On Span

Programs and

Quantum

Algorithms Alvaro Piedrafita

On span programs and quantum
algorithms

ILLC Dissertation Series DS-2021-XX

nza
Eud

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

For further information about ILLC publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam
Science Park 107
1098 XG Amsterdam
phone: +31-20-525 6051
e-mail: i11c@uva.nl
homepage: http://www.illc.uva.nl/

q)‘u S Oft UNIVERSITY OF AMSTERDAM W

Research Center for Quantum Software

Copyright (©) by Alvaro Piedrafita.

Cover design by Guillem Galobardes.
Printed and bound by NBD Biblion.

ISBN: 978-90-619-6149-9.

On span programs and quantum
algorithms

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties ingestelde
commissie,
in het openbaar te verdedigen in de Agnietenkapel
op woensdag 10 november 2021, te 16.00 uur

door

Alvaro Piedrafita Postigo

geboren te Sabadell, Spanje

v

Promotiecommissie

Promotor: prof. dr. H.M. Buhrman Universiteit van Amsterdam

Co-promotor: dr. S.M. Jeffery Centrum Wiskunde & Informatica

Overige leden: prof. dr. R.M. de Wolf Universiteit van Amsterdam
prof. dr. C.J.M. Schoutens Universiteit van Amsterdam
prof. dr. S. Fehr Universiteit Leiden
dr. S. Kimmel Middlebury College
dr. M.Ozols Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

List of publications

This dissertation is based on the following papers (in chronological order).
In each work, all authors contributed equally unless stated otherwise.

[JJK+18] Quantum algorithms for connectivity and related problems
Michael Jarret, Stacey Jeffery, Shelby Kimmel, and Alvaro Piedrafita,
26th Annual European Symposium on Algorithms (ESA 2018).
Ed. by Yossi Azar, Hannah Bast, and Grzegorz Herman. Vol. 112.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl-Leibniz Zentrum fuer Informatik, 2018,
49:1-49:13.

[CJO-+20] Span Programs and Quantum Time Complexity
Arjan Cornelissen, Stacey Jeffery, Maris Ozols, and Alvaro Piedrafita,
45th International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2020).
Ed. by Javier Esparza and Daniel Kral. Vol. 170. Leibniz Inter-
national Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2020, 26:1-26:14.

The author has additionally co-authored the following papers, which are
not included in the dissertation.

[PR17] Reliable Channel-Adapted Error Correction: Bacon-Shor Code
Recovery from Amplitude Damping
Alvaro Piedrafita and Joseph M. Renes,
Phys. Rev. Lett. 119 (2017), p. 250501.
Joseph M. Renes is the principal author of this paper.

[PP20] An Overview of Quantum Algorithms: From Quantum Supre-
macy to Shor Factorization
Subhasree Patro and Alvaro Piedrafita,
2020 IEEE International Symposium on Circuils and Systems (IS-
CAS). 2020, pp. 1-5.
Alvaro Piedrafita is the principal author of this review.

vi

Contents

List of publications v

I The one with the introduction and mathematical

preliminaries 1
1 Introduction 3
2 Preliminaries 11
2.1 Mathematical preliminaries 11
2.1.1 Jordan’s Lemma 12

2.2 Quantum algorithms L. 15
2.2.1 Quantum query algorithms 17

2.2.2 Clean quantum algorithms 19

2.2.3 Four useful quantum subroutines 23

2.3 Graph theory 25
2.3.1 Multigraphso 25

2.3.2 Laplacians 27

2.3.3 Electrical networks 28

II The one where we discuss the theory of span pro-

grams 35
3 Theory of span programs 37
3.1 Overview 37
3.2 Span programs e e e e e e e 41
3.2.1 Span programs: a first definition. 41

Vil

viii

CONTENTS

3.2.2 An alternative definition of span programs
3.2.3 A few algorithms for span programs
3.3 Reflection programs
3.3.1 Definitionso
3.3.2 Operational interpretations
3.3.3 Approximate reflection programs
3.3.4 Span programs and reflection programs
3.4 Algorithms for reflection programs.
3.4.1 Algorithms for reflection program decision
3.4.2 An algorithm for witness generation
3.5 Discussion Lo

Span programs and time complexity
4.1 Overview.
4.2 Accessing an algorithm as input
4.3 Time complexity of a span program algorithm
4.4 From algorithms to span programs
4.4.1 The span program of an algorithm
4.5 Time complexity of the algorithm
4.5.1 Implementing subspace
45.2 Reflection around [0)o oL
4.5.3 Implementation of 21Ty) —1
4.5.4 TImplementation of 2ITyepay — 1.
4.5.5 Construction of Jwg)o
4.5.6 Proof of Theorem 63
4.6 Application to variable-time search
4.6.1 The OR of span programs
4.6.2 Implementation of the OR span program
4.6.3 TImplementation of variable time quantum search
4.7 Discussion and outlooko oL

III The one where we discuss applications of span
programs

5

Span programs for graph problems
5.1 OvVerview e
5.2 A span program for st-connectivity

163

165

CONTENTS

5.3 Effective capacitance and st-connectivity
5.3.1 Estimating the capacitance of a circuit
5.4 Graph connectivity
5.5 Spectral algorithm for deciding connectivity
5.5.1 A construction forany G L.
5.5.2 An algorithm for Cayley graphs

5.5.3 Estimating the connectivity when G =K,, :

5.6 Graph connectivity without graph surgery
5.7 Witness generation for st-connectivity
5.8 Discussion and open problems

6 Span programs for boundary problems
6.1 Overview. e
6.2 Boundary problems in graphs 0oL
6.3 Simplicial complices and homology
6.3.1 Simplicial complices
6.3.2 Simplicial homology
6.3.3 Cellular complices
6.3.4 Sub-complices of a complex
6.4 A span program for simplicial homology
6.4.1 st-connectivity revisited L.
6.5 A span program for homology of surfaces
6.6 Discussion e

Bibliography
Abstract
Nederlandse samenvatting

Acknowledgements

X

225
225
228
230
230
233
237
239
239
241
242
251

255

261

262

263

CONTENTS

Part 1

The one with the introduction
and mathematical preliminaries

Chapter 1

Introduction

In March of 2021, Laszl6 Lovasz and Avi Wigderson were awarded the Abel
prize for their contributions to computer science and discrete mathematics.
When my Dad, a geneticist, read this news, he asked me if 1T knew either of
them. I said “I know of them, and I know people who know them”. “Have
you used any of their work?”, he asked. I laughed. “My thesis is all about
span programs. Avi Wigderson invented span programs with his student in
the nineties”.

It’s been almost thirty years and span programs are still being studied,
having proven to be a useful tool in the quantum computing toolbox. To
give a few examples, they have been used to prove the tightness of the gen-
eral adversary lower bound [Rei09], design quantum algorithms for graph
problems [CMB18; BR12; Aril6]|, k—distinctness [Bell2a], and formula eval-
uation [RSlQ; JK17] and study quantum space complexity [Jef20]. So span
programs are useful, message received, but what exactly are they?

Span programs

Span programs are a way of encoding a function of the form f: X C [¢]" —
{0,1} for some ¢,n € N, as a linear algebraic problem.

We begin by associating a subspace H;; in some space H to each pair of
indices i,b : ¢ € [n],b € [¢q]. That is, for each coordinate and each possible
value of the coordinate we have a subspace.

It follows that each input = = (x1,...,2,) € [¢]" has associated a sub-
space H(z) = @D,ef, Hiw- To give us some more freedom, we now define

3

4 CHAPTER 1. INTRODUCTION

another space V and a map A : H — V so that every input has associated
also a subspace V(x) = A(H(z)).

Next, we choose a vector |7) in V, independent of the input, which we
call the target. The natural question, now that we have a bunch of subspaces
and a lonely vector called the target is: Given an input z, is the target |7)
in the subspace V(x)?

The answer can only be yes or no, and, once we have fixed our choice of
V, |7), the map A and the assignment 4,0 — H,, it only depends on x € [¢]".
We have just described a function fp : [¢]" — {0,1} that takes value 1 if
and only if the answer to question is: yes, |7) € V(x). We then say that fp
is encoded by the tuple P = (H,V, A, 7), which we name’ the span program
for fp. We will sometimes say that P decides or computes fp, but these are
misnomers.

One way of deciding whether |7) € V(z) is to find a vector |w) such
that Ally,)|w) = |7). We call such a vector a positive witness for x in
P, and it only exists if fp(z) = 1. We define the positive witness size of
x in P, denoted as w,(x, P), as the norm squared of the shortest positive
witness. The positive complezity of fp, denoted W (P) is defined as the
largest positive witness size for any 1-input.

If fp(x) =0, it must be that |7) ¢ V(x), and so |7) must have a compo-
nent in V(z)t. In other words, there exists a vector |w) in V(z)* such that
(w|T) = 1. We call such a vector a negative witness for x in P. For reasons
that will be explained in Chapter 3, the negative witness size for x in P is
defined as the minimum of ||(w|A||* such that |w) is a negative witness. The
negative complexity of fp, denoted W_(P), is defined as the largest negative
witness size for any O-input.

It is sometimes advantageous to relax our requirements in the definition
of fp and accept as “positive” inputs where |7) is simply “close enough” to
V(x). This gives rise to the concept of approzimate span programs. This
generalization, first introduced in [[J19] and further refined in [Jef20], will
play a central role in this thesis.

Span programs and the Adversary Lower Bound

Span programs were first introduced to the field of quantum computing by
Reichardt and Spalek in [RS12|. In [Rei09; Reil0], Reichardt used span

! Arthurian fanfare goes here. Bells and trumpets, maybe some horses.

programs to prove that the general adversary lower bound was a tight lower
bound on the quantum query complexity of any Boolean function.

Prior to [Rei09], it was known that this lower bound technique, introduced
by Ambainis [Amb02] and generalized in [HLS07], gives lower bounds on the
quantum query complexity of a function f as the feasible solutions to a semi-
definite program ADV*(f). What Reichardt did was prove that any feasible
solution of the SDP dual to the ADV*(f) corresponds to a span program,
and that the solution’s objective value equals the geometric mean of the
positive and negative span program complexities, a quantity known as the
span program complexity.

He then showed that for every span program for a Boolean function f,
there exists a general transformation that compiles it into a quantum algo-
rithm computing f whose query complexity is precisely the span program
complexity. This proves that any feasible solution to the dual of ADV*(f)
gives an upper bound on the query complexity of f. Therefore, Reichardt
concluded that the optimal solution of the semi-definite program ADV(f)
tightly characterizes the quantum query complexity of f, since solutions to
the primal SDP give lower bounds, and solutions to the dual SDP give upper
bounds.

In particular, this means that for any Boolean function f there always
exists a span program whose span program complexity equals the query com-
plexity of f. Hence, there always exists a query-optimal quantum algorithm
for f based on the span program framework.

Quantum algorithms for span programs

We have already said that span programs do not compute a function but
rather encode it in linear-algebraic terms. Evaluating the value of a function
given access to the input requires further computation. Classically, one would
have to solve the n x dimV system of linear equations Ally,)|w) = |7) to
decide this question. This would require a lengthy computation that includes
reading the input since it determines the matrix Ally ;). The flip-side is that
evaluating the function produces a positive witness as a byproduct of the
computation if the input happens to be a 1-input.

In contrast, Ref. [R§12; Rei09; 1J19; Jef20] built quantum algorithms
that evaluate a function encoded within a span program P = (H,V, A, |T)).
These quantum algorithm do not decide the function by solving a linear
system of equations or finding a witness. Instead, they uses the elements of

6 CHAPTER 1. INTRODUCTION

the span program to construct a unitary U(x, P) = (2Iy) — 1) (21ker a — 1)
and a vector |wg) = AT|T), or variants thereof. Then, if x is a O-input, |wp)
will have some overlap with the O-phase eigenspace of U(x, P), and if z is a
1-input, it will have no overlap with that space and only small overlap with
the small-phase eigenspaces of U(x, P). The algorithms distinguish these
two cases by performing phase estimation and/or amplitude amplification
on U(x,P) to some precision determined by W, and W_. Regardless of
which algorithm one uses, the number of calls to U(x, P) will be the span
program complexity /W, W_. This is precisely its query complexity since
the only input-dependent element is the reflection (2I1y,) — 1), which can be
implemented with one quantum query to x. This is fundamentally different
from solving a linear system of equations, and allows us to obtain quantum
algorithms with better query complexity than any classical algorithm.

For the time complexity, one must analyze the cost of constructing the
reflections (2IIxe; 4 —1) and the state |wy). Naturally this varies from one span
program to another, and has been largely ignored in the literature. A notable

exception is the span program for st-connectivity, whose time complexity was
studied in [BR12; JK17].

The st-connectivity span program

Chapters 5 and 6 deal extensively with a span program for st-connectivity
presented in [BR12]. In a nutshell, the st-connectivity problem is this: Fix a
graph G, two vertices s and ¢ connected in GG, and let x specify a subgraph
G(x). Are s and ¢ still connected in G(x)?

The span program that computes this function is rather simple. As the
space ‘H, we take the space generated by the edges of G, i.e. H = span{|u,v) :
(u,v) € E(G)}. Assume, for simplicity, that z € {0, 1}/(@)] and that every
bit of the input corresponds to one edge, which is in G(z) if its bit value
is 1. Then #H(x) = span{|u,v) : (u,v) € E(G(z))}. The space V is the
space generated by the vertices, i.e. V = span{|v) : v € V(G)}, and the
span program map is defined as A|u,v) = |u) — |v). Finally, we define the
target as |s) — [t). It is not hard to see that any st-path in G(x) is a positive
witness for x. Tt is a little bit harder to see that an st-cut over the edges in
G\ G(z) is a negative witness. Of course, the optimal witnesses are convex
combinations of paths or cuts. In [BR12; JK17] the authors characterized the
positive witness size of this span program as an electrical quantity on G(x)
known as the effective resistance. Prior to our work, only upper bounds for

the negative witness size were known in the general case, and a complete
characterization for planar graphs was given in [JK17].

This span program has been used as a primitive to construct quantum
algorithms for a variety of problems, including cycle detection and bipar-
titeness testing [Aril6; CMBI18|, formula evaluation [RSlQ; Rei09; JK17],
learning graph evaluation [Bell2b|, k-distinctness [Bell2a], and maximum
bipartite matching [BT20|. In [Aril6], the author gave a span-program-based
algorithm for graph connectivity with optimal worst-case query complexity
O(n3/?) using O(logn) space. This problem, first studied in the context of
quantum algorithms in [DHH-+06|, can be solved by a quantum algorithm
that also finds st-paths in time ©(n*?) — instead of the classical Q(n?) —
and space ©(n).

Contributions

The topics we have discussed so far exemplify a few of the features of span
programs that make them worthy of study. Namely,

1. Span programs, although related to quantum upper and lower bounds,
are classical objects.

2. Through the general construction that compiles a span program into
a quantum algorithm, span programs are a way to make new quan-
tum algorithms using classical ideas. As we show in Chapter 4, these
algorithms can even be query, time, and space optimal.

3. They can also be used as a theoretical tool, for example in the study
of space lower bounds [Jef20].

4. As classical objects, span programs are amenable to composition and
classical logic.

There is a general feeling in the community that span programs, despite
the features I just mentioned, are a somewhat rigid tool for making quantum
algorithms, limited to decision problems,? mostly on graphs, and can’t say
much about time complexity. In this dissertation we challenge both of these
statements. I aim to show that span programs are a versatile tool to construct

2With the single exception of the span programs for witness size estimation in [[J19].

8 CHAPTER 1. INTRODUCTION

quantum algorithms, not only for decision problems but also for function
estimation and state generation, and that we can make meaningful time
complexity statements about span program algorithms. If you were to ask
me “what is this thesis about?”, that would be my answer.

This thesis collects the work I have done with my co-authors in the last
four years on the topic of span programs, split into five chapters.

Chapter 2. Preliminaries In this dissertation I will assume the reader
to be familiar with the standard concepts in linear algebra and quantum
computing. In Chapter 2 I make concrete what these assumptions are and
discuss other mathematical results and definitions that will be used through-
out the thesis, such as Jordan’s Lemma, quantum query algorithms, graph
theoretical results and electrical networks.

Chapter 3. Theory of span programs This chapter is split into two
parts. The first part is a survey of the previous literature on span programs.
I first talk about span programs as presented in [Rei09]. Then T explain how
Ref. [[J19] generalizes Reichardt’s construction and introduces approzimate
span programs, and talk about the algorithms given by the authors of those
papers.

In Section 3.3, I introduce a generalization of span programs called refiec-
tion programs and approximate reflection programs. This is joint work with
Arjan Cornelissen and Maris Ozols, and is part of a paper in preparation.
The purpose of defining reflection programs is to improve our intuition of
the algorithmic components of a span program and streamline the analysis
of span program algorithms. Then, I construct two algorithms for reflection
programs that will be of use throughout the dissertation. Although new,
these algorithms don’t differ much from other algorithms already present in
the literature for approximate span programs [[J19; Jef20] — I could have
simply updated those algorithms to the language of reflection programs —
but have opted for including them for two reasons. First, they dispense with
a procedure called span program scaling necessary for the analysis in [[J19;
Jef20]. This is yet another layer of complexity on the subject which these
algorithms remove. Second, they are the basis of the two novel algorithms for
generating positive witnesses in Section 3.4. Witnesses are qualitatively sim-
ilar to certificates in that they encode much information about the function
they decide. For example, witnesses for st-connectivity are weighted super-

positions of st-paths. Somewhat like the outputs of quantum linear solvers,
they encode the optimal solution of a system A(z)|lw) = |7) in a quantum
state. This is the first time anyone has used span programs to construct
algorithms for state generation. This, together with the proof-of-concept al-
gorithm in Section 5.7, is joint work with Stacey Jeffery and Shelby Kimmel
and is part of a paper in preparation.

Chapter 4. Span programs and time complexity This chapter is
based on [CJO-+20] and is joint work with Arjan Cornelissen, Stacey Jeffery,
and Maris Ozols. We study a map taking any quantum query algorithm A
to a span program Py, first introduced in [Rei09]. In its original formulation,
the map A +— P4 only applied to one-sided error algorithms®, and the corre-
sponding query complexity of the span program algorithm for P, was that
of Aitself. Ref. [Jefl4] showed that the map also extended to bounded (two-
sided) error algorithms, mapping them to approximate span programs that
could then be turned back into algorithms with the same query complexity as
A. In this chapter, we modify the map to allow the span program algorithms
to have the same query and time complexities as A. This has theoretical im-
plications, i.e. every function that admits an optimal query, time, and space
optimal algorithm admits, too, a query, time and space optimal span program
algorithm. But it also has practical ones. Combining our results and a novel
construction for the OR of span programs, we improve a result of Ambainis
[Amb10] on variable-time quantum search. Our construction allows us to
give concrete statements on the time, space, as well as query complexities of
the variable time search algorithm. The chapter also contains results that
are of independent interest such as the analysis of the time complexity of the
algorithms in Chapter 3 and the definition of implementing subspaces.

Chapter 5. Span programs for graph problems In Chapter 5 we
give a battery of results showing the versatility of the span program for st-
connectivity first introduced in [KW93]. The chapter is largely based on
[JJIK+18] and is joint work with Michael Jarret, Stacey Jeffery and Shelby
Kimmel. We characterize the negative witness size of the span program as an
electrical quantity on G known as effective capacitance, and give an algorithm
that estimates it. We also give three different span program algorithms for

30ne-sided error algorithms decide l-inputs with certainty and may err on O-inputs
with probability 1/3 (or vice versa).

10 CHAPTER 1. INTRODUCTION

graph connectivity. All three algorithms we propose are based on the st-
connectivity span program, each modifying it in a different way. For all
three, we analyze the query and time complexity, and find them pairwise
incomparable, outperforming the current algorithms [DHH+06; Aril6] and
each other for some assumptions but not others. We also give a first-of-its-
kind quantum algorithm for subgraphs of a complete graph that estimates a
measure of connectedness called the algebraic connectivity.

Finally, In Section 5.7, T use the algorithm that generates the optimal pos-
itiwe witness for the st-connectivity span program to give a proof-of-concept
of how one can use this vector to find st-paths in a particular graph. The
resulting algorithm outperforms the path finding algorithm in [DHH+06] in
query as well as space complexity.

Chapter 6. Boundary problems This chapter is joint work with Stacey
Jeffery and Maris Ozols, and is part of a paper in preparation. In the last
chapter of this thesis, I take a broader look at the st-connectivity problem and
frame it as a particular case of a boundary problem on a graph. Imagining
other boundaries I discuss modifications of the st-connectivity algorithm that
would solve those other boundary problems and then discuss a generalization
of the st-connectivity problem to higher dimensions. Surprisingly, this takes
us to the realm of topology, simplicial complices and homology, which T
define and explain before presenting a span program for simplicial homology
in general dimensions that generalizes the st-connectivity span program. I
conclude with a discussion of a span program for surface homology, with an
analysis on the positive and negative witness sizes that allows us to formulate
a span-program-based quantum algorithm that decides whether a cycle on a
surface is the boundary of a sub-surface.

To the best of my knowledge, span programs have not been used to study
topological structures beyond graphs before, and there are only a few quan-
tum algorithms that deal with topological problems. In giving a connection
between span programs and simplicial homology, I show that span programs
are a useful tool to approach such problems with the goal to construct quan-
tum algorithms in mind, and I hope to spark future research in this direction.

Chapter 2

Preliminaries

2.1 Mathematical preliminaries

In this thesis, we assume the reader to be familiar with the basics of quantum
computing and linear algebra'.

Linear algebra We will use Dirac notation for vectors. We denote the set
of linear operators from a vector space V' to a space W as L(V,W). For an
operator A € L(V, W), we denote the columnspace, rowspace, and kernel of
A by colA, rowA, and ker A respectively.

For any linear operator A, let A = "7 0;¢;)(¢i| be a singular value
decomposition. We define the spectral gap of A as the smallest non-zero
singular value of A. We define the pseudo-inverse of A as the operator
A= Y L) (@]

Let H be a finite-dimensional inner product vector space. An operator
U € L(H, H) is called unitary if it admits an eigenvalue value decomposition
of the form

U=> o) (e,

j=1

where ¢, € [—7

, 7] are known as the eigenphases of U. We define the phase
gap of U as A(U)

= min{|g;| : ¢; eigenphase of U, ¢; # 0}.

'Sorry Mom and Dad.

11

12 CHAPTER 2. PRELIMINARIES

We say a unitary U approximates U with error ¢ if

is, maxy, [[(@ = Dl|| < 2 19)])-
For a finite set X, we denote the space C/¥I with orthonormal basis {|z) :

x € X} by CX, which we call the space generated by X. For any subspace
H' C H, we write [1g € L(H) to denote the projector onto H'.

‘ﬁ—UH < e. That

Quantum circuits All the algorithms in this thesis are in the circuit
model, and we assume the reader to be familiar with the concepts of quan-
tum states, qubits, unitaries, projective measurements, and with the most
common one and two-qubit gates, namely, the bit-flip, phase-flip and bit-
phase-flip gates X, 7)Y, as well as the Hadamard gate H and the CNOT
gate. When we talk about gate complexity, we will implicitly assume it to
be relative to a particular universal gate set. For simplicity, we assume the
gates X,Y, Z, H,CNOT to be part of the universal gate set. Any unitary in
the universal gate set is said to be elementary. See [NC02] for an in-depth
discussion of these concepts.

Miscellaneous notation For any n € N, we denote the set {1,2,... n}
by [n], and the set {0,1,2,...,n} by [n]op. We assume the reader to be
familiar with the asymptotic notations O(-), o(-), ©(-) and O(-). By f(z,y) =
O(polylog(x,y)), we mean that there exist constants C7,Cy > 0 such that
flx,y) =0 (logcl(:v) log®? (y)), in the limit z,y — oco.

2.1.1 Jordan’s Lemma

In this section, we study the geometry of the eigenspaces of a particular set
of unitaries of great importance for quantum computing and for us. Imagine
that one has two linear spaces A and B which are subspaces of a larger, finite-
dimensional Hilbert space H. Consider the unitary U = (2[14 — I) (2115 — I)
which is a product of two reflections around A and B respectively. Jor-
dan’s Lemma states that U induces a partition of H into a direct sum of
2-dimensional spaces in which U acts as a rotation operator, and a collec-
tion of 1-dimensional spaces that are either (41)- or (—1)-eigenspaces of U.
Jordan’s Lemma has been at the core of quantum algorithms since Grover’s
unstructured search algorithm [Gro96] and is the basis for the analysis of
span program algorithms, quantum random walks (see [San08] for a compre-

2.1. MATHEMATICAL PRELIMINARIES 13

hensive survey), and many other things, some of which we wot not of. The
lemma has been discovered and rediscovered several times, and is sometimes
referred to in the mathematics community as the CS decomposition, but in
the present formulation it was first rediscovered in the context of quantum
algorithms by Szegedy in [Sze04| and applied to the study of quantum ran-
dom walks. We state it now without proof, although the interested reader is
encouraged to read the original proof since it is rather short and elegant.

Lemma 1 ([Sze04]). Let A, B be two subspaces of H and let U = (2114 —
I)(2llg — I) be a unitary with discriminant D = T 411 p.

Let D = Z;l:l cos ;|0;)(;| be a singular value decomposition with p; €
[0,7/2] for all j € [d]. Then the vectors |0;) —e*"?i|1);) are eigenvectors of U
with eigenvalue eT%i respectively. Furthermore, the (+1)-eigenspace of U is
(AN B) @ (AN BtY) and the (—1)-eigenspace of U is (AN B) @ (AL N B).

A quick corollary of this lemma which will be of great use later relates
the phase gap of —U with the smallest spectral value of D.

Corollary 2. Let U = (2114 — I)(2llg — I) and D =l Ilp be its discrimi-
nant. Then A(—=U) = 2sin™ " (0pmin(D)).

Proof. Assume without loss of generality that the singular values of D are
ordered such that 0; > 0; for ¢ < j. Since cos is a decreasing function in the
interval [0, 7], it follows that oy, (D) = cos ;. By Lemma 1, the spectrum of
U outside of its (41)-eigenspace is {e=*%}9_, hence the biggest eigenphase
smaller than 7 in absolute value must be 26;. In other words, © — 26, is the
phase gap of —U.

Let a be the complementary angle to 6, i.e. 7/2 = a + 6;. Then
20 = m — 207 = A(=U), but cos(d;) = sin(a), which means o,;,(D) =
sin(a) = sin(A(=U)/2). The first result follows from applying the arcsine
function on both sides of the last equality. m

That Jordan’s Lemma is at the core of so many quantum algorithms
speaks to the power of the family of unitaries composed of the product of two
reflections. Indeed, we shall see later in Chapter 3 that all Boolean functions
admit an optimal quantum algorithm that consists of phase and amplitude
amplification of a unitary of this form. But the utility of Lemma 1 is not
limited to describing the action of U, it is also useful to better understand
the interrelation of A, B and the eigenspaces of U. The following results will
be of use to us and are all consequences of Jordan’s Lemma.

14 CHAPTER 2. PRELIMINARIES

Lemma 3. Let A, B C H be two subspaces, let U = (2114 — I)(2llg — 1), let
@; € (0,m), j € [d], be positive eigenphases of U, let E, := E,+ @ E,- be the
2-dimensional spaces spanned by (+p)-eigenvalue eigenvectors of U, and let
Ey, E. be the (+1) and (—1)-eigenspaces of U respectively. Then,

B=(BNE)EP (BNE,,)®(BNE,).

J€ld]

Proof. We will prove that the subspaces Ey N B, E; and E,, are invariant
subspaces for Ig. Since H = Ey @® E. P i P, and every linear operator
decomposes its image into invariant subspaces, we will have the result.

Let us begin with Ey. Proving that EyN B is an invariant subspace of 11z
is equivalent to proving that 1lg 115 = IIpllg,. Now, remember that Iz, is

g, = Uang + gL,

so IIz trivially commutes with both terms because one of them projects into
a proper subspace of B and the other one projects into a subspace orthogonal
to it. The proof for E is identical and is left for the reader.

All there is left is to prove that HE%, I = HBHE% for all positive eigen-
phases of U different from 7. For the remainder, fix any such eigenphase.
We will give a basis of E, that is composed of a vector in B and a vector in
Bt

First, remember that by Jordan’s Lemma,

d
[all = cos £116:) (v

iei
n;) = 10;) — €2 [¥y)
"2
vi) = 10;) — ™" |4by)
where |n;) and |v;) are eigenvectors of U with eigenvalues e'¢/ and e ¥/
respectively, and so they form a basis for F, . Consider the vector
i) =) _ e
5 = isin - ;).

By Jordan’s Lemma, [t);) € B so we simply need to find a vector [¢;") in E,_
that is orthogonal to |¢;) and to B. We define the vector

2.2. QUANTUM ALGORITHMS 15

) = 16;) = cos T). (2.1)
Observe that from T4 = Y7, cos (2) |0;) (15| follows that (0;|¢;) =

cos &, so we have:

(p<
(hjl5) = (¥;16;) — cos %(%Wﬁ = 0.
To conclude the proof, we see that this vector is orthogonal to B.
i ©j ©j
gl) = Tpl6;) — cos §H3|¢j> = o8 7j|¢j> — Co8 7]|1/)j> =0,

where we have used that II5|6;) = cos Z[t);). O

Observe that switching the roles of A and B, and |0;) and [¢;) in the
proof we obtain the following corollary:

Corollary 4. Let ¢;,€ (0,7), j € [d] be positive eigenphases of U = (2114 —
Il —1), B, = E+@®FE -, and lel Ey, E; be defined as above. Then,
A=(ANE)E (ANE,,) ®(ANE,),

JEld]

and
A= (AP N E)@ (AT NE,) @ (A NE,).

JEld]

Lemma 5 (Effective spectral gap lemma [LMR+11]). Let |¢) be a unit vector
such that TIg|g) = 0, let Py be the projector onto the eigenvectors of U =
(2114 — I)(211p — I) with eigenvalues €™ with |w| < 0 for some 6 € [0,7),
then if lg|¢) = 0, we have || Pyll4|o)| < 0/2.

2.2 Quantum algorithms

The Encyclopaedia Britannica defines algorithm as follows:

“Algorithm: Systematic procedure that produces — in a finite number of
steps — the answer to a question or the solution to a problem.”

16 CHAPTER 2. PRELIMINARIES

The term itself comes from the 8th century Muslim mathematician Al-
Khwarizmi?, but the idea is as old as hills. Nowadays, we understand that
these questions or problems are mathematical in nature, as are the steps
taken. Modern computers are machines that implement classical algorithms
— procedures composed entirely of arithmetic operations — and are based
on classical physics.

In contrast, quantum computers implement quantum algorithms — pro-
cedures composed of quantum operations, typically unitaries and measure-
ments — and are based on quantum physics. Quantum algorithms are of
interest both theoretically and practically. As we all know by now, quan-
tum computers can solve certain computational problems much faster than
classical computers. But they also inform us about the absolute limits of
computation, since they rely on quantum mechanics, our best understanding
of nature. In a very real sense, the study of quantum algorithms is “the study
of the power and limitations of the strongest-possible computational devices
that Nature allows us” [deW19).

In order to characterize that power and/or limitations, we need a metric,
a criterion for measuring the performance of an algorithm. And once you
have a metric, you have a notion of complexity. Classical computers often
use total number of operations, but processor time, input queries, and other
metrics are common. In quantum mechanics, a usual metric is the number
of queries to the input of the algorithm. There are many reasons for this.
First, this metric is often times the simplest and most tractable. Second, it
gives us a lower bound on the total number of operations that an algorithm
makes. That is, it tells us about the limitations of the algorithm. Third, there
exist techniques to give lower bounds on the query complexity of computing
Boolean functions which are intimately related to span programs.

Query complexity is not the only measure of complexity that is used in the
quantum computing community, but, for reasons that will become clear in
Section 3.2.3, it is the primary measure of complexity when dealing with span
programs. In Chapter 5, and especially, Chapter 4, we will also care about
the time complezity of algorithms. We understand by the time complexity of
an algorithm the total number of time steps it takes, where each time step
the algorithm makes either a call to the input oracle O, from Eq. (2.2), or
an elementary gate from a universal gate set. We will often refer to this as

2Whose works also introduced Hindu-Arabic decimal numerals into European mathe-
matics. Lest we forget that we used to be bad at math.

2.2. QUANTUM ALGORITHMS 17

the gate complexity or cost of an algorithm, in a slight abuse of language.

The lion’s share of this work will be devoted to algorithms that decide
Boolean functions, as is natural in a work so much centred around span
programs. In Chapter 3, we give algorithms that approximate a quantum
state, which we revisit at the end of Chapter 5, where we also give a query
algorithm that estimates a real function. Let us begin by formalizing the
notion of quantum query algorithms for decision and estimation problems.
We will discuss state generation algorithms later when they appear.

2.2.1 Quantum query algorithms

Let n € N, X C {0,1}". A quantum query algorithm A with input x € X
is a sequence of unitaries Uy, ..., Ur acting on C"" where T € N is the
total number of time steps, [n] := {1,...,n} and W is a finite set that labels
the workspace states, together with an initial state |¥,) € C">V,

The algorithm A makes queries to an input string € X by having a
subset of the unitaries be (controlled) calls to an oracle O, defined by its
action on the computational basis of CI">*W as

Vien],VjeW, Op:li,j)— (=1)"

i,7), (2.2)

where the two registers correspond to the input bit index and the workspace,
respectively. The only dependence on x of the unitaries that make up A is
through some of the Uy’s being O,. We denote the set S C [T] to be the
set that contains all ¢ € S, such that U, = O,. Then S = |S| is the query
complexity of A.

In the standard definition of a quantum query algorithm, every second
unitary is a query, so S would be the set of odd indices. This is appropriate
when we are only interested in the query complexity of the algorithm, since
we can combine any consecutive non-query unitaries into a single unitary.
However, since we are also interested in the time complexity, we want to
restrict the non-query unitaries to some universal gate set. Thus, we do
not assume that every other unitary is a query, and we explicitly allow for
sequences of non-query unitaries between any two queries, as well as at the
beginning and the end of the algorithm.

We take the initial state to be a computational basis state. We can assume
that U; and Ur are not queries without loss of generality. Indeed, if the first
unitary is a query, then it only introduces a global phase and hence it is

18 CHAPTER 2. PRELIMINARIES

redundant. Similarly, we assume that any measurement at the end of the
algorithm is a computational basis measurement, which implies that if Up is
a query, then it is also redundant as it does not influence the measurement
probabilities. Finally, we also assume without loss of generality that no two
consecutive time steps are query time steps, as then the resulting operation
on the state space would reduce to O% = I, rendering both queries redundant.

For every x € {0, 1}" we define the state of the system at time t € [Ty :=
{0,...,T} on input = as

\Wy(z)) := UUp—y - - - Up|Wy), (2.3)

where |Wg) € C"PV is the initial state. Note that the right-hand side of
Eq. (2.3) has an implicit dependence on z, since for some indices ¢, U, = O,.

After its final step, the state of the system is |[¥r(z)). Depending on the
kind of problem that the algorithm solves, we do different things with this
final state.

Algorithms for decision problems

We say that an algorithm A decides a (partial) Boolean function f : X C
{0,1}" — {0,1}, with error probability ¢ € [0,1/2) if, for all x € X it
outputs f(x) with probability ps)(z) > 1 — .

If A is a quantum algorithm for a decision problem, we can assume that
there is a single-qubit answer register used to indicate the output of the
computation, and the algorithm ends with a measurement of that register
(see Section 2.2.2). If II, denotes the orthogonal projector onto states with
b) in the answer register for b € {0,1}, then py(z) = ||IL,|¥p(z))||* is the
probability that the algorithm outputs b on input x. We say that a quantum
algorithm A decides f with bounded error if it decides f with error proba-
bility e = 1/3 for all x € X.

The query complexity of a function f, denoted as Q(f), is defined as
the smallest query complexity among query algorithms that decide f with
bounded error.

Algorithms for estimation problems

As we have already said at the beginning of this section, part of Chapter 5
will be devoted to algorithms that estimate functions mapping a domain

2.2. QUANTUM ALGORITHMS 19

X C {0, 1}™ into the real numbers. Typical examples include algorithms for
estimating graph properties like effective resistance or algebraic connectivity
(more of which later) as well as the phase and amplitude estimation subrou-
tines, assuming an implicit relation between the input oracle and the inputs
to both subroutines. We define quantum query algorithms for estimation
problems in the following way.

Let n € N, X C {0,1}" and f : X — R" be a real function. In the
same spirit as algorithms that decide Boolean functions, let A be a quantum
algorithm acting on C"*" that applies the sequence of unitaries Uy, . .., Ur,
of which some are queries to the oracle O,, to the state |¥) € C'>*"W, We
can make the same assumptions as before and assume that the first and last
unitaries are not queries, and that the initial state is a computational basis
state. We can also assume that the last m qubits of C""" contain the
output of the computation written as a binary number f . Strictly speaking,
the output of the computation will be an entangled state of the form

Wr(2)) =Y [V s))]f).
feD
where D is some domain and |V ¢(z)) are unnormalized states. We say that a

quantum algorithm A estimates f to relative accuracy € with bounded error
if, for any x € X we have

2

1o Y DU)| =

Flf=f(@)<ef(x)

(2.4)

Wl N

In other words, A estimates f if the result f of measuring the outcome
register is such that |f — f(x)| < ef(x) with probability at least 2/3.

2.2.2 Clean quantum algorithms

In addition to the standard assumptions that we outlined above, we will also
make some non-standard assumptions on the structure of quantum query al-
gorithms for decision problems. We refer to the query algorithms that satisfy
both the standard and the non-standard assumptions as clean algorithms. We
first define this object and then show that, in fact, we can assume without
loss of generality that every quantum query algorithm is clean incurring at
most a constant overhead in both queries and time.

20 CHAPTER 2. PRELIMINARIES

Definition 6 (Clean quantum algorithm). Let A be a quantum query algo-
rithm acting on C"XW = ClPPWV>{0.1} with the last register being the answer
register. Suppose that the time complexity of A is T, the query complexity
is S, and the initial state has |0) in the answer register, so it can be expressed
as | W) = [1)]0) for some |thg) € CIWV'. Define the final accepting state as
|Wr) == |¢o)|1). Ais a clean quantum algorithm if it satisfies the following
properties.

1. Consistency: For all inputs = € {0,1}",
(Up[Ur(z)) =pi(z), and (Vr|(/ @ X)[Vr(z)) = po(z),

where py(z) = ||(I ® |b)(b])|¥r(z))||” is the probability that A outputs
b on input x, and X denotes the Pauli matrix implementing the logical
NOT.

2. Commutation: (I ® X) commutes with every unitary U, of the algo-
rithm, where X acts on the answer register.

3. Query-uniformity: Two consecutive queries are not more than |37'/5]
time steps apart, and the first and last queries are separated by at
most |37°/S| time steps from the start and the finish of the algorithm,
respectively.

We proceed by showing that restricting our attention to clean algorithms
only incurs a constant multiplicative overhead in the query and time com-
plexities and constant additive overhead in the space complexity.

We prove this in two steps. First, we show that we can satisfy conditions 1
and 2 by modifying the algorithm in the following sense: we first run it once,
then we copy out the answer register, and subsequently, we run it backwards.
This constitutes Lemma 7. After that, we insert some queries and identity
gates into the resulting algorithm, such that we also satisfy condition 3, which
is the objective of Lemma, 8.

