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Abstract

The polymodal provability logic GLP is a system of propositional modal logic
with infinitely many modalities having provability semantics. It was initially
introduced by Japaridze in his PhD thesis [19]. GLP has significant applica-
tions in proof theory and arithmetic, however, it is well-known that GLP is
Kripke incomplete. GLP is complete with respect to topological semantics [3],
yet the relevant class of spaces is rather involved. Topological completeness of
GLP under the natural class of ordinal spaces requires certain set-theoretic as-
sumptions (the existence of large cardinals), however, it is still open whether
it holds under these assumptions (see [1]). Therefore, it becomes crucial to
search for some simpler models for GLP.

In this thesis, we define the concept of a general topological frame, that is,
a topological space equipped with a distinguished set of admissible sets, akin
to the notion of a general Kripke frame. Then, we describe a natural class of
general topological frames on ordinals, that we call periodic frames. These
frames are based on well-orderings equipped with some natural topologies
introduced by Icard [18]. While GLP is known to be incomplete with respect
to Icard’s spaces, we show that the bimodal fragment of GLP is sound and
complete with respect to the periodic frames. We hope that the results in
this thesis will pave the way to further generalizations of this completeness
to the whole system GLP.
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Chapter 1

Introduction and Preliminary

The polymodal provability logic GLP is a system of propositional modal logic
with infinitely many modalities having provability semantics. It was initially
introduced by Japaridze in his PhD thesis [19]. GLP has found significant
applications in proof theory and arithmetic [5, 6, 7].

However, in any Kripke frame for GLP, all relations but one have to be
discrete, which means that GLP is Kripke incomplete. Therefore, it becomes
crucial to explore alternative models for GLP.

Before the advent of Kripke semantics, topological semantics for modal
logic was independently developed by Tang [26], McKinsey and Tarski [27,

, 22] in 1930’s and 1940’s. Later, Simmons [24] and Esakia [15] indepen-
dently studied the topological interpretation of provability logic GL, revealing
its correspondence to a natural class of topological spaces known as scattered
spaces, employing the topological d-semantics. Later, we will show that ordi-
nals form natural examples of scattered spaces and a topological completeness
result for GL was obtained independently by Abashidze 1] and Blass [11].

Topological models for GLP have also been explored by Beklemishev,
Bezhanishvili, Icard and Gabelaia [18, 2, 3]. Notably, in [3], it is shown that
GLP is complete with respect to a class of topological spaces known as GLP-
spaces. However, the class of spaces for which the completeness is established
is complicated. Topological completeness of GLP under the natural class
of ordinal spaces turns out to be an even harder question. The existence
of a non-discrete ordinal GLP-space is independent of ZFC, therefore the
completeness of GLP with respect to ordinal GLP-spaces requires certain
set-theoretic assumptions (the existence of large cardinals). It is still open
whether the completeness holds under these assumptions (see [1]). Therefore,



it becomes crucial to search for some simpler complete class of models for
GLP.

In this thesis, we define the concept of a general topological frame, that is,
a topological space equipped with a distinguished set of admissible sets, akin
to the notion of a general Kripke frame. Then, we describe a natural class
of general topological frames on ordinals that we call periodic frames. These
frames are based on well-orderings equipped with some natural topologies
introduced by Icard [18]. While GLP is known to be incomplete with respect
to Icard’s spaces, we show that the bimodal fragment of GLP is sound and
complete with respect to the periodic frames. In the future, we hope to
generalize the result to the whole system GLP.

This thesis is structured as follows:

In the rest of this chapter, we provide an introduction to the provability
logics GL and GLP and their natural semantics. In Chapter 2, we recall
the topological d-semantics for modal logic and introduce the results for
GL in topological interpretation. Moreover, we define the notion of general
topological frames, which is the new topological model in this thesis. In
Chapter 3, we define four kinds of periodic sets on ordinals. Later, O-periodic
sets and 1-periodic sets will be used as the admissible sets in our general
topological frames for GL and GLB. In Chapter 4, we build general topological
frames for GL and GLB, in which hereditarily periodic sets are used as the
admissible sets. Such kind of general topological frames will be called periodic
frames and we prove that GLB is sound in all the periodic frames. In Chapter
5, we prove that GLB is complete with respect to the class of periodic frames.
In Chapter 6, we give a conclusion and discuss the future work.

1.1 GL and GLP

1.1.1 Classical Provability Logic GL

The idea of provability logic originates from a short paper by Godel [16],
where he attempted to formalize the BHK-interpretation and introduced a
modal calculus with informal provability semantics (equivalent to the Lewis
modal system S4).

Formal provability semantics is based on Godel’s proof predicate
Proof (z,y), which denotes “y is the code of a proof of the formula hav-
ing a code z” for a classical first order theory containing Peano Arithmetic.



The provability predicate can then be expressed as Prov(z) = JyProof(z, y).
Then, if we disregard the distinction between a formula and its Godel’s num-
ber, Prov(F') can be viewed as a modal formula. However, Godel showed
in [16] that S4 was not the modal logic of the formal provability predicate
Prov(F).

Based on the previous work by Hilbert and Bernays [17], Léb [20] dis-
covered the final principle and demonstrated that along with other natural
conditions on the provability predicate, i.e. the axioms and rules in the
modal logic K4, it is sufficient for the proof of Godel’s second incompleteness
theorem. Nowadays, a formalization of Lob’s Theorem is known as Lob’s
Axiom:

L:O000¢ — @) — O

The extension of K4 by L is usually denoted GL after Godel and Lob. An
arithmetical interpretation f is a mapping that assigns propositional variables
to arbitrary arithmetical sentences, which commutes with boolean operators
and f((1Y) := Prov(f(¢)). Lob demonstrated that if ¢ is a theorem of GL,
then for any arithmetical interpretation f, f(¢) is a theorem of PA.

Then, the following question arose: whether GL contains all the provable
schemata of the provability predicate Prov? This question was solved by
Solovay [25].

Theorem 1.1.1 (Solovay, [25]). GL - ¢ iff PA = f(p), for all arithmetical
interpretations f.

1.1.2 Polymodal Provability Logic GLP

Some other important proof-theoretic notions lead to different types of
modalities and logics. For instance, in 1980, Boolos considered the concept
of w-provability, which is dual to Gédel’s notion of w-consistency [12].

Recall that an arithmetical theory T is w-inconsistent if there exists an
arithmetical formula P(x) such that T proves that ¢(n) holds for every stan-
dard natural number n, however, T also proves that there is some natural
number n such that ¢(n) fails, that is, T + Jz—¢(x). In this case, T can
still be consistent, because this may not generate a contradiction within T,
and such n is necessarily a non-standard integer in any model of T.

T is w-consistent if it is not w-inconsistent. This concept is stronger than
consistency: on the one hand, any inconsistent theory is also w-inconsistent;
on the other hand, there exist consistent theories which are not w-consistent.



A formula ¢ is called w-provable in a theory T, if the theory T 4+ —¢ is
w-inconsistent, i.e. if there exists a formula ¥ (z) s.t. T + —p - 1(n) for all
standard natural numbers n but T + —¢p  Jz—y(x). On the other hand,
w-provability can also be described as the provability in arithmetic by one
application of the w-rule, i.e. provability in the theory

T =T+ {Vap(z) : T+ ¢(n), for all n}.

That provability by one application of the w-rule implies w-provability is
obvious. For the other direction, suppose that ¢ is w-provable, then T 4+ —¢
is w-inconsistent, i.e., there exists a formula () such that T = —¢ — 1(n)
for all n but T -+ —¢ — Jx—1(z). Hence, T’ contains Ya(—¢ — ¥ (zx)), i.e.
T+ —p = Vay(z). With T - —p — Jz—i(zx), it follows that T - —p —
1, hence ¢ is provable by one application of the w-rule.

In [12], Boolos proved that the logic of w-provability coincides with GL
using a Solovay-style arithmetical completeness proof. Let us write [0] for
normal provability and [1] for w-provability. The next natural question was
to find the bimodal logic of [0] and [1], which was answered by Japaridze
[19]. In fact, Japaridze formulated the polymodal logic GLP with infinitely
many modalities [0], [1],[2], etc, where [n] is interpreted as the provability
by n nested applications of the w-rule.

Definition 1.1.2 (Polymodal provability logic). The language of polymodal
provability logic Lp is defined as follows:

pu=p|lLl]lo—p|[n]p

where p € Prop and n € N. Other connectives <, v, A, — are defined as
usual. The bimodal fragment of £p with only [0] and [1] is denoted as Lp.

An arithmetical interpretation f for Lp is a mapping from modal formulas
to arithmetical formulas such that f commutes with boolean operators and
[n]p is mapped to the formalization of “p is provable by n nested applications
of the w-rule.” Similarly, we can define arithmetical interpretations for Lp.

Based on our earlier observation, we know that

[0l — [1]e

It is also not difficult to prove that the following axiom is valid:
—[0]¢ — [1]=[0]¢.
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If o is not provable then no standard natural number n is the code of a proof
of ¢, i.e. —=Proof (¢, n) is true for each n, hence, by the w-rule, it follows that
Va—Proof (¢, x), which means that —[0]y is w-provable. Therefore, —[0]p —
[1]—[0]¢p is valid.

Moreover, the relationship between [n] and [n + 1] is the same as that
between [0] and [1]. Thus, Japaridze introduced the system GLP as follows

[19]:

Definition 1.1.3 (System GLP). The Polymodal Provability Logic GLP is a
system composed of the following axioms and rules:

Axioms: (i) Axioms of GL for each modality [n];

(ii) [m]e — [n]e, for m < n;

(iil) (myp — [n]{m)e, for m < n.

Rules: Modus Ponens,

[n]-necessitation: ¢ - [n]ep.

Definition 1.1.4 (System GLB). If we restrict GLP to the bimodal fragment
Lp, then we get the following system GLB:

Axioms: (i) Axioms of GL for [0] and [1];

(i) (0] — [1]

(i) Oy — [1K0).

Rules: Modus Ponens,

[0]-necessitation and [1]-necessitation: ¢ - [0]¢ and ¢ - [1]e.

With a non-trivial variation of Solovay-style completeness proof, the fol-
lowing theorem is proved by Japaridze.

