
Automata Closure Constructions for Kleene Algebra
with Hypotheses

MSc Thesis (Afstudeerscriptie)

written by

Liam Chung
(born April 3, 1999 in New York, United States of America)

under the supervision of Dr. Tobias Kappé and Prof. Dr. Yde Venema,
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Abstract

In this thesis, we will develop automaton constructions as a tool for studying
the equational theories of Kleene algebra with arbitrary hypotheses. Kleene
algebra with hypotheses is a framework for assigning language-based semantics
to Kleene algebra-based systems where extra features are formulated as axioms
in the equational logic.

These semantics are defined by a closure operation on languages called “hy-
pothesis closure”. Completeness of the “hypothesis-closed” semantics can be
shown via reductions to known systems, such as Kleene algebra with tests.
However, doing so requires that the hypothesis closure can be effectively com-
puted. This thesis proposes a general approach to calculating the hypothesis
closure in terms of standard Kleene algebra, for arbitrary hypotheses.

We define two constructions on automata and prove they are correct, when
they terminate. We examine cases where they terminate, and present a strategy
for improving how often they do. In cases where the constructions terminate,
proving completeness becomes much simpler via reductions, and we even obtain
a decision procedure for equality, using automaton equivalence. We will there-
fore work extensively with automata-theoretic machinery to define the proposed
constructions, and prove their correctness.
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Chapter 1

Introduction

Kleene algebra, originally known as the “algebra of regular events” [7] is an alge-
braic structure used to study equivalences between so-called regular expressions.
Regular expressions, not to be confused with those known to programmers, are
syntactic terms that can abstractly represent computer programs. A funda-
mental result of Kleene algebra is that its equational theory is both decidable
and complete, opening the door to automated program equivalence and formal
verification in a restricted class of cases.

In practice, however, this computational pleasantness comes at a cost: Kleene
algebra lacks a great deal of the expressibility. Recent years have seen a pro-
liferation of work studying Kleene algebra augmented to model more complex
program features. Some examples include booleans in Kleene algebra with tests
[9], parallelism in concurrent Kleene algebra [3], and even a fully-featured net-
work programming language in NetKAT [1]. Each of these takes the form of
Kleene algebra altered with new rules or assumptions, so as to effectively rep-
resent some computational concept.

When working with any proof system, completeness is a central concern: that
is, can we prove everything that is true, and so be confident that if I can not
prove something, it is not true? For each of the systems mentioned above, work
introducing it defines an appropriate class of models for which it is complete,
and proves that this is the case. The choice of semantics and corresponding
completeness proof is often specific to the system in question, but these proofs
follow patterns, raising the question of if the situation can be generalised to all
systems based on Kleene algebra.

Recent work by Doumane et al. [2] developed the hypothesis closure, a
closure operation on languages that associates canonical, language-based models
with Kleene algebras extended with extra axioms. By language-based, we mean
that the semantics of the system are simply a certain sub-class of languages,
for example “all languages that contain the word abc”, “all languages that are
closed under replacing b with c in every word”, etc.

There is major boon imparted by working purely with language-based se-
mantics across various extensions of Kleene algebra: results in one system can
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be easily interpreted in another, and when the class of languages for a system
is a sub-class of regular languages, it is grounded in the complete and decidable
theory of Kleene algebra for regular languages. These nice properties of Kleene
algebra create a very favorable environment for studying these systems.

The semantic framework developed by Doumane et al. is also useful because
it is defined purely in terms of the new axioms. In practice, this provides an
alternative semantics for variants of Kleene algebra like KAT, so long as the ad-
ditions to the system can be formulated as extra axioms in the equational theory.
This is far easier than designing bespoke semantics for which the system will
be complete; Pous et al. [12] have developed a suite of tools for accomplishing
this task, and even show that the standard semantics associated with KAT are
indeed equivalent to those generated by the hypothesis closure.

Unfortunately, equational theories of Kleene algebra extended with hypothe-
ses are undecidable in general, even for quite simple hypotheses like commuta-
tivity ab = ba [9]. However, if one can effectively interpret the semantics of
a Kleene algebra with hypotheses in terms of “standard” Kleene algebra, then
decidability of Kleene algebra can be leveraged to obtain decidability and take
a meaningful step towards completeness for the system.

The objective of this thesis will be to define, and prove the correctness of,
automaton constructions that can be used to calculate the hypothesis closure
of an arbitrary regular expression, for an arbitrary hypothesis. This construc-
tion will not always terminate in finite time, and so its termination will be an
important topic as well.

The work of this thesis can be summed up as follows:

1. Specifications of two constructions on automata, H∗
• and H∗;

2. Proofs that when the constructions terminate, they produce the correct
automaton;

3. Strategies for finding hypotheses that produce equivalent closures, so that
when the construction does not terminate, we seek equivalent hypotheses
for which it does.

In chapter 2, we will review important notions for the thesis, in particular
those for regular languages and some order theory. In chapter 3, we will motivate
and formally build the notion of hypothesis and hypothesis closure, compiling
recent work on the subject, and setting our objective for the thesis more formally.
In chapter 4, we put forward the first version of our construction: what we call
the singleton version. It is defined for a simpler sub-class of hypotheses, and
will serve to acquaint the reader with the techniques that will be used in the
more general version, which will be covered in chapter 6. In chapter 5, we
discuss a technique for improving the termination conditions of the singleton
construction, and prove its effectiveness. In chapter 6, we will generalise the
construction given in chapter 4, to work for arbitrary hypotheses; and we will
again prove its correctness. Finally, in chapter 7, we will conclude with a review
of the major results, and remarks on future work.
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Chapter 2

Preliminaries

We assume that the reader has a passing familiarity with regular expressions,
finite automata, and regular languages. The main purpose of this section will
not be to educate on these topics, but rather serve as a refresher, and fix the
notations and terminology that will be in use for this thesis. For a more detailed
treatment, [4] is highly recommended.

2.1 Languages, Regular Expressions, Automata

Definition 2.1.
An alphabet Σ is a finite set of letters, for which we will use the teletype letters
a, b, c, d, . . .

▶ A word w over the alphlabet Σ is a finite ordered sequence of elements
from Σ, for example aaa, cab, dad, and so on. The empty word, denoted
ε, is the empty sequence of letters.

▶ The set of all words over the alphabet Σ is written Σ∗.

▶ A language L over the alphabet Σ is a (potentially infinite) set of words
over Σ, or more formally, L ∈ P(Σ∗).

Definition 2.2.
A regular expression over the alphabet Σ is any term obtained in one of the
following ways:

▶ for all a ∈ Σ, a is a regular expression;

▶ 0 and 1 are regular expressions;

▶ if e and f are regular expressions, so is e · f ;

▶ if e and f are regular expressions, so is e+ f ;

▶ if e is a regular expression, so is e∗.
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We will refer to · as composition, + as choice, and ∗ as Kleene star. When
writing expressions, we often omit ·, so that abc = a · b · c, and the binding
order is ∗ > · > +, so for example:

a∗bc+ de∗f =
(
(a∗) · b · c

)
+

(
d · (e∗) · f

)
Lastly, we will refer to the set of all regular expressions over an alphabet Σ as
T (Σ).

We now define a semantics for regular expression in terms of languages,
where a regular expression r will represent some language JrK ∈ P(Σ∗).

Definition 2.3.
The language-based semantics for regular expressions J−K : T (Σ) → P(Σ∗), is
defined:

J0K := ∅ Je · fK := {uv : u ∈ JeK, v ∈ JfK}
J1K := {ε} Je+ fK := JeK ∪ JfK

JaK := {a} ∀a ∈ Σ Je∗K := {ε} ∪
⋃
n∈N

JenK

where en denotes e · e · . . . · e, n many times. We define · for languages as
exactly the operation corresponding to · on regular expressions above, as this
will sometimes be convenient notationally.

If for a language L ∈ P(Σ∗) there is some regular expression r such that
JrK = L, we call L a regular language. In such a case we call r a regular
expression representing L.

Also note that in the context of expressions, we use 0 and 1, where in the
context of languages, we use ∅ and ε. With this semantics in hand, we make two
observations that will be central to our understanding of regular expressions:

1. given a regular language, there can be more than one regular expression
representing it;

2. there exist languages with no regular expression representing them. In
other words, not all languages are regular.

Example 2.4.
Using our newly defined semantics, we can easily find two regular expressions
whose semantics are the same:

Ja+ bK = {a, b} = Jb+ aK.

On the other hand, the following language is non-regular : there is no regular
language representing it.

{anban : n ∈ N} = {aba, aabaa, . . .}

it is well known that this language is non-regular, but we refer to [4], section
4.1 for details.
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We also refer to [4] for some important properties of regular languages,
namely their closure properties and decidability.

Lemma 2.5.
Let L,M be regular languages. The following are also regular languages:

▶ L ∪M

▶ L ∩M

▶ L \M

Let Li for i ∈ I be a finite set of regular languages. The following are also
regular languages:

▶
⋃

i∈I Li

▶
⋂

i∈I Li

Theorem 2.6.
Let r, s be regular expressions, w ∈ Σ∗ a word. The following problems are all
decidable:

1. is w ∈ JrK?

2. is JrK = JsK?

3. is JrK non-empty?

Now we define automata, fixing our particular notation for it. This thesis
will mostly deal with finite, non-deterministic automata, so we will define this
as our “default” form for an automaton.

Definition 2.7.
An automaton X on an alphabet Σ is a tuple (X, δX , νX ) consisting of a finite
set X, called the state set, a map δX : X × (Σ ∪ {ε}) → P(X), called the
transition function, and a subset νX ⊆ X, called the subset of accepting states.
We will often exclude the subscripts when the automaton we are dealing with
is clear. We call the class of all automata NA.

We also define the extended transition function δ∗X : X ×Σ∗ → P(X). Here
we let EX (x) for a state x refer to the “epsilon closure” of x, that is, the set
of all states reachable from x in X via only ε transitions. We now define δ∗

recursively:

δ∗(x, ε) = EX (x)

δ∗(x, a · w) =
⋃

y∈δ∗(x,w)

EX (δ(y, a))

namely, the extended transition function simply applies the normal transition
function one letter at a time, starting with the state x. We will say that x
accepts a word w if there exists some state z ∈ δ∗(x,w) such that z ∈ ν.

We will often overload the transition function notation δ to refer to either
the normal letter version, or the extended word version.
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Automata are a more concrete tool for reasoning about simple programs and
computational processes. Their simplicity (compared to a model like the Turing
Machine) does impose restrictions on its expressivity: for example the notions
of memory and state are intertwined, since possible states for the program must
be finite.

A state in a given automaton indeed has a set of words that it accepts, and
so naturally we can fit this into our existing framwork of languages:

Definition 2.8.
Let X be an automaton. For a state x ∈ X, the language accepted by x is
defined:

lX (x) := {w ∈ Σ∗ : ∃z ∈ δX (w, x) z ∈ vX }

When using an automaton to discuss a language, we will often want to highlight
a particular state. A pointed automaton is simply a pair (X , x0) where x0 ∈ XX
is called the initial state. We may refer to (X , x0) as just X when it is established
what the highlighted state is.

Unlike a regular expression, which (under the standard semantics given)
represents exactly one language, an automaton yields a set of related languages,
one for each state. On the other hand, much like regular expressions, a state in
an automaton does not uniquely represent its language, and there are usually
many automata one can define to accept a given language.

We will be proving some fairly involved results about constructions on au-
tomata, in particular the languages that are accepted by them. We also define
the notion of trace so that we can talk about valid strings of inputs on an
automaton.

Definition 2.9.
Given an automaton X , an X trace is a finite sequence of states and transitions
in X :

x1
l1→ x2

l2→ · · · ln−1→ xn

where each xi ∈ X and li ∈ Σ, such that for all i < n, xi+1 ∈ δ(li, xi). We will
call a trace accepting if xn ∈ ν.

When describing traces, we will often use this diagrammatic notation. In
particular we will use the • to represent an arbitrary state in the automaton,
and ⊚ to represent an arbitrary accepting state in the automaton.

Deterministic automata will not play as significant of a role in this thesis as
non-deterministic automata, but we will use them for some smaller proofs.

Definition 2.10.
An automaton is deterministic if for every a ∈ Σ and x ∈ X, δX (x, a) = {y} for
some y ∈ X, and δX (x, ε) = ∅. In other words, the transition function can be
rewritten as a function X × Σ→ X.

It is also worth introducing the power set construction; for the proof of its
correctness as well as a more in-depth treatment, see [4], section 2.3.5.
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Theorem 2.11.
Let X = (X, δ, ν) be an automaton. Then for any w ∈ Σ∗, S ⊆ Σ∗, let:

X ′ := P(X) δ′(S,w) =
⋃
x∈S

δ(x,w) ν′ = {S ∈ P(X) : S ∩ ν ̸= ∅}

and we let X ′ := (X ′, δ′, ν′). We call this automaton the output of the power
set construction applied to X . Now:

∀x ∈ X, lX (x) = lX ′({x}).

2.2 Regular Languages

Theorem 2.12 (Kleene’s Theorem).
The set of languages represented by regular expressions and finite automata
correspond; that is, for every regular expression r there is a pointed automaton
(X , x) such that lX (x) = JrK. Dually, for every state y in an automaton Y, there
is a regular exprssion s such that JsK = lY(y).

This theorem can be witnessed with constructions in either direction. In
particular, the construction taking regular expressions to pointed automata is
of interest to us, which is called Thompson’s construction. We do not describe
it in detail here, but a curious reader can see [4] section 3.2.3.

Lemma 2.13.
For a regular expression r, Thompson’s construction outputs a pointed automa-
ton (Z, z0) such that:

lZ(z0) = JrK

as per Kleene’s theorem. We will sometimes use Zr to refer to Z, to make clear
what regular expression it represents.

In later sections of the thesis, we will use pseudocode to describe construc-
tions on automata and regular expressions. In these contexts, we will use the
function name RegToAut to refer to Thompson’s construction.

The correspondence between automata and regular expressions also has a
very important use: showing that it is decidable whether a regular expression’s
language is empty.

Theorem 2.14.
Let r be a regular expression. Then it is decidable whether JrK is empty.

Now we introduce an important tool for working with regular languages: the
Brzozowski derivative.

Definition 2.15 (Brzozowski Derivative).
Let L be a regular language, and w ∈ Σ∗ a word. The Brzozowski derivative of
L with respect to w is defined:

w−1L := {u ∈ Σ∗ : wu ∈ L}.
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If r is a regular expression, we can define a Brzozowski derivative for r as well
in the obvious way:

w−1r := w−1JrK.
Note that the Brzozowski derivative of a regular expression is a language.

Example 2.16.
An easy way to understand the Brzozowski derivative can be to just look at
some examples:

▶ (a)−1{a, ab, aaba} = {ε, b, aba}

▶ (a)−1{b, ba, aba} = {ba}

▶ (ab)−1{bac, abb, aba} = {b, a}

▶ (a)−1((a+ b)c) = {c}
A useful intuition for the Brzozowski derivative is to think of an automaton

with a state accepting L: “apply” w to this state (by which we mean δ(−, w)),
and the Brzozowski derivative is the union of all languages accepted by the
resulting states.

Proposition 2.17.
Let X be an automaton, and x ∈ X a state in it. Let w ∈ Σ∗ a word. Then:

w−1lX (x) =
⋃

y∈δ(x,w)

lX (y).

Proof. Let u ∈ w−1lX (x). Then by definition, wu ∈ lX (x). So there must exist
an X trace for the word wu that starts at x, and ends at an accepting state z.
By definition there must exist a state y such that y ∈ δ(x,w) and z ∈ δ(y, u).
However z is an accepting state, and so u ∈ lX (y) where y ∈ δ(x,w) as desired.

Now let v ∈
⋃

y∈δ(x,w) lX (y). So there exists a state y such that y ∈ δ(x,w)
and v ∈ lX (y). This latter fact means that there must exist an X trace beginning
at y, ending at an accepting state z, for the word v. Now because y ∈ δ(x,w),
there must also exist an X trace starting at x and ending at y for the word w.
Concatenating these two traces, we obtain an X trace starting at x and ending
at z for the word wv, and because z is an accepting state, we can conclude that
wv ∈ lX (x). So by defition, it must be that v ∈ w−1lX (x), as desired. 完

Now, we state some more important facts about Brzozowski derivatives. We
defer to [4] for proofs of these facts.

