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PREFACE

This thesis treats two, somewhat different topics:

in Chapters II and III the main goal is to prove decidability
results for certain classes of fields, in Chapter IV we derive
bounds for polynomial ideals using model theory, while the Appendix
contains both types of results.

One is advised to read the introductions in Chapter I and in
Chapter IV, and also the 'Samenvatting' if possible, because these
give the motivation, summarize the main new results, and can be
understood without knowing the model theoretic terminology required
in the other parts. This terminology and some basic theorems are
found in sections 2 and 3 of Chapter I. This Chapter contains some
propositions of which it may not be clear to the reader whether or
not they are new. Concerning this: (1.1}, (1.2}, part of the theorem
of {3.3), the proposition of (3.5) and the theorem of (3.6), all

of Chapter I, do not seem to occur in the literature.

During completion of the manuscript it turned out that most of (Z2.3)
and (2.4} of Chapter I is also treated -somewhat differently- in §2
of "Modelf-complete theonies of pseudo-algebraically closed 6£e£dé";

a preprint of W. Wheeler.

I would like to thank W. Baur for a helpful communication
connected with (A.3) of the Appendix.
By personal communication I learned further that the proof in (3.5)
of Chapter IV was also found by D. Lascar and that the result in
(A.9) of the Appendix has been proved before by D. Lascar and by

L. Lipshitz.



NOTATIONS

{0,1,2,3,...}

"

= ring of integers
= field of rational numbers
field of real numbers

= field of p-adic numbers

o

= ring of integers of QP

i)

= finite field of p elements

> H N o H o N B
e

= ring of addles = {x€Rx N Q_|x_ ¢ Z_ for at most
p prime PP P

finitely many p}

Further notations and conventions are introduced in Chapter I,
(2.1), (2.2), (3.4) and (3.5).
A restricted use is also made of nonstandard methods and ultraproducts.

For this one may consult [Rob. & Rog., §2] and [Ch. & Ke., 4.1.].



"The virntue of modef theory 4is its ability to ornganize succinctly
the sont of tirnesome algebraic details associated with elimination

n
theory”. G. Sacks

CHAPTER 1 Preparations

§1. 1Introduction

It is undisputed that in and before the last century algebra
was largely the study of systems of equations of various kinds: the
art of solving them, giving conditions for their solvability and
clarifying the structure of their solution set.

In the course of the 20th century this practice seems to have
changed. Sc much that modern algebra often seems to be a study of
all kinds of axiomatically defined structures, such as groups and
rings, with emphasis on their substructures, quotient structures,
sheaf representations, etc. In category theory this has even gone so
far, that the 'elements' (i.e. the numbers and quantities, used by
classical algebraists to carry out their operations and computations)
have disappeared all together, their role as basic entities taken
over by morphisms. However, this change is perhaps more one of methods,
than of goals. The basic difference is that the classical methods for
treating algebraic problems were extremely algorithmic and constructive
compared with the methods fashionable today. A good example is the
theory of linear equations, one of the basic results of which goes

h

back (at least in Europe) to the 18t century, and is called Cramer's

rule:

a system of linear equations (with coefficients in a given field)

aj1x3 + ... +a _x_ =0b
11 A1 1n'n 1



equals

j)

has a solution in that field iff the rank of the matrix (ai

the rank of the augmented matrix (aij’bi)’ where the rank of a

matrix was defined as the size of its largest non vanishing minor;

moreover, if there is a solution, it can be given by certain rational
expressions in the coefficients aij’bi'

All this was proved by carrying out rather complicated computations
with the coefficients.

Now in the modern theory of linear algebra -of which the theory
of linear equations is a small part- the basic notions are linear
space, linear map, dimension, etc. and computations are almost absent.
I think however nobody would consider such a theory satisfactory if
the above result wouldn't follow from it. Fortunately it does follow
and the proof reduces to only one small computational fact: that a
matrix is invertible iff its determinant is nonzero. So the modern
theory of linear equations 'substitutes ideas for computations', but
solving linear equations explicitly remains important.

Of course there is a second reason for the success of modern methods:
many problems can be stated in an invariant way, i.e. without reference
to a coordinate system; while the old theory could only be used after

a choice of coordinates to carry out its many computations, modern
linear algebra can attack its problems directly, without much compu-
tation.

On a more advanced level, namely in algebraic geometry, similar
elimination methods were developed. Let me quote from Abhyankar's
paper [Ab, p. u18]:

"Elimination theory. This encompasses the explicit algorithmic

procedures of solving several simultaneous polynomial equations in
several variables. Here some of the prominent names are: Sylvester
(1840), Kronecker (1882), Mertens (1886), Kénig (1903), Hurwitz (1913),

and Macauley (1916).



It is a vast theory. There used to be a belief, substantially
justified, that elimination theory is capable of handling most pro-
blems of algebraic geometry in a rigorous and constructive manner.
This is of course not surprising, after all, what is algebraic
geometry but another name for systems of polynomial equations!

What is surprising is that under Bourbaki's influence it
somehow became fashionable to bring elimination theory into disrepute.
To quote from page 31 of Weil (1946, Foundations of algebraic geometry):
"The device that follows, which, it may be hoped, finally eliminates
from algebraic geometry the last traces of elimination theory, is
borrowed from C. Chevalley's Princeton Lectures”.
It seems to me, what Bourbaki achieved was trading in constructive

proofs for mere existence proofs”.

Elimination theory begins with the introduction of the resultant

of two polynomials: let

f(X) = aoXn + al)(n-1 + ... + a (ap # 0)

n
g(X) = boX™ + by X™ 1 4 ..+ b (by # 0).

Then f(X) and g(X) have a common root iff its resultant:

a ar....a
) 1 n
Qg A eeees a
o a3 n
Qg A ee.-- a
o a n
b Dyeoenn b
0 1 m
bo by ..... b
o D1 m
bo by..... b
o D mn
equals zero; it is understood here that the coefficients ao,...,bm

and the common root lie in a fixed algebraically closed field.

An important point is that this gives us an effective necessary and

sufficient condition on the coefficients for the two polynomials to
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have a common root. This can be generalized to an arbitrary finite

set of polynomial equations in any number of variables:

certain equalities and inequalities between polynomial expressions

in the coefficients are necessary and sufficient conditions for the
system to have a solution.

The following quotation from Hilbert | Hi, p.414 ] gives a good
explanation why these elimination methods fell into disrepute. Hilbert
discusses as an example the problem how many connected components
('von einander getrennten Midnteln') a surface in IP; (R ) of order 4
can have. He first gives a topological argument that this number is
finite, then says that arguments on intersection multiplicities imply
that it can be at most 12, and goes on as follows with an elimination
argument:

"Da edine quaterndre Form 4. Ondnung 35 homogene Koeffizienten

besitzt, s0 kdnnen wirn uns edne bestimmte FRdche 4. Orndnung

durch einen Punkt im 34-dimensionalen Raume veranschaulichen.

Die Dishrniminante dern quaterndren Form 4. Ondnung is%t vom Grade

108 in den Koefgizienten denselben; gleich Null gesetzt, stellt

sie demnach im 34-dimensionalen Raume edine Fldche 108. Ondnung

dar. Da die Koeffizienten den Diskriminante selbst bestimmite
ganze Zahlen sdind, s0 Lasst sich den topologische Charakten denr

Dishniminantenflache nach den Regeln, die uns fir den 2- und

3-dimensionalen Raum geldufig sind, genau feststellen, A0 dass

win ibern die Natun und Bedeutung den einzelnen Teilgebiete, in die
die Diskniminantengliche den 34-dimensionalen Raum zenfegft,
genaue Auskungt erhalten hionnen. Nun besitzen die durch Punkte
des namlichen Teilgebietes dargestelliten Flachen 4. Ondnung
gewiss alle die gleiche Mantelzahl, und es Li4% dahern miglich,

dunch eine endliche,wenn auch sehn muhsame und Langwienige



Rechnung, festzustellen, ob eine Fldche 4. Ondnung mit
n < 12 Mdntelfn vorhanden ist oden nicht.

Die eben angestelflte geometrnische Betrachtung 4ist
also ein drnitten Weg zur Behandfung unsenenr Frage nach dexa
Hochstzahf den Mdntef einen Fldche 4. Ondnung. Sie beweist
die Entscheidbankeit diesen Frage durnch eine endliche Anzaht
von Openationen. Prinzipiell ist damit eine bedeutende Forde-
rung unseres Problems ennedicht: dasselfbe ist zunrlchkgefithnt

10
(10 ,'ta

aug ein Problem von dem Range etwa der Aufgabe, die 10
Ziffen den Dezimalbruchentwicklung von T zu eamitteln - edinexr
Aufgabe, denen Losbarkeit offenbarn ist, deren Lisung aben
unbekannt blLeibt.

Viefmehn bedunfte es ediner von ROHN ausgefiihnten tief-
gehenden schwienigen algebraisch-geometrischen Untersuchung,
um edinzusehen, dass bei einen FRdache 4. Orndnung 11 Mdntel nicht
méglich sind; 10 Midntel dagegen hommen winkfich vor. Erst diese
viente Methode bringt somit die villige Losung des Problems.

Diese speziellen Ausfihrungen zedigen, wie venschieden-
antige Beweismethoden auf dasselbe ProblLem anwendban sind, und
s08Len nahelegen, wie notwendig es is%t, das Wesen des mathe-
matischen Beweises an Adich zu Atudieren, wenn man solche Fragen,
wie daie nach den Entscheidbarkeit durnch endlich viele Openrationen

mit Enfolg aughkliren will.

At the end of this discussion there is already the suggestion that
metamathematics might be useful, at least in theory, in answering
concrete mathematical questions. One might even guess from it that such
decision methods in a non-trivial area led Hilbert into believing that

also in number theory there are hidden elimination methods to decide
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every question. We now know that this extrapolation is false, by
the famous negative results of G8del and Church, even strengthened
by J. Robinson, H. Putnam, M. Davis and J. Matyasevic to lead to

the negative solution of Hilbert's 10th

problem.

From Hilbert's discussion one can learn that elimination theory
can in principle answer many questions, but that the sheer amount
of computation to be done often prevents its application.
Another reason why it fell into disrepute is that for most purposes
certain consequences of elimination theory suffice, and that these
could also be proved with other means: Hilbert's Nullstellensatz,

Chevalley's Constructibility Theorem and the completeness of projective

varieties could be mentioned in this context.

At the same time that elimination theory was hoped to be

eliminated' once and for all from algebraic geometry, a new interest

in it arose, this time coming from workers in mathematical logic. In
particular A. Robinson introduced some fascinating new ideas of which
the importance only gradually became clear.(This in contrast with his
later invention, nonstandard analysis, which was picked up immediately
by many mathematicians.)

It all started when Tarski developed an elimination theory for real
closed fields, i.e. ordered fields in which polynomials which change sign
have a root; IR is an example of such a field. This means that for any
general system of polynomial equations and inequalities -using '=', '#',
'<', '<'- he could give necessary and sufficient conditions on the
coefficients ~in the form of certain polynomial equations and
inequalities in these coefficients- for the solvability of the system;
the coefficients and the solution are understood to lie in a real

closed field, and the conditions do not depend on the real closed

field considered. A well-known illustration of this is the following:



aX! + bX + ¢ =0 (a,b,c € R) has a real solution
iff (a # 0 and b> > tac) or (a = 0 and b # 0)

or (a=0and b =20 and ¢ = 0).

Actually, Tarski was inspired by a metamathematical problem, namely
the decidability problem for the elementary theory of the reals, and
hence his result was formulated in the terminology of mathematical
logic. The proof however was entirely in the style of the 19th century,
involving many computations and case distinctions. Yet it clearly was
a great step forward, if only because it showed that a whole class
of problems could be solved simply by patient labour. But of course
there are several mathematically meaningful applications.

It requires some concepts from logic, to make the above vague
formulation of Tarski's result precise.
Consider a fixed infinite sequence of variables Vi ,V2 5... e
Define an atomic formula as one of the form
'p(y,,...,yn) = q(y,,...,yn)', or 'p(y;,...,yn) < q(y‘,...,yn)' with
Yis+..,y, among the variables, and p,q € Zi[yl,...,yn].

New formulas are formed from old by the rules

(i) 1f ¢,¥ are formulas, then also (=¢),(dvYy),(dAY);

(i4) if ¢ is a formula, then also (3v; ¢) and (Vv. ¢).

A bound occurrence of a variable y in a formula is an occurrence in a
subformula (3y ¢) or (Vy ¢). If an occurrence is not bound it is said
to be free. We write ¢(y1,...,yn) for a formula ¢ all of whose free

variables are among Yiseeesy -
The basic notion is that of satisfaction: if R is a commutative ring

with unity, < any binary relation on R (e.g. an ordering),
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¢ = ¢(y.,...,yn) a formula and LI € R, then ¢(r.,...,rn) is

the result of substituting Prye-esl for the free occurrences of
Yiseeesyy in ¢.

To say that ¢(r|,...,rn) heolds in (R,<), or (R,<) satisfies
¢(r1,...,rn), has the obvious meaning if the logical symbols are
interpreted as usual; notation: (R,<) kE ¢(m,...,rn).

Two formulas ¢(y1,...,yn) and w(y.,...,yn) are called equivalent for
(R,<) if for all (ry,...,r ) € R® : (R,<) F ¢(ry,...,r ) iff

(R,<) E ¢(P1,---,Pn)-
Tarski's Theorem can now be stated as follows:

For each formula ¢ = ¢(y,,...,yn) there is a formula y = w(yl,...,yn)

in which no quantifiers v, or Vv, occur, which is equivalent with ¢

for each real closed field (R,<); moreover y can be constructed

effectively from ¢.

For instance, in the above illustration on the preceding page

. 2
¢ is (3vs viva + vavs + vz = 0)

il

and @ is (v # 0 A v§ 2> hv,vy) v (v, 0 A v, =#0) v

(vi = 0 A vy 0 A vy =0).

By a theorem of logic it actually suffices to prove Tarski's result

for formulas ¢ of the form 32@'(z,y,,...,yn) with ¢' open (i.e. without
quantifiers); these are the formulas expressing the solvability of a
system of equations and inequalities in one variable; but we should
keep in mind that Tarski's Theorem applies to arbitrary formulas, not
only those which state the solvability of systems of equations and

inequalities. In particular, if a formula ¢ has no free variables
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- a so called sentence - it expresses an elementary statement about
real closed fields; by Tarski's result one may suppose ¢ to have no
quantifiers, and so its truth in a real closed field can be computed,
and turns out to be independent of the real closed field considered!

Two typical applications of this are:

{17) Milnor and Bott showed topologically that for n # 1,2,4,8 there
are no division algebras of rank n over IR. Given n €N, it is easy
to construct a sentence ¢n such that a real closed field R satisfies
¢ iff there are no division algebras of rank n over R.

If R E ¢, also R E ¢ > hence Milnor & Bott's result holds for any
real closed field; more interesting is that through applying Tarski's

reduction steps to ¢ _one gets a purely algebraic proof, for given n.
n g

{2) Krull and Neukirch determined in [K.&N.] the absolute Galois
group of IR (t), using topological properties of Riemann surfaces. In
[v.d.D.&R.] it is shown that their results are essentially of algebraic

nature and generalize to any real closed field.

In the fifties A. Robinson discovered a new class of arguments
which were at the same time powerful, general,and simple, and which
allowed him to prove elimination theorems, not only for algebraically
closed and real closed fields, but for many other classes of algebraic
structures as well.

Also, he gave surprising new applications. The best known is the
application to Hilbert's 17th problem. As a matter of fact the theory
of real closed fields was created by Artin and Schreier to solve this
problem [Ar.&S.].

However, Artin still needed some fairly complicated arguments to derive
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the positive solution of the 17th problem (cf. [Ar]). Robinson, in a
sense, trivialized all this, and considerably strengthened Artin's

results (cf. [Rob 1]).
To get an. idea of his methods, let us consider again linear
equations: let R be a class of commutative rings with identity. We

define:

& admits linear elimination if for each formula

aji1xs + .. +a x = by A]
1n'n
def

a L. sa by s..,b — 3Ix; ..3 X3 + .. +a x_=Db A

¢mn( 11 »&nsP1 o > m) X1 xn dz1Xxa . n’n 2
A

a x3 + .. +a _x_=b
“m1 mn’ n m

there is an open formula wmn(all,..,a n’b""’bm) which is equivalent

m
with ¢mn for each ring R € & (here the 'atoms' of wmn are of the form

P = @, where p and q are polynomials in the a's and b's over Z.

So by Cramer's rule the class of fields admits linear elimination.

Definition

(a) & is called an elementary class if & is the class of all rings
(commutative with unity) satisfying a fixed set of sentences
(called axioms for &).

{b) & has PEP (= the prime extension property) if each subring R of
any ring in ® has a prime extension R' in ®, i.e. R C R' € R,

and R' can be embedded over R in each R-extension in &.

{(1.1) Theorem

If & is an elementary class with PEP such that Ry € R, (R, ,R; € &)
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implies that R, is a faithfully flat R; -module, then R admits linear

elimination.

Proof (sketch): from the faithful flatness one needs only the
consequence that solvability of a system of linear equations is pre-
served downward. See Ch. IV (2.6).

Of course solvability is also preserved upward. Now a general model
theoretic fact is that any 'elementary property' which is preserved
upward and downward among the structures of an elementary class with

PEP, can be expressed (for all the structures simultaneously) by an

open formula. See (2.12) for details. ]
Remarks
(a) Fields are those commutative rings with identity +# 0 whose

nonzero elements are invertible, so the class of fields is

elementary. If K C L with K and L fields, then L is a free K-
module, so certainly faithfully flat. Finally, if R is a sub-
ring of a field, then clearly the quotient field of R is a prime
extension of R with respect to the class of fields; so the class
of fields has PEP. Hence we have a new proof that the class of

fields admits linear elimination.

(b) Another class satisfying the hypothesis - and hence the conclusion-

of the theorem is the class of boolean rings.

(e} General considerations from logic tell us that (roughly):
"linear elimination for & is recursive in any set of axioms for
f". This means that the theorem is not as inconstructive as one

might think.

The following result suggests that structures must be sufficiently

'large', to admit elimination.
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{1.2) Theorem

Let D be an integral domain such that {D} admits linear elimination.

Then D is a field.

Proof

D may be assumed infinite because finite integral domains are fields.
By assumption there is an open formula div(v;,v;) equivalent with
Jvsy vivs = vy for D. div(v;,vz2) may be brought in disjunctive normal
form, and using a ¥ 0 A b ¥ 0 ® ab # 0 (holding in D) each disjunct
may be brought in the form:

P1(vy,ve) = ... = pk(vl,v2) = 0 A qlvy,v2) #F0, (k=0)
with p1,...5P» @ € Flvi,v2]\{0}, IF the primering of D (formally the
polynomials have integer coefficients, but these are naturally inter-
preted by their images in D).
Suppose that k > 0 for each disjunct. This leads to a contradiction:
form a product P(v,,v2) by taking from each disjunct p; (v, ,v,) as a
factor; then:

P(a,b) = 0, for all a,b € D with a|b in D,
so in particular the non-zero polynomial P(X,XY) € IF[ X,Y] vanishes on
DxD, which is impossible, because D is infinite.
So some disjunct is simply of the form q(v;,v;) # 0 with
qQ € IF{vy;,v2]\{0}. Let 0 # a € D; then g(aXY,Y) € D[ X,Y]\ {0}, hence
there are x,y € D\{0} with q(axy,y) # 0, which implies axyl|y in D, so

ax|1, and a is invertible in D. a

Remanrk
This result and its proof are along the lines of some recent theorems,

which can be found in [M.,M. &v.d.D.].
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I will now discuss two contributions of Robinson in more detail
which have been the starting point of a considerable amount of re-

search.

A, Differential gields

These are pairs (F,d) with F a field and d:F + F a derivation;
expressions, built up from variables and elements of F using the ring-
operations and the symbol d, are called differential polynomials over
F, and they lead to algebraic differential equations.
The study of these with algebraic methods is called differential
algebra (Ritt, Kolchin).

In the fifties Seidenberg gave an elimination theory for systems
of algebraic differential equations in char. 0, but there was a
difference with, say, elimination theory for algebrqically closed

fields:

given a general system of algebraic differential equations:

p:(a,x) = ... = pk(a,x) =0
(a and x stand for the vector of coefficients and the sequence of
variables respectively),
Seidenberg constructed an 'open' condition R(a) such that for any a from
a differential field (F,d) of char. O:

(F,d) F R(a)

iff the system has a solution in an extension differential field of

(F,d).

So the analogue of 'algebraically closed field' was missing. Robinson
showed on the basis of general principles that a certain elementary

class of differential fields of char. 0 deserved to be called the class
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of differentially closed fields, and proved that all differentially

closed fields are elementarily equivalent, i.e. satisfy the same
sentences. However, he did not reprove with his own methods Seidenberg's
result. This was done quite simply by L. Blum in 1968, and she could
also characterize the differentially closed fields as the differential
fields (F,d) of char. 0 with F algebraically closed and such that for
f(X) and g(X) differential polynomials in one variable over (F,d) with
order(g) < order(f), f(X) = 0, g(X) # 0 has a solution in (F,d).
Robinson had also asked whether a differential field(F,d) of
char. 0 has a differential closure, i.e. a differentially closed
extension of (F,d) which can be embedded over (F,d) into any differen-
tially closed extension of (F,d).
This turned out to be a surprisingly difficult question. It is fair to
say that the model theory needed for applications in algebra is in
general rather simple and can be learnt quickly by any algebraist, but
this question required some of the deeper theorems of two model theorists
pur sang: M. Morley and S. Shelah.

From their results Blum derived the existence and unigueness of the

differential closure.

Later it turned out that -in contrast with the algebraic and recl
closure - the differential closure is in general not minimal: the
differential closure of & contains properly an isomorphic copy of it-
self (proved independently by E. Kolchin, M. Rosenlicht, S. Shelah).
A readable account on this subject -containing the references omitted

here - is given by C. Wood in [Wol.

B. Vafued fields

Here, finally, a kind of breakthrough was accomplished: using his

typical techniques, Robinson could prove (around 1955) that the class of
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non-trivially valued algebraically closed fields has an elimination

theory, before this was proved by more orthodox methods.

From then on this became the usual procedure: first a certain class

of algebraic structures was proved to admit elimination by model theory,
and later this elimination was given explicitly.

The precise result, referred to above, is the same as the one for
real closed fields, except that in the definition of atomic formula
'p(yl,...,yn) < alyr ...y )", is replaced by

'p(y;,...,yn) div q(yl,...,yn)', where 'a div b' is interpreted for a
valued field (K,v) as 'v(a) < v(b)', v:K » I'U{=} being the (Krull)
valuation on K.

A corollary is: two non-trivially valued algebraically closed field;
are elementarily equivalent iff they, as well as their residue fields,
have the same characteristic.

But most important was that it led some mathematicians to look
for new applications of model theoretic methods in algebra and number
theory.

So finally with the work of Ax & Kochen, and Er%ov (1965-1966) on
p-adic fields and other valued fields, model theory became connected
with number theory: an asymptotic form of a conjecture of E. Artin
could be proved; later it turned out that the full form was not valid
(Terjanian).

It is true that Ax & Kochen originally used other model theoretic tools
- ultra products - but in their last joint paper [Ax & Kol they

showed how some of their strongest results could most elegantly be
developed in the framework set up by Robinson; Er3ov seems to have done
this from the beginning.

Let us consider the p-adic fields Qp more closely. The p-adic

field Qp (p a prime) was invented by K. Hensel in 1897 as a kind of
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approximation to the field of rational numbers @, having 'better'
properties than Q. Just as Q it has a subring of 'integers' Zp’ and

Q C Qp, Z CZZP. Given any polynomial equation with coefficients in

Z , the equation has a solution in Zp iff it has modulo pn a

solution in Z for each n € IN.

Now, the properties that Qp made so convenient for number theorists
are, strangely enough, its excellent topological properties, like

local compactness; in fact Qp is the completion of Q with respect to

a certain field topology on Q.

But this tends to obscure another fundamental and desirable fact:

that one can decide effectively elementary questions about QP, and this
is indeed one of the Ax-Kochen-Erfov results; more precisely, Qp g
endowed with some extra structure has an elimination theory.

Later P.J. Cohen gave an explicit description of this elimination
procedure in [Cl; his work was extended and completed by V. Weispfenning
[ wel .

Important is that Cohen's procedure shows certain uniformities with
respect to the residue rings involved, and using this fact he could

give more effective versions of several results of Ax & Kochen.

For instance, Ax & Kochen proved:

given an elementary statement A about valued fields, then for

all but finitely many primes p one has:

A holds in Qp iff A holds in the field of formal Laurentseries

Fp((t)).

By Cohen's method one can construct a primitive recursive function of

the argument A giving an upperbound for the exceptional primes.
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Another important development was initiated by Ax'decision
methods for the class of finite fields and the class of finite prime
fields ([ Ax], 1968), which can also be put in the form of an elimination
theory, see [Ki].

Here the number theory required (Weil's result on curves over finite
fields, Cebotarev's Density Theorem) becomes rather heavy for the
ordinary model theorist!

Ax'work has interesting consequences, for instance, given any system
of polynomial equations with integer coefficients, the set of primes

p such that the system has a solution modulo p has an effectively
computable rational Dirichlet density, which moreover is >0 if the set
is infinite. g
In 1976 Fried & Sacerdote in [F.&S.] published an explicit description
of the algorithms whose existence had been proved model-theoretically
by Ax.

It should be mentioned that Ax'results have been completed and
generalized in several directions by M. Jarden who discovered in re-
lation to this interesting connections between Dirichlet density and
Haar measure (on certain infinite Galois groups), see [J1].

But let us return to the original idea behind p-adic fields, i.e.
the isolation of those properties of Q which have to do with the
behaviour of only one prime p. This idea is very successful, in the sense
that elementary statements on valued fields can be decided effectively
for Qp.

But for Q this does not imply much: for instance, one can decide
effectively whether a system of polynomial equations with coefficients

in Z has for each n € IN a solution modulo pn. Combining Cohen's and Ax'
results one can even decide effectively whether such a system has for

each 0 < m € N a solution modulo m.
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But of course one really wants to decide whether such a system has

a solution in Zk, if k is the number of variables. In that case

the above decision method suffices only for those equation systems
for which the local-global (or Hasse) principle works: a necessary
condition for a system of equations over Z to have a solution in zx
(k being the number of unknowns) is of course to have a solution in

E; for all primes p, and a solution in IRk. The Hasse principle is

said to apply to the equation system if this condition is also
sufficient. An example is provided by the famous theorem of Hasse-
Minkowski saying that the Hasse principle applies to equations f = 0,

f being a quadratic form over 7Z, and where only zeros #(0,...,0) are
counted as solutions. g
Let me now explain roughly what is done in Chapters II and III of this
thesis. Recall that Tarski, Robinson, Ax, Kochen and Erfov proved that
certain classes of ordered resp. valued fields (i.e. fields endowed
with one distinguished ordering, resp. valuation) admit an elimination
theory. In ch. II and III certain classes of fields endowed with
several distinguished orderings and valuations are shown to have an
elimination theory and to admit effective decision of elementary
statements.

