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Abstract. We take a logical approach to threshold models, used to study the diffusion of opinions,

new technologies, infections, or behaviors in social networks. Threshold models consist of a network

graph of agents connected by a social relationship and a threshold value which regulates the diffusion

process. Agents adopt a new behavior/product/opinion when the proportion of their neighbors who

have already adopted it meets the threshold. Under this adoption policy, threshold models develop

dynamically towards a guaranteed fixed point. We construct a minimal dynamic propositional logic to

describe the threshold dynamics and show that the logic is sound and complete. We then extend this

framework with an epistemic dimension and investigate how information about more distant neighbors’

behavior allows agents to anticipate changes in behavior of their closer neighbors. Overall, our logical

formalism captures the interplay between the epistemic and social dimensions in social networks.

Keywords: social network theory, threshold models, diffusion in networks, social epistemology, formal

epistemology, dynamic epistemic logic, opinion dynamics, opinion dynamics under uncertainty

1 Introduction

An individual’s actions or opinions are often influenced by the actions of people around her. The way a

new product or fashion gets adopted by a population depends on how agents are influenced by others,

which in turn depends both on the way the population is structured and on how influenceable agents

are.

This paper focuses on one particular account of social influence, “threshold-limited influence”, as

presented in e.g. [10,26], relying on an imitation or conformity pressure effect: agents adopt a behav-

ior/product/opinion/fashion whenever a critical fraction of their neighbors in the network have adopted it

already. In this sense, diffusion in social networks can be seen as a study of local influence, triggering

agents to adopt a similar behavior/opinion/product as their neighbors [27,13]. The so-called threshold

models, first introduced by [12,22], are used precisely to represent the dynamics of diffusion under

threshold-limited influence. This type of models has received a lot of attention in the recent literature

[10,15,19,25,1,11,17,18].

This paper has two goals. Our first goal is to propose logics for reasoning about threshold models

and their dynamics. Our second goal is to investigate how the agents’ knowledge affects such dynamics.

After recalling standard threshold models in Subsection 2.1, a dynamic logic for modeling thresh-

old influence within social networks is introduced in Subsection 2.2. While conceptually in line with

[24,29,21,23,7,8,20] in using logic to model social influence effects within network structures, our new
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framework distinguishes itself by avoiding the use of static modalities or hybrid logic tools. In this sense,

the logical setting we introduce is “minimal”: propositional logic is used to specify both the network

structure and the agents behavior, and a single dynamic modality is used to represent the threshold-

limited influence. Moreover, while [24,29,23,7,8] focus on the limit thresholds of 100% (all neighbors)

and non-0% (at least one neighbor), we allow here for any (uniform) adoption threshold, as is standard

within the literature on threshold models. Subsection 2.3 shows how the logic captures the relationship

between clusters and diffusion of a behavior to the whole network.

In Section 3 we introduce epistemic threshold models. These models come equipped with a spe-

cific knowledge-dependent update procedure, called “informed adoption”, where agents must possess

sufficient information about their surroundings before they adopt. This is a conceptual jump from the

initial minimal modeling of influence from Section 2 to a more sophisticated (information dependent)

diffusion policy. Instead of modelling the kind of agents who adopt a behavior whenever enough of

their neighbors have adopted it already, we focus in secion 2 on agents who adopt whenever they know

that enough of their neighbors have already adopted. We then relate these two adoption policies by

showing under which epistemic conditions their diffusion dynamics is step-wise identical. The section

is concluded by extending the logic to a sound and complete dynamic epistemic logic for the epistemic

threshold models and the informed update procedure.

We further notice an interesting feature of the informed update procedure. Even though the “in-

formed update” requires that agents have enough information to be influenced, the update does not

require them to use all their available information when making their choices. Hence, if we consider

threshold models as representing reflecting agents who are driven by a coordination goal, the new

knowledge dependent update procedure makes our agents choose an action even when they know they

could do better. To overcome this shortcoming, in Section 4, we introduce a third adoption policy, a

“prediction update”, where agents utilize all the available information to predict the future behavior of

other agents in the network, and act upon their predictions. In other words, they anticipate, and it is

common knowledge that they do. We show that the agents’ reasoning about other predicting agents

always reaches a fixed point and that making adoption dependent on this very fixed point captures the

best response of agents trying to coordinate to the best of their knowledge. We give an example illus-

trating how knowledge about the network and about the behavior of other agents can be interpreted as

an “accelerator” of diffusion dynamics, under this last prediction policy: the fixed point of the diffusion

process under the prediction update is the same as under the informed update, but it can be reached

faster if agents know more about the network around them.

Finally, Section 5 discusses the in-built assumptions of the introduced updates as well as several

alternative diffusion policies and Section 6 gives some directions for further research.

2 Threshold Models and their Dynamic Logic

This section introduces the notion of threshold models and designs a logic to capture their dynamics.

Subsection 2.1 first reminds the reader of the standard definition of threshold models.

2.1 Threshold Models for Social Influence

A social network may be seen as a graph, where nodes represent agents and edges represent a binary

social relationship among them. This paper restricts itself to finite and undirected graphs without self-

loops, that is, to symmetric and irreflexive social relationships, e.g. being neighbors or friends. Moreover,
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we impose that each agent has at least one neighbor in the network, as isolated agents are irrelevant

to a discussion of social influence:

Definition 1 (Network). A network is a pair (A , N) where A is a non-empty finite set of agents and

the function N :A →P (A ) assigns a set N(a) to each a ∈A , such that

– a /∈ N(a) (Irreflexivity),

– b ∈ N(a) if and only if a ∈ N(b) (Symmetry).

– N(a) 6= ; (Seriality).

The simplest type of threshold model consists of such a network together with a unique behavior

B (or opinion, fashion, product, or “like-able item”) distributed over A and a fixed uniform adop-

tion threshold θ . A threshold model thus represents the current spread of behavior B throughout the

network, while containing the adoption threshold which prescribes how this spread will evolve.

Definition 2 (Threshold Model). A threshold model is a tuple M = (A , N , B,θ ) where (A , N) is a

network, B ⊆A is a behavior and θ ∈ [0, 1] is a uniform adoption threshold.

It is assumed throughout this paper that both the network structure and the adoption threshold

stay constant under updates. Thus, the spread of the behavior (i.e., the extension of B) at ensuing time

steps may be calculated using the fixed threshold and network structure as follows:

Definition 3 (Threshold Model Update). The update of threshold model M = (A , N , B,θ ) is the

threshold modelM ′ = (A , N , B′,θ ), where B′ is given by

B′ = B ∪ {a ∈A :
|N(a)∩ B|
|N(a)|

≥ θ}.

This definition captures the idea that the new set of agents who adopted the behavior B′ (in the new

updated model M ′) does include the set of agents B who had already adopted the behavior before

and it includes those agents who have enough influental neighbors (given by the number θ) that have

adoped already. This definition is set in line with the standard approach on adopt rules in the literature

[10].
By repeatedly applying this update rule in an initial threshold model, we obtain a unique sequence

of threshold models, which we call a diffusion sequence:

Definition 4 (Diffusion Sequence). LetM = (A , N , B,θ ) be a threshold model. The diffusion sequence

SM is the sequence of threshold models 〈M0,M1,M2, ...,Mn,Mn+1, ...〉 such that, for any n ∈ N,Mn =
(A , N , Bn,θ ) where Bn is given by:

B0 = B and Bn+1 = B′n.

Note that this diffusion process always reaches a fixed point, and that the number of agents in the

model gives an upper bound on the number of updates that can be performed before reaching the fixed

point:

Proposition 1. LetSM be a diffusion sequence. For some n ∈ N< |A |, we reach a fixed pointMn =Mn+1

in the sequence SM .

Proof. The fact that there is a n ∈ N such thatMn =Mn+1 follows immediately from the fact that A
is finite and Bn ⊆ Bn+1 for all n ∈ N. The fact that n < |A | is given by considering the slowest possible

diffusion scenario, i.e. where |B0| = 1 and only one agent adopts per round, i.e. for each m < n ∈ N,

|Bm|= m+ 1. In this case
�

�B|A |−1

�

�= |A |. ut
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Interpretation. Threshold models and their dynamics may be interpreted in two ways. One interpre-

tation assumes that agents are mere automata and that their behavior is forced upon them by their

environment. This interpretation suits the models that are used in e.g. epidemiology: viral infection

“just happens” to agents. Alternatively, agents may be interpreted as rational beings aiming towards

coordination with their neighbors. In fact, the above update rule also corresponds to the best response

dynamics of an associated coordination game [19], under the assumption that there is a ‘seed’ set of

players who always, possibly irrationally, play B [10].
Numerous variations of threshold models exist in the literature, including infinite networks [19],

networks with non-inflating behavior adoption [19], agent-specific thresholds [15], weighted links [15]
and multiple behaviors [1]. For simplicity, and to fit most examples in the literature, we will stick to

the above simpler notion of finite threshold models. The next subsection proposes a logical framework

to reason about them.

2.2 The Logic of Threshold-Limited Influence

This section introduces a minimal logic to express the standard notion of threshold-limited influence

introduced in the section above. To describe the situation of a social network at a given moment, the

static language needs to capture two things: who is related to whom and who is displaying the conta-

gious behavior B. In this paper, both features will be encoded using propositional variables. To describe

the change of situation of a social network, the language includes a dynamic modality. This modality

represents how agents adopt the behavior of their neighbors, whenever the given adoption threshold

is reached, i.e., whenever enough neighbors have adopted.