Lemma 2.18.
Let L = JrK be a regular language, w, u ∈ Σ∗ words, X an automaton, and
x ∈ X a state in it. Then:

1. w−1L is a regular language

2. it is decidable whether w−1e is empty

3. (wu)−1L = u−1(w−1L)

4. if ε ∈ w−1lX (x) then w ∈ lX (x)

12



2.3 Equational Theory of Kleene Algebra

We have now established a theory of regular languages, characterised by both
regular expressions and automata. Recall that both regular expressions and
automata do not generally refer to a regular language uniquely: there are usually
many equivalent ways to represent a language. As such, we will define a formal
system, called Kleene algebra, that can reason about these equivalences. This
system is equational in that it studies what expressions are equal to what others.
A more comprehensive treatment can be found in [13], chapter II, section 14.

Definition 2.19.
An equation of regular expressions is e = f , where e, f are regular expressions.
An inequation is f ≥ e (also written e ≤ f), and is simply shorthand for an
equation:

f ≥ e (def)⇔ f = e+ f.

A quasi-equation is an implication A→ B where A,B are equations (or inequa-
tions).

Let Ax be a set of equations and quasi-equations, which we will also call the
set of axioms. We will say that Ax proves an equality e = f , written Ax ⊢ e = f ,
if there is a finite sequence of equations:

p1 = q1, p2 = q2, . . . , e = f

where each pi = qi, e = f is an axiom, or follows from prior statements and
axioms by the standard inference rules of equational logic. We call such a
sequence of statement a proof in equational logic.

Given a set of axioms Ax, we may choose to adopt a set of extra axioms H
(for hypotheses) with which to reason. In such a case, we may use the following
notation:

Ax+H ⊢ e = f ⇐⇒ (Ax ∪H) ⊢ e = f.

We will define KA as a finite set of axioms that can be used to reason about
regular expressions, and a central topic of this thesis will be the study of KA as
an axiom set when augmented with some set of extra hypotheses H.

We also need to say what it means for a choice of axioms to be “correct”
for our interpretation of regular expressions. This will mainly be that they are
both sound and complete for our semantics J−K.

Definition 2.20.
Let Ax be a set of axioms, and let J−KA : T (Σ) → P(Σ∗) be a language-based
semantics for regular expressions.

▶ We say that Ax is sound for J−KA if for all regular expressions e, f :

Ax ⊢ e = f ⇒ JeKA = JfKA.

▶ We say that Ax is complete for J−K if for all regular expressions e, f :

Ax ⊢ e = f ⇐ JeKA = JfKA.
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Defining a finite set of sound and complete axioms for J−K of Kleene algebra
was an open problem for a number of years, but a set was finally put forward
by Kozen in 1991 [8]. The axioms as they appear here come from [9].

Definition 2.21.
The axiom set KA consists of:

1. (e+ f) + g = e+ (f + g)

2. e+ f = f + e

3. e+ e = e

4. e+ 0 = e = 0 + e

5. e(fg) = (ef)g

6. 1e = e = e1

7. 0e = 0 = e0

8. e(f + g) = ef + eg

9. (e+ f)g = eg + fg

10. 1 + ee∗ = e∗

11. 1 + e∗e = e∗

12. f + eg ≤ g → e∗f ≤ g

13. f + ge ≤ g → fe∗ ≤ g

where e, f, g ∈ T (Σ).

Soundness is straightforward to verify, and Kozen proved that these axioms
are complete in the same paper [8].

Theorem 2.22.
KA is both sound and complete on the set of regular languages over a finite
alphabet Σ: for all e, f ∈ T (Σ), JeK = JfK if and only if KA ⊢ e = f .

Let us look at some examples of what proofs using these axioms look like.

Example 2.23.
For all e, f ∈ T (Σ):

1. KA ⊢ e∗e = ee∗

2. KA+ {e ≤ f, f ≤ e} ⊢ e = f .

3. KA ⊢ e ≤ e+ f

Proof. In practice, we will not write proofs at this level of detail, as more com-
plex proofs can become lengthy very quickly. Nonetheless, we do these in their
full formality.

1. Each of the following equalities are exactly axioms of KA:

ee∗
(11)
= e(1 + e∗e)

(8)
= e+ ee∗e

(9)
= (1 + ee∗)e

(10)
= e∗e

2. Suppose that e ≤ f and f ≤ e. Recall that these are equivalent to f = e+f
and e = f + e respectively. Therefore:

e = f + e
(2)
= e+ f = f

14



where the middle equality is an axiom of KA, and the other two equalities
are exactly our assumptions.

3. In order to prove that e ≤ e+f , we will prove the equivalent (by definition)
statement that e+ f = (e+ f) + e:

e+ f
(3)
= (e+ e) + f

(1)
= e+ (e+ f)

(2,1)
= (e+ f) + e.

完

2.4 Order Theory and Lattices

This thesis will deal heavily with operations that close or augment existing
structures. For example, constructions on automata that add new states, tran-
sitions, and accepting states. In order to make proofs about these operations
easier, we discuss some order theory here.

Definition 2.24.
A partial order is a relation ≤ on a set X that is reflexive, antisymmetric, and
transitive. In this case, the pair (X,≤) is called a partially ordered set, or poset.

As an example of a poset, and one that we will use later in this thesis, we
introduce a poset on automata.

Definition 2.25.
Let “⊑” be the order on NA such that, for two automata X = (X, δ, ν) and
Y = (Y, δ′, ν′):

X ⊑ Y if and only if X ⊆ Y and ∀x ∈ X, lX (x) ⊆ lY(x).

It is straightforward to see that ⊑ is a partial order on automata, since ⊆
is a partial order on Σ∗. It will be useful to also prove a sufficient (but not
necessary) condition that is more “physical” with respect to automata:

Lemma 2.26.
Let X , Y be automata. If the following all hold,

▶ XX ⊆ XY

▶ ∀x ∈ XX ,∀w ∈ Σ∗, δX (x,w) ⊆ δY(x,w)

▶ νX ⊆ νY

then X ⊑ Y.
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Throughout this thesis we will be working extensively with functions on
posets, and proving facts about them. To this end, we define two important
properties:

Definition 2.27.
Let (X,≤) and (Y,≤′) be posets, and let f : X → Y . We say that f is monotone
with respect to ≤,≤′ if for all x1, x2 ∈ X,

x1 ≤ x2 ⇒ f(x1) ≤′ f(x2).

Now let g : X → X. We say that g is inflationary with respect to ≤ if for
all x ∈ X:

x ≤ g(x).

A particular kind of order that we will also use in this thesis is a lattice,
which will be particularly important as we study languages.

Definition 2.28.
For some subset S ⊆ X, a lower bound (upper bound) on S is some element
z ∈ X such that z ≤ s (z ≥ s) for all s ∈ S. We call z the greatest lower bound,
or meet (least upper bound, or join) of S if for all lower bounds (upper bounds)
a ∈ X, z ≥ a (z ≤ a).

A poset (X,≤) is called a lattice if for every pair of elements x, y ∈ X, the
meet and join of {x, y} both exist.

Our interest in lattices will largely arise from application of the Knaster-
Tarski fixed point theorem, an important result about monotone functions on
complete lattices. To do so, we first define:

Definition 2.29.
A lattice (X,≤) is called complete if for all subsets of elements S ⊆ X, S has
both a meet and join.

An important example of a complete lattice is the power set of some set X;
the set P(Σ∗) is of this form. Now we can state the theorem.

Theorem 2.30 (Knaster-Tarski Fixed Point Theorem).
Let (X,≤) be a complete lattice, and let f : X → X be a monotone function
for ≤. Then there exist x♭, x♯ ∈ X such that:

▶ f(x♭) = x♭, f(x♯) = x♯

▶ ∀x ∈ X such that f(x) = x, x♭ ≤ x ≤ x♯

that is, x♭ and x♯ are respectively the greatest and least fixed points of f .

Perhaps one of the most important consequences of this theorem is that the
fixed points x♭ and x♯ exist at all. The existence of fixed points for a function
is non-trivial in general, but in this setting (f monotone and X a complete
lattice), the theorem tells us at least one exists. Note that while x♭ and x♯ need
to exist, they need not be distinct: it is valid for f to have just one fixed point.
For further reading on the Knaster-Tarski Fixed Point theorem, see [15].
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Chapter 3

Reasoning with Hypotheses

3.1 Kleene Algebra for Computer Programs

An important question to ask about Kleene algebra is: why? Why represent a
computer program in this formal system? What can it do to help us practically
reason about programs? Before addressing why, we will discuss how.

The goal is to use letters, words, and languages to reason about programs
algebraically. How can these things meaningfully represent computer programs?
We propose the following:

▶ a ∈ Σ represents an atomic program: e.g. “print(−)” or “n← n+ 1”

▶ ∅ represents abrupt program termination

▶ ε represents doing nothing, effectively “skip”, “wait”, etc.

▶ w ∈ Σ∗ is a list of atomic programs, like a program trace: a sequence of
actions taken by the computer one after the other

▶ L ∈ P(Σ∗) is a set of traces, akin to a program specification: “these are
the acceptable ways for our program to run”

Given this list of correspondences, the natural next question is: what is a
program? Naturally, it is a regular expression. Abstractly, composition (or ·)
such as a · b executes a, and then b. Choice a + b “does” either a or b. This
usually manifests as if x then a else b, where x is some condition. Lastly, the
Kleene star represents iteration: a∗ does a some number of times, effectively
while x do a for some condition x.

Notice that the regular expressions lack the ability to talk about the boolean
conditions governing the control flow: namely the condition x in both the if and
while statements. We will return to the discussion of Kleene algebra lacking in
expressiveness later in this section.

We can now return to the original question. Why represent a program in
Kleene algebra? Assume that we have a program that we have converted into

17



a regular expression that is meant to somehow “algebraically” represent the
program. Now what? What kind of reasoning can we do with this expression?

The short answer is, decide if it is equivalent to other programs. Say that
a programmer is approaching a problem, and writes some sloppy code that is
quite slow or resource-intensive. They do, however, find that what they have
written works in the way they intend it to. However, when they attempt to
optimise, refactor, and clean up the code, it suddenly stops working; or worse,
looks as though it still works, only to break later. How can that problem be
avoided? Ideally, the programmer would have some way to verify that the
original program and their revised version are equivalent.

Unfortunately, deciding if two programs are equivalent is undecidable, due
to a reduction from the halting problem [4]. Nevertheless, program equivalence
is a high-value problem, and it being undecidable in the general setting does not
mean there is nothing to be done. Below, we can see that the two (sub)programs
are equivalent, without knowing in any detail what they do:

...

1: if conditionA(n) then
2: n← n+ 1
3: operationB(n)
4: else
5: n← n+ 1
6: operationC(n)
7: end if

...

...

1: n← n+ 1
2: if conditionA(n) then
3: operationB(n)
4: else
5: operationC(n)
6: end if

...

That is, if one of these patterns appeared within a program, we know it can
be swapped out for the other without changing the behaviour of the program.
This is true regardless of the compiler, the programming language, the particular
functions and variables involved, and so on.

Many details have been stripped away in this representation, for example
what the conditionA is; but it is not necessary to know. Examining possible
traces of both programs, we see that for both there are only two:

▶ n← n+ 1

▶ operationB(n)

▶ n← n+ 1

▶ operationC(n)

To align this with our earlier proposal that we think of words as traces, and
languages as regular expressions, we would want regular expressions representing
these programs to be equivalent. This is the kind of reasoning that Kleene
algebra is used for. Suppose that we name some parts of our program like so:

▶ a refers to n← n+ 1
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▶ b refers to operationB

▶ c refers to operationC

then we can describe the equivalence above as an instantiation of the following,
familiar-looking principle:

ab+ ac = a(b+ c). (3.1)

As we mentioned to above, conditionA is not a part of the program description.
The syntax uses + to represent that either one thing or the other will happen,
but says nothing about the conditions under which one or the other might
happen.

By representing real computer programs in this abstracted semantics, we
lose some meaning. However, we also gain the ability to decide equivalence in
the system KA described in section 2. Nonetheless, we should explore what this
loss of expressiveness looks like.

Example 3.1.
Consider the following program:

1: if a∧ ̸ a then
2: print(“yes”)
3: else
4: print(“no”)
5: end if

Obviously, the program will never print “yes”. However, using our current
conception of converting programs into regular expressions, we lack the ability
to show this fact. We would like to show that the above program is equivalent
to simply:

1: print(“no”)

However, if we let a refer to the atomic program print(“yes”) and b refer
to print(“no”), then the first program is a + b, and the second program is
b. These expressions are obviously not equivalent in the standard semantics of
Kleene algebra, and so by soundness KA cannot prove that they are equivalent.

Regardless, we would like to prove that these programs are equivalent, and
an obvious way to do so would be to factor the booleans used by if and while
statements into our represenations of programs. Kleene algebra by itself cannot
manage this; so we turn to adding such capabilities into Kleene algebra.

3.2 Extended Kleene Algebra

While Kleene algebra is a useful tool for reasoning about simple programs, it
(or rather, finite automata) lack expressive power. This has already been seen
just above in example 3.1, where we wished to show that two programs were
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equivalent, but Kleene algebra lacked the machinery to represent its structure
in enough detail to do so.

To fix this issue, we could use a more expressive model, for example a Turing
machine, but its extra expressivity also brings with it extreme computational
difficulty. An attractive approach, then, is to modify Kleene algebra, while
carefully maintaining its decidability, so it can be used to reason about a wider
class of computational situations. We will briefly discuss one such example now,
Kleene algebra with tests, or KAT [9]. KAT is a historically significant system,
but we will not cover it in detail, as a deep understanding of this particular
system is not necessary for the work of this thesis.

Kleene algebra with tests (KAT) distinguishes a subset of the alphabet’s
programs as tests. Tests can be thought of as programs that do not alter the
state of the program, only representing some sort of boolean check. If the
program a is a test, then running a means we check if a is true, and if it is,
continue, and if it is not, terminate immediately.

The following if statement:

if a then c else d

can be represented as:
ac+ ãd,

where ã is the negation of a, a test that returns true if and only if a does not.
We encourage the reader to think of a program in terms of its possible traces.
Here, if we run the if statement above, depending on if a is true of false, the
resulting run of the program will be a, c or ã, d. Without tests, this program
would ignore the condition a, and be represented by the expression c+ d. So as
we can see, KAT represents more of the program structure than KA can.

However, in order to reason about Kleene aglebra with tests, it will not be
enough to use just the axioms of Kleene algebra. For example, if a and b are
tests, then it is clear that:

ab = ba (3.2)

because there is no difference between checking the condition a first or checking
the condition b first. This rule is not true in normal Kleene algebra; but if we
know we are in the setting of Kleene algebra with tests, and a, b are tests, then
we know that (3.2) will always be true. If we know it will always be true, we
ought to take (3.2) as another axiom in our equational logic.

To restate, if we want to reason about programs where an assumption like
ab = ba always holds, we will need to find a different semantics to correspond to
such proofs. For example, the regular expression abc would normally be inter-
preted as the singleton set {abc}. Soundness and completeness of Kleene algebra
(theorem 2.22) tell us that any other regular expression that KA can prove is
equivalent to abc will also be interpreted as {abc}. If we adopt the assumption
ab = ba in our proofs, we will be able to prove the following equivalence:

KA+ (ab = ba) ⊢ abc = bac
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which our standard semantics of regular expressions does not support.
Our standard semantics of regular expressions were purely language-based

in that an expression corresponded to a set of words. KAT, on the other hand,
was originally proven to be complete for the semantics of guarded strings [11],
essentially strings of the form B1aB2bB3, where B1, B2, B3 are sets of tests, and
a and b are non-test programs. Sets are used because, as we remarked above,
concatenation of tests is commutative, and so any consecutive run of tests can
be executed in any order.

The guarded string semantics for KAT is undoubtedly useful, but developing
new semantics tailored for each new system is a tall task, that can indeed be
just as difficult as showing completeness. Recent work by Doumane et al. [2]
presents an operation on languages, called the “hypothesis closure”. Given a set
of hypotheses H, the hypothesis closure is a map H∗ : P(Σ∗)→ P(Σ∗) used to
define a semantics for the system KA+H:

J−KH := H∗(J−K).

In theorem 2 of [2], it is shown that these semantics are always sound in the
sense of 2.20, essentially by construction. In practice, this means that given
some Kleene algebra-based system like KAT, if we can formulate KAT’s extra
features in terms of extra assumptions, we obtain a sound semantics by default.
These assumptions are formally called hypotheses: statements like ab = ba that
act as extra axioms in the equational logic.

