




Quantum Fine-Grained Complexity



ILLC Dissertation Series DS-2023-01

For further information about ILLC publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 107
1098 XG Amsterdam

phone: +31-20-525 6051
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl/

This research was supported by the Robert Bosch Stiftung,
and additionally supported by NWO Gravitation grants NETWORKS

and QSC, and EU grant QuantAlgo, and QuSoft.

Copyright © by Subhasree Patro.

Cover design by Subhasree Patro.
Printed and bound by NBD Biblion.



Quantum Fine-Grained Complexity

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. P.P.C.C. Verbeek
ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel
op donderdag 16 februari 2023, te 13.00 uur

door Subhasree Patro
geboren te Berhampur, Orissa



iv

Promotiecommissie

Promotores: prof. dr. H.M. Buhrman Universiteit van Amsterdam
dr. F. Speelman Universiteit van Amsterdam

Overige leden: prof. dr. R.M. de Wolf Universiteit van Amsterdam
dr. M. Ozols Universiteit van Amsterdam
prof. dr. C. Schaffner Universiteit van Amsterdam
dr. B. Serra Loff Barreto University of Porto
prof. dr. A. Ambainis University of Latvia

Faculteit der Natuurwetenschappen, Wiskunde en Informatica



v

List of publications

This thesis is based on the following papers. In each work, all authors contributed
equally unless stated otherwise.

[BPS21] A Framework of Quantum Strong Exponential-Time Hypotheses.
Harry Buhrman, Subhasree Patro, Florian Speelman. In Proceedings of the
38th International Symposium on Theoretical Aspects of Computer Science
(STACS 2021), also presented at TQC 2020.

Chapter 3 is based on this paper.

[BLP+22a] Limits of Quantum Speed-Ups for Computational Geometry and
Other Problems: Fine-Grained Complexity via Quantum Walks.
Harry Buhrman, Bruno Loff, Subhasree Patro, Florian Speelman. In Pro-
ceedings of the 13th Innovations in Theoretical Computer Science Conference
(ITCS 2022), also presented at TQC 2021 and QIP 2022.

Chapter 5 is based on this paper.

[BLP+22b] Memory Compression with Quantum Random-Access Gates. Harry
Buhrman, Bruno Loff, Subhasree Patro, Florian Speelman. In Proceedings of
the 17th Conference on the Theory of Quantum Computation, Communication
and Cryptography (TQC 2022).

Chapters 4 and 5 are based on this paper.

[ABL+22] Matching Triangles and Triangle Collection: Hardness based on a
Weak Quantum Conjecture. Andris Ambainis, Harry Buhrman, Koen Lei-
jnse, Subhasree Patro, Florian Speelman. Preprint available at arXiv:2207.11068.

Chapter 6 is based on this paper.

The author has also co-authored the following papers in the course of her PhD,
which are not included in this thesis.

[CMP22] Improved Quantum Query Upper Bounds Based on Classical De-
cision Trees. Arjan Cornelissen, Nikhil S. Mande, Subhasree Patro. To
appear in Proceedings of the 42nd IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2022),
also presented at TQC 2022.

[PP20] An Overview of Quantum Algorithms: from Quantum Supremacy
to Shor Factorization. Álvaro Piedrafita Postigo, Subhasree Patro. In Pro-
ceedings of the 52nd IEEE International Symposium on Circuits and Systems
(ISCAS 2020). The first author is the main contributor of this work.

[PPV+21] Impossibility of Cloning of Quantum Coherence. Dhrumil Patel, Sub-
hasree Patro, Chiranjeevi Vanarasa, Indranil Chakrabarty, Arun Kumar Pati.
In Journal of Physical Review A 103, 022422 (2021). The first two authors
are the main contributors. This work was done during her masters at IIIT-
Hyderabad.





Contents

I The Main Part
1 Introduction 3

1.1 Fine-grained complexity . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Organisation of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Preliminaries 15
2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Quantum computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Model of computation . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Quantum subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Quantum basic adversary method . . . . . . . . . . . . . . . . . . . . 26
2.6 Quantum fine-grained reductions . . . . . . . . . . . . . . . . . . . . 27

3 A Framework of Quantum Strong Exponential-Time Hypotheses 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 The quantum strong exponential-time hypotheses . . . . . . . . . . . 37
3.3 QSETH lower bounds for OV and uPoW . . . . . . . . . . . . . . . . 44
3.4 QSETH lower bounds for LCS and Edit Distance . . . . . . . . . . . 47
3.5 Quantum query lower bound for property Pδ . . . . . . . . . . . . . . 76
3.6 Summary, future directions and open questions . . . . . . . . . . . . 80

4 Memory Compression with Quantum Random-Access Gates 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Compressing sparse QRAM algorithms . . . . . . . . . . . . . . . . . 83
4.3 Simplifications of previous works . . . . . . . . . . . . . . . . . . . . 92

5 Fine-Grained Complexity via Quantum Walks 99
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2 Simple variants of 3SUM . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3 Lower bounds for two structured versions of 3SUM . . . . . . . . . . 110
5.4 3SUM-hard geometry problems . . . . . . . . . . . . . . . . . . . . . 115
5.5 Other 3SUM-hard problems . . . . . . . . . . . . . . . . . . . . . . . 120
5.6 Future directions and open questions . . . . . . . . . . . . . . . . . . 129

6 Matching Triangles & Triangle Collection 131
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.2 Quantum fine-grained reductions from APSP . . . . . . . . . . . . . 135
6.3 Matching Triangles & Triangle Collection: lower bounds . . . . . . . 145



viii CONTENTS

6.4 Matching Triangles & Triangle Collection: upper bounds . . . . . . . 149
6.5 Discussions, future directions and open questions . . . . . . . . . . . 152

7 The Last Chapter 155

II The Closing Matters
Bibliography 159

Abstract 169

Nederlandse samenvatting 170

Acknowledgements 171



Part I

The Main Part





Chapter 1

Introduction

1.1 Fine-grained complexity

Recent advancements in quantum hardware technologies have made it even more
exciting to further the theoretical development of quantum algorithms, because of
the possible speedups for computational problems as compared to their respective
classical counterparts. Interestingly, for some naturally occurring problems, we can
prove limits on how much quantum speedup is achievable. For example, it can be
shown that it is not possible to get a super-quadratic quantum speedup for the
unordered search problem [BBB+97]. Most of these results follow from quantum
query lower bounds that don’t always immediately imply optimal time lower bounds,
especially for problems that require super-linear time. In general, for a powerful
enough computational model, time lower bounds are notoriously hard to obtain. To
overcome this barrier, several recent works, some of which constitute this thesis, have
been developing the field of quantum fine-grained complexity, giving us the power
to prove conditional quantum time lower bounds for many computational problems
and thereby elucidating the internal structure of the BQP complexity class.

Such results rely heavily on the notion of a reduction where one tries to solve a
problem using an algorithm for another (somewhat unrelated) problem. Reductions
were used by Turing in the context of computability theory dating back to as early
as 1936. Polynomial-time reductions were used to demonstrate NP-completeness
of many computational problems, which resulted in deciding whether a problem
is in P or NP (of course conditional on P ‰ NP). However, if one is interested
in knowing the exact complexity of a problem, be it a problem in P or in NP,
even while ignoring the constants and in our case poly-logarithmic factors, then the
notion of NP-completeness doesn’t help much. In some sense, the reductions are
too coarse-grained to provide any more information about the complexity of those
problems.

Fine-grained complexity, on the other hand, provides us with a technique to
understand the exact complexity of a problem. The broad idea is as follows: pick a
well-studied problem P , that on n input variables is conjectured to not be solvable
in ppnq1´ε time in a particular model of computation, for any constant ε ą 0. Let
Q be another computational problem with a qpnq time algorithm solving it in the
same model of computation. Suppose, given an input instance of P we are able to
generate input instances for Q such that we can solve P using an algorithm for Q,
and if for any δ ą 0, a qpnq1´δ time algorithm for solving Q implies a ppnq1´ε time



4 Chapter 1. Introduction

algorithm for P for some ε ą 0, then we say that we have a reduction from P to Q.
Using this reduction we can now conclude a qpnq1´op1q time lower bound for Q based
on the conjectured ppnq1´op1q time lower bound for P .

The area of classical fine-grained complexity studies such reductions in a classical
model of computation. Some of the well-studied problems in this context are SAT,
3SUM and APSP; often referred to as key problems. Based on the conjectured
hardness of these key problems classical time lower bounds for a lot of computational
problems have been derived; we discuss some of these results in Section 1.2. One can
also, for example, see the survey articles [Vas15; Vas19] for a summary of many of
these results and their corresponding reductions; Figure 1.1 captures some of these
reductions too.

Sequence problems
Jumbled Indexing [ACL+14],
Local Alignment [AVW14]

Computational Geometry
GeomBase, Separator,
etc. [GO95], Chapter 5

String Problems
(3{2 ´ ε)

Approx. Diameter
[CLR+14; Sch22],

Frechet Distance [Bri14],
Edit Distance [BI18],
LCS [ABV15; BK15]

Chapter 3

OV HS

3SUM SAT APSP

Matching
Triangles

[AVY18], Chapter 6

Triangle
Collection

[AVY18], Chapter 6

0-Edge Weight
Triangle

[AVY18], Chapters 5,6

Dynamic Problems
e.g. SCC, Max Matching

[AV14; AVY18; Pat10; RZ11]

p3{2 ´ ϵq
Approx. Radius
[AVW16; Sch22]

Problems in Dense Graphs
Radius, Median,

Negative Triangle,
(min,+) Matrix Multiplication

Replacement Paths
Betweenness Centrality, etc.
[AGV15; VW18], Chapter 6

Figure 1.1: Overview of a few fine-grained reductions. The highlighted boxes denote
the problems whose hardness is conjectured. The directed edges denote the
direction of the reduction. The colour indicates whether the reduction is in
the classical or quantum setting, coloured in dark blue and red, respectively.

These key problems are very suitable to use as a basis for such reductions as
they are natural to describe and well studied. It is also interesting to see how these
key problems computationally relate to other problems from various fields, such as
Computer Science, Bio-Informatics, Artificial Intelligence, Physics, etc., providing
us with a web of reductions which is of both theoretical and practical interest. More
precisely because, if a speed-up is possible for any of the key problems (which hap-
pens if there’s a speed-up for any problem they are reduced to) we are happy with
having a new result about a fundamental problem. On the other hand, if no speed-up
is possible, then the web of fine-grained reductions implies interesting lower bounds
for a plethora of natural problems, which is an explanation for why better algorithms
for these natural problems are not yet found in the considered model of computation.

‘Do these classical reductions hold in the quantum setting as well? ’

This is the primary question we address in this thesis. As we focus on the ex-
act complexities of computational problems it is really important to fix the model



1.2. Our contributions 5

of computation — we fix a quantum model of computation that we formally define
in Chapter 2. It doesn’t come as a surprise that a computational problem can have
different complexities in different models of computation; what is surprising is the
unexpected ways this hinders us from directly using the classical reductions in the
quantum setting. In this thesis, we discuss these challenges and present results in
which we circumvent these challenges.

1.2 Our contributions

We further the field of fine-grained complexity by extending it to the quantum
setting. Though our results are proven by adapting some known classical fine-grained
reductions from CNF-SAT (and in some cases variants of CNF-SAT), 3SUM and
APSP problems to the quantum setting, these adaptations are not trivial, as we
will briefly see in the forthcoming sections and in detail in Chapters 3, 5, and 6.

1.2.1 Quantum reductions from CNF-SAT

One of the first problems we study in the context of quantum fine-grained complexity
is CNF-SAT, the problem of whether a formula, input in conjunctive normal form,
has a satisfying assignment. Classically, CNF-SAT on inputs with n variables is
conjectured to require 2np1´op1qq time; also known as the Strong Exponential-Time
Hypothesis (SETH). However, SETH fails to hold in the quantum setting because
one can solve CNF-SAT in O˚p2n{2q time quantumly.1 The quadratically faster
quantum algorithm to solve CNF-SAT is currently the best algorithm, and no
further significant improvement to the run-time is known. Consequently, gives rise
to the following conjecture.

Conjecture 1.1 (Basic-QSETH in Chapter 3, called QSETH in [ACL+20]). There
is no bounded error quantum algorithm that solves CNF-SAT on n variables and
m clauses in Op2

n
2

p1´δqmOp1qq time, for any δ ą 0.

The Basic-QSETH conjecture turns out to be useful in proving tight quantum
time lower bounds for problems like Orthogonal Vectors, Closest Pair,
Bichromatic Closest Pair, etc. [ACL+20]. However, it fails to say anything
interesting for string comparison problems like Longest Common Subsequence
(LCS) and Edit Distance. The reasons are as follows.

1. Both the best classical and quantum algorithms known for these string prob-
lems run in Opn2q time.

2. A series of classical reductions from CNF-SAT to Edit Distance and LCS,
respectively, showed that any subquadratic algorithm for either of these two
problems would refute SETH in the classical setting [BI18; BK15].2

3. Based on Basic-QSETH (Conjecture 1.1), the quantum complexity of CNF-SAT
is at least 2n{2p1´op1qq time, which is quadratically smaller than its classical com-
plexity. Which means, even if it is possible to port the classical reductions to

1We use O˚p¨q to hide polynomial factors of n. All such notational details are mentioned in
Chapter 2.

2Such SETH-based classical lower bounds are also shown other string comparison problems
[Bri14].



6 Chapter 1. Introduction

the quantum setting, this would only let us prove quantum time lower bounds
for Edit Distance and LCS that are at best linear. These linear conditional
lower bounds are not interesting because we can conclude unconditional lower
bounds of the same complexity by encoding hard Boolean properties like Ma-
jority or Parity into input instances of these string comparison problems.

Unfortunately, this shows us how Basic-QSETH loses explanatory power in the con-
text of certain string comparison problems; the best known upper bound is quadratic
but the obtained lower bound is only linear. Fortunately, we are able to provide a
solution for this.

1. Notice that, while it is possible to solve CNF-SAT quadratically faster using a
quantum computer using the Grover’s search algorithm as a subroutine, we do
not know of quantum algorithms that can solve say ‘CNF-SAT (computing
the Parity of the number of satisfying assignments) or #CNF-SAT (com-
puting the number of satisfying assignments) significantly faster than best
classical algorithms, which we conjecture is because properties like Parity
and Count are not amenable to Grover-like speedups.

2. Furthermore, the classical reduction from CNF-SAT to Edit Distance (or
LCS) actually encodes a much harder property instead of checking if there is
a satisfying assignment to the given input formula; ‘harder’ in the sense that
the quantum query complexity of the property is provably harder than that of
the OR problem.

With these observations, the following immediately interesting question surfaces:

‘How much time does it take for a quantum computer to solve a more general
property on the set of satisfying assignments to a given CNF-SAT input? ’

Surprisingly, this question doesn’t have a trivial answer even for properties whose
query complexity is known or can be computed. While it is natural to “feel” that
query complexity of a property is what translates into the hardness of solving that
property on the set of satisfying assignments to a CNF-SAT input, this is actually
not always the case. For example, consider the AND property: the query complexity
of AND on N input variables is QpANDq “ Θp

?
Nq, but, given an n variable CNF

formula, one can in OppolylogNq time (where N “ 2n) find whether or not all
assignments to this formula are satisfied; check whether each and every clause of
the formula contains a variable along with its negation, only then the formula will
be satisfiable on every possible assignment. We precisely needed to understand this
situation to be able to give a better than linear quantum time lower bound for Edit
Distance and LCS.

Keeping in mind these above-mentioned observations and insights, while also
addressing technical struggles that came our way, we are able to develop a frame-
work of Quantum Strong Exponential-Time Hypotheses that allows us to conjecture
hardness of more general properties on the set of satisfying assignments to a CNF-
SAT input (and also circuits of a more complex class). Our conjecture informally
stated is as follows:



1.2. Our contributions 7

Conjecture 1.2 (Informal statement of γ-QSETH). Let γ denote a class of rep-
resentation such as poly-sized depth-2 circuits, poly-sized poly-logarithmic-depth
circuits or poly-sized circuits of a more complex class, with n input variables.

• We define the compression oblivious properties corresponding to a class γ as
the set of properties P such that the time required to compute P on the truth
table of the input circuit from γ is lower bounded by the query complexity of
P on all 2n-length strings, i.e. QpP q.

• We then say, for all compression oblivious properties P of class γ given circuit
C P γ the time taken to compute P on the truth table of C is at least QpP q.

As a result, conditional on Conjecture 1.2 we are able to show the following
results:

1. We prove that Edit Distance (also LCS) requires n1.5´op1q time to solve on
a quantum computer, conditioned on QSETH. We do this by showing that
Edit Distance (also, LCS) can be used to compute a harder property of the
set of satisfying assignments with query complexity of ΩpN3{4q when the input
is a N -bit Boolean string.

Following [AHV+16], we are able to show this for a version of QSETH where
the input formulas are branching programs instead, giving a stronger result
than when assuming the hardness for only CNF inputs.

As a corollary to the proof of the conditional Edit Distance (also for LCS)
lower bound, we can show that the query complexity of the restricted Dyck
language is linear for any k “ ωplog nq, partially answering an open question
posed by Aaronson, Grier, and Schaeffer [AGS19].3

2. Proofs of work is a form of cryptographic proof in which one party (the prover)
proves to others (the verifiers) that a certain amount of a specific computa-
tional effort has been expended. A key feature of any proof-of-work scheme is
that the computational task computed by the prover is moderately hard yet
feasible while it is fairly easy for the verifiers to verify whether the task has
been computed correctly.

Assuming QSETH we are able to show that the Proofs of Useful Work scheme
of Ball, Rosen, Sabin and Vasudevan [BRS+18] requires n2´op1q time to solve
on a quantum computer, matching the classical complexity of these proofs of
work.

3. We also notice that some SETH-based ΩpT q lower bounds carry over to Ωp
?
T q

QSETH lower bounds, from which we immediately gain structural insight into
the complexity class BQP.

We describe the QSETH framework and these results in detail in Chapter 3 of this
thesis.

3Lower bounds for the restricted Dyck language were recently independently proven by Ambai-
nis, Balodis, Iraids, Khadiev, Klevickis, Prūsis, Shen, Smotrovs and Vihrovs [ABI+20].



8 Chapter 1. Introduction

1.2.2 Quantum reductions from 3SUM

The kind of quantum fine-grained results we show next includes hardness results
based on the quantum hardness of 3SUM, a problem when given a list of n integers,
one needs to output whether or not the list contains a triple a, b, c such that a`b`c “

0. There is a simple classical algorithm that solves this problem in rOpn2q time: given
input S “ px1, . . . , xnq to the 3SUM problem, sort S in Opn log nq time. Then, brute
force search over all pairs pa, bq P S ˆS, and for each pair using binary search check
if ´pa`bq P S. This entire procedure takes Opn2 log nq “ rOpn2q time. Hence, a total
of rOpn2q time.4 Baran, Demaine and Pătraşcu give a Opn2{maxt w

log2 w
, log2 n

plog lognq2
uq

time algorithm that solves 3SUM in the classical word-RAM model with w-bit words
[BDP08].

Unfortunately, even after many years of interest in the problem, the exponent
has not been reduced. The conjecture naturally arises that there is no δ ą 0
such that 3SUM can be solved in Opn2´δq classical time, which we refer to as
the Classical 3SUM Conjecture. Using this conjecture, one can derive conditional
classical lower bounds for a vast collection of computational geometry problems,
dynamic problems, sequence problems, etc. [GO95; VW13; Pat10; Vas15].

As expected, the Classical 3SUM Conjecture no longer holds true in the quantum
setting, as there is a quadratically faster quantum algorithm for 3SUM: we may use
Grover search as a subroutine in the rOpn2q classical algorithm to solve the problem
in rOpnq quantum time. Apart from this quadratic speedup, no further improvement
to the quantum-time upper bound is known. Consequently, it was (informally)
conjectured [AL20] that the 3SUM problem cannot be solved in sub-linear quantum
time.

Conjecture 1.3 (Quantum 3SUM Conjecture [AL20]). There is no bounded-error
quantum algorithm that solves 3SUM on a list of n integers in Opn1´δq time, for
any constant δ ą 0.

It is natural to try to extend the classical 3SUM-based lower bounds to the
quantum setting, and one may at first expect this task to be a simple exercise. One
soon realises that none of the existing classical reductions can be easily adapted
to the quantum regime. Indeed most of the existing classical reductions begin by
pre-processing the input in some way, e.g., by sorting it according to some order-
ing. This is not an issue in the classical setting, as the classical conjectured lower
bound for 3SUM is quadratic. Hence, the classical reductions can accommodate any
pre-processing of the input that takes sub-quadratic time, such as e.g. sorting (as
sorting takes only n log n time on inputs of length n). However, this pre-processing
becomes problematic in the quantum setting, since here we will need a sublinear-
time quantum reduction, and even simple sorting (provably) requires linear time on
a quantum computer [HNS01].

We present a solution to this problem.

1. The idea of our proof is to adapt Ambainis’ quantum walk algorithm for El-
ement Distinctness [Amb07], which was shown to work for the 3SUM
problem as well [CE05]. To overcome, for example, the challenge of not being

4There is also a slightly less trivial Opn2q time algorithm as well; we leave this as an exercise
to the reader until they reach Chapter 5 where the Opn2q algorithm is discussed.



1.2. Our contributions 9

3SUM-based quantum
lower bounds (our results) ê

Classical upper & lower
bounds, respectively (˚˚) ê

Problems Quantum
upper-bound

GeomBase n1´op1q
rOpnq (˚) Opn2q, n2´op1q

3-Points-on-Line n1´op1q Opn1`op1qq [AL20] Opn2q, n2´op1q

Point-on-3-Lines n1´op1q Opn1`op1qq [AL20] Opn2q, n2´op1q

Separator n1´op1q Opn1`op1qq [AL20] Opn2q, n2´op1q

Strips-Cover-Box n1´op1q Opn1`op1qq [AL20] Opn2q, n2´op1q

Triangles-Cover-
Triangle

n1´op1q Opn1`op1qq [AL20] Opn2q, n2´op1q

Point-Covering n1´op1q Opn1`op1qq [AL20] Opn2q, n2´op1q

Visibility-
Between-Segments

n1´op1q Opn1`op1qq [AL20] Opn2q, n2´op1q

Hole-In-Union n1´op1q Opn1`op1qq (:) rOpn2q, n2´op1q

Triangle-Measure n1´op1q Opn2q (::) Opn2q, n2´op1q

Visibility-From-
Infinity

n1´op1q Opn2q (::) Opn2q, n2´op1q

Visible-Triangle n1´op1q Opn1`op1qq (:) Opn2q, n2´op1q

Planar-Motion-
Planning

n1´op1q Opn2q (::) Opn2q, n2´op1q

3D-Motion-
Planning

n1´op1q Opn2q (::) Opn2q, n2´op1q

General-Covering n1´op1q Opn1`op1qq [AL20] Opn2q, n2´op1q

Convolution-
3SUM

n1´op1q Opnq (˚) Opn2q, n2´op1q

0-Edge-Weight-
Triangle

n1.5´op1q Opn1.5q (˚) Opn3q, n3´op1q

(˚) Using a simple Grover speedup on the classical algorithm.

(:) Implicit in [AL20], by using the classical reduction to Triangles-Cover-
Triangle and then using the corresponding quantum algorithm.

(˚˚) All upper bounds are straightforward: For problems like Convolution-
3SUM and 0-Edge-Weight-Triangle the best known algorithms use brute
force, for the computational-geometry problems, the upper bounds follow from
geometry arguments [GO95]. All lower bounds for computational-geometry
problems are from [GO95], the lower bound for Convolution-3SUM follows
from [Pat10], and, the lower bound for 0-Edge-Weight-Triangle follows
from [VW13]; all conditional on the classical hardness of 3SUM.

(::) Unfortunately, the current best quantum upper bound known is the classical
upper bound, and there is no matching quantum lower bound known for these
problems yet.

Table 1.1: This is a summary of all the Quantum-3SUM-hard problems mentioned in
this thesis, with (almost) matching upper bounds for most of them.



10 Chapter 1. Introduction

able to sort the input in strictly sublinear time; instead of having the reduction
sort the entire list we combine a data structure for dynamic sorting together
with a quantum walk algorithm. As we will show in detail in Chapter 5, this
approach only needs the reduction to sort a small part of the input and thus
allows us to show that 3SUM remains hard, even when the entire input is
sorted.

2. We will also see that this idea can be extended to allow for any “structuring”
of the input (not just sorting) which can be implemented by a dynamic data
structure obeying a certain “history-independence” property.

3. Also, interestingly enough, if one were to construct space inefficient dynamic
data structures that satisfy this “history-independent” property then it is ac-
tually easy, but not entirely desirable because of the amount of space it uses.
Fortunately, we have a solution for this as well. We present a technique that
takes as input a space-inefficient but sparse quantum algorithm and constructs
a space-efficient quantum algorithm that is still time efficient. Chapter 4 of this
thesis and the content of Section 1.2.3 discusses this compression technique.

In the past, the quantum-walk plus data-structure proof strategy has been used
to prove time upper bounds on other problems (e.g., for the closest-pair problem
[ACL+20]), and here we use it for the first time as part of a reduction in order
to obtain a lower bound. We expect that the same strategy will be applicable to
other quantum fine-grained reductions, and our hope is that this will give rise to a
landscape of results (in the future), that establishes (conditional) tight lower bounds
for quantum algorithms. This will in turn precisely answer the question of how much
quantum speed-up is possible for a variety of computational problems.

To summarise, using these strategies we are able to show that various “struc-
tured” versions of 3SUM are as hard as the original (unstructured) 3SUM problem,
even in the quantum case. Once we have shown that these structured versions of
3SUM are hard, we may then construct direct quantum adaptations of the classical
reductions, to show the quantum hardness of several computational-geometry prob-
lems, of Convolution-3SUM and of the 0-Edge-Weight-Triangle problem.
This enables us to prove quantum time lower bounds for these problems, conditioned
on the Quantum 3SUM Conjecture. See Table 1.1 for an overview of the quantum
time bounds for these problems.

1.2.3 Memory compression with QRAGs

As discussed briefly in the previous section, in the process of proving quantum
time lower bounds based on the conjectured hardness of the 3SUM problem, we
had to develop dynamic data structures that satisfy the property of being “history-
independent”. We saw that it is very easy to conceive space inefficient data struc-
tures that use a polynomial amount of space (polynomial in the input length). While
space efficient data structures that satisfy these properties exist in the literature,
they usually are very complicated to analyse, unlike the space-inefficient ones. As a
result, we investigate if there are any sparsification techniques possible in the quan-
tum setting that help us to construct a space-efficient quantum algorithm from a
given space inefficient algorithm in a black-box manner. Especially because such
techniques are well known in the classical setting.



1.2. Our contributions 11

Classically, if we have an algorithm that uses M memory cells throughout its
execution, but sparsely, in the sense that at any point in time, only m out of the
M cells will be non-zero, then we may “compress” it into another algorithm which
uses only m logM memory and runs in almost the same time. We may do so by
simulating the memory using either a hash table or a self-balancing tree.

In this thesis, we show an analogous result for quantum algorithms equipped
with quantum random-access gates. If we have a quantum algorithm that runs in
time T and uses M qubits, such that the state of the memory, at any time step, is
supported on computational-basis vectors of Hamming weight at mostm, then it can
be simulated by another algorithm which uses only Opm logMq quantum memory,
and runs in time rOpT q. Our main theorem is (informally) stated as,

Theorem 1.4. Any m-sparse quantum algorithm using time T and M qubits can
be simulated with ε additional error by a quantum algorithm running in time OpT ¨

logpT
ε

q ¨ logpMqq, using Opm logMq qubits.

We show how this theorem can be used, in a black-box way, to simplify the pre-
sentation in the following papers: Ambainis’ walk algorithm for element distinctness
[Amb07], Quantum algorithms for closest pair and related problems [ACL+20], and
our very own Fine-grained complexity via quantum walks [BLP+22a].

Broadly speaking, when there exists a need for a space-efficient history-independent
quantum data-structure, it is often possible to construct a space-inefficient, yet
sparse, quantum data structure, and then appeal to our main theorem. This results
in simpler and shorter arguments.

While this result was conceived and published later than that of the 3SUM
related work (Chapter 5 of this thesis), we present this result in Chapter 4 so that
the presentation of Chapter 5 in the thesis is simplified.5

1.2.4 Quantum complexity of APSP-hard problems

Next, we further extend the field of fine-grained complexity by studying the quantum
hardness of the All Pairs Shortest Path (APSP) problem and reductions from it.
APSP is defined as follows: given a weighted graph G “ pV,Eq on n nodes with no
negative-weight cycles, for every pair of vertices pa, bq P V ˆ V , output the shortest
distance between vertices a and b if there is a path, else output 8.

The currently fastest known classical algorithm for APSP runs in n3{ expp
?
log nq

time [Wil18], and it has been conjectured that no Opn3´δq time classical algorithm,
for any constant δ ą 0, exists. Based on this conjecture, time lower bounds for a
lot of problems, for example, Graph Radius, Graph Median, Negative Tri-
angle, and many more, have been shown. However, the fastest known quantum
algorithm to solve to solve APSP takes time rOpn2.5q, but no significant speedups
to this algorithm have been found in a long time.6 Therefore, it is natural to study
the consequences of the following conjecture.

Conjecture 1.5 (Quantum APSP Conjecture). There is no bounded-error quan-
tum algorithm that solves APSP on a graph of n nodes in Opn2.5´δq time, for any
constant δ ą 0.

5Though this result is not directly related to the topic of quantum fine-grained complexity, it
still aids in proving some fine-grained results, hence, it is included in this thesis.

6Also see Leijnse’s master’s thesis for a discussion on this [Lei22].



12 Chapter 1. Introduction

We study the classical reductions from APSP to the problems mentioned in
Table 1.2 and observe that almost all those reductions can be trivially adapted to the
quantum setting, thus proving tight lower bounds for nearly all of those six problems.
The matching upper bounds for most of them can be derived using Grover-like
speedups, except for ∆-Matching Triangles and Triangle Collection for
which we present quantum algorithms that require careful use of data structures,
Ambainis’ variable time search and certain other ingredients as subroutines. We
elaborate on these results in Chapter 6.

Additionally, in the classical case, hardness results for ∆-Matching Triangles
and Triangle Collection can be derived conditioned on hardness of any of the
three key problems. More precisely, Abboud, Williams, and Yu have proven that an
Opn3´δq time classical algorithm (for any constant δ ą 0 and ωp1q ď ∆pnq ď nop1q)
for either of these two graph problems would imply faster classical algorithms for
k-SAT, 3SUM and APSP, which makes ∆-Matching Triangles and Triangle
Collection very interesting to study; this means one can now make fewer hardness
assumptions when it comes to understanding hardness of ∆-Matching Triangles
and Triangle Collection [AVY18]. Towards that, a weaker conjecture was in-
troduced which states that at least one of the classical 3SUM-conjecture, APSP-
conjecture or SETH is true. They called it the extremely popular conjecture.

Analogous to Abboud et al.’s classical result, we are also able to show that an
Opn1.5´δq time quantum algorithm (for any constant δ ą 0 and the same ranges of
∆) for either of these two graph problems would imply faster quantum algorithms
for k-SAT, 3SUM and APSP. Not only does this allow us to check the consistency
of our approaches, but clearly for problems such as ∆-Matching Triangles and
Triangle Collection a weaker quantum hardness assumption can be made to
show these time lower bounds. Hence, we state the following conjecture analogous
to the classical case.

Conjecture 1.6. At least one of Conjectures 1.1, 1.3 or 1.5 is true.

Based on Conjecture 1.6, we prove tight quantum time bounds for ∆-Matching
Triangles and Triangle Collection. The upper bounds are non-trivial and
will be discussed in detail in Chapter 6. See Table 1.2 for an overview of the APSP-
hard problems and their quantum time bounds.

To summarise, we present quantum analogues to some of the classical reductions
from key problems like CNF-SAT, 3SUM and APSP. Figure 1.1 captures all the
quantum fine-grained reductions presented in this thesis. Only barring a few for
most computational problems discussed in the thesis we are able to prove tight
quantum time bounds. See Tables 1.1 and 1.2 for an overview of these bounds.

1.3 Related work

Recently the field of quantum fine-grained complexity has also expanded to include
the following results.

1. Independent from the work presented in Chapter 3 of this thesis, Aaronson,
Chia, Lin, Wang, and Zhang [ACL+20] also defined a basic quantum version
of the strong exponential-time hypothesis, which assumes that a quadratic
speed-up over the classical SETH is optimal. They present conditional quan-
tum lower bounds for Orthogonal Vectors, the Closest Pair problem,



1.4. Organisation of this thesis 13

Problem Bound Classical Quantum
pmin,`q-Matrix
Multiplication

Lower n3´op1q [FM71; Mun71] n2.5´op1q Lem 6.9
Upper Opn3q p˚q Opn2.5q (˚˚)

All-Pairs
Negative Triangle

Lower n3´op1q [VW18] n2.5´op1q Lem 6.13
Upper Opn3q p˚q Opn2.5q p˚˚q

Negative Triangle
Lower n3´op1q [VW18] n1.5´op1q Lem 6.15
Upper Opn3q p˚q Opn1.5q p˚˚q

0-Edge-Weight
Triangle

Lower n3´op1q [VW13] n1.5´op1q Lem 6.18
Upper Opn3q p˚q Opn1.5q p˚˚q

∆-Matching
Triangles

Lower n3´op1q [AVY18] p:q n1.5´op1q Lem 6.20 p:q

Upper Opn3´op1qq [AVY18] p:q rOpn1.5`op1qq Cor 6.33 p:q

Triangle
Collection

Lower n3´op1q [AVY18] n1.5´op1q Lem 6.23
Upper Opn3q p˚q rOpn1.5q Thm 6.34

Table 1.2: Overview of lower bounds based on a hardness conjecture for APSP, both in the
classical and in the quantum setting. Corresponding upper bounds are also provided.
p˚q: These upper bounds are the most straight forward algorithms, like exhaustive
search, and therefore have no particular source.
p˚˚q: By applying Grover Search, potentially as subroutine.
p:q: Holds only for ωp1q ď ∆ ď nop1q.

and the Bichromatic Closest Pair problem, by giving fine-grained quan-
tum reductions from k-SAT. All such lower bounds have a quadratic gap
with the corresponding classical SETH lower bound. Despite the overlap in
the topic, these results turn out to be complementary to the work presented
in this thesis: in the current work we focus on defining a more extensive
framework for QSETH that generalises in various ways the basic version. Our
more general framework can exhibit a quantum-classical gap that is less than
quadratic, which allows us to give conditional lower bounds for LCS and Edit
Distance of n1.5´op1q time and an n2´op1q time lower bound for Useful Proofs
of Work (thus a quadratic gap between prover and verifier). For our presented
applications, the requirements of the fine-grained reductions are lower, e.g.,
when presenting a lower bound of n1.5´op1q time for LCS or Edit Distance
it is no problem if the reduction itself takes rOpnq time. Conversely, we do not
give the reductions that are given by [ACL+20]; those results are distinct new
consequences of QSETH.

2. A quantum analogue of the Hitting-Set Conjecture (HSC), states that the
Hitting-Set (HS) problem has at most a quadratic speed-up in the quantum set-
ting – see Schoneveld’s Bachelor’s Thesis [Sch22]. Using this conjecture, it was
possible to prove a linear quantum lower bound for the p3

2
´εq-approximate ra-

dius problem. The same lower bound is also proven for the p3
2

´εq-approximate
diameter problem, using the quantum version of SETH.

1.4 Organisation of this thesis

In Chapter 2 we present some definitions that are highly relevant to this thesis: the
model of computation (on which our results are based), the notion of a quantum



14 Chapter 1. Introduction

fine-grained reduction, and we also provide some basic preliminaries that will be
used throughout the thesis. Chapter 3 constitutes the QSETH framework and some
QSETH-based lower bounds as its consequence. Following that, in Chapter 4 we
discuss the memory compression technique. Chapter 5 contains results on certain
3SUM-hard problems and how we arrive at those reductions. In Chapter 6 we
discuss some APSP-hard problems and present non-trivial upper bounds for some
of them. We end with concluding remarks in Chapter 7.



Chapter 2

Preliminaries

The primary goal of this chapter is to introduce the notations, the model of
computation, and certain techniques that will be used throughout this thesis.

2.1 Notations

Definition 2.1 (Set Notation). We let rns “ t1, . . . , nu, and let
`

rns

ďm

˘

be the set of
subsets of rns of size at most m.

Definition 2.2 (Hamming Weight). Let x P t0, 1un, we use |x| to denote the Ham-
ming weight of x, i.e., |x| “ |ti | i P rns and xi “ 1u|.

Definition 2.3 (Asymptotic Notation). Let f and g be non-decreasing functions
from N to R.

• Opfpnqq denotes the set of functions gpnq for which there exists a c P Rě0 and
n0 P N such that 0 ď gpnq ď c ¨ fpnq for all n ě n0.

• opfpnqq denotes the set of functions gpnq for which there exists an n0 P N such
that 0 ď gpnq ă c ¨ fpnq for all c P Rą0 and n ě n0.

• Ωpfpnqq denotes the set of functions gpnq for which there exists a c P Rą0 and
n0 P N such that gpnq ě c ¨ fpnq for all n ě n0.

• ωpfpnqq denotes the set of functions gpnq for which there exists an n0 P N such
that gpnq ą c ¨ fpnq for all c P Rě0 and n ě n0.

• Θpfpnqq denotes the set of functions gpnq that are both inOpfpnqq and Ωpfpnqq.

Generally, O and o are used to indicate upper bounds, Ω and ω to indicate
lower bounds and Θ to indicate tight bounds. Throughout the literature, we also
use other notations for hiding larger than constant factors: we use rOp¨q to hide
poly-logarithmic factors, i.e., rOpgpnqq “ Opgpnq ¨ logOp1q

pnqq. This notation can be
used on all the asymptotic notations. Besides that, we use O˚p¨q to hide polynomial
factors, O˚pgpnqq “ Opgpnq ¨ nOp1qq. We also sometimes use polylogpnq, polypnq to
denote logOp1q

pnq and nOp1q terms, respectively.



16 Chapter 2. Preliminaries

2.2 Quantum computing

We briefly sketch the basics and notation of quantum computing and ask the reader
to refer to the book by Nielsen and Chuang [NC00] and de Wolf’s lecture notes
[Wol21] for more details.

Let HpNq denote the complex Hilbert space of dimension N “ 2m. An m-
qubit state is an N -dimensional vector in HpNq with unit ℓ2-norm; the state can be
alternatively viewed as a linear combination of classical m-bit states written as

|ψy “
ÿ

iPt0,1um

αi|iy,

where |iy denotes the basis state i, amplitudes αi P C, and
ř

i |αi|
2 “ 1. A mea-

surement of state |ψy will output i with probability |αi|
2, and the state will then

collapse to the observed state |iy. We use ∥|ψy∥ to denote the ℓ2-norm of |ψy.
Let UpNq denote the space of unitary linear operators from HpNq to itself (i.e.

the unitary group). This is the only set of non-measuring quantum operations we
consider for our algorithms and reductions presented in this thesis. To evolve a
quantum state we apply a unitary (“ linear and norm-preserving) transformation U
to the vector of amplitudes. More precisely for any unitary U P UpNq and quantum
state |ψy P HpNq we have

1. U :U “ I where U : denotes the conjugate transpose of U and I denotes the
identity matrix of dimension N ˆ N .

2. Let |ψ1y “ U |ψy then (it follows from Item 1 that) ∥|ψ1y∥ “ ∥U |ψy∥ “ 1.

3. U is linear, i.e., U |ψy “
ř

iPt0,1um
αiU |iy.

Let N 1 “ 2m
1 for an m1 P N. If |ψy P HpNq and |ϕy P HpN 1q are quantum states

on m and m1 qubits, respectively, then the two-register state |ψy b |ϕy “ |ψy|ϕy is a
quantum state of m`m1 qubits which corresponds to the N ¨N 1-dimensional vector
in HpNq b HpN 1q that is the tensor product of |ψy and |ϕy.

2.3 Model of computation

Ideally a good quantum model of computation would be the standard quantum
circuit model which is a quantum analogue of the standard classical circuit model -
replace AND, OR and NOT gates operating on bits by elementary quantum gates to
operate on qubits. However, we instead consider a slightly different model, namely
the quantum query model of computation. This model differs from the standard
quantum circuit model because the input to this model is given as a “black-box” (also
sometimes referred to as an “oracle”) which is realisable by a unitary operation. More
precisely, if the input x is an n bit Boolean string, then the oracle corresponding to
x, usually denoted as Ox refers to the following unitary map,

Ox|iy|by Ñ |iy|b ‘ xiy,

for all i P rns and b P t0, 1u. Many famous breakthrough results have been con-
ceived in this model; for e.g., Grover’s algorithm [Gro96], Shor’s factoring algorithm
[Sho97], etc. Moreover this model is very well studied. We can formalise the model
in the following way.



2.3. Model of computation 17

2.3.1 Quantum query model

Recall that, we let HpNq to denote the complex Hilbert space of dimension N , and
UpNq to denote the space of unitary linear operators from HpNq to itself. We let B
denote a set of universal quantum gates, which we will fix to contain all 1-qubit and
2-qubit gates, i.e., all unitary operators in set Up2q Y Up4q, but which could have
been chosen from among any of the standard possibilities.

Of particular importance to us will be the set Q “ B Y tRAGn | n a power of 2u

which contains our universal set together with the random-access gates, so that
RAGn P Upn2nq is defined on the computational basis by

RAGn|i, b, x1, . . . , xn´1y “

#

|i, b, x1, . . . , xn´1y, if i “ 0,

|i, xi, x1, . . . , xi´1, b, xi`1, . . . , xn´1y, if i P rn ´ 1s,

@b, x1, . . . , xn´1 P t0, 1u. The RAGs are necessary to our setup because otherwise
classical random-access operations that require Oplog nq time would take a linear
amount of time in the quantum setting. Also, note that RAGn on states with i “ 0
behaves like identity; this construction allows us to easily implement a controlled
version of RAGn in a black-box manner as discussed in Section 2.3.5.

We now give a formal definition of what it means to solve a Boolean relation
f Ď t0, 1un ˆ t0, 1um using a quantum circuit. This includes the special case when
f is a function.

A quantum circuit over a gate set G (“ B or Q) is a tuple C “ pn, T, S, C1, . . . , CT q,
where T ě 0, n, S ě 1 are natural numbers, and the Ct give us a sequence of in-
structions. The number n is the input length, the number T is the time complexity,
and S is the space complexity, also called the number of wires or the number of an-
cillary qubits of the circuit. Each instruction Ct comes from a set IGpSq of possible
instructions, defined below. Given an input x P t0, 1un, at each step t P t0, . . . , T u

of computation the circuit produces an S-qubit state |ψT pxqy P Hp2Sq, starting with
|ψ0pxqy “ |0ybS, and then applying each instruction Ct, as we will now describe.

For each possible q-qubit gateG P GXUp2qq, and each possible ordered choice I “

pi1, . . . , iqq P rSsq of distinct q among S qubits, we have an instruction APPLYG,I P

IGpSq which applies gate G to the qubits indexed by I, in the prescribed order. The
effect of executing the instruction APPLYG,I on |ψy P Hp2Sq is to apply G on the
qubits indexed by I, tensored with identity on the remaining S ´ q qubits. I.e.,
APPLYG,I P Up2Sq corresponds to the unitary transformation defined on each basis
state by:

APPLYG,I ¨ |yIy b |yJy “ pG|yIyq b |yJy,

where J “ rSszI.
Furthermore, for each possible ordered choice I “ pi1, . . . , irlognsq P rSsrlogns

of distinct rlog ns among S qubits, and each i P rSszI, we have an instruction
READI,i P IGpSq, which applies the query oracle on the qubits indexed by I and i.
I.e., given an input x P t0, 1un, the instruction READI,i P Up2Sq applies the unitary
transformation defined on each basis state by:

READI,i ¨ |yIy b |yiy b |yJy “ |yIy b |yi ‘ xyIy b |yJy,

where J “ rSszpI Y tiuq.



18 Chapter 2. Preliminaries

Hence if we have a sequence C1, . . . , CT of instructions and an input x, we may
obtain the state of the memory at time step t, on input x, by |ψ0pxqy “ |0ybS and
|ψt`1pxqy “ Ct`1|ψtpxqy.

We say that a quantum circuit C “ pn, T, S, C1, . . . , CT q computes or solves a
relation f Ď t0, 1unˆt0, 1um with error ε if C is such that, for every input x P t0, 1un,
if we measure the first m qubits of |ψT pxqy in the computational basis, we obtain,
with probability ě 1 ´ ε, a string z P t0, 1um such that px, zq P f .

Also note that our description of what constitutes a quantum query algorithm
subsumes the description that is usually presented in literature, which is a sequence
of unitaries U0,Ox, U1,Ox, ¨ ¨ ¨ , UT , applied on an initial state and followed by a
measurement in the end. Each unitary Ui can be viewed as a series of APPLY
instructions and the unitary Ox representing the “query” operation is analogous to
the READ operation we define. We take effort in redefining the quantum query
model because it allows us to easily quantify the amount of resources (such as
time, queries or space) that a query algorithm uses. For example, given a circuit
C “ pn, T, S, C1, . . . , CT q, it is easy to see that the time complexity of this circuit is
T , the query complexity of C is the number of READ instructions in C, and space
complexity is S.

2.3.2 Complexity of a Boolean relation f

In the earlier section, we could quantify the query, time, and space complexity of an
algorithm computing a relation f Ď t0, 1un ˆ t0, 1um. We will now define the same
quantities for f itself.

Quantum query complexity of f . The ε-error quantum query complexity of f ,
denoted by Qεpfq, is the least number of queries required for a quantum query
algorithm to compute f with error ε. When the subscript ε is dropped we assume
ε “ 1{3; the bounded-error query complexity of f is Qpfq. Note that in between
queries the algorithm can perform arbitrary unitary operations, which may depend
on previously queried input bits, but the cost of these operations do not count
towards the query cost.

Quantum time complexity of f . The ε-error quantum time complexity of f ,
denoted by QTimeεpfq, is the least amount of time required for a quantum query
algorithm to compute f with error ε. Here as well, when the subscript ε is dropped
we assume ε “ 1{3; the bounded-error time complexity of f is QTimepfq.

2.3.3 Quantum random-access machine (QRAM) model

Generally speaking, a quantum circuit is allowed to apply any of the basic operations
to any of its qubits. In the definition given above, a quantum random-access gate
can specify any permuted subset of the qubits to serve as its inputs. This allows for
unusual circuit architectures, which are undesirable.

One may then define a more restricted class of circuits, as follows. We think of
the qubits as divided into two parts: work qubits and memory qubits. We have
M memory qubits and W “ OplogMq work qubits, for a total space complexity
S “ W ` M . We restrict the circuit so that any unitary gate G P B, or read
instruction, must be applied to work qubits only. And finally, any random-access



2.3. Model of computation 19

gate must be applied in such a way that the addressing qubits (i) and the swap qubit
(b) are always the first logM`1 work qubits, and the addressed qubits (x1, . . . , xM)
are exactly the memory qubits, and are always addressed in the same, fixed order,
so one can speak of the first memory qubit, the second memory qubit, etc. We may
then think of a computation as alternating between doing some computation on
the work registers, then swapping some qubits between work and memory registers,
then doing some more computation on the work registers, and so forth. The final
computational-basis measurement is also restricted to measuring a subset of the
work qubits.

Under these restrictions, a circuit of time complexity T may be encoded using
OpT logSq bits, whereas in general one might need ΩpTSq qubits in order to specify
how the wires of the circuit connect to the random-access gates.

We will then use the term a quantum random-access machine algorithm, or
QRAM algorithm, for a family of circuits that operate under these restrictions.1
For example see Figure 2.1.

...|0ybW

...|0ybM

U1 Ox RAG

¨ ¨ ¨

¨ ¨ ¨

Ox RAG

RAGRAG

...

...

Figure 2.1: An example of a Quantum Random-Access Machine (QRAM) algorithm.
There are W designated work qubits and M memory qubits. The random-
access gates can only index into these M memory qubits; this is analogous
to accessing any memory cell in “constant” time in the classical RAM model.
The constant here depends on the precise architecture as discussed in Sec-
tion 2.3.4.

2.3.4 Time complexity of simple operations (the constant ζ)

Throughout the thesis we will often describe algorithms that use certain simple
operations over a logarithmic number of bits. These may include comparison, ad-
dition, bitwise XOR, swapping, and others. In a classical random-access machine,
all of these operations can be done in Op1q time, as in such machines it is usually
considered that every memory position is a register that can hold Oplog nq bits, and
such simple operations are taken to be machine instructions.

1Such a computational model has been referred to by several names in the past. For instance,
the term QRAQM appears in several publications, starting with [Kup05], and QAQM has also
been used [NS20].



20 Chapter 2. Preliminaries

We do not necessarily wish to make such an assumption for quantum algorithms,
since we do not really know what a quantum computer will look like just yet. So
we will broadly postulate the existence of a quantity ζ, which is an upper-bound
on the time complexity of doing such simple operations. We then express our time
upper bounds with ζ as a parameter. Depending on the precise architecture of the
quantum computer, one may think of ζ as being Op1q, or Oplog nq.

2.3.5 Controlled unitaries

Sometimes we will explain how to implement a certain unitary, and we wish to have
a version of the same unitary that can be activated or deactivated depending on the
state of an additional control bit.

The set of all 1-qubit operations together with the 2-qubit CNOT gate is univer-
sal, meaning that any other unitary transformation can be exactly built from these
gates [NC00; Wol21]. Moreover, any 2-qubit unitary can be implemented using a
constant number of CNOTs and 1-qubit unitaries [VW04]. As our gate set contains
all 1-qubit and 2-qubit operations, the controlled versions of all the 1-qubit gates
are already in our gate set, and we can naively construct a controlled version of
any 2-qubit gate by first decomposing the 2-qubit gate into a constant number of
CNOT and 1-qubit gates, then using the controlled version of each of these gates;
the controlled version of CNOT is a Toffoli : px; y; zq Ñ px; y; z ‘ xyq which in turn
can be constructed using a constant number of CNOT and 1-qubit gates as shown
in Chapter 4 of [NC00].

We can construct the controlled version of RAGn using the procedure shown in
Figure 2.2: all the quantum states |i, b, x1, . . . , xn´1y with i “ 0 are 1-eigenstates of
RAGn, therefore to be able to implement this controlled version, our algorithms will
have to maintain an all-zero quantum state of Oplog nq qubits. The controlled-SWAP
gates need to only operate on the qubits associated with index i. Therefore, with
only Oplog nq extra qubits and Oplog nq additional controlled-SWAP gates, each of
which can be implemented with three Toffoli gates, we can implement the desired
controlled version of RAGn.

|by

|ψy

|ϕy

X

V

X

Figure 2.2: Constructing controlled-version of a gate V with only black-box access to
V and access to the state |ϕy which is a 1-eigenstate of V , i.e., V |ϕy “ |ϕy.
When the control bit b “ 1 the output state is |1ybV |ψyb|ϕy, as intended. In
the other case, when the control bit b “ 0 then the state |ψy is first swapped
with state |ϕy and then V operates on |ϕy which is a 1-eigenstate of V ; with
the controlled SWAP and X gate operating again we get |0y b |ψy b |ϕy as
the output.

If the use of extra memory in the above-mentioned construction is undesirable,



2.3. Model of computation 21

then it is not unreasonable to include a controlled version of RAGn in our gate set
Q as we already include RAGn in Q — it is not hard to see that we can construct
a controlled version of RAGn in (almost) the same cost that is required to actually
implement a RAGn. With this, we can make free use of the following lemma.

Lemma 2.4. If a unitary U can be implemented using T gates from Q, then the
unitary

|by|xy ÞÑ

#

|bypU |xyq if b “ 1

|by|xy if b “ 0

can be implemented (without error) using rOpT q gates from Q.

2.3.6 Reversible classical computation

More often than not, we use classical procedures as subroutines in our quantum
algorithms and reductions, and during those instances we implicitly claim that the
time taken to realise any classical procedure using a quantum circuit is roughly
similar to the time taken by a classical circuit realising the procedure. However, we
cannot trivially embed such classical circuits in our quantum algorithms because in
general classical circuits are not reversible. Fortunately, there are certain techniques
that can be used to give a workaround to this problem.

To substantiate our claim, we first use the fact that any classical procedure (in-
terpretable as a Boolean function) can be realised with a classical circuit consisting
of AND,OR,NOT and classical random-access gates (cRAGs). Let us denote the gate
set by Gc “ tAND,OR,NOT, cRAGu and we define cRAG to implement the following
map

pi, b, x1, . . . , xn´1q Ñ

#

pi, b, x1, . . . , xn´1q, if i “ 0,

pi, xi, x1, . . . , xi´1, b, xi`1, . . . , xn´1q, if i P rn ´ 1s,

@b, x1, . . . , xn´1 P t0, 1u.2 Secondly, we use the fact that any classical circuit imple-
mented using T gates from Gc can be simulated by a reversible classical circuit of
almost the same size consisting of only Toffoli and cRAG gates.

It is enough to only prove these results for single-bit-output Boolean functions
of the kind f : t0, 1un Ñ t0, 1u, because any multi-bit-output Boolean function
g : t0, 1un Ñ t0, 1um can be viewed as a series of m different single-bit-output
Boolean functions. Having said that, suppose we have a function f : t0, 1un Ñ

t0, 1u, clearly an irreversible function, we first have to define an analogous reversible
function corresponding to f , let us denote that by f̃ , before attempting to construct
a reversible circuit to compute f . Let f̃ : t0, 1un`1 Ñ t0, 1un`1 corresponding to f be
the reversible function such that f̃px; 0q “ px; fpxqq. We can now do the following.

First, note that every irreversible gate in Gc can be simulated by a Toffoli gate
using one or two additional bits and by fixing inputs and ignoring outputs; it is
also clear from the definition that cRAG is reversible. Let C be the irreversible
circuit computing f . Replace every irreversible gate G in C with a corresponding
Toffoli gate that implements G. The resultant circuit, let us denote this circuit by
C2, will now compute f but would collect a lot of “garbage” on its ancillary bits.
Hence, copy out the final output on a fresh ancillary bit and then run C2 in reverse.

2Note that cRAG is a classical analogue of RAG mentioned in Section 2.3.1.



22 Chapter 2. Preliminaries

With this procedure, the reversible circuit runs only about twice as long as the
irreversible circuit C that it simulates, and all garbage generated in the simulation is
also disposed. However, the number of additional ancillary bits used in this process
is OpT pnqq, which is undesirable.

However, turns out that it is possible to use space (i.e., ancillary bits) far more
efficiently with only a minor blowup to the circuit size by using a reversible pebble
game idea originally given by Bennett in 1989 [Ben89], and very well explained in
Chapter 6 of Preskill’s lecture notes [Pre98]. The (broad) idea is to first divide the
computation in C2 into smaller chunks of roughly the same size, and then run these
steps backwards whenever possible during the course of the computation, so that
the ancillary bits that are freed can be reused again and again. More precisely,

Lemma 2.5 ([Ben89; Pre98]). Let f : t0, 1un Ñ t0, 1u be a Boolean function, and
let C be a T pnq-size classical circuit, for some monotonically increasing function T ,
computing f over gate set Gc “ tAND,OR,NOT, cRAGu. Then, from the description
of C one can construct a reversible classical circuit C 1 that computes f̃ : t0, 1un`1 Ñ

t0, 1un`1 such that f̃px; 0q “ px; fpxqq where C 1 uses at most pT pnqq1`op1q cRAGs and
Toffoli gates, and at most rOplogpT pnqq additional ancillary bits.3

The resultant circuit C 1 from Lemma 2.5 only contains Toffoli gates and cRAGs,
therefore C 1 can be easily converted to a quantum circuit by replacing all its wires
and gates with their respective quantum analogues; we can replace cRAG by RAG
defined in Section 2.3.1 and implement a Toffoli gate using a constant number of
1-qubit and CNOT gates [NC00].

3Note that we get these numbers by plugging in values (suitable to our requirements) in the
analysis given in Chapter 6 of Preskill’s lecture notes [Pre98]. However, this is not in any sense
“optimal” as there is a trade-off between the number of ancillary bits used and the size of the
constructed reversible circuit, thus it really depends on what we want to optimise. If Tirr, Trev
denote the size of our irreversible and (to be constructed) reversible circuits, respectively, then we
have Tirr “ ℓm, Trev “ p2ℓ´1qm ď Tirr ¨2m and M “ mpℓ´1q`1 with M denoting the number of
additional ancillary bits used in the simulation. In our case we have Tirr “ T pnq, and by plugging
in m “ logpT pnqq{ logplog nq we get the result mentioned in Lemma 2.5.



2.4. Quantum subroutines 23

2.4 Quantum subroutines

Additionally, in the reductions and algorithms presented in this thesis, we make
use of some well-known quantum algorithms as subroutines, mostly in a “black-box”
manner. Most of these subroutines are bounded error with at most 1

3
probability

of error, which means one cannot directly use them because the errors in each step
will quickly add up to something uncontrollably large. However, if the errors were
small, say for example 1

100¨polypnq
, then an algorithm taking polypnq steps will be

able to tolerate this error, using a folkloric compute-copy-uncompute trick to make
the imperfect subroutine behave sufficiently “close” to the perfect one. Moreover,
we can also cheaply reduce the 1

3
error probability to any ϵ ą 0, by repeating the

subroutine for Oplog 1
ϵ
q times and then outputting the majority of the outcomes. In

this section, we formally present some of these useful techniques and mention some
of the well-known quantum subroutines relevant to this thesis.

Theorem 2.6 (Perfect versus imperfect subroutines). Let Af be an exact quantum
algorithm computing a function f : t0, 1un Ñ t0, 1u such that

Af : |iy|by|zy Ñ |iy|b ‘ fpiqy|zy,

@i P t0, 1un, b P t0, 1u, z P t0, 1u˚. Let rAf be the bounded-error subroutine equivalent
of Af such that

rAf : |iy|by|zy Ñ
a

1 ´ p|iy|b ‘ fpiqy|ψi,b,zy `
?
p|iy|b ‘ fpiqy|ψ:

i,b,zy

i.e., the algorithm rAf outputs the correct answer with probability p1´pq and answers
incorrectly with probability p for all i P t0, 1un, b P t0, 1u and work qubits z P t0, 1u˚.
Then, we can construct a unitary Uf using rAf , rA´1

f and CNOTs to approximately
implement Af such that for any state |ϕy “

ř

i,b,z αi,b,z|iy|by|zy with
ř

i,b,z |αi,b,z|2 “ 1
and αi,b,z P C, we have

∥Uf |ϕy ´ Af |ϕy∥ ď
a

2p.

Proof. We will construct a unitary Uf using rAf , rA´1
f and CNOT gates to simulate

Af approximately. Note that a SWAP gate can be implemented using three CNOTs.
Additionally, we will also use an ancillary qubit in our construction. For simplifying
the presentation of the proof, we consider an implicit numbering of the quantum
registers |ϕy, |0y as |ϕy1,2,3 and |0y4, respectively. The broad idea of the construction
is to apply rAf , then copy the output to a safe place, and use rA´1

f to reverse the
computation. More precisely, unitary Uf constitute the following maps.



24 Chapter 2. Preliminaries

|ϕy|0y “
ÿ

i,b,z

αi,b,z|iy|by|zy|0y

swap 2,4
Ñ

ÿ

i,b,z

αi,b,z|iy|0y|zy|by

rAf b I
Ñ

ÿ

i,b,z

αi,b,z

´

a

1 ´ p|iy|fpiqy|ψi,0,zy|by `
?
p|iy|fpiqy|ψ:

i,0,zy|by
¯

copy 2 to 4
Ñ

ÿ

i,b,z

αi,b,z

´

a

1 ´ p|iy|fpiqy|ψi,0,zy|b ‘ fpiqy `
?
p|iy|fpiqy|ψ:

i,0,zy|b ‘ fpiqy

¯

“
ÿ

i,b,z

αi,b,z

´

a

1 ´ p|iy|fpiqy|ψi,0,zy|b ‘ fpiqy `
?
p|iy|fpiqy|ψ:

i,0,zy|b ‘ fpiqy

`
?
p|iy|fpiqy|ψ:

i,0,zy|b ‘ fpiqy ´
?
p|iy|fpiqy|ψ:

i,0,zy|b ‘ fpiqy

¯

rearrange
“

ÿ

i,b,z

αi,b,z

´

a

1 ´ p|iy|fpiqy|ψi,0,zy|b ‘ fpiqy `
?
p|iy|fpiqy|ψ:

i,0,zy|b ‘ fpiqy

`
?
p|iy|fpiqy|ψ:

i,0,zy|b ‘ fpiqy ´
?
p|iy|fpiqy|ψ:

i,0,zy|b ‘ fpiqy

¯

“
ÿ

i,b,z

αi,b,z

´

rAf p|iy|0y|zyq|b ‘ fpiqy `
?
p|iy|fpiqy|ψ:

i,0,zyp|b ‘ fpiqy ´ |b ‘ fpiqyq

¯

rA´1
f

b I
Ñ

ÿ

i,b,z

αi,b,z

¨

˚

˚

˚

˝

|iy|0y|zy|b ‘ fpiqy `
?
p rA´1

f p|iy|fpiqy|ψ:

i,0,zyq
looooooooooomooooooooooon

|ηi,by with ∥|ηi,by∥“1

p|b ‘ fpiqy ´ |b ‘ fpiqyq
loooooooooooooomoooooooooooooon

∥¨∥ď
?
2

˛

‹

‹

‹

‚

swap 4,2
Ñ

ÿ

i,b,z

αi,b,z|iy|b ‘ fpiqy|zy|0y `
?
p

ÿ

i,b,z

αi,b,z|η1
i,byq

looooooomooooooon

∥¨∥ď
?
2

“ Af |ϕy|0y `
?
p

ÿ

i,b,z

αi,b,z|η1
i,byq

looooooomooooooon

∥¨∥ď
?
2

.