Definition 5 (Languages L[] and L ). LetA be a finite set and let atoms be given by Φ= {Nab : a, b ∈
A}∪ {βa : a ∈A}. The language L[] is then given by:

ϕ := Nab | βa | ¬ϕ | ϕ ∧ϕ | [adopt]ϕ

The formulas of L are those of L[] that do not involve the [adopt]-modality.

Disjunction and material implication are defined in the standard way. L[] is an extension of proposi-

tional logic with a unary dynamic modality, denoted [adopt]. The language is interpreted over thresh-

old models, using the behavior set and the social network to determine the extension of the atomic

formulas. The [adopt] modality is interpreted as is standard in dynamic epistemic logic3 [3,5,28,6]:
intuitively, we evaluate [adopt]ϕ as true “today” if and only if ϕ is true “tomorrow”. Here, “tomorrow”

is given by the threshold update of Definition 3.

Definition 6 (Truth Clauses for L[]). Given a modelM = (A , N , B,θ ), Nab,βa ∈ Φ, and ϕ,ψ ∈ L[]:

M � βa iff a ∈ B

M � Nab iff b ∈ N(a)

M � ¬ϕ iff M 2 ϕ
M � ϕ ∧ψ iff M � ϕ andM �ψ

M � [adopt]ϕ iff M ′ � ϕ, whereM ′ is the updated

threshold model (Definition 3).

3 The dynamic operators in Dynamic Epistemic Logic are taken to be model transformers, they transform a given
model into a new model.
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Let us also introduce some abbreviations:

Abbreviation. We introduce the formula [adopt]nϕ as an abbreviation which is defined recursively:

[adopt]0ϕ := ϕ

[adopt]n+1ϕ := [adopt][adopt]nϕ

Abbreviation. We introduce the following abbreviation:

βN(a)≥θ :=
∨

{G⊆N ⊆A : |G ||N |≥θ}

(
∧

b∈N
Nab ∧

∧

b/∈N
¬Nab ∧

∧

b∈G
βb)

This formula βN(a) ≥ θ expresses that the proportion of agent a’s neighbors who have adopted is equal

to or above the threshold θ .

The following proposition captures within our language the fact (as noted in Prop. 1) that all dif-

fusion sequences stabilize after some finite number of updates, illustrating how our language allows

for capturing features of threshold model dynamics, such as stability and stabilization of the diffusion

sequence:

Proposition 2. LetM = (A , N , B,θ ) be a threshold model. There exists n ∈ N < |A | such that, for any

ϕ ∈ L[]:
[adopt]nϕ↔ [adopt]n+1ϕ

Proof. As noted in the proof of Proposition 1, in the diffusion sequence SM , for some n ∈ N < |A |,
Mn = Mn+1. Hence Mn and Mn+1 are guaranteed to satisfy the same formulas, whereby

M |= [adopt]nϕ↔ [adopt]n+1ϕ. ut

Axiomatization. We obtain an axiomatization of the logic for threshold models and their update

dynamics by using the standard method of reduction rules from dynamic epistemic logic [3,28,5,6].

Definition 7 (The Logic of Threshold-Limited Influence, Lθ ). The logic Lθ is comprised of any ax-

iomatization of the propositional calculus and of the axioms and derivation rules of Table 1, for a given

threshold θ ∈ [0, 1].

The static logic consists of the axioms of propositional logic, the network axioms of Table 1 and the

rule of Modus Ponens. These capture the constraints imposed on the networks. In the dynamic part of

the logic, we define rules that reduce formulas that contain the [adopt] modality to formulas without

it. This is possible as the update procedure is deterministic: all the information required to determine

the update threshold model is present in the current model. Hence the next state is “pre-encoded” in

the present state.

As the [adopt]modality only affects the extension of B, the reduction axioms are trivial in all cases

except those involving βa. The corresponding reduction axiom, Red.Ax.β , relies on the mentioned pre-

encoding. The axiom Red.Ax.β states that a has adopted B after the update just in case 1) she had

already adopted it before the update or 2) the proportion of her neighbors who had already adopted it

before the update was above threshold θ .

Definition 8 (Cθ ). Let the threshold θ ∈ [0,1] be given. The class of threshold models Cθ contains all

and only models with the same threshold θ .
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Network Axioms

¬Naa Irreflexivity

Nab ↔ Nba Symmetry
∨

b∈A
Nab Seriality

Reduction Axioms

[adopt]Nab ↔ Nab Red.Ax.N

[adopt]¬ϕ↔¬[adopt]ϕ Red.Ax.¬

[adopt]ϕ ∧ψ↔ [adopt]ϕ ∧ [adopt]ψ Red.Ax.∧

[adopt]βa ↔ βa ∨ βN(a) ≥ θ Red.Ax.β

Inference Rules

From ϕ and ϕ→ψ, infer ψ Modus Ponens

From ϕ, infer [adopt]ϕ Nec[adopt]

Table 1. Hilbert-style proof system Lθ .

For any given threshold θ ∈ [0,1], the minimal logic Lθ is sound and complete with respect to the

corresponding class of models Cθ : 4

Theorem 1 (Completeness). Let θ ∈ [0, 1]. For any ϕ ∈ L ,

|=Cθ ϕ iff `Lθ ϕ

Proof. Soundness: Let M = (A , N , B,θ ) be an arbitrary threshold model with a, b ∈ A . Then M
satisfies Irreflexivity (Symmetry/seriality) directly by the semantics and the assumption of irreflexivity

(symmetry/seriality) of the network.M |=[adopt]Nab ↔ Nab as the adoption operation never alters

the network. Soundness of Red.Ax.¬ and Red.Ax.∧may be shown straightforwardly using induction on

the length of formulas.

To see thatM satisfies Red.Ax.β , letM ′ be the adoption update ofM . ThenM |= [adopt]βa iff

M ′ |= βa iff a ∈ B′ = B ∪
¦

b ∈A : N(b)∩B
N(b) ≥ θ

©

iffM |= βa or a ∈
¦

b ∈A : N(b)∩B
N(b) ≥ θ

©

. A syntactic

decoding following Definition 2.2 of the large, right-hand disjunct of Red.Ax.β (called βN(a)≥θ ) shows

that it is satisfied iff a ∈
¦

b ∈A : N(b)∩B
N(b) ≥ θ

©

: The outer disjunction requires/ensures the existence of

two sets of agents, G and N , such that G ⊆N and |G |
|N | ≥ θ . The inner conjunction in Definition 2.2 is

satisfied iff N = N(a) and G ⊆ B. Hence ϕ is satisfied iff ∃G ⊆ N(a)∩ B : |G |
|N(a)| ≥ θ iff |N(a)∩B|

|N(a)| ≥ θ iff

a ∈
¦

b ∈A : N(b)∩B
N(b) ≥ θ

©

. HenceM |= [adopt]βa iffM |= βa orM |= βN(a)≥θ .

Completeness: The proof goes via translation of the dynamic language into the static part of the language,

in the usual way (see for instance [28, Ch. 7]). ut

4 The proof system and model class are further parametrized by the set of agents A used to define the corre-
sponding language.
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2.3 Clusters and Cascades

An agent adopting a new behavior may influence some of her neighbors to adopt it at the next moment,

which in turn may cause further agents to adopt it, and so on. Such a chain reaction is termed a cascade

in the literature (see e.g. [10, Ch. 19]), and a cascade is said to be complete when it results into a state

where all agents have adopted the new behavior. Because the above given updates of threshold models

always reach a fixed point, any cascade will eventually stop. However, a cascade may stop before all

agents have adopted, i.e. without being complete. The following recalls a known result about how

cascading effects are constrained by the network structure and shows how the suitable constraint may

be captured by the minimal logic Lθ .

First of all, our language can express that a diffusion sequence will reach a complete cascade, given

the upper bound on the number of updates before stabilization of the diffusion process noted in Propo-

sition 1:

Definition 9. The sentence abbreviated by ‘cascade’ expresses that all agents will have adopted eventually:

cascade := [adopt]|A |−1
∧

a∈A
βa

Some parts of a network structure may be more “dense” than others. Strongly connected groups of

agents are more resilient to external influence. E.g., a tightly knit group may be hard to convert to a

particular opinion if all its members support one another in disagreeing with the opinion. Tightly con-

nected components of a network might therefore block the diffusion of a behavior when it stems from

outside this component. Briefly put, dense components of a network may prevent complete cascades

and the denser a group, the better it resists change induced from the outside. The required precise

notion of a “dense” group is that of a d-cohesive set [19], also referred to as a cluster of density d [10]. A

cluster of density d is a set of agents such that for each agent in the set, the proportion of her neighbors

which are also in the group is at least d.

Definition 10 (Cluster of density d). Given a network (A , N), a cluster of density d is any group C ⊆A
such that for all a ∈ C,

|N(a)∩ C |
|N(a)|

≥ d.

Notice that any network will contain at least one cluster of density 1, namely the group A , and that

each singleton {a} ⊆ A is a cluster of density 0 (by irreflexivity).

Example: Clusters. Let modelM given as illustrated below, with B = {d}. In this model, C = {a, b, c}
is a cluster of density 2

3 , in which no member belongs to B.

