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On the occasion of the one hundredth anniversary of the birth of George Chogoshvili.1

Abstract. The modal logic S4.3 defines the class of hereditarily extremally disconnected
spaces (HED-spaces). We construct a countable HED-subspace X of the Gleason cover of
the real closed unit interval [0, 1] such that S4.3 is the logic of X.

1. Introduction

It is well known that if we interpret modal diamond as topological closure (and hence modal
box as topological interior), then the modal logic S4 defines the class of all topological spaces.
The celebrated McKinsey-Tarski theorem [14] states that S4 is the logic of any dense-in-itself
(separable) metrizable space. In particular, S4 is the logic of the real closed unit interval
I = [0, 1].

We recall that a topological space is extremally disconnected (ED-space) provided the
closure of each open set is open. Compact Hausdorff ED-spaces are of major importance in
the category of compact Hausdorff spaces as they are the projective objects in the category.
In fact, each compact Hausdorff space has the projective cover, called the Gleason cover (see
[12, 13, 16]). The class of ED-spaces is definable by the modal logic S4.2 = S4+♦�p→ �♦p
(see, e.g., [3, p. 253]). As was shown in [1], ED-spaces play an important role in modeling
full belief. It is a consequence of [5, Prop. 4.3] that S4.2 is the logic of the Gleason cover of
I.

Our main interest in this paper is the modal logic S4.3 = S4+�(�p→ q)∨�(�q → p).
This system plays an important role in tense logic. It was studied in detail by Bull [7],
Fine [11], and others. In particular, it is known that Kripke frames of S4.3 are those S4.2-
frames whose subframes are also S4.2-frames. Similarly, we will see that topological spaces
satisfying S4.3 are those ED-spaces whose subspaces are also ED-spaces. Because of this,
S4.3 was recently proposed as the logic of updatable full belief [2].

ED-spaces whose subspaces are also ED-spaces are called hereditarily extremally discon-
nected spaces (HED-spaces). Unlike compact Hausdorff ED-spaces, which are in abundance,
the only compact Hausdorff HED-spaces are finite (see, e.g., [6, p. 82]). On the other hand,
there are plenty of non-compact HED-spaces. In fact, as follows from [6, Prop. 2.3], ev-
ery dense-in-itself topology is contained in a dense-in-itself HED-topology. As we already
pointed out above, S4.2 is the logic of the Gleason cover of I. Our main result yields a
countable Hausdorff HED-subspace of the Gleason cover of I whose logic is S4.3.
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1George Chogoshvili (1914–1998) was the founder of the Georgian topological school, and one of the

most influential Georgian mathematicians of the twentieth century. He has been a source of inspiration for
many generations. In particular, Chogoshvili’s ideas influenced Leo Esakia (1934–2010), who was one of the
pioneers in developing topological modal logic, an area representing a fruitful cross-fertilization of tools and
techniques of topology and logic. Our paper continues this tradition. We are honored to dedicate it to the
memory of Professor Chogoshvili.
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In proving our main result we utilize two tools, one logical and one topological. On the
one hand, we use the fact that S4.3 is characterized by finite rooted S4.3-frames (see, e.g.,
[8, Ch. 5]). On the other hand, we use Efimov’s theorem [9] (see also [15, Thm. 1.4.7]) that
each compact Hausdorff ED-space of weight no greater than continuum can be embedded in
the Čech-Stone compactification of the natural numbers.

2. Preliminaries

In this section we recall some basic definitions and facts about modal logic and topology.
As basic references we use [8] for modal logic and [10] for topology.

2.1. Logical background. The modal logic S4 is the least set of formulas containing the
classical tautologies, the formulas

�(p→ q)→ (�p→ �q),

�p→ p,

�p→ ��p,

and closed under Modus Ponens (MP) ϕ, ϕ→ψ
ψ

, substitution (S) ϕ(p1,...,pn)
ϕ(ψ1,...,ψn)

, and necessitation

(N) ϕ
�ϕ . As it is customary, we use ♦ϕ to abbreviate ¬�¬ϕ. Let

S4.2 = S4 + ♦�p→ �♦p,

S4.3 = S4 + �(�p→ q) ∨�(�q → p).

