
Priority arguments in transfinite computability theory

MSc Thesis (Afstudeerscriptie)

written by

Steef Hegeman
(born April 2nd, 1998 in Leiden, Netherlands)

under the supervision of Prof.dr Benedikt Löwe, and submitted to the
Examinations Board in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
September 26, 2023 Dr Benno van den Berg

Prof.dr Benedikt Löwe
Dr Lorenzo Galeotti
Dr Franziska Jahnke



Abstract

The priority method has been used to examine the structure of the semi-deci-
dable degrees in computability theory. We discuss three classical results (the
Friedberg-Muchnik theorem, the splitting theorem, and the thickness lemma)
and discuss whether their proofs could be adapted to transfinite computabil-
ity theory, specifically to the machine models of ITTMs, α-machines, and p-
α-machines (α-machines equipped an extra ordinal parameter). We prove a
splitting theorem for certain ITTM-semi-decidable sets—sufficient to conclude
that there are infinitely many ITTM-semi-decidable degrees—and a thickness
lemma for certain ITTM-semi-decidable sets of low degree. We sketch results
for α-machines and p-OTMs (ordinal Turing machines with an extra parameter),
among which a splitting theorem and a thickness lemma for p-OTMs.
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Errata
(found between submission and defense)

In the proof of proposition 1.32, it is claimed that the set of non-accidentally-
writable reals is ITTM-decidable. What is actually known, however, is that the
set of (codes for) non-accidentally-writable ordinals is ITTM-decidable. This
suffices for proving the results. (In particular, a set containing one writable real
and the codes for non-accidentally-writable ordinals is ire and isd, but not igb.)

In chapter 3, it is claimed for various models that, as a corollary of a splitting
theorem and Dekker theorem, an infinite complete binary tree can be found
in the semi-decidable degrees. However, what is obtained is not necessarily an
embedding of such a tree, but an embedding of an infinite directed acyclic graph,
which after removing some arrows is an infinite complete binary tree.* The
main result of there being infinitely many semi-decidable degrees is unaffected.

Typographical errors of note appear in the statement of lemma 4.12—whose
conclusion should be that ℎ ⩽ITTM 𝐴 instead of the other way around—and in
corollary 4.20, where it is 𝐶′ that should be decidable—not 𝐶.

*Roughly, the directed acyclic graph is an infinite union of finite stages constructed as follows.
Nodes—semi-decidable degrees—are numbered as they are added. Every stage, the least node 𝑑
that has not yet been split receives attention. It is first split on all other nodes (of which there
are finitely many): for the least node 𝑘 ≠ 𝑑, split 𝑑 on 𝑘, obtaining degrees 𝑑𝑘, 𝑑′𝑘 ⩽ 𝑑 with
𝑘 
 𝑑𝑘, 𝑑′𝑘. (Note: 𝑑𝑘, 𝑑′𝑘 are not necessarily incomparable). Then split 𝑑𝑘 on the second node
𝑘′ ≠ 𝑑, obtaining a 𝑑𝑘′ ⩽ 𝑑𝑘 ⩽ 𝑑 with 𝑘′ 
 𝑑𝑘′. After doing this for all nodes 𝑘 ≠ 𝑑, a
degree 𝑑′ ⩽ 𝑑 is obtained with 𝑘 
 𝑑′ for all nodes 𝑘 ≠ 𝑑. Then 𝑑′ is split on itself to obtain
incomparable 𝑎, 𝑏 < 𝑑′ ⩽ 𝑑 with 𝑘 
 𝑎, 𝑏 for all nodes 𝑘 ≠ 𝑑. These are the new nodes.
It is not excluded for the 𝑎, 𝑏 < 𝑑 added when 𝑑 receives attention that there is a 𝑘 ≠ 𝑑 so that

𝑑 ≮ 𝑘 and 𝑎 < 𝑘 hold. Considering only the arrows between nodes 𝑑 and the nodes 𝑎, 𝑏 added
when 𝑑 receives attention, one obtains a complete infinite binary tree.
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Introduction

The priority method is a proof technique for constructing semi-decidable sets
that satisfy infinitely many interdependent requirements. This thesis concerns
the generalization of this method to models of transfinite computability theory.

The arguments considered are, in increasing complexity, the Friedberg-
Muchnik theorem, the splitting theorem, and the thickness lemma. The first is
a finite injury argument showing that there are incomparable semi-decidable
degrees, the second a finite injury argument that depends on a given semi-
decidable set, showing that the non-trivial semi-decidable degrees can be split
into two incomparable lower semi-decidable degrees, and the third is an infinite
injury argument from which well-known infinite injury results such as the
density theorem follow [23, section 3].

In [5, section 4], Hamkins and Lewis proved a Friedberg-Muchnik theo-
rem for ITTMs. In [7] a Friedberg-Muchnik theorem is proved for ORMs, and
it is shown that ORMs and OTMs simulate each other, effectively proving a
Friedberg-Muchnik theorem for OTMs. P-α-machines are a machine model
for α-recursion theory [12], for which amongst others a Friedberg-Muchnik
theorem [16], splitting theorem [21], and density theorem [22] has been proved.
However, themain notion of reduction used in α-recursion theory is stricter than
the Turing reduction considered here [12, theorem 21]. Koepke and Seyfferth
proved a Friedberg-Muchnik theorem for p-α-machines with respect to Turing
reduction [12, section 4].

In this thesis, we discuss some of these results, and adapt them to prove a
splitting theorem for ITTM-semi-decidable subsets of ITTM-decidable sets, suf-
ficient for showing that there are infinitely many ITTM-semi-decidable degrees.
We also prove a thickness lemma for the same sets of low degree. Furthermore,
we sketch proofs of a Friedberg-Muchnik theorem for α-machines (without pa-
rameters), OTMs, and p-OTMs, a splitting theorem for p-OTMs, and a thickness
lemma for p-OTMs. The thickness lemmas require a reinterpretation of “thick
subset”. Table 1 contains an overview of the arguments discussed.

The first chapter of the thesis defines well-known models of (transfinite)
computability and lays the groundwork for doing priority arguments. Chapters
2, 3, and 4 are dedicated to one priority argument each, starting with the classical
proof and then discussing generalizations.
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Model Generalizations of classical priority argument results

Friedberg-Muchnik Splitting theorem Thickness lemma*

ITTMs Holds [5] † (thm. 3.13, cor. 3.34) † (thm. 4.15, cor. 4.20)
α-machines Holds (thm. 2.22) Unknown (sec. 3.4) Unknown
OTMs Holds [7] (sec. 2.3) Unknown (sec. 3.4) Unknown
p-OTMs Holds (thm. 2.23) Holds (thm. 3.40) Holds (thm. 4.22)

Table 1: Generalizations of priority arguments discussed in the thesis. Here α
refers to an admissible ordinal.

†A splitting theorem and thickness lemma were proved for certain ITTM-
semi-decidable sets. We do not know whether this can be expanded.

*A direct translation of the thickness lemma, where 𝐴 ⊆ 𝐵 is a thick subset
if 𝐵[𝑒] ⧵ 𝐴[𝑒] is finite for all 𝑒 below the space bound, does not hold for any
transfinite machine model discussed (corollary 4.10). Results were proved by
weakening this constraint appropriately (to α-finite differences).
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Chapter 1

Transfinite computability theory

Contemporary transfinite computability theory is based on generalizations of
machine models from ordinary computability. The models discussed herein are
based on Turing machines [25].1 Intuitively, these are devices attached to a tape
containing symbols. They can read one symbol at a time and, based onwhat they
read and their “state of mind” [25, p. 250], they write a different symbol, move
to one adjacent to it, and alter their state of mind. Transfinite generalizations
prescribe what happens after infinitely many such steps.

The content of this chapter is based on machine definitions in [6], [10], [12]
and the reference work [1]. Reference material for computability theory, set
theory, and α-recursion theory can be found in [13], [9], and [18, chapter VII]
respectively. The presentation is inspired by [4, sections 3, 4] and [11, section 1].

1.1 Machine models

LetΣ = {0, 1} be the set of symbols and𝑄 = 𝜔 the set of possible states containing
distinct 𝑞0, 𝑞∗, 𝑞?. Let 𝑛 ≥ 1 be a natural number and 𝛼 ≤ 𝛽 ≤ On each either
nonzero limit ordinals or the class On of ordinals.

Definition 1.1. A tape is a sequence 𝑡 ∶ 𝛼 → Σ of cells containing symbols.

Definition 1.2. An 𝑛-tape machine program is a finite partial function

𝑚 ∶ 𝑄 × Σ𝑛 → 𝑄 × Σ𝑛 × {⇦,⇨}.

Its elements are called instructions.

Definition 1.3. An 𝑛-𝛼-configuration is a triple in (Σ𝛼)𝑛 × 𝛼 × 𝑄.

Definition 1.4. Given an 𝑛-α-configuration 𝑐 = (𝑡, 𝑖, 𝑞), the result 𝑠𝑚(𝑐) of a step
by an 𝑛-tape program𝑚 is defined if and only if 𝑚(𝑞, 𝑡(𝑖)) = (𝑞′, 𝑠′, 𝑑) is defined.

1There are also transfinite models based on other machine types, such as register machines.
They are generally not equivalent with similar Turing machine based models.
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It is then given by (𝑡′, 𝑖′, 𝑞′), where 𝑡′ is the result of replacing the 𝑖th column of
𝑡 with 𝑠′ (so that 𝑡(𝑛)(𝑖) = 𝑠′(𝑛)), and 𝑖′ is 𝑖 + 1 if 𝑑 = ⇨ holds, 𝑖 − 1 if 𝑑 = ⇦
holds and 𝑖 is a successor, or 0 otherwise.

Definition 1.5. Given an 𝑛-tape 𝑡 ∈ (Σ𝛼)𝑛 and an 𝑛-tape program 𝑚, the
computation of 𝑚 on 𝑡 is the longest sequence {𝑐𝛿 = (𝑡𝛿, 𝑖𝛿, 𝑞𝛿) ∶ 𝛿 < 𝐵 ≤ 𝛽}
satisfying (for all 𝛿 < 𝐵, 𝑘 < 𝑛, and 𝜉 < 𝛼)

• 𝑐0 = (𝑡, 0, 𝑞0);

• 𝑐𝛿+1 = 𝑠𝑚(𝑐𝛿);

• and for limits 𝜆 > 0

– 𝑡𝜆(𝑘)(𝜉) = lim inf𝛿<𝜆 𝑡𝛿(𝑘)(𝜉); (a cell is 1 iff it converges to 1)
– 𝑖𝜆 is lim inf𝛿<𝜆 𝑖𝛿 if this is below 𝛽, or 0; (the tape wraps around)
– 𝑞𝛿 = 𝑞∗ (the machine is in the limit state.)

If 𝐵 < 𝛽, the computation is said to halt. Otherwise, it diverges.

Example 1.6 (Hamkins and Lewis [6, §3]). The computation of the machine

(𝑞0, 0) ↦ (𝑞1, 1,⇨)
(𝑞0, 1) ↦ (𝑞1, 1,⇨)
(𝑞1, 0) ↦ (𝑞0, 0,⇦)
(𝑞∗, 1) ↦ (𝑞1, 0,⇨)

on any tape proceeds as follows: it writes a 1 on the first cell, after which it starts
moving back and forth between the first two cells. On limit steps, it finds itself
on the first cell. If the first cell contains a 0, the machine halts. If not, it writes a
0 on the first cell, then changes it back to a 1 (this is called “flashing” the cell),
and starts moving back and forth between the first two cells again. Considering
the lim inf-rule, we see that the machine halts at time 𝜔2—provided 𝜔2 < 𝛽. ⌟

Let 𝐷 ⊆ Σ𝛼 and 𝑃 ⊆ 𝐷.

Definition 1.7. An machine is a pair (𝑚, 𝑝) of a 3-tape program 𝑚 and a pa-
rameter 𝑝 ∈ 𝑃. In this context, the three tapes are called the parameter, input,
and output tape respectively.

Machines (𝑚, 𝑝) can be seen as partial functions 𝑓 ∶ 𝐷 → 𝐷 as follows: 𝑓(𝑥)
is defined if and only if the computation of 𝑚 on (𝑝, 𝑥, 000…) halts and its final
configuration ((𝑠, 𝑡, 𝑢), 𝑖, 𝑞) satisfies 𝑢 ∈ 𝐷. Then 𝑓(𝑥) = 𝑢.

Definition 1.8. Amachine model is a choice for (𝛼, 𝛽, 𝐷, 𝑃).
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Machine model Space 𝛼 Time 𝛽 Domain 𝐷 Parameters 𝑃

Turing machines 𝜔 𝜔 𝜔 ∅
ITTMs 𝜔 On 2𝜔 ∅
𝛼-machines 𝛼 𝛼 𝛼 ∅
OTMs On On On ∅
p-𝛼-machines 𝛼 𝛼 𝛼 𝛼
p-OTMs On On On On

Table 2: Overview of the machine models discussed. 𝛼 is admissible.

We now define machine models for ITTMs, OTMs, and α-machines. While
for each machine type, the definition below differs from the one originally
given in the literature (in terms of number of tapes and limit behavior), it is
well-known that they are computationally equivalent.2

Definition 1.9. The model of infinite time Turing machines (ITTMs) by Kidder,
Hamkins, and Lewis [6] is given by (𝜔,On, 2𝜔, ∅).

We assume that the reader is familiar with the constructible hierarchy 𝐿 and
its relativizations 𝐿[𝐴] for sets 𝐴 as discussed in [9, chapter 13] and [9, p. 192].
Write 𝐿𝛼 for the 𝛼th level of 𝐿. In particular, 𝐿 = 𝐿On.

Definition 1.10. Call 𝛼 ≤ On admissible [18, section VII.1, prop. 1.5] if (𝐿𝛼, ∈)
satisfies the replacement axiom for all Δ0-formulas with parameters in 𝐿𝛼.

If 𝛼 is admissible then (𝐿𝛼, ∈) is is closed under pairing, union, Σ1-replace-
ment, and Δ1-separation, both with parameters in 𝐿𝛼 [18, section VII.1].

Definition 1.11. For each admissible 𝛼, the model of 𝛼-machines is given by
(𝛼, 𝛼, 𝛼,∅), where we identify 𝛼 with the tapes that contain exactly one 1, so
that 𝛿 < 𝛼 corresponds to the tape 𝑡 with 𝑡(𝛿) = 1.

The case 𝛼 = 𝜔 is known as Turing machines (TMs) [25], the case 𝛼 = On is
a parameter-free version of Koepke’s ordinal Turing machines (OTMs) [10], and
the case 𝛼 < On is a parameter-free version of the 𝛼-machines introduced by
Koepke and Seyfferth [12].

Themodels of parametrized 𝛼-machines (p-𝛼-machines) are (𝛼, 𝛼, 𝛼, 𝛼). The
case 𝛼 = On corresponds to the machines in [10] which we call p-OTMs, and
the others correspond to those in [12], which we call p-𝛼-machines.

The models are summarized in table 2. From now on, any machine model
discussed, refers to any of these models. We shall also occasionally write𝑀 for
any such machine model. In such contexts,𝑀-machine refers to a machine for
𝑀 and 𝐷𝑀, 𝑃𝑀 to the domain and parameter space of 𝑀 respectively.

2That is, they are equivalent up to simulation. See e.g. the remark in [7, section 3], [1, exercise
2.8.8] attributing [27], the remark at the end of [12, section 1], and appendix B.1.
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1.2 Computable functions

As we can see𝑀-machines as partial functions 𝐷𝑀 → 𝐷𝑀, the question arises
for which partial functions there is a machine.

Definition 1.12. If 𝑚 is an𝑀-machine, we write {𝑚} for the partial function
𝐷𝑀 → 𝐷𝑀 induced by 𝑚. A partial function 𝑓 ∶ 𝐷𝑀 → 𝐷𝑀 is called 𝑀-
computable (ITTM-computable, α-computable, p-α-computable, OTM-compu-
table, p-OTM-computable) if there is an𝑀-machine𝑚 with {𝑚} = 𝑓.

In [12], p-α-machines are introduced as a machine model for α-recursion
theory [18, part C]. A partial function is p-α-computable if and only if it is
α-recursive [12, pp. 313, 315], that is, Σ1-definable with parameters over 𝐿𝛼
[18, p. 152]. Furthermore, a partial function is α-computable if and only if it is
Σ1-definable over 𝐿𝛼 without parameters [12, pp. 313, 314].

Proposition 1.13 ([6, p. 570], [12, p. 315], [10, pp. 384, 385]). For each of the
machine models discussed, adding any finite number of tapes does not alter com-
putability strength. (The class of computable functions is the same.)

Adding extra input tapes, we can extend the definition of 𝑀-computable
functions to multivariate functions.

Proposition 1.14 (Folklore). The following are 𝛼- and OTM-computable:

• ordinal addition, multiplication, and exponentiation (restricted to 𝛼);

• the Cantor pairing bijection On2 → On (restricted to 𝛼2) and its inverse.3

There is also a bijective ITTM-computable pairing function 2𝜔 → 2𝜔.

Proof. The first two items follow from [18, section VII.1.6], or, alternatively, by
a machine-based proof similar to those in [10, section 3]. Reals 𝑥0, 𝑥1 can be
coded in one real 𝑧 by letting bit 2𝑛 + 𝑖 of 𝑧 be the 𝑛th bit of 𝑥𝑖.

In general, we shall write ⟨⋅, ⋅⟩ for all pairing functions, where it is clear from
the context which is intended, and 𝐴⊗ 𝐵 for {⟨𝑎, 𝑏⟩ ∶ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵}.

Definition 1.15. The 𝜀th column of a class 𝐵 ⊆ On and its 𝜀th section is given
by 𝐵[𝜀] = {⟨𝑥, 𝑦⟩ ∈ 𝐵 ∶ 𝑥 = 𝜀} and 𝐵[<𝜀] = ⋃𝑑<𝜀 𝐵

[𝜀] respectively.

We think of 𝑀-machines as objects in 𝐷𝑀: we fix a suitable (effective) bi-
jection between programs and 𝜔—in the case of ITTMs we then presuppose a
suitable injection of 𝜔 into 2𝜔 as well. Parameter-free machines can be thought
of as natural numbers, and p-𝛼-machines as elements of 𝛼. We also write {𝑚}
for the partial function induced by the machine induced by the ordinal𝑚.

3Also known as the Gödel pairing function. ⟨𝛿, 𝜀⟩ is defined as the order type of (𝛿, 𝜀) under
the well-order on pairs of ordinals obtained by first ordering on the maximum coordinate, then
on the first coordinate, and finally on the second.
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Theorem 1.16 (Simulation theorem [1, theorem 2.5.15], [18, p. 1.9]). For each
of the machine models discussed, there are universal machines that are able to
simulate the computation of any other machine. That is, there is an ITTM 𝑚
with {𝑚}(⟨𝑛, 𝑥⟩) = {𝑛}(𝑥) for any 𝑛 ∈ 𝜔 and 𝑥 ∈ 2𝜔, and similarly for the other
machine models.

Corollary 1.17. For each model𝑀 discussed, The𝑀-computable functions are
closed under composition.

Hidden in proofs of the above but good to mention, is that admissible 𝛼
are closed under the operations of ordinal arithmetic (addition, multiplication,
exponentiation), so the time bound plays no role when composing or simulating
𝛼-machines.

1.3 Semi-decidable degrees

If 𝑓 is a partial function, we write 𝑓(𝑥)↓ (read: “𝑓(𝑥) halts”) if 𝑓 is defined in 𝑥.

Definition 1.18. A class 𝐴 is 𝑀-decidable if its characteristic function is 𝑀-
computable. We write {𝑚} = 𝐴, identifying classes with characteristic functions.

A class 𝐴 is𝑀-semi-decidable if it is the domain of some𝑀-machine𝑚, that
is, if 𝑥 ∈ 𝐴 ↔ {𝑚}(𝑥)↓ holds.

𝑀-decidability implies 𝑀-semi-decidability. This cannot be reversed: the
halting problem 𝐻𝑀 = {⟨𝑚, 𝑥⟩ ∶ {𝑚}(𝑥)↓} is 𝑀-semi-decidable, as it is the
domain of a universal machine (theorem 1.16), but not𝑀-decidable. This can
be shown by the well-known proof for Turing machines.

Theorem 1.19 (The halting problem [6, theorem 4.1]). For any machine model
M discussed,𝐻𝑀 is not M-decidable.

Proof. If {𝑚}(⟨𝑝, 𝑥⟩) gives 1 if {𝑝}(𝑥)↓ and 0 otherwise, consider the machine
{𝑚′}(𝑝′) that halts if and only if {𝑝′}(𝑝′) does not. (This it can do by simulating
{𝑚}(⟨𝑝′, 𝑝′⟩), which will always halt and tell whether {𝑝′}(𝑝′) halts or not.) Then
{𝑚′}(𝑚′) halts if and only if it does not. So𝑚 cannot exist.

Definition 1.20 (Turing). An𝑀-oracle-machine𝑚 is an𝑀-machine with an
oracle tape, whose instructions may contain the query state 𝑞?.

Its computations depend on𝑚, its input, and an oracle 𝐴 ⊆ 𝐷𝑀. When it is
in state 𝑞? at step 𝜎+1, the oracle tape contains 100… if there was an element of
𝐷 written on the oracle tape at step 𝜎 that is an element of 𝐴, and otherwise the
oracle tape contains just 0s. We write {𝑚}𝐴(𝑥) for the result of the computation
of 𝑚 with oracle 𝐴 and input 𝑥. The set 𝑄 of queries made in a computation
{𝑚}𝐴(𝑥) is split between the positive queries 𝑄 ∩ 𝐴 and negative queries 𝑄 ⧵ 𝐴.

Informally, oracle machines𝑚 are equipped with an oracle 𝐴, which, to the
eyes of 𝑚, is decidable.
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Definition 1.21. 𝐴 ⊆ 𝐷𝑀 is said to𝑀-reduce to 𝐵 ⊆ 𝐷𝑀 if there is an𝑀-oracle-
machine 𝑚 with {𝑚}𝐵 = 𝐴. (That is, there is an 𝑀-oracle-machine which,
equipped with oracle 𝐵, is the characteristic function of 𝐴.) We write 𝐴 ⩽𝑀 𝐵.

If both 𝐴 ⩽𝑀 𝐵 and 𝐵 ⩽𝑀 𝐴 hold, then 𝐴 and 𝐵 are called 𝑀-equivalent,
written 𝐴 ≡𝑀 𝐵. If 𝐴 ⩽𝑀 𝐵 and 𝐴 ≢𝑀 𝐵 hold, then we speak of strict 𝑀-
reduction, written 𝐴 <𝑀 𝐵.

Remark 1.22. In α-recursion theory, stricter notions of reducibility are consid-
ered, which Koepke and Seyfferth adopted for α-machines [12, p. 316]. We
restrict ourselves to Turing’s notion of reduction as defined above. Koepke and
Seyfferth claim this is generally not transitive for p-α-machines [12, p. 316],
referring to a similar result from metarecursion theory [3, theorem 1]. ⌟

Classes of 𝑀-equivalent sets are called degrees, and they are an object of
study in computability theory. Since ⩽TM is transitive, we can lift it to the TM-
degrees. For ITTMs, OTMs, and p-OTMs, ⩽𝑀 is also transitive, and we do the
same. Degrees that contain a semi-decidable are called semi-decidable degrees.

Since semi-decidable classes are defined as domains of machines, the fol-
lowing can be concluded.

Proposition 1.23 (Folklore). All𝑀-semi-decidable classes𝑀-reduce to𝐻𝑀.

1.4 ITTM-computability

Definition 1.24 (Hamkins and Lewis [6, pp. 573, 580]). Let 𝑥 be a real. It is
writable if there is an ITTM𝑚 with {𝑚}(0) = 𝑥, eventually writable if there is an
ITTM so that in the computation {𝑚}(0) there is a point in time after which the
content of the output tape is always 𝑥, and accidentally writable if at any point
in time 𝑥 is written on the output tape in the computation {𝑚}(0).

For eventual and accidental writability, these computations need not halt.

Definition 1.25 (Hamkins and Lewis [6, pp. 573, 580]). If 𝑅 is a partial order
on a subset of 𝜔, a real 𝑥 is a code for 𝑅 if for all 𝑛,𝑚 ∈ 𝜔 it is the case that the
⟨𝑛,𝑚⟩th bit of 𝑥 is 1 if and only if (𝑛,𝑚) ∈ 𝑅.

A real 𝑥 is a code for 𝛼 if 𝑥 codes a well-order of order type 𝛼. If there are
writable, eventually writable, or accidentally writable codes for 𝛼, then 𝛼 is called
a writable, eventually writable, or accidentally writable ordinal respectively.

Proposition 1.26 (Hamkins and Lewis [6, theorem 2.2]). The set WO of reals
that code ordinals is ITTM-decidable.

We shall use various properties of ordinal codes. In particular, given a codes
𝑥, 𝑦 for 𝛼, 𝛽, an ITTM can

• remove minimal elements from 𝑥 until exhausted (“clocking 𝛼” or “count-
ing through 𝛼” [6, p. 572]), which takes exactly 𝛼 removals [6, p. 572];
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• thus compare 𝛼 and 𝛽;

• compute codes for all 𝛿 < 𝛼 [6, theorem 3.7]; and

• code sequences {𝑟𝛿 < 𝛿 < 𝛼} of reals in one real, called “coding along 𝑥”
[6, p. 585].

An ITTM can iterate over codes 𝑦 for 𝛽 < 𝛼 in ordinal order, as proved in
appendix A.1. ITTMs can also do arithmetic on codes. Specifically, there is an
ITTM which, given codes for 𝛿, 𝜀, produces a code for the Cantor pairing ⟨𝛿, 𝜀⟩.
This is proved in appendix A.3.

Definition 1.27 (Hamkins and Lewis [6, p. 576]). An ordinal 𝛼 is clockable if
there is an ITTM𝑚 so that {𝑚}(0) halts in exactly 𝛼 steps.

WriteWon for the set of writable ordinals,Clk for the set of clockable ordinals,
and Γ for the supremum of Won (which exists, since order types of well-orders
on 𝜔 are necessarily countable). We shall use that Clk is decidable and Won is
semi-decidable (by simulation), that Won = Γ [6, theorem 3.7], that Clk ≠ Γ [6,
theorem 3.5], that Clk and Won have the same order type [6, theorem 3.8], and
that supClk = supWon [26, corolary 2.3].

Proposition 1.28 (Hamkins and Lewis [6, theorem 4.1]). The weak halting
problem ℎ = {𝑚 < 𝜔 ∶ {𝑚}(0)↓} is ITTM-semi-decidable and not ITTM-decidable.

Write Wrr for the set of writable reals.

Proposition 1.29. If 𝐴 ⊆ Wrr is semi-decidable, then 𝐴 ⩽ITTM ℎ.

Proof. Let 𝐴 = dom {𝑚}. There is an ITTM {𝑡} which, given a machine 𝑛
produces a machine 𝑒 with {𝑒}(0) = {𝑚}({𝑛}(0)) by composing the instructions.

𝐴 can thus be reduced to ℎ as follows: on input 𝑥, iterate over all 𝑛 < 𝜔 and
query 𝑛 ∈ ℎ. If 𝑛 ∈ ℎ, then simulate {𝑛}(0) and check if {𝑛}(0) = 𝑥. If an 𝑛 with
{𝑛}(0) = 𝑥 is found, then accept 𝑥 if {𝑡}(𝑛) ∈ ℎ and otherwise reject. If no such
𝑛 is found, reject 𝑥 as well (because it is not writable).

Definition 1.30. 𝐴 ⊆ 𝜔 is recursively enumerable (re) if it is empty or the range
of a total TM-computable function, and generable (gb) if there is a TM 𝑒 with
𝐴 = {𝑥 ∶ 1𝑥00… is on the output tape at any point in the computation {𝑒}(0)}.

