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PREFACE 

This thesis treats two, somewhat different topics: 

in Chapters II and III the main goal is to prove decidability 

results for certain classes of fields, in Chapter IV we derive 

bounds for polynomial ideals using model theory, while the Appendix 

contains both types of results. 

One is advised to read the introductions in Chapter I and in 

Chapter IV, and also the 'Samenvatting' if possible, because these 

give the motivation, summarize the main new results, and can be 

understood without knowing the model theoretic terminology required 

in the other parts. This terminology and some basic theorems are 

found in sections 2 and 3 of Chapter I. This Chapter contains some 

propositions of which it may not be clear to the reader whether or 

not they are new. Concerning this: (7.1), (1.2), part of the theorem 

of (3.3), the proposition of (3.5) and the theorem of (3.6), all 

of Chapter I, do not seem to occur in the literature. 

During completion of the manuscript it turned out that most of (2.3) 

and (2.4) of Chapter I is also treated -somewhat differently- in 52 

of "Model-complete theories of pseudo-algebrsaicakky closed fields”, 

a preprint of W. Wheeler. 

I would like to thank W. Baur for a helpful communication 

connected with (Á.3) of the Appendix. 

By personal communication I learned further that the proof in (3.5) 

of Chapter IV was also found by D. Lascar and that the result in 

(A.9) of the Appendix has been proved before by D. Lascar and by 

L. Lipshitz.



NOTATIONS 

= {0,1,2,3,...} 

= ring of integers 

= field of rational numbers 

field of real numbers 

= field of p-adic numbers 

= ring of integers of Q, 

= finite field of p elements 

> 
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= ring of adéles = {xEIRx I @ |x. € Z_ for at most 
p prime PP P 

finitely many p} 

Further notations and conventions are introduced in Chapter I, 

(2.7), (2.2), (3.4) and (3.5). 

A restricted use is also made of nonstandard methods and ultraproducts. 

For this one may consult [Rob. & Roq., §2] and [Ch. & Ke., 4.1.].



"The virtue of model theory 44 its ability to organize succinctly 

the sort of tinesome algebraic detatls associated with elimination 
" 

theory". G. Sacks 

CHAPTER I Preparations 

6]. Introduction 

It is undisputed that in and before the last century algebra 

was largely the study of systems of equations of various kinds: the 

art of solving them, giving conditions for their solvability and 

clarifying the structure of their solution set. 

In the course of the 20th century this practice seems to have 

changed. Sc much that modern algebra often seems to be a study of 

all kinds of axiomatically defined structures, such as groups and 

rings, with emphasis on their substructures, quotient structures, 

sheaf representations, etc. In category theory this has even gone so 

far, that the ‘elements! (i.e. the numbers and quantities, used by 

classical algebraists to carry out their operations and computations) 

have disappeared all together, their role as basic entities taken 

over by morphisms. However, this change is perhaps more one of methods, 

than of goals. The basic difference is that the classical methods for 

treating algebraic problems were extremely algorithmic and constructive 

compared with the methods fashionable today. A good example is the 

theory of linear equations, one of the basic results of which goes 

back (at least in Europe) to the 18th century, and is called Cramer's 

rule: 

a system of linear equations (with coefficients in a given field) 

Q@;1X, +... + a x = D 711Al1 im’ n 1



has a solution in that field iff the rank of the matrix (a;s) equals 

the rank of the augmented matrix C(asssby); where the rank of a 

matrix was defined as the size of its largest non vanishing minor; 

moreover, if there is a solution, it can be given by certain rational 

expressions in the coefficients a; sb: 

All this was proved by carrying out rather complicated computations 

with the coefficients. 

Now in the modern theory of linear algebra -of which the theory 

of linear equations is a small part- the basic notions are linear 

Space, linear map, dimension, etc. and computations are almost absent. 

I think however nobody would consider such a theory satisfactory if 

the above result wouldn't follow from it. Fortunately it does follow 

and the proof reduces to only one small computational fact: that a 

matrix is invertible iff its determinant is nonzero. So the modern 

theory of linear equations ‘substitutes ideas for computations', but 

solving linear equations explicitly remains important. 

Of course there is a second reason for the success of modern methods: 

many problems can be stated in an invariant way, i.e. without reference 

to a coordinate system; while the old theory could only be used after 

a choice of coordinates to carry out its many computations, modern 

linear algebra can attack its problems directly, without much compu- 

tation. 

On a more advanced level, namely in algebraic geometry, similar 

elimination methods were developed. Let me quote from Abhyankar's 

paper [Ab, p. 418]: 

"Elimination theory. This encompasses the explicit algorithmic 

procedures of solving several simultaneous polynomial equations in 

several variables. Here some of the prominent names are: Sylvester 

(1840), Kronecker (1882), Mertens (1886), König (1903), Hurwitz (1913), 

and Macauley (1916).



It is a vast theory. There used to be a belief, substantially 

justified, that elimination theory is capable of handling most pro- 

blems of algebraic geometry in a rigorous and constructive manner. 

This is of course not surprising, after all, what is algebraic 

geometry but another name for systems of polynomial equations! 

What is surprising is that under Bourbaki's influence it 

somehow became fashionable to bring elimination theory into disrepute. 

To quote from page 31 of Weil (1946, Foundations of algebraic geometry): 

"The device that follows, which, it may be hoped, finally eliminates 

from algebraic geometry the last traces of elimination theory, is 

borrowed from C. Chevalley's Princeton Lectures". 

It seems to me, what Bourbaki achieved was trading in constructive 

proofs for mere existence proofs". 

Elimination theory begins with the introduction of the resultant 

of two polynomials: let 

£(X) ao X" + a,xn7t + ... + an (apo F 0) 

BOO = boX™ + DE +. + bo (bo # 0). 

Then f(X) and g(X) have a common root iff its resultant: 

ao Ai « an 

Ag Aj... a, 

dg Aj «eee an 

be bi... dD, 

bo Di... Db 

Do Di... Da 

equals zero; it is understood here that the coefficients ao o++-5b, 

and the common root lie in a fixed algebraically closed field. 

An important point is that this gives us an effective necessary and 

sufficient condition on the coefficients for the two polynomials to
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have a common root. This can be generalized to an arbitrary finite 

set of polynomial equations in any number of variables: 

certain equalities and inequalities between polynomial expressions 

in the coefficients are necessary and sufficient conditions for the 

system to have a solution. 

The following quotation from Hilbert | Hi, p.414 ] gives a good 

explanation why these elimination methods fell into disrepute. Hilbert 

discusses as an example the problem how many connected components 

(‘von einander getrennten Manteln') a surface in FP; (R) of order 4 

can have. He first gives a topological argument that this number is 

finite, then says that arguments on intersection multiplicities imply 

that it can be at most 12, and goes on as follows with an elimination 

argument: 

"Da eine quaternarne Form 4. Ordnung 35 homogene Koesfizienten 

besritzt, 40 können war uns edne bestaimmte Fläche 4. Ordnung 

durch enen Punkt 4m 34-dimensrionalLen Raume veranschaulichen. 

Die Diskrniminante der quaternânen Form 4. Ondnung ist vom Grade 

108 sn den Koeggdzienten denselben; gleich Null gesetzt, steklt 

Sie demnach im 34-dimensionaken Raume eine Fläche 108. Orndnung 

dan. Da die Koegfazienten der Dibkriminante selbst bestimmte 

ganze Zahfen sind, so Lasst sich der topokogische Chanakter der 

Didskrrtminantengslache nach den Regeln, die uns fur den 2- und 

3-dimensionalen Raum gekaufig sind, genau feststellLen, Ao dass 

win uber die Natur und Bedeutung der einzelnen Terikgebiete, in die 

die Diskaiminantenslache den 34-dimensrzonakLen Raum zerkegt, 

genaue Auskung§t erhalten konnen. Nun besrtzen die durch Punkte 

des namlichen Teilgebietes dargestellten Flachen 4. Ordnung 

gewiss alle die gkeiche Mantelzahl, und es 444 daher möglich, 

durch etne endláche,wenn auch sehr muhsame und Langwierige



Rechnung, festzusteklLen, ob eine Fkache 4. Ordnung mit 

n S 12 Manteln vorhanden ist oder nicht. 

Die eben angestellte geometrische Betrachtung 444 

also etn dritten Weg zur Behandlung unseren Frage nach der 

Hochstzah der Mantel einer Fläche 4. Ondnung. Sie beweist 

die Entscheidbankest dieser Frage durch eine endliche Anzahl 

von Operatdonen. Pránzápiell ist damit eine bedeutende Forde- 

hung unaeres Problems enreicht: dasselbe 44 zuruakgeguhrt 

aug ein Problem von dem Range etwa der Aufgabe, die pg!FO°") ge 

Ziffer der Dezimalbruchentwicklung von m zu enmitteln - einer 

Auggabe, deren Losbarkeit offenbar ist, deren Lösung aber 

unbekannt bleibt. 

Vielmehr bedurste es einer von ROHN ausgeftihnrten ties- 

gehenden schwierigen algebrarsch-geometrischen Untersuchung, 

um ednzusehen, dass bert einer Fläche 4. Ordnung 11 Mantel nicht 

moglich sind; 10 Mäntel dagegen kommen wirklich von. Exst diese 

vierte Methode bringt somat die völláige Lösung des Problems, 

Diese spezieklLen Ausgührungen zeigen, wie verschieden- 

antige Bewetsmethoden auf dasselbe Problem anwendbar sind, und 

sokken nahelegen, wie notwendig es Ast, das Wesen des mathe- 

matischen Beweises an sich zu studieren, wenn man solche Fragen, 

wie ade nach der Entschersdbarkett durch endlich viele Operationen 

mit Erfolg augkkdren will. 

At the end of this discussion there is already the suggestion that 

metamathematics might be useful, at least in theory, in answering 

concrete mathematical questions. One might even guess from it that such 

decision methods in a non-trivial area led Hilbert into believing that 

also in number theory there are hidden elimination methods to decide
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every question. We now know that this extrapolation is false, by 

the famous negative results of Gödel and Church, even strengthened 

by J. Robinson, H. Putnam, M. Davis and J. Matyasevic to lead to 

the negative solution of Hilbert's 49th problem. 

From Hilbert's discussion one can learn that elimination theory 

can in principle answer many questions, but that the sheer amount 

of computation to be done often prevents its application. 

Another reason why it fell into disrepute is that for most purposes 

certain consequences of elimination theory suffice, and that these 

could also be proved with other means: Hilbert's Nullstellensatz, 

Chevalley's Constructibility Theorem and the completeness of projective 

varieties could be mentioned in this context. 

At the same time that elimination theory was hoped to be 

eliminated' once and for all from algebraic geometry, a new interest 

in it arose, this time coming from workers in mathematical logic. In 

particular A. Robinson introduced some fascinating new ideas of which 

the importance only gradually became clear.(This in contrast with his 

later invention, nonstandard analysis, which was picked up immediately 

by many mathematicians. ) 

It all started when Tarski developed an elimination theory for real 

closed fields, i.e. ordered fields in which polynomials which change sign 

have a root; IR is an example of such a field. This means that for any 

general system of polynomial equations and inequalities -using '=', '#', 

'<', 'S'- he could give necessary and sufficient conditions on the 

coefficients -in the form of certain polynomial equations and 

inequalities in these coefficients- for the solvability of the system; 

the coefficients and the solution are understood to lie in a real 

closed field, and the conditions do not depend on the real closed 

field considered. A well-known illustration of this is the following:



aX? + bX +c = 0 (a,b,c © IR) has a real solution 

iff (a #0 and b? > bac) or (a = 0 and b # 0) 

or (a= 0 and b = 0 and c = 0). 

Actually, Tarski was inspired by a metamathematical problem, namely 

the decidability problem for the elementary theory of the reals, and 

hence his result was formulated in the terminology of mathematical 

logic. The proof however was entirely in the style of the 4gth century, 

involving many computations and case distinctions. Yet it clearly was 

a great step forward, if only because it showed that a whole class 

of problems could be solved simply by patient labour. But of course 

there are several mathematically meaningful applications. 

It requires some concepts from logic, to make the above vague 

formulation of Tarski's result precise. 

Consider a fixed infinite sequence of variables vi ,v2,...-. 

Define an atomic formula as one of the form 

"ply, see sYj) = q (yi pers)» or 'PCy1 p++ +L) < Cyr see oy)! with 

Yis+++sy, among the variables, and p‚q € Zlyis-+-sy_]. 

New formulas are formed from old by the rules 

(i) if ¢,¥ are formulas, then also (16),(CoOvW), (oA); 

(44) if ¢ is a formula, then also (Av. ¢) and (Vv; >). 

A bound occurrence of a variable y in a formula is an occurrence in a 

subformula (Ay 6) or (Vy $9). If an occurrence is not bound it is said 

to be free. We write oCy15++-sy,) for a formula & all of whose free 

variables are among Yiseeeo¥i- 

The basic notion is that of satisfaction: if R is a commutative ring 

with unity, < any binary relation on R (e.g. an ordering),
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do = oCy1s+++s¥)) a formula and Pi seer E R, then o(r1,---5P,) is 

the result of substituting Pisses ol, for the free occurrences of 

Ya sere Yn in >. 

To say that o(ri,--->r,) holds in (R,<), or (R,<) satisfies 

Pri ses)» has the obvious meaning if the logical symbols are 

interpreted as usual; notation: (R‚<) E o(ri,---5r)). 

Two formulas OCy¥1 sees) and WCy1 +++ sy) are called equivalent for 

(R‚<) if for all (r1,...,r,) € RE : (R,<) F bri seer) iff 

(R,<) F Prise). 

Tarski's Theorem can now be stated as follows: 

For each formula @¢ = oCy1 sey) there is a formula wp = WCy1 5+++ 59) 

in which no quantifiers dv, or Vv; occur, which is equivalent with & 

for each real closed field (R‚<); moreover p can be constructed 

effectively from 6. 

For instance, in the above illustration on the preceding page 

d is (Ava ViVa + VzV4 + va = 0) 

and w is (vy, # 0 A vi > Uviv3) v (vy = OA Vz # 0) v 

(vs = 0 A Vz = OA V3 = 0). 

By a theorem of logic it actually suffices to prove Tarski's result 

for formulas 4 of the form 320! (Z,y1 sees) with &' open (i.e. without 

quantifiers); these are the formulas expressing the solvability of a 

system of equations and inequalities in one variable; but we should 

keep in mind that Tarski's Theorem applies to arbitrary formulas, not 

only those which state the solvability of systems of equations and 

inequalities. In particular, if a formula @ has no free variables



- a so called sentence - it expresses an elementary statement about 

real closed fields; by Tarski's result one may suppose & to have no 

quantifiers, and so its truth in a real closed field can be computed, 

and turns out to be independent of the real closed field considered! 

Two typical applications of this are: 

(1) Milnor and Bott showed topologically that for n # 1,2,4,8 there 

are no division algebras of rank n over IR. Given n EIN, it is easy 

to construct a sentence >, such that a real closed field R satisfies 

d, iff there are no division algebras of rank n over R. 

If IR E ¢,> also R F o> hence Milnor & Bott's result holds for any 

real closed field; more interesting is that through applying Tarski's 

reduction steps to ¢. one gets a purely algebraic proof, for given n. 
n & g 

{2) Krull and Neukirch determined in [K.&N.] the absolute Galois 

group of IR(t), using topological properties of Riemann surfaces. In 

[v.d.D.&R.] it is shown that their results are essentially of algebraic 

nature and generalize to any real closed field. 

In the fifties A. Robinson discovered a new class of arguments 

which were at the same time powerful, general,and simple, and which 

allowed nim to prove elimination theorems, not only for algebraically 

closed and real closed fields, but for many other classes of algebraic 

structures as well. 

Also, he gave surprising new applications. The best known is the 

application to Hilbert's 47th problem. As a matter of fact the theory 

of real closed fields was created by Artin and Schreier to solve this 

problem [Ar.&S.]. 

However, Artin still needed some fairly complicated arguments to derive
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th 
the positive solution of the 17 problem (cf. [Ar] ). Robinson, in a 

sense, trivialized all this, and considerably strengthened Artin's 

results (cf. [Rob 1]). 

To get an. idea of his methods, let us consider again linear 

equations: let ® be a class of commutative rings with identity. We 

define: 

R admits linear elimination if for each formula 

Tanya Xi +... + an, = bs A | 

dan tAit oreo. sbi y--sb 2) def Jxi «IX, a21Xi + .. + ann = Da A 

NN 
An: * +. + ann = b E 

there is an open formula Van Sait ord sbi >. ->b) which is equivalent 
mn 

with ® an for each ring RE & (here the ‘atoms! of Vian are of the form 

P = q, Where p and q are polynomials in the a's and b's over Z. 

So by Cramer's rule the class of fields admits linear elimination. 

Defanition 

(a) ® is called an elementary class if @ is the class of all rings 

(commutative with unity) satisfying a fixed set of sentences 

(called axioms for @&). 

(b) & has PEP (= the prime extension property) if each subring R of 

any ring in ® has a prime extension R' in ®, i.e. RCR' E @&, 

and R' can be embedded over R in each R-extension in &, 

(1.1) Theorem 

If R is an elementary class with PEP such that Ri C R2 (Ri ,R2 © R) 
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implies that R, is a faithfully flat R,-module, then @& admits linear 

elimination. 

Proof (Sketch): from the faithful flatness one needs only the 

consequence that solvability of a system of linear equations is pre- 

served downward. See Ch. IV (2.6). 

Of course solvability is also preserved upward. Now a general model 

theoretic fact is that any ‘elementary property! which is preserved 

upward and downward among the structures of an elementary class with 

PEP, can be expressed (for all the structures simultaneously) by an 

open formula. See (2.12) for details. O 

Remarks 

(a) Fields are those commutative rings with identity # 0 whose 

(b) 

(ec) 

nonzero elements are invertible, so the class of fields is 

elementary. If K C L with K and L fields, then L is a free K- 

module, so certainly faithfully flat. Finally, if R is a sub- 

ring of a field, then clearly the quotient field of R is a prime 

extension of R with respect to the class of fields; so the class 

of fields has PEP. Hence we have a new proof that the class of 

fields admits linear elimination. 

Another class satisfying the hypothesis - and hence the conclusion- 

of the theorem is the class of boolean rings. 

General considerations from logic tell us that (roughly): 

"linear elimination for &® is recursive in any set of axioms for 

R". This means that the theorem is not as inconstructive as one 

might think. 

The following result suggests that structures must be sufficiently 

‘large', to admit elimination.
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(1.2) Theorem 

Let D be an integral domain such that {D} admits linear elimination. 

Then D is a field. 

Proof 
D may be assumed infinite because finite integral domains are fields. 

By assumption there is an open formula div(vi ,v2) equivalent with 

dv3 ViV3 = v2 for D. div(vi ,v2) may be brought in disjunctive normal 

form, and using a #0 ab¥0* ab #0 (holding in D) each disjunct 

may be brought in the form: 

Pi (Vi Va) = ... = Py. Ovi sv2 ) = 0 A qlvy,v2) # O0, (k20) 

with Pio+++sPy>. q € Fliv:i,v2]\{0}, IF the primering of D (formally the 

polynomials have integer coefficients, but these are naturally inter- 

preted by their images in D). 

Suppose that k > 0 for each disjunct. This leads to a contradiction: 

form a product P(v1 ‚va ) by taking from each disjunct pi (vi ;v2 ) as a 

factor; then: 

P(a,b) = 0, for all a,b © D with alb in D, 

so in particular the non-zero polynomial P(X,XY) € IF[X,Y] vanishes on 

DxD, which is impossible, because D is infinite. 

So some disjunct is simply of the form q(v; ,v2) #0 with 

q © IF{[vi ,v2]\{0}. Let 0 #a € Ds then qlaXY,Y) € D[X,Y]\ {0}, hence 

there are x,y © D\{0} with q(axy,y) #0, which implies axyly in D, so 

ax|1, and a is invertible in D. O 

Remark 

This result and its proof are along the lines of some recent theorems, 

which can be found in [M.,M. &v.d.D.].
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I will now discuss two contributions of Robinson in more detail 

which have been the starting point of a considerable amount of re- 

search. 

A. Differential fields 

These are pairs (F,d) with F a field and d:F + F a derivation; 

expressions, built up from variables and elements of F using the ring- 

operations and the symbol d, are called differential polynomials over 

F, and they lead to algebraic differential equations. 

The study of these with algebraic methods is called differential 

algebra (Ritt, Kolchin). 

In the fifties Seidenberg gave an elimination theory for systems 

of algebraic differential equations in char. 0, but there was a 

difference with, say, elimination theory for algebraically closed 

fields: 

given a general system of algebraic differential equations: 

Pp, (a,x) =... = P‚(a,x) = 0 

(a and x stand for the vector of coefficients and the sequence of 

variables respectively), 

Seidenberg constructed an 'open' condition R(a) such that for any a from 

a differential field (F,d) of char. 0: 

(F‚d) F R(a) 

iff the system has a solution in an extension differential field of 

(F‚d). 

So the analogue of ‘algebraically closed field' was missing. Robinson 

showed on the basis of general principles that a certain elementary 

class of differential fields of char. 0 deserved to be called the class
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of differentially closed fields, and proved that all differentially 

closed fields are elementarily equivalent, i.e. satisfy the same 

sentences. However, he did not reprove with his own methods Seidenberg's 

result. This was done quite simply by L. Blum in 1968, and she could 

also characterize the differentially closed fields as the differential 

fields (F,d) of char. 0 with F algebraically closed and such that for 

f(X) and g(X) differential polynomials in one variable over (F,d) with 

order(g) < order(f), f(X) = 0, g(X) #0 has a solution in (F,d). 

Robinson had also asked whether a differential field(F,d) of 

char. 0 has a differential closure, i.e. a differentially closed 

extension of (F,d) which can be embedded over (F,d) into any differen- 

tially closed extension of (F,d). 

This turned out to be a surprisingly difficult question. It is fair to 

say that the model theory needed for applications in algebra is in 

general rather simple and can be learnt quickly by any algebraist, but 

this question required some of the deeper theorems of two model theorists 

pur sang: M. Morley and S. Shelah. 

From their results Blum derived the existence and uniqueness of the 

differential closure. 

Later it turned out that -in contrast with the algebraic and reél 

closure - the differential closure is in general not minimal: the 

differential closure of Q contains properly an isomorphic copy of it- 

self (proved independently by E. Kolchin, M. Rosenlicht, S. Shelah). 

A readable account on this subject -containing the references omitted 

here - is given by C. Wood in [ Wol. 

B. Valued fields 

Here, finally, a kind of breakthrough was accomplished: using his 

typical techniques, Robinson could prove (around 1955) that the class of
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non-trivially valued algebraically closed fields has an elimination 

theory, before this was proved by more orthodox methods. 

From then on this became the usual procedure: first a certain class 

of algebraic structures was proved to admit elimination by model theory, 

and later this elimination was given explicitly. 

The precise result, referred to above, is the same as the one for 

real closed fields, except that in the definition of atomic formula 

'Ply1 +++ ¥,) < alyis---s9) "ss is replaced by 

"plyi5+++sy)) div alyi,...>y,)"s where 'a div b' is interpreted for a 

valued field (K,v) as 'v(a) © v(b)', v:K + rU{o} being the (Krull) 

valuation on K. 

A corollary is: two non-trivially valued algebraically closed fields 

are elementarily equivalent iff they, as well as their residue fields, 

have the same characteristic. 

But most important was that it led some mathematicians to look 

for new applications of model theoretic methods in algebra and number 

theory. 

So finally with the work of Ax & Kochen, and ErSov (1965-1966) on 

p-adic fields and other valued fields, model theory became connected 

with number theory: an asymptotic form of a conjecture of E. Artin 

could be proved; later it turned out that the full form was not valid 

(Terjanian). 

It is true that Ax & Kochen originally used other model theoretic tools 

- ultra products - but in their last joint paper [Ax & Ko] they 

showed how some of their strongest results could most elegantly be 

developed in the framework set up by Robinson; ErSov seems to have done 

this from the beginning. 

Let us consider the p-adic fields Q, more closely. The p-adic 

field Q, (p a prime) was invented by K. Hensel in 1897 as a kind of
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approximation to the field of rational numbers Q, having 'better' 

properties than Q. Just as Q@ it has a subring of 'integers' Zh» and 

QC 0» ZL CE, Given any polynomial equation with coefficients in 

Z, the equation has a solution in en iff it has modulo p" a 

solution in Z for each n € IN. 

Now, the properties that Q, made so convenient for number theorists 

are, strangely enough, its excellent topological properties, like 

local compactness; in fact Q is the completion of Q with respect to 

a certain field topology on Q. 

But this tends to obscure another fundamental and desirable fact: 

that one can decide effectively elementary questions about U and this 

is indeed one of the Ax-Kochen-Ersov results; more precisely, Q ’ 

endowed with some extra structure has an elimination theory. 

Later P.J. Cohen gave an explicit description of this elimination 

procedure in [C]; his work was extended and completed by V. Weispfenning 

[We] . 

Important is that Cohen's procedure shows certain uniformities with 

respect to the residue rings involved, and using this fact he could 

give more effective versions of several results of Ax & Kochen. 

For instance, Ax & Kochen proved: 

given an elementary statement A about valued fields, then for 

all but finitely many primes p one has: 

A holds in Q, iff A holds in the field of formal Laurentseries 

FE, ((t)). 

By Cohen's method one can construct a primitive recursive function of 

the argument A giving an upperbound for the exceptional primes.
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Another important development was initiated by Ax'decision 

methods for the class of finite fields and the class of finite prime 

fields ([ Ax] , 1968), which can also be put in the form of an elimination 

theory, see [Kil]. 

Here the number theory required (Weil's result on curves over finite 

fields, Cebotarev's Density Theorem) becomes rather heavy for the 

ordinary model theorist! 

Ax'work has interesting consequences, for instance, given any system 

of polynomial equations with integer coefficients, the set of primes 

p such that the system has a solution modulo p has an effectively 

computable rational Dirichlet density, which moreover is 2>0 if the set 

is infinite. a 

In 1976 Fried & Sacerdote in [F.&S.] published an explicit description 

of the algorithms whose existence had been proved model-theoretically 

by Ax. 

It should be mentioned that Ax'results have been completed and 

generalized in several directions by M. Jarden who discovered in re- 

lation to this interesting connections between Dirichlet density and 

Haar measure (on certain infinite Galois groups), see [J1]. 

But let us return to the original idea behind p-adic fields, i.e. 

the isolation of those properties of Q which have to do with the 

behaviour of only one prime p. This idea is very successful, in the sense 

that elementary statements on valued fields can be decided effectively 

for Qo" 

But for Q this does not imply much: for instance, one can decide 

effectively whether a system of polynomial equations with coefficients 

in Z has for each n € IN a solution modulo p'. Combining Cohen's and Ax! 

results one can even decide effectively whether such a system has for 

each 0 < m € IN a solution modulo m.
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But of course one really wants to decide whether such a system has 

a solution in zk, if k is the number of variables. In that case 

the above decision method suffices only for those equation systems 

for which the local-global (or Hasse) principle works: a necessary 

condition for a system of equations over ZZ to have a solution in z* 

(k being the number of unknowns) is of course to have a solution in 

zj for all primes p, and a solution in m*. The Hasse principle is 

said to apply to the equation system if this condition is also 

sufficient. An example is provided by the famous theorem of Hasse- 

Minkowski saying that the Hasse principle applies to equations f = 0, 

f being a quadratic form over Z, and where only zeros #(0,...,0) are 

af 
a 

counted as solutions. 

Let me now explain roughly what is done in Chapters II and III of this 

thesis. Recall that Tarski, Robinson, Ax, Kochen and Ergov proved that 

certain classes of ordered resp. valued fields (i.e. fields endowed 

with one distinguished ordering, resp. valuation) admit an elimination 

theory. In ch. II and III certain classes of fields endowed with 

several distinguished orderings and valuations are shown to have an 

elimination theory and to admit effective decision of elementary 

statements. 

