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Chapter 1

Prologue

Bob:  Alice, someone is outside and rang the bell. Do you know him?
Alice:  Yes, he’s someone I met yesterday at the book club. His name is Josh.

Bob:  Oh, every time you go to the book club, you meet someone new.
What’s his story?

Alice: He’s someone from Wisconsin who just moved to town. I have never
met someone from Wisconsin before.

Bob:  Well, someone from the book club and from Wisconsin is someone
we should definitely get to know.

The dialogue above between Bob and Alice showcases different uses of the En-
glish indefinite pronoun someone. How indefinite the indefinite someone is varies
significantly in each case. In Bob’s initial statement, someone refers to a specific
individual unknown to Bob. Alice’s response clarifies that she knows this person.
In the former case, we say that the indefinite has a ‘specific unknown’ use, while
in the latter it has a ‘specific known’ use. Bob’s remark on the third line does
not seem to refer to a specific individual, but it rather establishes a relationship
between the event of going to the book club, and meeting a person there, where
this person varies each time. We say that in this case the indefinite has a ‘non-
specific’ use. Alice’s second use of someone hints at partial knowledge about the
person, suggesting different degrees of acquaintance. When someone interacts
with negation, it gives rise to a meaning closer to English anyone. Finally, Bob’s
last statement features someone twice: first to indicate an arbitrary person from
the book club and Wisconsin, and second to refer to this person.

This dialogue demonstrates the diversity in the uses of the English indefinite
someone. Not surprisingly, while English can express all these differences using
a single form, different languages employ various forms: indefinites associated
with the speaker’s knowledge like Lithuanian kai, indefinites associated with the
speaker’s lack of knowledge like German irgend-, indefinites that can only convey
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Figure 1.1: Indefinites and their values.

non-specificity like Georgian me, and indefinites that can only occur with negation
like Italian alcuno, among many others.

The main idea behind this work combines two fundamental insights: first,
indefinites are associated with a range of values; second, speakers may entertain
different possibilities for the state of the affairs in the actual world, reflecting
what they know and what they do not know. To illustrate this, Bob’s first use
of someone would be compatible with the picture in Figure 1.1a, where each box
corresponds to a possible value for the person who is outside, limited to four for
illustrative purposes. In this sense, Bob does not know who that person is, as it
could be Noah, Josh, Owen, or Liam. By contrast, Alice is aware of who is outside,
and the value of someone is constant across all her epistemic possibilities, as in
Figure 1.1b. The use of someone by Bob in the third line aligns with the picture
in Figure 1.1c, where the indefinite is associated with all the values corresponding
to the people Alice met at the book club. Note that, in this case, these are not
‘possible’ values but rather all the actual values that the indefinite receives for
the different times Alice went to the book club.

To formalize this characterization, we rely on what we call two-sorted team
semantics (2TS). Team semantics has found various applications in linguistics and
beyond. The underlying idea is that indefinites are associated with a variable,
and a team is composed of a set of assignment functions that assign a value to this
variable. The ‘two-sorted’ part in 2TS means that, in addition to domain-variables



x ranging over individuals, we include world-variables v ranging over possible
worlds (ways the world might be). This allows us to represent the information
state or epistemic state of the speaker as a collection of possible worlds.

To illustrate this, consider the schematic representations in Table 1.1, which
depicts three possible teams T}, T, and T5. The first column lists the assignments
within each team. The variables are shown in the first row, with subsequent rows
displaying the values assigned by each assignment. Here, v is a world-variable
encoding the information state of the speaker, and z is a domain-variable encoding
the values of the indefinite. For instance, the team T} contains four assignments
i1, 19, 13 and 74. The assignment 7; assigns the possible world v; to the world-
variable v and ‘Noah’ to the domain-variable = for the indefinite.

T, | v T T | v T T3 | v T z

i1 ||vi Noah 71 ||vr Josh ki ||vo  Luke | May
iy ||ve  Josh J2 ||ve  Josh ko ||lva  Josh | June

13 [lvs  QOwen jz |vs  Josh ks (|ve Kate | April

14 |lva  Liam 94 ||lva  Josh ki ||vo Jane | March
(a) (b) (c)

Table 1.1: Teams and Variables. Specific Unknown, Specific Known and Non-
specific.

Table 1.1a corresponds to the scenario in Figure 1.1a. Each box in Figure 1.1a
represents a different possible value for the indefinite, represented in the team by
means of the value of x given a value for v. Similarly, Table 1.1b and Figure
1.1b, depict a situation where Alice knows the value of x, which remains constant
across all assignments in the team. Table 1.1c stands for Figure 1.1c, where in this
case the value of x is associated with more values in a single epistemic possibility,
which we can take to be the world representing the actual state of affairs. The
value of the indefinite thus varies based on the occasion z on which Alice met x
at the book club.

One of the goals of this work is to provide a formal rendering of the distinctions
illustrated in Table 1.1. Consider the four pictures in Figure 1.2, which display
different combinations of colours and shapes. In picture (a), all objects are circles,
regardless of their colour. In picture (b), the shape is fixed relative to the colour:
a circle for blue and a triangle for yellow. In the latter case, we can say that
the shape depends on the colour or that the shape is a function of the colour.
Pictures (c) and (d) encode in a sense the opposite conditions of the first two. To
make the shape not fixed, the minimal case in (c) is sufficient, where the shapes
vary and the colour is irrelevant. In (d), one colour which is associated with more
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than one shape, as it is the case for the yellow colour, is sufficient to break the
dependence of the shapes on the colours seen in (b).

H O O
H O O
A A\
A O
(a) (b) (c

Figure 1.2: Constancy and Variation Conditions.
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It is not difficult to translate these correspondences between colours and
shapes into correspondences between variable values, thereby capturing the con-
trasts displayed in Table 1.1. For instance, picture (a) in Table 1.2 corresponds to
a constant value for the indefinite as in the team in Table 1.1b, which represents
specific known cases. A combination of (b) and (c) allows us to encode the team
for specific unknown in Table 1.1a, with (b) requiring the value of x to depend
on the value of v; and with (c) requiring that there are different values of x.
The condition in (d) where the shape changes for at least one colour (‘yellow’)
captures non-specific cases, like in Table 1.1c, as the value of x changes for at
least one value of v (v, the only value in that case).

These conditions, informally presented using colours and shapes, have been
formally studied in dependence logic, which extends first-order logic by incorpo-
rating various notions of dependence between variables. Not surprisingly, depen-
dence logic has found applications in areas where reasoning about dependencies
is crucial, such as database theory (e.g., query optimization), computer science
(e.g., program verification), game theory (e.g., games of imperfect information),
causal inference, and linguistics.

This thesis aims to explore further applications of teams semantics and de-
pendence logic to formal semantics, focusing particularly on indefinites. The
advantage of a rigorously defined formal system is that it makes clear predictions
and lays the groundwork for further extensions of the framework.

We will demonstrate how this approach addresses classical puzzles involving
indefinites, such as anaphora, exceptional scope, ignorance and free choice infer-
ences.

We will explore how the basic conditions in Figure 1.2 can be used to capture
different kinds of indefinites. The core idea, again, is that different indefinites
impose different conditions on the variables they are associated with. We will
see how 2TS allows making some language universal claims on the distribution of
indefinites cross-linguistically.



Moreover, indefinites often exhibit a high rate of semantic change, and we will
investigate how different developmental paths of indefinites can be explained and
predicted by studying how the conditions on their values change over time.

Indefinites, thus, have significant value, and this does not merely express the
fact that they are a legitimate area of study.

Organization of the thesis

This dissertation is designed as a monograph, and ideally, it should be read from
beginning to end. However, alternative reading paths are possible. Chapter 2
serves as a concise introduction to indefinites and formal semantics, particularly
for phenomena of (non-)specificity. Chapters 3 and 4 constitute the core of the
thesis, with Chapter 3 focusing on the formal foundations of two-sorted team
semantics (2TS) and Chapter 4 exploring its applications. Both chapters can
also be read independently, as Chapter 4 provides informal explanations of some
key components of 2TS. Chapter 5, 6, 7, and 8 each address a particular type
of indefinite, and readers may choose to focus on a single chapter, consulting
Chapter 3 and Chapter 4 when needed. Chapter 9 examines indefinites in sign
languages and is best read together with the initial sections of Chapter 4.

Chapter 2: Background and Core Puzzles. In this chapter, we lay down the
core terminological distinctions, overview previous approaches in the literature on
indefinites, and set up the main puzzles and empirical phenomena we investigate.
We focus in particular on indefinites and scope, epistemic specificity, anaphora
and cross-linguistic distinctions in marked indefinites.

Chapter 3: Two-sorted Team Semantics. In this chapter, we establish
the foundations of 2TS. We discuss the role of teams and sorts in more detail,
and define the basic components of 2TS, including different formal conditions on
the values of the variable for the indefinite. Having a system which is rigorously
defined allows to make clear predictions and ease possible extensions of the frame-
work. This chapter is in part an elaboration of the framework presented in Aloni
and Degano (2022), which finds here a more definitive form.

Chapter 4: Indefinites Across Languages. In this chapter, we discuss
how 2TS accounts for the typology of (non-)specific indefinites and explain why
certain types of indefinites are not attested in terms of complexity and failure of
convexity. We also discuss how 2TS deals with modality and negation. Finally,
we dedicate one section to the diachronic development of indefinites, highlighting
attested diachronic changes and possible predictions. The first part of this chapter
takes as a starting point the work done in Aloni and Degano (2022).
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Chapter 5: Epistemic Indefinites. This chapter focuses on epistemic in-
definites, which are indefinites which signal the speaker’s lack of knowledge with
respect to the value of the indefinite (so-called ignorance inferences). We discuss
the predictions of 2TS, also in relation to previous accounts in the literature. We
dedicate one section to the interaction between plurality and ignorance inferences.

Chapter 6: Non-specific Indefinites. This chapter focuses on specific
indefinites, which are indefinites which only receive non-specific uses. We relate
one interesting relationship between the property of Locality in dependence logic
to the distribution of non-specific indefinites. We compare this class of indefinites
with so-call dependent indefinites and indefinites which display a negative polarity
behaviour. We present a dynamic system of 2TS which can account, among
various things, for anaphora. Part of this chapter will be presented at SuB 29
(Sinn und Bedeutung 29, Noto, 2024).

Chapter 7: Specific Indefinites. This chapter focuses on specific indefinites,
which are indefinites which only receive specific uses. This chapter is relevant
as it allows us to make a connection with some of the previous approaches to
indefinites and scope and in particular to choice-functional ones. We present a
novel perspective on specificity which revisits the proposal made in Chapter 3
and offer both a pragmatic and a semantic explanation to specificity. We also
include an overview of various classes of specific indefinites cross-linguistically.

Chapter 8: Free Choice Indefinites. This chapter is dedicated to free choice
indefinites. We account for their distribution, and we dedicate a consistent section
to the diachronic development of this class of indefinites. We also comment on
the insights that 2TS offers with respect to the relationship between universal
quantifiers and free choice indefinites. Part of this chapter relates to the work
of Degano and Aloni (2021) and includes material presented at FoDS 7 (Formal
Diachronic Semantic 7, Budapest, 2022) and ThiLLC 2023 (Tbilisi Symposium
on Language, Logic and Computation, Telavi, 2023).

Chapter 9: Indefinites and Sign Languages. This chapter investigates the
realization of indefinites in sign languages and attempts a connection with the
way indefinites are accounted in 2TS.

As outlined above, part of this dissertation is also based on Maria Aloni and
Marco Degano (2022). “(Non-)specificity across languages: constancy, variation,
v-variation”. In: Semantics and Linguistic Theory. Vol. 32, pp. 185-205. The
study in Aloni and Degano (2022) was conceptualized through joint discussions
between Maria Aloni and Marco Degano. The writing of the paper was carried
out by Marco Degano.



Chapter 2

Background and Core Puzzles

The study of indefinites has played a pivotal role in philosophy, logic, and linguis-
tics, often leading to new theoretical insights or the development of novel formal
tools.!t

Indefinites are associated with many linguistic and philosophical puzzles, and
different formal accounts have emerged seeking to capture their properties. Notwith-
standing the vast empirical and theoretical landscape, there appears to be no
overall agreement on what constitutes an indefinite. The characterization of an
indefinite often depends on the specific empirical puzzles being examined and the
theoretical framework in which indefinites are situated.

In this chapter, we will clarify the notion of an indefinite from an empirical
and formal perspective in Section 2.1 and Section 2.2, respectively. We will then
outline some of the core linguistic puzzles pertinent to the aims of the present
work in Section 2.3.

2.1 The Empirical Status of Indefinites

There appears to be no working definition or classificatory distinction that uni-
versally captures what an indefinite is. A circular definition might describe indef-
inites as nominal expressions that express indefinite reference, but what counts
as indefinite reference is of course theory-dependent. In this section, we offer

"'Without the claim of being comprehensive, here are some key contributions: Bertrand
Russell’s paper On Denoting in 1905 and his theory of definite versus indefinite descriptions;
the referential versus quantificational debate of indefinites (Donnellan 1978; Wilson 1978; Fodor
and Sag 1982); the role of indefinites in categorical grammars (Montague 1973) and Generalized
Quantifier Theory (Barwise and Cooper 1981); type-shifting (Partee 1986); the dynamic turn
and the anaphoric potential of indefinites (Heim 1982; Kamp 1984; Groenendijk and Stokhof
1991), the view of indefinites as choice functions (Reinhart 1997; Kratzer 1998; Winter 1997);
the study of marked indefinites across languages (Farkas 2002b; Kratzer and Shimoyama 2002;
Chierchia 2013).
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some examples of indefinites based on previous literature and typological studies,
setting up the main terminological distinctions of the present work.

We follow the conventional distinction between indefinite pronouns, distin-
guished among different semantic categories, like English somebody for the se-
mantic category ‘person’, and indefinite determiners, like English some, combin-
ing with nouns. Unless explicitly stated, we will refer to this class of items as
indefinites in general.

Across languages, there are two main types of indefinites: indefinites which
exhibit morphological similarity to interrogatives (e.g., Georgian raghats ‘some-
thing’ formed by the interrogative ra ‘what’ together with the suffix ghats) and
those related to generic nouns like thing/body or the numeral one together with
an indefinite marker (e.g., English somebody or someone). According to the typo-
logical work of indefinites by Haspelmath (1997, 2013), these two classes comprise
85% of the languages considered in the aforementioned studies.?

Indefinite pronouns typically occur in a series formed by an indefinite marker,
which can be interrogative or generic-noun based. Different series in a language
are associated with different distributions and uses. Their morphological makeup
(e.g., affixes, particles, reduplication) contributes to their enriched meaning. We
will refer to such indefinites as marked indefinites, where markedness refers to an
underlying distinction in distribution and uses. For instance, Table 2.1 displays
three indefinite series in Polish: the general -$-series, comparable to English some,
the free choice -kolwiek-series, comparable to English any, and the negative ni-
series, comparable to English no, where Zaden, an expression from a different
root, is used for the negative determiner. In this case, we would say that -kolwiek
is marked with respect to its free choice uses, since it can only have such usages
compared to the general -§. We will subsequently revisit the notion of ‘marked
indefinite’, particularly with regard to the contrasts pertinent to the present work.

