
H

Q
F
TT

Quantum multivariate estimation
and span program algorithms

Arjan Cornelissen

A
rja

n
C
o
rn

e
lisse

n
Q
u
a
n
tu

m
m
u
ltiv

a
ria

te
e
stim

a
tio

n
a
n
d

sp
a
n

p
ro

g
ra

m
a
lg
o
rith

m
s

Quantum multivariate estimation

and span program algorithms

ILLC Dissertation Series DS-2023-02

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 107
1098 XG Amsterdam

phone: +31-20-525 6051
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl/

Copyright © 2022 by Arjan Cornelissen

Printed and bound by Druk. Tan Heck

ISBN: 978–90–6824–076–4

Quantum multivariate estimation

and span program algorithms

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. P.P.C.C. Verbeek ten overstaan van een door het
College voor Promoties ingestelde

commissie, in het openbaar te verdedigen in de Agnietenkapel
op vrijdag 17 februari 2023, te 16.00 uur

door

Adriaan Jaco Cornelissen

geboren te Delft

Promotiecommissie

Promotor: Prof. Dr. R.M. de Wolf Universiteit van Amsterdam
Co-promotor: Dr. M. Ozols Universiteit van Amsterdam

Overige leden: Prof. Dr. A. Ambainis Latvijas Universitāte
Prof. Dr. H.M. Buhrman Universiteit van Amsterdam
Prof. Dr. C. Schaffner Universiteit van Amsterdam
Dr. S. Jeffery Centrum Wiskunde & Informatica
Dr. F. Speelman Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

to QuSoft

v

Contents

Acknowledgments xi

1 Introduction 1
1.1 Overview . 3
1.2 Relation to the literature . 5

2 Preliminaries 7
2.1 Notation . 7
2.2 Basics of quantum mechanics . 10
2.3 Basics of quantum computing . 12
2.4 Algorithmic primitives . 18

Part I: Quantum algorithms

3 Quantum mean estimation 27
3.1 Introduction . 27
3.2 Preliminaries . 29
3.3 Bounded mean estimation . 32
3.4 General mean estimation . 41

3.4.1 Known upper bound on Tr[Σ] 41
3.4.2 Unknown upper bound on Tr[Σ] 48

3.5 Lower bound . 54
3.6 Discussion . 58

4 State tomography 61
4.1 Introduction . 62
4.2 Preliminaries . 63
4.3 Bounded norm conversion . 65

vii

4.4 Unbiased phase estimation . 67
4.4.1 Basic algorithm . 68
4.4.2 Improved tail bounds . 70
4.4.3 Unbiased probability estimation 72

4.5 Estimating multiple observables with a state-preparation oracle . 75
4.5.1 Tail bounds on uniform matrix series 76
4.5.2 Algorithm for estimating multiple observables 78

4.6 Mixed-state tomography . 83
4.7 Lower bounds . 86
4.8 Implications . 96

5 Partition function estimation 101
5.1 Introduction . 101
5.2 Modified quantum subroutines . 103
5.3 Unbiased and non-destructive mean estimation 111
5.4 Partition function estimation . 117

5.4.1 Algorithm overview . 118
5.4.2 Applications . 120

Part II: Span programs

6 The span program formalism 127
6.1 Definition and basic properties . 128

6.1.1 Span programs and witnesses 128
6.1.2 Operational interpretation 134
6.1.3 Span program algorithm 145

6.2 Relation to the quantum adversary method 151
6.2.1 The primal adversary bound 151
6.2.2 The dual adversary bound 157
6.2.3 Conversion between span programs and the dual adversary

bound . 162

7 Compositions of span programs 169
7.1 Logical composition of span programs 169

7.1.1 Definition and basic properties 169
7.1.2 Relation to dual adversary bound solutions 185
7.1.3 Characteristic functions 195

7.2 Graph composition of span programs 212
7.2.1 Electrical networks . 212
7.2.2 Definition and basic properties 216
7.2.3 Special case: planar graphs 223
7.2.4 Graph composition examples 228

viii

7.3 Quantum algorithms from classical decision trees 235
7.3.1 Introduction . 236
7.3.2 Decision trees and its properties 237
7.3.3 Graph composition of a decision tree 240
7.3.4 Optimal weight assignment 242
7.3.5 Discussion . 247

8 Approximate span programs 249
8.1 Definition and basic properties . 249
8.2 Approximate span program algorithm 253
8.3 Equivalence with quantum query algorithms 267

9 Discussion 273

Abstract 289

Samenvatting 291

ix

Acknowledgments

Of course I did not do my PhD in solitary confinement (even though now and
then covid-19 made it feel that way), and there have been several people along the
way that helped me tremendously. I could not write this thesis without extending
my sincerest gratitude to everyone that was involved in one way or the other.