A Kripke frame is a pair F = (W,R), where W is a nonempty set and R is a binary
relation on W . A valuation in F is a function ν assigning subsets of F to propositional
letters. This assignment extends recursively to all formulas, where Boolean connectives ∧,¬
are interpreted as set-theoretic intersection and complement, and we set

w � �ϕ iff (∀v)(wRv → v � ϕ),

w � ♦ϕ iff (∃v)(wRv ∧ v � ϕ).

A model on F is a pair M = (F, ν), where ν is a valuation in F. A formula ϕ is true in a
model M = (F, ν) provided w � ϕ for each w ∈ W ; and ϕ is valid in a frame F provided ϕ
is true in every model on F. If ϕ is valid in F, we write F � ϕ. If ϕ is not valid in F, then
we say that F refutes ϕ and write F 6� ϕ.

Let F = (W,R) be a Kripke frame. We call F a quasi-order provided R is reflexive and
transitive. It is well-known (see, e.g., [8, Ch. 3]) that F � S4 iff F is a quasi-order, that
F � S4.2 iff F is a quasi-order satisfying

(∀u, v, v′)(uRv ∧ uRv′)→ (∃w)(vRw ∧ v′Rw),(1)

and that F � S4.3 iff F is quasi-order satisfying

(∀u, v, w)(uRv ∧ uRw)→ (vRw ∨ wRv).(2)

It is easy to see that a quasi-order F satisfies (2) iff each subframe of F satisfies (1).
For a quasi-order F = (W,R), define an equivalence relation ∼ on W by setting w ∼ v

iff wRv and vRw. The equivalence classes of ∼ are called clusters of F. One can partially
order the clusters by setting C ≤ C ′ iff there exist w ∈ C and w′ ∈ C ′ such that wRw′. The
resulting partial order is known as the skeleton of F. We say that a cluster C of F is maximal
provided C is a maximal element of the skeleton, and we call F a quasi-chain provided the
skeleton of F is a chain.
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Let F = (W,R) be a quasi-order. Then w ∈ W is a root of F provided wRv for each
v ∈ W , and F is rooted provided F has a root. It is easy to see that a finite rooted quasi-
order satisfies (1) iff it has a unique maximal cluster, and it satisfies (2) iff it is a quasi-chain.
It is well known (see, e.g., [8, Ch. 5]) that S4 is characterized by finite rooted quasi-orders,
that S4.2 is characterized by finite rooted quasi-orders having a unique maximal cluster,
and that S4.3 is characterized by finite quasi-chains.

2.2. Topological background. Topological semantics generalizes Kripke semantics for S4.
Indeed, we can view quasi-orders as special topological spaces, in which each point has
a least neighborhood, namely R[w] := {v | wRv}. Such spaces are often referred to as
Alexandroff spaces and can equivalently be characterized as those topological spaces in which
the intersection of an arbitrary family of opens is open. The quasi-order associated with an
Alexandroff space X is the specialization order of a topological space defined by xRy iff x
belongs to the closure of {y}.

Given a topological space X, we interpret formulas as subsets of X, Boolean connectives
as the corresponding set-theoretic operations, � as interior, and ♦ as closure. Consequently,
for x ∈ X, we have

x � �ϕ iff there is an open neighborhood U of x such that y � ϕ for all y ∈ U,
x � ♦ϕ iff for each open neighborhood U of x there is y ∈ U such that y � ϕ.

Since S4-axioms correspond to Kuratowski’s axioms, we see that S4 defines the class of
all topological spaces. Moreover, since for an Alexandroff space, the topological semantics
coincides with the Kripke semantics of the associated quasi-order, and since S4 is Kripke
complete, we see that S4 is the logic of all topological spaces. In fact, by the McKinsey-
Tarski theorem [14], S4 is the logic of an arbitrary dense-in-itself separable metric space.
Rasiowa and Sikorski proved in [17] that separability can be dropped from the assumptions,
and hence S4 is the logic of an arbitrary dense-in-itself metric space.

