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Chapter 1

Introduction

This thesis is about the proof theory of modal fixed point logics. In this intro-
duction we shall give an informal introduction to this topic. Moreover, we will
describe the particular goals of our research, existing related work, and our own
contributions. Most of what is informally discussed here will be made formal in
the next chapter.

1.1 Modal fixed point logics

Modal fixed point logics are a class of formalisms extending modal logic by so-
called fixed point operators. We shall first introduce modal logic, and then a
relatively simple modal fixed point logic called PDL. Thereafter we shall introduce
the archetypal modal fixed point logic: the modal µ-calculus.

1.1.1 Modal logic

Modal logic was originally invented by philosophers to formalise the concepts of
possibility and necessitation. It features two modal operators � and �, where �p
means that some statement p is possibly true, and �p means that p is necessarily
true. An interesting example of a modal logical validity is given by the duality
of � and �:

�¬p is equivalent to ¬�p,

which means that it is possible that p is not true if and only if it is not necessary
that p is true.

Since its inception, modal logic has been extended and reinterpreted in various
ways. For instance, the modal operators have been interpreted as speaking about
belief, knowledge, provability or temporality, rather than possibility and necessity.
There is also a wealth of other modal operators, often related to each other in
interesting ways. Mathematical tools have been developed to study the whole

1
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Figure 1.1: An example of a relational structure

landscape of modal logics. In this thesis we will only use a fraction of these tools.
For an introduction to the field we refer the reader to [15]

Computer science is a particular field in which modal logic has found many
applications. Modal logic is usually interpreted in relational structures, which are
directed graphs, often labelled with some additional information.

Consider for instance the structure in Figure 1.1. A common view in computer
science interprets the nodes of this graph as states of some machine, and the
arrows as program executions. For instance, if the machine is in state A, then
after executing program a it will be in state B, whereas executing program c will
put it in state D. Under this interpretation the modal formula 〈a〉x expresses that
an execution of the program a possibly leads to a state where x is true, whereas
the formula [a]x expresses that it necessarily does. Formally, this respectively
corresponds to at least one a-arrow pointing to the a state where x is true, or
every arrow pointing to a state where x is true. If we say that A is true precisely
at state A, and B is true precisely at state B, et cetera, one can thus verify that
the formula 〈a〉B is true at A and the formula 〈a〉C is true at B. In contrast,
while the formula [a]B is true at A as well, the formula [a]C is not true at B.

In the next section we will see how this perspective on modalities as programs
has lead to extensions of the just-described basic modal logic.

1.1.2 Propositional Dynamic Logic

In [40], Fischer & Ladner introduced Propositional Dynamic Logic (or PDL for
short). This is an extension of modal logic, based on the interpretation of the
modalities as program executions. Characteristic of PDL is the fact that modalities
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(in the context of PDL also called programs) can be combined into new modalities,
just like formulas can be combined into new formulas.

For instance, if a and b are programs, then there there is a program a; b, which
first runs a and then runs b. One of the most interesting program constructors
is the Kleene star −∗. Given a program a, the program a∗ runs the program a
a finite, but non-deterministically chosen, number of times. In other words, a∗

might terminate immediately, or run the program a one time, or two times, et
cetera.

Returning to Figure 1.1, this means that from the state A, every state except
for D is reachable by an execution of the program a∗.

Let us again denote the modality corresponding to the program a∗ by 〈a∗〉.
This modality can be called an (implicit) fixed point operator, because the meaning
of 〈a∗〉p is the least fixed point of x 7→ p∨ 〈a〉x. In other words, 〈a∗〉p is the least
solution for x satisfying

x is equivalent to p ∨ 〈a〉x.

This statement has two components. Firstly, 〈a∗〉p is a fixed point of x 7→ p∨〈a〉x,
which means that applying it to 〈a∗〉p returns 〈a∗〉p itself. Spelling this out, we
have

〈a∗〉p is equivalent to p ∨ 〈a〉〈a∗〉p.

Hence 〈a∗〉p is true at some state s if and only if p is true at s, or 〈a∗〉p is true
at some state t reachable from s by an a-arrow, which means that in t either p is
true or 〈a∗〉p is true in some state u reachable by an a-arrow, which means that...
and so on.

Secondly the fixed point 〈a∗〉p is the least among all fixed points of the func-
tions above. This means that for any ϕ such that ϕ is equivalent to p ∨ 〈a〉ϕ, we
have

〈a∗〉p implies ϕ.

The inclusion of this fixed point operator makes PDL much more expressive
than basic modal logic, since it allows one to make statements about arbitrarily
long paths. Nevertheless, many of the properties that make basic modal logic so
well behaved are retained in the extension to PDL.

The modality 〈a∗〉 also plays an important role in the application of PDL in
the field of formal verification. This branch of computer science aims to use
mathematical tools to prove that certain programs behave correctly. Using the
modality 〈a∗〉, one could for instance state that by repeatedly applying the pro-
gram a, some desired state can be reached (this is called a liveness property). The
dual modality, i.e. [a∗] can be used to express that something bad never happens
when repeatedly executing the program a (this is called a safety property).
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1.1.3 The modal µ-calculus

The idea for the modal µ-calculus is to extend PDL by not only having the fixed
point operator −∗, which is the least fixed point of the function x 7→ p ∨ 〈a〉x,
but allowing one to take fixed points of all suitable functions.

To see how this works, consider for instance the function

x 7→ [a]x ∧ [b]x ∧ [c]x

Recall that, for some arrow label r, the formula [r]x is true at some state if for
every state reachable by an r-arrow, the statement x is true. Hence, in Figure
1.1, the formula [a]x ∧ [b]x ∧ [c]x is true in some state s, if x is true in every
state reachable from s by any arrow. Now what might be a fixed point of this
function? Certainly, if x is true in every state, then [a]x ∧ [b]x ∧ [c]x is true in
every state as well. This shows that the set of all states is a fixed point of the
function above. In particular, it is the greatest fixed point, simply because it is
the greatest possible set of states in this particular model. The modal µ-calculus
can express this greatest fixed point using a quantifier-like operator ν, namely by
νx([a]x∧ [b]x∧ [c]x). Dually, there is a µ-operator which expresses the least fixed
point. As we will see later in this thesis, it turns out that µx([a]x∧ [b]x∧ [c]x) is
true precisely in those states from which there is no infinite path. Hence, in the
states C and F.

The modal µ-calculus was introduced in its current form by Dexter Kozen [59].
It can be seen as an extension of PDL, in the sense that every property expressible
by PDL is also expressible by the modal µ-calculus. The converse does not hold.
In fact, the least fixed point given as example above is a property which cannot
be expressed by PDL.

The modal µ-calculus is a very interesting logic for several reasons. First,
like PDL, it retains many of the desirable properties of basic modal logic, despite
the even further gain in expressive power. Second, it has a very interesting the-
ory, connecting it to combinatorial game theory, (co)algebra, automaton theory,
and more standard techniques in basic modal logic. Finally, a seminal result
by Janin & Walukiewicz characterises the modal µ-calculus as the bisimulation-
invariant fragment of monadic second-order logic [53], where basic modal logic is
the bisimulation-invariant fragment of first-order logic [10].

The model theory of the modal µ-calculus is relatively well understood. For in-
stance, it has been known for a long time that the modal µ-calculus is bisimulation-
invariant [53]. By exploiting the connection with automata, the small model
property and decidability of the modal µ-calculus was first shown by Emerson
& Streett [101]. Moreover, the modal µ-calculus enjoys uniform interpolation,
as was shown by D’Agostina & Hollenberg [30, 31] (also using the connection
with automata). More recently, Fontaine & Venema have used model-theoretic
methods to obtain syntactic characterisations of semantic properties of formulas
of the modal µ-calculus [42]. On the other hand, the proof theory of the modal
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µ-calculus is a notoriously difficult and underdeveloped field. This will be the
topic of the next section.

1.2 Proof theory

Once we have a logic, such as the modal µ-calculus, and a semantics, for instance
in the form of relational structures, we can in principle check if a given formula
is true in a given model. However, this does not directly give us a way to check
if a formula is valid, i.e. true in every model.

To show that a formula is valid, one usually gives a proof. For instance, to
show that the formula �> is valid, we might argue as follows. Suppose s is a
state in some relational structure. By definition > is true in every state, so in
particular it is true in every state reachable from s. Since s was chosen arbitrarily,
the formula �> is true in every state of every model, and thus valid.

The goal of proof theory is to give a formal account of a proof such as the one
informally given above. This involves specifying formal axioms and rules that
can be used to form a proof, as well as specifying the shape that proofs should
have. In the end, one obtains a formal notion of proof, which can then be the
subject of mathematical study in its own right. Ideally, this formal notion of proof
satisfies certain desirable properties, which makes it easier to prove results about
proofs. For instance, in some nice proof systems every proof can be rewritten into
a proof of a certain normal form. These proofs have a more predictable structure,
making it easier to reason about them. In the end, the results one obtains about
a proof system can sometimes even be used to obtain results about the logic it
formalises, such as consistency, decidability, and interpolation.

In this thesis we shall mainly see two types of (formal) proof calculi, which
together exemplify a common theme in proof theory. The first type is that of
Hilbert-style calculi. Characteristically, these calculi have a modus ponens rule,
allowing one to derive ψ from the hypotheses ϕ → ψ and ϕ. The other type
of calculi are called Gentzen-style. These calculi are much better structured,
owing in part to the fact that they manipulate lists or sets of formulas (usually
called sequents) rather than a single formula at once. While Gentzen-style calculi
sometimes also feature a rule akin to modus ponens, called the cut rule, ideally
this rule is superfluous, in the sense that every valid formula has a proof that does
not use the cut rule (this is an example of the aforementioned normal form). The
well-structuredness of Gentzen-style proofs, especially those which are cut-free,
makes them much more suitable for proof-theoretical analysis than Hilbert-style
proofs. In particular they often satisfy a form of the subformula property : the
formulas occurring in the premisses of any rule application are subformulas of the
formulas occurring in the conclusion. As a consequence once usually obtains a
bound on the number of formulas occurring in the whole proof, since they must,
by transitivity, all be subformulas of formulas in the proof’s conclusion.
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1.2.1 ... of modal logic

Modal logics have traditionally been axiomatised using Hilbert-style proof sys-

tems. Every so-called normal modal logic contains the rule of
p
�p

of necessitation

and an axiom, called K, of the form �(p → q) → �p → �q. Other modal logics
are often formed by adding additional axioms. This will be discussed later in the
section about frame conditions.

Although Hilbert-style proof systems of this kind have been very well studied,
the tools used have been mostly model-theoretic. This is not surprising because,
as mentioned above, Hilbert-style proof systems are not very suitable for proof-
theoretic analysis. Completeness for these kind of proof systems is usually estab-
lished through a Henkin-style canonical model construction. In this construction,
one forms a model in which the states are maximally consistent sets of formulas,
and one shows that every state satisfies exactly the formulas that it contains.
Hence, every consistent set of formulas is satisfiable, implying that every valid
formula is provable.

Amongst the earliest Gentzen-style proof systems for modal logic are the sys-
tems presented in [79]. They manipulate sequents of the from Γ⇒ ∆, where both
Γ and ∆ are finite sets of formulas. Nowadays, the modal logic K is most com-
monly axiomatised by adding the following rule to a sequent calculus for classical
propositional logic:

Γ⇒ ϕ
K
�Γ⇒ �ϕ

Here �Γ is shorthand for the set for formulas {�ϕ | ϕ ∈ Γ}.
The resulting sequent calculus is sound and complete for the modal logic K.

In fact, it is even complete when one omits the cut rule, and this can be shown
by systematically transforming proofs into cut-free proofs [80].

1.2.2 ... of program logics

Let us now turn to the proof theory of program logics, in particular of PDL.
We first consider Hilbert-style proof systems. A crucial obstacle for using the
canonical model method described above, is the fact that PDL is not compact.
That is, there are unsatisfiable sets of PDL-formulas, of which every finite subset
is satisfiable. Consider for instance the set

{〈a∗〉p,¬p, [a]¬p, [a][a]¬p, [a][a][a]¬p, . . .}.

Any state satisfying this set will satisfy 〈a∗〉p. So there is some number of execu-
tions of the program a, after which p is true. However, for any n, the state will
also satisfy [a]n¬p, where [a]n is shorthand for n times [a]. This means that for
each n, the proposition p is not true after n executions of a, a contradiction. We
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leave it to the reader to think about why every finite subset of the above set is
satisfiable.

As a result, the canonical model method briefly sketched above is not appli-
cable to PDL. Indeed, since derivations are finite objects, not every maximally
consistent set is satisfiable. This problem turns out to have a relatively simple
solution: one can use a finitary version of the canonical model construction [62].
This technique is closely related to the method of filtration and will play an
important role in Chapter 4 of this thesis.

Constructing Gentzen-style proof systems for PDL is much more challenging.
The primary obstacle is the inductive nature of the Kleene star. In a Hilbert-style
system this operator is often axiomatised by the following induction rule

[a∗](p→ [a]p)→ (p→ [a∗]p)

It is difficult to translate this rule into a nice Gentzen-style rule. One often sees
something that looks as follows (see e.g. [7, 84]).

Γ⇒ ψ,∆ ψ ⇒ ϕ ψ ⇒ [a]ψ
ind

Γ⇒ [a∗]ϕ,∆

This rule is problematic because the ψ behaves as a cut formula, preventing a
nice proof search procedure. This can also be explained as follows: where it is
often said that the cut rule forces one to guess an appropriate lemma, possibly
from some other mathematical field, the rule ind forces one to guess an induction
invariant.

Alternatively, systems with a so-called ω-rule have been proposed. This rule
is of the form

Γ⇒ [a]nϕ,∆
ω-ind

Γ⇒ [a∗]ϕ,∆

The problem with this rule is that it does not support a finitary notion of proof,
because it has infinitely many premisses. This can be somewhat salvaged by
appealing to the finite model property of PDL, but this is generally agreed to be
proof-theoretically unsatisfactory.

A third option is to consider proofs with infinitely long branches, rather than
infinitely many premisses. This technique is more well-known in the context of
the modal µ-calculus and will therefore be discussed in the next section.

We end this section by briefly mentioning another approach to axiomatising
PDL, namely using tableaux [17, 47]. Although tableaux often axiomatise satisfia-
bility rather than validity, they are in principle very similar to Gentzen-style proof
systems. The difficulty described above for axiomatising PDL using a Gentzen-
style proof system therefore also applies to tableaux for PDL. Moreover, solutions
to this problem proposed in the tableaux community are sometimes similar to
those of non-well-founded proof theory. A difference is that tableaux are often
developed with computational efficiency as main objective, whereas proof theory
cares more about the well-structuredness and readability of formal proofs.
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1.2.3 ... of the modal µ-calculus

Already in the seminal paper [59], a very elegant Hilbert-style axiomatisation
for the modal µ-calculus was proposed. It consists of an axiomatisation for the
smallest normal modal logic K, together with an axiom and a rule characterising
the µ-operator as a least fixed point (and dually for the ν-operator):

ϕ[µxϕ/x]→ µxϕ
ϕ[ψ/x]→ ψ

µxϕ→ ψ
νxϕ→ ϕ[νxϕ/x]

ψ → ϕ[ψ/x]

ψ → νxψ

Since the modal µ-calculus can be seen as an extension of PDL, most of the proof-
theoretical difficulties remain. In particular, compactness also fails for the modal
µ-calculus, preventing the use of a standard canonical model construction.

Unlike PDL, however, the modal µ-calculus is not susceptible to the finitary
canonical model method either. This was originally shown by Kozen in [59], and
is caused by the fact that the method of filtration fails for the modal µ-calculus.

It turned out to be very difficult to prove the completeness of the Hilbert-style
proof system presented above. Almost 20 years after its introduction by Kozen,
completeness was finally obtained by Walukiewicz [107], building on joint work
with Niwiński [77].

Central to Walukiewicz’s proof is the use of automaton theory and certain
combinatorial games called parity games. Interestingly, these are linked to the
modal µ-calculus through certain tableaux. As already mentioned above, where
Gentzen-style proof systems establish the validity of some set of formulas, tableau
systems establish satisfiability. Apart from this dual perspective, tableau systems
are in principle very similar to Gentzen-style proof systems.

The tableau system by Niwiński & Walukiewicz in [77] omits an induction rule
akin to the rule ind above. Instead, it relies on infinite branches to axiomatise
the recursive behaviour of the fixed-point operators. Proofs in this systems are
therefore called non-well-founded proofs, and such proofs turn out to be a very
powerful tool in the proof theory of modal fixed point logics in general. Impor-
tantly, despite the fact that non-well-founded proofs are a priori infinite objects,
they often admit a finite representation in the form of finite trees with back edges
(also called cyclic proofs).

The tableau system by Niwiński & Walukiewicz was later dualised into a proof
system for validity by Dax, Hofmann & Lange [36], and Studer [102]. By further
omitting bells and whistles such as definition lists, the resulting proof system
acquires a form of the subformula property, called the closure property. One
could therefore say that a crucial step for proving the completeness of a Hilbert-
style proof system for the modal µ-calculus, was to first consider a well-behaved
Gentzen-style calculus.

Following their successful application to the modal µ-calculus, non-well-founded
proofs have become a popular topic of study the proof theory of modal fixed point
logics and beyond. Such proof systems have been developed and studied for frag-
ments and variants of the modal µ-calculus [39, 2, 73], linear logic [8, 78], Kleene
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algebra [34, 35], arithmetic [97, 13, 32] and more [1, 18, 63, 5]. One of the main
goals of this thesis is to uniformly construct cyclic proof systems for (fragments
of) the modal µ-calculus interpreted over various frame classes.

1.3 Frame conditions

A common theme in the study of modal logic, is to restrict attention to relational
structures (specifically frames) satisfying certain properties, often called frame
conditions. For instance, under the epistemic interpretation of the modal operator
�, the formula [a]p means “agent a knows that p” is true. One usually assumes
that knowledge presupposes truth, i.e. that [a]p → p always holds. It turns out
that this requirement corresponds to restricting attention to reflexive relational
structures, that is, those where every state has an a-arrow to itself.

1.3.1 Hilbert-style systems

Hilbert-style systems are particularly well-suited for axiomatising frame condi-
tions. While frame conditions are usually formulated using formulas of first-order
logic, such a first-order formula in many cases has a modal correspondent, in the
sense that the frames satisfying the first-order formula are exactly the frames in
which the modal formula is valid. The field studying this connection is called
correspondence theory, and for an overview we refer the reader to [15].

A central result in correspondence theory is Sahlqvist’s Theorem [90]. This
theorem gives a sufficient syntactic condition for a (basic) modal formula ϕ to
have a first-order correspondent. In addition Sahlqvist’s Theorem states that
such a formula ϕ is canonical, meaning that it is valid in the canonical frame
underlying the canonical model of any logic including ϕ. This can be used to
show that the Hilbert-style proof system K, with ϕ as an additional axiom, is
sound and complete with respect to the class of all frames that satisfy the first-
order correspondent of ϕ. Below are three examples of axioms to which Sahlqvist’s
Theorem applies.

(T) �p→ p, (4) �p→ ��p, (B) p→ � �p.

These axioms correspond, respectively, to reflexivity, transitivity and symmetry.
Sahlqvist’s Theorem is a sweeping result with applications to Hilbert-style

proof systems. Unfortunately, it does not easily generalise to modal fixed point
logics. As mentioned above, the canonical model method fails for most modal
fixed point logics, because of the lack of compactness. Recently, Kikot, Shapirovsky
& Zolin showed how to apply the finitary canonical model method to a class of
PDL-like logics that admit the method of filtration [56]. In combination with
Sahlqvist’s Theorem this leads to a general completeness result for PDL inter-
preted over restricted classes of frames. In Chapter 3 of this thesis we show how
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to extend this result to a fragment of the modal µ-calculus, called the continuous
modal µ-calculus.

For the modal µ-calculus itself, results about proof systems with frame con-
ditions are rare. An important reason is that, as mentioned above, even the
finitary canonical model method fails. Hemaspaandra in [51] obtained an impor-
tant negative result. She showed that there is a frame class over which even a
small fragment of the modal µ-calculus becomes highly undecidable. Remarkably,
basic modal logic is very well behaved over the same frame class. In particular,
it has a sound and complete Hilbert-style proof system. Since highly undecidable
logics cannot have nice proof systems, this result puts a limit on the goals of this
thesis: we cannot hope to obtain a nice proof system for the modal µ-calculus
with respect to every frame class over which basic modal logic is well behaved.

Apart from this result, the question of proof systems for the modal µ-calculus
over different frame classes has not gotten much attention. In part this is due to
the complex nature of the field, but it may also be because the modal µ-calculus
is mostly studied from a more practical computer science perspective, rather than
a more mathematical perspective emphasising theory and general results. Only
recently a general soundness and completeness result for Hilbert-style systems for
the modal µ-calculus interpreted over certain weakly transitive frame classes was
presented [9].

1.3.2 Gentzen-style systems

Already for basic modal logic, developing Gentzen-style proof systems for different
frame conditions in a uniform and modular way has proven to be quite challenging.
Below are three example of rules corresponding, respectively, to the Hilbert-style
axioms T, 4, and B.

ϕ,Γ⇒ ∆
T
�ϕ,Γ⇒ ∆

Γ,�Γ⇒ ϕ
K4

�Γ⇒ �ϕ
Γ⇒ ϕ,�∆

KB
�Γ⇒ �ϕ,∆

Adding each of these axioms to a standard sequent calculus for K (with the cut
rule!) yields a sound and complete calculus with respect to the respective frame
condition [80]. However, these rules are not modular, in the sense that adding
both K4 and KB does not yield a complete calculus for the class of frames that
are both transitive and symmetric. Rather, K4 and KB must be combined in
a non-trivial way into a new rule. Moreover, while the systems with T and K4
remain complete when omitting the cut rule, the system with KB does not (by
for instance the same counterexample as given for S5 in [80]).

In the quest for a more satisfactory uniform proof theory for modal logics,
much attention has been focused on extending the structure of sequents. A mod-
est extension is the hypersequent framework. Hypersequents are simply sets of
sequents. In [66], Ori Lahav uniformly constructs hypersequent calculi for a wide
range of (basic) modal logics. Hypersequents are inspired by the semantics, as the
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multiple sequents in a hypersequent represent multiple states in a relational struc-
ture. This perspective has been taken further in the form of nested sequents [20],
also appearing under name tree hypersequents [83]. Nested sequents can treat
reflexivity, transitivity and symmetry in a modular way, without the need for a
cut rule. Even closer to the semantics are the labelled sequents by Sara Negri [75].
while labelled sequents and nested sequents can both be used to treat many dif-
ferent frame conditions, a downside is that, even for proofs without the cut rule,
there is no a priori bound on the number of sequents occurring in a given proof.
As a result, each frame condition requires ad-hoc arguments to show that proof
search is terminating.

So far, our discussion of Gentzen-style systems for modal logics satisfying
various frame conditions has only been about basic modal logic. Results for
modal fixed point logics are very scarce. There is a non-well-founded labelled
Gentzen-calculus for PDL by Docherty & Rowe [37]. Although they do not pursue
this direction explicitly, their choice for a labelled system is motivated by its
ability to handle different frame conditions. Unfortunately, their system does
not support a finite notion of proof, as the lack of a bound on the number of
sequents occurring in a proof prevents them from turning their non-well-founded
system into a cyclic system. Another example is a cyclic proof system for the two-
way modal µ-calculus (which is similar to the modal µ-calculus interpreted over
symmetric frames) by Afshari et. al [2]. Although this is a proper cyclic system
for the modal µ-calculus interpreted over a certain frame class, it is specifically
designed for this single frame class, and it does not provide a framework for
uniformly treating multiple frame classes at once.

1.3.3 Our contributions

In Chapter 3, we extend Lahav’s uniform hypersequents to a fragment of the
modal µ-calculus called modal logic with the master modality. Our hypersequent
calculi are non-well-founded and are made cyclic by using the method of focus,
originally due to Lange & Stirling [68]. Like Lahav, we are only able to prove
cut-free completeness for a subset of the frame conditions covered, and our subset
is smaller than that of Lahav. To the best of our knowledge, this is the first
uniform proof-theoretical treatment of modal fixed point logics characterised by
frame conditions.

Before we move on to Chapter 4, there is an Intermezzo, in which we propose
an abstract framework for so-called annotated non-well-founded proof systems.
The main application of this abstract framework is to give a general proof of
the bounded proof property. In a proof system with this property, every provable
sequent has a proof whose size is bounded by a computable function of the size of
the sequent. Consequently, any logic with the bounded proof property is decid-
able. The abstract tools developed in the Intermezzo apply to the hypersequent
calculi of Chapter 3 and they were initially developed with this application in
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mind. Although it later turned out that the same results can also be obtained
by known game-theoretical techniques, we still believe that the ideas presented
in the Intermezzo are of independent value.

In Chapter 4, we consider Hilbert-style proof systems, in particular axiomatic
extensions of the system by Kozen. As mentioned above, the only known com-
pleteness proof for this system is very complex and relies heavily on intricate
automata-theoretic machinery. We show that for a certain known fragment, called
the continuous modal µ-calculus, finitary canonical models can be used to show
completeness. We moreover show that the continuous modal µ-calculus admits
the method of filtration, and we extend both this result and the completeness re-
sult to a wide range of frame classes. As PDL properly embeds into the continuous
modal µ-calculus, our result can be seen as a generalisation of the aforementioned
result by Kikot et. al [56].

In the second-to-last chapter, Chapter 5, we consider the two-way modal µ-
calculus. This is an extension of the modal µ-calculus, where each modality 〈a〉
is assigned a corresponding backward modality 〈ă〉. One can also see the result-
ing logic as the interpretation of the modal µ-calculus over a restricted frame
class. Namely, the class of all frames where the relation interpreting the modality
〈a〉 is the converse of that interpreting 〈ă〉. We construct a sound and complete
cyclic proof system for a fragment of the two-way modal µ-calculus, called the
alternation-free fragment. For this we combine the multi-focus annotations orig-
inally due to Marti & Venema (see [73]) with the novel technique of trace atoms.

Chapter 6 is a somewhat of an outlier, because it is on Kleene Algebra, which
is strictly not a modal logic. Before we go on to explain the contributions of this
final chapter we will first give a brief informal introduction to Kleene Algebra.

1.4 Kleene Algebra

Although it was developed separately, at this point it is convenient to introduce
Kleene Algebra as a certain reduction of the program logic PDL. Recall that in
PDL, modalities are induced by programs. Kleene Algebra forgets about the modal
logical aspect, and instead focuses on exclusively axiomatising the equivalence of
programs. For instance, the program a; a∗b∪b, which non-deterministically either
runs a followed by a∗ and then followed by b, or immediately runs b, is equivalent
to the program a∗b.

Kleene Algebra originates as an axiomatisation of the equational theory of the
algebra of regular languages [57]. After several non-algebraic axiomatisations, for
instance by Salomaa [91] and Conway [28], the purely algebraic axiomatisation
by Kozen is now most commonly used [60]. A Kleene Algebra is an algebraic
structure satisfying the axioms and rules of this axiomatisation.

Kleene Algebra can be called a fixed point logic, because it uses the following
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rule to axiomatise the Kleene star.

a;x ∪ b ≤ x

a∗b ≤ x

This rule states that the program a∗b is the least fixed point of the function
x 7→ a;x ∪ b.

Recently Das & Pous constructed a cyclic proof system for Kleene Alge-
bra [34]. In later joint work with Doumane, they gave an alternative proof of the
completeness of Kozen’s axiomatisation by translating their proofs into Kozen’s
system [33].

1.4.1 Guarded Kleene Algebra with Tests

Although Kleene Algebra axiomatises an abstract notion of programs, it does not
capture the conventional programming constructs of if-then-else statements and
while-loops. This feature can be obtained by augmenting Kleene Algebra with
so-called tests. Formally, a test is a Boolean expression t. By adding these to the
language of Kleene Algebra, we can construct the following expressions.

t; a ∪ ¬t; b (t; a)∗;¬t

The first expressions captures the statement if t then a else b, whereas the
second captures the loop wile t do a. Remarkably, extending the language of
Kleene Algebra by tests does not increase its computational complexity.

Guarded Kleene Algebra with Tests, or GKAT for short, is a reasonably ex-
pressive fragment of Kleene Algebra with Tests, with much lower computational
complexity. This increase in efficiency is obtained by restricting the union op-
erator ∪ and the Kleene star −∗ to their guarded counterparts. In other words,
Guarded Kleene Algebra with Tests allows only if-then-else statements, instead of
non-deterministic choice, and only while-loops, instead of the (non-deterministic)
Kleene star. Since most practical programs are deterministic, GKAT retains much
of the practical value of Kleene Algebra with Tests, while reducing the complexity
of deciding program equivalence to nearly linear 1 time. This a great reduction
from the PSPACE-completeness of deciding program equivalence in Kleene Alge-
bra (whether with or without tests).

1.4.2 Our contributions

In Chapter 6 we propose a cyclic proof system for GKAT. Our system is inspired
by the system for Kleene Algebra in [34], but we show that GKAT requires less
complex sequents than Kleene Algebra. We show that the system is sound and
complete. Moreover, we propose an inequational axiomatisation for GKAT and give

1This is a technical term which will be explained in Chapter 6.
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a partial translation from the cyclic system into the ineqational system. This may
be a first step towards solving the open problem of finding a purely algebraic proof
system for GKAT.

1.5 Sources of the material

• Chapter 2 was written specifically for this thesis.

• Chapter 3 is based on the following two publications, the second of which
is joint work with Lukas Zenger.

[86] Jan Rooduijn. Cyclic hypersequent calculi for some modal logics with
the master modality. In 30th International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods, TABLEAUX,
volume 12842 of Lecture Notes in Computer Science, pages 354–370.
Springer, 2021

[89] Jan Rooduijn and Lukas Zenger. An analytic proof system for common
knowledge logic over S5. In 14th Conference on Advances in Modal
Logic, AiML, pages 659–680. College Publications, 2022

• The Intermezzo is based on unpublished work. It was presented at the 2021
Workshop on Proof Theory and its Applications in Funchal, Madeira.

• Chapter 4 is based on the following publication, which is joint work with
Yde Venema.

[87] Jan Rooduijn and Yde Venema. Filtration and canonical completeness
for continuous modal mu-calculi. In 12th International Symposium on
Games, Automata, Logics, and Formal Verification, GandALF, volume
346 of EPTCS, pages 211–226, 2021

• Chapter 5 is based on the following publication, which is also joint work
with Yde Venema.

[88] Jan Rooduijn and Yde Venema. Focus-style proofs for the two-way
alternation-free µ-calculus. In 29th International Workshop on Logic,
Language, Information, and Computation, WoLLIC, volume 13923 of
Lecture Notes in Computer Science, pages 318–335. Springer, 2023

• Chapter 6 is as yet unpublished. It is based on joint work with Dexter
Kozen and Alexandra Silva and was presented at the 2022 Workshop on
Proof Theory and its Applications in Utrecht, The Netherlands.



Chapter 2

Introduction to the proof theory of
modal fixed point logics

Most of this thesis is concerned with so-called modal fixed point logics. These are
logics extending basic modal logic with operators capable of expressing recursive
behaviour. Most modal fixed point logics, in particular all of those appearing in
this thesis, can be interpreted in the archetypical modal fixed point logic: the
modal µ-calculus.

In this chapter we shall introduce the modal µ-calculus, its proof theory, and
some of the fragments that play a role in this thesis. Although our presentation
will be largely self-contained, it is helpful if the reader has some familiarity with
basic modal logic, for instance by having read the first four chapters of [15].

This chapter contains no original material, apart perhaps from how it is pre-
sented. The presentation is heavily inspired by Yde Venema’s treatment in [106].

2.1 The modal µ-calculus

2.1.1 Syntax

For the rest of this thesis we fix a countably infinite set P of propositional vari-
ables. Recall that an occurrence of some propositional variable p in some formula
ϕ is said to be positive if it is in the scope of an even number of negations.

2.1.1. Definition. Given a set D of actions, the syntax µML(D) of the modal
µ-calculus is generated by:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | µxϕ | νxϕ,

where p ∈ P, a ∈ D and in the formation of ηxϕ, with η ranging over µ and ν,
the variable x occurs only positively in ϕ.

15
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2.1.2. Remark. If D is a singleton, say D = {a}, we call µML(D) the monomodal
µ-calculus and write � and � rather than 〈a〉 and [a]. We denote this language
simply by µML.

To avoid notational clutter, we will often work with µML rather than with
µML(D) for some larger set D of actions. In almost every case the generalisation
to µML(D) is routine.

A formula of the form p or ¬p is called a literal . A formula is called an o-
formula if its main operator is o. The connectives {¬,∨,∧} are called propositional
and the connectives {〈a〉, [a] | a ∈ D} are said to be modal. Finally, we use η to
range over {µ, ν}, and denote by η the dual of η, i.e. µ = ν and ν = µ.

We will use µML(D)-formula, or just formula when the specific language is
clear from the context, to refer to a formula in µML(D). Just like the quantifiers
in first-order logic, the fixed point operators bind variables in a formula.

2.1.3. Definition. Given a µML-formula ξ, the sets FV(ξ) of free variables and
BV(ξ) of bound variables of ξ are inductively defined by:

FV(p) := {p} BV(p) := ∅
FV(¬ϕ) := FV(ϕ) BV(¬ϕ) := BV(ϕ)

FV(ϕ ◦ ψ) := FV(ϕ) ∪ FV(ϕ) BV(ϕ ◦ ψ) := BV(ϕ) ∪ BV(ϕ)

FV(4ϕ) := FV(ϕ) BV(4ϕ) := BV(ϕ)

FV(ηxϕ) := FV(ϕ) \ {x} BV(ηxϕ) := BV(ϕ) ∪ {x},

where ◦ ∈ {∨,∧}, and 4 ∈ { �,�}, and η ∈ {µ, ν}.

2.1.4. Example. Let ϕ = µx( �x ∨ p) ∧ x. Then we have FV(ϕ) = {p, x} and
BV(ϕ) = {x}.

It will often be convenient to restrict attention to formulas with nice syntactic
properties, such as those given in the following definitions.

2.1.5. Definition. A formula ξ is called tidy if FV(ξ) ∩ BV(ξ) = ∅.

2.1.6. Remark. The modal µ-calculus is sometimes defined using variables of
two sorts: propositional variables and fixed point variables. A sentence is then a
formula where every fixed point variable is bound by some fixed point operator.
Although our formulation only uses one sort of variables, tidy formulas can be
seen as the analogue of sentences, where the free variables are the propositional
variables and the bound variables are the fixed point variables.

Note that the formula ϕ in Example 2.1.4 is not tidy. The following proposition
is immediate.
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2.1.7. Proposition. Any formula can be made tidy by uniformly renaming bound
variables.

2.1.8. Definition. A µML-formula is said to be in negation normal form if it
belongs to the language generated by:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | �ϕ | µxϕ | νxϕ.

When working with formulas in negation normal form, we will often abbreviate
¬p by p.

In the next section we will define the semantics of µML-formulas. We will then
see that every formula is equivalent to one in negation normal form. We will also
see that every formula ηxϕ is, in fact, a fixed point of the formula ϕ(x). In other
words, the formula ηxϕ will be semantically equivalent to the formula ϕ[ηxϕ/x],
which is obtained by substituting ηxϕ for x in ϕ. Substitution therefore plays a
very important role in the syntax of the modal µ-calculus and deserves careful
treatment.

2.1.9. Definition. We say that θ is free for x in ξ if no free occurrence of x
in ξ occurs in the scope of a fixed point operator that binds a free variable of θ.
More formally, we say that θ is free for x in ξ if one of the following holds:

• ξ ∈ P;

• ξ = ¬ϕ and θ is free for x in ϕ;

• ξ = ϕ ◦ ψ and θ is free for x in both ϕ and ψ;

• ξ = 4ϕ and θ is free for x in ϕ;

• ξ = ηxϕ;

• ξ = ηyϕ for some y 6= x with y /∈ FV(θ), and θ is free for x in ϕ.

2.1.10. Definition. Suppose that θ is free for x in ξ. The substitution ξ[θ/x]
of θ for x in ξ is obtained by replacing all free occurrences of x in ξ by θ. More
formally, we define inductively:

• x[θ/x] := θ, and y[θ/x] := y for y 6= x.

• (¬ϕ)[θ/x] := ¬ϕ[θ/x].

• (ϕ ◦ ψ)[θ/x] := ϕ[θ/x] ◦ ψ[θ/x].

• (4ϕ)[θ/x] := 4ϕ[θ/x].

• (ηxϕ)[θ/x] := ηxϕ.
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• (ηyϕ)[θ/x] := ηy(ϕ[θ/x]) for y 6= x.

The following, easily verifiable lemma, will be useful later on.

2.1.11. Lemma. Let u be a variable not occurring in ξ. We have:

• if ξ is tidy and of the form ηxϕ, then ϕ[u/x] is tidy;

• if θ is free for x in ξ, then θ is free for u in ξ[u/x], and ξ[θ/x] = ξ[u/x][θ/u].

2.1.12. Remark. The above lemma will come in handy when inductively prov-
ing results about tidy formulas. If ηxϕ is tidy, then ϕ need not be, whence we
can in general not apply our induction hypothesis to ϕ. Instead, we take some u
not occurring in ϕ and apply the induction hypothesis ϕ[u/x], which is tidy.

The next lemma captures the main property making tidy formulas convenient
to work with.

2.1.13. Lemma. If ηxϕ is tidy, then ηxϕ is free for x in ϕ, and ϕ[ηxϕ/x] is tidy
as well. Moreover, if ηxϕ is in negation normal form, then so is ϕ[ηxϕ/x].

Proof:
Suppose y ∈ FV(ηxϕ). Then by tidiness y /∈ BV(ηxϕ), whence y /∈ BV(ϕ). This
shows that ηxϕ is free for x in ϕ. For the tidiness of ϕ[ηxϕ/x], suppose that
y ∈ FV(ϕ[ηxϕ/x]). Then either y ∈ FV(ϕ) \ x, or y ∈ FV(ηxϕ). But these sets
are equal by definition, whence by tidiness y /∈ BV(ηxϕ). The result follows from
the fact that BV(ϕ[ηxϕ/x]) ⊆ BV(ηxϕ). Finally, the preservation of negation
normal form follows directly from the positivity restriction on the bound variables
of µML-formulas. 2

2.1.14. Definition. Let ξ be a formula. The set Sfor(ξ) of subformulas of ξ is
the least set of formulas such that:

(i) ξ ∈ Sfor(ξ).

(ii) ¬ϕ ∈ Sfor(ξ) implies ϕ ∈ Sfor(ξ).

(iii) ϕ ◦ ψ ∈ Sfor(ξ) implies ϕ, ψ ∈ Sfor(ξ) for ◦ ∈ {∨,∧}.

(iv) 4ϕ ∈ Sfor(ξ) implies ϕ ∈ Sfor(ξ) for 4 ∈ { �,�}.

(v) ηxϕ ∈ Sfor(ξ) implies ϕ ∈ Sfor(ξ) for η ∈ {µ, ν}.
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We write ϕ� ξ to indicate that ϕ is a subformula of ξ, and ϕ� ξ to indicate that
it is a proper subformula.

The clause (v) of the definition of subformulas is an outlier from a seman-
tic point of view. As we will see later, the meaning of all other operators are
entirely truth functional: their truth-value depends on the truth-values of their
subformulas. However, for a fixed point operator η, the truth of ηxϕ depends
on the truth of ϕ in different models. On the other hand, as mentioned above,
ηxϕ is always equivalent to ϕ[ηxϕ/x]. The following notion is therefore more
appropriate for capturing formulas which are in some sense semantically relevant
to ξ. It is known as the (Fischer-Ladner) closure.

2.1.15. Definition. Let ξ be a tidy formula. The FL-closure FL(ξ) of ξ is the
least set of formulas satisfying clause (i) - (iv) of Definition 2.1.14, as well as

(v’) ηxϕ ∈ FL(ξ) implies ϕ[ηxϕ/x] ∈ FL(ξ) for η ∈ {µ, ν}.

If Ξ is a set of tidy formulas, we define FL(Ξ) :=
⋃
ξ∈Ξ ξ. Using Lemma 2.1.13 it is

immediate that if a formula is, respectively, tidy or in negation normal form, then
so is every formula in its closure. It is also not hard to see that FV(ϕ) ⊆ FV(ξ)
and BV(ϕ) ⊆ BV(ξ) for every ϕ ∈ FL(ξ).

We will now show that the FL-closure of a tidy formula ξ is always finite. In
fact, the FL-closure has at most as many elements as the number of characters ξ
has when viewed as a string. We first need the following auxiliary lemma.

2.1.16. Lemma. Let ηxϕ be a tidy formula such that x ∈ FV(ϕ) and let u be
some propositional variable not occurring in ηxϕ. Then:

(i) ηxϕ is free for u in every ψ ∈ FL(ϕ[u/x]);

(ii) FL(ηxϕ) ⊆ {ψ[ηxϕ/u] : ψ ∈ FL(ϕ[u/x])}.

Proof:
For (i), suppose that y ∈ BV(ψ). Then y ∈ BV(ϕ[u/x]) and thus y ∈ BV(ηxϕ).
Hence by tidiness y /∈ FV(ηxϕ), as required.

For (ii), it suffices to show that the set on the right-hand side, let us call it Σ, is
closed under conditions (i) - (iv) of Definition 2.1.14 and (v’) of Definition 2.1.15.
For condition (i), note that, since x ∈ FV(ϕ), we have u ∈ FL(ϕ[u/x]), whence
ηxϕ ∈ Σ. Moreover, conditions (ii) - (iv) are satisfied by Σ, as the respective
operators commute with substitution.

For condition (v’), suppose that λyχ ∈ Σ with λ ∈ {µ, ν}. We first consider
the case where λyχ = ηxϕ. In this case we indeed find ϕ[ηxϕ/x] ∈ Σ, since
ϕ[ηxϕ/x] = ϕ[u/x][ηxϕ/u]. Now suppose that λyχ 6= ηxϕ. Because λyχ ∈ Σ,
there must be some λyθ ∈ FL(ϕ[u/x]) such that λyχ = λyθ[ηxϕ/u]. We have
θ[λyθ/y] ∈ FL(ϕ[u/x]), and thus:

Σ 3 θ[λyθ/y][ηxϕ/u] = θ[ηxϕ/u][λyθ[ηxϕ/u]/y] = χ[λyχ/y],
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as required. 2

Let us write |ξ|s for the length of ξ as a string.

2.1.17. Lemma. For every tidy formula ξ it holds that |FL(ξ)| ≤ |ξ|s.

Proof:
We proceed by induction on the length of ξ (as a string). Suppose that the thesis
has been proven for all ϕ of length smaller than ξ. We make a case distinction
on the main connective of ξ.

• ξ ∈ P. Then FL(ξ) = {ξ}, whence |FL(ξ)| ≤ |ξ|s.

• ξ = ¬ϕ. Then FL(ξ) ⊆ {ξ} ∪ FL(ϕ). It follows that:

|FL(ξ)| ≤ |{ξ} ∪ FL(ϕ)| ≤ 1 + |ϕ|s ≤ |ξ|s.

• ξ = ϕ ◦ψ. Then |FL(ξ)| ≤ {ξ} ∪ FL(ϕ)∪ FL(ψ) ≤ 1 + |ϕ|s + |ψ|s ≤ |ϕ ◦ψ|s.

• ξ = 4ϕ. Then |FL(ξ)| ≤ |{ξ} ∪ FL(ϕ)| ≤ 1 + |ϕ|s ≤ |ξ|s.

• ξ = ηxϕ. First consider the degenerate case where x /∈ FV(ϕ). Then
|FL(ξ)| = 1 + |FL(ϕ)|. By the induction hypothesis, it then follows that
|FL(ξ)| ≤ 1 + |ϕ|s = |ξ|s. In case x ∈ FV(ϕ), we let u be a propositional
variable not occurring in ξ. We have FL(ξ) ⊆ {ψ[ξ/u] : ψ ∈ FL(ϕ[u/x])} by
Lemma 2.1.16. Hence:

|FL(ξ)| ≤ |FL(ϕ[u/x])| ≤ |ϕ[u/x]|s ≤ 1 + |ϕ|s ≤ |ξ|s,

as required. 2

We close this section by defining the notion of a trace. This notion gives another
perspective on the closure. More importantly, it will be needed later to define the
game semantics and a non-well-founded proof system for the modal µ-calculus.

2.1.18. Definition. A trace is a (possibly infinite) sequence (ϕn) of tidy formu-
las in negation normal form, such that for each two subsequent formulas ϕn, ϕn+1

it holds that:

• ϕn is not of the form p or p;

• ϕn = ψ1 ◦ ψ2 implies ϕn+1 = ψi for some i ∈ {1, 2};

• ϕn = 4ψ implies ϕn+1 = ψ;

• ϕn = ηxϕ implies ϕn+1 = ϕ[ηxϕ/x].

We leave it to the reader to verify the following lemma.
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2.1.19. Lemma. For any tidy formula ξ in negation normal form,

FL(ξ) = {ϕ | there is a trace ξ = ϕ0 · · ·ϕn = ϕ}.

The following lemma will will be crucial in the next sections.

2.1.20. Lemma. On every infinite trace (ϕn)n∈ω there is a unique fixpoint for-
mula ηxχ which occurs infinitely often and is a subformula of ϕn for cofinitely
many n.

To prove it, we first need two technical lemmas.

2.1.21. Remark. The proof of Lemma 2.1.20 is quite tedious and not very rele-
vant for the rest of this thesis. In fact, all modal fixed point logics we consider are
alternation free (cf. Definition 2.1.31). These logics have a simpler trace structure
for which Lemma 2.1.20 is an overkill. The reader only interested in the original
results of this thesis is therefore encouraged to skip the following two lemmas and
the proof of Lemma 2.1.20. The reason to nevertheless include them, is that they
play a fundamental role in the (proof) theory of the modal µ-calculus.

2.1.22. Lemma. Let ηxϕ and ψ be tidy formulas in negation normal form such
that ψ � ϕ[ηxϕ/x]. Then we have either ψ � ηxϕ, or ηxϕ� ψ.

Proof:
By induction on α�ϕ, we will show that ψ�α[ηxϕ/x] implies ψ�α or ηxϕ�ψ.
Note that this suffices, since ψ � ϕ implies ψ � ηxϕ.

Let α � ϕ be such that ψ � α[ηxϕ/x] and suppose that the thesis holds for
every proper subformula of α. We can assume that x ∈ FV(α), for otherwise the
lemma becomes trivial. We may further assume that ψ�α[ηxϕ/x], i.e. that ψ is
a proper subformula of α[ηxϕ/x], for otherwise the assumption that x ∈ FV(α)
implies that ηxϕ�α[ηxϕ/x] = ψ. We make a case distinction on the shape of α.

• Suppose that α is a literal. Since x ∈ FV(α), we must have α = x or α = x.
The latter is impossible, since that would mean that x is in the scope of ηx
in ηxϕ. Therefore α = x and thus ψ � α[ηxϕ/x] = ηxϕ.

• Now suppose that α = α1 ◦ α2, for some ◦ ∈ {∨,∧}. Since ψ � α[ηxϕ/x],
we have ψ�αi[ηxϕ/x] for an i ∈ {1, 2}. The result follows by the induction
hypothesis.

• If α = 4β we argue similarly: since ψ � α[ηxϕ/x] we have ψ � β[ηxϕ/x]
and we can apply the induction hypothesis.

• Finally suppose that α is of the form λyβ. Since we assumed x ∈ FV(α), it
must be the case that y 6= x. We find that ψ � α[ηxϕ/x] = λy(β[ηxϕ/x]).
Hence ψ � β[ηxϕ/x] and we can again apply the induction hypothesis.
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This finishes the proof. 2

2.1.23. Lemma. Let ϕ0, . . . , ϕn be a finite trace. Then there is a single formula
on the trace, which is a subformula of every formula on the trace.

Proof:
We prove this by induction on n. The base case, where n = 0 is trivial. For the
induction step, suppose the thesis holds for n = k. To prove it for n = k + 1, we
apply the induction hypothesis to the trace ϕ1, . . . , ϕk+1 to obtain an i ∈ [1, k+1]
such that ϕi � ϕj for every j ∈ [1, k + 1].

We now make a case distinction on the shape of ϕ0. If ϕ0 is not a fixed point
formula, then, by the fact that ϕ0 has a successor in the trace, the main connective
of ϕ0 is either propositional or modal. In either case, we find ϕi�ϕ1 �ϕ0, which
suffices.

Now suppose that ϕ0 is a fixed point formula, say ϕ0 = ηxψ. Then we must
have ϕ1 = ψ[ηxψ/x] and thus ϕi � ψ[ηxψ/x]. By the previous lemma, either
ϕi � ϕ0 or ϕ0 � ϕi. In the former case we are done. In the latter case we have,
by transitivity, that ϕ0 � ϕj for each j ∈ [0, k + 1], which also suffices. 2

Proof of Lemma 2.1.20:
For every n, let ψn ∈ {ϕ0, . . . ϕn} be such that ψn � ϕi for every i ∈ [0, n].
The lemma follows from the fact that the sequence (ψn)n∈ω must eventually be
constant, for otherwise it would contain an infinite descending chain of proper
subformulas. 2

An infinite trace is called an η-trace, depending on the value of η in the
previous lemma.

2.1.2 Semantics

Formulas of the modal µ-calculus are interpreted in the same structures as those
of basic modal logic.

2.1.24. Definition. A Kripke model S of type D consists of a set S of states, for
each a ∈ D an accessibility relation Ra ⊆ S × S, and a valuation V : P→ P(S).

When D = {a} we often write R instead of Ra for the single accessibility relation
of some given model.

Algebraic semantics

In this subsection we define a commonly used semantics of the modal µ-calculus.
We must first introduce some notation.
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2.1.25. Definition. Let V : P → P(S) be some valuation, and let X ∈ P(S).
The valuation V [x 7→ X] is given by V [x 7→ X](x) = X, and V [x 7→ X](p) = V (p)
for every p 6= x. Given a Kripke model S, we denote by S[x 7→ X] the result of
replacing its valuation function V by V [x 7→ X].

For R ⊆ S × S, we write R[s] := {t ∈ S : sRt} for the image of s under R.

2.1.26. Definition. The meaning JϕKS ⊆ S of a formula ξ ∈ Lµ in S is induc-
tively defined on the complexity of ξ:

JpKS := V (p) J¬ϕKS := S \ [[ϕ]]S

Jϕ ∨ ψKS := JϕKS ∪ JψKS Jϕ ∧ ψKS := JϕKS ∩ JψKS

J〈a〉ϕKS := {s ∈ S | Ra[s] ∩ JϕKS 6= ∅} J[a]ϕKS := {s ∈ S | Ra[s] ⊆ JϕKS}

JµxϕKS :=
⋂
{X ⊆ S | JϕKS[x 7→X] ⊆ X} JνxϕKS :=

⋃
{X ⊆ S | X ⊆ JϕKS[x7→X]}

We define the basic semantic notions of truth, satisfiability, validity, and equiv-
alence in the usual way.

2.1.27. Remark. Recall that a prefixed point of an endofunction f on an ordered
set L is an element x such that f(x) ≤ x. Note that µxϕ is interpreted as the
intersection of all prefixed points of the function

ϕS
x : P(S)→ P(S)

: X 7→ JϕKS[x 7→X].

The positivity restriction on bounded variables guarantees that ϕS
x is a monotone

function on the complete lattice P(S). By the Knaster-Tarski Theorem [104],
the intersection of all prefixed point is the least fixed point of ϕS

x. Dually, the
interpretation of νxϕ is the greatest fixed point of ϕS

x.

It is clear that the meaning of a formula does not change when uniformly
renaming its bound variables. Hence, it follows from Proposition 2.1.7 that every
formula is equivalent to a tidy formula. The following proposition shows that we
may further assume that our formulas are in negation normal form.

2.1.28. Proposition. There is a translation nnf : µML → µML such that for
every formula ϕ, the formula nnf(ϕ) is an equivalent formula in negation normal
form.

Proof:
We let nnf commute with every connective apart from negation. The translation
of a formula of the form ¬ψ depends on the main connective ψ:

nnf(¬p) := ¬p nnf(¬¬ϕ) := nnf(ϕ)

nnf(¬(ϕ ∨ ψ)) := nnf(¬ϕ ∧ ¬ψ) nnf(¬(ϕ ∧ ψ)) := nnf(¬ϕ ∨ ¬ψ)

nnf(¬ �ϕ) := �nnf(¬ϕ) nnf(¬�ϕ) := �nnf(¬ϕ)

nnf(¬µxϕ) := νxnnf(¬ϕ[¬x/x]) nnf(¬νxϕ) := µxnnf(¬ϕ[¬x/x])



24 Chapter 2. Introduction to the proof theory of modal fixed point logics

Clearly nnf(ϕ) is in negation normal form. We will demonstrate the equivalence
of ϕ and nnf(ϕ) by showing that ¬µxϕ is equivalent to νx¬ϕ[¬x/x], leaving the
other cases to the reader. For any model S = (S,R, V ), we have:

J¬µxϕKS = S \ JµxϕK

= S \
⋂
{X ⊆ S | JϕKS[x 7→X] ⊆ X}

=
⋃
{S \X | JϕKS[x7→X] ⊆ X}

=
⋃
{S \X | (S \X) ⊆ J¬ϕKS[x 7→X]}

=
⋃
{S \X | (S \X) ⊆ J¬ϕ[¬x/x]KS[x 7→S\X]}

=
⋃
{Y ⊆ S | Y ⊆ J¬ϕ[¬x/x]KS[x 7→Y ]}

= Jνxϕ[¬x/x]KS,

as required. 2

As a consequence, we obtain a definable negation operator on the set of
formulas in negation normal form, given by ϕ := nnf(¬ϕ). We leave it to the
reader to verify that ϕ = ϕ.

2.1.29. Definition. Let Ξ be a set of tidy formulas in negation normal form.
We write FL(Ξ) for the least set of formulas such that for every ξ ∈ FL(Ξ) it holds
that ξ ∈ FL(Ξ) and FL(ξ) ⊆ FL(Ξ).

We sometimes write FL(ξ) where we mean FL({ξ}). We leave it to the reader to
verify that FL(Ξ) = FL(Ξ) ∪ {ξ | ξ ∈ FL(Ξ)}. Finally, Ξ is said to be FL-closed
whenever FL(Ξ) = Ξ.

Game semantics

In this thesis we shall mostly work with an alternative, equivalent, definition of
the semantics of the modal µ-calculus, given by the evaluation game. This game-
theoretic definition will only be given for tidy formulas in negation normal form.
For now we will use game-theoretic notions in a rather informal way, but they
will become formal in the next section.

Suppose we are given a formula ϕ, which is tidy and in negation normal form,
and a model S = (S,R, V ). The game E(ξ, S) is a board game played by two
players called ∃ and ∀. The game is played on the board FL(ξ) × S, and at a
position (ϕ, s) it is ∃’s objective to show that ϕ is true at s, and ∀’s objective to
show the opposite. Whose turn it is (or who owns) at a particular position (ϕ, s)
is determined by the main connective of ϕ, and given in the following table. The
table also shows which moves are available to a given position’s owner.
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Position Owner Admissible moves
(p, s), s ∈ V (p) ∀ ∅
(p, s), s /∈ V (p) ∃ ∅

(ϕ ∨ ψ, s) ∃ {(ϕ, s), (ψ, s)}
(ϕ ∧ ψ, s) ∀ {(ϕ, s), (ψ, s)}
( �ϕ, s) ∃ {ϕ} ×R[s]
(�ϕ, s) ∀ {ϕ} ×R[s]
(ηxϕ, s) − {(ϕ[ηxϕ/x], s)}

Note that from a position of the form (ηxϕ, s) there is only one available move,
whence it does not matter who owns this position. If one of the players owns
a position, but has no moves available to them, the match ends in a win for
the other player. Due to the fixed point operators, the formulas occurring in a
match are not necessarily strictly decreasing in length, and therefore matches can
be of infinite length. Note that if (ϕn, sn)n∈ω is an infinite match, then its left
projection (ϕn)n∈ω is an infinite trace. By Lemma 2.1.20, this trace then is either
a µ-trace or a ν-trace. We say that the infinite match (ϕn, sn)n∈ω is won by ∃ if
and only if its left projection is a ν-trace.

The following theorem links the game semantics to the algebraic semantics.
Its proof is out of the scope of this thesis, but can be found for instance in [106].

2.1.30. Theorem. For any model S and formula ξ, which is tidy and in negation
normal form, it holds that:

The player ∃ has a winning strategy at (ξ, s) in E(ξ, S) if and only if s ∈ JξKS.

The main advantage of working with the game semantics, is that the evaluation
game is a so-called parity game. Parity games have a well-developed theory and
satisfy certain nice properties, which will be given in the next section. We close
this section by discussing some fragments of the modal µ-calculus that play a role
in the following chapters of this thesis.

2.1.3 Fragments and extensions

We consider, in decreasing order of expressiveness, one extension and three frag-
ments of µML that will feature in this thesis.

The two-way modal µ-calculus

The syntax µ2ML(D) of the two-way modal µ-calculus is precisely the same as that
of µML(D), with the additional assumption that there is an involution operator ˘
on D. That is, for every a ∈ D it holds that ă 6= a and ˘̆a = a.

