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Abstract

This thesis investigates dynamic polyhedra. We establish the connection between
models of dynamic polyhedra and dynamic Kripke frames. Based on this result, we
introduce a model checker for dynamic models. We demonstrate the application of
PolyLogicAmodel checker on a real-world example from the architectural domain.
Several novel theoretical results are obtained, including the Hennessy-Milner the-
orem for the language of basic modal logic extended by reachability modality γ
and polyhedral completeness for two dynamic logics. The work contributes to the
field of spatial reasoning, bridging theoretical and practical aspects in spatial model
checking for dynamic objects.



Chapter 1

Introduction

This thesis lies at the intersection of two research strains in spatial reasoning. Ini-
tially, they had different motivations. The first was driven more by theoretical in-
terest and the other by applications. The exchange of ideas makes it impossible to
separate the two, combining them into one remarkable line of research called poly-
hedral semantics. We will discuss the story of this direction below and finish this
introduction by explaining what role our thesis fulfils in this story.

History The origins of the connection between spatial structures and logic lie in
the work of McKinsey and Tarski [Tar39] and [MT44]. This work is renowned for
introducing topological semantics, a novel approach to modal logic at that time.
Logical formulas in this setting are interpreted on subsets of topological spaces,
while modal operators “box” and “diamond” are interpreted as interior and closure
of the topology, respectively. Topological semantics has proved to be productive
and fruitful research in spatial reasoning for decades, as seen in an overview article
by van Bentham and Bezhanishvili [BB07]. In recent years, polyhedral seman-
tics has gained increasing interest (see, for example, [Bez+18] and [Ada+22]). In
this semantics, we consider only polyhedra spaces instead of any topological space.
The interpretation of formulas, in this case, can be defined on the subpolyhedra of
a given polyhedron. Within this line of research, interesting completeness results
have been obtained; for instance, the logic of all polyhedra is the well-known modal
system S4.Grz [Bez+18]. Working with polyhedra has many advantages over topo-
logical spaces because polyhedrons can represent real objects. We can approximate
the real objects which can be represented as a polyhedron using the notion of sim-
plicial complex.

For this reason, polyhedral semantics is also interesting for spatial model check-
ing [Cia+14]. In the classic case, model checking methods are used to verify the
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properties of information technology systems to identify and eliminate bugs and er-
rors [BK08]. For this purpose, it is necessary to formulate the mathematical model
of the system and a formal language. The language is used to formulate the prop-
erties of the system. The model checking algorithm is given a mathematical model
and a formula as input. It checks whether the property expressed by the formula is
true either globally or locally in the model. For example, if we work with a con-
current system, the property to be checked might be “the system can never reach
a deadlock.” Polyhedral semantics gives us both the tools for the mathematical
modeling of 2D and 3D images and the formal language for describing their spatial
properties. That is why it becomes a good candidate for spatial model checking. A
project that revealed the possibilities of polyhedral semantics in 3D image analysis
is PolyLogicA1 [Bez+22]. A new bimodal operator γ with the semantics “an area
A is reachable through area B” is introduced. Adding γ to the basic modal lan-
guage makes possible to identify a rich variety of spatial properties of 3D models.
Consider an example of a building. Using γ we are able to formulate a property “an
exit is reachable from room A”. The project PolyLogicA resulted in a prototype
for model checking on 3D models, which was tested on an existing 3D model from
the medical domain. We discuss this prototype in Chapter 4.

Our study We will call static polyhedral semantics the previous research in poly-
hedral semantics , i.e. semantics that describes static objects. Even though this field
still contains some open problems, it can be considered as well-studied. However,
the world is full of dynamic objects, so it is pretty natural to start a new research
direction in polyhedral semantics, namely in the direction of dynamic polyhedral
semantics. The study of dynamic systems and their logic has been a rich research
field of spatial reasoning [ADN97],[Kon+07], [KM07]. We continue this line of re-
search, but instead of topological spaces, we work with polyhedra and dynamics on
them. As well as in the case of static polyhedral semantics, we can take a simplicial
complex that approximates some dynamic object and investigate spatial-temporal
properties of it. Consider, for instance, some emerging situations (e.g. fire spread-
ing in the building). Then at different stages of time, the properties of some regions
in the building might change. For example, at the first moment, it would still be
possible to reach the exit from room A, but at the second moment, it may become
impossible due to the developed conditions. To be able to identify the regions that
will be safe at the next moment, we have to formalize this process with some model
M, formulate the logical formula φ for extracting all the safe points of the model
in the future moment, and input them into the model checker. The first part of our
thesis is devoted to these questions, i.e. the definition of dynamic semantics for

1https://github.com/vincenzoml/VoxLogicA/tree/polyhedra
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polyhedra and providing a model checker for checking spatial-temporal properties
of dynamic models. In the second part of the thesis, we abstract from the models
and concentrate solely on the dynamic systems and their logic.

To use the model checking program on an object, we have to encode this object
in a computer. Thus, we will assume that we work with 3D models and dynamic
3D models. We list the main new results and outcomes of this thesis:

1. An analogue of the Hennessy-Milner theorem for bisimulation on Kripke
frames with modal operator γ is proved (Corollary2.4.11);

2. A connection between the truth of a formula on a dynamic polyhedra and a
dynamic Kripke frame is established (Theorems 3.2.11 and 3.3.14);

3. Correctness and complexity bound of novel model checking algorithms for
dynamic models (Algorithm 1 and Algorithm 2);

4. A utilization of the PolyLogicA prototype on a new example from the archi-
tectural domain (Figure 4.4);

5. A conceptual outline for constructing the model checker for dynamic 3D
models (Section 4.2);

6. A polyhedral completeness result for two logics of dynamic systems (Theo-
rem 5.3.19).

Structure of the thesis In Chapter 2, we provide all the preliminaries. We present
a framework for model checking on the static case of 3D models. Most of the
results are taken from [Bez+22]. The original result obtained in this chapter is
the Hennessy-Milner theorem for bisimulation on Kripke models in a new modal
language with γ. In Chapter 3, we define a semantics of dynamic systems and
provide all the necessary tools for doing model checking on dynamic 3D models.
Then, in Chapter 4, we present a model checking algorithm for our models and
address how a prototype of such a dynamic model checker should be built. In the
same chapter, we present an application of a model checker on a new example from
the architectural domain. Finally, in Chapter 5, we define two dynamic logics DPL
and DRL and prove their polyhedral completeness.
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Chapter 2

Static polyhedral semantics

The main objective of this chapter is to prepare the ground for the following research
on model checking of dynamic 3D models and the logic of dynamic systems. In
the first section, we introduce the concepts related to polyhedra. The second section
defines a language with new reachability modality γ and its semantics on polyhedra.
The third section builds a connection between polyhedra and partial orders, which
we call Kripke frames. This section is finalized with the theorem that establishes
the correspondence between the truth of a formula on polyhedra and the truth of
its encoding, which is a finite Kripke model. This result shows that the problem
of checking the truth of a formula in a polyhedron can be reduced to the problem
of checking the truth of a formula on a Kripke frame. Therefore, defining a model
checking algorithm on the Kripke model is sufficient. Finally, in the last section
of this chapter, we investigate the notion of bisimulation on Kripke frames for the
new language we work with. This research direction is vital for future research on
optimizing the model checking algorithm. Sections 1, 2 and 3 contain mostly the
definitions and results from [Bez+22]; the proofs for most lemmas and theorems can
also be found there. The last section includes a new result on the Hennessy-Milner
property for Kripke frames in the basic modal language with γ.

2.1 Polyhedra

In this section, we recall the definition of a polyhedron, simplexes, simplicial com-
plexes, and triangulation of a polyhedron.

Definition 2.1.1 (Polyhedron). 1. An affine combination of v0, . . . , vd ∈ Rn is
a point λ0v0 + . . . + λdvd, specified by some λ0, . . . , λd ∈ R such that
λ0 + · · ·+ λd = 1.
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Figure 2.1: 0, 1, 2 and 3–dimensional simplexes.

2. A convex combination is an affine combination in which additionally each
λi ⩾ 0.

3. Given a set S ⊆ Rn, its convex hull Conv(S) is the collection of convex
combinations of its elements.

4. A subspace S ⊆ Rn is convex if Conv(S) = S.

5. A polytope is the convex hull of a finite set.

6. A polyhedron P in Rn is a set that can be expressed as the finite union of
polytopes.

Definition 2.1.2. Points v0, . . . , vd ∈ Rn are affinely independent (a.i.) if v1 −
v0, . . . , vd − vd−1 are linearly independent.

Definition 2.1.3. A d-simplex σ is the convex hull of affinely independent points
v0, . . . , vd ∈ Rn.

The number d is called the dimension of σ and v0, . . . , vd are called its vertices.
Since any subset of a.i. points is also a set of a.i. points, thus, its convex hull

is a simplex τ . We call such τ a face of σ (in symbols τ ≼ σ), and call it a proper
face if τ ̸= ∅ and τ ̸= σ.

Simplexes can be seen as the simplest linear convex bounded shapes. A 2-
dimensional simplex is a triangle; a 3-dimensional simplex is a tetrahedron etc. See
figure 2.1 for examples of some simplexes. Note that the two-dimensional faces of a
tetrahedron are triangles (2-dimensional simplexes), which faces are line segments
(1-dimensional simplexes) and points (0-dimensional simplexes).

For our work, it is important to have not only simplexes but also the “internal
part” of them.

Definition 2.1.4 (Relative interior). The relative interior of a simplex σ is the set:

5



σ̃ :=

{
d∑

i=0

λivi ∀i : λi ∈ (0, 1] and
d∑

i=0

λi = 1

}
.

Note that for any non-empty simplex σ, its relative interior will also be non-
empty. For a 0-simplex σ, σ̃ = σ. Observe that a simplex σ can be represented as
the union of the relative interiors of its faces: σ =

⋃
{τ̃ | τ ≼ σ}.

We assume that the reader is familiar with the closure and interior operators in
topological spaces. We denote the closure of a set A by Cl(A) and its interior by
Int(A).

Definition 2.1.5. A simplicial complex K is a finite set of simplexes of Rn such
that:

1. If σ ∈ K and τ ≼ σ, then τ ∈ K (downward closeness);

2. If σ, τ ∈ K, then σ ∩ τ is a face of σ and τ (intersection property).

The support of a simplicial complex K is |K| :=
⋃n

i=1 σi. Note that, by defi-
nition, it is a polyhedron. We say that K is a triangulation of the polyhedron |K|.
A subcomplex K ′ of K is a subset which itself is a simplicial complex.

Lemma 2.1.6. Each point of |K| belongs to the relative interior of exactly one non-
empty simplex in K. That is, K̃ := {σ̃ | σ ∈ K\{∅}} is a partition of |K|.

Proof. See [Bez+22, Lemma 2.4].

We call K̃ a simplicial partition of a polyhedron |K|. The above result justifies
the introduction of the following notation: for x ∈ |K|, let us denote by σ̃x the
unique simplex, such that x ∈ σ̃x. For a given polyhedron P , we will call P ′ a sub-
polyhedron ifP ′ ⊆ P andP ′ is a polyhedron. We denote the set of all subpolyhedra
of P by Sub(P ).

Lemma 2.1.7. Any polyhedron P admits a triangulation that simultaneously tri-
angulates each of any fixed finite set of subpolyhedra. That is, for a collection of
polyhedra P,Q1, . . . , Qm with Qi ⊆ P , there is a triangulation Σ of P such that
KQi triangulates Qi for each i.

Proof. See [RS12, Theorem 2.11].

From now till the end of this section, we fix a polyhedronP and its triangulation
K.

The following lemma shows that every subset of a simplicial complex K gen-
erates a subpolyhedron of P .
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Lemma 2.1.8. If C ⊆ K, then
⋃
C ∈ Sub(P ).

Proof. Take C ⊆ K. Then define D = {σ | ∃τ ∈ C : σ ≼ τ}. By definition, D
is downward closed and D ⊆ K, D also has the intersection property. Thus, D is
a simplicial complex. Observe that |D| =

⋃
C, since σ ≼ τ iff σ ⊆ τ . Therefore,⋃

C ∈ Sub(P ).

The last essential definitions for further discussion are definitions of a continu-
ous function on the topological space and topological path.

Definition 2.1.9. A function f : X → X on a topological space X is called contin-
uous, whenever f−1(U) is an open set for every open U ⊆ X .

Definition 2.1.10. A topological path in a topological spaceX is a continuous func-
tion π : [0, 1] → X , where interval [0, 1] is equipped with the subspace topology
of R.

2.2 Language and semantics

Definition 2.2.1. The modal language L□γ is defined using a set of proposition
letters Prop, whose elements we denote by p, q, r, etc., unary modal operator □
and binary modal operator γ. The well-formed formulas φ of the language L□γ are
defined by the rule:

φ ::= p | ¬φ | φ ∧ φ | □φ | γ(φ,φ)

where p is an atomic proposition from Prop.

Remark 2.2.2. The basic modal language, which contains only the modality □, is
quite limited in its ability to express topological properties. For example, McK-
insey and Tarski showed in [MT44] that the modal logic S4 enjoys completeness
with respect to the class of all topological spaces, the real line, and the Cantor
space. In other words, it does not make a distinction between them. Consequently,
it is common to extend the basic language with additional modalities in order to
make the language more expressive. Shehtman’s work [She99] illustrates how the
introduction of a universal modality allows the formulation of the connectedness
of topological spaces. In our story, we also use a new modality, γ, to capture the
properties of region connectedness in polyhedra.

As we will see from the semantics, the new bimodal operator γ has an analogous
meaning to the modality Until in temporal modal logic [BDV01]. The difference
is that, unlike Until, γ has a spatial rather than a temporal interpretation. We will
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refer to γ as reachability operator, and γ(φ,ψ) is pronounced as “ψ is reachable
by φ”.

Now, having the language fixed, we can define the semantics of our language.

Definition 2.2.3. A tuple E = (P,K, V ) is a polyhedral model, whenever P is a
polyhedron, K is the triangulation of P and V : Prop → U(K), where U(K) =
{
⋃
K̃ ′ | K ′- subcomplex of K}.

The model we defined can be treated as a general topological frame, i.e. a
topological space with a restricted valuation function. In our case, we restrict our
valuation to the elements of U(K). And since U(K) is finite, there can be only
finitely many propositional letters evaluated differently.

Definition 2.2.4. Let E = (P,K, V ) be a polyhedral model. We define inductively
when a formula φ in language L□,⟨R⟩ is satisfied at a point x (notation: E , x ⊨ φ):

E , x ⊨ p ⇐⇒ x ∈ V (p) for p ∈ Prop

E , x ⊨ ¬φ ⇐⇒ E , x ̸|= φ

E , x ⊨ φ ∧ ψ ⇐⇒ E , x ⊨ φ and E , x ⊨ ψ

E , x ⊨ □φ ⇐⇒ x ∈ Int
(
JφKE

)
E , x ⊨ γ(φ,ψ) ⇐⇒ there exists a path π such that

π(0) = x, π(1) ∈ JψKE and π((0, 1)) ⊆ JφKE

where the set JφKE stands for the set of all points in the model E , where φ is true.
We will omit the superscript when its abundance leads to no ambiguity.

For the simplicity of notation, we define ♢φ := ¬□¬φ. Then it is easy to see
that J♢φK = Cl(JφK).

Our next step is to show that not only are propositional letters evaluated on the
elements of the set U(K), but that for every formula φ the truth set JφK is in U(K).
To formulate this result, we need to define a logical equivalence relation on a model
with respect to the formulas of any modal language L∇1,...,∇n .

Definition 2.2.5. Let E = (P,K, V ) be a polyhedral model, and L = L∇1,...,∇n

be a modal language. Logical equivalence ≡L is the binary relation on P such that
x ≡L y if for every formula φ in L:

E , x ⊨ φ⇐⇒ E , y ⊨ φ.

Lemma 2.2.6. Let E = (P,K, V ) be a polyhedral model. Then for each formula,
for each cell σ̃ ∈ K̃, for each points x, y ∈ σ̃, we have that x ≡L□γ

y.
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Proof. We will provide a sketch of the proof. For the full proof, see [Bez+22,
Lemma 3.6]. For the formula □φ, it is sufficient to show that P\Cl(P\JφK) is in
U(K). By inductive hypothesis, JφK is an element in U(K). Since for every τ̃ we
have Cl(τ̃) = τ , then Cl(P\JφK) is the union of elements in K̃. Then it is also in
U(K), and its complement is in U(K) as well. For formula γ(φ,ψ), take the path π
which starts in x, goes through JφK, and finishes at JψK. The general idea is to take
a simplex τ ∋ y, such that τ̃ ⊆ JφK with a point of the path π(r) ∈ τ̃ . Then we can
build a path from y to π(r), such that (y, π(r)) ⊆ τ̃ , and take the tail of the path π,
starting from π(r). Merging these two halves gives us the desired path from y.

We obtain the following proposition:

Proposition 2.2.7. Let E = (P,K, V ) be a polyhedral model. Then for every for-
mula φ in L□γ , we have JφK ∈ U(K).

Proof. We will show that JφK =
⋃

x∈JφK
σ̃x. The non-trivial direction is from right

to left. If x ∈ JφK, then we have that for every y ∈ σ̃x by Lemma 2.2.6. Hence,
⊆ JφK ⊆ σ̃x.

Since each formula is evaluated on the relative interiors of the simplexes in K,
we do not have to consider all the points in our polyhedrons when evaluating the
formula. Instead, we can look only at the elements in K̃, which is essentially finite.
In the next section, we will show how to go from a polyhedron to a relational struc-
ture (a finite graph), which encodes this polyhedron. Then instead of checking the
truth value of a given formula on a polyhedron, we will simply run a model check-
ing algorithm on its relational representation. Such model checking algorithms for
relational structures are well established by now [Bez+22].

We finalize this section with a little investigation of the mutual definability of
operators □ and γ. From the [Bez+22], we know that modality □ can be expressed
using γ.

Proposition 2.2.8. For polyhedral model E = (P,K, V ):

E , x ⊨ □φ iff E , x ⊨ ¬γ(¬φ,⊤).

Proof. See [Bez+22, Theorem 3.8].

However, can γ be expressed using a formula in a language with □? The an-
swer to this question is negative. This result can be established using the theorem
from topological semantics for modal logic. The following theorem can be found
in [BB07, Theorem 5.4].

9
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Figure 2.2: Illustration for the proof of Theorem 2.2
.

Theorem 2.2.9. If (X , V ) is a topological model and f : X → X is an interior
map that preserves and reflects the valuations (i.e. x ∈ V (p) iff f(x) ∈ V (p)),
then f(x) ≡ f(y) iff x ≡ y.

However, for language with operator γ, this result does not hold.

Theorem 2.2.10. There is a polyhedral model E = (P,K, V ) and an interior map
f : P → P which preserves and reflects the valuations (i.e. x ∈ V (p) iff f(x) ∈
V (p)), but it is not the case that f(x) ≡ f(y) iff x ≡ y.

Proof. Take interval [0, 5] and a map f : [0, 5] → [0, 5] between them, such that:

• f([0, 1]) = [2, 3] = f([2, 3])

• f((1, 2)) = (3, 4) = f((3, 4))

• f([4, 5]) = [4, 5]

and f ↾[0,1], f ↾[2,3], f ↾(1,2), f ↾(3,4) and f ↾[4,5] are homeomorphisms. Take
the valuation on V : P → P such that

• V (p) = [0, 1] ∪ [2, 3];

• V (q) = (1, 2) ∪ (3, 4);

• V (r) = (4, 5)

Then f reflect and preserves the valuations, however E , 1 ⊭ γ(¬p, r) but E , f(1) ⊨
γ(¬p, r). Thus, f(1) ≡ f(1), but ¬1 ≡ 3. This is illustrated in figure 2.2.

Therefore, L□γ is more expressive than L□.

10



2.3 Kripke semantics

In the previous section, we demonstrated that logic enables us to study polyhedra
interpreting formulas on the triangulation of a polyhedron. However, this alone does
not shed much light on how to design an algorithm that checks the truth of a formula
in a polyhedron. In the realm of computer science, graph-based representations are
often favoured for defining algorithms. Fortunately, in our case, we can establish a
correspondence between a polyhedron and a finite partial order, which reflects the
truth of all the formulas within our polyhedral model. We start with the definition
of a Kripke model.

Definition 2.3.1. Let ⊑ be a relation onW . We say that ⊑ is a poset relation onW
if it is reflexive, transitive and antisymmetric.

Definition 2.3.2.

