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Introduction 

This thesis consists of two parts which are, physically, 

separated into the present 'proefschrift' and a supplementary 

part II published in Barendregt [1971]. 

The subjects studied are formal properties of extensions of 

combinatory logic and of the A-calculus, and (formal) relations 

between them. But neither the choice of problems nor even of the 

techniques introduced in the proofs can be properly understood 

without a description of the notions which we intend to study. 

Such a description will be given in this introduction. The 

summaries of the text which follow the introduction not only 

quote the main formal results but interpret them in terms of the 

aims described in the introduction. Strictly speaking, we do not 

only summarize results actually stated in the text, but include 

background material and, sometimes, alternative proofs. 

Rules: the intended interpretations. Whatever other interesting 

models the formal theories considered here may have, in particular 

the projective limits recently introduced by Scott [1370], the 

original intention of the founders of our subject was to study 

rules; or, in other words, to study the old-fashioned notion of 

'function' in the sense of definition. In contrast to Dirichlet's 

notion (of graph, that is the set of pairs of argument and 

associated value) the older notion referred also to the process of 

stepping from argument to value, a process coded by a definition. 

Generally we think of such definitions as given by words in 

ordinary English, applied to arguments also expressed by words 

(in English); or, more specifically, we may think of the
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definitions as programmes for machines, applied to, that is 

operating on, such programmes. In both cases we have to do with 

a type free structure, permitting self application, a feature 

which is often held to be 'responsible' for the contradictions 

in the first formulations of set theory (by Frege). Similarly 

the first formulation of the A-calculus turned out to be incon- 

sistent (paradox of Kleene-Rosser [1935]). In contrast the first 

formulation of combinatory logic was consistent (but not some of 

its later extensions as shown by the paradox of Curry [1942]). 

Evidently, the type free character as such 1s not problematic. 

We have not only the examples informally described in the pre- 

ceding paragraph, but also many familiar and natural structures 

in elementary algebra where an object acts both as argument and 

as function. Specifically, in the theory of semigroups an 

element a determines the function with the action 

X — ax 

(and in group theory an 'element' determines its co'set'). 

It seems plausible that the contradictions are connected with the 

aim of providing foundations for the whole of mathematics. 
  

Before we distinguish between different meanings of such general 

concepts as 'set' or 'rule' employed in different areas of 

mathematics, it is tempting to put down axioms and rules, some 

of which are valid for one meaning, some for another. In this 

way contradictions are liable to arise. 

Be that as it may, here we do not propose to use combinatory 

logic or the A-calculus as a foundation for the whole of 

mathematics; but rather in the study of those parts of the
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subject which actually present themselves as being about rules. 

A paradigm of such parts is numerical arithmetic which is 

'about' rules in the literal sense that 

5+ 7 =2 + 10 

asserts: 

The LHS and RHS reduce to the same numeral, that 1s to the same 

flormal (or canonical) form when the computation rules for 

addition are applied. 

From this point of view, perhaps the single most important feature 

of a language (for a theory of rules) is that each term should 

code its own reduction procedure; not necessarily a deterministic 

one, but a class of 'equivalent' ones. Thus implicit in an inter- 

pretation or 'model' of the language is an immediate reduction 

relation or 'multiplication table'. In fact, in CL or the A- 

calculus the intended reduction procedure is only implicit, that 

is we may assign a specific procedure to each term metamathematic- 

ally, but the intended immediate reduction relation cannot be 

expressed in the purely equational languages of CL or the à- 

calculus. Moreover, throughout this thesis (usually in connection 

with certain 'conservative extension results') we introduce 

additional symbols for reduction relations and axioms which make 

more explicit the intended meaning of the formalism. By the way 

our use of such additional ' structure' is parallel to the use in 

set theory of ordinals and their order, and of the relation 

between sets x and ordinals a (Q is the rank of x); the only 

difference is that in the case of set theory, at least in the 

presence of the axiom of foundation, the extensions considered 

dre not merely conservative but definitional (familiar from 
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Tarski,Mostowski,Robinson [1953]}). 

Term Models: In the light of the preceding paragraph, one 

fundamental role of terms is clear: they are the objects on 

which we, literally, operate and they are the objects which 

code the operations. Another role, to be distinguished from 

that of terms-as-elements-of-the-intended-reduction-relation, 

is the use of terms in a formal theory of this relation, as is 
  

clear from the assertion about numerical arithmetic mentioned 

earlier on. The difference is particularly striking for terms 

of the formal theory which contain variables, when we think of 

the reduction relation as being a relation between closed terms 

(also called: interior of the term models considered below). 

The reason for speaking of term models, which suggests model 

theory, is thils. Whatever our specific intended interpretations 

may be, our formal theory can also be interpreted in traditional 

model theoretic style. In fact, some of the more general 

results are consequences of such superficial syntactic features 

as these: When regarded as theories on 'standard' formalization, 

CL is a purely equational system and, a fortiori, axiomatized 

by universal formulae, 

and so is the A-calculus (if for each term Axt we associate a 

function symbol ft with n arguments, if Axt contains n 

free variables and the axiom fta = [x/alt*, where t* results 

from t by replacing the A-expressions in t by the associated 

function symbols).
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By what has just been said we do not think of these 'applicatïons 

of model theory as profound but rather as separating general 

(some would say 'trivial') properties from the specific 

properties of our intended interpretation. Adapting a phrase 

from Bourbaki, model theory provides here the 'hygilene' of proof 

theory (used for establishing the more specific properties). 

A typical example of such uses of elementary model theory occurs 

in the analysis of extensionality. This property (of a term model) 
  

cannot be expressed equationally, but needs the logically com- 

plicated form, 

(Vx E,) = E, 

for suitable equations E, and E,. Hence it cannot be expressed 

directly in CL. However, as far as ‘equational consequences of 

(this axiom of) extensionality are concerned, they can also be 

generated by the purely equational rule of extensionality. Thus, 

in contrast to the defects of equational theories , mentioned 

above, for expressing the intended reduction reiation, these 

theories are adequate for formulating and solving problems of 

extensionality, in consequence of the following quite general 

'model theoretic' result. (For arbitrary quantifier-free A. and 

A,s in place of equations E, and E,, Shepherdson [1965] finds 
2 

a more delicate rule to replace axioms Yx A,;—> A,.) 

Let S be any set of atomic formulae of a predicate logic, closed 

under logical deduction (that is substitution of a term of the 

for language for variables), and under the rule: derive Pál) 

Píl),...,Pí% (1 € I) where the P's are all atomic. 
i 

Then the term model of the theory (in which P is interpreted as 

S KL P), satisfies the axioms corresponding to the rules:



(1) 0 

Proof. Suppose that V?(Pl Av..A P ) is satisfied in the 

term model, then Pl(Ëì‚...‚Pk(Ï) hold for all terms ËQ hence 

'V')?'(P1 Ao o oA Pk)'* P 

> 

in particular for f = x. Thus P,,...,P, all hold in that 

model, hence P . P are provable in S. Hence by the rule 
1°°° k 

Pq is provable in S and therefore satisfied in the model. 

Thus, in particular, if k = 1, P1 is the equation Mx = M'x 

and P0 is M = M', the result mentioned above follows. 

Such hygienic uses of model theory are to be distinguished from 

model theoretic constructions formulated by use of sophisticated 
  

notions studied in mathematical practice and (hence) well- 

understood; for example the use of ultraproducts. Here we may, 

so to speak, look at the constructions and read off properties 

of these models which are not at all evident from the axioms. 

Particularly when consistency, that is the existence of suitable 

models , is involved, it is not at all necessary that the con- 

structions provide all models of the theory considered: it is 

more important that we have 'enough' models (for some specific 

purpose) and that they be manageable. Similarly Scott's 

lattice theoretic models are useful despite the fact established 

in §3.2 that not all extensional models of CL are among them. 
  

But it is of interest to observe that the particular model 

left out from Scott's collection of models, is very natural from 

a computational view. In this model the so called fixed-points 

which all ‘act in the same computational way are identified.
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To conclude this discussion of the role of model theory in our 

study of CL and the A-calculus, we may perhaps compare it with 

the use of non-standard models of arithmetic (as developed at 

the present time). We establish consistency results by analyzing 

computation procedures and then restate them as properties of 

suitable term models. Similarly, one establishes consistency 

results for formal arithmetic by proof theory or recursion 

theory (Godel's incompleteness results) and may then apply the 

completeness theorem for predicate logic to infer the existence 

of some non-standard model of arithmetic with required properties. 

Probably it is fair to say that the known non-standard models 

are not of intrinsic interest. In contrast, our formulations for 

term models are directly relevant to what we are talking about 

since, as we have said already, we study operations on terms and 

operations coded by terms. 

Finally a comment on versions of the A-calculus or CL with types 

(cf. Sanchis [1967]). Here the situation is much simpler. In 

terms of models, the theory with types can be immediately inter- 

preted in familiar mathematical terms. One model consists of the 

collections of all set-theoretic functions of finite type (over 

an infinite domain). For the more interesting models HRO and in 

extensional version HEO see Troelstra [1971]. 

In terms of computation, it is shown in Sanchis [ 1967] that in 

the theories with types all terms have a normal form, contrary 

to the situation in the type free theory.
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This normalizability of all terms of the typed A-calculus has 

also an interesting 'negative' consequence for definability 

problems , specifically of recursion operators (for any given 

types). In the type free calculus we have an R with the property 

that, for (variable) M,N and each numerical n 

(*) RMNO = N 

RMNn+1 = M(RMNn)n 

In contrast, there is a specific type T such that no term of the 

typed A-calculus satisfies (*) for M,N of relevant types. 

(A refinement is possible showing that (*) do not hold for 

certain closed M,N.) 

The proof uses the following facts. 

1. The normalizability of the terms in the typed A-calculus can 

be established by the principles of first order arithmetic. Con- 

sequently there is a provably total valuation function v, 
  

assigning to each (Gödel number of a) term, the (Gödel number of) 

its normal form. 

2. By 1. all number theoretic functions which are (locally) 

definable are primitive recursive in v because if the term F 

defines f, then the Gödel number of the term Fn is ¢(n) for 

a primitive recursive function ¢, and from v(¢(n)) it 1is 

possible to recover f(n) primitive recursively. 

Corollary. Not all functions provably recursive in first order 

arithmetic are represented in the typed A-calculus. 

3. Let f be a provably total function, with Gödel number e 
0 0 

which is not primitive recursive in v. Such an f, can be 

defined by the use of recursion operators. For, f  being 
0
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provably total we have 

L Vx Jy T(e,,x,y) 1n intuitionistic arithmetic. 

Hence by the dialectica interpretation of Gödel [ 1958} there 

exists a term t in the typed A-calculus with R such that 

T(e,snsT(n)) is valid for all n € w. 

Hence £ 1is represented by An.u(t(n)) where u represents the 

U of Kleene's normal form. 

Now we discuss in more detail the subjects treated ir the 

text. 

Consistency. The first formulation of the X-calculus being in- 
  

consistent, a revised formulation (the lI—caláhlus) was proved 

consistent by Church and Rosser [1936]. More informatively their 

theorem establishes the uniqueness of the normal forms and the 

fact that the normal form of a normalizable term M can be found 

simply by reducing M. This reduction can be made deterministic, 

by the standardization theorem, cf.Curry,Feys [1958] Ch UE. 

iowever, the fine-structure (i.e. whether it is from the human 

point of view the shortest possible reduction) of the standard 

reduction 1s not discussed. 

Finally, cf. remark 1.2.18, there is now a simple proof of the 

Church-Rosser theorem by Martin-Löf [1971] . This will be given 

in appendix II. 

The relation between the A-calculus and CL. Several possibilities 
  

of mapping A-terms into CL (see 1.4.6) have been discussed (cf. 

Curry,Feys [1958] Ch 6A). But, without extensionality, they do 

not preserve the set of provable equations. They do, if



extensionality is included but not the provable reductions nor 

the normal forms. On the other hand the translations do preserve 

application and therefore by 3.2.203 the solvability of closed 
  

terms. The importance of this is seen below. In particular, in 

the extensional case consistency results can be transferred. In 

this way the w-consistency of the A-calculus follcws from the 

corresponding result for CL. 

A-definability. We begin with the A-calculus since, traditionally, 

A - definebility and not combinatory definability is treated. 

A number theoretic partial function f is said to be A-definable 

if there is a term F such that à H Fn = m ** f(n) = m and 

Fn has no normal form if f(n) is undefined. (Here n is the wnth 

numeral). We changed this definition, requiring not only 

A H Fn =m ® f(n) = m , but also that Fn be unsolvable if 

f(n) is undefined. In this case we say that F strongly defines f. 

The concept of strong A-definability has several advantages. 

(1) If f,,f, are defined by terms F,,F then it is not true 25 

that f, o f, 1s defined by Ax.F,(F,x). For example let f, be the 

constant zero function and let f, be everywhere undefined. Then 

f, o f, is totally undefined but Ax F (F_x) = Ax 0 represents 

the constant zero function. 

Hence it is not immediate that the A-definable functions are 

closed under composition. 

Use of strong definability is made by representing the composit- 

ion f -f, by F = Ax.(F,xI F,(F,x)). If f,(n) is undefined 

F,n is unsolvable and hence Fn is unsolvable, and if f,(n) is 

defined F,nI is essentially the same as I.
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ii) Traditionally the Ä-definabilify of the partial recursive 

functions was proved by use of Kleene's normal form theorem. The 

representation thus obtained is not intensional with respect to 

definitional equality. Using strong A-definability we give a 

representation of the partial recursive functions preserving 

their definition trees. This 1s not to be regarded as a mere 

technical improvement but simply central to the objects which 

are here intended. In this context, see Kearns [1969] who uses 

an extension of CL to give a faithful representation of the 

computations of a Turing machine. 

iii) Application to undecidability results, see below. 

In contrast to the representation of say the primitive recursive 

functions in the predicate calculus, their representation in the 

A-calculus is not global, that is, their defining recursion 

equations are not derivable for the representing terms with a 

free variable, but only for each numerical instance. 

For example in the extensional case (this is not essential) the 

term F with Fxy = Xy represents exponentiation since 

AÀ + ext H nm = ≞⋮∙ Hence the function lx is represented by 

G with Gx = x1. Now we have for all numerals A + ext F Gn = 1, 

but not A + ext  Gx = 1 since À H G(K0) = K01 = 0. 

(It should be admitted that F is not the standard representat- 

ion of exponentiation as this will be done in 81.3, but similar 

examples can be given there.) It is unlikely that there exists a 

global representation of the primitive recursive functions at 

all, since in contrast to the representation in predicate 

calculus, all models of the A-calculus must contain 'non-
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standard' elements (such as the element denoted by K). 

Undecidability results. As was mentioned above, the translation 
  

going from the A-calculus to CL preserves solvability of closed 

terms. Thus undecidability results about the A-calculus as in 

81.3 transfer to CL, without any need for a parallel develop- 

ment of CL-definability. 

We note that the role of unsolvable closed terms in the òK- 

calculus is similar to the role of those closed terms in the 

AI-calculus which have no normal form. In particular 

1) In the AK-calculus it is consistent to equate all unsolvable 

terms (see §3.2) and in the AI-calculus it is consistent to 

equate .all terms without a normal form (see part II). 

ii) For some purposes unsoivable terms can replace familiar 

arguments involving negation. See for example 3.2.19 where it is 

proved that Con, the set of equations consistent with the A- 

calculus is complete ). 

An example of an undecidability result which does not need 

strong representability is 1.3.17 for which we give here an 

alternative proof (cf. Smullyan [1961]). 

Let A,B be disjoint r.e. sets, recursively inseparable. 

Define f(x) = 0 if x A 

1 if x B 

1 else 

then f is partial recursive. Let f be defined by the term F. 

If T were a recursive consistent extension of the A-calculus, 

then C = {n | T + Fn = 0} would be a recursive separation of 

A and B.
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A minimal extensional term model. In Chapter II we define a 

model of CL which is minimal in two respects. Firstly its domain 

consists of the closed terms only, which are, as was stated 

in the introduction,principal object of our study. Secondly the 

model is minimal with respect to the equality relation,that is 

to the set of terms that are equated. It is clear, that the model 

is generated by the w-rule described in §2.1. Formally the theory 

enriched with the w-rule is a strengthening of the rule of 

extensionality: to infer M = M' we do not require a derivation 

of Mx = M'x with variable x, but only derivations of MZ = M'Z 

for all closed terms Z (with no uniformity on these derivations). 

Two questions, so to speak, at opposite poles are 

a) Is the theory consistent? 

b) Is the theory conservative over the A-calculus + ext? 

Ad a) In §2.2, 2.3 it is shown by transfinite induction, that 

the extension of CL (or the A-calculus) by the w-rule is 

consistent. 

Ad b) In §2.5 it is established for equations M = M' where M and 

M' are not universal generators that the w-rule is conservative. 

We prove this by showing the existence of variable like closed 
  

terms £ such that M2 = M'Z2 = M = M' , 

This result.includes the known special case (a consequence of 

the theorem of Böhm [1968] , cf. §2.1) of equations between normal 

terms since they are not universal generators. 

In this connection it is to be understood that our use of closed 

terms which are not in normal form is not haphazard: as we see it, 

different meanings, that is programmes, are to be given to
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certain (different) terms which have no normal form; for example 

if M = Ax.x00 and N = Ax.x1Q , where @ does not have a normal 

form, then M,N have no normal form but MK = 0 and NK = 1. 

Unsolvable terms. These terms were already mentioned in 
  

'A-definability' above, in connection with the definability of 

functions, where they were needed to provide particularly 

heriditarily undefined values. From the computational point of 

view this means that such terms do not do much. In accordance 

with this we now consider the possibility of putting them equal 

and establish (3.2.16) that this can be done consistently, even 

in the presence of extensionality (added in print: or the w-rule). 

It is the term model of this theory that is not among Scott's 

collection of models mentioned above. We note that in general 

the addition of extensionality not only adds new theorems (cf. 

the remark following 1.1.16) but can be problematic. In part- 

icular in 3.2.24 we provide a consistent extension of CL 

which becomes inconsistent when extensionality is added. 

Recursion theoretic structures for the AK- and the AI-calculus. 

By a recursion theoretic structure we mean here a combinatory 

structure where the domain consists of w U {*} and the applicat- 

ion operator is interpreted as Kleene brackets, i.e. 

n.m = {n}(m) = U(uz T(n,m,z)). * has to be treated as the 

undefined element, it serves to make the application operator 

total, with the additional property that {n}(*) = (+) (cf. the 

theory of Wagner and Strong (Strong [1968])). 

This kind of construction can of course be made more general. 

In-stead of Kleene's brackets which come from his particular
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equation calculus for computing recursive functions from 

recursion equations, an other equational calculus (and other 

numberings of equations) may be considered. In this way one 

discovers exactly which properties of numberings and equation 

calculi are relevant to our subject. 

Perhaps the most essential difference between the AI-calculus 

and the AK-calculus is that the former is 'more' systematic or 

deterministic, not allowing short-cuts. All programmes that are 

'represented' in a term of the AI-calculus have to be performed, 

while in the AK-calculus some subprogrammes can be skipped. For 

example we reduce KMN to M without looking at the value of N. 

(This may be compared to a 'stupid' evaluation of 0.(215 + 36) 

in numerical arithmetic where we evaluate 215 + 36 and a short 

cut using the reduction 0.x — 0; actually the AI-calculus it- 

self does 'stupid' numerical computations.) 

Because of this systematic feature of the AI-calculus we can find 

a recursion theoretic model for it or better for its combinatory 

equivalent, described in Rosser [ 1936] , here called CLI. It is 

like CL but with primitive constants I,J and the axioms IM = M 

and JMNLP = MN(MPL). For suitable numbers i,j the structure 

® = <w U {+},i,j,°> is a model for CL In part II of our thesis 

thesis we will prove that 

(1) M has no CL normal form > R (M) = *. 

The proof uses a formalization of the description of the 

recursive functions as is in Kleene [ 1959]. 

This implies that it 1s consistent with CL. to equate all terms 
I 

without a normal form.
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The recursion theoretic structure obtained by use of Kleene's 

particular equation calculus is not a model for CL. Though there 

are numbers i,k,s € w which satisfy i°*x = x, k°xsy z x and 

sexeyez z xeze(yez) for all x,y,z2 € w no k satisfies 

kexey = X for y = *. 

However the structure ®' = <w U {*},i,k,s;*> realizes the language 

of CL, but is not a model of it, and satisfies an analogue to (1) 

namely 

(2) M'has no CL-normal form <= “R,(M) z *, 

Considering finally the canonical mapping: M — Mws of the 

language CL into the language of Wagner and Strong, we find a 

term M in Part II such that 

M has no CL (and hence no CLI) normal form but MWS = * 1s not 

a theorem of the theory of Wagner-Strong. 

Since however properties (1) and (2) hold for our intended objects 

of study, we should wish to extend the theory of Wagner-Strong; 

specifically to extend their language. Since the proofs of (1) 

and (2) for ® and ®' required an analysis of computations, the 

extended language should refer to the latter, in particular to 

length of computations (as pointed out to us by C.Gordon).





CHAPTER 1 

Preliminaries 

§1.1. The J-calculus. 
  

The A-calculus 1is a theory studied thoroughly in the thirties 

(by Church, Kleene, Rosser and others). It has been designed to 

describe a class of functions V, where the domain of all 

functions is V itself. Therefore the objects we consider are 

at the same time function and at the same time argument. (A 

similar situation we have in most set theories: there the 

objects are at the same time set and at the same time element.) 

Hence we. have the feature that a function can be 

applied to itself. In the usual conception of a function in 

mathematics, for example in Zermelo Fraenkel set theory, this is 

impossible (because of the axiom of foundation). 

The A-calculus defines (or better represents) a class of (partial) 

functions (A-definable functions) which turns out to be the class 

of (partial) recursive functions. In fact the equivalence 

between the Turing computable functions and the u-recursive 

functions was proved via the A-definable functions: 

Kleene [1936] proved: the u-recursive functions are exactly the 

A-definable functions. 

Turing [1937] proved: the computable functions are exactly the 

A-definable functions. 

In this sense the A-calculus played a central role in the 

early investigations of the theory of the recursive functions. 

