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Abstract

This thesis develops the theory of stable canonical formulas and rules for
intuitionistic modal logics and Heyting-Lewis logics. We prove that every in-
tuitionistic modal (or Heyting-Lewis) multi-conclusion consequence relation
is axiomatizable by stable canonical rules. This allows us to assume with-
out loss of generality that rules that we consider are stable canonical rules
in many cases when we study intuitionistic modal logics and Heyting-Lewis
logics, which turns out to be quite useful. In particular, our method gives an
alternative proof of the Blok-Esakia theorem for intutionsitic modal logics,
and helps us find an error in the proof of that theorem for Heyting-Lewis
logics. Besides, using stable canonical rules, we also prove an analogue of the
Dummett-Lemmon conjecture for intutionistic modal multi-conclusion con-
sequence relations which states that an intuitionistic modal multi-conclusion
consequence relation is Kripke complete if and only if its least modal com-
panion is.
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Chapter 1

Introduction

This thesis studies classical modal and intuitionistic modal logics, and con-
nections between these systems. One important aspect of the study of modal
logics is the investigation of lattices of logics. In this area, semantic meth-
ods in general and uniform axiomatization technique in particular, play a
central role.

One such important method was developed by Zakharyaschev in 1980s.
He introduced canonical formulas for superintuitionistic logics1 and proved
that every superintuitionistic logic can be axiomatized by canonical formulas
[40]. The brief idea is as follows: for every formula, using a variant of selec-
tive filtrations, one can obtain a finite set of finite refutation patterns (i.e.,
a finite intuitionistic frame with a set of parameters). Canonical formulas
syntactically encode these finite refutation patterns such that the conjunc-
tion of them is equivalent to the original formula. Zakharyaschev [43, 44]
then also developed canonical formulas for transitive normal modal logics
in a series of papers and proved that every normal extension of K4 can be
axiomatized by modal canonical formulas. Following the same idea, Jeřábek
[27] generalized the result to multi-conclusion rules and showed that every
normal modal multi-conclusion consequence relation over K4 is axiomatiz-
able by canonical rules. It turns out that canonical formulas and rules offer a
uniform method to study superintuitionistic and modal logics, and are thus
quite useful. For example, using canonical formulas, Zakharyaschev proved
the Dummett-Lemmon conjecture stating that a superintuitionistic logic is
Kripke complete iff its least modal companion is [41], and with canonical
rules, Jeřábek gave an alternative proof of decidability of admissibility in
the intuitionistic propositional calculus [27].

1These are extensions of the intuitionistic propositional calculus.

5



However, the mechanisms of developing canonical formulas and rules
are model-theoretic and are quite involved. Bezhanishvili et al.[2, 3, 6]
developed an algebraic approach to canonical formulas and rules via duality.
They showed that from the algebraic perspective, Zakharyaschev’s canonical
formulas for superintuitionistic logics encode the ∨-free reducts of Heyting
algebras which are locally finite, and the so-called closed domain condition
encoded in the formulas corresponds to the preservation of joins of certain
elements [2].

Besides, the algebraic perspective raises a natural question: can we de-
velop canonical formulas and rules based on the →-free reducts of Heyting
algebras which are also locally finite? This idea led to the study of stable
canonical formulas and rules [4, 5, 6, 7], which encode these →-free reducts,
and are alternatives to Zakharyaschev’s canonical formulas and Jeřábek’s
canonical rules. Since stable canonical formulas and rules encode finite refu-
tation patterns constructed by taking filtrations instead of selective filtra-
tions, they can apply to non-transitive logics where Zakharyaschev’s canon-
ical formulas and Jeřábek’s canonical rules do not apply2. In particular,
it was proved in [6] that every normal modal multi-conclusion consequence
relation is axiomatizable by stable canonical rules, which partially answered
the question about developing canonical formulas for extensions of K pro-
posed in [15, Problem 9.5].

Although the research on stable canonical formulas and rules is still in
its infancy, quite some effort has already been put into the extension of
stable canonical formulas and rules to different settings and development of
related theories. For example, in her PhD thesis [26], Illn gave a thorough
analysis of stable logics which are logics axiomatized by certain type of stable
formulas and enjoy the finite model property. Melzer [30] developed the
stable canonical formulas for the lax logic while Cleani [16] generalized stable
canonical formulas and rules to the setting of bi-superintuitionistic logics,
and also used them to prove the Blok-Esakia theorem and the Dummett-
Lemmon conjecture in that setting.

On the other hand, compared to superintuitionisic logics and classical
modal logics, the area of intuitionistic modal logics (i.e. superintuitionistic
logics plus modal operators) is much more involved and less well-understood.
Intuitionistic modal logics were introduced by Fisher Servi [33], whose basic
aim was to define modalities from an intuitionistic point of view. These
logics are applicable to a wide variety of situations, ranging from computer
science [17] to epistemic logics [1]. However, the study of intuitionistic modal

2More details can be found in [26].
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logics is far from an easy combination of the study of classical modal logics
and of superintuitionistic logics. In fact, there still remain some fundamental
philosophical and technical questions. For example, unlike in classical modal
logics, □ and ♢ are not dual to each other in intuitionistic modal logics. A
natural question is: what counts as a reasonable relation between these two
operators? We still do not know much about the finite model property of
intuitionistic modal logics3 when they have both □ and ♢. Thus, this area
may still benefit from some new uniform and effective methods.

Considering the above situation, in this thesis we will develop stable
canonical rules and formulas for intuitionistic modal logics and related sys-
tems. These on the one hand will deepen our understanding of the theory of
stable canonical formulas and rules and verify its wide applicability, and on
the other hand may provide us with a uniform method to study intuitionistic
modal logics and thus pave the way for further study.

In particular, we prove that every intuitionistic modal multi-conclusion
consequence relation is axiomatizable by stable canonical rules, and every
intuitionistic modal logic over IntS4□ is axiomatizable by stable canonical
formulas. Following the main proof strategy of [16], we give an alternative
proof of the Blok-Esakia theorem for intuitionistic modal logics [38] and
generalize it to multi-conclusion consequence relations, which states that
the lattice of intuitionistic modal multi-conclusion consequence relations is
isomorphic to the lattice of extensions of the bimodal multi-conclusion con-
sequence relation Grz⊗K⊕MixR. By adjusting the proof strategy of [16],
we give a proof of the Dummett-Lemmon conjecture for intuitionistic modal
multi-conclusion consequence relations stating that an intuitionistic modal
multi-conclusion consequence relation is Kripke complete if and only if its
least modal companion is, which, as far as we know, is a new result.4

Besides, we also develop stable canonical rules for Heyting-Lewis logics
which are superintuitionistic logics with a weak implication and can be seen
as an extension of intuitionistic modal logics. However, our strategy for
proving the Blok-Esakia theorem does not go so smoothly in this setting. In
particular, we identify a statement which is equivalent to the Blok-Esakia
theorem, whose correctness is unclear.5 Therefore, right now whether the
Blok-Esakia theorem holds for intuitionistic modal logics remains an open

3See [34] for one example.
4The proof in this thesis is slightly different from that of [16], which contains a small

gap. The restriction of our proof to the setting of superintuitionistic logics also fills this
gap.

5In fact, we have reasons to believe that it may not hold.
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problem.6

To summarise, our main contributions are as follows:

• Development of the theory of stable canonical rules and formulas for
intuitionistic modal logics.

• Development of the theory of stable canonical rules for Heyting-Lewis
logics.

• An alternative proof of the Blok-Esakia theorem for intuitionistic
modal logics [38] and a generalization of it to multi-conclusion con-
sequence relations.

• A proof of the Dummett-Lemmon conjecture for intuitionistic modal
multi-conclusion consequence relations.

• Identification of a statement equivalent to the Blok-Esakia theorem for
Heyting-Lewis logics, which leads to a gap in the proof of this theorem
given in [23].

The thesis is structured as follows. Chapter 2 is devoted to general
preliminaries which are needed thoroughout the thesis. In Chapter 3, we
develop stable canonical formulas and rules for intuitionistic modal logics.
Using duality theory, a dual description of stable canonical rules for intu-
itionistic modal logics is also given. Chapter 4 is about the application
of stable canonical rules for intuitionistic modal logics. We first introduce
the Gödel translation for intuitionistic modal logic, and then use our rules
to prove the Blok-Esakia theorem. Then with the Blok-Esakia theorem,
we prove the Dummett-Lemmon conjecture for intuitionistic modal multi-
conclusion consequence relations. In Chapter 5, we develop stable canonical
rules for Heyting-Lewis logics and then use them to point out an error in
the proof of the corresponding Blok-Esakia theorem. In the last chapter, we
conclude and discuss possible directions for future work.

6Although the Blok-Esakia theorem was claimed to hold for intuitionistic modal logic
in [23], we found a gap in the proof of this theorem [23, Lem. 4.18]. So far, this gap
remains unfilled, which has been confirmed by the authors in private communication.
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Chapter 2

Preliminaries

In this chapter, we present basic notations, definitions and facts that will be
used throughout the thesis. We assume familiarity with standard set-theore-
tic notations, elementary lattice theory and some fundamental concepts from
topology and first-order logic. Familiarity with the categorical notion of
duality is also expected but is not necessary.

2.1 Ordered sets

We begin with the following notations and definitions related to ordered
sets.

Definition 2.1.1 (Maximal and passive elements). Let X be a set, R be
a transitive binary relation on X and U ⊆ X. We say that x ∈ U is an
R-maximal element of U if for any y ∈ U , Rxy implies that x = y. We
define maxR(U) as the set of all R-maximal elements of U .

An element x ∈ U is called R-passive in U if for all y ∈ X \ U(or Ū),
if Rxy, then there is no z ∈ U such that Ryz. The set of all R-passive
elements of U is denoted as pasR(U).

Definition 2.1.2. For any reflexive and transitive (binary) relation R on a
set X, a subset C ⊆ X is an R-cluster if it is an equivalence class under the
relation ∽R where x ∽R y iff xRy and yRx.

An R-cluster is proper if it contains more than one element.
For any U ⊆ X, U is said to cut an R-cluster C if U ∩ C ̸= ∅ and

C \ U ̸= ∅.

Remark 2.1.3. As usual, for any equivalence relation R on a set X, we use
[x] (or [x]R) to denote the equivalence class of x where x ∈ X.
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By definition, U does not cut an R-cluster C if it either contains C or is
disjoint from C.

Definition 2.1.4 (Upsets and downsets). Let (A,≤) be a poset (partially
ordered set) and let B ⊆ A. We call B upwards closed or an upset if x ∈ B,
y ∈ A and x ≤ y imply y ∈ B. If C ⊆ A, we write ↑C for the least upset
that contains C, namely {y ∈ A | ∃x ∈ C : x ≤ y}. And we use Up(A) to
denote the set of all upsets of (A,≤).

Similarly, we call B downwards closed or a downset if x ∈ B, y ∈ A and
y ≤ x imply y ∈ B. If C ⊆ A, we define ↓C = {y ∈ A | ∃x ∈ C : y ≤ x}.

2.2 Universal algebra

In this section we recall some basic definitions and results from universal
algebra, all of which can be found in [12].

2.2.1 Algebras and operations

We first recall the definition of algebras and some operations on them.

Definition 2.2.1 (Signature). Let F be a set and τ : F → N be a map,
we call τ a signature or language, and we call F the corresponding set of
function symbols. For f ∈ F , let τ(f) be the arity of f . We call f a constant
symbol, if τ(f) = 0.

Definition 2.2.2 (Algebra). Let A be a non-empty set, τ : F → N be
a signature and F = {fA | f ∈ F , fA : Aτ(f) → A}, we call (A,F ) an
algebra in the signature τ (or simply τ -algebra). If the context is clear, we
will denote by A both the algebra and the underlying set (also called the
carrier).

Remark 2.2.3. For convenience, we will use the same notations for function
symbols and their corresponding interpretations.

Let (A,F ) be a τ -algebra. Then (A,F ′) is called the reduct of (A,F ) if
F ′ ⊆ F . Because of the above remark, we may also write a reduct of (A,F )
as (A,F )|τ ′ or simply A|τ ′ where τ ′ ⊆ τ .

Definition 2.2.4 (Homomorphism). Let A and B be algebras in a signature
τ : F → N. A function g : A → B is a homomorphism if for every f ∈ F
with n := τ(f) and every a1, . . . , an ∈ A, we have:

g(fA(a1, . . . , an)) = fB(g(a1), . . . , g(an)).
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B is a homomorphic image of A if there exists a surjective homomorphism
from A to B.

Definition 2.2.5 (Embedding and isomorphism). Let f : A → B be a
homomorphism, f is called an embedding if f is injective. If, in addition,
f is surjective, then it is an isomorphism and we say that A and B are
isomorphic.

Definition 2.2.6 (Congruence). Let A be a τ -algebra, an equivalence re-
lation θ ⊆ A × A is a congruence if for every f ∈ F with n := τ(f), we
have:

(a1, b1) ∈ θ, . . . , (an, bn) ∈ θ =⇒ (f(a1, . . . , an), f(b1, . . . , bn)) ∈ θ,

for all a1, . . . , an, b1, . . . , bn ∈ A.

Definition 2.2.7 (Quotient). Let A be a τ -algebra and let θ be a congruence
on A. Let B be the τ -algebra with an underlying set A/θ := {[a]θ | a ∈ A}
such that for every f ∈ F with n := τ(f) and every a1, . . . , an ∈ A:

fA/θ(a1, . . . , an) = [fA(a1, . . . , an)]θ.

We denote B by A/θ and call it the quotient algebra of A by θ.

Remark 2.2.8. By the definition of congruence, the operations in the quotient
are well defined.

Definition 2.2.9 (Subalgebra). Let A and B be τ -algebras such that A ⊆
B. If the inclusion function of A into B is a homomorphism, then A is a
subalgebra of B.

Definition 2.2.10 (Direct product). Let {Ai | i ∈ I} be a set of τ -algebras.
Let B be the τ -algebra with an underlying set Πi∈IAi such that for every
f ∈ F with n := τ(f), every a1, . . . , an ∈ Πi∈IAi and i ∈ I, we have:

fΠi∈IAi(a1, . . . , an)(i) = fAi(a1(i), . . . , an(i)).

We denote B by Πi∈IAi and call it the direct product of {Ai | i ∈ I}.

In order to define the next operation on algebras, we need the notion of
an ultrafilter.

Definition 2.2.11 (Filter and ultrafilter). Let I be a set and let F ⊆ P(I)
be non-empty. F is called a filter on I if the following hold:

11



1. For any A,B ∈ F , we have that A ∩B ∈ F .

2. F is an upset in (P(I),⊆).

If F ̸= P(I), it is proper. If F is maximal with this property, it is an
ultrafilter.

Now we can define the last operation on algebras:

Definition 2.2.12 (Ultraproduct). Let {Ai | i ∈ I} be a set of τ -algebras
and U be an ultrafilter on I. Let θU be the congruence on Πi∈IAi defined
by:

(a, b) ∈ θU ⇐⇒ {i ∈ I | a(i) = b(i)} ∈ U.

Πi∈IAi/θU is called the ultraproduct of {Ai | i ∈ I} on U .

Let K be a class of τ -algebras, we then introduce the following class
operators based on the operations we have defined:

I(K) := {A | A is isomorhpic to some B ∈ K};
H(K) := {A | A is a homomorphic image of some B ∈ K};
S(K) := I({A | A is a subalgebra of some B ∈ K});
P(K) := I({A | A is a direct product of some {Bi}i∈I ⊆ K});

PU (K) := I({A | A is an ultraproduct of some {Bi}i∈I ⊆ K}).

2.2.2 Varieties and universal classes

We have seen that an algebra is a set with some functions. Thus, it is also
a model in first-order logic. In particular, we can evaluate formulas on an
algebra in the obvious way. It turns out that there is a close connection be-
tween the syntactic types of the defining formulas and the closure conditions
on the algebras validating them.

Definition 2.2.13 (Universal class). Let τ be an arbitrary signature. A
class of τ -algebras is a universal class if it is the class of models of some set
of universal sentences1.

If K is a class of τ -algebra, we write Uni(K) for the least universal class
that contains K. Uni(K) is also called the universal class generated by K.

The following is a useful characterisation of Uni in terms of the operators
from the previous section.

1“Universal” in the sense of the one defined in first-order logic. See [18, Def. 5.6].
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Theorem 2.2.14. [12, Thm. 2.20] Universal classes are closed under S
and Pu. Furthermore:

Uni(K) = SPu(K).

Another interesting kind of classes of algebras in this thesis is called
variety.

Definition 2.2.15 (Variety). Let τ be an arbitrary signature, a class of
τ -algebras V is a variety if it is closed under H, S and P.

Let K be a class of τ -algebras, we write V ar(K) for the least variety
which contains K. V ar(K) is also called the variety generated by K.

The characterisation of V ar in terms of the operators from the previous
section is given as follows:

Theorem 2.2.16. [12, Thm. 9.5] Let τ be an arbitrary signature and Let
K be a class of τ -algebras. Then V ar(K) = HSP(K).

Similarly to universal classes, varieties are defined by special formulas
called equations.

Definition 2.2.17 (Equation). A first-order sentence φ is called an equation
if it is of the form σ = τ , where σ and τ are terms.

This following result is called Birkhoff’s Theorem.

Theorem 2.2.18. [12, Thm. 11.9] Let τ be an arbitrary signature and Let
V be a class of τ -algebras. Then V is a variety if and only if V is definable
by equations, namely there is a set of equations Φ such that:

V = {A is an algebra in τ | A ⊨ Φ}.

Another useful result which is also referred to as Birkhoff’s Theorem in
many textbooks states that every variety is generated by a certain type of
algebras called subdirectly irreducible algebras.

Definition 2.2.19 (Subdirect embedding and product). An embedding
A → Πi∈IAi is called subdirect if for every i ∈ I, we have (πi ◦ f)[A] = Ai.
Here πi denotes the projection onto the i-th coordinate.

If A ≤ Πi∈IAi and the inclusion function is a subdirect embedding, we
call A a subdirect product of {Ai | i ∈ I}.

Definition 2.2.20 (Subdirect irreducibility). An algebra A is called subdi-
rectly irreducible (s.i for short) if for every subdirect embedding f : A →
Πi∈IAi, there exists i ∈ I such that (πi ◦ f) : A→ Ai is an isomorphism.
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Theorem 2.2.21. [12, Cor. 9.7] Every variety V is generated by its subdi-
rectly irreducible members.

Finally, we define the property called locally finiteness for varieties,
which is closely related to the finite model property of logics.

Definition 2.2.22 (finitely generated). Let A be an algebra and X ⊆ A,
the least subalgebra of A containing X is called the subalgebra generated by
X.

An algebra A is n-generated, where n ∈ N, if there exists a set B ⊆ A
with |B| ≤ n that generates A. If A is n-generated for some n ∈ N, A is
said to be finitely generated.

Definition 2.2.23 (Locally finite). A variety V is locally finite if every
finitely generated algebra in V is finite.

2.3 Deductive systems

In this section, we present two types of deductive systems which will be
explored throughout the thesis. The following presentation is mainly based
on [25].

Definition 2.3.1. The set of formulas in signature v over a set of variable X
(denoted by Formv(X)) is the least set containingX such that for any f ∈ v,
we have that φ1, ..., φn ∈ Formv(X) implies that f(φ1, ..., φn) ∈ Formv(X)
where f is of arity n.

Let Prop be a fixed countably infinite set of variables, we write Formv

for Formv(Prop). A substitution s is map from Prop to Formv, which can
be recursively extended to a map s̄ from Formv to Formv in the obvious
way.

First, we define what a logic is.

Definition 2.3.2. A logic over Formv is a set L ⊆ Formv such that if
φ ∈ L, then s̄(φ) ∈ L for every substitution s.

Remark 2.3.3. By the above definition, classical propositional logic is a logic
over Form∧,∨,¬.

Definition 2.3.4 (Multi-conclusion rule). A multi-conclusion rule in signa-
ture v over a set of variable X is a pair Γ/∆ of finite subsets of Formv(X).

Remark 2.3.5. In case ∆ = {ψ}, we simply write Γ/ψ for Γ/∆, similarly if
Γ = {φ}.
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We write Rulv(X) for the set of all multi-conclusion rules in signature
v over the set of variable X, and we let Rulv stand for Rulv(Prop).

As logics are defined over formulas, multi-conclusion consequence rela-
tions are defined over multi-conclusion rules.

Definition 2.3.6 (Multi-conclusion consequence relation). A multi-
conclusion consequence relation over Rulv is a set S ⊆ Rulv such that the
following hold:

• If Γ/∆ ∈ S, then s̄[Γ]/s̄[∆] ∈ S for all substitutions s.

• φ/φ ∈ S.

• If Γ/∆ ∈ S, then Γ; Γ′/∆;∆′ ∈ S for any finite sets of formulas Γ′ and
∆′.

• Γ/∆′;φ ∈ S and Γ;φ/∆ ∈ S, then Γ/∆ ∈ S (Cut).

If L is a logic and ∆ is a set of formulas, we write L⊕∆ for the least logic
extending L that contains ∆, and say that the logic is axiomatized over L
by ∆. Similarly we define S ⊕Σ where S is a multi-conclusion consequence
relation and Σ is a set of multi-conclusion rules.

We then define the interpretation of formulas and rules over algebras in
the same signature. Let A be a v-algebra and A be its carrier, a valuation
on A is a map V from Prop to A, which can be recursively extended to a
map V̄ from Formv to A in the most obvious way.

In the following, every algebra we consider is assumed to have the top
element (or the largest element, denoted by 1). This will make the following
definition of validity simpler, and will not cause any problem as we only
consider such algebras in this thesis. For a more general definition of validity
in algebraic semantics, one can consult [28].

Definition 2.3.7 (Validity). A rule Γ/∆ in signature v is valid on a v-
algebra A if for any valuation V on A, if V̄ (γ) = 1 for any γ ∈ Γ, then
V̄ (δ) = 1 for some δ ∈ ∆ where 1 is the top element of A. We denote this
as A ⊨ Γ/∆.

A formula φ in signature v is valid on a v-algebra A if the rule /φ is
valid on A, and we denote this by A ⊨ φ.

Remark 2.3.8. With the above definition, the notion of validity of a rule
Γ/∆ on a class K of v-algebras and the notion of validity of a set of rules S
on a v-algebra A are then defined as usual, and we denote them as K ⊨ Γ/∆
and A ⊨ S respectively.
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Then for any logic L, we say that L is complete w.r.t a class of algebras
K if K ⊨ φ implies that φ ∈ L. Similarly we define the completeness of a
multi-conclusion consequence relation.

Finally, we fix two useful notations. Let Av be the class of all v-algebras
and S be a logic or a multi-conclusion consequence relation, we write Alg(S)
for the set of all v-algebras which validate S, i.e., Alg(S) = {A ∈ Av | A ⊨
S}. Conversely, if K is a set of v-algebras, we define Ru(K) = {Γ/∆ ∈
Rulv | K ⊨ Γ/∆} and Th(K) = {φ ∈ Formv | K ⊨ φ}.

2.4 Bimodal logics

2.4.1 Deductive systems for bimodal logics

We have presented the general theory of universal algebra and deductive
systems. Now we can apply them in more concrete settings. In this sec-
tion, we introduce bimodal deductive systems. For convenience, sometimes
bimodal logics just mean bimodal deductive systems when whether they are
logics or multi-conclusion consequence relations does not matter (the title
of this section is an example).

The bimodal signature bi = {∧,∨,¬,⊤,⊥,□I ,□M}, and the set of bi-
modal formulas Formbi is then defined recursively as follows:

φ ::= p | ⊤ | ⊥ | φ ∧ φ | φ ∨ φ | ¬φ | □Iφ | □Mφ

As usual, φ→ ψ stands for ¬φ ∨ ψ for any bimodal formulas φ and ψ.

Remark 2.4.1. The subscript I means “intuitionistic” while the subscript
M means “modal”. The reason for using these subscripts will only become
clear in Chapter 4. Right now, we use them simply as a way to distinguish
these two operators.

Definition 2.4.2. A logic L over Formbi is a bimodal logic if the following
hold:

• CPC ⊆ L

• □I(φ∧ψ) ↔ (□Iφ∧□Iψ) ∈ L and □M (φ∧ψ) ↔ (□Mφ∧□Mψ) ∈ L

• φ → ψ ∈ L implies □Iφ → □Iψ ∈ L and φ → ψ ∈ L implies
□Mφ→ □Mψ ∈ L (Reg)

• φ ∈ L implies □Iφ ∈ L and φ ∈ L implies □Mφ ∈ L (Nec)
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• φ→ ψ and φ ∈ L implies ψ ∈ L (MP)

We denote the least bimodal logic by K⊗K. This notation is justified
as if restricted to the signatures {∧,∨,¬,⊤,⊥,□I} or {∧,∨,¬,⊤,⊥,□M}2,
the least bimodal logic is just the least normal modal logic K. Then S4⊗K
is K⊗K⊕(□Ip→ p)⊕(□Ip→ □I□Ip) and Grz⊗K is S4⊗K⊕□I(□I(p→
□Ip) → p) → p3.

Then we introduce bimodal multi-conclusion consequence relations as
follows:

Definition 2.4.3. A bimodal multi-conclusion consequence relation is a
multi-conclusion consequence relation M over Rulbi satisfying the follow-
ing conditions:

• /φ ∈M whenever φ ∈ K⊗K

• φ/□Iφ ∈M and φ/□Mφ ∈M

• φ→ ψ,φ/ψ ∈M

Elements in Rulbi are called bimodal multi-conclusion rules. If L is a
bimodal logic, then NExt(L) is the lattice of all bimodal logics extending L
with⊕ as join and intersection as meet. Similarly we defineNExt(M) where
M is a bimodal multi-conclusion consequence relation. Clearly, for any
L ∈ NExt(K ⊗K), there is a least bimodal multi-conclusion consequence
relation LR containing all /φ for φ ∈ L. In particular, we denote the one
corresponding to K ⊗ K as K ⊗ KR (the least bimodal multi-conclusion
consequence relation) and the one corresponding to S4 ⊗ K as S4 ⊗ KR.
Conversely, for any M ∈ NExt(K ⊗K), Taut(M) = {φ ∈ Formbi | /φ ∈
M} is a bimodal logic.

The following proposition allows us to transfer results about multi-
conclusion consequence relations to results about logics. The proof is rou-
tine.

Proposition 2.4.4. The mappings (−)R and Taut(−) are mutually inverse
complete lattice isomorphisms between NExt(K ⊗ K) and the sublattice
of NExt(K ⊗ KR) consisting of all bimodal multi-conclusion consequence
relations M such that Taut(M)R =M .

2In either case, we would prefer to use simply □ instead of □I or □M .
3When restricted to the signature {∧,∨,¬,⊤,⊥,□I}, S4⊗K is just S4, and Grz⊗K

is just Grz. See [15] for more information about these normal modal logics.
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2.4.2 Algebraic semantics for bimodal logics

Now we introduce the algebraic semantics for bimodal logics.

Definition 2.4.5. A modal algebra is a tuple A = (A,□) where A is a
Boolean algebra, □1 = 1 and □(a ∧ b) = □a ∧□b for any a, b ∈ A.

A K ⊗K-algebra (or bimodal algebra) is a tuple A = (A,□I ,□M ) where
(A,□I) and (A,□M ) are both modal algebras.

For any bimodal logic L, we call a bimodal algebra an L-algebra if it
validates L.

Remark 2.4.6. In particular, a bimodal algebra A = (A,□I ,□M ) is an S4⊗
K-algebra if □Ia ≤ a and □Ia ≤ □I□Ia for any a ∈ A (or equivalently,
□Ia→ a = 1 and □Ia→ □I□Ia = 1). A bimodal algebra A = (A,□I ,□M )
is a Grz ⊗K-algebra if □I(□I(a→ □Ia) → a) ≤ a for any a ∈ A4.

LetBMA be the class of all bimodal algebras, by Theorem 2.2.18, BMA
is a variety. Let Var(BMA) and Uni(BMA) denote the lattice of subva-
rieties and the lattice of universal subclasses of BMA respectively, we have
the following result as usual. It says that there is a correspondence between
varieties and logics, and a correspondence between universal classes and
multi-conclusion consequence relations. Proofs of similar results for modal
algebras and (unary) normal modal logics can be found in [8, Thm. 2.5] and
[15, Thm. 7.56].

Theorem 2.4.7. The following maps form pairs of mutually inverse iso-
morphisms:

• Alg: NExt(K ⊗ K) → Var(BMA) and Th: Var(BMA) →
NExt(K⊗K)

• Alg: NExt(K ⊗ KR) → Uni(BMA) and Ru: Uni(BMA) →
NExt(K⊗KR)

Corollary 2.4.8. Every bimodal logic (resp. bimodal multi-conclusion con-
sequence relation) is complete with respect to some variety (resp. universal
class) of bimodal algebras.

4It is well known that every Grz-algebra is an S4-algebra as Grz is an extension of
S4. See [15].
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2.5 Intuitionistic modal logics

In this section, we introduce intuitionistic modal logics. Again, intuitionistic
modal logics may sometimes just mean intuitionistic modal deductive sys-
tems when whether they are logics or multi-conclusion consequence relations
does not matter (the title of this section is an example).

2.5.1 Deductive systems for intuitionistic modal logics

The intuitionistic modal signature i□ = {∧,∨,→,⊤,⊥,□}, and the set of
intuitionistic modal formulas Formi□ is defined recursively as follows:

φ ::= p | ⊤ | ⊥ | φ ∧ φ | φ ∨ φ | φ→ φ | □φ

φ↔ ψ stands for (φ→ ψ) ∧ (ψ → φ).

Let IPC denote the intuitionistic propositional calculus, intuitionistic
modal logics are defined as follows:

Definition 2.5.1. A logic L over Formi□ is an intuitionistic modal logic if
the following hold:

• IPC ⊆ L

• □(φ ∧ ψ) ↔ (□φ ∧□ψ) ∈ L

• φ→ ψ ∈ L implies □φ→ □ψ ∈ L (Reg)

• φ ∈ L implies □φ ∈ L (Nec)

• φ→ ψ,φ ∈ L implies ψ ∈ L (MP)

We denote the least intuitionistic modal logic by IntK□, and IntS4□ is
just IntK□⊕(□p→ p)⊕ (□p→ □□p).

Definition 2.5.2. An intuitionistic modal multi-conclusion consequence re-
lation is a multi-conclusion consequence relation M over Ruli□ satisfying
the following conditions:

• /φ ∈M whenever φ ∈ IntK□

• φ/□φ ∈M

• φ→ ψ,φ/ψ ∈M

19



Elements in Ruli□ are called intuitionistic modal multi-conclusion rules.
We then define the notations NExt(L), NExt(M), IntKR

□ and IntS4R□
where L is an intuitionistic logic and M is an intuitionistic multi-conclusion
consequence relation in the same way as we did for bimodal logics and
bimodal multi-conclusion consequence relations.

We have the following counterpart to Proposition 2.4.4 as well.

Proposition 2.5.3. The mappings (−)R and Taut(−) are mutually inverse
complete lattice isomorphisms between NExt(IntK□) and the sublattice of
NExt(IntKR

□) consisting of all intuitionistic modal multi-conclusion conse-
quence relations M such that Taut(M)R =M .

2.5.2 Algebraic semantics for intuitionistic modal logics

The algebraic semantics for intuitionistic modal logics is given by so-called
modal Heyting algebras. We start with the definition of Heyting algebras.

Definition 2.5.4. A tuple A = (A,∧,∨,→, 0, 1) is a Heyting algebra if
(A,∧,∨, 0, 1) is a bounded distributive lattice such that for any a, b, c ∈ A,
c ∧ a ≤ b iff c ≤ a→ b.

Definition 2.5.5. A modal Heyting algebra is a tuple A = (A,∧,∨,→
, 0, 1,□) where (A,∧,∨,→, 0, 1) is a Heyting algebra such that □1 = 1 and
□(a ∧ b) = □a ∧□b for any a, b ∈ A.

A modal Heyting algebra is an interior Heyting algebra if □a ≤ a and
□a ≤ □□a for any a ∈ A (or equivalently, □a→ a = 1 and □a→ □□a = 1).

Obviously, for any modal Heyting algebra A, we have that A validates
IntS4□ iff A is an interior Heyting algebra. For simplicity, we will write
A = (A,□) for A = (A,∧,∨,→, 0, 1,□) where A is assumed to be a Heyting
algebra.

LetMHA be the class of all modal Heyting algebras, by Theorem 2.2.18,
MHA is a variety. Let Var(MHA) and Uni(MHA) denote the lattice of
subvarieties and the lattice of universal subclasses of MHA respectively.
Then we have the following results. Proofs of similar results for Heyting
algebras and superintuitionistic logics can be found in [15, Thm. 7.56] and
[27, Thm. 2.2].

