (that we will prove a bit later). The idea of the proof is first to 
show that simple rectangularly dense algebras are atomic, and thus are representable. 

Then we show that every countable rectangularly dense algebra is embeddable into a 

product of simple rectangularly dense algebras, whence representability holds for these 

algebras as well. Then using a Lowenheim-Skolem argument representability follows 

for “large” algebras too. Finally, representability in infinite dimensions follows from 

representability in all finite dimensions.
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Theorem 4.2.6. Let a € w and V € {CA, QPEA}. Let 2 be a simple, rectangularly 

dense element of V,. Then & is representable. 

Theorem 4.2.7. Let a € w and V € {CA,QPEA}. Let 2 be a rectangularly dense 

element of V,, and assume that the universe of A is countable, |A] < w. Then is 
embeddable into a product of simple, rectangularly dense elements of V ,. 

Theorem 4.2.8. Let a € w, and let V € {CA, QPEA}. Assume that every countable 
element of DV, is representable. Then every element of DV, is representable. 

Theorem 4.2.9. Let V € {CA, QPEA}. Assume that, for every finite a, DV, C RV. 

Then, for every a, DV, C RV. 

To prove the QPA case we need Theorem 4.2.10 below. This says that every rectangu- 

larly dense QPA is the identity-free reduct of a rectangularly dense QPEA. Thus, the 

representability of QPEA’s implies the representability of QPA’s. 

Theorem 4.2.10. For every rectangularly dense QPA, A, there is a rectangularly 

dense QPEA, % such that A is embeddable into the QPA-reduct of SB. 

Now we are ready to prove Theorem 4.2.4. 

Proof of Theorem 4.2.4: C: First we note that, in representable algebras, the sin- 

gleton elements (i.e., elements a such that |a| = 1) are rectangular. That is, full Cs,’s, 
QPs,’s, and QPEs,’s are rectangularly dense. Then, by the definition of representable 

algebras (Definition 4.2.1), RV, C SPDV,. 
2: First, let V € {CA,QPEA}. If a € w, then, by Theorem 4.2.6, every simple 

element of DV, is representable. By Theorem 4.2.7, every countable element of DV, is 

embeddable into a direct product of simple elements of DV,, whence countable algebras 

are representable. Theorem 4.2.8 ensures that representability follows for every element 

of DV,. Finally, Theorem 4.2.9 yields that representability holds for a > w as well. 

Let V = QPA. By Theorem 4.2.10, every rectangularly dense QPA is a subreduct of 

a rectangularly dense QPEA. Since rectangularly dense QPEA’s are representable, so 

are the rectangularly dense QPA’s. 

Since RV, is closed under SP, we are done. 1 

Now we turn to proving Theorem 4.2.6. This time we have to give different proofs 

for CA, and QPEA,. Since in cylindric-like algebras one counts the dimensions as: 

“zero, one, two, many, infinite”, we prove the theorem only for a = 3. Then an easy 

modification of the proof works for any finite a. 

Proof of Theorem 4.2.6: As we mentioned above we prove it only for a = 3, since 

for other a’s the proof is essentially the same. 

First we mention some easy results concerning rectangularity that we will use later. 

Lemma 4.2.11. Let A be an element of CA3. 

1. Leta € A. Then a is rectangular iff there are r,y, z € A such that 

a=xr-y z2&qur=Qgr=crk&oqy=aqy=yk&oz=cz=2z.
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2. If A is rectangularly dense, then, for every a € A, 

a= > {8 >b<a&b is rectangular}. 

Proof: 1: Let z = cya, y = Coa and z = cpa. The other direction is an easy 

calculation. 

2: Clearly, a is an upper bound. Let c be an upper bound and assume that a % c. 

Then a-—c # 0, so there is a rectangular 0 < d<a--c. Then de {b:b< 

a & bis rectangular}, but d  c, a contradiction. 1 

Let V, = CA3. We will prove that any algebra satisfying the assumptions is atomic, 

and then, by [HMT85] 3.2.16, is representable. 

Remark 4.2.12. The representation theorem 3.2.16 in [HMT85] works for infinite a’s 
as well, and this makes the proof rather complicated. However, we need the theorem 

only for finite a’s, cf. Theorem 4.2.9. Then the idea of the proof is simple, cf. [HMT85] 

Discussion 3.2.15. 

For every atom a of the atomic CA, to be represented, let a; = cia.) - [[{d;; : 

i,j €a}. Let U = {a;:1€ a& ae At(A)}. Then the map a — (ao,..., @g-1) induces 

an isomorphism into the Cs, with top element °U. 

See the proof of Theorem 4.2.24 below as well. There we will use the same strategy 

for representation with algebras of binary relations. 1 

Let id def die . doe . do1- 

Lemma 4.2.13. Let AE CA3 and xz € A. Then 

Proof: First we note that, by [HMT85] 1.3.9, ifi # 7, then z = d,;-2 = di;-¢;(d;;-r) = 

d;;-c;z. Now, let {2,7,k} = 3. Then, since cjdj, = dir, © = cir dik = cile;r din) din = 

Cijz - dk , diz = CijT * id by [HMT85) 13.7. 1 

Lemma 4.2.14. Let AE CA; be a simple, non-atomic, rectangularly dense algebra. 

Then there are rectangular elements b, € A (n € w) such that 

id > bo >.> bn >... 