A related class of items concerns so-called indefinite articles, such a book in
English. In many languages, the numeral ‘one’ is the source of the indefinite
article (e.g., Italian un(o) ‘one’) (Dryer 2013; Givon 1981), while in other lan-
guages, indefinite articles are not related to the numeral ‘one’, which may still
admit generic-like readings. In what follows, we will use the label ‘plain indefi-
nite’ to refer to such indefinites. The relationship between indefiniteness and the

2In particular, 60% of the languages have interrogative-based indefinites, while 25% have
generic-noun-based indefinites. Other languages employ dedicated expressions unrelated to
interrogative or generic nouns, and other languages make use of a mix of interrogative-based and
generic-noun-based indefinites. Importantly, the notion of an indefinite marker for generic-noun-
based indefinites should deserve better scrutiny. For instance, the Italian qualcuno ‘someone’
is classified as a generic-noun-based indefinite due to the presence of uno ‘one’. However, the
indefinite marker qualc derives from qual + che. The former, qual, comes from Latin qualis
(an interrogative with the meaning ‘of what kind’); the latter, che, comes from Latin quis (an
interrogative with the meaning ‘who’/‘what’). This implies that the Italian qualcuno shows
a strong affinity with interrogative words, even though it is classified as generic-noun-based
indefinite in Haspelmath (2013)’s typological work.
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Semantic . 3 . . . . .
Interrogative -s-series -kolwiek-series ni-series

category

Person kto kto-s kto-kolwiek ni-kto
Thing co co-$ co-kolwiek ni-co
Quality jaki jaki-$§ jaki-kolwiek ni-jaki
Place gdzie gdzie-s  gdzie-kolwiek ni-gdzie
Time kiedy kiedy-§  kiedy-kolwiek ni-kiedy
Manner jak jak-§ jak-kolwiek ni-jak
Determiner ktory ktory-s  ktory-kolwiek zZaden

Table 2.1: Polish Indefinite Series (Haspelmath 1997, p. 271).

numeral ‘one’ will be revisited in Chapter 7, when discussing so-called ‘specific
indefinites’. It should also be noted that some languages do not have a definite or
an indefinite article, relying on the context to disambiguate the (in)definiteness
of bare nouns.

Lastly, there are indefinite constructions which do not fit in any particular
category, but they have been studied for their particular relevance in linguistics
and formal semantics. For example, the English construction a certain book has
been examined in the context of indefinites and scope, while a different book has
been studied alongside its counterpart expression the same book (Barker 2007).
We call these indefinites special constructions.?

These terminological distinctions are summarized in Table 2.2, together with
relevant examples.

Unmarked Marked Plain Special

Indefinite Indefinite Indefinite Construction
English  someone anyone a book a certain book
Italian  qualcuno qualunque un libro un certo libro
Dutch  iemand wie dan ook  een boek een bepaald boek

Table 2.2: Main Terminological Distinctions.

2.2 The Formal Status of Indefinites

As highlighted at the beginning, the study of indefinites has often led to the
emergence of novel theoretical insights, resulting in various perspectives on their

3We do not classify these indefinites as ‘marked indefinite’, since we consider a marked
indefinite to have specific morphological makeups.
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formal representation. Not surprisingly, in their introductory handbook chapter
on indefinites, Brasoveanu and Farkas (2016) observe that the most appropriate
way to present indefinites is to provide a broad summary of solutions to the various
problems they raised in the literature. We will take a similar approach for the
contrasts examined in this work in Section 2.3. Before that, we will attempt some
broad remarks on the formal status of indefinites. In Chapter 3 and Chapter 4,
we will illustrate how all these components are integrated in 2TS.

2.2.1 Indefinites as Existential Quantifiers

One of the earliest significant discussions involving indefinites is Russell (1905)’s
theory of definite and indefinite descriptions. According to Russell, indefinite
descriptions like (1-a) involve existential quantification, as in (1-b). By contrast,
definite descriptions like (2-a) contain an additional uniqueness requirement.?

(1) A desk is black.

b. 3e(D(x) A B(x))

The desk is black.
Jz(D(x) AVy(D(y) = = =y) A B(z))

&

(2)

=

This conceptualization paved the way to classical generalized quantifier theory
starting from the work of Montague (1973) and further developed by Barwise
and Cooper (1981) and Keenan and Stavi (1986), which exerted a significant
influence in the formal semantics tradition. Under this account, indefinites and
definites are both subtypes of generalized quantifiers with the latter having a
uniqueness requirement as opposed to the former.

To make this more explicit, in generalized quantifier theory (see e.g. West-
erstahl 2019 for an overview), a basic determiner can be viewed as a relation
between two sets of entities. For instance, (1) corresponds to a relation between
the set of desks and the set of black things. More formally, we can view such
quantifiers as binary relations over subsets of a universe of individuals which we
call M, given a model M.

In particular, an indefinite like a desk or some desk in example (1-a) can be
viewed as requiring that the set of desks intersected with the set of black things
is non-empty (i.e., that there is something which is both a desk and black). Thus,
given two sets A C M and B C M, indefinites like a or some amount to (3-a).

Definites, on the other hand, presuppose that there is a unique object satisfy-
ing a certain property. For instance, in (2), that there is a unique desk and this

4Frege’s early perspective on this matter is that expressions with the definite article point to
an object, while expressions with an indefinite article indicate a concept. This view is expressed
in Frege (1950, $51) or in Frege, Geach, and Black (1951). It is not immediate how this
characterization could extend to uses of an indefinite like in ‘A man is walking.’.
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(a) (b)

Figure 2.1: Indefinites versus Definites in Generalized Quantifier Theory.

is black. Formally, this can be captured as in (3-b), adapted from Barwise and
Cooper (1981), where the failure of uniqueness leads to undefinedness.

(3)  a. amlA B if AMNBM £ o
AM C BM if [AM] =1

b. themlA, B] iff i
undefined  otherwise

Generalized quantifiers are useful for analysing more complex and nuanced
expressions about quantities (e.g., most, many, ezxactly n, infinitely many, ...)
and have led to an influential research agenda (van Benthem 1984; van Benthem
and Meulen 1985; Peters and Westerstahl 2006; Keenan and Westerstahl 2011;
Szymanik 2016). What is relevant for our purposes is that under this view,
indefinites are treated as existential quantifiers, and they differ from definites in
being non-unique.

2.2.2 Indefinites as Choice Functions

While the previous approach takes indefinites to be existentials, another perspec-
tive is to view indefinites as arbitrary witnesses of a formula. This view has been
proposed by David Hilbert and his school in the early half of the 20th century
within the context of the so-called Epsilon Calculus (Hilbert and Bernays 1939).
This approach has then found several applications in the treatment of indefinites
in linguistics in Egli and Heusinger (1995), Viol (1999), and von Heusinger (2000).

In Hilbert’s epsilon calculus, a term-forming operator € is used to construct
a term like €, A, which corresponds to some z which satisfies A, if there is one
and an arbitrary object otherwise. As a result, the case in (4), which received
the logical rendering in (4-a) in the previous approach, is now analysed as (4-b)
using epsilon terms.

(4) A desk is black.
a. Jdx(D(x) A B(z))
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Figure 2.2: Indefinites as Choice Functions.

b. B(e,D)
c. 3f B(f(D))

There is of a natural correspondence between the € operator and choice functions
analyses of indefinites (Reinhart 1997; Winter 1997; Kratzer 1998), as pointed
out, for instance, by Gratzl and Schiemer (2017). Given a set in the powerset of
M, a choice function assigns an element from that set or an arbitrary element in
M if that set is empty. We can schematically represent this as follows:

de AM, f AMALgo
f(A) = .
de M, otherwise

We will return to choice functions in Chapter 7, but here we note that indeed
we can equivalently view Hilbert’s terms e, A as f(d € M : d € AM) for some
choice function f. Most importantly, indefinites are not taken to be existential
quantifiers in the sense delineated in the previous section, rather they seem to be
devices to refer to an (arbitrary) element.

2.2.3 Indefinites and Dynamics

While the classical treatment of indefinites as existential quantifiers focused on
the definite versus indefinite distinction, another perspective is offered by dynamic
semantic approaches (Karttunen 1977; Kamp 1984; Heim 1982; Groenendijk and
Stokhof 1991; Dekker 1993; Groenendijk, Stokhof, and Veltman 1996). In this
view, definites signal familiarity in the discourse, while indefinites introduce novel
information. An indefinite in most of these approaches introduces a variable that
can be bound outside the syntactic scope of the indefinite, allowing for proper
anaphoric relationships with pronouns beyond the scope of the indefinite. The
minimal contrasts in (5) suffice to illustrate this point.

(5) A book, is on the desk.
a. [It, is heavy.
b.  The book,/, is heavy.
c. A booky,,, is heavy.
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Given the sentence in (5), some possible continuations are displayed in (5-a—c),
assuming that the indefinite introduces the variable x. An explicit pronominal
element like it clearly refers to the book previously introduced. The use of the
definite is also associated with the book introduced, which is now ‘familiar’ in the
discourse. A less immediate reading would also associate the book with another
book salient in the discourse or context. Finally, another instance of the indefinite
does not allow referring to the previous instance of a book, but rather it introduces
a novel variable in the discourse.

Y

dx Hzx

dy
da
ds
dy

Figure 2.3: Indefinites and Dynamics.

Different treatments and extensions of this basic idea and the basic frameworks
cited above have emerged over the years (van den Berg 1996; Aloni 2001; Dekker
2004; Nouwen 2003; Brasoveanu 2007; Roelofsen and Dotlacil 2023).° The key
takeaway is that, under this view, indefinites contribute novel information to the
discourse.

2.3 The Core Puzzles

In this section, we consider some core puzzles and distinctions that will be relevant
in subsequent chapters. Specifically, we will focus on the scope of indefinites
in Section 2.3.1, the interaction between indefinites and epistemic inferences in
Section 2.3.2, and marked indefinites in Section 2.3.3. While each of these topics
merits extensive discussion, we will concentrate on the core observations here
and address additional empirical and theoretical points as they become relevant
throughout the dissertation.

2.3.1 Indefinites and Scope

A seminal puzzle concerning indefinites is their ability to take scope freely with
respect to other operators. Example (6) is a canonical case illustrating the scope

5Note that in most of these views, indefinites still range over ordinary individuals, but for-
mulations integrating a dynamic notion of meaning and choice functional analyses of indefinites
are possible (von Heusinger 2000).
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flexibility of indefinites with respect to other operators (Fodor and Sag 1982;
Farkas 1981; Reinhart 1997).

(6) a. If someone reads this dissertation, Marco will be happy.
v (if > 3) v/ (3 >if)

b. If everyone reads this dissertation, Marco will be happy.
v (if > V) X(V > if)

Example (6-a) is ambiguous between two readings. In the first, someone takes
scope over the if-clause. In the second, someone is interpreted within the if-
clause. For a universal quantifier like in (6-b), only the latter reading is available.
In other words, (6-b) cannot be interpreted as conveying that for every z, if «
reads this dissertation, Marco will be happy.

The availability of such readings is particularly remarkable, as the indefinite
occurs in the antecedent of a conditional, which is commonly assumed to be a
syntactic island. This implies that the reading in which the indefinite scopes over
the if-clause cannot be immediately captured by syntactic movement. Fodor
and Sag (1982) proposed that an indefinite like someone is ambiguous between
a quantificational and a referential reading. In the reading where the indefinite
appears to receive scope outside its syntactic environment, the indefinite must be
interpreted referentially, thus receiving the widest scope possible.

While Fodor and Sag (1982)’s proposal accounts for the contrasts in (6),
Farkas (1981) noted that such account cannot deal with intermediate readings
of indefinites when multiple operators are present in the sentence. For instance,
in example (7), the indefinite occurs in a syntactic island formed by the relative
clause. The sentence admits a reading where the indefinite a student is inter-
preted at an intermediate position between the two universal quantifiers, which
is not compatible with Fodor and Sag (1982)’s widest scope proposal.

(7) Every teacher had to read every essay that was written by a student.

a. Narrow Scope: every teacher > every essay > a student
b. Intermediate Scope: every teacher > a student > every essay
c.  Wide Scope: a student > every teacher > every essay

Importantly, we underline that the structures in (6) and (7) make it difficult to
argue that syntactic movement is a viable explanation. This implies that any
potential analysis should maintain the indefinite in situ.

These observations led to an influential research agenda examining the scope
of indefinites and solutions to these empirical observations. Some influential pro-
posals include choice functional analyses, which we will explore in Chapter 7, and
analyses resulting from insights from independence-friendly logic (Brasoveanu and
Farkas 2011), which we review in Chapter 4 and which have been instrumental
in the development of 2TS.

In this work, we will adopt the term (scopal) specificity to refer to wide scope
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readings and (scopal) non-specificity to refer to non-wide scope readings. This
clarificatory remark is important in light of the distinctions between scopal speci-
ficity, partitive specificity, and epistemic specificity discussed in Farkas (1994),
which we outline here before moving to the next section.

Scopal specificity relates to the distinction we just outlined. Partitive speci-
ficity pertains to the possibility of indefinites having as possible values a subset of
the possible values of a previously introduced referent or a salient restricted do-
main in the discourse. For instance, in (8), the domain over which the indefinite
someone ranges is clearly restricted to the people in the lift.

(8)  There were many people in the lift and someone fainted.

We will not address partitive specificity in these introductory remarks, even
though the framework we will develop can potentially account for such data. In
the next section, we will focus on epistemic specificity. However, as mentioned, we
will reserve the term specificity for scopal specificity. We will thus use the label
‘known’ for epistemic specificity and ‘unknown’ for epistemic non-specificity.

2.3.2 Indefinites and Knowledge

In examples like (9), the indefinite a book can be interpreted in two salient ways:
(1) the speaker knows which book; (ii) the speaker does not know which book. We
call the former the ‘known’ reading of the indefinite and the latter the ‘unknown’
reading of the indefinite.

(9) A book received good reviews.

Most importantly, the known vs unknown contrast can combine with scopal
specificity. To see this, consider the example in (10), where the indefinite a book
is occurring within the scope of the universal quantifier every student. There are
three salient readings: two in which the indefinite has a wide scope reading with
respect to the universal quantifier, and this specific book can be known or not
known to the speaker. And there is also a third reading where the indefinite
possibly co-varies with each student.®

(10)  Every student gave good reviews to a book.

a. Specific known: There is a book such that every student gave to this
book good reviews. The speaker knowns which book.

b. Specific unknown: There is a book such that every student gave to
this book good reviews. The speaker does not know which book.

6Under this reading, the value of the indefinite is not known in the sense that it is not fixed.
But it is easy to think of more complex forms of knowledge, like knowing the mapping between
each student and the book. These readings can be properly modelled, but the core distinctions
are the ones displayed in (10).
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c. Non-specific: Every student gave good reviews to a book, possibly a
different one for each student.

This implies that a satisfactory analysis should be able to account for the inte-
gration of scope and epistemic distinctions in a comprehensive fashion.

2.3.3 Marked Indefinites

We have observed that indefinites are associated with different scope and epis-
temic readings. All the examples we considered involved simple indefinites like a
book or some book, which, in principle, allowed all possible readings.

As discussed in Section 2.1, indefinites vary significantly in form and mean-
ing across languages (Haspelmath 1997; Kratzer and Shimoyama 2002; Farkas
1997, 2002b,a; Jayez and Tovena 2002; Partee 2005; Yanovich 2005; Ebert and
Hinterwimmer 2012; Chierchia 2013; Alonso-Ovalle and Menéndez-Benito 2015).
We will return to this point in more detail in Chapter 4. Here, we illustrate two
relevant examples: the German irgend- and the Russian -nibud’.

German irgend- cannot receive ‘known’ readings, and it is thus incompatible
with the ‘guess who?’ continuation in (11):

(11)  Irgendein Student hat angerufen. #Rat mal wer?
some student has called. guess who?
‘Some (unknown) student called. #Guess who?’

Russian -nibud’ is infelicitous in episodic contexts and can only be interpreted
non-specifically in interaction with other operators:

(12) a. #Ivan vcera kupil kakuju-nibud’ knigu.
Ivan yesterday bought which-INDEF. book.
b. Kazhdyj student véera kupil kakuju-nibud’ knigu.
every student yesterday bought which-INDEF. book.
‘Every student bought some (non-specific) book yesterday.’