Theorem 1.1.5 (Japaridze, [19]). GLP ¢ iff PA  f(p), for all the arith-
metical in terpretations f of GLP.

1.1.3 Kripke Incompleteness

It is well-known that the logic GL is sound and complete with respect to
the class of converse well-founded strict partial ordered Kripke frames [23].
Moreover, GL has the finite model property, hence GL is also complete with
respect to the class of finite, transitive, irreflexive trees.

However, even GLB is Kripke incomplete. More specifically, there is no
non-trivial Kripke frame for GLB [13].



Proposition 1.1.6. Consider a Kripke frame with two relations F =
(W, Ry, Ry), if Ry is non-empty then it is impossible that all the axioms
of GLB are valid in F'.

Proof. Suppose that R; is non-empty, then there are a, b such that aR;b.
First, [0]p — [1]¢ is valid if and only if for any x,y, R,y implies xRyy.
Hence we have aRgb.
Second, (0)p — [1]{0)¢ is valid if and only if for any xz,y, z, zRoy and
xRz implies zRyy. Hence, with aR1b and aRgyb, it is followed that bR;b.
However, if GLB is valid in F, R; should be a converse well-founded re-
lation, which contradicts with bR;b. Hence, if R; is non-empty then F can’t
be a Kripke frame of GLB. [ |

Corollary 1.1.7. GLB is Kripke incomplete. Moreover, GLP is also Kripke
incomplete.



Chapter 2

Topological Models for GL and
GLP

2.1 Topological d-semantics

Since GLP is Kripke incomplete, we need to find some other semantical tool
for its investigation, such as topological semantics.

Usually, when interpreting modal logic in topological spaces, the diamond
operator < is translated as topological closure. However, this translation only
works when the logic contains the reflexivity axiom T, because every set is a
subset of its closure. For logics such as GL and GLP, instead of the closure
operator, & can be translated as the topological derivative operator.

Definition 2.1.1 (Derived Set). Let (X, 7) be a topological space, A a subset
of X. Topological derivative d,(A) of A is the set of all the limit points of
A:

red,(A) < YUer(xeU=3Jy+zyelnA).

i-(A) := A\d,(A) is the set of isolated points of A and ¢, (A) := AU d,(A)

is the closure of A.

Definition 2.1.2 (Topological d-semantics). A topological model M =
(X, 7,v) is a tuple where (X, 7) is a topological space and v : Prop — P(X) is
a valuation. Then, the satisfaction relation between a point w of a topological
model M and a formula ¢ is defined inductively as follows:



Mow L

M, w = p — wev(p)

M, w E —p — MuwtHp

MuwEpvy < MwkEpo MwkE1

M, wE Op = VYer(reU=3IyeU\{z}: M,yEp)
M, w = e « JUer(xelU=YyeU\{z}: M,y E )

In other terms, [O¢]| = d-[[¢]. A formula ¢ is valid in a model M if it
is true in all the points w € M and ¢ is valid in a topological space (X, 7) if
it is valid in all the model M = (X, 7,v) based on (X, 7).

Topological d-semantics for modal logic was independently suggested by
Simmons [241] and Esakia [15]. They proved that under this interpretation,
GL corresponds to a natural class of topological spaces.

Definition 2.1.3. A topological space (X, 7) is scattered if every nonempty
subspace A € X has an isolated point, i.e. i,(A) # &.

Theorem 2.1.4 (Esakia,[15]). GL + ¢ if and only if ¢ is valid in all the
scattered spaces.

2.2 Ordinal Topological Spaces

Natural examples of scattered topological spaces come from orderings, es-
pecially ordinals. First, we introduce an equivalent characterization of scat-
tered spaces in terms of the following transfinite Cantor-Bendizson sequence
of subsets of X:

o &(X) = X;
o d7"H(X) = d:(d3(X));
o d¥(X) =[Ns-a d2(X) if a is a limit ordinal.

For a scattered space, d**'(X) < d*(X) always holds, and it is a strict
inclusion unless d?(X) = .

Theorem 2.2.1 (Cantor). (X, 7) is a scattered space iff d*(X) = & for
some ordinal c.
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Definition 2.2.2 (Cantor-Bendixson rank). For a scattered space X, the
Cantor-Bendizson rank of X is the least a such that d®(X) = &, denoted
by p-(X). The Cantor-Bendizson rank function p, : X — On is defined by

p-(x) := min{a : z ¢ d®TH(X)}.
Hence, p; is a map from X onto p,(X) = {a: a < p,(X)}.

Definition 2.2.3 (Order topology). For an ordinal «, the order topology T
on « is the topology generated by all intervals (fi, 52) such that 5, By €
a v {+owo} and £ < fs.

Proposition 2.2.4. On any ordinal «, the order topology 7. is scattered.

Proof. For any subset X < «, there exists a least element x in X. Hence,
it is easy to see that = ¢ d,(X), i.e. z is an isolated point in X. So, by
Definition 2.1.3, the order topology is scattered. [

Hence, it is very natural to consider ordinal spaces as models for the
provability logic GL.

Every ordinal o has a unique representation, called the Cantor Normal
Form, as a finite sum of ordinal powers of w, i.e. any non-zero ordinal can
be written as

a=w kWP K,

where n > 0, = 8, > -+ > [, and ko, --- , k, are non-zero natural num-
bers. The ordinal 3, is the degree and [, is the rank of a.

Definition 2.2.5. Let ¢ : 2 — ) be defined by
£(0) = 0;£(a) = B if a = v+ w”, for some 7, 3.

That is to say, when «a # 0, ¢(«) is the rank of a defined on the Cantor
Normal Form. Hence, ¢ is called the rank function.

Proposition 2.2.6 ([3]). Let 2 be an ordinal equipped with its order topol-
ogy. Then, the Cantor-Bendixson rank function p,_ coincides with the rank
function /.

Definition 2.2.7 (d-map). A map f : X — Y between topological spaces is
called a d-map if f is continuous, open and pointwise discrete, i.e. f~1(y) is
a discrete subspace of X for each y € Y.

11



d-maps are well-known to satisfy the following proposition (see [9] or [3]).

Proposition 2.2.8. Suppose that f : X — Y is a d-map between topological
spaces, then we have the following properties:

o [7Hdy(A)) = dx(f7(A)), for any A Y;
o 71 (P(Y),dy) — (P(X),dx) is a homomorphism of modal algebras;
e If f is onto, then Log(X) < Log(Y).

Theorem 2.1.4 was improved independently by Abashidze [!] and Blass
[11] as follows. The following proof is from [10].

Theorem 2.2.9 (Abashidze, Blass). Consider an ordinal Q0 = w* equipped
with the order topology. Then Log(Q2) = GL.

Proof. First, any Kripke frame F = (W, R) of GL can also be viewed as a
topological space, i.e. we can also consider F as the set W equipped with
the upset topology w.r.t. the relation R.

Since GL is complete with respect to finite transitive irreflexive trees, we
aim to prove that if T is a finite transitive irreflexive tree of depth n, then
there exists an onto d-map f : w" + 1 — T. Then, by Proposition 2.2.8, it
implies that Log(f2) = GL when Q > w“.

We prove it by induction on the depth n:

e If n =0, the tree T contains only one irreflexive point a, so the result
is trivial.

e Suppose n > 0 and the result holds for all the k& < n. Denote the root
as a and all the immediate successors of a as a,as,...,qa;. Let T; be
the subtree of T generated by a; for i € [1,1]. Since the depth of T'
is n, the depth n; of each subtree T; will be smaller than n. WLOG,
we assume that n; > ny > ... > n;. By the Induction Hypothesis, for
each i € [1,1], there exists an onto d-map f; : w™ + 1 — T;.

When we view the tree T' as a topological space, it can be thought of
as the disjoint union of {a} and all the subtrees 71, ..., T;. Moreover, if
U < T is an open set, then either U = T or U = Ui:l U; where U; is an
open set of the subtree T} for each 2. On the other hand, we decompose
w™ + 1 into a similar structure: we write w™ + 1 as the disjoint union

12



L—ﬂ;ozl X, u {w"}, where X is isomorphic to the ordinal w™ + 1 if j =i
mod [ and n; > 0, and X; is a singleton if n; = 0. Since all the n; are
smaller than n and we also know that at least one of them is equal to
n — 1, so the structure of LTJ;; X, is the same as w™.

Now we construct the d-map from w” + 1 to T First, set f(w") = a.
Second, for each i € w, suppose that ¢+ = [ - k + j where j < [. Then,
define f|x, : X; — T; as the copy of the d-map f; : w™ + 1 — Tj.
Combining them, we have the construction of f :w"” +1 — T. It is not
hard to check that f is an onto d-map. (For more details, the readers
can check [10, Lemma 3.4])

2.3 General Topological Frames

In this section, we introduce the concept of a general topological frame, which
is inspired by the notion of a general Kripke frame. First, recall the following
definition.

Definition 2.3.1. A polytopological space is a tuple (X, {r; : i € I}) where
7; is a topology in X for each i € I. A polytopological space is a tuple
(X, {r; i€ I}, vy where (X,{r; : i € I}) forms a polytopological space and
v : Prop —» P(X) is a valuation function. In polytopological models, the
satisfaction relation for polymodal formulas is defined in the same way as
the topological d-semantics in Definition 2.1.2.

Proposition 2.3.2 ([2]). If a polytopological space (X, {7, : n € w}) is a
model of GLP, it should satisfy the following conditions:

(i) (X, ,) is a scattered topological space for each n € w;
(11) Tn S Tntls
(iii) For each U < X, d,, (U) is 7,4+1-0pen.

Proof. By Definition 1.1.3, we know the following properties for a model of
GLP:

e We have axioms of GL for each modality [n], hence, (X, 7,,) should form
a scattered topological space for each n € w.

13



e We have the axioms of the form [m]p — [n]p for m < n. In topological
d-semantics, it is easy to see that [n]e — [n+1]y means that 7,  7,,41.

e We have the axioms of the form (m)p — [n|{m)yp for m < n. In
topological d-semantics, (nyp — [n + 1]{n)p means that the truth set
of (nyp should be 7,1-open. Therefore, for each U < X, d,, (U) is

Tn+1-Open.

Polytopological spaces satisfying conditions (i) — (¢7¢) in Proposition 2.3.2
are called GLP-spaces [3].