Lemma 7. Fiz f: X C {0,1}" — {0,1}. Let A be a quantum query algo-
rithm with initial state |Vy) € ClW unitaries Uy, . .., Urp, time complexity
T and query complexity S and suppose that it computes f with error prob-
ability ¢ > 0. Now, let A" be a quantum algorithm acting on CIPP>WVx{0.1}
with initial state |V) = [¥0)|0) and consisting of the following sequence of
unitaries:

(UleI)--- (UL I)(I @ CNOT)(Ur ®I)--- (U ® I),

2.2. QUANTUM ALGORITHMS 21

where the CNOT is a controlled-not gate with the answer qubit of A acting
as control qubit and the last qubit of A" acting as the target. Then A’ fulfills
conditions 1 and 2 in Definition 6 with final accepting state | V) = [Wo)|1),
time complexity T" = 2T + 1 = O(T), query complexity S' = 25 = ©(S),
uses one more qubit than A and evaluates f with error probability .

Proof. Since an X-gate on the target qubit of a CNOT gate commutes with
the CNOT-gate itself, we find that all operations in A’ commute with I ® X,
thus the commutation condition is fulfilled.

Next we check the consistency condition. To that end, we let |Ur(z)) =
|Do(x)) + |P1(x)), where |Dy(z)) = IIy|WUr(x)) is the projection of |WUr(x))
onto the part of the state with |b) in the answer register of A. Then the state
of A’ after T' steps on input x is

W (2)) = [Wr(2))[0) = [@o(2))|0) + |©1(x))[0),
and the state of A’ after T+ 1 steps on input z is
W4y (2)) = CNOT|U7(2)) = [@o(2))|0) + |D1(x))[1).
Let Uq = Uy --- Uy, so that [Ur(z)) = Ua|Wy), and
Wor 1 (@) = (UL ® DV, () = (UL o(2)))]0) + (UL ®1(2)))]1). (2.5)

Since Ul ®y(z)) = UL, |Up(x)), for b € {0,1}, the success probability of A’
is equal to the success probability of A:

|7 &)0 s ()P = [Vl)| = WD) = o).
Moreover, from Eq. (2.5), we have for all b € {0, 1},
(Do, bWy () = (VolULILUA0) = [TLU o) |* = [T Ur(2)) I = po(a).
In particular that implies that

<\II/T/“I]2T+1()> <‘I’071|‘P2T+1()> _pl() and
(W | (1 @ X)W (2)) = (Yo, 0[Whr iy (2)) = po(z).

Hence, A’ satisfies the consistency condition as well. O

22 CHAPTER 2. PRELIMINARIES

Lemma 8. Fiz f: X C {0,1}" — {0,1}. Let A be a quantum query algo-
rithm with time complexity T and query complexity S that computes f with
error probability € > 0. Then, there exists an algorithm A’ with time com-
plexity T' = O(T) and query complexity S" < 3S such that two consecutive
queries are no more than |31 /S'| times steps apart. In addition if A fulfills
conditions 1 and 2 in Definition 6, then A’ is a clean quantum algorithm
evaluating f with error €.

Proof. First, if S € {1,2}, we note that [37/S]| > T, and hence the third
condition in Definition 6 is trivially satisfied without any modifications to
A. Hence, we restrict to the case where S > 3. We insert a sequence of
operations 10,10,I into A between time steps [kT/S| and [KT/S] + 1
where k£ € [S — 1]. This increases the number of queries to S < 35 and
the number of time steps to 77 = T+ 5(S — 1). The number of time steps
between two consecutive queries is at most

{q foc L g oAl g g 55 g T

S - S S -y S S

As the left-hand side is an integer, we can just as well take the floor on the
right-hand side. Similarly, the distance of the first query from the start is
at most [T/S] + 1 < 37"/S’, and the number of time steps between the
last query and the end of the algorithm is at most T'— [(S — 1)T/S]+ 1 <
T/S +1 < 37T"/S". Thus, we have satisfied the query-uniformity condition
from Definition 6.

Furthermore, the second statement follows immediately from the fact
that the unitaries that we are inserting amount to the identity, and hence
if A evaluates f with error probability ¢, so does A’. This completes the
proof.]

By Lemma 7 and Lemma 8, we can assume without loss of generality that
any quantum algorithm is a clean quantum algorithm, namely, that it does
a computation, copies out the answer, and then reverses the computation.
The overhead of putting an algorithm into this form is only a constant factor
in the query and time complexity, and a single auxiliary qubit in the space
complexity.

For clarity, we emphasize that in a clean quantum algorithm with non-
zero error, while in some sense the algorithm uncomputes everything but the
answer, this uncomputation does not succeed fully — we do not return the

2.2. QUANTUM ALGORITHMS 23

non-answer registers of the algorithm to the fixed state |¥q). The weight of
the final state |Ur(z)) on |¥y) in the non-answer registers is

(o, 01T (2))* + [(To, 1T (2))* = po(x)* + p1(2)?,

which is strictly less than 1 whenever 0 < py(z) < 1.

2.2.3 Four useful quantum subroutines

In this thesis we will present several algorithms that use in one way or another
the phase estimation and amplitude estimation subroutines. To say that
these subroutines appear in every quantum algorithm would only be a slight
exaggeration and, certainly, the original papers to which we refer, [Kit95;
CEM-+98] and [BHM+02] must be among the most cited papers in the field
of quantum computing. In addition to the more standard forms of phase and
amplitude estimation, we will occasionally use gapped versions of them, all
of which which we describe below.

Theorem 9 (Phase Estimation |[Kit95; CEM 1 98]). Let U be a unitary with
eigenvectors |0;) satisfying U|0;) = €%10;) and assume 0; € [—m,7|. For
any © € (0,7) and ¢ € (0,1), there exists a quantum algorithm, call it
PE(U,©,¢), that makes O (%log %) calls to U and, on input |6;) outputs
a state |0;)|w)p such that if 0; = 0, then |w)p = |0)p and if |0;] > O,
[(Olw)p|*> < e. If U acts on s qubits, the algorithm uses O (s +log &) qubits

and O ((log% + log %)2> extra elementary operations.

We will use the following corollary of Theorem 9, which is a slight gener-
alization of an algorithm introduced in [CIKS17], also called Gapped Phase
Estimation.

Theorem 10 (Gapped Phase Estimation). Let U be a unitary with eigen-
vectors |0) satisfying U|0) = €™|0) and assume 0 € [—1,1]. Let ¢ € (0,1),
let € > 0 and let 6 € (0,1 — ¢|. Then, there ezists a unitary procedure
GPE(p,e,8) making O(p loge™) queries to U that on input |0)c|0)p|0)
prepares a state (Bol0)c|v0)p + Bi|1)c|v1)p)|0) where |vo) and |7) are some
unit vectors, 32 + B =1 and such that

o if|0] <0, then |B1] <e, and

e if 0+ ¢ < 10|, then |fy| <e.

24 CHAPTER 2. PRELIMINARIES

The registers C and P have 1 and O(log(yp~1)log(e™t)) qubits respectively.
In addition to the queries to U, the algorithm uses O ((logé + log %)2> ele-
mentary gates.

Proof. Standard phase estimation [Kit95; CEM-+98] (but see, in particular
[CEM-+98, Appendix C]) on input |#) with precision /2 and error e prepares
a state |#) p|#) such that upon measuring |) p, with probability at least 1—e¢,
we measure some 0 that is within /2 of 6, meaning that if |#| < §, then
0] < 6+ /2, and if |0] > 6 + ¢, then |0] > & + /2.

Instead of measuring, assume that we have an extra bit register C'. Apply
to registers O, P the unitary that maps [0)¢|0)p to |0)¢|0)p if 0] < 6 +
©/2, and to |0)p |1)¢, otherwise. This unitary can be done with O(log? i)
elementary gates.

Grouping all phase states with phases with |0) (resp. |1)) in the C register
into |v) (resp. |y1)) we have that the state produced will be (55]0)c|v0)p +
Bil)e|n)p)|€), with |8i] < e whenever |0] < §, and |fBy] < & whenever
6] > 6+ .

The number of elementary gates used in standard phase estimation with
precision /2 and error € is O((log 1/p+1og 1/¢)?), in addition to O (é log %)
calls to U, from which the result follows. O

Theorem 11 (Amplitude Estimation [BHM-+02]). Let A be a quantum al-
gorithm that, on input x, outputs

Vo()[0)[Wo(x)) + /1 = p(x)[1)[W (x)).

Then there exists a quantum algorithm that estimates p(x) to precision

using O (8\/;(_x)> calls to A. If s is the number of qubits that A uses, then

the amplitude estimation algorithm uses O (S—i—log (ﬁ)) qubits and
e/ p(z

@) (log2 (E\/;(_z)) additional elementary gates.

We will make use of the following corollary (see [[J19] for a proof).

Corollary 12. Let A be a quantum algorithm that outputs the s qubit state

Vr(@)|0)|Wo(z)) + /1 —p(x)|1)| V() on input x such that either p(x) <

po, or p(x) > py for p1 > po. Then there exists a quantum algorithm

2.3. GRAPH THEORY 25

that, with bounded error, decides if p(x) < po using O <ﬂ> calls to A,

P1—PpPo
VPo ; 2 (_/Po
@ (s + log (pl_p())) qubits and O (log (pl_p0)> extra gates.

2.3 Graph theory

A graph G is a tuple formed by a set V(G), called the vertex set, and a set
E(G) of pairs of elements in V(G), called the edge set. In more colloquial
terms, graphs are collections of vertices and edges, also known as links. De-
fined as such, they don’t seem much, but graphs play a central role in discrete
mathematics and computer science. That is because they are a natural way
to describe sets and binary relations between elements of such sets. As a
result, classical algorithms for graph problems are plentiful, and there is a
large literature on quantum algorithms for graph problems. Graph theory
is one of the first applications of span programs, with one particular span
program standing out, the st-connectivity span program [BR12|. This span
program is at the core of many quantum algorithms for other problems, like
graph bipartiteness [Aril6], or cycle detection [CMB18|, to name a few. In
Chapter 5 we will give applications of the st-connectivity span program to
graph connectivity and other problems.

2.3.1 Multigraphs

We will consider graphs which may have multiple edges between a pair of
vertices, also known as multigraphs. Thus, to differentiate edges that share
vertices, we associate a unique identifying label /. We refer to each edge in
the graph using its endpoints and the label ¢, (u,v,), where the order of u
and v denote the direction of the edge. We will sometimes write ({u,v}, /)
for an undirected edge, the curly brackets denoting the lack of order in the
pair u, v, since, for us, an ordered set is a list. Given the nature of the
span program for st-connectivity, it will be advantageous to treat undirected
graphs as directed ones. We construct the set of directed edges E(G) of a
graph G by ascribing two directed edges (u,v,?), (v,u,l) € B(G) to each
edge ({u,v},0) € E(G). In a slight abuse of notation we will sometimes drop
the curly brackets while talking about undirected graphs with the convention
that (u,v,0) = (v,u,).

26 CHAPTER 2. PRELIMINARIES

Networks A network N := (G, c) consists of an undirected graph G com-
bined with a positive real-valued weight function ¢ : E(G) — R*. Since ¢
is a map on undirected edges, we can easily extend it to a map on directed
edges such that c¢(u,v,?) = c¢(v,u,), and we overload our notation accord-
ingly. We will often assume that some c is implicit for a graph GG and denote
its adjacency matrix as:

Ac= Y clu,v,0)(lu)(v] + [v){ul). (2.6)

(u,v,0)eE(G)

Note that Ag only depends on the total weight of edges from u to v, and is
independent of the number of edges across which this weight is distributed.

T i)
[J [J
T To
T3
[J
G G(1,1,1) G(0,0,0)

Figure 2.1: Example of a map from a 5-edge graph to a 3-bit string. The
map L, depicted on the left, associates the edges of G with a bit of x and
a value of that bit. For edges labeled by z; we include the edge in G(x) if
x; = 1, while for edges labeled by 7;, we include the edge in G(z) if z; = 0.

Subgraphs We will be concerned with certain subgraphs of a graph G,
associated with bit strings of length V. We assume that there exists a map
L:E(G)—{x1,...,xN,T1,...,Zx} and denote by G(x) the subgraph asso-
ciated with the string z € {0, 1}"V. In particular, each edge in G is associated
with a variable x; or its negation 7; and is included in G(z) if and only if the
associated variable evaluates to 1. Here z; is the i*" bit of 2. Observe that
N and |E(G)| need not be the same in general. Precisely how this map L is
chosen depends on the problem of interest, so we will leave the description
implicit, and often assume for simplicity that there is a one-to-one mapping
between the edges and the literals x;.

2.3. GRAPH THEORY 27

2.3.2 Laplacians

Typically, quantum algorithms focus on topological properties of networks,
but networks are much more than fixed topologies, they are often the sub-
strate of dynamic processes. These dynamic processes, in turn, are influenced
by the topology of the network and their dynamics described by matrix rep-
resentations. In our discussion of span program algorithms for graph connec-
tivity we will make use of a matrix representation known as the Laplacian
of a graph, and its first non-zero eigenvalue, called the algebraic connectiv-
ity or Fiedler value. This matrix representation was introduced to model
the process of diffusion on a graph, but is not limited to the diffusion pro-
cess. For example, Laplacians play important roles in other processes like
synchronization or random walks, to mention a few.

Let da(u) = 3_, rwwnen) (U, v, £) denote the weighted degree of u in
G, under the implicit weight function ¢, and define the degree matrix Dg as:

Do= Y da(u)lu)ul (2.7)

ueV(G)
We define the Laplacian of G as:
LG = DG - Ag. (28)

Different processes will have different matrix representations, the Laplacian
being the right one for the process of diffusion. Matrix representations encode
both dynamical as well as topological properties of graphs, which are accessed
through their eigenvalues and eigenvectors. Observe that the Laplacian is al-
ways positive semi-definite, so its eigenvalues are real and non-negative. For
1) = > uev(elw). it is always the case that Le|u) = 0, so the smallest eigen-
value of Lg is 0. Of particular importance is the second smallest eigenvalue
of Lg including multiplicity denoted as Ao(G). This value is called the alge-
braic connectivity or the Fiedler value of G, and it is non-zero if and only if
G is connected. For connected networks it governs the speed of diffusion and
its associated eigenvector, called the Fiedler vector is used for community
detection and spectral clustering [Fie89).

A variant of the Laplacian with direct connections to random walks,
isoperimetric problems and expander graphs (and many other things too,
see |[Chu97]) is the symmetric normalized Laplacian defined as:

L™ =D P LeDS. (2.9)

28 CHAPTER 2. PRELIMINARIES

Then we let §(G) denote the second smallest eigenvalue of Lp™. One can
check that 0(G) is the spectral gap of the random walk operator P on G
[Chu97], and in the case that G is regular, so that dg(u) = d does not
depend on u, 6(G) = SX(G).

Bounds on the algebraic connectivity In some of the algorithms that
we will design in Chapter 5 for graph connectivity, the complexity of the al-
gorithms will depend on the algebraic connectivity. Computing the algebraic
connectivity, even approximately, is in itself a non-trivial task equivalent to
solving the symmetric eigenvalue problem of the Laplacian matrix. However,
it is possible to give bounds on the algebraic connectivity of a connected
graph that depend only on topological invariants. In particular, we will be
interested in lower bounds. An extensive discussion of bounds for the alge-
braic connectivity is found in [Abr07]. A very simple bound can be obtain in
terms of the diameter of a graph, which is defined as the maximum distance
between any two vertices. Then the algebraic connectivity is lower bounded
as:

Ao(G) > 4

> Gam(@n’ (2.10)

2.3.3 Electrical networks

Considering the definition of graphs and networks, with nodes and weighted
edges, it is natural to attempt to model electrical networks. An electrical
network is in essence a network in which each edge is a conductor of a cer-
tain conductance and through which electrons flow once an electric potential
difference is set between two points. These electrons flow through the differ-
ent elements of the circuit in an attempt to avoid each other and minimize
the energy dissipated as much as possible following the well known laws of
Kirchhoff and Ohm. Therefore, if we want to import notions of graph theory
to the study of electrical networks we first need to define language to model
these flow and energy exchanges. The first concept we generalize is that of
electrical flow. One can consider a fluid that enters a graph G at a node s,
flows along the edges of the graph, and exits the graph at a different node
t. The fluid can spread out along some number of the st-paths in G. An
st-flow is any linear combination of st-paths. More precisely:

2.3. GRAPH THEORY 29

Definition 13 (Unit st-flow). Let G be an undirected graph with s,t €
V(G), and s and t connected. Then a unit st-flow on G is a function 6 :

(G) — R such that:
1. For all (u,v,?) € ﬁ(G)7 O(u,v,0) = —0(v,u,l);
2. 2 sswneE @) (50 0) = 20, pwrneE(e 001, 0) = 1; and

3. for all w € V(G) \ {s,t}, ZM:(u,v’g)Eg(G) O(u,v,l) = 0.

This function models the amount of fluid flowing through each edge. In
our electrical analogy that means the intensity. No fluid is lost and all
that enters through s exits through ¢. Not every st-flow models the flow of
electrons on an electrical network, but every electron flow is an st-flow. In
order to model the flow of electrons we need to define the concept of energy
of the flow.

Definition 14 (Unit Flow Energy). Given a graph G with implicit weighting
c and a unit st-flow 6 on G(z), the unit flow energy of 6 on E' C E(G(x)),
is:

1 0(e)?
Ji(0) = 5 2 C((€)> . (2.11)
ecE’

In our electrical analogy, this function corresponds exactly to the energy
dissipated in the network by a unit intensity current flowing from s to ¢ and
is sometimes referred to as Watt’s Law, Power = Resistance x Intensity?.
The weight function c(e) here plays the role of the inverse of the electrical
resistance of an edge, also known as conductance. As we said, electrons flow
in a network in an attempt to minimize energy losses. In the spirit of Watt’s
law, the minimizing unit flow defines then the effective resistance.

Definition 15 (Effective resistance). Let G be a graph with implicit weight-
ing c and s,t € V(G). If s and t are connected in G, the effective resistance
of G between s and t is R,;(G) = ming Jg)(#), where 6 runs over all unit
st-unit flows of G. If s and ¢ are not connected in G, R,(G) = oo.

Intuitively, R, characterizes “how connected” the vertices s and ¢ are in
a network. The more, shorter paths connecting s and ¢, and the more weight
on those paths, the smaller the effective resistance.

30 CHAPTER 2. PRELIMINARIES

Our interest in this analogy lies in the many applications of effective re-
sistance. For example, R +(G) - (X cp(q) ce)) is equal to the commute time
between s and ¢, or the expected time a random walker starting from s takes
to reach ¢t and then return to s [CRR+96]. Also, electrical networks and ef-
fective resistance play an important role in understanding the st-connectivity
span program of Section 5.2.

The resistance is a measure of how well connected two particular nodes
in a graph are. Averaging over all pairs of nodes then gives a global measure
of connectedness. For a connected graph GG, we define the average resistance
as:

Rug(G) = ——— 3 R,(G). (2.12)

n(n - 1) s,teVis#t

Now that we have a measure of the connectedness of s and ¢ in a graph G,
we next introduce a measure of how disconnected s and ¢ are in a subgraph
G(z) of G. In an electrical network, when a voltage difference is applied
to a pair of connected nodes, a flow through the network appears. When
the nodes are not connected there will be no flow but electrons (and electron
deficits) are going to accumulate in the different connected components of the
network, giving rise to different potential energies in each component. This
potential function is the relevant quantity, which we define in the context of
networks as follows.

Definition 16 (Unit st-potential). Let G be an undirected weighted graph
with s,t € V(G), and s and ¢ connected. For G(z) such that s and ¢ are not
connected, a unit st-potential on G(x) is a function V : V(G) — R such
that V(s) = 1 and V(t) = 0 and V(u) = V(v) if (u,v,¢) € E(G(x)) for some
L.

Note that this is a different definition from the typical potential function.
Usually, if we have a flow from a vertex s to a vertex ¢, we define the potential
difference between u and v for an edge (u, v, £) to be the amount of flow across
that edge divided by the weight of the edge. In our definition, the potential
difference across all edges in F(G(x)) is zero, and we have potential difference
across edges that are in E(G) \ E(G(z)).

A unit st-potential is a witness of the disconnectedness of s and t in G(x)
through its missing edges, in the sense that it is a generalization of the notion
of an st-cut, which is simply a unit potential that only takes values 0 and 1.

2.3. GRAPH THEORY 31

Just like flows have energy, we can define the energy of a unit potential.
Again, this has a tight correspondence with electrical network concepts.

Definition 17 (Unit Potential Energy). Given a graph G with implicit
weighting ¢ and a unit st-potential V on G(z), the unit potential energy
of Von E' C E(G) is defined as:

ToV) =5 3 (V) V() elu,v.0) (2.13)
(u,v,E)E?

Definition 18 (Effective capacitance). Let G be a graph with implicit weight-
ing ¢ and s,t € V(G). If s and ¢ are not connected in G(x), the effective
capacitance between s and t of G(z) is C,4(G(x)) = miny Tee)\e@G @) (V),
where V runs over all unit st-potentials on G(x). If s and ¢ are connected,

Cs+(G(z)) = o0.

In physics, capacitance is a measure of how well a system stores electric
charge. The simplest capacitor is just two metal plates facing each other at a
certain distance and separated by an insulating layer. Within each connected
component of the circuit, all points have the same voltage. Therefore, each
connected component behaves as a single node with respect to voltage, and
only the total capacitance between components determines the voltage on
those components. Consider a graph G(z) in which a O-resistance wire is
connected between vertices whenever there is an edge in G(z), and a c(e)-
unit capacitor is connected between vertices whenever there is an edge e €
E(G) \ E(G(z)). If s and t are not connected in G(z), it is as though s
and ¢ are on separate "plates” (with some complicated geometry) that can
accumulate charge relative to each other. Then the effective capacitance
given in Definition 18 is precisely the ratio of charge (accumulated on the
plates corresponding to s and t) to voltage (on those plates) that is achieved
when electrical energy is stored in this configuration.

Definitions 15 and 18 may seem unwieldy for actually calculating the ef-
fective resistance and effective capacitance. Luckily for us, there are simple
and well known ways of computing the combined resistance of a network of
resistors. Any reader with a basic knowledge in physics or electrical engineer-
ing might recall that resistances in series add, while for resistors connected
in parallel it is the inverse resistances that add. Capacitors follow the same
relations with parallel and series switched. Most importantly, these relations

32 CHAPTER 2. PRELIMINARIES

remain valid for the effective resistances and capacitances of networks as the
following proposition shows.

Proposition 19. Let two networks (G1, 1) and (Go, ¢2) each have connected
nodes s and t. Let G(x1) and G(xs) be subgraphs of G1 and Go respectively.
Then we consider a new graph G by identifying the s nodes and the t nodes of
G and Gy (i.e. connecting the graphs in parallel) and define ¢ : E(G) — R
by cle) = ci1(e) if e € E(Gh) and c(e) = cy(e) if e € E(Gq). Similarly, we
set G(x) to be the subgraph of G that includes the corresponding edges e such
that e € E(G1(x1)) or e € E(Ga(x2)). Then,

! = ! + ! (2.14)
R, +(G(z)) N R4 (G1(7)) Rsi(Ga(z)) .
Cst(G(2)) = Csp(Gr(x1)) + Cst(Ga(22)) (2.15)

If we create a new graph G by identifying the t node of Gy with the s node of
G, relabeling this node v & {s,t} (i.e. connecting the graphs in series) and
define ¢ and G(z) as before, then,

Re1(G(2)) = Ret(G1(2)) + Rey(Ga()), (2.16)

Lt .1 (2.17)
Coa(G(x) Cos(Gr(a1)) Cop(Gals)) '

Proof. We deal first with effective resistances. In plain English, the statement
says that the effective resistance of two graphs connected in parallel follow an
inverse addition law but a direct addition law for effective capacitance. Let
(G1,c1) and (G, c9) be two networks connected in parallel as in the statement
of the Proposition. We begin with the definition of effective resistance for a
graph of this form.

R, :(G(x)) = min Z 0"(e) :mem Z 0°(e) I Z 0°(e) 7

iy 0 gy °9

where 6 is an st-flow in G(x). Observe that this flow breaks into two non-
unit st-flows ¢10; and @205 defined in G(z1) and G(z3), where 6y, 65 are unit
st-flows, and the factors ¢, ¢o are defined as:

1 1= > bun), ¢i= Y ba(uv) =1—¢1

ul:(sul)eE(G(x1)) u,l:(s,ul)eE(G(x2))

2.3. GRAPH THEORY 33

From the definition of flow energy it follows that the energy of ¢;6;, i = 1,2
is ¢? times that of 6;. Therefore, the effective resistance can be written as:

R, +(G(x mln Z P? 2 () Z P22 b (c)

ecE(G1(x)) () e€E(G2(z)) ()

= min 0t Gla)+ ARG .18

Since ¢; + ¢o = 1, this minimization problem reduces to taking a derivative

and equating to zero. The solution one arrives at is:
L ___ ' _,_ 1 (2.19)
Rt(G(2)) Ret(Gi(w)) Rsr(Ga(2)) '
Now, let (Gy,¢1) and (Ga, ¢2) be two networks connected in series and joined
through a single vertex called v. Then the effective resistance of the new
graph is:

Ru(Ga) —min Y T [y L ec<e>

e€E(G(z)) 0(6) eGE(G1(:c))) e€E(Ga(x (6)

Notice now that any st-flow in G(x) is composed of an sv-flow deﬁned in the
vertices of G(x1) and a vt-flow in the vertices of G(x2) which are independent.
We conclude that the effective resistance is simply:

R4 (G(z)) = Rso(G(2)) + Ryt (G(7)) = R4 (G1(2)) + Ry t(Ga(x)). (2.20)

Let us now concern ourselves with effective capacitances of graphs con-
nected in series and in series. Let G be a graph composed of connecting two
graphs G; and G in series joined at a single vertex which we label v. Let
G(z) be a subgraph corresponding to taking G(z1) in G and G(z3) in Gy
and let s € G t € 5. By definition, the effective capacitance between the
vertices s and ¢ of G(x) is

Csi(G(2)) = min Jr(e)\ 66l n(V) (2.21)

= m\}n = Z (V(u) — V(w))?c(u, w, £)

LY W) - V)P w,0) b

(uw,w,£)eE(G2)\E(G(x2))

34 CHAPTER 2. PRELIMINARIES

where we have used that E(G) \ E(G(z)) is the disjoint union of E(G) \
E(G(z1)) and E(Gs) \ E(G(z3)). Now consider any unit potential function
Vin G(x), and consider its restrictions V|q,) and V|g,). Observe that

Vige,) (8) = 1, and (u,w,f) € E(G(z1)) = Vg, (v) = Vg, (w). That
is, edges connected in G(z) have the same potential. Since V(v) # 0, V|g

is not a unit sv-potential in G(z;), but V' := <V|G(x1) - V(v)) /(1 —=V(v))

is. Similarly, V = V(v) - Vl¢(s,) IS a unit vt-potential in G(x2). We conclude
that the effective capacitance can be written as

Csr(G(2)) =
1
: o 2 s T ! _\// 2
Jluin ¢ (1= V(v))*min 5 > (V'(u) = V'(w))?e(u, w, £)
(w0, B(GO\B(G(a1)
Woming Y (V) - V) (w0
Vo T (ww)€ B(Go)\B(G(x2))
= min (1= VE)PCuG) + VOO (222)

Notice how this equation is equivalent to (2.18), and so its solution has
the same form. We conclude that the capacitance of graphs connected in
series is:

Cor(G(2)) =

o) t e

At last we turn to the capacitance of networks connected in parallel. Tt
is trivial to see that in this case the restrictions V|g,) and V|, of any
unit potential in G(x) must be themselves unit potentials, and therefore the
capacity is the sum of minimizing the potential energy over G(z1) and G(x2)
independently. [

Part 11

The one where we discuss the
theory of span programs

35

Chapter 3

Theory of span programs

3.1 Overview

In this chapter we will introduce, develop and eventually expand the no-
tion of span programs. Span programs are a model of computation first
introduced by Karchmer and Wigderson [KW93] for the study of classical
counting branching programs, and imported to the quantum setting by Re-
ichardt and Spalek in [RS12; Rei09] for the study of formula evaluation and
the dual adversary lower bound. Since then, they have been applied to the
design of quantum algorithms, lower bounds, and have been reformulated
and generalized.

Span programs, regardless of the chosen formulation, encode a function
f g™ — {0,1} (see Section 2.2) in terms of linear algebra by framing it
as a problem of vectors being contained in input-dependent subspaces of an
inner product space. We sometimes abuse the English language and say that
they compute f. By themselves, span programs are not quantum objects.
They have classical input and classical output, and consist of a collection
of vectors and input-dependent vector spaces. Their connection to quantum
computing comes in two steps.

First, every span program that computes a function f corresponds to
a feasible solution for the semi-definite program (SDP) dual to the general
adversary bound SDP for f whose objective value is a quantity known as
the span program complezity, C(P) (see Section 3.2.3 and [Rei09]). The
general adversary bound is a technique for computing lower bounds to the

37

38 CHAPTER 3. THEORY OF SPAN PROGRAMS

quantum query complexity of a function through feasible solutions to an
SDP. Therefore, span programs give upper bounds to the objective value of
the solution that is optimal for both the dual and primal SDP.

Second, every span program deciding a function f can be turned into
a quantum algorithm that computes the same function f, and whose query
complexity is O(C(P)). Furthermore, this process of turning a span program
into a quantum algorithm is constructive and universally applicable (although
not unique, stay tuned). Among other things, this means that the quantum
query complexity of a function f is equal to the minimum complexity of any
span program computing f. This transformation allows us to design quantum
algorithms using classical thought. The goal of this chapter is to define span
programs and understand in detail their geometry and structure in order to
construct such span program algorithms.

What is even more exciting is that span programs encode quite a bit
more than the single output bit of the function they decide. For example, in
[LT19], Ito and Jeffery build an algorithm that evaluates a positive real-valued
function related to any given span program P called the witness size, and
we show in Section 3.4.2 how one can modify the span program algorithm to
generate certain quantum states as outputs. In Chapter 5 we build on this
idea and make a three-course meal out of the st-connectivity span program.

A first definition We begin by defining a span program in Section 3.2.1
in the manner of [Rei09]. There, span programs are defined as tuples formed
by a vector space V over C, a target vector |7) € V and a set of input vectors
{lvi) }ier € V over an index set I. To every x € [q]™ corresponds a subset
I(z) € I. The program is said to evaluate the function fp : [¢|* — {0,1}
defined as

fo(r) = {1 if|7) € span {Juy) : 5 € I{w)

0 otherwise.

The relation between these available vectors and the inputs is found in Defi-
nition 20. This formulation, although sufficient to show equivalence between
span programs and dual adversary solutions (see Section 3.2.3) is somewhat
unsatisfying because: 1) it puts the emphasis in the space V (which is not
where the span program algorithms operate), and, 2) it allows for non-binary
alphabets [¢], ¢ € N, but at an extra cost of O(log ¢) in the query complexity
of the associated algorithms.

3.1. OVERVIEW 39

An alternative definition An alternative definition of span programs
originally proposed by Ito and Jeffery [[J19] comes in Section 3.2.2. The
main innovations in this definition are the introduction of a new space H
that replaces the index set I, and a map A : H — V that replaces the notion
of “available” vectors and simplifies the analysis. The input x € [¢]" does not
define a subset I(x) of the index set but a subspace H(x) C H of a particular
form (see Definition 22).

In this notation, a span program is a tuple P = (H,V, A, |7)) that encodes
the function {f(z) = 1< J|w) € H(z) : Alw) = |7)}. Any such vector |w)
is called a positive witness for x and acts as a sort of certificate for positivity.
As we just said, the original definition of span programs allows for non-binary
alphabets [g] with logarithmic overhead. This definition improves on it by
removing that logarithmic factor. Other than this concrete improvement,
this alternative definition puts the emphasis on H, where the actual span
program algorithms act, rather than V.

It is using this notation that the authors of [[J19] define approzimate span
programs. Approximate span programs are an extension of the span program
formalism that will play an important role in this thesis, particularly in Chap-
ter 4, so let us explain them up front. Consider the space H(z) and its image
under A, A(H(x)) C V. Just like a span program P computes the function
{f(x) =1<|71) € A(H(x))}, we say that P approzimately computes a func-
tion {g(z) = 1 < |7) is approzimately in A(H(x))}, for a carefully chosen
notion of closeness (see Section 3.3.3 and Definitions 36 to 39). The gap
between what is and isn’t close enough depends on a parameter A € [0, 1)
called the approximation factor. Then, we say that P A-approximates g or
that it is a A-approrimate span program for g.

In this way, a span program decides a family of functions, rather than
just one. In some sense, it makes a span program more powerful because it
decides more functions. This is useful because it makes it easier to find a span
program that computes (maybe approximately) any given decision problem.
But approximate span programs are not a more powerful framework than
exact (as in, not approximate) span programs. For every decision problem
there exists a span program that exactly computes it with optimal complex-
ity, it’s just that that span program is hard to find, and an approximate span
programs might be easier to design.

40 CHAPTER 3. THEORY OF SPAN PROGRAMS

A few algorithms for span programs We wrap up the literature review
with Section 3.2.3, where we discuss the adversary lower bound and its rela-
tion to span programs, and give a quick overview of the algorithms presented
by Reichardt and Ito & Jeffery.

Reflection programs Next we present a novel reformulation of span pro-
grams, the first original contribution of this dissertation, called reflection
programs. Reflection programs are a generalization of the span program
formalism that aims to strip down all the parts that are not essential for
constructing an algorithm. We define reflection programs in Section 3.3,
give geometrical interpretations, and then define \-approximate reflection
programs and functions.

It is important to remark that any span program can be repackaged as
a reflection program for the purposes of turning them into algorithms, but
that does not make the language of span programs unnecessary or obsolete
since the choices of the spaces H, V, the map A, and the target vector |7)
are much more intuitive in a span program than in a reflection program.
This will become apparent in Chapter 5 when we describe in depth the span
program for st-connectivity. Like span programs, reflection programs lend
themselves well to compositions and transformations. We finish the section
by explaining how to turn a positively A-approximating reflection program
into a negative one, and how to write span programs as reflection programs.

Algorithms for reflection programs We proceed in Section 3.4 with
providing an algorithm for positively \-approximating reflection programs
which is also applicable to span programs (since these are a special case of
reflection programs). The algorithm generalizes the span program algorithm
in [[J19] to reflection programs and somewhat simplifies the analysis by fol-
lowing the approach of [Chi21].

Finally, we provide two new algorithms that generate the optimal positive
witness for x in a reflection program R. In the span programs setting, that
is the smallest vector |w,) € H(z) such that Alw,) = |7). These are the first
span program algorithms of their kind, and the first to have quantum output.
In Section 5.7 we will use one of these algorithms on the st-connectivity span
program to find an st-path that outperforms all known quantum algorithms
for path-finding and the classical query lower bound for the problem it solves.

The original contributions in this chapter are contained in Section 3.3

3.2. SPAN PROGRAMS 41

and Section 3.4. Only Section 3.2.2 within Section 3.2 is strictly necessary
to understand these results, but we include the others for context and in the
interest of giving a complete account of how span programs have appeared
in the field of quantum computing.

3.2 Span programs

3.2.1 Span programs: a first definition

We begin by defining a span program in the manner of [Rei09]. There, span
programs are defined as tuples formed by a vector space V over C, a target
vector |7) € V and a set of input vectors {|v;) };e; € V over an index set I,
or rather, a subset I(x) C I that depends on z € [g]™.

Definition 20 (Span program [Rei09]). Let n, ¢ € N, [¢]". A span program

P over [¢|" is a tuple P = (|7),V,I,{|vj)};er) where |7) € V is called the

target vector, V is a finite-dimensional inner product space over C and the

vectors in {|v;)},er are called input vectors. The index set [is the disjoint

union I = [gee U |_|i€[n]7b€[q] I; , for some sets Ige and I;p, and given an input

x = (21,...,2,) € [q]", the subset [(z) is defined as I(x) = Itee U| |;c() Lia,-
We say P computes the total function fp : [¢]" — {0,1} defined by

) (3.1)
0 otherwise.

fole) = {1 if|7) € span {|v;) : j € I(2)}

The vectors in {|v;) : j € I(x)} are called available vectors, and so the
function f reduces to “Is |7) in the span of available vectors?”. Let us look
at the index sets I and I(z) more closely. For every coordinate i € [n] and
possible value b € [¢], we have a set of indices I;;,. We might have some other
indices that are available to all inputs which make the free set Iee. An input
x = (x1,...,x,) makes available the index sets [, ,, for ¢ € [n], which form
the available index set /(x), meaning that all vectors |v;) with indices in the
available set may be used to construct |7).

The intuition that connects span programs to quantum query complexity
is that an input oracle O, acting as O,|i,b) = |i,b @ x;), acts on the space
C! —typically spanned by vectors |i,b), i € [n],b € [¢]— by “marking” the
vectors corresponding to available indices. Classically, we would say that the

42 CHAPTER 3. THEORY OF SPAN PROGRAMS

available index set is built by querying the input. Quantumly, the intuition
is that O, gives us access to C/®) in some way.

The space C! generated by the index set is much more important than
it looks. The algorithms we mention in Section 3.2.3 for span programs in
this formulation operate on C’, rather than V), and the positive and negative
witness sizes that we will define presently are computed in C’. First, let us
define a pair of maps ancillary to those definitions.

A:C' =V (z):C' = !
Alj) = lv;) M) = > i)l (3.2)
jeuie[n] Ii»-Ti
I—’Ifree

The first map makes explicit the correspondence between inputs and input
vectors, while the second selects the indices that are available for a given
input x. We define witness sizes as follows:

Definition 21 (Witness sizes [Rei09]). Consider a span program P over [¢]",
and let fp be the function defined in Equation (3.1). For each input x € [¢]",
we define its witness size as follows:

o If fp(x) =1, there exists a state |w) € C! such that All(z)w) = |7).
Such state is called a positive witness. Then,

wsize(P, z) = min{|||w)|]* : All(z)|w) = |7)}. (3.3)

o If fp(x) = 0, then one can show that there always exists a witness
|w"y € V such that (w'|T) = 1 but (w'|All(z) = 0. Such vector is called
a negative witness. Then,

wsize(P, z) = min{||AT|w)||* : (w'|7) = 1, (w'|All(x) = 0}. (3.4)

The witness size of P, also known as the span program complexity of P, is
defined as:
wsize(P) = max wsize(P, z). (3.5)
z€lg]™
We define positive and negative witnesses for every input to the total
function fp from Equation (3.1), which is in some sense the natural function

3.2. SPAN PROGRAMS 43

of P. But P can also decide any partial functions of fp, that is, functions f :
X C [q]* = {0,1} such that f(z) = fp(x) for all x € X, just by restricting
the inputs to X. These are promise versions of the decision problem on fp,
which might have smaller witness size. For such a partial function we define
the span program complexity of f with respect to P as:

wsize(f, P) = max {wsize(x, P)}. (3.6)

In [Rei09], Reichardt defines the witnesses with costs associated to evalu-
ating different inputs. This can be easily incorporated in this definition and
all the following by changing the norm in which the witness size is evaluated
from || - ||* to ||S - ||* where S is a matrix of weights diagonal in the compu-
tational basis of C! and constant among all indices j consistent with a given
coordinate 7, i.e. all j € |_|b€[q] I; ;. That said, we will forget costs of inputs
and assume that all inputs are uniform in cost for the rest of this thesis.

At this point we want to make a few key observations to motivate the
next definition.

1. First, it looks like C’ is more important than V and that it supersedes
I itself.

2. Any two legs of the trio (input set — input vectors — A4 : CI — V)
determines the third.

3. According to these definitions, V need not be an inner-product space,
just a vector space. In fact, |[Rei09, Lemma 4.12] says that the span
program complexity is invariant under any linear transformations of |7)
and {|v;) }ser. Therefore, the norms of |7) and {|v;) };c; do not matter,
only their relation to each other, and the norm of vectors in C! (which
remains invariant under transformations of V), matter.