As an example consider finitely many primes Pis+++sPy> let 

%p,'8 > Z U{ee} be the p,-adic valuation on Q, and consider all structures 

CF 5Vy pees Vp 9S) with F a field of char. 0, V.iF + Z U{e} a valuation 

on F extending v with residue field IF (in other words (Fyv.) is an 
i i 

immediate extension of (Q,v_ )), and < an archimedean ordering on F. 
i 

Among these structures some are 'large'. The main result is that, given 

an elementary statement on such structures, one can decide effectively 

whether it holds in all the 'large' structures simultaneously. 

It may be instructive to see what this means for some special cases:
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for k = 0, the 'large' structures are simply the archimedean real 

closed fields (among these is IR); for k = 1, and supposing that the 

ordering is omitted from the structure, the henselian subfields of 

Q are the ‘large! ones; in both cases the result reduces to those 

of Tarski, etc. In the general case the ‘large! structures are 

certain ‘intersections! F,N...9F, OAR with P. a henselian subfield 
k 

of Qo and R a real closed subfield of IR. 
1 

One of the reasons for considering these 'semi-local' fields is to 

approximate the arithmetic properties of Q@ better than is done by the 

local fields QR; and at the same time to preserve that elementary 

statements can be decided. This leads to effective necessary 

conditions on an equation over Z to have a solution in integers, 

which are perhaps stronger than those provided by the local fields Q, 

and IR. Whether they are really stronger, is for me, through lack of 

number theoretic experience, as yet a matter of speculation. 

Another important question is how the absolute Galois group of a 

'semi-local' field depends on the absolute Galois groups of the 

corresponding local fields, and whether in some sense the absolute 

Galois group of Q can be approximated by the absolute Galois groups of 

the 'semi-local' fields. There is an interesting conjecture by Ergov 

with respect to the first problem. For details see (3.13) Ch. II and 

(3.7) Ch. III. 

Coming to the end of this preview I should remark that I 

mentioned only a small part of interesting and relevant work in this 

area. I have concentrated here on fields. 

There are many similar results for other kinds of structures: graphs, 

ordered abelian groups, boolean algebras, to mention only a few. 

At least I should say a few words about a new development, started in
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1969 by A. Robinson, which was originally inspired by P.J. Cohen's 

forcing method. 

Many model theorists took part in this development and several useful 

new notions and instruments were created (some of these can be found 

in 52). 

Applied in algebra the notion of forcing clarified the fundamental 

model theoretic differences between the class of skew fields and the 

Class of fields, and similarly between the class of groups and the 

class of abelian groups; in particular, for groups and skew fields 

there is a connection with word problems (A. Macintyre and B.H. Neumann). 

Also it promoted a better understanding and elegant formulation of 

many of the older results of Robinson and others. 

For a more detailed description of the applications of Robinson's 

methods, one may consult Macintyre, [M2}.
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§2. Relevant model theory and algebra 

(2.1) Paeliminarres 

The model theoretic terminology used here is a mixture of that in 

Shoenfield [Sh] and Sacks [ Sal. 

Algebraic notions, especially from field theory, are taken from Lang 

(L1] and [L3]. 

Let me lay down some conventions. 

A ‘language! (called 'similarity type! by Sacks) is always first-order 

with equality, and is formally the set of its non-logical symbols 

(function symbols, predicate symbols and constants). 

There is a fixed sequence of variables vi ,v2,.. used for all languages. 

In the following, let £ be a language. 

An open £-formula is an £-formula without quantifiers; an existential 

£-formula is an £-formula of the form AX1 ++ -AX HO seer sees) 

with @ open; here, and in the following, I will write Wlzis. Zj) for 

a formula w whose free variables are among Zi p++ 52). 

Similarly a universal £-formula is an £-formula of the form 

VX1 «WX 60x seeks oee YD) with & open, and a Va-formula is a 

formula of the form VxX1.-VxX dy. - dy (x,y,z) with d open. 

An £-theory or a theory in £ is a set of £-sentences; where possible 

without ambiguity, two equivalent £-theories will be identified. 

If A is an £-structure, then |A| is its universe and £(A), or £(JA]), 

is the language £, augmented by a new constant for each element a of 

|A|, called its name. 

In general a € |A| is identified with its name; an £(A)-formula is also 

called an A-formula. 

For a structure A, Diag(A), the diagram of A, is the set of all atomic 

and negated atomic A-sentences which are true in A, and Diag’ (A), the 

positive diagram of A, is the set of all atomic A-sentences true in A.
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By abuse of language a model of Diag(A) will be considered as an 

extension of A, and similarly a model B of Diag’ (A) as a structure B 

together with a morphism A + B. 

'A C B' stands for: '‘'A is a substructure of B' (or equivalently, 

'B is an extension of A'); and it will be understood in this case that 

A and B are structures for the same language. 

If T is an £-theory, then Mod(T) is the class of its models, i.e. the 

class of £-structures satisfying all sentences in T. 

A class of f£-structures is called an elementary class if it is of the 

form Mod(T) for some £-theory T. 

In the model theoretic treatment of elimination theories the 

notion of 'existentially closed' has turned out to be useful, cf. [M2]. 

(2.2) Defanation 

Let A C B. Then A is called existentially closed in B if each 

existential A-sentence true in B is also true in A. 

As an example consider commutative rings with identity. Because only 

such rings will be considered in the following, let us make the 

CONVENTION 'ring' will from now on mean ‘commutative ring 

with identity'; 

a ring is considered as a structure of type (R,+,:-,-,0,1), i.e. the 

language of rings is {+,-,-,0,1}. 

A field is a ring with 1 # 0, whose nonzero elements are units; a 

domain is a subring of a field; if D is a domain, Q(D) is its 

quotient field. 

Now one easily checks the following: 

If R,S are rings with RCS, then R is existentially closed in S iff 
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each system of polynomial equations and inequations 

fi (Xi 4-+-yX) = O,++-5f) (Xi ,---5X) = 0 CE, E Rl Xi ,---,X_ 1D 

gi (Xipe. 5X) F O,.-++ 89 (X1,---,X) #- 0 (83 € RI X, TERENDE, 

with a solution in S$" has also a solution in R 

The reader not familiar with model theoretic terminology can take this 

as a definition in the case of rings. Some rather fundamental theorems 

state that one ring is existentially closed in another, for instance 

Hilbert's Nullstellensatz (see (2.5)(a)) and Artin's Approximation 

Theorem (see Appendix to Ch. IV). 

(2.3) Proposrctizon 

(a) Let K and L be fields, K C L and K existentially closed in L. 

Then the field extension L|K is regular. ’ 

(b) Let D and E be domains, D C E and D existentially closed in E. 

Then Q(D) is existentially closed in Q(E). 

Prooé 

(a) for the notion of regular field extension see [L1, Ch. III, 511. 

K is clearly algebraically closed in L, so it suffices to show 

that L|K is separable, and hence we may suppose char(K) = p> 0. 
i 1 

Let Ay >een E K be such that af ‚ah are linearly independent 

over K. It suffices to show that this implies their linear 

1 

independence over L. If Eh.ab = 0 with A; © Land say A, #0, 
1 1 

then EN; a; = 0. So Za; Xs = 0, X;} #0 has a solution in LP, and 

then by assumption also a solution in KE, which contradicts the 
1 1 

K-linear independence of aP,...,aP. 
1 n
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(5) 

(2.4) 

Consider for simplicity the case of one equation F(X, eek = 0 

having a solution (Xi seer aXn) E (QCE))”, where f € DE Xi se. 5X]. 

Let £(¥1/Z)+++5¥/Z) = FY y+++5¥52)/2*% with 

FCY, pre 09X52) E DY, seen Z] ‚ k EN. 

Let xX. = y./z Cy. 50 *#zE€E). Then the system PCY y-++5¥,.4) = 0, 

Z #O has the solution (ya seer Vi 92) e EM+1) so it has a solution 

(Yi seeesypoz ) € DEAL, 

Then putting x, = yi/z, (Xa soes) E (QD) is a solution of 

FCX.) = 0. OC 

Let me illustrate a typical trick in proving existential closed- 

ness. 

Let two fields K and L be given with K C L and L|K separable (this last 

assumption should certainly be verified if one wants to prove that K is 

existentially closed in L, by (2.3)). 

Let a 

in L” 

(1) 

Now I 

system (7) of polynomial equations and inequations with a solution 

be given: 

fi (Xipe) =... = F, (Xi 5--+-X)) = 0, Cf. E KL Xi ,-.,X,])) 

gi (X1 sek) F O5+++ 589 (Xi 5+. X) + 0 Cg. E KL Xi y+. 5X ). 

will indicate much simpler systems of equations and inequations 

(solvable in L) whose solvability in K implies the solvability of (1) 

in K. 

Let a sere) Ee LP pe a solution of (1). Take a separating transcen- 

dence base Yi see sY4 of Kx sees sX) over K and z € L, separable 

algebraic over Klyi see + yy) such that Klxi sees) = KCY1 9+ ++ oVy0%)- 

After multiplying z by a suitable nonzero element of KCYt see o¥y) the 

minimal polynomial of z over KCyt oee sy) may be assumed to be 

PCY1 se. 

monic 

4) for some p = p(Yis.-.5Y, 52) Ee KE Yi,---5,Y,52], which is 

and separable in Z.
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Consider now for 0 # q € K[Yi--->Y.) the system: 

(2) PCY: 5+ --5¥,5Z) = 0, ACL ses) FO. 

This system has the solution (Yt o-+ + Vp 02) E pttt, 

CLaam 

Suppose each system (20) has a solution in Kt*?, Then (7) has a 

. . n 
solution in K . 

It may be instructive to see two proofs. 

Proof by model theory: 

Let c be the K-sentence 

k Q 
dv, av (Agf; (Vise ee ov)? = OA 59484 (Vroe sv) + 0). 

We have to prove K E o. Let FL be the theory of fields, let 

Ci seerd be new constants and put 

rl = FL U Diag K U{p(ci ,...,C, 5d) = O}U{qley ;... se, )#0| OF E KL Y1.--.Y,J}- 

Then each model of T contains an isomorphic copy of 

KCy1 9+ ++ o¥y02) = Kx seeds so TE a. 

Then by the Compactness Theorem there is 0 #q € KEY: 5+--5Y4] with 

Pa det FL U Diag K U{p(ci 5+--sC, 2d) = 0, aleine) #0} Fo. 

But by the assumption in the claim, K (together with a suitable inter- 

pretation of ci,..,¢,,d in K) is a model of Po so KF o. 

Proof by mantpulation: 

Write Xs = Os C¥1 9+ Vp 0ZI/QCy1 a+ + V4) and 

-1 . . 
gj sees) = Ss (Yr sees Veo ZI/ACV1 sees) 1<i<k,1i1<j<Q2, 

for suitable P98. E KEY 5-++5Y, 54] 5 0 #qe€EK[Y,,...,Y



Then we have: 

d: 

a3 f.(ri/q,--,r,/q) = F‚/a + with F, © K[Y1,--5Y,.Z], d, © IN. 

3) Á es 
(g.(ri/q,--sr,/q)+s3/q)-1 = G./q J with 6, Ee KEYi 5-.5¥,.Z] es EN. 

Then fsx 5+ -+5X)) = ETEN, = 0, 

SO Fe Cyt y+ + Vy) = 0 and 

Ea 9+ eX) 82 (Kr 5. eon) ed = B, (yi oee Vg Z/a Ayn yee Vy) = 0, 

SO CoC Yt a+ Vp 02) = 0. 

Hence by the irreducibility of p we get: 

(4) p|F; and p |G, in K[Y1,..,Y,52]. 

t+1 t 1 t 

Now let Cy1 s+ + 2p 02 ) © K be a solution of (20) and put 

t ! | f 1 î 

xj 5 1; Cyr ++ Vp 0% Maly ,.-sy,)- 
t t 

Then by (3) and (4) (X1++5X,) E Kf is a solution of (1). 

Remark 

Variants of this reduction procedure appear in Ch. II (1.19), Ch. II 

(1.14) and (2.6). In all 3 cases the model theoretic argument 

is really the guiding principle, while the proof by ‘algebraic 

manipulation' is in the first two cases simply too complicated to write 

down. 

(2.5) Applicatazons 

(a) Let me first show how it follows that an algebraically closed 

field K is existentially closed in each extension field L (this 

is one of the forms of Hilbert's Nullstellensatz): 

L|K is separable, so by the claim it certainly suffices to prove 

that for any two polynomials p € KL Yi ,--,¥, 52] and 

0OFQGE KL Yi ,..,Yl with p monic and of positive degree in Z there 

t+1 
is a solution in K of the system 

Pp {Yi {4 = 0, q(Y1 ,+-5¥,) F 0.
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Let 
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Well, take any Cy1 ++ sy4) e Kt with qlyis- sy) # 0. 

Then Ply1s--5Y4>4) has a root z in K, so (Yr s--5Y422) is a 

solution as desired. 

A special case of a result on p. 71 in [L1] is: 

if F(Z 4.-52,) E Kl Zi 5.- 52] is irreducible (K a field), then 

f is absolutely irreducible iff QCK[ Zi 5-.,2, ) /(£)) isa 

regular extension of K. 

Combining this with the reduction in (2.4) gives the following. 

Theorem 

L be an extension field of the field K. 

Then the following are equivalent: 

(4) K is existentially closed in L. 

(44) L|K is regular, and for each two polynomials 

p = p(v%,--,¥,.2) © KLY1,..,¥,,2]), 0 Faq = q(¥i,..,¥,) € 

KEY: ,--.Y,] such that p is monic in Z and absolutely irreducible, 

the system 

P(Yi5-+5¥,52) = 0, aL ses) #0 

has a solution in «ttt if it has one in pttt, 

Proof 
(4) > (44) is trivial, using the definitions and (2.3). 

(44) > (4). In order to prove that K is existentially closed in L, it 

suffices by (2.4) to consider the following situation: a point 

(ya 5°. 
t+1 

2¥422) EL is ‘generic! zero of an irreducible polynomial 

p(Y15--,Y,54) E Kl Yi 5--5¥,52] ; monie in Z, which means 

We have then only to show that for 0 # q € K[Yi,..,Y 

Klyi >. 5y452) a” QCKL Yi 5. Z1/ CD). 

+ 

PCY1 5-++5¥,54) ~ 0, q(Y1,--5¥,) - 0
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1 t+1 
has a solution in k'*+, Note that (Yt y+ Vy 02) EL is a solution. 

Now L|K is regular, so QCKEY1 --5¥,52)/(p)) |K is regular, so by the 

result in [Li] mentioned above, p is absolutely irreducible, hence 

{44} gives the desired solution in KE, m 

(2.6) Given a class K of f-structures, a structure A € K is called 

K-existentially closed if A is existentially closed in each of 

its extensions in K. 

K is called inductive if the union of each chain of structures in K 

(ordered by the substructure relation) also belongs to K. 

The proof of the following proposition gives in embryonal form a very 

useful construction. To make it as accessible as possible, only the 

case that K is a class of rings will be treated in the proof. 

(2.7) Proposition 

Let K be an inductive class. 

Then each A € K has a K-existentially closed extension. 

PLOOS 

Let R be a ring in K. Let (Z ) be an enumeration of all (finite) 
a Ísas<k 

systems of polynomial equations and inequalities with coefficients in 

R (Kk is a cardinal, aranges over ordinals). Then an ascending chain 

(Ruck in K is formed inductively as follows: 

Ro = R, 

for ati<k R 1s some extension of R in K in which X has a 
ati OL at1 

solution, if such an extension exists; otherwise Rad = Ry3 

for a limit ordinal A #0 less than kK, put R 

def. 

5 VER |asX}. 

Now by construction R! UIR, las} has for each a the property: 

if Zo has a solution in an extension of R' in K, then Zo has already
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a solution in R’. 

However new systems of equations and inequalities over R' can arise. 

This difficulty is remedied as follows: 

in the same way R! was constructed from R° def.n, one constructs R? 

x 

*1 from R” (n EIN). Then R = U{R"|n EIN} from R!, and with induction RF 

is a K-existentially closed extension of R: this is because each finite 

system of equations and inequalities with coefficients in R- has 

actually all its coefficients in R for some n EN, and so has a 

* 
n+1 if it has a solution in a K-extension of R . O solution in R 

(2,8) One usually considers classes which are elementary. Therefore 

we define a theory T to be inductive if Mod(T) is inductive, i.e. 

the union of each chain of models of T is a model of T. 

Then for a theory T the following are equivalent ([ Sh, p.77]): 

(1) T is inductive. 

(2) For each ascending chain (A) of models of T 
n€ IN 

its union VA, In EIN} is a model of T. 

(3) T has a VWa-axiomatization. 

If T is a theory, then we use the terminology 'T-existentially closed! 

instead of 'Mod(T)-existentially closed', or even ‘existentially closed', 

if T is clear from context. 

Er is by definition the class of T-existentially closed models of T. 

The proposition of (2.7) implies that each model of an inductive theory 

can be embedded in a member of En: 

For instance, in the case that T is the theory of domains or the theory 

of fields, E,, is the class of algebraically closed fields, by (2.5)(a). 
T
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(2.9) Definition 

A class K of £-structures is said to have an elimination theory, or 

to admit elimination if each existential £-formula is equivalent with 

an open £-formula for all structures in K simultaneously; or 

equivalently: each £-formula is equivalent with an open £-formula, 

for all structures in K simultaneously. 

Clearly, if K admits elimination, then the smallest elementary class 

of £-structures containing K also admits elimination. Therefore we 

can restrict our attention to elementary classes in discussing the 

matter of elimination. 

So, for a theory T, we say that T admits elimination if Mod(T) admits 

elimination. 

Now, the goal is to deduce a model theoretic criterion for a theory to 

admit elimination, similar to the criterion given in (1.1) for linear 

elimination. Existential closedness replaces in this context faithful 

flatness. We also need a condition on the substructures of models of 

the theory. So let us discuss substructures. 

(2.10) Defanataion 

If T is an £-theory, then Ty is the set of all universal £-sentences 

which follow from T. A straightforward diagram argument shows that an 

£-structure is a model of Ty iff it is a substructure of a model of T. 

Example 

If T is the theory of algebraically closed fields, then Ty is the 

theory of domains. 

If T has an axiomatization consisting of universal sentences, then T



3] 

is called a universal theory. 

By the above T is universal iff each substructure A of a model of T 

is a model of T (4o§-Tarski). 

Definition 

Let T be a theory, B FE T and A C B. Then B is called a prime extension 

of A (w.r.t. T) if B can be embedded over A in any model of T extending 

A. T is said to have PEP (= the prime extension property) if each 

substructure of a model of T has a prime extension. 

Example 

ACF, the theory of algebraically closed fields, has PEP: 

the prime extension of a domain is the algebraic closure of its 

quotient field. 

The obvious analogue of the theorem in 81 is: 

(2.11) Theorem 

If T is a theory with PEP and each model of T is existentially closed, 

then T admits elimination. 

Example 

It was already verified that ACF satisfies the hypothesis of (2.11), 

so ACF admits elimination. 

Most theories, which have been proved to admit elimination, indeed 

satisfy the hypothesis of (2.11). However, PEP is certainly not a 

necessary condition for admitting elimination, see for example 

Ch. II (3.8).



32 

The concept of 'amalgamation' provides us with a necessary and 

sufficient condition. 

(2.12) Definition 

A theory T has AP (= the amalgamation property) if for any two models 

B,C of T which extend a common model A of T there is a model D and 

embeddings B + D, C + D such that the diagram 

B 

a OS, 

ONS commutes. 

Proposition 

Let T be an £-theory such that either T has PEP or Ty has AP, and let 

PCy1 sees) be an £-formula. Then the following are equivalent: 

(4) @ is equivalent (w.r.t. T) with an open £-formula 

(44) for any two models A,B of T with A CB, and all aj»++,a, € Al: 

A F Plas ,-->a) „B EF o(a,,.-,a,)- 

Proof 
(4) > (44) is trivial. 

(44) > (4): by an application of the theorem on constants [Sh, p.33], we 

reduce {4} to the case n = 0, i.e. @ is a sentence. Also, without loss 

of generality, we may assume that £ has a constant. 

Let T = {0]@ is an open £-sentence with T+ & > 0}. Then it suffices 

to prove that T UT k 9$. Suppose this is not the case. Then there is 

AFTUTIrU {jo}. 

Let B be the substructure of A generated by the empty set. Then the 

hypothesis on T clearly imply that T U Diag(B) - st. But every element 

of |B| is the interpretation of a variable free £-term, hence there is
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open £-sentence y with T + wp > 36 and B F w; but then op €T and 

A FE w. Contradiction. 0 

Note that this makes precise an argument in the proof of the result 

on linear elimination in 81. 

The proposition also implies (2.11), because under the hypothesis of 

(2.11) existential formulas have property (11) of the proposition. 

By the same argument, the proposition implies one half of the 

following theorem. 

(2.13) Theorem 

The following are equivalent for a theory T: 

(4) T admits elimination; 

(44) all models of T are existentially closed and Ty has AP. 

Proof 
By the remark preceding (2.13) only (4) > (44) has to be proved. That 

all models of T are existentially closed is trivial. Let A be a sub- 

structure of a model of T, and let B,C be two extensions of A, 

BC B' k T and C CG C' — T. Then the assumption that each £-formula is 

equivalent with an open £-formula, clearly implies: 

(B! = (C! 

Now an easy diagram argument implies that any two elementarily equivalent 

structures have a common elementary extension. Applying this to the 

preceding two structures gives that Ty has AP. 0 

(2.14) Remarks 

(a) (2.13) will be used to prove the elimination results in Ch. II
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and III. 

(6) Using (2.13) a second proof that ACF admits elimination can 

be given: if suffices to prove that the theory of domains has 

AP, and this will follow if the theory of fields has AP. So 

let L and M be two extension fields of a field K. Then 

L 8, M modulo any of its maximal ideals is a common K-extension 

of L and M. 

(c} Actually in theorems (2.11) and (2.13) 'existentially closed! 

can be replaced by a weaker condition: 

if A and B are £-structures with A CB, we define A to be n- 

existentially closed in B (nEIN) if each £(A)-sentence 

4x) IX OLK y+ +x) with & open, true in B, is also true in A. 

If A and B are rings this means that every finite system of polynomial 

equations and inequalities in n variables over A which has a solution 

; n . . n 
in B , also has a solution in Á . 

If T is a theory then an n-existentially closed model of T is a model 

of T which is n-existentially closed in each extension which is a model 

of T. 

CLadim 

In (2.11) and (2.13) "existentially closed" can be replaced by 

"1-existentially closed". 

This rests on the following trivial observation: 

if each £-formula Ixp(X5¥1 sees) (é open) is equivalent with an open 

£-formula, then each existential £-formula is equivalent with an open 

£-formula (all this with respect to a certain £-theory T). 

Combining the claim with the fundamental theorem of Algebra one
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can give a simple proof of Tarski's Theorem, see [Rob2, p.44]. 

(2.15) Elimination is rather sensitive as to the language used. For 

instance, the theory of real closed fields can also be 

formulated in the language of rings: in the axioms for real closed 

fields every instance of an atomic formula "t Sd" can be replaced 

by a formula "3x(t+x? = d)" (x a variable not occurring in t,d). 

But in the language of rings the theory of real closed fields does 

not admit elimination: the quantifier '4x' in '4ax(y = x?)! cannot be 

eliminated within the language of rings. 

One can even prove the following (an analogue of theorem (1.2) of 51): 

if D is a domain such that {D} admits elimination, then D is a finite 

or an algebraically closed field. For an easy proof, see 

[M., M.& v.d.D.]. 

A concept which is less language dependent, and often serves as a 

substitute for elimination, is model completeness. 

(2.16) Definition 

An £-theory T is called model complete if for any two models A,B of T 

with A C B and for each £-formula PCX sex) and all (a; --.a)) 5 JA]: 

AF o(ai,--,a,) * B = blas,..,a). 

(if two structures A,B with A CB have the above property, we write 

A~< B, and say that B is an elementary extension of A, or A an 

elementary substructure of B). 

Clearly, a theory admitting elimination is model complete, and a model 

complete theory is inductive by Tarski's Lemma, see [Sh, p.77].
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The basic tool in establishing model completeness is 

(2.17) Robánson's Test. A theory T is model complete iff each model 

of T is existentially closed. 

Lemma 

Let A C B. Then A is existentially closed in B iff B can be embedded 

over A in an elementary extension of A. 

Proog 

Let A be existentially closed in B. Then by the compactness theorem 

Th( (A ,a) ) U Diag(B) has a model C and soA~C, BCC, 
a€&|A | 

The other direction is trivial. 0 

Proof of Robinson's Test 

Suppose each model of T is existentially closed and let A,B be models 

of T with A C B. Then, using the lemma, chains CA) and (B) of models 

of T are formed as indicated, with induction on n: 

4 

Áo = A = > A; > Ar 

NA / 
Bo = B > B, > Bz 

Here the arrows indicate embeddings, the horizontal ones elementary 

embeddings. Now, by Tarski's Lemma (cf. [Sh, p.77]) 

UA = UB 

n=0 n n=0 n 

is an elementary extension of A as well as of B, hence A < B. 

The other direction is trivial. LJ
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To appreciate the strength of the test, one cannot do better than 

read Robinson's beautiful paper [| Rob3]. 

(2.18) There are two reasons for studying models of a theory 

admitting elimination. 

First of all, because they may be important in themselves, like €, and 

IR, and the elimination theory makes them more easily accessible. 

But also -as in the case of p-adic fields- they reflect properties 

of more basic structures -like Q- , and one hopes to be able to 

prove results for these more basic, but very complicated structures, 

by studying extensions which are models of a theory admitting 

elimination, or at least models of a model complete theory. 

This idea has been formalized in the concept of model companion. 

(2.20) Definition 

Let T be an inductive £-theory. 

Then an £-theory T is called a model companion of T if 

(4) each model of T is a model of T; 

(44) each model of T can be embedded in a model of T; 

(iii) T is model complete. 

If also 

({v) T has AP 

helds, then T is called model completion of T. 

The canonical example is, of course, ACF which is model completion of 

the theory of domains (as well as of the theory of fields). 

Note that (2.13) can be reformulated as: 

T admits elimination iff T is a model completion of a universal theory. 

The basic result on model companions is
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(2.21) Theorem 

Let T be an inductive theory. Then T has at most one model companion. 

It has one iff E,, is an elementary class. In that case T with 
T 

Er = Mod(T) is the model companion of T. 

PrAOOS 

Suppose that T is model companion of T. Then it is easily seen that 

each model of T belongs to Er: 

If AGE then A C B F T for some B. As A is existentially closed in T? 

B, A satisfies all Vi-sentences which are true in B. 

But T, as an inductive theory, has a V3-axiomatization; hence A F T. 

So E, = Mod(T). 

On the other hand, suppose En = Mod(T) for a theory T. Then by (2.7) 

and Robinson's Test T is model companion of T. 0 

Remark 

The results and concepts mentioned in this section find their origin 

in ideas of Robinson, dating from the fifties. Some of the people who 

introduced more recent notions, such as AP and model companion, 

collaborated under the name of Eli Bers, see for instance [Ek.&Sab.]. 

Some other useful criteria for a theory to admit elimination were 

given by L. Blum and J. Shoenfield, see [Sa, p.89] and [Ki]. 

Instead of 'T admits elimination' some authors use the terminology 

'T admits quantifier elimination! of 'T is substructure complete’.
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§3. Examples 

A number of (mostly wellknown) results on concrete theories will be 

listed, which are used in Ch. II and III. We will also make some 

terminological conventions. 

(3.1) Domains and fields (References: [L3], [Rob2]). 

The theories D and FL of domains and fields are formulated in the 

language of rings. Both have as their model completion the theory 

ACF of algebraically closed fields. 

ACF admits elimination. 

(3.2) Ordered domains (References: [Ar.&S.], [Rob2]). 