In [3], it is proved that GLP is complete w.r.t. the class of all GLP-spaces.
However, if we consider ordinal GLP-space, the situation becomes much more
complicated, the existence of a non-discrete ordinal GLP-space is independent
of ZFC. Roughly speaking, since 7,1 will be a refined topology w.r.t. 7,
such that d, (A) is 7,4 1-open, in order to make sure that 7,1 is non-discrete,
we will need the existence of some large cardinals. The question if GLP is
complete w.r.t. ordinal GLP-spaces under some natural set-theoretic assump-
tions is still open.

Now, we define the notion of general topological frame, which is inspired
by the notion of general Kripke frame. First, we recall the definition of a
general Kripke frame.

Definition 2.3.3 (General Kripke frame). A general Kripke frame is a tuple
(F\{R; : i € I}, A) such that (F,{R; : i € I}) forms a Kripke frame and
A < P(F), which is closed under finite union, finite intersection, complement
and R;! for any i € I. For a model (F,{R; : i € I}, A,v) based on the
general Kripke frame (F {R; : i € I}, A), the valuation function v should be
a mapping from Prop to A.

For a set W, a function f : P(W) — P(W) and A < P(W), if A is closed
under finite union, finite intersection, complement and f, (A, f) is called a
modal boolean algebra.

So, that is to say, a general Kripke frame is simply a Kripke frame with
a modal boolean algebra over the frame. The subset of F' containing in A is
called admissible set. Only the elements in A are possible to be defined by a
formula in a class of models based on (F, R, A).

Inspired by the notion of general Kripke frame, we define general topo-
logical frames. That is to say, we aim to add a modal boolean algebra A to
a topological (or polytopological) space.

14



Definition 2.3.4 (General topological frame). A general topological frame
is a tuple (X,{r; : ¢ € I}, A) where (X,{r; : i € I}) is a polytopological
space and A < P(X), which is closed under finite union, finite intersection,
complement and d,, for any ¢ € I. A general topological model is a tuple
(X, {r; i€ I}, Av)y where (X, {r; : i € I}, A) forms a general topological
frame and v : Prop — A.

For a general topological frame (X, {r; : 1 € I}, A) and a subset Y < X
we define a corresponding subframe: {Y, {r;|y :i € I}, Aly), where 7;|y is the
subspace topology and Aly is the restriction of the elements in A to Y. In
convenient, we will continue to denote it as (Y, {r; : i € I}, A) where there is
no ambiguity.

Definition 2.3.5. Suppose that (X, 7., Ax) and (Y, 1y, Ay ) are two general
topological frames. A map f : X — Y between general topological frames is
called a d-map if the following conditions hold:

e For any Ve Ay, f1(V) e Ax;
e f is continuous, open and pointwise discrete.

Proposition 2.3.6. Suppose that f : X — Y is a d-map between general
topological frames, then we have the following properties:

o [~Hdy(U)) = dx(f1(U)), for any U € Y;
o f71:(Ay,dy) — (Ax,dx) is a homomorphism of modal algebras;
e If f is onto, then Log(X) < Log(Y).

In the proof of Proposition 2.3.2, we show that, in the frames of GLP,
the axiom (n)p — [n + 1|{(n)p corresponds to the frame condition that
d, (U) is T,41-open for each U < X. That is because the truth set of (n)p
should be 7,,1-open. However, if we consider a general topological frame,
the truth set of a formula can only be an element in A. Hence, we have
the following proposition, which is exactly our motivation to introduce the
notion of general topological frame.

Proposition 2.3.7. If a general topological frame (X,{7, : n € w}, A)
satisfies the following conditions, then all the axioms of GLP are valid in

(X, {1 :new}, A):

15



(i) (X, 1) is a scattered topological space for each n € w;
(11) ™ & Tn+1;
(iii) For each U € A, d,, (U) is T,4+1-open.

The difference between Proposition 2.3.2 and 2.3.7 will bring about a
change in our study of GLP on ordinals. Now, the third condition is loosened,
therefore, it is easier to find a general topological frame for GLP such that
all the topologies 7,, are non-discrete.

In next chapter, we will define a suitable modal boolean algebra and begin
to build general topological frames for GLB.
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Chapter 3

Periodic Sets of Ordinals

In this chapter, we define the notions of periodic set, ultimately periodic
set and hereditarily periodic set in ordinal spaces. Some of the notations
and propositions about periodic sets is from [I1], in which periodicity of
transfinite words was considered.

In next chapter, hereditarily periodic sets will be used as the admissible
sets in our general topological frames. In the proof of Theorem 2.2.9, we build
onto d-maps from ordinals to finite transitive irreflexive trees. Moreover, in
next chapter, we will prove that the preimages of any subset in these d-maps
are hereditarily periodic sets. In fact, this is the reason why we are interested
in periodic sets and aim to build modal algebras by hereditarily periodic sets.

3.1 Periodic Sets

First, we define periodic sets on ordinals. Suppose that A is a subset of an
ordinal €.

It is well-known that Euclidean division for ordinals is well-defined. That
is, let «, 5 be two ordinals, then there exists a unique pair of ordinals (7, i)
such that p < fand a = -7+ p.

With this, given an ordinal 7, we can define an equivalence relation ~
on all ordinals.

Definition 3.1.1. For an ordinal 7, we define an equivalence relation ~
on a: «ay ~j; «g if there exist three ordinals 71,75 and u < 7 such that
ap =717+ pand ap =7 - o + L.
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Definition 3.1.2 (Periodic Set). Let Q2be an ordinal, a subset A < Q is
periodic in Q if there exists 7 such that 0 < 7 < w* and for any ordinals
V1,72 < §2, if 94 ~; 72 and v; € A then v, € A. Such a 7 is called a period
for the periodic set A in €.

So a subset A of Q2 is periodic, if it is closed under the equivalence relation
~, in Q. Notice that we require that 0 < 7 < w/®?, 50 £(Q2) should be greater
than 0, i.e. if A is a periodic set in €2, {2 should be a limit ordinal.

Proposition 3.1.3. Suppose that A is a periodic set in {2 and 7 is a period
for A, then for any natural number n > 0, 7 - n is also a period for A.
Moreover, for any ordinal 3, if 7 - < w'Y then 7 - § is also a period for A.

Proof. First, if 7 < w* then 7-n < w* is also true. Second, it is easy to

see that for all ordinals i, j < €, if ¢ ~,.,, j holds then 7 ~, 5 also holds. So
if A is closed under the equivalence relation ~, it is also closed under ~.,,.
Hence, 7 - n is also a period for periodic set A in €.

For 7 - 3, it is also easy to check that A is closed under ~,. 3. Hence, if
we have known that 7 - 8 < w*®), then 7 - 3 is also a period for Ain Q. W

On the other hand, a subset A of ordinal €2 can also be viewed as a string
of length €. That is, it is a mapping from Q to 2 = {0, 1} such that for any
ordinal i < Q, A(i) = 1 if and only if i € A. For short, we also denote A(7)
as A;.

In this way, we have the following alternative definition of periodic set.

Definition 3.1.4. A string A of length 2 is periodic if and only if there exists
0 < 7 < w"® such that for all ordinals 4,5 < €, if i ~, j then 4; = A;.

It is easy to see that this definition is equivalent to Definition 3.1.2.

If A is a subset of 2; and B is a subset of {25, then we can define the
concatenation AB of two strings A and B, which is a mapping from the
ordinal €2; + 5 to 2 defined by

Bj ifile+jandj<QQ.

(AB); = {
Given a string A of length 2, we denote by A7 the string concatenated
with itself by 7 times, i.e. A" is a string of length ) - 7 defined by
T — Al

Qy+i
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where v < 7 and 7 < €.
Then we have the following proposition, which can be viewed as an equiv-
alence definition of periodic set.

Proposition 3.1.5. Give a subset A of €2, which can also be viewed as a
string of length 2. Then the following conditions are equivalent:

i) A is a periodic set in €.

ii) there exists a string B of length 7 with 0 < 7 < w*®) such that A = B”
for an infinite ordinal 7.

Proof. 1f i) holds, then there exists a period 7 for A and a limit ordinal 7 such
that €2 = 7-7. Let B be the string of length 7 such that B; = A; for ordinal
i < m. By the definition of periodic set, we know that A,...; = A; = B;.
Hence, A is exactly B7.

Conversely, if ii) holds, then the length 7 for B is a period for A in €,
because A;.4; = B; for any ordinal v < 7 and only they are equivalent
modulo 7. [

We denote the set of all periodic sets in €2 as P(2).

3.2 Ultimately Periodic Sets

Next, we define ultimately periodic sets on ordinals.

Definition 3.2.1 (Ultimately Periodic Set). A is ultimately periodic in € if
there exist a bound x < 2 and a periodic set A’ in €2 such that A n (k,Q) =
A" n (k,Q). In other words, A is equal to a periodic set except for an initial
segment, the period 7 of A’ is also called the period of the ultimately periodic
set A.

Proposition 3.2.2. If A is ultimately periodic in €2, then there exists a
period 7 of the form w? - n and the bound in Definition 3.2.1 can be chosen
as an ordinal x such that ¢(k) = .

Proof. Suppose that 7 is a period of A with bound &, so there exists a string
A" of length k, a string B of length 7w and an ordinal 7 such that A = A'(B7)
and ) = k + 7 - 7. We divide it to two cases:
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o If (2(Q) > 0, ie. £(£(R2)) > 0, then ¢() is a limit ordinal. We also
know that 7 < WV,

In this case, 7w < W/ is also true and there exists 7 such that

K+ (m-w) -7 = Q. So, m-w can also be a period for A, because
A = A'((B®)). Then, the period 7 -w will be of the form w? for some
ordinal 5. And for the bound, if /(k) < 3, we can use k + (7 -w) as the
bound instead of «, then it is obvious £(k + (7 - w)) = f.

o If 2(Q2) = 0, then £() is a successor ordinal, assume that £(Q) = S+1.
Consider two subcases as follows:

— Ifm < w?, then 7w < W’ < W', In this case, similarly, 7 - w
can also be a period of A and A can be represented as A'((B*)™)
for some ordinal 7. Hence, there exists a period of the form w?
and k + (7 - w) can be used as the bound instead of x, hence it
satisfies all the conditions.