1. A Kripke frame is a tuple F = (W,⊑), where W is a set, and ⊑ is a poset
relation on W .

2. We call M = (W,⊑, V ) a Kripke model, where (W,⊑) is a Kripke frame
and V : Prop → P(W ).

For ease of notation, we will sometimes write (F , V ) instead of (W,⊑, V ). We
will call a Kripke frame F = (W,⊑) finite, whenever W is finite.

Remark 2.3.3. Initially, the study of polyhedral semantics started from the side of
intuitionistic logic. That is why only partial orders were needed as frames. And
since we will consider no Kripke frames that are not posets, there is no need to
define them as a set with a relation.

Definition 2.3.4. Let F = (W,⊑, f) be a Kripke frame. We call F ′ = (W ′,⊑′) a
subframe of F , if W ′ ⊆W and ⊑′ is the restriction of ⊑ to W ′.

We will now give some additional definitions and notations related to Kripke
frames.

Definition 2.3.5. We call C ⊆ W a downset if for all x ∈ C if y ⊑ x for some y,
then y ∈ C.

Regarding this definition, we also define an operation ↓ which we call a closure
of a set A ⊆W ,

↓A = {x | ∃y ∈ A : x ⊑ y}.
Since ⊑ is a poset relation, we can also define the height of a frame F (resp.

model M).
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Definition 2.3.6.

1. A chain in W is a set X ⊆W which as a subposet is linearly-ordered;

2. The length of a chain X is |X|;

3. Take any subframe F ′ ⊆ F . A chain X ⊆ F ′ is maximal (in F ′ ) if there is
no chain Y ⊆ F ′ such thatX ⊂ Y (i.e. such thatX is a proper subset of Y ).

4. A chain X is strict if there are no x < y < z such that x, z ∈ X but y /∈ X;

5. The height of F ′ is the element of N ∪ {∞} defined by:

height(F ′) := sup{|X| − 1 | X ⊆W ′ is a chain }/

To define the semantics of formulas in L□γ on Kripke frames, we will introduce
a suitable definition of a path on a Kripke frame that will allow us to find the logical
correspondence between polyhedral models and Kripke models.

Definition 2.3.7 (± - path). Given a Kripke frame F = (W,⊑), let ⊑+ be the
relation ⊑ ∪ ⊒. We say that π : {0, . . . , k} → W is a ± – path if k ≥ 2 and
π(0) ⊑ π(1) ⊑+ π(2) ⊑+ . . . ⊑+ π(k − 1) ⊒ π(k).

This notion is analogous to the one of a continuous path in a polyhedron. Having
this concept, we can interpret the γ operator on our structures.

Definition 2.3.8. Let M = (W,⊑, V ) be a Kripke model, x ∈ W and φ ∈ S.
We define recursively when a formula φ in language L□,γ is satisfied at a point x
(notation: M, x ⊨ φ):

M, x ⊨ p ⇐⇒ x ∈ V (p) for p ∈ Prop

M, x ⊨ ¬φ ⇐⇒ M, x ̸|= φ

M, x ⊨ φ ∧ ψ ⇐⇒ M, x ⊨ φ and M, x ⊨ ψ

M, x ⊨ □φ ⇐⇒ ∀y : x ⊑ y ⇒ M, y ⊨ φ

M, x ⊨ γ(φ,ψ) ⇐⇒ there exists a ±- path π : {0, . . . , k} →W such that

π(0) = x, π(k) ∈ JψKM and π({1, . . . , k − 1}) ⊆ JφKM

where the set JφKM stands for the set of all points in the model M, where φ is true.
We will omit the superscript when its abundance leads to no ambiguity.
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Since every polyhedral model is equipped with a triangulation K, we will use
the face relation ≼ on K to obtain a Kripke frame.

Definition 2.3.9. Let P be a polyhedron and K a simplicial complex. We define a
Kripke frame of P and K as a pair (K̃,≾), such that ≾ is a relation on K̃ s.t.:

σ̃1 ≾ σ̃2 iff σ1 ≼ σ2.

Figure 2.3 illustrates the relationship between a simplex with a trivial triangu-
lation and its Kripke frame.

Definition 2.3.10. Let σ be a simplex. Integer d is a height of simplex σ, whenever
height(↓{σ̃}) = d.

Observe that for d-simplex σ we have that height(σ) = d. We also have that
every simplex of height d is incompatible with other simplexes of height d.

Definition 2.3.11. Let K be a simplicial complex. Then define:

K̃i = {σ̃ | σ i-simplex}

We call K̃i the i-level of K̃.

We also present a useful lemma without proof for working with simplicial com-
plexes.

Lemma 2.3.12. LetK be a simplicial complex and σ, τ ∈ K. Then σ ⪯ τ iff σ̃⪯̃τ̃
iff σ̃ ⊆ Cl(τ̃) iff σ̃ ∩ Cl(τ̃) ̸= ∅.

Proof. See [Bez+22, Lemma A.3].

Lemma 2.3.13. Let P be a polyhedron and K its triangulation. For C a subset of
K̃: C is downset iff

⋃
C ∈ Sub(P ).

Proof. (⇒) If C = {σ̃1, . . . , σ̃n} is downset, then for every σ̃i we have that {τ̃ |
τ̃ ≼ σ̃i} ⊆ C. Then σi ⊆

⋃
C. Hence,

⋃
C =

⋃
D, where D = {σ | σ̃ ∈ C}.

By Lemma 2.1.8 D ∈ Sub(P).
(⇐) Take τ̃ s.t. τ̃ ≾ σ̃ and σ̃ ∈ C. Then by the definition of a polyhedron, we

must have that τ̃ ⊆
⋃
C. Since C consists of pairwise disjoint elements, we have

that τ̃ ∈ C.

To define a model M(E) from a polyhedral model E , we have to define function
V : Prop → P(K̃).

13
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ac

abc

Figure 2.3: Here you can see how a simplex abc consisting of the relative inte-
riors of abc, ac, ab, bc, a, b, c can be represented by a relational structure (which
is a poset) whose points are the same relative interiors. The nodes in the bottom
row represent the zero-dimensional simplexes (i.e. the vertices), the middle row
the one-dimensional simplexes (i.e. the line segments) and the top row of the two-
dimensional simplexes (i.e. the triangles).

Definition 2.3.14. Given a polyhedral model E = (P,K, V ), we define its encoding
M(E) = (K̃,≾, Ṽ ), in the following way:

• (K̃,≾) is a Kripke frame of P and K from definition 2.3.9;

• Ṽ (p) = σ̃, whenever σ̃ ⊆ V (p).

As the reader can see, the model M(E) reflects the truth of the propositional
letter in E . Thus, to check the truth of a modal formulaφ on E , we need the following
theorem.

Theorem 2.3.15. Let E = (P,K, V ) be a polyhedral model. Then for every x ∈ P
and every formula φ in S we have

E , x ⊨ φ⇐⇒ M(E), σ̃x ⊨ φ.

Proof. Here we will present only the sketch of the proof. The full proof can be
found in [Bez+22, Theorem 4.4].

For the case □φ, assume that x /∈ Cl(J¬φK).
Then by Proposition 2.2.7 we have that x /∈ {τ | τ̃ ⊆ JφKE}. By lemma 2.3.12

it follows that ¬(σ̃x ≾ τ̃) for every τ̃ ⊆ J¬φKE . So by the proposition 2.2.7 we
have that if σ̃x ≾ τ̃ , then τ̃ ⊆ JψKM(E). In other words, M(E), σ̃x ⊨ □φ. Since
the equivalences hold in both directions, the result follows.

For the case γ(φ,ψ) [Bez+22] first introduces the notion of piecewise linear
paths (PL-paths), i.e. paths consisting of several merged intervals. With this no-
tion it is proved E), x ⊨ γ(φ,ψ) if there exists a PL-path π such that π(x) = 0,
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π((0, 1)) = JφKE and π(1) ∈ JψKE . Then it is shown that every PL-path can be
divided into intervals such that each interval lies within a relative interior of some
simplex. After that, the proof is straightforward since for every ±-path, we can
construct a PL-path in our polyhedron, and every PL-path corresponds to a ±-path
in M(E).

This is a key result for us. Now it is sufficient to define a model checking
algorithm on arbitrary encodings since it is sufficient to check the truth of a for-
mula on its encoding M(E) to check whether E , x ⊨ φ for a polyhedral model
E = (P,K, V ). And this is a much easier task than the first one. However, we need
to define the algorithm itself. We will deal with this question in chapter 4.

2.4 Simplicial Bisimulation

In [Bez+22], the authors also explore the concept of bisimulation for polyhedral
models. The key idea is to identify spatially equivalent regions before applying
model checking. This will lead to the improvement of the performance of geo-
metric spatial model checking by simplifying the triangulation of the polyhedron
[Cia+23]. Similar to the classical approach to research on bisimulation, the au-
thors establish the connection between bisimulation and logical equivalence, i.e.
Hennessy-Milner result for bisimulation [BDV01]. Our research follows a simi-
lar trajectory but focuses on Kripke frames. Since the model checking algorithm is
defined on the Kripke model, it makes sense to simplify the encoding of the polyhe-
dral model. First, we present the definition of simplicial bisimulation for polyhedral
models, along with two key results concerning logical equivalence. We then present
the definition of simplicial bisimulation for Kripke frames with a reachability op-
erator and prove the Hennessy-Milner result for the language under consideration.
The second subsection consists only of original definitions and results that have not
yet been considered.

NB: in the current section, we work with the logical equivalence for language
L□γ , and instead of ≡L□γ

we write ≡.

2.4.1 Simplicial Bisimulation on Polyhedra

To accommodate the addition of the reachability operator in the logical language,
the definition of bisimilarity incorporates the point-wise lifting of a relation to a
path, which is formally defined below. Throughout the following discussion, let us
consider a fixed polyhedral model E = (P,K, V ).
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Definition 2.4.1. Given a relation R ⊆ P × P , let the R extension to paths be
a binary relation between paths R̂ such that π1R̂π2 if for all t ∈ [0, 1] we have
π1(t)Rπ2(t).

Definition 2.4.2. A binary relation ∼⊆ P ×P is a simplicial bisimulation if for all
x, y with x ∼ y :

1. for all p ∈ Prop, x ∈ V (p) ⇐⇒ y ∈ V (p);

2. for each simplicial path πx such that πx(0) = x, there is a simplicial path πy
with πy(0) = y and πx∼̂πy;

3. for each simplicial path πy such that πy(0) = y, there is a simplicial path πx
with πx(0) = x and πx∼̂πy;

The largest simplicial bisimulation, if it exists, is called simplicial bisimilarity.

Theorem 2.4.3. Logical equivalence is a simplicial bisimulation.

Proof. See Theorem 6.3 in [Bez+22].

Theorem 2.4.4. Each simplicial bisimulation is included in logical equivalence.

Proof. See [Bez+22, Theorem 6.4].

Corollary 2.4.5. In a polyhedral model, the largest simplicial bisimulation always
exists and coincides with logical equivalence.

2.4.2 Simplicial Bisimulation on Kripke frames

We will now delve into the study of simplicial bisimulation on Kripke frames and
address the notion of path equivalence, which must be analogous to the definition
of 2.4.1. The challenge for Kripke models lies in the presence of a notion of the
length of a path. While in topological spaces we have no notion of the length of a
path, and any path can be ‘stretched’ as far as one needs to, each path in a Kripke
frame is a map from a finite subset of N. Consequently, it is difficult to determine
equivalent paths of different lengths. This problem can be solved by introducing
the concept of “path extension”.

Definition 2.4.6. Suppose π : {0, . . . , k} → W is a ±-path on a Kripke model

M = (W,⊑, V ). If r0, . . . , rk ∈ N and n =
k∑

i=0
ri, then an extension of a path π

is a path π′ : {0, . . . , n} →W s.t.:
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1 2 3

1 2 3 4 5 6 7

Figure 2.4: Example of the extension of a path.

1. rng(π) = rng(π′);

2. π′({ki−1 + 1, . . . , ki}) = π(i), for i > 0

and π′({0, . . . , k0}) = π(i), for i = 0.

where ki =
i∑

j=0
rj .

Clearly, even the shortest path π : {0, 1, 2} → W has infinitely many exten-
sions. For exampleπ′ : {0, 1, 2, 3, 4, 5, 6, 7} →W whereπ(1) = π′({1, 2, 3, 4, 5, 6})
and thus r0 = 0, r1 = 6, r2 = 0. To get the intuition, see the figure 2.4. Since our
Kripke frames are reflexive, we have that an extension can be obtained by making
finitely many “jumps” on each point.

Now we can define what it means for paths to be equivalent i.e., definition anal-
ogous to 2.4.6.

Definition 2.4.7. Let R be a relation on W . We call Ṙ an extension of R to paths
if π1Ṙπ2 iff :

• there is an extension π′ of π1, s.t. for all t ∈ dom(π2) : π
′(t)Rπ2(t);

or

• there is an extension π′ of π2, s.t. for all t ∈ dom(π1) : π1(t)Rπ
′(t).

Observe that this definition covers two cases: when path π1 is shorter than π2
and vice versa, namely when π2 is shorter than π1.

Now we can define simplicial bisimulation on Kripke frames.

Definition 2.4.8. Suppose M = (W,⊑, V ) is a Kripke model.
A relation ∼⊆ W ×W is a Kripke simplicial bisimulation if for all x, y ∈ W

such that x ∼ y:

1. x ∈ V (p) iff y ∈ V (p) for all p ∈ V ar;
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2. if πx : {0, . . . , k} → W is a ± - path, s.t. πx(0) = x, then there exists ± -
path πy : {0, . . . , k′} →W s.t. πy(0) = y and πx∼̇πy.

3. if πy : {0, . . . , k} → W is a ± - path, s.t. πy(0) = y, then there exists ± -
path πx : {0, . . . , k′} →W s.t. πx(0) = x and πx∼̇πy.

If x ∼ y, we shall call such points bisimilar.

Since the Kripke models we are interested in are always finite due to the finite-
ness of each triangulation, we will only consider finite Kripke models. This restric-
tion allows us to connect simplicial bisimulation on Kripke frames very neatly to
logical equivalence. First, we prove that bisimulation between two points implies
logical equivalence.

Theorem 2.4.9. If two points in a finite Kripke model are simplicially bisimilar,
they are logically equivalent.

Proof. Assume that x ∼ y. We have to show that x ≡ y.
We will prove this statement by induction on the complexity of formula φ. The

case for propositional letters follows from the definition 2.4.8. Cases of Boolean
connectives are trivial. Since modality□ can be expressed using γ, we will consider
only the case for γ.

We have to show that M, x ⊨ γ(φ,ψ) if and only if M, y ⊨ γ(φ,ψ). The
proofs of both directions are analogous, so we will prove only the ⇒ direction.

Assume that M, x ⊨ γ(φ,ψ). Then there is a path πx : {0, . . . , k} →W , such
that πx(x) = 0, πx({1, . . . , k−1}) ⊆ JφK and πx(k) ∈ JψK. Since x ∼ y, we have
that there is a path πy : {0, . . . , k′}, such that πy(0) = y and πx∼̇πy. Therefore,
there are two cases:

• there is an extension π′ of πx, s.t. for all t : π′(t) ∼ πy(t);

or

• there is an extension π′ of πy, s.t. for all t : πx(t) ∼ π′(t);

Let us consider the first case. We obtain that for every t ∈ dom(π′) there exists
i ∈ {1, . . . , k}:

• either i < k and π′(t) = π(i) and therefore by inductive hypothesis we have
M, πy(t) ⊨ φ;

• or i = k and π′(t) = π(k) and again by inductive hypothesis: M, πy(t) ⊨ ψ.

18



Hence, we have that πy({1, . . . , k′ − 1}) ⊆ JφK and πy(k′) ∈ JψK. Therefore,
M, y ⊨ γ(φ,ψ).

In the second case, when there is an extension π′ of πy, such that for all t it
holds that πx(t) ∼ π′(t), then we obtain directly by the inductive hypothesis that
πx({1, . . . , k − 1}) ⊆ JφK and πx(k) ∈ JψK. We conclude that M, y ⊨ γ(φ,ψ).

This is the least condition that we always require from bisimulation. Having it,
we justify our definition of bisimilarity. Now we will prove a slightly more compli-
cated theorem: logical equivalence is bisimulation. This can be seen as the main
original result of the chapter, which draws a line below the bisimulation research
initiated in [Bez+22].

Theorem 2.4.10. Logical equivalence on a finite Kripke model is Kripke simplicial
bisimulation.

Proof. Suppose that x ≡ y. Then clearly, the first item of definition 2.4.8 holds.
Let us show that the second item holds as well. We omit the proof of the third item
since it is analogous to the second one.

Suppose that πx : {0, . . . , k} → W is a ± - path, s.t. πx(0) = x. We will
prove by induction on k that there exists a path ± - path πy : {0, . . . , k′} → K̃ s.t.
πy(0) = y and πx≡̇πy.

Base: k=2
If πx : {0, 1, 2} → K̃, take classes of equivalence C1 and C2 s.t. πx(1) ∈ C1

and πx(2) ∈ C2. Since our model is finite, every class of equivalence Ci is charac-
terized by some formula φi. Take φ1, φ2 that characterize C1 and C2 respectively.
Then M, x ⊨ γ(φ1, φ2). By assumption we have that M, y ⊨ γ(φ1, φ2), i.e. there
is a ± - path πy : {0, . . . , k} →W s.t. πy(0) = y, πy({1, . . . , k− 1}) ⊆ Jφ1K and
πy(k) ∈ Jφ2K. Now we have to check, whether πx≡̇πy. Let us take the extension
π′x of πx s.t. π′x : {0, . . . , k} →W and:

π′x(t) =


x, if t = 0

πx(1), 1 ≤ t < k

πx(2), t = k

By the definition of this path, we have that π′x({1, . . . , k − 1}) ⊆ Jφ1K and
π′x(k) ∈ Jφ2K. Therefore, for every t ∈ {0, . . . , k}: π′x(t) is in the same equiva-
lence class as πy(t).

Step k ↷↷↷ k+ 1:
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Suppose that for every path πx of length k from x we can find a path πy from
y, such that πx≡̇πy. Now let us show that this also holds for every path of length
k + 1.

Suppose πx : {0, . . . , k, k+1} →W is a path s.t. πx(0) = x. Let us take path
π′x : {0, . . . , k} →W s.t. π′x = πx ↾ {0, . . . , k}. By induction hypothesis we have
that there is a path π′y : {0, . . . ,m} → W s.t. π′y(0) = y and π′x≡̇π′y, i.e. there
is an extension π′′ of π′x s.t. ∀t : π′′(t) ≡ π′y(t), or π′′ is an extension of π′y and
∀t : π′x(t) ≡ π′′(t).

Let us consider the first case when there is an extension π′′ : {0, . . . ,m} →W
of π′x, s.t. ∀t ∈ dom(π

′
y) : π′′(t) ≡ π′y(t). By the definition of extension there

are r0, . . . , rk, s.t.
k∑

i=0
ri = m with the conditions from definition 2.4.6. Then

we have that π′′(m) ≡ π′y(m) and at the same time π′′(m) = π(k). Take a path
π̂x : {0, 1, 2} →W , s.t.:

π̇x(z) =

{
π(k), if z = 0, 1;

π(k + 1), if z = 2.

Use the reasoning from the base case on points π(k), π′y(m) and path π̂x. We
obtain that there is a path π̂y : {0, . . . , t} →W s.t. π̇x≡̇π̂y. Then by definition there
exists an extension π∗ : {0, . . . , t} →W of π̇x with r′0, r′1, r′2, s.t. r′0+r′1+r′2 = t,
again with the conditions from definition 2.4.6.

Thus, let us take πy : {0, . . . ,m+ t+ 1} →W defined in the following way:

πy(z) =

{
π′y(z), if z ∈ {0, . . . ,m};
π̇y(z −m− 1), if z ∈ {m+ 1, . . . ,m+ t+ 1}.

Now let us take r∗0 = r0, . . . , r
∗
k−1 = rk−1, r

∗
k = rk + r′0 + r′1, r

∗
k+1 = r′2 and

define π∗x:

• π∗x({k∗i−1, . . . , k
∗
i }) = πx(i), for i > 0;

• π∗x({0, . . . , k∗0}) = πx(0), for i = 0,

where k∗j =
j∑

i=0
r∗i .

Then π∗x is an extension of πx. Note that the length of πy is the same as the
length of π∗x, namely m + t + 1, and by construction ∀t : πy(t) ≡ π∗x(t). We
conclude that πx≡̇πy.
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Assume that we are in the second case, when: π′′ : {0, . . . , k} → W is an
extension of π′y, s.t. ∀t ∈ dom(π

′
x) : π

′
x(t) ≡ π′′(t). First, fix again r0, . . . , rk, s.t.

k∑
i=0

ri = k with the properties from definition 2.4.6.