The idea is that the modality ă is the converse of the modality a. From
a temporal perspective, this enables µ2ML-formulas to express statements about
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the past. Formulas of µ2ML(D) are interpreted only over models which satisfy the
following regularity property:

Ră = {(t, s) | (s, t) ∈ Ra} for every a ∈ D.

In other words, the relation Ră must truly be the converse of the relation Ra.

Remarkably, µ2ML does not have the finite model property over the class of
all models. This is exemplified by the formula

νx(〈a〉x ∧ µy〈ă〉y),

which expresses that there is an infinite forward path along which there is no
infinite backward path.

The alternation-free modal µ-calculus

The alternation-free fragment of the modal µ-calculus is obtained by syntactically
restricting the fixed point operators in such a way, that µ-variables do not depend
on ν-variables and vice versa.

2.1.31. Definition. A formula ξ of µML(D) is said to be alternation free if for
every subformula ηxϕ of ξ it holds that no free occurrence of x in ϕ is in the
scope of an η-operator in ϕ.

2.1.32. Example. The formula µxνy(x ∧ 〈a〉y) is not alternation free, but the
following formulas are:

µxνy(p ∧ 〈a〉y) µx(x ∧ νy〈a〉y) µxµy(x ∧ 〈a〉y).

It will be useful to have an inductive definition of the alternation-free fragment
of the µML. For this purpose, we first define the following class of formulas.

2.1.33. Definition. Let F be a set of formulas. The set NoethX(D, F) of formulas
noetherian in X ⊆ P built from F contains all formulas generated by the following
grammar:

ϕ ::= x | α | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | µyϕ′,

where x ∈ X, a ∈ D, y ∈ P, α ∈ F is X-free, and ϕ′ ∈ NoethX∪{y}(D, F).

Note that NoethX(D, µML(D)) is a fragment of µML(D). For the origin of the
name ‘noetherian’ for this fragment, we refer the reader to [42]. Note that if ϕ
is noetherian in X, then the variables in X do not occur within the scope of a
ν-operator in ϕ. Dually, we define the following fragment.
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2.1.34. Definition. Let F be a set of formulas. The set ConoethX(D, F) of for-
mulas conoetherian in X ⊆ P built from F contains all formulas generated by the
following grammar:

ϕ ::= x | α | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | νyϕ′,

where x ∈ X, y ∈ P, a ∈ D, α ∈ F is X-free, and ϕ′ ∈ ConoethX∪{y}(D, F).

We are finally ready to given an inductive definition of the alternation-free modal
µ-calculus.

2.1.35. Definition. The syntax µafML(D) of the alternation-free modal µ-calculus
is given by:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | µx.ϕ′ | νx.ϕ′′,

where p, x ∈ P, a ∈ D, and ϕ′ belongs to Noeth{x}(D, µafML(D)), and ϕ′′ belongs
to Conoeth{x}(D, µafML(D)).

The (routine) proof of the following lemma is left to the reader.

2.1.36. Lemma. If ϕ is a µafML-formula, then so are nnf(ϕ), ϕ, and every for-
mula in the closure of ϕ.

A very important effect of restricting to the alternation-free fragment, is that the
winning condition of the evaluation game becomes much simpler.

2.1.37. Lemma. Let (ϕn)n∈ω be an infinite trace of alternation-free formulas.
Then either infinitely many of the ϕi are µ-formulas, or infinitely many are ν-
formulas, but not both.

Before we go on to prove the above lemma, we first prove an auxiliary lemma.

2.1.38. Lemma. Let ϕ0, . . . , ϕn be a finite trace of µafML-formulas, such that only
ϕn is an η-formula. Then ϕn � ϕi for every i ∈ [0, n].

Proof:
We proceed by induction on n. The case where n = 0 is trivial, so suppose that
n > 0. By the induction hypothesis ϕn � ϕi for every i ∈ [1, n]. We make a case
distinction on the shape of ϕ0. If ϕ0 is modal or propositional, it is clear that
ϕn�ϕ1 �ϕ0. If ϕ0 is a fixed point formula, then by assumption ϕ0 is of the form
ηyψ.

Hence ϕ1 = ψ[ηyψ/y]. From the fact that ϕn � ϕ1, we obtain, by Lemma
2.1.22, that either ϕn � ϕ0, or ϕ0 � ϕn. In the former case we are done. We will
now argue that the latter case is impossible. Recall that ϕn is an η-formula, say
ηxϕ. Since ϕ is (co)noetherian, we know that x does not occur in ϕ in the scope
of an η-operator. Hence, if ϕ0 � ϕn, then ϕ0 � ϕ and thus ϕ0 is x-free. But then
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ϕ1 is x-free, contradicting the fact that ϕn � ϕ1. 2

Proof of Lemma 2.1.37:
By Lemma 2.1.20 we know that the trace (ϕn)n∈ω contains infinitely many fixed
point formulas. Suppose, towards a contradiction, that it contains infinitely many
µ-formulas as well as infinitely many ν-formulas. Then there are k0 > k1 > k2 . . .
such that each ϕki is a fixed point formula, and, in particular, if ϕki is an η-
formula, then ϕki+1

is the first η-formula after ϕki . Applying the previous lemma
to each finite trace ϕki , . . . ϕki+1

, we obtain that ϕki+1
� ϕki . But if ϕki is a η-

formula, then ϕki+1
is an η-formula. Therefore ϕki+1

6= ϕki and thus ϕki+1
is a

proper subformula of ϕki . This is gives a descending chain of proper subformulas
ϕk0 � ϕk1 � ϕk2 � · · · , a contradiction. 2

The two-way alternation-free modal µ-calculus µaf
2 ML(D) is defined from µafML(D)

in the same way as µ2ML(D) is defined from µML(D). That is, by assuming that
there is an involution operator ˘ on D. Clearly Lemma 2.1.37 also applies to
µaf

2 ML.

The continuous modal µ-calculus

The continuous modal µ-calculus is another fragment of the modal µ-calculus,
and, in particular, a fragment of the alternation-free modal µ-calculus. We again
first define two dual classes parametrised in a set X of variables.

2.1.39. Definition. Let F be a set of formulas. The set ConX(D, F) of formulas
continuous in X ⊆ P built from F contains all formulas generated by the following
grammar:

ϕ ::= x | α | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | µyϕ′,
where x ∈ X, a ∈ D, y ∈ P, α ∈ µML(D) is X-free, and ϕ′ ∈ ConX(D, F)

2.1.40. Definition. Let F be a set of formulas. The set CoconX(D, F) of for-
mulas cocontinuous in X ⊆ P built from F contains all formulas generated by the
following grammar:

ϕ ::= x | α | ϕ ∨ ϕ | ϕ ∧ ϕ | [a]ϕ | νyϕ′,

where x ∈ X, a ∈ D, y ∈ P, α ∈ µML(D) is X-free, and ϕ′ ∈ CoconX(D, F)

2.1.41. Definition. The syntax µcML(D) of the continuous modal µ-calculus is
given by:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | µx.ϕ′ | νx.ϕ′′,

where p, x ∈ P, a ∈ D, and ϕ′ belongs to Con{x}(D, µcML(D)), and ϕ′′ belongs to
Cocon{x}(D, µcML(D)).
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We write µcML for the continuous monomodal µ-calculus. The proof of the fol-
lowing lemma is left to the reader.

2.1.42. Lemma. If ϕ is a µcML-formula, then so is ϕ and every formula in the
closure of ϕ.

Since µcML is a fragment of µafML, Lemma 2.1.37 applies to it as well. In
addition, the language µML satisfies the following even stronger property.

2.1.43. Lemma. Let (ϕn)n∈ω be a trace of µcML-formulas. Then:

(i) if (ϕn)n∈ω contains infinitely many µ-formulas, it contains at most finitely
many �-formulas.

(ii) if (ϕn)n∈ω contains infinitely many ν-formulas, it contains at most finitely
many �-formulas.

Proof:
We only prove item (i), because item (ii) is dual. It suffices to prove the following
claim, which is analogous to Lemma 2.1.38.

Let ϕ0, . . . , ϕn be a finite trace of µcML-formulas, such that ϕn is a
�-formula, and every other ϕi is neither a �-formula nor a ν-formula.
Then ϕn � ϕi for each i ∈ [0, n].

Indeed, once we have proven the claim above, the proof can be finished by using
an argument analogous to the proof of Lemma 2.1.37. Like Lemma 2.1.38, we
prove the above claim by induction on the length of the trace. The base case is
again trivial, and the only interesting inductive step is the one where ϕ0 is of the
form µxψ. Then ϕ1 is of the form ψ[µxψ/x] and, by the induction hypothesis, we
have ϕn�ψ[µxψ/x]. Hence, we obtain by Lemma 2.1.22 that ϕn�µxψ, in which
case we are done, or µxψ � ϕn. Suppose the latter is the case. Then µxψ occurs
within the scope of a �-operator in ϕn. Hence, since ϕn � ψ[µxψ/x], µxψ occurs
within the scope of an �-operator in ψ[µxψ/x]. But this means that x occurs in
the scope of an �-operator in ψ, contradicting the continuity of ψ in x. 2

Modal logic with the master modality

We finish with the most simple fragment of this subsection.

2.1.44. Definition. For D a finite set of actions, the syntax ML∗(D) of modal
logic with the master modality is generated by:

ϕ ::= p | ⊥ | ϕ→ ϕ | [a]ϕ | [∗]ϕ,

where p ∈ P and a ∈ D.
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The language ML∗ is a fragment of µML through the embedding −t, inductively
defined as follows, where D = {a1, . . . , an}.

pt := p ⊥t := µx(x)

(ϕ→ ψ)t := ¬ϕt ∨ ψt ([a]ϕ)t := [a]ϕt

([∗]ϕ)t := νx([a1]x ∧ · · · ∧ [an]x ∧ ϕt)

The semantics of ML∗ is inherited from µML through this embedding. In particular,
we have

S, s 
 [∗]ϕ⇔ S, s 
 νx([a1]x ∧ · · · ∧ [an]x ∧ ϕt)
⇔ S, t 
 ϕt for all sR∗t,

whereR∗ is the reflexive-transitive closure of the union of the relationsRa1 , . . . , Ran .

2.2 Parity games

The goal of this section is threefold. First, we will put the game-theoretic notions
used in the previous section, as well as in the rest of this thesis, on a formal
footing. Second, we will define the notion of a parity game and state some of its
most important properties. Third, we will use the fact that the evaluation game
is a parity game to give a first example of how these properties of parity games
can be used to prove facts about the modal µ-calculus.

2.2.1. Definition. A (two-player) game is a structure G = (B0, B1, E,W ) where
E is a binary relation on B := B0 ]B1, and W is a map Bω → {0, 1}.

The set B is called the board of G, and its elements are called positions . Whether
a position belongs to B0 or B1 determines which player owns that position. If a
player Π ∈ {0, 1} owns a position q, it is their turn to play and the set of their
admissible moves is given by the image E[q] of q under E. .

2.2.2. Definition. A match in G = (B0, B1, E,W ) (or simply a G-match) is a
path M through the graph (B,E). A match is said to be full if it is a maximal
path.

Note that a full matchM is either finite, in which case E[last(M)] = ∅, or infinite.
For a player Π ∈ {0, 1}, we write Π for the other player, i.e. Π = Π + 1 mod 2.

2.2.3. Definition. A full match M in G = (B0, B1, E,W ) is won by player Π
if either M is finite and last(M) ∈ BΠ, or M is infinite and W (M) = Π.

If a full matchM is finite, and last(M) belongs to BΠ for Π ∈ {0, 1}, we say that
the player Π got stuck . A partial match is a match which is not full.
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2.2.4. Definition. In the context of a game G, we denote by PMΠ the set of
partial G-matches M such that last(M) belongs to the player Π.

2.2.5. Definition. A strategy for Π in a game G is a map f : PMΠ → B.
Moreover, a G-match M is said to be f -guided if for any M0 @M with M0 ∈
PMΠ it holds that M0 · f(M0) vM.

For a position q, the set PMΠ(q) contains all M∈ PMΠ such that first(M) = q.

2.2.6. Definition. A strategy f for Π in G is surviving at a position q if f(M)
is admissible for every M ∈ PMΠ(q), and winning at q if in addition all full
f -guided matches starting at q are won by Π. A position q is said to be winning
for Π if Π has a strategy winning at q. We denote the set of all positions in G
that are winning for Π by WinΠ(G).

We write G@q for the game G initialised at the position q of G. A strategy f for
Π is surviving (winning) in G@q if it is surviving (winning) in G at q.

2.2.7. Definition. A strategy f is positional if it only depends on the last move,
i.e. if f(M) = f(M′) for all M,M′ ∈ PMΠ with last(M) = last(M′).

We will often present a positional strategy for Π as a map f : BΠ → B.

2.2.8. Definition. A priority map on some board B is a map Ω : B → ω of
finite range. A parity game is a game of which the winning condition is given
by WΩ(M) = max Inf(Ω[M]) mod 2, where Inf(Ω[M]) is the set of priorities
occurring infinitely often in M.

As mentioned before, the evaluation game E(ξ, S) is, in fact, a parity game. The
priority map Ω can for instance be defined as follows. First note that � is a
partial order on FL(ξ). Hence, it can be extended into a linear order �. Let
ϕ1, . . . , ϕn be an enumeration of all fixed point formulas in FL(ξ) in the order of
�, i.e. such that ϕ1 � · · · � ϕn. We set:

Ω(ϕ, s) :=


2i− 1 if ϕ = ϕi for some 1 ≤ i ≤ n and ϕi is a µ-formula,

2i if ϕ = ϕi for some 1 ≤ i ≤ n and ϕi is a ν-formula,

0 otherwise.

We leave it to the reader to verify that, by Lemma 2.1.20, we have WΩ(M) = 0
if and only if the infinite E(ξ, S)-match M is won by ∃.

2.2.9. Remark. The number of priorities, and therefore the complexity of the
parity game, is sufficient for our purposes, but not optimal. For more details we
refer the reader to [64].
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The following theorem captures the key property of parity games: they are posi-
tionally determined . This means that at every position either of the two players
has a winning strategy, which moreover is positional. In fact, each player Π has
a positional strategy fΠ that is optimal , in the sense that fΠ is winning for Π in
G@q for every q ∈WinΠ(G).

2.2.10. Theorem ([74, 38]). For any parity game G, there are positional strate-
gies fΠ for each player Π ∈ {0, 1}, such that for every position q one of the fΠ is
a winning strategy for Π in G@q.

The following proposition is an example application of positional determinacy.
Recall that a model (S,R, V ) is image-finite if the projection R[s] = {t ∈ S | sRt}
is finite for every s ∈ S.

2.2.11. Proposition. Every satisfiable formula has an image-finite model.

Proof:
Let S = (S,R, V ) be a model and suppose that s ∈ JξKS. Without loss of general-
ity we assume that ξ is both tidy and in negation normal form. Hence, by Theorem
2.1.30, we know that ∃ has a winning strategy in the parity game E(ξ, S)@(ξ, s),
and by Theorem 2.2.10 we may assume that this strategy is positional. Consider
this strategy as a partial function f : FL(ξ) × S ⇀ FL(ξ) × S. Since FL(ξ) is
finite, there are for any state u of S at most finitely many states v such that
f( �ϕ, u) = (ϕ, v) for some �ϕ ∈ FL(ξ).

Let S′ = (S,R′, V ) be the model obtained from S by defining

R′[u] := {v | f( �ϕ, u) = (ϕ, v) for some �ϕ ∈ FL(ξ)}.

By the reasoning above S′ is image-finite. Moreover, the strategy f restricts to a
winning strategy in E(ξ, S′)@(ξ, s), as required. 2

2.3 Proof systems

In this section we introduce some proof systems for the modal µ-calculus. First,
we will discuss a Hilbert-style proof system originally due to Dexter Kozen. Next,
we will show how this Hilbert-style system can be translated into a finitary
Gentzen-style counterpart. Finally, we describe how this Gentzen-style system
can be adapted into a non-well-founded proof system, which is the kind of system
that we will mostly work with in this thesis. We will prove the soundness and
completeness of the non-well-founded system and discuss several related topics,
such as cyclic proofs and the bounded proof property. We close this section with
a short discussion on the goal of this thesis: adapting the proof systems in this
section to accommodate various frame conditions.
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2.3.1 Hilbert-style proof systems

In [59], Kozen presents a natural Hilbert-style axiomatisation for the modal µ-
calculus.

2.3.1. Definition. The Hilbert-style proof system µK consists of a proof system
for the least normal modal logic K, together with the following axioms and rules:

ϕ[µxϕ/x]→ µxϕ
ϕ[ψ/x]→ ψ

µxϕ→ ψ
νxϕ→ ϕ[νxϕ/x]

ψ → ϕ[ψ/x]

ψ → νxψ

Like the algebraic semantics, these rules characterise µxϕ as the least prefixed
point of ϕ(x), and likewise for νxϕ as the greatest postfixed point.

Proving completeness for µK is notoriously difficult. The standard canonical
model construction used in basic modal logic will not work, because compactness
fails, as shown in the following proposition. The abbreviation �n is recursively
defined by setting �0ϕ := ϕ and �n+1ϕ := ��nϕ.

2.3.2. Proposition. The set {µx( �x∨p)}∪{�np : n ∈ ω} is finitely satisfiable,
but not satisfiable.

Proof:
Immediate from the fact that µx( �x ∨ p) expresses the reachability of a state
where p is true. 2

Hence, there will be (maximal) consistent sets which are not satisfiable. One
way to remedy this is to consider finitary canonical models, which are closely
related to the method of filtration. In Chapter 4, we will see that this method
works for the continuous modal µ-calculus, but not for the full language. Another
option is to consider non-well-founded proof systems, which are the topic of the
next section.

2.3.2 Non-well-founded proof systems

To introduce non-well-founded proof systems, let us first consider a well-founded
sequent-style reformulation of the Hilbert-style system µK. Throughout this sec-
tion we will assume that formulas are tidy and in negation normal form.

2.3.3. Definition. A sequent is a finite set of formulas.

Sequents should be read disjunctively. That is, a sequent Γ = {γ1, . . . , γn} repre-
sents the disjunction γ1 ∨ · · · ∨ γn.

2.3.4. Remark. In this chapter we use so-called one-sided sequents. This is
convenient when formulas are in negation normal form. Alternatively, one of-
ten encounters two-sided sequents, i.e. pairs of one-sided sequents. Two-sided
sequents are better equipped to deal with negation and will be used both in
Chapter 3 and in Chapter 6
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id p, p
Γ, ϕ, ψ∨

Γ, ϕ ∨ ψ
Γ, ϕ Γ, ψ∧

Γ, ϕ ∧ ψ
Γ, ϕ[µxϕ/x]

µ
Γ, µxϕ

Γ, ϕ[νxϕ/x]
ν

Γ, νxϕ

∆, ϕ
K

Γ, �∆,�ϕ
Γ, ϕ[Γ/x]

indν Γ, νxϕ

Γ, ϕ Γ, ϕ
cut

Γ

Figure 2.1: A sequent-style reformulation of µK

The sequent-style reformulation of µK is given in Figure 2.1. The propositional
rules id, ∨, and ∧ take care of the propositional reasoning in µK, assisted by cut,
which simulates modus ponens. The modal rule K covers modal reasoning. To
see that the rule K is sound, suppose that the conclusion is falsified by some
state s. Then s must have a successor falsifying the premiss. Note that K has
built-in weakening. The rules µ and ν correspond to their respective axioms in
µK, and it turns out we only need to have an additional induction rule indν for
the ν-operator. In this rule Γ stands for the negation of Γ, i.e. the conjunction
of the negations of all formulas in Γ. Reading the premiss of indν as Γ→ ϕ[Γ/x],
and similar for the conclusion, it is clear that indν is a special case of the greatest
postfixed point rule. We will later see why we do not need an analogous rule indµ
corresponding to the least prefixed point rule.

Proof-theoretically, the sequent-style reformulation of µK lacks several desir-
able properties. First, it has a cut rule, which makes proof search infeasible,
because it requires one to guess the cut formula. Second, both cut and indν vi-
olate the closure property : their premisses may contain formulas outside of the
Fischer-Ladner closure of their conclusions.

It is for the reasons above, combined with the difficulty of proving the com-
pleteness of µK, that different kinds of proof systems have been developed. The
following system, which simply drops the two problematic rules of the sequent-
style reformulation of µK, will play a central role in this section.

2.3.5. Definition. The system NW consists of id, ∨, ∧, µ, ν, K from Figure 2.1.

Note that NW does have the closure property.

In the premiss or conclusion of some rule application, the formulas in Γ are
called inactive, while the formulas outside of Γ are called active. Note that, since
sequents are sets, a formula can simultaneously be both inactive and active.

The expressiveness lost by dropping cut and indν , is made up for by allowing
non-well-founded branches.
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2.3.6. Definition. A NW-derivation is a (possibly infinite) tree generated by
the rules of NW.

As usual, we say that a derivation is closed if every leaf is an axiom, which in the
case of NW means that every leaf is an application of id. The root sequent of an
NW-derivation is called its conclusion.

Unfortunately closed NW-derivations are not sound, in the sense that their
conclusions need not be valid. Take for instance the formula µx�x. This formula
expresses that there is no infinite path, which is certainly not true in every state
of every model. However, it does have the following non-well-founded derivation:

...
µx�x
�µx�x
µx�x

We will impose a certain sufficient condition on NW-derivations to ensure that
their conclusions are valid. NW-derivations satisfying this condition will be called
NW-proofs . In order to define this condition, we first require the proof-theoretical
notion of direct ancestry .

It will convenient to have a slightly more formal definition of the notion of a
rule instance.

2.3.7. Definition. A rule instance is a triple i = (Γ, r, 〈Γ1, . . . ,Γn〉) such that

Γ1 · · ·Γnr
Γ

is a valid rule application in NW.

2.3.8. Remark. The above definition of a rule instance naturally generalises to
different proof systems. We will therefore in the following chapters use this notion
without redefining it for the proof system at hand. Moreover, we will sometimes
use the rule application with rule instance.

2.3.9. Definition. Let (Γ, r, 〈Γ1, . . . ,Γn〉) be a rule instance of NW. A formula
ψ in Γi is said to be a direct ancestor of a formula ϕ in Γ if ψ ‘comes from’ ϕ.
That is, if one of the following holds:

(i) ϕ and ψ are both inactive and ϕ = ψ;

(ii) ϕ and ψ are both active, and

(a) r 6= K, or

(b) r = K and ψ = 4ϕ for some 4 ∈ { �,�}.
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2.3.10. Remark. The above notion of direct ancestry is standard in proof theory
(see e.g. [22, Definition 1.2.3.]). Note that direct ancestry does not necessarily
determine a tree structure. Indeed, a single formula in the conclusion might have
multiple direct ancestors in the same premiss, and a formula in some premiss
might be a direct ancestor of multiple formulas in the conclusion.

2.3.11. Definition. Suppose some NW-derivation contains a (possibly infinite)
path ρ:

Γ0 · r0 · Γ1 · r1 · · · (Γn)

A trail on ρ is a sequence of formulas (ϕi) such that for each ϕi belongs to Γi,
and each for each two subsequent ϕi, ϕi+1 it holds that ϕi+1 is a direct ancestor
of wϕi.

Moreover, the tightening of a trail is the subsequence consisting of precisely
those ϕi such that ϕi is active in the conclusion Γi, and ϕi+1 is active in the
premiss Γi+1 of the application of ri on the path ρ. In other words, such that ϕi+1

is a direct ancestor of ϕi by virtue of item (ii) of Definition 2.3.9.

We leave it to the reader to verify that the tightening of a trail is always a trace.
A trail whose tightening is an η-trace is called an η-trail. Note that being infinite
is a necessary, but not a sufficient condition for some trail to be an η-trail. We
are now ready to state the soundness condition for NW-derivations.

2.3.12. Definition. A closed NW-derivation is said to be an NW-proof if every
infinite branch contains a ν-trail.

2.3.3 The proof search game

We will define a proof search game G(Γ) for the proof system NW. We write
conc(i) for the conclusion, i.e. the first component of the rule instance i. More-
over, we use SeqΓ and InstΓ respectively for the set of sequents and the set of valid
rule instances, with the property that every formula belongs to FL(Γ).

The set of positions of the game G(Γ) is SeqΓ ∪ InstΓ. Since FL(Γ) is finite,
the game G(Γ) has only finitely many positions. The ownership function and
admissible moves of G(Γ) are as in the following table:

Position Owner Admissible moves
∆ ∈ SeqΓ Prover {i ∈ InstΓ | conc(i) = ∆}

(∆, r, 〈∆1, . . . ,∆n〉) ∈ InstΓ Refuter {∆i | 1 ≤ i ≤ n}

The only thing we need to specify about G(Γ) is which infinite matches are won
by whom. We say that an infinite match is won by Prover if and only if it contains
a ν-trail. It is not hard to see that the strategy tree of a winning strategy for
Prover is exactly the same as an NW-proof.
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2.3.4 Soundness of NW

In this section we show that the non-well-founded proof system NW is sound.
Our proof goes by showing that a winning strategy for ∀ in the evaluation game
E(
∨

Γ,S)@(
∨

Γ,S) can be turned into a winning strategy for Refuter in G(Γ)@Γ.
It follows that, if Γ is invalid, it is not provable.

For M a finite match, we write M< for the initial segment of M omitting
only the last position last(M) of M.

2.3.13. Lemma. Let f be positional and winning for ∀ in E(
∨

Γ, S)@(
∨

Γ, s).
Then there is a strategy f for Refuter in G(Γ)@Γ, and a function s : PMP (Γ)→ S,
such that the following hold for every finite f -guided match M:

(i) If last(M) is an application of ∧ with ψ1∧ψ2 active in the conclusion, then
f(M) corresponds to the conjunct selected by f at (ψ1 ∧ ψ2, s(M<)).

(ii) If last(M) is an application of K with �ψ as active formula in the conclu-
sion, then s(f(M)) is the state selected by f at (�ψ, s(M<)).

(iii) If last(M) is a sequent, then f is winning for ∀ in E(
∨

Γ, S)@(ϕ, s(M)) for
every ϕ ∈ last(M).

Proof:
For the match Γ ∈ PMP consisting of only the initial position, we set sΓ := s.
Note that the required condition on sΓ is met by assumption. By induction on
the length |M|, we will for every f -guided match M ∈ PMR(Γ) simultaneously
define the move f(M) and the state s(f(M)).

Let M∈ PMR be f -guided and let

∆1 · · ·∆nr
last(M<)

be the rule instance last(M). By the induction hypothesis (or by the above in
case |M| = 2), we know that f is winning for ∀ in E(

∨
Γ,S)@(ϕ, s(M<)) for

every ϕ ∈ last(M<). We make a case distinction based on the rule r.

(i) r = id. This cannot happen, because f cannot be winning both at (p, s(M<))
and at (p, s(M<)).

(ii) r ∈ {∨, µ, ν}. In these cases there is only a single choice for f(M), and it
is not hard to see that it suffices to set s(f(M)) := s(M<).

(iii) r = ∧. Let ψ1 ∧ ψ2 be the active formula in the conclusion last(M<).
We let f(M) be the premiss corresponding to the conjunct selected by f
at (ψ1 ∧ ψ2, s(M<)). Again, it is not hard to see that it suffices to set
s(f(M)) := s(M<).
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(iv) r = K. There is only a single choice for f(M). Note that there is a unique
active formula in the conclusion last(M<) of the form �ψ. We let s(f(M))
be the state selected by f at (�ψ, s(M<)) and leave it to the reader to
verify that this suffices.

This finishes the proof. 2

2.3.14. Lemma. Let f be positional and winning for ∀ in E(
∨

Γ,S)@(
∨

Γ, s),
and let f be the strategy for Refuter in G(Γ) given by Lemma 2.3.13. For each
tightening ϕk0 , . . . , ϕkn of a finite trail on some f -guided G(Γ)@Γ match, there is
an f -guided E(

∨
Γ,S)-match

(
∨

Γ, s) · · · (ϕk0 , s0) · · · (ϕkn , sn).

Proof:
Write Mn for the initial segment of M of length 2n+ 1. That is,

Mn = Γ0 · i0 · Γ1 · i1 · · ·Γn.

We claim that we can prove the theorem by defining si := s(Mki) for each
0 ≤ i ≤ n. By induction on i, we will show that each E(

∨
Γ,S)-match

Ni := (
∨

Γ, s) · · · (ϕk0 , s0) · · · (ϕki , si)

is f -guided.
For the base case note that ϕk0 belongs to Γk0 = Γ, and that s0 = s, since

ϕk0 is the first formula on the trail such that ϕk0 is active in the conclusion and
its successor is active in the premiss. Hence there clearly is an f -guided match
(
∨

Γ, s) · · · (ϕk0 , s0).
For the inductive step, suppose that we have proven that Ni is f -guided for

i < n. We wish to show that Ni · (ϕki+1
, si+1) is f -guided. By construction, the

state si+1 is accessible from the state si in S. In case (ϕki , si) is a position that
belongs to ∃, the result follows from the fact that the tightening of a trail is a
trace. To finish the proof, suppose that (ϕki , si) belongs to ∀. We must show that
f(ϕki , si) = (ϕki+1

, si+1), but this is immediate from conditions (i), (ii), and (iii)
of Lemma 2.3.13. 2

2.3.15. Proposition. If Prover has a winning strategy in G(Γ)@Γ, then Γ is
valid.

Proof:
We will show this by contraposition. So suppose that Γ is invalid. Then there
is a model S and state s of S such that ∀ has a winning strategy in E(

∨
Γ, s).



2.3. Proof systems 39

By positional determinacy, we may assume without loss of generality that f is
positional.

We claim that the strategy f given by Lemma 2.3.13 is winning for Refuter in
G(Γ)@Γ. Indeed, suppose that M is an f -guided G(Γ)@Γ-match. By condition
(iii) of Lemma 2.3.13, the match cannot reach an axiom, whence M must be
infinite. Suppose (ϕkn)n∈ω is an infinite tightening of a trail on M. By Lemma
2.3.14, there must be a f -guided E(

∨
Γ, s)-match

(ϕk0 , s0) · (ϕk1 , s1) · (ϕk2 , s2) · · ·

Moreover, from the fact that f is winning for ∀, it follows that (ϕkn)n∈ω must be
a ν-trace. Hence f is winning for Refuter, which means that Prover cannot have
a winning strategy in G(Γ)@Γ. 2

2.3.5 Completeness of NW

In this subsection we will prove that NW is complete. We will use the converse
of the argument in the previous subsection. That is, we will show that a winning
strategy f for Refuter in G@Γ induces a model Sf and strategy for ∀ in E(

∨
Γ,Sf ),

showing that Sf falsifies Γ.

2.3.16. Definition. A µML-formula ξ is said to be guarded if every subformula
ηxϕ of ξ only contains occurrences of x in the scope of a modality 4 ∈ { �,�}.

2.3.17. Example. µx( �x ∧ �x) is guarded, but νy(µx( �x ∧ y)) is not.

It turns out that every tidy µML-formula in negation normal form is equivalent to
a tidy guarded formula in negation normal form. A proof of this result, originally
by Kozen, can be found for instance in [107, Proposition 2].

2.3.18. Proposition. Let ϕ be a tidy µML-formula in negation normal form.
Then there is a guarded and tidy µML-formula ϕ′ in negation normal form such
that ϕ ≡ ϕ′.

For the rest of this section we shall refer to formulas which are tidy, guarded and
in negation normal form by the term nice.

The key property of nice formulas is that their traces have the following be-
haviour.

2.3.19. Lemma. Suppose (ϕn)n∈ω is an infinite trace starting at a nice formula
ϕ. Then infinitely many ϕi have a modal operator as main operator.

Proof:
Let the exposure rank er(ξ) of a nice formula ξ be the amount of occurrences of
fixed point operators outside of the scope of a modal operator. Formally, er is
defined by the following induction.
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• If ξ is a literal or of the form 4ϕ, then er(ξ) = 0.

• If ξ = ϕ ◦ ψ, then er(ξ) = er(ϕ) + er(ψ).

• If ξ = ηxϕ, then er(ξ) = er(ϕ) + 1.

Let ηxϕ be a nice formula. We claim that er(ϕ[ηxϕ/x]) = er(ϕ). Indeed this
follows from the fact that, by guardedness, every occurrence of ηxϕ in ϕ[ηxϕ/x]
is in the scope of a modal operator. Hence er(ηxϕ) = er(ϕ[ηxϕ/x]) + 1.

Moreover, note that er(ψ1◦ψ2) ≤ er(ψi) for each i ∈ {1, 2}. Therefore the trace
(ϕn)n∈ω must contain infinitely many formulas whose main operator is modal, for
otherwise there would be a final segment on which the exposure rank weakly
decreases at every step, and strictly decreases at infinitely many steps. 2

2.3.20. Definition. An application of K

∆, ϕ
K

Γ, �∆,�ϕ

is called optimal if Γ contains only literals and �-formulas.

2.3.21. Definition. An application of some rule r ∈ {∨,∧, µ, ν} is called reduc-
tive if the active formula in the conclusion is not also inactive.

2.3.22. Example. Of the following two rules instances, the one left is reductive,
whereas the one on the right is not.

Γ, �µx( �x ∨ p) ∨ pµ
Γ, µx( �x ∨ p)

Γ, µx( �x ∨ p), �µx( �x ∨ p) ∨ pµ
Γ, µx( �x ∨ p)

2.3.23. Definition. Let f be a strategy for Refuter in G(Γ)@Γ. The counter-
model tree Tf of f is the subtree of the strategy tree of f , where Prover only plays
optimal applications of K, and only reductive applications of ∨,∧, µ, ν.

2.3.24. Definition. Let f be a strategy for Refuter in G(Γ)@Γ. The canonical
model Sf of f consists of:

• a set of states Sf containing precisely the maximal paths through the coun-
termodel tree T f which contain no application of K;

• a relation Rf given by ρ1R
fρ2 if and only if last(ρ1) is connected to first(ρ2)

by an application of K in T f ;

• a valuation V f given by p ∈ V f (ρ) if and only if p does not belong to any
sequent Γ on the path ρ.
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The following lemma captures the key reason for working with guarded formulas.

2.3.25. Lemma. Let f be a strategy for Refuter in some match G(Γ)@Γ, where
Γ is a set of nice formulas. Then every state ρ of Sf is finite.

Proof:
Adding a single root, the tightenings of trails on ρ form a tree. If ρ were infinite,
this tree would by Kőnig’s Lemma have an infinite branch. But this is in con-
tradiction with Lemma 2.3.19 and the fact that ρ contains no application of the
modal rule. 2

The next lemma follows from the restriction on the moves of Prover in T f .

2.3.26. Lemma. If a formula of the form ψ1 ◦ ψ2 or of the form ηxψ occurs in
some sequent ∆ on a path ρ ∈ Sf , it will be the active formula in the conclusion
of some rule application above ∆ on ρ.

2.3.27. Proposition. Let f be a winning strategy for Refuter in G(Γ)@Γ and
let ρ0 ∈ Sf be any path containing the root of T f . Then ∀ has a winning strategy
f in E(

∨
Γ, Sf )@(

∨
Γ, ρ0).

Proof:
It clearly suffices to show that f is winning in E(

∨
Γ,Sf )@(ϕ0, ρ0) for an arbitrary

formula ϕ0 ∈ Γ. By induction on n, we will simultaneously define f on every

E(
∨

Γ,Sf )-match

M = (ϕ0, ρ0) · · · (ϕn, ρn),

and show that for any f -guided extension M · (ϕn+1, ρn+1) of M the sequence
ϕ0 · · ·ϕn+1 is the tightening of some trail on a G@Γ-match of the form N · ρ,
where ρ is an initial segment of ρn+1.

Suppose that the thesis holds for all k < n. If n > 0, we know, by the induction
hypothesis, that ϕ0 · · ·ϕn is the tightening of some trail on a G@Γ-match of the
form N · ρ, where ρ is an initial segment of ρn. We let ∆ = last(ρ) be the premiss
in which ϕn is active, which witnesses that ϕn is part of the tightening ϕ0 · · ·ϕn.
If n = 0 we let ∆ be Γ. Note that in either case ϕn ∈ ∆. We make a case
distinction based on the shape of ϕn.

• If ϕn is a literal, there is nothing to do.

• If ϕn = ψ1 ∨ ψ2, then the thesis holds, because, by Lemma 2.3.26, the
formula ϕn must at some point in ρn above ∆ be the active formula in the
conclusion of an application of ∨, in which case each of the ψi is active in
the premiss.
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• If ϕn = ψ1 ∧ ψ2, there must again be some point in ρn above ∆ such that
ψ1 ∧ ψ2 is the active formula in the conclusion of an application of ∧. We
set f(ϕn, ρn) := (ψi, ρn), where ψi is the active formula in the first such
application of ∧ in ρn above ∆. The required property clearly holds.

• Suppose ϕn = �ψ. Let M · (ψ, ρn+1) be an extension of M. It follows
by definition that ρn · (last(ρn),K, 〈first(ρn+1)〉) · ρn+1 is a G@Γ-match. The
initial segment ρn ·(last(ρn),K, 〈first(ρn+1)〉)·first(ρn+1) satisfies the required
condition, since ψ is a direct ancestor of �ψ.

• Suppose ϕn = �ψ. Since by the induction hypothesis �ψ occurs in ρn,
we have �ψ ∈ last(ρn) (which exists by Lemma 2.3.25). Hence, there is a
ρn+1 in T f such that ρn · (last(ρn),K, 〈first(ρn+1)〉) · ρn+1 is a path in T f . In
particular, we have ρnR

fρn+1. We set f(ϕn, ρn) := (ψ, ρn+1). The initial
segment ρn · (last(ρn),K, 〈first(ρn+1)〉) ·first(ρn+1) again satisfies the required
condition.

• Suppose ϕ = ηxψ. By Lemma 2.3.26 there must be some point in ρn above
∆ where ϕ is the active formula of an application of η, whence the result
follows.

This defines f . We now claim that f is, in fact, a winning strategy for ∀ in

E(
∨

Γ, Sf )@(ϕ0, ρ0). Suppose first that some full f -guided match M is finite,
ending in, say, (ϕn, ρn). Then ϕn cannot be of the form �ψ, for then f(ϕn, ρn)
would be defined and thus M would not be full. Suppose then, that ϕn is a
literal. By the construction above, we know that ϕn is the final element of the
tightening of some trace on some G@Γ-match of the form N · ρ, where ρ is an
initial segment of ρn. Hence, ϕn appears on the path ρn. Since T f is built from
a winning strategy f for Refuter, we know that ϕn does not appear on the path
ρn. By the definition of V f , we find that M is indeed won by Refuter.

Now suppose that M is an infinite f -guided match

M = (ϕ0, ρ0) · (ϕ1, ρ1) · (ϕ2, ρ2) · · ·

By the construction above, we know for every n that ϕ0 · · ·ϕn is the tightening
of some trail on some G@Γ-match of the form N · ρ, where ρ is an initial segment
of ρn. Consider the infinite G@Γ-match

N = ρ0 · (last(ρ0),K, 〈first(ρ1)〉) · ρ1 · (last(ρ1),K, 〈first(ρ2)〉) · ρ2 · · ·

By the above, the trails whose tightenings are of the form ϕ0 · · ·ϕn for some n,
form an infinite, finitely branching tree, through N . Hence, by Kőnig’s Lemma,
the matchN contains an infinite trail whose tightening is the trace (ϕn)n∈ω. Since
T f is based on a winning strategy for Refuter, this trace must be a ν-trace, and
therefore M is won by ∀. 2
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2.3.28. Corollary. If Γ is a valid set of nice formulas, then Prover has a
winning strategy in G(Γ)@Γ.

Proof:
As in the proof of soundness, we argue by contraposition. Suppose that Prover
has no such winning strategy. By Theorem 2.2.10, it follows that Refuter has a
winning strategy in G(Γ)@Γ. But then the previous proposition implies that Γ is
invalid, as required. 2

2.3.29. Remark. The system NW is, in fact, also complete for unguarded formu-
las. However, to prove a general completeness result we would have to introduce
technical machinery that is outside the scope of this thesis. In Chapter 5 we will
introduce so-called trace atoms, whose purpose is to deal with the combinatorics
of backward modalities in the two-way modal µ-calculus. We will see that, as a
by-product, trace atoms facilitate a relatively easy completeness argument that
covers unguarded formulas as well.

2.3.6 From trace-based to path-based proof systems

In this section we assume some familiarity with the theory of automata operating
on infinite languages. For a good introduction we refer the reader to Chapter 1
of [49].

The non-well-founded proof system NW is of a kind that is often called trace-
based . This is because the soundness condition on infinite branches is defined in
terms of traces. A common theme in the literature is to turn trace-based systems
into so-called path-based systems, where the soundness condition is instead defined
on the branches themselves. Path-based proof systems are inspired by automaton
theory, and the most direct way to construct them also uses automata. In this
section we will sketch how to apply this direct construction to NW.

As usual, we call a language of infinite words ω-regular if it is recognised by
some non-deterministic parity ω-automaton. A finite game G = (B0, B1, E,W ) is
called ω-regular if W−1(0) is ω-regular (or, equivalently, if W−1(1) is ω-regular).

We will use the following fact. while its proof is outside the scope of this
thesis, the reader might not find it hard to imagine, seeing the correspondence
between traces on branches of NW-proofs and matches in the evaluation game.

2.3.30. Fact. For every Γ, the proof search game G(Γ) is ω-regular, recognised
by an automaton of size linear in |FL(Γ)|.

It turns out that non-deterministic parity ω-automata have the same expressive
power as their deterministic counterparts. This follows by combining several re-
sults about transformations of different types of ω-automata, the most important
of which is a deterministation construction originally due to Shmuel Safra. For
more information we refer the reader to Chapter 3 of [49].
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2.3.31. Theorem. Every ω-regular language can be recognised by a deterministic
parity automaton. In particular, for for every non-deterministic parity automaton
A, there is an equivalent parity automaton B such that the number of states of B
is exponential in the number of states of A.

The following proposition game-theoretically captures the essence of the rela-
tionship between trace-based and path-based proof systems.

2.3.32. Proposition. Let G = (B0, B1, E,W ) be an ω-regular game. Then there
is a parity game G ′ = (B′0, B

′
1, E

′,W ′) and a surjection π : B′ → B such that:

(i) there is a k such that |π−1(a)| ≤ k for every a ∈ B;

(ii) If aEb, then for every a′ ∈ π−1(a) there is a unique b′ ∈ π−1(b) with a′E ′b′.

(iii) a′ ∈ B′i if and only if π(a′) ∈ Bi for each a′ ∈ B′ and i ∈ {0, 1}.

(iv) W ′ = W ◦ πω, where πω is defined pointwise.

Proof (sketch):
By Theorem 2.3.31 we may assume that W−1(0) is recognised by a deterministic
parity automaton (Q,Σ, δ, qI ,Acc). The idea is to let G ′ be the following game.

• The board B′ is B ×Q, where B′0 = B0 ×Q and B′1 = B1 ×Q.

• The relation E ′ is given by (a, p)E ′(b, q) if and only if aEb and q = δ(p, a).

• The function W ′ is given by:

W ′((bn, qn)n∈N) = 0 :⇔ (qn)n∈N ∈ Acc.

Let π : B′ → B be the left projection function. Clearly π satisfies conditions
(i) - (iii). Condition (iv) follows from the fact that for each infinite G ′-match
(bn, qn)n∈N, we have

W ′((bn, qn)n∈N) = 0⇔ (qn)n∈N ∈ Acc⇔ W ((bn)n∈N) = 0,

as required. 2

Let us now return to the goal of obtaining a path-based counterpart to NW.
By Fact 2.3.30, we know that the proof-search game G(Γ) for NW is ω-regular.
Hence, by Proposition 2.3.32, there is a game G ′(Γ) with a surjection π satisfying
properties (i) - (iv). For p a position of G ′(Γ), let us write p ` ∆ whenever
π(p) = ∆ ∈ SeqΓ, and p ` i if π(p) = i ∈ InstΓ.

Moreover, if p ` ∆ and i ∈ InstΓ is such that conc(i) = ∆, we write p ∗ i for
the unique q ` i such that p sees q in G ′(Γ) (cf. item (ii) of Proposition 2.3.32).
Similarly, if p ` (∆, r, 〈∆1, . . . ,∆n〉), we write p ∗∆i for the unique q ` ∆i such
that p sees q in G ′(Γ).
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Position Owner Admissible moves
p ` ∆ Prover {p ∗ i ` i | conc(i) = ∆}

p ` (∆, r, 〈∆1, . . . ,∆n〉) Refuter {p ∗∆i ` ∆i | 1 ≤ i ≤ n}
We can now reconstruct a proof system, let us call it NW′, from G ′(Γ) by taking for
each rule instance i = (∆, r, 〈∆1, . . . ,∆n〉) and position p of G ′, the rule instances

p ∗ i ∗∆1 ` ∆1 · · · p ∗ i ∗∆n ` ∆nr
p ` ∆

Note that one can view sequents in NW′ as ordinary sequents, but annotated by
a position of G ′. A closed NW′-derivation of p ` Γ is said to be an NW′-proof if
for every infinite branch (pn ` ∆n)n∈ω the induced G ′(Γ)-match

p0 · p0 ∗ i0 · p1 · p1 ∗ i1 · p2 · p2 ∗ i2 · · ·
is winning for Prover, where for each k, we denote by ik the rule instance of which
pk is a conclusion.

The system NW′ has the nice property that its proof-search game G ′(Γ) is a
parity game and hence is positionally determined. In Section 2.3.8 we will see
some consequences of this fact. On the other hand, the system NW′ is not very
practical. It is not directly clear how to construct proofs top-down, and even when
constructing a proof bottom-up, we must, simultaneously, run an automaton to
calculate the annotations. A considerable amount of research has been done
on finding proof-theoretically more satisfactory ways of annotating sequents, in
such a way that the natural corresponding proof-search game is still positionally
determined. We give a few examples below.

• For some modal fixed point logics relatively simple annotations suffice. In
Chapter 2 we will see that for ML∗ it suffices to annotate (hyper)sequents
by only a single focus annotation. This technique was originally developed
by Lange & Stirling for the temporal logics LTL and CTL [68].

• It turns out that for the alternation-free modal µ-calculus slightly more
complex, but still relatively simple annotations suffice. In [73], Marti &
Venema present a system for µafML where sequents are of the form

ϕu11 , . . . , ϕ
u1
n

and the ui ∈ {◦, •} indicate if a formula is out of focus (◦) or in focus (•).

• A relatively prominent path-based proof system for the modal µ-calculus is
the system JS, by Jungteerapanich [54] & Stirling [100]. Its sequents have
the shape

Θ ` ϕρ1 , . . . , ϕρn

where Θ and the ρi are sequences of so-called names. The system JS more-
over features some additional rules for annotation management. These ad-
ditional rules are closely linked to the several stages which together compose
Safra’s construction for determinising ω-automata.



46 Chapter 2. Introduction to the proof theory of modal fixed point logics

2.3.7 Cyclic proofs

So far we have only seen non-well-founded proofs of an infinitary nature. Indeed,
both NW and NW′ are only complete in case we allow certain infinite branches.
In this section we will see how to obtain a so-called cyclic proof system for the
modal µ-calculus.

2.3.33. Definition. A non-well-founded derivation is called regular if it has
only finitely many subtrees.

The key property of regular proofs is that they can be finitely represented. To
see this, we need the following definition.

2.3.34. Definition. A finite tree with back edges (T, f) consists of a finite tree
T together with a partial function f from T to itself, such that (i) dom(f) consists
of leaves of T , and (ii) f(u) is an ancestor of u for every u ∈ dom(f).

An element u ∈ dom(f) is often called a repeating leaf , and f(u) is then called
its companion.

2.3.35. Definition. For P ∈ {NW,NW′}, a cyclic P-derivation is a finite tree
with back edges (π, f), where π is a finite P-derivation and for every leaf u ∈
dom(f) it holds that u and f(u) are labelled by identical sequents.

Any cyclic derivation can be unravelled into a non-well-founded derivation. Infor-
mally, this works by recursively pasting the subtree generated by some companion
at each of its leaves. In the Intermezzo following Chapter 2 we will give a formal
definition of this construction. The proof of the following proposition is postponed
to the Intermezzo as well.

2.3.36. Proposition. A non-well-founded derivation π is regular if and only if
it is the unravelling of some finite trees with back edges.

Since, as we have seen, non-well-founded derivations are not necessarily sound,
the same holds for cyclic derivations. We therefore need to impose a soundness
condition similar to the ones on the branches of NW-proofs and NW′-proofs. The
most straightforward way to do this is as follows.

2.3.37. Definition. A cyclic NW-derivation (π, f) is a cyclic NW-proof if its
unravelling is an NW-proof.

In the next section we will see that cyclic NW-proofs, or equivalently, the subset
of regular non-well-founded NW-proofs, are complete with respect to the modal
µ-calculus. A drawback of this notion of cyclic proofs is that, in order to check if
a cyclic derivation is a bona fide proof, one has to first unravel it and check the
resulting non-well-founded proof.
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For annotated proof systems, such as NW′, there is often a soundness condition
which can be defined in the terms of the paths between companions and their
repeating leaves. As a result, one only has to check the finite cyclic derivation to
see whether it is indeed a proof. All three examples of path-based proof systems
given above feature such a simple soundness condition for cyclic proofs. The same
holds for the systems we present in Chapter 3, Chapter 5, and Chapter 6.

2.3.8 The bounded model and proof properties

In this subsection we will exploit the fact that the proof-search game G ′(Γ) for
NW′ is a parity game to infer some results about NW and the modal µ-calculus.

2.3.38. Proposition. Every valid sequent has a cyclic NW-proof.

Proof:
Suppose Γ is a valid sequent. By Corollary 2.3.28, Prover has a winning strategy in
G(Γ)@Γ. Hence, by construction, Prover also has a winning strategy in the proof-
search game G ′(Γ)@(p ` Γ) of NW′, where p is any position of G ′(Γ) such that
π(p) = Γ. Since G ′(Γ) is a parity game, it follows by Theorem 2.2.10 that Prover
has a positional strategy. Since G(Γ) has only finitely many positions, it follows
from item (i) of Proposition 2.3.32 that G ′(Γ) has only finitely many positions
as well. Hence the positional winning strategy for Prover in G ′(Γ)@(p ` Γ)
corresponds to a regular NW′-proof τ ′. Indeed, positional determinacy implies
that equal positions generate the isomorphic subtrees. Dropping all automaton
states annotating the sequents in τ ′, we obtain a regular NW-proof τ . Finally, by
Proposition 2.3.36, the proof τ is the unravelling of some cyclic NW-proof of Γ.
2

2.3.39. Corollary. Every valid sequent Γ has a cyclic NW-proof whose size is
doubly exponential in |FL(Γ)|.

Proof:
The key observation is that the derivation τ in the above proof is the unravelling
of a certain small cyclic proof. Namely, we can take the cyclic proof obtained
by drawing a back edge at every first repetition in τ ′. The depth of this first
repetition is bounded by the number of distinct annotated sequents. Since of the
size of the deterministic automaton is exponential in |FL(Γ)|, and the number
of distinct (unannotated)sequents is as well, we find that the number of distinct
annotated sequents is exponential in |FL(Γ)|. Since the maximal branching is
constant, the size of τ ′ is doubly exponential in |FL(Γ)|. 2

2.3.40. Remark. The previous corollary establishes what is called the bounded
proof property . In the Intermezzo following Chapter 2, we provide an alternative
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way of proving the bounded proof property for an abstract notion of an annotated
non-well-founded proof system. Unlike the method of this chapter, our method
does not rely on game-theoretic results.

By applying the same procedure to winning strategies for Refuter, rather than
Prover, we obtain the bounded model property .

2.3.41. Proposition. Every invalid sequent Γ has a countermodel whose size is
doubly exponential in |FL(Γ)|.

Proof (sketch):
By the same reasoning as above, we can obtain a representation of a winning
strategy f for Refuter in G(Γ)@Γ as a finite tree with back edges, whose size is
bounded by a computable function of Γ. This, in turn, can be used to construct a
finite version of the canonical model Sf , where the back edges in the representation
of the refutation, become back edges in the model as well. Since both versions
of the canonical model are bisimilar, we obtain a countermodel of Γ of the same
size as the representation of the refutation. 2

2.3.42. Remark. By considering proofs and refutations as graphs rather than
finite trees with back edges, the bounds of the previous corollary and proposition
can be sharpened to become singly exponential. For more details we refer the
reader to Section 6 of [77].

2.4 Frame conditions

The goal of this thesis is to extend the theory described in the chapter so far, to
various fragments and variants of the modal µ-calculus. Moreover, we wish to do
this in a uniform way. We will mostly generate variants of the modal µ-calculus
by interpreting the language over restricted classes of frames. In this section we
briefly introduce some relevant definitions, and discuss some known results in this
field of study.

2.4.1 Preliminaries

2.4.1. Definition. A Kripke frame of type D is a pair (S, (Ra)a∈D), where S is
a set of states and for each a ∈ D, Ra ⊆ S × S is an accessibility relation.

Note that a Kripke frame is simply a Kripke model without a valuation. We
say that a formula ϕ is valid in some frame (S,R), and write (S,R) |= ϕ if
(S,R, V ), s 
 ϕ for every valuation V : P→ P(S) and state s ∈ S.
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2.4.2. Definition. A (basic modal) logic L is any set of formulas in the basic
modal language ML closed under the following axioms and rules.
Axioms.

1. A sound and complete set of axioms for classical propositional logic.
2. Normality: ¬ �⊥.
3. Additivity: �(p ∨ q)↔ ( �p ∨ �q).
4. Dual for 2: �p↔ ¬ �¬p.

Rules.
1. Modus Ponens: from ϕ→ ψ and ϕ, derive ψ.
2. Monotonicity: from ϕ→ ψ, derive �ϕ→ �ψ.
3. Uniform Substitution: from ϕ, derive ϕ[ψ/x].

The smallest basic modal logic is denoted by K. Given a logic L, we say that
(S,R) is an L-frame and write (S,R) |= L if (S,R) |= ϕ for every ϕ ∈ L.

2.4.3. Definition. A logic is finitely axiomatisable if is the smallest logic con-
taining some finite set of axioms.

Let L1(D) be the first-order language with equality and a a relation symbol Ra

for every a ∈ D. A (first-order) frame condition is simply an L1(D)-sentence. For
Θ a set of frame conditions, a Kripke frame (S, (Ra)a∈D) is said to be a Θ-frame
whenever, when regarded an L1(D)-structure, the frame (S, (Ra)a∈D) satisfies all
sentences in Θ. A Kripke model will be called a Θ-model whenever its underlying
frame is a Θ-frame.

2.4.2 A negative result

The following theorem is a reformulation of a result proven by Edith Hemaspaan-
dra. Recall that a first-order formula is universal if it consists of a quantifier-free
formula preceded by a string of universal quantifiers.

2.4.4. Theorem ([51, Theorem 3.5]). There is a class F of frames such that:

• F = {(S,R) | (S,R) |= ψ}, where ψ is a universal first-order formula;

• F = Fr(L), for L a finitely axiomatisable and canonical1 basic modal logic;

• the set {ϕ ∈ ML | F |= ϕ} is decidable;

• the set {ϕ ∈ ML∗ | F |= ϕ} is not recursively enumerable.

2.4.5. Remark. Hemaspaandra actually proves an even stronger result [51].
Namely, that the set {ϕ ∈ ML∗ | F 6|= ϕ} is Σ1

1-complete.

1This is a standard notion in modal logic and will be defined in Chapter 4.
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It follows that for certain frame conditions, such as the one witnessing Hemas-
paandra’s result, there is no hope of finding a nice proof system. Indeed, any
reasonable (that is, computable) proof system, even without the bounded proof
property, yields a method for recursively enumerating all validities by simply
enumerating all proofs.

2.4.6. Remark. There are two notable positive results in the literature. First,
Kikot, Shapirovsky & Zolin in [56] show the soundness and completeness of certain
Hilbert-style proof systems for ML∗ over several frame classes which admit the
method of filtration. In Chapter 4 we extend their technique to µcML.

Second, Baltag, Bezhanishvili & Fernández-Duque show the completeness of
(also Hilbert-style) proof systems for the modal µ-calculus interpreted over several
frame classes which are weakly transitive and define so-called subframe logics [9].
It was later shown that the modal µ-calculus collapses to its alternation-free
fragment over all of frame classes to which their result applies [81].

It is also worth mentioning here the work by French [43, 44], and his joint
work with D’Agostino, & Lenzi [29], on modal logics with bisimulation quanti-
fiers. Their results entail that the property of uniform interpolation, originally
proven for the modal µ-calculus over the class of all frames by D’Agostino and
Hollenberg [30, 31], transfers to the so-called idempotent transduction classes.
Although they do not apply their techniques to proof systems for the modal µ-
calculus, their work is one of the few examples in the literature where the modal
µ-calculus is considered in a general setting over different frame classes.

To the best of our knowledge, the literature contains no similar uniform treat-
ment using non-well-founded proof systems, apart from the research that appears
in the next chapters of this thesis.