3.2.2 An alternative definition of span programs

We have talked about the caveats of Definition 20, mainly that the impor-
tance of the input space C’ is understated and the importance of V is over-
stated. In that definition, the input vectors {|v;)};e; are the ones that are
chosen by the user (along with the target), while the index set is derived
from the input vectors. This can create confusion because it is not in V but
in C! where the witnesses live and their norm is computed. The emphésis

44 CHAPTER 3. THEORY OF SPAN PROGRAMS

is on the wrong sylldble. In this setting, the map A is entirely descriptive,
i.e. it is determined by the choice of input vectors. A better definition for
span programs would be one that puts the input space front and center. In
this new definition, the map A becomes normative, meaning that the user
chooses the index vectors |j) and the map A, and the vectors {|v;)}; become
determined by these two things.

In this section we follow [[J19] and redefine span programs by introducing
an inner product space H that takes the role of C! and a map A : H — V
that replaces the choice of input states {|v;)};e;. The advantage of this
change of perspective is that it gives us tools to better study the anatomy
of witnesses and define approximate versions of them. This is crucial in
Chapter 4 when we describe span programs for two-sided, bounded-error
algorithms. Additionally, the shift from input vectors to span program map
A has the advantage that linear maps are more structured than sets. This
will become obvious later when we describe algorithms for span programs
and their time complexity, where the span program map A and its kernel
will play a crucial role.

Following [[J19], we define a span program for evaluating a decision prob-
lem as follows.

n

Definition 22 (Span program). A span program P = (H,V, A, |T)) on [¢]
consists of:

1. A finite-dimensional inner-product space H that decomposes as
H= Hl ®--- @Hn ®Htrue S Hfalsey

where each H;, i € [n], decomposes further as H; = >, Hip.
2. A vector space V.

3. A linear operator A € L(H,V).
4. A target vector |T) € V.

With each string « € {0,1}", we associate the subspace
H(‘T) = Hl,dfl b---D Hn,xn S ,Htrue'

This definition is equivalent to that of Section 3.2.1 except for one thing.
By demanding that H; = Zbe[q] H;p rather than H,; = @be[q] Hip we save
a factor of log g in the correspondence between query complexity and span

3.2. SPAN PROGRAMS 45

program complexity, see |Jef14].

Intuitively, a span program encodes the question “Is |7) € A(H(z))?”. To
answer this question in the affirmative, it is sufficient to provide a preimage
of |7) under A in H(x), called a positive witness. In the negative case, one
would like to find an object, called a negative witness, that precludes the
existence of such a positive witness. In the previous definition, fp(z) = 1 iff
|7) is a combination of available vectors, and one would expect the positive
witness that certifies this to be that combination of available vectors, but
it is not. Positive witnesses are defined as linear combinations of indices in
j € I(x) whose vectors |v;) sum up to |7). Confusing indeed. The present
formulation of span program addresses that confusion. We formally define
witnesses and witness sizes in [[J19] notation as:

Definition 23 (Positive and negative witnesses). Fix a span program P =
(H,V,A,|7)) and an input = € [g|". We call a vector |w) € H a positive
witness for z if |w) € H(x), and Alw) = |r). If there exists a positive
witness for x, the positive witness size of x is
wi (2, P) = wi(z) = min {[[[w)|]*: Ajw) = |7)},
lw)eH(z)

and w, (x) = oo otherwise. We say that |w) € V is a negative witness for x if
(w|Ally () = 0 and (w|7) = 1. If there exists a negative witness, the negative
witness size of x is

w_(z,P) =w_(x) := ‘w>i€r]1){|](w|A||2 s (w]| Ay = 0, (w|T) = 1},

and w_(z) = oo otherwise.

This definition is the analogue of Definition 20 restated in the new formal-
ism and in greater detail. We define the set of positive and negative inputs
of P, respectively, as:

P ={zelq" :wi(x) < oo}, Py ={zelq":w_(x) < oo}

It can be shown that every string x has either a positive or a negative
witness, but never both, hence Py U P; = [¢g|" and Py N P, = (). Therefore,
the span program P decides the total function

1 if xePl
fp(x)_{o if zep

46 CHAPTER 3. THEORY OF SPAN PROGRAMS

This is the same function as the one defined in Equation (3.1). As we dis-
cussed in the previous section, any partial function f : X C [¢|" — {0,1}
such that f(z) = fp(z) for all x € X is also decided by P.

Definition 24 (Span program complexity). Let P = (H,V, A, |7)) be a span
program on [¢|", and let f : X — {0,1} be a function decided by P. Let
W_(f,P) := maxycs-1(0)w—(x, P) be the negative complezity of P, and let
Wi (f, P) := max,cs10) wq(z, P) be the positive complezity of P . Then,
the span program complerity of P with respect to f is defined as:

It is not obvious that this quantity is the same as the span program
complexity wsize(f, P) from Equation (3.6). There, the complexity is defined
as

wsize(f, P) = gé%g({wsize(f, P)} = max{W_(f, P), W.(f, P)}.

Strictly speaking, wsize(f, P) > C(f, P), but we can modify the span pro-
gram P in either formalism by rescaling the target |7) +— «a|7). This multi-
plies all positive witnesses sizes by a? and all negative witness sizes by 1/a?.

Choosing a = (W_(f, P)/W.,(f, P))"* we obtain

wsize(f, P') = max{a*W, (f, P), 1/o*W_(f, P)} = VW_(f, PYW.(f, P).

This transformation doesn’t affect the class of functions decided by P, nor
the new span program complexity C(f, P). Hence, choosing the right scaling
of |7) (which we can do because norms in V don’t matter) renders both
definitions of span program complexity equal. From this point on we will
stick to C(f, P) = vW_W_,.

The concept of witness is qualitatively similar to that of a certificate, in
the sense that its existence is proof that the instance is either positive or
negative, and the bigger the witness that certifies that, the harder it is to
find. This justifies the notion that the larger the witness sizes, the bigger
the span program complexity is. But why do we define the span program
complexity in this way? Why the square root? Why not W_ + W, 7

The reason is (and we will come back to this again and again) that the
smallest span program complexity C'(f, P) out of all span programs P that
decide f equals the quantum query complexity of f, up to constant factors.
That is because every span program corresponds to a dual adversary solu-
tion (See Section 3.2.3), and for every span program P we can construct

3.2. SPAN PROGRAMS 47

a quantum algorithm with query complexity O(C(f, P)) (and we will, in
Section 3.4).

Approximate span programs As [[J19] illustrates, it can be advanta-
geous to relax the constraints in Definition 23 and simply require that the
target be sufficiently close to A(H(z)) for an instance x to be considered
positive, or so close to having a valid negative witness that the input is con-
sidered negative. Since there is no meaningful distance in V), the notion of
closeness has to be defined in H. The definitions we give of approximate
witnesses come from [Jef20] and improve on the original ones given in [LJ19].
We defer their in-depth discussion to Section 3.3.

Definition 25 (Approximate positive witness size [Jef20]). For any span
program P on [¢]" and z € [¢]", we define the A\-approximate positive witness
size of f as

A

@ (2, f) = min {H|w>|]2 : Ajw) = |7), [Moy [} ||* < m} '

If the set over which we minimize is empty, we say that w(z, f) = oc.

Any vector yielding a solution to this minimization problem is called
an approzrimate positive witness, where X is implicit. Note that if A = 0 we
recover the usual definition of positive witness size, and that if HHH(@L |w) || >
0 for every positive witness |w), there exists an exact negative witness.

The approximate negative witnesses are defined in a somewhat similar
fashion by relaxing the requirement that the witnesses be orthogonal to H(z).

Definition 26 (Approximate negative witness size [Jef20]). For any span
program P on [¢]" and = € [¢]", we define the A\-approximate negative witness
size as

I

(2, P) = min {||<w\A||2 (@l = L, ||| Al ||’ <

)
W+(fa P) '
If the set over which we minimize is empty, we say that w_(z, f) = oc.

Like before, we call a vector solving this minimization an approximate
negative witness. If H (w|AHH<x)|| > 0 for all approximate negative witnesses
(w], there exists an exact positive witness.

48 CHAPTER 3. THEORY OF SPAN PROGRAMS

These relaxations of the notions of positive and negative witness give rise
to the concept of approximate span programs, which allow a span program to
decide a broader class of functions, (see Definition 39). This does not mean
that approximate span programs are a more powerful model of computation.
Every two-outcome function f admits an exact (as in non-approximate) span
program deciding it that can be turned to an algorithm with optimal query
complexity. But extending the range of functions that a span program decides
can (and will) be very useful. We define these things formally in Section 3.3.3.

Minimal witness and normalization The notion of positive and nega-
tive witnesses need not be tied to specific inputs = € [¢]". For a given span
program P = (H,V, A, |7)), a positive witness is any vector |w) € H such
that Alw) = |7). Moreover, assuming that a positive witnesses |w) exists, it
is a simple exercise to show that the set WW of positive witnesses is exactly

W = {|w) + |A) : |h) € ker A}.

Let AT be the Moore-Penrose pseudo-inverse of A. Then A™|7) is the unique
shortest vector in W and the only one orthogonal to ker A (another simple
exercise). Therefore, all witnesses are actually of the form |w) = AT |7) + |h)
for some |h) € ker A. This vector will be crucial in our analysis of span
programs, reflection programs and the algorithms for them.

Definition 27 (Minimal witness, [[J19]). Let P = (H,V, A, |r)) be any
span program. We define the minimal positive witness |wg) to be the unique
shortest positive witness in P for |7). That is, |wy) = A*|7). We define the
minimal witness size to be |||wo)]|?.

A span program is normalized if |||wo)|* = 1. It is possible to scale all

positive witnesses by a factor of @ by redefining the target to be |7') = a|7).
This would also scale all negative witnesses by a factor 1/a, which leaves the
span program complexity /W, W_ invariant. This way we can normalize any
span program by redefining |7/) = |7)/|||wo)||>. However, it is also possible
to normalize and scale a span program independently (see [[J19, Theorem
2.14]). This is necessary for the algorithms presented there but will not play
any role in the algorithms we define in Section 3.4.

Span programs and quantum algorithms Span programs are confus-
ing. They encode a function f in terms of a geometric question “Is |7) in

3.2. SPAN PROGRAMS 49

A(H(x))?”, but their complexity also corresponds to the query complexity of
an algorithm that decides f. Moreover, the smallest complexity corresponds
to the query complexity of f. “That’s a lot to process, please explain’.

When we say that we can construct an algorithm for a function f out of
a span program that decides f with complexity O(C(f, P)), we mean that
we can use the parts of P = (H,V, A,|7)) to make a quantum algorithm. Tt
works like this.

Recall that all positive witnesses are of the form |w) = |wg)+|h), including
positive witnesses |w,) for z € f~(1), which are of that form and such that
lw,) € H(x). In other words, if f(x) = 1, |wy) = |w,)—|h) where |w,) € H(x)
and |h) € ker A. In fact we can show that |wg) € H(z) + ker A iff f(x) = 1.
If f(x) =0, then |wy) € H(x) N (ker A)L. So the crux of the algorithm is
in distinguishing |wg) € H(x) + ker A from |wg) € H*(z) N (ker A)*.

All span program algorithms make queries to a unitary U(z, P) = (21Tye 4—
I)(2I13yz) — I) by running phase estimation and/or amplitude amplifica-
tion on U(x, P) with initial state |wg) (or some variants thereof) to dis-
tinguish those two cases. The number of calls to U(z, P) being (drumrolls)
O(C(f, P)). Moreover, this unitary can be implemented with a single quan-
tum query to .

To show that all this is true and works and extends to approximate span
programs, we present an in-depth analysis of the geometrical meaning of wit-
nesses, witness sizes and approximate witnesses in Section 3.3 in the context
of reflection programs. This will be followed by an algorithm that decides
any approximate reflection program.

In the next section we explain the connection between span programs and
dual adversary solutions (whatever they are), and why that implies that the
smallest possible span program complexity of a function f equals its query
complexity, up to constant factors. We then give a brief exposition of span
program algorithms in the literature before diving into reflection programs.

3.2.3 A few algorithms for span programs

As we have started to see, and will become clear in Section 3.3.2, span pro-
grams are a natural way of expressing decision problems in terms of linear
algebra. This model of computation has evolved over time to include non-
Boolean input alphabets and alternative notations. We have already said
that span programs give rise to algorithms and that they correspond to dual
adversary solutions. Let’s explain the second claim first and then focus our

50 CHAPTER 3. THEORY OF SPAN PROGRAMS

attention to how span programs have been turned into algorithms in the
literature.

The adversary bound ADV*(f) [Amb02; HLS07] is a semi-definite pro-
gram (SDP) whose feasible solutions give lower bounds for the quantum
query complexity of a function f: X € [¢]" — {0, 1} over finite alphabet [¢].
Its dual is the SDP:

ADV*(f) =min max } (v;:[¢;:) (3.7)
Jj€(n]
st Y () =1 Voe 1),y e f(0),
Jim 7Y;

;.)€ C™ for some m € N,Vj € [n],z € X C [¢]".

Each set {|t;.)};. satisfying the constraints of Eq. (3.7) is called a dual
adversary solution and exactly corresponds to a span program P that decides
f in what is known as canonical form. Moreover, the objective value of the
dual adversary solution, max.cp > je[n]wj’z]wj,z% equals the span program
complexity for f, C(f, P). See [Rei09] or [Chi21] for a proof of this fact.

This is a very profound result in and of itself. Yet, the most important
feature of span programs, the one that justifies our interest, is not that a
span program encodes a decision problem, or a dual adversary solution. The
most important feature of span programs is that they can be used to compile
quantum algorithms for f with query complexity O(C(f, P)).

This was first observed by Reichardt [Rei09], who used this fact to show
that the adversary lower bound actually characterizes quantum query com-
plexity. It was already known that feasible solutions to the primal semi-
definite program were lower bounds on the query complexity of a Boolean
function f. Using the correspondence between dual adversary solutions, span
programs, and quantum algorithms, and the strong duality of the Adversary
Lower Bound, Reichardt showed that dual adversary solutions were algo-
rithms, and that the optimal solution to the primal and the dual was a tight
lower bound.

Among other things, this means that the quantum query complexity of a
function f is the minimum complexity of any span program computing f.

We show what the span program looks like for functions f with binary
inputs in our second notation. For non-binary alphabets, we refer to the
generalization in [Jefl4, Section 7.1|. Let {|¢;.)};. be a dual adversary

3.2. SPAN PROGRAMS 51

solution that satisfies the constraints of Equation (3.7) with objective value
W, and Fy = f~1(0). We define the span program P = (H,V, A, |T)) as:

H = span{|i,b,2) : i € [n] x {0,1} x [m]}, V =C
- 1 .
A= Z|x><]7xj|<¢j,mv |T> - 3\/W Z| >

@EF() reFy
Jj€lm]

Then, it is shown in [Rei09] that P decides f with span program com-
plexity O(W). Several algorithms are possible now [Reil0], but what they
all have in common is that they make O(W) queries to a unitary U, =
(2, — I)(2A — I), for some projectors II, and A. The first reflection,
(21, — I), is a reflection around the subspace of available indices for z,
span{|i, z;)} ® C™, and requires only two queries to the input oracle O,,
while the other reflection space is related to the Kernel of the map A and is
input independent.

In their endeavour to clarify and generalize span programs, [to and Jeffery
introduced in [[J19] a variant algorithm to evaluate approximate span pro-
grams. Their algorithm performs phase estimation of the unitary! U(z, P) :=
(2[Mker 4 — I)(2Mpy(zy — I) with initial state |wg), and then estimates the am-
plitude on a 0 phase to distinguish positive from negative inputs. At first,
their algorithm only works for normalized span programs and has complexity

%) (W(f,P) /WJr(f’ P)), where WJr(f, P) is the approximate positive wit-

(1-X)3/2
ness complexity of f, and A is the approximation factor (see Equation (3.16)
and Definition 39). So they supplement it with a transformation that simul-
taneously normalizes a span program and scales its witnesses to obtain:

Lemma 28 ([[J19], Corollary 3.7). Let P be a A-approzimating span pro-
gram for f : X C [¢|" — {0,1}. Then the quantum query complexity of

fisO (W\/W_(f, P)WJr(f, P)log ﬁ) In particular, if P is an ex-

act span program for f, then the quantum query complexity of f is at most

O (VW-IW5).

U(z, P) and U, are not the same unitary, although they are intimately related.

52 CHAPTER 3. THEORY OF SPAN PROGRAMS

In Section 3.4 we present a generalization of this algorithm for reflection
programs that bypasses the scaling procedure by baking it into the algorithm.

Using standard algorithmic techniques, Ito and Jeffery were also able to
modify their algorithm for decision problems and turn it into an algorithm
that estimates the positive or negative witness size of an input. We will need
this result later in Section 5.3.1, so we might as well introduce it now. The
algorithm is based on the direct connection between the minimal witness
|wo), the 0 phase eigenspace of U(x, P) and the negative witness size that we
will discuss in Section 3.3.2.

Theorem 29 ([1J19], Theorem 2.8). Let U(z, P) = (21lxer 4 — 1) (210 — 1).
Fiz X Clq|" and f : X — Rsq. Let P be a span program on [q)" such that for
all v € X, f(x) = w_(x, P) and define W, = W+(P) = max;ecx Wy (z, P).
Then there exists a quantum algorithm that estimates f to accuracy € and

that uses O (53% w_ (:E)WJr) queries.

Similarly, let P be a span program such that for oll x € X, f(zx) =
wy(z, P), and define W_ = W_(P) = max,ex W_(x, P). Then there exists a
quantum algorithm that estimates f to accuracy € and uses

O (53% w+(x)/m7_) queries.

3.3 Reflection programs

In this section we present an abstraction of span programs, called reflection
programs, that constitutes our first original contribution to the field. Reflec-
tion programs are a strict generalization of span programs. They originate
from the authors’ desire to strip a span program of its non-algorithmic parts
so that we can build intuition towards constructing an algorithm.

First, we define reflection programs and witnesses in Section 3.3.1 and
give geometrical and operational interpretations in Section 3.3.2. Then we
define approximate witnesses in Section 3.3.3 and give an intuition on re-
flection programs approximating functions before deriving some important
characterizations of approximate and exact witnesses.

We top off the section with a transformation that turns approximate and
exact positive witnesses into negative ones and vice versa, and comment on
the connection between reflection and span programs.

3.3. REFLECTION PROGRAMS 23

3.3.1 Definitions

We’ve already motivated reflection programs, so let’s define them.

Definition 30 (Reflection program). Fix X C [¢]". A reflection program
R = (H,{H(x)}rex, K, |wo)) on X consists of:

1. A finite-dimensional inner-product space H.
2. A subspace H(x) C H for every x € X.

3. A subspace K C H.

4. A unit vector |wg) € K+

Moreover, we say that R evaluates a function f: X — {0,1}, if
f(z) =1<% |wy) € K+ H(x).

At first it seems like most elements in this definition have changed with
respect to Definition 22. This is not as dramatic a change as it seems. We
have kept the space H but disposed of the space V, the target |7) and the
map A. That is because we don’t need them to make an algorithm. All
the algorithms we will present, and all algorithms in the literature, operate
on H and only ever use reflections around H(z), ker A and the state |wp).
As we will shortly see, the relations between |7), A and the witnesses in
Definition 23 can be lifted to relations exclusively in H between H(x), ker A,
|wo) and appropriately defined witnesses.

For this reason we have substituted ker A by IC and |7) by |wg) in the
definitions.

We have also generalized the way in which the spaces H(z) sit inside
H and left this map = — H(x) as a component of the reflection program
chosen by the user. Of course, this map is also defined for span programs in
Definition 22, but we don’t include it as a component to the span program
because it follows from the decomposition of H there. Last but not least,
we now define reflection programs over domains X C [¢]", rather than all
[¢]*. That is because we have lifted any and all restrictions on how #(x)
sits in H. It might be that we can define these spaces for all z € X without
having to determine what H(z) is for = € [¢]” \ X. In span programs, H(z)
is constructed in such a way that we can reflect around it with one quantum
query to x. In reflection programs we loose the straightforward relation
between query complexity and reflection program complexity.

54 CHAPTER 3. THEORY OF SPAN PROGRAMS

We have restricted ourselves to subsets X C [¢]" out of laziness but there
is nothing stopping X from being any finite set. It is even possible that under
certain conditions, X could be an infinite set?> and our proofs would still
hold. Would that be a way to make quantum algorithms deciding functions
with continuous input and binary output? That is a very interesting open
question.

Just like in the case of span programs, we can give definitions for positive
and negative witnesses. These positive and negative witnesses have very
clear geometric interpretations, which lead to a clearer understanding of the
reflection program algorithm, and thus, the span program algorithm, which
is a special case.

Definition 31 (Positive and negative reflection witnesses). Fix an arbitrary
re X.

1. A positive witness is a vector |w,) € H(x), such that |wg) — |w,) € K.
Such a vector exists if and only if |wy) € IC + H(x).
We define the positive witness size of x as:

wy (2, R) = min{|[Jw) || : [w,) € H(x), [wo) — |w) € K}
2. A negative witness is a vector |w,) € H(x)t N KL, with the property
that (w,|we) = 1. Such a vector exists if and only if |wg) & K + H(x).

We define the negative witness size of z as:

w_(z,R) = min{|||w)|” : |we) € H(x)" N KL, (w|we) = 1}

As was the case with span programs, R splits X into two parts:
P ={zeX:|w)eK+Hx)} Po={z e X :|wy) ¢ K+ H(x)}.
R decides any function f : D C X — {0,1} such that f~1(0) C P, and

f71(1) € P,. We define the positive and negative complerity of R as:

W, (R) = maxwy(z,R) and W_(R) = maxw_(z,R), (3.8)

reP; zePy

2My money is on Compact Hausdorff. It’s always Compact Hausdorff.

3.3. REFLECTION PROGRAMS 95

Negative instances (f(z) = 0)

o)

Figure 3.1: Representation of the subspace generated by H(x) and K, the
space of positive witnesses W, and the relevant vectors |wy), |w,) and |w,).

and we define the positive and negative reflection program complezities of f
as:

Wi(f,R) = xer?fll}%l) wi(z,R) and W_(f,R) = mer?gl)go) w_(z,R).
(3.9)

In Figure 3.1 we can see visualizations of positive and negative witnesses.
They seem to suggest that the positive and negative witnesses can be seen
as a vector proportional to the projection of |wgy) on H(z) and K+ N H(x)*t
respectively. Such claim is not true for the positive witness (as we shall see in
the next section), because representing K and H(z) as 1-dimensional spaces
oversimplifies the problem. Our intuition of negative witnesses, on the other
hand, turns out to be true, and gives rise to the following characterization of
the negative witnesses and negative witness size.

Claim 1. Let |w,) be a minimal-size negative witness for x € X. Then
_ H]CLQH(I)L‘wO> ||72
||HK:J-(‘|H(I>J—|1’UO>‘ ’

|we) B and w_(x,R) = \|HichH(z)L|w0>
Proof. Let |w) € H(xz): N KL be a negative witness. Since 1 = (w|wy) =
(W Iy(z) LAkt [wo), any component of w that is not parallel to Iy)1 [wo)
does not contribute to making (w|wy) = 1. We conclude that the optimal
negative witness must be parallel to Iy ;)1 [wo). Tts norm is then deter-
mined by the condition (w|wy) = 1. O

56 CHAPTER 3. THEORY OF SPAN PROGRAMS

3.3.2 Operational interpretations

Together with the geometric interpretation of witnesses, we also give an op-
erational interpretation based on what we call the reflection program unitary.
This is a unitary operator similar to the span program unitary in [IJ19]. Let
R be a reflection program over X C [¢]". For every x € X, we define:

Uz, R) = (2Mym) — 1) (21 — 1). (3.10)

Any unitary U(z, R) has a eigenvalue decomposition:

d
Uz, R) =Y e o) {(g4l,
j=1

for some d and some states |p;). By Jordan’s Lemma (Lemma 1), a unitary
operator that is a product of two reflections naturally splits H into three
different parts:

1. The (+1)-eigenspace, or O-phase space:

Ey = (KNH(x)) @ (KFNH(x)b).
2. The (—1)-eigenspace, or m-phase space:

E, = (KNnH(z)h) @ (Kt nH(x)).

3. Everything else, which we refer to as the remaining space: Fyem =
span{|p) : U(z, R)[p) = €'?|p), ¢ # 0,7}

Also from Jordan’s lemma follows that F..m can be completely decomposed
into two-dimensional subspaces, on which U(z, R) acts as a rotation operator.
For every eigenphase ¢ € (0, 7), then all these two-dimensional subspaces are
of the form £, := E,+ ® E_,- as defined in Section 2.1.1, and the angle of
rotation in these subspaces is . We refer the reader to Lemmas 1 and 3 for
further detail on the definitions of these eigenvectors and spaces.
We let @ be the random variable whose probability distribution is given
by the outcome distribution of the phase estimation algorithm of Theorem 9,
if we were to run it with U(z, R) on |wp), with infinite precision. In other
words,
P(® = @) = ||z, [wo)||”. (3.11)

3.3. REFLECTION PROGRAMS 57

Let z € f71(0), by Claim 1 we readily find:
_ 2
w5, R)™ = [Tt o) [= [Ty) |2 = B(® = 0).

The operational interpretation of w, (x, R) will require a bit more work
and will depend critically on the results of Lemma 3 and Corollary 4, which
imply that H(z) and K decompose nicely into the (4+1) and (—1)-eigenspaces
of U(x,R) and the 2-D spaces E, . For convenience, we restate them now
without proof and rewritten in the language of reflection programs.

Lemma 32. Let ¢; > 0, j € [d] for some d, be the positive eigenphases of
U(xz,R) in (0,7), E, := Ey+ ® E,- be the 2-dimensional spaces spanned by
(£p)-eigenphase eigenvectors of U(x,R), and let Ey, E, be the 0-phase and
m-phase eigenspaces of U(x, R). Then,

H(z) = (H(z) N Ey) EB (H(z)NE,,) ® (H(z) N E;)

Corollary 33. Let p; > 0, j € [d] for some d, be the positive eigenphases of
U(xz,R) in (0,7), E, := Ey+ ® E,- be the 2-dimensional spaces spanned by
(+p)-eigenphase eigenvectors of U(z,R), and let Ey, E. be the 0-phase and
m-phase eigenspaces of U(x, R). Then,

P~

K=(KnNE)Ep (KNE,,)®((KNE,),

=1

<
Il

and

K= (K"nE) (K-NE,) & (K-NE;).

D-

1

J

With these, we are ready to give an operational characterization of the
positive witness both in terms of the eigenphases of U(z, R), and in geomet-
rical terms.

Lemma 34. Let R be a reflection program on X C [q|", and = a positive
instance of R, that is, |wo) € K+ H(x). Let ® be the random variable
distributed according to Equation (3.11). Then,

wi(r,R)=E

szl@)] |

58 CHAPTER 3. THEORY OF SPAN PROGRAMS

Proof. By Lemma 32 we have that H(z) decomposes nicely into its intersec-
tion with the rotation spaces and the (£1)-eigenspaces of U(x, R). Hence, we
break the optimization problem in the definition of w (z, R) in the following
way:

wy (2, R) = min{[[w)||* : |w) € H(x), lwo) — |w) € £}
= min{|[|w)|* : |w) € H(z), Ms |w) = [wo)}
lu) € H(x) N E,
2. |v) € H(x) N Ex,
' |w> S H(l‘) N Erem,
s (Ju) + |w) +[v)) = Jwo)

= min ¢ [||u) + |v) + |w)]

(3.12)
Observe now that the last condition can be written as:
HKL<‘U> + ‘w> + |U>) = (HEO + HErem + HEﬂ') |w0>

Observe, too, that on the one hand Ey N H(x) = K NH(z), so . |u) =0,
and since |wg) € K @ H(x) = (Kt NH(z)L)* and |wy) € K+, then |wg) is
perpendicular to both subspaces in Ey and Ilg,|wy) = 0. On the other hand
we have that [v) € E, NH(z) = KX NH(z) so [v) € K and Tlc.|v) = |v).
All things considered, we have that this last condition reduces to:

H]CJ‘|w> + |U> = (HErem + HEﬂ') |w0>

On the right-hand side we have two vectors, Iy, _|wo) and Ig_|wg) which
are clearly orthogonal to each other because one is in Fie, and the other is
in £;. On the left hand we have also two vectors, |v) and Ilic.|w), and, by
definition, |v) € E,. If we could show that the other vector is in Eep,, then
we could split this constraint into two independent ones relating to |v) and
|w) respectively. Again, Corollary 33 comes to our aid by asserting that Fyep,
is an invariant subspace of ITi., meaning that Il |w) € g, .

Let us summarize what we have done up to this point. We have split
the minimization problem in the definition of the positive witness into two
independent minimization problems of the form

w+(x7R) - mln{”|w>||2 : |w> 6 IH<$) m Erem7H’CL|w> - HErem
+ min{||[v)|]” : [v) € H(x) N Ey, |v) = g, |wo)}.

wo) }

3.3. REFLECTION PROGRAMS 29

Observe that in fact Erepy, is the direct sum of spaces E,, ., and by Lemma 32
we have H(2)N Erem = @?:1(7-[@) NE,,). That, in turn, means that the first
term in the right-hand side of the last equation splits into several independent

minimization problems, leading us to the expression

we(e,R) = 3 min{u) | :) € H(x) 0 By, s) = Tl o)}

2
+ [Tz, fwo) I

Figure 3.2: How fortunate that Jordan’s Lemma gives us two-dimensional
subspaces to draw neatly and accurately.

Let us now fix a single eigenphase of U(x,R), ¢ € (0,7). By Jordan’s
Lemma the space F, is a two dimensional space spanned by the left- and
right-singular vectors of IIiIly) with singular value cos %, |0) € KN E, and
W) € H(x) N E,, which form an angle of £. Figure 3.3.2 depicts an accurate
representation of what is going on in that subspace.

Notice how Ilg,|wp) is still orthogonal to K, and the only solution to
the minimization problem is the vector denoted as Ilg |w,) in the image.
To conclude with the proof we note that I Iy, [w.) = g, g, |w,),
and since K N E, and H(z) N E, form an angle of ¢/2 and I, |w,) €

2
H(x) N E,, then HHEJUJHHQ _ |11z o) |*

—-75—— (the picture helps), so we arrive
2

60 CHAPTER 3. THEORY OF SPAN PROGRAMS

at the expression

d HHE‘PJ|w 9
wi(x,R) = Z o + g, |wo)|

J=1 2
¥ P@=y) | 1]
Z sin? %) sin? (%) 7
where the sum is over all eigenphases ¢ of U(x, R). O

From this operational interpretation of the positive witness size, we can
now deduce an upper bound on the probability of measuring a small phase
were we to perform the phase estimation procedure of Theorem 9 to U(xz,R)
with initial state |wg) and infinite precision. Take any § € (0,7), then by
Markov’s inequality we have:

1 1)
P(®<§) =P > <sin? | = | E
(®=<9) (Sin2 (%) ~ sin? (g)) = i <2>
2
= sin? (g) wi(z,R) < M

Of course, this is not a realistic process. A more realistic setting would be
to perform the phase estimation on U(x, R) with precision § and accuracy e
to |wp). If we now measured the phase register, the probability of observing
a phase < § would be upper bounded by P(® < §) + . Together with the
fact that for negative instances, the probability of measuring a phase < §
would be at least P(® = 0) = w_(z,R)~" we could obtain an algorithm for
reflection programs. We will not work out the details here since this analysis
does not account for approximate witnesses.

Using similar ideas it is possible to derive other identities such as

P(® = 1) = || e [uo)[© and E{smz (%)]—Hnww@”?.

These identities don’t mean anything algorithmically speaking because
the random variable ® cannot be measured exactly, there is no such thing
as infinite precision phase estimation. However, they illustrate the relation
between the decomposition of |wy) into eigenvectors of U(x, R), and how
|wp) sits in ‘H geometrically. The algorithms that we will give in Section 3.4
exploit this connection.

3.3. REFLECTION PROGRAMS 61

3.3.3 Approximate reflection programs

Geometrically speaking, the trait that distinguishes positive from negative
instances in a reflection program is the fact that |wy) has a component in
K+ NH(z)*t in the latter case. The length of that component is then related
to the negative witness size and the probability of measuring zero if we do
phase estimation on U(z,R). This has the advantage of creating a clean
partition on X that we could exploit to make a quantum algorithm that
decides it. The flip-side is that, just like exact span programs, the algorithm
decides only that one partition. If you want a different one, you need to get
a different reflection program.

A natural way of extending the notion of reflection programs to accom-
modate more decision problems to each reflection program is to substitute
the requirement that |wy) € K 4 H(z) by a closeness condition. We al-
ready started doing this in Definition 22, but didn’t go into detail. Partly,
that is because a full exposition of approximate span programs is found in
[1J19; Jef20], and partly because we wanted to defer the discussion on ap-
proximation until after we had defined reflection programs. Remember from
Section 3.2.2 that positive and negative witnesses can be defined indepen-
dently of the input z. For example, we could say that any vector |w) such
that . |w) = |wp) is a positive witness. However, we don’t want to lose
track of H(z) since it is integral to the geometrical understanding of |wyg)
that we have built. It’s fine to lift the restriction that a witness |w) is in
H(x), but we should at least keep track of how far from H(x) it is.

In that spirit, let € > 0. Any vector |@) such that II.|w) = |wy) and
HHH(x)LhD)HQ < e is called an e-approrimate positive witnesses for x in R.
The component of any approximate positive witness |w) in H(z)* is called
the error of |w). The smallest possible error for an approximate positive
witness given an x is called the positive error, formally defined as:

Definition 35 (Positive error). For any reflection program R on X and any
x € X, we define the positive error of x as

e4(z,R) = min {HHH@M@HQ | @) — Jwo) € /c} .

In the original definition of approximate witnesses found in [[J19], the
approzimate witness size was the minimum norm squared over the set of ap-
proximate positive witnesses with error exactly e, (z, R). This last condition
turns out to be unnecessarily restrictive. The point of defining approximate

62 CHAPTER 3. THEORY OF SPAN PROGRAMS

witness sizes is to bound them (and hope that they mean something use-
ful). Requiring every witness to have error exactly e, (z,R) to give an upper
bound is very harsh, and also unnecessary as proven in [Jef20)].

Therefore, we define approximate positive witnesses size with respect to
an error €.

Definition 36 (Approximate positive witness size). For any reflection pro-
gram R on X and x € X, we define the e-approximate positive witness size
for x as:

@, (x, R, €) = min {H|w>|y2 i) — [wo) € K, || Mgy)| < e} . (3.13)

If the set over which we minimize is empty, we say that w,(z, R, €) = oo.

Note that if ¢ = 0 we recover the usual definition of positive witness
size, and the set is not empty if and only if e (z,R) < e. Note also
that if ||TT . |@)|| > 0 for all approximate positive witnesses then |wp) €
K+ NH(z)t and there exists an exact negative witness.

The approximate negative witnesses are defined in a somewhat similar
fashion by relaxing the requirement that the witnesses be orthogonal to H(z).
We call a vector |@) an e-approzimate negative witness for x in R if (0|wy) =
1, |@) € K+, and HHH(I)|®>H2 < e. The component of an approximate
negative witness in H(z) is its error, and just like in the positive case, we
define the negative error as follows:

Definition 37 (Negative error). For any reflection program R on X and
any x € X, we define the negative error of x as

: 2 - .

e~(2,R) = min { | M| &)|” : {@lu) = 1, |) € K}
The e-approximate negative witness size of x is defined as:

Definition 38 (Approximate negative witness size). For any reflection pro-

gram R on X and z € X, we define the e-approximate negative witness size
of z in R as:

~ . . - - 12

@i-(2, R, €) = min { | [&)]]” : (@lwo) = 1,10) € K*, [Mylh|* < e}
(3.14)

If the set over which we minimize is empty, we say that w_(z, R,€) = 0.

3.3. REFLECTION PROGRAMS 63

If HHH(z)L|W>H > 0 for all approximate negative witnesses, there exists
an exact positive witness. The set is not empty if and only if e_(z, R) < e.

Finally, we define the functions that are computed by R in the following
manner:

Definition 39 (Functions approximated by R). Let R be a reflection pro-
gram on X and f : X — {0,1} be a decision problem. Let W, (f,R),
W_(f,R) be the positive and negative complexities for f defined in Eq. (3.9).
For any A € [0, 1) we say that R positively A-approzimates f if, W, (f,R) <
oo, and for all z € f71(0), wy (z,R) > %WJr(f, R). We say that R negatively
A-approzimates f if, W_(f,R) < oo, and for all z € f~}(1), w_(xz,R) >
W, R).

This is mazimally confusing. We defined approximate witnesses with
respect to an error parameter €, and now we define approximate functions
with respect to a different parameter A\, and no mention of approximate
witnesses! We spent a lot of time suggesting that a reflection program should
allow inputs z € F, to be counted as positive input for f if they had witnesses
with small enough error, but this definition counts an input € P, as positive
for f if the negative witness size is large enough. Very confusing indeed.

Our immediate goal now is to show that these two notions are the same.
First, we try to motivate why Definition 39 is a good definition. Then we
shall relate the minimal positive and negative errors to the witness sizes.
Last we shall see that, if we choose an error e < A\/W_(f, R), the existence
of e-approximate positive witness sizes for every x € f~1(1) implies that R
A-approximates f. Of course, there is an analogous statement for negative
witnesses, and so on. We’ll come back to this later.

We have said before that the witness sizes are inversely proportional to the
ease with which a quantum algorithm can decide a function. Let us attempt
to formalize this notion by defining a function that orders the elements of
the input set x. Fix a reflection program R and let V: X — R be such that

1 1
Vi, R) = wy(r,R) w_(z,R)

We call this function the value of an instance. This function characterizes
how easy an instance is to decide. Notice how one of these numbers is always
zero, since having a finite positive (resp. negative) witness size necessarily

64 CHAPTER 3. THEORY OF SPAN PROGRAMS

implies having an infinite negative (positive) witness size. An instance x with
very high positive value is a positive instance with very small witness size,
while an instance with very high negative value is a negative instance with
small negative witness size, both “easy” instances. Conversely instances with
value close to zero are hard to identify because they have large witnesses.
The hardest instances are those closest to zero, hence, we expect that the
gap between those tells us something about the difficulty of telling positive
from negative instances. Indeed, the gap is simply

0 := min V(z,R) — max V(z,R)

V(z)=0 V(z)<0
_ 1 N 1
maxy (=1 Wi (r, R) maxs()—ow-(z,R)’

And so, if W, ~ W_, its inverse 01 = V= — O(y/TW,W_) reflects the

A%

. . Wi4+W_
complexity of the reflection program.
0
—
Y2 Y1 i Ty X2 T2
: : I : :

Figure 3.3: The value function orders positive and negative instances on a
line.

By definition, the Value function characterizes the function f(z) =1 <
lwo) € KK+ H(x) by splitting all inputs into two groups; those with positive
value and those with negative value. Those above the threshold V = 0 and
those below. But, if there was any way to compute the value function, we
could just as easily change the function it characterizes by setting a different
threshold and saying that the reflection program R also computes the func-
tion g,(z) =1 & V(z) > ~ for some v € R.