Typological research has shown that indefinites exhibit diverse distributions
across languages. One significant study is Haspelmath (1997)’s typological anal-
ysis of indefinite pronouns. Haspelmath (1997) developed a semantic map where
nodes represent different functions of indefinite pronouns. We will return to the
notion of ‘function’ in Chapter 3.

Figure 2.4 provides an example for Russian. This language is illustrative as
it features various indefinites with some core distinctions relevant to our study.
The pertinent functions central to this work are specific known, specific unknown,
and non-specific. As shown in the map in Figure 2.4, koe- can only be used for
specific unknown. The indefinite -to can be used for both specific unknown and
non-specific, while the indefinite -nibud’ is restricted to non-specific uses.
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Anti- Direct
Morphic Negation
Specific Specific Irrealis Anti-
Known Unknown Non-Specific Additive
koe- -to
" - Free
Conditional - Comparative /
Choice

-nibud’

Figure 2.4: Haspelmath map of Russian koe-, -to and -nibud’.

An important question is how these forms relate to each other and what
semantic tools are needed to capture them comprehensively. Kratzer and Shi-
moyama (2002) and Kratzer (2005) provide an account within the theory of Al-
ternative Semantics, originally developed for questions (Hamblin 1973). In this
framework, expressions denote sets of alternatives, and indefinites denote sets
of individual alternatives. These alternatives combine with other elements in the
clause until an operator selects them, determining their distribution. For instance,
Menéndez-Benito (2005) and Aloni (2007) show that free choice indefinites are
associated with a universal [V] operator over propositional alternatives. Alterna-
tive Semantics offers several advantages, including a direct parallelism between
questions and indefinites and an account of negative concord, polarity, and free
choice indefinites.

Another approach is proposed by Alonso-Ovalle and Menéndez-Benito (2010)
and Chierchia (2013), who derive the enriched meaning of marked indefinites via
pragmatic inferences resulting from operations of exhaustification. For instance,
Chierchia (2013) suggests that indefinites are associated with different types of
alternatives (scalar, domain, degree, ...) and generate relevant readings through
various exhaustification operations on these alternatives. This approach estab-
lishes interesting connections between polarity phenomena and indefinites and
clarifies the relationship between indefinites and disjunction.

Throughout this work, we will revisit some of these approaches and assess their
relationship with our analysis. Here, we point out that these approaches cannot
fully address the interaction between scopal and epistemic specificity contrasts,
as outlined in previous sections, and they do not provide a systematic account
of functions on the left part of the Haspelmath map with respect to their cross-
linguistic variation.

A relevant insight comes from Farkas and Brasoveanu (2020), who distin-
guish between anti-variation determiners, which impose stability on the values
of the indefinite, and pro-variation determiners, which impose variability. This
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observation will be of crucial importance for the development of 2TS in the next
chapter. The task ahead is to formalize stability/variability in terms of scope
versus stability /variability in terms of knowledge.

Several interesting questions arise: What is the most common distribution
of marked indefinites, and why are some not realized? How do indefinites and
marked indefinites interact with negation? How do (non-)specificity distinctions
interact with multiple operators? What is the diachronic relationship between
these types of indefinites? How do we account for other types of indefinites,
such as free choice indefinites? Most of these questions will be addressed in the
following chapters.

2.4 Conclusion

This chapter set the stage for the next chapters in this work. We began by
empirically exploring the landscape of indefinite forms and establishing some
key terminological distinctions. We then highlighted a number of perspectives
on indefinites: (i) indefinites as existential quantifiers; (ii) indefinites as choice
functions; (iii) the dynamicity of indefinites. All these elements will play a role
in 2TS. In particular, (i) we will treat indefinites as existential quantifiers; (ii)
the incorporation of dependence atoms will allow us to associate indefinites with
functions; (iii) the introduction of new variables will be modelled upon similar
notions that have been discussed in dynamic semantics, and a dynamic version
of 2TS, as we will see, can be easily given.



Chapter 3

Two-sorted Team Semantics (2TS)

In this chapter, we present the core components of two-sorted team semantics
(2TS), the foundational framework of this dissertation. 2TS is a team semantics,
where formulas are evaluated with respect to sets of assignments. It is termed
‘two-sorted’ because it includes both a sort for individuals and a sort for worlds,
and it captures the relationships between different variables in the team using
dependency conditions from the tradition of dependence logic.

In Section 3.1, we will explore the team-based nature of 2TS, the role of world
variables, and explain how teams represent the information states of speakers.
Section 3.2 will discuss how teams can be extended with new discourse information
and introduce the dependence and the variation conditions, also known as atoms.
In Section 3.3, we will present the semantic clauses of 2TS. Finally, in Section
3.4, we will introduce two additional atoms - inclusion and independence atoms -
which will be crucial for further applications of 2TS. Additionally, we will discuss
alternative notions of existential quantifiers from the literature, specifically the
inquisitive and independence existentials.

3.1 Teams and Second Sort

Traditional logical systems, such as classical propositional logic, modal logic,
or first-order logic, interpret formulas with respect to single evaluation points.
In contrast, team semantics interprets formulas with respect to sets of points
rather than individual ones. These evaluation points can be valuations (as in
propositional team logic Yang and Vadnénen 2017), assignments (as in first-order

'Part of this chapter is based on Maria Aloni and Marco Degano (2022). “(Non-)specificity
across languages: constancy, variation, v-variation”. In: Semantics and Linguistic Theory.
Vol. 32, pp. 185-205. In particular, Section 3.2 and Section 3.3 (adapted and expanded). The
study was conceptualized through joint discussions between Maria Aloni and Marco Degano.
The writing of the paper was carried out by Marco Degano.

19
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team semantics Galliani 2021a; Vadnénen 2007a), or possible worlds (as in team-
based modal logic Aloni 2022; Liick 2020). This set of evaluations is typically
referred to as a team. As we will see, extending the interpretation procedure
to sets of assignments is useful in cases where the relationships between these
assignments are of interest.

The first formulation of a team semantics is attributed to Wilfrid Hodges
(Hodges 1997), who provided a team semantics for the independence-friendly logic
of Hintikka and Sandu (1989). It should be noted, however, that early intuitions
about the role of sets of evaluations points and the avenues they open were present
in different forms in previous work. To a certain extent, the transition from
propositional logic and single valuations into modal logic and Kripke models
can be subsumed under the same tendency (Galliani and Va#anénen 2014). For
approaches in the field of formal semantics, some forms of dynamic semantics
(Groenendijk and Stokhof 1991; van den Berg 1996; Groenendijk, Stokhof, and
Veltman 1996; Veltman 1996), based on early systems which shared a similar
team-like approach (Heim 1982; Kamp 1984), modelled formulas as relations
between assignments or sets of assignments, or as functions from an information
state to another.?

In this section, we will present how the team layer is encoded in 2TS and the
role of worlds as second sort in Section 3.1.1. We will then discuss how teams
represent information states of speakers (or relevant agents) in Section 3.1.2.

3.1.1 Team Layer and Worlds

2TS is a first-order team semantics where teams are sets of assignment functions.
For a simple example, consider the team T' depicted in Table 3.1. T consists of
four variable assignment functions: iy, is, i3, and 74. Table 3.1 shows the values
these assignments assign to the variables z and y. In this simplified team, it holds
that y = 22, but not that x = y. This example illustrates how teams can encode
relationships among variable assignments, as the fact that the value of y is the
square of the value of z.

We will work with a two-sorted first-order framework, with two sorts of en-
tities, individuals in D and possible worlds in W, with variables ranging over
each set. For the sake of example, P(z,w) is a formula where x is an individual
variable, while w is a world variable.

Integrating modal or ‘intensional’ information in a first-order system involves
numerous design choices motivated by logical, philosophical, and linguistic con-
siderations (Gamut 1991a,b; Cresswell 1990). One standard approach is to define
truth at a world relative to an assignment function, typically formalized using

2The dissertation of Martin van den Berg (van den Berg 1996) deserves an important men-
tion. In van den Berg (1996, ch. 5), the concept of a state as sets of assignments is introduced
and a particular notion of dependence among variables in a state is discussed. We will return
to this in Section 3.4 and in Chapter 6.
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Table 3.1: Team T = {iy,1,43,74}. In this and subsequent tables, assignments
are indicated in the leftmost column (sometimes omitted), and the variables in
the team are shown in a grey row.

world-assignment pairs. The approach we take here is more liberal in a sense, as
we assume that all reference to worlds is made through variables.

In particular, as said, this approach is inspired by the Two Sorted Type Theory
(Ty2) formulation of Montague’s intensional logic discussed in Gallin (1975).2
This leads us to adopt the view that formulas will be evaluated with respect to a
world variable.*

A two-sorted language is quite expressive, allowing us to formulate a variety
of statements that might not have a natural language counterpart but are of
philosophical significance. For instance, consider the distinction between P(x,w),
which roughly requires x to satisfy P in w, and P(z), which is more akin to across-
world predication.

We define the language of our logical system as follows. In the rest of this
section, we will clarify the underlying idea behind a two-sorted team semantics
and the language defined below.”

3.1.1. DEFINITION (Language). Given a first-order signature o (composed of in-
dividual constants ¢ € C, and predicates P" € P" with n € N), and individual
variables z; € Z; and world variables z,, € Z,, the terms and formulas of our
language are defined as follows:®

t = clzd|zw

¢ == P(D)[=P(1)|t = |-t = t'|dep(Z, Z) |var(Z, 2)| oV | OAY| Fstric 20| Tiaw 20|V 20

3Effectively, this reduces an intensional theory to an extensional one by having two sorts of
individuals.

4Sometimes, we adopt the notational convention, in our examples but in the definition of
our language, to add the world variable as the last ‘argument’ separated by a semicolon (e.g.,
P(z;w)). This is particularly relevant for cases involving more than one individual variable.

5The attentive reader might have already noticed that negation is only defined for first-order
literals and identity. We are assuming that all formulas are in negation normal form (i.e., all
negations occur in front of atomic formulas). Negation is a complex issue in dependence logic for
reasons of expressive power and definability (Vaan&nen 2007a; Burgess 2003). We will return
to it in Section 4.8 of Chapter 4.

6¢ stands for an arbitrary sequence ti, ..., tn,.
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A variable z in a formula is bound if it occurs in the scope of a quantifier, and
otherwise it is free. We indicate the set of all free variables of a formula ¢ with
Free(¢). A closed formula or a sentence is a formula without free variables.

3.1.2. DEFINITION (Two-sorted model). A two-sorted model is a triple M =
(D,W.,I) composed of a domain of individuals Domg(M) = D, a domain of
worlds Dom,,(M) = W, and an interpretation function I assigning an element of
D to every individual constant symbol and sets of n-tuples constructed from W
and D to every n-ary predicate symbol.

A two-sorted first-order team is a set of assignments mapping world variables
to elements of W and individual variables to elements of D. We first define a
variable assignment and then a team.”

3.1.3. DEFINITION (Variable Assignments). Given a two-sorted first-order model
M = (D,W,I) and a finite set of variables Z = Z; U Z,,, an assignment i is a
function with domain Z s.t. i = i;U1,, for some iy € D% and i,, € W?». For any
variable z, and any element e, with * € {d, w}, we write i[e./z.] for the assign-
ment function with domain Z U {z,} s.t. for all variable symbols | € Z U {z,}:

e, ifl=z,
tlex/ 2] (1) =
lex/z]0) {z(l) otherwise
For every assignment ¢, every sequence € = ey, ...,e, and 2 = zy,..., 2z,, we
write i[€/Z] as an abbreviation for i[ey /2] ... [en/2n]-

A team in our framework is, as said, a set of variable assignments. We define
the notion of a team in Definition 3.1.4 and give an illustration in Table 3.2.

3.1.4. DEFINITION (Team). Given a two-sorted first-order model M = (D, W, I)
and a set of variables Z = Z; U Z,,, a team T over M with domain Dom(T) = Z
is a set of assignments ¢ with domain Z.

We also introduce the following notions and operations on teams that will
prove to be useful in the rest of this work.®

3.1.5. DEFINITION (Projection). Given a team 7" and a sequence of variables Z
constructed from Dom(T), the projection of T with respect to Z, T'(Z), is defined
as:

T(2) = {i(?) i € T}

"To keep the definitions general, we indicate the sort in the subscript. zq and z, will be
individual and world variables respectively. Similarly, e; will be an element of D and e, an
element of W. When the type of variable is clear from the context, we often omit the subscript.

8Here and in the following, we write i(Z) as an abbreviation for i(z;)i(z2)...i(z,) for a
relevant sequence of the relevant length.
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T| v x
i1 | v dp
i2 | v2  da

Table 3.2: Example of a two-sorted first order team 7" = {4y, 42} with domain
dom(T) = Z = {v,z} over a model M with D = {dy,ds,...,d,} and W =

{v1,v9, ..., 0.}

3.1.6. DEFINITION (Subteam). Given a team 7', a model M and of sequence of
variables 2" constructed from Dom(T'), a sequence of entities constructed from
Domy(T) and Dom,,(T'), the subteam of T where 2 = €, Tz_g, is defined as:

Tr o= {Z S Z(Z) = é}

3.1.7. DEFINITION (Restriction (Galliani 2012a)). Given a team 7" and a set of
variables V' C Dom(T), the restriction 7" with respect to V', T}y is defined as

T[V:{Z.{V:Z.GT}

where 4y is the assignment ¢’ with domain V' s.t. i(z) = '(z) for all z € V.

T v x gy

il U1 dl dl Tv=v1 v X Yy T[{v,y} v Y
o |11 dy di 11 vy di dy ! v dy
13 | U d3 d2 12 U1 d2 dl i3 U2 d2
g | V2 dy dy (b) (c)

Table 3.3: Illustration of Subteam T,—,, and Restriction T}, for team T'. For
projection, T'(v) = {v1, v2}.

3.1.2 Teams as Information States

We view teams as representing the information states of speakers. This charac-
terization is typical of dynamic semantics (Groenendijk, Stokhof, and Veltman
1996; Veltman 1996). It is also a feature of recent team-based frameworks like
inquisitive semantics, developed by (Ciardelli, Groenendijk, and Roelofsen 2018);
and Bilateral State-based Modal Logic (BSML), developed by (Aloni 2022).° For

9Representing the information of an agent by means of a set of relevant possibilities stems
from the early work of Hintikka (1962) and it is a typical modelling assumption in logics which
deal with knowledge and belief, where such notions are captured by modal operators over a
Kripke structure (van Benthem 2003; Baltag, Ditmarsch, and Moss 2008).
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(a) (b)

Figure 3.1: Illustration of teams as information state for a propositional case.

illustrative purposes, let’s consider the basic case of an information state in a
propositional setting. Here, teams are sets of possible worlds, which are valua-
tions for propositional letters. Table 3.1 provides some illustrations.

Teams represent the information states of speakers. For the team in (a), the
speaker excludes the possibility that the actual world is v,, or vy but considers
both v, and v, possible. For the team in (b), the speaker considers only v,
possible. Consequently, in the team in (a), the speaker does not know whether p
holds, whereas in (b), the speaker knows p.

In the case of 2TS, we work with sets of variable assignments. We define the
notion of an initial team as the team where only factual information (information
about the actual world of the speaker) is represented. We use v € Z,, as a special
variable encoding information about the actual world.

3.1.8. DEFINITION (Initial Team). A team T is initial iff Dom(T) = {v}.

The possible values that v receives in different assignments across the team
represent different ways the actual world might be (epistemic possibilities). Intu-
itively, a team where v receives only one value has maximal information, as the
speaker is certain about the state of affairs in the actual world.