The consistency of the A-calculus was proved by Church and
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Roszer [ 1936] . Because some theories related to the A-calculus 

leene-Rosser [ 1935}, turned out tc be inconsistent (paradox of K 

aracox of Curry [1342]), we see Thet this consistency proof is 'J
 

0t & luxury. In contrast tc most mathemeticai thecries, and + 

like set theory, the A-calculus was initiated before any models 

di were known. In group thecry for example many ccncrete groups 

D 
), were known long before formal grour theory wes ievelop 

H untii the end of 1569 however, were the first models in ordinary 

mathematical terms for the A-calculus constructed (Scott [19790]). 

n the à-calculus we have the fundamental operation of -1
 

application. The application of a function f tc a will be 

written as fa. 

Apart from this application we have an abstraction operator A 

The intuitive meaning of Ax ... 1s the function which 

assigns ... to X. Its use is illustrated by the following 

formula (not a formula of the A-calculus by the way) 

(ÀAx-x2+2x+1)3 = 186. 

Now we give a formal description of the A-calculus. 

1.1.1 Definition 

We define the following language L. : 
K 

Alphabet: a,b,c,... variables 

A) improper symbols 

= equality 

Terms: Terms are inductively defined by 

1) a variable is a term 

2) if M,N are terms, then (MN) is a term



3) if M is a term, then (AxM) is a term (x is an 

arbitrary variable). 

Formules: if M,N are terms then M = N is a formula. 

1.1.2 Definition 

An occurrence of a variable x in a term is called bound if this 

" Otherwise we. call this cccurrence of x is "in the scope of «x 

x free. 

BV(M) (FV(M)) is the set of all variebles in M that occur in M 

as a bound (free) wvariable. 

BV and FV can be defined inductively as follows: 

BV(x) = 0 

BV(MN) = BV(M) U BV(N) 

BV(AxM) = BV(M) U {x} 

FV(x) = {x} 

FV(MN) = FV(M) U FV(N) 

FV{AxM) = FV(M) - {x}. 

A variable can occur free and bound in the same term 

(e.g. ((Ax(xy)Ix)). 

Note that, as is common, we use for equality in the object- 

language and in the metalanguege the same symbol "=". When we 

need to distinguish between them we write (as Curry does) "=" 

for equality in the metalanguage. This is mainly the case when 

we mean syntactic identity.



1.1.3 Notation 

i) M.M....M stands for ((..(M,M,)...)M ) (association to 
1 2 n 12 n 

the left). 

11) Axlxz...xn-M stands for (Àxl(Àxz...(Àng)..)) 

iii) [x/N]M stands for the result of substituting N in those 

places of x in M which are free: 

[ x/Nlx = N 

[ x/N]y =y 

[x/N](Mle) ([x/N]Ml)([x/N]Mz) 

[ x/N] (AxM) AxM 

[ x/N] (AyM) = Ay ([ x/NIM). 

In the above x £ y. 

1.1.4 Definition 

The A-calculus is the theory in L defined by the following 
K 

axioms and rules: 

T 1. AxM = Ay[x/y]M if y € FV(M) 

2. (AxMIN = [x/NIM if BV(M) N FV(N) = @. 

  

  

  

IL 1. M = M 

2. M = N 
N = M 

3. M= N, N =1L 
M= L 

b, M = M' M= M M= M 
ZM = ZMT  MZ = M'Z2  AxM = AxM’ 

In the above M, M', N, L, Z denote arbitrary terms and x,y denote 

arbitrary variables. 

We say that ...2 is a direct consequence of ...1 if ...1



1. 1. 5 Remarks 

Axiom I 1. allows us the change of bound variables (like 

of1 xèdx = of1 vèdy ). 

If M = N is provable using only axiom I 1. (and the rules of 

II) then we say that M is an a-variant of N (notation M = N). 

If M =, N then only the bound variables are renamed. Note 

that M E& N is a statement of the metalanguage. 

Axiom I 2. expresses the essential feature of the À operator. 

The Axiom and rules of II express that = is an equality. 

If we would drop the restriction in I 1. we would get 

(Aa-ab) = (Ab-bb) which is in conflict with our intuitive 

interpretation of }. 

If we would drop the restriction in I 2. we would get 

a) (Àa()b:ba))b = Ab-.bb 

b) (àa(àc:ca))b = Àc.cb 

which is also undesirable. In (a) there is a difference 

between the "local" variable b and the "global" ‘variable b. 

The restriction in I 2. is just to prevent confusion of 

variables. 

If we would restrict the definition of terms as follows: 

3') If M is a term and if x € FV(M), then AxM is a tern, 
  

then we get a restricted form of the A-calculus, the so called 

AI-calculus. Our form of the A-calculus is called the AK- 

calculus because we can define a term K = )ab-a, with the 

property KMN = M, which is impossible in the AI-calculus. 

In the absence of K many theorems are a bit harder to prove; 

see Church [1941] who treats the AI-calculus.



4. Axioms I.1. and I 2. are called a-resp. B-reduction. 

5. A F M =N means that M = N is a provable formula of the 

A-calculus. 

1.1.6 Examgles 

Define I = la-.a 

K = Aab-a 

S = Jabc-ac(bo) 

Then A H IM = M 

A H SMNL = ML (NL) 

A nice exercise is the following. 

1.1.7 Theorem (fixed point theorem) 

For every term M there exists a term  such that A F MQ = Q. 

Proof. 

Define w = (Ax M(xx)) with x & FV(M) 

Q = ww 

Then A F Q@ = (Ax M(xx))w = Mlww) = MQ. K 

This fixed point theorem, so simple to prove, is strongly 

related to the fixed point theorem in recursion theory (recursion 

theorem). In 1.1.7 we have proved more than we formulated. The 

fixed point can be found in a uniform way. 

1.1.8 Corollary 

There exists a term FP such that for every term M we have 

A  M(FPM) = FPM 

Proof. 

Define FP = Xa- ((Ab-a(bb))(ra-b(aa))) X



The Russellparadox and Gödel's self referring sentence can be 

considered as applications of FP. Therefore in Curry Feys 

[ 1958] such a term FP is called a paradoxical combinator. 
  

1L1.9 Corollary 

There exists a term M such that A  Mx = M. Such a term is 

called a fixed point. 
  

Proof. 

Define M = FP K (where K is defined as in 1.1.6). 

Then À } Mx = KMx = M, (X 

1.1.10 Definition (See also 1.2.6.) 

1) A term M is in normal form if it has no part of the form 
  

(AxP)Q. 

2) A term M has a normal form if there exists a term M' which is 

in normal form such that A M = M'. In this case we say that 

M' 1s a normal form of M. 

In the next § we state a theorem (1.2.9) which has as consequence: 

1.1.11 Theorem 

If M has a normal form, then this normal form is unique up to 

a-reduction (i.e. change of bound variables). 

Examples. 

1. (la-a)(Ab-bb) is not in normal form but has the normal. form 

Ab-bb. 

2. c(àa.a)(àb.bb) is in normal form. 

In § 1.2 we will give examples of terms that do not have normal 

forms.



In the A-calculus we can represent the natural numbers: 

1.1.12 Definition 

0 = àab:b 

1 = Aab-ab 

2 = Àab-a(ab) 

3 = )ab-.a(a(ab)) 

Hence n = Xab- a(...(ab)..) = Aab-a’'b n | : 

n times 

Note that n is in normal form and has the property: 

1.1.13 

A F nfx = fx. 

1.1.14 Definition 

Let f: U! > w bea partial function. 

f is called A-definable iff there exists a term F such that 
  

A H Fk,...k zm if f(k, .. kn) = m 

F£1'°°En has no normal form if f(kl""’kn) 1s undefined. 

In this case we say that F defines f. 

If F defines f, but we no longer know f, can we recover f from 

F? The following gives an affirmative answer. 

1.1.15 Theorem 

If F defines f then 

T 3 = > AL Fk, k 3 m 9 f(k, 5 k ) 

Proof. 

< By definition.



= Suppose A } Fk k z m 1 X, 

.K has a normal form 
1 n 

so f(kl,...‚kn) is defined, say 

Then Fk 

f(kl"°"kn) = m! 

- 1 1°°°Ën −≞∙ 

By 1.1.11 it follows that m =, m' . 

Hence à H Fk 

Hence m = m' and therefore f(k1’°°°’kn) = m. X 

Now we consider the following rule of extensionality: 

1.1.16 

ext Mx = Nx x &€ FV(MN) 
M =N 
  

ext is not provable in the A-calculus: 

Let M = \a-ba 

N = b. 

Then A  Ma = Na, but not A b M = N because M and N are dictinct 

normal forms. So we may take ext as an extra axiom for the A- 

calculus. 

A+ext F M =N means that M = N is a provable formula of the 

A-calculus + extensionality. 

1.1.17 Theorem 

A+ ext F (Ax(Mx)) = M if x € FV(M) 

(In the literature, this is called n-reduction.) 

Proof. 

(Ax(Mx))x = Mx, x € FV(M). 

Hence by extensionality 

(Ax(Mx)) = M. X
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Note that extensionality follows in turn from 1.1.17: 

1.1.18 Theorem 

If we assume 1.1.17 as an extra axiom for the A-calculus, then 

we can prove extensionality. 

Proof. 

Let Mx = Nx x &€ FV(MN). 

Then Ax(Mx) = Ax(Nx) by rule II.H4. 

Hence M = N by 1.1.17. 

1.1.19 Remark 

Often in the literature the A-calculus we described is called 

the A-B-calculus. (Because its essential axiom is I.2.: 

B-reduction.) The A-calculus with 1.1.17 as an extra axiom is 

called the A-Bn-calculus. When it is needed to stress that we 

are working with the AK-calculus, we speak about the AK-B- 

calculus and the AK-Bn-calculus. 

Of course we have also the AI-B-calculus and the AI-Bn-calculus. 

§1.2. The Church-Rosser theorem. The consistency of the A-calculus. 

Since we do not have a negation in the A-calculus we cannot define 

the concept of a contradiction. Therefore we define the 

consistency as follows. 

1.2.1 Definition 

The A-calculus is consistent if we cannot prove a = b. 

(If a = b were provable every formula would be provable.) 

As was remarked in the introduction some theories related to the 

A-calculus turned out to be inconsistent. Fortunately the A-
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calculus itself is consistent as was proved by Church and Rosser 

[ 1936]. 

We will now give an idea of how this was done. Let us go back to 

the informal discussion in the beginning of 81. 

We had the expression (Ax-x2+2x+1)3. After computing we replace 

this expression by 16. No one would replace 16 by the more 

complicated (Ax+x2+2x+1)3. Hence we can assign a certain asymmetry 

to the relation = 

This will be expressed by 

(Ax:x2+2x+1)3 > 16. 

= 1s called reduction. 

Note that reduction 1s a stronger relation than equality. I.e. 

if M reduces to N then M is equal to N. Now we will describe an 

extension of the A-calculus in which we formalize this reduction 

relation. 

1.2.2 Definition 

We define the following language Lá 

The alphabet of L! consists of that of L, together with the 
K K 

symbol "=2". 

The terms of LÈ are the same as those of LK‘ 

The formulas of LÈ are defined as follows: 

If M,N are terms of LÉ then M = N and M 2 N are formulas. 

1.2.3 Definition 

In the language Lá we define an extension of the A-calculus by 

the following axioms and rules (see appendix):
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I 1. AxM Z aylx/yIM  if y € FV(M) (a-reduction) 

2. (AxM)N 2 [x/N]M if BV(M) n FV(N) = 6 (B-reduction) 

II Same as in 1.1.4. (These state that "=" is an equality.) 

III 1. M =2 M 

M 2 
  

2. N, N> L 
M > L 

3. M>M M> M M > M 
ZM 3 ZM' > MZ > M'Z > xM > AxM' 

4. M >N 
M = N 
  

Again in the above M, M', N, L, Z denote arbitrary terms and 

X,y arbitrary variables. 

If we want to include extensionality we add the axiom 

1.2.l+ 

I 3. Ax(Mx) =2 M if x € FV(M) (n-reduction) 

It is easy to see that.this extended A-calculus (with or with- 

out extensionality) is in fact a conservative extension of the 

A-calculus (with or without extensionality) considered in 81.1. 

For this reason we also write for the extended A-calculus 

A H M z N and à + ext M = N. 

Henceforth, if we refer to the A-calculus, we mean the extended 

A-calculus. 

Note that if we have À + ext H M > N, n-reduction may be used. 

With the help of =2 we can express an important property of 

normal forms: 

1.2.5 Lemma 

If M is in normal form and A F M > N then M ≡∘⇂ N.
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Proof. 

By induction to the length of proof of A M > N. & 

Remark. It is not true thatif VN[A KM 2N>M o Nl , then M is 

in normal form. 

Consider for example (la-aa)(ia-aa). 

1.2.6 Definition 

If we consider the A-Bn-calculus we can define 

A term is in n-normal form if it has no part of the form Ax(Px). 
  

The concept of normal form as defined in 1.1.8 is then called 

R-normal form. 
  

A term is in Bn-normal form if it is both in 8- and in n-normal 
  

form. 

A term M has a Bn-normal form i1f there exists a term M' which is 
  

in Bn-normal form such that À + ext H M = M', 

If we just speak of normal form, we mean B-normal form. 

Analogous to 1.2.5 we have 

1.2.7 Lemma 

If M is in Bn-normal form and if A + ext F M > N then M ≡∘∣⋅ N. 

1.2.8 Lemma 

If M has a $8-normal form, then M has a Bn-normal form. 

Proof. 

Let M' be a B8-normal form of M. Then à H M = M', hence 

a fortiori A + ext F M = M'. 

By applying I.3 (n-reduction) a finite number of times to M', 

we obtain a M" which is in n-normal form and A + ext + M = M". 

Because n-reductions do not introduce subterms of the form
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(AxP)Q, M" will be in Bn-normal form, hence it is a Bn-normal 

form of M. X 

In Curry Hindley Seldin [ 1917} Ch.11 E, lemma 13.1 it is proved - 

that the converse of 1.2.8 also holds. 

Now we state without proof: 

1.2.9 Theorem (Church-Rosser theorem [1936]) 

If A ⊢ M = N then there exists a term Z such that A M > Z 

and A N D Z. 

See Mitschke [1970] for an elegant proof. 

Mitschke's proof is still rather long, but much simpler than 

the original one. In §1.5 we will use Mitschke's ideas to 

prove a Church-Rosser theorem for combinatory logic. 

1.2.10 Corollary 

If M,N are terms both in normal form and M Ea N , then 

A E M = N. 

‘Proof. 

Suppose A M = N, then by 1.2.8 there exists a Z such that 

AFM>22Z2, A N2> 2Z. 

M,N are in normal form, hence by 1.2.5 M ≡∘⇂ Z and N ≡∘⇂ Z. 

But then M ≡∘⇂ N contradiction. X 

From this 1.1.11 readily follows: 

1.1.11 Theorem 

If M has a normal form, then this normal form is unique up to 

a-reduction.
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Proof. 

If ÀA H M=N A H M= N with N, ,N in normal form, then 
1° 2 1? 2 

A k N, = N,. Hence by 1.2.10, N, =, N,. X 

1.2.11 Corollary 

The A-calculus 1s consistent. 

Proof. 

Because the terms a,b are in normal form and a Ea b we have 

AW az=b by 1.2.10. R 

Also the question of the consistency of the A-calculus with 

extensionality arises. In Curry Feys [1958] Ch.4D an extension 

of the Church-Rosser theorem is proved for the A-calculus with 

n-reduction. We state this here without proof. 

1.2.12 Theorem 

If À + ext H M = N, then there exists a term Z such that 

A + ext HM ZDZ and A + ext F N > Z. 

Analogous to corollaries 1.2.10, 1.1.11 and 1.2.11 we have: 

1.2.13 Corollary 

If M,N are terms, both in Bn-normal form and M ía N, then 

A + ext K M = N. 

1.2.14 Corollary 

If M has a $n-normal form, then this Bn-normal form is unique 

up to a-reduction. 

1.2.15 Corollary 

The à-calculus with extensionality is consistent.
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In chapter II we will prove a theorem stronger than 1.2.15. 

Now we state a corollary of the Church-Rosser theorem with the 

help of which we can show that some terms have no normal 

form: 

1.2.16 Corollary 

If M has the normal form N, then X M > N. 

Proof. 

If A H M =N and N is in normal form, then by 1.2.8 there 

exists a Z such that A F M > 272 and A - N » Z, hence by 1.2.5. 

So we have A F M =2 N. KX 

1.2.17 Examples of terms without normal form. 

From 1.2.16 follows that the term w,w, with w, = Aa-aa has no 

normal form. Because w2w2 reduces only to itself and it is not 

in normal form. When we reduce w3w3 with w3 = Àa-aaa, then the 

result will grow larger and larger. Along this line we will prove 

in chapter'II‚ the following extreme result: 

There exists a term M such that YN3IM' X b M > M' and N is sub- 

term of M'. Such a term 1s called a universal generator. 

i.2.18 Remarks 1) 

1. Apart from the proofs already mentioned 

two abstract forms of the Church-Rosser 

1) (Added in proof.) Recently a very simple proof of the 
Church-Rosser theorem is given by Martin-Löf [1971]. 
See appendix II.
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theorem were proved in Newman [1942] and Curry [1952] which 

were supposed to imply the original theorem as a corollary. 

However, as was pointed out by Schroer (see Rosser (1956]). arid 

Newman [ 1952], it turned out that these general theorems did’ 

not have as corollary the original theorem. 

Two adequate abstract forms of the Church-Rosser theorem were 

proved by Schroer [1965] and Hindley [1969]. 

Mitschke [ 1970] gave a new proof of the Church-Rosser theorem, 

which is conceptually simpler than the original one. In 

§1.5 we will use Mitschke's ideas to give a proof of the 

Church-Rosser theorem for combinatory logic. 

Finally there is another proof of the Church-Rosser theorem by 

Rosen [1971] . He proves also an abstract form of the Church- 

Rosser property, which is applicable to the A-calculus. But 

this application needs a construction similar to that of 

Mitschke [ 1970] and this makes the proof rather long. On the 

other hand, Rosens general theorem is also applicable to other 

fields (like the McCarthy calculus of recursive definitions). 

See also Curry, Feys [1958] Ch 4 S and Kleene [1962] for 

historical remarks. 

Before the Church-Rosser theorem was proVed the consistency of 

combinatory logic was shown already by Curry [1930]. It was 

shown in Rosser [1935] that this implies the consistencyy of 

the A-calculus. 

In part II of our thesis a very simple consistency proof for 

combinatory logic, due to Scott, is given.
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§1.3. The M-definability of the partial recursive functions. 

Undecidability results. 

The (partial) functions f considered in this § are all number 

theoretic (i.e. f: w® = w). 

1.3.1 Definition 

We define some standard functions: 

1) U?(xl,...,xn) = X. are the projection functions. 
i 

2) S+(x) = x+1 1s the successor function. 

3) Z(x) =0 is the zero function. 

1.3.2 Definition 

The paftìal recursive functions can be defined as the smallest 

class & of partial functions such that 

n 
1) U. € 8 

i 

2) sT € 8 

3) Z E K 

4) If g’hl""’hm E & and f is defined by 

f(xl‚...‚xn) = g(hl(xl‚...,xn),...‚hm(xl,...‚xn)) 

then f € & (& is closed under substitution). 

5) If g,‚h € 8, g and h are total and f is defined by 

> > > 
f(0,x) = g(x) (where x = x .,xn) 1‚.. 

> > ' > 
f(k+1,x) = h(f(k,x),k,x) 

then f € & (& is closed under recursion). 

6) If g € 8, g is total and f is defined by 

£(x) = uylg(xX,y) = 0] 

(i.e. the least y such that g(;;y) = 0;5 if there does not
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exist such a y, then uy[g(î}Y) = 0] is undefined) 

then f € & (& is closed under minimalisation). 

The primitive recursive functions are defined by 1) - 5) only. 

- > . . > . > . 

We write f(x)3 if f(x) is defined and f(x)T if f(x) is un- 

defined. 

In order to show that the partial recursive functions are 

A-definable, we will have to show a slightly stronger fact. 

1.3.3 Definition 

Let f be a partial function which is A-definable by a term F. 

We say that F strongly defines f iff 
  

f(kl,...‚kn)î = VZl...ZS Fgl...gnzl...zs has no normal form. 

In this case f is called strongly A-definable. 
  

Note 1. Our concept of strongly A-definable should not be confused 

with that of Curry Hindley and Seldin [1971] Ch 13 A. Our 

notion of A-definability corresponds to their strong 

definability. 

2. If a total function is A-definable it is automatically 

strongly A-definable. 

Now we will prove that the partial recursive functions are all 

strongly A-definable. In order to do this we have to show that: 

1) UÊ‚ VAR s* are strongly A-definable. 

2) The strongly A-definable functions are closed under substitut- 

ion, recursion and minimalisation. 

1.3.4 Lemma 

The functions UÏ‚ S+, Z are A-definable. (Hence they are 

gtrongly à-definable.)
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Proof. 

n . . n _ / 
1) Ui is defined by Ëi = Äal‚...‚an a; 

n . - AR U kjeeek, 3 (Aaj .9 ajp)k, k s 

- (Aa2 an'ai)k2 k = 

= (Àai+1 °°an.l<—i)-}íi+l'°°£n = 

- - -—i 

2) Z is defined by Z = Xa 0: 

AkZk=0. 
+ . . + 

3) S 1is defined by S = abc:b(abc): 

\A k S' n = Abeb(nbc) = Abc-b(b"e) 

= Abc-bn+1c = n+1. X] 

1.3.5 Lemma 

The strongly A-definable functions are closed under substitution 

(i.e. if g.h ‚h are \-definable and f(x) = g(hl(;)‚... 130 5h, 

> - . . 

...‚hm(x)) (where x = xl,...,xn), then f 1s A-definable). 

Proof. 

Let g‚hl,...‚hm be strongly A-defined by G’Hl""’Hm respective- 

ly. Then f is defined by 

F = kal...an-(Hlal...anI) ... (Hmal"’anI)G(Hlal'"an)"' 

"'(Hmal"'an) 

For suppose that f(kl"‘°’kn) = k. 