Now define again a path π̇x(z), s.t.:

π̇x(z) =

{
π(k), if z = 0, 1;

π(k + 1), if z = 2.

and use the base case reasoning on points π(k), π′′(k) and path π̇x. We obtain:

• Path π̇y : {0, . . . , t} →W

• Extension π∗ : {0, . . . , t} →W of π̇x;

• r′0, r′1, r′2 ∈ N, s.t. r′0 + r′1 + r′2 = t and conditions from definition 2.4.6.

We can define now πy : {0, . . . , k + t+ 1} →W in the following way:

πy(z) =

{
π′′(z), if z ∈ {0, . . . , k};
π̇y(z − k − 1), if z ∈ {k + 1, . . . , t+ k + 1}.

Then, let us take r′1, r′2, r′3 ∈ N and extension π∗x of πx, s.t. π∗x : {0, . . . , k +
t+ 1} →W , where:

π∗x(z) =

{
πx(z), if z ∈ {0, . . . , k}
π∗(z − k − 1), if z ∈ {k + 1, . . . , t+ k + 1}.

Note that the length of πy is the same as the length of π∗x, namely k+t+1. Thus,
by construction: ∀t ∈ dom(πy) : π

∗
x(t) ≡ πy(t). We conclude that πx≡̇πy.

We conclude this chapter with the following corollary:

Corollary 2.4.11. In a finite Kripke model, the largest simplicial bisimulation al-
ways exists, coinciding with logical equivalence.

Proof. Straightforward from Theorems 2.4.9 and 2.4.10.

We conclude this section by summarizing the result of the chapter.

21



• We defined the central geometric notions for this work: polyhedron, triangu-
lation, and simplexes.

• We introduced the languageL□γ and provided the semantics for this language
on polyhedral models.

• We defined the notion of a Kripke frame and explained how to construct a
Kripke encoding for a polyhedral model.

• We proved that every formula that is true in a point x in a polyhedral model
E if and only if it is true in σ̃x in the encoding M(E) of E .

• We introduced a self-developed definition of simplicial bisimulation on finite
Kripke frames for formulas in the language L□γ and proved for the first time
the Hennessy-Milner result for it.
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Chapter 3

Modelling polyhedral dynamics

In this chapter, we extend our framework to the setting of dynamic systems and
dynamic frames. This direction of research lies in the domain of spatial-temporal
logic. This topic has been widely studied before, especially from the side of topo-
logical spaces. In [ADN97], the authors extend the basic modal logic language
with a temporal modal operator “next” and obtain interesting completeness results.
This research direction was taken further by Kremer and Mints [KM07], where the
“henceforth” operator was added to the logic. A broad perspective on this field was
also presented in [Kon+07]. In our case, we extend language L□,γ with modal-
ity “next” while also changing the underlying structures from topological spaces to
polyhedra. Following the strategy outlined in sections 1-3 of the previous chapter,
we will show that it is possible to reduce the question of the truth of a formula in our
dynamic model to the question of the truth of a formula on a dynamic finite Kripke
model, which we will call its encoding.

3.1 Dynamic Polyhedral semantics

In previous works on dynamic semantics, such as [ADN97] and [KM07], authors
used a functional relation R to model the dynamics. Thus, if a proposition p is true
at a point R(x), p will be true at x at the next moment. In other words, this means
that x ∈ J⟨R⟩pK iff R(x) ∈ JpK iff x ∈ R−1(JpK). Thus, we arrive at the following
equation:

J⟨R⟩pKP = R−1(JpKP )

However, we want to keep our dynamics definition as general as possible. That
is why we will waive the functionality requirement of relation R.
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Definition 3.1.1. Let P be a polyhedron with triangulation K, and R be a relation
on P . Then:

1. D = (P,K,R) is a dynamic system;

2. O = (P,K,R, V ) is a dynamic model, whenever (P,K, V ) is a polyhedral
model.

For ease of notation, we will sometimes write (D, V ) instead of writing in full
(P,K,R, V ).

We will now define a new modal language and its models.

Definition 3.1.2. The modal language Lγ,⟨R⟩ is defined as the language L□γ ex-
tended with a unary modal operator ⟨R⟩. The well-formed formulas of the language
Lγ,⟨R⟩ are defined by the rule:

φ ::= p | ¬φ | φ ∧ φ | □φ | γ(φ,φ) | ⟨R⟩φ

where p is an atomic proposition from Prop.

The new modality ⟨R⟩ is analogous to♢, and we define [R]φ := ¬⟨R⟩¬φ. Indeed,
our operator ⟨R⟩ models the relation R in the definition of a dynamic system.

Definition 3.1.3. Suppose O = (P,K,R, V ) is a dynamic model. We define re-
cursively when a formula φ in the language Lγ,⟨R⟩ is satisfied at a point x (notation:
O, x ⊨ φ):

O, x ⊨ p ⇐⇒ x ∈ V (p) for p ∈ Prop

O, x ⊨ ¬φ ⇐⇒ O, x ̸|= φ

O, x ⊨ φ ∧ ψ ⇐⇒ O, x ⊨ φ and O, x ⊨ ψ

O, x ⊨ □φ ⇐⇒ x ∈ Int
(
JφKO

)
O, x ⊨ γ(φ,ψ) ⇐⇒ there exists a path π such that

π(0) = x, π(1) ∈ JψKO and π((0, 1)) ⊆ JφKO

O, x ⊨ ⟨R⟩φ ⇐⇒ x ∈ f−1(JφKD).

As before, JφKO is the set of all points of P where φ is true.

We also define global truth in our models.

Definition 3.1.4. We will say that φ is globally true in a dynamic model O =
(P,K,R, V ) (notation: O ⊨ φ) if for every point x ∈ P : O, x ⊨ φ.
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In the previous chapter, the main result is Theorem 2.3.15, which relates the
truth of formulas on a polyhedral model E and with the truth of formulas on its
encoding M(E). However, this result would not be possible without showing that
JφKM(E) is the union of relative interiors of simplexes. That is why our primary goal
for this section is to prove the same result for our dynamic models. Since the only
difference between dynamic models and polyhedral models is the additional relation
R, we have to show that J⟨R⟩φKO is the union of relative interiors of simplexes. It
is clear that not every relationR will have this property. Then we have to restrictR
to obtain the desired result. Following the tradition of defining dynamic relations
as a function, we begin our investigation with the notion of polyhedral function.

Definition 3.1.5. LetP be a polyhedron andK its triangulation. DefineSubK(P ) ⊆
Sub(P ) as:

P ′ ∈ SubK(P) iff P′ = |K ′| for some K ′ subcomplex of K.

Definition 3.1.6. Let P be a polyhedron and K its triangulation. We call f : P →
P a polyhedral map, whenever f is continuous and f−1(P ′) ∈ SubK(P ) for every
P ′ ∈ SubK(P ).

We have a useful technical lemma.

Lemma 3.1.7. LetP be a polyhedron andK its triangulation. ThenP ′ ∈ SubK(P )
iff there is a downset C ⊆ K̃ such that P ′ =

⋃
C.

Proof. The right-to-left direction is trivial. Let us prove left to right. Assume P ′ ∈
SubK(P ). ThenP ′ = |K ′| for someK ′ ⊆ K. TakeD = {τ̃ | ∃σ ∈ K ′ : σ̃ ≾ τ̃}.
Then D is downclosed and

⋃
D = |K ′|.

To have a result analogous to Proposition 2.2.7, we need somewhat stronger:
that a preimage of an element ofU(K) is inU(K). The following lemma establishes
this property.

Lemma 3.1.8. Let P be a polyhedron, K its triangulation, and f : P → P a
polyhedral map. Then for every σ̃ ∈ K̃ yields f−1(σ̃) =

⋃
{δ̃ | f(δ̃) ⊆ σ̃}.

Proof. We proceed by induction on levels of K̃.
Case: 0-level.
Take σ̃ ∈ K̃0. Then σ̃ is a 0 -simplex and σ̃ = σ. Since f is polyhedral,

f−1(σ̃) = |K ′| such that f−1(σ̃) ∈ SubK(|K|). By Lemma 3.1.7, it follows that
there is a downset C ⊆ K̃ such that

⋃
C = |K ′|. Thus, f−1(σ̃) =

⋃
C, and

therefore for every δ̃ ∈ C we have f(δ̃) ⊆ σ̃.
Case: i-level.
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Suppose that for all levels l < i holds that if θ̃ ∈ K̃l, then f−1(θ̃) =
⋃
{δ̃ |

f(δ̃) ⊆ σ̃}. Take σ̃ ∈ K̃i. Then f−1(σ) = |K ′| such that f−1(σ) ∈ SubK(P ).
At the same time we have that σ = σ̃ ∪

⋃
D, where D = {τ̃ | τ̃ ≾ σ̃, τ̃ ̸= σ̃}.

Then clearly, if τ̃ ∈ D, then τ ∈ Kl for some l < i. So, we have that f−1(σ) =
f−1(σ̃ ∪

⋃
D) = f−1(σ̃) ∪

⋃
f−1(D)1. Thus, f−1(σ̃) = |K ′|\

⋃
f−1(D). To

show the desired equality, observe that
⋃
{δ̃ | f(δ̃) ⊆ σ̃} ⊆ f−1(σ̃).

To show the other inclusion, take x ∈ f−1(σ̃). Then x ∈ |K ′| and x /∈⋃
f−1(D). Take σ̃x. We will show that σ̃x ⊆ f−1(σ̃). First, let us check that

σ̃x ⊆ |K ′|. Since x ∈ |K ′|, then there is a simplex τ ∈ K ′ such that x ∈ σ̃x ∩ τ .
By Lemma 2.3.12 it yields σx ≼ τ , and therefore σ̃x ⊆ |K ′|. Assume that
σ̃x ∩

⋃
f−1(D) ̸= ∅. Then there is δ̃ ∈ D such that σ̃x ∩ f−1(δ̃) ̸= ∅. By

the condition on elements inD we obtain that f−1(δ) =
⋃
{θ̃ | f(θ̃) ⊆ δ̃}. Hence,

σ̃x ∈ {θ̃ | f(θ̃) ⊆ δ̃}. But then we have that x ∈
⋃
f−1(D), which contradicts

our assumption. We conclude that σ̃x ⊆ f−1(σ̃), and therefore x ∈
⋃
{δ̃ | f(δ̃) ⊆

σ̃}.

Let us now introduce an adjusted definition of dynamic systems and models,
and instead of taking any relation R, take a polyhedral function.

Definition 3.1.9.

1. Let D = (P,K,R) be a dynamic system. If R is a polyhedral function, we
will call D a dynamic polyhedral structure.

2. If O = (D, V ) is a dynamic model, with D being a dynamic polyhedral
structure, then we will call O a dynamic polyhedral model.

From now on, we will continue working with dynamic polyhedral models and
systems, specifying particular cases when R is not polyhedral. For the simplicity
of notation, we will write f instead of R when R is functional. So, now our goal is
to prove that an analogue of Proposition 2.2.7 holds for dynamic polyhedral models
and formulas in language Lγ⟨R⟩.

Lemma 3.1.10. Let O = (P,K, f, V ) be a dynamic polyhedral model. For each
cell σ̃ ∈ K̃, for all points x, y ∈ σ̃, it is true that x ≡Lγ,⟨R⟩ y.

Proof. The proof is by induction on the complexity of a formula. The case of propo-
sitional letters follows by definition. The cases of boolean operators are trivial. The
cases of □φ and γ(ϖ,ψ) is the same as for formulas □φ and γ(ϖ,ψ) in Lemma
2.2.6, that is why we prove only the case for ⟨R⟩φ.

1We slightly abuse the notation here: f−1(A) =
⋃
{f−1(x) | x ∈ A}.
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Take an element σ̃ ∈ K̃ and x, y ∈ σ̃. Suppose that E , x ⊨ ⟨R⟩φ. Then
x ∈ f−1(JφK). Take f(x) ∈ JφK. Then f(x) ∈ τ̃ for some τ̃ ∈ K̃. Let us show that
f(y) ∈ τ̃ , then by inductive hypothesis we will have that y ∈ f−1(JφK). By Lemma
3.1.8 yields f−1(τ̃) =

⋃
{δ̃ | f(δ̃) ⊆ τ̃}. Therefore, x ∈

⋃
{δ̃ | f(δ̃) ⊆ τ̃}. Thus,

x ∈ δ̃ for some f(δ̃) ⊆ τ̃ . Since K̃ is a set of pairwise-disjoint elements, it follows
that δ̃ = σ̃. Hence, f(y) ∈ JφK.

So, the desired result follows.

Proposition 3.1.11. Let O = (P,K, f, V ) be a dynamic polyhedral model, and φ
a formula in Lγ□. Then JφKO ∈ U(K).

Proof. Similar to the proof of Theorem 2.2.7.

3.2 Dynamic Kripke frames

The following section defines dynamic Kripke frames and establishes the corre-
spondence between them and dynamic polyhedral systems. Our basic definition
differs slightly from the definition of dynamic Kripke frames in classical papers on
dynamic logics such as [KM07]. The main difference is that we do not require ad-
ditional properties on our relation R. However, as we will see, the dynamic Kripke
frame from [KM07] will be a special case of our dynamic frames. In the second
half of this section, we will explain how to construct an encoding of a dynamic
polyhedral model and then conclude this section with a theorem analogous to the
theorem 2.3.15.

As in the previous section, we first give a very general definition of dynamic
Kripke frames.

Definition 3.2.1.

1. A dynamic Kripke frame is a tuple Fd = (W,⊑, R), where (W,⊑) is a
Kripke frame and R is a binary relation on W .

2. A dynamic Kripke model is a tuple Md = (W,⊑, R, V ) such that (W,⊑, R)
is a dynamic Kripke frame and (W,⊑, V ) is a Kripke model.

For the ease of notation, we will sometimes write (Fd, V ) instead of (W,⊑
, R, V ).

The semantics of formulas in Lγ,⟨R⟩ is defined as follows:
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Definition 3.2.2. Let Md = (W,⊑, R, V ) be a dynamic Kripke model and x ∈W .
We define recursively when a formula φ in language Lγ,⟨R⟩ is satisfied at a point x
(notation: Md, x ⊨ φ):

Md, x ⊨ p ⇐⇒ x ∈ V (p) for p ∈ Prop

Md, x ⊨ ¬φ ⇐⇒ Md, x ̸|= φ

Md, x ⊨ φ ∧ ψ ⇐⇒ Md, x ⊨ φ and Md, x ⊨ ψ

Md, x ⊨ □φ ⇐⇒ ∀y : x ⊑ y ⇒ Md, y ⊨ φ

Md, x ⊨ γ(φ,ψ) ⇐⇒ there exists a ±- path π : {0, . . . , k} →W such that

π(0) = x, π(k) ∈ JψKM
d

and π({1, . . . , k − 1}) ⊆ JφKM
d

Md, x ⊨ ⟨R⟩φ ⇐⇒ x ∈ R−1(JφKM
d
).

As before, JφKMd is the set of all points in Md, where φ is true.

Definition 3.2.3. Let Md = (W,⊑, R, V ) be a dynamic Kripke model. We will
say that φ is globally true on Md (notation: Md ⊨ φ), if for every point x ∈ W :
Md, x ⊨ φ.

We must impose some restrictions on the relations we consider to find a cor-
respondence between dynamic polyhedral structures and dynamic Kripke frames.
Let us consider the class of monotone functions.

Definition 3.2.4. Let F = (W,⊑) be a Kripke frame, and f : W → W be a
function. Then we call f a monotone function on F , if x ⊑ y implies f(x) ⊑ f(y).

Definition 3.2.5. Let Fd = (W,⊑, R) be a dynamic Kripke frame, then:

1. We call Fd a monotone dynamic frame if R is a monotone function, .

2. We call Md = (Fd, V ) a monotone dynamic model if Fd is a monotone
dynamic frame.

The following lemma provides a characterization of monotone functions in
terms of downsets.

Lemma 3.2.6. Suppose f : W → W is a function. Then f is monotone iff for
every C ⊆W : if C is a downset, then f−1(C) is a downset.

Proof. (⇒) Assume that y ∈ f−1(C) for some downset set C, and x ⊑ y. Then
we have that f(y) ∈ C. By monotonicity of f : f(x) ⊒ f(y). Thus, f(x) ∈ C and
x ∈ f−1(C).
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(⇐)Assume that x ⊑ y. To show that f(x) ⊑ f(y), we will show that f(x) ∈↓
f(y). Take f−1(↓ f(y)). Since ↓ f(y) is downset, f−1(↓ f(y)) is also downset.
Since y ∈ f−1(↓f(y)), we have that x ∈ f−1(↓f(y)). Thus, f(x) ∈↓ f(y).

The next challenge is to define the corresponding dynamic Kripke frame using
the information stored in the dynamic polyhedral system (P,K, f). The domain of
this Kripke frame should be K̃, and the poset relation has to be defined as ≾. The
only question is how to define the monotone function on K̃, using the information
from polyhedral function f . Using Lemma 3.1.8 we can define fK : K̃ → K̃ as
follows:

Definition 3.2.7. Let (P,K, f) be a dynamic polyhedral system. Define fK : K̃ →
K̃ in the following way:

fK(σ̃) = τ̃ iff f(σ̃) ⊆ τ̃ .

Observe that with this definition, we have the following property for everyA ⊆
K̃: ⋃

(fK)−1(A) = f−1(
⋃
A).

To define a dynamic Kripke frame, we must show that fK is monotone.

Lemma 3.2.8. Let D = (P,K, f) be a dynamic polyhedral system. Then function
fK : K̃ → K̃ is monotone.

Proof. We will show that (fK)−1(C) is a downset for every downset C, and then
use Lemma 3.2.6.

Take a downset setC in K̃. Then
⋃
C is a polyhedron by Lemma 2.3.13. Thus,

f−1(
⋃
C) is also a polyhedron P ′ ∈ SubK(P ) and therefore by the same Lemma

2.3.13 corresponds to a downset subset K̃ ′ of K̃. Since f−1(
⋃
C) =

⋃
(fK)−1(C)

and both (fK)−1(C) and C ′ are subsets of K̃, we conclude that (fK)−1(C) =
C ′.

Definition 3.2.9. Let D = (P,K, f) be a dynamic polyhedral system. We define
its encoding F(D) = (K̃,≾, fK), as follows:

1. (K̃,≾) is the Kripke frame of P with K from Definition 2.3.9;

2. fK is the function defined in 3.2.7.

Definition 3.2.10. Let O = (P,K, f, V ) be a dynamic polyhedral model. Then its
encoding is M(O) = (K̃,≾, fK , Ṽ ), where:

1. (K̃,≾, f) is the encoding of (P,K, f);
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2. Ṽ (p) = σ̃ iff V (p) ⊆ σ̃.

Having this said, we can now formulate and prove a theorem establishing the
correspondence between the truth of formulas on O and on M(O).

Theorem 3.2.11. Let O = (P,K, f, V ) be a dynamic polyhedral model. Then for
every x ∈ P and every formula φ in Lγ,⟨R⟩ we have

O, x ⊨ φ⇐⇒ M(O), σ̃x ⊨ φ.

Proof. The proof is done by induction on the formula φ. The case of propositional
letters follows from Definition 3.2.9. Boolean cases follow by the induction hypoth-
esis. Cases of □φ and γ(φ,ψ) are completed like in Theorem 2.3.15.

Let us consider the case of ⟨R⟩φ.
Assume thatO, x ⊨ ⟨R⟩φ. Then x ∈ f−1(JφKO). By Lemma 3.1.8, and the fact

that JφKO =
⋃

τ̃⊆JφK
τ̃ , we have that x ∈ f−1(τ̃), for some τ̃ ⊆ JφKO. Then there is δ̃

such that f(δ̃) ⊆ τ̃ , and x ∈ δ̃. Thus, we have that fK(δ̃) = τ̃ . Since τ̃ ∈ JφKM(O),
by the induction hypothesis, we obtain that δ̃ ∈ (fK)−1(τ̃) ⊆ (fK)−1(JφKM(O)).

For the other direction assume that for σ̃x it is the case M(O), σ̃x ⊨ φ. Then
we obtain that σ̃x ∈ (fK)−1(JφKM(O)) and fK(σ̃x) ∈ JφKM(O). Take τ̃ such
that fK(σ̃x) = τ̃ . Thus, f(σ̃x) ⊆ τ̃ and at the same time τ̃ ⊆ JφKO. Hence,
x ∈ f−1(JφKO).