A topological space X is extremally disconnected (ED-space) if the closure of each open
subset of X is open, and it is hereditarily extremally disconnected (HED-space) if every
subspace of X is an ED-space. Let i and c denote the interior and closure. Since X is
an ED-space iff ci(A) ⊆ ic(A) for each A ⊆ X, we see that S4.2 defines the class of all
ED-spaces. In addition, since S4.2 is Kripke complete, we see that S4.2 is the logic of all
ED-spaces. It is a corollary of the McKinsey-Tarski theorem that S4 is the logic of the real
closed unit interval I = [0, 1]. It follows from [5] that S4.2 is the logic of the Gleason cover
of I.

The Gleason cover of a compact Hausdorff space X is a pair (Y, π), where Y is a compact
Hausdorff ED-space and π : Y → X is an irreducible map (an onto continuous map such
that the image of a proper closed subset of the domain is proper). The Gleason cover of
X is unique up to homeomorphism, and can be constructed as follows. A subset U of X
is regular open if U = ic(U). Let RO(X) be the collection of regular open subsets of X.
Ordered by inclusion, RO(X) is a complete Boolean algebra, where

∨
I Ui = ic (

⋃
I Ui) and

¬U = i(X \ U). Let Y be the Stone space of RO(X) (the space of ultrafilters of RO(X)).
By Stone duality, since RO(X) is complete, Y is a compact Hausdorff ED-space. Define
π : Y → X by setting π(∇) =

⋂
{cX(U) | U ∈ ∇}. Then (Y, π) is the Gleason cover of X

[12].

3. Main results

Our goal is to obtain results about S4.3 and HED-spaces that are similar to the ones about
S4.2 and ED-spaces. We start by showing that S4.3 defines the class of all HED-spaces (see
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also [2]). We recall that A,B ⊆ X are separated provided c(A)∩B = ∅ = A∩ c(B). By [6,
Prop. 2.1], X is HED iff any two separated subsets of X have disjoint closures.

Proposition 3.1. For a topological space X, the following are equivalent:

(1) X is an HED-space.
(2) X � �(�p→ q) ∨�(�q → p).
(3) c(A \ cB) ∩ c(B \ cA) = ∅ for any A,B ⊆ X.

Proof. It is straightforward to verify that when interpreting � as i, then X � �(�p →
q) ∨�(�q → p) iff c(A \ cB) ∩ c(B \ cA) = ∅ for any A,B ⊆ X. Thus, (2) is equivalent to
(3). To see that (1) implies (3), suppose that X is an HED-space. Since A \ cB and B \ cA
are separated, [6, Prop. 2.1] yields c(A\cB)∩c(B \cA) = ∅. Finally, to see that (3) implies
(1), suppose that A,B ⊆ X are separated. Then A \ c(B) = A and B \ cA = B. Therefore,
c(A) ∩ c(B) = c(A \ cB) ∩ c(B \ cA) = ∅. Thus, X is an HED-space by [6, Prop. 2.1]. �

As a corollary, we obtain that S4.3 defines the class of all HED-spaces. Since S4.3 is
Kripke complete, it follows that S4.3 is the logic of all HED-spaces. As we pointed out in
the introduction, S4.2 is the logic of the Gleason cover of I. We will construct a countable
HED-subspace X of the Gleason cover of I whose logic is S4.3.

To see that the logic of an HED-space X is S4.3, in view of Proposition 3.1, it is sufficient
to show that each non-theorem of S4.3 is refuted on X. But since S4.3 is the logic of
finite quasi-chains, each non-theorem of S4.3 is refuted on a finite quasi-chain. We call a
topological space Y an interior image of X provided there is a continuous open surjection
f : X → Y . Note that f is continuous and open iff cXf

−1(B) = f−1cY (B) for each B ⊆ Y
(see, e.g., [17, pp. 99–100]); and B can be replaced by singletons provided Y is finite. It
is well known (see, e.g., [4, Prop. 2.9]) that interior images reflect refutation. Therefore, to
conclude that S4.3 is the logic of X, it is sufficient to show that each finite quasi-chain,
viewed as a topological space, is an interior image of X.