Then Vi Bni hi(kl"'°’kn) = nif therefore à } Hiï‚...‚hn = m; 

Furthermore g(nl‚...‚nm) = k. Thus 

A F Fkyeeek, 3 CH K e Kn ). « (H koo k TOG(H K -2 0k ) 

(H k e k) 
= (1) +--+ (nT)G ny...n



Suppose f(kl,...‚kn)î 

1. ViEl:ni hi(k1’°"’k ) = n.. 

Then g(nl,...‚nm)î 

A F&l...&n = Ggl...gm 

Hence VZl...ZS FËl"'Ën Zl" 

because G strongly defines g. 

2. h.(k,5...,k1* for some i. 
1 1 n 

Then YZ ...Z 
1 S 

Hence VZ,.. .Z Fk 
1 S —1'°°£n Z 

1° 

(For this case it was needed to introduce 

strong definability.) 

.Z 

(Higí...gn)zl...zs has. no 

.Z 
S 
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Then there are two cases: 

has no normal form, 

normal form. 

has no normal form. 

the notion of 

In the A-calculus it is possible to define ordered pairs. 

1.3.6 Definitions 
  

[M,N] = àz:zMN, where z & FV(MN) 

K = \Aab-a, aa akK T1 

K'= a aK! Aab-b, T, 

Then we have 

A L KMN M hence à L [M,N]K = 

à H K'MN N hence à K [M,N]K!'= 

M, 

N, 

thus A k T,[M,N] M and 

thus } k T,[M,N] N. 

Hence [M,N] is an ordered pair function with projections T1,T2. 

Note that M = [TIM,TZM] 

1.3.7 Theorem (Bernays) 

is not provable. 

The strongly A-definable functions are closed under recursion.
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Proof. 

Because in 1.3.2. 5) only total functions are considered we do 

not need to bother about strong definability. 

Let f be defined by 

f(D) = n, 

f(n+1) = g(f(n),n) 

and suppose g is A-defined by G. 

(For the sake of simplicity we treat the case that f has no 

additional parameters. The proof in the general case is 

analogous). 

We will prove that f is A-definable. 

Consider M = Aa[§+(rla),G(Tza)(rla)]. Then M has the property 

A F Mn,f(m)]) = [5"n,6 £(n) n] = [n+1,f(n+1)]. 

Now we have A F{0,£(0)] = [0,n,] 

M O,n,] Ak[1,f(1)] 

AR[2,£(2)] Ml1,£¢(1)] = M*[0,n,] 

AFln,£(m)] = MM[0,n,] = n M0,n,] 
Hence 

Akf£(n) = T,[n,£(n)] = T,(n M O0.n,]). 
  

Therefore f can be A-defined by 

F = Ja-t,(a MO,ng]). X 

By 1.3.4, 1.3.5 and 1.3.7 we can already state: 

1.3.8 All primitive recursive functions are A-definable. 

1.3.9 Theorem 

The strongly A-definable functions are closed under minimalisat- 

ion.
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(This theorem was first proved for the AI-calculus in Kleene 

[1934]. We give here a simplification for the AK-calculus due 

to Turing [1937a]). 

Proof. 

Let f(x) = uy[g(x,y) = 0] where g is a total A-definable function: 

(Again for simplicity we suppose that f has only one argument.) 

We will prove that f is strongly A-definable. 

Let g'(x,y) = sg(g(x,y)) where sg(0) = 0 and sg(n+1) = 1. 

From 1.3.8 and 1.3.5 it follows that g' is A-definable, say 

by G'. Hence 

G'kn = (0 if g(k,n) = 0 

1 1f g(k,n) # O. 

By the fixed point theorem there exists a term M such that 

A H M = Aab-G'ab(Ac Ma(S'c))b 

(Define N = Àm ab-G‘ab(Ac-ma(§+c))b and take M = FPN.) 

Define F = Xa Ma 0. 

Then F strongly defines f: 

\ k Fk = Mk 0 = 6'k O(àc-Mk(st0))0 = 0 if g(k,0) = 0 

= (c-Mk(s*c))0 if g(k,0) # 0 

= Mk 1 = G'k 1(Ac-Mk(STe))1 = 1 if g(k,1) = O 

= (Ac-Mk(S*c))1 if g(k,1) # 0 

:Ml(_?_: 

etc. 

If f(k)1t then Vy g'(k,y) = 1, hence VZl...ZS Fk Zl' 

normal form, as is readily seen. X 

..2Z _has no 
s 

From 1.3.4, 1.3.5 , 1.3.7 and 1.3.9 we get: 

1.3.10 Theorem 

All partial recursive functions are A-definable.
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Remark. The converse of 1.3.10: All X-definable functions are 

partial recursive, is intuitively clear from Church thesis. 

For a proof see Kleene [1936]. 

We now state some corollaries to 1.3.10 which concern 

undecidability. 

Let ” ' denote the Gödel number of a term or formula in some 

Gödelisation. For the definition of some notions in recursion 

theory the reader is referred to Rogers [1967] Ch 7. 

With the following we answer a question of Mostowski. 

1.3.11 Theorem 

The set {{M = N | A F M = N} is 1-complete and hence creative. 

Proof. 

Let X be an arbitrary r.e. set. 

Define f(x) = 0 if x e X 

{T else 

Then f is partial recursive. Let f be defined by F. 

Then 

k € X e f(k) z O * ÀA L Fk = 0 
— 

Hence X <; {™™ = N | X F M= N} via the function h(k) = Fk=0 
- 

1.3.12 Corollary 

The A-calculus is undecidable. 

Grzegorczyk [1970] has proved even that the A-calculus is 

essentially undecidable (see 1.3.17).
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1.3.13 Lemma (Kleene [1936]) 

There exists a term E such that 

VM[EV(M) = 8 = 3n X k En = M 

See for a proof Kleene[ 1936] theorem(24),pg.351 or Church[ 1941] 

theorem 14 III, pp.47-48. 

1.3.14 Lemma 

For any terms M, ,M there exists a term M such that 
0°1 

AR MQ o= M 

AHM1= M, « 

Proof. 

Define M = Àa°a(KM1)M0 (where K is defined as in 1.3.6). 

Then AL M 0 =0 (KMl)MO = MO 

ALM1=1 (KM)M = KMM z M, 

1.3.15 Theorem (Scott [1963]) 

Let A be a set of terms such that 

1) A 1s not trivial (i.e. M, € A and Ml € A for some M 

2) If Me A and A F M = M', then M' € A. 

O,Ml). 

Then "A' = {M' | M € A} is not recursive. 

(Compare this theorem to the theorem of Rice [1953]). 

Proof. 

Suppose TA' is recursive and let M, € A and M, € A. By 1.3.14 
0 

there exists a term M such that À H M 0=M,and A FM 1 =M 
0 17° 

Define B = {n | M(Enn) é A} , with E as in 1.3.13. 

Then B is recursive, hence there exists a term C such that 

A} cgh = 0 if n €B and 

A F epn =1 if n & B. 

We can assume that FV(gB) = p.
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Let n, be such that À k En, = Cp ° 

Then 

ng €B ® à F Eneny = 0 =X F MEnn,) = My = 

= M(En,n,) € A = n,&€ B 

ng € B= X FEnn, =1 ⇒⋅∑ F M(En,n,) = Ml > 

”’M(Eg}go) € A > n,€B. 

This is a contradiction. X 

1.3.16 Corollary (Church [1936]) 

The set {M' | M has a normal form} is not recursive. 

Proof. 

Take A = {M | M has a normal form} in 1.3.15. X 

1.3.17 Corollary (Grzegorczyk [1970]) 

The A-calculus is essentially undecidable (i.e. has no decidable 

consistent extension). 

Proof. 

Suppose T is a decidable consistent extension of the A-calculus 

(i.e. the set of theorems of T is recursive). 

Define A = {M | T+ M = 0}. Then ' A' is recursive because T is. 

But A satisfies 1) and 2) of 1.3.15.Hence "A™ is not recursive. 

Contradiction. X 

Remark. 1.3.12, 1.3.15 and 1.3.17 were proved independently. 

§1.4. Combinatory logic. 

Combinatory logic is a theory closely related to the A-calculus. 

Considerable parts of it were developed by Curry. See Curry Feys 

[ 1958] and Curry Hindley Seldin [1971] for an extensive treat- 

ment of the subject.
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Combinatory logic is intended to be a foundation for mathematic- 

al logic. Therefore it includes "illative" notions corresponding 

to concepts like equality, quantification etcetera. 

However,we will be concerned only with the combinatorial part of 

combinatory logic or as Curry calls it: "pure combinatory logic". 

For illative combinatory logic the reader is referred to the 

above standard texts. 

1.4.1 Definition 

We define the following language L g 

Alphabet: a,b,c,... variables 

I1,K,S constants 

(,) improper symbols 

z equality 

= reduction 

Terms: Terms are inductively defined by 

1) any variable or constant is a term 

2) if M,N are terms, then (MN) is a term. 

Formulas: if M,N are terms, then M = N and M =2 N are formulas. 

Again M1M2...Mn stands for ((..(M1M2)...)Mn). 

To be explicit terms of CL are called sometimes CL-terms, 

terms of the A-calculus are called then A-terms. 

1.4.2 Definition 

Combinatory logic (CL) is the theory defined in LH by the follow- 

ing axioms and rules (see appendix).
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I 1. IM 2 M 

2. KMN =2 M 

3. SMNL = ML(NL) 

II Same as in 1.2.3. 

III 1. Same as in 1.2.3 

2. Same as in 1.2.3. 

3. MM 2 M' M 2 M! 
ZM > ZMT > MZ > M'Z 

4, Same as in 1.2.3. 

In the above M,M',N,L,Z denote arbitrary terms. 

Notation. We write x € M if x occurs in the term M. 

As in 81.1. we can adjoin to CL extensionality. 

1.4.3 

ext Mx=Nx , x € MN 

M=N 

  

CL (+ ext) - ... means that ... is provable in CL (+ ext). 

For example 

1.4.4 

CL + ext F S(S(KS)K)(KI) =1I 

Curry proved in his thesis that from a finite number of such 

theorems as 1.4.4 extensionality is provable. These axioms are 

called the combinatory axioms. See Curry Feys [1958] Ch 6 C. 

We will show that the à-calculus and combinatory logic are 

interpretable in each other. 

1.4.5 Theorem 

There exists a mapping %: CL > à (i.e. from the set of terms of 

LH into the set of terms of LK) such that



29 

1. CL (+ ext) F M= N = ) (+ ext) F ¢(M) = ¢(N) 

2. CL H M 2N > AFo%(M) @ ¢(N) 

Proof. 

Define ¢(x) = x ' for any variable x. 

$(I) = I (3 òa:a) 

$(XK) = K (= Aab.a) 

$(S) = S (= Aabc-ac(be)) 

b(MN)= ¢ (M) (N) 

Then 1t is clear that ¢ has the required properties. 

Remark. The converse of 1. and 2.: do not hold. For example: 

Ak ¢(SKK) = ¢(I) but CL K SKK = I 

as follows from the Church-Rosser theorem for CL (see 81.5.). 

In order to obtain a reverse interpretation, we need first a 

simulation of the A-operator in CL. 

1.4.6 Definition 

For any term M of L, and any variable x we define inductively a 
H 

term À*xM. 

A*X X = I 

A*x M = KM if x EM 

A*x (MN) z S(À*x M)(2*x N) 

Remarks. 

1. This method of defining A-terms with I, K and S comes from 

Schönfinkel [1924] although it is not in general formulated 

there.
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2. It is possible to formulate CL with K and S alone. In that 

case we define 

A*x X = SKK 

because CL  SKK x = x 

1.4.7 Lemma 

A* has the following properties: 

1) x does not occur in A*x M 

2) A*xX M = l*y[x/y]M if y EM 

3) CL b (A*x M)N = [x/N]M 

4) A*x[y/NIM = [y/N])A*x M if x 

Proof. 

The proof uses induction on the 

the four cases similar. 

As an example we prove ). 

# y and x € N. 

complexity of M and is in all 

1. 

= [y/N] KM 

M = x Then A*x[y/N]JM = A*x x = 

and [y/N}JA*x M = [y/N]I 

x € M Then A*x[y/N]JM = K[y/N]M 

and [y/N]x*x M = [y/N]KM. 

Mle and x € M. 

Then A*x[y/N]M = 

[y/N] A*x M 

A*x[ y/N]I MM, 

A*x([y/NIM, [y/NIM,) 

SCA*x[y/N]M, ) (A*x[y/N]M,) 

S([y/Nlx*x M,;)([y/N] A*x M,) by the induction 
hypothesis 

[y/N] S(A*x M) (A*x M,) 

X
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1.4.8 Lemma 

  

M = N is a derived rule for CL + ext 
A*X M = A*x N 

Proof; 

Let CL + ext M =N 

Then CL + ext  (A*x M)x = M = N = (A*x N)x 

Hence by ext 

CL + ext F A*x M = A*x N & 

1.4.9 Theorem 

There exists a fiapping v: À > CL such that 

A+ ext FM=N = CL + ext k y(M) = y(N) 

Proof. 

Define y inductively: 

v(x) = x for any variable x 

V(MN) z v(M)y(N) 

P(Ax M) = A*x y(M). 

Sublemma 

YU x/NIM) = [x/9(N)] (M)  if BV(M) N FV(N) = 8. 

Proof. 

Induction on the structure of M. (Use: x € FV(M) <= x € (M) 

and 1.4.7.4).) Now suppose À+extHM=N. We will show by induction 

on the length 1 of the proof of M = N that- 

(1) CL + ext F y(M) = y(N). 

  

1 = 0 M = N is axiom of the A-calculus. 

case 1. M = N, then y(M) 3 y(N), 

hence CL + y(M) = y(N). 

case 2. M = Ax P and N = Ay[x/ylP, with y € FV(P).



32 

Then Y(M) = A*x Y(P) and 

P(N) z Atylx/yly(P) by the sublemma. 

Hence by 1.4.7.2) CL F ¢(M) = y(N). 

case 3. M = (Ax P)Q and N = [x/Q]P, with 

BV(P) N FV(Q) = D. 

(A*x (PIY(Q) = [x/Y(Q)]¢(P) Then CL H v(M) 

by 1.4.7. 3) 

and CL H v(N) v([x/Q]IP) = [x/y(Q)]v(P) by the 

sublemma, hence CL } y(M) = y(N). 

1l = k and the theorem holds for 1' <k. 

M = N is the consequence of a rule of inference. Because of 

1.4.8 the rules of inference for the A-calculus + ext and CL + 

ext are the same, hence (1) follows immediately by the induction 

hypothesis. 

Remarks 

1. It is not true that 

A M z= N > CL } y(M) = y(N). 

For example à k Aa((\b:b)a) = Ja-a 

But CL H# S(KI)I = I as follows from §1.5. 

2. Also we do not have X F M >N = CL } y(M) > y(N). 

Because of this peculiarity a special theory of strong reduc- 

ibility (notation: >T) for CL is developed. 

Then we have A F M >N = y(M) > y(N) in CL. 

(See Curry Feys [ 1958] Ch 6 F.) 

In order to distinguish it fromIS—‚ > is called weak 

reduction.
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1.4.10 Theorem 

1) ÀA H o(y(M)) =2 M 

2) CL + ext + y($(M)) = M 

Proof. 

1) Induction on the structure of M. 

Prove first X F ¢(A*x M) > Ax ¢(M) for M a term of CL. 

2) Induction on the structure of M. 

The essential step is to show that 

CL + ext HS = A*xyz-xz(yz) and 

CL + ext F K A¥Xyex . X 

Remark. It is not true that CL F ¢(¢(M)) = M. 

Take for example M = K. 

Then CL K S(KK)I = K as follows from §1.5. 

1.4.11 Corollary 

The A-calculus + ext and CL + ext are equivalent: 

1) CL + ext H v(ó(M)) = M 

2) À + ext L o(y(M) = M 

3) CL + ext HM =N ) + ext F¢(M) = $(N) 

U) À + ext KM = N em CL + ext Hy(M) = y(N) 

Proof. 

1) and 2) follow directly from 1.4.10. 

3) CL + ext HM = N > X+ ext F ¢(M) = ¢$(N) by 1.4.5 

> CL + ext F p(¢(M)) = Y(d(N)) by 1.4.9 

= CL + ext M = N by 1). 

4) Similar proof as 3). X
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Because of this equivalence the names for the A-calculus and 

combinatory logic are sometimes interchanged. 

Scott [1970] in fact constructs a model for combinatory logic + 

extensionality. 

1.4.12 Definition 

1) A term M of CL is in normal form if it has no part of the form 

IM, KMN or SMNL. 

2) A term M has a normal form if there exists a term M' in normal 

form such that CL M = M'. 

Remark. Tfie terms in normal form can be defined inductively as 

follows: 

1) I, K and S are in normal form 

2) If M is in normal form, then KM and SM are in normal form 

3) If M and N are in normal form then SMN is in normal form. 

Similarly to 1.2.5 we have 

1.4.13 Theorem 

If M is in normal form and if CL k M =2 N, then M = N. 

As in 81.1. we can represent the natural numbers in CL. Then we 

can define similar to definition 1.1.14 the concept of CL- 

definability..Analogous to §1.3. it is possible to prove that the 

partial CL-definable functions are exactly the partial recursive 

functions. See Curry Hindley Seldin [1971]1Ch 13 for details.
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§1.5. The Church-Rosser property for combinatory logic à la 

Mitschke. 

In this § we will use the ideas of Mitschke [1970] to give a 

proof of the Church-Rosser property for combinatory logic 

(with weak reduction). 

In Hindley [ 197?] this will be proved as an application of an 

abstract Church-Rosser theorem proved in Hindley [1969]. 

(Added in print. We have realized too late that for the combinatory 
equivalent of the AI-calculus the Church-Rosser property was al- 
ready proved in Rosser [21935] T 12, p.1u4u4. This proof carries 
over immediately to CL (cf.Curry,Hindley,Seldin [1971]). Compare 
Rossers proof with that of Martin-Löf in appendix II .) 

The theorem we are about to prove is: 

1.5.1 Theorem (Church-Rosser property for CL) 

If CLF M = N, then there exists a term Z such that 

CLFMZ=>=72 and CL F N 2 Z. 

In order to show this we have to define several auxiliary 

languages and theories. 

1.5.2 Definition 

CL' is an extension of CL where the alphabet of CL' has the 

additional symbol "z "" (one step reduction); the language of 

CL' has the same terms as CL; CL' has as extra formulas M >,‚N 

(for arbitrary terms M and N). 

CL' has the following axioms and rules (see appendix): 

T 1. IM DM 

2. KMN 2 M 

3. SMNL > ML(NL) 

II Same as in 1.4.2. 

III Same as in 1.4.2.
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IV 1. M >3 M 

2. M > M" M2 M 
ZM > ZM' > MZ 2> M'Z 

3. M 2 M 
M > M! 

Again M, M', N, L, Z denote arbitrary terms. 

1.5.3 Lemma 

CL' is a conservative extension of CL. Hence in order to prove 

1.5.1 

for CL'. 

it is sufficient to prove the Church-Rosser property 

Proof. 

First show that CL' F M >N = CL M = N. 

Then the rest follows easily. X 

Now we will introduce a theory CL* which plays the same role as 

A* in Mitschke [1970]. 

1.5.4 

We define the following language L 

Alphabet: 

Terms: 

Formulas: 

Definition 

% 
° 

H 

The alphabet of CL' together with the extra symbol 

” n 
3 

Terms are inductively defined by 

1) Any variable or constant is a term. 

2) If M and N are terms, then (MN) is a term. 

3) If M, N and L are terms, then S(M,N,L) is a term. 

If M and N are terms, then 

are formulas. M2Z2N, M=2N and M = N
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1.5.5 Definition 

CL* is the theory with the language LH* defined by the féilowing 

axioma and rules (see appendix) 

I 1. IM > M 

2. XMN ≽↧⋅↧⋎∣↧ 

3. SMNL =, S(M,N,L) 

II Same as in 1.4.2 II 

III Same as in 1.4.2 III 

IV 1. 

2. Same as in 1.5.2 IV 

3. 

L M a M' N > N' 
    

S(M,N,L) > S(M',N,L) ? S(M,N,L) = S(M,N' L) 

L >L' 
S(M,N,L) = S(M,N,L") 

M, M', N, N', L, L' and Z denoting arbitrary terms. 

The essential axiom of this theory is I 3. It freezes the action 

of S. 

Our method of proving 1.5.1 is the following: 

First, we (almost) prove the Church-Rosser property for CL*; 

then with the help of an homomorphism argument, we obtain the 

corresponding result for CL', and hence, by 1.5.3 for CL. 

1.5.6 Lemma 

CL* M > N = there exists a term L with exactly one occurrence 

of a variable x and terms N,N' such that M = [ x/NlL, M' = [x/N']L 

and N > N' is an axiom of CL*.
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Proof. 

= Induction on the length of proof of M >M'. 

< Induction on the structure of L. X 

1.5.7 Lemma 

If CL* F M, > M, and.CL* F M, > M,, then there exists a term M,, 

such that 

CL* F M, > M, and CL* M, >M, (see fig.1) 
) M, 

∧⇈ M, . M Figure 1 
1\ /1 
N/ 
v 

Mlt 
Proof. 

First we consider the possibility that M, =M, is an axiom. 

(By repeated use of 1.5.6 we obtain the subcases.) 

case 1.M, = IM, M, = M 

subcase 1.1. M3 = M1 or M3 = M2 Take M“ = Mz' 

subcase 1.2. M, Z IM' and CL* F M > M'. Take M, = M'. 

case 2.M, = KMN, M, = M 

subcase 2.1. M, = M, or M; = M,. Take M, = M,. 

subcase 2.2. M; = KM'N and~ CL* M >M'. Take M, = M' 

subcase 2.3. M, = KMN' and CL* I N > N'. Take M, = M. 

case 3.M1 = SMNL, M, = S(M,N,L) 

"
 = subcase 3.1. M3 = M1 or M3 = Mz. Take Mk - 

subcase 3.2, M SM'NL and CL* k M > M'. 
3 

Take M = S(M' ‚N,L) 

subcases 3.3,3.4 M, = SMN'L or M, = SMNL! 

Similar to subcase 3.2. 

case Ĳ.Ml = Mz' Take Mu = Ma'
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Now we have proved that the lemma for M, > M, is an axiom. Since 

CL* F M, =M, it follows from 1.5.6 that M, =...M..., M, =... 

.M'... and M 2 M'" 1is-an axiom of CL*. 

case 1. My = M, or M, = M,. Take M, = M,. 

case 2. M, =...N..., M =...N'... and N 2 N' is an axiom of CL*. 
3 

subcase 2.1. M and N are disjoint subterms of'Ml. 

