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Abstract

Positionalism and antipositionalism, two apparently opposing views
on relations, give different answers to the question how things can be
arranged one way rather than another. In positionalism, relations come
with positions to which objects may be assigned; in antipositionalism
relations have no positions, but relations consist of a network of complexes
interrelated by substitutions. In this paper, a new version of positionalism
is proposed, and it is shown that—contrary to what the names suggest—
positionalism and antipositionalism are essentially two sides of the same
coin.

1 Introduction

Abelard’s loving Eloise is obviously not the same as Eloise’s loving Abelard. A
distinguishing feature of non-symmetric relations, like the love relation, is that
they admit of differential application, i.e., they may apply to the same things
in multiple ways. A crucial question is, what makes differential application
possible? How can things be arranged one way rather than another?

The answers given depend on the view on relations one adheres to. There are
three basic accounts of relations: the standard view, the positionalist view, and
the antipositionalist view.

In brief, the standard view says that the arguments of a relation come in a
linear order, e.g., Abelard comes first and Eloise comes second in Abelard’s
loving Eloise. The positionalist view says that a relation comes with positions
to which arguments may be assigned, e.g., for the love relation we have the
positions Lover and Beloved. The antipositionalist view says that a relation is a
network of complexes interrelated by substitutions, e.g., substituting Anthony
for Abelard and Cleopatra for Eloise in Abelard’s loving Eloise gives the complex
of Anthony’s loving Cleopatra.

In his seminal paper ‘Neutral relations’, Kit Fine made clear that the standard
view and the positionalist view give rise to problems (Fine|2000)). His answer
was a new view on relations, the antipositionalist view. However, the antipo-
sitionalist view has also been heavily criticized (Donnelly|[2016} |Gaskin & Hill
2012; MacBride| [2007; 2014} |Orilial |2011)). In my opinion, however, the criti-
cisms arise from a fundamental misunderstanding of the position. In this paper



I want to clarify some of the misconceptions. In particular I will show that
positionalism and antipositionalism are not really opposite views.

For simplicity I will assume throughout the paper that all relations are of finite
degree.

2 Views on relations

The views presented here contain some aspects that have not been described
before. For the positionalist view we make a distinction between thick and thin
positionalism, where only in thick positionalism objects may occupy positions.

A note in advance: in |Leo (2013)), I made a sharp distinction between rela-
tional states and relational complexes, and conceived of relational complexes as
a structured perspective on relational states. I argued that a state may have
more than one corresponding complex. For example, the state of Abelard’s lov-
ing Eloise corresponds not only with a complex from the binary love relation
with two relata, but (among others) also with a complex from the unary re-
lation of loving Eloise with one relatum. For the argumentation in this paper
relational states do not play an essential role. However, occasionally I will not
only talk about relational complexes but about relational states as well.

2.1 Standard view

The standard view assumes that the arguments of a relation always come in a
given linear order. For example, in each instance of the love relation one of the
arguments comes first and the other comes second. One might also say that
relations have a direction. In the instance aRb of a relation R the relation runs
from a to b, and in bRa the relation runs in the opposite direction. Different
directions make differential application possible.

A nice feature of the standard view is that it corresponds straightforwardly with
natural and most formal languages. For example, for the relation loves, we have

a direct match with linguistic expressions of the form ‘__ loves _ .

Unfortunately, there are also problems with the standard view. In the states
‘out there’ there is no linear order or direction between the arguments. The
linear order is just a representational artifact. Already in 1913 Russell rejected
the idea that all relations have a 'natural’ direction. For example, this is not
the case for right and left, up and down, and greater and less (Russell||1984)
p. 87).

This problem may also be formulated in different terms. The standard view
makes it plausible that for each binary relation R there is a converse relation
R/, where aRb holds iff bR’a holds. For example, for the relation on top of, we
have the converse relation beneath, where the state of a’s being on top of b is the
same as the state of b’s being beneath of a. We would like to regard this state
as a relational complex consisting of a single relation in combination with the
two relata. However, this relation can neither be on top of nor beneath, because
there is no good reason to choose one over the other (Fine|[2000, pp. 3—4).



2.2 Positionalism

According to positionalism, each relation comes with a collection of positions to
which objects may be assigned and with no intrinsic order between the positions.
Such an assignment results in a relational complex. We distinguish two forms
of positionalism: thick positionalism, which is the ‘normal’ positionalist view,
and thin positionalism, a new variant introduced in this paper.

Thick positionalism

In thick positionalism, a relation comes with positions to which objects may be
assigned. Such an assignment may result in a relational complex with objects
occupying positions.
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Figure 1: Thick positionalism.

As pointed out by Fine, a problem with this view is that symmetric relations
like the adjacency relation have distinct complexes that intuitively should be
the same (Fine 2000, p.17). We would, for example, like to regard a’s being
next to b as the same complex as b’s being next to a. But suppose that the
adjacency relation has two positions Next and Nizt. Then assigning a to Next
and b to Nixt gives a complex which is distinct from the complex obtained by
assigning b to Next and a to Nizt if in the complexes objects occupy positions.
In one complex, a occupies Next and b occupies Nizt, and in the other complex
it is the other way around/T]

Thin positionalism

In thin positionalism, a relation comes with positions for which objects may
be substituted. Such a substitution may result in a relational complex with
occurrences of the objects involved.

1A proposed way out is to allow objects of a symmetric relation to occupy the same position.
This is already done in (Russell||1984} p. 146), and later in|Orilia) (2011)) and in |Dixon| (2018)).
Such an approach works for the adjacency relation and many other symmetric relations, but
it fails for relations where the objects are arranged clockwise in a circle (Fine| 2000, p. 17,
note 10). Another nice example of a relation for which it fails is playing tug-of-war (MacBride
2007, pp. 42-43).
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Figure 2: Thin positionalism.