— If 7 > WP, since we also know that 7 < w’*!, we can assume that
7 = w” - n + 7 for a natural number n and an ordinal v < w”.
In this case, first, we can assume that k is large enough such
that 2 = k + 7 - w. Second, the string B can be viewed as the
concatenation By B, in which the length of By is w” - n and the
length of By is 7. So A = A'((B1B2)“), however, we can also
represent A as (A’By)((ByB;)%), which means that we use k+w?-n
as the bound and w” - n as the period, hence it satisfies all the
conditions.

In all, we have proved that if A is ultimately periodic in €2, then there exists
a period 7 of the form w” - n with a bound & such that £(k) > /3. |

Corollary 3.2.3. If A is ultimately periodic in  and ¢*(2) > 0, then there
exists a prime ordinal w” as the period and the bound can be chosen as an
ordinal x such that /(k) = .

Proof. In the proof of Proposition 3.2.2, we have seen that when ¢*(Q2) > 0,
the period can be of the form w®, which is exactly the statement of this
corollary. [

We denote the set of all ultimately periodic sets in € as U(€2). And we
prove that U(Q2) forms a boolean algebra, i.e. U(Q) is closed under finite
union, finite intersection, complement.
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Proposition 3.2.4. For any ordinal 2, U(Q2) is closed under finite union,
finite intersection, complement and the derived set operator.

Proof. We prove it case by case:

e Finite union: If Ay, A € U(2), then there exist k1, k2 as their bounds
and 7y, Ty as their periods in €2. By Proposition 3.2.2, we can assume
that m = W - ny, m = W - ny. Now we aim to find a common period

for A; and As:

— If 1 = f32, then by Proposition 3.1.3, w”' -lem(ny, ny) is a common
period.

— If By > fBa, then w” is also a period for A,, which implies that
w? - ny is a common period.

— If Bi < P, similarly, w? - ny is a common period.

Denote the common period as 7, and let kK be the maximum of x; and
k9. We will now prove that A; U A, is ultimately periodic with respect
to A, with a bound x and a period 7. Suppose  ~, y and z,y > k. If
x € Ay U Ay, then x € Ay or x € Ay. Without loss of generality, assume
x € Ay. Since 7 is a period for Ay, it follows that y € Ay, and therefore
y € Ay u As. Hence, 7 is a period for A; u Ay with bound x.

e Finite intersection: The argument is similar to that of finite union.
e Complement: This is trivial.

Remark 3.2.5. We can see that finite sets and cofinite sets are ultimately
periodic in €. Further, since U(Q2) is closed under finite union and finite
intersection, if A € U(Q2) and B <  is finite then A\B and A u B are both
ultimately periodic in €.

3.3 Hereditarily Periodic Sets

In this section, we define hereditarily periodic set on ordinals, which will be
used as the admissible sets in our general topological frames. For g < 2, let
Alg = An . Als can also be viewed as a string of length 3, which is an
initial segment of A.
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Definition 3.3.1 (Hereditarily periodic set, or 0-periodic set). A is heredi-
tarily periodic in Q, if for any limit ordinal g < 2, A|s is ultimately periodic
in 5.

The hereditary periodic set will also be called 0-periodic set. We denote
the set of all O-periodic sets in © as Hy(2).

Proposition 3.3.2. Hy(Q2) forms a Boolean algebra, that is, Ho(2) is closed
under finite union, finite intersection and complement.

Proof. By Definition 3.3.1, A € Ho(Q?) iff A|g € U(A) for any limit ordinal
B < €. Since all the U(p) are closed under these operators, it is evident that
Ho(€2) is also closed under these operators. |

Remark 3.3.3. It is also easy to check that finite sets and cofinite sets are
hereditarily periodic periodic in €2. Hence, similar to Remark 3.2.5, if A €
U(Q2) and B < Q is finite then A\B and A u B are both hereditarily periodic
in €.

Moreover, in the next chapter, we will prove that (€2, 79, Ho(€2)) forms a
general topological frame for GL, which will be called 0-periodic frame for
GL. And we will show the completeness of GL with respect to the class of all
the 0-periodic frames.

However, in order to achieve not only soundness but also completeness for
GLB, we need to extend Hy(€2) to the set of all the 1-periodic sets, which will
be denoted as Hi(€2). In the next chapter, we will define 1-periodic frames
for GLB.

Definition 3.3.4 (1-periodic set). For an ordinal €2, consider the rank func-
tion £ : 2 — Q. We define H;(2) as the Boolean algebra generated by Hy(€2)
and all the sets of the form £~(A) for A € Hy(2). In other words, Hy () is

the least set satisfying the following conditions:
e Hy(2) < H{(2);
e For any A € Hy(Q), £71(A) € Hy(Q);
e Forany A,Be H (Q), Ae Hi (), AuB e H(Q) and An Be H(Q).
If AeHy(f), then we say that A is 1-periodic in €.
Proposition 3.3.5. Any 1-periodic set A € H;(£2) can be represented as
UY,(67(A;) n B;) where A;, By € Ho() for i € [1, k).
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Proof. Since H;(£2) is the boolean algebra generated by Hg(€2) and all the
sets of the form ¢7!(A) for A € Hy(f2), we assume that A can be represented
as I, ﬂé.:l A;j where each A;; is of the form A’} A’ ¢=1(A’) or £~1(A’) for
some A’ € Hy(Q).

However, Ho(2) is closed under complement and ¢—1(A) = (~'(A),
hence, each A;; must be of the form A" or £=(A4’) for some A’ € Hy(2). More-
over, we know that Ho () is closed under intersection and £~ (A;)nl~1(Ay) =
(71(A; n Ay), therefore, the intersection ﬂ;zl A;; can be simplified as
(71(A;) N B; for some A;.B; € Ho(Q). [ |

We claim following lemma, which will be useful for the completeness proof
in chapter 5.

Lemma 3.3.6. Consider two ordinals \ and X', we have the following state-
ments: (1) If Ae Hi (A + 1), then {\-p+ Blu< N, e Ay e Hi(A- N + 1);
(2) If Ae Hi(XN + 1), then {\- ull(n) >0, e A} € Hi(A- X + 1).

Proof. (1) Denote {\-pu+ Slu < XN,5 € A} as f(A). It is easy to see that
f(AuB) = f(A)u f(B) and f(An B) = f(A) n f(B), hence we only
need to prove that f(A) e Hi(A- X +1) and f(¢~1(A)) e Hi(A- N + 1)
for any A € Hy(A+ 1), because H;(A+1) and Hy(A- X + 1) form boolean
algebras.

Fix A € Hy(A+ 1), first, we aim to show that {\-pu+ 5lu < N, B e A} e
Hi(A- X + 1). In fact, it is easy to see that {A-u+ flu < N,5€ A} e
Ho(A- A +1). The reason is that if we view A and f(A) as strings, then
f(A) = AY so it is easy to verify that A is hereditarily periodic.

Then, we aim to show that f((71(A)) = {\-u+Blu < N,8 < Xand €
(71(A)} e Hi(A- X +1). Consider 0, f(£71(0)) contains all the ordinals
v € AN + 1 such that £(y) = 0 or « is a multiple of A. Hence, it is
easy to see that f(£71(0)) € Hi(A- N + 1).

Now, we can assume that 0 ¢ A, otherwise, we divide the heredi-
tarily periodic set A as {0} u (A\{0}), then f(¢1(A)) = f(£71(0) U
(7HA\{0})) = f(7H0)) U fF(LTH(A\{0})) and we only need to prove
that (£ (A\{0})) € Hi(A- N +1).

Since 0 ¢ A, any ordinal in f(¢~*(A)) must be in the form of X\ - pu + 3
with 8 # 0 and 8 < A, then ¢(A -+ B) = €(8) € A. On the other
hand, it is easy to see that any ordinal v < A - X + 1 with /() € A
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must be in the form of -+ 8 for some p < X and € ¢71(A), B < .
So f(67HA)) e Hi(A- N +1).

(2) First, {\ - pull(pn) > 0,pe A} = {X-plpe An (N + 1)\{0})} and
A 7Y (N + 1\{0}) € Hi (X + 1). Hence, more generally, we can try
to show that if A € Hy(X + 1) then {\- plp e A} € Hi(A- XN + 1) and
this is obvious.
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Chapter 4

General Topological Frames

In this chapter, we begin to build general topological frames for GL and GLB,
which will be called periodic frames.

Recall the frame condition for GLP (Proposition 2.3.7): if (Q, 79, 71,.4)
forms a general topological frame for GLB, we have the following conditions
for m:

® Ty & Ti;

e For any X € A, dy(X) € 7.

Hence, the least choice of 71 is the topology generated by 79 and
{do(X)|X € A}. In this chapter, Hy(£2) and H;(€2) will be used as the set of
admissible sets in the general topological frame for GL and GLB respectively,
which will be called periodic frames. We find that the topology 7 will coin-
cide with the topology 65 introduced by Icard [15]. Last, we will show the
soundness of GL and GLB in the corresponding periodic frames. In the next
chapter, we will prove that GLB is also complete w.r.t. the class of periodic
frames.

4.1 General Topological Frames for GL

In this section, we aim to prove that (€2, 79, Ho(£2)) forms a general topological
frame, where 7y is the order topology and Hy(€2) is the set of all 0-periodic
sets in 2.

Proposition 4.1.1. For any ordinal 2, U(2) is closed under the derived set
operator w.r.t. 7.
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Proof. Suppose m = w? - n is a period for A, and & is a bound such that
((k) = (. If A is bounded, then there is no element in a period, and thus
do(A) is also bounded, making it obviously ultimately periodic.

If A is unbounded, then any period is non-empty. Hence, for any ordinal
v > k with £(y) > /3, we have v € dy(A). We consider the following subcases:

e If /() > B+ 1, we can prove that w?*! is a period for do(A) with a
bound k+w*1. For x,y > k+w’*!, if & ~_s+1 y, we have the following
subcases:

— If {(z) = f + 1, then y must also satisfy ¢(y) = 5 + 1, so both z
and y belong to dy(A).