Then M, =...M ...N ... , 

M, =...M'...N … and 

M, = M....N'..... 

Take M, =...M'...N'... 

subcase 2.2. N is a subterm of M. 

Then M > M' is an axiom, and 

CL* F M > M" 

by the reduction CL* F N > N'. 

Hence there exists a term M'" such that 

CL*  M' > M"™ and 

CL* E M" > M"™, 

Take M, é...M”... . 

subcase 2.3. M is a subterm of N. 

Analogous to subcase 2.2. K 

1.5.8 Lemma 

If CL* M, > M, and CL* | M; > M, then there exists a term M, 

such that 

(%) CL* | M, =2 M, and CL* k M, ≽⋮∐↳∙ 

Proof. 

Note that CL* L M, > M, == 3N ...N_ CL* b M, = N, >N, > ... 

= M BN 3 2.
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The same holds for CL* F M, = M,. 

Then repeated use of 1.5.7 yields (*). (See fig. 2.) 

Figure 2. 

  

Remark. 1.5.7 does not hold for CL', but only 

CL* b M, > M, and CL' F M, =M, = 

CL' v M, 2 M, and CL' F M; > M, for some term M,. 

Therefore an analogue of 1.5.8 for CL' is much harder to prove. 

From 1.5.8 we can easily derive the Church-Rosser property for 

CL*. However we do not need to do so. 

1.5.9 Definition 

We define inductively a mapping ©: CL* - CL' (in fact from the 

set of terms of CL* into the set of terms of CL'): 

0(c) = C if ¢ is a variable or constant 

O(M)O(N) O(MN) 

O(S,M,N,L)) O(M)O(L)(O(N)9(L)) 

It is clear that if M is a term of CL', then O(M) = M. 

1.5.10 Lemma 

1) CL* b M >N = CL' } o(M) > o(N) 

2) CL* F M >N = CL' } O(M) > O(N) 

3) CL* FM =N = CL' } O(M) = O(N) 

Proof. 

In all cases the result follows by induction on the length of,
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proof in CL*. & 

1.5.11 Lemma 

If CL' M, 1M, then there exists a term M} of CL* such that 

CL* F M, = M3 and 06(M3) = M, (see fig. 3). 

Figure 3. 

  

Proof. 

Induction on the length of proof of M, = M,. Suppose first that 

M, 1M, is an axiom of CL'. 

case 1,2. M, = IM or M, = KMN. Take M; M. 

case 3. M1 = SMNL , M 

case Uu4.. M, = M,. Take M; = M,. 

ML(NL). Take M3 = S(M,N,L). 
2 

Suppose now that M, 2M, is ZM; > ZM; and is a direct consequence 

of M] =21M;. 

By the induction hypothesis there exists a term M!* such that 

* * * - - * — ' 
CLFM;>=M; andG(Mà)-Mà.ThentakeMz_ZM;*. 

ThecasethatMlàaMzisM{Z?{M;Zistreatedanalogously. ⊠ 

1.5.12 Definition 

We write M >* N for 

IM* N* CL* + M* > N* and O(M*) = M , O(N*) = N. 

1.5.13 Main Lemma 

Suppose M 2* N. 

Then there exists a term N} such that 

CL* F M > N} and O(N}) = N (see fig. 4.)
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Figure 4 

We will postpone the proof of the main lemma until 1.5.18. 

1.5.14 Lemma 

If CL' W M, > M, and CL' H M, 2 M, then there exists a term M, 

such that 

CL' HM, 2 M, and M; 2* M,, and hence by 1.5.10 2) 

CL' HM, 2 M. 

Proof. 

CL' | M, =2 M, &= BNI"'N]( CL' l—_Ml = N1 >1N2 >1...>1Nk = Ma‘ 

We prove the lemma by induction on k. 

If k = 1 then M, z M, and we can take Mu = Mz, then 

M, 2* M, follows from 1.5.11. 

Suppose now that 3N, ...N, ., CL' F M, = N, 1- -.D N 1 3 Ms- 

By the induction hypothesis, there exists a term NÉ such that 

! ≽ t ≽↿∙⇂ l_ CL' HM, Nk and Nk Nk 

By 1.5.13 there exists a NÉ* such that 

k '* 1 % - t 3 CL* } N, = N!* and O (N ) = Np (see fig. 5). 

By 1.5.11 there exists a NÊ+1 such that 

* * ∎ * - . CL* t N,. @ N 44 and G<Nk+1) = Nk41 (see fig. 5). 

Now it follows from 1.5.8 +that there exists a Náíl such that 

* * 14 * * ' % CL* k Nk >:Nk+1_ and CL* | Nk+1 >:Nk+1 .
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Figure 5. ∖∖ ⊝ k+}/* 

Take M, = 9<N£31)’ then CL' k Ny > M,, by 1.5.10 2) , and 

hence CL' HM, 2 M, and M, 2* M. X 

1.5.15 Lemma 

If CL' b M, 2 M, and CL' F M, = M, then there exists a M, such 

that CL' F M, > M, and CL' F M, > M,. 

Proof. 

CL' F M, =M, = 3N, ...N CL' F M, = N, > ...>N k 3 kE 2° 

The result follows easily from 1.5.14, using induction to k. K 

1.5.16 Theorem (Church-Rosser property for CL') 

If CL' b M = N, then there exists a term Z such that 

CL' W M>2Z and CL' | N\>-Z. 

Proof. 

Induction on the length of proof of M = N.
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case 1. M Z N. Take Z 3 M. 

case 2. M = N is.a direct consequence of N = M. By the 

induction hypothesis there exists a Z such that 

CL' EN @B Z and CL' HMD Z. 

case 3. M = N is a direct consequence of M = L and L = N. 

By the induction hypothesis there exists.terms Z,52, 

such that CL' | M > Z,s CL' KL=2Z, 

CL' HL > Z, and CL' EN 2 Z, (see fig. 6). 

M L N 

Zl\\ / Zz . 
“ Figure 6. 
Z 

By 1.5.15 there exists a Z such that CL' H Z, > Z 

and CL' k Z, 2 Z, hence CL' HMZBZ and CL' HN 2Z. 

case 4. M = N is Z;M' = Z,N' (or M'Z -="N'Z,) and is a direct 

consequence of M' = N'. 

By the induction hypothesis fhere exists a term Z! 

such that CL' HM' ZZ' and CL' HN' > Z'. 

Take Z Z Z,Z! (resp. Z Z'Z,) 

case 5. M = N 1s a direct consequence of M > N. Take Z = N. 

1.5.17 Corollary 

The Church-Rosser property for CL (see 1.5.1) holds. 

Proof. 

This follows from 1.5.16 by 1.5.3. 

In the remainder of this section we will prove the main lemma. 

In order to do this, we introduce a new theory CL*.
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1.5.18 Definition 

We define the following ianguage Lfi 

Alphabet: The alphabet for LË ‚ with as extra symbol " _', 

Terms are inductively defined by 

1), 2), 3) same clauses as in definition 1.5.L. 

4) If S(M,N,L) is a term, then S(M,N,L) is a term. 

Formulas are defined in the same way as in 1.5.4. 

1.5.19 Definition (see appendix) 

CL* is a theoryin Lâ defined by the same axioms and rules as 

CL* except that 

I 3 is replaced by 

I 3'. SMNL =2, S(M,N,L) 

and there are the additional rules: 

IV 5 . M2M'. N =2 N' 

S(M,N,L) >S(M',N,L) ? S(M,‚N,L) > S(M,N',L) 
  

L 2 L! 

S(M‚N‚L) >IS(M‚N‚L') 

  

1.5.20 Definition 

We define inductively two mappings © and |...| : CL* > CL* as 

follows: 

0(c) = ¢ if ¢ is a variable or constant 

O(MN) = O(M)O(N) 

OCS(M,N,L)) z O(M)O(L) (O(N)0(L)) 

O(S(M,N,L)) = S(O(M),0(N),0(L)) 

Iel z c if c is a variable or constant 

hax) = [M[[N]
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|sS(M,N,LY| = SCIM|,|N],|L]) 

|S(M,N,L)| = |S(M,N,L)| 

IM| is apart from the underlining the same as M. 

1.5.21 Lemma 

1) O(O(M)) = o(|M]) for all terms M of CL°. 

2) o(M) = (M) if M is a term of CL*. 

Proof. 

Induction on the structure of M. 

1.5.22 Lemma 

If CL* F M, &M, or CL* k M, > M,, then there exists a term 

M} of CL* such that [M}| = M, and CL* F M, > M} 

Proof. 

Induction on the length of proof of M, > M, or M, = M,. 

1.5.23 Lemma 

If CL* F M; >M, or CL* M, > M,, then CL* } 0(M,) = 0(M,). 

Proof. 

Induction on the length of proof of M, 1M, or M, 2 M. 

Now we are able to prove the main lemma. 

1.5.13 Main Lemma. 

If M 2* N, then there exists a term N* such that 

CL* M > N* and O(N*) = N. 

Proof. 

Since M 2* N, there are terms M, N, of CL* such that 
1 

CL* M, 2 N; and O(M,) z M, O(N,) = N.
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By 1.5.22 there exists a term N! such that |N]| = N,, and 

CL*  M; = N! 

By 1.5.23 it follows that CL* k (M ) > O(N!). 

Take N* = O(N!). 

By 1.5.21 2) we have 0O(M,) = 6(M;) = M, hence 

CL* M = N*. 

) = N. By 1.5.21 1) we have O(N*) = 0(9(N!)) = O(|N!]) = o(N 
K 1 

Remarks. 

The idea of using CL*, © and the main lemma is taken from 

Mitschke [1970] . (He formulated them for the A-calculus.) 

The proof of the main lemma is new. 

More extensive use of auxiliary theories like CL* will be made 

several times in the sequel.
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CHAPTER 11 

The w-rule for combinatory logic and 

A-calculus 

§2.1. The w-rule. 

2.1.1 Definition 

A term M of the à-calculus is called closed if FV(M) = 0. 

A term M of CL is called closed if no variable occurs in M. 

2.1.2 Definition 

We can extend the A-calculus or CL with the following rule 

which we call the w-rule 

w-rule MZ = NZ {for all closed Z 

M =N 

We write Aw or CLw for the A-calculus or CL extended with the 

w-rule. 

It is clear that the w-rule implies extensionality. For this 

reason it does not matter whether we consider Aw or CLw, because 

the A-calculus and CL are equivalent when we have extensionality 

(1.4.11). In general we will formulate and prove results about 

the w-rule in CL. However when 1t is easier or even necessary 

we do this in the A-calculus. 

2.1.3 Definition 

1. CL is w-consistent if CLw is consistent. 
  

2. CL is w-complete if the w-rule is derivable in CL + ext 

(i.e. if CL + ext } MZ = NZ for all closed Z = 

CL + ext H M = N).
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In a personal communication professor Curry suggested the 

possibility that CL is w-complete. 

In this chapter we will prove: 

1. CL is w-consistent (882.2, 2.3). 

2. The w-rule is derivable in X + ext for a large class of 

terms M,N (in fact for all terms which are not universal 

generators) (882.4, 2.5). 

It is still an open question whether CL is w-complete 1). 

As a corollary to the following theorem of Bohm [ 1968] which we 

state here without a proof, we can show that the w-rule holds in 

A + ext for terms having a normal form. This was suggested to us 

by R.Hindley. 

2.1.4 Theorem (Böhm [1968]. Cf. Curry,Hindley,Seldin [1971] 

Ch.11 F.) 

Let M,N be closed A-terms in Bn-normal form such that M Za N. 

Then there exists closed terms Z 1‚...‚Zn (n 2 1) such that for 

variables x,y 

A + MZ, ...Z xy = x and 

A l—_MZ1 ….Z oXYy E 

2.1.5 Corollary 

For closed A-terms M,N which have a B8-normal form the w-rule is 

provable i.e. if à + ext H MZ = NZ for all closed Z, then 

1) However there is a rumour that CL is not w-complete.
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Proof. 

By 1.2.8 it follows that both M,N have a Bn-normal form 

A + ext F N2 N, where M. .N. are hence A + ext L M >-M1‚ 1 M, 5N 

closed and in normal forms. 

Suppose that M, Éa N, . 

Then by the theorem of Böhm it follows that there exists closed 

terms Z4s...5Z such that 
1 n 

a t M,Z, +-.ZxY = x and 

AL N Z, +.Z oXY Z Y . 

From the assumption à + ext k MZ = NZ for all closed Z it 

follows that À + ext t M1Z1 = lel' Hence à + ext KL x = 

M1Z1 ...any = lel ...any y which contradicts the con- 

sistency of À + ext. 

Hence M1 =, N1 ‚ therefore À } M1 = Nl’ and hence 

A + ext FM = N. K 

Corollary 2.1.5 will be included in the result of §2.5. 

A priori we cannot state a similar result for CL because the 

theorem of Böhm does not extend to CL: 

Let M S[K(SII)] [K(SII)] 

N = K 

M and N are closed terms both in normal form. But then the 

conclusion of 2.1.4 does not hold, because CL L MZl='(SII)(SII) 

for all Z hence MZ ...Zn does not have a normal form for all 
1 1 

Z1°°°Zn°
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§2.2. The w-consistency of combinatory logic. 
  

In order to prove the w-consistency of CL we introduce a theory 

CLw' which is a conservative extension of CLw. In the object 

language of CLw' itself something like 'the length of a proof in 

CLw" is formulated. Because the w-rule is an infinitary rule, 

this length can be a transfinite (however countable) ordinal. 

Ordinals will be denoted by a,B8 ... etc. 

2.2.1 Definition 

CLw' has the following language: Alphabet = 

Alphabet. U{= |a countable}U{- |a countable}U{=a|a countable}. 

The terms are those of CL. 

Formulas: If M,N are terms, then 

M2N, M= N, M ≈∝ N, M Na N and M =y N are formulas. 

2.2.2 Definition 

CLw' has the following axioms and rules (see appendix). 

  

    

  

I Same as in 1.4.2. 

II 1. M= M M~ M ,M~ M 
. a o a 

2. M = N M = N M~ N 
—_— _ e __ 

N = M ? N= M >N~ M 
Q o 

3. M= N, N=_ L 
Q o 

M= L 
o 

4, M = M! M= M' M~ M M~ M 
o a e 1. a 

ZM = ZM' ?° MZ = MZ ? ZM — ZM! °MZ — M'Z 
a ! o a 

- t t - M 5. M =y M' , a < a , M a M 

M = ‚M M= M



52 

ITT 1. M =2 M 

2. M2 N, N> L 
  

  

M2L 

3. M= M' M =M 
ZM > ZMI > MZ > M'Z 

> M! P 1 ~ t 4. M > M _ M~ M M~ M 
M WT 5 MTT 5 = 7 M 0 M M q M M o M 

IV w'-rule VZ closed 38 < a MZ =B NZ 

M= N 
o 

In the above M, M', N, L, Z are arbitrary terms, and a,a’ 

arbitrary countable ordinals. 

The intuitive interpretation of 

M ia N is: M = N is provable using the w-rule at most a times. 

M N is:_M.:a N is provable without use of transitivity. 

M = N is: M o N follows directly from the w-rule (or is 

provable in CL in case a = 0). 

2.2.3 Lemma 

CLFM2N == CLwo FM=2N < CLow' M=>=N. 

Proof. 

Induction on the length of proof of M = N. 

2.2.4 Lemma 

CLw' kM= N < Ja CLu' LM :aN‘ 

Proof. Trivial 

2.2.5 Lemma 

CLwu' M =N <*CLw'FM=N 

Proof. 

Show by induction (on the length of proof):
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1. CLw M = N > 3Ja CLw' HM= N and 
a 

2. CLw' b M= N = CLw b M=N 

CLw' b M~ N = CLu kM =N 

CLw' EM > N = CLé FM=N 

Then the result follows from 2.2.L. R 

2.2.3 and 2.2.5 state that CLw! is a conservative extension 

of CLw. 

2.2.6 Lemma 

CLFM=N e CLw' I-MzoN 

Proof. 

Show by induction 

1. CLF M =N = Clw' M=, N and 

2. CLw* M=, N = CLFM=N 

Clw' FM~, N = CLLM=N 

Clw' FM~, N = CLFM=N K 

2.2.7 Lemma 

CLw' F M a N _ 3N1"'°’Nk 381‚...‚Bk SQ 

CLw' F M ~ N, ~ N2~...~ N, =-N 
B1 1 Bi Bk k 

Proof. 

< Trivial. 

= Induction on the length of proof of M =y N. & 

2.2.8 Lemma 

1) If CLw' HM ~y N and M,N are closed, then 3IM',N',Z closed. 

[CLw' F ZM' =, M, CLe' F ZN' =) N and CLw' F M' = N'J. 

2) CLw' M A N a # O < YZ closed J8 < a CLw' + MZ =B NZ.
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Proof. 

1. Induction on the length of proof of M ∼≩ N (as an 1llustration 

we give the full proof): 

case 1. M o N is an instance of II 1. 

Take M' = N' = M (= N) and Z = I. 

case 2. M ~y N is a direct consequence of N o M. 

By the inducfion hypothesis there are N', M', Z closed 

such that 

CLw' k ZN' =, N, CLw' F ZM' = M and CLw' F N' =~ M'. 

This is what we had to prove. 

case 3. M 4 N is Z,‚M, _ Z,N, (hence Z, is closed) and is a 
11 a 11 1 

direct consequence of M1 a Nl' 

By the induction hypothesis there are closed M‘? Ni, Z0 

such that 

CLwu' H Z MS =, M ' r - ' v 0oM 7o Mi: CLw' + Z.N! = N, and CLw' k M1 ~ N 1 

01 o 1 a 1. 

Define Z = A*a.Zl(ZOa), then the conclusion holds for 

M4, i, Z as follows from 1.4,7. 

caseĲ.MNaNìsMZ ~ N 121 a 121. This case 1s treated analogous 

to case 3. 

case 5. M o N is a direct consequence of M Z N. Take M' = M, 

N' = N and Z = 1. 

2. Induci.on on the length of proof of M =, N. X 

2.2.9 Main Lemma 

If CLw' H ZM > K and CLw' M Z N, where a # O and M,N and Z are 

closed, then 

38 < a[ CLw' | ZNKK =g K] . 

We-will carry out the proof of the main lemma in §2.3L
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2.2.10 Notation 

MK stands for M K...K 
n ) 

n times 

Note that K_ is not a term, because MK...K stands for 

(..((MK)K)...K)..). 

2.2.11 Lemma 

If CLw' M = K and M is closed, then 

(=) dn € w CLI—MK2D>K 

Proof. 

Induction on o. Because we will make use of a double induction 

we call the induction hypothesis with respect to this induction 

the a-ind.hyp. 

case 1. a=0. Then CLw' F M = K implies that CL M = K by 

2.2.6, hence CL - M > K by 1.5.1. So we can take 

n = 0. 

case 2. a>0. From 2.2.7 it follows that 

CLw' - M =a K == 3M1...Mk 331‚...‚Bk=< o 

(*%) CLw' | M ~Bi M1 ÎBz M2 e ~BkMk ⋟⊨≸∙ 

We can suppose that the Mi’ i=1,...,k are all 

closed. Because if they were not, we could sub- 

stitute some constant for the frée variables 

of the M, and then also (*+) would hold. 

Now we prove with induction on k that (**) == (*). 

The inductiop hypothesis w.r.t. this induction is 

called the k-ind.hyp. 

If k = O then there is nothing to prove, so 

suppose that k > 0.



subcase 2.1. Bk'< a . 

Then CLw' } M > K with B = k-1 B Mk By 
_ Î _ 

therefore CLw' H M _, =g K. 

Hence by the a-ind.hyp. 

n€w CLH M. 1K5n & K, because we assumed 

that M, _, ls closed. 

Thus 

_ ' ~ _ dn€w CLw' MK M. K, ~... Bk_le--lK?n = K, 
2n B1 1 2n 

hence by the k-ind.hyp. 

' M’ 
° - 

Jn,‚n' Ew CL } "1(2nK2n' =2 K, which is 

E Jn‚n w CL } MKZ(n+n')'>:K° 

subcase 2.2. Bk = a . 
  

' — Then CLy' H M_, o M =K. 

By 2.8.1 1t follows that there are 

t 

Mk-l’ 

1 t - ' 1 - CLw' | ZM _1 70 M _q» Cluw k ZMK 7o M. and 

MÈ‚ Z such that 

t 1 ~ ! . CLw' | Mk_1 A Mk 

Hence by 2.2.6 and 1.5.1 it follows that 

CLw' L ZMÉ = K. 

By the main lemma 2.2.9 it follows that 

J8 <al CLw' b ZMÉ_lKK =g K] , thus 

38 <al CLw' + M _1 KK =g K] . Hence by the 

a-ind.hyp. 3n€uw CL F M‘)(-:LKKK n 2 K, thus 
2 

t ~ _ Jn Ew CLy FMKKK2n: BlMlKKl_(Zn "'Bk_le‘lKKKZn}K.‘ 

Therefore by the k-ind.hyp. we have 

dn,n' € w CL } MKKK nK 9 n ! > K i.e. 
2 

Jn,n'* €w CLEMK = K. & 
2(n+n'+1)
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2.2.12 Corollary 

If CLwu W M = K , M is closed, then 3n€w CLH MKZn = K. 

Proof. 

This follows immediately from 2.2.11 by 2.2.4 and 2.2.5. X 

2.2.13 Theorem 

CL is w-consistent. 

Proof. 

Suppose CLw were inconsistent, then 

CLw H KK = K. Therefore by 2.2.12 

dJn€w CLH KKK, = K. Hence CL F KK = K. 

This contradicts the Church-Rosser theorem for CL. X 

Theorem 2.2.13 implies in particular that Aw, CL + ext and the 

A-calculus + ext are consistent. 

§2.3. The theory CL. 
  

The most convenient way to carry out the proof of the main lemma 

2.2.9, is to develop a new theory CL. 

The intuitive idea behind the proof is the following. 

Definition. An occurrence M' of a subterm of M is said to be 

active if this occurrence is in a part (M'N) of M, otherwise it 

is passive. 