Positions are not boxes in which you can put an object; rather they are substi-
tutable places in a structure or form. The relevance of this distinction can be
illustrated with an example.

For the adjacency relation with positions Next and Nixt substituting a for Next
and b for Nizt results in a complex with an occurrence of a and an occurrence
of b. The complex is the same as the one that we get when we substitute b for
Next and a for Nixt. It is as if the positions disappear once we assign objects
to themﬂ So we don’t get too many complexes as in thick positionalism. This
makes thin positionalism preferable over thick positionalism.

A relation itself is viewed as an entity and its positions as occurrences of some
kind of entity. Though it is not essential, positions might perhaps best be seen
as occurrences of arbitrary objects. What is essential is that we may substitute
objects for positions. The result of a substitution (if any) is a complex with
occurrences of the objects substituted for positions.

The notions of substitution and occurrence are taken as primitive.

In Appendix[A]a general composition principle for substitutions is given. In the
principle substitution is conceived of as an operation on occurrences of entities
within an entity.

We will assume that thin positionalism endorses the Composition Principle in
Appendix [A].

The Composition Principle does not speak about complexes and positions for
which objects may be substituted, but about entities and occurrences of entities
for which entities may be substituted. However, because positions are conceived
of as occurrences of some kind of entity, and because objects can be substituted
for positions, the principle applies in a straightforward way to thin positionalism.

COMPOSITION PRINCIPLE OF THIN POSITIONALISM.

Let s be a substitution of objects for the positions of a relation R resulting in
a complex £. Then there is a surjective map p from the positions of R to the
occurrences of objects in £ such that

1. pu maps every position p to an occurrence of the object substituted by s
for p,

2 A comparison could be made with assigning values to variables. Take the formula z+y = 5.
Then assigning 2 to « and 3 to y results in 2 4 3 = 5, where in the result the variables are no
longer present.



2. for every substitution s’ in &, s’ results in a complex & iff - s is a
substitution for the positions resulting in &',

where p - s’ denotes the substitution that maps each position p to the object
substituted by s’ for u(p).

If s is taken as a substitution in a complex, then a similar statement holds.
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Figure 3: Composition Principle of Thin Positionalism.

We call u a co-map of substitution s.

The Composition Principle of Thin Positionalism has the interesting conse-
quence that substitutions in complexes can be derived from the substitutions
for the positions and their co-maps.

A single substitution of objects for positions may have more than one co-map.
For example, if for a symmetric relation like the resemblance relation substitut-
ing an object a for both positions p, p’ results in a complex with two occurrences
of a, then this substitution has two co-maps; one that maps p to an occurrence
o and p’ to an occurrence o, and another that maps p to o and p’ to a.

One could in principle allow that a co-map p is not injective. For example,
one could argue that for the love relation with positions Lover and Beloved,
substituting Narcissus for both positions results in a complex with just one
occurrence of Narcissus.

If for a given substitution s of objects for positions a co-map p is not injective,
then we say that the substitution results in a coalescence of occurrences.

We call a relation coalescence-free if it has no coalescence of occurrences. So
each complex of an n-ary coalescence-free relation will have n occurrences of
objects. If the love relation is coalescence-free, then the complex of Narcissus’
loving Narcissus would have one occurrence of Narcissus in the role of lover and
another one in the role of beloved.

As we have seen, the adjacency relation is symmetric in a strict sense. Switching
the arguments does not change the complex. More generally, we say that R
is strictly symmetric if there is a non-identity permutation 7 of its positions
such that for every substitution s for the positions resulting in a complex &,
substitution 7 - s results in £ as WeIIEI

3This definition of strict symmetry is not completely satisfactory in combination with an
ontology that is only committed to complexes that actually obtain. In that case, the love
relation would according to this definition be strictly symmetric if people would only love
themselves. However, by assuming that every substitution resulting in a complex comes with
a specific set of one or more co-maps, a more robust definition of strict symmetry can be
given by adding the condition that s comes with a co-map g and 7 - s with a co-map p’ that



Thin positionalism may appear to be more complicated than thick positionalism.
Nevertheless, I think it is a much more natural view than thick positionalism.
Having relational complexes in the world as a result of substituting objects for
positions seems to make more sense than having complexes ‘out there’ containing
objects in a kind of boxes, called positions.

2.3 Antipositionalism

Relational complexes have constituents. But this does not necessarily mean that
we can directly speak about how these constituents occur in a given complex.
According to antipositionalism, the structure of a relation can be fully expressed
in terms of structure preserving connections between its complexes. There is no
need to say anything about the internal structure of the complexes. This may
sound a bit vague, so let us look at an example.

For the love relation, one of the complexes could be Paris’ loving Helen. In
this complex we have one occurrence of Paris and one of Helen. By substituting
Venus for the occurrence of Paris and Adonis for the occurrence of Helen we
get the complex of Venus’ loving Adonis. With this substitution corresponds a
structure preserving map between the occurrences of Paris and Helen in Paris’
loving Helen and the occurrences of Venus and Adonis in Venus’ loving Adonis.
By taking all possible substitutions into account, we get a network of interrelated
complexes/[]]

Figure 4: Antipositionalism.

Networks like this are conceived of as relations. Isomorphic relations are not
necessarily identical, as the monadic relations of having a heart and having a
kidney make clear.