— If {(x) < 3, then there exist ji, jt, such that x € (k+7- py, K+ 7
(up+1)]andy € (k+7-py, K+ (1, +1)]. In this case, it is easy
to see that = € do(A) if and only if y € dy(A), as the topological
structure of these two subsets is the same.

o If /() = § + 1, then there exists a bound &’ such that Q = k' + 7 - w.
We can prove that 7 is a period for dy(A) with a bound x’. This is
because if v ~; y and z,y > &', then there exist p,,p, such that
e (K +m pig, K +7- (e +1)] and y € (K" + 7 - py, &' + 7 - (1 + 1)].
It is easy to see that x € dy(A) if and only if y € dy(A).

Proposition 4.1.2. For any ordinal 2, Hy(2) is closed under finite union,
finite intersection, complement and the derived set operator. Moreover,
{(Q, 79, Ho(2)) forms a general topological frame for GL.

Proof. By Definition 3.3.1, A € Hy(Q?) iff Az € U(B) for any limit ordinal
B < €. Since all the U(3) are closed under these operators, it is evident
that Ho(Q) is also closed under these operators. So, by Definition 2.3.4,
(Q, 19, Ho(Q2)) forms a general topological frame.

In Proposition 2.2.4, we have shown that ({2, 79) is a scattered space, i.e.
GL is valid in (€, 7). Moreover, it is obvious that GL is also valid in the
general topological frame (Q, 79, Ho(£2)), because any valuation based on the
general topological frame (€, 75, Ho(Q2)) is also a suitable valuation based on

<Q, 7'0>. .
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Therefore, (€2, 79,Ho(2)) forms a general topological frame for GL , we
call it periodic frame for GL (or O-periodic frame). Algebraically, this means
that (Ho(2), do) forms a modal boolean algebra for GL. We call this algebra
as periodic ordinal algebra.

Proposition 4.1.3. For any finite transitive irreflexive tree 7' = (W, R) of
depth n, there exists an onto d-map f : (W™ + 1,79, Ho(w"™ + 1)) — (W, R).

Proof. In Theorem 2.2.9, we have constructed the onto d-map from (W™ +
1,70y to (W, R). In order to show that it is also a d-map between general
topological frames, by Definition 2.3.5, we only need to prove that for any
AW, f71(A) e Ho(w™ + 1).

When we view (W, R) as a general topological frame, it is (W, o, P(W))
where o is the topology generated by all the R-upsets. Hence, we only need
to show that for any x € W, f~1({x}) € Ho(w™ + 1). Prove it by induction
on the depth n:

e If n > 0, the tree T contains only one irreflexive point a, so the result
is trivial.

e Suppose that for any & < n and a finite transitive irreflexive tree 7" =
(W', R’y of depth k, the result holds for the onto d-map f’ : w¥+1 — T".
That is, for any z € W', f, ' ({z}) € Ho(w* + 1).

Now, we prove it for the case n. In the proof of Theorem 2.2.9, T' =
||, T u{a} and w™ + 1 is written as the disjoint union Wi, X;u{w"}
and the d-map from w"+1 to T is constructed as: (i) f(w™) = a; (ii) For
each 7 € w, suppose that i = j mod k for j <. Then f|x, : X; — T}
is specified as the map f; : w™ +1 — Tj.

In order to prove f~!({z}) € Ho(w" + 1), we divide it into two subcases:

— If x = a, then it is obvious that f~'({z}) = {w"}. Therefore, it
forms a hereditarily periodic set in w™ + 1.

— If x € T} for j € [1,1] and the depth of T} is n;. By the induction
hypothesis, we know that f;l({x}) € Ho(w™ +1). In the construc-
tion of f, we know that f|x, : X; — T is specified as the d-map
fi : w" 4+ 1 — Tj. Therefore, for each i € w, f~'(z) N X, is a
hereditarily periodic set in w™ + 1. In all, f~'(z) is the union of
them, which is also a hereditarily periodic set in w™ + 1.
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In all, we prove that, the onto d-map we constructed in the proof of Theorem
2.2.9 is also an onto d-map from (W™ + 1, 79, Ho(w™ + 1)) to (W, R). |

By Proposition 2.3.6, we have the following corollary.

Corollary 4.1.4. For any finite Kripke model (W, R) of GL, there exists an
ordinal © < w* and an embedding from (P(W),d,) to {(Ho(2),do). In other
words, any finite algebra of GL, which is generated from a finite Kripke model
of GL, can be embedded in a periodic ordinal algebra.

4.2 General Topological Frames for GLB

In this section, we aim to find a suitable 7, and show that (€, 79, 71, H1(Q))
forms a general topological frame for GLB, which will be called periodic frame
for GLB.

As we have discussed, if (2,79, 7,.A) is a general polytopological space
of GLB, then the least choice of 77 is the topology generated by 7, and
{do(X)|X € A}. Hence, let 71 be defined as the topology generated by
T0 and {do(X)|X € Hl(Q)}

Fortunately, we find that 7; coincides with the topology 65 introduced by
Icard [18]. In [18], Icard introduced a topological model for the variable-free
fragment of GLP (Icard’s space). This model is the ordinal €y equipped with
a sequence of topologies 6y, 01, ... where 6, is the topology whose open sets
are downward closed subsets of ¢, and the topology @, is generated by 6, and
all sets Uy for 8 < €y, with

Ug :=={y<e:("(v) > B}

He showed that the variable-free fragment of GLP is sound and complete
w.r.t. Icard’s space under the natural interpretation of modalities as the
derived set operations of the corresponding topologies. In fact, Icard’s space
can be considered as a general topological frame for GLP where the algebra
of admissible sets consists precisely of those sets definable by variable-free
GLP-formulas. However, it is well-known that GLP is incomplete w.r.t. this
general topological frame.

Now, we show that 7 coincides with topology 6. Later, by extending
the family of admissible sets, we will define the general topological frames
for which GLB will be sound and complete.

28



Proposition 4.2.1. In an ordinal space 2, topology 7 generated by the
order topology 9 with {do(X)|X € H1(Q2)} is equal to topology 02 generated
by 79 with all the sets of the form Uz = {v: {(vy) > S}.

Proof. For the direction 6y < 71, we show that for any [, there exists X €
Hy () such that do(X) = Upg. In fact, we can find a X € Hy(2) satistying
do(X) = Us: let X = {0} u {a|f(a) = B}, then we prove the following
statements:

e First, we prove that X € Hy(Q2). If so, we also have X € H{(92).
For any limit ordinal v < €2, we should prove that X|, € U(y):

— If {(y) > B, then X|, exactly contains all the ordinals o < v such
that 0 = & mod w”. Hence, X |, is a periodic set with period wh
satisfying w® < w),

— If £(y) < S, then we can find a bound & such that for any ordinal
a € (k,7), {(a) < B. Then, X n (k,7) = &. Therefore, X|, €
U(v).

e Second, we prove that do(X) = Us. For an ordinal «, we consider two
cases:

— {(a) < B, then there exist p such that o € (w?-p, w?-(u+1)]. Then
(WP p,wP - (u+1)] is a To-open set and (WP -y, w? - (u+1)] N X =
{w? - (1 +1)}. Hence, do((w® - pp,w? - (u+1)]nX) =& So ais
not a limit point for X.

— {(«) > 3, then X|, is unbounded, because for any = < a, we have
r + w® < a. Hence, « is a limit point of the set X|,.

Hence, do(X) = Up.

So, we prove that X € Hy(2) and dy(X) = Us. Hence, 02 < 7.

For the other direction 7, € 3, we aim to show that for any X € Hq(Q2),
do(X) € 5. By Proposition 3.3.5, we can assume that X = [ Ji_,(¢~1(A;) n
B;) where A;, B; € Ho(Q) for i € [1,k], so do(X) = UL, do(07"(A;) N By).
Hence, we only need to show that for any v € do(¢~(A;) N B;), there exists
an open set U € 7{ such that v € U < do(¢~(A;) n B;). We divide it to two
cases:
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e Suppose that £2(y) = 0, in [18], it is prove that such a 7 is an isolated
point in #y. Hence {7} is an open set in 0 and v € {y} < do(X).

e Suppose that ¢?(y) > 0, then £(v) is a limit ordinal. Since B; € Hy(2),
so B;|y is ultimately periodic in v with a period 7 < w’* and a bound
k. By Corollary 3.2.3, we can assume that 7 = w” with 8 < £(vy) and
l(k) = B.
Since v € do({7(A;) N By), £71(A;) n B; is unbounded in . Consider
an ordinal a € £71(A;) n B; such that a > k,a € B;, {(a) € A; and
l(a) < U(7), then it is easy to see that {0 : § > k,(()) = l(«),0 = «
mod 7} < (7'(A;) n B;. Finally, this means that Uya) N (k,Q) <
do(¢71(A;) N B;), which is an open set in 7.

Hence, we prove that for any X € H;(€2) and any 7 € do(X), there exists
an fy-open neighbourhood of 4 which contains in do(X). Therefore, dy(X)
is #y-open, which shows that 7 < 6.

In all, we prove that 7 = 6,. [ |

Since 7 = 6, we consider 7o U {Up : < 2} as a basis for 7.
The following proposition from [/, Lemma 13.1] will be very useful later.

Proposition 4.2.2. For any ordinal €2, the following statements hold:
(1) £:{Q, 1) — {(Q,7p) is a d-map;
(2) £2 is the rank function of 7.

Now, we aim to show that (Q, 9,7, H;(2)) forms a general topological
frames, that is, we need to prove that Hq(2) is closed under dy and d;.

Proposition 4.2.3. H; () is closed under the derived set operator w.r.t. 7.

Proof. For A € Hi(Q2), by Definition 3.3.5, we can assume that A =
U, (67(A) n B;) where Ay, B; € Ho(Q) for i € [1,k]. It is easy to see
that do(J"_, (67 (A) n B)) = U, do(£7"(A;) n By). Hence, we only need
to show that for any A, B € Hy(2), we have do(¢71(A) n B) € H; (). We aim
to show that for any limit ordinal v < €, if B is ultimately periodic with
respect to 7y (i.e. BN+ is ultimately periodic in ), then so is do(¢~*(A) N B).