For technical reasons (see 81 of Ch. III) an ordered domain is most 

conveniently defined as a structure (D,P) with D a domain, P a subset 

of D such that: 

(4) P+P C P, 

(44) P-P CP, 

(444) P N(-P) {0}, 

T oO
 

(4v) P U(-P) 

Associated with such a P (called an ordering) is a linear order Sp on D: 

def. Ee P. XxX S D y 

We use '$' instead of Sr if P is clear from context. We also write 

'x < y' for 'x Sy and x # y'; 'x 2 y' for 'y < x',and 'x > y' for 

'x 2y and x #y'. 

So the language of ordered domains is the language of rings augmented 

by one unary predicate symbol P. The theory of ordered domains is 

called 'OD'. An ordering P on a domain D is uniquely extendable to an
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ordering, called Q(P), on the quotient field Q(D); and if 

D = (D,P) F OD, we write Q(D) for (Q(D),Q(P)). The theory of ordered 

fields is OF. If (D,P) is an ordered domain, then a function f:A + D 

(A any set) is said to change sign (for the ordering P) if Ja,b EA 

f(a) <0 and f(b) > 0. 

A real closed field is an ordered field such that every sign changing 

polynomial function in one variable (with coefficients in the field) 

has a root in the field. 

In a real closed field the ordering is identical to the set of squares. 

The theory of real closed fields is called RCF. 

Fact: RCF admits elimination and is the model completion of OD and of 

OF. A 

Although it will not be needed, let me mention a recent theorem 

[M.,M.&v.d.D.]: RCF is the only theory in the language of OD and 

extending OD which admits elimination. 

(3.3) Valued fields (References: [Rii], [Rob2]). 

A valued field is a field K together with a surjective map v:K > T U {oo} 

with T an ordered abelian group s.t. 

vla) =e eae 0, 

vlab) = va + vb , 

v(atb) > min(va,vb) (convenvion: gto = oo, g <o). 

v is then called a (Krull) valuation on K, and is non-trivial if 

r # {0}. 

Associated with v are: its valuation ring V, = {k € K|v(k) > 0}, 

the maximal ideal M, = {k € K| v(k) > 0} of V‚» and its residue field 

K, = V/M 5 T = ry is called its value group.
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One notion especially is important: 

De finition 

A valued field (K,v) is called henselian if each polynomial 

£(X) € V_LXl, such that f(X) € KX] has a simple root a € K , has 

a root a € vo with a = a. 

An embedding (K,v) > (L,w) of valued fields is an embedding K + L 

together with an embedding r > r such that the diagram 

K > L 

¥ Y 

r > r commutes. 
Vv W 4 

A 

Such an embedding induces embeddings Vy > Vo and K, > Ls The embedding 

is called immediate if it induces isomorphisms r co IT, and K, a Lo 

Each valued field (K,v) has a henselization , i.e. a henselian field 

CKD Py together with an embedding (K,v) > (KE yD) such that for each 

embedding (K,v) + (L,w) with (L,w) henselian there is a unique 

embedding (KP yt) + (L,w) making 

: a commutative. 

h 
(K,v) > (K wv) is immediate and KIK is a separable algebraic 

extension. 

For our purpose (see for example Ch. III) a valuation is best seen 

as defining a divisibility relation on the field. This point of view
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also generalizes to domains: 

Definition 

Let D be a domain. Then a linear divisibility relation (1.d. relation) 

on D is a binary relation div on D such that for all a,b,c € D: 

(4) (a div b and b div c) > (a div c); 

(44) a div b or b div a; 

(Lid) (a div b and a div c) > a div(btec); 

(iv) if c #0, then (a div b @ ac div be); 

(v) not 0 div 1. 

An 1.d. relation div on the domain D induces a valuation ring Vaiv 

of the quotient field Q(D): 

div 7 EN: ED, b # 0, b div a}, 

and for the corresponding valuation v on Q(D) one has 
div 

sy 6b) > a div b (va,b€ D). . < V y 6a) Vai 
di 

div» V is easily seen to be a bijection of the set of 1.d. 
div 

relations on D onto the set of valuation rings of Q(D); its inverse 

is given by 

Vb div, = {(a,b) © DxD|v(a) < v(b)}, 

where v is the valuation on Q(D) associated with V. 

Clearly with an l.d. relation div on D a unique 1.d. relation 

Q(div) on Q(D) corresponds, such that 

(D,div) C (Q(D) ,Q(div)). 

So let us redefine a valued field as a field with an 1.d. relation on 

it, and define a valued domain as a substructure of a valued field, 

1.e. as a domain with an l.d. relation. 
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It is easily seen that the model theoretic notion of embedding for 

valued fields corresponds with the algebraic one given above. 

K? KV oMy and K will denote 

the corresponding valuation, value group, valuation ring, its 

If (K,div) is a valued field, then v_,,T. 

maximal ideal, and the residue field. 

The theories of valued domains and valued fields are denoted by 

D and F (the language being the language of rings with an extra 
val val 

symbol div). 

Let ACE, be the theory of algebraically closed non-trivially 
al 

valued fields. 

Theorem 

ACF, admits elimination, hence is model completion of Dai and of 

Proof 

In §7 this was mentioned as a result of Robinson. But he actually only 

proved ACP to be model complete (this was all he needed to derive 
al 

the decidability of ACF and to classify its models up to 
val’ 

elementary equivalence, see [Rob2]). 

To get elimination, it will, by (2.11) and (2.17), suffice to prove: 

ACF has PEP. 
val 

Let K = (K,div,) be a valued field; if div, 1s non-trivial, then 

~ aT ~ 7 . . ~ 
(K,div) (K = alg. closure of K, and div = any extension of div, to K) 

K 

is a prime extension of (K,div); this is due to the well-known fact 

that any two extensions of the valuation on K to valuations ona 

x is 

ne ad 

trivial, then (K(X),div) is a prime extension, X being trancendental 

normal extension of K are conjugate over K; similarly, if div
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and div an arbitrary extension of div, to K(X). 0 
K 

In [M.,M.&v.d.D.J] it is proved that ACE, is the only theory in the 
al 

language of valued domains, which extends the theory of non-trivially 

valued domains and admits elimination. 

(3.4) Paime extensions 

Before discussing the next examples, some more information has to be 

given on prime extensions. 

Defsanition 

Let T be a theory. 

(a) T has PEP (= 'the unique prime extension property!) if 
unique 

T has PEP and any two prime extensions of a structure A F Ty 

are isomorphic over A. 

(b) T has PEP (= 'the minimal prime extension property!) if 
minimal 

T has PEP and each A Ek Ty has a prime extension which does not 

properly contain any other prime extension of A (a so called 

minimal prime extension). 

(c) T has PEP if each A F T, has an extension A F T which 
universal 

can be embedded uniquely over A in each extension B Ek T of A. 

Such an A is clearly defined up to isomorphism over A, and is 

a prime extension of A; A is called the universal prime extension 

of A. 

Examples 

(1) The theories FL, RCF, and the theory of henselian valued fields 

have PEP . . 
—— universal 

For FL the universal prime extension of DF FL, is the quotient
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field Q(D); for RCF the universal prime extension of an 

ordered domain D is the real closure of Q(D); for the theory 

of henselian valued fields (note that the class of henselian 

valued fields is elementary) the universal prime extension 

of (D,div) is the henselization of (Q(D) ,Q(div)). 

have PEP but not PEP (2) ACF and ACF 
al minimal universal’ 

The minimal prime extension of a domain D (with respect to ACF) 

is of course the algebraic closure of Q(D), and in general this 

algebraic closure has non-trivial D-automorphisms, so cannot 

be a universal prime extension of D. 

For ACF o> see the proof of the theorem in (3.3). 

(3) The theory of differentially closed fields of char. 0 and the 

theory of atomless boolean algebras both have PEP . but not 
| unique 

PEP... . 
minimal 

(4) There are also examples known of theories (even admitting 

elimination), which have PEP but not PEP. . 
unique 

Clearly: PEP > PEP > PEP os > PEP, and the 
universal minimal unique 

examples show that no arrow can be reversed, not even for theories 

admitting elimination. 

Also the following is easy: 
~ 

if the theory T has PEP and A is prime extension of AF Ty > 
minimal 

then A does not contain properly any extension of A which is a model 

of T. 

(3.5) Algebraic elements 

The reader will have noted that in some cases a prime extension can 

be obtained by adjoining ‘algebraic’ elements. Model theoretic notions 

of 'algebraic' have been defined by A. Robinson (1951), B. Jónsson
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(1962), M. Morley (1965) and others. Their notions have been 

compared by P. Bacsich in [Bac ]. From his paper I take the following 

definitions. 

; . < 
First some notation and terminology: "3" Dl is shorthand for the 

formula expressing that for at most n x's 6 holds. 

A primitive formula is an existential formula of the form dx, -- 4x9 

with » a conjunction of atoms and negations of atoms. 

Definition 

Let T be a theory and AC BET, n EIN; 

(4) an A-formula $¢(x) is called algebraic of degree <n over A, if 

o(x) is primitive and T U Diag(A) } 3 Pb (x) 5 

note that the latter means: for each extension C FE T of A 

< Ck a xo(x), 

(4i) b © |B| is called Robinson-algebraic of degree <n over A in B, 

if BE @(b) for some A-formula $(x) which is algebraic of 

degree Sn over A, 

(444) B is Robinson-algebraic over A, if each b € [B| is Robinson- 

algebraic over A in B, 

(av) A is Robinson-algebraically closed if there is no extension 

CE T of A with c € {C|\|A| which is Robinson-algebraic over A 

in C, 

(v) b © |B| is called n-potent over A in B if for each extension 

CE T of A there are at most n elements of |C| which are the 

image of b under an A-embedding of B into C.
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The proofs given in [Bac | imply: 

Theorem 

Let T be an £-theory, AC BET, b € |B], n EIN. 

Then the following are equivalent: 

(a) b is Robinson-algebraic of degree <n over A in B. 

(b) b is n-potent over A in B. 

(c) There is a primitive £-formula O(X,Z1 5++ 52) such that 

<n ies k _. 
T+ Wz,..2,3 “xO(x,21,--52,) and there is a € Al with 

BF O(b,a). 

Moreover, the set of all b © |B| which are Robinson-algebraic over 

A in B is the universe of a substructure of B. 

If B is T-existentially closed, then B is Robinson-algebraically 

closed. 

One of the connections with prime extensions is: 

Proposition 

Let T be a theory admitting elimination and suppose each A F Ty has 

an extension AF T which is Robinson-algebraic over A. Then T has 

PEP and A as above is the prime extension of A. 
minimal 

If moreover A as above does not have a non-trivial A-automorphisn, 

for all A E Tye then T has PEP os oneal’ 

Proo SZ 

Let AC BET. First note that because B is T-existentially closed, 

B is also Robinson-algebraically closed by the preceding theorem. 

Because T, has AP by (2.13), there is C k T with B C C and an embedding 
~ 

f:A > C such that the diagram
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aw 
A C commutes. 
NN fi 

A 

Then a € |A| is Robinson-algebraic over A in A, and so f(a) € |C| 

is Robinson-algebraic over A in C, so f(a) is Robinson-algebraic 

over B in C, hence f(a) € |B|. 

As F(A) C |B|, this shows that A is a prime extension of A. 

If AC BCA and Bk T, then as above each a € [A] is Robinson- 

algebraic over B in A, hence belongs to |B], so B = A. So T has 

PEP winimal’ 

The last part is proved as follows: let A C B k T and suppose f,g are 

two A-embeddings of A into B. Then, if c € [Al , g(c) is, as above, 

Robinson-algebraic over A, hence over f(A), in B. Because f(A) E T, 

this implies g(c) € |£(A)]. So g(A) C f(A), and by symmetry 

g(A) = £(A). But then gto f is an A-automorphism of A, which by 

assumption implies g = f. O 

Remark 

~w 

If a theory T has PEP then the prime extension A of any 
universal’ 

AF Ty is indeed Robinson-algebraic over A. This is because each 

b € |A| is clearly 1-potent over A in A. 

(3.6) p-adic fields (References: [ Ax&Ko] , | Kol, [M1] ). 

Let p be a prime number. A p-valued field is a valued field of char. 

with residue field F and v(p) = 1 (by notation) as the smallest 

positive element of the value group. So Q with its p-adic valuation 

is a p-valued field. 

A p-adically closed field is a p-valued field without any proper 
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algebraic (valued) extension which is also p-valued, or equivalently 

it is a henselian p-valued field, whose value group I satisfies 

A T/ Op) =n, for all i<n EN. 

So U and its valued subfield of algebraic numbers (= the hense- 

lization of Q with its p-adic valuation) are p-adically closed. 

Since the work of Ax-Kochen and ErSov it was known that the theory 

of p-adically closed fields is complete and model complete. Later a 

special study of these valued fields was made by Kochen in [ Ko] 

(and also by P. Roquette), who found many similarities with ordered 

and real closed fields. 

However, the theory of p-adically closed fields does not admit 

elimination in the language of valued fields. 

Also a p-valued field has in general no prime extension (with respect 

to the theory of p-adically closed fields), although it has one - 

namely its henselization- if *T/ = n for all n EIN, n 21, where 
nr? 

Y is its value group. 

A natural remedy to the first defect was given by A. Macintyre 

in [M1]: define for each p-adically closed field K = (K,div) 

and for each n EIN with 2<n a unary predicate pk by: 

PS (a) iff a © K" = {k"|k EK}. 

Let pCF be the theory of p-adically closed fields formulated in the 

language of valued fields augmented by new unary predicate symbols 

P_ (2Sn EIN), with the obvious defining axioms 

vx(P (x) * ay(y" = x)), 

added to the theory. Macintyre proved: pCF admits elimination. 

Macintyre did not treat the question of prime extensions for pCF in 

[M1].



50 

Theorem 

PCF has PEP universal’ 

Proo 

Let A = (D,div,P, ,P; ,--) F (PCE) Note first (for later use) that 

Q(D) can be uniquely expanded to a model Q(A) = (Q(D),Q(div),...) 

of (PCF) with AC Q(A). 

Let A C B F pCF and define A as the substructure of B whose universe 

is the set of all b € |B] which are algebraic over Q(D). 

CLaim Ak PCF. 

As the underlying field of A is algebraically closed in the under- 

lying field of B, A is clearly henselian as a valued field; let now 

OFDE |A| and 2 <n EIN. Then, because 0,1,2.1,...,(n-1).1 are a 

complete set of representatives of [ mod nr, where [ = value group 

of B, there is 0 Si <n with v(bp) E nr (v the valuation of B), 

so for some 0 Fue |B| v(bptu®) = 0, hence by Fact 1 in [M1] 

bptuk 7} Ee pe 1 t is also for some 0 #k EIN, so bp k € Pe, so bp -k~ 

an nth power in A, which implies v(b) = j.1 mod nA for some 

0 Sj S n,A being the value group of A, hence HAL) =n. 

That pA is the set of nth powers in A follows because A is 

algebraically closed in B. 

So the claim is proved. 

Now A is clearly Robinson-algebraic over A. Then by the proposition 

of (3.5) the proof reduces to showing: A has no non-trivial A- 

automorphism. 

Suppose oOo is such a non-trivial A-automorphism of A. 

Take a maximal substructure 

L 
K = (K,divy Pp 5P3) of A = (Ly div, 5P2',Ps’5++-) 

on which o is the identity.
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Then for all n EIN, n 2 2: pt = XP. Suppose a € PRK, and let 

be |A| be an nth root of a. Then, because b ¢ K,o(b) #b and 

o(b)+b + = 9 #1is an nth root of unity. Then by Fact 2 in [M1] 

op & LF for some 2 <m EIN. But as in the proof of the claim above 

one finds rational q # 0 with qb € L" = P_, so o(qb) € LF and 
m 

1 
o(qb)(qb) ~ =p & L, contradiction. 

Also (K,div,) is clearly a henselian valued field, by the universal 

property of the henselization and the definition of K. 

none shows just as in the proof of the claim Finally, using ps = K 

above, that #(T,/ ) =n, for all nEN, n 2 2. 
K nl 

So K E pCF, and because A is minimal prime extension of A, one has 

K = A, contradicting o # 1. O 

Concluding remarks 

(a) Some extra notation: pFL denotes the theory of models of PCF 

whose underlying domain is a field. 

From the proof of the theorem one obtains also: 

(b) Each p-adically closed field (K,div,) has a unique expansion 

-namely (K,div,,K* ,K*,...)- to a model of pFL. 

(c) From (b) one gets that Q has a unique expansion to a model of 

PFL, namely that expansion which makes it a substructure of 

(K,div,,k* ,K*,...) where (K,div,) is the henselization of Q 

endowed with its p-adic valuation. 

(d) As far as I know there is not yet an explicit description of the 

elimination theory of pCF. 

(3.7) m-vakued fields (References: [Ax&Ko] ). 

Let mT be a symbol, and define a T-valued field as a structure 

(K,div,,™) with (K,div,) a valued field with residue field of char. 0
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and T € K such that v(m) = 1 (by convention) is the smallest positive 

element of the value group. 

Define a q-adically closed field as a nm-valued field which has no 

proper algebraic (m-valued) extension. 

Equivalently, a T-adically closed field is a m-valued field which is 

henselian, whose value group Il satisfies #(T/ 7) =n, (1 <n EW), 

and whose residue field is algebraically closed. 

So (C€((1)), div ‚m), where div belongs to the valuation ring ¢[7], is 

a w-adically closed field. 

By the results of Ax-Kochen and ErSov the theory of m-adically closed 

fields is complete and model complete. 

But again this theory has the same defects as the theory of p-adically 

closed fields formulated in the language of valued fields. 

So define for each n-adically closed field K = (K,...) the predicates 

Piz < n EN) by ps = K", and extend the language of valued fields 

by adding a constant mT and the unary predicate symbols P_ (2 <neEN). 

Let nCF be the theory of m-adically closed fields formulated in this 

language, with the obvious defining axioms for Pot Then one can show 

along the lines of Macintyre's proof of Theorem 1 in [M1]: 

TCF admits elimination 

(Elsewhere I will give a more elementary proof of this result, than 

the one obtained by following Macintyre's method.) 

The same reasoning as in the proof of the claim in the theorem of (3.6), 

augmented by an easy argument on the residue field, shows: 

nCF has PEP... 
— minimal. 

Of course TCF does not have PEP . : 
— universal 

(E((r)) ,div,n,€((7))?...) 

has a non-trivial automorphism over its substructure 

(IR( (n)) ‚div' ‚nT ,P3 ,...).
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Concluding remarks 

By Hensel's lemma it is clear that 

P_ K" = {xEKlv(x) € n.T,U{ee}} (2 <n EIN) for each 

(K,div,,P2,.--) F TCE. K? 

mFL is by definition the theory of models of (TCF), whose 

underlying domain is a field. 

Each t-adically closed field has a unique expansion to a model 

of TEL.
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CHAPTER ITI Fields with n onderings 

In this chapter the model theory of fields, or rather domains, with 

a given number of orderings will be treated. 

Not so much for its own sake, as well in order to demonstrate 

techniques and to use results which also play an important role in 

Ch. III. 

51. The model companion 

(1.1) Defsanition 

Let n EIN. An n-ordered domain is a structure D = (DP, 5++5P_) with 

D a domain and P. an ordering on D. 

OD, is the theory of n-ordered domains. 

Similarly an n-ordered field is defined, and OF is the theory of 

n-ordered fields. See Ch. I (3.2) for the notion of ordered domain as 

used here. 

The main result of this section is: 

(1.2) Theorem 

OD, has a model companion OD, > whose models are the models (K,Py,--5P) 

of OF satisfying: 

(a) P. and Ps induce different (interval) topologies on K, for all 

1<$i <3 <n. 

(B) For each irreducible f(T,X) © K[T,X] and a € K such that f(a,X) 

changes sign on K with respect to each of the orderings P., there 

exists (c,d) © KxK with f(c,d) = 0. 

So the (universal) axioms of OD. > together with the field axiom
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Vx # 0 ay(xy=1), and (a),(8) give us an axiomatization of OD. - 

That (a) can be formulated in the language of OD, is seen as follows. 

A basis of neighbourhoods of 0 in an ordered field (K,P) is given 

by the sets (-e‚e) with 0 Se © K. So we can express in the language 

of OD, that some neighbourhood of 0 in the P .-topology is not a 

neighbourhood of 0 in the P.-topology ; or conversely. 

Orderings inducing different topologies are also called independent 

orderings. 

(1.3) To prove the theorem it suffices by Ch. I (2.21) to show: 

A Each existentially closed model of OD, is an n-ordered field 

satisfying (a) and (8) of (1.2). 

B Each model of OF satisfying (a) and (8) of (1.2) is 

existentially closed. 

If n = 0 (1.2) is evidently true, as (a) becomes vacuous and (8) only 

says that K is an algebraically closed field. So for n = 0 we get the 

old result that ACF is the model companion of the theory of domains. 

Therefore we shall assume n #2 1 in the following (although the case 

n = 1 gives nothing new too: OD, = OD, so OD, = RCF). 

The next three lemmas together imply part A. 

(1.4) Lemma 

Each n-ordered domain can be embedded in an n-ordered field. 

Proof 

If (D,Pi,-.,P) 1s an n-ordered domain, then 

(D,P1,--5P)) C (QCD) ,QCPi),~--,Q¢(P_)) F OF: Oo
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(7.5) In order to motivate the next lemma, it is useful to have an 

equivalent formulation of (a) of (1.2). This formulation is 

provided by the following fact: two orderings P and Q on a field K 

are independent iff each neighbourhood of 0 in the P-topology and 

each neighbourhood of 1 in the Q-topology have non-empty intersection. 

This follows from an approximation theorem ((1.7)) which we will use 

very often. The following notion is due to I. Kaplansky, see [ Ka]. 

(1.6) Definition 

Let K be a field. A V-topology on K is a Hausdorff ring topology on 

K, such that if any two subsets A and B of K are bounded away from 0 

(i.e. disjoint with a O-neighbourhood) then also AB is bounded away 

from 0. 

A theorem, proved independently by I. Fleischer and Kowalsky-Dürbaum 

says that a topology on a field K is a V-topology iff it is the 

topology induced by an absolute value function K +IR, or the valuation 

topology induced by a (Krull) valuation on K. Of course an interval 

topology induced by an ordering is also a V-topology. Note that 

V-topologies are field topologies. For a very short proof of the next 

theorem, see [P.&Z.]. 

(1.7) Approximation Theorem for V-topologies (A.S. Stone). 

Let K be a field and Ty>--:t be different V-topologies on K, and 

let for each 1 $i Sm U; be a non-empty tT;zepen subset of K. 

Then U, M...0 U Ff. 

In the following, if an n-ordered domain (D,P, 5--5P,) is given, I 

will write SS; etc. to refer to the linear order on D defined by
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(7.8) Lemma 

Let K = (K,Pi,.-5P_) F OF, and let 1 <i<j<n and 0 <; er EK 

and 0 Ss €2 © K. Then K can be embedded into some £ = (L‚,Q1s-.,Q DF OF. 

with an x © L satisfying: 

-€, <. x <. €, and t-e2, <. x <. 1+E2. 
i i 5 5 

Proof 

We put L = K(X) and x = X and extend Pi ‚,..‚P, to orderings Qi >-->Q, 

on L such that X is positive in the Q;-ordering and infinitesimal 

with respect to (K,P.), j.e. 0 S; X <; e for all OS, e © K, and 

X-1 is infinitesimal in the Q, ordering with respect to (KP). 0 

(1.9) For the next lemma (and also for later developments) recall 

that, given an ordered field (K,P) and an algebraic extension 

Kla) of K with f(X) © K[X] as minimum polynomial of a, P can be 

extended in precisely r ways to an ordering on K(a), where r is the 

number of roots of f(X) in the real closure (K,P) of (K,P): 

if ar<....< a, are these roots, then a pa, gives a K-embedding of 

Kla) into K which induces an ordering P on Kla), and Pi y++5P_, are 

exactly the r different extensions of P to Kla). 

(1.10) Lemma 

Let K = (K,Pi,.-5P.) F OF and £(T,X) © K[ T,X] be irreducible and 

a © K such that f€a,X) changes sign on K w.r.t. P., for each 1 SiS&n. 

Then K can be embedded in an £ = (L,Qi5++sQ,) EF OF with (c‚d) € LxL 

such that f(c,d) = 0.
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Proog 

Let t be transcendental over K and extend the ordering P. to an 

ordering P. on K(t) such that t-a is infinitesimal with respect to 

(K,P,), and do this for 1 Si Sn. Then the polynomial f(t,X) 

f£(t,X) © K(t)[X] changes sign on K(t) w.r.t. each ordering P., SO 

f(t,X) has a root in the real closure of (K(t),P;), 1S in. 

But as f£(t,X) © K(t)[X] is irreducible, this implies that Pe can be 

extended to an ordering Q; on the field K(t)[ X] / Put 
(£(t,X))° 

L = KCOLXI/ ey 0) and c = t, d = X mod f(t,X), and we have 

f(c,d) = 0 as required. CJ 

Using the definition of existential closedness (Ch. I (2.2) and (2.6)) 

we see that (1.4), (1.8) and (1.10) imply part A of (1.3). 

For part B we need some more lemmas. 

(7.17) Lemma 

Let K = (K,Py5+-5P_) EF OF, satisfy (8) of (1.2). Then each f(X) € Kl X] 

of odd degree has a root in K, and Py 9...9 P_ = K? , 

Proof 
Replacing f by a suitable irreducible factor, we may assume f to be 

irreducible. Then use (8) and the fact that an odd degree polynomial 

over an ordered field changes sign with respect to the ordering. 

If a € (P, OOP ONK, then X?-a € K[X] is irreducible and changes 

sign w.r.t. Ps, for each 1 <i <n. So it has a root in K by (B), 

contradiction. 0 

(1.12) Lemma 

Let K be a field in which every odd degree polynomial of K[X] has a
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root. Then there is for each finite separable extension L of K a 

chain of fields: 

K = Lo CL; CG ...C Li = L with [Lisa 

Proof (from [Ri2, p.1531): 

Let M be a finite Galois extension of K containing L. Suppose [M : Kl] 

has an odd factor >1. Then any 2-Sylow subgroup H of Gal(M|K) is a 

proper subgroup of odd index. Hence the fixed field of H is a proper 

odd degree extension of K, so there is an irreducible f € K[Xl of odd 

degree >1, contradicting the hypothesis of the lemma. 

Hence Gal(M|K) is a 2-group and Gal(M|L) C Gal(M|K). 

By [Ri2, p.53] there exists a chain of subgroups 

) = 2, Gal(MJL) = G6 CG 4 C...C Go = Gal(M|K) with (G, : G 
m-1 1+1 

0 S i Sm, giving rise, by the fundamental theorem of Galois theory 

to a chain of subfields as described. D 

(7.13) Lemma 

Let (K,P) be an ordered field such that each f(X) € K[X] of odd degree 

has a root in K. Then: K is dense in K (where (K,P) is the real 

closure of (K,P)), iff K? is dense in P = {x © K|x 2 0}. 

Proof 
(>): Let 0 <a € K and 0 <e © K. Then we have to prove that 

(a,ate) NK? fg. By assumption we can find 0 < 6 € K with 

28/a+8? < e and b EK with va <b < Va+6é (where the positive square 

root is taken). Then b? € (a,ate). 

(=): By lemma (1.12) it suffices to show that for any quadratic 

extension K(/a) C K of K, K is dense in K(Va) and that K(/a) inherits 

the properties that each odd degree polynomial over it has a root in 

it, and that its set of squares is dense in its set of nonnegative
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elements. 

Each odd degree polynomial over K(/a) has an irreducible factor 

of odd degree, which is necessarily of degree 1: 

otherwise K(/a) has an extension of odd degree >1, hence K has a 

finite extension of degree not a power of 2, contradicting (1.12). 

If K is dense in K(/a), then the density of K? in P implies easily 

the density of (K(/a))? in P N K(/a). 