Chapter 3

Modal logic with the master modality

3.1 Introduction

This chapter builds upon Ori Lahav’s paper [66], where hypersequent calculi
are constructed uniformly for the basic modal language over classes of frames
satisfying simple first-order conditions. Lahav first presents hypersequent calculi
for four basic frame classes: all frames, the transitive frames, the symmetric
frames, and the transitive-symmetric frames. To each simple frame condition,
a corresponding hypersequent rule is assigned. It is then shown that extending
one of the basic calculi with all rules corresponding to some set of simple frame
conditions yields a sound and complete calculus. Completeness is proven in a
uniform way, through a canonical model construction, providing an analytic proof
for any valid hypersequent. Furthermore, when the basic frame condition does
not require symmetry, this proof is cut-free.

Many modal logics cannot be straightforwardly captured by a Gentzen-style
sequent calculus. A notorious example is the modal logic S5, for which none of
the proposed sequent calculi is entirely satisfactory (see [70] for an impossibility
result). It is for this reason that Lahav uses hypersequents, which are finite sets
of ordinary sequents. This minor increase in structure allows for a significant
increase in expressive power, as illustrated by the existence of a natural cut-
free hypersequent calculus for S5.1 The literature also contains calculi with even
more structured sequents, often based on the Kripke semantics (see Chapter 4
of [52] for an overview). Examples include nested sequents, labelled sequents,
and display calculi. Unlike these other formalisms, hypersequents maintain the
subformula property in its strongest form, ensuring that there are only finitely
many hypersequents in any proof. As a consequence, decidability can be directly
inferred from soundness and completeness.

1This calculus uses a rule corresponding to the simple frame condition of universality. Whilst
universal frames characterise S5 in the unimodal language, this does not extend to the multi-
modal language.
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Our aim is to extend Lahav’s calculi to accommodate fixed point operators.
We focus on a relatively simple modal fixpoint language: multimodal logic with the
master modality. For each set of frame conditions considered by Lahav, we uni-
formly construct both an infinitary and a cyclic hypersequent calculus. Sequents
are annotated using a focus mechanism, originally due to Lange and Stirling (see
e.g. [68]). All systems are proven to be sound and complete. Just like Lahav does
for basic modal logic, we only obtain cut-free completeness if the basic frame
condition does not require symmetry. However, we need as an additional require-
ment that the other frame conditions are all what we shall call equable. Although
the equable frame conditions form a relatively small subset of the simple frame
conditions, there are infinitely many of them, including seriality, reflexivity, di-
rectedness and universality. As will be explained later, all simple frame conditions
admit filtration and therefore already PDL admits Hilbert-style proof systems over
these frame classes (cf. Section 1.2.2). Hence, over these frame classes we do not
have to fear for a negative result analogous to Theorem 2.4.4.

This chapter will not use game-theoretic methods. Instead, we will establish
soundness using an argument by infinite descent, employing a measure similar
to the signatures of [101]. More importantly, we will prove completeness by
extending Lahav’s canonical model construction. This approach allows us to use
similar arguments to show that the canonical model satisfies the necessary frame
conditions. We do not know if it is also possible to do this using game-theoretic
methods.

Since the size of the canonical model of some given hypersequent H is bounded
in the size of H, we obtain the small model property for each set of frame con-
ditions. Decidability follows as a corollary. A natural question is whether there
is also a bound on the size of proofs. This will be addressed in the intermezzo
following the present chapter.

3.2 Simple and equable frame conditions

In this section we will introduce the frame conditions treated in this chapter. All
of the material is from [66], unless specified otherwise.

Recall from Section 2.4 that a first-order frame condition is a sentence in
the language L1(D) of first-order logic with equality and relation symbols Ra

for each a ∈ D. In this chapter we will restrict attention to unimodal frame
conditions, where there is only one relation symbol R. We will nevertheless
impose these unimodal frame conditions on multimodal frames. That is, for Θ
a set of such frame conditions, a Kripke frame (S, (Ra)a∈D) will be called a Θ-
frame whenever, when regarded an L1-structure, each frame (S,Ra) with a ∈ D
satisfies all sentences in Θ. A Kripke model will be called a Θ-model whenever
its underlying frame is a Θ-frame.

3.2.1. Remark. Note that we assume that each relation Ra in a Θ-model sat-
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isfies the same frame conditions. This is only for notational simplicity and our
results can easily be extended to models in which different frame conditions are
imposed on different accessibility relations. A further generalisation is to allow
mixed frame conditions, where a single frame conditions may involve multiple
different relation symbols. We leave it to future work to investigate whether our
results extend to such frame conditions as well.

As mentioned in the introduction, we will consider sets of frame conditions
comprised of a single basic frame condition, extended by a set of simple frame
conditions. The four basic frame conditions are given in the following table.

name L1-sentence frame class
K > all frames

K4 ∀x∀y∀z(xRy ∧ yRz → xRz) transitive frames
B ∀x∀y(xRy → yRx) symmetric frames

B4 B ∧ K4 symmetric and transitive frames

The simple frame conditions are defined as follows.

3.2.2. Definition. A frame condition is called n-simple whenever it is of the
form ∀s1 · · · sn∃uϕ, where ϕ is built up using the connectives ∨ and ∧ from atomic
formulas of the form siRu and of the form si = u, for any i with 1 ≤ i ≤ n.

We will call a frame condition simple if it is n-simple for some n ∈ ω. It turns
out that the simple frame conditions have a convenient abstract representation.

3.2.3. Definition. Given n ∈ ω, an abstract n-simple frame condition is a finite
set C consisting of pairs (CR, C=) of subsets CR, C= ⊆ {1, . . . , n}.

3.2.4. Definition. The interpretation of some abstract n-simple frame condi-
tion C is the following simple first-order formula:

∀s1 · · · sn∃u
∨

(CR,C=)∈C

(
∧
i∈CR

siRu ∧
∧
j∈C=

sj = u).

Using disjunctive normal forms, the following proposition is immediate.

3.2.5. Proposition. Any n-simple frame condition is equivalent to the inter-
pretation of some abstract n-simple frame condition.

3.2.6. Example. The following table shows some examples of simple frame con-
ditions and their abstract representations. The table appears as Table I in [66].
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Name L1-formula Abstract representation
Seriality ∀s1∃u(s1Ru) {({1}, ∅)}

Reflexivity ∀s1∃u(s1Ru ∧ s1 = u) {({1}, {1})}
Directedness ∀s1s2∃u(s1Ru ∧ s2Ru) {({1, 2}, ∅)}

Degenerateness ∀s1s2∃u(s1 = u ∧ s2 = u) {(∅, {1, 2})}
Universality ∀s1s2∃u(s1Ru ∧ s2 = u) {({1}, {2})}

Linearity ∀s1s2∃u((s1Ru ∧ s2 = u) ∨ (s2Ru ∧ s1 = u)) {({1}, {2}), ({2}, {1})}
Bounded Cardinality ∀s1 · · · sn∃u(

∨
1≤i<j≤n(si = u ∧ sj = u)) {(∅, {i, j}) : 1 ≤ i < j ≤ n}

Bounded Top Width ∀s1 · · · sn∃u(
∨

1≤i<j≤n(siRu ∧ sjRu)) {({i, j}, ∅) : 1 ≤ i < j ≤ n}
Bounded Acyclic Subgraph ∀s1 · · · sn∃u(

∨
1≤i<j≤n(siRu ∧ sj = u)) {({i}, {j}) : 1 ≤ i < j ≤ n}

Bounded Width ∀s1 · · · sn∃u(
∨

1≤i,j≤n,i6=j(siRu ∧ sj = u)) {({i}, {j}) : 1 ≤ i, j ≤ n; i 6= j}

For the sake of readability we will blur the distinction between an abstract frame
condition C and its interpretation. In particular, for C a set of abstract simple
frame conditions and Θ the set of their interpretations, we will often use the terms
C-model and C-frame instead of Θ-model and Θ-frame.

3.2.7. Remark. Frame classes definable by a simple (first-order) frame condi-
tion are not necessarily also modally definable. For instance, the class of frames
satisfying the above condition of linearity is not closed under disjoint unions.

The following subsets of simple frame conditions will play an important role in
this chapter. They are precisely the frame conditions for which we will be able to
prove cut-free completeness (provided the basic frame conditions does not require
symmetry). As such, the following definition is novel and does not already appear
in [66].

3.2.8. Definition. An abstract n-simple frame condition C is called:

• equality-free if C= = ∅ for all (CR, C=) ∈ C;

• disjunction-free if C is a singleton;

• equable if for some U ⊆ {1, . . . , n}, we have U = C= for all (CR, C=) ∈ C.

Clearly if C is equality-free or disjunction-free, it is equable. It turns out that
the converse is also true (up to logical equivalence). The verification of this fact
is left to the reader. Some examples of equable frame conditions are reflexivity
and k-bounded top width, which is given by C = {〈{i, j}, ∅〉 : 1 ≤ i < j ≤ k} for
any k ≥ 2. A non-example is given by the simple frame condition of linearity.

3.2.9. Remark. Note that each simple frame condition is a positive first-order
formula. Therefore, all simple frame conditions are preserved by surjective ho-
momorphisms. It follows that basic modal logic admits filtration over all simple
frame conditions (see e.g. [26, Theorem 5.28]). In Chapter 3 we will see that the
same holds for ML∗. As a consequence, for none of the simple frame conditions a
negative result such as given in Section 2.4.2 holds.
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Given a basic frame condition X ∈ {K,K4,B,B4} and a set C of simple frame
conditions, we will use the term CX-model to refer to a model based on a frame
satisfying both C and X.

3.2.10. Example. Most of the logics for common knowledge discussed by Halpern
and Moses in [50] correspond to ML∗ interpreted over some class of CX-frames.
More precisely, all of the logics KC

n , TC
n , S4Cn and S5Cn are captured by our frame-

work, and only the logic KD45Cn is not.

3.3 Infinitary and cyclic hypersequent calculi

In this section we introduce families of infinitary and cyclic hypersequent calculi
for ML∗ interpreted over classes of CX-models. As mentioned in the introduction,
our calculi will be extensions of the hypersequent calculi from [66] for basic modal
logic. The extension will be twofold. First, we extend the system to cover mul-
timodal logic. Second, we include the master modality [∗]. This involves adding
left and right rules for [∗], as well as allowing infinite branches. We also annotate
formulas using a simple focus mechanism and manage these annotations both
within the rules and by adding two structural rules, fc and fm. The annotations
will facilitate the use of a path-based soundness condition.

3.3.1 Hypersequents and derivations

An annotated formula is a formula ϕ, together with an annotation indicating
whether ϕ is in focus or out of focus. If ϕ is in focus, it is denoted by ϕ• and, if
not, by ϕ◦. We use u, v, w as variables ranging over {◦, •}.

3.3.1. Definition. A sequent is an ordered pair (Γ,∆) of finite sets of anno-
tated formulas, written as Γ ⇒ ∆. A hypersequent is a finite set {σ0, . . . , σn} of
sequents, written as σ0 | · · · | σn.

The idea for considering hypersequents for modal logic, is that one can think of
the different sequents within a hypersequent as different states of a model. By
doing so, it becomes possible to reason about multiple states simultaneously. In
contrast, mere sequents only facilitate reasoning about a single state at a time.

Because the language considered in this chapter is of very restricted expres-
sivity compared to the whole modal µ-calculus, it will suffice to only consider
hypersequents where the focus annotations are distributed in a certain specific
way. We first define the following syntactic abbreviations, which will also be of
use later in this chapter.

[D]ϕ :=
∧
a∈D

[a]ϕ, [x]nϕ := [x] · · · [x]︸ ︷︷ ︸
n-times

ϕ (for x ∈ D or x = D, and n ≥ 0)
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Let us use the term ML∗-trace-formula to refer to a formula of the form [a]i[∗]ϕ,
where a ∈ D and i ∈ {0, 1}. More explicitly, an ML∗-trace-formula is any formula
of the form [∗]ϕ or of the form [a][∗]ϕ for some a ∈ D.

3.3.2. Definition. An ML∗-hypersequent is a hypersequent H in which at most
one formula is in focus, in which case this formula is an ML∗-trace-formula occur-
ring at the right-hand side of some sequent Γ⇒ ∆ of H.

We adopt the convention of using shorthand notation for singleton formulas and
sequents. For instance, we take Γ, ϕu ⇒ ψv,∆ to mean Γ ∪ {ϕu} ⇒ {ψv} ∪ ∆,
and the hypersequent H ∪ {σ} may be written as H | σ.

3.3.3. Example. In the table below, the two hypersequents on the left are ML∗-
hypersequents, while those on the right are not.

[a]q◦ ⇒ [a][∗]q◦ | p ∧ q◦ ⇒ [∗]p•, p◦, [a]q◦ ⇒ [a][∗]q• | p ∧ q◦ ⇒ [∗]p•, p◦,
[a]q◦ ⇒ [a][∗]q◦ | p ∧ q◦ ⇒ [∗]p◦, p◦, [a]q◦ ⇒ [a][∗]q◦ | p ∧ q◦ ⇒ [∗]p◦, p•,

For the rest of this chapter we will simply use the term hypersequents to refer to
ML∗-hypersequents.

We define the following operations on sets of annotated formulas, respectively
taking all formulas out of focus, and stripping the focus of formulas entirely.

Γ◦ := {ϕ◦ : ϕu ∈ Γ for some u ∈ {◦, •}},
Γ− := {ϕ : ϕu ∈ Γ for some u ∈ {◦, •}},

We extend these operations to sequents componentwise and to hypersequents
sequent-wise. More precisely, we define:

(Γ⇒ ∆)◦ := Γ◦ ⇒ ∆◦,

H◦ := {σ◦ | σ ∈ H},

and likewise for σ− and H−.
The interpretation of (hyper)sequents in Kripke models is defined as follows.

3.3.4. Definition. Let S be a Kripke model. Then:

• A sequent Γ⇒ ∆ is said to be satisfied at a state s of S whenever:

If s 
 ϕ for all ϕ ∈ Γ−, then s 
 ψ for some ψ ∈ ∆−.

• A sequent is valid in S if it is satisfied at every state of S.

• A hypersequent H is valid in S if there is a σ ∈ H which is valid in S.

A hypersequent valid in all CX-models will be called CX-valid.
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3.3.5. Remark. Note that the focus annotations play no role in Definition 3.3.4.
They will become important later when defining the soundness conditions for non-
well-founded derivations.

3.3.6. Example. The hypersequent ⇒ p, p → ⊥ is valid in all models, but the
hypersequent ⇒ p | ⇒ p→ ⊥ is not.

For Γ a set of annotated formulas and a an action from D, we define the following
two operations.

[a]Γ := {[a]ϕu : ϕu ∈ Γ} [a]−1Γ := {ϕu : [a]ϕu ∈ Γ}.

Consequently, we have [a][a]−1Γ = {[a]ϕu : [a]ϕu ∈ Γ}.
We are now ready to define our four basic hypersequent calculi. They are

obtained from the four calculi in [66] by making the following adaptations:

• The modal rules are parametrised in an action a ∈ D in order to cover
multimodal logic.

• The rules [∗]L and [∗]R are added.

• Annotation-management is added to all the rules.

• The structural rules fc of focus change, and fm of focus merge, are added.

Before we give the full definition, we will briefly give some intuition behind the
modal rules of Figure 3.2. When read upside down, the idea is that they jump
from a state to one of its a-successors. To see this, suppose that a state s of some
model S falsifies [a]ϕ (note that [a]ϕu appears in the conclusion of every modal
rule). Then s has an a-successor t that falsifies ϕ. But then for every set Γ such
that s satisfies everything in [a]Γ, it holds that t satisfies everything in Γ. This
explains the modal rule [a]K.

Now suppose that S is transitive. Then t will even satisfy everything in [a]Γ,
explaining the premiss of the rule [a]K4. If S is symmetric, then we have that
tRas. It follows that t falsifies everything in [a]∆ for every set of formulas ∆ in
which everything is falsified by s. Finally, if S is both transitive and symmetric,
we can say all of the above, and even a little bit more. Indeed, if [a]ψ is some
formula falsified by s, we claim that t falsifies [a]ψ. To see this, suppose that
w is some a-successor of s falsifying ψ. By symmetry we have tRas, whence by
transitivity tRaw, as required. This shows where the [a][a]−1∆◦ comes from in
the premiss of [a]B4.

Note that in the rules B and B4 all formulas from ∆ are taken out of fo-
cus. The reason is that keeping them in focus would make proving soundness
more challenging, even though it is not necessary for completeness. We leave the
following question for future work.
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3.3.7. Question. Are the calculi HB∗ and HB4∗ still sound when one keeps in
focus all the formulas in ∆ in the conclusion of the modal rule?

We are now ready to define four basic hypersequent calculi, one for each basic
frame condition.

3.3.8. Definition. The hypersequent calculus HX∗ consists of all rules of Figure
3.1, together with the modal rule [a]X from Figure 3.2.

Observe that all formulas on the left-hand side of a sequent in some rule of HX∗

are out of focus. The reason for this is that all hypersequents are assumed to be
ML∗-hypersequents. Note, moreover, that in the systems HX∗ there is no interac-
tion between the different sequents within a hypersequent. In other words, the
basic calculi HX∗ for X ∈ {K,K4,B,B4} do not yet use the additional expressiv-
ity offered by the hypersequent framework and could be formulated as ordinary
sequent calculi.

Following [66], we augment HX∗ with rules corresponding to simple frame
conditions. Figure 3.3 depicts these rules in their most general forms. For each
simple frame condition C = (CR, C=), and each basic frame condition X, we have
a rule rXC . We discuss some examples, initially assuming that X = K.

Consider the condition D = {({1, 2}, ∅)} of directedness. Its corresponding
rule is:

H | Γ′1,Γ′2 ⇒rKD H | [a]Γ′1,Γ1 ⇒ ∆1,∆
′
1 | [a]Γ′2,Γ2 ⇒ ∆2,∆

′
2

Suppose that the conclusion is invalid in some directed model S. Then every
sequent in the conclusion is refuted by some state of S. Hence in particular, for
each i ∈ {1, 2}, there is a state si in S such that si 
 [a]Γ′i. By directedness, there
is a state u such that siRau for each i. Hence u 
 Γ′i for each i, showing that the
premiss is invalid as well.

For another example, consider the condition L = {({1}, {2}), ({2}, {1})} of
linearity. This gives the rule

H | Γ′1,Γ2 ⇒ ∆2 H | Γ′2,Γ1 ⇒ ∆1
rKL H | [a]Γ′1,Γ1 ⇒ ∆1,∆

′
1 | [a]Γ′2,Γ2 ⇒ ∆2,∆

′
2

Let us again suppose that the conclusion is invalid, but now in some linear model.
Then there are states s1 and s2 such that si 6
 [a]Γ′i,Γi ⇒ ∆i, where i ∈ {1, 2}.
Suppose, without loss of generality, that s1Ras2. Then s2 6
 Γ′1,Γ2 ⇒ ∆2, again
showing that one of the premisses is invalid.

In the above two examples we have shown that the rules rKD and rKL are sound.
We will see later that the same ideas generalise to show that all rules rXC are
sound. Observe that the difference between the rules rKC and rXC closely resembles
the difference between [a]K and [a]X. The intuition for completeness will become
more clear once we have introduced our canonical models in Section 3.5.

We are finally ready to define the calculi that will be the main topic of study
in this chapter.
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id
ϕ◦ ⇒ ϕv

⊥ ⊥◦ ⇒

H | Γ⇒ ∆
iwL

H | Γ, ϕ◦ ⇒ ∆

H | Γ⇒ ∆
iwR

H | Γ⇒ ϕu,∆

Hew
H | Γ⇒ ∆

H | Γ, ψ◦ ⇒ ∆ H | Γ⇒ ϕ◦,∆→L
H | Γ, ϕ→ ψ◦ ⇒ ∆

H | Γ, ϕ◦ ⇒ ψ◦,∆→R
H | Γ⇒ ϕ→ ψ◦,∆

H | Γ, {ϕ◦, [a][∗]ϕ◦ : a ∈ D} ⇒ ∆
[∗]L H | Γ, [∗]ϕ◦ ⇒ ∆

H | Γ⇒ ϕ◦,∆ {H | Γ⇒ [a][∗]ϕu,∆ : a ∈ D}
[∗]R H | Γ⇒ [∗]ϕu,∆

H | Γ⇒ [∗]ϕv,∆
fc

H | Γ⇒ [∗]ϕu,∆
H | Γ⇒ ϕ•, ϕ◦,∆

fm
H | Γ⇒ ϕ•,∆

H | Γ1, ϕ
◦ ⇒ ∆1 H | Γ2 ⇒ ϕ◦,∆2

cut
H | Γ1,Γ2 ⇒ ∆1,∆2

Figure 3.1: The local rules.

H | Γ⇒ ϕu
[a]K

H | [a]Γ⇒ [a]ϕu
H | Γ, [a]Γ⇒ ϕu

[a]K4
H | [a]Γ⇒ [a]ϕu

H | Γ⇒ ϕu, [a]∆◦
[a]B

H | [a]Γ⇒ [a]ϕu,∆

H | Γ, [a]Γ⇒ ϕu, [a]∆◦, [a][a]−1∆◦
[a]B4

H | [a]Γ⇒ [a]ϕu,∆

Figure 3.2: The modal rules



60 Chapter 3. Modal logic with the master modality

{H | σX
(CR,C=) : (CR, C=) ∈ C}

rXC H | [a]Γ′1,Γ1 ⇒ ∆1,∆
′
1 | · · · | [a]Γ′n,Γn ⇒ ∆n,∆

′
n

where

σK
(I,J) =

⋃
i∈I

Γ′i,
⋃
j∈J

Γj ⇒
⋃
j∈J

∆j

σK4
(I,J) =

⋃
i∈I

Γ′i, [a]
⋃
i∈I

Γ′i,
⋃
j∈J

Γj ⇒
⋃
j∈J

∆j

σB
(I,J) =

⋃
i∈I

Γ′i,
⋃
j∈J

Γj ⇒
⋃
j∈J

∆j, [a]
⋃
i∈I

(∆′i)
◦

σB4
(I,J) =

⋃
i∈I

Γ′i, [a]
⋃
i∈I

Γ′i,
⋃
j∈J

Γj ⇒
⋃
j∈J

∆j, [a]
⋃
i∈I

(∆′i)
◦, [a][a]−1

⋃
i∈I

(∆′i)
◦

Figure 3.3: The frame condition rules for some n-simple frame condition C.

3.3.9. Definition. Given a set C of simple frame conditions, we let HX∗ + RC
be the system HX∗, augmented with the rules rXC for each C ∈ C.

It will be convenient to have a notion of active and inactive sequents and
annotated formulas in some rule application of HX∗ + RC. First, we will call
the sequents outside of the context H active. In case of the local rules, the
activeactive!formula annotated formulas of an active sequent are those that are
mentioned individually, i.e. not as part of some set Γ or ∆ (or Γi or ∆i in the
case of cut). In the case of the other rules, we call all annotated formulas of an
active sequent active.

All other formulas and sequents are called inactive. Note that due to the
fact that (hyper)sequents are based on sets rather than multisets, the context H
might also contain active sequents. In the same way, the contexts Γ and ∆ of
an active sequent in a local rule might contain active annotated formulas. In the
case of rXC , the i-th active sequent in the conclusion is said to have index i and the
premiss corresponding to (CR, C=) ∈ C is said to have index (CR, C=). Here the
fact that hypersequents are sets means that a single sequent might have multiple
indices.

The following facts about rule applications of HX∗+ RC will be useful later on.

3.3.10. Fact. For any rule applications of HX∗ + RC:

• If some annotated formula is active, it belongs to an active sequent.
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• In applications of →L, →R, [∗]R, all conclusions and all premisses have
precisely one active annotated formula.

• All premisses and conclusions of local and modal rules have precisely one
active sequent, except for the premisses of id, ⊥, and ew, which have none.

3.3.11. Definition. An HX∗ + RC-derivation is a (possibly infinite) tree gener-
ated from the rules of HX∗ + RC. Its root is also called its conclusion.

A derivation of which every leaf is an axiom is called closed. Other derivations
are called open. For any HX∗ + RC-derivation π with root H, we say that π is a
HX∗ + RC-derivation of H.

Just like in Chapter 2, we would like the calculi HX∗+RC to satisfy the closure
property . We explicitly define the notion of closure for ML∗.

3.3.12. Definition. The (Fischer-Ladner) closure of a set Φ of formulas is the
least Ψ ⊇ Φ such that:

(i) If ϕ→ ψ ∈ Ψ, then ϕ, ψ ∈ Ψ;

(ii) If [a]ϕ ∈ Ψ, then ϕ ∈ Ψ;

(iii) If [∗]ϕ ∈ Ψ, then ϕ ∈ Ψ, and [a][∗]ϕ ∈ Ψ for every a ∈ D.

We write FL(Φ) for the closure of Φ. It is easy to see that FL is a closure operator
and that the closure of any finite set of formulas is finite. A set Φ such that
FL(Φ) = Φ will be called closed. The closure FL(H) of a hypersequent H is
defined as the closure of the set all formulas occurring in H, i.e. all formulas ϕ
such that ϕu occurs in some sequent σ ∈ H for some u ∈ {◦, •}.
3.3.13. Definition. An HX∗ + RC-derivation π is said to be analytic if every
formula occurring in π belongs to the closure of its conclusion.

The following lemma can be verified by direct inspection of the rules.

3.3.14. Lemma. For Y ∈ {K,K4}, any cut-free HY∗ + RC-derivation is analytic.

3.3.2 Infinitary proofs

It is not hard to show that HX∗ + RC-derivations need not be sound. In fact,
already when X = K, the set C is empty, and D = {a} is a singleton, infinite
derivations exist of invalid (singleton) hypersequents, as demonstrated by the
following example.

id ⊥◦ ⇒iwL ⊥◦, [a][∗](p→ ⊥)◦ ⇒

...
[∗]([a]p→ ⊥)◦ ⇒

iwR
[∗]([a]p→ ⊥)◦ ⇒ p◦

[a]K
[a][∗]([a]p→ ⊥)◦ ⇒ [a]p◦→L

[a]p→ ⊥◦, [a][∗](p→ ⊥)◦ ⇒
[∗]L

[∗]([a]p→ ⊥)◦ ⇒
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We therefore need a way to distinguish valid from invalid derivations. To this
end, we will introduce a path-based soundness condition (cf. Section 2.3.6). We
first need to following auxiliary definition. Note that Fact 3.3.10 allows use to
speak of the active formula.

3.3.15. Definition. Consider an instance
H1 · · · Hn[∗]R H

of [∗]R. A conclusion-premiss pair (H,Hk) is said to be a focused unfolding if the
active formula is in focus both in H and Hk.

3.3.16. Example. In the following rule application each premiss, except for the
leftmost one, forms a focused unfolding with the conclusion.

p◦ ⇒ q◦ {p◦ ⇒ q◦ | p◦ ⇒ [a][∗]q• : a ∈ D}
[∗]R p◦ ⇒ q◦ | p◦ ⇒ [∗]q•

Also note that the sequent of the leftmost premiss is an example of one that is
at the same time both active and inactive.

We are now ready to define which derivations will be called proofs.

3.3.17. Definition. A closed HX∗+ RC-derivation is an HX∗+ RC-proof if every
infinite branch β has a good final segment γ. That is, the rule fc is applied
nowhere on γ and for infinitely many n it holds that (γ(n), γ(n+ 1)) is a focused
unfolding.

The following proposition is often explicitly included in the path-based soundness
condition for a proof system with focus annotations. This not needed in our case,
as it is implied by our condition.

3.3.18. Proposition. Suppose some branch β of an HX∗+RC-proof π has a good
final segment γ. Then every hypersequent on γ has a formula in focus.

Proof:
Suppose towards a contradiction that some γ(n) does not have a formula in focus.
Since the rule fc is not applied in γ, direct inspection of the rules yields that γ(m)
does not have a formula in focus for all m ≥ n. But this contradicts the fact that
a focused unfolding happens infinitely often on γ. 2

3.3.19. Remark. It is not hard to see that every infinite branch of an HX∗ +
RC-proof in fact contains a good trail. Indeed, if in some conclusion-premiss
pair both hypersequents have a formula in focus, direct inspection of the rules
shows that the focused formula in the premiss is a direct ancestor of that in the
conclusion (analogous to Definition 2.3.9). Hence, the formulas in focus on some
final segment of a branch induce a trail, which is ensured to be a ν-trail by the
requirement that a focused unfolding happens infinitely often. This fact will be
exploited in the soundness proof of Section 3.4.
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We close this section by introducing some notation that will improve the
readability of the rest of this chapter.

3.3.20. Definition. Let π be an HX∗+RC-derivation for some X ∈ {K,K4,B,B4}
and set C of simple frame conditions. We say that:

• π is a CX-proof if π is an HX∗ + RC-proof.

• π is a CXcf-proof if π is an HX∗+RC-proof containing no applications of cut.

• π is a CXan-proof if π is an analytic HX∗ + RC-proof.

The notions of CX-provability, CXcf-provability, and CXan-provability of a hyper-
sequent H are defined analogously.

We sometimes drop the CX-, CXcf-, or CXan- from notions concerning provability,
whenever it is clear from the context which is meant.

3.3.21. Example. Below we give a few examples of non-well-founded proofs.
For readability we assume that D = {a}, i.e. that there is only a single action.
It is not hard to see how to generalise this to a larger set of actions. Also for the
sake of readability, we drop the annotation ◦ from the formulas which are not in
focus.

The following is a Kcf-proof of the induction axiom.

id p⇒ p
iwL

p, [∗](p→ [a]p)⇒ p

...
p, [∗](p→ [a]p)⇒ [∗]p•

[a]K
[a]p, [a][∗](p→ [a]p)⇒ [a][∗]p•

iwL
p, [a]p, [a][∗](p→ [a]p)⇒ [a][∗]p•

idp⇒ p
iwR

p⇒ p, [a][∗]p•
iwL

p, [a][∗](p→ [a]p)⇒ p, [a][∗]p• →L
p, p→ [a]p, [a][∗](p→ [a]p)⇒ [a][∗]p•

[∗]L
p, [∗](p→ [a]p)⇒ [a][∗]p•

[∗]R
p, [∗](p→ [a]p)⇒ [∗]p•

Let U = {({1}, {2})}, i.e. U is the equable frame condition of universality. The
following is an UKcf-proof of the fact that, on universal frames, the modalities [∗]
and [a] amount to the same thing.

id p⇒ p
rKU [a]p⇒ [∗]p | ⇒ p

...
[a]p⇒ [∗]p | ⇒ [∗]p•

[a]K
[a]p⇒ [∗]p | ⇒ [a][∗]p•

[∗]R
[a]p⇒ [∗]p | ⇒ [∗]p•

fc
[a]p⇒ [∗]p | ⇒ [∗]p

iwL
[a]p⇒ [∗]p

The rule fc is often needed when there are multiple repeating leaves. For an
example, let D′ = {(∅, {1, 2})}, i.e. D′ is degenerateness. The following is a proof
that in such models either [∗]p or [∗]¬p is valid.
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id p⇒ p
iwR p⇒ p,⊥→R ⇒ p, p→ ⊥

rKD′ ⇒ p | ⇒ p→ ⊥

...
⇒ p | ⇒ [∗](p→ ⊥)•

[a]K⇒ p | ⇒ [a][∗](p→ ⊥)•
[∗]R ⇒ p | ⇒ [∗](p→ ⊥)•

fc ⇒ p | ⇒ [∗](p→ ⊥)

...
⇒ [∗]p• | ⇒ [∗](p→ ⊥)

[a]K⇒ [a][∗]p• | ⇒ [∗](p→ ⊥)
[∗]R ⇒ [∗]p• | ⇒ [∗](p→ ⊥)

In the examples above, the vertical dots indicate that the proof continues as it did
when the same hypersequent appeared lower in the proof tree. In the following
section we will make this presentation formal, by introducing cyclic proofs.

The following lemma shows that, as with validity, the focus annotations do
not matter for the provability of some hypersequent H. Its proof is immediate
by the presence of the rule fc.

3.3.22. Lemma. For every hypersequent H it holds that H is provable iff H◦ is.

3.3.3 Cyclic proofs

In this section we will define cyclic CX-proofs and show that they induce the
same notion of provability as the (infinitary) CX-proofs of the previous section.
Aside from facilitating a path-based soundness condition on infinite branches,
annotations also make it easier to define cyclic proofs. Recall that finite trees
with back edges were defined in Definition 2.3.34.

3.3.23. Definition. A cyclic CX-derivation is a finite tree with back edges (π, f)
such that π is a CX-derivation, dom(f) consists only of leaves which are not
axioms, and the hypersequent of each node l ∈ dom(f) is the same as that of the
node f(l).

Recall that a node l ∈ dom(f) is said to be a repeating leaf. The node f(l) is its
companion. Note that distinct repeating leaves may have the same companion. A
cyclic derivation (π, f) is called closed if every non-axiom leaf belongs to dom(f)
and open otherwise.

3.3.24. Definition. A cyclic CX-proof is a closed cyclic CX-derivation such that
the path [f(l), l] between each repeating leaf and its companion (inclusive) is good.
That is, on this path the rule fc is not applied, and at least one focused unfolding
happens.

3.3.25. Remark. A key feature of cyclic CX-proofs is that the soundness con-
dition can be verified by only checking the paths between repeating leaves and
their companions. This is possible by virtue of the focus annotations.

A naive approach, without focus annotations, would be to merely demand
the existence of a good trace on each path [f(l), l] where l is a repeating leaf.
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This, however, is not sound. To get an idea for why this is the case, suppose,
for instance, that there are two distinct repeating leaves l1 and l2 such that
f(l1) = f(l2). Then it might be possible that the paths [f(l1), l1] and [f(l2), l2]
each contain a good trace, but that their concatenation does not.

Another approach would simply call a cyclic derivation a cyclic proof whenever
its unravelling is a proof. This condition is clearly sound, but more laborious to
verify.

3.3.26. Example. It is not hard to see that all proofs in Example 3.3.21 can be
turned into cyclic proofs by assigning the appropriate back edges.

We obtain a proposition similar to Proposition 3.3.18.

3.3.27. Proposition. Let l be a repeating leaf of some cyclic proof (π, f). Then
every hypersequent between l and its companion f(l) has a formula in focus.

Proof:
Let v be a node on the path [f(l), l] such that v is the conclusion of the focused
unfolding between f(l) and l. Since v has a formula in focus and fc is not applied
between f(l) and v, it follows that f(l) must have a formula in focus. But then l
has a formula in focus, and thus so must the whole path. 2

The next two propositions show that exactly the same hypersequents are
provable by analytic cyclic proofs and by analytic infinitary proofs. The proofs of
these propositions are postponed to the Intermezzo following the present chapter,
where they will be proven in a more general setting.

3.3.28. Proposition. For every CXan-proof π there is a cyclic CXan-proof (π′, f)
with the same conclusion.

Proof:
This is a special case of Proposition I.2.12. 2

The converse also holds, i.e. each cyclic proof induces a proof. In fact, this
proof can be obtained by unravelling.

3.3.29. Proposition. The unravelling of a cyclic CX-proof is itself a CX-proof.

Proof:
This is a special case of Proposition I.2.22. 2

Throughout the rest of this chapter we shall work only with infinitary proofs,
as they are more convenient for proving soundness and completeness. On the
other hand, the advantage of cyclic proofs is that they are finite objects. This
makes them more suitable for computational manipulations, such as the transla-
tion into Hilbert-style proofs, and extracting interpolants from proofs.



66 Chapter 3. Modal logic with the master modality

3.4 Soundness

This section is devoted to proving the following soundness theorem.

3.4.1. Theorem. Every CX-provable hypersequent is CX-valid.

Our proof will go by contraposition and infinite descent. More precisely, assuming
that some hypersequent is invalid, witnessed by a countermodel S, we will suppose
towards a contradiction that it nevertheless has a proof π. By the soundness of
each individual rule (which we shall establish shortly), it then follows that π must
have an infinite branch. We will then reach our contradiction by showing that
this leads to the infinite decrease of some well-founded measure.

This measure, which can be seen as a very special case of the notion of sig-
nature in [101], is provided by the following definition. Recall the notion of
ML∗-trace-formula that was defined directly before Definition 3.3.2.

3.4.2. Definition. Let ϕ = [a]i[∗]ψ be an ML∗-trace-formula formula and let S
be a Kripke model. If s is a state of S such that S, s 6
 ϕ, we define the signature
of ϕ at s as:

sigs(ϕ) := min{n ∈ ω : S, s 6
 [a]i[D]nψ}.

Note that, when it is defined, the signature of [∗]ψ at s is precisely the length of
the shortest path from s to a state t refuting ψ.

3.4.3. Definition. Let H be a hypersequent and let S = (S,R, V ) be a Kripke
model. A countermodel state assignment (cmsa) of H in S is a function α : H → S
assigning to each sequent σ of H a state α(σ) of S in which σ is not satisfied.

The notion of a cmsa allows us to express the soundness of a rule in the following
manner: a rule r is sound, whenever the existence of a cmsa for the conclusion of
an application of r implies the existence of a cmsa for one of its premisses.

We first show the soundness of the frame condition rules, proving a slightly
stronger statement that we will later use to obtain an infinitely decreasing se-
quence of signatures. Note that in the rule application depicted below, each
sequent σi refers to the i-th active sequent in the conclusion, and each sequent
σ(CR,C=) is the single active sequent of the premiss with index (CR, C=) ∈ C.

3.4.4. Lemma. Let X ∈ {K,K4,B,B4} and let C be an n-simple frame condition.
Then the rule rXC is sound on all CX-frames. In fact, given a rule application

{H | σ(CR,C=) : (CR, C=) ∈ C}
rXC H | σ1 | · · · | σn

if α is a cmsa for the conclusion in some CX-model S, then there is some
(CR, C=) ∈ C, for which there is a cmsa α′ of H | σ(CR,C=) in S such that α
and α′ agree on H \ σ(CR,C=) and moreover α′(σ(CR,C=)) = α(σj) for each j ∈ C=.
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Proof:
Suppose that α is a cmsa for the conclusion in some CX-model S. Since S is a
C-model, it has a state s such that for some (CR, C=) ∈ C it holds that α(σi)Ras
for each i ∈ CR, and α(σj) = s for each j ∈ C=. We define the following function
α′ on the premiss H | σ(CR,C=):

α′(σ) :=

{
s if σ = σ(CR,C=),

α(σ) otherwise.

We claim that α′ is a cmsa. It clearly suffices to show that S does not satisfy
σ(CR,C=) at s. We treat the four options for X one-by-one. Note that the form of
the rule rXC dictates that each σi is of the form [a]Γ′i,Γi ⇒ ∆i,∆

′
i.

(K) In this case σ(CR,C=) is of the form:⋃
i∈CR

Γ′i,
⋃
j∈C=

Γj ⇒
⋃
j∈C=

∆j.

Since for each i ∈ CR, we have that α(σi) 
 [a]Γ′i, it follows s 
 Γ′i.
Moreover, for each j ∈ C=, we have s = α(σj) 6
 σj. It follows that
s 6
 σ(CR,C=), as required.

(K4) We have that σ(CR,C=) is of the following form.⋃
i∈CR

Γ′i, [a]
⋃
i∈CR

Γ′i,
⋃
j∈C=

Γj ⇒
⋃
j∈C=

∆j.

Note that it suffices to show that s 
 [a]
⋃
i∈CR

Γ′i, as the rest of σ(CR,C=) is
already covered by the previous case. To that end, suppose that ϕ belongs
to Γ′i for some i ∈ CR. For each t such that sRat, we have, by transitivity,
that α(σi)Rat. Thus, since α(σi) 
 [a]Γ′i, it follows that t 
 ϕ, as required.

(B) When X = B, we have that σ(CR,C=) is of the form:⋃
i∈CR

Γ′i,
⋃
j∈C=

Γj ⇒
⋃
j∈C=

∆j, [a]
⋃
i∈CR

(∆′i)
◦.

Now, it suffices to show that s falsifies everything in [a]
⋃
i∈CR

(∆′i)
◦, as the

rest of σ(CR,C=) is again covered by the case where X = K. So suppose that
ϕu ∈ ∆′i for some i ∈ CR. Then α(σi) 6
 ϕ. But since S is symmetric and
α(σi)Ras, we have sRaα(σi), whence s 6
 [a]ϕ.

(B4) For this final case, we have that σ(CR,C=) is of the form⋃
i∈CR

Γ′i, [a]
⋃
i∈CR

Γ′i,
⋃
j∈C=

Γj ⇒
⋃
j∈C=

∆j, [a]
⋃
i∈CR

(∆′i)
◦, [a][a]−1

⋃
i∈CR

(∆′i)
◦
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Every part of σ(CR,C=), except for [a][a]−1
⋃
i∈CR

(∆′i)
◦, is already covered by

the cases (K4) and (B). So suppose that [a]ϕ◦ ∈ ∆′i for some i ∈ CR. Then
α(σi) 6
 [a]ϕ, so there is some state t in S such that α(σi)Rat and t 6
 ϕ.
Since by symmetry sRaα(σi), we have by transitivity that sRat, whence
s 6
 [a]ϕ, as desired.

This finishes the proof. 2

The following proposition shows that every individual rule is sound. We again
prove something slightly stronger.

3.4.5. Proposition. Every rule application

H1 · · ·Hkr
H

of HX∗ + RC is sound. In fact, if α is a cmsa in some CX-model S for H, then
there is a premiss Hk and a cmsa αk in S, such that α and αk agree on every
sequent σ that occurs only inactively in Hk.

Proof:
For each frame condition rule rXC , we can use the (stronger) statement of Proposi-
tion 3.4.4. For the other rules, we begin by choosing the premiss Hk and defining
αk only on the active sequent of Hk (if it exists). We make a case distinction on
the rule r.

• For the irrefutable axioms id and ⊥ the proposition holds vacuously.

• If r = {ew} there is only a single premiss, which contains no active sequents.

• For any other local rule (i.e. from Figure 3.1), there is exactly one active
sequent σ in H, and exactly on active sequent σk in each premiss Hk. We
claim that S, α(σ) 6
 σk for each least one k. As example we show this for
r = [∗]R, leaving the other cases to the reader.

Since α(σ) 6
 [∗]ϕ, we have α(σ) 6
 ϕ or α(σ) 6
 [a][∗]ϕ for some a ∈ D.
Hence α(σ) 6
 σk for some appropriate k.

We then pick Hk and set αk(σk) := α(σ).

• For any modal rule [a]X, there is only one single choice for H1. Moreover, in
each case the conclusion H has one active sequent, say σ, and the premiss
H1 has one active sequent, say σ1. We claim that, as S, α(σ) 6
 σ, there is
a state s of S such that α(σ)Ras and S, s 6
 σ1. We will only show this for
X = B4, leaving the other cases to the reader.

First, since α(σ) 6
 [a]ϕ, there is some state α(σ)Rat such that t 6
 ϕ.
Second, for each [a]ψ ∈ [a]Γ we have α(σ) 
 [a]ψ, and thus t 
 ψ. Moreover,
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by transitivity it holds that t 
 [a]ψ. Now, suppose that ψ ∈ ∆. Then, by
symmetry, we have that t 6
 [a]ψ. Finally, if [a]ψ ∈ ∆, then there is a state
w such that α(σ)Raw and w 6
 ψ. It follows by symmetry and transitivity
that tRaw and thus t 6
 [a]ψ, as required.

We set α1(σ1) = s.

Now let σ be a sequent that occurs in Hk, but only inactively. Then σ must also
occur in H. We simply set αk(σ) := α(σ). 2

Since every rule is sound, an easy inductive argument shows that every well-
founded proof is sound. For extending this result to non-well-founded proofs, the
following lemma is crucial.

3.4.6. Lemma. Suppose the following is a rule application in HX∗ + RC

H1 · · ·Hkr
H

such that H has a cmsa α in some CX-model S. Then there is a premiss Hk and
cmsa αk for Hk in S, such that if ϕ•k ∈ σk ∈ Hk and ϕ• ∈ σ ∈ H, then

sigαk(σk)(ϕk) ≤ sigα(σ)(ϕ).

Moreover, if r = [∗]R and both ϕ• and ϕ•k are active, this inequality is strict.

Proof:
Let Hk and αk be as given by Proposition 3.4.5. If either H or Hk does not have
a formula in focus, the result holds vacuously. So suppose there is ϕ• ∈ σ ∈ H
and ϕ•k ∈ σk ∈ Hk.

Suppose first that ϕ = ϕk. We claim that αk(σk) = α(σ), from which it will
follows that sigαk(σk)(ϕk) = sigα(σ)(ϕ).

If σk occurs only inactively in Hk, we must have σk = σ and directly obtain
from Proposition 3.4.5 that αk(σk) = α(σ). Let us therefore consider the case
where σk is active. Then, as the only sequent with a formula in focus, σ must
also be active in H. If r is local, it follows that αk(σk) = α(σ). Note that, as
ϕ• = ϕ•k belongs to an active sequent in both H and Hk, the rule r cannot be
modal. Finally, if r is a frame condition rule rXC , suppose that Hk is the premiss
corresponding to (CR, C=) ∈ C. Then σ must be the sequent in the conclusion
with index i for some i ∈ C=. Hence again αk(σ) = α(σ).

Now suppose that ϕ 6= ϕk. Then both σ and σk must be active, and direct
inspection of the rules yields that r is either [∗]R or modal. Moreover, because
the premiss can only contain a single formula in focus, we know that ϕ• occurs
neither in an inactive sequent of H, nor inactively in σ. We will now forget about
the Hk and αk given by Proposition 3.4.5 at the beginning of this proof, choosing
our premiss with slightly more care.
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Suppose that r is [∗]R. Since ϕ• is active, it must be of the form [∗]ψ•. Let
n := sigα(σ)(ϕ). By definition α(σ) 6
 [D]nψ. If n = 0, we let Hk be the leftmost
premiss. If n > 0, then for some a ∈ D we have α(σ) 6
 [a][D]n−1ψ and we let Hk

be a premiss corresponding to this a ∈ D. We set:

αk(τ) :=

{
α(σ) if τ is active,

α(τ) otherwise.

We leave it to the reader to verify that αk is a cmsa for Hk. If n = 0, this suffices
to prove the theorem, because Hk has no formula in focus. If n > 0, then [a][∗]ψ•
belongs to the active sequent σk of Hk, and we have

sigαk(σk)([a][∗]ψ) = sigα(σ)([a][∗]ψ) = sigα(σ)(ϕ)− 1 < sigα(σ)(ϕ),

as required.
Finally, if r is [a]X, there is just a single premiss, say Hk. Since by assumption

Hk has a formula in focus, unequal to ϕ•, we know that ϕ• must be the principal
formula in H. Hence ϕ is of the form [a][∗]ψ. Again, we define n := sigα(σ)(ϕ). By

definition we have α(σ) 6
 [a][D]nψ. Let t be some state of S such that α(σ)RX
a t

and t 6
 [D]nψ. We define:

αk(τ) :=

{
t if τ is active,

α(τ) otherwise.

We again leave it to the reader to verify that αk is a cmsa for Hk. Note that Hk

has [∗]ψ in focus, and

sigαk(σk)([∗]ψ) = sigt([∗]ψ) = n = sigα(σ)(ϕ),

as required. 2

With this is place, we are ready to prove the soundness theorem.

Proof of Theorem 3.4.1. Suppose, towards a contradiction, that some CX-provable
hypersequent H is CX-invalid. Then there is a cmsa α of H in some model S.
Repeatedly applying Lemma 3.4.6, we obtain a branch H = H0 · H1 · · · in the
proof of H, with for each Hi a cmsa αi of Hi in S. Note that this branch must
be infinite, for otherwise the final Hi is an axiom, contradicting the fact that it
has a cmsa. Moreover, by the condition of infinite branches, there is some final
segment, say Hk ·Hk+1 · · · , on which every hypersequent has a formula in focus
(by Proposition 3.3.18) , and a focused unfolding happens infinitely often. But
then, letting σi be the sequent in Hi containing a formula in focus, we have, by
Lemma 3.4.6,

sigαk(σk)(ϕk) ≥ sigαk+1(σk+1)(ϕk+1) ≥ sigαk+2(σk+2)(ϕk+2) ≥ . . .

where this inequality is strict infinitely often, contradicting the well-foundedness
of ω.
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3.5 Completeness

In this section we are concerned with the completeness of the systems HX∗ +
RC. The scope of our completeness result, i.e. whether or not we need analytic
applications of the rule cut, depends on the frame conditions. The following is
the precise statement that we will prove.

3.5.1. Theorem. Let H be CX-valid. Then H is CXan-provable. If, in addition,
X ∈ {K,K4} and C consists of equable frame conditions, then H is CXcf-provable.

Our proof strategy is essentially a Henkin construction, as is widely applied in
first-order and modal logic. In Section 3.5.1, we will show how to construct
a canonical X-model for a given hypersequent H. The states of this canonical
model will be precisely the sequents in H. If the hypersequent H is sufficiently
nice, its canonical model will satisfy the Truth Lemma: every sequent σ in H,
regarded as a state of the canonical model of H, falsifies the sequent σ. Hence,
the canonical model of H will be a countermodel for H itself.

In Section 3.5.2 we will define a certain maximality property for H which
guarantees that H is sufficiently nice in above sense. Section 3.5.3 shows that
any unprovable hypersequent can be extended to satisfy this maximality property.
The rest of the chapter is concerned with showing the Truth Lemma, from which
Theorem 3.5.1 will easily follow.

For technical reasons it will be convenient to prove Theorem 3.5.1 only for
hypersequents that have no formula in focus. This clearly suffices, because H is
valid iff H◦ is, and H is provable iff H◦ is. We will call such hypersequents focus
free.

3.5.1 Canonical models

One interesting feature of hypersequents, as mentioned in the introduction of
this chapter, is their ability to function as the carrier of a canonical model. The
following definition is essentially taken from [66].

3.5.2. Definition. Let H be a hypersequent. The canonical X-model SX
H of H

is defined as follows:

• The set of states is H.

• For each X, the accessibility relation RX
a is given by:

– (Γ1 ⇒ ∆1)RK
a (Γ2 ⇒ ∆2) iff [a]−1Γ1 ⊆ Γ2;

– (Γ1 ⇒ ∆1)RK4
a (Γ2 ⇒ ∆2) iff [a]−1Γ1 ⊆ Γ2 and [a][a]−1Γ1 ⊆ Γ2;

– σ1R
B
aσ2 iff σ1R

K
aσ2 and σ2R

K
aσ1.

– σ1R
B4
a σ2 iff σ1R

K4
a σ2 and σ2R

K4
a σ1.
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• The valuation function is given by V (p) := {Γ⇒ ∆ | p◦ ∈ Γ}.

3.5.3. Remark. Note that the definition of RX
a does not depend on the right-

hand sides of the respective sequents. It might therefore be possible to instead
define the states of the canonical model of H to consist only of the left-hand sides
of sequents of H. As we will see later, in the presence of analytic applications
of the cut rule, our notion of maximality implies that the left-hand side of some
sequent in a maximal hypersequent determines the right-hand side (and vice
versa). In that case this alternative definition of the canonical model would
therefore be equivalent.

The following proposition almost follows by definition.

3.5.4. Proposition. The canonical X-model of H is indeed an X-model.

Proof:
The case X = K is clear. For X = K4, suppose that σ1R

K4
a σ2R

K4
a σ3. We claim that

σ1R
K4
a σ3. Indeed, writing Γi ⇒ ∆i for each σi, suppose that [a]ϕ◦ belongs to Γ1.

Then [a]ϕ◦ belongs to Γ2 and thus both ϕ◦ and [a]ϕ◦ belong to Γ3. Both RB
a and

RB4
a are by definition symmetric, and RB4

a inherits its transitivity from RK4
a . 2

3.5.2 CXi-maximality

In this section we define our notion of maximality for hypersquents, namely CXi-
maximality, where i ∈ {cf, an}. The notion of CXan-maximality, which is tailored
to the availability of analytic applications of cut, is similar to that used in [66].
The notion of CXcf-maximality, used for cut-free completeness, is substantially
different and newly developed for handling the master modality in the absence of
the cut rule. More details on the difference between the two notions of maximality
will be given in Remark 3.5.18.

The following order on hypersequents also features in [66]. It is useful for
comparing the (logical) strength of two hypersequents.

3.5.5. Definition. Let Γ1 ⇒ ∆1 and Γ2 ⇒ ∆2 be sequents and let H1, H2 be
hypersequents. We define:

• (Γ1 ⇒ ∆1) v (Γ2 ⇒ ∆2) if Γ1 ⊆ Γ2 and ∆1 ⊆ ∆2.

• H1 v H2 if for every σ1 ∈ H1, there is some σ2 ∈ H2 such that σ1 v σ2.

If H v K, we say that H is encompassed by K.

Note that v is a preorder on the set of hypersequents. We will often use σ v H
as a shorthand for {σ} v H.

In the following it will be useful to restrict attention to hypersequents con-
taining only formulas from a given finite set.
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3.5.6. Definition. Let Σ be a finite closed set of formulas. A (hyper)sequent is
said to be a Σ-(hyper)sequent if it contains only formulas from Σ.

We can now reformulate the notion of analyticity (Definition 3.3.13) as follows:
a proof π of H is analytic if it only contains FL(H)-hypersequents.

The following definition captures a first requirement that will feature in the
definition of a CXi-maximal hypersequent. Its main application will be in the
inductive proof of the Truth Lemma.

3.5.7. Definition. A sequent Γ ⇒ ∆ is said to be propositionally saturated if
the following closure conditions hold:

(i) If ϕ1 → ϕ2 ∈ Γ−, then ϕ2 ∈ Γ− or ϕ1 ∈ ∆−.
(ii) If ϕ1 → ϕ2 ∈ ∆−, then ϕ1 ∈ Γ− and ϕ2 ∈ ∆−.

(iii) If [∗]ϕ ∈ Γ−, then ϕ ∈ Γ− and [a][∗]ϕ ∈ Γ− for every a ∈ D.
(iv) If [∗]ϕ ∈ ∆−, then ϕ ∈ ∆− or [a][∗]ϕ ∈ ∆− for some a ∈ D.

A hypersequent is propositionally saturated whenever each of its sequents is.

We also certainly want the canonical model of a CXi-maximal hypersequent to be
a C-model. This is captured by the following definition.

3.5.8. Definition. Let C be a set of simple frame conditions and suppose that
X ∈ {K,K4,B,B4}. A hypersequent H is CX-structured if SX

H is a C-model.

In the presence of cut, we can even require the following.

3.5.9. Definition. Let Σ be a finite and closed set of formulas. A sequent
Γ ⇒ ∆ is said to be Σ-complete if for every ϕ ∈ Σ it holds that ϕ ∈ Γ− or
ϕ ∈ ∆−. A hypersequent H is complete if every sequent in H is FL(H)-complete.

Summing up, we now have the following saturation conditions that we want our
CXi-maximal hypersequents to satisfy.

3.5.10. Definition. A hypersequent H is called CXcf-saturated if it is both CX-
structured and propositionally saturated. If H, in addition, is complete, we say
that H is CXan-saturated .

The following property, also featuring in [66], will be very useful in the com-
pleteness proof. As mentioned in the introduction, the reason for working with
focus-free sequents is technical convenience.

3.5.11. Definition. A hypersequent H is said to be CXi-full with respect to a
sequent σ if either σ v H or H | σ is CXi-provable. We say that H is CXi-full if
it is CXi-full with respect to every focus-free FL(H)-sequent σ.

It is not hard to show that fullness with respect to a given sequent is preserved
by taking v-extensions.
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3.5.12. Lemma. If H is CXi-full with respect to σ, then so is every H ′ w H.

Proof:
If σ v H, then by the transitivity of v, also σ v H ′. If H | σ is CXi-provable,
then, by the presence of iwL, iwR and ew, the same holds for H ′ | σ. 2

Finally, we are ready to give our definition of CXi-maximality. In addition to
the preorder v, this definition also uses the subset order ⊆ on hypersequents.

3.5.13. Definition. A hypersequent H is called CXi-maximal if H is:

(i) focus free, (ii) CXi-unprovable, (iii) CXi-full, (iv) CXi-saturated,

and H is ⊆-maximal as an FL(H)-hypersequent satisfying conditions (i) - (iv).

In the proceeding, we will often drop the CXi from (un)provability, saturation,
fullness or maximality, whenever it is clear from the context. In the next section,
we will show that every unprovable and focus-free hypersequent has a maximal
v-extension. The following proposition shows that we will not have to worry
about the ⊆-maximality.

3.5.14. Lemma. Suppose a hypersequent satisfies conditions (i) - (iv) of Defini-
tion 3.5.13. Then it can be ⊆-extended to be CXi-maximal.

Proof:
Suppose that H satisfies conditions (i) - (iv) of Definition 3.5.13. Because FL(H)
is finite, the set

{H ′ : H ⊆ H ′ and H ′ is an FL(H)-sequent satisfying conditions (i) - (iv)}.

is finite, and we can simply let H be a ⊆-maximal element of this set. 2

3.5.3 The Extension Lemma

In this section we will show that every focus-free, unprovable hypersequent has a
maximal v-extension. Throughout the section we shall refer to the conditions (i),
(ii), (iii) and (iv) of Definition 3.5.13 without explicitly mentioning this definition.
The notion of strong fullness will be defined below and serves as an intermediate
step in the extension into a maximal hypersequent,

Our extension procedure consists of a series of extensions, some of which
depend on whether analytic cuts are available or not. Below is a diagrammatic
representation of the entire argument. All arrows in this diagram preserve all of
the earlier properties, except for the dotted arrow, which need not preserve strong
fullness. For instance, after applying Lemma 3.5.17 to a hypersequent satisfying
properties (i), (ii), (iii), we will obtain a strongly full v-extension, which also
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still satisfies properties (i), (ii), (iii). Similarly, after applying Lemma 3.5.20 to a
strongly full hypersequent, it remains strongly full, whence susceptible to Lemma
3.5.22. In contrast, the maximal hypersequent we end up with at the end of the
procedure will in general not be strongly full. Note that the final step in the
procedure is simply Lemma 3.5.14, which we have already established above.