As an example consider finitely many primes P1s--+5D> let

vpi:Q + Z U{>} be the pi-adic valuation on Q, and consider all structures
(F,v,,...,vk,<) with F a field of char. 0, vi:F + Z U{®} a valuation

on F extending vpi with residue field E‘i (in other words (F,vi) is an
immediate extension of (Q,vp.)), and < an archimedean ordering on F.
Among these structures some ;re 'large'. The main result is that, given
an elementary statement on such structures, one can decide effectively

whether it holds in all the 'large' structures simultaneously.

It may be instructive to see what this means for some special cases:
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for k = 0, the 'large' structures are simply the archimedean real
closed fields (among these is IR)j; for k = 1, and supposing that the
ordering is omitted from the structure, the henselian subfields of
QP are the 'large' ones; in both cases the result reduces to those
of Tarski, etc. In the general case the 'large' structures are

certain ‘'intersections' F;N...NF, N R with Pi a henselian subfield

k
of Qpi and R a real closed subfield of IR.

One of the reasons for considering these 'semi-local' fields is to
approximate the arithmetic properties of @ better than is done by the
local fields QP,IR, and at the same time to preserve that elementary

statements can be decided. This leads to effective necessary

conditions on an equation over Z to have a solution in integers,
which are perhaps stronger than those provided by the local fields Qp
and IR. Whether they are really stronger, is for me, through lack of
number theoretic experience, as yet a matter of speculation.

Another important question is how the absolute Galois group of a
'semi-local' field depends on the absolute Galois groups of the
corresponding local fields, and whether in some sense the absolute
Galois group of @ can be approximated by the absolute Galois groups of
the 'semi-local' fields. There is an interesting conjecture by ErZov
with respect to the first problem. For details see (3.13) Ch. II and

(3.7) Ch. III.

Coming to the end of this preview I should remark that I
mentioned only a small part of interesting and relevant work in this
area. I have concentrated here on fields.

There are many similar results for other kinds of structures: graphs,
ordered abelian groups, bnolean algebras, to mention only a few.

At least I should say a few words about a new development, started in
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1969 by A. Robinson, which was originally inspired by P.J. Cohen's
forcing method.

Many model theorists took part in this development and several useful
new notions and instruments were created (some of these can be found
in §2).

Applied in algebra the notion of forcing clarified the fundamental
model theoretic differences between the class of skew fields and the
class of fields, and similarly between the class of groups and the
class of abelian groups; in particular, for groups and skew fields
there is a connection with word problems (A. Macintyre and B.H. Neumann).
Also it promoted a better understanding and elegant formulation of
many of the older results of Robinson and others.

For a more detailed description of the applications of Robinson's

methods, one may consult Macintyre, [M2].
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§2. ReLevant model theory and algebra

(2.1) Preliminardies

The model theoretic terminology used here is a mixture of that in
Shoenfield [ Sh] and Sacks [ Sal.

Algebraic notions, especially from field theory, are taken from Lang
[L1] and [L3].

Let me lay down some conventions.

A 'language' (called 'similarity type' by Sacks) is always first-order
with equality, and is formally the set of its non-logical symbols
(function symbols, predicate symbols and constants).

There is a fixed sequence of variables v;,v,,.. used for all languages.

In the following, let £ be a language.

An open L-formula is an L-formula without quantifiers; an existential
L-formula is an L-formula of the form Hxl...axm¢(x.,..,xm,y,,..,yn)
with ¢ open; here, and in the following,I will write w(zl,..,zk) for
a formula ¢ whose free variables are among Z1 552y ‘
Similarly a universal f-formula is an L£-formula of the form
Vxl..me¢(x.,..,xm,y1,..,yn) with ¢ open, and a Vi-formula is a
formula of the form Vxl..Vxnayl..Hym¢(x,y,z) with ¢ open.

An £-theory or a theory in £ is a set of L-sentences; where possible
without ambiguity, two equivalent L-theories will be identified.

If A is an L-structure, then |A| is its universe and L(A), or L(|A]),
is the language £, augmented by a new constant for each element a of
|A], called its name.

In general a € |A| is identified with its name; an £(A)-formula is also
called an A-formula.

For a structure A, Diag(A), the diagram of A, is the set of all atomic

and negated atomic A-sentences which are true in A, and Diag+(A), the

positive diagram of A, is the set of all atomic A-sentences true in A.
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By abuse of language a model of Diag(A) will be considered as an
extension of A, and similarly a model B of Diag+(A) as a structure B
together with a morphism A + B.

'A C B' stands for: 'A is a substructure of B' (or equivalently,

'B is an extension of A'); and it will be understood in this case that
A and B are structures for the same language.

If T is an L-theory, then Mod(T) is the class of its models, i.e. the
class of L-structures satisfying all sentences in T.

A class of L-structures is called an elementary class if it is of the

form Mod(T) for some L£-theory T.

In the model theoretic treatment of elimination theories the

notion of 'existentially closed' has turned out to be useful, cf. [M2].

(2.2) Deginition

Let A C B. Then A is called existentially closed in B if each

existential A-sentence true in B is also true in A.

As an example consider commutative rings with identity. Because only
such rings will be considered in the following, let us make the

CONVENTION 'ring' will from now on mean 'commutative ring

with identity';

a ring is considered as a structure of type (R,+,-,-,0,1), i.e. the
language of rings is {+,.,-,0,1}.

A field is a ring with 1 ¥ 0, whose nonzero elements are units; a
domain is a subring of a field; if D is a domain, Q(D) is its
quotient field.

Now one easily checks the following:

If R,S are rings with R € S, then R is existentially closed in S iff
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each system of polynomial equations and inequations

with a solution in S" has also a solution in R

£1 (K seensX ) = 055 s, X ) 2 00 (£ € RIXy,..asX 1)

g1 (Kisee X)) # 0huigg (Xasee X)) # 00 (gy € RIXi,en X 1)

The reader not familiar with model theoretic terminology can take this

as a definition in the case of rings. Some rather fundamental theorems

state that one ring is existentially closed in another, for instance

Hilbert's Nullstellensatz (see (2.5)(a)) and Artin's Approximation

Theorem (see Appendix to Ch. IV).

(2.3) Proposition

(a)

(b)

(a)

Let K and L be fields, K € L and K existentially closed in L.
Then the field extension L|K is regular. ’
Let D and E be domains, D € E and D existentially closed in E.

Then Q(D) is existentially closed in Q(E).

Proo4
for the notion of regular field extension see [L1, Ch. III, §1].
K is clearly algebraically closed in L, so it suffices to show

that L|K is separable, and hence we may suppose char(K) = p > 0.
1

1
Let apse.esa € K be such that a?,...,ag are linearly independent

over K. It suffices to show that this implies their linear

1
independence over L. If Ekiag = 0 with Ai € L and say i, # 0,
p p

then Exi a; = 0. So EaiXi = 0, Xy # 0 has a solution in Ln, and

then by assumption also a solution in Kn, which contradicts the
1

K-linear independence of aF,...,a

S



24

(b) Consider for simplicity the case of one equation f(X,,...,Xn)= 0
having a solution (x.,...,xn) € (QE)™, where f € D[Xl,...,Xn]L
Let £(Y\/Z,...,¥ /2) = F(Yy,...,Y ,2)/2" with
F(Yi,..0,Y 52) € DIYy,..0,Y 7], k ENN.
Let x; = yi/z (yi,O # z € E). Then the system F(Y;,...,Yn,Z)= 0,
Z # 0 has the solution (yi,...,y ,2) € E*1) s0 it has a solution
(y;,...,y;,z') € Dn+1.
Then putting xi = y;/z', (x:,...,x;) € (QDNH" is a solution of

£y ,..5X ) = 0. O

(2.4) Let me illustrate a typical trick in proving existential closed-
ness.

Let two fields K and L be given with K € L and L|K separable (this last

assumption should certainly be verified if one wants to prove that K is

existentially closed in L, by (2.3)).

Let a system (7) of polynomial equations and inequations with a solution

in L" be given:
(1) £ K,eeX ) = oen = £, 50000X ) = 0, (£, € KIXiy.usX 1)
gl(X.,..,Xn) * O""’gQ(X""’Xn) # 0 (gj € K[X""’Xn ).

Now I will indicate much simpler systems of equations and inequations

(solvable in L) whose solvability in K implies the solvability of (7)

in K.

Let (xl,...,xn) € L" be a solution of (1). Take a separating transcen-
dence base YiseeesYy of K(xl,...,xn) over K and z € L separable
algebraic over K(yl,...,yt) such that K(x,,...,xn) = K(yl,...,yt,z).

After multiplying z by a suitable nonzero element of K(yl,...,yt) the
minimal polynomial of z over K(yl,...,yt) may be assumed to be
p(y,,...,yt,Z) for scme p = p(Yl,...,Yt,Z) € K[Y;,...,Yt,Z], which is

monic and separable in Z.
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Consider now for 0 # q € K[Yl,...,Yt] the system:

(2,) p(Yaseeo¥,2) = 0, aYysee,¥) # 0.

This system has the solution (y,,...,yt,z) € Lt+1.

CLaim

1

Suppose each system (Zq) has a solution in Kt+ . Then (1) has a

. . n
solution in K.

It may be instructive to see two proofs.

Prood by model theonry:

Let ¢ be the K-sentence

k [
Hv,...avn(iglfi(vl,...,vn) =0 A jé\lgj(v,,...,vn) #* 0).

We have to prove K F o. Let FL be the theory of fields, let
gl,...,gt,g be new constants and put
I' = FL U Diag K U{p(gl,...,gt,g) = O}U{q(g,,...,gt)¢0]0¢q € K[Yl,..,Yt]}.
Then each model of T contains an isomorphic copy of
K(yl,...,yt,z) = K(xl,...,xn), so T F o.
Then by the Compactness Theorem there is 0 # q € K[Y‘,...,Yt] with
Iy 92f FL U Diag K Ufp(ers..-50,5d) = 0, leyse-nse,) # 0} k o.
But by the assumption in the claim, K (together with a suitable inter-

pretation of gl,..,gm,g in K) is a model of Fq, so K F o.

Proog by manipulation:

Write x; = ri(yl,...,yt,z)/q(yl,...,yt) and

-1 . .
gj(xl,...,xn) = Sj(yl,...,yt,z)/q(yl,...,yt), 1<i<k,1<3j<yg,

for suitable ri,sj € K[Yl,...,Yt,Z], 0 # q € K[Y,,...,Yt].



Then we have:
d; .
(3] {fi(r;/q,..,rn/q) = Fi/q with Fi € K[Y,,..,Yt,Z], di € IN.

(g5(ri/a,..,0 /) 55/ -1 = Gj/qej with G5 € KIYi,..,Y,,2] ;€.
Then fi(x.,..,xn) = Pi(yl,..,yt,z)/qdi(y,,.,,yt) =0,
S0 Fi(yl,..,yt,z) = 0 and
gj(xl,..,xn)-gj(xl,..,xn)—l = Gj(yl,..,yt,z)/qei(y,,,,,yt) =0,
so Gj(yl,..,yt,z) = 0.
Hence by the irreducibility of p we get:
(4) PlFi and pIGj in K[ Yy,..,Y,2Z].

t+1

] A} 1
Now let (y,,..,yt,z ) € K be a solution of (Zq) and put

1 1 A} 1] 1
x; = ri(yl,..,yt,z )/q(y;,..,yt).

A} A}
Then by (3) and (4) (xl,..,xn) € x" is a solution of (1).

Remanrk
Variants of this reduction procedure appear in Ch. II (1.19), Ch. II
(1.14) and (2.6). In all 3 cases the model theoretic argument
is really the guiding principle, while the proof by 'algebraic
manipulation' is in the first two cases simply too complicated to write

down.

(2.5) Applications

(a) Let me first show how it follows that an algebraically closed
field K is existentially closed in each extension field L (this
is one of the forms of Hilbert's Nullstellensatz):
L|K is separable, so by the claim it certainly suffices to prove
that for any two polynomials p € K[Yl,..,Yt,Z] and
0 #q € K[Yl,..,Yt] with p monic and of positive degree in Z there

t+1

is a solution in K of the system

P(Y| ,..,Yt,Z) =0, q(Yl,.-,Yt) #+ 0.
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Well, take any (y;,..,yt) € k* with q(y;,..,yt) #* 0.
Then p(yl,..,yt,Z) has a root z in K, so (yl,..,yt,z) is a
solution as desired.

(b) A special case of a result on p. 71 in [L1] is:
if f(Zl,..,Zn) € K[Z;,..,Zn] is irreducible (K a field), then
f is absolutely irreducible iff Q(K[Zl,..,Zn]/(f)) is a
regular extension of K.

Combining this with the reduction in (2.4) gives the following.

Theorem

Let L be an extension field of the field K.

Then the following are equivalent:

{4) K is existentially closed in L.

(44) L|K is regular, and for each two polynomials
P =pY1,..,Y.,2) € K[Yl,..,Yt,Z], 0 #q = qQ(¥y,..,Y) €
K[Yl,..,Yt] such that p is monic in Z and absolutely irreducible,

the system

p(Y;,..,Yt,Z) = 0, q(Yl,..,Yt) *0

1 1

has a solution in Kt+ if it has one in Lt+ .

Proof
(£) = (44) is trivial, using the definitions and (2.3).
(£4) = (4{}. In order to prove that K is existentially closed in L, it
suffices by (2.4) to consider the following situation: a point

+1 . . . . .
t+l is 'generic' zero of an irreducible polynomial

(yl,..,yt,z) €L

p(Y,,..,Yt,Z) € K[Yl,..,Yt,Z], monic in Z, which means
K(yl,..,yt,z) ~p Q(K[Yl,..,Yt,Z]/(p)).

We have then only to show that for 0 # q € K[Yl,..,Yt]

p(Y;,..,Yt,Z) = 0, q(Yl,..,Yt) +0
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1 t+1

has a solution in Kt+ . Note that (y.,..,yt,z) €L is a solution.
Now L|K is regular, so Q(K[Yl,..,Yt,Z]/(p))[K is regular, so by the
result in [L1] mentioned above, p is absolutely irreducible, hence

(44} gives the desired solution in Kt O

{2.6) Given a class K of f-structures, a structure A € K is called
K-existentially closed if A is existentially closed in each of

its extensions in K.

K is called inductive if the union of each chain of structures in K

(ordered by the substructure relation) also belongs to K.

The proof of the following proposition gives in embryonal form a very

useful construction. To make it as accessible as possible, only the

case that K is a class of rings will be treated in the proof.

(2.7) Proposition

Let K be an inductive class.

Then each A € K has a K-existentially closed extension.

Proog

Let R be a ring in K. Let (Z)) be an enumeration of all (finite)
o’ 1<a<k

systems of polynomial equations and inequalities with coefficients in
R (k 1is a cardinal, o ranges over ordinals). Then an ascending chain

(R in K is formed inductively as follows:
a’a<k

R0=R>

for a+l<k R is some extension of Ra in K in which Ea+1 has a

at+l

solution, if such an extension exists; otherwise Ra+1 = Ra5

for a limit ordinal X # 0 less than k, put R, = U{Ra|a<x}.

A
def.

Now by construction R! U{Ra|a<K} has for each o the property:

if Ea has a solution in an extension of R!' in K, then Za has already
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a solution in R'.

However new systems of equations and inequalities over R! can arise.
This difficulty is remedied as follows:

in the same way R! was constructed from R° dgf'R,. one constructs R?

*
"1 from R® (n €IN). Then R = U{R"|n €IN}

from R!', and with induction R
is a K-existentially closed extension of R: this is because each finite
system of equations and inequalities with coefficients in R* has
actually all its coefficients in R" for some n € N, and so has a

*
n+l if it has a solution in a K-extension of R . a

solution in R
(2.8) One usually considers classes which are elementary. Therefore
we define a theory T to be inductive if Mod(T) is inductive, i.e.

the union of each chain of models of T is a model of T.

Then for a theory T the following are equivalent ([ Sh, p.77]):
(1) T is inductive.

(2) For each ascending chain (An) of models of T

n€IN
its union U{An|n €N} is a model of T.

{3) T has a Vi-axiomatization.

If T is a theory, then we use the terminology 'T-existentially closed'
instead of 'Mod(T)-existentially closed', or even 'existentially closed',
if T is clear from context.

ET is by definition the class of T-existentially closed models of T.

The proposition of (2.7) implies that each model of an inductive theory

can be embedded in a member of ET.

For instance, in the case that T is the theory of domains or the theory

of fields, ET is the class of algebraically closed fields, by (2.5)(a).
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(2.9) Degdinition

A class K of L-structures is said to have an elimination theory, or

to admit elimination if each existential £-formula is equivalent with

an open L-formula for all structures in K simultaneously; or
equivalently: each L£-formula is equivalent with an open £-formula,

for all structures in K simultaneously.

Clearly, if K admits elimination, then the smallest elementary class
of L-structures containing K also admits elimination. Therefore we
can restrict our attention to elementary classes in discussing the
matter of elimination.

So, for a theory T, we say that T admits elimination if Mod(T) admits

elimination.

Now, the goal is to deduce a model theoretic criterion for a theory to
admit elimination, similar to the criterion given in (1.1) for linear
elimination. Existential closedness replaces in this context faithful
flatness. We also need a condition on the substructures of models of

the theory. So let us discuss substructures.

(2.10) Deginitdion

If T is an L-theory, then TV is the set of all universal f£-sentences
which follow from T. A straightforward diagram argument shows that an

L-structure is a model of TV iff it is a substructure of a model of T.

Example
If T is the theory of algebraically closed fields, then TV is the

theory of domains.

If T has an axiomatization consisting of universal sentences, then T
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is called a universal theory.
By the above T is universal iff each substructure A of a model of T

is a model of T (koé-Tarski).

Definition

Let T be a theory, B F T and A C B. Then B is called a prime extension

of A (w.r.t. T) if B can be embedded over A in any model of T extending
A. T is said to have PEP (= the prime extension property) if each

substructure of a model of T has a prime extension.

Example
ACF, the theory of algebraically closed fields, has PEP:
the prime extension of a domain is the algebraic closure of its

quotient field.

The obvious analogue of the theorem in §1 is:

(2.11) Theorem

If T is a theory with PEP and each model of T is existentially closed,

then T admits elimination.

Example
It was already verified that ACT satisfies the hypothesis of (2.11),

so ACF admits elimination.

Most theories, which have been proved to admit elimination, indeed
satisfy the hypothesis of (2.11). However, PEP is certainly not a
necessary condition for admitting elimination, see for example

Ch. II (3.8).



32

The concept of 'amalgamation' provides us with a necessary and

sufficient condition.

(2.12) Deginition

A theory T has AP (= the amalgamation property) if for any two models
B,C of T which extend a common model A of T there is a model D and

embeddings B + D, C » D such that the diagram
B
A/ \v
c\\\\\"LC//////? commutes.

Proposition
Let T be an L~theory such that either T has PEP or TV has AP, and let

¢(y,,..,yn) be an L-formula. Then the following are equivalent:
(4) ¢ is equivalent (w.r.t. T) with an open L-formula
(£¢4) for any two models A,B of T with A C B, and all ay,..,a € |A]:

AE ¢(a;,..,a ) B E ¢(al,..,an).

Proog
(£) = (44} is trivial.
(44) = (4): by an application of the theorem on constants [Sh, p.33], we
reduce {(4) to the case n = 0, i.e. ¢ is a sentence. Also, without loss
of generality, we may assume that £ has a constant.
Let T = {6]6 is an open L-sentence with T } ¢ + 8}. Then it suffices
to prove that T U T F ¢. Suppose this is not the case. Then there is
AETUT U {-¢}.
Let B be the substructure of A generated by the empty set. Then the
hypothesis on T clearly imply that T U Diag(B) F -¢. But every element

of |B| is the interpretation of a variable free L-term, hence there is
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open L-sentence § with T + ¢ » =¢ and B F ¢; but then -y € T and

A E ¢. Contradiction. [m]

Note that this makes precise an argument in the proof of the result
on linear elimination in §1.
The proposition also implies (2.11), because under the hypothesis of

(2.11) existential formulas have property (ii) of the propositicn.

By the same argument, the proposition implies one half of the

following theorem.

(2.13) Theonrem

The following are equivalent for a theory T:

(4) T admits elimination;

(£4) all models of T are existentially closed and TV has AP.

Proog

By the remark preceding (2.13) only (4) = (4i4) has to be proved. That
all models of T are existentially closed is trivial. Let A be a sub-
structure of a model of T, and let B,C be two extensions of A,
BCB' ETand C CC' F T. Then the assumption that each L-formula is
equivalent with an open L-formula, clearly implies:

(B',a)aelAl = (C’,a)aelAl.
Now an easy diagram argument implies that any two elementarily equivalent
structures have a common elementary extension. Applying this to the

preceding two structures gives that TV has AP. O

(2.14) Remarks

{a) (2.13) will be used to prove the elimination results in Ch. II
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and III.

(b) Using (2.13) a second proof that ACF admits elimination can
be given: if suffices to prove that the theory of domains has
AP, and this will follow if the theory of fields has AP. So
let L and M be two extension fields of a field K. Then
L Gk M modulo any of its maximal ideals is a common K-extension
of L and M.

(c) Actually in theorems (2.11) and (2.13) 'existentially closed’
can be replaced by a weaker condition:
if A and B are L-structures with A C B, we define A to be n-
existentially closed in B (n€IN) if each L(A)-sentence

axl..axn¢(x,,..,xn) with ¢ open, true in B, is also true in A.

If A and B are rings this means that every finite system of polynomial
equations and inequalities in n variables over A which has a solution
in Bn, also has a solution in A".

If T is a theory then an n-existentially closed model of T is a model

of T which is n-existentially closed in each extension which is a model

of T.

CLaim

In (2.11) and (2.13) "existentially closed" can be replaced by

"l-existentially closed".

This rests on the following trivial observation:

if each L£-formula 3x¢(x,y,,..,yn) (¢ open) is equivalent with an open
L-formula, then each existential L-formula is equivalent with an open
L-formula (all this with respect to a certain £-theory T).

Combining the claim with the fundamental theorem of Algebra one
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can give a simple proof of Tarski's Theorem, see [Rob2, p.4u].

(2.15) Elimination is rather sensitive as to the language used. For
instance, the theory of real closed fields can also be

formulated in the language of rings: in the axioms for real closed

fields every instance of an atomic formula "t < d" can be replaced

by a formula "3x(t+x? = d)" (x a variable not occurring in t,d).

But in the language of rings the theory of real closed fields does

not admit elimination: the quantifier '3x' in '3Ix(y = x?)' cannot be

eliminated within the language of rings.

One can even prove the following (an analogue of theorem (1.2) of §1):

if D is a domain such that {D} admits elimination, then D is a finite

or an algebraically closed field. For an easy proof, see

[M., M.& v.d.D.].

A concept which is less language dependent, and often serves as a

substitute for elimination, is model completeness.

(2.16) Definition

An L-theory T is called model complete if for any two models A,B of T

with A C B and for each £-formula ¢(x,,..,xn) and all (a,,..,an) € |A]n:
AE ¢lar,..,a ) B E ¢(a,,..,an).
(if two structures A,B with A C B have the above property, we write

A < B, and say that B is an elementary extension of A, or A an

elementary substructure of B).

Clearly, a theory admitting elimination is model complete, and a model

complete theory is inductive by Tarski's Lemma, see [Sh, p.77].
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The basic tool in establishing model completeness is

(2.17) Robinson's Test. A theory T is model complete iff each model

of T is existentially closed.

Lemma
Let A C B. Then A is existentially closed in B iff B can be embedded

over A in an elementary extension of A.

Proof

Let A be existentially closed in B. Then by the compactness theorem
Th((A’a)aelAl) U Diag(B) has a model C and so A< C, B C C.

The other direction is trivial. O

Proogd of Robinson's Test

Suppose each model of T is existentially closed and let A,B be models
of T with A C B. Then, using the lemma, chains (An) and (Bn) of models

of T are formed as indicated, with induction on n:

Ao = AT sp—— Az
BO = B fB] rB2

Here the arrows indicate embeddings, the horizontal ones elementary

embeddings. Now, by Tarski's Lemma (cf. [Sh, p.77])

0 oo
U A = UB
n=0 ©  n=0
is an elementary extension of A as well as of B, hence A < B.

The other direction is trivial. O
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To appreciate the strength of the test, one cannot do better than

read Robinson's beautiful paper [Rob3].

(2.18) There are two reasons for studying models of a theory

admitting elimination.
First of all, because they may be important in themselves, like €, and
IR, and the elimination theory makes them more easily accessible.
But also -as in the case of p-adic fields - they reflect properties
of more basic structures =-1like Q- , and one hopes to be able to
prove results for these more basic, but very complicated structures,
by studying extensions which are models of a theory admitting
elimination, or at least models of a model complete theory.

This idea has been formalized in the concept of model companion.

(2.20) Deginition

Let T be an inductive fL-theory.

Then an L-theory T is called a model companion of T if

(4) each model of T is a model of T;

(£4) each model of T can be embedded in a model of T;
({ii) T is model complete.

If also

{4v] T has AP

helds, then T is called model completion of T.

The canonical example is, of course, ACF which is model completion of
the theory of domains (as well as of the theory of fields).
Note that (2.13) can be reformulated as:

T admits elimination iff T is a model completion of a universal theory.

The basic result on model companions is
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(2.21) Theonrem

Let T be an inductive theory. Then T has at most one model companion.

It has one iff ET is an elementary class. In that case T with

ET = Mod(T) is the model companion of T.

Proo4

Suppose that T is model companion of T. Then it is easily seen that
each model of T belongs to ET.

If A €E then A C B E T for some B. As A is existentially closed in

T,
B, A satisfies all V3-sentences which are true in B.

But %, as an inductive theory, has a v3-axiomatization; hence A E T.
So ET = Mod(T).

On the other hand, suppose Er = Mod(T) for a theory T. Then by (2.7)

and Robinson's Test T is model companion of T. (]

Remanrk
The results and concepts mentioned in this section find their origin
in ideas of Robinson, dating from the fifties. Some of the people who
introduced more recent notions, such as AP and model companion,
collaborated under the name of Eli Bers, see for instance [ Ek.&Sab.].
Some other useful criteria for a theory to admit elimination were
given by L. Blum and J. Shoenfield, see [Sa, p.89] and [Kil.
Instead of 'T admits elimination' some authors use the terminology

'T admits quantifier elimination' of 'T is substructure complete'.
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§3. Examples

A number of (mostly wellknown) results on concrete theories will be
listed, which are used in Ch. II and III. We will also make some

terminological conventions.

(3.1) Domains and §ields (References: [L3], [Rob2]).

The theories D and FL of domains and fields are formulated in the

language of rings. Both have as their model completion the theory

ACF of algebraically closed fields.

ACF admits elimination.

(3.2) Ondened domains (References: [Ar.&S.], [Rob2]).

For technical reasons (see §1 of Ch. III) an ordered domain is most

conveniently defined as a structure (D,P) with D a domain, P a subset
of D such that:
(£) P+P C P,

(id) P.-P CP,

[444) P N(-P) {0},

(4v) P U(-P)

n
o

Associated with such a P (called an ordering) is a linear order <$ on D:
b'4 Si y dgf’y-x € P.

We use '<' instead of '<P' if P is clear from context. We also write

'x <y' for 'x <y and x#y'; 'x=2y' for 'y < x';and 'x > y' for

'x 2y and x #Fy'.

