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Abstract

We introduce a new weakly analytic subformula property (the bounded proof property) of hyper-
sequent calculi for intermediate logics. We define one-step Heyting algebras and establish semantic
criteria characterizing the bounded proof property in terms of these algebraic structures. Finally,
using these criteria, we provide a number of examples of calculi for intermediate logics with and
without the bounded proof property.

Keywords: intermediate logics, hypersequent calculi, bounded proof property, finite model property,
duality.

1 Introduction

Having a well-behaved proof system for a logic can help determine various desirable properties of this
logic such as consistency, decidability, interpolation etc. Gentzen-style sequent calculi have for a long
time played a pivotal role in proof theory [37] and proving admissibility of the cut-rule has been one of the
main tools for establishing good proof theoretic properties of sequent calculi. However, for various non-
classical logics finding a cut-free sequent calculus can be a difficult task, even when the logic in question
has a very simple semantics. In fact, in many cases no such calculus seems to exist. In the 1980’s
Pottinger [34] and Avron [2] introduced hypersequent calculi for handling certain modal and relevance
logics. Hypersequents are nothing more than finite (multi)sets of sequents but they give rise to simple
cut-free calculi for many logics for which no ordinary cut-free calculus has been found. Since then cut-free
hypersequent calculi for various modal and intermediate logics have been given [3, 17, 16, 29, 20, 32, 33].
However, establishing cut-elimination for Gentzen-style sequent or hypersequent calculi by syntactic
means can be very cumbersome. Although the basic idea behind syntactic proofs of cut-elimination is
simple, each individual calculus will need its own proof of cut-elimination and proofs obtained for one
calculus do not necessarily transfer easily to other – even very similar – calculi. Recently some steps to
ameliorate this situation have been taken. For example, [32, 33] provide general methods for obtaining
cut-free calculi for larger classes of logics based on their semantics.

Semantic proofs of cut-elimination have been known since at least 1960 [36], but in recent years
a general algebraic approach to proving cut-elimination for various substructural logics via McNeille
completions has been developed [18, 19]. One of the attractive features of this approach is that it allows
one to establish cut-elimination for large classes of logics in a uniform way. Moreover, [18, 19] also provide
algebraic criteria determining when cut-free (hyper)sequent calculi for a given substructural logic can
be obtained.1 This algebraic approach suggests that algebraic semantics can be used to detect other
desirable features of a proof system. It is this kind of algebraic proof theory that is the subject of the
present paper. However, we will take a somewhat different approach to connecting algebra and proof
theory than the one outlined above. In particular, we will be focusing on characterizing a proof-theoretic
property weaker than – though in some ways similar to – cut-elimination.

The free algebra of a propositional logic encodes a lot of information about the logic. For instance
it is well-known that the finitely generated free algebras constitute a powerful tool when it comes to

1However, these criteria only cover the lower levels (N2 and P3) of the substructural hierarchy of [18].
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establishing meta-theoretical properties for various propositional logics such as interpolation, definability,
admissiblity of rules etc. In [24] it was shown how to construct finitely generated free Heyting algebras as
(chain) colimits of finite distributive lattices. In [25] a similar construction for for finitely generated free
modal algebras was presented; showing how these algebras arise as colimits of finite Boolean algebras.2

The intuition behind these constructions is that one builds the finitely generated free algebra in stages
by freely adding the Heyting implication (or in the case of modal algebras the modal operator) step by
step. Lately this construction has received renewed attention in [14, 9] (for Heyting algebras) and in
[13, 26, 27, 12] (for modal algebras). Finally, in [22] sufficient criteria are given for this construction to
succeed for finitely generated free algebras in an arbitrary variety.

It was realized in [10] that the so-called modal one-step algebras arising as consecutive pairs of algebras
in the colimit construction of finitely generates free modal algebras can be used to characterize a certain
weak analytic subformula property of proof systems for modal logics. This property – called the bounded
proof property – holds in an axiom system Ax if for every finite set of formulas Γ∪ {φ} of modal depth3

at most n such that Γ entails φ over Ax there exists a derivation in Ax witnessing this in which all the
formulas have modal depth at most n. We write Γ `nAx φ if this is the case. With this notation the
bounded proof property may be expressed as

Γ `Ax φ =⇒ Γ `nAx φ.

Even though this is a fairly weak property it does, e.g., bound the search space when searching for
proofs and thus it ensures decidability of logics with a finite axiomatization. Furthermore, having this
property might serve as an indication of robustness of the axiom system in question. In this way it is
like cut-elimination although in general it is much weaker.

In light of the original colimit construction of finitely generated free Heyting algebras it seems natural
to ask if one can adapt the work of [10] to the setting of intuitionistic logic and its extensions. That
is, we ask if it is possible to formulate the bounded proof property for intuitionistic logic and define a
notion of one-step Heyting algebras which can characterize proof systems of intermediate logics with the
bounded proof property.

In order to do this one first needs to choose a proof theoretic framework for which to ask this
question. In this respect there are two remarks to be made. First of all as any use of modus ponens will
evidently make the bounded proof property with respect to implications fail, we will have to consider
proof systems different from natural deduction or Hilbert-style proof systems. Therefore, a Gentzen-style
sequent calculus might be a better option. In these systems modus ponens is replaced with the cut-rule
which for good systems can be eliminated or at least restricted to a well-behaved fragment of the logic
in question. Secondly, as mentioned in the beginning of the introduction, ordinary sequent calculi are
often ill-suited when it comes to giving well-behaved calculi for concrete intermediate logics, in that they
generally do not admit cut-elimination. Therefore, keeping up with the recent trend in proof theory of
non-classical logics, we base our approach on hypersequent calculi. This makes our results more general
and more importantly allows us to consider more interesting examples of proof systems for intermediate
logics. This approach is also in line with [11] where the results of [10] are generalised to the framework
of multi-conclusion rule systems for modal logics.

We define a notion of one-step Heyting algebras and develop a theory of these algebras parallel to
the theory of one-step modal algebras [10]. We show that just as in the modal case the bounded proof
property for intuitionistic hypersequent calculi can be characterised algebraically using one-step Heyting
algebras. We also develop a notion of intuitionistic one-step frames dual to that of one-step Heyting
algebras. Finally, we test the obtained criterion of the bounded proof property on a number of examples
of hypersequent calculi for intermediate logics. In particular, we show that every stable intermediate
logic [4, 7] has the bounded proof property. This class contains all the logics in the class P3 of the
substructural hierarchy of [18].

The paper is organized as follows. In Section 2 we recall hypersequent calculi for intermediate logics,
and define when such calculi admit the bounded proof property. In Section 3 we introduce one-step
Heyting algebras and one-step intuitionistic frames and in Section 4 we prove a semantic characterization

2The basic idea of constructing finitely generated free modal algebras in an incremental way is in some sense already
present in [23] and [1]. Note that [1] is based on a talk given at the BCTCS in 1988.

3Recall that the modal depth of a formula φ is the maximal number of nestings of modalities occurring in φ.
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of the bounded proof property in terms of these algebras and frames. Finally, Section 5 discusses a number
of examples of intermediate logics with and without the bounded proof property.

2 Hypersequent calculi and universal classes of Heyting alge-
bras

Let Prop be a set of propositional variables and let Form(Prop) denote the set of formulas determined
by the following grammar:

φ ::= ⊥ | p | φ ∧ φ | φ ∨ φ | φ→ φ,

p ∈ Prop.
We then define the implicational degree d(φ) of a formula φ by the following recursion: d(⊥) = 0 and

d(p) = 0 for all p ∈ Prop. Moreover,

d(φ ∧ ψ) = d(φ ∨ ψ) = max{d(φ), d(ψ)} and d(φ→ ψ) = max{d(φ), d(ψ)}+ 1.

For n ∈ ω we let Formn(Prop) denote the subset of Form(Prop) consisting of formulas of implicational
degree at most n. A crucial fact is that if Prop is a finite then Formn(Prop) will be finite (up to provable
equivalence) for all n ∈ ω.

A sequent is a pair of finite (possible empty) multisets of formulas written as Γ⇒ ∆ and a hyperse-
quent is a finite multiset of hypersequents written as

Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n.