Therefore, ∥Uf |ϕy ´ Af |ϕy∥ ď
?
2p.

Next we describe a procedure to cheaply reduce the error to any ϵ ą 0.

Theorem 2.7 (Error Reduction Procedure, see de Wolf’s Lecture notes [Wol21]).
If an algorithm A, classical or quantum, outputs 0, 1 with error probability at most
1
3
, then with Oplog 1

ϵ
q repetitions of A one can reduce this error to any ϵ ą 0.

Proof. Choose an odd integer N such that 2e´2α2N ď ϵ for α “ 1{6; it suffices to take
N “ Oplog 1

ϵ
q. Run A for about N times and output the majority of those N output

bits. The probability that this majority is wrong (i.e., that the number of correct
output bits is more than αN below its expectation), is at most ϵ by the Chernoff
bound. Hence, with probability at least 1 ´ ϵ we output the correct answer.

Although the above-mentioned error reduction technique cannot be used directly
for all functions in general, for algorithms with non-Boolean outputs that can be



2.4. Quantum subroutines 25

modified to behave as one-sided error algorithms a similar technique (with a much
simpler analysis) can be used. More precisely, for algorithms of the following kind:
let A be 1{3-bounded error algorithm computing a Boolean relation f Ď t0, 1un ˆ

t0, 1um such that, on an input x P t0, 1un the algorithm outputs a z P t0, 1um.
Moreover, when z ‰ z0 for a specific z0 P t0, 1um then one can efficiently, i.e., in
at most poly-logarithmic time, check if px, zq P f , however, when a z “ z0 it may
take really long to verify whether or not px, z0q P f . In such scenario, we use a
slightly modified version of the error reduction procedure mentioned in the proof of
Theorem 2.7. The adapted procedure is as follows: choose an integer N such that
2
3

N
ď ϵ, it then suffices to fix N “ Oplog 1

ϵ
q. Plan to run algorithm A on input x for

at most N times. If algorithm A outputs z0 then re-run A. However, if A outputs a
z ‰ z0 then quickly check whether or not px, zq P f , if indeed px, zq P f then output
z and exit, else if px, zq R f then re-run A. If A has already run N times then
output z0. The probability that A outputs z0 incorrectly after N “ c log 1

ϵ
rounds

is at most 1
3

N
ď ϵ for c ě 1

log 3
. An example of such a Boolean relation which is of

much relevance to us is the following problem.

Definition 2.8 (Unordered search problem). Given an input string x P t0, 1un,
output an i P rns if there exists an i such that xi “ 1, else output 0.

The unordered search problem qualifies to be a true Boolean relation, because
inputs x with Hamming weight |x| ě 2 could have several different indices i, j such
that xi “ xj “ 1 but i ‰ j. Moreover, if an algorithm outputs an index i P rns then
we can with a single query to the input, i.e., in constant time, check if the algorithm
outputted correctly. Therefore, in this scenario, we use the modified version of the
error reduction algorithm, whenever needed. Fortunately, there is an interesting
1{3-bounded error quantum algorithm for this problem.

Theorem 2.9 (Grover’s Search Algorithm [Gro96]). Let x P t0, 1un be an input to
the Unordered Search Problem (Definition 2.8). Then, there exists a bounded error
quantum algorithm that with probability at least 2{3 outputs a j P rns if there exists
a j such that xj “ 1, else outputs 0. This algorithm uses Op

?
nq queries and runs

in Op
?
nq time.

Additionally, Grover’s search algorithm can be used in a slightly more generalised
setting as well.

Theorem 2.10 (Implicit in [HMW03]). Let f : rns Ñ t0, 1u be a Boolean function
computable by an exact or a 1{3-bounded error quantum circuit of size T pnq, for
some monotonically increasing function T , then there exists a bounded error quantum
algorithm, that in OpT pnq

?
nq time with probability at least 2{3, correctly outputs

an index i P rns such that fpiq “ 1, else outputs 0.

Proof Sketch. Let Af , rAf denote the exact and the probabilistic circuits of size
T pnq, respectively.

In the exact case, we have

Af |iy|by|zy Ñ |iy|b ‘ fpiqy|zy

for all i P rns, b P t0, 1u and z P t0, 1u˚. Using Af , a Hadamard gate and an addi-
tional ancillary qubit, we can implement its corresponding phase oracle Af,˘|iy “



26 Chapter 2. Preliminaries

p´1qfpiq|iy. One can now find an i P rns such that fpiq “ 1 (if such an i exists) using
Grover’s algorithm with Af,˘ instead of the regular Ox,˘ [Gro96]. The entire circuit
will be of size OpT pnq

?
nq.

In the case when f is computed with error, we have

rAf |iy|by|zy Ñ

c

2

3
|iy|b ‘ fpiqy|ψi,b,zy `

c

1

3
|iy|b ‘ fpiqy|ψ:

i,b,zy.

We will present a sub-optimal, rOpT pnq
?
nq time, procedure here and refer to [HMW03]

for a more efficient procedure that uses recursive interleaving of amplitude ampli-
fication and error-reduction techniques to find an index i P rns, if any, such that
fpiq “ 1, in OpT pnq

?
nq time [HMW03]. The sub-optimal procedure is as follows:

use the error reduction technique as mentioned in Theorem 2.7 to reduce the error
to an ϵ “ 1

polypnq
, incurring an Oplog nq factor overhead. Following that, use the

compute-copy-uncompute technique mentioned in the proof of Theorem 2.6 to simu-
late Af approximately, and use the Grover’s subroutine on top of that. This entire
procedure will then take rOpT pnq

?
nq time.

Another variation of Grover’s algorithm can be used to solve the maximum or
minimum finding problems in Op

?
nq time [DH96].

Theorem 2.11 (Maximum or Minimum Finding Algorithm [DH96]). Let f : rns Ñ

R be a function. There exists a quantum algorithm, that with probability at least
p1 ´ 1{2cq, outputs the index i P rns for which fpiq is minimised (or maximised) in
Opc

?
nq time.

Finally, we mention the Variable Time Grover Search subroutine which we use
for obtaining non-trivial quantum time upper bounds for certain graph problems.

Theorem 2.12 (Variable Time Grover Search [Amb10]). Let f : rns Ñ t0, 1u be a
Boolean function, and suppose we can compute fpiq in time ti, then there exists a
bounded error quantum algorithm that with probability at least 2{3, outputs an index
i P rns, if there exists an i such that fpiq “ 1, else outputs 0 in rOp

a

řn
i“1 t

2
i q time.

Also note that the results of Theorem 2.10 in the exact case directly follow from
Theorem 2.12.

2.5 Quantum basic adversary method

Time lower bounds, whether classical or quantum, are hard to obtain, however there
are known techniques to prove query bounds in the quantum model of computation
considered in this thesis. Additionally, these query lower bounds immediately trans-
late to time lower bounds in this model, but often they are not tight. Even though
we care about tight time bounds in this thesis, we sometimes use the query lower
bounds to conclude time lower bounds for variants of CNF-SAT problems, as we
will see in Chapter 3. We use Ambainis’s quantum adversary method for proving
those query lower bounds.

Theorem 2.13 (Basic quantum adversary method [Amb02]). Let f : t0, 1un Ñ

t0, 1u be a decision problem, with X Ď f´1p0q and Y Ď f´1p1q. Let R Ď X ˆ Y be
a relation such that



2.6. Quantum fine-grained reductions 27

1. For every x P X, there exist at least m different y P Y such that px, yq P R.

2. For every y P Y , there exist at least m1 different x P X such that px, yq P R.

3. For every x P X and i P rns, there are at most ℓ different y P Y such that
px, yq P R and xi ‰ yi.

4. For every y P Y and i P rns, there are at most ℓ1 different x P X such that
px, yq P R and xi ‰ yi.

Then any quantum algorithm computing f uses Ωp

b

mm1

ℓℓ1 q queries.

Note that, there are several other, comparable and incomparable, techniques
known to prove quantum query lower bounds, for example, the polynomial method
[BBC+01], the Kolmogorov complexity method [LM08], the spectral adversary method
[BSS03], etc. Additionally, it has been shown that variants of the quantum adver-
sary method such as the spectral adversary [BSS03], strong weighted adversary
[Zha04] and the Kolmogorov complexity adversary [LM08] are equivalent [ŠS06].
Moreover, the negative weight adversary method [HLŠ07] tightly (up to constant
factors) characterises query complexity of functions [LMR+11; Rei11]. However,
these generalised methods are hard to use in practice.4 On the other hand, the basic
adversary method is simple to use but has some limitations: it is shown that, if f
is a total Boolean function, the lower bounds achieved using this method or even
the Weighted Adversary method [Amb06] are at most

?
C0C1 where Ci denotes the

i-certificate complexity of f [Zha04]; a limitation that leads to an open question in
Chapter 3.

2.6 Quantum fine-grained reductions

The need to define quantum fine-grained reductions stems from the fact that quan-
tum algorithms, thus quantum reductions, obey different rules than their classical
counterparts. We use a slightly modified version of the definition of quantum fine-
grained reduction, described by Aaronson et al. in [ACL+20]. Note that this defi-
nition in turn is inspired by the definition of classical fine-grained reduction given
by Williams in [Vas15], appropriately modified to account for quantum operations
in a reduction.

First, recall that in the quantum query model, we do not have to write down
the elements of an instance explicitly, instead we have “on-the-fly” access to these
elements.

Definition 2.14 (Quantum Oracle). Let X :“ px1, . . . , xnq be the instance of some
problem P and let OX be the corresponding oracle that can be accessed in super-
position. To realise OX , we do not need to write down the entire X. Instead, we
can design a quantum circuit to realise the mapping

OX : |iy|by Ñ |iy|b ‘ xiy.

Secondly, in our quantum reductions we should be able to access quantum sub-
routines of the following kind.

4These methods are not difficult to use if the person who is using them is A. Belovs.



28 Chapter 2. Preliminaries

Definition 2.15 (γ-Oracle for problem Q). Let Q be a computational problem
with access to an input instance X “ px1, . . . , xnq given by a quantum oracle OX

(Definition 2.14). Let ApOXq denote an algorithm or an oracle A with access to
oracle OX . Now we say Aγ is a γ-oracle for problem Q, if for every instance OX of
Q it holds that

PrrAγpOXq “ QpXqs ě 1 ´ γ,

where QpXq is the solution of instance X for problem Q.

Finally, following is the definition of what constitutes a quantum fine-grained
reduction.

Definition 2.16 (Quantum Fine-Grained Reduction). Let ppnq, qpnq and rpnq be
non-decreasing functions of n. Let P and Q be two problems in the quantum query
model and Aγ be a γ-oracle for Q with error probability γ ď 1{3. The problem P
is quantum pp, qq-reducible to Q, denoted as pP, pq ďQFG pQ, qq, if for every ϵ ą 0,
there exists a δ ą 0, and a quantum algorithm F with access to Aγ, constants c, d,
and for every n ě 1 an integer ℓpnq, such that for every n, the algorithm F takes
any input of P of size n and satisfies the following:

1. F can solve P with success probability at least 2{3, in time at most
c ¨ pppnqq1´δ ¨ logOp1q

pppnqq.

2. F performs at most ℓpnq quantum queries to Aγ. Specifically, in the i-th query,
let Xi :“ tX1,i, X2,i, . . . u be a set of instances of Q. Then F realises the oracles
tOX1,i

,OX2,i
, . . . u in superposition and applies Aγ to solve the instances.

3. The following inequality holds

ℓpnq
ÿ

i“1

tpXiq ¨ pqpniqq
1´ϵ

ď d ¨ pppnqq
1´δ,

where tpXiq is the time required for F to realise the oracles tOX1,i
,OX2,i

, . . . u
in superposition and ni :“ maxj |Xj,i|.

In Definition 2.16, the input of Aγ is given as a quantum oracle such that Aγ can
be a quantum query algorithm with running time strictly less than the input size.
Moreover, the quantum reduction F can realise quantum oracles tOX1,i

,OX2,i
, . . .u

in superposition, and thus the time required is maxi tpXi,jq (where tpXi,jq is the
time required to realise OXi,j

) instead of
ř

i tpXi,jq. This also allows F to use
fast quantum algorithms to process the information of Aγ’s output (for example,
amplitude amplification). See Figure 2.4 for reference.

Also note that our definition of quantum fine-grained reduction, with a (slight)
modification to Definition 25 in [ACL+20], firstly allows us to account for any pre-
processing time that algorithm F might spend on input X, and secondly lets us
account for the time taken to reduce the error probability γ to a value suitable for
a large number of calls to Aγ.

It might not be immediately clear how this definition of a quantum fine-grained
reduction helps in proving conditional quantum time lower bounds for any prob-
lem. To understand that, let us re-consider the problems P and Q, and let ppnq

and qpnq be two non-decreasing functions of n. From Definition 2.16 we see that



2.6. Quantum fine-grained reductions 29

if pP, pq ďQFG pQ, qq, i.e., P is quantum pp, qq-reducible to Q, then there exists
a δ ą 0 (corresponding to an ϵ ą 0), such that one can solve P in at most
c ¨ logOp1q

pppnqq¨pppnqq1´δ time using a qpnq1´ϵ time quantum algorithm for Q as sub-
routines. Moreover, if we have sufficient reason to believe that P cannot be solved
in pppnqq1´α time (for any α ą 0) while pP, pq ďQFG pQ, qq holds, then it shows that
Q also cannot have a qpnq1´ϵ time quantum algorithm for any ϵ ą 0. Thus, showing
how a conjectured time lower bound of ppnq1´op1q for P can be used towards proving
a time lower bound of qpnq1´op1q for Q, when pP, pq ďQFG pQ, qq.

Consequently, what immediately follows from Definition 2.16 is the next defini-
tion.

Definition 2.17 (Quantum Fine-Grained Equivalent). Let P and Q be two prob-
lems in the quantum query model and let ppnq and qpnq be two non-decreasing func-
tions of n. We say P and Q are pp, qq-equivalent, denoted by pP, pq “QFG pQ, qq, if
we have pP, pq ďQFG pQ, qq, and pQ, qq ďQFG pP, pq.

Additionally, Definitions 2.16 and 2.17 also satisfy the transitivity condition. See
Theorem 3.3 and 4.4 of Schoneveld’s Bachelor Thesis [Sch22], where this question of
transitivity of fine-grained reductions was also addressed, but formally proven only
in the classical setting.

Theorem 2.18 (Transitivity of Quantum Fine-Grained Reductions). Let P,Q and
R be problems in the quantum query model, and let ppnq, qpnq and rpnq be non-
decreasing functions of n. If pP, pq ďQFG pQ, qq and pQ, qq ďQFG pR, rq, then
pP, pq ďQFG pR, rq.

Proof. Let AQ
γ , AR

γ denote a γ-oracle for Q, R, respectively, with error probability
γ ď 1{3. When the subscript γ is dropped we assume γ “ 1{3. We will first
construct a reduction algorithm FPR using the reduction algorithms FPQ and FQR

that we will soon define.

...

...

¨ ¨ ¨

¨ ¨ ¨

U1

AR
γ

U2

AR
γ

UT

AQ

...

...

Figure 2.3: Algorithm FQR with access to AR
γ which is a γ-oracle for problem R, with

T ď mpnq. One way to implement AQ
1{3 is to run the algorithm FQR on AR

γ

with γ “ 1
3mpnq

. To implement AQ
ϵ for any ϵ ą 0 repeat AQ

1{3 for Oplogp1ϵ qq

times and take the majority of the outcomes.



30 Chapter 2. Preliminaries

Construction. Consider an ϵ ą 0. Given that pQ, qq ďQFG pR, rq, it means for
the ϵ we have considered, there exists δ ą 0 and a quantum algorithm, let us denote
by FQR, that makes quantum queries (in superposition) to AR to solve Q, as shown
in Figure 2.3. On an input of length n, Algorithm FQR makes at most mpnq queries
to AR, possibly in superposition, and runs for at most c ¨ pqpnqq1´δ ¨ logOp1q

pqpnqq

time. The time required by FQR to implement ith query is tpXiq ¨ prpniqq1´ϵ, with
tpXiq and ni as mentioned in Definition 2.16. Additionally, we are also promised
that

mpnq
ÿ

i“1

tpXiq ¨ prpniqq
1´ϵ

ď d ¨ pqpnqq
1´δ. (2.1)

...

...

¨ ¨ ¨

¨ ¨ ¨

U 1
1

AQ
γ

U 1
2

AQ
γ

U 1
T 1

...

...

Figure 2.4: Algorithm FPQ with access to AQ
γ with T 1 ď ℓpnq.

Given that we also have pP, pq ďQFG pQ, qq, now consider an algorithm FPQ

corresponding to the δ we get from the previous paragraph, and let β ą 0 corre-
spond to this δ. Algorithm FPQ makes at most ℓpnq quantum queries to AQ and
computes P in at most c1 ¨ pppnqq1´β ¨ logOp1q

pppnqq time. We will now construct a
new algorithm FPR from algorithm FPQ by replacing the AQ subroutines with the
circuit corresponding to FQR, as shown in Figure 2.5. Once again we are promised
that

ℓpnq
ÿ

i“1

tpXiq ¨ pqpniqq
1´δ

ď d1
¨ pppnqq

1´β. (2.2)

Analysis.

• Consider the ith query made to AQ by FPQ. FPQ takes tpXiq time to realise
the oracles tOX1,i

,OX2,i
, . . . u in superposition and uses AQ on inputs of length

at most ni :“ maxj |Xj,i|.

Let us now analyse how much time it must require to run AQpOXi,j
q. Let

Xi,j “ X 1. For this we will now use the algorithm FQR. Let us consider
the kth query made by FQR to AR. Algorithm FQR uses tpX 1

kq to realise the
tOX 1

1,k
,OX 1

2,k
, . . . u in superposition and uses AR on inputs of length at most

n1
k :“ maxj |X 1

j,k|. Therefore, algorithm FPR can now in at most tpXiq ¨ tpX 1
kq

time realise the input oracle to AR.



2.6. Quantum fine-grained reductions 31

...

...

¨ ¨ ¨

¨ ¨ ¨

U 1
1 U 1

2 U 1
T 1

¨ ¨ ¨

¨ ¨ ¨

U1

AR
γ

U2

AR
γ

UT

¨ ¨ ¨

¨ ¨ ¨

U1

AR
γ

U2

AR
γ

UT

...

...

Figure 2.5: Algorithm FPR with access to AR
γ ; the darkred shaded areas in the figure

corresponding to queries to AR
γ .

In order to prove the theorem, we will first check if the third condition of
Definition 2.16 is satisfied. Towards that, let us analyse the following quantity
with i P rℓpnqs and k P rmpniqs,

ÿ

i,k

tpXiq ¨ tpX 1
kq ¨ prpn1

kqq
1´ϵ

ď

ℓpnq
ÿ

i

tpXiq

mpniq
ÿ

k

tpX 1
kq ¨ prpn1

kqq
1´ϵ

looooooooooooomooooooooooooon

ďd¨pqpniqq1´δ from Equation 2.1

(2.3)

ď d ¨

ℓpnq
ÿ

i

tpXiqpqpniqq
1´δ

loooooooooomoooooooooon

ďd1¨pppnqq1´β from Equation 2.2

(2.4)

ď d ¨ d1
¨ pppnqq

1´β. (2.5)

Thus, there exists a constant d2 “ d ¨d1 such that condition 3 in Definition 2.16
is satisfied.

• The total time taken by FPR is now at most c2 ¨ pppnqq1´β ¨ logOp1q
pppnqq with

c2 “ maxtd2, c1u.

Therefore, we have shown that for any ϵ ą 0, there exists a β ą 0, constants c2, d2,
an algorithm FPR that with access to AR

γ of run time prpnqq1´ϵ solves P in at most
c2 ¨ logOp1q

pppnqq ¨ pppnqq1´β time. Hence, pP, pq ďQFG pR, rq.

As a corollary to Theorem 2.18 we get the following result.

Corollary 2.19. Let P,Q and R be problems in the quantum query model, and let
ppnq, qpnq and rpnq be non-decreasing functions of n. If pP, pq “QFG pQ, qq and
pQ, qq “QFG pR, rq, then pP, pq “QFG pR, rq.





Chapter 3

A Framework of Quantum Strong
Exponential-Time Hypotheses

Chapter summary The strong exponential-time hypothesis (SETH) is a com-
monly used conjecture in the field of complexity theory. It essentially states that
determining whether a CNF formula is satisfiable cannot be done faster than ex-
haustive search over all possible assignments. This hypothesis and its variants gave
rise to a fruitful field of research, fine-grained complexity, obtaining (mostly tight)
lower bounds for many problems in P whose unconditional lower bounds are very
likely beyond current techniques. In this chapter, we introduce an extensive frame-
work of Quantum Strong Exponential-Time Hypotheses, as quantum analogues to
what SETH is for classical computation.

Using the QSETH framework, we are able to translate quantum query lower
bounds on black-box problems to conditional quantum time lower bounds for many
problems in P. As an example, we provide a conditional quantum time lower bound
of n1.5´op1q for the Longest Common Subsequence and Edit Distance problems. We
also show that the n2´op1q SETH-based lower bound for a recent scheme for Proofs of
Useful Work carries over to the quantum setting using our framework, maintaining
a quadratic gap between the verifier and prover.

Lastly, we show that the assumptions in our framework cannot be simplified
further with relativizing proof techniques, as they are false in relativized worlds.

This chapter is based on the following paper:

[BPS21] Harry Buhrman, Subhasree Patro, Florian Speelman. A Framework of Quan-
tum Strong Exponential-Time Hypotheses. In Proceedings of the 38th Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS 2021).



34 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

3.1 Introduction

There is a rich diversity of computational problems that are solvable in polynomial
time; some have surprisingly fast algorithms, such as the computation of Fourier
transforms or solving linear programs, and some for which the worst-case run time
has not improved much for many decades. Of the latter category Edit Distance
is a good example: this is a problem with high practical relevance, and an Opn2q al-
gorithm using dynamic programming has been known for many decades. Even after
considerable effort, no algorithm has been found that can solve this problem essen-
tially faster than n2. The best-known algorithms run in Opn2{ log2 nq time [MP80],
still a nearly quadratic run time.

Traditionally, the field of (structural) complexity theory has studied the time
complexity of problems in a relatively coarse manner — the class P, of problems
solvable in polynomial time, is one of the central objects of study in complexity
theory.

Consider CNF-SAT, the problem of whether a formula, input in conjunctive
normal form, has a satisfying assignment. What can complexity theory tell us about
how hard it is to solve this problem? For CNF-SAT, the notion of NP-completeness
gives a convincing reason why it is hard to find a polynomial-time algorithm for this
problem: if such an algorithm is found, all problems in the complexity class NP are
also solvable in polynomial time, showing P “ NP.

Not only is no polynomial-time algorithm known, but (if the clause length is
arbitrarily large) no significant speed-up over the brute-force method of trying all
2n assignments are known. Impagliazzo, Paturi, and, Zane [IP01; IPZ01] studied
two ways in which this can be conjectured to be optimal. The first of which is called
the Exponential-Time Hypothesis (ETH).

Conjecture 3.1 (Exponential-Time Hypothesis). There exists a constant α ą 0
such that CNF-SAT on n variables and m clauses cannot be solved in time Opm2αnq

by a (classical) Turing machine.

This conjecture can be directly used to give lower bounds for many natural NP-
complete problems, showing that if ETH holds then these problems also require
exponential time to solve. The second conjecture, most importantly for the current
chapter, is the Strong Exponential-Time Hypothesis (SETH).

Conjecture 3.2 (Strong Exponential-Time Hypothesis). There does not exist δ ą 0
such that CNF-SAT on n variables and m clauses can be solved in Opm2np1´δqq time
by a (classical) Turing machine.

The strong exponential-time hypothesis also directly implies many interesting
exponential lower bounds within NP, giving structure to problems within the com-
plexity class. A wide range of problems (even outside of just NP-complete problems)
can be shown to require strong exponential time assuming SETH: for instance, recent
work shows that, conditioned on SETH, classical computers require exponential time
for strong simulation of several models of quantum computation [HNS18; MT19].

Surprisingly, SETH is not only a very productive tool for studying the hardness
of problems that likely require exponential time, but can also be used to study
the difficulty of solving problems within P, forming a foundation for the field of
fine-grained complexity. The first of such a SETH-based lower bound was given in



3.1. Introduction 35

[Wil05], via a reduction from CNF-SAT to the Orthogonal Vectors problem,
showing that a truly subquadratic algorithm that can find a pair of orthogonal
vectors among two lists would render SETH false.

The Orthogonal Vectors problem became one of the central starting points
for proving SETH-based lower bounds, and conditional lower bounds for problems
such as computing the Frechet distance between two curves [Bri14], sequence com-
parison problems such as the string alignment problem [AVW14] and Dynamic Time
Warping [ABV15], can all obtained via a reduction from Orthogonal Vectors.
Both the Longest Common Subsequence (LCS) and the Edit Distance prob-
lems [BI18] can also be shown to require quadratic time conditional on SETH, im-
plying that any super-logarithmic improvements over the classic simple dynamic
programming algorithm would also imply better algorithms for satisfiability — a
barrier which helps explain why it has been hard to find any new algorithms for
these problems.

All these results give evidence for the hardness of problems relative to classical
computation, but interestingly SETH does not hold relative to quantum computa-
tion. Using Grover’s algorithm [Gro96; BV97], quantum computers are able to solve
CNF-SAT (and more general circuit satisfiability problems) in time 2n{2, a quadratic
speedup relative to the limit that SETH conjectures for classical computation.

Even though this is in violation of the SETH bound, it is not in contradiction
to the concept behind the strong exponential-time hypothesis: the input formula is
still being treated as a black box, and the quantum speedup comes ‘merely’ from
the general quadratic improvement in unstructured search.1

It could therefore be natural to formulate the quantum exponential time hypoth-
esis as identical to its classical equivalent, but with an included quadratic speedup, as
a ‘basic QSETH’. For some problems, such as Orthogonal Vectors, this conjec-
ture would already give tight results, since these problems are themselves amenable
to a speedup using Grover’s algorithm. See for instance the Masters thesis [Ren19]
for an overview of some of the SETH-based lower bounds that are violated in the
quantum setting.

On the other hand, since the conditional lower bound for all problems are a
quadratic factor lower than before, such a ‘basic QSETH’ lower bound for LCS
or Edit Distance would be merely linear. The best currently-known quantum
algorithm that computes edit distance takes quadratic time, so we would lose some
of the explanatory usefulness of SETH in this translation to the quantum case.

In this chapter, we present a way around this limit. Realise that while finding a
single marked element is quadratically faster for a quantum algorithm, there is no
quantum speedup for many other similar problems. For instance, computing whether
the number of marked elements is odd or even cannot be done faster when allowing
quantum queries to the input, relative to allowing only classical queries [BBC+01;
FGG+98].

Taking the LCS problem again as an illustrative example, after careful inspec-
tion of the reductions from CNF-SAT to LCS [ABV15], we show that the result of
such a reduction encodes more than merely the existence of an a satisfying assign-
ment. Instead, the result of these reductions also encodes whether many satisfying

1For unstructured search this bound is tight [BBB+97; BBH+98]. Bennett, Bernstein, Bras-
sard, and Vazirani additionally show that with probability 1 relative to a random oracle all of NP
cannot be solved by a bounded-error quantum algorithm in time op2n{2q.



36 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

assignments exist (in a certain pattern), a problem that could be harder for quantum
computers than unstructured search. The ‘basic QSETH’ is not able to account for
this distinction, and therefore does not directly help with explaining why a linear-
time quantum algorithm for LCS has not been found.

We present a framework of conjectures, that together form an analogue of the
strong exponential-time hypothesis: QSETH. In this framework, we account for the
complexity of computing various properties on the set of satisfying assignments, giv-
ing conjectured quantum time lower bounds for variants of the satisfiability problem
that range from 2n{2 up to 2n.

Summary of results presented in this chapter

• We define the QSETH framework, connecting quantum query complexity to
the proving of fine-grained (conditional) lower bounds of quantum algorithms.
The framework encompasses both different properties of the set of satisfying
assignments, and is also able to handle different input circuit classes – giving a
hierarchy of assumptions that encode satisfiability on CNF formulas, general
formulas, branching programs, and so on.

– To be able to handle more-complicated properties of the satisfying as-
signments, we require such a property to be compression oblivious – a
notion we define to capture the cases where query complexity is a lower
bound for the time complexity, even for inputs that are ‘compressible’ as
a truth table of a small formula.2 We give various results to initiate the
study of the set of compression-oblivious languages.

• Some SETH-based ΩpT q lower bounds carry over to Ωp
?
T q QSETH lower

bounds, from which we immediately gain structural insight to the complexity
class BQP.

• We show that, assuming QSETH, the Proofs of Useful Work of Ball, Rosen,
Sabin and Vasudevan [BRS+18] require time n2´op1q to solve on a quantum
computer, matching the classical complexity of these proofs of work.

• We prove that the Longest Common Subsequence (and the Edit Distance)
problem requires n1.5´op1q time to solve on a quantum computer, conditioned
on QSETH. We do this by showing that LCS (similarly, edit distance) can be
used to compute a harder property of the set of satisfying assignments than
merely deciding whether one satisfying assignment exists.
Following [AHV+16], we are able to show this for a version of QSETH where
the input formulas are branching programs instead, giving a stronger result
than assuming the hardness for only CNF inputs.

• As a corollary to the proof of the conditional LCS lower bound, we can show
that the query complexity of the restricted Dyck language is linear for any
k “ ωplog nq, partially answering an open question posed by Aaronson, Grier,
and Schaeffer [AGS19].3

2This notion is conceptually related to the Black-Box Hypothesis introduced by [BGI+12] and
studied by [IKK+17].

3Lower bounds for the restricted Dyck language were recently independently proven by Ambai-
nis, Balodis, Iraids, Khadiev, Klevickis, Prūsis, Shen, Smotrovs and Vihrovs [ABI+20].



3.2. The quantum strong exponential-time hypotheses 37

Related work Independently from the work presented in this chapter, Aaronson,
Chia, Lin, Wang, and Zhang [ACL+20] recently also defined a basic quantum version
of the strong exponential-time hypothesis, which assumes that a quadratic speed-up
over the classical SETH is optimal. They present conditional quantum lower bounds
for the orthogonal vectors problem, the closest pair problem, and the bichromatic
closest pair problem, by giving fine-grained quantum reductions from CNF-SAT.
All such lower bounds have a quadratic gap with the corresponding classical SETH
lower bound.

Despite the overlap in topic, these results turn out to be complementary to
the current work: in the current chapter we focus on defining a more extensive
framework for QSETH that generalises in various ways the basic version. Our more
general framework can exhibit a quantum-classical gap that is less than quadratic,
which allows us to give conditional lower bounds for LCS and Edit Distance
(n1.5´op1q) and useful proofs of work (a quadratic gap between prover and verifier).
For our presented applications, the requirements of the fine-grained reductions are
lower, e.g., when presenting a lower bound of n1.5´op1q for LCS or Edit Distance it
is no problem if the reduction itself takes time rOpnq. Conversely, we do not give the
reductions that are given by [ACL+20]; those results are distinct new consequences
of QSETH (both of the QSETH that is presented in that work, and of our more
extensive QSETH framework).

Structure of this chapter In Section 3.2 we motivate and state the QSETH
framework. Following that, in Section 3.3 we present the direct consequences of
QSETH, including the maintaining of some current bounds (with a quadratic loss),
and the Useful Proof of Work lower bound. In Section 3.4 we present conditional
lower bounds for LCS and the Edit Distance problem. The lower bound to the
restricted Dyck language we get as a corollary to the proof in Section 3.5.1. Finally,
we conclude and present several open questions in Section 3.6.

3.2 The quantum strong exponential-time hypotheses

As we briefly discussed in Chapter 1, almost all known lower bounds for quantum
algorithms are defined in terms of query complexity, which measures the number of
times any quantum algorithm must access the input to solve an instance of a given
problem.

Despite the success of quantum query complexity and the fact that we know tight
query lower bounds for many problems, the query model does not take into account
the computational efforts required after querying the input. In particular, it is not
possible to use query complexity to prove any lower bound greater than linear, since
any problem is solvable in the query-complexity model after all bits are queried.
In general we expect the time needed to solve most problems to be much larger
than the number of queries required for the computation, but it still seems rather
difficult to formalise methods to provide unconditional quantum time lower bounds
for explicit problems. We overcome these difficulties by providing a framework of
conjectures that can assist in obtaining conditional quantum time lower bounds for
many problems in BQP. We refer to this framework as the QSETH framework.



38 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

Variants of the classical SETH The Strong Exponential-Time Hypothesis (SETH)
was first studied in [IP01; IPZ01], who showed that the lack of a Op2np1´δqq for a
δ ą 0 algorithm to solve CNF-SAT is deeply connected to other open problems
in complexity theory. Despite it being one the most extensively studied problems
in the field of (classical) complexity theory, the best known classical algorithms for
solving k -SAT run in 2n´n{OpkqmOp1q time [PPS+05], while the best algorithm for the
more-general CNF-SAT is 2n´n{Oplog∆qmOp1q [CIP06], where m denotes the number
of clauses and ∆ “ m{n denotes the clause to variable ratio.

Even though no refutation of SETH has been found yet, it is plausible that
the CNF structure of the input formulas does allow for a speed-up. Therefore, if
possible, it is preferable to base lower bounds on the hardness of more general kinds
of (satisfiability) problems, where the input consists of wider classes of circuits.
For example, lower bounds based on NC-SETH, satisfiability with NC-circuits as
input, have been proven for LCS, Edit Distance and other problems [AHV+16],
in particular all the problems that fit the framework presented in [BK15].4

Additionally, a different direction in which the exponential-time hypothesis can
be weakened, and thereby made more plausible, is requiring the computation of
different properties of a formula than whether at least one satisfying assignment
exists. For example, hardness of counting the number of satisfying assignments is
captured by #ETH [DHM+14]. Computing existence is equivalent to computing
the OR of the set of satisfying assignments, but it could also conceivably be harder
to output, e.g., whether the number of satisfying assignments is odd or even, or
whether the number of satisfying assignments is larger than some threshold. In the
quantum case, generalising the properties to be computed is not only a way to make
the hypothesis more plausible: for many of such tasks it is likely that the quadratic
quantum speedup, as given by Grover’s algorithm, no longer exists.

3.2.1 The basic QSETH

To build towards our framework, first consider what would be a natural generalisa-
tion of the classical SETH.

Conjecture (Basic QSETH). There is no bounded error quantum algorithm that
solves CNF-SAT on n variables, m clauses in Op2

n
2

p1´δqmOp1qq time, for any δ ą 0.

This conjecture is already a possible useful tool in proving conditional quantum
lower bounds, as we present an example of this in Section 3.3.1.5

We first extend this conjecture with the option to consider wider classes of cir-
cuits. Let γ denote a class of representations of computational models. Such a
representation can for example be polynomial-size CNF formulas, polylog-depth cir-
cuits NC, polynomial-size branching programs BP, or the set of all polynomial-size
circuits. The complexity of the latter problem is also often studied in the classical
case, capturing the hardness of CircuitSAT.

Conjecture (Basic γ-QSETH). A quantum algorithm cannot, given an input C
from the set γ, decide in time Op2

n
2

p1´δqq whether there exists an input x P t0, 1un

such that Cpxq “ 1 for any δ ą 0.
4NC circuits are of polynomial size and poly-logarithmic depth consisting of fan-in 2 gates.
5Additional examples of implications from such a version of QSETH can be found in the recent

independent work of [ACL+20].



3.2. The quantum strong exponential-time hypotheses 39

We also define AC0
2 to be the set of all depth-2 circuits consisting of unbounded

fan-in, consisting only of AND and OR gates. This definition is later convenient
when considering wider classes of properties, and it can be easily seen that ‘basic
AC0

2-QSETH’ is precisely the ‘basic QSETH’ as defined above.
Since both these basic QSETH variants already contain a quadratic speedup

relative to the classical SETH, conditional quantum lower bounds obtained via these
assumptions will usually also be quadratically worse than any corresponding classical
lower bounds for the same problems. For some problems, lower bounds obtained
using the basic QSETH, or using γ-QSETH for a wider class of computation, will
be tight. However, for other problems no quadratic quantum speedup is known.

3.2.2 Extending QSETH to general properties

We now extend the ‘basic γ-QSETH’ as defined in the previous section, to also in-
clude computing different properties of the set of satisfying assignments. By extend-
ing QSETH in this way, we can potentially circumvent the quadratic gap between
quantum and classical lower bounds for some problems.

Consider a problem in which one is given some circuit representation of a Boolean
function f : t0, 1un Ñ t0, 1u and asked whether a property P : t0, 1u2

n
Ñ t0, 1u on

the truth table of this function evaluates to 1, that is, given a circuit C the problem
is to decide if PpttpCqq “ 1, where ttpCq denotes the truth table of the Boolean
function computed by the circuit C. If one can only access C as a black box then
it is clear that the amount of time taken to compute PpttpCqq is lower bounded
by the number of queries made to the string ttpCq. However, if provided with the
description of C, which we denote by descpCq, then one can analyse C to compute
PpttpCqq possibly much faster.

For example, take the representation to be polynomial-sized CNF formulas and
the property to be OR. Then for polynomial-sized CNF formulas this is precisely the
CNF-SAT problem. Conjecturing quantum hardness of this property would make
us retrieve the ‘basic QSETH’ of the previous section. Do note that we cannot
simply conjecture that any property is hard to compute on CNF formulas: Even
though the query complexity of AND on a string of length 2n is Ωp2nq classically
and Ωp2n{2q in the quantum case, this property can be easily computed in polynomial
time both classically and quantumly when provided with the description of the nOp1q

sized CNF formula.
To get around this problem, we can increase the complexity of the input repre-

sentation: If we consider inputs from AC0
2, the set of all depth-2 circuits consisting

of unbounded fan-in AND and OR gates, we now have a class that is closed under
complementation. For this class, it is a reasonable conjecture that both AND, the
question whether the input is a tautology and all assignments are satisfying, and
OR, the normal SAT problem, are hard to compute.

After this step we can look at further properties than AND and OR. For instance,
consider the problem of computing whether there exists an even or an odd number
of satisfying assignments. This task is equivalent to computing the PARITY of the
truth table of the input formula. How much time do we expect a quantum algorithm
to need for such a task?

The quadratic speedup for computing satisfiability, i.e., the OR of the truth
table of the input formula, is already captured by the model where the quantum
computation only tries possible assignments and then performs Grover’s algorithm in



40 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

a black box manner. If PARITY is also computed in such a way, then we know from
query complexity [BBC+01] that there is no speedup possible, and the algorithm
will have to use Ωp2nq steps. Our QSETH framework will be able to consider more
complicated properties, like PARITY.

Finally, observe that such a correspondence, i.e., between the query complexity
of a property and the time complexity of computing this property on the set of
satisfying assignments, cannot hold for all properties, even when we consider more
complicated input classes besides CNF formulas. For instance, consider a property
which is 0 on exactly the strings that are truth tables of polynomial-sized circuits,
and is PARITY of its input on the other strings. Such a property has high quantum
query complexity, but is trivial to compute when given a polynomial-sized circuit
as input. We introduce the notion of compression oblivious below to handle this
problem.

White box and black box computation of a property We formalise the above
intuitions in the following way. Let the variable γ denote a class of representation
at least as complex as the set AC0

2, where AC0
2 denotes the set of poly sized depth-2

circuits consisting of only OR, AND gates of unbounded fan-in and NOT gates. For
every n, let P : t0, 1u2

n
Ñ t0, 1u be some function family which defines a property.

We define a meta-language LP such that LP “ tdescpCq | C is an element from the
set γ and PpttpCqq “ 1u. We now define the following terms:

Definition 3.3 (White-box algorithms). An algorithm A decides the property P
in white-box if A decides the corresponding meta-language LP. That is, given an
input string descpCq, A accepts if and only if PpttpCqq “ 1. We use qTimeWBϵpPq

to denote the time taken by a quantum computer to decide the language LP with
error probability ϵ.

Definition 3.4 (Black-box algorithms). An algorithm A decides the property P in
black-box if the algorithm Af

p1n, 1mq accepts if and only if Ppttpfqq “ 1. Here,
f is the Boolean function computed by the circuit C and m is the upper bound
on | descpCq| which is the size of the representation6 that describes f , and Af de-
notes that the algorithm A has oracle access to the Boolean function f . We use
qTimeBBϵpPq to denote the time taken by a quantum computer to compute the
property P in the black-box setting with error probability ϵ.

Compression oblivious properties We define the set of compression oblivious
properties corresponding to γ as the set of properties where the time taken to com-
pute this property in the black-box setting is lower bounded by the quantum query
complexity of this property on all strings. Formally,

COpγq “ tproperties P | qTimeBBϵpP |Sγ q ě ΩpQϵpPq
1´α

q for all constants α ą 0u,

where QϵpPq denotes the quantum query complexity of the property P in a ϵ-bounded
error query model and Sγ “ tttpCq | C is an element of the set γu.

6For instance a CNF/DNF formula, an NC circuit, or a general circuit.



3.2. The quantum strong exponential-time hypotheses 41

Defining QSETH For each class of representation γ we now define the corre-
sponding γ-QSETH˚, which states that computing any compression-oblivious prop-
erty P in the white-box setting is at least as hard as computing P in the black-box
setting. More formally, for every class of representation γ, such as the class of
depth-2 circuits AC0

2 or poly-sized circuits of a more complex class, we hypothesise
the following:

Conjecture 3.5 (γ-QSETH˚). For all properties P P COpγq and for all constants
α ą 0, we have

qTimeWBϵpP |γq ě ΩpQϵpPq
1´α

q.

3.2.3 Observations on Compression Oblivious properties

As the class γ gets more complex, the corresponding γ-QSETH˚ becomes more
credible. The set of compression oblivious properties is an interesting object of
study by itself.

First consider some representative examples of whether various natural proper-
ties are compression oblivious. Note here that the example property that is not
compression oblivious has to be carefully constructed for this to be the case – it is
natural to conjecture that for most natural properties the knowledge that the input
can be written as the truth table of a small circuit does not help in speeding up the
computation.7

Example 3.6. The properties AND and OR are in COpAC0
2q: the adversarial set

that gives the tight query bound for the property AND (OR) are truth tables of
functions that can be represented by nOp1q sized DNF (CNF) formulas. Namely,
these are given by the formulas that reject (accept) a single possible input, which can
be constructed by using n clauses that each contain a single variable or its negation.
Because QϵpAND|S

AC0
2

q “ QϵpANDq and qTimeBBϵpAND|S
AC0

2

q ě QϵpAND|S
AC0

2

q, we
have AND P COpAC0

2q. The same holds for the property OR as well.

Example 3.7. Consider the following property, defined on some string z P t0, 1u2
n ,

which we view as the truth table of a formula or circuit:

Plarge-cpzq “ PARITY2npzq ^ rthere exists no circuit C of size ă 2n{100 s.t. z “ ttpCq.s

Because most strings are not a truth table of a small circuit, the query complexity
of this property is close to the query complexity of PARITY, i.e., QϵpPlarge-cq “

ΩpNq. Nevertheless, the property is always 0 when restricted to truth tables of
small circuits, and therefore trivial to compute. Therefore Plarge-c is not compression
oblivious for polynomial-sized circuits (or any smaller class of representations).

Example 3.8. Whether PARITY is compression oblivious is unknown: the quan-
tum query complexity of PARITY is ΩpNq. Restricted to inputs which are truth
tables of small formulas/circuits, the query complexity is Op

?
Nq, this is the max-

imum query complexity for any property when restricted to truth tables of a small
circuit class [AIK+04; Kot14]. Conjecturing that PARITY is compression oblivi-
ous is natural, and incomparable to (but not necessarily less likely than) the main
QSETH statement.

7In classical complexity theory, a closely related notion is the Black-Box Hypothesis introduced
by [BGI+12] and studied by [IKK+17].



42 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

Secondly, we show the following fact about how sets of compression-oblivious
properties relate, relative to different computational models.

Fact 3.9. Given two classes of representations ζ and λ, if ζ Ď λ then for every
property P, we have P P COpλq whenever P P COpζq.

Proof. If ζ Ď λ then also for the corresponding sets of truth tables it holds that
Sζ Ď Sλ. If a property P P COpζq, then qTimeBBϵpP |Sζ

q ě ΩpQϵpPq1´op1qq also
implies qTimeBBϵpP |Sλ

q ě qTimeBBϵpP |Sζ
q as Sλ is a superset of Sζ . Therefore,

P P COpλq.

Given an explicit property P and a class of input representations γ, it would
be desirable to unconditionally prove that the property P is γ-compression oblivi-
ous.8 This is possible for some simple properties that have query complexity Θp

?
Nq

like OR, corresponding to ordinary satisfiability, and AND. Unfortunately, for more
complicated properties, like computing the parity of the number of satisfying assign-
ments, it turns out to be hard to find an unconditional proof that such a property
is compression oblivious. The following theorem shows a barrier to finding such an
unconditional proof: proving that such a property is compression oblivious implies
separating P from PSPACE.

Theorem 3.10. If there exists a property P such that QϵpPq “ rωp
?
Nq and P is

γ-compression oblivious, and P P polyLpNq, then P ‰ PSPACE. Here N “ 2n and γ
represents the set of poly-sized circuits on n input variables.

Here polyLpNq is same as SPACEppolylogNq, i.e., class of properties computable
in polylogN amount of space. Note that SETH is already a much stronger as-
sumption than P ‰ PSPACE, therefore this observation leaves open the interesting
possibility of proving that properties are compression oblivious assuming that the
(Q)SETH holds for simpler properties. (For instance, these simpler properties could
include OR and AND, for which it is possible to unconditionally prove that they are
compression oblivious.)

Proof. By way of contradiction, assume P “ PSPACE. We are given a promise that
the circuit C to which we have black-box access9 to is in the set γ, where γ is the
set of poly-sized circuits on n input variables. Note that if we would have direct
access to the input, instead of black-box access, we can easily solve the problem in
polynomial time using the assumption P “ PSPACE.

Using a simplified version of the algorithm for the oracle identification problem
[AIK+04; Kot14] we can extract a compressed form of the entire input, effectively
going from black-box access back to white-box access, from the set γ using only
rOp

?
Nq queries. The initial query-efficient algorithm is as follows:

1. Define an N “ 2n bit majority string m “ m1m2...mN where mi “ 1 if the
majority of circuits in γ have 1 in their ith bit of their truth table, else mi “ 0.

2. Check whether there exists an index j such that the truth table of circuit
C disagrees with m at j. Using Grover’s algorithm on the implied string
ttpCq ‘ m this can be achieved using Op

?
Nq quantum queries to ttpCq.

8We call a property P a γ-compression oblivious property if P P COpγq.
9By black-box access we mean that for any input x P t0, 1un we can compute Cpxq.



3.2. The quantum strong exponential-time hypotheses 43

If there is no disagreement, then the string m is the truth table of circuit C and
without having to further query C, one can go through all the circuits in γ and
compute their respective truth tables to identify C. Using the P “ PSPACE
assumption, this can be done in polypnq (classical) time.

3. In the case of a disagreement, remove from γ all the circuits that disagreed
with ttpCq at index j, which, by definition of m, means at least half of the
elements from γ are removed.

Repeat these steps until there is no disagreement or until |γ| “ 1. Given that γ
initially contained all the poly-sized circuits on n input variables. This whole algo-
rithm requires Op

?
N log |γ|q “ rOp

?
Nq quantum queries. Using the P “ PSPACE

assumption, we can implement the same algorithm in rOp
?
Nq quantum time as

follows.
At any point of the algorithm we have to be able to query the index i P rN s

of ttpCq and the ith bit of the majority string m at that stage, where the majority
string keeps changing every time we update the set γ. Querying any index of ttpCq

is straight forward. On the other hand, the string m is too long to efficiently write
down, but will have to be defined implicitly. To enable query access to m, the
algorithm will maintain a list of tuples recording previous found positions where
the truth table of C differed from the most common values: tpi, aiq | i P rN s is the
index where there was a disagreement and ai is the value of the ith bit of ttpCqu.
Now, given such a list, it takes polypnq space to compute the current value mi of the
majority string at point i: simply iterate over all elements in the original circuit class
up to polypnq size, check whether the current circuit D is consistent with the list
of previous queries, and then keep tally of Dpiq. Now we can use the P “ PSPACE
assumption to translate this to a hypothetical algorithm which takes polypnq time.

Since Op
?
Nq queries suffice to find a single disagreement between ttpCq and the

majority string m at any stage, that means a disagreement (if any) can be found in
rOp

?
Nq quantum time. Given that there are only polypnq such stages, that means

we have found the compressed form of circuit C from the set of poly-sized circuits
in rOp

?
Nq time.

We now have the access to the compressed input of length nOp1q. As the property
P P polyLpNq, we can directly compute P in OpplogNqOp1qq “ OpnOp1qq amount
of space, which again translates to OpplogNqOp1qq time under the P “ PSPACE

assumption. Therefore, the total number of (quantum) steps taken is rOp
?
Nq `

OpplogNqOp1qq, which is in contradiction to the assumption that P is γ-compression
oblivious.

Unfortunately, merely making such an assumption alone will likely not be enough
to enable an easy proof that simple properties with high query complexity are com-
pression oblivious: we show that there exists an oracle such that, if all computations
and input models10 have access to this oracle, QSETH is true but PARITY (for ex-
ample) is not compression oblivious. This does give a relativization barrier to this
question, showing that a non-relativizing proof will be necessary to prove that prop-
erties are compression oblivious.

10For example, consider circuit SAT for circuits that have access to an oracle.



44 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

Theorem 3.11. There exists an oracle relative to which the basic QSETH holds,
but any property P P polyLpNq for which QϵpPq “ rωp

?
Nq is not γ-compression

oblivious. Here γ consists of all polynomial-sized circuits (with oracle access).

Proof. We construct the oracle in two steps. We first start with the Quantified
Boolean Formula (QBF) problem as oracle, call this oracle A. Since QBF is complete
for PSPACE, and since a call to A can itself be simulated in polynomial space, note
that PA “ BQPA

“ PSPACEA.
Recall the classic oracle from Baker, Gill, and Solovay [BGS75], relative to which

P ‰ NP. This construction occasionally hides a single string of a certain length in
the oracle, for a very sparse set of lengths, and shows that it is hard for a Turing
machine to find the string in time less than 2n.

This same construction also works for quantum computation: we will construct
the oracle B in steps. Take the i-th oracle quantum Turing machine, with access to
oracle A, and consider that it makes at most op2ni{2q queries when given input 1ni ,
where ni “ 2ni´1 . We aim to construct B such that the language

LB “ t1n | The oracle B contains a string of length nu

cannot be decided by such a machine. Through lower bounds for unstructured
search [BBB+97; BBH+98; Amb02; BBC+01], there has to exist a single-string
setting of the oracle at B that makes the i-th machine fail. I.e., either B has a
single string of length ni, or the oracle is empty at ni. Via the query lower bound
of unstructured search, this language requires 2n{2 quantum time.

The final oracle C is just the direct sum of the oracle A and B:

C “ tpi, xq | pi “ 0 ^ x P Aq _ pi “ 1 ^ x P Bqu .

Relative to C, both SETH, as in Conjecture 3.2, and the basic QSETH are true
(where we consider a relativized ‘basic QSETH’ that takes as input circuits which
can make oracle queries to C). In particular, satisfiability of the circuit which queries
its input to C and outputs the result takes time 2n{2 to compute for a quantum
Turing machine which has oracle access to C (since any hypothetical machine which
solves this language faster, would be able to decide the hard language LB).

Now consider the hardness of computing some property P of a string, for which
we only get black box access to this string, and such that it’s known that the string is
a truth table of a polynomial-sized circuit which has access to oracle C. A quantum
computer can first search the part of C that corresponds with B for the hidden
string, using Grover’s algorithm for unstructured search, taking time 2n{2. Now,
after finding the hidden string, part B of the oracle is no longer relevant since any
call to it can be efficiently simulated by a short computation, and therefore the oracle
is effectively only a QBF oracle, meaning that after finding the string we effectively
have P “ PSPACE relative to the oracle. The quantum algorithm can next use the
A part, using the construction in Theorem 3.10, to compute the property P in total
time O˚p2n{2q “ rOp

?
Nq. Since we assumed that P has query complexity at least

rωp
?
Nq, it follows that P is not compression oblivious relative to the oracle.

3.3 QSETH lower bounds for OV and uPoW

Recall that AC0
2 denotes the set of polynomial-sized depth-2 circuits consisting of

only OR and AND gates of unbounded fan-in. Because of the simple input structure,



3.3. QSETH lower bounds for OV and uPoW 45

the AC0
2-QSETH˚ conjecture is therefore closest to the classical SETH, and implies

the ‘basic QSETH’ as introduced in Section 3.2.1:

Corollary 3.12. If AC0
2-QSETH˚ is true then there is no bounded error quantum

algorithm that solves CNF-SAT on n variables, m clauses in Op2p1´δqn{2mOp1qq time,
for any constant δ ą 0.

Proof. Consider the property OR: t0, 1u2
n

Ñ t0, 1u. Using the fact that OR P

COpAC0
2q we get qTimeWBϵpOR|AC0

2
q ě ΩpQϵpORq1´op1qq “ Ωp2

n
2

p1´op1qqq. Due to the
structure of the DNF formulas one can compute the property OR on DNF formulas
on n variables, m clauses in nOp1qmOp1q time. This implies that the hard cases in the
set AC0

2 for the OR property are the CNF formulas. Therefore, qTimeWBϵpOR|CNFq ě

Ωp2
n
2

p1´op1qqq where the set CNF denotes all the polynomial-sized CNF formulas.

In this section we present several immediate consequences of the AC0
2-QSETH˚

conjecture:

1. For some problems, classical SETH-based ΩpT q time lower bounds carry over
to the quantum case, with AC0

2-QSETH˚-based Ωp
?
T q quantum time lower

bounds using (almost) the same reduction.

2. The Proofs of Useful Work of Ball, Rosen, Sabin and Vasudevan [BRS+18]
require time n2´op1q to solve on a quantum computer, equal to their classical
complexity, under AC0

2-QSETH˚.

3.3.1 Quantum time lower bounds based on AC0
2-QSETH˚

The statement of AC0
2-QSETH˚ along with Corollary 3.12 can give quantum time

lower bounds for some problems for which we know classical lower bounds under
SETH (Conjecture 3.2).

Corollary 3.13. Let P be a problem with an ΩpT q time lower bound modulo SETH.
Then, P has an rΩp

?
T q quantum time lower bound conditioned under AC0

2-QSETH˚

if there exists a classical reduction from CNF-SAT to the problem P taking Op2
n
2

p1´αqq

(for α ą 0) time or if there exists an efficient reduction that can access a single bit
of the reduction output.11

We will now explain how we can preserve the following two classical SETH lower
bounds, with a quadratic gap:

Example 3.14. The Orthogonal Vectors (OV) problem is defined as follows.
Given two sets U and V of N vectors, each over t0, 1ud where d “ ωplogNq, deter-
mine whether there exists a u P U and a v P V such that ΣlPrdsulvl “ 0. In [Wil05],
Williams showed that SETH implies the non-existence of a sub-quadratic classical
algorithm for the OV problem. In the quantum case the best-known query lower
bound is Ωpn2{3q, which can be achieved by reducing the 2-to-1 Collision problem

11Note that we use a version of QSETH that relates to CNF-SAT as opposed to bounded
clause-size k-SAT problems. One could also define a quantum hardness conjecture for k-CNF
or k-DNF, for an arbitrary constant k, in the same way as the original SETH. This variant is
required for reductions that use the fact that k is constant, which can occur through usage of the
sparsification lemma [IP01]. For examples where this is necessary within fine-grained complexity,
see the Matching Triangles problem mentioned in [AVY18] or reductions like in [CDL+16].



46 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

to the Orthogonal Vectors problem; however, the known quantum time upper
bound is rOpnq [Ren19]. First note that we cannot use Williams’ classical reduction
directly, since a hypothetical quantum algorithm for OV expects quantum access to
the input, and writing down the entire reduction already takes time 2n{2. Instead,
observe that the reduction produces a separate vector for each partial assignment:
let tpnq be the time needed to compute a single element of the output of the reduc-
tion, then tpnq “ polypnq, which is logarithmic in the size of the total reduction. Let
N “ O˚p2n{2q be the size of the output of the reduction of [Wil05], for some CNF
formula with n variables. Any quantum algorithm that solves OV in time Nα, can
solve CNF-SAT in time tpnqO˚p2αn{2q “ O˚p2αn{2q. Assuming AC0

2-QSETH˚, this
implies that a quantum algorithm requires N1´op1q time to solve OV for instances
of size N .12

Example 3.15. The Longest Common Subsequence (LCS) problem is defined
as follows. Given two strings a and b over an alphabet set Σ, the LCSpa, bq is the
length of the longest subsequence common to both strings a and b. A reduction
by [ABV15] shows that if LCS of two strings of length OpNq can be computed in
time OpN2´δq for some constant δ ą 0, then satisfiability on CNF formulas with n

variables and m clauses can be computed in OpmOp1q ¨ 2p1´ δ
2

qnq which would imply
that SETH (Conjecture 3.2) is false.

Just like in the OV case, we observe that the classical reduction from CNF-SAT
to LCS is local, in the sense that accessing a single bit of the exponentially-long
reduction output can be done in polynomial time: every segment of the strings
that are an output of the reduction, depends only on a single partial satisfying
assignment, out of the 2n{2 possible partial assignments.

This observation directly lets us use the reduction of [ABV15] to give a quantum
time lower bound of N1´op1q for the LCS problem, where N here is the length of the
inputs to LCS, conditioned on AC0

2-QSETH˚. However, an unconditional quantum
query lower bound of ΩpNq can also be easily achieved by embedding of a problem
with high query complexity, such as the majority problem, in an LCS instance.

We witness that with the AC0
2-QSETH˚ conjecture, the SETH-based fine-grained

lower bounds at best transfer to a square root lower complexity in the quantum case.
This is definitely interesting on its own, but we are aiming for larger quantum lower
bounds, in situations where the gap between the classical and quantum complexities
is less than quadratic, which is why we focus on our more general framework.

3.3.2 Quantum Proofs of Useful Work

Other applications of AC0
2-QSETH˚ include providing problems for which Proofs of

Useful Work (uPoW) can be presented in the quantum setting. Ball et al. [BRS+18]
propose uPoW protocols that are based on delegating the evaluation of low-degree
polynomials to the prover. They present a classical uPoW protocol for OV whose
security proof is based on the assumption that OV needs n2´op1q classical time in the
worst case setting, implying that the evaluation of a polynomial that encodes the
instance of OV has average-case hardness. At the end of this protocol, the verifier
is able to compute the number of orthogonal vectors in a given instance.

12See the results by Aaronson, Chia, Lin, Wang, and Zhang [ACL+20] for more examples of
reductions from (a variant of) QSETH, that also hold for the basic QSETH of our framework.



3.4. QSETH lower bounds for LCS and Edit Distance 47

Therefore, the same protocol also works to verify the solutions to ‘OV, where
‘OV denotes the parity version of OV, i.e., given two sets U , V of n vectors from
t0, 1ud each, output the parity of number of pairs pu, vq such that u P U , v P V
and ΣlPrdsulvl “ 0, where d is taken to be ωplog nq. Assuming AC0

2-QSETH˚ and
assuming PARITY P COpAC0

2q we get that ‘CNF-SAT takes Ωp2np1´op1qqq quantum
time. Due to the classical reduction13 given by [Wil05], this protocol then implies a
conditional quantum time lower bound of n2´op1q for the ‘OV problem. Therefore,
the uPoW protocol by [BRS+18] also requires quantum provers to take time n2´op1q.