Finally, to prove that K is dense in K(/a) it suffices, by the 

cofinality of K in K(/a), to show that (Va-e,vate) N K # D for each 

0 <e€ K. Choose 0 < x,y © K with 0 < ta <x? <a<_y? and 

y?-x? < eva. Then 0 <x < Va < y and y-x = (y?-x? )/(y+x) < eVa/yt+tx Se, 

hence x,y © (va-e,vate). CO 

Remark 

Prof. A. Prestel indicated to me an easy topological proof of (1.13): 

if K? is dense in P and each odd degree polynomial over K has a root 

in K, then also the completion (K,P) of (K,P) satisfies these 

properties, and this implies that (K,P) is real closed, and as K is 

dense in K, K is dense in the real closure of (K,P). However, to make 

this reasoning precise, one needs a few properties of complete V- 

topological fields, see Ch. III, (1.18). 

(1.14) Corollary 

Let K = (K,P,,..,P_) FE OF, satisfy (a) and (B) of (1.2). Then (KP) 

is dense in its real closure, for all 1S 1S n. 

Prook 

By (1.11) and (1.13) it suffices to show that P; 9... Po is dense in 

the set Py with respect to the P;-topology on K. So let 

0 <. a <; b, a,b © K; then by (a) and the Approximation Theorem (1.7)
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there is x © K witha S; x S; b and 0 S x for all j #i. 

Hence x © P; Nn... P.- O 

In the next lemma (a) of (1.2) is generalized to polynomials in 

more than 2 variables. The essential tool is Hilbert's irreducibility 

theorem as exposed in [Roq], see also [L2, Ch.VIII]. 

(1.15) Definition 

Let K be a field and f = F(T Xi ,..5X,) E K(T)E Xr 4. - 5X] be irreducible 

(k #2 1). The basic Hilbert set over K associated to f is defined as 

the set of all t © K for which fCtE,Xi 5e. Xi) Ee KE X15. + 5X] is 

defined and irreducible. 

A Hilbert set over K is the intersection of a finite number of basic 

Hilbert sets over K. 

Hilbert's irreducibility theorem is said to hold for K, or K is a 

Hilbertian field, if each Hilbert set over K is non-empty. 

No two sources in the literature seem to agree over the definition of 

Hilbert set. Anyway, the Hilbertian fields as defined above are the 

same as those of [Roq] and [L2, Ch. VIII], as is easily checked. 

An elegant and useful nonstandard interpretation of Hilbert's 

irreducibility theorem is given in [Roq ]: let K be a field, *K its 

nonstandard extension in an enlargement of a suitable structure 

containing K, and define an element t € *K to be a Hilbert element 

over K if t ¢ K and K(t) is algebraically closed in *K. Then it is 

proved in [Roq ] that K is Hilbertian iff there exists a Hilbert 

element over K.
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Examples 

Q is a Hilbertian field; each rational function field F(Z) is 

Hilbertian; a finitely generated field extension of a Hilbertian 

field is Hilbertian; a field having a non-trivial Henselian valuation 

is not Hilbertian. 

The following result, which may be interesting in itself, is needed 

in §3. 

(1.16) Theorem 

Let Tr set, be different non-discrete V-topologies on a Hilbertian 

field K and let for each 1 Si Sn U; be a non-empty open subset of 

K and let H be a Hilbert set over K. Then U, M...N U, OH # gf. 

PrOOS 

I will freely use concepts and results from [Roq] and [P.&Z.]. 

The above theorem states that a certain conjunction of local sentences 

holds for (K,T,o+-5T,); so we may assume that (KT 9++sT)) is w- 

complete. Hence T, is the topology induced by a non-trivial valuation 

Ve: K* > GC.» G. an ordered abelian group. Let t be a Hilbert element 

over K and take x € K with v(x) = 0 if v.(t) <0, while vs Ox) < 0 

if v(t) > 0. Then u = (t+x)! is also a Hilbert element, and satisfies 

v, (u) > 0 for alli<i<n. 

Take for each 1S is$<n a. E U. and 8: € G. with 

{y € K|v.Cy-a,) > g.} C Us; and choose y © K such that for all 1 <1 <n 

v.Cy-a;) >g., and0 #26 K such that for all 1<i<n v; (2) > g.. 

Then w = y+zu is a Hilbert element with v.Cwra.) 2g. for all 1 <i n, 

so wE U, NM... U: Apply now the generalized Gilmore-Robinson theorem 

in [Roq]. O
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(1.17) Lemma 

Let (K,Py ,--5P) F OF, satisfy (a) and (B) of (1.2), and let 

f = f(T: ,..5,T, 5X) Ee K[T, ,..,T,X] (m > 1) be irreducible and 

(ai ,--,a,) € KF pe such that f(a, ,--,a,>X) changes sign on K for 

each ordering P.. 

Then f has a zero (ci 5+-5C, 5d) E «mrt 

Proof 

With induction to m. Suppose the statement is true for m > 1, and 

X) € K[T:,...T X] be irreducible and 
m+1? >"“m+1? 

be such that f(a: ,.. 

let f = f(T, self 

m+1 . 
(ay5-+-.4, 44) € K ans) changes sign on K 

for each P.. 
1 

Take for each 1 Si <na sufficiently small P .-neighbourhood U; of 

such that for all a rE U; f(a,,-..,a ',X) still ant m+1 

changes sign on K for the ordering P.. 

a 
m? m+ 1 

Next choose infinite subsets A and B of K such that for all toEA, ti EB 

tottia, © Uy NL... UL, (such subsets exist by (1.7)). Then, by the 

standard interpretation of [Roq , Theorem 3.4.], there are to © A and 

ti © B such that to+tti:T: is in the basic Hilbert set over K(T, ,..5T,) 

associated to f considered as an irreducible element of 

KCT, ,--,T CT, 0X]. Put g(T1,.-,7,.X) = £(T1,.-,T stotti Ts „XD. 

Then g € K[T, ,..,T 5X] is irreducible as an element of K(T, ,.-,T LX] 

and glai,-.,aX) changes sign on K, for each ordering P.. 

By Gauss! lemma: g = c. G, with c € K[T,,..,T,] and irreducible 

G € K[Ti,..,T XI]. By slightly changing Car 5+-,4,), if necessary, we 

may assume clai ,--,a,) #0, and so the induction hypothesis can be 

applied to G, and gives a zero of G, hence one of f. O 

To finish the proof of part B a more precise version of (1.17) is
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needed, namely: 

(1.18) Lemma 

Let (K,Pi5++5P)) F OF, satisfy (a) and (B) of (1.2) and let 

R(Ti ,..,T 5X) E K[T: >. TX] be of degree d > 0 in X and monic in 

X and irreducible, and let for each 1 S$iSn ks be a natural 

number with 1 Sk. <d, and let (a; pees ),(b; »--»b; ) be m-tuples 
1 i 

m m 
in K with ais <; Dig for all 1 Sj Sm, such that for each m-tuple 

he ide in K with ais <; Cis <, Dis (j = 1,2,..,m) 

R(c, > >C; ‚X) has at least k; roots in the real closure of (K,P,). 
1 m 

m+1 
Then there is (cr ,-+5C, od) E K with R(ci ,..,e.d) = 0, such that 

for each 1,1 Si Sn: a... <. c. <. b.. (j = 1,2,..;m), and d is 
ij ij 1 ij 

the k,* root of R€cy 9++ sen) in the real closure of (K,P,) (wheré 

the roots are numbered in increasing order). 

Remark 

It may be useful to look first at the proof in (1.19) to see how the 

problem is reduced to the rather technical lemma (1.18). 

Proo F 

Let us first consider the case that for some w in the algebraic 

closure K of K the set {t = (ti,.-,t,) E K™| R(t w) = 0} is dense in 

K" with respect to the Zariski topology on K™ (whose closed sets are 

by definition the zero sets in KF of sets of polynomials in 

KIT, ,..,T J). 

As K is infinite, it is wellknown that KF is dense in K” and that 

the Zariski topology of Kl induces on K™ the Zariski topology of K™ 

So {t © K™|R(t,w) = 0} is also dense in K, hence vt € K™ R(t,w) = 0, 

which implies: 

R(T, ,.-,T,w) = 0.
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Then no T. can appear in R. For if some T. does, write 

1; 1 

R = Xe. . COT, x...xT ” with c. . OO © K[X]. 
ti ore sd m 1, > sl 

Then c. - (w) = 0, so the c. . (X) have a common factor in 
11 5e «51 li 35 < 31 

m m 

K[ X] , contradicting the irreducibility of R. This in turn implies 

that RE K[X] is linear. (Otherwise K has a proper algebraic 

extension to which each ordering P. can be extended, and by (1.12) 

this extension may assumed to be of the form K(Va),a © K\K?. But 

this contradicts (1.11) as a= (Va)? is in Py N...N Poe 

The linearity of R © K[X] makes the lemma trivial. 

So in the following we will assume: 
at 

(a) For each w € K the set {t € K™| R(t yw) = 0} is not dense in KX” 

w.r.t. the Zariski topology on K"; in particular R ¢ K[X]. 

Next we may assume: 

(b) a.fta.=...=2=a.2a.,bd.2bD.=... = bb. = b. 

IN Namely, given 1 j Sm, choose e€.. <. 0 such that a..t+te€.. <. b..-€.. 
1j 2} 1 1 1} i J} 13 

and replace all a.. by an element g. of .O,(a..,a..+€..). and all b.. 
5 i= ij ij i ij 1) n 

. NA ..7E.. -.). 1 i 1 . . by an element Ds of i840; Eiaodi ada, which is possible by (1.7) 

Let D = D(T, ,..,T,) be the discriminant of R considered as a 

polynomial in X. Then D #0, because R is irreducible and char(K) = 0. 

So, after making the intervals Cassb); smaller, if necessary, we 

may also assume that D(ti,.-,t,) * 0 for all (ti,-.,t,) € K” with 
n 

. € LN . .). } = oe 1.e. oe ts Balazs); (3 1,..-,m), i.e. for all such (t; , st? 

R(tis.-,t,»X) has no multiple roots. 

Then the implicit function theorem for polynomials over real closed 

fields implies that, after making the imtervals Cassb); smaller if 
J 

necessary, the kK root of RC ti 5+-t,»X) is a continuous function
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of (ti,--,t,) (for those (tiy--,t)) such that for all 1& jS&m: 

t. € Cas ,b.)5> where these intervals are taken in the real closure 

of (K,P.)), for each 1 Si $<n; and similarly for the other roots. 

Hence, making the intervals (as ,bd.)5 again smaller if necessary, 

and using (1.7) and (1.14), one can get the following situation: 

(c) There exist a,B © K, a <; B, (1 = 1,..,n), such that for each 

1 i"n: if (ti,..,t_) € K" satisfies t. € (a.,b.). for all 
m J J jt 

jd = 1,..,m, then R( ti ,--5t,»X) has a unique root in the interval 

Ca,B); of the real closure of (K,P;). This root even is in the 

smaller interval (a,a+3(B-a));, is a simple root, and is the Kk, 

root of R(ti s-.ot Xx) in the real closure of (K,P,). 

Put y = (p-a) +, SO Y >, 0 for all i = 1,..,n. By a result of 

W.D. Geyer, in this form used by M. Jarden in [J2, p.297], 

it follows that 

RCT, Tst (ZP U2 +V2 HY) © K(Z,U VLT, TI 

is irreducible. 

By the standard interpretation of [ Roq , Th. 3.4.] there are u,v © K 

such that 

RCT, Tr sar 2? +U? +(utvZ)? +y) DE K(Z,UNT: TI 

is irreducible. 

Applying this trick once again we get r,s © K such that: 

(d) R(Ti,.. pT 2 a+ Z? +(r+sZ)? +(utvZ)? +y) “4 E K(Z)[T; ,.. TJ 

is irreducible. 

Let q(Z) = 2? +(r+sZ)? +(utvZ)* +y © K[Z]. [Roq , Th. 3.4.] and (1.7) 

also imply that r and u can be taken arbitrarily close to 0 in each 

P.-topology on K, so we may assume that for each 1 <i Sn: 

le) the function z a+(q(z)) 7, defined on the real closure of 

(K,P.); includes in its image the interval Ca,ats(B-a)) . of
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this real closure. 

Write RCT, „Tr 0+(q(Z)) 7) = S(Ti TZ) +p(Z)+(q(Z))* with 

p(Z) © K[Z] ,k 20, S = S(T, 5.-,T, 54) E KET, ;--,T, 52] such that the 

coefficients of S, considered as a polynomial in (Ti,.-,T); have 

no common factor in kIZ]. Then by (d) and Gauss' Lemma: 

(4) S is irreducible in K[Ti,..,T,,2). 

By (a) there is a nonempty Zariski-open set U in K™ such that 

for all t © U: R(t,X) and p(Z) have no common root in K. Hence, 

after making the intervals (a. 5°P3i smaller if necessary, and using 

(1.7), we may also assume: 
n 

A . 
(g) For all t = (ti,--,t,) € K° with ts € e145 obs) so (j =1,..,m), 

R(t,X) and p(Z) have no common root in K. 

Hence, by the definition of S, combining (ec), (e), (g) and (1.14): 
n 

m . . 

(h) For each t = Gti eest) E K with ts € pOy0 452i ie (j = 14,..,m), 

and each 1 Si Sm: S(tiy-+st, 4) changes sign on K for the » 

ordering Pas and if z is any root of S(tis--+st 2) in the real closure 

of (K,P,;), then at(q(z)) 7+ is the kT root of R(t,X) in this real closure, 

Applying the same trick of Jarden to S and the variables be we 

get that 

F(Y,Z) = FCY11,Y125Y135-+3¥.. 5¥..,Y det 

S(a,+(bi-a, )(Y, #Y¥:24¥i342) 2 a +(b_-a )(Y? +Y? +Y2 42) 74,2) 
l too 11 A mM m m Mi m2 m3 > 

is irreducible in K(Y)[Z]. 

Write FC(Y,Z) = £(Y,Z)-r(Y) with irreducible f © K[Y,Z] and 

r(Y) € K(Y). The denominator of r is a product of factors 

Y? +y? +Y? +2, so r is defined on each y € K*™. 
Ji J2 433 

-1 
Take an e Ke") Then a.+(b.-a.)(v? +y? +y? +42) 

yy Me A EE YG 

n 

(1 Sj Sms, so by (h) we get: 

F(y,Z) changes sign on K for each ordering Ps,
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so f(y,Z) changes sign on K for each ordering P.. 

3m+1 
Hence by lemma (1.17) f has a zero in K » and this is also a 

zero of F. 'Par abus de langage' , let this zero be (y,z), and put 

“ltoa«< j Sm) and d = at(q(z)) Tt, 

m+ 1 

. = a.t(b.-a.)(y* ¢yv% +y% +2) 
oe a in ihe RAE AT AE 
Then by (h) and (b): Geis. sed) € K satisfies the conclusion 

of (1.17). 0 

(7.19) The proof of part B, (1.3), can now be finished by model theory 

as follows: 

Let K = (K,P, 5++5P_) F OF satisfy (a) and (8) and let K C LE OD, 

and suppose op is a K-existential sentence true in £. It remains to 

show: p is true in K. 

Let £ = (L,Qi,--5Q.)- By (1.4) and the assumption that p is existential 

we may assume that L is a finitely generated field extension of K. 

Because char. K = 0, we can then write L = K(ti,--,t Lal with 

t = (ti,--,t,) a transcendence base of L over K and such that a has 

minimum polynomial R( ti y-+.t,»X) over K(ti,..-,t,); with R = (Ti ,--5T, 5X) 

an irreducible polynomial of KLT, ,..5T, »X] (see Ch. I, (2.4) for a 

Similar argument). R is monic and of positive degree, say d > 0, in X. 

Let for each 1 Si Sna be the kK root of R(t,X) in the real closure 

of the ordered field (K(t),Q. NO K(t)), sois Kk. <d. 

Consider the following sets of sentences in the language of OD.» 

augmented by names for the elements of K and new constants c;,..;¢c_,d: m?’ 

YT, = OF. U Diag(K). 

For each 1 Si <n, let r, i be the set of all sentences 
b | 

SCC se: sC) >, 0, such that S(T, ,-.5,T_) E K[T,,-. TI] and S(t) >. 0. 

Put 1, =r U..UT, 
291 Nh
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Let for each 1 Si Sn @.,(ci »--.c, 5d) be an open sentence (not 

containing the predicates Pi,..,P._45P;,,.+-.P,), such that for any 

ordered field extension (M,P) of (K,P,) and all C1 9++5C od E M: 

(M,P) F Oe, ‚d) iff d is the ke root of RC ti sec) in „en 

the real closure of (M,P) (such 0, exists by Tarski's Theorem 

mentioned in Ch. I, 651, or by Sturm's Theorem, see [L3, p.276]). 

Let T3 = {0:(c,d),..,0,(c,d)} (ce = lei, 

Note that (£,ti,--,t, a) Fr, UT, U F3 and that (using the remarks 

in (1.9)) (£,ti,--,t 0) can be embedded over K in each model of 

rT; UT, U F3 (where as usual models of Ty; are considered as 

OF -extensions of K). 

So £ F p implies MT, UT, UT 3 F p. Hence, by the compactness theorem, 

there are finite subsets A, ,..,A_ of T se. sT respectively, such 
n 251 2sn 

that, putting A = A: U...U A: 

(a) Tr, VAUT; kop. 

Let for each 1 <i <n p,(c,,--,¢,) be an open sentence (not con- 

taining the constant d or the predicates Pro-+oPs_4oFaygo-+oPy)> such 

that for each ordered field extension (M,P) of (K,P.) and all 

Cy» sCn E M: (M,P) F Wister sen) iff R€cy »-.seX) has at least k; 

roots in the real closure of (M,P) (such p; exists, again by Tarski's 

Theorem). 

Note that 

(K(t),Q A K(t),..50, MN KCO sti soest) Fra SS yi led, Co} 

and that (K(t),Q, A K(t),.-5Q, N KCE) „Er pee pt) can be embedded over 

K into each model of Tf, U T,, so each model of T, UT, satisfies T4. 

Hence by the compactness theorem there is a finite subset of Ts, 

which (after enlarging A) we may assume to be A, such that
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(b) T,; VAFT,. 

Let 1 $i Sn. 7, U A; is consistent, so there are elements 

a. ,b. 5.-,a- ,b. in the real closure of (K,P.) with a.. <. b.., 
11 ° ii im? im 1 ij 1 ij 

such that for all Capote sCim in this real closure with 

2. SS. …… S. …. } = -_ - 1 l oe 1 - ais + Ci4 A Das (3 1,..;m);, A. is true if cq, sc, are inter 

preted as Cie Ca, respectively. 

Because of (1.14) we may assume all azaodss to be in K. Now (b} 

implies that all assumptions of lemma (1.18) are satisfied. Then the 

conclusion of (1.18) says that there are Cree Cl gd! in K such that 

A UT3 is satisfied in K if C1 5+-+5C, od are interpreted as 

C1 yee 50) gd! respectively. Then (a) and the definition of IT, imply 

that KF op. 0 

Comment 

The proof of Theorem (1.2) will become perhaps more perspicuous by 

the following remarks. 

The model theoretic argument above is the key to the existence of the 

model companion. Namely, it shows that the n-ordered fields for which 

the hypotheses of (1.18) minus (a) and (8) imply its conclusion, are 

existentially closed. Conversely, it is easily shown that (1.18) 

remains valid if (a) and (8) are replaced by the requirement that the 

n-ordered field is existentially closed. Hence the existentially 

closed n-ordered fields are exactly those for which "(1.18) with (a) 

and (8) omitted from the hypothesis" holds. But this shows that the 

class of existentially closed n-ordered fields is elementary!, so OF 
n 

has a model companion, and it is then only a matter of applying a lot of 

reduction steps to reach the simple axiomatization given by (a) and 

(B) of (1.2).
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Note that OD, equals necessarily RCF (by Ch. I, (2.21), so OD, , is 

a complete theory, and is the model completion of OD, . Contrasting 

with this is the following result. 

(1,20) Proposition 

Let n > 2. Then OD, has 21° different complete extensions, and it is 

not the model completion of OD. or OF. 

Proog 

Let us suppose n = 2 for simplicity, and let (pi) be a 1-1 
kE IN 

enumeration of the set of primes, and define L = Q(Yp, Ik EIN). By 

easy valuation theory one proves that YP, ¢ Q(YPp|f SK). Hence, given 

any S:IN > {0,1}, there are ordering Peat and P , on L such that for 
9 

all k € IN YP, has the same sign with respect to Pe, and Pe, if 

s(k) = 0, and different signs, if s(k) = 1. | 

Let for each s: IN > {0,1} K be an existentially closed extension of 

(LP. 5Ps 4): Then we have for s # t (s,t: IN + {0,1}): 

KF K,. 

Suppose namely that s(k) = 0 and tk) = 1. Then in K_ each of the two 

Square roots of Pie has the same sign with respect to the first and 

the second ordering of K while in K they have different signs. 

So (Ko) 5: IN+{0,1} is a family of 250 pairwise non elementary equivalent 

models of OD,, and this implies the first statement of the proposition. 

That OD, is not the model completion of OF,, follows (by Ch. I, (2.20)) 

from the fact that OF, does not have AP: Q has exactly one OF, - 

structure, and Q(/2) exactly 4, and 4 > 2 = [Q(/2) : Q], and we apply 

then the following lemma, which often can be used to show that a 

certain theory of fields does not have AP. 0
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(7.27) Lemma 

Let L be any language extending the language of rings, and let 

T be an L-theory extending FL such that T has AP. 

Then the following holds: 

if K — T and K is the underlying field of K, and L = Kla), with a 

algebraic of degree n over K, then L has at most n expansions to a 

model £ of T with KC €£. 

Proog 

Suppose (£.),<,< ,, is a family of expansions of L as described. 

By AP there is a model A > K of T, and there are K-embeddings 

O, : £. + Á. The minimum polynomial f © K[X] of a has at most n roots, 

say G15 ++ 90, 4k <n, in A, hence op; (a) can assume at most k different 

values in A, and if o; Ca) = vla), then necessarily P; = Os, 80 

£. =a lL... O 
1 J 

Let me finish this section showing that the finiteness of n seems 

essential. Let K be an infinite cardinal and let OD, be the theory 

of structures (D,P,|\<«) with (D,P,.) an ordered domain for each A < k. 

(1.22) Proposition 

OD, has no model companion. 

Proof 

Let K = (K,P|A<«) be an existentially closed model of oD. It is 

routine to show that this implies K? = N {P, [A < Kk}. 

Using a simple chain argument one can reach the situation that for 

each A < Kk there is x, © K with x, < 0 but x >, 0 for all 
À A dX À 

u< Kyu # A. Let D be a free ultrafilter on Kk = {A|[A < Kk}.
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Then the sequence (xe gives rise to an element x in the universe 

K“/D of K“/D, which is positive for each of the « distinguished 

orderings of K*/D, by bos! Theorem. But this theorem also implies 

that x is not a square in K*/D, so K“/D is not existentially closed. 

We have shown that the class of existentially closed models of OD, 

is not an elementary class, so OD has no model companion by Ch. I 

(2.21). 0 

Remark 

There is however another way to consider infinitely many orderings 

on a field. A preordering on a field K is a subset Q of K with 

K? C Q,Q+Q © Q,Q-Q CQ, 

or equivalently, it is an intersection of orderings on the field. 

So one can consider a preordering on a field as describing the space 

of orderings which contain the preordering, and this space is compact 

with respect to a certain topology on it. The use of compactness 

instead of the finiteness of n€ IN might lead to a proof that the 

theory of preordered fields has a model companion.
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52, Decidabiklity and elimination 

The main result of this section is 

(2.1) Theorem 

The model companion OD, of OD is decidable. 

This will be proved in (2.11) as an easy consequence of the following 

classification (2.2) of complete extensions of OD. 

For each field K we put 

alg(K) = {a € Kla is algebraic over the prime field of K}. 

(2.2) Theorem 

Let (K,P,,..,P_) and (L,Q:,--,Q,) be models of OD. 

Then: (KP, ,--,P_) = (L5Q1 >--,Q) hid 

(alg(K),P, N alg(k),..,P, A alg(K)) ~ Calg(L),Q N alg(L),..,Q Nalg(L)). 

The proof is given in (2.8). 

(2.3) We will now indicate an extension by definitions OD of OD, 

which admits elimination. 

Let natural numbers d and k with d 2 2 and 1<k <d be given; then 

there is an open formula R CP 5Z5X1 oee Xy) in the language of ordered 
d,k 

fields, such that for any ordered field (K,P) and all Dar ++ ay Ee K: 

(K,P) F Ry j(Esbsars--sag) if and only if b is the Kt woot of 

2o4a, 20°71 + ... + a, in the real closure of (K,P). 
d 

Using Tarski's elimination theory, or Sturm's Theorem, one can 

effectively construct such a formula Ra k from (d,k). 
> 

For reasons which will become clear now I made explicit the appearance
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of the predicate symbol P in Ra Kk 
3 

Extend the theory OD, to the theory OD. by introducing new predicate 

symbols W, . k (d #2, 18k. <d) and by adding as defining 
TAU sK1 gee 9 n 1 

axioms the universal closures of: 

n 

Wa sky se ‚kre 2 Xa) + az( Fax, Eren 2 „Xg)) 

(2.4) Theorem 

OD, admits elimination. 

This will be proved in (2.14). 

The following lemma is the key to all above results. 

(2.5) Lemma 

Let Ly be a (commutative) diagram of field 

inclusions with Lj and Lz linearly disjoint over K. 

Let P,; and P,; be orderings on L, ,L, resp. with P, MK = P,; NK. Then 

P, and P, have a common extension to an ordering on L,L,. 

PAOOS 

By [L3 , Prop. 1, page 262] and Zorn's Lemma the problem can be 

reduced to the case that Li = Kla) and L, = K(B) for certain a,f € M. 

There are two subcases: 

(a} one of a,8, say a, is algebraic over K; 

(b) a and Bg are transcendental over K. 

Suppose (a) holds. Then L,L, = L,[a] and so the canonical map 

L, 8, Ls > L, Ly 

is an isomorphism.
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Further, by the amalgamation property for ordered fields, there is 

an ordered field (N,Q) and there are ordered field embeddings such 

that the diagram 

(Ly Pa ) 

a ™ 

ZZ 
) 

DS 
P=P, NK (La ,P2 

(N,Q) 

commutes. 

We may assume that N is generated by the images of Lj and La; 

so the induced K-algebra morphism Lj 8 L, + N is onto, and as 

Ly 8, L2 is a field, this morphism is even an isomorphism. 

Hence it induces an isomorphism N + L;L2, and the image of Q under 

this map is a common extension of P, and Pz to an ordering on Lliln. 

Suppose that {6) holds. Then a and B are algebraically independent 

over K. Let a,b be new constants and consider the set of sentences 

T = OF U Diag(K,P) U {pla) > Olp € KIX] ,p(a) > 0 in (Li ,P,)} U 

{q(b) > 0|q € K[Y] ,q(B) > 0 in (L2,P2)} U {r(a,b)#0|0#rEK[ X,Y] }. 

It is clear that if T is consistent, then an ordering on K(a,8) as 

required exist. So by the compactness theorem it suffices to prove: 

let Pi >: Pi E K[X] and dis++9dp © K[ Y] be such that p; Ca) > 0 in 

(L, ,P,;) and q,¢B) > 0 in (Lz ,P2) (1 <i<k,1<j3 <2), and 

0 #r € K{[X,YJ]3; then in the real closure of (K,P) there are a,b such 

that p; (a) > 0,4,¢b) > O,r(a,b) #0 (1 SisSk,1 <j <2). 

Now, OF U Diag(K,P) U {p,(a) > 0|1 <i <k} and 

OF U Diag(K,P) U {q,(b) > 0l1 <j <2} are consistent theories, 

so in the real closure of (K,P) there are non-empty open subsets A 

and B such that for alla € A: p; (a) > 0 (1 < isk) and for all b € B: 

a (b) > 0 (1 < jS); because A and B are infinite, there are 

a € A,bEBwith r(a,b) # 0. O
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(2.6) Lemma 

Let K = (K,Pi,.-5P,) E OF . Then the following properties are 

equivalent. 

(a) There is no proper algebraic extension L of K such that 

Ps s..sP can be extended to orderings on L. 