Let (Y, π) be the Gleason cover of I. As I is a dense-in-itself separable space, so is Y .
Moreover, since Y is an infinite compact Hausdorff ED-space, it contains a copy of the
Čech-Stone compactification of the natural numbers βω (see, e.g., [10, Exercise 6.2.G(b)]).2

Therefore, the weight of Y is at least that of continuum. But since Y is separable, its weight is
at most that of continuum. Thus, the weight of Y is that of continuum. Furthermore, π−1(x)
is infinite for each x ∈ I. To see this, take a pairwise disjoint family {Un ∈ RO(I) | n ∈ ω}
such that x ∈ c(Un) for each n ∈ ω.3 The filter in RO(I) generated by the regular open
neighborhoods of x together with Un is proper, hence extends to an ultrafilter in RO(I).
Each such ultrafilter ∇ contains all regular open neighborhoods of x, so π(∇) = x. Since the
Un’s are disjoint, these ultrafilters are distinct, producing infinitely many points in π−1(x).
In fact, each π−1(x) has a large cardinality because as an infinite closed set of a compact
Hausdorff ED-space, it contains a copy of βω (see, e.g., [10, Exercise 6.2.G(b)]).

Lemma 3.2. There is a pairwise disjoint family {En ⊆ Y | n ∈ ω} such that each En is
countably infinite and dense in Y .

Proof. Let D be a countably infinite dense subset of I (for example, take D = Q ∩ I). For
each x ∈ D, since π−1(x) is infinite, there is a countably infinite subset Dx = {xn | n ∈ ω}

2This can be seen by observing that a compact Hausdorff ED-space is an F -space [10, Exercise 6.2.G(f)]
and then applying [18, p. 37, Prop. 1.64].

3To see that such a family exists, let m ∈ ω. Put V −
m = (x− 1

2m+1 , x−
1

2(m+1) ) and V +
m = (x+ 1

2(m+1) , x+
1

2m+1 ). Let θ : ω → ω be any sequence such that θ−1(n) is infinite for all n ∈ ω. Finally, for n ∈ ω, set

Un =
⋃{

(V −
m ∪ V +

m ) ∩ I | m ∈ θ−1(n)
}

. Since any two distinct intervals in {V −
m , V

+
m | m ∈ ω} do not share

endpoints, and hence have disjoint closures, we see that each Un is regular open.
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of π−1(x). For each n ∈ ω, define En = {xn | x ∈ D} (see Figure 1). Clearly each En is

I
D?π• •

y x

Y

π−1(y) π−1(x)

• •

• •

...

...

• •

�
 �	
�
 �	
�
 �	

y1

y2

yn

E1

E2

En

x1

x2

xn

Figure 1

countably infinite and {En | n ∈ ω} is pairwise disjoint. It remains to be shown that En
is dense in Y for each n ∈ ω. By construction, π(En) = {π(xn) | x ∈ D} = D. Since π
is a closed map, π(cEn) is a closed set in I containing D. As D is dense in I, we see that
π(cEn) = I. Thus, since π is irreducible, cEn = Y . �

We are ready to construct an HED-subspace X of Y such that each finite quasi-chain is
an interior image of X. The space X will be the union of the spaces {Xn | n ∈ ω}, defined
recursively. In defining Xn we will also define a decreasing sequence Yn of subspaces of Y
such that each Yn is homeomorphic to Y . Let D be a fixed countable dense subset of I, and
fix x ∈ I \D.

Base Step: Let {En ⊆ Y | n ∈ ω} be the pairwise disjoint family of countably infinite
dense subsets of Y constructed in Lemma 3.2, and set X0 :=

⋃
{En ⊆ Y | n ∈ ω}. Note that

X0 ⊆ π−1(D) ⊆ Y \π−1(x). Put Y0 = Y and let h0 : Y0 → Y be the identity homeomorphism.