(i), (ii) (iii) strongly full

complete

prop. saturated

CX-structuredmaximal

3.5.15 3.5.17

3.5.20

(an)3.5.20

3.5.20
3.5.22

3.5.14

The first step is a standard Lindenbaum construction. Note that the following
lemma is agnostic to whether i = cf or i = an.

3.5.15. Lemma. For any hypersequent H satisfying conditions (i) and (ii), there
exists an FL(H)-hypersequent H ⊇ H satisfying conditions (i), (ii) and (iii).

Proof:
Let σ1, . . . , σn be an enumeration of all focus-free FL(H)-sequents. Beginning
with H0 := H, we recursively define:

Hk+1 :=

{
Hk | σk+1 if Hk | σk+1 is unprovable,

Hk otherwise.

Let H := Hn. Clearly H satisfies condition (i) and (ii), since Hk is unprovable
for any 0 ≤ k ≤ n. Moreover, for each k we have Hk ⊆ Hk+1, whence H ⊆ H.
Finally, if σk is an FL(H)-sequent such that σk 6v H, then certainly σk 6∈ Hk,
so Hk−1 | σk is provable and, by the presence of ew, also H | σ is provable, as
required. 2

As mentioned above, we will go through hypersequents satisfying the following
strong variant of fullness as an intermediate step.

3.5.16. Definition. A hypersequent H is said to be strongly CXi-full, if it is
CXi-full and for every Γ⇒ ∆ ∈ H and ϕ ∈ FL(H) it holds that:

(i) If ϕ◦ /∈ Γ, then H | Γ, ϕ◦ ⇒ ∆ is CXi-provable.
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(ii) If ϕ◦ /∈ ∆, then H | Γ⇒ ϕ◦,∆ is CXi-provable.

The following lemma also appears in [66].

3.5.17. Lemma. Let H be a hypersequent satisfying conditions (i), (ii) and (iii).
Then there is an FL(H)-hypersequent H ′ w H that satisfies conditions (i), (ii)
and (iii) and moreover is strongly full.

Proof:
We proceed by induction on the number of sequents in H that do not satisfy the
conditions of Definition 3.5.16. In the base case of our induction this number is
zero and therefore H is indeed strongly CXi-full.

For the induction step, let Γ⇒ ∆ be a sequent in H that does not satisfy the
conditions of Definition 3.5.16. Write H∗ for H \{Γ⇒ ∆} and fix an enumeration
ϕ1, . . . , ϕn of FL(H). We set Γ0 ⇒ ∆0 := Γ⇒ ∆ and inductively define

Γk+1 ⇒ ∆k+1 :=


Γk, ϕ

◦
k+1 ⇒ ∆k if H∗ | Γk, ϕ◦k+1 ⇒ ∆k is unprovable,

Γk ⇒ ϕ◦k+1,∆k if H∗ | Γk ⇒ ϕ◦k+1,∆k is unprovable,

Γk ⇒ ∆k otherwise,

where we make an arbitrary choice if the first two cases both hold.
Let H be H∗ | Γn ⇒ ∆n. By construction Γn ⇒ ∆n satisfies the two conditions

of Definition 3.5.16, whence by the induction hypothesis there is an unprovable
and strongly full H ′ such that H v H v H ′, as required. 2

3.5.18. Remark. In [66], Lahav directly builds canonical models from strongly
full hypersequents. Our new notion of maximality is needed for the inductive
case of [∗] in the proof of the Truth Lemma. Roughly, this proof requires us, for
a given maximal hypersequent H and sequent Γ ⇒ ∆ such that H | Γ ⇒ ∆ is
unprovable, to be able to extend Γ ⇒ ∆ to some sequent Γ′ ⇒ ∆′ ∈ H. This
extension must not only preserve unprovability, but must in fact be obtained by
directly applying the rules of HX∗+RC. In the presence of cut this is easy, because
successive applications of this rule can always be used to obtain a sequent which
is complete, i.e. where every formula occurs in either in the left-hand side or in
the right-hand side. Without cut, however, we need to manually ensure that H
has enough sequents to contain the required Γ′ ⇒ ∆′. For this, strong fullness
does not suffice.

The key property of strongly full hypersequents, is that they are saturated, pro-
vided they also satisfy condition (i) and (ii). Before we prove this, we need the
following lemma.

3.5.19. Lemma. Suppose H satisfies (i), (ii), and is strongly full. Then H forms
a v-antichain. That is, for each σ1, σ2 ∈ H: if σ1 v σ2, then σ1 = σ2.
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Proof:
Write Γi ⇒ ∆i for each σi and suppose that ϕ◦ ∈ Γ2. By the presence of the
internal weakening rules, we have that H | Γ1, ϕ

◦ ⇒ ∆1 is unprovable. Indeed, if
we would have a proof, say π, we would be able to prove H in the following way.

π
H | Γ1, ϕ

◦ ⇒ ∆1

...iwL + iwR
H | Γ2 ⇒ ∆2

From the unprovability of H | Γ1, ϕ
◦ ⇒ ∆1 and the strong fullness of H, it

follows that ϕ◦ ∈ Γ1. For ϕu ∈ ∆2 we can use an analogous argument, because,
by condition (i), we know that u = ◦. 2

3.5.20. Lemma. If H satisfies (i) and (ii) and is strongly CXi-full, then H is
propositionally saturated. Moreover, if i = an then H is complete.

Proof:
As all cases are similar, we will only treat the case where [∗]ϕu ∈ ∆ for some
Γ⇒ ∆ ∈ H. By condition (i) we have that u = ◦. We consider the following rule
application

H | Γ⇒ ϕ◦,∆ {H | Γ⇒ [a][∗]ϕ◦,∆ : a ∈ D}
[∗]R H | Γ⇒ [∗]ϕ◦,∆

As the conclusion is equal toH, one of the premisses must be unprovable. Suppose
first that the left premiss is unprovable. By the fullness ofH, there is a σ ∈ H such
that Γ ⇒ ϕ◦,∆ v σ. But then it follows from Lemma 3.5.19 that σ = Γ ⇒ ∆,
whence ϕ ∈ ∆−. A similar argument can be used for the other premisses. 2

Before we prove that the other part of CXi-saturation also follows from strong
CXi-fullness, we first prove the following auxiliary lemma.

3.5.21. Lemma. Let H be a hypersequent. Given Γ⇒ ∆ and σ in H, we have

(i) If [a]−1Γ⇒ ϕ◦ v σ, then (Γ⇒ ∆)RK
aσ.

(ii) If [a]−1Γ, [a][a]−1Γ⇒ ϕ◦ v σ, then (Γ⇒ ∆)RK4
a σ.

If H is complete and CXi-unprovable, then, moreover

(iii) If [a]−1Γ⇒ ϕ◦, [a]∆◦0 v σ, then (Γ⇒ ∆)RB
aσ.

(iv) If [a]−1Γ, [a][a]−1Γ⇒ ϕ◦, [a]∆◦0, [a][a]−1∆◦0 v σ, then (Γ⇒ ∆)RB4
a σ.

where ∆0 ⊆ ∆ consists of those ψ◦ ∈ ∆ such that [a]ψ ∈ FL(H).
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Proof:
Write σ as Γ1 ⇒ ∆1. Items (i) and (ii) follow directly from the definitions.

For item (iii), note that clearly (Γ ⇒ ∆)RK
a (Γ1 ⇒ ∆1). For the converse,

suppose that [a]ψ◦ ∈ Γ1. By unprovability, we have that [a]ψ◦ /∈ ∆1. Since
[a]ψ ∈ FL(H), it follows that ψ◦ /∈ ∆. The completeness of H gives ψ◦ ∈ Γ, as
required.

For item (iv) we reason similarly. It is clear that (Γ⇒ ∆)RK4
a (Γ1 ⇒ ∆1). For

the converse, let [a]ψ◦ ∈ Γ1. By the same reasoning as before, we have ψ◦ ∈ Γ.
To see that also [a]ψ◦ ∈ Γ, note that, since by unprovability [a]ψ◦ /∈ ∆1, we have
[a]ψ◦ /∈ ∆0. Hence [a]ψ◦ /∈ ∆ and therefore, by completeness, [a]ψ◦ ∈ Γ. 2

3.5.22. Lemma. Suppose that H satisfies conditions (i) and (ii), and is strongly
CXi-full, where X ∈ {B,B4} only if i = an. Then H is also CX-structured.

Proof:
Let C ∈ C be an n-simple frame condition. We must show that SX

H satisfies:

∀s1 · · · sn∃u
∨

(CR,C=)∈C

(
∧
i∈CR

siRau ∧
∧
j∈C=

sj = u).

To this end, let Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n be states of SX
H , or, in other words,

elements of H. For X ∈ {K,B}, consider, respectively, the following rule applica-
tions.

{H |
⋃
i∈CR

[a]−1Γi,
⋃
j∈C=

Γj ⇒
⋃
j∈C=

∆j : (CR, C=) ∈ C}
rKC H | [a][a]−1Γ1,Γ1 ⇒ ∆1 | · · · | [a][a]−1Γn,Γn ⇒ ∆n

{H |
⋃
i∈CR

[a]−1Γ1,
⋃
j∈C=

Γj ⇒
⋃
j∈C=

∆j,
⋃
i∈CR

([a]∆′i)
◦ : (CR, C=) ∈ C}

rBC H | [a][a]−1Γ1,Γ1 ⇒ ∆1,∆
′
1 | · · · | [a][a]−1Γn,Γn ⇒ ∆n,∆

′
n

where each ∆′i consists of those ψ◦ ∈ ∆i such that [a]ψ ∈ FL(H).
Since the conclusion of each of the above two rules is H, they must both have

at least one unprovable premiss. Let σ′ be the active sequent of such a premiss.
Because H | σ′ is unprovable, it follows from CXi-fullness that σ′ v σ for some
σ ∈ H. Hence, by Lemma 3.5.21, we have (Γi ⇒ ∆i)R

X
aσ for each i ∈ CR. Note

that if X = B we use the fact that H is complete by Lemma 3.5.20. Moreover,
since for each j ∈ C= we have Γj ⇒ ∆j v σ, Lemma 3.5.19 gives Γj ⇒ ∆j = σ,
as required.

The cases where X ∈ {K4,B4} are similar. 2

With this in place, we can now prove the main result of this section.

3.5.23. Lemma. Any unprovable and focus-free hypersequent can be v-extended
to be maximal.
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Proof:
Suppose that H is CXi-unprovable and focus free. First, we use Lemma 3.5.15 to
extend H to H ⊃ H such that H is, in addition, CXi-full. By Lemma 3.5.17 there
is a CXi-strongly full H1 w H satisfying conditions (i), (ii) and (iii), which by the
lemmata 3.5.20 and 3.5.22 is CXi-saturated. Finally, by Lemma 3.5.14, there is a
CXi-maximal H2 w H1 w H w H. 2

3.5.4 The Existence Lemma for the basic modalities

In Section 3.5.6 we will prove the Truth Lemma by induction on formulas. The
hardest clauses will be those where the main connective is a modality and the
formula appears in the right-hand side some of sequent Γ ⇒ ∆ ∈ H. Say for
instance, we have [a]ψ ∈ ∆. We will have to show that the state Γ⇒ ∆ falsifies
[a]ψ, and thus that there exists some a-successor falsifying ψ. It is for this reason
that the following lemma is often called the Existence Lemma.

3.5.24. Lemma. Let H be CXi-maximal, with X ∈ {B,B4} only if i = an. Then
for every Γ⇒ ∆ ∈ H with [a]ϕ ∈ ∆− there is a sequent Γ1 ⇒ ∆1 ∈ H such that
(Γ⇒ ∆)RX

a (Γ1 ⇒ ∆1) and ϕ ∈ ∆−1 .

Proof:
Consider the following rule applications.

H | [a]−1Γ⇒ ϕ◦
[a]K

H | [a][a]−1Γ⇒ [a]ϕ◦
H | [a]−1Γ, [a][a]−1Γ⇒ ϕ◦

[a]K4
H | [a][a]−1Γ⇒ [a]ϕ◦

H | [a]−1Γ⇒ ϕ◦, [a]∆◦0[a]B
H | [a][a]−1Γ⇒ [a]ϕ◦,∆0

H | [a]−1Γ, [a][a]−1Γ⇒ ϕ◦, [a]∆◦0, [a][a]−1∆◦0[a]B4
H | [a][a]−1Γ⇒ [a]ϕ◦,∆0

where ∆0 ⊆ ∆ consists of those ψ◦ ∈ ∆ such that ψ ∈ FL(H). By the presence
of iwL and iwR, the conclusion of each [a]X is CXi-unprovable, whence so is the
premiss. CXi-fullnes gives a sequent σ ∈ H which v-extends the premiss. Finally,
it follows by Lemma 3.5.21 that (Γ⇒ ∆)RX

aσ. 2

3.5.5 The Existence Lemma for the master modality

In this section we prove another Existence Lemma, but this time for the master
modality. This clause of the inductive proof of the Truth Lemma is shown by
contradiction. We show that if some formula [∗]ϕ in ∆− does not have a witness
ϕ ∈ ∆−1 in some Γ1 ⇒ ∆1 reachable from Γ⇒ ∆, then there exists a proof of H.
As we will see, the key to constructing this proof of H is that we can saturate
sequents without losing focus. In the presence of cut this is easy, as captured by
the following proposition.
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3.5.25. Proposition. Let H be a focus-free hypersequent and let σ a sequent
such that σ /∈ H. If σ is not FL(H | σ)-complete, there is a rule application

H | σ1 · · · H | σn
r

H | σ
such that for each σi it holds that σ @ σi.

Proving a similar saturation result without the presence of cut is considerably
harder. We first show how to saturate sequents propositionally.

3.5.26. Proposition. Let H be a focus-free hypersequent and let σ be a sequent
such that σ /∈ H. If σ is not propositionally saturated, there is a rule application

H | σ1 · · · H | σn
r

H | σ
such that r is not cut and for each σi it holds that σ @ σi.

Proof:
Write σ as Γ ⇒ ∆. Let r be a rule corresponding to a clause of Definition 3.5.7
of propositional saturation, which is not satisfied by Γ⇒ ∆. The idea is to apply
r with Γ ⇒ ∆ as active sequent, in such a way that all formulas in Γ ⇒ ∆ are
preserved (this is sometimes called a cumulative rule application).

Since each clause is very similar, we will only treat clause (iv). Suppose that
[∗]ϕ ∈ ∆−, but neither ϕ ∈ ∆− not [a][∗]ϕ ∈ ∆−. We make a case distinction on
whether [∗]ϕ◦ ∈ ∆. If not, then [∗]ϕ• ∈ ∆, and we take as our rule application

H | Γ⇒ [∗]ϕ•, [∗]ϕ◦,∆
fm

H | Γ⇒ [∗]ϕ•,∆
This suffices, since (Γ⇒ [∗]ϕ•, [∗]ϕ◦) @ (Γ⇒ [∗]ϕ•,∆). If, on the other hand, it
holds that [∗]ϕ◦ ∈ ∆, we take the following rule application

H | Γ⇒ ϕ◦,∆ {H | Γ⇒ [a][∗]ϕ◦,∆ : a ∈ D}
[∗]R H | Γ⇒ [∗]ϕ◦,∆

Since neither ϕ nor [a][∗]ϕ belongs to ∆− for any a ∈ D, each premiss satisfies
the required condition. 2

For CX-structuredness, we require that C consists of only equable frame con-
ditions.

3.5.27. Proposition. Let C be an equable frame condition let X ∈ {K,K4}.
Suppose that H is CX-structured and focus free. If σ is a sequent such that
σ◦ v H and H | σ◦ is not CX-structured, there is a rule application of HX∗ + RC

H | σ1 · · · H | σm
r

H | σ
such that r is not cut and for each σi it holds that σ @ σi.
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Proof:
We assume that X = K. The case where X = K4 is similar. Let n be such that
C is n-simple. Recall that the equability of C means that there is some fixed
U ⊆ {1, . . . n} such that for every (CR, C=) ∈ C it holds that C= = U . We will
therefore simply write (CR, U) ∈ C for an arbitrary element in C.

Since H | σ◦ is not CK-structured, there is a list (Γk ⇒ ∆k)1≤k≤n of sequents
in H ∪ {σ◦} such that for every Γ⇒ ∆ ∈ H ∪ {σ◦} and (CR, U) ∈ C there is an
i ∈ CR such that [a]−1Γi 6⊆ Γ or a j ∈ U such that Γj ⇒ ∆j 6= Γ ⇒ ∆. For the
rest of this proof we fix this list (Γk ⇒ ∆k)1≤k≤n.

Because σ◦ v H, there is a sequent σ ∈ H such that σ◦ v σ. Let (Γk ⇒
∆k)1≤k≤n be the list obtained by replacing in (Γk ⇒ ∆k)1≤k≤n each occurrence of
σ◦ by σ. By the CK-structuredness of H, there must be some (C0

R, U) ∈ C and
Γ ⇒ ∆ ∈ H such that for each i ∈ C0

R we have [a]−1Γi ⊆ Γ, and for each j ∈ U
we have Γj ⇒ ∆j = Γ⇒ ∆.

It follows for every i ∈ C0
R that [a]−1Γi ⊆ [a]−1Γi ⊆ Γ. Thus, by the fact that

H | σ◦ is not CK-structured, there is a k ∈ U such that Γk ⇒ ∆k 6= Γk ⇒ ∆k.
By construction this can only be the case if Γk ⇒ ∆k = σ◦.

Now consider the following rule instance.

{H |
⋃
i∈CR

[a]−1Γi,
⋃
j∈U Γj ⇒

⋃
j∈U ∆j : (CR, U) ∈ C}

rHK
∗

C H | Γk ⇒ ∆k

We claim that for any (CR, U) ∈ C, the sequent

σR :=
⋃
i∈CR

[a]−1Γi ∪
⋃
j∈U

Γj ⇒
⋃
j∈U

∆j

is such that σ◦ @ σR. As k ∈ U , we already have σ◦ v σR. Now suppose, towards
a contradiction, that σ◦ = σR. Then by the fact that H | σ◦ is not CK-structured,
there must be some j ∈ U such that Γj ⇒ ∆j 6= σ◦. It follows that

Γj ⇒ ∆j = Γj ⇒ ∆j (Definition of · , Γj ⇒ ∆j 6= σ◦)

= Γk ⇒ Γk (j, k ∈ U)

= σ.

But then σ = Γj ⇒ ∆j v σR = σ◦. Since, by construction, also σ◦ v σ, we have
σ◦ = σ and thus H | σ◦ = H, contradicting the assumption that H | σ◦ is not
CK-structured.

To finish the proof, let (Γ̂k ⇒ ∆̂k)1≤k≤n be the result of replacing in the list
(Γk ⇒ ∆k)1≤k≤n each occurrence of σ◦ by σ. Consider the following rule instance:

{H |
⋃
i∈CR

[a]−1Γ̂i,
⋃
j∈U Γ̂j ⇒

⋃
j∈U ∆̂j : (CR, U) ∈ C}

rHK
∗

C
H | Γ̂k ⇒ ∆̂k
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Let (CR, U) ∈ C be arbitrary and define:

σ̂R :=
⋃
i∈CR

[a]−1Γ̂i ∪
⋃
j∈U

Γ̂j ⇒
⋃
j∈U

∆̂j.

Clearly σ = Γ̂k ⇒ ∆̂k v σ̂R. We have seen above that σ◦ @ σR. It follows
that σR has no formula in focus, and there is a some formula ϕ◦ in either the
right-hand side of the left-hand side of σR, which does not belong the same side
of σ◦. Without loss of generality, suppose that ϕ◦ belongs to the right-hand side
of σR and ϕ◦ /∈ ∆k. Then clearly ϕ◦ /∈ ∆̂k, and we claim that ϕ◦ belongs to the
right-hand side of σ̂R. Indeed, since ϕ◦ /∈ ∆k, we must have ϕ◦ ∈ ∆j for some

j ∈ U such that Γj ⇒ ∆j 6= σ◦. But then ϕ◦ ∈ ∆̂j, as required. This shows that
σ @ σ̂R for each (CR, U) ∈ C. 2

We are now ready to prove the Existence Lemma for the master modality.

3.5.28. Lemma. Let H be a CXi-maximal hypersequent, such that i = cf implies
both that X ∈ {K,K4} and that C consists of only equable frame conditions. Then
for every sequent Γ ⇒ ∆ ∈ H with [∗]ϕ ∈ ∆−, there is a sequent Γ1 ⇒ ∆1 ∈ H
such that (Γ⇒ ∆)RX

∗ (Γ1 ⇒ ∆1) and ϕ ∈ ∆−1 .

Proof:
Let S be the subset of H consisting of those sequents Γ1 ⇒ ∆1 for which it holds
that Γ⇒ ∆RX

∗Γ1 ⇒ ∆1, and either ϕ ∈ ∆−1 or [a][∗]ϕ ∈ ∆−1 for some a ∈ D. We
must show that S contains a sequent Γ1 ⇒ ∆1 with ϕ ∈ ∆−1 . Assume that this is
not the case. We will reach a contradiction by constructing a CXi-proof π of H.

Since Γ ⇒ ∆ ∈ S, our assumption gives [a][∗]ϕ ∈ ∆− for some a ∈ D. We
begin the construction of π as follows:

π1

H | Γ′X ⇒ ϕ◦,∆′X
fc

H | Γ′X ⇒ ϕ◦,∆′X

{πb : b ∈ D}
{H | Γ′X ⇒ [b][∗]ϕ•,∆′X | b ∈ D}

[∗]RH | Γ′X ⇒ [∗]ϕ•,∆′X [a]X
H | ΓX ⇒ [a][∗]ϕ•,∆X

... iwL + iwR
H | Γ⇒ [a][∗]ϕ•,∆

fc
H | Γ⇒ [a][∗]ϕ◦,∆



3.5. Completeness 83

Here the rule application [a]X is similar to the one in Lemma 3.5.24. That is:

ΓX := [a][a]−1Γ Γ′X :=

{
[a]−1Γ if X ∈ {K,K4}
[a]−1Γ, [a][a]−1Γ if X ∈ {B,B4}

∆X :=

{
∅ if X ∈ {K,K4}
∆0 if X ∈ {B,B4}

∆′X :=


∅ if X ∈ {K,K4}
[a]∆◦0 if X = B

[a]∆◦0, [a][a]−1∆◦0 if X = B4

where ∆0 ⊆ ∆◦ consists of those ψ◦ ∈ ∆◦ such that [a]ψ ∈ FL(H). Note that, by
Lemma 3.5.21, if for some σ ∈ H it holds that (Γ′X ⇒ ∆′X) v σ, then (Γ⇒ ∆)RX

aσ.
This will be useful later in our proof.

The proof π1 is obtained by the CXi-fullness of H together with the fact that
Γ′X ⇒ ϕ◦,∆′X 6v H. The latter must be the case, for otherwise there would be a
Γ1 ⇒ ∆1 ∈ S with ϕ ∈ ∆−1 , which we assumed not to be the case.

For the construction of the derivations πb, we make a case distinction on
whether i = cf or i = an.

Suppose first that i = an. Then each derivation πb is constructed by repeatedly
applying Proposition 3.5.25 to the active sequent, until we have reached a sequent
Γ2 ⇒ [b][∗]ϕ•,∆2 such that one of the following holds:

• H | Γ2 ⇒ [b][∗]ϕ◦,∆◦2 is CXan-provable. In this case we append its proof to
to our derivation, with an application of

H | Γ2 ⇒ [b][∗]ϕ◦,∆◦2
fc

H | Γ2 ⇒ [b][∗]ϕ•,∆2

in between.

• Γ2 ⇒ [b][∗]ϕ◦,∆◦2 ∈ H. Since Γ ⇒ ∆RX
aΓ2 ⇒ [b][∗]ϕ◦,∆◦2, we have in this

case that Γ2 ⇒ [b][∗]ϕ◦,∆◦2 ∈ S. We then repeat the same process but now
applied to Γ2 ⇒ [b][∗]ϕ•,∆2, minus the first step of applying fc.

• H | Γ2 ⇒ [b][∗]ϕ◦,∆◦2 is complete. We claim that in this case we must
already be in either one of the two previous cases. Indeed, by Lemma
3.5.12, the hypersequent H | Γ2 ⇒ [b][∗]ϕ◦,∆◦2 is CXan-full. In fact, by
completeness, it is strongly CXan-full. Thus, if it is CXan-unprovable, it
must by Lemma 3.5.20 and Lemma 3.5.22 be CXan-saturated. But then it
is equal to H by CXan-maximality.

Note that the above process must terminate, since Proposition 3.5.25 properly
extends our sequent, which, by analyticity, can only happen finitely often.

Now suppose that i = cf. We construct each πb in a similar way as in the
previous case, this time repeatedly applying Proposition 3.5.26 and Proposition
3.5.27 until a sequent Γ2 ⇒ [b][∗]ϕ•,∆◦2 is reached such that one of the following
holds:
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• H | Γ2 ⇒ [b][∗]ϕ◦,∆◦2 is CXcf-provable. We append its proof exactly as in
the case of i = 1.

• Γ2 ⇒ [b][∗]ϕ◦,∆◦2 ∈ H. Here, similar to the case where i = an, we loop
back and repeat the process with Γ2 ⇒ [b][∗]ϕ•,∆◦2.

• H | Γ2 ⇒ [b][∗]ϕ◦,∆◦2 is CXcf-saturated. As with i = an, in this case we must
already be in either one of the two previous cases. By Lemma 3.5.12, the
hypersequent H | Γ2 ⇒ [b][∗]ϕ◦,∆◦2 is CXcf-full. Thus, if it CXcf-unprovable
and CXcf-saturated, it must be equal to H by CXcf-maximality.

Again, this process terminates for similar reasons.
In either case we end up with a (possibly infinite) CXi-derivation π of H. We

claim that π is in fact a CXi-proof. Indeed, the rule fc is only applied at the root
of π, and every infinite branch must have a final segment on which there is always
a formula in focus and a focused unfolding happens infinitely often. Hence, we
have obtained our desired contradiction. 2

3.5.6 The Truth Lemma

With the existence lemmata in place, the Truth Lemma can now be proved by a
routine induction.

3.5.29. Lemma. Let H be CXi-maximal. Then SX
H , σ 6
 σ, for every σ ∈ H.

Proof:
We will show by induction on ϕ that for every Γ⇒ ∆ ∈ H we have Γ⇒ ∆ 
 ϕ
if ϕ ∈ Γ−, and Γ ⇒ ∆ 6
 ϕ if ϕ ∈ ∆−. We make a case distinction on the main
connective of ϕ.

• ϕ = ⊥.

In this case ϕ 6∈ Γ−, by the unprovability of H.

If ϕ ∈ ∆−, then Γ⇒ ∆ 6
 ϕ, as required.

• ϕ = ψ1 → ψ2.

If ϕ ∈ Γ−, we have by propositional saturation that ψ2 ∈ Γ− or ψ1 ∈ ∆−.
By the induction hypothesis, this given Γ ⇒ ∆ 
 ψ2 or Γ ⇒ ∆ 6
 ψ1, i.e.
Γ⇒ ∆ 
 ψ1 → ψ2.

If ϕ ∈ ∆−, propositional saturation gives ψ1 ∈ Γ− and ψ2 ∈ ∆−. Hence, by
the induction hypothesis, we have Γ ⇒ ∆ 
 ψ1 and Γ ⇒ ∆ 6
 ψ2, whence
Γ⇒ ∆ 6
 ψ1 → ψ2.
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• ϕ = [a]ψ.

Suppose that ϕ ∈ Γ− and Γ⇒ ∆RX
aΓ1 ⇒ ∆1. Then ψ ∈ Γ−1 , whence by the

induction hypothesis Γ1 ⇒ ∆1 
 ψ. Since Γ1 ⇒ ∆1 was taken arbitrarily,
we find Γ⇒ ∆ 
 ϕ.

If ϕ ∈ ∆−, then by Lemma 3.5.24, there is some Γ ⇒ ∆RX
aΓ1 ⇒ ∆1 with

ψ ∈ ∆−1 . The induction hypothesis gives Γ1 ⇒ ∆1 6
 ψ, whence Γ⇒ ∆ 6
 ϕ.

• ϕ = [∗]ψ.

If ϕ ∈ Γ−, let

Γ⇒ ∆ =: Γ0 ⇒ ∆0R
X
a1

Γ1 ⇒ ∆1R
X
a2

Γ2 ⇒ ∆2R
X
a3
. . . RX

anΓn ⇒ ∆n

be a path in SX
H starting at Γ ⇒ ∆. We will prove by induction on n

that ϕ ∈ Γ−n , whence by propositional saturation ψ ∈ Γ−n , and thus by
the induction hypothesis Γn ⇒ ∆n 
 ψ. Since this then holds for arbitrary
paths, we find Γ⇒ ∆ 
 [∗]ψ. The induction base holds by assumption. For
the induction step, suppose that ϕ ∈ Γ−k . Then by propositional saturation
[ak+1]ϕ ∈ Γ−k . Hence by the same reasoning as in the previous case, we have
ϕ ∈ Γ−k+1, as required.

Finally, if ϕ ∈ ∆−, we use Lemma 3.5.28 to obtain some Γ⇒ ∆RX
∗Γ1 ⇒ ∆1

with ψ ∈ ∆−1 . Since by the induction hypothesis Γ1 ⇒ ∆1 6
 ψ, we find
Γ⇒ ∆ 6
 [∗]ψ.

This finishes the proof. 2

3.5.7 Wrapping up

We now have everything needed to prove Theorem 3.5.1.

Proof of Theorem 3.5.1:
Suppose that H is CXi-unprovable. By Lemma 3.5.23, there is a CXi-maximal
H w H. But then it holds by Lemma 3.5.29 that the assignment α(σ) = σ is
a cmsa of H in SX

H
. Hence we find by Proposition 3.5.4 that H, and thus also

H v H, is not CX-valid. 2

As a corollary we obtain the small model property for all frame conditions
under consideration.

3.5.30. Corollary (Small Model Property). If ϕ is not CX-valid, then it is fal-
sified in a CX-model of size exponential in FL(ϕ).
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Proof:
Suppose ϕ is not valid. Then the hypersequent ⇒ ϕ not valid. In the same way
as in the proof of Theorem 3.5.1, we obtain a FL(ϕ)-hypersequent H such that
SX
H falsifies ϕ. We claim that, by its maximality, the hypersequent H contains

at most 3n sequents. Indeed, for each sequent σ in H, and each formula ψ in
FL(ϕ), precisely one of the following holds: (i) ψ◦ belongs to the left-hand side
of σ, (ii) ψ◦ belongs to the right-hand side of σ, or (iii) ψ◦ belongs to neither
side of σ. Moreover, each sequent σ in H is precisely determined by the which
of the previous three items it satisfies for each formula ψ ∈ FL(ϕ). Therefore H
contains at most 3n sequents, where n := FL(ϕ). 2

3.6 Conclusion

We have constructed sound and complete non-well-founded sequent calculi for
modal logic with the master modality interpreted over classes of CX-frames. This
is an extension of the method and a generalisation of the results by Lahav in [66].
The following gives an overview of our contributions.

• We extended the calculi from unimodal to multimodal logic.

• We extended the calculi from multimodal logic to multimodal logic with the
master modality (aka Common Knowledge Logic), by (i) adding left and
right rules for the master modality [∗], and (ii) imposing a soundness con-
dition on infinite branches using a focus mechanism. The resulting calculi
are denoted by HX∗ + RC.

• We established soundness for each of the HX∗ + RC.

• We established analytic completeness for each of the HX∗+RC. This required
a novel argument for the case of the modality [∗] in the Truth Lemma.

• We established cut-free completeness for those calculi HX∗ + RC for modal
logic with the master modality, where X ∈ {K,K4} and C consists only of
what we called equable frame conditions. For this we needed to introduce
the notion of equability, as well as a new notion of maximality, as explained
in Remark 3.5.18. Although we do not obtain cut-free completeness for all
frame conditions that Lahav obtains cut-free completeness for with respect
to the basic modal language, our result still covers infinitely many different
frame conditions.

The following table sums up what we now know about the completeness of the
hypersequent calculi at hand, where HX + RC denotes the calculus for the basic
modal language presented by Lahav in [66].
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X ∈ {K,K4}, C equable X ∈ {K,K4}, C not equable X ∈ {B,B4}
HX + RC cf cf an
HX∗ + RC cf an an

In other words, the only frame conditions for which Lahav obtains a cut-free
calculus and we do not, are those where X ∈ {K,K4} and C contains conditions
which are not equable. This begs the following question.

3.6.1. Question. For which other sets C of simple (not necessarily equable)
frame conditions is HK∗ + RC cut-free complete?

Along the same lines, it would be interesting to see whether we could cover frame
conditions not covered by Lahav’s method. For instance:

3.6.2. Question. Is it possible to construct an analytic cyclic proof system for
ML∗ interpreted over the class of KD45-frames?

Another pressing question is whether the same techniques can be applied to more
expressive fragments of the modal µ-calculus. We conjecture this is the case for
PDL (possibly with converse). In [67] a system for PDL with converse is presented,
which shares many similarities to our hypersequent calculi. Unfortunately, an
error was found in this paper, which is explained in [89, Section 7.3]. If our
conjecture holds, it might provide a way to repair the error in [67] and restore its
results.

Along similar lines, it might be interesting to consider a fragment with spe-
cific syntactic properties, such as the weakly aconjunctive or disjunctive formulas
from [107]. In the same paper these formulas are related to so-called thin refuta-
tions. Those, in turn, are related to proof systems with a single focus annotation.
This suggests that our techniques might be applicable to these fragments as well.

Related to the above, it would be interesting to see if our cyclic proofs could
be translated into Hilbert-style proofs with an explicit induction rule. Such trans-
lations would provide alternative proofs of completeness for well-known Hilbert-
style calculi for ML∗. This will be challenging, as the language ML∗ lacks the
necessary expressive power for the strengthened induction rule of Afshari & Leigh
in [4]. For more details about this issue, we refer the reader to Section 7.1 of [89].
This further points in the direction of extending the language, where an ultimate
goal would be to prove completeness for Kozen’s axiomatisation of the modal
µ-calculus interpreted over various frame classes.

On a different note, we would like to investigate whether our proof systems
can be used to establish the interpolation property for ML∗. Thomas Studer,
based on earlier work by Maksimova [72], shows in [103] that ML∗ does not enjoy
this property over several frame classes, including the class of all frames. For
many other frame classes, such as the class S5n which plays an important role
in epistemic logic, this question remains open. Although the negative results by
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Maksimova and Studer are not encouraging, if ML∗ does turn out to have the
interpolation property over some simple frame class, then perhaps our calculus
can be used to prove it.

Another interesting avenue for further research would be to connect the hy-
persequent calculi of this chapter to algebraic approaches to proof theory. For
instance, the paper [14] constructs analytic proof calculi for basic modal logic
using algebraic techniques. In combination with our ideas this could perhaps be
generalised to modal fixed point logics.

Lastly, whilst we showed the small model property for all of the logics con-
sidered this chapter, we have yet to provide a bound on the size of proofs. This
topic will be addressed in the Intermezzo following this chapter.



Intermezzo

In this intermezzo we introduce an abstract framework for reasoning about the
cyclic proof systems in this thesis. As main application, we will prove the bounded
proof property for (abstract) proof systems satisfying certain sufficient conditions.
Even though in all known concrete cases this can already be proven using the
positional determinacy of parity games, often with a sharper bound, we still
think our framework is interesting for the following reasons:

Special purpose. Our framework is tailored to the types of conditions on infi-
nite branches one encounters in the cyclic proof theory literature. Even
though in practice these very often turn out to be parity conditions, this
is not always the case. Moreover, as we will see later, our argument for
the bounded proof property has a proof-theoretic rather than an automata-
theoretic flavour. Like the standard arguments for cut-elimination, it works
by pushing some unwanted structure in a proof upwards, until it eventually
disappears.

Generality. It seems that the generality of our framework cannot be captured
by that of parity games, in the sense that the bounded proof property
result given below cannot be obtained using the positional determinacy of
some parity game. We make no claim in the other direction, i.e. that our
framework says something about the theory of parity games.

Unification. The bounded proof property is often proven for a specific path-based
non-well-founded proof system, e.g. in [54] and in [73]. Our framework
allows one to unify these arguments and to prove results about multiple
systems at once. Although much more sophisticated frameworks already
exist for trace-based non-well-founded proof systems [6, 19], we believe our
framework is the first to axiomatise path-based non-well-founded proof sys-
tems.

89



90 Intermezzo

We begin this intermezzo by defining (non-well-founded) trees and some of their
constructions as sets of sequences. In the section thereafter, we will give our ab-
stract notion of a path-based non-well-founded proof system, define infinitary and
cyclic proofs, and prove some basic properties. In the third section we will prove
our main result: any infinitary proof with only finitely many distinct sequents,
can be transformed into a cyclic proof of bounded size. We conclude in the final
section.

I.1 Trees

Let N∗ be the set of finite strings of natural numbers. For a ∈ N∗ we use |a| to
denote the length of a. Moreover, we use ≤ for the prefix relation on N∗.

A tree is a non-empty subset T of N∗ such that (i) T is closed under taking
prefixes, and (ii) u ·m ∈ T entails u ·n ∈ T for all n,m ∈ N with n < m. Elements
of a tree are called nodes , and the empty string ε is called the root . If u, v are
nodes of a tree such that u ≤ v we say that u is an ancestor of v, and that v is
a descendant of u. If, moreover, u 6= v, then u and v, respectively, are said to be
a proper ancestor and descendant. Finally, if there is no w such that u < w < v,
then u and v, respectively are called direct ancestors and direct descendants. The
depth |u| of a node u is defined to be its length as a string.

A path in a tree T is a chain u0 < u1 < · · · (< un) such that ui+1 is a
direct descendant of ui for each i. If u < v, we write [u, v] for the unique path
u = u0 < u1 < · · · < un = v and [u, v) for the same path minus un. A branch
β of a tree T is a maximal <-chain in T . Note that every branch is also a path.
We write β(m) for the unique element in β of length m (if it exists).

We will now introduce a way of labelling the nodes of some tree. A ranked
alphabet is a set Σ of characters together with a function ar : Σ → N assigning
to each character an arity. Given a ranked alphabet Σ, a Σ-labelled tree is a tree
T together with a labelling function l : T → Σ such that for every u ∈ T and
n ∈ N:

u · n ∈ T ⇔ n < ar(l(u)).

A tree language over a ranked alphabet Σ is any set of Σ-labelled trees. Note
that, by definition, every Σ-labelled tree is finitely branching.

Given a Σ-labelled tree T with labelling function l, the subtree generated by
some node u of T is the Σ-labelled tree 〈u〉 with nodes

〈u〉 := {v ∈ N∗ : u · v ∈ T},

and the labelling function lu given by lu(v) := l(u · v). Now suppose that T1 and
T2 are both Σ-labelled trees, with labelling functions l1 and l2, respectively. We
define the substitution T1[T2/u] of the node u ∈ T1 by the tree T2 as follows:

T1[T2/u] := {u · v | v ∈ T2} ∪ {w ∈ T1 | u 6≤ w},
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with the labelling function l given by l(u · v) = l2(v) for every v ∈ T2 and
l(w) = l1(w) for every w ∈ T1 with u 6≤ w. Note that, in particular, we have
l(u) = l(u · ε) = l2(ε).

A finite tree with back edges (T, f) consists of a finite tree T together with a
partial function f from T to itself, such that (i) dom(f) consists of ≤-maximal
elements in T , and (ii) f(u) < u for every u ∈ dom(f). A Σ-labelled finite tree
with back edges is a finite tree with back edges together with a labelling function
l : T → Σ such that for every u ∈ T \ dom(f) it holds that

u · n ∈ T ⇔ n < ar(l(u)).

Note that the ≤-maximal elements in a tree T are its leaves . It follows from the
definitions that in a Σ-labelled finite tree with back edges (T, f) with labelling
function l, every leaf u either satisfies ar(l(u)) = 0 or u ∈ dom(f). An element
u ∈ dom(f) is often called a repeating leaf , and f(u) is then called its companion.
It will become clear later why we do not require that l(u) = l(f(u)).

A path in a finite tree with back edges (T, f) is a chain (ui)i∈I with I ∈ ω or
I = ω such that for each i, either ui+1 is a direct descendant of ui, or ui+1 = f(u),
for some repeating leaf u ∈ dom(f) which is a direct descendant of ui. Note that
if I = ω then no ui on the path belongs to dom(f).

We wish to define the tree obtained by unravelling a Σ-labelled finite tree
with back edges (T, f) with labelling function l. For this we need the following
definition. Let ε = u0, . . . , um be a finite path in (T, f) starting at the root. By
definition, for each 1 ≤ i ≤ m there is an ni ∈ N such that ui+1 is either of the
form ui ·ni or of the form f(ui ·ni). The projection of this path is the finite string
n1 · · ·nm ∈ N∗. We define

un(T, f) := {u : u is a projection of a finite path in (T, f) starting at the root}

The labelling function lun(T,f) is defined as follows: if u is a projection of a non-
empty path u0, . . . , um, we set lun(T,f)(u) := l(um). If u = ε, i.e. u is a projection
of the empty path, we set lun(T,f)(u) := l(ε).

We close this section by defining words induced by paths in Σ-labelled trees.
If (ui)i∈I for I ∈ ω ∪ {ω} is a path in a tree T with labelling function l : T → Σ,
the word induced by this path is the word l(u0) · l(u1) · · · l(un) if I = n ∈ ω, and
l(u0) · l(u1) · l(u2) · · · if I = ω.

I.2 Path-based non-well-founded proof systems

The following gives an abstract definition of a path-based non-well-founded proof
system. Our definition is intentionally broad, offering substantial flexibility in
the specification of both finite and infinite good paths, whereas usually in a cyclic
proof system those two are more restricted and interrelated. On the one hand this
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is a disadvantage, because it means that our definition is too broad to precisely
capture the concept of a path-based non-well-founded proof system, as is it often
informally used in the literature. On the other hand, the advantage of proving
results about these more general objects, of course, is that those results are more
general as well.

We write Σ∗ for the set of finite sequences of characters in Σ, and Σ∞ for the
set of infinite sequences of characters in Σ.

I.2.1. Definition. A (path-based) proof system P is a ranked alphabet Σ to-
gether with:

(i) An equivalence relation ≡ on Σ.

(ii) A relation R ⊆ Σ× Σ∗ such that for all a ∈ Σ and w ∈ Σ∗:

(a) If aRw, then length(w) = ar(a).

(b) If aRw and w′ ∈ Σ∗ is such that length(w′) = length(w) and moreover
w′(n) ≡ w(n) for all n < ar(a), then aRw′.

(iii) A set G ⊆ Σ∗ such that if w1 · w2 · w3 ∈ G and w2 /∈ G, then w1 · w3 ∈ G.

(iv) A set I ⊆ Σ∞ such that if w0·w1·w2 · · · ∈ I, then wi ∈ G for infinitely many i.

In the context of a proof system P, elements of G are called good words, and
elements of I are called good infinite words.

The intuition behind this definition is that Σ consists of rules instances of the
form:

Γ1 · · · Γnr
Γ

Note that the axioms are precisely the rule instances in Σ of arity 0.
The equivalence relation ≡ identifies rule instances with the same conclusion.

The relation R determines whether the premisses of some rule instance i ∈ Σ
match the conclusions the rule instances i1 · · · in. Accordingly, for iRi1 · · · in to
hold, the arity of i should be n. Moreover, if i′1, . . . , i

′
n are such that ik ≡ i′k for

every 1 ≤ k ≤ n, then we have

iRi1 · · · in ⇔ iRi′1 · · · i′n.

As will become clear later, the purpose of the relation ≡ is to allow us to express
that some branch in a proof tree contains multiple occurrences of the same sequent
(even though it need not contain multiple occurrences of the same rule instance).

The third and fourth conditions are needed to determine which cyclic, respec-
tively infinitary, derivations will count as proofs. The third condition is inspired
by the fact that path-based cyclic proof systems often deem some path good if
something good persists on the path (e.g. there is always a formula in focus)
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and something good happens at least once (e.g. a focussed unfolding happens).
Hence, if w1 ·w2 ·w3 is good and w2 is not good, then the good thing must happen
either in w1 or in w3, whence w1 ·w3 is good. Note that the condition on G forces
ε ∈ G. This will have no impact on our definition of proofs, because we will
require that the path between a repeating leaf and its companion is of non-zero
length.

Finally, the fourth condition links the infinite good paths to finite good paths.
It is a weakened version of the observation that infinite good paths often have
final segments that are concatenations of finite good paths. For instance, in the
focus systems of the previous chapter, a finite good path is one where the focus
always persists and a focussed unfolding happens at least once, and an infinite
good path is one with a final segment where the focus always persists and a
focussed unfolding happens infinitely often.

Before we go on to define what a proof is in some proof system P, we first
establish a consequence of the definition that will be useful later on.

I.2.2. Lemma. Let G be the set of good words of some proof system P. If w1 ·w2

belongs to G, then so does either w1 or w2.

Proof:
By the hypothesis we have ε · w1 · w2 ∈ G. Now suppose that w1 /∈ G. Then by
condition (iii) of Definition I.2.1, we have ε · w2 ∈ G, whence w2 ∈ G. 2

The following definition specifies what it means to be an infinitary proof in
some proof system P.

I.2.3. Definition. Let P be a proof system with alphabet Σ. A Σ-labelled tree
T with labelling function l is said to be a P-derivation if for every node u of T
it holds that l(u)Rl(u · 0) · · · l(u · (ar(u)− 1)). A P-derivation is called a P-proof
if every word induced by an infinite branch belongs to the set I of infinite good
words.

Cyclic proofs are defined similarly, using the set G of finite good words instead of
the set I of infinite good words. Recall that if u, v are nodes in a tree such that
u < v, we write [u, v) for the finite upward path from u to v that includes u but
not v

I.2.4. Definition. Let P be a proof system with alphabet Σ. A Σ-labelled finite
tree with back edges (T, f) is a cyclic P-derivation if for every node u of T \dom(f)
it holds that l(u)Rl(u · 0) · · · l(u · (ar(u)− 1)), and for every u ∈ dom(f) it holds
that l(f(u)) ≡ l(u). A cyclic P-derivation is called a cyclic P-proof if for every
u ∈ dom(f) the word induced by the path [f(u), u) belongs to G.

Note that we do not require l(f(u)) = l(u), but merely l(f(u)) ≡ l(u). The idea
is that a repeating leaf only has to repeat a sequent, not the entire rule instance.
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We will often speak about a path [u, v), or about some infinite branch β, in
a P-derivation being good or bad. This is a slight abuse of language, because we
are actually talking about whether the words induced by these paths belong to
G or, respectively, to I.

I.2.5. Example. Many of the path-based non-well-founded proof systems ap-
pearing in the literature fall within the scope of our definition. For each of the
examples below, the appropriate ranked alphabet Σ consists of the respective
system’s rule instances (including its axioms), the equivalence relation ≡ identi-
fies rule instances with the same conclusion, and the relation R connects a rule
instance i with n premisses, to n rule instances ik such that each k-th premiss of
the instance i is the same as the conclusion of the instance ik.

• Each hypersequent calculus HX∗ + RC from the previous chapter.

• The multi-focus system Focus for the alternation-free modal µ-calculus given
by Marti & Venema in [73]. The good finite words are those in which there
is always a formula in focus, the focus rule is never applied, and the modal
rule is applied at least once. The good infinite words are those where there
is always a formula in focus, the focus rule is never applied, and the modal
rule is applied infinitely often.

• The Jungteerapanich-Stirling system for the modal µ-calculus [54, 100].
The good finite words are those where some name z persists in the control
throughout and is reset at least once. The good infinite words are those
where some name z persists throughout and is reset infinitely often.

• A recent preprint by Leigh & Wehr gives a general method for constructing
path-based proof systems from trace-based proof systems [69]. All of the
resulting path-based proof systems are captured by our definition. The
good words are those which contain an application of the reset rule to some
part of the control that persists throughout. The good infinite words are
those in which some part of the control is preserved throughout and is reset
infinitely often.

• The cyclic proof system for Gödel-Löb logic by Shamkanov [96]. All finite
and infinite words are good.

• The cyclic proof system for Grzegorczyk logic by Savateev & Shamkanov [92].
The good finite words are those on which there is a right premiss of the
modal rule. The good infinite words are those where this is the case in-
finitely often.

Note, on the other hand, that a trace-based non-well-founded proof system gen-
erally does not fall within the scope of our definition. The reason is that our
definition does not have a notion of formula, let alone of trace.
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In many of the above examples the set of good infinite words can be generated
from the set of good finite words in a canonical way.

I.2.6. Definition. Let G ⊆ Σ∗ be a set of good words. The set I(G) ⊆ Σ∞ of
infinite words generated by G is given by:

I(G) := {w0 · w1 · w2 · · · | wi ∈ G for each i ∈ N}.

I.2.7. Definition. A proof system P with G as set of good finite words and I
as set of good infinite words, is called simple if the following two conditions hold:

(i) I = I(G);

(ii) if w1 · w3 ∈ G and w2 ∈ G, then w1 · w2 · w3 ∈ G.

I.2.8. Example. All of the proof systems of example I.2.5 are simple, except for
those featuring a reset rule.

I.2.9. Lemma. Let P be a simple proof system. If w1 and w2 are good finite
words, then so is w1 · w2.

Proof:
If w1 is good, then clearly w1 · ε is as well. Applying item (ii) of Definition I.2.7,
we obtain that w1 · w2 = w1 · ε · w2 is good. 2

The following definition captures those proofs that have only finitely many
distinct sequents.

I.2.10. Definition. A P-proof T is frugal whenever {l(u) | u ∈ T}/≡ is finite.

I.2.11. Example. Any CXan-proof from the previous chapter is frugal. On the
other hand, it is not hard to see that not every CX-proof is frugal. Consider, for
instance, any infinitary CX-proof π and interleave some branch with applications
of cut that together add infinitely many new formulas to that branch. For every
proof system of Example I.2.5 it holds that every provable sequent has a frugal
proof.

A node v of a P-proof T is called a repeat if l(v) ≡ l(u) for some u < v. The
repeat v is called good whenever there is a u < v such that l(v) ≡ l(u) and the
word induced by [u, v) is good. Note that a good repeat v might nonetheless
have another ancestor u′ < v such that l(v) ≡ l(u′) and the word induced by
[u′, v) is bad. Finally, if v is a repeat, we write v̂ for the minimal u < v such
that l(v) ≡ l(u) and call v̂ the companion of v. Note that v might be a good
repeat, even though the word induced by [v̂, v) is not good. Namely, when the
word induced by [u, v) is good for some v̂ < u < v with l(v) ≡ l(u).

For any frugal proof there is a cyclic proof with the same conclusion.
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I.2.12. Proposition. Let T be a frugal P-proof. Then there is a cyclic P-proof
(T0, f) such that lT (ε) ≡ lT

′
(ε).

Proof:
Let T0 be the subtree of T obtained removing all proper descendants of good
repeats. We claim that T0 is finite. Indeed, suppose not. Then, since T is
finitely branching, it follows by Kőnig’s Lemma that T0 has an infinite branch
β. Moreover, since T is frugal, it follows by the pigeonhole principle that there
are n0 < n1 < n2 < · · · such that l(β(ni)) ≡ l(β(nj)) for every i, j. Consider
the infinite word induced by the following infinite path (where concatenation of
paths is defined in the obvious way):

[0, β(n0)) · [β(n0), β(n1)) · [β(n1), β(n2)) · · ·

Since β is a branch of T , there must by Definition I.2.1.(iv) be at least one (in
fact, infinitely many) i such that the word induced by [β(ni), β(ni+1)) is good,
contradicting the assumption that β does not contain a good repeat.

The cyclic proof (T0, f) is then defined by, for each repeating leaf v of T0,
letting f(v) be the u < v such that l(v) ≡ l(u) and the word induced by [u, v) is
good. Note that such u exists, since, by construction, v is a good repeat. 2

Although the previous proposition tells us that there is a cyclic proof for each
frugal proof, it does not say anything about the size of this cyclic proof. The
frugality ensures that a repeat happens at some point on each branch. However,
it might take many repeats before a good repeat is reached. One way to ensure
that the resulting cyclic proof is small, is by requiring that the first repeat is
good.

A repeat v is said to be minimal if no u < v is a repeat.

I.2.13. Definition. A P-proof is concise if all of its minimal repeats are good.

In the next section we will show how to transform frugal proofs into concise
proofs. First, we will show that (over frugal proofs) conciseness is a weak form
of the more well-known property of uniformity .

I.2.14. Definition. A P-proof T is uniform if l(u) ≡ l(v) implies l(u) = l(v)
for every u, v ∈ T .

It follows that a proof is uniform if and only if the subtrees generated by two
occurrences of the same sequent are isomorphic. In game-theoretic terms, this
corresponds to the proof being a positional winning strategy for Prover.

I.2.15. Proposition. Let T be a frugal P-proof. Then T is concise if uniform.
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Proof:
We must show that each minimal repeat of T is good. In fact, we will show that
for every u < v such that l(u) ≡ l(v), the path [u, v) is good. Suppose, towards a
contradiction, that this is not the case. Write v as v = u · x. By assumption the
word induced by x is bad. Consider the final segment of an infinite branch

[u, u · x) · [v, v · x) · [v · x, v · x · x) · · ·

By Definition I.2.1.(iv) at least one (in fact, infinitely many) of the words induced
by these segments must be good, contradicting the fact that the word induced by
x is bad. 2

Another important property of infinitary proofs is regularity. Regular proofs
are precisely the proofs that can be obtained by unravelling finite trees with back
edges.

I.2.16. Definition. A P-proof is regular if it has at most finitely many non-
isomorphic subtrees.

The following proposition relates the notion of regularity to the notions we have
discussed so far.

I.2.17. Proposition. Let T be a P-proof. Then:

(i) If T is regular, then T is frugal.

(ii) If T is frugal and uniform, then T is regular.

Proof:
Item (i) is immediate by the definitions. For item (ii), note that, by uniformity,
equivalent nodes generate isomorphic subtrees. Since, by frugality, T only con-
tains finitely many nodes up to equivalence, it follows that T is regular. 2

In the non-well-founded proof theory literature, it is often shown that the
unravelling of a cyclic proof is a (regular) infinitary proof. Generally this does
not hold for our abstract P-proofs, because Definition I.2.1 does not enforce a
sufficiently strict relation between the set G of good words and the set I of good
infinite words. It does, however, hold for simple proof systems. The rest of this
section is devoted to proving this result.

I.2.18. Definition. Let (T, f) be a finite tree with back edges. The one-step
dependency order �1 on ran(f) is given by:

u �1 v :⇔ v ≤ u < v′ for some v′ ∈ f−1(v).

The dependency order � on ran(f) is defined as the transitive closure of �1. If
u � v, we say that u depends on v.
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f(l2)

f(l1)

u

l1 l2

Figure I.4: A finite tree with back edges where f(l1) �1 f(l2).

I.2.19. Example. Figure I.4 shows an example of a finite tree with back edges
where f(l1) �1 f(l2).

Note that u �1 v implies that there is a path from v to u, and therefore so does
u � v. It immediately follows that � is antisymmetric. Since � is also reflexive,
it defines a partial order on ran(f) for any finite tree with back edges (T, f).

We write Inf(α) for the elements occurring infinitely often in some given infi-
nite sequence α.

I.2.20. Lemma. For any infinite path α through some finite tree with back edges
(T, f), the set Inf(α) ∩ ran(f) has a �-greatest element.

Proof:
An infinite path through (T, f) must pass at least one back edge, whence the set
Inf(α) ∩ ran(f) is both non-empty and finite. It therefore suffices to prove that
all �-maximal nodes in this set are equal.

Let u be a �-maximal node in Inf(α) ∩ ran(f). We claim that for all nodes v
in Inf(α) it holds that u ≤ v. Note that it suffices to show this for each

f(l) ∈ Inf(α) ∩ {f(l) : l ∈ dom(f) and u ≤ l}

To this end, let l be an arbitrary such repeating leaf. Then both u and f(l)
lie somewhere on the path pl from the root of T to l, so that either u ≤ f(l)
or f(l) ≤ u. Moreover, we must have f(l) ∈ Inf(α) ∩ ran(f) and thus, by the
maximality of u, it follows that u 6≺ f(l). But this means that u ≤ f(l), as
required.

Since u was chose arbitrarily, we find that Inf(α)∩ ran(f) indeed has a unique
�-maximal element. 2
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The following lemma makes essential use of the assumption that P is a simple
proof system.

I.2.21. Lemma. Let P be a simple proof system and let (T, f) be a cyclic P-proof.
Suppose that u0, . . . , un is a finite path in (T, f) such that the following hold:

(i) u0 ∈ ran(f);

(ii) u0 = un;

(iii) u0 ≤ ui for every 0 ≤ i ≤ n.