Theorem 2.5.6. The following maps form pairs of mutually inverse iso-
morphisms:

• Alg: NExt(IntK□) → Var(MHA) and Th: Var(MHA) →
NExt(IntK□)
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• Alg: NExt(IntKR
□) → Uni(MHA) and Ru: Uni(MHA) →

NExt(IntKR
□)

Corollary 2.5.7. Every intuitionistic modal logic (resp. intuitionistic
modal multi-conclusion consequence relation) is complete with respect to
some variety (resp. universal class) of modal Heyting algebras.

2.6 Duality

In the last section of this chapter, we recall dual descriptions of bounded
distributive lattices and Heyting algebras, which will be frequently used in
this thesis.

We start with Priestley duality for bounded distributive lattices, for
which we refer the reader to [32]. We first recall the definition of prime
filters.

Definition 2.6.1. Let A be a lattice, a non-empty subset X ⊆ A is a prime
filter if it satisfies the following conditions:

1. X ̸= A.

2. For any a ∈ A, if a ≤ b and a ∈ X, then b ∈ X (upward-closed).

3. For any a, b ∈ X, a ∧ b ∈ X.

4. For any a, b ∈ A, if a ∨ b ∈ X, then either a ∈ X or b ∈ X.

Definition 2.6.2 (Priestley space). A tuple (X,≤) (where ≤ is a partial
order onX) is a Priestley space ifX is a compact space and for any x, y ∈ X,
if x ̸≤ y, then there is clopen (closed and open) upset U ofX such that x ∈ U
while y ̸∈ U .

Definition 2.6.3 (Priestley morphism). For Priestley spaces (X,≤) and
(Y,≤), a map f : X → Y is a Priestley morphism if f is continuous and
order-preserving.

Let BDL be the category of bounded distributive lattices with bounded
lattice homomorphisms and PS be the category of Priestley spaces with
Priestley morphisms, the functors (−)∗ : BDL → PS and (−)∗ : PS →
BDL that establish Priestley duality are constructed as follows. For a
bounded distributive lattice A, its dual A∗ is the set of all prime filters
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XA of A with ⊆ as the order and {β(a) | a ∈ A} ∪ {XA \ β(a)5 | a ∈ A}
where β(a) = {x ∈ XA | a ∈ x} as the basis. For a bounded lattice homo-
morphism h : A → B, its dual h∗ is given by h−1. For a Priestley space
X = (X,≤), its dual X ∗ is the bounded distributive lattice of clopen upsets
of X with intersection as meet and union as join. For a Priestley morphism
f : X → Y , its dual f∗ : Y ∗ → X∗ is given by f−1.

We summarise some useful details about Priestley duality in the following
theorem.

Theorem 2.6.4. BDL is dually equivalent to PS, which is witnessed by
(−)∗ and (−)∗. In particular, for any bounded distributive lattice A, A ∼=
(A∗)

∗ witnessed by β where β(a) = {x ∈ A∗ | a ∈ x}, and for any Priestley
space X , we have X ∼= (X ∗)∗ witnessed by ϵ where ϵ(x) = {U ∈ X∗ | x ∈ U}.

The dual description of Heyting algebras is then given by Esakia duality.
The reader may refer to [19] for more details.

Definition 2.6.5 (Esakia space). A Priestley space (X,≤) is an Esakia
space if for any clopen set U of X, we have that ↓U is clopen.

Remark 2.6.6. Using an easy argument about general topology, one can
easily check that every clopen subset of an Esakia space is of the form⋃

1≤i≤n(Ui \ Vi) where n ∈ N and Ui, Vi’s are clopen upsets.

For any topological space X, we will write Clop(X) for the set of all
clopen subsets of X.

Definition 2.6.7. For Esakia spaces (X,≤) and (Y,≤), f : X → Y is an
Esakia morphism if it is continuous, order-preserving and for any x ∈ X,
f(x) ≤ z implies that there is x ≤ y such that f(y) = z.

Let ES be the category of Esakia spaces with Esakia morphisms andHA
be the category of Heyting algebras with Heyting algebra homomorphisms,
the functors (−)∗ : HA → ES and (−)∗ : ES → HA that establish Esakia
duality are constructed as follows: (−)∗ is the same as above. For an Esakia
space X = (X,≤), its dual X ∗ is the Heyting algebra of clopen upsets of X
where U → V = X \ ↓(U \ V ). And f∗ = f−1 for any Esakia morphism f .
In particular, we have the following theorem.

Theorem 2.6.8. HA is dually equivalent to ES, which is witnessed by (−)∗

and (−)∗. In particular, for any Heyting algebra A, A ∼= (A∗)
∗ witnessed by

β where β(a) = {x ∈ A∗ | a ∈ x}, and for any Esakia space X , we have
X ∼= (X ∗)∗ witnessed by ϵ where ϵ(x) = {U ∈ X∗ | x ∈ U}.

5We may also denote the set-theoretic complement as δa for convenience.
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We finish this section with some useful results about modal spaces.

Definition 2.6.9 (Stone space). A topological space is a Stone space if it
is a compact Hausdorff space which has a basis of clopen sets.

Remark 2.6.10. The category of Boolean algebras with Boolean algebra ho-
momorphisms is dually equivalent to the category of Stone spaces with con-
tinuous maps. This duality is called Stone duality which is not considered
independently in this thesis. One only needs to note that for any Boolean
algebra A, its dual Stone space is simply its dual Esakia space without the
order.

Definition 2.6.11 (Modal space). A modal space (X,R) consists of a Stone
space X and a binary relation R on X such that the following two hold:

• For any x ∈ X, the set R[x] = {y ∈ X | xRy} is closed.

• For any clopen subset U of X, R−1[U ] = {x ∈ X | xRy for some y ∈
U} is clopen.

Remark 2.6.12. The category of modal spaces with their “corresponding
maps” is dually equivalent to the category of modal algebas with their ho-
momorphisms. We will only spell out some details about this duality (in
fact, for bimodal spaces and bimodal algebras) in Chapter 4 when we need
it.

Because of the duality just mentioned, it is not surprising that we can
define a valuation on a modal space for unary modal logic6: a valuation on
a modal space (X,R) is a map V : Prop→ Clop(X) which can be extended
to all modal formulas in the standard way 7. For any modal formula φ, we
write (X,R) ⊨ φ if for any valuation V , V (φ) = X. Then for any unary
modal logic L, we call a modal space (X,R) an L-space if for any φ ∈ L, we
have that (X,R) ⊨ φ. In particular, an S4-space is a modal space (X,R)
where R is reflexive and transitive.

We recall the following useful results about Grz-spaces, whose proofs
can be found in [21, Ch. 3].

Theorem 2.6.13. For any Grz-space (X,R) and U ∈ Clop(X), the follow-
ing hold:

• maxR(U) is closed.

6They are simply bimodal logics restricted to one modal operator.
7Usually people still write V for the extended map.
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• maxR(U) ⊆ pasR(U).

• maxR(U) does not cut any R-cluster.

This concludes our general preliminaries. We can now start developing
the theory of stable canonical rules for intuitionistic modal logics.
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Chapter 3

Stable canonical rules for
intuitionistic modal logics

The purpose of this chapter is to develop stable canonical rules and formu-
las for intuitionistic modal logics. We begin by introducing stable canonical
rules and proving that every intuitionistic modal multi-conclusion conse-
quence relation is axiomatizable by stable canonical rules. Next, focusing
on intuitionistic modal logics over IntS4□, we proceed to showing how to
turn stable canonical rules into stable canonical formulas. In particular,
we prove that every one of such logics is axiomatizable by stable canonical
formulas over IntS4□. Finally, we close this chapter by a dual (geometric)
characterization of our stable canonical rules, which will be quite useful in
their applications.

3.1 Stable canonical rules for intuitionistic modal
multi-conclusion consequence relations

We start with the definition of stable maps.

Definition 3.1.1. Let A = (A,□) and B = (B,□) be modal Heyting
algebras, and let h : A → B be a bounded lattice homomorphism. We say
that h is stable if for any a ∈ A, we have h(□a) ≤ □h(a).

This definition is the analogue to the one given in [6, Def. 3.1] in the
setting of classical modal logics.

Definition 3.1.2. Let A = (A,□), B = (B,□) be modal Heyting algebras,
D→ ⊆ A2 and D□ ⊆ A. A bounded lattice embedding h : A→ B satisfies
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• the closed domain condition (CDC for short) for D→ if h(a → b) =
h(a) → h(b) for any (a, b) ∈ D→.

• the closed domain condition (CDC for short) for D□ if h(□a) = □h(a)
for any a ∈ D□.

The following proposition relates each intuitionistic modal multi-
conclusion rule with finitely many finite refutation patterns by stable
bounded lattice embeddings which satisfy CDC for some parameters.

Proposition 3.1.3. For each intuitionistic modal multi-conclusion rule
Γ/∆, there exist (A1, D

→
1 , D

□
1 ) , ..., (An, D

→
n , D

□
n ) such that each Ai is a

finite interior Heyting algebra, D→
i ⊆ A2

i and D□
i ⊆ Ai, and for each inte-

rior Heyting algebra B = (B,□), we have that B ̸⊨ Γ/∆ iff there is i ≤ n
and a stable bounded lattice embedding h : Ai → B satisfying CDC for D→

i

and D□
i .

Proof. Let Γ/∆ be an arbitrary intuitionistic modal multi-conclusion rule.
If Γ/∆ ∈ IntS4R□, take n = 0. Suppose Γ/∆ ̸∈ IntS4R□, let Θ be the set
of all subformulas of the formulas in Γ ∪ ∆. Clearly Θ is finite. Assume
|Θ| = m, since the variety of bounded distributive lattices is locally finite,
there are only finitely many pairs (A, D→, D□) satisfying the following two
conditions up to isomorphism:

i) A = (A,□) is a finite interior Heyting algebra such that A|{∧,∨,1,0} is
at most m-generated as a bounded distributive lattice and A ̸⊨ Γ/∆.

ii) D→ = {(V (φ), V (ψ)) | φ → ψ ∈ Θ} and D□ = {V (ψ) | □ψ ∈ Θ}
where V is a valuation on A witnessing A ̸⊨ Γ/∆.

Let (A1, D
→
1 , D

□
1 ), ..., (An, D

→
n , D

□
n ) be the enumeration of such pairs.

For any interior Heyting algebra B = (B,□) , we prove that B ̸⊨ Γ/∆ iff
there is i ≤ n and a stable bounded lattice embedding h : Ai → B satisfying
CDC for D→

i and D□
i .

For the right-to-left direction, suppose there is i ≤ n and a stable
bounded lattice embedding h : Ai → B satisfying CDC for D→

i and D□
i .

Define a valuation VB on B by VB(p) = h(Vi(p)) for any propositional letter
p where Vi is the valuation on Ai witnessing Ai ̸⊨ Γ/∆. We then prove by
induction that VB(ψ) = h(Vi(ψ)) for any ψ ∈ Θ. We only consider following
two cases as other cases are trivial (h is a bounded lattice embedding):

If ψ = □φ, then as □φ ∈ Θ, Vi(φ) ∈ D□
i .
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VB(□φ) = □VB(φ)
= □h(Vi(φ)) (IH)
= h(□Vi(φ)) (CDC)
= h(Vi(□φ)).

If ψ = φ→ χ, then as φ→ χ ∈ Θ, (Vi(φ), Vi(χ)) ∈ D→
i .

VB(φ→ χ) = VB(φ) → VB(χ)
= h(Vi(φ)) → h(Vi(χ)) (IH)
= h(Vi(φ) → Vi(χ)) (CDC)
= h(Vi(φ→ χ)).

Since Vi(γ) = 1Ai for any γ ∈ Γ and h is a bounded lattice embedding,
VB(γ) = h(Vi(γ)) = h(1Ai) = 1B for any γ ∈ Γ. Since Vi(δ) ̸= 1Ai for any
δ ∈ ∆ and h is a bounded lattice embedding, VB(δ) = h(Vi(δ)) ̸= 1B for any
δ ∈ ∆. Thus B ̸⊨ Γ/∆.

For the left-to-right direction, suppose B ̸⊨ Γ/∆. There exists a val-
uation VB on B such that VB(γ) = 1B for any γ ∈ Γ and VB(δ) ̸= 1B
for any δ ∈ ∆. Let B′ be the bounded sublattice of B generated by
VB(Θ) = {VB(φ) | φ ∈ Θ}. Note that B′ is finite as the variety of
bounded distributive lattices is locally finite. Clearly |VB(Θ)| ≤ |Θ|. Let
D□ = {VB(ψ) | □ψ ∈ Θ} and D→ = {(VB(φ), VB(ψ)) | φ → ψ ∈ Θ}. We
define →′ and □′ on B′ as follows: a →′ b =

∨
{d ∈ B′ | d ∧ a ≤ b} for any

a, b ∈ B′; □′a =
∨
{□b | □b ≤ □a and b,□b ∈ B′} for any a ∈ B′.

We first check that (B′,→′,□′) is an interior Heyting algebra. Clearly,
(B′,→′) is a Heyting algebra by the definition of →′. Since □1 = 1 and
1 ∈ B′, we have that □′1 = □1 = 1. Since B is an interior Heyting algebra,
it follows that □a ≤ a. Thus □′a =

∨
{□b | □b ≤ □a and b,□b ∈ B′} ≤

□a ≤ a. Namely, □′a ≤ a for any a ∈ B′.

For any a, b ∈ B′, □′a ∧□′b
=

∨
{□x ≤ □a and x,□x ∈ B′} ∧

∨
{□y | □y ≤ □b and y,□y ∈ B′}

=
∨
{□x∧□y | □x ≤ □a,□y ≤ □b where x, y,□x,□y ∈ B′}(distributivity)

=
∨
{□(x ∧ y) | □x ≤ □a and □y ≤ □b where x, y,□x,□y ∈ B′}

=
∨
{□z | □z ≤ □(a ∧ b) and z,□z ∈ B′} = □′(a ∧ b).
For any a ∈ B′, we have that □′□′a =

∨
{□c | □c ≤ □□′a and c,□c ∈

B′}. For any □x ≤ □a where x,□x ∈ B′,
□□′a = □

∨
{□b | □b ≤ □a and b,□b ∈ B′}

≥ 1
∨
{□□b | □b ≤ □a and b,□b ∈ B′}

≥
∨
{□b | □b ≤ □a and b,□b ∈ B′} ≥ □x (note that □□b ≥ □b).

1Here we use the fact that for any interior Heyting algebra A, □a ∨□b ≤ □(a ∨ b) for
any a, b ∈ A, which one can check easily.
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Thus □′a ≤ □′□′a for any a ∈ B′. This proves that (B′,→′,□′) is an
interior Heyting algebra. Let h : (B′,→′,□′) → (B,□) be the inclusion
map, h is clearly a bounded lattice embedding as B′ is a bounded sublattice
of B. h is stable as □′a ≤ □a for any a ∈ B′ by definition.

Then we check that h satisfies CDC for D→ and D□. For any a ∈ D□,
a = VB(ψ) for some □ψ ∈ Θ. And VB(□ψ) = □VB(ψ) = □a ∈ B′. Thus
□′a = □a by the definition of □′. For any (a, b) ∈ D→, a = VB(φ) and
b = VB(ψ) for some φ → ψ ∈ Θ. Thus VB(φ → ψ) = VB(φ) → VB(ψ) =
a → b ∈ B′. Then a → b′ = a → b by the definition of →′. Therefore, the
stable bounded lattice embedding h satisfies CDC for D→ and D□.

Let V ′ be the valuation VB restricted to B′, we then prove that for any
φ ∈ Θ, V ′(φ) = VB(φ) by induction on φ. We only consider the following
two cases as others are trivial (B′ is a bounded sublattice of B):

If φ = ψ → χ, as ψ → χ ∈ Θ, we have that (VB(ψ), VB(χ)) ∈ D→, and
VB(ψ) → VB(χ) ∈ B′.

V ′(ψ → χ) = V ′(ψ) →′ V ′(χ)
= VB(ψ) →′ VB(χ) (IH)
= VB(ψ) → VB(χ) (By the definition of →′)
= VB(ψ → χ).

If φ = □ψ, as□ψ ∈ Θ, we have that VB(□ψ) ∈ B′, and VB(ψ),□VB(ψ) ∈
B′.

V ′(□ψ) = □′V ′(ψ)
= □′VB(ψ) (IH)
= □VB(ψ) (By the definition of □′)
= VB(□ψ).

Since VB is a valuation which refutes Γ/∆ on B, V ′ is a valuation which
refutes Γ/∆ on (B′,→′,□′) by the above result. Thus (B′,→′,□′) ̸⊨ Γ/∆.
As for any φ ∈ Θ, V ′(φ) = VB(φ), we have that D□ = {VB(ψ) | □ψ ∈
Θ} = {V ′(ψ) | □ψ ∈ Θ} and D→ = {(VB(φ), VB(ψ)) | φ → ψ ∈ Θ} =
{(V ′(φ), V ′(ψ)) | φ → ψ ∈ Θ}. As B′ is generated by VB(Θ) whose car-
dinality is no larger than that of Θ, (B′,→′,□′, D→, D□) must be one of
(A1, D

→
1 , D

□
1 ), ..., (An, D

→
n , D

□
n ). As h is a stable bounded lattice embed-

ding from B′ to B satisfying CDC for D→ and D□, we get what we want.
■

It is not difficult to see that the above proposition still holds if we replace
“interior Heyting algebra” by “modal Heyting algebra” in its statement.
The reason why we consider interior Heyting algebras and NExt(IntS4R□)
instead of modal Heyting algebras and NExt(IntKR

□) is because the proof
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for the former requires more work as we have to make sure that the algebra
(B′,→′,□′) is not only a modal Heyting algebra but also an interior Heyting
algebra2. Besides, when discussing stable canonical formulas for logics over
IntS4□, we need to refer to the above proof. This way of organizing results
exposes the key points while saves us from repetitions.

In the above proof, what we have done is a essentially transitive filtra-
tion in algebraic terms3: for the left-to-right direction, we begin with the
assumption that B ̸⊨ Γ/∆, and then use B to construct a finite interior
modal algebra (B′,→′,□′) – a filtrated algebra – which still refutes Γ/∆.
And it turns out that the relation between the filtrated algebra (B′,→′,□′)
and the original algebra B (i.e., a stable bounded lattice embedding satis-
fying CDC for some parameters) can be coded syntactically.

Definition 3.1.4. Let A = (A,□) be a finite modal Heyting algebra, D→ ⊆
A2 and D□ ⊆ A. For each a ∈ A, we introduce a new propositional letter
pa and define the stable canonical rule ρ(A, D→, D□) based on (A, D→, D□)
as follows:

Γ = {pa∨b ↔ pa ∨ pb | a, b ∈ A} ∪ {p0 ↔ ⊥, p1 ↔ ⊤}
∪{pa∧b ↔ pa ∧ pb | a, b ∈ A} ∪ {p□a → □pa | a ∈ A}
∪{pa→b ↔ pa → pb | (a, b) ∈ D→} ∪ {□pa → p□a | a ∈ D□}

∆ = {pa ↔ pb | a ̸= b ∈ A}

ρ(A, D→, D□) = Γ/∆.

The above definition can be seen as a combination of [4, Def. 3.1] and
[6, Def. 5.2]. It is easy to see that the following proposition holds:

Proposition 3.1.5. Let A = (A,□) be a finite modal Heyting algebra,
D→ ⊆ A2 and D□ ⊆ A, then A ̸⊨ ρ(A, D→, D□).

Proof. Define a valuation V on A by V (pa) = a for any a ∈ A. It is then
easy to check that V refutes ρ(A, D→, D□) on A. ■

The next result shows that the stable canonical rule does encode a stable
bounded lattice embedding satisfying CDC for D→ and D□.

Proposition 3.1.6. Let A = (A,□) be a finite modal Heyting algebra,
D→ ⊆ A2, D□ ⊆ A, and B = (B,□) be a modal Heyting algebra. Then
B ̸⊨ ρ(A, D→, D□) iff there is a stable bounded lattice embedding h : A→ B
satisfying CDC for D→ and D□.

2This is also the only place where we need the assumption that B is an interior Heyting
algebra.

3See [26] for more details.
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Proof. For the right-to-left direction, suppose there is a stable bounded lat-
tice embedding h : A→ B satisfying CDC for D→ and D□. Define VB on B
by VB(pa) = h(V (pa)) = h(a) for any a ∈ A where V is just the valuation
in the proof of Proposition 3.1.5. As h is a bounded lattice embedding, for
any a, b ∈ A, it follows that h(a ∧ b) = h(a) ∧ h(b), h(a ∨ b) = h(a) ∨ h(b),
h(0) = 0 and h(1) = 1. Thus we have the following:

VB(pa∨b ↔ pa ∨ pb) = VB(pa∨b) ↔ VB(pa ∨ pb)
= VB(pa∨b) ↔ VB(pa) ∨ VB(pb)
= h(a ∨ b) ↔ h(a) ∨ h(b)
= 1.

VB(pa∧b ↔ pa ∧ pb) = VB(pa∧b) ↔ VB(pa ∧ pb)
= VB(pa∧b) ↔ VB(pa) ∧ VB(pb)
= h(a ∧ b) ↔ h(a) ∧ h(b)
= 1.

Also VB(p0) = h(0) = 0 and VB(p1) = h(1) = 1.
As h is stable, h(□a) ≤ □h(a) for any a ∈ A. Thus VB(p□a) = h(□a) ≤

□h(a) = □VB(pa) = VB(□pa) for any a ∈ A. Therefore, VB(p□a → □pa) =
VB(p□a) → VB(□pa) = 1 for any a ∈ A.

As h satisfies CDC for D→ and D□, for any a ∈ D□, we have that
h(□a) = □h(a); for any (a, b) ∈ D→, we have that h(a→ b) = h(a) → h(b).
Thus VB(p□a) = h(□a) = □h(a) = □VB(pa) = VB(□pa), we get VB(□pa →
p□a) = 1 for any a ∈ D□.

For any (a, b) ∈ D→, we have that

VB(pa→b ↔ pa → pb) = VB(pa→b) ↔ VB(pa → pb)
= VB(pa→b) ↔ (VB(pa) → VB(pb))
= h(a→ b) ↔ (h(a) → h(b))
= 1.

Since h is an embedding, for any a ̸= b ∈ A, h(a) ̸= h(b). Thus VB(pa) ̸=
VB(pb) and VB(pa ↔ pb) ̸= 1. Therefore, for any γ ∈ Γ, we have that
VB(γ) = 1 while for any δ ∈ ∆, VB(δ) ̸= 1. Thus VB refutes Γ/∆ on B,
B ̸⊨ ρ(A, D→, D□).

For the left-to-right direction, suppose B ̸⊨ ρ(A, D→, D□). Then there
exists a valuation V on B such that V (γ) = 1 for any γ ∈ Γ, and V (δ) ̸= 1
for any δ ∈ ∆. Define h : A → B by h(a) = V (pa) for any a ∈ A.
For any a, b ∈ A, as V (pa∨b ↔ pa ∨ pb) = 1, we have that V (pa∨b) =
V (pa ∨ pb) = V (pa) ∨ V (pb). Thus h(a ∨ b) = V (pa∨b) = V (pa) ∨ V (pb) =
h(a) ∨ h(b). Similarly, we obtain h(a ∧ b) = h(a) ∧ h(b) for any a, b ∈ A.
And h(0) = V (p0) = 0, h(1) = V (p1) = 1. Thus h is a bounded lattice
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homormophism. As for any a ∈ A, V (p□a → □pa) = 1, V (p□a) ≤ □V (pa),
and thus h(□a) ≤ □h(a). h is stable.

For any (a, b) ∈ D→, as V (pa→b ↔ pa → pb) = 1, we have V (pa→b) =
V (pa) → V (pb), and thus h(a → b) = V (pa→b) = V (pa) → V (pb) = h(a) →
h(b). For any a ∈ D□, as V (□pa → p□a) = 1, V (□pa) ≤ V (p□a), h(□a) =
V (p□a) ≥ V (□pa) = □V (pa) = □h(a). Therefore, h(□a) = □h(a) for any
a ∈ D□.

For any a ̸= b ∈ A, as V (pa ↔ pb) ̸= 1, it follows that V (pa) ̸= V (pb)
and h(a) = V (pa) ̸= V (pb) = h(b). Therefore, h is a stable bounded lattice
embedding satisfying CDC for for D→ and D□. ■

Now, combining Propositions 3.1.3 and 3.1.6, we obtain immediately the
following result:

Theorem 3.1.7. For an intuitionistic modal multi-conclusion rule Γ/∆,
there exist (A1, D

→
1 , D

□
1 ), ..., (An, D

→
n , D

□
n ) such that each Ai is a finite in-

terior Heyting algebra, D→
i ⊆ A2

i and D□
i ⊆ Ai, and for each interior

Heyting algebra B = (B,□), we have:

B ⊨ Γ/∆ iff B ⊨ ρ(A1, D
→
1 , D

□
1 ), ..., ρ(An, D

→
n , D

□
n ).

As a corollary, we arrive at the main theorem of this section.

Theorem 3.1.8. Every intuitionistic modal multi-conclusion consequence
relation extending IntS4R

□ is axiomatizable by stable canonical rules over
IntS4R

□.

Proof. Let M ∈ NExt(IntS4R□). Then M = IntS4R□ ⊕ {Γi/∆i |
i ∈ I} where Γi/∆i is an intuitionistic modal multi-conclusion rule.
For any i ∈ I, by Theorem 3.1.7, there exist stable canonical rules
ρ(Ai1, D

→
i1 , D

□
i1), ..., ρ(Aini , D

→
ini
, D□

ini
) such that for any interior Heyt-

ing algebra B = (B,□), we have that B ⊨ Γi/∆i iff B ⊨
ρ(Ai1, D

→
i1 , D

□
i1), ..., ρ(Aini , D

→
ini
, D□

ini
). Therefore, for any interior Heyt-

ing algebra B = (B,□), we have that B validates M iff B validates
{ρ(Ai1, D

→
i1 , D

□
i1), ..., ρ(Aini , D

→
ini
, D□

ini
) | i ∈ I}. By Corollary 2.5.7, this

means that M = IntS4R□ ⊕ {ρ(Ai1, D
→
i1 , D

□
i1), ..., ρ(Aini , D

→
ini
, D□

ini
) | i ∈ I}.

Therefore, M is axiomatized by stable canonical rules over IntS4R□. This
proves that every intuitionistic modal multi-conclusion consequence relation
extending IntS4R□ is axiomatizable by stable canonical rules over IntS4R□.

■
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It is easy to note that we do not need the assumption that the modal
Heyting algebras we consider are interior Heyting algebras, except in Propo-
sition 3.1.3, which, as mentioned above, still holds if we replace “interior
Heyting algebras” by “modal Heyting algebras” in the statement. Thus the
reader should find it not difficult to obtain the following result.

Theorem 3.1.9. Every intuitionistic modal multi-conclusion consequence
relation is axiomatizable by stable canonical rules.

As every modal multi-conclusion consequence relation4 is also an in-
tuitionistic modal multi-conclusion consequence relation, Theorem 3.1.9 is
a generalization of [6, Thm. 5.6]. When considering intuitionistic modal
multi-conclusion rules, the above theorem allows us to assume that they are
stable canonical rules in many cases. Since stable canonical rules are in a
certain syntactical shape, it is more manageable to work with them instead
of arbitrary intuitionistic modal multi-conclusion rules. This point may be-
come more evident when we see the dual description of stable canonical
rules, which gives us geometric intuitions about how these rules work.

3.2 Stable canonical formulas for intuitionistic
modal logics over IntS4□

Now, similarly to [6], we may take a step further to transform stable canon-
ical rules to stable canonical formulas for intuitionistic modal logics over
IntS4□. Unlike the results of the first section of this chapter, in this sec-
tion, it is quite crucial that we work with interior Heyting algebras and logics
over IntS4□ instead of modal Heyting algebras and logics over IntK□.

First, we need a characterization of subdirectly irreducible interior Heyt-
ing algebras:

Proposition 3.2.1. A nontrivial interior Heyting algebra A is subdirectly
irreducible iff there exists an element a ∈ A (called an opremum) with a ̸= 1
such that for any b ̸= 1 ∈ A, □b ≤ a.

Proof. By [36, Prop. 1.6], a nontrivial interior Heyting algebra A is subdi-
rectly irreducible iff there exists an element a ∈ A such that for any b ̸= 1,
there exists n ∈ N such that b ∧ □b ∧ ... ∧ □nb ≤ a. As A is an interior
algebra, it follows that □c ≤ c and □c ≤ □□c for any c ∈ A. Then the
result follows immediately.

■
4□ is the primitive operator and ♢ is defined by □.
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Definition 3.2.2. Let A be an interior Heyting algebra, a filter F of A is a
□-filter if for any a ∈ A, we have that a ∈ F implies that □a ∈ F .

It is well known that there is a one-to-one correspondence between con-
gruences and filters of Heyting algebras [15, Chap. 3]. In the setting of
interior Heyting algebras, it turns out that congruences correspond to □-
filters.

Proposition 3.2.3. [24, Prop. 2.2] Let A be an interior Heyting algebra,
the map f : F 7→ θF = {(a, b) | a ↔ b ∈ F} is an isomorphism from the
complete lattice of □-filters of A onto the complete lattice of congruences of
A. The inverse map is given by g : θ 7→ Fθ = {a ∈ A | (a, 1) ∈ θ}.

Then we obtain the following technical lemma, which is the counterpart
to that for K4-algebras in [3, Lem. 4.1].

Lemma 3.2.4. Let A be an interior Heyting algebra, a, b ∈ A and □a ̸≤ b.
Then there exists a subdirectly irreducible interior Heyting algebra B and an
onto homomorphism η : A→ B such that η(□a) = 1 and η(b) ̸= 1.

Proof. As A is an interior Heyting algebra, for any a ∈ A, we have that
□a ≤ a. Thus a ∧□a = □a for any a ∈ A. By Proposition 3.2.3, there is a
correspondence between □-filters and congruences of A. Then the proof is
exactly the same as that of [3, Lem. 4.1]. For the reason of completeness,
we sketch the main steps here.

First, consider the set Z of □-filters of A containing □a while missing
b. It is easy to check that Z satisfies the assumptions of Zorn’s Lemma,
and thus Z has a maximal element M . We define B as the quotient algebra
A/ ∽ where x ∽ y iff x↔ y ∈M . Then let η : A→ B be the quotient map.
One can check that B is s.i (using the correspondence between □-filters and
congruences) and η is an onto homomorphism such that η(□a) = 1 while
η(b) ̸= 1.

■

Now we can define stable canonical formulas as follows.

Definition 3.2.5. Let A be a finite s.i interior Heyting algebra, D→ ⊆ A2

and D□ ⊆ A. For each a ∈ A, we introduce a new propositional letter pa
and define the stable canonical formula ι(A, D→, D□) based on (A, D→, D□)
as follows, in which Γ and ∆ are just those in Definition 3.1.4:

ι(A, D→, D□) =
∧
{□γ | γ ∈ Γ} →

∨
{□δ | δ ∈ ∆}

= □
∧

Γ →
∨
{□δ | δ ∈ ∆}
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The following proposition tells us what the stable canonical formulas
encode:

Proposition 3.2.6. Let A be a finite s.i interior Heyting algebra, D→ ⊆ A2

and D□ ⊆ A. For any interior Heyting algebra B, B ̸⊨ ι(A, D→, D□) iff
there is a s.i homomorphic image C = (C,□) of B and a stable bounded
lattice embedding h : A→ C satisfying CDC for D→ and D□.

Proof. For the right-to-left direction, suppose there is a s.i homomorphic
image C = (C,□) of B and a stable bounded lattice embedding h : A → C
satisfying CDC for D→ and D□. Define V on C by V (pa) = h(a) for each
a ∈ A. As h is stable bounded lattice embedding satisfying CDC for D→

and D□, we can easily check that V (γ) = 1 for any γ ∈ Γ while V (δ) ̸= 1
for any δ ∈ ∆ as we did in the proof of Proposition 3.1.6. For any δ ∈ ∆,
V (□δ) = □V (δ) ≤ V (δ). Thus V (□δ) ̸= 1 for any δ ∈ ∆. As C is s.i, it has
an opremum, say d. For any δ ∈ ∆, V (□δ) ≤ d, and thus V (

∨
{□δ | δ ∈

∆}) ≤ d ̸= 1. V refutes ι(A, D→, D□) on C. Therefore, C ̸⊨ ι(A, D→, D□).
As C is a homomorphic image of B, it follows that B ̸⊨ ι(A, D→, D□).