The sequents Γk ⇒ ∆k are called the components of the hypersequent.
We will let lower case letters s, s0, s1, . . . denote sequents while upper case letter G,H, S, S0, S1, . . .

will denote hypersequents. Note that the notion of implicational degree extends to sequents and hyper-
sequents as follows:

d(Γ⇒ ∆) = max{d(φ) : φ ∈ Γ ∪∆} and d(s1 | . . . | sn) = max{d(sk) : k ≤ n}.

We say that a Heyting algebra A validates a sequent Γ⇒ ∆ under a valuation v, written (A, v) � Γ⇒ ∆,
if v(

∧
Γ) ≤ v(

∨
∆), and we say that A validates a hypersequent Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n under a

valuation v, if (A, v) � Γk ⇒ ∆k for some 1 ≤ k ≤ n. Finally, we say that A validates a sequent (or
hypersequent) if it validates it under all valuations.

2.1 Hypersequent proofs and hypersequent calculi

A hypersequent rule is a pair consisting of a finite set of hypersequent {S1, . . . , Sn}, called the premises,
and a single hypersequent S, called the conclusion. We write hypersequent rules as

S1 . . . Sm (r)
S

Given a Heyting algebra A and a hypersequent rule (r) we say that A validates (r) if for each valuation
v on A we have that the conclusion S is valid under v if all the premisses Sj are valid under v.

Definition 2.1. Let {S, S1, . . . , Sn} be a set of hypersequents and let

S′1 . . . S
′
n (r)

S′

be a hypersequent rule. We say that a hypersequent S is obtained from S1, . . . , Sn by an application of
the rule (r), if there exists a substitution σ and a hypersequent G such that S is of the kind G | S′σ and
Si is of the kind G | S′iσ for i ∈ {1, . . . , n}.4

4Due to the presence of the external weakening rule (ew) (see Definition 2.2 below), this is the same as saying that Si

is of the kind Gi | S′
iσ and that S is of the kind G | S′σ for some G ⊇

⋃n
i=1Gi.
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In this way uniform substitution and external weakening are taken into account in the definition of
rule application.

We here present the rules for the multi-succedent sequent hypersequent calculus for IPC.

Definition 2.2 ([20]). The calculus HJL′ consists of the following rule schemas. Thus in the following
φ and ψ range over formulas, Γ and ∆ over finite multisets of formulas and G over hypersequents. This
means that each rule schema represents infinitely many rules.

Axioms:
(init)

G | φ⇒ φ
(l⊥)

G | ⊥ ⇒
External structural rules:

G | Γ⇒ ∆ | Γ⇒ ∆
(ec)

G | Γ⇒ ∆

G (ew)
G | Γ⇒ ∆

Internal structural rules:

G | Γ⇒ φ, φ,∆
(ric)

G | Γ⇒ φ,∆

G | Γ, φ, φ⇒ ∆
(lic)

G | Γ, φ⇒ ∆

G | Γ⇒ ∆
(liw)

G | Γ, φ⇒ ∆

G | Γ⇒ ∆
(riw)

G | Γ⇒ φ,∆

Logical rules:
G | Γ⇒ φ,∆ G | Γ, ψ ⇒ ∆

(l→)
G | Γ, φ→ ψ ⇒ ∆

G | Γ, φ⇒ ψ
(r →)

G | Γ⇒ φ→ ψ

G | Γ, φ, ψ ⇒ ∆
(l∧)

G | Γ, φ ∧ ψ ⇒ ∆

G | Γ⇒ φ,∆ G | Γ⇒ ψ,∆
(r∧)

G | Γ⇒ φ ∧ ψ,∆

G | Γ, φ⇒ ∆ G | Γ, ψ ⇒ ∆
(l∨)

G | Γ, φ ∨ ψ ⇒ ∆

G | Γ⇒ φ, ψ,∆
(r∨)

G | Γ⇒ φ ∨ ψ,∆
The cut rule:

G | Γ⇒ φ,∆ G′ | φ,Σ⇒ Π
(cut)

G | G′ | Γ,Σ⇒ Π,∆

As we will only be interested in calculi for intermediate logics we shall understand by a hypersequent
calculus any collection of hypersequent rules extending a hypersequent calculus for IPC, e.g., the multi-
succedent calculus presented above. This means that rules such as external contraction and the cut-rule
belong to every hypersequent calculus even though they may not be eliminable.

If S ∪ {S} is a set of hypersequents and HC is a hypersequent calculus we say that S is derivable
(or provable) from S over HC, written S `HC S, if there exists a finite sequence of hypersequents
S1, . . . , Sn such that Sn is the hypersequent S and for all 1 ≤ k < n either Sk belongs to Sk or Sk is
obtained by applying a rule from HC to some subset of {S1, . . . , Sk−1}.

Note that it is not allowed to apply substitutions to hypersequents in S . Thus `HC denotes the
global consequence relation, in the sense that the members of S will be taken as axioms, i.e. leaves in a
derivation tree.

Definition 2.3. A hypersequent rule (S1, . . . Sn)/S is derivable in a hypersequent calculi HC if

{S1, . . . , Sn} `HC S.

Two hypersequent calculi HC and HC′ will be equivalent if all the rules of HC are derivable in HC′ and
vice versa.

Note that if HC and HC′ are equivalent then for all finite sets S ∪ {S} of hypersequents we have
that

S `HC S iff S `HC′ S.

The next proposition will be used throughout the paper.
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Proposition 2.4. Every hypersequent calculus HC is equivalent to a hypersequent calculus consisting
only of rules with single component hypersequents as premisses.

Proof. For each hypersequent rule (r) = (S1, . . . , Sn)/S of HC we let Cr be the set of functions selecting
a component from each of the premisses Sk. Then we let HC′ be the set of rules given by

c(S1) . . . c(Sn)
(rc)

S

where (r) ranges over HC and c over Cr. That HC and HC′ are indeed equivalent is an easy consequence
of having external contraction and weakening. More precisely, we have that

c(S1)
(ew)

S1
· · ·

c(Sn)
(ew)

Sn (r)
S

for any choice of c ∈ Cr. From which it follows that the rules (rc)c∈Cr
are derivable from (r).

For the converse implication let m1 be the number of components of S1, say S1 = s11 | . . . | s1m1 .
We show that (r) is equivalent to the set of rules

s1k S2 . . . Sn (r1k)
S

The following derivation show that S is indeed derivable from {S1, . . . , Sn} using the rules (r1k)m1

k=1.

S1 . . . Sn (r11)
s12 | . . . | s1m1

| S S2 . . . Sn
(r12)

s13 | . . . | s1m1
| S | S

(ec)
s13 | . . . | s1m1 | S

...

s1m1
| S S2 . . . Sn

(r1m1
)

S | S
(ec)

S

Given this the desired conclusion can be obtained by a straightforward inductive argument on the
number of multi-component premisses of (r).

In order to establish soundness and completeness of derivability of hypersequent rules with respect
to Heyting algebras we will need the following facts

Lemma 2.5. Let S ∪{S} be a set of hypersequents and let s be a sequent. Then for every hypersequent
calculus HC we have that

(S ∪ {s} `HC S and S `HC s | S) =⇒ S `HC S.

Proof. Assuming that S `HC s | S we see that for any hypersequent S′ if S ∪ {s} `HC S′, then, by
induction on the length of a derivation witnessing this, we must have that S `HC S′ | S. Therefore,
if S `HC s | S and S ∪ {s} `HC S we may conclude that S `HC S | S, whence by applying external
contraction we obtain that S `HC S, as desired.

We then introduce a variant of the well-known Lindenbaum-Tarski construction.

Proposition 2.6. For every hypersequent calculus HC and every set of hypersequents S ∪{S} such that
S 6`HC S there exists a Heyting algebra LTHC(S , S) validating HC and a valuation on LTHC(S , S)
under which LTHC(S , S) validates S but not S.
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Proof. Let Prop be the set of propositional letters occurring in S ∪ {S} and let S̃ be a maximal set of

hypersequents, based on Form(Prop), extending S such that S̃ 6`HC S. Assuming Zorn’s Lemma such
a set always exists. Then define an equivalence relation ≈ on the formula algebra Form(Prop) by

φ ≈ ψ ⇐⇒ S̃ `HC ⇒ φ↔ ψ.

Since HC extends a hypersequent calculus of IPC one may readily verify that LTHC(S , S) = Form(Prop)/≈
is a Heyting algebra.