3.4 QSETH lower bounds for LCS and Edit Distance

In this section we discuss two consequences of the NC-QSETH˚ conjecture: quantum
time lower bounds for the LCS and Edit Distance problems. For length n input
strings, the well-known Wagner–Fischer algorithm (based on dynamic programming)
classically computes the edit distance in Opn2q time. A similar algorithm computes
LCS in Opn2q time. Unfortunately, all the best known classical (and quantum)
algorithms to compute these problems are also nearly quadratic. As mentioned
above, results by [ABV15; BI18] prove that these near-quadratic time bounds might
be tight: a sub-quadratic classical algorithm for computing LCS or edit distance
would imply that SETH (Conjecture 3.2) is false.

SETH also implies quadratic lower bounds for many other string comparison
problems, like Dynamic Time Warping and Frechet Distance, that also have
(close to) optimal algorithms that are based on dynamic programming [BK15].
Bouroujeni et al. [BEG+18] give a sub-quadratic quantum algorithm for approxi-
mating edit distance within a constant factor which was followed by a better classical
algorithm by Chakraborty et al. [CDG+18]. However, no quantum improvements
over the classical algorithms in the exact case are known to the best of our knowl-
edge. Investigating why this is the case is an interesting open problem: is it possible
to prove better (conditional) lower bounds, or can a better algorithm be found? We
formulate the following questions for the example of LCS and the Edit Distance
problem.

1. Is there a bounded error quantum algorithm for LCS or Edit Distance that
runs in a sub-quadratic amount of time?

2. Is it possible to obtain a superlinear lower bound for LCS or Edit Distance
using the ‘basic QSETH’?

3. Can we use a different reduction to raise the linear lower bound for LCS or
Edit Distance that we achieve under ‘basic-QSETH’?

We don’t attempt to find a better algorithm for these string problems in this
thesis, and it remains possible that no sub-quadratic quantum algorithm for these
problems exists. Considering the second question: using the basic QSETH we lose
a quadratic factor relative to the classical reduction, so it is clear that it will not
be possible to directly translate a classical reduction to the quantum setting – since
the quadratic classical SETH bound is tight. Therefore, to prove a ‘basic QSETH’

13Note that here one can use the classical reduction from CNF-SAT to Orthogonal Vectors
that runs in time rOp2n{2q.



48 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

lower bound for a problem where the gap between the best quantum and classical
algorithms is less than quadratic, a fundamentally different (inherently quantum)
reduction strategy would have to be found.

While the first two questions still remain open, we address the last question
in this section. Using (a promise version of) the NC-QSETH˚ conjecture we prove
conditional quantum time lower bounds of n1.5´op1q for the LCS and Edit Distance
problems.14 Note that, polynomial-size NC circuit can be expressed as a branching
program of length 2polylogn and constant width [Bar89].

Therefore, as a global strategy, we analyse reductions [AHV+16] from branching
program (Definition 3.16) satisfiability to string problems, and show that solving the
string problems (such as LCS) on the result of these (slightly modified) reductions
can be used to compute a more complicated property of the branching program,
namely the PPlcs property (Definition 3.21). The first step then is to give a reduction
from BP-PPlcs, which can be viewed as showing whether or not PPlcs on a branching
program is satisfied or not, to LCS. This is given as Theorem 3.28, for which the
proof is presented in Section 3.4.3.

Theorem (Informal restatement of Theorem 3.28). There is a reduction from BP-PPlcs

on non-deterministic branching programs of size 2polylogn (length Z, width W ) to an
instance of the LCS problem on two sequences of length M “ 2n{2pcW qOplogZq for
some constant c, and the reduction runs in OpMq time.

We then prove a quantum query complexity lower bound for this property (Corol-
lary 3.59 in Section 3.5), which, together with the assumption that the property is
compression oblivious,15 implies a time lower bound for the LCS problem of n1.5´op1q.
The lower bound strategy for the Edit Distance problem is very similar to that of
the LCS problem: the ‘gadgets’ involved have to be constructed in a different way,
but these gadgets can then be combined using a very similar method. Therefore, the
reduction can be utilised to compute a property of the set of satisfying assignments
that is closely related to BP-PPlcs.

3.4.1 Branching Programs versus NC-circuits

Barrington’s Theorem states that any fan-in 2, depth d circuit can be converted
into an equivalent non-deterministic branching program (BP) of width 5 and size
4d, over the same set of inputs [Bar89]. Therefore, any polynomial-size NC circuit
can be expressed as a BP of length 2polylogn and constant width.

Definition 3.16 (Non-deterministic Branching Programs). A non-deterministic
branching program is a directed acyclic graph with n input variables x1, . . . , xn.
It is a Z layered directed graph with each layer having a maximum of W nodes
and the edges can only exists between nodes of neighbouring layers Li and Li`1,
@i P rZ ´ 1s. Every edge is labelled with a constraint of the form pxi “ bq where

14Note that, independently from our results, Ambainis et al. [ABI+20] recently presented a
quantum query lower bound of n1.5´op1q for the Edit Distance problem, for algorithms that use
the natural dynamic-programming approach of first reducing Edit Distance to connectivity on
a 2D grid. However, that doesn’t rule out the possibility of other rOpn1.5´αq quantum algorithms
for the Edit Distance problem, for α ą 0.

15As discussed in Section 3.2.3, such an assumption is natural, implicit when considering more-
complicated QSETH variants, and hard to prove unconditionally.



3.4. QSETH lower bounds for LCS and Edit Distance 49

xi is an input variable and b P t0, 1u. One of the nodes in the first layer is marked
as the start node, and one of the nodes in the last layer is marked as the accept
node. An evaluation of a branching program on an input x1, . . . , xn is a path that
starts at the start node and non-deterministically follows an edge out of the current
node. The branching program accepts the input if and only if the path ends up in
the accept node. The size of this non-deterministic branching program is the total
number of edges i.e. OpW 2Zq.

With a non-deterministic branching program S on n inputs, we associate the
Boolean function f “ rSs as the function computed by the branching program S.
We use ttpSq to denote the truth table of the function f computed by the branching
program S and, a standard encoding of S as a binary string is denoted by descpSq.

Satisfiability on branching programs (BP-SAT) is defined as follows: given a
branching program S on n Boolean inputs, decide if there exists a satisfying as-
signment to S. After careful inspection of the reduction from BP-SAT to LCS by
[AHV+16], and with a slight modification, we are able to present a reduction that
encodes more than merely the existence of a satisfying assignment. Instead, the
value of LCS on the result encodes the number of satisfying assignments (under
certain structured constraints), which we can view as showing whether or not a par-
ticular property PPlcs (Definition 3.20 and Definition 3.21) on branching program S
is satisfied (BP-PPlcs). Consequently, we give the reduction from BP-PPlcs to LCS.
By making the assumption that PPlcs is NC-compression oblivious,16 we are able to
show that computing PPlcs on super-polynomial size BPs in the white-box setting
takes Ωp20.75np1´op1qqq quantum time under NC-QSETH˚. Which then, because of
the reduction, gives us a conditional quantum time lower bound of n1.5´op1q time for
the LCS problem.

3.4.2 LCS and the alignment framework

Formally, the (Weighted) Longest Common Subsequence problem is defined
as follows:

Definition 3.17 (WLCS and LCS). Given two sequences a and b over an alphabet
set Σ and a weight function w : Σ Ñ rKs, the WLCS is the maximum weight of a
sequence that appears as a subsequence in both a and b. Whereas LCSpa, bq is the
maximum weight when the weight of each symbol is 1, which is the length of longest
subsequence common to both a and b.

One way to visualise the (W)LCS problem is by thinking about the problem in
terms of alignments, as also done in, e.g., [BK15]. Let a, b be two sequences, of length
n and m respectively, and let n ě m. An alignment is a set A “ tpi1, j1q, . . . , pik, jkqu

with 0 ď k ď m such that 1 ď i1 ă ¨ ¨ ¨ ă ik ď n and 1 ď j1 ă ¨ ¨ ¨ ă jk ď m.
The set An,m denotes the set of all alignments over the index sets rns and rms.
The equivalence between alignments and the (W)LCS problem is captured by the
following statement:

16Note that, as suggested by Theorem 3.10 and Theorem 3.11 in Section 3.2.3, it’s not easy in
general to prove compression-obliviousness for properties with query complexity at least ωp

?
Nq.



50 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

Fact 3.18. Let a and b be two sequences defined over some alphabet Σ and let
w : Σ Ñ rKs be the weight function associated with the symbols in Σ. The WLCS
between a and b is

WLCSpa, bq “ max
APAn,m

ÿ

pi,jqPA

WLCSparis, brjsq,

where n,m denote the length of the sequences a,b respectively. The ith symbol of
sequence a is denoted by aris, while brjs is the jth symbol of sequence b and

WLCSparis, brjsq “

#

wparisq, if aris “ brjs,

0, otherwise.

Proof. From the definition of WLCS it is clear that the subsequence is present in
both sequences a and b. Which means that the characters of this subsequence will
appear in the same order in both the sequences. Therefore, it suffices to check all
the alignments in An,m to compute WLCSpa, bq.

We chose the alignment framework to visualise the (W)LCS problem, because
in this framework the (W)LCS between two strings can be related to the sum
of (W)LCS between pairs of some symbols from these two strings, a recursive
behaviour that we will extensively use in the following results.

In order to have our proofs simplified, we use the following reduction from WLCS
to LCS. The reduction provides us with a way to translate a lower bound for WLCS
to a lower bound for LCS.

Lemma 3.19 (Lemma 2 of [ABV15]). Given an alphabet set Σ and a weight function
w : Σ Ñ rKs, there exists a mapping f : Σ˚ Ñ Σ˚ such that, for any two sequences
a and b defined over Σ, the following statement holds:

WLCSpa, bq “ LCSpfpaq, fpbqq,

where, for any string s P Σ˚, fpsq “ ⃝|s|

i“1fpsrisq and, for any symbol l P Σ,
fplq “ rlwplqs P Σwplq. This also implies, computing WLCS of two sequences of
length n over Σ with weights w : Σ Ñ rKs can be reduced to computing LCS of two
sequences of length OpKnq over Σ.

3.4.3 Reduction from BP-PPlcs to LCS

We now present a conditional quantum time lower bound for LCS as one of the first
consequences of our NC-QSETH˚ (Conjecture 3.5 with γ set to NC).

Outline of the reduction The first part of our reduction mimics the approach by
[AHV+16]. Given a non-deterministic branching program S with n input variables,
we do the following: let X1 “ tx1, x2, . . . , xn{2u and X2 “ txn{2`1, xn{2`2, . . . , xnu

be the first and the last half of the input variables to S, respectively. Let A “

pa1, a2, . . . , a2n{2q and B “ pb1, b2, . . . , b2n{2q be two sequences containing all the
elements from the set t0, 1un{2 in the lexicographical order such that every pair
pa, bq P A ˆ B together forms an input to S. For each set A and B, our reduction
constructs two long sequences x and y, such that these sequences are composed of



3.4. QSETH lower bounds for LCS and Edit Distance 51

subsequences (also referred to as gadgets) that correspond to elements of A and B,
respectively. Having constructed the gadgets and the sequences x, y only slightly
different from [AHV+16], we observe that computing LCSpx, yq is equivalent to com-
puting the property PPlcs of the truth table of the branching program S. Therefore,
we establish a connection between BP-PPlcs and LCS, solvable in exponential time
and polynomial time, respectively.

Defining PPlcs and BP-PPlcs Unlike satisfiability, PPlcs is not a natural property
on branching programs. Instead, PPlcs is defined based on the observation that the
reduction by [AHV+16] can be used to compute a more complicated property on
the truth table of branching programs which (in the black-box setting) is not fully
amenable to Grover-like speedup.

We define an intermediate property PPδ instead of directly defining PPlcs to
avoid redundancy when we define a similar property PPedit in Section 3.4.7. The
intuition behind the property PPδ is as follows: consider a matrix with 0/1 entries,
where one needs to traverse from the first column, starting in a row of choice, to any
row in the last column. We call these traversals paths, and the goal is to pick a path
which encounters as many 1 entries as possible. Such a path does not have to stay
in the same row, but is allowed to make jumps between the rows in a path, at some
cost. The value of a path now is given by the sum of the entries of the cells that
were encountered, with the jump costs when shifting rows subtracted. The property
PPδ on a matrix is determined by whether there exists a path whose value is higher
than a given threshold.

Definition 3.20 (The PPδ property). Let M be a Boolean matrix of size K ˆ L
where Mij “ t0, 1u denotes the entry in the ith row and the jth column. We define
a path R “ ppi1, j1q, pi2, j2q, . . . , pik, jkqq as a sequence of positions in the matrix M
which satisfy the following conditions:

1. The column indices in a path are ordered, i.e., 1 “ j1 ď j2 ď ¨ ¨ ¨ ď jk “ L.
This ensures that the path can only start from a cell in the first column and
must end in a cell in the last column and the path progresses from left to right
in the matrix.

2. For all p P rK ´ 1s, either ip`1 “ ip or ip`1 ą ip or ip`1 ă ip. If ip`1 “ ip
then jp`1 “ jp ` 1. However, if ip`1 ‰ ip then we say there is a jump from
pip, jpq to pip`1, jp`1q. The upward jumps are different from the downward
jumps in the following way: when jumping to a row above, i.e. when ip`1 ă ip,
then jp`1 “ jp ` ip ´ ip`1. Whereas, while jumping to a row below, i.e. when
ip`1 ą ip, then jp`1 “ jp.

3. Finally, @p such that 1 ă p ă K, if ip ‰ ip´1 then ip`1 “ ip.

Let PATHSK,L be a set of all possible paths for a matrix of size K ˆ L. The ‘value’
associated with a path R for a given matrix M depends on the entries of M and a
perturbation vector µ⃗R and is defined as:

VpM,R, µ⃗Rq “
ÿ

pip,jpqPR

CMipjp
`

ÿ

pip,jpqPR
ip‰ip`1

p´Cjump|ip`1 ´ ip| ´ CMipjp
´ CMip`1jp`1

q
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

Jump costs without perturbations

`
ÿ

iPr|µ⃗R|s

µ⃗Rris,



52 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

where C0 ă C1 are some fixed constants, Cjump “

#

Cup if ip`1 ă ip,

Cdown if ip`1 ą ip
, is a fixed

jump cost depending whether the jump is to a row above or to a row below, and,
µ⃗R is a list of integer parameters in the range [Y1, Y2] whose values will be specified
later. The size of the vector |µ⃗R| is equal to the number of jumps in the path R,
but, the values of µ⃗R will not depend on how far the jump is. We now define:

∆pM,Λq “ max
RPPATHSK,L

VpM,R, µ⃗Rq,

where Λ denotes the range of integer values that the elements of a perturbation
vector µ⃗˚ can take, which is tY1, . . . , Y2u unless specified.

Given a fixed threshold value Tr17, let H “ tti, . . . , ju|Y1 ď i ď j ď Y2u such that
the set H contains all possible ranges, we define the property Pδ : t0, 1uKˆL ˆH Ñ

t0, 1u as follows:

PδpM,Λq “

#

1, if p∆pM,Λq ě Trq,

0 if p∆pM,Λq ă Trq.

We now define a promise version of the Pδ property, namely PPδ : t0, 1uKˆL Ñ t0, 1u

as follows:

PPδpMq “

#

1, if pPδpM,Λ “ tY1uq “ 1q,

0, if pPδpM,Λ “ tY2uq “ 0q.

Having formally defined the PPδ we now adapt the definition to formally define
the PPlcs property.

Definition 3.21 (The PPlcs property). We plug in specific values for the variables
C0 “ Y ´1, C1 “ Y , Cup “ 2T , Cdown “ T 1, Y1 “ Y ´1, Y2 “ OpY q (where Y2 ą Y1)
in Definition 3.20 to define the PPlcs property. The exact values of Y , T , T 1, etc. are
all mentioned later in Lemma 3.23, 3.24 and 3.26.

Analogous to BP-SAT which is defined as satisfiability on branching programs,
i.e., the OR property on its truth table, we would like to define BP-PPlcs as com-
puting the PPlcs property on the truth table of the branching programs. Notice
that PPlcs is a property defined on a Boolean matrix. Therefore we need to encode
the truth table of the branching program in a matrix: the correspondence between
the entries of the truth table and the entries of the matrix on which the property
has to be computed will follow from a careful analysis of the result of the reduction
of [AHV+16], which translates a branching program into an instance of LCS.

Definition 3.22 (BP-PPlcs problem). Given a non-deterministic branching program
S with n input variables, decide if PPlcspM

ttpSq
q “ 1. Here ttpSq denotes the truth

table of the function computed by the branching program S and MttpSq denotes the
Matrix Encoding18 of ttpSq.

17We fix Tr “ 3L
4 C0 ` L

4C1.
18Matrix Encoding: let X “ X1X2 . . . X2n be a binary string of 2n bits. Then the matrix

MX of size p2n{2`1 ´ 1q ˆ 2n{2 (refer to Figure 3.1) is generated by embedding the entries of X in
the following way:

MX
ij “

#

X2n{2pi`j´2n{2q`j , if p0 ă pi` j ´ 2n{2q ď 2n{2q,

0, otherwise.

Here MX
ij denotes the entry at the ith row and the jth column of the matrix MX .



3.4. QSETH lower bounds for LCS and Edit Distance 53

The main reduction We now provide the reduction from the BP-PPlcs promise19

problem to the LCS problem. The main lemmas and facts pertaining to the reduc-
tion are mentioned in this section while the detailed proofs are given in Section 3.4.5.
We begin with the construction of [AHV+16] which translates branching programs
(with partial assignments) to LCS instances:

Vector gadgets For all a P A “ pa1, a2, . . . , a2n{2q and b P B “ pb1, b2, . . . , b2n{2q

where the sequences A and B contain all the elements from the set t0, 1un{2 in the
lexicographical order, we construct the vector gadgets in the almost following way.

Lemma 3.23 ([AHV+16]). Given a branching program of length Z, width W on
n input variables, there exists a construction of vector gadgets Gpaq, Gpbq for any
given a, b P t0, 1un{2 such that:

LCSpGpaq, Gpbqq is

#

Y, if a, b form a satisfying assignment to the given BP,
ď Y ´ 1, otherwise.

Here Y is an integer that depends on the length Z and width W of the BP. Also,
the gadgets constructed are over the alphabet set Σ0, where |Σ0| “ 2 and the vector
gadgets are of size ZOplogW q.20

Though it is sufficient for the reduction from BP-SAT to LCS to have vector
gadgets of the kind mentioned in Lemma 3.23, for our reduction we need the vector
gadgets to behave more predictable. Therefore, we modify the vector gadgets in the
following way: for any a, b P t0, 1un{2, define

G1
paq “ 2Y ´1 ⃝Gpaq,

G
1
pbq “ Gpbq ⃝ 2Y ´1,

(3.1)

where the symbol 2 represents a symbol that wasn’t originally present in Σ0. We
change the alphabet set to Σ1 “ Σ0 Y t2u to include the new symbol. We now make
the following claim:

Lemma 3.24. Given a branching program of length Z, width W on n input variables
and given the construction of vector gadgets Gpaq, Gpbq from Lemma 3.23, there
exists a construction of vector gadgets G1paq, G

1
pbq such that, for any given a, b P

t0, 1un{2:

LCSpG1
paq, G

1
pbqq “

#

Y, if a, b form a satisfying assignment to the given BP,
Y ´ 1, otherwise.

Here Y is an integer that depends on the length Z and width W of the BP. Also,
the gadgets constructed are over the alphabet set Σ1, where |Σ1| “ 3 and the size of
the vector gadgets are of pZOplogW q ` Y ´ 1q.

19Note that the PPδ property defined is a promise property, that makes PPlcs also a promise
property.

20The authors [AHV+16] also give a more efficient construction over an alphabet set of size
|Σ0| “ OpW logZq where the size of the vector gadgets decreases to Z8 logW . However, for the
purpose of the current work it suffices to consider the earlier simpler construction.



54 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

Proof. Given the alphabet set Σ1, assume a weight function w : Σ1 Ñ t1, Y ´ 1u

associated with it. Where for any l P Σ1,

wplq “

#

Y ´ 1, if l “ 2,

1, otherwise.

Consider the following construction over Σ1:

G2
paq “ 2⃝Gpaq,

G
2
pbq “ Gpbq ⃝ 2.

We claim that,

WLCSpG2
paq, G

2
pbqq “

#

Y, if a, b form a satisfying assignment to the given BP,
Y ´ 1, otherwise.

In an optimal alignment either both the symbols 2 align with each other or they
don’t. In the case where a, b form a satisfying assignment to the given BP, the sym-
bols 2 will not align and the WLCSpG2paq, G

2
pbqq “ (W)LCSpGpaq, Gpbqq “ Y . In

the case where a, b don’t form a satisfying assignment, then (W)LCSpGpaq, Gpbqq ď

Y´1, therefore an optimal alignment would align the 2s, thus WLCSpG2paq, G
2
pbqq “

Y ´ 1.
Now using the translation of Lemma 3.19 it directly follows that @a, b P t0, 1un{2,

LCSpG1
paq, G

1
pbqq “ WLCSpG2

paq, G
2
pbqq

where G1paq and G1
pbq represent the vector gadgets described in Equation 3.1.

We have successfully constructed a set of well-behaving vector gadgets of size
OpZOplogW qq, each over the alphabet set Σ1. We now proceed to the next part of
our reduction where we construct the two final sequences x and y, and show that
by computing LCSpx, yq we are able to compute non-trivial information about the
satisfying assignments to the given BP.

Final sequences x and y Let A “ pa1, a2, ..., a2n{2q and B “ pb1, b2, ..., b2n{2q be
two sequences containing all the elements from the set t0, 1un{2 in lexicographical
order. The final sequences are constructed in the following way: for every a P A, we
construct G1paq, and, similarly for every b P B, we construct G1

pbq as mentioned in
Lemma 3.24. All the vector gadgets corresponding to the set A are grouped together,
with extra separators between them, and also padded with dummy gadgets to form
the sequence x. Meanwhile, the vector gadgets corresponding to the set B are
grouped together to form the sequence y.

x :“

x1
hkkkkkkkkkikkkkkkkkkj

p⃝|A|´1
i“1 5T r6T7T

1

q

x2
hkkkkkkkkkkkkikkkkkkkkkkkkj

p⃝aPA5
TG1

paq6T7T
1

q

x3
hkkkkkkkkkikkkkkkkkkj

p⃝|A|´1
i“1 5T r6T7T

1

q

y :“ 7|x|
loomoon

y1

p⃝bPB5
TG

1
pbq6T q

looooooooomooooooooon

y2

7|x|
loomoon

y3

(3.2)

Here T “ pc1W qOplogZq ą T 1 “ pc2W qOplogZq, for constants c1,c2 and r denotes the
dummy vector gadget such that LCSpr,G

1
pbqq “ Y ´ 1 for all b P B. We refer

to [AHV+16] for constructions of these dummy (also known as normalised-vector)
gadgets.



3.4. QSETH lower bounds for LCS and Edit Distance 55

Coarse alignment and LCS We will now present the connection between BP-PPlcs

and LCS. But prior to that, we provide some more lemmas and definitions to sup-
port our result. In Section 3.4.2 we saw that LCS of two strings can be associated
with maximum alignment value when viewed as an alignment of symbols. Unfortu-
nately, we cannot use the alignment framework in the same way at a gadget level.
Therefore, instead of using the alignment framework, which by definition is a set of
pairs such that pairing is between two indices, we define a variant, which we call the
coarse alignment, which is a sequence of pairs, but the pairing here can be between
an index and a sequence of indices (or vice-versa). We observe that LCSpx, yq can
be expressed as the value of an optimal coarse alignment of gadgets in x and y.

Definition 3.25 (Coarse alignment). Let n1, n2 P rns and n1 ă n2, we say In1,n2 “

tn1, n1 ` 1, . . . , n2u and let Jm “ rms be two sets of indices.
A coarse alignment A is defined as a sequence ppP1,Q1q, pP2,Q2q, . . . , pPk,Qkqq,
such that:

1. @i P rks,Pi are sequences and
Ťk

i“1Pi “ In1,n2 . Similarly, @i P rks,Qi are also
sequences and

Ťk
i“1Qi “ Jm.

2. @i P rks,Pi ‰ H and @i P rks,Qi ‰ H.

3. @i, j P rks, if i ‰ j,Pi X Pj “ H. Similarly, Qi X Qj “ H, whenever i ‰ j.

4. @i, j P rks, @u P Pi and @v P Pj , u ă v if i ă j. Similarly, @u P Qi and
@v P Qj , u ă v whenever i ă j.

5. @i P rks, |Pi| “ 1 or |Qi| “ 1, or both.

Let the set An1,n2,m denote the set of coarse alignments given the indices sets In1,n2

and Jm. We define the set Cn,m “
Ť

i,jPrns,iăj Ai,j,m to denote the set of all possible
coarse alignments given n and m.

Examples of coarse-alignments: a few examples of a coarse-alignments from
the set C5,3 are C0 “ pp1, 2, 3q, 1q, p4, 2q, p5, 3qq, C1 “ pp2, 1q, p3, 2q, p4, 3qq, C2 “

pp2, 1q, p3, p2, 3qqq.
We notice that the structure of the sequences x and y in Equation 3.2, i.e., the

padding of 5s and 6s (and 7s for x) between the gadgets and the padding of the 7s
in the beginning and end of the sequence y, ensures that coarse alignments at the
gadget level are very useful in describing LCSpx, yq:

Lemma 3.26. Given the two sequences x and y from Equation 3.2, there exists a
coarse alignment C P Cp3¨2n{2´2q,2n{2, such that LCS of the two sequences x and y is:

LCSpx, yq “ max
CPC

p3¨2n{2´2q,2n{2

pΣpK,LqPCLCSpuK, vLq ` T 1
p3 ¨ 2n{2

´ fPpCq ´ 1q
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

LCS-value of coarse alignment C

q

where uK “ ⃝pPK5
Tgp6

T7T
1 and vL “ ⃝qPL5

TG
1
pbqq6

T . Also gp “ G1pap´2n{2q

when 0 ă pp ´ 2n{2q ď 2n{2 and gp “ r otherwise. Here r denotes the dummy
gadget. And, for a coarse alignment C “ ppP1,Q1q, ..., pPk,Qkqq, we define fPpCq “

maxpPkq ´ minpP1q ` 1.

Proof of Lemma 3.26 is in 3.4.5.



56 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

Main theorem of this section We now present the reduction from the BP-PPlcs

promise21 problem to the LCS problem. The main lemmas and facts pertaining
to the reduction are stated in this section while their detailed proofs are given in
Section 3.4.5.

Definition 3.27 (The sets S and V). Let the set S denote the set of non-deterministic
branching programs (or circuits, depending on the usage context) with n input vari-
ables such that:

S “ tS | MttpSq
P PPlcs

´1
p0q Y PPlcs

´1
p1qu and, V “ tMttpSq

| S P Su.

This states that S contains the compressed form of the inputs on which PPlcs is
defined, while V contains the matrices that are Matrix Encoding (Figure 3.1) of
truth tables of the elements in S.

Theorem 3.28. There is a reduction from BP-PPlcs on non-deterministic branch-
ing programs of size 2polylogn (length Z, width W ) from set S to an instance of
the LCS problem on two sequences x, y as given in Equation 3.2 of length M “

2n{2pcW qOplogZq for some constant c, and the reduction runs in OpMq (quantum)
time.

Proof. The reduction is as follows: let S P S be a branching program with n input
variables of size 2polylogn. LetX1 “ tx1, x2, . . . , xn{2u andX2 “ txn{2`1, xn{2`2, . . . , xnu

be the first and the last half of the input variables to S, respectively. Let A “

pa1, a2, . . . , a2n{2q and B “ pb1, b2, . . . , b2n{2q be two sequences containing all the
elements from the set t0, 1un{2 in the lexicographical order such that every pair
pa, bq P A ˆ B together forms an input to S. Construct the vector gadgets as men-
tioned in Lemma 3.24, and then construct the final sequences x, y as in Equation 3.2.
We now show the correctness of our reduction using the following lemma.

Lemma 3.29. For every n, there exists a constant C˚ P Z such that

LCSpx, yq ě C˚

if and only if PPlcspM
ttpSq

q “ 1.

Proof. Consider the sequences x, y in Equation 3.2, then consider the alignment
(let’s say A) where the vector gadgets from subsequence x2 (in x) aligns with the
corresponding vector gadgets from subsequence y2 (in y). Let N “ 2n{2 and recall
that T ą T 1 ą Y , clearly the

LCSpx, yq ě 2TN ` kpY ´ 1q ` pN ´ kqY ` T 1
p2N ´ 1q, (3.3)

where k refers to the number of non-satisfying assignments to the given branching
program under the alignment A.

Invoking the results of Lemma 3.26 about LCSpx, yq being related to LCS of
subsequences under a coarse-alignment C “ ppK1,L1q, ..., pKt,Ltqq P C3N´2,N we can
say that

LCSpx, yq ě 2T |C | ` k1pY ´ 1q ` k2Y ` T 1
p3N ´ fKpCq ´ 1q (3.4)

21The property PPδ (Definition 3.20) is a promise property and so is PPlcs (Definition 3.21).



3.4. QSETH lower bounds for LCS and Edit Distance 57

where fKpCq “ maxpKtq ´ minpK1q ` 1. While k1 denotes the number of non-
satisfying assignments, k2 denotes the number of satisfying assignments to the given
BP under the coarse alignment C, and, k1 ` k2 “ |C |.

We cannot yet claim equality of the expressions in Equation 3.4 because we have
not accounted for the perturbations of the following kind: consider a single element
pK,Lq of a coarse alignment, say of the kind pp1, 2, 3q, p5qq. For any term pK,Lq P C
that has either |K| ą 1 or |L| ą 1, there will be additional perturbations that can
range between pY ´ 1q and |G

1
pb˚q| “ OpY q, i.e.,

2T ` pY ´ 1q ď LCSpuK, vLq ď 2T ` OpY q,

which means these perturbations that contribute towards LCSpx, yq have to be
accounted for. Refer to Lemma 3.26 for the notations.

We further notice that this problem can be reduced to computing a specific
promise property PPlcs on the assignments to the given branching program as men-
tioned in the statement of Lemma 3.29. Refer to Definition 3.21 for the definition
of this property. If PPlcspM

ttpSq
q “ 1 then it implies PlcspM

ttpSq, Y ´ 1q “ 1 because
of the promise that the branching program S belongs to the set S. The expres-
sion PlcspM

ttpSq, Y ´ 1q “ 1 implies the existence of a path P P PATHS2L´1,L (here
L “ 2n{2) such that even with a lowest allowed perturbation parameter Λ “ Y ´ 1,
the value of the path is VpMttpSq,P, µ⃗Pq ě Tr, for a fixed threshold Tr. Which
invariably means that for all values of Λ larger than Y ´ 1, VpMttpSq,P, µ⃗Pq ě Tr.
Using Algorithm 1 we can generate a coarse alignment C P C3L´2,L for the given
path P. The choice of constants C0, C1 as given in Definition 3.21 ensures that
LCS-valuepC, x, yq ě Tr. Therefore, we can set our constant mentioned in the state-
ment of Lemma 3.29 to C˚ “ Tr.

We now prove the other direction. If PPlcspM
ttpSq

q “ 0 then PlcspM
ttpSq, |G

1
pb˚q|q “

0 because the branching program S P S. Which in turn implies that for all values of
Λ, for all paths P P PATHS2L´1,L,VpMttpSq,P, µ⃗Pq ă Tr. Using Algorithm 1 we can
generate coarse alignments for every one of these paths, because of the choice of val-
ues for the constants C0 and C1 in Definition 3.21 we get that the LCS-valuepC, x, yq

for these coarse alignments is strictly less than Tr. Furthermore, using the result from
Lemma 3.54 and 3.55 in 3.4.9 we show that if for all values of Λ, @P P PATHS2L´1,L,
VpMttpSq,P, µ⃗Pq ă Tr then @C P C3L´2,L, LCS-valuepC, x, yq ă Tr which implies
LCSpx, yq ă Tr “ C˚.

The proof of Lemma 3.29 establishes the correctness of our reduction. It is
also easy to see that the lengths of the vector gadgets are of pc1W qOplogZq for some
constant c1, therefore, length of the final sequences x and y are of 2n{2pOpW qqOplogZq.
This constitutes the proof of the reduction from BP-PPlcs on branching programs
of size 2polylogn (from the set S) to LCS.

3.4.4 The quantum time lower bound for LCS

In the previous sub-section we gave a reduction from the BP-PPlcs problem on
branching programs of size 2polylogn from set S (Definition 3.27) to the LCS problem.
Therefore, if we prove that the time taken to compute the PPlcs on these branching
programs in the white-box setting in ϵ-bounded error model is Ωp20.75np1´op1qqq then,
because of the reduction, we prove a conditional quantum time lower bound of



58 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

n1.5´op1q for the LCS problem. Additionally, we also define a set V as set of matrices
that are matrix encodings of 2n bit strings, as shown in Figure 3.1, on which PPlcs

is defined.22

To achieve the quantum time lower bound for the BP-PPlcs problem we use
the results of the Theorem 3.30 (query complexity of PPlcs) and Conjectures 3.31
(promise version of NC-QSETH˚) and 3.32 (PPlcs P COpNC X Sq) given below.

Theorem 3.30 (Theorem 3.58, Corollary 3.59 in 3.5). The bounded-error quantum
query complexity for computing the property PPlcs on matrices of size p2n{2`1 ´ 1q ˆ

2n{2 from V is Ωp20.75nq.

Conjecture 3.31 (Promise version of NC-QSETH˚). For the class of representa-
tions NC, i.e., the set of poly-sized circuits of poly-logarithmic depth consisting of
fan-in 2 gates, for all properties P P COpNC X Sq, we have qTimeWBϵpP |NCXSq ě

ΩpQϵpP |Vq1´op1qq.

Recall that Theorem 3.10 and Theorem 3.11 in Section 3.2.3 show obstacles
to prove that properties with query complexity at least ωp

?
Nq are compression-

oblivious. On the other hand, the only properties that we know are not compression
oblivious are artificial constructions that directly refer to circuit complexity, and it
is natural to conjecture that all properties which are simple enough are compression
oblivious. The conditional lower bound therefore requires the following assumption.

Conjecture 3.32. The property PPlcs is pNC X Sq-compression oblivious.

We can now prove a conditional quantum time lower bound of n1.5´op1q time for
the LCS problem.

Theorem 3.33. Assuming Conjecture 3.31, the promise version of NC-QSETH˚,
and assuming PPlcs P COpNC X Sq, the bounded-error quantum time complexity for
computing the LCS problem is atleast n1.5´op1q.

Proof. Combining the results of Theorem 3.30, Conjectures 3.31 and 3.32 we get
qTimeWBϵpPPlcs |NCXSq “ Ωp20.75np1´op1qqq. Which implies that, the bounded er-
ror quantum time complexity for computing the property PPlcs in the white-box
setting is qTimeWBϵpPPlcs |NCXSq “ Ωp20.75np1´op1qqq under the promise version of
NC-QSETH˚.

With the use of the reduction from the PPlcs problem on branching programs with
n input variables of size 2polylogn from set S to the LCS problem (Theorem 3.28) we
obtain the conditional quantum time lower bound of n1.5´op1q for the LCS problem.

3.4.5 Proof of Lemma 3.26

We will use the following results in order to prove Lemma 3.26. We take the alphabet
set to be Σ2 “ Σ1Yt5, 6, 7u where Σ1Xt5, 6, 7u “ H, and, all the vector gadgets (refer
to Equation 3.1) are defined over alphabet set Σ1. The associated weight function23

22Note that the definition of V here and in Definition 3.27 are equivalent because any 2n bit
string will be the truth table of some branching program on n input variables.

23To make the analysis simpler, we keep oscillating between using LCS and WLCS. That is
why we have defined a weight function associated to the alphabet set Σ2.



3.4. QSETH lower bounds for LCS and Edit Distance 59

w : Σ2 Ñ rT s is as follows: wp5q “ wp6q “ T ą wp7q “ T 1 ą wp2q “ Y ´ 1 and the
weight of all the other symbols are set to 1.

Fact 3.34 (Fact 5.7 in [BK15]). For any similarity measure δ that admits the align-
ment framework, and given two sequences x, y defined over some alphabet set Σ.
We say, for a given ordered partition of x “ x1⃝x2⃝x3, there exists some ordered
partition of y, such that y “ y1 ⃝ y2 ⃝ y3 and,

δpx, yq “ δpx1, y1q ` δpx2, y2q ` δpx3, y3q.

Lemma 3.35. Given two sequences x and y over the alphabet set Σ2 and associated
weight function w : Σ2 Ñ rT s, such that

x “ 5a1
1675a

1
2675a

1
367...5a

1
ta67,

y “ 5b1
165b

1
265b

1
365b

1
46...5b

1
tb
6,

and @i, j, a1
i and b1

j represents vector gadgets defined over Σ1. We claim that there
exists a coarse alignment C such that,

WLCSpx, yq “ ΣpK,LqPCWLCSpuK, vLq,

where uK “ ⃝pPK5a
1
p67 and vL “ ⃝qPL5b

1
q6.

Proof. W.l.o.g. assume ta ě tb. The first observation we make is that the 7s in
the sequence x don’t contribute to the WLCS as there are no matching 7s in the
sequence y. Clearly, WLCSpx, yq ą pwp5q ` wp6qq ¨ tb as we can achieve that by
aligning the symbols 5s (also the 6s) of the sequences x, y. The weight associated
with the symbols 5 and 6 is such that pwp5q ` wp6qq ą maxp|a1

˚|, |b1
˚|q. Therefore,

we can say that there exists at least one subsequence ‘675’ in x that aligns with
the subsequence ‘65’ in y in an optimal alignment. The existence of an aligning
separator pair (‘675’ in x and ‘65’ in y) in an optimal alignment lets us make the
following statement: WLCSpx, yq “ WLCSpx1, y1q`WLCSpx2, y2q, such that x1, x2

are both of the form ‘5...67’ and y1, y2are both of the form ‘5...6’.

x “

x1
hkkkkkkkkikkkkkkkkj

5a1
167...5a

1
i´167

x2
hkkkkkkkikkkkkkkj

5a1
i67...5a

1
ta67,

y “ 5b1
16...5b

1
j´16

loooooomoooooon

y1

5b1
j6...5b

1
tb
6

looooomooooon

y2

,

Using this argument recursively we can see that the strings x and y gets partitioned
into substrings of the form ‘5...67’ and ‘5...6’ respectively, such that WLCSpx, yq

is the sum of pair wise WLCS of these substrings, where only one of the sub-
strings in each pair contains more than zero separators. Hence, proving the claim
of Lemma 3.35.

Lemma 3.26. Given the two sequences x and y from Equation 3.2, there exists a
coarse alignment C P Cp3¨2n{2´2q,2n{2, such that LCS of the two sequences x and y is:

LCSpx, yq “ max
CPC

p3¨2n{2´2q,2n{2

pΣpK,LqPCLCSpuK, vLq ` T 1
p3 ¨ 2n{2

´ fPpCq ´ 1q
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

LCS-value of coarse alignment C

q



60 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

where uK “ ⃝pPK5
Tgp6

T7T
1 and vL “ ⃝qPL5

TG
1
pbqq6

T . Also gp “ G1pap´2n{2q

when 0 ă pp ´ 2n{2q ď 2n{2 and gp “ r otherwise. Here r denotes the dummy
gadget. And, for a coarse alignment C “ ppP1,Q1q, ..., pPk,Qkqq, we define fPpCq “

maxpPkq ´ minpP1q ` 1.

Proof. Using Lemma 3.19 from Section 3.4.2, we can compute LCSpx, yq by com-
puting WLCSpx1, y1q where,

x1 :“

x1
hkkkkkkikkkkkkj

p⃝|A|´1
i“1 5r67q

x2
hkkkkkkkkikkkkkkkkj

p⃝aPA5G
1
paq67q

x3
hkkkkkkikkkkkkj

p⃝|A|´1
i“1 5r67q,

y1 :“ 7|x1|
loomoon

y1

p⃝bPB5G
1
pbq6q

looooooomooooooon

y2

7|x1|
loomoon

y3

(3.5)

and the associated weight function w : Σ2 Ñ rT s where wp5q “ wp6q “ T ą wp7q “

T 1 ą wp2q “ Y ´ 1 and the weight of all the other symbols are set to 1.24. Let x1

be concatenation of three sequences x1, x2, x3, i.e. x1 “ x1 ⃝ x2 ⃝ x3, similarly, let
y1 “ y1 ⃝ y2 ⃝ y3. Suppose that in an alignment the last 7 from y1 aligns with
the last 7 from x1 then no element from y2 can align with any symbol from x1. The
LCS-value of such an alignment would be p3|A| ´ 2q ¨wp7q “ p3|A| ´ 2qT 1. It is easy
to see that we can achieve a much better LCS-value by aligning x2 with y2 hence,
WLCSpx1, y1q ą pwp5q ` wp6qq|A| ` wp7qp2|A| ´ 1q ą p3|A| ´ 2qT 1. Therefore, the
earlier mentioned alignment is never optimal. Which means, under this observation
and by invoking the results of Fact 3.34 we can safely say that there exists some
ordered partition of x1 such that x1 “ x1 ⃝ x2 ⃝ x3 and x1, x3 are sequences that
start with the symbol 5 and 7 respectively, and end with the symbol 7, where as x2
is a sequence that starts with a 5 and ends with a 6, and,

WLCSpx1, y1
q “ WLCSpx1, 7

|x1|
q ` WLCSpx2, y2q ` WLCSpx3, 7

|x1|
q. (3.6)

Further analysis of WLCSpx2, y2q under the claims of Lemma 3.35 suggests that
there exists a coarse alignment C, such that WLCSpx2, y2q “ ΣpK,LqPCLCSpuK, vLq,
while the WLCSpx1, 7

|x1|q and WLCSpx3, 7
|x1|q depends on the number of 7s left in

x1, x3, respectively. Therefore,

LCSpx, yq “ WLCSpx1, y1
q “ max

CPC
p3¨2n{2´2q,2n{2

pΣpK,LqPCLCSpuK, vLq`p3¨2n{2
´1´fPpCqqT 1

q,

as mentioned in the statement of Lemma 3.26.

3.4.6 Edit Distance and the alignment framework

The lower bound strategy for the Edit Distance problem is very similar to that of
the LCS reduction – the underlying reduction from a single partial assignment to a
branching programs to Edit Distance is different, but the overall resulting struc-
ture on how these partial assignments are combined is almost identical. Therefore,
only the main results and theorem statements are presented in this section while
proofs of the theorems are presented in a separate section.

24Though the number of 7s in the sequences x and x1 (similarly, in y and y1) don’t scale according
to the mapping mentioned in Lemma 3.19 in Section 3.4.2, it is easy to see that even then the
claim holds.



3.4. QSETH lower bounds for LCS and Edit Distance 61

Definition 3.36 (The Edit Distance problem). Given two strings a and b over
an alphabet set Σ, the edit distance between a and b is the minimum number of
operations (insertions, deletions, substitutions) on the symbols required to transform
string a to b (or vice versa).

Similar to LCS, the Edit Distance problem also can be visualised by using
the alignment framework as presented in Section 3.4.2 (also mentioned in [BK15]).
Let a, b be two strings, of length n and m respectively, and let n ě m. An alignment
is a set A “ tpi1, j1q, . . . , pik, jkqu with 0 ď k ď m such that 1 ď i1 ă ¨ ¨ ¨ ă ik ď n
and 1 ď j1 ă ¨ ¨ ¨ ă jk ď m. The set An,m denotes the set of all alignments over the
index sets rns and rms. We now claim the following:

Fact 3.37. Let a,b be strings defined over alphabet set Σ. The edit distance between
a and b is

Edit-Distpa, bq “ min
APAn,m

p
ÿ

pi,jqPA

Edit-Distparis, brjsq ` n ` m ´ 2|A|q

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

EDIT-value of alignment A with strings a and b

,

where n “ |a|,m “ |b|, aris denotes the ith symbol of string a, while brjs denotes the

jth symbol of string b, and, for all l, l1 P Σ,Edit-Distpl, l1q “

#

1, if l ‰ l1,

0, otherwise.

Proof. There are many ways to transform the string a into the string b and each
alignment A P An,m specifies one such way. Every element in A indicates the
positions of the symbols in strings a and b, respectively, that is either matched
or substituted. For any alignment A P An,m the EDIT-valuepA, a, bq denotes the
number of operations (insertions, deletions, substitutions) required to transform a
to b under the alignment A. As edit distance is defined to be the minimum number
of operations required to transform a to b, we minimize the EDIT-value over all the
alignments in An,m to get Edit-Distpa, bq.

3.4.7 Reduction from BP-PPedit to the Edit Distance problem

Another consequence of our NC-QSETH˚ conjecture is the quantum time lower
bound of n1.5´op1q for the Edit Distance problem. The proof idea is (almost)
identical to that of the result about the LCS problem given in Section 3.4.3 and
is (again) as follows: we first define a promise property PPedit (Definition 3.39).
We then give a reduction from the problem of computing the property PPedit on
truth tables of some non-deterministic branching programs to the Edit Distance
problem.

Reduction: let S be a branching program of length Z, width W with n input
variables. Let A “ pa1, a2, . . . , a2n{2q and B “ pb1, b2, . . . , b2n{2q be two sequences
containing all the elements from the set t0, 1un{2 in the lexicographical order such
that every pair pa, bq P A ˆ B together forms an input to S. For every a P A,
construct vector gadget Gpaq and for every b P B, construct vector gadget Gpbq such
that,

Edit-DistpGpaq, Gpbqq “

#

Q ´ ρ, if pa, bq forms a satisfying pair to S,
Q, otherwise,

(3.7)



62 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

for some constants Q and ρ.25 The final sequences x and y are constructed by
grouping the vector gadgets corresponding to A and B, respectively, in the following
way:

x :“ p⃝|A|´1
i“1 5T r6T qp⃝aPA5

TGpaq6T qp⃝|A|´1
i“1 5T r6T q

y :“ 7|x|
p⃝bPB5

TGpbq6T q7|x|
(3.8)

Here r is a dummy vector gadget such that Edit-Distpr,Gpbqq “ Q, @b P B [AHV+16]
and 5T (or 6T ) known as a separator represents the symbol 5 (or 6) occurring T times.
The choice26 of T is made in a way that in an optimal alignment the separators from
x align with the separators in y, hence forcing the vector gadgets from x to align
with vector gadgets from y.

As mentioned in Fact 3.37 the edit distance between two strings can be associated
with minimum EDIT-value of some alignment. However, similar to the situation of
LCS, we cannot use the alignment framework in the same way at a gadget level.
Therefore, we resort to the usage of coarse alignment in this case as well. We observe
that Edit-Distpx, yq can be expressed as the edit-cost of an optimal coarse alignment
of the vector gadgets as given in Lemma 3.38 below.

Lemma 3.38. There exists a coarse alignment C P Cp3¨2n{2´2q,2n{2, such that the edit
distance between the two sequences x and y is:

δpx, yq “ 2|x| ` min
CPC

p3¨2n{2´2q,2n{2

edit-costpC, x, yq,

where edit-costpC, x, yq “
ř

pi,jqPC δpui, vjq such that ui “ ⃝pPi5
Tgp6

T and vj “

⃝qPj5
TGpbqq6

T . Also gp “ Gpap´2n{2q when 0 ă pp ´ 2n{2q ď 2n{2 and gp “ r
otherwise. Here r denotes the dummy gadget.

The proof of Lemma 3.38 uses results of Lemma 3.52, 3.53, Fact 3.50 and Corol-
lary 3.51 mentioned in Section 3.4.9.

We now provide some definitions required for our reduction.

Definition 3.39 (The PPedit property). The Edit Distance problem is a minimi-
sation problem when viewed as an optimisation problem, and the properties Pedit

and PPedit need to be defined accordingly. Therefore, we plug in negative values to
the constants C0 “ ´Q, C1 “ ´pQ´ρq, Cup “ p2T `SGq “ Cdown, Y1 “ ´Q, Y2 “ 0
in Definition 3.20 to define the Pedit and PPedit properties. The values of Q, ρ, T ,
SG are all mentioned in Theorem 3.42 of Section 3.4.7.

Definition 3.40 (BP-PPedit problem). Given a non-deterministic branching pro-
gram S with n input variables, decide if PPeditpM

ttpSq
q “ 1. Here ttpSq denotes

the truth table of the function computed by the branching program S and MttpSq

denotes the Matrix Encoding of ttpSq.
25We again refer to [AHV+16] for the construction of these vector gadgets. Their vector gadgets

are of length ZOplogW q and are constructed over the alphabet set Σ “ t0, 1u. However, their results
don’t require that the vector gadgets Gp¨q and Gp¨q are of the same length, but our result does.
Therefore, we slightly modify their construction as shown in Lemma 3.49 in 3.4.9. We achieve this
for another set of constants and over a bigger alphabet set Σ0 “ t0, 1, 2u.

26T “ pcW qOplogZq for some constant c, and W and Z denotes the width and length, respectively,
of the given BP.



3.4. QSETH lower bounds for LCS and Edit Distance 63

Definition 3.41 (The sets S and V). The set S denotes the set of non-deterministic
branching programs (or circuits, depending on the usage context) with n input
variables such that:

S “ tS | MttpSq
P PPedit

´1
p0q Y PPedit

´1
p1qu and, V “ tMttpSq

| S P Su.

This states that S contains the compressed form of the inputs on which PPedit

is defined, while V contains the matrices that are Matrix Encoding (Figure 3.1)
of truth tables of the elements in S.

Having defined the BP-PPedit problem and the set S, we now proceed to prove
the main theorem of this section.

Theorem 3.42. There is a reduction from the BP-PPedit problem on BPs of size
2polylogn (length Z and width W ) from set S to an instance of the Edit Distance
problem on two sequences of length of order N “ ZOplogW q2n{2 over the alphabet set
Σ1 “ t0, 1, 2, 5, 6, 7u, and the reduction runs in OpNq time.

Proof. Let S P S be a branching program with n input variables of size 2polylogn.
Construct the vector gadgets as given in Equation 3.7, and the final sequences
x and y as mentioned in Equation 3.8. It is easy to see that the length of the
final sequences is OpZOplogW q2n{2q because each vector gadget is of length ZOplogW q.
Clearly, this reduction runs in OpNq time, where N “ ZOplogW q2n{2. We now claim
the correctness of our reduction using the result from the following lemma.

Lemma 3.43. For every n, there exists a constant C˚ P Z such that

Edit-Distpx, yq ď C˚

if and only if PPeditpM
ttpSq

q “ 1.

Proof. If PPeditpM
ttpSq

q “ 1 then it implies PeditpM
ttpSq,Λ “ t´Quq “ 1 because of

the promise that the branching program S belongs to the set S. The statement
PeditpM

ttpSq,Λ “ t´Quq “ 1 implies that there exists a path P P PATHS2L´1,L (here
L “ 2n{2) such that even with the lowest allowed perturbation parameter Λ “ ´Q
the value of the path is VpMttpSq,P, µ⃗Pq ě Tr, for a fixed threshold Tr. Which
invariably means that for all values of Λ P r´Q, 0s, VpMttpSq,P, µ⃗Pq ě Tr. Us-
ing Algorithm 1 that generates a coarse alignment C P C3L´2,L for a given path
P P PATHS2L´1,L as an input, we get a coarse alignment C corresponding to
path P. Due to the choices of C0, C1 made in Definition 3.39 we can claim
edit-costpCq “ ´VpMttpSq,P, µ⃗Pq under a particular perturbation vector µ⃗P. There-
fore, we can say edit-costpCq ď ´Tr because @Λ,VpMttpSq,P, µ⃗Pq ě Tr. Also, from
Lemma 3.38 we have that Edit-Distpx, yq “ 2|x| ` minCPC3L´2,L

edit-costpCq. This
implies Edit-Distpx, yq ď 2|x| ´ Tr and, we set our constant C˚ “ 2|x| ´ Tr.

We now prove the other direction. If PPeditpM
ttpSq

q “ 0 it implies PeditpM
ttpSq,Λ “

t0uq “ 0 as the branching program S P S. Which in turn implies that for all
other values of Λ P r´Q, 0s, @P P PATHS2L´1,L, VpMttpSq,P, µ⃗Pq ă Tr. Using
the result from Lemma 3.54 and Lemma 3.55 in Section 3.4.9 we show that if for
all Λ P r´Q, 0s, @P P PATHS2L´1,L, VpMttpSq,P, µ⃗Pq ă Tr then @C P C3L´2,L,
edit-costpCq ą ´Tr which implies Edit-Distpx, yq ą 2|x| ´ Tr. Thus, implying
Edit-Distpx, yq ą C˚.

This constitutes the proof of the reduction from the BP-PPedit problem on
branching programs of size 2polylogn from the set S to the Edit Distance prob-
lem.



64 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

3.4.8 The quantum time lower bound for the Edit Distance problem

In the previous subsection we gave a reduction from the BP-PPedit problem on
branching programs of size 2polylogn from set S to the Edit Distance problem.
Therefore, if we prove that the time taken to compute the PPedit on these branch-
ing programs in the white-box setting in ϵ-bounded error model is Ωp20.75nq then
because of the reduction we prove a quantum time lower bound of Ωpn1.5q for the
Edit Distance problem. Additionally, we also define a set V a set of matrices
that are matrix encoding of 2n bit strings as shown in Figure 3.1 on which PPedit is
defined.

To achieve the quantum time lower bound for the BP-PPedit problem we use
the results of the Theorem 3.44 (query complexity of PPedit) and Conjectures 3.45
(promise version of NC-QSETH˚) and 3.46 (PPedit P COpNCXSq) mentioned below.

Theorem 3.44 (Theorem 3.58, Corollary 3.59 in Section 3.5). The bounded-error
quantum query complexity for computing the property PPedit on matrices of size
p2n{2`1 ´ 1q ˆ 2n{2 from V is Ωp20.75nq.

Conjecture 3.45 (Promise version of NC-QSETH˚). For the class of representa-
tions NC, i.e., the set of poly sized circuits of poly-logarithmic depth consisting of
fan-in 2 gates, for all properties P P COpNC X Sq, we have qTimeWBϵpP |NCXSq ě

ΩpQϵpP |Vq1´op1qq.

Conjecture 3.46. The property PPedit is pNC X Sq-compression oblivious.

Theorem 3.47. The bounded error quantum time complexity for computing the
property PPedit in the white-box setting is qTimeWBϵpPPedit |NCXSq “ Ωp20.75np1´op1qqq

under a promise version of NC-QSETH˚.

Proof. Combining Theorem 3.44, Conjecture 3.45, and Conjecture 3.46 we get
qTimeWBϵpPPedit |NCXSq “ ΩpQϵpPPedit |Vq1´op1qq “ Ωp20.75np1´op1qqq.

Theorem 3.48. Assuming Conjecture 3.45, the promise version of NC-QSETH˚,
and assuming PPedit P COpNCXSq, the bounded-error quantum time complexity for
computing the Edit Distance problem is n1.5´op1q.

Proof. Using the reduction from the PPedit problem on branching programs with n
input variables of size 2polylogn from set S to the Edit Distance problem (Theo-
rem 3.42) and using the results from Theorem 3.47 we obtain the conditional quan-
tum time lower bound of n1.5´op1q for the Edit Distance problem.

3.4.9 Proofs of Lemma 3.38 and other relevant theorems

We use this section to present the proof of all the facts, lemmas and theorems used
as building blocks to prove our main result.

Lemma 3.49. Given two strings a, b P t0, 1u˚ with |a| ą |b| such that, either
δpa, bq “ Q1 or δpa, bq “ Q1 ´ ρ for some constants Q1, ρ P Z` and ρ ă Q1, we
can create strings anew, bnew P t0, 1, 2u˚ such that,

anew “ 2|a| ⃝ a,

bnew “ 0|a|´|b|2|a| ⃝ b,



3.4. QSETH lower bounds for LCS and Edit Distance 65

and,

δpanew, bnewq “ Q ´ ρ iff δpa, bq “ Q1
´ ρ,

δpanew, bnewq “ Q iff δpa, bq “ Q1,

for another constant Q P Z` and ρ ă Q and |anew| “ |bnew|.

Proof. It follows from the construction of anew, bnew that |anew| “ |bnew|. It is
also easy to see that δpanew, bnewq ď |a| ´ |b| ` δpa, bq. We will now prove that
δpanew, bnewq “ |a| ´ |b| ` δpa, bq for any such a, b. Consider the last 2 of the subse-
quence 2|a| in the string anew. This symbol 2 could either get deleted, or get matched
or get substituted. If this 2 gets substituted with a symbol from the substring b in
bnew then there is a symbol 2 in bnew that has to be inserted, which is not an optimal
thing to do. If this symbol 2 from anew gets substituted with a symbol in 0|a|´|b|

then there is a symbol 2 in bnew that has to be substituted with a symbol from the
substring a in anew or has to be inserted, either ways not an optimal thing to do. A
similar argument holds for the case where this 2 from anew gets deleted. Therefore,
the only option left is that it gets matched with a 2 in bnew. By repeating this argu-
ment for all the 2s in anew we can say that in an optimal alignment all the 2s from
anew will align with all the 2s from bnew. Therefore, δpanew, bnewq “ |a| ´ |b| ` δpa, bq
and Q “ Q1 ` |a| ´ |b|.

Lemma 3.38. There exists a coarse alignment C P Cp3¨2n{2´2q,2n{2, such that the edit
distance between the two sequences x and y is:

δpx, yq “ 2|x| ` min
CPC

p3¨2n{2´2q,2n{2

edit-costpC, x, yq,

where edit-costpC, x, yq “
ř

pi,jqPC δpui, vjq such that ui “ ⃝pPi5
Tgp6

T and vj “

⃝qPj5
TGpbqq6

T . Also gp “ Gpap´2n{2q when 0 ă pp ´ 2n{2q ď 2n{2 and gp “ r
otherwise. Here r denotes the dummy gadget.

Proof. We are given two sequences x and y, such that

x :“ p⃝|A|´1
i“1 5T r6T qp⃝aPA5

TGpaq6T qp⃝|A|´1
i“1 5T r6T q,

y :“ 7|x|
loomoon

y1

p⃝bPB5
TGpbq6T q

looooooooomooooooooon

y2

7|x|
loomoon

y3

. (3.9)

Recall that A “ pa1, a2, . . . , a2n{2q and B “ pb1, b2, . . . , b2n{2q and both the se-
quences contain all the elements from the set t0, 1un{2 in the lexicographical order.
The gadgets r,Gpaq and Gpbq P t0, 1, 2u˚ and T ą |Gp¨q| “ |Gp¨q| “ |r| “ SG.

Fact 3.50 (Fact 5.7 in [BK15]). Let y1 “ 7|x|, y2 “ ⃝bPB5
TGpbq6T , y3 “ 7|x|

as mentioned in Equation 3.9 above. We claim the following statement: the edit
distance between the strings x and y is,

δpx, yq “ min
x1,x2,x3

pδpx1, y1q ` δpx2, y2q ` δpx3, y3qq,

where x1, x2, x3 ranges over all ordered partitions of x and x “ x1 ⃝ x2 ⃝ x3.



66 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

Corollary 3.51 (of Fact 3.50). The edit distance between the strings x and y is

δpx, yq “ 2|x| ` min
x2

δpx2, y2q,

such that x2 ranges over all ordered partitions of x.

Proof. The strings y1 and y3 are strings of length |x| (at least as large as |x1| and
|x3|) and consist of symbols that are not used in the entire string x. Therefore, the
δpx1, y1q “ δpx3, y3q “ |x| for any choice of x1 and x3.

Lemma 3.52. Given the two sequences x and y as mentioned above, there exists
a substring x2 of the form 5T . . . 6T such that the δpx, yq “ 2|x| ` δpx2, y2q when
y2 “ ⃝bPB5

TGpbq6T .

Proof. A proof by contradiction. Note that x2 can be any substring of x. Let us
assume that the (minimum) edit distance is achieved with x2 that is not of the form
5T . . . 6T , we then argue that one could change the format of x2 to 5T . . . 6T without
increasing the cost.

As we assume that x2 is not of the form 5T . . . 6T therefore it could be of any of
the following forms:

1. Let’s consider a scenario where x2 is of the form 5θw . . . 6T where 0 ă θw ă T ,
note that y2 is already of the form 5T . . . 6T .

x2 :“

w1
hkkikkj

5θwai6
T

w2
hkkkkkkkkikkkkkkkkj

5Tai`16
T . . . 6T

y2 :“ 5T b16
T5T b26

T . . . 6T
looooooooooomooooooooooon

v1⃝v2

Recall from Fact 3.50 that by fixing w1 “ 5θwai6
T and w2 “ 5Tai`16

T . . . 6T

we have δpx2, y2q “ minv1,v2 δpw1, v1q ` δpw2, v2q.

(a) Let’s assume that the minimum is achieved when v1 “ 5T b16
θv , where

0 ă θv ď T . In such a scenario, δpw1, v1q “ δp5θwai6
T , 5T b16

θvq “

δpai6
T´θv , 5T´θwb1q. On the other hand we have δp5Tai6T , v1q “ δpai6

T´θv , b1q
ď δpai6

T´θv , 5T´θwb1q “ δpw1, v1q.27 Therefore suggesting that if v1 “

5T b16
θv then setting w1 “ 5Tai6

T doesn’t increase the cost.