For the left-to-right direction, suppose B ̸⊨ ι(A, D→, D□), then there
exists a valuation V on B refutes ι(A, D→, D□). Namely, V (□

∧
Γ) ̸≤

V (
∨
{□δ | δ ∈ ∆}). By Lemma 3.2.4, there exists a s.i interior Heyting al-

gebra C and an onto homomorphism η : B → C such that η(V (□
∧
Γ)) = 1

and η(V (
∨
{□δ | δ ∈ ∆})) ̸= 1. Define a valuation VC on C by VC(pa) =

η(V (pa)). Then VC(□
∧
Γ) = 1 and VC(

∨
{□δ | δ ∈ ∆}) ̸= 1. Thus

VC(□δ) ̸= 1 for any δ ∈ ∆. As VC(□a) ≤ VC(a) for any a ∈ C and □1 = 1,
we have that V (γ) = 1 for any γ ∈ Γ and V (δ) ̸= 1 for any δ ∈ ∆. Define
h : A → C by h(a) = VC(pa), it is then easy to check that h is a stable
bounded lattice embedding satisfying CDC for for D→ and D□ as we did in
the proof of Proposition 3.1.6. ■

We next prove the following version of Proposition 3.1.6 for interior
Heyting algebras, whose Heyting algebra analogue and K4-algebra analogue
can be found in [39, Lem. 1] and [6, Thm. 6.5] respectively. Unlike the
proof of [6, Thm. 6.5], we do some tricks directly in the process of taking
filtrations.

Theorem 3.2.7. For an intuitionistic modal formula φ, there exist
(A1, D

→
1 , D

□
1 ), ..., (An, D

→
n , D

□
n ) such that each Ai is a finite s.i interior

Heyting algebra, D→
i ⊆ A2

i and D□
i ⊆ Ai, and for each s.i interior Heyting

algebra B = (B,□), the following are equivalent:

1) B ̸⊨ φ.
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2) There is i ≤ n and a stable bounded lattice embedding h : Ai → B
satisfying CDC for D→

i and D□
i .

3) There is a s.i homomorphic image C = (C,□) of B, 1 ≤ i ≤ n and a
stable bounded lattice embedding h : Ai → C satisfying CDC for D→

i

and D□
i .

Proof. If φ ∈ IntS4□, then take n = 0. Suppose φ ̸∈ IntS4□, let Θ
be the set of all subformulas of φ, Θ is finite. Assume |Θ| = m, since
bounded distributive lattices are locally finite, there are only finitely many
pairs (A, D→, D□) satisfying the following two conditions up to isomorphism:

i) A = (A,□) is a finite s.i interior Heyting algebra such that A|{∧,∨,1,0}
is at mostm+1-generated as a bounded distributive lattice and A ̸⊨ φ.

ii) D→ = {(V (φ), V (ψ)) | φ → ψ ∈ Θ} and D□ = {V (ψ) | □ψ ∈ Θ}
where V is a valuation on A witnessing A ̸⊨ φ.

Let (A1, D
→
1 , D

□
1 ), ..., (An, D

→
n , D

□
n ) be the enumeration of such pairs.

Let B = (B,□) be a s.i interior Heyting algebra.
1) ⇒ 2): suppose B ̸⊨ φ, there is a valuation VB on B which refutes φ.

As B is s.i, it has an opremum, say c. Let B′ be the bounded distributive
sublattice ofB generated by V (Θ)∪{c} where |V (Θ)∪{c}| ≤ |Θ|+1 = m+1.
B′ is finite, and we define →′ and □′ on B′ exactly the same way as we
did in the proof of Proposition 3.1.3. Then (B′,→′,□′) is a finite interior
Heyting algebra which refutes φ by V ′ (the restriction of VB to B′). By
the definition of □′, for any a ∈ B′, □′a ≤ □a. As c is an opremum of B,
□′a ≤ □a ≤ c ̸= 1B(= 1B′) for any a ∈ B′. Thus c is also an opremum
of B′, B′ is s.i by Proposition 3.2.1. Therefore, (B′,→′,□′, D→, D□) is
one of (A1, D

→
1 , D

□
1 ), ..., (An, D

→
n , D

□
n ) where D

□ = {V ′(ψ) | □ψ ∈ Θ} and
D→ = {(V ′(φ), V ′(ψ)) | φ → ψ ∈ Θ}, and there is a stable bounded lattice
embedding h : B′ → B satisfying CDC for D→ and D□ as shown in the
proof of Proposition 3.1.3.

2) ⇒ 3) is obvious. 3) ⇒ 1): suppose There is s.i homomorphic image
C = (C,□) of B, 1 ≤ i ≤ n and a stable bounded lattice embedding h :
Ai → C satisfying CDC for D→

i and D□
i . Then it is easy to see that C ̸⊨ φ

as we did in the proof of Proposition 3.1.3. As C is a homomorphic image
of B, B ̸⊨ φ.

■

Combining Proposition 3.2.6 and Theorem 3.2.7 together, we obtain the
following result:
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Proposition 3.2.8. For an intuitionistic modal formula φ, there exist tu-
ples (A1, D

→
1 , D

□
1 ),..., (An, D

→
n , D

□
n ) such that each Ai is a finite s.i interior

Heyting algebra, D→
i ⊆ A2

i and D□
i ⊆ Ai, and for each s.i interior Heyting

algebra B = (B,□), we have that B ⊨ φ iff B ⊨
∧

1≤i≤n ι(Ai, D
→
i , D

□
i )

Proof. By Theorem 3.2.7, there exist (A1, D
→
1 , D

□
1 ), ..., (An, D

→
n , D

□
n ) such

that each Ai is a finite s.i interior Heyting algebra, D→
i ⊆ A2

i and D□
i ⊆

Ai, and for each s.i interior Heyting algebra B = (B,□), B ̸⊨ φ iff there
is a s.i homomorphic image C = (C,□) of B, 1 ≤ i ≤ n and a stable
bounded lattice embedding h : Ai → C satisfying CDC for D→

i and D□
i . By

Proposition 3.2.6, this is equivalent to the existence of 1 ≤ i ≤ n such that
B ̸⊨ ι(Ai, D

→
i , D

□
i ). Thus B ⊨ φ iff B ⊨

∧
1≤i≤n ι(Ai, D

→
i , D

□
i )

■

The next theorem is the main result of this section.

Theorem 3.2.9. Each intuitionistic modal logic over IntS4□ is axiomati-
zable by stable canonical formulas over IntS4□.

Proof. Let L ∈ NExt(IntS4□). Then L = IntS4□ ⊕ {φi | i ∈ I} where
φi is an intuitionistic modal formula. For any i ∈ I, by Proposition 3.2.8,
there exist stable canonical formulas ι(Ai1, D

→
i1 , D

□
i1), ..., ι(Aini , D

→
ini
, D□

ini
)

such that for any s.i interior Heyting algebra B = (B,□), we have
that B ⊨ φi iff B ⊨

∧
1≤i≤n ι(Ai, D

→
i , D

□
i ). Therefore, for any s.i

interior Heyting algebra B = (B,□), B validates L iff B validates
{ι(Ai1, D

→
i1 , D

□
i1), ..., ι(Aini , D

→
ini
, D□

ini
) | i ∈ I}.

By Corollary 2.5.7, every intuitionistic modal logic over IntS4□ is de-
termined by the variety of all interior Heyting algebras which validate it.
Moreover, Theorem 2.2.21 tells us that every variety is determined by its s.i
algebras.

Therefore, L = IntS4□⊕{ι(Ai1, D
→
i1 , D

□
i1), ..., ι(Aini , D

→
ini
, D□

ini
) | i ∈ I},

and L is axiomatizable by stable canonical formulas over IntS4□.
■

Similarly to Theorem 3.1.9, the above result allows us to assume
that all formulas are semantically equivalent to stable canonical ones
when we consider intuitionistic modal logics over IntS4□. For ex-
ample, let L ∈ NExt(IntS4□), for any intuitionistic modal formula
φ, we can effectively construct finitely many stable canonical formu-
las ι(A1, D

→
1 , D

□
1 ), ..., ι(An, D

→
n , D

□
n ) such that IntS4□ ⊕ φ = IntS4□ ⊕

{ι(A1, D
→
1 , D

□
1 ), ..., ι(An, D

→
n , D

□
n )}. Thus φ ∈ L iff ι(Ai, D

→
i , D

□
i ) ∈ L for
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any 1 ≤ i ≤ n. Therefore, L is decidable iff there is an algorithm which
decides for each stable canonical formula ψ whether ψ ∈ L or not. This is
the key idea that leads to the applications of stable canonical formulas and
rules, which we will see in the next chapter.

3.3 Dual descriptions of stable canonical rules

In the previous sections, we have introduced stable canonical formulas and
stable canonical rules. Both of them are constructed based on a finite modal
Heyting algebra together with some parameters (called a finite refutation
pattern). In this section, we will provide a geometric description of stable
canonical rules via duality.

We first recall the duality between the category of modal Heyting alge-
bras and the category of modal Esakia spaces which is established in [31]
and makes our dual description possible.

Definition 3.3.1. Let (X,≤, R) be a triple such that (X,≤) is an Esakia
space and R ⊆ X × X, then (X,≤, R) is a modal Esakia space5 if the
following two conditions hold:

• If U is a clopen upset of X, then □RU is a clopen upset as well where
□RU = {x ∈ X | R[x] ⊆ U}.

• For every x ∈ X, R[x] is a closed upset.

The morphisms between modal Esakia spaces are given as follows:

Definition 3.3.2. Let (X1,≤, R1) and (X2,≤, R2) be modal Esakia spaces,
a map f : X1 → X2 is called a p-morphism if the following conditions are
satisfied for any x, x′, y ∈ X1 and z ∈ X2:

1. f is continuous.

2. If x ≤ y, then f(x) ≤ f(y).

3. If f(x) ≤ z, then f(x′) = z for some x ≤ x′.

4. If xR1y, then f(x)R2f(y).

5. If f(x)R2z, then f(x
′) ≤ z for some xR1x

′.

5It is also called I□-space in [31].
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LetMHA be the category of modal Heyting algebras and modal Heyting
algebra homomorphisms, MES be the category of modal Esakia spaces and
p-morphisms, the functors (−)∗ : MHA → MES and (−)∗ : MES →
MHA that establish the duality are constructed as follows. For a modal
Heyting algebra A = (A,□), let A∗ = (A∗, R) where A∗ is the Esakia space
of A and xRy iff ∀□a ∈ A(□a ∈ x =⇒ a ∈ y). For a modal Esakia
space X = (X,≤, R), let X ∗ = (X∗,□R) where X

∗ is the Heyting algebra of
clopen upsets of X and □RU = {x ∈ X | R[x] ⊆ U}. The duals of maps are
exactly the same as that in Esakia duality. We spell out some useful details
about the duality in the following theorem.

Theorem 3.3.3. [31, Thm 6.12] MHA is dually equivalent to MES, which
is witnessed by (−)∗ and (−)∗. In particular, for any modal Heyting algebra
A, A ∼= (A∗)

∗ witnessed by β where β(a) = {x ∈ A∗ | a ∈ x}, and for any
modal Esakia space X , X ∼= (X ∗)∗ witnessed by ϵ where ϵ(x) = {U ∈ X∗ |
x ∈ U}.

As an easy corollary, we obtain the following duality:

Theorem 3.3.4. The category of interior Heyting algebras and their ho-
momorphisms is dually equivalent to the category of S4 modal Esakia spaces
(S4 means that R is reflexive and transitive) and p-morphisms.

Proof. By Theorem 3.3.3, we only need to check that for any interior Heyting
algebra, its dual is an S4 modal Esakia space, and for any S4 modal Esakia
space, its dual is an interior Heyting algebra.

Let A = (A,□) be an interior Heyting algebra, and A∗ = (A∗, R). For
any x ∈ A∗ and any □a ∈ x, as □a ≤ a and x is a prime filter, it follows
that a ∈ x. Thus xRx, and so R is reflexive. For any x, y, z ∈ A∗, suppose
xRyRz, then for any □a ∈ x, as □a ≤ □□a and x is a prime filter, it follows
that □□a ∈ x. As xRyRz, we have that □a ∈ y and a ∈ z. Thus xRz, and
R is transitive. Therefore, A∗ is an S4 modal Esakia space.

Let X = (X,≤, R) be an S4 modal Esakia space, and X ∗ = (X∗,□R).
For any y ∈ □RU where U is a clopen upset of X, R[y] ⊆ U . As R is
reflexive, y ∈ R[y] ⊆ U . Thus □RU ⊆ U . As R is transitive, R[R[y]] ⊆ U .
Thus y ∈ □R□RU , U ⊆ □R□RU . Therefore, X ∗ is an interior Heyting
algebra.

■

By the above duality, we can now give a dual description of stable
bounded lattice homomorphisms.
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Definition 3.3.5. Let (X,≤, R) and (Y,≤, R) be modal Esakia spaces and
f : X → Y be a Priestley morphism. The map f is called stable if for any
x, y ∈ X, xRy implies f(x)Rf(y).

Proposition 3.3.6. Let A = (A,□) and B = (B,□) be modal Heyting
algebras. Let (XA,≤, R) and (XB,≤, R) be the dual of A andB respectively.
For a bounded lattice homomorphism h : A → B, h is stable iff h∗ : XB →
XA is stable.

Proof. By Priestley duality, h∗ is a Priestley morphism. Thus, it suffices to
prove that h(□a) ≤ □h(a) for any a ∈ A iff xRy implies h∗(x)Rh∗(y) for
any x, y ∈ XB.

Suppose h(□a) ≤ □h(a) for any a ∈ A. Suppose xRy and □a ∈ h∗(x),
then h(□a) ∈ x. As h(□a) ≤ □h(a) and x is a prime filter, □h(a) ∈ x. As
xRy, it follows that h(a) ∈ y and a ∈ h∗(y). Thus h∗(x)Rh∗(y).

For the other direction, suppose xRy implies h∗(x)Rh∗(y) for any
x, y ∈ XB. For any x ∈ β(h(□a)), we have that h(□a) ∈ x and
□a ∈ h∗(x). Now for any xRy, by assumption, h∗(x)Rh∗(y). As □a ∈ h∗(x),
it follows that a ∈ h∗(y) and h(a) ∈ y. Thus R[x] ⊆ β(h(a)), and
x ∈ □R(β(h(a))) = β(□h(a)). As x ∈ β(h(□a)) is arbitrary, this proves
that β(h(□a)) ⊆ β(□h(a)). As β is an isomorphism, h(□a) ≤ □h(a). ■

Similarly, we can use the duality to give a dual description of CDC for
D→ and D□.

Definition 3.3.7. Let (X,≤, R) and (Y,≤, R) be modal Esakia spaces,
f : X → Y be a Priestley morphism, and D be a clopen subset of Y . We
say that f satisfies the implication closed domain condition (CDC→) for D
if the following holds:

↑ f(x) ∩D ̸= ∅ implies f [↑ x] ∩D ̸= ∅.

Furthermore, let D be a collection of clopen subsets of Y , f satisfies the
implication closed domain condition (CDC→) for D if f satisfies (CDC→)
for each D ∈ D.

We then have the following proposition analogous to [4, Lem. 4.3], which
connects the algebraic CDC for D→ with the geometric CDC→.

Proposition 3.3.8. [4, Lem. 4.3]
Let A and B be modal Heyting algebras, h : A → B be a bounded

lattice homomorphism, and a, b ∈ A, then the following two conditions are
equivalent:
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1. h(a→ b) = h(a) → h(b).

2. h∗ satisfies CDC→ for β(a) \ β(b).

For the dual description of CDC for D□, we have the following.

Definition 3.3.9. Let (X,≤, R) and (Y,≤, R) be modal Esakia spaces,
f : X → Y be a Priestley morphism, and D be a clopen subset of Y . We
say that f satisfies the modal closed domain condition (CDC□) for D if the
following holds:

f [R[x]] ⊆ D implies R[f(x)] ⊆ D.6

Furthermore, let D be a collection of clopen subsets of Y , f satisfies the
modal closed domain condition (CDC□) for D if f satisfies (CDC□) for each
D ∈ D.

Proposition 3.3.10. Let A = (A,□) and B = (B,□) be modal Heyting
algebras, h : A→ B be a stable bounded lattice homomorphism, and a ∈ A,
then the following are equivalent:

1. h(□a) = □h(a).

2. h∗ : XB → XA satisfies CDC□ for β(a).

Proof. As h is stable and β is an isomorphism, h(□a) = □h(a) iff □h(a) ≤
h(□a) iff β(□h(a)) ⊆ β(h(□a)) iff □Rβ(h(a)) ⊆ β(h(□a)).

Suppose h(□a) = □h(a), thus □Rβ(h(a)) ⊆ β(h(□a)). Suppose
h∗[R[x]] ⊆ β(a), then R[x] ⊆ h−1

∗ (β(a)). For any y ∈ R[x], we have
that h∗(y) ∈ β(a) and a ∈ h∗(y), h(a) ∈ y. Thus R[x] ⊆ β(h(a)), and
x ∈ □R(β(h(a))) ⊆ β(h(□a)). Namely, h(□a) ∈ x and □a ∈ h∗(x). Thus,
for any y ∈ R[h∗(x)], we have that a ∈ y. Therefore, R[h∗(x)] ⊆ β(a). This
proves that h∗ satisfies CDC□ for β(a).

For the other direction, suppose h∗ satisfies CDC□ for β(a). Suppose
x ∈ □R(β(h(a))), then R[x] ⊆ β(h(a)). For any xRy, we have that h(a) ∈ y,
and thus a ∈ h∗(y). As y is arbitrary, this means that h∗[R[x]] ⊆ β(a). As
h∗ satisfies CDC□ for β(a), it follows that R[h∗(x)] ⊆ β(a). Then by [31,
Cor. 5.6] which says that for any w ∈ XA, □a ̸∈ w implies that a ̸∈ v for
some wRv, we have that □a ∈ h∗(x) and h(□a) ∈ x, namely x ∈ β(h(□a)).
Thus, □R(β(h(a))) ⊆ β(h(□a)). This proves that h(□a) = □h(a).

■
6By contraposition, this is equivalent to the condition that R[f(x)] ∩ D̄ ̸= ∅ implies

f [R[x]] ∩ D̄ ̸= ∅. Sometimes it may be more convenient to use this one.
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Combining the above results together, we obtain the following dual de-
scription of the algebraic CDC for D→ and D□:

Proposition 3.3.11. Let A = (A,□) and B = (B,□) be modal Heyting
algebras, h : A → B be a stable bounded lattice homomorphism, D□ ⊆ A
and D→ ⊆ A2, the following two are equivalent:

• h satisfies CDC for D□ and D→.

• h∗ satisfies CDC□ for any β(a) where a ∈ D□ and satisfies CDC→ for
any β(a) \ β(b) where (a, b) ∈ D→.

By Propositions 3.3.6 and 3.3.11, we now know what stable canonical
rules code geometrically, which is a dual analogue of Proposition 3.1.6.

Proposition 3.3.12. Let A = (A,□) be a finite interior Heyting algebra,
D→ ⊆ A2, D□ ⊆ A, and let B = (B,□) be an interior Heyting algebra.
Then B ̸⊨ ρ(A, D→, D□) iff there is a surjective stable Priestley morphism
f : XB → XA satisfying CDC□ for any β(a) where a ∈ D□ and CDC→ for
any β(a) \ β(b) where (a, b) ∈ D→.

Proof. According to Proposition 3.1.6, B ̸⊨ ρ(A, D→, D□) iff there is a sta-
ble bounded lattice embedding h : A → B satisfying CDC for D→ and
D□. Then by Proposition 3.3.6 and Proposition 3.3.11, the result follows
immediately.

■

By the above proposition, we are then well-justified to write
ρ(A, D→, D□) as ρ(A∗,D→,DM )) where D→ = {β(a) \ β(b) | (a, b) ∈ D→},
DM = {β(a) | a ∈ D□}7. This notation will become quite useful in the next
chapter when we need to operate on those parameters.

Besides, a dual description of stable canonical formulas can also be ob-
tained similarly. One may note that we only lack the dual description of
s.i interior Heyting algebras in order to state Proposition 3.2.6 in geometric
terms. However, considering the complexity of Proposition 3.2.6, its direct
dual translation will be quite lengthy and is not needed in this thesis.

7“M” stands for “modal”.
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Chapter 4

Applications of stable
canonical rules for
intuitionistic modal logics

In the previous chapter, we introduced stable canonical rules for intuitionis-
tic modal logics and their dual characterization. This chapter will be devoted
to the applications of these rules in establishing some intrinsic properties of
intuitionistic modal logics.

First, using stable canonical rules for bimodal logics, we will give a new
and self-contained proof of the Blok-Esakia theorem for intuitionistic modal
logics which was first proved by Wolter and Zakharyaschev in [37], and
generalize it naturally to intuitionistic modal multi-conclusion consequence
relations. Then we will proceed to proving the Dummett-Lemmon conjec-
ture in this setting by our stable canonical rules for intuitionistic modal
logics, which, as far as we know, is a new result.

4.1 The Blok-Esakia theorem for intuitionistic
modal logics

It is well-known that every superintuitionistic logic can be embedded into an
extension of S4 via the Gödel translation1. The embedding led to many im-
portant results, one of which is the Blok-Esakia theorem. It states that the
lattice of superintuitionistic logics is isomorphic to the lattice of normal ex-

1It is the translation which transforms an intuitionistic propositional formula to a
modal formula by putting □ in front of every subformula. See Definition 4.1.16 below.
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tensions of Grz, via the mapping which sends each superintuitionistic logic
L to the normal extension of Grz with the set of all Gödel translations of
formulas in L. As its name suggests, the Blok-Esakia theorem was proved
independently by Blok using algebraic methods [11] and by Esakia using
duality theory [20]. It allows us to study superintuitionistic logics by meth-
ods and results from normal modal logics and vice versa2. In [37] and [38],
Wolter and Zakharyaschev extended the Gödel translation to intuitionistic
modal logics which embeds every intuitionistic modal logic to an extension
of bimodal logic S4 ⊗ K. Besides, they proved a Blok-Esakia theorem for
this translation, whose proof assumes that the reader is familiar with the
so-called selection procedure and cofinal subreductions which are developed
in [43] and are quite involved.

In this section, we will use stable canonical rules to prove the Blok-
Esakia theorem for intuitionistic modal multi-conclusion consequence re-
lations, which generalizes that for intuitionistic modal logics. The proof
strategy was adopted from the one in [16] where Cleani proved the Blok-
Esakia theorem for superintuitionistic logics using stable canonical rules for
classical (unary) normal modal logics. Compared to the proof in [37], we
believe that our alternative proof provides a new perspective and is arguably
more self-contained.

4.1.1 Stable canonical rules for bimodal logics

We first introduce stable canonical rules for bimodal logics, which are simple
and natural generalizations of those in [6] from the unimodal case (only one
modal operator) to the bimodal case.

Definition 4.1.1. Let A = (A,□I ,□M ) and B = (B,□I ,□M ) be bimodal
algebras, and h : A→ B be a Boolean homomorphism, h is stable if for any
a ∈ A, we have h(□Ia) ≤ □Ih(a) and h(□Ma) ≤ □Mh(a).

Definition 4.1.2. Let A = (A,□I ,□M ), B = (B,□I ,□M ) be bimodal
algebras, DI ⊆ A and DM ⊆ A. A Boolean embedding h : A → B is said
to satisfy

• the closed domain condition (CDC for short) for DI if h(□Ia) =
□Ih(a) for any a ∈ DI .

• the closed domain condition (CDC for short) for DM if h(□Mb) =
□Mh(b) for any b ∈ DM .

2See [14] for more details.
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It is natural to anticipate that we can encode a stable Boolean embedding
which satisfies CDC for some parameters in a certain syntactic form in
analogy with Definition 3.1.4. This is exactly what the following definition
does.

Definition 4.1.3. Let A = (A,□I ,□M ) be a finite bimodal algebra, DI ⊆ A
and DM ⊆ A. For each a ∈ A, we introduce a new propositional letter pa
and define the stable canonical rule µ(A, DI , DM ) based on (A, DI , DM ) as
follows:

Γ = {pa∨b ↔ pa ∨ pb | a, b ∈ A} ∪ {p0 ↔ ⊥, p1 ↔ ⊤}
∪{pa∧b ↔ pa ∧ pb | a, b ∈ A} ∪ {p¬a ↔ ¬pa | a ∈ A}
∪{p□Ia → □Ipa, p□Ma → □Mpa | a ∈ A} ∪ {□Ipa → p□Ia | a ∈ DI}
∪{□Mpa → p□Ma | a ∈ DM}

∆ = {pa ↔ pb | a ̸= b ∈ A}
µ(A, DI , DM ) = Γ/∆.

Using a proof analogous to that of Proposition 3.1.6, we have the follow-
ing proposition. The proof for the unimodal case can be found in [6, Thm.
5.4].

Proposition 4.1.4. Let A = (A,□I ,□M ) be a finite bimodal algebra, DI ⊆
A, DM ⊆ A, and B = (B,□I ,□M ) be a bimodal algebra. Then B ̸⊨
µ(A, DI , DM ) iff there is a stable Boolean embedding h : A → B satisfying
CDC for DI and DM .

The following result is essentially needed in our proof of the Blok-Esakia
theorem. For convenience, let Mix3 denote the formula □I□M□Ip↔ □Mp.

Proposition 4.1.5. For any bimodal multi-conclusion rule Γ/∆, there exist
tuples (A1, D

I
1, D

M
1 ), ... , (An, D

I
n, D

M
n ) such that each Ai is a finite S4⊗K⊕

Mix-algebra, DI
i ⊆ Ai and D

M
i ⊆ Ai, and for each S4 ⊗K ⊕Mix-algebra

B = (B,□I ,□M ), we have that B ̸⊨ Γ/∆ iff there is a stable embedding
h : Ai → B satisfying CDC for DI

i and DM
i .

Proof. Let Γ/∆ be an arbitrary bimodal multi-conclusion rule. If Γ/∆ ∈
S4⊗K⊕MixR, then take n = 0. Suppose Γ/∆ ̸∈ S4⊗K⊕MixR, let Θ
be the set of all subformulas of the formulas in Γ∪∆ which is clearly finite,
define Θ′ = Θ ∪ {□Iφ | □Mφ ∈ Θ}. Clearly Θ′ is finite and closed under

3This was introduced by Wolter and Zakharyaschev in [37]. The reason why it is called
“Mix” is that semantically the formula says that RI ◦RM ◦RI = RM , which means that
RM and RI are “mixed” together in some sense.
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subformulas, and for any formula □Mφ, we have that □Mφ ∈ Θ′ implies
□Iφ ∈ Θ′. Assume |Θ′| = m, there are only finitely many pairs (A, DI , DM )
satisfying the following two conditions up to isomorphism:

i) A = (A,□I ,□M ) is a finite S4 ⊗K ⊕Mix-algebra such that A is an
m-generated Boolean algebras and A ̸⊨ Γ/∆.

ii) DI = {V (φ) | □Iφ ∈ Θ′} and DM = {V (φ) | □Mφ ∈ Θ′} where V is
a valuation on A witnessing A ̸⊨ Γ/∆.

Let (A1, D
I
1, D

M
1 ), ..., (An, D

I
n, D

M
n ) be an enumeration of such pairs. For

any S4 ⊗K ⊕Mix-algebra B, we prove that B ̸⊨ Γ/∆ iff there is a stable
embedding h : Ai → B satisfying CDC for DI

i and DM
i .

For the right-to-left direction, suppose there is a stable embedding h :
Ai → B satisfying CDC for DI

i and DM
i . Define a valuation VB on B by

VB(p) = h(Vi(p)) for any propositional letter p where Vi is the valuation
on Ai witnessing that Ai ̸⊨ Γ/∆. We then can prove by induction that
VB(ψ) = h(Vi(ψ)) for any ψ ∈ Θ′ in the same way as that in the proof of
Proposition 3.1.3.

For the left-to-right direction, suppose B ̸⊨ Γ/∆. There exists a val-
uation VB on B such that VB(γ) = 1B for any γ ∈ Γ and VB(δ) ̸= 1B
for any δ ∈ ∆. Let B′ be the Boolean subalgebra of B generated by
VB(Θ

′). Clearly |VB(Θ′)| ≤ |Θ′| = m. Let DI = {VB(φ) | □Iφ ∈ Θ′}
and DM = {VB(φ) | □Mφ ∈ Θ′}, we define □′

I and □′
M on B′ as follows:

□′
Ia =

∨
{□Ib | □Ib ≤ □Ia and b,□Ib ∈ B′} and □′

Ma =
∨
{□Mb | b ≤

a and b,□Mb,□Ib ∈ B′} for any a ∈ B′. We first prove that (B′,□′
I ,□

′
M )

is an S4⊗K ⊕Mix-algebra.
As B is an S4 ⊗ K ⊕Mix-algebra and □′

I is defined the same way as
that of □′ in the proof of Proposition 3.1.3, we can check that (B′,□′

I) is
an S4-algebra in the same way as we checked that (B′,→′,□′) is an interior
Heyting algebra in that proof. As 1 = □I1 = □M1 ∈ B′, by definition
□M1 ≤ □′

M1 and thus □′
M1 = 1.

For any a, b ∈ B′, □′
Ma ∧□′

Mb
=

∨
{□Mx | x ≤ a and x,□Ix,□Mx ∈ B′} ∨

∨
{□My | y ≤

b and y,□Iy,□My ∈ B′}
=

∨
{□Mx ∧ □My | x ≤ a and y ≤ b where x,□Ix,□Mx, y,□Iy,□My ∈

B′}(distributivity)
=

∨
{□M (a ∧ b) | x ≤ a and y ≤ b where x,□Ix,□Mx, y,□Iy,□My ∈ B′}

=
∨
{□Mz | z ≤ a ∧ b and z,□Mz,□Iz ∈ B′}

= □′
M (a ∧ b).
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Therefore, (B′,□′
M ) is a modal algebra. To check that (B′,□′

I ,□
′
M ) is

an S4⊗K⊕Mix-algebra, it suffices to prove that for any a ∈ B′, □′
I□

′
Ma =

□′
Ma and □′

M□′
Ia = □′

Ma
4.

For any a ∈ B′, as (B′,□′
I ,□

′
M ) is an S4 ⊗ K-algebra, □′

Ia ≤ a, and
thus □′

M□′
Ia ≤ □′

Ma. Suppose b ≤ a such that b,□Ib,□Mb ∈ B′, then
□Ib ≤ □Ia. Thus □Ib ≤

∨
{□Ix | □Ix ≤ □Ia where x,□Ix ∈ B′} = □′

Ia.
As B is an S4⊗K⊕Mix-algebra, □Ib = □I□Ib ∈ B′ and □M□Ib = □Mb ∈
B′. Therefore, □Mb ∈ {□Mx | x ≤ □′

Ia where x,□Ix,□Mx ∈ B′}. Thus
□Mb ≤

∨
{□Mx | x ≤ □′

Ia where x,□Ix,□Mx ∈ B′} = □′
M□′

Ia. By the
definition of □′

M , we have that □′
Ma ≤ □′

M□′
Ia. Therefore, □

′
Ma = □′

M□′
Ia.

For any a ∈ B′, as (B′,□′
I ,□

′
M ) is an S4 ⊗ K-algebra, □′

I□
′
Ma ≤ □′

Ma.
Suppose b ≤ a such that b,□Ib,□Mb ∈ B′, then □Mb ≤ □′

Ma. As B is an
S4⊗K ⊕Mix-algebra, □I□Mb ≤ □I□′

Ma and □I□Mb = □Mb ∈ B′. Thus
□Mb = □I□Mb ≤

∨
{□Ix | □Ix ≤ □I□′

Ma where x,□Ix ∈ B′} = □′
I□

′
Ma.

By the definition of □′
M , we have that □′

Ma ≤ □′
I□

′
Ma, and thus □′

Ma =
□′

I□
′
Ma. Therefore, (B

′,□′
I ,□

′
M ) is an S4⊗K ⊕Mix-algebra.

Let h : (B′,□′
I ,□

′
M ) → (B,□I ,□M ) be the inclusion map, h is clearly

an embedding as B′ is a Boolean subalgebra of B. As □′
Ia ≤ □Ia and

□′
Ma ≤ □Ma for any a ∈ B′ by definition, h is stable. Then we check

that h satisfies CDC for DI and DM . For any a ∈ DI , a = VB(φ) for
some □Iφ ∈ Θ′. Thus VB(□Iφ) = □Ia ∈ B′. By the definition of □′

I ,
we then have that □′

Ia = □Ia. For any b ∈ DM , b = VB(ψ) for some
□Mψ ∈ Θ′. Thus □Iψ ∈ Θ′, and VB(□Iψ) = □IVB(ψ) = □Ib ∈ B′. As
VB(□Mψ) = □MVB(ψ) = □Mb ∈ B′, by the definition of □′

M , □′
Mb = □Mb.