Proof: Let a € A such that there is no atom below it. We will show that there is 

an infinite descending chain of rectangular elements below id. Below, by rectangular 

element we mean non-zero rectangular element. 

CASE 1: a-id # 0. Then there is a rectangular eo < a-id. By assumption eg is 

not an atom, so there is a rectangular e, below it, etc. Thus, by induction, we have 

id>e9>e,>...>€,>.... 

CASE 2: a-id = 0, cf. Figure 4.2. Let b < a be a rectangular element. Now we 

assume that there is no descending chain of rectangular elements below id, and derive 

a contradiction. Since b #0, cob #0. Then, by [HMT85] 1.3.8, dy2-co1b 4 0. Since by
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Figure 4.2: case 2 (in dimension 2) 

[HMT85] 1.3.3 dio = codi2, co (dia . C;b) 4 0. Then die , C5 = a 0, SO, by [HMT85) 1.3.8 

again, doi . co (dia . cb) 4 0; hence do . die ‘ Co10 f 0. By [HMT85] 1.3.7, id = doi . dia, 

so 0 # id- cojb. By the indirect assumption, there is an atom e < id- cojb. Similarly, 

there are atoms f and g below id : cj9b and id - cob, respectively. 

Now we claim that h © Core: Cif -Co2g is an atom below b, and so below a. Indeed, 

h < C916 . C25 . Co2b =b < a. 

Now we show that 0 # h. 0 = core - cia f - Coog would imply 0 = ce(core - cia f - coog) = 

Co(core « Co(cof - C129)) = Co12€ ° Co(cof C129) = Co2f + C129, by simplicity. Then, by 

simplicity again, 0 = ci (coef - c12g) = coef - Ci2g = Ci2g, a contradiction. 

Now assume that h is not an atom, i.e., that there is a non-zero, rectangular d < h. 

We will show that either cord: id < e, or cygd- id < f, or Cggd- id < g, which yields a 

contradiction, since by the above argument c,;d-id # 0. First we prove that < holds. 

Indeed, d < co,e implies coid < co,e, so, by Lemma 4.2.13, cojd: id < coye- id = e. 

Similarly, cygd- id < f and cggd- id < g. Now assume that in both cases = holds, 1.e., 

Cod - id = e etc. Then, since cyid = cj (dy2 - doi) - dog = cyid - dog = dog, 

Core = Corlcoid- id) = co(coid - cjid) = 

[by Cid = dos] Co(coid iN doz) = Co1d - codo2 = 

[by [HMT85] 1.3.2] = Cod. 

Similarly, cyof = Ci9d and co2g = Co2d. Then, by the rectangularity of d, 

d = Cod - Cio « Cogd = Core: Cio f * Co2g = h, 

contradiction. So h must be an atom below a contradicting our assumption that there 

is no atom below a. 

Thus, in both cases, there must be a descending chain of rectangular elements below 

id, hence Lemma 4.2.14 has been proved. 1 

Lemma 4.2.15. Let 2 € CA3 be simple. Then 

Va(0 <a<id & a is rectangular > a € At(Q)).
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Proof: This is proved in [HMT85] 1.10.13(ii). But for the reader’s convenience we 

provide a proof here. 

First we prove that if a is a rectangular element below id and b < a, then b is 

rectangular as well. Let a and b be as above. Then, by b < id and Lemma 4.2.13, 

C19b- id = b. By the same argument, cab: id = b = co1b ‘id. Then 

b= C125 ° Co20 . C910 -id= C12) ° Co2b . C010, 

since 

C195 . Co2b . C910 < Ci24 * Coga * Coa =a < id. 

Hence b is rectangular, by Lemma 4.2.11.1. 

Now we show that if 0 #b < a < id and a, b are rectangular, then a is the sum of 

pairwise disjoint, non-zero elements as below: 

a= S {ere “Cooy + Coz: 2, y,2z € {b,a- —b}}. 

Indeed, = is easy to see, using the rectangularity of a and the additivity of the c;’s. 

Then every element of the sum is less than id. To see that the elements are pairwise 

disjoint, it is enough to show the following: for distinct 2, 7, 

cijb ° cij(a ° —b) -id = 0. 

In fact, c,;b-¢;;(a- —b) -id = b- (a+ —b) = 0 by Lemma 4.2.13. 
Now assume that one of the elements in the sum is zero, say, that for some distinct 

2, I k, 

0= c;jb . Ci,0 . C54 (a . —b). 

Then by b being rectangular, 

0= c;b . Cin (@ . —b). 

Hence 

0= cijk(c;b , cjk(a , —b)) = cijkb , Cijk(a . —b). 

But we are in a simple CA3, so b #0 #a- —b implies 

Cijkb =l= Cijk(a . —b). 

This implies that each member of the sum is not zero. 

Now assume that a is a rectangular element below id but it is not an atom. Then 

a is the sum of two non-zero rectangular elements: 

a=b+ (a: —b). 

On the other hand, 

a> S {err “Cony Coz: 2, y,2z € {b,a- —b}},
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where the members of the sum are pairwise disjoint, non-zero elements. Since b and 

a: —b are rectangular, they occur in the sum. Then 

OF S {ere “Cony Coz: 2,y,z € {b,a- —b}} -—(b+ (a: —b)) =a--a =0, 

contradiction. Thus a must be an atom. Thus we have proved Lemma 4.2.15. 1 

We are ready to show that every CA3 satisfying the conditions of Theorem 4.2.6 is 

atomic, and so, by [HMT85] 3.2.16, is representable. 