As in thin positionalism, the notions of substitution and occurrence are taken as
primitive. Likewise, we assume that antipositionalism endorses the Composition
Principle in Appendix [A]

To make the Composition Principle appropriate for antipositionalism, we only
have to make a slight change in terminology. Instead of using a phrase like ‘a

is distinct from p. With this addition, the love relation will in no case be labeled as strictly
symmetric if every substitution resulting in a complex comes with only one co-map.

4In Fine’s paper ‘Neutral relations’, objects are substituted directly for objects in a com-
plex, and not for occurrences of objects. However, Fine said (private communication, 2005)
that in ‘Neutral Relations‘ he was, for simplicity, ignoring the fact that substitution is properly
done on occurrences, as is made clear in [Fine| (1989).



substitution of entities for the occurrences of entities in an entity £’ we say ‘a
substitution of objects for the occurrences of objects in a complex & ’E|

COMPOSITION PRINCIPLE OF ANTIPOSITIONALISM.

Let s be a substitution of objects for the occurrences of objects in a complex &
resulting in a complex £’. Then there is a surjective map p from the occurrences
of objects in £ to the occurrences of objects in £’ such that

1. p maps every occurrence « in € to an occurrence of the object substituted
by s for «,

2. for every substitution s’ in &', s’ results in a complex & iff y- s is a
substitution in £ resulting in £,

where i - s’ denotes the substitution that maps each occurrence « in € to the
object substituted by s’ for p(a).

u-s'

g g! g!l
Figure 5: Composition Principle of Antipositionalism.

We call a map p with this property a co-map of substitution s.

We call a complex an initial complex if any complex of the relation can be
obtained from it by a substitution. If a relation has an initial complex, then
it follows from the Composition Principle of Antipositionalism that for any
complex £ of the relation the substitution in ¢ that maps each occurrence « to
the object of a results in & itselfﬁ

More principles could be given. An interesting, but controversial one says that
all complexes of a relation are connected via a substitution. This may not hold
for certain relations of variable degree, like the relation of forming a circle. It
is not obvious how to characterize for such relations the unity of its complexes.

Like thin positionalism, antipositionalism does in principle not exclude a coa-
lescence of occurrences, i.e., two or more occurrences of objects in a complex
may be mapped to the same occurrence of an object in another complex. For
example, substituting Narcissus for the occurrence of Paris as well as for the oc-
currence of Helen in the complex of Paris’ loving Helen could result in a complex
with one occurrence of Narcissus.

A coalescence of occurrences is very natural for set-like relations. For the relation
of forming a group we may want the complex for the group consisting of Athos,

5T do not presuppose that there is a distinction between entities and objects, but it is
common to say that a relational complex has (occurrences of) objects as relata.

6To prove this, let & be an initial complex and sg a substitution in &y resulting in &. If uo
is a co-map of sg, and s a substitution in £ that maps each occurrence a to the object of «,
then po - s is the same substitution as sg. So, by condition 2 of the Composition Principle of
Antipositionalism, s results in & itself.



Porthos, and Aramis to have three occurrences and the group of Batman and
Robin to have two occurrences. If this is the case, then the second complex may
be obtained from the first by a substitution, but there is no substitution the
other way around.

Also for the ternary relation R where Rabc is the complex of a’s loving b and
b’s loving c it may seem natural to assume that a coalescence of occurrences can
take place. For substituting in Rabc the object a for ¢ gives the complex Raba,
and substituting in Rabc the objects b, a, b, for the occurrences of a, b, ¢ gives the
complex Rbab. These complexes are obviously empirically indistinguishable, but
if a coalescence of occurrences is allowed they can be identical (cf. |Leo| (2010),
pp. 147-148).

It should be noted that not always all complexes in a relation are empirically
distinguishable. This is obvious for mathematical relations, but it is also the
case for some other relations, like the conjunction of the binary love relation
with the unary relation of loving d, where d is a fixed objectm For this relation,
the conjunction of a’s loving d with d substitutable and b’s loving d with d
fixed is a complex that is distinct from the conjunction of b’s loving d with d
substitutable and a’s loving d with d fixed, but the two complexes are empirically
indistinguishable (cf. [Leo| (2013), p. 364).

Under antipositionalism, different substitutions in a complex may result in the
same complex, which is a defining characteristic of strictly symmetric relations.
For the adjacency relation, for example, we have the complex of a’s being ad-
jacent to b. Substituting in this complex b for (the occurrence of) a and a for
(the occurrence of) b gives the same complex. This means that in the network
of the relation we have a map from each complex to itself that switches the two
objects involved.

One may worry that antipositionalism is less able to identify complexes than
positionalism because in antipositionalism we don’t have positions with mean-
ingful names like lover and beloved. However, in antipositionalism we could give
occurrences equally meaningful names like lover in complex £ and beloved in
complez £. Besides, names can be freely chosen; in both views on relations the
meaning of names do not play a constitutive role.

There are alternative antipositionalist accounts possible. One could, for ex-
ample, assume that any complex has for each object at most one occurrence.
Then there is not really a need to talk about occurrences and one can simply
substitute objects for objects in complexes.

3 Intertranslating the views

In this section the translatability from positionalism to antipositionalism and
vice versa will be examined. Particular attention will be given to the question
whether the translations respect the Composition Principle in Appendix [A] By
examining the translations back and forth, we get a clear picture of the relative
expressive power of positionalism and antipositionalism.

"The conjunction of two relations is a relation whose complexes are conjunctions of the
complexes of the original two relations. See |Leo| (2013) for a detailed definition.



3.1 From positionalism to antipositionalism

Can a positionalist express himself in antipositional terms? We will describe
what kind of networks of interrelated complexes a thick and a thin positionalist
can construct, and discuss whether these networks are all acceptable for an
antipositionalist as networks of relations.