Write sd for TM-semi-decidability. ITTM-variants ire, isd, and igb are
defined analogously. In particular, for igb we now consider sets of the form
{𝑥 ∈ 2𝜔 ∶ 1𝑥 is on the output tape at any point in the computation {𝑒}(0)}.

Proposition 1.31 (Folklore). A set is semi-decidable if and only if it is generable,
if and only if it is recursively enumerable.

This does not translate to ITTMs.

Proposition 1.32. As in table 3, we have
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↗ ire isd igb

ire ✓ X X
isd X4 ✓ X
igb ✓ ✓ ✓
ITTM-decidable X ✓ X

Table 3: Implication table for definitions of enumerability for ITTMs.

igb→ ire ∧ isd,1. ire ∧ isd↛ igb,2.
isd↛ ire,3. ire↛ isd,4.
and ITTM-decidable implies isd, but not ire or igb.5.

Proof. 1. As shown in [6, p. 570], ITTM-computations either halt or start to
repeat in 𝜔1 steps. Hence, if 𝐴 ≠ ∅ is generated by ITTM𝑚, then there is
an ITTM whose range is 𝐴: on ordinal input 𝛼, it simulates𝑚 until a real
is generated, then for another 𝛼 steps, and outputs the last real generated.
On non-ordinal inputs, it outputs the first real generated by𝑚.
For igb→ isd, consider an ITTM that, given a real 𝑥, simulates a generator
indefinitely and halts only if 1𝑥 is ever on the output tape.

2. 2𝜔 is ire and isd but not igb: it contains non-accidentally-writable reals
(as there are only countably many accidentally writable reals), and by
definition ITTM-generable sets contain only accidentally writable reals.

3. From the proof of [26, corollary 2.3] (more explicitly, [1, corollary 3.6.10])
it can be concluded that the set Naw of non-accidentally-writable reals is
ITTM-decidable. Hence, it is isd. It is not ire, since nonempty ire sets
must contain writable reals. (If 𝐴 is the range of an ITTM-computable
function 𝑓, then 𝑓(0) is a writable element of 𝐴.)4

4. In [6, theorem 5.1] it is shown that ℎ strictly reduces to ℎ▿ = {𝑒 ∶ {𝑒}ℎ(0)↓},
hence ℎ▿ is not isd. To see that it is ire, we recall that Naw is ITTM-
decidable and so 𝑍 = WO ∩ Naw is too. From the proof of [26, corollary
2.3] and the observation that all computations on writable inputs either
halt in less than Γ steps or diverge (formalized in proposition 1.36), it
follows that ℎ is ITTM-computable from any ordinal in 𝑍. So the function

𝑥 ↦ {
𝑒 if 𝑥 codes 𝜆 + 𝑒 in 𝑍 and {𝑒}ℎ(0) halts in 𝜆 steps;
minℎ▿ otherwise

4 If an isd set 𝐴 = dom{𝑒} contains a writable real 𝑎, then it is ire: it is the range of the
ITTM-computable function

𝑓(⟨𝑥, 𝑦⟩) = {
𝑥 if 𝑦 codes an ordinal 𝛼, and {𝑒}(𝑥) halts in 𝛼 steps;
𝑎 otherwise.
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is ITTM-computable and has range ℎ▿ (since all halting ITTM-computa-
tions are countable [6, theorem 1.1]).

5. ITTM-decidabality implies ITTM-semi-decidability. In (3) we find an
ITTM-decidable set that is not ire, and in (2) one that is not igb.

Given 𝛼 ∈ Won, order the machines 𝑚 writing it first by the runtime of
{𝑚}(0) and then by machine code. If 𝑒 is the least under this ordering, then {𝑒}(0)
is the canonical code of 𝛼. Given any code for 𝛼 ∈ Won, an ITTM can compute
its canonical code by simultaneously simulating all {𝑚}(0). We often identify
Won with the set of canonical codes, and act likewise for Clk.

Proposition 1.33. The set Wrr of writable reals is ITTM-generable.

Proof. There is an ITTM which simultaneously simulates all computations
{𝑚}(0) and shows the output of halting computations on the output tape.

The following proposition will be used frequently in the thesis. A proof—
which is more technical than insightful—can be found in appendix A.1.

Proposition 1.34. The set of writable ordinalsWon (here seen as the set of canon-
ical codes for writable ordinals) is ITTM-generable in ordinal order.

Proposition 1.32 sheds light on why priority arguments do not translate well
to ITTM-computability. In the same vein, we note:

Proposition 1.35. There is generally no ITTM-computable well-order on the reals
so that, given 𝑥 ∈ 2𝜔, an ITTM can generate its predecessors and halt.

Proof. Assume that such awell-order≺ existed. By assumption, for every𝑥 ∈ 2𝜔,
an ITTM can generate pred(𝑥) = {𝑦 ∶ 𝑦 ≺ 𝑥} and halt. All halting ITTM-
computations are countable [6, theorem 1.1], so for every 𝑥 ∈ 2𝜔, the cardinality
of pred(𝑥) is countable. It follows that the order type of (2𝜔, ≺) is at most 𝜔1,
as this is the largest order type in which all predecessor sets are countable. As
2𝜔 is uncountable, the order type of (2𝜔, ≺) cannot be countable. Hence the
order type is 𝜔1, and so 2𝜔 is in bijection with 𝜔1, from which 2ℵ0 = ℵ1 follows.
So the existence of ≺ implies the continuum hypothesis, which is a statement
independent from ZFC [9, chapter 14].

When restricted to Won, halting ITTM-computations have writable length.

Proposition 1.36. If 𝑤 ∈ Wrr and the ITTM-computation {𝑒}(𝑤) halts, then it
halts in clockable time.

Proof. Let 𝑤 ∈ Wrr and assume {𝑒}(𝑤)↓. Modify the program of 𝑒 to obtain an
ITTM 𝑒′ so that, on input 0, 𝑒′ first writes a code for 𝑤 on the input tape, and
then acts as 𝑒 normally would.
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More formally: let 𝑚 be a machine that writes 𝑤. Let 𝑄𝑒 be the states
contained in the instructions of 𝑒, and let 𝑓 ∶ 𝑄𝑒 → 𝑄′

𝑒 be a bijection so that
𝑄′
𝑒 contains no states mentioned in the instructions of 𝑚. Let 𝑞 be the final

configuration in the computation {𝑚}(0), and 𝑖 the final cell position, and 𝑠 the
final symbol on cell 𝑖. The instructions for 𝑒′ are then given by the instructions
of 𝑚, the instructions obtained by applying 𝑓 to all states in instructions of 𝑒,
together with instructions that, starting from state 𝑞, move left 𝑖 times and then
enter state 𝑓(𝑞).

Then {𝑒′}(0) = {𝑒}(𝑤). Let 𝜎, 𝜏 be their respecting halting times. By definition
of 𝑒′, we have 𝜎 ≥ 𝜏, and by definition of clockability we have 𝜎 ∈ Clk.

Generally speaking, when restricted to Won, ITTMs and p-Γ-machines are
somewhat similar, as outlined in appendix B.2. In particular, a 𝐴 ⊆ Γ is p-Γ-
semi-decidable if and only if there is an ITTM-semi-decidable 𝐴′ ⊆ 2𝜔 such that,
up to coding, 𝐴′ ∩ Won = 𝐴. They are not the same, however. In particular, the
set of codes of writable ordinals is not ITTM-decidable (appendix A.2), and so
p-Γ-reductions do not directly translate to ITTM-reductions on subsets of Won
(there is no general way to reject reals that do not code ordinals in Γ).

1.5 Definability

Transfinite computability and the constructible hierarchy are closely related.
In [12, lemma 3], Koepke and Seyfferth show that, if 𝛿 is a limit ordinal, 𝑀-
computations of length up to 𝛿 are uniformly Δ1-definable (with parameters)
over 𝐿𝛿[𝑡], where 𝑡 is the initial tape of the computation (containing the input
and parameter). For every admissible 𝛼 ≤ On, there is an 𝛼-machine effectively
enumerating 𝐿𝛼 [18, section VII.1.7], in the sense that, given codes for sets in 𝐿𝛼,
the answer to basic set-theoretic questions such asmembership can be computed.
Both can be relativized to oracles 𝐴, replacing 𝐿 with 𝐿𝛿[𝐴] [12, pp. 313, 314].
Similarly, Hamkins and Lewis have shown that ITTMs can, given a code for an
ordinal 𝛿, effectively iterate over 𝐿𝛿 [6, pp. 585, 586], and thus generate 𝐿Γ.

1.6 Bounded simulation and approximations

Definition 1.37. Given𝑀-machine𝑚, define the 𝛿-step approximation

{𝑚}𝛿(𝑥) = {
{𝑚}(𝑥) if the computation {𝑚}(𝑥) takes strictly less than 𝛿 steps
↑ otherwise

where ↑means that 𝑥 is outside the domain of {𝑚}𝛿. Define {𝑚}𝑋𝛿 (𝑥) similarly.
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Proposition 1.38. For the machine models𝑀 discussed, if 𝛿 is strictly below the
time bound, {𝑚}𝛿(𝑥) is 𝑀-computable in ⟨𝛿, 𝑥⟩, in the strong sense that there is
also an𝑀-computable function𝐻(𝛿, 𝑥) that computes whether {𝑚}𝛿(𝑥)↓.5

Proof. For ITTMs, this can be done by bounding the runtime of a universal
machine as in [6, theorem 4.5]. For 𝛼-machines, this follows from a similar
proof, or alternatively the results in [12, pp. 313–314].

Corollary 1.39. {𝑚}𝐴𝛿 (𝑥) is similarly strongly𝑀-computable in the oracle 𝐴. In
particular, if 𝐴 is𝑀-decidable, then {𝑚}𝐴𝛿 (𝑥) is𝑀-computable.

Proof. For ITTMs, this follows follows from the proof of proposition 1.38, where
the simulating machine forwards queries made to 𝐴. For α-machines, this
follows from the results in [12, pp. 313–314].

Definition 1.40. If 𝐶 ⊆ On is p-OTM-semi-decidable, define the 𝛿-step sim-
ulation 𝐶𝛿 = {𝛽 < 𝛿 ∶ {𝑒}𝛿(𝛽)↓}, where 𝑒 is an implicitly fixed p-OTM with
dom {𝑒} = 𝐶.

If 𝐶 ⊆ Won is ITTM-semi-decidable, likewise define the approximation
𝐶𝛿 = {𝛽 ∈ Won ∶ 𝛽 < 𝛿 ∶ {𝑒}𝛿(𝛽)↓}.

As a direct corollary of proposition 1.38, we find:

Proposition 1.41. If 𝐶 is p-OTM-semi-decidable, there is a p-OTM𝑚 so that

{𝑚}(𝛿, 𝜀) = {
1 if 𝜀 ∈ 𝐶𝛿
0 otherwise

and similarly for OTMs and ITTMs.

Proposition 1.42. If 𝐶 ⊆ On is p-OTM-semi-decidable, then 𝐶 = ⋃𝛿∈On 𝐶, and
similarly for OTMs.

If 𝐶 ⊆ Won is ITTM-semi-decidable, then 𝐶 = ⋃𝛿∈Clk 𝐶𝛿.

Proof. All halting computations necessarily have ordinal length, so for p-OTMs
and OTMs this is immediate by definition of 𝐶𝛿. The result for ITTMs follows
from proposition 1.36.

5For ITTMs, 𝛿 is represented by a real coding it, as in definition 1.25.
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Chapter 2

The Friedberg-Muchnik theorem

The Friedberg-Muchnik theorem for𝑀 states that there are𝑀-semi-decidable
𝐴, 𝐵 so that 𝐴 
𝑀 𝐵 and 𝐵 
𝑀 𝐴. 𝐴 and 𝐵 are defined in terms of decidable
approximations, for which bounded simulation is used extensively.

We first discuss a proof for Turing machines, and the generalizations to
ITTMs due to Hamkins and Lewis. We then give a new proof for the known
generalization to OTMs, and sketch proofs for α-machines and p-OTMs.

2.1 For Turing machines

We present a proof based on that of [24, theorem 6.2.1]. Roughly, the idea is to
generate approximations 𝐴0 ⊆ 𝐴1 ⊆ … and 𝐵0 ⊆ 𝐵1 ⊆ … that are increasingly
incomparable, so that the respective unions 𝐴 and 𝐵 are incomparable. If the
approximation steps can be carried out by a Turing machine, then 𝐴 and 𝐵 are
semi-decidable.

In order for 𝐴 and 𝐵 to be incomparable, it is sufficient to satisfy the require-
ments

{𝑒}𝐴 ≠ 𝐵 (𝑅𝐴
𝑒 )

and

{𝑒}𝐵 ≠ 𝐴 (𝑅𝐵
𝑒 )

for every 𝑒 < 𝜔. Let {𝑅𝑖 ∶ 𝑖 ∈ 𝜔} be a computable well-ordering of these
requirements. Requirement 𝑅𝑖 has higher priority than 𝑅𝑗 if 𝑖 < 𝑗.

The sets 𝐴𝑠 and 𝐵𝑠 are defined recursively. Let 𝑋, 𝑌 be 𝐴, 𝐵 or 𝐵, 𝐴. The idea
is to find for each requirement (𝑅𝑋𝑒 ) a 𝑤 witnessing {𝑒}𝑋 ≠ 𝑌, so with either
{𝑒}𝑋(𝑤)↑—in which case (𝑅𝑋𝑒 ) holds because {𝑒}𝑋 is not total—{𝑒}𝑋(𝑤) = 1while
𝑥 ∉ 𝑌, or {𝑒}𝑋(𝑤) = 0 while 𝑤 ∈ 𝑌. This is done by keeping an initial guess
𝑤, called the witness attempt, computing increasing approximations {𝑒}𝑋𝑠

𝑠 (𝑤)
of {𝑒}𝑋(𝑤), and if it turns out that {𝑒}𝑋𝑠

𝑠 (𝑤) = 0, adding 𝑤 to 𝑌𝑠. However, this
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might change the outcome of another computation {𝑒′}𝑌𝑠𝑠 (𝑤′). Thus adding 𝑤
to 𝑌 in order to satisfy (𝑅𝑋𝑒 )might injure a requirement (𝑅𝑌𝑒′).

To combat this, once a computation {𝑒}𝑋𝑠
𝑠 (𝑤) = 0 is found and 𝑤 is added to

𝑌, a restraint 𝑟 is recorded, which is larger than the supremum of the queries
made in {𝑒}𝑋𝑠

𝑠 (𝑤) = 0. If no elements below 𝑟 are ever added to𝑋, then {𝑒}𝑋(𝑤) =
{𝑒}𝑋𝑠

𝑠 (𝑤), the computation {𝑒}𝑋𝑠
𝑠 (𝑤) = 0 is preserved and (𝑅𝑋𝑒 ) is satisfied.

To avoid a situation where the restraints of some requirements might make it
impossible to satisfy others, we allow requirement 𝑅𝑖 to injure all requirements
𝑅𝑗, 𝑗 > 𝑖: if 𝑅𝑖 adds any witness to 𝑋 or 𝑌 those requirements have their witness
attempt pushed outside of 𝑅𝑖’s new restraint. Now for every requirement there
are only finitely many requirements that can injure it.

2.1.1 The approximation algorithm

We now formally describe the approximation steps of 𝐴 and 𝐵. See algorithm 1
for details. At step 𝑠, initially let 𝐴𝑠 and 𝐵𝑠 be the unions of their earlier approxi-
mations (initially, 𝐴0 = 𝐵0 = ∅), and let the 𝑤𝑖,𝑠, 𝑟𝑖𝑠, 𝑖 < 𝑠 be the current witness
candidate and restraint for requirement 𝑅𝑖 (either 𝑤𝑖,𝑠−1, 𝑟𝑖−1,𝑠−1 or 0, 0 in case
𝑠 = 0). Then consider requirements 𝑅0,… , 𝑅𝑠−1. If 𝑅𝑖 is of the form (𝑅𝐴

𝑒 ), then
check whether {𝑒}𝐴𝑠

𝑠 (𝑤𝑖,𝑠) = 0. If so, and if 𝑤𝑖,𝑠 ∉ 𝐵𝑠 holds, then 𝑅𝑖 receives
attention: 𝑤𝑖,𝑠 is added to 𝐵𝑠, and the restraint 𝑟𝑖,𝑠 is set to the smallest number
above all queries made in the computation.

If 𝑅𝑖 received attention, the requirements𝑅𝑖+1,… , 𝑅𝑠−1 are injured, and their
witness attempts are pushed out of 𝑟𝑖,𝑠 so that they cannot injure 𝑅𝑖 in the future.
Specifically, the 𝑤𝑗,𝑠 of the injured requirements are pushed above all witnesses
𝑤𝑘,𝑠 and restraints 𝑟𝑘,𝑠 of requirements 𝑅𝑘 of higher priority (with 𝑘 < 𝑗).

If 𝑅𝑖 is of the form (𝑅𝐵
𝑒 ), act similarly, reversing the roles of 𝐴 and 𝐵. The

final task in step 𝑠 is to, because 𝑅𝑠 will be considered for the first time in step
𝑠 + 1, set an initial witness candidate 𝑤𝑠,𝑠 above all 𝑤𝑖,𝑠, 𝑟𝑖,𝑠, 𝑠 < 𝑖.

We require witnesses of 𝑅𝑖 to be of the form ⟨𝑖, 𝑣⟩, so that every 𝑤 < 𝜔 can
only be a witness candidate for one requirement.

It remains to show that 𝐴 = 𝐴<𝜔 = ∪𝑠<𝜔𝐴𝑠 and 𝐵 = 𝐵<𝜔 are as desired.

2.1.2 Correctness

To see that𝐴 and, similarly, 𝐵, is semi-decidable, note that if 𝑥 ∈ 𝐴 then it enters
𝐴 at some step 𝑠. Hence 𝐴 is the domain of the machine that continuously
refines its approximation of 𝐴 and halts only if its input is added to some 𝐴𝑠.

The treatment of 𝑅𝐴
𝑒 and 𝑅𝐵

𝑒 are symmetrical. Let 𝑋, 𝑌 be 𝐴, 𝐵 or 𝐵, 𝐴. We
note an immediate fact about algorithm 1.

Lemma 2.1 (Attention lemma). Let 𝑅𝑖 = {𝑒}𝑋. If {𝑒}𝑋𝑠
𝑠 (𝑤𝑖,𝑠) = 0 and 𝑤𝑖,𝑠 ∉ 𝑌,

then 𝑅𝑖 either receives attention or is injured in some stage 𝑡 ≥ 𝑠.
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Algorithm 1: Step 𝑠 of the Friedberg-Muchnik algorithm.
1: 𝐴𝑠 ← 𝐴<𝑠; 𝐵𝑠 ← 𝐵<𝑠
2: for 𝑖 < 𝑠 do
3: 𝑤𝑖,𝑠 ← lim𝑡<𝑠𝑤𝑖,𝑡; 𝑟𝑖,𝑠 ← lim𝑡<𝑠 𝑟𝑖,𝑡
4: end for
5: for 𝑖 < 𝑠 do
6: let 𝑒, 𝑋, 𝑌 such that 𝑅𝑖 = (𝑅𝑋𝑒 ) and 𝑋 ≠ 𝑌
7: if {𝑒}𝑋𝑠

𝑠 (𝑤𝑖,𝑠) = 0 ∧ 𝑤𝑖,𝑠 ∉ 𝑌𝑠 then ▷𝑅𝑖 receives attention
8: 𝑌𝑠 ← 𝑌𝑠 ∪ {𝑤𝑖,𝑠}
9: 𝑟𝑖,𝑠 ← sup {𝑥 ∶ 𝑥 is queried in {𝑒}𝑋𝑠

𝑠 (𝑤𝑖,𝑠) = 0}
10: for 𝑗 ∈ (𝑖, 𝑠) do ▷𝑅𝑗 is injured
11: 𝑤𝑗,𝑠 ← min {𝑤 ∈ {𝑗} ⊗ 𝜔 ∶ (∀𝑘 ≤ 𝑗) 𝑤 > 𝑤𝑘,𝑠, 𝑟𝑘,𝑠}
12: 𝑟𝑗,𝑠 ← 0
13: end for
14: end if
15: end for
16: 𝑤𝑠,𝑠 ← min {𝑤 ∈ {𝑠} ⊗ 𝜔 ∶ (∀𝑘 < 𝑠) 𝑤 > 𝑤𝑘,𝑠, 𝑟𝑘,𝑠}

The following would go unmentioned in recursion theory, but its transfinite
analogies will be less obvious. Hamkins and Lewis named it the reflection
lemma [5] in their treatment of the Friedberg-Muchnik theorem for ITTMs.

Lemma 2.2 (Reflection lemma). If {𝑒}𝑋(𝑥) = 0, there are cofinally many 𝑠 < 𝜔
with {𝑒}𝑋𝑠

𝑠 (𝑥) = 0.

Proof. Consider the running time 𝑡 of the computation {𝑒}𝑋(𝑥), and the set of
queries𝑄made within. Because 𝑡 is finite (the time bound of TMs is 𝜔),𝑄 is also
finite, and hence there is a state 𝑆 ≥ 𝑡 at which all elements of 𝑄 have already
entered 𝑋𝑠. (For each 𝑞 ∈ 𝑄 there must be an 𝑠𝑞 with 𝑞 ∈ 𝑋𝑠𝑞. 𝑄 is finite so the
supremum of the 𝑠𝑞 is finite as well.) Then {𝑒}𝑋(𝑥) = {𝑒}𝑋𝑠

𝑠 (𝑥) for all 𝑠 ≥ 𝑆.

Secondly, we note, by considering priority, that requirements eventually
settle during the approximations.

Lemma 2.3 (Finite injury). Each requirement is injured at most finitely often.

Proof. This follows by induction from two observations:

• Requirement 𝑅𝑖 is injured only when an 𝑅𝑗, 𝑗 < 𝑖 receives attention.

• Once a requirement receives attention, it must be injured before it can
receive attention again. (Hence, if a requirement is injured finitely often,
it also receives attention only finitely often.)

So if the finitely many requirements 𝑅𝑗, 𝑗 < 𝑖 are injured finitely often, they
receive attention finitely often, and then 𝑅𝑖 is injured finitely often.
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Corollary 2.4 (Settling lemma). For each requirement 𝑅𝑖, 𝑤𝑖 = lim𝑡→∞𝑤𝑖,𝑡 and
𝑟𝑖 = lim𝑡→∞ 𝑟𝑖,𝑡 exist. There is a (first) stage 𝑠 in which requirement 𝑅𝑖 settles:
𝑤𝑖,𝑠 = 𝑤𝑖, 𝑟𝑖,𝑠 = 𝑟𝑖, and 𝑅𝑖 is never injured or receives attention after stage 𝑠.

If a requirement settles, it is either injured and never receives attention after
(injured last), or it receives attention and is never injured after (receives attention
last).

Lemma 2.5 (Preservation lemma). Assume 𝑅𝑖 = 𝑅𝑋𝑒 settles. If it is injured last,
then 𝑤𝑖 ∉ 𝐴 ∪ 𝐵. If it receives attention last, then {𝑒}𝑋(𝑤𝑖) = 0 and 𝑤𝑖 ∈ 𝑌.

Proof. Since requirement 𝑅𝑖 only takes witness candidates in {𝑖} ⊗ 𝜔, every 𝑥
is only ever a witness candidate for at most one requirement. Furthermore, 𝑥
is only added to 𝐴 or 𝐵 when a requirement that has it as its witness candidate
receives attention. So if 𝑅𝑖 is injured last, it had gotten 𝑤𝑖 as a new witness
candidate then (since witness candidates are increasing over injuries, cf. line 11
of algorithm 1), and so it never received attention while 𝑤𝑖 was its witness
candidate. It follows that 𝑤𝑖 ∉ 𝐴 ∪ 𝐵.

If 𝑅𝑖 receives attention last, say in stage 𝑠, then 𝑤𝑖,𝑠 = 𝑤𝑖 and 𝑤𝑖,𝑠 ∈ 𝑌𝑠.
Furthermore, {𝑒}𝑋𝑠

𝑠 (𝑤𝑖) = {𝑒}𝑋𝑠
𝑠 (𝑤𝑖,𝑠) = 0 and 𝑟𝑖 = 𝑟𝑖,𝑠 lies above the queries

made in the computation. Requirements 𝑅𝑗, 𝑗 < 𝑖 never receive attention after
stage 𝑠 since that would injure𝑅𝑖, so no elements are added to𝑋 bymerit of some
𝑅𝑗, 𝑗 < 𝑖. After stage 𝑠, witness candidates for requirements 𝑅𝑗, 𝑗 > 𝑖 always lie
above 𝑟𝑗 (by line 11), and so no element below 𝑟𝑖 is added by merit of the 𝑅𝑗, 𝑗 > 𝑖.
Hence, the computation is preserved: (𝐴 ∪ 𝐵) ∩ (𝑟𝑖 + 1) = (𝐴𝑠 ∪ 𝐵𝑠) ∩ (𝑟𝑖,𝑠 + 1)
holds, thus {𝑒}𝑋(𝑤𝑖) = {𝑒}𝑋𝑠

𝑠 (𝑤𝑖) = 0.

The proof of the Friedberg-Muchnik theorem rests solely on the settling,
reflection, preservation, and attention lemmas.

Proof of the Friedberg-Muchnik theorem for TMs. Let (𝑅𝑋𝑒 ) be a requirement. By
the settling lemma, it settles at some stage 𝑠. It was either last injured or it last
received attention. If it last received attention, then, by the preservation lemma,
there is a 𝑤 ∈ 𝑌 with {𝑒}𝑋(𝑤) = 0, and so (𝑅𝑋𝑒 ) is satisfied.

Assume on the other hand that (𝑅𝑋𝑒 ) was last injured. Let 𝑤 be its final
witness candidate. By the preservation lemma we have 𝑤 ∉ 𝑌. Assume towards
a contradiction that (𝑅𝑋𝑒 ) is not satisfied. Then {𝑒}𝑋(𝑤) = 0 since 𝑤 ∉ 𝑌. By the
reflection lemma, there is a 𝑡 > 𝑠 with {𝑒}𝑋𝑡

𝑡 (𝑤) = 0. By the attention lemma,
(𝑅𝑋𝑒 ) receives attention in some stage 𝑡′ ≥ 𝑡, contradicting that it had settled.

2.2 For ITTMs

There are several challenges in transforming the classical Friedberg-Muchnik
proof to the system of ITTMs. In light of proposition 1.35 and the fact that
2𝜔 is not ITTM-generable, it difficult to define sets by a union of increasing
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approximations. Furthermore, while halting TM-computations make at most
a finite number of oracle queries, ITTMs can make infinitely many, making it
harder to store restraints.

In [5, section 4], Hamkins and Lewis circumvent these issues by doing the
Friedberg-Muchnik construction in the writable reals, using Clk-many stages.

2.2.1 Strategy

Hamkins and Lewis employed a similar strategy as in section 2.1. As there are
countably many ITTMs, the requirements are again

{𝑒}𝐴 ≠ 𝐵 (𝑅𝐴
𝑒 )

and

{𝑒}𝐵 ≠ 𝐴 (𝑅𝐵
𝑒 )

for every 𝑒 < 𝜔, where of course {𝑒} refers to ITTM 𝑒, and 𝐴, 𝐵 are sets of reals.
Specifically, 𝐴 and 𝐵 will only contain writable reals, making the search for
and storage of witnesses feasible: an ITTM can enumerate the writable reals by
simulating all computations {𝑒}(0), and store a writable real in the form of an
ITTM that writes it.

The incomparable𝐴 and 𝐵 are defined by an algorithm similar to algorithm 1.
A step is executed for each clockable ordinal 𝛼. Restraints are coded not as upper
bounds of queries but as sets of queries, represented by a computation: if the
negative queries in {𝑒}𝐴𝛼

𝛼 (𝑤) = 0 should not be added to 𝐴 later, this restraint
can be finitely coded by storing 𝑒, a code for 𝛼, and a code for 𝑤. From this, 𝐴𝛼
and the computation can be recovered, and hence the set of queries.