(b) K is algebraically closed in L for each extension 

£ = (L,Q1,--5Q0,) F OF, of K. 

(c) There is an extension £ = (L,Q,--,Q) F OD, of K such that 

K is algebraically closed in L. 

(d) Pi 9.6.9 PL = K? and each odd degree polynomial in K[X] has 

a root in K. 

Pr00é 

(a) > (b) > (ce) > (d) are clear by (1.11) and (1.2). 

(d) > (a): suppose L|K is proper algebraic such that Pry. oP can be 

extended to L. Then by (1.12) we may assume L = K(Va),a © K\K?. 

But then a = (a)? would be in Py 9... Pj» so in K? , contradiction. G 

Defsanation 

Let OF. be the theory of the class of structures K F OF. which 
„alg 

satisfy the equivalent conditions (a),(b),(c),(d) of (2.6). 

So an axiomatization of OF is given by the axioms for OF 
n,alg n 

and (d) of (2.6). I do not know whether 

OD, = OF U {axiom (a) of (1.2)}. 
n,alg 

(I would be surprised if it was.) 

(2.7) Corollary 

OF has AP. 
n,alg 
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Prooé 

Let embeddings K > £i,Kk + £2 be given with K - OF » £1 ,£2 Fk OF 
n,alg 

Let K = (K,P1,--5P_); £, = (Li ,Q 92+ 2Q,)> £4 = (La ,Ri,..,R). K is 

identified with a subfield of Li, and Lz resp. via the above 

embeddings. Because K is algebraically closed in Lj and char(K) = 0, 

Li|K is a regular field extension (see [L1, p.56 |), which 

implies that Li and Lz can be embedded in a common extension field M 

in such a way that L; and L2 are linearly disjoint over K. Then, by 

(2.5), for each 1S i <n the orderings Q. and R, have a common 

extension to an ordering Ss on Li;L2 C M. Then the following diagram 

of embeddings commutes: 

(2.8) Proof of (2.2) 

Let us write K for (K,P1,..,P_) and alg(K) for 

(alg(K),P, 9 alg(K),...5P_ MO alg(K)), and similarly introduce £ and alg(L). 

Suppose alg(K) ™ alg(£). Let us identify alg(K) and alg(£). 

alg(K) is a model of OF by (2.6) (e), so (2.7) implies that 
n,alg’ 

there 1S a commutative diagram of embeddings: 

ww Ny 
Ne 

Extending M if necessary, we may assume M k OD. Then K~ M 

and £<M, so K=ÁL£. Conversely, let K = £. Then, by compactness, 

OD, U Diag(K) U Diag(£) has a model M, and we may identify K and £
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with substructures of M. 

Then, because K-~< M and £ << M, we get that 

alg(K) = alg(M) and alg(£) = alg(M), so alg(K) ™ alg(L). O 

(2.9) Deftnataion 

For each monic irreducible f = f(X) € Q{[ XJ], let K. be the field 
f 

QU xX] Le) and let ar be the residue class of X : a, = X+(f). 
É 

So Ke = Ca) and f(X) is the minimum polynomial of ag over Q. Let 

r,. be the number of roots of f(X) in the real closure Q of Q, and 
f 

let a; <...< a, be these roots. Then for 1 Sk & Pe 
f 

P k is by definition the ordering on Ke induced by the embedding 
3 

£ > OA of Ke into Q. 

In other words: P is the unique ordering on Ke fk 
(KesPp ij) F Rg, (PoQpraio+-.ag)s if FOO = xda, xt, a 

3 ? 

a 

such that 

gd. 

(See (2.3) for definition of R, ,.) 
d,k 

The decidability of OD, will be seen (in (2.11)) to rest on the 

following facts: 

(2.10) Fact 1 

There is an algorithm which, given f = f(X) € Q[X]\Q, determines 

whether f is irreducible. 

Fact 2 

There is an algorithm which, given irreducible and monic 

f = f(X) © Q[X], computes Pe: 

Concerning fact 1: by Gauss! lemma it suffices to have a factorization 

algorithm for Z[X]. Such an algorithm, due to Kronecker, is given 

in [v.d.W., p. 79]. 

Fact 2 is a consequence of Sturm's Theorem [L3, p.276].
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(2.11) Proof of (2.1) 

Theorem (1.2) clearly implies that the set of logical consequences 

of OD, is recursively enumerable. So it suffices to prove that the 

complement of this set is also recursively enumerable. 

Let OD Fo; o a sentence in the language of OD. 

Then there is a model K = (K,Pi,+-5P_) of OD, U {rg}. 

Let, as in (2.8), alg(K) be the substructure of K with universe 

alg(K). Then (2.3) and (2.6) imply: 

OD, U Diag(alg(K)) F 70. 

The compactness theorem then shows that there is a subfield L of 

alg(K) with [L : Q] < ee, such that: 

OD, U Diag(L,P,ML,..,P_9L) | =0. 

Pei Pg ek)? for some irreducible monic 

f © Q[X], and numbers ki ook, satisfying 1 Sk, S Peoe+,1 < ks Pe: 

But (L,P40L,..,P,OL) = (Ke 

So OD, U Diag(KesPe poe oP ) fF 70. 

d d-1 
n 

Let f = X°tayX° “+...+a,. If d = 1, then clearly OD, H <0. 

> OD. U Di …. | Suppose d 2. Then a model of OD, Diag(KesPe > Pek) is 

essentially the same as a model of 

n 
OD U . oe 1 D, U {az CA a,x, Biezon » ag) } , as is clear 

from the remarks in (2.9), so 

n 
OD, U {az ( A Ra x (Py 2% 2dr see sag) } f <0. 

1=1 rd 

We have now proved one half of the following equivalence: 

A sentence o is not derivable from OD, if and only if either 

OD, Ft 30, or there is irreducible 

f = f(X) = X~+a,X +..4a, E YX], d 2 2, and numbers Kiy--sk, with 

1 < k. Sr, (i=i1,..,n), such that 
f 

n 
OD, U {az ( A Ra k (P.52,a15-+,a,))} hk SO. 

1=1 rw
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The other half of the equivalence follows by noting that any existen- 

tially closed extension of KeoPe kot eP ey? is a model of OD. U {no}. 

From the equivalence, and using facts 1. and 2. in (2.10), we get 

the recursive enumerability of 

{o]OD_ # o}. QO 

(2.12) Definition 

7 def. 
= U 

(see (2.3) for the meaning of OD). 

So the models of OD. are the substructures (K,Pis--5P5.-) of 
,alg 

models of OD, with (K,Pi,--5P_) E OF. alg’ 

Clearly (OD, aig y = COD): 

(2.13) Lemma 

(1) Each model of OF. alg has a unique expansion to a model of 
> 

OD, alg: 

(2) OD. „arg has PEP niversal (ef. Ch. I, (3.4 )). 

PAOOS 

< <k. < 1 (7) Let C(KyPiy+-5Pi Wa ke, k | 2 d, 1 ks n) be an expansion 

of a model (K,Py,--5P)) of OF to a substructure of a model of OD. 
,alg 

Then (2.6) implies easily: if 2 <d,i«< kK. <d (i= 1,..,n) and 

. d d-1 
4 E K, then Wa ski geek SSb 255 28q? holds iff Z +a,Z t..tag has 

a root in K which is, for each 1 <i <n, the k, En root in the real 

ay b } sa 

closure of (K,P.). 

In other words: the defining axioms for the extra W-predicates 

(cf. (2.3)) hold in the expansion. So there is only one choice for the 

expansion.
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‚….) F (OD _ ) . Take any extension of D (2) Let D = (D,P, vb, 

to a model of OD and let D = (D,Pi,..5Pi5-+) be the substructure 

of this extension whose universe D consists of the elements which 

are algebraic over Q(D). So clearly D F OD, alg’ 

We will prove that D is the universal prime extension of D to a 

model of OD . 
n,alg 

So let £ = (L5Qi 5--5Q se) be any extension of D with £ F OD, alg’ 

Let Q(D) C K CD, with Ka finite extension of Q(D). 

We will prove that (K‚P OK, ..,P_NK) can be embedded uniquely over 

(D,Pi,.-5P_) into (L5Qi5-+sQ,)- This is clear if K = Q(D). So let 

[K : QCD)] = d > 1. Then we can write: K = Q(D)[a] where the minimum 

polynomial f(X) of a over Q(D) has coefficients in D: 

d d-1 
£(X) = X" taj X +..ta, © D[X]. Then DF W 

h 

d Car s--sag)> where 
d,kis.-sk, 

for each 1 Si Sn ais the k,* root of f(X) in the real closure 

of (K,P MK) (which is naturally identified with the real closure of 

(Q(D),Q¢(P,))). 

d ‚ka yee gk CS sag 

As in the proof of (1) this implies there is b € L such that, for 

Because D CL, also £ F W 

each 1 Si Sn, bis the Kk,“ root of f(X) in real closure of (L5Q.), 

hence also the kr root of f(X) in the real closure of (Q(D),QCP;)) , 

considered as a subfield of the real closure of (L,Q.). 

So there is an embedding of (K,P,OK,..5P_MK) over (D,P,,..,P,) into 

(L5Q1 5++5Q,) given by aw b, and this is clearly the only 

(D,P, ,..,P_,)-embedding of (K‚P, OK, ..„P_NK) into (L,Q5--,Q)- 

If we put all these embeddings together, we obtain: there is a unique 

(D,P, ,..,P_,)-embedding of (D,P;,..5P_) into (L,Q,5--,Q)). 

Because the defining axioms for the W-predicates (cf. (2.3)) hold in 

D and in £, this embedding is even an embedding of D into £. ‘7
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(2.14) Proof of (2.4) 

OD. is, as an extension by definitions of OD. a model complete 

theory, so by Ch. I, (2.13), it suffices to show that (OD dy has AP. 

So let A,B,C be models of (OD), and let embeddings A > B and A > C 

be given. This induces embeddings A > B and A + C of their prime 

extensions w.r.t. OD, alg: But OD. ale has AP, as follows easily 

from (2.7) and (2.13) (1). 

So we can embed B and C over A in a model D of OD. giving us also 

embeddings of B and C over A in D. O 

(2.15) Remark 

The theory OD, shows many model theoretic similarities with the 

theory of pseudo-finite fields introduced by Ax in [Ax]. 

(A pseudo-finite field F is an infinite field of the form ( I F.)/m, 

each F. being a finite field, or equivalently, it is a nerfect field 

with for each n > 1 precisely one extension of degree n and such that 

each absolutely irreducible p € F[X,Y] has infinitely many zeros 

in FxF.) 

Kiefe defines in [Ki] the d-ary predicate W, (d > 2) for each 
d 

pseudo-finite field F as follows: 

W041 ++ sag) holds in F iff Xi ra, Xo T+. ta, has a root in F, and she 

shows that the corresponding extension by definitions of the theory 

of pseudo-finite fields admits elimination. 

For the theories OD (n > 3) however, this procedure does not 

work, as is shown in the following example. 

(2.16) Example 

Let (K,P,; ‚Ps ) be maximal among the algebraic OF,-extensions of 

(Q¢Y2),Q: ,Q.), QU and Q, being the two orderings on Q(/2).
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Take models A and B of OD3 with (K,P; ,Pi1,P2) C A and (K,P; ,P2 ,P2) CB. 

Note that by (2.6) K is algebraically closed in the underlying 

fields of A and B. Because P,; # P, there is a non-constant 

polynomial with integral coefficients which has a root a € K such 

that a >p, 0 and a Sp, 0 , so A fB. Let A' and B' be the expansions 

of A and B obtained by defining for A and B the predicates Wa (d = 2) 

just as Kiefe did for pseudo-finite fields. Then A' and B' satisfy 

the same open sentences in the language of OD3 extended by the 

predicates W,, but A' # B'. d? 

Hence OD3 extended by the defining axioms for Wa. d 22, is a theory 

not admitting elimination.
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53. Extension problems and algebraic properties of existentially 

closed n-ondened fields 

Each ordered field has a real closed algebraic extension, i.e. its 

real closure. For n > 1, things are not so nice: if P is the unique 

ordering on KR, then (IR,P,P) has of course no extension 

(K‚P1 ,P2) F OD, with K |IR algebraic, not even such an extension with 

(K,P; ) archimedean over (IR,P). 

So it is desirable to have some conditions on K = (K,Pi,..,P,) E OF, 

which imply that K has an extension £ = (L5Q15++5Q)) F OD, with 

L|K algebraic,or (L5Q.) archimedean over (K,P.) for each 1 Si Sn. 

Concerning this I found the following. 

(3.1) Theorem 

Let K = (K,Pi,--,P_) F OP. and suppose K is a countable Hilbertian 

field and Pi yee oP are independent. 

Then K has an extension (L,Qi5--5Q,) = OD, with L|K algebraic. 

Before proving this: finitely generated extension fields of Q are 

countable and Hilbertian, and different archimedean orderings on a 

field are independent. Hence the assumptions in the theorem hold in 

a number of interesting cases. 

(3.2) Proposition 

Let Pi ,..,P, be non-archimedean orderings on the field K. Then 

(K,Pi,..,P,) has an extension (L,Q:,--,Q,) F OD, with (L,Q.) 

archimedean over (K,P5), for all 1S ifn.
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(3.3) Proposition 

Let P,;,..,P, be archimedean orderings on the countable field K. 

Then (K,Pi,..,P,) has an extension (L,Q:,--,Q,) F OD, with (K,P.) 

dense in (L,Q.), for each 1 Si Sn. 

For later purposes the proof of (3.1) is placed in a general model- 

theoretic framework by the following lemma. 

(3.4) Lemma 

Let a theory T in a language L have an axiomatization 

(vx 3y, 7, Oxy »¥,) IK EIN}, with XY sequences of distinct variables 

Ca sers) C1 ser VacKy) respectively, and TCX, Vy) an open 

L-formula (k EN). 

Suppose a class C of countable L-structures is given such that for 

each A € C,‚, k EIN, and a,.. € |Al there is BE C with ACB 
»FA5(k) 

and with B F FV} Ty (Ar ses ALK) Yh) 

Then for each A © C there is an ascending chain 

A= Bo CB C...C B CB of structures in C with 41° 

UB Ek T. 

n€ In 2 

Proos 

Let A € C be given. Fix for each B € C an enumeration (ap(n)) Wen of 

all pairs (Car s+ +58, (yy) 0) with 813+ +385 (4) E |B] and k EN. 

Let further mT: IN + INxIN be the following bijection: 

(0,1), wO2) = (1,0), wO3) = (0,2), wO4H) = (1,1), n(0) = (0,0), w(1) 

m(5) = (2,0), T(6) = (0,3), ete. In the following picture one sees 

how INxIN is enumerated by 1:
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(O,0)—(0,1) (0,2) (0,3) 

(1,0) DOD eeen. 

(2,0) (2,1) (2,2) oa. 

Note that the first 

(3,0) (3,1) ....2..- coordinate of T(k) is 

always Sk. 

Take Bo = A, and suppose Bo ,B1,..,B E C have already been constructed 

with Bo C B, C...C B. Let m(n) = (i,j), so i <n. Then ap (j) is 

some pair (a1 5++ sang) ok) with (a1 5+ +54, (yy) |B. |. * 

Hence Blass (Ky Ee |B]; then choose for B, an extension of B in 

C with B, = FY TC Ar 9+ ACK) VA): 

Let B = U B. Then BF T: let k EIN and aj >: 98 (K) € |B]. 
n€ IN 

Choose 1 EIN with a,,.. 

(( a, ee 

A) € |B.| and j EIN with 

Ang) 24) = ap (3) and let n be such that T(n) = (1,5); then 
i 

B +1 EF dy, El Ar s+ + san (yy Yi by construction, so Bf VX, SY. TL OX Vy) 

0 

(3.5) Proof of (3.1) 

Let T be the theory Diag(K) U OD; and take for C the class of all 

structures (L,Qi5-+-5Q,,ala € K) with L|K a finite extension, and 

(L5Q1 5. -50) FE OF an extension of K. 

Note that for (L,Q1,--,Q sala E K) € C and 1Sis<jsS<n, Qs; A and Q; 

are independent. This is because they induce on the subfield K of L 

the P;-topology; resp., the P;-topology, which are different. 

It is easy to express the axiomatization of T given by Diag(K) and
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(a) ,(6) of (1.2) in the form required in (3.4), for instance (8) 

may be rephrased as follows: 

For each £(T,X) € K[T,X}, each a © K and all Pi 5S15- oP Sn € K 

such that fla,r.) <, 0, f(a,s,) >, 0 (1 Si <n), either f is 

reducible in K[T,X], or 3c,d © K f(c,d) = 0. 

Note finally that for (L,Q1 >. >Q sala E K) € C, L is also Hilbertian. 

Hence, in order to apply (3.4) in this situation,it suffices to 

prove: let M be a Hilbertian field and Ri o-eoR independent orderings 

on M and let f(T,X) € M[T,X] be irreducible and a © M with f(a,X) 

changing sign on M for each R.5 then there is a finite extension N of 

M such that Ri,-+>R, can be extended to orderings on N and jJc,d € N 

flc,d) = 0. 

To prove this, choose for each 1 Si Sn an R;-neighbourhood U; of a 

such that for each t © U; f(t,X) still changes sign in K with respect 

to R.. By (1.16) there is t € U, %..9 U. with f(t,X) € K[ X] 

irreducible. Now the proof of (1.10) can be followed (with K,K(t),P., 

t P; replaced by M,M,R.,R,). 0 

(3.6) Lemma 

Let (K,P) be an ordered field such that P is either non-archimedean, or 

P is archimedean and K is countable. Then for each 0 Se © K, a € KK, 

there exists an ordered extension (K(X),Q) which is archimedean over 

(K,P) with a-e < X < ate. 

Proof, 
Replacing (K,P) by its real closure, if necessary, we may assume (K,P) 

real closed. The case that P is archimedean and K countable is trivial: 

embed (K,P) in IR, and identify X with some real number in (a-e,ate) 

which is transcendental over K.
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Suppose now that P is non-archimedean. Then put 

D= {xEK| VKEN\{0} x< a+ pe} and S = K\D. Then (D,S) is a 

Dedekind cut on K, and D has no largest nor has S a smallest element: 

if b ED, then also btôe © D, where 6 © K is such that 0 < 8 <<; 

VkE IN\{O}. 

Then by [ Baer, Lemma 1.1] an ordered extension as stated exists. oO 

(3.7) Praoofs of (3.2) and (3.3) 

Note first that an archimedean ordered field is dense in each 

archimedean extension. 

Hence the following statements, together with an obvious chain 

construction, imply (3.2) and (3.3). 

Let K = (K,Pi,--.P,) F OF. and Pr yee oP be either all non-archimedean, 

or all archimedean and K countable. Then the following holds: 

(1) If 1 S1isS<jsSnand 0 <. ein E K, 0 S €2 © K, then K can be, 

embedded into some £ = (L5Q1 5-50) F OF. with an x EL 

satisfying -€1 <; x S; €, and 1-€2 S; x S 1+e€2 and with 

(L5Q)) archimedean over (K,P)), for all1Sk €&n. 

(2) If £(T,X) © K[T,X] is irreducible and a © K is such that f(a,X) 

changes sign on K for each P.s then there is an extension 

£ = (L5Qi5-+,Q,) of K with (c,d) © LxL such that f(c,d) = 0, 

and with (L,Q.) archimedean over (K,P.), (1 Sin). 

(7) and (2) are easily proved along the lines of (1.8) and (1.10), 

using (3.6). Note also that L in (1) and (2) can be taken to have the 

same cardinality as K has. This is essential for the chain con- 

struction. O
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(3.8) Remark 

(3.1) provides an example of a model of (OD dy which has no prime 

extension to a model of OD.» for each n > 1: let Q be the real 

closure of Q, P its unique ordering, K the unique expansion of 

K = (Q,P,..,P) F OF to a model of (OD). Let Qi s+ -5Q, be 
n,alg 

different archimedean orderings on Q(X), and R a non-archimedean 

ordering on Q(X). Then Q(X) is a countable Hilbertian field, and 

Qi 9+ Q, are independent, as well as Qis++sQ,_4>R. 

Let £,; ,£, be algebraic extensions of (Q(X) ,Q15--5Q)5 (Q(X) Ar se -5Q sR) 

respectively, with £, ,£f, F OD, and let £, £5 be the unique 

expansions of £, ,£2 to models of OD. 

Then £, £2 are clearly minimal extensions of K to models of OD.» but 

they are not isomorphic. Hence K does not have a prime extension to 

a model of OD. 

Concluding this section I will indicate some of the interesting 

algebraic properties of model of OD. 

(3.9) Lemma 

Let PryeeyP be independent orderings on a field K. Then Pr yee sP, are 

the only orderings on K containing P, 9... Po 

Proof 
Suppose Q is another ordering on K containing Pi M...0 Poe Let m with 

1<m Sn be minimal with Q 2 Pi M...0 Pa Then m > 1 and 

Py MO... P 4 OQ is strictly included in Py 9... P__,. But 

[K°: Py AM... P 4] = gmt. because the canonical map 

K Jp: An Pr, + K ‘op X...X K / 

is an isomorphism of groups, by (1.7), and similarly [K': P‚N..N Pl = 2” 

(a) () ; NM MN NY i and P, wee Pad 2 Py see Pe MQ) P, ae Py? so necessarily
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a) M = Nee PP... P 4 OQ =P ND. P 

Choose q € Q\P 3 adding, if necessary, to q an element of Py; N...N Po 

which is sufficiently close to 0 with respect to Ps and sufficiently 

large with respect to Pi yee oP as we get: 

QGP 1..N9P Nh 0... Ps 

so q € P > contradiction. 0 

(3.10) Recall that associated with a real field K is the non-empty 

boolean space 0(K) of all its orderings. A subbasis for the topology 

is given by the sets W,(a) = {P © 0(K)|a is negative for P}. This is 

called the Harrison subbasis. That it defines a boolean, i.e. compact 

and totally disconnected, topology follows easily from an obvious 1-1 

correspondence of O(K) with the set of ultra filters on the boolean 

algebra of open sentences in the language of OF U Diag(K), modulo 

equivalence with respect to the theory OF U Diag(K). Typically, 

algebraists prove the same fact using a 1-1 correspondence with the 

set of minimal prime ideals of the Wittring of K. 

Definition 

An SAP-field (Knebusch) is areal field K such that the Harrison 

subbasis is a basis of OCK). 

(3.11) Proposition 

If (K,Pi,.-,P) E OD then Pi,..,P, are the only orderings on K, and 

K is an SAP-field. 

Proo 

That Py yee oP, are the only orderings on K follows from (3.9) and 

Py A... PL = K?. Take for each 1<i<n a; © K such that a, is
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negative with respect to P. and positive with respect to the other 

orderings on K. 

Then W‚la,) = {P.}. So K is an SAP-field. C 

(3.12) The absolute Galoisgroup of existentially closed n-ordered 

fields is completely known as the following theorem shows. 

Let (K,Pi,..,P_) F OF . Take for each 1 Sk <n a real closure 
n n,alg 

Re of (K,P,) within a fixed algebraic closure K of K, and let 

o, € Gal(K]|K) be the conjugation over Ry» 1.e. oi) = =i and 
k 

OR = id(R,). Clearly 

K = Ry 92.9 RA = fixed field of {015--,0,}. 

Hence by the main theorem of infinite Galois theory, Gal(K|K) is 

topologically generated by {o1,--,0,}. 

(3.13) Theorem 

If under the above assumptions, either Pryee oP are independent or 

n = 2 and Py # P2, then Gal(K|K) is the free product within the 

category of profinite 2-groups of its subgroups {1,01},...,f1,0,}. 

For n = 2 and Pi # P2 this is proved in [Br., Er.,& Ka.]. 

The authors even construct explicitly Ri and R2 in this case: 

if x © K is such that x > 0 and x <, 0, then Ri can be chosen as 

‚n 

K(/x|n EN), 

and Rg as 
‚n 

Kle ‚j/xIn EIN), 

where of course 

Nei 2 n 2 1 

(yx)? = Xx, vx = x, 

and Ce +4) is any sequence of roots of unity with En = 1, €2 = -1; 

y? = Ee, for all nel.



It is stated in [Er, p.428] that Kal'nei has generalized this to 

the case that n > 2 and the orderings are independent (unpublished 

as far as I know). 

93
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CHAPTER IIT Model theory of fields 

with several orderings and valuations 

61. The model companion 

The situation of Ch. II is generalized so as to cover also (Krull) 

valuations of certain types on a field of characteristic 0 (prime 

characteristic causes some technical difficulties and is not 

considered in order to show the main idea as clearly as possible). 

Alas, some new terminology is indispensable. 

(1.1) Definition 

A t-language ('t' for 'topology') is a language extending the language 

of rings with extra constants and predicate symbols (but no extra 

function symbols of rank >0). 

(1.2) Definition 

A t-theory is a universal theory T in a t-language, together with a 

distinguished open formula Brv 5. ) such that the following Vie Vier 

conditions are satisfied: 

(a) T extends the theory of domains. 

(b) If 0, ,02 are models of T with the same underlying domain D 

such that for each constant c and each (say p-ary) predicate 

symbol R : cP = cP and RP: N(D°)P = R?2 A (D:)P 

(D° = D\{0}), then Di = D2. 

Le) Each model 0 of T with underlying domain D has a unique extension 

to a model K with underlying domain Q(D); this model K will be 

denoted by Q(D). 

(d) For each model K of T U FL with underlying field K the family of 

all sets {b € KIK F Bla: ,.-asb)} (Car 5-+5a,) € KX) isa
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basis of neighbourhoods of 0 for a (necessarily unique) 

Hausdorff ring topology on K3 

this topology will be denoted by Tye 

le) For each model K of T U FL with underlying field K and each 

K N(K')P is a clopen subset (say p-ary) predicate symbol R R 

of (K°)P, where (K°)P is endowed with the product topology 

induced by Tye 

(1.3) Examples 

(1) OD (cf. Ch.I, (3.2)) is a t-theory with distinguished formula 

Bop {vi »Vv2 v3 ) s= (vy <v3 Sv2) A (vi SO S va). 

(This expression is of course shorthand for a formula using only the 

unary predicate symbol 'P' in stead of '<'.) 

(a), (b) and (ec) are trivial. It is also wellknown that Bop {v1 »V2 „va ) 

induces the interval topology defined by the ordering of an ordered 

field; so (d) follows. (e) means that for an ordering on the field,K 

the set {a € Kla > 0} is a clopen subset of K* with respect to the 

interval topology. (It is certainly not a clopen subset of K.) 

(2) Dar (cf. Ch.I, (3.3)) is a t-theory with distinguished 

formula B, 1 6v1 vz) >= div(vi,v2) A vi #0. 
a 

(a), (b) and (ec) are again trivial. 

(d) is also easy: given a field K with valuation v : K > T U {eo}, the 

family of all sets {b © K|v(b) 2 g} (gE Tr) defines a basis of (clopen) 

neighbourhoods of 0 for the, so called, valuation topology on K 

induced by v. 

Just as an interval topology, it is a V-topology (cf. Ch.II (1,6)). 

(e) is easily checked. 

(3) (pCF), and (nCF), (ef. Ch.I, (3.6) and (3.7) are t-theories 
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with same distinguished formula Bay o¥i v2) as above. 

Again the required conditions are easily checked, except perhaps 

(e) for the predicates P. (n > 2). 

Let K = (K,div,,P2,P3,..) F pFL. If a © K and vla) > 2.v,(n), then K? 

vil (142a)” ~ (1+a)) > 2.v,(n), which implies by a strong form of 

Hensel's lemma (cf. Appendix, (A.2)) that 1+a is an nth power in 

the prime extension of K, so ita € Pa 

But then P_ {0} is an open subgroup of K", hence also a closed 

subgroup. 

The argument for (mCP), is Similar, but easier and is left to the 

reader. 

(1.4) Definition 

Let n #2 1 and Tiy.-5T) be t-theories. 

The theory (Ti ,++5T) is then defined as the theory whose models are 

the structures (D,0,,..,€,) with D a domain and (D,®,) E Ts 

i = 1,..,5n. 