From thick positionalism to antipositionalism

Let us first assume you are a thick positionalist. Let R be a relation with posi-
tions p1, ..., p,. Then you can simply create a network of interrelated complexes
as follows. Let & be the complex obtained by assigning a1,...,a, to p1,...,Pn-
Identify the pairs o; = (£, p;) with occurrences of objects in €. If £’ is the com-
plex obtained by assigning by,...,b, to p1,...,pn, then define the assignment
of b1,...,b, to ai,...,a, as a substitution in £ resulting in &’

By repeating the construction for every assignment of objects to the positions
of R, you get a network of complexes interrelated by substitutions.

Figure 6: Translating thick positionalism to antipositionalism.

It is easy to verify that the resulting network of complexes satisfies the Compo-
sition Principle of Antipositionalism.

The construction is adequate for non-symmetric relations, but not for symmetric
relations since in thick positionalism different assignments of objects to positions
always result in different complexes.

A way out could be the use of equivalence classes of complexes to express strict
symmetry of relations. The equivalence classes could be identified with what
the antipositionalist regards as complexes. There is, however, a complication;
not for every relation, occurrences of objects can be defined non-arbitrarily in
set theory in terms of positions, complexes, and objects. This will be discussed
in the last part of this section.



From thin positionalism to antipositionalism

Now assume you are a thin positionalist. Let again R be a relation that comes
with a set of positions. Without any adjustment, the complexes of the relation
already form a network of complexes interrelated by substitutions—at least,
if there are complexes. So, for the translation, we just retain the network of
complexes.

The network of complexes satisfies the Composition Principle of Antiposition-
alism. But is it always acceptable as a relation for the antipositionalist?

If the relation R is not coalescence-free, then it might happen that not all the
complexes are interrelated by substitutions. For example, let R be a ternary re-
lation with only two assignments to its positions py, p2, p3 resulting in a complex,
namely a,a, b and a, b, b, respectively. If the resulting complexes both have only
two occurrences, then the complexes cannot be connected via a substitution.

It may be questionable whether an antipositionalist would regard such a network
of complexes with unconnected parts as a relation. If not, then a thin position-
alist who allows coalescence of occurrences could have relations for which an
antipositionalist has no counterpart.

It is also possible that the thin positional relation has no complexes. So also in
this case a thin positionalist has relations for which there is no antipositional
counterpart.

In all other cases, the relations of the thin positionalist do have an antipositional
counterpart.

Identifying occurrences

As I said in Section a thick positional relation may have distinct complexes
that intuitively should be the same. In translating such a relation to thin posi-
tionalism or antipositionalism, we may want to translate such similar complexes
to the same complex. If so, then the question is how to define the occurrences
of objects for the reconstructed complexes. In particular, we may ask whether
the occurrences can be defined in a non-arbitrary way in terms of the positions,
complexes, and objects of the original or the reconstructed relation.

If in the reconstructed complexes each object occurs at most once, then occur-
rences may simply be defined as ordered pairs (&, a), with £ a reconstructed
complex and a an object. But if we want the reconstructed relation to be
coalescence-free, we have to distinguish different cases.

For coalescence-free relations without strict symmetry, we can define occurrences
in a complex ¢ as ordered pairs (£, p1), ..., (&, pn), with p1,...,p, the positions
of the relation. This is the translation depicted above in Figure [6]

For coalescence-free relations with complete strict symmetry, we can define the
occurrences of an object a in a complex & as triples (£, a,1),...,({, a, k), where
k is the number of positions to which a is assigned to obtain &.

However, for some other strictly symmetric coalescence-free relations, we cannot
define occurrences for certain complexes in a non-arbitrary way in terms of

10



positions, complexes and objects within the context of set theory. This is, for
example, the case for a quaternary cyclic relation for which the complexes may
be depicted as four objects equally spaced on a circle and such that rotating
them over 90° gives the same complex.

Figure 7: Occurrences cannot be reconstructed in a non-arbitrary way.

The proof is given in Appendix [B-2]

3.2 From antipositionalism to positionalism

The name ‘antipositionalism’ suggests that the view is against positions, but it
is certainly not against a reconstruction of this notion within the confines of its
theory.

Reconstructing positions

According to (Fine|2000, p. 29) the antipositionalist can reconstruct positions as
abstracts with respect to the equivalence relation co-positionality, where object a
in state s is co-positional to object b in state ¢ if s results from ¢ by a substitution
in which b goes into a (and vice versa). But this reconstruction is not satisfactory
for cyclic relations, where the objects are arranged clockwise in a circle, because
for such relations all objects in a state are co-positional with each other, and
therefore we would get just one position (Leo|[2008a), p. 357).

Here we will follow a different approach. Let R be an antipositional relation with
an initial complex &y (i.e., a complex from which any complex of the relation
can be obtained by a substitution). Then we could treat the occurrences of
objects in & as positions, but there are more elegant approaches; one makes use
of abstraction and the other of subtraction.

Suppose that we may abstract from the nature of the objects of the occurrences.
Then, by simultaneously abstracting in &y from the nature of the objects of all
occurrences, we get a kind of skeleton complexﬂ What remains of the occur-
rences an antipositionalist may call the positions of the relation.

8 Abstracting from the nature of the objects may be understood as a Cantorian abstraction
(cf. |[Fine| (1998)).

11



Instead of abstracting from the nature of the objects of the occurrences, we may
perhaps also simultaneously subtract the objects from the occurrences. If so,
then the result is again a skeleton complex with ‘empty’ occurrences that can
be taken as positions.