(b) Let’s assume that the minimum is achieved when v1 “ 5T bθv1 , where
0 ă θv ď SG. δpw1, v1q “ δp5θwai6

T , 5T bθv1 q “ δpai6
T , 5T´θwbθv1 q ě

δpai6
T , bθv1 q “ δp5Tai6

T , v1q. Again suggesting that if v1 “ 5T bθv1 then
setting w1 “ 5Tai6

T cannot increase the cost.

(c) Let’s assume that the minimum is achieved when v1 “ 5θv , where 0 ď θv ď

T . δpw1, v1q “ δp5θwai6
T , 5θvq “ maxpT`SG, T`SG`θw´θvq ą δpH, 5θvq.

There by suggesting that if v1 “ 5θv then setting w1 “ H will definitely
cost less.

27Consider three strings s1 P Σ˚, and s2, s3 P Γ˚, where Σ and Γ are two disjoint alphabet sets,
i.e. ΣXΓ “ H, then δps1⃝s2, s3q ě δps2, s3q (similarly, δps2, s1⃝s3q ě δps2, s3q). As the symbols
in the string s1 are different from symbols in s2 and s3 and the operations on symbols from s1 will
only be delete or substitute. Therefore, one can get rid of the string s1 by removing the symbols
that got deleted (hence, reducing the cost) and by inserting the symbols in s3 that otherwise would
have been substituted by the symbols from s1 (hence, maintaining the cost).



3.4. QSETH lower bounds for LCS and Edit Distance 67

This proves that no matter what form v1
28 is of, the minimum cost is achieved

when w1 “ 5Tai6
T or when w1 “ H, therefore, supporting the claim of

Lemma 3.52. We use the same argument symmetrically to prove that x2
cannot be of the form 5T . . . 6θw , where 0 ă θw ă T or of the form 5θw1 . . . 6θw2

for 0 ă θw1 , θw2 ă T .

2. Consider the case where x2 is of the form aθwi . . . 6T where 0 ă θw ď SG and
y2 is of the form 5T . . . 6T .

x2 :“

w1
hkkikkj

aθwi 6T

w2
hkkkkkkkkikkkkkkkkj

5Tai`16
T . . . 6T

y2 :“ 5T b16
T5T b26

T . . . 6T
looooooooooomooooooooooon

v1⃝v2

(a) Let’s assume that the minimum is achieved when v1 “ 5T b16
θv , where

0 ă θv ď T . Then, δpw1, v1q “ δpaθwi 6T , 5T b16
θvq “ δpaθwi 6T´θv , 5T b1q.

The last 5 of the substring 5T b1 could either be substituted for a 6 in
aθwi 6T´θv or could be substituted for a t0, 1, 2u in aθwi . Either way the
δpw1, v1q ě SG ` pT ´ θvq ą Q ` pT ´ θvq ě δp5Tai6

T , v1q. Hence,
suggesting that if v1 “ 5T b16

θv then set w1 “ 5Tai6
T .

(b) Let’s assume that the minimum is achieved when v1 “ 5T bθv1 , where
0 ă θv ď SG. δpw1, v1q “ δpaθwi 6T , 5T bθv1 q “ T ` maxpθw, θvq ě T ` θv “

δpH, v1q. Hence, suggesting that if v1 “ 5T bθv1 then set w1 “ H.

(c) Let’s assume that the minimum is achieved when v1 “ 5θv , where 0 ď

θv ď T . δpw1, v1q “ δpaθwi 6T , 5θvq ą δpH, 5θvq. Again suggesting that if
v1 “ 5θv then set w1 “ H.

This again proves that no matter what form v1 is of, the minimum cost is
achieved when w1 “ 5Tai6

T or when w1 “ H, therefore, supporting the claim
of Lemma 3.52. We use the same argument symmetrically to prove that x2
cannot be of the form 5T . . . aθwi , where 0 ă θw ď SG or of the form a

θw1
i . . . a

θw2
j

for 0 ă θw1 , θw2 ď SG.

3. Let’s consider a scenario where x2 is of the form 6θw . . . 6T where 0 ă θw ď T .

x2 :“

w1
hkkikkj

6θw

w2
hkkkkkkkkikkkkkkkkj

5Tai`16
T . . . 6T

y2 :“ 5T b16
T5T b26

T . . . 6T
looooooooooomooooooooooon

v1⃝v2

(a) Let’s assume that the minimum is achieved when v1 “ 5T b16
θv , where

0 ă θv ď T . δpw1, v1q “ δp6θw , 5T b16
θvq “ maxpT`SG, T`SG`θv´θwq ą

Q ` |θw ´ θv| ě δp5Tai6
θw , 5T b16

θvq. Hence proving that if v1 “ 5T b16
θv

then set w1 “ 5Tai6
T .

28Note that we have not listed the scenario where v1 is of the form 5T b16
T ˚. The reason being

the following: if v1 is of the form 5T b16
T ˚, then v2 will be of the same form as of x2 that we are

arguing against.



68 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

(b) Let’s assume that the minimum is achieved when v1 “ 5T bθv1 , where
0 ă θv ď SG. δpw1, v1q “ δp6θw , 5T bθv1 q “ T ` θv “ δpH, v1q. Hence
proving that if v1 “ 5T bθv1 then set w1 “ H.

(c) Let’s assume that the minimum is achieved when v1 “ 5θv , where 0 ď

θv ď T . δpw1, v1q “ δp6θw , 5θvq ě δpH, 5θvq. Hence again proving that if
v1 “ 5θv then set w1 “ H.

This again proves that no matter what v1 is, the minimum cost is achieved
when w1 “ 5Tai6

T or when w1 “ H, therefore, supporting the claim of
Lemma 3.52. Again we use the same argument symmetrically to prove that x2
cannot be of the form 5T . . . 5θw , where 0 ă θw ď T or of the form 6θw1 . . . 5θw2

for 0 ă θw1 , θw2 ď T .

Therefore, proving that there exists an x2 of the form 5T . . . 6T such that δpx, yq “

2|x| ` δpx2, y2q.

Using Corollary 3.51 and Lemma 3.52 for a chosen partition of y “ y1y2y3 into
three substrings, we have shown that there exists a partition of x “ x1x2x3 such
that δpx, yq “ 2|x| ` δpx2, y2q and x2 is of the form 5T . . . 6T .

We still have to prove that there exists a coarse alignment C P Cp3¨2n{2´2q,2n{2

such that δpx2, y2q “
ř

pi,jqPC δpui, vjq where ui and vj are substrings of x2 and y2 as
mentioned above. To prove that we use the result from the Lemma 3.53 below.

Lemma 3.53. Given two substrings x2 and y2, both of the form 5T . . . 6T . There
exists a separator 6T5T in the string x2 (assuming that x2 has one) that completely
aligns with a separator 6T5T from the other string y2 (also assuming that y2 has
one). A separator is a substring 6T5T that repeatedly occurs in both the strings x2
and y2.

Proof. We have already established that x2 is of the form 5T . . . 6T , and earlier we
chose y2 to be of the form 5T . . . 6T . Let,

x2 “ 5Ta1
16

T5Ta1
2

sep w
hkkikkj

6T5T a1
36

T . . . 5Ta1
ta6

T ,

y2 “ 5T b1
16

T5T b1
26

T5T b1
3 6T5T

loomoon

sep

b1
46

T . . . 5T b1
tb
6T ,

such that @i P rtas, @j P rtbs, a
1
i P t0, 1, 2u˚ and b1

j P t0, 1, 2u˚ and Q ă |a1
i| “

|b1
j| “ SG ! T . Without loss of generality, let’s assume ta ď tb. Then, δpx2, y2q ě

2T ptb ´ taq ` SGptb ´ taq, because there will definitely be 2T ptb ´ taq ` SGptb ´ taq

number of symbols inserted to convert the string x2 to y2. Also, it is easy to see
that δpx2, y2q ď 2T ptb ´ taq ` SGptb ´ taq `Q ¨ ta We will now show that there is no
such optimal alignment of symbols where there is no separator in x2 that completely
aligns with a separator in y2.
The proof is by contradiction. Let us assume that no separator in x2 aligns with
any separator in y2. Let w “ 6T5T be a separator from x2 and let w align with a
substring v from y2 in an optimal alignment. The substring v can be of the following
forms:

1. Let v “ bθ1i 6T5T bθ2i`1 with 0 ď θ1, θ2 ď SG. This is a trivial case leading to
contradiction.



3.4. QSETH lower bounds for LCS and Edit Distance 69

2. Let v “ bθ1i 6θ2 , with 0 ď θ1 ď SG, 0 ď θ2 ď T . The δpw, vq “ δp6T5T , bθ1i 6θ2q ą

2T ´ θ1 ´ θ2. Note that this is a deletion cost because of the mismatch in the
number of symbols in w and v. As θ1 ď SG and θ2 ď T . The deletion cost
ě T ´ SG. When v “ 5θ1bθ2i with 0 ď θ1 ď T, 0 ď θ2 ď SG we follow the same
argument and get deletion cost ě T ´ SG.

3. Let v “ 6θ15θ2 , with 0 ď θ1, θ2 ă T . As the separator w aligns with the sub-
string v, that means the 6T´θ1s that are prefixing v has to be either inserted
or substituted by some symbols P t0, 1, 2u, or matched with the 6s of a sepa-
rator appearing before w in the string x2. For the 6s that get inserted, it is
cheaper to match the 6s with the 6s that get deleted instead in δp6T5T , 6θ15θ2q

=δp6T´θ15T´θ2 ,Hq. Same argument holds for the 5s that are suffixing v. Sup-
pose these 6s are substituted from the 5s or the t0, 1, 2u again it costs the same
to just delete these and match freely with the 6s that are getting deleted in
the alignment of w and v. And say for any reason some 6 in the prefix gets
matched with a 6 from a separator preceding w, then the deletion plus the
substitution cost is ą T ` SG. Therefore, it is cheaper to align the separator
w with the separator from y2 that is surrounding v.

4. Let v “ 6θ15T bθ2i , with 0 ď θ1 ă T, 0 ď θ2 ď SG. Similar to the argument in
item 3, we analyse the cost to generate the substring 6T´θ1s that is prefixing
v. Even in this case the deletion plus substitution cost of not aligning the
separators is ą T ` SG. A similar argument holds when v “ bθ1i 6T5θ2 , with
0 ď θ1 ď SG, 0 ď θ2 ă T .

5. Let v “ 5θ1bi6
θ2 , with 0 ď θ1, θ2 ď T . Consider the last 6 of the string w.

Whether this 6 matches with a 6 from 6θ2 in v or substitutes any symbol from
the bi or 5θ1 in v the deletion and the substitution cost is ą T .

6. Let v “ 5θ1bi6
T5θ2 , with 0 ď θ1 ď T , 0 ď θ2 ă T . The argument here is similar

to that of the argument in item 3, where we analyse the cost of generating
the substring 5T´θ2 which succeeds the substring v in y2. Either we align the
separators completely or pay a deletion plus substitution cost ą T `SG. Same
argument can be used when v “ 6θ15T bi6

θ2 , with 0 ď θ1 ă T , 0 ď θ2 ď T .
Just that, here we analyse the cost of generating the substring 6T´θ1 which
precedes v.

7. Let v “ 6θ15T bi6
T5θ2 , with 0 ď θ1, θ2 ă T . The deletion and substitution cost

to generate the substring 6T´θ1 which is a prefix to the substring v (or 5T´θ2

a suffix to v) is ą T ` SG.

The deletion and substitution cost induced when a separator 6T5T from x2 doesn’t
align with a separator from y2 is ě SG

29. As there are a total of pta ´ 1q such
separators in x2, if no separator from x2 aligns with any separator from y2 the total
cost of the transformation then becomes ě 2T ptb ´ taq ` SGptb ´ taq ` SG ¨ pta ´ 1q.
Therefore, such a transformation is not an optimal transformation because the edit
distance δpx2, y2q ď 2T ptb ´ taq ` SGptb ´ taq `Q ¨ ta and as long as ta ą 1 we have

29The deletion and substitution costs induced when a separator 6T 5T from x2 doesn’t align with
a separator from y2 is either ě T ´ SG or ą T or ą T ` SG. As SG ! T , the deletion and
substitution costs are always higher than SG.



70 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

SG ¨ pta ´ 1q ą Q ¨ ta.30 Thus, we prove that in an optimal transformation there will
always exist a separator in x2 that will freely align with a separator in y2.

As proved in Lemma 3.53, the existence of a completely aligning separator pair
in an optimal alignment lets us make the following statement: δpx2, y2q “ δpx1, y1q `

δpx2, y2q, such that x1, x2, y1, y2 are all of the form 5T . . . 6T .

x2 “

x1
hkkkkkkkkkkikkkkkkkkkkj

5Ta1
16

T5Ta1
2 . . . 6

T

x2
hkkkkkkkkkkikkkkkkkkkkj

5Ta1
i6

T . . . 5Ta1
ta6

T ,

y2 “ 5T b1
16

T5T b1
26

T5T b1
3 . . . 6

T
loooooooooooooomoooooooooooooon

y1

5T b1
j6

T . . . 5T b1
tb
6T

looooooooomooooooooon

y2

,

Using this argument recursively we can see that the strings x2 and y2 get partitioned
into substrings of the form 5T . . . 6T such that δpx2, y2q is the sum of pair wise edit
distance of these substrings, where only one of the substrings in each pair contains
more than zero separators. This proves the claim of our Lemma 3.38.

Below are elaborate proofs of certain lemmas and facts used in proving the cor-
rectness of reductions from BP-PPlcs to LCS, and from BP-PPedit to Edit Distance
problems, respectively.

Algorithm 1: Convert a given path P to a coarse alignment C.
Result: Given as input P P PATHS2L´1,L, generate C P C3L´2,L.
C=r s, i=1,j=1, k=|P|;
while (i ď k) do

(a+1,b)=P[i];
(c+1,d)=P[i+1];
if (a ‰ c) then

if (d=b) then
C[j]=ppa ` b, . . . , c ` dq, dq;
j=j+1;

else
C[j]=pc ` d, pb, . . . , dqq;
j=j+1

end
i=i+2;

else
C[j]=pa ` b, bq;
j=j+1;
i=i+1;

end
end
return C;

30Recall that, SG “ |Gp¨q| “ |Gp¨q| and Q “ δpGpaq, Gpbqq such that pa, bq wasn’t a satisfying
assignment. Clearly, SG ą Q. Also one can choose to make the gadgets in such a way that
SGpt´ 1q ą Q ¨ t for all t ą 1.



3.4. QSETH lower bounds for LCS and Edit Distance 71

Lemma 3.54. Algorithm 1 when given a path P “ ppi1, j1q, pi2, j2q, . . . , pik, jkqq P

PATHS2L´1,L as an input, outputs a coarse alignment C P C3L´2,L, such that |C | ď

|P |.

Proof. We present Algorithm 1 that when given as an input a path P P PATHS2L´1,L,
it generates a sequence C “ ppp1, q1q, pp2, q2q, . . . , ppm, qmqq. It is easy to see from the
algorithm that k “ |P | ě m “ |C |. We now show that the sequence C generated
by this algorithm indeed is a coarse alignment C P C3L´2,L.

For all neighbouring pairs pil, jlq, pil`1, jl`1q P P that the algorithm reads as
inputs it checks if there is a jump31 between these neighbouring pairs. If there is no
jump in the path P at pil, jlq and pil`1, jl`1q, then the algorithm just adds a term
pp˚, q˚q to the sequence C such that |p˚| “ |q˚| “ 1 and p˚ “ il ` jl ´ 1 and q˚ “ jl
and changes the position of the pointer to the next term. But, if there is a jump in
the path P at pil, jlq and pil`1, jl`1q then the algorithm checks whether the jump is to
a row above or to a row below. When the jump is to a row below then the algorithm
adds a sequence pp˚, q˚q such that p˚ “ pil ` jl ´ 1, . . . , il`1 ` jl`1 ´ 1q ensuring that
|p˚| is the number of rows jumped below and q˚ “ jl “ jl`1 ensuring that |q˚| “ 1
and changes the pointer to the next but one term. When the jump is to a row above
then the algorithm adds a sequence pp˚, q˚q such that q˚ “ pjl, . . . , jl`1q ensuring
that |q˚| is the number of rows jumped above and p˚ “ il ` jl ` 1 “ il`1 ` jl`1 ` 132

ensuring that |p˚| “ 1 and then changes the pointer to the next but one term.
As the definition of a path requires that 1 “ j1 ă j2 ă ¨ ¨ ¨ ă jk “ L. Therefore,

it is easy to see that @r P rm ´ 1s, qr ăe qr`1
33 and @r, s P rms, qr X qs “ H and

Ym
r“1qr “ rLs. Also using the same definition we know that either il “ il`1 (implying

jl`1 “ jl`1) or il ă il`1 (implying jl`1 “ jl) or il ą il`1 (implying jl`1 “ jl`il´il`1)
therefore, ensuring that il`1 `jl`1 ě il `jl therefore proving that @r P rm´1s, pr ăe

pr`1 and @r, s P rms, pr X ps “ H and Ym
r“1pr “ rpi1 ` j1 ´ 1q . . . pik ` jk ´ 1qs.

It is given that P P PATHS2L´1,L that implies 1 ď i1 ď 2L ´ 1, j1 “ 1 and
1 ď ik ď 2L´ 1, jk “ L. Therefore, it is now clear that the sequence C produced by
Algorithm 1 is indeed a coarse alignment C P C3L´2,L.

Lemma 3.55. Algorithm 2 when given a coarse alignment C P C3L´2,L (with L “

2n{2) as an input outputs a sequence P. This sequence P is either a path P P

PATHS2L´1,L or there exists another coarse alignment D P C3L´2,L for which a
path R P PATHS2L´1,L can be generated using Algorithm 2 and the edit-costpDq ď

edit-costpCq 34.

Proof. Let C “ ppp1, q1q, pp2, q2q, . . . , ppm, qmqq be a coarse alignment from the set
C3L´2,L. We classify every element pi, jq P C into bad and good terms in the following
way:

badpi, jq “

#

1, if Da P i and Db P j such that pa ´ bq ă 0 or pa ´ bq ě 2L ´ 1

0 otherwise.

The edit-cost for alignment C will be:
31Refer to the Definition 3.20 for the definitions of a path and also jumps in a path.
32According to the definition of a path, when a jump is to a row above then il ` jl “ il`1 ` jl`1.
33Given two sequences a and b, a ăe b implies @u P a,@v P b, u ă v.
34Lemma 3.55 and Fact 3.56 hold in context of LCS with a slight change in the statement, that

is LCS-valuepDq ě LCS-valuepCq.



72 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

edit-costpCq “ Σpi,jqPCδpui, vjq

“ Σpi,jqPC,pbadpi,jq“1qδpui, vjq
loooooooooooooomoooooooooooooon

bad terms

`Σpi,jqPC,pbadpi,jq“0qδpui, vjq
loooooooooooooomoooooooooooooon

good terms

,

where ui “ ⃝l1Pi5
Tgl16

T 35 and vj “ ⃝l2Pj5
TGpbl2q6T .

Fact 3.56. For every coarse alignment C P C3L´2,L that contains bad terms, there
exists a coarse alignment D P C3L´2,L such that D consists of good terms and the
edit-costpDq ď edit-costpCq.

Proof. A bad term pi, jq in the coarse alignment C implies Da P i, Db P j such that
pa ´ bq ă 0 or pa ´ bq ě 2L ´ 1. Let K “ 2L ´ 1. This term can be a bad term in
three different ways:

1. Category 1: @a P i, @b P j, either pa ´ bq ă 0 or 0 ď pa ´ bq ă K.

2. Category 2: @a P i, @b P j, either pa ´ bq ě K or 0 ď pa ´ bq ă K.

3. Category 3: Da P i, Dc P i, such that pa ´ jq ă 0 and pc ´ jq ě K.

Consider the coarse alignment N “ pp1, 1q, p2, 2q, . . . , pL,Lqq. Clearly the edit-costpNq ď

L¨Q and the corresponding path for N using Algorithm 2 is PN “ pp1, 1q, p1, 2q, . . . , p1, Lqq.
Let C “ ppp1, q1q, pp2, q2q, . . . , ppm, qmqq and let us label each of these terms into bad
or good terms. Suppose C contains a bad term pp, qq of category 3, then |p| ‰ 1
because bad category 3 requires that the following condition is met: Da P p such
that pa´ qq ă 0 and Db P p such that pb´ qq ě K. Combining both these conditions
we get pb ´ aq ě K. The edit-costpCq ě δpup, vqq ą K ¨ p2T ` SGq ą edit-costpNq

which proves this fact. Therefore, we can safely only consider cases where the coarse
alignment consists of bad terms of category 1 and 2.

Let G1 “ pppk1 , qk1q, ppk1`1, qk1`1q, . . . , ppk2 , qk2qq be the first group of bad terms
in C. It is easy to see that the bad terms come in groups of 2 or more. This means
that the entire preceding group G0 “ ppp1, q1q, pp2, q2q, . . . , ppk1´1, qk1´1qq and the
next term G2 “ pppk2`1, qk2`1qq has to be good. We now claim that there exists a
group G1

“ ppp1
1, q

1
1q, pp

1
2, q

1
2q, . . . , pp

1
k3 , q1

k3qq that covers the set of indices of G1 and
has all good terms and the edit-costpG1

q ď edit-costpG1q. As the terms ppk1 , qk1q and
ppk2 , qk2q of G1 can be of any of the two bad categories we have a total of four cases
to consider:

1. Let ppk1 , qk1q of category 1 and ppk2 , qk2q of category 2: this scenario suggests
that there will be two neighbouring terms ppl, qlq and ppl`1, ql`1q such that
they are of bad category 1 and 2 respectively. As ppl, qlq is of category 1, that
implies Da P pl and Db P ql such that pa ´ bq ă 0. Similarly, as ppl`1, ql`1q

is of category 2, that implies Dc P pl`1 and Dd P ql`1 such that pc ´ dq ě

K “ 2L ´ 1. Combining these two inequalities we get pc ´ aq ´ pd ´ bq ą K.
As ppl, qlq and ppl`1, ql`1q are neighbouring terms in a coarse alignment the
edit-costppppl, qlq, ppl`1, ql`1qqq ą δpupl ⃝ upl`1

, vql ⃝ vql`1
q ą p2T ` SGq ¨ K ą

edit-costpNq. Therefore proving this fact.

35Note that gl1 “ Gpal1`1´2n{2q when 0 ď pl1 ´ 2n{2q ă 2n{2 and gl1 “ r otherwise.



3.4. QSETH lower bounds for LCS and Edit Distance 73

2. Let ppk1 , qk1q of category 2 and ppk2 , qk2q of category 1: this scenario doesn’t
exist because of the following reason. Let ppl, qlq and ppl`1, ql`1q be two neigh-
bouring terms such that they are of bad category 2 and 1 respectively. This
implies Da P pl and Db P ql such that pa ´ bq ě K “ 2L ´ 1. Similarly, as
ppl`1, ql`1q is of category 1, that implies Dc P pl`1 and Dd P ql`1 such that
pc ´ dq ă 0. Combining both these inequalities we get pa ´ cq ´ pb ´ dq ą K.
As ppl, qlq and ppl`1, ql`1q are elements of a coarse alignment both pa´ cq and
pb ´ dq will be negative. That implies |b ´ d| ą K “ 2L ´ 1 which is not
possible because the indices in q˚ ranges between 1 . . . L.

3. Let both ppk1 , qk1q and ppk2 , qk2q be of category 1: we first claim that in this
scenario all the intermediate bad terms in the group G1 will also be of category
1 because of the impossibility result from scenario 2.

Let ppl, qlq, ppm, qmq P G1 be two nearest terms of the form |pl| “ 1, |ql| ‰ 1 and
|pm| ‰ 1, |qm| “ 1. The only other intermediate terms in between these terms
are of the form pp˚, q˚q such that |p˚| “ |q˚| “ 1 where edit-costppp˚, q˚qq “

Q36. We now do the following: w.l.o.g. let us assume |ql| ě |pm|. We remove the
ppm ´ 1q maximum most elements from the set ql and ppm ´ 1q minimum most
elements from the set pm. For an element that we remove from the set ql we
pair it with an intermediate element of type |p˚| “ 1. Furthermore, we pair an
intermediate element of type |q˚| “ 1 with the element that we have removed
from the set pm and accordingly make a shift in the earlier pairing of the
intermediate terms. Thereby reducing the total cost by a positive quantity37.
We know that such pairs exists in G1 because the group G0 and G2 only
consists of good terms. We keep repeating this process until we get rid of
all the pairs like ppl, qlq and ppm, qmq. Also note that this process reduces the
edit-cost. Therefore, by following the procedure repeatedly we have converted
the group of bad terms G1 into a new group G1 which spans all the indices
spanned by G1 and also has the ď edit-costpG1q. And because we have got rid
of all the pairs ppl, qlq, ppm, qmq therefore, either all the terms in G1 are of the
form |p˚| “ 1, |q˚| ‰ 1 and |p˚| “ 1, |q˚| “ 1 or are of the form |p˚| ‰ 1, |q˚| “ 1
and |p˚| “ 1, |q˚| “ 1 or all are of the form |p˚| “ |q˚| “ 1.

We now have to prove that all the terms in G1 are good terms. Let ∆1 “

maxppk1´1q´maxpqk1´1q and ∆2 “ minppk2`1q´minpqk2`1q. These 0 ď ∆1 ă K
and 0 ď ∆2 ă K as the ppk1´1, qk1´1q and ppk2`1, qk2`1q were the good terms
outside of G1. The difference between the number of indices spanned by the
p˚ terms and the number of indices spanned by the q˚ term in G1 is ∆2 ´ ∆1.
Two cases to consider again:

(a) Case ∆1 ą ∆2: the group G1 should consist of a term where pp1, q1q such
that |p1| “ 1 and |q1| ‰ 1 because the number of indices spanned by the
q1

˚ terms is higher than the number of indices spanned by the p1
˚ terms.

Let G1
“ ppp1

1, q
1
1q, pp1

2, q
1
2q, . . . , pp

1
l, q

1
lqq and let @i P rls,∆i “ p1

i ´ maxpq1
iq

therefore, ∆1 ď ∆1 and ∆l “ ∆2. As all the other terms will also be either
of the form |p1

˚| “ 1 and |q1
˚| ‰ 1 or of the form |p1

˚| “ 1 and |q1
˚| “ 1

36The edit-costppp˚, q˚qq “ δpup˚
, vq˚

q “ δp5T gp˚
6T , 5TGpbq˚

q6T q “ δp5T r6T , 5TGpbq˚
q6T q be-

cause as p˚ ă L we have gp˚
“ r

37The minimum gain here is 2 ¨ p2T ` SGq ´ 3Q which is positive because T " SG ą Q.



74 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

(as proved in the previous paragraph) therefore, @i P rl ´ 1s,∆i`1 ď ∆i.
Therefore, we have ∆1 ě ∆1 ě ∆2 ě ¨ ¨ ¨ ě ∆l “ ∆2 implying that
@i P rls, badpp1

i, q
1
iq “ 0.

(b) Case ∆2 ą ∆1: the group G1 should consist of a term where pp1, q1q such
that |p1| ‰ 1 and |q1| “ 1 because the number of indices spanned by the
p˚ terms is higher than the number of indices spanned by the q˚ terms.
All the other terms will also be either of the form |p˚| ‰ 1 and |q˚| “ 1
or |p˚| “ 1 and |q˚| “ 1. Let G1

“ ppp1
1, q

1
1q, pp1

2, q
1
2q, . . . , pp

1
l, q

1
lqq and let

@i P rls,∆i “ minpp1
iq ´ q1

i therefore, ∆1 “ ∆1 and ∆l ď ∆2. As all the
other terms will also be either of the form |p1

˚| ‰ 1 and |q1
˚| “ 1 or of

the form |p1
˚| “ 1 and |q1

˚| “ 1 (as proved in the previous paragraph)
therefore, @i P rl ´ 1s,∆i`1 ě ∆i. Therefore, we have ∆1 “ ∆1 ď ∆2 ď

¨ ¨ ¨ ď ∆l ď ∆2 implying that @i P rls, badpp1
i, q

1
iq “ 0.

(c) Case ∆2 “ ∆1: all the terms in the group G1 should be of the form
|p1| “ 1 and |q1| “ 1 because the number of indices spanned by the p˚

terms is same as the number of indices spanned by the q˚ terms. Let
G1

“ ppp1
1, q

1
1q, pp

1
2, q

1
2q, . . . , pp

1
l, q

1
lqq and let @i P rls,∆i “ p1

i ´ q1
i therefore,

∆1 “ ∆1 and ∆l “ ∆2. Also, @i P rl´1s,∆i`1 “ ∆i because all the terms
in the group G1 are of the form |p1| “ 1 and |q1| “ 1. Therefore, ∆1 “

∆1 “ ∆2 “ ¨ ¨ ¨ “ ∆l “ ∆2 implying that that @i P rls, badpp1
i, q

1
iq “ 0.

4. Let both ppk1 , qk1q and ppk2 , qk2q be of category 2: in this scenario all the
intermediate bad terms in the group G1 will also be of category 2 because of
the impossibility result from scenario 2. And the rest of the argument is same
as in scenario 3.

Note that all the above-mentioned steps were to analyse the first group of bad
terms. We keep repeating this procedure till we arrive at a coarse alignment D that
only contains good terms. As we see that the procedure mentioned above never
increases the edit-cost we can therefore safely say that edit-costpDq ď edit-costpCq.

Fact 3.57. Algorithm 2 outputs a path R P PATHS2L´1,L when the input is a coarse
alignment D P C3L´2,L containing only good terms.

Proof. Run Algorithm 2 on the coarse alignment D “ ppp1, q1q, pp2, q2q, . . . , ppm, qmqq

as input and let the output sequence be R “ ppi1, j1q, pi2, j2q, . . . , pik, jkqq. We will
now prove that R P PATHS2L´1,L when D contains only good terms.

Given an input D “ ppp1, q1q, pp2, q2q, . . . , ppm, qmqq, Algorithm 2 checks each term
ppl, qlq, @l P rms and creates two (or one) new terms pminpplq ´ minpqlq ` 1,minpqlqq

and pmaxpplq ´ maxpqlq ` 1,maxpqlqq, @l P rms and creates the sequence R. As D
contains all good terms, it is clear that @r P rks, we have 1 ď ir ď K “ 2L ´ 1
and 1 ď jr ď L. Using the definition of a coarse alignment (Definition 3.25)
we know that @l P rm ´ 1s, ql ăe ql`1

38, and Ym
i“1qi “ rLs therefore, we have

1 “ j1 ď j2 ď ¨ ¨ ¨ ď jk “ L.
Consider the term ppl, qlq P D, the algorithm generates the following terms

pminpplq ´minpqlq ` 1,minpqlqq, pmaxpplq ´maxpqlq ` 1,maxpqlqq39 for the sequence
38Given two sequences a and b, a ăe b implies @u P a,@v P b, u ă v.
39Note that if |pl| “ |ql| “ 1 then both the terms are same and the algorithm just adds one term.



3.5. Quantum query lower bound for property Pδ 75

Algorithm 2: Convert a given coarse alignment C to a sequence P.
Result: Given a coarse alignment C P C generate a sequence P.
P={}, i=0, j=0, m=|C|;
while (i<m) do

(p,q)=C[i];
if (|p| ‰ 1 or |q| ‰ 1) then

if (|p| ‰ 1) then
P[j]=pminppq ´ q ` 1, qq;
P[j+1]=pmaxppq ´ q ` 1, qq;
j=j+2;

else
P[j]=pp ´ minpqq ` 1,minpqqq;
P[j+1]=pp ´ maxpqq ` 1,maxpqqq;
j=j+2;

end
else

P[j]=pp ´ q ` 1, qq;
j=j+1;

end
i=i+1;

end
return P;

R. If |pl| ‰ 1 then the algorithm generates pminpplq´ql `1, qlq, pmaxpplq´ql `1, qlq,
clearly generating two terms pir, jrq, pir`1, jr`1q P R such that ir`1 ą ir while
jr`1 “ jr thus, satisfying another condition of a path. Also, when |ql| ‰ 1 then the
algorithm generates ppl´minpqlq`1,minpqlqq, ppl´maxpqlq`1,maxpqlqq, clearly gen-
erating two terms pis, jsq, pis`1, js`1q P R such that is`1 ă is while js`1 “ js`is´is`1

thus, satisfying another condition.

Consider two neighbouring terms ppl, qlq, ppl`1, ql`1q P D. Suppose the last
(or the only) term generated for ppl, qlq by the algorithm is pir, jrq “ pmaxpplq ´

maxpqlq ` 1,maxpqlqq then the first (or the only) term generated for ppl`1, ql`1q will
be pir`1, jr`1q “ pminppl`1q ´ minpql`1q ` 1,minpql`1qq. According to the definition
of a coarse alignment, we have pl X pl`1 “ H and pl ăe pl`1 which means that
minppl`1q “ maxpplq ` 1. Also the condition ql X ql`1 “ H and ql ăe ql`1 implies
minpql`1q “ maxpqlq ` 1 thus making sure that jr`1 “ jr ` 1. Combining these two
conditions we get that ir`1 “ ir. Suppose, ir`1 “ ir, then maxpplq ` 1 ´ maxpqlq “

minppl`1q ´ minpql`1q ` 1 which would imply that minpql`1q “ 1 ` maxpqlq proving
jr`1 “ jr ` 1. Thus, satisfying another two conditions for a path.

Therefore, we see that if the input is a coarse alignment D P C3L´2,L containing
only good terms, then the Algorithm 2 generates a path R P PATHS2L´1,L.

We thus prove Lemma 3.55 using Fact 3.56 and Fact 3.57.



76 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1 1 0 1 1 0 1 0
0 1 1 0 0 0 0

0 0 0 1 1 1
0 0 0 1 1

1 1 1 1
1 0 1

1 0
0

1 0 0 1 0 1 0
1 0 1 0 0 0
0 1 0 0 1
1 0 1 1
0 1 1
1 0
1

Figure 3.1

3.5 Quantum query lower bound for property Pδ

Theorem 3.58. The bounded-error quantum query complexity for computing the
property Pδ on a matrix of size p2n{2`1 ´ 1q ˆ 2n{2 is Ωp20.75nq, where the 2n non-
fixed entries are given by the encoding as shown in Figure 3.1.

Proof. The matrices of size p2n{2`1´1qˆ2n{2 that have 2n bit string encoded in them
are of the form shown in Figure 3.1. We prove the quantum query lower bound of Pδ

on these matrices using the quantum adversary method by [Amb02], but, instead
of analysing the matrix M of size 2N ´ 1 ˆ N (where N “ 2n{2) we analyse the
sub-matrix M1 of size N

2
ˆ N

2
as shown in the Figure 3.1.

Let M “ tM |M are matrices of size 2N ´ 1 ˆ N of the form in Figure 3.2u.
Computing the property Pδ on matrices M P M for a threshold Tr “ 3N

4
C0 ` N

4
C1

is equivalent to computing Pδ on the sub-matrices M1 (corresponding to each M) of
size N

2
ˆ N

2
for a different threshold value V “ N

4
C0 ` N

4
C1 where the problem is to

decide whether there exists a path whose value is greater than V .40

Recall that the property Pδ : t0, 1u
N
2

ˆN
2 ˆ tY1, . . . , Y2u Ñ t0, 1u (Definition 3.20)

is a function of a matrix M and a range Λ which is only required to calculate the
jump costs. However, the adversarial sets X and Y that we define to compute the
quantum query complexity of the property Pδ don’t need any reference to the jump
costs, therefore, for the sake of simplicity of the proof we just define the property to
be Pδ : t0, 1u

N
2

ˆN
2 Ñ t0, 1u.

Building the adversarial sets X and Y We choose a relation R Ď X ˆ Y Ď

Pδ
´1

p0q ˆ Pδ
´1

p1q where X “ tx|px, yq P Ru and Y “ ty|px, yq P Ru. The relation
R is chosen such that,

1. For each matrix x P X, each row in the matrix x has exactly N
4

number
of 1s. Which implies that for all x P X, the cost for each row is equal to

40Using a simple geometrical argument one can prove that a square matrix M1 of size N
2 ˆ N

2
fits inside the white region of matrix M of size 2N ´ 1 ˆN , refer to Figure 3.1 or Figure 3.2.



3.5. Quantum query lower bound for property Pδ 77

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0
0 0
0

1
0
0
1

0
0
0
1

0
0
1
1

0
1
1
0

Figure 3.2: Example of a boolean matrices in M and its corresponding sub-matrix M1

(highlighted in dark gray). Notice that all the cells in the white and light
gray region are 0s.

N
4
C0 ` N

4
C1 “ V . We now have to ensure that for all matrices x P X, all

the paths also have its value lesser than or equal to V , which is addressed in
item 3.

2. For each matrix y P Y , there is only one row in the matrix y that has exactly
pN
4

` 1q number of 1s and rest of the rows in y have exactly N
4

number of 1s.
Which implies that for all y P Y , there is a row whose value is pN

4
´ 1qC0 `

pN
4

` 1qC1 ą V , as C0 ă C1 (see Definition 3.20).

3. We impose additional constraints in building the sets X and Y so that consid-
ering only paths without any jumps is enough to decide whether or not there
exists a path with value greater than V . We introduce a set of symbols that
will be useful in understanding our construction.

For a chosen even number k, we construct some symbols recursively in the
following way:

(a) 0i Ď t`i´1,´i´1, 0i´1uk such that, number of `i´1-type symbols in 0i is
equal to number of ´i´1-type symbols in 0i.

(b) `i Ď t`i´1,´i´1, 0i´1uk such that, number of `i´1-type symbols in `i is
one more than number of ´i´1-type symbols in `i, but overall there is
only one 1 more than the number of 0s.

(c) ´i Ď t`i´1,´i´1, 0i´1uk such that, number of `i´1-type symbols in ´i

is one less than number of ´i´1-type symbols in ´i, but overall there is
only one 0 more than the number of 1s.

Base case symbols t00,`0,´0, u are defined as follows:

(a) 00 Ď t0, 1uk such that, number of 1s in 00 is equal to number of 0s in 00.
Therefore, k has to be even.



78 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

(b) `0 Ď t0, 1uk such that, number of 1s in `0 is two more than number of
0s in `0.

(c) ´0 Ď t0, 1uk such that, number of 1s in ´0 is two less than number of 0s
in ´0.

For all x P X, each row of the matrix x contains k symbols from the set
t`t,´t, 0tu such that number of `t symbols is equal to the number of ´t

symbols. While for all y P Y , only one row in the matrix y contains one
more of `t symbol when compared to the number of ´t symbols. The rest of
the rows are balanced just like the rows of the matrices belonging to set X.
Example of such a matrices can be viewed in Figure 3.3.

The choice of k and t will be such that (1) kt`2 “ N
2
, condition that ensures that

number of elements in each row of the matrices is N
2

and (2) C1 ¨ k ¨ pt` 2q ă

Cjump, a condition that ensures that the increase in the value is less than
the jump cost, because of which we don’t need to consider paths with jumps
for computing the query complexity of Pδ on matrices in X and Y . These
conditions will be reviewed again in the later parts of the proof where we
calculate the query lower bound of Pδ in the ϵ-bounded error setting.

´ 0 0 `

0 ´ 0 `

` ` ´ ´

` ´ ` ´

` ` ´ ´

´ 0 0 `

` ` ´0
0 ´ 0 `

Figure 3.3: Example of a boolean matrix x P X (left) and a boolean matrix y P Y (right)
such that px, yq P R. The symbol 1`1 “ `t, 101 “ 0t and 1´1 “ ´t.

The quantum query complexity of Pδ

1. For each x P X, we have at least pk
2
qt`2 ¨ N

2
number of ys, such that px, yq P R.

2. For each y P Y , we have at least pk
2
qt`2 number of xs, such that px, yq P R.

3. We can visualise a matrix of size N
2

ˆ N
2

as a string of length N2

4
. For each

x P X and i P rN
2

4
s, there is only one input y P Y such that px, yq P R and

xi ‰ yi.

4. For each y P Y and i P rN
2

4
s, there is only one input x P X such that px, yq P R

and xi ‰ yi.

5. Therefore, the quantum adversary method by [Amb02] gives a quantum lower
bound of Ωpkpt`2q

2pt`2q ¨
?
Nq for distinguishing the sets X and Y .

6. As mentioned earlier we chose the values k and t such that matrices in both
these sets X and Y have their optimal paths without any jumps. The maxi-
mum number of ones that can be gained with a jump is k ¨pt`1q` k

2
ă k ¨pt`2q.

The increase in the value due to these 1s is upper bounded by C1 ¨ k ¨ pt ` 2q.
Therefore, as long as we chose the values k and t such that C1 ¨k¨pt`2q ă Cjump

there will not be any jump whatsoever.



3.5. Quantum query lower bound for property Pδ 79

7. We have to choose the values of k and t such that the lower bound mentioned
in item 5 is maximised while satisfying the two following constraints: (1)
kt`2 “ N

2
and (2) C1 ¨ k ¨ pt` 2q ă Cjump. From (1) we get t` 2 “ logkpN{2q,

hence, k ¨ pt ` 2q “ k
log k

logpN
2

q. Therefore, the lower bound is ΩpN
2

p1.5´ 1
log k

q
q.

By fixing k “ ωp1q, we get the lower bound of ΩpN1.5q.41 Therefore a lower
bound of Ωp20.75nq as N “ 2n{2.

Therefore, we can conclude that the bounded-error quantum query lower bound for
computing Pδ on matrices that have 2n bit strings encoded in them as shown in
Figure 3.1 is Ωp20.75nq.

Corollary 3.59. Let V be the set of matrices of size p2n{2`1 ´ 1q ˆ 2n{2 that have
2n bit strings encoded in them as shown in Figure 3.1, such that PPlcs is defined on
the matrix. The bounded-error quantum query complexity for computing PPlcs on
matrices in V is Ωp20.75nq.42

Proof. The property PPlcs defined at 3.21 is a promise version of property Plcs. The
results of Theorem 3.58 also hold for the property PPlcs because the adversarial
sets that we construct in that theorem don’t depend on the perturbation range Λ.
Therefore, for a constant ϵ, QϵpPPlcs |Vq “ Ωp20.75nq.

3.5.1 Lower bound for the restricted Dyck language

Consider the restricted Dyck language, the language of balanced parentheses of
depth bounded by k. The study of the quantum query complexity of this language
was initiated in [AGS19] by Aaronson, Grier, and Schaeffer where they provide
an rOp

?
nq algorithm to decide the language for a constant k. As a corollary to

Theorem 3.58 in Section 3.5 we show that the query complexity of restricted Dyck
language is linear for any k “ ωplog nq, partially answering an open question posed
by the authors in [AGS19].

Theorem 3.60. The quantum query complexity of the restricted Dyck language is
Ωpn1´op1qq for any k “ ωplog nq.

Proof (sketch). In the proof of Theorem 3.58 in Section 3.5 we have constructed sets
of length n 0/1 strings such that, for each string in the sets, every prefix is at most
some distance d away from balanced, and such that the query complexity of deciding
whether these strings are precisely balanced or not is Ωpnq, whenever d “ ωplog nq.

We can directly use the rows of the matrices that form the adversary set in
Theorem 3.58 and use this as the adversary set to lower bound the query complexity
of the restricted Dyck language with k “ 2d in the following way:

1. Interpret 0 as an open bracket ‘(’, and 1 as a closing bracket ‘)’.

2. For any row r from the matrices of the adversarial set, we define

r1
“ 0dr1d

41Recall from Definition 3.20 that C0, C1 are constants and Cjump can be set to ωplogNq.
42A similar argument holds for PPedit.



80 Chapter 3. A Framework of Quantum Strong Exponential-Time Hypotheses

If r is balanced, and satisfies the promise of never being d-far from balanced, this
is a valid 1-instance for the restricted Dyck language with k “ 2d. Additionally, if
r is not balanced, then this is a valid 0-instance of the restricted Dyck language.
Therefore, the adversary bound also is valid for this problem (losing an additive
2d in the lower bound, which is negligible in the parameter range that needs to be
considered).

3.6 Summary, future directions and open questions

Summary We presented a quantum version of the strong exponential-time hy-
pothesis, as QSETH, and demonstrated several consequences from QSETH. These
included the transfer of previous Orthogonal-Vector based lower bounds to the quan-
tum case, with a quadratically lower time bound than the equivalent classical lower
bounds. We also showed two situations where the new QSETH does not lose this
quadratic factor: a lower bound showing that computing edit distance or LCS re-
quires time n1.5´op1q for a quantum algorithm, and an n2´op1q quantum lower bound
for Proofs of Useful Work [BRS+18], both conditioned on QSETH.

Future directions and open questions Possible future applications for the
QSETH framework are numerous.

• Most importantly, the QSETH can potentially be a powerful tool to prove
conditional lower bounds for additional problems in BQP. The most natural
candidates are other string problems, such as Dynamic Time Warping for
example, but there are many other problems for which the ‘basic QSETH’
does not immediately give tight bounds.

• Our proofs for showing n1.5´op1q lower bounds for Edit Distance and LCS
use (almost) identical arguments, except in the gadget constructions where
they are different. One would expect that there is a more general framework
unifying our results for Edit Distance and LCS, and possibly for the other
string problems. Towards that, the paper by [BK15] would be a good starting
point.

• Additionally, the notion of compression oblivious properties are potentially in-
teresting as an independent object of study. We expect most natural properties
to be compression oblivious, but leave as an open question what complexity-
theoretic assumptions are needed to show that, e.g., the parity function is
compression oblivious.

Future directions also include a careful study of quantum time complexity of the
other core problems in fine-grained complexity, such as 3SUM and APSP which we
will discuss in the upcoming chapters of this thesis. Just like with satisfiability, the
basic versions of these problems are amenable to a Grover-based quadratic speedup.
It is possible (or maybe even required) that extensions of those key problems can
(should) also be used to prove stronger conditional lower bounds, in a similar way
to the reduction that was used for LCS or Edit Distance in the current work.



Chapter 4

Memory Compression with Quantum
Random-Access Gates

Chapter summary In the classical Random Access Machine (RAM) model, we
have the following useful property. If we have an algorithm that uses M memory
cells throughout its execution, and in addition is sparse, in the sense that at any
point in time only m out of M cells will be non-zero, then we may “compress” it
into another algorithm which uses only m logM memory and runs in almost the
same time. We may do so by simulating the memory using either a hash table, or a
self-balancing tree.

We show an analogous result for quantum algorithms equipped with quantum
random-access gates. If we have a quantum algorithm that runs in time T and
uses M qubits, such that the state of the memory, at any time step, is supported on
computational-basis vectors of Hamming weight at most m, then it can be simulated
by another algorithm which uses only Opm logMq memory, and runs in time rOpT q.

We show how this theorem can be used, in a black-box way, to simplify the
presentation in several papers. Broadly speaking, when there exists a need for a
space-efficient history-independent quantum data structure, it is often possible to
construct a space-inefficient, yet sparse, quantum data structure, and then appeal
to our main theorem. This results in simpler and shorter arguments.

This chapter based on the following paper:

[BLP+22b] Harry Buhrman, Bruno Loff, Subhasree Patro, Florian Speelman. Memory
Compression with Quantum Random-Access Gates. In Proceedings of the
17th Conference on the Theory of Quantum Computation, Communication
and Cryptography (TQC 2022).



82 Chapter 4. Memory Compression with Quantum Random-Access Gates

4.1 Introduction

This work arose out of our other work on quantum fine-grained complexity, contents
of Chapter 5, where we had to make use of a quantum walk, similar to how Ambainis
uses for his algorithm for element distinctness [Amb07]. An essential aspect of these
algorithms is the use of a history-independent data structure. In the context of our
work, we needed three slightly different data structures of this type, and on each
of these occasions we saw a similar scenario. If we were only concerned with the
time complexity of our algorithm, and were willing to tolerate a polynomial increase
in the space complexity (the number of qubits used by the algorithm), then there
was a very simple data structure that would serve our purpose. If, however, we
wanted the algorithm to be space-efficient as well, then we needed to resort to more
complicated data structures.

And we made the following further observation: we were using the simple yet
space-inefficient data structures that were rather sparse, in the sense that although
M qubits were being used in total, all the amplitude was always concentrated on
computational-basis vectors of Hamming weight at most m ! M . The analogous
classical scenario is an algorithm that uses M memory registers, but at any time
step all but m of these registers are set to 0. In the classical case, we know how
to convert any such an m-sparse algorithm into an algorithm that uses Opm logMq

memory, by using, e.g., a hash table. We wondered whether the same thing could be
said of quantum algorithms. This turned out to be possible, and the main purpose
of this chapter is to explain how it can be done. We will take an arbitrary sparse
quantum algorithm, and compress it into a quantum algorithm that uses little space.

Our main theorem is as follows (informally stated):

Theorem 4.1. Any m-sparse quantum algorithm using time T and M qubits can
be simulated with ε additional error by a quantum algorithm running in time OpT ¨

logpT
ε

q ¨ logpMqq, using Opm logMq qubits.

We will prove this result using quantum radix trees in Section 4.2. The result
can also be proven, with slightly worse parameters, using hash tables, but we will
not do so here. We consider sparse algorithms in the QRAM model of computation
(described in Section 2.3 of the preliminaries Chapter 2). Recall that, in our defined
model of computation we allow the algorithm to use quantum random-access gates
a.k.a. RAGs, and the only caveat is that the compressed simulation requires such
gates, even if the original algorithm does not.

The logM factor in the time bound can be removed if we assume that certain
operations on OplogMq bits can be done at Op1q cost. This includes only simple
operations such as comparison, addition, bitwise XOR, or swapping of two blocks
of OplogMq adjacent qubits.1 All these operations can be done at Op1q cost in the
usual classical Random-Access Machines.

The techniques used to prove our main theorem are not new: quantum radix-
trees first appeared in a paper by Bernstein, Jeffery, Lange and Meurer [BJL+13]
(see also Jeffery’s PhD thesis [Jef14]). One other contribution of our work in this
chapter is to present BJLM technique in full, as in currently available presentations

1The qubits in each block are adjacent, but the two swapped blocks can be far apart from each
other.



4.2. Compressing sparse QRAM algorithms 83

of the technique, several crucial aspects of the implementation are missing or buggy.2

But our main contribution is to use these techniques at the right level of abstrac-
tion. Theorem 4.1 is very general, and can effectively be used as a black box. One
would think that Theorem 4.1, being such a basic and fundamental statement about
quantum computers, and being provable essentially by known techniques, would al-
ready be widely known. But this appears not to be the case, as papers written
as recently as a year ago could be significantly simplified by appealing to such a
theorem. Indeed, we believe that the use of Theorem 4.1 will save researchers a lot
of work in the future, and this is our main motivation for writing this work.

To illustrate this point, we overview three papers [Amb07; ACL+20; BLP+22a],
first two in Section 4.3 and the last (our very own work) in Chapter 5. All these
results make use of a quantum walk together with a history-independent, space-
efficient but complicated data structure. As it turns out, we can replace these
complicated data structures with very simple tree-like data structures. These new,
simple data structures are memory inefficient but sparse, so we may then appeal to
Theorem 4.1 to get similar upper bounds. The proofs become shorter: we estimate
each of these papers could be cut in size by 4 to 12 pages. And furthermore,
using simpler (memory inefficient but sparse) data-structures allows for a certain
separation of concerns : when one tries to describe a space-efficient algorithm, there
are several bothersome details that one needs to keep track of, and they obscure the
presentation of the algorithm. By using simpler data structures, these bothersome
details are disappear from the proofs, and are entrusted to Theorem 4.1.

4.2 Compressing sparse QRAM algorithms

In classical algorithms, we may have an algorithm which uses M memory registers,
but such that, at any given time, only m out of these M registers are non-zero. In
this case we could call such an algorithm m-sparse. The following definition is the
quantum analogue of this.

Definition 4.2 (Sparse QRAM algorithms). Let C “ pn, T,W,M,C1, . . . , CT q be
a QRAM algorithm using time T , W work qubits, and M memory qubits. Then,
we say that C is m-sparse, for some m ď M , if at every time-step t P t0, . . . , T u of
the algorithm, the state of the memory qubits is supported on computational basis
vectors of Hamming weight ď m. I.e., we always have

|ψty P span

ˆ

|uy|vy

ˇ

ˇ

ˇ

ˇ

u P t0, 1u
W , v P

ˆ

rM s

ď m

˙˙

In other words, if |ψty is written in the computational basis:

|ψty “
ÿ

uPt0,1uW

ÿ

vPt0,1uM

αptq
u,v ¨ |uy

loomoon

Work qubits

b |vy
loomoon

Memory qubits

,

then αptq
u,v “ 0 whenever |v| ą m.

2For example, some operations are defined which are not unitary. Or, there is no mention of
error in the algorithms, but they actually cannot be implemented in an error-free way using a
reasonable number of gates from any standard gate set.



84 Chapter 4. Memory Compression with Quantum Random-Access Gates

Let C “ pn, T,W,M,C1, . . . , CT q be the circuit of an m-sparse QRAM algorithm
computing a relation f with error ε and let the state of the algorithm at every
time-step t, when written in the computational basis, be

|ψty “
ÿ

uPt0,1uW

ÿ

vPprMs

ďmq

αptq
u,v |uy

loomoon

Work qubits

b |vy
loomoon

Memory qubits

. (4.1)

Using the description of C and the assumption that this algorithm is m-sparse we
will now construct another QRAM algorithm C 1 that uses much less space, about
Opm logMq qubits, and computes f with almost same error probability with only
OplogM log T q factor worsening in the run time.

Main observation As the state of the memory qubits in |ψty for any t is only
supported on computational basis vectors of Hamming weight at most m, one imme-
diate way to improve on the space complexity is to succinctly represent the state of
the sparsely used memory qubits. The challenge, however, is that every instruction
Ci in C might not have an easy analogous implementation in the succinct represen-
tation. So we will first present a succinct representation and then show that, for
every instruction Ci in the original circuit C, there is an analogous instruction or a
series of instructions that evolve the state of the succinct representation in the same
way as the original state evolves due to the application of Ci.

A succinct representation Let v P t0, 1uM be a vector with |v| ď m (with
|vy being the corresponding quantum state that uses M qubits). Whenever m is
significantly smaller than M (i.e., m logM ă M) we can instead represent the
vector v using the list of indices tiu such that vris “ 1. Such a representation will
use much fewer (qu)bits. Let Sv denote the set of indices i such that vris “ 1. We
will then devise a quantum state |Svy, that represents the set Sv using a quantum
data structure. This representation will be unique, meaning that for every sparse
computational-basis state |vy there will be a unique corresponding quantum state
|Svy, and |Svy will use much fewer qubits. Then for every time-step t, the quantum
state |ψty from Equation 4.1 has a corresponding succinctly represented quantum
state |ϕty such that

|ϕty “
ÿ

uPt0,1uW

ÿ

vPprMs

ďmq

αptq
u,v|uy b |Svy. (4.2)

By using such a succinct representation, we will be able to simulate the algorithm
C with Opm logMq qubits, with an Opζ log T

δ
q additional factor overhead in time and

an additional δ probability of error; recall that we use ζ to denote the time that
simple operations like comparison, addition, bitwise XOR, swapping, and others
take on Oplog nq (qu)bits (Section 2.3.4).

To obtain the desired succinct representation |Svy, we use the quantum radix
trees appearing in an algorithm for the subset-sum problem by Bernstein, Jeffery,
Lange, and Meurer [BJL+13] (see also [Jef14]).3 Several crucial aspects of the im-
plementation were missing or buggy, and required some amount of work to complete

3More generally, their idea can be applied to convert any classical pointer-based history-
independent data structure with reversible updates, into a history-independent quantum data
structure.



4.2. Compressing sparse QRAM algorithms 85

and fix. The resulting effort revealed, in particular, that the data-structure is un-
likely to be implementable efficiently without error (as it relies on a particular gate
which cannot be implemented in an error-free way using the usual basic gates). So
we include all the required details here in this chapter.

4.2.1 Radix tree

A quantum radix tree is a quantum data structure inspired by the classical radix
tree whose definition is as follows.

Definition 4.3. A radix tree is a rooted binary tree, where the edges are labelled
by non-empty binary strings, and the concatenation of the labels of the edges along
any root-to-leaf path results in a string of the same length ℓ (independent of the
chosen root-to-leaf path). The value ℓ is called the word length of the tree.

There is a bijective correspondence between radix trees R of word length ℓ and
subsets S Ď t0, 1uℓ. Given R, we may obtain S as follows. Each root-to-leaf path
of R gives us an element x P S, so that x is the concatenation of all the edge labels
along the path.

If R corresponds to S, we say that R stores, or represents S, and write RpSq for
the radix tree representing S, i.e., for the inverse map of what was just described
(see below).

An example of a radix tree appears in Figure 4.1.

ε

0000 1001 1011 1111

0000

1
0

11101 11

Figure 4.1: A radix tree storing the set t0000, 1001, 1011, 1111u

Given a set S Ď t0, 1uℓ, we obtain RpSq recursively as follows: the empty set
corresponds to the tree having only the root and no other nodes. We first find the
longest common prefix p P t0, 1uďℓ of S. If |p| ą 0, then we have a single child under
the root, with a p-labelled edge going into it, which itself serves as the root to RpS 1q,
where S 1 is the set of suffixes (after p) of S. If |p| “ 0, then the root will have two
children. Let S “ S0 Y S1, where S0 and S1 are sets of strings starting with 0 and
1, respectively, in S. The edges to the left and right children will be labelled by
p0 and p1, respectively, where p0 P t0, 1uďℓ is the longest common prefix of S0 and
p1 P t0, 1uďℓ is the longest common prefix of S1. The left child serves as a root to
RpS 1

0q, where S 1
0 is the set of suffixes (after p0) of S0. Analogously, the right child

serves as a root to RpS 1
1q, where S 1

1 is the set of suffixes (after p1) of S1.

Basic operations on radix trees The allowed basic operations on a radix tree
are insertion and removal of an element. Classically, an attempt at inserting an



86 Chapter 4. Memory Compression with Quantum Random-Access Gates

element already in S will result in the identity operation. Quantumly, we will
instead allow for toggling an element in/out of S.

Representing a radix tree in memory We now consider how one might repre-
sent a radix tree in memory. For this purpose, suppose we wish to represent a radix
tree RpSq for some set S Ď t0, 1uℓ of size |S| ď m. Let us assume without loss of
generality that m is a power of 2, and suppose we have at our disposal an array of
2m memory blocks.

Each memory block may be used to store a node of the radix tree. If we have
a node in the tree, the contents of its corresponding memory block will represent
a tuple pz, p1, p2, p3q. The value z P t0, 1uďℓ stores the label in the edge from the
node’s parent, the values p1, p2, p3 P t0, 1, . . . , 2mu are pointers to the (block storing
the) parent, left child, and right child, respectively, or 0 if such an edge is absent.

It follows that each memory block is Opℓ` logmq bits long. In this way, we will
represent RpSq by a binary string of length Opmpℓ` logmqq. The root node is stored
in the first block, empty blocks will be set to 0, and the only thing that needs to be
specified is the memory layout, namely, in which block does each node get stored.
For this purpose, let τ : RpSq Ñ r2ms be an injective function, mapping the nodes
of RpSq to the r2ms memory blocks, so that τprootq “ 1. For any S Ď t0, 1uℓ of size
|S| ď m, we then let

Rτ pSq P t0, 1u
Opmpℓ`logmqq

denote the binary string obtained by encoding RpSq as just described.

BJLM’s quantum radix tree We see now that although there is a unique radix
tree RpSq for each S, there is no obvious way of making sure that the representation
of RpSq in memory is also unique. However, this bijective correspondence between
S and its memory representation is a requirement for quantum algorithms to use
interference. The idea of Bernstein et al. [BJL+13], then, is to represent S using
a superposition of all possible layouts. I.e., S is to be uniquely represented by the
(properly normalised) quantum state:

ÿ

τ

|Rτ pSqy.

The trick, then, is to ensure that this representation can be efficiently queried and
updated. In their discussion of how this might be done, the BJLM paper [BJL+13]
presents the broad idea but does not work out the details, whereas Jeffery’s thesis
[Jef14] glosses over several details and includes numerous bugs and omissions. To
make their idea work, we make use of an additional data structure.

4.2.2 Prefix-sum tree

In our implementation of the quantum prefix tree, we will need to keep track of which
blocks are empty and which are being used by a node. For this purpose, we will
use a data-structure that is famously used to (near-optimally) solve the dynamic
prefix-sum problem.

Definition 4.4. A prefix-sum tree is a complete rooted binary tree. Each leaf node
is labelled by a value in t0, 1u, and each internal node is labelled by the number of
1-valued leaf nodes descending from it.



4.2. Compressing sparse QRAM algorithms 87

Let F Ď rℓs for ℓ a power of 2. We use P pF q to denote the prefix-sum tree where
the ith leaf node of the tree is labelled by 1 iff i P F .