We observe that by the maximality of S̃ , Lemma 2.5 together with the assumption that S̃ 6`HC S
yields that

S̃ `HC s1 | . . . | sm | S =⇒ S̃ `HC si for some 1 ≤ i ≤ m , (1)

for all sequents s1, . . . , sm. For suppose not, then in particular S̃ ∪{s1} `HC S by maximality of S̃ . So

by Lemma 2.5 we must have that S̃ `HC s2 | . . . | sm | S. Thus after repeating this argument m times

we obtain S̃ `HC S, in direct contradiction with the initial assumption.

Observe that from (1) and external weakening it follows that if S̃ `HC s1 | . . . | sm then S̃ `HC si
for some 1 ≤ i ≤ m. From this it is easy to verify that LTHC(S , S) validates all the rules of HC.

Finally, we claim that under the valuation determined by sending propositional variables to their
respective equivalence classes of the equivalence relation ≈, the algebra LTHC(S , S) validates all the
hypersequents from S but does not validate the hypersequent S. This, however, is evident.

Remark 2.7. One could initially be tempted to believe that the construction in the proof of Proposition
2.6 will yield free algebras for the universal class of Heyting algebras validating the calculus HC. However,
this is not the case as universal classes of algebras do not necessarily have free algebras. To see why the
construction fails to give free algebras note that φ ≈ ψ does not imply that the corresponding terms are
identified in all Heyting algebras validating HC, but only that they may consistently (relative to HC)
be identified. Therefore, it is not well defined to map an equivalence class of formulas to the Heyting
algebra term of a formula from the equivalence class.

Proposition 2.8 (Algebraic soundness and completeness). Let HC be a hypersequent calculus and let
(r) be a hypersequent rule. Then the following are equivalent:

1. The rule (r) is derivable in HC;

2. All Heyting algebras validating HC also validates (r).

Proof. That item 1 implies item 2 follows from a straightforward induction on the length of derivations
of rules. That item 2 implies item 1 is immediate from Proposition 2.6.

2.2 Hypersequents calculi, multi-conclusion rules and universal classes of
Heyting algebras

Given a hypersequent calculus HC we obtain an intermediate logics Λ(HC) := {φ ∈ Form : `HC ⇒ φ}.
We say that a hypersequent calculus HC is a calculus for an intermediate logic L if Λ(HC) = L. This
means that derivability relations `L and `HC coincides for sequents in the sense that

`L
∧

Γ→
∨

∆ iff `HC Γ⇒ ∆ (2)

obtains for all sequents Γ⇒ ∆. Note, however, that the corresponding version of (2) does not necessarily
obtain for hypersequents. As our primary interest in hypersequents is to obtain analytic calculi for logics,
this does not constitute a problem.

Given a hypersequent calculus HC the class U(HC) of Heyting algebras validating HC will evidently
be a universal class. Conversely, given a universal class U of Heyting algebras, determined by a set of
universal sentences Φ, we obtain a hypersequent calculus HC(U) by adding for each universal sentence
σ = ∀x(

∧m
k=1(φk(x) = >) =⇒

∨m
l=1(ψl(x) = >)) ∈ Φ the rule schema

⇒ φ1 . . .⇒ φn
(rσ)

⇒ ψ1 | . . . | ⇒ ψm
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to a hypersequent calculus for IPC.
Using Proposition 2.8 it is easy to verify that U(HC(U)) = U and that HC(U(HC)) will be equivalent

to HC. Thus we have a one-to-one correspondence between hypersequent calculi for intermediate logics
(modulo equivalence) and universal classes of Heyting algebras.

Similarly we obtain a correspondence between multi-conclusion rules [31, 7] and hypersequent calculi.
Given a multi-conclusion rule (r) = (φ1, . . . , φn)/(ψ1, . . . , ψm) we obtain a hypersequent rule:

⇒ φ1 . . .⇒ φn
(rH)

⇒ ψ1 | . . . | ⇒ ψm

Conversely, given a hypersequent rule with single component premises

Γ1 ⇒ ∆1 . . .Γn ⇒ ∆n (r)
Σ1 ⇒ Π1 | . . . | Σm ⇒ Πm

we obtain a multi-conclusion rule:∧
Γ1 →

∨
∆1, . . . ,

∧
Γn →

∨
∆n

(rM )∧
Σ1 →

∨
Π1, . . . ,

∧
Σm →

∨
Πm

Evidently a Heyting algebra validates a multi-conclusion rule (reps. hypersequent rule) iff it validates
the corresponding hypersequent rule (reps. multi-conclusion rule). Since by Proposition 2.4 every hy-
persequent calculus is equivalent to one only consisting of rules with single component premisses this
yields (modulo equivalence) a correspondence between multi-conclusion consequence relations and hy-
persequent calculi. Thus, for the proposes of axiomatizing intermediate logics hypersequent calculi and
multi-conclusion consequence relations may be used interchangeably.

2.3 The bounded proof property

We say that a hypersequent calculus HC has the bounded proof property if whenever S ∪ {S} is a set
of hypersequents of implicational degree at most n such that S `HC S then S `nHC S, i.e., there exists
a proof witnessing S `HC S consisting only of hypersequents of degree at most n. The bounded proof
property is thus a very weak form of analyticity. However, having this property will indicate some kind
of robustness of the hypersequent calculus in question. For instance the subformula property will entail
the bounded proof property. Therefore, if a hypersequent calculus enjoys cut-elimination it will also,
under mild additional assumptions, have the subformula property and hence the bounded proof property.
Finally, as in the modal case [10, 11], having the bounded proof property will ensure that the derivability
relation `HC is decidable, given that HC consists of finitely many rules. This is due to the fact that for
a given finite set of propositional variables Prop there are only finitely many non-equivalent formulas in
Prop of implicational degree at most n.

The next proposition shows that the bounded proof property is completely determined by the degree
1 case.

Proposition 2.9. A hypersequent calculus HC has the bounded proof property iff for each set S ∪ {S}
consisting of hypersequents of degree at most 1, we have

S `HC S iff S `1HC S.

Proof. The left-to-right direction is evident.
For the converse implication let S ∪ {S} be a set of hypersequents of degree at most n. We define a

sequence of triples (Si, Si, σi)
n−1
i=0 such that

i) Si ∪ {Si} is a set of hypersequents of degree at most n − i and σi is a substitution such that
d(χσi) ≤ d(χ) + 1 for all formulas χ occurring in Si ∪ {Si};

ii) Si+1σi+1 = Si;

iii) Si+1σi+1 equals Si union some set of sequents of the form χ⇒ χ;

iv) Si+1 `HC Si+1 ⇐⇒ Si `HC Si.
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Let S0 be S , S0 be S and let σ0 be the identity substitution. Now assume that the triple (Si, Si, σi)
has been defined. Then for each subformula of the form φ→ ψ with d(φ) = d(ψ) = 0 occurring in some
formula of some sequent of some hypersequent in Si ∪ {Si} introduce a fresh variable pφψ and replace
φ→ ψ with pφψ everywhere. Let S ′i and Si+1 be the result of such replacements. Finally, let

Si+1 = S ′i ∪ {pφψ ⇒ φ→ ψ, φ→ ψ ⇒ pφψ}φ→ψ.

The substitution σi+1 is then defined as σi+1(pφψ) = φ→ ψ.
With this definition i)-iii) are easily seen to hold. For item iv) it suffices to observe that the derivability

relation is structural, i.e., preserved by substitutions.
Now if S `HC S then by construction we must have that Sn−1 `HC Sn−1. Moreover, as per item i)

the degree of Sn−1∪{Sn−1} is at most 1, hence the initial hypothesis yields Sn−1 `1HC Sn−1. This suffices
to establish the proposition as soon as we observed that if Sn−k `kHC Sn−k then Sn−(k+1) `k+1

HC Sn−(k+1).
However, this is an immediate consequence of items ii) and iii) together with the fact that for any
hypersequent S we have that d(Sσi+1) ≤ d(S) + 1.

We say that a formula occurs in a hypersequent S if it is either a subformula on the right or the left
hand side of the sequent arrow of some sequent belonging to S. We say that a hypersequent rule (r) is
reduced if all the formulas occurring in (r) have implicational degree at most 1.

Proposition 2.10. Any hypersequent rule is equivalent to a reduced hypersequent rule.