Let us assume that we have a non-atomic CAs; satisfying the conditions. Then, by 

Lemma 4.2.14, there is an infinite descending chain of rectangular elements below the 

identity. But this is impossible, since by Lemma 4.2.15 each element of this chain must 

be an atom. Thus we have proved the CA case. 

Now let V, = QPEA3. Let A € QPEA3 be a rectangularly dense, simple algebra. Then 

its cylindric reduct B = RD (A) is a rectangularly dense, simple CA3, by Lemma 4.2.16 

below. Thus, by the above argument, 8 is atomic. Then so is 4. Hence, by [HMT85] 
5.4.36, A is representable. 

Lemma 4.2.16. Let 4 € QPEA; be a simple algebra. Then B = RO (A) is a simple 

CAs. 

Proof: By [HMT85] 5.4.3, the CA-reduct of every QPEA is a CA. We will show that 

any cylindric ideal on ‘B is a QPEA-ideal too. Then if ® is not simple, i.e, if there is 

a proper ideal on it, then neither is 21 contradicting the assumption. 

Let I be an ideal on B. By [Sa82] Proposition 7.4, it is enough to show that z € I 
implies 

sc=sic-—-s0El 

PijT = PijT: —pij0 € I. 

In fact, we will show that six < c(g)z, and then siz € I, since x € I implies cx € I, 
by [Sa82] again; and similarly for p;; instead of si. 

By (Q6), (Q3), we have 

i i _ $5 < S;T = CT S C(3)Z. 

By (Q3), (Q9), we get 
GT = S;C;T = pijsle;z. 

Then, using (Q6), (Q3), 

C(3)T > CGT = pijsleie;z > pijsic;z = PijC;T > PijT 

as desired. 1 

Thus we have proved the QPEA case, which finishes the proof of Theorem 4.2.6 u 

Proof of Theorem 4.2.7: The theorem immediately follows once we showed that 

the conditions of Theorem 1.2.6 are satisfied. This amounts to proving that CA, and
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QPEA, are SBAO’s for finite a’s, and that rectangularity is preserved under homo- 

morphism. The latter is clear, since this property was defined by an equation. It is 

easy to check that CA, and QPEA, are normal BAOQ’s. Finally, if we define © by co), 

then © is indeed a complemented closure operator which satisfies the other condition 

of Definition 1.2.3 as well. 1 

Proof of Theorem 4.2.8: Assume that ® € DV, and a < w. We know that RV, 

is a variety, i.e., it can be defined by an (infinite) set of equations. Now assume that 

B ¢ RV. Then there is an equation e such that B We while RV, Fe. Then for some 
assignment k of the variables of e, B Welk). Then, by the Löwenheim-Skolem theorem, 
cf. [Mo76], there is a countable elementary subalgebra U € V, of B containing every 

T®(k], r asubterm of e. Since rectangular density is a first-order property, A € DV,. By 

UCB, A elk]. On the other hand, AE RV, by Theorem 4.2.6 and Theorem 4.2.7, 

so A Fe. Contradiction, thus Be RV. 1 

Proof of Theorem 4.2.9: Let € € DV,, a > w and e be an equation such that 

RV, Fe. Then e uses only finitely many d,;’s and c;’s. Thus |[| = n < w, where 
P= {i <a: dj;,d;:, or ¢; occurs in e for some 7}. W.l.o.g. we may assume that 

I’ = n. Then, it is easy to see that the n-dimensional reduct % of € is in Vy, cf. 

[HMT85] 2.6.2(i). By the definition of rectangularity, B is rectangularly dense. Now 
assume that €  e[k] for some assignment k. Then 8 elk], but, by the assumption, 
Be RV,, whence B elk]. Contradiction, so € € RVa. 1 

Proof of Theorem 4.2.10: We will show that every (rectangularly dense) QPA is 

the QPA-reduct of a (rectangularly dense) QPEA. First we need a definition. 

Definition 4.2.17. Let A= (Apo, ci, Sj, Piz)i,jea € QPAa. Then the completion 

A= (Ao, Ci, si, Pij)ijea 

of A is defined as follows. Ar is the completion of Ap in the Boolean-algebraic sense. 

If o is any one of the operations c;, Si, or pij then 

— def 
= ) oa 

z>acA 

forallze A. u 

Lemma 4.2.18. Let AE QPA,. Then 

(i) PK = 0" X for all X C A such that > X exists 
(ii) t= Do esaca@ for every TE A 

(iii) A is a subalgebra of A 
(iv) LAT Dire x ox for all X C A and extra-Boolean operation o 

) 
) 

1 

(v zr<acA s;a 

(vi 5 = Lae<aca Pijd.
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Proof: (i) and (ii) are well-known Boolean-algebraic facts. (iii) follows easily from 
the definition of the extra-Boolean operators on & and the fact that all of them are 

monotonic. A proof for (iv) can be found in [HMT85] 2.7.21: equation (2) there is 
the special case of our (iv) when o = c;. The only property of cylindrifications that is 

used in the proof is that it commutes with existing suprema, a fact which holds for the 

substitutions and the permutations, too. The proof of (vi) is exactly like the proof of 

(v), so we only prove the latter. 