In my view the operation of abstraction and the operation of subtraction are
both quite natural. It’s hard to say what is the best choice. An advantage
of abstraction is that it does not necessarily commit you to the existence of
additional entities. It may be seen as just a way of speaking about a class
of complexes (cf. Russell (2009), pp. 33734)E| In favor of subtraction it may
be argued that substitution is in fact a two-step operation, where in step one
objects are subtracted and in step two objects are added. If so, then subtraction
is an operation we implicitly already had.

>

abstraction/
subtraction

Figure 8: Translating antipositionalism to positionalism.

From antipositionalism to thick positionalism

We start with an antipositional relation R with an initial complex &, and assume
that the operation of abstraction or subtraction yields a skeleton complex ¢ with
reconstructed positions, each corresponding with exactly one occurrence of an
object in &;. Then there is a bijection 7 from the occurrences in &, to the
positions in (.

For an assignment f of objects to the positions, we define as resulting complex
(if it exists) the complex obtained by the substitution 7 - f in &, together with
the positions being occupied by the assigned objects.

The translation may give more complexes than in the original relation. For ex-
ample, if R is the adjacency relation, then the corresponding positional relation
has two positions p1, p2, and for a’s being adjacent to b it has two complexes,
one with p1,ps being occupied by a,b, and another with p;, p2 being occupied
by b, a.

9The occurrences of objects in an initial complex can collectively be used as a representation
of the positions, and all such representations together form a non-arbitrary representation of
the collection of positions. But it should be noted that, as a consequence of what is proved
in Appendix @, it is not always possible for an antipositionalist to identify the positions
individually in a non-arbitrary way with an equivalence class.
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From antipositionalism to thin positionalism

For translating antipositionalism to thin positionalism, we follow the same route,
except that we simply use the original complexes as the complexes for the po-
sitional relation. So we start again with an initial complex &j, and we assume
that by abstraction or subtraction we obtain reconstructed positions and a cor-
responding bijection 7 from the occurrences in &, to the positions. Then, for
any assignment f of objects to the positions, define as resulting complex (if it
exists) the complex obtained by substitution 7 - f in §0H

This completes the translation. To be acceptable for a thin positionalist, the
reconstructed relation must satisfy the Composition Principle of Thin Position-
alism.

This can be proved as follows. Let &, be as in the translation, and let f be
a substitution of objects for the reconstructed positions resulting in a complex
&. Then substitution 7 - f in & results in £ as well. Let p be a co-map of 7 - f.
Then, by the Composition Principle of Antipositionalism, for every substitution
s’ in £,

s’ results in an entity & iff p - s’ is a substitution in &y resulting in £’

By the reconstruction of the positional relation, p - s’ is a substitution in &,
resulting in ¢ iff 771 . (u - s') is a substitution for the positions resulting in &'.
So, because 71 - (- s') = (77t p) - &,
s’ results in ¢ iff (71 - p) - s’ is a substitution for the positions resulting
in &'

From this fact and the observation that 7—! - i is a surjective map from the
positions to the occurrences of objects in £ mapping each position p to an
occurrence of the object substituted by f for p, it follows that 7—! - p is a
co-map of f. This completes the proof.

If a relation has more complexes from which all of its complexes can be obtained
by substitution, then any of them could be chosen for abstracting from the
nature of the objects of the occurrences. As you might expect, the reconstruction
of a positional relation is essentially independent of the choice of &,. More
specifically, the reconstructed sets of positions may perhaps be different for
different choices of &y, but it is not difficult to show that the reconstructed
relations are all the same up to isomorphism.

Nevertheless, there is a subtle complication; in set theory the positions cannot
always be reconstructed ‘neutrally’, i.e., without an arbitrary choice in terms of
the basic ingredients of antipositionalism. This will be shortly discussed at the
end of this section.

A serious restriction of the given reconstructions is that it only works for rela-
tions with an initial complex. But there might be more sophisticated reconstruc-
tions that also work for certain relations without initial complexes. However,
for relations with a variable number of objects in different instantiations, like

10 Although = - f is just a map from the occurrences in & to objects, I identify it here with
a substitution in &p.
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the relation of forming a circle, there may not be equivalent positional rela-
tions. This might mean that antipositionalism is a richer theory that offers
more possibilities than positionalism.

Identifying positions

An interesting question is whether for any antipositional relation with an initial
complex a reconstruction of positions can be made with no arbitrary choices.

For relations without strict symmetry a non-arbitrary reconstruction of positions
is possible. We can, for example, identify a position for such a relation with
the equivalence class of occurrences of objects in initial complexes that can be
mapped to each other by co-maps.

For strictly symmetric relations this reconstruction does not work. For some
strictly symmetric relations there is simply no reconstruction of positions possi-
ble in set theory without an arbitrary choice. This is, for example, the case for
a quaternary cyclic relation for which the complexes may be depicted as four
objects equally spaced on a circle and such that rotating them over 180° gives
the same complex, but rotating them over 90° gives a different complex when
the objects are not all the same.

Figure 9: Positions cannot be reconstructed in a non-arbitrary way.

The proof that for this relation no non-arbitrary reconstruction of positions is
possible is given in Appendix

3.3 Translations back and forth

That positionalism and antipositionalism are translatable into each other is
nice, but it doesn’t say that much. With translations relevant information can
in principle get lost. Therefore it is very interesting to investigate if translations
back and forth yield a structure that is isomorphic to the original relation. If
this is the case, then the translation is really good.

First we translate back and forth starting from a positional relation, and then
we translate back and forth starting from an antipositional relation.

14



From positionalism to antipositionalism and back again

We have the following results:

Claim 1. For a thick positional relation, the translation to antipositionalism
and back gives a reconstructed relation that is the same as the original relation,
up to isomorphism.