Proof. Given a hypersequent rule (r) = (S1, . . . , Sm)/Sm+1 of depth n+ 1 with n ≥ 1 and an occurrence
of a formula α of degree n+ 1 in (r) the main connective of which is →, we produce an equivalent rule
with one less occurrence of the formula α.

Let Si be the hypersequent with the given occurrence of α and let Γ⇒ ∆ be the sequent in Si with
the given occurrence of α. As the formula α is of depth n + 1 it must be of the form φ → ψ with
max{d(φ), d(ψ)} = n. We introduce a fresh variable p and replace the given occurrence of α in Si with
p→ ψ or φ→ p, depending on whether d(φ) = n or d(ψ) = n. If both d(φ) and d(ψ) = n we introduce
two fresh variables. Let S′i be the hypersequent resulting from such a replacement. Evidently S′i has one
less occurrence of the formula α than Si . Moreover if i ≤ m let S′′i be the hypersequent obtained by
replacing the sequent Γ ⇒ ∆ in Si with the sequent p ⇒ ψ or φ ⇒ p depending on whether we replace
φ→ ψ with φ→ p or with p→ ψ in Si. If i = m+ 1 let S′′i be the hypersequent consisting of the single
component hypersequent p⇒ ψ or φ⇒ p again depending on whether we replace φ→ ψ with φ→ p or
with p→ ψ in Si.

In this way we obtain a rule

S1 . . . Si−1 S
′
i Si+1 . . . Sm S′′i (r′)
Sm+1

By Proposition 2.8 this rule must be equivalent to the rule (r).
Continuing this procedure for each occurrence of a formula of degree n+1 in (r) we obtain a rule (r1)

of depth n which is equivalent to (r). In this way we obtain a sequence (rn+1), (rn) . . . , (r1) of equivalent
rules such that (rn+1) = (r) and d(rk) = k, for all 1 ≤ k ≤ n+ 1.

Note as the above procedure abstracts away one occurrence of a formula of the form φ → ψ at a
time, and since we first abstract away outermost occurrences, it is always clear whether to replace the
formula occurring negatively or positively in the formula φ→ ψ.

In light of Proposition 2.10 we may without loss of generality assume that all hypersequent calculi
are reduced, i.e., only consisting of reduced rules.

3 One-step Heyting algebras

Let bDL denote the category of bounded distributive lattices and bounded lattice homomorphisms.
Then a well-known theorem by Birkhoff says that the category bDLω of finite bounded distributive
lattice is dually equivalent to the category Posω of finite posets and order-preserving maps. This dually
is established via the downsets functor Do: Pos → bDL and the functor J : bDL → Pos mapping a
bounded distributive lattice D to the poset of completely join-irreducible elements of D. If f : P → P ′

8



is an order-preserving map between posets then Do(f) : Do(P ′) → Do(P ) is the preimage function
f∗(U) := f−1(U). If h : D → D′ is a homomorphism between finite bounded distributive then h has a
left adjoint h[ : D′ → D given by

h[(a′) :=
∧

a′≤h(a)

a.

We may therefore let J(h) : J(D′)→ J(D) be h[ �J(D′).
Recall that any finite bounded distributive lattice D is in fact a Heyting algebra with Heyting impli-

cation
a→ b :=

∧
{c : a ∧ c ≤ b}

Therefore the category HAω of finite Heyting algebras and Heyting algebra homomorphisms will be
a (non-full) subcategory of bDLω. Let Posopen denote the category of posets and open order-preserving
maps, where a map between posets f : P → Q is open if

∀a ∈ P ∀b ∈ Q (b ≤ f(a) =⇒ ∃a′ ∈ P (a′ ≤ a & f(a′) = b)).

Theorem 3.1 (Folklore). The dual equivalence of the categories bDLω and Posω restricts to a dual
equivalence between the categoires HAω and Posopenω .

We now introduce algebraic structures which may interpret the fragment of intuitionisitic logic con-
sisting of formulas of implicational degree at most 1.

Definition 3.2. A one-step Heyting algebra is a triple (D0, D1, i) such that i : D0 → D1 is a homo-
morphism between bounded distributive lattices with the property that for all a, b ∈ D0 the Heyting
implication i(a)→ i(b) exists in D1. We say that a one-step Heyting algebra (D0, D1, i) is conservative
if i : D0 → D1 is an embedding of bounded distributive lattices and D1 is generated (as a bounded
distributive lattice) by the set {i(a)→ i(b) : a, b ∈ D0}. Finally, we say that (D0, D1, i) is finite if both
D0 and D1 are finite.

Definition 3.3. A one-step homomorphism between two one-step Heyting algebras H = (D0, D1, i) and
H′ = (D′0, D

′
1, i
′) is a pair (g0, g1) of bounded lattice homomorphisms g0 : D0 → D′0 and g1 : D1 → D′1

making the diagram

D0 D′0

D1 D′1

i

g0

i′

g1

commute, and such that for all a, b ∈ D0

g1(i(a)→ i(b)) = g1(i(a))→ g1(i(b)).

A one-step extension of a one-step Heyting algebra H0 := (D0, D1, i0) is a one-step Heyting algebra
H1 := (D1, D2, i1) such that (i0, i1) : H0 → H1 is a one-step homomorphism with i1 injective.

Note that if A is Heyting algebra, then HA = (A,A, Id) is a one-step Heyting algebra. Consequently
we may, given a one-step Heyting algebra H, speak of one-step homomorphism between A and H by way
of HA.

The above definitions determines a category OSHA of one-step Heyting algebras and one-step homo-
morphisms between them. This is a non-full subcategory of the arrow category bDist→. We let OSHAω
and OSHAcons

ω denote the full subcategories of OSHA consisting of finite one-step Heyting algebras and
finite conservative one-step Heyting algebras, respectively.

3.1 Duality

Since in the following we are only concerned with finite one-step Heyting algebras the duality is par-
ticularly well-behaved as there will be no need to introduce topology. We construct categories dually
equivalent to the categories OSHAω and OSHAcons

ω . To this end we need the following well-known propo-
sition.

9



Proposition 3.4. Let f : P → Q and g : Q → R be order-preserving maps between finite posets. Then
the following are equivalent:

1. The bounded lattice homomorphism f∗ : Do(Q)→ Do(P ) preserves all Heyting implications of the
form g∗(U)→ g∗(V ), for U, V ∈ Do(R);

2. ∀a ∈ P ∀b ∈ Q (b ≤ f(a) =⇒ ∃a′ ∈ P (a′ ≤ a & g(f(a′)) = g(b)))

Proof. Straightforward.

Definition 3.5 ([24]). Given order-preserving maps f : P → Q and g : Q → R satisfying one (and
therefore both) of the conditions of Proposition 3.4 we say that f is open relative to g or simply that f
is g-open.

Definition 3.6. An intuitionistic one-step frame is a triple (P1, P0, f) such that f : P1 → P0 is an order-
preserving map between posets. We say that an intuitionistic one-step frame (P1, P0.f) is conservative
if f : P1 → P0 is a surjection satisfying

∀a, b ∈ P1 (f [↓a] ⊆ f [↓b] =⇒ a ≤ b).

Definition 3.7. A one-step map from an intuitionistic one-step frame F ′ = (P ′1, P
′
0, f
′) to an intu-

itionistic one-step frame F = (P1, P0, f) is a pair (µ1, µ0) of order-preserving maps µ1 : P ′1 → P1 and
µ0 : P ′0 → P0, with µ1 is f -open, making the diagram

P ′1 P1

P ′0 P0

f ′

µ1

f

µ0

commute.
A one-step extension of an intuitionistic one-step frame F0 = (P1, P0, f0) is an intuitionistic one-step

frame F1 = (P2, P1, f1) such that (f1, f0) : F1 → F0 is a one-step map, with f1 surjective.

It is easy to check that this yields a category IOSFrm of intuitionistic one-step frames and one-
step maps. Moreover, the finite and the finite conservative intuitionistic one-step algebras form full
subcategories IOSFrmω and IOSFrmcons

ω of IOSFrm.
Note that if F is an intuitionistic Kripke frame then FF = (F,F, Id) will be an intuitionistic one-step

frame. Consequently we may, given an intuitionistic one-step frame F , speak of one-step homomorphism
between F and F by way of FF.