This proves that h satisfies CDC for DI and DM .
Let V ′ be the valuation VB restricted to B′, we then prove that for any

φ ∈ Θ′, V ′(φ) = VB(φ) by induction on φ. We only consider the modal
cases as others are trivial:

If φ = □Iψ, as □Iψ ∈ Θ′, we have that ψ ∈ Θ′. Thus VB(□Iψ) =
□IVB(ψ) ∈ B′ and VB(ψ) ∈ B′.

V ′(□Iψ) = □′
IV

′(ψ)
= □′

IVB(ψ) (IH)
= □IVB(ψ) (By the definition of □′

I)
= VB(□Iψ).

If φ = □Mψ, as □Mψ ∈ Θ′, we have that □Iψ,ψ ∈ Θ′. Thus
VB(□Mψ) = □MVB(ψ) ∈ B′, VB(□Iψ) = □IVB(ψ) ∈ B′ and VB(ψ) ∈ B′.

4It is easy to check that for any S4 ⊗ K-algebra, it validates Mix iff it validates
□I□Mp ↔ □Mp and □M□Ip ↔ □Mp. In fact, in [38], Mix was simply defined to be
(□I□Mp↔ □Mp) ∧ (□M□Ip↔ □Mp).
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V ′(□Mψ) = □′
MV

′(ψ)
= □′

MVB(ψ) (IH)
= □MVB(ψ) (By the definition of □′

M )
= VB(□Mψ).

Since VB is a valuation which refutes Γ/∆ on B, V ′ is a valuation on
(B′,□I ,□M ) which refutes Γ/∆. As for any φ ∈ Θ′, V ′(φ) = VB(φ),
we have that DI = {VB(φ) | □Iφ ∈ Θ′} = {V ′(φ) | □Iφ ∈ Θ′} and
DM = {V ′(φ) | □Mφ ∈ Θ′}. As B′ is generated by VB(Θ

′) whose
cardinality is no larger than m, (B′,□′

I ,□
′
M , D

I , DM ) must be one of
(A1, D

I
1, D

M
1 ), ..., (An, D

I
n, D

M
n ). Since h : (B′,□′

I ,□
′
M ) → (B,□I ,□M ) is

a stable embedding satisfying CDC for DI and DM , we get what we want.
■

The above proposition is not a trivial generalization of [6, Thm. 5.1]
to bimodal cases as we require that every Ai should validate Mix. This is
quite crucial in the proof of Lemma 4.1.19 below. In fact, the above proof
gives a concrete example of how to do filtrations in polymodal cases when
there are interactions between different operators. It is far from clear how to
do so in general, and an answer to it will shed light on some open problems
about the finite model property of polymodal logics.

The above two propositions allow us to get the following result, which is
analogous to Theorem 3.1.7.

Proposition 4.1.6. For any bimodal multi-conclusion rule Γ/∆, there exist
tuples (A1, D

I
1, D

M
1 ), ... , (An, D

I
n, D

M
n ) such that each Ai is a finite S4 ⊗

K ⊕Mix-algebra, DI
i ⊆ Ai and DM

i ⊆ Ai, and for each S4 ⊗ K ⊕Mix-
algebra B = (B,□I ,□M ), we have that B ⊨ Γ/∆ iff B ⊨ µ(A1, D

I
1, D

M
1 ), ...,

µ(An, D
I
n, D

M
n ).

Then we introduce the category of bimodal spaces, which is dually equiv-
alent to the category of bimodal algebras. Similarly to Chapter 3, this dual-
ity allows us to obtain a geometric characterization of stable canonical rules
for bimodal logics, which makes our construction in the proof of Lemma
4.1.19 possible.

Definition 4.1.7. A bimodal space is a triple (X,RI , RM ) where (X,RI)
and (X,RM ) are modal spaces.

Let X,Y be bimodal spaces, a map h : X → Y is stable if for R ∈
{RI , RM} and any x, y ∈ X, xRy implies f(x)Rf(y). Furthermore, h is a
bounded morphism if h is stable, and for any x, y ∈ X, f(x)Ry implies that
there is a z ∈ X such that xRz and f(z) = y where R ∈ {RI , RM}.
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A valuation on a bimodal space X is a map V : Prop→ Clop(X) which
can be extended recursively to a map from Formbi to Clop(X) in the usual
way. For any bimodal logic L, a bimodal space X is an L-modal space if it
validates L. In particular, an S4 ⊗ K-modal space X = (X,RI , RM ) is a
bimodal space where (X,RI) is an S4-space and (X,RM ) is a modal space.

Let BMS be the category of bimodal spaces with continuous bounded
morphisms, and BMA be the category of bimodal algebras with their homo-
morphisms, the functor (−)∗ : BMA → BMS and (−)∗ : BMS → BMA
that establish the duality are constructed as follows. For a bimodal algebra
A = (A,□I ,□M ), let A∗ = (A∗, RI , RM ) where A∗ is the Stone space of A
and xRIy iff ∀□Ia ∈ A(□Ia ∈ x⇒ a ∈ y), and similarly we define RM . For
a bimodal space X = (X,RI , RM ), let X∗ = (X∗,□RI

,□RM
) where X∗ is

the Boolean algebra of clopen sets of X and □RI
U = {x ∈ X | RI [x] ⊆ U}.

Similarly we define □RM
. The duals of maps are the same as those in Esakia

duality (namely taking inverse images).

Theorem 4.1.8. BMA is dually equivalent to BMS, which is witnessed
by (−)∗ and (−)∗. In particular, for any bimodal algebra A, A ∼= (A∗)

∗

witnessed by β where β(a) = {x ∈ A∗ | a ∈ x}, and for any bimodal space
X, X ∼= (X∗)∗ witnessed by ϵ where ϵ(x) = {U ∈ X∗ | x ∈ U}.

Similarly to Theorem 3.3.4, when restricted to those validating S4⊗K,
the above theorem gives us the dual equivalence between the category of
S4⊗K-modal spaces with continuous bounded morphisms and the category
of S4⊗K-algebras with their homomorphisms.

Using Theorem 4.1.8, we can now easily exploit the geometric intuitions
about the stable canonical rules for bimodal logics. The proof of the one for
unimodal logics can be found in [6, Thm. 5.4].

Proposition 4.1.9. Let A = (A,□I ,□M ) be a finite bimodal algebra, DI ⊆
A and DM ⊆ A, and let B = (B,□I ,□M ) be a bimodal algebra, then
B ̸⊨ µ(A, DI , DM ) iff there is a continuous stable surjection f : XB → XA

satisfying CDC□ for any β(a) where a ∈ DI and for any β(b) where b ∈ DM 5.

Because of the above proposition, we are justified to write µ(A, DI , DM )
as µ(A∗,DI ,DM ) where DI = {β(a) | a ∈ DI} and DM = {β(b) | b ∈ DM}.
Besides, since A∗ is finite, every subset of A∗ is clopen and thus of the form
β(a) for some a ∈ A by Stone duality. Therefore, we are also justified to
write µ(Y,DI ,DM ) where Y is a finite bimodal space, and DI , DM are sets
of subsets of Y.

5CDC□ is given in Definition 3.3.9. When there is no ambiguity (in particular, for
bimodal logics), we may just write CDC instead of CDC□.
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4.1.2 The Gödel translation for intutionistic modal logics
and related constructions

Now we introduce the operations from modal Esakia spaces to S4⊗K-modal
spaces and vice versa. They are in essence the topological versions of those
defined in [38] for general frames, and have an intimate relation with the
Gödel translation.

For any S4 ⊗ K-modal space Y = (Y,RI , RM ,O), we write x ∽ y iff
xRIy and yRIy, and then define ρ : Y → P(Y ) by ρ(x) = {y ∈ Y | x ∽ y}.
And for convenience, we may also write [x] for ρ(x).

Definition 4.1.10.

• For any modal Esakia space X = (X,≤, R,O) where O is the topology,
we set σ(X ) = (X,RI , RM ,O) where RI =≤ and RM = R.

• For any S4 ⊗ K-modal space Y = (Y,RI , RM ,O), we set ρ(Y) =
(ρ[Y ],≤, [RI ◦ RM ◦ RI ], ρ[O]) where ρ(x) ≤ ρ(y) iff xRIy, ρ(x)[RI ◦
RM ◦RI ]ρ(y) iff xRI ◦RM ◦RIy

6 and ρ(O) is the quotient topology.

First, modal Esakia spaces have the following intrinsic property:

Proposition 4.1.11. For any modal Esakia space X = (X,≤, R,O), ≤
◦R = R◦ ≤= R, i.e., R =≤ ◦R◦ ≤.

Proof. By the duality given in Theorem 3.3.3, it suffices to prove that for
any modal Heyting algebra A = (A,□), the relation holds on its dual space
A∗. Namely, we need to prove that ⊆ ◦R◦ ⊆= R. Let x, y ∈ A∗ where
x ⊆ ◦R◦ ⊆ y, then there exists z, z′ ∈ A∗ such that x ⊆ z, zRz′ and z′ ⊆ y.
For any □a ∈ A, if □a ∈ x, then □a ∈ z. As zRz′, it follows that a ∈ z′

and thus a ∈ y. Therefore, xRy. We get ⊆ ◦R◦ ⊆= R (the other direction
is obvious). ■

Let Y = (Y,RI , RM ,O) be an S4 ⊗ K-modal space, we say U ⊆ Y
is an upset if it is an upset w.r.t the quasi-order RI , i.e., U = {y ∈ Y |
xRIy for some x ∈ U}. We can now check that the operations in Definition
4.1.10 transform modal Esakia spaces to bimodal spaces and vice versa.

Proposition 4.1.12. The following hold:

1) For any modal Esakia space X , we have that σ(X ) is an S4⊗K-modal
space.

6It is easy to check that they are well defined.
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2) For any S4⊗K-modal space Y, we have that ρ(Y) is a modal Esakia
space.

Proof. For 1), as X = (X,≤, R,O) is a modal Esakia space, (X,≤,O) is an
Esakia space. If we omit R, σ(X ) is defined exactly the same as that in [16,
Def. 2.43], which is well-known to be an S4-modal space. Thus we only need
to check that (X,RM ,O) is a modal space. For this, it suffices to prove that
if U ⊆ X is clopen, then □RM

U = □RU is also clopen. Let U be an arbitrary
clopen subset of X, as (X,≤,O) is an Esakia space, U =

⋃
1≤i≤n(Ui \ Vi)

where Ui, Vi’s are clopen upsets. □RU = □R(
⋃

1≤i≤n(Ui \ Vi)) = □R((U1 ∩
V̄1) ∪ ... ∪ (Un ∩ V̄n)). By distributivity, □RU = □R

⋂
1≤i≤k(U

′
i ∪ V̄ ′

i ) for
some k where U ′

i , V
′
i ’s are clopen upsets. Then □RU =

⋂
1≤i≤k □R(U

′
i ∪ V̄ ′

i ).
Now, for any 1 ≤ i ≤ k, as V ′

i → U ′
i ⊆ U ′

i ∪ V̄ ′
i , we have that □R(V

′
i →

U ′
i) ⊆ □R(U

′
i ∪ V̄ ′

i ). Suppose x ∈ □R(U
′
i ∪ V̄ ′

i ), then R[x] ⊆ U ′
i ∪ V̄ ′

i .
For any xRy and y ≤ z, as R◦ ≤= R by Proposition 4.1.11, xRz, and
thus z ∈ U ′

i ∪ V̄ ′
i . Therefore, y ∈ V ′

i → U ′
i , and thus R[x] ⊆ V ′

i → U ′
i ,

namely x ∈ □R(V
′
i → U ′

i). As x ∈ □R(U
′
i ∪ V̄ ′

i ) is arbitrary, we have that
□R(U

′
i ∪ V̄ ′

i ) ⊆ □R(V
′
i → U ′

i), and thus □R(U
′
i ∪ V̄ ′

i ) = □R(V
′
i → U ′

i). As
V ′
i and U ′

i are clopen upsets and (X,≤,O) is an Esakia space, V ′
i → U ′

i is a
clopen upset. As X is a modal Esakia space, by item 1 in Definition 3.3.1,
□R(U

′
i ∪ V̄ ′

i ) = □R(V
′
i → U ′

i) is clopen. □RU =
⋂

1≤i≤k □R(U
′
i ∪ V̄ ′

i ) is also
clopen.

For 2), let Y = (Y,RI , RM ,O) be an S4 ⊗K-modal space. If we omit
RM , ρ(Y) is defined exactly the same as that in [16, Def. 2.43], which is
well-known to be an Esakia space. Thus it suffices to check that for any
clopen upset U of ρ(Y), □[RI◦RM◦RI ]U is a clopen upset, and for any x ∈ Y ,
[RI ◦RM ◦RI ][ρ(x)] is a closed upset.

Let U be an arbitrary clopen upset of ρ(Y), as ρ(O) is the quotient
topology, ρ−1(U) is clopen. By the definition of ≤, ρ−1(U) is an upset
as U is an upset. Clearly, ρ−1(□[RI◦RM◦RI ]U) = □RI

□RM
□RI

ρ−1(U).
As ρ−1(U) is a clopen upset and Y is an S4 ⊕ K-modal space,
ρ−1(□[RI◦RM◦RI ]U) = □RI

□RM
□RI

ρ−1(U) is clopen. As RI is transitive,
obviously □RI

□RM
□RI

ρ−1(U) is an upset. Therefore, ρ−1(□[RI◦RM◦RI ]U)
is a clopen upset, so is □[RI◦RM◦RI ]U .

Let x ∈ Y be arbitrary, clearly, [RI ◦RM ◦RI ][ρ[x]] is an upset. By the
definition of ≤,

⋃
[RI ◦RM ◦RI ][ρ[x]] = (RI ◦RM ◦RI)[x] = RI [RM [RI [x]]].

By the definition of modal spaces, RI [x] is closed. As Y is an S4 ⊗ K-
modal space, RM [RI [x]] is also closed7, so is RI [RM [RI [x]]]. Therefore,
[RI ◦RM ◦RI ][ρ(x)] is a closed upset.

7It is known that for any modal space X, if U is closed, then R[U ] is also closed:
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■

Now, by duality, we can also give the dual of σ and ρ as follows. Let
A be an arbitrary modal Heyting algebra, A∗ is a modal Esakia space by
the duality given in Theorem 3.3.3. σ(A∗) is an S4 ⊗ K-modal space by
Proposition 4.1.12. By Theorem 4.1.8, σ(A∗)

∗ is an S4⊗K-algebra. We set
σ(A) = σ(A∗)

∗ for any modal Heyting algebra A. σ is then a map from the
class of modal Heyting algebras to the class of S4⊗K-algebras. Similarly,
we define ρ(B) = ρ(B∗)

∗ for any S4⊗K-algebra. ρ is then a map from the
class of S4⊗K-modal algebras to the class of modal Heyting algebras.

Then we can get the following proposition which says that the algebraic
σ, ρ and the geometric σ, ρ are dual to each other respectively.

Proposition 4.1.13. The following hold:

1) For any modal Heyting algebra A, (σ(A))∗ ∼= σ(A∗). Consequently,
σ((X )∗) ∼= (σ(X ))∗ for any modal Esakia space X .

2) For any S4⊗K-algebra B, (ρ(B))∗ ∼= ρ(B∗). Consequently, (ρ(X))
∗ ∼=

ρ(X∗) for any S4⊗K-modal space X.

Proof. Simply by the definitions of σ and ρ and the duality.
■

Besides, since R =≤ ◦R◦ ≤ for any modal Esakia space X = (X,≤
, R,O), the following proposition is straightforward.

Proposition 4.1.14. For any modal Esakia space X = (X,≤, R,O),
ρ(σ(X )) ∼= X . Consequently, for any modal Heyting algebra A, ρ(σ(A)) ∼= A.

The above proposition is the analogue to the first half of [16, Prop.
2.45]. For the second half of [16, Prop. 2.45], the analogue does not hold
for S4⊗K-algebras in general. We need an extra assumption.

Proposition 4.1.15. If B = (B,□I ,□M ) is an S4⊗K⊕Mix-algebra, then
there is a homomorphic embedding of σ(ρ(B)) into B (usually denoted as
σ(ρ(B)) ↣ B).

suppose x ̸∈ R[U ], then ♢R{x} ∩ U = ∅. ♢R{x} = ♢R

⋂
{Y | x ∈ Y ∈ Clop(X)}. By

Esakia Lemma, ♢R

⋂
{Y | x ∈ Y ∈ Clop(X)} =

⋂
{♢RY | x ∈ Y ∈ Clop(X)}. Thus⋂

{♢RY | x ∈ Y ∈ Clop(X)}∩U = ∅. By compactness, U ∩♢RY1∩ ...∩♢RYn = ∅ for some
x ∈ Y1, ..., Yn ∈ Clop(X). As ♢R(Y1∩...∩Yn) ⊆ ♢RY1∩...∩♢RYn, U∩♢R(Y1∩...∩Yn) = ∅.
As x ∈ Y1 ∩ ... ∩ Yn is clopen and Y1 ∩ ... ∩ Yn ∩R[U ] = ∅, R[U ] is closed.
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Proof. Let B be an S4 ⊗ K-algebra which validates □I□M□Ip ↔ □Mp.
By duality given in Theorem 4.1.8, B∗ is an S4⊗K-modal space on which
RI ◦ RM ◦ RI = RM , and it suffices to show that there is a surjective
continuous bounded morphism from B∗ onto (σ(ρ(B)))∗. By Proposition
4.1.14, (σ(ρ(B)))∗ ∼= σ(ρ(B∗)). We check that x 7→ [x] is a surjective
continuous bounded morphism from X = (X,RI , RM ,O) onto σ(ρ(X)) for
any S4⊗K-modal space X on which RI ◦RM ◦RI = RM .

Clearly, the map is surjective and continuous (the topology is the quo-
tient topology). If xRIy, then by definition [x] ≤ [y]; If [x] ≤ [y], then by
definition xRIy. Suppose xRMy, then as RI is reflexive, xRI ◦RM ◦RIy and
thus [x][RI ◦RM ◦RI ][y]. Suppose [x][RI ◦RM ◦RI ][y], then xRI ◦RM ◦RIy
by definition. As RI ◦RM ◦RI = RM , xRMy. This proves that the map is
a bounded morphism.

■

Now, we introduce the Gödel translation for intuitionistic modal logics,
which is given in [38].

Definition 4.1.16. The Gödel translation for intuitionistic modal logics
t : Formi□ → Formbi is recursively defined as follows:

• t(p) = □Ip where p is a propositional variable

• t(⊥) = □I⊥

• t(⊤) = □I⊤

• t(φ→ ψ) = □I(t(φ) → t(ψ))

• t(φ ∧ ψ) = □I(t(φ) ∧ t(ψ))

• t(φ ∨ ψ) = □I(t(φ) ∨ t(ψ))

• t(□φ) = □I□M t(φ)

It turns out that for the following results to hold, it makes no difference
if we define t(φ∧ψ) = t(φ)∧ t(ψ) and t(φ∨ψ) = t(φ)∨ t(ψ) instead. When
restricted to the set of intuitionistic propositional formulas, t is just the well-
known Gödel translation. For any intuitionistic modal multi-conclusion rule
Γ/∆, we write t(Γ/∆) for {t(γ) | γ ∈ Γ}/{t(δ) | δ ∈ ∆}.

The following proposition is the counterpart to [27, Lem. 3.13].

Proposition 4.1.17. If A is an S4⊗K-algebra, then A ⊨ t(Γ/∆) iff ρ(A) ⊨
Γ/∆.
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Proof. By Theorem 4.1.8, A ⊨ Γ/∆ iff A∗ ⊨ Γ/∆ and ρ(A) ⊨ Γ/∆ iff ρ(A∗) =
ρ(A)∗ ⊨ Γ/∆. Thus, it suffices to prove that for any S4 ⊗ K-modal space
X = (X,RI , RM ,O), (X,RI , RM ,O) ⊨ t(Γ/∆) iff ρ(X,RI , RM ,O) ⊨ Γ/∆.

For the left-to-right direction, suppose ρ(X,RI , RM ,O) ̸⊨ Γ/∆, there is
a valuation V on ρ(X,RI , RM ,O) such that V (φ) = ρ[X] for any φ ∈ Γ
and V (ψ) ̸= ρ[X] for any ψ ∈ ∆. Since V (p) is a clopen upset in
ρ(X,RI , RM ,O) for any propositional variable p, ρ−1(V (p)) is a clopen upset
in (X,RI , RM ,O). We define a valuation V ′ on (X,RI , RM ,O) by setting
V ′(p) = ρ−1(V (p)). Then we prove by induction that for any formula φ,
V ′(t(φ)) = ρ−1(V (φ)) (note that V (φ) is a clopen upset for any formula φ):

If φ = p for some propositional variable p, V ′(t(p)) = V ′(□Ip) =
□IV

′(p) = □Iρ
−1(V (p)). As ρ−1(V (p)) is an upset and RI is reflexive,

□Iρ
−1(V (p)) = ρ−1(V (p)). Thus V ′(t(p)) = ρ−1(V (p)).
If φ = ⊥, V ′(t(⊥)) = V ′(□I⊥) = □IV

′(⊥) = ∅ = ρ−1(V (⊥)); if φ = ⊤,
V ′(t(⊤)) = V ′(□I⊤) = □IV

′(⊤) = X = ρ−1(ρ[X]) = ρ−1(V (⊤)).
If φ = ψ ∧ θ,
V ′(t(ψ ∧ θ)) = V ′(□I(t(ψ) ∧ t(θ)))

= □IV
′(t(ψ) ∧ t(θ))

= □I(V
′(t(ψ)) ∩ V ′(t(θ)))

= □I(ρ
−1(V (ψ)) ∩ ρ−1(V (θ))) (IH)

= □Iρ
−1(V (ψ) ∩ V (θ))

= □Iρ
−1(V (ψ ∧ θ))

= ρ−1(V (ψ ∧ θ)).
Note that the last equality holds as ρ−1(V (ψ ∧ θ)) is an upset and RI is

reflexive. The case when φ = ψ ∨ θ is similar.
If φ = ψ → θ, V ′(t(ψ → θ)) = V ′(□I(t(ψ) → t(θ))) = □I(V

′(t(ψ)) →
V ′(t(θ))) = □I(X \ V ′(t(ψ)) ∪ V ′(t(θ))). By IH, V ′(t(ψ)) = ρ−1(V (ψ))
and V ′(t(θ)) = ρ−1(V (θ)). Thus V ′(t(ψ → θ)) = □I(X \ ρ−1(V (ψ)) ∪
ρ−1(V (θ))) = □I(ρ

−1(ρ[X]\V (ψ)∪V (θ))) (note V (ψ) and V (θ) are upsets).
Suppose x ∈ ρ−1(ρ[X]\↓(V (ψ)\V (θ))), then ρ(x) ∈ ρ[X]\↓(V (ψ)\V (θ)).

For any xRIy, by definition ρ(x) ≤ ρ(y), and thus ρ(y) ̸∈ V (ψ) \ V (θ). As
xRIy is arbitrary, we have that x ∈ □I(ρ

−1(ρ[X] \ V (ψ) ∪ V (θ))), and
thus ρ−1(ρ[X] \ ↓(V (ψ) \ V (θ))) ⊆ □I(ρ

−1(ρ[X] \ V (ψ) ∪ V (θ))). Suppose
x ∈ □I(ρ

−1(ρ[X]\V (ψ)∪V (θ))) while x ̸∈ ρ−1(ρ[X]\↓(V (ψ)\V (θ))). Then
ρ(x) ̸∈ ρ[X] \ ↓(V (ψ) \ V (θ))), there exists ρ(x) ≤ ρ(y) such that ρ(y) ∈
V (ψ)\V (θ). Thus y ̸∈ ρ−1(ρ[X]\V (ψ)∪V (θ)), and by definition xRIy. This
contradicts the assumption that x ∈ □I(ρ

−1(ρ[X]\V (ψ)∪V (θ))). Therefore,
if x ∈ □I(ρ

−1(ρ[X]\V (ψ)∪V (θ))), then x ∈ ρ−1(ρ[X]\↓(V (ψ)\V (θ))). Thus
□I(ρ

−1(ρ[X]\V (ψ)∪V (θ))) ⊆ ρ−1(ρ[X]\↓(V (ψ)\V (θ))), and □I(ρ
−1(ρ[X]\
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V (ψ)∪V (θ))) = ρ−1(ρ[X]\↓(V (ψ)\V (θ))). As ρ−1(ρ[X]\↓(V (ψ)\V (θ))) =
ρ−1(V (ψ → θ)), this proves that V ′(t(ψ → θ)) = ρ−1(V (ψ → θ)).

If φ = □ψ, V ′(t(□ψ)) = V ′(□I□M t(ψ)) = □I□MV
′(t(ψ)) =

(By IH) □I□Mρ
−1(V (ψ)). And ρ−1(V (□ψ)) = ρ−1(□[RI◦RM◦RI ]V (ψ)) =

□I ◦□M ◦□Iρ
−1(V (ψ)). As V (ψ) is an upset, so is ρ−1(V (ψ)). And since RI

is reflexive, □Iρ
−1(V (ψ)) = ρ−1(V (ψ)), and thus □I ◦□M ◦□Iρ

−1(V (ψ)) =
□I ◦□Mρ

−1(V (ψ)). We have that V ′(t(□ψ)) = ρ−1(V (□ψ)). This finishes
the induction.

Since V ′(t(φ)) = ρ−1(V (φ)), V ′(t(φ)) = X for any φ ∈ Γ as V (φ) =
ρ[X]; V ′(t(ψ)) ̸= X for any ψ ∈ ∆ as V (ψ) ̸= ρ[X]. Thus V ′ is a valuation
on (X,RI , RM ,O) which refutes t(Γ/∆), (X,RI , RM ,O) ̸⊨ t(Γ/∆).

For the right-to-left direction, suppose (X,RI , RM ,O) ̸⊨ t(Γ/∆), there is
a valuation V on (X,RI , RM ,O) such that V (t(φ)) = X for any φ ∈ Γ and
V (t(ψ)) ̸= X for any ψ ∈ ∆. Define V ′(p) = ρ[V (□Ip)] = ρ[□IV (p)] for any
propositional variable p. As □IV (p) is a clopen upset in (X,RI , RM ,O), so
ρ[□IV (p)] is a clopen upset in ρ(X,RI , RM ,O). Thus V ′ is indeed a valu-
ation on ρ(X,RI , RM ,O). We prove by induction that V ′(φ) = ρ[V (t(φ))]
for any formula φ.

The cases when φ is a propositional letters, ⊥ or ⊤ are easy.
If φ = ψ ∨ θ, V ′(ψ ∨ θ) = V ′(ψ) ∪ V ′(θ) = (By IH) ρ[V (t(ψ))] ∪

ρ[V (t(θ)))] = ρ[V (t(ψ)) ∪ V (t(θ))] = ρ[V (t(ψ) ∨ t(θ))]. As V (t(φ)) is an
upset for any formula φ, so V (t(ψ) ∨ t(θ)) = V (t(ψ)) ∪ V (t(θ)) is an up-
set. Thus ρ[V (t(ψ)∨ t(θ))] = ρ[□IV (t(ψ)∨ t(θ))] = ρ[V (□I(t(ψ)∨ t(θ)))] =
ρ[V (t(ψ ∨ θ))]. The case when φ = ψ ∧ θ is similar.

If φ = ψ → θ, V ′(ψ → θ) = ρ[X] \ ↓(V ′(ψ) \ V ′(θ)) = (By IH) ρ[X] \
↓(ρ[V (t(ψ))] \ ρ[V (t(θ))]). And ρ(V (t(ψ → θ))) = ρ(V (□I(t(ψ) → t(θ)))) =
ρ[□I(X \ V (t(ψ)) ∪ V (t(θ)))]. Now suppose ρ(x) ∈ ρ[X] \ ↓(ρ[V (t(ψ))] \
ρ[V (t(θ))]), namely ρ(x) ̸∈ ↓(ρ[V (t(ψ))] \ ρ[V (t(θ))]). As V (t(ψ)) and
V (t(θ)) are upsets, ρ[V (t(ψ))] \ ρ[V (t(θ))] = ρ[V (t(ψ)) \ V (t(θ))]8. Thus
for any xRIy, by definition ρ(x) ≤ ρ(y), thus ρ(y) ̸∈ ρ[V (t(ψ)) \ V (t(θ))],
and y ̸∈ V (t(ψ)) \ V (t(θ)). Therefore, x ∈ □I(X \ V (t(ψ)) ∪ V (t(θ))), and
ρ(x) ∈ ρ[□I(X \ V (t(ψ)) ∪ V (t(θ)))]. This proves that ρ[X] \ ↓(ρ[V (t(ψ))] \
ρ[V (t(θ))]) ⊆ ρ[□I(X \ V (t(ψ)) ∪ V (t(θ)))].

For the other inclusion, suppose ρ(x) ∈ ρ[□I(X\V (t(ψ))∪V (t(θ)))] while
ρ(x) ∈ ↓(ρ[V (t(ψ))]\ρ[V (t(θ))]). Then x ∽ y for some y ∈ □I(X \V (t(ψ))∪
V (t(θ))), and thus x ∈ □I(X \ V (t(ψ))∪ V (t(θ))). As ρ(x) ∈ ↓(ρ[V (t(ψ))] \

8ρ[X \ Y ] = ρ[X] \ ρ[Y ] for any upsets X, Y: clearly, ρ[X] \ ρ[Y ] ⊆ ρ[X \ Y ]. Suppose
a ∈ ρ[X \ Y ], there is x ∈ X \ Y such that a = ρ(x). As X,Y are upsets, for any
x ∽ x′, x′ ̸∈ Y . Thus ρ(x) ̸∈ ρ[Y ], a = ρ(x) ∈ ρ[X] \ ρ[Y ]. Thus ρ[X \ Y ] ⊆ ρ[X] \ ρ[Y ],
ρ[X \ Y ] = ρ[X] \ ρ[Y ].
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ρ[V (t(θ))]), there exists ρ(x) ≤ ρ(z) such that ρ(z) ∈ ρ[V (t(ψ))]\ρ[V (t(θ))].
There exists z′ ∈ V (t(ψ)) \ V (t(θ)) such that ρ(z) = ρ(z′). As ρ(x) ≤ ρ(z′),
xRIz

′, which contradicts the fact that x ∈ □I(X \V (t(ψ))∪V (t(θ))). Thus
if ρ(x) ∈ ρ[□I(X \V (t(ψ))∪V (t(θ)))], then ρ(x) ̸∈ ↓(ρ[V (t(ψ))]\ρ[V (t(θ))]),
namely ρ[□I(X \V (t(ψ))∪V (t(θ)))] ⊆ ρ[X] \ ↓(ρ[V (t(ψ))] \ρ[V (t(θ))]). We
thus have that ρ[□I(X\V (t(ψ))∪V (t(θ)))] = ρ[X]\↓(ρ[V (t(ψ))]\ρ[V (t(θ))]).
This proves that V ′(ψ → θ) = ρ(V (t(ψ → θ))).

If φ = □ψ, V ′(□ψ) = □[RI◦RM◦RI ]V
′(ψ) = (IH)□[RI◦RM◦RI ]ρ[V (t(ψ)].

And ρ[V (t(□ψ))] = ρ[V (□I□M t(ψ))] = ρ[□I□MV (t(ψ))]. Suppose a ∈
ρ[□I□MV (t(ψ))], then a = ρ(x) for some x ∈ □I□MV (t(ψ)) . As V (t(ψ))
is an upset, x ∈ □I□MV (t(ψ)) = □I□M□IV (t(ψ)). Thus a = ρ(x) ∈
□[RI◦RM◦RI ]ρ[V (t(ψ))]. As a ∈ ρ[□I□MV (t(ψ))] is arbitrary, we have that
ρ[□I□MV (t(ψ))] ⊆ □[RI◦RM◦RI ]ρ[V (t(ψ))].