With respect to v, suppose that there exists a bound x and a period
m = w”(n + 1), that is to say, B n ~y can be viewed as a string ByB{ as

30



Definition 3.1.4 such that k = |By|, 7 = |By| and v = kK + 7 - a. Hence,
by the additivity of dy, it is sufficient to show that do(By n £71(A)) and
do(B§ n £71(A)) are both ultimately periodic in .

By n £71(A) is bounded in 7, therefore, so is do(By n £71(A)). Hence, it
is ultimately periodic in ~.

For do(B{ n£~*(A)), consider the set E := {r-: 8 < a}. These are the
coordinates of the first occurrences of each period Bj in the string. Then, we
split BY into B n E and B{*\E. By periodicity, if 0 € By then B{ n E = E,
otherwise By n E = ¢J. Using the additivity of dy again, we now deal with
do(B% n E n (71(A)) and do((B§\E) n £71(A)) separately.

For dy(BSnEn(~'(A)), there are two cases: if 0 ¢ By, then B*nFE = ¢,
so do(B® n E n (71(A)) = &; if 0 € By, then do(BS n E n (71(A)) =
do(E n £71(A)), which is obviously ultimately periodic.

For do((BX\E) n £7*(A)), we observe that the ranks of points in B{\E
are the same as of the corresponding points in B;\{0}. Hence, do((B{\E) N
(71(A)) = do(((B1\{0}) n £71(A))*). Therefore, it is obviously ultimately
periodic.

|

Proposition 4.2.4. H;(2) is closed under the derived set operator w.r.t. 7.

Proof. For A € H{(f2), by Definition 3.3.5, we can assume that A =
U, (671(A) n By) where Ay, B; € Ho(Q) for i € [1,k]. It is easy to see
that dl(Ule(ffl(Ai) N By)) = Ule di(¢71(A;) n B;). Hence, we only need
to show that for any A, B € Hy(Q), we have d; ({71 (A) n B) € H{(Q).

In fact, we aim to show that d;(¢~'(A) N B) = di({7'(A)) ndi(B). Tt is
obvious that dy(¢71(A) n B) < di(¢7*(A)) n dy(B), hence we only need to
show the other direction.

Assume that o € di(¢71(A)) N di(B), then £*(a) > 0. Since B € Hy(Q),
we have B|, € U(a). Then, for B|,, there exists a period 7 = w® and a
bound k such that ¢(k) = . For any k < 2,y < «, if {(z),{(y) = (3, then
x ~, y. Hence, either Ug N (k,a) € B or Us n (k,a) n B = J. However, if
Us n (k,a) n B = & then Ug n (K, o] is an 1-open neighbourhood of « such
that Us N (k, a] N B|, = &, which is contradict to the assumption a € d;(B).
Hence, we must have Us n (k, ) < B.

Then we know that Uz n (k,a] is an 73-open neighbourhood of a such
that Us n (k,)  B. In this case, it is obvious that a € d;(¢7!(A)) = a €
di((7HA) " Ug N (k,a)) = aed (((A) n B).
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Now, we have d;({7'(A) n B) = d;(¢7'(A)) n di(B). By Proposition
4.2.2, we know that ¢ is a d-map from (Q,7) to (Q, 7). Combining with
Proposition 2.2.8, we have d;({71(A)) = £7(do(A)). Therefore, d;(£~(A) N
B) = di((7'(A)) ndi(B) = (7'(dy(A)) n dy(B). Since A, B € Hy(Q) and
Ho(Q) is closed under dy and dy, we have dy(A) € Ho(Q2) and d;(B) € Ho(2).
Hence, we prove that di({71(A) n B) € H (Q), i.e., Hi () is closed under
d;. |

Hence, (2, 19, 71, H1(Q2)) forms a general topological frames. We call such
frames periodic frames or 1-periodic frames.

Proposition 4.2.5. For any ordinal €2, GLB is sound w.r.t. the general
topological frame (£, 19, 71, H; (2)).

Proof. First, in [18], it is proved that both (€, 79) and ({2, 71) are scattered
spaces. Second, 7y S 7.
Last, for any A € H{(£2), we have proved that dy(A) € 71. Ho(2) < H1 (),
so, for A € Hy(Q2), do(A) € 7 is also true.
In all, by Proposition 2.3.7, all the axioms of GLB are valid in
(Q, 79,71, H1(Q)).
|
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Chapter 5

Completeness for GLB

In this chapter, our goal is to prove that GLB is complete with respect to the
class of 1-periodic frames.

5.1 JB-Frame

For the topological completeness proof, we need to discuss a subsystem of
GLB introduced in [8] and denoted JB. This logic is defined by weakening
axiom (ii) of GLB to the following axioms (iv) and (v) both of which are
theorems of GLP:

(iv) [0l — [1][0]e;
(v) [0]e — [O][1]¢.

The logic JB corresponds to a simple class of frames, which is established
using standard methods [2, Theorem 1]. u

Lemma 5.1.1. JB is sound and complete w.r.t the class of (finite) frames
(W, Ry, Ry) such that, for all x,y,z€ W,

1 Ry and Ry are transitive and dually well-founded binary relations;
2 If xRy, then xRyz iff yRoz;

3 xRyy and yRyz imply xRyz.
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Let R§ denote the transitive closure of Ry u Ry and let £y, £ denote the
reflexive, symmetric, transitive closure of R} and R, respectively. It is clear
that F; refines Ey. We call each F; equivalence class a i-sheet. By condition
2, all points in a 1-sheet are Ry incomparable. However, Ry naturally defines
an ordering on 1-sheets as follows: if a and (8 are 1-sheets, then aRyf iff
dx € ady € fxRyy. By the standard techniques, one can improve the Lemma
to show the completeness, in which the set of 1-sheets contained in each
O-sheet is a tree under Ry, and if aRyS then xRyy for all x € a,y € .
Any structure satisfying these conditions automatically becomes a JB-frame,
which we refer to as a "tree-like JB-frame” (JB-tree for short).

As shown in [3], GLB is reducible to JB in the following sense. First,
assume that ¢ is a formula in the language L£p containing both [0] and [1].
Denote the set of all subformulas of ¢ of the form [0]¢ as {[0]t);}icr. Then,

let
M(p) == /\ (0] — [1]vs).

i€l
When ¢ doesn’t contain both [0] and [1], we define M(p) as T. Also, let
M*(p) := M(p) A [0]M(p) A [1]M(p).
Proposition 5.1.2 ([3]). GLB - ¢ iff JB = M™*(p) — ¢.

Consider a JB-tree T' = (T, Ry, R1). A node w € T is called a 0-root if
there is no predecessor of w with respect to Rj, and it is called a 1-root if
there is no predecessor of w with respect to R;.

Definition 5.1.3. We view T as a polytopological space T = (T, 09, 01) by
considering all R;-upsets to be o;-open. Given a general topological space
A = {Q,79,7,H1 () and a map f : Q@ — T we will say that f is a JB-
morphism if:

(71) For any subset X = T, f~}(X) € H(Q);
(j?) f : <Q77—1> - <T7 01> Is a d_map;

(j3) [ :{Q,10) — (T, 00) is an open map;
(Ja)

ja) For each l-root w € T, the sets f~'(RE(w)) and f~1(RE(w) U {w}) are
open in 7y;

(j5) For each 1-root w € T, the set f~!(w) is a 7o-discrete subspace of A.
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A JB-morphism f : 2 — T can be thought of as a map which is a weak
kind of d-map from (Q, 7;) to (T, g;) for i € {0, 1}.

The definition of JB-morphism is a generalization of the definition in [3],
denoted as Jo-morphism there. The difference is that their Jo-morphism is
a kind of morphism from a topological space to a JB-tree, but we generalize
it for general topological frames. Hence, we add the condition (71), (j2) —
(j5), which have existed in the definition of Jp-morphism in [3]. Then, the
following theorem is a version of Theorem 6.6 in [3].

Theorem 5.1.4. Let A = (Q,719,71,H1(2)) be a general topological frame
for GLB, T" a JB-tree, f : Q) — T a JB-morphism and ¢ a Lg-formula. Then

Al iff T EM*(p) — ¢.

The proof of this theorem will be the same as the proof for Theorem 6.6
in [3].
Our aim is to prove the following lemma.

Lemma 5.1.5 (Main). For each finite JB-tree (T, Ry, Ry ), there exists an or-
dinal  and an onto JB-morphism f : {[1,Q], 70, 71, H1(2+1)) — (T, Ry, Ry),
where ) < W

Using this lemma, it is easy to see that the logic GLB is complete w.r.t.
the class of 1-periodic frames.

Remark 5.1.6. It is worth noting that in Lemma 5.1.5, we analyze the general
topological frames based on sets of the form [1, 2] instead of [0, 2]. Here, it
should be understood as the subframe, i.e., we restrict the topologies 7y and
71, as well as the admissible sets Hq (2 + 1), to [1,€]. For convenience, we
still denote it as {[1,Q], 79, 71, H1 (2 + 1)).

On the other hand, it is easy to see that a 1-periodic frame
{0, 92], 70, 71, H1 (€ + 1)) is isomorphic to the subframe {[1, ], 79, 71, H1 (2 +
1)).

Moreover, this topological completeness theorem can also be stated in a
stronger uniform way.

Theorem 5.1.7. Let Q = (w*", 79,71, H1 (w*")). Then Log(2) = GLB.

5.2 Some operations on Ordinal Spaces

In this part, we introduce two operations on ordinal spaces: sum and lifting.
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Definition 5.2.1 (Sum). Suppose that we have a finite number of ordinals
ALy, A and d-maps f; @ {1, ], 70, 71, Hi( A + 1)) — (T}, Ry, Ry) where
(T}, Ry, Ry) is a JB-tree for each i € [1,k]. Define A\ = A\ + ... + A4, and
the sum space is {[1, A], 79, 71, Hi1(A + 1)). Moreover, we define the sum of
these JB-morphisms f;, denoting as |_|f:1 fi LA 0,7, HH(A + 1)) —
LI¥ (T}, Ro, Ry), as follows:

Ufi(ﬁ) = fi(B), fB=M+... + Na+0.8 e[l N]

The following proposition regarding the sum operation is straightforward.

Proposition 5.2.2. The sum space {[1, A], 79, 71, H1 (A + 1)) is isomorphic
to the topological sum |_|f:1[17 Ai + 1]. Moreover, the sum of JB-morphisms
|_|f:1 fi is a JB-morphism.