This theorem, like Theorem 2.3.15, allows us to check the truth of a formula in
a dynamic polyhedral model using only the knowledge of the triangulation of this
model. Thus, the model checker on dynamic polyhedral model O = (P,K, f, V )
can be carried out using the encoding M(O).

3.3 Another version of dynamics

In the previous sections, we defined dynamics using a function on a polyhedron
P . However, this approach imposes two limitations. First, we cannot model the
collapse of a part of the space since the function can only continuously deform
the space. For instance, consider the figure 3.1 with four triangles: triangle T0
in the middle and three others T1, T2, T3 surrounding the first one on the sides.
Assume that we want the middle triangle to disappear, leaving all the other triangles
in place. Then, we can define a polyhedral function f on these four triangles so that
T1 is sent to some point, say in the middle of his base. But then the function must
deform triangles T1, T2, T3, dragging their common border with T0 to the point
same point where T0 was sent.
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T0

T1

T3T2

T1

T3T2

T0

Figure 3.1: Triangle T0 is sent entirely to a point - the middle of its base, which
entails the contraction of other triangles.

T0

T1

T3T2

T1

T3T2

T0

Figure 3.2: Triangle T0 goes entirely to the point - the middle of its base, but this
time the other triangles may remain in place.

A similar case occurs in the following example. Suppose we have a house with
a closed door. Then the simplexes of the door share a common boundary with the
simplexes of the wall. Therefore, if we want to model the process of the door being
open, we have to define a polyhedral function on the simplexes of both the door and
the wall. However, the common boundary must be sent to the common set in this
case. Therefore, we will not be able to separate the door’s simplexes from the wall’s
simplexes.

That is why we propose to define a relation instead of a polyhedral function.
With this approach, we shall mitigate the conditions and model more flexible dy-
namics as in the cases 3.2 and 3.3.

That is why the question for the following section is how to define a relation
on a polyhedron so that it models dynamics on our polyhedron and simultaneously
allows us to implement a model checking algorithm. We suggest the following
definition.

Definition 3.3.1. Let P be a polyhedron and K its triangulation. A relation R on
P is called dynamic relation if:
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Figure 3.3: Two triangles with a common border can be separated.

1. R−1(σ̃) ∈ U(K), for every σ̃ ∈ K̃;

2. R−1(P ′) ∈ SubK(P ), for every P ′ ∈ SubK(P ).

We tailed the property proved in Lemma 3.1.8 for a polyhedral function into the
definition for the dynamic relation.

Lemma 3.3.2. Let P be a polyhedron and K its triangulation. If R is a dynamic
relation on P , then xRy and y ∈ σ̃ implies that σ̃x ⊆ R−1(σ̃).

Proof. First, by definition ofRwe have thatR−1(σ̃) ∈ U(K). Since σ̃x∩R−1(σ̃) ̸=
∅ we have that there is an element δ̃ ⊆ R−1(σ̃) such that σ̃ ∩ δ̃ ̸= ∅. But then
σ̃x = δ̃ because the relative interiors of different simplexes are disjoint sets. Hence,
σ̃x ⊆ R−1(σ̃).

We define the new notion of what dynamic relational systems and dynamic re-
lational models are.

Definition 3.3.3.

1. We call D = (P,K,R) a dynamic relational system if D is a dynamic system
and R is a dynamic relation.

2. We call O = (P,K,R, V ) a dynamic relational model if O is a dynamic
model and R is a dynamic relation.

Observe the following fact.

Lemma 3.3.4. Every dynamic polyhedral system is a dynamic relational system.

Proof. TakeD = (P,K, f) a dynamic polyhedral system. Then by the definition of
polyhedral function and Lemma 3.1.8, we have that f is a dynamic relation. Hence,
D is a dynamic relational function.
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For the dynamic model where the relation R is dynamic, we have a lemma
analogous to 3.1.10.

Lemma 3.3.5. LetO = (P,K,R, V ) be a dynamic relational model. Then for each
element σ̃ ∈ K̃, for all points x, y ∈ σ̃ it is the case that x ≡Lγ,⟨R⟩ y.

Proof. The case of the propositional letter follows from Definition 3.3.2. Cases of
boolean operators are trivial. Cases of modalities □ and γ(φ,ψ) are the same as in
Lemma 2.2.6. And the case for the formula ⟨R⟩φ follows from 3.3.2.

Proposition 3.3.6. Let O = (P,K,R, V ) be a dynamic model. Then for any for-
mula φ: JφKO ∈ U(K).

Proof. The proof is analogous to the proof of Proposition 2.2.7.

Lemma 3.3.2 also justifies the definition of a relation on K̃ in the following way.

Definition 3.3.7. Let D = (P,K,R) be a dynamic relational system. Then define
R∗ on K̃ as follows:

σ̃R∗τ̃ iff ∃x ∈ σ̃∃y ∈ τ̃ : xRy.

With R∗, we can now define dynamic Kripke encoding for a naïvely monotone
dynamic frame.

Definition 3.3.8. Let D = (P,K,R) be a dynamic relational system. We call
F(D) = (K̃,≾, R∗) its encoding, if:

1. (K̃,≾) is the Kripke frame of P and K from Definition 2.3.9;

2. R∗ is the relation from 3.3.7.

Definition 3.3.9. Let O = (P,K,R, V ) be a dynamic relational model. We call
M(O) = (K̃,≾, R∗, Ṽ ) its encoding if:

1. (K̃,≾, R∗) is the encoding of (P,K,R);

2. Ṽ (p) = σ̃ iff V (p) ⊆ σ̃.

Definition 3.3.10. Let FD = (W,⊑, R) be a dynamic Kripke frame. We call R
naïvely monotone if x ⊑ yRy′ implies that ∃x′ : xRx′ ⊑ y′.

Definition 3.3.11. A dynamic Kripke frameFD = (W,⊑, R)with a naïvely mono-
tone relation we call naïvely monotone dynamic frame.
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We will show thatR∗ from Definition 3.3.7 is naïvely monotone with respect to
relation ≾.

Lemma 3.3.12. Let D = (P,K,R) be a dynamic relational system and F(D) =
(K̃,≾, R∗) its dynamic Kripke counterpart, then R∗ is naïvely monotone.

Proof. Assume that σ̃ ≾ τ̃R∗τ̃ ′. Take R−1(τ ′). Since τ ′ is a subpolyhedron
in SubK(P ), R−1(τ ′) is also in SubK(P ). By Lemma 3.1.7 we have that there is
downsetC ⊆ K̃ such that

⋃
C = R−1(τ). Since τ̃Rτ̃ ′ we have that τ̃∩R−1(τ ′) ̸=

∅. Then τ̃ ∈ C, since C consists of disjoint sets. Since C is downclosed, σ̃ ∈ C.
Then σ̃ ⊆ (R∗)−1(τ ′). Thus, there is x ∈ σ̃ and y ∈ τ ′ such that xRy. Take σ̃y.
Since σ̃y ∩ τ ′ ̸= ∅, we have that such that σ̃y ⪯ τ̃ ′ by Lemma 2.3.12. By definition
of R∗ we have that σ̃R∗σ̃y and σ̃y ≾ τ̃ ′.

Therefore every encoding for a dynamic relational system is a naïvely monotone
dynamic frame.

The above result and Definition 3.3.7 tell us that we can construct a naïvely
monotonic relation on K̃. In the previous section, we constructed a monotone func-
tion on K̃, using a polyhedral function onP . Now we will show how it is possible to
construct dynamic relation as in Definition 3.3.1, having naïvely monotonic relation
R on K̃.

Lemma 3.3.13. Let (P,K,R) be a dynamic system with the property R−1(x) ∈
U(K) for every x ∈ U(K). Assume that R′ is a relation on K̃ such that (K̃,≾, R′)
is a naïvely monotone Kripke frame with the property:

σ̃R′τ̃ iff ∃x ∈ σ̃∃y ∈ τ̃ : xRy

Then R−1(P ′) ∈ SubK(P ) for every P ′ ∈ SubK(P ).

Proof. Take P ′ ∈ Sub(P ). Then P ′ =
⋃
C for some downset C ⊆ K̃ by Lemma

3.1.7. We will show that R−1(
⋃
C) =

⋃
D, for some closed D ⊆ K̃. This will

conclude the proof by lemma 3.1.7. First observe that R−1(
⋃
C) ∈ U(K). Take

D = {σ̃ | σ̃ ⊆ R−1(
⋃
C)}. Then

⋃
D = R−1(

⋃
C). Let us show that D is

closed. Suppose σ̃1 ∈ D and σ̃2 ≾ σ̃1. Since σ̃1 ⊆ R−1(
⋃
C), we have that

there is τ̃1 ∈ C with y ∈ τ̃1 such that for some x ∈ σ̃1: xRy. Thus, σ̃1R′τ̃1. By
naïve monotonicity of R′ we have that there is τ̃2 such that σ̃2R′τ̃2 ≾ τ̃1. Since C
is closed, τ̃2 ∈ C. Then we have that σ̃2 ∩ R−1(

⋃
C) ̸= ∅, and from this follows

that there is some δ̃ ⊆ R−1(
⋃
C) such that σ̃2 ∩ δ̃ ̸= ∅. Hence, σ̃1 = δ̃, due to

their disjointness, and σ̃2 ⊆ R−1(
⋃
C).
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When R is a function, we have that R′ is also a function, and therefore naïve
monotonicity becomes just monotonicity.

We finalize the section with the correspondence for truth between formulas in
models.

Theorem 3.3.14. Let O = (P,K, V ) be a dynamic relational model. Then for
every x ∈ P and every formula φ in Lγ,⟨R⟩ we have

O, x ⊨ φ⇐⇒ M(O), σ̃x ⊨ φ.

Proof. The proof is done by induction on the formula φ. The case of propositional
letters follows from Definition 3.2.9. Boolean cases follow by the induction hypoth-
esis. Cases of □φ and γ(φ,ψ) are completed like in Theorem 3.2.11.

Let us consider the case ⟨R⟩φ.
(⇒) Assume that O, x ⊨ ⟨R⟩φ. Then x ∈ R−1(JφKO). Since R−1(JφKO) ∈

U(K), then there is an σ̃ such that x ∈ σ̃ ⊆ R−1(JφKO). Take y ∈ JφKO and σ̃y
such that xRy. By definition ofR∗ : σ̃R∗σ̃y. By inductive hypothesis we have that
M(O), σ̃y ⊨ φ. Hence, M(O), σ̃ ⊨ ⟨R⟩φ.

(⇐) If M(O)σ̃x ⊨ ⟨R⟩φ, then there is τ̃ ∈ JφKM(O) such that σ̃xR∗τ̃ . There-
fore, there is z1 ∈ σ̃x and z2 ∈ τ̃ such that z1Rz2. By lemma 3.3.2, we have that
there is some y ∈ τ̃ such that xRy. Hence, O, y ⊨ φ by the inductive hypothesis.
We conclude that O, x ⊨ ⟨R⟩φ.

We conclude this chapter by summing up what has been done.

• We define a new language Lγ,⟨R⟩ for reasoning about dynamic structures.

• We defined the polyhedral function and dynamic relation, which allowed us
to define novel notions of dynamic polyhedral models and dynamic relational
models;

• For both dynamic polyhedral models and dynamic relational models, we de-
fined how to construct their encodings;

• We proved that a point x in dynamic polyhedral model O satisfies formula
φ if an only if σ̃x satisfies φ in its encoding M(O). The same result was
obtained for dynamic relational models and their encodings.
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Chapter 4

Polyhedral model checking

In this chapter, we will focus on model checking. We will formulate the problem
that model checking solves and explain how the model checking algorithm can be
applied to 3D models. Then we will provide the algorithm for model checking
on the encoding of dynamic polyhedral models. We then demonstrate the applica-
tion of the PolyLogicA model checking with a new example from the architectural
domain. We conclude the section with a conceptual description of a prototype dy-
namic model checking software.

4.1 Model checking algorithm

Model checking is a formal verification method for software systems that is used to
identify errors in programs and protocols. It involves: 1. creating a mathematical
model M representing system states and 2. specifying the property with a formula
φ formulated in a formal language. The key advantage of model checking is that it
is fully automated.

In Chapter 2, we showed that it is possible to consider 3D models instead of
classical software examples by representing them as polyhedra equipped with a tri-
angulation. We defined our mathematical model as E = (P,K, V ) in Definition
2.2.3. By employing model checking, we want to verify some properties. For in-
stance, “reachability of the exit in the building” in the context of a 3D model of
a building. It was shown in Theorem 2.3.15 that this question can be reduced to
the question of checking the property on an encoding M(E) = (K̃,≾, Ṽ ) of E .
This method was developed in the project PolyLogicA, where it is used for region
segmentation of a 3D model based on triangulation.

In our case, we consider dynamic 3D models. Adding dynamics to a polyhedron
allows us to check the properties of the form “it will be possible to reach the exit
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from the building at the next moment.” There is a critical issue of a tradeoff between
the possibilities of dynamics and the efficiency of our model checking algorithm. In
general, if we consider some dynamic functions on our polyhedron (e.g., an affine
transformation), there may be no correspondence between a dynamic model and
a finite dynamic Kripke frame, which is the method of model checking that we
employ. But since we use the definition of dynamic relations such as dynamic poly-
hedral function (Definition 3.1.6) and dynamic relation (Definition 3.3.1), for us
checking the truth of a formula at a point x in a dynamic polyhedral model O (or
a dynamic relational model) reduces to the problem of checking the truth of a for-
mula on the point σ̃x of its encodingM(O), which is a finite dynamic Kripke frame
(Theorems 3.2.11 and 3.3.14).

Since we have two different definitions types of dynamic models, which are dy-
namic polyhedral models (Definition 3.1.9) and dynamic relational models (Defini-
tion 3.3.3), we have to define algorithms for both of their encodings, which are finite
dynamic monotone Kripke models and finite dynamic naïvely monotone Kripke
models respectively. However, since every dynamic monotone Kripke model is
also a dynamic naively monotone model, we will formulate the model checking
algorithm for dynamic naively monotone Kripke models.

We provide an algorithm for computing the truth set of formulas

p | p ∧ q | ¬p | ♢p | γ(p, q) | ⟨R⟩p (4.1)

This will give us an algorithm for finding a truth set of all formulas because,
for example, we can calculate J⟨R⟩φK by treating JφK as an interpretation of the
propositional variable pφ and then apply the algorithm to the formula ⟨R⟩pφ.

So, our model checking algorithm will take as input the encoding M(O) =
(K̃,≾, R∗, Ṽ ), and formula φ from (4.1). The output will be the set Sat(φ) =
{x | M(O), x ⊨ φ} = JφKM(O) of nodes in M(O) that satisfy formula φ. Thus,
our algorithm is a so-called “global” model checking algorithm, as opposed to other
methods that only check satisfaction at a single point. The algorithm for Boolean
combinations is straightforward and is thus omitted. The algorithm for♢ is identical
to the algorithm for ⟨R⟩, but instead of theR∗ relation, we use the relation ⊑. Thus,
we present two algorithms: one for modality γ and the other one for modality ⟨R⟩.
The algorithm for γ is borrowed from [Bez+22].

We use pseudocode to define the algorithms. Using Require, we denote the
input data for the algorithm. With Ensure we denote the output. With notation
var:= <expression> we will denote the assignment of the value <expression>
to the variable var. Since there are two relations ⊑ and R in our model, we use
out·(x) = {y | y · x} to denote the set of all predecessors of x, where · ∈ {⊑, R}.
Similarly for in◦(x) = {y | x ◦ y}, where ◦ ∈ {⊑, R}.
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Algorithm 1 Algorithm for computing ⟨R⟩φ

Require: M(O) = (K̃,≾, R∗, V ), ⟨R⟩p
Ensure: J⟨R⟩pKM

1: SemP := JpKM

2: res := ∅
3: for x ∈ SemP do
4: predStates := outR(x)
5: res := predStates ∪ res
6: end for
7: return: res

Algorithm 2 Algorithm for computing γ(φ,ψ)
Require: M(O) = (K̃,≾, R∗, V ), γ(p, q)
Ensure: Jγ(p, q)KM

1: frontier := JpKM ∩ out⊑(JqKM)
2: flooded := frontier
3: while frontier ̸= ∅ do
4: x = frontier.pop()
5: for y ∈ in⊑(x) ∪ out⊑(x) do
6: if y /∈ flooded & y ∈ JpKM then
7: frontier.add(y)
8: flooded.add(y)
9: end if

10: end for
11: end while
12: res := in(flooded)
13: return: res
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Correctness of the algorithm 1 is trivial and follows directly from its defini-
tion and semantics of ⟨R⟩p. As for the algorithm 2, the proof for its correctness is
sketched below and can be found in [Bez+22].

Correctness, sketch A path π : {0, . . . , k} → K̃ we call a “good” path if it starts
at a point that witnesses the satisfaction of γ(p, q). Observe that a good path can
be divided into three parts, namely the beginning of the path π(0), the middle of
the path π({1, . . . , k − 1}) ⊆ JpKM, and the end of the path π(k) ∈ JqKM. We
will work backwards, starting from the set of points that satisfy p and are connected
to a node satisfying q. So, first we compute the set C := JpKM ∩ out(JqKM). C
corresponds to all the nodes satisfying π(k− 1) in some good path π. Then we use
the flooded procedure to build the setD of the nodes of the graph that are connected
to C with a non-directed path, i.e. while choosing the nodes, we abstract from the
direction of the edges. This part corresponds to all nodes π(j) for j = 1, . . . , k−1,
for any good path π. Finally, we compute the set Jγ(p, q)KM = in(D), which are
all the nodes that correspond to the initial nodes of a good path.

Complexity We indicate by n the number of nodes in K̃ and by d the dimension
of the corresponding polyhedron. First, consider the complexity bound for Algo-
rithm 1. Since there are n elements in the domain of M(O), the number for R -
predecessors for each element is at most n. Hence, the asymptotic computational
complexity of Algorithm 1 is of order O(n2).

Remark 4.1.1. We note that in the case of so-called “snapshot models” [Kon+07],
the complexity could be reduced, which will be explored in future work (see section
4.2).

Considering the complexity of algorithm 2, observe that every node x has at
most 2dx+1 − 1 edges (where dx is the dimension of simplex x) since each simplex
can have at most 2dx+1−1 proper faces. Let us denote withN the sum of nodes and
edges in M(O). Then, N for M(O) is n · 2d+1. This number grows exponentially
in d if d is not fixed. However, since we work with 3D models, we fix d = 3.
Therefore, the contribution of d to the encoding of the model becomes a constant,
and the size of the encoding of M(O) is of order O(n) in this case. The flooding
procedure in Algorithm 1 has linear computational complexity in the number of
nodes and edges of M(O), that is, N . Again, since every subformula of γ(φ,ψ) is
checked independently from each other, the asymptotic computational complexity
of the model checking algorithm is of order O(N · h), and once the dimension is
fixed it becomes O(n).
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The computation of Boolean operators is also linear in N . That is why the
model checking algorithm for them is also of order O(n), independently of the
dimension.

We conclude that the total complexity of the spacial model checking algorithm
for a fixed dimension d (d = 3 in our case) is of polynomial complexity.

4.2 The application of model checker

In the setting of our work, we aimed to present a theoretical approach that would
allow us to consider, in principle, the problem of analyzing dynamic 3D models.
Developing a prototype for such a model checker would require separate research.
This section aims to apply the model checker PolyLogicA to a real-world sce-
nario. Before PolyLogicA was tested on two examples: a 3D cube and an existing
3D model from the medical domain. In this work, we extend its application possi-
bilities and try it on a new example from the architectural domain. It required the
modification of the source code of the tool to prepare the data. In the second part
of this section, we delve into the elucidation of the prototype for dynamic model
checking.

4.2.1 Model checker for static 3D models

The authors of [Bez+22] have developed a prototype of a model checker for static
3D models. The tool PolyLogicA was presented in [Bez+22] and is currently
available at github repository1. PolyLogicA is Free and OpenSource Software
distributed under the Apache 2.0 licence.

Specification of PolyLogicA consists of a text file that can make use of four
commands: let, for declaring functions and constants; import, for importing li-
braries of such declarations; load, to specify the file to be loaded as a model; save,
to specify the logic formulas that need to be computed, and saved, possibly making
use of previous let declarations.