From the definition of the Value function and Definition 39, it follows
max__ 1 V(z)
that the functions g, are A-approximated by R for any A > — o ©

mlnmeg;1(1> V(z)

3.3. REFLECTION PROGRAMS 65

Conversely, any function that is positively A-approximated by R is a
threshold function g, with the threshold somewhere in the interval

(W+(>,R)’ W+(i”,73)) '

For a threshold v = 0, the funcion gy decides the partition F, P;, and we
have already seen that the inverse of the Value gap reflects well its complexity.
Why should that be different for functions g, for v # 07

Following the example of Figure 3.4, let us imagine that we choose ~
such that it lies between the values of z; and x5, and let A be the number
such that V(z1) = AV(z32). The attentive reader might have noticed that we
just defined X\ to be the approximation factor. Indeed, we are committing
an abuse of notation here, but only for the purpose of foreshadowing, since
we will shortly prove that both notions of A are related. Then all instances
with value higher (lower) than + become positive (negative) instances for g,;
x1, T2 now become the closest to the threshold, and their value gap should
reflect the complexity of deciding g,(x). Since the positive and negative set
has changed, let us redefine the positive and negative complexities as

W_(QW,R):{ max V(x)} and W+(g7,72):{ min V(x)}

zegy ! (0) zegy (1)

The value gap between positive and negative instances now becomes

0 = V(z3) = V(z1) = (1 = N)V(zp) = Wil(;j}z) — ﬁ\/Wng%—é\)W_(g%R), and
N

1-X

its inverse scales as

Y2 Y1 T

Figure 3.4: X can be partitioned in many ways as long as the order induced
by V is respected.

66 CHAPTER 3. THEORY OF SPAN PROGRAMS

In Section 3.4, we give an algorithm that decides A-approximate reflection

VW_Wy

W) queries to a unitary U, similar to U(z, R)

programs making O (

for some quantities W_, W, related to the witness sizes. We conjecture that
the exponent in (1 — A) can be brought down to 1. More formally, we have:

Conjecture 40. Let R be a reflection program that positively \-approzimates
a function f. Then there exists an algorithm that decides f with query com-

plexity O (ﬁ\/ W (f, RW.(f, R)).

The notion of the value function allows us to define a whole class of
partitions of X that are possibly decidable by R, and also gives an opera-
tional interpretation to the approximation parameter. We hope this helps
the reader understand why functions approximated by R are defined so. Let
us now move on to relating approximate witness with exact witnesses.

The following theorems characterize the positive and negative errors in
terms of the negative and positive witness sizes. In simpler terms, they
justify why we defined approximate witnesses in terms of witness errors.
These results were already known for span programs and can be found in
[LJ19]. The proofs for these results in the reflection program framework are
essentially the same as those for span programs, so we will not repeat them
here.

Theorem 41. Let R be a reflection program, x € X C [q]" and let |w)
be an approzimate positive witness for x such that ||Ily 1 |[0)| is minimal.

i W
Then Ll)g 15 an optimal exact negative witness and ||I1)1 |w 2 =
[Ty 1] “
H(x)L W

er(z,R) =1/w_(z,R).

So the minimal positive error of an instance z is the negative witness size
of that instance. By definition, any e-approximating positive witness for x
proves that e, (z,R) < e. This theorem shows that ¢ also gives us a lower
bound for w_(z, R). Exactly what we need in Definition 39.

Theorem 42. Let R be a refiection program, x € X C [q|" and let |©) be an
approzimate negative witness for x such that ||Iy) |0)|| is minimal. Then

lw) = % is an optimal exact positive witness and HHH(@]@)HQ =
H(z) @

e_(z,R) =1/wi(z,R).

3.3. REFLECTION PROGRAMS 67

Imagine that we have a function f : X — {0,1} with negative witness
size W_(f,R) = maxgecs1(0)w—(x,R) < oo. In particular, this means that

f740) C Py. Fix e = m If we knew there exist e-approximate positive
witnesses for all z € f~!(1), then we would have e, (z,R) < € = W,
which by Theorem 41, means that m <e= m This is precisely

the definition of a function negatively A-approximated by R. Let us rephrase.

This means that if there exists an f : X — {0, 1} such that w (z,R,¢€) <
A

oo for all z € f~1(1) with € = TR then R negatively A-approximates
f- An analogous statement follows from swapping positives and negatives in
that argument.

So far, these two ways of looking at approximate reflection programs have
successfully accounted for approximation factors, as well as approximated
functions, witnesses and errors, but the approximate positive and negative
witness sizes have been missing from the picture altogether. We do not give
an operational interpretation for approximate witness sizes, but approximate
negative witness, along with their witness sizes, will appear in the analysis

of reflection program algorithms of Section 3.4.

Reflection program manipulations

In the last couple of sections we have given equal attention to positive and
negative witnesses, errors, witness sizes et cetera. From this point on, how-
ever, we will focus on algorithms for positively A-approximating reflection
programs and ignore negatively approximating ones. The reason for that is
two-fold. On the one hand, positively A-approximating span programs (and
their associated reflection programs) are all we will need in the following
chapters. On the other hand, there exists a simple transformation that turns
a negatively A-approximating reflection program for a function f into a pos-
itively A-approximating span program for f = 1 — f. We formally prove this
in the following theorem.

Theorem 43. Let R = (H,{H(z)}rex, K, |wo)) be a reflection program over
X C [q]”_that negatively A-approximates a function f. Define the negation
of R as R = (H',{H'(z) }rex, K, |wi)), where

o H =1H,
o H(z) = M),

68 CHAPTER 3. THEORY OF SPAN PROGRAMS

o K'= (K@ span{|wy)})*,
o |wp) = |wo).

Then, R positively A-approzimates f = 1—f, for every x € f~1(0), wy(z, R) =
w_(z,R) and w_(z,R) = wy (z,R); and for every x € f~1(1), w_(z,R) =
TI)+(Z', R)

Proof. Suppose that x € X is a positive instance of R. Then, we find that
lwo) € K + H(z), and hence that we can write |wy) = |w,) + |k), with
lw,) € H(z) = H'(z)* and |k) € K. Reordering this we have |w,) =
lwo) — |k) € K @ span{|wy)} = K'*+. It immediately follows that (w,|wg) = 1
and |w,) € K"*NH'(x)* and hence we find that |w,) is a negative witness for
R. Since the manipulation is symmetric, we see that every negative witness
for R is a positive witness for R. We conclude that w_(z,R) = wy(x, R).
For the other equality, we notice that the negation of the negation of R is R
itself. Therefore, the same proof shows that w, (z,R) = w_(z, R).

Now we show that in fact R positively A\ approximates f. By Defini-
tion 39, if z € f7%(0), then w, (z,R) = +o00. By the equivalence established

before, this means that x € 7_1(1) = w_(z,R) = +oo. If, on the contrary,
r € f71(1), then

w_(z,R) >~W_(f,R) = Xx:?%i})}iow_(x’R) =

Since w_(x,R) = wy(x,R), we conclude that R positively A\-approximates

e u

Notice we only claim that this negation transformation works for approx-
imate reflection programs, not approximate span programs. In [Rei09] there
is a procedure that negates exact span programs. We suspect that said trans-
formation could be generalized to work with approximate span programs, but
not without friction. The literature that deals with approximate span pro-
grams (mainly, [[J19]) has a different approach. There, there is no need for
span program negation since parallel analysis are provided for positive and
negatively approximating span programs.

The issue here is that we are not guaranteed that if we take a span
program P, compile it into a reflection program R and then negate it, the

3.3. REFLECTION PROGRAMS 69

result will still correspond to a span program. But, so what? The point of
negation is that it allows us to give one algorithm that is useful to decide
functions positively and negatively A-approximated by R. Our pipeline is
rather simple:

Pos. A-approx. Pos. A-approx. Neg. A-approx.
algorithm

for f

span program ol refl. program | glrefl. program |)
for f for f for f

3.3.4 Span programs and reflection programs

The attentive reader may have noticed that we have spent much more time
and ink defining and analyzing reflection programs than we have with span
programs. This is particularly striking since there will be almost no mention
of reflection programs in the following chapters. The reason for this imbal-
ance is simple. Everything we have shown for reflection programs directly
applies to span programs except negation, which doesn’t need to. That is
the essence of the next lemma.

Lemma 44. Let P = (H,V,A,|T)) be a span program over [¢|" and X €
[0,1). Then the reflection program R = (H,{H(z)}zegn, ker A, AT|7)) is
such that for every x € [q]":

1. |wy) is a positive A-approrimate witness for P if and only if it is also
a positive A-approximate witness for R.

2. {(w,| is a negative A-approzimate witness for P if and only if ((w,]|A)T
is a negative \-approrimate witness for R.

Proof. The proof follows easily from the definitions and properties of wit-
nesses in span programs and reflection programs.]

It is also possible to derive a span program from a reflection program,
as long as the rule for z — H(z) has the direct sum property that H(z) =
@D.cjn) Hiwi- The crux is in defining the map A simply out of |wo) and K,
but since we will not make use of this anywhere in this thesis we omit the
details.

70 CHAPTER 3. THEORY OF SPAN PROGRAMS

3.4 Algorithms for reflection programs

Section 3.3 dealt extensively with reflection programs, giving operational in-
terpretations of witnesses, errors, and witness sizes. It also established the
equivalence between positive and negatively approximating reflection pro-
grams, and the mapping from span to reflection programs.

It is now time to use all of the things we have defined and extensively
discussed and build novel quantum algorithms out of them. We begin with
an algorithm for reflection program decision. Later, in Section 3.4.2, we
will modify slightly the algorithm for span program decision to obtain two
algorithms capable of constructing a positive witness out of a span program.

3.4.1 Algorithms for reflection program decision

In this section we will describe an algorithm that decides a reflection program
even when this is not normalized. The algorithm consists of phase estimation
on the product of two reflections very similar to the span program unitary
U(z,R) of Section 3.2.3. In fact, the algorithm is a generalization of the
span program algorithms from [Reil0; Chi21].

We will begin with some notation. Let R = (H,{H(2)}zex, K, |wg)) be a
positively A-approximating reflection program for a function f: X — {0, 1},
and define its positive and negative witness complexities as

W+ :W+(f7 R) = I?a}il) 1U+($,R), (315)
rzef-1

W_=W_(f,R) = max @&_(y,R,e_(z,R)), (3.16)
yef~1(0)

where the positive witness sizes w,(z,R) are defined in Definition 31 and
approximate negative witnesses are in Equation (3.14). We have chosen to
use the wide hat notation to remark that this is the min. error approximate
witness size. In the next chapter we will use a slightly different notion of
approximate witness size, for which we reserve the wide tilde notation.?

In order to stress the difference between positive and negative instances
in the analysis, we will refer to the former with the letter x and to the latter
with the letter y.

%It is rather unfortunate that the wide hat in [Jef20] denotes precisely what we will
denote with a wide tilde. We do so to stay consistent with the notation in [CJO-+20].

3.4. ALGORITHMS FOR REFLECTION PROGRAMS 71

Let |0) be a vector orthogonal to H and define the state:

“W:f;%jﬂ@+%%)?ﬁx@+%%)

llwo
Wy

Define also the projectors:

I, = () + [0) (0, (3.17)
A =TI + [Wo) (Wyl. (3.18)

Our algorithm will use a variant of the reflection program unitary defined
as:

U, = (21, — I)(2A — I). (3.19)

We denote the orthogonal projector onto the (e')-eigenspaces of U, with
eigenphase ¢ € [—60,0] as Fj.

Observe that the state |Uy) is independent of the input z, and so is the
state]0} and the projector A. Only the projector II, depends on the input,
and we will show later in Theorem 53 that the cost of the reflection 211, — I is
the same as the cost of 2113,y — I. For reflection programs that come from a
span program, the cost of that last reflection is simply 2 queries to the oracle
(JIJ19, Lemma 3.1]). For general reflection programs the query complexity
will depend on the correspondence = +— H(z), which is left to the user. We
will go into more detail about the construction of these states and reflections
in Section 4.3 for the particular case of span programs. Until then, we state
the results in terms of calls to the unitary U,.

Theorem 45. Let R be a reflection program that positively \-approximates
a function f with X € [0,1). Then there exists an algorithm that evaluates

f with bounded error and makes O (&log ﬁ) queries to U,, where
W, W_ are defined in Eq. (3.15), and Eq. (3.16).

Proof. The algorithm will run phase estimation with precision C;V(— Vlw_A) on
+ —

the unitary U, with initial state |0), followed by Cy(1 — A\)~! rounds of am-

plitude amplification on top of phase estimation for a total of 0] <(—%)

applications of U,, where C7, Cy are some constants.

72 CHAPTER 3. THEORY OF SPAN PROGRAMS

For the analysis of the algorithm, let us start by assuming that z € f~1(1),
and let |w,) be the exact minimal witness for z. Define the vectors:

1 1
) = e (1004) =~ (104).
V14 572 @ Wy \/_ Wy
(3.20)
Observe now that I1,|V,) = |V,) because |w,) € H(x). If we manage to
show that |W,) is a l-eigenvector of A too, then we would have that it is in

fact a 1-eigenvector of U,. By definition, every positive witness is of the form
lw,) = |we) + |wi), where |wt) € K. It follows that

R wo))
%)= o (00 G+ it)
and
AJ,) =TI, + |%><%w)

)

L (wy) sy wo)
‘I’°’f'%>) =5 (wv— 10 W)
(3.21)

(e

o (i

This proves that for every x such that f(z) = 1, Py|V,) = |¥,) because it
is a O-phase eigenvector of U,. Since we chose |w,) to be the optimal positive
witness, it follows that ||(¥,[0)[|> = 1/u, > L. We conclude that for every
xr € X such that f(z) =1

|
E*

. 1 1
|Ps10)]* = 5 (3.22)

Notice how this does not depend on the precision we choose for phase
estimation. That will be determined by the negative instances.

Speaking of which, let us focus now on the negative instances y € f~(0).
We have already established that for positive instances, the amplitude of |0)
in the O-phase eigenspace of U, is at least 1/2. In order to have a function-
ing algorithm we will now show that for negative inputs, the state |0) has

small overlap with the eigenspaces of U, with eigenphases small enough to

3.4. ALGORITHMS FOR REFLECTION PROGRAMS 73

be confused with the O-phase space by phase estimation. The main technical
ingredient will be the effective spectral gap Lemma 5, which we restate here
for convenience.

Lemma (Effective spectral gap lemma). Let |¢) be a unit vector such that
A|¢) =0, let Py be the projector onto the eigenvectors of U, = (211, —1I)(2A—
I) with eigenvalues € with |y| < 6 for some 0 > 0. Then || PIL,|0)||* < 62 /4.

Let y be such that f(y) = 0, and let |@©,) be an optimal min. error negative
witness. Consider the state

0) - VT8 1 ~

Remember that we have defined A as A = Tl + |Wo)(¥o|. We will prove
that |¢,) is in the kernel of both terms. For the second one, we have

(0} = (101 = VT2 31) (10)+ o=l
1

= i (1 = (@ylwo)) =0, (3.24)
where we have used that |@,) is a negative witness in the last equality. This
proves that [Wo)(¥o|¢p,) = 0.

Remember, too, that the new state |0> is perpendicular to I, and by
Definition 38, every approximate negative witness is in K+, so Ix|¢,) = 0.
Therefore, we conclude that Alg,) = 0.

Let us assume for now that no exact negative witness exists for y. We’ll
deal with those later. By Theorem 42 we have that |w,) = 2{'—(“;@’9 is an
optimal exact positive witness. So we can define the state:

0) + —A—lw,)
|\ij> = \/_+ !

. |
14+ 2@ B N <|0> - WW@)) . (3.25)

+(
Wi

From equations (3.23) and (3.25) it follows that we can rewrite |0) and
lw,) as:

|6> = \/V_yHy|¢y> + \/W_+Hy|‘:}y> and |wy> = \/W-F (\/Iu_y|\11y> - |0>))

and so PY|0) can be expressed as:

74 CHAPTER 3. THEORY OF SPAN PROGRAMS

P0y|6> = \/V_ypgny|¢y> + W+e_(y)P9y (\/N_y’\py> - |6>) .

Grouping terms and recalling that e_(y) = 1/w, (y) we have:

W, A W,
1 PJ10) = P11 P\ /i, |9,,).
(+w+(y)) 5 10) = vy By y|¢y>+w+<y) o /Py Vy)

Luckily, |¥,) is a 1-eigenvector of U, for the same reasons |¥,) was one
for U, when z € f7!(1), and from the Effective Spectral Gap Lemma we
have that PyII,|¢,) = 0, which means that the two vectors in the r.h.s of the
previous equation are actually orthogonal. We arrive at:

w3
2 v 9 Hy o) 2
[P0 =5 BT [,)[" + 5 | B0,
AL AL
(1+25) (1+2%%)
1% 2 1 — 02 1
:T—%fﬂﬁmmm+zs0+wmﬁz+ﬁ.
(* w+(_y>>
(3.26)

What about y for which we have exact negative witnesses? As it turns
out, that case is easier. If a negative witness |w,) exists, then there is no
exact positive witness, |¢,) can be defined using the exact negative witness
but |¥,) cannot be defined, and II,|w,) = 0. It follows that

0) = V7 IL]6,),
and so, by the Effective Spectral Gap Lemma, we arrive at:

2
|R2I0)* = vy BT o) 1 < (1 W) 5

Now, let U, = 377" " [1);)(1);] be an eigendecomposition of U,, and let
0) = > i1 ajlib;) be a decomposition of 0) in the eigenbasis of U,. The
phase estimation procedure of Theorem 9 on U, with precision 0, accuracy
e applied to |0) produces a state |0/) := PE(U,,0,¢)|0) = > ey aglg)wi)p
such that, if ¢; = 0, |w;)p = |0)p, and if |¢;| > 6, then [(0]w;)p|? < e.

3.4. ALGORITHMS FOR REFLECTION PROGRAMS 75

For 2 € f~1(1), we showed that || P¥|0)||? = D jps—o lO* = 1, and so

m 2
NIE
110)€01p 107" = [|Y @;10) (0] plw;) pli;)
jfl
. 1
> Y Jol = IR0 22 = @27
Jipi=0
Meanwhile, for y € f~1(0) we have:
2 2
YOIV = D asl0)0lplw)pl)|| +]| D a;l0)(0lp|ws)ple;)
J:los1<6 J:ls >0
< 3 dalP D PO < 1BF10))1° + e
J:1¢51<0 J:l9s1>0
—~ 67 1
<A+WWo)— 4 — +e. (3.28)
4y
Remember that = 0 if y has an exact negative witness, and that

T + because R posmvely A-approximates f. Therefore, for all y € f~ ()

-\)
choosing a precision 6 = —1 /———=— and accuracy € = == we have:
gap 2\ 1+wiw_ y 16

R 1—A 1 1—A
0)(0[p|0]]? < =: Dy 3.29

A simple calculation yields pg — p; > %, so by Corollary 12, we can distin-
guish these two cases with O (%) calls to PE(U,,0,¢). Since each call

to Phase Estimation uses O (% log %) =0 (W+W* log +— /\) calls to U,, we

conclude that the f can be decided with O (WV W+W log A) calls
to U,.
Observe that it is not necessary that the state |wg) in the reflection pro-

gram be normalized. This construction bypasses completely the need for nor-
malization in [[J19]. We also note that the exponent 3/2 in the A-dependent

76 CHAPTER 3. THEORY OF SPAN PROGRAMS

factor of the algorithm complexity can be reduced to 1 if we know the true
spectral gap of U,. The flipside is that the complexity will depend on the
spectral gap instead of the span program complexity.

According to the discussion that follows Theorem 42, it is enough to find
an approximate negative witness with error ¢ = \/W, for every z € f~1(0)
to know for certain that f is A-approximated by R. Theorem 45 requires
us to find min. error witnesses — a strictly harder task — which can be too
restrictive, as will be the case in Chapter 4. As a corollary to Theorem 45 we
show how we can use e-approximate negative witnesses with error e = \/W,
instead of € = e_(x, R). The trade-off is that the range of the approximation
factor is reduced to A € [0,1/2). We use a relaxed version of the approximate
witness size defined as:

— A
W_=W_(f,R) = o (y,R, 2. 3.30
(f.R) [hax (y W+) (3.30)

We use the following corollary in Chapter 4.

Corollary 46. Let R be a reflection program that positively \-approximates
a function f with A € [0,1/2). Then there ezists an algorithm that evaluates

f with bounded error and makes O (VALSIS log — 2/\> queries to U,, where

1-2))3/2

Wy, W_ are defined in Fq. (3.15), and Eq. (3.30).

Proof. The proof follows parallel to that of Theorem 45. Let |@,) be an e-
approximate negative witness for y € f~(1) with error ¢ < \/W,. Define
the state:

0) + VIV |@,)

64) = Ll (\0)+ VI3
V1t Woi_(y) V7

As before, Alp,) = 0 because |@,) is a negative witness. Now, |0) =

VU loy) + VWL, |@,), so we give the following upper bound on the norm

of PY|0):

I 2 ~ 2
| PY10)||™ =wy 1ALy o) || + W (| P TLy[,) |
02 -
<vy 7+ Wil BIL[G,))

6> A

SIERUATEES LW (3.31)

3.4. ALGORITHMS FOR REFLECTION PROGRAMS 7

where in the first inequality we have used Lemma 5, and in the second we
have used that |@,) is a m%—approximate negative witness. Following the

proof of Theorem 45 we see that substituting this into Equation (3.28) we
obtain that for any y € f~1(0),

__ 2

110}01p[07) > < (1 + W) - + A+ e. (3.32)

Hence, as long as A < 1/2, we can choose precision § = %, /=22 and
2\ 1+wew_

accuracy € = % to obtain:

. 1 1-2X
/ 2 < -
HOYOIPIOMNI" < 5 = —5

Meanwhile, for x € f71(1), it is still true that

=:P1-

110)(01p10%[|* = = =: po.

DO | —

Using Corollary 12 we conclude that we can distinguish these two cases

with bounded error using O (m\/ W+W_ log ﬁ) calls to U,. O

3.4.2 An algorithm for witness generation

A long time ago, in the ancient and obscure depths of Section 3.2.2, we
referred to witnesses, positive and negative, as qualitatively analogous to
certificates, partial assignments of (x1, ..., z,) that are sufficient to decide f.
The existence of witnesses certifies that the target has this or that geometric
property, and their norm gives us an intuitive idea of how hard an instance
is to decide (recently formalized in [ACK20]). Something that often confuses
those who encounter span programs for the first time is that, for all the talk
about witness and how they act as “certificates” of sorts, the algorithms for
span programs do not try to find these witnesses. In fiction, and particularly
in film, this is called a McGuffin. An artifact that moves the plot forward
but does not play a role in the resolution. The staff of Ra.* The actual
algorithm goes along different lines. If positive witnesses exist, they are at
least this big, and so the span program unitary has this feature. If negative

4Famous McGuffin in “Raiders of the Lost Ark” - Steven Spielberg, 1981.

78 CHAPTER 3. THEORY OF SPAN PROGRAMS

witnesses exist, they are at least that big, and so the span program unitary
has that other feature.

Reflection programs, (and span programs as a special case) encode much
more information than just the one bit output of the function f they decide.
In [LJ19], the authors give two algorithms that can estimate the witness size
of an input. This is useful when the witness size is a quantity of interest, as
is the case for the st-connectivity span program, see Chapter 5. But what
if the witnesses themselves are objects of interest? Can we use the elements
of a reflection program to design an algorithm that makes calls to an input-
dependent unitary U, and outputs an optimal witness |w,)? This is precisely
the problem of witness generation.

Problem. Fiz a reflection program R = (H,{H(z)}.ex, K, |wo)), encoding
a function f: X C [¢|" — {0,1}. The witness generation problem is the
following: given an input x € f~1(1), find a quantum procedure that outputs
a normalized version of the state

w,) = argmin{||Jw)|* : s |w) = |wo), [w) € H(z)}.

We end this chapter by providing a novel algorithm for this problem. The
algorithm is a modification of the algorithm for decision problems analyzed
in the previous section.

As before, given a reflection program R = (H,{H(z)}eex, K, |wo)), let
|0) be a vector orthogonal to H, o > 0, and define the state

|09) = ;_ (|6> + @) _ L (|()> + @) : (3.33)

: (3.34)
A% =TI + |00) (W2, (3.35)

If the reflection program corresponds to a span program P = (H,V, A, |T)),
where K = ker A and |wo) = AT[7), then A® = I, 5a), Where

3.4. ALGORITHMS FOR REFLECTION PROGRAMS 79

In order to construct the positive witness |w,), we will need an estimation
of ||Jw,)| with multiplicative error ¢ = O(1). This is the purpose of the
following lemma.

Lemma 47. Let R be a reflection program deciding a function f and let
x be a positive input. Let |w,) be an optimal positive witness for x in R,
wy () = |||wy)||* be the exact positive witness size of x for R, and @_(z) be
the min. error negative witness size for x in R. Then there exists a procedure

that with bounded error outputs a number a? € (erT(x),Qer (a:)) and makes

@ (x/er(x)ﬂV)_(x) log(wy(x)) loglog W+> controlled calls to Uy, = (211, —

I(2A* — 1), where W is an upper bound for wy(z) and o > 0 can change
from one call to the next.

The result of this lemma is rather similar to that of Theorem 29 from
[L719]. The differences are that this lemma is proven for reflection programs
and we restrict ourselves to error O(1), and that the complexity is slightly
improved. In the interest of clarity, we will prove Lemma 47 after we prove
Theorem 48.

Theorem 48. Let R be a reflection program deciding a function f and let
x be a positive input. Let |w,) be an optimal positive witness for x in R,
wy(z) = |||wa)||* be the exact positive witness size of x for R, and @_(x)
be the min. error negative witness size for x in R. Then there exists a
procedure that succeeds with probability > 2/9 and for any € > 0 prepares

a state |w) such that H\u?) 1) H2 = O(e) using 6(w+(37)@f<55>> +

— Twa)]

NG
can change from one call to the next.

O (—M(‘r)@_(w)) controlled calls to Uy o = (211, — I)(2A% — 1), where o > 0

Proof. The proof follows from two observations on the proof of Theorem 45.

First, observe that the states |¥,) are a combination of |0) and the state
we are interested in, |w,), and these two can be separated because |0) is
perpendicular to H. Hence, if we could approximate |V,), we could distill
\w,) from it.

Second, we will show that the post-measurement state after we perform
PE(Uy,0,€) on |0) and project onto |0)(0|p is close to |¥,). The param-
eter o allows us to control both the probability of obtaining |0)p in this
measurement and the weight of |w,) within |U,).

80 CHAPTER 3. THEORY OF SPAN PROGRAMS

Let « be such that f(z) = 1 and let |w,) be the optimal min. error negative
witness for z in R. With a slight abuse of notation, define the vector

6,) = — L olea) (3.36)
V14 ?w_(z)

where « is left implicit. It is no coincidence that we use the same notation
as in Eq. (3.23). Indeed, if we chose o = /W, we would recover the same
states we use there. Now, following the same proof we used in Theorem 45,
we can see that A%|¢,) = 0. We will use this later to apply the effective
spectral gap lemma to |¢,). How about the other projector? Observe that
Hz|0> = |6>> 50

B 0) — o1, |w,)
ILel¢z) = 1+ a2ﬂ7_(a:).

Again, we define the quantity v, = 1 + o?w_(z) to simplify the expres-
sions. Then, isolating |0) from the equation above we obtain

10) = V2ol 6,) + oIl |w,).

Recall that the last term of this equation has already appeared in Theo-

rem 42 as L, |w,) = Iy |ws) = |wy)e—(z) = Ulf”(”i), where |w,) is an optimal

exact positive witness for z. All in all, we have that |0) can be expressed as

. «

0) = Vvl |dp) + ——|w,). 3.37

0) = VFILIgn) + sl (337

Now, let us define yet another state related to \6) and the optimal positive
witness |w,),

0) + 4 lws)

v,) = (3.38)

14w

a2

As was the case for vectors |¥,) in the proof of Theorem 45, this vector
is in the 1-eigenspace of U, ,. We can rearrange terms to express |w,) as

we) = a (Vi V) —10)) (3.39)
w ()

where ji, = 14 =57 Putting together equations (3.37) and (3.39) we arrive
at

3.4. ALGORITHMS FOR REFLECTION PROGRAMS 81

_ VW w+(1’)vﬂx\11
0) = o Haloa) + V)
1+ 1+
w4 (z) w4 (x)
N 1
= 02 Hx|¢a:> + |\I/$> (3'40)

So far, we have only rewritten |0) in a way that is advantageous for us,
but we have not done anything to this state. Remember that the goal is to
process |0) to extract |w,) from all this. The first step in our processing will
be to apply the Phase Estimation procedure of Theorem 9 with unitary U, ,
to the state]6} with precision # and accuracy €. Then, we project onto the
|0) p state in the phase register created by the phase estimation.

More formally, let U, o = 37" €' [1);) (1] be an eigendecomposition of
Up.a, and let |0) = > i1 Bilv;)° be a decomposition of 0) in the eigenbasis of
Uszo. The phase estimation procedure of Theorem 9 on U, , with precision
0, accuracy ¢ applied to |0) produces a state |0) := PE(U,q,0,¢)|0) =
> iy Bils) [wj) p such that, if @; = 0, |w;)p = |0)p, and if [p;| > 6, then
{0|w;)p|?> < e. Therefore, we have two alternative decompositions of |0):

‘0> :Zﬂﬂ% Z 5]‘7/11 + Z 5JWJ
j=1

Jipi#0 Jip;=0
A~ 1%
0) =Y 1,0,) +
e VHa

Now, remember that U, |V,) = |¥,) and that || PyIL,|®,)| = 0 (just apply
the effective spectral gap with 6 = 0). This means that the two decomposi-
tions match term by term. That is

S Bluy) = “_ LD and 3D agle) = =),

32070 T 0@ J:p=0 vV Ie

5We have switched to betas for the amplitudes of the phase spaces here because « is
now a free parameter.

82 CHAPTER 3. THEORY OF SPAN PROGRAMS

Applying PE(U,.4, 0, ¢) to |0) produces a state |0) = PE(U,.4,0,)|0) of the
form:

07) :Zﬁy‘wy wi)p = Z Bilvi)|w;)p + Z Bilv;)10)p

J: 90]750 Jip;=0

:M%O Bili)|w;)p \/M—z

Here we have used that phase estimation correctly identifies O-phases. We
use the other property of the Phase Estimation Algorithm when we project
into the |0)p state in the phase register.

10)(0]p|0") =

¢—!‘If FY BleOde Y B0k | 0
fe Jiles]<0 Jiles|>0

;70

S+l |¢>) 0)r. (3.41)

Here, the state |¢) has norm |||¢€)||* < € because we are performing phase
estimation with precision 6 and accuracy €. We use the Effective Spectral
Gap Lemma to bound the norm of |n) as:

2

m 2
Vs . _
P < > 18P = || FL|é) | < (1+*d_(2)) —.
. 1+ 4
J:IsDQOSG w (z)
©

The probability that we obtain |0) p when we measure the phase register
is:

2) 2 1
< (14 a*w_ —+—+e.
(1+ *w_(z)) I

\/_
(3.42)

At this point, we choose the precision of phase estimation to be 6§ =
\ /1+a—w() Altogether, the probability of obtaining |0)p is:

1 S it RALRAs

s 110)0] 0]

3.4. ALGORITHMS FOR REFLECTION PROGRAMS 83

1 A 1
< 1110)/0] p|0)||* < . %, (3.43)

and the post-measurement state will be:

0)(0| p|0" 1 +

0 |P|A/> = ——U.)[0)p + Mymp. (3.44)
100110 /72 [[10){01210) | [10)¢01p107)]
In particular, the amplitude on the state |¥,) will be at least ﬁ and

the amplitude on the garbage state |n) + |€) will be at most /2. We see
now that our choice of a will affect us in two ways. First, it determines the
probability of obtaining |0)p if we measure the phase register after phase es-
timation. Second, it determines the “quality” of the output state if we obtain
|0) p if we measure the phase register after phase estimation.

Let D, denote the 2-step procedure consisting of:

1. Apply PE(U,,0,¢) to |0) with 6 = ,/ T &

2. measure the phase register in the computational basis.

We say that D succeeds if the outcome of the measurement is |0)p. The
probability of success and the post-measurement outcome is what we just
computed.

The optimal choice would be to pick @ = \/w,(z), because then the
success probability would be ~ 1/2 and the output state would be € close
to |W,). Since we do not know /w, () we will use Lemma 47 to obtain an

estimate o2 € (MT(I), 2w+(x)).

At last, we few, we merry few, are ready to finish the proof. Running D on

PE(U, . ,0,¢) with precision § = O (;> =0 < #) and

a?w_(z) z)w—(z)

accuracy € will succeed with probability psucc > 1/3 (because a? > er—("E))7

2
and produce a state |¢)) such that |||¢) — |U,)[|* < O(e).
Since a? < 2w, (z), with a further probability of 1/3 — ¢, this state |¢)

|wa)

2
can collapse onto a state |w) such that H |w) — WH < O(e) by projecting

84 CHAPTER 3. THEORY OF SPAN PROGRAMS

onto the space perpendicular to |0).

The total cost of producing |w) is the cost of running D, on PE(U, ., 0,¢),
whic s O (/=22 =

)

In the last theorem, we used Lemma 47 to obtain an estimate a? €
(MT(I), 2w+(:1:)). We now give the proof of that statement.

Proof of Lemma /7. The proof follows parallel to the proof of Theorem 48.
Recall that we defined D, to be the 2-step procedure consisting of:

1. Apply PE(Uyq,0,¢) to |0) with 6 = |/ &

2. measure the phase register in the computational basis.

We say that D succeeds if the outcome of the measurement is |0)p. The
probability of success and the post-measurement outcome are in equations
(3.43) and (3.44).

Thankfully, the success probability is extremely well behaved with regards

to o and . Assume a constant but sufficiently small accuracy, say ¢ = ﬁ.
Then, the success probability of D,, is:
1 1 1
—— < succ Da S DTSy AN
1y e = PP S e+ g
Now, consider the three following ranges of a.
1 1 21
it a2 < %0 hon pee@a) € [0, 4 1| = o, 22 3.45
o< = then pae(Pa) € |0, 54 75 "100) (3.45)
i 19 1 1 19 35
a2 |20 @) g @ e [1 L] g |19 35
| T Ty | thenpaee(Pa) € 1905: 5+ 355 | < | 100 T00
(3.46)
[w, (x) 1 51 32 51
If o e then paee(Da) € |5y | € |, —| . (347
a” € I 2 7’LU+(£L'):|, €1 p, ()6 |:37 100:| = |:1007 100:| ()

Let Decide(D,) be an algorithm that with high probability returns 1

if psuce(Da) > %, returns 0 if pguee(Da) < %, and returns any bit if

Psuce(Da) € (12—010, %). We will later construct a quantum algorithm that

3.4. ALGORITHMS FOR REFLECTION PROGRAMS 85

does exactly this. Let us for now assume that the algorithm outputs a cor-
rect answer every time it is called.
Let W, be an upper bound for w, (z) for all z € f~!(1).

Algorithm 49.

1. Set o = 1.
2. Fori=1,...,|log(W,)]:

(a) If Decide(D,) = 1, return 2a?.
(b) Else, set o?,, =203

3. return 1.

First, of all, notice that w.(x) > |||wo)|* = 1, since we assume |wp) to
be normalized. This is not necessary, but it is convenient. Assume that
in the first iteration, Decide(D,) returns 0. Otherwise, we would already
have o? > w, (z)/4 and so the output of the algorithm is correct. Notice
that in the iteration i = |log(wy(z))| the algorithm will terminate with

w4 (x)

high probability since a|iog(u, @) = 208w+@) € [T,er(x)}, and so

Decide(D,,) should output 1 by (3.47).

Let i, be the first time Decide(D,) outputs 1. That can be because

Psuce(Day.) > % or because we got lucky and pgyec(Da,,) € (12—010, %). In

either case, we know that puce(Da,.) > 1, and so a2 > & by (3.45).
Similarly, in the previous iteration the output of Decide(D,, _,) was 0.
That means that psec(Da,. ;) < 32 and so ol 4 < we(2) by (3.47).

100° 2
Since o = 2a7 _, we obtain

ol € (wz(”r),w(x)) . (3.48)

Hence, the algorithm returns a value a? = 204% in the range <““’T(x), 2w+(x))

if every step succeeds. Let us now define Decide(D,,) exactly and show that
this happens with high probability.

Consider the procedure D, with ¢ = 1/200, but instead of measuring
in the last step, we apply the unitary that maps |0)p — |0), and maps all
phases different from |0)p to |1). This would create a state of the form

86 CHAPTER 3. THEORY OF SPAN PROGRAMS

VP()|0)[¢hgo0a) + /1 = p(a)[1)[Vbaa),

where p(«) is precisely psucc(Do). Then, we can apply the Amplitude Dis-
crimination Algorithm from Corollary 12 to distinguish the case pguee(Da) >

32/100 = p; from the case puce(Da) < 21/100 =: po using O (}%) —0(1)
calls to PE(U, 4,0, ¢). This algorithm succeeds with probability 3/4, which
is not enough, so we repeat it loglog(W¢) times for some constant C' and
take the majority. We call this procedure Decide(D,,). The success proba-
bility of one run of Decide(D,) is 1 — Wll/‘@' Since Algorithm 49 makes at

most logw, (z) calls to Decide(D,,), the total success probability is

logw ()
P _ g leewe@)y (3.49)
Clog W, log W

Thus, the cost of obtaining an estimate a? € (“”T(“T), 2w+(x)> with bounded
error is O(logw, (x)) times the cost of Decide(D,,), which is loglog W times
the cost of PE (ULQ,H,@ = ﬁ) with 6 = 1/1+a;4—1%,(x) and 1 < a? < w,y(x).
We conclude that the total number of calls to U, , is

O (x/w+(x)ﬂ7,(x) log(wy (x)) log log WJr) :
[

The error dependence of Theorem 48 can be exponentially improved if we
have a lower bound for the phase gap of U, ,. We have already discussed in
Section 3.2.3 how Ito and Jeffery give an algorithm for span programs that

maxg W— ()
/2

= (see

estimates the witness size with query complexity 9] (\/ w+(2)

Theorem 29). Observe how this is not exactly the same complexity we achieve
in Lemma 47. What we did not mention is that they also give an algorithm

that estimates the witness sizes w4 (x, P) with complexity 0] (%ﬁ),

where A(U(z, P)) is the smallest non-zero phase of the span program unitary
Uz, P).

In the last theorem of the chapter, we modify the proof of Theorem 48 to
give a second algorithm that approximately constructs the optimal positive
witness. The algorithm makes use of the true phase gap of the span program

3.4. ALGORITHMS FOR REFLECTION PROGRAMS 87

unitary to achieve an exponentially better dependency in the approximation
error €, but has different dependence on other parameters. Before that, we
prove a lemma that relates the phase gaps of U, , and U(z, R).

Lemma 50. Let R = (H, {H(2)}rex, K, |wo)) be a reflection program, and
let x be a positive input for R. Define U(z,R) = (2l — I) (2Hym) — 1) and
Upo = (211, — IN(2A* — I). Then, for any a > 0, A(Up.o) > AU (2, R)).

Proof. In this lemma, we deal with two different unitaries which do not act
on the same space. Indeed, U(z,R) acts on the H space of R, while U, ,
acts on a slightly larger space H' := H @span{|0)}. Therefore, we have to be
very careful when using perpendicular spaces. For that reason, we reserve the
overline and 1 notations for perpendicularity in H’' and H respectively. In
equations, let A C H’' be a subspace, then I14 := I,y —I14 and I1 1 = I, —I14.

It is an immediate consequence of Jordan’s Lemma proven in Corollary 2
that the phase gap A(U) of a unitary U = (2114 — I)(2I1p — I) is related to
the smallest non-zero singular value of its discriminant D = 411z, o (D)

through the equality
A(=U
sin (%) = Opmin(D). (3.50)

Alternatively, we can write this last equation as sin (#) = amin(f)’),

where D/ = II4I5. Now, choosing A and B such that A® = II4, and

[T, = IIg, we have that
A Uxoz ~
sin(<27)) = Omin <D,)7

where D’ := A°Il,. Let us look more closely at this operator D'. Let |we)
be the vector define in Equation (3.33).