3.1.9. DEFINITION (Team of Maximal Information). Given a team 7" such that
v € Dom(T), T has mazimal information iff i(v) = j(v) for all 4,5 € T

Table 3.4a is an example of an initial team. The team in Table 3.4a conveys
that the epistemic possibilities the speaker entertains are vy, vs, up to v,. As
stated, only factual information is represented, since the domain of the team
consists solely of the variable for the actual world v. Operations of assignment
extensions introduced by quantifiers add variables encoding discourse or modal
information to the team.

As said, teams encode the information state of the speaker. For instance, in
Table 3.4b the speaker is certain about - or knows - the value of z, since x is
constant across all their epistemic possibilities. However, the speaker does not
know the value of y. World variables, like w, will be used to model modals or
attitudes verbs, as we will see in Chapter 4.
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T v T vooxr W Y

i1 V1 il (%] a w1 b1

io | o iv | v2 a wy by
a

in | Un in | Vo a w, by

(a) (b)

Table 3.4: Initial team in (a). Team as Information State for the first-order case
in (b).

3.2 Information Growth and Variable Dependen-
cies

We have discussed the notion of a team as a set of variable assignments, specifi-
cally how teams encode the speaker’s information state. As we will further explore
in Chapter 4, new discourse information can be added to the team when eval-
uating a sentence starting from the initial team. This is achieved by extending
the team with variables, which also allows characterizing different dependency
relationships between the values of the variables across different assignments. In
Section 3.2.1, we will define relevant notions of extensions of a team. In Section
3.2.2, we will introduce two important conditions that establish how variables’
values are related to one another: the dependence atom and the variation atom.

3.2.1 Assignment Extensions

Our assignment extensions are based on similar operations discussed in dynamic
and team semantics (Groenendijk and Stokhof 1991; Dekker 1993; Aloni 2001,
Védnédnen 2007b; Galliani 2012b). We present here the relevant definitions for 2TS
and later consider alternative options that have been discussed in the literature.

3.2.1. DEFINITION (Universal Extension). Given amodel M = (D, W, I), a team
T and a variable z, with * € {d,w}, the universal extension of T with z., T'[z.]
is defined as follows:

Tz = {ilex/z] : i € T and e, € Dom, (M)}

Universal extensions consider all assignments that differ from the ones in T
only with respect to the value of z,. Table 3.5b is an example, assuming the
initial team in Table 3.5a and a domain D of two individuals. Note that universal
extensions are unique.

3.2.2. DEFINITION (Strict Functional Extension). Given amodel M = (D, W, 1),
a team T and a variable z, with * € {d, w}, the strict functional extension of T
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with z,, T'[fs/z.] is defined as follows:
Tfs/z) = {i[fs(2)/ 2] - i € T}, for some strict function fs: T — Dom.(M)

Strict functional extensions assign only one value to the variable for each
assignment in the original team 7. Table 3.5¢ shows one of the four possible
examples for the initial team in Table 3.5a and a domain D of two individuals.

3.2.3. DEFINITION (Lax Functional Extension). Given a model M = (D, W, I),
a team T and a variable z, with * € {d,w}, the lax functional extension of T
with z,, T'[f1/z] is defined as follows:

Tfi)z]) = {iles/2] 17 € T and e, € fi(i)}, for some lax function
fr: T — p(Dom.(M))\{@}

Lax functional extensions amount to assign one or more values to the variable
for each original assignment in 7. Table 3.5d shows one of the nine possible
examples, assuming again the initial team in Table 3.5a and a domain D of two
individuals.

vy | Tyl
v T 1 —— dl 111
(%1 7;1 \dg t12
U2 | 22 UQ/dl 2.21
(a) \d2 122
(b)
vy | Tlfi/y]
vy | T[fs/y] :
- V1—dy 112
v1—d, 111 .
d 122 UQ/dl 1
V9o — .
2 2 \d2 199

()

Table 3.5: Illustration of Initial Team and Extensions. Initial Team in (a), uni-
versal y-extension (b), strict functional y-extension in (c¢) with f s.t. fs(iy) = dy
and f,(ia) = do, and lax functional y-extension (d) with f; s.t. fi(i;) = {d2} and
filia) = {d1, d2}.

3.2.2 Dependence and Variation Atoms

Team semantics frameworks are often equipped with dependence atoms - expres-
sions which impose conditions of dependence on the variables’ values given by
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the different assignments (Vadndnen 2007a; Galliani 2021a).1° The core of 2TS
makes use of the Dependence Atom in Definition 3.2.4 and the Variation Atom in
Definition 3.2.5. In Section 3.4.1 we will consider other atoms which play a role
in further applications of 2TS.

3.2.4. DEFINITION (Dependence Atom).
M,T |=dep(Z,u) < foralli,j e T:i(2) =j(2) = i(u) = j(u)

3.2.5. DEFINITION (Variation Atom).
M, T E var(Z,u) < thereisi,j € T :i(2) = j(2) &i(d) # j(u)

The first atom in Definition 3.2.4 says that if any two assignments of the
team agree on the value of Z, they also agree on the value of @ (i.e. the value of
@ is dependent on the value of Z'in T'). The variation atom in Definition 3.2.5
corresponds to the Boolean negation of the definition of Dependence Atom above,
and as such it encodes the failure of functional dependence.!! It is valid when
there is at least a pair of assignments in T for which the value of @ varies and 2
is the same. Table 3.6 displays a team of three assignments together with some
illustrations.

T < ;J : dl dep(z,y) v/ var(z,z) v
L@ bl “ dl dep(2,1) v/ var(d,z) v/
Jopa o1 e 4 dep(zy, z) X var(z,y) X
k as bQ C3 d1

Table 3.6: Dependence and Variation atoms - Illustrations.

In Table 3.6, we have that dep(z,y), since for any assignment i, j and k, the
value of x determines the value of y. But we do not have dep(xy, z) (consider for
example ¢ and j: i(zy) = j(xy), but i(z) # j(z)). It also holds that var(z, 2)

10Note that dependence relations can also be modelled without resorting to teams (Baltag
and van Benthem 2021). The team like nature of dependence logic and the related assign-
ment extensions, however, will allow modelling more easily the addition/update of discourse
information in the team.

HThe variation atom was mentioned in Galliani (2012b) as a possible way to model failure
of dependence. In dependence logics, a stronger version of the variation atom is typically
considered:

3.2.6. DEFINITION (Variation Atom (Stronger Version)).
M, T =V AR(Z,@) < foralli e T thereis j € T:i(2) = j(2) & i(u) # j(u)

Note in fact that VAR(Z, @), unlike var(Z,u), is downwards closed like dep(Z,u), which
typically simplifies the study of the underlying logic. Recently, Vaénénen (2022) employed the
stronger variation atom, called anonymity atom in his work, to model the notion of anonymity
in database theory. See also Yang (2022) for some metatheoretical results on the propositional
fragment of these logics.



28 Chapter 3. Two-sorted Team Semantics (2TS)

since i(x) = j(z) but i(z) # j(2). A case which will be of importance later
are atoms where the first argument is the empty sequence @: constancy atoms
of the form dep(@,l) which is valid when [ receives the same value across all
assignments; and variation atoms of the form var(&,y), which is valid when y
receives different values across at least a pair of assignments.

Dependence atoms have been studied have been studied in the context of
database theory and a set of (complete) axioms, Armstrong’s Axioms (Armstrong
1974), characterize the basic properties of dependence atoms (since the variation
atom is the Boolean negation of the dependence atom, one might also determine
some properties for the variation atom). We will not be concerned with such
characterization here, but we highlight the importance of one (derived) property,
namely that if dep(x,y) holds then dep(zz,y) holds, meaning that if y depends
on z then y depends on xz. This will become relevant in the applications of the
framework that we will consider in the next chapters.

3.3 Semantic Clauses of 2TS

We now give precise rules for semantic clauses of the formulas of our language
(Hodges 1997; Vaanénen 2007a; Galliani 2012b).

3.3.1. DEFINITION (Semantic Clauses). Given a model M and a team 7' over
M, a formula ¢ over the signature of M (i.e., M is a suitable model for ¢) and
Free(¢) € Dom(T) (i.e., T is a suitable team for ¢), we define the satisfaction
relation of ¢ in T, denoted by M, T = ¢, inductively on ¢ as follows:

M, T = P(ty,...,t,) < VjeT: (j(t1),...,j(tn)) € I(P")

M, T }==P(ty,....t,) & VjeT: (j(t1),...,j(tn)) & 1(P")

M,TEt =t & VieT: j(t) =j(ta)

M, T =t =t & VieT: jlt) # jt2)

M, T |= dep(Z, 1) & foralle,jeT:i(2)=j(2) = i(d) = ju)

M, T | var(Z,d) & thereisi,j € T:i(2) = j(2) &i(u) # j(u)

M,TE oA & MTE¢and M,T =1

M,TEoVY & T =T, UT; for teams Ty and Ty s.t. M, Ty = ¢
and M, Ty =

M, T EVYz¢ & M Tz E ¢

M, T E Jsricez @ there is a strict function f; s.t. M, T|fs/z] & ¢
M, T |= Jxz ¢ & there is a lax function f; s.t. M, T[f,/z] = ¢

7
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A first order literal is satisfied in a team 7T iff it is satisfied in all assignments in
T. We allow negation only on first-order atoms and we assume that formulas are
always in negation normal formal. We will return to negation in Section 4.8 of
Chapter 4. A team T satisfies a conjunction ¢ A ¢ iff T satisfies ¢ and satisfies
1. A team T satisfies a disjunction ¢ V ¢ iff T is the union of two subteams,
each satisfying one of the disjuncts.’> We use the universal extension for the
universal quantifier, and the strict and lax functional extensions for the strict
and lax existentials.

If ¢ is satisfied in all suitable models M and all suitable teams over T', we say
that ¢ is valid. We then define the notion of entailment as follows:

3.3.2. DEFINITION (Entailment). A formula ¢ entails a formula 1, in symbols
¢ |= 1, iff for all suitable models M and all suitable teams T" such that M, T |= ¢,
we have M, T = 1.

We say that ¢ and v are equivalent and we write ¢ = 1) when ¢ = ¢ and
g,

As we discussed, there are teams of special importance in 2TS, initial teams,
whose domains contain only v, and likewise, as we will further see in Chapter 4,
there are formulas of special importance, namely those that have only v as free
variable. We then say that ¢ is a 2TS-v formula when Free(¢) = {v} and we
label such formulas ¢,. We then define a restricted notion of entailment (and
equivalence) over initial teams for such formulas.

3.3.3. DEFINITION (Entailment (restricted)). A formula ¢, entails a formula v,

in symbols ¢, =, 1, iff for all suitable models M and all suitable initial teams
T such that M, T = ¢,, we have M, T |= 1,.

It is interesting to observe that, except for the variation atom, all formulas
in 2TS are downwards closed (7' = ¢ and 7" C T imply 7" |= ¢). The variation
atom, instead, is upwards closed (T' = ¢ and T' C T" imply T' |= ¢), and therefore
also union-closed (7' = ¢ and 7" = ¢ imply TUT" |= ¢). We note that for
downwards closed formulas, the strict and lax existentials are equivalent. The
latter statement follows from the fact that it is easy to construct a strict function
from a lax one; and from a lax one, by downwards closure, a strict one. In the
next sections, we will see that the variation atom and its interaction with the two
existentials will make a distinction and play an important role.'3

12We are employing the so-called split or tensor disjunction (Viininen 2007b), which over
the dep and var free fragment gives classical logic. We will return to disjunction in Chapter 10.

13Dependence logic, which does not include the variation atom, is equivalent, over sentences,
to existential second-order logic ¥i. The addition of the variation atom is safe in the sense
of Galliani (2021b), as it does increase the expressive power over sentences when added to the
logic.
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3.4 Additional Atoms and Existentials

We conclude by mentioning some other notions and variants of existential quan-
tifier that are relevant to 2TS: inclusion and independence atoms in Section 3.4.1,
and inquisitive and independence existentials in Section 3.4.2.

3.4.1 Inclusion and Independence Atoms

We define here two other atoms which will become relevant in the rest of this
work. The first is the Inclusion Atom introduced by Galliani (2012b) and also
studied in Yang (2014).

3.4.1. DEFINITION (Inclusion Atom).
M, T =C (Z,u) < forallie T, thereisa j €T :i(2) = j(u)

Definition 3.4.1 says that the values of " are also values of 4. In fact, we can
simply represent the condition in Definition 3.4.1 by requiring that 7'(2) C T'(@).
We give some illustrations in Table 3.7. In Table 3.7, C (x,y) holds since any
value for x (namely, d; and dy) is also a value of y. Similarly, C (zz,xy) holds,
since any value for xz (namely, didy and dady) is also a value for xy. But it does
hold that C (y, x), since for instance ds is not a value for .

r Yy =z
di dy dy C (zz,z2y) vV
dy ds dy c X
& di ds C (y,x)

Table 3.7: Illustration of Inclusion Atom.

The second atom is the Independence Atom introduced in Gradel and Vaanéa-
nen (2013) in the context of independence logic.

3.4.2. DEFINITION (Independence Atom).
M, T | ind(Z,ud) < for all i,7' € T, thereis " € T : i"(Z) = i(Z) and i" (1) =
i(3)

Definition 3.4.2 models complete independence between 2" and u, meaning
that knowing the value of Z'in an assignment of the team does not convey any
information with respect to the possible values of «. In fact, a more intuitive way
to represent the condition expressed by ind(i, Z) in T is that it must hold that
T(i) x T(%) is equal to T'(@Z), assuming a correspondence between ordered pairs
and sequences.

A more general form of the independence atom is indz(, 5, whose definition
is given in Definition 3.4.3. It says that for any possible value of Z, @ and [ are
independent.
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3.4.3. DEFINITION (Independence Atom (general form)).

—

M, T = indz(u,l) < for all i, € T such that i(2) = i/(2) there exists i € T :

—

i"(Z) = i(2), i"(@) = i(@), and " (1) = (I

—

In this case, it similarly holds that for all € € T'(Z), we have that Tr_z(ul) =
Tg:é'(l_[) X ngg(l).

x y =z I . .
ar b e dy ind(x,y) v ind(z,l) X
apy by c1 do ind(z,z) X indy(z,1) /
az b ¢ da ind, (,y) X

ag b2 C2 d2

Table 3.8: Illustration of Independence Atom.

3.4.2 Inquisitive and Independence Existentials

In Section 3.2.1, we have discussed two notions of existentials: strict and lax
existential. In this section, we consider two other notions that have been discussed
in the literature and can be defined in a team-based system. In what follows, we
will define these quantifiers as ranging only over D. The first is the Inquisitive
Ezistential and the second is the Independence FExistential. One could define
separate notions of team extensions and define the existentials based on those.
In what follows, we will define the extension in the definition of these quantifiers
themselves.

The Inquisitive Fxistential has been considered in the context of inquisitive
semantics (Ciardelli, Groenendijk, and Roelofsen 2018; Ciardelli 2022):

3.4.4. DEFINITION (Inquisitive Existential). M, T | J'z¢ & M, T[d/z] & ¢,
where T'[d/x] = {i[d/z] : i € T} for some d € D

Such existential is definable in 2TS, as one can show that for any formula ¢,
the following holds:

3.4.5. FACT. F'zg = Jw(p Adep(D,z)) = Jsz(d A dep(D, 1))

The Independence Existential has been first considered in van den Berg (1996)
and has received quite a lot of attention in the linguistic literature, in particular
in dynamic semantic for plurals (Nouwen 2003), where new variables are added
to the team when an existential is evaluated, similarly to the current assignment
extensions, and one option is to make sure that the new variable is independent
of the previous ones.
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3.4.6. DEFINITION (Independence Existential). M, T | 3"z < M, T[E/z] E
¢, where T|E /x| = {ile/z| :i € T and e € E} for some F € p(D)\{2}

As discussed, the independence existential was introduced in the context of
dynamic semantics, where existential quantifiers introduce new variables that
are required to be independent of the previous ones. In fact, assuming that
such variables consist of Dom(T)/{z} and ¥ is a sequence constructed from all
the variables in such set, one can express 3"¥z¢ by alternatively requiring that
Jx(o Aind(z,Y)).