Let us closely consider the load command. It allows a user to load a 3D model.
The 3D model is specified using .json2 file. The information contained in the file
consists of:

1. A list p of d-dimensional vectors, denoting the coordinates of the 0-cells of
the polyhedron;

2. A list of atomic propositions;
1See https://github.com/vincenzoml/VoxLogicA.
2See https://www.json.org/.
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3. A list of simplexes.

Each simplex σ is described using the indexes of its vertices in p. The specifi-
cation of σ contains the list of atomic propositions p1, . . . , pn that hold in σ̃.

After specifying which file has to be loaded, the user has to declare the variables
and their combinations using let. The file is concluded with the save statement.

Data preparation Let us now take a closer look at a 3D model we will use. In
our running example, we consider the existing model of a villa to demonstrate vast
application possibilities of PolyLogicA. To open the file of a 3D model, we will
use the software MeshLab developed by the Visual Computing Lab of ISTI-CNR
[Cig+08]. The initial model can be found in Figure 4.1. This is essentially our
polyhedron. First, we fix its triangulation. This can be done using the function
from MeshLab:

Filters → Remeshing, Simplification and Reconstruction →
→ Simplification: Quadric Edge Collapse Decimation

This function uses the simplification algorithm of Garland and Heckbert pre-
sented in [GH97]. The result is depicted in Figure 4.2. Once we used the trian-
gulation, we obtain a so-called 3D mesh of a model. The universal problem that
one might have while working with a 3D model and using PolyLogicA is that the
neighbourhood simplexes of the 3D mesh might not be connected to each other.
Whether simplices are connected can be checked using the tool Select a connected
component in the region. Disconnectedness can cause problems during the ex-
periment phase; since we use the reachability operator γ, we need to have (almost)
the entire 3D mesh to be connected. Thus, to eliminate this possibility, we can use
another function from MeshLab:

Filters → Cleaning and Repairing → Merge Close Vertices

Conversion to PolyLogicA Once this process is done, we have to convert the file
with the 3D mesh to .json format to load it to the model checker. This conversion
involved writing a new version of the python3 program, which imports the .obj
meshes in PolyLogicA. Every .obj file has several sections. We were interested in
two of them: the one that specifies vertices and the one that specifies the faces of

3See https://www.python.org/
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Figure 4.1: The initial 3D model of a building.

3-dimensional simplexes. Along with this data, we also had to specify the propo-
sitions we would assign to the relative interiors of simplexes. In our real-world 3D
meshes, each simplex is associated with some material (e.g. wood, stone, etc.). The
program can be found in the fork of the VoxLogicA at our GitHub repository4 under
the name program.py.

Model checking Once the file has been parsed, we can write the text file that will
specify the task for our model checker. Figure 4.3 illustrates an example of such
a file. The code is self-explanatory, and we will explain only operations near and
through. Operator near stands for taking the topological closure of simplexes. We
use it to have all the simplexes (i.e. triangles, intervals, and vertices) that satisfy
given variables. Operator trough stands for γ operator. So, our final variable
house denotes all the points on the wall or floor such that it is possible to reach the
floor from them by passing only through the wall.

In addition to the polyhedra model checker, a visualizer was also presented in
[Bez+22]. It takes as input the .json file with the loaded model and with the output
of PolyLogicA and outputs the visualization of the result. In our case, the visual-
ization of the query formulated in 4.3 can be found in Figure 4.4. One can see that
the result precisely depicts the areas that we wanted to separate.

4https://github.com/Fgrtue/VoxLogicA/tree/polyhedra/src
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Figure 4.2: Trinagulated model

In summary, the skeleton of the procedure is as follows:

1. Take a 3D model and triangulate it;

2. Check whether the regions that you want to run your query on are connected;

3. Parse the model in order to obtain a .json file with simplices and materials
for it;

4. Write the .json file identifying the region that is intended to be extracted;

5. Inspect the visualization of the result using the visualizer.

4.2.2 Outlook: efficient model checking for dynamic 3D models.

In this subsection, we present how the theory we developed in the previous chap-
ters can be applied to building a prototype for a model checker of dynamic models.
The definition of dynamic systems we provided in Chapter 3 underpins a more the-
oretical view of the dynamics rather than a view of applications. This is because
the model O = (P,K,R, V ) is a monolith in which the entire dynamical compo-
nent of the model is hidden in the relation R. Whereas in reality, when modelling
processes, we deal with a discrete set of states, each of which reflects some partic-
ular state of the model. From this point of view, real dynamics resembles Snapshot
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1 load model = "./ Kirill.ThesisExample .02/ house 2/
source/House/villa_small.json"

2

3 // Atomic propositions for floor and wall in the house
4 let floor = ap("material_58")
5 let wall = ap("material_1")
6

7 // Taking closure of the defined propositions
8 let allfloor = near(floor)
9 let allwall = near(wall)

10

11 //Q: separate the house
12 let house = through(allwall ,allfloor) & (or(allwall ,

allfloor))
13

14 save "house ’’ house

Figure 4.3: An example of an input file for PolyLogicA. The first line loads the
model from a directory on our machine. Then we specify the propositions, which
are floor and wall in our model. They correspond to material58 and material1
respectively. An important detail was that the materials were assigned only to the
relative interiors of 2-simplexes, not 1 and 0-simplexes. Therefore, to consider all
the simplexes, we have to use operator near, which semantically works as clo-
sure. After that, we can apply the reachability operator trough to allwall and
allfloor, which gives us all the points that can reach the floor from the wall.
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Figure 4.4: The top image visualizes the model of the villa in the visualizer of
PolyLogicA, without application of the query from Figure 4.3. The green squares
denote 0 - simplexes, blue lines denote 1 - simplexes, and red planes denote 2 -
simplexes. As we can see, the villa model contains two blocks of building, an ad-
joining territory in front of the left block, and a little patio in front of the right block.
The query in Figure 4.3 aims to separate the two blocks, excluding the adjoining
territory and the patio. The image on the bottom shows a picture after applying
the query from Figure 4.3. The red planes denote the result of the query. We hide
the 0-simplexes so that they do not distract us from the result. However, visualizer
leaves empty space in their places. Overall, we can see that the model checker has
extracted exactly two blocks of the building as wanted.
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models [Kon+07]: M0,M1, . . ., i.e. a sequence of static models, each of which
represents some state of the model. Thus, the verification of dynamic properties of
a dynamic 3D model will be the verification of a succession of properties in dif-
ferent moment-states of that model. In this sense, structurally, the future algorithm
for the prototype should be similar to the algorithm used in PolyLogicA. The initial
research on building a prototype for a dynamic model checker could be to translate
our dynamic models into Snapshot models and show that the model checker defined
in this work will be sufficient to check the properties of snapshot models.

The next important aspect of the technical realization of a prototype is related
to the file format in which the 3D model is written. The dynamic of a 3D model can
be simulated in various applications with built-in physics and simulation features.
For instance, Unity5 and Blender6 are such applications. Files that specify dynamic
models are stored in formats .blend, .fbx and .dae, each of which represents a
3D model differently. Thus, this line of research would be related to extracting the
model, and different model states, from these formats to represent them in a single
file (possibly in .json format) that would be loaded into the model checker.

Defining the specification for the file input to the model checker is necessary.
In general, this file should not be very different from the one for PolyLogicA; the
only difference should be the introduction of a new syntax for temporal modalities.
In our work, we extended the language L□,γ only with one new temporal modality
⟨R⟩ (next). However, it would make sense to consider modalities like [∃] (eventually)
and [∀] (always in the future) since they give much more possibilities for expressing
the future states of the model.

Finally, the last but essential step would be to create a visualizer for the results.
It should take as input a .json file containing the model and the result of our query.
Since we have several snapshots of a 3D model, the visualizer should show different
static states of the model at which we will see the result of the query. As the high-
lighted region will differ for each step, we can track how it has changed. In this way,
the visualization would show which parts of the model are highlighted depending
on the temporal state of the model.

We conclude this chapter by summing up what has been done:

• Defined the model checking algorithm, proved its correctness, and found the
upper bound for its complexity;

• Explained in detail how the prototype PolyLogicA works on a new-case sce-
nario from the architectural domain;

5See https://unity.com/.
6See https://www.blender.org/.
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• Outlined the construction methodology of a prototype for a dynamic model
checker.
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Chapter 5

Completeness of dynamic logics

In this chapter, we present an investigation of two dynamic logics within the lan-
guage L□,⟨R⟩ and establish their completeness. The chapter is organized as follows.

In the first section, we introduce the concept of logics, the validity of formulas,
and completeness, formulate two logics DPL and DRL and, in the last three sec-
tions, we focus on proving their completeness. Our strategy for these proofs involves
the combination of two techniques outlined in [FM21], [Ada19], and [Ada+22]. To
ensure the proof’s clarity, we thoroughly explain the intuition behind these tech-
niques.

The first technique centers around the finite model property of dynamic logics.
We achieve this by manipulating a canonical model of the logic. The process begins
by defining a finitary relation ⊑Φ, which depends on a finite set Φ and is established
in a manner similar to selective filtration (see [Cha97]). Utilizing this relation, we
recursively extract a finite structure known as a “moment” for every point w of the
canonical model. These moments capture the ’static’ information of w. We then
build a dynamic model by defining a procedure for constructing the next moment
from a given one. This allows us to generate a sequence of moments starting from
a single point, with each moment connected to its predecessor through a dynamic
relation. We refer to such a sequence as a “story”. Importantly, every story is finite
and contains static and dynamic information about a point.

The second technique involves constructing a dynamic system from a dynamic
Kripke frame, specifically a polyhedron equipped with a relation. This technique
uses the “nerve” of a poset, which consists of the collection of finite chains in the
poset ordered by inclusion. The construction of the dynamics on the polyhedron is
the most complicated aspect and involves several steps to achieve it. This polyhe-
dron will satisfy the formula that is satisfied on the canonical model. The construc-
tion details are in section 5.4.
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5.1 Dynamic logics DPL,DRL

We will concentrate solely on the dynamic part of our systems, i.e. we restrict
our language to L□,⟨R⟩. Observe that this restriction does not affect the definitions
and results established in the previous chapter since modalities □ and ⟨R⟩ are in-
dependent of γ. First, we define the validity of formulas in our dynamic systems
and frames. Then we abstract away from the structures we are working with and
define what logic is. We give two examples of logics and prove their consistency
concerning the corresponding class of structures.

We will now define the validity of formulas.

Definition 5.1.1.

1. For a dynamic system D = (P,K, R) and formula φ, we say that φ is valid
on D (notation: D ⊨ φ), whenever (D, V ) ⊨ φ for all valuations V on D.

2. For a class of dynamic systems D and a formula φ we will say that φ is valid
on D (notation: D ⊨ φ), whenever for each dynamic system D in D: φ is
valid on D.

3. For a class D of dynamic systems, a set of formulas L(D) = {φ | D ⊨ φ}
is called the logic of D.

So far, we have been working within two types of dynamic systems: dynamic
polyhedral functions and dynamic relations. Let us formulate this in a mathemati-
cally rigorous way.

Definition 5.1.2. Let D be a class of dynamic systems. Then:

1. We call D a class of dynamic polyhedral systems (notation: DPS) if for
every D = (P,K, R) in D we have that R is dynamic polyhedral function.

2. We call D a class of dynamic polyhedral systems (notation: DRS) if for
every D = (P,K, R) in D we have that R is dynamic relation.

We also introduce validity for dynamic Kripke frames:

Definition 5.1.3.

1. For a dynamic Kripke frame Fd = (W,⊑, R) and a formula φ, we will say
that φ is valid on Fd (notation: F ⊨ φ), whenever (Fd, V ) ⊨ φ for every
valuation V on (P,K, R).
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2. For a class of dynamic Kripke frames F and a formula φ we will say that φ
is valid on F (notation: F ⊨ φ), whenever for each F from F φ is valid on
F .

3. For a class F of dynamic Kripke frames, a set of formulas {φ | D ⊨ φ} is a
logic of F.

Now we define the notion of logic.

Definition 5.1.4. A substitution σ is a map σ : V ar → Fm. A substitution σ is
extended to a uniform substituiton σ : Fm→ Fm by recursion:
1. σ(p) = σ(p), for all p ∈ V ar;
2. σ(¬ψ) = ¬σ(ψ);
3. σ(ψ ∧ γ) = (σ(ψ) ∧ σ(γ));
4. σ(□ψ) = □σ(ψ);
5. σ(⟨R⟩ψ) = ⟨R⟩σ(ψ);

Definition 5.1.5. We call logic L a set of formulas Fm in language L□,⟨R⟩, that
contains axioms:

1. all the tautologies;

2. formula □(p ∧ q) ↔ (□p ∧□q) (we denote it with K□);

3. formula (⟨R⟩p ∨ ⟨R⟩q) ↔ ⟨R⟩(p ∨ q) (we denote it with K⟨R⟩);

4. formula □(□(p→ □p) → p) → p (we denote it with grz),

and is closed under the rules:

1. (MP)

(
φ→ ψ,φ

ψ

)
;

2. (Uniform)

(
φ

σ(φ)

)
, where σ is uniform substitution

3. (Nec□)

(
φ

□φ

)

4. (Nec[R])

(
φ

[R]φ

)

For a formula φ ∈ L we say that φ is a theorem of L, and denote it with ⊢L φ.
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Definition 5.1.6. For a set Γ, formula φ and logic L we say that φ is deducible in L
from Γ if ⊢L φ or there are formulas ψ1, . . . , ψn ∈ Γ such that:

⊢L (ψ1 ∧ . . . ∧ ψn) → φ.

If this is the case we write Γ ⊢L φ, if not, Γ ⊬L φ. A set of formulas Γ is
L-consistent if Γ ⊬L (φ ∧ ¬φ) for every formula ϖ. Otherwise we call Γ an L -
inconsistent.

Remark 5.1.7. Recall that K is the smallest monomodal normal logic, and Grz =
K+ grz.

We can consider different logics. All of them will describe the behaviour of two
modalities: □ and ⟨R⟩. The smallest logic we denote with Grz ⊗K, which is the
basic fusion of monomodal logic Grz for □ and monomodal logic K for ⟨R⟩. To
denote the logics that extend Grz⊗K we use the following naming conventions:
logic

X-Y-Z1- . . . -Zn

is the smallest logic that extends the fusion X ⊗Y of logic X for modality □
and Y for modality ⟨R⟩ with bimodal interaction axioms Z1, . . . ,Zn.

Now we discuss the properties of logics that extend Grz - K.

Definition 5.1.8. Relation ≤ is called Noetherian if there are no infinite paths x0 ≤
x1 ≤ x2 ≤ . . . such that for all i we have xi ̸= xi+1.

Lemma 5.1.9. Let F = (W,⊑) be a Kripke frame. Then F ⊨ grz iff ⊑ is reflex-
ive, transitive and Noetherian.

Proof. See [Cha97, Proposition 3.48].

Definition 5.1.10. Let Fd = (W,⊑, R, V ) be a dynamic Kripke frame. We will
say that Fd is a Grz Kripke frame, whenever Fd ⊨ Grz-K.

Recall that for every dynamic polyhedral model (and dynamic relational model)
O = (P,K,R, V ) there is an encoding M(O) = (K̃,≾, R∗, Ṽ ). In the previous
section, in Theorems 3.2.11 and 3.3.14, we proved that a formula is satisfied at a
point of a dynamic polyhedral and relational modelO iff it is satisfied in its encoding
M(O). Now we will leverage this result to the validity of formulas on dynamic
polyhedral and dynamic relational systems D and its dynamic Kripke counterparts
F(D). In other words, we will show that a formula is valid on a dynamic polyhedral
or dynamic relational system iff it is valid on its encoding.
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Lemma 5.1.11. Let O = (P,K, R,V) be a dynamic polyhedral or dynamic rela-
tional model. Then for any formula φ:

O ⊨ φ⇔ M(O) ⊨ φ.

Proof. (⇒) Assume that O ⊨ φ. Take any point σ̃ ∈ M(O). Since σ̃ ̸= ∅, we
have that there is a point z ∈ σ̃. Therefore, by assumption: O, z ⊨ φ. Hence, by
Theorem 3.2.11 we have that M(O), σ̃ ⊨ φ. Since σ̃ was arbitrary, we conclude
that M(O) ⊨ φ.

(⇐) Assume that M(O) ⊨ φ. Take any point x ∈ P. By assumption, we have
that M(O), σ̃x ⊨ φ. By theorem 3.2.11 it follows that O, x ⊨ φ.

Lemma 5.1.12. Let D = (P,K, R) be a dynamic polyhedral or dynamic relational
system. The for every formula φ:

D ⊨ φ⇔ F(D) ⊨ φ

Proof. (⇒) Take a valuation V on F(D). It induces a valuation V′ on D defined
as follows:

x ∈ V ′(p) iff σ̃x ∈ V (p)

Since σ̃x is the smallest relative interior of a simplex such that x ∈ σ̃x, V ′ is
well defined. Clearly, σ̃ ⊆ V ′(p) iff σ̃ ∈ V (p). We obtain that for O = (D, V ), by
assumption: O ⊨ φ. We obtain that M(O) ⊨ φ using the previous lemma. Thus,
F(D) ⊨ φ.

(⇒) For the other direction take a valuation V on D. Then take M(O) for
O = (D,V). By assumption: M(O) ⊨ φ. Therefore, by the previous lemma
O ⊨ φ. Since V was arbitrary, we conclude that D ⊨ φ.

Lemma 5.1.13. Let D = (P,K, R) be a dynamic polyhedral or dynamic relational
system. Then D ⊨ Grz-K

Proof. Consider encoding F(D) = (K̃,≾, R∗, Ṽ ) of D. Then we have that ≾ is a
transitive, reflexive, and Noetherian relation. Then F(D) ⊨ grz by Lemma 5.1.9.
For the following facts, the proof is standard and can be found in [BDV01]:

1. All proposition tautologies are valid on every dynamic Kripke frame;

2. K□ and K⟨R⟩ are valid on dynamic Kripke frames;

3. Rules of inference MP,Nec□,Nec⟨R⟩,Uniform preserve validity every dy-
namic Kripke frame.
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Hence, we conclude that F(D) ⊨ Grz-K. And by Lemma 5.1.12 we obtain that
D ⊨ Grz-
mathbfK.

Let us introduce two new formulas that describe the behaviour of relation R in
D = (P,K,R).

• F := ¬⟨R⟩φ↔ ⟨R⟩¬φ;

• C := ♢⟨R⟩φ→ ⟨R⟩♢φ.

Formula F is the formulation of the functionality and totality in the language
of modal logic. At the same time, axiom C, as we shall see, corresponds to the
property that the preimage of an element from SubK(P ) is in SubK(P ). In the
dynamic topological logic, this axiom stands for continuity [KM07].

We will work with the following logics.

Definition 5.1.14. • DL = Grz⊗K with DL.

• DRL = Grz-K-C

• DPL = Grz-K-F -C
We callDL dynamic logic,DPL dynamic polyhedral logic, andDRL dynamic

relational logic.

Since F is a Sahlqvist formula, we immediately have:

Lemma 5.1.15. Let Fd = (W,⊑, R) be a dynamic Kripke frame. Then:

Fd ⊨ F iff R is functional.

Proof. Follows from [BDV01, Theorem 4.42].

Lemma 5.1.16. Let a dynamic Kripke frame Fd = (W,⊑, R), Fd ⊨ C iff R is
naively monotone.

Proof. See [BBH17, Proposition 3.7].

Thus, we have the following lemma.

Theorem 5.1.17. For a dynamic system D = (P,K,R):

1. If D is a dynamic relational system, then D ⊨ DRL;
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2. If D is a dynamic polyhedral system, then D ⊨ DPL;

Proof. By Lemma 5.1.13, we have that D ⊨ Grz − K is valid on both dynamic
polyhedral system and dynamic relational system.

Now, consider the case when D is a dynamic relational system. Then we have
that for encoding F(D) = (K̃,≾, R∗) of D we have that F(D) ⊨ C, by Lemma
3.3.12 and Lemma 5.1.16. Therefore D ⊨ F by Lemma 5.1.12.

For the case when D is a dynamic polyhedral system, note that D = (P,K, f).
ThenD ⊨ C, becauseD is also a dynamic relational system. At the same time, since
for encoding F(D) = (K̃,≾, f∗) of D, f∗ is a function, we have that F(D) ⊨ F .
Hence, by Lemma 5.1.12, we have that D ⊨ F .

Corollary 5.1.18. DPL ⊆ L(DPS) and DRL ⊆ L(DRS).

Definition 5.1.19. A logic L is complete with respect to a class of dynamic systems
D, if L = L(D), i.e. for each formula φ:

L ⊢ φ iff D ⊨ φ, for everyD ∈ D.