So the language of ordered domains is the language of rings augmented

by one unary predicate symbol P. The theory of ordered domains is

called 'OD'. An ordering P on a domain D is uniquely extendable to an
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ordering, called Q(P), on the quotient field Q(D); and if

D = (D,P) F OD, we write Q(D) for (Q(D),Q(P)). The theory of ordered
fields is OF. If (D,P) is an ordered domain, then a function f:A - D
(A any set) is said to change sign (for the ordering P) if 3a,b € A
f(a) <0 and f(b) > 0.

A real closed field is an ordered field such that every sign changing
polynomial function in one variable (with coefficients in the field)
has a root in the field.

In a real closed field the ordering is identical to the set of squares.

The theory of real closed fields is called RCF.

Fact: RCF admits elimination and is the model completion of 0D and of

OF. ~
Although it will not be needed, let me mention a recent theorem
[M.,M.&v.d.D.]: RCF is the only theory in the language of OD and

extending OD which admits elimination.

(3.3) Valued f§4iefds <(References: [Rill, [Rob2]).

A valued field is a field K together with a surjective map v:K + T' U {x}
with T an ordered abelian group s.t.

v(a) = o e a = 0,

v(ab) = va + vb ,

v(a+b) =2 min(va,vb) (conventiion: gt+w = o, g < ).

v is then called a (Krull) valuation on K, and is non-trivial if

r + {0}.

Associated with v are: its valuation ring V = {k € K|v(x) > 0},

the maximal ideal M = {k € K|v(k) > 0} of V,» and its residue field

Kv = VV/MV; r = Fv is called its value group.
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One notion especially is important:

Deginition
A valued field (K,v) is called henselian if each polynomial
f(X) € VV[X], such that f(X) € Kv[X] has a simple root a € K, has

a root a € VV with a = a.

An embedding (K,v) + (L,w) of valued fields is an embedding K - L

together with an embedding FV > Pw such that the diagram

KQ > L.

¥ ¥

r -»r commutes.

v ) $

N

Such an embedding induces embeddings Vv -+ Vw and KV > Lw. The embedding

is called immediate if it induces isomorphisms Fv o~ Fw and Kv o Lw.

Each valued field (K,v) has a henselization , i.e. a henselian field

(Kh,vh) together with an embedding (K,v) - (Kh,vh) such that for each
embedding (K,v) - (L,w) with (L,w) henselian there is a unique
embedding (Kh,vh) + (L,w) making

(K,v)-*(Kh?vh)

l ‘///// commutative.

(L,w)

(K,v) - (Kh,vh) is immediate and Kth is a separable algebraic

extension.

For our purpose (see for example Ch. III) a valuation is best seen

as defining a divisibility relation on the field. This point of view
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also generalizes to domains:

Definition

Let D be a domain. Then a linear divisibility relation (1.d. relation)

on D is a binary relation div on D such that for all a,b,c € D:
(<) (a div b and b div c¢) = (a div c);

(i4) a div b or b div a;

(£44) (a div b and a div c¢) = a div(b+c);

(iv) if ¢ # 0, then (a div b ® ac div be);

(v) not 0 div 1.

An 1.d. relation div on the domain D induces a valuation ring Vaiv
of the quotient field Q(D):

giv = {glasb € D, b # 0, b div a},
and for the corresponding valuation Viaiv o0 Q(D) one has

vdiv(a) <v V(b) # a div b (va,b € D).

di

dive V is easily seen to be a bijection of the set of 1.d.

div
relations on D onto the set of valuation rings of Q(D); its inverse
is given by

Ve divv = {(a,b) € DxD|v(a) < v(b)},
where v is the valuation on Q(D) associated with V.
Clearly with an 1.d. relation div on D a unique 1.d. relation

Q(div) on Q(D) corresponds, such that

(D,div) C (Q(D),Q(div)) .

So let us redefine a valued field as a field with an 1.d. relation on

it, and define a valued domain as a substructure of a valued field,

i.e. as a domain with an 1.d. relation.
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It is easily seen that the model theoretic notion of embedding for
valued fields corresponds with the algebraic one given above.
K,VK,MK and K will denote

the corresponding valuation, value group, valuation ring, its

If (K,div) is a valued field, then vK,F

maximal ideal, and the residue field.
The theories of valued domains and valued fields are denoted by

D and F (the language being the language of rings with an extra

val al
symbol div).

Let ACFv be the theory of algebraically closed non-trivially

al

valued fields.

Theonrem

ACF

admits elimination, hence is model completion of D and of
val val

Fval'

Pnooﬁ

In §7 this was mentioned as a result of Robinson. But he actually only
proved ACFval to be model complete (this was all he needed to derive

the decidability of ACF and to classify its models up to

val’
elementary equivalence, see [Rob2]).
To get elimination, it will, by (2.11) and (2.17), suffice to prove:

ACF has PEP.
val ———

Let K = (K,divK) be a valued field; if clivl< is non-trivial, then

~ ~ — . . ~
(K,div) (K = alg. closure of K, and div = any extension of dvi to K)
is a prime extension of (K,div); this is due to the well-known fact
that any two extensions of the valuation on K to valuations on a

normal extension of K are conjugate over K; similarly, if divK is

.. N T . . .
trivial, then (K(X),div) is a prime extension, X being trancendental
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and div an arbitrary extension of div, to K(X). (]

K

In [M.,M.&v.d.D.] it is proved that ACF, 4 is the only theory in the
language of valued domains, which extends the theory of non-trivially

valued domains and admits elimination.

(3.4) Prime extensions

Before discussing the next examples, some more information has to be

given on prime extensions.

Definition
Let T be a theory.

{a) T has PEP (= 'the unique prime extension property') if

unique
T has PEP and any two prime extensions of a structure A F TV
are isomorphic over A.

(b) T has PEP (= 'the minimal prime extension property') if

minimal
T has PEP and each A E TV has a prime extension which does not
properly contain any other prime extension of A (a so called
minimal prime extension).

(¢) T has PEP if each A fF T, has an extension A E T which

universal
can be embedded uniquely over A in each extension B F T of A.
Such an A is clearly defined up to isomorphism over A, and is

a prime extension of A; A is called the universal prime extension

of A.

ExamplLes

(1) The theories FL, RCF, and the theory of henselian valued fields

have PEP _. .
_— universal

For FL the universal prime extension of D E FLV is the quotient
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field Q(D); for RCF the universal prime extension of an
ordered domain D is the real closure of Q(D); for the theory
of henselian valued fields (note that the class of henselian
valued fields is elementary) the universal prime extension
of (D,div) is the henselization of (Q(D),Q(div)).

(2)  ACF and ACF_

have PEP but not PEP

al universal’

The minimal prime extension of a domain D (with respect to ACTF)

minimal

is of course the algebraic closure of Q(D), and in general this
algebraic closure has non-trivial D-automorphisms, so cannot
be a universal prime extension of D.

For ACPval, see the proof of the theorem in (3.3).

(3) The theory of differentially closed fields of char. 0 and the
theory of atomless boolean algebras both have PEP__. but not
unique ————
PEP_. . .
minimal
(4) There are also examples known of theories (even admitting

elimination), which have PEP but not PEP__ . .
unique

Clearly: PEP = PEP = PEP = PEP, and the

universal minimal unique

examples show that no arrow can be reversed, not even for theories
admitting elimination.
Also the following is easy:

if the theory T has PEP and A is prime extension of A E TV’

minimal
then A does not contain properly any extension of A which is a model

of T.

(3.5) Afgebraic elements

The reader will have noted that in some cases a prime extension can
be obtained by adjoining 'algebraic' elements. Model theoretic notions

of 'algebraic' have been defined by A. Robinson (1951), B. Jdnsson
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(1962), M. Morley (1965) and others. Their notions have been
compared by P. Bacsich in [ Bac ]. From his paper I take the following

definitions.

. . . <n_ ., -
First some notation and terminology: "a\nx¢" is shorthand for the
formula expressing that for at most n x's ¢ holds.
A primitive formula is an existential formula of the form le..axn¢

with ¢ a conjunction of atoms and negations of atoms.

Deginition
Let T be a theory and A C B k T, n €1IN;

(£) an A-formula ¢(x) is called algebraic of degree <n over A, if

¢(x) is primitive and T U Diag(A) F 3 "x¢(x);
note that the latter means: for each extension C f T of A
¢k %00,

(i4) Db € |B| is called Robinson-algebraic of degree <n over A in B,

if B F ¢(b) for some A-formula ¢(x) which is algebraic of
degree <n over A,

(i{44) B is Robinson-algebraic over A, if each b € |[B| is Robinson-

algebraic over A in B,

(£¢v] A is Robinson-algebraically closed if there is no extension

CF T of Awith ¢ € |C|\|A] which is Robinson-algebraic over A
in C,

(v) b € |B] is called n-potent over A in B if for each extension
C F T of A there are at most n elements of |C| which are the

image of b under an A-embedding of B into C.
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The proofs given in [Bac ] imply:
Theonem

Let T be an £-theory, ACBE T, b € |B|, n €EN.

Then the following are equivalent:

(a) b is Robinson-algebraic of degree <n over A in B.
(b) b is n-potent over A in B.
(e) There is a primitive L-formula G(X,zl,..,zk) such that

< _
T } Vz,..zka\nxe(x,z,,..,zk) and there is a € |A|k with

B F o(b,a).

Moreover, the set of all b € |B| which are Robinson-algebraic over

A in B is the universe of a substructure of B.

If B is T-existentially closed, then B is Robinson-algebraically

closed.

One of the connections with prime extensions is:

Proposition

Let T be a theory admitting elimination and suppose each A E Tv has
an extension X'k T which is Robinson-algebraic over A. Then T has

PEP and A as above is the prime extension of A.

minimal

If moreover A as above does not have a non-trivial A-automorphism,

for all A E T,» then T has PEP . ., ca1°

Proof

Let A € B f T. First note that because B is T-existentially closed,
B is also Robinson-algebraically closed by the preceding theorem.
Because T, has AP by (2.13), there is C F T with B C C and an embedding

~

f:A » C such that the diagram
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commutes.

N
A c
S
Then a € |A| is Robinson-algebraic over A in A, and so f(a) € |C|
is Robinson-algebraic over A in C, so f(a) is Robinson-algebraic
over B in C, hence f(a) € |B]|.

As £(]A|) C |B|, this shows that A is a prime extension of A.

If ACB CA and B F T, then as above each a € [K| is Robinson-
algebraic over B in A, hence belongs to |B|, so B = A. So T has
PEP inimal®

The last part is proved as follows: let A C B f T and suppose f,g are
two A-embeddings of X into B. Then, if ¢ € IXI, g(c) is, as above,
Robinson-algebraic over A, hence over f(x), in B. Because f(A) E T,
this implies g(c) € If(z)l. So g(Z) c f(X), and by symmetry

g(x) = £(A). But then g-lo f is an A-automorphism of A, which by

assumption implies g = f. a

Remanrk
If a theory T has PEP__. , then the prime extension A of any
universal
AE TV is indeed Robinson-algebraic over A. This is because each

b € |A| is clearly 1l-potent over A in A.

(3.6) p-adic §ields (References: [Ax&Kol, [Kol, [M1]).

Let p be a prime number. A p-valued field is a valued field of char.

with residue field Eb and v(p) = 1 (by notation) as the smallest
positive element of the value group. So @ with its p-adic valuation
is a p-valued field.

A p-adically closed field is a p-valued field without any proper
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algebraic (valued) extension which is also p-valued, or equivalently
it is a henselian p-valued field, whose value group I' satisfies
#(I’/nr) = n, for all 1 < n €N.

So QP, and its valued subfield of algebraic numbers (= the hense-
lization of @ with its p-adic valuation) are p-adically closed.
Since the work of Ax-Kochen and Er&ov it was known that the theory
of p-adically closed fields is complete and model complete. Later a
special study of these valued fields was made by Kochen in {Ko]

(and also by P. Roquette), who found many similarities with ordered
and real closed fields.

However, the theory of p-adically closed fields does not admit
elimination in the language of valued fields.

Also a p-valued field has in general no prime extension (with respect
to the theory of p-adically closed fields), although it has one -

namely its henselization- if # T/ = n for all n €N, n = 1, where

nF)
I' is its value group.

A natural remedy to the first defect was given by A. Macintyre
in [M1]: define for each p-adically closed field K = (K,div)
and for each n €N with 2<n a unary predicate Pﬁ by:

PKea) iff a € K™ = (k"[k € K}
Let pCF be the theory of p-adically closed fields formulated in the
language of valued fields augmented by new unary predicate symbols
Pu (2<n€WN), with the obvious defining axioms

V(P (x) « 3y(y" = x)),

added to the theory. Macintyre proved: pCF admits elimination.

Macintyre did not treat the question of prime extensions for pCF in

[ M1].
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Theonrem

pCF has PEPuniversal’

Proog
Let A = (D,div,P, ,P3,..) E (pCF)V. Note first (for later use) that
Q(D) can be uniquely expanded to a model Q(A) = (Q(D),Q(div),...)
of (pCF)V, with A C Q(A).
Let A C B F pCF and define K as the substructure of B whose universe
is the set of all b € |B| which are algebraic over Q(D).

Caim K F pCF.
As the underlying field of A is algebraically closed in the under-
lying field of B, A is clearly henselian as a valued field; let now
0#be€ |K| and 2 < n € IN. Then, because 0,1,2.1,...,(n-1).1 are a
complete set of representatives of T' mod nlI', where I' = value group

of B, there is 0 < i < n with v(bpl) € nl' (v the valuation of B),

so for some 0 # u € [B] v(bp*u™) = 0, hence by Fact 1 in [Mi}

1 B 1 1
n

bplunk- € P_ for some 0 # k € N, so bplk_ € Pi, so bplk- is also

an nth power in Z, which implies v(b) = j.1 mod nA for some

~

0 < j < n,A being the value group of A, hence =#(A/nA)

That Pﬁ is the set of nth powers in A follows because A is

n.

algebraically closed in B.

So the claim is proved.

Now A is clearly Robinson-algebraic over A. Then by the proposition
of (3.5) the proof reduces to showing: A has no non-trivial A-
automorphism.

Suppose ¢ is such a non-trivial A-automorphism of A.

Take a maximal substructure

L

K = (K,div,P},PY) of A = (L,div,,By,PY,...)

on which ¢ is the identity.
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Then for all n €N, n = 2: Pi = k™. Suppose a € Pﬁ \Kn, and let
b € |A| be an n™ root of a. Then, because b € K, o(b) # b and
O(b)'b_1 = p # 1 is an nth root of unity. Then by Fact 2 in [ M1]

p €& L™ for some 2 < m €N. But as in the proof of the claim above
one finds rational g # 0 with gb € "= Pm’ so o(gb) € L™ and
c(qb)(qb)-1 = p € Lm, contradiction.

Also (K,divK) is clearly a henselian valued field, by the universal

property of the henselization and the definition of K.
Finally, using Pg = Kn, one shows just as in the proof of the claim

above, that #(r,/ . ) = n, for all n €N, n > 2.
K nFK
So K F pCF, and because A is minimal prime extension of A, one has

~

K = A, contradicting o # 1. (]

Concluding remarks

(a) Some extra notation: pFL denotes the theory of models of PCF
whose underlying domain is a field.

From the proof of the theorem one obtains also:

{b) Each p-adically closed field (K,divK) has a unique expansion

-namely (K,div,,K* ,K*,...)- to a model of pFL.

K’

(c) From (b) one gets that Q has a unique expansion to a model of
pFL, namely that expansion which makes it a substructure of
(K,divK,Kz,Ka,...) where (K,divK) is the henselization of @
endowed with its p-adic valuation.

(d) As far as I know there is not yet an explicit description of the

elimination theory of pCF.

{3.7) m-valued f§ields (References: [Ax&Kol).

Let 7 be a symbol, and define a I-valued field as a structure

(K,divK,n) with (K,divK) a valued field with residue field of char. 0
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and m € K such that v(w) = 1 (by convention) is the smallest positive
element of the value group.

Define a g-adically closed field as a m-valued field which has no

proper algebraic (m-valued) extension.

Equivalently, a m-adically closed field is a m-valued field which is
henselian, whose value group T satisfies=#(r/nr) =n, (1 <n€W),
and whose residue field is algebraically closed.

So (€((m)), div ,m), where div belongs to the valuation ring C[w], is

a m-adically closed field.

By the results of Ax-Kochen and ErSov the theory of m-adically closed
fields is complete and model complete.

But again this theory has the same defects as the theory of p-adically
closed fields formulated in the language of valued fields.

So define for each m-adically closed field K = (K,...) the predicates

K K n
< G =

, and extend the language of valued fields

by adding a constant m and the unary predicate symbols Bn(Z <n€N).
Let mCF be the theory of m-adically closed fields formulated in this
language, with the obvious defining axioms for Bn' Then one can show

along the lines of Macintyre's proof of Theorem 1 in [M1]:

mCF admits elimination

(Elsewhere I will give a more elementary proof of this result, than

the one obtained by following Macintyre's method.)

The same reasoning as in the proof of the claim in the theorem of (3.6),
augmented by an easy argument on the residue field, shows:

mCF has PEP_. .
— minimal.

0f course mCF does not have PEP__. :
- universal
(Cc((m)) ,div,m,c((mw))?...)
has a non-trivial automorphism over its substructure

(R((mM) ,div',m4P2,...).



(a)
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Concluding nemanrks

By Hensel's lemma it is clear that
P_= K" = {x € K|v(x) € n.T U{=}} (2 <n EN) for each
(K,divi,P2,...) F mCF.

7FL is by definition the theory of models of (ECF)V whose
underlying domain is a field.

Each m-adically closed field has a unique expansion to a model

of mwFL.
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CHAPTER 11 Fields with n onderings

In this chapter the model theory of fields, or rather domains, with
a given number of orderings will be treated.

Not so much for its own sake, as well in order to demonstrate
techniques and to use results which also play an important role in

Ch. IIT.

§1. The model companion

(1.1) Defdinition

Let n €IN. An n-ordered domain is a structure D = (D,P,,..,Pn) with

D a domain and P, an ordering on D.

ODn is the theory of n-ordered domains.

Similarly an n-ordered field is defined, and OFrl is the theory of
n-ordered fields. See Ch. I (3.2) for the notion of ordered domain as

used here.

The main result of this section is:
(1.2} Theorem

ODn has a model companion 5ﬁn, whose models are the models (K,P,,..,Pn)

of OPn satisfying:

{a) Pi and Pj induce different (interval) topologies on K, for all

1 <1i<3j<n.

(B) For each irreducible f(T,X) € K[T,X] and a € K such that f(a,X)

changes sign on K with respect to each of the orderings Pi’ there

exists (c,d) € KxK with f(e,d) = 0.

So the (universal) axioms of 0D, together with the field axiom
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vx # 0 3y(xy=1), and (a),(B) give us an axiomatization of 5ﬁn.

That (o) can be formulated in the language of ODn is seen as follows.
A basis of neighbourhoods of 0 in an ordered field (K,P) is given

by the sets (-e,e) with 0 < € € K. So we can express in the language
of ODn that some neighbourhood of 0 in the Pi—topology is not a
neighbourhood of 0 in the Pj—topology, or conversely.

Orderings inducing different topologies are also called independent

orderings.

(1.3) To prove the theorem it suffices by Ch. I (2.21) to show:

A Each existentially closed model of ODn is an n-ordered field
satisfying (a) and (B) of (1.2).
B Each model of OFn satisfying (a) and (B) of (1.2) is

existentially closed.

If n = 0 (1.2) is evidently true, as (o) becomes vacuous and (B) only
says that K is an algebraically closed field. So for n = 0 we get the
old result that ACF is the model companion of the theory of domains.

Therefore we shall assume n = 1 in the following (although the case

n = 1 gives nothing new too: 0D, = OD, so 0D, = RCF).

The next three lemmas together imply part A.
(1.4) Lemma

Each n-ordered domain can be embedded in an n-ordered field.

Proof

If (D,P,,..,Pn) is an n-ordered domain, then

(D,P,,..,Pn) C (Q(D),Q(Pl),..,Q(Pn)) E OFn. O
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(1.5) In order to motivate the next lemma, it is useful to have an
equivalent formulation of (a) of (1.2). This formulation is

provided by the following fact: two orderings P and Q on a field K

are independent iff each neighbourhood of 0 in the P-topology and

each neighbourhood of 1 in the Q-topology have non-empty intersection.

This follows from an approximation theorem ((1.7)) which we will use

very often. The following notion is due to I. Kaplansky, see [ Ka].

(1.6) Definition

Let K be a field. A V-topology on K is a Hausdorff ring topology on
K, such that if any two subsets A and B of K are bounded away from O
(i.e. disjoint with a O-neighbourhood) then also AB is bounded away

from 0.

A theorem, proved independently by I. Fleischer and Kowalsky-Diirbaum
says that a topology on a field K is a V-topology iff it is the
topology induced by an absolute value function K » IR, or the valuation
topology induced by a (Krull) valuation on K. Of course an interval
topology induced by an ordering is also a V-topology. Note that
V-topologies are field topologies. For a very short proof of the next

theorem, see [P.&Z.].

(1.7) Approximation Theorem fon V-topologies (A.S. Stone).

Let K be a field and TyoersTo be different V-topologies on K, and

let for each 1 < i <m Ui be a non-empty T;-open subset of K.

Then U, N...NU_# g.

In the following, if an n-ordered domain (D,P,,..,Pn) is given, I

will write <i,<i, etc. to refer to the linear order on D defined by
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P, (1 <is<n).

(1.8) Lemma

Let K = (K,Pl,..,Pn) E OFn and let 1 <i<j<nand 0 <ﬁ €, €K

and 0 <ﬁ €2 € K. Then K can be embedded into some £ = (L,Q,,..,Qn)k OF
with an x € L satisfying:

-€1 <i X <i €1 and 1-eg; <j X <5 1+e;z .

Proog

We put L = K(X) and x = X and extend P;,..,Pn to orderings Q,,..,Qn
on L such that X is positive in the Qi-ordering and infinitesimal
with respect to (K,Pi), i.e. O <ﬁ X <ﬁ e for all O <i € € X, and

X-1 is infinitesimal in the Qj-ordering with respect to (K,Pj). O

(1.9) For the next lemma (and also for later developments) recall
that, given an ordered field (K,P) and an algebraic extensiopn

K(a) of K with £(X) € K[X] as minimum polynomial of a, P can be

extended in precisely r ways to an ordering on K(a), where r is the

number of roots of f(X) in the real closure (K,P) of (K,P):

if oy <....< a, are these roots, then a By gives a K-embedding of

K(a) into K which induces an ordering Pk on K(a), and Pl,..,PP are

exactly the r different extensions of P to K(a).

(1.10) Lemma

Let K = (K,Pl,..,Pn) E OFn and f(T,X) € KIT,X] be irreducible and

a € K such that f(a,X) changes sign on K w.r.t. Pi, for each 1 < 1 < n.
Then K can be embedded in an £ = (L,Q,,..,Qn) E OFn with (¢,d) € LxL

such that f(c,d) = O.
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Proof

Let t be transcendental over K and extend the ordering Pi to an
ordering Pi on K(t) such that t-a is infinitesimal with respect to
(K,Pi), and do this for 1 < i < n. Then the polynomial f(t,X)
f(t,X) € K(t)[X] changes sign on K(t) w.r.t. each ordering Pi, so
f(t,X) has a root in the real closure of (K(t),Pi), 1 <1i<n.

But as f(t,X) € K(t)[X] is irreducible, this implies that Pi can be
extended to an ordering Qi on the field K(t)[X]/(f(t,X))' Put

L = K(t)[X]/(f(t,X)) and ¢ = t, d = X mod f(t,X), and we have

f(c,d) = 0 as required. a

Using the definition of existential closedness (Ch. I (2.2) and (2.6))
we see that (1.u4), (1.8) and (1.10) imply part A of (1.3).

For part B we need some more lemmas.

(1.11) Lemma
Let K = (K,P,,..,Pn) E OFn satisfy (B) of (1.2). Then each f(X) € K[ X]

of odd degree has a root in K, and P, N...N Pn = K%.

Proog
Replacing f by a suitable irreducible factor, we may assume f to be
irreducible. Then use (B) and the fact that an odd degree polynomial
over an ordered field changes sign with respect to the ordering.
If a € (Plfﬂ...f‘Pn)\Kz, then X?-a € K[X] is irreducible and changes
sign w.r.t. Pi’ for each 1 < i <n. So it has a root in K by (B),

contradiction. a

(1.12) Lemma

Let K be a field in which every odd degree polynomial of K[X] has a
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root. Then there is for each finite separable extension L of K a
chain of fields:
K=1L €L, C€...C Lm = L with [Li+1 : Li]= 2, (0 <1i<m).
Proog (from [Ri2, p.153]):
Let M be a finite Galois extension of K containing L. Suppose [M : K]
has an odd factor >1. Then any 2-Sylow subgroup H of Gal(M|K) is a
proper subgroup of odd index. Hence the fixed field of H is a proper
odd degree extension of K, so there is an irreducible f € K[ X] of odd
degree >1, contradicting the hypothesis of the lemma.
Hence Gal(M|K) is a 2-group and Gal(M|L) C Gal(M|K).
By [ Ri2, p.53] there exists a chain of subgroups
) = 2,

Gal(M|L) = 6 C 6 _, C...C G = Gal(M|K) with (G, : G

-1
0 <i<m, giving rise, by the fundamental theorem of Galois theory

i+l

to a chain of subfields as described. O

(1.13) Lemma
Let (K,P) be an ordered field such that each f(X) € K[X] of odd degree
has a root in K. Then: K is dense in K (where (X,P) is the real

closure of (K,P)), iff K* is dense in P = {x € K|x = 0}.

Prood
(=): Let 0 <a € K and 0 < € € K. Then we have to prove that
(a,a+te) N K? # ¢. By assumption we can find 0 < § € K with
26/a+8?> < g and b € K with va <b < /a+6§ (where the positive square
root is taken). Then b? € (a,a+e).
(<): By lemma (1.12) it suffices to show that for any quadratic
extension K(va) C K of K, K is dense in K(va) and that K(va) inherits
the properties that each odd degree polynomial over it has a root in

it, and that its set of squares is dense in its set of nonnegative
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elements.

Each odd degree polynomial over K(Ya) has an irreducible factor

of odd degree, which is necessarily of degree 1:

otherwise K(va) has an extension of odd degree >1, hence K has a
finite extension of degree not a power of 2, contradicting (1.12).
If K is dense in K(va), then the density of K* in P implies easily
the density of (K(va))? in P N K(Va).

Finally, to prove that K is dense in K(va) it suffices, by the
cofinality of K in K(va), to show that (Va-e,/a+e) N K # ¢ for each
0 < g € K. Choose 0 < x,y € K with 0 < }a < x* <a <y?® and

y?-x* < ev/a. Then 0 < x < va <y and y-x = (y?-x*)/(y+x) < e/a/y+x < g,

hence x,y € (Va-e,v/a+e). O

Remanrk
Prof. A. Prestel indicated to me an easy topological proof of (1.13):
if K* is dense in P and each odd degree polynomial over K has a root
in K, then also the completion (k,ﬁ) of (K,P) satisfies these
properties, and this implies that (i,ﬁ) is real closed, and as K is
dense in R, K is dense in the real closure of (K,P). However, to make
this reasoning precise, one needs a few properties of complete V-

topological fields, see Ch. III, (1.18).

{1.14) Conollany
Let K = (K,P,,..,P ) F OF satisfy (a) and () of (1.2). Then (K,P,)

is dense in its real closure, for all 1 < i < n.