D' =R"1L, = (Iiy — A°) 1L, = (Ip — I — jggy) T,
=TI 1L, — Mgyl = (IH’ - HWS‘)) Il = ﬁ|‘1’6‘>ﬁ’cn”’” (3.51)

In the last line we used that |0) and |w) are orthogonal to K, and so |¥§) €
K. Let us denote the last product of projectors as D := IIcIl,, and consider

88 CHAPTER 3. THEORY OF SPAN PROGRAMS

the state .
_10) + Flwa)

[Va) = ———,
/1 4 llwo)|?

where |w,) is an optimal positive witness for 2 in R. Our goal now will be

to relate the spectral gap of D, i.e. its smallest non-zero singular value, with
that of D’. Observe that

(10) +221) oy 4 Tche)

D) =IIxIL, T \/%“ (3.52)
0) + Lol
0+ k733 (3.53)

N

This equality relies on the fact that |w,) is an exact positive witness, and
so |w,) € H(x) and Tlx|w,) = Hxi|w,) = |we). Most importantly, it shows
that [Wg) is in the image of D.

This is almost identical to [IJ19, Theorem 3.11], so we follow the proof
there.

Since |¥§) is in the image of D, we can find an orthogonal basis of D
of the form {|po) = |V]),|p1),...,|Pr-1)}, and we can write Das D =
S l@i) (vl for [v;) = Df|¢y). Then, D' = Mgg,D = Si_!¢y)(vi], and
col D' = span {|gb) € col D : (P|¥g) = O}. Hence, the spectral gap of D' is

wn

O

o e]
Omin(D') = min_ L = min TS
weead (W)l wecoDiwwgy=0 [lw)]
(D D] _
= min - > min_ = Omin(D).
wecoD:wvg)=0)l wecod |||

Finally, we relate Ekack to U(z,R). Notice that H' is only slightly
bigger than #, and that IIx = II1 +]0)(0|. Together with the fact that II,
is defined as IL, = Ilyy) + [0)(0] we have that

D = i My + [0)(0),

3.4. ALGORITHMS FOR REFLECTION PROGRAMS 89

hence uin(D) = Oumin(Ilc1 Iy (y)). From this and Equation (3.50) follows the
result A(Uy.o) > A(U(2z,R)). O

Without further ado, the algorithm.

Theorem 51. Let R be a reflection program deciding a function f and let
x be a positive input. Let |w,) be an optimal positive witness for x in R,
wy () = |||w,)||* be the ezact positive witness size of x for R. Let U(xz, R) =
(2IL — I) (2ITyye) — 1) and assume that its phase gap A(U(x, R)) is known.
Then there exists a procedure that succeeds with probability > 2/9 and pre-

2
pares a state |W) such that H |w) — —lezi” ” = O(e) using O <logwggg)(f§3k;)gw+>+

1
@) (%) controlled calls to U, o, where W, is an upper bound on w,(x),

and o > 0 can change.

Proof. The proof proceeds parallel to that of Theorem 48 up until Eq. (3.54).
Nonetheless, let us remind the reader of the setup. We start with a unitary
Upo = (211, — I)(2A* —I), and a state 0), and apply the procedure D° that
now performs PE(U,,.0,¢) with precision § = A(U(z,R)) and accuracy
¢ to the state |0), and then measures the phase register. If the procedure
succeeds and we obtain |0) p, the unnormalized output is:

. 1 m m
)= Vs ACHAUL 7195) (0] w;
10)(0] p|0") m') +j:|%|j<95 [¥;)(0]w;) p +j%j>eﬁ 1) (0lw;)p | 10)p
©j 70

1
=(wﬁ%wm+m)wa (3.51)

The difference being that, this time, |n) = 0 because by Lemma 50, A(U,. o) >
A(U(z,R)) and so |0) is not supported in eigenspaces of U, , with non-zero

cigenphase < § = A(U(x,R)). The state |£) still has norm |||€)||* < ¢ by
Theorem 9. We conclude that the success probability of D is

1 N 1
ESWW%MW§E+& (3.55)

6Since the precision of phase estimation does not depend on «, we dispense with it.

90 CHAPTER 3. THEORY OF SPAN PROGRAMS

where p, =1+ “’;—S‘) The post-measurement state is

0)(0[p]0") 1 1
T = sol¥) oo
10010 v/ [[10) (0L 110) (01|
Observe that the success probability is almost identical to that of Equa-

tion (3.43), and the post measurement state is similar to that of Equation
(3.44). The only differences are that now we have reached this point doing

€. (3.56)

phase estimation to precision A(U(x,R)) instead of m, and that

the garbage state is slightly different.
Therefore, we can recycle the machinery detailed in Lemma 47, in partic-
ular Algorithm 49 and Decide(D). As was the case there, the optimal choice

of ais @ = Jwy(z), and an estimate «a, € [\/er(x)/Q, \/2w+(x)} can be
obtained with O (logw. (z)) calls to Decide(D), which makes O(loglog W)
calls to phase estimation on U, , with precision § = O (A(U(z,R))) and
accuracy € = 1/100.

Once we have that estimate, we run D, which will succeed with probability
> 1/3 and generate a state |¢)) that can, with probability 2/3, be further

projected onto a state |w) such that H |w) — |\}ZZ§II H
. . log w4 () loglog W log% >
The total cost of these operations is O (AU @.R) > +0 (A(U(LR)) .

3.5 Discussion

This chapter takes the reader on a journey through the theory of span pro-
grams, from its first application to quantum computing to the newest under-
standing of the topic. We do not claim, however, that this is the only way
other people think about span programs, or the only notation they use, far
from it.

Still, we hope it has become clear, as the formulation has progressed,
that span programs are a good match to bridge the gap between decision
problems and quantum algorithms. They allow us to encode and understand
these functions in geometrical and in linear algebraic terms. Moreover, the
algorithms that we compile out of them are all cut from the same cloth of
amplitude amplification, phase estimation and products of reflections. Con-
sidering that all functions admit a query optimal span program, it follows

3.5. DISCUSSION 91

that phase estimation, amplitude amplification, and products of reflections,
arranged in some very regular and predictable way are sort of universal sub-
routines.

By this we mean that they suffice to construct query-optimal algorithms.
The informal truism that all quantum query algorithms are clever combina-
tions of the same three or four pieces is essentially, well, true. In the next
chapter we will see if and when the truism extends to time complexity (it
does, sometimes).

Reflection programs, our first innovation in this chapter, serve the same
conceptual role as span programs. They bring a cleaner notation that sim-
plifies the proofs of the algorithms in Section 3.4, but at the end of the day,
the proofs could be adapted to the span program notation of [IJ19].

The real raison d’étre of reflection programs, however, is that they give
us greater insight of the inner workings of a span program. In particular,
they make the geometrical and operational interpretations of Sections 3.3.1
and 3.3.2 possible. The original goal was to build an increased intuition
that would allow us to solve Conjecture 40. The fact that we state it as a
conjecture says it all about the author’s success in that regard, but is not
the end of the story. As we write these lines, our colleague and co-author
Arjan Cornelissen claims to have found a way to decide a A-approximating

reflection program with O (W:VIV/JF/(l -)\)) calls to U,. To the best of

the author’s knowledge, who has been privy to that manuscript, that proof
is correct.

The algorithm that we give in Section 3.4.1 decides a function f that is
A-approximated by a reflection program for any A € (0,1). The complexity
of the algorithm, depending on the positive and min. error negative witness
sizes. That means that in order to apply this algorithm, the user must
bound the min. error witness size, i.e. find a min. error witness. This can
be difficult. Still, we built the algorithm because we felt it was necessary to
give an algorithm for approximate reflection programs, even if it is not much
different from the current algorithms for approximate span programs. More
importantly, the algorithms for witness generation are built on the back of
this decision algorithm.

In the next chapter, we will construct a span program out of a query
algorithm and show that it A-approximates the same function the algorithm

92 CHAPTER 3. THEORY OF SPAN PROGRAMS

decides. We will do this by finding e-approximate witnesses with ¢ < m%
But we will not then go and find min. error witnesses. This means that we
will need to use the algorithm in Corollary 46 instead of that in Theorem 45.

Alas, this is the current state of affairs. We can have an algorithm that
decides a function A-approximated by a reflection program R for every \ €
[0,1) but requires us to bound the min. error negative witness size of f for
R. Or we can have an algorithm that decides a function A-approximated
by a reflection program R and only requires us to bound the e-approximate
negative witness size of f for R with ¢ = A\/W,, but works only for \ €
[0,1/2). It remains an open problem how to construct an algorithm that
works for every A € (0, 1) and whose complexity does not require the user to
find min. error witnesses.

We closed this chapter with two algorithms for state generation that are
of independent interest. In Chapter 5, we will discuss a possible application
of state generation to finding short-ish paths. Another possible direction of
future research is to understand if these algorithms can be used to reason
about the state generation problem.

The connection between span programs and adversary bounds is only
completely mapped for two-outcome functions. It is an open question whether
our formalism can be used to better understand the generalized adversary
bound and function evaluation through the non-binary span programs in-
troduced in [BT20]. We have discussed how span programs correspond to
dual solutions to the general adversary bound. Much less is known about
span programs and dual solutions to the positive adversary bound (a weaker
version of the former). It is a well established fact that this positive adver-
sary bound is strictly weaker than the general bound in some cases. Span
programs could be an alternative way to understand what goes wrong and
when.

Chapter 4

Span programs and time
complexity

4.1 Overview

This chapter is based on joint work with Arjan Cornelissen, Stacey Jeffery,
and Maris Ozols [CJO-+20]. We make progress in understanding the rela-
tionship between span programs and quantum time complexity by showing
that for any decision problem, it is possible to design an almost time-optimal
quantum algorithm (i.e., optimal up to polylogarithmic factors) using the
span program framework. We do this by giving a construction that maps
any quantum algorithm to a span program. The problem of mapping an
arbitrary quantum algorithm to a span program has been considered pre-
viously. In [Rei09], Reichardt showed how to convert any quantum query
algorithm with one-sided error to a span program whose complexity matches
the algorithm’s query complexity. This was extended to the standard case of
(two-sided) bounded error quantum query algorithms in [Jef20)].

We modify their construction to take any quantum algorithm with time
complexity T and query complexity S, and map it to a span program with
complexity O(S), such that the unitary U associated with the span program
can be implemented in time 7'/S, up to polylog(T') factors, meaning that the
algorithm compiled from the span program has time complexity (’3(T).

The major theoretical implication of this result is that for any decision
problem, one can find a quantum algorithm that is optimal in not only space
and query complexity, but also time complexity, using the span program

93

94 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

framework. Moreover, using our construction we prove that these three fla-
vors of optimality can be achieved simultaneously. Thus, we can definitively
say that span programs are quantum algorithms.

Algorithms as inputs This construction takes an algorithm and uses it to
define the elements #H,V, A, |7) that form a span program. We discuss what
we mean by this in Section 4.2, where the access to an algorithm is defined
through three distinct oracles. The span program algorithm then uses these
oracles as subroutines to decide a function.

Time complexity of implementing a reflection program The algo-
rithms in Section 3.4 for reflection programs have their complexities specified
in terms of queries to unitaries U, ,. In Section 4.3, we give an account of
the different subroutines necessary to implement the reflection program algo-
rithms from Chapter 3. In this chapter we will only make use of the algorithm
in Corollary 46, and only to evaluate span programs, which are a special case
of reflection programs. Therefore, reflection programs will not feature in this
chapter anywhere after Section 4.3.

Implementing subspaces As we said, we will define a construction map-
ping any algorithm to a span program. In the analysis of the time complexity
of the span program’s algorithm, we identify an input-dependent subspace
of the state space which we are guaranteed to stay within throughout the
execution of the span program algorithm. This allows us to drastically de-
crease the implementation cost of some of its subroutines. We refer to this
subspace as the implementing subspace, and we believe that this technique
can be used to analyze the time complexity of a wider variety of algorithms
than those considered in this text.

Span programs for bounded error algorithms As we said before, the
problem of mapping an arbitrary quantum algorithm to a span program
has been considered previously in [Rei09] and extended in [Jef20], where an
explicit mapping from algorithms to span programs was shown to map query
complexity to span program complexity. We extend these results to time
complexity in Sections 4.4, and 4.5, showing that a quantum algorithm with
time complexity 7" and query complexity S can be mapped to a span program

4.1. OVERVIEW 95

that, if compiled back into an algorithm, can be implemented in time (5(T),
and O(S) queries.

It is natural to ask if our result, and in particular our construction map-
ping quantum algorithms to span programs, is of practical relevance since
normally quantum algorithms themselves are the end goal in designing span
programs. One reason that it can be useful to convert a quantum algorithm
into a span program is that span programs compose very nicely [Rei09] —
more so than quantum algorithms. It can thus be desirable to convert sev-
eral quantum algorithms to span programs, compose them, and then convert
the result back to a quantum algorithm.

Variable-time search To illustrate this, we improve a result of Ambai-
nis [Amb10] for variable-time quantum search in Section 4.6. Given n bounded-
error query algorithms evaluating Boolean functions fi,..., f, with costs
C1,...,C,, respectively, Ambainis provides a way to evaluate the function
[=V, fi with cost O(\/> 1, C?). We left the notion of cost purposefully
ambiguous here, as Ambainis’s construction allows for defining any notion
of cost associated with providing uniform access to the algorithms, i.e., the
ability to apply the gate that is executed at any given time step in any of
the algorithms. The resulting algorithm depends on the notion of cost se-
lected, and from Ambainis’s construction, it is not apparent how one would
obtain the claimed scaling in multiple notions of cost simultaneously. More-
over, Ambainis’s construction assumes that all instance-independent gates,
i.e., all operations that are not part of the original algorithms, have cost zero,
which means that a proper analysis of the time complexity of the resulting
algorithm evaluating f is lacking.

Our result improves on Ambainis’s result in the following manner. If
the n original algorithms have query complexity Sy, ..., .S,, time complexity
Ty, ..., T,, and we have efficient uniform access to them, then we can evaluate
f with bounded error with O(y/>""" | S?) queries and O(\/Y -, T7?) gates.
Moreover, the number of auxiliary qubits introduced is at most polylogarith-
mic in T = max;e), T; and n. Thus, we achieve the desired scaling in the
query and time complexities simultaneously, while also counting all instance-
independent gates in our analysis of the time complexity of the resulting
algorithm.

We achieve this result by converting the original algorithms into span pro-
grams, which we subsequently compose using techniques from [Rei09]. We

96 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

turn the resulting composed span program back into an algorithm, reusing
some ideas from [Amb10|, and using our technique of implementing sub-
spaces.

Perhaps the most interesting future direction suggested by our work is
to find new algorithm composition results by turning algorithms into span
programs, taking advantage of the relative ease of span program composition,
and then converting the result back into an algorithm.

4.2 Accessing an algorithm as input

Throughout the rest of the chapter, we will consider algorithms that, among
other things, take other algorithms as input. This section concerns how we
model this through several oracles. The model is essentially a generalization
of the one used in [Amb10].

Let m € N and let A = {AM, ... A™} be a set of quantum query
algorithms. For every j € [m], let TU) be the time complexity of AW, let
SU) C [TU)] be the set of time steps at which AY) performs queries to the
input, let Ul(j)7 ce U;@) be the sequence of unitaries in AY), and suppose that
AU) evaluates a function f; : X&) C {0,1}"” — {0,1} with bounded error.
For convenience we define Thya = maxjcpy 7V and npax = maxjepn n'?,
and we assume that all unitaries Ut(j) act on some space Clmax>W - where
the first register is large enough to hold the input bit label for any of the
Boolean functions f;.

We define three different oracles associated with A. First, the algorithm
oracle, sometimes referred to as Select, acts on Cl™X[Tmax]X[rmax] XV 54

Vj € [ml,t € [T\ S, [p) € CmesW 0 |5)[B)]0) =) [DUF).
Second, the query time step oracle, which allows us to determine whether

a given algorithm AY) performs a query at a given time step t, acts on
(C[m}x[TmaX] as

=l)lt), ifte S,

j € [m] (] s+ {|j>]t>, otherwise.

Finally, given a list of inputs x = (z(), ... 2(™) where 20) € {0, 1}”(j) is

4.2. ACCESSING AN ALGORITHM AS INPUT 97

the input to function f;, the input oracle to = acts on ClmlxInmax] gg

2

Vj € [m], Op =) |i)(jl ® Oy, where Vi € [n5], Oy :]i) = (1)

j=1

i),

On computational basis states that are not specified above, the behavior of
the three oracles can be arbitrary.

By saying that we have uniform access to the set of algorithms A, we
mean that we have access to these three oracles O 4, Os and O,. Moreover,
if the time complexity of implementing the oracles O 4 and Og is polyloga-
rithmic in T = max e T and m, then we say that we have efficient
uniform access to A.

Note that if m = 1, then the first register in all above oracles only contains
one dimension and hence can be omitted. In that case, we drop all the
superscripts and O, reduces to the regular input oracle O, that we defined
in Equation (2.2).

These oracles fully capture the set A and provide an interface for the
higher-level algorithms to execute the algorithms in A as subroutines. From
a computer science point of view, one can think about these oracles as black
boxes provided the user. To use our results for a particular set of algorithms
A, one has to provide implementations of these three oracles. The machinery
we develop in the remainder of this text then takes care of the rest of the
construction, and our analysis provides the number of calls made to these
oracles, alongside with the number of extra gates used.

A natural question to ask is how difficult it is in general to implement
these oracles. If the algorithms from A are very unstructured, then it is
in general very time-consuming to implement these oracles. In that case,
one could implement O 4 and Os by querying a quantum read-only random
access memory (commonly referred to as QRAM) storing the algorithms
AU) as lists of gates. A similar model, called quantum random access stored-
program machines was recently formalized in [WY20)].

However, quantum query algorithms that we encounter in practice can
usually be described very succinctly, and we have some efficient constructive
procedure to calculate what gate has to be applied in the jth algorithm at
the tth time step and at what time steps the algorithms perform a query.
These procedures can be used to implement the oracles O 4 and Og efficiently
and provide us with efficient uniform access. For the query oracle, one can
usually provide an efficient implementation of O, as well if the individual

98 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

O,u»’s are similar to each other (think, for example, an oracle for the AND
of st;-connectivity span programs on the same graph G could be made out of
the oracle for GG). All of these constructions are always instance-dependent,
though, and hence we cannot elaborate on them further without losing gen-
erality.

We conclude this section by remarking that this final argument is more
generally applicable to oracular algorithms. The results about query com-
plexity are in general most interesting and applicable in a setting where the
oracles themselves can be substituted by efficient algorithms. The same goes
for the uniform access model we consider here.

4.3 Time complexity of a span program algo-
rithm

We now turn our attention to the time complexity of the algorithms for
reflection program evaluation discussed in Theorem 45, and Corollary 46. We
will only apply the contents of this section to span program algorithms (hence
the title), but we prove the more general case of reflection programs for the
sake of completeness. We have established already that the algorithm consists
of phase estimation and amplitude amplification that calls on a particular
unitary U,. Since the number of calls to U, is known, the complexity of the
algorithm (typically time complexity), which we will sometimes call the cost,
will be determined by the complexity of U,. In this section we break down
this unitary into different subroutines dependent on R which we treat as
black-boxes, and express the cost of the algorithm in terms of the number of
calls we perform to those black-boxes, see Theorem 53. As such, this theorem
is not a true analysis of the time complexity of a span program algorithm
but a meta-analysis.

Admittedly, the proof of the theorem amounts to little more than book-
keeping, but it is important for two reasons. First, it gives us an account of
the resources to analyze once we settle on a particular reflection program; in
other words, it makes reflection program algorithms modular and simplifies
our lives. Second, it introduces the notion of implementing subspaces, which
are of relevance beyond the setting of reflection programs.

! The indiscriminate use of greek prefixes is a risky business. In some countries it can
get you a seat in parliament.

4.3. TIME COMPLEXITY OF A SPAN PROGRAM ALGORITHM 99

Before we analyze the time complexity, though, we first introduce the
concept of an implementing subspace. This subspace depends on the particu-
lar input x € {0, 1}", and has the property that it is often much smaller than
the ambient Hilbert space H. Most importantly the state vector remains in
this subspace throughout the execution of the reflection program algorithm.
Therefore, all operations in the reflection program algorithm need only be
defined in this subspace to ensure successful computation of the span pro-
gram. We restrict ourselves to Boolean alphabets because it simplifies the
proof here, but the statements also hold for non-Boolean alphabets.

Definition 52 (Tmplementing subspace). Let R = (H, {H(x) }rex, K, |wo))
be a reflection program that positively A-approximates a function f : X C
{0,1}" — {0,1} with A € [0,1). Let x € X and let H, be a subspace of H
such that:

o Myer(yHe € Ha-

0y He € Ha.

. |0) € H,, where |0) is the all-zeros computational basis state.
- wo) € Hy

B~ W N

Then we refer to H, as an implementing subspace of R for x.

For any x € X, a valid implementing subspace H, of R for = is H itself. In
that case we can always implement 2|0)(0| — I3 in complexity O(logdim H),
by simply checking that every qubit is in the state |0). However, for algo-
rithms with large space complexity, such as the element distinctness algo-
rithm [Amb07], this is very costly, especially if we have to do it many times.
In some cases, as in our main theorem in Section 4.4, we can show that the
span program give there has an implementing subspace in which implement-
ing 2|0)(0| — I is easy, thus circumventing an undesired log dim H overhead
in the time complexity of the span program algorithm.

The notion of an implementing subspace is not exclusive to reflection or
span program algorithms. Indeed, any algorithm with high space complexity
would run into the same problem if it contains a reflection around any state
(i.e., a one-dimensional subspace), even a computational basis state. This
includes most quantum walk based algorithms. However, even algorithms
with low space complexity could benefit from this technique.

Now, we can state the main result of this section.

100 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Theorem 53. Fiz A € [0,1/2). Suppose R = (H,{H(x)}rex, K, |wo))
is a reflection program that positively \-approrimates a function f : X C
{0,1}" — {0,1}. For all x € X, let H, be an implementing subspace for R.
Suppose that we have access to the following subroutines and their controlled
Versions:

1. A subroutine Ry that acts on H, as 211 — I.

2. A subroutine Cjyy that leaves H, invariant and maps |0) to |wo)/ |||wo)||.
3. A subroutine Ryyzy that acts on H, as 21y) — 1.

4. A subroutine Rjo) that acts on H, as 2|0)(0] — I.

Then we can decide f with bounded error using a number of calls to the

VWL W

previous subroutines of order O (e log = 2/\ , where W, W_ are de-

fined in Eq. (3.15), and Eq. (3.30). The number of extra gates and auziliary
qubits used is O (polylog(W+W_, ﬁ)) Finally, it suffices to merely use

upper bounds on W, W_ and A, if one substitutes these upper bounds in the
relevant complexities.

The purpose of Theorem 53 is to enumerate the fundamental instance-
dependent operations that have to be given by the user to compile a particular
reflection program algorithm. In other words, if one wants to compile a time-
efficient algorithm from a reflection program, it suffices to give time-efficient
implementations of the four subroutines listed in Theorem 53.

The remainder of this section is dedicated to proving Theorem 53. The
proof follows easily from four lemmas which we prove first, followed by the
proof of the theorem itself. Due to the structure of the algorithm, we need
to extend the space H to H' = H @ span{|0)}. We also assume in the
remainder of the section that we can reflect through the state |0) in O(1)
gates and with only O(1) auxiliary qubits. One way to implement this is
to make the state space of the system equal to H ® C?, identifying H with
H © |0) and define |0) = |0, 1). Now, we leave it to the reader to check that
the unitary Ip, @ (2|1)(1] — I,) acts as (2]0)(0] — I;») on H'. Moreover, these
unitaries can be implemented with O(1) gates and extra qubits.

The first lemma deals with the preparation of states of a certain kind.

Lemma 54. Let o, oy, € C be such that |ag|* + |a1|* = 1, and let |wy) be
the minimal witness for the reflection program R = (H,{H(x) }.ex, K, |wo)).

4.3. TIME COMPLEXITY OF A SPAN PROGRAM ALGORITHM 101

For all x € X, let H, be an implementing subspace. We define

|wo) A
) = ap—— +a10).
[[[wo) |
Assume that we have access to controlled versions of the following subrou-
tines:

1. A subroutine Cjy,) that leaves H, invariant and maps |0) to |wo)/ |||wo)||.
2. A subroutine Ry that acts on H, as 2/0)(0] — 1.

Let H,, = H, @ span{|0)}. Then we can implement a circuit Cy, that leaves
H!, invariant and maps |0) to |n), with one call to Ciy, two calls to Ry,
and O(1) extra gates and auziliary qubits.

Proof. Recall that we can encode |0) as |0) = |0, 1), and identify every |h) €
H with |h) ® [0). Our mapping Cj, is supposed to map [0) € H C H' to
In) € H', so it is supposed to implement |0,0) — |n).

First of all, we check if the first register is in state |0) by preparing an
auxiliary qubit in the state |+), and then controlled on this auxiliary qubit
calling the routine Rpy. If the first register was in the state |0), then we
remain in |+), and if not we get a |—) in this qubit. Using a single Hadamard
gate, we can now store in the auxiliary qubit whether the first register is in
the |0)-state.

Next, controlled on the first register being in the |0)-state, we apply the
mapping |0) — a|0)+aq|1) to the second register. This can be implemented
using O(1) gates, namely by implementing a controlled rotation in the plane
span{[0), [1)}.

Now, we uncompute the first part of our computation, i.e., we uncompute
the auxiliary qubit that stored whether the first register was in state |0). This
again takes one controlled call to Ry and O(1) extra gates. Observe that
the total mapping has now only modified the second register when the first
register was in the state [0). But as |0) @ CI%1} = span{|0,0), [0)} C ., the
mapping that we have implemented up to now leaves H! invariant.

Finally, controlled on the second register being in the state |0), we call
the circuit Cp,,) on the first register. Checking whether the second register is
in state |0) can be done in O(1) gates, and this takes one controlled call to
Cluy)- Moreover, as C, leaves H, invariant, we find that C},,,y ® [0)(0] also
leaves H, ® |0) C #H! invariant. This completes the proof. O

102 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

The following lemma constructs the reflection around A = Iljc + | W) (Vo],
where |Ug) = —L (|0) + lwo)), using the ability to reflect around K,

2
/1+\||«;9+>n VW4

|0) and generate |wp).

Lemma 55. Let R = (H,{H(z)}zex, K, |wo)) be a reflection program, and
for all x € X, let H, be an implementing subspace. Suppose that we have
access to the following subroutines and their controlled versions:

1. A subroutine Ry that acts on H, as 211 — 1.

2. A subroutine Cj,) that leaves H, invariant and implements the mapping
10) = [wo) / [|wo)l-

3. A subroutine Roy that acts on H, as 2|0)(0] — 1.

Let H!, = H, @ span{|0)}. Then we can implement the circuit Ry that acts
on H, as 2A — I, using O(1) controlled calls to the subroutines, extra gates
and auxiliary qubits.

Proof. First, recall that since |¥g) is orthogonal to IC, and A = I+ |Wg) (W,
we can implement the reflection through A up to a global phase as a product
of the reflection through /C on the one hand, and |¥,) on the other.

Recall that we identify H with H ® |0), and |0) with |0,1). Thus, in
order to implement the reflection around I on H!, we apply Rx on the
first register, controlled on the second register being in the state |0), and
we add a minus if the second register is in the state |1). Le., we apply the
operation R ® [0)(0] — Iy @ [1)(1]. As R leaves H, invariant, we easily
check that this operation leaves H! invariant. Moreover, we can recognize
whether the second register is in state |0) using O(1) gates, so implementing
this operation takes only O(1) gates and one call to Ry.

Moreover, recall from Lemma 54 that we can implement the mapping
C = Cjy,y with O(1) calls to the subroutines Cj,,, and Ry, extra gates, and
auxiliary qubits. Moreover, observe that Rp)®|0) (0| —I»®|1) (1| implements
2|0)(0| — I on H.. As

21Wo) (To| — I = C (2/0)(0] — I)CT,

we can reflect through the state [¥g) with O(1) calls to the subroutines, extra
gates and auxiliary qubits.

Thus, implementing the operations 2|Wy)(Wq| — I and 2IIx — I consecu-
tively allows for implementing the reflection around A. As both individual

4.3. TIME COMPLEXITY OF A SPAN PROGRAM ALGORITHM 103

reflections leave H/, invariant, so does their product, and the total number of
calls to the subroutines, extra gates and auxiliary qubits are all O(1). Note
that for the controlled implementation of the reflection through A, we need
to add an extra Z-gate to the control qubit to account for the global phase
we neglected here. This completes the proof. O

Now that we know how to implement the reflection around A, we proceed
with analyzing the cost of reflecting around H'(x) = H(x) @ span{|0)}. This
is the objective of the following lemma.

Lemma 56. Let R be a reflection program, and for all x € X, let H,
be an implementing subspace. Suppose that we have controlled access to a
subroutine Ry, that on H, acts as 21y, — 1. Then we can implement a
circuit Rop(z) that on H., = H, ® span{|0)} acts as 2oy — I, with one
controlled call to Ry and O(1) extra qubits and gates.

Proof. From Theorem 45 we find that TI, = Iy + |0)(0] i.e. I, is the
projector into H'(x) = H(z) @ span{|0)}. Since |0) is orthogonal to H(z),
the reflection through H’(x) up to a global phase is merely the product of
the reflections through #H(z) and span{|0)}. Furthermore, the controlled
implementation of 211, — I has to have another Z-gate on the control qubit
to account for the global phase that we neglect here.

Since we identify |0) with |0, 1), we can implement the reflection through
span{|0)} in # in time O(1), by simply implementing the operation I ®
(2|1)(1| — I) in O(1) gates.

Similarly, we can apply the reflection through H(x) on H!, with one call to
Ryi(z) controlled on the second register being [0). This can be done with O(1)
extra gates and auxiliary qubits, and one controlled call to Ry, completing
the proof. m

Now we are ready to give the proof of the main theorem of this section.

Proof of Theorem 53. Remember that the algorithm in Corollary 46 per-
forms phase estimation and amplitude amplification on U, = (211, — I)(2A —
I).

By Lemmas 56 and 55, we can implement circuits that perform these two
reflections on H/, with O(1) calls to the subroutines, extra gates and auxiliary
qubits. Thus, we conclude that we can implement U, with essentially the

104 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

same cost, and remark that we can thus also implement a controlled-U oper-
ation, where we have to add another Z-gate to the control qubit to account
for the global phase in U,.

Finally, recall that the total number of calls to controlled-U, and hence
to the subroutines, in the algorithm in Corollary 46 is of order

W+W, | 1
(12032 81 _2)

Moreover, as the algorithm compiled from the reflection program implements

phase estimation up to precision © = % with error probability at most
W W

e = O(1 — 2)), and amplitude estimation up to precision @ = ﬁ, the
number of extra gates and auxiliary qubits used by these algorithms are of
order

11 1 \/ WL
O | polylog | — —logg = O | polylog (—

1— 2))3/2

As a last remark we observe that if we only know upper bounds to W, W
and A\, we are merely running the phase estimation and amplitude estimation
routines with a better accuracy than strictly necessary, which does not impact
negatively on the success probability of the algorithm. This completes the
proof. O

Recall that a span program P = (H,V, A, |r)) is a particular kind of
reflection program where the assignment z — H(x) is predetermined by the
structure of H, K = ker A, and |wy) = AT|7). In the remainder of this
chapter we will use Theorem 53 only in the context of span programs.

4.4 From algorithms to span programs

Let A be a clean quantum algorithm that evaluates a function f : X C
{0,1}" — {0, 1} with error probability 0 < ¢ < 1/2, as in Definition 6. Based
on this algorithm, one can construct a span program that approximates the
same function and whose complexity is equal to the query complexity of A,
up to a multiplicative constant. This construction was first introduced by

4.4. FROM ALGORITHMS TO SPAN PROGRAMS 105

Reichardt [Rei09] in the case where the algorithm has one-sided error, and
extended to the case of bounded (two-sided) error in [Jef20].

Our contribution is to extend this construction so that it not only pre-
serves the query complexity of A but also the time complexity. Starting with
a quantum algorithm A whose query complexity is S and time complexity is
T, we construct a corresponding span program P4 that accounts for individ-
ual gates of A. If the span program is compiled back to a quantum algorithm,
the resulting algorithm still solves the same problem, its query complexity is
O(S) and its time complexity remains O(T"). This requires modifications to
the span program construction, but more importantly, an additional highly
non-trivial analysis of the time complexity of the span program implementa-
tion.

4.4.1 The span program of an algorithm

Recall from Section 2.2.1 that we can assume without loss of generality that
there are no two consecutive queries in the algorithm A, and that the first and
last unitaries are not queries. We label the time steps where the algorithm
queries the input by

S={q....,q5} C [T, (4.1)

where T' is the total time complexity and S denotes the total number of
queries. For convenience, we also define gy = 0, ¢sy1 =T+ 1. We denote the
(-th block of contiguous non-query time steps by B, := {q—1+1,...,q,—1} =
{t:q-1 <t<q} CI[T], with £ € [S+ 1]. See Figure 4.1 for an overview of
this notation.

Time step o 1 2 3 4 5 6 7 EE T-2T—-1 T T+1
Type | 3
Label q0 B, q1 By q2 s qs BS+1 qs+

Figure 4.1: Synopsis of the notation. The cells denote time steps of the
algorithm A where time progresses to the right. They are indexed from 1 to
T. The hatched cells denote time steps in which a query to the input z is
performed. In all other time steps ¢ a unitary U, independent of z is applied.

Recall that W is a finite set that labels the basis of the workspace of A.

106 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

for all i € [n],b € {0,1}, we define the following spaces:

Hip = span{|t,b,4,5) : t+1€ 8,5 € W},
Hirwe = span{|t,0,4,7) : t +1 € [T+ 1]\ S,i € [n],j € W}, (4.2)
Hfalse - {O}

As usual, the spaces H(x) and H are defined from these as:

(@ Hz,mz) ¥ Htruea and (43)
=1

H - (@ Hi,b) ¥ Htrue S¥ Hfalse~ (44)

1€[n]
be{0,1}

Vo e {0,1}", H(x)

For better intuition, we provide a graphical depiction of H, Hirue, H(z) and
H;p in Figure 4.2.

H t

b A 2 ; %
r h 1o =3

7 APV 1

///////

123
i
ti I “—
T
0/ =3 E H(x)
2% I —
123 j

,,,,,,,

///////

7 7
///////

. 7 2 J ;
: : : : : : : : — _4
0 1 2 3 4 5 6 7 8 JI.‘_’
q1 q2 q3 T J

123

Figure 4.2: Graphical depiction of the relevant spaces when 7" = 8, § =
{2,5,7}, n =4, [W| = 3 and = = 0110. The total space H is a direct sum
of all blocks on the left, where the block at position (t,b) € [T]o x {0,1}
denotes the subspace spanned by all computational basis states of the form
|t,b,-,-). Every block is of one of three types, white, 0 or 1, shown on the
right. The subspace Hi.e is the direct sum of all white blocks. Each block
further decomposes as a direct sum over computational basis states |, 7),
i € [n], 5 € W. The gray cells of all blocks together span the space H(z).
Finally, for a given ¢ € [n], the subspaces H;o and H;; consist of the i-th
row within all 0 and 1 blocks, respectively.

4.4. FROM ALGORITHMS TO SPAN PROGRAMS 107

Let [T]p :={0,...,T}. We define the target space V and the target vector
|7) € V as follows:

V =span{|t,i,j) : t € [T]o,i € [n],7 € W}, |7) =|0)|To) — [T)|¥r), (4.5)

where |Wg) is the initial state of A (see Eq. (2.3)) and |Ur) is the final
accepting state (see Definition 6).

Recall that S denotes the total number of queries and e is the error
probability of A. Let

19
= d M = B 4.6
“=\l5 1 ™ [nax VB, (4.6)

where B, C [T] is the ¢-th contiguous block of non-query gates (see Fig-
ure 4.1). By Definition 6 and Lemma 7, we can assume that M < /3T/S.
For all computational basis vectors |t, b, 4, 7) in H, we define the action of the
span program operator A € L(H,V) as follows:

alT,i,7) ift =T,
Alt, by, j) = S M(|t,i,j) — |t + 1)Upsali,5)) I e[S+1]:t+1€ By,
t,i,7) — (=1t + 1,4, 5) if30e[S]:t+1=q.

(4.7)
The weights a and M are the main difference between our construction and
that of [Jef20], and will enable the implementation of the span program
algorithm described in Section 4.5 to be both time and query efficient. The
unitary Uy is the (¢+1)-th unitary of algorithm A as defined in Section 2.2.1.

Definition 57 (Span program of an algorithm). The span program of a
quantum algorithm Ais Py = (H,V, A, |7)), where H is defined in Eq. (4.2)
and (4.4), V and |7) in Eq. (4.5), and A in Eq. (4.7).

We spend the remainder of this section proving various properties of span
programs of this type. We start by analyzing the positive and negative
witness sizes W, (P) and W_(P), and the approximation factor A.

Theorem 58. Let A be a clean quantum algorithm for f with error proba-
bility 0 < e < 1/5, making S queries, and let Py be the span program for A
Jrom Definition 57. Then Py positively Se-approzimates f with complexities
Wi (Py) = O(S) and W_(Py) = O(S).

108 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Theorem 58 follows directly from Lemma 59, and Lemma 60 below. The
proofs are similar to those of [Jef20], which are themselves similar to [Rei09],
with the difference that the operator A of our span program now has slightly
modified weights, see Eq. (4.7).

Lemma 59. Let A be a clean quantum algorithm with query complexity S,
time complexity T and error probability 0 < ¢ < 1/2. Let P4 be the span
program for A from Definition 57. Then,

W.(Pa) < 3(25 + 1) = O(S).

Proof. Let Z = [n] x W, so the state space of the algorithm A is CZ. Recall

from Eq. (2.3) that |¥;(x)) € CZ denotes the state of A on input z at time

t, i.e., immediately after the application of U;. We will construct a positive

witness for every positive input z € f~'(1) and upper bound its norm.
Keeping Eq. (4.7) in mind, for every ¢ € [T]y we define

L0) Uy (x)) it =T,
Uy(2)) = LIO)|Wy(x)) i3I [S+1]:t+1€B,
Lo|Wy(z)) if3Ce[S]:t+1=qs,

where L, € L(C?,C? ® C?) is defined on the computational basis vectors as
follows:

Vien],jeWw, L.li,j) = |41, 7).
For all ¢t € [T]o, we easily verify that [¢)|U(z)) € H(z) by referring to
Eq. (4.2) and Eq. (4.4). Next, we define

T-1

) = Y IO Wu(a) + 2!T>\0> (Ve (2)) = [¥r)),

=0
where |W7) is the final accepting state from Definition 6. Since |10, z) €
H(z) for all z € Z, we find by linearity that |w,) € H(z). By splitting the
time steps into query and non-query steps we find that

) = LT ()~ [9) + 3 3 100} o)
3 e~)Ly ().