We provide some illustrations in Table 3.9.

T | v x
T| v T|lv =z iy v o oa
- -/ -/
TR v oa v b
. b .,
19 | U2 o | U2 Q@ s | V3 @
-1/
(a) (b) fp|v2 b

(©)

Table 3.9: Illustration of Inquisitive and Independence Existential. We give an
illustration of the possible extensions given the team in (a). (b) shows a possible
extension for the inquisitive existential with d = a, and for the independence
existential with £ = {a}. (c) shows a possible extension for the independence
existential with £ = {a, b}.

3.5 Conclusion

In this chapter, we have laid the groundwork for this dissertation by introducing
the two-sorted team semantics (2TS) framework. We have shown that 2TS departs
from traditional single-point evaluation systems by interpreting formulas with re-
spect to sets of assignments, called teams. We have then discussed the notion of
a team as an information state of the speaker. We have shown how new discourse
information can be added to the team using different types of assignment exten-
sions. We have then introduced two crucial atoms, dependence and variation,
which express the relationships between the values of variables across different
assignments in the team. The stage is now set to apply 2TS to the analysis of
natural language phenomena.



Chapter 4

Indefinites Across Languages

This chapter will focus on the variety of readings associated with indefinites
across languages. Our primary focus will be on the distinctions between scopal
specific/non-specific uses and known/unknown uses of indefinites. We will in-
vestigate how various languages have developed lexicalized forms with restricted
distributions pertaining to these uses, and how 2TS can offer a comprehensive
characterization of this diversity.

In Section 4.1, we will introduce the notion of specific known, specific unknown
and non-specific uses of indefinites and outline how different languages lexicalize
these distinctions. In Section 4.2, we will review the basic idea of treating teams
as information states and apply this to the modelling of indefinites in Section 4.3,
where we will propose that indefinites are strict existential, using the terminology
introduced in Chapter 3, and they are evaluated in situ. Section 4.4 discusses
how the three uses mentioned above are encoded in 2TS and how this captures
the typological variety of indefinites. Section 4.5 discusses the phenomenon of
partitive specificity. Section 4.6 overviews different notions of implication and sets
some empirical desiderata. Section 4.7 examines how modality can be analysed in
2TS, distinguishing between epistemic and deontic modality. Section 4.8 discusses
negation. Finally, Section 4.9 considers how 2TS can shed some light on diachronic
changes observed in the domain of indefinites.

!Part of this chapter is based on Maria Aloni and Marco Degano (2022). “(Non-)specificity
across languages: constancy, variation, v-variation”. In: Semantics and Linguistic Theory.
Vol. 32, pp. 185-205. In particular, Section 4.1, Section 4.2, Section 4.3, Section 4.4.1, Section
4.4.2, Section 4.7 (adapted and expanded), and Section 4.8.4 (adapted and expanded). The
study was conceptualized through joint discussions between Maria Aloni and Marco Degano.
The writing of the paper was carried out by Marco Degano.
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4.1 Typology of (Non-)specific Indefinites

As outlined in Chapter 2, indefinites are associated with a variety of readings and
forms (Haspelmath 1997; Farkas 2002b; Partee 2005; Jayez and Tovena 2002;
Ebert and Hinterwimmer 2012; Chierchia 2013; Alonso-Ovalle and Menéndez-
Benito 2015). This chapter will focus on two core distinctions: scopal specific/non-
specific uses and known/unknown uses of indefinites. Specifically, we will use the
term specific to refer to wide scope uses of an indefinite, and the term non-specific
to refer to non-wide-scope uses, which can include narrow scope and intermediate
scope interpretations in the presence of multiple operators. In Section 4.1.1, we
will introduce these distinctions in detail and provide relevant examples. In Sec-
tion 4.1.2, we will classify different types of indefinites based on the distributional
restrictions with respect to these uses.

4.1.1 Specific Known, Specific Unknown, Non-specific

We will distinguish between specific known (SK), specific unknown (SU), and
non-specific (NS) uses of indefinites. These distinctions are based on previous
typological work by Haspelmath (1997), who adopts this terminology. Example
(1) illustrates these contrasts for the English indefinite someone:

(1)  a. Specific known (SK): Someone called. I know who.
b.  Specific unknown (SU): Someone called. I do not know who.
c.  Non-specific (NS): John needs to find someone for the job.

Cross-linguistically, languages have developed lexicalized forms with restricted
distributions with respect to the uses in (1). For instance, the German irgend- is
incompatible with SK, as the infelicitous continuation in (2) shows:

(2)  Irgendein Student hat angerufen. #Rat mal wer?
some student has called. guess who?
‘Some (unknown) student called. #Guess who?’

Another relevant example is the Russian -nibud’, which is not allowed in
episodic contexts and can only be interpreted non-specifically:

(3) *Ivan véera kupil kakuju-nibud’ knigu.
Ivan yesterday bought which-INDEF. book.
‘Ivan bought some [non-specific| book yesterday.’

As discussed in Chapter 2, Haspelmath (1997) examined the distribution of
indefinites in 40 languages and developed a functional map of indefinites with
nine main uses/functions. Importantly, the functions are organized in an impli-
cational way: a certain item always expresses functions which are contiguous (i.e.,
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connected by a line) on the map.> Figure 4.1 presents a semantic map for the
German indefinite irgend-, with the grey area indicating the possible functions
available for irgend-.

Direct
Negation

Indirect
Negation

Specific Specific Irrealis
Known Unknown | Non-Specific

Conditional Fre'e
Choice

Figure 4.1: Haspelmath’s map for German urgend-.

It is worth noting that Haspelmath (1997) employs the term function in a
manner that some might interpret more generally classify as use. Specifically,
according to Haspelmath (1997), a function can be characterized by both syntactic
and semantic elements. Syntactically, this includes the infelicity of NS indefinites
like -nibud’ in episodic contexts, as illustrated in (3). Semantically, the obligatory
ignorance component of irgend-, as shown in (2). The term ‘function’ in linguistics
is associated with various interpretations, and we want to emphasize to the reader
that, in this work, it corresponds to the ‘uses’ of indefinites, as exemplified in (1).
Specifically, it refers to the SK, SU, and NS uses that we have discussed here.

In this regard, we emphasize that our notion of specificity is essentially ‘syn-
tactic’ as it pertains to scopal specificity. Indefinites with exclusively specific uses
presuppose the existence of their referent, meaning they can be paraphrased us-
ing a there-insertion construction. These indefinites can also introduce discourse
referents, allowing for continuations with appropriate pronominal expressions.
Conversely, indefinites that only permit non-specific uses are ungrammatical in
episodic contexts and require a licensing operator, such as a modal or a universal
quantifier.

4.1.2 Indefinite Types

As the examples in (2) and (3) illustrate, indefinites can display different func-
tional restrictions. Combinations of SK, SU, and NS lead to seven possible types of
indefinites, summarized in Table 4.1 along with relevant examples. In Table 4.1,

2Haspelmath (1997) restricted his analysis to indefinite pronouns and determiners formed
with indefinite markers (e.g., the English some- or any-) that occur in a series (e.g., some-thing,
some-where, ...). This excludes expressions such as the English a certain, which, however, have
a specific-like flavour.
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TYPE FUNCTIONS ) AMPLE # /40
SK SU NS
(i) unmarked v v v [Italian qualcuno 27
(ii) specific v v X  Georgian -ghats 7
(iii) non-specific X X v Russian -nibud’ 11
(iv) epistemic X v | German irgend- 8
(v) specific known v X X Russian koe- 5
(vi) SK + NS v X Vv unattested 0
(vii) specific unknown X v X  Kannada -oo0 1

Table 4.1: Possible Types of Indefinites.

we introduce some naming conventions for the types of indefinites we will exam-
ine in this work. Importantly, the distinctions presented here consider only the
three uses discussed at the beginning of this section. At the end of this section,
we will explore whether other possible types of indefinites within the domain of
(non-)specificity can be conceived and how they should be analysed. In subse-
quent chapters, we will also explore other types of indefinites beyond the SK, SU,
and NS uses.

Unmarked indefinites do not have any restrictions; specific indefinites admit
only specific uses (SK and SU); non-specific indefinites admit only NS uses; and
epistemic indefinites allow for both SU and NS uses. The last two types warrant
further remarks. Type (vi), encoding SK and NS but not SU, is unattested in the
data collected by Haspelmath (1997). Type (vii), which admits only SU uses, is
very infrequent: out of the 40 languages examined by Haspelmath (1997), only
one, Kannada, exhibits such an indefinite.?

Table 4.2 displays some within-language distinctions. An important question
is whether a trade-off between the number of marked indefinites and the functions
they cover can be established. Generalizations are challenging due to the limited
amount of data.? In the case of Russian, we observe that there are two marked
indefinites® to express NS: the epistemic -to, which also admits SU uses, and
the non-specific -nibud’, which only admits non-specific uses. However, Russian
speakers tend to select -nibud’ for NS and -to for SU. Why then has -to maintained

3Kannada is a Dravidian language spoken mainly in Karnataka in southwestern India. Kan-
nada is a determinerless language, and as such, bare nouns are ambiguous between definite
and indefinite uses. It is possible that this ambiguity facilitated the development of a specific
form with unknown uses since the definite form already encodes familiarity with the referent.
However, this does not seem to be the case for other determinerless languages. For more on the
uses of Kannada bare nouns, see Srinivas and Rawlins (2021).

4Moreover, there are equivalent expressions (e.g., a specific) that, although not being indef-
inites, have meanings similar to some of the marked indefinites considered here.

SRussian also has other indefinites with non-specific uses, which are not included here as
they are commonly considered to be tied to different registers.
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LANGUAGE INDEFINITE FUNCTIONS TYPE
SK SU NS
Italian un qualche epistemic
qualcuno unmarked
Russian koe- specific known
-to epistemic
-nibud’ non-specific
Japanese -ka unmarked
Turkish bir unmarked
herhangi epistemic
German etwas unmarked
irgend epistemic
Georgian -ghats specific
-me non-specific
Ossetic -deer specific
is- non-specific
Kazakh bir unmarked
dlde specific
Kannada -00 specific unknown
-aadaruu non-specific

Table 4.2: Marked Indefinites Across Languages.

its NS uses and not become a specific unknown indefinite? As we will see, 2TS
will provide an interesting answer to this question.

4.2 Teams and Knowledge

In Chapter 3, we introduced 2TS. We review here the basic components as it
concerns the way in which the known/unknown contrast described in the previous
section receives a formal treatment in 2TS.

As said, formulas in 2TS are evaluated upon teams, which are sets of assign-
ment functions. Recall also that 2TS is a two-sorted system in which formulas
are evaluated with respect to a world variable, where v € Z,, is a special variable
encoding information about the actual world.

In Section 3.1.2 of Chapter 3, we defined the notion of initial team, as one
whose domain contains only the variable for the actual world v. This means that
initial teams contain only factual information (information about the actual world
of the speaker). We discussed how teams represent information states of speakers,
since the possible values that v receives in different assignments across the team
represent different ways the actual world might be (epistemic possibilities). Recall
also that teams where v receives only one value are of maximal information, since
the speaker is sure about the state of affairs in the actual world.
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We illustrate this again in Table 4.3, where we consider a domain D = {a, b} of
two individuals, and we assume that worlds in v differ with respect to the property
‘read the dissertation’. As a reminder, the first row indicates the variables present
in the domain of the team, and the rows below show the values assigned by the
assignments in the team.

Table 4.3a is a team of ‘minimal’ information, in the sense that the speaker
is completely unaware of who read the dissertation: it could be both a and b;
it could be a; it could be b or it could be that no one read the dissertation.
Table 4.3b is a team of partial information: the speaker is unsure whether a or
b read the dissertation, but they exclude some of the cases in Table 4.3a. In
Table 4.3c the speaker is maximally informed, and they are certain that only b
read the dissertation.

T v

| Yy Ll T[v
Z'2 Va 1.1 Va T ™
13 Up 792 | Up —
Jia | v (b) ©

(a)

Table 4.3: Initial Teams. Values for v are constructed over the property ‘read
the dissertation’” with a domain D = {a,b} of two individuals. (a) represents
a team of minimal information (or no information). (b) represents a team of
partial information. (c) represents a team of maximal information, meaning that
the speaker knowns that only b read the dissertation.

Only factual information (i.e., information about the actual world) is repre-
sented in initial teams, as the domain of the team consists only of the variable for
the actual world v. Operations of assignment extensions introduced by quantifiers
add variables, encoding discourse or modal information, to the team.

This leads to the idea that a given sentence in natural language is felici-
tous when the corresponding rendering in 2TS, which could lead to the above-
mentioned assignments extensions, is supported by an initial team, as defined
in Definition 4.2.1. If there is no initial team, then the sentence is predicted to
be infelicitous. This will play a role, for instance, in explaining the infelicity of
non-specific indefinites in episodic contexts.

4.2.1. DEFINITION (Felicitous sentence). Given a 2TS formula ¢ we say that ¢
is felicitous iff there is an initial team 7" over a model M such that M, T | ¢.
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4.3 Indefinites as Strict Existentials

As we have seen in Chapter 2, semantic theories differ in their formal treatment of
indefinites. In the present account, we treat indefinites as existential quantifiers.
Indefinites introduce a new variable in the team, and such a variable may receive
different values across assignments.

In particular, we will model them as strict existentials, as introduced in Chap-
ter 3. As a reminder, this means that only one new variable value for assignment
is introduced.® We give a simple example in (4), where we C stands for ‘went to
the cinema’.

(4) a. Someone went to the cinema.
b.  Jsz(C(x,v))

Assuming an initial team where the speaker is unsure whether both a and b went
to the cinema or only b went to the cinema, this leads to two possible strict
extensions of T" with x, as depicted in Table 4.4. By contrast, if the existential
in (4-b) had been analysed by means of the lax quantifier, a lax extension would
have allowed for selecting more than one new variable value per assignment and
thus the additional extension depicted in Table 4.4.

T\ fi/x v T
T| v T(fs/x] | v =z T(fs/z] | v = [f,/ ]
. 7 7 i1 Ugh @
T | vap ] Vap @ 15 Vgp b . b
J | v J’ v b J’ vp b R
j/ Vp b
(a)  Initial (b) Strict Extension I (c) Strict Extension II (d) Lax Extension
Team

Table 4.4: Illustrations. Initial team 7" in (a). (b) and (c) are strict extension of
T with z. (d), and also (b) and (c), are lax extensions of 7" with x.

As noted in Chapter 3, the two notions of existential - strict and lax - are equiv-
alent for downwards closed formulas, and the example in (4) is a clear instance
of this (see Semantic Clauses of 2TS in Definition 3.3 of Chapter 3). However,
remember that the variation atom in 2TS is not downwards closed. Our choice is
to treat indefinites as strict existentials, meaning that only the configurations in
(b) and (c) in Table 4.4 are allowed. As we will see, this design choice will play
a key role in explaining the distribution of indefinites.

6Note that indefinites receive one value given a value for v in an initial team where only
v is present in the team. If there are other variables in the team with different assignments
assigning the same value to v, but different values to other variables (i.e., they are different
assignments), then the variable introduced by the indefinite can be associated with more than
one value given a fixed value for v.
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4.3.1 Indefinites and Scope

As we discussed in Section 2.3, the problem of indefinites and exceptional scope
has been central to the formal treatment of indefinites. We mentioned that
Brasoveanu and Farkas (2011) exploit ideas from independence friendly-logic
(Hintikka 1986, 1996) to give an account of the exceptional scope of indefinites.
Given the conceptual similarity between the approaches, it is not surprising that
the present approach can also offer an account of indefinites and scope.