Proo{
By (1.11) and (1.13) it suffices to show that P, N...N Pn is dense in
the set Pi’ with respect to the Pi-topology on K. So let

0 <i a <i b, a,b € K; then by (a) and the Approximation Theorem (1.7)
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there is x € K with a <ﬁ X <ﬁ b and 0 <j x for all j # 1.

Hence x € P; N...N Pn' ]

In the next lemma (a) of (1.2) is generalized to polynomials in
more than 2 variables. The essential tool is Hilbert's irreducibility

theorem as exposed in [Roql, see also [L2, Ch.VIII].

(1.15) Definition

Let K be a field and f = f(T,X.,..,Xk) € K(T)[X.,..,Xk] be irreducible
(k 2 1). The basic Hilbert set over K associated to f is defined as
the set of all t € K for which f(t,X,,..,Xk) € K[X,,..,Xk] is

defined and irreducible.

A Hilbert set over K is the intersection of a finite number of basic
Hilbert sets over K.

Hilbert's irreducibility theorem is said to hold for K, or K is a

Hilbertian field, if each Hilbert set over K is non-empty.

No two sources in the literature seem to agree over the definition of
Hilbert set. Anyway, the Hilbertian fields as defined above are the
same as those of [Rog] and [L2, Ch. VIII], as is easily checked.

An elegant and useful nonstandard interpretation of Hilbert's
irreducibility theorem is given in [Rog ]: let K be a field, *K its
nonstandard extension in an enlargement of a suitable structure
containing K, and define an element t € *K to be a Hilbert element
over K if t ¢ K and K(t) is algebraically closed in *K. Then it is
proved in [Roq ] that K is Hilbertian iff there exists a Hilbert

element over K.
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Examples

Q is a Hilbertian field; each rational function field F(Z) is
Hilbertian; a finitely generated field extension of a Hilbertian
field is Hilbertian; a field having a non-trivial Henselian valuation

is not Hilbertian.

The following result, which may be interesting in itself, is needed

in §3.

(1.16) Theonrem

Let TiseesTy be different non-discrete V-topologies on a Hilbertian

field K and let for each 1 < i <n U; be a non-empty open subset of

K and let H be a Hilbert set over K. Then U; N...N U, NHF*P.

Proog

I will freely use concepts and results from [Rog]l and [P.&Z.].

The above theorem states that a certain conjunction of local sentences
holds for (K,I,,..,Tn), SO we may assume that (K,Tl,..,Tn) is w-
complete. Hence T, is the topology induced by a non-trivial valuation
vy ot K* > Gi’ Gi an ordered abelian group. Let t be a Hilbert element
over K and take x € K with vi(x) > 0 if vi(t) < 0, while vi(x) <0

if vi(t) > 0. Then u = (t+x)_1 is also a Hilbert element, and satisfies
Vi(u) > 0 for all 1 < i < n.

Take for each 1 < i <n a; € Ui and g; € Gi with

{y € K[vi(y-ai) > g.

l} Cc Ui’ and choose y € K such that for all 1 <i <n

vi(y-ai) > g;, and 0 # z € K such that for all 1 < i<n v;(z) = g; -
Then w = y+zu is a Hilbert element with Vi(w-ai)2=gi for all 1 < i <n,

sow €U, N...N Un’ Apply now the generalized Gilmore-Robinson theorem

in [Roql . O
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(1.17) Lemma

Let (K,P,,..,Pn) E OFn satisfy (a) and (B) of (1.2), and let

f = f(T.,..,Tm,X) € K[Tl,..,Tm,X] (m 2 1) be irreducible and
(a.,..,am) € K™ be such that f(a,,..,am,x) changes sign on K for
each ordering P..

Then f has a zero (c,,..,cm,d) € Km+1.

Proog

With induction to m. Suppose the statement is true for m > 1, and

let f = f(T,,..,Tm,Tm+1,X) € K[Ty,..,T X] be irreducible and

m+1

m+1°

(a,,..,am+1) € K be such that f(a;,.. X) changes sign on K

23meq2

for each P..
i
Take for each 1 < i < n a sufficiently small Pi—neighbourhood U; of

such that for all a '€ Ui f(a,,..,am, ',X) still

a
m+1

changes sign on K for the ordering Pi'

m+1 am+1

Next choose infinite subsets A and B of K such that for all to€A, $.:€B
to+tiay € U; N...N Un (such subsets exist by (1.7)). Then, by the
standard interpretation of [Roq , Theorem 3.4.], there are to, € A and
t; € B such that to+t1 Ty is in the basic Hilbert set over K(T,,..,Tm)
associated to f considered as an irreducible element of
K(T;,..,Tm)(Tm+1)[X]. Put g(T.,..,Tm,X) = f(T,,..,Tm,to+t,Tl,X).

Then g € K[Tl,..,Tm,X] is irreducible as an element of K(T,,..,Tm)[X]
and g(a.,..,am,X) changes sign on K, for each ordering Pi'

By Gauss' lemma: g = c¢. G, with ¢ € K[T,,..,Tm] and irreducible

G € K[Tl,..,Tm,X]. By slightly changing (al,..,am), if necessary, we
may assume c(al,..,am) # 0, and so the induction hypothesis can be

applied to G, and gives a zero of G, hence one of f. O

To finish the proof of part B a more precise version of (1.17) is
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needed, namely:

(1.18) Lemma

Let (K,Pl,..,Pn) E OF satisfy (a) and (B) of (1.2) and let
R(Tl,..,Tm,X) € K[Tl,..,Tm,X] be of degree d > 0 in X and monic in
X and irreducible, and let for each 1 < i <n ki be a natural

number with 1 < ki < d, and let (ai,""ai )’(bil"”b' ) be m-tuples

1
m m

in K with a.. <ﬁ bi" for all 1 < j < m, such that for each m-tuple

1] J
(cil,..,cim) in K with aij <i cij <.i bij (3 = 1,2,..,m)
R(Cil""ci ,X) has at least k; roots in the real closure of (K,Pi).
m
m+1

Then there is (c,,..,cm,d) € K with R(c,,..,cm,d) = 0, such that

for each i,1 < i < n: ai3 <i cj <i bij (3 = 1,2,..,m), and d is
h

the kit root of R(cl,..,cm,x) in the real closure of (K,Pi) (where

the roots are numbered in increasing order).

Remank
It may be useful to look first at the proof in (1.19) to see how the

problem is reduced to the rather technical lemma (1.18).

Proog

Let us first consider the case that for some w in the algebraic

closure K of K the set {t = (t,,..,tm) € Km|R(t,w) = 0} is dense in

K™ with respect to the Zariski topology on K™ (whose closed sets are

by definition the zero sets in K™ of sets of polynomials in
K[T,,..,Tm]).

As K is infinite, it is wellknown that K™ is dense in K™ and that
the Zariski topology of K™ induces on K™ the Zariski topology of k™.

So {t € KmlR(t,w) = 0} is also dense in K", hence V¥t € K"

R(t,w) = 0,
which implies:

R(T, ,..,T ,w) = 0.
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Then no Tj can appear in R. For if some Tj does, write

i i
- m .
R = zci;,..,im(X)T‘ X...xT 7 with cil,..,im(X) € K[X].
Then Ciy,..,i (W) F 0, so the cil,--,im(X) have a common factor in

K[ X] , contradicting the irreducibility of R. This in turn implies
that R € K[X] is linear. (Otherwise K has a proper algebraic
extension to which each ordering Pi can be extended, and by (1.12)
this extension may assumed to be of the form K(va),a € K\K?*. But
this contradicts (1.11) as a = (v¥a)? is in P, N...N P )

The linearity of R € K[ X] makes the lemma trivial.

So in the following we will assume:

R

(a) For each w € K the set {t € K™ R(t,w) = 0} is not dense in K"

w.r.t. the Zariski topology on K™; in particular R & K[X].

Next we may assume:

(b) a.=a_.=...=a.=a.,b.=b.=...=Db_. =b.

Namely, given 1 < j S m, choose €.. <. 0 such that a,.+e.. <. b..-€..
i3 17 ij tij i Tij Tij
.. . .N . .. A I .
and replace all alJ bi an element gJ of 1=1(a13’a1]+€13)1 and all blJ
by an element bj of igl(bij_eij’bij)i’ which is possible by (1.7).

Let D = D(T;,..,Tm) be the discriminant of R considered as a
polynomial in X. Then D # 0, because R is irreducible and char(K) = 0.
So, after making the intervals (a.,bj)i smaller, if necessary, we

]

may also assume that D(t.,..,tm) # 0 for all (t.,..,tm) € K™ with
n

tj € iQl(aj,bj)i (j = 1,..,m), i.e. for all such (t.,..,tm)

R(t.,..,tm,X) has no multiple roots.
Then the implicit function theorem for polynomials over real closed
fields implies that, after making the imtervals (a.,bj)i smaller if

J
necessary, the kith root of R(tl,..,tm,X) is a continuous function
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of (t.,..,tm) (for those (t""’tm) such that for all 1 < j < m:

tj € (aj’bj)i’ where these intervals are taken in the real closure

of (K,Pi)), for each 1 < i € n; and similarly for the other roots.

Hence, making the intervals (aj,bj)i again smaller if necessary,

and using (1.7) and (1.14), one can get the following situation:

(ec) There exist a,B € K, a <i B, (i = 1,..,n), such that for each
1<i<n: if (t;,..,tm) € K™ satisfies tj € (aj,bj)i for all

j=1,..,m, then R(t.,..,tm,X) has a unique root in the interval

(a,B)i of the real closure of (K’Pi)‘ This root even is in the

smaller interval(a,a+%(6-a))i, is a simple root, and is the kith

root of R(t,,..,tm,X) in the real closure of (K’Pi)’

Put y = (s—a)_l, so y >, 0 for all i = 1,..,n. By a result of
W.D. Geyer, in this form used by M. Jarden in [J2, p.297],
it follows that
R(Ty 5. ., ,0+(2? +U% +V2 ™Y € kaz,u,nIT .
is irreducible.
By the standard interpretation of [Roq , Th. 3.4.] there are u,v € K
such that
R(Ty 5., T ,at(Z2 +U% +(usvZ)*4y) *D) € K(Z,W[ Ty ,..,T, ]
is irreducible.
Applying this trick once again we get r,s € K such that:
(d)  R(Ty,..,T ,a+(2% +(r+s2)? +(usv2)? +y) "1 € K(Z)[ Ty ,..,T ]
is irreducible.
Let q(Z) = Z? +(r+sZ)?+(u+vZ)*+y € K[ 2] . [Roq , Th. 3.4.] and (1.7)
also imply that r and u can be taken arbitrarily close to 0 in each
Pi—topology on K, so we may assume that for each 1 < i < n:
(g) the function z » a+(q(z))-1, defined on the real closure of

(K,Pi), includes in its image the interval (a,a+%(8—a))i of
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this real closure.

Write R(Ty,..,T ,a+(a(2) ™D = S(Ty,..,T ,2)-p(2)-(a(2) ~* with
p(z) € X[Z] ,k =20, S = S(T;,..,Tm,Z) € K[T,,..,Tm,Z] such that the
coefficients of S, considered as a polynomial in (Tl,..,Tm), have
no common factor in K[ Z]. Then by (d) and Gauss' Lemma:

(4) S is irreducible in K[Tl,..,Tm,Z].

By (a) there is a nonempty Zariski-open set U in K™ such that
for all t € U: R(t,X) and p(Z) have no common root in E: Hence,
after making the intervals (aj,bj)i smaller if necessary, and using
(1.7), we may also assume:

{g) For all t = (t,,..,tm) € x™ with tj € iBl(aj,bj)i, (3 = 1,..,m),

R(t,X) and p(Z) have no common root in K.

Hence, by the definition of S, combining (c¢), (e), (g) and (1.14):

n

m . .
(h) For each t = (t1,~-,tm) € K" with tj € iQl(aj,bj)i, (j = 1,..,m),

and each 1 < i < m: S(t,,..,tm,Z) changes sign on K for the .

ordering Pi’ and if z is any root of S(tl,..,tm,Z) in the real closure

of (K,Pi), then 0L+(q(z))"1 is the kith root of R(t,X) in this real closure.

Applying the same trick of Jarden to S and the variables Tj we

get that

def
F(Y,2) = F(Y11,¥12,%10,..,Y LY Y ,2) =

SCar+(br-a, ) (Y +¥124Y15+2) "5, . ,a +(b_-a )(Y2 +Y? +¥2 +2)7% 7)
! 17 11Tz T % Y m “m’ Tmy Tmz ms >
is irreducible in K(Y)[Z].

Write F(Y,Z2) = f(Y,Z)-r(Y) with irreducible f € K[Y,Z] and
r(Y) € K(Y). The denominator of r is a product of factors

Y? +Y? +Y? +2, so r is defined on each y € K’™.

J1 J2 J3

n
Tak € K*™. Then a.+(b.-a.)(y? +y? +y? +2)
ake any y 3PP30S,

-1
(S al
. (a.,b.).,

(1 < 3j<m), so by (h) we get:

F(y,Z) changes sign on K for each ordering Pi’
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so f(y,Z) changes sign on K for each ordering Pi'

sm+1

Hence by lemma (1.17) f has a zero in K , and this is also a

zero of F. 'Par abus de langage' , let this zero be (y,z), and put

2 2 -1
32 %95, 12

Then by (h) and (b): (cl,..,cm,d) € K

(1 <3j<m)and d = a+(q(z))—1,

m+1

. = a.+(b.-a.)(y2 +
AT R Bk EAR A PR
satisfies the conclusion

of (1.17). (]

(1.19) The proof of part B, (1.3), can now be finished by model theory
as follows:

Let K = (K,P,,..,Pn) E OFn satisfy (a) and (B) and let K C L E 0D

and suppose p is a K-existential sentence true in £. It remains to

show: p is true in K.

Let £ = (L,Q,,..,Qn). By (1.4) and the assumption that p is existential
we may assume that L is a finitely generated field extension of K.
Because char. K = 0, we can then write L = K(t;,..,tm)[a] with

t = (tl,..,tm) a transcendence base of L over K and such that o has
minimum polynomial R(t,,..,tm,x) over K(tl,..,tm), with R = (T,,..,Tm,X)
an irreducible polynomial of K[Tl,..,Tm,X] (see Ch. I, (2.4) for a
similar argument). R is monic and of positive degree, say d > 0, in X.

h

Let for each 1 < i < n a be the kit root of R(t,X) in the real closure

of the ordered field (K(t),Qi N K(t)), so 1 < L < d.

Consider the following sets of sentences in the language of oD,

augmented by names for the elements of K and new constants gl,..,gm,g:
T, = OFn U Diag(K).

For each 1 < i < n, let Fz i be the set of all sentences
b

S(g,,..,gm) >i 0, such that S(Tl,..,Tm) € K[Tl,..,Tm] and S(t) >1 0.

Put T, =T U..UT_ .
b bl
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Let for each 1 <i <n 0;(c1,..,¢,,d) be an open sentence (not

containing the predicates E""’£'-1’£i+1"'

ordered field extension (M,P) of (K’Pi) and all c.,..,cm,d € M:

,En), such that for any

(M,P) E Oi(gl,..,gm,g) iff d is the kith root of R(t,,..,cm,X) in
the real closure of (M,P) (such Oi exists by Tarski's Theorem
mentioned in Ch. I, §1, or by Sturm's Theorem, see [L3, p.276]).

Let T3 = {0 (E,Q),..,@n(g,g)} (c = (a1 ""Em))’

Note that (f,tl,..,tm,a) F T'y UT, UT; and that (using the remarks
in (1.9)) (I,t.,..,tm,a) can be embedded over K in each model of

'y UT, UT; (where as usual models of T'; are considered as
OFn—extensions of K).

So £ F p implies I't U T, UT; k p. Hence, by the compactness theorem,
there are finite subsets Al,..,An of P2 l,..,I‘ n respectively, such

> 2>

that, putting A = 4; U...U An:
(a) I'IUAUI'3|'p.

Let for each 1 <1 <n y,(¢,,..,c ) be an open sentence (not con-

taining the constant d or the predicates P;,..,P .,En), such

i-1°Fi410-
that for each ordered field extension (M,P) of (K,Pi) and all
Cis..5c € M: (M,P) F wi(g,,..,gm) iff R(c,,..,cm,x) has at least ki
roots in the real closure of (M,P) (such vy exists, again by Tarski's
Theorem) .

Note that

(KCE),Q N KCE) 50 5Q N KCE) oy 5. ust ) F Ty dgf‘{wl(g),..,wn(g)}

and that (K(t),Q, N K(t),..,Qn N K(t),tl,..,tm) can be embedded over
K into each model of Ty U T,, so each model of I'y U T, satisfies T,.

Hence by the compactness theorem there is a finite subset of T,,

which (after enlarging A) we may assume to be A, such that
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(b) I'n VA F T,.

Let 1<i<n. I, V Ai is consistent, so there are elements

ain’bin””aim’bim in the real closure of (K’Pi) with aij <i bij’
such that for all Cyy o0 +9Cn in this real closure with

.. . e <o .. ] = .. .1 i .. i -
alj <i clJ 5 blj (3 1,..,m), Al is true if ¢, e are inter
preted as ¢, ,..,c. Drespectively.

11 im

Because of (1.14) we may assume all aij’bij to be in K. Now {b)
implies that all assumptions of lemma (1.18) are satisfied. Then the
conclusion of (1.18) says that there are c;,..,c;,d' in K such that
A UT; is satisfied in K if g,,..,gm,g are interpreted as

cf,..,c&,d' respectively. Then (a) and the definition of I, imply

that K F p. (]

Comment
The proof of Theorem (1.2) will become perhaps more perspicuous by
the following remarks.
The model theoretic argument above is the key to the existence of the
model companion. Namely, it shows that the n-ordered fields for which
the hypotheses of (1.18) minus (a) and (B) imply its conclusion, are
existentially closed. Conversely, it is easily shown that (1.18)
remains valid if (o) and (B) are replaced by the requirement that the
n-ordered field is existentially closed. Hence the existentially
closed n-ordered fields are exactly those for which "(1.18) with (a)
and (B) omitted from the hypothesis" holds. But this shows that the
class of existentially closed n-ordered fields is elementary!, so OFn
has a model companion, and it is then only a matter of applying a lot of
reduction steps to reach the simple axiomatization given by (a) and

(B) of (1.2).
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Note that OD, equals necessarily RCF (by Ch. I, (2.21)), so OD,, is
a complete theory, and is the model completion of OD,. Contrasting

with this is the following result.

(1.20) Proposition

Let n = 2. Then 55n has 2°® different complete extensions, and it is

not the model completion of 0D  or OF .

Proog

Let us suppose n = 2 for simplicity, and let (pk) be a 1-1

kE€IN
enumeration of the set of primes, and define L = Q(/ﬁ;]k €IN). By
easy valuation theory one proves that /Ei & Q(Vﬁi&‘ik). Hence, given

any S:IN » {0,1}, there are ordering Ps,;

and PS , °on L such that for

b

all k €N /ﬁ; has the same sign with respect to PS , and P ) if
) ]

s(k) = 0, and different signs, if s(k) = 1.
Let for each s :IN » {0,1} Ks be an existentially closed extension of
(L’Ps,n’Ps,z)' Then we have for s # t (s,t : IN +~ {0,1}):

Kg # K.
Suppose namely that s(k) = 0 and t(k) = 1. Then in KS each of the two
square roots of Py has the same sign with respect to the first and
the second ordering of Ks’ while in Kt they have different signs.
So (Ks)s:]N*{O,l} is a family of 2&° pairwise non elementary equivalent
models of 0D, , and this implies the first statement of the proposition.
That 0D, is not the model completion of OF,, follows (by Ch. I, (2.20))
from the fact that OF, does not have AP: Q has exactly one OF, -
structure, and Q(v/2) exactly 4, and 4 > 2 = [Q(/2) : @], and we apply
then the following lemma, which often can be used to show that a

certain theory of fields does not have AP. O
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(1.21) Lemma

Let L be any language extending the language of rings, and let

T be an L-theory extending FL such that T has AP.

Then the following holds:

if K F T and K is the underlying field of K, and L = K(a), with o
algebraic of degree n over K, then L has at most n expansions to a

model £ of T with K C £,

Proof

Suppose (£i)1<ﬁ<h+1 is a family of expansions of L as described.

By AP there is a model A D K of T, and there are K-embeddings

0 : £i + A. The minimum polynomial f € K[X] of a has at most n roots,
say al,..,ak,k < n, in A, hence wi(a) can assume at most k different

values in A, and if oi(a) = wj(a), then necessarily @, = wj, so

L. =¢.. a
1 J

Let me finish this section showing that the finiteness of n seems
essential. Let k be an infinite cardinal and let 0D, be the theory

of structures (D,P3|A<:K) with (D’PA) an ordered domain for each A < k.

(1.22) Proposition

ODK has no model companion.

Proof

Let K = (K,3“l<<K) be an existentially closed model of ODK. It is
routine to show that this implies K2 = N {PA|A < k}.

Using a simple chain argument one can reach the situation that for
each A < g there is x, € K with x; <, 0 but x >L 0 for all

A A A A
p < k,u #F A. Let D be a free ultrafilter on x = {A|[A < «}.
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Then the sequence (XA)A<k gives rise to an element x in the universe
K*/D of KX/D, which is positive for each of the x distinguished
orderings of KK/D, by to$' Theorem. But this theorem also implies
that x is not a square in KK/D, so kK¥/D is not existentially closed.
We have shown that the class of existentially closed models of ODK

is not an elementary class, so ODK has no model companion by Ch. I

(2.21). (m]

Remark
There is however another way to consider infinitely many orderings
on a field. A preordering on a field K is a subset Q of K with

K* C Q,Q+Q € Q,Q:Q € Q,
or equivalently, it is an intersection of orderings on the field.
So one can consider a preordering on a field as describing the space
of orderings which contain the preordering, and this space is compact
with respect to a certain topology on it. The use of compactness
instead of the finiteness of n€ IN might lead to a proof that the

theory of preordered fields has a model companion.
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§2. Decdidability and elimination

The main result of this section is

(2.1) Theorem

The model companion 6Bn of OD_ is decidable.

This will be proved in (2.11) as an easy consequence of the following
classification (2.2) of complete extensions of 6ﬁn’
For each field K we put

alg(K) = {0 € K|a is algebraic over the prime field of K}.

(2.2) Theorem

Let (XK,P;,..,P ) and (L,Ql,..,Qn) be models of 5ﬁn.

Then: (K,P,,..,Pn) = (L,Ql,..,Qn) <«

(alg(X),P; N alg(K),..,Pn N alg(X)) = (alg(L),q N alg(L),..,Q Nalg(l)).

The proof is given in (2.8).

(2.3) We will now indicate an extension by definitions 6bn of 6§n
which admits elimination.

Let natural numbers d and k with d > 2 and 1 < k € d be given; then

there is an open formula Rd,k(g,z,x,,..,xd) in the language of ordered

fields, such that for any ordered field (X,P) and all b,a,,..,ad € K:

th

(K,P) k Rd k(g,b,al,..,ad) if and only if b is the k root of
b

d d-1

Z +a, 2 + ... + a. in the real closure of (K,P).

d
Using Tarski's elimination theory, or Sturm's Theorem, one can
effectively construct such a formula Rd K from (d,k).

>

For reasons which will become clear now I made explicit the appearance
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of the predicate symbol P in Rd K-
b

Extend the theory 6ﬁn to the theory 6bn by introducing new predicate

symbols W (a =22, 1< L < d) and by adding as defining

Ki 5.0k

d»l’ >™n

axioms the universal closures of:

n

W .. © 3 A P. ..
d,kx,-.,kn(X" 2% z(i_le,ki(_l,z,xl, »%g))

(2.4) Theorem

GDn admits elimination.

This will be proved in (2.14).

The following lemma is the key to all above results.

{2.5) Lemma
Let L be a (commutative) diagram of field
K, M
\\\\\* (///7
L,

inclusions with L; and L, linearly disjoint over K.
Let P; and P, be orderings on L, ,L, resp. with P, Nn K = P, N K. Then

P, and P, have a common extension to an ordering on L;L,.

Proog

By [L3 , Prop. 1, page 262] and Zorn's Lemma the problem can be
reduced to the case that L; = K(a) and L, = K(B) for certain o,f € M.
There are two subcases:
(a) one of a,B, say o, is algebraic over K;
(b) o and B are transcendental over K.
Suppose (a) holds. Then L;L, = L,[a] and so the canonical map

L, ®K L, -~ L;L,

is an isomorphism.
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Further, by the amalgamation property for ordered fields, there is
an ordered field (N,Q) and there are ordered field embeddings such

that the diagram

(L ,P1)
(K,P)/ ™~
>/

o~

P=P, NK (L2 ,P;

(N,Q)

commutes.

We may assume that N is generated by the images of L, and L.,
so the induced K-algebra morphism L, Gk L, - N is onto, and as
Ly Sk L, is a field, this morphism is even an isomorphism.
Hence it induces an isomorphism N » L;L;, and the image of Q under
this map is a common extension of P, and P, to an ordering on L;L,;.
Suppose that {b) holds. Then o and B are algebraically independent
over K. Let a,b be new constants and consider the set of sentences
I = OF U Diag(K,P) U {p(a) > 0|p € K[X],p(a) >0 in (L, ,P,)} U

{q(b) > 0|q € K[Y]) ,q(B) > 0 in (L, ,P;)} VU {r(a,b)+#0|0# reKl X,Y]}.
It is clear that if T is consistent, then an ordering on K(a,B) as
required exist. So by the compactness theorem it suffices to prove:
let P1s--sPy € K[X] and Q1559 € K[ Y] be such that pi(a) >0 in
(L, ,P;) and qj(B) >0 in (L; ,P;) (1<i<k,1<]j<24), and
0 # r € K[X,Y]; then in the real closure of (K,P) there are a,b such
that p;(a) > O,qj(b) >0,r(a,b) # 0 (1 <i<k,1<3j<28).
Now, OF U Diag(K,P) U {p,(a) > 0|1 <i <Xk} and

OF U Diag(K,P) U {qj(g) > 0|1 <j <%} are consistent theories,
so in the real closure of (K,P) there are non-empty open subsets A
and B such that for all a € A: pi(a) >0 (1 <1i<k) and for all b € B:
qj(b) >0 (1< 3j<®; because A and B are infinite, there are

a € A,b € B with r(a,b) # 0. (]



[2.6) Lemma

Let K = (K,P1,..,P ) E OF . Then the following properties are

equivalent.

(a) There is no proper algebraic extension L of K such that
Px,--,Pn can be extended to orderings on L.

(b) K is algebraically closed in L for each extension

L= (L,Q,..,Q) E OF = of K.
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{c) There is an extension £ = (L,Qi,..,Q)) E 65n of K such that

K is algebraically closed in L.

(d) P, N...N P = K* and each odd degree polynomial in K[ X] has

a root in K.

Proo4

(a) = (b) = (c) = (d) are clear by (1.11) and (1.2).

(d) = (a): suppose L|K is proper algebraic such that Px,--,Pn

extended to L. Then by (1.12) we may assume L = K(va),a € K\K?.

can be

But then a = (v¥a)? would be in P, N...N P, so in K?* , contradiction.