In the theory CL we keep track of the occurrences of the residuals 

of M in the reduction ZM = K by underlining them. Then we sub- 

stitute N for the underlined subterms (this is done by N of 

2.3.8) and we obtain a reduction of ZN. When an occurrence of a
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residual of M is active, we omit the underlining, because sub- 

terms like MN sometimes have to be evaluated. (This is the 

essence of axiom VI). This 'is not in conflict with the substitut- 

ion of N for the underlined subterms, because by 2.2.8.2) it fol- 

lows that if M =~ N, active occurfences_of M in the reduction 

ZM 2 K can be replacefi by N up to equality of a lower level 

(i.e. B < a). 

If in the reduction of ZM to K i1t happens that all the residuals 

of M are active sooner or later, we are done, because then 

ZN :BoK. In the opposite case K is a ‘residual of M, hence M > K 

and ZN =, N. Therefore 
B 

ZNKK =, NKK = 5 g MKK > KKK > K, with 8,8' < a. 

2.3.1 Definition 
  

CL is a theory defined in the following language: 

Alphabet = Alphabet U { ,=}. 
CL CL' 

Simple terms are defined inductively by 

1) Any variable or constant is a simple term. 

2) If M,N are simple terms, then (MN) is a simple term. 

Terms are defined inductively by 

1) Any simple term is a term. 

2) If M is a simple term, then M is a term. 

3) If_M,N are terms, then (MN) is a term. 

Formulas: If M,N are terms, then 

M>2N, M=2N, M=Nand M = N are formulas. 

Remark: The simple terms of CL are exactly the terms of CL.
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2.3.2 Definition 

CL has the following axioms and rules (see appendix): 

I Same as in 1.5.2. 

II Same as in 1.5.2. 

III Same as in 1.5.2. 

IV Same as in 1.5.2 plus 

N < R =<
 

  

M= L 

L. M = M' M = M' 
ZM = ZM' MZ = M'Z 

5. M = M 

VI MN = MN. 

In the above the restrictions on the terms are clear. 

Remarks: Áxiom VI is essential for CL as will become clear 

later on. 

If CL H M = M', then M and M' are, except for the underlining, 

equal. 

2.3.3 Lemma 

1) CL H M 2 M! *> CLFM=2M" if M,M' are simple terms 

2) CL H M 2> M' == CL H M>M' if M,M' are simple terms 

3) [CL H M > M' and N' sub M'] = 3IN[N sub M and CL L N aN']. 

N sub M means that N is a subterm of M.
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Proof. 

1) Induction on the length of proof of M > M'. 

2) Immediate. 

3) Immediate using 2) and 1). X 

It follows from 2.3.3. 1) that CL is a conservative 

extension of CL. 

2.3.4 Lemma 

N, >...>N M! CLEM>M < 3N,...N CLFM:E N 

H
 

Proof. 

Immediate. K 

2.3.5 Lemma 

If CL k ZM 2 M', where Z is simple, and N sub M', then 

(*) CL M > N. 

Proof. 

By 2.3.4 CL H ZM 2 M' ©+ N ...N, CLFZM =N 2...2N =M, 

From lemma 2.3.3 it follows by induction on k that (*) holds. K 

2.3.6 Lemma 

Let M,M',N be terms such that 

1) M and M' are simple, 

⊇≻⊆≟∣−∎∐≽⊡∣⋅ and 

3) CL M = N, 

then there exists a term N' such that 

  

4) CL H N 2 N' and Figure 7 

5) CL F M' = N' (see figure 7).
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Proof. 

Induction on the length of proof of M > M' with the use of 

axiom VI and the sublemma: 

CLEM=N<+ M=Nor[M=H and CL kM, = N] or 
1 

[N = N, and CLFM= N1] or 

[M z M,M, and N z N,N, and CL kM, = N, 

and CL } M2 ~ N2]. 

2.3.7 Definition 

Let A be a simple term of CL. 

We define a mapping d: CL > CL (in fact from the set of terms 

of CL onto the set of terms of CL). 

¢A(c) = C if ¢ is a constant or variable. 

¢A(MN) = ¢A(M)¢A(N) 

¢A(M) = A 

2.3.8 Lemma 

If CL - {VI} F M >M', then CL F ¢ (M) = ¢ (M') for simple 

terms N. 

Proof. 

Immediate. X 

2.3.9 Lemma 

If CL + ZM 2 M', where Z is simple, Z,M,M' are closed and 

' ~ 1 - 1 Clw' F M =~ N, then 38<a CLw F ¢y (ZM) 8 oy (M. 

Proof. 

Suppose CL + ZM > M' and CLw' F M z N- 

Then 3N,...N, CL H ZM E N, 1..P N = M'. 
k 1 k
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We claim that 

() V¥i<k 38;<a CLu' + oy(N;) =Bi'òN(Ni+l) 

We will prove this with induction on the length of proof of 

N; Z N; 44° 

case 1. Ni >=‚Ni+1 1S an axiom. 

subcase 1.1. Ni >3Ni+1 is not an instance of axiom VI. 

Then it follows from 2.3.8 and 2.2.6 that 

1 - Clw' F ¢N(Ni) =, ¢N(Ni+1)' 

subcase 1.2. Ni >1Ni+1 is an instance of axiom VI, 

say MIMZ >3M1M2. 

Then we have to show that 

t - (*x) 38<a CLw L N¢N(M2) =g M1¢N(M2) 

because M1 is simple and hence ¢N(M1) = Ml' 

Since CL } ZM > Ë1M2 it follows from 2.3.5 

that CL F M > M, - 

Hence since CLw' F M , N it®follows from 

2.2.8. 2) and 2.2.6 that 

1 - _ 38<o CLu' ENOy(M,) =zg Móy(M,) zo M,óy(M,). 

This implies (**). 

case 2. Ni >3Ni+1 is ZM1 >1ZM2 and is a direct consequence\of 

M1 >3M2. By the induction hypothesis 

t _ J8B<a CLw' F ¢N(M1) 74 ¢N(M2) hence 

. _ . . 
CLw' + ¢N(Z)¢N(M1) °8 ¢N(Z)¢N(M2) which is 

1 - 
CLw' k ¢N(Ni) °8 ¢N(Ni+1)' 

case 3. N; ≽↯⇅↕⊹↕ is M12 > M,Z. This case is analogous. to case 2. 

Now we have established (*). Let B = Max{BO,...,Bk} ‚then B < a 

and CLw' F ¢ (ZM) =g o (N;) = eou=g dy ) =g ¢p (M), X
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Now we are able to prove the main lemma. 

2.2.9 Main Lemma 

If CLw'  ZM > K and CLw' M Z N, where a # 0 and M, N and Z 

are closed, then J8<a [CLw' } ZNKK 78 K] . 

Proof. 

If CLw' F ZM > K, then by 2.2.3 CL k ZM > K, hence by 2.3.3 

CL H ZM > K and therefore by 2.3.6 

CL H+ ZM 2 K' with CL  K' = K hence K' = K or K' = K. 

case 1.K' = K, 

By 2.3.9 it follows that 38<a CLw' k ZN =g K, hence 

38<a CLe' k ZNKK =, KKK =, K. 

case 2.K' = K. 

Then CL F ZM =2 K hence by 2.3.5 

(1) CLFMZ=>=K 

Again by 2.3.9 we have 38<a CLw' t ZN =g N. Hence 

(2) CLw' F ZNKK =g NKK. 

Because CLw' F M 5 , N it follows from 2.2.8.2) that 

(3) 3B'<a CLw' } NKK = MKK. Bl 

From (1), (2) and (3) it follows that 

38,8'<a CLw' H+ ZNKK =g NKK =g, 

Hence 3IB"<a CLw' } ZNKK =g K. K 

MKK =2 KKK =2 K. 

§2.4. Universal generators. 

The motivation of the contents of this § will be stated in 2.4.6. 

2.4.1 Definition 

The A-family of a term M of the A-calculus, notation fA(M) is 

the following set of A=terms
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£y M) = {N | 3M' A F M > M' and N sub M'}. 

Analogously we define be and £, . 

2.4.2 Definition 

U is a universal generator (u.g.) for the A-calculus if 

∫⋋≺⋃⋟ consists of all closed A-terms. 

Analogously we define the universal generators for CL. 

Remark: If U is a universal generator for the X-celculus then 

JÄ(U) even consists of all A-terms, since every A-term M is sub- 

term of a closed }-term (take the closure Axl...xn.M). 

2.4.3 Lemma 

There exists a closed term E such that 

VM[FV(M) = 8 = 3n A }F En > M]. 

Proof. 

This follows from inspection of the proof of 1.3.13. 

See for details Barendregt [1970]. 

2.4.4 Theorem 

There exists a closed universal generator for the A-calculus. 

Proof. 

We here give a modification of our original construction due to 

Scott. 

Let E be as in lemma 2.4.3, let [...,...] be the pairing 

function as in 1.3.6 and let ≦⊹ be the A-defining term of the



65 

successor function(1.3.4.3)). 

Define A = an.[En,b(§+n)]. 

B = FP A (see 1.1.8) 

Then AFBn > ABn 2 [En,B n+1]. Hence 

AkBO 2 [E0,B1] > [E0,.[E1,B2]] = 

> [E0,[E1,[E2,B3]]] = ... 

Because E enumerates all closed terms, BO0 is a universal 

generator. Since E is closed, BO0 is closed too. X 

The above considerations also hold for CL. In particular 

Kleene's E (2.4.3) is given for CL by a term GD-1 in Curry,Hindley, 

Seldin [1971]), Ch 13. The name GD ! is used because it is the 

inverse of the Gödel numbering. 

Therefore we have 

2.4.5 Theorem 

There exists a universal generator for CL. 

2.4.6 Remark 

The motivation for the introduction of universal generators is 

the following: 

In the next 8 we will prove that, if M and N are not u.g.'s and 

if À + ext  MZ = NZ for all closed Z, then À + ext LM = N. 

At the moment of discovery of this theorem, we were still unaware 

of the existence of u.g.'s. We hoped to prove that they did not 

exist in order to obtain, as corollary, the w-completeness of 

the A-calculus. 

However we subsequently found a proof of the existence of u.g.'s. 

The próof of the existence of u.g.'s was presented first, because
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the above mentioned theorem is easier to prove with their 

application. 

§2.5. The provability of the w-rule for non universal generators. 

In this § we will prove a result on partial w-completeness. We 

present the proof for the A-calculus because there extensionality 

can be axiomatized by n-reduction for which the Church-Rosser 

property holds (1.2.11). We do not know whether a similar result 

holds for CL, but probably we can prove it using strong reduction. 

2.5.1 Definition 

A À-term Z is said to be of order 0 if there is no term P such 

that À k Z > (Ax P). 

2.5.2 Lemma 

Let Z be of order 0, then: 

1) For no term P we have A + ext H Z 2 AxP 

2) If À + ext KL Z > Z', %hen Z' 1s of order O 

3) If À + ext H ZM =2 N, then there exist terms Z',M' such that 

N Z Z'M', à + ext H Z 2 Z! and A + ext b M 2 M! 

4) For all terms M, ZM is of order O. 

Proof. 

For this proof let us call a term of the first kind if it is a 

variable, of the second kind if it is of the form (MN) and of the 

third kind if it is of the form (Ax M). 

1) Suppose à + ext k Z 2 Ax P for some P. By Curry,Feys [ 1958] 

Ch 4D, theorem 2 pg 132 it follows that there exists a term 7' 

such that ÀA H Z > Z' and à + ext - I 2 k Z' Z (Ax P) (i.e.
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without using B-reduction). Because Z is of order 0 Z' is of 

the first or of the second kind. Z' cannot be a variable 

because à + ext L Z' = Ax P. Hence Z' is of the second kind. 

By induction on the length of proof in À + ext - I 2 of a 

reduction M =2 N we can show that if M is of the second kind, 

then N is of the second kind. 

This would imply that (ìx P) is of the second kind, 

a contradiction. 

2) Immediate, using 1). 

3) By induction on the length of proof of ZM > N using 2). 

4) By 3) it follows that if à + ext k ZM > N, then N is of the 

second kind. Hence ZM is of order 0. X 

2.5.3 Examples 

1. Any variable is of order 0. 

2. Q, = w,w, with w, = (Xa.aa) is of order 0. 

Terms of order 0 behave in some sense like variables. Namely 

if À + ext HMZ 2 L where Z is of order 0, we can substitute x 

for the residuals of Z in this reduction and we obtain 

À + ext H Mx 2 L'. 

Because , is at the same time closed and of order 0 it will play 

an important role in connection with the w-rule. If À + ext + MZ 

= NZ for all closed Z we have in particular À + ext F MR, = NQ,. 

We hoped that this would imply À + ext H Mx = Nx, by substituting 

everywhere x for i, in the proof. The problem is that there is a 

difference between variables and terms of order 0. In a reduction 

variables can never be generated whereas closed terms can. 

Therefore we have to find a term of order 0 Z, É‘FÀ(M) U £
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(see 2.4.1). This is only possible if M and N are not universal 

generators. Then it follows from A + ext } MZ = NZ that 

A + ext b Mx = Nx and hence A + ext H M = N. 

In order to follow the residuals of a subterm in a reduction 

We again make use of the underlining technic. 

An outline of what happens is the following (see fig. 8). 

In 2.5.4 - 2.5.14 we define and develop a theory ). 

In 2.5.15 - 2.5.16 we consider a mapping ¢, which replaces a 

term of order 0 by a variable x as is mentioned above. 

In 2.5.21 - 2.5.24 we define the concept of closed terms which 

are variable like and prove. their existence. 

Then, to prove the main result, we assume that A + ext } MEZ = N=. 

It follows from the Church-Rosser theorem that for some term L 

A + ext  ME 2 L and ⋋⋮⊹ extFNE>=L.Fromthisitfollowsby 

theresultsofthetheoryìthatÀ+extkMÊ)L'and 

À+extFNg>-L".Themaindìfficultyisthentoprovethat 

L' = L". If we have L' = L", then it follows by a homomorphism 

argument that A + ext F Mx = ¢X(L') = ¢x(L") = Nx. 

In order to prove that L' = L", we need proposition 2.5.20, a 

statement about fÀ+ext(Mâ) and lemma 2.5.27, a statement about 

variable like terms. 
  

82. 

         terms of order 0 

     

(varia- e like(lemma about 

terms variable like terms Figure 8
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2.5.4 Definition 

We will define a theory A + ext formulated in the following 

language (see appendix). 

Alphabetx + ext ° Alphabet )\ ∪ ⊲⋮≽↧ 3__3:} 

Simple terms of the theory à are exactly the terms of the 

A-calculus. 

Terms are defined inductively by 

1) Any simple term is a term. 

2) If M is a simple term and FV(M) = @, then M is a term. 

3) If Ü‚N are terms, then (MN) is a ternm. 

4) If M is a term, then (Ax M) is a term (x is an 

arbitrary variable). 

Formulas: if M,N are terms, then 

M2N, M>2N, M= N and M = N are formulas. 

A term of the theory A + ext is called A-term. 

The operations BV, FV and [ x\N] can be extended to A-terms in 

the obvious way. 

(Note that: BV(M) = BV(M), FV(M) = @ and [x\N]M = M.) 

2.5.5 Definition 

‚' is defined in such a way that The relation M...is subterm of 

only M is a subterm of M. To be explicit: 

Sub (x) = {x} for any variable x. 

Sub(MN) = Sub(M) U Sub(N) u {MN} 

Sub(Ax M)= Sub(M) U {Ax M} 

Sub (M) = {M} 

N sub M <= N € Sub M
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2.5.6 Definition 

We define the theory à + ext by the following axioms and rules 

(see appendix). 

I 1. Ax M D> ay[x\yIM if y é FV(M) 

2. (Ax MIN > [ xX\NIM if BV(M) N FV(N) = ¢ 

3. Ax(Mx) DM if x é FV(M) 

II Same as in 1.1.L. 

III Same as in 1.2.3. 

IV 1. M 2,M 

  

  

  

2. M D M' M > M' M D> M' M > M 
ZM =2, ZM' > MZ 21 M'Z > AX M 2, Ax M! ) ≝≽↥∙↧⇘∙∣↧↿ 

3. M > M' 

M 2 M' 

V 1. M = M 

2. M =N 

N =M 

3. M= N,N = L 

M _ L 

y, M = M' M = M' M =M 

ZM = ZMT > MZ = M'Z ? Ax M = òàx M' 

5. M = M 

In the above the restriction on the terms is clear. 

Note that we do not have a counterpart for axiom VI of 2.3.2. 

A is the theory which results from the above axioms and rules, 

omitting I 3. 

2.5.7 Lemma 

1) X+ ext b M2M = X +ext b M>M' if M,M' are simple terms 

2) A+ extbFM2M = ) + ext ≝⊔≷≔≝∣ if M,M' are simple terms 

3) [À + ext H M 2M' and N' sub M'] = 

[3N N sub M and A + ext N = N'].,
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Proof. 

1) Induction on the length of proof of M > M' 

2) Immediate 

3) Immediate, using 1) and the following sublemma 

N sub[x\Q]P > N sub P or N sub Q. 

The proof of the sublemma proceeds by induction on the structure 

of P. X 

2.5.8 Lemma 

A+ ext bM2M = ÖN =
 

| >
 + M 4 T
 = " = N Y Y z
 1 < 

Proof. 

Immediate. X 

2.5.9 Lemma 

[A + ext F M > M! and N' sub M'] = 

[3N N sub M and à + ext HN 2 N']. 

Proof. 

By 2.5.8 

À+ ext HMaM' * 3IN,...N à text HMZN, Zi...2iN, Z M'. 
k 

From lemma 2.5.7,3) it follows by induction on k that the 

conclusion holds. X 

2.5.10 Lemma 

Let M,N be simple terms. 

1) A L=M = [LzMorlL =M 

  

2) AK L = àx M <= [3M' L z òàx M' and à H M = M'] or L =z Ax M 

3 AK L =MN = [3M'N' L z M'N' and A M =M', A b N = N'] 

4) A H M = M' and A F N = N' = A [xX\N]M = [ xX\N']M'
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Proof. 

1) Induction on the proof of L = M, making for the induction 

hypothesis the statement slightly stronger. 

[ AFL=M or AFM=1] <= ]JL=Mor L = M] 

2) 3) Similarly, making use of 1). 

4) Induction on the ètructure.of M, making use of 1), 2) and 3). 
X 

2.5.11 Lemma 

Let M,N be simple terms such that M > N is an axiom of 

À + ext but not an instance of I 2. 

Let A H M = M'. Then 3IN'[A + ext H M' 2 N' and A F N = N']. 

(See fig. 9.) 

M 

= = 

M! N 

\ / Figure 9 
\ / 

DN ∕∕⋍ 

w 

N' 

Proof. 

By distinguishing cases and using the previous lemma. K 

2.5.12 Lemma 

Let M,N be simple terms such that M > N is an instance of axiom 

I 2. Let A H M = M', where M' is such that if Z sub M', then Z 

is of order 0. 

Then IN'{[ÀA + ext H M' 2 N' and A b N = N'] (see fig. 9). 

Proof. 

Let M 2 N be (Ax P)Q = [x\Q]P. 

As À } (2x P)Q = M' we can distinguish by 2.5.10 several cases.
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case 1. M! (Ax P)Q . Take N' = [x\Q]P 

case 2. M' = M"Q' with A  Ax P = M" and A HQ = Q'. 

subcase 2.1. M" = Ax P' with A HP = P'. 

Take N' z [x\Q7]P', then the result 

follows from 2.5.10,4). 

subcase 2.2. M" = Ax P. This case cannot occur, 

because then Ax P sub M', and Ax P is not 

of order 0, contrary to our assumption. K 

2.5.13 Lemma 

Let M,N be simple terms such that à + ext - M = N. 

Let A F M = M', where M' is such that if Z sub M', then Z is 

of order 0. Then IN'[A + ext  M' 2 N', A F N = N' and 

[Z sub N' = Z is of order 0]] (see fig. 9). 

Proof. 

Induction on the length of proof of M = N. 

If M> N is an axiom we are done by 2.5.11 or 2.5.12, since by 

lemma's 2.5.9 and 2.5.2.2) it follows from the assumptions that 

Z is of order 0 1f Z sub N'. (We need this fact for the in- 

duction step in rule III 3 (transitivity).) & 

2.5.14 Proposition 
  

Let à + ext k MZ =2 L, where M,Z and L are simple and Z is of 

order 0. Then 3L'[A + ext FMZ > L'y A kL = L' and 

[Z' sub L' = A + ext H Z 2 2']] (see fig. 10). 
MZ 

/ 
VL! Figure 10
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Proof. 

This follows immediately from lemma 2.5.13 and 2.5.9. K 

2.5.15 Definition 

Let x be any variable. We define a mapping ¢X: A > à (i.e. from 

the set of A-terms into the set of A-terms) as follows: 

o (y) =y 

¢x(MN) ¢X(M)¢X(N) 

6 (Ay M)= Ay ¢ (M) 

óx(g) = X 

2.5.16 Lemma 

If A + ext FM 2N and if x is a variable not occurring in 

this proof, then À + ext k ÒX(M) >=¢X(N). 

Proof. 

Induction on the length of proof of M 2 N, using the following 

sublemma 

If z # x, then ¢z([x\N]M) = [x\¢z(N)]¢Z(M). 

The proof of the sublemma proceeds by induction on the structure 

of M. X 

2.5.17 Lemma 

Let M,N be simple and x € FV(M). 

If À + ext } Mx =2 N, then JM' simple [x € FV(M'), à + ext L M 2 M' 

and à + ext H M'x >N]. 

Proof. 

Because À + ext H Mx > N we have by 2.5.7.1) and 2.5.8 that 

3N1...Nk A + ext H Mx z N1 21...>1Nk = N. 

If all Ni’ i < k are of the form Px with x & FV(P), then we are
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done. 

Otherwise let Ni+1 be the first term not of the form Px with 

x & FV(P). 

Then Ni is of the form (Az Nì)x. 

By a-reduction this reduces to (Ax [z\x]Nì)x which is 

(Ax Ni+1)x. 

Hence à + ext H Mx @ (1z Nì)x > (Ax Ni+ )x 2 (Ax N)x =, N. 
1 

So we can take M' = Ax N. K 

2.5.18 Lemma 

1) Let L,L' be A-terms such that ¢x(L) = ¢X(L') where 

x &€ FV(LL'). 'Let Z be a simple term such that Z sub L. 

Then Z sub L'. 