A prefix-sum tree P pF q will be represented in memory by an array of ℓ´1 blocks
of memory, holding the labels of the inner nodes of P pF q, followed by ℓ bits, holding
the labels of the leaf nodes. The blocks appear in the same order as a breadth-first
traversal of P pF q. Consequently, for every F P t0, 1uℓ there is corresponding binary
string of length pℓ ´ 1q log ℓ ` ℓ that uniquely describes P pF q.

We will overload notation, and use P pF q to denote this binary string of length
pℓ ´ 1q log ℓ ` ℓ.

Allocating and deallocating The idea now is to use the prefix tree as a memory
allocator. We have 2m blocks of memory, and the set F will keep track of which
blocks of memory are unused, or “free”.

We would then like to have an operation that allocates one of the free blocks.
To implement Bernstein et al.’s idea, the choice of which block to allocate is made
in superposition over all possible free blocks. I.e., we would like to implement the
following map Ualloc and also its inverse, Ufree.

Ualloc : |P pF qy|0y|0y Ñ
1

a

|F |

ÿ

iPF

|P pF ztiuqy|iy|0y, (4.3)

The second and third registers have Oplogmq bits. We do not care for what the
map does when these registers are non-zero, or when F “ ∅. We will guarantee
that this is never the case.

Note that each internal node of the prefix tree stores the number of elements of
F that are descendants to that node. In particular, the root stores |F |. In order to
implement Ualloc, we then start by constructing the state

1
a

|F |

|F |
ÿ

j“1

|jy. (4.4)

While this might appear to be simple, it actually requires us to use a gate

Usuperpose : |ky|0y ÞÑ
1

?
k

k
ÿ

j“1

|ky|jy. (4.5)

This is much like choosing a random number between 1 and a given number k on
a classical computer. Classically, such an operation cannot be done exactly if all we
have at our disposition are bitwise operations (since all achievable probabilities are
then dyadic rationals). Quantumly, it is impossible to implement Usuperpose efficiently
without error by using only the usual set of basic gates.

So the reader should take note: it is precisely this gate which adds error to
BJLM’s procedure. This gate can be implemented up to distance ε using Oplog m

ε
q

basic gates, where 2m is the maximum value that k can take. I.e., using so many
gates we can implement a unitary U such that the spectral norm }U´Usuperpose} ď ε.4

4This is done by using Hadamard gates to get a superposition between 1 and the smallest power
of 2 which is greater than k

ε , and then breaking this range into k equal intervals plus a remainder
of size ă k. The remainder subspace will have squared amplitude ď ε.



88 Chapter 4. Memory Compression with Quantum Random-Access Gates

We will need to choose ε « 1
T
, which is the inverse of the number of times such a

gate will be used throughout our algorithm.
Once we have prepared state as in Equation 4.4, we may then use binary search,

going down through the prefix tree to find out which location i corresponds to the
jth non-zero element of F . Using i, as we go up we can remove the corresponding
child from P pF q, in Opζ ¨ logmq time, while updating the various labels on the
corresponding root-to-leaf path. This requires the use of Oplogmq work bits, which
are |0y at the start and end of the operation. During this process, the register
holding j is also reset to |0y, by subtracting the element counts we encounter during
the deletion process from this register. The inverse procedure Ufree is implemented
in a similar way.

4.2.3 Quantum radix tree

We may now define the quantum radix tree.

Definition 4.5 (Quantum Radix Tree). Let ℓ and m be powers of 2, S Ď t0, 1uℓ be
a set of size s “ |S| ď m, and let RpSq be the classical radix tree storing S. Then,
the quantum radix tree corresponding to S, denoted |RQpSqy (or |Rℓ,m

Q pSqy when ℓ
and m are to be explicit), is the state

|RQpSqy “
1

?
NS

¨
ÿ

τ

|Rτ pSqy|P pFτ qy,

where τ ranges over all injective functions τ : RpSq Ñ r2ms with τprootq “ 1, of
which there are NS “

p2m´1q!
p2m´|RpSq|q!

many, and Fτ “ r2mszτpRpSqq is the complement
of the image of τ .

Basic operations on quantum radix trees The basic allowed operations on a
quantum radix trees are look-up and toggle, where the toggle operation is analogous
to insertion and deletion in classical radix tree. Additionally, we also define a swap
operation which will be used to simulate a RAG gate.

Lemma 4.6. Let |RQpSqy “ |Rℓ,m
Q pSqy denote a quantum radix tree storing a set

S Ď t0, 1uℓ of size at most m. We then define the following data structure operations.

1. Lookup. Given an element e P t0, 1uℓ, we may check if e P S, so for each
b P t0, 1u, we have the map

|ey|RQpSqy|by ÞÑ |ey|RQpSqy|b ‘ pe P Sqy.

2. Toggle. Given e P t0, 1uℓ, we may add e to S if S does not contain e, or
otherwise remove e from S. Formally,

|ey|RQpSqy ÞÑ

#

|ey|RQpS Y teuqy, if e R S,

|ey|RQpSzteuqy, if e P S.

3. Swap. Given an element e P t0, 1uℓ, b P t0, 1u and a quantum radix tree storing
a set S, we would like swap to be the following map,

|ey|RQpSqy|by ÞÑ

$

’

&

’

%

|ey|RQpS Y teuqy|0y, if e R S and b “ 1,

|ey|RQpSzteuqy|1y, if e P S and b “ 0,

|ey|RQpSqy|by, otherwise.



4.2. Compressing sparse QRAM algorithms 89

These operations can be implemented in worst case Opζ ¨logmq time and will be error-
free if we are allowed to use an error-free gate for Usuperpose (defined in Equation 4.5),
along with other gates from set Q.

Proof. Let |by, |ey denote the quantum states storing the elements b P t0, 1u and
e P t0, 1uℓ, respectively. The data structure operations such as lookup, toggle and
swap can be implemented reversibly in Opζ ¨ logmq time in the following way.

Lookup We wish to implement the following reversible map Ulookup,

Ulookup : |ey|RQpSqy|by ÞÑ |ey|RQpSqy|b ‘ pe P Sqy. (4.6)

We do it as follows. First note that, by Definition 4.5,

|RQpSqy “
1

?
NS

ÿ

τ

|Rτ pSqy|P pFτ qy.

We will traverse Rτ pSq with the help of some auxiliary variables. Starting at the
root node, we find the edge labelled with a prefix of e. If no such label is found
then e is not present in Rτ pSq. Otherwise, we traverse to the child reached by
following the edge labelled by a prefix of e. Let us denote the label by L. If the
child is a leaf node then terminate the process, stating that e is present in Rτ pSq,
else, recurse the process on e1 and the tree rooted at that child node. Here e1 is the
binary string after removing L from e. When at some point we have determined
whether e P S or not, we flip the bit b, or not. Eventually, we may conclude that
e R S before traversing the entire tree, at which point we skip the remaining logic
for traversing Rτ pSq downwards (by using a control qubit). After we have traversed
Rτ pSq downwards and determined whether e P S, we need to undo our traversal,
which we do by following the p1 pointers (to the parent nodes) until the root is again
reached, and the auxiliary variables are again set to 0.

Each comparison with the edge labels, at each traversed node, takes Opζq time.
Hence, the entire procedure takes Opζ ¨ logmq time.

Toggle Let Utoggle denote the following map,

Utoggle : |ey|RQpSqy Ñ

#

|ey|RQpSzteuqy, if e P S,

|ey|RQpS Y teuqy, if e R S
(4.7)

The toggle operation primarily consists of two main parts: the memory alloca-
tion or de-allocation, followed by insertion or deletion, respectively.

We again traverse Rτ pSq with the help of some auxiliary variables. We start with
the root node of Rτ pSq, and traverse the tree downwards until we know, as above,
whether e P S or not. If e R S, we will know where we need to insert nodes into
Rτ pSq, in order to transform it into Rτ pSYteuq. Below, we will explain in detail how
such an insertion must proceed. It turns out that we may need to insert either one
node, or two, but never more. We may use the work qubits to compute the contents
of the memory blocks that will hold this new node (or new nodes). These contents
are obtained by XORing the appropriate bits of e and the appropriate parent/child
pointers of the nodes we are currently traversing in the tree.



90 Chapter 4. Memory Compression with Quantum Random-Access Gates

We may then use the Ualloc gate (once or twice) to obtain the indices of the blocks
that will hold the new node(s). We then use RAG gates to swap in the contents of
these blocks into memory. A fundamental and crucial detail must now be observed:
the index of the memory blocks into where we inserted the new nodes is now left
as part of the work qubits. This cannot be and must be dealt with, because every
work bit must be again set to zero at the end of the procedure. However, a copy of
this index now appears as the child pointer (p2 or p3) of the parents of the nodes we
just created, and these pointers can thus be used to zero out the index. It is then
possible to traverse the tree upwards in order to undo the various changes we did to
the auxiliary variables.

If e P S, on the other hand, we then do the inverse procedure. We will then know
which nodes need to be removed from Rτ pSq (it will be either one or two nodes). By
construction, these nodes will belong to blocks not in Fτ . We begin by setting these
blocks to zero by swapping the blocks into the workspace (using the RAG gate),
XORing the appropriate bits of e and the appropriate child/parent pointers so the
blocks are now zero, and swapping them back. These blocks will then be set to zero,
and we are left with a state akin to the right-hand side of (Equation 4.3). We then
use the Ufree gate to free the blocks, i.e., add their indices to Fτ once again. At this
point we can traverse the tree upwards once more, in order to reset the auxiliary
variables to zero, as required.

We now give further detail on how one must update Rτ pSq in order to insert a
new element e into S. We must create a node N :“ pz, p1, p2, p3q corresponding to
the element e stored at the memory location assigned by Ualloc procedure. Let us
denote the address by k. Start with the root node of Rτ pSq. If e has no common
prefix with any of the labels of the root’s outgoing edges, which can only happen if
the root has one child, then set z to e, p1 pointing to the root node, and, p2 and p3
set to 0. Moreover, set the value of the root’s p2 pointer to k if node N ends up as
the left child to the root, else set root’s p3 pointer to k. In the case when e has a
common prefix with one of the labels of the root’s outgoing edges, let us denote the
label by L and the child node by C, then further two scenarios arise: either label L
is completely contained in e, which if is the case then we traverse the tree down and
run the insertion procedure recursively on e1 (which is e after removing the prefix L)
with the new root set C. In the case where label L is not completely contained in e,
we create an internal node N 1 with its z variable set to the longest common prefix
of e and L (which we denote by L1), p1 pointing to root, p2 pointing to C and p3
pointing to N (or vice versa depending on whether node N gets to be the right or
the left child). We run the Ualloc procedure again to get a memory location to store
N 1. Having done that, we now change the z value of node C to be the prefix of L
after L1, and the p1 value of node C to be the memory location of N 1. Additionally,
we also set z of node N to be e1, the suffix of e after L1, and we let p1, p2, p3 to be,
respectively, a pointer to N 1, 0 and 0.

Each step in the traversal takes time Opζq, for a total time of Opζ ¨ logmq.

The procedure to update Rτ pSq in order to delete an element e from S is anal-
ogous to the insertion procedure mentioned above, which also can be implemented
in Opζ ¨ logmq time.



4.2. Compressing sparse QRAM algorithms 91

Swap Let Uswap denote the following map,

Uswap : |ey|RQpSqy|by ÞÑ

$

’

&

’

%

|ey|RQpS Y teuqy|0y, if e R S and b “ 1,

|ey|RQpSzteuqy|1y, if e P S and b “ 0,

|ey|RQpSqy|by, otherwise.

To implement Uswap, we first run the Ulookup on the registers |ey, |RQpSqy and |by.
Conditional on the value of register |by (i.e., when b “ 1), we run Utoggle on the
rest of the registers. We then run Ulookup again to attain the desired state. To
summarise, the unitary Uswap “ Ulookup ¨ Ctoggle ¨ Ulookup, where Ctoggle is controlled
version of Utoggle (as per Lemma 2.4). Thus, the swap procedure takes a total time
of Opζ ¨ logmq.

An error-less, efficient implementation of the unitary Usuperpose is impossible by
using only the usual sets of basic gates. Furthermore, it is unreasonable to expect
to have an error-free Usuperpose at our disposal. However, as we explained in page
87, there is a procedure to implement Usuperpose using gates from the gate set B up
to spectral distance ε, using only Oplog m

ϵ
q gates.

Corollary 4.7. Let |RQpSqy “ |Rℓ,m
Q pSqy denote a quantum radix tree storing a set

S Ď t0, 1uℓ of size at most m. The data structure operations look-up, toggle and
swap, as defined in the statement of Lemma 4.6 can be implemented in Opζ ¨ log m

ϵ
q

time and ϵ probability of error using gates from the gate set Q. Here ζ is the number
of gates required from set Q to do various basic operations on a logarithmic number
of qubits.

4.2.4 The simulation

Recall from Section 2.3.4 that we take ζ to be the number of gates required to do
various basic operations on a logarithmic number of qubits. In our use below, it
never exceeds OplogMq.

Theorem 4.8. Let T , W , m ă M “ 2ℓ be natural numbers, with M and m both
powers of 2, and let ε P r0, 1{2q. Suppose we are given an m-sparse QRAM algo-
rithm using time T , W work qubits and M memory qubits, that computes a Boolean
relation F with error ε.

Then we can construct a QRAM algorithm which computes F with error ε1 ą ε,
and runs in time OpT ¨logp T

ε1´ε
q¨ζq, using W`OplogMq work qubits and Opm logMq

memory qubits.

Proof. Let C “ pn, T,W,M,C1, . . . , CT q be the circuit of the given m-sparse QRAM
algorithm computing a relation F with error ε and, let the state of the algorithm at
every time-step t, when written in the computational basis be

|ψty “
ÿ

uPt0,1uW

ÿ

vPprMs

ďmq

αptq
u,v ¨ |uy

loomoon

W qubits

b |vy
loomoon

M qubits

(4.8)

where the set
`

rMs

ďm

˘

denotes all vectors v P t0, 1uM such that |v| ď m. Using the
description of C and the fact that this algorithm is m-sparse we will now construct
another QRAM algorithm C 1 with the promised bounds. The algorithm C 1 will



92 Chapter 4. Memory Compression with Quantum Random-Access Gates

have w1 “ W ` OplogMq work bits, and Opm logMq memory bits. The memory
is to be interpreted as an instance |RQpSqy of the quantum radix tree described
above. Then |vy will be represented by the quantum radix tree |RQpSvqy, where
Sv “ ti P rM s | vi “ 1u is the set of positions where vi “ 1, so that each position
i P rM s is encoded using a binary string of length ℓ.

The simulation is now simple to describe. First, the quantum radix tree is
initialised. Then, each non-RAG instruction Ci P C operating on the work qubits
of C is applied in the same way in C 1 to same qubits among the first W qubits of
C 1. Each RAG instruction, on the other hand, is replaced with the Uswap operation,
applied to the the quantum radix tree. The extra work qubits of C 1 are used as
ancillary qubits for these operations, and we note that they are always returned to
zero.

If we assume that the Uswap operation can be implemented without error, we
then have a linear-space isomorphism between the two algorithms’ memory space,
which maps the state |ψty of C at each time step t to the state |ϕty of C 1 after t
simulated steps:

|ϕty “
ÿ

u,v

αptq
u,v ¨ |uy

loomoon

W

b |0y
loomoon

OplogMq

b |RQpSvqy
looomooon

Opm logMq

.

Thus, if Uswap could be implemented without error, we could have simulated C
without additional error. Otherwise, as per Corollary 4.7, we may implement the
Uswap unitary with an error parameter Ωp ε1´ε

T
q, resulting in a total increase in error

of ε1 ´ ε, and an additional time cost of OpT log T
ε1´ε

q.

4.3 Simplifications of previous works

It is possible to use our main theorem to simplify the presentation of the following
three results: Ambainis’ quantum walk algorithm for solving the k-Element Dis-
tinctness problem [Amb07], Aaronson et al.’s quantum algorithms for the Closest
Pair problem (Closest Pair), and our very own work on Fine-Grained Complexity
via Quantum Walks [BLP+22a] (Chapter 5 of this thesis).

All these results use quantum walk together with complicated, space-efficient,
history-independent data structures. As we will see, it is possible to replace these
complicated data structures with simple variants of the prefix-sum tree (Section 4.2.2),
where the memory use is sparse, and then invoke the main theorem of this chapter.

4.3.1 Ambainis’ walk algorithm for Element Distinctness

Ambainis’ description and analysis of his data structure is complicated, and roughly
6 pages long, whereas a presentation of his results with a simple data structure and
an appeal to our theorem requires less than 2 pages, as we will now see. Also, the
presentation of the algorithm is considerably muddled by the various difficulties and
requirements pertaining to the more complicated data structure. In a presentation
of his results that would then appeal to Theorem 4.1, we have a very clear separation
of concerns.

Ambainis’ algorithm is a rOpn
k

k`1 q-time solution to the following problem:

Definition 4.9 (k-Element Distinctness). Given a list L of n integers in Σ are there
k elements xi1 , . . . , xik P L such that xi1 “ ¨ ¨ ¨ “ xik .



4.3. Simplifications of previous works 93

Ambainis’ algorithm for k-Element Distinctness [Amb07] is quantum walk al-
gorithm on a Johnson graph Jpn, rq with r “ nk{k`1 and runs in rOpnk{k`1q time.
The crucial ingredient in making the algorithm time efficient is the construction of
data-structure which can store a set S Ď rnsˆΣ of elements of size r, under efficient
insertions and removals, so that one may efficiently query at any given time whether
there exist k elements pi1, x1q, . . . , pik, xkq in S with distinct indices i1, . . . , ik but
equal labels x1 “ ¨ ¨ ¨ “ xk. Ambainis makes use of skip-lists and hash tables, ensur-
ing that all operations run in Oplog4pn ` |Σ|qq time. However, if one does not care
about space-efficiency, there is a much simpler data structure that serves the same
purpose. The following definition is illustrated in Figure 4.2.

Definition 4.10. Let S Ď rns ˆ Σ, with |S| “ r and |Σ| “ nOp1q a power of 2,
and such that every i P rns appears in at most one pair pi, xq P S. The k-element-
distinctness tree that represents S, denoted TkpSq, is a complete rooted binary tree
with |Σ| leaves. Each leaf node x P Σ is labelled by a bit vector Bx P t0, 1un and a
number countx P t0, . . . , nu, so that Bxris “ 1 iff pi, xq P S, and the countx is the
Hamming weight of Bx. Each internal node w is labelled by a bit flagw P t0, 1u

which indicates whether there exists a leaf x, descendent of w, with countx ě k.

Memory Representation A k-element-distinctness tree is represented in the
memory by an array of |Σ| ´ 1 bits of memory holding the flags of the internal
nodes, followed by |Σ| blocks of n ` rlog ns bits of memory each, holding the labels
of the leaf nodes. The blocks appear in the same order as a breadth-first traver-
sal of TkpSq. Consequently, for every S Ď rns ˆ Σ there is a corresponding binary
string of length |Σ| ´ 1 ` pn` rlog nsq|Σ| that uniquely encodes TkpSq. Crucially, if
|S| “ r, then at most Oprplog Σ ` log nqq of these bits are 1. So for |Σ| “ polypnq,
the encoding is rOprq-sparse.

flag

flag flagflag

flagflag flagflag flagflag

x ... ... ℓ|Σ|
......ℓ1

countx ... 0{1

n

0{1

1

Figure 4.2: Data structure for the k-Element Distinctness problem.



94 Chapter 4. Memory Compression with Quantum Random-Access Gates

Implementation of data structure operations It is clear from the definition
of k-element-distinctness tree and its memory representation that a tree TkpSq rep-
resents a set S Ď rns ˆ Σ in a history-independent way. We will now argue that
all the required data structure operations take Oplog nq time in the worst case. Let
pi, xq denote an element in rns ˆ Σ.

• Insertion To insert pi, xq in the tree, first increase the value of the count
variable of the leaf x, and set Bxris “ 1. Then, if count ě k, set flagw “ 1
for all w on the root-to-x path. This update requires Oplog nq time as |Σ| “

polypnq.

• Deletion The procedure to delete is similar to the insertion procedure. To
delete pi, xq in the tree, first decrease the value of the countx and set Bris “ 0.
If count ă k, then, for all w on the root-to-x path which do not have both
children w0, w1 with flagw0

“ flagw1
“ 1, set flagw “ 0. This requires

Oplog nq time.

• Query To check if the tree has k distinct indices with the same x, we need
only check if flagroot “ 1, which takes Op1q time.

Runtime, error and memory usage Using the above data-structure, the run-
time of Ambainis’ algorithm is now rOpn

k
k`1 q time. The total memory used is Opn|Σ|q

bits. However, note that at any point of time in any branch of computation Am-
bainis’ walk algorithm stores sets of size r “ Opn

k
k`1 q. Hence their algorithm with

this data structure is a rOpn
k

k`1 q-sparse algorithm. Thus, invoking Theorem 4.1 we
conclude the following.

Corollary 4.11. There is a bounded-error QRAM algorithm that computes k-Element
Distinctness in rOpnk{k`1q time using rOpnk{k`1q memory qubits.

4.3.2 Quantum algorithms for Closest-Pair and related problems

The paper of Aaronson et al. [ACL+20] provides quantum algorithms and condi-
tional lower-bounds for several variants of the Closest Pair problem (Closest Pair).

Let ∆pa, bq “ }a ´ b} denote the Euclidean distance. We then describe the
Closest Pair problem under Euclidean distance ∆, but we could have chosen any
other metric ∆ in d-dimensional space which is strongly-equivalent to the Euclidean
distance (such as ℓp distance, Manhattan distance, ℓ8, etc).

Definition 4.12 (Closest Pair (CPpn, dq) problem). In the CPpn, dq problem, we
are given a list P of n distinct points in Rd, and wish to output a pair a, b P P with
the smallest ∆pa, bq.

We may also define a threshold version of CP.

Definition 4.13. In the TCPpn, dq problem, we are given a set P “ tp1, . . . , pnu of
n points in Rd and a threshold ε ě 0, and we wish to find a pair of points a, b P P
such that ∆pa, bq ď ε, if such a pair exists.



4.3. Simplifications of previous works 95

For simplicity, so we may disregard issues of representation of the points, we
assume that all points are specified using Oplog nq bits of precision. By translation,
we can assume that all the points lie in the integer hypercube rLsd for some L “

polypnq, and that δ P rLs, also.
It is then possible to solve CP by running a binary search over the (at most

n2) different values of δ P t∆ppi, pjq | i, j P rnsu and running the corresponding
algorithm for TCP. This will add an additional Oplog nq factor to the running time.

The TCPpn, dq problem is a query problem with certificate complexity 2. If one
is familiar with quantum walks, it should be clear that we may do a quantum walk
on the Johnson graph over n vertices, to find a pair with the desired property, by
doing Opn2{3q queries to the input. Again, if one is familiar with quantum walks, one
will realise that, in order to implement this walk efficiently, we must dynamically
maintain a set S Ď rns, and at each step in the quantum walk, we must be able to
add or remove an element i to S, and answer a query of the form: does there exist
a pair i, j P S with ∆ppi, pjq ď ε?

The only difficulty, now, is to implement an efficient data structure that can
dynamically maintain S in this way, and answer the desired queries, while being
time and space efficient. Aaronson et al. construct a data-structure which can store
a set S Ď rns ˆ rLsd of points of size r, under efficient insertions and removals, so
that one may query at any given time whether there exist two points in S which
are ε-close. They do so by first discretizing rLsd into a hypergrid of width ε{

?
d, as

explained below, and then use a hash table, skip list, and a radix tree to maintain
the locations of the points in the hypergrid.

The presentation of the data structure in the paper is roughly 6 pages long, and
one must refer to Ambainis’ paper for the error analysis, which is absent from the
paper. As we will see, a simple, sparse data structure for the same purpose can be
described in less than 2 pages, and then an appeal to Theorem 4.1 gives us the same
result up to log factors.

Discretization We discretize the cube rLsd into a hypergrid of width w “ ε?
d
,

and let idppq denote the box containing p in this grid. I.e., we define a function
idppq : rLsd Ñ t0, 1urd logpL{εqs by

idppq “ ptpp1q{wu, . . . , tppdq{wuq (represented in binary).

Let Σ “ t0, 1urd logpL{εqs denote the set of all possible boxes. We say that two
boxes g, g1 P Σ are neighbours if

g

f

f

e

d
ÿ

i“1

∥gpiq ´ g1piq∥2 ď
?
d.

A loose estimate will show there can be at most p2
?
d` 1qd neighbours for any box.

This method of discretization ensures the following crucial property:

Observation 4.14 (Observation 45 [ACL+20]). Let p, q be any two distinct points
in r0, Lsd, then

1. if idppq “ idpqq, then ∆pp, qq ď ε, and



96 Chapter 4. Memory Compression with Quantum Random-Access Gates

2. if ∆pp, qq ď ε, then idppq and idpqq are neighbours.

From Observation 4.14, it follows that i, j P rns exist with ∆ppi, pjq ď ε, if and
only if we have one of the following two cases:

• Either there is such a pair i, j with idppiq “ idppjq.

• Or there is no such pair, and then there must exist two neighbouring boxes
idpiq and idpjq, each containing a single point, with ∆ppi, pjq ď ε.

We now describe the data structure itself. Let us assume without loss of gener-
ality that n is a power of 2.

Definition 4.15 (Data Structure for CP). Let S Ď rns ˆ Σ, with |S| “ r, and
such that every i P rns appears in at most one pair pi, xq P S. The closest-pair tree
that represents S, denoted by TCP pSq, is a complete rooted binary tree with |Σ|

leaves. Each leaf node x P Σ is labelled by a number externalx P t0, . . . , nu, and a
prefix-sum tree P pSxq representing the set Sx “ ti P rns | pi, xq P Su. Each internal
node w is labelled by a bit flagw P t0, 1u. These labels obey the following rules:

• If |Sx| “ 1, then externalx is the number of boxes y ‰ x, which are neighbours
of x, and which have |Sy| “ 1 and ∆ppi, pjq ď ε for the (unique) j P Sy.

• If |Sx| ě 2, then externalx “ 0.

• The flagw “ 1 if any of the children x descendants to the internal node w
have either |Sx| ě 2 or |Sx| “ 1 and externalx ě 1.

It follows from the above discussion that there exist two elements pi, xq, pj, yq P S
with ∆ppi, pjq ď ε if and only if flagroot “ 1 in TCP pSq. We now show how to
efficiently maintain TCP pSq under insertions and removals.

Memory representation A TCP tree is represented in the memory by an array
of |Σ|´1 bits of memory holding the flags of the internal nodes, followed by |Σ| blocks
of n log n` n bits of memory each, holding the labels of the leaf nodes. The blocks
appear in the same order as a breadth-first traversal of TCP pSq. Consequently, for
every S Ď rns ˆΣ there is a corresponding binary string of |Σ| ´ 1` pn log n`nq|Σ|

that uniquely encodes TCP pSq. Crucially, if |S| “ r, then at mostOprplog |Σ|`log nqq

of these bits are 1. Since |Σ| “ LOpdq “ polypnq (recall d “ Op1q), the encoding is
rOprq-sparse.

Implementation of data structure operations It is clear from the definition
of TCP tree and its memory representation that a tree TCP pSq represents a set
S Ď rns ˆ Σ in a history-independent way. We will now argue that all the required
data structure operations take Oplog nq time in the worst case. For every pi, xq P

rns ˆ rLsd there is a corresponding pi, zq P rns ˆ Σ, with z “ idpxq, stored in the
data structure.

• Insertion To insert pi, xq in the tree, first go to the memory location corre-
sponding to leaf x. Begin by inserting i in the prefix-sum tree P pSxq. Then
three cases arise



4.3. Simplifications of previous works 97

flag

flag flagflag

flagflag flagflag flagflag

x ... ... ℓ|Σ|
......ℓ1

externalx P pSxq

Figure 4.3: Data structure for the CP problem.

– If |Sx| “ 1 then for every neighbour y of x with |Sy| “ 1 do the following:
using the prefix-sum tree at leaf y obtain the only non-zero leaf index j
of P pSyq. This operation takes log n time. Then check if ∆ppi, pjq ď ε, if
yes then increase the values of both externalx and externaly by 1. If
this caused externaly ą 0 then set flagw “ 1 for all internal nodes w
on the path from leaf y to the root of TCP pSq.
After going over all neighbours, check if externalx ě 1, if it is then set
flagw “ 1 for all internal nodes w on the path from leaf x to the root
of TCP pSq. This process takes at most p2

?
d` 1qd log n time as there will

be at most p2
?
d ` 1qd neighbours, which is Oplog nq for d “ Op1q.

– If |Sx| “ 2 using the prefix-sum tree P pSxq obtain the only other non-zero
leaf index i1 ‰ i of P pSxq. Then for all neighbours y of x with |Sy| “ 1 do
the following: using the prefix-sum tree P pSyq obtain the only non-zero
index j of P pSyq. Check if ∆ppi1 , pjq ď ε, and if so decrease the value
of externaly by 1. If that results in making externaly “ 0 then set
flagw “ 0 for the parent of y, unless the other child y1 of the parent of y
has |Sy1 | ě 2 or externaly1 ě 1. Likewise, among all the internal nodes
w that are on the path from the root to y’s parent, update the flagw
accordingly, i.e., set flagw “ 1 if any child u of w has flagu “ 1, and
otherwise set flagw “ 0.
Having done that, set externalx “ 0 and set flagw “ 1 for all internal
nodes w from leaf x to the root TCP pSq. This process also takes Oplog nq

time (when d is a constant).

– If |Sx| ą 2 then do nothing.

• Deletion The procedure to delete is similar to the insertion procedure.

• Query To check if the tree has a pair pi, xq, pj, yq P S such that ∆ppi, pjq ď ε,
we need only check if flagroot “ 1, which takes Op1q time.



98 Chapter 4. Memory Compression with Quantum Random-Access Gates

Runtime, error and memory usage Using the above data-structure, the run-
time of this TCP algorithm is now rOpn

2
3 q time. The total memory used is rOpn|Σ|q

bits. However, note that at any point of time in any branch of computation this al-
gorithm stores sets of size r “ Opn

2
3 q. Hence their algorithm with this data structure

is a rOpn
2
3 q-sparse algorithm. Thus, invoking Theorem 4.1 we conclude the following.

Corollary 4.16. There is a bounded-error QRAM algorithm that computes TCP in
rOpn2{3q time using rOpn2{3q memory qubits.

4.3.3 Fine-grained complexity via quantum walks

Results presented in Chapter 5 show how the quantum 3SUM conjecture, which
states that there exists no truly sublinear quantum algorithm for 3SUM, can be
used to imply several other quantum time lower bounds. The reductions use quan-
tum walks together with complicated space-efficient data structures. We had already
realised, when writing the paper [BLP+22a], that simple yet space-inefficient data
structures could be used instead, and will include this observation in the next chap-
ter, so we will not repeat it here.



Chapter 5

Fine-Grained Complexity via
Quantum Walks

Chapter summary In this chapter, we further extend the theory of fine-grained
complexity to the quantum setting. A fundamental conjecture in the classical setting
states that the 3SUM problem cannot be solved by (classical) algorithms in time
Opn2´εq, for any ε ą 0. We formulate an analogous conjecture, the Quantum
3SUM Conjecture, which states that there exist no sublinear Opn1´εq-time quantum
algorithms for the 3SUM problem.

Based on the Quantum 3SUM Conjecture, we show new time lower bounds for
several computational problems. Most of our lower bounds are optimal, in the sense
that they match known upper bounds, and hence they imply tight limits on the
quantum speedup that is possible for these problems.

These results are proven by adapting to the quantum setting known classical
fine-grained reductions from the 3SUM problem. This adaptation is not trivial,
however, since the original classical reductions require pre-processing the input in
various ways, e.g. by sorting it according to some order, and this pre-processing
(provably) cannot be done in sublinear quantum time.

We overcome this bottleneck by combining a quantum walk with a classical dy-
namic data-structure having a certain “history-independence” property. This type
of construction has been used in the past to prove upper bounds, and here we
use it for the first time as part of a reduction. This general proof strategy allows
us to prove tight lower bounds on several computational-geometry problems, on
Convolution-3SUM and on the 0-Edge-Weight-Triangle problem, condi-
tional on the Quantum 3SUM Conjecture.

We believe that this proof strategy will be useful in proving tight (conditional)
lower bounds, and limits on quantum speed-ups, for many other problems.

This chapter is based on the following two papers:

[BLP+22a] Harry Buhrman, Bruno Loff, Subhasree Patro, Florian Speelman. Limits of
Quantum Speed-Ups for Computational Geometry and Other Problems: Fine-
Grained Complexity via Quantum Walks. In Proceedings of the 13th Innova-
tions in Theoretical Computer Science Conference (ITCS 2022), QIP 2022.

[BLP+22b] Harry Buhrman, Bruno Loff, Subhasree Patro, Florian Speelman. Memory
Compression with Quantum Random-Access Gates. In Proceedings of the
17th Conference on the Theory of Quantum Computation, Communication
and Cryptography (TQC 2022).



100 Chapter 5. Fine-Grained Complexity via Quantum Walks

5.1 Introduction

The world is investing in quantum computing because of so-called quantum speed-
ups : quantum algorithms can solve many computational problems faster than their
classical counterparts. However, as also witnessed in earlier chapters, the amount
of speed-up that is possible varies among different computational problems. It is
expected that quantum computers will remain an expensive resource for a long time,
and the extent to which a quantum speed-up is possible, or not possible, may one
day be a key factor in deciding whether or not to invest in the use of quantum
computation, for example in an industrial setting.

Such a consideration is not a mere abstraction. It is folk knowledge among re-
searchers in quantum error correction that current error-correction techniques are so
costly, meaning the constant-factor overhead they impose is so great, that quadratic
quantum speed-ups will offer no advantage when compared to their classical counter-
parts. Babbush et al. [BMN+21] consider N -qubit quantum algorithms that work
by making quantum calls to certain primitives, so that a quantum algorithm will
do, e.g., M calls, and the corresponding classical algorithm will do M2 calls, to the
same primitive. Here M " N « 100 (so, e.g., we might using Grover to search
for a satisfying assignment to a CNF with roughly 100 variables). They then esti-
mate how large M must be, in order for quantum computers to offer a significant
advantage over their classical counterparts, and conclude:

[We find that, even when] using state-of-the-art surface code construc-
tions under a variety of assumptions, (...) quadratic speedups will not en-
able quantum advantage on early generations of fault-tolerant [quantum
computers] unless there is a significant improvement in how we would
realise quantum error-correction.

It can further be said that the estimates appearing in [BMN+21] are extremely
generous on the quantum side, in many respects. So, even allowing for incremental
improvements to current quantum error correction, improvements in qubit technol-
ogy, and so forth, this uselessness of quadratic quantum speedups is likely to assert
itself in practice, for decades to come.

It is therefore essential, also from this perspective, to understand how much
quantum speed-up is possible for specific computational problems (for example, so
as not to overstate the potential of early-generation quantum computers). For this
purpose, we would need to have tight upper and lower bounds on both classical and
quantum algorithms.

Furthering the study of quantum fine-grained complexity, in this chapter we
explore quantum fine-grained reductions to derive quantum time lower bounds for
several problems in P, conditioned on a natural, conjectured quantum hardness for
the 3SUM problem. These lower bounds will often tightly match upper bounds
given by known quantum algorithms, and similar tight upper and lower bounds
have also been proven in the classical setting. Together, these tight classical and
quantum bounds are finally able to tell us exactly how much quantum speed-up is
possible for various problems, which is the main goal of this line of research. For
the problems we study, we will conclude that a quadratic speed-up is, in fact, the
best possible.



5.1. Introduction 101

5.1.1 The conjectured hardness of 3SUM

The 3SUM problem is defined as follows: given as input a list S of n integers and
we wish to know if there exist a, b, c in S such that a` b` c “ 0. There is a simple
classical algorithm that solves this problem in rOpn2q time: sort S, then for every pair
pa, bq P S ˆ S, use binary search to check if ´pa ` bq P S. This entire process takes
Opn2 log nq time. There is also a slightly less trivial algorithm that can solve 3SUM
in Opn2q time.1 Unfortunately, even after many years of interest in the problem,
the exponent has not been reduced. The conjecture naturally arises that there is
no ϵ ą 0 such that 3SUM can be solved in Opn2´ϵq classical time. We refer to this
conjecture as the Classical 3SUM Conjecture. Using this conjecture, one can derive
conditional classical lower bounds for a vast collection of computational geometry
problems, dynamic problems, sequence problems, etc. [GO95; VW13; Pat10; Vas15].

The Classical 3SUM Conjecture, however, is no longer true in the quantum set-
ting, as there is a faster quantum algorithm for 3SUM: we may use Grover search as
a subroutine in the rOpn2q classical algorithm to solve the problem in rOpnq quantum
time. Apart from this quadratic speedup, no further improvement to the quantum-
time upper bound is known. It is worth mentioning that there is a sub-linear Opn3{4q

quantum query algorithm for computing 3SUM [Amb07; CE05] — with a matching
lower bound of Ωpn3{4q [BŠ13] — this query algorithm, however, is not time efficient.
Consequently, it was conjectured [AL20] that the 3SUM problem cannot be solved
in sub-linear quantum time in the QRAM model.2

Conjecture 5.1 (Quantum 3SUM Conjecture [AL20]). There does not exist a δ ą 0
such that 3SUM on a list of n integers can be solved inOpn1´δq time using a quantum
computer.

It is then natural to try to extend the classical 3SUM-based lower bounds to
the quantum setting, and one may at first expect this task to be a simple exercise.
However, one soon realises that none of the existing classical reductions can be easily
adapted to the quantum regime. Indeed, most of the existing classical reductions
begin by pre-processing the input in some way, e.g., by sorting it according to
some ordering, and this pre-processing turns out to be essential for the reduction
to work efficiently. This is not an issue in the classical setting, as the classical
conjectured lower bound for 3SUM is quadratic. Hence, the classical reductions can
accommodate any pre-processing of the input that takes sub-quadratic time, such as
sorting. However, this pre-processing becomes problematic in the quantum setting,
since here we will need a sublinear-time quantum reduction, and even simple sorting
requires linear time on a quantum computer [HNS01].

We present a workaround for this problem. The idea of the proof is to adapt
Ambainis’ quantum walk algorithm for element distinctness [Amb07]. For example,
to enable reductions that need a sorted input, then instead of having the reduction
sort the entire list, we combine a data structure for dynamic sorting together with a
quantum walk algorithm. As we will show, this approach only needs the reduction to

1The algorithm is as follows: sort S in Opn log nq time, then for every a P S check if there exist
elements u,´v P a ` S, S, respectively, such that u “ ´v. This can be done by simultaneously
traversing the lists a ` S and S in Opnq time. Repeat this process for all a P S. Hence, the
algorithm takes a total of Opn2q time.

2There is no formal definition of a model of computation in [AL20], therefore, we conjecture
the same in the QRAM model we define in preliminaries Chapter 2.



102 Chapter 5. Fine-Grained Complexity via Quantum Walks

sort a small part of the input and allows us to show that 3SUM remains hard, even
when the entire input is sorted. As we will see, this idea can be extended to allow
for any “structuring” of the input (not just sorting) which can be implemented by
a dynamic data structure obeying a certain “history-independence” property. The
proof will be sketched in Section 5.1.2.

This quantum-walk plus data-structure proof strategy has been used to prove
upper bounds on other problems (e.g., for the closest-pair problem [ACL+20]), and
here we use it for the first time as part of a reduction in order to obtain a lower
bound. We expect that the same strategy will be applicable to other quantum fine-
grained reductions, and our hope is that this will give rise to a landscape of results,
that establish (conditional) tight lower bounds for quantum algorithms. This, in
turn, will precisely answer the question of how much quantum speed-up is possible
for a variety of computational problems.

Using this strategy we are able to show that various “structured” versions of
3SUM are as hard as the original (unstructured) 3SUM problem, even in the
quantum case. Once we have shown that these structured versions of 3SUM are
hard, we may then construct direct quantum adaptations of the classical reduc-
tions, to show the quantum hardness of several computational-geometry problems
(Sections 5.3 and 5.4), and of the Convolution-3SUM and 0-Edge-Weight-
Triangle problems (Section 5.5). This enables us to prove quantum time lower
bounds for these problems, conditioned on the Quantum 3SUM Conjecture.

5.1.2 Main idea: reductions via quantum walks

The Classical 3SUM Conjecture states that there is no sub-quadratic classical algo-
rithm to solve the 3SUM problem. However, the statement of this conjecture can
be shown to be equivalent to the same statement for a promise version of 3SUM
where the input S is sorted. That is because, if there was a sub-quadratic algorithm
for 3SUM on sorted inputs, then given any (unsorted) input one can first sort the
entire input with additional Opn log nq pre-processing time, and then use the sub-
quadratic algorithm for sorted 3SUM, resulting in a sub-quadratic algorithm for
unsorted 3SUM. In fact, one can make a more general statement in this regard. An
input to the 3SUM problem is a list S P Σn of n integers (possibly with repetitions).
One may consider a family tqiu of queries, i.e., each qi : Σ

n Ñ Ai is a function on
lists of integers, for some set Ai of possible answers to the query. (For example,
qipSq could output the ith smallest integer in S.) We may then ask about static
data structures that allow us to efficiently answer these queries. (For example, we
may consider the sorted version of S to be a data structure that allows us to effi-
ciently obtain the ith smallest element of S.) Then we may generally state that, if it
is possible to preprocess an input S in sub-quadratic time to produce a static data
structure that allows us to answer any query in nop1q time, then the “structured”
variant of Classical 3SUM Conjecture, where we give the algorithm access to all
the queries qipSq for free, is equivalent to the original version of Classical 3SUM
Conjecture.

Most of the known fine-grained reductions from 3SUM, in the classical setting,
can be explained in the following way: one first shows that a certain “structured”
variant of 3SUM is just as hard as the original 3SUM problem, and then one
reduces the structured variant of 3SUM to another problem. While for some reduc-
tions [GO95] require the input list to be sorted in the usual order of the integers,



5.1. Introduction 103

other reductions require the input to be structured in some other way, for example,
reductions in [Pat10; VW13] require that the elements are hashed into buckets and
every element in the bucket can be accessed efficiently.

The reduction from “unstructured” to “structured” 3SUM is usually trivial to
do in classical sub-quadratic time, but not so in quantum sub-linear time (e.g.,
a quantum computer cannot sort in sublinear time [HNS01]). This is the main
difficulty in translating the classical reductions to the quantum setting.

Our main observation is that, if a certain analogous dynamic data-structure
problem can be solved efficiently by a dynamic data-structure possessing a certain
“history-independence” property, then it is possible to use a quantum walk in order
to show that the “structured” variant of Quantum 3SUM Conjecture, where we give
the algorithm access to the queries for free, is equivalent to the original unstructured
version of the Quantum 3SUM Conjecture.3 It is this insight that underlies all of our
reductions, and which we expect will open up the way to many other fine-grained
reductions in the quantum setting.

One might formally state our observation as follows.

Theorem 5.2. Let tqiu be a collection of queries over 3SUM inputs, i.e., each qi
is a function over inputs S P Σn for 3SUM. Suppose that,

• there exists an efficient deterministic classical dynamic data-structure that al-
lows us to answer the queries qi, under updates to S, where an update consists
of replacing an element in the list S by a different element. By efficient we
mean that any query or update can be carried out in at most nop1q time. And,

• the dynamic data structure satisfies a certain “history-independence” property,4
which means that the data structure corresponding to each set S has a unique
representation in memory, which only depends on the current value of S (so
it is independent of the initial value of S, and of the subsequent updates which
resulted in the current value of S)

then, conditioned on the Quantum 3SUM Conjecture, there is no Opn1´εq time quan-
tum algorithm for 3SUM, for any ε ą 0, even if the queries qipSq can be done at
unit cost.

Hereafter, we refer to these versions of 3SUM, where queries qipSq have unit
cost, as “structured” versions of the 3SUM problem. To be clear, by being able to
do the queries at unit cost, we mean that the algorithm is given access to an oracle
gate, implementing the unitary transformation:

|i, by ÞÑ |i, b ‘ qipSqy.

The distinction between an arbitrary dynamic data structure and a history-
independent solution should be understood as follows. Generally speaking, a solution
to a dynamic data structure problem could represent data in a way which depends
on the specific sequence of updates which were applied to the initial data. For

3The history-independence is necessary to achieve the appropriate amplitude amplifica-
tion/cancellation in the quantum walk: if two update histories for the data structure (e.g. in-
sertions/removals) lead to the same data contents (e.g. same list), then there should be a single
basis state that represents the result.

4Also mentioned and discussed in [Amb07; ACL+20] and in Chapter 4 of this thesis.



104 Chapter 5. Fine-Grained Complexity via Quantum Walks

example, self-balancing trees are a solution to the dynamic sorting problem, but the
specific balancing of the tree which is kept in memory depends on the sequence of
updates which were applied, so different sequences of insertions and deletions might
lead to the same list, but will nonetheless be represented differently in memory.
A history-independent data structure, however, has a fixed a-priori representation
for each possible data value. So, for example, in the dynamic sorting problem, a
history-independent data structure must represent each possible list in a unique, or
canonical way in memory.

Our idea Let S “ px1, . . . , xnq P Σn be an unstructured input to 3SUM. We
will now discuss quantum query algorithms for solving 3SUM. Such algorithms can
access the input only via a unitary |i, by ÞÑ |i, b‘xiy. Each application of this unitary
is called a query. But, in accordance to data-structure nomenclature, we have also
called queries to the functions qi. So to distinguish the two, in this section we will
use input queries to refer to queries to the input, in the sense of query complexity,
and let us use data-structure queries, to refer to the values qipSq.

Consider the quantum walk algorithm for Element Distinctness by [Amb07]. It
was observed by Childs and Eisenberg [CE05] that this algorithm can be used to
solve any problem, such as 3SUM, where we wish to find a constant-size subset
that satisfies a given property. Although this algorithm is optimal and sub-linear
for 3SUM when we only measure the number of input queries (it uses Θpn3{4q

input queries, and this is required [BŠ13]), the algorithm still requires linear time,
essentially because an Ωpn1{4q-time operation is performed between each input query.

This optimal query algorithm for 3SUM is a quantum walk on the Johnson
graph, the graph of

`

n
r

˘

vertices with each vertex of the graph labelled by an r-sized
subset of rns, and where there is an edge between two vertices if and only if the
two corresponding sets differ by exactly two elements. This resulting graph Jpn, rq
is a good-enough expander, so that a quantum walk will be able to find an r-sized
subset of rns containing indices to three elements of S that sum to zero, in queries
sublinear in n.5 To do so, the quantum-walk algorithm maintains the list of values
pxi1 , . . . , xirq entangled together with the basis state representing the current r-sized
subset ti1, . . . , iru Ď rns that is being traversed. Using this list of values, as a part
of the quantum walk algorithm, a subroutine checks (in superposition) if there is a
3SUM solution in pxi1 , . . . , xirq. While this step requires no additional input queries,
so the total number of input queries is Opn3{4q, the actual implementation of this
subroutine requires a significant amount of time (namely time r “ Ωpn1{4q), which
then makes the resulting quantum walk algorithm for 3SUM linear, at best.

It is this subroutine, i.e., the subroutine that checks for a 3SUM solution in the
r-sized set of values, that we would like to further speed up. Now suppose that
we had a faster-than-linear algorithm for a “structured” version of 3SUM. I.e., the
algorithm works in sublinear time, provided it is given certain data-structure queries
qipSq as part of the input. Now, if we could efficiently answer these data-structure
queries at any point during the entire quantum walk, then we could use this faster-
than-linear algorithm to speed-up the subroutine. To do so, we need a dynamic
data structure that allows us to efficiently answer the data-structure queries, under
the kind of updates that are required at each step of the quantum walk. For the

5For an excellent introduction to quantum walks, see Chapter 8 of Ronald de Wolf’s lecture
notes [Wol21].



5.1. Introduction 105

quantum walk on the Johnson graph, each update corresponds to replacing a single
element in the list of values pxi1 , . . . , xirq.

An important detail remains: in order for the quantum walk to work, it is neces-
sary that there is a unique basis state corresponding to each node in the quantum-
walk graph (otherwise we won’t have the desired amplitude interference). It is for
this reason that the dynamic data-structure structure is required to have a history-
independence property.

Proof of Theorem 5.2. In order to prove this theorem, we will first go through the
steps of the more general version of Ambainis’ quantum walk algorithm for Element
Distinctness given by Childs and Eisenberg [CE05].

Let S P Σn be an input to the 3SUM problem. Let r “ nβ for some β P p0, 1q

which will be fixed later (so that r is an integer). The graph G used in Ambainis’
construction is a Johnson graph Jpn, rq with vertices all labelled by r-sized subsets
of rns. Let V, V 1 Ă rns with |V | “ |V 1| “ r. Vertices labelled by V and V 1 are
connected if and only if |V X V 1| “ r ´ 1, i.e., V 1 can be obtained by replacing a
single element of V .

Given a subset I Ď rns, we use SrIs to denote all the elements tpi, Srisq : i P Iu.
Now suppose we have a history-independent classical deterministic dynamic data
structure for answering a family of data-structure queries tqiu, where each qi : Σ

r.
For V Ď rns of size |V | “ r, let DpSrV sq denote the (unique) state of the data-
structure corresponding to SrV s. I.e., given DpSrV sq, we are able to answer any
query qipSrV sq in time nop1q. And if we change V to V 1 by replacing a single element
of V , we are able to update DpSrV sq to DpSrV 1sq, also in time nop1q.

To define a quantum walk on G, define an orthonormal basis of quantum states
|V y, one basis state for each r-subset V . The key idea is to store values from the
list, and the contents of the data-structure, along with the subset V . So the full
quantum state has the form |V,DpSrV sq, ky where k P rns. If |V | “ r then k denotes
an element in rns\V to be added to V . We say a vertex V is marked if SrV s is a
positive 3SUM instance (of smaller size), i.e., if there are p, q, r P V such that
Srps ` Srqs ` Srrs “ 0.

The quantum walk algorithm is analogous to Grover’s algorithm, where the aim
is to make the amplitude on marked vertices large enough that with probability at
least 1 ´ op1q the final measurement collapses on a marked vertex, i.e., a vertex
labelled by an r-subset that contains a solution to 3SUM problem. The algorithm
starts with a state (in what is known to be the “setup” phase),

|sy “
1

?
c

ÿ

|V |“r

|V,DpSrV sqy
ÿ

kRV

|ky, (5.1)

which is a uniform superposition of all the states on subsets of size r and c “

pn ´ rq
`

n
r

˘

is the normalisation constant.6,7

6Refer to the circuit construction in András Pál Gilyén’s Master’s thesis [Gil14] for creating a
uniform superposition over all the vertices of Johnson Graph Jpn, rq. This construction uses rOprq

elementary quantum gates in total and their results extend for any r “ nβ with 0 ă β ă 1.
7Note that, the circuit construction that we refer to creates a uniform superposition of vertices

in Jpn, rq with the vertices represented in Opr log nq sized array of qubits. This representation of
vertices does not allow for time-efficient insertions and deletions. Therefore, we first encode all the
vertices V (in superposition) in a data structure that enables the (walk) updates on the vertex



106 Chapter 5. Fine-Grained Complexity via Quantum Walks

There are two main operations in this algorithm: a walk operation Uwalk and a
phase flip operation UphaseFlip which is

UphaseFlip|V,DpSrV sqy “

#

´|V,DpSrV sqy if V is marked
|V,DpSrV sqy if V is not marked.

(5.2)

The full algorithm is pU t1
walkUphaseFlipqt2 where t1 “ Op

?
rq and t2 “ Oppn{rq1.5q. The

total time taken by the algorithm is

Tsetupp|syq ` t1 ¨ t2 ¨ TunitarypUwalkq ` t2 ¨ TunitarypUphaseFlipq, (5.3)

where Tsetupp|syq denotes the time taken to setup the initial state |sy that also in-
cludes the time taken to query values of the subset of indices of size r. The term
TunitarypUq denotes the number of elementary gates required to implement a uni-
tary U .

In the setup phase, for every vertex V we initialise the dynamic data-structure
corresponding to SrV s. We may think of SrV s as obtained via the p0, . . . , 0q list by
updating each position i with Sris. Hence, the setup time for each vertex, which
consists of computing DpSrV sq for all V in superposition, is at most r ¨ nop1q.

Now, because the data structure supports efficient updates, the Uwalk unitary
can be implemented in time nop1q: the walk operator is a product of four unitary
transformations,

• two Grover’s diffusion operators that can be implemented in Oplog nq time
[Gro96; Amb07] and some data structure operations (such as insertions, dele-
tions, lookups) on set V , which because of the prefix-sum tree data structure
we use to store V also takes at most Oplog nq time, and

• two update operations where an element is inserted and some other element is
deleted from set V and DpSrV sq, hence it is sufficient that the dynamic data
structure supports replacement of values in nop1q time.

The unitary UphaseFlip in Equation 5.2 adds a negative phase to the marked states
and none to the unmarked states, which means UphaseFlip implements a subroutine
that checks whether or not a vertex V is marked by going through its input-query
values SrV s and checking if there is a 3SUM solution present in SrV s. Currently,
there is no known time-efficient method to implement this subroutine.8

Instead, suppose there was a 1{3-bounded error quantum subroutine A that
could solve this structured version of 3SUM on a set of r elements in Opr1´αq for
some constant α ą 0, we could then implement the UphaseFlip by calling subroutine A.
However, we would have to repeat A several times to reduce the error to a value

states to occur time efficiently. In this chapter, we use the notation V to denote a vertex already
encoded in such a data structure. Such encoding procedures exist and are efficient (reversibly as
well), i.e. run in rOprq time where r is the size of the set that is being encoded, for e.g., the use
of skip-list data structure in [Amb07], [ACL+20]. We instead use a prefix-sum tree P pV q over a
bit vector of length n where the ith coordinate of the vector is 1 iff i P V , see Definition 4.4 from
Chapter 4 for the definition of a prefix-sum tree; this is going to be space inefficient as we will
be using n sized vectors to store r sized sets. However, because of the r-sparsity of our reduction
algorithm we can get rid of the space inefficiency by invoking Theorem 4.8 of Chapter 4.

8One would require a dynamic data structure for efficiently answering 3SUM queries, which is
not known to exist.



5.1. Introduction 107

small enough such that the state of the algorithm is sufficiently close to the state
that would have been if the subroutine was exact; see Theorems 2.6 and 2.7 in
Chapter 2. This process would incur a polylogpnq factor overhead in time. Secondly,
to implement the input oracle for subroutine A we instead use a data structure
query, which we are promised can be achieved in nop1q time. With the additional
promise that the data structure is deterministic, the only other source of error is
the one induced by the walk algorithm itself which is at most Op1{polypnqq. (See for
e.g., Equation 56 in [CE05].) Therefore, the time complexity of the walk algorithm
then becomes

r ¨ nop1q
` t1 ¨ t2 ¨ nop1q

` t2 ¨ nop1q
¨ r1´α, (5.4)

which, after ignoring all the nop1q factors is

r ` t1t2 ` t2r
1´α. (5.5)

Substituting the values of t1 “ Op
?
rq and t2 “ Oppn{rq1.5q the total time taken

in Equation 5.5 roughly becomes

r `
n1.5

r
`
n1.5

r1.5
¨ r1´α. (5.6)

Given that r “ nβ for a β P p0, 1q, it is easy to see that for every 0 ă α ă 1, there
exists a β such that maxp1

2
, 1
2α`1

q ă β ă 1, and then the value of (Equation 5.6)
becomes strictly sublinear. It then follows that there is no sub-linear quantum
time algorithm for solving the structured version of 3SUM, unless Quantum 3SUM
Conjecture is false.

We have deliberately omitted one other crucial possibility in the statement of the
above theorem and its proof; a situation where the dynamic data structure is not
deterministic, i.e., the data structure queries tqiu and the updates to the list S fail
with a certain probability? Randomness seems to be required because no dynamic
sorting data structure is known that is simultaneously time-efficient, space-efficient,
history-independent, and deterministic. However, a solution exists if any of these
four requirements are removed. We will (in Section 5.3.1) present a deterministic
data structure highly space inefficient but one that satisfies all the requirements of
Theorem 5.2. In the online version of the paper on which this chapter is based
[BLP+22a], we prove similar results using a probabilistic but space efficient namely
the skip-list data structure; that result follows a different line of analysis as one has
to account for the failure of the data structure both for the updates and the queries.
However, we will not be presenting that result in this thesis because we now have
a memory compression technique (like the one mentioned in Chapter 4) with which
we can simulate a space-efficient algorithm from a space inefficient one (as long as
the original algorithm uses space sparsely). What still remains is an interesting
open question in classical data structures to provide, or disprove the existence of, a
dynamic data structure that simultaneously satisfies all four requirements.9

9The question might arise: why do we care for the structure to be space efficient? This is for two
reasons. On the one hand, we expect memory to be an expensive resource for quantum computers,
so algorithms using a large amount of memory, even in regimes that are practical classically, might
never be so quantumly. On the other hand, making our reductions space efficient allows us to
weaken the Quantum 3SUM Conjecture to say that no space-efficient quantum algorithm can solve
3SUM in sublinear time. We do not explicitly state this outside of this footnote, but all the lower
bounds in this chapter also follow from this weaker conjecture.



108 Chapter 5. Fine-Grained Complexity via Quantum Walks

5.1.3 Applications

We use our proof strategy to show, conditional on Quantum 3SUM Conjecture,
tight lower bounds on several computational-geometry problems, on Convolution-
3SUM, and on the 0-Edge-Weight-Triangle problem. Our lower bounds show
that the quantum speed-up is at most quadratic for all of these problems.

Our lower bounds on Convolution-3SUM and 0-Edge-Weight-Triangle
tightly match the Grover-based speed-up that quantum algorithms can get for these
problems.

Our quantum reductions from 3SUM to computational-geometry problems are
complementary to a recent paper by Ambainis and Larka [AL20], where they present
quantum speed-ups for several such problems. Our results show, under the Quantum
3SUM Conjecture, that all of the speed-ups obtained by Ambainis and Larka are
optimal. There are also computational-geometry problems for which the Quantum
3SUM Conjecture gives us a lower bound, but for which no quantum speedup is
known.

Table 5.1 (on page 109) summarises our results. It also includes the best-known
classical upper and lower bounds.

5.1.4 Structure of this chapter

In Section 5.2 we describe various simple variants of the 3SUM problem and show
that the Quantum 3SUM Conjecture is equivalent for these versions. (These are not
the structured versions we mentioned earlier, here the proof of equivalence is very
simple.) In Section 5.3, using the approach we sketched above (in Section 5.1.2),
we give a full proof that, under the Quantum 3SUM Conjecture, two “structured”
variants of 3SUM also require n1´op1q time on a quantum computer. As direct impli-
cations of these hardness results, in Section 5.4 we present conditional quantum time
lower bounds for several computational geometry problems. Lastly, in Section 5.5,
we present conditional quantum time lower bound for Convolution-3SUM and
0-Edge-Weight-Triangle problems. This requires us to prove, under the Quan-
tum 3SUM Conjecture, that a third “structured” variant of 3SUM also requires
n1´op1q time on a quantum computer.



5.1. Introduction 109

3SUM-based quantum
lower-bounds (our results) ê

Classical upper & lower
bounds, respectively (˚˚) ê

Problems Quantum
upper-bound

GeomBase n1´op1q
rOpnq (˚) Opn2q, n2´op1q

3-Points-on-Line n1´op1q Opn1`op1qq [AL20] Opn2q, n2´op1q

Point-on-3-Lines n1´op1q Opn1`op1qq [AL20] Opn2q, n2´op1q

Separator n1´op1q Opn1`op1qq [AL20] Opn2q, n2´op1q

Strips-Cover-Box n1´op1q Opn1`op1qq [AL20] Opn2q, n2´op1q

Triangles-Cover-
Triangle

n1´op1q Opn1`op1qq [AL20] Opn2q, n2´op1q

Point-Covering n1´op1q Opn1`op1qq [AL20] Opn2q, n2´op1q

Visibility-Between-
Segments

n1´op1q Opn1`op1qq [AL20] Opn2q, n2´op1q

Hole-In-Union n1´op1q Opn1`op1qq (:) rOpn2q, n2´op1q

Triangle-Measure n1´op1q Open! Opn2q, n2´op1q

Visibility-From-Infinity n1´op1q Open! Opn2q, n2´op1q

Visible-Triangle n1´op1q Opn1`op1qq (:) Opn2q, n2´op1q

Planar-Motion-
Planning

n1´op1q Open! Opn2q, n2´op1q

3D-Motion-Planning n1´op1q Open! Opn2q, n2´op1q

General-Covering n1´op1q Opn1`op1qq [AL20] Opn2q, n2´op1q

Convolution-3SUM n1´op1q Opnq (˚) Opn2q, n2´op1q

0-Edge-Weight-Triangle n1.5´op1q Opn1.5q (˚) Opn3q, n3´op1q

(˚) Using a simple Grover speed-up on the classical algorithm.