Remark 

If the language L(T; ) of T, and L(T.) of T, have for all i,j with 

1S i<j Sn only the ring operation symbols in common, then 

formally: L(T1,-.,T,) = L(Ti) U...U LCT) and (T1,..,T,) F Tr Us. UT) 

However, in cases like Ti = ... = T, = OD, the procedure is to make 

L(T, ),..-,L¢0T,) first disjoint, except for the ring operation symbols, 

by an obvious indexing and then defining (Ti ,--5T,) formally as above. 

So if Ti =... = TO = OD, we get (Ti ,-.,TL) = OD. (cf. Ch.II). 

(1.5) Basic conventions for the nest of this chapter 

nis a fixed integer 21. Trs-eoTh are fixed t-theories, such that for 



each 1 SiSn: 

T, has a model completion T, and for each model 

K = (K,...) F T. : char(K) = 0 and Tk is not discrete. 

(note that by condition (c) of (1.2) K is indeed a field). 

Remark 
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If each T. is chosen from among OD, Dja1,0? (PCF) Cp prime), (mCP). 

then these assumptions on qT; are satisfied. 

(Dar ,o 1s Dial + axioms expressing characteristic 0.) 

Now the theorem corresponding to (1.2) of Ch. II is: 

(1.6) Theorem 

(T, ,.-,T)) has a model companion. 

The proof is given in (1.12), (1.13) and (1.14). 

First some preparations. 

(1.7) Lemma 

Let (G,T) be a topological group with t Hausdorff and not discrete. 

Then each non-empty open subset of G is infinite. 

Proog 

Clear. L) 

(1.8) Lemma 

Let T be a t-theory and OCvi 5. sVi) be an open L(T)-formula. Then 

there is an open L(T)-formula O'CV1 ose Vp oV aor es 

each D F T and a,,..,a, € |D), Di s-->b, € |D|\{o}: 

=1 QCD) F Ola,b, »--sarb, ) * DF O' Car s-- sag sdi g++ by) k 

Vi) such that for
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Proog 

Let Ay a+ +, sbdis-- Di be new constants and consider the set T of 

all open sentences vla: 9-+ a) obi >-- sb, ) with 

k 
T F MA Va (C0021 s.szj) A a Db; i as 

play >°° „Ar obi 2 sb.) ° 

N u @ A b. # 0) + 
=i 

Let us write a 3 b 3 z 3 Vz etc. for Ars: +) 5 biy-+sby 3 Zp9++5Z 

Vzj VZ It clearly suffices to prove the following: 

Claám 
k 

TUT vat A b.z, = a; ab, #0) + 0(z)). 

Take any model K' = (K,a,b) of T UT with b, # 0 (1 <i <k) and 

suppose there are cy ,..,c, © [Kl with b,c, = a, (1 <i <k) and 

K' FE nQ(c) (such K' exists if the claim would not be true). 

Because Ce; 5 a,b," and f U {@} consists of open formulas, one may 

assume without loss of generality that K = Q(D), where D is generated 

by {a1,-+,a,,bi,.-,b, }. 

Let D' = (D,a,b). Then from condition (c) of (1.2) we get: 

k 

T U Diag(D') & Vall A boz. = a.) + 310(z)). 

Hence, by the compactness theorem, there is an open formula 

OCVig++5V,,) with 

k 
D' F o(a,b) and TF bla,b) +vz(( A biz; = a;) + 50(z)), 

i=1 

implying: 
k 

TF V2((0Cz) a fai = a; ab, #0)) + 70(a,b)), 

so =Ò(a,b) E T, which contradicts D' FT U {$(a,b)}. Q
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Remark 

If T is given, say T = OD, then this model theoretic proof can be 

avoided, and ©' can be easily constructed from ©. Note that 

conditions (b), (d) and (e}) of (1.2) on T were not needed in the 

proof of the lemma. 

(7.9) Let in the following Ui se sUg Xi see XY denote distinct 

variables, and let u,x denote the sequences U1 5+ + >Ug and 

Xi pee Xn respectively. 

It is also desirable to use these variables in polynomials but to 

distinguish this use I will write in that case capital letters 

Ur 5+ + Up Xt 5--5X_,¥ and U,X. qe 

It will be clear that, for instance, '3x' is used as shorthand for 

"3x, IX , 
m 

Desanitaon 

Let T be a t-theory. 

A t-basic T-formula in (u,x) is a formula in the language of T of one 

of the following forms: 

Pp 
(4) R(Si Cu,x),- +55, Cu,x)) A A S.€u,x) # 0 

. i 
1=1 

(44) ARCS: (u,x),.-,5_(u,x)) a A S;(u,x) # 0 
P i=1 

where R is a p-ary predicate symbol and 

S1,-->S, € ZL U,X1. 

Lemma 

Let T be a t-theory and o¢(u,x) be a conjunction of t~basic T-formulas 

in (u,x) and suppose K = (K,®) E T U FL and a € Ke = Kx...xK 

(cartesian product). 

Then {b € KIK F òla,b)} is an open subset of KT,
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PrOO4 

Clearly it suffices to consider the case that $(u,x) is t-basic. 

Then the conclusion of the lemma is an easy consequence of the 

continuity of polynomial functions, condition (e) of (1.2), and the 

definition of t-basic formula. 0 

(1.10) Definition 

Let £,m EIN. An (2,m)-condition is a sequence 

(or Cu),..,o Cu) 61 Cu,x),-- 56 Cu,x) 01 (Cu, x,y),.-,0 Cu,x,y) ,Flu,x,y)) 

with u = Cur ,++5Ug)s x = (x1 seen) such that for each 1 Si <n: 

(7) og, (u) is an open L(T,)-formula. 

(2) >. (u,x) is a conjunction of t-basic T,-formulas in (u,x). 

(3) 0, (u,x,y) is an open L(T,)-formula. 

(4) F(U,X,Y) is a polynomial in Z[U,X,Y], monic and of positive 

degree in Y. 

(5) T. - vulo, Cu) > Axp.Cu,x)) , and 

T, + vuvx{(o, (u) A d.(u,x)) + Fy(F(u,x,y) = Oa 0,(u,x,y)) } 

(1.11) Definition 

(T,,.-,T)) is the theory whose models are those 

K = (Piss F (T1,--5T) 

such that: 

(i) K is a field 

(44) for each (R,m)-condition as in (1.10) and each a € Ke 

such that Fla,X,,--5X_5¥) e K[ Xi, .oXY] is irreducible and 
n 

KE A o,€a), the following holds: 
i=n 

n 
K F axay{Fla,x,y) = 0 A A (>, (€a,x) A O,(a,x,y))}. 

i=1 

Note that (4) and (44) actually say that K satisfies certain sentences,
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so (1.11) defines indeed a theory. 

Now (1.6) can be made more explicit as follows: 

(1.12) (Tr ,-.,E) is model companion of (Ti,..,T)). 

Using (2.21) of Ch. I we split the proof of (1.12) in two parts: 

A. Each existentially closed model of (Ti ,..5T.) is a model 

of CT; ze oT). 

B. Each model of (Ti ,..5T)) is an existentially closed model 

of (Ti sl). 

(1.13) Proof of (1.12), part A. 

Let K = (Kj, 5-+6,) be an existentially closed model of (T,5-.,T)). 

Let K; = (K‚P) and note that K, F T,. 

That K is a field follows immediately from condition (c}) of (1.2). 

which holds for each T.. 

Let now an (R,m)-condition be given as in (1.10) (the notation used 

in (1.10) is preserved here), and let a € Ke be such that 

F(a,X,,..5X_,Y) = KLX1,-.,X_,¥] is irreducible and for all 1<i€n: 

K. EF ofa). 

Let for each 1 <1i<«n Fe = (Fe5--) be a (#K)*-saturated extension 

of K; with F,; F T,. 

Then, by (5) of (1.10), we get: F. = Axo.Ca,x). 

So the set {b € PIF; E o;Ca,b)} is non-empty, and open by the lemma 

in (1.9), hence by (1.7) and the fact that Te. is not discrete, this 

set contains a cartesian product By xX...xB with B. an infinite 

subset of EF. 

Because Fs is (HK) -saturated, this implies that there is
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1 1 més. 1 1 i i 
(by >-« sb) € F, with F. EF bz la,b,,.->b) and b,,..,b. 

algebraically independent over K. 

1 i Then, by (5) of (1.10), there is c° € F,‚ with F(a,b),.-,b7,¢ ) = 0 

1 1 i 
and Fe F 0; la,b, ,.- bre ) 

Because Fla,X,,-.,X_,Y) is irreducible, the fields K(b7,..,b7,¢°) 
m 1 m 

and K(b),.. ‚ed are for any i and j in {1,.-.,n} isomorphic 

over K via an isomorphism sending bs to DJ and ot to od, These 

isomorphisms permit us to construct an extension 

£ = (K(bi,..5b, sed, ,&,) E (Ti ,-.,T,) 

of K such that for each 1 SiS n (K(bi ‚bed ,&,) embeds into Fs 

over K via b, b bic ad ci, 1S$r Sn. 

Hence 
n 

£ EF Fla,by,..,b, 5c) = 0 A A (oj Cadi sb) A O,€a,bi,--,b,,c)). 

Because K is existentially closed, this implies 

n 
K E ax3y Fla,x,y) = Oa A (o;€a,x) A O0.(a,x,y)). 0 

i=1 

(1.14) Proof of (1.12), part B (compare with Ch. II (1.19). 

Let K = (Kei, be a model of (Tr ,--5T)s and let K. = (K,€.) EF Tas 

Suppose p is an existential K-sentence true in an extension 

£ = (LL, ) F (Ti ,..,T)) of K. 

To prove: p is true in K. 

Without loss of generality we assume L to be a finitely generated 

field extension of K. Because char(K) = 0 by the assumption of (1.5), 

this implies that L = K(bi »-- sb, 5c) with (bi,.-,b,) a transcendence 

base of L|K and such that for a certain irreducible 

F(X, »..5X_,Y) E Kl Xi ,..,X, 5] F(bi ,--,b 5Y) is the minimum polynomial 

of ec over K(bi ‚sb (in particular F(X,Y) is monic and of positive
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degree in Y). 

In the following 'b' will be written as shorthand for the sequence 

Di «>De Let Kb) be the substructure of (L,&, ) with under- 

lying domain K(b), and similarly K(b) is the substructure of £ 

with underlying domain K(b). 

Consider the following sets of sentences in the language of 

(Ti,--,T) augmented by names for the elements of K and new constants 

bis--sbi oc (with 'b' written for the sequence bis--sb ): 

rT o.e T, U FL U Diag(K;) for each 1 Si Sn; 

Tor, ur, tia , Yee Ton? (Ti ,-.,TL) U Diag(K) U FL; 
? 3 

for each 1 Si Sn: 

Fi is the set of all sentences $(a,b) where for some & € IN and 

a € he blu,x) (Cu = Cui 5++5Ug), X = (x1 pes od) is a t-basic 

T.-formula in (u,x) such that K‚(b) F o(a,b) (where b. is 

interpreted as b;); 

Tr, = Tr U...UT 
2,1 2 

° 

3 ‚Nn 

It is easily shown that conditions (6) and (c) of (1.2) imply for 

each 1 Si Sn that CK; (b) ‚b) E rs U r i and that CK; (b) ‚b) can be 
> ’ 

embedded (uniquely) over K. into each model of r i UT, jz: Hence: 
b | 3 

(1) (K(b),b) Fk Ti U F2 and (K(b),b) can be embedded uniquely 

over K into each model of TT: U Ts. 

Let 0 <d = degy F(X,Y). 

The K. (b)-formula 'F(b,y) = 0! in the free variable y is algebraic 

of degree Sd over K.(b) with respect to the theory qT; (see Ch. I (3.5)
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for the definition of algebraic formula used here). 

c realizes the formula in (L,&, ) and T; is universal and has AP by 

the assumptions made in (1.5) on T.. 

Hence Th. 4.1. of [Bac] can be applied, and gives: 

the open type of c over K (Cb) is principal (this can of course also 

be seen directly by an easy argument). 

We may assume this open type to be generated by a formula 

"F(b,y) = Oa O.Cy)! where ©, is an open K,(b)-formula. 

By lemma (1.8) we may assume (par abus de langage): 

0, (y) = 0,(bsy), with 0,(x,y) an open K,-formula. 

Put Ts = {F(b,c) = 0, 0, (b,c),..,0, (b,c)}. 

Then, by (1?) above and the properties of the 0,'s, we get: 

(L,b,c) E Ti UT, UT 3 and £(b,c) can be embedded over K in each model 

of PT, UT, UT3. 

This implies that the existential K-sentence p is true in each model 

of Tf, UT. UT3, so by the compactness theorem there are finite subsets 

A,»5--,A. of T zel respectively such that: 
24n 

(2) Tr; UA UTs kp (with A = Ay U...U A): 

Now we come to the essential point of the proof: 

because T, has model completion T., there is (for each 1 <i <n) an 

open K.-formula W(x) such that: 

(3) T, U Diag(K,) H W(x) * 3y(F(x,y) = O0 A O.(x,y)). 

Then (K,(b),b) F ¥.(b), so by the remark preceding (1): 

Pog UTE wy. (b). So by the compactness theorem there is a finite 
> b | 

subset of r, ; which together with r i has w.¢b) as logical consequence. 
p/ >



Without loss of generality we may suppose this finite subset to 

be A. Hence T, ; UA, F yb). Together with (3) this gives for 
3 

each 1 Si Sn: 

(4) T, VU Diag(K;) UA, FE ay(F(b,y) = 0 a 0,(b,y)). 

Let >; (bd) be the conjunction of the sentences in A.. 

Then, because K, C K,(b) F ¢,(b), we get also: 

(5) T, U Diag(K,) F Axo, (x). 

By the compactness theorem we can strengthen (2), (4) and (5) as 

follows: there is for each 1 Si Sn an open K.-sentence Oo. with 

K. F o. such that: 
i i 

(6) (Ty ,-+5TL) U FL U {o 92+ 90901 (b),.. 56 Cb) } UT; k po. 

(7) TFT, U fo,,6,(b)} F ay(F(b,y) = 0 A O;(D,y) (1 <i <n). 

(8) T, U {o,} F ax, (x) (1 <i <n). 

105 

It is now necessary to display also the elements of K occurring in 

the various formulas: we can choose 2 EIN and a € Ke such that 

(by abuse of language): 

(9) O.(x,y) = 0,(a,x,y) for a certain open L(T, )-formula 

©; Cu,x,y) (u = Cui ‚-. ug )) (1 <i<n). 

(70) FCX,Y) = Fla,X,Y) for a certain F(U,X,Y) € Z[U,X,Y].
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(11) o;(b) = >; (a,b) for a certain conjunction >; (u,x) of 

t-basic T‚-formulas in (u,x) (1 Sis<n). 

(12) oO, = g,(a) for a certain open L(T,; )-formula gu) (1 <i <n). 

Then (7) - (12) imply that 

{o, (u),.. 50, Cu) ,o1 (u,x), ~~ 56, Cu, x) 01 (u,x,y),..,0 Cu,x,y) FCu,x,y)) 

is an (2,m)-condition (see (1.10)). 

Then K F (Ty ,-.5,TL) implies, by (44) of (1.11), that there are 

elements Di >. >De! in K such that, if bj ,..‚b_‚c are interpreted 

t t î 
as bi >De 9 then: 

n 

(K,bi,..,b,,c') F Fla,b,c) = 0 A A $;(a,b) A O,(a,b,c), 
i=1 

which, by (6), implies: K F p. 0 

In §2 it will be shown that the axiomatization of (Ti ,--,T)) given 

by (4) and (44) of (1.11) can be simplified considerably. 

But first some properties of models of (T,,..,T) 

(1.15) Definition 

If Ti +-+5T, are topologies on a set R, then Ti v...v TO is by 

definition the least upper bound of {Ti pest} in the set of topologies 

on R (which is ordered by inclusion). 

It is easily checked that if R is a ring and Tis++,T, are ring 

topologies, then Ti v...v TO is a ring topology on R and a basis of 

O-neighbourhoods is given by the sets Ui "1... UL with U; a 

t;-neighbourhood of 0, for all 1 Sis$Sn. 

(1.16) Proposition 

Let K = (K,Pi,.-P_) be an existentially closed model of (Ti ,--5TL);
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= . . & 1 S e ° K, (K,P,) FT; (1 <i Sn). Then 

(4) Te VeeeV Ty is not discrete and no TK is discrete. 
1 e 

n i 
(44) If for each 1S 1i8n U; is a non-empty Ty ~Open subset of 

i 
K, then Ui 9... U” p (and hence is infinite by (4) and 

(1.7). 

Proo f 

T. has as distinguished formula Bp Vroe VV ig? and without loss 

of generality we may assume k EIN to be the same for all iSi&n. 

A typical Te Verev Ty neighbourhood of 0 © K is 
1 n 

u 
5
5
 

{b € k|K, F B (a.,b)} (a1,..sa_ elements of KX) , 
4 i n T. 

i i 

and it suffices to prove that such a neighbourhood contains an element 

#0. Let, as in (1.13), Fe = (E‚5-…) be a (#K)*-saturated extension 

. T.. € Ll : F. . is infini of K, with F‚ F T;. Then {b |F | F. F Bp (sb) is infinite by 

(1.7), so by saturatedness contains an element transcendental over, kK, 

which implies that K, has an extension (K(X) ,&,) = T, U {By Ca, ,X)}. 
i 

Then 
nh 

£ = (K(X) ,@ RD FTT) U (ax #0 A By (az 5x)}, 

hence, because K is existentially closed, the above mentioned set 

contains an element # 0, and (4) is proved. 

(44) can be proved similarly. 0 

(7.17) In Ch. II, (1.14) we proved that, roughly speaking, an exis- 

tentially closed model of OD, is dense in each of its n real 

closures. It 1s not clear to me whether the analogue in our general 

situation holds. However, the next proposition gives important cases 

in which it is valid. 

First a lemma.
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(7.18) Lemma 

Let (K,P) be an ordered, respectively (K,v) a valued field. Then: 

(1) K is dense in the real closure of (K,P) > 

for each polynomial f(Y) € K[Y] and all a,b,e © K with 

a<b,0 <e and f(a) < 0 < f(b) there is c witha<c<b 

and |f(c)l <e. 

(2) K is dense in the henselization of (K,v) © 

for each polynomial f € VY] and a € V, such that f(a) € M ‚> and 

f'(a) £ Mo» the set {v(f(atm)) |m € M3 has no upper bound in r 

Prooé 

It is clear that the first half of (1), resp. (2) implies the 

second half. 

Suppose now that the second half of (1), resp. (2) holds. Then this 

half clearly remains valid if (K,P) resp. (K,v) is replaced by its 

completion (K,P), resp. (K,v). 

But a result of Kaplansky, [Kal, says that in a complete V-topological 

field F polynomial maps EF > F are closed maps; this implies in our 

case that (K,P) is real closed, resp. (K,v) is henselian. 

So the real closure (K,P) of (K,P) embeds over (K,P) into (K,P), and 

because K is dense in K, K is also dense in K. The valued field case 

is treated similarly. O 

Remark 

For an algebraic proof of (1) and a nice application, see McKenna, 

[Mck] . 

(71.19) Proposition 

Let K = (K,®@,,..,.) be an existentially closed model of (T,,..,T_), 
n n 

K, F T, for all 1 <i <n. Suppose T, is one of the theories OD,
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(pCF) Cp a prime), CTCE) 

Then K is dense in L where £, = (L,&) is the prime extension of 

Ki (with respect to Ti). 

Proog 

Suppose first Ti = OD and (K,®,) = (K,P). Let a,b,e © K,f(Y) € KLY] 

be given with a < b,0 < e and f(a) <0 < f(b). By the lemma, we have 

only to prove that there is c © K with a<c<b and |f(c)|] <e. 

Clearly f has a zero c' in the real closure of (K,P) with a<c' <b, 

and the ordering on K[c'] (induced by this real closure) can be 

extended to an ordering on K(c',T) with T infinitely close to c' 

with respect to the ordering on K (i.e. 0 < |T-c'| < 6 for each 

0<6€K). Tnen a <T <b and |f(T)| Se. Let P' be the ordering on 

K(T) induced by the ordering of K(c',T). Extend Or -- 56, to rr ee 

such that (K,@,) C (K(T) ,€.) FT, (2 <i<n) (this is possible 

because T is transcendental over K). 

Then K C CK(T),P',f2,..56,) E at(a<t<ba |f(t)]| < €), and because 

K is existentially closed, this implies there is c © K with a<e<b 

and |f(c)| Se. 

Suppose now Ti = (PCF) ,- Let Ki = (K,@;) = (K‚div,P2 ,P3 ,..) and let 

OF aE P_,2 < m EIN. 

CLaim |] 

vla) € mr, where v is the valuation and [ the value group associated 

with (K,div). 

Let b be one of the mth roots of a in the prime extension of kK, and 

extend the (pCF) -structure of &,(b) to a (pCF) -structure on K(b,X) 

such that the value of X is >0 and let T = b(1+X). Then the (pCF)- 

structure of K(b,X) induces on K(T) a (pCF),-structure.
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(K(T) ,@1:) = (K(T),div',P!,P3,..), say with valuation v' and value 

group T'. Then v'(a) = v'(a(1+x)™ = v'(T™) E mr'. 

Because T is transcendental over K, ERE can be extended to 

CERA on K(T), such that 

K CL = (K(T) 07 ‚PD F (Ty ,--5T)). 

Now £ & at(t™ div aaa div t™), so, because K is existentially closed, 

vla) E mT. 

CLaam 2 

#(T/ = m for all 1<m ENN. 

For let g € T and take 0 #b € K with v(b) = g. As is shown in the 

proof of the theorem in (3.6), Ch. I, there is 0 #q € Q with 

K P_(ab). By claim 1 this implies v(qb) © m , so 

g =v(b)=-v(q) =i (mod mr) for some i, O0 Si<m. Hence claim 2 

is proved. 

Let Ki = (K,div,P;,..) be the prime extension of K,. Because of 

Claim 2 (K,div) is the henselization of (K,div), and just as for 

Ti = OD one can prove that K is dense in K (endowed with the topology 

TK): 

The case T, = TCF is left to the reader. 

(Only one new difficulty occurs compared with pCF, namely the residue 

field may not be algebraically closed, and this is treated once again 

by the trick of carefully adjoining a transcendental to the field.) O 

(1.20) Let me finish this section with discussing a possible generalis- 

ation of the main theorem (1.6). P. Winkler treats in [ Wil 

some general constructions on model complete theories giving, under 

certain conditions, new model complete theories. For instance, he 

proves that the disjoint union of two theories each having an 

algebraically bounded model companion has a model companion. Now in 
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our case not a disjoint union of theories is considered, but what one 

might call, an amalgamated union, with the theory of domains as 

common part. It seems to me that something like algebraic boundedness 

is really behind the proof of (1.6). All this suggests a common 

generalization of Winkler's and my results. 

To substantiate the above a bit, let us show that algebraic bounded- 

ness holds in our situation. 

Defsinstion 

A theory T is called algebraically bounded if the infinitary quan- 

tifier 3 : ‘there are infinitely many' can be eliminated, i.e. if 

every "formula" built up using 3 is equivalent, with respect to T, 

oo 

to a formula not involving 4d . 

(1.21) Proposition 

Let T be a t-theory with a model completion T, such that K F T implies 

that Tp is not discrete. 

Then T is algebraically bounded. 

Prooé 

ee, 

T admits elimination, so it suffices to show that 4 x Qu, ++ Uy 5X) is 

equivalent with an L(T)-formula, for each open formula 6. 

Charm 

Each open formula 0(u,..,u,,x) is equivalent, with respect to T, to 

a disjunction of formulas 

q 
f.(u,x) = 0 A A 0. (u,x), 

1 321 no 
>
?
 

1 

with fF. € Z[U,XÌ , and each 0, a t-basic formula in (u,x).
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The proof of the claim is by a diagram-compactness argument, using 

mainly condition (b) of (1.2), and is left to the interested reader. 

By the claim it suffices to consider the case that O(u,x) is a 

conjunction as displayed in the claim. Let Ces (U) zeg be the finite 

set of non-zero coefficients of the P.'s, considered as polynomials 

in X. 

Then, by (1.7) and the lemma in (1.9), 3 Xx Olu,x) is easily seen to 

be equivalent to 

q 
A e.Cu) = 0 A ax A O,(u,x). Oo 
je J j=1
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52, A criterion for eLementary equivalence, and simplification 

of the axioms for (T,,.-,T,] 

Define for each model K of (T,,--,T)) alg(K) as the substructure 

of K whose universe is the set of algebraic numbers in K. 

The following result is the analogue of (2.2), Ch. II, and its 

proof is indicated in (2.5). 

(2.1) Theorem 

Let K and £ be models of (Ty ,..,T). 

Then: K = £ @ alg(K) = alg(£). 

The simplification stated in the next proposition is that only 

(£,1)-conditions have to be considered, in stead of (2,m)-conditions 

for all (,m) GE INXIN (cf. (1.11)). 

(2.2) Proposition 

Let n>1, K = (K,615--36,) FE (Ti 5+-5T)). 

Then: K F (Trs.-57,) + 

(4) K is a field, and 

(44) for each (Q&,1)-condition as given in (1.10) and each a € Ke 

such that F(la,X,Y) € K[ X,Y] is irreducible and 

KE A ola); 
isisn + 

the following holds: 

K E Ixay(Fla,x,y) = O0 A A 6.C€a,x) a O:(a,xsy)) . 
1<i<n * * 

Just as (1.17) of Ch. II this can be shown by applying Hilbert's 

irreducibility theorem for function fields. But there is also a more 

model theoretic proof which might be useful in other situations. This
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proof, given in (2.7), is based on a general lemma (2.6). 

The following lemma is the analogue of (2.5) of Ch. II. 

(2.3) Lemma 

Let T be a t-theory with model completion T such that K F T implies 

that T, is not discrete. 

Let _ Ly 

a > 
Nn 

be a commutative diagram of field inclusions with ly and La linearly 

disjoint over K and let K,£, ,£. be expansions of K,l; ‚La respectively, 

to models of T with KC £,,K C fy. 

Then LiL2(C M) has an expansions £ Fk T with £, C£,£. CE. 

Proog 

Similar to that of lemma (2.5) of Ch. II. 

Note that in stead of formulas 'p(a) > 0' one considers formulas 

bla) where o(x) = Per sc 4X) and @(u,x) is a t-basic formula in 

(u,x). In stead of a real closure one may take any existentially 

closed extension. C) 

The analogues of (2.6) and (2.7), Ch. II, in our general situation 

are given by: 

(2,4) Proposition 

The class of models K = CK, 01 5+-3P) E (Ty ,--5T); such that K is a 
‘ 

field which is algebraically closed in L for some extension 

(L‚@i ,..,8,) F (Ty ,-.,T.) of K, is an elementary class. Define
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CDi s--T arg as the theory such that Moal (Ty ‚TD arg) is the 

class mentioned above. 

Then: 

Ok rss Day, and Mo.) © (Lood ETT) 

imply that K is algebraically closed in L. 

(iL) (Ti, oT arg has AP. 

Proog 

The class mentioned is clearly closed under ultraproducts and its 

complement within Mod(T1 ,..,I) is closed under ultrapowersm hence 

the class is elementary (cf. [Ch.& Ke.,p.322]). 

Let now K = (K,..) F (Ti ,.-5T)) and K C£ = (L,..) F (Ti ,..,T)). 
alg 

For (4) we have to show that K is algebraically closed in L. 

Without loss of generality we may assume L a field. Now K has by 

definition an extension £' = (L',..) EF (Ti ,.-5TL) such that K is 

algebraically closed in L'. Because char. K = 0, the field extensi6én 

L'|K is regular. By the same reasoning as in the proof of (2.7), 

Ch. II we may conclude that there is a commutative diagram of 

embeddings: 

AN. 
NO 

Because £' is existentially closed, L' is algebraically closed in M, 

= (M,..) F (T,,..,T)) 

hence K is algebraically closed in M, so also in L. 