For the other inclusion, suppose ρ(x) ∈ □[RI◦RM◦RI ]ρ[V (t(ψ))] while
x ̸∈ □I□M□IV (t(ψ)) = □I□MV (t(ψ)), then there exist xRIx1, x1RMx2
and x2RIy such that y ̸∈ V (t(ψ)). Thus, ρ(x)[RI◦RM◦RI ]ρ(y) by definition.
As V (t(ψ)) is an upset, ρ(y) ̸∈ ρ[V (t(ψ))] which contradicts the assumption
that ρ(x) ∈ □[RI◦RM◦RI ]ρ[V (t(ψ))]. Thus if ρ(x) ∈ □[RI◦RM◦RI ]ρ[V (t(ψ))],
then ρ(x) ∈ ρ[□I□MV (t(ψ))]. Therefore, □[RI◦RM◦RI ]ρ[V (t(ψ))] ⊆
ρ[□I□MV (t(ψ))], and thus □[RI◦RM◦RI ]ρ[V (t(ψ))] = ρ[□I□MV (t(ψ))].
This proves that V ′(□ψ) = ρ[V (t(□ψ))] and finishes the induction.

Now as V (t(φ)) = X for any φ ∈ Γ, V ′(φ) = ρ[V (t(φ))] = ρ[X] for
any φ ∈ Γ. As V (t(ψ)) ̸= X for any ψ ∈ ∆ and V (t(ψ)) is an upset,
V ′(ψ) = ρ[V (t(ψ))] ̸= ρ[X] for any ψ ∈ ∆. Thus V ′ is a valuation on
ρ(X,RI , RM ,O) which refutes Γ/∆. Therefore, ρ(X,RI , RM ,O) ̸⊨ Γ/∆.

■

When restricted to formulas, the above proposition is exactly [38, Lem.
5] or [37, Lem. 19] in algebraic terms. Thus it is a generalization of that
result from formulas to multi-conclusion rules. Now we define the modal
companions for intuitionistic modal logics. This concept connects intuition-
istic modal logics with bimodal logics via the Gödel translation.

Definition 4.1.18. Let L ∈ NExt(IntKR
□) and M ∈ NExt(S4 ⊗ KR).

Then M is a modal companion of L if Γ/∆ ∈ L ⇐⇒ t(Γ/∆) ∈ M .
Moreover, let L ∈ NExt(IntK□) and M ∈ NExt(S4 ⊗ K), then M is a
modal companion of L if φ ∈ L ⇐⇒ t(φ) ∈M .

We then define the following maps between the lattices NExt(IntKR
□)

and NExt(S4⊗KR). The analogues of them for the lattices of superintu-
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itionistic logics and classical modal logics over S4 are quite well-known and
can be found in many textbooks on modal logic. See [15] for more details.

τ : NExt(IntKR
□) → NExt(S4⊗K⊕MixR)

τ(L) = S4⊗K⊕MixR ⊕ {t(Γ/∆) | Γ/∆ ∈ L}

σ : NExt(IntKR
□) → NExt(Grz⊗K⊕MixR)

σ(L) = Grz⊗K⊕MixR ⊕ {t(Γ/∆) | Γ/∆ ∈ L}

ρ : NExt(S4⊗KR) → NExt(IntKR
□)

ρ(M) = {Γ/∆ | t(Γ/∆) ∈M}9

Similarly, these maps can be defined for logics:

τ : NExt(IntK□) → NExt(S4⊗K⊕Mix)

τ(L) = S4⊗K⊕Mix⊕ {t(φ) | φ ∈ L}

σ : NExt(IntK□) → NExt(Grz⊗K⊕Mix)

σ(L) = Grz⊗K⊕Mix⊕ {t(φ) | φ ∈ L}

ρ : NExt(S4⊗K) → NExt(IntK□)

ρ(M) = {φ | t(φ) ∈M}

Semantically, we can extend the algebraic mappings σ and ρ (given below
Proposition 4.1.12) to universal classes:

σ : Uni(MHA) → Uni(S4⊗K)

σ(A) = Uni({σ(A) | A ∈ A})

ρ : Uni(S4⊗K) → Uni(MHA)

9To see why ρ(M) ∈ NExt(IntKR
□), note that t(Γ/∆) ∈ M iff (by Theorem 2.4.7)

Alg(M) ⊨ t(Γ/∆) iff (by Proposition 4.1.17) {ρ(A) | A ∈ Alg(M)} ⊨ Γ/∆ iff Uni({ρ(A) |
A ∈ Alg(M)}) ⊨ Γ/∆ iff (by Theorem 2.5.6) Γ/∆ ∈ Ru(Uni({ρ(A) | A ∈ Alg(M)})).
Thus ρ(M) = Ru(Uni({ρ(A) | A ∈ Alg(M)})) ∈ NExt(IntKR

□). Similarly we can show
that ρ(M) ∈ NExt(IntK□) where M ∈ NExt(S4⊗K).
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ρ(W) = {ρ(A) | A ∈ W}

We can also define the semantic analogue to τ as follows:

τ : Uni(MHA) → Uni(S4⊗K⊕Mix)

τ(A) = {A is a S4⊗K ⊕Mix-algebra | ρ(A) ∈ A}10.

4.1.3 Proof of the Blok-Esakia theorem

Now, we can start with the following lemma which is the counterpart to [16,
Lem. 2.50] and plays a key role in the proof of the Blok-Esakia theorem.

Lemma 4.1.19. Let A be a Grz ⊗K ⊕Mix-algebra, then for any bimodal
multi-conclusion rule Γ/∆, we have that

A ⊨ Γ/∆ iff σ(ρ(A)) ⊨ Γ/∆.

Proof. For the left-to-right direction, by Proposition 4.1.15, σ(ρ(A)) ↣ A.
Thus, the result follows immediately.

For the right-to-left direction, we prove that if A∗ ̸⊨ Γ/∆, then
σ(ρ(A))∗ ̸⊨ Γ/∆. By Proposition 4.1.13, σ(ρ(A))∗ = σ(ρ(A)∗) = σ(ρ(A∗)).
And by Proposition 4.1.6, we can assume that Γ/∆ = µ(B, DI , DM ) where
B is a finite S4 ⊗K-algebra which validates Mix and DI , DM ⊆ B. Sup-
pose A∗ ̸⊨ µ(B, DI , DM ) where RI ◦ RM ◦ RI = RM on A∗ as A vali-
dates Mix, then by Proposition 4.1.9, there is a continuous stable surjection
f : A∗ → B∗ satisfying CDC for {β(a) | a ∈ DI} and {β(b) | b ∈ DM}.
We construct a continuous stable surjection g : σ(ρ(A∗)) → B∗ satisfying
CDC for {β(a) | a ∈ DI} and {β(b) | b ∈ DM}, and this would show that
σ(ρ(A∗)) ̸⊨ µ(B, DI , DM ) by Proposition 4.1.9 and thus finish the proof.

We use the construction in the proof of [16, Lem. 2.50]. Let C ⊆ B∗
be an RI -cluster, consider ZC = f−1(C). As f is continuous, ZC is clopen
in A∗. Since f is stable, ZC does not cut any RI -cluster. As σ(ρ(A∗)) has
the quotient topology, ρ[ZC ] is clopen. Assume C = {x1, ...xn} (note B∗ is
finite), f−1(xi) ⊆ ZC is clopen. As A∗ is a Grz ⊗K-space, by Proposition
2.6.13, we have that Mi = maxRI

(f−1(xi)) is closed and Mi does not cut

10It is easy to check that ρ(W) is always a universal class by Proposition 4.1.17. To see
that τ(A) a universal class, note that A ∈ Alg(τ(Ru(A))) (here τ is the syntactic one as
you can tell) iff A is a S4⊗K ⊕Mix-algebra such that A ⊨ t(Γ/∆) for any Γ/∆ ∈ Ru(A)
iff (by Proposition 4.1.17) A is a S4 ⊗ K ⊕Mix-algebra such that ρ(A) ⊨ Γ/∆ for any
Γ/∆ ∈ Ru(A) iff (by Theorem 2.5.6) A is a S4⊗K ⊕Mix-algebra such that ρ(A) ∈ A iff
A ∈ τ(A). Thus τ(A) = Alg(τ(Ru(A))) is a universal class.
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any RI -cluster. As σ(ρ(A∗)) has the quotient topology, ρ[Mi] is closed. And
for i ̸= j, ρ[Mi] ∩ ρ[Mj ] = ∅.

Then we find disjoint clopen sets U1, ..., Un of σ(ρ(A∗)) with ρ[Mi] ⊆ Ui

and
⋃

i Ui = ρ[ZC ]. Let k ≤ n and assume that Ui has been defined for
all i < k. If k = n, let Un = ρ[ZC ] \ (

⋃
i<k Ui). Otherwise, let Vk =

ρ[ZC ]\(
⋃

i<k Ui) and note that Vk contains ρ[Mi] for k ≤ i ≤ n. As σ(ρ(A∗))
is a Stone space, by its separation properties, for each k < i ≤ n, there is a
clopen set Uki of σ(ρ(A∗)) such that ρ[Mk] ⊆ Uki and ρ[Mi]∩Uki = ∅. Then
let Uk =

⋂
k<i≤n Uki ∩Vk. Now define gC : ρ[ZC ] → C as follows: gC(z) = xi

iff z ∈ Ui. Finally, define g : σ(ρ(A∗)) → B∗ as follows:

g(ρ(z)) =

{
f(z) if f(z) does not belong to any proper RI -cluster

gC(ρ(z)) where C is the proper RI -cluster containing f(z)

As shown in the proof of [16, Lem. 2.50], g is surjective, continuous, and
relation-preserving w.r.t RI , and satisfies CDC for {β(a) | a ∈ DI}. We
only need to check that g is relation-preserving w.r.t RM and satisfies CDC
for {β(b) | b ∈ DM}.

As B validates Mix, RI ◦ RM ◦ RI = RM on B∗. Now suppose
ρ(a)RMρ(b), as f is stable, f(a)RMf(b). Since for any z, f(z) and
g(ρ(z)) are mapped to the same RI -cluster, in any case, g(ρ(a))RIf(a) and
f(b)RIg(ρ(b)). As RI ◦RM ◦RI = RM on B∗, g(ρ(a))RMg(ρ(b)). g is thus
relation-preserving w.r.t RM .

Suppose g(ρ(x))RMy where y ∈ δ for some δ ∈ {δb | b ∈ DM}11. As
g(ρ(x)) and f(x) belong to the same RI -cluster and RI ◦ RM ◦ RI = RM

on B∗, it follows that f(x)RMy. Since f satisfies CDC for {β(b) | b ∈
DM}, there exists z ∈ A∗ such that xRMz and f(z) ∈ δ. Since f−1(f(z))
is clopen in A∗, there exists z′ ∈ maxRI

f−1(f(z)) such that zRIz
′. As

RI ◦ RM ◦ RI = RM on A∗, we have that xRMz
′ and f(z′) ∈ δ. And from

z′ ∈ maxRI
f−1(f(z)), it follows that f(z′) = g(ρ(z′)) by construction, and

thus g(ρ(z′)) ∈ δ. As xRMz
′, ρ(x)[RI ◦ RM ◦ RI ]ρ(z

′), g satisfies CDC for
{β(b) | b ∈ DM}.

■

Compared to that of [16, Lem. 2.50], in the above proof, we have to
exploit the assumption that B validates Mix heavily, which is only given
by Proposition 4.1.6.

Theorem 4.1.20. For every A ∈ Uni(Grz⊗K⊕Mix), σ(ρ(A)) = A.

11Note that δb is just the (set-theoretic) complement of β(b) as defined in the prelimi-
naries.
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Proof. By Proposition 4.1.15, for every A ∈ A, σ(ρ(A)) ↣ A. Thus
σ(ρ(A)) ⊆ A. Now, suppose A ⊭ Γ/∆, there is A ∈ A such that
A ̸⊨ Γ/∆. As A validates Mix, by Lemma 4.1.19, we have σ(ρ(A)) ̸⊨ Γ/∆.
Thus Ru(σ(ρ(A))) ⊆ Ru(A), by Theorem 2.4.7, A ⊆ σ(ρ(A)). Thus
σ(ρ(A)) = A.

■

The above theorem is the counterpart to [35, Lem. 4.4], which was also
proved later by the method of stable canonical rules in [16, Thm. 2.51].
Having this theorem, the following results can be obtained by well-known
routine arguments shown in [16] and [27] for example.

Lemma 4.1.21. For each L ∈ NExt(IntKR
□) and M ∈ NExt(S4⊗KR),

the following hold:

• Alg(τ(L)) = τ(Alg(L))

• Alg(σ(L)) = σ(Alg(L))

• Alg(ρ(M)) = ρ(Alg(M))

Proof. For any S4⊗K ⊕Mix-algebra A, A ∈ Alg(τ(L)) iff A ⊨ t(Γ/∆) for
any Γ/∆ ∈ L iff (by Proposition 4.1.17)ρ(A) ⊨ Γ/∆ for any Γ/∆ ∈ L iff
ρ(A) ∈ Alg(L) iff A ∈ τ(Alg(L)). Thus Alg(τ(L)) = τ(Alg(L)).

For the second one, for any modal Heyting algebra A, A∗ is a modal
Esakia space. By Proposition 4.1.11, we know that σ(A∗) validates Mix.
For any modal Esakia space X = (X,≤, R,O), by definition (X,≤, R) is
just an Esakia space. If we dismiss R, then σ operates on (X,≤, R) exactly
the same way as that in [16, Def. 3.32], which is known to give us a Grz-
space. Thus σ(A∗) is a Grz⊗K⊕Mix-modal space. By Proposition 4.1.13,
(σ(A))∗ ∼= σ(A∗), and thus σ(A) is a Grz ⊗ K ⊕Mix-algebra. Therefore,
by Theorem 4.1.20, it suffices to prove that for any A = σ(ρ(A)) which is a
Grz ⊗K ⊕Mix-algebra, A ∈ Alg(σ(L)) iff A ∈ σ(Alg(L)).

Suppose A = σ(ρ(A)) ∈ σ(Alg(L)) where A is a Grz ⊗ K ⊕ Mix-
algebra. For any B ∈ Alg(L), we have that B ⊨ Γ/∆ for any Γ/∆ ∈ L.
By Proposition 4.1.14, ρ(σ(B)) ⊨ Γ/∆. Then by Proposition 4.1.17,
σ(B) ⊨ t(Γ/∆) for any B ∈ Alg(L) and Γ/∆ ∈ L. As σ(Alg(L)) is gen-
erated by {σ(B) | B ∈ Alg(L)}, we have that σ(Alg(L)) ⊨ t(Γ/∆) for any
Γ/∆ ∈ L. Thus A ⊨ t(Γ/∆) for any Γ/∆ ∈ L, namely A ∈ Alg(σ(L)). For
the other direction, suppose A ∈ Alg(σ(L)), A ⊨ t(Γ/∆) for any Γ/∆ ∈ L.
By Proposition 4.1.17, ρ(A) ⊨ Γ/∆ for any Γ/∆ ∈ L. Thus ρ(A) ∈ Alg(L),
A = σ(ρ(A)) ∈ σ(Alg(L)).
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For the third one, let A be a modal Heyting algebra, if A ∈ ρ(Alg(M)),
then A = ρ(B) for some B ∈ Alg(M). For any t(Γ/∆) ∈ M , we have that
B ⊨ t(Γ/∆). By Proposition 4.1.17, A = ρ(B) ⊨ Γ/∆ for any t(Γ/∆) ∈M .
Thus A ∈ Alg(ρ(M)). This proves that ρ(Alg(M)) ⊆ Alg(ρ(M)). For
the other direction, if ρ(Alg(M)) ⊨ Γ/∆, then by Proposition 4.1.17,
Alg(M) ⊨ t(Γ/∆). Thus t(Γ/∆) ∈ M , and Γ/∆ ∈ ρ(M). We have
that Ru(ρ(Alg(M))) ⊆ ρ(M), and thus by Theorem 2.5.6, Alg(ρ(M)) ⊆
ρ(Alg(M)). Therefore, Alg(ρ(M)) = ρ(Alg(M))

■

The above lemma is the analogue to [27, Thm. 5.9], whose proof, as
we can see, heavily depends on Proposition 4.1.17. We then can give a
characterization of modal companions of an intuitionistic modal logic as
that in [16, Lem. 2.53].

Proposition 4.1.22. For any L ∈ NExt(IntKR
□), we have that M ∈

NExt(S4⊗KR) is a modal companion of L iff Alg(L) = ρ(Alg(M))

Proof. For the left-to-right direction, if M is a modal companion of L, then
L = ρ(M). Thus Alg(L) = Alg(ρ(M)) = ρ(Alg(M)) by the above lemma.
For the other direction, assume Alg(L) = ρ(Alg(M)), then Γ/∆ ∈ L iff
Alg(L) ⊨ Γ/∆ iff ρ(Alg(M)) ⊨ Γ/∆ iff (by Proposition 4.1.17) Alg(M) ⊨
t(Γ/∆) iff (by Theorem 2.4.7) t(Γ/∆) ∈ M . M is thus a modal companion
of L.

■

The following proposition is a generalization of [37, Thm. 27] from logics
to multi-conclusion consequence relations.

Proposition 4.1.23. For every L ∈ NExt(IntKR
□), the modal companion

of L which contains Mix form an interval {M ∈ NExt(S4⊗K⊕MixR) |
τ(L) ⊆M ⊆ σ(L)}.

Proof. By Lemma 4.1.21, it suffices to prove that for any M ∈ NExt(S4⊗
K ⊕ MixR), we have that M is a modal companion of L iff σ(Alg(L)) ⊆
Alg(M) ⊆ τ(Alg(L)).

For the left-to-right direction, assume M is a modal companion of L
which contains Mix. By Proposition 4.1.22, Alg(L) = ρ(Alg(M)). For any
A ∈ Alg(M), we have that ρ(A) ∈ ρ(Alg(M)). Thus ρ(A) ∈ Alg(L), and
A ∈ τ(Alg(L)). Therefore, Alg(M) ⊆ τ(Alg(L)). To see that σ(Alg(L)) ⊆
Alg(M), as σ(A) is a Grz⊗K⊕Mix-algebra (shown in the proof of Lemma
4.1.21), by Theorem 4.1.20, it suffices to prove that for any A = σ(ρ(A)) ∈
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σAlg(L), we have that A ∈ Alg(M). Suppose A ∼= σ(ρ(A)) ∈ σAlg(L),
by Lemma 4.1.21, A ∈ Alg(σ(L)). Thus for any Γ/∆ ∈ L, we have that
A ⊨ t(Γ/∆). By Proposition 4.1.17, ρ(A) ⊨ Γ/∆ for any Γ/∆ ∈ L. Thus
ρ(A) ∈ Alg(L) = ρ(Alg(M)), namely ρ(A) ∼= ρ(B) for some B ∈ Alg(M).
A = σ(ρ(A)) ∼= σ(ρ(B)) ↣ B ∈ Alg(M). As Alg(M) is a universal class
which is closed under subalgebras, A ∈M . Thus σ(Alg(L)) ⊆ Alg(M).

For the other direction, assume that σ(Alg(L)) ⊆ Alg(M) ⊆ τ(Alg(L)).
By Proposition 4.1.14, ρ(σ(Alg(L))) = Alg(L). As σ(Alg(L)) ⊆ Alg(M),
we have that Alg(L) ⊆ ρ(Alg(M)). As Alg(M) ⊆ τ(Alg(L)), it follows that
ρ(Alg(M)) ⊆ ρ(τ(Alg(L))). Assume A ∈ τ(Alg(L)), then ρ(A) ∈ Alg(L),
and σ(ρ(A)) ∈ σ(Alg(L)) ⊆ Alg(M). Thus ρ(σ(ρ(A))) ∈ ρ(Alg(M)).
By Proposition 4.1.14, ρ(A) ∈ ρ(Alg(M)). Therefore, ρ(τ(Alg(L))) ⊆
ρ(Alg(M)), and ρ(τ(Alg(L))) = ρ(Alg(M)). By definition, ρ(τ(Alg(L))) ⊆
Alg(L), and thus ρ(Alg(M)) ⊆ Alg(L). Therefore, ρ(Alg(M)) = Alg(L).
M is a modal companion of L by Proposition 4.1.22.

■

Now, we obtain the Blok-Esakia theorem for intuitionistic modal logics:

Theorem 4.1.24.

1. The mappings σ : NExt(IntKR
□) → NExt(Grz⊗K⊕MixR) and ρ :

NExt(Grz⊗K⊕MixR) → NExt(IntKR
□) are lattice isomorphisms

and mutual inverses.

2. The mappings σ : NExt(IntK□) → NExt(Grz ⊗ K ⊕ Mix) and
ρ : NExt(Grz⊗K⊕Mix) → NExt(IntK□) are lattice isomorphisms
and mutual inverses.

Proof. For item 1, by Lemma 4.1.21, it suffices to prove that σ :
Uni(MHA) → Uni(Grz ⊗ K ⊕ Mix) and ρ : Uni(Grz ⊗ K ⊕ Mix) →
Uni(MHA) are lattice isomorphisms and mutual inverses.

We first prove that σ and ρ are mutual inverses and thus bijective. For
any A ∈ Uni(Grz ⊗ K ⊕ Mix), by Theorem 4.1.20, σ(ρ(A)) = A. Let
A ∈ Uni(MHA) be arbitrary, by Proposition 4.1.14, it is clear that A ⊆
ρ(σ(A)). Suppose A ⊨ Γ/∆, namely for any A ∈ A, we have that A ⊨ Γ/∆.
By Proposition 4.1.14, ρ(σ(A)) ⊨ Γ/∆, for any A ∈ A. By Proposition
4.1.17, σ(A) ⊨ t(Γ/∆) for any A ∈ A. Thus σ(A) ⊨ t(Γ/∆). By Proposition
4.1.17, ρ(σ(A)) ⊨ Γ/∆. Thus Ru(A) ⊆ Ru(ρ(σ(A))), by Theorem 2.4.7
ρ(σ(A)) ⊆ A. Therefore, ρ(σ(A)) = A.

We then prove that σ and ρ preserve joins and meets, and thus are lattice
morphisms. Clearly, for any A,B ∈ Uni(Grz ⊗ K ⊕ Mix), we have that
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ρ(A ∩ B) ⊆ ρ(A) ∩ ρ(B). Assume C ∈ ρ(A) ∩ ρ(B), there exist A ∈ A and
B ∈ B such that C = ρ(A) = ρ(B), and σ(ρ(A)) = σ(ρ(B)) ∈ A ∩ B.
Thus ρ(σ(ρ(A))) ∈ ρ(A ∩ B). By Proposition 4.1.14, C = ρ(A) ∈ ρ(A ∩ B).
Thus ρ(A)∩ ρ(B) ⊆ ρ(A∩B), and ρ(A)∩ ρ(B) = ρ(A∩B). Clearly, for any
A,B ∈ Uni(Grz⊗K⊕Mix), we have that ρ(A)∨ρ(B) ⊆ ρ(A∨B). Suppose
ρ(A) ∨ ρ(B) ⊨ Γ/∆, then ρ(A) ⊨ Γ/∆ and ρ(B) ⊨ Γ/∆. By Proposition
4.1.17, A ⊨ t(Γ/∆) and B ⊨ t(Γ/∆). Thus A∨ B ⊨ t(Γ/∆). By Proposition
4.1.17, ρ(A ∨ B) ⊨ Γ/∆. Thus Ru(ρ(A) ∨ ρ(B)) ⊆ Ru(ρ(A ∨ B)), and by
Theorem 2.5.6, ρ(A∨B) ⊆ ρ(A)∨ρ(B). Therefore, ρ(A∨B) = ρ(A)∨ρ(B),
ρ preserves joins and meets. For any A,B ∈ Uni(MHA), by what we have
proved above σ(A) ∨ σ(B) = σ(ρ(σ(A) ∨ σ(B))) = σ(ρ(σ(A)) ∨ ρ(σ(B))) =
σ(A ∨ B). Clearly, σ(A ∩ B) ⊆ σ(A) ∩ σ(B). Suppose σ(A ∩ B) ⊨ Γ/∆
while σ(A)∩ σ(B) ̸⊨ Γ/∆, there exists A ∈ σ(A)∩ σ(B) such that A ̸⊨ Γ/∆.
By Proposition 4.1.14, ρ(A) ∈ A ∩ B. Then σ(ρ(A)) ∈ σ(A ∩ B), and thus
σ(ρ(A)) ⊨ Γ/∆ which contradicts Lemma 4.1.19. Therefore, Ru(σ(A) ∩
σ(B)) ⊆ Ru(σ(A) ∩ σ(B)), by Theorem 2.4.7, σ(A) ∩ σ(B) ⊆ σ(A) ∩ σ(B).
Therefore, σ(A) ∩ σ(B) = σ(A) ∩ σ(B), σ preserves joins and meets. This
finishes our proof.

Item 2 follows immediately from item 1 and Propositions 2.4.4 and 2.5.3.
■

The transformations σ and ρ are useful as they may allow us to transfer
questions about intuitionistic modal logic to bimodal logics and vice versa.
In particular, at this stage one can easily prove that ρ preserves decidability,
Kripke completenss, the finite model property and tabularity as shown in
[38, Thm. 11].

The second item of the above theorem is the Blok-Esakia theorem for
intuitionistic modal logics proved in [37], so what we have got here is a
generalization of it from logics to multi-conclusion consequence relations.
However, one may note that [37, Cor. 28] is slightly stronger than the
second item of the above theorem, which says that the Blok-Esakia theorem
holds not only for normal extensions but also for weaker extensions (K could
be replaced by C on both sides of the map σ and ρ)12 . The reason why
so far we can not prove the result for nonnormal modal logic is that we do
not have a nice dual description of the algebraic semantics for such weak
logics13. As a result, we can not exploit geometric intuitions which are quite

12C stands for “congruential”. It is the least modal logic which has the algebraic
semantics. See [37] for more details.

13This also explains the reason why unlike Kripke frames, what Wolter and Za-
kharyaschev called “frames” are quite algebraic.
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crucial in Lemma 4.1.19.
Having said that, compared to the proofs in [37], our proofs are arguably

much more self-contained. Since the construction in the proof of Lemma
4.1.19 is the same as that in [16, Lem. 2.50], this also indicates the robustness
of this construction.

4.2 The Dummett-Lemmon conjecture

The Dummett-Lemmon conjecture for superintuitionistic logics states that
a superintuitionistic logic is Kripke complete iff its least modal companion
is Kripke complete. This conjecture was proved correct by Zakharyaschev in
[41], which is a very important application of his canonical formulas. Using
stable canonical rules, Cleani [16, Thm. 2.70] proved that the Dummet-
Lemmon conjecture holds for superintuitionistic rules systems as well14.

In this section, following a somewhat similar strategy, we prove the
Dummett-Lemmon conjecture for intuitionistic modal multi-conclusion con-
sequence relations which says that for any L ∈ NExt(IntKR

□), L is Kripke
complete iff τ(L) (i.e. the least modal companion containing Mix) is Kripke
complete. The proof uses the stable canonical rules for intuitionistic modal
logics (also those for bimodal logics) and the Blok-Esakia theorem proved
in the previous section, and thus can be seen as the peak of what we have
done so far.

We start with the definition of Kripke frames in the setting of intuition-
istic modal logics.

Definition 4.2.1. An intuitionistic modal Kripke frame is a triple (X,≤, R)
where X is a non-empty set, ≤ is a partial order on X and R ⊆ X2 such
that ≤ ◦R = R◦ ≤= R.

It is easy to check that for any intuitionistic modal Kripke frame (X,≤
, R), the set of all upsets of X is closed under □R. A valuation on a intu-
itionistic modal Kripke frame (X,≤, R) is a map V : Prop→ Up(X) which
can be recursively extended to all intuitionistic modal formulas in the stan-
dard way. Besides, for any intuitionistic modal Kripke frame X = (X,≤, R),
we use X∗ to denote the intuitionistic modal algebra of upsets of X where
□R is defined in the same way as that in Theorem 3.3.3.

For any S4 ⊗K Kripke frame F = (X,RI , RM ), it is clear that ρ(F) =
(ρ[Y ],≤, [RI ◦RM ◦RI ]) is an intuitionistic modal Kripke frame where ρ is

14Unfortunately, as mentioned in the introduction, the proof in his master thesis contains
a gap that could be corrected.
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exactly the same as that in Definition 4.1.10 (without the topology).
The following proposition can be proved in the same way as Proposition

4.1.17.

Proposition 4.2.2. For any S4 ⊗ K Kripke frame (X,RI , RM ) and any
intuitionistic modal multi-conclusion rule Γ/∆, (X,RI , RM ) ⊨ t(Γ/∆) iff
(ρ[X],≤, [RI ◦RM ◦RI ]) ⊨ Γ/∆.

Proof. For the left-to-right direction, suppose (ρ[X],≤, [RI ◦ RM ◦ RI ]) ̸⊨
Γ/∆, there is a valuation V such that V (φ) = ρ[X] for any φ ∈ Γ and
V (ψ) ̸= ρ[X] for any ψ ∈ ∆. Define a valuation V ′ on (X,RI , RM ) as
follows: V (p) = ρ−1(V (p)) for any propositional variable p, and then check
that V ′ refutes t(Γ/∆) on (X,RI , RM ).

For the right-to-left direction, suppose (X,RI , RM ) ̸⊨ t(Γ/∆), then there
is a valuation V on (X,RI , RM ) such that V (t(φ)) = X for any φ ∈ Γ and
V (t(ψ)) ̸= X for any ψ ∈ ∆. Define a valuation V ′ on (ρ[X],≤, [RI ◦RM ◦
RI ]) as follows: V

′(p) = ρ[V (□Ip)] = ρ[□IV (p)] (note that ρ[□IV (p)] is an
upset), and then check V ′ refutes Γ/∆ on (ρ[X],≤, [RI ◦RM ◦RI ]).

■

We first obtain the easy direction of the Dummett-Lemmon conjecture
as follows:

Proposition 4.2.3. For any L ∈ NExt(IntKR
□), if τ(L) is Kripke complete,

then L is Kripke complete.

Proof. Suppose τ(L) is Kripke complete. For any intuitionistic modal multi-
conclusion rule Γ/∆, suppose Γ/∆ ̸∈ L, then there exists a modal Heyting
algebra A such that A ⊨ L while A ̸⊨ Γ/∆. If σ(A) ⊨ t(Γ/∆), then by
Proposition 4.1.17 ρ(σ(A)) ⊨ Γ/∆. As ρ(σ(A)) ∼= A by Proposition 4.1.14,
A ⊨ Γ/∆, we get a contradiction. Thus σ(A) ̸⊨ t(Γ/∆). As ρ(σ(A)) ∼= A ⊨ L,
by Proposition 4.1.17, σ(A) ⊨ τ(L). Thus t(Γ/∆) ̸∈ τ(L). As τ(L) is Kripke
complete, there exists an S4 ⊗ K ⊕ Mix Kripke frame (X,RI , RM ) such
that (X,RI , RM ) ⊨ τ(L) while (X,RI , RM ) ̸⊨ t(Γ/∆). Now, by Proposition
4.2.2, (ρ[X],≤, [RI ◦ RM ◦ RI ]) ⊨ L while (ρ[X],≤, [RI ◦ RM ◦ RI ]) ̸⊨ Γ/∆.
As (ρ[X],≤, [RI ◦ RM ◦ RI ]) is an intuitionistic modal Kripke frame, this
proves that L is Kripke complete.

■

Then we prove the so-called rule collapse lemma15. Informally speaking,

15Note that the one called “rule-collapse lemma” in Cleani’s master thesis [16, Lem.
2.62] is problematic because the collapsed stable canonical rule for superintuitionistic
logics is not of the right form. Here, we actually prove something weaker.
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it describes what happens if we collapse RI -clusters in the stable canonical
rules for bimodal logics.

Lemma 4.2.4 (Rule collapse lemma). For any S4 ⊗ K-modal space X,
and any S4 ⊗ K ⊕ Mix-modal space A∗, let DI ,DM ⊆ P(A∗), if X ̸⊨
µ(A∗,DI ,DM ), then σ(ρ(X)) ̸⊨ µ(σ(ρ(A∗)), ρDI , ρDM ) where DI = {δ̄ |
δ ∈ DI}, DM = {δ̄ | δ ∈ DM}, ρDI = {ρ[δ] | δ ∈ DI} and ρDM = {ρ[δ] |
δ ∈ DM}16.

Proof. Suppose X ̸⊨ µ(A∗,DI ,DM ), by Proposition 4.1.9, there exists f :
X → A∗ such that f is surjective, continuous, stable and satisfies CDC for
DI and DM . Define g : σ(ρ(X)) → σ(ρ(A∗)) as follows: g(ρ(x)) = ρ(f(x)).
Suppose ρ(x) = ρ(y), then xRIy and yRIx. As f is stable, it follows that
f(x)RIf(y) and f(y)RIf(x), and thus f(x) ∽ f(y). Therefore, g is well
defined. As f is surjective, so is g. Then we check that g is stable, continuous
and satisfies CDC for ρDI , ρDM .