Proposition 3.8. The categories OSHAω and IOSFrmω are dually equivalent. Moreover, this dual equiv-
alence restricts to a dual equivalence between the categories OSHAcons

ω and IOSFrmcons
ω .

Proof. That the duality between bDLω and Posω extends to a duality between the categories OSHAω
and IOSFrmω is straightforward given Proposition 3.4.

To see that the dual equivalence between OSHAω and IOSFrmω restricts to a dual equivalence between
OSHAcons

ω and IOSFrmcons
ω it suffices to note that under the isomorphism between the poset of bounded

sublattices of Do(P ) and the poset of compatible quasi-orders on P ([35, Thm. 3.7], [5, Thm. 6.15]) the
sublattice generated by the set U ⊆ Do(P ) corresponds to the compatible quasi-order �U given by

a �U b iff ∀U ∈ U (b ∈ U =⇒ a ∈ U).

Thus U ⊆ Do(P ) generates Do(P ) as a bounded distributive lattice iff the quasi-order a �U b coincides
with the order on P .

From this it is easy to see that (P1, P0, f) is a conservative intuitionistic one-step frame if and only
if (Do(P0),Do(P1), f∗) is a conservative one-step Heyting algebra.

10



3.2 One-step semantics

Given two disjoint finite sets Prop0 and Prop1 of propositional variables, a valuation on a one-step algebra
H = (D0, D1, i) is a pair of functions v = (v0, v1) such that v0 : Prop0 → D0 and v1 : Prop1 → D1.

Given a one-step algebraH together with a valuation v = (v0, v1) for every formula φ(~p) ∈ Form0(Prop0)
we define an element φv0 ∈ D0 as follows:

⊥v0 = ⊥ and >v0 = > and pv0i = v0(pi) for pi ∈ ~p,

and
(φ1 ∗ φ2)v0 = φv01 ∗ φ

v0
2 , ∗ ∈ {∧,∨}.

Moreover, for every formula ψ(~p, ~q) ∈ Form1(Prop0 ∪ Prop1), where the elements of ~q ⊆ Prop1 do not
have any occurrence in the scope of an implication, we define an element ψv1 ∈ D1 as follows:

⊥v1 = ⊥ and qv1 = v1(q) and pv1 = i(v0(p)) for q ∈ ~q and p ∈ ~p,

and
(ψ1 ∗ ψ2)v1 = ψv1

1 ∗ ψ
v1
2 ∗ ∈ {∧,∨}.

Finally, for φ1, φ2 ∈ Form0(Prop0) we let,

(φ1 → φ2)v1 = i(φv01 )→ i(φv02 ).

By the definition of a one-step Heyting algebra the implications of the form i(a)→ i(a) exist in D1 and
so the above is indeed well-defined.

Since, the function i preserves ⊥ as well as the connectives ∧ and ∨ it is easily seen that i(φv0) = φv1 ,
for all φ ∈ Form0(Prop0).

A valuation v = (v0, v1) on a one-step algebra H is suitable for an expression (i.e. for a formula,
sequent, or hypersequent) α of degree at most 1 iff the domain of v0 includes all propositional variables
having in α an occurrence located inside an implication; a 0-valuation is an valuation v = (v0, v1) where
the domain of v1 is empty (thus, a 0-evaluation is always suitable for every expression α).

We say that a one-step algebra H validates a sequent Γ ⇒ ∆ of degree at most 1 under a suitable
valuation v = (v0, v1) if (∧

Γ
)v1
≤
(∨

∆
)v1

,

with the convention that
∧
∅ = > and

∨
∅ = ⊥.

A one-step algebra H validates a hypersequent S = Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n under a suitable
valuation v if it validates at least one of the sequents Γk ⇒ ∆k under v. We write (H, v) |= S, if this is
the case.

Finally, we say that a one-step algebra H validates a hypersequent S if it validates it under all
possible suitable valuations v on H, in which case we write H |= S. Moreover, if (r) = (S1, . . . , Sn)/S is
a hypersequent rule of degree at most 1 we say that H validates (r) if for all valuations v on H we have
that if (H, v) |= Si for all i ∈ {1, . . . , n} then (H, v) |= S.

We say that an intuitionistic one-step frame F = (P1, P0, f) validates a sequent, hypersequent or
hypersequent rule if its dual one-step Heyting algebra F∗ = (Do(P0),Do(P1), f∗) does. The notion of
0-validation of a sequent, hypersequent or hypersequent rule is defined in the same way, by restricting
to 0-valuations.

With these definitions we can then establish the soundness of the derivability relation with respect
to the one-step semantics. There is a subtlety to take care of here, however: a propositional variable p
not occurring in a set of hypersequents S ∪{S} under the scope of an implication may still occur inside
an implication in a derivation witnessing S `1HC S. Thus if p is in the domain of v1 when we evaluate S
in H, it may happen that we cannot give a meaning to such derivation inside H. This is why the correct
semantics for the relation S `1HC S requires the restriction to 0-valuations for S ∪ {S} (but not for
the rules of HC, because the variables from the latter can be instantiated indifferently with formulas of
degree 0 or 1).

Proposition 3.9. Let H be a one-step algebra, HC a reduced hypersequent calculus, and S ∪ {S} a set
of hypersequents of degree at most 1. If S `1HC S and H validates HC, then H 0-validates S /S.
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Proof. By induction on the length of a derivation witnessing S `1HC S (notice that we can assume that
in such derivation only propositional variables occurring in S /S occur, because extra variables can be
replaced by, say, >).

If (g0, g1) : H → H′ is a one-step homomorphism such that both g0 and g1 are injective then we
say that (g0, g1) is an embedding. The following lemma shows that the embeddings between one-step
Heyting algebras preserve validity.

Lemma 3.10. Let (g0, g1) : H → H′ be an embedding of one-step algebras. If v = (v0, v1) and v′ =
(v′0, v

′
1) are valuations on H and H′, respectively, such that v′0(p) = g0(v0(p)) and v′1(q) = g1(v1(p)), for

all p ∈ Prop0 and q ∈ Prop1, then for any hypersequent rule (r) of degree at most 1 we have that (H, v)
validates (r) iff (H′, v′) validates (r).

Proof. It suffices to show that for all formulas φ, ψ ∈ Form1(Prop0 ∪ Prop1)

φv1 ≤ ψv1 ⇐⇒ φv
′
1 ≤ ψv′1 (3)

Since (g0, g1) is a map of one-step algebras an easy inductive argument shows that the assumption
v′0(p) = g(v0(p)) and v′1(q) = g1(v1(p)) for all p ∈ Prop0, q ∈ Prop1 implies that φv

′
1 = g1(φv1) for all

φ ∈ Form1(Prop0 ∪ Prop1). From this (3) readily follows as any injective lattice homomorphism will
necessarily be both order-preserving and order-reflecting.

In particular, we have that if H′ is a one-step Heyting algebra validating HC and H embeds into H′
then H validates HC as well.

We wish to establish an algebraic completeness result of `1 with respect to one-step Heyting algebras.

Proposition 3.11. Let S ∪ {S} be a finite set of hypersequents of implicational degree at most 1, and
let HC be a (reduced) hypersequent calculus. If all one-step Heyting algebras validating HC 0-validate the
hypersequent rule S /S then S `1HC S.

Proof. Let S ∪ {S} be a finite set of hypersequents of degree at most 1 such that S 6`1HC S. We
then construct a one-step Heyting algebra algebra LT HC(S , S) validating HC. Moreover, under some
0-valuation LT HC(S , S) will validate S and refute S. This is completely similar to the construction
found in the proof of Proposition 2.6. As before we let Prop be the set of propositional letters occurring

in S ∪ {S} and let S̃ be a maximal set of hypersequents, based on Form(Prop), containing S such

that S̃ 6`1HC S. We then have that if s1, . . . , sn are sequents of degree at most 1

S̃ `1HC s1 | . . . | sn | S =⇒ S̃ `1HC si for some i ≤ n. (4)

Letting Dk be the set of equivalence classes of formulas of degree at most k, for k = 0, 1, of the equivalence
relation

φ ≈ ψ iff ⇒ φ↔ ψ ∈ S̃ ,

we obtain a (finite conservative) one-step Heyting algebra LT HC(S , S) := (D0, D1, i) where i : D0 → D1

is the evident inclusion. From (4) we see that LT HC(S , S) validates HC and moreover that under
the valuation v on LT HC(S , S) determined by sending propositional variables to the corresponding
equivalence classes in D0,5 we have that (LT HC(S , S), v) |= S but (LT HC(S , S), v) 6|= S.