The same argument proves (44). 0 

(2.5) Proog 

Proof of (2.1): one simply repeats the proof given in (2.8), Ch. II,
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using (2.4). m 

(2.6) Lemma 

Let T be universal theory in a t-language with the following 

properties: 

(4) Conditions (a) and (e) of (1.2) hold and the underlying domains 

are of characteristic 0. 

(44) T has an extension Taig whose models are exactly those 

K = (K,..) E T with an underlying field K which is algebraically 

closed in L for some existentially closed extension 

£ = (L,..) of K. 

(iii) Taig has AP. 

(iv) The 2-existentially closed models of T form an elementary class 

Mod(T?), TC T?. 

Then T° is model companion of T. 

PrOO$ 

Let K = (K,..) F T?. We have to show that K is m-existentially closed 

for each m EIN. This is proved by induction on m, m = 2 being trivial. 

For simplicity of notation we treat only m = 3. So let O(x), 

x = (X;5X%2,X3), be an open K-formula and suppose K C£ = (L,..) F 

T U {ax O(x)}. 

We have to show that K k 4x O(x). 

Without loss of generality we may assume £ is existentially closed. 

Let b = (b; ,b2,b3) such that £ F O(b). Let M be the algebraic closure 

of K€b;) in L, and let M have underlying domain M and K CMC €£, 

So MF Taig’ 

CLaam 

T? U Diag(M) F 3x2 3x30(b; „Xa 5X3). 



117 

For let C E Tz U Diag(M). Make a commutative diagram of embeddings 

Se 
4 

C 

which is possible by (444). Then DE Axa 3x30(b; 5x2 5X3), and because 

C is 2-existentially closed, this implies C F 43x24x30(b; ,x2,x3), and 

the claim is proved. 

We assume now also that b; & K (if b; © K, then we should have taken 

bz, or b3 in stead of bj). Then bi is transcendental over K, so each 

finitely generated field extension N of K with K(b,) C N CM is, because 

tr. deg, M = 1, of the form K(b,; ,a). By the claim there is finite 

A C Diag(M) with T? U A - 3x2 4x30(b; 5x2 ,x3). The observation above on 

subextensions of M|K implies that A is equivalent (with respect to 

T? U Diag K) to an open sentence p(bi,a) which involves, besides names 

for the elements of K, only the name b; for bj and at most one other 

name a. But K is 2-existentially closed, so K F 4x, avp(x;,v), which by 

K Fk T? U Diag(K) implies: K Ff 3x0(x). O 

(2.7) Proof of (2.2) 

We will actually show that a model K of (T, ,--,T)) satisfies the 

axioms (4) and (44) of (2.2) iff it is 2-existentially closed. Then 

(2.2) will follow from lemma (2.6) because all the properties required 

hold for (T,,..,T); by (2.4). 

That each existentially closed model of (T,,--,T)) satisfies the 

axioms (4) and (44) of (2.2) is proved as in (1.13) (replace 

‘existentially closed! by '2-existentially closed', etc.). 

Conversely, suppose K = (K,..) F (T, ,--,T) satisfies (4) and (44)
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of (2.2). We have to prove: 

K is existentially closed. 

Let p = dvi Av2ulvi ,v2), HU an open K-formula, and let 

£ = (Ly...) EF (T1,.+,T,) be an extension of K with £ F p. 

We have to show that K = p5 let e,f © L with £ F ule,f). 

Without loss of generality one may assume L = K(e,f). There are 

3 cases: 

(a) tr. deg L = 0 

(B) tr. deg L = 1 

(y) tr. deg ,L = 2 

Case (a) is trivial because (a degenerated case of) axiom (#4) implies 

Kk (T,,..,T_) so K = £ in case (a). 
n’alg?’ 

For case (B) one can almost literally copy the proof in (1.14), taking 

m= 1, and using at the end axiom (4d). 

Case (y) is reduced to case (B) with the same trick as used in the 

proof of (2.6): take an existentially closed extension of £, let M be 

the subextension whose underlying domain is the algebraic closure M 

of Kle) in this existentially closed extension. Let T' be 

(Ti ,.-,T) U {axiom (4), axioms (44) of (2.2)}. Then 

T' U Diag(M) - 3vaule,v2), (use that M F (Tr 5. T arg? that 

(Ti,6-,T 0, has AP, and that by the preceding the models of T' are 
lg 

at least 1-existentially closed). Now tr. deg, = 1, and we have 

reduced to case (8). 0
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563, Decidability, and a conjecture of Erdov. 

The ‘raison d'être! of the preceding two sections lies in the 

following theorem. 

(3.1) Theorem 

Suppose that for each i€{1,..,n} T. is either OD or (PCP), for 

some prime p. Then (T,,--5,TL) is decidable. 

The proof is in the style of §2 of Ch. II, see (3.6). The first thing 

we need is an analogue for p-adically closed fields of "the ath root 

of a polynomial of degree d (1 Sk Sd)". 

It may be an interesting fact in itself that such a notion indeed 

exists: 

(3.2) Praoposation 

Let T be a model complete theory having PEP Suppose 
universal’ 

PCX erk) is a formula with T + Wxd SF o( x,y) (1 Sd EIN). Then 

there are open formulas bi (X59) oee ndgn) such that: 

(4) Tk o(x,y) © (bi (x,y) v...v PY), 

(ii) TR vxay o.(x,y), for alli Sid, 

(444) Th naxdy(o. (x,y) A ¢, (x,y) , for all1<i<j<d. 

Proog 

T admits elimination by (2.11 and (2.17) , ch. I, so without loss of 

generality we may assume $(x,y) open. Adding m new constants 

E15 -5En to the language and replacing d(x,y) , vxa Sy 6(x,y) etc. 

by AOTEREEI ENG, 3 3S o(Cis--sc ay) ‚ etc. preserves the hypothesis, 

so by the theorem on constants, [Sh, p.33], we may suppose m = 0.
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Moreover we may assume that the language contains a constant. 

CLaim 
If AC BE Ty and BE $(b),b € [B|, then the open type realized by 

b over A (with respect to the theory Ty? has a generator p(y) such 

that Ty U Diag(A) F 3 wly) (ef. [Bac, 84] for the terminology). 

Proof of the claám 

Let D be the prime extension of A(b) and let C be the prime extension 

of A. C[A may be realized as a subextension of D|A. 

Then by model completeness C and D contain the same (finite) number 

of elements satisfying ¢(y), hence b belongs to |C|. Now each element 

of |C| is 1-potent over A (see (3.5), Ch.I), hence the open type of 

b over A, which is principal by [ Bac, Th.4.1.], has a generator py), 

with the stated property, and the claim is proved. 

Let b be a new constant and define: 

< 
T = {10(b)|O(y) is open formula, Th 3 y O(y), TE Oly) > oCy)}. 

Suppose there is a model (B,b) of Ty UT VU {o(b)}. 

Let A be the smallest substructure of B. Then by the claim above there 

is an open A-formula p(y) with (B,b) F wp(b), Ty U Diag( A) - 3S} wy) 

and Ty U Diag(A) hk ply) > oly). 

Applying compactness to Ty U Diag A, we get an open sentence o in the 

language of T with Ty ko > 37% wy) and Ty to > (ly) > oCy)) and 

A Fo. We put Oy) o A Yvy) and get: T 3S) OCy), TF OCy) > Ply), 

implying that i0(b) € T, which contradicts (B,b) F T U @(b). 

So the theory Ty UT U {o(b)} is inconsistent. Using compactness we 

get open formulas 01 (y)5-+50,¢y) such that TF 3Sy 0, (y) (1 <i <p) 

and T hk Cy) # (0, (Cy) v...v 0). 

After replacing 15-50), by 0; 502 A 1015+ - 90, A (204 A 1n0,...) if
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necessary, we may assume also T + „3y( 0, (y) A 009), 1<i<j<p. 

Finally, we choose for by) (1 Sk Sd) an open formula, which is 

(w.r.t. T) equivalent to: 

V (0 (y) a( A ayO.Cy)) aC A 23y0. (y))) . 
IC{1,..,p} Taxi) ier * 1<j<max(I) J 
#(I) =k 3EI 

Roughly speaking, $).(b) holds iff 0,(b) holds where & is the th 

number i in the sequence 1,2,..,p for which there exists an y with 

O.Cy). Note that we need d formulas to cover all possibilities. 

Then clearly 1 Cy) 5--564Cy) are the required formulas. 0 

(3.3) Let us apply (3.2) to T := pCF (p a prime) and 

PCX sees) := yotx, yo t+. Xa = 0 (2d EN). 

We obtain, as in (2.2) of Ch. II, open formulas Rs OV eX oee) in 

the language of pCF, such that 

pCF + vxa sy Ra Kb ¥ 2%) for each 1 Sk €d, 
3 

d d-1 _ V T | 
PCF hk y +x,y tesst X= o> 1<k<d Ra KV 2X1 see Xq)s 

pCF hk 7343x3y(R (y,x) A R (y,x)) for all1 Sk <2 €d. d,k df 

Because pCF has a recursive axiomatization, one can effectively 

construct such Ry yb ¥2X)- 
> 

(3.4) Suppose that for each 1 Sin T; is either OD or (PCP), for 

some prime p. 

. nnn df 

Then the theory (T,5--sT) is extended to the theory (T,,--.T)) by 

introducing new predicate symbols W (2 <d,1s Ks Sd), d,ki,--,k) 

and by adding as defining axioms the universal closures of: 

(x, saus) © AYO A RL Cyyx, seus) —dyk,y..5k) 1? Ad y( 1<i<n dk; YX» » Xa )
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(3.5) Theorem 

Suppose that for each i€{1,..,n} T; is either OD or (pCF), for 

er 

some prime p. Then (Ti ,--,T,) admits elimination. 

(3.6) Proofs of (3.1) and (3.5) 

We simply copy the proofs of (2.1) and (2.4) of Ch. II, except for 

OF OD , etc. by (T1,-.,T7,), Croon En), replacing OD» OD n,alg? n° n°? 

(T, 5° 6 oT alg? 

One should also keep in mind that the roles of (2.5), (2.6), (2.7), 

TT ee 

(Ti,..,T)). 

(2.9) of Ch. II are taken over by (2.3), (2.4), (2.4), (3.2) of 

Ch. III. 

Finally the obvious generalizations of (2,10), (2,12) and (2.13) 

of Ch. II are left to the reader. B 

(3.7) ErSov considers in [Er] fields K which have for each 

i © {1,..,n} a Krull valuation Vs such that Vi 2e 2Vn induce 

different topologies on K and there is no proper algebraic extension 

L of K to which each Vs has an immediate extension. 

(If K = (K,...) EF (T,,--5T,) and each T. is a (PCF), or (TCE), then 

K with the n valuations induced by the (T, >--,T))-structure of K, 

clearly has this property. 

Let for each i € {1,..,n} K; be a henselization of (K,v5) within a 

fixed algebraic closure K of K, (ef. Ch. I (3.3)). Then clearly 

K, 9.2.9 Kn = K, so Gal(K|K) is generated by its subgroups 

Gal(K|K ),+++,Gal(K]K_). Er¥ov conjectures: Gal(K]K) is the free 

product (within the category of profinite groups) of its subgroups 

Gal(K,K,),.-.,Gal(K,K ). 

For a special case he proves a 'p-analogue' of this conjecture, for 

each prime p.
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CHAPTER IV Bounds in the theory of pokynomaalk ideals 

61. Introduction 

The title of this chapter indicates a topic to which A. Robinson 

returned again and again. There are a lot of results in this subject. 

We mention a few of them (with X = (Xi sekd): 

(7.7) Given natural numbers n and d, there is A = A(€n,d) EIN such 

that for each field K and all f1,--,f 8 E K[X] of degree <q: 

gE (f1,..,f,) > pg = thf, for certain hs E K[X] of degree SA. 

(7.2) Given natural numbers n and d, there is B = B(n,d) EIN such 

that for each field K and all fi,.-,f 8 E K[X] of degree Xd: 

ge ¥(f15.-5f,) - 9b = thf, for certain he E K[X] of degree SB. 

(1.3) Given natural numbers n and d, there is C = C(n,d) EIN such 

that for each field K and any two ideals I and J of K[X] 

generated by polynomials of degree Sd the following holds: 

IMJ and I:J are generated by polynomials of degree SC. 

(7.4) Given natural numbers n and d, there is D = D(n,d) EN such 

that for each field K and every proper ideal I of KIX] generated 

by polynomials of degree <d the following holds: 

I is prime * for all f,g © K[X] of degree SD, if fg E I then f EI 

or g El. 

(1.5) Given natural numbers n and d there is E = E(€n,d) EIN, such 

that for each field K and each ideal I of KIX] generated by
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polynomials of degree <d the following holds: 

each of the minimal prime ideals of I is generated by polynomials 

of degree SE, and there are at most E minimal prime ideals of I. 

The oldest proofs of these results are constructive -see [He], 

where ideas of Kronecker, M. Noether, J. Konig, Macauley and Hentzelt 

are used- and give extra information: for instance concerning (1.3) 

it is shown how to construct generators for IMJ and I:J if generators 

for I and J are given, and this permits us also to give explicit 

recursion formulas for the functions A and C. A recent treatment in 

this style, free from the mistakes occurring in [He], is [Se]. 

In the fifties A. Robinson showed how (7.2) trivially follows 

from Hilbert's Nullstellensatz by a model theoretic argument. This 

quickly became a kind of paradigma. Later he also proved (1.1) by 

combining a non-standard trick with well-known facts on primary 

decomposition, see [ Ek ] for a review of this and related work. 

One might ask for the significance of such model theoretic proofs. 

This seems to me to lie in their simplicity, compared with the many 

complicated constructions needed in the older proofs, and also in 

certain new interpretations, which model theory permits. For instance, 

in §2 I will show that (1.1), (7.3) and many similar results can be 

explained by the faithful flatness of certain ‘internal! poly- 

nomial rings over their subring of ordinary polynomials. 

In §3 I will prove (1.4) by combining a model theoretic compactness 

argument with a somewhat elaborated version of: "an irreducible 

variety is birationally equivalent with a hypersurface". (1.5) is then 

almost immediate, by well-known model theoretic arguments. 

Another reason for giving model theoretic proofs is given by 

A. Robinson in his list of problems [ Rob4].
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In the third problem "On effective procedures in differential algebra" 

he indicates that analogues of (1.1), (1.3) and (1.4) for differential 

polynomials are still open, even for n = 1 and that the famous Ritt 

problem is of this nature. If this is due to extreme complications 

which an orthodox, constructive proof would probably involve, then one 

might hope model theory to be useful in this area. But first one 

should of course give systematic model theoretic proofs of (7.1) - 

(1.5), etc., to learn what kind of arguments are involved. Robinson 

explicitly mentions the bound D in (1.4) as one, which 'does not follow 

from any known model theoretic arguments', [Rob4, p.503]). 

Such arguments will be given in sections 2 and 3. (Actually we 

will prove more precise statements than (7.1) - (1.5).)
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52. "The concept of flatness As a nAddLe that comes out of 

algebra, but which technically is the answer to many prayers" 

D. Mumford 

(1.1) and (1.3) are actually consequences, as in [Hel , of the 

following two stronger results: 

(2.1) Theorem 

Given n,d,k EIN there is a = a(n,d,k) EIN, such that for each field 

K and each system of homogeneous linear equations 

; . LL. 
with all Pas € K[X] of degree Sd, the solution set in K[X] is 

generated as K[ X]-module by solutions g = (gi >-->8g) with deg(g) <a 

(i.e. deg(g.) <a fori<i <Q). 

(2.2) Theorem 

Given n,d,k EIN there is B = B(n,d,k) EIN, such that for each field 

K and each system of linear equations 

f11 Yi + see + figYg f, 

Yo = EL 

| Q 
with all Fisk; E k| X] of degree Sd, there is a solution g € (K[X]) 

with deg(g) $ B, if there is a solution in (xt x])* at all. 

Remark 

The numbers a and B do not depend on the number & of unknowns. This 

is so because for given n,d,k the K-linear space of column vectors
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f in KL x] * with deg f Sd has finite dimension, say & (only 

depending on n,d,k) and if bounds a,8 hold for this special value 

of £, it clearly holds also for all other values. This type of 

argument will in the following tacitly be left to the reader, and 

in such cases 2 will be considered as bounded in terms n,d and k. 

For the proof of (2.1) we have to recall a result on flatness. 

(2.3) Fact 1 

Let R,S be rings and RCS. Then the following are equivalent: 

(4) S is a flat R-module. 

(4) For each homogeneous linear equation f,Y,+...+fgYg = 0 

(f E R) the solutions in 3 are S-linear combinations of 

solutions in Re, 

(444) For each system of homogeneous linear equations 

fi4%, +... + fio Yp = 0 

| (f£.. ER) 
EL, Y, + ... + fig Xg = 0 

. . Q . . . . . 
the solutions in S are S-linear combinations of solutions in RE. 

For the proof see [Bo2, Ch.1, §2,n°11], where (i) > (iii) > (ii) > 

(i) is shown. 

(2.4) Proof of (2.1) 

Suppose n,d,k given and a does not exist. So for each m EIN there is 

a field Kn and a system of type (A) over Kn and a solution in (KL 

which is not generated by solutions of degree Sm. Consider a structure 

containing all fields K polynomial rings Kx)» IN, ete. and take an 

enlargement of this structure. By the saturatedness of enlargements
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there is an internal field K in this enlargement and an infinite 

natural number w such that the following holds: 

there are Fi 5(i51,..5k; jzi,..,2) in the (internal) nonstandard 

polynomial ring K EX] over K, all of degree Sd giving rise to a 

system (A) having a solution in (x*tx1)* which is not a K\[X] -linear 

combination of solutions of degree Sw, so in particular not a linear 

combination of solutions in CK xD) S. Here KIX] is considered as 

naturally embedded in KE X). 

CLadm 

K"[X] is a flat Kl X]-module. 

If this claim holds, then one gets a contradiction using (i) @ (iii) 

of Fact 1, noting that all fs; are in K[ X]. 

Let us now prove the claim with induction to n, using (i) ® (ii) of 

Fact 1: let f,,..sfg © K[ X] be given and consider a solution 

gZ = (8, 9-- 289) = cx" x1)* of £,Y,+...+fpYp) = 0; we have to show that 

g is generated by solutions in (KL x1)*. Assume n > 0. 

We may of course suppose f; #0 and also (after carrying out a linear 

transformation on the variables X) that f1 is monic, say of degree p, 

in xX: 

(-f2 5f1,0,.--50),0-fs ,0,f,,.--,0),--.50-fp 50,0,...,f,) are also 

solutions in (KE x})* of F,Y, +...+f) Yo = 0, and by subtracting suitable 

multiples of these solutions from CE, >--58g) one obtains a solution 

(gi ,-+.89) with B, o++ 58 all of degree <p in X > sO (grass s89) has 

components in CLX, seek DLX. By the induction hypothesis 

KLX, se oX 0] is a flat K[X, ,..‚X,_ ]-module, so CLX ee sX DEX] 

is a flat K[ X]-module. (This last conclusion is a consequence of the 

preservation of flatness under extension by scalars, see 

[Bo2, Ch.1, §2,7].)
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Hence (B, y++ 289) is generated by solutions in CKLx1)*, by (i) © 

(ii) of Fact 1. O 

(2.5) Remarks 

(a) 

(b) 

The claim in the proof should be considered as the nonstandard 

form of Theorem (2.1). 

Let us show how (1.3) follows: if I = (f,5--.f,); J = (g,>-->8g) 

with all f..85 of degree Sd, then generators for INJ can be 

obtained by first giving generators in Cx xy) K** for the 

solutions of Y,f, tet = Z2,8,+--+Z9g8), and then taking for 

each of these generators (Yi oe Vy 2, 9022) the element 

Vifit Vijf as a generator for IMJ. 

Similarity, generators for I:J are obtained by giving generators 

in (xt xy) +4 for the solutions of 

poe £,2,,+ + Fai 

goY = £, Zg, + + Fi Zo, 

and taking the first components of these generators. 

For the proof of (2.2) we need the concept of faithfully flatness. 

(2.6) Fact 2 

Let R,S be rings and RC S. Then the following are equivalent: 

(4) 

(ir) 

(iid) 

S is a faithfully flat R-module. 

S is a flat R-module and mS # S for each maximal ideal m of R. 

S is a flat R-module and each system of linear equations. 

£f. Y + ... + Figry = f 
1 

{ ; ; " (f..,f. © R) 
. . . 1) 1
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with a solution in sf has also a solution in RE. 

See [Bo2, 53] for the proof. 

Just as in the proof of (2.1) one shows easily that the nonstandard 

equivalent of (2.2), in conjunction with (2.1), is the following: 

(2.7) If KX] is the internal polynomial ring in X = (X,5--5X,), 

n EIN, over a field K, then K [Xl is a faithfully flat K{Xx]- 

module. 

(Here K is supposed to be an internal field of an enlargement, in 

order that K*[X] makes sense.) 

Prook of (2.7) 

Let m be a maximal ideal of KIX]. By (i) * (ii) of (2.6) we have to 

show only that m.K*[X] # K*[X]. 

By Hilbert's Nullstellensatz m has a zero x in L", where L is the 

*algebraic closure of K, so the internal K-algebra morphism 

K*{[X] + L given by X® x contains m-K*[X] in its kernel, hence 

m-K*[X] # K*[X]. U 

Remark 

(1.1) is an immediate consequence of (2.2). 
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85, Prime Adeals in K[ X]. 

For simplicity we consider first the case of perfect K. Then the 

algebraic fact underlying our proof of (1.4) is the following lemma, 

which is nothing more then an elaborated version of: 

an irreducible K-variety is birationally equivalent over K with a 

hyper surface. 

(3.1) Lemma 

Let K be a perfect field, f,,--.f, E Ki X] of degree Sd and put 

I = (f,,--,f,). Then the following are equivalent: 

(4) I is a prime ideal. 

(44) There exist t, 0 <t <n, and irreducible PE K[Y,,..,Y 

of degree >0 in Z and h,»--sh, € KLY, 5--5Y,.4),h € KLY, 5.-,Y,J\ {0} 

and Bj o++ 8,08 € Ki X] such that 

(a) n°£,(h,/h,..,h /h) © P-KLY,,..,¥,,2], 1 <i Sm, t? 

(b) P(g, >-- 58,58) El, 

(c) I: Ch(g, >-+58,)) = I and I # K(X], 

(d) NCS, 9+ + 98, IX, - NaC, > ++ 98498) EI, 1SjsSn. 

Proog 

. ee - < . < 

(i) > (ii). Let x, X41 E K(X] ,; for 1 <j <n. Then K(x, ox) IK 

is separable, so has a separating transcendence base Yyo++o¥, over K 

with {yy sey} Cc {xy oee} (see [L3, p.266]). 

The proof of the primitive element theorem in [L3, p.185] 

shows that there is z € Kl x, ,- ox, (= KEX] , 7) with Kly, 9+ + Vp 92) = 

K(X, sees). Let us introduce new indeterminates Lyre oY 0% and write 

Y for (Ypo--5Y,); y for CY, 2-5) and x for CX, 5++59%))- 

Let P = P(Y,Z) © KL Y,ZJ] be the irreducible polynomial such that
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P(y,z) = 0. Further choose B12++ 38408 € k{ X] with Yi = B(x), 

1S i <t, and z = g(x), and choose h,,--,h, € KLY,Z] and h € K[y]\ {0} 

with Xs = h.Cy,z)/hCy). 

Then (a), (b}, (ec), (d) follow easily from: 

I is the kernel of KIX] + K(x), and P-KIY,Z] is the kernel of 

KL Y,Z] > KCy,z). 

(ii) > (i): We put x, 5 X.+1 and y; = Y;+P-KLY,,-.5Y,52] and use the 

notations Y, y and x from above. 

Let O : K[X] > KLY,Z],, be the K-algebra morphism with ox) = h./nh. 

Because h¢ P.K[Y,Z] we have h(y) # 0, so we can extend the evaluation 

map KLY,2], > Kly,zlngy): 

By {a} we get OCF. )(y,z) = fh, Cy,z)/hly),...,h Cy,z)/hly)) , SO 

© induces © such that the following diagram of K-algebra morphisms 

commutes: 

K[X] —°2 > KLY,2], 

Kx] —&e xlyszlagyy 
Il 

KLXI/(E, „..,£ 

(a) 

We define the K-algebra morphism u : KLY,Z] + K[X] by ur) = g.(X) 

and u(Z) = g(X). Then u(P)(x) = PCB, 5+ + 18, 08)(%) = 0 by (b), so u 

induces u such that the following diagram of K-algebra morphisms 

commutes: 

KL yY,Z}] LE K{[ x] 

| (B) 
Kly,zl —E- Kl x]
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Now these 4 morphism can be extended uniquely to K-algebra morphisms 

such that the following diagram commutes 

. 

KE y 92) n¢yy KE) en) cx) 

(The extensions of u and u are denoted by the same letters). 

That the morphisms in (y) are indeed extensions of those in (8) is 

seen as follows: h #0, and h(y) #0 since h @ P.K[Y,Z], so 

KL Y,2Z] C KLY,2Z], and K[y,z]¢ KLyszlncyy3 uCh)(x) = h(g, 5++58,)(x) is 

not a zero divisor of K[{x] # {0} by (ce), so pCh) #0 and 

KI X] C K[ X] and K[ x] C K[ J ch) x)" 
uCh) 

From (a) and (y) we get the commutive diagram: 

po © K[ Xx] > KX) 
| (8) 

HOO 
Kt x] > Kl xl nm) 

(d) means that uch )X, - uth.) € I, so we get 

Xs = uch, )Cx)/uCh) (x) (Ce). 

Similarly Cuo 0) (Xs) uh. )/uCh) SO 

(uo 6) (x; ) uh /u( GC). 

From (e) and (7) it follows that uo0 : K[x] > KEX] ny (x) is the 

inclusion map, hence 6 is 1-1, so is an embedding of the ring Kl x] 

in the domain Klyszlngy): This implies that Kl x] is a domain, i.e. 

I is prime. O
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The model theoretic fact underlying our proof of (1.4) is: 

(3.2) Lemma 

Let T be an L-theory, and let F and A be sets of L-sentences such 

that TF AT ® VA. 

Then there are finite subsets To of T and Ag of A such that 

T k ATo > VAo. For such To and Ao we have: Th AT © Alo. 

Proog 

VA is true in each model of T UTI, so by the compactness theorem there 

is a finite subset Ao of A with T UT H VAo. A second application of 

the compactness theorem gives a finite subset To of T with 

T kk ATo > VAo. The second statement of the lemma is trivial. O 

(3.3) Let now £,(C,X),...,f (C,X) be given polynomials in Z[C,X], 

C denoting a sequence of variables C,,..,C,. 

Using (1.1) we see that for each each r EN there is a formula prime (C) 

k (in the language of rings) such that for each field K and c € K 

K F prime (c) * for all g,h € K[X] of degree <r, if 

gh € (f£,(c,X),...,f (c,X)), then 

ge (£,(c,X),...,f (c,X)) or h € (£,€c,X),...,f,(c,X)). 

Hence it is clear that for each field K and c € KS: 

KE A{prime,(c) |r EN} > (£,(c,X),...,f (c,X)) is prime. 

Similarly, by (1.1) and (1.3) there is for each r EIN a formula 

eo Ld k 

E : prime (C) such that for each perfect field K and c K 

KF prime (c) # there is 0 <t <n and there are irreducible 

PE KLY, 5--sY, 54] of positive degree in Z and hy > sh, € KLY,.--,Y,.41, 

h Ee K[Y, »--sY,J\ {0}, and Ey 2+ + 08,08 € K[X], all of degree Sr, such 

that (a), (b), (ce) and (d) of (3.1) hold with f. = f.(c,X).
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Lemma (3.1) tells us that the ideal (f,(c,X),...,f (c,X)) E k{ x], 

for K a perfect field and c € KS, is prime iff 

KF viprime (c)|r EIN}. 

Let now (1.4), be the statement (1.4), with 'for each field K' 

changed to 'for each perfect field K'. 