Another difference is in the assignment of new witnesses. If 𝑅𝑖 is injured at
stage 𝛼, its witness𝑤𝑖,𝛼 should be pushed to a real outside of all past and present
witnesses, and restraints of higher priority. In algorithm 1, this is achieved by
taking a supremum over these values, but since the writable reals are not as
nicely ordered, an alternative is needed.

Lemma 2.6 (Hamkins and Lewis). For every clockable ordinal 𝛼, there is a
writable real 𝑥 that does not appear accidentally in any computation {𝑒}𝛼(0).

Proof. There are 𝜔many ITTMs 𝑒, and each computation {𝑒}𝛼(0) has countable
length. So by Cantor’s diagonal argument, there are reals that do not appear
accidentally in any of these computations. The key observation is that there is
an ITTM which, on input 0, carries out this diagonalization: it simulates the
computations, producing a real 𝑥 such that the ⟨𝑒, 𝑖⟩th bit of 𝑥 is not the ⟨𝑒, 𝑖⟩th
bit of the real written on the output tape in the computation {𝑒}𝛼(0) at step 𝛽,
where 𝑖 is the 𝛽th element in the ordering of 𝜔 induced by a fixed code of 𝛼.
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The changes are summarized in algorithm 2. In every step, all 𝜔 require-
ments are considered. The initial step consists of setting 𝑤𝑖,0 = 𝑖 for all 𝑖.
Approximations of 𝑋 and 𝑌 can be stored on a single tape each, by coding its
elements (all writable reals) as ITTMs producing them.

A note on how to read these algorithms: we often gloss over the fact that
limit steps exist. For compound limits especially, this can be problematic. Parts
of the tape used for intermediary values will be scrambled in such steps. Luckily,
𝑀-machines may detect that they are in a compound limit step by flashing a cell
on every limit step, as in example 1.6, and so can can often be made to recover.

Algorithm 2: Step 𝛼 > 0 of the Friedberg-Muchnik algorithm for ITTMs.
1: let 𝑤𝑖,𝛼 and 𝑟𝑖,𝛼 be their previous value (or lim inf as per machine behavior)
2: for 𝑖 < 𝜔 do
3: let 𝑒, 𝑋, 𝑌 such that 𝑅𝑖 = (𝑅𝑋𝑒 ) and 𝑋 ≠ 𝑌
4: if {𝑒}𝑋𝛼

𝑠 (𝑤𝑖,𝛼) = 0 ∧ 𝑤𝑖,𝛼 ∉ 𝑌𝛼 then ▷𝑅𝑖 receives attention
5: 𝑌𝛼 ← 𝑌𝛼 ∪ {𝑤𝑖,𝛼}
6: 𝑟𝑖,𝛼 ← {𝑥 ∶ 𝑥 is queried negatively in {𝑒}𝑋𝑠

𝑠 (𝑤𝑖,𝑠) = 0}
7: for 𝑗 ∈ (𝑖, 𝜔) do ▷𝑅𝑗 is injured
8: 𝑤𝑗,𝛼 gets a fresh unique real outside higher restraints (lemma 2.6)
9: 𝑟𝑗,𝛼 ← ∅
10: end for
11: end if
12: end for

For this particular algorithm, it will be proved below that each requirement
is injured but finitely often, and hence all stored values are unaffected by limit
behavior—provided that care is taken in how they are stored. For example, the
ITTM could divide a tape in 𝜔3 subtapes, and use a separate subtape for each
variable. All that has to be done in (compound) limit steps is to clear some
working space.

Remark 2.7. While describingTuringmachines in terms of line-based algorithms
is common, one might wonder how a transfinite𝑀-machine determines at limit
steps which line of an algorithm it was working on. This can be achieved by
having a “line-tape” on which the current algorithm line 𝑛 is coded as 𝑛 1s
followed by zeroes. In limit steps, this contains the lim inf of the lines it has
been working on thus far. If the line number converged up to that step, it can
continue working on this line as expected. If the line number did not converge,
then it was working on a finite number of lines in, say, a loop. The contents of
the line-tape then points to the first line of the loop, where the machine can
choose to exit or continue the loop based on the algorithm. See [10] for a more
exhaustive discussion of how these algorithms can be interpreted. ⌟

By design of the algorithm (combined with proposition 1.36, and corol-
lary 1.39), we note the following.
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Lemma 2.8 (Attention lemma). Let 𝑅𝑖 = {𝑒}𝑋 and 𝑠 ∈ Clk If {𝑒}𝑋𝑠
𝑠 (𝑤𝑖,𝑠) = 0 and

𝑤𝑖,𝑠 ∉ 𝑌, then 𝑅𝑖 either receives attention or is injured in some stage 𝑡 ≥ 𝑠.

2.2.2 Correctness

Define 𝐴 = ⋃𝛼∈Clk 𝐴𝛼 and 𝐵 = ⋃𝛼∈Clk 𝐵𝛼, where the approximations are
defined by the algorithmdiscussed above. Proving that𝐴 and𝐵 are incomparable
goes along the same lines as for TMs, but the proof of the reflection lemma in
particular uses an interesting trick.

Lemma 2.9 (Reflection lemma [5, p. 521]). Let 𝑋 be 𝐴 or 𝐵. If 𝑤 is writable and
{𝑒}𝑋(𝑤) = 0, there are cofinally many 𝛼 ∈ Clk with {𝑒}𝑋𝛼

𝛼 (𝑤) = 0.

Proof. Because steps are only executed for clockable ordinals, there is an ITTM
that continuously refines approximations of 𝐴 and 𝐵. (It can do this by simulat-
ing all computations {𝑒}(0) and executing a step whenever one halts.) Eventually,
after it has done Clk steps, the final contents of 𝐴 and 𝐵 are on the tape of the
machine. (The ITTM cannot recognize this, it will continue to search for new
clockables, without success, and never halt.)

Now modify this ITTM to, after executing at least 𝛽 ∈ Clk stages, halt
as soon as it finds {𝑒}𝑋′(𝑤) = 0 for its current approximation 𝑋 ′ of 𝑋. The
machine first writes a code for 𝛽 (recall, clockable ordinals are writable), and
then takes out a minimal element every time it has executed a stage until the
well-order is exhausted. Once the well-order is exhausted, it continues refining
its approximation𝑋 ′, and now checks after every stage whether {𝑒}𝑋′(𝑤) = 0. By
the assumption {𝑒}𝑋(𝑤) = 0 and the above, the ITTMmust halt, since eventually
𝑋 ′ = 𝑋 holds. Its halting time is by definition a clockable ordinal (as it ignores
its input), and so {𝑒}𝑋′(𝑤) = 0must hold for some 𝑋 ′ in {𝑋𝛼 ∶ 𝛽 ≥ 𝛼 ∈ Clk}.

By the exact same reasoning as in the proof of lemma 2.3, we have

Lemma 2.10 (Finite injury). Each requirement is injured at most finitely often.

Corollary 2.11 (Settling lemma). For each requirement there is a stage 𝛼 ∈ Clk
in which it settles: it is never injured or receives attention in stages 𝛽 ≥ 𝛼.

Proof. By the above, we know that each requirement receives attention finitely
often. So requirement 𝑅𝑖 has settled after the finitely many stages in which it is
injured or receives attention. It is left to show that no finite sequence 𝛼1,… , 𝛼𝑛
of clockable ordinals is cofinal in the clockable ordinals. Indeed: for each of the
𝛼𝑖 there is a machine𝑚𝑖 so that {𝑚𝑖}(0) halts in 𝛼𝑖 steps, and there is an ITTM
which sequentially simulates the computations {𝑚𝑖}(0) and then halts, halting
after a number of steps greater than any of the 𝛼𝑖.

Lemma 2.12 (Preservation lemma). Assume 𝑅𝑖 = 𝑅𝑋𝑒 settles. If it is injured last,
then 𝑤𝑖 ∉ 𝐴 ∪ 𝐵. If it receives attention last, then {𝑒}𝑋(𝑤𝑖) = 0 and 𝑤𝑖 ∈ 𝑌.
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Proof. Let 𝛼 be the last stage in which 𝑅𝑖 is either injured or receives attention.
Assume 𝑅𝑖 is injured last in stage 𝛼. Because injured witnesses get fresh

reals as a newwitness candidates, a writable real is only ever a witness candidate
for at most one requirement. So 𝑤𝑖 is only ever a witness candidate for 𝑅𝑖, and
(because it is fresh with respect to past witnesses as well) stage 𝛼 is the first
time that 𝑤𝑖,𝛼 = 𝑤𝑖 holds. Witness candidates are only added to 𝐴 ∪ 𝐵 if its
requirement receives attention, and, by assumption, 𝑅𝑖 does not receive attention
after getting 𝑤𝑖 as its witness candidate. Hence 𝑤𝑖 ∉ 𝐴 ∪ 𝐵.

When a requirement receives attention in stage 𝛼, its restrains all negative
queries made in the computation {𝑒}𝑋𝛼

𝛼 (𝑤𝑖,𝛼) and from that point on, the witness
candidates of requirements of lower priority lie outside this restraint. Hence,
if 𝑅𝑖 requires attention last, say in stage 𝛼, no requirement 𝑅𝑗, 𝑗 > 𝑖 will add
elements of 𝑟𝑖 = 𝑟𝑖,𝛼 to 𝑋. Furthermore, since requirements 𝑅𝑗, 𝑗 < 𝑖 receiving
attention implies 𝑅𝑖 being injured, requirements of higher priority do not add
elements of 𝑟𝑖 to 𝑋 either. It follows that 𝑋𝛼 ∩ 𝑟𝑖 = 𝑋 ∩ 𝑟𝑖, and so we find
{𝑒}𝑋(𝑤𝑖) = {𝑒}𝑋𝛼

𝛼 (𝑤𝑖,𝛼) = 0.

Having proved a reflection, preservation, settling, and attention lemma, a
Friedberg-Muchnik theorem follows as on page 19.

Theorem 2.13 (Friedberg-Muchnik theorem for ITTMs, Hamkins and Lewis).
There are ITTM-incomparable ITTM-semi-decidable sets (with only writable reals).

On the whole, there are two novelties in this proof, compared to that for Tur-
ing machines: solving storage-related challenges using writability, and solving
reflection by only adding witnesses in clockable stages.

2.3 For OTMs

In [7], Hamkins and Miller proved a Friedberg-Muchnik theorem for ordinal
register machines (ORMs) by employing a similar strategy as for ITTMs above:
introducing notions of clockability and writability, proving that the clockables
have a supremum, and making sure to only execute stages on clockable times.
Then reflection follows by a similar proof as for lemma 2.9. They then show
that OTMs can simulate ORMs and vice versa.

We present a direct proof for OTMs that, instead of introducing clockability,
uses the fact that there are only “set-many” requirements to prove reflection.

2.3.1 Strategy

The requirements are

{𝑒}𝐴 ≠ 𝐵 (𝑅𝐴
𝑒 )
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and

{𝑒}𝐵 ≠ 𝐴 (𝑅𝐵
𝑒 )

for every 𝑒 < 𝜔, where {𝑒} refers to OTM 𝑒, and 𝐴, 𝐵 are classes of ordinals. We
go back to an algorithm in the style of algorithm 1. Because each requirement
will be injured only finitely often, no special care has to be taken with storage in
regards to limit behavior, apart from reserving separate space for each require-
ment. For example, the tape can be divided into 𝜔 × 2 subtapes, where at step 𝛼
the value of 𝑤𝑖,𝛼 is stored on the (𝑖, 0)th subtape and 𝑟𝑖,𝛼 on subtape (𝑖, 1). This
is similar to the storage strategy used in [12, section 4] for a Friedberg-Muchnik
theorem for p-α-machines. We also reserve two tapes 𝑡𝐴, 𝑡𝐵 for storing 𝐴 and 𝐵,
so that at the start of stage 𝛼, the 𝛽th cell of 𝑡𝐴 contains a 1 if and only if 𝛽 ∈ 𝐴<𝛼,
and likewise for 𝐵. Since elements are never taken out of approximations, at the
start of limit stages 𝜆 tapes 𝑡𝐴, 𝑡𝐵 contain 𝐴<𝜆, 𝐵<𝜆 respectively.

It follows that the behavior described in algorithm 3, which is very similar
to algorithm 1, can be expressed by an OTM. For step 0, set 𝑤𝑖,0 = ⟨𝑖, 0⟩ and
𝑟𝑖,0 = 0. In particular, we note—again letting 𝑋, 𝑌 be either 𝐴, 𝐵 or 𝐵, 𝐴:

Lemma 2.14 (Attention lemma). Let 𝑅𝑖 = {𝑒}𝑋 and 𝛼 ∈ On. If {𝑒}𝑋𝛼
𝛼 (𝑤𝑖,𝛼) = 0

and 𝑤𝑖,𝛼 ∉ 𝑌, then 𝑅𝑖 either receives attention or is injured in some stage 𝛽 ≥ 𝛼.

Algorithm 3: Step 𝛼 > 0 of the Friedberg-Muchnik algorithm for OTMs.
1: 𝐴𝛼 ← 𝐴<𝛼; 𝐵𝛼 ← 𝐵<𝛼
2: for 𝑖 < 𝛼 do
3: 𝑤𝑖,𝛼 ← lim𝑡<𝛼𝑤𝑖,𝑡; 𝑟𝑖,𝛼 ← lim𝑡<𝛼 𝑟𝑖,𝑡
4: end for
5: for 𝑖 < 𝜔 do
6: let 𝑒, 𝑋, 𝑌 such that 𝑅𝑖 = (𝑅𝑋𝑒 ) and 𝑋 ≠ 𝑌
7: if {𝑒}𝑋𝛼

𝛼 (𝑤𝑖,𝛼) = 0 ∧ 𝑤𝑖,𝛼 ∉ 𝑌𝛼 then ▷𝑅𝑖 receives attention
8: 𝑌𝛼 ← 𝑌𝛼 ∪ {𝑤𝑖,𝛼}
9: 𝑟𝑖,𝛼 ← sup {𝑥 ∶ 𝑥 is queried in {𝑒}𝑋𝛼

𝛼 (𝑤𝑖,𝛼) = 0}
10: for 𝑗 ∈ (𝑖, 𝜔) do ▷𝑅𝑗 is injured
11: 𝑤𝑗,𝛼 ← min {𝑤 ∈ {𝑗} ⊗ On ∶ (∀𝑘 < 𝑗) 𝑤 > 𝑤𝑘,𝛼, 𝑟𝑘,𝛼}
12: 𝑟𝑗,𝛼 ← 0
13: end for
14: end if
15: end for

2.3.2 Correctness

Again, the proof of lemma 2.3 gives

Lemma 2.15 (Finite injury). Each requirement is injured at most finitely often.
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Corollary 2.16 (Settling lemma). All requirements settle: for each requirement
𝑅𝑖, there is a stage 𝛼 so that 𝑅𝑖 is neither injured nor receives attention in a later
stage, and the limits 𝑤𝑖 = 𝑤𝑖,𝛼 = lim𝛼∈On 𝑤𝑖,𝛼 and 𝑟𝑖 = 𝑟𝑖,𝛼 = lim𝛼∈On 𝑟𝑖,𝛼 exist.

Proof. Let 𝑖 < 𝜔. By the finite injury lemma, 𝑅𝑖 is injured at most finitely often,
so there is a stage 𝛼′ after which 𝑅𝑖 is never injured. Requirements do not receive
attention twice without being injured in-between, so there is a stage 𝛼 ≥ 𝛼′ after
which 𝑅𝑖 is never injured and never receives attention. It follows that for all
𝛽 > 𝛼 we have 𝑤𝑖,𝛽 = 𝑤𝑖,𝛼 (since 𝑅𝑖 only gets a new witness candidate when
it is injured) and 𝑟𝑖,𝛽 = 𝑟𝑖,𝛼 (since the restraint only changes when 𝑅𝑖 receives
attention), and hence 𝑤𝑖,𝛼 = lim𝛽∈On 𝑤𝑖,𝛽 and 𝑟𝑖,𝛼 = lim𝛽∈On 𝑟𝑖,𝛽 hold.

Lemma 2.17 (Reflection lemma). If {𝑒}𝑋(𝑤) = 0 then there exists unboundedly
many 𝛽 with {𝑒}

𝑋𝛽
𝛽 (𝑤) = 0.

Proof. As the steps of algorithm 3 can be carried out by an OTM, there is an
OTM 𝐴 so that

{𝐴}(⟨𝑖, 𝛼⟩) = {
1 if 𝑖 < 𝜔 and 𝑅𝑖 receives attention or is injured in stage 𝛼
0 otherwise.

Consider the first-order formula 𝜙(𝑖, 𝛼) given by {𝐴}(⟨𝑖, 𝛼⟩) = 0 or, more formally

“𝑖, 𝛼 ∈ On ” ∧ (∃𝐶)[“𝐶 is a computation for 𝐴 on input ⟨𝑖, 𝛼⟩ with output 0”]

where the latter part can be expressed in the language of ZFC (with parameter
𝐴) by following definition 1.5, and the former is well-known to be definable in
ZFC. By the settling lemma,

(∀𝑖 < 𝜔)(∀𝛼 ∈ On)(∃𝛽) 𝜙(𝑖, 𝛼) = 1 ∧ (∀𝛿 > 𝛽) 𝜙(𝑖, 𝛼, 𝑥)

holds, and so, by the replacement scheme, the collection of settling points 𝑆 =
{𝛽 ∶ there is a requirement that first settles in stage 𝛽} is a set. In particular, it is
bounded by 𝛼 = ⋃𝑆+1. After stage 𝛼, no requirement receives attention, hence
𝐴𝛼 = 𝐴 and 𝐵𝛼 = 𝐵. So if {𝑒}𝑋(𝑤) = 0 then {𝑒}𝑋(𝑤) = {𝑒}

𝑋𝛽
𝛽 for all 𝛽 > 𝛼.

The preservation lemma is proved in the exact same way as for Turing
machines (lemma 2.5).

Lemma 2.18 (Preservation lemma). Assume 𝑅𝑖 = 𝑅𝑋𝑒 settles. If it is injured last,
then 𝑤𝑖 ∉ 𝐴 ∪ 𝐵. If it receives attention last, then {𝑒}𝑋(𝑤𝑖) = 0 and 𝑤𝑖 ∈ 𝑌.

The proof of the Friedberg-Muchnik theorem for OTMs then follows from
the attention, reflection, preservation, and settling lemmas as on page 19.

Theorem 2.19 (Friedberg-Muchnik for OTMs, Hamkins and Miller). There are
OTM-incomparable OTM-semi-decidable sets 𝐴,𝐵.
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2.4 For α-machines

We shall sketch a proof for 𝛼-machines with 𝜔 < 𝛼 < On. Algorithm 3 can
be reused, with one modification: if 𝑅𝑖 receives attention in stage 𝛽, then we
additionally require 𝑟𝑖,𝛽 > 𝛽.

Lemma 2.20. For 𝛽 < 𝛼, stage 𝛽 of the modified algorithm 3 is 𝛼-computable.

Proof. Let 𝑒 be an α-machine (or OTM) implied by algorithm 3 with the mod-
ification. It has to be shown that it takes it less than 𝛼 steps to compute stage
𝛽 < 𝛼.

As 𝛼 is admissible and thus 𝐿𝛼 is closed under Σ1-replacement with parame-
ters, it suffices to show that going from one stage to the next takes less than 𝛼
steps: there is a Σ1-formula stating “there is a halting computation for {𝑒}(𝛿)”,
and so the result follows by induction: if there is a halting computation for all
{𝑒}(𝛿), 𝛿 < 𝛽, then there is a set of these halting computations in 𝐿𝛼, and the
supremum of their lengths (again obtained by Σ1-replacement and union) is an
element of 𝐿𝛼 and so lies below 𝛼. Then {𝑒}(𝛽) halts since going from one stage
to the next takes less than 𝛼 steps and 𝛼 is closed under addition.

To show that one can go from one stage to the next, by 𝛼’s closure under
ordinal arithmetic, it suffices to show that the individual lines of algorithm 3
are. In particular, as 𝛼 > 𝜔, the main loop (lines 5-15) is 𝛼-computable if the
individual steps are. This follows from 𝛼 ⊗ 𝛼 ⊆ 𝛼, which holds since for all
𝛿 < 𝛼, it is easily seen that ⟨𝛿, 𝛿⟩ is definable in 𝐿𝛿 ⊂ 𝐿𝛿+1 ⊂ 𝐿𝛼.

The attention and preservation, and finite injury lemmas are proved exactly
as for OTMs. The settling lemma follows from the finite injury lemma the fact
that 𝛼 is closed under ordinal arithmetic. For the reflection lemma, however,
extra care needs to be taken, as the supremumof the settling points (as defined in
lemma 2.17) does not always lie below 𝛼.6We also cannot rely on the 𝛼-clockable
ordinals as with ITTMs, since whether the 𝛼-clockable ordinals are bounded or
unbounded in 𝛼 depends on 𝛼.7

Lemma 2.21 (Reflection for α-machines). If {𝑒}𝐴(𝑤) = 0, then there are cofinally
many 𝛿 < 𝛼 with {𝑒}𝐴𝛿

𝛿 (𝑤) = 0. Similar for 𝐵.
6This does sometimes hold, for instance if 𝛼 is greater than the supremum of the settling

points for OTMs. (Such admissible 𝛼 exist, as regular cardinals are admissible.)
On the other hand, consider 𝛼 = Γ, which is shown to be admissible in [6, corollary 8.2]. If

the supremum of the settling points would lie below 𝛼, then it would be ITTM-writable, and so
𝐴 and 𝐵 would be ITTM-decidable. But that would, by appendix B.2, imply that 𝐴 and 𝐵 are
Γ-decidable, contradicting that they are incomparable.

7There are countably many OTM-clockable ordinals, so they have a supremum. As all halt-
ing 𝛼-machine computations are halting OTM-computations, any 𝛼 above the OTM-clockable
ordinals satisfies that the 𝛼-clockable ordinals are bounded in 𝛼.
On the other hand, by appendix B.2 the Γ-clockable ordinals are the ITTM-clockable ordinals,

and so the Γ-clockable ordinals are cofinal in Γ.
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Proof. Assume {𝑒}𝐴(𝑤) = 0. Let 𝑅 = lim sup𝛽<𝛼max𝑖<𝜔 𝑟𝑖,𝛽.
If 𝑅 < 𝛼, then—by the modification to the algorithm that ensures restraints

made at stage 𝛽 must be greater than 𝛽—there is a stage 𝛽 < 𝛼 after which
no requirements receive attention, and so no requirement is injured either
(since requirements are only injured if a requirement of higher priority receives
attention). Hence 𝐴𝛽 = 𝐴, and so {𝑒}𝐴𝛿

𝛿 (𝑤) = {𝑒}𝐴(𝑤) for all 𝛿 > 𝛽.
If not 𝑅 < 𝛼, then 𝑅 = 𝛼. As the computation {𝑒}𝐴(𝑤) = 0 halts, it takes

strictly less than 𝛼 steps, and so its queries are bounded by some 𝛽 < 𝛼. By
𝑅 = 𝛼, there is some stage 𝜀 < 𝛼 so that 𝑟𝑖,𝜀 > 𝛽 for some 𝑖 < 𝜔. Then there
is a stage 𝜁 > 𝜀 in which all requirements 𝑅𝑗, 𝑗 < 𝑖 that have not yet settled in
stage 𝜀 have been injured or have received attention (recall, 𝛼 is closed under
addition), and so after step 𝜁 no elements below 𝛽 are added to 𝐴 ∪ 𝐵. Hence
{𝑒}𝐴𝛿

𝛿 (𝑤) = {𝑒}𝐴(𝑤) = 0 holds for all 𝛿 > 𝜁.

We thus have the attention, settling, preservation, and reflection lemmas
needed to conclude a Friedberg-Muchnik theorem as on page 19.

Theorem 2.22. For all admissible 𝛼, there are 𝛼-semi-decidable sets that do not
𝛼-reduce to each other.

2.5 For p-OTMs

We sketch a proof for p-OTMs. While before it was convenient if the settling
points could be shown to have a supremum, with parametrised machines, the
settling points having a supremum implies failure, since then the constructed
sets are actually decidable in the supremum (provided as a parameter). In a way,
this brings us back closer to the original proof for Turing machines.

There are now class-many requirements

{𝜀}𝐴 ≠ 𝐵 (𝑅𝐴
𝜀 )

and

{𝜀}𝐵 ≠ 𝐴 (𝑅𝐵
𝜀 )

for all pairs 𝜀 = ⟨𝑒, 𝜋⟩ of OTM and parameter, ordered {𝑅𝜀 ∶ 𝜀 ∈ On}. This can be
managed by modifying algorithm 3 so that at stage 𝛼 only requirements 𝑅𝜀 with
𝜀 < 𝛼 are considered, similar to algorithm 1. This way, the approximations𝐴𝜀, 𝐵𝜀
are sets for all 𝜀, and because all halting computations are also sets (implying
the class of queries made in such a computation is a set as well), there are no
further challenges in proving a reflection lemma.

Instead of a finite injury lemma, requirements can be shown to be injured
boundedly often (the class of stages in which 𝑅𝜀 is injured forms a set), which
is sufficient to show that for every requirement 𝑅𝜀 there is a point in time after
which it cannot be injured. It follows that one can prove
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Theorem 2.23. There are parametrised OTM-semi-decidable classes incompara-
ble by OTMs with parameters.

However, a new issue arises in the approximation algorithm design. So far,
no thought had to be spent on what happens with the witness attempts and
restraints in limit stages: since they only change value finitely often, there is no
limit behavior to speak of. Now there is.

A solution is found in [12], where a Friedberg-Muchnik theorem is proved
for p-α-machines. First, to preserve that every ordinal is only ever a witness to at
most one requirement, we again let requirement 𝑅𝜀 only take witness attempts
of the form ⟨𝜀, 𝜁⟩. If 𝑤𝑖,𝛼 = ⟨𝜀, 𝜁⟩, we write 𝑤′

𝑖,𝛼 for 𝜁.
The variables are stored as follows: by use of a pairing function, a storage

tape is divided into On × 2 tapes of ordinal length. At stage 𝛼 the value of 𝑟𝜀,𝛼 is
stored on the (𝜀, 0)th tape, and 𝑤′

𝜀,𝛼 on the (𝜀, 1)th tape, so that a value of 𝛽 is
stored as 𝛽 1s followed only by 0s.

For each requirement, witness attempts only grow over time, hence the limit
behavior dictated by the definition of p-OTMs makes it so that at limit stages
𝛼, 𝑤′

𝜀,𝛼 is the supremum of the 𝑤′
𝜀,𝜂 that came before. Restraints, on the other

hand drop to 0 on injury.
Ergo: if 𝑅𝜀 was injured cofinally often before time 𝛼, then 𝑟𝜀,𝛼 = 0 and 𝑤′

𝜀,𝛼
is the supremum of the 𝑤′

𝜀,𝜂 before it, so 𝑤𝜀,𝛼 = ⟨𝜀, 𝑤′
𝜀,𝛼⟩ can be seen as a new

witness attempt. Furthermore, since 𝑤𝜀,𝛼 can only be a witness for 𝑅𝜀, we know
that it has not yet been added to 𝐴𝛼 ∪ 𝐵𝛼 and the proof proceeds as usual. If,
on the other hand, 𝑅𝜀 was not injured cofinally often before time 𝛼, then at the
start of stage 𝛼, the value of 𝑤′

𝜀,𝛼 is the limit of the 𝑤′
𝜀,𝜂 before it, and likewise

𝑟𝜀,𝛼 the limit of the 𝑟𝜀,𝜂 before it.
So the storage strategy from [12, section 4]—in particular, storing𝑤′

𝜀,𝛼 instead
of 𝑤𝜀,𝛼—dictates the correct behavior on limit stages. See algorithm 4 for an
overview of the approximation procedure.