Note that since there is only finitely many formulas of degree at most 1 when Prop is finite, the one-
step algebra LT HC(S , S) obtain in the proof of Proposition 3.11 is in fact a finite conservative one-step
Heyting algebra.

5Notice that this is a 0-valuation.
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4 Characterizing the bounded proof property

Given a finite conservative one-step Heyting algebraH = (D0, D1, i) we will define the diagram associated
to H. This construction is analogous to the diagrams of a finite conservative one-step modal algebra
from [10]. In fact they are a two-sorted version of the diagrams know from model theory [15].

We introduce a set of propositional variables PropH0 = {pa : a ∈ D0}. Then by the conservativity of
H it follows that for each a ∈ D1 there exists a formula θa ∈ Form1(PH) such that θv1b = b, where v is
the natural 0-valuation on H given by v0(pa) = a. In particular, we have that θi(a) = pa for all a ∈ D0.

Now let

S 0
H :={pa∧b ⇒ pa ∧ pb, pa ∧ pb ⇒ pa∧b : a, b ∈ D0}

∪ {pa∨b ⇒ pa ∨ pb, pa ∨ pb ⇒ pa∨b : a, b ∈ D0}
∪ {p⊥ ⇒ ⊥, ⊥ ⇒ p⊥},∪{p> ⇒ >, > ⇒ p>},

and

S 1
H :={θa∧b ⇒ θa ∧ θb, θa ∧ θb ⇒ θa∧b : a, b ∈ D1}

∪ {θa∨b ⇒ θa ∨ θb, θa ∨ θb ⇒ θa∨b : a, b ∈ D1}
∪ {θi(a)→i(b) ⇒ θi(a) → θi(b), θi(a) → θi(b) ⇒ θi(a)→i(b) : a, b ∈ D0}

We then define the positive diagram of H to be SH := S 0
H ∪S 1

H.
For each a, b ∈ D1 we let sab be the sequent θa ⇒ θb if a 6≤ b and the empty sequent if a ≤ b. We

then define the negative diagram of H to be the hypersequent

SH := {sab : a, b ∈ D1}.

Definition 4.1. By the diagram of a finite conservative one-step Heyting algebra we will understand
the hypersequent rule SH/SH.

We say that a step algebra H′ refutes a diagram SH/SH under a 0-valuation v if (H′, v) |= SH but
(H′, v) 6|= SH.

The following proposition shows why we are interested in diagrams.

Proposition 4.2. Let H = (D0, D1, i) and H′ = (D′0, D
′
1, i
′) be one-step Heyting algebras with H finite

and conservative. Then the following are equivalent:

1. There exists a one-step embedding from H into H′;

2. There exists a 0-valuation v on H′ such that (H′, v′) refutes the diagram of H.

Proof. First assume that there exists a one-step embedding (g0, g1) : H → H′. We then define a 0-
valuation v′ = (v′0, v

′
1) on H′ by v0(pa) = g0(a). Then as H evidently refutes its own diagram under the

natural valuation v0(pa) = a it immediately follows from Lemma 3.10 that (H′, v′) refutes SH/SH as
well.

Conversely if there exists a 0-valuation v′ = (v′0, v
′
1) on H′ such that (H′, v′) refutes the diagram of

H, then we claim that defining (g0, g1) : H → H′ by

g0(a) = v′0(pa) and g1(b) = θ
v′1
b ,

yields an embedding of one-step algebras.
First of all since H is conservative the function g1 is well-defined, and because i′ is an injection and

(H′, v′) |= S 0
H we see that g0 must be a bounded lattice homomorphism. Since (H′, v′) also validates

S 1
H we see that g1 is a bounded lattice homomorphism as well.

Now to see that i′ ◦ g0 = g1 ◦ i we simply observe that for all a ∈ D0

i(g0(a)) = i(v′0(pa)) = p
v′1
a = θ

v′1
i(a) = g1(i(a)).

From the assumption that (H′, v′) does not validate any of the sequents θa ⇒ θb when a 6≤ b it im-
mediately follows that g1 is an injection. So as i is an injection we must have that g0, being the first
component of the injection g1 ◦ i, is an injection as well.
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Finally because (H′, v′) validates all sequents of the form θi(a)→i(b) ⇒ θi(a) → θi(b) and θi(a) →
θi(b) ⇒ θi(a)→i(b) we have that

g1(i(a)→ i(a)) = i′(g0(a))→ i′(g0(b)),

and so we can conclude that (g0, g1) is indeed an embedding of one-step algebras.

Definition 4.3. A class K of one-step Heyting algebras (or one-step intuitionistic one-step frames) has
the extension property if all members of K have a one-step extensions also belonging to K.

Lemma 4.4. Let HC be a hypersequent calculus and let ConAlgω (HC) be the class of finite conservative
one-step Heyting algebras validating HC. If every H ∈ ConAlgω (HC) embeds into some standard Heyting
algebra validating HC then the class ConAlgω (HC) has the extension property.

Proof. Let H = (D0, D1, i) be a finite (conservative) one-step Heyting algebra and suppose that there
exists an embedding (g0, g1) : H → A into some Heyting algebra A validating HC. Letting A be the
bounded lattice reduct of A, we see that H′′ = (D1, A, g1) is a one-step algebra validating HC and
extending H.

To obtain a finite conservative one-step Heyting algebra validating HC and extending H let D2 be
the bounded distributive sublattice of A generated by the set {g1(a)→ g1(b) : a, b ∈ D1}. As the variety
of bounded distributive lattices is locally finite D2 is finite. Moreover, we have g1[D1] ⊆ D2. Therefore,
H′ = (D1, D2, g1) will be a finite conservative one-step algebra validating HC and extending H.

Theorem 4.5. Let HC be a (reduced) hypersequent calculus. Then the following are equivalent:

1. The calculus HC has the bounded proof property;

2. The class of finite conservative one-step Heyting algebras validating HC has the extension property;

3. The class of finite conservative intuitionistic one-step frames validating HC has the extension prop-
erty.

Proof. That item 2 and 3 are equivalent is an immediate consequence of the dual equivalence between
the categories OSHAcons

ω and IOSFrmcons
ω .

To see that item 1 implies item 2 letH be a finite conservative one-step Heyting algebra validating HC.
Since H refutes its own diagram SH/SH we obtain from Proposition 3.9 that SH 6`1HC SH. Therefore, if
HC enjoys the bounded proof property it follows that SH 6`HC SH. By algebraic completeness we must
have a Heyting algebra A validating HC and refuting SH/SH. But then by Proposition 4.2 there exists
embedding (g0, g1) : H → A and so by Lemma 4.4 we may conclude that the class of finite conservative
Heyting algebras validating HC has the extension property.

Finally, to see that item 2 implies item 1 let S ∪{S} be a finite set of hypersequents of implicational
degree at most 1 such that S 6`1HC S. By Proposition 2.9 it then suffices to show that S 6`HC S.

Let H0 = (D0, D1, i0) be the finite conservative one-step Heyting algebra LT HC(S , S) constructed
in the proof of Proposition 3.11. Moreover, let v0 be a 0-valuation on H0 such that (H0, v

0) |= S
but (H0, v

0) 6|= S. If the class of finite conservative one-step algebras validating HC has the extension
property then we have a one-step extension in form of a finite conservative one-step Heyting algebra
H1 = (D1, D2, i1) validating HC. Moreover, i0, i1 induce a 0-valuation v1 on H1 under which S is valid
but S it not. In this way we obtain a chain

D0 D1 . . . Dn−1 Dn . . .
i0 i1 in−1 in in+1

of Heyting algebras in the category bDLω, with the property that

in+1(in(a)→n+1 in(b)) = in+1(in(a))→n+2 in+1(in(b)).

Consequently taking the colimit of the above diagram, in the category bDLω, we obtain a Heyting algebra
A with Heyting implication

[a]→ [b] := [in,k+1(a)→k+2 im,k+1(b)], k = max{n,m},
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for a ∈ Dn and b ∈ Dm and in,k : Dn → Dk the evident map for n ≤ k.
It is then easy to see that A must validate HC and moreover that the 0-valuations vn on Hn induces

a valuation v on A which by the injectivity of the in’s is such that (A, v) |= S and (A, v) 6|= S. We may
therefore conclude that S 6`HC S.