This is easy to see. The translation to antipositionalism gives a coalescence-
free network of reconstructed complexes without any strict symmetry, where
the reconstructed complexes correspond one-to-one with the original complexes.
By translating it back to thick positionalism we get a structure of reconstructed
complexes and positions that matches the original relation, up to isomorphism.

Claim 2. For a thin positional relation with at least one coalescence-free sub-
stitution for the positions, the translation to antipositionalism and back gives
a reconstructed relation that is the same as the original relation, up to isomor-
phism.

We may prove this claim as follows. The translation to antipositionalism retains
all complexes and the substitutions between them. Because the original relation
has at least one coalescence-free substitution for the positions, it has an initial
complex &;. We use & for the reconstruction of the positions. Then, for some
bijection 7 from the reconstructed positions to the original positions, any s with
co-map p is a substitution for the reconstructed positions iff 7 - s with co-map
T - i is a substitution for the original positions. This proves the claim.

From antipositionalism to positionalism and back again

A minimal requirement for a translation of an antipositional relation R to posi-
tionalism and back again to result in essentially the same relation as the original
one is that R has an initial complexz, i.e., a complex from which any complex of
the relation can be obtained by a substitution.

Claim 3. For an antipositional relation with at least one initial complex, the
translation to thick positionalism and back gives a reconstructed relation that
is the same as the original relation, up to isomorphism if and only if the original
relation is coalescence-free and without any strict symmetry.

We prove this as follows. Assume that R is an antipositional relation with an
initial complex &y. Furthermore assume that R is coalescence-free and without
any strict symmetry. Translating R to thick positionalism gives complexes be-
ing a combination of the original complexes and positions being occupied by
the assigned objects. Because R is without any strict symmetry, these recon-
structed complexes correspond one-to-one with the original complexes. Because
R is coalescence-free, translating back to antipositionalism gives a network of
complexes in which the complexes have occurrences that correspond one-to-one
to the occurrences in the complexes of R. From this it follows that the recon-
structed relation is the same as the original relation, up to isomorphism.
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The “only if” part of the claim follows because the translation of a thick posi-
tional relation to antipositionalism always gives a coalescence-free relation with-
out any strict symmetry. This completes the proof.

Claim 4. For an antipositional relation with at least one initial complex, the
translation to thin positionalism and back gives a reconstructed relation that is
the same as the original relation.

The proof is straightforward. By translating from antipositionalism to thin
positionalism, the original complexes and the substitutions between them are
fully retained. Translating back to antipositionalism gives as a result again the
original relation.

4 Conclusion

In this paper we compared positionalism and antipositionalism. The main con-
clusion is that, contrary to what the names suggest, the views are not really
opposites of each other. In fact, a specific form of positionalism, which I called
thin positionalism, is very similar to antipositionalism.

In thin positionalism as well as in antipositionalism substitution is taken as a
primitive operation. In thin positionalism we have substitution of objects for
positions of a relation, and in antipositionalism we have substitution of objects
for occurrences of objects in relational complexesE Substitution is in both
cases used to characterize the structure of a relation.

As we have seen, the translations back and forth show that there is a very close
relationship between thin positionalism and antipositionalism. The class of thin
positional relations with at least one coalescence-free assignment of objects to
its positions matches perfectly with the class of antipositional relations with at
least one initial complex; they are translatable into each other without any loss
of information.

In summary, the relationship between thin positionalism and antipositionalism
may be expressed as follows:

1. both views rely upon the notion of substitution, which I regard as a fun-
damental operation for expressing relatedness between complexes;

2. the main difference between the views is that in positionalism the related-
ness between complexes is expressed via positions and in antipositionalism
it is expressed directly between complexes;

3. the views are for a significant range of relations translatable into each
other in a natural way with complete preservation of structure.

What about the standard view? Relations of the same significant range could
also be translated from the standard view back and forth to positionalism and

111n thin positionalism we also have substitutions between complexes, but, as we saw, a
thin positional relation is completely determined by the substitutions for the positions.
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antipositionalism. However, in this case the end result is not necessarily isomor-
phic with the original relation. The reason is that in translating from the stan-
dard view to positionalism or antipositionalism some constitutive information—
namely the order of the arguments—is lost. This puts the standard view apart
from positionalism and antipositionalism

It may go too far to say that thin positionalism and antipositionalism are es-
sentially the same. In thin positionalism, a relation is seen as a universal and
positions belong to the fundamental furniture of the world, whereas in antiposi-
tionalism no ontological commitment to relations as universals and to positions
is needed [

Because antipositionalism is apparently less demanding with respect to ontologi-
cal commitments, I am inclined to regard it as the preferable view. Furthermore,
a strong feature of antipositionalism is that it may accept relations with a vari-
able number of objects involved in the complexes, as in the relation of forming
a group and forming a circle, for which the positionalist may have no equivalent
counterpart.

But there may perhaps be reason for not jumping to the conclusion that antipo-
sitionalism is in every way superior, because a positionalist may accept relations
with no complexes and relations for which the translation to antipositionalism
yields an unconnected network of complexes. Such relations may be unaccept-
able for an antipositionalist.

Despite the differences, 1 consider the agreement between positionalism and
antipositionalism as fundamental. The analysis given in this paper shows that
the views are essentially two sides of the same coin. Therefore I regard the name
‘antipositionalism’ as misleading. A better name might be ‘apositionalism’.
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A Substitution principles

In (Fine [1989] pp. 235-238), Fine made a start for developing a general theory
of constituent structure. The key notion of the theory is the operation of sub-
stitution. A substitution takes an entity & and a map from the occurrences of
entities in ¢ to entities as input, and gives an entity as a result (if any).