While many Kleene algebra-based systems like KAT have their own bespoke
semantics, that need not even be based on languages (regular or non) at all, this
strategy takes a unified approach: the semantics of an expression in KA + H
are determined purely from H. A later paper by Pous et al. [12] explored how
completeness results for KA+H systems could be re-proven using the hypothesis
closure; for example KAT in section 4.2. They even prove that KAT’s standard
“guarded string” semantics are equivalent to the new, hypothesis closure seman-
tics (section 4.1). The core strategy of the completeness proof was to construct
a “reduction” from KAT terms to standard Kleene algebra, and leverage KA’s
completeness to claim that KAT is complete as well. Unfortunately, design-
ing this reduction is non-trivial in general, and no general strategy for creating
one has been proposed. The objective of this thesis will be to propose such a
strategy.

We now proceed to formally define what is meant by hypotheses and hy-
pothesis closure.

3.3 Hypothesis Closure

Definition 3.2.
A hypothesis H is an inequation f ≥ e where f, e ∈ T (Σ) are regular expressions.
We call Kleene algebra extended by H the system resulting from taking the
axioms of KA along with H; we call this sytem KA+H.
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Remark 3.3.
While we have defined hypotheses as inequations, we consider equality hypothe-
ses as well by taking a pair of inequalities, for example f ≥ e and e ≥ f for
e = f .

Most work on hypotheses works with sets of hypotheses, not just one at a
time. However, generalising the work of this thesis to finite sets of hypotheses
does not change much, while resulting in much more notationally complex book-
keeping. In any case, there is already extensive work discussing the composition
and decomposition of sets of hypotheses. For example, [12] section 3 studies
reductions between hypotheses (where one set of hypotheses follows from an-
other), and [2] proposition 3 gives a method of decomposing closure under a set
of hypotheses into a sequence of closures.

Throughout the thesis, we will focus on a type of hypothesis that is both
simple to understand, and significant in literature: contraction. When we want
to reason with contraction, we will be taking the following as an extra axiom:

aa ≥ a

for some a ∈ Σ. In [6], Kappé et al. define and use contraction to show that
the system KAO is complete with respect to the language-based semantics J−K�,
which we would calculate as the hypothesis closure with respect to the hypoth-
esis aa ≥ a, for all programs a of a particular kind. Namely, those called (in
that system) observations, a variant of the tests that we saw earlier. We can
intuitively see why the hypothesis aa ≥ a is reasonable for observations: making
the same observation twice is contained in doing so just once.

Example 3.4.
If we want to reason about programs with observations, we know that aa ≥ a

will always be true if a is an observation. So what if we extend the axioms of KA
with the hypothesis aa ≥ a? Recall this inequation is equivalent to aa+a = aa.
Then we can prove:

aaaa∗ = aaa∗ = aa∗ (3.3)

and of course, looking to our standard semantics:

Jaaaa∗K = {an : n ≥ 3}
Jaa∗K = {an : n ≥ 1}

⇒ Jaaaa∗K ̸= Jaa∗K

So our (admittedly short) proof 3.3 is unsound for our standard semantics, J−K.
Indeed, we will need a new semantics for our proofs using the axioms of KA
with aa ≥ a added to be sound.

We now move to formally define the hypothesis closure. In [2] where it
was originally defined (definition 2), and in subsequent papers such as [12],
the hypothesis closure is defined directly. For the purposes of this thesis, we
will split that definition into two parts: first we define the function H, which

22



represents “one step” of the closure. Then we will define the closure operation
H∗, which is H applied repeatedly until it stabilises (potentially at infinity). In
[2], H is called ψ, and H∗

• is called clH . To begin, we will define H.

Definition 3.5.
Let H be a (finite) set of hypotheses of the form f ≥ e, and let L ∈ P(Σ∗) be
a language. The language hypothesis function of H is defined as:

H(L) := L ∪ {uwev : ∃f ≥ e ∈ H such that we ∈ JeK, and uJfKv ⊆ L}

This is an important definition and it is quite dense, so we take some time
to unpack it here. For the moment, we focus on just one hypothesis at a time.
Given a language L and a hypothesis f ≥ e, a word w is in H(L) if and only if
it is in L, or we can break the word into three subwords u,we, v that have the
following properties:

▶ w = uwev

▶ uJfKv ⊆ L, that is, for all wf ∈ JfK, uwfv ∈ L

▶ we ∈ JeK

To calculate the language hypothesis function of f ≥ e applied to a language
L, we take L as a starting point, and iterate through pairs of words u, v. For
each, we check if uJfKv ⊆ L; we will often call u, v a prefix/suffix pair for this
reason. If u, v are indeed such a pair of words, then the function will add in the
words of uJeKv, that is words of the form uwev where we ∈ JeK. Due to the flow
of this process, we will refer to f in this hypothesis as the assumption, and e as
the conclusion.

Example 3.6.
Take the hypothesis aa ≥ a, and consider the following language:

L := {aabaa, abcaabb}

if we apply H to this language, we will obtain:

H(L) = {aabaa, abaa, aaba, abcaabb, abcabb}.

How? Firstly, we look at our hypothesis. Both of the expressions in our hypoth-
esis represent just one word; we will call such expressions singleton expressions.
Working with singleton expressions makes the calculation of H much simpler,
because the condition of uJfKv ⊆ L is actually just u · aa · v ∈ L. With that in
mind, we need only look for anywhere in words that aa appears. For example,
if we take u = ε and v = baa, then we can see that:

u · aa · v = ε · aa · baa = aabaa ∈ L
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and so we conclude that u · a · v = abaa ∈ H(L). We apply similar reasoning to
find the other two new words in H(L):

aab · aa · ε 7→ aab · a · ε
abc · aa · bb 7→ abc · a · bb

Observe that in some sense there is more to do, after one application of H:
we can apply it again, and that would expand the language further, obtaining
the word aba. At that point, applying H would do nothing. That language
we obtain, when there is nothing more to do, is the language we are seeking to
define as the hypothesis closure.

Example 3.7.
Before proceeding, we treat more complex examples that foreshadow an impor-
tant distinction for later: the hypothesis aa ≥ a has only one word in both
its assumption language (aa) and its conclusion language (a); as stated above,
this makes the calculation of H much simpler. Let us now take the hypothesis
(a+ b)c ≥ d+ e, and consider the following language:

L1 := {dbce, dace}

To check if a word is in H(L1), we need a few things. Firstly, some choice of
prefix/suffix such that for every word in the assumption (a+ b)c, we can wrap
the word in the prefix and suffix, and the resulting word is in L1. In this case,
our assumption has only two words in it: ac and bc. We choose for our prefix
d, and for our suffix we choose e. Then, observing that both (d)(bc)(e) and
(d)(ac)(e) are in L1, we can conclude that for any word in the conclusion d+e,
we can wrap it with our prefix and suffix, and that word is in H(L1). Explicitly:

H(L1) = {dbce, dace, dde, dee}.

Now consider these two languages:

L2 := {dace} L3 := {dbce, eacd}

We can immediately say that H(L2) = L2, for the simple reason that our
assumption (a + b)c has two words in it, and this language has only one. No
matter what prefix/suffix pair u, v we choose, we can not have that both u ·ac ·v
and u · bc · v are in L2.

We will also see that H(L3) = L3, but for a more nuanced reason. While
we do have words with both bc and ac as infixes, we cannot make a consistent
choice for the prefix/suffix pair. By this we mean, if we choose u = d and v = e,
then:

(d)(bc)(e) ∈ L3 (d)(ac)(e) ̸∈ L3

On the other hand, if we try instead u = e and v = d:

(e)(bc)(d) ̸∈ L3 (e)(ac)(d) ∈ L3

We need to not only have all words from the assumption be infixes, we need to
be able to wrap them all in a fixed prefix and suffix for the hypothesis function
to add any new words.
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Notice that each time we find a prefix/suffix pair that allows H to add new
words, we include one new word for each of the words in the conclusion. One
can imagine how much more complex this whole process becomes when the
assumption can be much larger and more complex, even infinite.

By definition, H is inflationary: for all L, L ⊆ H(L). So, we can imagine that
by applying this function to language L over and over, H can be used to define
a “closure” operation on languages. To do so, we need to apply this function
to the language until it stabilises, or proceed infinitely if it does not, reaching
the answer “at infinity”. Recall the Knaster-Tarski fixed point theorem, which
guarantees a least fixed point for monotone functions on complete lattices, by
applying the function to the bottom element. We will use this theorem to
guarantee the existence of our desired closure.

Proposition 3.8.
Let H be a fixed hypothesis. H : P(Σ∗)→ P(Σ∗) is monotone with respect to
⊆.

Proof. Given languages L ⊆ L′, we want to show that H(L) ⊆ H(L′). Let
w ∈ H(L). If w ∈ L, then w ∈ L′, and so w ∈ H(L′), since L ⊆ L′, and H is
inflationary. On the other hand, if w ̸∈ L, then by the definition of H, it must
be that w = uwev where we ∈ JeK, and u, v are such that uJfKv ⊆ L. Therefore,
uJfKv ⊆ L′ as well, and so uwev ∈ H(L′). 完

Since H is monotone on (P(Σ∗),⊆), we can apply the Knaster-Tarski fixed
point theorem to learn that H must have a least fixed point, but for most
hypotheses, that will just be ∅. What we would really like to do is to start from
L, applying H until we reach a fixed point. To achieve this, we create a new
function, and build the language L into the function itself:

HL : P(Σ∗)→ P(Σ∗)

L′ 7→ L ∪H(L′)

By definition, there can be no fixed point of HL that is below L itself. We
can use this least fixed point to claim that our notion of using H for a closure
operation is meaningful:

Proposition 3.9.
Let H be a hypothesis, and L a language. There exists a least language (with
respect to ⊆) L such that:

1. L ⊆ L

2. H(L) = L

Proof. The objective is to show existence of a language L that is a fixed point
of H. We will aim to use the Knaster-Tarski fixed point theorem, as (with the
right strategy) it will give us exactly this L.

Firstly, we note that the lattice of languages over a given alphabet is com-
plete, as it is the power set of the set Σ∗. Now we will show that HL is

25



monotone. Let L1,L2 ∈ P(Σ∗) such that L1 ⊆ L2. We want to show that
HL(L1) ⊆ HL(L2). By definition:

HL(L1) = L ∪H(L1) ⊆ L ∪H(L2) = HL(L2)

where the middle inclusion follows by monotonicity of H. We can now apply
the Knaster-Tarski fixed point theorem to HL, and obtain its least fixed point:
a language L such that HL(L) = L, and the least such that this is the case.

Now we claim this is the desired language. By the definition of L and the
definition of HL:

L = HL(L) = L ∪H(L). (3.4)

Therefore, L ⊆ L, fulfilling condition (1). Now we need to show that H(L) = L
as well. Note that equation 3.4 also tells us that H(L) ⊆ L, and the inclusion
in the other direction follows because H is inflationary, fulfilling condition (2).

Lastly, we need to show that L is the least language such that these condi-
tions hold. Let L̂ be a language such that L ⊆ L̂ and H(L̂) = L̂. We want to
show that L ⊆ L̂. We need only observe that by definition, L is the least fixed
point of HL, and show that L̂ is also a fixed point of HL:

HL(L̂) = L ∪H(L̂) = L ∪ L̂ = L̂ 完

Now, we can use one of two equivalent definitions to finally define the desired
closure operator:

Definition 3.10.
Let H be a hypothesis. The language hypothesis closure H∗ of a language L is
the least language L such that L ⊆ L and H(L) = L. Alternately, it is the least
fixed point of the function:

HL : L′ 7→ L ∪H(L′)

We refer to [2] for proofs of many simple properties about this function, for
example that it is indeed a closure operator. For the purposes of this thesis, we
name some of the properties about H∗ that we will use, again from [2]:

Lemma 3.11.
Let H be a hypothesis of the form f ≥ e, and let L ∈ P(Σ∗) be arbitrary.

▶ L ⊆ H∗(L)

▶ H∗ is monotone

▶ u ·H(L) · v ⊆ H(uLv), for all u, v ∈ Σ∗

It is important to note that while the H function may stabilise in finitely
many steps, in general it will not.
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Example 3.12.
For example, with the hypothesis a ≥ aa, the function H will never stabilise on
the language {a}:

H0({a}) = {a, aa}
H1({a}) = {a, aa, aaa}
H2({a}) = {a, aa, aaa, aaaa}

...

With H∗ defined, we can now officially define the hypothesis closure seman-
tics we have been pursuing for much of this section:

Definition 3.13.
Let H be a hypothesis. We define the hypothesis closed semantics for a regular
expression r:

JrKH := H∗(JrK)

A hypothesis H is called complete if the proof system KA +H is complete
for the hypothesis closed semantics J−KH . That is, for all regular expressions
e, f :

JeKH = JfKH =⇒ KA+H ⊢ e = f

It is shown in [2] theorem 2 that for any set of hypotheses H, KA + H is
sound for the semantics J−KH . Now, to show completeness (if at all possible), it
is very effective to find a way to calculate the language H∗(JrK) for an arbitrary
regular expression r; this relates the semantics back to KA, and its completeness
can be extended to KA+H. For more detail, see section 5.1, and [12].

When endeavouring to define a transformation on regular expressions, a
fruitful approach is a construction on the automata that can then be converted
back into the desired regular expression. This will be the approach that we take.
So, we can at last state our objective in more detail:

Given a hypothesis H and a regular expression r, we will define
an operation that, when applied to an automaton accepting JrK,
produces an automaton that accepts JrKH .

Another way of phrasing the goal is that we will extend the hypothesis closure
operation to automata.

3.4 Examples of Automaton Closure

We now look at some examples to illustrate what we mean by extending hy-
pothesis closure to automata. We begin with a familiar example, contraction.

Example 3.14.
Let H := {aa ≥ a}. It is fairly straightforward to look at contraction and realise
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it as a transformation on automata: we want to take any instance of two a’s and
allow there to be just one, so we just look at any sequence of two a transitions
in the automaton and add an transition bridging the distance. Ostensibly, a
sort of “transitive closure”:

• • • =⇒ • • •a a a

a

a

Remark 3.15.
For any set of hypotheses, it is important to specify how the letters are being
quantified. As we see above for contraction, the hypothesis aa ≥ a by itself
applies only to the specific letter a ∈ Σ, and no others. On the other hand,
a “general” contraction is one such hypothesis for every letter in Σ, and this
would correspond to transitive closure across the automaton.

Example 3.16.
We now give more examples of hypotheses, and for each, we will informally
describe how to realise the closure as a transformation on automata. These
examples are meant to give the reader a sense of what we are doing: given a
hypothesis, discern how it can be realised on automata.

▶ Inflation: a ≥ aa

A dual to contraction: if a program executes a once, it can then execute
a again without affecting program behaviour. On automata, it is sort of
a half-measure to reflexive closure (see insertion, below) where any state
with an a arrow out of it must have a reflexive a arrow.

• • • =⇒ • • •a

a

a

Notice that the both the middle and rightmost states are unchanged, in
that they have no more outgoing transitions, because they have no outgo-
ing a transitions.

▶ Removal: a ≥ ε
The atomic program a can be removed from a program, and it will not
affect the semantics. On automata, each a arrow will have to “reflect
transitions”, meaning any transition valid in the image of an a arrow
must also be valid from the domain of the a arrow. Alternately, any a

transition can be “skipped”:

• • • =⇒ • • •a b a

ε

b

▶ Insertion: ε ≥ a.

The atomic program a can be inserted anywhere in a nonempty program.
Use of this hypothesis might correspond to the program a being labeled
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somehow unrelated structurally to those we care to reason about; for ex-
ample, inserting a print statement somewhere in the program, as pro-
grammers often do for debugging. In a literal sense this does change the
behaviour of the program, but maybe not in a way that we care about.
On automata, it will correspond to reflexive closure under the specified
letters.

• • • =⇒ • • •b c

a aa

b c

For each of the above hypotheses, we described a corresponding construction
on automata; but we relied heavily on intuition, and went mostly by eye for each.
We also did not formally verify that they are correct. How might we approach
this for a more complex hypothesis or set of hypotheses, and be sure we have
obtained a correct answer? This is the purpose that a general automaton closure
will serve.

3.5 The Objective: Automaton Closure

To review, it is an open problem how to compute a regular expression cor-
responding to the “hypothesis closure” semantics of a regular expression for
arbitrary sets of hypotheses. Working with automata to represent regular ex-
pressions is intuitive and effective, so that will be our approach.

As a result, we would like to generalise the “hypothesis closure” operation
defined on languages to automata as well. The result will be a construction on
automata:

H∗ : NA⇀ NA

where ⇀ indicates that the function is partial. Naturally we would like this
to be a total function, but as we will see, this is not possible. Chapter 5 is
primarily concerned with this problem.