2) If M,N are simple terms, then we have 

¢ (LX\NIM) = ¢ (M) = M. 

Proof. 

Induction on the structure of L resp. M. X 

2.5.19 Lemma 

Let A + ext F MA > L and Z sub L, where M,A and Z are simple 

and A is closed. Let L satisfy: A' sub L > A' z A. 

Then Z € fl+ext(M)° 

Proof. 

By lemma 2.5.16 we have A + ext + Mx >=¢X(L) where x does not 

occur in the proof of MA = L. Hence by lemma 2.5.17 there 

exists a simple term.M' such that A + ext F M 2 M' and 

A + ext H M'x >1ÓXCL). Hence A + ext + M'A > L. 

Suppose now Z sub L and Z simple. By distinguishing the 

different possibilities for the proof of M'A > L we can then
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show that Z sub M' hence Z € jì+ext(M)' X 

2.5.20 Proposition 
  

Let à + ext H MA 2 L and Z sub L, where M,A and Z are simple 

and A is closed. 

Then Z E J (M). 
A+ext 

Proof. 

Let x not occur in the proof of À + ext HMA > L. 

Then by 2.5.16 we have À + ext F Mx = ¢_(L). Hence 

A + ext k MA >=[x\ê]òx(L) = L', say. By 2.5.18 it follows that 

Z sub L == Z sub L' for simple terms Z. Furthermore, L' satisfies 

the assumptions of 2.5.19. 

Hence if Z sub L and Z is simple, then Z sub L' and therefore 

Z € £, (M by 2.5.19. X 

2.5.21 Definition 

1) A term M is called an Q,-term i1f M is of the form Q,M'. 

2) A subterm occurrence Z of M is called non-Q, in M if Z has 

no 2, subterm and Z is not a subterm of an @, subterm of M. 

3) A term U is called a heriditarily non-{l, universal generator 

if U is a closed u.g. and if à + ext HU 2 U', then there is: 

a subterm occurrence Z of U' which is a u.g. and which occurs 

non-2, in U'. 

Example: Only the second occurrence of Z in the term x(Q,(MZ))Z 

is non-Q, (if Z does not have an Q, subterm). 

2.5.22 Lemma 

If U is a heriditarily non-, u.g. and if A + ext U 2 U', then 

U' is a u.g. which is not an Q,-term.
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Proof. 

U
 y definition it follows that some subterm Z of U' is a u.g. 

H1
 hen U' itself is a u.g. That U' is not an Q,-term follows 

from the fact that Z occurs non-Q, in U'. K 

2.5.23 Proposition 
  

There exists a heriditarily non-Q, universal generator. 

Proof. 

We introduce ordered triples as follows 

[M,N,L] = Az.zMNL. 

Define A = Abn[bg;En,b(§+n)] ‚ Where E and ≦⊹ are as in 2.4.L, 

B= FPA and U = BO. 

We will prove that U is a heriditarily non-Q, u.g. 

As in 2.4.4 we see that U is a closed u.g.: 

AU = B0 = ABO >~[BQ,EQ,B1] = [BQ,EQ,[BQ‚EÊ‚BÄJ] > ... 

Let us define U >k U' to mean 

IN N À+ ext HUZEN, D. N 3 U. 

(Here we need À only to express one step reduction 2, .) 

Suppose now thet } + ext HU 2 U!' . Then for some k we have 

U= U 
K 

With induction on k we can show thaet U' is of the form 

1) AFB9 (remember that MPN - MC.oo.(M(MND)) . L) 
_ —_ 

p times 

or 2) AP(an U ...5.. . ])0 where 

B ≽≹∣ ⋋∏⇂⋃∥⋑∙⋅∙⋑∙∙∙⊐∂⊓↺⋃≽∥⋃∥∞↥↕∐⊵↿⋑⊵∥⋅⋖⊵⋝ 
k 

or 3) [u"m™,...,...] where U àk' U" with k' <k. 

Now we prove with induction on k that if U =2 _U', then there 

exists a subterm occurrence ZU' of U' which is a u.g. and



78 

is non-Q2 in U': 

If U' is of the form (1) we take 2, = APBO. 

If U' is of the form (2) we take ZU' = ZU" 

Finally if U' is of the form (3) we take ZU' = ZU…. K 

2.5.24 Definition 

A term & is called Variable like if £ = Q,U, where U 1is a _ 

  

heriditarily non-82, universal generator. 

2.5.25 Definition 

Let L,L' be A-terms such that L is simple and A b L = L'. Then 

L and L' are equal except for the underlining and we can give 

the following informal definitions: 

1) If Z' is a subterm occurrence of L', then there is a unique 

subterm occurrence Z of L which corresponds to Z', such 

that A H Z = Z'. 

Instead of giving a formal definition we illustrate this 

concept with an example. 

Let L = S(KS)(SKK) and L' = S(KS)(SKK), then A HL = L!. 

S corresponds to S, KS corresponds to KS and (SKK) corresponds 

to (SKK). 

2) Let L" be another A-term with A HL = LM. Then we say that 

L" has more line than L', notation L' C L", i1f for all sub- 

term occurrences Z' of L' there is a subterm occurrence 2" 

of L" such that Z' sub Z" where Z',Z" are the subterm 

occurrences of L corresponding to Z', Z" respectively. 

For example, let L" 3 S(KS)(SKK) then L' C L" where L' is as 

in the above example.
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3) Let Z be a subterm occurrence of L. 

Z is exactly underlined in L! if Z is a subterm occurrence 
  

of L' and Z corresporids to Z. 

4) Let Z be a subterm occurrence of L. 

  

Z is underlined in L' if Z is a subterm of Zl(sub L) which 

is exactly underlined in L'. 

For instance the first occurrence of K in L of the above 

example is underlined in L'. 

5) Let Z be a subterm occurrence of L. 

Z has some line in L' if Z is underlined in L' or if there 
  

is a subterm occurrence Zl'of Z which is exactly underlined 

in L!. 

For instance SKK sub L has some line in L' in the above 

example. 

2.5.26 Lemma 

Let L,L',L" be À-terms such that L is simple and A L' = L = L" 

1) If L' C L" and L" C L', then L' = L". 

2) If for all subterm occurrences Z of L', the corresponding 

subterm occurrence Z of L is underlined in L", then L' C L". 

3) If Z is a subterm occurrence of L such that there is no 

corresponding subterm occurrence Z' of L' which is simple, 

then Z has some line in L'. 

Proof. 

This is clear from the definitions. K
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2.5.27 Lemna 

Let L,L' be A-terms such that L is simple and à HL = L'. Let 

= be a variable like A-term. 

Suppose that 

1) If Z is a subterm occurrence of L which 1s eactly underlined 

in L', then Z 1is an Q,-term. 

2) If Z is a subterm occurrence of L which is a u.g. then Z has 

some line in L'. 

Suppose further that À + ext H Z 2 Z' and Z' is & subterm 

occurrence of L. 

Then 3!' is underlined in L'. 

Proof. 

= 1s variable like, hence = = Q,U, where U is a heriditarily 

non-{, universal generator. 

Since @, 1s of order 0 it follows from 2.5.2.3) that E' = Q,U', 

where X + ext U 2> U'. 

Since U is a heriditarily non-Q, u.g. there is a subterm 

occurrence Z of U' which is a u.g. and a non-f, subterm 

occurrence of U' (see fig.11). By our assumption 2), Z has some 

line in L'. The possibility that some subterm occurrence Z, of Z 

is exactly underlined in L' is excluded, since by 1) then Z1 

T7 would be an f,-term whereas Z is a non-, subterm occurrence of 

Therefore Z is underlined in L', i.e. there is a subterm 

of L which corresponds to Z, sub L' and such that occurrence Z 5 
2 

Z sub 22' 

We claim that Q,U' sub Z, (see fig.11). 

First note that, since ≟⊋ sub L', 1t follows from 1) that Z, is an 
2
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Figure 11 

Qz term. 

Hence since Z is a non-Q, subterm occurrence of U', 22 1s not a 

subterm of U'. Therefore U' sub 22, since subterms are either 

disjoint or comparable with fespect to the relation sub. 

Since by 2.5.22 U' is not an Q,-term U! is a proper subterm of 

Z 5 

Hence indeed QZU' sub Z2. 

Therefore &' = QzU' is underlined in L'. K 

2.5.28 Theorem 

Let M,N be A-terms which are not universal generators and let 

2 be a variable like A-term. 

If À + ext } M3 = NE, then À + ext t Mx = Nx for some variable 

x &€ FV(MN). 

Proof. 

It follows from the Church-Rosser theorem 1.2.11 and the assumpt- 

ion A + ext F MZ = NE, that there exists a term L such that 

A + ext H MZ 2L and A + ext N5 =2 L. 

Q,U it follows from 2.5.3 and 2.5.2.4) that = is of {1
1 Since 

order 0. Hence from 2.5.14 it follows that there are terms L',L" 

such that à + ext HME 2 L', A + ext F NE > L" and 

àkL' = L s L" (see fig. 12).
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Figure 12 

  

Now we claim that L' = L". 

In order to prove this, it is sufficient to show that L' c L", 

since by symmetry argument then also L" C L' and hence by 

2.5.26.1) L' = L". 

We will show that for every subterm occurrence Z' of L', Z' is 

underlined in L", where Z' is the subterm occurrence of L 

corresponding to Z'. Then it follows by 2.5.26.2) that L' C L". 

Suppose therefore that Z' is a subterm occurrence of L'. By 

2.5.14 it follows that A + ext | = > Z'. 

We verify the conditions 1) and 2) of 2.5.27 for L,L". 

1) If Z is a subterm occurrence of L which is exactly underlined 

in L", then Z sub L", hence 1t follows by 2.5.14 that 

A + ext HE > Z, hence Z is an f,-ternm. 

2) If Z is a subterm occurrence of L which is a u.g. then 

N)(otherwise N would be a u.g.). Hence by 2.5.20 
z áE‘F)\+ex’c 

Z is not the corresponding subterm occurrence of a simple 

subterm of L". 

Therefore Z has some line in L', by 2.5.26.3). 

Therefore it follows from 2.5.27 that Z' is underlined in L". 

Hence we have proved that L' = L". 

Let x be a variable not occuring in the reductions represented 

in fig. 12. Then 1t follows from 2.5.16 that
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A + ext k Mx òX(M ) >=¢X(L') 

A + ext F Nx = ¢X(N ) >=¢X(L"). 

Hence A + ext F Mxis= Nx  since ¢x(L') = d>x(L")° K 

Remark. We also have 

Let M,N be A-terms which are not u.g.'s and let E be a variable 

like A-term. 

If À H ME = NE , then à k Mx = Nx for some variable x € FV(MN). 

2.5.29 Theorem 

Let M,N be Ä-tefms which are not universal generators. Then the 

w-rule for M and N is derivable in the A-calculus with 

extensionality. 

Proof. 

Suppose that à + ext k MZ = NZ for all closed Z. 

Then à + ext k ME = NE , for variable like terms Z, since they 

are closed. 

Hence by 2.5.28 it follows that À + ext L Mx = Nx for some 

variable x &€ FV(MN). 

Therefore, by extensionality, À + ext M = N. K
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Chapter 111 

Consistency results and term models 

§3.1. Modeltheoretic notions for combinatory logic and some of 

its extensions. 

A combinatory structure is an algebraical structure for a reduct 
  

of the language of CL,.in which we drop the relation = . = 1is 

always interpreted as the real equality. 

A combinatory structure is called trivial if its domain consists 

of a single element. 

A combinatory model is a non trivial cominatory structure 
  

® = <C,i,k,s,*> such that i*x = x, kexey = X and 

Sexsyez z xeze(yez) for all x,y,z € C (as usual we associate to 

the lef:l:ì- 

A combinatory structure © assigns homomorphically to each closed 

CL-term M an element of C which we will denote by ĲC(M). 

If © is a cominatory model, its interior ©° is by definition the 

restriction of © to 

c9 z {xeclx= H (M) for some closed CL-term M}. 

A combinatory model is called hard if it coincides with its own 

interior. 

A combinatory model is an extensional model if it satisfies the 
  

axiom of extensionality i.e. if Vx,y € C [VzeC (x+z = y+z)= x=vy]. 

Note that the axiom of extensionality cannot be expressed in CL, 

since CL has no logical connectives. 

A combinatory model © is an w-model if it satisfies the axiom 

corresponding to the w-rule, i.e. if
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vx,y € C [vz € C%(x°*z = y*z) = x =y] . 

It 1s clear that an w-model is extensional. 

From the completeness of predicate logic it follows that for 

eüery consistent extension of CL we can define a canonical model. 

Since the language of CL is logic free, this model is a 

partïcularly simple one, namely a term model. 

3.1.1 Definition 

Let & be a consistent extension of CL (in the same language). 

The term model of & consists of all CL-terms (closed and open) 

where terms that are provably equal in & are equated and 

application is defined as juxta position. 

Hence the term model consists of the set of terms with the minimal 

equality which satisfies &. The non-triviality of the term model 

follows by the consistency of &. 

An extensional model or an w-model can be obtained as term model 

of CL + ext resp. CLu. 

The restriction of an w-model to its interior is again an w-model. 

But the restriction of an extensional model to its interior is 

not necessarily extensional. 

The notion of w-completeness should be distinguished from a 

stronger one. Let us call an consistent extension & of CL strongly 

w-complete, if all extensional models of & are in fact w-models. 

Strorgw-completeness implies w-completeness, as follows by con- 

sidering the term model of & + ext. 

The cornverse 1s not necessarily true. 

The rumcur mentioned in the footnote on page 49 was not quite
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justified. Apparently Jacopini [1971] has proved that CL is not 

strongly w-complete. Hence the question of the w-completeness 

of CL still remains open. 

3.1.2 Theorem (Grzegorczyk [1971]) 

There is no recursive model for CL. 

Proof. 

If © would be a recursive model, then Th(®) would form a 

consistent recursive extension of CL, contradicting 1.3.17. X 

Since it is not clear how to interpret the A-operation in a 

model we restricted ourselves to models of combinatory logic. 

It is nevertheless possible to define A-abstraction in a model. 

This is done in the later versions of Scott [1970]. 

§3.2. Term models 

In this § we will answer negatively the question whether Scott's 

lattice theoretic method provides us with all extensional models 

for CL. We do this by equating all the unsolvable CL-terms and 

obtain an extensional term model in which there is only one fixed- 

point(an element x such that for all y xsy = x is called a 

fixed-point). In Scott's models there are at least two fixed- 

points. 

Further it is shown that Con, the set of equations that can be 

adged eonsistently to the A-calculus, is complete Hg (after Gödel- 

isetíon). This is not an immediate consequence of the fact that 

-calculus is a complete ZÎ theory , since there is no negation. 

Unsolvable terms will play the role of negation. Finally we con- 

struct a term model for CL which cannot be embedded into nor 

mapped onto an extensional model.



3.2.1 Definition 

1. A CL-term 

2. A A-term 
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M is called CL-solvable if 3N1...N CL  MN_....N, = 

M is called 

B-normal form. 

3. A +A-term 

Bn-normal 

A-solvable if 3N 1 

M is called An-solvable if 3N....N MN 
1 k   

form. 

In 3.2.203 we will give an alternative characterization of 

solvable terms. 

3.2.2 Lemma 

Let Z be a A~-term. Then Z is A-solvable iff Z is An-solvable. 

Proof. 

By the remark following 1.2.8. 

3.2.3 Theorem 

1) If CL + ZM = K, then M is CL-solvable or CL k Zx 

variable x. 

K for any 

2) If ZM has a Bn-normal form N, then M is An-solvable or 

A + ext KH Zx = N for any variable x. 

The proof which, in the CL case, makes use of an auxiliary 

theory CL' similar to CL is postponed until §3.3.
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3.2.4 Definition (Morris) 

Let M,M! be A-terms. 

MC M' if vZ [ZM has a Bn-normal form = à + ext F ZM = ZM']. 

In his thesis Morris [ 1968] proved 

3.2.5 Theorem 

If À + ext k MA = A, then FP M C A. 

Hence FP M is the minimal fixedpoint (in the sense of C). 

3.2.6 Theorem 

If M is an unsolvable A-term (i.e. if M is not A-solvable) then 

M C M' for all terms M'. Hence M .is minimal (in the sense of Q) 

'inithe set of all terms. 

Proof. 

This follows immediately from 3.2.3 2) and lemma 3.2.2. 

As many fixedpoints are unsolvable, e.g. FP K, FP S etc., 

3.2.8: is for those terms a sharpening of 3.2.5. 

3.2.7 Definition 

Hop 3 (M = M' | M,M' are unsolvable CL-terms} 

Hì z {M = M' | M,M' are unsolvable A-terms}. 

Wé will prove now that CL + flbL is consistent. The most con- 

'venient way to prove this is to develop a theory CL* which is 

a conservative extension of CL + flbL. CL* will play the same 

role as CLw' in the consistency proof of CL + w-rule.
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3.2.8 Definition 

cL’ has the following language: 

Alphabet = Alphabet., U {=,~}. 

The terms are those of CL. 

Formulas: If M,N are terme, then 

M2N, M= N, M3 N and M > N are formulas. 

3.2.9 Definition 

cCL* has the following axioms and rules (see appendix). 

      

  

  

I Same as in 1.4.2. 

II 1. M =M M~M M — M 

2. M = N M = N M ~N 

N = M N = M N — M 

3. M =N, N =1L 
M =1L 

4, M = M! M = M! M ~ M M — M! 

ZM = ZM' > MZ = MZ ZM ~ ZM' ? MZ ~ M'Z 

III 1. Same as in 1.4.2 

2. Same as in 1.4.2 

3. Same as in 1.4.2 

4. M > M! M = M! M — M! 
M = M M ~ MI M= M' 

Q = H
 

.
—
h
 

IV M M,M' are unsolvable terms. 

Now we proceed as in §2.2 to prove that CL + MÈL is consistent. 

If the proofs are similar to those in §2.2 or easy, we omit 

them.
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3.2.10 Lemma 

1y CLFM>=N < CL+.J(CL1-M>N<==CL+L'M>N. 

2) CL + “ÈL F M= N < CL* LM = N. 

Hence CL+ is a conservative extension of CL + XÈL . 

3.2.11 Lemma 

cL,Y FM=N < 3IN....N., CLY FM~N, ~...~N = N. 

3.2.12 Lemma 

If cL¥ - M ~ N, then IM'.N',Z 

[cL* k ZM' > M, cL* k ZN' >N and CL° k M' = N']. 

3.2.13 Lemma 

If CL+ LM & N, then either 1) M,N are unsolvable or 

2y cLY FM>=N or cCLKNZ>DM. 

3.2.14%4 Theorem 

If CLY F M = K, then 

(*) CL H M = K. 

Proof. 

From 3.2.11 it follows that CL* HM= K 

cLY FM~N, ~...~ N D K. (**) JN ...N 1 _ K 
1 k 

By induction on k we prove that (*) = (). 

If k = 0, then there is nothing to prove. So suppose that k > 0. 

it follows by 3.2.12 +that IM' 
. + ‚ 

Since CL + M, _ - 1M 32 
K 1 7M 

such that 

+ ' + ' > + 1 _ MI CL bk zM)_, =M CL H ZM 2 M and CL H M , ~ M. 

By 3.2.13 we can distinguish the following cases:
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case 1. Mg _,» MÊ are unsolvable. 

then, since CL* k ZMÈ > Mk = K it follows from 3.2.10 

and 3.2.3 1) that 

CL H Zx = K for any x. 

Hence CL k ZM}'<_1 = K and therefore 

CL* } M , > K as follows from 

cL” H ZM , > M _45 3.2.10 and 1.5.1. 

Thus CL H M - M, ... M _; > K, hence by the 

‘induction hypothesis 

CL F M = K. 

+ ! 1 + 1 ' case 2. CL HM_, 2 M or CL  F Mg =M . 

In both cases we have 

- t - t - CL EM _1 = ZM , = 2M] = M 

=2 K by 1.5.1 and 3.2.10. 

= K by 3.2.10. 
+ 

Hence CL t Mk_1 

Then CL H M = K follows as above from the 

induction hypothesis. < X 

3.2.15 Corollary 

CL + flbL is consistent. 

Proof. 

Suppose that CL + ¥, F KK = K, then by 3.2.10 CL L KK = X 

and hence by 3.2.14 CL KK = K. This contradicts the Church- 

Rosser theorem for CL. X 

3.2.16 Remark 

In the same way we can prove Con(ìà + flì). With a more involved 

argument we can show that Con (CL + flb# + ext) and 

Con(à + { + ext). The idea is to use the language of Clw' 

(where ≈∅⋑∼∝⋑ =, are only used for finite @ ) and to add the rule
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Mx = Nx, x €& FV(MN) 

N 
  

~n+1 

The consistency of CL + flbL + ext is not automatically a 

consequence of .the consistency of CL + flbL’ as will be seen in 

3.2.24 where it is shown that Con(CL + M) = Con(CL + M + ext), 

- 

where M is a set °í equations, does not hold in general. 

3.2.17 Remark 

Let us call an element x of a combinatory model a fixed-point 
  

if xy = x holds for all y in the model. 

In every combinatory model ©, “C(FP K) is a fixed-point. Since 

fixed-points in a term model correspond to unsolvable terms, it 

is clear that in the term model of CL + flbL(+ ext) there is only 

one fixed-point. 

In Scott's lattice theoretic models there are always at least 

two fixed-points: all the elements of the initial lattice D, 

become fixed-points in the limit D. See Scott [1970], p.41 

theorem 2.14. 

Hence Scott's method does not provide us with all models for 

CL + ext. This was suggested to us by professor Gross. His 

suggestion had inspired us to prove 3.2.15. 

With the help of Con(à + flì) we can classify in the Kleene- 

Mostowski hierarchy the set of equations which can be added 

consistently to the A-calculus. 

3.2.18 Lemma 

K = FP K is not consistent with CL or the A-calculus.
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Proof (for CL). 

Let Z = FP K, then CL k Z = KZ. 

Hence CL + K z ZHK z Z = KZ = KK, and therefore for arbitrary 

M,N CL + K = Z L KIMN = KKIMN, thus CL+ K=2Z2FN=M K 

3.2.19 Theorem 

Con, = {M = N' | 

(As in 81.3. 

Con(Àà + M = N)} is a complete Hg set. 

u denotes the Gödel number of ... in some 

Södelisation.) 