Then the word induced by the path u0, . . . , un−1 is good.

Proof:
Let K be the set of indices of nodes on u0, . . . , un which belong to ran(f) and
have already occurred earlier on the path. That is,

K := {k | uk ∈ ran(f) and uk = uj for some j ∈ [0, k)}

We proceed by induction on |K|. So suppose that the thesis has been proven for
all K ′ such that |K ′| < |K|. Let k be the minimum of K and let j ∈ [0, k) be
such that uj = uk (note that these exist by assumptions (i) and (ii)).

We claim that the word induced by uj, . . . , uk−1 is good. Note first that for
every q ∈ [j, k − 1) it holds that uq+1 is a direct descendant of uq. Indeed, if
not, then by the definition of a path through a cyclic proof, we have uq+1 = f(u)
for some u ∈ dom(f) such that u is a direct descendant of uq. But then, by
assumption (iii) above and the definition of a cyclic proof, we have u0 ≤ uq+1 ≤ uq.
Hence, there must be some p ≤ q such that up = uq+1. But q+1 < k, contradicting
the minimality of k.

It follows by transitivity that uj ≤ uk−1. Hence uk = uj is not a direct
descendant of uk−1, which means that uk = f(u), where u is a direct descendant
of uk−1. Therefore, the word induced by uj, . . . , uk−1 is the word induced by
[uk, u), which is indeed good by the fact that (T, f) is a cyclic proof.

Next, we claim that the path u0, . . . , uj−1, uk, . . . un−1 is good. Note that this
is indeed a path through (T, f), by the fact that uj = uk. Hence our claim
follows directly from the induction hypothesis. This application of the induction
hypothesis is justified by the fact that, by the minimality of k in K, the index k
does not appear in the analogous set, sayK ′, of the path u0, . . . , uj−1, uk, . . . , un−1.

Finally, by item (ii) of Definition I.2.7, we find that the word induced by
u0, . . . , un−1 is good. 2

I.2.22. Proposition. Let P be a simple proof system and let (T, f) be a cyclic
P-proof. Then the unravelling un(T, f) is a regular P-proof.
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Proof:
We must show that every infinite branch β of un(T, f) induces a good infinite
word. Note that any such β can be seen as an infinite path through (T, f). By
Lemma I.2.20, the set Inf(β) ∩ ran(f) must contain a �-greatest element u. For
every n ∈ N, let un be the n-th occurrence on β of u,. Then the path β can be
written as the infinite concatenation of all finite paths ui, . . . , ui−1. By Lemma
I.2.21 each of these finite paths induced a good word. Hence it holds by item (i)
of Definition I.2.7 that β induces a good infinite word. 2

I.2.23. Corollary. Let P be a simple proof system. Then for every frugal P-
proof T there is a regular P-proof T ′ with equivalent root.

Proof:
Take T ′ = un(T0, f), where (T0, f) is as given by Proposition I.2.12. By the
previous proposition this is a P-proof, which is regular because it is the unravelling
of a finite tree with back edges. 2

I.3 From frugal to concise proofs

In this section we will show that for every frugal proof in some proof system P,
there is a concise proof with the same conclusion. Roughly, our strategy will be
to push the bad repeats upwards, until every first repeat must be good. Here we
use the fact that, by frugality, there is a bound on the depth of the first repeat.

More precisely, we will measure non-conciseness by the depth of v̂, where v
is a repeat such that the word induced by [v̂, v) is bad and the minimal repeat
below v is also bad. Recall that v̂ is the minimal u < v such that l(v) ≡ l(u),
and that v̂ is called the companion of v.

I.3.1. Definition. Let v be a repeat of T . The conciseness-rank (or c-rank) of
v is given by:

c(v) :=


∞ if the word induced by [v̂, v) is good,

∞ if the minimal repeat u ≤ v is a good repeat,

|v̂| otherwise.

The c-rank c(T ) of T is defined to be the minimum of all the c-ranks of repeats
of T (which we assume to be ∞ if T has no repeats).

Note that c(T ) = ∞ if and only if there is no bad minimal repeat, i.e. if and
only if T is concise.

We define a preorder � on proofs such that, intuitively, T1 � T2 means that
T1 has the same conclusion as T2 and every sequent occurring in T2 also occurs
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in T1. The reason that we write T1 � T2, instead of the other way around, is
that we care about making proofs more concise. The higher in the �-order, the
sharper the bound on the depth of the first repeat.

Formally, we define � as follows.

I.3.2. Definition. The preorder � on P-proofs is given by: T1 � T2 if and only
if both of the following hold:

(i) lT1(ε) ≡ lT2(ε);

(ii) for every v ∈ T2 there is a u ∈ T1 such that lT1(u) ≡ lT2(v).

Clearly, if T1 is frugal and T1 � T2, then T2 is frugal as well. The following lemma
makes formal the idea that any frugal proof of sufficiently high c-rank is concise.

I.3.3. Lemma. For any frugal P-proof T1 there is a number k such that for every
T2 such that T1 � T2 it holds that c(T2) ≥ k implies c(T2) =∞.

Proof:
Let k be the (finite) cardinality of {l(u) | u ∈ T1}/ ≡ and let T2 be a P-proof with
T1 � T2 and c(T2) ≥ k. Let u be some minimal repeat of T2. By the pigeonhole
principle, we must have k ≥ |u| > |û|. Hence, since c(T2) ≥ k, the repeat u must
be good. 2

The previous lemma tells us that, for making a frugal proof T concise, it
suffices to find an infinite chain

T := T0 � T1 � T2 � · · · (I.1)

such that i < j implies c(Ti) < c(Tj).
The following definition captures which nodes contribute to the c-rank of T .

I.3.4. Definition. A repeat u of T is said to be critical if c(u) = c(T ).

We write ĈT ⊆ T for the set of companions of critical repeats of T :

ĈT := {û | u is a critical repeat of T}.

I.3.5. Lemma. If c(T ) <∞, then ĈT is finite.

Proof:
Since every node in ĈT has depth c(T ), this follows from the fact that T is finitely
branching. 2

The following lemma is the first ingredient for building the chain (I.1). Its
statement might be a bit opaque right now, but in the next lemma we will see
that it is exactly what we need.
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I.3.6. Lemma. Suppose c(T ) < ∞. For every critical repeat u of T there is a
node v ≥ u such that l(v) ≡ l(u), the path [û, v) is bad, and c(〈v〉) > 0.

Proof:
Suppose, towards a contradiction, that there is no such v ≥ u. As u is critical,
we have c(u) = c(T ). But by hypothesis c(T ) <∞, and thus we know that [û, u)
is bad. It follows that c(〈u〉) = 0, for otherwise we could just have chosen v = u.

Hence, in 〈u〉 there must be a witness of c(〈u〉) = 0. That is, in T there is
a u1 > u such that l(u) ≡ l(u1) and [u, u1) is bad. Since [û, u) is also bad, we
find by Lemma I.2.2 that [û, u1) is bad. Again, it follows that c(〈u1〉) = 0, for
otherwise we could have set v = u1.

Continuing in this way, we find an infinite upward path

[u0, u1) · [u1, u2) · [u2, u3) · · ·

where u = u0. Since T is a proof, this path must be a final segment of some good
branch. But then [ui, ui+1) must be good for some i (in fact, for infinitely many
i), a contradiction. 2

The next lemma builds upon the previous lemma. It either directly shows
how to increase the c-rank of T , or, if not, at least tells us how to decrease some
well-founded measure while leaving c(T ) untouched.

I.3.7. Lemma. Suppose that c(T ) <∞ and that u is a critical repeat of T . Let v
be as given by the previous lemma and consider the tree T ′ := T [〈v〉/û]. Then T ′

is a P-proof such that T � T ′ and, moreover, either c(T ′) > c(T ), or c(T ′) = c(T )

and |ĈT ′ | < |ĈT |.

Proof:
It is clear that T ′ is a P-proof such that T � T ′. Suppose that c(T ′) 6> c(T ), i.e.

c(T ′) ≤ c(T ). We will show that c(T ′) = c(T ) and |ĈT ′ | < |ĈT |.
For the former, note that it suffices to show that c(T ) ≤ c(T ′). To that end,

take an arbitrary critical repeat w in T ′. We will show that c(T ) ≤ c(w). Recall
that by the definition of T ′ as a substitution, we either have w = û · x for some
x ∈ 〈v〉, or w = y for some y ∈ T with û 6≤ y.

In the latter case, we have û 6≤ w and, since ŵ < w in T ′, also û 6≤ ŵ. Hence
w is a repeat in T as well. Since c(w) only depends on w and its ancestors, the
value of c(w) is the same regardless whether it is calculated in T or in T ′. Hence
the desired inequality c(T ) ≤ c(w) simply follows from the definition of c(T ).

For the rest of the proof of the claim that c(T ) ≤ c(T ′), we can thus assume
that w is of the form w = û·x for some x ∈ 〈v〉. We make another case distinction,
namely on whether û ≤ ŵ. If so, we find, by the fact that u is critical in T and
w is critical in T ′:

c(T ) = |û| ≤ |ŵ| = c(T ′),
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and we are done.
Hence we may further assume that û 6≤ ŵ, i.e. ŵ < û. The path under

consideration in T ′ now looks like this:

ŵ û w

We will consider the node w+ := v · x ∈ T . The corresponding path in T then
looks like this:

ŵ û u v w+

where u and v are possibly equal. We prove several properties about w+.

(i) w+ is a repeat in T . Indeed, since ŵ < û, we have ŵ ∈ T . The result then
follows from the fact that

lT (ŵ) = lT ′(ŵ) ≡ lT ′(w) = lT ′(û · x) = l〈v〉(x) = lT (v · x) = lT (w+),

and ŵ < w+.

(ii) ŵ+ = ŵ. Like the previous item, this follows from lT (w+) ≡ lT (w) together
with ŵ < w+.

(iii) The minimal repeat below w+ is bad. Indeed, we have that u is a repeat
such that u ≤ v ≤ w+. Thus, the minimal repeat below w+ is the minimal
repeat below u, which is bad because c(u) <∞.

(iv) [ŵ, w+) is bad in T . To see this, note that [ŵ, w+) can be written as

[ŵ, w+) = [ŵ, û) · [û, v) · [v, w+)

By the construction of Lemma I.3.6 the path [û, v) in T is bad. Moreover,
since w is critical in T ′, we have that [ŵ, w) = [ŵ, û) · [û, w) in T ′ is bad.
Since the word induced by [ŵ, û) · [û, w) in T ′ is the same as the word
induced by [ŵ, û) · [v, w+) in T , the latter is bad as well. Hence it follows
from Definition I.2.1.(iii) that [ŵ, w+) must be bad.

By fact (i) above, we find that c(T ) ≤ c(w+). Moreover, by facts (iii) and (iv),

we have c(w+) = |ŵ+|. Combining this with fact (ii), we obtain c(T ) ≤ |ŵ|. As w
is critical by assumption, we have c(T ′) = |ŵ| and thus c(T ) ≤ c(T ′), as required.

It remains to show that |ĈT | > |ĈT ′|. In fact, we will show that ĈT ′ ⊆ ĈT \{û}.
To this end, let ŷ ∈ ĈT ′ , where y is a critical repeat.

Suppose first, towards a contradiction, that ŷ = û. Since y > ŷ, we can write
y as y = û · z. By the definition of T ′, we have that z ∈ 〈v〉. Observe that z is a
repeat in 〈v〉 with ẑ = ε such that [ε, z) is bad. We claim that the minimal repeat
below z in 〈v〉 is bad as well. To see this, consider the minimal repeat s below y
in T ′. As y is critical, we know that s must be a bad repeat. But since we have
established that c(T ′) = c(T ) = |û|, it follows that s > ŝ ≥ û. The situation so
far can be depicted as follows. In T ′, we have
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ε û ŝ s y = û · z

where ŝ may be equal to û, and s may be equal to y. Hence we can write ŝ as
ŝ = û · a, and s as s = û · a · b. In 〈v〉, this looks as follows:

ε a a · b z

where a may be equal to ε, and a · b may be equal to z. It follows that a · b is
the minimal repeat below z in 〈v〉. Moreover, this path is bad, since the path
induced by [a, a · b) in 〈v〉 is the same as the path induced by [ŝ, s) in T ′. But
then c(z) = 0 in 〈v〉, whence c(〈v〉) = 0, contradicting Lemma I.3.6.

Thus we must have ŷ 6= û. As |ŷ| = |û|, it follows that û 6≤ ŷ and thus

y, ŷ ∈ T , whence ŷ ∈ ĈT . 2

We are finally ready to prove the main theorem of this intermezzo.

I.3.8. Theorem. For any frugal P-proof, there is a concise P-proof with equiva-
lent root.

Proof:
Let T be a frugal P-proof which is not concise. Let k be the number given by
Lemma I.3.3. Since c(T ) <∞, we can repeatedly apply I.3.7 to obtain a chain

T =: T0 � T1 � T2 � · · ·

We claim that for some n it must hold that c(Tn) ≥ k. Indeed, this follows

from the fact that the well founded measure |ĈTi | can only decrease finitely often.
Hence, by Lemma I.3.3, there is some n such that c(Tn) >∞ and thus such that
Tn is concise. 2

I.4 Conclusion

We mention some questions for future work:

• Positional strategies in (parity) proof search games correspond to uniform,
rather than concise proofs. Can we also obtain uniform proofs in our ax-
iomatic setting?

• Is there a way of improving our axiomatisation such that also for the systems
featuring a reset rule the good infinite words can be generated from the good
finite words (like with our simple proof systems)?

• In the same spirit: which axioms do we need to add in order to be able to
prove that the unravelling of a cyclic P-proof is always a P-proof? That
is, which axioms should we add in order to prove a variant of Proposition
I.2.22 without the requirement that the proof system P is simple?



Chapter 4

Filtration and canonical completeness
for continuous modal µ-calculi

4.1 Introduction

In this chapter we take a more traditional approach to the proof theory of modal
fixed point logics. Rather than working with Gentzen-style proof systems, we will
directly prove the completeness of Hilbert-style proof systems. As in Chapter 3,
the key tool will be a canonical model construction.

As already mentioned in the introduction of this thesis, the fact that com-
pactness fails for modal fixed point logics, prevents the use of the (infinitary)
canonical model construction, which is often used to prove completeness of basic
modal logics. A common solution is to work with finitary canonical models, as
was first done by Kozen & Parikh for PDL in [62] and by Segerberg for GL in [95].
In the book [45], Goldblatt applies the same procedure to several modal fixed
point logics, including CTL.

These finitary canonical models are closely linked to the most common method
of proving the finite model property for basic modal logic, i.e. the technique of
filtration. This roughly works as follows. One begins by taking the canonical
model SL of some non-compact logic L. Due to the compactness failure, this
model is non-standard, meaning that the frame underlying SL fails to satisfy
some desired properties. However, by applying filtration to SL one obtains a
finite model whose underlying frame often does satisfy these desired properties

In the recent paper [56], Kikot, Shapirovsky, and Zolin prove a result of this
kind that is relatively wide in scope. They show that if a basic modal logic L allows
the method of filtration, then so does its expansion with the transitive closure
modality. By iterating this procedure they show the same for the expansion
of L by all modalities of PDL. Subsequently, if the original basic modal logic L
moreover is canonical, the completeness of this PDL-expansion of L can be obtained
by applying filtration to its canonical model.

105
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As PDL can be seen a fragment of the modal µ-calculus [25], a natural question
is whether similar techniques can be applied to a more expressive fragment. It is
well known that the formula µx2x provides a counterexample against the appli-
cability of filtration, so any candidate fragment will have to omit this formula.

In this paper we consider the methods of filtration and canonical models for
the continuous modal µ-calculus µcML (cf. Definition 2.1.41). Fontaine, in [41],
shows that there are two equivalent ways to define µcML. First semantically, as the
fragment of the modal µ-calculus where the application of fixed point operators is
restricted to formulas whose functional interpretation is Scott-continuous, rather
than merely monotone. And second syntactically as, roughly, the fragment where
the modal operator � and the greatest fixed point operator ν are not allowed to
occur in the scope of a µ-operator (and dually, � and µ are not allowed in the
scope of a ν-operator). To the best of our knowledge, the logic µcML was mentioned
first in van Benthem [11] under the name ‘ω-µ-calculus’. It is related, and perhaps
equivalent in expressive power, to the logic of concurrent propositional dynamic
logic, cf. Carreiro [23, section 3.2] for more information.

It is also worth mentioning here that imposing syntactic continuity restrictions
on fixed point logics dates back at least 50 years. In [82], a syntactic continuity
restriction was imposed on a first-order fixed point logic in order to identify a
fragment that embeds into the infinitary logic Lω1,ω. More similar to our work
is the least root calculus by Pratt in [85]. Like us, Pratt shows that his calculus
admits filtration. The fact that Pratt’s calculus is formulated as a least root
calculus rather than a least fixed point calculus makes no substantial difference
for our purposes. An important difference, however, is that Pratt’s syntactic
continuity restriction features an aconjunctivity restriction (see [59, Definition
3.3.4]). Because of this it aligns more closely to what in modern language is
called the completely additive fragment of modal µ-calculus, as opposed to the
continuous fragment. We refer the reader to, for instance, the paper [41] for a
definition of the completely additive fragment. Also in [41], an example from [11]
is given, showing that the completely additive fragment is strictly less expressive
than the continuous fragment.

There are at least two reasons why the continuous µ-calculus is an interesting
logic; first, the continuity condition that is imposed on the formation of fixed
point formulas ensures that the construction of a definable fixed point using its
ordinal approximations will always be finished after ω many steps. And second,
in the same manner that the modal µ-calculus is the bisimulation-invariant frag-
ment of monadic second-order logic [53], µcML has the same expressive power as
weak monadic second-order logic, when it comes to bisimulation-invariant prop-
erties [24].

In the present chapter we show that we can add two more desirable properties
to this list: (i) the Filtration Theorem holds for µcML and (ii) completeness for
Kozen’s axiomatisation adapted to sufficiently nice logics in the language of µcML
can be proven using finitary canonical models.
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4.2 Filtration

Filtration is a well-known method in the theory of basic modal logic. In this sec-
tion we define filtration and related notions for the continuous modal µ-calculus
and show that some of their most important properties transfer to this more ex-
pressive language. Introduced by Lemmon & Scott in [71], filtration is a technique
for shrinking a Kripke model into a finite one, by identifying states that agree
on the truth of some given finite set of formulas. The Filtration Theorem then
states that the equivalence classes in the finite model satisfy the same formulas
from this finite set as their members do in the original model. Filtration is an
important tool for proving the finite model property and the decidability of modal
logics. Not only does it entail the finite model property, but also the small model
property: every satisfiable formula ϕ is satisfied in a model of size exponential in
the size of ϕ. Satisfiability and validity can then be decided by simply checking
all models up to this size. For an overview of recent developments in the theory
of filtration, see [12].

Throughout this chapter we will without loss of generality assume that all
formulas are tidy and in negation normal form (cf. Proposition 2.1.28).

Filtration As mentioned above, the main idea of the technique of filtration is
to identify states of a model that agree on some finite set of formulas. This is
captured by the following definition.

4.2.1. Definition. Let Σ be a set of formulas and let S be a Kripke model. The
equivalence relation ∼S

Σ is given by:

s ∼S
Σ s
′ if and only if ThS(s) ∩ Σ = ThS(s

′) ∩ Σ.

A filtration of S through Σ is then obtained by taking, as set of states, the quotient
set of the equivalence relation ∼S

Σ. Note that, although the following definition
imposes restrictions on the accessibility relation and valuation of a filtration, it
does leave room for multiple distinct filtrations through the same set of formulas.
Recall that FL was defined in Definition 2.1.29.

4.2.2. Definition. Let S = (S,R, V ) be a Kripke model and let Σ be a finite and
FL-closed set of formulas. A filtration of S through Σ is any model S = (S,R, V )
such that:

(i) S = S/∼S
Σ;

(ii) Rmin
Σ ⊆ R ⊆ Rmax

Σ ;

(iii) V (p) = {s : s ∈ V (p)} for every p ∈ Σ.
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where:

Rmin
Σ := {(s, t) : there are s′ ∼S

Σ s and t′ ∼S
Σ t such that Rs′t′},

Rmax
Σ := {(s, t) : for all �ϕ ∈ Σ; if s 
 �ϕ, then t 
 ϕ}.

where s denotes the equivalence class with representative s.

4.2.3. Remark. The above definition of filtration is the standard definition for
basic modal logic, as for instance found in [15, Definition 2.36]. Applying it to
the continuous modal µ-calculus requires no adaptation.

Filtration Theorem for the continuous modal µ-calculus We will now
prove the Filtration Theorem. It states that, restricted to the set Σ, the state s
of a model and the state s of its filtration satisfy the same formulas.

4.2.4. Theorem (Filtration Theorem). Let Σ be a finite and FL-closed set of
formulas and let S = (S,R, V ) be a Kripke model. For any filtration S = (S,R, V )
of S through Σ it holds that ThS(s) ∩ Σ = ThS(s) ∩ Σ for every s ∈ S.

Proof:
We must show that for every formula ξ ∈ Σ and for every state s ∈ S it holds
that:

S, s 
 ξ ⇔ S, s 
 ξ.

Because Σ is negation closed, it suffices to prove just one direction of the bi-
implication, which in our case will be the direction ⇒. Throughout this proof
we will write G for the game E(ξ, S) and G for the game E(ξ, S). As hypothesis
we assume that ∃ has a winning strategy f in the game G initialised at position
(ξ, s); we wish to show that (ξ, s) ∈Win∃(G).

The main idea of the proof is to obtain a winning strategy for ∃ in G by
playing a ‘shadow match’ in G. That is, we will simulate in G every move played
by ∀ in our G-match, and, to determine a move for ∃ in G, we copy the move
dictated in G by the strategy f . If we manage to do this, then whenever the
match in G is at some position (ϕ, s), the shadow match in G will be at a position
(ϕ, s) (note that this is indeed the case for the initial positions). It turns out
that this works well for all positions, except those of the form (�ϕ, s). At those
positions, a problem arises when ∀ chooses a position (ϕ, t) such that sRt, but
not sRt. This move by ∀ in G can then not be simulated in the shadow match,
because (ϕ, t) is not an admissible move for ∀ in G. However, using the fact that
R ⊆ Rmax

Σ , it will nonetheless hold that sRt and (�ϕ, s) ∈Win∃(G) together imply
(ϕ, t) ∈Win∃(G). We will use this to initiate a new shadow match in G whenever
we encounter a position of the form (�ϕ, s). The key observation will be that we
only need to initiate a new shadow match at most finitely often, because formulas
of the form �ϕ do not occur within the scope of least fixed point operators in the
language µcML.
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More formally, we say for I ∈ ω∪{ω} that a G-matchM = (ϕi, ti)i∈I is linked
to some G-match M = (ψi, si)i∈I whenever for every i ∈ I it holds that ϕi = ψi
and si = ti. Moreover, we say that M follows M whenever some final segment
of M is linked to M.

Claim. LetM be a finite G-match that follows some f -guided G-matchM, where
f is a winning strategy for ∃ in G initialised at first(M). Then precisely one of
the following holds:

• Both last(M) and last(M) belong to ∃, and there is an admissible move
(ϕi+1, ti+1) in G, such that M · (ψi+1, ti+1) follows M · (ϕi+1, si+1), where
(ϕi+1, si+1) is the move instructed by f in G.

• Both last(M) and last(M) belong to ∀, the formula in last(M) is not of
the form �χ, and for every admissible move (ψi+1, ti+1) for ∀ in G, there is
an admissible move (ϕi+1, si+1) for ∀ in G such thatM· (ψi+1, ti+1) follows
M · (ϕi+1, si+1).

• The formula in last(M) is of the form �χ and for every admissible move
(ψi+1, ti+1) for ∀ in G, there is a position (ϕi+1, si+1) in G such that f is
winning for ∃ in G@(ϕi+1, si+1), and M · (ψi+1, ti+1) follows (ϕi+1, si+1).
Note that only in this case we lose the link with M, and instead start
following a new G-match.

The above claim is proven by a case distinction on the main connective of the
formula ψ in last(M). Since by assumptionM followsM, the formula in last(M)
is also ψ.

Suppose first that ψ is a literal. Since f is assumed to be winning for ∃, the
position last(M) must belong to ∀. Hence last(M) = (ψ, s) for some s 6
 ψ.
Because ψ ∈ FL(ξ), we have ψ ∈ Σ. It follows by the restriction on V that
[s] 6
 ψ. Hence ∀ has no admissible move in G and the claim holds vacuously.

Now suppose that ψ is of the form ψ1∨ψ2. Let (ψi, s) be the position instructed
by f in G. Then last(M) = (ψ, s) and thus ∃ can simply choose (ψi, s) in G. The
case where ψ is of the form ψ1 ∧ ψ2 is similar. Indeed, if ∀ chooses (ψi, s) in G,
he can also choose (ψi, s) in G.

Now suppose that last(M) is of the form ( �θ, sn). Let (θ, sn+1) be the next
move instructed by the assumed winning strategy f . Then snRsn+1 and thus,
because Rmin

Σ ⊆ R and sn ∼ tn, we have tnRsn+1. Therefore in G we have that ∃
can simply choose the position (θ, sn+1).

If last(M) is of the form (�θ, tn), consider the move (θ, tn+1) chosen by ∀ in
G. We have,

(�θ, tn) ∈Win∃(G)⇒ S, tn 
 �θ (definition)

⇒ S, tn+1 
 θ (tnR
max
Σ tn+1, �θ ∈ Σ)

⇒ (θ, tn+1) ∈Win∃(G). (definition)
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Thus we may choose (θ, tn+1) as the new match that is followed byM· (θ, tn+1).
Using the fact that (ξ, s) is linked to (ξ, s) as induction base, and the above

claim as induction step, we obtain a strategy g for ∃ in G initialised at (ξ, s). We
claim that g is a winning strategy. Indeed, if a g-guided matchM ends in finitely
many steps, then ∀ must have gotten stuck.

If a g-guided matchM lasts infinitely long, then by item (1) of Lemma 2.1.43,
there must be some point after which either only µ-variables, or only ν-variables,
are unfolded. In the latter case the match is indeed winning for ∃. We will now
argue that the former case cannot occur. The reason is that, if from some point
on in M only µ-variables are unfolded, then, by item (2) of Lemma 2.1.43, from
some point no formula of the form �θ will occur. By construction, this means
that the infinite G-matchM follows an infinite G-matchM which is guided by a
strategy f for ∃, such that f is winning at first(M). But this is a contradiction,
because the matchM, by the fact that it is linked to an infinite final segment of
M, contains infinitely many µ-unfoldings. 2

4.2.5. Remark. Note that the above argument would not go through for the
alternation-free modal µ-calculus, since we would no longer be able to guarantee
that we create at most finitely many shadow matches in the case of infinitely many
µ-unfoldings. As mentioned above, a well-known counterexample to the Filtration
Theorem for the alternation free modal µ-calculus is the formula µx�x.

Admissibility of filtration Having established that filtrations preserve sat-
isfaction of µcML-formulas, we will now investigate to which classes of models
filtration can be applied.

4.2.6. Definition. A class of models M is said to admit filtration with respect
to a language D if for every model S in M and every finite set of D-formulas Σ, the
class M contains a filtration of S through some finite FL-closed set Θ ⊇ Σ. A class
of frames F is said to admit filtration if the class of models {(S,R, V ) : (S,R) ∈ F}
does.

One might expect that admitting filtration with respect to the basic modal lan-
guage is a weaker property than admitting filtration with respect to a proper
extension of the language. However, for the language µcML it turns out that this
is not the case, at least for classes of models that are closed under substitution.

Recall that a substitution is a function σ : P → µcML. For ϕ ∈ ML, we write
σ(ϕ) for the result of applying the substitution σ to ϕ. That is, we take the unique
extension σ : ML → µcML which commutes with the propositional and modal
operators. Note that, because we are working in negation normal form, we define
σ(p) as σ(p), where the is the definable negation operator from Section 2.1.2,
and not the explicit negation symbol ¬. We will only apply these substitutions



4.2. Filtration 111

to basic modal formulas, so we do not have to worry about free variables being
captured. Let us verify that substitution commutes with negation in our setting.

4.2.7. Lemma. Let σ : P → µcML be a substitution. Then for every ML-formula
ϕ it holds that σ(ϕ) = σ(ϕ).

Proof:
We proceed by induction on ϕ. If ϕ is a literal, the statement holds by definition.
We write ◦ for a connective in {∨,∧} and ◦ for its dual. Then we have

σ(ψ1 ◦ ψ2) = σ(ψ1 ◦ ψ2) = σ(ψ1) ◦ σ(ψ2)

= σ(ψ1) ◦ σ(ψ2) = σ(ψ1) ◦ σ(ψ2) = σ(ψ1 ◦ ψ2),

as required. Similarly, writing 4 for a modality in { �,�} and 4 for its dual, we
find

σ(4ψ) = σ(4ϕ) = 4σ(ϕ) = 4σ(ϕ) = 4σ(ϕ),

as desired. 2

Given a model S = (S,R, V ), we let a substitution σ act on S by setting
S[σ] := (S,R, V [σ]), where V [σ] is given by V [σ](p) := Jσ(p)KS. A class M of
models is said to be closed under substitution if S[σ] ∈ M for every substitution σ
and model S ∈ M. Note that for any class of frames F, the class of models based
on a frame in F is closed under substitution.

4.2.8. Remark. The following proposition resembles Theorem 3.8 of [56]. One
important difference in its statement is that we work with the standard notion of
filtration, rather than their notion of definable filtration. An important difference
in its proof is that our translation acts only on fixed point formulas, and commutes
with all other operators. In contrast, the translation in [56] assigns a propositional
variable qϕ to each formula ϕ.

4.2.9. Proposition. Let M be a class of models which is closed under substitu-
tion. If M admits filtration with respect to ML, then also with respect to µcML.

Proof:
Let Σ be a finite set of µcML-formulas. Without loss of generality we may assume
that Σ is FL-closed. Since the assumption only tells us that M admits filtration
with respect to ML, we want to represent Σ by a set of ML-formulas. To this
end, we let ϕ1, . . . , ϕn be an enumeration of the µ-formulas in Σ. Note that, by
negation closure, it follows that ϕ1, . . . , ϕn is an enumeration of the ν-formulas in
Σ. For every formula ϕi, we pick a unique propositional variable pi not occurring
in Σ.
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Now let τ : Σ → ML be the translation that commutes with all propositional
and modal operators, and acts on fixed point operators in the following way:

τ(ϕi) := pi, τ(ϕi) = pi.

We let σ : P → µcML be the substitution given by σ(p) := ϕi if p = pi, and
σ(p) := p otherwise. We will use the following two facts:

(i) σ(τ(ξ)) = ξ, for every ξ ∈ Σ.

(ii) S, s 
 σ(ϕ)⇔ S[σ], s 
 ϕ, for every ϕ ∈ µcML. (Substitution Lemma)

Fact (ii) is a standard lemma in modal logic, and fact (i) is proven by induction
on ξ. If ξ is a literal, then σ(τ(ξ)) = σ(ξ) = ξ. The modal and propositional
cases follow from the fact that both τ and σ commute with those operators. The
fixed point cases are given by:

σ(τ(ϕi)) = σ(pi) = ϕi, σ(τ(ϕi)) = σ(pi) = ϕi.

By hypothesis, there is a filtration S[σ] of S[σ] through some finite FL-closed set
Θ such that τ [Σ] ⊆ Θ ⊆ ML. We claim that S[σ] is simultaneously a filtration of S
through σ[Θ]. This finishes the proof as, by (i) above, we have Σ ⊆ σ[Θ] ⊆ µcML.

Before we show that S[σ] is indeed a filtration of S through σ[Θ], we will
first show that σ[Θ] is FL-closed. For negation closure, note that σ(ϕ) ∈ σ[Θ]
implies σ(ϕ) ∈ σ[Θ] and thus, by Lemma 4.2.7, also σ(ϕ) ∈ σ[Θ]. Likewise,
the propositional and modal clauses follow from the FL-closure of Θ and the
commuting properties of σ. For the fixed point formulas, we argue as follows.
Suppose ηxψ ∈ σ[Θ]. Then either ηxψ = σ(pi) or ηxψ = σ(pi). In both cases we
find ηxψ ∈ Σ, whence ψ[ηxψ/x] ∈ Σ. So σ(τ(ψ[ηxψ/x])) = ψ[ηxψ/x] ∈ σ[Θ], as
required.

Now let us write (S,R, V ) for S[σ]. We first show that S = S/∼S
σ[Θ]. Since we

know that S = S/∼S[σ]
Θ , it suffices to show that ∼S

σ[Θ] = ∼S[σ]
Θ . But this follows

directly from the fact that, by the substitution lemma,

ThS(s) ∩ σ[Θ] = ThS[σ](s) ∩Θ

for every s ∈ S. From ∼S
σ[Θ] = ∼S[σ]

Θ we moreover obtain that Rmin
σ[Θ] ⊆ R.

We claim that R ⊆ Rmax
σ[Θ]. To this end, suppose that sRt and �ϕ ∈ σ[Θ] is

such that S, s 
 �ϕ. Let ψ ∈ Θ be such that σ(ψ) = �ϕ. By definition ψ must
be of the form �δ with σ(δ) = ϕ. The substitution lemma gives S[σ], s 
 �δ,
whence, since S[σ] is a filtration, it follows that S[σ], t 
 δ. Thus S, t 
 σ(δ), as
required.

Finally, we must show that for every p ∈ σ[Θ] it holds that

V (p) = {s : s ∈ V (p)}.
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This follows from the fact that none of the pi belongs to σ[Θ]. Hence, we have
V (p) = V [σ](p) and p ∈ Θ. Thus, we find

V (p) = {s : s ∈ V [σ](p)} = {s : s ∈ V (p)},

as required. 2

Note that the above proof does not rely on any specific properties of the
language µcML. In fact, it could also have been carried out for the full language
µML of the modal µ-calculus.

In the presence of the Filtration Theorem, we obtain the finite model property
as a corollary.

4.2.10. Corollary (Finite Model Property). Let M be a class of models that is
closed under substitution and admits filtration with respect to ML, and let ϕ be a
formula of the continuous µ-calculus. Then ϕ is valid in every model in M if and
only if ϕ is valid in every finite model in M.

Proof:
Let ϕ be a formula such that S 6|= ϕ for some S ∈ M. By Proposition 4.2.9 and
the assumption that M admits filtration with respect to ML, there is a filtration S
of S through some finite Σ ⊇ {ϕ} such that S ∈ M. Observe that the number of
states of S is at most 2Σ and thus finite. By Theorem 4.2.4, it holds that S 6|= ϕ,
as required. 2

For instance, since the class of symmetric frames admits filtration with respect
to the basic modal language, we find that the continuous modal µ-calculus has
the finite model property over this class.

4.3 Canonical completeness

In this section we prove our completeness result. In the first paragraph we will de-
fine the logics that our completeness proof applies to, which we shall call µc-logics.
The paragraph thereafter defines the finitary canonical models of an arbitrary µc-
logic L and proves the Truth Lemma. In the third paragraph we will show that a
finitary canonical model can be obtained for the logic µcL, where L is any canoni-
cal basic modal logic such that the class of L-frames admits filtration. As a direct
consequence we obtain that µcL is sound and complete with respect to the class
of L-frames.

Axiomatisation We will now tailor Kozen’s axiomatisation of the full modal
µ-calculus (cf. Section 2.3.1) to the continuous modal µ-calculus. Recall that ⊥,
→, and ↔ are definable in our language.
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4.3.1. Definition. The logic µcK is the least logic containing the following ax-
ioms and closed under the following rules.

Axioms.

1. A complete set of axioms for classical propositional logic.
2. Normality: ¬ �>.
3. Additivity: �(p ∨ q)↔ ( �p ∨ �q).
4. Dual for 2: �p↔ ¬ �¬p.
5. Dual for ν: νxϕ↔ ¬µx¬ϕ[¬x/x].
6. For every ϕ ∈ Conx(µML) ∩ µcML, the prefixed point axiom:

ϕ[µxϕ/x]→ µxϕ.

Rules.

1. Modus Ponens: from ϕ→ ψ and ϕ, derive ψ.
2. Monotonicity: from ϕ→ ψ, derive �ϕ→ �ψ.
3. Uniform Substitution: from ϕ, derive ϕ[ψ/x].
4. The least prefixed point rule: from ϕ[γ/x]→M with ϕ ∈ Conx(µML)∩µcML,

derive µxϕ→ γ.

We will consider axiomatic extensions of µcK that are closed under the rules
above. We will use µc-logic to refer to such an extension. The term logic will
be used to refer to any normal modal logic. If L is a logic in the basic modal
language, we use µcL to denote the least µc-logic containing L. Moreover, we
will use Mod(L) (Fr(L)) to denote the class of models (frames) on which every
formula in L is valid. If (S,R, V ) belongs to Mod(L) ((S,R) belongs to Fr(L)) we
say that (S,R, V ) is an L-model ((S,R) is an L-frame) and write (S,R, V ) |= L
((S,R) |= L).

Recall that in Proposition 2.1.28, we showed that for every formula ϕ, there
is an equivalent formula nnf(ϕ) which is in negation normal form. The followig
lemma, which can be proven by an easy induction on formulas, states that if ϕ
belongs to µcML, then so does nnf(ϕ). Moreover, the two formulas ϕ and nnf(ϕ)
are not only semantically equivalent, but also provably in µcK.

4.3.2. Lemma. Let ϕ ∈ µcML. Then nnf(ϕ) ∈ µcML and µcK ` ϕ↔ nnf(ϕ).

The above lemma allows us for the rest of this section to restrict attention to
formulas in negation normal form.

Finitary canonical models For the entirety of this paragraph we fix an ar-
bitrary µc-logic L. A set Γ of formulas is said to be L-inconsistent whenever
L ` (γ1 ∧ . . . ∧ γn)→ ⊥ for some γ1, . . . , γn ∈ Γ. We say of a formula ϕ that it is
L-inconsistent if the set {ϕ} is.
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4.3.3. Definition. A set of formulas Γ is called maximally L-consistent indexL-
inconsistent!maximally if it is consistent and maximal in that respect, i.e. for
every other set of formulas Γ′:

If Γ ⊂ Γ′, then Γ′ is L-inconsistent.

Note that, because we work with a countably infinite set P of propositional vari-
ables, an L-maximally consistent set of formulas is necessarily countably infinite.
The proofs of the following two lemmas are standard and therefore left to the
reader. The first lemma is often called Lindenbaum’s Lemma.

4.3.4. Lemma (Lindenbaum). Every L-consistent set Γ of µcML-formulas has a
maximally L-consistent extension Γ ⊇ Γ of µcML-formulas.

4.3.5. Lemma. Let Γ be a maximally L-consistent set. Then:

(i) If L ` ϕ, then ϕ ∈ Γ;

(ii) ϕ ∈ Γ if and only ϕ 6∈ Γ;

(iii) ϕ ∨ ψ ∈ Γ if and only ϕ ∈ Γ or ψ ∈ Γ;

(iv) µxϕ ∈ Γ if and only if ϕ[µxϕ/x] ∈ Γ.

4.3.6. Definition. Let Σ be a finite FL-closed set of formulas. A model over Σ
with respect to L is any model (S,R, V ) such that:

• S = {Γ ∩ Σ : Γ is maximally L-consistent}.
• Rmin

L ⊆ R ⊆ Rmax
L , where:

ARmin
L B :⇔

∧
A ∧ �

∧
B is L-consistent

ARmax
L B :⇔ for all �ϕ ∈ Σ : �ϕ ∈ A⇒ ϕ ∈ B.

• V (p) = {A ∈ S : p ∈ A} for all p ∈ Σ.

For A some finite set of formulas, we will usually write ψA for the conjunction∧
A. In the following we will assume a fixed model over some finite and FL-closed

set Σ with respect to L, which will be denoted by S = (S,R, V ). If we refer to
provability or consistency, this will be tacitly assumed to be with respect to the
logic L.

The idea of our completeness proof is to show a Truth Lemma for S. More
precisely, we will show that ϕ ∈ A, implies S, A 
 ϕ for every A ∈ S. The
first step is the following lemma, often called the Existence Lemma. Since it is
a standard lemma in the context of (finitary) canonical models for modal logics,
the proof is left to the reader.

4.3.7. Lemma. For any formula ϕ ∈ µcML and state A ∈ S:
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ψA ∧ �ϕ is consistent if and only if ψB ∧ ϕ is consistent for some ARB.

In particular, it follows that for all �ϕ ∈ Σ we have �ϕ ∈ A if and only if ϕ ∈ B
for some ARB.

The following lemma is a consequence of the fact that Σ is negation closed.

4.3.8. Lemma. For every A,B ∈ S it holds that ψA∧ψB is consistent iff A = B.

Given a finite collection U of finite sets of formulas, we write ψU for the disjunction
of all ψX for X ∈ U , i.e.

ψU =
∨
X∈U

ψX .

Note that by the previous lemma, for any U ⊆ S and A ∈ S, the formula ψU ∧ψA
is consistent if and only if A ∈ U .

The following lemma, often called the Context Lemma, will be very useful. It
was originally proven in [59], where it appears as Proposition 5.(vi).

4.3.9. Lemma. If γ ∧ µxϕ is consistent, then so is γ ∧ ϕ[µx.γ ∧ ϕ/x].

4.3.10. Remark. We provide some intuition for the lemma by sketching why it
holds semantically. We argue by contraposition. So suppose that γ∧ϕ[µx.γ∧ϕ/x]
is invalid. Given an arbitrary model S and state s of S such that S, s 
 γ, we will
give a winning strategy for ∀ in the game E@(µxϕ, S)@(µxϕ, s). Note that the
match immediately proceeds to the position (ϕ[µxϕ/x], s). Moreover, by assump-
tion, we have a winning strategy for ∀ in the game E@(ϕ[µx.γ∧ϕ/x],S)@(ϕ[µx.γ∧
ϕ/x], s). The idea is to exploit the similarity of the two games by applying the
winning strategy for ∀ in the second game in the first game, and playing a shadow
match in the second game. If the first match winds up at a position of the form
(µxϕ, t), then the second match is at a position of the form (µx.γ ∧ ϕ, t), Hence,
since the second match is guided by a winning strategy for ∀, it holds that S, t 
 γ,
and we can repeat the same argument. We leave it to the reader to convince them-
selves that this indeed describes a winning strategy for ∀ in E(µxϕ,S)@(µxϕ, s).

In our completeness proof we will apply the Context Lemma with ψU in place
of γ, where U is some set of states of S. This will help us to show the Truth
Lemma for µ-formulas. For instance, given some µxϕ ∈ A, the idea will be
to show that S, A 
 µxϕ by describing a winning strategy for ∃ in the game
E(µxϕ, S)@(µxϕ,A). Since µxϕ ∈ A, we have that ψA ∧ µxϕ is consistent,
whence by the Context Lemma ψA ∧ ϕ[µx.ψA ∧ ϕ/x] is consistent. This allows
us to construct the strategy for ∃ in such a way that the position (µxϕ,A) will
not be reached again. By iterating this argument, and the fact that S only has
finitely many states, it follows that µxϕ will be unfolded only finitely often, which
is an important step in showing that the strategy is indeed winning for ∃.

To keep track of the extra information provided by the Context Lemma, we
will use the following syntax extension.
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4.3.11. Definition. We define the syntax µacML of adorned formulas in exactly
the same way as µcML, but now letting the least fixed point operators to be
adorned by a set U of states of S.

4.3.12. Example. µ∅x. �x ∨ p and µ{A,B}x. �x ∨ p are adorned formulas, where
A and B are elements of S.

4.3.13. Definition. The interpretation function ι : µacML → µcML acts on least
fixed point operators by

ι(µUxϕ) := µx.ψU ∧ ι(ϕ),

and commutes with all other operators.
The forgetful translation ·− : µacML→ µcML acts on least fixed point operators

by

(µUxϕ)− := µxϕ−,

and commutes with all other operators.

The following lemma collects some useful facts concerning the provability of
adorned formulas.

4.3.14. Lemma. For every ϕ ∈ µacML:

(i) If ψA ∧ ι(µUxϕ) is consistent, then so is ψA ∧ ι(ϕ)[ι(µU∪{A}xϕ)/x].

(ii) ` ι(ϕ)→ ϕ−.

Proof:
For (i), suppose that ψA ∧ ι(µUxϕ) is consistent. Writing out the definition of ι,
this means that ψA∧µx.ψU ∧ ι(ϕ) is consistent. Hence, we can apply the Context
Lemma, to obtain that

ψA ∧ ψU ∧ ι(ϕ)[µx.ψA ∧ ψU ∧ ι(ϕ)/x]

is consistent as well. In particular ψA∧ψU is consistent and therefore A /∈ U . But
this means that ψA ∧ ψU is propositionally equivalent to ψA. Moreover, ψA ∧ ψU
is propositionally equivalent to ψU∪{A}. We thus find that

ψA ∧ ι(ϕ)[µx.ψU∪{A} ∧ ι(ϕ)/x]

is consistent. By the definition of ι this means that ψA ∧ ι(ϕ)[ι(µU∪{A}xϕ)/x] is
consistent, as required.

We prove (ii) by induction on ϕ. The only non-trivial case is where ϕ is
of the form µUxδ, as in all other cases the two translations behave equally. So
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suppose that ` ι(δ) → δ−. Then by propositional reasoning, it also holds that
` ψU ∧ ι(δ)→ δ−. Using uniform substitution, we have

` ψU ∧ ι(δ)[µxδ−/x]→ δ−[µxδ−/x].

Moreover, the prefixed point axiom gives ` δ−[µxδ−/x] → µxδ− and thus, by
propositional reasoning,

` ψU ∧ ι(δ)[µxδ−/x]→ µxδ−.

Applying the least prefixed point rule, we obtain ` µx(ψU ∧ ι(δ))→ µxδ−, or in
other words,

` ι(µUxδ)→ (µUxδ)−,

as required. 2

We are now ready to prove the main result of this section. Note that its proof
very much resembles the proof of the Filtration Theorem (Theorem 4.2.4 above).
We will further comment on this resemblance in the conclusion of the present
chapter.

4.3.15. Lemma (Truth Lemma). For every A ∈ S: ξ ∈ A implies A ∈ JξK.

Proof:
We will prove this by directly defining a winning strategy f for ∃ in the game
E(ξ, S) initialised at (ξ, A). By induction on |M|, we will, for every f -guided
partial E-match M, simultaneously define the following:

• a formula ϕM ∈ µacML;

• a move f(M) whenever last(M) belongs to ∃.

The adorned formula ϕM should be thought of as providing auxiliary information
guiding the definition of the strategy f . At every stage of the induction, we will
show that for (ϕ,B) := last(M) it holds that:

(i) ϕ−M = ϕ;

(ii) ψB ∧ ι(ϕM) is consistent.

Note that, by Lemma 4.3.14.(ii), it then follows that ϕ ∈ B.
For the induction base, we set ϕ(ξ,A) := ξ∅, where ξ∅ is the µacML-formula

obtained by adorning every least fixed point operator in ξ by the empty set. It
is not hard to see that ϕ−(ξ,A) = ξ, and that ι(ϕ(ξ,A)) is provably equivalent to ξ,
whence consistent with ψA.

For the induction step, suppose that M is an f -guided match and that ϕM
has been defined. We treat matches extending M by a single position, making
a case distinction on the shape of ϕM. In the following we denote by (ϕ,B) the
position last(M).
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• If ϕM is a literal there is nothing to do, because then ϕ is a literal as well
and so the match M will not be extended.

• Suppose ϕM is of the form ϕ1 ∨ ϕ2. Because ψB ∧ ι(ϕ1 ∨ ϕ2) is consistent,
there must be a disjunct ϕi such that ψB ∧ ι(ϕi) is consistent. We set
f(M) := (ϕ−i , B). Note that the only f -guided match extending M by a
single position is N :=M · f(M). We define ϕN := ϕi.

• Now suppose that ϕM is of the form ϕ1 ∧ ϕ2. As (ϕ,B) is owned by ∀,
we do not have to define f(M). Suppose that N =M · (ϕ−i , B). We then
define ϕN := ϕi.

• Now suppose that ϕM is of the form �χ. Since ψB ∧ �ι(χ) is consis-
tent, there is, by the Existence Lemma, some state C such that BRC
and moreover ψC ∧ ι(χ) is consistent. We let f(M) := (χ−, C) and, for
N :=M · f(M), define ϕN = χ.

• If ϕM is of the form �χ, things are less nice than in the other cases.
The reason is that the consistency of ψB ∧ �ι(χ) does not guarantee the
consistency of ψC ∧ ι(χ) for every C such that BRC. However, we do
know that �χ− ∈ B, whence χ− ∈ C for every such C. Hence, for every
N = M · (χ−, C), we define ϕN := χ∅, where χ∅ is defined as in the base
case of this induction.

• Now suppose that ϕM is of the form µUxδ. By Lemma 4.3.14.(i), we find
that ψB∧ι(δ)[ι(µU∪{B}xδ)/x] is consistent. Therefore, under the assumption
that N :=M · (δ−[µxδ−/x], B), we may define ϕN := δ[µU∪{B}xδ/x].

• Finally, suppose that ϕM is of the form νxδ. Since ψB ∧ ϕM is consistent,
so is ψB ∧ δ[νxδ/x]. For N :=M · (δ−[νxδ−/x]), we set ϕN := δ[νxδ/x].

We claim that the strategy f is winning for ∃. To this end, let M be a full
f -guided E(ξ, S)@(ξ, A)-match. Suppose first that M is finite. We claim that
(ϕ,B) := last(M) must belong to ∀, whenceM is won by ∃. Indeed, note that ϕ
cannot be of the form �χ, for otherwise f(M) would be defined and the match
M would not be full. Moreover, if ϕ is a literal, it follows from the fact that
ϕ ∈ B that M is won by ∃.

Now suppose that M is infinite. Suppose, towards a contradiction, that M
is won by ∀. By Lemma 2.1.43, we find that M has a final segment

(ϕ0, B0) · (ϕ1, B1) · (ϕ2, B2) · · ·

such that the main connective of ϕi is not amongst {�, ν} for any i. By the pi-
geonhole principle there must be n,m with n < m such that (Bn, ϕn) = (Bm, ϕm),
and ϕn = ϕm is of the form µxδ.
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For each i, let us writeMi for the matchM up to (and including) the position
(ϕi, Bi). By construction ϕMn is of the form µUxδ, and ϕMn+1 = δ[µU∪{Bn}xδ)/x].
Since � does not occur on the segment from (ϕn, Bn) to (ϕm, Bm) it follows that
ϕMm = µV xδ for some V ⊆ S with Bm ∈ V . But the consistency of ψBm∧ι(ϕMm)
then entails that ψBm ∧ ψV is consistent, a contradiction. 2

Completeness The goal of this paragraph is to prove completeness for certain
well-behaved µc-logics.

Given a logic L, we define its canonical model as usual.

4.3.16. Definition. The canonical model (SL, RL, V L) of a logic L is given by:

• SL := {Γ : Γ is maximally L-consistent}.

• ΓRL∆ :⇔ (�ϕ ∈ Γ⇒ ϕ ∈ ∆).

• V L(p) := {Γ : p ∈ Γ}.

We denote this canonical model by SL. The canonical frame of L is the frame
(SL, RL) underlying SL.

For (infinitary) canonical models there is also a standard Existence Lemma:

4.3.17. Lemma. For any state Γ of a canonical model SL:

If �ϕ ∈ Γ, then there is a state ∆ such that ΓRL∆ and ϕ ∈ ∆.

Generally, a µc-logic L will lack the compactness property. It is well-known that
this prevents one to prove a Truth Lemma for the (standard) canonical model
of L. Indeed, if there are unsatisfiable sets of formulas which are finitely sat-
isfiable, then, because derivations are finite objects, there will be unsatisfiable
maximally consistent sets. Recall that a concrete example of such a set was given
by Proposition 2.3.2.

4.3.18. Remark. It is interesting to compare our situation to that of PDL. Al-
though PDL is a modal fixed point logic, its fixed point behaviour is implicit. That
is, PDL can be described purely as a modal logic, without the need for explicit
fixed point operators.

In this view, a model for PDL is a multimodal Kripke model (S,Rπ∈Prog, V ),
where Prog is a set of programs. Formulas of PDL are interpreted over the subclass
of standard models, where the Rπ are required to stand in a certain relation to
each other. For instance, the relation Ra∗ should be the reflexive-transitive closure
of the relation Ra.

Using the ordinary methods of basic modal logic, one can obtain a canonical
model SPDL which, despite the compactness failure, will satisfy the Truth Lemma.
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However, this model will not be standard. To obtain completeness of PDL with
respect to standard models, one then applies filtration to this non-standard canon-
ical model.

In a sense, our canonical model SL is similar to the non-standard canonical
model for PDL. The only difference is that we lack a non-standard interpretation
for the fixed point operators, under which a Truth Lemma holds. We will cir-
cumvent this by applying a form of filtration which does not identify states that
satisfy the same formulas, but instead identifies states (of the canonical model)
which contain the same formulas. Note that the Truth Lemma precisely says that
these two identifications are the same.

The following lemma is analogous to Proposition 4.2.9.

4.3.19. Lemma. Let L be a logic and let F be a class of frames that admits fil-
tration and contains the canonical frame (SL, RL). For any finite set Σ of µcML-
formulas, the class F contains a frame underlying some model over Θ with respect
to L, where Θ is a finite FL-closed extension of Σ.

Proof:
Without loss of generality, we assume that Σ is FL-closed. The idea is to apply
filtration to some particular model S′ based on the canonical frame (SL, RL). As in
the proof of Proposition 4.2.9, we let ϕ1, . . . , ϕn be an enumeration of the formulas
of the form µxδ in Σ. For each such formula ϕi, we pick a unique propositional
variable pi not occurring in Σ.

We define the valuation V ′ : P→ P(SL) of S′ as follows:

V ′(p) :=

{
{Γ : ϕi ∈ Γ} if p = pi for some ϕi ∈ Σ;

V (p) otherwise.

Note that this is similar to the model S[σ] in the proof of Proposition 4.2.9, but
now we do not let the valuation of pi be the meaning of ϕi in SL, but rather we
let pi be true at precisely those Γ where ϕi ∈ Γ. Were a Truth Lemma to hold
for SL, these two options would be equivalent.

We define the translation τ : Σ→ ML in exactly the same way as in the proof
of Proposition 4.2.9.

Since the frame underlying S′ belongs to F, we can apply the assumed admis-
sibility of filtration to obtain a filtration S = (S,R, V ) of S′ through some finite
FL-closed set Θ ⊇ τ [Σ] of ML-formulas such that the frame (S,R) belongs to F.

Let σ : P→ µcML be exactly as in the proof of Proposition 4.2.9. A straight-
forward induction shows that for every ϕ ∈ Θ:

S′,Γ 
 ϕ⇔ σ(ϕ) ∈ Γ. (4.1)

We will finish the proof by showing that S is isomorphic to a model over σ[Θ]
(note that σ[Θ] is FL-closed by the same argument as in the proof of Proposition
4.2.9).
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We define the set of states Sσ[Θ] := {Γ ∩ σ[Θ] : Γ is maximally L-consistent}
and claim that the map

h : [Γ] 7→ Γ ∩ Σ

is a well-defined bijection from SL/∼S′
Θ to Sσ[Θ]. For well-definedness, suppose

Γ ∼S′
Θ Γ′ and let ϕ ∈ Θ. By using the equivalence (4.1), we find for every

σ(ϕ) ∈ σ[Θ]:

σ(ϕ) ∈ Γ⇔ S′,Γ 
 ϕ⇔ S′,Γ′ 
 ϕ⇔ σ(ϕ) ∈ Γ′,

as required. Injectivity is similar: if Γ ∩ σ[Θ] = Γ′ ∩ σ[Θ], then for all ϕ ∈ Θ, we
have:

S′,Γ 
 ϕ⇔ σ(ϕ) ∈ Γ⇔ σ(ϕ) ∈ Γ′ ⇔ S′,Γ′ 
 ϕ.

For surjectivity, take Γ ∩ σ[Θ] for some any Γ ∈ SL. Then h([Γ]) = Γ ∩ σ[Θ], as
required.

Now we let Rσ[Θ] ⊆ Sσ[Θ] × Sσ[Θ] and V σ[Θ] : P → P(Sσ[Θ]) be given by
transporting the structure of S along h. More precisely, we let

ARσ[Θ]B :⇔ h−1(A)Rh−1(B).

We claim that Rmin
L ⊆ Rσ[Θ] ⊆ Rmax

L .
First, suppose that ARmin

L B. Then ψA∧ �ψB is L-consistent. Pick some Γ ∈ SL

containing both ψA and �ψB. By Lemma 4.3.17, there is a ∆ ∈ SL such that
ΓRL∆ and ψB ∈ ∆. Since S is a filtration, we have Rmin

Θ ⊆ R. Hence [Γ]R[∆] and
thus h([Γ])Rσ[Θ]h([∆]). The required result follows from the fact that h([Γ]) = A
and h([∆]) = B.