Note that we are overloading notation: we have the language hypothesis
function H, which we used to define the language hypothesis closure function
H∗. We are now aiming to define an automaton hypothesis function H, and use
it to define an automaton hypothesis closure H∗.

Before describing the construction, let us be more explicit about the objec-
tive. We need to define what it means for H∗ to work as a construction on
automata. One possible condition, given that the motivation was simply to
compute the hypothesis closure of a regular expression, is the following:

lH∗(X )(x) = H∗(lX (x)) where X,x are such that: JrK = lX (x). (3.5)

This one is in some sense quite “economical”, as it focuses on a single state and
requests nothing of the others. For the purposes of just computing the closure
of an expression, such a condition would work; but in practice it will be difficult
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to generalise, as we will see in example 3.17. It will be easier to work with the
following condition which is ostensibly the same, but for all states in X , rather
than just one.

∀x ∈ X, lH∗(X )(x) = H∗(lX (x)). (3.6)

However, as we will discuss in section 4.18, we can actually do a bit better.
Notice that the condition 3.6 quantifies over all states in X, the state set of X ,
rather than the state set of the expanded automaton, H∗(X ). We are claiming
to define a hypothesis closure operation on automata, so a reasonable goal would
be that the languages of all states x in H∗(X ) are closed under the hypotheses.

∀x ∈ H∗(X ), lH∗(X )(x) = H(lH∗(X )(x)). (3.7)

This is in a sense a slightly weaker condition, as it only requires that the lan-
guages of all states be closed, not that those languages be the hypothesis closures
of the languages they had in X ; if given the hypothesis a ≥ b, the empty lan-
guage is closed under this hypothesis, so removing all transitions and accepting
states from an automaton would be a solution consistent with condition 3.7.

However, requiring a version of condition 3.6 for all states is not reasonable,
because if a state is in H∗(X ) and not in X , there is no “original” language to
compare its language in H∗(X ) to.

Example 3.17.
Consider the following automaton, and let H := aa ≥ a be a hypothesis.

x • • ⊚a a a

Now, the language accepted by the state x is:

lX (x) = {aaa}

it is straightforward to compute the language we want to make x accept in the
output automaton:

H∗(lX (x)) = H∗({aaa}) = {aaa, aa, a}

The following automata both adhere to condition (3.5):

x • • ⊚

⊚ ⊚

a

a

a a

a

x ⊚ ⊚ ⊚a a a

The state x in both of these automata accepts exactly H∗(lX (x)); so they could
both be valid outputs for condition (3.5). However, it is not at all clear how we
can generalise the strategies used to obtain these automata, nor how we can be
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sure those strategies will work on a more non-trivial automaton, such as this
one:

• • •
a,b

a

a

For the time being, we will set condition (3.6) as our goal. We will see,
however, that for our construction it will be sufficient to show that condition
(3.7) holds; see corollary 4.18.
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Chapter 4

Singleton Hypothesis
Closure, H∗•

To review, given a hypothesis H, the objective is to define a map on automata
H∗ : NA → NA to act as a “hypothesis closure” on automata. We will ap-
proach the construction by doing a simpler version first, for a restricted form of
hypothesis.

Definition 4.1.
Let H := f ≥ e be a hypothesis. We say that H is a singleton hypothesis if the
assumption f represents a singleton language. That is,

JfK = {wf}

for some word wf ∈ Σ∗.

The construction when working with a singleton hypothesis is simpler, and
we will call this version the singleton version of the construction, H∗

• .
Why is it worth separating the singleton case from the general case? A

counterexample can be seen in example 6.1, but intuitively: if f represents only
one word wf , then the closure of L is computed by finding every word w in the
language that has wf as a subword, so w = uwfv, and adding a new word uwev,
where we is any word in JeK. One can imagine why finding subwords across the
language, one word at a time, is simpler than finding prefix/suffix pairs that
must consider all words in L simultaneously.

In a similar fashion to how we defined H : P(Σ∗) → P(Σ∗) as a stepping
stone to defining H∗ : P(Σ∗)→ P(Σ∗), we will start by defining a construction
H• : NA→ NA that will serve as “one step” in the larger construction.

Now we informally describe what H• will do. For each state in the automa-
ton, we will check: should this state accept any more words than it currently
does? If not, we do not need to do anything, so we move on. If the state ought to
accept more words than it currently does, we will force it to do so, by “pasting”
an automaton onto it accepting the desired words.
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Example 4.2.
Let H := aa ≥ a. Consider the following (sub)automaton:

. . . x • • ⊚a a b

We can quickly observe that the state x accepts the word aab, and so according
to the hypothesis, ought to accept ab too. Meanwhile, the other three states
accept ab, b, and ε respectively, and so nothing needs to change for these states.
So how do we ensure x also accepts ab? We propose the following:

. . . x • • ⊚

• • ⊚

a

ε

a b

a b

This process of adding in the lower row of states and transitions, adding an
ε transition from x into the newly added states, is what we will come to call
“pasting”.

Remark 4.3.
Importantly, when we paste in the new automaton, we are adding new states:
this will mean more states that need to be checked. As a result, the construction
could operate on the initial set of states, add some new states, then loop over
the new states, add some new states, and proceed infinitely. We will offset
this problem by not considering newly added states in one application of H•,
considering only those that were there when it started.

Of course, we need to investigate the new states eventually, which will hap-
pen in subsequent application(s) of H•; and so still there is still significant risk
of non-termination. Indeed, we will not expect the construction to terminate
in a great deal of cases, but we defer any further comments on this topic to
chapter 5.

We begin by defining some important notions that will be central to the
work that follows: a generalised Brzozowski derivative, and automaton pasting.

4.1 Generalised Brzozowski Derivative

In chapter 2 we defined the Brzozowski derivative (definition 2.15), an opera-
tion on languages that can be used to check what words in a language have a
particular prefix. For that version, we only defined the derivative with respect
to a single word ; in this section we will expand the Brzozowski derivative so
that we can take a derivative with respect to languages as well.

Definition 4.4 (Generalised Brzozowski Derivative).
Let L,M be regular languages. The generalised Brzozowski derivative of L with
respect to M is defined:

M−1L :=
⋂

w∈M

w−1L = {v ∈ Σ∗ : wv ∈ L, for all w ∈M}
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as with the word-based Brzozowski derivative, we can also lift the definition to
regular expressions r, s:

s−1r := (JsK)−1JrK

We now want to ensure that this generalised form maintains some of the
nice properties that we introduced for standard Brzozowski derivatives:

Proposition 4.5.
Let L,M,N be regular languages.

1. M−1L is a regular language

2. it is decidable whether M−1L is empty

3. (M ·N)−1L = N−1(M−1L)

Proof. We again let L,M,N be regular languages.

1. Recall from lemma 2.5 that the intersection of finitely many regular lan-
guages is as well a regular language. To overcome the fact that M−1L is
defined as an infinite intersection, we will show that it is the intersection of
an at-most finite number of different languages. We will use Thompson’s
construction and proposition 2.17 for this purpose.

L is a regular language, so using Thompson’s construction there is a
pointed automaton (X , x0) such that L = lX (x0). Now using proposi-
tion 2.17 we can rewrite:

M−1L =M−1lX (x0) =
⋂

w∈M

w−1lX (x0)

=
⋂

w∈M

( ⋃
y∈δ(x0,w)

lX (y)

)

We will now argue that despite there being infinitely many words in Σ∗,
there are only finitely many values that the union:⋃

y∈δ(x0,w)

lX (y) (4.1)

can take. Of course, lX (y) is the language accepted by a state y in X , and
X is a finite automaton, so there are finitely many such languages; we also
note that all of these are regular. So given a word w, the union described
in (4.1) is the union of the languages for some finite number of states, even
if there are infinitely many words in M . Recall from proposition 2.5 that
the union of finitely many regular languages is also regular. Therefore,
the language in (4.1) is indeed regular.

We can identify each union of the form in (4.1) with a subset of X (namely
δ(x0, w)). Again because X is finite, there are finitely many such subsets
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possible: 2|X| many. Therefore, the intersection:

M−1L =
⋂

w∈M

( ⋃
y∈δ(x0,w)

lX (y)

)

is an intersection of finitely many regular languages, so it is itself regular.

2. Follows from part (1) of this lemma and decidability of KA (theorem 2.6).

3. We now want to prove that (M · N)−1L = N−1(M−1L). Again using
lemma 2.18, this is straightforward with some manipulation:

(M ·N)−1L = {v ∈ Σ∗ : ∀w ∈ (M ·N), wv ∈ L}
= {v ∈ Σ∗ : ∀w1 ∈M, ∀w2 ∈ N, (w1w2)v ∈ L}
= {v ∈ Σ∗ : ∀w2 ∈ N,

(
∀w1 ∈M,w1(w2v) ∈ L

)
}

= {v ∈ Σ∗ : ∀w2 ∈ N,w2v ∈M−1L}
= N−1(M−1L) 完

4.2 Automaton Pasting

Now we formalise the notion of automaton pasting. It will be our main tool for
expanding the language accepted by a state, and will be central to defining our
proposed construction.

Definition 4.6.
Let X be an automaton, and x ∈ X one of its states. Let (Y, y0) be a pointed
automaton. We define a pasting operation that produces a new automaton
X [x→ Y] := (X ′, δX ′ , νX ′) such that:

X ′ := X ⊔ Y

δX ′ := δX ⊔ δY ⊔ {x
ε→ y0}

νX ′ := νX ⊔ νY

We may also say that we “paste Y onto X at x” to refer to the automaton
X [x → Y], with no reference to y0 when it is clear from context. We also
introduce some convenient notations for doing multiple pastes onto the same
automaton: (

X [x→ Y]
)
[x′ → Y ′] := X [x→ Y, x′ → Y ′]

X [x→ Y1, x→ Y2, . . . x→ Yn] := X [x→ Y1, . . .Yn]
X [x1 → Y, x2 → Y, . . . xn → Y] := X [x1, . . . xn → Y]

Remark 4.7.
Recall that in Thompson’s construction (see [4] for details), when (recursively)
defining an automaton accepting the expression e · f , we would find automata
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accepting e and f , which we will call Ze and Zf , and define the automaton Ze·f
by putting epsilon transitions from the accepting states of Ze into the initial
state of Zf , and taking only Zf ’s accepting states (and not Ze’s) as accepting
in the new automaton.

Pasting is extremely similar, but it keeps all of the accepting states of both
X and Y. This has the effect of strictly expanding the language accepted by
states that are having automata pasted onto them.

Lemma 4.8.
Let X be an automaton, and x ∈ X one of its states. Let (Y, y0) be a pointed
automaton.

1. Pasting is inflationary with respect to ⊑ (def. 2.25):

X ⊑ X [x→ Y].

2. If an X [x→ Y] trace visits a state y in Y, then all states the trace visits
after y are also in Y. In particular, if a trace visits a state in Y, then it
ends in Y.

3. Let r be a regular expression, and let Zr be the output of Thompson’s
expression for r. Then:

lX [x→Zr](x) = lX (x) ∪ loopX (x) · JrK

where loopX (x) := {w ∈ Σ∗ : x ∈ δ(x,w)} is the set of all words such that
there is an X trace going from x to x.

4. Let x1, x2 ∈ X be X states, and Y1,Y2 be pointed automata. Then:

X [x1 → Y1, x2 → Y2] = X [x2 → Y2, x1 → Y1].

Proof. Let X = (X, δ, ν), X [x→ Y] = (X ′, δ′, ν′).

1. In order to show that X ⊑ X [x → Y], by lemma 2.26 it is sufficient to
show that X ⊆ X ′, ν ⊆ ν′, and for all x ∈ X, w ∈ Σ∗, δ(x,w) ⊆ δ′(x,w).
All three statements follow quite easily from the definition of pasting, as
each of X ′, δ′, and ν′ is defined as part of a disjoint union from X, δ, and
ν.

2. We consider the automaton X [x→ Y]. We can think of it as the disjoint

union of X and Y, with an ε transition x
ε→ y0 added. So we can observe

that this automaton has no transitions that begin at a state in Y and end
at a state in X . This means that if there is an X [x→ Y] trace that visits
a state y ∈ XY , each step after must follow a transition to another state
in Y.
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3. Recall that implicit in our notation is that the output of Thompson’s
construction for r is the pointed automaton (Zr, z0) such that:

lXr (z0) = JrK.

This automaton is pasted onto X at x, and we want to show that this
alters the language accepted by x in particular way; namely,

lX [x→Zr](x) = lX (x) ∪ JrK.

Let w ∈ lX [x→Zr](x). This means that there exists an accepting X [x→ Zr]
trace for w. If every state in the trace is a state in X , then similarly to
(2) of this lemma, we observe that the trace can not have traversed any
of the transitions that were newly added in the pasting operation (as they
all end at a state in Zr). This means that all of the states and transitions
in the trace were already in X , and the trace ends at an accepting state
in X . Therefore, in the case that all states in the trace were already in X ,
the trace must also be an accepting X trace, and therefore w ∈ lX (x).

On the other hand, if the trace for w visits any states in Zr, we know by
(2) of this lemma that the trace must then end at an accepting state z in
Zr. As we have observed, the only way to start in X and reach a state in
Zr is via the added transition x

ε→ z0. We break the trace into two pieces:
before it traverses this transition, and after. Let w = w1w2 such that:

x
w1→ x

ε→ z0
w2→ z

We observe that the latter half is simply an accepting Zr trace for w2.
This means that w2 ∈ JrK. On the other hand, the first half of the trace
goes from x to x, meaning that x ∈ δ(x,w), so by definition, w ∈ loopX (x).

4. The claim largely follows by commutativity of the disjoint union operation
on the constituent parts of the automata. We let X = (X, δ, ν), Y1 =
(Y1, δ1, ν1), and Y2 = (Y2, δ2, ν2). The state sets of MX[x1 → Y1, x2 →
Y2] and X [x2 → Y2, x1 → Y1] are defined as, respectively,

(X ⊔ Y1) ⊔ Y2 = (X ⊔ Y2) ⊔ Y1.

The situation is quite similar for the transitions and accepting states.

(δ ⊔ δ1) ⊔ δ2 = (δ ⊔ δ2) ⊔ δ1
(ν ⊔ ν1) ⊔ ν2 = (ν ⊔ ν2) ⊔ ν1 完

4.3 Definitions of H•, H
∗
•

Now we can move into defining the automaton closure operation. The operation
will, for each state in the automaton, check if the state needs to be altered, and
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if it does, paste an automaton onto the state. Otherwise, it does nothing to the
state. From here on, we will fix a singleton hypothesis H := f ≥ e.

We start by describing the process at a particular state: let X be an au-
tomaton, and fix a state x ∈ X. Now we want to check if this state needs to be
altered. We propose the condition:

f−1lX (x)
?
⊆ e−1lX (x). (4.2)

If this is the case, then we do nothing to x. We know this condition is decidable
by theorem 2.6. Recall by definition that in a hypothesis closed language, for
all u, v,

uJfKv ⊆ L ⇒ uJeKv ⊆ L. (4.3)

Condition 4.2 checks if the implication 4.3 holds “locally” (in that we ignore
the prefix u). If a word w is in f−1lX (x), it means that wfw ∈ lX (x), where
JfK = {wf}. Can we replace wf with any word from e? In other words, is
wew ∈ lX (x) for every we ∈ JeK?

As stated, if condition 4.2 is met, then (for now) there is nothing to do for
the state x and we move on. If it is false, however, we need to alter the state x,
extending its language. To achieve this, we let Z be the output of Thompson’s
construction for the regular expression JeK · f−1lX (x), and paste it onto X at x.

Now we will repeat this operation over all of the states in X.

Definition 4.9 (H•).
Let H := f ≥ e be a singleton hypothesis, and let X be an automaton. Let
x1, x2, . . . xn ∈ X be states of X such that for all i ≤ n,

f−1lX (xi) ̸⊆ e−1lX (xi).

Now let Zi be the output of Thompson’s construction for the regular language:

JeK · f−1lX (xi).

Then we define:
H•(X ) = X [x1 → Z1, . . . xn → Zn].

For a more algorithmic presentation, see figure 1.
In words, given an automaton X , we iterate through all of the states in X

doing the procedure at the beginning of the section, and propagate the results
in the automaton X ′. Importantly, we do not iterate through the states in X ′,
so newly added states are not treated in one application of H•.