In concrete cases it is not so easy to work with one-step extensions of frames. However, assuming the
finite model property we obtain a version of Theorem 4.5 which avoids the concept of one-step extensions
altogether.

Definition 4.6. We say that a hypersequent calculus HC has the (global) finite model property if for
each set S ∪ {S} of hypersequents, S 6`HC S iff there exists a finite Heyting algebra A validating HC
and a valuation v on A such that (A, v) validates all the hypersequents from S but not the hypersequent
S.

Proposition 4.7. A hypersequent calculus HC has the finite model property iff for each set S ∪ {S}
of hypersequents, S 6`HC S iff there exists a finite intuitionistic Kripke frame F validating HC and a
valuation v on F such that (F, v) validates all the hypersequents from S but not the hypersequent S.

Proof. Immediate by the duality between finite Heyting algebras and finite intuitionistic Kripke frames.

Lemma 4.8. Let HC be a hypersequent calculus. Then HC has the finite model property iff if for each
set S ∪ {S} of hypersequents of degree at most 1, S 6`HC S iff there exists a finite Heyting algebra
A together with a valuation v such (A, v) validates HC and all the hypersequents from S but not the
hypersequent S.

Proof. The statement follows from the fact that given S , S it is possible to produce S ′, S′ having degree
at most 1, such that for every Heyting algebra A validating HC (finite or not) we have that A validates
S /S iff it validates S ′/S′ (thus, in particular, S `HC S iff S ′ `HC S

′ by Proposition 2.8). In order to
build S ′, S′ out of S , S, we just need to abstract out implicative subformulas with fresh propositional
variables (we have already applied this procedure e.g. in the proof of Propositions 2.9 and 2.10).

Theorem 4.9. Let HC be a (reduced) hypersequent calculus. Then the following are equivalent:

1. The calculus HC has the bounded proof property and the finite model property;

2. Each finite conservative one-step algebra H validating HC embeds into some finite Heyting algebra
validating HC;

3. Each finite conservative intuitionistic one-step frame F validating HC is the relative open image
of some finite intuitionistic Kripke frame validating HC.

Proof. As in the proof of Theorem 4.5 it is immediate that item 2 and item 3 are equivalent.
To see that item 1 implies item 2 we observe that if H is a finite conservative one-step Heyting algebra

validating HC then as H refutes its diagram SH/SH we must have that SH 6`1HC SH by Proposition 3.9.
Consequently it follows from the assumption that HC has the bounded proof property that SH 6`HC SH
and therefore as HC has the finite model property we obtain a finite Heyting algebra A which validates
HC and refutes the diagram SH/SH. By Proposition 4.2 it then follows that H embeds into A.

Conversely to see that item 2 implies item 1 we first note that by Theorem 4.5 item 2 implies that
HC enjoys the bounded proof property. To see that it also enjoys the finite model property it suffices,
by Lemma 4.8, to consider finite set of hypersequents S ∪ {S} of degree at most 1. Given such a set
S ∪{S} with the property that S 6`HC S let H be the finite conservative one-step algebra LT HC(S , S)
as constructed in the proof of Proposition 3.11. Then by assumption we have a finite Heyting algebra
A validating HC such that H embeds into A, and this embedding induces a valuation on A under which
S is valid but S is not.
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5 Examples

In this section we provide a number of examples showing how to use the methods developed above to
determine whether or not a given sequent or hypersequent calculus enjoys the bounded proof property.

We warn the reader that as we base the duality between one-step Heyting algebras and intuitionistic
one-step frames on the downset functor Do: Posopenω → HAω the partial order on Kripke frames may be
the opposite of what the reader is familiar with.

It is possible to adapt the algorithmic correspondence theory for intuitionistic logic (see e.g., [21])
to the framework of one-step semantics for hypersequent rules. However, as the examples we will be
considering here are rather simple we will derive the correspondence results we need manually.

Finally, we would like to mention the following result6 due to Ciabattoni, Galatos and Terui:

Theorem 5.1 ([18]). There is an effective procedure which given an axiom φ belonging to the level P3 of
the substructural hierarchy produces a finite set of structural hypersequent rules Rφ such that when added
to the hypersequent version of LJ yields a hypersequent calculus for IPC + φ enjoying cut-elimination
and the subformula property.

The hypersequent calculi obtained by this procedure evidently have the bounded proof property. Thus
in order to obtain truly novel results of a positive nature using Theorem 4.5 and 4.9 it will be necessary
to consider axioms at the level N3 of the substructrual hierarchy [18]. Since all intermediate logics
are axiomatizable by canonical formulas [38] which belong to the level N3 over IPC the substructural
hierarchy collapses at this level7.

5.1 Calculi for LC

The intermediate logic LC, known as the Gödel-Dummett logic is obtained by adding the axiom (p →
q)∨(q → p) to a Hilbert-style presentation of IPC. Using our methods we show that the sequent calculus
obtained by adding the rule

(rLC)
⇒ (φ→ ψ) ∨ (ψ → φ)

does not enjoy the bounded proof property.

Proposition 5.2. A intuitionistic one-step frame (P1, P0, f) validates the rule (rLC) iff

∀a, b, b′ ∈ P1 (b ≤ a & b′ ≤ a =⇒ (f(b) ≤ f(b′) or f(b′) ≤ f(b))).

Proof. Straightforward.

To see that adding the rule (rLC) does not yield a sequent calculus with the bounded proof property,
consider the one-step frame F = (P1, P0, f) presented as:

a2

a0 a1

c2

c1

c0

That is, P1 is a 2-fork and P0 is a 3-chain. The function f is the obvious map given by ai 7→ ci for
i ∈ {0, 1, 2}. This is easily seen to be a finite conservative one-step frame validating the rule (rLC). Now
suppose towards a contradiction that F has a one-step extension, say F ′ = (P2, P1, g). As f is bijective
it follows from the assumption that g is f -open that g must be an open map. Therefore, we must have
z0, z1, z2 ∈ P2 with z0, z1 ≤ z2, such g(zi) = ai for i ∈ {0, 1, 2}. But this shows that F ′ fails to validate
the rule (rLC) and consequently that F does not have any one-step extension validating (rLC).

Thus, by Theorem 4.5, we see that the hypersequent calculus obtained by adding the rule (rLC) does
not have the bounded proof property.

However, we know from [3] that adding the so-called communication rule

6In fact it holds more generally for Full Lambek calculus with exchange FLe.
7Rather surprisingly this is also the case for FLe as recently established in [30].
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G | Γ1,Γ
′
1 ⇒ Π G | Γ2,Γ

′
2 ⇒ Π′

(com)
G | Γ1,Γ2 ⇒ Π | Γ′1,Γ′2 ⇒ Π′

to the hypersequent version of LJ yields a hypersequent calculus for the logic LC which preserves
cut-eliminability.

Since this rule is structural we see that whether or not an intuitionistic one-step frame (P1, P0, f)
validates the rule (com) only depends on P1. Consequently, it follows from Theorem 4.9 that the rule
(com) enjoys the bounded proof property and the finite model property.

In fact, it is easy to see that an intuitionistic one-step frame (P1, P0, f) validates the rule (com) iff
P1 is a linear order.

5.2 Calculi for KC

Recall that the logic KC is obtained by adding the axiom ¬p ∨ ¬¬p to IPC. It is well-known that this
is the logic of (finite) directed frames.

Now consider the rule

φ ∧ ψ ⇒ ⊥
(rKC)⇒ ¬φ ∨ ¬ψ

Proposition 5.3. A step frame (P1, P0, f) validates the rule (rKC) iff

∀a, b1, b2 ∈ P1 (b1 ≤ a & b2 ≤ a =⇒ ∃c ∈ P0 (c ≤ f(b1) & c ≤ f(b2)).

Proof. Straightforward.

Consider the one-step frame F = (P1, P0, f) presented as

a3

a1 a2

a0

c3

c1 c2

c0

with f given by ai 7→ ci. Then F is a finite conservative one-step frame validating the rule (rKC). If P2

is a finite poset and g : P2 → P1 is a f -open surjection, then as f is a bijection the f -openness condition
on g implies that g will be an open surjection and therefore, that for a ∈ f−1(a3) we have b, b′ ≤ a such
that g(b) = a1 and g(b′) = a2. But as ↓a1 and ↓a2 are disjoint we see that (P2, P1, g) will not validate
the rule (rKC), and thus F does not have any one-step extension validating (rKC).