Now suppose that ARσ[Θ]B. We will show that ARmax
L B. To that end, let

�σ(ϕ) ∈ σ[Θ] such that �σ(ϕ) ∈ A. Pick Γ ⊃ A and ∆ ⊃ B from SL. Since
[Γ] = h−1(A) and [∆] = h−1(B), we have [Γ]R[∆]. We now use the fact that
R ⊆ Rmax

Θ . This means that for all �ψ ∈ Θ such that S′,Γ 
 �ψ, we have
S′,∆ 
 ψ. By assumption we have σ(�ϕ) ∈ Γ, whence the equivalence (4.1)
gives S′,Γ 
 �ϕ. It follows that S′,∆ 
 ϕ. Finally, another application of the
equivalence (4.1) yields σ(ϕ) ∈ ∆, hence σ(ϕ) ∈ B, as required. Since every
�-formula in σ[Θ] is of the form �σ(ϕ) for some ϕ ∈ Θ, this suffices to show that
ARmax

L B.
Lastly, for any p ∈ σ[Θ], we have p ∈ Θ and p 6= pi for every 1 ≤ i ≤ n. We

define:

V σ[Θ](p) := {A ∈ Sσ[Θ] : h−1(A) ∈ V (p)} = {A ∈ Sσ[Θ] : p ∈ A},

which suffices. 2

4.3.20. Theorem. Let L be a canonical logic in the basic modal language such
Fr(L) admits filtration. Then µc-L is sound and complete with respect to Fr(L).
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Proof:
Soundness follows from the fact the fixed point axioms and rules are sound on the
class of all frames. For completeness, let ϕ ∈ µcML be L-consistent; we will show
that ϕ is satisfiable in a model based on an L-frame. Without loss of generality we
may assume that ϕ is tidy and in negation normal form. Note that by canonicity
the canonical frame (SL, RL) is contained in Fr(L). Therefore, we can use Lemma
4.3.19 to obtain a model SΣ over some Σ ⊇ {ϕ} with respect to L whose frame
belongs to Fr(L). By the L-consistency of ϕ, there is a state A ∈ SΣ such that
ϕ ∈ A. Finally, Lemma 4.3.15 gives SΣ, A 
 ϕ, as required. 2

For instance, the logic µc-KB is sound and complete with respect to the class
of symmetric frames. Some other examples of basic modal logics that satisfy the
hypotheses of the above theorem are: K, T, K4, S4 and S5.

4.4 Conclusion

We have shown that the methods of filtration and finitary canonical models gener-
alise from PDL to the continuous modal µ-calculus. To the best of our knowledge,
this is the first completeness proof for Kozen’s axiomatisation restricted to the
continuous modal µ-calculus, even over the class of all frames.

Since µcML is strictly more expressive than PDL [41, 23], this is a proper gener-
alisation of the results in [56]. On the other hand, because the failure of filtration
for µML is witnessed by the formula µx�x, the syntactic restrictions character-
ising µcML seem to be not only sufficient, but also necessary for filtration. This
indicates that µcML might be positioned as a maximal filtration-allowing language
between the basic modal language and the full language of the modal µ-calculus.
We leave it for future work to make this statement mathematically precise and
to investigate its correctness.

Another important remaining open question is that of the unification of the
two techniques. As mentioned in the introduction and Remark 4.3.18, this is
clear in the case of PDL: finitary canonical models arise as filtrations of infinitary
canonical models. In contrast, the proofs in this chapter, although very similar,
are carried out independently. It would be interesting to see if the finitary canon-
ical model of some µc-logic L could explicitly be obtained as the filtration of some
(non-standard, perhaps topological) infinitary canonical model for L.





Chapter 5

Focus-style proofs for the two-way
alternation-free µ-calculus

5.1 Introduction

In this chapter, we introduce a non-well-founded proof system for the two-way
alternation-free modal µ-calculus µaf

2 ML. As mentioned in the Chapter 2, this logic
extends the alternation-free modal µ-calculus with backward modalities. Already
without fixed point operators, backward modalities are known to require more
expressivity than offered by a cut-free Gentzen system [79]. A common solution
is to add more structure to sequents, as e.g. the nested sequents of Kashima [55].
This approach, however, does not combine well with cyclic proofs, as the number
of possible sequents in a given proof becomes unbounded. We therefore opt for
the alternative approach of still using ordinary sequents, but allowing analytic
applications of the cut rule (see [46] for more on the history of this approach).
We have already seen in Chapter 3 that this can be fruitfully combined with
cyclic proofs. Choosing analytic cuts over sequents with extended structure has
recently also been gaining interest in the proof theory of logics without fixed point
operators [27].

Although allowing analytic cuts handles the backward modalities on a local
level, further issues arise on a global level in the combination with non-well-
founded branches. The main challenge is that the progress condition should not
just hold on infinite branches, but also on paths that can be constructed by
moving both up and down a proof tree. Our solution takes inspiration from
Vardi’s reduction of alternating two-way automata to deterministic one-way au-
tomata [105]. Roughly, the idea is to view these paths simply as upward paths,
only interrupted by several detours, each returning to the same state as where
it departed. One of the main insights of the present research is that such de-
tours have a natural interpretation in terms of the game semantics of the modal
µ-calculus. We exploit this by extending the syntax with so-called trace atoms,
whose semantics corresponds with this interpretation. Our sequents will then
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be one-sided Gentzen sequents containing annotated formulas, trace atoms, and
negations of trace atoms.

During the development of this work, the preprint [2] by Enqvist et al. ap-
peared, in which a proof system is presented for the two-way modal µ-calculus
(with alternation). Like our system, their system is cyclic. Moreover, they also ex-
tend the syntax in order to apply the techniques from Vardi in a proof-theoretical
setting. However, their extension, which uses so-called ordinal variables, is sub-
stantially different from ours, which uses trace atoms. It would be interesting to
see whether the two approaches are intertranslatable.

Section 5.2 is devoted to introducing the proof system, after which in Section
5.3 we define the proof search game. In Section 5.4 we prove soundness and
completeness. The concluding Section 5.5 contains a short summary and some
ideas for further research.

5.2 The proof system

Recall that a set Σ of tidy formulas in negation-normal form is called negation-
closed if for every ξ ∈ Σ it holds that ξ ∈ Σ and Clos(ξ) ⊆ Σ. For the remainder
of this chapter we fix a finite and negation-closed set Σ of µaf

2 ML-formulas. For
reasons of technical convenience, we will assume that every formula is drawn from
Σ. This does not restrict the scope of our results, as any formula is equivalent
to one contained in some finite negation-closed set of tidy formulas in negation-
normal form.

5.2.1 Sequents

Syntax

In [73], Marti & Venema show that for the alternation-free modal µ-calculus,
a path-based soundness condition can already be obtained by only annotating
formulas by a single bit of information, namely a focus annotation in {◦, •}. We
follow their approach.

5.2.1. Definition. An annotated formula is a formula plus a focus annotation.

The letters b, c, d, . . . are used as variables ranging over the annotations ◦ and •.
An annotated formula ϕb is said to be out of focus if b = ◦, and in focus if b = •.
5.2.2. Remark. Note that the annotations are the same as those in Chapter 3.
However, in that chapter the limited expressivity of the language allowed us to
restrict attention to hypersequents of a very specific shape. In particular, those
hypersequents had at most one formula in focus and any formula in focus had a
specific shape. For the more expressive language µaf

2 ML we cannot allow ourselves
the same restriction, and therefore also consider sequents which have multiple
formulas in focus, where the formulas can be of any shape.



5.2. The proof system 127

Where traces usually only move upward in a proof, the backward modalities of
our language will be enable them to go downward as well. We will handle this in
our proof system by further enriching our sequents with the following additional
information.

5.2.3. Definition. For any two formulas ϕ, ψ, there is a trace atom ϕ; ψ and
a negated trace atom ϕ 6; ψ.

The concept of trace atoms will become clearer later, but for now one can think
of ϕ ; ψ as expressing that there is some kind of trace going from ϕ to ψ, and
of ϕ 6; ψ as its negation. Finally, our sequents are built from the above three
entities.

5.2.4. Definition. A sequent is a finite set consisting of annotated formulas,
trace atoms, and negated trace atoms.

Whenever we want to refer to general elements of a sequent Γ, without specifying
whether we mean annotated formulas or (negated) trace atoms, we will use the
capital letters A,B,C, . . ..

Semantics

Unlike annotations, which do not affect the semantics but only serve as book-
keeping devices, the trace atoms have a well-defined interpretation. We will work
with a refinement of the usual satisfaction relation that is defined with respect
to a strategy for ∀ in the evaluation game. Most of the time, this strategy will
be both optimal and positional (recall that the precise definition of these terms
was given in Section 2.2). Because we will frequently need to mention such opti-
mal positional strategies, we will refer to them by the abbreviation ops . We first
define the interpretation of annotated formulas. Note that the focus annotations
play no role in this definition.

5.2.5. Definition. Let S be a model, f an ops for ∀ in E@(
∧

Σ, S), and ϕb an
annotated formula. We write S, s 
f ϕb if f is not winning for ∀ at (ϕ, s).

The following proposition, which is an immediate consequence of Theorem 2.2.10,
relates 
f to the usual satisfaction relation 
.

5.2.6. Proposition. S, s 
 ϕ iff for every ops f for ∀ in E(
∧

Σ,S): S, s 
f ϕb.
The semantics of trace atoms is also given relative to an ops for ∀ in the game
E(
∧

Σ,S) (in the following often abbreviated to E).

5.2.7. Definition. Given an ops f for ∀ in E , we say that ϕ; ψ is satisfied in
S at s with respect to f (and write S, s 
f ϕ; ψ) if there is an f -guided match

(ϕ, s) = (ϕ0, s0) · (ϕ1, s1) · · · (ϕn, sn) = (ψ, s) (n ≥ 0)

such that for no 0 ≤ i < n the formula ϕi is a µ-formula. We say that S satisfies
ϕ 6; ψ at s with respect to f (and write S, s 
f ϕ 6; ψ) iff S, s 6
f ϕ; ψ.
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Note that in the witnessing match (ϕ0, s0) · · · (ϕn, sn), the formula ϕ0 is only
allowed to be a µ-formula in case n = 0, i.e. in case the match has length 1.

The idea behind the satisfaction of a trace atom ϕ ; ψ at a state s is that
∃ can take the match from (ϕ, s) to (ψ, s) without passing through a µ-formula.
This is good for the player ∃. For instance, if ϕ ; ψ and ψ ; ϕ are satisfied
at s with respect to f for some ϕ 6= ψ, then f is necessarily losing for ∀ at the
position (ϕ, s). We will later relate trace atoms to traces in infinitary proofs.

Note that, in a match witnessing that S, s 
f ϕ ; ψ, only the final formula
allowed be a µ-formula. For example, for every ϕ it vacuously holds that S, s 

ϕ ; ϕ, including formulas ϕ of the form µxψ. However, as shown in the first
example below, a trace atom of the form χ ; µxψ can only be satisfied in this
vacuous way.

5.2.8. Example. We illustrate the workings of trace formulas by highlighting
some facts.

(i) µxϕ; χ is satisfiable if and only if χ = µxϕ.

This follows directly from the definition: if χ 6= µxϕ, then µxϕ is not the
final formula in the witnessing match, contradicting the requirement that
the non-final formulas are not µ-formulas. Conversely, the satisfiability of
the trace atom µxϕ ; µxϕ is witnessed by any match consisting of only
one position (µxϕ, s).

(ii) νxϕ; ϕ[νxϕ/x] is always true.

If (νxϕ, s) is some position in E , then (ϕ[νxϕ/x], s) is always the next
position. Hence the two-position match (νxϕ, s) · (ϕ[νxϕ/x], s) can be used
to witness S, s 
f νxϕ; ϕ[νxϕ/x] for any strategy f .

(iii) S, s 
f ϕ; 〈a〉ψ implies S, t 
f 〈ă〉ϕ; ψ for every a-successor f of s.

Suppose S, s 
f ϕ; 〈a〉ψ. This must be witnessed by an f -guided match

(ϕ, s) = (ϕ0, s0) · (ϕ1, s1) · · · (ϕn, sn) = (〈a〉ψ, s) (n ≥ 0)

Note that no formula in this match is a µ-formula, as the final formula is
not a µ-formula. Since t is an a-successor of s, we can extend the match on
both sides in the following way

(〈ă〉ϕ, t) · (ϕ, s) = (ϕ0, s0) · (ϕ1, s1) · · · (ϕn, sn) = (〈a〉ψ, s) · (ψ, t)

which gives us S, s 
 〈ă〉ϕ; ψ, as 〈ă〉ϕ is not a µ-formula.

We interpret sequents disjunctively, that is: S, s 
f Γ whenever S, s 
f A for
some A ∈ Γ. The sequent Γ is said to be valid whenever S, s 
f Γ for every
model S, state s of S, and ops f for ∀ in E . Recall from Chapter 1 that the
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alternation-free two-way modal µ-calculus is interpreted over models which are
standard in the following sense

Ră = {(t, s) | (s, t) ∈ Ra} for every a ∈ D. (*)

In other words, this means that Ră must always be the converse of the relation
Ra. Throughout this chapter we assume that all models satisfy the property (*).

5.2.9. Remark. There is another way in which one could interpret sequents,
which corresponds to what one might call strong validity, and which the reader
should note is different from our notion of validity. Spelling it out, we say that
Γ is strongly valid if for every model S and state s there is an A in Γ that such
that for every ops f for ∀ in E it holds that S, s 
f A. While these two notions
coincide for sequents containing only annotated formulas, an example of a valid,
but not strongly valid sequent is given by {ϕ ∧ ψ ; ϕ, ϕ ∧ ψ ; ψ}.

It is not hard to see that the sequent above is valid. Indeed, any f -guided
match must from (ϕ ∧ ψ, s) either proceed to (ϕ, s) or to (ψ, s). To see that it
is not strongly valid, suppose for instance that ϕ = p and ψ = q with p 6= q. If
both p and q are true at some state s of some model S, then there are ops’s f1

and f2 for ∀ such that f1(ϕ ∧ ψ, s) = (p, s) and f2(ϕ ∧ ψ, s) = (q, s). But then
S, s 6
f1 ϕ ∧ ψ ; ψ, and S, s 6
f2 ϕ ∧ ψ ; ϕ, showing that the sequent is not
strongly valid.

As will become clear in Section 5.4, our soundness proof requires the notion of
validity, rather than strong validity. The proof works by contraposition, showing
that every invalid sequent is unprovable. Crucially, we use the fact that for every
invalid sequent Γ there exists a model S, a state s and a particular ops f for ∀
such that for every A ∈ Γ it holds that S, s 6
f A. For a sequent which is merely
not strongly valid, we would not get such a particular ops.

We finish this subsection by defining three operations on sequents that, respec-
tively, extract the formulas contained annotated in some sequent, take all anno-
tated formulas out of focus, and put all formulas into focus.

Γ− := {χ | χb ∈ Γ for some b ∈ {◦, •}},
Γ◦ := {ϕ; ψ | ϕ; ψ ∈ Γ} ∪ {ϕ 6; ψ | ϕ 6; ψ ∈ Γ} ∪ {χ◦ | χ ∈ Γ−},
Γ• := {ϕ; ψ | ϕ; ψ ∈ Γ} ∪ {ϕ 6; ψ | ϕ 6; ψ ∈ Γ} ∪ {χ• | χ ∈ Γ−}.

5.2.2 Proofs

In this subsection we give the rules of our proof system. Because the rule for
modalities is quite involved, its details are given in a separate definition. Recall
that Σ is the finite negation-closed set of formulas fixed at the beginning of
Section 5.2.
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5.2.10. Definition. Let Γ be a sequent and let [a]ϕb be an annotated formula.
The jump Γ[a]ϕb

of Γ with respect to [a]ϕb consists of:

1. (a) ϕs([a]ϕ,Γ);

(b) ψs(〈a〉ψ,Γ) for every 〈a〉ψc ∈ Γ;

(c) [ă]χ◦ for every χd ∈ Γ such that [ă]χ ∈ Σ;

2. (a) ϕ; 〈ă〉χ for every [a]ϕ; χ ∈ Γ such that 〈ă〉χ ∈ Σ;

(b) 〈ă〉χ 6; ϕ for every χ 6; [a]ϕ ∈ Γ such that 〈ă〉χ ∈ Σ;

(c) ψ ; 〈ă〉χ for every 〈a〉ψ ; χ ∈ Γ such that 〈ă〉χ ∈ Σ;

(d) 〈ă〉χ 6; ψ for every χ 6; 〈a〉ψ ∈ Γ such that 〈ă〉χ ∈ Σ,

where s(ξ,Γ) is defined by:

s(ξ,Γ) =


• if ξ• ∈ Γ,

• if θ 6; ξ ∈ Γ for some θ• ∈ Γ,

◦ otherwise.

Before we go on to provide the rest of the proof system, we will give some intuition
for the modal rule, by proving the lemma below. This lemma essentially expresses
that the modal rule is sound. Since the annotations play no role in the soundness
of an individual rule, we suppress the annotations in the proof below for the sake
of readability. Intuition for the annotations in the modal rule, and in particular
for the function s, will be given later.

5.2.11. Lemma. Given a model S, a state s of S, and an ops f for ∀ in E such
that S, s 6
f [a]ϕb,Γ, let t be such that f(([a]ϕ, s) = (ϕ, t). Then S, t 6
f Γ[a]ϕb

.

Proof:
First note that t is well-defined. Indeed, by assumption S, s 6
f [a]ϕb,Γ. Hence
in particular S, s 6
f [a]ϕb. This means that the strategy f is winning in E at the
position ([a]ϕ, s). In particular ∀ does not get stuck at this position, and thus f
must select a position (ϕ, t), where t is an a-successor of s.

Now, we claim that S, t 6
f Γ[a]ϕb
. To start with, since f is winning, we

have S, t 6
f ϕ. Moreover, if 〈a〉ψ belongs to Γ, then S, s 6
f 〈a〉ψ and thus
S, t 6
f ψ. Thirdly, if χ belongs to Γ and [ă]χ ∈ Σ, then, by optimality, it holds
that S, t 6
f [ă]χ.

With this we have shown all conditions under item 1 of Definition 5.2.10. For
the conditions under item 2, suppose that 〈ă〉χ ∈ Σ. We only show 2(a), because
the others are similar (note that 2(d) is essentially the third item of Example
5.2.8). For 2(a), we reason by contraposition. So suppose that S, t 
f ϕ; 〈ă〉χ.
This is witnessed by an f -guided E-match

(ϕ, t) = (ϕ0, s0) · (ϕ1, s1) · · · (ϕn, sn) = (〈ă〉χ, t).
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Ax1
ϕb, ϕc,Γ

Ax2
ϕ; ψ,ϕ 6; ψ,Γ

Ax3
ϕ; ϕ,Γ

(ϕ ∨ ψ) 6; ϕ, (ϕ ∨ ψ) 6; ψ,ϕb, ψb,Γ
R∨

ϕ ∨ ψb,Γ
ϕ◦,Γ ϕ◦,Γ

cut
Γ

(ϕ ∧ ψ) 6; ϕ,ϕb,Γ (ϕ ∧ ψ) 6; ψ,ψb,Γ
R∧

ϕ ∧ ψb,Γ
ϕ[µxϕ/x]◦,Γ

Rµ
µxϕb,Γ

νxϕ 6; ϕ[νxϕ/x], ϕ[νxϕ/x] ; νxϕ, ϕ[νxϕ/x]b,Γ
Rν

νxϕb,Γ

Γ[a]ϕb

R[a]
[a]ϕb,Γ

Γ•
F

Γ◦
ϕ 6; ψ,ψ 6; χ, ϕ 6; χ,Γ

trans
ϕ 6; ψ,ψ 6; χ,Γ

ϕ; ψ,Γ ϕ 6; ψ,Γ
tc

Γ

Figure 5.1: The proof rules of the system Focus2.

But then the f -guided E-match

([a]ϕ, s) · (ϕ0, s0) · · · (ϕn, sn) · (〈a〉χ, s),

witnesses that S, s 
f [a]ϕ; χ, as required. 2

The rules of the system Focus2 are given in Figure 5.1. In each rule except of
the modal rule, in the conclusion and each premiss, the annotated formulas occur-
ring in the set Γ are called inactive. Moreover, the conclusions and premisses of
the rules in {R∨,R∧,Rµ,Rν} have precisely one active formula, which by definition
is the annotated formula appearing to the left of Γ. The single active formula in
the conclusion is often called principal . Note that, due to the fact that sequents
are taken to be sets, an annotated formula may at the same time be both active
and inactive. For the modal rule, the active formulas in the conclusion are those
that are referred to by Definition 5.2.10. That is, the formula [a]ϕb, all formulas
of the form 〈a〉ψc, and all formulas χd such that [ă] ∈ Σ. All other formulas are
inactive in the conclusion of the modal rule are inactive. Finally, the premiss of
the modal rule contains only active formulas.

5.2.12. Remark. Note that being active is only defined for annotated formulas,
and not for (negated) trace atoms. The same holds for the notion of direct
ancestry, which we will define below.

We will now define the relation of direct ancestry between formulas in the
conclusion and formulas in the premisses of some arbitrary rule application. For
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any inactive formula in the conclusion of some rule, we let its direct ancestors be
the corresponding inactive formulas in the premisses. For every rule except R[a],
if some formula in the conclusion is an active formula, its direct ancestors are the
active formulas in the premisses. Finally, for the modal rule R[a], we stipulate
that ϕs([a]ϕ,Γ) is an direct ancestor of the principal formula [a]ϕb, and that each
ψs(〈a〉ψ,Γ) contained in Γ[a]ϕb

due to clause 1(b) of Definition 5.2.10 is an direct
ancestor of 〈a〉ψb ∈ Γ.

As mentioned before, the purpose of the focus annotations is to keep track of
trails of formulas on branches (in the sense of Definition 2.3.11. Usually, a trail
is a sequence of formulas (ϕn)n<ω such that each ϕk is an direct ancestor of ϕk+1.
The idea is then that whenever an infinite branch has cofinitely many sequents
with a formula in focus, this branch contains a trail on which infinitely many
formulas are ν-formulas. Disregarding the backward modalities for now, this can
be seen as follows. As long as the focus rule is not applied, any focussed formula
is an direct ancestor of some earlier focussed formula. Since the principal formula
of Rµ loses focus, while that of Rν preserves focus, a straightforward application
of Kőnig’s Lemma shows that every infinite branch contains a trail with infinitely
many ν-formulas. We refer the reader to [73] for more details on this argument.

Our setting is slightly more complicated, because the function s in Definition
5.2.10 additionally allows the focus to transfer along negated trace atoms, rather
than just from a formula to one of its direct ancestors. This is inspired by [105],
as are the conditions in the second part of Definition 5.2.10. The main idea is
that, because of the backward modalities, traces may move not only up, but also
down a proof tree. To get a grip on these more complex traces, we cut them up
in segments consisting of upward paths, which are the same as ordinary traces,
and loops, which are captured by the negated trace atoms. This intuitive idea
will become explicit in the proof of completeness in Section 5.4.

5.2.13. Remark. The reader might be surprised by Clause 1(c) of Definition
5.2.10. Since [ă]χ◦ in the premiss is closely related to χd in the conclusion, one
would expect there to be some transfer of focus between the two. The crucial
points is that this focus transfer would have to be backwards, in the sense that if
[ă]χ is in focus, then χ must be in focus as well. The role of the trace atoms is
precisely to capture these dynamics.

5.2.14. Remark. We will often reason about the proof system Focus2 contra-
positively. As a result, the negative trace atoms are often considered as positive
tace atoms and vice versa. This for instance explains the formulation of the
transitivity rule.

5.2.15. Remark. Note that, except for the rule tc, or trace cut , the only rule
with a positive trace atom in the premiss is the rule Rν . The idea is that if
νxϕ is false at some state in some model with respect to some ops f for ∀, then
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ϕ[νxϕ/x] ; νxϕ must be false as well. Indeed, if it were true, then, since by
Example 5.2.8 ϕ[νxϕ/x] ; νxϕ is also true, there would be a winning match
for ∃ going back and forth between νxϕ and ϕ[νxϕ/x]. Hence νxϕ would be
winning for ∃. Similar positive trace atoms could be added to the premisses of
the other rules. For instance, it would be sound to weaken the rule R∨ by adding
the positive trace atoms ϕ ; (ϕ ∨ ψ) and ψ ; (ϕ ∨ ψ) to the premiss. It turns
out, however, that only having a positive trace atom in the conclusion of Rν is
sufficient for completeness. Why it is necessary for completeness will become
clear in the completeness proof of Section 5.4.2.

We are now ready to define a notion of infinitary proofs in Focus2. Recall that
a derivation is closed if every leaf is an axiom.

5.2.16. Definition. A Focus2∞-proof is a closed Focus2-derivation such that:

1. Every infinite branch has infinitely many applications of R[a].

2. On every infinite branch cofinitely many sequents have a formula in focus.

Condition 1 ensures that the tightening of every infinite trail is infinite. Conditon
2 guarantees that this infinite tightening is a ν-trace. These properties will be
used in Section 5.4 to show that infinitary proofs are sound. The key idea is to
relate the traces in a proof to matches in the evaluation game on a purported
countermodel of the proof’s conclusion.

We close this section with two examples of Focus2∞-proofs. The first exam-
ple demonstrates cut and item 1(c) of Definition 5.2.10. The second example
demonstrates trace atoms.

5.2.17. Example. Define the following two formulas:

ϕ := µx(〈ă〉x ∨ p), ψ := νy([a]x ∧ ϕ).

The formula ϕ expresses ‘there is a backward a-path to some state where p holds’.
The formula ψ expresses ‘ϕ holds at every state reachable by a forwards a-path’.
As our context Σ we take least negation-closed set containing ϕ and ψ:

{ϕ, 〈ă〉ϕ ∨ p, 〈ă〉ϕ, p, ψ, [a]ψ ∧ ϕ, [a]ψ, ϕ, [ă]ϕ ∧ p, p, [ă]ϕ, ψ, 〈a〉ψ ∨ ϕ, 〈a〉ψ}.

The implication p → ψ is valid, and below we give a Focus2∞-proof. As this
particular proof does not rely on trace atoms, we omit them for readability.

Ax1
p•, ψ•, 〈ă〉ϕ◦, p◦

R∨
p•, ψ•, 〈ă〉ϕ ∨ p◦

Rµ
p•, ψ•, ϕ◦

π
ψ•, [ă]ϕ◦

R[a]
p•, [a]ψ•, ϕ◦

Ax1
p•, ϕ•, ϕ◦

R∧
p•, [a]ψ ∧ ϕ•, ϕ◦

Rνp•, ψ•, ϕ◦
cut

p•, ψ•
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In the above proof, the proof π is given by

Ax1
ϕ◦, ϕ◦

R[ă]
[a]ψ•, [ă]ϕ◦, 〈ă〉ϕ◦, p◦

R∨
[a]ψ•, [ă]ϕ◦, 〈ă〉ϕ ∨ p◦

Rµ
[a]ψ•, [ă]ϕ◦, ϕ◦

...
ψ•, [ă]ϕ◦

R[a]
[a]ψ•, [ă]ϕ◦, ϕ◦

cut
[a]ψ•, [ă]ϕ◦

Ax1
ϕ◦, ϕ◦

R[ă]〈ă〉ϕ◦, p◦, [ă]ϕ◦
R∨〈ă〉ϕ ∨ p◦, [ă]ϕ◦
Rµ

ϕ•, [ă]ϕ◦
R∧

[a]ψ ∧ ϕ•, [ă]ϕ◦
Rν

ψ•, [ă]ϕ◦

where the vertical dots indicate that the proof continues by repeating what hap-
pens at the root of π. The resulting proof of p•, ψ• has a single infinite branch,
which can easily be seen to satisfy the conditions of Definition 5.2.16.

5.2.18. Example. Define ϕ := νx〈a〉〈ă〉x, i.e. ϕ expresses that there is an
infinite path of alternating a and ă transitions. Clearly this holds at every state
with an a-successor. Hence the implication 〈a〉p → ϕ is valid. As context Σ we
consider the least negation-closed set containing both 〈a〉p and ϕ, i.e.,

{〈a〉p, p, ϕ, 〈a〉〈ă〉ϕ, 〈ă〉ϕ, [a]p, p, ϕ, [a][ă]ϕ, [ă]ϕ}.

The following is a Focus2∞-proof of 〈a〉p→ ϕ.

Ax2
p•, 〈ă〉ϕ•, 〈ă〉ϕ 6; 〈ă〉ϕ, 〈ă〉ϕ; 〈ă〉ϕ

R[a]
[a]p•, 〈a〉〈ă〉ϕ•, ϕ 6; 〈a〉〈ă〉ϕ, 〈a〉〈ă〉ϕ; ϕ

Rν
[a]p•, ϕ•

Note that it is also possible to use Ax3 instead of Ax2 in the above proof.

5.3 The proof search game

We will define a proof search game G(Γ) for the proof system Focus2∞ analogous
to the game of Section 2.3.3. First, we require a slightly more formal definition
of the notion of a rule instance.

For Γ a sequent, the set of positions of G(Γ) is SeqΓ∪InstΓ, where SeqΓ is the set
of sequents and InstΓ is the set of valid rule instances, containing only formulas in
the negation-closure of the formula occurring in Γ (either as an annotated formula
or as part of a, possibly negated, trace atom).

Since Γ is finite, the game G(Γ) has only finitely many positions. In particular,
since by assumption every formula in Γ belongs to the set Σ we fixed at the
beginning of Section 5.2, every formula occurring in some position of G(Γ) belongs
to Σ as well. Note that this implies that cut and tc only introduce annotated
formulas and trace atoms build from formulas in Σ.

The ownership function and admissible moves of G(Γ) are as in the following
table:
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Position Owner Admissible moves
Γ ∈ SeqΓ Prover {i ∈ InstΓ | conc(i) = Γ}

(Γ, r, 〈∆1, . . . ,∆n〉) ∈ InstΓ Refuter {∆i | 1 ≤ i ≤ n}

In the above table, the expression conc(i) stands for the conclusion (i.e. the first
element of the triple) of the rule instance i. As usual, a finite match is lost by
the player who got stuck. An infinite G(Γ)-match is won by Prover if and only it
has a final segment

Γ0 · i0 · Γ1 · i1 · · ·
on which each Γk has at least one formula in focus and the instance ik is an
application of R[a] for infinitely many k. The two main observations about G(Γ)
that we will use are the following:

1. A Focus2∞-proof of Γ is the same as a winning strategy for Prover in G(Γ)@Γ.

2. G(Γ) is a parity game, whence positionally determined.

The first observation is immediate when viewing a winning strategy as a subtree
of the full game tree. To make the second observation more explicit, we give the
parity function Ω for G(Γ). On SeqΓ, we simply set Ω(Γ) := 0 for every Γ ∈ SeqΓ.
On InstΓ, we define:

Ω(Γ, r, 〈∆1, . . . ,∆n〉) :=


3 if Γ has no formula in focus,

2 if Γ has a formula in focus and r = R[a],

1 if Γ has a formula in focus and r 6= R[a].

As a result we immediately obtain a method to reduce general non-well-founded
proofs to a kind of cyclic proofs. Indeed, if Prover has a winning strategy, she also
has positional winning strategy, which clearly corresponds to a regular Focus2∞-
proof.

5.3.1. Remark. Using the terminology of the Intermezzo, let us call good those
finite paths in Focus2-derivations which always have a formula in focus, and on
which the modal rule is applied at least once. It is not hard to see that the simple
infinitary proof system (cf. Definition I.2.7) generated by this notion of good
finite paths is precisely Focus2∞. Hence, we obtain a notion of cyclic Focus2-proofs
with a soundness condition that can be checked by looking only at the paths
between each repeating leaf and its companion. This cyclic system proves exactly
the same sequents as Focus2∞. Hence the soundness and completeness theorems
of the next section transfer to the cyclic system.

5.4 Soundness and completeness

In this section we will prove the soundness and completeness of the system Focus2∞.
More specifically, for soundness we will show that if Γ is invalid, then Refuter has
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a winning strategy in G(Γ)@Γ. Our completeness result is slightly less wide in
scope, showing only that if Refuter has a winning strategy in G(Γ)@Γ, then Γ−

is invalid.

5.4.1 Soundness

For soundness, we assume an ops f for ∀ in E := E(
∧

Σ,S) for some S and s
such that S, s 6
f Γ. The goal is to construct from f a strategy f for Refuter in
G := G(Γ). The key idea is to assign to each position p reached in G a state s
such that whenever p = ∆ ∈ SeqΓ it holds that S, s 6
f ∆. For i ∈ InstΓ, the
choice of f is then based on f(ϕ, s) where ϕ is a formula determined by the rule
instance i. The existence of such an s implies that i cannot be an axiom and thus
that Refuter never gets stuck. For infinite matches, the proof works by showing
that an f -guided G@Γ-match lost by Refuter induces an f -guided E@ϕ-match
lost by ∀. As mentioned above, the key idea here is to relate an f -guided E@ϕ-
match to a trail through the f -guided G@Γ-match. If the G@Γ-match is losing
for Refuter, it must contain a ν-trail, which gives us an E@ϕ-match lost by ∀. A
novel challenge here is that not all steps in a trail necessarily go from a formula to
one of its direct ancestors, but may instead transfer along a negated trace atom.
When this happens, say from ϕn to ϕn+1, it holds for ∆ as above that both ϕ•n
and ϕn 6; ϕn+1 belong to ∆. Since, by the above, it holds that S, s 6
f ∆, we use
the fact that S, s 
f ϕn ; ϕn+1 to take the E@ϕ-match from (ϕn, s) to (ϕn+1, s).

Recall that Lemma 5.2.11 showed that the modal rule is sound. The next
proposition shows that every other rule of Focus2 is sound as well. In fact, if the
conclusion is falsified in some state, one of the premisses is falsified in the same
state.

5.4.1. Lemma. Let
∆1 · · · ∆n

R
Γ

be an instance of any rule apart from R[a]. Given a model S, a state s of S, and an
ops f for ∀ in E such that S, s 6
f Γ, there is an 1 ≤ i ≤ n such that S, s 6
f ∆i.

In particular, if R = R∧ and ϕ1 ∧ ϕb2 is the principal formula, then it holds
that S, s 6
f (ϕ1 ∧ ϕ2) ; ϕi, ϕ

b
i ,Γ, where ϕi is such that f(ϕ1 ∧ ϕ2, s) = (ϕi, s).

Proof:
Suppose that S, s 6
f Γ. We make a case distinction on the rule R.

(Ax1) In this case there is a formula ϕ such that ϕb, ϕc ∈ Γ. Since ϕ and ϕ are
Boolean duals, it either holds that S, s 
f ϕ, or S, s 
f ϕ. Hence it is not
possible that S, s 6
f Γ and thus the implication is vacuous in this case.

(Ax2) This case is similar to the previous case: either ϕ; ψ or ϕ 6; ψ belongs
to Γ. Hence S, s 
f Γ.
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(Ax3) We have S, s 
f ϕ ; ϕ, witnessed by the one-position match (ϕ, s).
Hence again S, s 
f Γ.

(R∨) By assumption S, s 6
f ϕ ∨ ψ. This means that S, s 6
f ϕ and S, s 6
f ψ.
Moreover, both S, s 
f (ϕ ∨ ψ) ; ϕ and S, s 
f (ϕ ∨ ψ) ; ϕ hold.
Indeed, from the position (ϕ ∨ ψ, s), it is possible for ∃ to proceed to
either (ϕ, s) or (ψ, s). Hence S, s 6
f (ϕ∨ ψ) 6; ϕ, (ϕ∨ ψ) 6; ψ, ϕb, ψb,Γ,
as required.

(R∧) Since S, s 6
f ϕ∧ψ, it holds that f is a winning strategy in E at (ϕ∧ψ, s).
Suppose without loss of generality that f(ϕ ∧ ψ, s) = (ϕ, s). Then f is
winning in E at (ϕ, s) as well. Moreover, the f -guided match (ϕ ∧ ψ, s) ·
(ϕ, s) witnesses that S, s 
f (ϕ ∧ ψ) ; ϕ. So S, s 6
f (ϕ ∧ ψ) 6; ϕ, ϕb,Γ.

(Rµ) Since f is winning for ∀ in E at (µxϕ, s), and the next position necessarily
is (ϕ[µxϕ/x], s), it follows that f is winning for ∀ at (ϕ[µxϕ/x], s) as well.
Hence S, s 6
f ϕ[µxϕ/x]b,Γ.

(Rν) By the same argument as in the previous case, we find S, s 6
f ϕ[νxϕ/x].
Moreover, item (ii) of Example 5.2.8 shows that S, s 
f νxϕ; ϕ[νxϕ/x].
Finally, suppose that we would also have S, s 
f ϕ[νxϕ/x] ; νxϕ. Then
there would be an infinite f -guided E-match

(νxϕ, s) · · · (ϕ[νxϕ/x], s) · · · (νxϕ, s) · · · (ϕ[νxϕ/x], s) · · ·

which does not go through a µ-formula. But then S, s 
f νxϕ, contra-
dicting the assumption. Hence S, s 6
f ϕ[νxϕ/x] ; νxϕ. We have thus
found that S, s 6
f νxϕ 6; ϕ, ϕ[νxϕ/x] ; νxϕ, ϕ[νxϕ/x]b,Γ, as required.

(F) This is trivial, as the focus annotation do no impact satisfiability.

(trans) Note that it suffices to show that S, s 6
f ϕ 6; χ, i.e. S, s 
f ϕ ; χ.
By assumption, we have S, s 
f ϕ ; ψ and S, s 
f ψ ; χ. Hence there
indeed exists an f -guided E-match

(ϕ, s) · · · (ψ, s) · · · (χ, s),

which does not go through a µ-formula.

(cut) By the optimality of f , we know that f must either be winning for ∀ in
E at the position (ϕ, s) or at the position (ϕ, s), Hence, we either have
S, s 6
f ϕ◦,Γ, or S, s 6
f ϕ◦,Γ.

(tc) This final case is similar to the previous case: we must either have S, s 6
f
ϕ; ψ, or S, s 6
f ϕ 6; ψ.



138 Chapter 5. Focus-style proofs for the two-way alternation-free µ-calculus

2

Together with Lemma 5.2.11, the previous lemma entails that well-founded
Focus2∞-proofs are sound.

5.4.2. Proposition. Well-founded Focus2∞-proofs are sound.

The rest of this section is devoted to generalising the previous proposition to also
include non-well-founded Focus2∞-proofs. We first establish an auxiliary lemma.

5.4.3. Lemma. Let M be some infinite G(Γ)-match won by Prover. Then M
has a final segment

N = Γ0 · i0 · Γ1 · i1 · Γ2 · i2 · · ·

for which there is a sequence of formulas ϕ0, ϕ1, ϕ2, · · · such that for every n ≥ 0
it holds that ϕ•n ∈ Γn, and, in addition, at least one of the following holds:

• ϕ•n+1 ∈ Γn+1 is an direct ancestor of ϕ•n ∈ Γn;

• in = R[a] and Γn contains some ϕn 6; ξ such that ϕ•n+1 ∈ Γn+1 is an direct
ancestor of some ξb ∈ Γn.

Proof:
First note that, by winning condition on infinite matches of G(Γ), there is a final
segment N = Γ0 · i0 · Γ1 · i1 · · · of M on which every sequent Γn has a formula
in focus, and the rule instance in is modal for infinitely many n. Since every
annotated formula in the conclusion of F is out of focus, we know that the rule
instance in is not an application of F for any n ≥ 0. By direct inspection of the
rules, one can then see that a formula ϕ• in some Γn+1 can only be in focus for
one of the following two reasons:

(i) ϕ• is an direct ancestor of some formula ψ• in Γn.

(ii) in = R[a] and ϕ• is an direct ancestor of some ξb in Γn such that Γn contains
ψ 6; χ for some ψ• in Γn.

Hence, we can build a tree where the root r has as children all formulas which are
in focus in Γ0, and each formula ψ in focus in Γn has as children each formula ϕ
such that ϕ• ∈ Γn+1, whose focus can be justified from ψ either through item (i)
or item (ii) above. Since each formula in focus in Γn can be traced back to the root
r, it is contained in this tree. Hence, because there are infinitely many Γn, each
of which as a formula in focus, the tree must be infinite. By Kőnig’s Lemma, the
tree has an infinite branch ϕ0, ϕ1, ϕ2, . . . such that ϕ•n ∈ Γn for each n. Moreover,
each ϕn satisfies at least one of the required conditions by construction. 2

We are now ready to prove the full soundness theorem.

5.4.4. Proposition. If Γ is the conclusion of a Focus2∞-proof, then Γ is valid.
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Proof:
Our proof will go by contraposition, so suppose that some sequent Γ is invalid.
This means that there is a model S with a state s and ops f for ∀ in the game
E := E(

∧
Σ, S), such that S, s 6
f Γ. We will construct a (positional) winning

strategy f for Refuter in the game G := G(Γ) initialised at Γ.

Formally, this strategy is a function f : PMR(Γ) → SeqΓ. In addition, we
will define a function sf : PM(Γ) → S, from partial G-matches starting at Γ to
states of S, such that S, sf (M) 6
f last(M) for every f -guided M ∈ PMP (Γ),
and S, sf (M) 6
f f(M) for every f -guided M∈ PMR(Γ).

We define f and sf by induction on the length |M| of a match M∈ PM(Γ).
For the base case, i.e. where |M| = 1, we have M = Γ. Since in this case
M∈ PMP (Γ), we only have to define sf (M) and not f(M). We set sf (M) := s.
Note that this suffices, because last(M) = Γ and by assumption S, sf 6
f Γ.

Now suppose that f and sf have been defined for all matches up to length n,
and that |M| = n + 1. We assume that M is f -guided, for otherwise we may
just assign f(M) and sf (M) some arbitrary value.

Suppose first that M belongs to PMP (Γ). Writing M≤n ∈ PMR(Γ) for the
initial segment of M consisting of the first n moves, we set sf (M) := sf (M≤n).
SinceM is f -guided, we have last(M) = f(M≤n). Hence it holds by the induction
hypothesis that S, sf (M) 6
f last(M), as required.

IfM belongs to PMR(Γ), then last(M) is a rule instance and we distinct cases
based on the rule R of last(M) ∈ InstΓ. If R is the modal rule R[a], we let sf (M)

be the state in f([a]ϕ, sf (M≤n)), where [a]ϕ is principal in last(M). For f there
is only a single choice, say ∆. We set f(M) := ∆. Note that by Lemma 5.2.11,
it indeed follows that S, sf (M) 6
f f(M). If R is any rule but the modal rule,
we set sf (M) := sf (M≤n) and invoke Lemma 5.4.1 to obtain a premiss ∆i such
that S, sf (M) 6
f ∆i. We set f(M) := ∆i. In particular, if R = R∧ and ϕ1 ∧ ϕb2
is the principal formula, then we set f(M) := (ϕ1 ∧ ϕ2) ; ϕi, ϕ

b
i ,Γ, where ϕi is

such that f(ϕ1 ∧ ϕ2, sf (M≤n)) = (ϕi, sf (M≤n)).

We will now show that f is indeed a winning strategy for Refuter in G@Γ. To
that end, suppose towards a contradiction that Refuter loses a f -guided G@Γ-
matchM. We already know that Refuter does not get stuck, as an axiom is never
reached and all other rule instances have a non-zero number of premisses. Hence,
the match M must be infinite. Let N = Γ0 · i0 · Γ1 · i1 · · · be a final segment
of M as given by Lemma 5.4.3. We use K to denote the initial segment of M
occurring before N , i.e. such that M = K · N . Without loss of generality we
assume that |K| > 0.

As before, we write N≤n for the initial segment of N up to the first n moves.
Note that f(K · N≤2n) = Γn for every n ≥ 0. For convenience we will denote
K·N≤2n byMn. We will reach a contradiction by showing that S, sf (M0) 
f ϕ0,
which contradicts the fact that S, sf (M0) 6
f f(M0) = Γ0.

The crucial claim is that for every n there is an f -guided E-match starting
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at (ϕn, sf (Mn)) and ending at (ϕn+1, sf (Mn+1)), without passing through a µ-
unfolding. More precisely, we will show that there is an f -guided E-match

(ϕn, sf (Mn)) = (ψ0, s0) · · · (ψm, sm) = (ϕn+1, sf (Mn+1)) (m ≥ 0)

such that for no i < m the formula ψi is a µ-formula. By pasting together these
finite segments, it will then follow that the strategy f is not winning for ∀ in
E@(ϕ0, sf (M0)), reaching the desired contradiction.

We will first show the above claim under the assumption that ϕ•n+1 is an
direct ancestor of ϕ•n, and ϕn = ϕn+1. Note that in this case in is not the modal
rule. Hence sf (Mn) = sf (Mn+1) and thus (ϕn, sf (Mn)) = (ϕn+1, sf (Mn+1)), by
which the result holds vacuously.

Now suppose that ϕ•n+1 is an direct ancestor of ϕ•n and ϕn 6= ϕn+1. Note that
in this case ϕ•n must be active in the conclusion Γn of the rule instance in, and
ϕ•n+1 must be active in the premiss Γn+1 of same rule instance in. We will show,
by a case distinction on the main connective of ϕn, that the match proceeds to
the desired position (ϕn+1, sf (Mn+1)) after a single round.

• First note that ϕn cannot be atomic, for atomic formulas can only have
direct ancestors when they are inactive.

• Suppose ϕn is of the form ψ1 ∨ ψ2. Then ϕ•n must be principal and we
have ϕn+1 = ψi for some i ∈ {1, 2}. We let ∃ simply choose the position
(ψi, sf (Mn). Since the rule of in must be R∨, we have sf (Mn) = sf (Mn+1)
and thus reach the desired position in E .

• Suppose ϕn is of the form ψ1∧ψ2. Again we find that ϕ•n must be principal,
the rule of in now being R∧. Recall that, when invoking Lemma 5.4.1, we
chose the premiss Γn+1 in such a way that the active formula in Γn+1 is ψ•i ,
where f(ψ1 ∧ ψ2, sf (Mn)) = (ψi, sf (Mn)). Hence ϕn+1 = f(ϕn, sf (Mn)),
and the next position in E again suffices.

• Suppose ϕn = 〈a〉ψ. Then the rule of in must be R[a] and ϕn+1 = ψ.
Recall that sf (Mn+1) was obtained from Lemma 5.2.11, and therefore
f([a]χ, sf (Mn)) = (χ, sf (Mn+1), where [a]χb is the principal formula of the
rule instance in. In particular it follows that sf (Mn+1) is an a-successor of
sf (Mn) in S and thus we can let ∃ choose (ϕn+1, sf (Mn+1)), as required.

• If ϕn = [a]χ, then the rule of in must be R[a] and ϕ•n must be the principal
formula of this rule instance. As explained in the previous case, we have
f([a]χ, sf (Mn)) = (χ, sf (Mn+1). Therefore the next position in E will be
(χ, sf (Mn+1), as required.

• ϕn = µxψ is not possible, because any direct ancestor of µxψ• that is not
a side formula, will be out of focus.
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• Finally, suppose that ϕn = νxψ. We have that ϕn+1 = ψ[νxψ/x] and the
rule of in is Rν . Because sf (Mn+1) = sf (Mn), the required position is
reached immediately.

Finally, suppose that ϕ•n+1 is not an direct ancestor of ϕ•. Then it must be
the case that in = R[a] and Γn contains some ϕn 6; ξ such that ϕ•n+1 is an direct
ancestor of some ξb ∈ Γn. By assumption S, sf (Mn) 6
f Γn, and thus in particular
S, sf (Mn) 
f ϕn ; ξ. Hence ∃ can take the f -guided match from (ϕn, sf (Mn))
to (ξ, sf (Mn)) without passing through a µ-unfolding. Since ξb has an direct
ancestor (namely ϕ•n+1), we find that ξ must be of the form 〈a〉ψ or of the form
[a]χ, where [a]χ is the principal formula of in. In either case ∃ can ensure that the
next position after (ξ, sf (Mn)) is (ϕn+1, sf (Mn+1)) by using the same strategy
as above for the 〈a〉 and [a] cases, respectively.

Since the modal rule is applied infinitely often inM, the segments constructed
above must be of non-zero length infinitely often. Hence, we obtain an infinite
f -guided E@(ϕ0, sf (M0))-match won by ∃, a contradiction. 2

5.4.2 Completeness

For completeness we conversely show that from a winning strategy f for Refuter in
G@Γ, we can construct a model Sf and a positional strategy f for ∀ in E(

∧
Σ,Sf )

such that Sf falsifies Γ− with respect to f . The strategy f we construct will
not necessarily be optimal but, by Theorem 2.2.10, it follows that there must
also be an ops g such that Sf 6
g Γ−. We will view f as a tree, and restrict
attention a certain subtree. We first need to define two relevant properties of rule
applications.

5.4.5. Definition. A rule application is cumulative if all of the premisses are
supersets of the conclusion. A rule application is productive if all of the premisses
are distinct from the conclusion.

Without renaming f , we restrict f to its subtree where the strategy of Prover is
to go through the following stages in succession:

1. Exhaustively apply productive instances of cut and tc.

2. If applicable, apply the focus rule.

3. Exhaustively take applications of R∨, R∧, Rµ, Rν , trans that are both cumu-
lative and productive.

4. If applicable, apply an axiom.

5. If applicable, apply a modal rule and loop back to stage (1).
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Note that this strategy for Prover is non-deterministic. Most importantly, to a
single sequent it might be possible to apply different instances of the modal rule.
Hence the resulting strategy tree f does not only branch at positions owned by
Refuter, but may also branch at positions owned by Refuter.

It is not hard to see that each of the above phases terminates. More precisely,
phases (2), (4) and (5) either terminate immediately or after applying a single
rule. By the productivity requirement and the finiteness of Σ, phases (1) and (3)
must terminate after a finite number of rule applications as well. Note also that
non-cumulative rule applications can only happen in phases (2) or (5).

We will now define the model Sf . The set Sf of states consists of maximal
paths in f not containing a modal rule. Here we mean that different paths in
f correspond to different states in Sf , even if they happen to be labelled by the
same sequents. We write Γ(ρ) for

⋃
{Γ : Γ occurs in ρ}. Note that, since the only

possibly non-cumulative rule application in ρ is the focus rule, Γ(ρ)• = last(ρ)•

for every state ρ of Sf . Moreover, we write ρ1
a−→ ρ2 if ρ2 is directly above ρ1 in f ,

separated only by an application of R[a] (we assume that trees grow upward). We

write → for the union
⋃
{ a−→: a ∈ D}. Clearly, under the relation → the states of

Sf form a forest (not necessarily a tree!). We write ρ ≤ τ if τ is a descendant of
ρ in this forest, i.e. ≤ is the reflexive-transitive closure of →. The accessibility
relations Rf

a of Sf are defined as follows:

ρ1R
f
aρ2 if and only if ρ1

a−→ ρ2 or ρ2
ă−→ ρ1.

Note under these accessibility relations Sf indeed satisfies the regularity property
(*) above. We define the valuation V f : Sf → P(P) by

V f (ρ) := {p : p ∈ Γ(ρ)−}.

The model Sf inherits much of the tree structure of f . There are two main
differences. First, a path in f between two modal rules is collapsed into a single
state in Sf . Second, for every path ρ2 directly above some path ρ1, with an
application of R[a] in between, in the model Sf it does not only hold that ρ1R

f
aρ2,

but also that ρ2R
f
ăρ1.

By the restriction on f , and in particular the fact that each of the stages (1) -
(5) terminates, each state ρ of Sf is based on a finite path. Together with the fact
that f is winning for Refuter, the restriction on f further guarantees that each
Γ(ρ) satisfies certain saturation properties, which are spelled out in the following
lemma. We will later use these saturation conditions to construct our positional
strategy f for ∀ in E(

∧
Σ,Sf ) and to show that Sf falsifies Γ− with respect to f .

5.4.6. Lemma. For every state ρ of Sf , the set Γ(ρ) is saturated. That is, it
satisfies all of the following conditions:

• For no ϕ it holds that ϕ, ϕ ∈ Γ(ρ)−.
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• For all ϕ it holds that ϕ◦ ∈ Γ(ρ) if and only if ϕ◦ /∈ Γ(ρ)

• For all ϕ it holds that ϕ; ψ ∈ Γ(ρ) if and only if ϕ 6; ψ /∈ Γ(ρ).

• For no ϕ it holds that ϕ; ϕ ∈ Γ(ρ).

• If ψ1 ∨ ψ2 ∈ Γ(ρ)−, then for both i: ψ1 ∨ ψ2 6; ψi ∈ Γ(ρ) and ψi ∈ Γ(ρ)−.

• If ψ1 ∧ ψ2 ∈ Γ(ρ)−, then for some i: ψ1 ∧ ψ2 6; ψi ∈ Γ(ρ) and ψi ∈ Γ(ρ)−.

• If µxϕ ∈ Γ(ρ)−, then ϕ[µxϕ/x] ∈ Γ(ρ)−.

• If νxϕ ∈ Γ(ρ)−, then νxϕ 6; ϕ[νxϕ/x] ∈ Γ(ρ) and ϕ[νxϕ/x] ∈ Γ(ρ)−.

• If νxϕ ∈ Γ(ρ)−, then ϕ[νxϕ/x] ; νxϕ ∈ Γ(ρ).

• If ϕ 6; ψ, ψ 6; χ ∈ Γ(ρ), then ϕ 6; χ ∈ Γ(ρ).

Proof:
We will prove two illustrative items, leaving the other items to the reader. For
instance, the fact that ϕ ; ϕ /∈ Γ(ρ) follows from the fact that f is winning
for Refuter and the presence of the axiom Ax3. Now suppose that νxϕ ∈ Γ(ρ)−.
Then νxϕb occurs in some Γ on ρ. It follows that νxϕc must occur in some ∆ on
ρ which is in stage 3 of Prover’s strategy. If the saturation conditions for νxϕ do
not already hold, Prover will in stage 3 cumulatively and productively apply Rν
with νxϕ as prinicipal formula. As a result, we will have νxϕ 6; ϕ[νxϕ/x] ∈ Γ(ρ)
and ϕ[νxϕ/x] ∈ Γ(ρ)−, and ϕ[νxϕ/x] ; νxϕ ∈ Γ(ρ), as required. 2

Now let ρ0 be any state of Sf containing the root Γ of f . We wish to show
that Γ− is not satisfied at ρ0 in Sf . To this end, we will construct a strategy f

for ∀ in the game E := E(
∧

Σ,Sf ) which is winning (ϕ0, ρ0) for every ϕ0 ∈ Γ−.
The strategy f is defined as follows:

• At (ψ1 ∧ ψ2, ρ), pick a conjunct ψi ∈ Γ(ρ)− such that ψ1 ∧ ψ2 6; ψi ∈ Γ(ρ).

• At ([a]ϕ, ρ), choose (ϕ, τ) for some τ such that ρ
a−→ τ by virtue of some

application of R[a] with [a]ϕb principal.

Before we show that f is winning for ∀, we must first argue that it is well defined.
By saturation, for every formula ψ1∧ψ2 contained in Γ(ρ)−, there is a ψi ∈ Γ(ρ)−

with ψ1 ∧ ψ2 6; ψi ∈ Γ(ρ). Likewise, for every formula [a]ϕb ∈ Γ(ρ), there is
a τ directly above ρ in f , separated only by an application of R[a] with [a]ϕb

principal. The following lemma therefore shows that f is well-defined, at least

for E initialised at a position (ψ0, τ0) such that ψ0 ∈ τ−0 .
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5.4.7. Lemma. LetM be an f -guided E-match initialised at some position (ψ0, τ0)
such that ψ0 ∈ Γ(τ0)−. Then for any position (ψ, τ) occurring in M it holds that
ψ ∈ Γ(τ)−. Moreover, if (ψ, τ) comes directly after a modal step and the focus
rule is applied on τ , then ψ• ∈ Γ(τ).

Proof:
Denote the n-th position of M by (ψn, τn). We proceed by induction on n. The
base case is simply the assumption that ψ0 ∈ Γ(τ0)−. For the induction step,
suppose (ψn, τn) is such that ψn ∈ Γ(τn)−, and the next position is (ψn+1, τn+1).
We make a case distinction based on the shape of ψn. Note that ψn 6∈ {p, p}, for
otherwise there would not be a next position (ψn+1, τn+1).

If the main connective of ψn is among {∨, µ, ν}, it follows directly from sat-
uration that ψn+1 belongs to Γ(τn+1)−. If ψn is a conjunction, then ψn+1 is the
conjunct of f(ψn, τ), which by the definition of f belongs to Γ(τn+1)−.