Let zr € A; we have to show that 

‚D a. _ | ï 
5;a = $j. 

z>ac€A z<acA 

[e<ae Asja is an upper bound of {sja : z >a € A}, so the < direction is clear. It 

follows from (ii) that []{a-b:a,b€ AX xr<a& —r < b} =0, whence, using (iii) 
and (iv) we get 

1 = S31=8 5 {-(a-b):a,b€ A,x Sa,-r <b} = 
= Di{sj—(a-b):a,b€ Az <a,—-z< db} = 
= (a-b):a,b€ A,z <a,—z < b}. | | Je

 
M
u
.
 

w,
 

Thus 

(Tle<aca sia) : —(doe>acA sa) = (le<aea s;a) ° (loca 7S; za) = 

= |] {sia- —sib: b<z<aka, be A} = 

= T{sta- sb: <ak —r<bka,be A}= 

[]{si(a-b):2<a& -2<bka,be A} = 
0 

finishing the proof of the > direction. z 

Theorem 4.2.19. The class of quasi-polyadic algebras is closed under completion. 

That is, if A E QPA, then so is U. 

Proof: We go through the list (Q0)-(Q9) of axioms of QPA, and check that each 
of them holds in A. (Q0) and (Q1) are obvious. To prove the non-trivial direction 
(c:(c + y) < cx + cy) of (Q2), by Lemma 4.2.18(iv), it is enough to show that 
fa € A anda < r +y, then cja < Er + C¢,y. This is true, since in this case 

a=a:rta-y=d{bEeA:bSa-z}+h{bEA:b<a:y} by Lemma 4.2.18(ii), so 

C;a 

[by Lemma 4.2.18(iv)] 
¢a=t > {bE A:b<a-rorb<a-y}= 
Y-{cbE A: b<a-rorb<a-y}= 
Y{eb: bE A, b<a-c}4+ So {eb: bE Ab<a-y}= 
¢; {bE A:b<a-zc}4+G {bE A: b<a-y}= 
Ci(a-r)+¢,(a-y) < 
CT + Cy. 

[by Lemma 4.2.18(iv)] 

IA
 

Il
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The proofs of (Q3)-(Q5) and (Q7)-(Q9) follow the same pattern; as an example we 
show that (Q3) holds, i.e., that SiC ix = ¢,x. Indeed, 

r= S$) {ca:a€ Aa<r}= 
= D{sica:ae Aja<r}= 
= Si{ea:aeA,a<r}= 
= Ca. 

se 
[by Lemma 4.2.18(iv)] 

It remains to prove (Q6), i.e., that the 5's and the p;;’s are Boolean endomorphisms. 

The argument used to prove (Q2) above can be used to show that + is preserved. As 

for —, we have 

sr = D{sja:ae A,a<-z}= 
= )i{-sia:a€ A,-a < -z} = 

[by Lemma 4.2.18(v)} = — IT {sje ra€ Ar Sa} = 
= —5;T, 

and the same proof (using Lemma 4.2.18(vi) instead of Lemma 4.2.18(v)) shows that 

Pi; -T=-—P;jt. 8 

Let A be a rectangularly dense QPA. Then A € QPA by Theorem 4.2.19, and it is 

also rectangularly dense by Lemma 4.2.18(ii). Since & is complete, it follows from (the 

proof of) [ST91] Proposition 9 (on p. 561) that WA is the QPA-reduct of a QPEA % (the 
d,;’s can be defined in Aas []{y € A: Sy = 1}). By the definition of rectangular 
density B is rectangularly dense. 1 

4.2.2 BOOLEAN MONOIDS AND RELATION ALGEBRAS 

Let us recall that the classes Rs and RRA of relation set algebras and representable 

relation algebras were defined in Definition 3.2.1. We recall the definition of their 

converse-free reduct from [Pr90]. 

Definition 4.2.20. (SRBM and RBM) By a simple representable Boolean monoid, 
an SRBM, we mean an algebra A C (A,N, ~,0, Id) such that A is the —'-free reduct of 

an Rs. 

The class RBM of representable Boolean monoids is defined as 

RBM & SPSRBM. 

RRA and RBM are non-finitely axiomatizable discriminator varieties, (see [Mo64] and 
[Né94] Theorem 2.1 for non-finite axiomatizability, and [Ta55] and [Né94] for being 
discriminator varieties). For RRA these are well-known facts. RBM is a variety, since 

SRBM is a pseudoelementary discriminator class, cf. [Pr90]. Actually, the same ar- 

gument works as in the proof of Theorem 3.2.16 for proving that SRBM is first-order 

axiomatizable. If we define Oz as lorol, then (O(z ®y)Nv)U(uN ~ O(¢ @y)) is a 
discriminator term.
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Definition 4.2.21. (RA, BM, and BM*) 

1. A relation algebra, an RA, is an algebra A = (A, -,—,;, ~, id) such that (A, -, —) is 

a BA, ; (called composition) is a binary operation, ~ (called converse) is a unary 
operation, id (called identity) is a constant, and, for all z,y, z € A, the following 

equations hold: 

(RI) x; (y; z) = (zy); z, 
(R2) (z + y);z = (x; 2) + (y 2), 
(R3) z;id = z, 
(R4) 2” =a, 

(R5) (r+y)"=2" +y~, 
(R6) (z;y)~ = y~ 
(RD) 2: (eso) < 
We denote the class of all relation algebras by RA. 