Deginition

Let OFn,al

satisfy the equivalent conditions (a),(b),(c),(d) of (2.6).

g be the theory of the class of structures K # OFn which

So an axiomatization of OF is given by the axioms for OFrl

n,alg
and (d) of (2.6). I do not know whether

ﬁﬁn = OF U {axiom (a) of (1.2)}.

n,alg
(I would be surprised if it was.)

(2.7) Conollany

OFn,alg has AP.

0
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Proo4

Let embeddings K + £, ,K - £, be given with K F OF , £1,L2 E OF ..

n,alg

Let K = (K,P],--,Pn), Ly = (Li,Q ,..,Q ), £ = (Lz,Rl,..,Rn). K is

n
identified with a subfield of L;, and L, resp. via the above
embeddings. Because K is algebraically closed in L, and char(K) = 0,
L; |K is a regular field extension (see [L1, p.56 1), which

implies that L; and L; can be embedded in a common extension field M
in such a way that L; and L, are linearly disjoint over K. Then, by
(2.5), for each 1 < i < n the orderings Qi and Ri have a common

extension to an ordering Si on LyL, € M. Then the following diagram

of embeddings commutes:

(2.8) Prood of (2.2)

Let us write K for (K,P,,..,Pn) and alg(K) for
(alg(K),P, N alg(K),...,Pn N alg(K)), and similarly introduce £ and alg(l).
Suppose alg(K) = alg(f). Let us identify alg(K) and alg(L).

alg(K) is a model of OF by (2.6) (c¢), so (2.7) implies that

n,alg’

there is a commutative diagram of embeddings:
K

alg(K) M

"
\ L,/

Extending M if necessary, we may assume M F 6§n. Then K~ M
and £ < M, so K = L. Conversely, let K = £, Then, by compactness,

6ﬁn U Diag(K) U Diag(L) has a model M, and we may identify K and £
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with substructures of M.
Then, because K=< M and £ < M, we get that

alg(K) = alg(M) and alg(L) = alg(M), so alg(K) = alg(L). O

(2.9) Degindition

For each monic irreducible f = f(X) € Q[ X], let K. be the field

£

Q[X]/(f) and let a be the residue class of X : a; = X+(f).

f

So Kf = Q(af) and f(X) is the minimum polynomial of ag over Q. Let

r. be the number of roots of f(X) in the real closure Q of Q, and

f
let o <...< o, be these roots. Then for 1 < k < re
f
Pf " is by definition the ordering on Kf induced by the embedding
k]

£ > oy of Kf into Q.

In other words: P is the unique ordering on K¢ such that
3
d

a

(KpsPp ) F Ry ((Byagcsars.esay), if £(X) = X +a, x93 e va ., 4 > 2.
b b

)

d,
(See (2.3) for definition of Ry

k*
The decidability of 6Bn will be seen (in (2.11)) to rest on the
following facts:
(2.10) Fact 1
There is an algorithm which, given f = f(X) € Q[ X]\Q, determines
whether f is irreducible.

Fact 2
There is an algorithm which, given irreducible and monic
f = £(X) € Q[X], computes Te.
Concerning fact 1: by Gauss' lemma it suffices to have a factorization
algorithm for Z[X]. Such an algorithm, due to Kronecker, is given
in [v.d.W., p.791.

Fact 2 is a consequence of Sturm's Theorem [L3, p.276].
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(2.11) Proo§ of (2.1)

Theorem (1.2) clearly implies that the set of logical consequences
of 6Bn is recursively enumerable. So it suffices to prove that the
complement of this set is also recursively enumerable.
Let 5§nfvo, o a sentence in the language of 0D .
Then there is a model K = (K,Py,..,P ) of ﬁﬁn U {-0}.
Let, as in (2.8), alg(K) be the substructure of K with universe
alg(K). Then (2.3) and (2.6) imply:

5§n U Diag(alg(K)) F 0.
The compactness theorem then shows that there is a subfield L of
alg(K) with [L : @] < e, such that:

O_Dn U Diag(L,P, NL,..,P ML) b -0,

But (L,P.ﬂL,..,PnﬂL) =~ (Kf, "Pf’kn) for some irreducible monic

Pf,k]"
f € Q[ X] , and numbers k”"’kn satisfying 1 < k; < rf,..,l < kn < re.

So ODn v Dlag(Kf’Pf,k,""Pf,kn) F 0.

Let f = Xd+alxd-1+...+ad. If d = 1, then clearly 5ﬁn b -0,

I~ U 3 . .
Suppose d # 2. Then a model of ODn Dlag(Kf’Pf,k," ,Pf’kn) is
essentially the same as a model of
. n
op_ v {3z ( A Ry k.(gi,z,a,,..,ad))} , as is clear
i=1 T
from the remarks in (2.9), so

n
6Bnu{3z(/\ R

(P.,z,a1,..5a4))} | =~o.
1=1 ki 1’ b b b d

d,

We have now proved one half of the following equivalence:
A sentence ¢ is not derivable from 6ﬁn if and only if either

6ﬁn l -0, or there is irreducible

d a-1,

f = f(X) = X"+a;,X -otay € Q[X], d 2 2, and numbers k,,..,kn with

1< ki < re (i1=1,..,n), such that

n
aﬁn U{3z ( A R

(P.,z,a; ,..,ad))} t -0,
i=1

d,ki =i
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The other half of the equivalence follows by noting that any existen-
tially closed extension of (Kf’Pf,k,""Pf,kn) is a model of ﬁﬁn U {-0}.
From the equivalence, and using facts 1. and 2. in (2.10), we get
the recursive enumerability of

{o|0D_f o}. O

(2.12) Deginition

~ def. ~
ODn,alg = OFn,alg U (ODn)v’

(see (2.3) for the meaning of 6bn).

So the models of 6bn are the substructures (K,Pl,..,Pn,..) of

»alg
models of OD ~with (KyPi5..,P ) F orn,alg'
Clearly (ODn,alg)v = (0D -

(2.13) Lemma

(1) Each model of OFn alg has a unique expansion to a model of
b
oD, 1g°
(2) oD has PEP (cf. Ch. I, (3.4)).

n,alg universal

Proog

(1) Let (K’P”"’Pn’wd,k,,. ’kn|2 <d, 1<k; < n) be an expansion
of a model (K,P,,..,Pn) of Orn,alg to a substructure of a model of ODn.

Then (2.6) implies easily: if 2 <d, 1 < ki <d (i=1,..,n) and

d d--1+

a 5. € K, then W +a, Z ..+a_ has

d
root in the real

(a,,..,ad) holds iff Z
n h

| d,Ky,...k

a root in K which is, for each 1 < i < n, the kit
closure of (K’Pi)'

In other words: the defining axioms for the extra W-predicates

(cf. (2.3)) hold in the expansion. So there is only one choice for the

expansion.
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(2) Let D = (D,Pl,..,Pn,..) E (0D_) Take any extension of D

to a model of dbn and let D = (B’F""’Pn"‘) be the substructure

of this extension whose universe D consists of the elements which

are algebraic over Q(D). So clearly D F ODn,alg'

We will prove that J is the universal prime extension of D to a

model of ODn,alg'

So let £ = (L’Q""’Qn”') be any extension of D with £ F ODn,alg'

Let Q(D) C K C D, with K a finite extension of Q(D).

We will prove that (K,?lﬂK,..,FnﬁK) can be embedded uniquely over
(D,Pl,..,Pn) into (L,Q,,..,Qn). This is clear if K = Q(D). So let

[K : Q(D)] = d > 1. Then we can write: K = Q(D)[al where the minimum
polynomial f(X) of a over Q(D) has coefficients in D:

d d-1

f(X) = X"+a; X~ "+..+a, € D[X]. Then D F W

h

(a; ,-..5a,), wher
doky 5.5k SO0 €

root of f(X) in the real closure

d
for each 1 < 1 < n a is the kit
of (K,FiﬂK) (which is naturally identified with the real closure of
(Q(D),Q(Pi))).

Because D C £, also £ F wd,kl,..,kn(a""’ad)’

As in the proof of (1) this implies there is b € L such that, for

each 1 < i < n, b is the kith

root of f(X) in real closure of (L,Qi),
hence also the kith root of £(X) in the real closure of (Q(D),Q(Pi)),
considered as a subfield of the real closure of (L,Qi).

So there is an embedding of (K,?,ﬂK,..,FnﬂK) over (D,P;,..,P ) into
(L,Ql,..,Qn) given by a » b, and this is clearly the only

(D,P, ,..,P )-embedding of (K,Fan,..,anK) into (L,Q,..,Q)-

If we put all these embeddings together, we obtain: there is a unique
(D,Py,..,P )-embedding of (B,P,,..,ﬁn) into (L,Qs,..,Q)-

Because the defining axioms for the W-predicates (cf. (2.3)) hold in

D and in £, this embedding is even an embedding of D into £. a
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(2.14) Proog of (2.4)

dbn is, as an extension by definitions of 6ﬁn’ a model complete
theory, so by Ch. I, (2.13), it suffices to show that (6bn)v has AP.
So let A,B,C be models of ((5bn)v and let embeddings A + B and A » C
be given. This induces embeddings A -~ B and A » C of their prime
extensions w.r.t. OD

. But 6bn has AP, as follows easily

n,alg
from (2.7) and (2.13) (1).

»alg

So we can embed B and € over A in a model D of 6bn, giving us also

embeddings of B and C over A in D. O

(2.15) Remaxrk

The theory 6ﬁn shows many model theoretic similarities with the
theory of pseudo-finite fields introduced by Ax in [ Ax].

(A pseudo-finite field F is an infinite field of the form ( I Fi)/g,
each Fi being a finite field, or equivalently, it is a perfgsi field
with for each n 2 1 precisely one extension of degree n and such that
each absolutely irreducible p € F[X,Y] has infinitely many zeros

in FxF.)

Kiefe defines in [Ki] the d-ary predicate W. (d > 2) for each

d
pseudo-finite field F as follows:

d-1

(a,,..,ad) holds in F iff Xd+a1X +..+a, has a root in F, and she

¥q a
shows that the corresponding extension by definitions of the theory
of pseudo-finite fields admits elimination.

For the theories ﬁﬁn(n > 3) however, this procedure does not

work, as is shown in the following example.

(2.16) Example

Let (K,P, ,P;) be maximal among the algebraic OF; -extensions of

(Q(v/2),Q ,Q2) , Q4 and Q, being the two orderings on Q(v2).
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Take models A and B of 0D with (X,P, ,P, ,P,) C A and (X,P, ,P, ,P, ) CB.
Note that by (2.6) K is algebraically closed in the underlying

fields of A and B. Because P; # P, there is a non-constant

polynomial with integral coefficients which has a root a € K such
that a >P,0 and a <P20 , so A ¥ B. Let A' and B' be the expansions
of A and B obtained by defining for A and B the predicates W3 (a4 = 2)
just as Kiefe did for pseudo-finite fields. Then A' and B' satisfy
the same open sentences in the language of 0D; extended by the
predicates Ed’ but A' # B!,

Hence 0D; extended by the defining axioms for W., d = 2, is a theory

d’

not admitting elimination.
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§3. Extensdion problems and algebraic propenties of existentially

closed n-ondened fields

Each ordered field has a real closed algebraic extension, i.e. its
real closure. For n > 1, things are not so nice: if P is the unique
ordering on IR, then ( R,P,P) has of course no extension

(K,P1,P2) F 0D, with K |IR algebraic, not even such an extension with
(X,P) archimedean over (IR,P).

So it is desirable to have some conditions on K = (K,Pl,..,Pn) E OFn
which imply that K has an extension £ = (L,Qi,..,Q) F ﬁﬁn with

L|K algebraic,or (L’Qi) archimedean over (K,Pi) for each 1 < i < n.

Concerning this I found the following.

(3.1) Theoxrem

Let K = (K,P,,..,Pn) E OPn and suppose K is a countable Hilbertian

field and P""’Pn are independent.

Then K has an extension (L,Qi,..,Q)) E 55n with L|K algebraic.

Before proving this: finitely generated extension fields of @ are
countable and Hilbertian, and different archimedean orderings on a
field are independent. Hence the assumptions in the theorem hold in

a number of interesting cases.

(3.2) Proposition

Let Py ,..,P, be non-archimedean orderings on the field K. Then

(K,Py,..,P ) has an extension (L,Qi,..,Q.) E 6§n with (L,Q;)

archimedean over (K,Pi), for all 1 < i < n.
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{3.3) Proposition

Let Py,..,P, be archimedean orderings on the countable field K.

Then (K,Pi,..,Py) has an extension (L,Qi,..,Q,) F bﬁn with (K,P,)

dense in (L,Qi), for each 1 < i < n.

For later purposes the proof of (3.1) is placed in a general model-

theoretic framework by the following lemma.

{3.4) Lemma

Let a theory T in a language L have an axiomatization
{V§k3§k1k(§k,§k)|k €N}, with ik’§k sequences of distinct variables
(x""’xp(k))’(yl""yq(k)) respectively, and Tk(ik,§k) an open
L-formula (k €N).

Suppose a class C of countable L-structures is given such that for

each A € C, k €N, and a;,. € |A| there is B € C with A C B

©29p(k)
and with B k ayk'tk(al,..,ap(k),ykL
Then for each A € C there is an ascending chain

A =By, CB; C...C Bn C Bn of structures in C with

1

UB_ ET.
nEMW "

Proog
Let A € C be given. Fix for each B € C an enumeration (EIB(n))ne]EN of
all pairs ((al,..,ap(k)),k) with 15 esan(y) € |B| and k €N.

Let further w: IN - NxIN be the following bijection:

1"
1]

m(0) (0,0), w(1) (0,1, w(2) = (1,0), w(3) = (0,2), w(u) = (1,1),

m(5) (0,3), etc. In the following picture one sees

(2,0), n(6)

how INxIN is enumerated by m:
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(0,0)—(0,1) (0,2) (0,3)

ST 7

(1, 0) (1, 1) (1,2) veunnn

,../
(2,0)7 (2,1) (2,2) ......

_ Note that the first
(3,0) (3,1) oo coordinate of 7m(k) is

always <k.

Take Bo = A, and suppose Bo,Bl,..,Bn € C have already been constructed

with Bo € By C...C B . Let m(n) = (i,j), so i < n. Then 53 (3) is
i

some pair (a.,..,ap(k)),k) with (a””’ap(k)) € |Bil.
Hence ai,..,a (y, € |B |5 then choose for B ,q an extension of B in
C with B_ E ayka(a"”’ap(k)’yk)‘

Let B = U B . Then B E T: let XK €N and a;,..,a € |B].
€ IN pl(k)

Choose i €N with arsesan € |B;| and j €I with

((a;,..,ap(k)),k) = EB.(j) and let n be such that m(n) = (i,j); then
i

Bn+1 E ayka(a"“’ap(k)’yk) by construction, so B E kaayka(xk,yk).
O

(3.5) Proof of (3.1)

Let T be the theory Diag(K) U 6ﬁn’ and take for C the class of all
structures (L,Q,,..,Qn,ala € K) with L|K a finite extension, and
(L,Q,,..,Qn) F OPn an extension of K.

Note that for (L,Q,,..,Qn,a]a €K)€Cand 1 <i<3j<n, Qi and Qj
are independent. This is because they induce on the subfield K of L

the Pi—topology, resp., the Pj—topology, which are different.

It is easy to express the axiomatization of T given by Diag(K) and
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(o) ,(B) of (1.2) in the form required in (3.4), for instance (B)

may be rephrased as follows:

For each f(T,X) € K[T,X], each a € K and all T1 581,550 58 € K

such that f(a,r;) <; 0, f(a,s,) >i 0 (1 <1i<n), either f is
reducible in K[T,X], or 3c,d € K f(c,d) = 0.

Note finally that for (L,Q;,..,Qn,a[a € K) € C, L is also Hilbertian.
Hence, in order to apply (3.4) in this situation, it suffices to
prove: let M be a Hilbertian field and R”"’Rn independent orderings
on M and let f(T,X) € M[T,X] be irreducible and a € M with f(a,X)
changing sign on M for each Ri; then there is a finite extension N of
M such that Rl,..,Rn can be extended to orderings on N and 3c,d € N
f(ec,d) = 0.

To prove this, choose for each 1 < i < n an Ri—neighbourhood U; of a
such that for each t € Ui f(t,X) still changes sign in K with respect
to R;. By (1.16) there is t € Uy N...N U with £(t,X) € K[ X]
irreducible. Now the proof of (1.10) can be followed (with K,K(t),Pi,

Pi replaced by M’M’Ri’Ri)' O

(3.6) Lemma

Let (K,P) be an ordered field such that P is either non-archimedean, or
P is archimedean and K is countable. Then for each 0 < g € K, a € K,
there exists an ordered extension (K(X),Q) which is archimedean over

(K,P) with a-e < X < a+e.

Proof
Replacing (K,P) by its real closure, if necessary, we may assume (K,P)
real closed. The case that P is archimedean and K countable is trivial:
embed (X,P) in IR, and identify X with some real number in (a-e,a+e)

which is transcendental over K.
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Suppose now that P is non-archimedean. Then put
D = {x€K| YKEIM {0} x < a+%e} and S = K\D. Then (D,S) is a
Dedekind cut on K, and D has no largest nor has S a smallest element:
if b € D, then also b+8e € D, where § € K is such that 0 < § < l,
vk€ IN\{0}.

Then by [ Baer, Lemma 1.1] an ordered extension as stated exists. O

(3.7) Proogs of (3.2) and (3.3)

Note first that an archimedean ordered field is dense in each
archimedean extension.
Hence the following statements, together with an obvious chain

construction, imply (3.2) and (3.3).

Let K = (K,Pl,..,Pn) F OFn and Pl,..,Pn be either all non-archimedean,

or all archimedean and K countable. Then the following holds:

(1) If 1 <i<j<nandoO <i €1 €K, 0 <j €2 € K, then K can be.
embedded into some £ = (L,Ql,..,Qn) E OFn with an x € L
satisfying -€; <.i X <i €y and 1-e, <j x <ﬁ 1+e; and with
(L,Qk) archimedean over (K,Pk), for all 1 <k < n.

(2) If £(T,X) € K[T,X] is irreducible and a € K is such that f(a,X)
changes sign on K for each Pi’ then there is an extension
L = (L,Ql,..,Qn) of K with (c¢,d) € LxL such that f(c¢,d) = 0,

and with (L,Q.) archimedean over (K,P.), (1 < i < n).
i i

{1) and (2) are easily proved along the lines of (1.8) and (1.10),
using (3.6). Note also that L in (1) and (Z) can be taken to have the
same cardinality as K has. This is essential for the chain con-

struction. O
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(3.8) Remark

(3.1) provides an example of a model of (Gbn)v which has no prime
extension to a model of 6bn’ for each n > 1: let Q be the real
closure of @, P its unique ordering, K the unique expansion of

K = (Q,P,..,P) F OF to a model of (6bn)v. Let Qi,..,Q, be

n,alg

different archimedean orderings on §(X), and R a non-archimedean
ordering on Q(X). Then Q(X) is a countable Hilbertian field, and
Ql,..,Qn are independent, as well as Q""’Qn-l’R'

Let £, ,£; be algebraic extensions of (@(X),Q;,..,Qn), (Q(X),Q1,.-,Q R)

1’

respectively, with £, ,L, F Gﬁn, and let f,,f; be the unique
expansions of £, ,£, to models of 6bn’

Then f,,f} are clearly minimal extensions of K to models of 5bn, but

~

they are not isomorphic. Hence K does not have a prime extension to
a model of ODn.
Concluding this section I will indicate some of the interesting

algebraic properties of model of Eﬁn'

(3.9) Lemma

Let P""’Pn be independent orderings on a field K. Then P.,..,Pn are

the only orderings on K containing P, N...N Pn.

Pnooﬁ

Suppose Q is another ordering on K containing P, N...N P . Letm with
1 <m<n be minimal with Q 2 P, N...N Pm. Then m > 1 and

P, N,...NP 1 N Q is strictly included in P; N...N P But

m- m-1°
- 2m—l

[K': Pf N...N P%—ll , because the canonical map

K e ey T g e K

m-1 Py m-1
is an isomorphism of groups, by (1.7), and similarly [K': PyN..N P;] =M

N P, N N N i
and Py N... Pm_1 ; Py No.. Pm_ nQe>P N...N Pm, so necessarily

1
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P, N...NP NQs="P? N...NP_,

m-1 m

Choose q € Q\Pm; adding, if necessary, to q an element of P; N...N Pn
which is sufficiently close to 0 with respect to Pm’ and sufficiently
large with respect to P""’Pm-l’ we get:

Q€P N..NP _,NQ=PFP N..NP,

so g € Pm’ contradiction. 0

(3.10) Recall that associated with a real field K is the non-empty
boolean space 0(K) of all its orderings. A subbasis for the topology
is given by the sets W, (a) = {P € 0(K)|a is negative for P}. This is
called the Harrison subbasis. That it defines a boolean, i.e. compact
and totally disconnected, topology follows easily from an obvious 1-1
correspondence of 0(K) with the set of ultra filters on the boolean
algebra of open sentences in the language of OF U Diag(K), modulo
equivalence with respect to the theory OF U Diag(K). Typically,
algebraists prove the same fact using a 1-1 correspondence with the

set of minimal prime ideals of the Wittring of K.

Defindition
An SAP-field (Knebusch) is a real field K such that the Harrison

subbasis is a basis of 0(K).

{3.11) Proposition
If (K,Pl,..,Pn) E 6§n’ then P""’Pn are the only orderings on K, and

K is an SAP-field.

Proof

That Pl,..,Pn are the only orderings on K follows from (3.9) and

Py N...NP = K?. Take for each 1 < i < n a; € K such that a; is
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negative with respect to Pi and positive with respect to the other
orderings on K.

Then Wk(ai) = {Pi}. So K is an SAP-field. O

(3.12) The absolute Galoisgroup of existentially closed n-ordered
fields is completely known as the following theorem shows.
Let (K,P.,..,Pn) E OFn,alg' Take for each 1 < k < n a real closure
Rk of (K,P ) within a fixed algebraic closure X of X, and let
Oy € Gal(ilK) be the conjugation over Rk’ i.e. ok(i) = -i and
o |R = 1d(R ). Clearly
K =R N...N Rn = fixed field of {01,--,0n}~
Hence by the main theorem of infinite Galois theory, Gal(EIK) is

topologically generated by {01,..,0n}.

(3.13) Theonrem

If under the above assumptions, either P""’Pn are independent or

n = 2 and Py # P,, then Gal(?lK) is the free product within the

category of profinite 2-groups of its subgroups {1,01},...,{1,0n}.

For n = 2 and P, # P; this is proved in [Br., Er.,& Ka.l.
The authors even construct explicitly Ri and R: in this case:

if x € K is such that x > 0 and x <, 0, then Ri can be chosen as

21‘1
K(Yx|n €N),
and R; as
21'1
K(e ,,/X|n €M),

where of course

2n 1

2n«l-l
(Vx ) = Vx, V% = x,

and (e ) is any sequence of roots of unity with €1 = 1, €2 = -1,

n+1

(e )2 o= € for all n =2 1.

n+1



It is stated in [Er, p.428] that Kal'nei has generalized this to
the case that n > 2 and the orderings are independent (unpublished

as far as I know).

93
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CHAPTER 111 Model theory of fields

with several ondenings and valfuations

§1. The modef companion

The situation of Ch. II is generalized so as to cover also (Krull)
valuations of certain types on a field of characteristic 0 (prime
characteristic causes some technical difficulties and is not

considered in order to show the main idea as clearly as possible).

Alas, some new terminology is indispensable.

(1.1) Definition
A t-language ('t' for 'topology') is a language extending the language
of rings with extra constants and predicate symbols (but no extra

function symbols of rank >0).

(1.2) Degindition

A t-theory is a universal theory T in a t-language, together with a

distinguished open formula BT(V""’Vk’vk+1) such that the following
conditions are satisfied:

{a) T extends the theory of domains.

(b) If D,,D, are models of T with the same underlying domain D

such that for each constant ¢ and each (say p-ary) predicate
symbol R : ED‘ = SD: and BD‘ N (p+)P = BDZ N (p-)P
(D* = D\{Q}), then Dy = D,.

(c) Each model D of T with underlying domain D has a unique extension
to a model K with underlying domain Q(D); this model K will be
denoted by Q(D).

(d) For each model K of T U FL with underlying field K the family of

all sets {b € K|K E BT(al,..,ak,b)} ((al,..,ak) € Kk) is a
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basis of neighbourhoods of 0 for a (necessarily unique)
Hausdorff ring topology on Kj;
this topology will be denoted by e

(e) For each model K of T U FL with underlying field K and each

Kn (k)P is a clopen subset

(say p-ary) predicate symbol R R
of (K')P, where (K°)P is endowed with the product topology

induced by Tge

(1.3) Examples
(1) 0D (cf. Ch.I, (3.2)) is a t-theory with distinguished formula

Byp(visva,va) = (v <wvsy <wvz) A (vy <0< wvy).
(This expression is of course shorthand for a formula using only the
unary predicate symbol 'P' in stead of '<'.)
{a), {b) and (c) are trivial. It is also wellknown that BOD(Vl,Vz,Vg)
induces the interval topology defined by the ordering of an ordered
field; so (d) follows. (e) means that for an ordering on the field, K
the set {a € K|a > 0} is a clopen subset of K* with respect to the

interval topology. (It is certainly not a clopen subset of K.)

(2) D,a1 (cf. Ch.I, (3.3)) is a t-theory with distinguished

formula Bv l(vl,w) := div(vy,v2) A vy F 0.

a
{a), (b) and (c) are again trivial.

(d) is also easy: given a field K with valuation v : K + T U {e}, the
family of all sets {b € K|v(b) = g} (g € T') defines a basis of (clopen)

neighbourhoods of 0 for the, so called, valuation topology on K

induced by v.
Just as an interval topology, it is a V-topology (cf. Ch.II (1,6)).

(e) is easily checked.

(3) (pCF)y, and (mCF),, (cf. Ch.I, (3.6) and (3.7)) are t-theories
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with same distinguished formula Bval(V"V’) as above.

Again the required conditions are easily checked, except perhaps
{e) for the predicates P, (n = 2).

Let K = (K,div,,P2 ,P3,..) F pFL. If a € K and VK(a) > 2.VK(D), then

K’
VK((1+%a)n - (1+a)) > Q.VK(n), which implies by a strong form of
Hensel's lemma (cf. Appendix, (A.2)) that 1+a is an nth power in
the prime extension of K, so 1+a € Pn'

But then Pn\{O} is an open subgroup of K°, hence also a closed
subgroup.

The argument for (mCF)y is similar, but easier and is left to the

reader.

(1.4) Definition

Let n 2 1 and Tiy..,T  be t-theories.
The theory (T,,..,gg is then defined as the theory whose models are
the structures (D,Pl,..,Pn) with D a domain and (D,€.,) E T, s

i=1,..,n.

Remank
If the language L(Ti) of T, and L(Tj) of Tj have for all i,j with
1 < i< j<n only the ring operation symbols in common, then
formally: L(Tl,..,Tn) = L(T,) VU...U L(Tn) and (Tl,..,Tn) E T, V...V T
However, in cases like T; = ... = T, = 0D, the procedure is to make
L(Tl),...,L(Tn) first disjoint, except for the ring operation symbols,

by an obvious indexing and then defining (T.,..,Tn) formally as above.

So if Ty = ... = Tn = 0D, we get (T""’Tn) = ODn (cf. Ch.II).