Suppose ρ(x)RIρ(y), then ρ(x) ≤ ρ(y) in ρ(X), and xRIy in X. As f is
stable, f(x)RIf(y). Thus ρ(f(x)) ≤ ρ(f(y)) in ρ(A∗), and ρ(f(x))RIρ(f(y))
in σ(ρ(A∗)) by definition, namely g(ρ(x))RIg(ρ(y)). Suppose ρ(x)RMρ(y),
then ρ(x)[RI ◦ RM ◦ RI ]ρ(y) in ρ(X). Thus xRI ◦ RM ◦ RIy in X by def-
inition. There exist x1, x2 such that xRIx1RMx2RIy. As f is stable,
f(x)RIf(x1)RMf(x2)RIf(y). Thus f(x)RI ◦ RM ◦ RIf(y), by definition
ρ(f(x))[RI◦RM ◦RM ]ρ(f(y)), namely ρ(f(x))RMρ(f(y)) in σ(ρ(A∗)). Thus,
g(ρ(x))RMg(ρ(y)). This proves that g is stable.

For any ρ[F ] ⊆ ρ(A∗) where F ⊆ A∗, we have that x ∈ ρ−1(g−1(ρ[F ]))
iff ρ(x) ∈ g−1(ρ[F ]) iff g(ρ(x)) ∈ ρ[F ] iff ρ(f(x)) ∈ ρ[F ] iff f(x) ∈
ρ−1(ρ[F ]) iff x ∈ f−1(ρ−1(ρ[F ])). As f is continuous, we know that
ρ−1(g−1(ρ[F ])) = f−1(ρ−1(ρ[F ])) is clopen in X. Clearly, ρ−1(g−1(ρ[F ]))
does not cut any RI -cluster in X. As σ(ρ(X)) has the quotient topology,
g−1(ρ[F ]) = ρ[ρ−1(g−1(ρ[F ]))] = ρ[f−1(ρ−1(ρ[F ]))] is clopen in σ(ρ(X)).
Therefore, g is continuous.

Suppose RM [g(ρ(x))] ∩ ρ[δ] ̸= ∅ where δ ∈ DM , then there exists
a ∈ δ such that g(ρ(x))RMρ(a). Thus ρ(f(x))RMρ(a) in σ(ρ(A∗)), and
ρ(f(x))[RI ◦ RM ◦ RI ]ρ(a). By definition, f(x)RI ◦ RM ◦ RIa in A∗. Since
A∗ validates Mix, RI ◦RM ◦RI = RM . Thus f(x)RMa. As f satisfies CDC
for DM , there exists y such that xRMy and f(y) ∈ δ. As RI is reflexive,
xRI ◦RM ◦RIy, and by definition ρ(x)[RI ◦RM ◦RI ]ρ(y) in ρ(A∗). Namely,
ρ(x)RMρ(y) in σ(ρ(A∗)) by the definition of σ, and g(ρ(y)) = ρ(f(y)) ∈ ρ[δ].
Thus g[RM [ρ(x)]] ∩ ρ[δ] ̸= ∅. This proves that g satisfies CDC for ρDM .

16Recall that we use “¯” to denote the set-theoretic complement.
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Suppose RI [g(ρ(x))]∩ρ[δ] ̸= ∅ where δ ∈ DI , then there exists a ∈ δ such
that g(ρ(x))RIρ(a). Thus ρ(f(x)) = g(ρ(x) ≤ ρ(a) in ρ(A∗). By definition,
f(x)RIa. As f satisfies CDC or DI , there exists y such that xRIy and
f(y) ∈ δ. Then ρ(x) ≤ ρ(y) in ρ(X), and by definition of σ, we have that
ρ(x)RIρ(y) in σ(ρ(X)) and g(ρ(y)) = ρ(f(y)) ∈ ρ[δ]. This proves that g
satisfies CDC for ρDI .

Therefore, σ(ρ(X)) ̸⊨ µ(σ(ρ(A∗)), ρDI , ρDM ).
■

Apart from the rule collapse lemma, we also need to show that the
refutation conditions stated in Proposition 3.3.12 work essentially the same
way for intuitionistic modal Kripke frames.

Theorem 4.2.5. For any intuitionstic modal Kripke frame (X,≤, R), we
have that (X,≤, R) ̸⊨ ρ(A, D→, D□) iff there is a surjective stable order-
preserving map f : X → XA satisfying CDC□ for any β(a) where a ∈ D□

and satisfies CDC→ for any β(a) \ β(b) where (a, b) ∈ D→.

Proof. For any intuitionistic modal Kripke frame X = (X,≤, R), X ⊨
ρ(A, D→, D□) iff X ∗ ⊨ ρ(A, D→, D□) iff (X ∗)∗ ⊨ ρ(A, D→, D□).

Suppose X = (X,≤, R) ̸⊨ ρ(A, D→, D□), then (X ∗)∗ ̸⊨ ρ(A, D→, D□).
By Proposition 3.3.12, there is a surjective stable Priestley morphism g :
(X ∗)∗ → XA satisfying CDC□ for any β(a) where a ∈ D□ and CDC→
for any β(a) \ β(b) where (a, b) ∈ D→. Define ϵ : X → (X ∗)∗ as follows:
ϵ(x) = {↑x ⊆ U | U is an upset of X} (It is easy to see that ϵ(x) is a prime
filter of upsets of X). Then we check that g ◦ ϵ satisfies all the expected
conditions.

For any x ≤ y in X , ↑y ⊆ ↑x, and thus ϵ(x) ⊆ ϵ(y), g◦ϵ(x) ≤ g◦ϵ(y). g◦ϵ
is order-preserving. Suppose xRy in X , then for any □RU ∈ ϵ(x) where U
is an upset, by definition, ↑x ⊆ □RU , and thus x ∈ □RU , namely R[x] ⊆ U .
Therefore, y ∈ U . As U is an upset, ↑y ⊆ U , and U ∈ ϵ(y). This means
that ϵ(x)R∗ϵ(y) in (X ∗)∗. As g is stable, g(ϵ(x))RAg(ϵ(y)) in A∗, and thus
g ◦ ϵ is stable.

For any p ∈ XA, as g is continuous, we know that g−1(p) is a clopen set
of (X ∗)∗. As (X ∗)∗ is an Esakia space if we dismiss R∗, by Remark 2.6.6
we have that g−1(p) =

⋃
1≤i≤n(β(Ui) \ β(Vi)) where U ′

is, V
′
i s are upsets of

X. Since g is surjective, g−1(p) is not empty, there exists 1 ≤ i ≤ n such
that β(Ui) \ β(Vi) ̸= ∅. Thus Ui \ Vi ̸= ∅, there exists x ∈ Ui \ Vi. Then
↑x ⊆ Ui while ↑x ̸⊆ Vi. Thus ϵ(x) ∈ β(Ui) while ϵ(x) ̸∈ β(Vi). Therefore,
ϵ(x) ∈ g−1(p), and g(ϵ(x)) = p. As p ∈ XA is arbitrary, this proves that g ◦ ϵ
is surjective.
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Let x ∈ X be arbitrary, suppose RA[g(ϵ(x))] ̸⊆ β(a) while (g ◦ ϵ)[R[x]] ⊆
β(a) where a ∈ D□. As g satisfies CDC□ for β(a), we have that g[R∗[ϵ(x)]] ̸⊆
β(a), there exists ϵ(x)R∗q such that g(q) ̸∈ β(a), namely a ̸∈ g(q). As
(X ∗)∗ ̸⊨ ρ(A, D→, D□), we know that X ∗ ̸⊨ ρ(A, D→, D□). By Proposition
3.1.6, there is a stable bounded lattice embedding h : A→ Up(X) satisfying
CDC for D→ and D□. By duality, we can assume that g = h−1, and thus
there exists an upset U of X (in fact just h(a)) such that for any prime
filter p of upsets of X (i.e any element of (X ∗)∗) a ∈ g(p) iff U ∈ p. As
(g ◦ ϵ)[R[x]] ⊆ β(a), for any xRy in X, we have that g(ϵ(y)) ∈ β(a), namely
a ∈ g(ϵ(y)) Thus U ∈ ϵ(y), and y ∈ ↑y ⊆ U . Therefore, R[x] ⊆ U . As
ϵ(x)R∗q, for any □RV ∈ ϵ(x), it follows that V ∈ q where V is an upset
of X. For any x ≤ z in X, we have that R[z] ⊆ R[x] ⊆ U as ≤ ◦R = R
in X . Thus ↑x ⊆ □RU , and by definition □RU ∈ ϵ(x). Thus U ∈ q and
a ∈ g(q), contradicting the assumption that a ̸∈ g(q). Therefore, for any
x ∈ X, we have that (g ◦ ϵ)[R[x]] ⊆ β(a) implies that RA[g(ϵ(x))] ⊆ β(a)
where a ∈ D□. This proves that g ◦ ϵ satisfies CDC□ for any β(a) where
a ∈ D□.

Let x ∈ X be arbitrary, suppose ↑g(ϵ(x))∩β(a)\β(b) ̸= ∅ where (a, b) ∈
D→, as g satisfies CDC→ for β(a)\β(b), we have that g[↑ϵ(x)]∩β(a)\β(b) ̸=
∅. Thus there exists a prime filter p of upsets of X such that ϵ(x) ⊆ p and
g(p) ∈ β(a) \ β(b), namely a ∈ g(p) and b ̸∈ g(p). As we have proved
above, there exist upsets Ua, Ub of X such that for any prime filters q of
upsets of X (i.e any element of (X ∗)∗) a ∈ g(q) iff Ua ∈ q, and b ∈ g(q) iff
Ub ∈ q. Thus Ua ∈ p and Ub ̸∈ p. Suppose (g ◦ ϵ)[↑x] ∩ β(a) \ β(b) = ∅,
then for any x ≤ y, we have that Ua ∈ ϵ(y) implies that Ub ∈ ϵ(y), namely
y ∈ Ua implies that y ∈ Ub. Thus ↑x ⊆ Ua → Ub. As ϵ(x) ⊆ p, we get that
Ua → Ub ∈ p, contradicting the fact that Ua ∈ p and Ub ̸∈ p. Therefore,
(g ◦ ϵ)[↑x] ∩ β(a) \ β(b) ̸= ∅. This proves that g ◦ ϵ satisfies CDC→ for
β(a) \ β(b) where (a, b) ∈ D→. Therefore, g ◦ ϵ : X → XA is a surjective
stable order-preserving map satisfying CDC□ for any β(a) where a ∈ D□

and satisfies CDC→ for any β(a) \ β(b) where (a, b) ∈ D→.
For the other direction, suppose there is a surjective stable order-

preserving map f : X → XA satisfying CDC□ for any β(a) where a ∈ D□

and satisfies CDC→ for any β(a) \ β(b) where (a, b) ∈ D→.
As A is finite, every prime filter of A (i.e elements of XA) is princi-

pal and is given by a join-irreducible element. For each join-irreducible
element of a of A, we denote the prime filter corresponding to it by Pa.
Define g : (X ∗)∗ → XA as follows: g(p) = {a ∈ A | ↑f−1(Pai) ∈
p for some join-irreducible element ai ≤ a}. Clearly, 0 ̸∈ g(p) ̸= ∅ and
g(p) is upward-closed. Suppose a, b ∈ g(p), then there exist join-irreducible
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elements ai, bj ∈ A such that ai ≤ a, bj ≤ b, ↑f−1(Pai) ∈ p and
↑f−1(Pbj ) ∈ p. As p is a prime filter, ↑f−1(Pai) ∩ ↑f−1(Pbj ) ̸= ∅, say
x ∈ ↑f−1(Pai) ∩ ↑f−1(Pbj ). There exist y ≤ x, z ≤ x in X such that
f(y) = Pai and f(z) = Pbj . As f is order-preserving, we have that
Pai , Pbj ⊆ f(x), and thus ai, bj ∈ f(x). As f(x) is a prime filter of A,
it follows that ai ∧ bj ̸= 0. Let c1, ..., cn enumerate all the join-irreducible
elements of A less than or equal to ai ∧ bj (note 1 ≤ n as ai ∧ bj ̸= 0).
For any x′ ∈ ↑f−1(Pai) ∩ ↑f−1(Pbj ), as we have shown Pai ⊆ f(x′) and
Pbj ⊆ f(x′). Thus f(x′) = Pck for some 1 ≤ k ≤ n. Since x′ ≤ x′,
x′ ∈ ↑f−1(Pc1) ∪ ... ∪ ↑f−1(Pcn). As x′ is arbitrary, this proves that
↑f−1(Pai) ∩ ↑f−1(Pbj ) ⊆ ↑f−1(Pc1) ∪ ... ∪ ↑f−1(Pcn). As ↑f−1(Pai) ∈ p,
↑f−1(Pbj ) ∈ p and p is a prime filter, ↑f−1(Pcm) ∈ p for some 1 ≤ m ≤ n.
As cm ≤ ai ∧ bj ≤ a ∧ b is join-irreducible, a ∧ b ∈ g(p). This proves that
g(p) is a proper filter. By the definition of join-irreducibility, it is easy to
see that g(p) is also prime. Therefore, g is well defined.

Clearly, if p ⊆ q, then g(p) ⊆ g(q), and thus g is order-preserving.
Suppose f(x) = Pa where x ∈ X and a ∈ A is join-irreducible. Then by
definition ↑f−1(Pa) ∈ ϵ(x), and thus Pa ⊆ g(ϵ(x)). Now suppose ↑f−1(Pb) ∈
ϵ(x) where b is join-irreducible, then ↑x ⊆ ↑f−1(Pb), there exists y ≤ x such
that f(y) = Pb. As f is order-preserving, f(y) = Pb ⊆ f(x) = Pa. Thus
g(ϵ(x)) ⊆ Pa, and g(ϵ(x)) = f(x). As f is surjective, so is g. For any Pa ∈
XA, let Γ = {b ∈ A | b is join-irreducible and a ̸≤ b} (note that Γ is finite as
A is finite), then by definition g−1(Pa) = β(↑f−1(Pa)) \

⋃
b∈Γ β(↑f−1(Pb))

which is clopen in (X ∗)∗. Thus g is continuous. Therefore, g is a surjective
Priestley morphism.

Suppose pR∗q in (X ∗)∗, then for any □a ∈ g(p), there exists a join-
irreducible element ai ≤ □a such that ↑f−1(Pai) ∈ p. For any x ∈ ↑f−1(Pai),
there exists y ≤ x such that f(y) = Pai . As f is order-preserving,
f(y) ⊆ f(x), ai ∈ f(x), and thus □a ∈ f(x). For any xRz in X , as
f is stable, f(x)RAf(z). Thus a ∈ f(z), and f(z) = Pbi for some join-
irreducible element bi ≤ a. As x ∈ ↑f−1(Pai) is arbitrary, this proves that
↑f−1(Pai) ⊆ □R(↑f−1(Pb1) ∪ ... ∪ ↑f−1(Pbn)) where b1, ..., bn enumerate all
the join-irreducible elements less than or equal to a. As ↑f−1(Pai) ∈ p, it
follows that □R(↑f−1(Pb1) ∪ ... ∪ ↑f−1(Pbn)) ∈ p. As pR∗q, we know that
↑f−1(Pb1)∪ ...∪↑f−1(Pbn) ∈ q, and ↑f−1(Pbi) ∈ q for some 1 ≤ i ≤ n. Thus
a ∈ g(q). As □a ∈ g(p) is arbitrary, this proves that g(p)RAg(q) in XA, g is
thus stable.

Suppose g[R∗[p]] ⊆ β(a) where a ∈ D□, then for any pR∗q, we have that
g(q) ∈ β(a), namely a ∈ g(q). By definition, there exists a join-irreducible
element ai ≤ a such that ↑f−1(Pai) ∈ q. As q is a prime filter of upsets
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of X, we also get that ↑f−1(Pa1) ∪ ... ∪ ↑f−1(Pan) ∈ q where a1, ..., an
enumerate all the join-irreducible elements less than or equal to a. As q is
arbitrary, □R(↑f−1(Pa1)∪...∪↑f−1(Pan)) ∈ p (note that □R(↑f−1(Pa1)∪...∪
↑f−1(Pan)) is not empty as p is a prime filter). For any x ∈ □R(↑f−1(Pa1)∪
...∪ ↑f−1(Pan)), by definition, R[x] ⊆ ↑f−1(Pa1)∪ ...∪ ↑f−1(Pan), and thus
f [R[x]] ⊆ β(a). As f satisfies CDC□ for β(a), we have that RA[f [x]] ⊆
β(a), namely □a ∈ f(x), and thus f(x) = Pbi for some join-irreducible
element bi ≤ □a. As x ≤ x, x ∈ ↑f−1(Pb1)∪ ...∪ ↑f−1(Pbm) where b1, ..., bm
enumerate all join-irreducible elements less than or equal to □a. As x ∈
□R(↑f−1(Pa1)∪...∪↑f−1(Pan)) is arbitrary, this proves that □R(↑f−1(Pa1)∪
... ∪ ↑f−1(Pan)) ⊆ ↑f−1(Pb1) ∪ ... ∪ ↑f−1(Pbm). Since □R(↑f−1(Pa1) ∪ ... ∪
↑f−1(Pan)) ∈ p and p is a prime filter, ↑f−1(Pb1) ∪ ... ∪ ↑f−1(Pbm) ∈ p, and
thus ↑f−1(Pbj ) ∈ p for some 1 ≤ j ≤ m. Therefore, □a ∈ g(p), and thus
RA[g(p)] ⊆ β(a). This proves that g satisfies CDC□ for β(a) where a ∈ D□.

Suppose g(↑p) ∩ β(a) \ β(b) = ∅ where (a, b) ∈ D→. For any p ⊆ q in
(X ∗)∗, we have that g(q) ̸∈ β(a) \ β(b). Namely, if a ∈ g(q), then b ∈ g(q).
Thus ↑f−1(Pa1)∪...∪↑f−1(Pan) ∈ q implies that ↑f−1(Pb1)∪...∪↑f−1(Pbm) ∈
q where a1, ..., an enumerate all join-irreducible elements less than or equal
to a while b1, ..., bm enumerate all join-irreducible elements less than or equal
to b. As p ⊆ q is arbitrary, this means that (↑f−1(Pa1)∪ ...∪ ↑f−1(Pan)) →
(↑f−1(Pb1)∪ ...∪↑f−1(Pbm)) ∈ p (note that (↑f−1(Pa1)∪ ...∪↑f−1(Pan)) →
(↑f−1(Pb1) ∪ ... ∪ ↑f−1(Pbm)) is not empty). Suppose x ∈ (↑f−1(Pa1) ∪ ... ∪
↑f−1(Pan)) → (↑f−1(Pb1)∪...∪↑f−1(Pbm)), for any x ≤ y, if y ∈ ↑f−1(Pa1)∪
...∪↑f−1(Pan), then y ∈ ↑f−1(Pb1)∪...∪↑f−1(Pbm). Thus f [↑x]∩β(a)\β(b) =
∅. As f satisfies CDC→ for β(a)\β(b), we have that ↑f(x)∩β(a)\β(b) = ∅.
Thus a → b ∈ f(x), and f(x) = Pcj for some join-irreducible element
cj ≤ a → b. As x ≤ x, x ∈ ↑f−1(Pcj ) ⊆ ↑f−1(Pc1) ∪ ... ∪ ↑f−1(Pck) where
c1, ..., ck enumerate all join-irreducible elements less than or equal to a→ b.
As x ∈ (↑f−1(Pa1) ∪ ... ∪ ↑f−1(Pan)) → (↑f−1(Pb1) ∪ ... ∪ ↑f−1(Pbm)) is
arbitrary, this proves that (↑f−1(Pa1)∪ ...∪↑f−1(Pan)) → (↑f−1(Pb1)∪ ...∪
↑f−1(Pbm)) ⊆ ↑f−1(Pc1)∪ ...∪↑f−1(Pck). Then ↑f−1(Pc1)∪ ...∪↑f−1(Pck) ∈
p, and thus a → b ∈ g(p). Therefore, ↑g(p) ∩ β(a) \ β(b) = ∅. Thus, if
↑g(p)∩β(a) \β(b) ̸= ∅, then g[↑p]∩β(a) \β(b) ̸= ∅ where (a, b) ∈ D→. This
proves that g satisfies CDC→ for β(a) \ β(b) where (a, b) ∈ D→.

Therefore, g is a surjective stable Priestley morphism satisfying CDC□

for any β(a) where a ∈ D□ and satisfies CDC→ for any β(a) \ β(b) where
(a, b) ∈ D→. By Proposition 3.3.12, (X ∗)∗ ̸⊨ ρ(A, D→, D□), and thus X =
(X,≤, R) ̸⊨ ρ(A, D→, D□).

■
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Similarly (in fact, more easily), we get the following refutation conditions
for bimodal Kripke frames.

Theorem 4.2.6. For any bimodal Kripke frame (X,RI , RM ),
(X,RI , RM ) ̸⊨ µ(A, DI , DM ) iff there is a surjective relation-preserving (or
stable) map f : X → XA satisfying CDC□ for any β(a) and β(b) where
a ∈ DI and b ∈ DM .

Then we prove the rule translation lemma, which is the counterpart to
[16, Lem. 2.56] and shows that the Gödel translation connects the stable
canonical rules for intuitionistic modal logics and the stable canonical rules
for bimodal logics.

Lemma 4.2.7 (Rule translation lemma). For every stable canonical rule
ρ(B, D→, D□) and every S4 ⊗K ⊕Mix-modal space X, we have that X ⊨
t(ρ(B∗,D→,DM )) iff X ⊨ µ(σ(B∗),DI ,DM ) where D→ = {β(a) \ β(b) |
(a, b) ∈ D→}, DM = {β(a) | a ∈ D□} and DI = {β(a)∪β(b) | (a, b) ∈ D→}.

Proof. By Propositions 4.1.13 and 4.1.17, it suffices to prove that ρ(X) ⊨
ρ(B∗,D→,DM ) iff X ⊨ µ(σ(B∗),DI ,DM ).

Suppose X ̸⊨ µ(σ(B∗),DI ,DM ), then there is a continuous stable sur-
jection f : X → σ(B∗) satisfying CDC□ for any β(a) ∈ DM and for any
β(b) ∈ DI . Define g : ρ(X) → B∗ by g(ρ(x)) = f(x). Suppose x ∽ y in X,
then xRIy and yRIx. As f is stable, f(x)RIf(y) and f(y)RIf(x) in σ(B∗),
namely f(x) ⊆ f(y) and f(y) ⊆ f(x) in B∗. Thus f(x) = f(y), g is well
defined.

As f is surjective, so is g. Suppose ρ(x) ≤ ρ(y) in ρ(X), then xRIy in
X, as f is stable, f(x)RIf(y) in σ(B∗), namely f(x) ⊆ f(y) in B∗. Thus
g(ρ(x)) ⊆ g(ρ(y)), g is order-preserving. Suppose ρ(x)[RI ◦ RM ◦ RI ]ρ(y),
then there exist x1, x2 such that xRIx1RMx2RIy in X. As f is stable,
f(x)RIf(x1)RMf(x2)RIf(y) in σ(B∗), namely f(x) ⊆ f(x1)Rf(x2) ⊆ f(y)
in B∗. As B∗ is a modal Esakia space, by Proposition 4.1.11, ⊆ ◦R◦ ⊆= R.
Thus f(x)Rf(y) in B∗, namely g(ρ(x))Rg(ρ(y)). This proves that g is
stable.

For any p ∈ B∗, we have that x ∈ ρ−1(g−1(p)) iff g(ρ(x)) = p iff f(x) = p
iff x ∈ f−1(p). As f is continuous, ρ−1(g−1(p)) = f−1(p) is clopen in X.
Clearly, ρ−1(g−1(p)) does not cut any RI -cluster, so g

−1(p) is clopen in ρ(X)
as the topology is the quotient topology. Thus g is continuous.

Suppose ↑g(ρ(x)) ∩ β(a) \ β(b) ̸= ∅ where (a, b) ∈ D→, then ↑f(x) ∩
β(a) \ β(b) ̸= ∅. Thus RI [f(x)] ̸⊆ β(a) ∪ β(b). As f satisfies CDC□ for
β(a) ∪ β(b), we have that f [RI [x]] ̸⊆ β(a) ∪ β(b). There exists xRIy such
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that f(y) ∈ β(a) while f(y) ̸∈ β(b). Then ρ(x) ≤ ρ(y) in ρ(X), g(ρ(y)) =
f(y) ∈ β(a) \β(b), and thus g[↑ρ(x)]∩β(a) \β(b) ̸= ∅. Therefore, g satisfies
CDC→ any β(a) \ β(b) where (a, b) ∈ D→.

Suppose g[[RI ◦ RM ◦ RI ][ρ(x)]] ⊆ β(a) where a ∈ D□, then for any
xRMy in X, as RI is reflexive, xRI ◦ RM ◦ RIy. By definition, ρ(x)[RI ◦
RM ◦ RI ]ρ(y) in ρ(X). As g[[RI ◦ RM ◦ RI ][ρ(x)]] ⊆ β(a), it follows that
g(ρ(y)) = f(y) ∈ β(a). Thus f [RM [x]] ⊆ β(a), and as f satisfies CDC□

for β(a), we have that RM [f(x)] ⊆ β(a), namely R[g(ρ(x))] ⊆ β(a) in B∗.
Therefore, g satisfies CDC□ for any β(a) where a ∈ D□. By Proposition
3.3.12, ρ(X) ̸⊨ ρ(B∗,D→,DM ).

For the other direction, suppose ρ(X) ̸⊨ ρ(B∗,D→,DM ), by Proposition
3.3.12, there is a surjective stable Priestley morphism f : ρ(X) → B∗ satis-
fying CDC→ for any β(a) \ β(b) where (a, b) ∈ D→ and CDC□ for any β(a)
where a ∈ D□. Define g : X → σ(B∗) as follows: g(x) = f(ρ(x)).

As f is surjective, so is g. Suppose xRIy in X, then ρ(x) ≤ ρ(y) in ρ(X).
As f is order-preserving, f(ρ(x)) ⊆ f(ρ(y)), namely f(ρ(x))RIf(ρ(y)) in
σ(B∗), and g(x)RIg(y). Thus g is relation-preserving w.r.t RI . Suppose
xRMy in X, as RI is reflexive, xRI ◦RM ◦RIy. By definition, ρ(x)[RI ◦RM ◦
RI ]ρ(y) in ρ(X). As f is stable, f(ρ(x))Rf(ρ(y)) in B∗, namely g(x)RMg(y)
in σ(B∗). g is thus relation-preserving w.r.t RM .

For any p ∈ σ(B∗), g
−1(p) = ρ−1(f−1(p)). As f is continuous, f−1(p) is

clopen in ρ(X). As ρ(X) has the quotient topology, ρ−1(f−1(p)) is clopen in
X. Thus g is continuous.

Suppose g[RI [x]] ⊆ β(a) ∪ β(b) where (a, b) ∈ D→, for any ρ(x) ≤ ρ(y)
in ρ(X), xRIy in X, and f(ρ(y)) = g(y) ∈ β(a)∪β(b). Thus f [↑ρ(x)]∩β(a)\
β(b) = ∅. As f satisfies CDC→ for β(a)\β(b), we have that ↑f(ρ(x))∩β(a)\
β(b) = ∅. Thus RI [g(x)] ∩ β(a) \ β(b) = ∅, namely RI [g(x)]] ⊆ β(a) ∪ β(b).
This proves that g satisfies CDC□ for any element in DI .

Suppose g[RM [x]] ⊆ β(a) where a ∈ D□. For any ρ(x)[RI ◦RM ◦RI ]ρ(y)
in ρ(X), by definition xRI ◦RM ◦RIy in X. As X validates Mix, RI ◦RM ◦
RI = RM , and thus xRMy. As g[RM [x]] ⊆ β(a), it follows that f(ρ(y)) =
g(y) ∈ β(a). Thus f [[RI ◦ RM ◦ RI ][ρ(x)]] ⊆ β(a). As f satisfies CDC□ for
β(a), we have that R[f(ρ(x))] ⊆ β(a). Thus RM [g(x)] = R[f(ρ(x))] ⊆ β(a).
This proves that g satisfies CDC□ for any β(a) where a ∈ D□. Therefore,
X ̸⊨ µ(σ(B∗),DI ,DM ) by Proposition 4.1.9.

■

We can also state the above lemma in algebraic terms just like [16, Lem.
2.56]: for every stable canonical rule ρ(B, D→, D□) and every S4⊗K⊕Mix-
algebra A, we have that A ⊨ t(ρ(B, D→, D□)) iff A ⊨ µ(σ(B), DI , DM )

71



where DI = {¬a ∨ b | (a, b) ∈ D→} and DM = D□.
Now, we can finish the proof of the Dummett-Lemmon conjecture which

is the main result of this section.

Theorem 4.2.8. For any L ∈ NExt(IntKR
□), L is Kripke complete iff

τ(L) is Kripke complete.

Proof. The right-to-left direction is given by Proposition 4.2.3. For the
other direction, let L ∈ NExt(IntKR

□) be arbitrary, suppose L is Kripke
complete and Γ/∆ ̸∈ τ(L) where Γ/∆ is a bimodal multi-conclusion rule.
By Proposition 4.1.6, we can assume that Γ/∆ = µ(A∗,DI ,DM ) where
A is a finite S4 ⊗ K ⊕Mix-algebra and DI ,DM ⊆ P(A∗). By Corollary
2.4.8 and Theorem 4.1.8, there exists an S4 ⊗ K ⊕ Mix-modal space X
such that X ⊨ τ(L) and X ̸⊨ µ(A∗,DI ,DM ). By Lemma 4.2.4, σ(ρ(X)) ̸⊨
µ(σ(ρ(A∗)), ρDI , ρDM ) where ρDI = {ρ[δ̄] | δ ∈ DI} and ρDM = {ρ[δ̄] | δ ∈
DM}. Note that σ(ρ(X)) is a Grz ⊗K ⊕Mix-modal space.

Now by Theorem 4.1.24, there exists an L′ ∈ NExt(IntKR
□) such that

σ(L′) = Grz ⊗ K ⊕ MixR ⊕ µ(σ(ρ(A∗)), ρDI , ρDM ), namely Grz ⊗ K ⊕
MixR⊕µ(σ(ρ(A∗)), ρDI , ρDM ) = Grz⊗K⊕MixR⊕{t(Γ/∆) | Γ/∆ ∈ L′}.
Therefore, σ(ρ(X)) ̸⊨ t(Γ/∆) for some Γ/∆ ∈ L′. By Theorem 3.1.9, we
can assume that Γ/∆ is a stable canonical rule of the form ρ(B, D→, D□).
Thus σ(ρ(X)) ̸⊨ t(ρ(B, D→, D□)). By Proposition 4.1.17 and Proposition
4.1.14, ρ(X) ̸⊨ ρ(B, D→, D□). As X ⊨ τ(L), by Proposition 4.1.17, ρ(X) ⊨
L. Therefore, ρ(B, D→, D□) ̸∈ L. As L is Kripke complete, there is an
intuitionistic modal Kripke frame F = (X,≤, R) such that F ⊨ L while
F ̸⊨ ρ(B, D→, D□). Viewing F as an S4⊗K ⊕Mix-bimodal Kripke frame,
as ρ(F) = F ⊨ L, by Proposition 4.2.2, F ̸⊨ t(ρ(B, D→, D□)) and F ⊨ τ(L).

Then we prove that S4 ⊗ K ⊕ MixR ⊕ {t(Γ/∆) | Γ/∆ ∈ L′} ⊆
S4⊗K⊕MixR⊕µ(σ(ρ(A∗)), ρDI , ρDM ): let X be an arbitrary S4⊗K⊕Mix-
modal space, suppose X ̸⊨ t(Γ/∆) for some Γ/∆ ∈ L′. By Theorem 3.1.9, we
can assume Γ/∆ is a stable canonical rule of the form ρ(C∗,D

′
→,D

′
M ). As

X ̸⊨ t(ρ(C∗,D
′
→,D

′
M )), by Lemma 4.2.7, X ̸⊨ µ(σ(C∗),D

′
I ,D

′
M ). By Lemma

4.2.4 and the fact that σ(ρ(σ(C∗))) = σ(C∗), it follows that σ(ρ(X)) ̸⊨
µ(σ(C∗),D

′
I ,D

′
M ). By Lemma 4.2.7, σ(ρ(X)) ̸⊨ t(ρ(C∗,D

′
→,D

′
M )). As

σ(ρ(X)) is a Grz ⊗ K ⊕ Mix-modal space and Grz ⊗ K ⊕ MixR ⊕
µ(σ(ρ(A∗)), ρDI , ρDM ) = Grz ⊗ K ⊕ MixR ⊕ {t(Γ/∆) | Γ/∆ ∈ L′}, we
get that σ(ρ(X)) ̸⊨ µ(σ(ρ(A∗)), ρDI , ρDM ). By Proposition 4.1.15 and the

duality, X ̸⊨ µ(σ(ρ(A∗)), ρDI , ρDM ). This proves that for any S4⊗K⊕Mix-
modal space, if X ̸⊨ S4 ⊗ K ⊕ MixR ⊕ {t(Γ/∆) | Γ/∆ ∈ L′}, then
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X ̸⊨ µ(σ(ρ(A∗)), ρDI , ρDM ). By Theorems 2.4.7 and 4.1.8, S4⊗K⊕MixR⊕
{t(Γ/∆) | Γ/∆ ∈ L′} ⊆ S4⊗K⊕MixR ⊕ µ(σ(ρ(A∗)), ρDI , ρDM ).