2. By a Boolean monoid, a BM, we mean an algebra A = (A,-, —,;,id) such that 

(A,-,—) € BA, and, for all z,y, z € A, the following equations hold: 

(M1) x; (y; z) = (z;y); z, 
(M2) x =z;id = id; x 
We denote the class of all Boolean monoids by BM. 

3. Let A be a Boolean monoid. A € BM* if the following conditions hold: 

(M3) z;(y +2) =(z;y) +(z;2) & (c+ y);z=(2;z) 4+ (y;2), 

(M4) 1;-(1;2)=—-(1;z) & —(2;1);1 = —(z;1). 

We make the usual convention that ; binds more closely than - or +. 

We note that RA and BM* are discriminator varieties (again, define Oz as 1;z;1, 

and then the discriminator term can be defined as in the case of RBM above), while BM 

is not (roughly speaking, the reason for this is that © is not a complemented closure 

operator in BM). Thus, BM is “very far” from RBM, that is why we defined its subclass 

BM* which satisfies more (“natural”) equations valid in RBM. It is easy to see that 

the ~-free reduct of an RA is in BM*. 

By an easy verification, RRA C RA and RBM C BM* C BM. Again, 2 does not 

hold, that is, there are abstract algebras that are not representable as set algebras. 

The class of representable elements of V will be denoted by RV. 

Definition 4.2.22. (Rectangularity, rectangular density) Let A be an algebra 

with a BM-reduct, and let a € A. We say that z is rectangular if 

(iz): (z; 1) = 

We say that 2 is rectangularly dense if 

(VO <ae A)(J0 <beE A)b<a& bis rectangular. 

Given a class V of algebras we denote by DV the class of rectangularly dense elements 

of V. 1
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Thus DRA denotes the class of rectangularly dense RA’s. 

We recall the following theorem from [AGMNS]. We note that the theorem for 
RA’s is a consequence of the fact that point-dense RA’s are representable (cf. [JT52] 
for atomic RA’s, and [MT76] and [Ma91] for arbitrary RA’s). 

Theorem 4.2.23. Let Ve {BM*,RA}. Then 

RV = SPDV. 

The proof of the theorem will be based on the following three theorems, cf. the case of 

CA. 

Theorem 4.2.24. Let V € {RA,BM*}. Then 

SimDV C RV. 

Theorem 4.2.25. Let V € {RA, BM*}, and let A € DV be a countable algebra. Then 
QA can be embedded into a product of simple DV’s. 

Theorem 4.2.26. Let V € {RA,BM*}, and assume that every countable DV is rep- 

resentable. Then 

DV C RV. 

Now we are ready to prove Theorem 4.2.23. 

Proof of Theorem 4.2.23: C: It is easy to check that singletons, i.e., elements 

consisting of a single ordered pair, are rectangular in representable algebras. Then 

full Rs’s and SRBM’s are rectangularly dense. Hence RRA = SPRs C SPDRA, and 

similarly for RBM. 

2: By Theorem 4.2.24, every simple element of DV is representable. Then, by 

Theorem 4.2.25, every countable DV is representable. Finally, Theorem 4.2.26 ensures 

that every DV can be represented as an RV. Since RV is SP-closed, we are done. 1 

Proof of Theorem 4.2.24: First we prove that the cylindric-reduct of a BM* is a 

CA2. Let the operations c; and constants di; (2,7 € 2) be defined as follows: 

Ct=1lara&qr=2;1 & dog = dy = 1 & doy = dig = id. 

Then the cylindric-reduct RO(A) of an A € BM* is defined as 

def 

RDA) = (A,-, —, Ci, diz )ijer- 

Lemma 4.2.27. Let %¢€ BM*. Then RO (UA) € CAs. 

Proof: We check that RO (A) satisfies (CO)-(C7). (C1) (ie, 7,0 = 0;z = 0) easily 
follows from (M4) and (M3): 

0;2 <0;1 < —(1;1);1=—(1;1) =—-1=0
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(and similarly z;0 = 0). For (C3) (ie, 1; (z: 1;z) = (1; z) - (1; 2) etc.) it is enough to 
show that c; is a complemented closure operator, cf. [Ve91] Proposition 3.5.6; and this 

easily follows from the axioms. For (C7) it suffices to prove 

(1; (id - x)) - (1; (id- —z)) = 0 & ((id- x); 1) - ((id- —r); 1) = 0. 

First we prove id - (1; (x - id)) = z - id. Indeed, let z < id. Then 

id - (1; z) id - ((id + —id); z)) = id- (id; z + —id; z) < 
id - (id; z + —id; id) = id - (z + —id) = 

2) I
A
 

I 

and > holds by the monotonicity of ;. Let z = z-id and z’ = —z-id. Then z-(1;z’) = 0, 

since z- (1;z') < id- (1;z’) =z' and 0 =z:z'. Thus 

0=1;0=1;(z-1;2’) = (1;z)- (132), 

ie, (1; (id - z)) - (1; (id - —z)) = 0 as desired. The other part of (C7) can be proved in 
the same way. The proofs of the other cylindric-algebraic axioms are straightforward. 

u 

By (C3), the following are valid in BM*: 

L(z-ly)=laz-ly= ike 5) 
(z:y;l;l=zil-.y;l=(e;l- 

We will use these facts in the sequel. 