(1.5} Basdic conventions 4orn the nest of this chapten

n is a fixed integer 21. Tl,..,Tn are fixed t-theories, such that for
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each 1 € i < n:

T, has a model completion Ti and for each model

K= (K,...) F Ti : char(K) = 0 and T, is not discrete.

(note that by condition (e¢) of (1.2) K is indeed a field).

Remanrk
If each T, is chosen from among 0D, Dval,O’ (pCF)V(p prime), (ECF)V’
then these assumptions on Ti are satisfied.
(D is Dv + axioms expressing characteristic 0.)

val,0 al

Now the theorem corresponding to (1.2) of Ch. II is:

(1.6) Theorem

(T""’Tn) has a model companion.

The proof is given in (1.12), (1.13) and (1.14).

First some preparations.

(1.7) Lemma
Let (G,T) be a topological group with T Hausdorff and not discrete.
Then each non-empty open subset of G is infinite.

Proof

Clear. O

(1.8) Lemma
Let T be a t-theory and O(v,,..,vk) be an open L(T)-formula. Then
there is an open L(T)-formula e'(v""’vk’vk+1""vzk) such that for

each D F T and a;,..,a € o}, Dys..5by € {D|\{0}:

QD) F 0la, by’ y..sab') © D F 0'(a1,. 535Dy 505D, )
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Proog

Let 5""’3k’2”"’2k be new constants and consider the set T of

all open sentences w(gl,..,gk,gl,..,gk) with

T F Vzl..vzk((e(zl,..,zk) A A b.z. = a.aA Ei #* 0) -+

w(gl,..,ék,gl,..,gk)).

Let us write a 3 b 3 z ; Vz etc. for Q08 3 2""’2k H z,,..,zk H

VZ,..Vzk. It clearly suffices to prove the following:
Claim
. k
TUT Vz((i/z\1 b;z; = a; A b; #0) » o0(z).

Take any model K' = (K,a,b) of T UT with b, #0 (1 <1i<k) and
suppose there are ¢ ,..,c, € |K| with bie; = a; (1 <1i <k) and
K' E 206(c) (such K' exists if the claim would not be true).
Because c; = aib;.'_l and T VU {0} consists of open formulas, one may

assume without loss of generality that K = Q(D), where D is generated

by {al ' .,ak,bl 900 ,bk}.

Let D' = (D,a,b). Then from condition (c¢) of (1.2) we get:
k
T U Diag(D') F vz(( A b.z. = a.) »+ 10(z)).
j2q 117 A

Hence, by the compactness theorem, there is an open formula

¢(V”"’Vzk) with

k
D' F ¢(a,b) and T I ¢(a,b) »vz(( A

o b;z; = a;) + ~0(z)),

implying:

~

T F vz((0(z) A icl(gizi = a; A b; #0)) »-0(a,b)),

so -¢(a,b) € I', which contradicts D' F T U {¢(a,b)}. 0
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Remark

If T is given, say T = 0D, then this model theoretic proof can be
avoided, and 0' can be easily constructed from 0. Note that
conditions (b), (d) and (e} of (1.2) on T were not needed in the

proof of the lemma.

{1.9) Let in the following Ut 5o sUp sXa 5o s XY denote distinct
variables, and let u,x denote the sequences U5 .. ,Up and

ESIPRRES . respectively.

It is also desirable to use these variables in polynomials but to

distinguish this use I will write in that case capital letters

UrseosUgsXis..,X Y and U,X.

It will be clear that, for instance, '3dx' is used as shorthand for

1]

'Hxl..axm

Deginition
Let T be a t-theory.
A t-basic T-formula in (u,x) is a formula in the language of T of one
of the following forms:

P
A Si(u,x) #* 0

(4} R(Si(u,x),..,8 (u,x)) A
P i=1

o

(i4) AR(S;(uyx),..,S (u,x)) A A S.(u,x) # 0
- P i=1 *

where R is a p-ary predicate symbol and

S15..,5, € Z1U,X].

Lemma
Let T be a t-theory and ¢(u,x) be a conjunction of t-basic T-formulas
in (u,x) and suppose K = (K,#) F T U FL and a € KQ = Kx...xK

(cartesian product).

Then {b € KmIK F ¢(a,b)} is an open subset of K™,
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Ph.OOﬁ

Clearly it suffices to consider the case that ¢(u,x) is t-basic.
Then the conclusion of the lemma is an easy consequence of the
continuity of polynomial functions, condition (e} of (1.2), and the

definition of t-basic formula. O

(1.10) Deginition

Let £,m €IN. An (f,m)-condition is a sequence
(cl(u),..,on(u),¢1(u,x),..,¢n(u,x),01(u,x,y),..,On(u,x,y),P(u,x,y)>

with u = (u.,..,ug), X = (x;,..,xm) such that for each 1 < i < n:

(1) oi(u) is an open L(T;)-formula.

(2) ¢i(u,x) is a conjunction of t-basic Ti—formulas in (u,x).
{3) Oi(u,x,y) is an open L(Ti)—formula.

(4) F(U,X,Y) is a polynomial in Z[U,X,Y], monic and of positive

degree in Y.
(5) Ti F Vu(ci(u) - 3x¢i(u,x)), and

Ti F Vqu{(oi(u) A ¢i(u,x)) + 3y(F(u,x,y) = 0 A ei(u,x,y))}

{1.11) Deginition
(TTTTTTT;T is the theory whose models are those
K = (K,P,,..,Pn) E (T""’Tn)
such that:
(4) K is a field
(£4) for each (2,m)-condition as in (1.10) and each a € KQ,

such that F(a,Xl,..,Xm,Y) € K[X,,..,Xm,Y] is irreducible and

n
KE A ci(a), the following holds:
i=n

n
K F 3x3ay{F(a,x,y) = 0 A A (¢i(a,x) A ei(a,x,y))}.
i=1

Note that (4]} and (44} actually say that K satisfies certain sentences,
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so (1.11) defines indeed a theory.

Now (1.6) can be made more explicit as follows:

(1.12}) (T""’Tn) is model companion of (T,,..,Tn).

Using (2.21) of Ch. I we split the proof of (1.12) in two parts:

A. Each existentially closed model of (Tl,..,Tn) is a model
of (T""’Tn)‘
B. Each model of (T""’Tn) is an existentially closed model

of (T] ,..,Tn).

(1.13) Proof of (1.12), part A.

Let K = (K,Pl,..,fn) be an existentially closed model of (T1a°~>Tn)'
Let K; = (K,f,) and note that K; E T,.
That K is a field follows immediately from condition (c¢) of (1.2) .

which holds for each Ti'

Let now an (€ ,m)-condition be given as in (1.10) (the notation used

in (1.10) is preserved here), and let a € K!Z be such that

P(a,Xl,..,Xm,Y) € K[Xl,..,Xm,Y] is irreducible and for all 1 < i < n:
K; F oogad.

Let for each 1 < i <n Fi = (Fi,..) be a (#=K)+-saturated extension

of K; with F; F T;.

Then, by (5) of (1.10), we get: Fi E 3x¢i(a,x).

So the set {b € F?]Fi F ¢;(a,b)} is non-empty, and open by the lemma

in (1.9), hence by (1.7) and the fact that TE. is not discrete, this

set contains a cartesian product le...me wiih Bj an infinite

subset of Pi.

Because Fi is (%#K)+-saturated, this implies that there is
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i i m . i i i i
(bx"°’bm) € F; with Fi E ¢i(a’b1""bm) and b;,..,b

algebraically independent over K.

Then, by (5) of (1.10), there is c* € F, with P(a,b},..,b;,cl) =0

and F. F ei(a,bf,..,b;,cl)
Because F(a,Xl,..,Xm,Y) is irreducible, the fields K(bf,..,b;,cl)

and K(b?,..,bi,cj) are for any i and j in {1,..,n} isomorphic
over K via an isomorphism sending b; to b% and c¢* to cJ. These

isomorphisms permit us to construct an extension
£ = (K(bla--abmac))ﬂl ,..,ﬁn) i: (T],..,Tn)

of K such that for each 1 < i <n (K(bl,..,bm,c),ﬁi) embeds into Fi

. i i
over K via br g br,c »c, 1

AN

r < m.
Hence

n
L E F(a,b,,..,bm,c) =0 AiC1(¢i(a,b|,..,bm) A Oi(a,b,,..,bm,c)).

Because K is existentially closed, this implies

K F 3x3y F(a,x,y) = 0 A
1

n >3

1(¢i(a,x) A Oi(a,x,y)). O

(1.14) Proof o4 (1.12), part B (compare with Ch. II (1.19)).

Let K = (K,P,,..,Pn) be a model of (Tl,..,Tn), and let Ki = (K,Pj) E Ti‘
Suppose p is an existential K-sentence true in an extension
L= (L,ﬁ.,..,ﬂn) F (T""’Tn) of K.

To prove: p is true in K.

Without loss of generality we assume L to be a finitely generated
field extension of K. Because char(K) = 0 by the assumption of (1.5),
this implies that L = K(bl,..,bm,c) with (b.,..,bm) a transcendence
base of L|K and such that for a certain irreducible

F(Xl,..,Xm,Y) € K[Xl,..,xm,Y] F(b,,..,bm,Y) is the minimum polynomial

of ¢ over K(b;,..,bm) (in particular F(X,Y) is monic and of positive
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degree in Y).

In the following 'b' will be written as shorthand for the sequence
b,,..,bm. Let Ki(b) be the substructure of (L,Ri) with under-
lying domain K(b), and similarly K(b) is the substructure of £

with underlying domain K(b).

Consider the following sets of sentences in the language of
(Tl,..,Tn) augmented by names for the elements of K and new constants

Q.,..,gm,g (with 'b' written for the sequence 2,,..,gm):

I . = T. UFL U Diag(K,) for each 1 < i < n;
1,1 1 1

ry =ro0 ur,
s

u,...ur
1,1 1

= (T""’Tn) U Diag(K) U FL;

2 ,n

for each 1 < i < n:

Tz i is the set of all sentences ¢(a,b) where for some £ € IN and

b} .

a € KQ $(u,x) (u = (uy5..5up), x = (x.,..,xm)) is a t-basic
Ti-formula in (u,x) such that Ki(b) F ¢(a,b) (where Ei is
interpreted as bi);

r,=r, ,V..ur, .

It is easily shown that conditions (b) and (e¢) of (1.2) imply for

each 1 < i <n that (K,(b),b) T . UT_ . and that (K.(b),b) can be

i 1,1 2,1 i

embedded (uniquely) over Ki into each model of r, i ur, ;- Hence:
b

b

(1) (K(b),b) E T1 U T, and (K(b),b) can be embedded uniquely

over K into each model of Ty U T,.

Let 0 <d = degy F(X,Y).
The Ki(b)—formula 'F(b,y) = 0' in the free variable y is algebraic

of degree <d over Ki(b) with respect to the theory Ti (see Ch. I (3.5)
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for the definition of algebraic formula used here) .

¢ realizes the formula in (L,Ri) and T, is universal and has AP by

the assumptions made in (1.5) on T,.

Hence Th. 4.1. of [ Bac] can be applied, and gives:

the open type of ¢ over Ki(b) is principal (this can of course also

be seen directly by an easy argument).

We may assume this open type to be generated by a formula

'F(b,y) = 0 A Oi(y)' where 0, is an open Ki(b)—formula.

By lemma (1.8) we may assume (par abus de langage):

Oi(y) = Oi(g,y), with Oi(x,y) an open Ki—formula.

Put I's = {F(b,c) = 0, @l(b,c),..,en(g,g)}.

Then, by (1} above and the properties of the Oi's, we get:

(£,b,c) F Ty UT, UTs and £(b,c) can be embedded over K in each model
of Ty UT, UT;.

This implies that the existential K-sentence p is true in each model
of Iy UT, UT;, so by the compactness theorem there are finite subsets

A,,..,An of T ,..,r2 n respectively such that:
9

2,1

(2) 'n VAUT; F p (with A = Ay V... U An).

Now we come to the essential point of the proof:

because Ti has model completion Ti’ there is (for each 1 < i < n) an

open K,-formula wi(x) such that:
(3) Ti U Diag(K;) F ¢, (x) < 3y(F(x,y) = 0 A 0;(x,y)).

Then (Ki(b),b) E ¥;(b), so by the remark preceding (1):

r, U r, ;s F wi(g). So by the compactness theorem there is a finite
b b

subset of Pz which together with r, i has wi(g) as logical consequence.
2

2
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Without loss of generality we may suppose this finite subset to
be A,. Hence I' ., UA; F p;(b). Together with (3) this gives for
b

each 1 < i <n:
(4) Ti U Diag(K;) U A, F 3y(F(b,y) = 0 A ei(g,y)).

Let ¢i(2) be the conjunction of the sentences in As-

Then, because K, C Ki(b) F ¢i(§), we get also:
(5) T, U Diag(Ki) + 3x¢i(x).

By the compactness theorem we can strengthen (2), (4) and (5) as
follows: there is for each 1 <1 < n an open Ki-sentence o with

K. E 0. such that:
i i

(6] (Ty,..,T ) UFL U {0 ,..,0 ,61(b),..,6 (D)} UTs | p.

(7) ’T‘i U {oi,¢i(9)} F3y(F(b,y) = 0 A 0,(b,y)) (1<1i<n).

(8) T, VU {o;} F 3x¢;(x) (1 <1i<n).

It is now necessary to display also the elements of K occurring in
the various formulas: we can choose £ €N and a € K’2 such that

(by abuse of language):

(9) Oi(x,y) = Oi(a,x,y) for a certain open L(Ti)-formula

Gi(u,x,y) (u = (u,,..,ug)) (1 <i<n).

(10) F(X,Y) = F(a,X,Y) for a certain F(U,X,Y) € Z[U,X,Y].
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(11) ¢i(§) = ¢i(a,g) for a certain conjunction ¢i(u,x) of

t-basic Ti-formulas in (u,x) (1 <i<n).
(12} o, = Ui(a) for a certain open L(Ti)—formula oi(u) (1 <1i<n).

Then (7) - [12) imply that
(ol(u),..,an(u),¢1(u,x),..,¢n(u,x),O,(u,x,y),..,en(u,x,y),P(u,x,y))
is an (2 ,m)-condition (see (1.10)).
Then K E TTTTTTTT;T implies, by [(44) of (1.11), that there are
elements E;""EA’S' in K such that, if by,..,b ,c are interpreted
as b;,..,b;,c', then:
n
(K,by,..5b ,c") F F(a,b,e) = 0 A i21¢i(a,§) A 0,(a,b,c),

which, by (6), implies: K F p. (m]

In §2 it will be shown that the axiomatization of (T,,..,THS given
by (4) and (44} of (1.11) can be simplified considerably.

But first some properties of models of (T;,..,Tn)

(1.15) Definition

If Ti,..,T are topologies on a set R, then T; v...v L is by
definition the least upper bound of {T;,..,Tn} in the set of topologies
on R (which is ordered by inclusion).

It is easily checked that if R is a ring and Tis..,T are ring
topologies, then T; v...v LN is a ring topology on R and a basis of

0-neighbourhoods is given by the sets U; N...N Un with Ui a

ti—neighbourhood of 0, for all 1 < i < n.

(1.16) Proposdition
Let K = (K,P.,..Pn) be an existentially closed model of (Tl,..,Tn),
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K; = (K,Po) F T (1 < i <n). Then:
(£} Tg, VeeeV Tg is not discrete and no % is discrete.
! n i
(i4) If for each 1 < i <n Us is a non-empty T, ~-open subset of
i

K, then U; N...N vy # ¢ (and hence is infinite by (4{) and

(1.7)).

Proog

Ti has as distinguished formula BTi(V""’vk’Vk+1) and without loss
of generality we may assume k € IN to be the same for all 1 < i < n.

A typical T Verov Ty neighbourhood of 0 € K is
1 n

u‘D:j

{p € K|Ki E BT.(ai’b)} (a.,..,an elements of Kk),
i=1 i
and it suffices to prove that such a neighbourhood contains an element

# 0. Let, as in (1.13), F,.

; (Fi,..) be a (#K)'-saturated extension

of K; with F; F T;. Then {b € |Fi| : F, F Bp (a;,b)} is infinite by

Ti(

(1.7), so by saturatedness contains an element transcendental over, K,

which implies that Ki has an extension (K(X),ﬁi) =T, ) {BT (ai,X)}.
i

Then

n
L = (K(X),ﬁl,..,ﬁn) kF (Ty 5.0, T ) Y {3x # 0 iC1BTi(ai,X)},

hence, because K is existentially closed, the above mentioned set
contains an element # 0, and (4] is proved.

{£4) can be proved similarly. a

(1.17) In Ch. II, (1.14) we proved that, roughly speaking, an exis-

tentially closed model of ODn is dense in each of its n real
closures. It is not clear to me whether the analogue in our general
situation holds. However, the next proposition gives important cases
in which it is valid.

First a lemma.
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(1.18) Lemma
Let (K,P) be an ordered, respectively (K,v) a valued field. Then:
(1) K is dense in the real closure of (K,P) <
for each polynomial f(Y) € X[Y] and all a,b,e € K with
a<b,0 <eg and f(a) <0 < f(b) there is ¢ with a <e¢ <D
and |f(c)]| <e.
(2) K is dense in the henselization of (K,v) <
for each polynomial f € Vv[Y] and a € Vv such that f(a) € M,, and

f'(a) £ M,, the set {v(f(a+m)) |m € Mv} has no upper bound in r,-

Proog

It is clear that the first half of (1), resp. (2) implies the

second half.

Suppose now that the second half of (1), resp. (2) holds. Then this
half clearly remains valid if (K,P) resp. (K,v) is replaced by its
completion (R,ﬁ), resp. (R,G).

But a result of Kaplansky, [Kal, says that in a complete V-topological
field F polynomial maps F = F are closed maps; this implies in our
case that (R,ﬁ) is real closed, resp. (R,Q) is henselian.

So the real closure (K,P) of (K,P) embeds over (K,P) into (K,P), and
because K is dense in R, K is also dense in K. The valued field case

is treated similarly. a

Remank
For an algebraic proof of (1) and a nice application, see McKenna,

[ McK] .

(1.19) Proposiftion

Let K = (K,@& ,..A?}) be an existentially closed model of (T,,..,Tn),

Ky E T, for all 1 < i <n. Suppose T, is one of the theories 0D,
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(pCF)v(p a prime), (ECF)V~
Then K is dense in L where £; = (L,8;) is the prime extension of

K; (with respect to Ti).

Proog

Suppose first T; = OD and (K,®;) = (K,P). Let a,b,e € K,f(Y) € K[Y]

be given with a < b,0 <€ and f(a) <0 < f(b). By the lemma, we have
only to prove that there is ¢ € K with a < ¢ <Db and |f(c)] <e.
Clearly f has a zero c¢' in the real closure of (K,P) with a <c¢' <b,
and the ordering on K[c'l (induced by this real closure) can be
extended to an ordering on K(c',T) with T infinitely close to c'

with respect to the ordering on K (i.e. 0 < |T-¢'| < § for each

0<§ €K). Thena <T <b and |[f(T)| <e. Let P' be the ordering on
K(T) induced by the ordering of K(e¢',T). Extend P;,..,Pn to 0;,..,05
such that (K,€;) C (K(T),Pi) E T, (2<i < n) (this is possible
because T is transcendental over K).

Then K C (K(T),P',P,,..,G’D) E 3t(a <t <b a |[f(t)| <€), and because
K is existentially closed, this implies there is ¢ € K with a < ¢ <b
and |f(c)| < €.

Suppose now T; = (pCF)V. Let K; = (K, ) = (K,div,P; ,P3,..) and let

0#a€P,2<m€EN.

CLaim 1

v(a) € mI', where v is the valuation and T the value group associated

with (K,div).

Let b be one of the mth roots of a in the prime extension of K, and
extend the (pCF)V-structure of & (b) to a (pCF)V-Structure on K(b,X)
such that the value of X is >0 and let T = b(1+X). Then the (pCF)V—

structure of K(b,X) induces on K(T) a (pCF)V-structure.
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(K(T),P;) = (K(T),div',P],P},..), say with valuation v' and value
group I'. Then v'(a) = v'(a(1+X)™ = v'(T™) € mr'.
Because T is transcendental over K, 02,..,Pn can be extended to
P;,..,Pé on K(T), such that

Kce = (K(T),P;,..,Pﬁ) F (T,,..,Tn).
Now £ F 3t(t™ div a A a div t™), so, because K is existentially closed,
v(a) € ml.

Claim 2
#(I/ ) = m for all 1 <m €NN.
For let g € T and take 0 # b € K with v(b) = g. As is shown in the
proof of the theorem in (3.6), Ch. I, there is 0 # q € Q with

K

Em(qb). By claim 1 this implies v(gb) € m , so
g = v(b)=-v(g) =i (mod mI') for some i, 0 < i < m. Hence claim 2
is proved.
Let K; = (X,div,P;,..) be the prime extension of K, . Because of
Claim 2 (K,div) is the henselization of (K,div), and just as for
Ty = OD one can prove that K is dense in K (endowed with the topology
TFI).
The case T; = nCF is left to the reader.
(Only one new difficulty occurs compared with pCF, namely the residue
field may not be algebraically closed, and this is treated once again

by the trick of carefully adjoining a transcendental to the field.) O

{1.20) Let me finish this section with discussing a possible generalis-
ation of the main theorem (1.6). P. Winkler treats in [ Wi]

some general constructions on model complete theories giving, under
certain conditions, new model complete theories. For instance, he
proves that the disjoint union of two theories each having an

algebraically bounded model companion has a model companion. Now in
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our case not a disjoint union of theories is considered, but what one
might call, an amalgamated union, with the theory of domains as
common part. It seems to me that something like algebraic boundedness
is really behind the proof of (1.6). All this suggests a common
generalization of Winkler's and my results.

To substantiate the above a bit, let us show that algebraic bounded-

ness holds in our situation.

Definition
A theory T is called algebraically bounded if the infinitary quan-
tifier 37: 'there are infinitely many' can be eliminated, i.e. if
every '"formula" built up using 3~ is equivalent, with respect to T,

3 . ©o
to a formula not involving 3 .

(1.21) Proposition
Let T be a t-theory with a model completion T, such that K f T implies

that Tk is not discrete.

Then T is algebraically bounded.

Proof

(=)
T admits elimination, so it suffices to show that 3 x 0(u, ,..,uk,x) is

equivalent with an L(T)-formula, for each open formula 0.

CLaim
Each open formula O(u,,..,uk,x) is equivalent, with respect to T, to

a disjunction of formulas

n >dg

q
fi(u,x) =0 A A

0.(u,x)
1 j 3 b b

i 1

with f; € Z[U,Xx] , and each 0; a t-basic formula in (u,x).
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The proof of the claim is by a diagram-compactness argument, using
mainly condition (b) of (1.2), and is left to the interested reader.
By the claim it suffices to consider the case that 0(u,x) is a
conjunction as displayed in the claim. Let (cj(U))jeJ be the finite
set of non-zero coefficients of the fj's, considered as polynomials
in X.

Then, by (1.7) and the lemma in (1.9), 3% O0(u,x) 1s easily seen to
be equivalent to

q
Ac.(u) =0 A 3x A Oi(u,x). 0O
j€7 j=1
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§2. A cnitenion forn elementary equivalence, and simplification

04 the axioms for (T7""Tn’

Define for each model K of (Tl,..,Tn) alg(K) as the substructure
of K whose universe is the set of algebraic numbers in K.
The following result is the analogue of (2.2), Ch. II, and its

proof is indicated in (2.5).

(2.1) Theonrem

Let K and £ be models of ZT.,..,Tn).
Then: K = £ ¢ alg(K) =~ alg(L).

The simplification stated in the next proposition is that only
(2,1)-conditions have to be considered, in stead of (f,m)-conditions

for all (2,m) €ENxIN (cf. (1.11)).

(2.2) Proposition

Let n > 1, K = (,8,..,8) F (Ty,..,T ).

Then: K k TTT:TT?T;T «

(£) K is a field, and

(£4) for each (f,1)-condition as given in (1.10) and each a € KQ,

such that F(a,X,Y) € K[X,Y] is irreducible and

K E A o.(a),
1<i<n *

the following holds:
K E 3x3y(Fla,x,y) = 0 A A ¢.(a,x) A 0.(a,x,y)).
- 1 1
1<isn
Just as (1.17) of Ch. II this can be shown by applying Hilbert's
irreducibility theorem for function fields. But there is also a more

model theoretic proof which might be useful in other situations. This



114
proof, given in (2.7), is based on a general lemma (2.6).

The following lemma is the analogue of (2.5) of Ch. II.

{2.3) Lemma
Let T be a t-theory with model completion T such that K F T implies

that Ty is not discrete.
Let . L]
K / >M
\\\\\\-\L2
be a commutative diagram of field inclusions with L; and L, linearly
disjoint over K and let K,L, ,£2 be expansions of K,L; ,L; respectively,

to models of T with K C £, ,K C £,.

Then L;L; (C M) has an expansions £ F T with £, € £,£, C L.

PﬂOOﬁ

Similar to that of lemma (2.5) of Ch. II.

Note that in stead of formulas 'p(a) > 0' one considers formulas
¢(a) where ¢(x) = ¢(c.,..,cQ,x) and ¢(u,x) is a t-basic formula in
(u,x). In stead of a real closure one may take any existentially

closed extension. O

The analogues of (2.6) and (2.7), Ch. II, in our general situation
are given by:

(2.4) Proposition

The class of models K = (K,P,,..,Pn) E (Tl,..,Tn), such that K is a
field which is algebraically closed in L for some extension

(L,ﬁl,..,an) E (Tl,..,Tn) of K, is an elementary class. Define
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(T""’Tn)alg as the theory such that Mod((T;,..,Tn)alg) is the
class mentioned above.
Then:
(£) (K,..) F (T""’Tn)alg and (K,..) C (L,..) F (T,,..,Tn)
imply that K is algebraically closed in L.

(44) (T""’Tn)alg has AP.

Proog

The class mentioned is clearly closed under ultraproducts and its
complement within Mod(T.,..,Tn) is closed under ultrapowersm hence
the class is elementary (cf. [Ch.& Ke.,p.322]).

Let now K = (K,..) F (Ty,..,T ) and K C £ = (L,..) F (T,,..,Tn).

alg
For (4) we have to show that K is algebraically closed in L.

Without loss of generality we may assume L a field. Now K has by
definition an extension £' = (L',..) E TTTTTTTng such that K is
algebraically closed in L'. Because char. K = 0, the field extensibn
L'|K is regular. By the same reasoning as in the proof of (2.7),
Ch. II we may conclude that there is a commutative diagram of
embeddings:

£’

N
N,

Because L' is existentially closed, L' is algebraically closed in M,

M= (M,..)E (Ty,..,T )

hence K is algebraically closed in M, so also in L.

The same argument proves (4L4). 0O

(2.5) Proo

Proof of (2.1): one simply repeats the proof given in (2.8), Ch. II,
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using (2.u4). O

{2.6) Lemma

Let T be universal theory in a t-language with the following

properties:

{4) Conditions {a) and (e) of (1.2) hold and the underlying domains
are of characteristic O.

{i4) T has an extension Talg whose models are exactly those
K = (Ky..) F T with an underlying field K which is algebraically
closed in L for some existentially closed extension
£ = (L,..) of K.

(444) Talg has AP.