Next, we introduce the lifting operation, similar to [3, Lemma 8.6], which
allows us to construct a d-map from an ordinal equipped with the topology
71 to a tree-like Kripke model.

Definition 5.2.3 (Lifting Space). For an ordinal space ([0, \], ), the ordi-
nal space ([1,w*],7) is called the lifting space of {[0, A], T0).

Lemma 5.2.4. The rank function ¢ : {[1,0*],7,Hi(w* + 1)) —
{[0,A], 70, Ho(A + 1)) is a d-map.

Proof. In Proposition 4.2.2, we have shown that ¢ is a d-map from {[1,w*], 1)
to ([0, A], 70). Therefore, we only need to show that for any A € Ho(A + 1),
[7Y(A) € Hy(w* + 1). This follows directly from Definition 3.3.4. |

5.3 Proof of main lemma

For each finite JB-tree (T, Ry, R;) with a root a, we aim to specify an ordinal
A < w*” such that there exists a JB-morphism f : {[1, A], 70, 71, H1(A+ 1)) —»
(T, Ry, Ry) with f~!(a) = {\}. We refer to such a JB-morphism as suitable.
We divide the proof into the following lemmas.

We prove the claim by induction on the Ry-depth of T', which is denoted
as hto(T).
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Lemma 5.3.1 (The Base Step). Suppose hto(T') = 0. Then there exists an
ordinal X < w*" and a suitable JB-morphism from [1,\] to T.

Proof. 1f hto(T) = 0, then T contains only one 1-sheet, i.e. it is a tree w.r.t.
relation R;.
We construct the model in two steps:

e Consider the tree (T, Ry), which contains only one relation. By The-
orem 2.2.9 and Proposition 4.1.3, we know that there exists an or-
dinal Ay < w® and a mapping fy : [0,\] — 7T such that f, :
<[0, )\0],7’0, Ho()\() + 1)> - <T, R1> is a d—map.

e By Lemma 5.2.4, we have the lifting space {[1,w?], 7, H;(w* + 1)
such that the rank function ¢ : ([1,w*], 79,7, Hi(wt + 1)) —
([0, Xo], 70, Ho(Ao + 1)) is a d-map.

Combining the two steps, we obtain a d-map foof : {[1,w*], 7, Hy(wt +
1)) — (T, Ry) denoted as f. We now prove that f is also a JB-morphism
from ([1,w*], 79, 71, Hi (W + 1)) to (T, Ry, Ry ):

(j1) We need to prove that for any point w € T, f~'({w}) € Ho(w? + 1).
Since f = fo o/, we have f~'({w}) = €7} (fy'({w})). Since fo is
the function constructed in the proof of Theorem 2.2.9, we know that
fit({w}) € Ho(M\o + 1). By Definition 3.3.4, if A € Hy(A\ + 1), then
(71(A) € Hy(w* +1). Therefore, f~({w}) is a 1-periodic set in w® +1.

(j2) Since f is a d-map from {(w* + 1,77) to (T, R;), the condition (j,) is
satisfied.

(j3) In this case, Ry = &J, so any subset of T is a gg-open set. Hence, it is
evident that f: (w + 1,79y — (T, Ry) is an open map.

4) Since Ry = &, so Ry = R;. T contains only one 1-sheet, i.e. the root
(Ja) 0 y
a of T. Hence, we only need to check that f~1(T\{a}) and f~(T)

are open in 7. f'({a}) = (7'(fo ({a})) = 7' ({Ao}) = {wh}, so
fHYT\{a}) = {a|a < w*} and f~H(T) = {a|a < w?}, which are both
To-open.

(j5) We have checked that f~1({a}) = {w*}, so it is obviously a 7o-discrete
subspace.
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Therefore, we conclude that f is a JB-morphism from
{1,w], 79, 71, Hi (w + 1)) to (T, Ry, Ry ). Obviously, wt < w*". |

Lemma 5.3.2 (The Induction Step). Suppose that hto(T) = m > 0. Then
there exists an ordinal A < w** and a suitable JB-morphism from [1,\] to T

Proof. If hto(T') = m > 0. Let ay,---,ax be the immediate Rj-successors
of a, which are 1-roots. Denote T; = {a;} U R§(a;) for i € [1,k], and Ty =
{a} U Ri(a). Note that T = |JI,7;. Furthermore, for each i € [1,k] the
subframe T; of T is a JB-tree of Ry-depth less than m. By the induction
hypothesis, for each i € [1, k], there exists an ordinal \; < w*" and a JB-
morphism g; : {[1, \;], 70, 71, Hi(A\; + 1)) — (T}, Ry, Ry ).

Let A = A + -+ + X and let g : {L,A], 70,7, Hi(A + 1)) —
<|_|f:1TZ-,R0,R1> be the sum of g;, i.e. g = |_|f:1 gi;- We denote |_|f:1Ti
as S. By Proposition 5.2.2, we know that ¢ is a JB-morphism.

Next, consider the 1-sheet (Tp, Ry, R;). Using the construction from the
Base Step (Lemma 5.3.1), there exists an ordinal Ay < w*" and a suitable
JB-morphism gq : {[1, X\o], 70, 71, Hi (Mo + 1)) — (T4, Ro, R1).

Now, we aim to construct a function f : {[1, A+ \o], 70, 71, HH(A- Ao+ 1)) —
(T, Ry, Ry). First, divide [1, A-A¢] into two disjoint parts: Xy := {A-p+v|pu <
Ao, v € [1,A]} and X := {\- p|pu < Ao A €(p) > 0}. Then, define f as follows:

s g(v), if ae Xy is of the form A\ - p + v;
@) =
go(p), if ae X is of the form \ - p.

Last, we prove that f is a suitable JB-morphism from {[1,\ -
)\0],7’0, 71, H1<)\ . )\0 + 1)> to <T, Ro, R1>3

(71) We need to prove that for any point w e T, f~1({w}) € Hi(A- Xo + 1).
We divide it to two cases:

— Suppose that w € T; for some i € [1,k]. We have known that
gi is a JB-morphism, hence g;'({w}) € Hy(\; + 1). Tt follows
that ¢g7'({w}) € Hy(A + 1). In the product space, f~'({w}) is
Nop+ Blp < N, B € g7 ({w})}. By Lemma 3.3.6, it is a 1-
periodic set in [1, X - Xg].

— Suppose that w € Ty. We have known that gq is a JB-morphism,
hence g, ({w}) € Hi(Ao + 1). In the product space, f~({w}) is
(N ull(p) > 0,pe gyt ({w})}. By Lemma 3.3.6, it is a I-periodic
set in [1, A - Ag].
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(j2) We need to prove that f is a d-map from {[1, X - \g], 71) to (T, Ry).

We divide T into two parts: S = |_|f:1 T; and Tj, since Ty is a 1-sheet,
(T, R;y) can be viewed as the disjoint union of (S, R;) and (T, Ry).
On the other hand, {[1, A - o], 71) can also be divided into two parts:
Xo:={\ - p+vjp<,ve[l,\]} and Xy := {\-plp < Ao A L(p) > 0},
We know that Xy = f~1(S) and X; = f~}(Tp).

Hence, in order to prove that f is a d-map, we only need to show that
flx, : Xo — S and f|x, : X1 — Tp are both d-maps. Since go is a d-
map, it is easy to see that f|x, is also d-map. For f|y,, in fact, X, can
be represented as the topological product [1, A] x {u|l(mu) = 0, <
Ao} g: A+ 1— Sisad-map, so it follows that f|y, is also a d-map.

In all, we show that f is a d-map.

(j3) In order to prove that f is an open map from {[1, - A\¢], 7o) to (T, Ry),
we need to show that for any open interval (f5i,[02) in [1,A - Ag],
f((B1,P2)) is Ro-upset. We divide it to two cases:

— If there exists an limit ordinal p such that A - p € (5, f2), then
it is easy to see that there exists and ordinal ' < p such that
[A-p/s A (' +1) € (B, B2) and f([A-p/, A~ (i +1)) = S. Hence,
f((B1, P2)) forms a Ry-upset.

— If there is no limit ordinal g such that A - u € (B, 52), then
f((B1,P2)) < S. In this case, we know that the restriction of
f in any interval [A-0 4+ 1, A - (d + 1)] is an open map. Hence, it
is obvious that f((f1, f2)) is Ro-upset.

Hence, f is still an open map.

(1) There are two kinds of 1-root in T, it is either the root a of T or a
1-root in T; for some i € [1, k]

— For the root a, f~1({a}) = {\-Xo}, so [7HR
[1, A Ao) and fH(R5(a) u {a}) = f7H(T)
both 7y-open.

(a)) = fH(T\{a}) =
[1, X o], which are

O *

— For a 1-root w € T;, since g; is JB-morphism, we have known that
g; H(RE(w)) and g; ' (RE(w) U {w}) are Tp-open in [1, \;], then it
is easy to see that ¢7'(RE(w)) and g~ (RE(w) U {w}) are Tp-open
in [1,A]. Therefore, f~1(Ri(w)) = {a:a =X -pu+v, forve
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g (RE(w))} and fTHURE(w) v {w}) ={a:a=X-pu+v, forve
R (w) u {w}}, which are both 7p-open, because they are the union
of Tp-open sets.

(j5) Similar to (js), there are two cases:

— For theroot a, f~!({a}) = {\-A\o}, hence, it is obviously 7o-discrete
subspace.

— For a 1-root w € Tj, since g; is JB-morphism, we have known that

g; H(w) is To-discrete subspace of [1,\;], then it is obvious that
g (w) is mp-discrete subspace of [1,\]. Therefore, f~!(w) = {« :
a=M\-pu+v, for ve g ' (w)}, which is a 7p-discrete subspace of
1, A N

Hence, we find that f is a JB-morphism from {[1, \-\o], 79, 71, H1 (A- Ao+ 1))
to (T, Ry, Ry). Since \; < w*” for each i € [1,k] and A = A\ + ... + Az, 50
A < w”. Also, A\g < w¥”, hence X\ - Ay < w*” still holds. [ |

Combining Lemma 5.3.1 and 5.3.2, we finally prove the main
lemma. Since all the periodic frames we used are subframes of 2 =
{w*”, 79,71, Hi (w*")), thus it is sufficient to show the Theorem 5.1.7.
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Chapter 6

Conclusion

In this thesis, we define the concept of a general topological frame, that is, a
topological space equipped with a distinguished set of admissible sets, akin
to the notion of a general Kripke frame. Then, we describe a natural class of
general topological frames on ordinals, which we call periodic frames. These
frames are based on well-orderings equipped with some natural topologies
introduced by Icard [18]. While GLP is known to be incomplete w.r.t. Icard’s
spaces, we demonstrate that the bimodal fragment of GLP is sound and
complete with respect to the periodic frames. More specifically, we present a
result in the form of the Abashidze-Blass theorem: for any ordinal > w“”,
the periodic frame (2, 79, 71, H1(2)) is sound and complete with respect to
GLB.