Lemma 4.2.28. Let A € SimBM* be a rectangularly dense algebra. Then A is 

atomic. 

Proof: First we show that if A € BM* is simple, then 0 < z > 1;2;1 = 1. Assume 

there is an a > O such that 1;a;1 #1. Let J = {x € A: x < 1;a;1}. Then, by the 

monotonicity of ;, z < 1;a;1 implies 

(z;y) + (y;z) <1;z;1 <1;4;1, 

for every y € A. That is, by the normality of ;, z € J implies z;y = (zr +y)-—(z;0) € I 

and y;z = (y+z): —(0;z) € J, for every y € A. Then, by [Sa82] Proposition 7.4, I is 

an ideal. Since 1 ¢ J, this contradicts to the simplicity of 2. 

Assume that U € SimBM*. Then, for every 0 < a € A, l;a;1 = 1. Let B be 

the cylindric-reduct of 4. Then cz)a = 1 for every non-zero a. This implies that ® is 

simple. Furthermore, % is rectangularly dense, by the definition of rectangularity in 

CA’s and in BM’s. Hence it is atomic, by Lemma 4.2.14 and Lemma 4.2.15. Then so 

is A, finishing the proof of the lemma. 1 

Now we can turn to representing simple (and thus atomic), rectangularly dense BM*’s. 

For every atom a € At(2), let 

rep (a) 2 {(a;1-id,1;a-id)},
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Figure 4.3: representation 

cf. Figure 4.3, and, for every x € A, let 

rep(z) ef U{rep'(a) >a € At(A) & a < sh. 

Clearly, rep(a) = rep’(a) for every atom a. We show that rep is an isomorphism between 

A and a set algebra € such that 

EC (P(U x U),N,~,0, Id) 
where U = {a € At(Q) : a < id}. 

Clearly, rep preserves meet and complement. For the other operations we need a 

claim. 

Claim 4.2.29. The following are valid in a simple BM*: 

(i) a<id >a=1;a- id =a;1- id, 

(ii) a € At(Q) > 1;a-id, a;1-id € At(A), 
(iii) a,b € At(A) > a;1-1;b € At(Q), 
(iv) a,be At(A) &a+b< id > a= (a;1-1;b);1-id & b=1; (a;1-1;)) - id. 

Proof: These easily follow from the fact that the CA-reduct is a CAs. 

(i): By [HMT85] 1.3.9. 

(ii): If there were an atom b below 1;a- id, then 1;b-a would be an atom below a. 

(iii): If there were an atom c below a;1-1;b, then there would be an atom below 

a;1-id, or below 1;b- id. 

(iv): By (i) and simplicity. 1 

We show that rep preserves the top element: by Claim 4.2.29(ii), (iii) and (iv), 

rep(1) = ({rep(a) : a € At(Q)} = {(a;1-id,1;a@- id): ae At(A)} = 

= {(b,c):b,c€ At(A) &b+c< id} = 
= UxU. 

rep preserves identity, since by Claim 4.2.29(i) 

rep(id) = {(a;1-id,1;a-id):a€ At(M) & a < id} = 

{(a,a) :a € ANU) & a < id} = 
Id.



110 SQUARES AND RECTANGLES 

To check composition we need a claim. 

Claim 4.2.30. The following are valid in BM*: 

(i) (z- id); (y-id) = z- y- id, 
(ii) a (b;c) < ((a;1) - 6); ((1;@) -c). 

[4.2 

Proof: (i): < holds by monotonicity of ; and (M2). For > first we show that x- id < 
(x - id); (x - id). Indeed, by (M2), 

z-id = (x-id);id = (x- id); (x-id + —x- id) = 

[by (M3)] = (id); (wid) + (2 - id); (aid), 
and, by (M3) and (M2), 

(x - id); (—az- id) < (@-id);id=2-id< 2 

and 

(x - id); (—a2 - id) < id; (—x- id) = —2- id < —z, 

whence (z - id); (—z- id) = 0. Then 

z-y-id < (x-y-id);(z-y-id) < (x- id); (y- id) 

by monotonicity. 

(ii): First we show the following: 

z-(b;(c-—(1;2))) =0 

Indeed, by monotonicity, 

z-(b;(c-—-(1;2))) < 
[by (M4)] = 

Then we can prove the following: 

Indeed, 

z:(be) = £-(b;(c-(1j;r)+e-—(1;2))) = 
= «-(b;(c-(1;2)))+2-(b;(c-—-(1;2))) = 

[by 4.1] = 2x-(b;(c-(1;2))) < 
< 6;(c-(1;2)). 

Similar argument shows 

Then, by 4.2, 

a-(b;c) = - (6; 

[by 4.3] < (b-((a: 
< ((a: [by monotonicity] 

(4.1) 

(4.3)
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Figure 4.4: checking composition 

Now we turn to checking composition. 

rep(r;s) = {(a;1-id,1;a-id):a€ At(A) &a<r;s} 

and 

rep(r) o rep(s) = {(b;1-id,1;c- id): b,c € At(A) &b<r&c<s&1;b-id=c;1- id}. 

rep(r) o rep(s) C rep(r; s) amounts to prove that, for b,c € At(&) such that b <r, 
c < sand 1;b-id =c;1- id, we can find a € At(Q) such that a <r;s, a;1-id=b;1-id 

and l1;a-id = 1;c- id. Leta det b;1-1;c. By Claim 4.2.29(iii), b;1-1;c € At(Q). We 

show that b;c #0. Indeed, 0 = b;c would imply 

0 = 1;(b;c);1 > (1;6- id); (c;1- id) =1;b-id- e;id 

by Claim 4.2.30(i). This is a contradiction, since 1;b- id =c;1-id #0. Then 

a-r;s=(b;1-1;c)-(r;s) > b;c #0, 

ie, a <7; 58. Finally, 

a;1-id = (b;1-1;c);1-id =6;1- id 

by simplicity; and similarly 1;a- id = 1;c- id. 