In the next section, we will prove the right-to-left direction of implication for
dynamic relational systems and dynamic polyhedral systems.

5.2 Surgery on the canonical model

To prove that DRL = L(DRS) and DPL = L(DPS), let us recall the well-
known definition of the canonical model. The canonical modal construction is a
classical approach for proving completeness. First, we define the necessary defini-
tion of maximal L-consistent sets.

Definition 5.2.1. Let Γ be a set of formulas and L be a logic. We call Γ maximal L-
consistent set (L-MCS), wheneverΓ is consistent and for set of formulasΓ′ properly
containing Γ is inconsistent.

The following lemma is well-known for the canonical model construction.

Lemma 5.2.2 (Lindenbaum’s lemma). Every consistent set Φ of formulas can be
extended to a maximal consistent set Ψ, s.t. Φ ⊆ Ψ.

Proof. See [BDV01, Lemma 4.17].

Since we are working with bimodal logic, we must define a canonical model
with two relations: ⊑c and Rc.
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Definition 5.2.3. Let L ⊇ DL. We call ML = (Wc,⊑c, Rc, Vc) a canonical model
for L, if:

1. Wc is the set of all L-MCS;

2. w ⊑c v iff {♢φ | φ ∈ v} ⊆ w;

3. wRcv iff {⟨R⟩φ | φ ∈ v} ⊆ w;

4. Vc(p) = {w | p ∈ w}, for all p ∈ Prop.

The following two lemmas are also well-known. The proof of them is standard
and can be found in Chapter 4 of [BDV01].

Lemma 5.2.4 (Existence lemma). Let L ⊇ DL and ML = (Wc,⊑c, Rc, Vc) be its
canonical model. Then, for every w ∈ Wc and every formula φ in L, if ♢φ ∈ w
then there exists a point v ∈ Wc such that w ⊑c v and φ ∈ v.

Lemma 5.2.5 (Truth lemma). Let L ⊇ DL. For every w ∈ Wc and every formula
φ in L,

ML, w |= φ iff φ ∈ w.

Lemma 5.2.6. Let L ⊇ DL and ML = (Wc,⊑c, Rc, Vc) be its canonical model.
Then the following hols:

1. ⊑c is transitive and reflexive.

2. If C ∈ L, then Rc is naively monotone.

3. If F ∈ L, then Rc is a function

Proof. For the proof of item 1 see [Cha97, Proposition 5.48]. For items 2, 3, we
use the Sahlqvist theorem [BDV01, Theorem 4.42].

We will construct a finite relation on the canonical model for every logic L ⊇
DL. This relation will depend on a finite set Φ of L□,⟨R⟩-formulas on Wc.

Remark 5.2.7. The idea of constructing this finitary relation was developed by
David Fenández-Duque and Yoàv Montacute in [FM21]. In this paper, the authors
create a foundation for a general proof method for the finite model property of bi-
modal logics which contain F and C as axioms. In particular, they prove that logic
GL-K-F -C (they denote as GLC) has finite Kripke model property. We use the
same approach with adjustments to the specifics of our cases to obtain finite model
property for DPL and DRL.
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The method we use combines selective filtration from [Cha97] and the method
of φ-final sets from [FM21].

For further discussion fix a logic L ⊇ DL and its canonical model ML =
(Wc,⊑c, Rc, Vc).

For this purpose, we will need the following definition:

Definition 5.2.8. A point w ∈ Wc is said to be a φ-final point if φ ∈ w, and
whenever w ⊑c v and φ ∈ v, it follows that v ⊑c w.

We also recall here Zorn’s since we will need it in our proof.

Lemma 5.2.9 (Zorn’s lemma). Let (A,≤) be a preordered set whereA is nonempty.
Suppose that every chain C has an upper bound in A. Then, A has a ≤ − maximal
element.

Proof. See [Jec03, Theorem 5.4].

To construct the relation mentioned above, we need the following two lemmas.

Lemma 5.2.10. Letw be a point inWc and♢φ ∈ w. Then there exists someφ-final
point v such that w ⊑c v.

Proof. The same lemma was proved in [BBF21, Lemma 6.6].
Let ♢φ ∈ w ∈ Wc. Take S = {v | w ⊑c v, φ ∈ v}. We will show that every

chain of elements in S has a supremum.
Take a chain C in S. Define Φ = {φ} ∪ {□φ | □φ ∈ v, v ∈ C}. Showing

that Φ is consistent and using Lindenbaum’s lemma, we will obtain a maximally
consistent set of formulas, which will be a point in our canonical model.

Suppose that Φ is inconsistent. Then there are elements □φ1 ∈ v1, . . . ,□φn ∈
vn with {v1, . . . , vn} ⊆ C such that the set {φ,□φ1, . . . ,□φn} is inconsistent.
Without loss of generality we can assume that v1 ⊑c . . . ⊑c vn. By transitivity, we
obtain that {□φ1, . . . ,□φn} ⊆ vn. Since vn ∈ C ⊆ S, we also have φ ∈ vn. This
contradicts that vn is consistent.

Apply Lindenbaum’s lemma to Φ to obtain u ∈ Wc such that Φ ⊆ u. Since
⊑c is reflexive, for every □φ ∈ Φ we have that φ ∈ u. Hence, by definition of
canonical relation, v ⊑c u for every v ∈ C. Thus, u is an upper bound of C and
u ∈ C.

Applying Zorn’s lemma, we obtain an element u′ ∈ S. So, for every t ∈ S
we have that t ⊑c u by the maximality of u. Transitivity of ⊑c implies that u′ is
φ-final.

Lemma 5.2.11. Let w ∈ Wc and φ be a formula. We have that ♢φ ∈ w iff there
exists some φ-final point v such that w ⊑c v and Mc, v ⊨ □(¬φ→ □¬φ).
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Proof. (⇒) By Lemma 5.2.10 there is a φ-final point u, s.t. w ⊑c u. By the truth
lemma we have that ML, u ⊨ grz. It is possible to rewrite grz as φ→ ♢(□(¬φ→
□¬φ)∧φ). Since u is φ-final we must have that Mc, u ⊨ ♢(□(¬φ→ □¬φ)∧φ).
By the semantics, we have that there is a successor v of u, s.t. Mc, v ⊨ φ and
v ⊨ □(¬φ → □¬φ). The fact that v ⊨ φ and u ⊑c v imply that v is φ-final as
well.

(⇐) The result follows by the definition of canonical relation ⊑c.

Definition 5.2.12. Let F = (W,⊑) be a Kripke frame. We call C ⊆ W a cluster,
if for every two points v1, v2 ∈ C: v1 ⊑ v2 ⊑ v1.

For every point v, let us denote the cluster of v with C(v).
For every cluster C of points in W define

⊑ (C) =
⋃

{⊑ (v) | v ∈ C}.

Now we are fully equipped to define the finitary relation that we need. The
following lemma is the adaptation of [FM21, Lemma 5.5], for the case of GL.

Lemma 5.2.13. Let Φ be a finite set of formulas closed under subformulas. There
is an auxiliary relation ⊑Φ on the canonical model of L such that:

1. If x ⊑Φ y, then ⊑c;

2. For each w ∈ Wc, the set ⊑Φ (w) is finite;

3. If ♢φ ∈ w ∩ Φ, then there exists v ∈ W with w ⊑Φ v and φ ∈ v;

4. ⊑Φ is reflexive and transitive and Noetherian.

Proof. Using lemma 5.2.11 and the axiom of choice, we can obtain a function that
for each formula φ and cluster C with ♢φ ∈

⋃
C, assigns a φ-final point w(φ,C)

such that w(φ,C) ∈⊑c (C) and Mc, w(φ,C) ⊨ □(¬φ→ □¬φ).
Set u⊑0

Φv iff u ⊑c v and there exists φ ∈ Φ such that ♢φ ∈ u, v = w(φ,C(u))
and Mc, u ⊭ φ.

Observe that u⊑0
Φv implies that ¬(v ⊑c u). Indeed, if v ⊑c u, then Mc, u ⊨

□¬φ. But this contradicts φ-finality of v. This also entails that ⊑0
Φ is irreflexive.

Take ⊑Φ to be a transtivie and reflexive closure of ⊑0
Φ. Conditions 1, 3 follow

instantly from the construction. Let us show that condition 2 holds as well.
First, observe that ⊑0

Φ(x) is finite for every x, since |Φ| is finite and every point
can have at most |Φ| different successors. Define ⊏Φ=⊑Φ \{(w,w) | w ∈ Wc}.
Clearly, if we show that ⊏Φ (u) is finite, so will be ⊑Φ (u). We will take the
unravelling of ⊏Φ (u) to prove by contradiction that it is finite. For every v ⊐Φ u
there is a sequence:
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u ⊏0
Φ v1⊑0

Φ . . . ⊏
0
Φ vn = v.

By taking the minimal sequence, we may assume that the map from points to
sequences is injective. Consider the tree, which consists of all such paths, ordered
by the initial segment relation. This is a finitely branching tree, since ⊑0

Φ(x) is
always finite for every x. Assume that ⊏Φ (u) is infinite. Then the tree is infinite.
Moreover, by Kőnig’s lemma, there is an infinite sequence

u ⊏0
Φ v1 ⊏

0
Φ . . . .

By definition of ⊑0
Φ for each i ∈ ω there is φi ∈ Φ such that vi+1 is φi-final

and Mc, vi+1 ⊨ □(¬φ → □¬φ) and Mc, vi ⊭ φ. Since ⊑0
Φ is a subset of ⊑c, we

have that vi ⊑c vj whenever i ≤ j. Since Φ is finite, there is some δ ∈ Φ such that
vi if δ-final for infinitely many values of i. Let i0 be the least such value. If i′ > i0
is any other such value for vi′ which is δ-final, we have that vi0⊑0

Φu1⊑0
Φ . . .⊑0

Φvi′ .
Then by transitivity of ⊑c we have that vi0 ⊑c u1 ⊑c vi′ . Since vi′ and vi0 are
δ-final and vi0 ⊑c vi′ , then they are in the same cluster. But then that u1 ∈ C(vi0).
This contradicts the fact that ¬(u1 ⊑c vi0).

A similar strategy is applied to show that ⊑Φ has no cycles. Assume that there
is a cycle u ⊑Φ v1 ⊑Φ v2 ⊑Φ . . . ⊑Φ vn = u, s.t. vi ̸= vj for every i ̸= j.
Since ⊑Φ is a transitive closure of ⊑0

Φ, we have that u⊑0
Φv

′
0 . . .⊑0

Φvn = u. Since
we have that ⊑Φ⊆⊑c, we obtain that v′

0 ∈ C(u). This contradicts the fact that
¬(v′

0 ⊑c u).

Lastly, we will define finitary relation RΦ, also using the finite set of formulas
Φ. This relation will be essential for constructing a finite model. Having a Φ-
finite set of formulas closed under subformulas, and element w ∈Wc, assume that
⟨R⟩φ ∈ w∩Φ. Then there is an elementw′ such thatwRcw

′ and φ ∈ w′ by Lemma
5.2.4. Hence, using the choice function, choose one suchw′ for each ⟨R⟩φ ∈ w∩Φ.
Denote the set of these chosen elements withXw = {x(w, ⟨R⟩φ) | ⟨R⟩φ ∈ w∩Φ}.

Define RΦ ⊆ Rc in the following way:

wRΦy iff y ∈ Xw. (5.1)

Observe that in the case whenRc is a function, we do not need to use the axiom
of choice since there is only one element v for every w ∈Wc such that wRcv.

5.3 Story about moments in a forest with a Φ-morphism

We now describe the construction used to prove the completeness result with re-
spect to classes of finite models for our dynamic logics DPL and DRL. The key
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definitions and techniques are taken from [FM21].

Definition 5.3.1. We will say that a Kripke frameF = (W,⊑) is a tree, if whenever
a ⊑ c and b ⊑ c, it follows that a ⊑ b or b ⊑ a.

Definition 5.3.2. Let F = (W,⊑) be a Kripke frame. If there is y such that for
every x: ⊑m y ⊑ x, then we call y a root of F .

Definition 5.3.3. Let F = (W,⊑) be a Kripke frame. We say that y is a strict ⊑
successor of x, if x ⊑ y and ¬(y ⊑ x).

Definition 5.3.4. LetF = (W,⊑) be a Kripke frame. We say that y is an immediate
⊑ successor of x if there is no z ̸= y such that x ⊑ z ⊑ y.

Definition 5.3.5. Structure m = (|m|,⊑m, νm, rm) we call a moment whenever
(|m|,⊑m) is finite Noetherian tree, with a root rm, and νm is a valuation on m.

Definition 5.3.6 (Forest). Assume that (mi)i<I are moments for a set of indexes I .
Then their forest is the structure F = (|F|,⊑, ν, C), where:

• |F| =
⊔
i<I

|mi|;

• ⊑=
⊔
i<I

⊑i;

• ν(p) =
⊔
i<I

νi;

• C = {rmi}i<I .

Definition 5.3.7. A story (with duration I) is a tuple S = (|S|,⊑S, RS, νS, CS)
such that there are forests Fi = (|Fi|,⊑i, νi, Ci) for each i < I , and relations
(Ri)i<I such that:

• |S| =
⊔
i<I

|Fi|;

• ⊑S=
⊔
i<I

⊑i;

• νS(p) =
⊔
i<I

νi;
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RS
⊑S

Figure 5.1: An example of a Story. The straight arrows represent the relation ⊑S

while dashed arrows represent the dynamic relation RS. Each vertical slice repre-
sents a moment.

• RS = IdI ∪
⊔

i<I Ri, whereRi : |Fi|×|Fi+1| is a naively monotone relation
such that Ri(Ci) = Ci+1, and RI is the identity on |FI |.

• CS = C0.

Observe that every story is a naively monotone dynamic model.
Recall that a p-morphism between Kripke models is a type of map that preserves

validity. It can be defined in the context of dynamic Kripke frames as follows:

Definition 5.3.8. Let FD
1 = (W1,⊑1, R1) and FD

2 = (W2,⊑2, R2) be two dy-
namic Kripke frames. We say that f : W1 → W2 is a dynamic p-morphism,
whenever:

1. x ⊑1 y implies that f(x) ⊑2 f(x);

2. f(x) ⊑2 z implies that ∃y : x ⊑2 y and f(y) = z;

3. xR1y implies that f(x)R2f(x);

4. f(x)R2z implies that ∃y : xR1y and f(y) = z.
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If f satisfies only 1, 2, we call f a p-morphism.
If there is a surjective dynamic p-morphism between F1 and F2, then we will

denote this by F1 ↠ F2.

We will use the following fact about dynamic morphism:

Lemma 5.3.9. Let FD
1 and FD

2 be dynamic Kripke frames. Assume that F1 ↠ F2.
Then FD

2 ⊨ φ, whenever FD
1 ⊨ φ.

Proof. See [BDV01, Theorem 3.14].

Definition 5.3.10 (Φ-morphism). Let L ⊃ DL be a logic, ML = (Wc,⊑c, Rc, Vc)
its canonical model, and S = (|S|,⊑S, RS, νS, CS) be a story of duration I . A
map π : |S| →Wc is called a dynamic Φ-morphism if for all x ∈ |S| the following
conditions are satisfied:

1. x ∈ νS(p) ⇐⇒ p ∈ π(x);

2. If x ∈ |Fi| for some i < I , then RΦ(π(x)) ⊆ π(RS(x)) ⊆ Rc(π(x));

3. If x ⊑S y then π(x) ⊑c π(y);

4. If π(x) ⊑Φ v for some v ∈ Wc, then there exists y ∈ W such that x ⊑S y
and v = π(y);

If π satisfies all the conditions except for 2, we will say that π is a Φ-morphism.

Remark 5.3.11. In case F ∈ L, we have that Rc in the canonical model becomes a
function. Thus, the second condition of the previous definition becomesRΦ(π(x)) =
π(RS(x)) and π(RS(x)) = Rc(π(x)) (in case RΦ(π(x)) ̸= ∅).

We define the depth of the formula φ as follows:

Definition 5.3.12. For a formula φ in L□,⟨R⟩, depth(φ) is defined recursively:

1. depth(p) = 0, if p ∈ Prop;

2. depth(¬φ) = depth(φ);

3. depth(φ ∧ ψ) = max{depth(φ);depth(ψ)};

4. depth(⟨R⟩φ) = depth(φ) + 1.
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Lemma 5.3.13. Let L ⊇ DL be a logic and π : S →Wc be a dynamicΦ-morphism
L-story S of duration I to the canonical model ML. Then for every formula φ ∈ Φ
of ⟨R⟩-depth at most I:

φ ∈ π(x) iff x ∈ JφKS, for every x ∈ |F0|

Proof. We prove the more general claim that if φ has ⟨R⟩-depth at most I − j and
x ∈ |Fj |, then φ ∈ π(x) iff x ∈ JφKS. We proceed by induction on the complexity
of φ. The case of propositional variables follows by definition of Φ-morphism. The
case of boolean connectives follows by standard arguments.

Consider the case of □φ. Assume that □φ ∈ π(x), and x ⊑S y for some y.
Then y ∈ |Fj |, since Fj is closed under ⊑S. Then π(x) ⊑c π(y) and φ ∈ π(y) by
Lemma 5.2.5. Hence, y ∈ JφKS by the inductive hypothesis. Since y was arbitrary,
we conclude that x ∈ JφKS. For the other direction, assume that x ∈ J□φKS. To
show that □φ ∈ π(x) it is sufficient to prove that Mc, π(x) ⊨ □φ. Take arbitrary z,
s.t. π(x) ⊑c z. Then there exists y ∈ S such that x ⊑S y and z = π(y). Therefore
y ∈ JφKS and by the fact that y ∈ |Fj | and induction hypothesis, we have that
φ ∈ π(y). But this means that Mc, π(y) ⊨ φ. We conclude that Mc, π(x) ⊨ □φ.

Let us consider the case of ⟨R⟩φ. If ⟨R⟩φ ∈ π(x), then there is y such that
π(x)RΦy, since ⟨R⟩φ ∈ Φ. By definition of Φ-morphism, we have that there is a
u such that xRSu and π(u) = y. Then we have that u ∈ |Fj+1|, but at the same
time the depth of φ is at most I− j− 1. Therefore, u ∈ JφKS. Hence, by definition
x ∈ J⟨R⟩φKS.

If x ∈ J⟨R⟩φKS, then there is y, s.t. xRSy and y ∈ JφKS. By definition of
dynamic Φ-morphism, we have that π(x)Rcπ(y). Again, applying the inductive
hypothesis as above, we have that φ ∈ π(y) and therefore ⟨R⟩φ ∈ π(x).

We devote the rest of the section to constructing the right story and aΦ-morphism
on it.

Definition 5.3.14. Let L ⊇ DL, andML = (Wc,⊑c, Rc, Vc) be its canonical model.
For a sequence of moments (am)m<N and x ∈ Wc in Wc. Define n =

(
a⃗
x

)
as fol-

lows:

1. |n| = {x}
⊔ ⊔

m<N

|am|;

2. y ⊑n z if:

• y = x and z ∈ |am| for some am or z = x;

• y, z ∈ |am| and y ⊑m z for some am;
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3. νn(p) = Vc ↾{x} (p)
⊔ ⊔

m<N

νam(p);

4. rn = x.

Lemma 5.3.15. If (am)m<N is a sequence of moments, and x ∈Wc, then n =
(
a⃗
x

)
is a moment.

Proof. Every am is a Noetherian tree, which is why following Definition 5.3.14,
we have to check that the addition of x does not break anything in our relation.
Reflexivity and transitivity of the relation follow from the definition. To observe
that ⊑n is Noetherian, note that ∀z ∈ |n| : x ⊑ z, but not vise versa. Also, it
follows that x is a root.

Lemma 5.3.16. Let L ⊇ DL, and ML be its canonical model. Then for each w ∈
Wc there exists a momentm and aΦ-morphism π :W →Wc such that π(rm) = w.

Proof. We prove that there is a moment m and a map π : |m| → Wc that is a
p-morphism on the structure (Wc,⊑Φ).

First we define strict successor-relation ⊑1
Φ such that if x ⊑1

Φ y, then x ⊑Φ y.
This relation is converse well-founded, so we can prove the statement by induction
on it. Thus, for all v such that w ⊑1

Φ v there is a moment mv and a p-morphism
ρv : |mv| → Wc with respect to ⊑Φ that maps the root of rmv to v. Take the
sequence of moments m⃗ = (mv)v. Then define m =

(
m⃗
w

)
. The corresponding

Φ-morphism π : |m| →Wc is constructed in a natural way:

π(x) =

{
w, if x = w;

ρv(x), if x ∈ |mv|

Clearly, π is a p-morphism.