(=1

4.4. FROM ALGORITHMS TO SPAN PROGRAMS 109

Applying A we get

Alwe) = |T) V() = |T)|¥r)

305 0 [l gt — s) k)

{=1 t=qp_1
S

+Z |ae = D) Pq,-1(2)) — g6} Ou|Vg-1(2))]

S+1 qe—2
= |T)[Wr(2)) = [T) W) + > > [W) — [t + 1)[Wypa(2))]

=1 t=qp—1

+

M

[lge = D[y, 1 (2)) = lge)[Wy, (2))]

~
Il

= [TV () = [T)[Vr) +Z ()1 (2)) = [t + 1)[Wipa(2))]

= [0)[Wo) = T |¥r) = |7),

where most terms cancel since the final sum is telescopic. In particular, we
find that |w,) is indeed a positive witness for x. We can use its size to bound
the size of the minimum positive witness for x:

w+(x7PA)=min{le>H2‘\) € ()A|’w>=\7>}

-1

U — v
t=
S S+1 q—2 2
[1%r(2)) —)]
=S @)+ Y Y 2 e+ LT
(=1 (=1 t=qo—

25 +1
€

1
§S+(S+1)+¥~2g§25+1+ 26 =3(25 + 1),

where we used M? > |B;| = qo — q,—1 — 1 from Eq. (4.6) to bound the second
term. To bound the third term, we used a = \/¢/(25 + 1) from Eq. (4.6)
and the inequality

197 (x)) = [Wr)||* = 2(1 = Re(Wr(2)|¥r)) = 2(1 = pi(2)) < 2¢

110 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

which holds for any x € f~!(1) (see Lemma 7 and Definition 6). Thus,

Wi (Ps) = mer?mg)w+(:1: ,Pa) <3(25+1).

]

Lemma 60. Let A be a clean quantum algorithm with query complezilty S,
time complexity T' and error probability 0 < & < % Let P4 be the span
program for A from Definition 57. Then, for all z € f~1(0), there exists an
approzimate negative witness |w,) such that || (@x|AHH(I)H2 <5e/(3(25+1))

and ||(@,]A||* < 2(4S +1). Thus:

1. Py positively A-approximates [for A\ = be.
2. The approzimate negative witness complezity of Py is W_(Py4) = O(S5).

Proof. Given a negative input x, we define an approximate negative witness
and bound the negative error and minimum approximate negative witness
size using this witness. To that end, let z € f~1(0). Define

T
Wy ()W (
(@] = 1_% gy 2 (e

Note that this is well-defined as x is a negative instance, hence, by Definition 6
and Lemma 7 we have |[(Ur(z)|¥7)| < e < 1. Recalling from Eq. (4.5) that
|7) = 10)|¥o) — |T)|¥7), observe that

(Wo|Wo) — (Wr(z)|¥r)
1= (Wr(z)|¥r)

(@) = — 1. (4.8)

Next, let |¢,b,1,j) be a computational basis vector in H(x) and let A be the
operator defined in Eq. (4.7). If ¢t + 1 = g, for some ¢ € [S], then b = x; and

(@l Alt, b4, 5) = (@ [|t, 4, 5) — (=1)™ |t + 1,1,)]
1 (U (z)| W) [<q}t(x)‘l"7> - (=1 <\Ift+1(x)|1,j>]
1

T (U ()] 7) i)] = 0.

4.4. FROM ALGORITHMS TO SPAN PROGRAMS 111

On the other hand, if t + 1 € By for some ¢ € [S + 1], then b = 0 and

(@a| Alt, 6,4, 5) = M{(@a|[It,4,) — |t + 1)Usyali,)]
- 1 — (Tp(2)|07) [<\I’t(x)|%]> - <\Ijt+1($)|Ut+1|Z,]>}

M . .
T T (Tr(a)]Uy) ()] = (W(@)|Uf Ui | 11,) = 0.

Finally, if t = T, then (w,|A|T,0,1,j) = a{w,|T,1,7) = %, where a
is defined in Eq. (4.6). This might not evaluate to 0, potentially contributing
to the negative witness error of (w,| for . Using (V7 (z)|Vr) = p1(x) < e <

1/5 (see Definition 6 and Lemma 7) we find that

~ " o 2 W 2
(@A = S (BJAIT, 0,4,) = — - I¥r(@)]
i€[n],jeW

1= (Wr(a)[V)
- - 2 = - 7 = - 2
A=p@)? ~ (1= @S+1)(1-1)
Be Be o B
25 +1 3(2S+1) ~ W (P)

<

where in the last inequality we used Lemma 59. We find that P positively
A-approximates f with A\ = 5e, completing the proof of the first claim. To
prove the second claim, recall from Eq. (4.8) that (&,|7) = 1. Hence, for any
x € f71(0), using that Z = [n] x W we have:

(o,) = min {1G1AI (1) = <)

SI@IAE = 3 |@alllae = 1.2) = (1)l [+ 32 1@l T, 2)
Sl

P @M — [+ D)

le[S+1],2€2
te{qr—1,-,90—2}

112 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

_ 1
T L= (U ()|)

Y 22U (@)2) + 21(Ty, (2)]2)[

le[S],ze2

+) M) — (W (@)U})]+ Y a® (U ()] 2)]

le[S+1],ze2 z2€Z
te{qr—1,--,q0—2}

1 2 2 2 2
- 2 [[{W g1 (@)[]I” + 2 [[(@ g, ()] I” + @™ [[{Lr(z)]]]
el PR "
2 2 2
45 +a <4S—|—a <4S+a

T (U@ T (1) T (1 1)’

€ 25
< < = .
_[4S+2S+J 16_2(4S+1) O(9)

O

Together, Lemma 59 and Lemma 60 prove Theorem 58, which in turn
implies an upper bound on the query complexity of implementing the span
program Py.

Witness anatomy of the span program of an algorithm

We conclude this section by characterizing the kernel of the span program
operator A in Lemma 61, and subsequently finding the minimal witness size
in Lemma 62. These will prove relevant in the analysis of the time complex-
ity of the algorithm compiled from Py, to which we turn our attention in
Section 4.5.

The span program map A written in Eq. (4.7) is a complicated object,
obscured by the parameters a and M and with three different “regimes”.
Before we completely characterize it in Lemma 61, let us study a simplified
version of A which will give us a better grasp of the problem at hand.

With H defined in Eq. (4.4), define a stripped down version of A in
Eq. (4.7) acting on |tbz) € H as

(4.9)

Alt,b, 2) = It,2) — |t + DUppalz) ift+1¢8S
; t,2) = [t +1)(=1)]z) ift+1€eS.

4.4. FROM ALGORITHMS TO SPAN PROGRAMS 113

No queries The first case we will study is that of an algorithm without
queries, i.e. & = 0. Let [h) = >, 4, [1)0)]¢0r) for some unnormalized
states |¢;). Then

Alh) = Z (D) lpe) — It + 1) Utralr))

te[T—1]o

0oy + D> 18) () — Udler—1)) — | T)]eor).

te[T—1]

We can cancel most terms of the sum by defining |¢;) = U|gi—1), but
the first and last term can only cancel if |pg) = |pr) = 0. It is very easy to
see that for this A, ker(A) = 0. That is, the best we can hope for in terms
of cancellations when we have no queries is a telescopic sum where the first
and last term survive.

One query When we have exactly one query, the dimension of ker(A) is
still 0 but we have much to learn from trying to find |h) such that A|h) = 0.
Let us assume that we have one query at time step ¢t = ¢g. And let the vector
|h) be defined as

= > BIO)e + D la—DIBEZ) + D 1010}

t<q—1 be{0,1} t>q—1

Now, choosing |p:) = Ui|pi—1) we have that Alh) is going to create two
telescopic sums with a term A (Zbe{mﬂq - 1)|b)|gpé@1>> in between. More

importantly, we can choose |go(g(i)1> in such a way that we cancel either the
endpoint of the first telescopic sum or the first term of the second telescopic
sum. Regardless of what we do, we are left with at least one endpoint of
one telescopic sum standing. We conclude that ker(A) = 0. Nevertheless,
we have learned that a query allows us to cancel an endpoint to a telescopic
sum.

Two queries What happens if we go to two queries? As a toy model let us
assume that the algorithm has exactly T time steps, the first and last being
queries. That is, let us assume that A = O,,Us, ..., Ur_1, O,. For every |p)

114 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

in the workspace, let us define the vector

WIW%W%MM@+§:WWM+W—D

te[T—2]

(10) + 1)) lr—),

(4.10)
where we define |¢;) = U|p;—1) for t € [T — 1] and |py) = |¢). We claim
that this vector is in the kernel of A. Indeed,

N | —

Al = 10)5 (1) ~ 1) ~ 105 (1) — Dl +A [3 e
te[T—2]
FIT =15 (loroa) + lora)) = IT) (pra) + (~Dlpr-1))
= 0.

In fact, it is straightforward to prove that all vectors in the kernel of A are
of this form. What allows us to cancel all terms is that A creates a telescopic
sum in the block between the queries whose starting point is annihilated by
the t = 0 term of |h) and whose endpoint is annihilated by the ¢ = T — 1
term in |h). If an algorithm has more than one block (more than 2 queries),
the same analysis can be done for each separate block. What we have found
is that for every block between queries and every vector |p) € W we have
exactly one vector in ker(A) with the same form as that of equation (4.10).
We are now finally ready to tackle the original problem of understanding
ker(A) in its full complexity.

Before we do that, we will define notation to denote the product of a
subsequence of unitaries of A. Let t; < to, then we define

Upi, = UpUp1--- Uy, and UL, =UlU . - UL (4.11)
If to < tq, then we define Uy, := I, and U:l;tz.

Lemma 61. Let A be a clean quantum query algorithm with error probability
0<e< 1. Let Py = (H,V, A, |1)) be the span program for A. Let Z =
[n] x W. For { € {2,...,S}, we define the linear map ®, from CZ to H as

. 1 qe—2
Pl =l =1 00+ 5 3 W0aal) (12
Hae = 1020, v ale), (113

V2

4.4. FROM ALGORITHMS TO SPAN PROGRAMS 115

where |£) = (|0) £ [1))/v/2 and M was defined in Eq. (4.6). We also define
the linear map ®g from CZ to H as

T—1
<I>s+1|w>=|qs—1>'ﬁ>) 27 S B0 Uigenl) + - TIO)Urgy a1
- (4.14)
Then s

ker(A) = @ P, (C7) .
=2

Proof. By direct calculation we can check that all vectors in the image of
the linear maps ®, are elements in the kernel of A. Thus, it remains to show
that any vector in the kernel of A can be written as a linear combination of
vectors in the image of the ®,’s. To that end, let |¥U) € ker(A) C H. We first
of all split this state in several disjointly supported parts, i.e.,

q1—2
Zw 0) b} +|q1—1>%¢1q1)
> -) = +)
#3 [loea = 0w + LS 010 + la - 1 O
(=2 t qe—1
T—1
— 1
s = ssnaenn) + 57 S IDOIs10) + DIt

where all the amplitudes are absorbed in the unnormalized [i,;)-vectors.
Now, we apply A to this vector to obtain

q—2

AN) = ([[W1e) = 1t + DU |v10) + a1 — Dlthrg-1)
t=0
S qe—2
) | =g g 1) + > (D1bee) = 1t + DU |ves)) + lge — 1|beg—1)
=2 t=qr—1

T-1

— |gs)[W¥ss1q6-1) + D (D)thss1e) = [t + DU [0511.0) + IT) [s41,7)

l=qs

116 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

q—1

= [0)[¢,0) + D IO (r4) = Urltpri-1))

S qr—1
57 Tae) (s @) = o)+ 3 1) — Uileaa))
(=2 t:q,g_l-‘rl

T
+1gs) ([¥511,05) = [Ws11a51)) + D 1D (Ysr1a) = Uilsire)).

t=qs+1

As |U) € ker(A), the above expression has to equal 0. We learn by inspection
that this happens if and only if the following conditions are satisfied:

|th10) =

[1s) = Upltr, 1) VEe{l,....q — 1},
|w57Qe—1> = |¢ﬁ,qg—1—1> S {27 cos St 1}a

|Ver) = Upltbge—1) YCe{1,....8hte{qg-1+1,...,q — 1},
[Vsi14) = Ulgir-1) Ve {gs+1,...,T}.

Using the abbreviation [1,) = |1g,,_,—1) for £ € {2,..., 5 + 1}, these condi-
tions simplify to:

Y1) =0 Vte{0,....q1 — 1},
Vg 1) = [ege-1) = o) VEE{2,...,S+1},
o) = Ubgp_y+1|0eq,) VEE[S]EE€{qe1+1,...,q0— 1},
= Ut;qz71+1wé>
[Vst16) = Ungs+1|¥s14s) YVt E€{gs +1,...,T},
= Utgs+1]¥s41)-

Using these constraints, we can rewrite |U) as

S - 1 qe—2
)= (e =02 + 05 3 1010) 0l
(=2 t=qo—1

Han = D0 g lod) +las = 0 s

4.4. FROM ALGORITHMS TO SPAN PROGRAMS 117

1 T-1

1
+ M Z’t>’0>Ut;qs+le+l> + E‘T>’0>UT;qs+1WS+1>

t=qs
S+1

= ®ule)),

=2
0
Finally, we give a closed form for the minimal positive witness |wg) =

AT|7). Remember that the two traits that completely characterize this vector
are that A|lwg) = |7) and that |wo) L ker(A).

Lemma 62. Let A be a clean quantum query algorithm with error probability
0 <e < 1. Let Py be the span program for A from Definition 57. Then the
minimal witness |wo) = A*|T) is

q1—2

1 1 1
) = 37 IOVl o) + s = 1) (5100 + 511}) Uy s
t=0

1 1 1
+ 2+l [’CJS - 1) <§\0> - §|1>) UJs+1;T‘\IIT>

T-1
1 Ca
T
a7 §S|t>’0>Ut+1;T|‘I’T> - CCLQ—H\THUH\I’T),

where C' = 19 + 1 and a and M are defined in Eq. (1.6). In addition, the

. _ q—1 1 C
squared norm of |wo) is N = 4 + 5 + zo57-

Proof. We first prove that |wy) is orthogonal to all vectors in the kernel of A.
By Lemma 61, it suffices to take |¢p) € C">*W arbitrarily and check that for
alll € {2,...,S+1}, (¥|®}|we) = 0. Observe that |w,) does not have support
in states with time ¢ € {qi,...qs — 2}, hence, for all £ € {3,...,5 — 1}, we
easily obtain that the vectors |wg) and ®,|¢)) are orthogonal. For ¢ = 2, we
find that the supports only overlap at ¢t = ¢; — 1 with the term |¢; — 1)%]1@

of &), so

1 1
(0| @] [wy) = waql’l;l’@@ - Z<¢|Uq171;1\‘1’0> = 0.

A similar computation shows that |wg) and ®g|ty)) are orthogonal, as their

supports only overlap at ¢t = gg—1 with the term |qs—1>%qu_1 U 1))

118 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

of ®g|t). Finally,

1
WIOkalun) = Gy | Ol B) + I r)
T-1
M2t qs<¢| +1T|\IIT> - C’a2+1<¢| +1T|\IIT>
1 1 T—qS C t
B (C’a2+ 1 [§+ M?2 } B C’a2+1) W’quH;T“I’T)
C C
B {C’a2 +1 Ca2+ 1] wlv. SHTWT) =0

Thus |wy) is orthogonal to the kernel of A. It is also mapped to |7) by A, as

q1—2

Alwo) = (1)U |Wo) — [t + 1) Usyra | ¥o))

t=0

1 1 1 1
+ (5 + §> g1 = 1)Uq -1 Wo) — (5 - —> |91)Ugy-1:1|Wo)

1 1 1
peES Kﬁ— 5) a5 = U1z V)

1 1
- (5 + 5) |QS>U;S+1;T|\I/T>

T-1

Ca?
+§q:s('t Uburirl) = |t + U o[¥0)) | = = |T))
1 Ca?

= Vo) — ——|IHY V) — ——|1)|Up) = |7).

0)¥0) — 71 D1r) = G D) = |7)

This proves that |wy) is the minimal witness of A. We conclude the proof by

computing its squared norm N = |||wo) ||,
q1—2
1 1 1 1 C?a?
N=S"_— - - e
2 rtitit e ZW RS
=0 t=qs
-1 1 C 02a2 _q1—1+1 C

M2 TG T CalrlE . AP 2 Cet

4.5. TIME COMPLEXITY OF THE ALGORITHM 119

4.5 Time complexity of the algorithm

Now we analyze the time complexity of implementing P,. Remember that
in Section 4.3 we broke down the span program algorithm into its essential
subroutines, namely, the reflections around ker(A), H(zx), |0) and the circuit
that generates |wp). The bulk of this section (and bear with us, it is a
hefty one) will be devoted to constructing said subroutines and characterizing
their time complexity. All this will then be combined to prove the following
theorem.

Theorem 63. Let A be a clean quantum query algorithm that acts on k
qubits, has query complexity S, time complexity T, and evaluates a function
[X C{0,1}" — {0,1} with bounded error as in Definition 6. Let Py
be the span program for this algorithm, as in Definition 57. Then we can
implement the algorithm compiled from Py with:

1 (’)(S) calls to O,.
O(T) calls to O 4 and Os, as defined in Section 4.2.
O(Tpolylog(T)) additional gates.
O(polylog(T)) auziliary qubits.

As we just said, the proof leans on the structure of Theorem 53. We first
define a suitable implementing subspace in Section 4.5.1, and then continue
with providing efficient implementations of the four subroutines that are
required to use Theorem 53. In fact, we provide generalizations of all four
subroutines (the reflections around ker(A), H(z), |0) and the circuit Cj,,) :
|0) — |wp)) to the case where we have several algorithms and we want to
run each subroutine in coherent superposition for all algorithms. We call this
concurrent access, and define it formally as:

Definition 64. Let C™V, ..., C™ be quantum subroutines, all acting on the
same Hilbert space H. We say that a subroutine C provides concurrent access
to {CW}n_, if it performs the following action on CI" @ H:

C=> lhlecy
j=1

This is not strictly necessary for the theorem above, but will be a necessity
in the final section of the chapter, where we make an algorithm that computes
the OR of several functions out of algorithms computing each one.

120 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

4.5.1 Implementing subspace

The necessity for the introduction of implementing subspaces stems from
the need to reflect around the state |0)|0)|¥o). Doing this in principle
is very simple because we can assume that |WUy) = [¢)]|0) where |[¢) €
C®Uoeg(m)+og(W) - However, in general, the time complexity of this reflection
is O(log(n)+log(|WV])), since it is necessary to check that every qubit is in the
|0) state.? That would make such a reflection very costly for algorithms with
high space complexity, such as the element distinctness algorithm of [Amb07].
Specifically, if the time complexity of A is polynomially related to the num-
ber of qubits used in A, then we find that log(n) + log(|W|) = O(poly(T)).
In this section, we explain how we circumvent this polynomial dependence
using implementing subspaces.

Our construction relies on the fact that at intermediate steps the state of
an algorithm compiled from P, is not completely arbitrary but is guaranteed
to live within an implementing subspace. In other words, of all states in the
workspace of A, any given run will only visit a simple, one-dimensional path
in the workspace. Moreover, all such states are labeled by the time register.
So, given a time step ¢t € [Ty and an input x € X, we can deduce what the
corresponding state in algorithm A must be at that time step, and hence we
can deduce the state in the last register of H.

For the implementing subspace that we will describe below, we will show
that for every x € X, when t = 0, the algorithm compiled from P4 only
visits superpositions of states of the form |¢,0,1,7,a) = |0,0,,a), where
[109)]|0) = | W) is the initial state of the algorithm and the last index a = 0,1
represents the single qubit answer register. Therefore, In order to reflect
around the all-zeroes state, we need not check all registers. It is enough to
check that the time and the answer registers are at zero. Furthermore, while
the implementing subspace depends on the input, this property is indepen-
dent of it, and so we do not need to know the exact implementing subspace
to run the algorithm, just that it exists.

Unfortunately, we are not able to provide an exact implementing sub-

2This detail has been neglected in previous work. For example, efficient implementation
of such a reflection is not discussed in [Amb10]. While this is not inconsistent with the
stated results, since the result only claims to count oracle calls to O, and O 4, this is not
true of subsequent work that uses the results of [Amb10]. We suspect that an argument
like ours could also be made in previous work, but feel it is sufficiently non-trivial that it
should not be taken for granted.

4.5. TIME COMPLEXITY OF THE ALGORITHM 121

space. Instead, we will use an approximate implementing subspace, i.e., we
define a subspace H, C H and we prove that all operations map states in H,
to states that have high overlap with H,. The way we handle the propaga-
tion of errors is similar to standard approximation arguments: if the overlap
with H after one approximate operation is at most d, then the combined
error after N such approximation operations is at most O(N¢). Hence, if
we make sure that § < o(1/N), then the total cumulative “lost amplitude” is
o(1), and the influence on the final success probability of the algorithm is at
most o(1) as well.

Now, we work towards the formal definition of H, for a clean quantum
algorithm A as defined in Def. 6. Remember that in a clean quantum al-
gorithm, the last bit of the workspace is the answer register, and the initial
state is |Wg) = |10g, 0). For each x € X and t € {0,...,T — 1}, we define the
following vectors:

O (2)) = U, - - Uy |0, 0) = Uy |, 0),
‘\111(51)(1.)> — Ut e U1|77b0, 1> = Ut;1|¢0a]->7

which we name the t-step push-forwards of |Vy) = |1, 0) and |¥7) = |1, 1)
respectively. These are just fancy, shorthand names for the result of running
the t steps of the algorithm on [, 0) or |, 1).

Alternatively, we could run the algorithm in reverse using |y, 0) or |1, 1)
as initial states. Thus, we define the t-step pullbacks of |1y, 0) and |1y, 1) as

’\IJEO)(I')> — UtTJrl ce U’}lqu)(]? 0> = U2L+1;T|¢07 O>7
B (@) = Ul Ubleo, 1) = Ul o, 1).

The reason we bother defining these pull-backs and push-forwards is that
they are part of the minimal witness |wy) and need to be considered in
order to build an efficient reflection around the state |0)|tg,0). Moreover,
these vectors are intimately related by the fact that A is a clean quantum
algorithm. Indeed we have

Claim 2. For any clean quantum algorithm A, all x € {0,1}", and all
te [T]OZ

122 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Proof. The first statement follows from Definition 6. Since |Ur) = |¢, 1)

pr(x) = (X ()| Wr) = (U (2)|U], 1[0, 1) = (U7 (2)[T (2)).

The proofs of the other statements are very similar and are left to the reader.
O

Now, we want to define an implementing subspace H, such that it is left
invariant by Ilye(ay and Ily), and contains |0) |y, 0), and |wy). Therefore,
our implementing subspace had better respect the structure of |wg) and the
vectors of ker(A) that we have studied before. It is reasonable, looking at
those vectors, to treat each block separately. Therefore, we propose the
following spaces. All the arguments of the vector sums below should be
enclosed in a span{}, but we omit those for ease of notation. For the first
block ¢ = 1, we define

q1—2

m—eBw NOY W () @ [gn —)]+ @L) (). (4.15)

Observe that this contains the initial vector |0, 0) |y, 0) if b = 0.
For ¢ = S + 1, we define

Hs oy = las — D) [TL@P) (@) & @P)0)]0) [O (2)). (4.16)

t=qs

Observe that this contains the target state of the algorithm with the correct
time label |T)[0)[Wr) = |T,0) ¢, 1) if b= 1.

For the other blocks, i.e. ¢ = 2,...,5, let § = arccospy(x). For all
b € {0,1}, we define the (b-)implementing subspace of block ¢ as

. (—1)0
O (U [Pl ko T
2t ot sin ¢ -1 sin ¢ =1
~ [sin 07 o sin (9_ 6) 0
t)10) | ——— \IJ ‘ v,
@ D1 | =55 @)+ — 1" @)
—qe—-1
iy (2100 sin (0 - 27)
SIN “~—"— ~ f(x)4b S b
Dlae = DI+) | =190 (@) + —— 2) ()

4.5. TIME COMPLEXITY OF THE ALGORITHM 123

Alright, there is a lot to unpack here. Let’s see what we have done. First
observe that the first two registers are consistent with the form of the vectors
in ker(A), that is, the edges of the block have a |4+) or |—) in the second
register, while the non-query time-steps have a |0) in the second register. In
the third register we have a superposition of pull-backs and push-forwards
that depends on the index of the block ¢ and are always consistent with
the value in the time register. As ¢ grows, the vector in the implementing
subspace approaches the pullbacks. Finally, in the last block, the vectors in
the implementing subspace are merely pullbacks from [¢)y,b). The reasons
behind this choice are rather technical and all relate to the need to satisfy
all four constraints of an implementing subspace at the same time, while still
making it easy to reflect around the state [t)|0) |, 0).

Finally, we define the implementing subspace as:

Definition 65 (Implementing subspace for A). Let A be a clean quantum
query algorithm that decides a function f : X — {0,1}, let P4 be the
span program for this algorithm, as in Definition 57. Then we define the
implementing subspace of A as:

> = { 5:11 H(?)v if f(fE) = 5L

Now we prove that this is an approximate implementing subspace.
Lemma 66. For all x € X, we have

1. Myer(ayHe € Ha,

2. |wo) € Hy,

3. 10)[0)]tho, 0) € Ha,

4. For all |h) € H,, we have ||[Tly L (21Ty @) — I)|h)|| < O (f)

Proof. First of all, observe that the state |0)|0)|ty,0) is in #”. We also
easily obtain that the initial state |wp) from Lemma 62 is in 7—[;0% ® Hi{éﬁ?l)
by inspection.

Next, we show that the projection onto the kernel of A also leaves the
implementing subspace invariant. To that end, we observe that by Lemma 61,

124 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

ker(A) = SH 5 Im(®,) for some maps @, defined in the lemma. Se can write
the projectlon onto the kernel as:

i o, <I>s+1<1>2~+1

1Be| IBS+1\
— 1+ M2 2 3+ +

err(A) =

We will show that each term in the summation leaves H, invariant. The last
term follows using the exact same proof strategy. Hence, let £ € {2,..., S},
b € {0,1} and |h) € ’chbz We can disregard any part of |h) that is not
supported on the image of ®,, as it will be mapped to 0 by CIDZ. Hence, we
assume |h) to be of the form

sin (4—31)9 _ , sin (0 Sy Calb 1))
|h) = ag,_-1lge—1 — 1)|-) Wl‘%{f‘f” () + i d O (x))
S sin 7 (1 sin (9 - @> (®)
\V; 1\
+) aft)]o) i d A2 (2)) + il W ()
l=q¢—1
sin (5*81)9 ~)t sin (9 — 9)
+ ag-1lge — 1)|+) ey (Vg1 (2) + e w8 (2))

In this state, the last part is determined by the fact that |h) € Hibz, The

spaces Hi,b% have been defined so as to fit Im(®,) perfectly, and so this does
not restrict the form of h further. The free parameters are the weights ;.
We observe that @jg maps this to

L l=q

[(10 sin Q—M)

S 5™ < (f(z)+b (S b
LS RO @)+) (@)

As the image of ®, applied to the above expression is contained in Hw ,
we deduce that (Zerr(— [) |h) € H, b). By linearity, it then follows that

(2err(,4) — I) |h) € H, for any |h) € H,.

4.5. TIME COMPLEXITY OF THE ALGORITHM 125

Finally, we argue how reflecting through H(x) leaves the implementing
subspace approximately invariant. Observe that for all blocks, 2I1y) — I
acts as the identify on all states with time-step t # ¢, — 1,q,-1 — 1. That
leaves us with states of the form |q,, — 1)|—)|-) and |g, — 1)|+)]-).Let us deal

with the second case first. Let \\I/qe) (2) = Zie[n],jew ai;li, j) and write
[+) = (|lz) + [7:))/v/2. Then
2Ty — 1) lge = DI 3 (@) = (M) — 1) lge — DI+ Y aiglig)

i€[n],
JEW

_>Oéi,j‘i7j>

~lae— 1) ¥ P o) = - 0 ¥ (-1

i€[n], i€[n],
JEW JEW

= lge = D|=)(O0 ® DT (@) = lge — 1)) ().

Since O, = O}, following the exact same reasoning we have

(2T — 1) lae = DIF)TL (@) = lae — D]=)T (@)).

The case where |h) = |g,, — 1)|—)]|-) follows immediately from the proof
because the reflection (ZHH(I) — [) is its own inverse.

A problem arises here because states of the form |g, — 1)|+)|-) are in chb%,
but states of the form |g, — 1)|—)|-) are in the next block’s implementing
subspace ’Hx 741~ This would be alright except that consecutive blocks put
slightly different weights on the push-forwards and the pull-backs. Therefore,
or task now is to show that the reflection around H(x) takes a vector in H;b%

and maps it to a vector close to 7—[52 11~ Without loss of generality, we restrict
our attention to vectors of the form

(6—1)0 sin (9 _ (f—_l)9>
|

sin ~——)b S
1) = lae =)I+) | ——5— 1T/ (@) +

(b)
sin @ \I/q‘_l(m»

with ¢ € [S] and b € {0,1}, or the corresponding form with |—) and ¢ €
{2,...,5+ 1}. Tt follows that

(2M3y0) — 1) |1)

sin =00 sin (9 - @) ’

BT () + Ui (x)

=lee—Dl=) s1n9 sin 0

126 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

This vector is not in H" , but the following vector |h') is
z,l+1

7)) =g — 1)|-) W\‘I’éﬁcuﬂ)(2)) + TN’@}(%»
It follows that
e (2My0y — D|RY|| < ||(2Mpay — I)|R) — [R)]].-

It is this last norm what we shall bound. See that the last registers are both
in a superposition of two states that are not orthogonal. For the purposes
of taking the norm, we would like to express these vectors as sums of two
orthogonal vectors. Define

W (@) — cos 094 (x))

sin 0

It is imminent that |1)1) and |\Il$) (x)) are orthogonal, as

(W, (@)|pty = @) cost_

sin 0 sin 0

where we recall that we defined 6 = arccos ps(,)(x). Moreover, we find that

sin(af) sin (6 — af)

ooy

sin 0
o | sin (0 — af) sin(ab)
= sin(af)ly™) + sin 0 - sing

= sin(af) ") + cos(ad) | UL (z)).

— | WO () +

0] [y (2))

Using this relation with a = , and a = ¢ we can now compute the norm

4.5. TIME COMPLEXITY OF THE ALGORITHM 127

of Ty (2My(ay — 1)),

T (2000 — DB < || 2Ty — D)|RY — 1))
_ : : (t-=1)0
sin @ — gip &9 sin (—%)—sm 0— —<~
< | S O @) + — =) ey
—1
= (sin% — sin (¢ S)9)) + (cos% — cos)

S
= | si @—s' (- 1)¢ 2—1— COS@—COS
= [sin 5 n 5 5

2arccos®py(y(z) 2arccos’(1—g) 2 5
- 52 =T @ <§<2€+0< &) = O(?)
where in the fourth line we used that sin and cos are both 1-Lipschitz, and
so the Mean Value Theorem applies. The same bound can be obtained when

|h) is of the slightly different form with |—). Hence, we conclude that

(I _ HHS,>> (20 — 1) |B) H

|h6;161’}1-)u || Hi (H(z)) ’ >H ble%g}f} |h>su?3(b)

-o(4)

4.5.2 Reflection around |0)

The implementing subspace is a rather complicated object, and defining it
and proving its fitness has been quite the hurdle. Now we shall reap the
benefits of all that effort with the implementation of the first of the sub-
routines of Theorem 53, the reflection around a simple computational state
10)|0)|¥y) € H restricted to H,. Let us see how to easily implement this
unitary.

Lemma 67. Let A be a clean quantum query algorithm with query complexity
S, and time complexity T. Let Py = (H,V, A, |T)) be the span program for
this algorithm, as in Definition 57. Let |0) :=]0)|0)|1o,0) We can implement
a map G that, when restricted to H,, acts as Ry = (2]0)(0] — I) with O(1)
auziliary qubits and O (polylog(T')) gates.

128 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Proof. As in Definition 6, we assume the basis states of the workspace are
labeled by W = W' x {0, 1}, so the last qubit is the answer register. The
basis states of the overall space H are [t)|b)|i, j, a), where i € [n], 7 € W',
and a € {0,1} is the content of the answer register. The map G reflects
around states with ¢ =0, and a = 0:

[OWfiga) ift=a=0,
GO, j, a) = { TN

To implement this reflection, we simply compute a bit bg,e in a new register
such that bg,e = 0 if and only if £ = 0, and @ = 0. Then we can apply a
Z-gate on this register, and then uncompute. Since ¢ € [Ty, a € {0, 1}, this
can be done in time O(logT).

By definition, the only vectors in H,, with a time register ¢ = 0 are
|0Y|0)|70o, 0), and, if f(x) = 0, |0)|0)|1bo, 1). Tt follows that G acts as 2|0)(0|—1
on H,. O

4.5.3 Implementation of 211y — I

The second subroutine we deal with is the reflection around H(z). We give
a simple construction that perfectly implements this reflection on the whole
of H. The is made very simple given the structure of H as all we need to do
to know if a state |¢,0,4,7) is in H(x) is check if £ + 1 € S using a query to
Ogs and, if so, check if b = x;, which we do with a single query to the oracle
O.. We give a detailed construction that also extends to the concurrent case
(see Definition 64) in the lemma below.

Lemma 68. Let A be a clean quantum query algorithm with query complexity
S, time complexity T, and error probability €. Let Py = (H,V, A, |T)) be the
span program for this algorithm, as in Definition 57. Then the reflection
2I3y(z) — 1 can be implemented with O(1) calls to O, and Os and auziliary
qubits, and O(polylog(T')) extra gates.

Similarly, let {A(j)}?zl be a set of clean quantum query algorithms. For
all j € [n], let S; and T; denote the query and time complezity of A,
Let PY) be the span program of AY). Then we can implement concurrent
access (see Def. (1) to {21y 00y — 1 }j=y with O(1) calls to O, and Os and
auziliary qubits, and O(polylog(Thmax)) extra gates.

4.5. TIME COMPLEXITY OF THE ALGORITHM 129

Proof. First, we consider the case where we just have one algorithm, A. For
all z € {0,1}", recall that

H(zx) = @%m @ Hirge = span{|t, x;,1,5) : t+1 € S,i € [n],j € W}
i=1

@ span{|t,0,i,7) : t +1 € [T+ 1]\ S,i € [n],j € W}.

From this, and the definition of H, it readily follows that the orthogonal
complement of H(x) is given by

H(z)t =span{|t,1 — z;,4,7) : t + 1€ S,i € [n],j € W}.

In order to reflect around H(z), all we have to do is put a minus phase if we
are in H(z)*. To that end, call the oracle Og once to distinguish whether
the time step in the first register is a state |t) for which t + 1 € S (e.g.
by first increasing the first register, performing the call and then decreasing
again). Store this bit in an auxiliary flag register. Next, conditioned on the
flag qubit being 1, perform one query to O, to get a phase (—1)*. Finally,
apply —Z to the second register, also controlled on the flag qubit, where Z
is the Pauli-Z gate. Then if the second register is in the state |1 — x;), the
overall phase will be —(—1)%T17% = (—1), and if it is in the state |z;), the
overall phase will be (+1), as desired. Finally, we need to uncompute the
flag qubit, which again takes one call to Ogs. All the other operations can be
implemented in a number of elementary gates that is polylogarithmic in 7.

If we instead have multiple algorithms {A(j)}?zl, then all that changes is
the size of the time register. It is now of size T},.x = maxjcp, 1}, and hence
the arithmetic operations on it now require O(polylog(Timax)) gates. This
completes the proof. O

4.5.4 Implementation of 2IIy..(4) — I

In this section, we prove Lemma 69, i.e., we provide an implementation of
the routine that reflects around the kernel of the span program operator A
as defined in Eq. (4.7). In addition, we also elaborate on how one would
obtain concurrent access to these routines when considering multiple such
span program operators, because we need that in the proof of Theorem 78.
The result is summarized in the following lemma.

130 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Lemma 69. Let A be a clean quantum query algorithm with query complexity
S and time complexity T. Let Py = (H,V,A,|T)) be the span program for
this algorithm, as in Definition 57. Then, the reflection 2Ly a) — I can be
implemented to error 6 > 0 with O(T/S) calls to O4 and Os, O(polylog(T))

auxiliary qubits and a number of extra gates that satisfies

T 1
@) (Epolylog (T, 5)) :

Similarly, let {A(j)}?zl be a set of clean quantum query algorithms. For
all j € [n], let S; and Ty be the query and time complexity of AY), respec-
tively. Let PU) = (1) V) AW |70)Y) be the span program of AY). We can
provide concurrent access to {21l a0y — [}j=y up to precision 6 > 0 with
O(max;e, 13/95;) calls to O 4 and Og, O(polylog(Tiax)) auxiliary qubits and
a number of extra gates that satisfies

T; 1
O [max —Lpolylog | Tmax, = | | -
(je[nl 57 g(5))

The main idea of the proof is to use the characterization of the kernel of
A given in Lemma 61, and to map this space isometrically to another space
around which we can reflect more easily. The formal proof of Lemma 69 is
given at the end of this section.

First, we implement a subroutine that we will use throughout this section.

Definition 70. Let A be a clean quantum algorithm with time complexity
T and query complexity S and let Py = (H,V, A, |7)) be its span program.
For all a € [0,1] and ¢t € [T — 1]y, the non-trivial action of the maps S;, is
described as follows. For |¢) € CI"PW ift 41 € S,

N { DI = al)])+ VI= @+ D)
LD - —VI— a2lf)|) + alt +1)]0)[0)

ft+2e¢s,

S { DI0)|¥) = alf)|0)|) + V1 —a?[t + D[+)Upa i)
UL+ DRR) = VT =)0 U [9) + alt + 1))

(4.18)
Otherwise,
e { |, DION0) o ST DT
DI = —VT= 20U) + alt + 1)]0)]e).

4.5. TIME COMPLEXITY OF THE ALGORITHM 131

In all three cases we have Sy : |t')|0) — |t')|¢) for t' ¢ {t,t + 1}. We refer
to these maps as splitling maps.

Note that for all choices of ¢t and «a, S;, leaves H, invariant. We leave
this to the reader to check. In the lemma below, we elaborate on how we can
implement this splitting map efficiently.

Lemma 71. Let A be a clean quantum algorithm with time complexity T
and query complezity S, and let Py = (H,V, A, |T)) be its span program. Let
t € [T —1)p and o € [0,1]. We can implement S;, with two controlled calls
to (the inverse of) O 4 and O(polylog(T)) additional gates.

Furthermore, if we have a binary description of t and « in auziliary regis-
ters, where the description of a is 0-precise, we can implement S; o up to error
d > 0 with two controlled calls to (the inverse of) O 4 and O(polylog(T,1/0))
additional gates.

Proof. First of all, we check which of the three cases in Definition 70 applies.
This we can do with one call to Og and polylogarithmically many extra gates
in T. Each of these three cases we treat separately and consecutively. We
only give the explicit description of the last case here, as the others come
down to the same circuit with some minor adjustments.

We implement the bottom mapping in Def. 70 in three steps.

1. First, controlled on the first register being in time ¢ 4+ 1, we call the
inverse of O4. This will map [t)]0)]1)) to itself, and it will map |t +
1)]0)[¢) to |t—|—1)|O>UtT+1|@D>. This takes 1 call to O 4, and O(polylog(T"))
other gates.

2. Next, we apply the following mapping to the first register:
[t) = alt)+vV1 —a?|t+1) and [t4+1) — —V1 — a2|t)+alt+1)

Since this is a two-level rotation, we can implement it with O(polylog(T))
single qubit gates and CNOTs.

3. Finally, we apply O 4, controlled on the first register being in time ¢+ 1.
Just as in step 1, this takes 1 call to O4 and O(polylog(7T')) additional
gates.

One can easily check that this implements the third mapping in Def. 70.