To prove rep(r;s) C rep(r) o rep(s), we have to find, for given a € At(2) with 
a < r;s, two atoms b,c € At(Q) such thatb<r&c<s&b1-id=a;1-id & 1;c-id = 

l;a-id & 1;b-id=c;1- id. Let t 2 1;(a;1-1r)-id-(1;a-s);1, and let d € At(Q) such 

that d < t, see Figure 4.4. We define b def 1;d-a;l and c < d;1-1;a. First we show 

that t # 0. Indeed, if t = 0, ie., 

O=1l;(a;l-r)-id- (lsa- s);1, 

then, by Claim 4.2.30(i), 

0 = (1; (a;1-7) - id); ((1;@-s);1- id),
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whence 

0 = 1; (1; (a;1-7)- id); ((1;@-s);1-id);1 >(a;l-r);(lja:s) >a-r;s 

by Claim 4.2.30(ii). Since a = a-r; s, we get 0 = r; s, acontradiction. Then b,c € At(Q) 

by Claim 4.2.29(iii). Using the simplicity of U, it is easy to show that b;1-id = a;1-id 

and 1;c-id = 1;a- Id. Further, 

1;b-id =1;(1;d-a;1)-id=1;d-id=d 

by simplicity. Similarly we get d = c;1- id. It remains to prove that b < r andc< s. 

It is enough to show that b-r #0 #c:s, since band c are atoms. By the definition 

of d, d < 1;(a;1-r), ie, 0 #d-1;(a;l-r). Then 0 # 1;(d-1;(a;1-71)), whence 

041;d-1;(a;1-r). Thus 0 41;(1;d-a;1-7r), hence 0 #1;d-a;1-r=b-r. Similar 

proof shows that c < s. 

For the representability of simple rectangularly dense RA’s it remains to prove that 

the above rep works for converse as well. 

{(a;1-id,1;a-id):a€ At(@) &€a<s-}= 
= {(a~;1-id,1l;a~ -id):a€ At(A) Bar < s~} = 

{(1;a-id,a;1-id):a€ At(M) ka Ss} = 

= (rep(s))"!, 

since a is an atom below s iff a” is an atom below s~, and 

rep(s~) 

a~;1-id = (1;a)~ - id = (1;a- id)~ = 1;a- id, 

cf. [CT51]. This finishes the proof of Theorem 4.2.24. u 

Proof of Theorem 4.2.25: It suffices to prove that the conditions of Theorem 1.2.6 

are met. 

First, let V = BM*. Clearly BM* is a BAO. We already showed that composition ; 

is a normal operator. If we define Oz as 1;2;1, then (M1)-(M3) guarantee that © is 
a closure operator, while (M4) ensures that © is complemented. Finally, (443) implies 
that z;y < Or: Oy. 

For V = RA it remains to prove that ~ is a normal operator, and that 7” < Oz. 

Normality follows from (R7). The proof for the other equation is straightforward, since, 

in simple RA’s, 1;z;1 = 1 whenever x > 0. 1 

Proof of Theorem 4.2.26: The same argument (using the downward Löwenheim- 

Skolem theorem) works as in the proof of Theorem 4.2.8. 4



EXTRO 

“The torture never stops.” 

Frank Zappa 

To conclude the dissertation we enumerate open problems, related results, and some 

possible further research directions connected to taming. 

BRIDGE. As we mentioned in Chapter 1, the bridge between logics and algebras 

is worked out for more logics and metalogical properties, cf. [AKNS]. One of the 
most challenging tasks is to extend the bridge for even more logics. For instance, the 

techniques of algebraization work for the Lambek calculus, as we saw in Section 2.3. 

But these connections are not formulated in a general setting yet. The other direction is 

interesting as well: to consider even more properties. An example is to give sufficient 

and necessary conditions for not necessarily Hilbert-style completeness. This would 

require a classification of non-Hilbert-style calculi (e.g., by their syntactic form — 

what kind of condition C is). 

REDUCTS. In Chapter 2, we argued that one of disjunction and composition must 

be left out from the set of connectives if we want to define complete and/or decidable 

versions of PAL with square universes. But the similarity type of the Lambek calculus 

is remarkably smaller than that of PAL. For instance, identity and converse are not 

definable. It would be interesting to see such expansions of the Lambek calculus which 

contains more connectives expressible in PAL,, and is still complete and decidable. 

Another natural try would be to add the transitive closure of composition. 

As we mentioned, the decidability of the Lambek calculus is proved by a syntactic 

argument: by cut-elimination. This does not answer the question whether the Lambek 

calculus has the finite model property, i.e., whether for every non-valid sequent there is 

a relational model with a finite universe refuting this sequent. Probably a semantical 

argument proving decidability would be useful to solve this open problem. One may 

think that the mosaic-method would work. But the problem is that the union of 

transitive mosaics is not necessarily transitive. Thus, in the present form, it is not 

clear how to use such an argument. 