With these changes, the proof of theorem 2.23 follows as sketched. Specifi-
cally, one can prove the following by induction.

Lemma 2.24 (Bounded injury). For each requirement 𝑅𝜀 there is a stage 𝛼 ∈ On
after which 𝑅𝜀 is never injured or receives attention.

The reflection lemma would become:

Lemma 2.25 (Reflection lemma). If {𝑒}𝐴(𝑥) = 0 then there is a stage 𝛿 ∈ On
after which {𝑒}

𝐴𝜁
𝜁 (𝑥) = 0 for all 𝜁 ≥ 𝛿.

This can be proved by considering that all halting oracle computations have
ordinal length, and hence the queries made in it are bounded. Analogues of
the attention and preservation lemmas can also be obtained by considering the
limit behavior of the storage strategy. In particular, the new case to consider
is if 𝛼 is the first stage so that 𝑅𝜀 = (𝑅𝐴

𝜀 ) is never injured in stages 𝛽 ≥ 𝛼 and
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Algorithm 4: Step 𝛼 > 0 of the Friedberg-Muchnik algorithm for p-OTMs.
𝐴𝛼 ← 𝐴<𝛼; 𝐵𝛼 ← 𝐵<𝛼
for 𝑖 < 𝛼 do

𝑤′
𝑖,𝛼 ← sup𝑡<𝛼𝑤𝑖,𝑡; 𝑟𝑖,𝛼 ← lim inf𝑡<𝛼 𝑟𝑖,𝑡

end for
for 𝑖 < 𝛼 do

let 𝜀, 𝑋, 𝑌 such that 𝑅𝑖 = (𝑅𝑋𝜀 ) and 𝑋 ≠ 𝑌
𝑤𝑖,𝛼 ← ⟨𝑖, 𝑤′

𝑖,𝛼⟩
if {𝜀}𝑋𝛼

𝛼 (𝑤𝑖,𝛼) = 0 ∧ 𝑤𝑖,𝛼 ∉ 𝑌𝛼 then ▷𝑅𝑖 receives attention
𝑌𝛼 ← 𝑌𝛼 ∪ {𝑤𝑖,𝛼}
𝑟𝑖,𝛼 ← sup {𝑥 ∶ 𝑥 is queried in {𝜀}𝑋𝛼

𝛼 (𝑤𝑖,𝛼) = 0}
for 𝑗 ∈ (𝑖, 𝛼) do ▷𝑅𝑗 is injured

𝑤′
𝑗,𝛼 ← min {𝑤′ ∶ (∀𝑘 < 𝑗) ⟨𝑖, 𝑤′⟩ > ⟨𝑘, 𝑤′

𝑘,𝛼⟩, 𝑟𝑘,𝛼}
𝑟𝑗,𝛼 ← 0

end for
end if

end for
𝑤′
𝛼,𝛼 ← 0

𝛼 is a limit. Then the value of 𝑤′
𝜀,𝛼 lies strictly above all 𝑤′

𝜀,𝜂, 𝜂 < 𝛼, and so
𝑤𝜀,𝛼 ∉ 𝐵<𝛼. Hence it can still be proved that, if 𝑤 is the final witness of 𝑅𝐴

𝜀 ,
then 𝑤 ∈ 𝐵 ↔ {𝜀}𝐴(𝑤) = 0. Theorem 2.23 follows.

In [12, section 4], Koepke and Seyfferth prove a Friedberg-Muchnik theorem
for p-α-machines.
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Chapter 3

The splitting theorem

Roughly, the splitting theorem states that every semi-decidable degree, except for
the degree 0 of decidable sets, can be split into two strictly lower, incomparable
semi-decidable degrees. An important corollary is that, because the splitting
can be iterated, an infinite complete binary tree can be embedded in the partial
order of semi-decidable degrees.

First, we discuss the formal statement of the theoremand this corollary. Then
we prove the splitting theorem for TMs, followed by a proof of a splitting theorem
for ITTMs restricted to ITTM-semi-decidable subsets of ITTM-decidable sets
of writable reals, and show that this is sufficient for generalizing the corollary.
The chapter concludes with a discussion of a failed attempt at generalizing the
splitting theorem to OTMs, and a brief sketch for a splitting theorem for p-OTMs.

3.1 A tree of semi-decidable degrees

The following formulation of the splitting theorem for Turing machines is due
to Shoenfield [19, section 14], who attributes the theorem to Sacks’ [17].

Theorem 3.1 (The splitting theorem, Sacks, Shoenfield). If 𝐶 is semi-decidable
and 𝐷 is simple, then 𝐶 is the union of disjoint, semi-decidable 𝐴, 𝐵 which 𝐷 does
not reduce to.

Simple sets were defined by Post [15, section 5]. Dekker showed that every
undecidable semi-decidable set is equivalent with a simple set [2, theorem 1].

Definition 3.2 (Post). A set is simple if it is coinfinite, semi-decidable, and its
complement does not contain any infinite semi-decidable set.

That 𝐶 is the disjoint union of 𝐴 and 𝐵 is relevant because of the following.

Lemma 3.3. If 𝐴 and 𝐵 are disjoint and𝑀-semi-decidable, both reduce to 𝐴 ∪ 𝐵.
(In fact, for those𝑀 for which ⩽𝑀 is lifted to the𝑀-degrees, the𝑀-degree of 𝐴 ∪ 𝐵
is the least upper bound of the𝑀-degrees of 𝐴 and 𝐵.)
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Proof. To reduce 𝐴 to 𝐴 ∪ 𝐵, an𝑀-machine can act as follows: given 𝑥, check
whether 𝑥 is in 𝐴 ∪ 𝐵. If not, then 𝑥 is not in 𝐴. Otherwise, 𝑥 lies in either
𝐴 = dom {𝑎} or 𝐵 = dom {𝑏}. To decide in which, the TM then simultaneously
simulates {𝑎}(𝑥) and {𝑏}(𝑥) until one of the two computations halts.

(The second part follows from the observation that if 𝐴, 𝐵 ⩽𝑀 𝐶, then
𝐴, 𝐵 ⩽𝑀 {⟨𝑥, 𝑖⟩ ∶ 𝑥 ∈ 𝐴 ∧ 𝑖 = 0 ∨ 𝑥 ∈ 𝐵 ∧ 𝑖 = 1} ⩽𝑀 𝐶.)

Hence, in the case that 𝐶 = 𝐷 is a simple set, theorem 3.1 says that there are
𝐴, 𝐵 ⩽TM 𝐶 with 𝐶 
TM 𝐴, 𝐵. It follows that 𝐴, 𝐵 do not reduce to each other:
were 𝐴 ⩽TM 𝐵 (resp. 𝐵 ⩽TM 𝐴) to hold, then 𝐶 = 𝐴 ∪ 𝐵 would readily reduce
to 𝐵 (resp. 𝐴). So the degree of 𝐶 is nicely “split” in two incomparable lower
degrees with least upper bound 𝐶. Combined with Dekker’s theorem, every
nonzero semi-decidable degree can be split.

3.2 For Turing machines

The proof in this section is based on that in [19, section 14]. It is a finite injury
priority argument similar to the Friedberg-Muchnik one, with a twist. The
requirements are

{𝑒}𝐴 ≠ 𝐷 (𝑅𝐴
𝑒 )

{𝑒}𝐵 ≠ 𝐷 (𝑅𝐵
𝑒 )

𝑒 ∈ 𝐶 ↔ 𝑒 ∈ 𝐴 ∪ 𝐵 (𝑅𝐶𝑒 )

for all 𝑒 < 𝜔. We fix a computable ordering {𝑅𝑒 ∶ 𝑒 < 𝜔} of the 𝑅𝐴
𝑒 , 𝑅𝐵

𝑒 .
With the Friedberg-Muchnik theorem, the strategy was to search for compu-

tations of the form {𝑒}𝐴(𝑤) = 0 and then adding 𝑤 to 𝐵, so that {𝑒}𝐴 ≠ 𝐵. This
time however, we want {𝑒}𝐴 ≠ 𝐷, and 𝐷 is given—we cannot add elements to it.
It is not decidable either, meaning the contents of 𝐷 are never fully known in
any stage in a Turing machine computation.

However, 𝐷 is semi-decidable. So a Turing machine could build increasing
approximations of 𝐷 while searching for computations of the form {𝑒}𝐴(𝑤) = 0.
The idea is to preserve many such computations {𝑒}𝐴(𝑤𝑛) = 0 in the hope of
eventually finding 𝑤𝑛 ∈ 𝐷 for at least one 𝑛.

Because 𝐷 is simple, this strategy cannot fail: if an algorithm tries infinitely
many 𝑤𝑛, and all 𝑤𝑛 would lie outside 𝐷, then the set of attempts would be an
infinite semi-decidable subset of 𝐷, which cannot be.

The construction stages of 𝐴, 𝐵 are described in algorithm 5. The algorithm
uses increasing approximations 𝐶𝑠, 𝐷𝑠 of 𝐶 and 𝐷. E.g. if 𝐷 = dom{𝑑}, define
𝐷𝑠 = {𝑥 < 𝑠 ∶ {𝑑}𝑠(𝑥)↓}. Instead of keeping track of a single witness candidate
per requirement, for each requirement 𝑅𝑖 and stage 𝑠 there is a set𝑊𝑖,𝑠 of witness
candidates in stage 𝑠. Requirement (𝑅𝐴

𝑒 ) is always on the lookout for more
candidates with {𝑒}𝐴𝑠

𝑠 (𝑤) = 0, unless one of its candidates is found to be in 𝐷𝑠.
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To satisfy the requirements (𝑅𝐶𝑒 ), elements in𝐶𝑠⧵(𝐴𝑠∪𝐵𝑠) are added to either
𝐴𝑠 or 𝐵𝑠. Adding 𝑒 to𝐴𝑠may injure possible witness computations {𝑚}𝐴𝑠(𝑤) = 0
of requirements (𝑅𝐴

𝑚) whose restraint exceeds 𝑒, and similarly adding 𝑒 to 𝐵𝑠
may injure requirements (𝑅𝐵

𝑚). Hence, often either some (𝑅𝐴
𝑚) or an (𝑅𝐵

𝑚′)must
be injured. Then the requirement of highest priority is spared.

Algorithm 5: Step 𝑠 of the splitting algorithm.
𝐴𝑠 ← 𝐴<𝑠; 𝐵𝑠 ← 𝐵<𝑠
for 𝑖 < 𝑠 do

𝑊𝑖,𝑠 ← lim𝑡<𝑠𝑊𝑖,𝑡; 𝑟𝑖,𝑠 ← lim𝑡<𝑠 𝑟𝑖,𝑡
end for
for 𝑖 < 𝑠 do

if𝑊𝑖,𝑠 ∩ 𝐷𝑠 = ∅ then
let 𝑒, 𝑋, 𝑌 such that 𝑅𝑖 = (𝑅𝑋𝑒 ) and 𝑋 ≠ 𝑌
if there is a least 𝑤 ∈ 𝑠 ⧵ 𝑊𝑖,𝑠 with {𝑒}

𝑋𝑠
𝑠 (𝑤) = 0 then

▷𝑅𝑖 receives attention
𝑊𝑖,𝑠 ←𝑊𝑖,𝑠 ∪ {𝑤}
𝑟𝑖,𝑠 ← sup {𝑟𝑖,𝑠, 𝑤 + 1, sup {𝑥 + 1 ∶ 𝑥 is queried in {𝑒}𝑋𝑠

𝑠 (𝑤) = 0}}
end if

end if
end for
for 𝑖 < 𝑠 do

if 𝑖 ∈ 𝐶𝑠 ⧵ (𝐴𝑠 ∪ 𝐵𝑠) then ▷ (𝑅𝐶𝑖 ) receives attention
if 𝑗 = min {𝑘 ∶ 𝑟𝑘 > 𝑖} exists then

let 𝑒, 𝑋, 𝑌 such that 𝑅𝑗 = (𝑅𝑋𝑒 ) and 𝑋 ≠ 𝑌
𝑌𝑠 ← 𝑌𝑠 ∪ {𝑖}
for 𝑘 ∈ (𝑗, 𝑠) do ▷𝑅𝑘 is injured

𝑊𝑘,𝑠 ← ∅; 𝑟𝑘,𝑠 ← 0
end for

else
𝐴𝑠 ← 𝐴𝑠 ∪ {𝑖}

end if
end if

end for

3.2.1 Correctness

Given 𝐶,𝐷, it is clear that 𝐴, 𝐵 determined by algorithm 5 satisfy the require-
ments (𝑅𝐶𝑒 ). A finite injury argument is used to prove satisfaction of the 𝑅𝑖.

Lemma 3.4 (Finite injury). All 𝑅𝑖 settle: there is a (least) stage 𝑡 after which
𝑅𝑖 is never injured nor receives attention; 𝑟𝑖 = lim𝑠<𝜔 𝑟𝑖,𝑠 and the pointwise limit
𝑊𝑖 = lim𝑠<𝜔𝑊𝑖,𝑠 exist and are equal to 𝑟𝑖,𝑡,𝑊𝑖,𝑡 respectively.
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Proof. Note that requirements can only be injured by requirements of higher
priority, of which there are always finitely many. If all requirements 𝑅𝑗 with
𝑗 < 𝑖 settle, then there is a stage 𝑠 after which 𝑅𝑖 is never injured. (Namely, once
all elements of 𝐶 below the 𝑟𝑗, 𝑗 < 𝑖 have been added to 𝐴.) Then {𝑊𝑖,𝑡 ∶ 𝑡 > 𝑠} is
an increasing sequence whose union𝑊𝑖 is either finite or infinite. It cannot be
infinite, since if it were, it would by design of algorithm 5 (no elements are added
to𝑊𝑖,𝑡 if 𝑊𝑖,𝑡 ∩ 𝐷𝑡 ≠ ∅) be an infinite semi-decidable subset of 𝐷, contradicting
that 𝐷 is simple. Hence𝑊𝑖 is finite, and 𝑅𝑖 has settled in the first stage 𝑡 > 𝑠
with𝑊𝑖,𝑡 = 𝑊𝑖. By induction, all requirements settle.

Lemma 3.5 (Reflection). {𝑒}𝐴(𝑤) = 0 → (∃𝑠)(∀𝑡 > 𝑠) {𝑒}𝐴𝑡
𝑡 (𝑤) = 0, and

similarly for 𝐵.

Proof. Consider that the part of 𝐴 (or 𝐵) used in the computation is finite: if
𝑢 lies above the maximum value queried in {𝑒}𝐴(𝑤) = 0, then the first 𝑠 with
𝐴𝑠 ∩ 𝑢 = 𝐴 ∩ 𝑢 is as desired. (𝑠 exists because for each 𝑥 ∈ 𝐴 ∩ 𝑢 there is a stage
in which it is added to 𝐴, and there are finitely many such 𝑥.)

Together, finite injury and reflection prove that all requirements are satisfied.

Proof of theorem 3.1. Let 𝐴, 𝐵 be defined as by algorithm 5. They are semi-
decidable, and 𝐶 = 𝐴 ∪ 𝐵. Assume that that 𝑅𝑖 = (𝑅𝐴

𝑒 ) is not satisfied. Then
{𝑒}𝐴 = 𝐷. Let 𝑠 be a state at which 𝑅𝑖 and all requirements of higher priority
have settled. Then (by the finite injury lemma) we have𝑊𝑖,𝑠 = 𝑊𝑖,𝑡 for all 𝑡 ≥ 𝑠.
By design of the algorithm, if 𝑥 ∈ 𝑊𝑖,𝑡, 𝑡 ≥ 𝑠 then {𝑒}𝐴(𝑥) = {𝑒}𝐴𝑡

𝑡 (𝑥) = 0, and
so𝑊𝑖,𝑡 ∩𝐷 = ∅ for all 𝑡 ≥ 𝑠. Because 𝐷 is infinite and𝑊𝑖 is finite, there is a least
𝑤 ∈ 𝐷 ⧵𝑊𝑖, for which {𝑒}𝐴(𝑤) = 0 holds by assumption. Using the reflection
lemma, there is a stage 𝑡 > 𝑠, 𝑤 with {𝑒}𝐴𝑡

𝑡 (𝑤) = 0. The design of algorithm 5
now dictates that eventually, 𝑅𝑖 receives attention and a new is element is added
to𝑊𝑖,𝑡, contradicting that 𝑅𝑖 had settled at stage 𝑠.

While the proof above is also a finite injury argument, one way it may be
seen as more complex than the Friedberg-Muchnik proof is that there is no
computable function 𝐼(𝑖) bounding the number of injuries sustained by 𝑅𝑖 [20,
p. 65]—since it depends on the undecidable 𝐶,𝐷—while such a function does
exist for the Friedberg-Muchnik argument [14, exercise X.2.6].

As a generalization of theorem 3.1would bemeaningless without amatching
generalization of Dekker’s theorem, we discuss its proof as well.

Theorem 3.6 (Dekker). Every undecidable semi-decidable set is equivalent with
a simple set. (All nontrivial semi-decidable degrees contain simple sets.)

Proof, as presented in [19, section 12]. Assume 𝐴 is undecidable and semi-deci-
dable. We must find a TM-equivalent simple set 𝑆. Define

𝑆 = {𝑛 ∶ (∃𝑚 > 𝑛) 𝑎𝑚 < 𝑎𝑛}
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where {𝑎𝑛 ∶ 𝑛 ∈ 𝜔} is a computable enumeration of 𝐴. 𝑆 is semi-decidable by a
TM that, given 𝑛, tries all𝑚 < 𝜔 until it finds one with 𝑎𝑚 < 𝑎𝑛. 𝑆 reduces to 𝐴,
since 𝑛 ∈ 𝑆 if and only if there is a 𝑘 < 𝑎𝑛 in 𝐴 ⧵ {𝑎𝑚 ∶ 𝑚 < 𝑛}. Given 𝑥, the
𝑛 > 𝑥 with the smallest 𝑎𝑛 always lies outside 𝑆, so 𝑆 is coinfinite.

Assuming 𝑛 ∈ 𝑆 and𝑚 < 𝑎𝑛, we have𝑚 ∈ 𝐴 ↔ 𝑚 ∈ {𝑎𝑘 ∶ 𝑘 < 𝑛}. Since 𝑆
is coinfinite, such an 𝑛 can be found for every 𝑚 by enumerating 𝑆, and so 𝐴
reduces to 𝑆.

Likewise: if 𝑆were to contain an infinite semi-decidable set𝑋, then one could
find such an 𝑛 for every𝑚 by enumerating 𝑋, which would make 𝐴 decidable,
contradicting the assumption on 𝐴.

Corollary 3.7. Every nonzero semi-decidable degree splits.

Corollary 3.8. There is a complete infinite binary tree of semi-decidable degrees.

3.3 For ITTMs

A direct translation of the thickness lemma to ITTMs would be: if 𝐶 ⊆ 2𝜔
is ITTM-semi-decidable and 𝐷 is “simple”, then there are disjoint ITTM-semi-
decidable 𝐴, 𝐵with 𝐴∪𝐵 = 𝐶 so that 𝐷 does not ITTM-reduce to either—where
“simple” would mean that 𝐷 is ITTM-semi-decidable and intersects all infinite
ITTM-semi-decidable sets. Whether this holds, we do not know.

To prove the above with a priority argument similar to that in section 3.2,
there would at least have to be a ITTM-computably well-ordered set 𝑆 ⊆ 2𝜔
of stages, and ITTM-computable approximations 𝐶𝑠 with 𝐶 = ⋃𝑠∈𝑆 𝐶𝑠, and
likewise for 𝐷. Furthermore, 𝑆 would have to be generable for 𝐴 and 𝐵 to be
semi-decidable. This restricts 𝑆 to the accidentally writable reals. But then the
contents of 𝐶𝑠, ITTM-generable in the argument 𝑠 ∈ 𝑆, must be accidentally
writable as well.

So, using a priority argument as in section 3.2, one could only prove a splitting
theorem for 𝐶,𝐷 in the accidentally writable reals. Furthermore, the argument
in section 3.2 uses that bounded unions ∪𝑡<𝑠𝑊𝑖,𝑡 of witness attempt sets are
decidable, and unbounded unions ∪𝑡>𝑠𝑊𝑖,𝑡 semi-decidable. If 𝑡 is not writable,
this is not apparent. All in all, if a general splitting theorem were to hold, its
proof would not be similar to the classical priority argument proof in section 3.2.

In this section, we shall prove a splitting theorem for certain sets𝐶,𝐷 ⊆ Won
and amatching generalization of Dekker’s theorem, which together prove one of
the main consequences of a general splitting theorem: that a complete infinite
binary tree can be embedded in the semi-decidable degrees.

In this context, a straightforward translation from “simple” for would be

Definition 3.9. 𝐴 ⊆ Won is Won-simple if it is ITTM-semi-decidable, cocofinal
in Won, and Won ⧵ 𝐴 does not contain cofinal ITTM-semi-decidable sets.
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However, we do not know whether Won-simple sets exist. As the clockable
ordinals are ITTM-decidable (in contrast to the set of writable codes for writable
ordinals, cf. appendix A.2), we are able to prove existence for the following, and
this translation of “simple” suffices for our theorem below.
Definition 3.10. 𝐴 ⊆ Clk is Clk-simple if it is semi-decidable, cocofinal in Clk,
and 𝐴 ∩ Clk does not contain unbounded semi-decidable sets.

We further adapt two notions from α-recursion theory, used in [20] for a
splitting theorem. A set𝐴 ⊆ 𝛼 is 𝛼-finite if it is an element of 𝐿𝛼 [18, p. 155], and
regular if 𝐴 ∩ 𝛿 is 𝛼-finite for all 𝛿 < 𝛼 [18, section VII.3.5]. In [12, theorem 12]
it is shown that 𝐴 ⊆ 𝛼 is 𝛼-finite if and only if 𝐴 is bounded and p-𝛼-decidable.
This leads us to the following definition.
Definition 3.11. 𝐴 ⊆ Won is ITTM-finite if it is bounded in Won and ITTM-
decidable. 𝐴 ⊆ Won is (ITTM-)regular if it is ITTM-semi-decidable, and all
intersections with ITTM-finite sets are ITTM-finite.

From appendix B.2 it can be concluded that the ITTM-finite sets are, up to
coding, precisely the Γ-finite sets, but this fact shall not be used. In this section,
we shall often write “regular” for ITTM-regular and “simple” for Clk-simple.
Lemma 3.12. 𝐴 ⊆ Won is regular if and only if it is semi-decidable and all
intersections 𝐴 ∩ 𝛼, 𝛼 ∈ Won are decidable.
Proof. Every 𝛼 ∈ Won is decidable: given 𝑥, reject if 𝑥 does not code an ordinal.
If it codes an ordinal 𝛽, reject if 𝛽 ≥ 𝛼. Otherwise, 𝛽 is a writable ordinal.
Compute the canonical code for 𝛽, and accept 𝑥 if and only if 𝑥 is that canonical
code. Furthermore, all 𝛼 ∈ Won are bounded by definition, and so they are
ITTM-finite. It follows that if 𝐴 is regular, all intersections 𝐴 ∩ 𝛼, 𝛼 ∈ Won are
ITTM-finite, by definition of regularity.

Now assume that 𝐴 ⊆ Won is semi-decidable, and that all intersections
𝐴 ∩ 𝛼, 𝛼 ∈ Won are ITTM-finite. Let 𝐵 be ITTM-finite. Then it is bounded, so
there is a 𝛽 ∈ Won strictly above all elements of 𝐵. By assumption, 𝐴 ∩ 𝛽 ⊇ 𝐵
is ITTM-finite. Because 𝐵 is decidable, there is a machine 𝑒 with {𝑒} = 𝐵, and
because 𝐴 ∩ 𝛽 is decidable, there is a machine𝑚 with {𝑚} = 𝐴 ∩ 𝛽. Then the
machine that, on input 𝑥, outputs 1 if {𝑒}(𝑥) = {𝑚}(𝑥) = 1 and 0 otherwise,
decides 𝐵. So 𝐴 ∩ 𝐵 is ITTM-finite, which concludes the proof.

Whether regular and simple sets are as ubiquitous as TM-simple sets are
in ordinary computability, we do not know, but we will show that they appear
relatively often at the end of this section. First, we prove
Theorem 3.13. Let 𝐶 be regular, semi-decidable, and 𝐷 simple. Then there are
disjoint regular semi-decidable 𝐴, 𝐵 so that 𝐶 = 𝐴 ∪ 𝐵 and 𝐷 does not reduce to
either.

The regularity assumption on 𝐶 is taken from [20], though the proof below
is rather based on that for Turing machines. We use Clk-simplicity here, but the
same proof would work for ITTM-simple sets 𝐷, replacing Clk with Won.
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3.3.1 The algorithm

The incomparable 𝐴, 𝐵 are defined by a procedure akin to algorithm 5, with
modifications so that the storage of witness attempts is consistent across limit
steps. This is done as follows: there is a witness storage tape with the property
that (during stage 𝛼) 𝑤 ∈ 𝑊𝑖,𝛼 if and only if the ⟨𝑖, 𝑒⟩th cell of the tape contains
a 1, where 𝑒 is machine that writes 𝑤 (the first that does it in the least amount
of time). Restraints 𝑟𝑖,𝛼 are stored similarly on a restraint tape, where at stage 𝛼
the ⟨𝑖, 𝑒⟩th cell contains a 1 if and only if {𝑒}(0) writes an ordinal 𝛽 < 𝑟𝑖,𝛼 (and 𝑒
is the least machine to do so in the least amount of time.)8 Furthermore, the
algorithm is modified so that, between injuries, elements added to a witness
attempt set are strictly increasing over time.

With these technical changes, at the start of stage 𝛼, the storage tape always
contains the pointwise limits of the𝑊𝑖,𝛽 that came before, and the limit inferiors
of the 𝑟𝑖,𝛼 that came before. As restraints increase between injuries, at the start
successor stages 𝛼 + 1 we have 𝑟𝑖,𝛼+1 = 𝑟𝑖,𝛼, and at start of limit stages 𝜆 we
have 𝑟𝑖,𝜆 = 0 if 𝑅𝑖 was injured cofinally often before stage 𝜆, or 𝑟𝑖,𝜆 = lim𝛼<𝜆 𝑟𝑖,𝛼
otherwise.

See algorithm 6 for an overview of the changes. In it, 𝑠-step approximations
of 𝐶𝑠, 𝐷𝑠 as defined in definition 1.40 are used. Recall that by proposition 1.42,
since 𝐶,𝐷 ⊆ Won, we have 𝛽 ∈ 𝐶 → (∃𝑠 ∈ Won) 𝛽 ∈ 𝐶𝑠 and similarly for 𝐷.

From the storage strategy described above and the properties in section 1.4,
it follows that algorithm 6 can be carried out by an ITTM. In particular, lines 1–4
are consequences of the storage strategy, and bounded loops and simulations
are ITTM-computable by section 1.4. Only line 11, that is

𝑟𝑖,𝑠 ← sup {𝑟𝑖,𝑠, 𝑤 + 1, sup {𝛼 + 1 ∶ 𝛼 ∈ Clk is queried in {𝑒}𝑋𝑠
𝑠 (𝑤) = 0}}

requires scrutiny. The queries made are decidable by simulation, and suprema
can be found by generatingWon in-order and searching for the first upper bound.
It has to be shown, however, that {𝛼 + 1 ∶ 𝛼 ∈ Clk is queried in {𝑒}𝑋𝑠

𝑠 (𝑤) = 0} is
bounded. By contradiction: if it ever were unbounded, let 𝑠 ∈ Won and 𝑒, 𝑖 < 𝜔
be the first for which it occurs. Because 𝑠, 𝑒, 𝑖 are writable, there is an ITTM
which follows algorithm 6 up to having to compute line 11 for this specific case.
It then simulates {𝑒}𝑋𝑠

𝑠 (𝑤) = 0, clocks all ordinal queries made, and halts, halting
after Γ or more steps. (Yet its halting time must be a clockable ordinal.)