132 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Furthermore, if we have a binary description of ¢ and « stored in an extra
register, we can implement the desired mapping in a similar number of gates.
While we cannot hardcode ¢ in steps 1 and 3, we can control on its value.
Similarly, in step 2, as « is not hardcoded, we have to substitute the rotation
with O(polylog(1/0)) rotations controlled on the qubits storing «.. All of the
necessary computations are efficiently implementable classically, and hence
only add (additive) polylogarithmic overhead in the error parameter to the
time complexity. O

Next, we define what we call the left and right block oracles, O and Op.
These will be necessary further on because our construction requires us to
be able to tell, given a state with time label ¢, what are the closest query
time-steps to its left and to its right, and, if ¢ + 1 is a query, whether we
should count the state as pertaining to H,, or H, 1. Remember that all
the way back at the beginning of Section 4.4.1, we denoted the blocks of
contiguous non-query time steps by By = {q,—1 — 1,...,q — 1}. Query time
steps act as the separators between contiguous blocks. When ¢ is the index
of a non-query, it belongs to a unique query block, and so the left-endpoint of
its query block, q;_1, is uniquely defined, as is the right-endpoint, ¢,. Thus,
we can define operations O and Op that, for any such ¢, compute these
values, or, rather, for technical reasons, given |t) such that ¢t + 1 € By, Oy,
and Opg return gq,_; — 1 and g, — 1 respectively.

When ¢ 4 1 is the index of a query, there is ambiguity, because it is con-
tiguous to two blocks — it is the left-endpoint of one, and the right-endpoint
of another. We use an auxiliary qubit to resolve this ambiguity: for a state
[t)|+), we interpret ¢ +1 = ¢ as the right-endpoint of a block, so O and Og
return g, — 1 and ¢, — 1 respectively; and for a state |[t)|—), we interpret
t+ 1 = q as the left-endpoint of a block, so O and O return ¢, — 1 and
qer1 — 1 respectively. In other words, we reinterpret blocks as starting with
a query and finishing immediately before the next one. Notice how this is
consistent with the form of the vectors in H, and ker(A). The precise actions
of O and Opg are defined as follows.

Definition 72. Let A be a clean quantum algorithm as in Definition 6,and
let Py = (H,V, A, |7)) be its span program. We define the left and right
block oracles as unitaries on H ® C{=5T} acting as
[6)]0)[0) — [£)]0)|ge—1 — 1), ift+1€ By,
Op:q [OIN0) = [O+H)g—1—1), ift+1=q,
)1=)10) = [=)ae—r — 1), T+ 1=qe,

4.5. TIME COMPLEXITY OF THE ALGORITHM 133

and
1£)10)]0) — [£)|0)|qe — 1), ift+ 1€ By,
Or:q [OH0) — [O+)]e—1), ift+1=q,
1O[0) = [O)])g —1), ift+1=qm .

Now, we show how to implement these block oracles efficiently.

Lemma 73. Let A be a clean quantum algorithm with query complezity S
and time complexity T, and let P4 = (H,V, A, |1)) be its span program. Then
we can implement Op and O with O(T/S) queries to Os, O(polylog(T))
ancillary qubits and a number of additional gates that scales as

o (gpolylog(T)> .

Stmilarly, suppose {.A(j)}?:l 15 a set of clean quantum algorithms. Let
J € [n] and let S; and T; be the query and time complexity of AW respec-
tively. Similarly, let O(L]) and (’)g) be the left and right block oracles of AV,

respectively. We can provide concurrent access to {O(Lj) by and {Og))

with O(max e, 15/5;) queries to Og, O(polylog(Tmax)) ancillary qubits and
a number of additional gates that scales as

@ (max 5polylog(THm)> .
i€l S;

Proof. We first focus on the case where we have just one algorithm and leave
the case where we have multiple algorithms for the final paragraph. We only
show how to implement Oy, as the implementation of Op is similar. First of
all, we check if £+ 1 € S using one call to Os and O(polylog(T)) other gates
and store the result in an auxiliary qubit. If this flag qubit is |1), we apply
a Hadamard to the second register. If the second register is now 1, we copy
the time ¢ to the last register. Observe that if the input was |t)|—)|0), where
t+1 = g1 then we are done (up to reapplying the Hadamard to the second
register and uncomputing the flag qubit). The only interesting case now is
when the second bit is 0, so we apply all the following operations controlled
on this bit being 0.

In this last case, what we would like to do is write in a new register
the index of the last query before our timestep ¢. For that purpose we
initialize a new counter register having [log(37'/S)] + 1 qubits, in the state
|0), and iteratively decrement the time register until we reach a time step

134 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

that is one less than a query time step, and after that the counter register
is incremented. This means that after these iterations, we have the correct
query time step stored in the time register, while the counter will contain
a function of ¢, g,_1, and |3T/S|. This task can be done by repeating the
following operation |37'/S| times. First, we check whether the time register
is one less than a query time step and if it is we increment the counter register.
This can be done using 2 queries to Os and a number of extra gates that is
polylogarithmic in 7. After that, we decrement the time register controlled
on the counter being in the |0) state. This also takes a number of gates that
is polylogarithmic in 7. We can now copy the time into the last register,
and then uncompute all of these iterations, returning the time register to the
state |t) and the counter to the state |0).

At last, we undo the computations we did in the beginning, i.e., we apply
the controlled Hadamard again and reset the flag that indicated whether
t + 1 € S using one more query to Og and O(polylog(T')) extra gates. We
easily check that the total cost of this construction matches the claim in the
statement of the lemma. ‘

Finally, in order to provide concurrent access to {O(L]) 1, we can simply
run the loop in the second paragraph for max;ecp,|37;/S;] iterations. The
size of the time register now has to be Ti,.« and so the arithmetic operations
on this register take a number of gates that is polylogarithmic in 7},.,. This
completes the proof. O

Next, we define a mapping that generates the vectors of the kernel of A.

Definition 74. Let A be a clean quantum algorithm with time complexity
T and query complexity S, and let P4 = (H,V, A, |7)) be its span program.
Define C as a unitary on A, which, forall £ € {2,...,S+1} and |¢)) € CW,

acts as o
C: gy —1)|— L

and otherwise, C acts arbitrarily but leaves H, invariant.

These maps, or rather, their inverses, are the key to the reflection around
ker(A). Indeed, CT maps every element in ker(A) onto a state of the form
lge—1 — 1)|=) 1), so if we can implement this map and reflect around these
simpler states, we can reflect around ker(A). Let us now see how to imple-
ment C.

4.5. TIME COMPLEXITY OF THE ALGORITHM 135

Lemma 75. Let A be a clean quantum algorithm with time complexity T
and query complezity S, and let Py = (H,V, A,|T)) be its span program. We
can implement a mapping C that satisfies the conditions in Definition 7/,
up to error 6 > 0 in operator norm with O(T/S) queries to O4 and Og,
O(polylog(T)) ancillary qubits, and with a number of additional gates that

scales as T .
(@) <§polylog (T, 5)) .

Similarly, let {A(j)};-‘zl be a set of clean quantum algorithms. For all j €
[n], let S; and T denote the query and time complexity of AW respectively.
Let CY) be the routine defined in Def. 7} for AY. We can provide concurrent
access to {CYY1_, up to error 6 > 0 in operator norm with O(max;ep 1;/S;)
queries to Oy and Og, with O(polylog(Twax)) ancillary qubits, and with a
number of additional gates that scales as

T; 1
O (gréz[a%(3, polylog (Tmax, 6)) .
Proof. While the behavior of C is only fully specified on states with ¢ such
that ¢ +1 € S in the first register, more generally, we must ensure that C
leaves H, invariant, which leads to a more involved construction. We first
consider the case where we have just one algorithm A, and leave the case
where we have multiple algorithms for the final paragraph of this proof.

First of all, we call Op and O and store the results in some auxiliary
registers. According to Lemma 73, this takes O(7"/S) calls to Os and
O(T/S - polylog(T)) additional gates.

Next, we distinguish between three cases. First, if the application of Oy,
amounts to |—1) in the last register, then necessarily ¢ belongs to the block
before the first query, in which case we simply do nothing, i.e., we act as the
identity. Second, if the result of Og is T, then we started out in a state in
which the time step ¢ was higher than the last query, which requires separate
treatment. The third case is when neither of these happened. These cases
can be distinguished with O(polylog(T")) gates, and they can be handled
separately and consecutively. We only explain how we handle the final case,
as the first one is trivial and the other is similar to the third.

Hence, we assume that the auxiliary registers are in the states |g,_1 — 1)
and |g,— 1) for some ¢ € {2,...,S}. Now, we repeat the following procedure
|37'/S] times. In the ith iteration, where ¢ = 0,1,...,|37/S], we perform
the following steps.

136 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

1. First, we initialize an auxiliary qubit and set it to |1) if and only if
qi—1 + 1 < qp. This takes time O(polylog(T)). Steps 2 — 4 we do
controlled on the auxiliary qubit being |1).

2. From the auxiliary registers, we calculate

L if i =0,

. 1Bgl?
V2 5

1 .
m, OtherWISe,

and store it in a binary representation in another auxiliary register.
This calculation can be done up to precision ©(4S/T") in a number of
gates polylogarithmic in 7" and 1/6 using standard classical methods.

3. Next, we apply the splitting map S;, ,+i—1,0,, Where ¢—; +7 — 1 and
«; are stored in separate registers, with «; up to error ©(5.5/T"), which
by Lemma 71 incurs 2 controlled calls to (the inverse of) O4 and a
number of extra gates that is polylogarithmic in 7" and 1/9.

4. We uncompute the parameter «; from step 2.

5. We uncompute the check that ¢, + 1 < q,.

; =

These steps have the effect of applying
Sq

4—2706\@\8‘14—3704\3”4 g 'ng—170418qe—1—170407

where each factor is implemented up to error ©(S6/T). As there are at most
O(T/S) factors, the total error is at most d.

First of all, remember that by construction, S; , leaves H, and invariant.
Moreover, observe that the only values of ¢ for which we execute S, are the
values {q,1 — 1,...,q — 2}. By Definition 70, for any «:

e S, , 1. only acts non-trivially on span{|g,_1—1)|—), |ge_1)|0) }@CI>W,
which it also leaves invariant (since ¢,_1 € S);

e 8,2 only acts non-trivially on span{|q, —2)|0), |ge — 1)|+)} @ CI">WV,
which it also leaves invariant (since g, € S);

o forallt € {qi—1,...,q—3}, St only acts non-trivially on span{|t)|0), |t+
1)]0)} ® CI"XW wwhich it also leaves invariant (since ¢ 4 1, +2 & S).

This means that we only act non-trivially on the vectors |g—1 — 1)|—)|¢),
lge — 1)|+)[2) and [£)|0)[)) where ¢ + 1 € B, and [v) € CPW and we leave
invariant the space

(span{|gr_1 — 1)|—)} @ span{[t)|0) : t + 1 € B} @ span{|g, — 1)|+)})@CI>WV,
(4.20)

4.5. TIME COMPLEXITY OF THE ALGORITHM 137

In particular, we leave invariant the subspaces Hibé for b = 0, 1. This implies
that the time register always contains a value ¢ such that ¢ + 1 is within
the query block bounded by ¢,_; from the left, and ¢, from the right, or a
value. As we shall see shortly, we have generated a superposition of vectors
with time step in the B, plus a vector with time step ¢,_; that has a |—)
in the second register and a vector in the time step g, having |+) in the
second register. The auxiliary qubits generated by Op and Op containing
the boundaries of the current block are no longer necessary so we uncompute
them by simply calling their inverses of Oy and Ogp.

Clearly this mapping leaves H, invariant since S;, leaves H, invariant,
and all other operations do not matter as they are uncomputed.

Moreover, we claim that this circuit implements a mapping C that satisfies
the conditions from Definition 74. As we are considering the case that the
block B, is neither the first nor the last block, suppose that we start with
the state |g, — 1)|—)[¢), for some [1)) € C"V. Now, in the first iteration
(i = 0) we apply S;,_,—1,a0, t0 arrive at the state

1

B |CI£
1+ ‘B[| \/_

We easily check by induction that after the ith iteration with 1 <1 <
Ge — qe—1, wWe are in the state

]B,g]

DI=)) + IQe>|0>|¢>]

qe—1+i—1

1
—= — D)) + Z £)10)U,)
1 \Qe 1 t;qe—1+1
\/:B \/§ t=qr—1 y
1+ =5 1
e B 0yl

2

which implies that after the iteration where i = |B,|, we are in the desired
state. Whenever ¢ > ¢, — q,_1, we don’t do anything due to the condition
that is checked in step 1. Hence, this circuit indeed implements a mapping
C that satisfies the conditions outlined in Definition 74.

We observe that there are O(T/S) iterations, each of which uses O(1)
calls to O4 and O(polylog(T,1/6)) extra gates. In addition we do O(T'/S)
calls to Os and O(T'/S - polylog(T)) extra gates when we call Oy and Op
and their inverses.

In order to implement concurrent access to {C7) 1, we can run the loop
a total of max;cp, |37;/5;] iterations. The time register now has to be of size

138 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Tax = max;e[y) 15, and hence the arithmetic operations on this register now
take O(polylog(Timax)) gates. We can now calculate the coefficients «; with
precision O(d minjep, S;/7;). Now all the maps CU) are implemented up to
precision 0, which implies that the concurrent access is also implemented up
to precision 0. This completes the proof. O

We have finally all the coupons necessary to prove Lemma 69, let us now
redeem them.

Proof of Lemma 69. We first focus on the case where we have just one algo-
rithm A. Using the characterization of the kernel of A in Lemma 61, we see
that

C: §pan{|qz_1 — D=y Le[S+1]\ {1}}/® CPMW s ker(A)

~
X

isometrically. Hence, we obtain that
2Wyer(ay — I =C[(2Mx — I) ® I]CT.

As we can implement the reflection around X using O(log(7")) extra gates and
a single controlled query to Og, the cost of reflecting around ker(A) essentially
becomes twice the cost of implementing C, which is given in Lemma 75.

If we have multiple algorithms AY), we can use the exact same idea, but
now we should use concurrent access to the C)’s and a concurrent reflection
around the spaces X)’s. The cost of implementing concurrent access to
{CW}n_, is analyzed in Lemma 75, and the concurrent reflection around the
X0U)’s can be implemented with O(polylog(Tiay)) gates and one controlled
call to Og. This completes the proof. O

As a final remark, we would like to point out that this is not the only
possible construction of the reflection around the kernel of A. One could
alternatively employ a more general method of constructing a block-encoding
of A and using phase estimation to separate the vectors in the kernel of A
from those that are orthogonal to it. Implementing this construction carefully
yields the same time and query complexity, but requires a spectral analysis
of A, which is possible but turns out to be quite involved.

4.5. TIME COMPLEXITY OF THE ALGORITHM 139

4.5.5 Construction of |wy)

The goal of this section is to prove Lemma 76, i.e., we provide an imple-
mentation of the circuit that constructs the minimal positive witness that
is analytically calculated in Lemma 62. Additionally, we also elaborate on
how one would do this concurrently, because we need this is in the proof of
Theorem 78.

Lemma 76. Let A be a clean quantum query algorithm with query complexity
S, time complexity T, and error probability €. Let Py = (H,V, A, |T)) be the
span program for this algorithm, as in Definition 57. We can implement a
unitary Cju,y that maps the all-zeroes state |0)[0)[Wo) to |wo)/ |||wo)|| up to
error 6 > 0 in the operator norm with O(T/S) calls to O and Os, O(1)
auziliary qubits and a number of gates that satisfies

@) (gpolylog (T, %)) .

Similarly, let {.A(j) "1 be a set of clean quantum query algorithms. For
all j € [n], let S; and T; denote the query and time complexity of AW,
respectively, and let €; be the error probability. Let PU) be the span program
of AV and let |w(()j)> be the minimal positive witness of PY. Then we can
implement concurrent access C to {C|w(()j)>}?:1 up to error 6 > 0 in operator

norm with O(T/S) calls to O4 and Os, O(1) auziliary qubits and a number

of gates that satisfies
T; 1
O [max —Lpolylo (Tmax,—)))
(jE[n} Sjp YO8 0

We first name the three parts that form |wp). From the form of |wy) in
Lemma 62 we have

w) _ 1),) 19)

llwo)l - VN

140 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

where

14 1 1
) = 7 > 10100 Vst [W) + |qn — 1) <§IO> + 5!1>) Ugi—1;1|Po),

t=0

1 1 1
Ix) = a1 DQS - 1) (§|0> - QM) Upysrer 1)
T—1

1
"’M Z ‘t>‘O>UtT+1;T|\I'T>
t=qs+1
Ca
=———|T v
6) = — o IO 1),
and C = 2% + 1 and a and M are defined in Eq. (4.6). We can easily
calculate the norms of the respective vectors, which results in

Y

2:q1_]— 1 H2:

C?a?
=22t ;. and ()] =

C

(Ca?+1) (Ca?+1)%
Of these three states, observe that the first two have a structure similar to
the vectors in ker(A), while the third one is very simple. By assumption
on the state |U7), the state |¢)/ |||¢)]| can be generated in O(1) gates. For
the generation of the other two we will reuse the techniques in the previous
section for mapping simple states to states in ker(A). This is the focus of
the following lemma.

Lemma 77. We can implement routines Cjyy and Cp that map |0)|0)| W) to

1)/ [[|0)]] and |T — 1)|0YULIWL) to |x)/ I1X)|| respectively up to error § > 0
in operator norm, with O(T/S) calls to O, O(1) auziliary qubits and a
number of gates that satisfies

T 1
(@) (Epolylog (T, 5)) .

Moreover, both circuits leave H, invariant, and their inverses leave all the
states orthogonal to 1) (resp. |x)) invariant.

Similarly, we can provide concurrent access to {C‘%g i, and {C‘(;;}?:l up
to precision d > 0 with a number of calls to O 4 and Os of O(max;en) 15/5;),
O(1) auziliary qubits and a number of extra gates that scales as

T; 1
O [max =Lpolylog | Timax, =)
(a‘e[nl S g(5))

4.5. TIME COMPLEXITY OF THE ALGORITHM 141

Proof. Note that |¢)) and |x) are very similar to the states in the kernel of A
that span the image of the ®,’s. Therefore, Cjyy and C},y are very similar to
the circuit C defined in Definition 74. We can use the exact same techniques
as we used in implementing C in Lemma 75 to implement Cyy and C),). The
cost of implementing these routines carries over from the proof of Lemma 75.
This completes the proof. O

Proof of Lemma 76. We first restrict ourselves to the case where we just have
one algorithm, A, and we postpone the treatment of the case where we have
a set of algorithms to the final paragraph of this proof.

First of all, for a = IIH\W>>”|I’ we implement a circuit C; whose action is

cl;{)0} o) a|0)[0)[To) + VI — a2|T)[0)| W)
TY0)[Wr) > —v/1—a2[0)]0)|Wo) + a|T)|0)r)

This circuit can be implemented in a similar way as we implemented the
splitting map in Lemma 71. Conditioned on the first register being in state
|T), one first applies the map |Ur) = |¢g, 1) — |[¥o) = [thg,0) to the last
register, which amounts to applying a controlled X operation targeted to the
answer register. Then, one applies a rotation on a two-dimensional subspace
of the state space of the first register spanned by span{|0),|T")}, which can
be implemented with O(polylog(7')) gates as it is a register on log(7") qubits.
Finally, one applies the mapping |Wy) — |¥7), again controlled on the first
register being in state |7"). Counting the auxiliary qubits and gates reveals
that we can do this with O(1) auxiliary qubits and O(polylog(7")) gates.

Next, one applies the mapping 8}7175, with 5= |||/ Il1x) + [¢)||. The
combined mapping now acts as

Si 141 ¢ 0)[0) o) ”’fﬂ’\ononw Oy yoyuiieny @)

VN
"j‘ﬂ‘ IT)0) W), (4.22)

Thus, all that is left is mapping the first term to [¢)) and the second to
|x) using the circuits that we already have for them, meaning that

w,
Clun) = CliyCro St 5C1 1 0)[0)| W) o)

2

142 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Moreover, all the four subroutines can be implemented with O(7/.5) calls to
O 4, polylogarithmically in 7" many auxiliary qubits, and a number of gates
that satisfies

o (gpolylog(T)) .

If we have multiple algorithms {.A(j)}’]?:l, we simply run the concurrent
versions of Cjyy and Cj,y, and we supply a concurrent version of C; which
we build using the same techniques as in Lemma 75. With this, we can
successfully implement concurrent access C to {C|wéj)>}§?:1 with the desired

complexities. Since all the individual C, (;),’s are implemented up to error 6,
‘wo

)
so is their concurrent access routine.]

4.5.6 Proof of Theorem 63

Having proven how to construct circuits that approximate the subroutines of
Theorem 53, we are ready to prove Theorem 63, which we restate below for
convenience.

Theorem. Let A be a clean quantum query algorithm that acts on k qubits,
has query complexity S, time complexity T', and evaluates a function f :
X C {0,1}* — {0,1} with bounded error. Let Py be the span program for
this algorithm, as in Definition 57. Then we can implement the algorithm
compiled from Py with:

1. O(9) calls to O,.

2. O(T) calls to Oy and Og, as defined in Section /.2.
3. O(Tpolylog(T)) additional gates.

4. O(polylog(T)) auziliary qubits.

Proof. From Theorem 58, we know that P4 positively be-approximates f
with complexity C'(P4) = O(S). We can assume that the approximation
factor 5e is bounded away from 1 (i.e. 1 — 5e = O(1)) because A is a
clean quantum algorithm and so ¢ < 1/3. Otherwise, we can decrease the
error of A using standard error-reduction techniques while only incurring a
multiplicative cost to the overall time complexity. Hence, we deduce from
Theorem 53 that we can implement the algorithm compiled from P4 with a
number of calls to the subroutines Rier(a), Clug)s Rau(z) and Ry that goes

like
0 <(CPa) 1, 1 A) —0(S).

1—A)3/2 %1

4.6. APPLICATION TO VARIABLE-TIME SEARCH 143

For Ryer(a) and Cjyy) we choose error parameter § = ©(S™1), which implies
that log(1/0) = O(log(S)). Given their respective query, space and time
complexities in Lemmas 69, 76, 68, and 67, we can implement the span pro-
gram algorithm with O(S) calls to O,, O(T) calls O 4 and Os, O(polylog(T))
extra qubits, and O (Tpolylog(7’)) extra gates.

We proceed by analyzing the error introduced by our approximate im-
plementation of the subroutines. First, an error is introduced due to the
reflection Ry (,) not leaving H, exactly invariant. Observe that whenever we
call Ry(»), we are moving a part of the state outside of H, that has ampli-
tude at most 2\/2_5/5. So, there exists a state in H, that is 2\/2_5/S—close
to the state that we used in the analysis of the algorithm in 53, and we map
to a state that is in turn 2\/2—8/S—C10S6 to this state. Hence, the total error
introduced per call of Ry, is 4\/2_5/5. Thus, the total error introduced is
O(ve) = 0(1).

Additional error is introduced by the approximate implementations of
Riw) and Ryer(a) in the step where we approximate the amplitudes of par-
ticular superpositions. Both are implemented up to error § = O(S™!) in
the operator norm, which means that the total cumulative error is at most
O(S-0) =0(1) as well.

All things included, running the algorithm of Theorem 53 with the sub-
routines of Lemmas 69, 76, 68, and 67 instead of the exact subroutines pro-
duces a state that is O(1) away from the ideal final state of the algorithm
in the 2-norm. This might not be enough to guarantee that the total proba-
bility of error stays below 1/3. In that case, we choose an error § = O(S™1)
with sufficiently small constant and use standard error-reduction techniques
on the algorithm A for a constant number of rounds if necessary to make
sure that he probability of erroneously deciding f is &’ < 1/3.]

4.6 Application to variable-time search

One reason for converting quantum algorithms to span programs is that span
programs compose very nicely (see [Rei09] for a number of examples). We
illustrate this by describing a construction that, given n span programs for n
functions {f; : {0, 1}™ — {0,1}}}_,, outputs a span program for the logical
OR of their output: f(zW, ..., 2™) =\/"_ f;j(z")). In short, we show that
given query-, time- and space-efficient quantum implementations for each
fj, the resulting span program can also be implemented query-, time- and

144 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

space-efficiently. The full theorem statement is provided below. Note that
throughout this section for the sake of simplicity we write f; as functions on
{0,1}™ even though the results also hold for partial Boolean functions with
arbitrary domains X; C {0,1}™.

Theorem 78 (Variable-time quantum search). Let A = { AV}, be a finite

set of quantum algorithms, where AY) acts on k; < kmax qubits and decides
fi 40,1} — {0, 1} with bounded error with query complexity S; and time
complexity T; < Tiax. Suppose that we have uniform access to the algorithms
in A through the oracles O 4, Os and O, as elaborated upon in Section 4.2,
and that the S;’s and T;’s are known. Then we can implement a quantum

algorithm that decides f = \/;.L:l f; with bounded error, with the following
properties:

1. The number of calls to O, is O (, /307, 52 log (E;Lzl Sf))
The number of calls to O 4 and Os is O (, /> 5 17 - log (Z?Zl Sf))
The number of extra gates is O (, /351 T - polylog(Tiax, n))

The number of auziliary qubits is O (polylog(Tmax, n) + /c;if;;)

If we additionally require that the error probabilities of the AY)’s are all
o(1/ 375, 57), then thelog(3"7_, S3) factors and the k2 term can be dropped.

We can also drop the term ko) if T = k;JFQ(l) for all j € [n].

A similar result was reached by Ambainis in [Amb10]. Let us discuss how
our result compares to that of Ambainis.

First, we assume the uniform access model described in Section 4.2. This
is a slight generalization of the model considered by Ambainis, as explained in
[Amb10, Appendix A], because we differentiate between query and non-query
time steps in the algorithms AY), whereas Ambainis does not. Therefore,
Ambainis only considers the algorithm oracle O 4 and includes the queries to
x as part of this oracle, whereas we also assume to have explicit access to the
oracles Og and O,.

One can obtain some of our results using Ambainis’s construction and
subsequently converting the resulting algorithm back to our setting. For
instance, if one counts every query in the original algorithms as having unit
cost, then Ambainis’s construction yields an algorithm that evaluates f =

4.6. APPLICATION TO VARIABLE-TIME SEARCH 145

Vi, fj with O(, /377, S7) queries to O,. This is a logarithmic factor better

than our result, but the number of calls to O4 and Og is unclear, and the
time and space complexities are not analyzed.

Alternatively, if one assigns a unit cost to every gate in the original al-
gorithms, then the algorithm that follows from Ambainis’s construction per-

forms O(,/3>°7_ T7) calls to O4, Os and O,. Similarly as before, this is a

logarithmic factor better in the scaling of the query complexity to O 4, but
worse in the query complexity to O, and again the time and space complex-
ities are not analyzed.

Our improvement over Ambainis’s work consists of the following elements.
First, we show that one can attain both desired scalings in the number of
calls to O,, Os and O 4 simultaneously, up to a single logarithmic factor.
Second, our construction is also efficient with respect to the time and space
complexities, as we show that we only suffer from polylogarithmic overhead
in the number of extra gates and auxiliary qubits.

There are, however, some aspects to Ambainis’s work that we did not
reproduce. Ambainis proved a version of his theorem for the search problem:
find j such that f;(z)) = 1, whereas we only consider a decision version.
By a standard reduction from the search version to the decision version, we
also recover the analogous search result, but with an extra factor of log(n)
overhead in the query and time complexities.

Ambainis also gives a result for the case where the costs of the original
algorithms are unknown. It would be interesting to figure out whether our
results can be similarly modified in the case where we do not know {7}}7_,
and/or {S;}_,, but it is not immediately clear to us how one would go about
this. We leave this for future research.

From Theorem 78 we easily deduce that if we have efficient uniform access
to a set of algorithms, i.e., the oracles O4 and Og can be implemented in
time logarithmic in T},,, and n, then the algorithm compiled from P has

query complexity O, /> 751 S7) and time complexity O, /2 T7).

The remainder of this section is dedicated to proving Theorem 78. In
Section 4.6.1 we describe how we can merge n span programs P . . P™
evaluating functions fi, ..., f,, respectively, into one span program P evalu-
ating the OR of these functions, f;V---V f,. Subsequently, in Section 4.6.2,
we relate the implementation of the algorithm compiled from P to the im-
plementation of the algorithms compiled from the individual PY)’s. Finally,

146 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

in Section 4.6.3, we specialize the span programs PY) to be span programs
of algorithms as defined in Section 4.4.1, and we relate the implementation
of the required subroutines to the constructions in Section 4.5, completing
the proof of Theorem 78.

4.6.1 The OR of span programs

Fix A € (0,1/n). For j € [n], let PV = (HW VW AU |70)) be a span
program on {0,1}™ that positively A-approximates f; : {0,1}™ — {0,1}.%
Let W7 and WY be some upper bounds on W, (P%) and W_(PW) respec-
tively, and assume that every x € fjl(O) has an approximate negative witness
B0 € VO with (@D ADTL0 | < AW and [[(@9|AD|* < W,

Let C; = /WYwY),

Assume, by applying an appropriate basis change, that |7U)) = |0) for
every j € [n]. For each j, extend [7)) = |0) to an orthonormal basis
{10), 15, 1), ..., |4, dim(VU)) — 1)} for V) so that, aside from the single over-
lapping dimension |0), the subspaces V) are orthogonal to one another. Let
Y = span{[j, 1), ..., [j, dim(V®) — 1)}, so that V@ = span{|0)} @ VY.

Let f: {0, 1}™++mn 5 10,1} be the function defined by f(z™", ... (™)
\/;;1 fi(x1)). We can define a span program P on {0, 1}™%+™n that decides
f as follows:

Vi€ [n], £ € [my],b € {0,1}, Hjep = span{|j)} @ HY),

%true — @ H‘Egl)leu Hfalse - span{lO, 0>}
j=1
v=span{|0)} o @V, A= \/WP(jloAD, |r)=0). (4.23)
j=1 j=1

Above, we are indexing into an input z € {0, 1} by using a pair of
indices, j € [n] and ¢ € [m;], in the obvious way. From this definition of P,

3We require A to be quite small here. One way to achieve this from an arbitrary span
program is to convert it to an algorithm, reduce the error to O(1/n) at the expense of a
O(logn) multiplicative factor, and then convert that back to a span program using the
construction in Section 4.4. Furthermore, we can just as well use partial functions here,
but we don’t for notational simplicity.

4.6. APPLICATION TO VARIABLE-TIME SEARCH 147

we get:

H(x) = D span{lj)} @ HV (@),
Jj€n]
where Vj € [n], HY(zV) = @ 7—[2(].). (4.24)
tefmy)

Definition 79. Let {PY}"_, be a set of span programs, where PU) =
(HD V) AW |70)). Then we let P = (H,V, A, |7)) be the OR span pro-
gram of these span programs, where H, V, A and |7) are defined in equations
(4.23), (4.24).

We proceed by proving various properties of the newly-defined OR span
program. First, we prove that it indeed evaluates f in the following theorem.

Theorem 80. The span program P positively n\-approzimates [with com-
plezity C(P) < />, C3.

The proof will follow from Lemmas 81 and 82. First, we show that if
f(x) = 1, P accepts z, and give an upper bound on the positive witness
complexity.

Lemma 81. If f(z) = 1, then the span program P accepts x, with positive
witness complezity wy (x) < 1. Thus W, (P) < 1.

Proof. If f(x) = 1, then there exists j € [n] such that f;(z\9)) = 1, so let
lw) € HU (x()) be a positive witness for 2V in PU) with H|w(j)>||2 <
W Then let |w) = —A=|j)|w) € V. Then Aw) = AD[w) = |0).

Vel

Furthermore, since H(z) = @'_, span{|j)} @ HY)(z9)) by Eq. (4.24), and

j=1
Wy € HY (x)), we have |w) € H(z), so |w) is a positive witness for z.
Since [[|w) | < W, [w) has complexity [[|w)[|* < 1. O

We complete the proof of Theorem 80 by exhibiting approximate negative
witnesses.

Lemma 82. If f(x) =0, then there is an approzimate negative witness |w)
with H<c~u|AHH(x)H2 < n\/W(P) and |(@|A]* < > C3, s0 P positively
nA-approximates f, and W_(P) < 2?21 CJZ.

148 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Proof. If f(z) = 0, then it must be the case that for all j € [n], f;(z)) = 0,
so for each j, let |@ j)> be an approximate negative witness for x(j) in PU)

with || (@) AU HH(J) 20)) H <)\/W ,and || J)|AJ)|| < WY, For each

3, we can write (0| = (0| + (@] for some |[@)) € V. We define (@] =
0] + Z?:1<w(j)|. Then (0|7) = (0]0) = 1. Furthermore, for each j, since

the column space of AY) is in V) = span{|0)} @ V(j), we have (0|AV) =
(0] + (@) A9) = (@]A0). Since H(x) = @B, span{[1)} & HO (a) by
Eq. (4.24),

2

H<(’~d’AHH($)H2 = J’ ® (|A(] 113,06 (zm))

<§jwf> _ =\
= - 7
j=1 +J

so P positively nA-approximates f. Finally, we conclude W (P) < 2?21 Cf
by observing:

@|A? }:W (@D AV <§:WU }:@ O

We conclude this section by characterizing the minimal positive witness
|wg) and the kernel of A in the following two lemmas.

Lemma 83. The minimal positive witness of P is given by

n @) W(])

1 , w

lwo) = —22&j|j> ® o) , where aj = v
HaH j=1 H”LUO

and |w(()j)> are the minimal witnesses of PY). Moreover, the minimal witness
size is N = 1/||a]|*.

Proof. Observe that for every choice of 3,’s that sum to 1, we have

n /8 n
A = B AD |wf Bilr) =
g;wwwj §: . %2 '

4.6. APPLICATION TO VARIABLE-TIME SEARCH 149

and that the minimal positive witness has to be of this form. Moreover, for
all such choices of 3;, we have

n 5‘ . .
ol Y- —E=1i) ® [w§) || =
=1 /W

where we used the Cauchy-Schwarz inequality. Thus, we find that for all

choices of 3;,
2

e =—;F,
=1 WE) o]

and the tightness of this inequality is shown by picking 3; = o7/ |al]>. Thus,
the minimal witness is

1 n . ‘w(j)>
’1U0>: 2Za]|]>® ?))
HaH j=1 H|U}0‘7 >
completing the proof. O

The kernel of A is not just the union of kernels of each AU) because
just as we can combine the minimal witnesses]wéj)) to map to |0), we can
make a combination that maps to 0. The following lemma characterizes
such combinations of individual minimal witnesses and finds that they are
orthogonal to the minimal witness for P.

Lemma 84. Let K = span{\jﬂwéj)} . j € [n]} Nspan{|we) }*+. The kernel of
A is given by

ker(A) = span{]0,0)} & K & @span{\j)} @ ker(AW)
j=1
Proof. First, observe that @7_, span{|j)} ©ker(AY)) C ker(A), since for any

1) € ker(AD), Alj)|h;) = /WY AD|h;) = 0. Similarly, observe that |0, 0)
vanishes under A, so it is part of the kernel of A as well.

150 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

Thus, suppose |h) = >7"_ [7)|h;) € H is in ker(A), and for all j € [n],
|h;) € row(AW). For all k € [n], we have

AN 1) k) S WP AD |y
Jj=1 Jj=1

where we use the fact that HgkA(j) = 0 whenever j # k. Thus, we have that
for all k € [n], A®)|h,) € span{|0)}. Since we also have that |h;) € row(A®),
it must be the case that |h;) € span{|wék)>}, so let |hy) = /Bk|w(()k)>. Then,
we have:

ST D ICINER P wg')
0= ZﬁjA(j)|w(()J)> = Zﬂ] Wf)|0> = Zﬁ]ay H|])OH
j=1 Jj=1

= N(wo|h)|0)

Iy, = HmAW\hk),

Hence, |h) = >77, aj\j>\w[()j)> € ker A if it is orthogonal to |wg), which
completes the proof. O

4.6.2 Implementation of the OR span program

Now that we have formally defined the OR span program in Definition 79, we
proceed by analyzing the implementation cost of the algorithm compiled from
it. To that end, we first of all assume that all of the spaces H) correspond to
m qubits, i.e., HU) = C?" for all j € [n]. This is not much of a restriction, as
we can always simply pad the smaller H£)’s with extra qubits that we don’t
touch until our space is as big as the largest state space of the individual
span programs.

The main idea of this section will be to use Theorem 53, and give im-
plementations to the required subroutines in terms of the individual span
programs PY). This sometimes requires running several subroutines associ-
ated with the individual PY)’s in superposition. This is what we defined at
the beginning of Section 4.5 as concurrent access. We repeat the definition
here for convenience

Definition (Concurrent access). Let C, ..., C™ be quantum subroutines,
all acting on the same Hilbert space H. We say that a subroutine C provides

4.6. APPLICATION TO VARIABLE-TIME SEARCH 151

concurrent access to {CV) iy if it performs the following action on Crle@H:

Cc=> li)ilec?
j=1

Next, we present the main theorem relating the cost of implementing the
span program compiled from P to the cost of implementing the subroutines
that are associated with the individual PU)’s

Lemma 85. Let A € [0,1/n) and let {P(j)}’? be a set of span pmgmms POS-

itively X\-approximating some functions f] For all j € [n], let \w ' > be a min-

imal positive witness for PY) and let W > W, (PY) and w9 > W (PUY))
be upper bounds on the positive and negative complexities. Furthermore, for
each j € [n] and 29 € {0,1}™, let H,) be an implementing subspace of
PU for 9. Let P be the span program described in Eq. (4.23) and suppose
that we have concurrent access to the following four sets of subroutines (as
defined in Def. 64):

1. A circuit R, providing concurrent access to the subroutines { Ryeya))}
where Ry aty acts on Hyoy as 2Ly q00) — 1.

2. A circuit C, providing concurrent access to the subroutines {Clw(()j)>}?:1,
where C‘wéj)> leaves H ;) invariant and maps |0) to |wéj)>/\|]wéj)>\|.

3. A circuit Ry, providing concurrent access to the subroutines {RH(N))}”
where Ry, (@) acts on H,o) as 2HH(I(J->) — 1.

4. A circuit Ry, providing concurrent access to the subroutines {R

where R\0> acts on M, as 2|0)(0] — 1.
5. A circuit C, that prepares the superposition

]1’

n)
1 |
Co: |0) = —= > ajlj) where o = -
ke |z

Then, we can implement the span program algorithm for P with a number of
calls to the aforementioned circuits that satisfies

N X -
(@) ! _ log where C; =1/ WE)WEJ),

(1—nA)32 "21—n\

j=1

Jj=1

152 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

and a number of extra gates and auxiliary qubits that satisfies

O | polylog C2,1/(1=nA\),n

Proof. We apply Theorem 53 to P. As P is positively N-approximating with
N =nA < 1, the first requirement is satisfied.

Next, we define the implementing subspace that we use. We take H, to
be

H, = span{|0,0)} & P span{|j)} @ H,o,
j=1
i.e., we have one orthogonal direction that contains all scalar multiples of
the all-zeros state, and all the implementing subspaces associated with the
individual PU)’s labeled by j. We refer to the first and second registers as
the label register and data register, respectively.

Now, we turn our attention to the implementation of the four subroutines
listed in Theorem 53. First, we implement the reflection through the |0)-
state, Rjp). Observe that the all-zeros state in H, is the state |0,0). But the
only state in H, that has zero in the label register is exactly the all-zeros
state. Hence, we can simply reflect through |0) on the first register, which
has only O(log(n)) qubits. Thus, we can implement Rqy in O(log(n)) gates.

Next, we turn our attention to the implementation of Cj,,). From Lemma 83

we find that
|wo) Jwg”)
7)) ®
T HaH Z U e
This allows for defining C, as the following procedure.

1. First, we prepare an auxiliary qubit in the state |1) whenever the data
register is in the state |0), and |0) otherwise. This requires one con-
trolled call to Ry together with O(1) auxiliary gates.