(:) Implicit in [AL20], by using the classical reduction to Triangles-Cover-
Triangle and then using the corresponding quantum algorithm.

(˚˚) All upper bounds are straightforward: For problems like Convolution-
3SUM and 0-Edge-Weight-Triangle the best known algorithms use brute
force, for the computational-geometry problems, the upper bounds follow from
geometry arguments [GO95]. All lower-bounds for computational geometry
problems are from [GO95], the lower-bound for Convolution-3SUM follows
from [Pat10], and, the lower-bound for 0-Edge-Weight-Triangle follows
from [VW13]; all conditional on the classical hardness of 3SUM.

Table 5.1: This is a summary of all the Quantum-3SUM-hard problems mentioned in
this chapter, with (almost) matching upper bounds for most of them.



110 Chapter 5. Fine-Grained Complexity via Quantum Walks

5.2 Simple variants of 3SUM

The standard 3SUM problem is defined as follows: given a list S of n integers, do
there exist elements a, b, c P S such that a ` b ` c “ 0? Furthermore, there are
several other variants of the 3SUM problem that have been useful as intermediary
steps for reductions in the classical case. We will begin by considering the following
two simple variants:

1. 3SUM’: given a list S of n integers, are there a, b, c P S such that a ` b “ c?

2. 3SUM-3ListVersion: given three lists A,B,C of n integers each, are there
a P A, b P B and c P C such that a ` b “ c?

We now show that 3SUM, 3SUM’, and 3SUM-3ListVersion can all be quan-
tumly reduced to each other with Op

?
nq pre-computation time, followed by an

on-the-fly fast reduction for any query. Meaning, the reduction is given input X
and outputs Y in the following sense: after some pre-computation on X, obtaining
any of the integers in the list or lists in Y can be done in Op1q time (“on-the-fly”) by
querying X. This establishes, therefore, that the Quantum 3SUM Conjecture can
be equivalently stated for any of these simple variants.

The reduction from 3SUM to 3SUM-3ListVersion is simple, and requires no
pre-computation. We set A “ S,B “ S and C “ ´S, and now a P A, b P B, c P C
have a ` b “ c if and only if a, b, p´cq P S have a ` b ` p´cq “ 0. The reduction
from 3SUM’ to 3SUM-3ListVersion is also simple and on-the-fly with no required
pre-computation. Simply set A “ S, B “ S and C “ S.

The reduction from 3SUM-3ListVersion to 3SUM’, is slightly more com-
plicated and is almost identical to the reduction presented in Theorem 3.1 by
[GO95], and is as follows: as a pre-computation step, compute the element m “

2maxpA,B,Cq. This part takes Op
?
nq quantum time. Create a list S of size 3n:

for each a P A put a1 “ a ` m in S, for each b P B put b1 “ b ` 3m in S, and, for
each c P C put c1 “ c ` 4m in S. Clearly, if a ` b “ c then a1 ` b1 “ c1. Without
loss of generality one can assume the elements of the lists A,B,C are strictly pos-
itive because one can add a big number k to all the elements in lists A,B and 2k
to the elements in list C. Additionally, with some elementary calculations one can
easily see that whenever there are three elements in S such that a1 ` b1 “ c1, the
corresponding a, b, c come from three different sets A,B,C, respectively.

The reduction from 3SUM-3ListVersion to 3SUM is very similar to the above,
and is given in Theorem 3.1 by [GO95]. We will not repeat it here. As above,
the reduction contains a pre-computation step where the maximum of all the lists
A,B,C is computed, making the quantum reduction take Op

?
nq pre-computation

time. Thereafter, it is an on-the-fly fast reduction for any query.
Hence it follows that the Quantum 3SUM Conjecture is equivalent to the same

conjecture stated for 3SUM’, or for 3SUM-3ListVersion.

5.3 Lower bounds for two structured versions of 3SUM

In 1995, Gajentaan and Overmars [GO95] showed that 3SUM can be reduced to
several computational geometry problems, proving that these problems cannot have
truly sub-quadratic classical algorithms unless the Classical 3SUM Conjecture is



5.3. Lower bounds for two structured versions of 3SUM 111

3SUM Unique-Sorted-3SUM Points-On-3-Lines

3-Points-On-The-Line

Convolution-3SUM

0-Edge-Weight-Triangle Sorted-3SUM

Sorted-GeomBase
Planar-Motion-Planning

Separator

Visibility-Between-Segments

Visibility-From-Infinity
Strips-Cover-Box

Point-CoveringGeneral-Covering

Triangles-Cover-Triangles

Visible-Triangle

Hole-In-Union 3D-Motion-Planning

Triangle-Measure

GeomBase

Figure 5.1: Overview of the different reductions between 3SUM, Convolution-3SUM,
0-Edge-Weight-Triangle and some computational geometry problems.
The same reductions can be shown both classically and quantumly, but the
classical reductions from 3SUM to Convolution-3SUM, Sorted-3SUM,
and Unique-Sorted-3SUM cannot be trivially translated to the quantum
setting.

false. These results are proven by first exhibiting a reduction from 3SUM to
some fundamental computational geometry problems (Sorted-GeomBase and 3-
Points-on-Line), and then constructing further reductions among computational
geometry problems. See Figure 5.1 for an overview of such reductions.

The reductions among computational geometry problems are all simple to adapt
to the quantum setting. We will do so in Section 5.4. However, the fundamental
reduction to Sorted-GeomBase requires sorting the 3SUM instance, and the
fundamental reduction to 3-Points-on-Line requires both sorting and removing
duplicate elements. This means that we cannot trivially adapt these reductions
to the quantum setting. We overcome this obstacle by employing a dynamic data
structure, that allows efficient updates and queries, and then invoke Theorem 5.2.

5.3.1 Hardness of Sorted-3SUM and Unique-Sorted-3SUM

We will now define a dynamic data structure that is deterministic, history-independent,
efficient, and moreover supports two families of queries tqiu, tq

1
iu, where qipSq is the

ith smallest integer in a list S and q1
ipSq is the ith smallest integer in the set version

of list S, respectively. Using this data structure with the quantum walk algorithm
in Theorem 5.2 we are able to show that conditioned on Quantum 3SUM Conjec-
ture, both Sorted-3SUM and Unique-Sorted-3SUM require n1´op1q time in the



112 Chapter 5. Fine-Grained Complexity via Quantum Walks

quantum setting.

Definition 5.3 (Sorted-3SUM). Given a sorted list S P Σn of n integers, i.e.,
Sris ď Srjs whenever i ă j for all i, j P rns, are there a, b, c P S such that a` b` c “

0?

Definition 5.4 (Unique-Sorted-3SUM). Given a sorted list S P Σn of n unique
integers, i.e., Sris ă Srjs whenever i ă j for all i, j P rns, are there a, b, c P S such
that a ` b ` c “ 0?

Definition 5.5 (Data Structure for Sorted-3SUM and Unique-Sorted-3SUM).
Let S Ď rnsˆΣ, with |S| “ r, and such that every i P rns appears in at most one pair
pi, xq P S. The 3SUM tree that represents S, denoted by T3SUMpSq, is a complete
rooted binary tree with |Σ| leaves. Each leaf node x P Σ is labelled by a bit bx P

t0, 1u, number countx P t0, . . . , ru, and a bit vector Bx P t0, 1un so that set Bxris “ 1
iff pi, xq P S, the countx is the hamming weight of Bx, and bx “ 1 iff countx ą 0.
Each internal node w is labelled by two numbers count_childrenw P t0, . . . , ru and
count_unique_childrenw P t0, . . . , ru. These labels obey the following rules:

• The variable count_childrenw “
ř

x a descendent of w countx.

• The variable count_unique_childrenw “
ř

x a descendent of w bx, i.e., the vari-
able count_unique_childrenw stores the total number of leaves x that are
descendent of w such that countx ą 0 .

See Figure 5.2 for an example of the data structure.

Memory representation A 3SUM tree is represented in the memory by an array
of |Σ|´1 blocks of Oplog nq bits of memory each, holding the contents of the internal
nodes, followed by |Σ| blocks of Opnq bits of memory each, holding the labels of the
leaf nodes. The blocks appear in the same order as a breadth-first traversal of
T3SUMpSq. Consequently, for every S Ď rns ˆ Σ there is a corresponding binary
string of rOpn|Σ|q bits that uniquely encodes T3SUMpSq. Crucially, when |S| “ r we
have at most rOpr log |Σ|q of these bits are 1. Since |Σ| “ polypnq, the encoding is
rOprq-sparse.

Queries and updates The following operations can be implemented efficiently
using this data structure T3SUMpSq.

1. Find To find if there exists an element pi, xq P T3SUMpSq check the value
corresponding to variable Bxris; if Bxris then pi, xq P T3SUMpSq. Using a RAG
this can be implemented in Op1q time.

2. Toggle Recall (from Chapter 4) that the toggle operation is the quantum
analogue of the classical ‘insertion/deletion’ operation. In the quantum setting
we only insert an element pi, xq into T3SUMpSq if pi, xq R T3SUMpSq. Similarly,
we only delete an element pi, xq from T3SUMpSq if pi, xq P T3SUMpSq which we
can check in Op1q time with the ‘find’ operation stated above. To insert an
element pi, xq into T3SUMpSq set bx “ 1, Bxris “ 1, increase the value of countx
by 1. All of this can be achieved in Op1q amount of time. Thereafter, for every



5.3. Lower bounds for two structured versions of 3SUM 113

x ... ... ℓ|Σ|
......ℓ1

bx countx ... 0{1

n

0{1

1

Figure 5.2: Data Structure for Sorted-3SUM and Unique-Sorted-3SUM: each of
the circular nodes w is labelled by two variables count_childrenw and
count_unique_childrenw. Each of the leaf nodes x is labelled by three
variables bx, countx and Bx.

ancestor w of x, increase the value of the variable count_childrenw by 1 and
do the same with variable count_unique_childrenw only if bx was recently
changed to 1. All this can be done in Oplog |Σ|q time by traversing the path
from root node to the leaf node indexed by x. The procedure for deleting an
element is just the reverse of the insertion procedure.

3. Indexing This can be requested in two ways:

• For some k P rrs return the kth largest element of the set S when ordered
by the second coordinate of elements in S, or,

• for some k̄ P rrs, return k̄th largest unique value of the set S again when
ordered by the second coordinate of the elements in S.

For example, if S “ tpi, xq : x P Xu where X “ r1, 3, 3, 3, 3, 4, 5s, then the 4th

largest element of S is 3, while the 4th largest unique value of S is 5.

For this data structure, both these types of indexing can be implemented
efficiently in the following way: set a pointer to the root node. Clearly the
value of count_childrenroot (or count_unique_childrenroot) is equal to the
total number of marked (unique) leaf nodes. Let kleft denote the count on the
left child of the pointer and similarly let kright denote the count on the right
child of the pointer. If k ą kleft, then set the pointer to the right child and
k “ k ´ kleft, and repeat the process recursively with the new k. If k ď kleft



114 Chapter 5. Fine-Grained Complexity via Quantum Walks

then set the pointer to the left child and repeat the process recursively with
the same k. Repeat until you reach a marked (unique) leaf node. This entire
process takes log |Σ| amount of time.

Quantum hardness of Sorted-3SUM and Unique-Sorted-3SUM Us-
ing the 3SUM tree to encode S, we can now efficiently maintain S in a sorted order,
additionally one can also implement the following maps efficiently,

|i, by ÞÑ |i, b ‘ qipSqy, |i, by ÞÑ |i, b ‘ q1
ipSqy,

where qipSq is query to retrieve the ith largest value in S and q1
ipSq is query to

retrieve the ith largest unique value in S. Furthermore, it is history-independent,
as required by Theorem 5.2. Hence we may use Theorem 5.2 to prove the following
statement.

Corollary 5.6. If there is a bounded-error quantum algorithm that solves Sorted-3SUM
or Unique-Sorted-3SUM in Opn1´αq time, for some constant α ą 0, using gpnq

qubits of memory, then there exist constants 1 ą β ą 0 and δ ą 0 such that
3SUM can be solved in rOpn1´δq quantum time with probability 1 ´ op1q using at
most rOpn|Σ|q ` gpnβq qubits of memory.

Apart from the expensive (in terms of space) data structure, the rest of quan-
tum walk algorithm uses only a poly-logarithmic number of qubits, hence, at most
Opn|Σ| `m1q qubits suffice to implement this algorithm, where m1 denotes the num-
ber of qubits required by the subroutine for Sorted-3SUM. However, given that
the reduction algorithm uses space sparsely, using our compression technique from
Chapter 4 we can simulate this space inefficient but r-sparse QRAM algorithm, with
r “ nβ, in a space-efficient way as well. Therefore, combining Corollary 5.6 and the
main theorem 4.1 of Chapter 4 we get the following result.

Corollary 5.7. If there is a bounded-error quantum algorithm that solves Sorted-3SUM
or Unique-Sorted-3SUM in rOpn1´αq time, for some constant α ą 0, using gpnq

qubits of memory, then for every such α there exists constants 1 ą β ą 0 and δ ą 0
such that 3SUM can be solved in rOpn1´δq quantum time with probability 1 ´ op1q

using at most rOpnβq ` gpnβqq qubits of memory.

An immediate implication of Corollary 5.6, consequently also Corollary 5.7 is that
a sublinear quantum time algorithm for Sorted-3SUM or or Unique-Sorted-
3SUM would imply a sublinear quantum time algorithm for 3SUM, and therefore
would contradict the Quantum 3SUM Conjecture.

Corollary 5.8. Conditioned on the Quantum 3SUM Conjecture, both Sorted-3SUM
and Unique-Sorted-3SUM require n1´op1q time in the quantum setting.

Lower bounds conditioned on hardness of Sorted-3SUM Employing the
results of Corollary 5.8 we are able to show that conditioned on the Quantum 3SUM
Conjecture, the following computational geometry problems and (because of transi-
tivity of quantum fine-grained reductions) many more (refer to Figure 5.1) require
n1´op1q quantum time.



5.4. 3SUM-hard geometry problems 115

1. The Separator problem: given a set of n (possibly half-infinite) closed hor-
izontal line segments, is there a non-horizontal separator?

2. The Strips-Cover-Box problem: given a set of strips in the plane does their
union contain a given axis-parallel rectangle?

3. The Triangles-Cover-Triangle problem: given a set of triangles in the
plane, does their union contain another given triangle?

Having established the quantum hardness of the Sorted-3SUM problem, we can
now directly reduce Sorted-3SUM to these problems by a simple adaptation to
the quantum setting of the classical reductions presented in [GO95].

Lower bounds conditioned on hardness of Unique-Sorted-3SUM As
other implications to Corollary 5.8 we show that conditioned on the Quantum 3SUM
Conjecture, the following computational geometry problems also require n1´op1q

quantum time.

1. The 3-Points-on-Line problem: given a set of points in the plane, is there
a line that contains at least three of the points?

2. The Point-on-3-Lines problem: given a set of lines in the plane, is there a
point that lies on at least three of them?

Both of these problems are computationally equivalent, as the second problem is
the exact dual of the first problem under the Point-Line dualization. The classical
reduction from 3SUM to these two problems assumes that the input to 3SUM is
unique, i.e. there are no duplicate elements in the input. As discussed earlier in Sec-
tion 5.1.2, the Classical 3SUM Conjecture also trivially holds for this promise version
of 3SUM, but such a claim cannot be easily made in the quantum setting. Therefore,
we use the results of Corollary 5.8 to establish that both Unique-Sorted-3SUM
and 3SUM are equally hard as the original 3SUM problem in the quantum setting
as well.

We give an illustration of the relations between the different geometry problems
in Figure 5.1 and we point the readers to Section 5.4 for details of some of these
reductions.

5.4 3SUM-hard geometry problems

In this section, we present the quantum reductions from (some variants and struc-
tured versions of) 3SUM to many problems in Computational Geometry which are
adaptations (or in some case, slight modifications) of the classical reductions by
[GO95]. Most of these reductions are on-the-fly adaptations of the classical ones,
hence, we only present the detailed proofs for only a few of these reductions. The
proofs for the rest of the reductions are along the same lines. One can find the
summary of these results in Table 5.1 (in page 109).

Recall that, in our quantum model of computation the input is given as an oracle
and can be accessed in superposition, therefore it is possible to have strictly sub-
linear quantum time algorithms even for problems that depend on all elements of
the input, for example, Grover’s search algorithm [Gro96]. For the same reasons, it



116 Chapter 5. Fine-Grained Complexity via Quantum Walks

is possible to have quantum reductions which use zero amount of (pre-)computation
time as long as query access to the input of the reduced problem is efficiently imple-
mentable using the input oracle to the original problem. Therefore, it is possible to
quantise these reductions given by [GO95] to run in sublinear quantum time even
though they take (at least) linear amount of time classically.

Problem: GeomBase
Given a set of n points with integer coordinates on three horizontal lines y “ 0,
y “ 1, and y “ 2, determine whether there exists a non-horizontal line containing
three of the points.

Lemma 5.9. p3SUM-3ListVersion, nq “QFG pGeomBase, nq.

Proof. The proof of p3SUM-3ListVersion, nq ďQFG pGeomBase, nq: for each
element a P A create a point pa, 0q, for every b P B create a point pb, 2q, and,
for every c P C create a point pc{2, 1q, which means query access to the instance
of GeomBase can be directly implemented by using the query oracle of 3SUM-
3ListVersion instance. W.l.o.g. we can assume all the elements of the lists A,B,C
are even. (If not then multiply each of these elements with 2.) It is easy to see that
three points pa, 0q, pb, 2q and pc{2, 1q are collinear iff a ` b “ c, hence, a quantum
on-the-fly reduction with 0 pre-computation time.

The reduction, pGeomBase, nq ďQFG p3SUM-3ListVersion, nq is also proved
in the similar way, for each point pa, 0q create an element a P A, for each point pb, 2q

create an element b P B, and, for each point pc, 1q create an element 2c P C.

Problem: 3-Points-on-Line
Given a set of points in the plane, is there a line that contains at least three of the
points?

Lemma 5.10. pUnique-Sorted-3SUM, nq ďQFG p3-Points-on-Line, nq.

Proof. An input to Unique-Sorted-3SUM is a list S of n unique integers (also
sorted but that is not a requirement for this reduction), and the question is whether
there exist a, b, c P S such that a` b` c “ 0. Let k “ 2maxpt|x| | x P Squ, this can
be computed quantumly in Op

?
nq time. Create a list S 1 of size 3n in the following

way: for every x P S, put x` k, x´ 3k, x` 2k P S 1. For every element y P S 1 create
a point py, y3q. If there exists a, b, c P S such that a ` b ` c “ 0 then there will
exist a triple a1, b1, c1 P S 1 such that a1 ` b1 ` c1 “ 0 and a1, b1, c1 are all unique.10

Furthermore, with some elementary calculations we can show that a1 ` b1 ` c1 “ 0
iff pa1, pa1q3q, pb1, pb1q3q, pc1, pc1q3q are collinear.

10The classical reduction from 3SUM to Point-on-3-Lines by [GO95] is slightly incorrect
because of the following counterexample: let S “ t1,´2, 3u. There are elements a, b, c P S such
that a ` b ` c “ 0, set a “ b “ 1, c “ ´2. The classical reduction on such an S is going to create
three points p1, 1q, p´2,´8q, p3, 27q and will therefore miss out on the 3SUM solution. We rectify
this situation by making three (almost) copies of the original list so that solutions to 3SUM where
a “ b are not missed. The three copies in the intermediate step are deliberately made nonidentical
so that the reduction creates two unique points corresponding to a, b P S even if a “ b.



5.4. 3SUM-hard geometry problems 117

Problem: Point-on-3-Lines
Given a set of lines in the plane, is there a point that lies on at least three of them?

Lemma 5.11. p3-Points-on-Line, nq “QFG pPoint-on-3-Lines, nq.

Proof. Both these problems are computationally equivalent as the second problem
is the exact dual of the first problem under the Point-Line dualization.

Lower bounds for the following problems are based on reductions from another
promise version of 3SUM (or its variants), namely the Sorted-3SUM. Most of the
problems below are reduced from Sorted-GeomBase instead of Sorted-3SUM
because they both are computationally equivalent, which directly follows from the
result in Lemma 5.9.

Corollary 5.12. pSorted-3SUM-3ListVersion, nq “QFG pSorted-GeomBase, nq.

Notice the simple trick that we are employing to adapt these classical reductions
in the quantum setting. For all those classical reductions from 3SUM that requires
sorting the input, we directly reduce from Sorted-3SUM instead, because we have
shown that Quantum 3SUM Conjecture applies to Sorted-3SUM as well. With
this result in spotlight, we present the rest of the reductions; all the proofs of their
respective theorems follow from ‘on-the-fly’ adaptation of the classical reductions,
hence, will not be stated here.

Problem: Separator
Given a set S of n possible half-infinite, closed horizontal line segments, is there a
non-horizontal separator?

Lemma 5.13. pSorted-GeomBase, nq ďQFG pSeparator, nq.

Problem: Strips-Cover-Box
Given a set of strips in the plane, does their union contain a given axis-parallel
rectangle?

Lemma 5.14. pSorted-GeomBase, nq ďQFG pStrips-Cover-Box, nq.

The proof of this statement also directly follows from the (almost) on-the-fly
adaptation of the classical reduction. Each query to the input of Strips-Cover-
Box can be efficiently computed using the query oracle to the input of Sorted-
GeomBase. It is only to compute the boundaries of the rectangle that a constant
pre-computation time is required in addition to the on-the-fly reduction.

Problem: Triangles-Cover-Triangle
Given a set of triangles in the plane, does their union contain another given triangle?

Lemma 5.15. pStrips-Cover-Box, nq ďQFG pTriangles-Cover-Triangle, nq.



118 Chapter 5. Fine-Grained Complexity via Quantum Walks

Problem: Hole-In-Union
Given a set of triangles in the plane, does their union contain a hole?

Lemma 5.16. pTriangles-Cover-Triangle, nq ďQFG pHole-In-Union, nq.

The relation between Triangles-Cover-Triangle and Hole-In-Union in
the other direction is interesting and is captured in the following statement:

Lemma 5.17. There is a Opn1`op1qq time quantum algorithm to solve Hole-In-
Union.

Proof. Use the classical reduction from Hole-In-Union to Triangles-Cover-Triangle
which runs in Opn log2 nq time presented by [GO95], and then use the Opn1`op1qq

algorithm for Triangles-Cover-Triangle by [AL20] on top of that.

Problem: Triangle-Measure
Given a set of triangles in the plane, compute the measure of their union.

Lemma 5.18. pTriangles-Cover-Triangle, nq ďQFG pTriangle-Measure, nq.

Problem: Point-Covering
Given a set of n halfplanes and a number k, determine whether there is a point p
that is covered by at least k of the halfplanes.

Lemma 5.19. pStrips-Cover-Box, nq ďQFG pPoint-Covering, nq.

Problem: Visibility-Between-Segments
Given a set S of n horizontal line segments in the plane and two particular horizontal
segments s1 and s2, determine whether there are points on s1 and s2 that can see
each other, that is, such that the open segment between the points does not intersect
any segment in S.

Lemma 5.20. pSorted-GeomBase, nq ďQFG pVisibility-Between-Segments, nq.

Problem: Visibility-From-Infinity
Given a set S of axis-parallel line segments in the plane and one particular horizontal
segment s, determine whether there is a point on s that can be seen from infinity,
that is, whether there exists an infinite ray starting at the point on s that does not
intersect any segment.

Lemma 5.21. pSorted-GeomBase, nq ďQFG pVisibility-From-Infinity, nq.

Proof. Same as the proof of Lemma 5.20.

Problem: Visible-Triangle
Given a set S of opaque horizontal triangles, another horizontal triangle t and a
viewpoint p, is there a point on t that can be seen from p?

Lemma 5.22. pTriangles-Cover-Triangle, nq ďQFG pVisible-Triangle, nq.



5.4. 3SUM-hard geometry problems 119

The proof follows from the quantum on-the-fly adaptation of the classical reduc-
tion by [GO95] with the only assumption that the point p of the Visible-Triangle
problem is a point at infinity.

The result in the other direction is only relevant for us to present a quantum up-
per bound for the Visible-Triangle problem, hence, we directly use the classical
reduction to make the following statement.

Lemma 5.23 (Theorem 7.3 by [GO95]). There is a Opn1`op1qq time quantum algo-
rithm to solve Visible-Triangle.

Proof. Reduce Visible-Triangle to Triangles-Cover-Triangle using theOpnq

time classical reduction by [GO95], and then use the quantum algorithm for solving
Triangles-Cover-Triangle given by [AL20].

Problem: Planar-Motion-Planning
Given a set of non-intersecting, non-touching, axis-parallel line segment obstacles in
the plane and a line segment robot (a rod or ladder), determine whether the rod can
be moved (allowing both translation and rotation) from a given source to a given
goal configuration without colliding with the obstacles.

Lemma 5.24. pSorted-GeomBase, nq ďQFG pPlanar-Motion-Planning, nq.

Problem: 3D-Motion-Planning
Given a set of horizontal (that is, parallel to the xy-plane) non-intersecting, non-
touching triangle obstacles in 3D-space, and a vertical line segment as a robot,
determine whether the robot can be moved, using translations only, from a source
to a goal position without colliding with the obstacles.

Lemma 5.25. pTriangles-Cover-Triangle, nq ďQFG p3D-Motion-Planning, nq.

The following problem, General-Covering problem, was introduced by [AL20]
for which they presented a Opn1`op1qq quantum algorithm. Additionally they showed
that many computational geometry problems from [GO95] can be solved using the
algorithm for General-Covering, thereby giving Opn1`op1qq upper bounds for
those problems as well. Refer to the summary of these results in Table 5.1.

Problem: General-Covering
We are given a set of n strips and angles (angle is defined as an infinite area between
two non-parallel lines in the plane). The task is to find a point X that satisfies the
following conditions:

• the point X is an intersection of two angle or strip boundary lines l1, l2 (l1
and l2 may be boundary lines of two different angles/strips);

• the point X does not belong to the interior of any angle or strip;

• the point X satisfies a given predicate P pXq that can be computed in Op1q

time.

Lemma 5.26 ([AL20]). pStrips-Cover-Box, nq ďQFG pGeneral-Covering, nq.



120 Chapter 5. Fine-Grained Complexity via Quantum Walks

Proof. The reduction from Strips-Cover-Box to General-Covering is as fol-
lows: recall that the input to the Strips-Cover-Box contain n strips and a axis-
parallel rectangle. Let the same n strips be input to the General-Covering
problem. Additionally, as a part of our reduction, we set the predicate

P pXq “

#

1, if X lies in the rectangle,
0, otherwise.

If the General-Covering subroutine on this input cannot find such a point X
then it implies that the n strips cover the box completely, and, alternatively, if the
algorithm for General-Covering finds such a point then its clear that the strips
don’t fully cover the box.

5.5 Other 3SUM-hard problems

We will now show that another variant of the 3SUM problem, the Convolution-
3SUM problem, also requires linear time in the quantum setting. Having done that,
we are also able to quantise the classical reduction from Convolution-3SUM to
0-Edge-Weight-Triangle consequently proving a n1.5´op1q time lower bound for
the latter. Both of these lower bounds are conditioned on the Quantum 3SUM
Conjecture.

The 0-Edge-Weight-Triangle problem can be solved in Opn1.3q queries using
the quantum-walk-based triangle finding algorithm given by [MSS07].11 In spite of
that, the best known time upper bound for this problem is Opn1.5q. Our results
provide an explanation as to why an Opn1.5´αq time quantum algorithm for 0-Edge-
Weight-Triangle, for an α ą 0, has not yet been found.

5.5.1 Lower bound for Convolution-3SUM

Consider the 3SUM’ problem: given a list S of n elements, is there a a, b, c P S such
that a` b “ c? We have seen that the Quantum 3SUM Conjecture is equivalent for
this version of 3SUM (Section 5.2). The Convolution-3SUM problem, on the
other hand, is defined slightly differently, as follows:

Definition 5.27 (Convolution-3SUM). Given an array Ar1..ns, determine if
there exists indices i, j such that i ‰ j and Aris ` Arjs “ Ari ` js.

There is an obvious Opn2q classical algorithm and equally obvious Opnq quan-
tum algorithm for Convolution-3SUM (and also, less obviously, for 3SUM’). An
interesting classical randomized reduction from 3SUM’ to Convolution-3SUM
by Pătraşcu [Pat10] shows that a subquadratic algorithm for Convolution-3SUM
implies a subquadratic algorithm for 3SUM’. We will combine the ideas in that re-
duction with the quantum-walk-based reduction introduced earlier, to show that the
Convolution-3SUM problem requires n1´op1q quantum time, unless the Quantum
3SUM Conjecture is false.

11Note that 0-Edge-Weight-Triangle problem is different from the Triangle-Finding
problem. The current best quantum query algorithm for Triangle-Finding uses rOpn5{4q queries
[Gal14].



5.5. Other 3SUM-hard problems 121

The reduction by Pătraşcu In his paper [Pat10], Pătraşcu showed a reduction
from 3SUM’ to Convolution-3SUM, the intuition of which is as follows. Assume
there is an injective hash function h : S Ñ rns which is linear in the sense that
hpaq`hpbq “ hpcq whenever a`b “ c. If a such a hash function exists then given an
instance of 3SUM’ one can create the Convolution-3SUM list by hashing every
a P S to Arhpaqs. If there is an a, b, c P such that a ` b “ c then by linearity of
the hash function, hpaq ` hpbq “ hpcq which would mean that there exists indices
i “ hpaq, j “ hpbq, i ` j “ hpcq such that Aris ` Arjs “ Ari ` js. Thus, the
3SUM’ triple will be discovered by the Convolution-3SUM algorithm. Such a
well behaving hash function does not exist, however, it is possible to get something
close.

The reduction uses a family of hash functions introduced by [Die96] and used by
[Pat10; VW13], defined as follows: pick a random odd element z on w bits, where
w is going to be fixed later. For any input a P S, the hash function multiplies a
with z on w bits (i.e., mod 2w) and then keeps the high order s bits of the result,
which can also be visualised in following way: consider the binary representation of
za, pick all the bits between index w to w ´ s ` 1 (with the lowest significant bit
indexed by 1). Formally,

hpaq “ pza mod 2wq ˜ 2w´s, (5.7)

where x ˜ y and x mod y denote, respectively, the quotient and remainder of the
integer division of x and y. This hash family has the following useful properties.

1. Almost linear For any two numbers a and b either hpaq ` hpbq “ hpa `

bqpmod2sq or hpaq ` hpbq ` 1 “ hpa ` bqpmod2sq.

2. Few false positives If a ` b “ c, then hpaq ` hpbq ` t0, 1u “ hpcqpmod
2sq (by which we mean hpaq ` hpbq ` b “ hpcqpmod2sq for some b P t0, 1u).
Additionally, if a ` b ‰ c, the probability (over the choice of h) that hpaq `

hpbq ` t0, 1u “ hpcqpmod2sq is Op1{2sq.

3. Good load balancing Fix any n elements z1, . . . , zn, let us choose a random
hash function as above, and let us place zi into bucket hpziq. Let R “ 2s denote
the total number of buckets. Then, over the choice of h, any fixed bucket will
have n{R elements on average. Also, if we say that a bucket is bad if it has
more than 3n{R elements, then the expected total number of elements that
are in bad buckets is OpRq.

The classical reduction is given an instance S of 3SUM’, chooses a hash function h
at random from the above family, and thinks the elements of S as being placed in
“buckets”, so that a P A is placed in bucket hpaq.

The reduction then has two parts. The first part deals with the elements of the
bad buckets, i.e. the buckets whose load exceeds 3n{R. The load-balancing property
of this hash function promises that the expected total number of elements in bad
buckets is OpRq. For every element belonging to a bad bucket, one can in rOpnq

classical time decide if it is a part of a solution to the 3SUM’ problem, as follows
[GO95]: suppose the list S is sorted (classically, we can afford to sort S at the start).
For every element a belonging to a bad bucket compute S ` a. Using simultaneous
traversal of these two ordered sets S ` a and S one can in Opnq time find if there



122 Chapter 5. Fine-Grained Complexity via Quantum Walks

is any element common to both. Using this trick for every element belonging to a
bad bucket, the entire first part of the reduction then takes rOpnRq classical time.

The second part of the classical reduction creates Oppn{Rq3q instances to the
Convolution-3SUM problem and only deals with elements of the good buckets.
This part of the reduction is as follows: for every triple i, j, k P t0, ...3n{Ru we
create an instance Ai,j,k of Convolution-3SUM of size OpRq. For each good
bucket t P rRs, we map the ith element of the tth bucket to index 8t` 1, jth element
to 8t`3 and kth element to 8t`4. The locations of the array that have no elements
mapped to them can have some large value (for e.g., 2maxpSq`1) stored in them so
that they don’t participate in the solution to 3SUM’. If there was a triple a, b, c P S
such that a ` b “ c then because of the “linear"12 hash function we get ta ` tb “ tc
where ta “ hpaq, tb “ hpbq and tc “ hpcq. This means there exists a triple i, j, k P

t0, ...3n{Ru such that these elements a, b, c get mapped to indices 8ta`1, 8tb`3, 8tc`4
respectively of the Convolution-3SUM array. Hence, the 3SUM’ triple a, b, c is
discovered by the Convolution-3SUM algorithm.

Clearly, there will be no false-positives. However, there can be false-negatives:
firstly, because the construction mentioned until now only takes care of all the
elements on which the hash function behaved exactly linearly, but as we have stated
above, the hash function can actually be off-linear by 1. The workaround for this
is to simply create another set of Convolution-3SUM instances where for every
bucket t P rRs, instead of mapping the ith element of the bucket to index 8t ` 1 we
map it to 8pt` 1q ` 1. The second source of false-negatives stems from the fact that
Convolution-3SUM only checks for Aris `Arjs “ Ari` js, it misses pairs where
hpxq ` hpyq ě R (a wrap-around happens modulo R). To fix this, double the array
size, including two identical copies. This simulates the wrap-around effect.

Why this reduction doesn’t directly hold in the quantum setting We no-
tice that the first part of the classical reduction that takes rOpnRq can be sped up
quantumly to take only rOp

?
nRq time, using the claw-finding algorithm of Buhrman,

Dürr, Høyer, Magniez, Santha, and de Wolf [BDH+00]. However, the input instance
to the claw-finding algorithm needs to be sorted in order for the claw-finding algo-
rithm to run in the required time-bound, and this will correspond to sorting the
input S to 3SUM’.

The second part of the classical reduction also needs additional structure. The
second part of the reduction produces several instances Ai,j,k of Convolution-
3SUM, and then uses searches for a positive instance among the Ai,j,k using an al-
gorithm for Convolution-3SUM. This search can be sped-up using Grover search.
However, the Convolution-3SUM algorithm needs to be able to efficiently read
any entry Ai,j,krℓs, and this, in turn, can only be done if we are able to index inside
the buckets, i.e., we need to be able to quickly access the ith element of the tth

bucket, for any given i, t. The classical algorithm achieves this by simply computing
the hash function directly and pre-computing a copy of the input sorted by hash
value. This is no longer an option to adapt trivially in the quantum setting as doing
so requires Ωpnq time.

However, it is interesting to note in the quantum walk algorithm over Johnson
graph Jpn, rq (for an r “ nβ with β P p0, 1q we can now in the “setup” phase use

12The hash function is actually almost linear which will be taken care of in the next paragraph.



5.5. Other 3SUM-hard problems 123

R

badR

T3SUMpSRq

x ... ... ℓ|Σ|......ℓ1

bx countx ... 0{1

n

0{1

1

0

count_bad_elements P pIbadq

T3SUMpSq

x ... ... ℓ|Σ|......ℓ1

bx countx ... 0{1

n

0{1

1

T3SUMpS1q

x ... ... ℓ|Σ|......ℓ1

bx countx ... 0{1

n

0{1

1

1

bad1

Figure 5.3: Data structure for Convolution-3SUM which stores at most r elements
in R ` 1 buckets. The bucket labelled 0 contains the following labels:
T3SUMpSq allows us to store the entire set S in a 3SUM tree, so that we
have efficient updates and indexing. The label P pIbadq contains the list of
indices of all the ‘bad’ buckets in a prefix tree data structure, and the label
count_bad_elements stores the total number of ‘bad’ elements, i.e., the to-
tal number elements in all the bad buckets. The buckets indexed by x P rRs

contain two labels: T3SUMpSxq to store the elements that hashed to value x,
and a bit badx indicating whether the number of elements in bucket x has
exceeded 3r{R.

additional rOprq time to store these r sized subsets in dynamic data-structures similar
to what is used by Pătraşcu in [Pat10]. What remains is for us to ensure that this
data structure allows for efficient updates and queries as required by the quantum
walk algorithm. In that way we can then use a quantum-walk plus dynamic data-
structure, as in the proof of Theorem 5.2, in order to adapt the classical reduction
to the quantum setting.

The data structure In the “setup” phase of our walk algorithm we pick a ran-
dom odd element z on w “ Oplog nq bits and use the hash function as defined in
Equation 5.7 on elements a P S 1 where S 1 P Σn denotes an n length input to the
3SUM’ problem.13 Having now, picked a value of z we define the data structure
that we will use for the 3SUM’ to Convolution-3SUM reduction. Note that we
are going to use this data structure to store r-sized subsets of S 1.

Definition 5.28 (Data Structure for Convolution-3SUM). Let z, w, s be integers
as required by Equation 5.7. Let S Ď rns ˆ Σ, with |S| “ r, and such that every
i P rns appears in at most one pair pi, xq P S. The convolution-3SUM data structure
that represents S, denoted by DSc-3SUMpSq, is an array of R`1 blocks (with R “ rα

for any 0 ă α ă 1 that can be set later). Each block x P rRs is labelled by a bit
badx P t0, 1u and a 3SUM tree as in Definition 5.5, T3SUMpSxq representing the set
Sx “ tpi, yq : pi, yq P S and hpyq “ xu where

hpaq “ pza mod 2wq ˜ 2w´s.

13To implement this picking of random z one can instead think of the quantum algorithm starting
in superposition of different values of z and running our algorithm on this superposed state, as
done in Ambainis’ walk algorithm for Element Distinctness [Amb07] and also presented in the
online version of this work [BLP+22a].



124 Chapter 5. Fine-Grained Complexity via Quantum Walks

The block 0 is labelled by a number count_bad_elements P t0, . . . , ru and two
strings T3SUMpSq and prefix-sum tree P pIbadq (as per Definition 4.4) where Ibad “

ti : i P rRs and badi “ 1u. Moreover, the labels obey the following rules:

• For any block x, the label badx “ 1 iff the label countroot of T3SUMpSxq is
greater than 3r{R.

• Let counti,root denote the value at the label count_unique_childrenroot in
T3SUMpSiq, then label count_bad_elements “

ř

iPIbad
counti,root.

See Figure 5.3 for an example of the data structure.

Memory representation A convolution-3SUM data structure is represented in
the memory by an array of R`1 blocks of rOpn|Σ|q bits each. Consequently, for every
S Ď rns ˆ Σ there is a corresponding binary string of rOpnR|Σ|q bits that uniquely
encodes DSc-3SUMpSq. Crucially, when |S| “ r we have at most rOpr log |Σ|q of these
bits are 1. Since |Σ| “ polypnq, the encoding is rOprq-sparse.

Implementation of data structure operations We will now verify if all the
data structure operations that will be required in our reduction can be done effi-
ciently.

1. Updates It is required by the walk algorithm to make efficient updates to
DSc-3SUMpSq,i.e. replace an element pi, xiq P S with another element pj, xjq in
at most nop1q time. To achieve that let’s look at that the time complexity of
the following operations.

(a) Find To find if there exists an element pi, yq in DSc-3SUMpSq instead check
if pi, yq P T3SUMpSq contained in block labelled by 0. Using a RAG this
can be implemented in constant time.

(b) Toggle To insert pi, yq that is not present in DSc-3SUMpSq, first insert it in
T3SUMpSq in block 0, then having computed the value of x “ hpyq insert
in T3SUMpSxq and also update the value of badx, count_bad_elements
accordingly, if required. If it turns out that badx is just set to 1 then
insert x into P pIbadq. All this can be achieved in Oplog nq time. The
delete operation is just the reverse of the insertion procedure.

2. Queries I.e., the data structure operations that are required by the checking
step of the quantum walk. We can efficiently (i.e., in polylogpnq time) query
the ith smallest (by second coordinate) element of S, ith smallest element of
Ibad, and also the ith smallest element of the tth bucket, for any given i, t.

With this overall data structure, suppose that we were given a structured version
of 3SUM’, where the input additionally includes the above data structure. Below,
using ideas similar to the classical reduction from 3SUM’ to Convolution-3SUM,
together with a claw-finding algorithm and Grover search, we will reduce this struc-
tured version of 3SUM’ to Convolution-3SUM. This reduction will give us a
quantum time lower bound for Convolution-3SUM based on the hardness of this
structured version of 3SUM’.



5.5. Other 3SUM-hard problems 125

Once this is done, it will suffice to show the hardness of this structured version of
3SUM’. This, in turn, can be done using the same quantum-walk-based reduction
that was used in the proof of Theorem 5.2: we do a quantum walk on the Johnson
graph, while dynamically preserving at every step the data structure illustrated in
Figure 5.3. It should be clear that the data structure can be maintained dynamically,
provided we have a data structure for dynamic sorting within each bucket: when
inserting or removing an element, we need only compute its hash value to know
into which bucket it should be inserted. We will not go into further details on this
part of the reduction, and we will now revisit Pătraşcu’s reduction from 3SUM’ to
Convolution-3SUM, in order to show that an analogous reduction can be done,
in the quantum setting, from the structured version of 3SUM’ to Convolution-
3SUM.

Reducing structured 3SUM’ to Convolution-3SUM Similar to Pătraşcu’s
reduction, the first part of our quantum reduction is to deal with all the elements
of all the bad buckets which in expectation are at most OpRq in total. Using the
data structure DSc-3SUMpSq we check the total number of elements in all the bad
buckets, if the value exceeds c1 ¨ logc ¨R, for some constants c, c1 ą 1, then we abort
the procedure, otherwise we proceed with the following reduction: suppose that
there are k bad buckets in total. We can efficiently find the index of ith bad bucket
in Oplog nq time, because of P pIbadq, the prefix-sum tree storing the set of indices
of the bad buckets. Having done that, we then check if there exists any element
in this bucket that is part of the solution to the 3SUM’ problem. For that we do
Grover search over each element a in this bad bucket, and then we need only find
a common element in two sorted lists S ` a and S of size r each. Such a common
element is called a claw, and it is known how to find a claw in two sorted lists of
size r in quantum time rOp

?
rq [BDH+00]. Let ti denote the time taken to check

if any element in this ith bad bucket is part of the solution to 3SUM’, and let si
denote the number of elements in this ith bad bucket, then ti “ rO

`?
si ¨ r

˘

. Then
using variable time search, and because (w.h.p) the total number of bad elements is
at most OpRq, we can in time

O

˜

c

ÿ

i

t2i

¸

“ rO

˜

c

ÿ

i

si ¨ r

¸

ď rO
´?

R ¨ r
¯

,

check if any element in the list of all bad buckets is part of the 3SUM’ solution.
Hence, the total time taken for this part of the reduction is rOp

?
Rrq.

As explained above, the second part of Pătraşcu’s classical reduction from 3SUM’
to Convolution-3SUM, creates Oppr{Rq3q instances Ai,j,k of Convolution-
3SUM. Each instance is an array of size |Ai,j,k| “ OpRq, and the different instances
are indexed by triples pi, j, kq P t0, ..., 3r{Ru3. The algorithm then checks if there
is a solution to at least one of the Ai,j,k, meaning, two indices ℓ1, ℓ2 P r|Ai,j,k|s such
that Arℓ1s `Arℓ2s “ Arℓ1 ` ℓ2s. Our quantum reduction will work in the same way,
but where we use Grover search to search for a solution among all the triples. For
this to be possible, we need to provide fast access to each Convolution-3SUM
instance. Formally, given a triple i, j, k P t0, ..., 3r{Ru and an index ℓ P r|Ai,j,k|s, we
need to be able to quickly return Ai,j,krℓs. We do the following: let m “ ℓmod 8. If
m R t1, 3, 4u then return a large value such as 2maxpSq `1. However if m P t1, 3, 4u



126 Chapter 5. Fine-Grained Complexity via Quantum Walks

then depending on the value of m return ith (if m “ 1) or jth (if m “ 3) or kth (if
m “ 4) element of the q “ tℓ{8uth bucket. The data-structure is again used precisely
at this point, in order to efficiently obtain the ith (or jth or kth) element of the qth

bucket.
As mentioned earlier, the buckets (corresponding to the hash function described

in Equation 5.7) along with the support of the data structure (illustrated in Fig-
ure 5.3) for each bucket, allow efficient access to the elements contained in these
buckets. For example while using the tree data structure, to access ith element of
the tth bucket one can simply search for the ith largest element in the 3SUM tree
storing the elements of tth bucket. Additionally, we also know which bucket is bad by
looking at the value of label badt. Access to the information about whether a bucket
is bad is useful for implementing the first part of the classical reduction which for
the choice of R “ rα for any 0 ă α ă 1 takes strictly sublinear quantum time.

Similarly to the classical reduction, the second part of our quantum reduction
checks if a solution exists to at least one of the Oppr{Rq3q Convolution-3SUM
instances. By doing Grover search over the instances, the quantum time complexity
of this part is rOppr{Rq1.5 ¨Tc-3SUMpr1qq where Tc-3SUMpr1q denotes the time taken by a
quantum algorithm for Convolution-3SUM on a list of r1 elements. In this case
r1 “ OpRq.

Therefore, in total, we now have a
?
rR ` pr{Rq

1.5
¨ Tc-3SUMpRq (5.8)

quantum time algorithm for 3SUM’, ignoring all the constant and poly-logarithmic
factors.

Overview and handling of errors

1. The original quantum walk based query algorithm to solve 3SUM’ has a suc-
cess probability of 1 ´ op1q [CE05].

2. The 3SUM’ subroutine on the r-sized subset (stored on the dynamic data
structure), the checking step in the main walk algorithm, could fail. Let the
failure probability be p. We will try to reduce p to a small value so that state of
the main walk algorithm is very close to state of the algorithm if the checking
step was exact (Theorem 2.6 in Chapter 2). Note that, in the actual walk
algorithm, this subroutine is repeated Oppn{rq1.5q times. Therefore setting
p “ 1

3polypnq
would suffice. We will now see that, this indeed can be done.

The 3SUM’ subroutine on r-sized subsets that are stored on the dynamic data
structure (from Figure 5.3) can be reduced to finding a solution in any of the
Opr{Rq3 instances of Convolution-3SUM for which we supposedly have a
bounded-error sublinear quantum algorithm. As we know, given a bounded-
error algorithm, we can cheaply reduce this error to any ε by running this
subroutine Oplogp1{εqq many times and taking the majority of the outcomes.
With that, the error probability both for the Convolution-3SUM subrou-
tine and the Grover subroutine can be made inverse polynomial in n (of any
degree d) by just repeating these subroutines Oplog nq times. However, the
data structure, random hash function as mentioned in Equation 5.7, could
either fail but with a small probability, or worse it could take longer than



5.5. Other 3SUM-hard problems 127

the expected time. We will analyse these two scenarios in the subsequent
paragraph.

Failure of data structure operations Let us first revisit the hash function from
Equation 5.7 and its properties. The hash function on any element a is,

hpaq “ pza mod 2wq ˜ 2w´s, (5.9)

where z is a random odd integer of w bits and s “ Θplogwq. This hash function is
probabilistic and has the possible sources of errors:

1. This hash function is always (almost) linear, i.e. for any two numbers a and
b, hpaq ` hpbq ` t0, 1u “ hpa ` bqpmod2sq. Hence, this is not a source of
error, in fact similar to the classical case, we only have to create another set
of Convolution-3SUM instances with only slight modification to the way
the first set of instances are created.

2. However, with probability Op1{2sq, the hash function creates false positive
cases, i.e. hpaq ` hpbq ` t0, 1u “ hpcqpmod2sq even when a ` b ‰ c. For our
algorithm to be sublinear in time, the value of R has to be equal to 2s and
rα, which means R “ nζ for some 0 ă ζ ă 1, making the probability of false
positive cases equal to Op1{nζq. We propose the following way to deal with
this situation.

The primary goal is to use the Convolution-3SUM subroutine as a black
box on instances of size OpRq repeatedly and check if any of these Opr{Rq3

instances has a positive solution, for which we use Grover’s search subroutine.
The result of the Grover’s subroutine gives out the details of which instance of
size OpRq has the solution, whose validity can be checked in OpRq additional
time. This would worsen the complexity to

?
rR ` pr{Rq

1.5
¨ Tc-3SUMpRq ` R (5.10)

as opposed to what we had in in Equation 5.8. However, given that R ă r,
the calculations in the proof of Corollary 5.29 still goes through.

3. Lastly, the hash function has good load balancing property which means ex-
pected number of elements in the bad buckets is at most OpRq [Die96]. Using
Markov’s inequality we can see that the probability of the number of bad
elements exceeding k times the expected number of bad elements is upper
bounded by 1

k
. Therefore, even for a k as small as polylogpnq the probability

of error (in the asymptotic sense) is arbitrarily close to 0. As discussed earlier,
we only proceed with the reduction when the total number of elements in the
bad bucket is at most c1 ¨ logc n ¨ R for some constants c1, c ą 1. Therefore,
there will be only small amplitude of our state of the algorithm that will be
aborted preemptively; see Section 3.2 of the full online version of this work
[BLP+22a].

We can now formally state the main result of this section, that is: a sublinear
quantum algorithm for Convolution-3SUM would imply a sublinear algorithm
for 3SUM’.



128 Chapter 5. Fine-Grained Complexity via Quantum Walks

Corollary 5.29. If there exists a quantum algorithm for Convolution-3SUM
running in time Opn1´δq, for some constant δ ą 0, then Quantum 3SUM Conjecture
is false.

Proof. We choose the number of hash values to be R “ rα for some 0 ă α ă 1
to be chosen later. Then let Tc-3SUMpRq “ R1´δ, for some fixed δ ą 0, denote the
time taken by a bounded-error quantum time algorithm that solves Convolution-
3SUM on OpRq-sized inputs. The expression in Equation 5.8 then becomes of order

r
1`α
2 ` r

3
2

p1´αq
¨ rαp1´δq (5.11)

The first additive term in Equation 5.11 is always sublinear, hence can be ignored.
Let us analyse the exponent in the second term, i.e., 3

2
´ α

2
´ αδ. It is easy to

see that for every δ ą 0, there exists an α such that 0 ă 1
1`2δ

ă α ă 1 and the
expression in Equation 5.11 is strictly sublinear in r. Plugging in this in the proof
of Theorem 5.2 would now give us a sublinear algorithm for 3SUM’. Note that the
reduction algorithm we described uses rOpnR|Σ|q bits of memory, but because the
reduction is rOprq-sparse, invoking the result Theorem 4.1 from Chapter 4 we can
claim the same result space efficiently as well.

Therefore, a sublinear quantum algorithm for Convolution-3SUM, implies a
sublinear algorithm for the structured version of 3SUM’, which according to the
result of Theorem 5.2 is not possible unless Quantum 3SUM Conjecture is false.

5.5.2 Quantum lower bound for 0-Edge-Weight-Triangle

The quantum reduction from Convolution-3SUM to 0-Edge-Weight-Triangle
problem is a straightforward adaptation of the classical local reduction by [VW13],
which is as follows: given an input instance of Convolution-3SUM, an array A
of n elements, the reduction, for every i P r

?
ns creates an instance Gi which is

a tripartite graph with a weight function associated with the edges of each graph.
We will show that there exists a 0-Edge-Weight-Triangle in any of these

?
n

graphs, if and only if there exists a solution to the Convolution-3SUM.
For every i P r

?
ns, create a complete tripartite graph Gi of three partitioned sets

of nodes Li, Ri, Si which contain
?
n nodes each. Let Lirts, Rirts, Sirts denote the tth

node of the partition Li, Ri, Si, respectively. We then set the weights as follows:

1. wpLirss, Rirtsq “ Arps ´ 1q
?
n ` ts,

2. wpRirts, Sirqsq “ Arpi ´ 1q
?
n ` q ´ ts,

3. wpLirss, Sirqsq “ ´Arps ` i ´ 2q
?
n ` qs.

Clearly, if there is a triangle in a graph Gi having zero total edge weight, then the
value of the weights are solution to the Convolution-3SUM problem. The other
direction also holds: suppose there is a solution to the Convolution-3SUM at
index i1, i2, i3 such that Ari1s ` Ari2s “ Ari3s then there exists a tripartite graph
Gi with a 0-Edge-Weight-Triangle made by the nodes Lirss, Rirts, Siri

1
2 ` ts

where i ´ 1 “ i2 ˜
?
n and i12 “ i2 mod

?
n are the quotient and rest of the

integer division of i2 by
?
n (which we are assuming is an integer, without loss of

generality), and s´ 1 “ i1 ˜
?
n, t “ i1 mod

?
n. It then holds i2 “ pi´ 1q

?
n` i12

with i12 P t0, ...,
?
n ´ 1u and i1 “ ps ´ 1q

?
n ` t for 0 ď t ă

?
n.



5.6. Future directions and open questions 129

As the reduction is completely local, given an index i P r
?
ns and any three

indices s, t, q P r
?
ns we can in constant time query the weights wpLirss, Rirtsq,

wpRirts, Sirqsq, wpLirss, Sirqsq associated with nodes Lirss, Rirts, Sirqs.
The following now follows:

Corollary 5.30. There is no quantum algorithm for the 0-Edge-Weight-Triangle
problem, running in time Opn1.5´ϵq for an ϵ ą 0, unless Quantum 3SUM Conjecture
is false.

Proof. Let T pvq “ vβ, for some β ą 0, denote the time taken quantumly to compute
whether a graph G “ pV,Eq with |V | “ v nodes contains a 0-Edge-Weight-
Triangle.

Using Grover’s subroutine over
?
n indices, one can in Opn1{4 ¨ T p

?
nqq quantum

time check if there exists an index i such that the graph Gi contains a 0-Edge-
Weight-Triangle. As argued above, this is equivalent to checking for a solution
to Convolution-3SUM on n elements. Therefore, by Corollary 5.29, it is required
that 1

4
`

β
2

ě 1, which is to say, β ě 3
2
, unless the Quantum 3SUM Conjecture is

false.

5.6 Future directions and open questions

The following is a non-exhaustive list of questions which are currently open, and
which we hope will benefit from the approach contained in this chapter:

• Table 5.1 contains four problems for which we can prove some quantum lower
bound, conditioned on the Quantum 3SUM Conjecture. Is this lower bound
tight, i.e., are there matching algorithms? Or can we prove a higher lower
bound, perhaps based on a different conjecture?

• The Classical 3SUM Conjecture itself gives various other lower bounds in the
classical setting, which we did not study in the quantum setting, namely lower
bounds against dynamic data-structure problems. Can these lower bounds be
proven in the quantum regime, also?

• More generally, for what other problems can we prove that the known quan-
tum speed-up is optimal, under a reasonable hardness hypothesis such as the
Quantum 3SUM Conjecture?

Additionally, the various papers using dynamic data structures in quantum
walks, including [Amb07; ACL+20] and our work, give rise to an interesting ques-
tion in classical data structures. The vast majority of space-efficient dynamic data
structures are not history-independent: history-independence is a feature which
cannot be properly motivated if one is only interested in classical algorithms, but
which is fundamentally necessary for using the dynamic data structure as part of a
quantum walk. One can then attempt to understand for which problems do history-
independent, memory and time-efficient dynamic data structures exists. For sorting,
the only known solution (skip lists) is randomised. Is this necessary? More gener-
ally, what dynamic data-structure problems have solutions that are simultaneously
deterministic, time-efficient, space-efficient, and history-independent? Can we prove
lower bounds against data structures obeying all four criteria simultaneously, which
we cannot prove against data structures obeying only three among the four criteria?





Chapter 6

Matching Triangles & Triangle
Collection

Chapter summary Classically, for many computational problems one can con-
clude time lower bounds conditioned on the hardness of one or more of key problems,
such as CNF-SAT (or its other variant such as k-SAT), 3SUM and APSP. In the
earlier chapters, we discussed and presented similar results that have been derived
in the quantum setting conditioned on the quantum hardness of k-SAT and 3SUM
[ACL+20; BPS21; BLP+22a].

Interestingly, for ∆-Matching Triangles and Triangle Collection, two
graph problems with natural definitions, classical hardness results have been de-
rived [AVY18] conditioned on the hardness of all three key problems. More precisely,
it is proven that an Opn3´ϵq time classical algorithm (for any constant ϵ ą 0) for
either of these two graph problems would imply faster classical algorithms for k-SAT,
3SUM and APSP, making ∆-Matching Triangles and Triangle Collection
worthwhile to study.

In this chapter, analogous to the classical result, we show that an Opn1.5´ϵq time
quantum algorithm (for any constant ϵ ą 0) for either of these two graph problems
would imply faster quantum algorithms for k-SAT, 3SUM and APSP. To prove
these results, we first formulate a quantum hardness conjecture for APSP analogous
to the classical one and then present quantum reductions from k-SAT, 3SUM and
APSP to ∆-Matching Triangles and Triangle Collection. Additionally,
based on the quantum APSP conjecture, we are also able to prove quantum lower
bounds for a matrix problem and many other graph problems. The matching upper
bounds follow trivially for most of them, except for ∆-Matching Triangles and
Triangle Collection for which we present quantum algorithms that require
careful use of data structures and Ambainis’ variable time search [Amb10] as a
subroutine.

This chapter shares results presented in Leijnse’s Masters’ thesis [Lei22], both of
which are built on the following paper:

[ABL+22] Andris Ambainis, Harry Buhrman, Koen Leijnse, Subhasree Patro, Florian
Speelman. Matching Triangles and Triangle Collection: Hardness based on a
Weak Quantum Conjecture. Preprint available at arXiv:2207.11068.



132 Chapter 6. Matching Triangles & Triangle Collection

6.1 Introduction

The All Pairs Shortest Path (APSP) problem is defined as follows.

Definition 6.1 (APSP). Given a weighted (directed or undirected) graphG “ pV,Eq

on n “ |V | vertices with no negative cycles, for every pair of vertices pa, bq P V ˆV ,
output the shortest distance between vertices a, b if there is a path, else output 8.

The current fastest known classical algorithm for APSP runs in n3{ expp
?
log nq

time [Wil18], and it has been conjectured that no Opn3´ϵq time classical algorithm,
for any constant ϵ ą 0, is possible. Based on this conjecture, time lower bounds
for a lot of problems, for example, Graph Radius, Graph Median, Negative Triangle
and many more, have been concluded. See an excellent survey of these results by
Vassilevska Williams [Vas15].

Surprisingly in the quantum setting, as opposed to a quadratic speedup over the
classical cubic upper bound, the fastest known quantum algorithm solving APSP
runs in rOpn2.5q time; one can either use the rOpn1.5q time algorithm for solving the
Single Source Shortest Paths problem for every vertex in the input graph, or (as
we will soon see in Section 6.2.2) one could use repeated “squaring” of the weight
matrix of the graph, not squaring in the usual sense but under a different definition
of matrix multiplication, to output the distance matrix D such that Dru, vs contains
the length of the shortest path between nodes u, v.1

Despite several efforts through multiple approaches, no significant speedup to
the rOpn2.5q time quantum upper bound is known for APSP, it is therefore natural
to study the consequences of the following conjecture.

Conjecture 6.2 (Quantum APSP Conjecture). There is no bounded error quantum
algorithm that solves APSP on a graph of n nodes inOpn2.5´δq time, for any constant
δ ą 0.

As a first natural step, we study the classical reductions from APSP to com-
putational problems mentioned in Table 6.1 and (unexcitedly) observe that almost
all these reductions can be trivially adapted to the quantum setting; this especially
happens because there is now sufficient time to process the input for most of these
reductions just as it is done in the classical setting; rest of the classical reductions can
be easily modified to behave on-the-fly. Moreover, the matching upper bounds for
all these problems in Table 6.1 can be derived using Grover-like speed-ups, except for
∆-Matching Triangles and Triangle Collection for which we (excitedly)
present quantum algorithms that require careful use of data structures and use Am-
bainis’ variable time search as a subroutine. Additionally, we are able to conclude
the optimality of these algorithms based on the conjectured quantum hardness of
all the three key problems, CNF-SAT, 3SUM and APSP, just as it can be in the
classical setting.2

1Note that the first algorithm gives the shortest paths tree and the later outputs the shortest
distance matrix, but both of them take rOpn2.5q time in the quantum setting. See Section 6.2 and
Leijnse’s Masters’ thesis for a discussion on this [Lei22].

2For ∆-Matching Triangles, the bounds are tight for ωp1q ď ∆pnq ď nop1q.