Fig. 1. A social network with a cluster of density 2
3 .

The language L can express the existence of a cluster: if C is a cluster of density d then for each a

in C , there is a big enough subset of C which are a’s neighbors.

7
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Proposition 3. The group C is a cluster of density d in (A , N) iffM = (A , N , B,θ ) satisfies

∧

a∈C

∨

¦

G⊆N ⊆A : |G∩C |
|N | ≥d

©

�

∧

b∈N
Nab ∧

∧

b/∈N
¬Nab

�

(1)

Proof. Left to right: Let M = (A , N , B,θ ) and assume C is a cluster of density d in (A , N). Then

by definition, for all a ∈ C , |N(a)∩C |
|N(a)| ≥ d. As M is based on (A , N), {b : M |=Nab} = N(a) for all

a ∈ A . Let a be given and pick N = N(a) and G = N(a) ∩ C . Then |G |
|N | ≥ d. Given the choice of N ,

M |=
∧

b∈N Nab ∧
∧

b/∈N ¬Nab. SoM satisfies (1).

Right to left: Assume that M satisfies (1) for some C ⊆ A and some d ∈ [0, 1]. Then for each

a ∈ C , there is are sets G and N with G ⊆ N and |G∩C |
|N | ≥ d, such that N = {M |= Nab} = N(a).

Hence |G∩C |
|N(a)| =

|G∩C |
|N | ≥ d. As G ∩ C ⊆N = N(a), |N(a)∩C |

|N(a)| ≥ d. As a was arbitrary from C , C is indeed a

cluster of density d in (A , N). ut

Given Proposition 3, it is easy to see that the sentence below characterizes the existence of a cluster

of density d among agents who have not adopted (abbreviated ∃C≥d¬β):

∃C≥d¬β :=
∨

C⊆A

∧

a∈C

∨

¦

G⊆N ⊆A : |G∩C |
|N | ≥d

©

�

∧

b∈N
Nab ∧

∧

b/∈N
¬Nab ∧

∧

b∈G
¬βb

�

Note that we can express in the same way that there is a cluster of density greater than d, by

replacing ≥ by the strict > in the formula (abbreviated ∃C>d¬β).

Example: Clusters, cont.. The model illustrated in Fig. 1 contains a cluster C = {a, b, c} of density 2
3 ,

such that no agent in C has adopted. Hence, the model should satisfy ∃C 2
3
¬β :

∨

C⊆A

∧

a∈C

∨

¦

G⊆N ⊆A : |G∩C |
|N | ≥

2
3

©

�

∧

b∈N
Nab ∧

∧

b/∈N
¬Nab ∧

∧

b∈G
¬βb

�

. (2)

To verify this, assume C is a group that satisfies the outmost disjunction. Then for each a ∈ C there is

must a G and N such that |G∩C |
|N | ≥

2
3 for whichM satisfies

∧

b∈N
Nab ∧

∧

b/∈N
¬Nab ∧

∧

b∈G
¬βb. (3)

To see thatM satisfies (3), regard first agent c, for whom the appropriate N is {a, b, d}. As |N | = 3,

we must identify a group G ⊆ C with |G | ≥ 2 such that for all b ∈ G ,M |=Ncb. Such a G exists, being

{a, b}. Finally, indeedM |=¬βa∧¬βb, and hence the conjunct for c is satisfied. Similar reasoning shows

that the conjuncts for a and b also hold. This gives us (2).

The Cluster Theorem. The following theorem from [19],[10, Ch.19.3] characterizes the possibility of

a complete adoption cascade in a network:

Given a threshold modelM with threshold θ 6= 0 and a set B ⊂A of agents who have adopted,

all agents will eventually adopt if, and only if there does not exist a cluster of density greater

than 1− θ inA\B.

As both the complete cascade and the existence of the relevant clusters are expressible inL[], the cluster

theorem can also be encoded in our setting, in the following way:

8
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LetM = (A , N , B,θ ) with θ 6= 0. Then

M |= cascade↔¬∃C>1−θ¬β .

2.4 Logics for Generalizations of Threshold Models

So far, we have considered the “simplest” possible network structures: the networks are finite, sym-

metric, irreflexive and serial. The constraints of symmetry and irreflexivity could easily be relaxed in

the initial definition of threshold models (Def. 2) to generalize the logics to different types of social

relationships (for instance a hierarchical network).

For simplicity, we work with uniform thresholds. Obtaining logics for settings without this uniformity

constraint is unproblematic: 1) define θ not as a constant but as a function assigning a particular

threshold to each agent; i.e., set θ : A → [0,1] in the definition of threshold models (Def. 2); 2)

replace θ by θ (a) in the definition of the update (Def. 3) and in the reduction axiom Red.Ax.β (in

Table 1). This will generate a logic for each such function θ , that is, for each distribution of thresholds

among agents.

The logical setting may also be generalized to capture the spread of several behaviors and their

interaction. This amounts to: 1) modify the definition of threshold models (Def. 2) to letB be a finite

set of behaviors (B = {B1, B2, ...Bn}) and define θ :A ×B → [0,1]; 2) Relativize the definition of the

update to each behavior Bi; 3) extend our set of atomic propositions: Φ= {Nab : a, b ∈A}∪ {βia : a ∈
A , i ∈ 1, ...n}; 4) relativize the semantic clause in the obvious way:M � βia iff a ∈ Bi , and replace the

reduction axiom Red.Ax .β by Red.Ax .βi accordingly. The “signature” of the resulting logic will then be

given by [θ ,A ,B]. Such a logic allows reasoning about the diffusion of a fixed number of behaviors,

given a specific distribution of thresholds for each behavior to each agent, for any particular network

structure.

Furthermore, we consider the proportion of neighbors who have adopted as the only relevant factor

for decision making. This makes every neighbor as influential as any other. To generalize, weighted links

representing different “degrees of influence” could be used instead. The condition for being influenced

into adopting would become: the weighted sum of my neighbors which have adopted is at least θ .

Alternatively, we could fix an ordering of neighbors of each agent a with b ≥a c stating that agent b

influences agent a at least as much as agent c does. Based on such an ordering, one possible update

policy would be that a adopts when a given proportion of ≥a-maximal agents have adopted.

Additional alternative policies will be discussed in Section 5. These will also involve epistemic con-

siderations, the topic to which we turn next.

3 Epistemic Threshold Models and Their Dynamic Logic

By the definition of the above given update on threshold models, agents react to their environment:

they are always influenced by the actual behavior of their direct neighbors. In many situations, this

“nomothetic” update style seems to pose unrealistic requirements. The update requires that agents

act in accordance with the facts of others’ behavior, even in the face of uncertainty. Hence, the above

threshold model update may require of agents that they act in accordance with information that they

do not actually possess. For an example, see Fig. 2.

To accommodate this shortcoming, we extend the standard threshold models with an epistemic di-

mension and define a refined adoption policy where agents’ behavior change depends on their knowl-

9
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Fig. 2. A situation of uncertainty. Agent a cannot tell whether world w or world v is the actual one, as indicated by
the dashed line (when representing indistinguishability relations we omit reflexive and transitive links). Hence, a
does not know whether c has adopted or not. Assume that the threshold is θ > 1/2 and that v is the actual world.
Then, according to the ‘threshold model update’, a should adopt – but a does not know that!

edge of others’ behavior. We moreover define a logical system suitable to reason about epistemic thresh-

old models and their dynamics.

To add an epistemic dimension to threshold models, we add for each agent a subjective epistemic

indistinguishability relation, as illustrated in Fig. 2, in the standard way since [14]. Or equivalently,

following [2], each agent is given an “information partition” over a given set of possible worlds. Each

information cell in this partition indicates the uncertainty of the agent: i.e. the things she cannot tell

apart. This modeling of uncertainty is commonplace in logic, economics and computer science.

3.1 Epistemic Threshold Models

The most general version of threshold models with an epistemic dimension that we will work with in

this paper is the following:

Definition 11 (Epistemic Threshold Model (ETM)). An epistemic threshold model (ETM) is a tuple

M = (W ,A , N , B,θ , {∼a}a∈A )

where: W is a finite, non-empty set of possible worlds (or states),

A is a finite non-empty set of agents,

∼a⊆W ×W is an equivalence relation, for each agent a ∈A ,

N :W → (A →P (A )) assigns a neighborhood N(w)(a) to each a ∈A in each w ∈W , such that:

a /∈ N(w)(a) (Irreflexivity)

b ∈ N(w)(a)⇔ a ∈ N(w)(b) (Symmetry)

N(w)(a) 6= ; (Seriality)

B :W →P (A ) assigns to each w ∈W a set B(w) of agents who have adopted.

θ ∈ [0,1] is a uniform adoption threshold.

To reason about the impact of knowledge on diffusion in network situations, we want to impose

limiting assumptions regarding the agents’ uncertainty. It is for example natural to assume that agents

know who their direct neighbors are, though cases exist where it is natural that agents know more

about the network. Agents may know who the neighbors of neighbors are, or maybe the whole net-

work is even common knowledge. Likewise, the uncertainty about agents’ behavior might be subject to

various constraints: agents may know the behavior of their neighbors, of their neighbors’ neighbors, of

everybody, etc.