By Theorem 4.5, it then immediately follows that the calculus obtained by adding the rule (rKC)
does not have the bounded proof property.

However, we know from [17] that adding the rule

G | Γ,Γ′ ⇒
(lq)

G | Γ⇒ | Γ′ ⇒

to a hypersequent version of LJ yields a hypersequent calculus for the logic KC, which enjoys cut-
elimination.

It is easy to verify that a finite intuitionistic one-step frame (P1, P0, f) validates the rule (lq) iff P1

satisfies
a1, a2 ∈ P1 ∃a ∈ P1 (a ≤ a1 & a ≤ a2).

From this we obtain as an immediate consequence of Theorem 4.9 that the rule (lq) enjoys the
bounded proof property and the finite model property.

17



5.3 Calculi for BWn

Consider the logic BWn obtained by adding the axiom

n∨
i=0

(pi →
∨
j 6=i

pj) (bwn)

to IPC. It is well-known that a Kripke frame F = (W,≤) validates bwn iff

∀w,w0, . . . , wn (w0 ≤ w & . . . & wn ≤ w =⇒ ∃i, j ≤ n (i 6= j & wi ≤ wj)) .

It follows that BWn is the logic of frames F such that every rooted subframe of F does not contain any
anti-chains of more that n nodes.

Proposition 5.4. An intuitionistic one-step frame (P1, P0, f) validates the rule

(rbwn)⇒ bwn

iff
∀a, a0, . . . , an (a0 ≤ a & . . . & an ≤ a =⇒ ∃i, j ≤ n (i 6= j & f(ai) ≤ f(aj))) .

Proof. Straightforward.

We show that adding the rule (rbwn
) does not yield a calculus with the bounded proof property. To

see this let F = (P1, P0, f) be the intuitionistic one-step frame presented as

a

a0 a1 an−1 an
. . .

cn

cn−1

...

c0

c

with f(a) = c and f(ai) = f(ci). This is evidently a finite conservative one-step frame and by the above
proposition F validates (rbwn

). Now if g : P2 → P1 is such that (P2, P1, g) is a finite conservative one-step
frame we must have that g is open since f is an injection. Thus taking b ∈ g−1(a) since ai ≤ g(b) for all
i ∈ {0, . . . , n}, we must have that there exists bi ≤ b, for i ∈ {0, . . . , n} such that g(bi) = ai. But then we
have that g(bi) 6≤ g(bj) when i 6= j and so (P2, P1, f) does not validate (rbwn). We therefore conclude that
the class of finite conservative one-step frames validating (rbwn) does not have the extension property
and therefore by Theorem 4.5 adding the axiom (rbwn

) does not yield a calculus with the bounded proof
property.

Of course as bwn belongs to level P3 this axiom may also be transformed into an equivalent structural
hypersequent rule which preserves cut-eliminability when added to the hypersequent version of LJ see
e.g. [16]. Once again, the bounded proof property for this structural rule easily follows from our results.

5.4 Calculi for stable logics

Recall [4, 7] that an intermediate logic L is stable if for all subdirectly irreducible Heyting algebras A
and B such that A is isomorphic to a bounded sublattice of B we have that B |= L implies that A |= L.
Stable modal logics were defined in [6]. In [11, Thm. 5.3] it was proven that stable modal logics have
multi-conclusion axiomatizations with the bounded proof property. We show that the same is the case
for stable intermediate logics.

Definition 5.5. By the stable canonical hypersequent rule η(A) associated to a finite Heyting algebra A
we shall understand the hypersequent rule S /S with

S :={pa∧b ⇒ pa; pa∧b ⇒ pb; pa, pb ⇒ pa∧b : a, b ∈ A}∪
{pa∨b ⇒ pa, pb; pa ⇒ pa∨b; pb ⇒ pa∨b : a, b ∈ A} ∪ {p⊥ ⇒ ; ⇒ p>}
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and S the hypersequent consisting of the sequents pa ⇒ pb with a and b ranging over all a, b ∈ A such
that a 6≤ b.

Notice that the rule η(A) is obtain by applying invertible rules to the hypersequent rule ρ(A)H
obtained from the stable multi-conclusion rule ρ(A) as defined in [7, Def. 3.1]. Thus from the correspon-
dence between multi-conclusion consequence relations and hypersequent calculi outlined in section 2.2
we obtain the following proposition as an immediate consequence of results of [7].

Proposition 5.6 ([7, Prop. 4.5, Thm. 5.3]). An intermediate logic is stable if and only if it is axiomatized
by stable canonical hypersequent rules.

As hypersequent rules of the form η(A) do not contain any propositional variables having an occurence
under the scope of an implication we obtain that a finite conservative one-step algebra (D0, D1, i) validates
η(A) iff and only D1 does. The following theorem is then an easy consequence of Theorem 4.9.

Proposition 5.7. Let K be a class of finite Heyting algebras. Then the hypersequent calculus determined
by the hypersequent rules (η(A))A∈K has the bounded proof property and the finite model property.

By [4, Thm. 6.13] this provides us with continuum many examples of intermediate logics with hyper-
sequent calculi enjoying the bounded proof property and the finite model property. In particular, LC,
KC and BWn for each n ∈ ω discussed in the previous sections, are all stable logics.

Remark 5.8. We note that using the normal form representation given in [18] it is easy to see that each
formula appearing at level P3 of the substructural hierarchy is provably equivalent (over IPC) to an
ONNILLI-formula [8]. Consequently, all formulas in the class P3 axiomatize stable intermediate logics [8,
Thm. 5].8 We are not aware of any definite examples of a stable logic not axiomatized by P3-axioms. That
is, it is an open question whether or not all stable logics are axiomatizable by P3-axioms. Furthermore,
it is also unclear at the moment how the hypersequent rules obtained from P3-axiomatizations via the
above construction compare with hypersequent rules obtained via Theorem 5.1.

6 Conclusion and future work

We have shown how to transfer the techniques and results of [10, 11] from the setting of modal logic
to the setting of intermediate logics. That is, we have established semantic criteria determining when a
given hypersequent calculi for an intermediate logic enjoys a certain weakly analytic subformula property;
namely the bounded proof property. Analogous to the modal case these criteria are based on extension
properties of structures interpreting the degree 1 fragment of the language of IPC. Furthermore, we have
tested these criteria on a number of examples and shown how to obtain hypersequent calculi with the
bounded proof property for a large class of semantically specified intermediate logics viz. stable logics.

The results obtained in this paper suggest that the methodology introduced in [10] is fairly modular
and that it may successfully be applied to obtain similar results for other non-classical logics. For instance
we expect that in the case of intermediate logics it would also be possible to characterize (hyper)sequent
calculi for which the maximal number of ∨-nestings is bounded. Moreover, we find it worth investigating if
similar results can be obtained for substructural logics. That is, given a connective ∗ and a substructural
logic L such that the ∗-free reduct is locally tabular over L can extension properties of appropriate one-
step structures characterising the bounded proof property with respect to ∗ of (hyper)sequent calculi for
extension of L?

Showing that a given calculus has the bounded proof property and the finite model property via
the semantic characterization of Theorem 4.9 looks an automatizable task: one applies some version
of algorithmic correspondence theory and then looks for the appropriate pattern in order to trasform
one-step frames into Kripke frames. Experience shows that such patterns are classifiable, so that we
feel that the relevant metateory of these logics should effectively be handled with the help of a proof
assistant.

Complexity issues are still to be investigated: although the mere invocation of bounded proof prop-
erty yields heavy (usually non-optimal) complexity bounds, there is still the possibility that semantic

8Insidentaly, each formula appearing at level P2 is provably equivalent to a NNIL-formula and thus P2-formulas axiom-
atize subframe logics [8].
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constructions employed in this paper could give useful search bounds for sufficient classes of ‘one-step’
countermodels.

Finally, we point out yet another open question: is it possible to find a class Q of formulas extending
P3 and an effective procedure, similar to the one found in [18], yielding for each φ ∈ Q a set of (logical)
hypersequent rules Rφ which determine a hypersequent calculus for IPC + φ with the bounded proof
property?
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