6.1. Introduction 133

6.1.1 A weak quantum conjecture

Abboud, Williams, and Yu prove that an Opn3´ϵq time classical algorithm (for any
constant ϵ ą 0 and ωp1q ď ∆pnq ď nop1q) for either of these two graph problems
would imply faster classical algorithms for k-SAT, 3SUM and APSP [AVY18], mak-
ing ∆-Matching Triangles and Triangle Collection worthwhile to study.

This means one can now make fewer hardness assumptions when it comes to un-
derstanding the hardness of ∆-Matching Triangles and Triangle Collection.
Towards that, a weaker conjecture was introduced which states that at least one of
the classical 3SUM-conjecture, APSP-conjecture or SETH is true. They called it
the extremely popular conjecture.

Analogous to Abboud et al.’s surprising classical result, we are also able to
show that an Opn1.5´ϵq time quantum algorithm (for any constant ϵ ą 0 and
the same ranges of ∆) for either of these two graph problems would imply faster
quantum algorithms for k-SAT, 3SUM and APSP. Clearly, for problems such as
∆-Matching Triangles and Triangle Collection a weaker quantum hard-
ness assumption can be made to conclude time lower bounds. Hence, we state the
following conjecture analogous to the classical case.

Conjecture 6.3. At least one of Conjecture 3.5, 5.1 or 6.2 is true.

Based on Conjecture 6.3, we are able to prove tight quantum time bounds for
∆-Matching Triangles and Triangle Collection. The upper bounds are
non-trivial and will be the content of the next subsection.

6.1.2 Upper bounds for ∆-Matching Triangles and Triangle Collection

The ∆-Matching Triangles and Triangle Collection problems are two nat-
urally occurring graph problems, whose definitions are as follows.

Definition 6.4 (∆-Matching Triangles). Given a graph G “ pV,Eq with a
colouring of the vertices γ : V Ñ Γ with |Γ| ď n, determine if there is a triple
of colours i, j, k P Γ such that there are at least ∆ triangles a, b, c P V for which
pγpaq, γpbq, γpcqq “ pi, j, kq.

Note that the range of ∆ can vary between 0 ď ∆ ď n3.

Definition 6.5 (Triangle Collection). Given a graph G “ pV,Eq with a
colouring of the vertices γ : V Ñ Γ with |Γ| ď n, determine if for every triple of
colours i, j, k P Γ there is at least one triangle a, b, c P V for which pγpaq, γpbq, γpcqq “

pi, j, kq.

Quantum algorithms for many of the graph problems we consider in this work,
such as Negative Triangle or 0-Edge-Weight-Triangle, can be found using
an easy application of Grover’s algorithm. The algorithms for ∆-Matching Triangles
and Triangle Collection, however, are less trivial — these will heavily use Vari-
able Time Search by Ambainis [Amb10] which can be stated as follows.

Theorem 6.6 ([Amb10]). Given a string x P t0, 1un, the task is to find i such that
xi “ 1. Additionally, let ti be the maximum time required to evaluate xi. There
exists a quantum algorithm that with probability at least 2

3
outputs some j P rns

such that xj “ 1 else outputs 0. The algorithm takes rOp
a

řn
i“1 t

2
i q time and makes

rOp
a

řn
i“1 t

2
i q queries to x.



134 Chapter 6. Matching Triangles & Triangle Collection

The algorithm for ∆-Matching Triangles is more complicated than the one
presented for Triangle Collection, but with the similarity that they both use
the Variable Time Search of Theorem 6.6. Hence, we will sketch the algorithm for
Triangle Collection first and proceed to discuss the intuition of the algorithm
for ∆-Matching Triangles after that. Also, see Section 6.4 for the details of
these algorithms.

Algorithm for Triangle Collection Recall its definition: given a graph
G “ pV,Eq, we want to know if for every triple of colours there is a triangle in the
graph G “ pV,Eq. This is the same as knowing if there is a triple of colours such that
there is no triangle of that colour triple in G. Making use of this simple observation
we do the following: let’s assume a subroutine that given a colour triple pi, j, kq P Γ3

outputs yes if there is a triangle of this colour in the input graph G, and no otherwise.
Furthermore, let ti,j,k be the time taken for the subroutine on colour triple pi, j, kq.
Invoking Theorem 6.6 we can now conclude that the total time taken on a graph of
n nodes is T pnq “ Op

b

ř

pi,j,kqPΓ3 t2i,j,kq. Suppose that with some pre-processing of
the input, this is where the data structures come to use, we could efficiently access
nodes of G coloured by i for any i P Γ. Then in ti,j,k “ rOp

a

|Vi| ¨ |Vj| ¨ |Vk|q time,
where Vi, Vj, Vk denotes the sets of nodes with colours i, j, k respectively, we can find
if there is a triangle in G of colour i, j, k. Which means

T pnq “ O

¨

˝

d

ÿ

i,j,kPΓ3

t2i,j,k

˛

‚“ rO

¨

˝

d

ÿ

i,j,kPΓ3

|Vi| ¨ |Vj| ¨ |Vk|

˛

‚

“ rO

¨

˝

d

ÿ

iPΓ

|Vi|
ÿ

jPΓ

|Vj|
ÿ

kPΓ

|Vk|

˛

‚“ rO
`

n1.5
˘

.

On the other hand, the algorithm for ∆-Matching Triangles is slightly more
complicated. Apart from using the Variable Time Grover Search subroutine, the
algorithm makes use of different ways of counting the number of triangles in a graph.
To state some of these several methods:

1. Given a graph G “ pV,Eq of n nodes and access to the adjacency matrix AG

corresponding to G, one can count the number of triangles by computing the
trace of A3

G. Here A3
G refers to matrix multiplication of AG with itself three

times. This can be achieved classically in Opnωq time, where ω denotes matrix
multiplication constant currently known to be at 2.3728.

2. Or, one could use the threshold variant of Grover Search, with which one can
check if there are at least k triangles in a graph of n nodes in Opn1.5` k

2 q time.

Intuition for algorithm for ∆-Matching Triangles Recall the definition
of ∆-Matching Triangles: given a graph G “ pV,Eq with n nodes and a colour-
ing of the nodes γ : V Ñ Γ, is there a triple of colour pi, j, kq P Γ3 such that there
are at least ∆ triangles of that colour triple. Clearly, trivial brute forcing (in spite
of the Grover-like speedup) over all triples of colours and checking if any of the
colour triples has at least ∆ triangles is going to cost Op

?
∆n3q. While this bound

is sub-cubic for small ∆, however when ∆ « n3 we get the same upper bound as



6.2. Quantum fine-grained reductions from APSP 135

Problem Classical Quantum
pmin,`q-Matrix
Multiplication

Lower bound n3´op1q [FM71; Mun71] n2.5´op1q Lemma 6.9
Upper bound Opn3q p˚q Opn2.5q (˚˚)

All-Pairs
Negative Triangle

Lower bound n3´op1q [VW18] n2.5´op1q Lemma 6.13
Upper bound Opn3q p˚q Opn2.5q p˚˚q

Negative Triangle
Lower bound n3´op1q [VW18] n1.5´op1q Lemma 6.15
Upper bound Opn3q p˚q Opn1.5q p˚˚q

0-Weight Triangle
Lower bound n3´op1q [VW13] n1.5´op1q Lemma 6.18
Upper bound Opn3q p˚q Opn1.5q p˚˚q

∆-Matching
Triangles

Lower bound n3´op1q [AVY18] p:q n1.5´op1q Lemma 6.20 p:q

Upper bound Opn3´op1qq [AVY18] p:q rOpn1.5`op1qq Corollary 6.33 p:q

Triangle
Collection

Lower bound n3´op1q [AVY18] n1.5´op1q Lemma 6.23
Upper bound Opn3q p˚q rOpn1.5q Theorem 6.34

Table 6.1: Overview of lower bounds based on a hardness conjecture for APSP, both in
the classical and in the quantum setting. Corresponding upper bounds are
also provided.
p˚q: These upper bounds are the most straightforward algorithms, like ex-
haustive search, and therefore have no particular source.
p˚˚q: By applying Grover Search, potentially as a subroutine.
p:q: Holds only for ωp1q ď ∆ ď nop1q.

the classical one. What helps is firstly the observation that when ∆ is too big then
there aren’t that many triples of colours that one needs to brute force over. Sec-
ondly, having fixed a triple of colour, it is more efficient to use brute force search
over matrix multiplication if the number of nodes restricted to the triple of colour
is small. Using these two simple but crucial observations, we get rOpn1.5

?
∆q for

1 ď ∆pnq ď nω and rOpn1.5`ω
?
∆

q for nω ď ∆pnq ď n3. We present the details and the
exact parameters of the algorithm in Section 6.4.

Structure of this chapter In Section 6.2 we formulate a quantum hardness con-
jecture for APSP, then study reductions from APSP to several computational prob-
lems. See Table 6.1 for an overview of the results and Figure 6.1 captures how these
problems computationally relate to each other. In Section 6.3, we present quantum
fine-grained reductions for ∆-Matching Triangles and Triangle Collection
from all three key problems. In Section 6.4, we give non-trivial quantum time upper
bounds for ∆-Matching Triangles and Triangle Collection. Finally, we
conclude in Section 6.5.

6.2 Quantum fine-grained reductions from APSP

6.2.1 All Pairs Shortest Path (APSP) problem

Definition 6.1 (APSP). Given a weighted (directed or undirected) graphG “ pV,Eq

on n “ |V | vertices with no negative cycles, for every pair of vertices pa, bq P V ˆV ,
output the shortest distance between vertices a, b if there is a path, else output 8.

Note that, there is one other version of the APSP problem where the algorithm
solving it is required to output the shortest path between every pair of vertices in the



136 Chapter 6. Matching Triangles & Triangle Collection

graph. Classically, both these versions of APSP are conjectured to require n3´op1q

time; Hardness is conjectured for the distance version of APSP [Vas15; VW18],
which immediately implies that the path version of APSP also requires n3´op1q time.
Quantumly, APSP can be solved in rOpn2.5q time for both these mentioned versions
of APSP, except that for the path version of the APSP problem the algorithm
outputs a shortest path tree for every vertex instead of outputting shortest path
between every pair of vertices in the graph. It is easy to see that otherwise achieving
such an upper bound would not be feasible: for example, consider the n-cycle graph
G “ pV,Eq: for every node v P V in G, we will require a total of rΩpn2q bits to write
down all the paths from v to nodes w P V . Doing this for every node in the graph
would then require rΩpn3q bits, hence rΩpn3q time.

One can solve APSP by using the quantum algorithm for single source shortest
path (SSSP) problem by [DHH+06] on every vertex in the graph.

Theorem 6.7 (Implicit in Theorem 18 [DHH+06]). There is a bounded error rOpn1.5q

time quantum algorithm to solve SSSP on a graph of n nodes.3

Consequently, this gives a rOpn2.5q time quantum algorithm for APSP both for
the path and the distance versions of the problem. Moreover, they also show that
single source shortest path problem requires Ωpn1.5q queries, hence also Ωpn1.5q time,
in the quantum model of computation we are considering. While there might not
be sufficient reason to believe that the only way to solve APSP is through solving n
instances of SSSP (hence APSP must require n2.5´op1q time), we do have additional
reasons to present the Quantum APSP Conjecture the way it is; especially because
there are no faster algorithms known for APSP or for any of the problems in the
web of reductions stemming from APSP.

In this thesis, we primarily study the distance version of this problem as stated
in Definition 6.1 and conjecture the following.

Conjecture 6.2 (Quantum APSP Conjecture). There is no bounded error quantum
algorithm that solves APSP on a graph of n nodes inOpn2.5´δq time, for any constant
δ ą 0.

6.2.2 Reductions from APSP

The quantum lower bounds stated here follow trivially from the classical reductions
presented in the following papers: [FM71; Mun71; AVY18; VW18; VW13]. Some
adjustments are necessary, however, for boosting the accuracy of our subroutines.
We sketch the reductions here sometimes without going into much detail about the
correctness of these reductions. See Leijnse’s Masters’ thesis for a more comprehen-
sive overview of all these classical reductions [Lei22].

The first couple of results are quite straightforward, we can use the classical
reductions with occasional on-the-fly methods, and we derive many quantum lower
bounds based on the quantum hardness of APSP. We are also able to retain the
hardness-equivalence with pmin,`q-Matrix Multiplication just as it was first
discovered in [FM71; Mun71] for the classical setting. These two reductions are
somewhat considered folklore, for detailed descriptions we again refer to [Lei22].

3Note that, while their theorem was originally stated for the adjacency array model of input,
this upper bound holds for the case where the access to the input G “ pV,Eq is given via a matrix
M P t0, 1unˆn, with M ru, vs “ 1 iff pu, vq P E for all pairs pu, vq P V ˆ V .



6.2. Quantum fine-grained reductions from APSP 137

Definition 6.8 (pmin,`q-Matrix Multiplication). Given two n ˆ n matrices
M,N P Rnˆn with R “ r´nc, ncs, compute the distance product M ‹ N defined as
follows:

pM ‹ Nqrijs :“ min
kPrns

pM riks ` N rkjsq.

Lemma 6.9. pAPSP, n2.5q ďQFG ppmin,`q-Matrix Multiplication, n2.5q.

Proof. Let G “ pV,Eq be an input to the APSP problem with n “ |V | nodes and
weight function w : E Ñ R such that there are no negative cycles in the graph. Let
W denote the weight matrix corresponding to G, i.e., for all u, v P V we set

W ruvs “

$

’

&

’

%

0 if u “ v,

wpu, vq if pu, vq P E,

8 if pu, vq R E.

In the context of this proof, let W k :“ W ‹W ‹ . . .‹W , with k copies of W in the
sequence, defined for all k P rns. Interestingly, W n is the shortest distance matrix
of G, i.e., W nruvs contains the length of the shortest path between vertices u and
v; the proof follows using induction. See Theorem 3.2.1 [Lei22] for the same.

Let T pkq denote the number of calls to the pmin,`q-Matrix Multiplication
subroutine we make for computing W k; with that, we have T p1q=0. We can now
compute W n using the algorithm for pmin,`q-Matrix Multiplication and re-
peated squaring method as follows: to compute W n “ W n{2 ‹ W n{2, first compute
A “ W n{2 and then compute A ‹A. Therefore we have T pnq “ T pn{2q ` 1. Solving
this recurrence relation gives us T pnq “ Oplog nq. Therefore, with Oplog nq calls to
pmin,`q-Matrix Multiplication we can solve APSP. Additionally, to boost the
success probability of each of these O logpnq subroutine calls we need to repeat each
of them Oplogplogpnqqq times. Therefore, if pmin,`q-Matrix Multiplication can
be solved in Opn2.5´αq time, for some α ą 0, then APSP can be solved in rOpn2.5´αq

time as well. Hence, pAPSP, n2.5q ďQFG ppmin,`q-Matrix Multiplication, n2.5q

as per Definition 2.16 in Chapter 2.

Interestingly, a similar result holds in the other direction as well.

Lemma 6.10. ppmin,`q-Matrix Multiplication, n2.5q ďQFG pAPSP, n2.5q.

Proof. Let M and N be two n ˆ n matrices. We will construct a tripartite graph
G in a way that we can read the product M ‹N from its distance matrix D that is
the output of the algorithm for APSP on input G.

Construct G “ pV,Eq with a vertex set V “ A Y B Y C s.t. A “ ta1, , , anu,
B “ tb1, , , bnu and C “ tc1, , , cnu. For every M rijs we add edge pai, bjq to E with
weight wpai, bjq “ M rijs, and for every N rijs we add edge pbi, cjq to E with weight
wpbi, cjq “ N rijs. For a pair of nodes ai, cj it holds that the distance of its shortest
path is minbkPBpwpai, bkq ` wpbk, cjqq “ min1ďkďnpM riks ` N rkjsq “ pM ‹ Nqrijs.

Therefore, we can compute all the entries pM ‹Nqrijs first by running the APSP
algorithm on G and then in the distance matrix D which is its output, look for
the entries corresponding to nodes ai, cj P V . Do this for all i, j P rns to gener-
ate the matrix M ‹ N . All this processing takes Opn2q time; hence, an Opn2.5´αq

time algorithm for APSP (for an α ą 0) implies a OpT pnqq time algorithm for
pmin,`q-Matrix Multiplication where T pnq “ nmaxp2.5´α,2q, therefore proving
the statement of Lemma 6.9.



138 Chapter 6. Matching Triangles & Triangle Collection

Both these reductions from Lemma 6.10 and Lemma 6.9 were straightforward
implementations of their respective classical counterparts. Moreover, by combining
both these results we obtain the following.

Corollary 6.11. pAPSP, n2.5q “QFG ppmin,`q-Matrix Multiplication, n2.5q.

What follows now is a chain of reductions from pmin,`q-Matrix Multiplication.
We first define All-Pairs Negative Triangle and then prove a conditional
quantum lower bound for this problem in the same way as it was shown in the
classical setting [VW18]; this problem is rather contrived, but it is useful in con-
necting APSP and pmin,`q-Matrix Multiplication to other naturally defined
graph problems.

Definition 6.12 (All-Pairs Negative Triangle). Given a tripartite weighted
graph G “ pAYB YC,Eq over Opnq nodes and with an associated weight function
w : E Ñ r´nc, ncs, for every pair of nodes a, b such that a P A and b P B determine
whether there exists c P C such that nodes a, b, c form a triangle of negative weight
in G.

Lemma 6.13. pmin,`q-Matrix Multiplication is quantum pn2.5, n2.5q-reducible
to All-Pairs Negative Triangle.

Proof. Consider matricesM,N as an input to the pmin,`q-Matrix Multiplication
problem. Let M,N P Rnˆn with R “ r´nc, ncs. Just as it is in the classical reduc-
tion given by [VW18], construct a tripartite graph G “ pAYB YCq of Opnq nodes
with A “ ta1, . . . , anu, B “ tb1, . . . , bnu and C “ tc1, . . . , cnu. Then @j, k P rns add
an edge pbj, ckq to E with weight wpbj, ckq “ ´N rjks and @k, i P rns add an edge
pck, aiq to E with weight wpck, aiq “ ´M rkis.

Let S be a n ˆ n matrix with Srijs denoting a value in r´2nc, 2ncs. We
will soon show how to fix these values. For every i, j, add an edge pai, bjq in E
with weight wpai, bjq “ Srijs. Initially, @i, j set Srijs “ 2nc. Call the subrou-
tine for All-Pairs Negative Triangle on graph G. At first there will be no
i, j such that ai, bj P V ˆ V have a negative triangle. For each i, j we binary
search overall values in r´2nc, 2ncs to set the value of Srijs in such a way that the
All-Pairs Negative Triangle subroutine on those indices has a negative trian-
gle, once found we do not alter the value of that Srijs any more. We continue this
process until the All-Pairs Negative Triangle algorithm has negative triangles
for all ai, bj P V ˆV . It is then not hard to see that the final matrix S is actually M ‹

N . Therefore, with Oplog nq applications of the All-Pairs Negative Triangle
subroutine we are able to compute pmin,`q-Matrix Multiplication. Addition-
ally, to boost the success probability of the individual All-Pairs Negative Triangle
calls, we apply each one of them Oplogplogpnqqq times. Therefore, we can solve
pmin,`q-Matrix Multiplication in rOpn2.5´α ` n2q time using a Opn2.5´αq time
algorithm for All-Pairs Negative Triangle. Hence, proved.

For all the computational problems we have seen so far in this chapter, the (condi-
tional) time complexities have been n3 classically and n2.5 quantumly. Interestingly,
we now notice a divergence between the classical and quantum time complexities of
Negative Triangle. See Figure 6.1.



6.2. Quantum fine-grained reductions from APSP 139

Definition 6.14 (Negative Triangle). Given a graph G “ pV,Eq of n “ |V |

nodes with weight function w : E Ñ r´nc, ncs, determine if G has a triangle with
negative weight, i.e., is there a triple of nodes a, b, c P V such that wpa, bq`wpb, cq`

wpc, aq ă 0.

The classical reduction from All-Pairs Negative Triangle to Negative
Triangle given by [VW18] is as follows: given a weighted tripartite graph G “

pA Y B Y C,Eq over n “ |V | nodes and a weight function w : E Ñ r´nc, ncs

construct N graphs as inputs to the Negative Triangle problem, an N which
we will soon fix. First split the sets A,B,C into nα sets of n1´α vertices each, for
some α ą 0. For every triple of these sets, we are going to create a sub-graph of G.
So in total there will be N “ n3α tripartite sub-graphs of size 3n1´α each. For each
of these N sub-graphs, run the subroutine that solves Negative Triangle and if
the subroutine outputs ‘yes’ then find the triangle, let’s say the triangle found has
nodes a, b, c originally belonging to sets A,B,C, respectively, and then remove the
edge pa, bq from all the sub-graphs, and make a note that the nodes a, b did have a
negative weight triangle. Repeat until no new triangles are detected in any of the
remaining sub-graphs. For those leftover nodes in set A,B output that no negative
triangle exists for these nodes.

Note that, we only have access to the subroutine for Negative Triangle that
detects a negative triangle but doesn’t necessarily find it. Using the subroutine for
Negative Triangle we can also find the triangle with a Oplog nq overhead in
time: split the set of vertices into four (roughly) equal parts. We know that there
must be at least one combination of three vertex sets that contains the nodes of
a negative triangle. Run Negative Triangle on sub-graphs induced by each of
these

`

4
3

˘

combinations of these sets separately. As soon as we have determined such
a triple of three vertex sets using the Negative Triangle algorithm, we eliminate
the remaining fourth of the vertex set. We repeat this step, eliminating a fourth of
the remaining vertex sets at every iteration until only three vertices remain. If the
Negative Triangle subroutine takes T pnq time on n sized set then the total run
time to find a negative triangle is

O

ˆ

T pnq ` T p
3n

4
q ` T p

9n

16
q ` . . .

˙

“ OpT pnq log nq, (6.1)

whenever T pnq “ polypnq. Additionally, for each graph we need to make logpnq

calls to the Negative Triangle subroutine and to boost the success probability
of each call, we apply each one of them logplogpnqq times.

Therefore the total time taken for solving All-Pairs Negative Triangle is
rOpT pn1´αqpn3α ` n2qq because there are at most Opn2q edges to be removed in the
input graph G. Plugging in α “ 2{3 we get the time complexity as rOpT pn1{3q ¨ n2q.
Hence, if T pnq “ n1.5´ϵ for any ϵ ą 0 then we have a rOpn

1.5´ϵ
3

`2q “ rOpn2.5´ ϵ
3 q time

quantum algorithm for All-Pairs Negative Triangle. With that, we can now
claim the following result.

Lemma 6.15. All-Pairs Negative Triangle is quantum pn2.5, n1.5q-reducible
to Negative Triangle.

Note that, in the classical setting we had cubic lower bounds for all problems
from APSP to ∆-Matching Triangles and Triangle Collection, however,



140 Chapter 6. Matching Triangles & Triangle Collection

quantumly we can only conclude a n1.5´op1q lower bound for Negative Triangle
for graphs with n nodes. While a lower bound of n1.5´op1q does not imply that a
better lower bound of e.g. n2.5´op1q does not exist for Negative Triangle, however,
given that a simple Grover search of all triples of nodes results in a matching upper
bound, it does imply that a larger lower bound for Negative Triangle would be
impossible.

One could argue that it may come as more of a surprise that Negative Triangle
is as hard as All-Pairs Negative Triangle or APSP classically than that we
find a gap in computational complexity in the quantum case. We look for a single tri-
angle in Negative Triangle and for n2 potential triangles in All-Pairs Negative
Triangle. The quantum model highlights these gaps in the difficulty of the prob-
lems in a way that the classical model could not. In this sense working in a quantum
model on itself is already providing us with useful insights into the complexity of
these problems, without requiring that we have a physical quantum algorithm to
implement our reductions. An unfortunate consequence of this gap in lower bound
complexities is that we lose the classical reduction from Negative Triangle to
pmin,`q-Matrix Multiplication, since this reduction ‘as-is’ does not let us go
up in complexity. In fact, the definition of fine-grained reductions makes it very chal-
lenging to prove computational lower bounds conditioned on smaller computational
lower bounds, especially when the instances are similarly structured.

Less surprisingly, using the reduction from [VW13] we find a similar lower bound
of n1.5´op1q for the 0-Edge-Weight-Triangle problem.

Definition 6.16 (0-Edge-Weight-Triangle). Given a weighted graph G “

pV,Eq over n “ |V | nodes and with a weight function w : E Ñ r´nc, ncs, determine
if there is a triangle in G with weight 0, i.e., is there a triple of nodes a, b, c P V such
that wpa, bq ` wpb, cq ` wpc, aq=0.

Using the following property of integers, which is a corrected version of Propo-
sition 3.4 by [VW13], and the classical reduction from Negative Triangle to
0-Edge-Weight-Triangle also by [VW13] we then show a quantum reduction
from the Negative Triangle problem to the 0-Edge-Weight-Triangle prob-
lem.

Lemma 6.17. For all integers x, y, z we have that x ` y ą z if and only if there
exists a k such that either:

t
x

2k
u ` t

y

2k
u “ t

z

2k
u ` 1

or it holds that

t
x

2k
u ` t

y

2k
u “ t

z

2k
u and t

x ` y

2k
u “ t

x

2k
u ` t

y

2k
u ` 1.

Proof. We first prove that if one of the two above-mentioned conditions holds then
x ` y ą z.

1. There exists a k such that

t
x

2k
u ` t

y

2k
u “ t

z

2k
u ` 1.

For any integers x, y, k it holds that x`y
2k

ě t
x`y
2k

u ě t x
2k

u ` t
y
2k

u. Furthermore,
for any z, it holds that t z

2k
u ` 1 ą z

2k
. Combining all these inequalities we get

x`y
2k

ą z
2k

for that k, therefore, x ` y ą z.



6.2. Quantum fine-grained reductions from APSP 141

2. There exists a k such that

t
x

2k
u ` t

y

2k
u “ t

z

2k
u and t

x ` y

2k
u “ t

x

2k
u ` t

y

2k
u ` 1.

Which means for that k,

t
x ` y

2k
u “ t

x

2k
u ` t

y

2k
u ` 1 “ t

z

2k
u ` 1.

But for all x, y, z, k it holds that x`y
2k

ě t
x`y
2k

u and t z
2k

u ` 1 ą z
2k

. Therefore,
we again get x`y

2k
ą z

2k
for that k, therefore, x ` y ą z.

Now we prove the other direction, that is if x ` y ą z then one of the conditions
mentioned in the statement of Lemma 6.17 must hold; having x ` y ą z implies
x`y
2k

ą z
2k

for all k. Alternatively, this also means there exists a k such that t
x`y
2k

u “

t z
2k

u ` 1. But t
x`y
2k

u ě t x
2k

u ` t
y
2k

u for any k. Therefore there exists a k such that
t z
2k

u ` 1 ě t x
2k

u ` t
y
2k

u. We have two cases to analyse from this.

1. If t z
2k

u ` 1 “ t x
2k

u ` t
y
2k

u then we have the first condition in the statement of
Lemma 6.17. Hence, partially proved.

2. If t z
2k

u ` 1 ą t x
2k

u ` t
y
2k

u while t
x`y
2k

u “ t z
2k

u ` 1, which is the scenario we
are in, then these two statements can simultaneously hold only when t

x`y
2k

u “

t x
2k

u ` t
y
2k

u ` 1 which means t x
2k

u ` t
y
2k

u “ t z
2k

u.

Hence, proved.

Additionally, we will assume that the input to Negative Triangle is tripar-
tite, and that is a fine assumption because the lower bound we get in Lemma 6.15
also holds under this promise that inputs to Negative Triangle are tripartite.

Lemma 6.18. pNegative Triangle, n1.5q ďQFG p0-Edge-Weight-Triangle, n1.5q.

Proof. Let G “ pV,Eq, a tripartite graph with weight function w : E Ñ r´nc, ncs

and V “ A Y B Y C, be an input to the Negative Triangle problem.
We will now invoke the 0-Edge-Weight-Triangle subroutine on 2 logpncq new

instances of G, namely on Gi,j for every i P rlogpncqs, j P t0, 1u. The new instances
Gi,j are constructed in the following way: Gi,j has the same vertices and edges but
different weight function wi,j : E Ñ r´nc, ncs. For every edge pa, bq, pb, cq, pc, aq P E

with a P A, b P B, c P C, we set wi,jpa, bq “ t
´wpa,bq

2i
u, wi,jpb, cq “ t

´wpb,cq

2i
u and

wi,jpc, aq “ t
wpc,aq

2i
u ` j.

For each of these graphs we run the 0-Edge-Weight-Triangle algorithm.
Because of the result from Lemma 6.17 we can make the following claim: whenever
we detect a 0-weight triangle in a graph Gi,1 we know there must be a negative tri-
angle in G. If we detect a 0-weight triangle a, b, c in a graph Gi,0 for some i we use
the triangle finding algorithm just as it was done before statement of Lemma 6.15
to locate it and check whether t

x`y
2k

u “ t x
2k

u ` t
y
2k

u ` 1 holds. This way we de-
termine if there is indeed a negative triangle in G. We therefore have to run the
0-Edge-Weight-Triangle subroutine for Oplog nq times.

Also, the quantum reduction has to take strictly less than n1.5´Op1q time, there-
fore we cannot use the classical reduction as it is, however we can make it on-
the-fly: for any i, j, we can compute any entry of the adjacency matrix for graph



142 Chapter 6. Matching Triangles & Triangle Collection

Gi,j in rOp1q time via the input oracle to G. Additionally, to boost success prob-
ability of the individual calls to the 0-Edge-Weight-Triangle subroutine, we
incur another Oplogplogpnqqq factor overhead in time. This means we can solve
Negative Triangle in rOpn1.5´Op1qq time using a Opn1.5´Op1qq time algorithm for
0-Edge-Weight-Triangle. Hence, proved.

Like in the classical case, we find no reduction from 0-Edge-Weight-Triangle
up the chain of reductions towards APSP or 3SUM. Note that for all problems for
which we have proven quantum lower bound up to this point, we can easily match
this lower bound by a simple application of Grover search.

The reduction from 0-Edge-Weight-Triangle to ∆-Matching Triangles
by [AVY18] however highlights some interesting aspects about the complexity of
∆-Matching Triangles.

Definition 6.4 (∆-Matching Triangles). Given a graph G “ pV,Eq with a
colouring of the vertices γ : V Ñ Γ with |Γ| ď n, determine if there is a triple
of colours i, j, k P Γ such that there are at least ∆ triangles a, b, c P V for which
pγpaq, γpbq, γpcqq “ pi, j, kq.

The reduction from 0-Edge-Weight-Triangle to ∆-Matching Triangles
requires another lemma which was used in [ALW14] and later reformulated in
[AVY18].

Lemma 6.19 (Lemma 2.1 by [AVY18]). For all integers p, d, s, n, c ě 1 if p ě 3nr c
d

s,
there is a set of s “ 2Opdq functions f1, . . . , fs : r´nc, ncs Ñ r´

p
3
, p
3
sd and s many

target vectors t1, . . . , ts P r´p, psd, computable in Oplogpnqq time, such that for all
numbers x, y, z P r´nc, ncs it holds that

x ` y ` z “ 0 iff Dj P rss s.t. fjpxq ` fjpyq ` fjpzq “ tj

The reduction from 0-Edge-Weight-Triangle to ∆-Matching Triangles
and Triangle Collection requires us to turn a weighted graph instance into a
coloured graph instance. In order to encode the edge weights we use Lemma 6.19
to encode the weight space r´nc, ncs of a graph into d-dimensional vectors and
construct a node for each possible edge weight. We see it in more detail in the
following reduction which is a straightforward adaptation of the classical reduction
presented in Theorem 3.2.8 by [Lei22] but originally given by [AVY18].

Lemma 6.20. p0-Edge-Weight-Triangle, n1.5q ďQFG p∆-Matching Triangles, n1.5q

for ωp1q ď ∆pnq ď oplogpnqq.

Proof. Let GpV,Eq be a weighted graph with weight function w : E Ñ r´nc, ncs

and assume that it is tripartite with vertex partition V “ A Y B Y C and let
A “ ta1, . . . , anu, B “ tb1, . . . , bnu and C “ tc1, . . . , cnu. We use Lemma 6.19 setting
d “ ∆, p “ Opn

c
∆ q to construct s “ 2Op∆q functions fi : r´nc, ncs Ñ r´n

c
∆ , n

c
∆ s∆

for our n “ |V |. Now we use fi to construct unweighted coloured graphs Gi “

pAi Y Bi Y Ci, Eiq for each i P rss.
For every a P A add ∆ copies labelled aj for j P r∆s to Ai and let their color be a.

For each b P B add ∆ ¨ 2n
c
∆ copies to Bi labelled bj,x for j P r∆s and x P r´n

c
∆ , n

c
∆ s

and with colour b. Similarly, add ∆ ¨ 2n
c
∆ copies cj,x with colour c for each c P C



6.2. Quantum fine-grained reductions from APSP 143

to Ci. That is, we add a node to B and C for every dimension up to ∆ and every
possible vector entry value in r´n

c
∆ , n

c
∆ s.

Now for the edges: for each pa, bq P A ˆ B add the edges paj, bj,fipwpa,bqqrjsq to Ei

for every j P r∆s. For each pb, cq P B ˆ C add the edges pbj,x, cj,x`fipwpb,cqqrjsq to Ei

for every j P r∆s. Finally, for each pc, aq P C ˆ A, add edges pcj,tirjs´fipwpc,aqqrjs, ajq
to E for every j P r∆s. That is, we have edges going only from nodes in the same
dimension, with the specific value for the b and c nodes given by our constructed
function fi. Every aj has one outgoing edge and every bj, x has one outgoing edge,
even for the values of x that don’t have an edge incoming from aj. For every c only
∆ of the ∆2n

c
∆ nodes cj,x has an outgoing edge.

We now claim thatG has a 0-weight triangle if and only if there exists some i P rss
such that Gi has ∆ matching triangles; suppose G has a 0-weight triangle a, b, c. It
follows from Lemma 6.19 that there is some i P rss such that fipwpa, bqq`fipwpb, cqq`

fipwpc, aqq “ ti. In the following set for ease of notation x “ fipwpa, bqq, y “

fipwpb, cqq and z “ fipwpc, aqq. We know that there exists an i P rss such that

xrjs ` yrjs ` zrjs “ tirjs,

for each j P r∆s. By our construction it always holds for a graph Gi that paj, bj,xrjsq,
pbj,xrjscj,px`yqrjsq, pcj,´zrjs, ajq P Ei for each j P r∆s. Since px ` yqrjs “ pti ´ zqrjs
by the previous observation, it follows that cj,px`yqrjs “ cj,tirjs´zrjs and the triple of
nodes paj, bj,xrjs, cj,´zrjsq forms a triangle for every j P r∆s. Furthermore, since the
triangle paj, bj,xrjs, cj,´zrjsq is the same colour for every j P r∆s, we have ∆ matching
triangles.

Conversely, suppose there are ∆ matching triangles in Gi for some i P rss. We
know from the construction of our graphs Gi that the colours must correspond to
a triple of nodes pa, b, cq P A ˆ B ˆ C in the graph G. Every aj P Ai has only
one outgoing edge paj, bj,xq and so it must be that x “ fipwpa, bqqrjs. The node bj,x
also only has one outgoing edge pbj,x, cj,x`yq and it must be that y “ fipwpb, cqqrjs.
Lastly, since aj has only one incoming edge pcj,tirjs´z, ajq it must be that z “ tirjs ´

fipwpc, aqqrjs and as a result fipwpa, bqqrjs ` fipwpb, cqqrjs “ tirjs ´ fipwpc, aqqrjs for
each j P r∆s. It follows by Lemma 6.19 that wpa, bq ` wpb, cq ` wpc, aq “ 0.

We can use the above algorithm to solve 0-Edge-Weight-Triangle using a
∆-Matching Triangles oracle. We construct 2Op∆q graphs of Op∆n ¨ n

c
∆ q nodes

and Op∆mn
c
∆ q edges each. To keep the number of graphs small enough, the reduc-

tion only works for providing a n1.5´Op1q time algorithm for 0-Edge-Weight-Triangle
if ∆ “ oplog nq. On the other hand, to ensure that the individual graph sizes are
small enough, we need to ensure that ∆ “ ωp1q.

Computing the edges of our graphs requires functions computed using Lemma 6.19;
each of these functions are computable in Oplog nq time. It follows that for ωp1q ď

∆ ď oplogpnqq we can use Opn1.5´ϵq time ∆-Matching Triangles algorithm to
solve 0-Edge-Weight-Triangle in rOpn1.5´ϵq time. The additional logarithmic
factor we incur is to boost the success probability of calls made to the ∆-Matching
Triangles oracle. Thus the lemma follows.

Additionally, the following classical result from [AVY18] also holds in the quan-
tum setting. Using this we can prove quantum hardness of ∆-Matching Triangles
for a larger range of ∆ as mentioned in Corollary 6.22.



144 Chapter 6. Matching Triangles & Triangle Collection

Lemma 6.21 (Lemma 2.4 by [AVY18]). If ∆-Matching Triangles on graphs
with n nodes can be solved by a Opn1.5´ϵq time algorithm for some ϵ ą 0 and for
ωp1q ď ∆ ď nop1q, then ∆1-Matching Triangles can be solved in Õpn1.5´ϵq time
for ωp1q ď ∆1 ď oplogpnqq.

Proof. Given an instance of ∆1-Matching Triangles with a graph G on n nodes
with ωp1q ď ∆1 ď oplogpnqq, we add ∆ ´ ∆1 nodes to each of the colour. Then
take the ith newly added node in all colours, make them a complete graph. It adds
exactly ∆ ´ ∆1 triangles to every triple of colours. Then run the Opn1.5´ϵq time
quantum algorithm for solving ∆-Matching Triangles on the new graph. The
total running time is Oppp∆ ´ ∆1qnq1.5´ϵq; which is rOpn1.5´ϵq for the stated ranges
of ∆,∆1.

With that we get the following result.

Corollary 6.22. p0-Edge-Weight-Triangle, n1.5q ďQFG p∆-Matching Triangles, n1.5q

for ωp1q ď ∆pnq ď nop1q.

Proof. Follows from Lemma 6.20 and Lemma 6.21.

Here it is less clear whether the lower bound of n1.5´op1q is the best lower bound
we can find for ∆-Matching Triangles. On an intuitive level, this definitely
seems more complex than problems like the Negative Triangle problem or the
0-Edge-Weight-Triangle problem. It is important to note that the above re-
duction only holds for the specified values of ∆: ωp1q ď ∆pnq ď nop1q. We will
see in Section 6.4 that for these ranges of ∆, there is indeed a matching upper
bound. This leaves open the question of whether we can find a reduction from
0-Edge-Weight-Triangle to ∆-Matching Triangles for ranges of ∆ that are
polynomial or constant in the number of nodes in the graph. For polynomial values
of ∆ we are faced with the same challenge as in reducing Negative Triangle
to pmin,`q-Matrix Multiplication in the quantum case: we would be trying
to increase the complexity of the lower bound through fine-grained reduction, go-
ing from n1.5´op1q to potentially n2.5´op1q, depending on values of ∆. In the next
section we will see why n2.5´op1q could be a reasonable quantum lower bound for
∆-Matching Triangles for unrestricted values of ∆.

The reduction from 0-Edge-Weight-Triangle to Triangle Collection
by [AVY18], on the other hand, makes use of the construction from the reduc-
tion from 0-Edge-Weight-Triangle to ∆-Matching Triangles for ∆ val-
ues of Op

?
log nq, which is in the regime of ∆ where we found an n1.5´op1q lower

bound for ∆-Matching Triangles. As a consequence, we get a similar result for
Triangle Collection.

Definition 6.5 (Triangle Collection). Given a graph G “ pV,Eq with a
colouring of the vertices γ : V Ñ Γ with |Γ| ď n, determine if for every triple of
colours i, j, k P Γ there is at least one triangle a, b, c P V for which pγpaq, γpbq, γpcqq “

pi, j, kq.

Lemma 6.23 (Theorem 3.2.10 by [Lei22]). 0-Edge-Weight-Triangle is quan-
tum pn1.5, n1.5q-reducible to Triangle Collection.



6.3. Matching Triangles & Triangle Collection: lower bounds 145

Proof. We will use the same graph construction as in the proof of Lemma 6.20 but
use it to construct new graphs G1

i “ pA1
i YB1

i YC 1
i, E

1
iq such that there is a 0-weight

triangle in G if and only if there is a G1
i where we can’t collect all colour triples.

From each Gi from Lemma 6.20, we construct the graph G1
i by inverting all the

edges in Gi. In the case that there is no 0-weight triangle in G, we want all colour
triples to be collected in every G1

i, which includes colour triples with colours of the
same parts in G, e.g. pa, b, b1q P AˆB ˆB. To do so, we finish the constructions of
the graphs G1

i by adding nodes and edges to G1
i.

For every a P A, add two nodes aB, aC to A1
i with colour a. For every b P B add

nodes bA, bC to B1
i with colour b. Lastly, for c P C add cA, cB to C 1

i with colour c.
For any pair of nodes a, a1 P A we add edges paB, a

1
Bq and paC , a

1
Cq to E 1

i. Sim-
ilarly, for b, b1 P B and c, c1 P C we add edges pbA, b

1
Aq, pbC , b

1
Cq, pcA, c

1
Aq, pcB, c

1
Bq to

E 1
i. Finally, for pair pa, bq P AˆB, we add edge paB, bAq for pair pb, cq P B ˆ C, we

add pbC , cBq and for pair pc, aq P C ˆ A we add pcA, aCq to E 1
i.

This finishes off our construction of graphs G1
i, now we prove that there is no

0-weight triangle in G if and only if there is no triangle collection in G1
i for some

i P r2Op∆qs.
Suppose pa, b, cq P AˆBˆC forms a 0-weight triangle in G. Let Gi be the graph

containing ∆-matching triangles from the proof of Lemma 6.20. We saw that every
aj in Gi can only be part of one triangle. Since there are ∆ of each aj, every such aj
must be part of a triangle in Gi if there is a 0-weight triangle in G. In our inverted
graph G1

i, there can therefore be no triangle with colour a. By adding the extra
nodes and edges to G1

i, we have not made any new triangles that have a node in the
three different parts of G1

i and there is therefore no triangle collection for graph G1
i.

Conversely, suppose there is no 0-weight triangle in G. Following the reasoning
in the previous paragraph and the proof of Lemma 6.20, it must be that we collect
every possible triple of colours pa, b, cq P A ˆ B ˆ C in every graph G1

i. We now
show that we also collect every triple of colours that is not in A ˆ B ˆ C. Suppose
we have three colours corresponding to three nodes from the same part in G, e.g.
a, a1, a2 P A. Then nodes aB, a1

B, a
2
B from a triangle in G1

i for every i. If two colours
come from one part of G and the third from another, e.g. pa, a1, bq P AˆAˆB, the
nodes aB, a1

B, ba form a triangle in G1
i for every i.

Complexity-wise we have the bounds to ∆ as in the proof of Lemma 6.20 and
we can instantiate our construction by setting ∆ “

?
log n.

Here the question now really comes down to whether we can find a Opn1.5q

matching upper bound for Triangle Collection, which we do in the Section 6.4.

6.3 Matching Triangles & Triangle Collection: lower bounds

Through results from the previous section, and the quantum reductions from 3SUM
to 0-Edge-Weight-Triangle from Chapter 5 we now have lower bounds on
∆-Matching Triangles and Triangle Collection from the disjunction of
hardness conjectures for APSP and 3SUM. To complete the picture, we need to
verify that the classical reductions from k-SAT, both for ∆-Matching Triangles
and Triangle Collection taken from [AVY18], continue to hold in the quantum
case. For k-SAT we go through the Sparsification Lemma given by [IP01], arriv-
ing at the same lower bound we found through 0-Edge-Weight-Triangle for



146 Chapter 6. Matching Triangles & Triangle Collection

ωp1q ď ∆ ď nop1q in ∆-Matching Triangles. We observe that their reductions
also directly hold for k-SAT and CNF-SAT, however, the lower bound implied is
only for a smaller range of ωppolyplog nqq ď ∆ ď nop1q as shown in Figure 6.1.

Let us first look at the reduction from SAT to ∆-Matching Triangles given
by [AVY18]. They proved the following result.

Lemma 6.24 (Lemma 2.3 by [AVY18]). If ∆-Matching Triangles on a graph
of N nodes can be solved in N c∆ time, then CNF-SAT on n variables and m clauses
can be solved in Opp∆2

n
3

` m
3∆ qc∆q time.

The only thing we need from their proof is that their reduction takes an instance
of CNF-SAT on n variables and m clauses and constructs a graph G on N “

Op∆2
n
3

` m
3∆ q nodes. To make sure that their classical reduction holds as it is in the

quantum setting, we first need to ensure that the values of ∆ are in the range that
lets us keep N “ Op2

n
2

p1´Op1qqq. We need a ∆ which ensures that m
3∆

“ op1q and is
also strictly sub-exponential; setting ∆ “ nd where m “ năd works. With this value
of ∆ “ ωppolypnqq we get that N is at most Op2

n
2

p1´Op1qqq.
What we now observe is the following. One can solve CNF-SAT on n vari-

ables and m clauses quantumly in OpN `N c∆q time using a OpN c∆q time quantum
algorithm for ∆-Matching Triangles, where N “ ∆ ¨ 2

n
3

`op1q.
Having done that, we now plug in the values of c∆ “ p1.5 ´ ϵq for some ϵ ą 0.

It is not hard to see that for every such ϵ there exists a corresponding ϵ1 ą 0 such
that we can solve CNF-SAT in Op2

n
2

p1´ϵ1qq using the reduction from Lemma 6.24.
However, note that ∆ “ ωppolypnqq “ ωppolyplogNqq in this reduction and cannot
be greater than N op1q. Therefore we get the following result.

Lemma 6.25. pCNF-SAT, 2n{2q ďQFG p∆-Matching Triangles, n1.5q for
ωppolyplog nqq ď ∆ ď nop1q.

Fortunately, using the sparsification lemma as stated below, we can further ex-
tend this range of ∆.

Lemma 6.26 (Sparsification Lemma by [IP01; IPZ01]; value of c achieved by
[CIP06]). Let ϕ be a k-CNF formula over n variables and with m clauses for k ě 3.
For any ϵ1 ą 0 there is an O˚p2ϵ

1nq time algorithm that produces Op2ϵ
1nq k-CNF

formulas ϕ1, . . . , ϕOp2ϵ1nq over n variables and at most cn clauses where c “ p k
ϵ1 q

Opkq.
It then holds that ϕ is in SAT if and only if there is a satisfying assignment to
ŽOp2ϵ

1nq

i“1 ϕi.

For any ϵ1 ă 1
2

the sparsification lemma can be applied as it for quantum re-
ductions from k-SAT. We will now use this sparsification lemma with the classical
reduction CNF-SAT to ∆-Matching Triangles as stated in Lemma 6.24 to
prove the following result.

Lemma 6.27. pk-SAT, 2n{2q ďQFG p∆-Matching Triangles, n1.5q for ωp1q ď

∆ ď nop1q.

Proof. Let ϕ be a k-CNF instance over n variables and m clauses. Fix an ϵ1 ă 1
2

and
then apply the sparsification lemma, Lemma 6.26, to compute 2ϵ

1n k-CNF formulas
ϕi with at most cn clauses each, for some constant value c, which is only dependent
on k, ϵ1, in O˚p2ϵ

1nq time.



6.3. Matching Triangles & Triangle Collection: lower bounds 147

Suppose that we have a OpN
3
2

´ϵq time ∆-Matching Triangles algorithm for
graphs with N nodes and ωp1q ď ∆pNq ď N op1q. We then apply the reduction from
[AVY18] to decide whether ϕi is satisfiable for each i P r2ϵ

1ns in Opp∆2
n
3

` nc
3∆ q

3
2

´ϵq

time. Since ωp1q ď ∆pNq ď N op1q it follows thatOpp∆2
n
3

` nc
3∆ q

3
2

´ϵq “ Op2np 1
2

´ ϵ
3

q`op1qq.
The total time to evaluate the disjunction over all the sparse formulas will be
Op2np 1

2
´ ϵ

3
`ϵ1q`op1qq “ Op2

n
2

p1´ 2
3
ϵ`2ϵ1q`op1qq.

For every ϵ ą 0 there exists a value of ϵ1 ă mint1
2
, ϵ
3
u such that k-SAT can have

a O˚p2
n
2

p1´Op1qqq time quantum algorithm. Hence, proved.

The classical reduction from CNF-SAT to Triangle Collection in Theo-
rem 3.3.5 by [Lei22] can be used as it is to give us the same quantum lower bound as
we get via 0-Edge-Weight-Triangle. Their reduction takes as input a CNF for-
mula over n variables and m clauses and constructs a graph of N “ Opm2

n
3 q nodes

as an input to Triangle Collection. As m “ polypnq, we can use the classical
reduction in exactly same way and then run a presumably N1.5´ϵ time quantum
algorithm to solve the Triangle Collection problem. This way we can solve
solve CNF-SAT in O˚p2

n
2

p1´ 2ϵ
3

q ` 2
n
3 q “ 2

n
2

p1´Op1qq time quantumly. Therefore, we
can claim the following.

Lemma 6.28. pCNF-SAT, 2
n
2 q ďQFG pTriangle Collection, n1.5q.

Also note that the result of Lemma 6.28 straightforwardly applies to k-SAT as
well. Also mentioned in Figure 6.1.

Using transitivity of quantum fine-grained reductions we are able to the present
the same quantum time lower bounds for ∆-Matching Triangles and Triangle
Collection from all the three, CNF-SAT, 3SUM and APSP, key problems.
Therefore, we can now state the following.

Theorem 6.29. If Triangle Collection or ∆-Matching Triangles for
ωppolyplog nqq ď ∆ ď nop1q can be solved in time Opn1.5´ϵq for some ϵ ą 0, then
Conjecture 6.3 must be false.

Furthermore, if we conjecture that the k-SAT problem also requires 2
n
2

p1´op1qq

time in the quantum setting as stated below

Conjecture 6.30 ([ACL+20]). For all ϵ ą 0, there exists some k P N such that
there is no quantum algorithm solving k-SAT in time Op2

n
2

p1´ϵqq.

We can then claim the following.

Theorem 6.31. If Triangle Collection or ∆-Matching Triangles for
ωp1q ď ∆ ď nop1q can be solved in time Opn1.5´ϵq for some ϵ ą 0, then at least one
of following Conjectures 6.30, 5.1 or 6.2 must be false.



148 Chapter 6. Matching Triangles & Triangle Collection

3SUM
n2´op1q

n1´op1q

Convolution-
3Sum
n2´op1q

n1´op1q

APSP
N3´op1q

N2.5´op1q

pmin,`q-Matrix
Multiplication
N3´op1q, N2.5´op1q

All-Pairs
Negative Triangle
N3´op1q, N2.5´op1q

Negative Triangle
N3´op1q, N1.5´op1q

0-Weight Triangle
N3´op1q, N1.5´op1q

∆-Matching
Triangles
N3´op1q

N1.5´op1q

Triangle
Collection

N3´op1q

N1.5´op1q

k-SAT
2δkn´op1q

2δk
n
2

´op1q

Sparsification
Lemma

SAT
2np1´op1qq

2
n
2

p1´op1qq

ωp1q ď ∆pNq

∆ ď N op1q

∆ ď N op1q

ωp1q ď ∆pNq

ωppolylogNq ď ∆

∆ ď N op1q

Figure 6.1: Quantum fine-grained reductions to ∆-Matching Triangles and
Triangle Collection. The parameter n denotes the size of the sets in
the case of 3SUM and Convolution-3SUM and the number of variables
in the case of SAT and k-SAT. The parameter N denotes the number of
nodes in a graph. The first lower bound in each node in the figure denotes
the known classical lower bound and the second lower bound denotes the
new quantum lower bound. In the case where multiple edges arrive at one
node, the lower bound in the second line of the node is the same for all
reductions. For the dashed edge we only know of a classical reduction.
Lastly, the lower bounds for ∆-Matching Triangles hold only for the ∆
values denoted by the labels on the incoming edges.



6.4. Matching Triangles & Triangle Collection: upper bounds 149

6.4 Matching Triangles & Triangle Collection: upper bounds

In the previous two sections we presented a series of lower bounds, conditioned
on our quantum hardness conjectures. For most of these problems the match-
ing upper bounds follow from trivial applications of Grover Search, except for
∆-Matching Triangles and Triangle Collection, for which we will now
present upper bounds by making clever use of data structures and Ambainis’ Vari-
able Time Grover Search [Amb10] stated in Theorem 6.6.

6.4.1 Quantum algorithm for ∆-Matching Triangles

Recall that for ∆-Matching Triangles, given a graph as an input we want to
find out whether there exists a colour triple for which there are at least ∆ triangles.
Depending on the value of ∆ “ nα, we exhibit an algorithm that invokes one of the
following two subroutines: for small α, it uses brute force with a variant of Grover
Search, while for large α, our subroutine uses matrix multiplication. Additionally,
for the first case our algorithm requires fast access to the list of vertices coloured by
i for every colour i P Γ. For that we use a data structure, which with the help of
quantum random-access gates RAGs (defined in Section 2.3 of Chapter 2), allows us
to index into any memory location in Op1q time.4 On the other hand, for large α,
first notice that as α increases the amount of colour triples for which there are even
enough nodes in the graph to form nα triangles decreases because the number of
triples of nodes any graph G (of n nodes) can have is n3. Therefore, number of colour
triples pi, j, kq P Γ3 that can have at least ∆ triangles, must have at least ∆ different
triples of vertices, is at most n3

∆
. Moreover, as we have computed the values of |Vi|

for every i P Γ in the pre-processing step we can easily filter out the un-promising
candidates and only check if there exist ∆ triangles (using matrix multiplication)
for the colour triples with enough nodes of that colour triple.

Theorem 6.32. There is a quantum algorithm that solves ∆-Matching Triangles
on a graph of n nodes in rOpmintn1.5`α

2 , n1.5`ω´α
2 uq time with ∆ “ nα for 0 ď α ď 3.

Proof. Let G “ pV,Eq be the input, a coloured graph with |V | “ n and colours
given by γ : V Ñ Γ. Let ∆ “ nα for a given α P r0, 3s. Given a colour i P Γ, let
Vi Ď V denote the subset containing only i-coloured nodes, and use |Vi| to denote
the number of vertices in Vi.

Pre-processing step In Opnq time one can compute values |Vi| for all i P Γ.
Having computed the |Vi| for all i P Γ, create a hash-table of |Γ| buckets. Each
bucket is indexed by i P |Γ| containing an array of size |Vi|, respectively. We go over
all the vertices v P V and place them in the hash table corresponding to the bucket
indexed by γpvq, i.e., the colour of vertex v. Each hash table consists of a prefix
tree of n leaves, as in Definition 4.4 of Chapter 4, so that one can efficiently (i.e.,
in poly-logarithmic time) access the kth node of any bucket for any k P rns. This
entire process takes Opnq time and uses Opn2q space.

4The constant time is in the word-RAM model.



150 Chapter 6. Matching Triangles & Triangle Collection

Subroutine for small α We use VTGS on the set Γ3. For every colour triple
pi, j, kq P Γ3, let ti,j,k denote the time taken to determine whether G contains ∆

triangles of colour triple pi, j, kq. This can be done in ti,j,k “ rOp
a

∆|Vi||Vj||Vk|q “

rOp
a

nα|Vi||Vj||Vk|q time using (a variant of) Grover Search where the queries to this
Grover-like subroutine are indexed by pa, b, cq P r|Vi|s ˆ r|Vj|s ˆ r|Vk|s. Note that,
the rOp¨q hides the polyplogpnqq factors that arise because we want the probability
of failure to be reduced to 1

polypnq
. Moreover, every such query to the Grover-like

subroutine can be implemented in rOp1q time (because of the data structure) and
three queries to the adjacency matrix given to us as input, in the following way:
access the ath element of hash bucket containing Vi; let us denote that vertex by
a1. Do the same for accessing the bth element of hash bucket containing Vj and cth

element of hash bucket containing Vk, let us denote those vertices with b1 and c1,
respectively. Having done that, use three queries to input of G to check if there is
a triangle labelled by nodes a1, b1, c1 in G.

Since we can use VTGS, the total time taken for this algorithm is T pnq “

Op

b

ř

i,j,kPΓ t
2
i,j,kq, and moreover, because we have

ř

iPΓ |Vi| “ n we find the fol-
lowing.

T pnq “ Op

d

ÿ

i,j,kPΓ

t2i,j,kq “ rOp

d

ÿ

i,j,kPΓ

nα|Vi||Vj||Vk|q

“ rOp

d

nα
ÿ

iPΓ

|Vi|
ÿ

jPΓ

|Vj|
ÿ

kPΓ

|Vk|q “ rOp
?
nαn3q “ Opn1.5`α

2 q.

Subroutine for large α For every triple pi, j, kq P Γ3, let ti,j,k denote the time
taken to compute the following:

• Step 1: check if |Vi| ¨ |Vj| ¨ |Vk| ă ∆. If yes then do nothing more, in that case
ti,j,k “ Op1q. Else, check Step 2 below.

• Step 2: check if there are at least ∆ triangles of colour triple pi, j, kq in G.
As we are in the large α regime we do not want to use threshold version of
Grover search, instead we use matrix multiplication to compute the cube of
the adjacency matrix restricted to the entries only coloured by coloured by
i, j, k and taking trace of the diagonal. A yes instance is when the computed
trace value is greater than equal to ∆, else it is a no instance. The total time
taken in Step 2 is ti,j,k “ rOpnωq. Here the rOp¨q hides the polyplogpnqq factors
that arise because we want the probability of failure to be 1

polypnq
.

Now to analyse the time taken for the large α case: using VTGS we again have

T pnq “ Op

d

ÿ

i,j,kPΓ

t2i,j,kq “ Op

g

f

f

e

ÿ

i,j,kPΓ
s.t. |Vi||Vj ||Vk|ě∆

t2i,j,k `
ÿ

i,j,kPΓ
s.t. |Vi||Vj ||Vk|ă∆

t2i,j,kq

“ rOp

g

f

f

e

ÿ

i,j,kPΓ
s.t. |Vi||Vj ||Vk|ě∆

n2ω `
ÿ

i,j,kPΓ
s.t. |Vi||Vj ||Vk|ă∆

Op1qq ď rOp

c

n2ω ¨ n3

∆
` n3q

“ rOp

c

n2ω ¨ n3

∆
q “ rOpnω`1.5´α

2 q.



6.4. Matching Triangles & Triangle Collection: upper bounds 151

Combined approach Given an input instance of ∆-Matching Triangles, we
first compute which of the two approaches is faster based on ∆ “ nα and then apply
that approach. We find T pnq “ rOpmintn1.5`α

2 , n1.5`ω´α
2 uq.

Setting 1.5 ` α
2

“ 1.5 ` ω ´ α
2
, we see that for α ă ω the small α algo-

rithm will be faster while for α ą ω our large α algorithm is faster. Therefore,
∆-Matching Triangles for any ∆ “ nα can be solved in rOpmintn1.5`α

2 , n1.5`ω´α
2 uq

time quantumly.

From Theorem 6.32 we get a worst-case corollary and a corollary for the range
of ∆ for which we found reductions in Sections 6.2 and 6.2.2.

Corollary 6.33. There exists a quantum algorithm that solves ∆-Matching Triangles
on graphs of n nodes

• in rOpn1.5`ω
2 q time for any ∆, and

• in rOpn1.5`op1qq time for ∆ ď nop1q.

Note that this means that for the current value of ω « 2.3728, the matrix-
multiplication constant, we can solve ∆-Matching Triangles in sub-cubic time
on a quantum computer for any range of ∆.

The commonly conjectured lower bound for ω is 2, in that case we have a worst
case complexity for ∆-Matching Triangles of rOpn2.5q, matching the quantum
complexity of other problems encountered in our reductions from APSP. That is
not to say that a faster algorithm is not possible of course. Pushing the n1.5´op1q

lower bound for ∆-Matching Triangles up for polynomial ∆ is challenging with
current techniques and a matching upper bound of rOpn1.5q for unrestricted ∆ is not
impossible, albeit unlikely.

6.4.2 Quantum algorithm for Triangle Collection

Using a similar strategy as for the case of small ∆ in the proof of Theorem 6.32
we also find a tight upper bound for Triangle Collection. Recall that for
Triangle Collection we want to know whether there is a triangle for every
possible colour triple in a given graph. Equivalently, we may ask whether there
exists a colour triple in a graph for which there is no triangle.

Theorem 6.34. There exists a quantum algorithm that solves Triangle Collection
in rOpn1.5q time.