Recursive Step: Suppose Xn and Yn are already defined, hn : Yn → Y is a homeomorphism,
πn = π◦hn, and Xn ⊆ Yn\(πn)−1(x). Let βn be a closed subspace of (πn)−1(x) homeomorphic
to βω. Since Y is a compact Hausdorff ED-space whose weight is that of continuum, by
Efimov’s theorem, there is a closed subspace Yn+1 of βn and a homeomorphism hn+1 : Yn+1 →
Y . Let Xn+1 be the union of the pairwise disjoint family of countably infinite dense subsets
of Yn+1 constructed in Lemma 3.2.

The recursive step of the construction is captured in Figure 2. The members of the family
{Ei | i ∈ ω} given by Lemma 3.2 that make up Xn, which is a proper dense subset of Yn, are
labeled and depicted by collections of horizontally arranged dots. The set (πn)−1(x) ⊆ Yn is
pictured as a ‘pointed oval’ appearing above the point x ∈ I \ D. Notice that βn, which is
homeomorphic to βω, is contained in (πn)−1(x), and the isolated points of βn are depicted by
the collection of vertically arranged dots ‘converging’ to the remainder, which is indicated by
the box with thin lines. Further note that Yn+1, which is homeomorphic to Y , is contained in
(the remainder of) βn, that (πn+1)

−1(x) ⊆ Yn+1 is also pictured as a ‘pointed oval’ above the
point x, and that Xn+1 ⊆ Yn+1 \ (πn+1)

−1(x) is also indicated by collections of horizontally
arranged dots.

Observe that {Xn | n ∈ ω} is a pairwise disjoint family. We set X :=
⋃
{Xn | n ∈ ω}.

Lemma 3.3.
(1) If n ≥ m, then Xn ⊆ Ym; and if n < m, then Xn ∩ Ym = ∅.
(2) X is countable.
(3) X is a dense subspace of Y .
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•
x 6∈ D

?
π Yn

•
•
•...

(πn)−1(x)

βn

Yn+1

(πn+1)−1(x)

Xn Xn

Xn+1 Xn+1

I
D

E0 for Xn

E1 for Xn

E2 for Xn

Ei for Xn

...
...

...
...

• • • • • • • •••••••

• • • • • • • • • • • • ••••••••••••

• • • • • • • • • •••••••••

• • • • • • • •••••••
• • • • • •••••
• • • • ••••
• • • •••

...
...

Figure 2

(4) X is an HED-space.

Proof. (1) By definition, Ym+1 ⊆ βm ⊆ (πm)−1(x) ⊆ Ym. Therefore, n ≥ m implies Yn ⊆ Ym.
Since Xn ⊆ Yn, we conclude that n ≥ m implies Xn ⊆ Ym.

By definition, Xn ⊆ Yn \ (πn)−1(x). Since Yn+1 ⊆ (πn)−1(x), we see that Xn ∩ Yn+1 = ∅.
Therefore, if n < m, then n+ 1 ≤ m. Thus, Ym ⊆ Yn+1, yielding Xn ∩ Ym ⊆ Xn ∩ Yn+1 = ∅.

(2) By definition, each Xn is a countable union of countable sets, hence is countable.
Therefore, X is a countable union of countable sets, and so is countable.

(3) It is clear by the definition of X0 and Lemma 3.2 that X0 is dense in Y . Since X0 ⊆ X,
we conclude that X is dense in Y .

(4) By (3), X is a dense subspace of an ED-space, so X is an ED-space. As a subspace of
a Hausdorff space, X is also clearly Hausdorff. But every countable Hausdorff ED-space is
an HED-space (see, e.g., [6, p. 86]). Thus, X is an HED-space. �

Lemma 3.4. Every finite quasi-chain is an interior image of X.

Proof. Suppose F = (W,R) is a finite quasi-chain, and suppose its skeleton is ordered as
follows

Ck−1 ≤ Ck−2 ≤ · · · ≤ C1 ≤ C0.

The idea is to map Xi to Ci for i < k, and to Ck−1 for i ≥ k. Recall that Xi is the countably
infinite disjoint union of countable infinite dense subsets {Eij | j ∈ ω} of Yi.

Claim 3.5. Let i ∈ ω. For any nonempty α ⊆ ω, we have

cX

(⋃
{Eij | j ∈ α}

)
=
⋃
{Xn | n ≥ i}.