In the future, our aim is to generalize this work to GLP. That is, we
intend to generalize the concept of periodic frames and find a natural class
of general topological frames which is sound and complete with respect to
GLP. More precisely, we need to generalize the concept of 1-periodic set to
n-periodic set for each n € w, and we conjecture that with all the natural
topologies introduced by Icard, we can define suitable periodic frames with
an underlining set €y, which is sound and complete with respect to the whole
system GLP. Additionally, we hope that our semantic tools will be useful in
the application of GLP in proof theory and arithmetic.

41



Acknowledgements

First, I would like to express my deepest appreciation to my supervisors,
Prof. Dr. Lev Beklemishev and Dr. Nick Bezhanishvili. Without their con-
tinued help and support during this period, I would not have been able to
complete my thesis. This paper was completed in half a year, and I did not
have much foundation or experience in this field before. Thanks for bringing
me into such a wonderful academic field and patiently guiding me to learn
how to work in it. Moreover, I am grateful for their patience and under-
standing. When they became my supervisors, I guess they must not have
expected me to cause them so much trouble.

Regarding my study in Amsterdam and the writing of this thesis, I think
it all began with Prof. Dr. Dick de Jongh. Due to my poor English and the
epidemic, I felt that I made little progress in both study and life during the
first half year in Amsterdam, but Dick gave me a lot of support during that
period. Later, Dick led me into the field of provability logic and introduced
me to Lev at the end of 2022. T am so lucky to have so many great mentors
who have guided me along my academic path.

I am also appreciative of the other professors who helped me during my
studies: Dr. Benno van den Berg and Dr. Tommaso Moraschini, whose in-
sightful suggestions as committee members during my thesis defense greatly
influenced the development of my work. Benno’s Type Theory and Category
Theory are my favorite lectures in ILLC, I will still try to learn and explore
more in this field. I would also like to appreciate Dr. Aybiike Ozgiin, whose
teachings on epistemic logic and topological semantics have left a lasting
impact on me. I believe it will definitely be of great help to my future work.

I am grateful for my friends: Tianyi Chu, Cheng Liao, Swapnil Ghosh,
Kirill Kopnev, Shin Tanaka and many others, who provided invaluable sup-
port throughout the past two years. Their camaraderie has been an anchor
during both academic and personal challenges.

42



To my girlfriend Peiyuan Shu, in a sense, she is also my guide into logic.
I fell in love with logic from the day I accompanied her to a logic class. More
importantly, I cannot imagine life without her support. In the past two years
in Amsterdam, there was a 6-7 hour time lag between us, but the video calls
with her were a very important part of my daily life. I hope we can continue
to grow together and complete our PhDs as soon as possible.

Finally, T would like to thank my family. Thanks to them for their un-
yielding support, which served as the foundation for my academic life. The
transformations in my life over the past two years have been profound. On
the one hand, I have made new growth in my studies and life. On the other
hand, the conclusion of 2022 marked a period of immense loss with the depar-
ture of my beloved grandfather and grandmother, who held an unparalleled
affection for me. The creation of this paper is inseparable from the void left
by their absence. Almost every morning, I would awaken when I dreamed
about them. When I was alone at home, every small detail seemed to trigger
memories of the times we shared. If they can see me finish this paper, they
will be very happy and proud. I earnestly wish for them to be at peace in
heaven, free from any pain or ailment. I will carry their memory with me as
I embark on the next chapter of my life.

Yunsong Wang
Beijing, 2023

43



Bibliography

Merab Abashidze. “Ordinal completeness of the Godel-Lob modal sys-
tem”. In: Intensional logics and the logical structure of theories (1985),
pp- 49-73.

Lev Beklemishev, Guram Bezhanishvili, and Thomas Icard. “On topo-
logical models of GLP”. In: Ways of proof theory 2 (2010), pp. 135—
155.

Lev Beklemishev and David Gabelaia. “Topological completeness of the
provability logic GLP”. In: Annals of Pure and Applied Logic 164.12
(2013). Logic Colloquium 2011, pp. 1201-1223. 1ssN: 0168-0072. DOTI:
https://doi.org/10.1016 /j.apal.2013.06.008. URL: https://www.
sciencedirect.com /science/article/pii/S0168007213000778.

Lev Beklemishev and David Gabelaia. “Topological interpretations of
provability logic”. In: Leo Esakia on duality in modal and intuitionistic
logics. Springer, 2014, pp. 257-290.

Lev D Beklemishev. “Provability algebras and proof-theoretic ordinals,
I”. In: Annals of Pure and Applied Logic 128.1-3 (2004), pp. 103-123.

Lev D Beklemishev. “Proof theoretic analysis by iterated reflection”.
In: Turing’s Revolution: The Impact of His Ideas about Computability.
Springer, 2021, pp. 225-270.

Lev D Beklemishev and Fedor N Pakhomov. “Reflection algebras and
conservation results for theories of iterated truth”. In: Annals of Pure
and Applied Logic 173.5 (2022), p. 103093.

Lev D. Beklemishev. “Kripke semantics for provability logic GLP”. In:
Annals of Pure and Applied Logic 161.6 (2010). The proceedings of
the IPM 2007 Logic Conference, pp. 756-774. 1sSN: 0168-0072. DOI:

44


https://doi.org/https://doi.org/10.1016/j.apal.2013.06.008
https://www.sciencedirect.com/science/article/pii/S0168007213000778
https://www.sciencedirect.com/science/article/pii/S0168007213000778

[10]

[11]
[12]
[13]

[14]

https://doi.org/10.1016 /j.apal.2009.06.011. URL: https://www.
sciencedirect.com/science/article/pii/S016800720900116X.
Guram Bezhanishvili, Leo Esakia, and David Gabelaia. “Some results

on modal axiomatization and definability for topological spaces”. In:
Studia Logica 81 (2005), pp. 325-355.

Guram Bezhanishvili and Patrick J Morandi. “Scattered and heredi-
tarily irresolvable spaces in modal logic”. In: Archive for Mathematical
Logic 49.3 (2010), pp. 343-365.

Andreas Blass. “Infinitary combinatorics and modal logic”. In: The
Journal of Symbolic Logic 55.2 (1990), pp. 761-778.

George Boolos. “Omega-consistency and the diamond”. In: Studia Log-
ica 39 (1980), pp. 237-243.

George Boolos. The Logic of Provability. Cambridge and New York:
Cambridge University Press, 1993.

Olivier Carton and Christian Choffrut. “Periodicity and roots of trans-
finite strings”. In: RAIRO-Theoretical Informatics and Applications
35.6 (2001), pp. 525-533.

Leo Esakia. “Diagonal constructions, Lob’s formula and Cantor’s scat-
tered spaces”. In: Studies in logic and semantics 132.3 (1981), pp. 128
143.

Kurt Godel. “Eine Interpretation des intuitionistischen Aus-
sagenkalkiils”. In: FErgebnisse eines mathematischen Kolloquiums 4
(1933), pp. 39-40.

David Hilbert and Paul Bernays. “Grundlagen der Mathematik”. In:
Vols. I (1934).

Thomas Icard. “A topological study of the closed fragment of GLP”.
In: Journal of Logic and Computation 21.4 (2009), pp. 683-696.

Giorgi K Japaridze. “The modal logical means of investigation of prov-
ability”. PhD thesis. Thesis in Philosophy, in Russian, Moscow, 1986.

Martin Hugo Lob. “Solution of a problem of Leon Henkinl”. In: The
Journal of Symbolic Logic 20.2 (1955), pp. 115-118.

John Charles Chenoweth McKinsey. “A solution of the decision prob-
lem for the Lewis systems S2 and S4, with an application to topology”.
In: The Journal of Symbolic Logic 6.4 (1941), pp. 117-124.

45


https://doi.org/https://doi.org/10.1016/j.apal.2009.06.011
https://www.sciencedirect.com/science/article/pii/S016800720900116X
https://www.sciencedirect.com/science/article/pii/S016800720900116X

22]
23]

[24]

John Charles Chenoweth McKinsey and Alfred Tarski. “The algebra of
topology”. In: Annals of mathematics (1944), pp. 141-191.

Karl Krister Segerberg. An essay in classical modal logic. Stanford Uni-
versity, 1971.

Harold Simmons. “Topological aspects of suitable theories”. In: Pro-
ceedings of the Edinburgh Mathematical Society 19.4 (1975), pp. 383
391.

Robert M Solovay. “Provability interpretations of modal logic”. In:
Israel journal of mathematics 25 (1976), pp. 287-304.

Tsao-Chen Tang. “Algebraic postulates and a geometric interpretation
for the Lewis calculus of strict implication”. In: Bulletin of the Amer-
ican Mathematical Society 44 (1938), pp. 737-744.

Alfred Tarski. “Der aussagenkalkul und die topologie”. In: Journal of
Symbolic Logic 4.1 (1939).

46



	Introduction and Preliminary
	GL and GLP
	Classical Provability Logic GL
	Polymodal Provability Logic GLP
	Kripke Incompleteness


	Topological Models for GL and GLP
	Topological d-semantics
	Ordinal Topological Spaces
	General Topological Frames

	Periodic Sets of Ordinals
	Periodic Sets
	Ultimately Periodic Sets
	Hereditarily Periodic Sets

	General Topological Frames
	General Topological Frames for GL
	General Topological Frames for GLB

	Completeness for GLB
	JB-Frame
	Some operations on Ordinal Spaces
	Proof of main lemma

	Conclusion
	Bibliography