Proof. Let G “ pV,Eq be a coloured graph with |V | “ n and colours given by
γ : V Ñ Γ. We use the Variable-Time Grover Search algorithm to the set of all
colour triples Γ3, to determine whether there is a colour triple for which there is no
triangle in G. Let pi, j, kq be a triple of colours and let the time it takes to check
whether G contains a triangle in these colours be ti,j,k. Then the algorithm takes
T pnq “ Op

b

ř

i,j,kPΓ t
2
i,j,kq time. Given a colour i, let Vi Ď V be the subset containing

only nodes in that colour and let |Vi| be the number of vertices in Vi. With some
pre-processing of the input, just like it is done in the proof of Theorem 6.32, for any
triple of colours pi, j, kq, we can Grover Search over the set Vi ˆVj ˆVk to determine



152 Chapter 6. Matching Triangles & Triangle Collection

whether there is a triangle in the induced sub-graph in rOp
a

|Vi| ¨ |Vj| ¨ |Vk|q time,
and we have that t2i,j,k “ rOp|Vi| ¨ |Vj| ¨ |Vk|q. Since it holds that

ř

iPΓ |Vi| “ n we have

T pnq “ O

¨

˝

d

ÿ

i,j,kPΓ

t2i,j,k

˛

‚“ rO

¨

˝

d

ÿ

i,j,kPΓ

|Vi| ¨ |Vj| ¨ |Vk|

˛

‚

“ rO

¨

˝

d

ÿ

iPΓ

|Vi|
ÿ

jPΓ

|Vj|
ÿ

kPΓ

|Vk|

˛

‚“ rO
`

n1.5
˘

.

Therefore, we can solve Triangle Collection in rOpn1.5q time quantumly.

6.5 Discussions, future directions and open questions

Discussions In the course of proving quantum time lower bounds for ∆-Matching
Triangles and Triangle Collection, we also prove conditional lower bounds
for many other related problems in the process and were able to make some interest-
ing observations. In the classical setting, it can be seen as surprising that seemingly
simple problems such as Negative Triangle and 0-Edge-Weight-Triangle
are at least as hard as problems like APSP and pmin,`q-Matrix Multiplication,
which seem more complex. With our results in the quantum setting we find that
this intuition regarding the difference in complexity of these problems (to a reason-
able degree) is well-founded, because here a quadratic gap in complexity in both the
lower and the upper bounds of these problems is witnessed instead. A consequence
of this gap in complexity was the loss of the reduction from Negative Triangle
back to pmin,`q-Matrix Multiplication.

Future directions and open questions This chapter leaves us with the follow-
ing open questions.

1. Classically, it is possible to give a reduction from Negative Triangle to
pmin,`q-Matrix Multiplication, but it seems much harder to find an
equivalent reduction in the quantum case. To pick up where this work has
left off would be to face the challenges of finding such a reduction.

2. The ∆-Matching Triangles problem presents another series of worthwhile
challenges.

• Due to the dependency of the upper bound on the matrix-multiplication
exponent ω, faster algorithms for ∆-Matching Triangles could be
found, either by improving ω, or by finding an algorithm with no or
lower dependency on ω. The question remains then whether there ex-
ist quantum algorithms that have a better than rOpn2.5q run-time for all
ranges of ∆; we only achieve this complexity with ω “ 2. To reinforce
the likelihood of rOpn2.5q being the best upper bound for ∆-Matching
Triangles, we could look for reductions to ∆-Matching Triangles
that work for polynomial ranges of ∆.



6.5. Discussions, future directions and open questions 153

• In the classical setting, we see in [AVY18] that when ∆ is a constant,
the ∆-Matching Triangles problem permits a faster than cubic algo-
rithm; this makes us wonder whether a faster than rOpn1.5q time quantum
algorithm exists for ∆-Matching Triangles for ∆ “ Op1q.

3. Much work remains to be done in quantum fine-grained complexity with APSP
as a key problem; for a good starting point see survey articles by Williams
[Vas15; Vas19]. It is also worthwhile to consider reductions that are only
possible in the quantum case — to find a true quantum complexity web of
fine-grained reductions, guiding the possibilities and impossibilities of quantum
algorithmic design.





Chapter 7

The Last Chapter

The study of quantum fine-grained complexity is just beginning. Classically, there
are many fine-grained reductions laying out the structure of P, but only a few such
reductions have been established for BQP. It is possible that some of these reductions
can be easily adapted to the quantum setting, as we saw in the case of APSP,
or only with a lot of technical effort, as we witness in the case of CNF-SAT and
3SUM. Either way, this forms an appealing avenue for future work as not only is the
topic very much unexplored, any tight lower bounds given by quantum fine-grained
reductions will allow us to understand how much quantum speed-up is possible.

In this thesis we study the consequences of some worst-case quantum conjectures,
and as a result present worst-case time bounds for several problems in the quan-
tum setting. It will be interesting to use similar conjectures towards establishing
average-case lower bounds as it has been done classically [BRS+17; BRS+18; GR18;
LLV19; BBB19]. These results are of much interest in the context of fine-grained
cryptography and towards that several worst-case to average-case reductions have
been presented in the classical setting. For an example, see Proof of Work schemes
[BRS+17; BRS+18]; In Chapter 3 we were able to show that the Useful Proof
of Work scheme by [BRS+18] also holds in the quantum setting, conditioned on
QSETH. But that is just one such result and there are several more already known
in the classical setting, which haven’t been explored in the quantum realm yet.
Alternatively, there are problems that are both worst-case and average-case fine-
grained hard classically [DLV20]; it will be interesting to check if these hardness
results hold in the quantum setting as well.

Another relatively new area close to quantum fine-grained complexity is fixed
parameter tractability where one wishes to study under what parameter a problem
is hard. There are examples of QMA-hard problems, when parameterized by some
parameter k of the input can be solved in gpkqpolypnq time, where n is the size of
the input [ABN+22; BJM+22]. However, this idea does not have to be restricted to
QMA-hard problems. One can pose similar questions for problems with polynomial-
time quantum algorithms; consider a problem that can be solved in Opndq time for
some constant d and is believed to also require nd´op1q time. Then, one can ask, for
what parameters k is this problem solvable in gpkq ¨ nd´ε time for an ε ą 0? Hardly
any such results are known for problems in BQP. Also in this case, the existing
classical results can be helpful. First as a good starting point to prove similar results



in the quantum setting, and secondly, by allowing a separation of concerns that could
potentially give us faster quantum algorithms — for example, conditioned on SETH
as we have seen in this thesis it requires n2´op1q time classically to compute the edit
distance between two strings of length n, and we show an analogous n1.5´op1q time
lower bound conditioned on QSETH in this thesis. There is a classical algorithm
that computes the edit distance in Opn`k2q time for inputs with edit distance k; this
means finding an n ` k2´α time classical algorithm or an n ` k1.5´α1 time quantum
algorithm for Edit Distance (for any constants α, α1 ą 0) is highly unlikely. As with
other examples, one can ask under what parameters can the 3SUM-hard problems
discussed in this thesis have fixed-parameter sublinear time quantum algorithms?
Such a question is of course interesting for all hard problems in BQP.



Part II

The Closing Matters





Bibliography

[ABI+20] Andris Ambainis, Kaspars Balodis, Janis Iraids, et al. Quantum Lower
and Upper Bounds for 2D-Grid and Dyck Language. Proceedings of
the 45th International Symposium on Mathematical Foundations of
ComputerScience (MFCS 2020). Vol. 170. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020, 8:1–8:14. doi: 10.4230/LIPIcs.
MFCS.2020.8.

[ABL+22] Andris Ambainis, Harry Buhrman, Koen Leijnse, Subhasree Patro,
and Florian Speelman. Matching Triangles and Triangle Collection:
Hardness based on a Weak Quantum Conjecture. 2022. doi: 10.48550/
ARXIV.2207.11068.

[ABN+22] Srinivasan Arunachalam, Sergey Bravyi, Chinmay Nirkhe, and Bryan
O’Gorman. The Parametrized Complexity of Quantum Verification.
Proceedings of the 17th Conference on the Theory of Quantum Compu-
tation, Communication and Cryptography (TQC 2022). Vol. 232. Leib-
niz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2022, 3:1–3:18. doi: 10 . 4230 /
LIPIcs.TQC.2022.3.

[ABV15] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams.
Tight Hardness Results for LCS and Other Sequence Similarity Mea-
sures. Proceedings of the 56th Annual Symposium on Foundations
of Computer Science (FOCS 2015). IEEE Computer Society, 2015,
pp. 59–78. doi: 10.1109/FOCS.2015.14.

[ACL+14] Amihood Amir, Timothy M. Chan, Moshe Lewenstein, and Noa Lewen-
stein. On Hardness of Jumbled Indexing. 41st International Colloquium
on Automata, Languages, and Programming - ICALP. Vol. 8572. Lec-
ture Notes in Computer Science. Springer, 2014, pp. 114–125. doi:
10.1007/978-3-662-43948-7_10.

[ACL+20] Scott Aaronson, Nai-Hui Chia, Han-Hsuan Lin, Chunhao Wang, and
Ruizhe Zhang. On the Quantum Complexity of Closest Pair and Re-
lated Problems. Proceedings of the 35th Computational Complexity
Conference (CCC 2020). Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2020. doi: 10.4230/LIPIcs.CCC.2020.16.

[AGS19] Scott Aaronson, Daniel Grier, and Luke Schaeffer. A Quantum Query
Complexity Trichotomy for Regular Languages. Electronic Colloquium
on Computational Complexity 26 (2019), p. 61. url: https://eccc.
weizmann.ac.il/report/2019/061.

https://doi.org/10.4230/LIPIcs.MFCS.2020.8
https://doi.org/10.4230/LIPIcs.MFCS.2020.8
https://doi.org/10.48550/ARXIV.2207.11068
https://doi.org/10.48550/ARXIV.2207.11068
https://doi.org/10.4230/LIPIcs.TQC.2022.3
https://doi.org/10.4230/LIPIcs.TQC.2022.3
https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1007/978-3-662-43948-7_10
https://doi.org/10.4230/LIPIcs.CCC.2020.16
https://eccc.weizmann.ac.il/report/2019/061
https://eccc.weizmann.ac.il/report/2019/061


160 BIBLIOGRAPHY

[AGV15] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams.
Subcubic Equivalences between Graph Centrality Problems, APSP and
Diameter. Proceedings of the 26th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2015). Society for Industrial and Applied
Mathematics, 2015, pp. 1681–1697.

[AHV+16] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams,
and Ryan Williams. Simulating Branching Programs with Edit Dis-
tance and Friends Or: a Polylog Shaved is a Lower Bound Made. Pro-
ceedings of the 48th Annual ACM Symposium on Theory of Comput-
ing (STOC 2016). ACM, 2016, pp. 375–388. doi: 10.1145/2897518.
2897653.

[AIK+04] Andris Ambainis, Kazuo Iwama, Akinori Kawachi, et al. Quantum
Identification of Boolean Oracles. Proceedings of the 21st Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS 2004).
Vol. 2996. Lecture Notes in Computer Science. Springer, 2004, pp. 105–
116. doi: 10.1007/978-3-540-24749-4_10.

[AL20] Andris Ambainis and Nikita Larka. Quantum Algorithms for Computa-
tional Geometry Problems. Proceedings of the 15th Conference on the
Theory of Quantum Computation, Communication and Cryptography
(TQC 2020). Vol. 158. Leibniz International Proceedings in Informat-
ics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020,
9:1–9:10. doi: 10.4230/LIPIcs.TQC.2020.9.

[ALW14] Amir Abboud, Kevin Lewi, and Ryan Williams. Losing Weight by
Gaining Edges. Proceedings of the 22th Annual European Symposium
on Algorithms (ESA 2014). Vol. 8737. Lecture Notes in Computer Sci-
ence. Springer, 2014, pp. 1–12. doi: 10.1007/978-3-662-44777-2_1.

[Amb02] Andris Ambainis. Quantum Lower Bounds by Quantum Arguments.
Journal of Computer and System Sciences 64, 4 (2002), pp. 750–767.
doi: 10.1006/jcss.2002.1826. Earlier version in STOC’00.

[Amb06] Andris Ambainis. Polynomial Degree vs. Quantum Query Complexity.
Journal of Computer and System Sciences 72, 2 (2006), pp. 220–238.
doi: 10.1016/j.jcss.2005.06.006. Earlier version in FOCS’03.

[Amb07] Andris Ambainis. Quantum Walk Algorithm for Element Distinctness.
SIAM Journal on Computing 37, 1 (2007), pp. 210–239. doi: 10.1137/
S0097539705447311. Earlier version in FOCS’04.

[Amb10] Andris Ambainis. Quantum Search with Variable Times. Theory of
Computing Systems 47, 3 (2010), pp. 786–807. doi: 10.1007/s00224-
009-9219-1. Earlier version in STACS’08.

[AV14] Amir Abboud and Virginia Vassilevska Williams. Popular Conjectures
Imply Strong Lower Bounds for Dynamic Problems. Proceedings of the
55th Annual Symposium on Foundations of Computer Science (FOCS
2014). 2014, pp. 434–443. doi: 10.1109/FOCS.2014.53.

https://doi.org/10.1145/2897518.2897653
https://doi.org/10.1145/2897518.2897653
https://doi.org/10.1007/978-3-540-24749-4_10
https://doi.org/10.4230/LIPIcs.TQC.2020.9
https://doi.org/10.1007/978-3-662-44777-2_1
https://doi.org/10.1006/jcss.2002.1826
https://doi.org/10.1016/j.jcss.2005.06.006
https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1007/s00224-009-9219-1
https://doi.org/10.1007/s00224-009-9219-1
https://doi.org/10.1109/FOCS.2014.53


BIBLIOGRAPHY 161

[AVW14] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann.
Consequences of Faster Alignment of Sequences. Proceedings of the
41st International Colloquium on Automata, Languages, and Program-
ming (ICALP 2014). Vol. 8572. Lecture Notes in Computer Science.
Springer, 2014, pp. 39–51. doi: 10.1007/978-3-662-43948-7_4.

[AVW16] Amir Abboud, Virginia Vassilevska Williams, and Joshua Wang. Ap-
proximation and Fixed Parameter Subquadratic Algorithms for Radius
and Diameter in Sparse Graphs. Proceedings of the 27th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2016). Society for
Industrial and Applied Mathematics, 2016, pp. 377–391.

[AVY18] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Match-
ing Triangles and Basing Hardness on an Extremely Popular Conjec-
ture. SIAM Journal on Computing 47, 3 (2018), pp. 1098–1122. doi:
10.1137/15M1050987. Earlier version in STOC’15.

[Bar89] David A. Barrington. Bounded-width polynomial-size branching pro-
grams recognize exactly those languages in NC1. Journal of Computer
and System Sciences 38, 1 (1989), pp. 150–164. doi: https://doi.
org/10.1016/0022-0000(89)90037-8.

[BBB+97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh
Vazirani. Strengths and Weaknesses of Quantum Computing. SIAM
Journal on Computing 26, 5 (1997), pp. 1510–1523. doi: 10.1137/
S0097539796300933.

[BBB19] Enric Boix-Adserà, Matthew Brennan, and Guy Bresler. The Average-
Case Complexity of Counting Cliques in Erdős-Rényi Hypergraphs.
Proceedings of the 60th Annual Symposium on Foundations of Com-
puter Science (FOCS 2019). 2019, pp. 1256–1280. doi: 10.1109/FOCS.
2019.00078.

[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and
Ronald de Wolf. Quantum Lower Bounds by Polynomials. Journal of
the ACM 48, 4 (2001), pp. 778–797. doi: 10.1145/502090.502097.

[BBH+98] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight
bounds on quantum searching. Fortschritte der Physik: Progress of
Physics 46, 4-5 (1998), pp. 493–505.

[BDH+00] Harry Buhrman, Christoph Durr, Peter Høyer, et al. Quantum Algo-
rithms for Finding Claws, Collisions and Triangles (2000).

[BDP08] Ilya Baran, Erik D. Demaine, and Mihai Pátraşcu. Subquadratic Al-
gorithms for 3SUM. Algorithmica 50, 4 (2008), pp. 584–596. Earlier
version in WADS’05.

[BEG+18] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, Mohammad Taghi
Hajiaghayi, and Saeed Seddighin. Approximating Edit Distance in Truly
Subquadratic Time: Quantum and MapReduce. Proceedings of the 29th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2018).
SIAM, 2018, pp. 1170–1189. doi: 10.1137/1.9781611975031.76.

https://doi.org/10.1007/978-3-662-43948-7_4
https://doi.org/10.1137/15M1050987
https://doi.org/https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.1109/FOCS.2019.00078
https://doi.org/10.1109/FOCS.2019.00078
https://doi.org/10.1145/502090.502097
https://doi.org/10.1137/1.9781611975031.76


162 BIBLIOGRAPHY

[Ben89] Charles H. Bennett. Time/Space Trade-Offs for Reversible Computa-
tion. SIAM Journal on Computing 18, 4 (1989), pp. 766–776. doi:
10.1137/0218053.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, et al. On the (im)
possibility of obfuscating programs. Journal of the ACM 59, 2 (2012),
pp. 1–48.

[BGS75] Theodore Baker, John Gill, and Robert Solovay. Relativizations of the
P=?NP question. SIAM Journal on computing 4, 4 (1975), pp. 431–
442.

[BI18] Arturs Backurs and Piotr Indyk. Edit Distance Cannot Be Computed
in Strongly Subquadratic Time (Unless SETH is False). SIAM Journal
on Computing 47, 3 (2018), pp. 1087–1097. doi: 10.1137/15M1053128.
Earlier version in STOC’15.

[BJL+13] Daniel J. Bernstein, Stacey Jeffery, Tanja Lange, and Alexander Meurer.
Quantum Algorithms for the Subset-Sum Problem. Proceedings of the
5th International Workshop on Post-Quantum Cryptography (PQCrypto
2013). Vol. 7932. Lecture Notes in Computer Science. Springer, 2013,
pp. 16–33. doi: 10.1007/978-3-642-38616-9_2.

[BJM+22] Michael J. Bremner, Zhengfeng Ji, Ryan L. Mann, et al. Quantum
Parameterized Complexity. 2022. doi: 10.48550/ARXIV.2203.08002.

[BK15] Karl Bringmann and Marvin Kunnemann. Quadratic Conditional Lower
Bounds for String Problems and Dynamic Time Warping. Proceed-
ings of the 56th Annual Symposium on Foundations of Computer Sci-
ence (FOCS 2015). IEEE Computer Society, 2015, pp. 79–97. doi:
10.1109/FOCS.2015.15.

[BLP+22a] Harry Buhrman, Bruno Loff, Subhasree Patro, and Florian Speelman.
Limits of Quantum Speed-Ups for Computational Geometry and Other
Problems: Fine-Grained Complexity via Quantum Walks. Proceedings
of the 13th Innovations in Theoretical Computer Science Conference
(ITCS 2022). Vol. 215. Leibniz International Proceedings in Informat-
ics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022,
31:1–31:12. doi: 10.4230/LIPIcs.ITCS.2022.31. Full version at
arXiv:2106.02005.

[BLP+22b] Harry Buhrman, Bruno Loff, Subhasree Patro, and Florian Speelman.
Memory Compression with Quantum Random-Access Gates. Proceed-
ings of the 17th Conference on the Theory of Quantum Computation,
Communication and Cryptography (TQC 2022). Vol. 232. Leibniz In-
ternational Proceedings in Informatics (LIPIcs). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022, 10:1–10:19. doi: 10 . 4230 /
LIPIcs.TQC.2022.10.

[BMN+21] Ryan Babbush, Jarrod R McClean, Michael Newman, et al. Focus be-
yond quadratic speedups for error-corrected quantum advantage. PRX
Quantum 2, 1 (2021).

https://doi.org/10.1137/0218053
https://doi.org/10.1137/15M1053128
https://doi.org/10.1007/978-3-642-38616-9_2
https://doi.org/10.48550/ARXIV.2203.08002
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.4230/LIPIcs.ITCS.2022.31
https://doi.org/10.4230/LIPIcs.TQC.2022.10
https://doi.org/10.4230/LIPIcs.TQC.2022.10


BIBLIOGRAPHY 163

[BPS21] Harry Buhrman, Subhasree Patro, and Florian Speelman. A Frame-
work of Quantum Strong Exponential-Time Hypotheses. Proceedings
of the 38th International Symposium on Theoretical Aspects of Com-
puter Science (STACS 2021). Vol. 187. Leibniz International Proceed-
ings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021, 19:1–19:19. doi: 10.4230/LIPIcs.STACS.2021.19.
Full version at arXiv:1911.05686.

[Bri14] Karl Bringmann. Why Walking the Dog Takes Time: Frechet Distance
Has No Strongly Subquadratic Algorithms Unless SETH Fails. Pro-
ceedings of the 55th Annual Symposium on Foundations of Computer
Science (FOCS 2014). IEEE Computer Society, 2014, pp. 661–670. doi:
10.1109/FOCS.2014.76.

[BRS+17] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasude-
van. Average-Case Fine-Grained Hardness. Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing (STOC
2017). Association for Computing Machinery, 2017, pp. 483–496. isbn:
9781450345286. doi: 10.1145/3055399.3055466.

[BRS+18] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Va-
sudevan. Proofs of Work From Worst-Case Assumptions. Proceedings
of the 38th Annual International Cryptology Conference (CRYPTO
2018). Vol. 10991. Lecture Notes in Computer Science. Springer, 2018,
pp. 789–819. doi: 10.1007/978-3-319-96884-1_26. Earlier version
of this work appeared with the title ’Proofs of Useful Work’.

[BŠ13] Aleksandrs Belovs and Robert Špalek. Adversary Lower Bound for
the k-Sum Problem. Proceedings of the 4th Conference on Innova-
tions in Theoretical Computer Science (ITCS 2013). Association for
Computing Machinery, 2013, pp. 323–328. isbn: 9781450318594. doi:
10.1145/2422436.2422474.

[BSS03] H. Barnum, M. Szegedy, and M. Saks. Quantum query complexity and
semi-definite programming. Proceedings of the 18th IEEE Annual Con-
ference on Computational Complexity (CCC 2003). IEEE Computer
Society, 2003, p. 179. doi: 10.1109/CCC.2003.1214419.

[BV97] E. Bernstein and U. Vazirani. Quantum Complexity Theory. SIAM
Journal on Computing 26, 5 (1997), pp. 1411–1473. doi: 10.1137/
S0097539796300921.

[CDG+18] Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucký,
and Michael E. Saks. Approximating Edit Distance within Constant
Factor in Truly Sub-Quadratic Time. Proceedings of the 59th Annual
Symposium on Foundations of Computer Science (FOCS 2018). IEEE
Computer Society, 2018, pp. 979–990. doi: 10.1109/FOCS.2018.
00096.

[CDL+16] Marek Cygan, Holger Dell, Daniel Lokshtanov, et al. On Problems As
Hard As CNF-SAT. ACM Transactions on Algorithms 12, 3 (2016),
41:1–41:24. doi: 10.1145/2925416.

https://doi.org/10.4230/LIPIcs.STACS.2021.19
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.1145/3055399.3055466
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1145/2422436.2422474
https://doi.org/10.1109/CCC.2003.1214419
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1109/FOCS.2018.00096
https://doi.org/10.1109/FOCS.2018.00096
https://doi.org/10.1145/2925416


164 BIBLIOGRAPHY

[CE05] Andrew M. Childs and Jason M. Eisenberg. Quantum Algorithms for
Subset Finding. Quantum Information and Computation 5, 7 (2005),
pp. 593–604.

[CIP06] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A Du-
ality Between Clause Width and Clause Density for SAT. Proceed-
ings of the 21st Annual IEEE Conference on Computational Com-
plexity (CCC 2006). IEEE Computer Society, 2006, pp. 252–260. doi:
10.1109/CCC.2006.6.

[CLR+14] Shiri Chechik, Daniel H. Larkin, Liam Roditty, et al. Better Approx-
imation Algorithms for the Graph Diameter. Proceedings of the 25th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 14).
Society for Industrial and Applied Mathematics, 2014, pp. 1041–1052.
isbn: 9781611973389.

[CMP22] Arjan Cornelissen, Nikhil S. Mande, and Subhasree Patro. Improved
Quantum Query Upper Bounds Based on Classical Decision Trees.
2022. doi: 10.48550/ARXIV.2203.02968.

[DH96] Christoph Durr and Peter Høyer. A Quantum Algorithm for Finding
the Minimum. 1996. doi: 10.48550/ARXIV.QUANT-PH/9607014.

[DHH+06] Christoph Durr, Mark Heiligman, Peter Høyer, and Mehdi Mhalla.
Quantum query complexity of some graph problems. SIAM Journal on
Computing 35, 6 (2006), pp. 1310–1328. doi: 10.1137/050644719.

[DHM+14] Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin
Wahlén. Exponential time complexity of the permanent and the Tutte
polynomial. ACM Transactions on Algorithms 10, 4 (2014), p. 21.

[Die96] Martin Dietzfelbinger. Universal Hashing and K-Wise Independent
Random Variables via Integer Arithmetic without Primes. Proceed-
ings of the 13th Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS 1996). Springer-Verlag, 1996, pp. 569–580. isbn:
3540609229.

[DLV20] Mina Dalirrooyfard, Andrea Lincoln, and Virginia Vassilevska Williams.
New Techniques for Proving Fine-Grained Average-Case Hardness. Pro-
ceedings of the 61st Annual Symposium on Foundations of Computer
Science (FOCS 2020). IEEE, 2020, pp. 774–785. doi: 10.1109/FOCS46700.
2020.00077.

[FGG+98] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser.
Limit on the Speed of Quantum Computation in Determining Parity.
Physical Review Letters 81 (24 1998), pp. 5442–5444. doi: 10.1103/
PhysRevLett.81.5442.

[FM71] M. J. Fischer and A. R. Meyer. Boolean matrix multiplication and tran-
sitive closure. Proceedings of the 12th Annual Symposium on Switch-
ing and Automata Theory (SWAT 1971). 1971, pp. 129–131. doi: 10.
1109/SWAT.1971.4.

https://doi.org/10.1109/CCC.2006.6
https://doi.org/10.48550/ARXIV.2203.02968
https://doi.org/10.48550/ARXIV.QUANT-PH/9607014
https://doi.org/10.1137/050644719
https://doi.org/10.1109/FOCS46700.2020.00077
https://doi.org/10.1109/FOCS46700.2020.00077
https://doi.org/10.1103/PhysRevLett.81.5442
https://doi.org/10.1103/PhysRevLett.81.5442
https://doi.org/10.1109/SWAT.1971.4
https://doi.org/10.1109/SWAT.1971.4


BIBLIOGRAPHY 165

[Gal14] François Le Gall. Improved Quantum Algorithm for Triangle Finding
via Combinatorial Arguments. Proceedings of the 55th Annual Sympo-
sium on Foundations of Computer Science (FOCS 2014). IEEE Com-
puter Society, 2014, pp. 216–225. doi: 10.1109/FOCS.2014.31.

[Gil14] András Pál Gilyén. Quantum walk based search methods and algorith-
mic applications. Masters thesis. Budapest University of Technology
and Economics, 2014. url: https : / / web . cs . elte . hu / blobs /
diplomamunkak/msc_mat/2014/gilyen_andras_pal.pdf.

[GO95] Anka Gajentaan and Mark H Overmars. On a class of Opn2q prob-
lems in computational geometry. Computational Geometry 5, 3 (1995),
pp. 165–185. doi: https://doi.org/10.1016/0925-7721(95)00022-
2.

[GR18] Oded Goldreich and Guy Rothblum. Counting t-Cliques: Worst-Case
to Average-Case Reductions and Direct Interactive Proof Systems. Pro-
ceedings of the 59th Annual Symposium on Foundations of Computer
Science (FOCS 2018). 2018, pp. 77–88. doi: 10.1109/FOCS.2018.
00017.

[Gro96] Lov K. Grover. A Fast Quantum Mechanical Algorithm for Database
Search. Proceedings of the 28th Annual ACM Symposium on Theory
of Computing (STOC 1996). Association for Computing Machinery,
1996, pp. 212–219. doi: 10.1145/237814.237866.

[HLŠ07] Peter Høyer, Troy Lee, and Robert Špalek. Negative Weights Make Ad-
versaries Stronger. Proceedings of the 39th Annual ACM Symposium
on Theory of Computing (STOC 2007). Association for Computing
Machinery, 2007, pp. 526–535. doi: 10.1145/1250790.1250867.

[HMW03] Peter Høyer, Michele Mosca, and Ronald de Wolf. Quantum Search
on Bounded-Error Inputs. Proceedings of the 30th International Col-
loquium on Automata, Languages, and Programming (ICALP 2003).
Vol. 2719. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2003, pp. 291–299. doi: 10.1007/3-540-45061-0_25.

[HNS01] Peter Høyer, Jan Neerbek, and Yaoyun Shi. Quantum Complexities
of Ordered Searching, Sorting, and Element Distinctness. Proceedings
of the 28th International Colloquium on Automata, Languages and
Programming (ICALP 2001). Vol. 2076. Lecture Notes in Computer
Science. Springer, 2001, pp. 346–357. doi: 10.1007/3-540-48224-
5_29.

[HNS18] Cupjin Huang, Michael Newman, and Mario Szegedy. Explicit lower
bounds on strong quantum simulation (2018). arXiv: 1804.10368.

[IKK+17] Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova, Pierre
McKenzie, and Shadab Romani. Does Looking Inside a Circuit Help?
Proceedings of the 42nd International Symposium on Mathematical
Foundations of Computer Science (MFCS 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik. 2017.

https://doi.org/10.1109/FOCS.2014.31
https://web.cs.elte.hu/blobs/diplomamunkak/msc_mat/2014/gilyen_andras_pal.pdf
https://web.cs.elte.hu/blobs/diplomamunkak/msc_mat/2014/gilyen_andras_pal.pdf
https://doi.org/https://doi.org/10.1016/0925-7721(95)00022-2
https://doi.org/https://doi.org/10.1016/0925-7721(95)00022-2
https://doi.org/10.1109/FOCS.2018.00017
https://doi.org/10.1109/FOCS.2018.00017
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/1250790.1250867
https://doi.org/10.1007/3-540-45061-0_25
https://doi.org/10.1007/3-540-48224-5_29
https://doi.org/10.1007/3-540-48224-5_29
https://arxiv.org/abs/1804.10368


166 BIBLIOGRAPHY

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-
SAT. Journal of Computer and System Sciences 62, 2 (2001), pp. 367–
375. doi: https://doi.org/10.1006/jcss.2000.1727.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which
Problems Have Strongly Exponential Complexity? Journal of Computer
and System Sciences 63, 4 (2001), pp. 512–530. doi: https://doi.
org/10.1006/jcss.2001.1774.

[Jef14] Stacey Jeffery. Frameworks for Quantum Algorithms. PhD thesis. Uni-
versity of Waterloo, 2014.

[Kot14] Robin Kothari. An optimal quantum algorithm for the oracle identifi-
cation problem. Proceedings of the 31st International Symposium on
Theoretical Aspects of Computer Science (STACS 2014). Vol. 25. Leib-
niz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2014, pp. 482–493. doi: 10.4230/
LIPIcs.STACS.2014.482.

[Kup05] Greg Kuperberg. A Subexponential-Time Quantum Algorithm for the
Dihedral Hidden Subgroup Problem. SIAM Journal on Computing 35,
1 (2005), pp. 170–188. doi: 10.1137/S0097539703436345.

[Lei22] K. Leijnse. On the Quantum Hardness of Matching Colored Triangles.
Masters thesis. Universiteit van Amsterdam, 2022.

[LLV19] Rio LaVigne, Andrea Lincoln, and Virginia Vassilevska Williams. Public-
Key Cryptography in the Fine-Grained Setting. Proceedings of the
39th Annual International Cryptology Conference (CRYPTO 2019).
Vol. 11694. Lecture Notes in Computer Science. Springer, 2019, pp. 605–
635. doi: 10.1007/978-3-030-26954-8_20.

[LM08] Sophie Laplante and Frédéric Magniez. Lower Bounds for Random-
ized and Quantum Query Complexity Using Kolmogorov Arguments.
SIAM Journal on Computing 38, 1 (2008), pp. 46–62. doi: 10.1137/
050639090. Earlier version in CCC’04.

[LMR+11] Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Špalek, and Mario
Szegedy. Quantum Query Complexity of State Conversion. Proceed-
ings of the 52nd Annual Symposium on Foundations of Computer Sci-
ence (FOCS 2011). IEEE Computer Society, 2011, pp. 344–353. doi:
10.1109/FOCS.2011.75.

[MP80] William J. Masek and Michael S. Paterson. A faster algorithm com-
puting string edit distances. Journal of Computer and System Sciences
20, 1 (1980), pp. 18–31. doi: https://doi.org/10.1016/0022-
0000(80)90002-1.

[MSS07] Frédéric Magniez, Miklos Santha, and Mario Szegedy. Quantum Al-
gorithms for the Triangle Problem. SIAM Journal on Computing 37,
2 (2007), pp. 413–424. doi: 10.1137/050643684. Earlier version in
SODA’05.

https://doi.org/https://doi.org/10.1006/jcss.2000.1727
https://doi.org/https://doi.org/10.1006/jcss.2001.1774
https://doi.org/https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.4230/LIPIcs.STACS.2014.482
https://doi.org/10.4230/LIPIcs.STACS.2014.482
https://doi.org/10.1137/S0097539703436345
https://doi.org/10.1007/978-3-030-26954-8_20
https://doi.org/10.1137/050639090
https://doi.org/10.1137/050639090
https://doi.org/10.1109/FOCS.2011.75
https://doi.org/https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1137/050643684


BIBLIOGRAPHY 167

[MT19] Tomoyuki Morimae and Suguru Tamaki. Fine-grained quantum com-
putational supremacy. Quantum Information & Computation 19, 13&14
(2019), pp. 1089–1115. url: http://www.rintonpress.com/xxqic19/
qic-19-1314/1089-1115.pdf.

[Mun71] Ian Munroe. Efficient Determination of the Transitive Closure of a
Directed Graph. Information Processing Letters, 1 (1971). ISSN: 0020-
0190, pp. 56–58. doi: 10.1016/0020-0190(71)90006-8.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2000.

[NS20] María Naya-Plasencia and André Schrottenloher. Optimal Merging in
Quantum -Xor and -Xor-Sum Algorithms. Proceedings of the 39th An-
nual International Conference on the Theory and Applications of Cryp-
tographic Techniques (EUROCRYPT 2020). Springer-Verlag, 2020,
pp. 311–340. doi: 10.1007/978-3-030-45724-2_11.

[Pat10] Mihai Patrascu. Towards Polynomial Lower Bounds for Dynamic Prob-
lems. Proceedings of the 42nd ACM Symposium on Theory of Com-
puting (STOC 2010). Association for Computing Machinery, 2010,
pp. 603–610. doi: 10.1145/1806689.1806772.

[PP20] Subhasree Patro and Álvaro Piedrafita. An Overview of Quantum Al-
gorithms: From Quantum Supremacy to Shor Factorization. IEEE In-
ternational Symposium on Circuits and Systems (ISCAS 2020). 2020,
pp. 1–5. doi: 10.1109/ISCAS45731.2020.9180793.

[PPS+05] Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane.
An Improved Exponential-time Algorithm for k-SAT. Journal of the
ACM 52, 3 (2005), pp. 337–364. doi: 10.1145/1066100.1066101.

[PPV+21] Dhrumil Patel, Subhasree Patro, Chiranjeevi Vanarasa, Indranil Chakrabarty,
and Arun Kumar Pati. Impossibility of cloning of quantum coherence.
Physical Review A 103 (2 2021), p. 022422. doi: 10.1103/PhysRevA.
103.022422.

[Pre98] John Preskill. Lecture Notes for Physics 229: Quantum Information
and Computation (1998).

[Rei11] Ben W. Reichardt. Reflections for Quantum Query Algorithms. Pro-
ceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2011). Society for Industrial and Applied Mathematics,
2011, pp. 560–569.

[Ren19] Jorg Van Renterghem. The implications of breaking the strong expo-
nential time hypothesis on a quantum computer. Masters thesis. Ghent
University, 2019. url: https://lib.ugent.be/fulltxt/RUG01/002/
787/416/RUG01-002787416_2019_0001_AC.pdf.

[RZ11] Liam Roditty and Uri Zwick. On Dynamic Shortest Paths Problems.
Algorithmica 61, 2 (2011), pp. 389–401. doi: 10.1007/s00453-010-
9401-5. Earlier version in ESA’04.

[Sch22] Daan Schoneveld. Quantum Fine-Grained Complexity: Hitting-Set and
Related Problems. Bachelors thesis. Universiteit van Amsterdam, 2022.

http://www.rintonpress.com/xxqic19/qic-19-1314/1089-1115.pdf
http://www.rintonpress.com/xxqic19/qic-19-1314/1089-1115.pdf
https://doi.org/10.1016/0020-0190(71)90006-8
https://doi.org/10.1007/978-3-030-45724-2_11
https://doi.org/10.1145/1806689.1806772
https://doi.org/10.1109/ISCAS45731.2020.9180793
https://doi.org/10.1145/1066100.1066101
https://doi.org/10.1103/PhysRevA.103.022422
https://doi.org/10.1103/PhysRevA.103.022422
https://lib.ugent.be/fulltxt/RUG01/002/787/416/RUG01-002787416_2019_0001_AC.pdf
https://lib.ugent.be/fulltxt/RUG01/002/787/416/RUG01-002787416_2019_0001_AC.pdf
https://doi.org/10.1007/s00453-010-9401-5
https://doi.org/10.1007/s00453-010-9401-5


168 BIBLIOGRAPHY

[Sho97] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer. SIAM Journal on
Computing 26, 5 (1997), pp. 1484–1509. doi: 10.1137/S0097539795293172.
Earlier version in FOCS’94.

[ŠS06] Robert Špalek and Mario Szegedy. All Quantum Adversary Methods
are Equivalent. Theory of Computing 2, 1 (2006), pp. 1–18. doi: 10.
4086/toc.2006.v002a001. Earlier version in ICALP’05.

[Vas15] Virginia Vassilevska Williams. Hardness of Easy Problems: Basing
Hardness on Popular Conjectures such as the Strong Exponential Time
Hypothesis (Invited Talk). Proceedings of the 10th International Sym-
posium on Parameterized and Exact Computation (IPEC 2015). Vol. 43.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015, pp. 17–
29. doi: 10.4230/LIPIcs.IPEC.2015.17.

[Vas19] Virginia Vassilevska Williams. On some fine-grained questions in al-
gorithms and complexity. Proceedings of the International Congress of
Mathematicians (ICM 2018). World Scientific, 2019, pp. 3447–3487.
doi: 10.1142/9789813272880_0188.

[VW04] Farrokh Vatan and Colin Williams. Optimal quantum circuits for gen-
eral two-qubit gates. Physical Review A 69 (3 2004), p. 032315. doi:
10.1103/PhysRevA.69.032315.

[VW13] Virginia Vassilevska Williams and Ryan Williams. Finding, Minimiz-
ing, and Counting Weighted Subgraphs. SIAM Journal on Computing
42, 3 (2013), pp. 831–854. doi: 10.1137/09076619X. Earlier version
in STOC’09.

[VW18] Virginia Vassilevska Williams and R. Ryan Williams. Subcubic Equiv-
alences Between Path, Matrix, and Triangle Problems. Journal of the
ACM 65, 5 (2018), pp. 1–38. doi: 10.1145/3186893. Earlier version
in FOCS’10.

[Wil05] Ryan Williams. A New Algorithm for Optimal 2-constraint Satisfac-
tion and Its Implications. Theoretical Computer Science 348, 2 (2005),
pp. 357–365. doi: 10.1016/j.tcs.2005.09.023. Earlier version in
ICALP’04.

[Wil18] R. Ryan Williams. Faster All-Pairs Shortest Paths via Circuit Com-
plexity. SIAM Journal on Computing 47, 5 (2018), pp. 1965–1985. doi:
10.1137/15M1024524. Earlier version in STOC’14.

[Wol21] Ronald de Wolf. Quantum Computing: Lecture Notes. 2021. arXiv:
1907.09415.

[Zha04] Shengyu Zhang. On the Power of Ambainis’s Lower Bounds. Proceed-
ings of the 31st International Colloquium on Automata, Languages
and Programming (ICALP 2004). Vol. 3142. Lecture Notes in Com-
puter Science. Springer, 2004, pp. 1238–1250. doi: 10.1007/978-3-
540-27836-8_102.

https://doi.org/10.1137/S0097539795293172
https://doi.org/10.4086/toc.2006.v002a001
https://doi.org/10.4086/toc.2006.v002a001
https://doi.org/10.4230/LIPIcs.IPEC.2015.17
https://doi.org/10.1142/9789813272880_0188
https://doi.org/10.1103/PhysRevA.69.032315
https://doi.org/10.1137/09076619X
https://doi.org/10.1145/3186893
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1137/15M1024524
https://arxiv.org/abs/1907.09415
https://doi.org/10.1007/978-3-540-27836-8_102
https://doi.org/10.1007/978-3-540-27836-8_102


169

Abstract

Quantum Fine-Grained Complexity

There is considerable excitement around quantum computing because of so-called
quantum speedups : quantum algorithms can solve many computational problems
faster than their classical counterparts. However, the amount of speedup that is
possible varies among different computational problems. It is expected that quantum
computers will remain an expensive resource for a long time, and the extent to which
a quantum speedup is possible, or not possible, may one day be a key factor in
deciding whether or not to invest in the use of quantum computation, for example
in an industrial setting. Therefore it is essential to understand how much quantum
speedup is possible for a specific computational problem, and for this purpose we
need to not only find classical and quantum algorithms but also understand their
limits in the form of lower bounds.

Sadly, one of the major challenges in the field of complexity theory is the inability
to prove unconditional time lower bounds, including for practical problems within
the complexity class P. One way around this is the study of fine-grained complexity
where we use special reductions to prove time lower bounds for many diverse prob-
lems in P based on the conjectured hardness of some key problems. For example,
computing the edit distance between two strings, a problem that has a practical
interest in the comparing of DNA strings, has an algorithm that takes Opn2q time.
Using a fine-grained reduction it can be shown that faster algorithms for comput-
ing edit distance also imply a faster algorithm for the Boolean Satisfiability (SAT)
problem (that is believed to not exist) — strong evidence that it will be very hard
to solve the edit distance problem faster. In addition to SAT, 3SUM and APSP are
other such key problems that are very suitable to use as a basis for such reductions,
since they are natural to describe and well studied.

The situation in the quantum regime is no better; almost all known lower bounds
for quantum algorithms are defined in terms of query complexity, which does not
help much for problems for which the best known algorithms take superlinear time,
or for problems whose best known query algorithms aren’t time efficient. There-
fore, employing fine-grained reductions in the quantum setting seems a natural way
forward. However, translating the classical fine-grained reductions directly into the
quantum regime is not always possible for various reasons. In this thesis, we discuss
some of these challenges and present results in which we circumvent these challenges.
As a consequence we prove quantum time lower bounds for many problems in BQP
conditioned on the conjectured quantum hardness of SAT (and its variants), 3SUM,
and APSP problems.



170

Nederlandse samenvatting

Fijnmazige Kwantumcomplexiteit

De wereld investeert in kwantumcomputers vanwege zogenaamde kwantumver-
snellingen: kwantumalgoritmen kunnen veel rekenproblemen sneller oplossen dan
hun klassieke tegenhangers. In hoeverre zo’n versnelling mogelijk is, is echter voor
ieder rekenprobleem anders. Naar verwachting zullen kwantumcomputers nog voor
lange tijd een duur hulpmiddel blijven, en de mate waarin een kwantumversnelling
mogelijk of onmogelijk is, kan ooit de sleutelfactor worden bij de beslissing om wel
of niet te investeren in kwantumcomputers, bijvoorbeeld in een industriële context.
Zodoende is het essentieel te begrijpen hoeveel kwantumversnelling te behalen valt
bij een specifiek rekenprobleem, en hiertoe zijn scherpe boven- en ondergrenzen voor
zowel klassieke als kwantumalgoritmen noodzakelijk.

Jammer genoeg is een van de grootste uitdagingen in het vakgebied van de com-
plexiteitstheorie ons onvermogen om onvoorwaardelijke bovengrenzen voor de ben-
odigde rekentijd te bewijzen, ook bij praktische problemen in de complexiteitsklasse
P. Eén manier om deze uitdaging uit de weg te gaan, is de studie van fine-grained
complexiteit waarbij we speciale reducties gebruiken om tijdsondergrenzen te be-
wijzen voor vele diverse problemen in P, op basis van de vermoede moeilijkheid
van enkele kernproblemen. Bijvoorbeeld: het berekenen van de bewerkingsafstand
tussen twee tekenreeksen, een probleem dat van belang is bij de vergelijking van
twee DNA-strengen, kent een algoritme dat Opn2q tijd nodig heeft. Door een fine-
grained reductie te gebruiken, kan worden aangetoond dat snellere algoritmen voor
het berekenen van de bewerkingsafstand ook een sneller algoritme impliceren voor
het booleaanse vervulbaarheidsprobleem (SAT, naar het Engelse satisfiability prob-
lem) — waarvan men gelooft dat het niet bestaat — en dit is een sterke aanwijzing
dat het zeer moeilijk is om bewerkingsafstanden sneller te berekenen. Naast SAT,
3SUM en APSP bestaan er andere dergelijke kernproblemen die zeer geschikt zijn om
te gebruiken als basis te voor zulke reducties, omdat ze een natuurlijke beschrijving
kennen en goed bestudeerd zijn.

De situatie in het kwantumregime is niet veel beter: vrijwel alle ondergrenzen
voor kwantumalgoritmen zijn gedefineerd in termen van query-complexiteit, wat
niet heel nuttig is bij problemen waarvoor de best bekende algoritmen superlineaire
tijd vereisen, of bij problemen waarvoor de beste query-algoritmen niet tijdsefficiënt
zijn. Om deze reden lijkt de inzet van fine-grained reducties het meest voor de hand
liggend in de kwantumcontext. Niettemin is een directe vertaling van klassieke fine-
grained reducties naar het kwantumregime niet altijd mogelijk, om uiteenlopende
redenen. In dit proefschrift beschouwen we enkele van deze moeilijkheden en pre-
senteren we resultaten waarin we deze weten te omzeilen. Bijgevolg bewijzen we
kwantum-tijdsondergrenzen voor vele problemen in BQP, onder de voorwaarde van
de vermoede kwantummoeilijkheid van de problemen SAT (en diens varianten),
3SUM en APSP.



171

Acknowledgements

First and foremost I would like to thank my supervisor Harry for thinking of this
project and then giving me the chance to be a part of this project. I am indebted
to his constant support and guidance throughout the last 4.25 years.

I would also like to express my gratitude towards my co-supervisor Florian. I am
thankful for his immense amount of patience with my numerous unplanned knocks
at his office door, always followed by the question ‘do you have a minute?’ ; I am
also sorry because none of those discussions ever finished within a minute. Without
his support (especially during the early years of my PhD) I wouldn’t have learnt
half as much.

I have been extremely fortunate to have collaborated with Bruno. Not only is his
passion for research highly contagious but he always found the time to discuss ideas
irrespective of the time of the day. Some of my favourite results from this thesis are
with Bruno and I am very happy that I got to work with him towards those results.

I would also like to thank my other collaborators. In particular my co-authors
Álvaro, Andris, Arjan, Koen (Leijnse) and Nikhil. Thank you Koen; I had a lot of
fun bouncing off ideas with you. I learnt a lot about a lot of things from Álvaro. I
would like to express my amazement towards my co-author and office mate Arjan;
seeing him work at the office was no different from watching a superhero movie.
There was hardly anything he couldn’t solve with his Flash-like brain and his python
superpower. I also would like to express my gratitude towards my co-author and
dear friend Nikhil. I learnt a great deal about research (even quantum stuff which
he will deny) and academia from him. I can safely say that it is because of him
that I could survive the stress from the last crucial years of my PhD. I also thank
Rajendra, Yilei and Yanlin for understanding my lack of participation over the last
few months.

I would also like to thank my other colleagues at QuSoft who together make
QuSoft a pleasant place of work; thanks Adam, Akshay, Alex, András, Arie, Bas,
Chanelle, Chris (Cade), Crownie, Daan, Davi, Dmitry, Doutzen, Dyon, Emiel, Far-
rokh, Fran, Freek, Galina, Garazi, Harold, Ido, Jan, Jana, Jelena, Jeroen, Jonas,
Jop, Joran, Jordi, Joris, Kareljan, Koen (Groenland), Léo (Colisson), Llorenç, Ludo,
Lynn, Marten, Mathys, Mehrdad, Mert, Michael, Niels, Peter (van der Gulik),
Philip, Quinten, Randy, René, Sander, Sebastian, Seenivasan, Simon (Apers), Srini-
vasan, Stacey, Susanne, Tom, Victor, Yanlin, Yaroslav, Yfke, Yinan and Yvonne for
making QuSoft wonderful both at a social and scientific level. Thanks to Bikkie,
Erik, Irma, Karin, Maarten, Minnie, Nada, Remco, Rob and Vera for making work-
ing at CWI smooth and pleasant. Thank you, Doutzen for always cheering me for
all my (even though tiny) achievements. I thank the CWI activity committee for
organising several fun events over the last 4.25 years. I would also like to thank
Anurudh, Kfir, Simona and Subhayan for our discussions.

I would also like to thank the members of my PhD committee, Andris, Bruno,
Chris (Schaffner), Maris and Ronald, for taking the time to review my thesis (and
also for approving it). In particular, I would like to thank Ronald first for his detailed
comments not only on my thesis but also on several talks and poster presentations
and secondly for his valuable time for all the discussions over the last 4.25 years.
His door (whenever open) was always open for questions. I also thank Dyon for
translating my abstract into Dutch. I thank Koen (Groenland) for letting me use



172

his thesis template. I thank Garazi and Yanlin for agreeing to be my paranymphs.
I would also like to thank my friends Adu, Akshita, Anee, Anu, Boddu, Dolly,

Gannu, Hema, Monika, Mythili, Paapi, Tiqvah, Ujwala and Vicky who kept me
sane these last few years. Friends who drove me insane are not acknowledged in
this thesis. I would also like to thank Aishwarya, Bharadwaj, Jelle, John, Julian,
Kuldeep, Marie-Louise, Ritsya, Sandeep, Soumya and Stephanie who made me and
Nimerah feel at home in the Netherlands. It wouldn’t have been possible for me
to handle research and parenting if not for you all. I would also like to thank my
therapist Hazel and Nimerah’s babysitter Kate for their support and care. I would
also like to thank the Dutch government for the kinderopvangtoeslag (the childcare
benefit) without which I wouldn’t have been able to take care of Nimerah here in
the Netherlands. I would also like to thank WIQD for the funding I have received
towards childcare during conferences and work visits. I thank my ex-husband Joseph
for a smooth divorce and emotional support through the process. I would like to
thank the weekend crew, Chinmay, Neety, Nishant, Samruddhi and Visu, for the fun
board game afternoons. I would like to thank my extended family, Anu, Chandan,
Jaya, Neha, Rebathi, Sai, Siddhu and Srinu, for their love and support. I would like
to thank my teacher Praveen for being a wonderful inspiration to his students.

Lastly, I would like to express my gratitude towards my family (both living and
dead). My love for research stems from the scientific discussions I used to have with
my father Mahendra. I am sure he would have been proud of this thesis. None of
this work would have been possible without the support (and occasional nagging)
of my mother Swarupa. I thank my sister Sunayana for always being there for
me (even while writing this acknowledgement section making sure I don’t miss out
on thanking loved ones such as herself). I would also like to thank my daughter
Nimerah for her constant love and support; this once squishy bundle of joy is no
longer squishy but is still joyful and delightful.



Titles in the ILLC Dissertation Series:

ILLC DS-2016-01: Ivano A. Ciardelli
Questions in Logic

ILLC DS-2016-02: Zoé Christoff
Dynamic Logics of Networks: Information Flow and the Spread of Opinion

ILLC DS-2016-03: Fleur Leonie Bouwer
What do we need to hear a beat? The influence of attention, musical abilities, and
accents on the perception of metrical rhythm

ILLC DS-2016-04: Johannes Marti
Interpreting Linguistic Behavior with Possible World Models

ILLC DS-2016-05: Phong Lê
Learning Vector Representations for Sentences - The Recursive Deep Learning Ap-
proach

ILLC DS-2016-06: Gideon Maillette de Buy Wenniger
Aligning the Foundations of Hierarchical Statistical Machine Translation

ILLC DS-2016-07: Andreas van Cranenburgh
Rich Statistical Parsing and Literary Language

ILLC DS-2016-08: Florian Speelman
Position-based Quantum Cryptography and Catalytic Computation

ILLC DS-2016-09: Teresa Piovesan
Quantum entanglement: insights via graph parameters and conic optimization

ILLC DS-2016-10: Paula Henk
Nonstandard Provability for Peano Arithmetic. A Modal Perspective

ILLC DS-2017-01: Paolo Galeazzi
Play Without Regret

ILLC DS-2017-02: Riccardo Pinosio
The Logic of Kant’s Temporal Continuum

ILLC DS-2017-03: Matthijs Westera
Exhaustivity and intonation: a unified theory

ILLC DS-2017-04: Giovanni Cinà
Categories for the working modal logician

ILLC DS-2017-05: Shane Noah Steinert-Threlkeld
Communication and Computation: New Questions About Compositionality

ILLC DS-2017-06: Peter Hawke
The Problem of Epistemic Relevance

ILLC DS-2017-07: Aybüke Özgün
Evidence in Epistemic Logic: A Topological Perspective

ILLC DS-2017-08: Raquel Garrido Alhama
Computational Modelling of Artificial Language Learning: Retention, Recognition &
Recurrence



ILLC DS-2017-09: Miloš Stanojević
Permutation Forests for Modeling Word Order in Machine Translation

ILLC DS-2018-01: Berit Janssen
Retained or Lost in Transmission? Analyzing and Predicting Stability in Dutch Folk
Songs

ILLC DS-2018-02: Hugo Huurdeman
Supporting the Complex Dynamics of the Information Seeking Process

ILLC DS-2018-03: Corina Koolen
Reading beyond the female: The relationship between perception of author gender and
literary quality

ILLC DS-2018-04: Jelle Bruineberg
Anticipating Affordances: Intentionality in self-organizing brain-body-environment sys-
tems

ILLC DS-2018-05: Joachim Daiber
Typologically Robust Statistical Machine Translation: Understanding and Exploiting
Differences and Similarities Between Languages in Machine Translation

ILLC DS-2018-06: Thomas Brochhagen
Signaling under Uncertainty

ILLC DS-2018-07: Julian Schlöder
Assertion and Rejection

ILLC DS-2018-08: Srinivasan Arunachalam
Quantum Algorithms and Learning Theory

ILLC DS-2018-09: Hugo de Holanda Cunha Nobrega
Games for functions: Baire classes, Weihrauch degrees, transfinite computations, and
ranks

ILLC DS-2018-10: Chenwei Shi
Reason to Believe

ILLC DS-2018-11: Malvin Gattinger
New Directions in Model Checking Dynamic Epistemic Logic

ILLC DS-2018-12: Julia Ilin
Filtration Revisited: Lattices of Stable Non-Classical Logics

ILLC DS-2018-13: Jeroen Zuiddam
Algebraic complexity, asymptotic spectra and entanglement polytopes

ILLC DS-2019-01: Carlos Vaquero
What Makes A Performer Unique? Idiosyncrasies and commonalities in expressive
music performance

ILLC DS-2019-02: Jort Bergfeld
Quantum logics for expressing and proving the correctness of quantum programs

ILLC DS-2019-03: András Gilyén
Quantum Singular Value Transformation & Its Algorithmic Applications



ILLC DS-2019-04: Lorenzo Galeotti
The theory of the generalised real numbers and other topics in logic

ILLC DS-2019-05: Nadine Theiler
Taking a unified perspective: Resolutions and highlighting in the semantics of attitudes
and particles

ILLC DS-2019-06: Peter T.S. van der Gulik
Considerations in Evolutionary Biochemistry

ILLC DS-2019-07: Frederik Möllerström Lauridsen
Cuts and Completions: Algebraic aspects of structural proof theory

ILLC DS-2020-01: Mostafa Dehghani
Learning with Imperfect Supervision for Language Understanding

ILLC DS-2020-02: Koen Groenland
Quantum protocols for few-qubit devices

ILLC DS-2020-03: Jouke Witteveen
Parameterized Analysis of Complexity

ILLC DS-2020-04: Joran van Apeldoorn
A Quantum View on Convex Optimization

ILLC DS-2020-05: Tom Bannink
Quantum and stochastic processes

ILLC DS-2020-06: Dieuwke Hupkes
Hierarchy and interpretability in neural models of language processing

ILLC DS-2020-07: Ana Lucia Vargas Sandoval
On the Path to the Truth: Logical & Computational Aspects of Learning

ILLC DS-2020-08: Philip Schulz
Latent Variable Models for Machine Translation and How to Learn Them

ILLC DS-2020-09: Jasmijn Bastings
A Tale of Two Sequences: Interpretable and Linguistically-Informed Deep Learning for
Natural Language Processing

ILLC DS-2020-10: Arnold Kochari
Perceiving and communicating magnitudes: Behavioral and electrophysiological studies

ILLC DS-2020-11: Marco Del Tredici
Linguistic Variation in Online Communities: A Computational Perspective

ILLC DS-2020-12: Bastiaan van der Weij
Experienced listeners: Modeling the influence of long-term musical exposure on rhythm
perception

ILLC DS-2020-13: Thom van Gessel
Questions in Context

ILLC DS-2020-14: Gianluca Grilletti
Questions & Quantification: A study of first order inquisitive logic



ILLC DS-2020-15: Tom Schoonen
Tales of Similarity and Imagination. A modest epistemology of possibility

ILLC DS-2020-16: Ilaria Canavotto
Where Responsibility Takes You: Logics of Agency, Counterfactuals and Norms

ILLC DS-2020-17: Francesca Zaffora Blando
Patterns and Probabilities: A Study in Algorithmic Randomness and Computable Learn-
ing

ILLC DS-2021-01: Yfke Dulek
Delegated and Distributed Quantum Computation

ILLC DS-2021-02: Elbert J. Booij
The Things Before Us: On What it Is to Be an Object

ILLC DS-2021-03: Seyyed Hadi Hashemi
Modeling Users Interacting with Smart Devices

ILLC DS-2021-04: Sophie Arnoult
Adjunction in Hierarchical Phrase-Based Translation

ILLC DS-2021-05: Cian Guilfoyle Chartier
A Pragmatic Defense of Logical Pluralism

ILLC DS-2021-06: Zoi Terzopoulou
Collective Decisions with Incomplete Individual Opinions

ILLC DS-2021-07: Anthia Solaki
Logical Models for Bounded Reasoners

ILLC DS-2021-08: Michael Sejr Schlichtkrull
Incorporating Structure into Neural Models for Language Processing

ILLC DS-2021-09: Taichi Uemura
Abstract and Concrete Type Theories

ILLC DS-2021-10: Levin Hornischer
Dynamical Systems via Domains: Toward a Unified Foundation of Symbolic and Non-
symbolic Computation

ILLC DS-2021-11: Sirin Botan
Strategyproof Social Choice for Restricted Domains

ILLC DS-2021-12: Michael Cohen
Dynamic Introspection

ILLC DS-2021-13: Dazhu Li
Formal Threads in the Social Fabric: Studies in the Logical Dynamics of Multi-Agent
Interaction

ILLC DS-2022-01: Anna Bellomo
Sums, Numbers and Infinity: Collections in Bolzano’s Mathematics and Philosophy

ILLC DS-2022-02: Jan Czajkowski
Post-Quantum Security of Hash Functions



177

ILLC DS-2022-03: Sonia Ramotowska
Quantifying quantifier representations: Experimental studies, computational modeling,
and individual differences

ILLC DS-2022-04: Ruben Brokkelkamp
How Close Does It Get?: From Near-Optimal Network Algorithms to Suboptimal Equi-
librium Outcomes

ILLC DS-2022-05: Lwenn Bussière-Carae
No means No! Speech Acts in Conflict


	I The Main Part
	Introduction
	Fine-grained complexity
	Our contributions
	Related work
	Organisation of this thesis

	Preliminaries
	Notations
	Quantum computing
	Model of computation
	Quantum subroutines
	Quantum basic adversary method
	Quantum fine-grained reductions

	A Framework of Quantum Strong Exponential-Time Hypotheses
	Introduction
	The quantum strong exponential-time hypotheses
	QSETH lower bounds for OV and uPoW
	QSETH lower bounds for LCS and Edit Distance
	Quantum query lower bound for property Pdelta
	Summary, future directions and open questions

	Memory Compression with Quantum Random-Access Gates
	Introduction
	Compressing sparse QRAM algorithms
	Simplifications of previous works

	Fine-Grained Complexity via Quantum Walks
	Introduction
	Simple variants of 3SUM
	Lower bounds for two structured versions of 3SUM
	3SUM-hard geometry problems
	Other 3SUM-hard problems
	Future directions and open questions

	Matching Triangles & Triangle Collection
	Introduction
	Quantum fine-grained reductions from APSP
	Matching Triangles & Triangle Collection: lower bounds
	Matching Triangles & Triangle Collection: upper bounds
	Discussions, future directions and open questions

	The Last Chapter

	II The Closing Matters
	Bibliography
	Abstract
	Nederlandse samenvatting
	Acknowledgements