One way to impose restrictions on uncertainty is by giving agents an ego-centric “sphere of sight”,

corresponding to how far they can “see” in the network, assuming that if they can see further, they can

see closer. We will say that an agent has sight n when she can “see” at least n agents away, i.e., when she

10
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knows at least both the network structure and the behavior of all agents within n distance. To provide

a formal definition, we first fix what is meant by “n distance”:

Definition 12 (n-reachable, n-distant). LetM = (W ,A , N , B,θ , {∼a}a∈A ) and let n ∈ N. Define

N n :W →A →P (A ) as follows, for any w ∈W and any a, b, c ∈A :

– N0(w)(a) = {a}
– N n+1(w)(a) = N n(w)(a)∪ {b ∈A : ∃c ∈ N n(w)(a) and b ∈ N(w)(c)}

If b ∈ N n(w)(a), then b belongs to the set of agents that a has within her sight at world w. Morever, if

b ∈ N n(w)(a) we say that b is n-reachable from a in w.

Definition 13 (Sight n Model5). An ETM M = (W ,A , N , B,θ , {∼a}a∈A ) of sight n is an epistemic

threshold model such that, for n ∈ N and for any a, b ∈A and w, v ∈W :

– If w ∼a v and b ∈ N n−1(w)(a), then N(w)(b) = N(v)(b) (agents know the network at least up to

distance n)

– If w ∼a v and b ∈ N n(w)(a), then b ∈ B(w) iff b ∈ B(v) (agents know the behavior of others at least

up to distance n).

3.2 Knowledge-Dependent Diffusion

To remedy the problem of agents acting on information they may not possess, we introduce a revised

adoption policy. It captures the intuitive idea that an agent should only be influenced by what he knows

about other agents around him. This amounts to a knowledge-dependent adoption policy: agents adopt

whenever they know that enough of their neighbors have adopted already. We call this update policy

informed update:

Definition 14 (Informed Update). Let M = (W ,A , N , B,θ , {∼a}a∈A ) be an ETM with sight n. The

informed adoption update ofM produces ETMM i = (W ,A , N , Bi ,θ , {∼i
a}a∈A ) such that, for any a, b ∈

A and any w, v ∈W :

– Bi(w) = B(w)∪ {a ∈A : ∀v ∼a w |N(v)(a)∩B(v)|
|N(v)(a)| ≥ θ} and

– w∼i
a v iff i) w∼a v and ii) if b ∈ N n(w)(a), then b ∈ Bi(w) iff b ∈ Bi(v).

The first condition tells us that the new set of adopters at world w includes the previous set of adopters

B(w) (hence agents do not give up their previously adopted behavior) and it includes also all agents

who, as far as they know, are certain of the fact that enough influential neighbors (given by θ) have

adopted already. The second condition ensures that the informed update of an ETM with sight n is again

an ETM with sight n, i.e., agents’ sight is not diminished by updates.

Updating de Dicto and Updating de Re. The above informed update policy is defined using de dicto

knowledge of others’ behavior: if an agent knows that enough others will adopt, so should she, ignoring

that she might not know exactly who will adopt.

A de re update is definable by setting Bi(w) = B(w) ∪ {a ∈ A : b∈A :∀v∼aw,|N(v)(a)∩B(v)|
|N(v)(a)| ≥ θ}. While

both rules are interesting, in the remainder of this paper we opt for the de dicto version as it expresses in

a stronger sense that agents can fully utilize all their information while staying in the spirit of threshold

models.
5 We lump two notions of sight under one heading. A more general definition would be of sight (n, m), where n

specifies the sight of network structure, while m specifies sight of behavior.

11
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Fig. 3. Adoption de re vs. adoption de dicto. We illustrate an ETM with threshold θ = 1/2 and two possible worlds.
Should b adopt or not? He knows de dicto that enough neighbors have adopted, but he does not know so de re; he
knows that at least half of his neighbors have adopted, but he doesn’t know which half.

Learning the Distribution. When performing informed updates, agents may learn about the initial

distribution of behavior in the network even outside their range of sight, as it may be possible to exclude

possibilities based on the development of the dynamics. The learning occurs due to the restriction of

the indistinguishability relation, as build into the definition of informed update. Figure 4 provides an

example.

Fig. 4. The learning process for agent d (bottom center) under blind adoption, in an ETM with threshold θ ≤ 1
2 and

sight 1. With sight 1, the ETM contains the 8 depicted possible worlds/states. The last states to reach fixed points
at time 5 are states w2 and w4 from the left. Epistemic relations are drawn only for d to simplify representation.
Note the development of the indistinguishability relation fromM0 toM5: as the updated ∼′d is a restriction of ∼ d

to states where both c and e’s behaviors are identical, d learns about the initial distribution. Learning may or may
not be complete: compare the development of states w1 and w2.

Implicit Information and Redundant Knowledge. Under some epistemic conditions, the epistemic

and non-epistemic diffusion policies are equivalent. If each agent always knows at least who her neigh-

bors are and how they are behaving, then the two policies give rise to the same diffusion dynamics, in

the following sense: the diffusion dynamics resulting from the informed update on an ETM reduces to

the diffusion dynamics under the initial (non-epistemic) update applied to each possible world of the

ETM. This is the content of Proposition 4 below.

Proposition 4 relates two important insights. The first is that standard threshold models make the

implicit epistemic assumption that agents know their neighborhood and its behavior. The second is that

knowledge about more distant agents is redundant as it will not affect behavior.

To prove the result, we first define how to generate a (non-epistemic) threshold model from a

possible state of an epistemic threshold model:

12
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Definition 15 (State-Generated Threshold Model (SGM)). Let M = (W ,A , N , B,θ , {∼ a}a∈A ) be

an ETM and let w ∈ W and a ∈ A . The state-generated threshold modelM (w) = (A , NM (w), BM (w),θ )
is given by:

NM (w)(a) = N(w)(a), and

a ∈ BM (w)⇔ a ∈ B(w).

Proposition 4. Let M = (W ,A , N , B,θ , {∼ a}a∈A ) be an ETM and w ∈ W . Let M i and M (w) be

respectively the informed update and state-generated models of M . Let M i(w) be the state-generated

model ofM i and letM (w)′ be the non-epistemic threshold update ofM (w). Then

ifM has sight n≥ 1, then

M i(w) =M (w)′.

Proof. As neither the non-epistemic threshold update nor the informed update changes the set of agents,

the network or the threshold, it need only be shown that Bi(w) = B(w)′ where Bi(w) is the behavior

set ofM i(w) and B(w)′ is the behavior set ofM (w)′.
Assume a ∈ B(w). Then it follows that a ∈ B(w)i within M i , by monotonicity of the informed

update. Hence we also obtain a ∈ BM i(w) in M i(w) by Definition 15 of SGMs. From a ∈ B(w) it also

follows that a ∈ BM (w) by defintion of SGMs. By monotonicity of the non-epistemic threshold update,

we have a ∈ B′M (w) inM (w)′.
Assume that a /∈ B(w). Then a /∈ BM (w) by definition 15 of SGMs. By definition, a ∈ B(w)i iff

∀v ∼ aw : |N(v)(a)|∪B(v)
|N(v)(a)| ≥ θ . As M has sight n ≥ 1, ∀v ∼ aw N(v)(a) = N(w)(a) and b ∈ N(w)(a)

implies b ∈ B(w)⇔ b ∈ B(v). Hence |N(w)(a)|∪B(w)
|N(w)(a)| ≥ θ . As N(w)(a) = NM (w)(a) and B(w) = BM (w), it

follows that
|NM (w)(a)|∪BM (w)
|NM (w)(a)|

≥ θ iff a ∈ BM (w). ut

Proposition 4 provides a precise, but partial, interpretation of the dynamics of non-epistemic thresh-

old models as a process of information-dependent behavior diffusion. As witnessed by its proof, only

the immediate neighborhood of agents matters for the adoption behavior in a threshold model. A next

step is to investigate how this changes when agents are equipped with predictive abilities; see Section

4.

The interpretation is only partial in that we do not obtain a full characterization of the standard

threshold dynamics (see Definition 3) by requiring sight n≥ 1. Sight n< 1 does not imply that there will

always be a difference making neighbor about which some agent has uncertainty. If a has uncertainty

about some neighbor b’s behavior but is certain that a large enough proportion of neighbors have

adopted, then the model will have sight strictly less than 1 while it is still developing according to the

standard threshold dynamics.

Situations in which neighbors lack knowledge of some direct neighbors’ behavior are interesting in

that they may cause the diffusion process to slow down compared to the standard update policy:

Proposition 5. There exists an ETMM = (W ,A , N , B,θ , {∼ a}a∈A ) with sight n< 1 such that

BM i(w) ⊂ BM (w)′ ,

whereM i andM (w) are respectively the informed update and state-generated models ofM , andM i(w)
is the state-generated model ofM i andM (w)′ is the non-epistemic update (Def. 3) ofM (w).

Proof. By construction of a specific model: letM = ((W ,A , N , B,θ , {∼ a}a∈A ) with W = {w, v}, w∼a

v, N(w)(a) = N(v)(a) but |N(w)(a)∩B(w)|
|N(w)(a)| ≥ θ > |N(v)(a)∩B(v)|

|N(v)(a)| . Then a /∈ BM i(w), but a ∈ BM (w)′ .