{£v) The 2-existentially closed models of T form an elementary class

Mod(T?), T C T%.

Then T? is model companion of T.

Proof

Let K = (K,..) F T*. We have to show that K is m-existentially closed
for each m €N, This is proved by induction on m, m = 2 being trivial.
For simplicity of notation we treat only m = 3. So let 0(x),

x = (X3 X2 ,X3), be an open K-formula and suppose K C £ = (L,..) k

T U {3x 0(x)}.

We have to show that K F 3Ix 0(x).

Without loss of generality we may assume £ is existentially closed.
Let b = (b; ,b; ,bs) such that £ F 0(b). Let M be the algebraic closure
of K(b;) in L, and let M have underlying domain M and K C M C L.

So M E Talg'
CLaim

T2 U Diag(M) bk 3x;3x30(b; ,X2 ,X3 ).
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For let C £ T, U Diag(M). Make a commutative diagram of embeddings

/ .
//

\.\

DET

which is possible by (444). Then P E 3x; 3x30(b; ,x2 ,X3), and because

C is 2-existentially closed, this implies C F 3x;3Ix30(b; ,X2 ,%X3), and
the claim is proved.

We assume now also that b; &€ X (if b; € K, then we should have taken
b2, or bs in stead of b;). Then b; is transcendental over K, so each
finitely generated field extension N of K with K(b,) € N C M is, because
tr. degKM = 1, of the form K(b;,a). By the claim there is finite

A C Diag(M) with T* U A | 3x23x36(b; ,x2 ,X3). The observation above on
subextensions of M|K implies that A is equivalent (with respect to

T? U Diag K) to an open sentence y(b;,a) which involves, besides names
for the elements of K, only the name b; for b; and at most one other
name a. But K is 2-existentially closed, so K F 3x;3vy(x;,v), which by

K E T* U Diag(K) implies: K f 3x0(x). O

(2.7) Proof of (2.2}

We will actually show that a model K of (Tl,..,Tn) satisfies the
axioms (4) and (44) of (2.2) iff it is 2-existentially closed. Then
(2.2) will follow from lemma (2.6) because all the properties required
hold for (T"”’Tn)’ by (2.4).

That each existentially closed model of (Tl""Tn) satisfies the
axioms (4£) and (44) of (2.2) is proved as in (1.13) (replace
'existentially closed' by '2-existentially closed', etc.).

Conversely, suppose K = (K,..) F (T""’Tn) satisfies (4) and (4{4)
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of (2.2). We have to prove:

K is existentially closed.

Let p = 3vy3vaulvy,v2), p an open K-formula, and let

£ = (L,..) F (Ty,..,T ) be an extension of K with £ E p.

We have to show that K 5 p; let e,f € L with £ F u(e,f).
Without loss of generality one may assume L = K(e,f). There are
3 cases:

{a)  tr. degL = 0

(B) tr. deg L = 1

2

(v) tr. degKL
Case (o) is trivial because (a degenerated case of) axiom (44) implies

KE (Ty,..,T) so K = £ in case [a).

n’‘alg?
For case (B} one can almost literally copy the proof in (1.14), taking
m = 1, and using at the end axiom (44).
Case (y) is reduced to case (B) with the same trick as used in the
proof of (2.6): take an existentially closed extension of L, let M be
the subextension whose underlying domain is the algebraic closure M
of K(e) in this existentially closed extension. Let T' be
(T,,..,Tn) U {axiom (4), axioms (44) of (2.2)}. Then
T' U Diag(M) + 3vau(e,v2), (use that M E (T”°"Tn)alg’ that
(T"°”Tn)alg has AP, and that by the preceding the models of T' are

at least l1-existentially closed). Now tr. degKM = 1, and we have

reduced to case (B8]). O
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§3. Decidability, and a conjecture of Erfov.

The 'raison d'étre' of the preceding two sections lies in the

following theorem.

{3.1) Theorem

Suppose that for each i€{1,..,n} T, is_either 0D or (pCF)V for

some prime p. Then (Tl,..,Tn) is decidable.

The proof is in the style of §2 of Ch. II, see (3.6). The first thing
we need is an analogue for p-adically closed fields of "the kth root
of a polynomial of degree d (1 <k < d)".

It may be an interesting fact in itself that such a notion indeed

exists:

(3.2) Proposition

Let T be a model complete theory having PEP Suppose

universal’
¢(xl,..,xm,y) is a formula with T } Vx3<$ $(x,y) (1 <d €N). Then
there are open formulas ¢,(x,y),...,¢d(x,y) such that:

(4) TF ¢(x,y) @ (¢ (x,y) v...v ¢d(x,y)),

{44) T F an<§ ¢;(x,y), for all 1 <i<gqg,

(4i4) T ¢ ~3x3y( ¢, (x,y) A ¢j(x,y)), for all 1 < i < j < d.

Proof

T admits elimination by (2.11 and (2.17) , ch. I, so without loss of
generality we may assume ¢(x,y) open. Adding m new constants

C1se5C, toO the language and replacing ¢(x,y) , Vx3<§ ¢(x,y) etc.

by ¢(gl,..,gm,y) s ng ¢(gl,..,gm,y) , etc. preserves the hypothesis,

so by the theorem on constants, [ Sh, p.33], we may suppose m = 0.
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Moreover we may assume that the language contains a constant.

Claim
If ACBET, and B k£ ¢(b),b € |B8], then the open type realized by
b over A (with respect to the theory TV) has a generator ¥(y) such

that T, U Diag(A) + 3<§ Y(y) (cf. [Bac, §4] for the terminology).

Proof of the claim

Let D be the prime extension of A(b) and let C be the prime extension
of A. C|A may be realized as a subextension of D|A.

Then by model completeness C and P contain the same (finite) number
of elements satisfying ¢(y), hence b belongs to |C|. Now each element
of |C| is 1-potent over A (see (3.5), Ch.I), hence the open type of

b over A, which is principal by [Bac, Th.4.1.], has a generator y(y),

with the stated property, and the claim is proved.

Let b be a new constant and define:

I = {20(b)|6(y) is open formula, T F 3% 0(y), TFo(y) » ¢(y)}.

Suppose there is a model (B,b) of TV Ur U {¢(b)}.

Let A be the smallest substructure of B. Then by the claim above there
is an open A-formula y(y) with (B,b) F ¢(b), Ty U Diag(A) F Bg; P(y)
and Ty U Diag(A) F y¢(y) » ¢(y).

Applying compactness to TV U Diag A, we get an open sentence ¢ in the
language of T with Tv F o~ 3<§ Y(y) and Tv F o> (y(y) » ¢(y)) and
AFE 0. We put 0(y) := o A ¥(y) and get: T + 3<§ o(y), T  o(y) » ¥(y),
implying that -0(b) € T, which contradicts (B,b) f I' U 0(b).

So the theory Tv UT U {¢(b)} is inconsistent. Using compactness we
get open formulas el(y),..,@p(y) such that T + 3<§ Oi(y) (1 <1i<p)
and T F ¢(y) ¢ (0,(y) v...v Op(y)).

After replacing O;,..,Op by 0; 402 A wo,,..,ep A (70 A 202...) if
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necessary, we may assume also T } 13y(0i(y) A Oj(y)), 1<i<j<p.
Finally, we choose for ¢k(y) (1 <k <d) an open formula, which is

(w.r.t. T) equivalent to:

\Y; (o (y) A ( A3ye.(y)) A ( A 43y0.(y))) .
1c{1,..,pr max(D) ier 1 1<5<max(1) 9
#(I) = k S€I

Roughly speaking, ¢k(b) holds iff ©p(b) holds where £ is the K th

number i in the sequence 1,2,..,p for which there exists an y with
Oi(y). Note that we need d formulas to cover all possibilities.

Then clearly ¢1(y),..,¢d(y) are the required formulas. O

(3.3) Let us apply (3.2) to T := pCF (p a prime) and

00Xy 50 usXy,y) 1= yd+x,yd—l+...+ xg =0 (2<d€M).
We obtain, as in (2.2) of Ch. II, open formulas Rg’k(y,x,,..,xd) in
the language of pCF, such that

pCF } Vx3<§ Rg k(y,x) for each 1 < k < d,

b
d d-1 _ \% T
PCE by +x, ¥ 4.t X3 = 0 ¢ oy Rd,k(y’xl""xd)’
pCF | =3x3y(R (y,x) AR (y,x)) for all 1 <k < g <.
d,k 4,2

Because pCF has a recursive axiomatization, one can effectively

construct such RT (y,x).
d,k

{3.4) Suppose that for each 1 < i<n T, is either OD or (pCF)V for
some prime p.
———— e, R
Then the theory (Tl,..,Tn) is extended to the theory (Tl,..,Tn) by

introducing new predicate symbols W (2 <4, 1< ki < d),

dykise sk

and by adding as defining axioms the universal closures of:

T.

W (X, 5..5%,) ¢ 3y( A R ..
Ba,k,y yee,k, oo eaXg) y(1<i<h d,k YoXioeeaXg))
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(3.5) Theorem

Suppose that for each i€{1,..,n} Ti is_either 0D or (pCF)v for

- T —— . 3 . .
some prime p. Then (Tl,..,Tn) admits elimination.

(3.6) Proogs of (3.1) and (3.5)

We simply copy the proofs of (2.1) and (2.4) of Ch. II, except for

replacing OD , 5ﬁn, OFn,alg’ 0D , etc. by (Ti,..,T ), (Tr,..;T ),
—_— e —
(T,,..,Tn)alg, (T"°"Tn)'

One should also keep in mind that the roles of (2.5), (2.6), (2.7),
(2.9) of Ch. II are taken over by (2.3), (2.4), (2.4), (3.2) of

Ch. III.

Finally the obvious generalizations of (2,10), (2,12) and (2.13)

of Ch. II are left to the reader. O

(3.7) ErZov considers in [Er] fields K which have for each

i € {1,..,n} a Krull valuation 2 such that VeV induce
different topologies on K and there is no proper algebraic extension
L of K to which each 2 has an immediate extension.
(If K = (K,...) E (T,,..,T ) and each T; is a (pCF)y, or (mCF),, then
K with the n valuations induced by the (T,,..,Tn)-structure of K,
clearly has this property.
Let for each i € {1,..,n} Ki be a henselization of (K,vi) within a
fixed algebraic closure K of K, (ef. Ch. I (3.3)). Then clearly
K, n...n Kn = K, so Gal(f[K) is generated by its subgroups
Gal(K|K ),...,Gal(ﬁWKn). Er¥ov conjectures: Gal(K|K) is the free

product (within the category of profinite groups) of its subgroups

Gal(K,K,),... ,Ga1<f<‘,1<n).
For a special case he proves a 'p-analogue' of this conjecture, for

each prime p.
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CHAPTER 1V Bounds 4in the theory o4 polynomial ideals

§71. Introduction

The title of this chapter indicates a topic to which A. Robinson
returned again and again. There are a lot of results in this subject.

We mention a few of them (with X = (X;,..,Xn)):

{1.7) Given natural numbers n and d, there is A = A(n,d) €N such
that for each field K and all fi,..,f ,g € K[ X] of degree <d:

g € (f""’fm) ® g = Zh.f, for certain h, € K[ X] of degree <A.

(1.2) Given natural numbers n and d, there is B = B(n,d) €N such
that for each field K and all fl,..,fm,g € K[ X] of degree <d:

g € /(f,,..,fm) « gB = Zh.f. for certain he € K[X] of degree <B.

(1.3) Given natural numbers n and d, there is C = C(n,d) €N such
that for each field K and any two ideals I and J of K[ X]
generated by polynomials of degree <d the following holds:

INJ and I:J are generated by polynomials of degree <C.

{1.4) Given natural numbers n and d, there is D = D(n,d) € N such

that for each field K and every proper ideal I of K[X] generated
by polynomials of degree <d the following holds:
I is prime ® for all f,g € K[X] of degree <D, if fg € I then f € 1

or g € I.

{1.5) Given natural numbers n and d there is E = E(n,d) €N, such

that for each field K and each ideal I of K[X] generated by
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polynomials of degree <d the following holds:
each of the minimal prime ideals of I is generated by polynomials

of degree <E, and there are at most E minimal prime ideals of I.

The oldest proofs of these results are constructive -see [He],

where ideas of Kronecker, M. Noether, J. Kénig, Macauley and Hentzelt
are used- and give extra information: for instance concerning (7.3}
it is shown how to construct generators for INJ and I:J if generators
for I and J are given, and this permits us also to give explicit
recursion formulas for the functions A and C. A recent treatment in
this style, free from the mistakes occurring in [He]l, is [Se].

In the fifties A. Robinson showed how (7.2) trivially follows
from Hilbert's Nullstellensatz by a model theoretic argument. This
quickly became a kind of paradigma. Later he also proved (1.1} by
combining a non-standard trick with well-known facts on primary
decomposition, see [ Ek ] for a review of this and related work.

One might ask for the significance of such model theoretic proofs.
This seems to me to lie in their simplicity, compared with the many
complicated constructions needed in the older proofs, and also in
certain new interpretations, which model theory permits. For instance,
in §2 I will show that (7.7), (7.3) and many similar results can be
explained by the faithful flatness of certain ‘'internal' poly-
nomial rings over their subring of ordinary polynomials.

In §3 I will prove (7.4) by combining a model theoretic compactness
argument with a somewhat elaborated version of: "an irreducible
variety is birationally equivalent with a hypersurface". (7.5) is then
almost immediate, by well-known model theoretic arguments.

Another reason for giving model theoretic proofs is given by

A. Robinson in his 1list of problems [ Robi].
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In the third problem "On effective procedures in differential algebra
he indicates that analogues of (1.7}, (71.3) and (1.4) for differential
polynomials are still open, even for n = 1 and that the famous Ritt
problem is of this nature. If this is due to extreme complications
which an orthodox, constructive proof would probably involve, then one
might hope model theory to be useful in this area. But first one
should of course give systematic model theoretic proofs of (1.7} -
(1.5), etc., to learn what kind of arguments are involved. Robinson
explicitly mentions the bound D in (7.4} as one, which 'does not follow
from any known model theoretic arguments', [ Robu4, p.503]).

Such arguments will be given in sections 2 and 3. (Actually we

will prove more precise statements than (71.7) - (71.5}.)
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§2. "The concept of flatness is a rniddle that comes out of

algebra, but which technically 4is the answer fo many prayers”

D. Mumgord

(1.17) and (7.3} are actually consequences, as in [Hel, of the

following two stronger results:

(2.1) Theorem

Given n,d,k €IN there is a = a(n,d,k) €IN, such that for each field

K and each system of homogeneous linear equations

Y. + ... + leYQ =0

lel + ...+ kaYQ =0

. . L .
with all fij € K[ X] of degree <d, the solution set in K[X] 1is
generated as K[ X] -module by solutions g = (81 5++58p) with deg(g) <a

(i.e. deg(gi) <a for 1 <1 <90).

(2.2) Theorem

Given n,d,k €N there is B = B(n,d,k) € N, such that for each field

K and each system of linear equations

f11Y1 + ...+ fngQ fl

(B) { :

£, 4+ + f

K1Yy * oo ke¥e = f

k

2
with all fij’fi € K| X] of degree <d, there is a solution g € (K[ X])

with deg(g) < B, if there is a solution in (K[X])Q at all.

Remanrk
The numbers o and B do not depend on the number f of unknowns. This

is so because for given n,d,k the K-linear space of column vectors
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f in K[X]k with deg £ < d has finite dimension, say %2 (only
depending on n,d,k) and if bounds a,B hold for this special value
of £, it clearly holds also for all other values. This type of
argument will in the following tacitly be left to the reader, and

in such cases £ will be considered as bounded in terms n,d and k.
For the proof of (2.1) we have to recall a result on flatness.

{2.3) Fact 1

Let R,S be rings and R € S. Then the following are equivalent:

(4) S is a flat R-module.

(i£) For each homogeneous linear equation f,Y,+...+fpY, = 0
(fi € R) the solutions in S’Z are S-linear combinations of
solutions in RR.

({{4i) For each system of homogeneous linear equations

£,Y, + ..o+ £ oY =0

{ (f.. € R)
1]

£, Y, + .o 4 £ 0¥ =0

the solutions in S!2 are S-linear combinations of solutions in RQ.

For the proof see [Bo2, Ch.1, §2,n°11 ], where (i) = (iii) = (ii) =

(i) is shown.

(2.4) Proof of (2.1)

Suppose n,d,k given and a does not exist. So for each m €IN there is

a field K and a system of type (A) over Km and a solution in (Km[)(])’Z
which is not generated by solutions of degree <m. Consider a structure
containing all fields Km, polynomial rings Km[X],]N, etc. and take an

enlargement of this structure. By the saturatedness of enlargements
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there is an internal field K in this enlargement and an infinite
natural number w such that the following holds:

there are fij(i=1,..,k; j=1,..,2) in the (internal) nonstandard
polynomial ring K‘[X] over K, all of degree <d giving rise to a
system (A) having a solution in (K’[X])’Z which is not a X [X]-linear
combination of solutions of degree <w, so in particular not a linear
combination of solutions in (K[X])Q. Here K[ X] is considered as

naturally embedded in K‘[X].

CLaim

K'[X] is a flat K[ X]-module.

If this claim holds, then one gets a contradiction using (i) < (iii)
of Fact 1, noting that all fij are in K[X].

Let us now prove the claim with induction to n, using (i) <« (ii) of
Fact 1: let f,,..,f, € K[ X] be given and consider a solution

g = (g ,.-58) € (K‘[)(])!Z of f, ¥, +...+4fYy = 0; we have to show that
g is generated by solutions in (K[X])Q. Assume n > 0.

We may of course suppose f; # 0 and also (after carrying out a linear
transformation on the variables X) that f, is monic, say of degree p,
in Xn'

(-f,,f,,0,...,0),(-f3,0,f,,...,O),...,(-fQ,O,O,...,fl) are also
solutions in (K[X])R of lel+...+fQYQ = 0, and by subtracting suitable
multiples of these solutions from (gl,..,gQ) one obtains a solution
(g;,..,gé) with g;,..,gé all of degree <p in Xn, so (g;,..,gé) has
components in (K*[Xl,..,Xn_l])[Xn]. By the induction hypothesis
K'[xl,..,xn_l] is a flat KX, ,..,X _ ]-module, so (K'IX, ,...X _ 1IX]
is a flat K[ X] -module. (This last conclusion is a consequence of the

preservation of flatness under extension by scalars, see

[Bo2, Ch.1, §2,7].)
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Hence (g:,..,gé) is generated by solutions in (K[X])Q, by (i) «

(ii) of Fact 1. (m]

{2.5) Remarks
{a) The claim in the proof should be considered as the nonstandard

form of Theorem (2.1).

(b) Let us show how {1.3) follows: if I = (fl,..,fk), J = (g,,..,gﬂ)
with all fi,gi of degree <d, then generators for INJ can be
obtained by first giving generators in (K[X])k+2 for the
solutions of Ylfl+..+kak = 2,8 +..%29gp, and then taking for
each of these generators (yl,..,yk,zl,..,zg) the element
hfﬁ.”%fkasagameM'mrIﬂJ.

Similarly, generators for I:J are obtained by giving generators

1 +k8®

in (K[ X]) for the solutions of

g, Y f,2

{

and taking the first components of these generators.

+ ... + £ 2

11

kTtk

goY = £,Zp + ... + £70

For the proof of (2.2) we need the concept of faithfully flatness.

{2.6) Fact 2

Let R,S be rings and R C S. Then the following are equivalent:
(L) S is a faithfully flat R-module.
(i4) S is a flat R-module and mS # S for each maximal ideal m of R.

(i44) S is a flat R-module and each system of linear equations.

£,,Y, + ..+ £ oYy = £,

{ . . . (fij,fi € R)

foY + ... + kaY2 = fQ
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with a solution in S’2 has also a solution in RR.

See [Bo2, §3] for the proof.

Just as in the proof of (2.1) one shows easily that the nonstandard

equivalent of (2.2), in conjunction with (2.1), is the following:

{2.7) If K'[X] is the internal polynomial ring in X = Xy 505X

n €N, over a field K, then K'[X] is a faithfully flat K[ X]-

module.
(Here K is supposed to be an internal field of an enlargement, in

order that K*[X] makes sense.)

Proof of (2.7)

Let m be a maximal ideal of K[X]. By (i) ® (ii) of (2.6) we have to
show only that m.K*[X] # K*[X].

By Hilbert's Nullstellensatz m has a zero x in L", where L is the
*algebraic closure of K, so the internal K-algebra morphism

K*[X] > L given by X » x contains m.K*[X] in its kernel, hence

m-XK*[X] # K*[x]. O

Remank

(1.1) is an immediate consequence of (2.2).
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§3, Prime Adeals in K[ X].

For simplicity we consider first the case of perfect K. Then the
algebraic fact underlying our proof of (1.4) is the following lemma,
which is nothing more then an elaborated version of:

an irreducible K-variety is birationally equivalent over K with a

hyper surface.

(3.7) Lemma

Let K be a perfect field, f,,..,fm € K[ X] of degree <d and put
I-= (fl,..,fm). Then the following are equivalent:

(4) I is a prime ideal.

(£4) There exist t, 0 < t < n, and irreducible P € K[Yl,..,Yt,Z]

of degree >0 in Z and hl,..,hn € K[Yl,..,Yt,Z},h € K[Yl,..,Yt]\{O}

and g, 5:-5,8;58 € K[ X] such that

(a) h (h,/h,..,h /h) € P.KIY,,..,Y ,2], 1 <i<n,

t’
(b) P(glﬁ">gt3g) € I:
(e) I : (h(gl,..,gt)) = I and I # K[X],

(d) h(g,,..,gt)xj - hj(gl,..,gt,g) €I, 1<3j<n.

Proof
(i) = (ii). Let Xy = Xj+I € K[X]/I for 1 € j < n. Then K(xl,..,xn)lK
is separable, so has a separating transcendence base Yi»e+sYy Over K
with {yl,..,yt} C {xl,..,xn} (see [L3, p.266]).
The proof of the primitive element theorem in [ L3, p.185]
shows that there is z € K[xl,..,xn] (= K[X]/I) with K(yl,..,yt,z) =
K(xl,..,xn). Let us introduce new indeterminates Yl,..,Yt,Z and write
Y for (Y1’~"Yt)’ y for (yl,..,yt) and x for (xl,..,xn).

Let P = P(Y,Z) € K[Y,Z] be the irreducible polynomial such that
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P(y,z) = 0. Further choose g;,..,g.,8 € K[ X] with y; = gi(x),
1<i<+t, and z = g(x), and choose hy,..;h € K[Y,Z] and h € X[Y]\{0}
with xj = hj(y,z)/h(y).

Then (a), (b}, (c), (d) follow easily from:

I is the kernel of K[X] -+ K(x), and P.K[Y,Z] is the kernel of

KIY,Z] + K(y,z).

(ii) = (i): We put Xy = Xj+I and y; = Yi+P.K[Y,,..,Yt,Z] and use the
notations ¥, y and x from above.

Let 0 : K[X] - K[Y,Z]h be the K-algebra morphism with O(Xj) = hj/h.
Because h € P.K[Y,Z] we have h(y) # 0, so we can extend the evaluation
map K[Y,Z]h > K[y,z]h(y).

By (a) we get O(fi)(y,z) = fi(h,(y,z)/h(y),...,hn(y,z)/h(y)), so

© induces 0 such that the following diagram of K-algebra morphisms

commutes:

Kixl 8 KY,21,

Kx] —9 & K[y,z]h(y) (a)

I
KIX]/CEy st )

We define the K-algebra morphism p : K[Y,Z] -+ K[X] by u(Yi) = gi(X)
and u(Z) = g(X). Then p(P)(x) = P(gl,..,gt,g)(x) = 0 by (b}, so u
induces p such that the following diagram of K-algebra morphisms

commutes:

K[Y,2] —H > K[ X]

| (8)
Kly,z] —H—> K[ x]
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Now these 4 morphism can be extended uniquely to K~algebra morphisms

such that the following diagram commutes

(v)
KLyszly gy = KOx ey (0

(The extensions of p and ﬁ are denoted by the same letters).

That the morphisms in (y) are indeed extensions of those in (B) is
seen as follows: h # 0, and h(y) # 0 since h € P.KX[Y,Z], so

Kly,z] C K[Y,Z]h and Kly,z]lC K[y,z]h(y); p(h)(x) = h(gl,..,gt)(x) is
not a zero divisor of K[x] # {0} by (e}, so u(h) # 0 and

K[ X] C KIX] and K[ x] C K[ x]

u(h) uCh)(x)*
From (a) and (y) we get the commutive diagram:

ue ©
K[ X] _— K[X]u(h)

l (8)

uo ©
Kixl ————— KIxl pny(x)

(d) means that u(h)Xj - u(hj) € I, so we get

Xy = u(hj)(x)/u(h)(x) (e).

Similarly (uo@)(Xj) u(hj)/u(h), so

(ﬁoé)(xj) = u(hj)(x)/u(h)(x) ().
From (e) and (g) it follows that wo® : K[ x] - K[x]u(h)(x) is the
inclusion map, hence © is 1-1, so is an embedding of the ring K[ x]

in the domain K[y,z]h(y). This implies that K[ x] is a domain, i.e.

I is prime. (]
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The model theoretic fact underlying our proof of (1.4) is:

{3.2) Lemma

Let T be an L-theory, and let I' and A be sets of L-sentences such
that T B Al © VA,

Then there are finite subsets T¢ of T and A¢ of A such that

T } AT¢ + VAo. For such Te and Ae¢ we have: T AT # ATo.

Proo4g

VA is true in each model of T U T, so by the compactness theorem there
is a finite subset Ap of A with T UT } VAg. A second application of
the compactness theorem gives a finite subset TI'¢ of T with

T F ATo + VAo . The second statement of the lemma is trivial. O

(3.3) Let now f,(C,X),...,fm(C,X) be given polynomials in Z[C,X],
C denoting a sequence of variables Cl,..,Ck.

Using (7.7) we see that for each each r €N there is a formula E?Tﬁgr(C)
(in the language of rings) such that for each field K and ¢ € Kk:
K E ﬁ?fﬁgr(c) & for all g,h € K[X] of degree <r, if

gh € (fl(c,X),...,fm(c,X)), then

g € (fl(c,X),...,fm(c,X)) or h € (f,(c,X),...,fm(c,X)).
Hence it is clear that for each field K and c¢ € Kk:
K E A{B;Tﬁgr(c)lr EWN} & (f,(c,X),...,fm(c,X)) is prime.
Similarly, by (71.7) and (1.3) there is for each r € N a formula
EEEEEP(C) such that for each perfect field K and ¢ € K<
K F prime (c) ¢ there is 0 < t < n and there are irreducible
P € K[Y‘,..,Yt,Z] of positive degree in Z and hl,..,hn € K[Yl,..,Yt,Z],
h € K[Yl,..,Yt]\{O}, and €13+ +28.8 € K[X], all of degree < r, such

that (a), (b), (c) and (d) of (3.1) hold with fi = fi(c,X).



135
Lemma (3.1) tells us that the ideal (fl(c,X),...,fm(c,X)) € K[ x],

for K a perfect field and c € Kk, is prime iff

K E v{grimer(c)lr €IN}.

Let now (1.14)P be the statement (1.4), with 'for each field K'

changed to 'for each perfect field K'.