Now, since F ̸⊨ t(ρ(B, D→, D□)) where ρ(B, D→, D□) ∈ L′, we have

that F ̸⊨ µ(σ(ρ(A∗)), ρDI , ρDM ). Therefore, by Theorem 4.2.6, there is a
surjective stable map f : X → σ(ρ(A∗)) satisfying CDC for any element in

ρDI and ρDM . We construct a new bimodal Kripke frame F′ = (X ′, RI , RM )
as follows: for any x ∈ X, say f(x) = {a1, ..., an} where a1, ..., an ∈ A∗ (an
RI -cluster), replace x by n many copies of it, say x1, ..., xn, then let X ′ be
the set of all such elements. For any xi, yj ∈ X ′ (xi is a copy of x and yj is a
copy of y), define xiRIyj iff x ≤ y (in F), and xiRMyj iff xRMy. It is easy to
check that F′ is an S4⊗K ⊕Mix-Kripke frame. As ρ(F′) = F = ρ(F) ⊨ L,
by Proposition 4.2.2, F′ ⊨ τ(L).

We then define g : F′ → A∗ as follows: g(xi) = ai where xi is copy
of x and f(x) = {a1, ..., an}. As f is surjective , g is surjective by the
construction of X ′. For any xi, yj ∈ X ′(say g(xi) = ai, g(yj) = bj), suppose
xiRIyj in F′, then x ≤ y in F (or xRIy in F when viewed F as a bimodal
Krikpe frame). As f is stable, f(x)RIf(y) in σ(ρ(A∗)), namely f(x) ≤ f(y)
in ρ(A∗). As ai is an element of f(x) and bj is an element of f(y) by the
construction, aiRIbj in A∗, namely g(xi)RIg(yj). Suppose xiRMyj , then
xRMy in F. As f is stable, f(x)[RI ◦RM ◦RM ]f(y). As A∗ validates Mix,
RI ◦RM ◦RI = RM , and thus f(x)[RM ]f(y). We have that aiRMbj , namely
g(xi)RMg(bj). Therefore, g is stable.

Suppose RM [g(xi)] ∩ δ̄ ̸= ∅ where δ ∈ DM , there exists p ∈ δ̄ such
that g(xi)RMp. Thus ρ(p) ∈ ρ[δ̄], and f(x) = ρ(g(xi))[RM ]ρ(p). Since f

satisfies CDC for ρ[δ̄], there exists z ∈ F such that xRMz and f(z) ∈ ρ[δ̄].
By the construction, there exists zj such that g(zj) ∈ δ̄. Then as xiRMzj ,
g[RM [xi]] ∩ δ̄ ̸= ∅. Thus g satisfies CDC for any element in DM . Similarly,
we can prove that g satisfies CDC for any element in DI . Therefore, by
Theorem 4.2.6, F′ ̸⊨ µ(A∗,DI ,DM ). As F′ ⊨ τ(L), this proves that τ(L) is
Kripke complete.

■

The above theorem is not only interesting for its own sake, but also
strengthens the connection between the lattice of intuitionistic modal logics
and the lattice of normal extensions of the bimodal logic S4 ⊗ K ⊕ Mix.
It improves our toolkit when we try to study intuitionistic modal logics
or bimodal logics via the Gödel translation. In particular, it allows us to
reduce the problem about Kripke completeness of an intuitionistic modal
multi-conclusion consequence relation to the same problem about a bimodal
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multi-conclusion consequence relation and vice versa.
In conclusion, this chapter illustrates how stable canonical rules can be

used in reasoning about logics. In particular, these rules allowed us to
prove the Blok-Esakia theorem and the Dummett-Lemmon conjecture for
intuitionistic modal logics.
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Chapter 5

Stable canonical rules for
Heyting-Lewis logics

After developing the machinery of stable canonical rules for intuitionistic
modal logics, in this chapter, we apply further our techniques to Heyting-
Lewis logics, which are superintuitionistic logics with a strict implication.
We will first introduce Heyting-Lewis multi-conclusion consequence relations
and their algebraic semantics. Then we continue to develop the correspond-
ing stable canonical rules for them. In the end, we will try to mimic the
proof of the Blok-Esakia theorem given in the fourth chapter and point out
an underlying problem. This observation helps us find an error in the proof
of the Blok-Esakia theorem for Heyting-Lewis logics given in [23].

5.1 Preliminaries

Heyting-Lewis logics are superintutionistic logics extended with a strict im-
plication which is weaker than Heyting implication (i.e the implication in
Heyting algebras). These logics were introduced by Litak and Visser in [29]
and have appeared in various settings, ranging from preservativity logic of
Heyting arithmetic to the generalization of intuitionistic epistemic logic.

The signature of Heyting-Lewis logics hl = {∧,∨,→,⊤,⊥,J}, and the
set of formulas Formhl is defined recursively as follows:

φ ::= p | ⊤ | ⊥ | φ ∧ φ | φ ∨ φ | φ→ φ | φ J φ

Definition 5.1.1. A logic over Formhl is a Heyting-Lewis logic if the fol-
lowing hold:
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• IPC ⊆ L

• (φ J ψ) ∧ (φ J χ) → (φ J (ψ ∧ χ)) ∈ L

• (φ J χ) ∧ (ψ J χ) → ((φ ∨ ψ) J χ) ∈ L

• (φ J ψ) ∧ (ψ J χ) → (φ→ χ)

• φ→ ψ,φ ∈ L implies ψ ∈ L (MP)

• φ→ ψ ∈ L implies φ J ψ ∈ L (arrow-Nec)

We denote the least Heyting-Lewis logic by iA. It is not difficult to check
that if we define □φ as ⊤ J φ, then we get a normal modal logic1. In fact, if
we add (φ J ψ) → □(φ→ ψ) as an axiom, then □ and J are interdefinable
and we are thus back to the setting of intuitionistic modal logics [29, Lem.
4.4].

Next we introduce multi-conclusion consequence relations for Heyting-
Lewis logics:

Definition 5.1.2. A Heyting-Lewis multi-conclusion consequence relation
is a multi-conclusion consequence relation H over Rulhl

2 satisfying the fol-
lowing conditions:

• /φ ∈ H whenever φ ∈ iA

• φ→ ψ/φ J ψ ∈ H

• φ→ ψ,φ/ψ ∈ H

Let L be a Heyting-Lewis logic, we use Ext(L) to denote the lattice of
all Heyting-Lewis logics extending L with ⊕ as join and intersection as meet.
Similarly, we define Ext(H) where H is a Heyting-Lewis multi-conclusion
consequence relation. Other notations such as LR are defined in the same
way as for intuitionistic modal logics and bimodal logics.

Now we introduce the algebraic semantics for Heyting-Lewis logics:

Definition 5.1.3. A Heyting-Lewis algebra (HL-algebra for short) is a tuple
A = (A,∧,∨,→, 0, 1,J) where (A,∧,∨,→, 0, 1) is a Heyting algebra and
J: A×A→ A is a binary operation satisfying the following axioms:

• (a J b) ∧ (a J c) = a J (b ∧ c)
1See [10, Def. 1.42].
2Elements in Rulhl are called Heyting-Lewis multi-conclusion rules.

76



• (a J c) ∧ (b J c) = (a ∨ b) J c

• (a J b) ∧ (b J c) ≤ (a J c)3

• a J a = 1

For simplicity, we will write A = (A,J) where A is assumed to be a
Heyting algebra. Let HLA be the class of all Heyting-Lewis algebras, by
Theorem 2.2.18, HLA is a variety. Let Var(HLA) and Uni(HLA) denote
the lattice of subvarieties and the lattice of universal subclasses of HLA
respectively. We have the following standard correspondence results.

Theorem 5.1.4. The following maps are pairs of mutually inverse isomor-
phisms:

• Alg: Ext(iA) → Var(HLA) and Th: Var(HLA) → Ext(iA)

• Alg: Ext(iAR) → Uni(HLA) and Ru: Uni(HLA) → Ext(iAR)

Corollary 5.1.5. The following hold:

• Every Heyting-Lewis logic is complete with respect to some variety of
Heyting-Lewis algebras.

• Every Heyting-Lewis multi-conclusion consequence relation is com-
plete with respect to some universal class of Heyting-Lewis algebras.

5.2 Stable canonical rules for Heyting-Lewis
multi-conclusion consequence relations

In this section, we develop stable canonical rules for Heyting-Lewis multi-
conclusion consequence relations. We follow the road map of Section 3.1
closely and make adjustments whenever necessary.

Definition 5.2.1. Let A = (A,J) and B = (B,J) be HL-algebras, and let
h : A → B be a bounded lattice homomorphism, we say that h is stable if
the following holds:

h(a J b) ≤ h(a) J h(b) for any a, b ∈ A.

3Equivalently, ((a J b) ∧ (b J c)) → (a J c) = 1
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Definition 5.2.2. Let A = (A,J), B = (B,J) be HL-algebras, D→ ⊆ A2

and DJ ⊆ A2. A bounded lattice embedding h : A→ B satisfies

• the closed domain condition (CDC for short) for D→ if h(a → b) =
h(a) → h(b) for any (a, b) ∈ D→

• the closed domain condition (CDC for short) for DJ if h(a J b) =
h(a) J h(b) for any (a, b) ∈ DJ.

It turns out that we can associate each Heyting-Lewis multi-conclusion
rule with finitely many refutation patterns similarly to Proposition 3.1.3.

Proposition 5.2.3. For each Heyting-Lewis multi-conclusion rule Γ/∆,
there exist (A1, D

→
1 , D

J
1 ) , ..., (An, D

→
n , D

J
n ) such that each Ai is a finite

HL-algebra, D→
i , D

J
i ⊆ A2

i , and for each HL-algebra B = (B,J), we have
that B ̸⊨ Γ/∆ iff there is i ≤ n and a stable bounded lattice embedding
h : Ai → B satisfying CDC for D→

i and DJi .

Proof. The proof is almost the same as that of Proposition 3.1.3. We just
need to consider the strict implication case for induction, and check that the
filtrated algebra B′ is a HL-algebra.

Let Γ/∆ be an arbitrary Heyting-Lewis multi-conclusion rule. If Γ/∆ ∈
iAR, take n = 0. Suppose Γ/∆ ̸∈ iAR, let Θ be the set of all subformulas of
the formulas in Γ ∪∆. Assume |Θ| = m, there are only finitely many pairs
(A, D→, DJ) satisfying the following two conditions up to isomorphism:

i) A = (A,J) is a finite HL-algebra such that A|{∧,∨,1,0} is at most m-
generated as a bounded distributive lattice and A ̸⊨ Γ/∆.

ii) D→ = {(V (φ), V (ψ)) | φ → ψ ∈ Θ} and DJ = {(V (φ), V (ψ)) | φ J
ψ ∈ Θ}} where V is a valuation on A witnessing A ̸⊨ Γ/∆.

Let (A1, D
→
1 , D

J
1 ), ..., (An, D

→
n , D

J
n ) be the enumeration of such pairs.

For any HL-algebra B = (B,J) , we prove that B ̸⊨ Γ/∆ iff there is i ≤ n
and a stable bounded lattice embedding h : Ai → B satisfying CDC for D→

i

and DJi .
For the right-to-left direction, suppose there is i ≤ n and a stable

bounded lattice embedding h : Ai → B satisfying CDC for D→
i and DJi .

Define a valuation VB on B by VB(p) = h(Vi(p)) for any propositional let-
ter p where Vi is the valuation on A. We then prove by induction that
VB(ψ) = h(Vi(ψ)) for any ψ ∈ Θ. We only consider the case when ψ is of
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the form φ J χ as other cases are either trivial or have been considered in
the proof of Proposition 3.1.3:

If φ = ψ J χ, then as φ J χ ∈ Θ, (Vi(φ), Vi(χ)) ∈ DJi .

VB(φ J χ) = VB(φ) J VB(χ)
= h(Vi(φ)) J h(Vi(φ)) (IH)
= h(Vi(φ) J Vi(χ)) (CDC)
= h(Vi(φ J χ)).

Then it is easy to see that VB refutes Γ/∆ on B.
For the left-to-right direction, suppose B ̸⊨ Γ/∆. There exists a val-

uation VB on B such that VB(γ) = 1B for any γ ∈ Γ and VB(δ) ̸= 1B
for any δ ∈ ∆. Let B′ be the bounded sublattice of B generated by
VB(Θ) = {VB(φ) | φ ∈ Θ}. Let DJ = {(VB(φ), VB(ψ)) | φ J ψ ∈ Θ}
and D→ = {(VB(φ), VB(ψ)) | φ → ψ ∈ Θ}, we define →′ and J′ on
B′ as follows: a →′ b =

∨
{d ∈ B′ | d ∧ a ≤ b} for any a, b ∈ B′;

a J′ b =
∨
{d ∈ B′ | d ≤ a J b} for any a, b ∈ B′.

We first check that B′ = (B′,→′,J′) is a HL-algebra. Since we know
that (B′,→′) is a Heyting algebra, we only need to check that J′ satisfies the
corresponding axioms. For any a ∈ B′, as a J a = 1 and 1 ∈ B′, a J′ a = 1
by definition.

For any a, b, c ∈ B′, (a J′ b) ∧ (a J′ c)
=

∨
{d ∈ B′ | d ≤ a J b} ∧

∨
{e ∈ B′ | e ≤ a J c}

=
∨
{d ∧ e | d, e ∈ B′, d ≤ a J b and e ≤ a J c}(distributivity)

=
∨
{d ∈ B′ | d ≤ (a J b) ∧ (a J c)}

=
∨
{d ∈ B′ | d ≤ a J (b ∧ c)}(as (a J b) ∧ (a J c) = a J (b ∧ c))

= a J′ (b ∧ c).
For any a, b, c ∈ B′, (a J′ c) ∧ (b J′ c)

=
∨
{d ∈ B′ | d ≤ a J c} ∧

∨
{e ∈ B′ | e ≤ b J c}

=
∨
{d ∧ e | d, e ∈ B′, d ≤ a J c and e ≤ b J c}(distributivity)

=
∨
{d ∈ B′ | d ≤ (a J c) ∧ (b J c)}

=
∨
{d ∈ B′ | d ≤ (a ∨ b) J c}(as (a J c) ∧ (b J c) = (a ∨ b) J c))

= (a ∨ b) J′ c
For any a, b, c ∈ B′, (a J′ b) ∧ (b J′ c)

=
∨
{d ∈ B′ | d ≤ a J b} ∧

∨
{e ∈ B′ | e ≤ b J c}

=
∨
{d ∧ e | d, e ∈ B′, d ≤ a J b and e ≤ b J c}(distributivity)

=
∨
{d ∈ B′ | d ≤ (a J b) ∧ (b J c)}

≤
∨
{d ∈ B′ | d ≤ a J c} (as (a J b) ∧ (b J c) ≤ (a J c)) = a J′ c.

Therefore, (B′,→′,J′) is a HL-algebra. Let h : (B′,→′,J′) → (B,J)
be the inclusion map, h is clearly a bounded lattice embedding as B′ is a
bounded sublattice of B. As we checked in the proof of Proposition 3.1.3,
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h satisfies CDC for D→. Besides, for any a, b ∈ B′, a J′ b ≤ a J b by
definition. h is thus stable.

For any (a, b) ∈ DJ, a = VB(φ) and b = VB(ψ) for some φ J ψ ∈ Θ.
VB(φ J ψ) = VB(φ) J VB(ψ) = a J b ∈ B′. Thus a J b′ = a J b by the
definition of J′. Therefore, the stable bounded lattice embedding h satisfies
CDC for D→ and DJ.

Let V ′ be the valuation VB restricted to B′, we then prove that for any
φ ∈ Θ, V ′(φ) = VB(φ) by induction on φ. We only consider the following
case as others are either trivial or have been considered in the proof of
Proposition 3.1.3:

If φ = ψ J χ, as ψ J χ ∈ Θ, it follows that ψ, χ ∈ Θ and
(VB(ψ), VB(χ)) ∈ DJ. Thus VB(ψ) J VB(χ) ∈ B′.

V ′(ψ J χ) = V ′(ψ) J′ V ′(χ)
= VB(ψ) J

′ VB(χ) (IH)
= VB(ψ) J VB(χ) (By the definition of J′)
= VB(ψ J χ).

Since VB is a valuation which refutes Γ/∆ on B, V ′ is a valuation
which refutes Γ/∆ on (B′,→′,J′) by the above result. Thus, (B′,→′,J′

) ̸⊨ Γ/∆. It is then easy to see that (B′,→′,J′, D→, DJ) must be one of
(A1, D

→
1 , D

J
1 ), ..., (An, D

→
n , D

J
n ). As h is a stable bounded lattice embedding

from B′ to B satisfying CDC for D→ and DJ, we get what we want.
■

As for intuitionistic modal logics and bimodal logics, in this case too we
can encode the refutation pattern in a syntactic form:

Definition 5.2.4. Let A = (A,J) be a finite HL-algebra, D→ ⊆ A2 and
DJ ⊆ A2. For each a ∈ A, we introduce a new propositional letter pa
and define the stable canonical rule δ(A, D→, DJ) based on (A, D→, DJ) as
follows:

Γ = {pa∨b ↔ pa ∨ pb | a, b ∈ A} ∪ {p0 ↔ ⊥, p1 ↔ ⊤}
∪{pa∧b ↔ pa ∧ pb | a, b ∈ A} ∪ {paJb → (pa J pb) | a, b ∈ A}
∪{(pa J pb) → paJb | (a, b) ∈ DJ}
∪{pa→b ↔ pa → pb | (a, b) ∈ D→}

∆ = {pa ↔ pb | a ̸= b ∈ A}

δ(A, D→, DJ) = Γ/∆.

As the counterparts in the setting of Heyting-Lewis logics to Propositions
3.1.5 and 3.1.6, the following results can be proved in the same way.
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Proposition 5.2.5. Let A = (A,J) be a finite HL-algebra, D→ ⊆ A2 and
DJ ⊆ A2, then A ̸⊨ δ(A, D→, DJ).

Proposition 5.2.6. Let A = (A,J) be a finite HL-algebra, D→ ⊆ A2,
DJ ⊆ A2, and B = (B,J) be a HL-algebra. Then B ̸⊨ δ(A, D→, DJ) iff
there is a stable bounded lattice embedding h : A → B satisfying CDC for
D→ and DJ.

Proof. For the right-to-left direction, suppose there is a stable bounded lat-
tice embedding h : A → B satisfying CDC for D→ and DJ. Define VB on
B by VB(pa) = h(a) for any a ∈ A.

As h is stable, for any a, b ∈ A, we have that h(a J b) ≤ h(a) J h(b).
Thus VB(paJb) ≤ VB(pa) J VB(pb), VB(paJb → (pa J pb)) = 1. As h satisfies
CDC for DJ, for any (a, b) ∈ DJ, h(a J b) = h(a) J h(b). Thus for any
(a, b) ∈ DJ,

VB((pa J pb) → paJb) = VB(pa J pb) → VB(paJb)
= (VB(pa) J VB(pb)) → VB(paJb)
= (h(a) J h(b)) → h(a J b)
= 1.

Then by what we have checked in the proof of Proposition 3.1.6, we know
that for any γ ∈ Γ, VB(γ) = 1 while for any δ ∈ ∆, VB(δ) ̸= 1. Thus VB
refutes Γ/∆ on B, and B ̸⊨ δ(A, D→, DJ).

For the left-to-right direction, suppose B ̸⊨ δ(A, D→, DJ). There exists
a valuation V on B such that V (γ) = 1 for any γ ∈ Γ, and V (δ) ̸= 1 for any
δ ∈ ∆. Define h : A→ B by h(a) = V (pa) for any a ∈ A. Then by the proof
of the Proposition 3.1.6, we know that h is a bounded lattice embedding
which satisfies CDC for D→.

For any a, b ∈ A, as V (paJb → (pa J pb)) = 1, it follows that V (paJb) ≤
V (pa) J V (pb). Thus h(a J b) = V (paJb) ≤ V (pa) J V (pb) = h(a) J h(b),
h is stable.

For any (a, b) ∈ DJ, as V ((pa J pb) → paJb) = 1, V (pa) J V (pb) ≤
V (paJb). Thus h(a) J h(b) = V (pa) J V (pb) ≤ V (paJb) = h(a J b).
h(a) J h(b) = h(a J b) for any (a, b) ∈ DJ. Therefore, h is a stable
bounded lattice embedding which satisfies CDC for D→ and DJ.

■

Combining Propositions 5.2.4 and 5.2.6 together, we obtain immediately
that every Heyting-Lewis multi-conclusion consequence relations can be ax-
iomatized by stable canonical rules.

81



Theorem 5.2.7. For a Heyting-Lewis multi-conclusion rule Γ/∆, there ex-
ist (A1, D

→
1 , D

J
1 ), ..., (An, D

→
n , D

J
n ) such that each Ai is a finite HL-algebra,

D→
i ⊆ A2

i and DJi ⊆ A2
i , and for each HL-algebra B = (B,J), we have

B ⊨ Γ/∆ iff B ⊨ δ(A1, D
→
1 , D

J
1 ), ..., δ(An, D

→
n , D

J
n ).

Theorem 5.2.8. Every Heyting-Lewis multi-conclusion consequence rela-
tion is axiomatizable by stable canonical rules.

Proof. By Theorem 5.2.7, the proof is similar to that for Theorem 3.1.8. ■

We proceed by obtaining a dual characterization of the stable canonical
rules for Heyting-Lewis logics. We start with the duality between the cat-
egory of HL-algebras and the category of strict implication spaces given in
[13].

Definition 5.2.9. Let (X,≤, R) be a triple such that (X,≤) is an Esakia
space and R ⊆ X × X, then (X,≤, R) is a strict implication space if the
following conditions hold:

• R =≤ ◦R

• For every x ∈ X, the set R[x] is a closed upset.

• If U is a clopen subset of X, then R−1[U ] is clopen as well4.

The morphisms between strict implication spaces are defined as follows:

Definition 5.2.10. Let (X1,≤, R1) and (X2,≤, R2) be strict implication
spaces, a map f : X1 → X2 is called aJ-morphism if the following conditions
are satisfied for any x, x′, y ∈ X1 and z ∈ X2:

1. f is continuous.

2. If x ≤ y, then f(x) ≤ f(y).

3. If f(x) ≤ z, then f(x′) = z for some x ≤ x′.

4. If xR1y, then f(x)R2f(y).

5. If f(x)R2z, then f(x
′) = z for some xR1x

′.

4Equivalently, □R[U ] = {x | R[x] ⊆ U} is clopen for every clopen U ⊆ X.
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Let HLA be the category of HL-algebras and HL-algebra homomor-
phisms, SIS be the category of strict implication spaces and J-morphisms,
the functors (−)∗ : HLA → SIS and (−)∗ : SIS → HLA that estab-
lish the duality are constructed as follows. For a HL-algebra A = (A,J),
let A∗ = (A∗, R) where A∗ is the dual Esakia space of A and xRy iff
∀a, b ∈ A((a J b) ∈ x and a ∈ y =⇒ b ∈ y). For a strict implication
space X = (X,≤, R), let X ∗ = (X∗,JR) where X∗ is the Heyting algebra
of clopen upsets of X and U JR V = {x ∈ X | R[x] ∩ U ⊆ V } for any
U, V ∈ X∗. The duals of maps are exactly the same as that in Esakia du-
ality. We spell out some useful details about the duality in the following
theorem.

Theorem 5.2.11. [13, Thm. 4.15] HLA is dually equivalent to SIS, which
is witnessed by (−)∗ and (−)∗. In particular, for any HL-algebra A, A ∼=
(A∗)

∗ witnessed by β where β(a) = {x ∈ A∗ | a ∈ x}, and for any strict
implication space X , X ∼= (X ∗)∗ witnessed by ϵ where ϵ(x) = {U ∈ X∗ | x ∈
U}.

Next we recall the definition of stable maps. This time they are defined
between strict implication spaces.

Definition 5.2.12. Let (X,≤, R) and (Y,≤, R) be strict implication spaces
and f : X → Y be a Priestley morphism, f is stable if for any x, y ∈ X,
xRy implies f(x)Rf(y).

The following proposition is the counterpart to Proposition 3.3.6.

Proposition 5.2.13. Let A = (A,J), B = (B,J) be HL-algebras, (XA,≤
, R) and (XB,≤, R) be the dual of A and B respectively. For a bounded
lattice homomorphism h : A→ B, h is stable iff h∗ : XB → XA is stable.

Proof. By Priestley duality, h∗ is a Priestley morphism. Thus, it suffices to
prove that h(a J b) ≤ h(a) J h(b) for any a, b ∈ A iff xRy implies that
h∗(x)Rh∗(y) for any x, y ∈ XB.

For the left-to-right direction, suppose h(a J b) ≤ h(a) J h(b) for any
a, b ∈ A. Let x, y ∈ XB be arbitrary, suppose xRy, a J b ∈ h∗(x) and
a ∈ h∗(y) where a, b ∈ A. Then h(a J b) ∈ x and h(a) ∈ y. As h(a J b) ≤
h(a) J h(b), h(a) J h(b) ∈ x, and thus h(b) ∈ y, namely b ∈ h∗(y). This
means that h∗(x)Rh∗(y). Thus for any x, y ∈ XB, we have that xRy implies
that h∗(x)Rh∗(y)

For the other direction, suppose for any x, y ∈ XB, xRy implies that
h∗(x)Rh∗(y). Suppose x ∈ β(h(a J b)), then h(a J b) ∈ x. For any
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y ∈ R[x] ∩ β(h(a)), we have that xRy and h(a) ∈ y. By the assumption,
h∗(x)Rh∗(y). As h(a J b) ∈ x, it follows that a J b ∈ h∗(x). As h(a) ∈
y, we have that a ∈ h∗(y). Thus b ∈ h∗(y), and h(b) ∈ y. Therefore,
R[x] ∩ β(h(a)) ⊆ β(h(b)). By definition, x ∈ β(h(a)) JR β(h(b)). As x ∈
β(h(a J b)) is arbitrary, this proves that β(h(a J b)) ⊆ β(h(a)) JR β(h(b)).
Since β is an isomorphism by Theorem 5.2.11, h(a J b) ≤ h(a) J h(b).

■

Then we show what the closed domain condition for DJ means dually.

Definition 5.2.14. Let (X,≤, R) and (Y,≤, R) be strict implication spaces,
f : X → Y be a Priestley morphism, and D be a clopen subset of Y . We
say that f satisfies the strict implication closed domain condition (CDCJ)
for D if the following holds:

R[f(x)] ∩D ̸= ∅ implies f [R[x]] ∩D ̸= ∅.

Furthermore, let D be a collection of clopen subsets of Y , f satisfies
the strict implication closed domain condition (CDCJ) for D if f satisfies
(CDCJ) for each D ∈ D.

Proposition 5.2.15. Let A = (A,J) and B = (B,J) be HL-algebras,
h : A → B be a stable bounded lattice homomorphism, and a, b ∈ A, then
the following are equivalent:

1. h(a J b) = h(a) J h(b).

2. h∗ : XB → XA satisfies CDCJ for β(a) \ β(b).

Proof. As h is stable and β is an isomorphism, h(a J b) = h(a) J h(b) iff
h(a) J h(b) ≤ h(a J b) iff β(h(a)) JR β(h(b)) ⊆ β(h(a J b)).

Suppose h(a J b) = h(a) J h(b), thus β(h(a)) JR β(h(b)) ⊆ β(h(a J
b)). Suppose R[h∗(x)] ∩ β(a) \ β(b) ̸= ∅, then there exists y ∈ XA such that
h∗(x)Ry and y ∈ β(a) \ β(b). Namely a ∈ y while b ̸∈ y. By [13, Lem.
3.13], a J b ̸∈ h∗(x), thus h(a J b) ̸∈ x, namely x ̸∈ β(h(a J b)). Since
β(h(a)) JR β(h(b)) ⊆ β(h(a J b)), it follows that x ̸∈ β(h(a)) JR β(h(b)).
By definition, R[x] ∩ β(h(a)) ̸⊆ β(h(b)), namely there exists z ∈ XB such
that xRz and z ∈ β(h(a)) while z ̸∈ β(h(b)). Thus h(a) ∈ z while h(b) ̸∈ z,
namely a ∈ h∗(z) while b ̸∈ h∗(z). This means that h∗[R[x]]∩β(a)\β(b) ̸= ∅.
This proves that h∗ satisfies CDCJ for β(a) \ β(b).

For the other direction, suppose h∗ satisfies CDCJ for β(a) \ β(b). Sup-
pose x ∈ β(h(a)) JR β(h(b)), then R[x] ∩ β(h(a)) ⊆ β(h(b)). Namely, for
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any xRy, if h(a) ∈ y, then h(b) ∈ y. Thus h∗[R[x]] ∩ β(a) \ β(b) = ∅. As
h∗ satisfies CDCJ for β(a) \ β(b), we have that R[h∗(x)] ∩ β(a) \ β(b) = ∅.
Thus, R[h∗(x)]∩β(a) ⊆ β(b), and h∗(x) ∈ β(a) JR β(b) = β(a J b), namely
a J b ∈ h∗(x). We get that x ∈ β(h(a J b)). As x ∈ β(h(a)) JR β(h(b))
is arbitrary, this proves that β(h(a)) JR β(h(b)) ⊆ β(h(a J b)). Therefore,
h(a J b) = h(a) J h(b). ■

Combining Propositions 5.2.13 and 5.2.15 together, we obtain the follow-
ing dual description of the stable canonical rules for Heyting-Lewis logics:

Proposition 5.2.16. Let A = (A,J) be a finite HL-algebra, D→ ⊆ A2,
DJ ⊆ A2, and B = (B,J) be a HL-algebra. Then B ̸⊨ δ(A, D→, DJ) iff
there is a surjective stable Priestley morphism f : XB → XA satisfying
CDC→ for any β(a) \ β(b) where (a, b) ∈ D→ and CDCJ for any β(a) \ β(b)
where (a, b) ∈ DJ.

Proof. By Proposition 5.2.6, B ̸⊨ δ(A, D→, DJ) iff there is a stable bounded
lattice embedding h : A → B satisfying CDC for D→ and DJ. Then use
Propositions 5.2.13 and 5.2.15.

■

5.3 Towards the Blok-Esakia theorem for
Heyting-Lewis logics

Having developed the basic theory of the stable canonical rules for Heyting-
Lewis logics, one may wonder whether we can repeat what we did in the
Chapter 4. It is indeed true that we have an analogue of the Gödel trans-
lation in this setting. Thus it is natural to ask whether we can use sta-
ble canonical rules to prove the Blok-Esakia theorem and the Dummett-
Lemmon conjecture for Heyting-Lewis logics.

In this section, we will follow the path of the last chapter as much as
possible. However, this will in the end lead us to an intrinsic problem in
proving the counterpart to Lemma 4.1.19. Furthermore, this observation
helps us find an error in the proof of the Blok-Esakia theorem for Heyting-
Lewis logics given in [23]. So far, this error has not been fixed and the
observation gives us reasons to believe that the Blok-Esakia theorem may
not hold in this case.

We start with the operations from strict implication spaces to bimodal
spaces and vice versa.
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For any S4 ⊗ K-modal space Y = (Y,RI , RM ,O), we write x ∽ y iff
xRIy and yRIy, and then define ρ : Y → P(Y ) by ρ(x)5 = {y ∈ Y | x ∽ y}.
We get the following definition analogous to Definition 4.1.10.

Definition 5.3.1.

• For any strict implication space X = (X,≤, R,O) where O is the
topology, we set σ(X ) = (X,RI , RM ,O) where RI =≤ and RM = R.

• For any S4 ⊗ K-modal space Y = (Y,RI , RM ,O), we set ρ(Y) =
(ρ[Y ],≤, [RI◦RM ], ρ[O]) where ρ(x) ≤ ρ(y) iff xRIy, ρ(x)[RI◦RM ]ρ(y)
iff xRI ◦RMy

′ for some y′ ∽ y6 and ρ(O) is the quotient topology.