Another important detail is that in both line 4 and line 5, we use lX (x), not
lX ′(x). In other words, the process applies to all states in X “simultaneously”,
not considering how the alterations it is making might affect the languages of
other states. Why define H• in this way? In short, to ensure that H• is well
defined, producing the same output regardless of what order we iterate through
the states. If we do not do this, the order that the states are visited does matter,
as the following example will show.
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Algorithm 1 H• is defined by the function AutCloseSingle.

1: function AutCloseSingle(f ≥ e,X )
2: X ′ ← X
3: for all x ∈ X do
4: if f−1lX (x) ̸⊆ e−1lX (x) then
5: Z ← regToAut(JeK · f−1lX (x))
6: X ′ ← X ′[x→ Z]
7: end if
8: end for
9: return X ′

10: end function

Example 4.10.
Let H := ba ≥ a, and consider the following automaton:

X := x1 x2 x3 ⊚b b a

We now calculate H•(X ), but will at each step use the new language obtained
in the prior step, contrary to how we defined the construction above. Now we
have to decide, which state do we look at first?

Suppose we visit x2 first. Then we calculate that it accepts the language
{ba}. So we have the Brzozowski derivatives:

f−1lX (x2) =(ba)−1{ba} = {ε}
e−1lX (x2) = (a)−1{ba} = ∅

Since {ε} ̸⊆ ∅, we will paste an automaton at x2. Namely, we have to paste on
the automaton for the regular expression a · ε = a, which we call Za:

X [x2 → Za] = x1 x2 x3 ⊚

• ⊚

b b

ε

a

a

(4.4)

Now we move on in 4.4, say we look to x1 next. We calculate that it accepts
the language {bba, ba}, giving the Brzozowski derivatives:

(ba)−1{bba, ba} = {ε}
(a)−1{bba, ba} = ∅

as was the case for x2, {ε} ̸⊆ ∅, so we have to operate on x1 as well. In fact, we
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have to paste on the same automaton, Za:

• ⊚

X [x2 → Za, x1 → Za] = x1 x2 x3 ⊚

• ⊚

a

ε

b b

ε

a

a

(4.5)

Here lies the problem: if we had chosen to visit x1 first, we would have found
its language to be {bba} (not {bba, ba}), and so we would have found that:

(ba)−1{bba} = ∅
(a)−1{bba} = ∅

In this case, we would have done nothing to x1. This means that depending on
if we had looked at x2 or x1 first, we have two potential output automata; (4.5),
with an automaton pasted onto x1, and (4.4), without.

We circumvent this problem by always considering the language of x1 as it
was before we did anything; specifically, by using lX (x1) rather than lX ′(x1) as
we did in 4.9. Therefore, the output for H• as we have defined it would be (4.4).

We now intend to use H• as the step for a closure operation, similar to how
we defined H on languages. In order for this to be meaningful, we first prove
that this function is inflationary.

Lemma 4.11.
H• is inflationary with respect to the order ⊑ on automata (def. 2.25). By
definition, this means it is also inflationary on languages.

Proof. Let X be an automaton. Then we want to show that X ⊑ H•(X ). By
lemma 2.26, it is sufficient to show that:

▶ XX ⊆ XY

▶ ∀x ∈ XX ,∀w ∈ Σ∗, δX (x,w) ⊆ δY(x,w)

▶ νX ⊆ νY

Let X be the state set of X , and we say that X is the state set for H•(X ).
We break down an application of H•: there is some subset of X which are

the states that are acted on, those states that have an automaton pasted to
them. We let x1, x2, . . . xn be these states, and Z1,Z2, . . .Zn be the automata
that are pasted onto them. Recall from lemma 4.8 that pasting is inflationary.
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So we reason:

X ⊑ X [x1 → Z1]

⊑ X [x1 → Z1, x2 → Z2]

· · ·
⊑ X [x1 → Z1, x2 → Z2, . . . xn → Zn] = H•(X )

Lemma 4.8 also proved that the order of x1, . . . xn is unimportant. So X ⊑
H•(X ), as desired. 完

H• is monotone as well, but the proof is quite involved, and the result will
follow nicely from one of our main results. See corollary 4.17 for details.

Now that we know H• is inflationary, we can use it to define our desired
closure operation. We define it in a way that should be reminiscent of our
definition of H∗ for languages:

Definition 4.12 (H∗
• ).

Let H be a singleton hypothesis and X an automaton such that there exists
some finite stabilisation point of H• on X ; that is, some n ∈ N such that:

Hn
• (X ) = Hn+1

• (X ).

Then the automaton singleton hypothesis closure H∗
• is defined:

H∗
• (X ) := Hn

• (X ).

In situations where H is a singleton hypothesis and H∗
• is defined, we will say

that H∗
• terminated on X .

Equivalently, the automaton singleton hypothesis closure is the least au-
tomaton (with respect to ⊑) X such that X ⊑ X and H•(X ) = X , if such an
automaton exists.

There is a key difference between this definition and that for hypothesis
closure of languages: we can not use Knaster-Tarski to guarantee it exists by
phrasing it as a least fixed point. While (as we stated above) H• is indeed
monotone, the lattice of finite automata is not complete: we can very easily
obtain non-finite (infinite) automata as the union of some set of finite automata,
for example an infinite disjoint union of singleton automata. Knaster-Tarski
only applies to complete lattices, so it cannot be used here. Indeed, H∗

• often
does not terminate, and should not do so: see example 5.3 and section 5.1 for
more details.

The fact that termination of H∗
• is not guaranteed reflects an important

fact about hypothesis closure, namely that it does not always produce a regular
language/finite automaton. The hypothesis closure operation produces is a
language, but not necessarily a regular one. Similarly, the closure operation on
automata will produce an automaton, but not necessarily a finite one. As we do
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not concern ourselves with infinite automata in this thesis, we simply defined
the operation partially.

With the closure operation defined, we still need to show that it works: in
the situations where it terminates, does it produce an automaton that is correct
according to the goal we set in section 3.5? Namely, does H∗

• correspond in a
meaningful way to the hypothesis closure operation on languages, H∗? As a
preview of that proof, the objective will be to show that applications of H• to
the automaton correspond to applications of H to the language.

Before moving to the proof, we work out some examples and justify some
decisions made in the definition of H•.

Example 4.13.
The reader might wonder why we reapply the construction to all states in the
automaton at every step, rather than only applying to the newly added states.
As it stands, we are likely doing a lot of redundant work. The reason for that
can already be seen in example 4.10. We recall the automaton used here:

X := x1 x2 x3 ⊚b b a

Let H := ba ≥ a, and we now calculate successive applications of H•; see
example 4.10 for details on how they were calculated.

H•(X ) = x1 x2 x3 ⊚

• ⊚

b b

ε

a

a

• ⊚

H2
• (X ) = x1 x2 x3 ⊚

• ⊚

a

ε
b b

ε

a

a

Notice that in the second application of H•, we needed to paste an automaton
to the state x1; despite the fact that it was already examined in the prior
application, and that it was determined then that it did not need to have an
automaton pasted to it. Therefore, we needed to check it again in this step, and
in general, we cannot assume that a state will not need an automaton pasted
to it simply because it was checked in a prior application of H•.

Example 4.14.
The reader may also wonder if, to solve the problem of “re-checking” states
we have already examined, we could keep track of which states have had an
automaton pasted to them, and so not have to check them again. For example,
in the automaton X given above in example 4.13, we did need to check x1 again
in the second application of H•, but we did not need to check x2, as it already
had an automaton pasted to it. Unfortunately, this does not work either. We
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can construct a counterexample by just “stacking” instances of the hypothesis
used in example 4.13.

• • ⊚

X := x1 x2 • • ⊚

a c

b

b b a d

Examining each state, we see that both x1 and x2 need an automaton pasted
to them, because they both accept a word beginning with ba. Pasting on the
appropriate automata:

• • ⊚

• • ⊚

H•(X ) = x1 x2 • • ⊚

• • ⊚

a c

a c
ε

b

b b

ε

a d

a d

We see that both states have an automaton pasted to them; we might at this
moment say that they are both “marked” and so no longer need to be checked.
Unfortunately, this is not the case either. The language accepted by x1 is now:

lH•(X )(x1) = {ac, bac, bbad, bad}

note that this language contains bad, but does not contain ad. Pasting on the
appropriate automaton finally gives us the correct output automaton:

• • ⊚

• • ⊚

H∗
• (X ) = H2

• (X ) = x1 x2 • • ⊚

• • ⊚

• • ⊚

a c

a c
ε

b

b

ε

b

ε

a d

a d

a d

We now proceed to the correctness proof of H∗
• .

4.4 Correctness proof

The construction H∗
• is a way to “close” an automaton with respect to a single-

ton hypothesis. Two important questions remain, however:

▶ In what cases will H∗
• terminate?
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▶ When it does terminate, does it produce a correct automaton?

For this section, we will focus on the latter question; discussion of the first
will come in chapter 5. To show that H∗

• produces a “correct” automaton, we
will show a correspondence between it and the closure operation H∗ defined for
languages. In other words, for all x ∈ X:

H∗(lX (x)) = lH∗
• (X )(x). (4.6)

Both the language closure and automaton closure are obtained by a possibly
infinite number of applications of an intermediary function, H and H• respec-
tively. We will prove an intermediary result, and the desired correspondence
(equation 4.6) will follow as a consequence. We make a stronger claim, that not
only are the end results of these closures the same, but they are also the same
at every intermediary step.

Theorem 4.15 (Singleton Correspondence).
Let H be a singleton hypothesis, and X an automaton. Then for all x ∈ X:

H(lX (x)) = lH•(X )(x).

Naturally, the function H on languages will feature heavily in this proof. We
refer the reader back to definition 3.10 for the details of its definition.

Proof. We will approach this proof by showing that each language is a subset
of the other. We begin with the “⊆” direction.

Let w ∈ H(lX (x)). If w ∈ lX (x), then w ∈ lH•(X )(x) as well, because H•
is inflationary on languages in its automaton, as discussed in lemma 4.11. So
we assume that w was newly added in the application of H, that is w ̸∈ lX (x).
Because H := f ≥ e, according to the definition of H on languages, w = uwev
where we ∈ JeK, and u, v are words such that uwfv ∈ lX (x) for some wf ∈ JfK.
However, because H is a singleton hypothesis, we will use wf to refer to the
singular word in JfK.

Therefore, there must be an X trace for the word uwfv that runs from x to
an accepting state z. We can decompose such a trace as follows:

x
u→ y1

wf→ y2
v→ z (4.7)

Now examining the sub-trace running from y1 to z, we see that this is an
accepting X trace for wfv and so:

wfv ∈ lX (y1)

⇒ v ∈ w−1
f lX (y1)

At the same time, because w = uwev ̸∈ lX (x), we can conclude:

wev ̸∈ lX (y1)

⇒ v ̸∈ w−1
e lX (y1)

⇒ v ̸∈ e−1lX (y1)

⇒ f−1lX (y1) = w−1
f lX (y1) ̸⊆ e−1lX (y1)
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Recall that this is precisely the condition for which H•(−) will paste in an
automaton at y1, if we run it on X . Formally, we can say that:

X ⊑ X [y1 → Z] ⊑ H•(X )

where Z is the output of Thompson’s construction for the regular expression
JeK · w−1

f lX (x). By the definition of automaton pasting, we know that the
following is an X [y1 → Z] trace:

y1
ε→ • we→ • v→ z

for any word we ∈ JeK. Since we ∈ JeK, we have that:

wev ∈ lX [y1→Z](y1)

⇒ uwev ∈ lX [y1→Z](x) (see trace 4.7)

⇒ uwev ∈ lH•(X )(x)

where the last line follows from the fact that X [y1 → Z] ⊑ H•(X ). From this
we conclude that w ∈ lH•(X )(x), as desired.

Now we proceed to the “⊇” direction. Let w ∈ lH•(X )(x). Similarly to the
other direction, if w ∈ lX (x), then w ∈ H(lX (x)) immediately because H is
inflationary (lem. 4.11). So we assume that w ̸∈ lX (x), so w is not accepted by
x in X . But, it is accepted by x in H•(X ). This means that all accepting traces
for w must traverse some transition(s) added by H•, and that there is at least
one such trace.

Recall from lemma 4.8 that if a trace visits a state in a pasted-on automaton,
it must also end in the pasted-on automaton; because the transitions added by
H• all end in pasted-on automata, we know that all accepting traces for w must
visit a state newly added by H•, and so also end in a newly added state.

Fixing some accepting trace of w on X , we know it must end at a state z that
was added by H•, meaning that it is an accepting state in one of the automata
that was pasted onto X . Let Z be the automaton that z is in, and y ∈ X be
the state onto which Z was pasted. Then by the definition of H•:

X ⊑ X [y → Z] ⊑ H•(X )

where (Z, z0) is the output of Thompson’s construction for JeK · w−1
f lX (y). So

we can dissect the trace, breaking down the word w such that w = uw′ and:

x
u→ y

ε→ z0
w′

→ z

is an X[y → Z] trace. In particular, w′ ∈ lZ(z0), and so by lemma 2.13, it must
be that w′ ∈ JeK · w−1

f lX (y). Therefore, we can decompose the word w′ = wev
such that we ∈ JeK and:

v ∈ (wf )
−1lX (y)

⇒ wfv ∈ lX (y)

⇒ uwfv ∈ lX (x)

⇒ uJeKv ⊆ H(lX (x))
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and because we ∈ JeK, we conclude that w = uwev ∈ H(lX (x)). 完

With the theorem proven, we can now use it to reach our ultimate goal: a
correspondence between the closure operations on language and automata, H∗

and H∗
• .

Corollary 4.16.
Let H be a singleton hypothesis, X an automaton with x ∈ X such that H∗

•
terminates on X . Then:

H∗(lX (x)) = lH∗
• (X )(x).

Proof. H∗
• terminates on X , meaning that there is some n ∈ N such that:

Hn
• (X ) = H∗

• (X ).

By theorem 4.15, we know that

H(lX (x)) = lH•(X )(x).

So it is straightforward to also conclude:

Hn(lX (x)) = Hn−1(lH•(X )(x))

= Hn−2(lH2
•(X )(x))

= · · ·
= lHn

• (X )(x) 完

It was mentioned in section 4.3 that it is possible to prove that H• is mono-
tone directly from definition, but it involves a fair amount of bookkeeping, and
was not necessary as we did not use Knaster-Tarski to define H∗

• . Nonetheless,
it follows nicely a result of theorem 4.15.

Corollary 4.17.
Let H be a singleton hypothesis; then H• is monotone.

Proof. Let X = (X, δ, ν) and Y = (Y, δ′, ν′) be automata such that X ⊑ Y.
Then we want to show that H•(X ) ⊑ H•(Y). Now for all x ∈ X:

lX (x) ⊆ lY(x) (def. 2.25)

⇒H(lX (x)) ⊆ H(lY(x)) (prop. 3.8)

⇒lH•(X )(x) ⊆ lH•(Y)(x) (thm. 4.15)

⇒H•(X ) ⊑ H•(Y) (def. 2.25) 完

As discussed in section 3.5, there are multiple criteria by which we could
judge that H∗

• succeeded, in that it produced the correct automaton. We revisit
one such criterion now, showing it follows from our existing result:
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Corollary 4.18.
Fix an automaton X , and a singleton hypothesis H := f ≥ e (with JfK = {wf})
such that H∗

• terminates on X . Then:

∀x ∈ H∗
• (X ), H(lH∗

• (X )(x)) = lH∗
• (X )(x).

that is, all languages in a hypothesis closed automaton are hypothesis closed.

Proof. Since H∗
• terminated on X , we know there is some finite n ∈ N such that:

Hn
• (X ) = H∗

• (X ).

Therefore, our objective is to show that, for every x ∈ H∗
• (X ),

H(lHn
• (X )(x)) = lHn

• (X )(x). (4.8)

This is quite straightforward to see, invoking theorem 4.15 and definition 4.12:

H(lHn
• (X )(x)) = lHn+1

• (X )(x)) = lHn
• (X )(x). 完

In this chapter we have covered the constructionH• and its closure operation
H∗

• , as well as correctness proofs in the cases where it terminates. In the next
chapter, we will discuss what termination cases are, why they are desirable, and
what we can do to improve the construction to create more such cases.

47



Chapter 5

Termination

In this section we discuss some corollaries of theorem 4.15, show how it can be
used for decidability and completeness proofs of Kleene algebra with hypotheses
in the case that it terminates, and present some strategies for growing the class
of hypotheses for which it can terminate.