Figure 5 illustrates this “slower" diffusion process.
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Fig. 5. A diffusion process “slowed down" by the uncertainty of agent b, with threshold θ = 1
2 . Consider the situation

in world w: agent a has adopted, but agent b does not know it. Therefore, agent b will not adopt immediately. The
diffusion according to the informed update policy in state w will only stabilize after applying the informed update
rule twice. Note that under the non-epistemic threshold update, or if agent b knew whether a has adopted, the
situation depicted in w would stabilize after only one step (i.e. the non-epistemic threshold update ofM0(w) gives
us directlyM2(w)).

3.3 Knowledge and Cascades

In Section 2.3, we have shown how our language can capture complete cascades and the existence of

clusters able to block diffusion, as captured by the Cluster Theorem: a cascade will be complete if and

only if the network does not contain a cluster of non-yet-adopters of density greater than 1− θ .

Given proposition 4 above, the cluster theorem still holds for any epistemic threshold model with

sight at least 1. Moreover, the existence of a relevant cluster will still block a cascade under the informed

update policy, independently of how much agents know. However in general, considering any epistemic

threshold model with any sight, the cluster theorem cannot be maintained as it was stated. What we

observe is that the left to right direction of the cluster theorem still holds for epistemic threshold models

with sight less than 1: indeed, if a complete cascade occurs, then the network does not contain a cluster

of density greater than 1−θ . However, the converse of does not hold in these models with sight less than

1. We briefly explain this point in more detail. Given proposition 5 above, we know that the diffusion

process, via the informed update rule, in an ETM with sight < 1 might be “slower" than the process

based on the non-epistemic threshold update policy. Indeed, the lack of knowledge may for instance

block a cascade, despite the absence of a cluster-obstacle. Figure 6 illustrates this difference.

Fig. 6. A diffusion process “blocked" by the uncertainty of agent b, with θ = 1
2 . Consider the situation in world w:

agent a has adopted, but agent b does not know it. Therefore, agent b will not adopt (under the informed adoption
rule). Note that under the non-epistemic threshold update, or if agent b knew that a has adopted, the situation
depicted in state w would evolve into a complete cascade.
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3.4 The Epistemic Logic of Threshold-Limited Influence

To reflect the epistemic dimension in a formal syntax, the language L is extended by adding the stan-

dard Ka modalities reading “agent a knows that”, for each agent a ∈A .

Definition 16 (Languages LK[] and LK). Let the set of atomic propositions be given by {Nab : a, b ∈
A}∪ {βa : a ∈A} for a finite setA . Where a, b ∈A , the formulas of LK[] are given by

ϕ := Nab | βa | ¬ϕ | ϕ ∧ϕ | Kaϕ | [adopt]ϕ

The formulas of LK are those of LK[] that do not involve the [adopt] modality.

As standard, we can use the given language to define the other Boolean operators for disjunction and

implication and introduce < adopt > as the dual of [adopt].

Definition 17 (Semantics forLK[] with Informed Update). Formulasϕ,ψ ∈ LK[] are interpreted over

an ETMM = (W ,A , N , B,θ , {∼a}a∈A ) with sight n, w, v ∈W :

M , w |= βa iff a ∈ B(w)

M , w |= Nab iff b ∈ N(w)(a)

M , w |= ¬ϕ iff M , w 2 ϕ
M , w |= ϕ ∧ψ iff M , w |= ϕ andM , w |=ψ

M , w |= Kaϕ iff for all v ∈W such that v ∼a w,M , v |= ϕ

M , w |= [adopt]ϕ iff M ′, w |= ϕ, whereM ′ is the informed update

ofM as specified in Def. 14 .

Axiomatization. In the specification of the epistemic reduction axioms, the following two syntactic

shorthands are used:

Abbreviation. For any k ∈ N≥ 1, we introduce the abbreviation N k
ab by induction,

N1
ab := Nab

N k+1
ab := N k

ab ∨
∨

c∈A

�

N k
ac ∧ Ncb

�

The formula N k
ab expresses that b is k-reachable from a.

Abbreviation. ForB ⊆A , we introduce the abbreviationB = N k
a β
+ as follows:

�

B = N k
a β
+
�

:=
∧

b∈B

�

N k
ab ∧ [adopt]βb

�

∧
∧

b∈A\B

�

N k
ab → [adopt]¬βb

�

.

The expression B = N k
a β
+ refers to the set of agents which are 1) k-reachable from a and 2) will

have adopted after the next update.

Using these shorthands, the axioms for Epistemic Threshold Models and the dynamics of Informed

Update are given in Table 2.

The reduction law Ep.Red.Ax.β states that a has adopted β after the update just in case she had

already adopted it before the update, or she knew that she had a large enough proportion of neighbors
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Network Axioms

¬Naa Irreflexivity

Nab ↔ Nba Symmetry
∨

b∈A
Nab Seriality

Knowledge Axioms

Kaϕ→ ϕ (∗) Ax.T

Kaϕ→ KaKaϕ (∗) Ax.4

¬Kaϕ→ Ka¬Kaϕ (∗) Ax.5

Reduction Axioms

[adopt]Nab ↔ Nab Red.Ax.N

[adopt]¬ϕ↔¬[adopt]ϕ Red.Ax.¬

[adopt]ϕ ∧ψ↔ [adopt]ϕ ∧ [adopt]ψ Red.Ax.∧

[adopt]βa ↔ βa ∨ Ka(βN(a) ≥ θ ) (∗) Ep.Red.Ax.β

[adopt]Kaϕ↔
∨

B⊆A

�

B = N n
a β
+ ∧ Ka (B = Naβ

+→ [adopt]ϕ)
�

(∗) Ep.Red.Ax.K .sight.n

Inference Rules

From ϕ and ϕ→ψ, infer ψ Modus Ponens

From ϕ, infer Kaϕ for any a ∈A (∗) Nec.Ka

From ϕ, infer [adopt]ϕ Nec.[adopt]

Table 2. Axioms and rules for the Epistemic Logic of Threshold-Limited Influence for sight n. Subscripts a, b are
arbitrary overA . Entries marked (∗) are new or modified relative to Table 1.
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who had already adopted it before the update. Ep.Red.Ax.K.sight.n captures that an agent knows that

ϕ will be the case after the update if, and only if, she knows that, if those very agents who actually are

going to adopt do adopt, then ϕ will hold after the update.

Definition 18 (Epistemic Logic of Threshold-Limited Influence). The logic Lθn is comprised of the

axioms and rules of propositional logic and the axioms and rules of Table 2.

Definition 19 (Cθn). Let θ ∈ [0,1] be given. The class of ETM Cθn contains all and only ETM with

threshold θ and sight n.

The logic Lθn is sound and complete with respect to the corresponding class of models Cθn:

Theorem 2. Let θ ∈ [0, 1] and n ∈ N. For any ϕ ∈ LK[],

|=Cθn
ϕ iff `Lθn

ϕ.

Proof. Soundness: Let M = (W ,A , N , B,θ , {∼a}a∈A ) be an epistemic threshold model with sight n.

Let a, b ∈ A and w, v ∈ W . Then (M , w) satisfies the S5 axioms as all ∼a are equivalence relations

and satisfies the axioms reoccuring from Table 1 for the same reasons non-epistemic threshold models

satisfy them.

To see that (M , w) satisfies Ep.Red.Ax.β , let M i be the informed update of M . Then M , w |=
[adopt]βa iffM i , w |= βa iff a ∈ Bi(w) = B(w)∪

¦

b ∈A : ∀v ∼b w |N(v)(b)∩B(v)|
|N(v)(b)| ≥ θ

©

iffM , w |= βa or

a ∈
¦

b ∈A : ∀v ∼b w |N(v)(b)∩B(v)|
|N(v)(b)| ≥ θ

©

. Using the same syntactic decoding as in the proof of Theorem

1, we obtain that a ∈
¦

b ∈A : ∀v ∼b w |N(v)(b)∩B(v)|
|N(v)(b)| ≥ θ

©

iff M , w |= Ka

�

βN(a) ≥ θ
�

. Hence M , w |=
[adopt]βa iffM , w |= βa orM , w |= Ka

�

βN(a) ≥ θ
�

.

For Ep.Red.Ax.K.sight.n, let againM i be the informed update ofM . Then

M , w |=
∨

B⊆A

�

(B = N n
a β
+) ∧ Ka ((B = Naβ

+)→ [adopt]ϕ)
�

iff

∃B ⊆A :M , w |= (B = N n
a β
+) ∧ Ka ((B = Naβ

+)→ [adopt]ϕ)

iff

∃B ⊆A :M , w |=
∧

b∈B

�

N n
ab ∧ [adopt]βb

�

∧
∧

b∈A\B

�

N n
ab → [adopt]¬βb

�

and

M , w |= Ka

��

∧

b∈B

�

N n
ab ∧ [adopt]βb

�

∧
∧

b∈A\B

�

N n
ab → [adopt]¬βb

�

�

→ [adopt]ϕ

�

iff

∃B ⊆A :B = N n(w)(a)∩ Bi and

for all v ∼a w, ifB = N n(v)(a)∩ Bi , thenM i , v |= ϕ (∗)
iff

∃B ⊆A :B = N n(w)(a)∩ B′ and

ifB = N n(w)(a)∩ Bi , thenM i , w |= Kaϕ

(from (∗) asM is sight n, so N n(v)(a)∩ Bi = N n(w)(a)∩ Bi for all v ∼a w)

iff

M i , w |= Kaϕ

(as such aB always exists)

iff

M , w |= [adopt]Kaϕ.
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Completeness (sketch): It can be shown by induction that for all ϕ ∈ LK[], there exists a ϕ′ ∈ LK

such that `Lnθ
ϕ ↔ ϕ′. Completeness then follows from the standard proof of completeness for S5

over Kripke models with equivalence relations and the straightforward insight that the network axioms

characterize the imposed network conditions. ut

4 Prediction Update

In defining our informed update rule based on epistemic threshold models, we ensure that agents do

not act on information they do not possess. Such agents are however still limited, in that they do not

take all their available information into account. This section investigates effects of agents that are

allowed to reason about more than only the present behavior of the network. In particular, we focus on

providing agents with predictive power.