3.3.2 Correctness

Lemma 3.14 (Bounded injury lemma). All requirements settle in clockable
(writable) time: for each 𝑅𝑖 there is an 𝛼 ∈ Won such that 𝑅𝑖 is never injured after
stage 𝛼, and we have 𝑟𝑖 = lim𝛽∈Won 𝑟𝑖,𝛽 = 𝑟𝑖,𝛼 and𝑊𝑖 = ∪𝛼<𝛽∈Won 𝑊𝑖,𝛽 = 𝑊𝑖,𝛼. In
particular,𝑊𝑖 is ITTM-finite.

8Alternatively, any storage technique could be used for the restraints, and then at limit steps
the limit inferiors could be computed from the witness sets.
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Algorithm 6: Stage 𝑠 < Γ of the splitting algorithm for ITTMs.
1: 𝐴𝑠 ← 𝐴<𝑠; 𝐵𝑠 ← 𝐵<𝑠
2: for 𝑖 < 𝑠 do
3: 𝑊𝑖,𝑠 ← lim𝑡<𝑠𝑊𝑖,𝑡; 𝑟𝑖,𝑠 ← lim inf𝑡<𝑠 𝑟𝑖,𝑡
4: end for
5: for 𝑖 < 𝜔 do
6: if𝑊𝑖,𝑠 ∩ 𝐷𝑠 = ∅ then
7: let 𝑒, 𝑋, 𝑌 such that 𝑅𝑖 = (𝑅𝑋𝑒 ) and 𝑋 ≠ 𝑌
8: if there is a least 𝑤 ∈ Clk ∩ 𝑠 ⧵ (sup𝑊𝑖,𝑠 + 1) with {𝑒}𝑋𝑠

𝑠 (𝑤) = 0 then
9: ▷𝑅𝑖 receives attention
10: 𝑊𝑖,𝑠 ←𝑊𝑖,𝑠 ∪ {𝑤}
11: 𝑟𝑖,𝑠 ← sup {𝑟𝑖,𝑠, 𝑤+1, sup {𝛼+1 ∶ 𝛼 ∈ Clk is queried in {𝑒}𝑋𝑠

𝑠 (𝑤) = 0}}
12: end if
13: end if
14: end for
15: for 𝑖 < 𝑠 do
16: if 𝑖 ∈ 𝐶𝑠 ⧵ (𝐴𝑠 ∪ 𝐵𝑠) then ▷ (𝑅𝐶𝑖 ) receives attention
17: if 𝑗 = min {𝑘 ∶ 𝑟𝑘 > 𝑖} exists then
18: let 𝑒, 𝑋, 𝑌 such that 𝑅𝑗 = (𝑅𝑋𝑒 ) and 𝑋 ≠ 𝑌
19: 𝑌𝑠 ← 𝑌𝑠 ∪ {𝑖}
20: for 𝑘 ∈ (𝑗, 𝜔) do ▷𝑅𝑘 is injured
21: 𝑊𝑘,𝑠 ← ∅; 𝑟𝑘,𝑠 ← 0
22: end for
23: else
24: 𝐴𝑠 ← 𝐴𝑠 ∪ {𝑖}
25: end if
26: end if
27: end for
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Proof. By induction. Assume all requirements of higher priority than 𝑅𝑖 settle.
Then there is a stage 𝛿′ < Γ in which all 𝑅𝑗, 𝑗 < 𝑖 have settled. (There are finitely
many such 𝑅𝑗 and Γ is closed under addition [6, corollary 8.2].)

Let 𝑟 = max𝑗<𝑖 𝑟𝑗. Define 𝐶′ = 𝐶 ∩ 𝑟. It is ITTM-finite by the regularity of 𝐶
(lemma 3.12). Hence, because 𝐶′ ⊆ Won is bounded and decidable, and Won is
generable in-order, there is an ITTM which, on input 0, finds for each 𝑐 ∈ 𝐶′

the least 𝑠𝑐 < Γ with 𝑐′ ∈ 𝐶𝑠𝑐, clocks these 𝑠𝑐, and then halts. (The 𝑠𝑐 exist by
proposition 1.42.) Its halting time 𝜀 lies beyond the supremum of these moments
of first appearance 𝑠𝑐, and at the same time necessarily below Γ (because its
halting time is a clockable ordinal). So let 𝛿 ∈ Won be greater than 𝜀 and 𝛿′. At
stage 𝛿, all requirements 𝑅𝑗, 𝑗 < 𝑖 have settled, and 𝐶′ ⊆ 𝐴𝛿 ∪ 𝐵𝛿 (since in every
stage 𝛼, all elements of 𝐶𝛼 are added to 𝐴𝛼 ∪ 𝐵𝛼).

It follows that 𝑅𝑖 is never injured after stage 𝛿, as 𝑅𝑖 is only injured in stage
𝛼 > 𝛿 if there exists an 𝜁 < 𝛼 with 𝜁 ∈ 𝐶𝛼 ⧵ (𝐴𝛼 ∪ 𝐵𝛼) and 𝑟 > 𝜁, but such 𝑖 are
elements of 𝐶′ ⊆ 𝐴𝛿 ∪ 𝐵𝛿 ⊆ 𝐴𝛼 ∪ 𝐵𝛼. Hence 𝛿 < 𝛼 < 𝛽 implies𝑊𝑖,𝛼 ⊆ 𝑊𝑖,𝛽.

Define𝑊𝑖 = ⋃𝛼>𝛿𝑊𝑖,𝛼. It remains to show that there is some 𝜐 < Γ with
𝑊𝑖,𝜐 = 𝑊𝑖: that then𝑊𝑖 is ITTM-finite follows from the observation𝑊𝑖,𝜐 ⊆ 𝜐 (by
line 8 of algorithm 6) and that there is an ITTMwhich decides𝑊𝑖 by constructing
𝜐 stages. (This ITTM exists because 𝜐 is writable, and algorithm 6 can be carried
out by an ITTM.)That then 𝑟𝑖 = 𝑟𝑖,𝜐 follows from the observation that, at successor
steps, restraints are only modified when changes are made to their witness sets.

If 𝑊𝑖 ∩ 𝐷 ≠ ∅, then (by definition of 𝑊𝑖 and proposition 1.42) there is some
𝜐 < Γ with 𝜐 > 𝛿 and𝑊𝑖,𝜐 ∩ 𝐷𝜐 ≠ ∅. By the design of the algorithm (line 6),
and since 𝑅𝑖 is never injured after stage 𝛿, no element is added to the witness
set of 𝑅𝑖 after stage 𝜐. Thus 𝛼 > 𝜐 implies𝑊𝑖,𝛼 = 𝑊𝑖,𝜐 as desired.

If on the other hand 𝑊𝑖 ∩ 𝐷 = ∅, then 𝑊𝑖 ⊆ Clk ⧵ 𝐷, and so 𝑊𝑖 must be
bounded since it is semi-decidable and 𝐷 is simple. (It is semi-decidable by the
computability of the algorithm and writability of 𝛿: there is an ITTM which,
given 𝑥, continuously constructs stages and halts if and only if there is a stage
𝛼 > 𝛿 with 𝑥 ∈ 𝑊𝑖,𝛼.) So there exists a least 𝜅 < Γ so that 𝛼 ∈ 𝑊𝑖 → 𝛼 < 𝜅. It
follows that𝑊𝑖 is decidable: given 𝑥, reject if it does not code a clockable ordinal,
and if it is not a canonical code for a clockable ordinal. If it is a canonical code
for a clockable ordinal 𝛼, reject 𝑥 if 𝛼 ≥ 𝜅 (an ITTM can check this since 𝜅 is
writable). Otherwise, since elements are added to𝑊𝑖 in increasing order (line 8),
there are two cases: either there is a stage 𝛽 > 𝛿 with 𝛼 ∈ 𝑊𝑖,𝛽, in which case
𝛼 ∈ 𝑊𝑖, or there is a stage 𝛽 > 𝛿 and an 𝛼′ > 𝛼 with 𝛼′ ∈ 𝑊𝑖,𝛽 ∧ 𝛼 ∉ 𝑊𝑖,𝛽,
in which case 𝛼 ∉ 𝑊𝑖. So finally 𝛼 ∈ 𝑊𝑖 is decided by generating increasing
approximations of 𝑊𝑖,𝛽, 𝛽 > 𝛿 until one of those two cases occurs.

But then𝑊𝑖 is ITTM-finite and thus, by a moment-of-appearance argument
as for 𝐶′ above, there must be some 𝜐 < Γ with𝑊𝑖,𝜐 = 𝑊𝑖.

Indeed, this could be called an ITTM-finite injury argument.
Lemma 3.15 (Reflection lemma). If 𝑤 ∈ Won and {𝑒}𝐴(𝑤) = 0, then there are
cofinally many 𝛼 ∈ Won with {𝑒}𝐴𝛼

𝛼 (𝑤) = 0. Similarly for 𝐵.
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Proof. See the proof of lemma 2.9.

Lemma 3.16 (Preservation lemma). Let 𝛿 be the least stage so that 𝑅𝑖 = 𝑅𝐴
𝑒 is

never injured in stages 𝛼 ≥ 𝛿. Then {𝑒}𝐴(𝑤) = 0 holds for all𝑤 ∈ 𝑊𝑖 = ⋃𝛼≥𝛿𝑊𝑖,𝛼.
Similarly for 𝐵.

Proof. If 𝛿 is a limit, then 𝑅𝑖 was injured cofinally often before stage 𝛿, and so
at the start of stage 𝛿 we have 𝑟𝑖,𝛿 = 0 and𝑊𝑖,𝛿 = ∅. If 𝛿 is a successor, then
𝑅𝑖 was last injured in stage 𝛿 − 1, and so (because in every stage, no witness
attempts are added after a requirement is injured, see algorithm 6)𝑊𝑖,𝛿−1 = ∅
and 𝑟𝑖,𝛿−1 = 0 and at the start of stage 𝛿 we have 𝑟𝑖,𝛿 = 0 and𝑊𝑖,𝛿 = ∅.

For each 𝛼 ≥ 𝛿, elements are added to𝑊𝑖,𝛼 if and only if {𝑒}𝐴𝛼(𝑤) = 0, and
then 𝑟𝑖,𝛼 is pushed above all queries made in this computation. no element
below these restraints is ever added to 𝐴, as this would injure 𝑅𝑖. Hence all
computations for 𝑤 ∈ 𝑊𝑖,𝛼 are preserved: {𝑒}𝐴(𝑤) = {𝑒}𝐴𝛼(𝑤) = 0.

The rest of the proof is similar to the proof of theorem 3.1, here using that
the𝑊𝑖 are ITTM-finite instead of finite.

Proof of theorem 3.13. Let 𝐴, 𝐵 be defined as by algorithm 5. They are semi-
decidable (by the algorithm and the fact that Won is generable), and 𝐶 = 𝐴 ∪ 𝐵.
Assuming that 𝑅𝑖 = (𝑅𝐴

𝑒 ) is not satisfied, {𝑒}𝐴 = 𝐷, let 𝜎 be a state at which 𝑅𝑖
and all requirements of higher priority have settled, which exists by the bounded
injury lemma. Then (∀𝛼 > 𝜎) 𝑊𝑖,𝛼 = 𝑊𝑖,𝜍 = 𝑊𝑖 holds.

If a 𝑤 ∈ 𝑊𝑖 ∩ 𝐷 were to exists then, by the preservation lemma, {𝑒}𝐴(𝑤) = 0
would hold, yet by assumption {𝑒}𝐴(𝑤) = 𝐷(𝑤) = 1. So𝑊𝑖 ∩ 𝐷 is empty, hence
𝑊𝑖,𝛼 ∩ 𝐷𝛼 = ∅ holds for all 𝛼 ≥ 𝜎.

As 𝐷 is simple and hence cocofinal in Clk, and𝑊𝑖 is bounded (it is ITTM-
finite by the bounded injury lemma), there are𝑤 ∈ Clk⧵(sup𝑊𝑖+1)with𝑤 ∉ 𝐷
and thus (by the assumption {𝑒}𝐴 = 𝐷) with {𝑒}𝐴(𝑤) = 0. By the reflection
lemma, there are hence 𝜏 > 𝜎 and 𝑤 ∈ Clk ∩ 𝜏 ⧵ (sup𝑊𝑖 + 1) with {𝑒}𝐴𝜏

𝜏 (𝑤) = 0.
But then for the first such (𝜏, 𝑤) it would be the case that 𝑤 ∉ 𝑊𝑖 would be
added to𝑊𝑖,𝜏 (line 8 of algorithm 6), contradicting that 𝑅𝑖 settled in stage 𝜎.

Hence 𝑅𝑖 is satisfied, and, by an analogous argument, the requirements
𝑅𝑗 = (𝑅𝐵

𝑒 ) are also satisfied. In every stage 𝛼, all elements of 𝐶𝛼 are added to
𝐴𝛼 ∪ 𝐵𝛼, so (by proposition 1.42), requirements (𝑅𝐶𝑒 ) are satisfied as well. So 𝐴
and 𝐵 satisfy all requirements: they are disjoint, their union is 𝐶, and 𝐷 does
not reduce to either.

Finally, 𝐴 and 𝐵 are regular because 𝐶 is regular: if 𝛼 ∈ Won then 𝐴 ∩ 𝛼
can be decided by, given 𝑥, first rejecting if 𝑥 ∉ 𝐶 ∩ 𝛼, which can be done since
𝐶 ∩ 𝛼 is ITTM-finite, and otherwise generating both 𝐴 and 𝐵 simultaneously
until 𝑥 appears in one of them (which it must).

Corollary 3.17. If 𝐶 is regular and simple, then there are regular disjoint 𝐴, 𝐵
with 𝐴 ∪ 𝐵 = 𝐶 that 𝐶 does not reduce to.
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Corollary 3.18. If a degree contains a regular simple set, it can be split in two.
(And those degrees can again be split in two.)

3.3.3 Regular and simple sets

Degrees that contain regular simple sets can be split. We now turn to the question
of which degrees contain regular simple sets. We shall only give a partial answer,
by showing that every semi-decidable 𝐴 ⊆ 𝐵 ⊆ Wrr contained in a decidable
𝐵 is equivalent with a regular set, and that every such 𝐴 that is undecidable is
equivalent with a regular simple set. An examples of such an 𝐴 is the weak
halting problem ℎ = {𝑒 ∶ {𝑒}(0)↓}, as it is contained in the decidable Clk.

The assumption that 𝐴 is a subset of a decidable set 𝐵 is used to adapt results
from α-recursion theory, where every nonzero degree contains a regular simple
set. In α-recursion theory, all inputs are writable ordinals, while with ITTMs it
is hard to design reduction machines that do not fail when presented with, for
example, a code for an (accidentally writable) ordinal above Γ. The decidable 𝐵
allows for the rejection of such ordinals.

We first focus on subsets 𝐴 ⊆ 𝐵 ⊆ Won, and then generalize to 𝐴 ⊆ 𝐵 ⊆ Wrr.

Lemma 3.19. If 𝐴 ⊆ Won is semi-decidable and cofinal in Won, there is a
computable bijection Won → 𝐴.

Proof. Let {𝑒} be a machine with dom {𝑒} = 𝐴. For each writable ordinal 𝛼,
define 𝐴𝛼 = {𝛽 < 𝛼 ∶ {𝑒}𝛼(𝛽)↓} (in canonical codes). Each 𝐴𝛼 is ITTM-finite,
and in fact there is an ITTM which, given a code for a writable 𝛼, decides 𝐴𝛼.
Note: 𝛼 < 𝛽 → 𝐴𝛼 ⊆ 𝐴𝛽.

Define a well-order ≺ on 𝐴 so that 𝛼 ≺ 𝛽 if and only if

• the first 𝛿 with 𝛼 ∈ 𝐴𝛿 lies strictly below the first 𝜀 with 𝛽 ∈ 𝐴𝜀, or

• 𝛿 = 𝜀 and 𝛼 < 𝛽.

Since ITTMs can generateWon, there is an ITTMwhich, given two writable 𝛼, 𝛽,
decides 𝛼 ≺ 𝛽.

Define the partial function 𝑓 recursively by 𝑓(𝛼) = min≺ 𝐴 ⧵ 𝑓[𝛼]. From
the discussion above, 𝑓 is ITTM-computable: the minimum, if it exists, can be
found by generating Won and searching for the first nonempty 𝐴𝛽 ⧵ 𝑓[𝛼] for
increasing writable ordinals 𝛽.

If 𝛼 is writable then, since 𝐴𝛼 is ITTM-finite and ≺ is decidable, the order
type of (𝐴𝛼, ≺) is a writable ordinal: there is an ITTM which (on input 0) takes
≺-minimal elements out of 𝐴𝛼 until it is exhausted and then halts. It follows
that the order type of (𝐴, ≺) is either Γ or lower. Hence the range of 𝑓 is 𝐴, and
its domain 𝛿 is at most Γ.

If 𝛿 < Γ were to hold, then there would be an ITTM which (on input 0)
halts after computing and clocking all elements of 𝑓[𝛿] = 𝐴, taking more than
sup𝐴 = Γ steps. So 𝛿 = Γ. (The domain of a machine computing 𝑓 can be
restricted toWon by a.o., given 𝑥, searching for a computation that writes 𝑥.)
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Lemma 3.20. There is an order preserving bijection Clk → Won.

Proof. Define the partial𝑓 by𝑓(𝛼) = minWon⧵𝑓[Clk∩𝛼]. SinceClk is decidable
and Won is generable in-order, 𝑓 is computable. Since 𝑓 is an order-preserving
injection and since Clk and Won have the same order type [6, theorem 3.8], the
domain of 𝑓 is Clk and the range is Won.

Corollary 3.21. If 𝐴 ⊆ Won is semi-decidable and cofinal in Won, there is a
computable bijection Clk → 𝐴.

The following is adapted from α-recursion theory [18, theorem 4.4.2].

Lemma 3.22. If 𝐴 ⊆ Clk is semi-decidable and cofinal, then it is equivalent with
a regular 𝐵 ⊆ Clk ⊗ Clk.

Proof. Let 𝐴 ⊆ Clk be semi-decidable and cofinal. Then there is a computable
bijection 𝑓 ∶ Clk → 𝐴 Let 𝑝 ∶ Clk → 𝜔 be a computable injection. (Sending
ordinals to machines that clock them, for example.) Define

𝐵 = {⟨𝑤, 𝑥⟩ ∶ 𝑤, 𝑥 ∈ Clk ∧ (∃𝑦 ∈ Clk) 𝑥 < 𝑦 ∧ 𝑝(𝑓(𝑦)) < 𝑝(𝑓(𝑥)) ∧ 𝑓(𝑦) < 𝑤}.

𝐵 is semi-decidable: given a real 𝑧, a machine searches for 𝑥,𝑤 ∈ Won so that 𝑧
codes ⟨𝑥, 𝑤⟩. If such 𝑥,𝑤 exist, they are eventually found, and the machine then
searches for a 𝑦 ∈ Won satisfying 𝑥 < 𝑦 ∧ 𝑝(𝑓(𝑦)) < 𝑝(𝑓(𝑥)) ∧ 𝑓(𝑦) < 𝑤 and
halts if one is found. Since 𝑝, 𝑓 are computable, 𝑦 is found if and only if it exists.

Define the approximations

𝐵𝑡𝑦 = {⟨𝑤, 𝑥⟩ < ⟨𝑡, 𝑡⟩ ∶ 𝑤, 𝑥 ∈ Clk ∧ 𝑥 < 𝑦 ∧ 𝑝(𝑓(𝑦)) < 𝑝(𝑓(𝑥)) ∧ 𝑓(𝑦) < 𝑤}.

for all 𝑡, 𝑦 ∈ Clk. They are not monotonically increasing in 𝑦, but 𝐵 ∩ ⟨𝑡, 𝑡⟩ is
their union.

Each individual approximation is uniformly decidable in 𝑦 and 𝑡: there is
an ITTM that, given canonical codes for 𝑡, 𝑦 ∈ Clk, and a real 𝑧, decides 𝑧 ∈ 𝐵𝑡𝑦
by iterating over all 𝑤, 𝑥 < 𝑡, checking 𝑤, 𝑥 ∈ Clk ∧ ⟨𝑤, 𝑥⟩ < 𝑡, whether 𝑧 is a
canonical code for any ⟨𝑤, 𝑥⟩ found and finally, seeing if 𝑤, 𝑥 are as desired.

Therefore, if there were a 𝛽 ∈ Won with 𝐵 ∩ ⟨𝑡, 𝑡⟩ = ∪𝛼<𝛽 𝐵𝑡𝛼, then 𝐵 ∩ ⟨𝑡, 𝑡⟩
would be ITTM-finite.

Hence, assuming towards a contradiction that 𝐵 ∩ ⟨𝑡, 𝑡⟩ is not ITTM-finite,
there is in particular an infinite sequence {𝑦𝑖 ∶ 𝑖 < 𝜔} in Won ⧵ 𝑡 such that

𝑖 < 𝑗 → 𝑦𝑖 < 𝑦𝑗 ∧ 𝐵𝑡𝑦𝑖 ⊉ 𝐵𝑡𝑦𝑗.

Note that if 𝑡 ≤ 𝑦𝑖 < 𝑦𝑗 and 𝐵𝑡𝑦𝑖 ⊉ 𝐵𝑡𝑦𝑗 then there is some ⟨𝑤, 𝑥⟩ ∈ ⟨𝑡, 𝑡⟩ so that

[⟨𝑤, 𝑥⟩ ∈ 𝐵𝑡𝑦𝑗] ∧ [⟨𝑤, 𝑥⟩ ∉ 𝐵𝑡𝑦𝑖]
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equivalently

[𝑝(𝑓(𝑦𝑗)) < 𝑝(𝑓(𝑥)) ∧ 𝑓(𝑦𝑗) < 𝑤] ∧ ¬[𝑝(𝑓(𝑦𝑖)) < 𝑝(𝑓(𝑥)) ∧ 𝑓(𝑦𝑖) < 𝑤]

holds, which implies

[𝑝(𝑓(𝑦𝑗)) < 𝑝(𝑓(𝑥)) ∧ 𝑝(𝑓(𝑦𝑖)) ≮ 𝑝(𝑓(𝑥))] ∨ [𝑓(𝑦𝑗) < 𝑤 ∧ 𝑓(𝑦𝑖) ≮ 𝑤]

and so

𝑝(𝑓(𝑦𝑗)) < 𝑝(𝑓(𝑦𝑖)) ∨ 𝑓(𝑦𝑗) < 𝑓(𝑦𝑖)

holds. Hence 𝑖 < 𝑗 implies 𝑝(𝑓(𝑦𝑗)) < 𝑝(𝑓(𝑦𝑖)) ∨ 𝑓(𝑦𝑗) < 𝑓(𝑦𝑖). Since 𝑝[Clk] is a
subset of 𝜔, the sequence {𝑓(𝑦𝑖) ∶ 𝑖 < 𝜔} contains an infinite strictly decreasing
subsequence of ordinals: contradiction.

So 𝐵 ∩ ⟨𝑡, 𝑡⟩ is ITTM-finite for all 𝑡 ∈ Won: 𝐵 is regular.
It remains to be proved that𝐴 ≡ITTM 𝐵. BecauseClk is decidable and𝐴 ⊆ Clk,

it suffices to show that 𝐴 and Clk ⧵ 𝐴 are semi-decidable in 𝐵. Then 𝐴 can be
reduced to 𝐵 by, given 𝑧, rejecting if 𝑧 does not code a clockable ordinal, or if
it does code a clockable ordinal but is not its canonical code. (Recall that, if
𝑥 codes a writable ordinal, its canonical code is computable in 𝑥.) Finally, if
𝑧 is a canonical code for a clockable ordinal 𝛼, either 𝛼 ∈ 𝐴 = dom {𝑒}𝐵 or
𝛼 ∈ Clk ⧵ 𝐴 = dom {𝑒′}𝐵, and this can be decided by simultaneously simulating
both {𝑒}𝐵(𝑧) and {𝑒′}𝐵(𝑧): one of them must halt.

We first prove that Clk ⧵ 𝐴 is semi-decidable in 𝐵. Assuming 𝑧 ∈ 𝐴 ⧵ 𝑓[𝑥]
and ⟨𝑧 + 1, 𝑥⟩ ∉ 𝐵 for some 𝑥 ∈ Clk, we find (by substituting 𝑦 = 𝑓−1(𝑧) in the
definition of 𝐵) that 𝑝(𝑧) ≥ 𝑝(𝑓(𝑥)) holds. Hence

𝑝(𝑧) < 𝑝(𝑓(𝑥)) ∧ ⟨𝑧 + 1, 𝑥⟩ ∉ 𝐵 → 𝑧 ∉ 𝐴 ⧵ 𝑓[𝑥]

holds, and so, for all 𝑧 ∈ Clk the right-to-left-direction of

𝑧 ∉ 𝐴 ↔ (∃𝑥 ∈ Clk) 𝑝(𝑧) < 𝑝(𝑓(𝑥)) ∧ ⟨𝑧 + 1, 𝑥⟩ ∉ 𝐵 ∧ 𝑧 ∉ 𝑓[𝑥] (3.1)

holds. The other direction: given 𝑧, there is a 𝑦0 with (∀𝑥 > 𝑦0) 𝑝(𝑧) < 𝑝(𝑓(𝑥))
since 𝑝(𝑧) < 𝜔, and then the 𝑥with 𝑝(𝑓(𝑥)) = min {𝑝(𝑓(𝑥′)) ∶ 𝑥′ > 𝑦0} satisfies
𝑝(𝑧) < 𝑝(𝑓(𝑥))∧(∀𝑦 > 𝑥) 𝑝(𝑓(𝑦)) ≮ 𝑝(𝑓(𝑥)), so𝑝(𝑧) < 𝑝(𝑓(𝑥))∧⟨𝑧+1, 𝑥0⟩ ∉ 𝐵.

From (3.1) and the fact that ITTMs can generate Clk, the semi-decidability of
Clk⧵𝐴 in 𝐵 follows: given 𝑧, if 𝑝(𝑧) halts then search for a clockable 𝑥 satisfying
the right-hand side of (3.1), which is for each clockable 𝑥 computable in 𝐵. Halt
if such an 𝑥 is found. (This procedure does not halt if and only if either 𝑝(𝑧)
does not halt—which is equivalent with 𝑧 ∉ Clk—or 𝑧 ∈ Clk and no such 𝑥 is
found, from which 𝑧 ∈ 𝐴 follows.)

Since 𝐴 itself is semi-decidable, it is trivially semi-decidable in 𝐵. So we may
from the above conclude 𝐴 ⩽ITTM 𝐵.