Proof of Claim: Let α ⊆ ω be nonempty. Since each Eij is dense in Yi, the set
⋃
{Eij | j ∈ α}

is dense in Yi. Therefore,

Yi = cYi

(⋃
{Eij | j ∈ α}

)
= cY

(⋃
{Eij | j ∈ α}

)
∩ Yi ⊆ cY

(⋃
{Eij | j ∈ α}

)
.
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Conversely, from Eij ⊆ Yi it follows that
⋃
{Eij | j ∈ α} ⊆ Yi. Therefore, since Yi is closed

in Y , we have cY (
⋃
{Eij | j ∈ α}) ⊆ Yi, hence the equality. Thus, by Lemma 3.3(1),

cX

(⋃
{Eij | j ∈ α}

)
= cY

(⋃
{Eij | j ∈ α}

)
∩X = Yi ∩X =

⋃
{Xn | n ≥ i}.

�

Let ≡n be the congruence on ω modulo n. For i < k, let Ci = {w0, · · · , wni−1}. Partition
Xi into ⋃

{Eij | j ≡ni
0},

⋃
{Eij | j ≡ni

1}, · · · ,
⋃
{Eij | j ≡ni

ni − 1}.

Define f : X → W as follows. If x ∈ Xi for i < k, then set f(x) = wn provided x ∈
⋃
{Eij |

j ≡ni
n}. If x ∈ Xi for i ≥ k, then set f(x) = v for some v ∈ Ck−1.

The map f : X → W is well defined since {Xi | i ∈ ω} partitions X and the sets⋃
{Eij | j ≡ni

0},
⋃
{Eij | j ≡ni

1}, · · · ,
⋃
{Eij | j ≡ni

ni − 1}

partition Xi for i < k. Furthermore, for each i < k, we have

f(Xi) = f

⋃
n<ni

⋃
j≡nin

Eij

 =
⋃
n<ni

f

 ⋃
j≡nin

Eij

 =
⋃
n<ni

{wn} = Ci.

Therefore, f is onto.
Viewing F as an Alexandroff space, the closure of w ∈ W is R−1[w] := {v | vRw}.

Therefore, to see that f is interior, since W is finite, it is sufficient to show that cXf
−1(w) =

f−1R−1[w] for each w ∈ W . Let w ∈ W . Then w ∈ Ci for some i < k. Therefore, w = wm
for some m ≤ ni − 1. First suppose that x ∈ cXf

−1(w). Then, by Claim 3.5,

x ∈ cXf
−1(wm) = cX

 ⋃
j≡nim

Eij

 =
⋃
n≥i

Xn,

giving

f(x) ∈ f

(⋃
n≥i

Xn

)
=
⋃
n≥i

f(Xn) =
⋃

k>n≥i

Cn = R−1[Ci] = R−1[w].

Thus, x ∈ f−1R−1[w].
Conversely, suppose x ∈ f−1R−1[w]. Then f(x)Rw, giving that f(x) ∈ Cj for i ≤ j < k.

By the definition of f , it must be the case that x ∈ Xj when j < k − 1 and x ∈
⋃
n≥k−1Xn

when j = k − 1. Therefore, by Claim 3.5,

x ∈
⋃
n≥i

Xn = cX

 ⋃
j≡nim

Eij

 = cXf
−1(wm) = cXf

−1(w).

Thus, cXf
−1(w) = f−1R−1[w], completing the proof. �

Theorem 3.6. S4.3 is the logic of a countable HED-subspace of the Gleason cover of I.

Proof. Let X be the countable subspace of the Gleason cover of I constructed above. By
Lemma 3.3(4), X is an HED-space. Therefore, by Proposition 3.1, X |= S4.3. Suppose
S4.3 6` ϕ. Since S4.3 is the logic of finite quasi-chains, there is a finite quasi-chain F refuting
ϕ. By Lemma 3.4, F is an interior image of X. Since interior images reflect refutations, X
refutes ϕ. Thus, S4.3 is the logic of X. �
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