Consider the ETM illustrated in Fig. 7, with a given dynamics that runs according to a blind or

informed adoption policy.

Fig. 7. An ETM with no uncertainty about the actual state w, developing according to informed update. B is marked
by gray, and a threshold θ = 1/2 is assumed. At time 0 (w0), only a has adopted. According to informed adoption,
b adopts at time 1. At time 2, c also adopts the behavior, etc.

If one assumes that agents (nodes) are not merely blindly influenced by their neighbors, but rather

are rational agents seeking to coordinate, the dynamics in Fig. 7 seems to misfire. In particular, as the

network and behavior distribution are known to c (and if the new behavior is considered the most

valuable), the choice of c not to adopt during the first update is irrational. As c knows that a has

adopted, he knows that b will adopt during the next update round. Hence c also knows that he will be

better off in round 1 if he, too, has chosen to adopt. To represent this “predictive rationality” we define

a new, predictive, update mechanism.

Prediction Update as the Least Fixed Point. In defining “prediction update”, we make use of the

notion of a least fixed point. Even when agents’ attempt to use all their available information, each will

at some point reach a conclusion about her next action. When the last agent does so, the prediction

reaches a fixed point.

This fixed point may be approximated using a chain of lower level predictions. The intuitive idea of

the approximation may be illustrated using Fig. 7:

Assume agent a considers himself smart by predicting that he knows his only neighbor b is going

to adopt B in round 2, if b follows the informed update policy. Then a may act preemptively,

by also adopting B in round 2, rather than in round 3 as the informed update prescribes.6 In

this case, a may be thought of as a level 1 predictor: he assumes no-one else makes predictions,

that the others are of level 0. However, a may come to think that b is as smart as he is, i.e., that

6 If a acted according to the informed update policy, he must first see b adopt before he is influenced by b’s choice
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also b is a level 1 predictor. Assuming this, a now foresees that b will not adopt in round 2,

but already in round 1; based on this prediction about b’s predictions, a may now also adopt

in round 1. In this case, a is a level 2 predictor, etc.

If this reasoning is pushed to its fixed point, it will “catch up with itself”: in the fixed point, every agent

will be a level ω predictor, predicting under the assumption that all others are the same. This is the

trick we use to ensure that agents draw the most powerful conclusion available.

Common Knowledge of Predictive Rationality and Complete Information Use. Prediction update

incorporates two epistemic assumptions. One is that it is common knowledge that all agents act in

accordance with the prediction update policy. This assumption means that agents may not only predict

the systems behavior as if everybody else was acting in accordance with informed update. Rather, agents

foresee the behavior of other predictors.

Moreover, it is common knowledge that predictors predict as far into the future as possible, given

their information. This means that predictors attempt to use all their available information about the

network structure, the current behavior spread and information available to others when determining

their next action.

Prediction Update Preliminaries. Before we define the prediction update, a few preliminaries are

required.

Definition 20 (Functions Γg). LetM = (W ,A , N , B,θ , {∼a}a∈A ) be a finite7 ETM and let the set of all

functions from W to P (A ) be denoted by P (A )W = { f | f :W →P (A )}.
For each g ∈ P (A )W let the function Γg :P (A )W −→P (A )W be given by ∀w ∈W ,∀ f ∈ P (A )W

Γg( f )(w) = g(w)∪
§

a ∈A : ∀v ∼a w,
|N(v)(a)∩ f (v)|
|N(v)(a)|

≥ θ
ª

.

Lemma 1. LetM , P (A )W and Γg be as in Definition 20. Let � be a partial order on P (A )W such that

for any f , g ∈ P (A )W , all w ∈W , f � g⇔ f (w) ⊆ g(w). Then

1) (P (A )W ,�) is a finite, complete, lattice.

2) For each g ∈ P (A )W , the map Γg is order-preserving (monotonic).

Proof. 1) For any finite setA , (P (A),⊆) is a finite and hence complete lattice with the order given by

the set-theoretic inclusion. If (L,v) is a finite lattice and W a finite set, then (LW ,≤) is also a finite

lattice when LW = { f | f : W −→ L} and f ≤ g iff ∀w ∈ W , f (w) v g(w). Hence, given that W is a

finite set, also (P (A )W ,�) is a finite lattice with the order given by definition of �. Every lattice over

a finite set is also complete.

2) Let g, f , f ′ ∈ P (A )W , and let f � f ′. Hence ∀w ∈W , f (w) ⊆ f ′(w). Pick an arbitrary u ∈W . Then

Γg( f )(u) =g(u)∪
§

a ∈A : ∀v ∼a u,
|N(v)(a)∩ f (v)|
|N(v)(a)|

≥ θ
ª

Γg( f
′)(u) =g(u)∪

§

a ∈A : ∀v ∼a u,
|N(v)(a)∩ f ′(v)|
|N(v)(a)|

≥ θ
ª

.

Let the second terms of the unions be denoted A and A′, respectively.

For all v ∈W , as f (v) ⊆ f ′(v), |N(v)(a)∩ f (v)|
|N(v)(a)| ≥ θ implies |N(v)(a)∩ f ′(v)|

|N(v)(a)| ≥ θ . Hence A⊆ A′, so Γg( f )(u) ⊆
Γg( f ′)(u). As u was arbitrary, Γg( f )´ Γg( f ′). Hence Γg is order-preserving. As g was arbitrary, this holds

for all Γg , g ∈ P (A )W . ut
7 In a finite ETM we assume that the set of worlds W is finite and the set of agentsA is finite.
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Definition 21 (Least Fixed Point). LetM = (W ,A , N , B,θ , {∼a}a∈A ) be a finite ETM and let (P (A )W ,�)
be as in Lemma 1. Let Γg be as in Definition 20.

The least fixed point of Γg , lfp(Γg), is the unique x ∈ P (A )W such that

Γg(x) = x, and

∀y ∈ P (A )W , if Γg(y) = y, then x � y.

Theorem 3 (lfp Existence). LetM , (P (A )W ,�) and Γg be as in Definition 21. Then lfp(Γg) exists.

Proof. The least fixed point lfp(Γg) exists by the Knaster-Tarski Fixed Point Theorem (see e.g. [9, p.

50]), as (P (A )W ,�) is a complete lattice (Lemma 1) and Γg is order-preserving (Lemma 1). ut

Defining Prediction Update. Given the previous paragraph, we may now define prediction update as

follows:

Definition 22 (Prediction Update). LetM = (W ,A , N , B,θ , {∼a}a∈A ) be a finite ETM of sight n and

let (P (A )W ,�) be as in Lemma 1. Let ΓB : P (A )W −→P (A )W be given as per Definition 20, i.e., the

function such that ∀w ∈W ,∀ f ∈ P (A )W

ΓB( f )(w) = B(w)∪
§

a ∈A : ∀v ∼a w,
|N(v)(a)∩ f (v)|
|N(v)(a)|

≥ θ
ª

.

The prediction update ofM results in the ETMM ′ = (W ,A , N , eB,θ , {∼′a}a∈A ) where ∀w, v ∈W ,

eB(w) = lfp(ΓB)(w), and

w∼′a v iff w∼a v and if b ∈ N≤n(w)(a), then b ∈ eB(w) iff b ∈ eB(v).

Finding the Prediction Update Fixed Point. The definition of prediction update does not provide us

with a method for finding the least fixed point. The following theorem guarentees that we can find it

using a bottom-up method:

Theorem 4. LetM , (P (A )W ,�) be as in Lemma 1 with bottom element ⊥. Let ΓB and eB be defined as

in Definition 22. Then

lfp(ΓB) = sup{ΓB n(⊥) : n ∈ N}

Proof. This proof follows from the Knaster-Tarski Fixed Point Theorem applied to finite structures. Given

that we work with a finite structure (P (A )W ,�) and that ΓB is order-preserving, a least fixed point is

reached in a constructive way in finitely many steps. The construction is similar to Proposition 3.1. of

[16].

The above stated prediction update rule in definition 22 can now be used to give a new semantics

to the [adopt] modality in the logic language LK[].

Definition 23 (Semantics forLK[] with Prediction Update). Given a finite ETMM = (W ,A , N , B,θ , {∼a}a∈A )
with sight n, w ∈ W , and ϕ ∈ LK[] truth clauses are as in Definition 17, except for ϕ := [adopt]ψ,

ψ ∈ LK[] given by

M , w |= [adopt]ϕ iffM ′, w |= ϕ, whereM ′ is the prediction update ofM .
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Axiomatization. We provide sound axioms that govern the least fixed point behavior of the prediction

update policy, but we do not provide a complete axiom system. Finding a complete logic is the aim

of planned future research. For now we introduce a fixed point axiom and a least fixed point rule of

inference. Note that in this section, the [adopt] modality is a fixed point operator and hence may no

longer be reduced away. Contrary to the informed update process, using prediction update results in a

system that is strictly more expressive than its non-dynamic counterpart.