Proof. 

- 

M=N'@& Coh. < X +M=N K = KK. 
A 

Hence the complement of Con, is r.e., therefore Con is m. 

To prove that ∁∘↧↧⋋ is complete Hg, let X be an arbitrary 

MY set. Let Y = w - X, the complement of X. Then Y is.r.e. 

Define f(n) = 0 ifn€yY 

t else 

then f is partial recursive. 

Hence there is a À-term F which strongly defines f. Note that if 

f(n) 1 , then by 1.3.3 Fn is unsolvable. Then 

n E Y — f(n) z 0 XkFn=0=XFFnlK = K= 

"FnIK = FP K '€ Con by lemma 3.2.18 
A 

n €Y < f(n) t = Fn is unsolvable = 

“FnIK = FP X '€ Con, by 3.2.16 since FP K is unsolvable. 

Hence 

n€X « negy — ∣−≢⇁⊒↧↧≺∶⋮⇁↥⊃⇟≺↰∈∁⊙∏⋋∙ 

Thus X < Con, via the function 

h(n) = FFEIK = FP K ', i.e. Con, is complete M. X
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3.2.20 Remark 

The same result holds for Con and also for Con and 
A+ext CL 

Con In the CL-case this is proved using the strong 
CL+ext’ 

definability (in our sense) in CL of the partial recursive 

functions. This CL-definability is essentially proved in Curry, 

Hindley, Seldin [1971], Ch 13 A. 

The proof of 3.2.19 suggests the following result (from which 

3.2.19 follows more directly). 

3.2.203 Theorem 

Let M be a closed term of CL or the A-calculus. 

1) M is CL- (An-, A-) solvable <= 3N1"'Nk MNl"'Nk = K is 

provable in CL(A + ext, A). 

2) M is CL- (An-, A-) solvable <<= M = FP K is inconsistent 

with CL (À + ext, )). 

Proof. 

1) 1) For CL this is just the definition. 

ii) >: If M is Jn-solvable, then 

N N, À + ext H MN ...N, = N, where N is in 
1° k 1 k 

Rn-normal form. 

By a theorem of Böhm [1968] there exists closed terms 

o PnsZis .Z such that for 

N' = [xl/Pll...[xm/Pm]N 

P 

(here FV(N) = {xl,...‚xm}) 

we have 

A + ext H N!Z ... Zn Xy = X . 

. t = . Define Ni = [x1/P1]...[xm/Pm]Ni, then 

1 1 - 1 A + ext MN1 "'Nk = N
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1 1 Hence À + ext t MN1°°°Nk Zl"'ZPKK n A 

:By definition. 

If M is A-solvable, then by 3.2.2 M is An-solvable 

and therefore by ii) 3N1“°Nk A + ext F MN,...N, = K. 
1 k 

Since the w-rule implies the rule of extensionality, 

we have 

3N1...N]< Aw k MN1°'°Nk = K. 

Hence by the analogue of 2.2.12 (which follows from 

the CL = à-calculus translation 1.4.11) for the 

A-calculus 

3N1'°°N}< In€w A F MN1°"Nk K2n = K 

+:By definition. 

2) >:Let M be =--- solvable, then by 1) 

3N1...Nk --- MNl...Nk = K. 

Hence =-- + M = FP XK | K = MN1°°°Nk = FP K Nl...Nk = FP K 

(remember that --- L FP K x = FP K). 

This yields according to 3.2.18 a contradiction. 

=:If M would be unsolvable, then M = FP K were consistent 

with --- by 3.2.15 and 3.2.16 (FP K is unsolvable). X
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3.2.21 Definition 

Let M,N be CL-terms. 

M and N are separable if J3Z[CL } ZM = K and CL } ZN = KK]. 

Trivial is 

3.2.22 

Con(CL + M = N) > M and N are not separable 

but 

3.2.23 Theorem 

The converse of 3.2.22 is not true. 

Proof. 

Let M = FP K and N = K. Then, by 3.2.18, not Con(CL + M = N). 

But M and N are not separable, for suppose CL k ZM = K, then 

by 3.2.3 CLH Zx = K since M = FP K is unsolvable. 

Hence also CL } ZN = K, which implies that CL L ZN = KK is 

impossible. & 

The rest of this 8 is devoted to establishing the following 

theorem. 

3.2.24 Theorem 

There is a set M of equations such that 

Con(CL + M) but not Con(CL + M + ext). 

If M is such a set of equations, then the term model of CL + M 

can neither be embedded in nor mapped homomorphically onto an 

extensional model. 

We will show by a Church-Rosser technique
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that CL + K = Q,(KI) + KK = Q,(SK) is consistent (here we use 

par abus de langage f, as an abbreviation for SII(SII) ). If we 

add extensionality however, this theory becomes inconsistent, 

since CL + ext F KI = SK. 

3.2.25 Definition 

CL" is a theory with the same language as CL' (see appendix). 

CL" is defined by the following axioms and rules (see appendix) 

I Same as in 1.5.2. 

II Same as in 1.4.2. 

III Same as in 1.4.2. 

IV 1. M 2,M 

2. M>M', N >N 
MN > M'N° 

3. M 2 M! 
M M 

  ¢ 

Vi
V 

V 1. Q;(KI) >K where CLT F Q, > 

2. 23(SK) > KK where CL" K Q, 2 

In the above M,M' ‚N,L denote arbitrary terms and , Z SII(SII). 

3.2.26 Lemma 

CL" F M= N < CL + K = Qz(KI) + KK = QZ(SK) M = N. 

Proof. 

Show by induction 

1. CL" v M>2N = CL + MI-M=N 

CL" +M>2N = CL+®WMFM=N 

CL" FM=N = CL+®MFMS=N 

2. CL + ML M = N > CL"FM=N 

where M = {K = QZ(KI), KK = QZ(SK)}. K
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3.2.27 Lemma 

CL" FM>2N += 3N1...Nk CL" H M >1N1 >1...>1Nk = N. 

Proof. 

Induction on the length of proof of M = N. X 

3.2.28 Lemma 

If CL"  MN 2L, then 

1) L = M'N' and CL" M >M', CL" F N >N or 

2) M=I and L =N or 

3) M= KM, and L = M, or 

4) M = SM;M, and L = M,N(M,N) or 

5) M = @, , where CL" + Q, 2 Q) , N=KI and L =X or 

6) M = Q),, where CL" F @, 2 Q; , N = SK and L = KK 

Proof. 

Induction on the length of proof of MN > L. K 

3.2.29 Lemma 

If CL" + Q, = Q! 5 s then CL F Q3 > Q, , hence N} is not of the 

form I,K,KM ,S,SM, or SM,M,. 

Proof. 

By induction on the length of proof of @, = Q, one shows that 

Q, is of the form I"(SII)[I™(SII)]. Hence CL F Q! > Q,. X 

3.2.30 Lemma 

If CL" M, >M, and CL" M, > M, , then there exists a term 

M, such that CL" F M, > M, and CL" F M, >M 

Proof. 

Induction on the length of proof of M, M, . 

‚ (See fig.1, p.38.)
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case 1. M, > M, is an axiom. 

case 2. 

3.2.31 

subcase 1.1. M, =M, is IM 2 M. 
2 

By 3.2.28 and 3.2.29 it follows that either 

a) M, = IM' with CL" M > M', then we 

can take M, = M', or 

b) M, = M, then we can take M, = M. 

subcase 1.2,1.3. M, 2 M, 1s KMN M or SMNL > ML(NL). 

Analogous to subcase 1.1. 

subcase 1.4. M; = M,. Then we can take M, =M 3 ° 

subcase 1.5. M, =M is QÊ(KI) > K. 
2 

By 3.2.28 and 3.2.28 it follows that either 

a) M; = K, then we can take M, = K, or 

b) M, Q) (KI) with CL" + Q) = Q) 

hence we can take M, = K. 

subcase 1.6. M. 2 M 1 is Q;(SK) >1KK. 
2 

Analogous to subcase 1.5 . 

M, =M, is MN > M'N' and is a direct consequence of 

CL" P M >M' and CL" F N = N'. 

If M, =2 M, is an axiom, then we are done by case 1. 
3 

Otherwise M1 > M. 1s MN 2 M"N" and is a direct con- 3 

sequence of CL" F M >M" and CL' H N >N". 

By the induction hypothesis there exist M",N"™ such that 

CL"  M' =M, CL' k M" > M'" and the same for N. 

Hence we can take M, = M" N" . X 

Lemma 

If CL" + M, 2 M, and CL" F M, > M,, then there exists a term M, 

such that CL" F M; 2 M,.
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Proof. 

This follows from 3.2.30 and 3.2.27 (trivially, in the same way 

as 1.5.8 follows from 1.5.7). X 

3.2.32 Theorem (Church-Rosser theorem for CL") 

If CL" L M = N, then there exists a term Z such that 

CL" F M > Z afid CL" + N = Z. 

Êroof. 

Induction on the length of proof of M = N (as 1.5.16 follows from 

1.5.15). K 

3.2.33 Corollarz 

1) CL"™ is consistent. 

2) CL + K = ,(KI) + KK = Q,(SK) is consistent. 

3) Conjecture 3.2.24 is false. 

Proof. 

1) If CL" k K = KK, then there would be a Z such that 

CL" F K2 2Z and CL" } KK @ Z, a contradiction. 

2) This follows immediately from 1) and 3.2.26. 

3) Since CL + ext H KI = SK, 

CL + K = Q,(KI) + KK = Q,(SK) + ext b K = Q,(XI) = Q,(KS) = KK. 

Hence: CL + M is consistent * CL + M + ext is consistent. K 

§3.3. The theory CL'. 
  

In this § we will prove theorem 3.2.3. We restrict ourselves to 

1) (the CL-case), since the proof of 2) (the A-case) is similar. 

The most convenient way to carry out the proof is to develop an 

auxiliary theory CL' similar to CL.
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3.3.1 Definition 

CL' is a theory with the same language as CL. 

We define a mapping |...| : CL' > CL as follows 

Iel = ¢ if ¢ is a constant or variable 

[MN] = [M]IN] 

MI =M 
CL' is defined by the following axioms and rules (see appendix). 

I, II, III, IV and V are as in 2.3.2. 

VI MN>M |N] 

In the above the restrictions on the terms are clear. 

Axiom VI is essential for CL'; compare it with axiom VI for CL. 

3.3.2 Definition 

Let M,M! be CL-terms. 

M' is in the CL-solution of M, notation M > M' if 
  

2 M! = ] . 3N1...Nk CL t MNl"'Nk M (k O is allowed) 

Note that > is transitive. M is CL solvable iff M»>» K. 

Now we proceed as in §2.3. When the proofs are similar to those 

in §2.3 we omit them. 

3.3.3 Lemma 

1) CL'  M>M' = CLFM=>=2M if M,M' are simple terms 

2) CL' P M2M' <= CL'FM=2M if M,M' are simple terms 

3) [CL' F M >»M' and N' sub M'] = 3N[N sub M and N > N'] 

3.3.4 Lemma 

CL' FM>M' = 3N,...N CL'FMEZN >...%N =M = .
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- 

3.3.5 Lemma 

[CL FM >M' .and N' sub M'] = 3N[N sub M and N > N']f 

3.3.6 Lemma 

Let My, M', N be terms such that 

1) M and M' are simple 

2) CL H M 2 M' 

3) CL' F M = N, 

then there exists a term N' such that 

4) CL' F N = N' 

5) CL' F M' = N' (see fig. 7, page 60). 

3.3.7 Definition 

Let M be a CL-term. An x substitution of M is the result of 
  

replacing some occurrences of x in M by other terms. 

3.3.8 Lemma 

If CL H M 2 M' and N is an x sgbstitution of M, then there 

exists a term N' which is an x substitution of M' such that 

CL HN 2 N!. 

Proof. 

Induction on the length of proof of M 2 M' 

3.3.9 Lemma 

If CL! H M > M', then CL + óx(M) = M", where M" is an 

X substitution of ¢X(M') (¢x is defined in 2.3.7 with A = x). 

Proof. 

Induction on the length of proof of M =2 M!
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subcase 1.1. M 2 M' is not an instance of axiom VI 1 or 2. 

Then since CL - {VI} = CL' - {VI} it follows 

from 2.3.8 that CL F ¢X(M) > ¢X(M'). 

Hence we can take M" = ¢X(M'). 

subcase 1.2. M 2 M' is an instance of axiom VI, say 

MM, =M M 

Then ¢_(M) = x ¢ (M) and ¢X(M') = X. 

Hence we can take M" = x ¢X(M2) which is 

an x variant of ¢X(M'). 

case 2. M > M' is ZM, >1ZM; and is a direct 

M, = M) 

consequence of 

By the induction hypothesis we have CL } ¢x(M1) > M7, 

where M" is an x substitution of ¢x(M')' 

Therefore 

CL k ¢X(M) = ¢X(Z)¢X(M1) = ¢X(Z)M¥ 

Hence we can take M" = ÒX(Z)MÏ 

since this is an x substitution of Òx (M') = ¢ _(2)¢ (M]). 

case 3. M =2M' is M,Z > M;Z. This case 1s analogous to 

case 2. 

3.3.10 Lemma 

Let M,M' be CL'-terms such that M' is simple 

Let x € M'. 

Then CL F ÒX(M) > M'. 

Proof. 

Suppose CL' ⊢ M 2 M' , then 3N t ‚N, CL EM 10° 

Hence 3N1...Nk CL' F M = Nk ≽↿∙∙∙≽↘∏↴ = M'. 

K 

and CL' + M > M'. 

= N, >...> N_z= M,
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With induction on i < k we will prove CLH ¢X(Ni) > M'. 

If i = 1 we are, done. 

By lemma 3.3.9 it follows that CL F ¢x(Ni+1) >-Nì where Ni is 

an x substitution of-¢x(Ni). Since by induction hypothesis 

CL } óx(Nì) = M' there exists by lemma 3.3.8 a M" which is 

an x variant of M' such that CL k Ni 2 M". But x € M', hence 

M" 3 M'. 

Therefore CL } ¢x(Ni+1) ≽⇋∐⇣ 2 M" z M' . X 

Now we are able to prove the CL part of theorem 3:2.3. 

3.2.3 Theorem i 

If CL k ZM = K, then M ië Chbsolvable or CL k Zx = K for any 

variable x. 

Proof. 

If CL k ZM = K, then CL k ZM 2 K by 1.5.1, hence by 3.3.6 

IH A
 CL' k ZM > XK' with CL' k K' = K, hence K' = K or K! 

case 1.K' Z K. Thus CL' } ZM 2 K 

By 3.3.10 it follows that 

CL + 9 (ZM) ZK i.e. CL F Zx 2 K. 

case 2.K' = K. Thus CL' k ZM 2 K. 

Hence by 3.3.5 M > K i.e. M is CL solvable. X
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Appendix I 

Survey of the theories used in the text. 

This appendix presents a full description of the theories 

considered. 

In order to facilitate the locating of those descriptions 

we list them here with a reference to the place where they were 

introduced and their page in the appendix. 

Theory Introduced in Page 

A-calculus (with >) 1.2.2 Al 

CL l.4.1 A2 

CL! 1.5.2 A3 

CL* 1.5.4 Al 

cL* 1.5.18 AS 

CLw' 2.2.2 Ab 

CL 2.3.1 A7 

À + ext 2.5.4 A8 

ot 3.2.8 A9 

CL" 3.2.25 A10 

CL' 3.3.1 A11
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Al. The A-calc 

Language 

Alphabet: 

Terms : 

1) 

2) 

3) 

Formulas: 

To be able to f 

The set of free 

FV(x) 

FV(MN) 

FV(AxM) 

The set of boun 

BV(x) = 

BV(MN) = 

BV(AxM) 

Substitution of 

variable x in M 

[ x/N] x 

[ x/N]y 

[ x/N}] (MM, 

[ x/N] (AxM) 

[ x/N] (AyM) 

In the above «x 

different from 

Note. In the te 

ulus 

asbscy.e.. variables 

A,C 5 ) improper symbols 

= equality 

> reduction 

Terms are defined inductively by 

Any variable is a term. 

If M,N are terms, then (MN) is a term. 

If M is a term, then (àxM) is a term 

If M,N are terms, then 

M=N and M =2 N are formulas. 

ormulate the axioms we define inductively: 

variables of a term: | 

{x} 

FV(M) U FV(N) 

FV(M) - {x!} 

d variables of a term: 

@ 

BV(M) U BV(N) 

BV(M) U {x} 

a term N in the free occurrences of the 

N 

y 

[x/N]M,) ([ x/N] M, ) 

AxXM 

Ay ([ x/N] M) 

) 

is an arbitrary variable and y is a variable 

x 

xt [x/N] sometimes was confused with [x\N]
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The A-calculus (+ extensionality, + w-rule) 

Axioms and rules 
  

  

  

  

  

  

I 1. AxM = aylx/yIM if y € FV(M) 

2.(AxMIN > [ x/N]IM if BV(M) N FV(N) = 0. 

II 1. M = M 

2. M= N 
N = M 

3. M= N, N = L 
M =L 

4. M = M' M= M M = M' 
ZM = ZM' > MZ = M'Z > AxM = AxM' 

III 1. M > M 

2. M= N, N> 1L 
M>1L 

3. M > M M > M M > M 
ZM 2 ZMT > MZ 2 MIZ ? AxM = AxM' 

4, M D> M! 
M= M 

In À + ext we add 

  

I 3. AxX(Mx) 2 M if x é FV(M) 

In Aw we add 

w-rule 

MZ = NZ for all Z with FV(Z) = 0 

M = N 

In the above M,M' ‚N,L and Z denote arbitrary 

terms and x and y arbitrary variables.
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A2. Combinatory logic (CL) 

Language 

Alphabet: 

Terms : 

1) 

2) 

Formulas: 

M1M2.. -M 
n 

a,b,c,.... variables 

I,K,S constants 

(D improper symbols 

= equality 

= reduction 

Terms are defined inductively by 

Any variable or constant is a term. 

If M,N are terms, then (MN) is a term. 

If M,N are terms, then 

M =N and M > N are formulas. 

stands for (..(M1M2)...Mn)
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CL (+ extensionality, + w-rule) 

Axioms and rules 

I 1. IM 2 M 

‚ IMN 2>M 

SMNL > ML(NL) 

2 

3 

IT 1. M =M 

2 N 
  

  

  

  

. M= 

N =M 

3. M= N, N=1L 
M =1 

4., M = M! M= M 

ZM = ZM' > MZ = M'Z 

III 1. M > M 

M 2N, N=21L 
M =1L 

3. M 2 M' M 2 M' 

ZM > ZM' > MZ > MTZ 

4, M =2 M! 
M= M 

In CL + ext we add 

ext Mx = M'x if x &€ FV(MM') 
M = M 

In CLw we add 

w-rule 

MZ = NZ for all Z without free variables 
M = N 

In the above M,M' ‚N,L and Z denote arbitrary 

terms .
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A3. CL' 

Language 

Alphabet: a,b,c,... variables 

I1.K,S constants 

«C 5 ) improper symbols 

= equality 

= reduction 

Z one step reduction 

Terms : Terms are defined inductively by 

1) Any variable or constant is a ternm. 

2) If M,N are terms, then (MN) is a term. 

Formulas: If M,N are terms , then 

M =N, M>2Nand M >N are formulas. 

M.M....M stands for (..(M_M.)...M ) 
n 1 2 n
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CL! 

Axioms and rules 

I 1. IM M 

2. KMN M 

3. SMNL ML(NL) 

II M = M 

M = N 

N =M 

3. M= N, N =1L 

M = L 

4, M = M! M = M' 

ZM = ZMT > MZ = M'Z 

IIT 1. M =2 M 

M2N, N 2 L 

M2L 

3. M 2 M' M 2 M! 

ZM > ZM' > MZ = M'Z 

4. M =2 M! 

M = M' 

IV 1. > M 

M >M M 2 M' 

ZM =2, ZM'" > MZ > M'7Z 

3. M MM' 

M= M! 

In the above M,M' ‚N,L and Z denote arbitrary 

terms .
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Al CL* 

Language 

Alphabet: 

Terms : 

1) 

2) 

3) 

Formulas: 

M. M 

a,b,c,..., variables 

I1,K,S constants 

(., )° improper symbols 

= equality | 

> reduction 

>, one step reduction 

Terms are defined inductively by 

Any variable or constant is a term. 

If M,N are terms, then (MN) is a term. 

If M,N and L are terms , then 

S(M,N,L) is-a term. 

If M,N are terms , then 

M = N, M 2 N and M D> N are formulas. 

Mn stands for (..(M1M2)...Mn)
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CL* 

Axioms and rules 

I - 1. IM 21 M 

2. KMN >M 

3. SMNL =2, S(M,N,L) 

  

II 1. M u 

z 
n 

= " 

  

  

  

  

  

  

    

= L 

4. M = ! M = M' 

ZM = ZM' ? MZ = M!Z 

III 1. M2M 

M>2N, N 2L 

Ma2L . 

3. M 2 M' M 2 M! 
ZM =2 ZM' ? MZ =2 M!Z 

IV 1. M > M 

2. M 2 M! M =2 M' 

ZM > ZM! ? MZ 2>1M!'Z 

3. M 21M! 

M= M 

L. M > M N a N' 
S(M,N,L) =ZS(M' ‚N,L) °> S(M,N,L) DM S(M,N' L) 

L 2iL! 
S(M,N‚L) ≽↥ Sm,N,L') 

  

In the above M,M' ,N,N',L,L' and Z denote 

arbitrary terms.
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AS. c 
Language 

Alphabet: 

Terms : 

1) 

2) 

3) 

Formulas: 

M1M2.. .M 
n 

a,b ‚C‚ooo' Variables 

I,K,S constants 

( , ),°>,—~ improper symbols 

= equality 

= reduction 

> one step reduction 
Terms are defined inductively by 

Any variable or constant is a term. 

If M,N are terms, then (MN) is a term. 

If M,N and L are terms, then Í 

S(M,N,L) and S(M,N,L) are terms. 

If M,N are terms, then 

M=N,M2Nand M 2N are formulas. 

stands for (..(M1M2)...Mn)
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cL* 
Axioms and rules (We give an equivalent version 

which is slightly different from the original one.) 