To finish the proof, we must show that 𝐵 ⩽ITTM 𝐴. A reduction machine
works as follows: given a real 𝑧, it reject if it does not code an ordinal. If it does
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code an ordinal 𝛼, it can use this code to obtain—not necessarily canonical—
codes for all 𝛽, 𝛾 ≤ 𝛼, and can thus search for codes for 𝛽, 𝛾 ≤ 𝛼 so that the order
type of ⟨𝛽, 𝛾⟩, for which a not necessarily canonical code can be computed in
terms of codes for 𝛽, 𝛾 (lemma A.7), is 𝛼. Codes for such 𝛽, 𝛾 ≤ 𝛼 will always be
found since Cantor pairing is bijective andmax {𝜀, 𝛿} > 𝛼 → ⟨𝜀, 𝛿⟩ > ⟨𝛼, 𝛼⟩ ≥ 𝛼.
Once computed, the machine simulates all {𝑒}(0) for 𝛽 steps and for 𝛾 steps to
check if 𝛽, 𝛾 are clockable ordinals. If not, 𝑧 is rejected. If 𝛽, 𝛾 are clockable,
then the machine can find canonical codes 𝑤, 𝑥 for 𝛽 and 𝛾. At this point, it is
also clear that ⟨𝛽, 𝛾⟩ is writable, so its canonical code can safely be computed
and if this is not 𝑧, then 𝑧 is rejected. Finally, the machine has to check

(∃𝑦 ∈ Clk) 𝛾 < 𝑦 ∧ 𝑝(𝑓(𝑦)) < 𝑝(𝑓(𝛾)) ∧ 𝑓(𝑦) < 𝛽

which it can do as follows: it iterates over 𝛽 while querying 𝐴 to iterate over all
𝑦′ ∈ 𝐴 ∩ 𝛽. For each such 𝑦′, it finds the 𝑦 with 𝑓(𝑦) = 𝑦′ (which must exist)
by generating Clk. It can then check 𝛾 < 𝑦 ∧ 𝑝(𝑓(𝑦)) < 𝑝(𝑓(𝛾)) since 𝑝, 𝑓 are
computable. If this holds for any 𝑦 found, the machine accepts 𝑧, and otherwise
it rejects (because all 𝑦 with 𝑓(𝑦) < 𝛼 have been considered).

We restate the following, based on the last reduction of the proof above.

Lemma 3.23. Clk ⊗ Clk is decidable.

There are many cofinal semi-decidable subsets of Clk.

Lemma 3.24. If 𝐴 ⊆ 𝐵 ⊆ Won and 𝐵 is decidable, then 𝐴 is equivalent with some
𝐴′ ⊆ Clk. Furthermore, if 𝐴 is regular, 𝐴′ is too.

Proof. Let 𝑓 ∶ Clk → Won be a computable, order-preserving bijection, which
exists by lemma 3.20. Define 𝐴′ = 𝑓−1[𝐴]. We have 𝐴′ ⩽ITTM 𝐴 by the decidabil-
ity of Clk and the computability of 𝑓: given 𝑥, first check if 𝑥 ∈ Clk and if so,
whether 𝑓(𝑥) ∈ 𝐴.

If 𝛽 ∈ Won and 𝐴 ∩ 𝛽 is decidable, then 𝐴′ ∩ 𝑓−1(𝛽) = 𝑓−1[𝐴 ∩ 𝛽] reduces
to 𝐴 ∩ 𝛽 by a similar procedure, and hence is decidable as well. Hence, by
lemma 3.12, if 𝐴 is regular then 𝐴′ is too.

Conversely, to reduce 𝐴 to 𝐴′: given 𝑥, reject if 𝑥 ∉ 𝐵. Otherwise, 𝑥 is a
canonical code for a writable ordinal, and hence 𝑓−1(𝑥) exists and can be found
by generating Clk. Accept if and only if 𝑓−1(𝑥) ∈ 𝐴′.

Lemma 3.25. If 𝐴 ⊆ Clk then it is equivalent with a cofinal 𝐴∗ ⊆ Clk. Further-
more, if 𝐴 is regular, then 𝐴∗ is too.

Proof. By the above, we may assume without loss of generality that 𝐴 ⊆ Clk. If
𝐴 is cofinal then there is nothing to do. So assume 𝐴 is not.

Then there is an 𝛼 ∈ Won so that 𝐴∩𝛼 = 𝐴. Define 𝐴∗ = 𝐴∪ (Clk⧵ (𝛼+1)).
Since 𝛼 is writable and Clk is decidable, Clk ⧵ (𝛼 + 1) is decidable. Hence 𝐴
reduces to 𝐴∗: accept 𝑥 if and only if 𝑥 ∈ 𝐴∗ and 𝑥 ∉ Clk ⧵ (𝛼 + 1).

43



Likewise, 𝐴∗ can be reduced to 𝐴 by, given 𝑥, accepting if and only if 𝑥 ∈ 𝐴
or 𝑥 ∈ Clk ⧵ (𝛼 + 1).

Finally, if 𝐴 is regular then 𝐴∗ is too, since (Clk ⧵ (𝛼 + 1)) is regular and a
union of two decidable sets is decidable.

Corollary 3.26. If 𝐴 ⊆ 𝐵 ⊆ Won and 𝐵 is decidable, then 𝐴 is equivalent with
some cofinal 𝐴∗ ⊆ Clk. Furthermore, if 𝐴 is regular, then 𝐴∗ is too.

Corollary 3.27. If 𝐴 ⊆ 𝐵 ⊆ Won is semi-decidable and 𝐵 is decidable, then 𝐴 is
equivalent with a regular 𝐶 ⊆ Clk.

Proof. Combining the lemmas above: 𝐴 is equivalent with a cofinal 𝐴∗ ⊆ Clk,
which is equivalent with a regular 𝐷 ⊆ Clk ⊗ Clk, which by the decidability of
Clk ⊗ Clk is equivalent with a regular 𝐷∗ ⊆ Clk.

We now turn to simple sets.

Lemma 3.28. If 𝑋 is ITTM-finite and there is a computable injection 𝑓 and a
decidable 𝐵 ⊆ dom𝑓 ∩ Won with 𝑋 ⊆ 𝑓[𝐵], then 𝑌 = 𝑓−1[𝑋] is ITTM-finite and
𝑌 ≡ITTM 𝑋.

Proof. Since 𝑋 is ITTM-finite, an ITTM can iterate over its contents, clock for
every element 𝑥 ∈ 𝑋 the unique 𝑦 ∈ 𝐵 ⊆ Won with 𝑓(𝑦) = 𝑥, and then halt. It
follows that 𝛽 = sup𝑌 < Γ, so it suffices to show 𝑌 ≡ITTM 𝑋.

𝑋 reduces to 𝑌 by, given a real 𝑧, iterating over all elements 𝑏 of 𝐵 that are
ordinals below 𝛽 (formally, iterating over all predecessors 𝑏 of 𝛽 and checking if
they are in the decidable 𝐵) and seeing if 𝑓(𝑏) = 𝑧.

𝑌 reduces to 𝑋 by, given a real 𝑧, rejecting if 𝑧 ∉ 𝐵 and otherwise computing
𝑓(𝑧) and checking 𝑓(𝑧) ∈ 𝑋.

Lemma 3.29. If 𝐴 ⊆ Clk is regular and undecidable, it is equivalent with a
regular, simple set.

Proof. We mostly follow the proof of the original theorem 3.6. Let 𝐴 be regular
and undecidable. All 𝐴 ∩ 𝛽, 𝛽 ∈ Won are decidable by the regularity of 𝐴, so by
its undecidability 𝐴must be cofinal in Won. Hence (corollary 3.21) there is a
computable bijection 𝑓 ∶ Clk → 𝐴. Define

𝑆 = {𝛼 ∈ Clk ∶ (∃𝛽 ∈ Clk) 𝛽 > 𝛼 ∧ 𝑓(𝛽) < 𝑓(𝛼)}

which is semi-decidable since Clk can be generated.
That 𝑆 is regular follows from the observation (cf. [18, lemma 4.1]) that for

all 𝛿 ∈ Won, 𝑔(𝛿) = 𝑓−1(min𝑓[Clk ⧵ 𝛿]) is writable and

𝛼 ∈ 𝑆 ∩ 𝛿 ↔ 𝛼 ∈ Clk ∧ 𝛼 < 𝛿 ∧ (∃𝛽 ∈ Clk) 𝛼 < 𝛽 ≤ 𝑔(𝛿) ∧ 𝑓(𝛽) < 𝑓(𝛼)

holds: if there is a 𝛽 > 𝑔(𝛿) with 𝑓(𝛽) < 𝑓(𝛼), then 𝛽 = 𝑔(𝛿) suffices as well
since (∀𝛽′ > 𝑔(𝛿)) 𝑓(𝛽′) > 𝑓(𝑔(𝛿)).
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𝑆 reduces to 𝐴 since

𝛼 ∈ 𝑆 ↔ 𝛼 ∈ Clk ∧ (𝑓(𝛼) ∩ 𝐴 ⧵ 𝑓[𝛼]) ≠ ∅,

and Clk, 𝑓(𝛼), 𝑓[𝛼] are all decidable for clockable 𝛼. Given 𝛼, the 𝛽 > 𝛼with the
smallest 𝑓(𝛽) lies outside 𝑆, so 𝑆 is cocofinal.

If 𝛼 ∈ Clk ⧵ 𝑆 and 𝛽 < 𝑓(𝛼), then 𝛽 ∈ 𝐴 ↔ 𝛽 ∈ 𝑓[𝛼]. Such an 𝛼 can be
found for every 𝛽: 𝑓[Clk ⧵ 𝑆] is cofinal in Clk since 𝐴 = 𝑓[Clk] is regular and
Clk⧵𝑆 is cofinal. (If 𝑋 = 𝑓[Clk⧵𝑆] ⊆ 𝐴were bounded, then it were ITTM-finite
by the regularity of 𝐴, and by the lemma above Clk ⧵ 𝑆 would be ITTM-finite.)
It follows that 𝐴 reduces to Clk ⧵ 𝑆, and thus to 𝑆.

Similarly, if Clk ⧵ 𝑆 were to contain a cofinal semi-decidable set 𝑌 ′, then
𝑋 = 𝑓[𝑌 ′] would have to be cofinal in Clk as well: otherwise, by regularity of
𝐴, 𝑌 = 𝐴 ∩ (sup𝑌 ′ + 1) would be ITTM-finite, and thus 𝑓−1[𝑌] ⊇ 𝑋 would
be ITTM-finite. But then one could, as above, find a suitable 𝛼 for every 𝛽 by
generating 𝑌 ′, making𝐴 decidable. SoClk⧵𝑆 contains no cofinal semi-decidable
sets.

Corollary 3.30. If 𝐴 ⊆ 𝐵 ⊆ Won, 𝐴 is undecidable and semi-decidable, and 𝐵 is
decidable, then 𝐴 is equivalent with a regular simple set.

So, as ℎ = {𝑒 ∶ {𝑒}(0)↓} ⊆ Clk is undecidable and semi-decidable, we find:

Corollary 3.31. The ITTM-semi-decidable degrees contain a complete infinite
binary tree. In particular, there are infinitely many semi-decidable degrees.

3.3.4 Outside of Won

The above results can be transferred to well-behaved sets of writable reals.

Lemma 3.32. If 𝑋 ⊆ 𝑌 ⊆ Wrr is semi-decidable and 𝑌 is decidable, then 𝑋 is
equivalent with an 𝐴 ⊆ 𝜔⊗ Clk ⊆ Clk ⊗ Clk.

Proof. Define9

𝐴 = {⟨𝑒, 𝛼⟩ ∶ 𝑒 ∈ 𝜔 ∧ 𝛼 ∈ Clk ∧ (∃𝑥 ∈ 𝑋) {𝑒}𝛼(0) = 𝑥}.

Since Clk ⊗ Clk is decidable and hence 𝜔⊗ Clk is decidable (𝜔 is writable), 𝐶
reduces to 𝑋 by rejecting inputs outside of 𝜔⊗Clk, and on inputs ⟨𝑒, 𝛼⟩with 𝑒, 𝛼
canonical codes accepting if {𝑒}𝛼(0) ∈ 𝑋 and otherwise rejecting.

For 𝑋 ⩽ITTM 𝐴: given a real 𝑥, reject if it lies outside 𝑌. Otherwise, 𝑥 is a
writable real, and thus an 𝑒 < 𝜔 and 𝛼 ∈ Clk with {𝑒}𝛼(0) = 𝑥must exist and
therefore can be computed. Accept if and only if ⟨𝑒, 𝛼⟩ ∈ 𝐴.

From lemma 3.27 and lemma 3.30 we thus obtain the following.
9Ordering the pairs ⟨𝑒, 𝛼⟩ first on the first coordinate and then on the second, one can also find

a set𝐴 ≡ITTM 𝑋 so that for every 𝑥 ∈ 𝑋 there is exactly one pair ⟨𝑒, 𝛼⟩ ∈ 𝐴 with {𝑒}𝛼(0) = 𝑥.
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Corollary 3.33. If 𝐴 ⊆ 𝐵 ⊆ Wrr be semi-decidable and 𝐵 decidable, then 𝐴 is
equivalent with a regular set. If 𝐴 is undecidable as well, then it is equivalent with
a regular simple set.

Corollary 3.34. If 𝑋 ⊆ 𝑌 ⊆ Wrr is undecidable and semi-decidable, and 𝑌 is
decidable, then there are 𝑃,𝑄 ⩽ITTM 𝑋 so that 𝑋, 𝑃 
ITTM 𝑄 and 𝑋,𝑄 
ITTM 𝑃.

From the splitting theorem for TMs, one can conclude that there is no
minimal TM-semi-decidable degree, apart from the degree of the TM-decidable
sets. The same cannot be concluded here.

Question 1. Are there non-trivial minimal ITTM-semi-decidable degrees?

To answer this question negatively, it would suffice for there to exist for every
undecidable semi-decidable 𝑍 ⊆ Wrr a semi-decidable 𝑋 ⊆ 𝑌 ⊆ Wrr so that 𝑌
is decidable and 𝑍 ≡ITTM 𝑋, though we would not expect this to be true, as a.o.
Wrr is undecidable (corollary A.6).

3.4 For OTMs: an open question

Can a splitting theorem be proved for OTMs? We do not know. A variant of
Dekker’s theorem can be proved.

Definition 3.35. A class is OTM-simple if it is cocofinal in On and intersects
all unbounded OTM-semi-decidable classes.

Lemma 3.36. Every undecidable OTM-semi-decidable class is equivalent with an
OTM-simple class.

Proof sketch. Let 𝐴 be undecidable and OTM-semi-decidable. By [10, lemma
4.2] and [10, theorem 6.2], there is (up to coding) an OTM-computable bijective
𝐺 ∶ On → 𝐿.

As in the proof of [18, theoremVII.4.2], define 𝐴∗ = {𝛼 ∶ 𝐺(𝛼)∩𝐴 ≠ ∅}. We
have 𝐴∗ ≡OTM 𝐴. Since 𝐴 is nonempty, there are unboundedly many definable
sets that intersect 𝐴, hence 𝐴∗ is cofinal.

So we may assume without loss of generality that 𝐴 is cofinal. Then there is
a computable bijective 𝐹 ∶ On → 𝐴 by a similar proof as for lemma 3.19. Now
define

𝑆 = {𝛼 ∶ (∃𝛽 > 𝛼) 𝐹(𝛽) < 𝐹(𝛼)}

and follow the proof of Dekker’s theorem for TMs. It is OTM-semi-decidable
since OTMs can iterate over the ordinals. It is cocofinal since for every 𝛼, the
𝛽 > 𝛼 with least 𝐹(𝛽) lies outside 𝑆. Since 𝛼 ∈ 𝑆 ↔ 𝐴 ⧵ 𝐹[𝛼] ≠ ∅ holds, 𝑆
reduces to 𝐴.

Assuming 𝛼 ∉ 𝑆 and 𝛽 < 𝐹(𝛼), we have 𝛽 ∈ 𝐴 ↔ 𝛽 ∈ 𝐹[𝛼]. Since 𝑆 is
unbounded, 𝐹 is bijective and 𝐴, 𝐹 are Σ1-definable (“there exists a computation
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such that...”), 𝐹[𝑆]must be unbounded: if it had a bound 𝛿, then 𝛿 ∩ 𝐴 = {𝛼 <
𝛽 ∶ 𝐹(𝛼)↓} and consequently {𝛼 ∈ 𝐴 ∩ 𝛿 ∶ 𝛼 ∈ 𝐹−1[𝑆]} ⊇ 𝑆 would be an
unbounded set. Hence, 𝐴 reduces to 𝑆 by finding for every 𝛽 an 𝛼 ∉ 𝑆 with
𝛽 < 𝐹(𝛼).

If there were an unbounded OTM-semi-decidable 𝑋 that did not intersect 𝑆,
then, by similar reasoning as above, 𝐹[𝑋] would be unbounded, and 𝐴 could be
decided by, given 𝛽, finding an 𝛼 ∈ 𝑋 with 𝛽 < 𝐹(𝛼) by generating 𝑋.

However, did not find a way to prove a bounded injury lemma. In the proofs
so far, to see that all 𝑊𝑖 are bounded, the simplicity of 𝐷 is used: if 𝑊𝑖 ∩ 𝐷 is
empty, then𝑊𝑖 is a subset of 𝐷, which, because 𝐷 is simple, cannot contain any
unbounded semi-decidable subsets.

The usual proof that𝑊𝑖 is semi-decidable—assuming by induction that the
𝑊𝑗, 𝑗 < 𝑖 have settled in some stage 𝛼, then finding a stage 𝛽 > 𝛼 in which all
elements of 𝐶 below the restraints of the𝑊𝑗 have entered 𝐴𝛽 ∪ 𝐵𝛽, making𝑊𝑖
semi-decidable in the parameter 𝛽—does not work, as OTMs are parameter-free
machines: only countably many ordinals are “OTM-writable”.10

3.5 For p-OTMs

For ordinal machines with parameters, the issues discussed for OTMs above
evaporate. We sketch a proof. From hereon, computable, semi-decidable etc.
are all understood to imply the p-OTM-variant of the definitions.

Definition 3.37. A class of ordinals is p-OTM-finite if it is bounded and p-OTM-
decidable. Equivalently, by [12, theorem 12], if it is an element of 𝐿.

Definition 3.38. A class is p-OTM-simple if it is semi-decidable, cocofinal in
the ordinals, and intersects every unbounded semi-decidable class.

For every p-OTM-semi-decidable class 𝐴 there is a partial p-OTM-compu-
table surjective and injective 𝐹 ∶ On → 𝐴 whose domain is either On or an
ordinal 𝛼. This is constructed in a similar way as in lemma 3.1911 (and mirrors
the situation in computability theory, where semi-decidability is equivalent with
being computably enumerable). Furthermore, if 𝐴 is undecidable, then 𝐴must
be unbounded: it if had a bound 𝛽 then it would be an element of 𝐿, since 𝐴 is
defined in terms of a machine 𝜀 (cf. section 1.5). In particular, all simple classes
are unbounded.

10Call an ordinal 𝛼 OTM-writable if there is an OTM that, started on input 0, halts with only a
1 in the 𝛼th cell of the (output) tape. There are countably many machines, the OTM-writable
ordinals form a set and are hence bounded. They are closed under addition, multiplication, and
exponentiation. It might be interesting to attempt to prove some splitting theorem within the
OTM-writable ordinals,

11Here, it is surjective because every approximation {𝛼 < 𝛽 ∶ {𝜀}𝛽(𝛼)↓} is bounded.
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Lemma 3.39 (Dekker for p-OTMs). Every undecidable semi-decidable class is
equivalent with a simple class.

Proof sketch. By the above, 𝐴 is unbounded, and there is a computable bijective
class function 𝐹 ∶ On → 𝐴. Define the semi-decidable class 𝑆 by

𝛼 ∈ 𝑆 ↔ (∃𝛽 > 𝛼) 𝐹(𝛽) < 𝐹(𝛼).

𝑆 is unbounded and reduces to 𝐴 by the usual Dekker argument.
If 𝛼 ∉ 𝑆 and 𝛽 < 𝐹(𝛼), then 𝛽 ∈ 𝐴 ↔ 𝛽 ∈ 𝐹[𝛼]. Since 𝑆 is unbounded (and

𝐹 is Σ1-definable with parameters over 𝐿), 𝐹[𝑆]must be a proper unbounded
class, and 𝐴 reduces to 𝑆 by the same reasoning as in the proof of theorem 3.6.
Similarly, if 𝑆 were to contain an unbounded semi-decidable class then 𝐴 could
be computed by enumerating that class, contradicting that𝐴 is undecidable.

Theorem 3.40. If 𝐶 is semi-decidable and 𝐷 is OTM-simple with parameters,
then 𝐶 is the union of disjoint, semi-decidable 𝐴, 𝐵 which 𝐷 does not reduce to.

Proof. The requirements are

{𝜀}𝐴 ≠ 𝐷 (𝑅𝐴
𝜀 )

{𝜀}𝐵 ≠ 𝐷 (𝑅𝐵
𝜀 )

𝜀 ∈ 𝐶 ↔ 𝜀 ∈ 𝐴 ∪ 𝐵 (𝑅𝐶𝜀 )

and the (𝑅𝐴
𝜀 ), (𝑅𝐵

𝜀 ) are computably ordered {𝑅𝜀 ∶ 𝜀 ∈ On}. The construction of
𝐴𝛼, 𝐵𝛼 is done as in algorithm 6, with the only difference that in stage 𝜎 only
requirements {𝑅𝑖 ∶ 𝑖 < 𝜎} are considered.

Lemma 3.41 (Bounded injury). All requirements settle: for each 𝑅𝑖 there is an 𝛼
such that 𝑅𝑖 is never injured after stage 𝛼, and𝑊𝑖 = ⋃𝛼<𝛽𝑊𝑖,𝛽 is p-OTM-finite.

Proof. Note that if 𝑊𝑖 exists, then it is definable by the formula Φ(𝑖, 𝑤) given by

(∃𝛼)(∀𝛽 > 𝛼) 𝑃𝑖(𝛽) ∧ 𝑤 ∈ 𝑊𝑖,𝛽

where 𝑃𝑖(𝛽) is a formula describing that 𝑅𝑖 is not injured in stage 𝛽, which can be
written in terms of machines enumerating 𝐶,𝐷 and a formal description of the
construction, and𝑊𝑖,𝛽 can be defined in those parameters as well. Similarly, if
the stage 𝛼(𝑖) in which𝑅𝑖 settles exists, it is defined by a formula with parameters.

Hence, by induction: if all 𝑅𝛽, 𝛽 < 𝑖 settle, then they have all settled at stage
𝛼 = sup {𝛾 ∶ (∃𝛽 < 𝑖) 𝛾 = 𝛼(𝛽)}. Now conclude as before (the collection of
first appearances of elements in the segment of 𝐶 below the 𝑟𝑖 is a set and hence
bounded) that there is a stage beyond stage 𝛼 after which 𝑅𝑖 is never injured,
hence𝑊𝑖 must exist, and it must be bounded (lest it is a cofinal semi-decidable
subclass of 𝐷) and so an element of 𝐿, since it is bounded and semi-decidable.
(As seen before, all undecidable semi-decidables are unbounded.)
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Lemma 3.42 (Reflection). If {𝑒}𝐴(𝑤) = 0 then there is some 𝛼with {𝑒}𝐴𝛼
𝛼 (𝑤) = 0,

and similarly for 𝐵.

Proof. Consider the positive queries 𝑄made in {𝑒}𝐴(𝑤) = 0. Because 𝐴 is semi-
decidable and the computation has an ordinal length, putting a bound on the
queries, 𝑄 is a set. Then the collection of individual first stages of appearance of
the elements of 𝑄 in 𝐴 is a set as well, and so it has a supremum.

Now the proof can be completed as before.

Corollary 3.43. If 𝐶 is a semi-decidable degree that is not the degree of decidable
classes, it can be split into two incomparable semi-decidable degrees whose least
upper bound is 𝐶.

Corollary 3.44. The class of semi-decidable degrees contains a complete binary
tree.

Corollary 3.45. The class of semi-decidable degrees without the degree of the
decidable classes has no minimum.

There is a proof for the splitting theorem in α-recursion theory by Shore [20]
which we believe can be adapted to p-α-machines as they are a machine model
for α-recursion theory, but we have not checked. In the case of α-machines, we
do not know whether a splitting theorem holds, cf. section 3.4.
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Chapter 4

The thickness lemma

The priority arguments discussed thus far are known as finite injury arguments,
because (in theTM case) each requirement is proved to be injured atmost finitely
often. Infinite injury arguments do not involve a injury lemma. Instead, it is
proved that for each requirement, the set of injuries sustained is of low degree.

In this chapterwe discuss the thickness lemma, which is proved by an infinite
injury argument. Soare proved [23, section 3] that a strengthened version of
the thickness lemma (obtained by technical modifications of the proof below)
implies other infinite injury results, among which the density theorem, stating
that between two semi-decidable degrees there is another semi-decidable degree.

First, we discuss a proof of the thickness lemma for Turing machines. We
then show that a naive translation to transfinite computability theory does not
hold for any of the transfinite machinemodels discussed. Amodified translation
is then proved for certain ITTM-semi-decidable sets of low degree. Finally, we
briefly sketch a thickness lemma for p-OTMs.

4.1 For Turing machines

The thickness lemma is generally attributed to Shoenfield, though the current
presentation and the proof below are based on the work of Soare [23, section 2]
and Odifreddi [14, section X.3].

Definition 4.1. 𝐴 ⊆ 𝐵 is a thick subset of 𝐵 if 𝐵[𝑒] ⧵ 𝐴[𝑒] is finite for all 𝑒 < 𝜔.

Theorem 4.2 (Thickness lemma, Shoenfield). If 𝐵, 𝐶 are semi-decidable, 𝐶 is
undecidable and does not reduce to 𝐵[<𝑒] for any 𝑒 < 𝜔, then there is a semi-
decidable thick subset 𝐴 of 𝐵 that 𝐶 does not reduce to.

Making sure to only add elements of 𝐵 to 𝐴, the requirements are

{𝑒}𝐴 ≠ 𝐶 (𝑁𝑒)

𝐵[𝑒] ⧵ 𝐴[𝑒] is finite (𝑃𝑒)
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prioritized (𝑁0) < (𝑃0) < (𝑁1) < (𝑃1) < … so that (𝑁0) has highest priority.
The idea is for requirements (𝑁𝑒) to find and try to preserve a computation

{𝑒}𝐴𝑠
𝑠 (𝑤) = 0 with 𝑤 ∈ 𝐶𝑠, and for requirements (𝑃𝑒) to add to 𝐴𝑠 all elements of

𝐵[𝑒]𝑠 unrestrained by the (𝑁𝑒′) of higher priority.
Because 𝐵 is generally undecidable and its columns infinite, the number of

stages in which new elements of 𝐵[𝑒] are discovered can be infinite, and hence
it is generally impossible to keep the injuries finite. This is where the infinite
injury argument comes in.

Simultaneously define

𝑢(𝑒, 𝑥, 𝑠) = {
sup {𝑦 ∶ 𝑦 is queried in {𝑒}𝐴𝑠

𝑠 (𝑥)} if {𝑒}𝐴𝑠
𝑠 (𝑥) halts;

0 otherwise.

𝑙(𝑒, 𝑠) = sup {𝑥 < 𝑠 ∶ (∀𝑦 < 𝑥) 𝐶𝑠(𝑦) = {𝑒}𝐴𝑠
𝑠 (𝑦)};

𝑟(𝑒, 𝑠) = sup {𝑢(𝑒, 𝑥, 𝑠) + 1 ∶ 𝑥 ≤ 𝑙(𝑒, 𝑠)};

respectively the use, length of agreement, and restraint functions. In the above,
𝐶𝑠 is identified with the characteristic function of 𝐶𝑠, an 𝑠-step approximation
of 𝐶. The approximations 𝐴𝑠 of 𝐴 depend on the functions just defined, so they
are defined recursively in terms of each other. Likewise, define

𝑎𝑠 = {
min(𝐴𝑠 ⧵ 𝐴𝑠−1) if 𝐴𝑠 ⧵ 𝐴𝑠−1 ≠ 0;
sup𝐴𝑠 ∪ 𝑠 otherwise;

the recursively defined machine transformation ̂⋅ by

{ ̂𝑒}𝐴𝑠
𝑠 (𝑥) = {

{𝑒}𝐴𝑠
𝑠 (𝑥) if 𝑢(𝑒, 𝑥, 𝑠) < 𝑎𝑠;

↑ otherwise;

and finally

̂𝑢(𝑒, 𝑥, 𝑠) = 𝑢( ̂𝑒, 𝑥, 𝑠); ̂𝑙(𝑒, 𝑠) = 𝑙( ̂𝑒, 𝑠); ̂𝑟(𝑒, 𝑠) = 𝑟( ̂𝑒, 𝑠).