Now suppose ψn is of the form 〈a〉χ. Then τnR
f
aτn+1, so either τn

a−→ τn+1

or τn+1
ă−→ τn. If τnR

f
aτn+1 we clearly have ψn+1 = χ ∈ Γ(τn+1)−, by case 1(b)

of Definition 5.2.10. Moreover, since in particular ψbn+1 ∈ first(τn+1), it follows
from the restriction on f that in case the focus rule is applied in τn+1, we have

ψ•n+1 ∈ Γ(τn+1). If τn+1
ă−→ τn, we argue by contradiction:

χ /∈ Γ(τn+1)− ⇒ χ ∈ Γ(τn+1)− (Saturation)

⇒ [a]χ ∈ Γ(τn)− (1(c) of Definition 5.2.10)

⇒ 〈a〉χ /∈ Γ(τn)−, ([a]χ = 〈a〉χ ∈ Σ, Saturation)

which indeed contradicts the inductive hypothesis that 〈a〉χ ∈ Γ(τn)−. Moreover,
if the focus rule is applied in τn+1, we again argue by contradiction. Suppose χ• /∈
Γ(τn+1). Then τ−n+1 does not contain χ◦ after phase (1), whence because of the
exhaustively applying productive instance of cut the formula χ◦ must have been
added in stage (1). Hence χ ∈ Γ(τn+1)−. But then saturation gives χ /∈ Γ(τn+1)−,
and we can use the same argument as before. Finally, the case where ψn is of the
form [a]ψ is similar to the easy part of the previous case and therefore left to the
reader. 2

The following lemma is key to the completeness proof. It shows that if an
f -guided E-match can loop from some state ρ to itself, without passing through a
µ-formula, then this information is already contained in ρ in the form of a negated
trace atom.

5.4.8. Lemma. Let ρ ∈ Sf and let ϕ be such that ϕ ∈ Γ(ρ)−. Then for every ψ
such that Sf , ρ 
f ϕ; ψ it holds that ϕ 6; ψ ∈ Γ(ρ).

Proof:
Let N be the match witnessing that Sf , ρ 
f ϕ ; ψ. Recall that, by definition,
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this means that the match N is an f -guided match starting at (ϕ, ρ) and ending
at (ψ, ρ), such that only the formula in the final position, namely ψ, may be a
µ-formula. We proceed by induction on the number of distinct states occurring
in N .

For the base case, we assume that ρ is the only state visited in N . We proceed
by induction on the length n+ 1 of N . For the (inner) base case, where |N = 1|,
we have first(N ) = (ϕ, ρ) = last(N ). By saturation ϕ ; ϕ /∈ Γ(ρ) and thus
ϕ 6; ϕ ∈ Γ(ρ), as required. For the inductive step, suppose the claim holds
for every match up to size n + 1. Suppose |N | = n + 2 and consider the final
transition (χ, ρ) · (ψ, ρ) of N . Since the match proceeds after the position (χ, ρ),
but does not move to a new state of Sf , it follows from the irreflexivity of Sf that
the main connective of χ must be among {∨,∧, µ, ν}. Moreover, by Lemma 5.4.7,
we have χ ∈ Γ(ρ)−. We claim that χ 6; ψ ∈ Γ(ρ)−. When the main connective
of χ is in {∨, µ, ν}, this follows directly from saturation. If χ is a conjunction,
we have, since M is f -guided, that (ψ, ρ) = f(χ, ρ). By the definition of f , it
follows that χ 6; ψ ∈ Γ(ρ), as required. We finish the proof of this special case
of the lemma by applying the induction hypothesis to the initial segment of N
obtained by removing the last position (ψ, ρ). This gives ϕ 6; χ ∈ Γ(ρ), hence
by saturation ϕ 6; ψ ∈ Γ(ρ).

For the (outer) inductive step, suppose that n > 1 states are visited in N . We
write N as A1 · B1 ·A2 · B2 · · · Am, where for every (χ, τ) in Ai it holds that τ = ρ
and for every (χ, τ) in Bi it holds that τ 6= ρ. As Sf is a forest, there must for
each Bi be some γi, δi, and τi such that first(Bi) = (γi, τi) and last(Bi) = (δi, τi).
Denote first(Ai) = (αi, ρ) and last(Ai) = (βi, ρ). Summing up, we will we use the
following notation for each i ∈ [1,m):

first(Ai) = (αi, ρ), last(Ai) = (βi, ρ), first(Bi) = (γi, τi), last(Bi) = (δi, τi).

Let i ∈ [1,m) be arbitrary. Since Bi does not visit ρ, it must visit strictly less
states than N . By the induction hypothesis we find that γi 6; δi ∈ Γ(τi). We
claim that βi 6; αi+1 ∈ Γ(ρ). Since the match N transitions from the state ρ to
the state τi, there must be some a ∈ D such that ρRf

aτi.

We first assume that ρ
a−→ τi. Then by the nature of the game, βi must be

of the form βi = 〈a〉γi or of the form βi = [a]γi, and, since by definition f only

moves upward in Sf , we must have δi = 〈ă〉αi+1. We only cover the case where
βi = [a]γi (the case where βi = 〈a〉γi is almost the same, but uses 2(c) instead of
2(a) of Definition 5.2.10). We indeed find:

γi 6; 〈ă〉αi+1 ∈ Γ(τi) (Induction hypothesis, δi = 〈ă〉αi+1)

⇒ γi ; 〈ă〉αi+1 /∈ Γ(τi) (Saturation)

⇒ [a]γi ; αi+1 /∈ Γ(ρ) (Case 2(a) of Definition 5.2.10)

⇒ βi 6; αi+1 ∈ Γ(ρ), (Saturation, βi = [a]γi)
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Now suppose that τi
ă−→ ρ. Then βi must be of the form βi = 〈a〉γi, because

the strategy f moves only upward in Sf . Moreover, we have δi = [ă]αi+1 or
δi = 〈ă〉αi+1. An argument similar to the one above, respectively using cases 2(b)
and 2(d) of Definition 5.2.10, shows that 〈a〉γi 6; αi+1 ∈ Γ(ρ).

Since ρ is the only state visited in Ai, we can apply the (outer) base case of
the induction hypothesis to the Ai, to obtain αi 6; βi ∈ Γ(ρ) for every 1 ≤ i ≤ m.
Hence, by saturation, we find γ1 6; δm ∈ Γ(ρ), as required. 2

Before we proceed to the completeness theorem, we first prove a final lemma.
It shows that any infinite match in E(

∧
Σ, Sf ) either visits some state τ of Sf

infinitely often, or can be split up into an upward path, interspersed with several
detours, each of which returns to the same state as it departed from. Recall that,
for two states τ1 and τ2 of Sf , the order τ1 ≤ τ2 means that the path τ1 occurs
below the path τ2 in the strategy tree f (or they are exactly the same paths).
More formally, we defined the relation τ1 ≤ τ2 as the reflexive-transtive closure of
the relation τ1 → τ2, which in turn was the union of all relations τ1

a−→ τ2 where
a ∈ D.

5.4.9. Lemma. Let (τ0, ψ0), (τ1, ψ1), . . . be an infinite E(
∧

Σ,Sf )-match such that
for every n ≥ 0 the following hold:

(i) τn ≥ τ0;

(ii) there are only finitely many m ≥ 0 such that τn = τm.

Then there is a subsequence

(τα(0), ψα(0)), (τα(1), ψα(1)), (τα(2), ψα(2)), . . .

such that α(0) > 0, and for every i ≥ 0 the formula ψα(i)−1 is modal, the state

τα(i+1)−1 is equal to the state τα(i), and there is an ai ∈ D such that τα(i)
ai−→ τα(i+1).

Proof:
We define the sequence α(0), α(1), . . . by recursion. In addition to the properties
required by the lemma, we will show that the following holds for each α(i):

For every n ≥ α(i) it holds that τn ≥ τα(i). (†)

We define α(−1) := 0, so that we can cover the recursion base and recursion step
in one go. Note that α(−1) satisfies (†) by assumption (i).

Now suppose that α(i) has been defined. We let α(i + 1) be least such that
τn > τα(i) for every n ≥ α(i+ 1). Such an α(i+ 1) must exist, because by (†) we
have τn ≥ τα(i) for all n ≥ α(i) and by (ii) there are only finitely many n ≥ α(i)
such that τn = τα(i).

We will now show that α(i+ 1) satisfies the required conditions. First, note
that α(i + 1) > α(−1) = 0. Next, the formula ψα(i+1)−1 must be modal, for
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otherwise τα(i+1)−1 = τα(i+1), contradicting the minimality of α(i+ 1). Moreover,
we claim that τα(i+1)−1 = τα(i). Indeed, if not, then it will by (†) hold that
τα(i+1)−1 > τα(i), again contradicting the minimality of α(i+ 1).

Hence there exists some ai ∈ D such that either ψα(i+1)−1 = 〈ai〉ψαi+1
or

ψα(i+1)−1 = [ai]ψαi+1
. As a result, the rules of the game dictate that τα(i)R

f
ai
τα(i+1).

By the definition of Rf
ai

, it follows that

τα(i)
ai−→ τα(i+1), or τα(i+1)

ai−→ τα(i).

If τα(i+1)
ai−→ τα(i), then τα(i+1) < τα(i), contradicting the definition of α(i + 1). It

thus follows that τα(i)
ai−→ τα(i+1), as required. 2

With the above lemmata in place, we are ready to prove that ∀ wins every
full f -guided E@(ϕ0, ρ0)-match M. If M is finite, it is not hard to show that it
must be ∃ who got stuck. IfM is infinite, the proof depends on whetherM visits
some single state infinitely often. If it does, one can show that if ∃ would win the
match M, then M would visit some state ρ with νxϕ, ϕ[νxϕ/x] 6; ϕ ∈ Γ(ρ)−,
contradicting saturation. If, on the other hand, M visits each state at most
finitely often, the proof works by showing that a win for ∃ in M would imply
that f contains an infinite branch won by Prover, which is also a contradiction.

5.4.10. Proposition. Let ρ0 be a state of Sf containing the root Γ of f and let
ϕ0 ∈ Γ−. Then the strategy f is winning for ∀ in E@(ϕ0, ρ0).

Proof:
Let M be an arbitrary f -guided and full E@(ϕ0, ρ0)-match. Since ϕ0 ∈ Γ(ρ0)−,

it follows from Lemma 5.4.7 that f is well-defined on E@(ϕ0, ρ0). By positional
determinacy, we may without loss of generality assume that ∃ adheres to some
positional strategy in M. First suppose that M is finite, ending in, say (ϕ, ρ).
We make a case distinction on the shape of ϕ.

If ϕ is a propositional letter p, we find:

ϕ = p⇒ p ∈ Γ(ρ)− ⇒ p /∈ Γ(ρ)− ⇒ Sf , ρ 6
 p,

where the first implication holds due to Lemma 5.4.7, the second due to satura-
tion, and the third by the definition of the valuation function of Sf . It follows
that in this case ∃ gets stuck.

Similarly, if ϕ is a negated propositional letter p, we find:

ϕ = p⇒ p ∈ Γ(ρ)− ⇒ Sf , ρ 
 p⇒ Sf , ρ 6
 p,

hence again ∃ gets stuck.
Finally, we claim that ϕ is not of the form [a]ψ. Indeed, in that case the fact

that [a]ψ ∈ Γ(ρ)− would entail that the modal rule is applicable. Hence f(ϕ, ρ)
would be defined, contradicting the assumed fullness of M.
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Now suppose thatM is infinite, sayM = (ϕn, ρn)n∈ω. Suppose first that some
state ρ is visited infinitely often inM. By the pigeonhole principle, there must be
a formula ϕ and segment N of M such that first(N ) = last(N ) = (ϕ, ρ). Since
both players follow a positional strategy, we can write the match M as KN ∗,
where K is some initial segment of M. But this means that only finitely many
states of Sf occur in M. As M is winning for ∃, there must, by Lemma 2.1.37,
be some formula νxψ occurring infinitely often in M. Therefore, there must be
a position (νxψ, τ) occurring infinitely often in M. But then Lemma 5.4.8 gives
ϕ[νxϕ/x] 6; νxψ ∈ Γ(τ). But by saturation we also have ϕ[νxϕ/x] ; νϕ ∈ Γ(τ),
which is in contradiction with the third item of the Lemma 5.4.6.

Hence we may assume thatM visits each state ρ at most finitely often. Sup-
pose, towards a contradiction, thatM is won by ∃. Then, by Lemma 2.1.37, there
is some k ≥ 0 such that no formula ϕn with n ≥ k is a µ-formula. Moreover,
since M visits each state at most finitely often, there must be some l ≥ k such
that for every ρn with n ≥ l it holds that ρn ≥ ρl. Let

N = (ϕl, ρl) · (ϕl+1, ρl+1) · (ϕl+2, ρl+2) · · ·

be the final segment of M generated by (ϕl, ρl). Since for every ρn with n ≥ l it
holds that ρn ≥ ρl, we can apply Lemma 5.4.9. Let

(ϕα(0), ρα(0)), (ϕα(1), ρα(1)), (ϕα(2), ρα(2)), . . .

be a subsequence of N as given by Lemma 5.4.9. Then for every i there is an
ai ∈ D with ρα(i)

ai−→ ρα(i+1). Hence, we have an f -guided G(Γ)-match

K = ρα(0) · R[a0] · ρα(1) · R[a1] · ρα(2) · R[a2] · · ·

Note that K is infinite, as N visits infinitely many states. Because f is by
assumption winning for Refuter, the focus rule must be applied infinitely often
on K.

Let ρα(i) with i > 0 be a segment on which the focus rule is applied. By
Lemma 5.4.9, we have that ϕα(i)−1 is modal, hence we obtain by Lemma 5.4.7
that ϕ•α(i) ∈ Γ(ρα(i)). We claim that for every j > i it holds that every sequent
in ρα(j) has a formula in focus. With this we reach the desired contradiction,
because it means that the focus rule cannot be applied on this final segment of
K after all.

In particular, we will show that ϕ•α(j) ∈ first(ρα(j)) for every j > i, which
suffices by the restriction of f to cumulative rule applications. For this, in turn,
it is enough to show that for every j ≥ i: if we have ϕ•α(j) ∈ Γ(ρα(j)), then we

have ϕ•α(j+1) ∈ first(ρα(j+1)).
To that end, consider the following submatch of N .

J = (ϕα(j), ρα(j)) · · · (ϕα(j+1)−1, ρα(j+1)−1).
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Recall thatN was constructed in such a way that it contains no µ-formulas. Hence
J contains no µ-formulas. Moreover, by Lemma 5.4.9, we have ρα(j+1)−1 = ρα(j).
Therefore may apply Lemma 5.4.8 to obtain ϕα(j) 6; ϕα(j+1)−1 ∈ Γ(ρα(i)). By
Lemma 5.4.9, the formula ϕα(j+1)−1 must be of the form 〈aj〉ϕα(j+1) or of the form
[aj]ϕα(j+1). In either case, part 1 of Definition 5.2.10 gives ϕ•α(j+1) ∈ first(ρα(j+1)),
as required. 2

Since 5.4.10 holds for an arbitrary ϕ0 in Γ−, we find that Sf 6
f Γ−. Hence,
by Theorem 2.2.10, we obtain completeness for the formula part of sequents.

5.4.11. Proposition. If Γ− is valid, then Γ has a Focus2∞-proof.

5.5 Conclusion

We have constructed a non-well-founded proof system Focus2∞ for the two-way
alternation-free modal µ-calculus Laf

2µ. This system naturally reduces to a cyclic
system when restricting to positional strategies in the proof search game.

Using the proof search game and the game semantics for the modal µ-calculus,
we have shown that the system is sound for all sequents, and complete for those
sequents not containing trace atoms. A natural first question for future research
is to see if a full completeness result can be obtained. For this, a logic of trace
atoms would have to be developed. One could for instance think of a rule like

ϕ; χ,Γ ψ ; χ,Γ
R∧ϕ ∧ ψ ; χ,Γ

Following on this, we think it would be interesting to properly include trace atoms
in the syntax by allowing the Boolean, modal and perhaps even the fixed point
operators to apply to trace atoms. An example of a valid formula in this syntax
is given by ((ϕ; 〈a〉ψ) ∧ [a](ψ ; 〈ă〉ϕ))→ ϕ.

Another pressing question is whether our system could be used to prove in-
terpolation, as has been done for language without backward modalities in [73].
To the best of our knowledge it is currently an open question whether Laf

2µ has
interpolation. At the same time, it is known that analytic applications of the cut
rule do not necessarily interfere with the process of extracting interpolants from
proofs [58, 76].

Finally, it would be interesting to see if our system can be extended to the full
language L2µ. The main challenge would be to keep track of the most important
fixed point formula being unfolded on a trace. Perhaps this could be done by
employing an annotation system such as the one by Jungteerapanich and Stir-
ling [100, 54], together with trace atoms that record the most important fixed
point variable unfolded on a loop.





Chapter 6

A cyclic proof system for Guarded
Kleene Algebra with Tests

In this chapter we introduce a cyclic proof system for Guarded Kleene Algebra
with Tests, or GKAT for short. This is a formal system used for reasoning about
imperative programs. It draws from a long tradition, which we will briefly sketch
here.

The first origin for GKAT is Kleene Algebra. Recall that, given a finite alphabet
Σ, a regular expression over Σ is a string generated by the grammar:

e, f ::= 0 | 1 | a ∈ Σ | e+ f | e · f | e∗

Under the standard interpretation, regular expressions denote languages over Σ,
i.e. sets of words over Σ. The constant 0 is interpreted as the empty language
∅, and the constant 1 as the language {ε} containing just the empty string. The
interpretation of a is the language {a} containing only a. The operators +, ·,∗ are,
respectively, interpreted as union, pairwise concatenation, and Kleene closure,
which is the smallest language extension closed under concatenation. A language
denoted by some regular expression is said to be a regular language.

Although Kleene Algebra appears under different interpretations in various
areas of logic and computer science, it is most commonly understood as a gen-
eralisation of the algebra of regular languages under the operations (0, 1,+, ·,∗ ).
There has been much interest in finding a nice axiomatisation of the equational
validities of this algebra. The fragment without the Kleene star ∗, it turns out,
is finitely axiomatised by the equational axioms of a certain algebraic structure
called an idempotent semiring.

Extending this axiomatisation to incorporate the Kleene star has posed a
formidable challenge. Numerous proposed axiomatisations exist, with one of the
most prominent coming from Salomaa [91]. To capture the behaviour of the
Kleene star, this system features the following rule:

eg + f ≡ g e does not have the empty word property

e∗f ≡ g
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where e is said to have the empty word property if the language denoted by e
contains the empty word ε. Although Salomaa’s system is sound and complete
with respect to the algebra of regular languages, it is not entirely satisfactory,
because it is not algebraic. More precisely, the empty word property is not closed
under substitution and therefore itself not equationally axiomatisable. As a con-
sequence, this system does not give rise a notion of “a Kleene algebra”, in which
equations may be true or false.

A solution to this problem was provided by Kozen in [60]. Using e ≤ f as a
shorthand for e+ f ≡ f , Kozen axiomatised e∗f as a least fixed point by adding
the following axiom and rule:1

1 + ee∗ ≤ e∗
eg + f ≤ g

e∗f ≤ g

Kozen showed that this system is complete with respect to the algebra of reg-
ular languages. With this, a Kleene algebra is then defined to be any algebra
(K, 0, 1,+, ·,∗ ) such that (K, 0, 1,+, ·) is an idempotent semiring, and the axiom
and rule above are satisfied. It turns out that the algebra of regular language
over Σ is then the free Kleene algebra generated by Σ.

Another way to interpret Kleene Algebra is as a semantics of programs. Under
this interpretation, characters in Σ are seen as primitive programs, 0 is a program
without any valid behaviour, and 1 is skip, which simply does nothing. The
concatenation e · f is thought of as first running program e, and then running
program f . The union e+f non-deterministically runs e or f . Finally, e∗ repeats
the program e a finite number of times, possibly zero.

A shortcoming of using Kleene Algebra for this purpose is that is unable to ex-
press common programming constructs such as if-then-else statements and while
loops. This inspired the development of an extension of Kleene Algebra, called
Kleene Algebra with Tests [61], or KAT for short. KAT is a finite quasi-equational
theory with two sorts, namely programs and a subset thereof consisting of tests,
such that the programs form a Kleene algebra under the operations (+, ·, ∗, 0, 1)
and the tests form a Boolean algebra under the operations (+, ·,− , 0, 1). The
inclusion of tests allows one to express if-then-else statements and while loops.
Despite the gain in expressive power, the complexity of deciding KAT-equations
remains the same as for Kleene Algebra, namely PSPACE-complete.

Finally, the system GKAT, introduced in [98], is a fragment of KAT, obtained
by replacing the operations + and ∗ by their guarded counterparts +(b) and −(b).
Roughly, this restricts the language to only if-then-else statements, rather than
general non-deterministic choice, and to only while loops, rather than the gen-
eral (non-deterministic) Kleene star. As a result, we will see that the languages
denoted by GKAT-expressions satisfy a certain determinacy property. The main

1Kozen’s original axiomatisation also has a dual axiom and rule characterising fe∗ as a least
fixed point, but it turns out those can be derived from the other rules.
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advantage of GKAT over KAT lies in the efficiency of deciding program equivalence.
For GKAT this can be done in nearly linear time, i.e. in O(n · α(n)), where α is
the very slow-growing inverse Ackermann function.

We will introduce a cyclic system SGKAT for GKAT. This system is inspired by
a cyclic system for Kleene Algebra by Das & Pous in [34]. Our proofs of soundness
and completeness are inspired by the same paper. Throughout the chapter we will
remark on the differences and similarities between the two systems and the proofs
of metalogical results. An important difference is that the determinacy property
of GKAT allows us to use sequents with a simpler structure. More precisely, the
succedents of our sequents will be lists of expressions, whereas the system in [34]
needs multisets of lists to capture Kleene Algebra with a cyclic proof system.

In Section 6.1 we formally define the syntax and semantics of GKAT, and give a
brief overview the foundational results about GKAT. In Section 6.2 we will present
our non-well-founded proof system SGKAT∞. Section 6.3 proves that SGKAT∞ is
sound with respect to the language model. In Section 6.4 we show that every proof
is frugal, in the sense that it contains only finitely many distinct sequents, which
we use to prove completeness in Section 6.5. By the results in the Intermezzo
regular completeness follows: every sequent valid in the language model, has a
regular proof in SGKAT∞. By the theory in the Intermezzo, this immediately
gives rise to a notion of cyclic proofs.

At the time of writing the only known axiomatisation for GKAT suffers from a
similar defect as Salomaa’s system for Kleene Algebra [98]. Even worse, a single
axiom is not sufficient but an axiom schema is needed. More details about this
will be given in Section 6.1.3. In Section 6.6 we propose an inequational axioma-
tisation PoGKAT for GKAT and document an attempt to prove its completeness
by translating cyclic SGKAT-proofs into finite PoGKAT-proofs. This is inspired
by a recent alternative proof of Kozen’s completeness result for Kleene Algebra,
by Das, Doumane & Pous [33], which likewise works by translating proofs from
the aforementioned cyclic proof system for Kleene algebra into Kozen’s system.

6.1 Preliminaries

6.1.1 Syntax

The language of GKAT has two sorts, namely programs and a subset thereof con-
sisting of tests . It is built from a finite and non-empty set T of primitive tests
and a non-empty set Σ of primitive programs , where T and Σ are disjoint. For
the rest of this chapter we fix such sets T and Σ. We reserve the letters t and p
to refer, respectively, to arbitrary primitive tests and programs. The first of the
following grammars defines the tests of the language of GKAT and the second its
expressions.

b, c ::= 0 | 1 | t | b | b ∨ c | b · c e, f ::= b | p | e · f | e+b f | e(b),
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where t ∈ T and p ∈ Σ.
Note that the tests are simply propositional formulas. It is convention to use ·

instead of ∧ for conjunction. As we will later see, the interpretation of b · c where
b and c are regarded as tests, is the same as the interpretation of b · c, where b
and c are regarded as expressions.

6.1.1. Example. The idea of GKAT is to model imperative programs. For in-
stance, the expression (p+b q)

(a) represents the following imperative program:

while a do

if b then

p

else

q

end

end

6.1.2. Remark. As mentioned in the introduction, GKAT is a fragment of Kleene
Algebra with Tests, or KAT [61]. The syntax of KAT is the same as that of GKAT,
but with unrestricted union + instead of guarded union +b, and unrestricted
iteration ∗ instead of the while loop operator (b).

The embedding ϕ of GKAT into KAT acts on guarded union and guarded itera-
tion as follows, and commutes with all other operators.

ϕ(e+b f) = b · ϕ(e) + b · ϕ(f) ϕ(e(b)) = (b · ϕ(e))∗ · b

The restriction to guarded union and guarded iteration can be seen as restricting
to deterministic programs. This point will be made precise after defining the
semantics.

6.1.2 Semantics

There are different kinds of semantics for GKAT. In [98], a language semantics, a
relational semantics, and a probabilistic semantics are given. In this chapter we
will only be concerned with the language semantics.

We denote by At the set of atoms of the free Boolean algebra generated by
T = {t1, . . . tn}. That is, At consists of all tests of the form c1 · . . . · cn, where
ci ∈ {ti, ti} for each 1 ≤ i ≤ n. Lowercase Greek letters (α, β, γ, . . .) will be
used to denote elements of At. A guarded string is an element of the regular set
At · (Σ · At)∗, that is, a string of the form

α1p1α2p2 · . . . · . . . · αnpnαn+1.

We will interpret expressions as languages (formally just sets) of guarded strings.
The interpretation of the sequential composition operator · is in terms of the
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fusion product � on languages of guarded strings, given by:

L �K := {xαy | xα ∈ L and αy ∈ K}.

For the interpretation of +b, we define the following operation of guarded union
on languages for every set of atoms B ⊆ At:

L+B K := (B � L) ∪ (B �K),

where B is At \B. Finally, for the interpretation of (b), we stipulate:

L0 := At Ln+1 := Ln � L LB :=
⋃
n≥0

(B � L)n �B

The semantics of GKAT is now defined as follows:

JbK := {α ∈ At : α ≤ b} JpK := {αpβ : α, β ∈ At} Je · fK := JeK � JfK

Je+b fK := JeK +JbK JfK Je(b)K := JeKJbK

Note that the interpretation of · between tests, regarded as tests, is the same as
the interpretation of · between tests, regarded as programs.

Jb · cK = JbK ∩ JcK = JbK � JcK.

6.1.3. Remark. While the semantics of expressions is explicitly defined, the
semantics of tests is derived implicitly through the free Boolean algebra generated
by T . It is conventional in the GKAT literature to address the Boolean content in
this manner.

6.1.4. Example. In a guarded string, the atoms can be thought of as states of a
machine, and the programs as executions. For instance, the guarded string αpβ
can be read as: the machine starts in state α, then executes program p, and ends
in state β.

Let us briefly check which guarded strings of, say, the form αpβqγ belong to
the interpretation J(p+b q)

(a)K of the program of Example 6.1.1. First, we must
have α ≤ a, for otherwise we would not enter the loop at all. Moreover, we must
have α ≤ b, for otherwise q rather than p would be executed. Similarly, we find
that β ≤ a, b. Since the loop is exited after two iterations, we must have γ ≤ a.
Hence, we find

αpβqγ ∈ J(p+b q)
(a)K⇔ α ≤ a, b and β ≤ a, b and γ ≤ a.

The following lemmas will be useful later on. Note that it does not hold by
definition, as � is not commutative.

6.1.5. Lemma. Ln+1 = L � Ln for every language L of guarded strings.



156 Chapter 6. A cyclic proof system for Guarded Kleene Algebra with Tests

Proof:
Since At is the identity element for the fusion operator, we have

Ln+1 = At � L � · . . . · �L︸ ︷︷ ︸
n+ 1 times

= L � At � L � · . . . · �L︸ ︷︷ ︸
n times

= L � Ln,

as required. 2

6.1.6. Lemma. Let p be a primitive program and let L and K be languages of
guarded strings. Then JpK � L = JpK �K implies L = K.

Proof:
Since JpK = {αpβ : α, β ∈ At}, we have

γy ∈ L⇔ γpγy ∈ JpK � L⇔ γpγy ∈ JpK �K ⇔ γy ∈ K,

as required. 2

The fact that GKAT models deterministic programs is reflected in the fact that
interpretations of GKAT-expressions satisfy the following determinacy property .

6.1.7. Definition. A language L of guarded strings is said to be deterministic
if for every xαy and xαz in L, either y and z are both empty, or both begin with
the same primitive program.

6.1.8. Example. For α 6= β and p 6= q, the languages on the left of the following
table satisfy the determinacy property, while those on the right do not.

{αpβ, β}, {αpβ, α}.
{αpα, αpβ} {αpα, αqβ}

The following proposition can be directly shown by a somewhat tedious induction
on expressions. We omit this proof because nothing in the rest of this chapter
formally depends on it. For a more conceptual proof we refer the reader to [98],
where it follows as a corollary from their Theorem 5.8 and their automaton model.

6.1.9. Proposition. The denotation JeK of a GKAT-expression e is deterministic.

6.1.10. Remark. The language semantics of GKAT is the same as that of KAT

(see [61]), in the sense that

JeK = Jϕ(e)K,

where ϕ is the embedding from Remark 6.1.2 and e is any GKAT-expression.
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6.1.3 Foundational results

In this subsection we briefly summarise some of the foundational results presented
in [98]. Reading this subsection is not strictly necessary for understanding the
rest of this chapter, but it may provide some helpful context and intuition about
GKAT.

Automaton model

Automata for GKAT are given as coalgebras for the functor G : X 7→ (2+Σ×X)At.
That is, a state s ∈ X of a G-coalgebra, when given an atom α ∈ At, does one
of three things: halt and accept, halt and reject, or execute a program p ∈ Σ
and move to a new state in X. A G-automaton is simply a G-coalgebra with a
designated initial state.

In [98], it is shown that the languages of guarded strings accepted by some
G-automaton, possibly with infinitely many states, are precisely the languages
which satisfy the determinacy property of Definition 6.1.7. However, there are
G-automata, even with finitely many states, whose language is not denoted by
any GKAT-program.

To remedy this situation, the authors of [98] introduce the notion of well-
nestedness of G-automata, the definition of which falls outside the scope of this
thesis. They show for any GKAT-expression e how to construct a (finite) well-nested
G-automaton Ae such that the language accepted by Ae is precisely JeK. Con-
versely, they describe for any given well-nested G-automaton A a GKAT-expression
eA such that the language of A is precisely JeAK.

Decision procedure

One of the main advantages of GKAT over KAT lies in the efficiency of deciding
program equivalence, i.e. whether JeK = JfK holds for two given expressions e
and f . Roughly, the decision procedure for GKAT-expressions presented in [98]
works by first converting e and f into G-automata Ae and Af . By construction
the number of states of Ae and Af will be linear in, respectively, the sizes of the
expressions e and f . After applying a certain normalisation procedure on Ae and
Af , a general algorithm for checking bisimilarity of coalgebras can be used to
check whether their initial states are bisimilar.

Since G is a so-called polynomial functor, and the set of deterministic lan-
guages carries a G-coalgebra structure under which it is the final coalgebra for
normal coalgebras, general coalgebraic theory entails that bisimilarity and lan-
guage equivalence coincide on normal coalgebras. Hence, the given decision pro-
cedure is correct.

By virtue of the relatively small size of automata for GKAT-expressions, the
decision procedure runs in time O(n · α(n)), when |At| is constant, n is the sum
of the sizes of the expressions e and f , and α is the inverse of the Ackermann
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function. Recall that the Ackermann function is a computable function which
grows so fast that it is not definable by primitive recursion. Hence, the inverse
of the Ackermann function is an extremely slow-growing function. One therefore
also says that this procedure runs in nearly linear time. This is much more
efficient than deciding KAT-equivalence, which is PSPACE-complete, even when
the number of atoms is constant.

Axiomatisation

In [98] an axiomatisation for GKAT-equivalence was put forward. While there it
is presented from a more algebraic perspective, we will present it explicitly as a
proof system. For this will use the following definition of substitution.

6.1.11. Definition. A substitution is a function σ : Σ → GKAT, assigning a
GKAT-expression to each primitive program.

Given a substitution σ, we let σ̂ : GKAT→ GKAT be the unique map which extends
σ such that σ̂ commutes with the guarded union, concatenation and while-loop
operators, and such that σ(b) = b for every test b.

The system is based on equational logic, of which the axioms and rules are
given in Figure 6.1. For background we refer the reader to [21].

e ≡ e
e ≡ f

f ≡ e
e ≡ f f ≡ g

e ≡ g
e ≡ f

σ̂(e) ≡ σ̂(g)

e1 ≡ f1 e2 ≡ f2

e1 +b e2 ≡ f1 +b f2

e1 ≡ f1 e2 ≡ f2

e1 · e2 ≡ f1 · f2

e ≡ f

e(b) ≡ f (b)

Figure 6.1: The axioms and rules of equational logic in the signature of GKAT.

It moreover contains all of the following axioms (cf. [98, Figure 1]).

U1. e+b e ≡ e S1. (e · f) · g ≡ e · (f · g)

U2. e+b f ≡ f +b e S2. 0 · e ≡ 0

U3. (e+b f) +c g ≡ e+bc (f +c g) S3. e · 0 ≡ 0

U4. e+b f ≡ be+b f S4. 1 · e ≡ e

U5. eg +b fg ≡ (e+b f) · g S5. e · 1 ≡ e

W1. e(b) ≡ ee(b) +b 1 W2. (e+c 1)(b) ≡ (ce)(b)

Figure 6.2: The GKAT axioms from [98, Fig. 1].
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6.1.12. Definition. The system EGKAT consists of the following axioms and
rules.

1. All axioms and rules of equational logic, as given in Figure 6.1.

2. The axiom b ≡ c for all tests b, c such that b is equivalent to c in classical
logic.

3. All axioms from [98, Fig. 1], i.e. all axioms in Figure 6.2 above.

4. A fixed point rule of the form

g ≡ eg +b f (†)
g ≡ e(b)f

with a side condition (†).

We will not go into the technical details of the side condition (†) in the above
definition. Roughly, it is a syntactic restriction on the loop body e, guaranteeing
that e is strictly productive, i.e., always executes at least one primitive program. It
is shown in [98] that for every expression e there is a strictly productive expression
f such that e(b) and f (b) are provably equivalent.

The soundness of the above axiomatisation, i.e. that EGKAT ` e ≡ f implies
JeK = JfK is not hard to show by induction on the length of derivations. The
completeness is an open question, although completeness has been shown for an
extension by a stronger fixed point axiom. We refer the reader to [98, Section 6]
for more details. Note, however, that even if the above system were complete, it
would still suffer from the same drawback as Salomaa’s system discussed in the
introduction: it is not algebraic, because the strict productivity condition in the
fixed point rule is not closed under substitution.

More explicitly, if we instantiate the fixed point rule with b = 1 and with
e = f = g = p, then the side condition is met and the rule is sound, as p
is strictly productive. However, if we apply the substitution p 7→ 1, the side
condition is no longer met. In fact, the resulting instance of the rule is unsound,
because the premiss 1 ≡ 1·1+1 1 is true in the language model, but the conclusion
1 ≡ 1(1) · 1 is false. Indeed, it holds that J1(1)K = J0K, because 1(1) represents a
never-ending loop.

6.2 The non-well-founded proof system SGKAT∞

In this section we commence our proof-theoretical study of GKAT. We will present
a cyclic sequent system for GKAT, which is inspired by the cyclic sequent system for
Kleene Algebra presented in [34]. In passing, we will comment on the similarities
and differences between our system and the earlier system.
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6.2.1. Definition. A sequent is a triple (Γ, A,∆), usually written Γ ⇒A ∆,
where A ⊆ At and Γ and ∆ are (possibly empty) lists of GKAT-expressions.

The list on the left-hand side of a sequent is called its antecedent , and the list on
the right-hand side its succedent . The symbol ε is used to refer to the empty list.

6.2.2. Definition. We say that a sequent e1, . . . , en ⇒A f1, . . . , fm is valid
whenever A � Je1 · . . . · enK ⊆ Jf1 · . . . · fnK.

We will often abuse notation by writing JΓK instead of Je1 · . . . · enK, where Γ is
some list of expressions e1, . . . , en.

6.2.3. Example. An example of a valid sequent is given by

(cp)(b) ⇒At (p(cp+b 1))(b).

The left-hand side denotes guarded strings of the form α1pα2p · . . . · αnpαn+1 for
which αi ≤ b, c for each 1 ≤ i ≤ n, and αn+1 ≤ b. Similarly, the right-hand
side denotes guarded strings of the form α1pα2p · . . . ·αnpαn+1 such that for each
1 ≤ i ≤ n it holds that αi ≤ b and, in addition, αi ≤ c if i is even, and αn+1 ≤ b.
Clearly the antecedent is contained in the succedent.

6.2.4. Remark. Like the sequents for Kleene Algebra in [34], our sequents ex-
press language inclusion, rather than language equivalence. For Kleene Algebra
this difference is insignificant, as the two notions are interdefinable using unre-
stricted union:

JeK ⊆ JfK⇔ Je+ fK = JfK.

For GKAT, however, it is not clear how to define language inclusion in terms
of language equivalence. As a result, an advantage of axiomatising language
inclusion rather than language equivalence, is that the while-operator can be
axiomatised as a least fixed point, eliminating the need for a strict productivity
requirement as is present in the axiomatisation in [98]. This will become more
clear in Section 6.6, where we propose an algebraic axiomatisation of GKAT.

Given a set of atoms A and a test b, we write A � b for the set {α ∈ A : α ≤ b}.
Note that this is the same as A � JbK.

The rules of the sequent system SGKAT are given in Figure 6.3. Importantly,
the rules are always applied to the leftmost expression in a list (whether in the
antecedent or in the succedent). Also note that the system has no propositional
rules for tests, since the propositional reasoning is tucked away in the set of atoms
labelling a sequent. This makes the sequent system much simpler, and is in line
with the ordinary way of treating the (finitely many) tests in the GKAT literature.
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6.2.5. Remark. Following [34], we call k a ‘modal’ rule. The reason is simply
that it looks like the rule k (sometimes called K or �) in the standard sequent
calculus for basic modal logic. Our system also features a second modal rule,
called k0. Like k, this rule adds a primitive program p to the antecedent of the
sequent. Since its premiss entails that JΓK = J0K, the antecedent of its conclusion
will denote the language ∅, and is therefore included in any antecedent ∆.

As usual, an SGKAT∞-derivation is a possibly infinite tree generated by the rules
of SGKAT. Such a derivation is said to be closed if every leaf is an axiom.

6.2.6. Definition. A closed SGKAT∞-derivation is said to be an SGKAT∞-proof
if every infinite branch is fair for (b)-l, i.e. contains infinitely many applications
of the rule (b)-l.

Left logical rules

Γ⇒A�b ∆
b-l

b,Γ⇒A ∆

e, g,Γ⇒A ∆
·-l

e · g,Γ⇒A ∆

e,Γ⇒A�b ∆ f,Γ⇒A�b ∆
+b-l

e+b f,Γ⇒A ∆

e, e(b),Γ⇒A�b ∆ Γ⇒A�b ∆
(b)-l

e(b),Γ⇒A ∆

Right logical rules

Γ⇒A ∆
(†) b-r

Γ⇒A b,∆
Γ⇒A e, f,∆ ·-r
Γ⇒A e · f,∆

Γ⇒A�b e,∆ Γ⇒A�b f,∆
+b-r

Γ⇒A e+b f,∆

Γ⇒A�b e, e
(b),∆ Γ⇒A�b ∆

(b)-r
Γ⇒A e

(b),∆

Axioms and modal rules

idε⇒A ε
⊥

Γ⇒∅ ∆
Γ⇒At ∆

k
p,Γ⇒A p,∆

Γ⇒At 0
k0

p,Γ⇒A ∆

Figure 6.3: The rules of SGKAT. The side condition (†) requires that A � b = A.

6.2.7. Remark. In [93] a variant of GKAT is studied which omits the axiom called
(S3) in Figure 6.2. This axiom, also called the early termination axiom, equates
all programs which eventually fail. A denotational model of this variant of GKAT is
given in the form of certain kinds of trees. We conjecture that SGKAT∞ without
the rule k0 is sound and complete with respect to this denotational model.
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6.2.8. Example. Let ∆1 := (p(cp+b 1))(b) and ∆2 := cp+b 1,∆1. The following
proof Π1 is an example of an SGKAT∞-proof of the sequent of Example 6.2.3. We
use (•) to indicate that the proof repeats itself at these leaves and, for the sake
of readability, omit branches that can be immediately closed by an application of
⊥. Note that Π1 is, in fact, regular.

(cp)(b) ⇒At ∆1 (•)
k
p, (cp)(b) ⇒At�bc p,∆1

c-r
p, (cp)(b) ⇒At�bc c, p,∆1·-r
p, (cp)(b) ⇒At�bc cp,∆1

+b-r
p, (cp)(b) ⇒At�bc ∆2

c-l
c, p, (cp)(b) ⇒At�b ∆2

·-l
cp, (cp)(b) ⇒At�b ∆2

idε⇒At�b ε
(b)-r

ε⇒At�b ∆1
1-r

ε⇒At�b 1,∆1
+b-r

ε⇒At�b ∆2
(b)-l

(cp)(b) ⇒At ∆2
k
p, (cp)(b) ⇒At�bc p, (cp+b 1),∆1·-r
p, (cp)(b) ⇒At�bc p · (cp+b 1),∆1

(b)-r
p, (cp)(b) ⇒At�bc ∆1

c-l
c, p, (cp)(b) ⇒At�b ∆1

·-l
cp, (cp)(b) ⇒At�b ∆1

idε⇒At�b ε
(b)-r

ε⇒At�b ∆1
(b)-l

(cp)(b) ⇒At ∆1 (•)

To illustrate how the omission of branches that can be immediately closed by an
application of ⊥ works, let us write out the two applications of +b-r in Π1.

ε⇒At�bc cp,∆1
⊥

ε⇒∅ 1,∆1
+b-r

ε⇒At�bc ∆2

⊥
ε⇒∅ cp,∆1 ε⇒At�b 1,∆1

+b-r
ε⇒At�b ∆2

It can also be helpful to think of the set of atoms as selecting one of the premisses.

6.2.9. Remark. SGKAT∞ is a path-based non-well-founded proof system, as de-
fined by Definition I.2.1 of the Intermezzo. In fact, if one calls those finite paths
good which contain an application of (b)-l, it is a simple proof system (cf. Defini-
tion I.2.7). This immediately gives rise to a notion of cyclic SGKAT-proofs based
on finite trees with back edges.

For the sake of simplicity we shall in this chapter mostly be concerned with
infinitary non-well-founded proofs. However, in Section 6.4, we shall show that
every SGKAT∞-proof is frugal. It will then follow by I.2.23 that completeness
implies regular completeness.

6.2.10. Remark. Note that the rules of SGKAT are highly symmetric. Indeed,
the only rules that behave differently on the left than on the right, are the b-rules
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and k0. For the b-rules, note that b-l changes the set of atoms, while b-r uses
a side condition. The asymmetry of k0 is clear: the succedent of the premiss
has a 0, whereas the antecedent does not. A third and final asymmetry will be
introduced in Definition 6.2.6, where a soundness condition is imposed on infinite
branches which is sensitive to (b)-l but not to (b)-r.

6.2.11. Remark. Recall that our system is inspired by the system in [34] for
Kleene Algebra (without tests). In the first part of [34], sequents similar to ours
are considered i.e. pairs of lists of expressions (without set of atoms, because
there are no tests in ordinary Kleene Algebra). It turns out, however, that the
resulting system is complete, but not regularly complete, in the sense that not
every valid sequent has a regular proof.

Consider for instance the valid sequent p∗ ⇒ (pp)∗ + (pp)∗p. In words, this
sequent expresses that any finite string of p’s is either of even or of odd length.
To the antecedent, one can only apply the following rule, which corresponds to
our rule (b)-l.

p, p∗ ⇒ (pp)∗ + (pp)∗p ε⇒ (pp)∗ + (pp)∗p
∗-l

p∗ ⇒ (pp)∗ + (pp)∗p

The premiss on the right is not hard to prove. Since ε is of even length, it can
be shown to be included in (pp)∗. For the other premiss, however, we cannot
choose one of (pp)∗ and (pp)∗p because we do not yet know the parity of the
antecedent’s length (only that it is non-zero). This situation can be slightly
improved by allowing rules to apply to expressions inside lists, rather than only
to the leftmost expression. One could then keep applying ∗-l to the p∗ on the
antecedent, obtaining a derivation which looks like this.

...
p, p, p∗ ⇒ (pp)∗ + (pp)∗p ε⇒ (pp)∗ + (pp)∗p

∗-l
p, p∗ ⇒ (pp)∗ + (pp)∗p ε⇒ (pp)∗ + (pp)∗p

∗-l
p∗ ⇒ (pp)∗ + (pp)∗p

This derivation will be a proof, because it is fair for ∗-l. However, it is not regular,
because it does contain infinitely many distinct sequents. In general, as mentioned
before, the resulting system will be complete, but not regularly complete.

The authors of [34] remedy this situation by moving to hypersequents. The
right-hand side of a hypersequent is a multiset of lists, rather than just a list.
This allows reasoning ‘underneath’ the union operator +, enabling one to break
down the (pp)∗ and (pp)∗p on the right-hand side, without having to choose either
one.

Fortunately for us, this problem does not arise with GKAT. The reason is
that we do not have the unrestricted union operator +, but only the guarded
union operator +b. We will therefore stick with ordinary sequents, rather than
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hypersequents. We will show in Section 6.5 that, even though it uses sequents
rather than hypersequents, SGKAT∞ is regularly complete.

We end this section with a definition and a lemma which will be useful in the
proofs of both soundness and completeness.

6.2.12. Definition. A list Γ of expressions is said to be exposed if it is either
empty or begins with a primitive program.

Recall that the sets of primitive tests and primitive programs are disjoint. Hence
an exposed list Γ cannot start with a test.

6.2.13. Remark. Coming from the modal µ-calculus, the reader might be sur-
prised by the notion of exposure, as an antonym of guardedness. Because the
guards in the modal µ-calculus are modalities, one might be tempted to think the
primitive programs in GKAT as guards as well. Rather, in the context of GKAT it
is typical to refer to the tests as guards.

6.2.14. Lemma. Let Γ and ∆ be exposed lists of expressions. Then:

(i) αx ∈ JΓK⇔ βx ∈ JΓK for all α, β ∈ At

(ii) Γ⇒At ∆ is valid if and only if Γ⇒A ∆ is valid for some A 6= ∅.

Proof:
For item (i), we make a case distinction on whether Γ = ε or Γ = p,Θ for some
list Θ. If Γ = ε, the result follows immediately from the fact that JεK = At. If
Γ = p,Θ, we have

JΓK = JpK � JΘK = {γpδy : γ ∈ At, δy ∈ JΘK},

which also suffices.

For item (ii), the only non-trivial implication is the one from right to left. So
suppose Γ ⇒A ∆ for some A 6= ∅. Let α ∈ At and let β ∈ A be arbitrary. We
find:

αx ∈ JΓK⇒ βx ∈ JΓK (item (i))

⇒ βx ∈ J∆K (β ∈ A, hypothesis)

⇒ αx ∈ J∆K, (item (i))

as required. 2
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6.3 Soundness

In this section we prove that SGKAT∞ is sound. We will first prove that well-
founded SGKAT∞-proofs are sound. For the sake of readability we will write JΓK
to abbreviate Jγ1 · . . . · γnK for some list Γ of expressions γ1, . . . , γn.

6.3.1. Lemma. Let A be a set of atoms, let b be a test, and let Θ be a list of
expressions. We have:

1. A � b = A � JbK;

2. Je+b f,ΘK = (JbK � Je,ΘK) ∪ (JbK � Jf,ΘK);

3. Je(b),ΘK = (JbK � Je, e(b),ΘK) ∪ (JbK � JΘK).

Proof:
Each item is shown by simply unfolding the definitions. We will use the fact �
distributes over ∪. Note that ∪ is not the same as guarded union, over which �
is merely right-distributive. First, we have A � b = {α ∈ A : α ≤ b} = A � JbK.

For the second item, we calculate

Je+b f,ΘK = Je+b fK � JΘK (sequent interpretation)

= ((JbK � JeK) ∪ (JbK � JfK)) � JΘK (interpretation of +b)

= (JbK � JeK � JΘK) ∪ (JbK � JfK � JΘK) (� distributes over ∪)

= (JbK � JeK � JΘK) ∪ (JbK � JfK � JΘK) (JbK = JbK)

= (JbK � Je,ΘK) ∪ (JbK � Jf,ΘK). (sequent interpretation)

Finally, for the third item, we have

Je(b),ΘK = Je(b)K � JΘK (sequent int.)

=
⋃
n≥0

(JbK � JeK)n � JbK � JΘK (int. −(b))

= (
⋃
n≥1

(JbK � JeK)n ∪ At) � JbK � JΘK (split
⋃

)

= (
⋃
n≥1

(JbK � JeK)n � JbK � JΘK) ∪ (At � JbK � JΘK) (� dist. ∪)

= (
⋃
n≥1

(JbK � JeK)n � JbK � JΘK) ∪ (JbK � JΘK) (JbK = JbK)

= (
⋃
n≥0

JbK � JeK � (JbK � JeK)n � JbK � JΘK) ∪ (JbK � JΘK) (Lem. 6.1.5)

= (JbK � JeK �
⋃
n≥0

(JbK � JeK)n � JbK � JΘK) ∪ (JbK � JΘK) (� dist.
⋃

)

= (JbK � JeK � Je(b)K � JΘK) ∪ (JbK � JΘK) (int. −(b))

= (JbK � Je, e(b),ΘK) ∪ (JbK � JΘK), (sequent int.)
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as required. 2

We prioritise the rules of SGKAT in order of occurrence in Figure 6.3, reading
left-to-right, top-to-bottom, i.e. in normal English reading order. For instance,
each left logical rule is of higher priority than each right logical rule, which in
turn is of higher priority than each axiom or modal rule.

We will use the following property of the system SGKAT, which follows from
direct inspection of the rules and the fact that sequents are lists.

6.3.2. Lemma. Let Γ⇒A ∆ be a sequent, and let r be any rule of SGKAT. Then
there is at most one rule instance of r with conclusion Γ⇒A ∆.

Therefore, the following is well-defined.

6.3.3. Definition. A rule instance of r with conclusion Γ⇒A ∆ is said to have
priority if any other rule instance, say of r′, with conclusion Γ ⇒A ∆ is of lower
priority (that is, the rule r′ appears after r in Figure 6.3).

Recall that a rule is sound if the validity of all its premisses implies the validity
of its conclusion. Conversely, a rule is invertible if the validity of its conclusion
implies the validity of all of its premisses.

The above notion of priority will be used in the completeness proof of Section
6.5 to guide a proof-search procedure. Conveniently, the following proposition
entails that every rule instance which has priority is invertible, allowing this
proof-search procedure to be deterministic.

6.3.4. Proposition. Every rule of SGKAT is sound. Moreover, every rule is
invertible except for k and k0, which are invertible whenever they have priority.

Proof:
We will cover the rules of SGKAT one-by-one.

(b-l) This is immediate by Lemma 6.3.1.1.

(b-r) We have:

A � JΓK ⊆ Jb,∆K⇔ A � JΓK ⊆ JbK � J∆K (sequent int.)

⇔ A � b � JΓK ⊆ JbK � J∆K (by (†))
⇔ A � b � JΓK ⊆ J∆K (A � b ⊆ JbK)
⇔ A � JΓK ⊆ J∆K (by (†))

(·-l) Immediate, since A � Je · f,ΓK = A � Je, f,ΓK.

(·-r) Likewise, but by Je · f,∆K = Je, f,∆K.
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(+b-l) This follows directly from the fact that

A � Je+b f,ΓK = A � Je+b fK � JΓK (sequent int.)

= A � ((JbK � Je,ΓK) ∪ (JbK � Jf,ΓK)) (Lem. 6.3.1.2)

= (A � JbK � Je,ΓK) ∪ (A � JbK � Jf,ΓK) (distrib.)

= (A � b � Je,ΓK) ∪ (A � b � Jf,ΓK) (Lem. 6.3.1.1)

(+b-r) We find

A � JΓK ⊆ Je+b fK � J∆K

⇔ A � JΓK ⊆ (JbK � Je,∆K) ∪ (JbK � Jf,∆K)

⇔ A � b � JΓK ⊆ Je,∆K or A � b ⊆ Jf,∆K,

where the first equivalence holds due to Lemma 6.3.1.2, and the second
due to A � JΓK = (JbK � A � JΓK) ∪ (JbK � A � JΓK) and Lemma 6.3.1.1.

((b)-l) This follows directly from the fact that

A � Je(b),ΓK = A � Je(b)K � JΓK (sequent int.)

= A � ((JbK � Je, e(b),ΓK) ∪ (JbK � Jf,ΓK)) (Lem. 6.3.1.3)

= (A � JbK � Je, e(b),ΓK) ∪ (A � JbK � Jf,ΓK) (distrib.)

= (A � b � Je, e(b),ΓK) ∪ (A � b � Jf,ΓK) (Lem. 6.3.1.1)

((b)-r) We find

A � JΓK ⊆ Je(b),∆K

⇔ A � JΓK ⊆ (JbK � Je, e(b),∆K) ∪ (JbK � J∆K)

⇔ A � b � JΓK ⊆ JbK � Je, e(b),∆K and A � b ⊆ JbK � J∆K,

where the first equivalence holds due to Lemma 6.3.1.3, and the second
due to A � JΓK = (JbK � A � JΓK) ∪ (JbK � A � JΓK) and Lemma 6.3.1.1.

(id) This follows from A � J1K = A � At = A ⊆ At = J1K.

(⊥) We have ∅ � JΓK = ∅ ⊆ J∆K.

(k) Suppose first that some application of k does not have priority. The
only rule of higher priority than k which can have a conclusion of the
form p,Γ ⇒A p,∆ is ⊥, whence we must have A = ∅. As shown in the
previous case, this conclusion must be valid. Hence under this restriction
the rule application is vacuously sound. It is, however, not invertible, as
the following rule instance demonstrates

1⇒At 0
k p, 1⇒∅ p, 0
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Next, suppose that some application of k does have priority. This means
that the set A of atoms in the conclusion p,Γ⇒A p,∆ is not empty. We
will show that under this restriction the rule is both sound and invertible.
Let α ∈ A. We have

A � Jp,ΓK ⊆ Jp,∆K⇔ A � JpK � JΓK ⊆ JpK � J∆K (seq. int.)

⇔ α � JpK � JΓK ⊆ JpK � J∆K (α ∈ A, Lem. 6.2.14)

⇔ JpK � JΓK ⊆ JpK � J∆K (Lem. 6.2.14)

⇔ JΓK ⊆ J∆K, (Lem. 6.1.6)

as required.

(k0) For the final rule k0, we will first show the soundness of all instances,
and then the invertibility of those instances which have priority. For
soundness, suppose that the premiss is valid. Since

JΓK = At � JΓK ⊆ J0K = ∅,

it follows that JΓK = ∅. Hence

A � Jp,ΓK = A � JpK � JΓK = A � JpK � ∅ = ∅ ⊆ J∆K,

as required.

For invertibility, suppose that some instance of k0 has priority. Then
the conclusion p,Γ ⇒A ∆ cannot be the conclusion of any other rule
application.

Suppose that p,Γ⇒A ∆ is valid. We wish to show that Γ⇒At 0 is valid,
or, in other words, that JΓK = ∅.
First note that, as in the previous case, from the assumption that our
instance of k0 has priority, it follows that A 6= ∅.
We now make a case distinction on the shape of ∆. Suppose first that
∆ = ε. Then

A � Jp,ΓK ⊆ J∆K = JεK = At.

As A � Jp,ΓK = {αpβx : α ∈ A and βx ∈ JΓK}, we must have JΓK = ∅.
Next, suppose that ∆ has a leftmost expression e. By the assumption
that the rule instance has priority, we know that e is not of the form
e0 · e1, e0 +b e1, or e(b), for otherwise a right logical rule could be applied.
Hence, the expression e must either be a test or a primitive program.

If e is a test, say b, we know that A � b 6= A, for otherwise b-r could
be applied. Recall that it suffices to show that JΓK = ∅. So suppose,
towards a contradiction, that there is some βx ∈ JΓK. Let α ∈ A such
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that α 6≤ b. Then αpβx ∈ Jp,ΓK ⊆ J∆K. But this contradicts the fact
that J∆K ⊆ {αy : α ≤ b}.

Finally, suppose that e is a primitive program, say q. Write ∆ = q,Θ.
First note that assumption that the rule instance has priority implies
p 6= q, for otherwise the rule k could be applied. We have:

A � Jp,ΓK ⊆ J∆K = {αqβx : βx ∈ JΘK},

As A � Jp,ΓK = {αpβx : α ∈ A and βx ∈ JΓK} and p 6= q, we again find
that JΓK = ∅.

This finishes the proof. 2

Our extension of the soundness result to also include non-well-founded proofs
closely follows the treatment in [34]. We first recursively define the following
syntactic abbreviations:

e(b)0 := b, e(b)n+1

:= bee(b)n .

6.3.5. Lemma. For every n ∈ N: if we have SGKAT∞ ` e(b),Γ ⇒A ∆, then we
also have SGKAT∞ ` e(b)n ,Γ⇒A ∆.

Proof:
We assume that A 6= ∅, for otherwise the lemma is trivial. Let π be the assumed
SGKAT∞-proof of e(b),Γ ⇒A ∆. Note that, since all succedents referred to in
the lemma are equal to ∆, it suffices to prove the lemma under the assumption
that the last rule applied in π is not a right logical rule. Hence, we may assume
that the last rule applied in π is (b)-l, for that is the only remaining rule with a
sequent of this shape as conclusion. This means that π is of the form:

π1

e, e(b),Γ⇒A�b ∆
π2

Γ⇒A�b ∆
(b)-l

e(b),Γ⇒A ∆

We show the lemma by induction on n. For the induction base, we take the
following proof:

π2

Γ⇒A�b ∆
b-l

e(b)0 ,Γ⇒A ∆

For the inductive step n+ 1, we construct from π1 a proof τ of e, e(b)n ,Γ⇒A�b ∆.
To that end, we first replace in π1 every occurrence of e(b),Γ as a final segment
of the antecedent by e(b)n ,Γ and cut off all branches at sequents of the form
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e(b)n ,Γ⇒B Θ. This may be depicted as follows, where to the left of the arrow ;

we have a branch of π1, and to right the resulting branch of τ .