Fine gave the following example of a basic principle for the theory:

If F' is the result of substituting E’ for the occurrence e of E within
F, then there is an occurrence ¢’ of E’ within F’ such that the result
of substituting any expression E” for ¢/ within F” is identical to the
result of substituting E” directly for ¢ in F.

12As Kit Fine pointed out to me, whether this means that the two views are genuinely
distinct depends upon one’s willingness to draw a distinction between a kind of entity being
basic or derivative within one’s ontology.
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The notions of substitution and occurrence are taken as primitive.

Because we may simultaneously substitute entities for occurrences, I propose
the following more general principle.

COMPOSITION PRINCIPLE.

Let s be a substitution in an entity £ resulting in an entity &£. Then there is
a surjective map p from the occurrences of entities in £ to the occurrences of
entities in £ such that

1. p maps every occurrence « in £ to an occurrence of the entity substituted
by s for «,

2. for every substitution s’ in £, s’ results in an entity &’ iff pu- s’ is a
substitution in £ resulting in £”,

where - s’ denotes the substitution that maps each occurrence « in £ to the
entity substituted by s’ for u(a).

!

U-s

S E! EU
Figure 10: Composition Principle for Substitutions.

We call a map p with this property a co-map of substitution s.

B Neutral reconstructions

In this appendix we show two things: (1) for some relations, occurrences of
objects cannot be reconstructed set theoretically in a non-arbitrary way in terms
of basic notions of thick positionalism, and (2) for some relations, positions
cannot be reconstructed set theoretically in a non-arbitrary way in terms of
basic notions of antipositionalism.

We will not give a precise definition of non-arbitrariness, but we will give formal
definition of neutrality that obviously any non-arbitrary construction in set the-
ory should fulfill. This notion of neutrality, which was introduced Leo| (2008b)),
is interesting in its own right since it may be more generally applicable for
showing that certain things cannot be modeled in set theory in a non-arbitrary
way.

All reconstructions in this appendix are understood to be within the context of
standard set theory with urelements. Other modeling media may provide more
possibilities.
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B.1 The notion of neutrality

I will define neutrality in the context of set theory with urelements A. The
idea is as follows. Let X and Y be sets. Suppose that Y is constructed in a
non-arbitrary way on the basis of X. Let 7 be a permutation of the urelements
for which replacing in X each occurrence of each urelement a by 7(a) doesn’t
change the set. Then—since all urelements are set-theoretically indiscernible—
replacing in Y each occurrence of each urelement a by 7(a) doesn’t change this
set either.

If Y has the property that each permutation of the urelements that keeps X
unchanged also keeps Y unchanged, then we say that Y is neutral with respect
to X.

The notion of neutrality may in principle be used to show that certain things
cannot be constructed in a neutral way with respect to other things, and we will
do that in the next sections, but first we give a formal definition of neutrality.

Let V[A] be the cumulative hierarchy with urelements A. Any function u : A —
A can be lifted to a function u : V[A] — V[A] in an obvious way:

u(a) = u(a) for any a € A,
w(X) ={u(z) | x € X}.

We may regard u(X) as the result of replacing in X each occurrence of each
urelement a by u(a).

Definition B.1. For XY € V[A] we say that Y is neutral with respect to X if
for any bijection u : A — A,

WX)=X = uY)=Y.

So if A = {a,b}, then any set in V[A] is neutral with respect to {a}, but {a} is
not neutral with respect to {a, b}.

I do not claim that the definition of neutrality completely characterises non-
arbitrariness of a set-theoretic construction, but it should be clear that any
non-arbitrary construction of Y on the basis of X will be neutral with respect
to X.

B.2 Reconstructing occurrences

We will show that not for every positional relation the occurrences of objects in
the complexes can be neutrally reconstructed in terms of positions, complexes,
states, and objects.

Let R be a positional relation for which the states may be depicted as four not
necessarily distinct objects equally spaced on a circle and such that rotating
them over 90° gives the same state.

A set-theoretical positional model for R is a tuple M = (C, S,0, P,T",Q), with
complexes C, states S, objects O, positions P, a map I' from OF to C, and
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a map  from C to S, where I' maps assignments of objects to positions to
complexes, and 2 maps complexes to their corresponding statesE

We assume that C, S, O, and P are mutually disjoint sets of urelements, and
that O has at least four objects.

The symmetry of R can be expressed in terms of the model M as follows.

The set P can be written as {p1, p2, p3, 4} such that for the permutation group
G generated by the map taking p1,p2, 3, pa to p4, p1, P2, 3, we have for every
f,g € OF QI(f)) = QI (9)) iff g = f o7 for some 7 € G.

Let us now try to reconstruct a coalescence-free thin positional or antiposi-
tional model for R with the same states as in R and for each state just one
corresponding reconstructed complex.

For every reconstructed complex & with four distinct objects a, b, ¢, d we may de-
fine its occurrences non-arbitrarily as pairs (£, a), (£,b), (€, ¢), (¢, d), but, if each
complex has four occurrences, then no neutral reconstruction of all occurrences
is possible with respect to M. This can be shown as follows.

Select two objects a and b. Let § : O — O switch the objects a and b and leave
all other objects unchanged. Define u: CUSUOUP — CUSUOUP by:

5(x) ifzeO,
L(dof) if z = I'(f) for some f € OF,
Qb0 f)) ifx=Q(f)) for some f € OF,

T otherwise.

u(z) =

It is not difficult to see that u is a bijection, uou = ideusuour, and u(M) = M.

Let Rabab be the state with objects a, b, a,b arranged in a circle (in that very
order) and let a1, f1, g, B2 be the occurrences of a, b, a,b in the corresponding
reconstructed complex &gpab-

Figure 11: The occurrences cannot be reconstructed in a neutral way.