Now we will prove that we can extend our stories.

Lemma 5.3.17. Let L ⊇ DRL and ML = (Wc,⊑c, Rc, νc) be its canonical model.
Suppose that there exists a Φ-morphism π : |m| →Wc such thatRΦ(π(|m|)) ̸= ∅.
Then there exist sequences of

• pairwise disjoint moments (ti)i<N ;

• naively monotone relations (Ri)i<N , s.t. Ri ⊆ |m| × |ti| with Ri(rm) = rti ;

• Φ-morphisms ρi : |ti| →Wc;

such that:
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• ρ =
⊔
i<N

ρi is a Φ-morphism from forest F generated by (ti)i<N ;

• R =
⊔
i<N

Ri is a naively monotone map such thatRΦ(π(w)) ⊆ ρ(R(w)) and

ρ(R(w)) ⊆ Rc(π(w)) for every w ∈ |m|.

Proof. We proceed by the induction on height of m.
Assume that for every moment n, s.t. height(n) < height(m) the statement

holds. Take the root r of the moment m. Our proof will consist of three parts. The
first part will ensure that RΦ(π(w)) ⊆ ρ(R(w)), the second part will show that
ρ(R(w)) ⊆ Rc(π(w)), and the third part combines these two conditions.

Part1 :
Take RΦ(π(r)) = {x1, . . . , xn}. Then for every xi by Lemma 5.3.16 there is

a moment xi and Φ-morphism δi : |xi| → Wc such that δi(rxi) = xi. In case some
of the moments intersect for i < j, take an isomorphic copy of xi, and adjust the
δi. Define ρ′ =

⊔
i≤n

δi. Then ρ′ :
⊔
i≤n

xi → Wc is a Φ-morphism. Define also

Ri ⊆ |m| × |xi| in the following way:

wRiv iff w = r and v = rxi .

Take R′ =
⋃
i≤n

Ri.

Then clearly R′ is naively monotone and since RΦ(π(r)) = ρ′(R′(r)) we have
that ρ′(R′(r)) ⊆ Rc(π(r)).

Part2 :
Take A = {a1, . . . , am} the set of all strict successors of r. For each ai we

can take the generated by ai submodel αi. Then αi is a moment, s.t. height(αi) <
height(m). We will consider only such ai, for which RΦ(π(αi)) ̸= ∅. By I.H. we
have that for each such αi there are:

• pairwise disjoint moments (mi
j)j<Ni ;

• naively monotone relations (Ri
j)i<Ni , s.t. Ri

j ⊆ |αi|×|mi
j |, with Ri

j(rαi) =
rmi

j
;

• Φ-morphisms ρij : |mi
j | →Wc;

such that:

• ρi =
⊔
i<N

ρij is a Φ-morphism from forest Fi generated by (mi
j)j<Ni ;
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• Ri =
⊔
i<N

Ri
j is a naively monotone map such thatRΦ(π(w)) andRΦ(π(w)) ⊆

ρi(R(w)) ⊆ Rc(π(w)) for every w ∈ |αi|.

Fix some i. Take the sequence of moments (mi
j)j<Ni . Fix a moment mi

j for
some j. Take the root c of mi

j . Then c = Ri
j(ai), and therefore c ∈ Ri(ai). Hence,

ρi(c) ∈ ρ(Ri(ai)). Thus, ρi(c) ∈ Rc(π(ai)). By monotonicity of π we obtain
that π(r) ⊑c π(ai). Since π(ai)Rcρ

i(c), we have that ∃c′ : π(r)Rcc
′ ⊑c ρ

i(c),
because Rc is naively monotone. Take one such c′. Take the set C = {c1, . . . , ck}
of all immediate strict ⊑Φ successors of c′. Then for all cl ∈ C there is a moment
cl and Φ-morphism εl : |cl| → Wc with εl(rcl) = cl. Take c⃗ = (cl)l≤k. Define
nij =

(⃗c∗mj
i

c′

)
, and define P i

j ⊆ |m| × nij in the following way:

wP i
jv iff wRi

jv or (w = r and v = c′).

Then P i
j is naively monotone and P i

j (r) = rnij
.

Define θij : |nij | →Wc:

θij(w) =


ρij(w), if w ∈ |mi

j |;
c′, if w = c′;

εl(w), if w ∈ |cl|.

It is easy to see that θij is a Φ-morphism.
Now we can take the sequence of moment (nij)j<Ni . If tij1 ∩ t

i
j2

̸= ∅ for some
j1 < j2, then take an isomorphic copy j1, and adjust the corresponding θij1 and P i

j1
.

Now take θi =
⊔

j<Ni

θij and P i =
⊔
j
P i
j . Since θij ↾mi

j
= ρij and P i

j ↾mi
j
= P i

j , we

conclude that RΦ(π(x)) ⊆ θi(P i(x)) and θi(P i(x)) ⊆ Rc(π(x)) for all x ∈ αi.
Thus, to check that θi(P i(x)) ⊆ Rc(π(x)) for all x ∈ |m|, observe that when

x = r, we have that for every c′ ∈ P i(r) : θi(c′) = c′ and π(x)Rcc
′.

Part3 :
Finalizing the proof, define R = R′ ∪

⊔
i≤m

Pi, and ρ = ρ′ ∪
⊔
i≤m

θi. Observe

that:

1. R′ is a naively monotone relation on pairwise disjoint sets;

2. Pi for every i ≤ m is a naively monotone relation pairwise disjoint sets;

3. ρ′ is a Φ-morphism;

65



4. θi for all i ≤ m is a Φ-morphisms.

We conclude thatR is naively monotone, ρ is aΦ-morphism such thatRΦ(π(x)) ⊆
ρ(R(x)) and ρ(R(x)) ⊆ Rc(π(x)) for all x ∈ |m|.

Proposition 5.3.18. Let L ⊇ DL be a logic and ML = (Wc,⊑c, gc, νc) be its
canonical model. Assume that I < ω and w ∈ Wc. Then there is a story S
of duration I and a dynamic Φ-morphism π : |S| → Wc with w = π(CS) and
|CS| = 1.

Proof. We prove the statement by induction on I . In case I = 0, we just use
Lemma 5.3.16. For the induction step assume that there is a story S′ of length I
and a dynamic Φ-morphism π′ : |S′| → Wc. Take the forest FI . Then in consists
of moments m1, . . . ,mn. Divide these moments into two parts:

1. A1 = {v1, . . . , vk1} such that RΦ(π(vi)) ̸= ∅

2. A2 = {b1, . . . , bk2} such that RΦ(π(vi)) = ∅.

For every moment from A1 apply Lemma 5.3.17. Then for each vi we obtain
a forest Fi with a Φ-morphism ρ1i : |mi| → Fi and a naively monotone relation
R1

i ⊆ |vi| × |Fi|.
Now consider the moments from A2. For each moment bi, we can take a copy

of it and define empty relation R2
i , and take Φ-morphism ρ2i = π ↾|bi|. Then R2

i

relation is trivially naively monotone.
Since every forest Fi is just a set of moments, we can take the disjoint union

of these forests along with copies of bi and obtain a forest F with a Φ-morphism
ρ : |FI | → |F|, where

ρ =

k1⊔
i=1

ρ1i ⊔
k2⊔
i=1

ρ2i

and RI ⊆ |FI | × |F| such that:

RI =

k1⊔
i=1

R1
i ⊔

k2⊔
i=1

R2
i .

Thus, we obtain the desired story by adding F to S′.

This proposition shows that DRL is complete.

Theorem 5.3.19. DRL is complete with respect to the class of all finite naively
monotone dynamic Kripke frames.
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Proof. Assume that DRL ⊬ φ. Then by Lindenbaum’s lemma there is a point w
in Wc, s.t. M, w ⊭ φ. Take I to be the ⟨R⟩-depth of φ and Φ = Sub(φ). By
lemma 5.3.18, we have that there is a story S of duration I , with a Φ-morphism
π : S → Wc s.t. w = π(v), where v is the root of the moment in the story S.
Therefore, by Lemma 5.3.13, we have that S, v ⊭ φ.

The proof of completeness for logicDPL requires a slightly different argument.
This is because the proof of Lemma 5.3.17 does not ensure functionality and totality
of R in case F ∈ L. That is why we prove a different version of Lemma 5.3.17 for
logics that extend DPL. Our proof is similar to the proof of Lemma 6.15 [FM21].

Definition 5.3.20. Let F1 = (W1,⊑1), F2 = (W2,⊑2) be two trees with roots r1
and r2 respectively. Then f :W1 →W2 is called root-preserving if f(r1) = r2.

Lemma 5.3.21. Let L ⊇ DPL and ML = (Wc,⊑c, fc, νc) be its canonical model.
Suppose that there exists a Φ-morphism π : |m| →Wc. Then there exist a moment
n, a Φ-morphism ρ : |n| → Wc and a monotone map g : |m| → |n|, such that
fc ◦ π = ρ ◦ g and g(rm) = rn.

Proof. We proceed by the induction on height of m.
Assume that for every moment n, s.t. height(n) < height(m) the statement

holds. Take the root r of the moment m.
Take A = {a1, . . . , am} the set of all strict successors of r. For each ai we

can take the generated by ai submodel αi. Then αi is a moment, s.t. height(αi) <
height(m). Thus, there is a sequence of moments (α′

i)i≤m, monotone root-preserving
maps fi : |αi| → |α′

i|, and Φ-morphisms ρn : |α′
i| →Wc such that fc◦πi = ρi◦gi,

where πi = π ↾|αi|.
For every v ⊒Φ fc(π(r)), by Lemma 5.3.16 there are bv and a Φ-morphism

ρv : |bv| → Wc mapping the root of bv to v. Take a⃗ = (α′
i)i≤m and b⃗ = (bv)v.

Then define n =
(

a⃗∗⃗b
fc(π(r))

)
. Define ρ : |n| →Wc and g : |n| → |m| as follows:

ρ(w) =


ρv(w), if w ∈ bv;

ρi(w), if w ∈ |α′
i|

fc(π(r)), if w = fc(π(r)).

g(w) =

{
fc(w), if w =;

ρi(w), if w ∈ |α′
i|;

It is easy to see that ρ is a Φ-morphism and g is a monotone map with fc ◦ π =
ρ ◦ g.
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Proposition 5.3.22. Let L ⊇ DPL be a logic and ML = (Wc,⊑c, gc, νc) be its
canonical model. Assume that I < ω and w ∈ Wc. Then there is a story S of
duration I such that:

1. For every i ≤ I , the forest Fi in story S, consists of one moment;

2. For every i < I , the naively monotone relation Ri ⊆ |Fi| × |Fi+1| is a
monotone root preserving function;

and a dynamic Φ-morphism π : |S| →Wc with w = π(C0)

Proof. The proof is by induction on I . For I = 0, we use Lemma 5.3.16. For
the inductive step, assume that a story Ŝ is of depth I and a dynamic Φ-morphism
π exists. Take the forest FI . It is a moment m. Thus, by Lemma 5.3.21 , there
is a moment n, monotone root-preserving map fI : |m| → |n||, and Φ-morphism
π′ : |n| →Wc such that fc ◦π = π′ ◦ g. We define S by adding n to S so we obtain
the desired story.

It follows that every formula satisfiable in a point in the canonical model of
L ⊇ DPL is also satisfied on a finite story.

Theorem 5.3.23. DPL is complete with respect to the class of all finite monotone
dynamic Kripke frames.

Proof. The proof is analogous to the proof of Theorem 5.3.19, but using Lemma
5.3.22 to obtain the right story S with a Φ-morphism.

5.4 Constructing a polyhedron

We have proven that DRL and DPL are complete with respect to the correspond-
ing classes of Kripke frames. We devote this section we devote to the method of
constructing a polyhedron from a finite dynamic Kripke frame. We will use the
technique outlined in [Ada+22]. This technique employs the tool from combinato-
rial and polyhedral geometry, the nerve of a poset.

Definition 5.4.1. Suppose F = (W,⊑) is a Kripke frame. Then the nerve N (F)
of F is a tuple (C,⊆), where C = {A | A is a chain in F}.

Since ⊆ is a poset relation, N (F) is a Kripke frame. We will use nerves to
construct a polyhedron, and that is why we want this relation to be dynamic in the
sense of definition 3.3.1. That is why we use the following definition.
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Definition 5.4.2. Let Fd = (W,⊑, R) be a dynamic Kripke frame and C ⊆ F be
a chain. Define P ⊆ C × C in the following way:

CPC ′ iff C ′ ⊆ R(C), and
there is a monotonic surjective function h : C → C ′ with h(y) ∈ R(y).

Lemma 5.4.3. Let F = (w,⊑, f) be a dynamic monotone Kripke frame. Then
P ⊆ C × C is a function.

Proof. We have to show that P is functional and total. Take some C ∈ C. Then
f(C) is a chain since f is monotone. By definition f ↾C : C → f(C) is surjective
and monotone. Assume that there is C ′′ ⊆ f(C) such that CPC ′′. Then there is a
monotone surjective function h : C → C ′′ such that h(c) = f(c) for every c ∈ C.
Thus C ′′ = f(C).

Thus, the definition of a nerve of a dynamic Kripke frame is:

Definition 5.4.4. Let Fd = (W,⊑, R) be a dynamic Kripke frame. Then we call
N (FD) = (C,⊆, P ) the nerve of Fd if

1. (C,⊆) is the nerve of (W,⊑);

2. P is the relation from Definition 5.4.2.

We can show that P is naïvely monotone:

Lemma 5.4.5. LetFD = (W,⊑,R) be a dynamic Kripke frame. Then the relation
P on its nerve N (FD) = (C,⊆, P ) is naïvely monotone with respect to ⊆.

Proof. Assume that C1 ⊆ C2 and C2PC
′
2. Then C ′

2 ⊆ R(C2) is a chain, with
a monotone surjective function h : C2 → C ′

2. Take h′ = h ↾C1 . Then h′ is a
surjective monotone function. Since h′(C1) ⊆ C ′

2, we have that it is a chain. As
h′ ⊆ h, then for every y ∈ C1 we have that h′(y) ∈ R(y). Thus, C1Ph

′(C1).

Before moving further, we define a special p-morphism for nerves and Kripke
frames employed in [Ada+22].

Definition 5.4.6. Let Fd = (W,⊑, R) be a finite dynamic monotone Kripke frame
and N (FD) = (C,⊆, P ) be its nerve. Then max : C →W is a function that sends
a chain to its maximal element.

Lemma 5.4.7. Let Fd = (W,⊑, R) be a finite dynamic monotone Kripke frame
and N (FD) = (C,⊆, P ) be its nerve. Then max : N (F) → F is a p-morphism.
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Proof. See [Ada+22, Proposition 2.3].

We will show that max is a dynamic p-morphism for every dynamic naïvely
monotone frame.

Lemma 5.4.8. Let Fd = (W,⊑, R) be a finite dynamic monotone Kripke frame.
Then CPC ′ implies max(C)R max(C ′).

Proof. If CPC ′, take the surjective monotone map h : C → C ′ with h(c) ∈ R(C)
for every c ∈ C. Then max(C ′) ∈ R(C) and at the same time h(max(C)) ∈
R(max(C)). Since h is monotone, we have that h(max(C)) = max(C ′).

Lemma 5.4.9. Let Fd = (W,⊑, R) be a finite dynamic naïvely monotone Kripke
frame. Then max(C)Ry implies that there is max(C ′) = y and CPC ′.

Proof. We prove the statement by induction on the length ↕ of the chain C.
l = 1.
If |C| = 1, then define C ′ = {y}. Then clearly CPC ′.
l ↷ l + 1.
Assume that the chain C consists of elements {z0, . . . , zl}, ordered by their

indexes, and zlRy. Take the first l− 1 elements S = {z0, . . . , zl−1}. Since zl−1 ⊑
zl and zlRy, then by naïve monotonicity of R we have that there is an element y′
such that zl−1Ry

′ and y′ ⊑ y. Hence, there exists a chain S′ such that SPS′ and
max(S′) = y′. Take the monotone surjective function h : S → S′. Since y′ ⊑ y,
we have that C ′

= S′∪{y} is a chain and h′ = h∪ (zl, y) is a subjective monotone
function such that h(c) ∈ R(C) for every c ∈ C. We conclude that CPC ′.

We conclude this part with the following lemma.

Lemma 5.4.10. Let Fd = (W,⊑, R) be a finite dynamic monotone or naïvely
monotone frame then N (FD) ⊨ φ implies Fd ⊨ φ.

Proof. By the last two lemmas, we conclude that max : N (FD) → Fd is a dy-
namic p-morphism, and therefore by Lemma 5.3.9 the result follows.

5.4.1 From nerves to polyhedra

Now we will elaborate on how to construct a polyhedron from the nerve N (F).
This construction was proposed in [Ada+22] regarding polyhedra without dynamic
function. For every Euclidean space Rn let e1, . . . , en be its standard basis.
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Definition 5.4.11. Let Fd = (W,⊑, R) be a finite Kripke frame, enumerate it
as W = {x1, . . . , xn}. Take the Euclidean space Rn and a bijection o : W →
{e1, . . . , en} : xi 7→ ei.

The simplicial complex induced by Fd is the set of simplexes:

K := {Conv{o(C)} | C ∈ N (F)},

and the dynamic relation P ∗ ⊆ K ×K is defined as follows:

Conv(o(C1))P
∗Conv(o(C2)) iff C1PC2.

Since K is a simplicial complex, we have that |K| is a polyhedron and K̃ is as
before the partition of |K|.

Lemma 5.4.12. Let Fd = (W,⊑, R) be a finite dynamic Kripke frame and o :
W → {e1, . . . , en} a bijection. Then o∗ : C → K : C 7→ Conv(o(C)) is an
isomorphism.

Proof. Clearly, o∗ is surjective. Note that ifC1 ̸= C2 are different thenConv(o(C1)) ̸=
Conv(o(C2)), hence o∗ is injective.

Assume that C1 ⊆ C2. Then Conv(o(C1)) ⊆ Conv(o(C2)). Therefore
Conv(o(C1)) ≼ Conv(o(C2)).

IfConv(o(C1)) ≼ Conv(o(C2)), thenConv(o(C1)) ⊆ Conv(o(C2)). Hence,
o(C1) ⊆ o(C2), since o(C2) are from the basis. Thus, C1 ⊆ C2.

Definition 5.4.13. Let Fd = (W,⊑, R) be a finite dynamic Kripke frame. Then
define P̃ ∗ ⊆ K̃ × K̃ in the following way:

σ̃P̃ ∗τ̃ iff σP ∗τ.

Definition 5.4.14. Let Fd = (W,⊑, R) be a finite dynamic Kripke frame. Then
we call ∇Fd = (K̃,≾, P̃ ∗) a simplicial structure induced by Fd if:

1. K̃ is the set of relative interiors of simplexes in K;

2. P̃ ∗ is the relation from Definition 5.4.13.

Thus, we obtain that the nerve N (FD) is isomorphic to simplicial structure
∇Fd.

Proposition 5.4.15. Let Fd = (W,⊑, R) be a finite dynamic Kripke frame. Then
for its nerve N (FD) = (C,⊆, P ) and ∇Fd = (K̃,≾, P̃ ∗) its simplicial structure
we have:

N (FD) ⊨ φ iff ∇Fd ⊨ φ,

for every formula φ in L□,⟨R⟩.
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Proof. Since N (FD) is isomorphic to ∇Fd, then we have that there are two sur-
jective dynamic p-morphisms: o∗ : C → K̃ and (o∗)−1 : K̃ → C.

To obtain a dynamic system from (K̃,≾, P̃ ∗) we have to define the relation
R∗ on polyhedron |K|. Here we will again have to work with two different cases
- namely, the case of dynamic naïvely monotone frames and the case of dynamic
monotone frames. The latter R∗ must be a polyhedral function. We divide the fur-
ther discussion into two subsections, the first of which is devoted to constructing a
dynamic relational system from a dynamic naïvely monotone frame, and the second
to constructing a dynamic polyhedral system from a dynamic monotone frame.

5.4.2 From Dynamic naïvely monotone frames
to Dynamic relational systems

When we start with a dynamic naïvely monotone frame Fd = (W,⊑, R), we have
that its simplicial complex (K̃,≾, P̃ ∗) is also a dynamic naïvely monotone frame,
as proved in Lemma 5.4.12. So, let us define the relation on |K| in the following
way.