...
e(b),Γ⇒B Θ

...
e, e(b),Γ⇒A�b ∆

;
e(b)n ,Γ⇒B Θ

...
e, e(b)n ,Γ⇒A�b ∆

Note that every remaining infinite branch in the resulting derivation τ satisfies
the fairness condition. Therefore, to turn τ into a proper SGKAT∞-proof, we only
need to close each open leaf, which by construction is of the form e(b)n ,Γ⇒B ∆.
Note that π1 must contain a proof of e(b),Γ ⇒B ∆, whence by the induction
hypothesis the sequent e(b)n ,Γ ⇒B ∆ is provable. We can thus close the leaf by
simply appending the witnessing proof.

Letting τ be the resulting proof, we finish the induction step by taking:

τ

e, e(b)n ,Γ⇒A�b ∆
b-l

e(b)n+1
,Γ⇒A ∆

which gives us the required SGKAT∞-proof. 2

We let the while-height wh(e) be the maximal nesting of while loops in a given
expression e. Formally,

• wh(b) = wh(p) = 0;

• wh(e · f) = wh(e+b f) = max{wh(e),wh(f)};

• wh(e(b)) = wh(e) + 1.

Given a list Γ, the weighted while-height wwh(Γ) of Γ is defined to be the multiset
[wh(e) : e ∈ Γ]. We order such multisets using the Dershowitz–Manna ordering:

N < M iff N 6= M and for any n with N(n) > M(n),

there is an n′ > n such that N(n′) < M(n′).

Given any partial order (S,<S), the Dershowitz-Manna ordering can be used
to give a well-founded partial order on the set of finite multisets of S. Since
expressions are, in fact, linearly ordered by while-height, the Dershowitz-Manna
ordering admits a more simple description in our case. We say that N < M if
and only if N 6= M and for the greatest n such that N(n) 6= M(n), it holds that
N(n) < M(n).

Note that in any SGKAT-derivation the weighted while-height of the an-
tecedent does not increase when reading bottom-up. Moreover, we have:
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6.3.6. Lemma. wwh(e(b)n ,Γ) < wwh(e(b),Γ) for every n ∈ N.

Proof:
Let k := wh(e(b)). Note that the maximum while-height in e(b)n is that of e.
Hence, we have wwh(e(b)n)(k) = 0 < 1 = wwh(e(b))(k). Therefore:

wwh(e(b)n ,Γ)(k) = wwh(e(b)n)(k) + wwh(Γ)(k)

< wwh(e(b))(k) + wwh(Γ)(k) = wwh(e(b),Γ)(k).

Hence wwh(e(b)n ,Γ) 6= wwh(e(b),Γ). Now suppose that for some l ∈ N we have
wwh(e(b)n ,Γ)(l) > wwh(e(b),Γ)(l). We leave it to the reader to verify that in
this case we must have l < k. As wwh(e(b)n ,Γ)(k) < wwh(e(b),Γ)(k), we find
wwh(e(b)n ,Γ) < wwh(e(b),Γ). 2

We are now ready to prove the soundness theorem.

6.3.7. Theorem. If SGKAT∞ ` Γ⇒A ∆, then A � JΓK ⊆ J∆K.

Proof:
We prove this by induction on wwh(Γ). Given a proof π of Γ⇒A ∆, let B contain
for each infinite branch of π the node of least depth to which a rule (b)-l is applied.
Note that B must be finite, for otherwise, by Kőnig’s Lemma, the proof π cut off
along B would have an infinite branch that does not satisfy the fairness condition.

Note that Proposition 6.3.4 entails that of every finite derivation with valid
leaves the conclusion is valid. Hence, it suffices to show that each of the nodes in
B is valid. To that end, consider an arbitrary such node labelled e(b),Γ′ ⇒A′ ∆′

and the subproof π′ it generates. By Lemma 6.3.5, we have that e(b)n ,Γ′ ⇒A′ ∆′ is
provable for every n. Lemma 6.3.6 gives wwh(e(b)n ,Γ′) < wwh(e(b),Γ′) ≤ wwh(Γ),
and thus we may apply the induction hypothesis to obtain

A′ � Je(b)nK � JΓK ⊆ J∆K

for every n ∈ N. Then by⋃
n

(A′ � Je(b)nK � JΓK) = A′ �
⋃
n

(Je(b)nK) � JΓK = A′ � JeKJbK � JΓK,

we obtain that e(b),Γ′ ⇒A′ ∆′ is valid, as required. 2

6.4 Frugality

Before we show that SGKAT∞ is not only sound, but also complete, we will first
show that every SGKAT∞-proof is frugal. Recall that this notion was defined in
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the Intermezzo, and that a frugal proof is one in which only finitely many distinct
sequents appear.

Our treatment is again similar to that in [34] for Kleene Algebra, but presented
in a slightly different way, namely using the standard notion of a syntax tree.

6.4.1. Definition. The syntax tree (Te, le) of an expression e is a well-founded,
labelled and ordered tree, defined by the following inducton on e.

• If e is a test or primitive program, its syntax tree only has a root node ε,
with label le(ε) := e.

• If e = f1 ◦ f2 where ◦ = · or ◦ = +b, its syntax tree again has a root node ε
with label le(ε) = e, and with two outgoing edges. The first edge connects
ε to (Tf1 , lf1), the second edge connects it to (Tf2 , lf2).

• If e = f (b), its syntax tree again has a root node ε with label le(ε) = e, but
now with just one outgoing edge. This edge connects ε to (Tf , lf ).

Formally there is a sibling ordering implicit in the syntax tree (Te, le), but for the
sake of readability we omit this in our notation. There are several ways to extend
this sibling ordering to a total order on the set of all nodes of Te. The correct
ordering for our purposes is the following.

6.4.2. Definition. Let (Te, le) be the syntax tree of e, and let u, v be nodes in
of Te. We let u ≺e v if u comes before v in the depth-first traversal of Te.

6.4.3. Example. The syntax tree of a · (p+b q)
(a) is given by

a · (p+b q)
(a)

a (p+b q)
(a)

p+b q

p q

and a · (p +b q)
(a) ≺ a ≺ (p +b q)

(a) ≺ p +b q ≺ p ≺ q is the order of depth-first
traversal.

Observe that ≺e is indeed a total order on the nodes of Te. It will be convenient
to have the following abstract notion of sequents.
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6.4.4. Definition. Let e and f be GKAT-expressions. An (e, f)-sequent is a triple
(Γ, A,∆), where Γ is a list of nodes in Te, and ∆ is a list of nodes in Tf , and A
is a set of atoms.

Let (u1, . . . , un, A, v1, . . . , vm) be an (e, f)-sequent. Its realisation is the se-
quent le(u1), . . . , le(un)⇒A lf (v1), . . . , lf (vm). It is strictly increasing if u1, . . . un
is strictly increasing under ≺e, and v1, . . . , vm is strictly increasing under ≺f . .

6.4.5. Remark. In the above definition n and m are allowed to be 0, in which
case they realise the empty list ε. We regard the empty list as strictly increasing.

The following lemma embodies the key idea for establishing the frugality of
SGKAT∞-proofs. By εe we will denote the root of the syntax tree (Te, le). More-
over, recall that 0 is an expression, whence the notion of (e, 0)-sequent is well-
defined.

6.4.6. Lemma. Let π be an SGKAT∞-derivation of a sequent of the form e⇒A f .
Then every node of π is either the realisation of some strictly increasing (e, f)-
sequent, or of some strictly increasing (e, 0)-sequent.

Proof:
We will prove this by bottom-up induction on π. For the base case, note that the
root of π is the realisation of the strictly increasing (e, f)-sequent (εe, A, εf ).

For the inductive step, suppose that π contains a rule instance of the rule
r such that the thesis holds for its conclusion Γ0 ⇒A0 ∆0. We make a case
distinction on r. We will only treat two illustrative cases, leaving the other cases
to the reader.

Suppose that r = (b)-l. Then the rule instance is of the form

g, g(b),Γ⇒A0�b ∆ Γ⇒A0�b ∆
(b)-l

g(b),Γ⇒A0 ∆

Let (u1, . . . , un, A0, v1, . . . , vm) be the (e, f)-sequent or (e, 0)-sequent realising
g(b),Γ ⇒A0 ∆. Then le(u1) = g(b) and thus the node u1 of Te has a child u0

such that l(u0) = g. Hence, the premisses of this rule instance are realised by,
respectively,

(u0, u1, . . . , un, A0 � b, v1, . . . , vm), and (u2, . . . , un, A0 � b, v1, . . . , vm),

which are clearly both strictly increasing (e, f)-sequents or (e, 0)-sequents.
Now suppose that r = k0. Then the rule instance is of the form

Γ⇒At 0
k0

p,Γ⇒A0 ∆

Let (u1, . . . , un, A0, v1, . . . , vm) be an (e, f)-sequent or (e, 0)-sequent which realises
p,Γ ⇒A0 ∆. Then (u2, . . . , un,At, ε0) is a strictly increasing (e, 0)-sequent which
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realises Γ⇒At 0, . 2

As a corollary we obtain a bound on the number of sequents occurring in a
proof.

6.4.7. Corollary. Any SGKAT∞-derivation is frugal.

Proof:
Let π be an SGKAT∞-derivation. Without loss of generality we may assume that
the conclusion of π is of the form e ⇒A f (for otherwise we can simply append
a series of applications of ·-l and ·-r to the root of π). Hence, by the previous
proposition every sequent occurring in π is the realisation of an (e, f)-sequent or
an (e, 0) sequent. This means that there are at most n distinct antecedents in π,
where n is the number of nodes in the syntax tree of e. Moreover, there are at
most m + 1 distinct succedents, where m number of nodes in the syntax tree of
f . Since there are 2|(At)| different sets of atoms, it follows that there are at most
2|(At)| · n(m+ 1) distinct sequents in π. 2

Finally, we find by Corollary I.2.23 that SGKAT∞ is complete, then it is reg-
ularly complete.

6.4.8. Corollary. If Γ⇒A ∆ has an SGKAT∞-proof, then it also has a regular
SGKAT∞-proof.

6.5 Completeness

In this section we prove the completeness of SGKAT∞. Our treatment is again
inspired by that in [34] for ordinary Kleene Algebra, but requires several modifi-
cations to treat the tests present in GKAT. We first prove some auxiliary lemmas.

The following lemma is, of course, a minimal requirement for completeness.

6.5.1. Lemma. Any valid sequent is the conclusion of some rule application.

Proof:
We prove this lemma by contraposition. So suppose Γ⇒A ∆ is not the conclusion
of any rule application. We make a few observations:

• Both Γ and ∆ are exposed, for otherwise Γ⇒A ∆ would be the conclusion
of an application of a left, respectively right, logical rule.

• A is non-empty, for otherwise Γ ⇒A ∆ would be the conclusion of an
application of ⊥.

• The leftmost expression of Γ is not a primitive program, for otherwise our
sequent Γ⇒A ∆ would be the conclusion of an application of k0.
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• The leftmost expression of ∆ is a primitive program, for otherwise, by
the previous items, the sequent Γ ⇒A ∆ would be the conclusion of an
application of id.

Hence Γ⇒A ∆ is of the form ε⇒A p,Θ. Let α ∈ A. Then α ∈ A � JεK. However,
since α is not of the form βpγy, we have α /∈ Jp,ΘK. This shows that Γ⇒A ∆ is
not valid, as required. 2

Note the occurrence of two, possibly distinct, sets A and B of atoms in the
formulation of the following lemma.

6.5.2. Lemma. Let π be a derivation using only right logical rules and containing
a branch of the form:

Γ⇒B e
(b),∆

... (b)-r
Γ⇒A e

(b),∆

(*)

such that:

1. Γ⇒A e
(b),∆ is valid, and

2. Every succedent on the branch has e(b),∆ as a final segment.

Then Γ⇒B 0 is valid.

Proof:
We claim that e(b) ⇒B 0 is provable. We will show this by exploiting the symmetry
of the left and right logical rules of SGKAT (cf. Remark 6.2.10). Since on the
branch (*) every rule is a right logical rule, and e(b),∆ is preserved throughout, we
can construct a derivation π′ of e(b) ⇒B 0 from π by applying the analogous left
logical rules to e(b). Note that the set of atoms B precisely determines the branch
(*), in the sense that for every leaf Γ⇒C Θ of π it holds that C ∩B = ∅. Hence,
as the root of π′ is e(b) ⇒B 0, every branch of π′ except for the one corresponding
to (*) can be closed directly by an application of ⊥. The branch corresponding
to (*) is of the form

e(b) ⇒B 0
... (b)-l

e(b) ⇒B 0

(*)

and can thus be closed by a back edge. The resulting finite tree with back edges
clearly represents an SGKAT∞-proof.

Now by soundness, we have B � Je(b)K = ∅. Moreover, by the invertibility of
the right logical rules and hypothesis (1), we get

B � JΓK ⊆ B � Je(b)K � J∆K = ∅,

as required. 2
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6.5.3. Lemma. Let (Γn ⇒An ∆n)n∈ω be an infinite branch of some SGKAT∞-
derivation on which the rule (b)-r is applied infinitely often. Then there are n,m
with n < m such that the following hold:

(i) the sequents Γn ⇒An ∆n and Γm ⇒Am ∆m are equal;

(ii) the sequent Γn ⇒An ∆n is the conclusion of an application of (b)-r in π;

(iii) for every i ∈ [n,m) it holds that ∆n is a final segment of ∆i.

Proof:
First note that k0 is not applied on this branch, because if it were then there
could not be infinitely many applications of (b)-r.

By frugality (cf. Corollary 6.4.7), there must be a k ≥ 0 be such that every
∆i with i ≥ k occurs infinitely often on the branch above. Denote by |∆| the
length of a given list ∆ and let l be minimum of {|∆i| : i ≥ k}. In other words, l
is the minimal length of the ∆i with i ≥ k.

To prove the lemma, we first claim that there is an n ≥ k such that |∆n| = l
and the leftmost expression in ∆n is of the form e(b) for some e. Suppose, towards
a contradiction, that this is not the case. Then there must be a u ≥ k such
that |∆u| = l and the leftmost expression in ∆u is not of the form e(b) for any
e. Note that (b)-r is the only rule apart from k0 that can increase the length of
the succedent (when read bottom-up). It follows that for no w ≥ u the leftmost
expression in ∆w is of the form e(b), contradicting the fact that (b)-r is applied
infinitely often.

Now let n ≥ k be such that |∆n| = l and the leftmost expression of ∆n is e(b).
Since the rule (b)-r must at some point after ∆n be applied to e(b), we may assume
without loss of generality that Γn ⇒An ∆n is the conclusion of an application of
(b)-r. By the pigeonhole principle, there must be an m > n such that Γn ⇒An ∆n

and Γm ⇒Am ∆m are the same sequents. We claim that these sequents satisfy
the three properties above. Properties (i) and (ii) directly hold by construction.
Property (iii) follows from the fact that ∆n is of minimal length and has e(b) as
leftmost expression. 2

We are now ready for the completeness proof.

6.5.4. Theorem. Every valid sequent is provable in SGKAT∞.

Proof:
Given a valid sequent, we do a bottom-up proof search with the following strategy.
Throughout the procedure all leaves remain valid, in most cases by an appeal to
invertibility.

1. Apply left logical rules as long as possible. If this stage terminates, it will
be at a leaf of the form Γ⇒A ∆, where Γ is exposed. We then go to stage
(2). If left logical rules remain applicable, we stay in this stage (1) forever
and create an infinite branch.
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2. Apply right logical rules until one of the following happens:

(a) We reach a leaf at which no right logical rule can be applied. This
means that the leaf must be a valid sequent of the form Γ⇒A ∆ such
that Γ is exposed, and ∆ is either exposed or begins with a test b such
A � b 6= A. We go to stage (4).

(b) If (a) does not happen, then at some point we must reach a valid
sequent of the Γ ⇒A e

(b),∆ which together with an ancestor satisfies
properties (i) - (iii) of Lemma 6.5.3. In this case Lemma 6.5.2 is
applicable. Hence we must be at a leaf of the form Γ⇒A e

(b),∆ such
that e(b) ⇒A 0 is valid. We then go to stage (3).

Since at some point either (a) or (b) must be the case, stage (2) always
terminates.

3. We are at a valid leaf of the form Γ ⇒A e(b),∆, where Γ is exposed. If
A = ∅, we apply ⊥. Otherwise, if A 6= ∅, we use the validity of Γ⇒A e

(b),∆
and e(b) ⇒A 0 to find:

A � JΓK ⊆ A � Je(b)K � J∆K = ∅.

We claim that JΓK = ∅. Indeed, suppose towards a contradiction that
αx ∈ JΓK. By the exposedness of Γ and item (i) of Lemma 6.2.14, we
would have βx ∈ JΓK for some β ∈ A, contradicting the statement above.
Therefore, the sequent Γ⇒At 0 is valid. We apply the rule k0 and loop back
to stage (1).

Stage (3) only comprises a single step and thus always terminates.

4. Let Γ ⇒A ∆ be the current leaf. By construction Γ ⇒A ∆ is valid, Γ is
exposed, and ∆ is either exposed or begins with a test b such that A � b 6= A.
Note that only rules id, ⊥, k, and k0 can be applicable. By Lemma 6.5.1,
at least one of them must be applicable. If id is applicable, apply id. If ⊥ is
applicable, apply ⊥. If k is applicable, apply k and loop back to stage (1).
Note that this application of k will have priority (cf. Definition 6.3.3), and
is therefore invertible.

Finally, suppose that only k0 is applicable. We claim that, by validity, the
list Γ is not ε. Indeed, since A is non-empty, and ∆ either begins with a
primitive program p or a test b such that A � b 6= A, the sequent

ε⇒A ∆

must be invalid. Hence Γ must be of the form p,Θ. We apply k0, which has
priority and thus is invertible, and loop back to stage (1).

Like stage (3), stage (4) only comprises a single step and thus always ter-
minates.
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We claim that the constructed derivation is fair. Indeed, every stage except
stage (1) terminates. Therefore, every infinite branch must either eventually
remain in stage (1), or pass through stages (3) or (4) infinitely often. Since k and
k0 shorten the antecedent, and no left logical rule other than (b)-l lengthens it,
such branches must be fair. 2

By Corollary 6.4.8 we obtain that SGKAT∞ is regularly complete.

6.5.5. Corollary. Every valid sequent has a regular SGKAT∞-proof.

6.6 An inequational axiomatisation

In this section we propose an inequational axiomatisation PoGKAT for GKAT and
sketch partial translations from SGKAT∞ into PoGKAT. The question of whether
PoGKAT is complete with respect to the language model is left open. In future
work we wish to investigate whether this question can be settled by completing
our partial translation into a full translation.

The base of our axiomatisation is provided by inequational logic, whose axioms
and rules are given in Figure 6.4. For background on inequational logic we refer
the reader to [16] and [65].

e ≤ e
e ≤ f f ≤ g

e ≤ g

e ≤ f

σ̂(e) ≤ σ̂(g)

e1 ≤ f1 e2 ≤ f2

e1 +b e2 ≤ f1 +b f2

e1 ≤ f1 e2 ≤ f2

e1 · e2 ≤ f1 · f2

e ≤ f

e(b) ≤ f (b)

Figure 6.4: The axioms and rules of inequational logic in the signature of GKAT.

In the following every equation e ≡ f should be read as a shorthand for the
pair of inequations e ≤ f and f ≤ e.

6.6.1. Definition. The system PoGKAT consists of the following axioms and
rules.

1. All axioms and rules of inequational logic, as given in Figure 6.4.

2. The axiom b ≤ c for all tests b, c such that c is a Boolean consequence of b.

3. All axioms from [98, Sect. 3], i.e. all axioms in Figure 6.2 above.

4. The least fixed point rule: if eg +b f ≤ g, then e(b)f ≤ g.
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The following lemma collects some useful PoGKAT-derivable (in)equations.

6.6.2. Lemma. The following equations are provable in PoGKAT.

b(e+b f) ≡ be b(e+b f) ≡ bf be(b) ≡ bee(b) be(b) ≡ b

Proof:
For the first equation, we refer the reader to the proof of Fact (U8) in [98], which
directly transfers to our system. The other equations readily follow using axioms
(U2) and (W1) from Figure 6.2. 2

The following proposition will be useful later, and at the same time serves as
an example of a more involved PoGKAT-proof.

6.6.3. Proposition. PoGKAT ` e(b) ≤ (e(e+b 1))(b).

Proof:
Let us abbreviate (e(e+b 1))(b) by f . We first deduce

PoGKAT ` e(e+b 1)(e+b 1)f +b 1

≤ e(e(e+b 1)f +b 1(e+b 1)f) +b 1 (U5)

≤ e(e(e+b 1)f +b b · 1(e+b 1)f) +b 1 (U4, U2)

≤ e(e(e+b 1)f +b b(e+b 1)f) +b 1 (S4)

≤ e(e(e+b 1)f +b b · 1 · f) +b 1 (Lem. 6.6.2)

≤ e(e(e+b 1)f +b b · f) +b 1 (S4)

≤ e(e(e+b 1)f +b b) +b 1 (Lem. 6.6.2, def. of f)

≤ e(e(e+b 1)f +b b · 1) +b 1 (S5)

≤ e(e(e+b 1)f +b 1) +b 1 (U4, U2)

≤ ef +b 1 (W1)

≤ ef +b f (U4, U2, S1, Lem 6.6.2)

≤ (e+b 1)f. (U5)

Hence, by the least fixed point rule, we have PoGKAT ` f · 1 ≤ (e +b 1)f and
therefore:

PoGKAT ` f ≤ (e+b 1)f.

By monotonicity, it then follows that

PoGKAT ` ef +b 1 ≤ e(e+b 1)f +b 1,

which by (W1) means that

PoGKAT ` ef +b 1 ≤ f.
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A final application of the least fixed point rule yields PoGKAT ` e(b) · 1 ≤ f , from
which it follows that

PoGKAT ` e(b) ≤ f,

as required. 2

We wish to show that PoGKAT is complete with respect to the language model,
by translating proofs from SGKAT∞ into PoGKAT. For technical reasons, it will
be useful to augment SGKAT by the following admissible axiom

idsΓ⇒A Γ

We will call the resulting system SGKATs. The system SGKAT∞s , supporting
infinitary proofs, is defined using the same fairness condition on infinite branches
as we used to define SGKAT∞ from SGKAT.

The following proposition entails that all well-founded SGKATs-proofs admit
such a translation. We will slightly abuse notation by, for instance, writing

PoGKAT ` A � b · Γ ≤ e ·∆,

when strictly we mean

PoGKAT ` α1 · . . . · αn · e1 · . . . · em ≤ e · f1 · . . . · fk,

where A � b is {α1, . . . , αn}, and Γ and ∆ resp. are {e1, . . . , em} and {f1, . . . , fk}.

6.6.4. Proposition. If all of the premisses of some SGKATs-rule are derivable
in PoGKAT, then so is the conclusion.

Proof:
We will treat +b-r as illustrative case. Suppose that the following hold:

PoGKAT ` A � b · Γ ≤ e ·∆ (6.1)

PoGKAT ` A � b · Γ ≤ f ·∆ (6.2)

Then we have:

PoGKAT ` A · Γ ≤ A · Γ +b A · Γ (U1)

≤ b · A · Γ +b b · A · Γ (U2, U4)

≤ A � b · Γ +b A � b · Γ (Boolean, monotonicity)

≤ e ·∆ +b f ·∆ (6.1, 6.2, monotonicity)

≤ (e+b f) ·∆, (U5)

as required. 2
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The previous proposition implies that well-founded SGKATs-proofs can be
translated into PoGKAT-proofs. Following [33], our goal is to extend this trans-
lation to also include the non-well-founded, but regular SGKAT∞s -proofs. It will
be convenient to assume that our SGKATs-proofs are explicitly given as cyclic
proofs, i.e. as finite trees with back edges.

We can directly obtained a notion of cyclic SGKATs-proofs by the observation
that SGKATs

∞ is a simple path-based proof system (cf. Definition I.2.7). For the
sake of completeness, we spell it out here.

6.6.5. Definition. A cyclic SGKATs-derivation (π, f) is a pair consisting of a
finite SGKATs-derivation, together with a partial function f : π ⇀ π from the set
of nodes of π to itself, such that for every u ∈ dom(f): (i) u is a leaf of π, and
(ii) f(u) is a proper ancestor of u labelled by exactly the same sequent.

A cyclic SGKATs-proof is a cyclic SGKATs-derivation such that every leaf l
either belongs to dom(f) or is an axiom, and for every u ∈ dom(f) the path
[f(u), u) contains an application of (b)-l.

As usual, a node u ∈ dom(f) is called a repeating leaf, and f(u) its companion.
It will be convenient to restrict attention to cyclic proofs of a certain nice

shape. For this we need the following definition.

6.6.6. Definition. A cyclic proof (π, f) is oriented if for every u ∈ dom(f) it
holds that f(u) is the conclusion of an application of (b)-l.

A cyclic proof (π, f) is monotone if for every u ∈ dom(f) the antecedent of u
is a final segment of every antecedent on the path [f(u), u).

6.6.7. Remark. The concept of monotonicity is not new in the cyclic proof
theory literature. An analogous condition appears for instance in [3] under the
same name. A related condition was earlier considered by Sprenger & Dam
under the name tree-dischargeability [99]. In both cases monotone (resp. tree-
dischargeable) proofs are used as an intermediate step in the translation of cyclic
proofs into a system with an explicit induction rule.

6.6.8. Example. Let e = p(ab), and f = qe, and g = p +b q, and consider
the following cyclic SGKATs-proof Π2. As usual we omit branches that can be
immediately closed by an application of ⊥. The (•) indicates repeating leaves and
their companions. Note that At � ab � a = At � ab, and that At � ab � a = At � a.

e, f (a) ⇒At g
(a) (•)

k
p, e, f (a) ⇒At�ab p, g

(a)

+b-r
p, e, f (a) ⇒At�ab g, g

(a)

(a)-r
p, e, f (a) ⇒At�ab g

(a)

e, f (a) ⇒At g
(a) (•)

k
q, e, f (a) ⇒At�ab q, g

(a)

+b-r
q, e, f (a) ⇒At�ab g, g

(a)

(a)-r
q, e, f (a) ⇒At�ab g

(a)

·-l
qe, f (a) ⇒At�ab g

(a)

ε⇒At�a ε
(a)-r

ε⇒At�a g
(a)

(a)-l
f (a) ⇒At�ab g

(a)

(ab)-l
e, f (a) ⇒At g

(a) (•)
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Although Π2 is oriented, it is not monotone. Indeed, the antecedent e, f (a) is not
a final segment of the antecedent f (a).

The following proof, which we shall call Π3 is an example of a proof with the
same conclusion as Π2 which is monotone. In fact, Π2 and Π3 represent exactly
the same regular infinitary proof, in the sense that their infinitary unravelings are
equal.

e, f (a) ⇒At g
(a) (•)

k
p, e, f (a) ⇒At�ab p, g

(a)

+b-r
p, e, f (a) ⇒At�ab g, g

(a)

(a)-r
p, e, f (a) ⇒At�ab g

(a) Π4
(ab)-l

e, f (a) ⇒At g
(a) (•)

where Π4 is the proof

e, f (a) ⇒At g
(a) (•)

k
p, e, f (a) ⇒At�ab p, g

(a)

+b-r
p, e, f (a) ⇒At�ab g, g

(a)

(a)-r
p, e, f (a) ⇒At�ab g

(a) f (a) ⇒At�ab g
(a) (••)

(ab)-l
e, f (a) ⇒At g

(a) (•)
k

q, e, f (a) ⇒At�ab q, g
(a)

+b-r
q, e, f (a) ⇒At�ab g, g

(a)

(a)-r
q, e, f (a) ⇒At�ab g

(a)

·-l
qe, f (a) ⇒At�ab g

(a)

ε⇒At�a ε
(a)-r

ε⇒At�a g
(a)

(a)-l
f (a) ⇒At�ab g

(a) (••)

The following proposition shows that for every cyclic proof we can find a
monotone and oriented cyclic proof which represents the same regular infinitary
proof, generalising Example 6.6.8.

6.6.9. Proposition. Every regular SGKAT∞s -proof π is the unravelling of an
oriented and monotone cyclic SGKATs-proof.

Proof:
Note that it suffices to show that for every infinite branch

Γ0 ⇒A0 ∆0; Γ1 ⇒A1 ∆1; Γ2 ⇒A2 ∆2; · . . . ·

through π, there are n < m such that (i) Γn ⇒An ∆n and Γm ⇒Am ∆m are the
same sequents, (ii) Γn ⇒An ∆n is the conclusion of an application of (b)-l in π,
and (iii) for every i ∈ [n,m) it holds that Γn is a final segment of Γi. Indeed, the
proposition then follows from an easy appeal to Kőnig’s lemma, such as in the
proof of Proposition I.2.12.
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Now note that the required statement is exactly the same as Lemma 6.5.3,
but about the antecedent rather than the succedent. Its proof is also entirely
analogous. 2

Suppose that (π, f) is an oriented and monotone cyclic SGKATs-proof. It
might of course happen that there is some f ′, distinct from f , for which we have
dom(f) = dom(f ′) and such that (π, f ′) is also an oriented and monotone cyclic
SGKATs-proof. Later in this section it will be convenient to work with proofs
where f is minimal, in the sense that for every f ′ as above, it holds that f(l) is
an ancestor of f ′(l) for every repeating leaf l ∈ dom(f). It is not hard to see how
to obtain the following corollary from Proposition 6.6.9.

6.6.10. Corollary. Every regular SGKAT∞s -proof is the unravelling of an ori-
ented and monotone cyclic SGKATs-proof (π, f), which moreover is minimal.
That is, for every f ′ : dom(f)→ π such that (π, f ′) is an oriented and monotone
cyclic SGKATs-proof, it holds that f(l) is an ancestor of f ′(l) for every l ∈ dom(f).

We want to inductively show how to translate each oriented and monotone
cyclic SGKATs-proof π with endsequent Γ ⇒A ∆ into a PoGKAT-proof. For this
we will use a measure given by the following definition.

6.6.11. Definition. Let (π, f) be a cyclic SGKATs-proof which is both oriented
and monotone. The size |(π, f)| of (π, f) is defined to be its number of nodes.
The while-height wh(π, f) of (π, f) is the maximal value of wh(e(b)) of all sequents
of the form e(b),Γ⇒A ∆ in ran(f), which is 0 if ran(f) = ∅.

In the following we will for notational convenience often suppress the back
edge function f when referring to a cyclic proof (π, f). Our argument will go
by induction on the measure 〈wh(π), |π|〉, ordered lexicographically. Given an
oriented and monotone cyclic proof π, we make a case distinction as to whether
the root of π is a companion or not.

If the root is not a companion, let (πi)1≤i≤n be the subproofs generated by
the premisses of the final rule application of π. Then we have |πi| < |π| for
each i. As moreover wh(πi) ≤ wh(π), we can invoke the induction hypothesis to
obtain PoGKAT-proofs of the premisses of the last rule application of π. Finally,
Proposition 6.6.4 gives the desired PoGKAT-proof of Γ⇒A ∆.

The difficult case is where the root of π is a companion. By the fact that π is
oriented, the last rule applied in π must then be (b)-l. Hence π looks as follows:

π1

e, e(b),Γ⇒A�b ∆
π2

Γ⇒A�b ∆
(b)-l

e(b),Γ⇒A ∆

Since π is monotone, there is no back edge from π2 to the endsequent of π. We can
therefore apply the induction hypothesis to π2 to obtain PoGKAT ` A · b ·Γ ≤ ∆.
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However, we cannot apply the induction hypothesis to π1, since π1 is not a
subproof. To proceed, we intend to use an idea from [33], namely to compute
an invariant for e. Unfortunately, at the time of writing we do not have a tech-
nique that works for all cyclic SGKATs-proofs. We do, however, know how to
proceed under certain additional assumptions, which are discussed below. Ex-
tending these techniques to the general case is left for future work.

The following lemma, in [33] called the Invariant Lemma, is not difficult to prove
but conceptually important.

6.6.12. Lemma. For all expressions e, I,Γ,∆:

if


PoGKAT ` b · Γ ≤ I

PoGKAT ` b · e · I ≤ I

PoGKAT ` I ≤ ∆

then PoGKAT ` e(b) · Γ ≤ ∆.

Proof:
From the first two assumptions it is easy to derive that PoGKAT ` eI +b Γ ≤ ∆.
Using the least fixed point rule, we then find PoGKAT ` e(b) · Γ ≤ I. Finally, by
the third assumption and transitivity, it follows that PoGKAT ` e(b) · Γ ≤ ∆, as
required. 2

Because of its second property, the expression I in the above lemma is called
an invariant for b · e (on the left).

Our first application of the invariant lemma requires the assumptions (a) and
(b) in the proposition below. Assumption (b) is based on a very similar example
in [33].

6.6.13. Proposition. Let (π, f) be an oriented and monotone cyclic SGKATs-
proof such that for every companion u ∈ ran(f), labelled by, say, Θ ⇒A Σ, the
following hold:

(a) A = At.

(b) For each sequent of the form Θ ⇒A′ Σ′ in the subtree generated by u, it
holds both that A′ = A and that Σ′ = Σ.

Then there is a PoGKAT-proof of the root of π.

Proof (sketch):
We proceed by induction on 〈wh(π), |π|〉. As we have seen above, the only inter-
esting case is where the root of π is a companion. By the fact that π is oriented
and monotone, and assumption (a), we know that π looks as follows:

π1

e, e(b),Γ⇒At�b ∆
π2

Γ⇒At�b ∆
(b)-l

e(b),Γ⇒At ∆
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As argued above, we know by monotonicity that π2 cannot contain a back edge to
the root of π. This means that π2 is a subproof such that |π2| < |π|. Moreover, π2

clearly inherits conditions (a) and (b) from π. Hence, we can apply the induction
hypothesis to π2, which gives PoGKAT ` At � b · Γ ≤ ∆.

To show that also PoGKAT ` At � b · e · e(b) · Γ ≤ ∆, we consider the proof
π1[∆/e(b),Γ] obtained by replacing in π1 every occurrence of e(b),Γ as a final
segment in an antecedent, by ∆. If in π1 a sequent of the form e(b),Γ ⇒A ∆′ is
reached, then the corresponding node in π1[∆/e(b),Γ] is of the form ∆ ⇒A ∆′.
By assumption (b), we then know that this node must be of the form ∆ ⇒A ∆,
and we close it with an application of ids. This transformation can be depicted
as follows, where to the left of the arrow ; a branch of π is shown, and the to
right the corresponding branch of π1[∆/e(b),Γ].

...
e(b),Γ⇒A ∆

...
e, e(b),Γ⇒At�b ∆

;

ids
∆⇒A ∆

...
e,∆⇒At�b ∆

Clearly π1[∆/e(b),Γ] is indeed a cyclic SGKATs-proof of e,∆⇒At�b ∆. Moreover,
since by assumption the endsequent of π is a companion, and by construction
the final segment ∆ of each antecedent in π1[∆/e(b),Γ] is never explored, we have
wh(π1[∆/e(b),Γ]) < wh(π). As before, π1[∆/e(b),Γ] inherits conditions (a) and
(b) from π. Hence, we can apply the induction hypothesis, from which we obtain
PoGKAT ` b · e · ∆ ≤ ∆. Since trivially PoGKAT ` ∆ ≤ ∆, we can now apply
Lemma 6.6.12 to obtain PoGKAT ` e(b) · Γ ≤ ∆, as required. 2

6.6.14. Remark. The use of the invariant lemma in the above proof is an
overkill, because the invariant I is simply ∆ itself. The sufficiency of this simple
invariant is enabled by assumption (b). In [33], in the context of Kleene Algebra,
a proposition similar to our Proposition 6.6.13 is refined to eliminate the need of
assumption (b). If we were to apply their technique to our proof system, roughly
the idea would be to extract from a cyclic SGKAT-proof π of e(b),Γ⇒At ∆ an ex-
pression that, provably in PoGKAT, corresponds to the intersection of all ∆′ such
that e(b),Γ ⇒A ∆′ occurs in π (note that this is indeed ∆ itself in the presence
of assumption (b)). This expression can then be used as the invariant I in an
application of Lemma 6.6.12.

It is unclear whether their method for computing this expression I, by view-
ing proofs as automata and calculating the so-called minimal solution to this
automaton, can be applied to SGKAT. In fact, it is to the best of our knowledge
an open question whether languages recognised by GKAT-expressions are closed
under taking intersections at all.
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The proof Π1 of Example 6.2.8 satisfies assumption (a) of Proposition 6.6.13,
but not assumption (b). Indeed, the companion labelled by (cp)(b) ⇒At ∆1 in Π1

has a descendant labelled (cp)(b) ⇒At ∆2, where ∆1 6= ∆2.
However, after applying (b)-l to (cp)(b) twice, we reach in Π1 a repetition of

(cp)(b) ⇒At ∆1. We will provide a strengthening of Proposition 6.6.13, featuring
a weakening of assumption (b), which is satisfied by Π1. The key idea is to
require a certain uniformity in the amount of applications of (b)-l needed to reach
a repetition. To make this formal, we will use the following definition.

6.6.15. Definition. Let π be an SGKATs-derivation of e(b),Γ⇒At ∆, and let u
be a node of π, such that e(b),Γ is a final segment of every antecedent from the
root of π to u, and equal to the antecedent of u itself. Then the unfolding depth
of u is the number of those rule instances of (b)-l on the path from the root to u,
for which the antecedent of the conclusion of this rule instance is e(b),Γ.

For any node u that does not meet this condition, the unfolding depth is
undefined.

6.6.16. Example. In the proof Π1 of Example 6.2.8, viewed as a cyclic proof,
the node labelled (cp)(b) ⇒At ∆2 has unfolding depth 1, and the repeating leaf
labelled (cp)(b) ⇒At ∆1 has unfolding depth 2.

The assumption (b’) in the following proposition has two components. First,
it requires for every companion u that there is some number n > 0 such that after
unfolding the leftmost expression of the antecedent of u (which is of the form e(b)

by orientedness) n times, one ends up at a node labelled by the same sequent
as u. Second, it requires that all repeating leaves with u as companion occur
sufficiently deep in the proof. Note that when assumption (b) is satisfied, we can
simply choose n = 1. This shows that assumption (b’) is indeed a weakening of
assumption (b).

Note also that the following proposition is formulated for minimal oriented
and monotone cyclic SGKATs-proofs (cf. Corollary 6.6.10).

6.6.17. Proposition. Let (π, f) be a minimal oriented and monotone cyclic
SGKATs-proof such that for every companion u ∈ ran(f), labelled by say Θ⇒A Σ,
the following hold:

(a) A = At.

(b’) In the subderivation π′ of π generated by u, it holds for some n > 0 that:

(i) every node in π′ of unfolding depth n is of the form Θ⇒A Σ;

(ii) for every node l ∈ f−1(u) contained in π′, the unfolding depth of l is
at least n.
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Proof (sketch):
We proceed by induction on 〈wln(π), |π|〉, where wln(π) is the number of applica-
tions of the left while rule (c)-l in π (for any test c). Again, the only interesting
case is when the root of π is a companion. As we have seen before, we know that
π then looks as follows:

π1

e, e(b),Γ⇒At�b ∆
π2

Γ⇒At�b ∆
(b)-l

e(b),Γ⇒At ∆

We will now sketch how to show that PoGKAT ` e(b) · Γ ≤ ∆ under assumptions
(a) and (b’). Let n be as given by assumption (b’) applied to the root of π (which
we assumed to be a companion), and define the expression I := (e+b1)n ·(∆+bΓ).
Here (e+b 1)0 = 1 and (e+b 1)k+1 := (e+b 1) · (e+b 1)k. We claim that

PoGKAT ` (e+b 1)n · (∆ +b Γ) ≤ ∆ +b Γ. (*)

Note that trivially PoGKAT ` b · Γ ≤ ∆ +b Γ and PoGKAT ` ∆ +b Γ ≤ ∆ +b Γ.
Hence, if (*) holds, then, of course, also

PoGKAT ` b · (e+b 1)n · (∆ +b Γ) ≤ ∆ +b Γ

and thus we can apply Lemma 6.6.12 with the arguments

(e+b 1)n, ∆ +b Γ, Γ, ∆ +b Γ,

in place of e, I,Γ,∆. We then obtain:

PoGKAT ` ((e+b 1)n)(b) · Γ ≤ ∆ +b Γ.

By a straightforward generalisation of the proof of Lemma 6.6.3, it can be shown
that PoGKAT ` e(b) ≤ ((e +b 1)n)(b). It then follows by monotonicity that
PoGKAT ` e(b) · Γ ≤ ∆ +b Γ. Applying the induction hypothesis to π2 (which
we can do by monotonicity and the fact that π2 inherits both conditions (a) and
(b’)), we know that PoGKAT ` b ·Γ ≤ ∆. Hence we obtain PoGKAT ` e(b) ·Γ ≤ ∆,
as required.

To finish the proof, it thus suffices to show that (*) holds. The idea is to build
a cyclic SGKATs-proof (π′, f ′) of

(e+b 1)n,∆ +b Γ⇒At ∆ +b Γ

to which we can apply the induction hypothesis. This cyclic SGKATs-proof π′ can
be depicted as follows, suppressing branches which can be immediately closed by
an application of ⊥.

π1[(e+b 1)n−1, (∆ +b Γ)/e(b),Γ]

...
e, (e+b 1)n−1,∆ +b Γ⇒At�b ∆

ids
∆ +b Γ⇒At�b ∆ +b Γ

... +b-l
(e+b 1)n−1,∆ +b Γ⇒At�b ∆ +b Γ

1-l
1, (e+b 1)n−1,∆ +b Γ⇒At�b ∆ +b Γ

+b-l
(e+b 1)n,∆ +b Γ⇒At ∆ +b Γ
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where the proof π1[(e+b 1)n−1, (∆ +b Γ)/e(b),Γ] is constructed as follows. We first
replace in π1 every final segment e(b),Γ of an antecedent by (e+b 1)n−1, (∆ +b Γ).
If e(b),Γ⇒A ∆′ is the conclusion of an application of (b)-l in π of unfolding depth
m < n, the proof continues as follows:

π1[(e+b 1)n−m−1,∆ +b Γ)/e(b),Γ]

...
e, (e+b 1)n−m−1, (∆ +b Γ)⇒A�b ∆

π′2
Γ⇒A�b ∆′

+b-l
∆ +b Γ⇒A�b ∆′

... +b-l
(e+b 1)n−m−1,∆ +b Γ⇒A�b ∆′

1-l
1, (e+b 1)n−m−1,∆ +b Γ⇒A�b ∆′

+b-l
(e+b 1)n−m,∆ +b Γ⇒A ∆′

where π′2 is the subproof of Γ ⇒A�b ∆′ contained in π1. To see that such a π′2
exists, note that by construction π1 contains a subtree of the form

π′1

e, e(b),Γ⇒A�b ∆′
π′2

Γ⇒A�b ∆′
(b)-l

e(b),Γ⇒A ∆′

such that every ancestor of the root of this subtree in π1 has e(b),Γ as a final
segment. The fact that π′2 is a subproof and not a mere subderivation follows
from the monotonicity of π.

If e(b),Γ ⇒A ∆′ is the conclusion of an application of (b)-l in π of unfolding
depth n, then by assumption (b) we have A = At and ∆′ = ∆. We then finish
the proof as follows:

ids
∆⇒At�b ∆

π2

Γ⇒At�b ∆
+b-l

∆ +b Γ⇒At ∆

Having constructed the cyclic SGKATs-proof (π′, f ′), it remains to show that it is
susceptible to the induction hypothesis. We claim that wln(π′) < wln(π), i.e. that
π′ contains strictly less applications of the rule (c)-l (where c can be any test).
This can be seen by noting that every application of (c)-l in π′ has a unique
corresponding application of (c)-l in π, but the first application of (b)-l in π does
not appear in π′. 2

6.6.18. Remark. Just like the proof of Proposition 6.6.13, the above proof only
uses a trivial instance of the invariant lemma. In particular, the invariant is
∆ +b Γ. It is a topic of future work to see whether a generalisation of Proposition
6.6.17 can be obtained by harnessing the full power of the invariant lemma (cf.
Remark 6.6.14).
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6.6.19. Example. The proof Π1 of Example 6.2.8 satisfies both assumptions of
Proposition 6.6.17. Indeed, for the single companion it suffices to take n = 2.
Hence we obtain PoGKAT ` (cp)(b) ⇒At (p(cp+b 1))(b).

Unfortunately, it is not hard to find examples of cyclic SGKATs-proofs failing
to satisfy assumption (a) or assumption (b’). For instance, the proof Π3 (as
well as Π4) of Example 6.6.8 fails to satisfy assumption (a). One strategy for
eliminating assumption (a) would be to prove a more sophisticated version of the
Invariant Lemma (Lemma 6.6.12) that works for sets of atoms other than At.

6.7 Conclusion

In this chapter we have presented a non-well-founded proof system SGKAT∞

for GKAT. Our system is similar to the system for Kleene Algebra in [34], but
the deterministic nature of GKAT allows us to use ordinary sequents rather than
hypersequents. To deal with the tests of GKAT every sequent is annotated by a
set of atoms. We proved soundness and regular completeness with respect to the
language model.

We proposed an algebraic inequational counterpart to our system, called
PoGKAT, based on the equational system in [98]. We have presented a partial
translation of cyclic SGKAT proofs into PoGKAT-proofs. This may be a first step
towards proving that PoGKAT is complete with respect to the language model,
which to the best of our knowledge is an open question.

There are many interesting questions left to explore. Perhaps the most press-
ing question is whether our partial translation into PoGKAT can be completed. A
first step would be to try to further adapt the method in [33], which, as mentioned
in Remark 6.6.14 comes with some difficulties. Even if the method from [33] can
be adapted, a challenge remains in eliminating assumption (a) from the proposi-
tions 6.6.13 and 6.6.17 above, perhaps by employing a more sophisticated version
of Lemma 6.6.12.

Very recently a completeness result for a certain fragment of GKAT was ob-
tained by Kappé, Schmid & Silva [94]. This fragment, called skip-free GKAT,
omits programs which can accept immediately without performing any action.
In particular, every skip-free GKAT-expression is strictly productive (cf. Section
6.1.3). The completeness proof in [94] works by reducing skip-free GKAT to another
formal system, of 1-free star expressions modulo bisimulation, which was recently
shown to be complete by Grabmayer and Fokkink in [48]. As an intermediate
step, the authors of [94] show completeness for an axiomatisation of skip-free
GKAT with respect to its so-called bisimulation semantics. Characteristic of the
bisimulation semantics is that it does not satisfy an early termination axiom of
the form x · 0 ≡ 0. As mentioned in Remark 6.2.7, we conjecture that removing
the axiom k0 from SGKAT∞ will make it sound and complete with respect to the
bisimulation semantics.
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Another interesting question is to determine the optimal complexity for proof-
search in SGKAT∞. Proof-search for the cyclic system for Kleene Algebra in [34] is
in PSPACE, which is optimal since Kleene Algebra is PSPACE-complete. Because
the decision problem for GKAT-equations is of very low complexity, the optimal
decision procedure for GKAT-inequations is expected to be very efficient as well.
Hence, there might not be proof-search procedure for SGKAT∞ which is optimal
for deciding GKAT-inequations. Nevertheless, we wonder whether a proof-search
procedure exists that is at least more efficient than PSPACE.
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[65] Alexander Kurz and Jǐŕı Velebil. Quasivarieties and varieties of ordered
algebras: regularity and exactness. Mathematical Structures in Computer
Science, 27(7):1153–1194, 2017.

[66] Ori Lahav. From frame properties to hypersequent rules in modal logics.
In 28th Annual Symposium on Logic in Computer Science, LICS, pages
408–417. IEEE, 2013.



Bibliography 197

[67] M. Lange. Satisfiability and completeness of Converse-PDL replayed. In
26th Annual German Conference on AI, KI, volume 2821 of Lecture Notes
in Computer Science, pages 79–92. Springer, 2003.

[68] Martin Lange and Colin Stirling. Focus games for satisfiability and com-
pleteness of temporal logic. In 16th Annual Symposium on Logic in Com-
puter Science, LICS, pages 357–365. IEEE Computer Society, 2001.

[69] Graham E. Leigh and Dominik Wehr. From GTC to reset: Generating reset
proof systems from cyclic proof systems, 2023. arXiv preprint 2301.07544.

[70] Björn Lellmann and Dirk Pattinson. Correspondence between modal
Hilbert axioms and sequent rules with an application to S5. In 26th Inter-
national Conference on Automated Reasoning with Analytic Tableaux and
Related Methods, TABLEAUX, volume 8123 of Lecture Notes in Computer
Science, pages 219–233. Springer, 2013.

[71] John Lemmon and Dana Scott. An introduction to modal logic. American
Philosophical Quarterly Monograph Series. Basil Blackwell, 1977.

[72] Larisa Maksimova. Temporal logics of “the next” do not have the Beth
property. Journal of Applied Non-Classical Logics, 1(1):73–76, 1999.

[73] Johannes Marti and Yde Venema. A focus system for the alternation-
free µ-calculus. In 30th International Conference on Automated Reasoning
with Analytic Tableaux and Related Methods, TABLEAUX, volume 12842
of Lecture Notes in Computer Science, pages 371–388. Springer, 2021.

[74] A.M. Mostowski. Games with forbidden positions. Technical report, Insty-
tut Matematyki, Uniwersytet Gdański, Poland, 1991.

[75] Sara Negri. Proof analysis in modal logic. Journal of Philosophical Logic,
34:507–544, 2005.

[76] Linh Anh Nguyen. Analytic tableau systems and interpolation for the modal
logics KB, KDB, K5, KD5. Studia Logica, 69(1):41–57, 2001.

[77] Damian Niwinski and Igor Walukiewicz. Games for the mu-calculus. The-
oretical Computer Science, 163:99–116, 1996.
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Samenvatting

Dit proefschrift gaat over de bewijstheorie van modale dekpuntlogica’s. In het bi-
jzonder bevat het constructies van bewijssystemen voor verschillende fragmenten
van de modale mu-calculus, gëınterpreteerd over verschillende klassen van frames.
Dit proefschrift beoogt de relatief onderontwikkelde bewijstheorie van de modale
mu-calculus dichter bij de gevestigde bewijstheorie van basismodale logica te bren-
gen, met een nadruk op uniforme constructies en algemene resultaten. Twee
benaderingen staan centraal. Ten eerste, het veralgemeniseren van bestaande
methoden voor basismodale logica naar fragmenten van de modale mu-calculus.
Deze methode wordt gebruikt om Hilbert-stijl bewijssystemen te ontwikkelen.
Ten tweede, het aanpassen van bestaande methoden op het gebied van de modale
mu-calculus zodat ze werken voor verschillende klassen van frames. Deze methode
geeft bewijssystemen die niet-welgefundeerd of cyclisch zijn.

Hoofdstuk 1 bevat een informele introductie, waarin de doelen en resultaten
van dit proefschrift worden besproken. In Hoofdstuk 2 wordt de noodzakelijke
voorkennis gëıntroduceerd, inclusief een fundamenteel hulpmiddel: pariteitsspe-
len.

In Hoofdstuk 3 ontwikkelen we cyclische hypersequentencalculi voor een re-
latief simpel fragment van de modale mu-calculus: modale logica met de mas-
termodaliteit. Voortbouwend op eerder werk van Ori Lahav voor basismodale
logica [66], construeren we op uniforme wijze hypersequentencalcui voor verschil-
lende, zogenaamd simpele, frameklassen. Snedevrije volledigheid wordt alleen
bewezen voor bepaalde simpele frameklassen, die we gelijkmatig noemen.

In het Intermezzo dat volgt op Hoofdstuk 3 introduceren we een algemeen
raamwerk om zogenaamde pad-gebaseerde niet-welgefundeerde bewijssystemen te
bestuderen. In dit raamwerk geven we een voldoende voorwaarde om te laten zien
dat elke bewijsbare sequent een beknopt bewijs heeft. In de meeste gevallen leidt
dit tot de begrensdebewijseigenschap: elke bewijsbare sequent heeft een cyclisch
bewijs waarvan de grootte begrensd wordt door een waarde berekenbaar vanuit
de grootte van de sequent.
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In Hoofdstuk 4 veralgemeniseren we bestaand onderzoek op het gebied van
Hilbert-stijl bewijssystemen voor PDL. Recentelijk lieten Kikot, Shapirovsky
& Zolin in [56] zien hoe het oorspronkelijke volledigheidsbewijs van Kozen &
Parikh [62] voor PDL uitgebreid kan worden naar verschillende frameklassen die de
methode van filtratie toelaten. Wij laten zien dat de continue modale µ-calculus,
die strikt meer expressief is dan PDL, filtratie toelaat. Daarnaast veralgemenis-
eren we de resultaten van Kikot, Shapirovsky & Zolin, zodat ze toepasbaar zijn
op de continue modale µ-calculus

In Hoofdstuk 5 beschouwen we de tweezijdige modale µ-calculus. Voort-
bouwend op eerder onderzoek van Vardi naar tweezijdige automaten [105], con-
strueren we een cyclisch bewijsssyteem voor de alternatievrije tweezijdige modale
µ-calculus. De kern van onze methode is het nieuwe concept van een spooratoom;
een additioneel element binnen een sequent dat de mogelijke sporen door een
bewijs bijhoudt.

In het laatste hoofdstuk, Hoofdstuk 6, wijken we lichtelijk af van het hoofdon-
derwerp door een dekpuntlogica te beschouwen die strikt genomen niet modaal is,
namelijk Guarded Kleene Algebra met Tests. Dit is een computationeel efficiënte
variant van de beter bekende Kleene Algbera met Tests. We construeren een
cyclisch bewijssysteem voor Guarded Kleene Algebra met Tests, gëınspireerd op
een eerder systeem ontwikkeld door Das & Pous voor Kleene Algebra [34]. Ook
nemen we een eerste stap richting het vertalen van onze cyclische bewijzen naar
een algebräısch systeem voor Guarded Kleene Algebra met Tests.



Abstract

This thesis studies the proof theory of modal fixed point logics. In particular, we
construct proof systems for various fragments of the modal µ-calculus, interpreted
over various classes of frames. With an emphasis on uniform constructions and
general results, we aim to bring the relatively underdeveloped proof theory of
modal fixed point logics closer to the well-established proof theory of basic modal
logic. We employ two main approaches. First, we seek to generalise existing
methods for basic modal logic to accommodate fragments of the modal µ-calculus.
We use this approach for obtaining Hilbert-style proof systems. Secondly, we
adapt existing proof systems for the modal µ-calculus to various classes of frames.
This approach yields proof systems which are non-well-founded or cyclic.

In Chapter 1 we give an informal introduction to the goals and results of this
thesis. Chapter 2 introduces the necessary preliminaries, including the funda-
mental tool of infinite (parity) games.

In Chapter 3 we construct cyclic hypersequent calculi for a relatively simple
fragment of the modal µ-calculus: modal logic with the master modality. Building
upon prior work by Ori Lahav for basic modal logic [66], we uniformly construct
hypersequent calculi for various, so-called simple, frame classes. We are only able
to prove cut-free completeness for certain specific simple frame classes, which we
call equable.

In the Intermezzo following Chapter 3, we introduce a general framework for
studying so-called path-based non-well-founded proof systems. In this framework
we establish a sufficient condition for showing that every provable sequent admits
a concise proof. In most cases this leads to the bounded proof property : every
provable sequent has a cyclic proof for which a size bound can be calculated from
the size of the sequent.

In Chapter 4 we generalise existing work on Hilbert-style proof systems for
PDL. Recently it was shown by Kikot, Shapirovsky & Zolin in [56] how to extend
the original completeness proof by Kozen & Parikh [62] of PDL to several frame
classes which admit the method of filtration. We show that the continuous modal
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µ-calculus, which is strictly more expressive than PDL, admits filtration. More-
over, we generalise the results by Kikot, Shapirovsky & Zolin to the continuous
modal µ-calculus.

In Chapter 5 we consider the two-way modal µ-calculus. Building on previous
work by Vardi on two-way automata [105], we construct a cyclic proof system
for the alternation-free two-way modal µ-calculus. At the heart of our method is
the novel concept of a trace atom, an additional element within a sequent that
records possible traces through a proof.

In the final chapter, Chapter 6, we slightly diverge from our main topic by
considering a fixed point logic which is not strictly modal, known as Guarded
Kleene Algebra with Tests. This logic is a computationally efficient fragment of
the more well known Kleene Algebra with Tests. We construct a cyclic proof
system for Guarded Kleene Algebra with Tests, inspired by an earlier system
developed by Das & Pous for Kleene Algebra [34]. Furthermore, we take a first
step towards translating our cyclic proofs into an algebraic system for Guarded
Kleene Algebra with Tests.
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