5.1 Applications

Recall that the entire purpose of using Kleene algebra as a starting point was
to leverage its decidability (theorem 2.6) and completeness (theorem 2.22), and
enhance its expressiveness without losing those nice properties. Now that we
have proposed the construction H∗

• for automata, we discuss how to leverage
those properties to prove decidability and completeness, if we can show that H∗

•
terminates. These ideas are common throughout literature (for example in [5]
section 4), although they are not always explicitly stated. We incorporate them
here so as to form a coherent picture of how H∗

• can be effectively used.

Proposition 5.1.
Let e, f be regular expressions, and let H be a singleton hypothesis such that
H∗

• terminates for all input automata. Then it is decidable whether

JeKH = JfKH .

Proof. Note that by definition 3.13:

JeKH := H∗(JeK),

Now using Thompson’s construction we can obtain an automaton Xe with an
initial state xe such that:

lXe
(xe) = JeK.

By assumption H∗
• terminates for Xe, so by theorem 4.15 we have that:

H∗(JeK) = H∗(lXe
(xe)) = lH∗

• (Xe)(xe)
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and by Kleene’s theorem we can create a regular expression ē such that JēK =
lH∗

• (Xe)(xe), and therefore:
JēK = H∗(JeK).

Of course we can repeat this whole process to obtain a regular expression f̄ with
a similar result. Now, because Kleene algebra is decidable (thm. 2.6) we can
decide whether:

JeKH = H∗(JeK) = JēK ?
= Jf̄K = H∗(JfK) = JfKH

so we are done. 完

Note that, because KA′ is simply KA with extra axioms, the proof of ē = f̄
is also valid in KA′.

Proposition 5.2.
Given any regular expression r, let r̄ be its “hypothesis closed” regular expres-
sion as defined in the proof of theorem 5.1. Let e, f be regular expressions, and
let H be a singleton hypothesis such that H∗

• terminates for all input automata.
Now assume that KA+H ⊢ r = r̄ for every r. Then KA+H is complete.

Proof. Suppose that JeKH = JfKH . Then by completeness of KA (thm 2.22) and
our reasoning in the proof of proposition 5.1, we will have that:

KA ⊢ ē = f̄ .

Note that because KA +H is simply KA with more axioms, any proof valid in
KA is also valid in KA +H. As a result, we can use the KA proof of ē = f̄ in
KA+H as well:

KA+H ⊢ ē = f̄ .

On the other hand, we have assumed that:

KA+H ⊢ ē = e KA+H ⊢ f̄ = f.

So by transitivity, we have that:

KA+H ⊢ e = f

as desired. 完

With these results, it becomes clear why having that H∗
• terminates for all

input automata is a desirable situation.
Recall that in remark 4.3 we stated that we do not expect H∗

• to terminate
in general. This remains true, and theorem 4.15 illuminates why—we also do
not expect the language hypothesis function to stabilise in finitely many steps
in a great deal of cases.

It is important to say: there are many cases in which H∗
• should not ter-

minate. If H is a hypothesis that does not preserve regularity of the input
language, then we would not expect to be able to produce a finite automaton
accepting it, because if a language is non-regular, then there is no such finite
automaton.
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Example 5.3.
Let H := b ≥ aba, and let L := {b}. Then we can observe:

H0(L) = {b}
H1(L) = {b, aba}
H2(L) = {b, aba, aabaa}
· · ·

H∗(L) = {anban|n ∈ N}

anban is well-known to be a non-regular language; there is no finite automaton
that accepts it. So H∗

• will not terminate on any automaton with a state accept-
ing the language {b}, because that would produce a finite automaton accepting
a non-regular language.

Theorem 4.15 showed that one application of H on a language is equivalent
to one application of H• to automata. We can use this correspondence to relate
the conditions under which they will stabilise:

Corollary 5.4.
Let X be an automaton, and H := f ≥ e a singleton hypothesis such that H∗

•
terminates on X . Then the following are equivalent:

1. for every x ∈ X, there exists an nx ∈ N such that:

H∗(lX (x)) = Hnx(lX (x))

2. there exists an n ∈ N such that:

H∗
• (X ) = Hn

• (X )

Intuitively, this makes sense: each of the states in X has a language that will
be closed after some number of steps. There are finitely many, so we just take
the highest of these, and apply H• that many times. On the other hand, since
we proved in corollary 4.18 that all languages in a hypothesis-closed automaton
are closed, we know they were all closed after at most as many times as H• was
applied.

Proof. For the direction of 1 ⇒ 2, assume that 1 holds: for every x ∈ X there
is an nx ∈ N such that H∗(lX (x)) = Hnx(lX (x)). X is a finite automaton, so X
is a finite set, meaning there are finitely many nx; we let n be the largest one.
We now claim that:

H•(H
n
• (X )) = Hn

• (X ) (⋆)

from which we could conclude that:

H∗
• (X ) = Hn

• (X ).
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To prove (⋆), we observe that the languages of all states in X are hypothesis-
closed, because for every x, nx ≤ n and H has been applied to each language n
times. Formally, for every x ∈ X:

H(Hn(lX (x))) = H(Hn−nx(Hnx(lX (x))))

= H(Hn−nx(H∗(lX (x))))

= Hn−nx(H(H∗(lX (x))))

= Hn−nx(H∗(lX (x)))

= Hn−nx(Hnx(lX (x)))

= Hn(lX (x)) (5.1)

The question now is, is this sufficient to say that H∗
• has terminated? To check,

we want to know if applying H• will do anything to any state; if not, then it
has indeed terminated. Recalling the condition from definition 4.9, we want to
show that for every x ∈ Hn

• (X ),

f−1lHn
• (X )(x) ⊆ e−1lHn

• (X )(x).

Note that since f is assumed to be a singleton hypothesis, we have that JfK =
{wf} for some wf ∈ Σ∗. We rephrase the goal:

(wf )
−1lHn

• (X )(x) ⊆ (we)
−1lHn

• (X )(x), for every we ∈ JeK.

Let w ∈ (wf )
−1lHn

• (X )(x), and let we ∈ JeK arbitrary. Then:

wfw ∈ lHn
• (X )(x) (def. of Brzozowski derivative, 2.15)

⇒wfw ∈ Hn(lX (x)) (thm. 4.15)

⇒wew ∈ H
(
Hn(lX (x))

)
(def. of H, 3.5)

⇒wew ∈ Hn(lX (x)) (eq. 5.1)

⇒w ∈ (we)
−1Hn(lX (x)) (def. of Brzozowski derivative, 2.15)

⇒w ∈ (we)
−1lHn

• (X )(x) (thm 4.15)

Therefore, for each state x ∈ X, H• will not paste an automaton to it, meaning
that H∗

• has terminated, as desired.
As for the 2⇒ 1 direction, if H∗

• terminates in n steps, we know that for all
x ∈ H∗

• (X ) = Hn
• (X ):

H∗(lHn
• (X )(x)) = lHn

• (X )(x)

by corollary 4.18. In words, that in the hypothesis-closed automaton, the lan-
guages of all the states are also hypothesis-closed. We also know by theorem
4.15 that:

lHn
• (X )(x) = Hn(lX (x))

so for each x ∈ H∗
• (X ), we let nx := n, and we are done. 完
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We have remarked throughout the thesis that we do often do not expect
H∗

• to terminate, and that in general it should not. We already saw one such
example in example 5.3: a hypothesis that, when applied to a regular language,
can produce a non-regular language. Here we define an important notion for
discussing whenH∗

• will terminate: whether the hypothesis in question preserves
regularity, when used for closure.

Definition 5.5.
Let H be a hypothesis. If for all regular languages L, H(L) is also a regular
language, we say that H preserves regularity.

When defining the hypothesis closure operation for languages, it was not of
interest if, or when, it would terminate: the definition just used the stabilisation
point of H, when applied to the language L. The correspondence established
by 4.15, however, tells us that we can use termination of the H∗ on languages
to study termination of H∗

• on automata. We see now how this might be of
interest: if we know for a hypothesis H that H∗

• will always terminate, then we
know that H preserves regularity.

Remark 5.6.
Unfortunately, deciding whether a hypothesis preserves regularity is quite non-
trivial: in fact, in general, we believe it to be undecidable. The most likely
avenue of proof would use Greibach’s theorem, a result stating that it is unde-
cidable whether a context-free grammar generates a regular language. One can
easily construct a set of hypotheses to mimic a context-free grammar, such that
the closure under those hypotheses is the sentential form of the grammar. One
would then have to prove that the sentential forms of a grammar are regular
if and only if the context-free language of that grammar are regular, and also
that the hypothesis preserves regularity if and only if the sentential forms are
regular. Both are reasonable claims, but fall outside the scope of this thesis.

Nonetheless, we briefly sketch the conversion from grammar to hypotheses.
Let G be an arbitrary context-free grammar, with V the set of non-terminal
symbols, S ∈ V the initial symbol, and P be our set of production rules. We
now define a set of hypotheses for the alphabet V ∪ Σ:

{A ≥ w : A→ w is a rule in P}.

Now if we take the language {S} and close it under this set of hypotheses, we
obtain exactly the sentential forms of G.

It is still a significant avenue for future research to find classes of hypotheses
that can be guaranteed to preserve regularity. Indeed, there are already some
results in this direction: in 2014, Kozen and Mamouras [10] showed that a par-
ticular sub-class of hypotheses can be thought of as inverse context-free rewrite
systems, which are known to preserve regularity.

Remark 5.7.
Throughout the thesis up to this point, it has largely been left vague when we
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want H∗
• to terminate. Mostly, it has just been said that we would like it to

terminate “as often as possible”. We have also observed that H∗
• will clearly

not terminate when the hypothesis closure does not preserve regularity (example
5.3).

This raises the question of what the precise goal should be. We stated
earlier we set the goal that H∗

• should terminate if and only if the hypothesis
H preserves regularity. It is not clear if this is possible, in the sense that there
may be hypotheses that preserve regularity, but somehow cannot be captured
by a finite construction on automata. See 5.14 for more discussion.

However, there are also some situations where we would likeH∗
• to terminate,

but it does not.

Example 5.8.
Consider the following automaton:

X := x ⊚a

If we take the hypothesis H := a ≥ aa, we can deduce in a fairly straightforward
way the hypothesis closure of lX (x):

H∗(lX (x)) = H∗({a}) = {an : n > 0} = Jaa∗K

We can also observe that a finite solution to the automaton closure problem
(with no regard for how H• works) exists:

X ′ := x ⊚a

a

Unfortunately, however, H∗
• will proceed infinitely, never stabilising, as we will

now see. Looking at the languages of our states (and the relevant Brzozowski
derivatives):

f−1lX (x) = (a)−1{a} = {ε} f−1lX (⊚) = (a)−1{ε} = ∅
e−1lX (x) = (aa)−1{a} = ∅ e−1lX (⊚) = (aa)−1{ε} = ∅

From this we conclude that, since {ε} ̸⊆ ∅, we need to operate on x, but we
do not need to do anything for ⊚. So we paste the automaton representing the
language aa · ε = aa on at x:

H•(X ) = x ⊚

x1 x2 ⊚

a

ε
a a

The language of both ⊚ states is empty, so we know we will not have to operate
on those. Unfortunately, x still meets the condition to have an automaton
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pasted onto it:

lH•(X )(x) = {a, aa}
f−1lH•(X )(x) = (a)−1{a, aa} = {ε, a}
e−1lH•(X )(x) = (aa)−1{a, aa} = {ε}

and we can extrapolate to further applications of H•:

lH2
•(X )(x) = {a, aa, aaa}

f−1lH2
•(X )(x) = (a)−1{a, aa, aaa} = {ε, a, aa}

e−1lH2
•(X )(x) = (aa)−1{a, aa, aaa} = {ε, a}

No matter how many times we apply H•, we will keep needing to operate on x,
and new states (x1, x2 so far) will need to be operated on as well.

As an aside, the fact that H• will proceed without terminating on this
automaton also follows from theorem 4.15, by instead examining the hypoth-
esis language function H applied to the language {a}; we can observe that
Hn := {am : m ≤ n} which will never stabilise.

The state x initially only accepts a, and the desired outcome is that it accepts
aa∗, which is obviously regular. But as we can see, the construction operating
only on one application of the hypothesis at a time does not have the “foresight”
to know we could achieve the same goal in one step, by just adding a loop.

As such, we will look at a way to modify H∗
• so that there are more hypothe-

ses and automata for which it will terminate.

5.2 Saturation

We saw in example 5.8 a situation where we would like H∗
• to terminate, but

it does not. It is also not hard to imagine more examples of a similar type. If
applying the hypothesis to a language adds new words that themselves allow us
to apply the hypothesis again, the construction will proceed infinitely. This is
the case with a ≥ aa: given a word of the form uav, we add the word uaav,
from which we can produce uaaav, and then uaaaav, and so on, and so on...

Example 5.9.
In example 5.8 we took our hypothesis to be a ≥ aa. Imagine we had instead
taken our hypothesis to be a ≥ aaa∗. Then we can calculate:

H∗({a}) = {an|n > 0} = Jaa∗K

So a ≥ aaa∗ is another hypothesis that is equivalent to a ≥ aa in that they
produce the same language hypothesis closure, meaning that a solution to one
is a solution to the other so far as automaton closure is concerned. However,
we can observe that closing the automaton from example 5.8 under a ≥ aaa∗

actually terminates. Recall that the automaton was:

X := x ⊚a
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In our first application, we find that lX (⊚) = {ε} so we do nothing to it, and
we find that:

f−1lX (x) = (a)−1{a} = {ε}
e−1lX (x) = (aaa∗)−1{a} = ∅

So we paste the automaton representing aaa∗ · ε = aaa∗ onto x:

H•(X ) = x ⊚

• • ⊚

a

ε

a a

a

while not literally identical to the automaton we were aiming for, we now can
examine each of the states and find there is nothing to do: if a state accepts a,
it can accept up to infinitely many.

We briefly remark on why this is a worthwhile thing to do. Recall from
propositions 5.1 and 5.2 that guaranteeing H∗

• will terminate for any automaton
gives decidability of equality for J−KH , and is a meaningful step in the direction
of completeness of KA+H with respect to J−KH . So any situation for which we
can show that H∗

• will terminate is a significant result for the system KA+H.
When presented with a hypothesis, we would like to find a way that we

can find a corresponding equivalent hypothesis for which the automaton closure
will terminate, in general. What is the relationship between the hypothesis
a ≥ aa and the improved version we found, a ≥ aaa∗? Observe that if we let
H := a ≥ aa,

Jaaa∗K = H∗(JaaK)

that is, aaa∗ is the closure of H’s conclusion under H itself!

Definition 5.10.
For a hypothesis H := f ≥ e, the saturation of H is defined f ≥ e, where e is
a regular expression representing the (regular) language H∗(JeK). We will often
refer to the saturation of a hypotheses H as H.

We say that a hypothesis f ≥ e is saturated if H∗(JeK) = JeK.

We saw (in example 5.9) the hypothesis a ≥ aa, if it exists, which can be
represented by a construction on automata in a fairly straightforward way, but
for whom our proposed constructionH∗

• will generally not terminate. Saturation
can be a useful tool for finding another “equivalent” hypothesis for which H∗

•
will be able to terminate. In order for this strategy to be useful, however, we
need to specify what is meant by “equivalent” and show that the newly acquired
hypothesis will be equivalent to the old one.

Theorem 5.11 (Saturation Invariance).
Let H be a singleton hypothesis with saturation H, and let L be a regular
language. Then:

H∗(L) = H
∗
(L). (5.2)
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Proof. Let H = f ≥ e be our hypothesis, and H = f ≥ ē the saturation of H,
where ē is such that:

JēK = JeKH .

First, we set out to prove equation 5.2. For the “⊆” direction, note first that
by definition:

JeK ⊆ H∗(JeK) = JeKH = JēK. (5.3)

Now we simply claim that for every L, H(L) ⊆ H(L). Recall the definition of
H (def. 3.5) here:

H(L) := L ∪ {uwev : such that we ∈ JeK, and uJfKv ⊆ L}.

We also write the definition when we use H as our hypothesis:

H(L) := L ∪ {uwev : such that we ∈ JēK, and uJfKv ⊆ L}.

Suppose that w ∈ H(L). If w ∈ L then by definition w ∈ H(L). If not, then
w = uwev, such that we ∈ JeK and u, v are such that uJfKv ⊆ L. Now by (5.3),
JeK ⊆ JēK and so we ∈ JēK as well. Therefore, all of the conditions are met for
us to say that w = uwev ∈ H(L).