Definition 5.4.16. Let Fd = (W,⊑, R) be a finite dynamic Kripke frame and K be
a simplicial complex induced by Fd. Define R∗ ⊆ |K| × |K| in the following way:

xR∗y iff σ̃xP̃ ∗σ̃y.

Observe that the following holds with definition 5.4.16.

Lemma 5.4.17. Let Fd = (W,⊑, R) be a finite dynamic Kripke frame. Then for
relation R∗ from Definition 5.4.16 the following is true:

σ̃P̃ ∗τ̃ iff ∃x ∈ σ̃, y ∈ τ̃ : xR∗y,

Proof. Assume that σ̃P̃ ∗τ̃ . Then since the relative interior of every simplex is non-
empty, we have that there is x ∈ σ̃ and there is y ∈ τ̃ . By fact that K̃ is the partition,
we have that σ̃x = σ̃ and σ̃y = τ̃ . Thus, xR∗y.

The other direction follows directly from the R∗ definition.

To prove that (|K|,K, R∗) is a dynamic relational system, we need to show that:

(R∗)−1(σ̃) ∈ U(K); (∗)

(R∗)−1(P ′) ∈ SubK(P ), whenever P ′ ∈ SubK(P ). (∗∗)
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First, we will show that (∗) holds, and then by Lemma 3.3.13, we will obtain
(∗∗). To prove the first item it is sufficient to show that (R∗)−1(σ̃) =

⋃
((P̃ ∗)(σ̃)),

since P̃ ∗(σ̃) ⊆ K̃.

Lemma 5.4.18. LetFd = (W,⊑, R) be a finite dynamic Kripke frame and∇Fd =
(K̃,≾, P̃ ∗) its simplicial structure. Then we have:

(R∗)−1(σ̃) =
⋃

(P̃ ∗)−1(σ̃).

Proof. (⊆) Take x ∈ (R∗)−1(σ̃). Then there is y ∈ σ̃ such that xR∗y. But then by
definition of R∗ and the fact that σ̃ = σ̃y we have that σ̃xP̃ ∗σ̃. Hence, we obtain
σ̃x ∈ (P̃ ∗)−1(σ̃), and therefore x ∈

⋃
((P̃ ∗)−1(σ̃)).

(⊇) For the other direction take x ∈
⋃
(P̃ ∗)−1(σ̃). Then for σ̃x it is true that

σ̃xP̃ ∗σ̃. Hence, by the definition of R∗ we have that xR∗y for some y ∈ σ̃. We
conclude that x ∈ (R∗)−1(σ̃).

Definition 5.4.19. Let Fd = (W,⊑, R) be a finite dynamic Kripke frame. We call
D = (|K|,K, R∗) the dynamic realisation of Fd = (W,⊑, R) if:

1. K is the simplicial complex induced by Fd;

2. R∗ is the relation on |K| from Definition 5.4.16.

Proposition 5.4.20. Let Fd = (W,⊑, R) be a finite dynamic Kripke frame. Then
its dynamic realization D = (|K|,K, R∗) is a dynamic relational system, with the
encoding F(D) = (K̃,≾, P̃ ∗).

Proof. By lemma 5.4.18 we obtain that for every σ̃ ∈ K̃: (R∗)−1(σ̃) ∈ U(K).
Then by Lemma 5.4.17 and Lemma 3.3.13 we have that (R∗)−1(P ′) ∈ SubK(P ),
whenever P ′ ∈ SubK(P ).

Theorem 5.4.21. For a finite dynamic naïvely monotone frame Fd = (W,⊑, R)
and its dynamic realisation D = (|K|,K, R∗):

D ⊨ φ⇒ Fd ⊨ φ,

for every φ in L□⟨R⟩.

Proof. By lemma 5.1.12 we have that D ⊨ φ iff F(D) ⊨ φ. Since N (FD) is
isomorphic to F(D) = (K̃,≾, P̃ ∗), we obtain that F(D) ⊨ φ iff N (FD) ⊨ φ.
Using lemma 5.4.10 we have that N (FD) ⊨ φ ⇒ Fd ⊨ φ for every φ in L□⟨R⟩.
Hence, D ⊨ φ⇒ Fd ⊨ φ.

73



5.4.3 From Dynamic monotone frames
to Dynamic polyhedral systems

Fix for this section some dynamic monotone frameFd = (W,⊑, R). As mentioned
in Lemma 5.4.3, P ⊆ N (FD) × N (FD) becomes a function. Then by Lemma
5.4.5, we have that P is a monotone function. Observe, that P is determined by
its values on the chains of length 1

(
i.e. atoms of N (FD)

)
. Then we can define a

function f ′
: K → K:

Definition 5.4.22. Let Fd = (W,⊑, R) be a dynamic monotone frame and K be a
simplicial complex induced by Fd. Define f ′

: K → K as follows:

f
′
(o∗(C)) = o∗(P (C)), (5.2)

The f ′ function is naturally translated to the function f : K̃ → K̃:

f(σ̃) = τ̃ iff f ′(σ) = τ (⋆)

We will show that f is monotone.

Lemma 5.4.23. Let Fd = (W,⊑, R) be a dynamic monotone frame. The function
f : K̃ → K̃ defined as ⋆ is monotone.

Proof. We will prove it through the proof that f ′ is monotone. Assume that σ ≼ τ ,
then for the corresponding chains Cσ, Cτ such that o∗(Cσ) = σ and o∗(Cτ ) = τ ,
we have that Cσ ⊆ Cτ , and therefore P (Cσ) ⊆ P (Cτ ), because P is monotone.
Since Conv is monotone, we have that Conv(o(P (Cσ))) ⊆ Conv(o(P (Cτ ))).
Since both Conv(o(P (Cσ))) and Conv(o(P (Cτ ))) are simplexes, we have that
o∗(P (Cσ)) ≼ o∗(P (Cτ )). Thus, f ′(σ) ≼ f ′(τ).

We observe that f ′ is completely determined by its values on the basis.

Lemma 5.4.24. Let Fd = (W,⊑, R) be a dynamic monotone frame. Then for
f ′ : K → K from Definition 5.4.22 we have that:

f ′(Conv(e1, . . . , en)) = Conv(f ′(e1), . . . , f
′(en)).

Proof. Let us take Conv(ei1 , . . . , ein) ∈ K. Then {ei1 , . . . , ein} = o(C) for some
C = {xi1 . . . , xin}, whereC ∈ C. By the definition of f ′ we have that f ′(o∗(C)) =
o∗(P (C)). Then:

o∗(P (C)) = Conv(o(P ({xi1 . . . , xin}))) (definition of o∗)
= Conv({o(P (xi1)), . . . , o(P (xin))}) (since P is a function)
= Conv({f ′(ei1), . . . , f ′(ein)}) (since Conv(o(P (xij ))) = o(P (xij )))
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So, we have that (K̃,≾, f̃) is a dynamic monotone frame. Now from it, we will
construct a dynamic polyhedral system using |K| as the domain.

Definition 5.4.25. Let Fd = (W,⊑, R) be a dynamic monotone frame, K be its
simplicial complex and f ′ : K → K be a function defined in 5.4.22. We call
f∗ : |K| → |K| the polyhedral protagonist for Fd if:

f∗(x) =

n∑
i=0

λif
′(ei), where x =

n∑
i=0

λiei. (5.3)

Now we have to show two facts:

1. f∗ is continuous;

2. (f∗)−1(P ′) ∈ SubK(|K|), for every P ′ ∈ SubK(|K|).

In other words, we have to show that f∗ is polyhedral in order to obtain that
(|K|,K, f∗) is a dynamic polyhedral system. The second item will follow from
lemma 3.3.13, if we show that (f∗)−1(σ̃) ∈ U(K). For this, we will need several
technical lemmas.

Lemma 5.4.26. Let Fd = (W,⊑, R) be a dynamic monotone frame, K be its sim-
plicial complex, f be a function defined as in (⋆) and f∗ : |K| → |K| be a polyhedral
protagonist for Fd. Then for all σ̃, τ̃ ∈ K̃: f∗(σ̃) ⊆ τ̃ iff f(σ̃) = τ̃ .

Proof. (⇒) Assume that x ∈ σ̃. Then by definition of σ we have that σ =
Conv(ei1 , . . . , ein) of elements from the basis. Then x = λi1ei1 + . . . , λinein
is the convex combination with no lambda being equal to 0. By the definition of
f∗:

f∗(x) = λi1f
′(ei1) + . . . , λinf

′(ein).

By assumption we have that f∗(x) ∈ τ̃ . Since τ is the smallest simplex such
that f∗(x) ∈ τ̃ we have that τ is the convex hull on points f ′(ei1), . . . , f ′(ein). By
Lemma 5.4.24: f ′(σ) = τ . Hence, f(σ̃) = τ̃ .

(⇐) If f(σ̃) = τ̃ , then f ′(σ) = τ . By the definition of σ in K we have
that σ = o∗({xi1 , . . . , xin}) for some {xi1 , . . . , xin} chain in W . Then f ′(σ) =
Conv(f ′(ei1), . . . , f

′(ein)) = τ by Lemma 5.4.24. Taking x ∈ σ̃ we have that x =
λi1ei1+. . . , λinein , for every λij > 0. Thus, f∗(x) = λi1f

′(ei1)+. . . , λinf
′(ein).

We conclude that f∗(x) ∈ τ̃ .

Lemma 5.4.27. Let Fd = (W,⊑, R) be a dynamic monotone frame, K be its sim-
plicial complex, f be a function defined as in (⋆) and f∗ : |K| → |K| be a polyhedral
protagonist for Fd. Then for all x ∈ |K|, if f∗(x) ∈ σ̃, then f∗(σ̃x) ⊆ σ̃.
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Proof. Assume f∗(x) ∈ σ̃ for x = λi1ei1+ . . . , λinein , where all λij > 0. Since σ
is the smallest simplex such that f∗(x) ∈ σ̃, we have that σ̃ = Conv(f∗(ei1), . . . f

∗(ein)),
since f ′(ej) = f∗(ej) for every ej . Then for every y ∈ σ̃x we have that y = λ′i1ei1+
. . . , λ′inein , where every λij > 0. Thus, f∗(y) = λ′i1f

∗(ei1) + . . . , λ′inf
∗(ein),

and since f(eij ) = f∗(eij ), we conclude that f∗(y) ∈ σ̃.

From the lemmas above, it follows that:

Proposition 5.4.28. Let Fd = (W,⊑, R) be a dynamic monotone frame, f : K̃ →
K̃ a function ⋆ and f∗ dynamic protagonist of Fd. Then:

(f∗)−1(σ̃) =
⋃
f−1(σ̃).

Proof.

(f∗)−1(σ̃) =
⋃

{τ̃ | f∗(τ̃) ⊆ σ̃} (by Lemma 5.4.27)

=
⋃

{τ̃ | f(τ̃) = σ̃} (by lemma 5.4.26)

=
⋃
f−1(σ̃).

Lemma 5.4.29. Let Fd = (W,⊑, R) be a dynamic monotone frame, f : K̃ → K̃ a
function ⋆ and f∗ dynamic protagonist of Fd. Then (f∗)−1(P ′) ∈ SubK(|K|), for
every P ′ ∈ SubK(|K|).

Proof. Combining Lemma 3.3.13 and Lemma 5.4.28.

Let us now prove that f∗ is continuous.

Lemma 5.4.30. Let Fd = (W,⊑, R) be a dynamic monotone frame. Then for the
dynamic protagonist f∗ is a continuous map on |K|.

Proof. We will need some preparation to show that f∗ is continuous.
The standard basis E = {e1, . . . , en} is fixed, so take f∗(E) = {e′1, . . . , e′r}.

Then, if x =
n∑

i=1
λiei, we have that f∗(x) =

n∑
i=1

λif
∗(ei) and

n∑
i=1

λif
∗(ei) =

r∑
i=1

(λi1 + . . .+ λip)e
′
i. Take {λi1 , . . . , λip} for all lambdas, which are coefficients

for e′i. Define µi =
p∑

j=0
λij . Hence, we can rewrite f∗(x) in the following way:

f∗(x) =

r∑
k=1

µke
′
k.

76



Observe that
n∑

i=1
λi = 1 and every λi ∈ [0, 1] iff

p∑
k=1

µk = 1 and µk ∈ [0, 1], so

in the future proof we will not take into account this condition for points.
First, let us recall that ρ is the Euclidean metric in our space. Suppose now

that Bε(o) ⊆ |K| is an open ball of radius ε with center o. Denote it as V =
Bε(o). We will show that for every x ∈ (f∗)−1(V ), x is contained in an open

set U ⊆ (f∗)−1(V ). By the definition of convex hull, x =
n∑

i=1
λiei. Therefore,

f∗(x) =
r∑

i=1
µie

′
i. Since f∗(x) ∈ Bε(o), we have that ρ(o, f∗(x)) = t < ε. We

will define an open ball Bδ(x), in such a way that f∗(Bδ(x)) ⊆ V . So we need the
following property:

ρ(x, z) < δ ⇒ ρ(o, f∗(z)) < ε, for every z ∈ V.

This inequality will be preserved if ρ(f∗(x), f∗(z)) < ε − t. Indeed, in this
case: ρ(o, f∗(z)) ≤ ρ(o, f∗(x))+ ρ(f∗(x), f∗(z)) < t+ ε− t = ε. Let us denote
ε− t with ε′ .

We will define δ in such a way that

ρ(f∗(x), f∗(z)) < ε′.

First, by the definition of f∗, f∗(z) is:

f∗(z) =
r∑

i=1

µ
′
ie

′
i,

where µ′
i =

p∑
j=1

λ
′
ij

, and λ′
ij

are coefficients of z.

Hence, we have that ρ(f∗(x), f∗(z)) < ε
′ , whenever µ′

i ∈ (µi − ε
′
/
√
r, µi +

ε
′
/
√
r). Rewriting µ

′
i with the sums of lambdas, we obtain the following fact

p∑
j=0

λ
′
ij

∈ ((
p∑

j=0
λij ) − ε

′
/
√
r, (

p∑
j=0

λij) + ε
′
/
√
r). Let us show that this will

hold whenever each λ′
ij

∈ (λij − ε
′
/n

√
r, λij + ε

′
/n

√
r). Assume that every

|λ′
ij
−λij | < ε

′
/n

√
r. Then |

p∑
j=0

λ
′
ij
−

p∑
j=0

λij | ≤
p∑

j=0
|λ′

ij
−λij | <

p∑
j=0

ε
′
/n

√
r =

pε
′
/n

√
r < ε

′
/
√
r, since p < n.

Thus, take δ = ε
′
/n

√
r. Assume that ρ(x, z) < δ. From this follows that

for all coordinates of λ′
i of z we have that λ′

i ∈ (λi − δ, λi + δ). Then, by the
previous reasoning, we obtain that µ′

i ∈ (µi − ε
′
/
√
r, µi + ε

′
/
√
r). Therefore,

ρ(f∗(x), f∗(z)) < ε.
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We conclude that f∗ is continuous.

Definition 5.4.31. Let Fd = (W,⊑, R) be a dynamic monotone frame. We will
call D = (|K|,K, f∗) the dynamic realisation of Fd if:

1. K is a simplicial complex of Fd;

2. f∗ is the dynamic protagonist of Fd.

Lemma 5.4.32. Let Fd = (W,⊑, R) be a dynamic monotone frame and D =
(|K|,K, f∗) its dynamic realisation.

Proof. Follows from Lemma 5.4.30 and Lemma 5.4.29.

Thus, we have that D = (|K|,K, f∗) is a dynamic polyhedral system, and by
Lemma 5.4.26, we obtain that (K,≾, f̃) is its encoding.

Theorem 5.4.33. For a dynamic monotone frame Fd = (W,⊑, f) and its dynamic
realisation D = (|K|,K, f∗):

D ⊨ φ⇒ Fd ⊨ φ,

for every φ in L□⟨R⟩.

Proof. Analogous to theorem 5.4.21.

We finally arrive at the main theoretical result of the thesis.

Theorem 5.4.34.

1. Logic DRL is complete with respect to the class of all dynamic relational
systems.

2. Logic DPL is complete with respect to the class of all dynamic polyhedral
systems.

Proof. We will present the proof only for DPL since the proof for DRL is com-
pletely analogous. Assume that φ /∈ DPL. Then there is a dynamic monotone
frame Fd such that Fd ⊭ φ. Then, taking the dynamic realization of Fd, D which
corresponds to it, we obtain that D ⊭ φ by Theorem 5.4.33.

We finish this chapter with a summary of what has been done.

• We defined two logicsDRL andDPL, dynamic relational logic and dynamic
polyhedral logic respectively.
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• We proved that DRL is valid on class of dynamic relational systems (DRS)
and that DPL is valid the class of dynamic polyhedral systems (DPS).

• We proved the completeness of DRL and DPL with respect to the class of
finite naïvely monotone dynamic Kripke frames and finite monotone dynamic
Kripke frames, respectively.

• Using the method of constructing a polyhedron from a finite Kripke frame
defined in [Ada19], we described how to build a dynamic relational system D
from a finite naïvely monotone dynamic Kripke frame Fd such that if D ⊨ φ,
then Fd ⊨ φ for every φ in language L□,⟨R⟩. The same result was obtained
for dynamic polyhedral and finite monotone dynamic systems.
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Chapter 6

Conclusion and future work

In this thesis, we have presented a novel approach to the specification and automatic
verification of dynamic polyhedral structures’ properties. The required background
on the static semantics is presented in Chapter 2, together with a form of a bisimi-
larity for finite Kripke frames and the proof of the Hennessy-Milner property.

Then in Chapter 3 we defined two novel forms of dynamic models: dynamic
polyhedral models (Definition 3.1.9) and dynamic relational models (Definition
3.3.3). We demonstrated how to create finite Kripke frames as encodings for these
models. We also proved that in order to verify if a formula is true at a specific point
of a dynamic polyhedral model or a dynamic relational model O, one only needs
to check whether the formula is true in the corresponding point of the encoding
M(O) (Theorems 3.2.11 and 3.3.14).

In Chapter 4, we introduced a model checking algorithm for verifying the truth
of a formula on dynamic polyhedral models and dynamic relational models, utiliz-
ing their encodings. Additionally, we demonstrated the application of the existing
model checker PolyLogicA to a new case study. We have also modified the source
code of the tool by describing the steps required to apply it to a real 3D model sce-
nario. Based on this example, we outlined a conceptual design for a prototype of a
dynamic model checker.

In Chapter 5 we introduced the logics DPL and DRL and showed that they
enjoy the finite model property with respect to Kripke frames and are complete
with respect to dynamic polyhedral semantics.

There are still many problems that remain open. For example, what results can
we get if we change the language? It is natural to add the modality “forever in the
future” ([∀]). See Figure 6.1 for all the possible variants of the languages. In our
study, we addressed the question of completeness of logics in the language L□,⟨R⟩,
and also defined model checking algorithm for models and formulas in the language
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L□

L□,⟨R⟩

L□,⟨R⟩,[∀]

L⟨R⟩,γ,∀

Lγ,[∀]

L□,γ

L⟨R⟩,γ

Figure 6.1: Dynamic polyhedral languages

⟨R⟩, γ. The same question can be posed for languages in Figure 6.1. Let us consider
some of the most interesting ones.

1. L□,γ – The question of the axiomatization of the minimal logic in this lan-
guage remains open. After the axiomatization result, it is quite natural to ask
about the completeness of defined logic with respect to all polyhedra;

2. L⟨R⟩,γ – the questions of axiomatization and completeness for logics in this
language would also be a very non-trivial challenge, which could be the first
step for understanding the relation between γ and the dynamics;

3. L□,⟨R⟩,[∀] – extension of the language with the modality [∀] is a standard fea-
ture in dynamic logic [KM07]. The issues of axiomatization, completeness,
and definition of model checking algorithm would be very interesting prob-
lems to solve.

4. L⟨R⟩,γ,[∀] – this language is very expressive, the questions axiomatization and
completeness for it may require a lot of effort, but still would be non-trivial
results. The main problem with this language is that it is not apparent how
the two fixpoint operators γ and [∀] should be related to each other. A more
feasible result for this logic would be a design of a model checking algorithm
for formulas in this language.

Finally, a practical challenge that remains unsolved is a development of a pro-
totype for model checking in dynamic 3D models. To tackle this, it seems more
promising to adopt the L⟨R⟩,γ,[∀] language instead of L⟨R⟩,γ , as it offers greater ex-
pressiveness. Consequently, the initial phase of this project requires a formulation
of a model checking algorithm. The construction of the prototype requires consider-
able software development skills and an understanding of the specific requirements
of the image analysis domain.
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