(3.4) Proog of (1.4)p
Take for fl(C,X),...,fm(C,X) the m general polynomials in X = (Xl,..,Xn)

of degree d, i.e. their coefficients are the k = m.(d;n) variables

1in

i
(C1’°°’Ck) = C ((d;n) = number of monomials xlf..xn with i'+"’+in < d).

Let now pFL be the theory of perfect fields. Then by (3.3)

pFL k A{prlmer(C)|r €N} V{ErimeP(C)Ir € N},C,,..,C; being considered
as new constants.

An application of (3.2) finishes the proof. O

(3.5) Let me make some remarks how to use the model theoretic lemma

(3.2) which does not seem to be noticed before. In the above the
infinite conjunction was the trivial part and to find an equivalent
disjunction required the algebraic lemma (3.1).
Also in Ritt's problem an infinite conjunction is easy to find, so that
a positive solution of the problem 'only' requires an equivalent
infinite disjunction.

I'11 now indicate an example where the infinite disjunction is
trivial, while the conjunction requires a non-trivial result.

Let g(C,X),fl(C,X),...,fm(C,X) € Z[C,X] be the m+1 general
polynomials of degree d in X (C = (CI,..,Ck), k = (m+1)-(d;n)).
Then one easily constructs for each r €EIN a formula ¢P(C) (in the

language of rings) such that for each field K and c € Kk:
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K E ¢.(c) @ glc,X) = Zh,(X)-f,(c,X) for certain h;(X) € KIX] of
degree <r (i = 1,...,m).

Similarly one can construct for each r €IN a formula wP(C) such that

for each field K and ¢ € Kk:

K E wr(c) ® g(c,x) = 0 for each ring Kix], x = (xl,..,xn), such

that dimK KIx] <r and f,(c,x) = ... = fm(c,x) = 0.

Let K be any field, I an ideal of X[X], and g € K[X]. Then, using
I = ﬁ{I+gn|m is a maximal ideal of K[X], n €N}, we obtain:
g € I iff g(x) = 0 for each ring Kl x] of finite K-dimension, such that
x is a zero of I.
Combining the above three remarks, we get:
FL F v{¢_ (C)|r €N} ¢ Aly (C)|r EW}.
Using a recursive enumeration of all proofs from FL, we will find
A(n,d) with FL } v{¢r(C)|0 < r < A(n,d)} e/\{xpr(C)lo < r < R} for
some R € N. This gives a new proof of (1.1} with the extra result

that we can take for A a recursive function.

(3.6) A problem related to (1.4) is:

Let a computable field K be given (i.e. the elements of K are numbered

in such a way that the ring operations on K correspond with recursive

functions, see [Ra, p. 352] for details). Is there an algorithm to

determine whether an ideal of KIX] given by a finite set of generators

is prime?

A necessary condition is that there is an algorithm to determine
whether a polynomial in cne variable over K is irreducible. It will be
shown in (3.7) that for perfect K this is also sufficient. However,
the result can be stated without any reference to computability of the
field by extending the language of rings as follows:

k.,Bk' (1<igk)
1 1

add for each k €N, k = 2 2k (Skolem) function symbols A



137

and the unary function symbol '

to the language of rings.
Similarly we extend the theory of perfect fields pFL to the theory
pFL® by adding axioms saying for a model K* of
pFL® (with underlying perfect field K) the following:
each polynomial Tk+a,Tk—l + ...+ a € K[IT] (k 2 2) is either irre-
ducible, or factors as

(Akl(al,..,ak)Tk—l + ..+ Akk(al""ak))' (Bkl(al,..,ak)Tk-'+

. - -1 -
+ Bkk(al""ak)) and for each a € K: a = 0 or a.a = 1.
pFL* might be called the theory of perfect fields endowed with a

process for factoring polynomials in one variable.

Note that pFL® has a universal and recursive axiom system. For

instance, perfectness can be expressed by saying that if characteristic
= p > 0, then for each a TP-a is reducible.
We can also for a polynomial f = f(C,X) € Z[C,X] find an open formula
Irrf(C) in the language of pFL* such that for each model K* of pFL*
and all c € Kk:

K* E Irr.(c) @ f(c,X) € K[ X] is irreducible.
n = 1: this case is easy using the new function symbols.

n > 1: the Kronecker trick ([L2, p.150]) can be used to reduce to

n = 1.

{3.7) Theonrem

There is an open formula prime (C) in the augmented language such that
k,

for each K* F pFL* and each ¢ € K
K* E prime (c) * (fl(c,X),...,fm(c,X)) C K[X] is prime.

Moreover the formula prime (C) can be determined effectively from

£,(C,X),..,f_(C,X) € Z[C,XI.

Remanrk

For the last statement of (3.7) we need the fact that we can take
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recursive functions for A and C in (7.7} and (7.3).
For A this was proved in (3.5). An explicit formula for C can be

found on p. 296 in [ Sel.

Proog

For all models K* and L* of pFL® with K* C L* and all c € Kk,c €N
we have:

K* F prime (C) = L* F prime (c),

L* E Emr«:) = K*F I:?im_er(c).
This is clear from the meaning of the formulas, except perhaps for
the first implication which rests also on the following:
if K and L are fields with K C L, I an ideal of K[ X} ,g € K[X] and
I: (g)=1I, then I.L[X] : (g.LIX]) = I.L[X]. It is left to the
reader to verify that this follows from the flatness of L as a K-
module.
The last part of (3.4) shows that there exist r,s €N with

PFL" | prime (C) ¢ prime (C).
pFL* is a universal theory, hence by Ch. I (2.12) and the 2 impli-
cations above EFEEEP(C) is equivalent to an open formula prime (C).
This formula satisfies the requirements.
Because A and C are recursive, the formulas prime;(C) and E;Iﬁgd(C)
can be constructed effectively from d € IN.
So r and s and an open formula prime (C) as above are found by going

systematically through the proofs of pFL‘. a

{3.8) Let us now prove statement (1.5} of §1 for perfect K. In fact
we will state in (3.10) a somewhat stronger result which has
also the following corollary:

*
( )Let K be a perfect computable field with an algorithm to test

irreducibility of polynomials in one variable over K.
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Then there is an algorithm which computes for every ideal I of

K[X]), given by a finite set of generators, the finitely many minimal

primes of I.

Recall that for an ideal I of K[ X] the set of minimal primes of I
can be characterized as the unique finite set {Px""Pr} of primes
in K{ X] such that Pi ' Pj for i # j and for each x € KT (K = alg.
closure of K): x is a zero of I iff x is a zero of some P..

Let C and fl(C,X),...,fm(C,X) be as before. A pFL*-term 1(C,X) will

be called polynomial in X if it is of the form

i in
Bag 5 (©X X
n
Let T(C,X) with or without subscript denote in the following a finite
set of pFL*-terms in the k+n-variables C,X which are polynomial in X.

If K* is a model of pFL® and ¢ € K we let (T(c,X),) be the ideal of

K[ X] generated by all 1(c,X) with 1(C,X) € T(C,X).

(3.9) Lemma

Given an r-tuple T = (TI(C,X),...,TP(C,X)) (r €N), there is an open
pFL*-formula minimal primesT(C) such that for each K f pFL* and each
c € Kk:

K* E minimal primesT(c) « {(Tl(c,X)K),...,(Tr(c,X)K)} is the set of

minimal primes of (f,(c,X),...,fm(c,X)) C K[ X].

Proog
This is an easy consequence of the above characterization of the set

of minimal primes and the fact that ACF admits elimination. (]

(3.10) Corollahry

There exist Tl,..,TM, each Ti being an r-tuple (Ti (C,X),...,Ti (C,X))
1 r
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for some r €N, such that

pFL* F vC( vy  minimal primes; (C)).
1<isM i

Proog

Let (T,))cn be an enumeration of all tuples (TI(C,X),...,Tr(C,X)),

r € N. Then the infinite disjunction VY minimal primes,. (c) 1s true

T
. AEA " A

in every structure (K*,c) with K* & pFL* and ¢ € K . The compactness
theorem allows one to replace the infinite disjunction by a finite

subdisjunction. a

Remank
The same arguments as at the end of (3.7) show that Tl,..,TM can be

found effectively. Hence the statement made in (3.8) follows.

I will now indicate how everything generalizes to arbitrary fields

K. We use the function a introduced in (2.1).

(3.11) Lemma

For all m,n,d €N and each field extension LIK with [L : Kl = m and
each ideal I of L[X] which is generated by polynomials of degree <d
we have:

INK(X] is generated by polynomials of degree <oa(n,d,m).

Proog

Let m,n,d,K,L and I be as indicated ana let I = (f .,fg), deg fi < 4.

12

Take a K-linear basis a, = 1,a2,..,um of L and write:

* H

(*) a0y E ©§3k% (cijk € X),

* = . <

(**) £ E £oproy (f; € K[ X] , deg fo 0 S .

L m
1 * * % 1 X =
Using (*) and (**) the equation igl(j%lYijaj)fi Z (the unknowns
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Yij’z ranging over K[ X]) is equivalent to:
Zdjs, ¥y 72
= .. <
0 (dljk € K[ X] of degree d).
Ediijij = 0

By construction the last components z of the solutions (yl‘,..,ygm,z)
of the system form the ideal I N K[X], and, by (2.1), this ideal is

generated by polynomials of degree < a(m,n,d). a

(3.12) Definition

An ideal I of K[X] is said to be a separable prime ideal if I is a

rime ideal such that the extension Q(K[X] ,;)|K is separable.
P /1

Note that (3.1) remains true with the following changes:
omit 'perfect' in the hypothesis, replace (i) by: 'I is a separable

prime ideal', and augment (ii) by requiring P to be separable in Z.

{3.13) Lemma
Let I be an ideal of K[X]. Then we have:
I is prime ¢ there exists a purely inseparable finite extension L|K

and a separable prime ideal J of L[X] with J N K[X] = I.

Proog
< is trivial. =: let x; = Xi+I, so Q(K[X]/I) = K(xl,..,xn).
It suffices to consider the case char. K = p > 0. Kp—w(xl,..,xn)le-w
is separable, hence has a separating transcendence base S C {xl,..,xn},
so each X5 is root of a polynomial ? fij(S)TJ, separable in

T,fij(S) € KP™™S]. Let L|K be any subextension of KP™®|K containing
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the coefficients of all fij(S), and let J be the ideal of all
g € L[X] with g(x,,..,xn) = 0. Then J is clearly an ideal as

required.

(3.14) It is useful to have some information on purely inseparable
extensions: for r €N we define a field L|K to be of type r

-r -r
if either L = K, or L = K(c? 5o P ) where 0 < char K = p <r

Sck
and {cl,..,ck} is a p-independent subset of K with k elements and
k < r. See [Bol, p. 133] for the definition of p-independence, and
its consequences, among which is the following:

each purely inseparable extension of finite degree of K is a sub-

extension of an extension of type r, for some r €1IN.

Let us also define an ideal I of K| X] to be prime of type r if there

is an extension L|K of type r and an ideal J of L[X] with J N K[X] =1,
this ideal J satisfying the following: J = (f,,..,fm) for certain

£ € L[ X] of degree <r, and there is 0 < t < n and there are irre-
ducible P € L[Y,,..,Yt,Z], separable and of positive degree in Z, and
By s..sh € LIY,,..,Y,2] , h € LIY,,..,Y I\ {0} and g ,..,g.,g € LIXI]
such that {a), (b), {ec¢) and (d) of (3.1) hold, with K, d, I changed

to L, r, Jd.

(3.15) Finally we can prove (1.4} for arbitrary K: by (3.11) we can
construct for each r € N a formula prime IXBEP(C) such that for

each field K and ¢ € K

K F prime type r(c) A (fl(c,X),...,fm(c,X)) C K[ X] is prime of type r.

By (3.13) and the remark in (3.12) we get that for each field K and

each ¢ € KX (£, (c,X),...,f (c,X)) C KIX] is prime iff

K E V{prime typer(c) r €IN}.

The rest of the argument is similar to the proof in (3.4), with

'prime type (C)' taking over the role of the formula 'prime (C)'. O
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(3.16) Let us also generalize (3.7) and (3.10). We first extend the
language of rings by adding, as in (3.6), the function symbols
Aki and Bki
function symbols ckip(l < i<k=22, pa prime) of rank k. Then we

(1 <i<x=>2)and ', and also adding new (Skolem)

extend the theory FL of fields to the theory FL* in the new language
by adding the same defining axioms for Aki’Bki and "' as in (3.6),

and by adding defining axioms for the Ckip saying for a model K* of

FL* (with underlying field K) and c = (ey,..50) € KK

. .. . . k .
(cknp(C)"“’Ckkp(c» is a non-trivial solution in K~ of the equation
c,»YP + ...+ ck-YE = 0, if there is such a solution and

char. X = p > 0.

FL* might be called the theory of fields endowed with procedures for
factoring polynomials, and solving linear dependence relations over
the subfield of pth powers, in case of characteristic p > 0.

Now (3.7), (3.8), (3.9) and (3.10) remain valid if we replace 'pFL*'
by 'FL*', omit everywhere 'perfect', and add in the hypothesis of
statement (*) of (3.8) that there is an algorithm to test whether a
finite set is linearly independent over the subfield of pth powers, in
case of characteristic p > 0.

The proofs carry over.
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APPENDIX

The two theorems in this appendix may be described as providing
bounds for certain polynomial ideals and at the same time as giving
information on the solvability of certain systems of equations.

The novelty does not lie so much in these results, as well as in
their proofs. See [Be., De., Li.& v.d.D.] for related results and

proofs.

{A.7) Definition
A local ring (R,m) (m = the maximal ideal of R) is called henselian
if for each f(T) € RIT] and each simple root o € R = R/m of £(T)€ER[T]

there is a € R with f(a) = 0 and a = a.

So a valued field (K,v) is henselian (Ch.I, (3.3)) iff its valuation
ring is henselian. We will need the (wellknown) equivalence of
'Hensel's Lemma' with a strong form of it , sometimes called after

Hensel-Rychlik.

(A.2) Proposdition

For a local ring (R,m) the following are equivalent:
(4) (R,m) is henselian.
{i4) TFor each f(T) € R[T],a € R,c € m such that f(a) = c¢.(f'(a))?,

there ic b € R with f(b) = 0 and a-b € cf'(a)R.

Proof

() = (i4): write f(a+T) = f(a) + £'(a).T + Z b.T' =
. iz
c (f'(a))? + f'(a).T + 2 b.Tl, for certain b, € R.
i> 1 *



145

Substitution of cf'(a)Z for T gives:
fla+cf'(a)z) = c(f'(a))? (1+Z+ Z cd.Zi)
iz *
for certain di € R.
1+Z+EcdiZi has a root z in R, so b = a+cf'(a)z is a root of f(T)

as required.

(4) is a special case of {4i4i), so [44) = (4) is trivial. O

(A.3) Lemma

Let a commutative diagram of rings and ring morphisms be given

D——mm>V

x
R/}‘/ l/ﬂ'
E>\*C such that

{4) V is a henselian valuation ring,
(i4) 1w is onto, g is 1-1, and C is a domain,
({44] R is finitely generated over its subring D and Q(R)|Q(D)
is separable.
Then R can be lifted, i.e. there is a morphism A as indicated which

makes the two subdiagrams commutative.

Proo¢

Because D = V and R » C are 1-1 we consider D as a subring of V and
R as a subring of C.

By induction on the number of generators of R over D it suffices to
consider the case that R = D[r] and either

{a) r is transcendental over D, or

(b) r is separable algebraic over Q(D).

In case {a), choose any b € V with m(b) = r and define A by putting

Al(r) = b.
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Suppose (b) holds. Let £(T) € D[T] be such that f is irreducible

in Q(D) T] and f(r) = 0. Choose any b € V with m(b) = r.

Then f(b) € Ker(w) and f'(b) € Ker(m) (because f(r) = 0, f'(r) # 0).
As V is a valuation ring, this implies that f(b) = c.-(f'(b))? with

¢ € Ker(m) (for if ¢ ¢ V we get a contradiction applying m to

1.£(b) = (£'(b))? and c € V\Ker(m) similarly gives a contradiction).
Then, by (A.Z), there is b' € V with f(b') = 0 and b-b' € Ker(w),

i.e. w(b') = r. Then A(r) = b' defines a morphism as required. ]

In the following theorem, we write v(al,..,ak) for min(val,..,vak)

(v a valuation).

(A.4) Theoxrem

Let D be a domain of characteristic 0 and f = (f,(X),...,fm(X)),
£,(X) € DiX]l, X = (Xy 500X )

Then there is an integer ¢ 2 1 and a nonzero d € D with the following

property:

for each henselian valuation ring V 2 D, with associated valuation

v o QV)Y » Fv, each g € Fv,g > 0, and each x € v? such that

v(fx)> c.g +v(d), there is y € v? with f(y) = 0 and v(y-x) > g.

Remank
With D noetherian and the rings V O D restricted to discrete valuation

rings, this is [Gr, Theorem on p.143].

Proog of (A.4)

Suppose this is not true. Then for each ¢ € N\ {0} and d € D\{0} there

is a triple (V ) with a henselian valuation ring

c,d’gc,d’xc,d

) € i
Vc,d v,0< gc,d value group assoclated to Vc

and x € (v

,d c,d c,d
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. n
such that Vc,d(f(xc,d)) > c-8 g + Vc,d(d) and there is noy € (Vc,d)
with fy = 0 and Vc,d(y-X) > 8c.4"

(*) Note that for c;,..,cy €WN\{0} and d,,..,d, € D\{0},k > 0, the
triple (Vc,d’gc,d’xc,d)’ with ¢ = Zci, d = Hdi, has simultaneously

the properties required for each (V sXo . g ) (i=1,...,k).
i i*ri

The statement (*) implies by an obvious compactness argument that there

£3:4
Ci’di ci,d

is even a triple (*V,*g,*x) with *V a henselian valuation ring, 'V D D,
0 < *g € value group of *V, and *x € (*v)" such that for all

c €IN{0},d € D\{0}:

*v(f(*x)) > c.*g + *v(d), and there is no y € (*V)™ with £f(y) = 0

and *v(y-*x) > *g (*v = valuation associated to *V).

Put I = {a € *V|*v(a)>c.g + *v(d) for all ¢ €IN\{0} and d € D\{0}}.

It is clearly a prime ideal of *V. Putting C = *V/I and letting

m : *V > C be the canonical map, we obtain a commutative diagram:

D —0M——— - *y

D>+ C is 1-1: if 0 ¥ d € D, then clearly d € I, so w(d) #* 0.

Now w(*x) € C" is a solution of f(X) = 0, because f(*x) € I.

Because Q(D[w(*x)])|Q(D) is separable, (A.3) implies that m*x can be
"lifted' to a solution y € (*V)™ of £f(X) = 0, so *v(y-*x) > *g

(because m(y) = w(*x)), contradiction. (m]

In the following, let X = (Xl,..,Xn), let K be a field, and define
KIX]™ = {f € KIX]|f is algebraic over K(X)}.
A special case of a theorem of M. Artin, [Art, (1.10)], reads:

(A.5) Let £(Y) = (£,(Y),...,£ (YD) ,£,(¥) € KIX,Y],Y = (¥,,..,Y).

N
If £(Y) = 0 has a solution in K[X], then it has a solution in KIXI.
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Remark
Using the terminology introduced in Ch. I, (2.2), this is equivalent
to saying that the ring K[ X]~ is existentially closed in K[X]. With
a variant of the reduction described in Ch. I, (2.4), one can indeed
streamline Artin's proof at some points, but this will not be done
here. Artin uses an elaborate analysis of his proof to derive a
seemingly much stronger result, namely (A.6) below, cf. [Art, (6.1)].
We will show that [A.é) is a simple model theoretic consequence of

(A.5).

(A.6) Theonrem

Let m,n,N,d,o0 €IN be given. Then there is B = B(m,n,N,d,a) €N such
that for each field K and £(¥) = (£, (Y),...,f (Y)) € (K[X,Y)"

(X = (Xl,..,Xn)7 Y = (Yl,..,YN)L with all fi(Y) of total degree < d
in (X,Y), and each y € K[X]N with f(y) = O(mod(X)B) there is

y € (k[ x1Y with f(y) = 0 and ¥ = y(mod(X)%) .

(A.7) Lemma

Let k be a field, f(Y) = (fl(Y),...,fm(Y)) ,fi(Y) € k[ x,Y].

X = (Xl,..,Xn), Y = (Yl,..,YN) and a €IN. Then there is B €IN such
that for each y € ki X1V with f(y) = 0(mod(X)®) there is y € (k[X]~)N

with f(y) = 0 and y = y(mod(X)%) .

Pnoaﬁ

Suppose this is not true. Then for each b €N there is 28 € k[X]N
with f(yb) = O(mod(X)b) but such that for no y € (k[X]N)N : f(y) =0
and y = yb(mod(X)a).

Let M be a structure containing all relevant objects.

In an enlargement *M of M the objects k,k[X], etc. have nonstandard

extensions *k,*(k[X]), etc., and the sequence (yb)beIN extends to a
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*sequence (yb)betnq.

Let w € "N\NN . Then f(yw) 0(mod(X)¥) (in the ring *(k[Xl), and

N

there is no y € (*(k[X]™))" with f(y) = 0 and y = yw(mod<X)“).

The map 7™ : “(k[X]) » *k[X], given by

: axbh = o a.x
ie(*m)n 1 iEINn 1

m(
is clearly a *k[ X] -morphism, and f(ny, ) = 0 in *k[X], hence by (A.5)
there is y' € (‘k[X]~)N with f(y') = 0 and y' = ﬂyw(mod(X)a).
The henselian local ring (*k[X])7,(X)*(k[X])~) extends the local ring

(*k[X](X),(X)‘k[X](X)), so there is a ‘k[X](X)—morphism 0 of (*k[X]1)™

into *(k[X]™) (cf. [La, Th.ul). Let y 0(y'). Then f(y) = 0.

Write y, = utv with u € (*k[XD"N and v = 0(mod (X)) (in *(k[X])).
Then it is straightforward to check that yw,nym,y' and y are all

congruent to u modulo (X)a, (in the ring *(k[X]™)), so Y, = y(mod(X)a),

contradiction! ]

(A.8) Proof of (A.6)

Let P,(C,X,Y),...,Fm(C,X,Y) € Z[ C,X,Y] be the m general polynomials

m. (40N

of degree 4 in (X,Y) (so C = (Cl,..,CM) with M = NN

Consider the elementary class Mod(T), whose models are the structures
] = (R,E,K,Xl,..,xn,dl,..,dM) = (R,m,K,X,d) such that:
(R,m) is a henselian local ring, K a subfield of R, Xl,..,Xn are

elements of m which are algebraically independent over K, and

d, »..,dy € K.

M
(*) For each field K and ¢ € M (K[X]I7,(XDKI[X] 7,K,X,c) is a model of
T which can embedded over K into each model (R,m,K,X,d) of T

(cf. [La, Th. 4]).
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For each b €N one easily constructs a sentence o, such that for

b
each model & = (R,m,K,X,d) of T:
® F o, * for each y € x(xDN with Fi(a,X,§) = O(mod(X)b),(i=1,..,m),
there is y € RN with F,(d,X,y) = ... = Fm(d,X,y) = 0, and
y = y(mod gb). (It clearly suffices in the right hand side to consider
only y all of whose components are of degree <b.)
Using (*) and the lemma this implies:

T F v{oy|b €IN}.
By compactness there is then B € N such that T | g

This B clearly satisfies the requirements. (]

(A.9) Remank

One can effectively write down a list of axioms for the theory T
introduced in {A.8), so given m,n,N,d,a in IN we can effectively find
a B €N satisfying (A.6), by generating all theorems of T.

This has the following obvious but interesting consequence:

Let a field K be given and suppose there is an algorithm to decide
whether a given finite system of polynomial equations with coefficients
in T (I the prime field of K, or even any computable subfield of K)
has a solution in K.

(Examples of such fields are the finite, algebraically closed, real
closed and p-adic fields.)

Then there is also an algorithm to decide whether a given finite
system of polynomial equations with coefficients in HTX,,..,Xn] has

a solution in K[X,,..,X].
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SAMENVATTING

Een favoriete bezigheid van wiskundigen is altijd geweest het oplossen
van vergelijkingen, dit 'oplossen' op te vatten in ruime zin.

Tot in de 20e eeuw lag hierbij de nadruk op het vinden van directe,
algoritmische methoden, die overigens altijd van het grootste belang
zullen zijn.

Beschouw nu bijvoorbeeld een vergelijking

(%) f(xl,..,xn) =0 (f een veelterm met rationale coéfficiénten),
waarbij de oplossingen in rationale getallen gevraagd worden, .een

zgn. Diophantische venrgelijkhing.

Voor zelfs vrij eenvoudige Diophantische vergelijkingen bleken
algoritmische oplossingsmethoden niet beschikbaar te komen, of weinig
inzicht te verschaffen. Om nu toch de gewenste informatie over de
oplossingen te verkrijgen, ging men bijvoorbeeld de oplossingen van
(*) in de p-adische lichamen Qp en in het lichaam IR der reéle getallen
bestuderen. Dit procédé, genaamd Lokaliseren en completeren, blijkt
erg nuttig, vooral ook op het verwante gebied der algebraische meet-
kunde (zie b.v. de 'Introduction' van [Bo2]).

Men kan zelfs met voordeel het oplossen in alle Qp en in IR vervangen
door het oplossen in é&n ring, de ring A der adéles, die Q als deelring
heeft. Nu is A voor arithmetische doeleinden zo bijzonder geschikt
gebleken vanwege zijn topologische eigenschappen. Deze geschiktheid

is onlangs nog eens bevestigd door zijn modeltheoretische eigenschappen:

er is een effectieve methode om van een gegeven 'elementaire' uitspraak
over ringen na te gaan of deze waar is voor A, i.h.b. kan men van een
vergelijking (*) bepalen of er oplossingen in A zijn, of er oneindig
veel zijn, enz. Dit resultaat (Weispfenning, nog ongepubliceerd) kan

men beschouwen als een samenvatting van eerder werk door A. Tarski,
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A. Robinson, J. Ax, S. Kochen, Ju. Er3ov en P.J. Cohen.

Nu is het belang van A voor Diophantische vergelijkingen sterk
afhankelijk van: welke eigenschappen van Q@ worden in A weerspiegeld?
Men kan b.v. zeggen dat sommige 'kwadratische' eigenschappen van @

in A goed teruggevonden kunnen worden (Hasse-Minkowski). Maar Q

heeft geen nuldelers en A wel. O.a. deze overwegingen hebben mij er
toe gebracht om de modeltheoretische aspecten te bestuderen van de
lichamen die in de hoofdstukken II en III aan de orde komen.

Typisch voorbeeld: beschouw de objecten (K,<,v,,v,) met K een lichaam,
< een lineaire ordening op K, v,: K° > Z een p-adische waardering,
d.w.z. v, (p) = 1 en KVl =ZEP, en v,: K° »Z een g-adische waardering
(p en q gegeven priemgetallen).

Voor de 'existentieel afgesloten' objecten in deze categorie blijkt
inderdaad een resultaat te gelden als boven voor A beschreven is

(zie Ch. III, (3.1)). Mijn hoop is dat deze existentieel afgesloten

objecten de structuur van Q beter behouden dan de ring IRXQPXQq.

Hoofdstuk IV is van een ander karakter: hierin worden enkele problemen

opgelost die door A. Robinson zijn gesuggereerd, zie [ Rob4, problem 3].
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