2. Next, conditioned on this auxiliary qubit, we apply C, to the label
register.

3. Now, we uncompute the auxiliary qubit with the gates from step 1
applied in reverse. This uncomputation succeeds with certainty as the
all-zeros states in all the H,) ’s are the same, and hence permuting
the labels effectively permutes between different all-zeros states in the

Hx(j)7s.

4.6. APPLICATION TO VARIABLE-TIME SEARCH 153

4. Finally, we call C.

We observe that the first three steps perform some unitary on all the n 4+ 1
states that have the all-zeros state in the data register. As all these states
are part of H,, they leave H, invariant. Similarly, the fourth step leaves H,
invariant as all of the individual subroutines that make up C leave their re-
spective implementing subspace H ;) invariant. Hence, the entire procedure
Cluw) leaves H, invariant.

Furthermore, observe that if we start in the state |0, 0), the mapping that
is implemented is the following

()

tep 1-3 1 |w0 >
0,0)° a5, 0) S S aylj) @ oL
R N

Thus, we conclude that we can implement C,,, using O(1) calls to R, Cq
and C and O(1) extra gates and auxiliary qubits.

We proceed by providing an implementation of the reflection through the
kernel of A. To that end, remember from Lemma 84 that

ker(A) =span{[0,0)} & [span{|wo)}* N span{|j)|wg”) : j € [n]}

Wo
@ span{|j)} @ ker(AY).
As span{|wg) } C W, we observe that
2
M~ 1= 210.0)(0,0 — 1) (- 1) ot - 1)
[[[wo)
’ <Z‘j><3’ ® (2err(A(j>) - I)> :
j=1

The first factor is simply Rpy on H,. Similarly, the last factor is exactly the
action of the concurrent reflection R4 on H,. The second factor can easily
be implemented by the sequence C|wO>R‘0>C|TwO>. So, it remains to implement

154 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

the third factor, which we can achieve by observing that on H, we have

| 2l] oy :

2y, — =) _|j){j| @ e =L =D Il e (CuoREC o)
; (4) , |wg

=0)

=CRoC".

Thus, we have
Rier(a) = R\0>C|w0>R\())wa())CROCTRA.

As all the individual factors leave H, invariant, so does their product. Hence,
we can implement Rye(a) with O(1) calls to the subroutines mentioned in
the statement of the lemma.

It remains to implement the routine Ry ,). To that end, observe that

2My(ay — I = Z|J><J’ ® (20 @0y — 1)
=1

which implies that we can simply implement the reflection through H(x)
with one call to Ry.

We have implemented all routines in the statement of Theorem 53 with
O(1) calls to the routines listed in the statement of this lemma. That means
that the total number of calls to these routines is equal up to constants to
the expression in Theorem 53, which reduces to

o (VW i VELCG

" — 1
1— n/\)3/2 6T o | TO\ T 8 T

Moreover, it follows directly from the statement of Theorem 53 that the total

number of extra gates is O(polylog(y/> 7_, C7,1/(1—nA))). This completes
the proof. O

4.6.3 Implementation of variable time quantum search

In this section, we prove Theorem 78. The core idea is to first convert the
algorithms into span programs using the construction from Section 4.4, next
merge them into an OR span program as in Definition 79, and finally convert
that back into a quantum algorithm using Lemma 85.

4.6. APPLICATION TO VARIABLE-TIME SEARCH 155

There is one caveat though. If we naively use the span programs of the
algorithms AU) from Definition 57 with the upper bounds on the positive
witness sizes that follow from Lemma 59, then we might end up with a min-
imal witness |wy) with completely arbitrary coefficients «; (see Lemma 83),
making it too time-consuming to implement C,. We circumvent this using
a technique that was already present in Ambainis’s original paper [Amb10],
which we name the binning technique. The next two lemmas formalize this
idea.

Lemma 86. Let 0 < Ypin = 71 < -+ < Y = Ymax- Lhen, we can ef-

ficiently find a sequence of integers 0 = jo < --- < jp = n such that
kE < [log(Ymax/Ymin)] - [log(n)] and the following two properties hold:

1. For all 0 € k], jo — je—1 is a power of 2.
2. Foralll € [k] and j € [ji—1 + 1, jd,

’y.
Proof. We let k' = [10g(7Ymax/Ymin) |- Then, with every j € [n], we associate
the unique integer m; such that v; € [Ymin * 2™, Ymin - 27™7). As

'Ymin . 20 S 'Ymin S ’Y‘] S 'Ymax — ’Ymin . 210g(7max/7min) S 'Ymin . 2k 7

we find that m; < &/, and hence m; € [k']. Moreover, as the 7;’s are non-
decreasing, so are the m;’s. Now, for every ¢ € [K'], we define j; = max{j €
[n] : m; = ¢} and we let j; = 0. We find that for all £ € [£] and j €
[jé—l + 17]2]7
E < “min 2£
2 2
and hence the second condition is verified.
Now, for every ¢ € [k], we write j, —j;_; in terms of its binary expansion,
il.e., we write

/—1
= Ymin - 2~ <95 < g,

jé - jé_1 = QPe1 ... PRy

where pp; > -+ > prg,. As j; — ji_; < n, we have that k, < [log(n)].
Finally, we let

(jf)]Z:l - (.7(,)7](/) + 2p1,1’ cee 7](/) + 2P0t 4 2P1,k1717j1’ s 7jl/<:/)

156 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

The difference between two consecutive terms is always a power of two by
construction, and the length satisfies

k= Z k@ < k lOg)—‘ < “Og(f}/max/’yminﬂ ’ ﬂog(nﬂ,

completing the proof. O

The above lemma is nothing more than a statement about how we can
put a sequence of positive reals into several bins. We now use it to modify
the upper bounds Wf), so as to make the cost of implementing C, scale more
favorably.

Lemma 87. Let A= {AV) }i_y be a finite set of quantum algorithms, where
AY) has query complezity 1 < S < Smax- Let P G) be the span program of
AV, Then, we can define positive reals {W _, such that W, (PW) <

WJ(rj) < 12(25; + 1), and a sequence of integers O =Jo <+ < Jp = n with
k< [% log(6Smax) | - [log(n)], such that for every ¢ € [k], jg —jg_l is a power
of 2 and for every j € [joi—1 + 1, jd,

wo o Jw

] HW H

O(j:‘

With this choice of upper bounds {W.])}] 1, we can implement the circuit

Ca, as defined in Lemma 85, with O(log(Smax)log®(n)) gates and O(log(n))
auxiliary qubits.
Proof. For all j € [n], let
3025, + 1)
%=
Jlwt]

Assume without loss of generality that the algorithms AY) are ordered such
that 0 < Ymin = 71 < ** < Y = Ymax- From Lemma 62 we deduce that

1/v2 < H\wéj)>H < /3, and hence

’Ymax < v3(25rnax + 1) \/6 < 65

~ : = max-
“Ymin 9

4.6. APPLICATION TO VARIABLE-TIME SEARCH 157

According to Lemma 86, we can now find a sequence 0 =75, < --- < jp=n
with & < [510g(6Smax)] - [log(n)], such that for all £ € [k] we have that
Je — je—1 is a power of two and for all j € [j,—1 + 1, ji|, we have

fy.
% <% < Ve
A L2
Given such a j, we define W\ = v H|w((]])>H . Then we find

w9 — 2 w1 < 402 e 19029, + 1
+ = Ve lwg ") || < 7 [wg) || = 12(i+ 1),
and according to Lemma 59,
Gy 2 ON& ()
W (PD) <328, +1) =22 ||| <2 - [l =W

Moreover, we have for all such j that

Wj_j) / W(J@

R [e 20
2 g >H

Thus, it remains to show that we can implement C,, in O(log(Smax) log(n))
gates. To that end, we first of all define the mapping S that acts as the
identity on |0)|0)|0) and that given a j € [j,—1 + 1, j,] implements

S 7100} = (00O = Jer = 1),

where the registers are of size [log(n + 1)], [log(k + 1)] and [log(n + 1)],

respectively. Moreover, as the values of the j,’s are known beforehand, this

can be implemented with O(k) arithmetic circuits that all have O(log(n))

gates, so the number of gates needed to implement S is O(log(Smax) log?(n)).
We define the subspace

X = span{]0)]0)]0)} @ span{|0)|€)|j — je—1 — 1) : j € [Jo—1 + 1, je]}.

7

Observe that S maps any state [j)]0)|0) into X, and moreover that ST will
set the final two registers to |0) when it is applied to any state in X'. Hence,
as long as we stay in X', we can always uncompute the final two registers.

Now, we implement C, as follows, where we treat the final two registers
as ancilla registers.

158

CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

. We apply S. This maps our state into X', and will leave |0)|0)|0) unal-

tered.
Controlled on the last register being in the state |0), we apply on the
second register the map

k
1 - -
C: |0> — mzag\/jg —jg_1|€>.
(=1

This leaves X" invariant as |0)|¢)|0) € X for every ¢ € [k]o. As this is
a map on O(log(k)) qubits, it can be implemented with a number of
gates of order O(k) = O(log(Smax) log(n)).

. Next, controlled on the second register being in state |¢), we perform

the map [® H®18Ue=Je-1) to the final register. This only affects the
basis states in A and implements

Je—je—1—1

1
VIt — Je—1 7;:0 m)

This circuit can be built using & times at most log(n) controlled H, plus
some arithmetic circuits on log(k) qubits to set the controls. Hence, the
number of gates needed to implement this step is O(k log(n)+log(k)) =

O(log(Smax) logz(n)).

10)16)0) = 10)6)

. We implement S. Since steps 2 and 3 left X’ invariant, we can now

uncompute the final two registers.

The total time complexity of C, hence now becomes the sum of the time

complexities of the above steps, which is O(log(Smax)log®(n)), and it maps

Je—Jje—1—1

10)]0)[0) > |o>ﬁzam “h100) |o>ﬁzae|e> 3 Im)

m=0

- ﬁzag\j>ro>\o>.

This completes the proof. O

Now that we can implement C, in a number of gates that scales poly-

logarithmically in both Sy.x and n, we turn our attention to the proof of
Theorem 78.

4.6. APPLICATION TO VARIABLE-TIME SEARCH 159

Proof of Theorem 78. First of all, we consider the case where the n algo-
rithms {AU}"_ are clean quantum algorithms with error probabilities sat-
isfying e; < 1/(80n) and ; = o(1/377_, S7). Tn the final paragraph of this
proof, we will lift this restriction.

We modify the algorithms AM), ... A" slightly. Similar to the proof of
Lemma 8, we insert a sequence O,, I, O, into all AY)’s at a spacing B defined

by
B= { 2l w .
ZJ 0]
We denote the algorithm that we obtain after this modification by Z(j), and

its query and time complexity by gj and Tj, respectively. Using a similar
analysis as in the proof of Lemma 8, we obtain

ol =

— O(B).

— T _
Sj:@(Sj—i—Ej), T]:@(T’]), and

J

Next, we turn these algorithms {Z(j)} _, into span programs {PW}"_
usmg Definition 57. According to Lemma 87 we can define the upper bounds
{W } ', such that

W, (PY) < WY < 12(25, + 1) = O(S,),

and such that we can implement C, in a number of gates and auxiliary
qubits that scales po (ylogarlthmlcally in Spax and n. In addition, for all
j € [n] we can take WY = O(S;) by virtue of Lemma 60, which implies that
C; = O(S;). From Lemma 60 we have a negative witness |©) that satisfies

; OE; 20¢g;
S ADTL 6 o | e B e
(@ADL [|” < 325, + 1)~ W0

which implies that all PU)’s are positive A-approximating with A\ < 20e; <
1/(4n).

We have now shown that we satisfy the requirements for constructing the
OR span program P, as defined in Definition 79. According to Theorem 80,

160 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

the complexity of this span program is now upper bounded by

=0

oS) (252 z:ﬂ)
j=1 j=1 2T

=0 <JZ:SJQ>

According to Lemma 85, implementing the algorithm compiled from P
takes a number of calls to the subroutines R 4, C, Ry and R that satisfies

OIS C?
0 J=1"3 1 _ 0

(T—nNP2 5T —nx

and a number of extra gates and auxiliary qubits that satisfies

O | polylog T o

Z CQ’ 1 =0 (pOlYlOg(Smaxv n)) :
j=1

According to Lemmas 69, 76, and 68, we can construct R4, C and Ry
with O(1) calls to O, a number of calls to O 4, Os that satisfies

T.

O (max _—J> =0(B),
J€[n] Sj

a number of auxiliary gates that satisfies

T; _
O <max = polylog(Tj)> = O (B - polylog(Tiax)) ,

Jj€(n]
and a number of auxiliary qubits that is polylogarithmic in 7},,... If we ensure
that the answer register is located on the same qubit for all the algorithms

AUPs we can implement Ry with O(polylog(Tiax)) gates. This implies that
the total number of calls to O4 and Og is

4.7. DISCUSSION AND OUTLOOK 161

and the total number of auxiliary gates is

Z T;Q ’ pOlylog(Tmaxv n)

J=1

Z 5]2 B p01y10g(Tmaxa TL) =0

i=1

This completes the proof of the claimed complexities.

It remains to check that the success probability of our algorithm compiled
from P is sufficiently high. We have O(,/g;)-precise implementations of
Rier(atiy and ng; w.r.t. operator norm. Thus, our resulting implementations
of Rier(a) and Ry are accurate in the operator norm up to error

1
max4/2c; =0 | ——
Jj€ln] /Z;.‘zl Sj?

Similarly, the subroutines C only approximately stay within H,u).

\w(()j)>
Thus,
1
sup ||z Crug) 1) Sm?)]cm/zgj:o 0
i NomE
iRy I=1 LS

As we call these two subroutines a total of /> | S7 times, these errors in-

fluence the final success probability at most by o(1), using a similar argument
as in the proof of Theorem 63. Thus, our implementation of the algorithm
compiled from P succeeds with bounded error.

Finally, we remove the restriction that we imposed on the algorithms
{AU}"_| at the beginning of this proof. We can always reduce the error
probability of our algorithms to o(1/3°7_, S7) using standard techniques.
This conversion incurs a multiplicative factor of O(log(3_7_, S7)) in the query

and time complexities, and in the worst case an additive term of kﬁl(;?(in the
number of auxiliary qubits. Accounting for them in the relevant complexities
completes the proof. O

4.7 Discussion and outlook

In this chapter, we reach two main results. First, we prove in Section 4.5.6
that every quantum query algorithm can be converted into a span program

162 CHAPTER 4. SPAN PROGRAMS AND TIME COMPLEXITY

and back into a quantum algorithm while keeping the query and time com-
plexity unaffected up to polylogarithmic factors. This implies that span
programs fully capture both query and time complexity up to polylogarith-
mic factors, which strengthens the motivation for considering span programs
as an important formalism from which to derive quantum algorithms.

Our second result, in Section 4.6, is an improvement on Ambainis’s vari-
able time search result — we can obtain a better-than-Grover speed-up in
both query and time complexity simultaneously, where the query complexity
is measured in the number of calls to O, providing access to the input x and
the time complexity is measured in the number of calls to O 4, and Og pro-
viding access to the descriptions of the algorithms, plus the other auxiliary
gates, which are not counted in Ambainis’s paper. Our construction goes
via a composition of span programs. Even though the analysis of the time
complexity of the algorithm compiled from this composed span program is
quite involved, the actual composition is rather simple. This exemplifies the
power of the span program framework.

This section leaves several open ends for further research as well. First,
we do not re-derive all of the results that Ambainis obtains in his work. For
instance, we do not consider the case where the query and time complexities
of the original algorithms are not known in advance, so it would be interesting
to investigate whether we could match Ambainis’s result in this setting as
well. This would probably require somewhat modifying the input model that
we describe in Section 4.2.

Similarly, we handle the decision version of the search problem whereas
Ambainis handles the full search version. It would be interesting to see if one
can recover the full search algorithm as well. One possible direction would be
to investigate whether one could use span programs with non-binary outputs
for that, as described for instance in [BT20].

The most interesting direction of further research that we foresee, though,
is whether the relative ease with which span programs can be composed
can be exploited to obtain more composition results. The variable time
search result composes a set of arbitrary functions with the OR function
and obtains a better-than-Grover speed-up in the query and time complexity
of the resulting algorithm. A natural next step would be to investigate if
similar types of speed-ups can be obtained when one composes some arbitrary
functions with threshold functions.

Part 111

The one where we discuss
applications of span programs

163

Chapter 5

Span programs for graph
problems

5.1 Overview

At the end of the introductory section of Chapter 3 we promised the reader
a three-course meal out of the st-connectivity span program, and by Turing,
we shall give it to you.

While span program algorithms are universal for quantum query algo-
rithms, it can also be fruitful to analyse the unitaries used in these algorithms
in ways that are different from how they appear in the standard span program
algorithm. For example, Ref. [[J19] presents an algorithm to estimate span
program witness sizes, and we have already presented algorithms for witness
generation in Section 3.4. We take a similar approach in this chapter, de-
riving new algorithms based on unitaries from the span program algorithm
for st-connectivity, deriving new span programs for graph connectivity based
on the st-connectivity span program, and applying the algorithm for witness
generation to the st-connectivity span program. The chapter contains the
results of [JJIK+18], as well as an application of the witness generation algo-
rithm in Section 3.4.2 to st-path finding, and a new span program for graph
connectivity. This is joint work with Stacey Jeffery and Shelby Kimmel.

Span program for st-connectivity In Section 5.2 we begin with de-
scribing in detail a span program for the st-connectivity problem, slightly
generalizing that of [BR12]. In a nutshell, in the st-connectivity problem a

165

166 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

parent graph G and two connected vertices s and t are fixed, and one is asked
to decide whether s and ¢ are still connected in a subgraph G(z) of G, with x
in some domain X C {0,1}" for some N € N. In [BR12], the authors gave a
tight characterization of the positive witness size as the effective resistance.
Diverse upper bounds on the negative witness size have followed since [JK17;
Bell2b], but no tight, general characterization was known.

Characterization of the negative witness In Section 5.3, we bring the
story to its conclusion by showing that the negative witness size of the st-
connectivity span program is exactly characterized by the effective capaci-
tance of the input graph (Theorem 90). At a high-level, this well-studied
electrical network quantity is a measure of the charge that the network could
store between the component containing s and the component containing ¢
if put under a unit potential difference. The more, shorter paths between
these two components in the graph G\ G(x), the greater the capacitance.
This characterization tells us that quantum algorithms can quickly decide
st-connectivity on graphs that are promised to have either small effective
resistance or small effective capacitance. In Section 5.3.1, we apply this char-
acterization to give a new quantum algorithm for estimating the capacitance
of an input graph G(x).

An algorithm for graph connectivity Next, we use this tighter analysis
of the negative witness to analyse a new algorithm for graph connectivity.
This problem was first studied in the context of quantum algorithms by Diirr,
Hoyer, Heiligman and Mhalla [DHH +06], who gave an optimal O(n*/?) upper
bound on the time complexity. A span-program-based quantum algorithm
with optimal query complexity was later presented by Arins [Aril6], whose
algorithm also uses only O(logn) space.

Since a graph is connected if and only if every pair of vertices {u, v} are
connected, we propose an algorithm that uses the technique of [NT95; JK17|
to convert the conjunction of () st-connectivity span programs into a single
st-connectivity span program: take n(n — 1)/2 copies of G(z), one for each
pair of distinct vertices {u, v} with u < v, and call u the source and v the sink
of this graph. Connect these graphs in series, in any order, by identifying
the sink of one to the source of the next. Call the source of the first graph
s, and the sink of the last graph t. See Fig. 5.1 for an example when G
is a triangle. In this way we have created a graph (which we denote G(z))

5.1. OVERVIEW 167

that is st-connected if and only if G(x) is connected. In other words, for any
x € {0,1}7(@ cONNg(r) = st-CONNg(x

/\/\/\/\

Figure 5.1: The graph G is st-connected if and only of GG is connected.

By analysing the effective resistance and capacitance of G, we show that
when G has no multi-edges, CONNg can be solved in query complexity
O(ny/R/kK) (Theorem 98), where R is an upper bound on the average resis-
tance if G(x) is connected and « is a lower bound on the number of compo-
nents if G(z) is not connected. For the case when G has multi-edges, we get
an upper bound of O(n**\/Rd . (G)/k*) on the query complexity, where
dimax(G) is the maximum degree of any vertex in the graph.

In the worst case, when R = n and x = 2, our algorithm achieves the
optimal query upper bound of O(n?’f %) when the parent graph has no multi-
edges. Like the algorithm of Ref. [Aril6], our algorithm uses only O(logn)
space. It is also the first connectivity algorithm that applies to the case where
G is not necessarily the complete graph, although the other algorithms can
likely be adapted to the more general case.

The algorithm of Aring can be seen as similar to ours, except that rather
than connecting copies of G(z) for each {u, v} pair, his algorithm only con-
siders pairs {1,v} for v # 1. In contrast, our algorithm is symmetric in the
vertex set, which makes a detailed analysis more natural.

Spectral algorithms for graph connectivity In Section 5.5, we present
an alternative approach to deciding graph connectivity. It is based on phase
estimation of a particular unitary that is also used in the st-connectivity span
program, but applied to a different initial state.

We first show that the quantum query complexity of deciding CONNg x is
O(\/Ndmax(G)/(KA)), when we're promised that if G(x) is connected, the sec-
ond smallest eigenvalue of the Laplacian of G(x), A\2(G(x)), is at least A, and
otherwise, G(x) has at least k > 1 connected components (Corollary 104).
Unlike the previous algorithm, this one is not optimal in the worst case, but
it can be better than our first algorithm under some conditions. We compare

168 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

the two and discuss what these conditions are in Section 5.8. In addition to
calls to the span program unitary, this algorithm requires an initial state of
a particular form, and while this state is independent of the input, it may
generally not be time efficient to produce such a state. In Sections 5.5.1 and
5.5.2 we analyse the time complexity of our algorithm in two contexts, one
that works for every graph G but may be significantly suboptimal and one
specialized to Cayley graphs.

Spectral algorithm for estimating the algebraic connectivity In
Section 5.5.3 we give an algorithm to estimate the algebraic connectivity
of G(z), A2(G(x)), when G is a complete graph. The algebraic connectiv-
ity is closely related to the inverse of the mixing time, which is known to
be small for many interesting families of graphs such as expander graphs.
We give a protocol in Theorem 120 that with probability at least 2/3 out-
puts an estimate of A\y(G(x)) up to multiplicative error € in time complexity

o1
€V A2(G(2))

A span program for Connectivity without surgery In Section 5.6
we modify the target of the st-connectivity span program to obtain a span
program P, for CONNg x for every vertex s and derive a quantum algo-
rithm that decides CONNg x with bounded error and with query complexity

O(RC’"—2> , where R is a known upper bound on R..(G(z)) for

(n—nmax)?

all connected G(x), and for all disconnected G(x), C' is an upper bound for
the largest out-degree of any component of G(z) and nya, upper bounds the
size of the largest component of G(z). Unlike our first algorithm for graph
connectivity, this span program does not require us to concatenate copies
of G in a long chain, it is not symmetric with respect to the vertices, and
unlike that span program, the span program algorithm associated to P is
not worst-case optimal. However, this span program has the advantage that
its query and time complexities are easy to analyse and become well-behaved
if there is not a component that dominates in size all the others when G(x)
is not connected, allowing it to outperform our other two algorithms in some
cases (see Section 5.8).

Application of witness generation to shortest-path finding In Chap-
ter 3 we gave two algorithms that generate an e-close approximation of the

5.2. A SPAN PROGRAM FOR ST-CONNECTIVITY 169

optimal positive witness for any span program. In Section 5.7, we apply
the first witness generation algorithm to the st-connectivity span program
of a particular graph encoding the function OR,, o AND4. We use the wit-
ness generated to obtain an st-path in any connected subgraph G(z) using
O(v'md) queries and logarithmic space, which is quadratically better than
the classical © (md) query lower bound and outperforms the path-finding
algorithm in [DHH+06] in both query and space complexity. Our proof-of-
concept algorithm is, we hope, a first step towards a quantum algorithm for
path finding with small (logarithmic) space, which remains an open problem.

Finally, in Section 5.8 we discuss our results, compare our algorithms and
talk about the open problems that emerge from them.

5.2 A span program for st-connectivity

An important example of a span program is the one for st-connectivity, first
introduced in [KW93], and used in [BR12] to give a new quantum algorithm
for st-connectivity.

We state this decision problem and span program below, somewhat gen-
eralized to include weighted (multi-)graphs, and to allow the input to be
specified as a subgraph of some parent graph G that is not necessarily the
complete graph. Unless stated otherwise, we assume graphs can have more
than one edge between two vertices. We assume G has some implicit weight-
ing function c¢. Weighted graphs, also known as networks, are described in
Section 2.3.1.

We allow a string z € {0,1}" to specify a subgraph G(x) of G in the
fairly general way described in Section 2.3.1, Subgraphs. In particular, for
i€ [N],let E;q C E(G) denote the set of (directed) edges associated with
the literal z;, and E, the set of edges associated with the literal z;. Note
that if (u,v, /) € ﬁ“, then we must also have (v, u, () € ﬁih since G(x) is an
undirected graph. Subgraphs of a weighted graph are also weighted graphs.

For a parent graph G and a family of subgraphs G(z), » € X = {0, 1},
let s, t denote two connected vertices in G. The st-connectivity problem is
the function f: X — {0,1} defined as f(x) = 1 iff s and ¢ are connected in
G(z). We denote this problem as st-CONNg x.

Then we refer to the following span program as Pg:

170 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

Definition 88 (st-connectivity span program). Let G = (V(G), E(G)) be
an undirected weighted multigraph and x € {0, 1} specify a subgraph G(x)
as above. For all i € [N],b € {0,1} we define the spaces

Hip = span{|u, v, () : (u,v,0) € ﬁi,b}; VY =span{|v) :v € V(G)} (5.1)

And we define the span program map and target as

A=Y Velwo, O(u) = o), f;|r)=1s) = [t). (5.2)

(uv,0)€B ()
We call P = (H,V, A,|7)) the span program for st-connectivity over G.

Let us now provide some intuition for the inner workings of Pg. Pick any
particular input x, assume G(z) is connected and let (s = uy,...,uq = t)
denote a path in G(z) from s to ¢ of length d. Assume, for simplicity, that
all weights are 1. Then, the following state is a positive witness.

lw) = Z|Uz‘,ui+1> (5.3)

That is because:

d—1

Afw) = (Jus) = luis1)) = [ur) — ua) = |s) = [t).

i=1

We conclude that every st-path in G(x) is a witness for |7). In fact, it is
possible to see that any witness is a linear combination of st-paths, possibly
plus a few cycles, more on that later. This characterization, achieved through
the correspondence between witnesses and st-flows, is the object of the next
lemma. The proof follows closely that of Appendix A in [JK17], albeit with
a little modification that will facilitate the discussion later.

Lemma 89 (|[JK17]). Let Ps be the st-connectivity span program from Def-
inition 88. Then for any x € {0,1}", wy(z, Po) = 1R (G(x)).

Proof. Let us assume that s and ¢ are connected in G(z) and let 6 be a unit
st-flow on G(z) as in Definition 13. Define the state

1 O(u,v,0)
w) = ————|u,v,l). 5.4
|w) Z 5 C<U’M)|) (5.4)
(u,0,0) € E (G(x))

5.2. A SPAN PROGRAM FOR ST-CONNECTIVITY 171

Then, the state is obviously in H(x) and the image of |w) under A is:

Awy=g S 6,0 — o)) (5.5
(u,0,0) € E (G(x))

Since @ is an st-flow, 0(u,v,{) = —0(v,u, £), so

Aw)y = > 0(u,v,0)u). (5.6)

(u,0,0)€ E (G(z))

Now, let |u) € V(G) \ {s,t}. From the definition of an st-flow we have:

(u|Alw) = > 0(u,v,0) = 0.

vi(uy,0)EE (G(a))

But also,

(slAlwy = > bs,v,0 =1,
v:(s,v,f)Eﬁ(G(z))

(t|Ajw) = > 0t) =1
v:(tw,0) € E (G(x))

Thus, we conclude that Alw) = |s) — |t), hence |w) is a positive witness for
x, and the witness size of |w) is an upper bound on the positive witness size
of Pg for x. That is,

10%(u,v,0) 1
w+(x, PG) < Z ZW = 5‘73(6‘@))(0)' (5.7)
(u,0,0)€ E (G(x))

In particular, if we take 6 to be the minimal energy st-flow on G(z), then we
have wy (z, Pg) < Ry (G(x))/2.

Now let us prove the opposite inequality. We shall see that given an
optimal positive witness |w,) we can define a unit st-flow whose energy is

twice the witness size. Let 6 : E(G) — R be defined as

V(u,v,0) € E(G), 0(u,v,0) = 2v/c(w, 0, 0){u, v, }wy).

172 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

Since the vectors {|u, v,) : (u,v,l) € B(G)} form a basis of H, we have:

16%(u,v,0)

wie,P) = llwa)lP = 3w tealP = 3 goE

(u,0,0)€ B (G(z)) (u0,0)€ B (G(x))

1 1

Here we have used that |w,) is a positive witness to limit the sum to edges
over G(z). All that is left is proving that 6 is a unit st-flow over G(z).

Observe that L ,
lw,) = Z 1 6(u,0,0) W

2 c(u,v,£)| v,
(u,0,0)€ E (G(x))

and so A|lw,) = |7) can be written as:

1 O(u,v,0) 0(u,v,¥)
:A z) = = —
I7) =Alw) 2 (K)é:(G(), Vel(u,v,0)) Ve(u,v,0))

1 Z O(u,v,¥) Q(E,U,E)). (5.8)

(u0,0)€E (G()) e(u,v,4)
Next, we prove that 0(u,v,f) = —0(v,u,¥). Consider the positive witness
|w,) as written in the basis of edges of G, |w,) = > (u, v, l|w,)|u, v, ¢), then
|w,) = — > (v, u, llw,)|u,v,£) is too a positive witness, and with the same
norm as |w,) because Alu, v, {) = —Alv,u,). Therefore % is a positive

witness as well. By the triangle inequality,

1 1, -
< 5 Nwapll + 5 llwa) || = Vws (2, Po),

with equality if and only if |w,) and |w,) are parallel. By the optimality of
|w,.) we conclude that that must be the case, which implies that (u, v, f|w,) =
— (v, u, l|w,) and O(u,v,l) = —0(v,u,) for all (u,v,l) € ﬁ(G)

Coming back to Eq. (5.8), from the anti-symmetry of § we get:

Awy) = > 0w, 0)|u),
(u,0,0)€ E (G(z))

and so taking the inner product with |s), |t) and |u) for u € V(G)\ {s,t} we
obtain:

|wr> + |ﬂ7m>
2

5.2. A SPAN PROGRAM FOR ST-CONNECTIVITY 173

(u|Alw) = > 0(u,v,l) =0,

vt (uw,)€ E (G(x))
(s|Alw) = > (s, v,0) =1,
v,l:(s,0,0) € E (G(x))
(t|Alw) = > o(t,v,0) = —1.
0,b:(t0,0) € B (G(x))
We conclude that 6 is a unit st-flow, and Rs’t(ZG(I)) < Jﬁ(g)(e) = wy(z, Pg).
[

Jeffery and Kimmel prove in [JK17] a little bit more than this because
they give an st-flow for any witness, not necessarily optimal. Observe that
we could apply our arguments not only to the optimal positive witness for
any given x but to the minimal witness. Remember that the minimal witness
is defined in Section 3.2.2 as the smallest |w) € H such that Alw) = |7), a
vector which we denoted as |wy) = AT|7).

Therefore, Lemma 89 actually characterizes |wy) as:

wy= 2 wh (5.9)

2
(u0,0)€B () e(u,v, 1)
where 6 is the minimal energy st-flow in ﬁ(G), and [||wo)||* = TR, 4(G).

Now, let |¢) € H be such that A|e) = 0, that is, |p) € ker(A). Define
0 : E(G) — R as O(u,v,0) = \/c(u,v,0) ((u,v,le) — (v,u,l|p)). Notice
that we immediately obtain 6(u,v,() = —0(v,u,f). Then

Alpy = > Velw v, 0) (u)luv, o) = |v)(u, v, £l))

(u0,0)€E(G)

— Z Z Velu, v, 0) (Ju)(u, v,) — |u)(v,u, £]p))

uEV(G) v, :(u,0,0)e B(G)

== S 0w, 0)u) = 0. (5.10)

wEV(G) v, :(u,,0) e B(G)

174 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

We conclude that for every u € V(G) we have

Z O(u,v,l) = 0.

v,0:(u,v,0) GE(G)

This is what is known as a circulation over G, which is like a flow but
without source or sink. It is easy to verify that every circulation is a convex
combination of cycles on GG, and that every circulation defines a vector in
ker(A). It is just as easy to verify that every cycle in G is a vector in ker(A),
just as every st path is an st-witness. Hence, we have characterized ker(A)
as the cycle space of G, i.e. the space spanned by the cycles in GG. All that
is left is to characterize the negative witnesses. That is the purpose of the
next section.

5.3 Effective capacitance and st-connectivity
In this section, we will prove the following theorem:

Theorem 90. Let Py be the span program in Definition (88) and Cs4(G(x))
be the capacitance between s and t in G(x) from Definition 18. Then, for
any x € {0, 1}, w_(z, Pg) = 20, 4+(G(z)).

Previously, the negative witness size of P; was characterized by the size
of a cut [RS12] or, in planar graphs, the effective resistance of a graph related
to the planar dual of G(x) [JK17].

We will prove Theorem 90 shortly, but first, we mention the following
corollary:

Corollary 91. Let G be a multigraph with s,t € V(G). Then for any
choice of (non-negative, real-valued) implicit weight function, the bounded
error quantum query complexity of evaluating st-CONNg x 18

@) max R, +(G(z)) x max Cs+(G(x)) | . (5.11)
st—CONig,X (z)=1 St—CONﬁi’X (z)=0

Proof. The positive and negative witness sizes are exactly characterized in
Theorem 90 and Lemma 89. The result follows from Theorem 45.]

5.3. EFFECTIVE CAPACITANCE AND ST-CONNECTIVITY 175

We emphasize that Corollary 91 holds for R,; and C,; defined with re-
spect to any weight function, some of which may give a significantly better
complexity for solving this problem. We are now ready to prove Theorem 90,
the main result of this section.

Proof of Theorem 90. First, we prove that any unit st-potential on G(x) as
defined in Definition 16 can be transformed into a negative witness for = in
Pg with witness size equal to twice the unit potential energy of that potential.
This shows that w_(z, Pg) < 2C(G(x)).

Given a unit st-potential V : V(G) — R on G(x), we consider (wy| =
> wev(c) Y(v)(v]. Then because V(s) =1 and V(t) = 0, we have (wy|7) = 1.
Secondly,

(vl Al = Y V)@ Y Veluv, O(u) —[o)){u,v, 0

weV(Q) (u,0,0)€ E (G(x))
= Y Velww,O(V(u) = V() {u,v, | =0, (5.12)
(u,0,0)€ E (G(x))

where we’ve used the definition of unit st-potential, which states that V(u) —
V(v) = 0 when (u,v,l) € E(G(z)). Thus (wy| is a valid negative witness for
input x.

We have

w-(z, Ps) < min || {wy| A

= min Z Ve(u, v, 0)(V(u) — V(v)){u,v, /|

Y (u0,0)€E(Q)
= 2min > (V(w) = V() c(u,0,0) = 2C4,4(G(x)), (5.13)

(u,v,0)EE(G)

where the minimization is over unit st-potentials on G(z).

Next, we show that any negative witness (w| for Pg on input x can be
transformed into a unit st-potential V,, on G(z), with negative witness size
equal to twice the unit potential energy of V,,. This shows that w_(z, Pg) >
2C54(G(x)).

Let (w| be a negative witness for input z, define the potential V,(v) :=
(w|(Jv) = [t)) for v € V(G). Then V,(s) = (w|(|s) — |t)) = (w|T) = 1, and

176 CHAPTER 5. SPAN PROGRAMS FOR GRAPH PROBLEMS

V,(t) = (w|(|t) — |t)) = 0. Also for (u,v,?) € E(G(z)), we have

(
Vo (u) = Vo (v) = (wl|(lu) = [t)) = (wl(Jv) = [t)) = (w(lu) — |v))
= (w|A|(u, v, 0)) = (WAl (@) |(u, v, £)) = 0, (5.14)

because (w|Allg) = 0. Thus, V,, is an st-unit potential for G(x).
Then

w_(z, Pg) =r§g‘n|\<w|AH2=ngg|n o (@) = [0)))e(u, v,)
(u0,0) € E(Q)
=2min > (V(u) = Vo(v))’c(u, v, €) > 2C,,(G(x)),
“ e B(G)
(5.15)

where the minimization is over negative witnesses. Since we have both
w_(z,Pg) > 2Cs4(G(x)) and w_(x, Pg) < 2C(G(x)), we conclude that
w_(z, Pg) = 2Cs4(G(x)). O

5.3.1 Estimating the capacitance of a circuit

The second use of this characterization of w_(z, Pg) will be an algorithm for
estimating the capacitance of a graph. The algorithm is a particular case
of an algorithm described in [IJ19] for arbitrary span programs, adapted for
the st-connectivity span program. The general algorithm is based on the
direct connection between the minimal witness |wyg), the 0-phase eigenspace
of U(x, Pg) and the negative witness size that we discussed in Section 3.3.2.
We restate here the statement for convenience.

Theorem 92 ([[J19]). Fiz X C [¢|Y and f : X — Rsqg. Let P = (H,V, A, |T))
be a span program on [q|Y such that for all x € X, f(x) = w_(z, P) and de-
fine W, = W+(P) = max,ex Wy (z, P,e_(x, P)). Then there exists a quan-

tum algorithm that estimates f to accuracy € and uses O (# w_ (x)ﬁl)
calls to U(x, P) = (2lxer(ay — 1) (2Myyzy — 1) and elementary gates.

By Theorem 90, w_(z, Pg) = 2C; (G (x)), so we can apply Theorem 92 to
estimate Cs;(G(x)). By Theorem 92, the complexity of doing this depends
on Cs+(G(x)) and /I/I7+(PG) = max, W4 (z, Ps). We will prove the following
theorem:

5.3. EFFECTIVE CAPACITANCE AND ST-CONNECTIVITY 177

Theorem 93. Let P be the st-connectivity span program from Definition
88. Then, we have W, (Pg) = O(max, Jg)(p)), where the mazimum runs
over all unit st-flows p that are paths from s to t and J is the energy of the
flow from Definition 14.

Note that when the weights are all 1, max, Jgg)(p) is just the length of
the longest self-avoiding st-path in G. Combining Theorem 92, Theorem 90,
and Theorem 93, we have:

Corollary 94. Given a network (G,c), with s,t € V(G) and access to
an oracle O, the bounded error quantum query complerity of estimating
Cs(G(2)) to accuracy e is O(e=%2\/C,(G(x)) max, Jp(q) (p)) where the
maximum runs over all unit st-flows p that are paths from s to t.

Similarly, we can give a time upper bound for this problem:
Corollary 95. Let U be the cost of implementing the map
c(u,v,f)
RS Y i G T

de(u
U,Z:(u,v,ﬁ)EE(G) G()

Then the quantum time complexity of estimating Cs(G(x)) to accuracy € is

) (#W \/Cs,t(G(x)) max JEG) (p)U> ;

where §(G) is the spectral gap of the symmetric Laplacian LE™ defined in
Section 2.3.2.

Proof. The algorithm in Theorem 92 requires a number of calls to a unitary
U(z, Pg) of order O(e7%/2,/C; ,(G(z)) max, Jg(c)(p)) and a similar number
of other elementary operations (|1J19]). By [JK17| (generalizing |[BR12]), for
any G, U(z, Pg