The only difference between the above definition and Definition 4.1.10 is
that the relation R in ρ(Y) is defined as [RI ◦RM ] instead of [RI ◦RM ◦RM ].

Proposition 5.3.2. The following hold:

1) For any strict implication space X , we have that σ(X ) is an S4⊗K-
modal space.

2) For any S4 ⊗K-modal space Y, we have that ρ(Y) is a strict impli-
cation space.

Proof. For 1), as X = (X,≤, R,O) is an strict implication space, (X,≤,O)
is an Esakia space. If we omit R, then σ(X ) is defined exactly the same as
that in [16, Def. 2.43], which is well-known to be an S4-modal space. Then
by the definition of strict implication spaces, σ(X ) is an S4⊗K-modal space.

For 2), let Y = (Y,RI , RM ,O) be an S4 ⊗K-modal space. If we omit
RM , then ρ(Y) is defined exactly the same as that in [16, Def. 2.43], which
is well-known to be an Esakia space. Thus it suffices to check that for
any clopen subset U of ρ(Y), □[RI◦RM ]U is clopen, and for any x ∈ Y ,
[RI ◦RM ][ρ(x)] is a closed.

Let U be an arbitrary subset of ρ(Y), for any y ∈ Y , y ∈ ρ−1(□[RI◦RM ]U)
iff ρ(y) ∈ □[RI◦RM ]U iff [RI ◦RM ][ρ(y)] ⊆ U . By the definition of [RI ◦RM ],
[RI ◦ RM ][ρ(y)] ⊆ U iff RM [RI [y]] ⊆ ρ−1[U ] iff y ∈ □RI

□RM
ρ−1[U ]. Thus

ρ−1(□[RI◦RM ]U) = □RI
□RM

ρ−1[U ]. As U is clopen, so is ρ−1[U ]. As Y is a
modal space, □RI

□RM
ρ−1[U ] is clopen as well. Thus □[RI◦RM ]U is clopen

by the quotient topology.

5We may also write [x] for ρ(x).
6It is easy to check that they are well defined.
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For any x ∈ Y , define Z = RM [RI [x]], then [RI ◦ RM ][ρ(x)] = ρ[Z] by
definition. Let {Wi | i ∈ I} be an open cover of [RI ◦RM ][ρ(x)], as we know
that ρ(Y) is an Esakia space, by Remark 2.6.6 we can assume that for any i ∈
I,Wi = Ui\Vi where Ui, Vi are clopen upsets of ρ(Y). Thus [RI◦RM ][ρ(x)] =
ρ[Z] ⊆

⋃
i∈I(Ui \Vi). And Z ⊆ ρ−1[

⋃
i∈I(Ui \Vi)] =

⋃
i∈I(ρ

−1(Ui) \ ρ−1(Vi))
as Ui, Vi are upsets. Since Y is an S4 ⊗K-modal space, Z = RM [RI [x]] is
closed and so is compact. Therefore, as ρ−1(Ui) \ ρ−1(Vi)’s are open sets,
there exist i1, ..., in such that Z ⊆ (ρ−1(Ui1) \ ρ−1(Vi1)) ∪ ... ∪ (ρ−1(Uin) \
ρ−1(Vin)). Thus [RI ◦ RM ][ρ(x)] = ρ[Z] ⊆ (Ui1 \ Vi1) ∪ ... ∪ (Uin \ Vin).
Therefore, [RI ◦RM ][ρ(x)] is compact. As ρ(Y) is an Esakia space and thus
a Hausdorff space, [RI ◦RM ][ρ(x)] is closed.

■

Now, using Theorem 5.2.11, we can give the dual versions of σ and ρ as
well. Let A be an arbitrary HL-algebra, A∗ is a strict implication space by
the duality given in Theorem 5.2.11. σ(A∗) is an S4 ⊗ K-modal space by
Proposition 5.3.2. By Theorem 4.1.8, σ(A∗)

∗ is an S4⊗K-algebra. We set
σ(A) = σ(A∗)

∗ for any HL-algebra A. Then σ is a map from the class of HL-
algebras to the class of S4⊗K-algebras. Similarly, we define ρ(B) = ρ(B∗)

∗

for any S4⊗K-algebra B where the ρ on the right-hand side is the one in
Definition 5.3.1. The ρ on the left-hand side is then a map from the class of
S4⊗K-algebras to the class of HL-algebras.

The following two propositions are then obvious:

Proposition 5.3.3. The following hold:

1. For any HL-algebra A, (σ(A))∗ ∼= σ(A∗). Consequently, σ((X )∗) ∼=
(σ(X ))∗ for any strict implication space X .

2. For any S4⊗K-algebra B, (ρ(B))∗ ∼= ρ(B∗). Consequently, (ρ(X))
∗ ∼=

ρ(X∗) for any S4⊗K-modal space X.

Proposition 5.3.4. For any strict implication space X = (X,≤, R,O),
ρ(σ(X )) ∼= X . Consequently, for any HL-algebra A, ρ(σ(A)) ∼= A.

Let wMix7 denote the formula □I□Mp ↔ □Mp, we then have the fol-
lowing counterpart to Proposition 4.1.15.

Proposition 5.3.5. If B = (B,□I ,□M ) is an S4 ⊗ K ⊕ wMix-algebra,
then there is a homomorphic embedding of σ(ρ(B)) into B.

7“w” stands for “weak” as it is weaker than Mix.
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Proof. Let B be an S4 ⊗ K-algebra which validates □I□Mp ↔ □Mp. By
duality, B∗ is an S4 ⊗ K-modal space on which RI ◦ RM = RM , and it
suffices to show that there is a surjective continuous bounded morphism
from B∗ onto (σ(ρ(B)))∗. By Proposition 5.3.4, (σ(ρ(B)))∗ ∼= σ(ρ(B∗)).
We show that x 7→ [x] is a surjective continuous bounded morphism from
X = (X,RI , RM ,O) onto σ(ρ(X)) for any S4⊗K-modal space X on which
RI ◦RM = RM .

We only need to check the conditions about RM as others are the same
as those in the proof of Proposition 4.1.15: suppose xRMy, then as RI is
reflexive, xRI ◦RMy and thus [x][RI ◦RM ][y]; suppose [x][RI ◦RM ][y], then
xRI ◦RMy

′ for some y′ ∽ y by definition. As RI ◦RM = RM , we have that
xRMy

′ and [y′] = [y]. ■

Now, we can introduce the Gödel translation for Heyting-Lewis logics.

Definition 5.3.6. The Gödel translation for Heyting-Lewis logics t :
Formhl → Formbi is recursively defined as follows:

• t(p) = □Ip where p is a propositional variable

• t(⊥) = □I⊥

• t(⊤) = □I⊤

• t(φ→ ψ) = □I(t(φ) → t(ψ))

• t(φ ∧ ψ) = □I(t(φ) ∧ t(ψ))

• t(φ ∨ ψ) = □I(t(φ) ∨ t(ψ))

• t(φ J ψ) = □I□M (t(φ) → t(ψ))

As mentioned below Definition 5.1.1, J has a modal flavor. Thus in the
above translation, the clause for J is quite natural. Besides, it turns out
that the above translation is “good” in the following sense:

Theorem 5.3.7. Let A be an S4⊗K-algebra. Then A ⊨ t(Γ/∆) iff ρ(A) ⊨
Γ/∆.

Proof. By Theorem 5.2.11, A ⊨ Γ/∆ iff A∗ ⊨ Γ/∆, and ρ(A) ⊨ Γ/∆ iff
ρ(A∗) = ρ(A)∗ ⊨ Γ/∆. Thus it suffices to prove that for any S4 ⊗ K-
modal space X = (X,RI , RM ,O), we have that (X,RI , RM ,O) ⊨ t(Γ/∆) iff
ρ(X,RI , RM ,O) ⊨ Γ/∆.
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For the left-to-right direction, suppose ρ(X,RI , RM ,O) ̸⊨ Γ/∆, then
there is a valuation V on ρ(X,RI , RM ,O) such that V (φ) = ρ[X] for
any φ ∈ Γ and V (ψ) ̸= ρ[X] for any ψ ∈ ∆. Since V (p) is a clopen
upset in ρ(X,RI , RM ,O) for any propositional variable p, it follows that
ρ−1[V (p)] is a clopen upset in (X,RI , RM ,O). We define a valuation V ′

on (X,RI , RM ,O) by setting V ′(p) = ρ−1[V (p)]. Then we can prove by
induction that for any formula φ, V ′(t(φ)) = ρ−1[V (φ)] (note that V (φ) is
a clopen upset for any formula φ).

We only consider the case about J as others are the same as those in
the proof of Theorem 4.1.17:

If φ = ψ J θ,

V ′(t(φ)) = V ′(□I□M (t(ψ) → t(θ)))
= □I□MV

′(t(ψ) → t(θ))
= □I□M (X \ V ′(t(ψ)) ∪ V ′(t(θ)))
= □I□M (X \ ρ−1[V (ψ)] ∪ ρ−1[V (θ)]) (IH)
= □I□M (ρ−1[ρ[X] \ V (ψ) ∪ V (θ)])

Now, ρ−1[V (φ)] = ρ−1[V (ψ J θ)] = ρ−1[V (ψ) J V (θ)]. For any a ∈
ρ−1[V (ψ) J V (θ)], we have that ρ(a) ∈ V (ψ) J V (θ). Thus [RI◦RM ][ρ(a)]∩
V (ψ) ⊆ V (θ). For any b ∈ RM [RI [a]], aRI ◦ RMb, and thus ρ(a)[RI ◦
RM ]ρ(b). As [RI◦RM ][ρ(a)]∩V (ψ) ⊆ V (θ), we have that ρ(b) ∈ ρ[X]\V (ψ)∪
V (θ). Therefore, a ∈ □I□M (ρ−1[ρ[X] \ V (ψ) ∪ V (θ)]). As a ∈ ρ−1[V (ψ) J
V (θ)] is arbitrary, this proves that ρ−1[V (ψ) J V (θ)] ⊆ □I□M (ρ−1[ρ[X] \
V (ψ) ∪ V (θ)]).

For any a ̸∈ ρ−1[V (ψ) J V (θ)], we have that ρ(a) ̸∈ V (ψ) J V (θ),
and thus [RI ◦ RM ][ρ(a)] ∩ V (ψ) ̸⊆ V (θ). Therefore, there exists b ∈ X
such that ρ(a)[RI ◦ RM ]ρ(b), and ρ(b) ∈ V (ψ) while ρ(b) ̸∈ V (θ). By
definition, there exists b′ ∈ X such that b ∽ b′ and aRI ◦ RMb

′. Then
ρ(b′) = ρ(b) ̸∈ ρ[X]\V (ψ)∪V (θ). Thus a ̸∈ □I□M (ρ−1[ρ[X]\V (ψ)∪V (θ)]).
Therefore, □I□M (ρ−1[ρ[X]\V (ψ)∪V (θ)]) ⊆ ρ−1[V (ψ) J V (θ)]. This proves
that V ′(t(ψ J θ)) = ρ−1[V (ψ J θ)].

Then we can check V ′ is a valuation on (X,RI , RM ,O) which refutes
t(Γ/∆) as we did in the proof of Theorem 4.1.17. Thus (X,RI , RM ,O) ̸⊨
t(Γ/∆).

For the other direction, suppose (X,RI , RM ,O) ̸⊨ t(Γ/∆), there is a
valuation V on (X,RI , RM ,O) such that V (t(φ)) = X for any φ ∈ Γ and
V (t(ψ)) ̸= X for any ψ ∈ ∆. Define V ′(p) = ρ[V (□Ip)] = ρ[□IV (p)] for any
propositional variable p. As □IV (p) is a clopen upset in (X,RI , RM ,O), so
ρ[□IV (p)] is a clopen upset in ρ(X,RI , RM ,O). Thus V ′ is indeed a valu-
ation on ρ(X,RI , RM ,O). We prove by induction that V ′(φ) = ρ[V (t(φ))]
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for any formula φ. Again we only need to check the case about J:
If φ = ψ J θ, then V ′(φ) = V ′(ψ J θ) = V ′(ψ) J V ′(θ) =

(IH)ρ[V (t(ψ))] J[RI◦RM ] ρ[V (t(θ))]. And we have that ρ[V (t(φ))] =
ρ[V (□I□M (t(ψ) → t(θ)))] = ρ[□I□M (V (t(ψ)) → V (t(θ)))] = ρ[□I□M (X \
V (t(ψ)) ∪ V (t(θ)))].

Now for any a ∈ ρ[□I□M (X \ V (t(ψ)) ∪ V (t(θ)))], there exists x ∈
□I□M (X\V (t(ψ))∪V (t(θ))) such that a = ρ(x). For any ρ(x)[RI◦RM ]ρ(y),
there exists y′ ∽ y such that xRI ◦ RMy

′. If ρ(y) ∈ ρ[V (t(ψ))], then y′ ∈
V (t(ψ)) as V (t(ψ)) is an upset. As x ∈ □I□M (X \ V (t(ψ)) ∪ V (t(θ))), we
have that y′ ∈ V (t(θ)), and thus ρ(y) = ρ(y′) ∈ ρ[V (t(θ))]. This means that
a = ρ(x) ∈ ρ[V (t(ψ))] J[RI◦RM ] ρ[V (t(θ))]. As a ∈ ρ[□I□M (X \ V (t(ψ)) ∪
V (t(θ)))] is arbitrary, we obtain that ρ[□I□M (X \ V (t(ψ)) ∪ V (t(θ)))] ⊆
ρ[V (t(ψ))] J[RI◦RM ] ρ[V (t(θ))].

For any ρ(y) ∈ ρ[V (t(ψ))] J[RI◦RM ] ρ[V (t(θ))], we have that [RI ◦
RM ][ρ(y)] ∩ ρ[V (t(ψ))] ⊆ ρ[V (t(θ))]. For any yRI ◦ RMx, by definition
ρ(y)[RI ◦ RM ]ρ(x). If x ∈ V (t(ψ)), then ρ(x) ∈ ρ[V (t(ψ))], and thus
ρ(x) ∈ ρ[V (t(θ))]. As V (t(θ)) is an upset, x ∈ V (t(θ)). Therefore,
RM [RI [y]] ⊆ X \ V (t(ψ))∪ V (t(θ)), and y ∈ □I□M (X \ V (t(ψ))∪ V (t(θ))).
Thus ρ(y) ∈ ρ[□I□M (X\V (t(ψ))∪V (t(θ)))]. As ρ(y) ∈ ρ[V (t(ψ))] J[RI◦RM ]

ρ[V (t(θ))] is arbitrary, we have that ρ[V (t(ψ))] J[RI◦RM ] ρ[V (t(θ))] ⊆
ρ[□I□M (X \ V (t(ψ)) ∪ V (t(θ)))]. Thus V ′(ψ J θ) = ρ[V (t(ψ J θ))].

Then it is easy to check that V ′ is a valuation on ρ(X,RI , RM ,O) which
refutes Γ/∆, ρ(X,RI , RM ,O) ̸⊨ Γ/∆.

■

The above proposition is the counterpart to Proposition 4.1.17 and a
natural generalization of [23, Lem. 4.13] to multi-conclusion rules.

Now, we are ready to define modal companions for Heyting-Lewis logics
in the same way as we did in Definition 4.1.18.

Definition 5.3.8. Let L ∈ Ext(iAR) and M ∈ NExt(S4⊗KR). Then M
is a modal companion of L if Γ/∆ ∈ L ⇐⇒ t(Γ/∆) ∈ M . Moreover, let
L ∈ Ext(iA) and M ∈ NExt(S4⊗K), then M is a modal companion of L
if φ ∈ L ⇐⇒ t(φ) ∈M .

The following maps between the lattices Ext(iAR) and NExt(S4⊗KR)
can also be defined similarly to intuitionistic modal logics:

σ : Ext(iAR) → NExt(Grz⊗K⊕wMixR)

σ(L) = Grz⊗K⊕wMixR ⊕ {t(Γ/∆) | Γ/∆ ∈ L}
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ρ : NExt(Grz⊗K⊕wMixR) → Ext(iAR)

ρ(M) = {Γ/∆ | t(Γ/∆) ∈M}.

For logics, these maps are as follows:

σ : Ext(iA) → NExt(Grz⊗K⊕wMix)

σ(L) = Grz⊗K⊕wMix⊕ {t(φ) | φ ∈ L}

ρ : NExt(Grz⊗K) → Ext(iA)

ρ(M) = {φ | t(φ) ∈M}.

Now in order to repeat our proof strategy for the Blok-Esakia theorem
in Chapter 4, the only missing piece is the counterpart of Lemma 4.1.19.
Indeed, we can even obtain the result analogous to Proposition 4.1.6, which
is needed in the proof of Lemma 4.1.19.

Proposition 5.3.9. For any bimodal multi-conclusion rule Γ/∆, there exist
tuples (A1, D

I
1, D

M
1 ), ... , (An, D

I
n, D

M
n ) such that each Ai is a finite S4⊗K⊕

wMix-algebra, DI
i ⊆ Ai and D

M
i ⊆ Ai, and for each S4⊗K⊕wMix-algebra

B = (B,□I ,□M ), B ̸⊨ Γ/∆ iff there is a stable embedding h : Ai → B
satisfying CDC for DI

i and DM
i .

Proof. The proof is almost the same as that for Proposition 4.1.5.
Let Γ/∆ be an arbitrary bimodal multi-conclusion rule. If Γ/∆ ∈ S4⊗

K⊕wMixR, then take n = 0. Suppose Γ/∆ ̸∈ S4⊗K⊕wMixR, let Θ be
the set of all subformulas of the formulas in Γ ∪∆, define Θ′ = Θ ∪ {□Iφ |
□Mφ ∈ Θ}. Clearly Θ′ is finite and closed under subformulas, and for any
formula □Mφ, we have that □Mφ ∈ Θ′ implies that □Iφ ∈ Θ′. There are
only finitely many pairs (A, DI , DM ) satisfying the following two conditions
up to isomorphism:

i) A = (A,□I ,□M ) is a finite S4⊗K ⊕wMix-algebra such that A is an
m-generated Boolean algebras and A ̸⊨ Γ/∆.

ii) DI = {V (φ) | □Iφ ∈ Θ′} and DM = {V (φ) | □Mφ ∈ Θ′} where V is
a valuation on A witnessing A ̸⊨ Γ/∆.
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Let (A1, D
I
1, D

M
1 ), ..., (An, D

I
n, D

M
n ) be an enumeration of such pairs. For

any S4⊗K ⊕wMix-algebra B, we prove that B ̸⊨ Γ/∆ iff there is a stable
embedding h : Ai → B satisfying CDC for DI

i and DM
i .

For the left-to-right direction, we only need to note that in order to prove
that (B′,□′

I ,□
′
M ) validate wMix, the assumption that B validates wMix

is already sufficient. Others are exactly the same as those in the proof of
Proposition 4.1.5.

■

Combining the above proposition and Proposition 4.1.4, we get the coun-
terpart to Proposition 4.1.6. The only difference between them is that one is
for S4⊗K⊕Mix-algebras while the other one is for S4⊗K⊕wMix-algebras.

Proposition 5.3.10. For any bimodal multi-conclusion rule Γ/∆, there
exist tuples (A1, D

I
1, D

M
1 ), ... , (An, D

I
n, D

M
n ) such that each Ai is a finite

S4 ⊗ K ⊕ wMix-algebra, DI
i ⊆ Ai and DM

i ⊆ Ai, and for each S4 ⊗
K ⊕ wMix-algebra B = (B,□I ,□M ), B ⊨ Γ/∆ iff B ⊨ µ(A1, D

I
1, D

M
1 ), ...,

µ(An, D
I
n, D

M
n ).

Having seen all of the theory developed for Heyting-Lewis logics so far,
one is justified to believe that we can prove the counterpart to Lemma 4.1.19
and thus prove the Blok-Esakia theorem for Heyting-Lewis logics. However,
it turns out that there is an intrinsic problem lying in the corresponding
lemma:

Key Statement for the Blok-Esakia Theorem: Let A be a Grz ⊗
K⊕wMix-algebra, then for any bimodal multi-conclusion rule Γ/∆, we have
that

A ⊨ Γ/∆ iff σ(ρ(A)) ⊨ Γ/∆.

Say we want to prove that if A∗ ̸⊨ Γ/∆, then σ(ρ(A))∗ ̸⊨ Γ/∆ where A is
a Grz⊗K⊕wMix-algebra (the other direction clearly holds by Proposition
5.3.5). By Proposition 5.3.3 σ(ρ(A))∗ = σ(ρ(A)∗) = σ(ρ(A∗)). And by
Proposition 5.3.10, we can assume without loss of generality that Γ/∆ =
µ(B, DI , DM ) where B is a finite S4 ⊗ K-algebra which validates wMix
and DI , DM ⊆ B.

Thus suppose A∗ ̸⊨ µ(B, DI , DM ) where RI ◦ RM = RM on A∗ as A
validates wMix, then there is a continuous stable surjection f : A∗ → B∗
satisfying CDC for {δa | a ∈ DI} and {δa | a ∈ DM} by Proposition 4.1.9.
We have to show that σ(ρ(A∗)) ̸⊨ µ(B, DI , DM ). By Proposition 4.1.9 again,
this means that we need a continuous stable surjection g : σ(ρ(A∗)) → B∗
satisfying CDC for {δa | a ∈ DI} and {δa | a ∈ DM}.
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Notice that in our construction in the proof of Lemma 4.1.19, for any
x ∈ A∗, we have that g(ρ(x)) is mapped to an element of the RI -cluster
which contains f(x). Namely, g(ρ(x))RIf(x) and f(x)RIg(ρ(x)). Now,
we have to check that g preserves RM : suppose ρ(x)RMρ(y) in σ(ρ(A∗)),
namely ρ(x)[RI ◦RM ]ρ(y) in ρ(A∗). By definition, there exists y′ such that
xRI◦RMy

′ and y′ ∽ y. As f is stable, it follows that f(x)RI◦RMf(y
′) inB∗.

And sinceB validateswMix, RI◦RM = RM inB∗. Thus f(x)RMf(y
′), and

g(ρ(x))RMf(y
′). However, although g(ρ(y)) ∽ f(y′), we can not conclude

that g(ρ(x))RMg(ρ(y))
8. An element a in B∗ may RM -related to b but not

RM -related to every element of [b] (the RI -cluster of b)
9.

In fact, the above reasoning goes beyond falsifying our proof strategy
there. The problem will occur as long as g(ρ(x)) is mapped to an element
of the RI -cluster which contains f(x). And if g(ρ(x)) is not mapped to an
element of the RI -cluster which contains f(x), then it is not even clear how
such a construction could be relation-preserving w.r.t RI .

What makes things more interesting is that the Key Statement is not
only sufficient but also necessary for the Blok-Esakia theorem for Heyting-
Lewis logics.

Proposition 5.3.11. TheKey Statement is equivalent to the Blok-Esakia
theorem for Heyting-Lewis logics.

Proof. As mentioned as above, if the Key Statement holds, by what we
have proved above, it is then easy to check we can repeat our proof strategy
of Chapter 4 and obtain the Blok-Esakia theorem for Heyting-Lewis logics.

Now, suppose the Key Statement is false while the Blok-Esakia the-
orem holds for Heyting-Lewis logics.10 Then in particular, there exists a
Grz ⊗ K ⊕ wMix-algebra A such that A ̸⊨ Γ/∆ while σ(ρ(A)) ⊨ Γ/∆ for
some bimodal multi-conclusion rule Γ/∆.

We first prove that σ(ρ(Ru(A))) and Ru(σ(ρ(A))) are modal compan-
ions of ρ(Ru(A)). By definition, if Γ/∆ ∈ ρ(Ru(A)), then t(Γ/∆) ∈
σ(ρ(Ru(A))). Now, note that ρ(Ru(A)) = Ru(ρ(A)): Γ/∆ ∈ ρ(Ru(A))
iff t(Γ/∆) ∈ Ru(A), namely A ⊨ t(Γ/∆), which is equivalent to ρ(A) ⊨
Γ/∆ by Theorem 5.3.7. Suppose Γ/∆ ̸∈ ρ(Ru(A)) = Ru(ρ(A)), then
ρ(A) ̸⊨ Γ/∆. By Theorem 5.3.7, we thus have that A ̸⊨ t(Γ/∆). As

8The reason why we could make this conclusion in Lemma 4.1.19 is that there B∗
validates Mix. In particular, RM ◦RI = RM holds in B∗.

9This is also the reason why in Definition 5.3.1, we can not define that ρ(x)[RI◦RM ]ρ(y)
iff xRI ◦RMy.

10We would like to thank Rodrigo N. Almeida for bringing the following argument to
our attention which holds first for superintuitionistic logics.
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A ⊨ {t(Γ/∆) | Γ/∆ ∈ ρ(Ru(A))} and A is a Grz ⊗ K ⊕ wMix-algebra,
it follows that A ⊨ σ(ρ(Ru(A))). Thus t(Γ/∆) ̸∈ σ(ρ(Ru(A))). This proves
that Γ/∆ ∈ ρ(Ru(A)) iff t(Γ/∆) ∈ σ(ρ(Ru(A))). Thus σ(ρ(Ru(A))) is a
modal companion of ρ(Ru(A)).

For Ru(σ(ρ(A))), suppose Γ/∆ ∈ ρ(Ru(A), then t(Γ/∆) ∈ Ru(A) by
definition. Namely, A ⊨ t(Γ/∆). By Proposition 5.3.5, σ(ρ(A)) ⊨ t(Γ/∆).
Suppose Γ/∆ ̸∈ ρ(Ru(A)), then by we have proved above, ρ(A) ̸⊨ Γ/∆. By
Proposition 5.3.4 and Theorem 5.3.7, we have that σ(ρ(A)) ̸⊨ t(Γ/∆). Thus
t(Γ/∆) ̸∈ Ru(σ(ρ(A))). This proves that Γ/∆ ∈ ρ(Ru(A)) iff t(Γ/∆) ∈
Ru(σ(ρ(A))). Thus Ru(σ(ρ(A)) is also a modal companion of ρ(Ru(A)).

Now, as A is a Grz ⊗K ⊕wMix-algebra, by Proposition 5.3.5, we have
that Ru(σ(ρ(A))) ∈ NExt(Grz⊗K⊕wMixR). And clearly, σ(ρ(Ru(A))) ∈
NExt(Grz ⊗ K ⊕ wMixR). As σ(ρ(Ru(A))) and Ru(σ(ρ(A))) are modal
companions of ρ(Ru(A)), it follows that Γ/∆ ∈ ρ(Ru(σ(ρ(A)))) iff t(Γ/∆) ∈
Ru(σ(ρ(A))) iff Γ/∆ ∈ ρ(Ru(A)). Therefore, ρ(Ru(σ(ρ(A)))) = ρ(Ru(A)).
We then have the following equations:

Ru(A) = σ(ρ(Ru(A))) = σ(ρ(Ru(σ(ρ(A))))) = Ru(σ(ρ(A))).

The first and the third ones hold because of the Blok-Esakia theorem.
However, since A ̸⊨ Γ/∆ while σ(ρ(A)) ⊨ Γ/∆, we have that Ru(A) ̸=
Ru(σ(ρ(A))), a contradiction. Therefore, if the Key Statement is false,
then the Blok-Esakia theorem for Heyting-Lewis logics does not hold.

■

Given the problem of our proof strategy and Proposition 5.3.11, we have
reasons to believe that the Blok-Esakia theorem may not hold for Heyting-
Lewis logics 11. However, it is quite difficult to find a direct counterexample
(if there is one). In particular, we do not know how to give a direct coun-
terexample to the Key Statement or to the corresponding lemma in [23]
(if there is one) as we can prove by a nontrivial argument for both of them
that counterexamples cannot occur in finite cases12. And since our proof of
the Dummett-Lemmon conjecture uses the Blok-Esakia theorem, right now,

11Although in [23], it was claimed that σ and ρ defined below Definition 5.3.8 are lattice
isomorphisms, namely the Blok-Esakia theorem holds for Heyting-Lewis logics, we have
found a gap in the proof of the key lemma [23, Lem. 4.18] which corresponds to our Key
Statement: following Wolter and Zakharyaschev’s proof strategy of [37], the problem
occurs in the step for formulas of the form □Mψ. This has been confirmed by the authors
in personal communication.

12It is more easy to see that counterexamples (if there is one) to the Key Statement
cannot occur in finite cases.
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we do not know how to prove this conjecture for Heyting-Lewis logics (even
if it holds).

Therefore, it seems that the Gödel translation for Heyting-Lewis logics
is much more intriguing than that for intuitionistic modal logics. On the
one hand, the Gödel translation does enjoy some nice properties such as
the ones shown in Theorem 5.3.7. On the other hand, it seems that we
cannot prove the Blok-Esakia theorem for Heyting-Lewis logics using the
same proof strategy for intuitionistic modal logics (either by stable canonical
rules or by Wolter and Zakharyaschev’s proof strategy of [37]). Thus a much
deeper analysis of the Gödel translation for Heyting-Lewis logics is needed
in order to solve the open problems whether the Blok-Esakia theorem and
the Dummett-Lemmon conjecture hold for Heyting-Lewis logics. We believe
that our stable canonical rules (in particular, Theorem 5.2.8 and Proposition
5.3.10) may contribute to such an analysis.
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Chapter 6

Conclusion

In this thesis we developed the method of stable canonical formulas and
rules for intuitionistic modal logics and Heyting-Lewis logics. We proved
that every intuitionistic modal multi-conclusion consequence relation is ax-
iomatizable by stable canonical rules, and every intuitionistic modal logic
over IntS4□ is axiomatizable by stable canonical formulas. Similarly, we
proved that every Heyting-Lewis multi-conclusion consequence relation is
axiomatizable by stable canonical rules. Besides, our rules have proved use-
ful. In particular, with some adaptations to known techniques from [42]
and [16], we provided an alternative proof of the Blok-Esakia theorem and
proved an analogue of the Dummett-Lemmon conjecture for intuitionistic
modal logics. Using the stable canonical rules for Heyting-Lewis logics, we
also pointed out a gap in the proof of the Blok-Esakia theorem for Heyting-
Lewis logics. Because of this, the existence of the Blok-Esakia isomorphism
in this case remains open. Therefore, we hope that our work contributed to
the theory of stable canonical rules and also provided a uniform method to
study intuitionistic modal logics and Heyting-Lewis logics.

We end the thesis with some directions for further work.

• For reasons of space, we did not include stable canonical rules for
intuitionistic modal logics with both □ and ♢ in this thesis. This
can be done for IntK□,♢ (i.e. IntK□ extended with ♢ which satisfies
♢⊥ = ⊥ and ♢(p ∨ q) = ♢p ∨ ♢q) with some adaptations to the
techniques in Chapter 3. In particular, we can prove the corresponding
completeness theorem with no difficulty and use the duality in [31] to
give a dual description of the rules. However, once we require some
interactions between □ and ♢, it is unclear how to do filtrations in the
counterpart to Proposition 3.1.3. Solutions to some open problems
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about the finite model property of some intuitionistic modal logics
with both □ and ♢ may help for this type of questions.

• In [9], Bezhanishvili et al. used stable canonical rules to give alterna-
tive proofs of decidability of admissibility for IPC and S4. In brief,
the idea is as follows: for any multi-conclusion rule, we have an algo-
rithm to transform it into finitely many stable canonical rules whose
conjunction is equivalent to the original rule. Therefore, to deter-
mine whether the original rule is admissible1 or not, we only need to
determine whether those finitely many stable canonical rules are ad-
missible. Thus an algorithm to determine whether a stable canonical
rule is admissible or not is sufficient for the proof of decidability of
admissibility.

Since we have developed stable canonical rules for intuitionistic modal
logics and Heyting-Lewis logics, one could try to use the same proof
strategy to give a proof or an alternative proof of decidability of ad-
missibility for some intuitionistic modal logics. The first step for this
should be determining the admissible basis for a given intuitionistic
modal logic in analogy with those given in [22].

• In [26], Illn gave a thorough analysis of stable logics in the settings
of classical modal logics and superintuitionistic logics. Stable logics
are just those logics axiomatized by stable canonical formulas without
parameters (so we do not need to consider the CDC conditions any-
more and the class of Kripke frames validating such a logic is closed
under relation-preserving maps). One can develop the theory of stable
logics for intuitionistic modal logics and Heyting-Lewis logics as well
and show that these logics enjoy the finite model property. We leave
this for future work.

1Informally speaking, a rule is admissible if adding it to the deductive system does not
produce any new theorems.
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