RELATIVIZATION. The most obvious question of Chapter 3 that we did not answer is 

if (Rl,RRA)<* (3 <a, H C {r,s}) generates a finitely axiomatizable (quasi-)variety. 
Or, equivalently, whether there is a strongly sound and complete Hilbert-style calculus 

for “PALS Another interesting problem is whether the decidable logics of Chapter 3 

have the finite model property, or whether Alg(L) has the finite base property. For 

instance, one may find a (combinatorial) argument to “shrink” the models (the bases 
of the algebras) we constructed using mosaics. 

113
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Again, the question of extending (even more) the similarity type arises. Transitive 

closure is one possibility. Another one is to define the graded modalities using accessi- 

bility relations: e.g., using Jo and 7; of Chapter 4. Decidability clearly holds for this 

version, and completeness is likely to hold as well. 

One may ask if the taming strategy of Chapter 3 works for other logics as well. We 

have a good news: there are relativized versions of first-order logic with large (expres- 

sive) power that are Hilbert-style complete and decidable, see [Né92], [Né95],[Ma95], 
[MV95] and [Mi95]. In fact, it is possible to generalize the properties reflexivity and 
symmetry to relations of higher rank, and these relativized versions of first-order logic 

are decidable (even with graded modalities), and some of them are complete. Further, 

Beth definability and Craig interpolation properties hold for most of them. 

DENSITY. The most important open problem of Chapter 4 is whether "L,,* has a 

weakly sound and complete calculus, or whether the diagonal-free rectangularly dense 

RCA,,’s are representable. There are other classes of algebras for which the same ques- 

tion can be asked. For instance, we conjecture that the theorem holds for relativized 

versions of cylindric and polyadic algebras, and for Peirce algebras (cf., e.g., [dR93}).
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SAMENVATTING 

Dit proefschrift gaat over. algebraische logica, d.w.z., over algebra’s, logica’s en hun 

samenhang. In het bijzonder onderzoeken we modale logica’s met een dynamisch karak- 

ter, predicaten-logica’s, en de corresponderende klassen algebras van relaties. We slaan 

een “brug” tussen logica en algebra die zowel logica’s en algebra’s, als metalogische en 

algebraische eigenschappen met elkaar verbindt. 

Centraal staat het “temmen”: het vinden van zich-goed-gedragende versies van veel 

onderzochte logica’s. Het probleem van veel logica’s is dat ze een aantal ongewenste 

eigenschappen hebben, zoals onvolledigheid en onbeslisbaarheid. Voorbeelden hiervan 

zijn de vierkante versie van pijl-logica, en eerste-orde logica (met minstens 3 variabelen). 

We temmen deze logica’s door over de genoemde brug te gaan en de krachtige 

machinerie van algebraïsche logica en universele algebra toe te passen. 

De opzet van dit proefschrift is als volgt. In hoofdstuk 1 introduceren we de logica’s 

die we gaan onderzoeken, en werken we de brug tussen algebra en logica uit. 

In hoofdstuk 2 kijken we naar fragmenten van pijl-logica en geven volledig- en beslis- 

baarheidsresultaten voor deze redukten. De meest interessante logica in dit hoofdstuk is 

de Lambek calculus. Ons belangrijkste resultaat is de volledigheid van deze calculus met 

betrekking tot een relationele semantiek. Het corresponderende algebraïsche resultaat 

geeft ons een representatie van (semi-tralie-)geordende geresidueerde semi-groepen als 

algebra’s van binaire relaties. 

Hoofdstuk 3 gaat over gerelativizeerde versies van pijl-logica. Eerst laten we meer 

modellen toe dan in de klassieke (vierkante) versie van pijl-logica, en dan voegen we 

connectieven toe die niet definieerbaar zijn in de zwakkere versie. We zullen bijvoor- 

beeld volledige en beslisbare versies van pijl-logica laten zien waarin de difference op- 

erator en de graded modalities gedefinieerd kunnen worden. Als we de brug oversteken 

naar algebra-land, dan vertellen deze resultaten ons dat verschillende expansies van 

zwak-associatieve relatie-algebra’s en andere gerelativizeerde versies van representeer- 

bare relatie-algebra’s eindig axiomatiseerbaar en beslisbaar zijn. 

In het laatste hoofdstuk benaderen we de volledigheids-problemen van vierkante 

pijl-logica en (klassieke) predicaten-logica door de regels te veranderen. In plaats van 

de logica te verzwakken door meer modellen toe te laten, herdefiniëren we de notie van 

een afleidingssysteem. Naast de standaard afleidingsregels zoals Modus Ponens staan 

we regels toe waarvan het gebruik beperkt is door bepaalde voorwaarden. Met behulp 

van deze regels zijn we in staat om simpele, eindige en volledige afleidingssystemen 

te geven voor bovengenoemde logica’s. De algebraische kant van deze volledigheids- 

resultaten is dat die relatie-, cylindrische-, en polyadische algebra’s die aan een bepaald 

dichtheids criterium voldoen, representeerbaar zijn als algebra’s van relaties. 

Tot slot noemen we een aantal open problemen in verband met dit proefschrift, 

verscheidene gerelateerde resultaten en mogelijk verder onderzoek. 
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