In 2TS, dependence atoms allow us to easily capture the different scope read-
ings by specifying how the indefinite’s variable might co-vary with other operators.
For instance, a sentence like (5) is ambiguous between three different readings,
depending on the scope of a doctor with respect to the universal quantifiers.”

As a base case, we assume a team of maximal information (i.e., the value of v
is fixed). As shown in Table 4.5, dep(v, ) yields a wide scope interpretation where
the value of x is constant (since v is constant); dep(vy, x) yields the intermediate
reading where the value of  depends only on the first universal quantifier; and
dep(vzy, x) yields narrow scope where the value of x depends on both universal
quantifiers. Note that, for instance, as it is the case in first-order logic rendering
in square brackets below, the corresponding atom for wide scope, dep(v, z) entails
the corresponding atom for the weaker readings dep(vy, z) and dep(vzy, z).

(5)  Every kid, ate every food, that a doctor, recommended.

a.  Wide scope [Fz/Vz /Yy V2Vydsx(o A dep(v, x))
b. Intermediate scope [Vy/3z/Vz]: VzVyIsz (o A dep(vy, ))
c. Narrow scope Vz /Ny /3x|: VVydsz (o A dep(vzy, x))

As said, this approach is conceptually similar to Brasoveanu and Farkas (2011)
and leads to the generalization in (6).® In Brasoveanu and Farkas (2011), de-
pendence relations are encoded in the meaning of the existential. For instance,

"We give some concrete instantiation of the three readings. In the wide scope reading, there
is a particular doctor (say Dr. Malcom), such that every kid ate every food that Dr. Malcom
recommended. In the intermediate scope reading, for every kid, there is a doctor, say the
pediatrician of each kid, such that all kids ate every food that their doctor recommended. In
the narrow scope reading, the sentence is true also in cases of total co-variation between the
doctors and the foods, meaning that one kid might have eaten different foods recommended by
different doctors.

8The generalization in (6) overgenerates. Unavailable readings can be ruled following strate-
gies similar to Brasoveanu and Farkas (2011). For instance, it is clear that we cannot have
a dependence on the first quantifier, without also being dependent on the intermediate one.
One might introduce an ordering of the possible values of ¢ based on the surface order of the
quantifiers. The system can be amended further to explain the intricacies of natural language
with respect to scope, and in Chapter 7 we will return to some of these issues. We believe that
Brasoveanu and Farkas (2011) showed how this can be done within a dependence-like frame-
work, and we do not pursue this any further, as we hope that we showed that this is achievable
and, as our main concerns here are the typological variety of indefinites and the integration of
epistemic readings.
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ignoring the role of v, in the case of (5), the narrow scope interpretation would
be captured by 3*Yz, which in their account means that the value of x is fixed
relative to no variable.

(6)  INDEFINITES & SCOPE
An unmarked/plain indefinite 3,z in syntactic scope of Oz allows all
dep(y, x), with ¢/ included in v2"

O,,...0, Fsx(od Ndep(y,x))

In 2TS, dependence relations are not part of the meaning of the existential, but
they are evaluated as separate clauses by means of dependence atoms. This
allows us to work with a uniform entry for existentials and with a better-behaved
logical system. For instance, Brasoveanu and Farkas (2011) need to define a non-
standard clause for universal quantification, which is not needed here. Moreover,
the current formalization, as we will see in Chapter 7, will allow us to better
appreciate the relationship with choice-functional approaches to indefinites and
scope.

vz Y x vz Yy T vz Yy T
V1 e NN bl V1 al e bl V1 al C1 bl
1 e Ce bl U1 al e bl 1 al C2 bQ
vV ... ... b vy ay ... by vy ay c3 bs
(% e RN b1 U1 a9 Ce b2 U1 a9 Cq4 b4

WS: dep(v,y) IS: dep(vz,y) NS: dep(vzz,y)

Table 4.5: Indefinites and Scope.

4.3.2 Indefinites and Ignorance

In the example considered in the previous section in Table 4.5, we worked with
a team of maximal information (i.e., the value of v was fixed). In the context of
Table 4.5, this means that, for a given choice of z and y, the value of x is known.
This does not have to be the case.

For instance, in the context of (5), there could be a wide scope reading where
it is uncertain which specific doctor is being referred to. The speaker may not
know if this doctor is b; or by. This would correspond to a team similar to the one
for wide scope in Table 4.5, but with additional assignments, where v is assigned
to vy and x to b,.

To model epistemic distinctions, we need to distinguish between full specificity
(specific known) and what we called specific unknown: a specific individual, but
epistemically not determined. We can capture the difference using possible worlds
representing epistemic possibilities. In the former case, the specific individual will
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be constant across all epistemically possible worlds, while in the latter it will vary.
We will make this more formal and give some illustrations in the next section.

4.4 Variety of Indefinites

In this section, we discuss how 2TS can encode the variety of indefinites considered
in Section 4.1. Towards this end, we will first explain how the SK, SU, and NS uses
are captured in 2TS in Section 4.4.1, and then discuss how to model the restricted
distribution of these uses in indefinites in Section 4.4.2. We will explore how
the rendering of the different indefinites mirrors the convexity of the functions
in Haspelmath’s map in Section 4.4.3. Section 4.4.4 introduces the Dependence
Square of Opposition, which will be useful to understand the various relationships
between indefinite types, and Section 4.4.5 explores other possible indefinite types
that can be defined in the system with respect to (non-)specific usages.

4.4.1 SK, SU and NS in 2TS

We will now proceed to distinguish between the SK, SU, and NS uses discussed at
the beginning of this chapter. To do so, we will introduce the following conditions
to make the logical rendering of these uses easier.

v v
constancy dep(D,z) ... d; v-constancy dep(v,z) vy dy
dl (%) dQ
v v
variation  wvar(@,z) ... d; v-variation  wvar(v,r) v dy
dg U1 dg

Table 4.6: Constancy and Variation Conditions.

Constancy means that the variable x is mapped to the same individual in every
assignment, while variation ensures that there is at least one pair of assignments
in which x receives different values. Their v-counterparts relativize these notions
to the variable for the actual world v: v-constancy means that the value of x
is constant within an epistemic possibility, whereas v-variation guarantees that
there is at least one epistemic possibility in which z receives different values.
With these conditions, we can logically characterize the specific known, specific
unknown, and non-specific uses.

The logical rendering of the various uses is shown in (7) together with some
illustrations in Table 4.7, where x is the variable associated with the indefinite.
SK is captured by constancy, ensuring speaker knowledge; SU is captured by



4.4. Variety of Indefinites 43

v-constancy, ensuring specificity, and variation, ensuring unknownness; NS is cap-
tured by v-variation, which, as we will see will, ensures scopal non-specificity.

(7) a. SK: dep(@,)) [constancy]|
b. SuU: dep(v,x) Avar(2, x)) [v-constancy + variation]
c. Ns: wvar(v,z)) [v-variation]
v x
Specific Known constancy dep(&, x) v ... dp
() e d1
v x
Specific Unknown v-constancy dep(v,x) + variation var(&,z) v1 ... d
(%) e d2
v x
Non-specific v-variation var (v, x) v1 ... dy
V1 e d2

Table 4.7: Logical Rendering of SK, SU and NS.

4.4.2 Variety of Indefinites

We now have all the components necessary to capture the variety of marked indef-
inites discussed in Section 4.1. As anticipated, we claim that marked indefinites
come with particular restrictions regarding the constancy and variation conditions
examined in the previous section. We summarize our proposal in Table 4.8.°

FUNCTIONS

TYPE REQUIREMENT EXAMPLE

SK SU NS
(1) unmarked v/ v v none Italian qualcuno
(ii) specific v v X dep(v, x) Georgian -ghats
(iii) non-specific X X v var(v, ) Russian -nibud’
(iv) epistemic X v/ v var (9, ) German irgend-
(v) specific known v X X dep(2, ) Russian koe-
(vi) SK + NS v X v dep(@,x) VVvar(v,z) unattested
(vii) specific unknown X v X dep(v,z) Nvar(@,x) Kannada -oo

Table 4.8: Marked Indefinites.

Unmarked indefinites, like English someone, do not have specific requirements
and can, in principle, express all the functions we considered. Specific indefinites

We would like to mention Champollion, Bledin, and Li (2017), a recent relevant work
which integrates dependence logics and dynamic plural logic. Champollion, Bledin, and Li
(2017) adopts a rigidity requirement comparable to our dep(&, z) to distinguish between rigid
and lax quantification in Champollion, Bledin, and Li (2017)’s terminology.
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are associated with ‘v-constancy’: the referent of the indefinite is the same in a
given world but can vary between worlds. The opposite condition, ‘v-variation’,
characterizes non-specific indefinites. Epistemic indefinites require ‘variation’:
the referent of the indefinite must vary, possibly within the same world. ‘Con-
stancy’ leads to specific known: a unique individual across all worlds.

Now, let us turn to the last two types in Table 4.8, which require a more de-
tailed explanation. The type ’specific known -+ non-specific’ cannot be subsumed
under a single atom. It requires that the referent satisfies either ‘constancy’
or ‘v-variation’, which are incompatible with each other.!® Therefore, this type
can only be captured by a (Boolean) disjunction of atoms, explaining the dif-
ficulty of finding a lexicalized indefinite encoding opposite meanings.!* To our
knowledge, no language encodes this meaning in a specific form. Moreover, type
(vi) constitutes a clear violation of convexity, a constraint typically assumed in
lexicalizations (Géardenfors 2014; Steinert-Threlkeld and Szymanik 2020; Steinert-
Threlkeld, Imel, and Guo 2023; Enguehard and Chemla 2021). The next section
will address how convexity is encoded in the system.

The last type, specific unknown, requires two atoms: ‘v-constancy’ for speci-
ficity and ‘variation’ for unknown. Crucially, only one language among those
examined by Haspelmath (1997) possesses such an indefinite. We claim that
complexity is the reason. Specific unknown requires two atoms, making its lexi-
calization less likely to occur.

This analysis also allows us to address the question at the end of Section 4.1.2.
Russian has a dedicated indefinite for NS uses (-nibud’) and an epistemic indefinite
(-to) that expresses both Ns and SU. In practice, speakers almost always select
-to for sU and -nibud’ for NS. The preferential use of sSuU for -to arguably has a
pragmatic root: speakers are aware that there is an alternative form with only NS
uses. Nonetheless, Russian maintains -to as an epistemic indefinite, as turning
-to into a specific unknown would increase its complexity in the sense delineated
here. This represents an interesting balance between the language user and the
language system.

4.4.3 Semantic Convexity

The notion of convexity plays a key role in several lexicalization patterns across
different domains, such as colour terms (Géardenfors 2000, 2014; Jager 2007,

ONote that dep(@,z) implies dep(v, z), which contradicts var (v, ).

HTo express such a combination of functions, we would need a Boolean/global /inquisitive
notion of disjunction: M, T E ¢V < M, T = ¢ or M,T |= 1. Note that \/ is definable in
2TS by means of dependence atoms (Fan Yang, pc.):

¢ Vrp = Jz3y(dep(D, ) Adep(D,y) N (x =y A )V (z #yAY))
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2010), generalized quantifiers (van Benthem 1984; Steinert-Threlkeld and Szy-
manik 2020), and modals (Steinert-Threlkeld, Imel, and Guo 2023).2

The underlying idea is that the meaning of expressions should denote a convex
‘region’ provided a suitable notion of meaning space. Convexity would be violated
when gaps are present in the underlying ‘region’ that expressions denote.'® To
illustrate this concretely, consider the case of modified numerals or generalized
quantifiers. In this domain, there are no expressions that lexicalize meanings
like ‘more than five or less than two,” which are intuitively, and formally, non-
convex determiners. In the domain of generalized quantifiers, where a determiner
is represented by a relation between two sets, a constraint on convexity can be
represented as in Definition 4.4.2, adapted from van Benthem (1984). For the de-
terminer ‘more than five or less than two,’ it is easy to construct a counterexample

by taking A = {d,...,diw}, Bi = {d1}, B = {di,do}, and By = {d,...,dg}."*

4.4.1. DEFINITION (Convexity in Generalized Quantifiers (van Benthem 1984)).
A determiner () is convex iff for all M with A, B, By, By C M such that B; C
B C By, Qu(A, By) and Qp (A, By) imply Qp(A, B).

The question to be addressed is what would constitute a suitable convex mean-
ing space for indefinites, particularly for the functions considered in the present
work. Figure 4.2 orders our atoms according to the degree of variation (from
constancy to v-variation) in a way that is compatible with Haspelmath’s original
ordering in his semantic map.'®

var(d, x)
A
l )
dep(9, x) var(v, x)
- _/
—
dep(v,x)

Figure 4.2: Meaning Space of Marked Indefinites.

12See also Enguehard and Chemla (2021) for an interesting proposal connecting convexity
and exhaustification.

13Tn geometry, a convex region (or convex set) is a subset of a Euclidean space that has
the property that, for any two points within the region, the line segment connecting them lies
entirely within the region. For example, a triangle forms a convex region, while a star shape
does not.

14yan Benthem (1984) uses the term continuity instead of convezity, following earlier litera-
ture. We prefer the term convexity in alignment with convex functions, as opposed to continuous
functions.

15The conditions in Table 4.6 can be considered the most basic representation of constancy
and variation requirements in the variables’ assignment values, and in this sense, they constitute
minimal meaning elements of the meaning space of indefinites.
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In 2TS, we can define a suitable notion of convexity on a set of teams as in
Definition 4.4.2:

4.4.2. DEFINITION (Convexity over Teams). A set of teams P is convex iff for
all T,T",T" such that T CT' CT", if T € Pand T"” € P, then T" € P.

It is easy to show that the Boolean union of the formulas associated with the
SK and NS cells in our map, as in (8), defines a property that does not satisfy
convexity. A counterexample is given in Figure 4.3.

v T v T v T

U1 dl U1 dl (%1 dl
vy dy vy dy

(%) dQ

(a) T (b) T () T”

Figure 4.3: Failure of Convexity for SK + NS. In the teams above, it holds that
T CT" CT". Moreover, T |= dep(@, x) \/ var(v, z), since T" = dep(@,z). T" =
dep(@,x) \/ var(v,x), since T |= var(v,z). But T" = dep(@, x)) 7 var(v, x).

(8)  SK + NS: dep(@,z) Vvar(v, x)

However, this is not the case for the other two possible combinations, which
define convex sets of teams. The former does so because dep(v, z) is downwards
closed, and the latter because var(@, x) is upwards closed:

9) SK + SU: dep(@,z) V/ (var(2,x) A dep(v, x)) = dep(v, x)
(10)  su + Ns: (var(@,z) Adep(v,z)) V/ var(v,z) = var(2, )

This gives us a principled explanation for the specific ordering among functions
assumed in Haspelmath’s original map, namely SK-SU-NS. A natural constraint
on implicational maps is that properties expressed by contiguous cells must satisfy
convexity. If we had ordered the functions differently, such as SK-NS-SU or SU-SK-
NS, this constraint would not have been satisfied. We can then provide a more
grounded explanation for the absence of indefinites that lexicalize only the SK
and NS functions as a violation of a convexity constraint.