I 1. IM 2 M 

2. KMN 2 M 

3. SMNL =2 S(M,N,L) 

  

  

IT 1. M =M 

2. M =N 
N =M 

3. M= N, N =1L 

M = L 

4, M = M ' = 

ui
n 

III 1. M2M 

2. M2N, N 2> L 
MaeL 

3. M 2 M M 2 
ZM 2 ZM' ° MZ 2 

  

M' 

M'Z 
  

IV 1. M 2M 

2. M= M' M 2> M' 
ZM > ZM' ° MZ »>M'Z 

3. M AM' 
M =M 

  

T M > M N a N' 
S(M,N,L) 2> S(M' ‚N,L) ? S(M,N,L) > S(M,N' L) 

L =L 
S(M,N,L) =2 S(M,N,LT) 

S. M D> M! 

M > M 

    

  

In the above M,M' ,N,N',L,L' and Z denote 

arbitrary terms, except in IV 5, where M,M' denote 

terms of the form S(P,Q,R).



Terms : 

1) 

2) 

Formulas: 

a,b,cye.v variables 

I.K,S constants 

(. improper symbols 

= equality 

= reduction 

Q è [ special equalities, for 

every countable ordinal a. 

Terms are defined inductively by 

Any variable or constant is a term. 

If M,N are terms, then (MN) ie a term. 

If M,N are terms, then 

M=N, M>N, M a N, M > N 

and M o N are formulas. 

stands for (..(Mle)...Mn)
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CLw' 

Axioms and rules 

I 1. IM = M 

2. KMN = M 

3. SMNL =2 ML(NL) 

  

  

  

IT 1. M= M, M =y M, M~ M 

2. M =_ N M= N M~ N 
3 a 2 

N = M N =~y M N~ M 

3. M a N, N 7Q L 

M z L 

L. M =4 M' ‚ M =_ M' ’ M ~4 M! ] M~ M' 

M = MT = ~ ~ M =4 ZM MZ =, M'Z ZM 4 ZM! MZ a M'Z 

III 1. M2M 

  

  

M =21 

3. M 2 M' ‚ M.B M! 

ZM > ZM' MZ = M'Z 

4. M =2 M M =y M' M o M' 
9 9 

M=, M M a M' M= M 

IV VZ closed J8<a MZ =B NZ 

M Z N 

In the above M,M' ‚N,L and Z denote arbitrary 

terms, and a,a' arbitrary countable ordinals.
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A7. CL 

Language 

Alphabet: 

Simple terms: 

1) 

2) 

Terms: 

1) 

2) 

3) 

Formulas: 

MM 

E variables 

I,K,S constants 

C 5 ), _ improper symbols 

= equality 

> reduction 

Z one step reduction 

R intrinsic equality 

Simple terms are defined inductively by 

Any variable or constant is a simple 

term. 

If M,N are simple terms, then 

(MN) is a simple term. 

Terms are defined inductively by 

Any simple term is a term. 

If M is a simple term, then M is a 

term. 

If M,N are terms, then (MN) is a ternm. 

If M,N are terms, then 

M = N, M 2 N, M 2>iN and M z= N are 

formulas. 

'Mn stands for (..(M1M2)...Mn)
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Axioms and rules 

I 1. IM > M 

  

  

  

  

  

  

2. KMN >M 

3. SMNL > ML(NL) 

II 1. M = M 

2. M = N 
N = M 

3. M =N, N =1L 
M = L 

4. M = M , M= M 
ZM = ZM! MZ = M'Z 

III 1. M =2 M 

M >N, N>1L 
M = L 

3. M > M , M>M 
ZM > ZM' MZ = M'Z 

4, M > M' 
M= M' 

IV 1. M > M 

M > M ‚ M DM' 
ZM > ZM' MZ > M' Z 

3. M >M 
M > MI 

b, M > M 

M > M 

V 1. M = M 

. M =N 
N =M 

3. M= N, N =L 
M = L 

b, M = M , M= M 
ZM = ZM! MZ = M'Z 

5 = M 

VI MN > MN 

In the above M,M' ‚N,L and Z denote arbitrary 

terms except in IV 4, V 5 and VI where M,M' denote 

simple terms.
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A8. À + ext 

Language 

Alphabet: a‚b‚C,..." Variables 

A, C 5 )5 _ improper symbols 

=, = equality, resp.intrinsic equality 

=, 2 reduction,resp.one step reduction 

Simple terms:.Simple terms are defined inductively by 
1) 
2) 
3) 

Any variable is a simple term. 
If M,N are terms, then (MN) 1s a term. 
If M is a term, then AxM 1s a term 
(x is an arbitrary variable). 

The set of free variables of a simple term is 

inductively defined by 

FV(x) = {x} 
FV(MN) = FV(M) U FV(N) 
FV(AxM) = FV(M) - {x} 

Terms : Terms are defined inductively by 
1) Any simple term is a term. 
2) If M is a simple term and if FV(M) = @, 

then M is a term. 
3) If M,N are terms,then (MN) is a term. 
4) If M is a term, then AxM is a term. 

Formulas: If M,N are terms then 

M=N,M>2N, M>Nand M = N are formulas., 

FV, BV, [ x/N] are defined inductively by 

FV(x) = {x} 
FV(MN) = FV(M) U FV(N) 
FV(AxM) = FV(M) - {x} 
FV(M) = @ 

BV(x) = f 
BV(MN) = BV(M) U BV(N) 
BV(AxM) = BV(M) U {x} 
BV(M) = BV(M) 
[x/N]lx =N 

[x/N]y = y 
[x/N] (M,M,) 
[x/N]} (AxM) 
[ x/N] (AyM) 
[x/N] M 

([ x/NIM ;) x/NIM,) 
AxM 
Ayl x/NIM 
M 

In the above x is an arbitrary variable and y is a 
variable different from x.
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À + ext. 

Axioms and rules 

I 1. AxM > ax[x/yIM if y é FV(M) 

2 . (ÀAxM)N DE x/N]M if BV(M) N FV(N) = @ 

  

  

  

  

  

  

3. A x(Mx) =2 M if x € FV(M). 

II 1. M = M 

2. M = N 
N = M 

3. M= N, N =L 
M = L 

4. M = M! , M=M' , M= M 
ZM = ZM' MZ = M'Z AxM = AxM! 

III 1. M > M 

2. M>N, N> 1L 
M > L 

3. M =M , M=2M' |, M=M 
ZM = ZM' MZ = M'Z AxM = axM' 

4., M D M! 
M= M 

IV 1. M =M 

  

  

  

    

M > M ‚ M aM' ‚ M a M' ‚ M 2 M! 

7M = ZM' MZ a M'Z AxM > AxM! M ≽≖≞∣⋅ 

3.M>1M' 

M=2M 

V 1. M =M 

2. M = N 

N =M 

3. M =N, N=1L 

M= L 

4. M = M! M & M! ‚ M = M*% 

ZM = ZM! MZ = M'Z AxM = AxM' 

5. M= M 

In the above M,M',N,L and Z denote arbitrary terms 
except in the last item of IV 2 and in V 5 where 

M,M! denote simple terms.
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A9. CL 

Language 

Alphabet: 

Terms : 

Formulas: 

1) 

2) 

..M 
n 

a,‚DsCy..G variables 

LK S constants 

(D improper symbols 

= equality 

= reduction 

N, ~ specilal equalities 

Terms are defined inductively by 

Any variable or constant is a term. 

If M,N are terms, then (MN) is a term. 

If M,N are terms, then ' 

M =N, M>2N, M=N and M ~ N are 

formulas. 

stands for {(..(M_M.)...M) 
12 n



+ 

  

CL 

Axioms and rules 

I 1. IM = M 

2. KMN =2 M 

3. SMNL = ML(NL) 

II 1. M = M M~ M M ~ M 
2. M =N M ~N M ~N 

N = M N = M N — M 

3. M= N, N= L 

M =1L 

+ HEM, MEM MM , MM 
ZM = ZM' MZ = M'Z ZM ~ ZM' MZ ~ M'Z 

JI1I 1. M > M 

2. M>2N, N> L 
M >1L 

3. M 2 M! ‚ M 2 M! 

ZM > ZM! MZ > MTZ 

4, M > M! M~ M M ~ M! 

M~ M M ~ MI M = M 

IV M & M' if M,M' are unsolvable terms. 

In the above M,M' ‚N,L and Z denote arbitrary 

terms . 
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A10. CL 

Language 

Alphabet: a,b,c,... variables 

I,K,S constants 

( 5 ) improper symbols 

= equality 

= reduction 

> one step reduction 

Terms : Terms are defined inductively by 

1) Any variable or constant is a term. 

2) If M,N are terms, then (MN) is a term. 
° 

Formulas: If M,N, are terms, then 

M =N, M>2Nand M N are formulas. 

M1M2"'Mn stands for ("(MlMZ)"'Mn) 

Qz stands for SII(SII).
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CL" 

Axiomes and rules 

I 1. IM > M 

2. KMN 2 M 

3. SMNL >; ML(NL) 

  

  

  

  

IT 1. M =M 

. M =N 
N =M 

3. M= N, N =L 

M =L 

4., M = M! M = M! 

ZM = ZM' MZ = MTZ 

III 1. M2M 

M2 N, N=21L 
M=21L 

3. M>M ‚ M D> M' 
ZM 2 ZM! MZ > MTZ 

4, M > M' 

M= M 

IV 1. M > M 
M2M',NZ>2N' (1) 

MN > M'N' 

3. M aM' 
M > M' 

V 1. Q;(KI) >K where CL" F Q, 2 9) 

2. Q;(SK) 2 KK where CL" | Q, ≽⇌⇪≟∙ 

In the above M,M',N,L and Z denote arbitrary 

terms, and Q, = SII(SII).
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A11. 

Simple terms: 

1) 

2) 

Terms : 

1) 

2) 

3) 

Formulàs: 

a,‚DsCs... variables 

I,K,S constants 

C 5 )5 _ improper -symbols 

= equality 

= reduction 

Z one step reduction 

n intrinsic equality 

Simple terms are defined inductively by 

Any variable or constant is a simple 

term. 

If M,N are simple terms, then (MN) is a 

simple term. 

Terms are defined inductively by 

Any simple term is a term. 

If M is a simple term, then M is 

a term. 

If M,N are terms, then (MN) is a term. 

If M,N are terms , then 

M=N,M>2N,M>NandM = N are 

formulas. 

M.M....M stands for (..(M_M.)...M ) 
n 1 2 n 1 2 

To be able to formulate the axioms we define 

a mapping |.. 

le] = c 
IMN|. = [M]|N] 
M| = M 

.|: Terms > Simple terms. 

if c is a constant or variable 

.
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Ë—È! 

Axioms and rules 

I 1. IM > M 

2. KMN > M 
3. SMNL >, ML(NL) 

II 1. M 

= U 
u 

z 
X 

  

w = 
= 

" 

2 
=
 
X
 

z
 u - 

  

M' 
1~ 

L 

= =
 u 

  

=<
 

nj
n 

IIT 1. M =2 M 

  

  

MZ 

£ 

<
X
 

. 
n
l
y
 

=<
 

X 
X
X
 

= V 
- 

_
N
/
|
 
-
 

=
 

=
 
N
 

IV 1. 

A
 

‚ M ZM' 
>M'Z 

  

N
I
X
 

X 

w 

=
|
X
 J 

f
 

=< 
= 

Vi
V 

Vv
 

IZ
'.
.‘
s.
: 

ZI
 

< 

=< 
X 2 

=2 
X 

  

R 
I 

R 
X
K
=
 

X 

n o 

= ? N =<
 

w = 
2 

l 

  

M! 

=
 

N 
= R < 

ni
n 3 

MZ 

- 
_ 5. M 

VI MN > M |N| 

In the above M,M' ‚N,L and Z denote arbitrary 

terms except in IV 4, V 5 and VI where M,M' 

denote simple terms.
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Appendix II 
  

The Church-Rosser theorem for the A-calculus 

a la Martin-Lof 

This appendix contains a proof of the Church-Rosser theorem 

recently discovered by Martin-Lof [1971]. 

This proof is strikingly simple compared to those mentioned in 

1.2.18. 

The idea of the proof arose from cut elimination properties of 

certain formal systems. In fact the Church-Rosser theorem is a 

kind of cut elemination theorem, the transitivity of = in the 

A-calculus corresponding to the cut. 

The trick is to define a relation > between terms in such a way 

that 

1) The transitive closure of > is the (classical) reduction 

relation (2). 

2) If M, >iM, , M, >iM then there exists a term M, such that 3) 

M, >M, and M, >M,. 

From 1) and 2) the analogue of 2) for > can be derived. 

From this the Church-Rosser theorem easily follows. 

Definition 1. 
  

A' is a theory formulated in the following language: 

Alphabet: a,b,c,... variables 

A, C ) improper symbols 

= equality 

2 reduction 

> one step reduction
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Terms : The terms are defined as in the A-calculus (1.1.1). 

Formulas: If M,N are terms, then M = N, M 2 N and M 2 N are 

formulas. 

As in 1.1.2 we define BV(M), FV(M) and [ x/N]M. 

Definition 2. 

A! is defined by the following axioms and rules. 

T 1. M D> M if y & FV(M') 
(AxM) > Ayl x/yIM! 
  

2. M ≽↥⋈↾ s N ≽≖↕∖↧↾ lfBV(M')nFV(N')zfi 

(AxM)N >1[X/N1]M' 
  

II. 1. M 2 M 

  

  

  

  

2. M2M" , N 2N' 

MN =2, M'N' 

3. M =M 

AxM =2, AxM! 

Y. M 2 M!' 
M 2 M! 

III 1. M2 N, N2L 

M =1L 

2. M = M' , M>=2M' , M > M' 
ZM 2> ZM' MZ > MTZ AxM > AxM! 

3. M 2 M! 

M =M 

IV 1. M = N 

N = M 

2. M N, N =L 

M =1L 

3, M=M' , M=M' , M= M 
ZM = ZM' MZ = M'Z AXM = ÄXM' 

In the above M,M' ‚N,L and Z denote arbitrary terms and x, y 

denote arbitrary variables.
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Lemma 3. 

' =. ' = = N. A' H M ↧∖⊺⇐⇒∃↥∖↧↕ ↧∖⊺↕≺⋋∣−⋈ N1>‚ >‚Nk N 

Proof. 

=: Immediate. 

=: Induction on the length of proof of À' M > N. & 

Lemma 4. 

A' H M DIN > A FM>=N 

AM'FM>=2N = A FLM2N 

A' HM= N > X FM=N 

Proof. 

In all cases induction on the length of proof. K 

Lemma 5. 

If A' M 2M'" and A' EL N =2 N', then 

A' [ x/N]JM = [ x/N'"]M! 

Proof. 

Induction on the length of proof of M > M' using the sublemma: 

If x # y then [x/N,] ([y/N,]M) = [y/[x/N;IN,K[ x/N,]M). 

The proof of the sublemma proceeds by induction on the structure 

of M. X 

Lemma 6. 

1) If X' F AxM > N, then there exists a term M' such that 

A' FM2M' and N = AxM' or N = Aylx/y]M' with y é FV(M'). 

2) If A' } MM, >N, then there exist M;,M; such that 

1 A' Mi ≽↧⋈⇣ ∂∏↺⋈≡⋈⋥⋈≟∘⊅⋈∶≺⋋≍⋈≟⋟∂∏↺⋈≡ [x/M;]MY 

where A' k M} =2 MY and A' M, > M)
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Proof. 

Induction on the length of proof. K 

Lemma 7. 

If A' t M, =M ‚ and à' L M, >1M,, then there exists a term M, 

such that à' H M, aM, and J' k M, ZiM, 

Proof. 

Induction on the sum of lengths of proof of M, >]M2and M) = M 

case 1. 

case 2. 

case 3. 

case L. 

3 ° 

M, =M, is an axiom. Then M, = M, and we can take 

M, = M,. 

M, =1M, is AxM >yl x/yIM' where y € FV(M') and is 

a direct consequence of M =2 M'. 

By lemma 6 it follows that 

M, = azy'[x/y']M" where à H M > M" and y! € FV(M") or 

y' = x. 

By the induction hypothesis there exists a M'" such that 

A' E M' > M" and J' L M" 2,M'" , Then we can take 

= I = Ay"[x/y"]M™ with y" € FV(M"). 

M, =M, is AxM > AxM' and is a direct consequence of 

M > M'. Analogously to case 2 we can find the required 

term M, . 

M, =M, is (AxM)N > [x/N']M' and is a direct con- 

seguence of M > M' , N =2 N'. 

By lemma 6 we can distinguish the following subcases. 

subcase 4.1. Ma = ()\y[x/y]M")N"’ where À' L M > M", 

A' F N > N". 

By the induction hypothesis there exist 

terms M™, N" such that ÀA' L M' D MW ;
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AV EMT MM, À' H N' >NM and 

⋋↿ ⊢ N" >IN"' . 

Then by lemma 5 we can take M, = [ x/N™IM™, 

subcase 4.2. M [ x/N"]M" with A' M > M", 3 

A" F N > N". 

By the induction hypothesis there exist 

terms M™ , N" such that à' F M' 2, M" etc. 

Then by lemma 5 we can take M„ = [x/N"M™ ., 

case 5. M, =M, is MN > M'N' and is a direct consequence of 

M2M, NZ2N'. 

By lemma 6 we can distinguish the fóllowing subcases. 

subcase 5.1. M, = M"N" with AÀ' M >2M",A" | N >N". 

By the induction hypothesis there exist 

terms M"™ , N'" such that A' F M' > M" etc. 

Then we can take M, = M™ N™. 

subcase 5.2. M, =M, is (AxM )N > [x/N"IM] and is a 

direct consequence of M, =M, N =N". 

This case is analogous to subcase 4.1. X 

Lemma 8. 

If A' t M1 >=M2 and À' + M1 >~M3, then there exists a term M, 

such that A' b M, > M_and \' kM, >M,. 

Proof. 

î t By lemma 3 A' | M 2M = 3N1...Nk AR M) i
 

z,
 

V y =
 

I
 

and similarly for A' F M, 2 M. 

By repeated use of lemma 7 (see figure 2, page 40) it follows 

that the conclusion holds. Xl



If À! ¥ = !N, thern there exists a term Z such that 

Froct. 

Induction on the length of proof of M = N, using lemma 8 in the 

case of transitivity of = K 

Thecrem 10. (Church-Recsser theorem) 

1 f à H M = N, then there exists a term Z such that 

A H M 2 Z and X N = Z. 

Proof. 

This follows immediately from lemma 8 and lemma L. K 

Remark. 

In the same way we can prove the Church-Rosser theorem for 

A + ext Dby adding to À' the rule 

M 2 M! 

Ax(Mx) 21 M'
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Samenvatting 

Dit proefschrift houdt zich bezig met de combinatorische logica, 

niet als basis voor de rest van de wiskunde, maar als formeel 

systeem voor de bestudering van berekeningsprocedures. 

Hoofdstuk I geeft een overzicht en uitbreiding van reeds bekend 

materiaal. 

In Hoofdstuk II wordt de w-regel ingevoerd en met behulp van 

transfinite inductie bewezen dat de uitbreiding van de combina- 

torische logica met de w-regel consistent is. Verder wordt de 

existentie van universele generatoren bewezen. Voor de termen 

die geen universele generatoren zijn, geldt dat de w-regel een 

afgeleide regel is. 

In Hoofdstuk III worden een aantal andere consistentie resulta- 

ten bewezen, waardoor verschillende niet elementair equivalente 

modellen van de combinatorische logica verkregen worden. 

In de bewijzen van de hierboven vermelde resultaten wordt meestal 

gebruik gemaakt van conservatieve uitbreidingen van de combina- 

torische logica. Hierbij speelt een nieuwe bewijstechniek een 

belangrijke rol, te weten de methode van het onderlijnen. Deze 

methode formaliseert het begrip residu en vermijdt aldus de 

anders nogal omslachtige argumenten.
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STELLINGEN 

I 

De wijze waarop Rosenbloom het extensionaliteits 
Principe formuleert geeft aanleiding tot ver- 
warring, met name bij Rosenbloom zelf. 

Rosenbloom: The elements of 
mathematical logic, blz.112. 

Ll 

Ten onrechte schrijft Goodman aan zijn abstractie 
operator à zekere eigenschappen met betrekking 
tot gedefinieerdheid toe. 

Goodman: Intuitionistic 
arithmetic as a theory of 
constructions, section 8. 

ILI 

In de intuïtionistische theorie der gelijkheid 
1s het axioma 

~ ¥z (zéx v z#y) — x=y 
echt sterker dan het stabiliteits axioma 
- 1 XZy = X=Y. 

1V 

Door de axioma's van Kearns betreffende de dis- 
criminatoren .in combinatorische logica iets voor- 
zichtiger te formuleren, 1s het mogelijk dat de 
reductie- en de gelijkheidsrelatie ook rechts- 
monotoon zijn. 

Kearns : Combinatory logic 
with discriminators, 
J.Symbolic Logic, vol.34(1969)



V 

Het begrip 'sterk definitioneel gelijk', zoals 
Tait dit in heeft gevoerd, is niet helemaal 
adequaat. De moeilijkheid is op te lossen door 
een variant van Curry's sterke reductie relatie 
in te voeren. 

Tait: Intensional inter=- 
pretations of functionals of 
finite type I, J.Symbolic 
Logic, vol.32, blz.204-205. 

VI 

Curry's opvatting, dat de combinatorische 
logica een prelogica vormt die de grondslag 
vormt voor alle formele systemen, gaat voorbij 
aan de moeilijkheden in de analyse van het 
iteratie proces. 

Curry en Feys: Combinatory 
logic, Introduction. 

VII 
Bij de vraag of post- ook propterhypnotisch 
gedrag is, gaat het er niet om of de proef- 
persoon toneel speelt, beleefd 1s, bedriegt of 
wat dan ook. Relevant 1s alleen van welke 
stimuli alternatief gedrag afhankelijk is. 

VIII 

De molens in Nederland draaien met hun wieken 
tegen de wijzers van de klok. Dit is een 
gevolg van de omstandigheid dat er in Neder- 
land meer ruimende dan krimpende wind voor- 
komt: wanneer de molenaar tijdens werkzaam- 
heden tengevolge van deze ruimende wind moet 
kruien gaat dit lichter dan met krimpende wind 
in verband met de gyroscopische werking van 
het wiekenkruis. 

H.P.Barendregt 16 juni, 1971