To state the proof system, we first generalize the syntactic shorthand introduced in Definition 2.2.

Abbreviation. Given a tuple of formula’s (ϕb)b∈A , one for each agent a ∈A , we introduce the follow-

ing abbreviation:

Ka(ϕN(a) ≥ θ ) := Ka





∨

¦

G⊆N ⊆A : |G ||N |≥θ
©

�

∧

b∈N
Nab ∧

∧

b/∈N
¬Nab ∧

∧

b∈G
ϕb

�



 .

Here Ka(ϕN(a) ≥ θ ) denotes that a knows that larger than a θ fraction of her neighbors has the property

ϕ (where for instance ϕb can stand for Nab ∧ βb). In particular, Ka([adopt]βN(a) ≥ θ ) expresses that

a knows that at least a θ fraction of her neighbors will have adopted β after the application of the

prediction update rule.

Definition 24 (Prediction Logic). The logic Lpredic t
θn is comprised of the axioms and rules of propositional

logic and the axioms and rules of Table 2 with the only change that the axiom Ep.Red.Ax .β is replaced

by the Fixed Point Axiom in Table 3 and we extend the set of rules of the logic with the least fixed point

inference rule in Table 3.

Fixed Point Laws

[adopt]βa ↔ βa ∨ Ka([adopt]βN(a) ≥ θ ) Fixed Point Axiom

` {ϕa ↔ βa ∨ Ka(ϕN(a) ≥ θ )}a∈A

` {ϕa → [adopt]βa}a∈A
Least Fixed Point
Inference Rule

Table 3. Fixed point laws of the prediction logic Lpredic t
θn .

The Fixed Point axiom of Table 3 is almost identical to Ep.Red.Ax.β of Table 2, except for the inclu-

sion of the [adopt] modality on the right-hand side. This states that a will adopt after the prediction

update iff she has already adopted, or if she knows that enough of her neighbors will have adopted

after having applied the same predictive reasoning she uses.

The Least Fixed Point Inference rule reflects the fact that prediction update is defined as a least fixed

point operator.

We do not provide a complete logic for the prediction update policy. It is our conjecture that the

axioms and rules in definition 24 will be necessary to obtain completeness. The listed axioms and rules

are sound with respect to epistemic threshold models using the prediction update rule as our semantics

for the [adopt] modality. For the axioms and rules not in Table 3, the proof of Theorem 2 carries

over. The axiom and rule governing the fixed point behavior is shown to be sound in the following

proposition.
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Proposition 6. The axiom and derivation rule of Table 3 are sound with respect to epistemic threshold

models with sight n, using the prediction update as our semantics for the [adopt] modality.

Proof. LetM be a arbitrary finite ETM with sight n, domain W 3 w and a, b ∈A .

Fixed Point Axiom.M , w |= [adopt]βa iffM ′, w |= βa iff a ∈ eB = B∪
¦

b ∈A : ∀v ∼b w, |N(v)(b)∩
eB|

|N(v)(b)| ≥ θ
©

iffM , w |= βa or ∀v ∼a w, |N(v)(a)∩
eB|

|N(v)(a)| ≥ θ . The right disjunct obtains iff

∀v ∼a w,∃G ,N ⊆A : G ⊆N and |G |
|N | ≥ θ and

G ⊆ eB and N = N(v)(a)

iff

∀v ∼a w,∃G ,N ⊆A : G ⊆N and |G |
|N | ≥ θ and

∀b ∈ G ,M ′, v |= βb and ∀b ∈ N ,M ′, v |= Nab

iff

∀v ∼a w,M ′, v |=
∨

¦

G⊆N ⊆A : |G ||N |≥θ
©

�

∧

b∈N
Nab ∧

∧

b/∈N
¬Nab ∧

∧

b∈G
βb

�

iff

∀v ∼a w,M , v |=
∨

¦

G⊆N ⊆A : |G ||N |≥θ
©

�

∧

b∈N
Nab ∧

∧

b/∈N
¬Nab ∧

∧

b∈G
[adopt]βb

�

iff

M , w |= Ka





∨

¦

G⊆N ⊆A : |G ||N |≥θ
©

�

∧

b∈N
Nab ∧

∧

b/∈N
¬Nab ∧

∧

b∈G
[adopt]βb

�





iff

M , w |= Ka([adopt]βN(a) ≥ θ )

Hence we concludeM , w |= [adopt]βa iffM , w |= βa ∨ Ka([adopt]βN(a) ≥ θ ).

Least Fixed Point Inference Rule. Let an arbitrary finite ETMM with sight n and domainW be given.

Where {ϕa}a∈A is a set of sentences from LK[], let ϕ ∈ P (A )W with ϕ(w) = {a ∈ A :M , w |= ϕa}.
Moreover, let Γϕ :P (A )W −→P (A )W , given by

Γϕ( f ) = h such that

∀w ∈W , h(w) = ϕ(w)∪
§

a ∈A : ∀v ∼a w,
|N(v)(a)∩ f (v)|
|N(v)(a)|

≥ θ
ª

.

As shown in Lemma 1, each such Γϕ is order-preserving.

Let β ∈ P (A )W be determined by {βa}a∈A and []β ∈ P (A )W by {[adopt]βa}a∈A . Let Γβ be

given by the above construction.

Given the prediction semantics of [adopt] and the fact that eB = lfp(ΓB) = sup{ΓBn(⊥) : n ∈ N}
(Theorem 4), we may conclude that

[]β = Γβ ([]β) (4)

is the least fixed point of Γβ .
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Assume for some {ϕa}a∈A that `
�

ϕa ↔ βa ∨ Ka(ϕN(a) ≥ θ )
	

a∈A . This implies

`
∧

a∈A
(ϕa ↔ βa ∨ Ka(ϕN(a) ≥ θ )). (5)

From {ϕa}a∈A and {βa ∨ Ka(ϕN(a) ≥ θ )}a∈A we may define functions ϕ and βK , as specified above.

Now notice that βK = Γβ (ϕ). Hence, for (5) to be satisfied, we have that

ϕ = Γβ (ϕ).

Given that (4) is the least fixed point of Γβ , we have that ϕ = Γβ (ϕ)⇒ []β � ϕ, so

∀w∀a : a ∈ []β(w)⇒ a ∈ ϕ(w) so

∀w∀a : w |= [adopt]βa ⇒ w |= ϕa so

∀w∀a : w |= [adopt]βa → ϕa
ut

4.1 Sight and Prediction Power

Relationship between predictive power and non-epistemic update. Similarly, as we compared the

informed update policy with the non-epistemic threshold model update in section 3.2, it is also natural

to investigate the relationship between the ‘prediction update’, ‘informed update’ and the ‘non-epistemic

threshold model update’ (Definition 3). Indeed, given that the prediction update policy foresees the non-

epistemic deterministic development of the actual state under uncertainty, such a comparison would

be rather natural. Besides comparing the cascading behavior and speed of convergence, (as illustrated

in figure 4.1), other results that we expect in this investigation relate to posing conditions and finding

a lower and upper bound of how far agents can predict into the future. We leave the technical details

of this investigation for future work.

Bounded Rationality. Stating that prediction update is the fixed point of the informed update, as we

have done in this section, corresponds to assuming that agents have unbounded rationality (maximal

anticipation power given the information available). A bounded rationality version of the prediction

update dynamics could be defined, in which agents can only anticipate a fixed finite number of steps

ahead. A natural way of doing this would be by defining an update that updates to some finite level

n of the prediction chain. The dynamics of bounded rationality would only differ from the unbounded

dynamics for a low enough n. We leave the full exploration of technical details of the prediction update

involving such boundedly rational agents for future work.

5 Alternative Adoption Policies

In the previous sections, we have presented three diffusion policies: one depending solely on whether

the agents’ neighbors have adopted (the “threshold model update” from Def. 3); one depending on

knowledge of this fact (the “informed update” of Def. 14), and one depending on the anticipation of

this fact (the “prediction update” of Def. 22). This section questions some in-built assumptions of these

policies and discusses possible alternatives.
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Fig. 8. We use the prediction update to regulate the dynamics of this sight 2, finite ETM with actual state w,
θ = 1/2 (reflexive and transitive uncertainty relations are omitted in the illustration). Agents a, b, c are endowed
with additional information: they are fully informed about the actual state. The development of the states is given
according to blind/informed adoption; states w0–w4 are from Fig. 7. The thick arrow indicates the evolution of
the actual world under the specified prediction dynamics. With informed update, w reaches a fixed point after 4
updates; with prediciton update, it reaches the same fixed point after only 2 steps. Due to uncertainty, the prediction
update does not jump to the fixed point of the non-epistemic update in 1 step: as d does not know whether a has
adopted at time 0, she does not know that c will adopt under the prediction update. Hence, she will refrain herself
from adopting until w3. Similar considerations goes for e.
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Enlarging the Sphere of Influence. The adoption policies hitherto presented rely on the idea that an

agent will adopt if (she knows that) enough of her direct neighbors (will) have adopted.