4.4.4 Dependence’s Square of Opposition

We dedicate this section to an interesting parallelism between our dependence
and variation conditions and Aristotle’s Square of Opposition. Figure 4.4 displays
the traditional Aristotle’s Square of Opposition, which is a collection of logical
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relations between four main categorical propositions.!® The corners are tradi-
tionally considered to be propositions, but Figure 4.4 displays the corresponding
determiners (e.g., Every A is B for Every). Typically, only three corners of the
square correspond to simple lexical items across languages. For instance, English
lexicalizes every, some, and no, but not not every as a simple determiner.!”

Every —— contraries————— No
subalterns contradictories subalterns
Some —— subcontraries ——— Not every

Figure 4.4: Aristotle’s Square of Opposition.

Interestingly, our dependence conditions along the dimensions of (v-)constancy
and (v-)variation give rise to the same logical relationships observable in the
standard Aristotelian square. Figure 4.5 displays our ‘Dependence Square of
Opposition’. This is expected, as the dependence and variation atoms are the
Boolean negation of each other. Crucially, each corner corresponds to one of the
lexicalized marked indefinites discussed in the previous section.

In the traditional Aristotelian Square, each corner corresponds to the four
basic ways categorical propositions can be formed. Similarly, the Dependence
Square of Opposition corresponds to the four basic ways marked indefinites can
be formed. Moreover, we note the absence of the indefinite ‘SK + NS’ and ‘specific

16We remind the reader of the classical terminology:
e Contraries: Two propositions are contraries iff they can be both false, but not both true.

e Contradictories: Two propositions are contradictories they cannot be both true and they
cannot be both false.

e Subcontraries: Two propositions are subcontraries iff they cannot both be false but can
both be true.

e Subalternation: A proposition p subalternates a proposition ¢ iff p implies q.

Note that the relationships in Figure 4.4 hold assuming that Fvery and No have existential
import, while Some and Not Fvery do not.

17A similar pattern can be observed in the domain of temporal adverbs. English lexicalizes
always, never, and sometimes, but has no corresponding adverb in the lower right corner of the
square.
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unknown’, reinforcing the idea that indefinites present in the Square are simpler
and more frequent, while the others are unattested or rare.!

SPECIFIC KNOWN NON-SPECIFIC
dep J, $) — contraries — Var(v, T
subalterns contradictories subalterns

dep(v, 1’) — subcontraries ——— U&T(@, :E)
SPECIFIC EPISTEMIC

Figure 4.5: Dependence Square of Opposition.

4.4.5 Additional Types of Indefinites

We have already seen that non-specific indefinites cannot receive the widest scope
possible with respect to other operators. This means that they are compatible
with narrow scope and possibly intermediate scopes as well. Are there indefinites
that can only receive the narrowest scope possible? From an empirical viewpoint,
there appears to be no such indefinite. From a formal viewpoint, such indefinites
can be modelled by a requirement of the form dep(vZ, z), where Z' is a sequence
of all the variables whose syntactic scope contains the indefinite.’

Similarly, there might be indefinites that can co-vary only with respect to a
certain variable sort. For instance, an indefinite which can co-vary and receive
narrow scope with a bona fide quantifier like every, but not with a modal like
must.?’ In such a case, the variables in Z can only belong to the sort for individu-
als. Again, there appears to be no such indefinite. In Chapter 6 we will consider
the case of dependent indefinites, which are indefinites that cannot be licensed
by modals but are licensed by bona fide quantifiers. However, such indefinites
are infelicitous in modal contexts, where the requirement dep(vZ, x) restricted to

18 An open question is why the lower right corner of the ‘Dependence Square of Opposition’
is lexicalized, unlike the cases we mentioned before.

19 A variation of this is an indefinite which only receives the narrowest scope and is incom-
patible with the stronger wide and intermediate scope readings. Such an indefinite would be
captured by the additional contribution of variation atoms. Again, there appear to be no
indefinites with such a distribution.

20 As we will see in Section 4.7, universal modals can be analysed as universal quantifiers over
world variables.
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individual variables would predict that such indefinites receive wide scope with
respect to the modal. It thus seems that, at least regarding dependence and
variation atoms, the kind of dependence allowed in marked indefinites can only
contain the empty variable or the variable for the actual world, besides, of course,
the variable of the indefinite.

We end this section with a note on compositionality in 2TS. Compositionality
is a fundamental topic to logic and natural language (Janssen and Partee 1997,
Szabd 2022; Pagin and Westerstahl 2010a,b; Hodges 2001; Westerstahl, Baltag,
and Benthem 2021). We can think of compositionality as requiring that the
meaning of a complex expression is determined by the meanings of its parts and
the way they are combined.?!

The issue of compositionality is relevant to us, as we assumed that indefinites
are associated with atoms, which might include variables from other operators in
the sentence. We would like to draw a distinction between atoms associated with
lexical marked indefinites and atoms encoding the scope of the indefinites. As
concerns the former, we observe that the only reference to other variables is v,
the variable for the actual world. This is unproblematic, as such variable simply
encodes the epistemic state of the speaker. Regarding atoms for scope, we argued
that an indefinite is associated with dep(vy, x), where ¥ is a sequence of variable of
constructed from operators having syntactic scope above the indefinite, and pos-
sibility other constraints on the order of such operators. However, if we maintain
a bottom-up compositional procedure y cannot be already part of the indefinite.
This might suggest that scope readings are not determined compositionally, but
they are the result of a processing operation which takes place at a later stage
once the relevant operators have been introduced. In Chapter 7, we will argue for
an approach along these lines, where the default reading of indefinites will be the
one without any dependence atoms encoding scope, yielding the narrowest scope
possible, and the addition of dependence atoms for other scope readings incurs
in a pragmatic cost.

4.5 Partitive Specificity and Inclusion Atoms

So far, our discussion concerned scopal specificity (specific vs. non-specific) and
epistemic specificity (known vs. unknown). Another relevant notion of specificity
is partitive specificity. An indefinite is partitive if the range of its value is a subset
of a previously introduced referent. Partitivity can be overt, as in example (11-a),
with languages employing various partitive constructions. However, partitivity
can also be covert, as in (11-b), where the indefinite a student refers to the

21From a formal perspective, team semantics was developed by Hodges (1997) as a reaction to
Hintikka’s claims that independence-friendly logic is non-compositional Hintikka (1973, 1996,
2006). Hodges (1997)’s team semantics respects some core principles of compositionality in
certain respects (see Westerstahl, Baltag, and Benthem 2021 for a discussion).
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previously mentioned group of two women who worked on the paper.

(11)  a. John is reading one of Henry James’ novels.
b. Two women worked on the paper. A student was the leading author.

It is clear that this notion of partitive specificity finds a natural treatment in
a team-based framework. The idea, for the cases in (11) is that the values of
the variable associated with the indefinite should be a subset of the values of
the variables of the previously introduced referent. The inclusion atom C (Z, %)
discussed in Section 3.4 of Chapter 3 readily accounts for this idea.

As concerns the examples in (11), a schematic analysis would require that if
the values of ‘Henry James’ novels’ are encoded by the variable x and the indefinite
‘one’ is associated with the variable y, then C (y, ) must hold. Clearly, a proper
analysis should be dynamic. In fact, the system of van den Berg (1996) contains
an operation of variable introduction that mimics the contribution of the inclusion
atom with respect to a previous variable in the discourse.

In Chapter 6 we will present a dynamic version of 2TS, but we do not pursue
this any further as we believe that the insights that van den Berg (1996) discussed
in his work can be directly imported in 2TS. In Section 4.7, we will examine an
application of inclusion atoms more pertinent to this work - modality.

4.6 Implication

Team semantics frameworks allow for expressing a variety of connectives. Dif-
ferent notions of implication have been studied. Below, we offer some possible
notions proposed in the literature (Yang 2014; Abramsky and Vadninen 2009;
Kontinen and Nurmi 2011):

4.6.1. DEFINITION (Classical/Material Implication).
M, Tl ¢ —cw o if M,T = ¢, then M,T = o

4.6.2. DEFINITION (Intuitionistic Implication).
M,TE¢—rp<foral T"CT: M, T = ¢, we have M, T' =4

4.6.3. DEFINITION (Singleton Implication).
M,TE¢—sty < foralli e T: M, {i} = ¢, we have M, {i} | v

4.6.4. DEFINITION (Maximal Implication).

M, T = ¢ =y ¢ < for all T" C T such that M, 7" = ¢ and 7" is maximal, we
have M, T" |= 1

Being maximal amounts to the following:
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4.6.5. DEFINITION (Maximal Team). Given a model M, a team 7', and a formula
¢, T" C T maximally satisfies ¢ in M iff M, T’ |= ¢ and there is no 7" such that
T"CT'CTand T = ¢

Before examining indefinites, we consider one simple case where it is apparent
that material implication —¢ does not work. Consider a team 7" such that T'(v) =
{v1,v9}, where vy is a world where Sue is happy, but Mary is not in Amsterdam,
and v, is a world where Sue is not happy. Provided a suitable model, the material
implication would make (12-b) vacuously supported in such a team, as ¢(v) does
not hold. All the other clauses for implication do not encounter this problem.

(12) a. If Sue is happy, then Mary is in Amsterdam.
b ¢(v) = ¥(v)

When considering the role of implication in (indicative) conditionals, there are
many empirical observations that might help adjudicate between different notions
of implications. The focus of the present discussion will be on indefinites, partic-
ularly on occurrences of marked indefinites in conditional antecedents and in the
main clause of the conditional. Specifically, we will consider epistemic indefinites,
modelled by var(@, z), and specific known indefinites, modelled by dep(@, z).

As the above conditions already suggest, finding a suitable notion of impli-
cation is not immediate, as one condition is upwards closed and the other is
downwards closed. Let us consider the simple case in which indefinites occur in
the main clause of a conditional, particularly an epistemic indefinite. (13-a) says
that if we are in a situation where John is happy, then someone passed the course
and the speaker does not know who. Consider the team where v, is a world where
a passed the course and John is happy, and likewise for v,. Ideally, such a team
should support (13-b). Clearly, the intuitionistic —; and the singleton —¢ do
not work, as variation cannot be satisfied in singleton or empty subteams.

(13) a. If John is happy, then some student (epistemic) passed the course.
b. () = Jsz(p(x,v) Avar(2, x))

The maximal implication —v does not suffer this problem, as we can evaluate the
consequent with respect to the whole (maximal) team.

Next, we will examine another example, leading us to adopt a different clause
for implication based on the maximal one. We now consider the behaviour of
indefinites in conditional antecedents, specifically the case of specific known in-
definites. (14-a) should be judged as true in cases where there is a specific student,
and not just anyone, who passed the course and John is happy.

(14)  a. If a certain student (specific-known) passed then course, then John

is happy.
b.  Fsx(o(x,v) Adep(D, ) — ¥(v)
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However, consider a team 7" such that T'(v) = {7,, vy}, where 7, is a world where
student a passed the course, but John is not happy, whereas v, is a world where
student b passed the course and John is happy. Clearly, there are two maximal
teams supporting the antecedent of (14-b), one for the portion of the team that
agrees on a and one for the portion of the team that agrees on b. However, only
the latter supports the consequent, and thus (14-b) is not supported.

This leads to adopting a weaker notion of maximal implication, where it suf-
fices that some maximal teams supporting the antecedent support the consequent,
rather than all:?2

4.6.6. DEFINITION (Weak Maximal Implication).
M, T ¢ =3¢ < forsome T" C T s.t. M, T" = ¢ and T" is maximal, we have

M, T =y

The semantic clause for weak maximal implication —3 states that a formula
¢ —3 1 holds when there is a maximal team that supports both the antecedent
and the consequent.

Note that if a formula ¢ is closed under unions, then there is at most one
maximal team T C T satisfying ¢. In particular, all dep-free formulas are closed
under unions. For formulas that are also var-free, downwards closure guarantees
the existence and uniqueness of the maximal team, being trivially supported in
the empty team. However, this is not the case for var(Z, @) in general, where such
a team may not exist. Importantly, when the maximal team is unique, the notions
of maximal implication —v and weak maximal implication —3 are equivalent.

4.7 Modality

2TS is a two-sorted predicate logic, with also variables for worlds. We can there-
fore analyse modals as (lax) quantifiers over worlds (Ow ~ Jjaayw; Dy ~ V).
Necessity modals will be analysed as universal quantifiers over worlds, and exis-
tential /possibility modals as lax existential quantifiers over worlds.?3

In the context of 2TS, the accessibility relation R is a binary relation whose
denotation is given by the assignment function [ in the model. This means
that we might take a universal modal like O,¢ as Yw(R(v,w) — ¢[v/w]) and
an existential modal like ¢,¢ as Jw(R(v,w) A ¢lv/w]). For handling multiple
modal operators, one might index the modal with a variable in the domain of the
team for the first argument of R, which we took to be v for simplicity. For the

22The relevance of the maximal implication has also been investigated in the philosophical
literature on indicative conditionals (Kolodny and MacFarlane 2010).

23 As will see in Chapter 6, since lax quantification allows for branching extensions, we will
be able to capture the availability of non-specific indefinites under possibility modals.
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universal case, note that the antecedent of the implication is dep and var free, so
both —v and —3 will yield the same results.?*

We have seen how this framework captures universal and existential modality.
Kratzer (1986) and many others distinguish between two broad classes of modal-
ity: epistemic modals, compatible with what the speaker knows, and root/deontic
modals, compatible with a set of circumstances or normative rules. For instance,
the necessity modal must can be used epistemically, as in ‘Sue must be home’ or
deontically, as in ‘Sue must pay a fine.’.

One important feature of epistemic modals are so-called epistemic contradic-
tions, which arise in formulas of the form —¢ A (¢:

(15)  a. #It is not snowing, and it might be snowing.
b. =S(w)AJw S(w)

As said, epistemic modality is related to the epistemic state of the speaker.
And crucially, in this system, we already have a way to characterize the epistemic
state of the speaker: the variable for the actual world v. As a result, we would
like epistemic modals to be restricted to worlds over which v ranges. Deontic
modality, on the other hand, is related to particular normative rules or desires
which do not necessarily coincide with the state of affairs in the actual world.
As a result, we would like deontic modality to range over worlds compatible with
such norms, but not necessarily worlds over which v ranges.

Recall that the underlying idea of the framework is that the dependencies
in the values of the variable introduced by an indefinite across different assign-
ments help us model scopal and epistemic effects in indefinites. Similarly, the
relationship between world variables can be used to model the difference between
epistemic and deontic modality.

Since epistemic modals range only over worlds compatible with the speaker’s
epistemic state (the values of v), we propose that an epistemic modal introducing
a variable w also triggers the restriction C (w,v). By contrast, deontic modals
are relational, meaning that for each world, different normative rules are possible.

241t is interesting to compare these notions of modality with those proposed in dependence
logic for the propositional setting. We adapt here the definitions from Hella et al. (2014). A
Kripke team semantics for modal logic can be given by M = (W, R, V'), a normal Kripke model,
and T' C W. Regarding O:

MTEOIFMT E¢for T ={weW:FveT: R(v,w)}

Extending this to the first-order case could be done by a team extension with w such that
for each assignment i € T is extended with w for each value s.t. R(v,w). This is the same as
having a universal extension and considering the maximal subteam where R(v, w) holds.

<& is defined as follows:

M, T = ¢ ifft M,T' | ¢ for some T" s.t. Yo € Tw € T' : R(v,w) and Yw € T'Fv € T :
R(v,w).