Now suppose that the occurrences are neutrally reconstructed with respect to
M. More specifically, suppose R has a coalescence-free thin positional or an-
tipositional reconstruction N in V[C'U S U O U P] such that u(N) = N.

130F denotes the set of functions from P to O.
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Then, because u(Rabab) = Rabab and u switches ¢ and b, @(ay) must be an
occurrence of b in the reconstructed complex &.pap. So, either u(ay) = By or

u(ar) = Ba.

Let c,d, e, f be distinct objects in O and let {.qc; be the complex obtained by
substituting ¢, d, e, f for aq, (1, a9, B2 in Eupap. From u(Rabab) = Rabab and
u(N) = N it follows that substituting ¢, d, e, f for u(ay),u(B1), u(az), u(B2) in
Eabab Tesults in Eoqepr as well.

From this it follows that w must preserve the relative order of the occurrences
in £4pqp- This means that either

U maps alv/BlvaZvﬁQ to Bl7a27527a1

or
@ maps ai, B, 00,82 to Ba,a1, 61, 0.

In both cases u(u(a1)) # 1. But, since @ o @ = u o' this contradicts that

uou = idcusuoup-

So we conclude that if each state has just one reconstructed complex and each
complex has four occurrences, then the occurrences cannot be neutrally recon-
structed with respect to M.

B.3 Reconstructing positions

In a similar way as we did for occurrences, we can prove that not for every
relation positions can be neutrally reconstructed in terms of the notions of
antipositionalism.

I will show this again for a cyclic relation, but not for the same one. For an
antipositional relation that holds of objects a, b, ¢, d when a, b, ¢, d are arranged
in a circle (in that very order) it is possible to reconstruct the positions in a
non-arbitrary way. I leave this as an exercise

Let R be an antipositional relation for which the states may be depicted as four
distinct objects equally spaced on a circle and such that rotating them over 180°
gives the same state, but rotating them over 90° does not give the same state.

We assume that each state of R has just one corresponding complex.
The symmetry of R can be expressed as follows.

For every complex £ the occurrences of objects can be written as {a, as, as, aq}
such that for the permutation group G generated by the map taking oy, as, ag, oy
to ag, ay, a1, as, we have for every substitution s, ¢ in &, if s results in a complex,
then £ -s=¢-tiff s =7 -t for some 7 € G.

In Corollary 7.8 of [Leo| (2008b) it is shown that for this relation positions can-
not be neutrally reconstructed in terms of the notions of antipositionalism if

14More generally, for functions u,v : A — A, with A a set of urelements, Wo 7 = w o v. We
prove this by €-induction: (i) If x € A, then wov(z) = uov(z) =uov(z) = wov(zx). (ii) Let
x € V[A] and assume w6 v(z) = 4 o¥(z) for every z € z. Then uov(z) = {uov(z) | z € x} =
{uo®(z) | z€x} =u{v(2) | 2z € 2}) =Uov(z). So, by €-induction, uov =4 o 7.

15A clue to the solution can be found in Example 6.5 of [Leo| (2008b).
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substitution is directly done on objects. Here we show that it is also impossible
when substitution is done on occurrences.

A set-theoretical antipositional model for R is a tuple M = (C, S, O, Oc, 11, ©, ),
with complexes C, states S, objects O, occurrences Oc, a map II from Oc to
O, a partial map © from C x 0% to C, and a map € from C to S, where II
maps occurrences to their objects, © represents the substitutions in complexes
of objects for occurrences, and €2 maps complexes to their corresponding states.

We assume that C, S, O, and Oc are mutually disjoint sets of urelements, and
that each occurrence occurs in only one complex. Furthermore, we assume that
O has at least four objects, and that R holds for any selection of four distinct
objects in O in any order, but not for any other selection.

We call two states siblings if each can be obtained from the other by rotating
the objects over 90°. Furthermore, we call two complexes siblings if their cor-
responding states are siblings, and we call two occurrences siblings if they are
occurrences of the same object in complexes that are siblings. Note that by
our assumptions each state, each complex, and each occurrence has exactly one
sibling.

Define v : CUSUOUOc — CUSUOUDOc by:

sibling of z if x € S,

sibling of z if x € C,
u(z) =9 . :
sibling of z if z € Oc,

T otherwise.

It is not difficult to see that u is a bijection, uou = ideusuoup, and u(M) = M.

Let P = {p1,p2,ps,ps} be reconstructed positions for R and let ¥ be a par-
tial map from OF to S that maps assignments of objects to positions to cor-
responding states. We may assume that the assignment of distinct objects
a,b,c,d to p1,ps2, p3, psa results in the same state as the assignment of ¢, d, a, b to
P1, P2, D3, P4. We denote this state as Rabed.

P3

Figure 12: The positions cannot be reconstructed in a neutral way.

Now suppose that P and ¥ are neutral with respect to M.
Let f be an assignment of a,b, ¢, d to p1,p2, p3, ps. Then 4(f) is the assignment
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of a,b,¢,d o @(p1), @(ps), i(ps), (pa), and
U(E(f) = @W)((f)  because (W) = ¥

=u(¥(f)) because if g: z — y, then u(g): u(x) — u(y)
= sibling of U(f) by the definition of u
= Rdabc.

From this it follows that u preserves the relative order of the positions. This
means that either

U maps pi,p2,P3,P4 tO P2,P3, P4, D1
or

U maps pi,pP2,P3, P4 to DP4,P1,P2,D3-

In both cases u(u(p1)) # p1. But, since u o4 = wowu, this contradicts that
uou = idcusuouoc.

So we conclude that positions for R cannot be neutrally reconstructed with
respect to M.
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