The approximations 𝐴𝑠 of 𝐴 are then defined by

𝐴0 = ∅;

𝐴𝑠+1 = 𝐴𝑠 ∪⋃
𝑒<𝑠

𝐵[𝑒]𝑠+1 ⧵ �̂�(𝑒 + 1, 𝑠), (4.1)

with �̂�(𝑒, 𝑠) = sup𝑑<𝑒 ̂𝑟(𝑑, 𝑠). The idea is that the restraint put on (𝑃𝑒) is given
by �̂�(𝑒 + 1, 𝑠), the restraints of the higher priority (𝑁𝑒′), 𝑒′ < 𝑒. The individual
restraints 𝑟(𝑒, 𝑠) themselves aim to preserve the computations {𝑒}𝐴𝑠

𝑠 (𝑦) for all
𝑦 ≤ 𝑙(𝑒, 𝑠), which includes the first point where 𝐶𝑠 and {𝑒}

𝐴𝑠
𝑠 disagree, if there is
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one. Soare’s “hat trick” is used to make restraints drop frequently,12 providing
windows of opportunity for the (𝑃𝑒) to add elements to 𝐴.

We leave it to the reader to prove that the definitions above lead to a stages-
based algorithm similar to algorithm 1.

Definition 4.3. Stage 𝑠 < 𝜔 is a true stage if 𝐴𝑠 ∩ 𝑎𝑠 = 𝐴 ∩ 𝑎𝑠.

Such stages are called true because all halting computation are preserved:
if { ̂𝑒}𝐴𝑠

𝑠 (𝑥) halts for some true stage 𝑠, then for all true 𝑠′ > 𝑠 we have (since
necessarily 𝑎𝑠′ > 𝑎𝑠) that { ̂𝑒}

𝐴𝑠
𝑠 (𝑥) = { ̂𝑒}𝐴𝑠′

𝑠′ (𝑥) = {𝑒}𝐴(𝑥) holds. Furthermore,
every halting computation {𝑒}𝐴(𝑥) is reflected in all true stages 𝑠 for which 𝑎𝑠 is
greater than the positive queries made in {𝑒}𝐴(𝑥). Since {𝑎𝑠 ∶ 𝑠 ∈ 𝜔} is cofinal
in 𝜔, such stages always exist.

Lemma 4.4. The set 𝑇 of true stages is cofinal in 𝜔.

Proof. For any 𝑠, the first stage 𝑡 > 𝑠with the least𝑎𝑡 satisfies𝐴𝑡∩𝑎𝑡 = 𝐴∩𝑎𝑡.

The rest of the proof relies on two key lemmas. Define the injury sets and
their approximations

̂𝐼𝑒 = {𝑥 ∶ (∃𝑠) 𝑥 < ̂𝑟(𝑒, 𝑠) ∧ 𝑥 ∈ 𝐴𝑠+1 ⧵ 𝐴𝑠}
̂𝐼𝑒,𝑠 = {𝑥 ∶ (∃𝑡 ≤ 𝑠) 𝑥 < ̂𝑟(𝑒, 𝑡) ∧ 𝑥 ∈ 𝐴𝑡+1 ⧵ 𝐴𝑡}.

(4.2)

For each 𝑒, the set ̂𝐼𝑒 contains the elements 𝑥 that are added to 𝐴 while being
restrained by (𝑁𝑒), so these are the elements that injure (𝑁𝑒).

The rest of the proof relies on two key lemmas.

Lemma 4.5 (Injury lemma, Soare). If 𝐶 
TM ̂𝐼𝑒 then 𝐶 ≠ {𝑒}𝐴.

Lemma 4.6 (Window lemma, Soare). If 𝐶 ≠ {𝑒}𝐴 then lim𝑡∈𝑇 ̂𝑟(𝑒, 𝑡) < 𝜔 exists.

The injury lemma provides a way to prove that requirements (𝑁𝑒) are sat-
isfied, and the window lemma states that the satisfaction of all (𝑁𝑒′), 𝑒′ ≤ 𝑒
implies the satisfaction of (𝑃𝑒): if �̂�𝑒 = lim inf𝑠<𝜔 �̂�(𝑒, 𝑠) exists, all elements of
𝐵[𝑒] above �̂�𝑒 are eventually added to 𝐴, making 𝐵[𝑒] ⧵ 𝐴[𝑒] = �̂�𝑒 finite.

Proof of the injury lemma. We prove the contrapositive. Assume 𝐶 = {𝑒}𝐴.
Then lim𝑠<𝜔 𝑙(𝑒, 𝑠) = 𝜔 and 𝐶 can be reduced to ̂𝐼𝑒 as follows. Given 𝑥, it
suffices to find a stage 𝑠 such that {𝑒}𝐴𝑠

𝑠 (𝑥) = {𝑒}𝐴(𝑥). (That 𝑠 exists follows from
an observation similar to the reflection lemmas seen before.) Such states are
characterized by

𝑥 < 𝑙(𝑒, 𝑠) ∧ {𝑒}𝐴𝑠
𝑠 (𝑥)↓ ∧ (∀𝑦 ≤ 𝑢(𝑒, 𝑥, 𝑠)) 𝑦 ∉ ̂𝐼𝑒 ⧵ 𝐴𝑠

12Frequently, in the sense that the hat trick—so aptly named by Odifreddi [14, p. 478]—makes
a requirement drop its restraint if an element below its restraint is added to𝐴, even if this added
element does not impact any of the actual computations it is trying to preserve (even if the length
of agreement does not drop).
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since then the computation {𝑒}𝐴𝑠
𝑠 (𝑥) halts and will not be injured in stages 𝑡 > 𝑠.

So 𝐶 can be reduced to ̂𝐼𝑒.

The proof of the window lemma relies on the true stages.

Proof of window lemma. Assume 𝐶 ≠ {𝑒}𝐴. Let 𝑥 be the least with 𝐶(𝑥) ≠ {𝑒}𝐴

and let 𝑡 be a true stage in which { ̂𝑒}𝐴𝑡
𝑡 (𝑦) = {𝑒}𝐴(𝑦) holds for all 𝑦 < 𝑥. (For

example, the first true stage after the first stage in which all positive queries
made in the halting computations {𝑒}𝐴(𝑦) have entered 𝐴.)

As noted before, all true stages 𝑡′ > 𝑡must then preserve these computations:
{ ̂𝑒}𝐴𝑡

𝑡′ (𝑦) = { ̂𝑒}𝐴𝑡
𝑡 (𝑦) = {𝑒}𝐴(𝑦) holds for all 𝑦 < 𝑥.

If {𝑒}𝐴(𝑥) does not halt, then { ̂𝑒}𝐴(𝑥) never halts in any true stage (by the
preservation property), and so we find ̂𝑟(𝑒, 𝑡′) = ̂𝑟(𝑒, 𝑡) for all true 𝑡′ > 𝑡.

If {𝑒}𝐴(𝑥) does halt, then find similarly a true stage 𝑠 > 𝑡 which reflects this.
By same reasoning as above, { ̂𝑒}𝐴(𝑥 + 1) never halts in any true stage, and thus
̂𝑟(𝑒, 𝑠) = ̂𝑟(𝑒, 𝑠′) for all true 𝑠′ > 𝑠.

Proof of the thickness lemma. Let 𝐵, 𝐶 be semi-decidable, such that 𝐶 is incom-
putable and does not reduce to 𝐵[<𝑒] for any 𝑒 < 𝜔. We show by induction that
𝐴 = ∪𝑠<𝜔𝐴𝑠 defined as in (4.1) satisfies all requirements.

Assume all requirements below (𝑁𝑒) are satisfied. Then in particular, for all
𝑒′ < 𝑒, (𝑃𝑒′) is satisfied, 𝐵[𝑒

′] ⧵ 𝐴[𝑒′] is finite, and thus 𝐵[<𝑒] ⧵ 𝐴[<𝑒] is finite. It
follows (because of 𝐵[<𝑒] ⊆ 𝐴[<𝑒] and the finite difference, which can be coded
in a reduction machine) that 𝐴[<𝑒] reduces to 𝐵[<𝑒]. (𝑁𝑒) can only be injured
by the (𝑃𝑒′), which only add elements to the 𝑒th section of 𝐴, and so ̂𝐼𝑒 ⊆ 𝐴[<𝑒]
holds. It follows that ̂𝐼𝑒 reduces to 𝐴[<𝑒]: given 𝑥, check whether 𝑥 ∈ 𝐴[<𝑒] and if
so, run the construction until 𝑥 is added to some𝐴𝑠 and check whether it injures
(𝑁𝑒) in stage 𝑠, cf. (4.2). Hence ̂𝐼𝑒 ⩽TM 𝐵[<𝑒], and the injury lemma together
with 𝐶 
TM 𝐵[<𝑒] proves that (𝑁𝑒) is satisfied.

Now assume that all requirements below (𝑃𝑒) are satisfied. Then for all 𝑒′ ≤ 𝑒
we have that (𝑁𝑒′) is satisfied, and by the window lemma lim𝑡∈𝑇 ̂𝑟(𝑒′, 𝑡) exists.
Thus (since 𝑇 is unbounded) we find lim inf𝑠<𝜔 �̂�(𝑒 + 1, 𝑠) < 𝜔, from which it
follows that (𝑃𝑒) is satisfied.

By altering the definition of ̂𝑙, stronger versions can be obtained, such as

Theorem 4.7 (Strong thickness lemma, Shoenfield, [14, theorem X.3.9]). If 𝐵, 𝐶
are semi-decidable, 𝐶 is undecidable and does not reduce to 𝐵[<𝑒] for any 𝑒 < 𝜔,
then there is a thick subset 𝐴 ⩽TM 𝐵 of 𝐵 that 𝐶 does not reduce to.

4.2 Transfinite thickness lemmas

Classically, the thickness lemma shows that one can find a subset 𝐴 ⊆ 𝐵 where
all column differences are finite. In the proof above, this partly hinges on the set
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of queries made in computations being finite, from which it follows that �̂�(𝑒, 𝑠)
is always finite. This fails in the transfinite setting.

So the classical proof of the thickness lemma cannot be used to prove a
thickness lemma for transfinite computability, where column differences are
kept finite. In fact, no such proof exists.

Theorem 4.8 (Failure of the transfinite thickness lemmawith finite differences).
There are ITTM-semi-decidable sets 𝐵, 𝐶 such that 𝐶 is un-ITTTM-decidable, does
not ITTM-reduce to any 𝐵[<𝑒], 𝑒 < 𝜔, and yet ITTM-reduces to all thick subsets
𝐴 ⊆ 𝐵.

Proof. Let 𝐶 = {𝑒 ∶ {𝑒}(0)↓} and define 𝐵 = 𝐶 ⊗ 𝜔 (writing 𝜔 for the set of
canonical codes for natural numbers). That 𝐵 is semi-decidable follows from
the fact that 𝐶 is (proposition 1.28) and that 𝜔 can be iterated over. Since 𝐶 is
undecidable (proposition 1.28), and 𝐵[<𝑒], 𝑒 < 𝜔 reduces to the finite set 𝐶 ∩ 𝑒
and is thus decidable (its contents can be encoded in the code of a machine),
𝐶 
ITTM 𝐵[<𝑒] holds for all 𝑒 < 𝜔.

Let 𝐴 be a thick subset of 𝐵. Then, by definition of 𝐵, we have

𝑒 ∈ 𝐶 ↔ (∃𝑛 < 𝜔) ⟨𝑒, 𝑛⟩ ∈ 𝐵

since 𝐵[𝑒] ⧵ 𝐴[𝑒] is finite for all 𝑒. Hence 𝐶 reduces to 𝐵 by, given 𝑥, checking
whether 𝑥 is a canonical code a natural number and if so, iterating over all 𝑛 < 𝜔
and checking ⟨𝑥, 𝑛⟩ ∈ 𝐵.

In fact, for any semi-decidable 𝐶 such that (∀𝑒 < 𝜔) 𝐶 
ITTM 𝐶 ∩ 𝑒 holds, 𝐶
reduces to all thick subsets of the semi-decidable 𝐶 ⊗𝜔. Similar arguments can
be made for the other transfinite machine models discussed.

Corollary 4.9. Let𝑀 be a transfinite machine model discussed (not 𝜔-machines).
There are 𝑀-semi-decidable sets 𝐵, 𝐶 such that 𝐶 is not 𝑀-decidable, does not
𝑀-reduce to any 𝐵[<𝑒], 𝑒 < 𝜔, yet𝑀-reduces to all thick 𝐴 ⊆ 𝐵.

However, if we instead look for subsets with small but not necessarily finite
column differences, some generalized results can be obtained. Recall that the
classical proof relies on alternating13 positive requirements (𝑃𝑒) with negative
requirements (𝑁𝑒), where each positive requirement corresponds to a column
and each negative requirement to a machine. So, in order to adapt this to
parametrized machine models, the number of columns has to be increased to
match the number of machines. For ITTMs, the number of columns can instead
be reduced to the number of machines.

13Or, at least, that both types of requirements are cofinal in the priority order.
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4.3 For ITTMs

We prove a thickness lemma for semi-decidable subsets of Won of low degree,
where instead of finite differences we consider ITTM-finite differences. In
this section, the pairing function ⟨⋅, ⋅⟩ refers to the Cantor pairing function on
ordinals. This is ITTM-computable (lemma A.7), so, in particular, pairings
of writable ordinals are writable, hence Γ = Γ ⊗ Γ. In this section, we write
semi-decidable for ITTM-semi-decidable, et cetera.

Definition 4.10. Call 𝐴 ⊆ 𝐵 an ITTM-thick subset if the differences 𝐵[𝛼] ⧵ 𝐴[𝛼]
are ITTM-finite for all 𝛼 < Γ.

In the classical proof, we use (in the proof of the window lemma) that sets
of queries made in halting computations {𝑒}𝐴(𝑥) are bounded. This does not
generalize to the current situation, as queries made against the weak halting
problem ℎ = {𝑒 ∶ {𝑒}(0)↓} can be unbounded in Won: a machine could query ℎ
to see which machines𝑚 halt, then simulate all halting computations {𝑚}(0),
query their outputs, and then halt.

This proves

Lemma 4.11. If ℎ ⩽ITTM 𝐴 then there is a machine 𝑒 and a 𝑤 ∈ Won so that
{𝑒}𝐴(𝑤) halts and the set of oracle queries made is unbounded in Won.

Conversely:

Lemma 4.12. If 𝐴 ⊆ Won is semi-decidable and there is a machine 𝑒 and a
𝑤 ∈ Won so that {𝑒}𝐴(𝑤) halts and the set of oracle queries made is unbounded
in Won, then 𝐴 ⩽ITTM ℎ.

Proof. The reduction works as follows: given 𝑥, reject if is not a canonical
code for some 𝑒 < 𝜔 (by generating Clk up to 𝜔, for example). Otherwise,
simulate {𝑚}𝐴(𝑤), which can be done in the oracle ℎ since, by proposition 1.29,
𝐴 ⩽ITTM ℎ. For every ordinal query 𝛼made in {𝑚}𝐴(𝑤), simulate {𝑒}𝛼(0). Accept
𝑥 if {𝑒}𝛼(0) halts for any 𝛼 queried. Otherwise—if the simulation of {𝑚}𝐴(𝑤)↓
has concluded {𝑒}𝛼(0) has not halted for any 𝛼 queried—reject 𝑥.

Combining the above with proposition 1.29, we find

Corollary 4.13. Let 𝐴 ⊆ Won be semi-decidable. There are machines 𝑒 and
𝑤 ∈ Won so that {𝑒}𝐴(𝑤) halts and the set of oracle queries made is unbounded
in Won if and only if 𝐴 ≡ITTM ℎ.

Corollary 4.14. Let𝐴 ⊆ Won be semi-decidable with𝐴 <ITTM ℎ and assume that
{𝑒}𝐴(𝑣) halts for all 𝑣 ≤ 𝑤 < Γ. Then the total set of oracle queries made in the
computations {𝑒}𝐴(𝑣), 𝑣 ≤ 𝑤 is bounded in Won.

Proof. Since𝑤 is writable andWon is generable in-order, there is an ITTMwhich,
on input 0 and equipped with the oracle 𝐴, simulates {𝑒}𝐴(𝑣) for all 𝑣 ≤ 𝑤 and
then halts. The result then follows from corollary 4.13.
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This observation allows us to prove the following.
Theorem 4.15. Let 𝐵, 𝐶 ⊆ Won be semi-decidable so that 𝐶 is contained in a
decidable 𝐶′ and ℎ 
ITTM 𝐵 (equivalently, 𝐵 <ITTM ℎ). If 𝐶 does not reduce to any
finite set of columns of 𝐵, then there is an ITTM-thick semi-decidable 𝐴 ⊆ 𝐵 that
𝐶 does not reduce to.

The assumption that 𝐶 does not reduce to any finite set of columns of 𝐵 is
implied by 𝐶 not reducing to any 𝐵[<𝛼], 𝛼 ∈ Won.

Proof. There are requirements

{𝑒}𝐴 ≠ 𝐶 (𝑁𝑒)

𝐵[𝛼] ⧵ 𝐴[𝛼] is ITTM-finite (𝑃′𝛼)

for each 𝑒 < 𝜔 and 𝛼 ∈ Won. To use a similar argument structure as before, the
(𝑁𝑒)-requirements would have to be cofinal in the priority ordering. We use an
injective computable projection function 𝑝 ∶ Won → 𝜔 (for example, sending
ordinals to machines that write them) to reduce the requirements to

{𝑒}𝐴 ≠ 𝐶 (𝑁𝑒)

if 𝛼 = 𝑝−1(𝑒) exists, then 𝐵[𝛼] ⧵ 𝐴[𝛼] is ITTM-finite (𝑃𝑒)

for all 𝑒 < 𝜔, ordered (𝑁0) < (𝑃0) < (𝑁1) < … as before. Again, define

𝑢(𝑒, 𝑥, 𝑠) = {
sup {𝑦 ∈ Won ∶ 𝑦 is queried in {𝑒}𝐴𝑠

𝑠 (𝑥)} if {𝑒}𝐴𝑠
𝑠 (𝑥) halts;

0 otherwise.

𝑙(𝑒, 𝑠) = sup {𝑥 < 𝑠 ∶ (∀𝑦 < 𝑥) 𝐶𝑠(𝑦) = {𝑒}𝐴𝑠
𝑠 (𝑦)};

𝑟(𝑒, 𝑠) = sup {𝑢(𝑒, 𝑥, 𝑠) + 1 ∶ 𝑥 ≤ 𝑙(𝑒, 𝑠)};

and

𝑎𝑠 = {
min(𝐴𝑠 ⧵ 𝐴<𝑠) if 𝐴𝑠 ⧵ 𝐴<𝑠 ≠ 0;
sup𝐴𝑠 ∪ 𝑠 otherwise.

{ ̂𝑒}𝐴𝑠
𝑠 (𝑥) = {

{𝑒}𝐴𝑠
𝑠 (𝑥) if 𝑢(𝑒, 𝑥, 𝑠) < 𝑎𝑠;

↑ otherwise.

̂𝑢(𝑒, 𝑥, 𝑠) = 𝑢( ̂𝑒, 𝑥, 𝑠); ̂𝑙(𝑒, 𝑠) = 𝑙( ̂𝑒, 𝑠); ̂𝑟(𝑒, 𝑠) = 𝑟( ̂𝑒, 𝑠),

defining 𝐴 by

𝐴0 = ∅;

𝐴𝑠+1 = 𝐴𝑠 ∪⋃{𝐵[𝛼]𝑠+1 ⧵ �̂�(𝑒 + 1, 𝑠) ∶ 𝑒 < 𝑠 ∧ 𝛼 = {𝑝†}𝑠(𝑒)} ;

𝐴𝜆 =⋃
𝑠<𝜆

𝐴𝑠

(4.3)

where �̂�(𝑒, 𝑠) = sup𝑒′<𝑒 ̂𝑟(𝑒′, 𝑠) and {𝑝†} is amachine that, on input 𝑒, finds𝑝−1(𝑒)
in clockable time if it exists, and otherwise never halts.14 That the function

14For example, while generating Won, compute 𝑝(𝛼) for each 𝛼 found until 𝑝(𝛼) = 𝑒.
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𝑠 ↦ 𝐴𝑠 is computable by an ITTM (in particular, that 𝐴 is thus ITTM-semi-
decidable) is left to the reader.

The injury sets are defined similarly, where ̂𝐼𝑒 = ⋃𝑠∈Won
̂𝐼𝑒,𝑠 and

̂𝐼𝑒,𝑠 = {𝑥 ∶ (∃𝑡 ≤ 𝑠) 𝑥 < ̂𝑟(𝑒, 𝑡) ∧ 𝑥 ∈ 𝐴𝑡+1 ⧵ 𝐴𝑡}.

By the same argument as for Turing machines, the true stages

𝑇 = {𝑠 ∈ Won ∶ 𝐴𝑠 ∩ 𝑎𝑠 = 𝐴 ∩ 𝑎𝑠}

are cofinal in Won and preserve halting computations.

Lemma 4.16 (Injury lemma). If 𝐶 
ITTM ̂𝐼𝑒, then 𝐶 ≠ {𝑒}𝐴.

Proof. Assuming 𝐶 = {𝑒}𝐴, then 𝑙(𝑒, 𝑠) is unbounded in 𝑠 and 𝐶 can be reduced
to ̂𝐼𝑒 by, given some 𝑥, rejecting if 𝑥 ∉ 𝐶′. Otherwise, 𝑥 ∈ Won, and an ITTM
can find a state 𝑠 ∈ Won with { ̂𝑒}𝐴𝑠

𝑠 (𝑥) = {𝑒}𝐴(𝑥) (which exists by a runtime
reflection argument as in lemma 2.9) as follows. Generate Won and, using the
oracle ̂𝐼𝑒 search for a stage with

𝑥 < ̂𝑙(𝑒, 𝑠) ∧ { ̂𝑒}𝐴𝑠
𝑠 (𝑥)↓ ∧ (∀𝑦 ≤ 𝑢(𝑒, 𝑥, 𝑠)) 𝑦 ∉ ̂𝐼𝑒 ⧵ 𝐴𝑠.

Then { ̂𝑒}𝐴𝑠
𝑠 (𝑥)↓ and the computation will be preserved, since if any element

queried negatively in the computation were to be added to 𝐴 later, it would
injure (𝑁𝑒) and thus be an element of ̂𝐼𝑒 ⧵𝐴𝑠. So { ̂𝑒}

𝐴𝑠
𝑠 (𝑥) = {𝑒}𝐴(𝑥) = 𝐶(𝑥), and

𝑥 is accepted if and only if { ̂𝑒}𝐴𝑠(𝑥) = 1.

For the window lemma, a new strategy is needed. Define

𝐴𝑒 = ⋃
𝛼∈𝑝−1[𝑒]

𝐴[𝛼]

so that ̂𝐼𝑒 ⊆ 𝐴𝑒.

Lemma 4.17 (Window lemma). If 𝐶 ≠ {𝑛}𝐴 for all 𝑛 < 𝑒 and 𝐴𝑒 ⩽ITTM 𝐵, then
lim inf𝑠<Γ �̂�(𝑒 + 1, 𝑠) < Γ and 𝐴𝑒+1 ⩽ITTM 𝐵.

Proof. For each 𝑛 < 𝑒, let 𝑥𝑛 be the least with {𝑒}𝐴(𝑥𝑛) ≠ 𝐶(𝑥𝑛), and let 𝑧𝑛 be
𝑥𝑛 + 1 if {𝑒}𝐴(𝑥𝑛)↓ or 𝑥𝑛 otherwise. There is an oracle machine that, given an
oracle for 𝐵 and using a reduction machine for 𝐴𝑒 ⩽ITTM 𝐵, finds the first stage
𝛼 such that

• for all 𝑛 < 𝑒 and all 𝑦𝑛 < 𝑧𝑛, the computations { ̂𝑛}
𝐴𝛼
𝛼 (𝑦𝑛) halt, and

• for all elements 𝑞 queried and all 𝑞′ ≤ 𝑞 it holds that 𝑞′ ∉ 𝐴𝑒 ⧵ 𝐴𝛼.
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By the choice of the 𝑧𝑛, we have 𝛼 ≤ Γ. If 𝛼 = Γ were to hold, then ℎ could be
reduced to 𝐴𝑒 by, given 𝑚, simulating the oracle machine just described and
simulating {𝑚}(0) for as many steps as that simulation takes. (Accept if this
simulation halts, otherwise reject.) Since 𝐴𝑒 ⩽ITTM 𝐵, this would contradict the
assumption ℎ 
ITTM 𝐵 on 𝐵. So 𝛼 < Γ.

Because the computations { ̂𝑛}𝐴𝛼
𝛼 (𝑦𝑛) are preserved after stage 𝛼 (they are

only be injured if elements in 𝐴𝑒 below their queries are added to 𝐴, but by
the choice of 𝛼 this does not occur), we have �̂�(𝑒 + 1, 𝛼) ≤ �̂�(𝑒 + 1, 𝛽) for all
𝛽 ≥ 𝛼. Furthermore, since ̂𝑙(𝑛, 𝑡) ≤ ̂𝑙(𝑛, 𝛼) for all 𝑛 < 𝑒 and true stages 𝑡 ≥ 𝛼 and
because the true stages are cofinal, it follows that �̂�(𝑒+1, 𝑡) ≤ �̂�(𝑒+1, 𝛼) and thus
�̂�(𝑒 + 1, 𝑡) = �̂�(𝑒 + 1, 𝛼) for all true 𝑡 ≥ 𝛼. Hence lim𝑡∈𝑇 �̂�(𝑒 + 1, 𝑡) = �̂�(𝑒 + 1, 𝛼),
and so (again by the cofinality of 𝑇) we find lim inf𝑠<Γ �̂�(𝑒 + 1, 𝑠) = �̂�(𝑒 + 1, 𝛼).
As𝐴𝛼 is computable by design of the algorithm and thewritability of 𝛼, it follows
by corollary 4.14 that �̂�(𝑒 + 1, 𝛼) < Γ holds as desired.

Finally, 𝐴𝑒+1 can be reduced to 𝐵 as follows: find 𝛼. Given 𝑥, reject if it does
not code an ordinal or if it is not in 𝐵. Otherwise, 𝑥 codes some 𝜂 = ⟨𝛾, 𝛿⟩ < Γ.
If 𝑝(𝛾 > 𝑒), then reject. If 𝑝(𝛾) < 𝑒, accept 𝑥 if and only if 𝑥 ∈ 𝐴𝑒. If 𝑝(𝛾) = 𝑒,
then 𝜂 ∈ 𝐴𝑒+1 if and only if 𝜂 ∈ 𝐴𝛼 or 𝜂 ≥ �̂�(𝑒 + 1, 𝛼).

Remark 4.18. The idea to use reductions from 𝐴𝑒 to 𝐵 comes from proofs of
strengthened thickness lemmas in [23, lemma 2.6] and [14, theorem X.3.9]. ⌟

Corollary 4.19. If 𝐶 ≠ {𝑛}𝐴 for all 𝑛 < 𝑒 then lim inf𝑠<Γ �̂�(𝑒 + 1, 𝑠) < Γ.

Finally, the theorem is proved by induction. Assuming all requirements
below (𝑁𝑒) are satisfied, then all (𝑃𝑒′), 𝑒′ < 𝑒 are satisfied. It follows that the
differences {𝐵[𝛼] ⧵ 𝐴[𝛼] ∶ 𝛼 ∈ 𝑄} with 𝑄 = 𝑝[𝑒] are all ITTM-finite, and hence
their finite union 𝐷 is ITTM-finite. (It is decidable since one machine can
simulate for each difference a machine deciding it, as there are only finitely
many of these machines required. It is bounded as Γ is admissible [8, corollary
8.2] and hence closed under addition.) Therefore 𝐴𝑒 = ∪ {𝐴[𝛼] ∶ 𝛼 ∈ 𝑄} reduces
to 𝐵𝑒 = ∪ {𝐵[𝛼] ∶ 𝛼 ∈ 𝑄}. (Accept 𝑥 if and only if 𝑥 ∈ 𝐵𝑒 and 𝑥 ∉ 𝐷.)