As for the “⊇” direction, let w ∈ H∗
(L). We observe that there is an n ∈ N

such that w ∈ Hn
(L). Our objective will be to replace each application of H

with a finite (but probably large) number of applications of H. To do this, we
claim that if w ∈ H(L), there exists some m ∈ N such that:

w ∈ Hm(L) ⊆ H∗(L).

So let w ∈ H(L). If w ∈ L, then as usual we are done because H is inflationary
by definition. So we assume w ̸∈ L, so w = uwēv such that:

1. wē ∈ JēK

2. u · JfK · v ⊆ L

Now recall that by definition:

JēK = JeKH = H∗(JeK).

Using item (1), we observe that there is some k ∈ N such that wē ∈ Hk(JeK).
Meanwhile item (2) tells us that u · JeK · v ⊆ H(L). Therefore:

u · JeK · v ⊆ H(L)

⇒ Hk(u · JeK · v) ⊆ Hk+1(L).

We can now apply lemma 3.11 to say that:

u ·H(JeK) · v ⊆ H(u · JeK · v)
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and combining these claims, we have that:

u ·Hk(JeK) · v ⊆ Hk(u · JeK · v) ⊆ Hk+1(L).

Now because wē ∈ Hk(JeK), we at last have that w = uwēv ∈ Hk+1(L), as
desired. 完

Remark 5.12.
An observant reader may notice that employing the strategy of saturating hy-
potheses before closing under them is circular, in a sense. One of our objectives
is to find a way to calculate the hypothesis closure of a regular expression in
terms of another regular expression. However, in order to saturate a hypothesis
f ≥ e, we need to be able to calculate the hypothesis closure of e as a regular
expression ē.

This is still a reduction in complexity, however. In relevant situations where
saturation can guarantee termination of H∗

• (such as H := a ≥ aa), we have
reduced the problem of computing the closure by H of an arbitrary regular
expression to that of computing the closure by H of the expression aa.

Intuition might lead us to believe that saturating hypotheses can guarantee
termination, maybe even in one step as was the case in example 5.9. Sadly, this
is not the case. We present one counterexample here:

Example 5.13.
Let H := abc ≥ d. We can observe informally that, similar to contraction, this
hypothesis can be realised on automata by seeking out the following situation
in the automaton:

• • • •a b c

and adding a transition:

• • • •a

d

b c

This is with no regard for the actual construction H∗
• ; we are observing that

our desired goal (automaton closure) can be achieved in a fairly straightforward
way, similar to the other hypotheses given in example 3.16. We now compare
this to how the given construction, H∗

• , fares. Observe that H is saturated:
closing d under H just gives d. Therefore, we are closing under a saturated
hypothesis. Now consider the following automaton:

X := ⊚ • • •a b c

ε

The state ⊚ accepts the language (abc)∗; let’s set the goal by finding the closure
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of this language:

J(abc)∗)K ={ε, abc, abcabc, abcabcabc, . . .}
H∗(J(abc)∗K) ={ε, abc, abcabc, . . .

d, dabc, dabcabc, . . .

dd, ddabc, . . .}
=J(abc+ d)∗K

However, as we try to close the corresponding automaton...

• ⊚ • • •

H•(X ) = ⊚ • • •

• ⊚ • • •

• ⊚ • • •

H2
• (X ) = ⊚ • • •

d a b c

εε

a b c

ε

d a b c

ε

d

ε

a b c

εε

a b c

ε

we can extrapolate and see that at each step, the newly added ⊚ state will need
to be operated, and so H∗

• will proceed without terminating.

Remark 5.14.
The fact that H∗

• does not terminate for the simple hypothesis abc ≥ d (as
seen in example 5.13) is unfortunate, particularly because we do not study any
further means of improving it in this thesis. This means that we must officially
abandon the goal mentioned in 5.7.

We now move on to the generalised version of H∗
• , for non-singleton hypothe-

ses.
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Chapter 6

General Hypothesis
Closure, H

Now that we have seen a simpler version of the construction for simpler hy-
potheses, we move on to the case where hypotheses f ≥ e can have both f, e
as arbitrary regular expressions. As a starting point, we should ask: why is the
construction we have just defined not sufficient?

Example 6.1.
Let H := a+ b ≥ c. Note that H is not a singleton hypothesis, since Ja+ bK =
{a, b}. Now consider the following automaton:

⊚

• • ⊚

X := x • • ⊚

⊚

a

d

e
g

g
b d

f

We now deduce that:

lX (x) = {gad, gae, gbd, gbf}

Recall from the definition of the language hypothesis function (definition 3.5)
that in order to calculate H(lX (x)), we have to find all pairs of words u, v ∈ Σ∗

such that:

Both u · a · v and u · b · v are in lX (x).

By observation, we see that the only such pair is g, d. Therefore,

H(lX (x)) = {gad, gae, gbd, gbf, gcd}.
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If we look again, we do not find any prefix/suffix pairs that 6.1 holds; so we
conclude that:

H∗(lX (x)) = {gad, gae, gbd, gbf, gcd}.

However, according to H•, there is nothing to do for this automaton. Recall
that we are checking, for each state y ∈ X:

f−1lX (y)
?
⊆ e−1lX (y)

f−1lX (y) =
⋂

w∈JfK

w−1lX (y) (6.1)

= (a+ b)−1lX (y)

= (a)−1lX (y) ∩ (b)−1lX (y)

e−1lX (y) = (c)−1lX (y)

It is straightforward to check that for all of the states, both of these derivatives
are empty; meaning that:

H•(X ) = X ⇒ H∗
• (X ) = X .

As we can see, this violates the condition we set for H•’s correctness:

lH∗
• (X )(x) = lX (x) ̸= {gad, gae, gbd, gbf, gcd} = H∗(lX (x)).

So our construction H• will not be sufficient for this situation. The reason is
that the states from which the a and b transitions originate are separate (despite
being reached using the same prefix), and H• will not operate on either. We
would like for it to operate on x, but for it to do that, it would have to adopt the
prefix g as part of the Brzozowski derivative it uses to decide if it will operate
on a state or not.

The reason that this is a problem now, and not with singleton hypotheses,
can be seen in (6.1) above. In the case where H is a singleton hypothesis, JfK
is a singleton, and so the intersection in f−1lX (y) will always be just one state.
With us allowing JfK to have more than one word in it, this intersection can be
non-trivial.

A further reason for the problem is that we are dealing with non-deterministic
automata; we could of course require determinism, or even just determinise be-
fore starting, but every application of the construction introduces (by design)
a great deal of non-determinism. One could determinise after every step, but
that would make the continuity between states much harder to track as the
construction proceeded.

In this section, we will define and verify a construction H : NA ⇀ NA on
automata, for general hypotheses. We will define H using H• as a foundation,
adding machinery to deal with the problem of prefixes discussed above.
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6.1 Bounded Prefixes with ∼X ,x
We have established that the construction has to somehow account for arbitrary
prefix words when closing a state in an automaton. However, words are of
unbounded length: if we naively check all possible prefixes, our construction
will never terminate. Therefore, we need a way to bound the words that are
necessary to check. To this end, we will define an equivalence relation:

Definition 6.2.
Given an automaton X and a state x ∈ X, we define an equivalence relation
∼X ,x ⊆ Σ∗ × Σ∗ on words as follows:

w ∼X ,x w
′ ⇔ δ(x,w) = δ(x,w′)

It is straightforward to observe that ∼X ,x is an equivalence relation, because
it is based on the equality of δ(x,−). Intuitively, two words are equivalent under
this relation if the set of states they can reach from x in X is the same. The
objective will be to show that if two words are equivalent in this way, then we
can regard them as equivalent with respect to the construction; and that there
are only finitely many equivalence classes to check.

Lemma 6.3.
Let X be an automaton, with x ∈ X, and let w ∈ Σ∗ be a word.

1. [w]X ,x is a regular language.

2. [w]X ,x contains a word w′ such that |w′| ≤ 2|X|.

3. if w ∼X ,x w
′, then w ∈ lX (x) if and only if w′ ∈ lX (x).

4. if w ∼X ,x w
′, w−1lX (x) = (w′)−1lX (x)

Proof. Let X be an automaton, x ∈ X, and w ∈ Σ∗. Let X ′, with state set
X ′, be the result of determinising X according to the power set construction,
covered in theorem 2.11. Note that this means that X ′ = P(X).

1. All sets of states in X correspond to a single state in X ′, so in particular
δ(x,w) corresponds to a state in X ′. Alter X ′ so that this state is the
only accepting state. We claim the state {x} in this (finite) automaton
accepts exactly [w]X ,x, and if that is indeed that case, by definition it is a
regular language.

Let w′ ∈ [w]X ,x. Then by definition, δ′(x,w′) will be the state corre-
sponding to δ(x,w′) ⊆ X. Since δ(x,w′) = δ(x,w), this is exactly the one
accepting state of X ′, so we are done.

2. Let δ and δ′ be the respective transition functions of X , X ′. We want
to show that there is some word w♭ of length at most 2|X| such that
δ(x,w♭) = δ(x,w). Then since X ′ has one state for each set of states in
X , |X ′| = 2|X|.
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Now because X ′ is a deterministic automaton, we know that δ′(x,w) is a
single state, xw ∈ X ′. Again by determinism, we now that there is exactly
one X ′ trace for w, going from x to xw. We reasoned that X ′ has 2|X|

states, so this trace cannot visit more than that many unique states in
this trace.

Of course if |w| ≤ 2|X| we are done, so assuming that |w| > 2|X|, we can
conclude that the trace must visit more than 2|X| many states, meaning
that it visit some state more than once. In other words, we can dissect
the trace:

x
w0→ x′

w1→ x′
w2→ xw

where |w1| > 0. Note that this means that |w0w2| < |w|. If |w0w2| ≤ 2|X|,
then we are done, otherwise we repeat this argument again until we obtain
a word of length less than 2|X|, which we call w♭. Then we have:

δ′(x,w♭) = xw = δ′(x,w) ⇒ δ(x,w♭) = δ(x,w) ⇒ w♭ ∼X ,x w.

3. We know by definition that w ∈ lX (x) if and only if there is some accepting
state z ∈ X such that z ∈ δ(x,w). Of course because δ(x,w) = δ(x,w′),
we also know that z ∈ δ(x,w′), and so w′ ∈ lX (x) as well.

4. We can prove this claim by simple manipulation:

w−1lX (x) = {v ∈ Σ∗ : wv ∈ lX (x)}
= {v ∈ Σ∗ : δ(x,wv) ∩ ν ̸= ∅}
= {v ∈ Σ∗ : δ(x,w′v) ∩ ν ̸= ∅}
= {v ∈ Σ∗ : w′v ∈ lX (x)}
= (w′)−1lX (x) 完

Remark 6.4.
This equivalence relation is, in effect, the same one that is used in the Myhill-
Nerode theorem. While that relation is defined for words on deterministic au-
tomaton, we would obtain the same thing by determinising X first. We do not
explore this relationship here, but mention it because the fact that ∼X ,x has
finitely many equivalence classes may be familiar to the reader that has studied
automaton theory.

The reason that we are interested in this equivalence relation, and its equiv-
alence classes, is that we need a way to bound one step of the construction. The
language closure definition uses arbitrary words u as prefixes; naively, we would
need to attempt to paste an automaton for every word, which would obviously
never terminate.

Instead of doing that, we claim it will be sufficient to just iterate through
the equivalence classes of ∼X ,x. We claim that doing so is sufficient to obtain
an equivalent result, we have a constructive way of doing so, and it will always
terminate. To show this, we need to prove some facts about the equivalence
relation:
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Lemma 6.5.
Given a state x in an automaton X , the following holds for every w ∈ Σ∗:

w−1lX (x) ⊆ ([w]X ,x)
−1lX (x)

Proof. Let u ∈ w−1lX (x) for some w, u, lX (x). By definition, wu ∈ lX (x). We
wish to show that u ∈ [w]−1

X ,xlX (x), recalling from definition 4.4 that:

[w]−1
X ,xlX (x) :=

⋂
v∈[w]X ,x

v−1lX (x).

So to show that u is in this set, we have to show that u ∈ v−1lX (x) for every
v ∈ [w]X ,x. Let v ∈ [w]X ,x arbitrary. By definition,

δ(x, v) = δ(x,w).

Since wu ∈ lX (x), take an accepting trace, and let y be the state such that

x
w→ y

u→ ⊚. Note that y ∈ δ(x,w) = δ(x, v), so the following:

x
v→ y

u→ ⊚.

is an accepting X trace for vu. By definition, we can conclude:

vu ∈ lX (x)

u ∈ v−1lX (x)

u ∈ [w]−1
X ,xlX (x) 完

6.2 Definitions of H,H∗

We now set out to define the construction H∗ : NA ⇀ NA on automata, which
will be a generalisation of the construction H∗

• proposed earlier (definition 4.12).
The form of the construction will be the same: for each state we will paste
automata to it so it accepts more words. However, in H• we pasted either zero
or one automaton to each state. This time, we will need to paste somewhere
from none to 2|X| many, for each state; this further highlights why we separate
the general case from the singleton case: it is orders of magnitude more complex.

As before, we focus at first on the process for just one state. Take the
automaton X , and some arbitrary state x ∈ X. We now check for every word u
such that |u| ≤ 2|X|:

([u]X ,x · JfK)−1lX (x)
?
⊆ ([u]X ,x · JeK)−1lX (x) (6.2)

If this is the case, there are no words to be added to x with prefix u, and we
move onto the next word. Decidability of this condition follows from lemma 2.6,
by checking if:

([u]X ,x · JeK)−1lX (x) \ ([u]X ,x · JfK)−1lX (x)
?
= ∅
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If condition 6.2 does not apply, then we need to expand the language of x by
some words with prefix u. Namely, we need to take words of the form u′ ·wf · v
and add words of form u′ ·we · v, where u′ is some word in [u]X ,x, wf ∈ JfK, and
we ∈ JeK. To do this we take an automaton representing the language:

[u]X ,x · JeK · ((u · JfK)−1lX (x))

and paste it onto X at x.

Remark 6.6.
Our decision to iterate through every word of length less than 2|X| is not strictly
necessary: many of those words will be in the same equivalence class with respect
to ∼X ,x. In reality, since there can be no more than 2|X| equivalence classes, no
more than that many words need to be iterated through, in theory.

It is not the focus of this thesis to focus on such optimisations. For the time
being, the main concern is that there is a bound at all, making the definition
of H possible and guaranteed to terminate.

Now we move to the formal definition, for operating on all states at the
same time. All of the same counterexamples that motivate our “simultaneous”
treatment of states from the singleton case (examples 4.10, 4.13, 4.14) still apply
here.

Definition 6.7.
In what follows, the set Σ∗

2|X| refers to the set of all words that are of length

at most 2|X|. Let H be a hypothesis, and let X be an automaton. Let
x1, x2, . . . xn ∈ X be the states of X so that, for each i ≤ n, there is a nonempty
list of words ui,1, ui,2, . . . ui,mi

∈ Σ∗
2|X| such that for each j ≤ mi:

([ui,j ]X ,xi
· JfK)−1lX (xi) ̸⊆ ([ui,j ]X ,xi

· JeK)−1lX (xi).

Now let Zi,j be the output of Thompson’s construction for the regular language:

[ui,j ]X ,xi
· JeK · ((ui,j · JfK)−1lX (xi))

Then we define:

H(X ) = X [x1 → Z1,1,Z1,2, . . .Z1,m1
,

x2 → Z2,1,Z2,2, . . .Z2,m2
,

· · ·
xn → Zn,1,Zn,2, . . .Zn,mn

]

This definition is quite symbol-dense, so as before, we also provide a pseu-
docode presentation in figure 2.

As was the case for H•, this construction has two main constituent parts:
the condition, and the automaton to be pasted. These are naturally phrased in
exactly the form they will need to be in for the correctness proof, and so it will
become more apparent there why these particulars were chosen.
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Algorithm 2 H is defined by the function AutClose.

1: function AutClose(f ≥ e,X)
2: X ′ ← X
3: for all x ∈ X do
4: for all u ∈ Σ∗

2|X| do
5: if ([u]X ,x · JfK)−1lX (x) ̸⊆ ([u]X ,x · JeK)−1lX (x) then
6: Z ← regToAut([u]X ,x · JeK · (u · JfK)−1lX (x))
7: X ′ ← X ′[x→ Z]
8: end if
9: end for

10: end for
11: return X ′

12: end function

The main (structural) difference from the definition of H• is that there is an
extra iterative wrapper around our core automaton-pasting operation. Namely,
for each state, we test out every word in Σ∗

2|X| as a possible prefix.
As we did for H∗

• in definition 4.12), we will once again define the automaton
closure operation H∗ as the stabilisation point of the function H applied to our
input automaton, if such a point exists. First, however, we will prove that H is
inflationary.