For certain applications, decisions are made that are based not only on actions of direct neighbors,

but on the population at large. A case in point is the decision of whether to support a revolution: the

relevant factor is then whether a big enough fraction of the total population supports the revolution,

not whether enough of one’s direct neighbors do so.

Generally, such policies may be obtained by enlarging the “sphere of influence” of agents beyond

their direct neighbors. A natural choice in the epistemic setting is to fit the “sphere of influence” to

agents’ “sphere of sight” (in models of sight n). The influence principles would then become: the agent

adopts if (he knows that) enough of his n-distant neighbors (will) have adopted.

In the revolution case, agents might be influenced into adopting only if (they know that) enough

agents within the whole network (will) have adopted. A suitable “globalized” version of the prediction

update from Def. 22 may be defined as follows:

Definition 25 (Global Prediction Update). Let M = (W ,A , N , B,θ , {∼a}a∈A ) be a sight n finite

model, and let (F,≤) be as in Def. 22.

The global prediction update ofM results in the modelM ′ = (W ,A , N , eB,θ , {∼′a}a∈A ) where:

– eB is such that:

• ∀w ∈W , eB(w) = B(w)∪ {a ∈A : ∀v ∼a w, |A∩
eB(v)|
|A | ≥ θ}

• ∀ f ∈ F, if ∀w ∈W , f (w) = B(w)∪ {a ∈A : ∀v ∼a w, |A∩ f (v)|
|A | ≥ θ}, then eB ≤ f .

and

– w∼′a v iff i) w∼a v and ii) if b ∈ N≤n(w)(a), then b ∈ eB(w) iff b ∈ eB(v).

Taking Chances. Prediction update has been defined to allow agents to take all their available in-

formation into account in their decision making. In acting upon it, agents act conservatively, as the

information-dependent adoption policies defined require absolute certainty: agents will adopt only when

they know that enough of the others (will) have adopted.

An alternative to such conservative behavior is a risky one, where agents adopt whenever they

consider it possible that enough people (will) have adopted. In the revolution example, this means that

agents would join the revolution whenever they see a chance that enough of their neighbors (or of the

general population) would join.

Such chance taking behavior is captured as follows:

Definition 26 (Risky Prediction Update). LetM = (W ,A , N , B,θ , {∼a}a∈A ) be a sight n finite model,

and let (F,≤) be as in Def. 22.

The risky prediction update ofM results in the modelM ′ = (W ,A , N , eB,θ , {∼′a}a∈A ) where:

– eB is such that:

• ∀w ∈W , eB(w) = B(w)∪ {a ∈A : ∃v ∼a w, |N(v)(a)∩
eB(v)|

|N(v)(a)| ≥ θ}
• ∀ f ∈ F, if ∀w ∈W , f (w) = B(w)∪ {a ∈A : ∃v ∼a w, |N(v)(a)∩ f (v)|

|N(v)(a)| ≥ θ}, then eB ≤ f .

and

– w∼′a v iff i) w∼a v and ii) if b ∈ N≤n(w)(a), then b ∈ eB(w) iff b ∈ eB(v).

To suitably capture e.g. a population of “risky revolutionaries”, the risky prediction update should be

suitably “globalized” by replacing N(v)(a) withA everywhere in the definition.
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Betting that just any uneliminated possibility is in fact the case is very risky behavior. A natural way

to weaken the epistemic requirement of absolute certainty while still allowing for uncertainty to exist

is to augment our framework with beliefs. Modeling beliefs using the plausibility orders of [4], a mid-

dle ground between conservative and risky prediction update could be defined. The natural definition

would make agents adopt if enough neighbors (are predicted to) have adopted in each of the worlds

the agent considers most plausible, i.e, if the agent believes enough neighbors (are predicted to) have

adopted.

Trendsetters vs. Followers. An assumption build into threshold models in general is that agents are

followers: even when they anticipate others’ behavior with the prediction update, they only “antici-

pate their future following of others”. Agents are thus reacting to others’ behavior, even when they are

reacting fast.

An interesting alternative would be to utilize agents’ information to make them proactive instead;

to have trendsetters instead of followers. Adding a few trendsetters to a network might induce behavior

change towards B even when no-one has adopted initially.

A simple trendsetting adoption policy would state that an agent should adopt whenever she knows

that if she were to adopt, then enough of her neighbors will adopt afterwards. Such an adoption policy

involves both counterfactual and temporal reasoning, which complicates a predictive version. A non-

predictive version may be defined as follows:

Definition 27 ((a, w)-Counterfactual Behavior). LetM = (W ,A , N , B,θ , {∼a}a∈A ) be an ETM with

w ∈W . Let the (a, w)-counterfactual behavior ofM be

BC(a,w)(v) =







B(v)∪ {a} if v ∼a w

B(v) else

Definition 28 (Trendsetter Update). LetM = (W ,A , N , B,θ , {∼a}a∈A ) be an ETM and let {F ,T } be

a partition ofA into sets of followers and trendsetters.

The trendsetter update of M is the ETMM ′ = (W ,A , N , B′,θ , {∼a}a∈A ) with B′ given by ∀w ∈W

B′(w) = B ∪
§

a ∈ F : ∀v ∼a w,
|N(v)(a)∩ B|
|N(v)(a)|

≥ θ
ª

∪

¨

a ∈ T : ∀v ∼a w,
|N(v)(a)∩ BC(a,v)(v)

′
|

|N(v)(a)|
≥ θ

«

where BC(a,v)(v)
′
is the (a, v)-counterfactual behavior set ofM after informed update.

The trendsetter update may of course also be define in global and risky versions.

6 Conclusions and Further Research

The paper has focused on two intertwined objectives. On the one hand, we have developped logical

frameworks for the diffusion dynamics of the behavior of agents in social networks, and on the other

hand we have developped models for the diffusion dynamics under uncertainty. We gradually have

focussed our attention on agents which increasing cognitive abilities. At strart our threshold models

did only focus on the adopting behavior of agents while in the following sections we have equipped

agents with epistemic power and also predictive epistemic powers. In the following paragraphs, we

summarize our findings.
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Threshold Models. The static setting of threshold models may be described sufficiently using a propo-

sitional logic with proposition symbols that are indexed by agents. On finite networks, threshold ratios

may be encoded together with other important structural notions, such as clusters of particular den-

sity. As the dynamics of threshold model update is deterministic and state dependent, these may be

described using a dynamic modality reducible to the static language. The dynamic modality therefore

does not add any expressive power. We have shown that the logic for threshold-limited influence is

sound and complete, and as the static fragment is stated in simple propositional logic, one sees that

this logic is also decidable.

Epistemic Threshold Models. Given the propositional logical representation of networks, the epistemic

extension of the logic for threshold-limited influence works as expected. As both the diffusion and

learning mechanism in the informed update are deterministic and state dependent, the dynamic process

that is induced by the dynamic operation can be captured by a reducible dynamic modality. As such,

this modality does not add any expressivity to the language. We have shown the epistemic logic of

threshold-limted influence to be both sound and complete. Again we can conclude that this logic is

decidable.

In epistemic threshold models, if agents’ behavior is dictated by that of their direct neighbors, then

knowledge of more distant agents is redundant. To act as under the standard threshold model dynamics,

knowledge of neighbors’ behavior is however required. If this information is not available, the diffusion

speed decreases. In the limit case where no information is available, the diffusion process stops. Taken

together, the most economical epistemic interpretation of standard threshold models is that their dy-

namics embodies an implicit epistemic assumption that exactly the network structure and behavior of

agents in distance 1 is known.

Epistemic Threshold Models with Prediction Update. Prediction update allows agents to fully utilize

their information in deciding if and when to adopt a spreading behavior. Describing the dynamics of

prediction update requires a dynamic fixed point operator, which is atypical of dynamic epistemic logic.

Here we have shown that formulas including this operator are not reducible to the static language. The

dynamic operator which is studied in the context of our ‘prediction update’, thus strictly adds expressive

power. The learning mechanisms of prediction update and informed update are identical, but given the

fixed point construction involved in the former, obtaining a complete logic is a complex task and is left

for future research. We have stated a fixed point axiom and least fixed point inference rule which are

shown to be sound.

Future work. In future research we plan to work on a full comparative analysis of the different

update processes that we have outlined in this paper. While convergence can be obtained for all dif-

ferent dynamic processes, among the ones we studied, the prediction dynamics will be the fastest in

its convergence. In the limit case, where the network and behavior distribution is common knowledge,

the prediction update jumps in one step to the fixed point of the standard threshold model update.

The logical treatment of threshold models and their epistemic extension undertaken also yields

several more options for further development. Beyond the open question about a complete logic for

prediction update, we see the three main directions for further research as the following: A) The logi-

cal apparatus and the epistemic extension of the possible generalizations of threshold models discussed

is Subsection 2.4 are yet to be developed. B) The alternative diffusion processes introduced in Section 5

are to be further explored, both on the logical and on the set theoretic level. Their logics may be de-

veloped, and their dynamics may be investigated with respect to limit behavior and speed of possible

stabilization. C)The epistemic and predictive treatment of non-increasing behaviors is yet to be inves-
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tigated. Allowing agents to freely unadopt the possibly spreading behavior radically changes the limit

behavior of systems by introducing the possibility of cyclic dynamics. Understanding the epistemics of

such oscillating limit behavior requires tools going beyond the fixed point oriented mathematics of the

current work.
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