Note that ̂𝐼𝑒 reduces to 𝐴𝑒, since (𝑁𝑒) is only injured by requirements (𝑃𝑒′)
with 𝑒 > 𝑒′ ∈ 𝑝[𝑄]. (The requirements of higher priority outside 𝑝[𝑄] never
act.) So given 𝑥, one can check 𝑥 ∈ ̂𝐼𝑒 by checking 𝑥 ∈ 𝐴𝑒, and if so, running the
construction until 𝑥 is added to 𝐴 and seeing whether (𝑁𝑒) is thereby injured.

Hence ̂𝐼𝑒 reduces to ∪ {𝐵[𝛼] ∶ 𝛼 ∈ 𝑄}, and by assumption on 𝐶 then 𝐶 does
not reduce to ̂𝐼𝑒. The injury lemma yields the satisfaction of (𝑁𝑒).

Assuming on the other hand that all requirements below (𝑃𝑒) are satis-
fied, then all (𝑁𝑒′), 𝑒′ ≤ 𝑒 are satisfied, and the window lemma ensures that
�̂�𝑒 = lim𝑡<𝑇 �̂�(𝑒 + 1, 𝑡) < Γ exists, from which it follows that (𝑃𝑒) is satisfied.
Specifically, if 𝑒 = 𝑝(𝛼) we conclude

• 𝐵[𝛼] ⧵ 𝐴[𝛼] ⊆ �̂�𝑒 so the difference 𝐷 is bounded, and
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• by the proof of the window lemma, there is a stage 𝑡 ∈ Won so that
�̂�(𝑒 + 1, 𝑡′) = �̂�𝑒 for all 𝑡′ ≥ 𝑡. Hence 𝐴[𝛼] ∩ �̂�𝑒 is decidable. It follows
that 𝐷 = (𝐵[𝛼] ∩ �̂�𝑒) ⧵ (𝐴[𝛼] ∩ �̂�𝑒) is decidable in 𝐵, and so the set of first
appearances 𝐹 = {𝑠 ∶ (∃𝑑 ∈ 𝐷) 𝑑 ∈ 𝐵𝑠 ∧ 𝑑 ∉ 𝐵<𝑠} is bounded in Won:
if it were unbounded, its supremum would be Γ and ℎ could be reduced
to 𝐵, since 𝐷 is bounded and decidable in 𝐵. From the decidability and
boundedness of 𝐹, it follows that 𝐷 is decidable.

By lemma 3.32, we find

Corollary 4.20. Let 𝐶 ⊆ 𝐶′ ⊆ Wrr be semi-decidable and 𝐶 decidable, and let
𝐵 ⊆ Won semi-decidable with 𝐵 <ITTM ℎ. If 𝐶 does not reduce to any finite number
of columns of 𝐵, then there is a thick subset 𝐴 ⊆ 𝐵 that 𝐶 does not reduce to.

Remark 4.21. The issue in translating the thickness lemma proof to ITTMs can
also be seen in the light of true stages: traditionally, one would show that halting
computations {𝑒}𝐴(𝑤) are reflected in the true stages: there is always a true stage
𝑡 with {𝑒}𝐴𝑡

𝑡 (𝑤). Using techniques as the one in lemma 2.9, it can only be shown
that there is some stage 𝑠 with {𝑒}𝐴𝑡

𝑡 (𝑤), even cofinally many, but not that they
are true. For a computation to be reflected in a true stage 𝑡, all positively queried
elements of 𝐴 would have to be in 𝐴𝑡. ⌟

4.4 For p-OTMs

In the case of p-OTMs, the following can be said. We will only sketch the proof.

Theorem 4.22. If 𝐵, 𝐶 are p-OTM-semi-decidable and 𝐶 does not p-OTM-reduce
to 𝐵[<𝜀] for any ordinal 𝜀, then there is a p-OTM-semi-decidable subclass 𝐴 of 𝐵
that 𝐶 does not p-OTM-reduce to, and such that all 𝐵[<𝜀] ⧵ 𝐴[<𝜀] are p-OTM-finite.
(In particular, all 𝐵[𝜀] ⧵ 𝐴[𝜀] are p-OTM-finite.)

Proof sketch. The requirements are

{𝜀}𝐴 ≠ 𝐶 (𝑁𝜀)

𝐵[𝜀] ⧵ 𝐴[𝜀] is p-OTM-finite (𝑃𝜀)

prioritized alternatingly (𝑁0) < (𝑃0) < (𝑁1) < (𝑃1) < … as before. Again define

𝑢(𝜀, 𝑥, 𝑠) = {
sup {𝑦 ∶ 𝑦 is queried in {𝜀}𝐴𝑠

𝑠 (𝑥)} if {𝜀}𝐴𝑠
𝑠 (𝑥) halts;

0 otherwise.

𝑙(𝜀, 𝑠) = sup {𝑥 < 𝑠 ∶ (∀𝑦 < 𝑥) 𝐶𝑠(𝑦) = {𝜀}𝐴𝑠
𝑠 (𝑦)};

𝑟(𝜀, 𝑠) = sup {𝑢(𝜀, 𝑥, 𝑠) + 1 ∶ 𝑥 ≤ 𝑙(𝜀, 𝑠)};
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and

𝑎𝑠 = {
min(𝐴𝑠 ⧵ 𝐴<𝑠) if 𝐴𝑠 ⧵ 𝐴<𝑠 ≠ 0;
sup𝐴𝑠 ∪ 𝑠 otherwise.

{ ̂𝜀}𝐴𝑠
𝑠 (𝑥) = {

{𝜀}𝐴𝑠
𝑠 (𝑥) if 𝑢(𝜀, 𝑥, 𝑠) < 𝑎𝑠;

↑ otherwise.

̂𝑢(𝜀, 𝑥, 𝑠) = 𝑢( ̂𝜀, 𝑥, 𝑠); ̂𝑙(𝜀, 𝑠) = 𝑙( ̂𝜀, 𝑠); ̂𝑟(𝜀, 𝑠) = 𝑟( ̂𝜀, 𝑠)

with minor differences to account for transfinitely many stages. 𝐴 is defined by

𝐴0 = ∅;

𝐴𝑠+1 = 𝐴𝑠 ∪⋃
𝜀<𝑠

𝐵[𝜀]𝑠+1 ⧵ �̂�(𝜀 + 1, 𝑠);

𝐴𝜆 = ∪𝑠<𝜆𝐴𝑠

(4.4)

with �̂�(𝜀, 𝑠) = sup𝑑<𝜀 ̂𝑟(𝑑, 𝑠). Essentially, nothing happens in limit stages. That
each 𝐴𝑠, 𝑠 ∈ On is decidable by an OTM in the parameter 𝑠 (in particular, that 𝐴
is thus OTM-semi-decidable) is an exercise left to the reader (cf. section 1.5).

Define the injury sets ̂𝐼𝜀 and its approximations

̂𝐼𝜀 = {𝑥 ∶ (∃𝑠) 𝑥 < ̂𝑟(𝜀, 𝑠) ∧ 𝑥 ∈ 𝐴𝑠+1 ⧵ 𝐴𝑠}
̂𝐼𝜀,𝑠 = {𝑥 ∶ (∃𝑡 ≤ 𝑠) 𝑥 < ̂𝑟(𝜀, 𝑡) ∧ 𝑥 ∈ 𝐴𝑡+1 ⧵ 𝐴𝑡}.

(4.5)

and the true stages 𝑇, seen cofinal in the ordinals as before.
The injury and window lemmas (𝐶 
p-O ̂𝐼𝜀 → 𝐶 ≠ {𝜀}𝐴 and 𝐶 ≠ {𝜀}𝐴 →

(∃𝛾) lim𝜏∈𝑇 ̂𝑟(𝜀, 𝜏) = 𝛾) are proved as for Turing machines, the only difference
being in the way one attains reflection—but this is trivial as the class of queries
made in a halting or bounded p-OTM-computations is a set (in 𝐿).

The rest of the proof is also similar, the only difference being that one has to
deduce from 𝐵[<𝜀] ⧵ 𝐴[<𝜀] ⊆ lim inf �̂�(𝜀 + 1, 𝑠) and the fact that 𝐴, 𝐵 are p-OTM-
semi-decidable that 𝐵[<𝜀] ⧵ 𝐴[<𝜀] is bounded and p-OTM-decidable. (Which
follows from the observation that the set of first appearances cannot be cofinal
in the stages.)

We are not aware of any thickness lemma proved in α-recursion theory. As
the queries made in a halting p-𝛼-oracle-machine computation are never cofinal
in 𝛼, it might be worth investigating whether a thickness lemma can be proved
for for p-Γ-machines by adapting the proof of theorem 4.15.
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Conclusion

Soare [23, section 3] has proved a variety of corollaries of the (strengthened)
thickness lemma. Though we have not looked into this in detail, we believe that
it is worth investigating whether our proof for a thickness lemma for certain sets
of low degree can be modified as in [23, p. 520] to obtain a stronger thickness
lemma, and whether a density theorem for these sets follows. We are hopeful in
this regard, as in [23, p. 522], to find a 𝐴 between 𝐷 <TM 𝐶, the thickness lemma
is applied only to 𝐵 ⩽TM 𝐶. But it is to be seen whether the rest of the proof can
be generalized to ITTMs. The same question can be considered for p-OTMs.

For the splitting theorem, questions remain about the frequency of Clk-
simple and Won-simple sets in the ITTM-semi-decidable degrees.

Finally, in light of our results, we would like to raise the following:

Question 2. For which ITTM-semi-decidable 𝐴 ⊆ Won are there 𝐴′ ⊆ 𝐵 ⊆ Won
so that 𝐴 ≡ITTM 𝐴′ and 𝐵 is ITTM-decidable? And for which 𝐴 ⊆ Wrr?
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Appendix A

ITTM-computability

Sections A.1 and A.3 contain proofs of technical results used in the thesis, while
A.2 provides background on the decidability of the writable well-orders.

A.1 In-order generation of Won

Recall that codes for ordinals are well-orders on a subset of 𝜔.

Lemma A.1. There is an ITTM which, given a code for 𝛼, generates a code all
predecessors of 𝛼 in ordinal order.

Proof. This is based on [6, theorem 2.2]. Let 𝑥 be a code for an ordinal 𝛼, and
let 𝑅 be the relation it represents. The ITTM works as follows: it has an extra
“strike-off tape” initially filled with 0s. Call 𝑛 stricken off if the 𝑛th cell of the
strike-off tape is 1. The ITTM first determines the domain of 𝑅 (by checking
for each 𝑛 < 𝜔 whether there is some 𝑚 < 𝜔 so that the ⟨𝑛,𝑚⟩th bit of 𝑥 is 1,
for example), and strikes off all 𝑛 outside of it. As long as the strike-off tape
contains 0s, the ITTM searches for the least 𝑛 under 𝑅 that is not stricken off,
creates a code 𝑦 for the order type of the predecessors of 𝑛 under 𝑅 by taking 𝑥
and removing all mention of 𝑚 above 𝑛, and shows it on the output tape. (That
is, it first writes 0𝑦 on the output tape, and then flashes the first cell to write 1𝑦,
following the definition of ITTM-generability.) It then strikes off 𝑛. When the
ITTM halts, it has written a code for every 𝛽 < 𝛼 in ordinal order.

Note that in the proof above, no mention is made of compound limit steps.
Formally, the ITTM has to detect these steps (as in example 1.6) and clean up
any tapes used for intermediate results (used while finding the next minimal
element, for example). It is good to note that the strike-off tape is not affected
by limit behavior, as cells only change value once, and that the first cell of the
output tape is always 0 on (compound) limit steps, so no scrambled results are
accidentally generated.

Corollary A.2. There is an ITTM which generates Won in ordinal order.
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Proof. As Wrr is ITTM-generable, WO is ITTM-decidable, and canonical codes
can be computed from codes for writable ordinals, Won is generable. We have
to show that there is an ITTM that generates it in ordinal order.

Again consider an ITTM with an extra strike-off tape. It simultaneously
simulates all computations {𝑒}(0), as in e.g. [1, theorem 2.5.15]. At the start of
every simulation step, the machine checks which machines 𝐸 have just halted.
If so, the ITTM searches for a code for the halting time 𝛼 of one such {𝑒}(0) (the
least 𝑒 ∈ 𝐸, say). This it can do by generating Won until a code 𝑥 for an ordinal
𝛽 ≥ 𝛼 is found (which an ITTM can check by, for each 𝛽 generated, simulating
{𝑒}(0)while counting through 𝛽, so that one simulation step is executed for every
minimal element removed from the well-order coded by 𝑥). Such a 𝛽must be
found as all clockable ordinals are writable, and once found, the ITTM can by
lemma A.1 (and repeating the process above) find the least such 𝛽, which is 𝛼.

Once a code 𝑥 for 𝛼 is found, it simultaneously simulates all computations
{𝑚}(0) for all𝑚 stricken. For each simulation step, it removes aminimal element
of the relation 𝑅 coded by 𝑥. (By another striking procedure, say.) Once all
{𝑚}(0) have halted, the natural numbers left in 𝑅 are precisely those whose sets
of predecessors originally had an order type greater than 𝛼. For each of those,
a canonical code is shown on the output tape (which can be done in ordinal
order by lemma A.1), and then also a code for 𝛼 itself. Finally, all elements of
𝐸 are stricken off and the machine continues simulating the computations for
machines that have not been stricken off.

As cells on the strike-off tape change value at most once, its content is
not scrambled at (compound) limit steps. By design of the ITTM, all ordinals
generated are generated in ordinal order. As the clockable ordinals are cofinal in
the writable ordinals (and Γ is a limit ordinal), this process eventually generates
the writable ordinals in canonical order.

A.2 The undecidability of the writable well-orders

Proposition A.3. The set 𝑊 of writable reals coding ordinals is not ITTM-
decidable.

Proof. We will assume that𝑊 is ITTM-decidable and derive the contradiction
that Γ = supWon = supClk is writable. If 𝛼 is an ordinal, define

ℎ𝛼 = {𝑚 ∶ {𝑚}𝛼(0)↓ ∧ (∀𝑛 < 𝑚)(∃𝛽 ≤ 𝛼) ¬({𝑚}𝛽(0)↓ ↔ {𝑛}𝛽(𝑛)↓)}

for the set of least ITTMs representing Clk ∩ 𝛼. Γ is the first ordinal so that ℎΓ is
not ITTM-computable. Given 𝛼, define the following well-order ≺𝛼 on 𝜔:

• if 𝑚, 𝑛 ∉ ℎ𝛼 then𝑚 ≺𝛼 𝑛 iff 𝑚 < 𝑛

• if 𝑚 ∉ ℎ𝛼 and 𝑛 ∈ ℎ𝛼, then𝑚 ≺𝛼 𝑛

• if 𝑚, 𝑛 ∈ ℎ𝛼 then𝑚 ≺𝛼 𝑛 if {𝑛}(0) halts before {𝑛}(0).
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If 𝛼 is writable, then a code for (𝜔, ≺𝛼) is writable, and so its order type is a
writable ordinal (and by the below, often not a clockable ordinal). The order
type of ≺Γ is that of the clockable ordinals, and since this is the same as the
order type of the writable ordinals [6], the order type of ≺Γ is Γ.

Consider the ITTM which simultaneously simulates all {𝑚}(0) and uses this
to create codes for ≺𝛼 for increasing 𝛼 < Γ, continuously refining an approxi-
mation for ≺Γ. For each approximation ≺, which is seen to always be some ≺𝛼
with 𝛼 ≤ Γ, it checks whether (𝜔, ≺𝛼) is a writable ordinal, which it can do by
the assumption that𝑊 is ITTM-decidable. It writes the first approximation that
is not in𝑊 and then halts, writing a code for Γ.

Further inspection of the proof above gives the following corollaries.

Corollary A.4. The set of reals coding writable ordinals is not ITTM-decidable.

Corollary A.5. The weak halting problem ℎ reduces to𝑊, and hence, since𝑊 is
semi-decidable, ℎ ≡ITTM 𝑊.

Since the set WO of reals coding well-orders is ITTM-decidable and𝑊 is the
intersection of Wrr and WO, we also obtain

Corollary A.6. ℎ ≡ITTM Wrr. In particular, Wrr is undecidable.

A.3 Ordinal arithmetic on (non-writable) codes

LemmaA.7. There is an ITTM that, given codes 𝑥, 𝑦 for (not necessarily writable)
ordinals 𝛼, 𝛽, computes a code for ⟨𝛼, 𝛽⟩.

Proof. By clocking both ordinal simultaneously, an ITTMcan determine if 𝛼 ≥ 𝛽,
and thus it can determine a code 𝑧 for 𝛾 = max {𝛼, 𝛽} (it is either 𝑥 or 𝑦).

𝑧 codes a well-order⪯𝑧 on a subset𝐷𝑧 of 𝜔with order type 𝛾, so that 𝑛 ⪯𝑧 𝑚
if and only if the ⟨𝑛,𝑚⟩th bit of 𝑧 is a 1.

The ITTM then makes a code 𝑤 for 𝛾 + 1 as follows: the ⟨𝑛 + 1,𝑚 + 1⟩th bit
of 𝑤 is equal to the ⟨𝑚, 𝑛⟩th bit of 𝑧, and for all 𝑛 < 𝜔 the ⟨𝑛, 0⟩th bit of 𝑤 is 1.
(So, in the order induced by 𝑤, 0 is now the new maximal element.)

Write 𝐷 for the domain of the well-order ⪯ induced by 𝑤, define pred𝑢 =
{𝑛 ∈ 𝐷 ∶ 𝑛 ≺ 𝑢𝑛} (where ≺ is the strict version of ⪯) and let 𝑎, 𝑏 ∈ 𝐷 be such
that (pred 𝑎,⪯) has order type 𝛼, and (pred 𝑏, ⪯) has order type 𝛽. The ITTM
determines 𝑎, 𝑏 by iteration over 𝐷 (all 𝑛 < 𝜔 so that the ⟨𝑛, 𝑛⟩th bit of 𝑤 is 1)
and clocking.

The ITTM now iterates over all 𝑑, 𝑒, 𝑓, 𝑔 < 𝐷, and writes a 1 on the
⟨⟨𝑑, 𝑒⟩, ⟨𝑓, 𝑔⟩⟩th cell of the output tape if one of

• max⪯ {𝑑, 𝑒} ≺ max⪯ {𝑓, 𝑔}, or

• max⪯ {𝑑, 𝑒} = max⪯ {𝑓, 𝑔} ∧ 𝑑 ≺ 𝑓, or
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• max⪯ {𝑑, 𝑒} = max⪯ {𝑓, 𝑔} ∧ 𝑑 = 𝑓 ∧ 𝑒 ≺ 𝑔

hold, and furthermore (intuitively, to exclude pairs greater than ⟨𝛼, 𝛽⟩)

• max⪯ {𝑑, 𝑒} ≺ max⪯ {𝑎, 𝑏}, or

• max⪯ {𝑑, 𝑒} = max⪯ {𝑎, 𝑏} ∧ 𝑑 ≺ 𝑎, or

• max⪯ {𝑑, 𝑒} = max⪯ {𝑎, 𝑏} ∧ 𝑑 = 𝑎 ∧ 𝑒 ≺ 𝑏

holds, and if also one of the above holds, where 𝑑, 𝑒 is replaced with 𝑓, 𝑔. The
ITTM can check the above simply because 𝑠 ⪯ 𝑡 holds if and only if the ⟨𝑠, 𝑡⟩th
bit of 𝑤 is 1: for each quadruple 𝑑, 𝑒, 𝑓, 𝑔 the above procedure is even TM-
computable, the whole process can be done in 𝜔 steps.

Comparing the conditions above with the definition of the Cantor pairing
function, we find that the real 𝑣 on the output tape codes a well-order ⪯𝑧 on
𝜔, the domain of which consists of the pairs ⟨𝑑, 𝑒⟩ so that, identifying sets with
their order types, ⟨(pred𝑑,⪯), (pred 𝑒, ⪯)⟩ ≤ ⟨𝛼, 𝛽⟩, and ⟨𝑑, 𝑒⟩ ⪯𝑧 ⟨𝑓, 𝑔⟩ if and
only if ⟨(pred𝑑,⪯), (pred 𝑒, ⪯)⟩ ⪯𝑧 ⟨(pred𝑓,⪯), (pred 𝑔, ⪯)⟩. In other words: it
has order type ⟨𝛼, 𝛽⟩.
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Appendix B

Machine models

This appendix sketches proofs on the equivalence of machine model definitions,
and gives some insight in the relationship between ITTMs an p-Γ-machines.

B.1 Limit rules

Originally, Hamkins and Lewis defined the limit behavior of ITTMs as follows:
the machine head is on the first cell, and each cell contains the lim sup of its
previous values. Below, we motivate that a partial function on the reals is
computable by an ITTMs as defined in section 1.1 if and only if it is computable
by an ITTM as defined originally.

Formal proofs show that a machine of one kind can emulate a machine of
the other kind, and this either involves constructing a universal machine or
describing computable modifications of machine codes. This can be rather terse.
Below, proof sketches with the key ideas are presented.

Lemma B.1. The lim inf cell-value behavior can be emulated in a lim sup world,
and vice versa.

Proof sketch. Let each cell 𝑐 be represented by two cells 𝑐0, 𝑐1. This can be
emulated by doubling the number of tapes, for example. If a machine would
normally write a 1 on 𝑐, it writes 1 on 𝑐0 and 0 on 𝑐1. If it would normally write a
0 on 𝑐, it writes a 0 on 𝑐0 and a 1 on 𝑐1. In limit stages, there are three possibilities:

• (𝑐0, 𝑐1) = (1, 0), in which case 𝑐 would contain a 1

• (𝑐0, 𝑐1) = (0, 1), in which case 𝑐 would contain a 0

• Otherwise, the value of 𝑐 would not have converged, and (𝑐0, 𝑐1) would be
(1, 1) in a lim sup world and (0, 0) in a lim inf world.

Hence, an ITTM living in a lim sup world could simulate lim inf behavior by,
after limit steps, changing all (1, 1)-pairs into (0, 1)-pairs, and an ITTM living in
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a lim inf world could simulate lim sup behavior by, after limit steps, changing
all (0, 0)-pairs into (1, 0)-pairs.

That this works for non-compound limit steps is apparent, but it also works
with compound limits: if after every limit step a “clean up” occurs, (0, 0)- or
(1, 1)-pairs are found in compound limit steps 𝛼 if and only if the value of the
cell they represent would have diverged cofinally often before 𝛼.

So if runtime is not an issue, the two behaviors are equivalent. Similarly

Lemma B.2. The head-to-start limit behavior can be emulated in a head-
to-lim inf world, and vice versa.

Proof sketch. To emulate head-to-lim inf in a head-to-start world with lim inf
cell-value behavior, machines can be altered to have an extra “position tape”, on
which it keeps track of its head position: it starts by writing a 1 on the first cell
of the position tape. Whenever it moves right, it writes a 1 on the new cell of the
position tape it is on, and whenever it moves left, it writes a 0 on the position
tape before moving left. Thus, informally speaking, for the first 𝜔 steps in the
computation, the machine is at cell 𝑛 if and only if only the first 𝑛 cells of the
position tape contain a 1. (This can be made formal by speaking in terms of an
original machine and the modified machine, obtained by doing the extra work
of keeping track of position.)

At limit steps then, the number of 1s on the position tape corresponds with
the lim inf of the cell positions (because of the lim inf cell-value behavior). Hence
the machine can informally resume from this head position by (starting from
the head) moving to the end of the 1s on the position tape. (Formally, in the
limit state of the modified machine, move to the end of the 1s of the position
tape, and then enter the limit state of the original machine.) It follows that this
leads to the correct behavior.

To emulate head-to-start behavior in a head-to-lim inf world, add an extra
“start tape” which contains a 1 only in the first cell. On limit steps, first move to
the start by inspecting said tape.

We conclude:

Proposition B.3. For every ITTM 𝑒 as defined in section 1.1 there is an ITTM
𝑒′ as defined in [6] that induce the same partial function on the reals, and vice
versa. (Furthermore, this is “uniform in codes”, in the sense that there is a Turing-
computable function turning 𝑒 into an 𝑒′ for any given 𝑒, and vice versa.)

There is also a discrepancy in the definition of α-machines andOTMs defined
in section 1.1 and their original definitions: originally, there was no notion of a
limit state, but the state 𝑠 in limit steps 𝛼 was given by the lim inf of the states
taken up to 𝛼, and the position was given as the lim inf of the position the
machine was in while in state 𝑠 up to 𝛼. That our machines can simulate the
original behavior and vice versa, can be seen by using similar tricks as above.
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(With a “state tape” and “position-in-state-𝑠 tapes” in one direction, and by e.g.
watching for limit steps in the other. Since admissible ordinals are closed under
ordinal exponentiation, such manipulations do not lead to running out of time.)

B.2 Γ-machines, p-Γ-machines, and ITTMs

Recall that an ordinal is ITTM-writable if and only if it lies below the ordinal Γ.
In [6, corollary 8.2], Hamkins and Lewis show that Γ is an admissible ordinal.
In this section, we show some similarities between ITTMs and Γ-machines.

Lemma B.4. There is an ITTM-computable partial function 𝑢(𝑥, 𝑦, 𝑧) so that: if
𝑥, 𝑦 are codes for 𝜀, 𝛼 < Γ, then there is a canonical code 𝑧 for a writable ordinal 𝜏
with 𝑢(𝑥, 𝑦, 𝑧)↓ if and only if the p-Γ-computation {𝜀}(𝛼) halts, and for all 𝑧 that
code writable ordinals for which 𝑢(𝑥, 𝑦, 𝑧)↓ it is the case that 𝑢(𝑥, 𝑦, 𝑧) is a code
for the result of {𝜀}(𝛼).

Proof sketch. Recall that, by the results cited in section 1.5, an ITTMcan generate
𝐿Γ effectively, and that halting p-Γ-computations are elements of 𝐿Γ. So there is
an ITTM that “simply” searches for halting computations.

Corollary B.5. If a partial function 𝑓 ∶ Γ → Γ is p-Γ-computable, then there is a
partial ITTM-computable 𝑔 ∶ 2𝜔 → 2𝜔 so that, up to coding, 𝑔 ∩ Won2 = 𝑓.

A converse also holds, even for parameter-free Γ-machines.

Lemma B.6. If a partial function 𝑔 ∶ 2𝜔 → 2𝜔 is ITTM-computable, then there
is a Γ-computable partial function 𝑓 ∶ Γ → Γ so that, up to coding, 𝑓 = 𝑔 ∩Won2.

Proof sketch. Recall that ITTM-computations on writable input halt if and only
if they halt in clockable time, so they halt if and only if they halt in less than Γ
steps. So, on writable inputs, a halting ITTM-computation can be carried out by
a 3-tape Γ-machine by simply following the instructions of the ITTM, with the
one modification that, if the Γ-machine ever finds itself on the 𝜔th cell, it has to
move left once to be at the start of the tape before continuing the computation.
(To recognize that it is on the 𝜔th cell in a limit step, it can, for example take an
extra tape with a 1 only on its first cell.)

Corollary B.7. A partial function 𝑓 ∶ Γ → Γ is p-Γ-computable if and only if it
is Γ-computable.

Corollary B.8. A partial function 𝑓 ∶ Γ → Γ is Γ-computable if and only if there
is a partial ITTM-computable 𝑔 ∶ 2𝜔 → 2𝜔 so that, up to coding, 𝑔 ∩ Won2 = 𝑓.
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