Lemma 6.8.
H is inflationary on automata, with respect to the order ⊑. That is, for some
automaton X ,

X ⊑ H(X ).

Proof. Recall from lemma 4.8 that the pasting operation is inflationary. There-
fore:

X ⊑ X [x1 → Z1,1]

⊑ X [x1 → Z1,1,Z1,2]

⊑ · · ·
⊑ X [x1 → Z1,1,Z1,2, . . .Z1,m1 ,

x2 → Z2,1,Z2,2, . . .Z2,m2 ,

· · ·
xn → Zn,1,Zn,2, . . .Zn,mn

] = H(X ) 完

Now we can at last present the definition of H∗ on automata, which will
naturally look very similar to the definition of H∗

• (definition 4.12).

Definition 6.9.
Let H be a hypothesis and X an automaton such that there exists some finite
stabilisation point of H on X ; that is, some n ∈ N such that:

Hn(X ) = Hn+1(X ).
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Then the automaton hypothesis closure H∗ is defined:

H∗(X ) := Hn(X ).

In situations where H is a hypothesis and H∗ is defined, we will say that H∗

terminated on X .
Equivalently, the automaton hypothesis closure is the least automaton (with

respect to ⊑) X such that X ⊑ X and H(X ) = X , if such an automaton exists.

We now return to the problematic automaton seen in example 6.1, to see
how the newly defined H fares.

Example 6.10.
Recall the automaton given in 6.1:

⊚

• • ⊚

X := x • • ⊚

⊚

a

d

e
g

g
b d

f

We adopt the hypothesis H := a + b ≥ c, and compute H(X ). We iterate
through all of the states, seeing if there is any prefix u such that the condition:

([u]X ,x · JfK)−1lX (x) ̸⊆ ([u]X ,x · JeK)−1lX (x). (6.3)

from the definition of H (def. 6.7) is met. It is clear that for any state other
than x, this will not be the case, because none of them have both a and b in
words of their languages. While not sufficient, that is absolutely necessary for
condition 6.3 to be met. On the other hand, with x, can make the choice of the
prefix g; we observe that [g]X ,x = {g} and see that:

([u]X ,x · JfK)−1lX (x) = ([g]X ,x · {a, b})−1({gad, gae, gbd, gbf})
= ({ga, gb})−1({gad, gae, gbd, gbf})
= {d}

([u]X ,x · JeK)−1lX (x) = ([g]X ,x · {c})−1({gad, gae, gbd, gbf})
= ∅

We can now observe that condition 6.3 is met, and so we have to paste an
automaton onto x for the prefix u. We call this automaton Z, and it is the
output of Thompson’s construction for the regular language:

[u]X ,x · JeK · ((u · JfK)−1lX (x)) = {g} · {c} · ((g · (a+ b))−1({gad, gae, gbd, gbf})
= {gcd} (6.4)
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This automaton is quite simple:

Z := • • • ⊚
g c d

Notice that in equation 6.4, when calculating the regular expression to create
Z, the words with e and f are ignored, because they are not invariant of every
word in the assumption: d is in a word after both a and b, but each of e and f

is only in a word after one of them. This was not something we had to worry
about in the singleton hypothesis version, but here we need to ensure we are
only including the suffixes that are available from every state reachable by an
assumption-word (in this case a and b).

At last, we paste Z onto x and obtain the output automaton:

⊚

• • ⊚

H(X ) := x • • ⊚

⊚

• • • ⊚

a

d

e
g

g

ε

b d

f

g c d

We can then look through each state of this automaton, and find that for each,
there is no prefix such that condition 6.3 is met. We can similarly observe this
by finding that the language of each state is hypothesis closed with respect to
H; so indeed H∗(X ) = H(X ).

6.3 Correctness Proof

The correctness proof for this version, much like for the singleton case, will
depend on showing that the intermediary function H on languages corresponds
to the intermediary function H on automata.

Theorem 6.11 (General Correspondence).
Let H be a hypothesis, and X an automaton. Then for all x ∈ X:

H(lX (x)) = lH(X )(x).

Our approach will be broadly the same as it was for theorem 4.15, and we
highly recommend that the reader familiarise themselves with the proof of that
result before approaching this proof. Most of the focus in this proof will go to
what is new, compared to that proof: dealing with arbitrary prefixes u.
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Proof. We begin with the “⊆” direction. Let w ∈ H(lX (x)) be newly added
in the application of H, because if not, then w ∈ lX (x), and H is inflationary
(lemma 6.8), so w ∈ lH(X )(x).

Now since w was newly added to the language by H, by definition 3.5,
w = uwev where we ∈ JeK and u, v are such that u · JfK · v ⊆ lX (x). Therefore:

u · wf · v ∈ lX (x) for all wf ∈ JfK

⇒ wf · v ∈ u−1lX (x) for all wf ∈ JfK

⇒ v ∈ (wf )
−1

(
u−1lX (x)

)
for all wf ∈ JfK

⇒ v ∈ f−1
(
u−1lX (x)

)
= (u · JfK)−1lX (x) (6.5)

On the other hand, since w was newly added by H, we know that:

w = u · we · v ̸∈ lX (x)

⇒ we · v ̸∈ u−1lX (x)

⇒ v ̸∈ (we)
−1

(
u−1lX (x)

)
⇒ v ̸∈ e−1

(
u−1lX (x)

)
= (u · JeK)−1lX (x)

From these two facts, we can conclude that:

([u]X ,x · JfK)−1lX (x) ̸⊆ ([u]X ,x · JeK)−1lX (x). (6.6)

This is nearly the condition for which H will paste an automaton onto x for
the prefix u. The missing piece is that u here is not guaranteed to be of length
at most 2|X|. We argue, however, that (6.6) implies the condition we desire.
Due to lemma 6.3 item (2), the equivalence class [u]X ,x must contain some u♭

of length at most 2|X| such that u ∼X ,x u
♭. Therefore, [u]X ,x = [u♭]X ,x , so we

have:
([u♭]X ,x · JfK)−1lX (x) ̸⊆ ([u♭]X ,x · JeK)−1lX (x).

Due to the fact that u♭ ∈ Σ∗
2|X| , this is now exactly the condition for which H

will paste an automaton to onto x with prefix u. Namely, we know that:

X ⊑ X [x→ Z] ⊑ H(X )

where Z is the pointed automaton produced by Thompson’s construction for
the regular expression:

[u♭]X ,x · JeK · ((u♭ · JfK)−1lX (x)).

We now argue that w ∈ lX [x→Z](x), from which (by the definition of ⊑) we
would know that w ∈ lH(X )(x), which is the ultimate goal. In a similar fashion
to the proof of theorem 4.15, we deduce that by the definition of automaton
pasting, the following is an X [x→ Z] trace:

x
ε→ • u→ • we→ • v→ z

where z is an accepting state in Z. We know this because:
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▶ u ∼X ,x u
♭

▶ we ∈ JeK

▶ v ∈ (u · JfK)−1lX (x) = (u♭ · JfK)−1lX (x)

where the final equality follows by lemma 6.3 item (4). Now that we have finally
established the existence of the above trace, we can immediately conclude that
w = uwev has an accepting X [x→ Z] trace, meaning that w ∈ lX [x→Z](x) and
ultimately that w ∈ lH(X )(x), as desired.

Now for the “⊇” direction, we want to show that:

H(lX (x)) ⊇ lH(X )(x).

If w ∈ lX (x), similarly to the other direction we are done because H is infla-
tionary. So let w be such that it is not accepted by x in X, but is by x in H(X ).
Then we can observe that all accepting H(X ) traces for w cannot be traces in
X, and so they all must traverse some transition that was newly added by H.
So by lemma 4.8, we know that all accepting H(X ) traces must at some point
traverse a transition leaving X , and end at a state newly added by H.

We now fix one such trace. Let z be the accepting state that is reached,
which we know is an accepting state in a pointed automaton (Z, z0) that was
pasted onto a state y ∈ X for some prefix u♯. We can now decompose this trace
as follows, such that w = u0u

♭wev:

x
u0→ y

ε→ z0
u♭wev→ z

By lemma 2.13, we can also say the following about (Z, z0):

lX (z0) = [u♯]X ,y · JeK · ((u♯ · JfK)−1lX (y)).

As a result, we can conclude that w′ ∈ [u♯]X ,y · JeK · ((u♯ · JfK)−1lX (y)). By
definition, we can then decompose w′ = u♭wev such that u♭ ∈ [u♯]X ,y, we ∈ JeK,
and:

v ∈ (u♯ · JfK)−1lX (y).

However, because u♭ ∼X ,y u
♯, we can apply lemma 6.3 part (4) to find:

v ∈ (u♭ · JfK)−1lX (y)

⇒ u♭wfv ∈ lX (y) for all wf ∈ JfK

⇒ u♭ · JfK · v ⊆ lX (y)

⇒ (u0u
♭) · JfK · v ⊆ lX (x)

⇒ (u0u
♭) · JeK · v ⊆ H(lX (x))

Therefore, since we ∈ JeK, we have that:

w = u0u
♭wev ∈ H(lX (x)). 完

69



Now that we have proved correspondence of the individual steps, we can
prove the correspondence betweenH∗ on automata andH∗ on languages, finally
justifying the overloaded naming formally.

Corollary 6.12.
Let H be a hypothesis, X an automaton with x ∈ X such that H∗ terminates
on X . Then:

H∗(lX (x)) = lH∗(X )(x).

Proof. H∗ terminates on X , so there exists n ∈ N such that:

Hn(X ) = H∗(X ).

By theorem 6.11:
H(lX (x)) = lH(X )(x) for all X

and so:

Hn(lX (x)) = Hn−1(lH(X )(x))

= Hn−2(lH2(X )(x))

= · · ·
= lHn(X )(x) 完

6.4 Corollaries

We now can revisit and generalise many of the corollaries that were proven for
the singleton case.

Corollary 6.13.
Let H be a hypothesis; then H is monotone (on automata).

Proof. Identical strategy to proof for corollary 4.17, but using theorem 6.11.
完

Corollary 6.14.
Fix an automaton X , and a hypothesis H := f ≥ e such that H∗ terminates on
X . Then:

∀x ∈ H∗(X ), H(lH∗(X )(x)) = lH∗(X )(x).

that is, all languages in a hypothesis closed automaton are hypothesis closed.

Proof. Once again, the strategy is the same as it as in the singleton version,
corollary 4.18, but using theorem 6.11 instead of theorem 4.15. 完

We also can re-prove the application of the construction we discussed in
section 5.1: decidability for KA + H, if we can show that H∗ will terminate
on all input automata, and completeness of KA+H reduced to showing it can
prove a simpler form of statement.
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Proposition 6.15.
Let e, f be regular expressions, and let H be a hypothesis such that H∗ termi-
nates for all input automata. Then it is decidable whether

JeKH = JfKH .

Proof. Similarly to the proof for proposition 5.1, we convert e, f to automata,
apply H∗ to the automata, then apply theorem 6.11 and Kleene’s theorem to
obtain regular expressions ē, f̄ such that

JeKH = H∗(JeK) = JēK

and similiar for f . Then using that Kleene algebra is decidable (thm. 2.6), it is
decidable whether

JēK ?
= Jf̄K

so we are done. 完

Proposition 6.16.
Let e, f be regular expressions, and let H be a hypothesis such that H∗ ter-
minates for all input automata. Additionally, given any regular expression r,
let r̄ be its “hypothesis closed” regular expression as defined in the proof of
proposition 6.15, and assume that KA+H ⊢ r = r̄. Then KA+H is complete.

Proof. Similarly to the proof of proposition 5.2, we suppose that JeKH = JfKH ,
and use completeness of KA (thm 2.22) with our reasoning in the proof of
proposition 6.15 to obtain that:

▶ KA+H ⊢ ē = f̄

▶ KA+H ⊢ ē = e

▶ KA+H ⊢ f̄ = f

So by transitivity, we have that:

KA+H ⊢ e = f

as desired. 完

Theorem 6.11 establishes the same correspondence between the language
and automaton operations as theorem 4.15, and so the termination corollary we
obtain (and the method used to prove it) is effectively identical.

Corollary 6.17.
Let X be an automaton, and H a hypothesis such that H∗ terminates on X .
Then the following are equivalent:

1. for every x ∈ X, there exists an nx ∈ N such that:

H∗(lX (x)) = Hnx(lX (x))
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2. there exists an n ∈ N such that:

H∗(X ) = Hn(X )

This proof is extremely similar to the proof of corollary 5.4, and so identical
formal details will be given in less detail here.

Proof. For the 1 ⇒ 2 direction, we assume that for every x ∈ X there is an
nx ∈ N such that H∗(lX (x)) = Hnx(lX (x)). X is a finite automaton, so X is a
finite set, meaning there are finitely many nx; we let n be the largest one. We
claim:

H(Hn(X )) = Hn(X ).
We claim this is the case because, according to theorem 6.11, each application
of H to X is one application of H to lX (x) for each x ∈ X. Therefore, since by
definition nx ≤ n, the language lHn(X )(x) must be hypothesis-closed.

When H is applied to Hn(X ), it checks for each state x and prefix u ∈ Σ2|X| ,
if the following condition holds:

([u]Hn(X ),x · JfK)−1lHn(X )(x) ̸⊆ ([u]Hn(X ),x · JeK)−1lHn(X )(x).

Since lHn(X )(x) is hypothesis-closed, it is straightforward to observe that if
v ∈ ([u]Hn(X ),x · JfK)−1lHn(X )(x), then:

u′wfv ∈ lHn(X )(x), ∀u′ ∈ [u]Hn(X ),∀wf ∈ JfK
u′wev ∈ H(lHn(X )(x)), ∀u′ ∈ [u]Hn(X ),∀we ∈ JeK
u′wev ∈ lHn(X )(x), ∀u′ ∈ [u]Hn(X ),∀we ∈ JeK

v ∈ ([u]Hn(X ),x · JeK)−1lHn(X )(x)

so the H will not paste an automaton onto the state x. Since x was arbitrary
in Hn(X ), we know that H will do nothing to the automaton as a whole, that
is:

H(Hn(X )) = Hn(X )
from which we conclude:

H∗(X ) = Hn(X ).
Now for the 2 ⇒ 1 direction. If H∗ terminates in n steps, then for every

x ∈ H∗(X ) = Hn(X ):

H∗(lHn(X )(x)) = lHn(X )(x)

by corollary 6.14. We also know by theorem 6.11 that:

lHn(X )(x)) = Hn(lX (x))

so for each x ∈ H∗(X ), we let nx := n, and we are done. 完

This concludes the corollaries that we extend to the general construction.
Many of the remarks made regarding termination in chapter 5 remain true for
the general hypothesis case, and in a similar fashion, we can study termination
of H∗ on automata by studying termination of H∗ on languages, using theorem
6.11.
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Chapter 7

Conclusion

Throughout this thesis, we have established automaton constructions that cor-
respond to the hypothesis closure put foward by Doumane et al. in [2], and
further studied in recent years [12, 5, 14]. The constructions, H∗

• and H∗, give
a general procedure for calculating the hypothesis closure semantics of Kleene
algebra extended with hypotheses. This can be used to show decidability of the
relevant system (prop. 6.15), and takes steps toward showing completeness as
well (prop. 6.16).

We proved thatH∗
• andH∗ produce correct automata, in case they terminate

(cors. 4.16, 6.12). Termination conditions of these constructions were discussed
at length in chapter 5, with the strategy of saturation (thm. 5.11) given to
improve the class of hypotheses for which these constructions will be useful.

A more precise understanding of the exact hypotheses for which the construc-
tions given will terminate remains an open problem, though it was established
(in example 5.13, remark 5.14) that they do not terminate in all situations where
we would like them to.

Many avenues for further work exist, particularly with regards to improving
the constructions and solidifying their termination conditions. For example,
the problem solved by saturation (example 5.9) can also be very effectively be
solved by minimising the output automaton at every step in a particular way.
This naturally breaks the correspondence to the language hypothesis function,
requiring a new (equivalent) version of it be put forward, as well. Of course,
this would also require that the correspondence results be re-proved.

More generally, the correspondences established in theorems 4.15 and 6.11
can be used to study properties of language and automaton closures in terms
of one another. This thesis has provided techniques that, with further develop-
ment, can be used as a uniform strategy for proving decidability and complete-
ness in the context of Kleene algebra with hypotheses.
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