(3.4) Proof of (1.4), 

Take for £,(C,X),...,f,(C,X) the m general polynomials in X = (X,,..,X_) 

d+n 
n ) variables of degree d, i.e. their coefficients are the k = m.( 

i i 
(Cy ++ Ci) = C (CSP) = number of monomials rn with i,+...+ti Sd). 

n 

Let now pFL be the theory of perfect fields. Then by (3.3) 

pFL F A{prime (CO) [r EN} » V{prime (C)]r €N},C,,..,C, being considered 

as new constants. 

An application of (3.2) finishes the proof. 0 

(3.5) Let me make some remarks how to use the model theoretic lemma 

(3.2) which does not seem to be noticed before. In the above the 

infinite conjunction was the trivial part and to find an equivalent 

disjunction required the algebraic lemma (3.1). 

Also in Ritt's problem an infinite conjunction is easy to find, so that 

a positive solution of the problem ‘only' requires an equivalent 

infinite disjunction. 

T'll now indicate an example where the infinite disjunction is 

trivial, while the conjunction requires a non-trivial result. 

Let g(C,X),f,(C,X),...,f, (C,X) € Z[C,X] be the m+1 general 

polynomials of degree d in X (C = (Cy 92-90), k = m+1) (CEP). 

Then one easily constructs for each r EIN a formula 00) Cin the 

language of rings) such that for each field K and c € KS:
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K - o Cc) > g(c,X) = Eh. (X)-£,(e,X) for certain h,(X) € KL X] of 

degree Sr (i = 1,...,m). 

Similarly one can construct for each r EIN a formula v0) such that 

for each field K and c € KS: 

K È v‚te) ® g(c,x) = 0 for each ring K{x], x = CX, peek)» such 

that dim, Kix] <r and f,(c,x) = ... = f,(c,x) = 0. 

Let K be any field, I an ideal of KIX], and g © K[X]. Then, using 

I = M{I+m"|m is a maximal ideal of KIX], n EIN}, we obtain: 

ge I iff g(x) = 0 for each ring KI x] of finite K-dimension, such that 

x is a zero of I. 

Combining the above three remarks, we get: 

FL k vig (Or EN} + NCO |x EIN}. 

Using a recursive enumeration of all proofs from FL, we will find 

A(n,d) with FL + vlo (C) ]0 <r < A(n,d)} > ALP CC) |0 <r SR} for 

some REN. This gives a new proof of (7.1) with the extra result 

that we can take for A a recursive function. 

(3.6) A problem related to (1.4) is: 

Let a computable field K be given (i.e. the elements of K are numbered 

in such a way that the ring operations on K correspond with recursive 

functions, see [Ra, p. 352] for details). Is there an algorithm to 

determine whether an ideal of KIX] given by a finite set of generators 

1s prime? 

A necessary condition is that there is an algorithm to determine 

whether a polynomial in one variable over K is irreducible. It will be 

shown in (3.7) that for perfect K this is also sufficient. However, 

the result can be stated without any reference to computability of the 

field by extending the language of rings as follows: 

add for each k EIN, k 2 2 2k (Skolem) function symbols Ar » By (1<i<k) 
1 1
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nf | 
and the unary function symbol to the language of rings. 

Similarly we extend the theory of perfect fields pFL to the theory 

pFL* by adding axioms saying for a model K" of 

PFL” (with underlying perfect field K) the following: 

each polynomial i TT! + ... + a, © KIT] (k 2 2) is either irre- 
k 

ducible, or factors as 

k-1 
CAL Cay oe ea dT +... + Ay Cay oes). (By, (a, s+ + 2a, IT 

(a, 5-++5a,)) and for each a € K: a= 0 ora-a’ = 1. 

k-1 + 

+ Bik 

pFL™ might be called the theory of perfect fields endowed with a 

process for factoring polynomials in one variable. 

Note that pFL” has a universal and recursive axiom system. For 

instance, perfectness can be expressed by saying that if characteristic 

= p > 0, then for each a TP-a is reducible. 

We can also for a polynomial f = f(C,X) € Z[C,X] find an open formula 

Irr‚(C) in the language of pFL* such that for each model K* of pFL* 

and all ce € KS: 

K* k Irrgle) © fle,X) € KIX] is irreducible. 

n= 1: this case is easy using the new function symbols. 

n> i: the Kronecker trick ([L2, p.150)) can be used to reduce to 

n= i. 

(3.7) Theorem 

There is an open formula prime (C) in the augmented language such that 

for each K* Ek pFL* and each c € KS: 

K* E prime (c) > (£,(c,X),.-+,f (c,X)) C K[X] is prime. 

Moreover the formula prime (C) can be determined effectively from 

£,(C,X),..,f, (C,X) © ZIC,X]. 

Remark 

For the last statement of (3.7) we need the fact that we can take
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recursive functions for A and C in (1.1) and (7.3). 

For A this was proved in (3.5). An explicit formula for C can be 

found on p. 296 in [ Sel. 

Proof 

For all models K* and L* of pFL* with K* C L*® and all c € KK c € IN 

we have: 

K* EF prime (C) = L* F prime (c), 

L* & prime, (c) => K* F prime, (c). 

This is clear from the meaning of the formulas, except perhaps for 

the first implication which rests also on the following: 

if K and L are fields with K CL, I an ideal of K[X]),g © KIX] and 

I: (g) = I, then I-LIX] : (g-L{X]) = I-L[X]. It is left to the 

reader to verify that this follows from the flatness of L as a K- 

module. 

The last part of (3.4) shows that there exist r,s EIN with 

pFL” -| prime (C) * prime (C). 

pFL* is a universal theory, hence by Ch. I (2.12) and the 2 impli- 

cations above prime,(C) 1s equivalent to an open formula prime (C). 

This formula satisfies the requirements. 

Because A and C are recursive, the formulas prime ,(C) and prime ,(C) 

can be constructed effectively from d € IN. 

So r and s and an open formula prime (C) as above are found by going 

systematically through the proofs of DEL . O 

(3.8) Let us now prove statement (17.5) of 51 for perfect K. In fact 

we will state in (3.10) a somewhat stronger result which has 

also the following corollary: 

* 

( ) Let K be a perfect computable field with an algorithm to test 

irreducibility of polynomials in one variable over K. 
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Then there is an algorithm which computes for every ideal I of 

K[X] , given by a finite set of generators, the finitely many minimal 

primes of I. 

Recall that for an ideal I of K[X] the set of minimal primes of I 

can be characterized as the unique finite set {P,,-.>5P)} of primes 

in K[X] such that P, £ P. for i # j and for each x € Kf (K = alg. 

closure of K): x is a zero of I iff x is a zero of some P.. 

Let C and f,(C,X),...,f (C,X) be as before. A pFL*-term t(C,X) will 

be called polynomial in X if it is of the form 

i, i 
Za. . (C)X, ...X 

i,--1), n 
n 

Let T(C,X) with or without subscript denote in the following a finite 

set of pFL*-terms in the k+n-variables C,X which are polynomial in X. 

If K* is a model of pFL* and c € K* we let (T(c,X),) be the ideal of 

K[ X] generated by all t(c,X) with T(C,X) © T(C,X). 

(3.9) Lemma 

Given an r-tuple T = CT, (C,X),...,T)(C,X)) (r EIN), there is an open 

pFL*-formula minimal primes,,(C) such that for each K F pFL* and each 

c € KX, 

K* — minimal primes,(c) ad (CT, Ce, see CT Ce, } is the set of 

minimal primes of (E,Ce,X),...sfle,X)) C K[X]. 

Proog 

This is an easy consequence of the above characterization of the set 

of minimal primes and the fact that ACF admits elimination. 0 

(3.10) CorokLary 

There exist Ty a++sTy> each T, being an r-tuple (CT, (C,X),...5T; (C,X)) 
1 r
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for some r EIN, such that 

DEL” + vc( y minimal primes (C)). 
1SiM 1 

Proof 

Let (T))jen be an enumeration of all tuples (T,(C,X),...,T7,6C,X)) , 

r EIN. Then the infinite disjunction V minimal primes,, (c) is true 
LEA ae: 

E pFL* and c € K°. The compactness in every structure (K*,c) with K* 

theorem allows one to replace the infinite disjunction by a finite 

subdisjunction. O 

Remark 

The same arguments as at the end of (3.7) show that Ts ses TM can be 

found effectively. Hence the statement made in (3.8) follows. 

I will now indicate how everything generalizes to arbitrary fields 

K. We use the function a introduced in (2.1). 

(3.17) Lemma 

For all m,n,d EIN and each field extension LIK with [L : K] = m and 

each ideal I of LIX] which is generated by polynomials of degree Sd 

we have: 

INK(X] is generated by polynomials of degree Sa(n,d,m). 

Prooé 

Let m,n,d,K,L and I be as indicated and let I = (f 

Take a K-linear basis a, = 1,0, ses of L and write: 

* a. = a -., € (*) aje L eijk (erik K), 

* = . <S (**) f. È Fay Aj CE € k[ X], deg fin d). 

2 m 
; * +k > = Using (*) and (**) the equation ira stige) fs Z (the unknowns
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Y..,2 ranging over K[X]) is equivalent to: 
1) 

Xd. = Z 
ij1 ij 

= _ Ee < |: wae 0 (diay K[X] of degree d). 

‘Yd.. Y.. = 0 
ijm ij 

By construction the last components z of the solutions CY. p++ Vg p02) 

of the system form the ideal I 9 K[X], and, by (2.1), this ideal is 

generated by polynomials of degree S a(m,n,d). O 

(3.12) Definition 

An ideal I of K[X] is said to be a separable prime ideal if I is a 

rime ideal such that the extension Q(KI X] ,,)|K is separable. P /I 

Note that (3.1) remains true with the following changes: 

omit 'perfect' in the hypothesis, replace (i) by: 'I is a separable 

prime ideal', and augment (ii) by requiring P to be separable in Z. 

(3.13) Lemma 

Let I be an ideal of KIX]. Then we have: 

I is prime ® there exists a purely inseparable finite extension L|K 

and a separable prime ideal J of L[X] with J N K[X] = I. 

Prooé 

“is trivial. >: let xX. = X.+I, SO QCKE XI] 7) = K(x, ++ ox). 

It suffices to consider the case char. K = p > 0. KPO Cx, sen ox) | KPT 

is separable, hence has a separating transcendence base S C LX, sees} 

so each Xs is root of a polynomial 7 EST, separable in 

T,f,,(8) € KP “Isl. Let L|K be any subextension of KP"®[K containing



142 

the coefficients of all £5565), and let J be the ideal of all 

gE LIX] with BCX pee 9X) = 0. Then J is clearly an ideal as 

required. 

(3.14) It is useful to have some information on purely inseparable 

extensions: for r EIN we define a field L|K to be of type r 
-r -r 
er ) where 0 < char K = p Sr 

and fe, >er} is a p-independent subset of K with k elements and 

if either L = K, or L = K(cP 

k Sr. See [ Bot, p. 133] for the definition of p-independence, and 

its consequences, among which is the following: 

each purely inseparable extension of finite degree of K is a sub- 

extension of an extension of type r, for some r EIN. 

Let us also define an ideal I of KIX] to be prime of type r if there 

is an extension L|K of type r and an ideal J of L[X] with J 9 K[X] =I, 

this ideal J satisfying the following: J = (f,,--,f,) for certain 

f; © L[X] of degree Sr, and there is 0 St <n and there are irre- 

ducible P € LEY, --5Y, 541; separable and of positive degree in Z, and 

hys--sh, © LIY,,.-,¥,.2], h © LIY,,-.,Y,J\{0} and g,,--,8,,g8 € L{X] 

such that (a), {b), (ce) and (d) of (3.1) hold, with K, d, I changed 

to L, r, J. 

(3.15) Finally we can prove (1.4) for arbitrary K: by (3.11) we can 

construct for each r EIN a formula prime type (C) such that for 

each field K and c € KK, 

K F prime type „(e) had (£,€c,X),...,f le, X)) C K[X] is prime of type r. 

By (3.13) and the remark in (3.12) we get that for each field K and 

each c & KS Cf, (c,X),...,f (c,X)) C K[X] is prime iff 

KE V{prime type (ce) r € IN}. 

The rest of the argument is similar to the proof in (3.4), with 

1 1 1 1 t 1 t prime type, (C)' taking over the role of the formula ‘prime, (C)'. 0
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{3.16) Let us also generalize (3.7) and (3.10). We first extend the 

language of rings by adding, as in (3.6), the function symbols 

A. and B. (1 <i<k 22) and ', and also adding new (Skolem) 
ki ki 

function symbols C (1S iSk 22, pa prime) of rank k. Then we 
kip 

extend the theory FL of fields to the theory FL” in the new language 

by adding the same defining axioms for Aya Bua and as in (3.6), 

and by adding defining axioms for the CKip saying for a model K* of 

FL* (with underlying field K) and c = (Cy 96-9) ) E KX, 

. ~ . . k . 
CC pled ares yyy boy) is a non-trivial solution in K of the equation 

c, -YF + ... + on = 0, if there is such a solution and 

char. K = p>0. 

FL” might be called the theory of fields endowed with procedures for 

factoring polynomials, and solving linear dependence relations over 

the subfield of pth powers, in case of characteristic p > 0. 

Now (3.7), (3.8), (3.9) and (3.10) remain valid if we replace 'pFL*' 

by 'FL*', omit everywhere 'perfect', and add in the hypothesis of 

statement (*) of (3.8) that there is an algorithm to test whether a 

finite set is linearly independent over the subfield of pth powers, in 

case of characteristic p > 0. 

The proofs carry over.
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APPENDIX 

The two theorems in this appendix may be described as providing 

bounds for certain polynomial ideals and at the same time as giving 

information on the solvability of certain systems of equations. 

The novelty does not lie so much in these results, as well as in 

their proofs. See [Be., De., Li.& v.d.D.] for related results and 

proofs. 

(A.1) Definition 

A local ring (R,m) (m = the maximal ideal of R) is called henselian 

if for each f(T) € R[T] and each simple root a € R = R/m of f(T) ER[T] 

there is a © R with f(a) = 0 and a = a. 

So a valued field (K,v) is henselian (Ch.I, (3.3)) iff its valuation 

ring is henselian. We will need the (wellknown) equivalence of 

"Hensel's Lemma! with a strong form of it , sometimes called after 

Hensel-Rychlik. 

(A.2) Proposition 

For a local ring (R,m) the following are equivalent: 

(i) (R,m) is henselian. 

(44) For each f(T) © R[T],a © R,c © m such that fla) = c-(f'(a))?, 

there ie b © R with f(b) = O and a-b © cf'(a)R. 

Proo 

(4) > (44): write f(a+T) = f(a) + f'(a).T + XZ b,T° = 
. 122 

e-(f'(€a))? + £'(a).T + DX b.T*, for certain b. E R. 
iz2 * 1
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Substitution of cf'(a)Z for T gives: 

f(atcf£'(a)Z) = cf f'€a))? (1+2+ 2 cd,27) 
122 

for certain d. ER. 

1+Z+Zcd,2* has a root z in R, so b = atcf'(a)z is a root of f(T) 

as required. 

(4) is a special case of (44), so (44) > (4) is trivial. OD 

(A.3) Lemma 

Let a commutative diagram of rings and ring morphisms be given 

> V 
NS 7 

„ TT 
R 

a! such that 

D 

(4) V is a henselian valuation ring, 

(44) wT is onto, g is 1-1, and C is a domain, 

(4ii) R is finitely generated over its subring D and Q(R)|Q(D) 

is separable. 

Then R can be lifted, i.e. there is a morphism A as indicated which 

makes the two subdiagrams commutative. 

Proof 

Because D + V and R + C are 1-1 we consider D as a subring of V and 

R as a subring of C. 

By induction on the number of generators of R over D it suffices to 

consider the case that R = D[r] and either 

(a) r is transcendental over D, or 

(b) r is separable algebraic over Q(D). 

In case (a), choose any b € V with m(b) = r and define A by putting 

AC(r) = b.
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Suppose (6) holds. Let f(T) € D[T] be such that f is irreducible 

in Q(D)[T] and f(r) = 0. Choose any b © V with T(b) = r. 

Then f(b) € Ker(m) and f'(b) € Ker(m) (because f(r) = 0, f'(r) #0). 

As V is a valuation ring, this implies that f(b) = c-(f'(b))* with 

c © Ker(t) (for if c € V we get a contradiction applying 1 to 

*-f£(b) = (f'(b))?, and c © V\Ker(m) similarly gives a contradiction). 

Then, by (A.2), there is b' € V with f(b') = 0 and b-b' € Ker(m), 

i.e. T(b') = r. Then A(r) = b' defines a morphism as required. 0 

In the following theorem, we write vla, ++ 5a) for min(va, ,--,va,) 

(v a valuation). 

(A.4) Theorem 

Let D be a domain of characteristic 0 and f = C£,(X),..-,f OO), 

f.(X) E DIX], X = Xi seek): 

Then there is an integer c # 1 and a nonzero d € D with the following 

property: 

for each henselian valuation ring V 2 D, with associated valuation 

vi: QCV) > Ps each g & rg > 0, and each x € v™ such that 

v(fx)>c.g+v(d), there is y € V" with f(y) = 0 and vly-x) > g. 

Remark 

With D noetherian and the rings V 2 D restricted to discrete valuation 

rings, this is [Gr, Theorem on p.143]. 

Proo6 of (A. 4] 

Suppose this is not true. Then for each c€ IN\{0} and d € D\{0} there 

is a triple (Vo 4°8c ) with a henselian valuation ring 
’ ‚d°*e,d 

> < € i € Vod V ‚0 Eed value group associated to Vod and Xe od Vod
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. n 
such that Voal fa”) > CB g + Vo af) and there is no y € Va) 

with fy = 0 and Vaals) > Bova’ 

(*) Note that for c,,..,c, © IN\{0} and d,,..,d, © D\{0},k > 0, the 
k k 

triple (V ), with c = XC. d = Id; , has simultaneously c‚d°Se,d’*e,d 

the properties required for each (Vo. „a. 8c. ,d.?*e. „a, 
1’ i i?-i 1? ai 

The statement (*) implies by an obvious compactness argument that there 

) (izti,...,k). 

is even a triple (*V,*g,*x) with *V a henselian valuation ring, \V DD, 

0 < *g © value group of *V, and *x € (*v)" such that for all 

e GINV{0},d © D\ {0}: 

*v(f(*x)) > c.*g + *v(d), and there is no y € (*V)” with fly).= 0 

and *v(y-*x) > *g (*v = valuation associated to *V). 

Put I = fa © *V|*v(a) >c.g + *v(d) for all c EIN\{O0} and d € D\{0}}. 

It is clearly a prime ideal of *V. Putting C = *V/I and letting 

mT : *V + C be the canonical map, we obtain a commutative diagram: 

D+ C is 1-1: if 0 f d € D, then clearly d € I, so m(d) # 0. 

Now m(*x) € CP is a solution of f(X) = 0, because f(*x) € I. 

Because Q(DI 1(*x)]) |Q(D) is separable, (A.3} implies that T*x can be 

'lifted' to a solution y € (*V)” of £(X) = 0, so *v(y-*x) > *g 

(because mly) = 1(*x)), contradiction. 0 

In the following, let X = Xi seek)» let K be a field, and define 

K[X)~ = {f © KIXJ|f is algebraic over K(X)}. 

A special case of a theorem of M. Artin, [Art, (1.10)], reads: 

(A.5) Let £(Y) = (£,(Y),...,£,0Y)) ,£,°Y) © KIX,Y],Y = (Y,,..,Y))- 
N 

If £(Y) = 0 has a solution in KIX], then it has a solution in KIX]. 
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Remark 

Using the terminology introduced in Ch. I, (2.2), this is equivalent 

to saying that the ring K[X]” is existentially closed in KIX]. With 

a variant of the reduction described in Ch. I, (2.4), one can indeed 

streamline Artin's proof at some points, but this will not be done 

here. Artin uses an elaborate analysis of his proof to derive a 

seemingly much stronger result, namely (A.6) below, cf. [Art, (6.1)]. 

We will show that (A.6) is a simple model theoretic consequence of 

(A.5). 

(A.6) Theorem 

Let m,n,N,d,a EIN be given. Then there is B = B(lm‚n‚N,d,a) EIN such 

that for each field K and £(Y) = (f,(Y),.-.,£,(¥)) € (KEx,Y])™ 

(X = Xj oee XX), Y = GC AEEEER ADE with all £.(Y) of total degree <d 

in (X,Y), and each y € Kt xj with f(y) = 0( mod (x) 8) there is 

y € (kL XI with fly) = 0 and ¥ = y(mod(X)%). 

(A.7) Lemma 

Let k be a field, £(Y) = (£,(Y),..-,£,(Y)) , £,0Y) © k[X,Y]. 

X = (Xi seeds Y = SEREEN SN, and a EIN. Then there is B EIN such 

that for each y € k[XIN with £(9) = 0(moa(x)®) there is y € (KLXION 

with f(y) = 0 and y = y(mod(X)®). 

Proog 

Suppose this is not true. Then for each b EIN there is Yr E Kt x) 

with fly.) = 0( mod(x)?) but such that for no y € Cx x]~) N : fly) = 0 

and y = y,(mod(X)") . 

Let M be a structure containing all relevant objects. 

In an enlargement “M of M the objects k,k[ X], etc. have nonstandard 

extensions *k,*(k[X]), etc., and the sequence (Yp EN extends to a
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*sequence Ype IN: 

Let w © *N\IN. Then Fly.) = 0(mod(xX)”) (in the ring *(k[X]), and 

there is no y € (* (Kl x1~)) 8 with fly) = 0 and y = yy mod(X)") . 

The map 7m: “(k[X]) + *kIX], given by 

is clearly a *k[ X]-morphism, and f (ny) O in *k—X], hence by (A.5) 

there is y' € (*kLx1~)* with f(y') = 0 and y' = my ,( mod(X)") . 

The henselian local ring (*k[ X])~,(X)*(kI X] 7) extends the local ring 

( KEX] (yy 2%) KEX} (yy) » so there is a KLX] (y)-morphism © of (*k[X]) 

into *(kLX]~™) (cf. [La, Th. 4]). Let y = O(y'). Then fly) = 0. 

Write y, = utv with u € CekLXI)N ana v = O(mod00®) (in *(K[XI)). 

Then it is straightforward to check that Vo TY oY! and y are all 

congruent to u modulo (X)°, (in the ring *(k[X]“)) , so Yo = y(mod(X)%) , 

contradiction! mn 

(A.8) Proof of (A.6) 

Let F,(C,X,Y),...,F (C,X,Y) E Z[C,X,Y] be the m general polynomials 

_(dtntNy) | 
of degree d in (X,Y) (so C = (C n+N 120+ Cy) with M =m 

Consider the elementary class Mod(T), whose models are the structures 

R = CR,m,K,X, ,..5X_ 5d, 5-- sd) = (R,m,K,X,d) such that: 

(R,m) is a henselian local ring, K a subfield of R, Xi seek, are 

elements of m which are algebraically independent over K, and 

d, s+ »dy EE K, 

(*) For each field K and c € XN (KL X] ~,¢X)KLX] ~,K,X,c) is a model of 

T which can embedded over K into each model (R,m,K,X,d) of T 

(cf. [La, Th. 4]).
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For each b EIN one easily constructs a sentence o, such that for 
b 

each model ® = (R,m,K,X,d) of T: 

RE on » for each y € cKEx])% with F.(a,X,y) = 0( mod(X)>) ,(iz1,..,m), 

there is y € RN with F,(d,X,y) = ... = F(d,X,y) = 0, and 

y = y(mod me). (It clearly suffices in the right hand side to consider 

only y all of whose components are of degree <b.) 

Using (*) and the lemma this implies: 

TF V{o, |b EIN}. 

By compactness there is then B EN such that T + Op 

This 8 clearly satisfies the requirements. O 

(A.9) Remark 

One can effectively write down a list of axioms for the theory T 

introduced in (A.8}, so given m,n,N,d,a in IN we can effectively find 

a B EIN satisfying (A.6), by generating all theorems of T. 

This has the following obvious but interesting consequence: 

Let a field K be given and suppose there is an algorithm to decide 

whether a given finite system of polynomial equations with coefficients 

in IF (IF the prime field of K, or even any computable subfield of K) 

has a solution in K. 

(Examples of such fields are the finite, algebraically closed, real 

closed and p-adic fields.) 

Then there is also an algorithm to decide whether a given finite 

system of polynomial equations with coefficients in FLX, ,--5X)] has 

a solution in KIX,,..,X].
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SAMENVATTING 

Een favoriete bezigheid van wiskundigen is altijd geweest het oplossen 

van vergelijkingen, dit ‘oplossen! op te vatten in ruime zin. 

Tot in de 20e eeuw lag hierbij de nadruk op het vinden van directe, 

algoritmische methoden, die overigens altijd van het grootste belang 

zullen zijn. 

Beschouw nu bijvoorbeeld een vergelijking 

(*) E(x, sees) = 0 (f een veelterm met rationale coéfficiénten), 

waarbij de oplossingen in rationale getallen gevraagd worden, een 

zgn. Diophantische vengelijgkáng. 

Voor zelfs vrij eenvoudige Diophantische vergelijkingen bleken 

algoritmische oplossingsmethoden niet beschikbaar te komen, of weinig 

inzicht te verschaffen. Om nu toch de gewenste informatie over de 

oplossingen te verkrijgen, ging men bijvoorbeeld de oplossingen van 

(*) in de p-adische lichamen Vp en in het lichaam IR der reéle getallen 

bestuderen. Dit procédé, genaamd Zokaflisernen en completeren, blijkt 

erg nuttig, vooral ook op het verwante gebied der algebraïsche meet- 

kunde (zie b.v. de 'Intrzoduction' van [Bo2]). 

Men kan zelfs met voordeel het oplossen in alle XD en in IR vervangen 

door het oplossen in één ring, de ring A der adéles, die Q als deelring 

heeft. Nu is A voor arithmetische doeleinden zo bijzonder geschikt 

gebleken vanwege zijn topologische eigenschappen. Deze geschiktheid 

is onlangs nog eens bevestigd door zijn modeltheoretische eigenschappen: 

er is een effectieve methode om van een gegeven 'elementaire' uitspraak 

over ringen na te gaan of deze waar is voor A, i.h.b. kan men van een 

vergelijking (*) bepalen of er oplossingen in A zijn, of er oneindig 

veel zijn, enz. Dit resultaat (Weispfenning, nog ongepubliceerd) kan 

men beschouwen als een samenvatting van eerder werk door A. Tarski,
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A. Robinson, J. Ax, S. Kochen, Ju. ErSov en P.J. Cohen. 

Nu is het belang van A voor Diophantische vergelijkingen sterk 

afhankelijk van: welke eigenschappen van Q worden in A weerspiegeld? 

Men kan b.v. zeggen dat sommige ‘kwadratische! eigenschappen van Q 

in A goed teruggevonden kunnen worden (Hasse-Minkowski). Maar Q 

heeft geen nuldelers en A wel. O.a. deze overwegingen hebben mij er 

toe gebracht om de modeltheoretische aspecten te bestuderen van de 

lichamen die in de hoofdstukken II en III aan de orde komen. 

Typisch voorbeeld: beschouw de objecten (K,<,v, ,v,) met K een lichaam, 

< een lineaire ordening op K, v,: K* + @ een p-adische waardering, 

d.w.z. v,(p) = 1 en KY = IF en vs: K* + Z een q-adische waardering > | 

1 P 

(p en q gegeven priemgetallen). 

Voor de ‘existentieel afgesloten! objecten in deze categorie blijkt 

inderdaad een resultaat te gelden als boven voor A beschreven is 

(zie Ch. III, (3.1)). Mijn hoop is dat deze existentieel afgesloten 

objecten de structuur van Q beter behouden dan de ring IRQ “0 

Hoofdstuk IV is van een ander karakter: hierin worden enkele problemen 

opgelost die door A. Robinson zijn gesuggereerd, zie [Rob4, problem 3].
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