The first clause ensures that each world in 7" sees some other world, and the second clause
ensures that no world in 7” is unseen. This is what a lax functional extension together with
the requirement that R(v,w) gives us.
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To illustrate this, consider the basic cases in (16-b) and (17-b):%°

(16)  Epistemic Existential Modal

a. John might be in Paris.
b. Jw (C (w,v) A d(w))

(17)  Deontic Existential Modal

a. John is allowed to be in Paris.
b. Jw (R(v,w) A p(w))

The table below displays some possible lax extensions for (16-b) and (17-b). For
epistemic modality, the condition C (w,v) guarantees that the worlds introduced
by the functional extension will always be a subset of the values for v. For
deontic modals, as illustrated in the examples in Table 4.9, it might not be the
case that every world has access to the same set of ‘normative-valid’ worlds, and
thus a world-dependent accessibility relation is needed. In other words, we are
here proposing that epistemic modals are global, since they globally look at the
epistemic state encoded by v, while deontic modals are relational, in line with
several accounts of epistemic and deontic modality.

v vw vw
U1 U1 U1 U1 wy
) v V2 V2 Wi
V3 Vg V2 V3 W3

Uz U1 Vg Wy

(a) (b) (c)
Table 4.9: Epistemic and Deontic Modals.

This treatment of epistemic modals readily captures epistemic contradictions
like (15-b). Clearly, if a statement does not hold in the epistemic possibilities in
v, then it will also not hold in the worlds introduced by an epistemic modal, since
they are always a subset of the values of v.

Importantly, since we introduced modals as quantifiers, we can capture non-
specific and specific readings of indefinites in modal environments by requiring
the variable of the indefinite to possibly depend on the variable of the modal:

250ne may of course add the pertinent constraints on the accessibility relation R for epistemic
modals and maintain a uniform analysis.
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(18)  John wants to read a book.

a. Non-specific: John wants to read a book
Vw(R(v,w) — Jsz(p(x, w) A dep(vw, x)))

b. Specific: There is a book z such that John wants to read x
Vw(R(v,w) = Jgz(p(x, w) A dep(v, x)))

4.8 Negation

The 2TS semantic clauses presented in Section 3.3 have negation for literals and
identity, and we thus assumed that all sentences are in negation normal form. In
this section, we will discuss a general clause for negation. Different notions of
negation have been investigated in dependence logic. A motivating factor behind
this research agenda is that adding the so-called classical or Boolean negation
in the language greatly increases the expressive power of the logic, leading to
full second-order logic which is not completely axiomatizable by effective means
(Vééndnen 2007a). The aim of this section is to find a suitable notion of negation
for 2TS which is also compatible with the empirical picture of (marked) indefinites
and negation.

4.8.1 Negation and Scope

An important question we need to address is the syntactic configuration we should
allow when an indefinite is negated. This issue is relevant for cases like the one
shown in (19). The most salient reading for (19) is a narrow scope reading, where
John read no book. However, a wide scope reading, where there is a specific
book that John didn’t buy, is also available. The latter reading can be made
more salient by a continuation like ‘John didn’t buy a book because it was too
expensive’ where the pronominal element it forces the wide scope reading.?

(19)  John didn’t buy a book.
a. [0 > d] =3z(book(z) A buy(j, z))
b. [3 > =] Jz(book(x) A —buy(j,z))

While the configuration in (19-b) is not incompatible with any island effects
that negation is known to trigger, and in general, we have observed that indef-
inites can receive exceptional scope, we assumed that indefinites should always
be evaluated in situ, in relation to the other operators in the sentence. Scope
readings were explained not through movement, but rather through dependence
atoms. We want to maintain this assumption for negation as well, so the only

26English some book, in contrast to the plain indefinite a book, is typically considered a positive
polarity item, meaning that it can only receive the reading in (19-a). We will return to the
possible difference between some and a(n) in Chapter 7.
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logical form that we will admit is (19-a). In what follows, we will not only discuss
how 2TS predicts the different readings of (19), but also consider the behaviour
of marked indefinites under negation, keeping again in mind that the only logical
form we admit is the following:

(20)  a. John didn’t buy INDEF book.
b. =3z (¢p(x,v) A ATOM)

A non-specific indefinite, like Turkish herhangi, gives rise to a narrow scope
reading (i.e., the intended (19-a) reading), while a specific known indefinite, like
Russian koe, gives rise to a specific reading (i.e., the intended (19-b) reading).
While there is no available data for specific indefinites (indefinites with specific
known and specific unknown uses), we assume here that they behave like specific-
known ones in terms of scope, but they also licence a wide scope unknown reading.

(21)  Herhangi bir sey gor-me-di-m
HERHANGI thing see NEG-PST-1SG
‘I didn’t see anything’ (Haspelmath 1997, p. 286)

(22) Ivan ne chital  koe-kakuyu knigu.
Ivan not read.PST KOE-KAKUYU.ACC book.ACC
‘Ivan did not read a specific book.’

As concerns epistemic indefinites, it appears that this class is associated with
both readings, a ‘wide scope’ (specific unknown) reading, and a narrow scope
(non-specific) reading. We will describe the distribution of epistemic indefinites
and negation in more detail in Chapter 5.2

We summarize the expected predictions in Table 4.10. For ease of illustration,
we will consider the teams depicted in Table 4.11 in the last row of Table 4.10.

Type Atom WS-known WS-unknown NS
specific-known  dep(&, x) 4 X X
specific dep(v, ) v v X
epistemic var(9, ) X v v
non-specific var(v, x) X X v
T3a T4 T27 T4 T4

Table 4.10: Marked Indefinites and Negation. The last row in the table indicates
the teams in Table 4.11 compatible with such readings.

2"The empirical distribution of epistemic indefinites is quite complex, and some indefinites
in this class admit only one of these readings, especially when interacting with clausemate
sentential negation. Some languages resort to specific constructions to distinguish between the
two readings. In Spanish, the epistemic indefinite algin under a higher negation typically takes
narrow scope when it is postnominal, and it typically takes wide scope when it is prenominal.
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v v (% v
Vab Ua Up Vo
Ub Ub
Vg

(a) Tl (b) T2 (C) T3 (d) T4

Table 4.11: Basic Cases for Negation. v, is the world in which John bought book
a, vy is the world in which John bought no books, and so on.

As pointed out, in the following discussion, we will assume that negation
always takes higher scope, as in (20). The desired behaviour of marked indefinites
under negation should emerge from the interaction of a suitable notion of negation
and the atom associated with each indefinite form. In the following, we will
explore three different notions of negation: Boolean Negation, Dual Negation,
and Intensional Negation.

4.8.2 Boolean Negation

We start by looking at the case of Boolean negation, defined in Definition 4.8.1.
We refer to it as Boolean negation, following Vadnénen (2007a) and Hintikka
(1996), as it states that it is not the case that ¢ holds in T" for a model M:

4.8.1. DEFINITION (Boolean Negation).
M, T E-ppe= MT £

This notion of negation has been first discussed in Hintikka (1996) within the
context of independence-friendly logic. It roughly corresponds to a weak form
of rejection or, to a certain extent, to a metalinguistic form of negation. For
instance, while P(z) states that x has the property P in all assignments of the
team, —p P(x) states that  does not have the property P in some (not necessarily
all) assignments of the team.?®

The Boolean negation in Definition 4.8.1 appears to be ill-suited to model the
negation of our dependence and variation atoms in interaction with the existential.
The problem has to do with the ‘weak’ nature of the Boolean negation. For
instance, a specific known indefinite with the dep(@, z) atom is supported in all
cases in which it is not the case that John does have a book, and we know which

28Hintikka (1996, 2002) claims that this notion of negation is compatible with sentence initial
‘not’ in English and cannot be embedded. This also relates to the way negation is treated in
the game-theoretic semantics framework employed by Hintikka - independence friendly-logic.
(Dual) negation, as we will see, standardly serves as a way to switch the verifier and falsifier
roles. Instead, the Boolean negation —g¢ can only be used globally to express the fact that the
verifier does not have a winning strategy.
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one. So an initial team in which the value of x is not known, as in 75, would be
supporting. Moreover, we observe that non-specific indefinites are supported in all
the cases we are considering here. The reason is that negation is not introducing
any operator in the team, and it is thus effectively treating configurations like
(20-b) alike episodic contexts, where the v-variation condition var(v,z) is never
supported. We summarize the predictions for the relevant cases in Table 4.12.

Type Atom Expected Predictions Predictions
specific-cknown  dep(@, x) T3, T, T, 15,1}
specific dep(v, ) Ty, 13,1} 10, T,
epistemic-i var(9, ) T, T, 15,1y
epistemic-ii var(@,z) A dep(v, x) T, T, T, 15,7,
non-specific var(v, x Ty 1,15, 15,1,

Table 4.12: —p3;z(¢p(x,v) A ATOM)

4.8.3 Dual Negation

An alternative notion of negation is presented in Definition 4.8.2, which we refer to
as Dual Negation. The Dual Negation has again its origin in the game-theoretic
semantics of Hintikka (1996), where, as said before, it serves a mechanism to
switch the verifier and falsifier role. The Dual Negation is the typical negation
assumed in Dependence Logic, where it is defined by requiring that for a first-
order literal 7, M, T |= - if and only if for all i« € T', M, {i} £ 7 and in terms
of de Morgan’s laws and double negation elimination. Here we give the semantic
clauses in a dual form, with support and an anti-support clauses (Hintikka 1996;
Vidninen 2007a).%

4.8.2. DEFINITION (Dual Negation). Given a suitable model M and a suitable
team T over M, a formula ¢, we define the support relation of ¢ in 7', denoted
by M,T = ¢, and the anti-support relation of ¢ in 7', denoted by M, T = ¢,
inductively on ¢ as follows:

29Since we have two notions of existential, which are not equivalent for upwards closed formu-
las, we need to carefully understand the relationship between support and anti-support clauses
of existentials and universals. We might assume that both anti-support clauses of the exis-
tentials lead to the anti-support of the universal, keeping the duality between existential and
universal quantifiers. Another option is to have the strict existential anti-supported when there
are 1o strict functions which support it (even though there could be lax ones). Here, we simply
consider the case of the strict existential, as this notion of negation will not be the one we
adopt.
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M,T = P(t1,...,t,) < VYjeT: (j(t1),...,j(tn)) € I(P™)

M, T < P(t1,...,t,) < VYjeT: (j(t1),...,j(tn)) € I(P™)

M, Tt =t & VjeTl: ](tl)—](tZ)

M,T =t =t & VieT: j(t) #j(t)

M,TEéA o MTEdéand M,T

M,TH oA & T =Ty UT, for teams Ty and Ty s.t. M, Ty = ¢ and
M, T, S

M, Tk ¢V & T =Ty UT, for teams Ty and T s.t. M, Ty E ¢ and
MT 4

M, T = ¢V & M,T=¢and M,T =

M,TE3z¢ < there is a strict function fs s.t. M, T[fs/z] E ¢

M,T = 3z ¢ & M,T[]= ¢

M,TE=Vz¢ & Tz = o

M, T HVz¢ < there is a strict function fs s.t. M, T[fs/z] = ¢

M,T -6 = MTHé

M,T = -6 s MTEG

More relevant to the current discussion are the clauses for the dependence and
variation atoms. We will consider two versions. The former originates from the
work of Viininen (2007a) and is defined as below.°

M,T =dep(Z,4) < foralli,jeT:i(2)=j2)=id)=ju
M, T Hdep(zZ,u) < M,TEL

~

M,T Evar(Z,u) < thereisi,je T :i(2) =j(2) &i(d) # j(u)
M, T 5 var(zZ,u) < MTET

Table 4.13: Dual Negation for Dependence and Variation Atom - Version 1.

In this formulation, a dependence atom is anti-supported only in the empty
team, while the variation atom is anti-supported in all teams.?® These anti-
support clauses are incompatible with the intended predictions, as summarized
in Table 4.14. For a first order formula «, we have that for all non-empty teams T,

30Note that due to the variation atom, which requires the existence of assignments in the
team, strong and weak notions of tautologies and contradictions may arise, similarly to what
occurs in logics which employ an atom requiring the team to be non-empty, as in BSML (Aloni
2022). In what follows, we will assume that M,T = L iff T = @, where @ is the team which
contains no assignment and M, T |= T for any team 7'

31The anti-support clause for the dependence atom in the dependence logic tradition (Viiné-
nen 2007a) is meant to preserve downwards closure. Moreover, if we apply the notion of negation
used for first-order literals, we obtain that M, T = —dep(Z,u) if Vi € T : M, T [~ dep(Z,4) iff
T = . Applying this to the variation atoms leads to M, T = —war(Z,@) it Vi € T : M, {i} |~
var(Z,4) iff T = T, since variation requires the existence of two distinct assignments.



60 Chapter 4. Indefinites Across Languages

M, T E —Js(a(z,v) Ndep(Z, 1)) iff M,T = Vr(-a(x,v) A —dep(Z,@)) iff M,T =
Ve(-a(z,v) vV L) iff M,T | Ve(-a(z,v)). Similarly, M, T = —Jsz(a(z,v) A
var(@,x)) it M,T = T.

Type Atom Expected Predictions Predictions
specific-known  dep(&, x) Ts, T, Ty
specific dep(v, x) Ty, T3, Ty T,
epistemic-i var(<, ) Ty T,15, T3, T
epistemic-ii var(,z) A dep(v, x) T, Ty Ty,15,T5,Ty
non-specific var(v, x Ty T1,15,T5,T,

Table 4.14: —p, 3sz(p(x, v) A ATOM)

Alternatively, we have already discussed that the variation atom was defined
as the Boolean negation of the dependence atom. As a result, we might take
anti-support clauses of the dependence and variation atoms to the corresponding
Boolean negation.

M,T |=dep(Z,i) < foralli,jeT:i(2)=j(
M,T = dep(Z,1) < thereisi,jeT :i(2)=7(2) &i(d) # j(u)

M, T E=wvar(Z,1) < thereisi,je T :i(2) =j(2) &i(u) # j(u)
M, T S var(zZ,d) < foralli,jeT:i(2)=j(2)=i(u) =j)

Table 4.15: Dual Negation for Dependence and Variation Atom - Version 2.

While this alternative formulation might seem more intuitive and could be
independently motivated, it does not significantly help with the interaction of
indefinites and atoms we are considering here. For dependence atoms, a formula
of the form Vz(—a(z,v) Vvar(v, z)) is always supported as long as there are more
than two individuals in the domain. For variation atoms, a formula Vz(-a(z,v)V
dep(v, z)) is supported only in team Ty, since one subteam needs to be constant
with respect to 7" and the other one needs to make a(x,v) false.3? The latter is a
good prediction, as it correctly captures the narrow scope readings of indefinites
under negation, but it cannot deal with wide scope readings.

32A further undesired prediction that we are not considering here is epistemic-i would also
support cases in which T'(v) = {v,, vz} for instance.
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Type Atom Expected Predictions Predictions
specific-known  dep(d, x) 13,T) 11,135,153, T,
specific dep(v, x) Ty, 13,1} 1,15, 15,1,
epistemic-i var(9, ) T, 1,15, 15,1,
epistemic-ii var(@,z) A dep(v, x) 15,7, Ty
non-specific var(v, x T, T

Table 4.16: —po3sz(p(z,v) A ATOM)

4.8.4 Intensional Negation

We now turn to a different notion of negation, which appears to be well-behaved in
interaction with marked indefinites. Recall that our framework is two-sorted with
a special variable for the actual world, v. It is thus possible to view negation as
a particular kind of quantification over worlds. We thus, we adopt an intensional
notion of negation (Brasoveanu and Farkas 2011; Berto 2015), which we define in
Definition 4.8.3:

4.8.3. DEFINITION (Intensional Negation).
—10(v) & Vw(olv/w] = v # w)

Definition 4.8.3 says that when ¢ does not hold in the actual world, it must
be the case that for all worlds w in which ¢ holds, w must be different from the
actual world.?

Note that intensional negation in Definition 4.8.3 contains an implication. In
light of our discussion in Section 4.6, we adopt the weak maximal implication —3.
As we will see, this will give us the corrects predictions in a way which is parallel
to the case of indicative conditionals discussed in Section 4.6, highlighting the
p