First and foremost, I would specifically like to thank Māris, who has supervised
me throughout these four years. I know I have not always been the easiest student
to supervise, but you were always there for me regardless and you were very
supportive throughout. I am very grateful for your supervision and the time we
spent together. I think after all we can conclude we were quite constructively
aligned, don’t you think?

I would also like to thank Ronald, my promotor. You have always been
periodically checking up on how I was doing, and on numerous occasions you
provided me with very valuable advice, regarding research in particular as well
as about the academic world in general. I am very grateful for these lessons
learned, and I’m sure I will take them with me throughout the rest of my academic
career. And of course if I ever again have an oh-how-did-hyphenation-work-again-
moment, then I know who to ask.

Next, I would like to extend my gratitude to the members of my committee,
Andris, Harry, Chris, Stacey and Florian. Thanks for taking the time to take
part in my committee, and assess the quality of my thesis. I hope reading this
thesis did not consume as much effort as it did writing it.

Of course I am also very grateful to have been given the chance to cooperate
with many great researchers on various research projects. In particular, I would
like to thank my co-authors, Álvaro, Māris, Stacey, András, Johannes, Sofiene,
Vedran, Yassine, Nikhil, Ronald, Subha, Joran and Giacomo. I had a lot of fun
working with all of you, and I hope that many more projects will ensue in the
future. Besides that, I have to say that M&M’s will never taste the same again.

Through the conferences and symposia I attended, I got to know quite some
people from all kinds of corners in the world. I’m not going to be able to mention

xi

everyone here, but I would like to mention in particular Yassine, Yixin, João,
Alessandro, Armando, Kianna, Ana, Mathias, Alicja, Emiel and Casper. It was
a pleasure to spend time with you guys, and I hope to bump into all of you many
times again.

During my PhD, I had the chance to do an internship at IBM in New York. I
would like to thank Giacomo for notifying me of the opportunity, and Kristan for
accommodating my stay there. I would also like to thank Vikesh for providing
me with ample gin tonic, and Vojtech for giving me ample rides back to White
Plains. And, of course, I would like to thank all the interns that made my stay a
lot of fun. In particular, I would like to mention Uma, Christophe, Harshitha, Sai
Sree and Weiqiu for several hikes and a wonderful Niagara Falls trip. Similarly, I
would like to thank Matt, Priyanka, Tergel, Vincent, Chhavi, Vikram, Alexandra,
Clara, Alex, Adou and Yadav for various activities in and around New York. I
also had tremendous fun with Nick, Ronak, Timur, Majo, Michelle and Jay-U,
not only in New York but also in Mexico. In particular I would like to thank
Majo for hosting us all in Mexico. Finally, special mention goes out to Fatih and
Utku, because of you two I can never think the same way about gummy bears
anymore.

I am extremely grateful to have been given the opportunity to spend four
years at QuSoft. Before I started my PhD I had no clue how wonderful a group
of people QuSoft actually is, and I would like to thank all its members for the
incredible time it has been. It felt a bit like second family – or at times maybe
even a bit closer than that.

In particular, I would like to thank my fellow members of the peanut butter
room, Farrokh, Álvaro, Harold and Subha. I will never forget how we always
started the day with an hour of pointless banter, I will forever realize that I can
never beat Harold’s word plays, and I hope no-one will ever again have to reinstate
our covid infection counter on the whiteboard. Also, Subha, I particularly enjoyed
your random questions on parenting, but I’m afraid I still don’t have a reasonable
answer to until what age you can get away with lying to your kid. Jokes aside,
you are the best example of a power woman I know, and I will cherish the time
we were able to spend together.

Next, I would like to thank all the members of QuSoft that have invited
and/or joined me on various trips around the globe, of which I mention a few
here. First, I thank Joran and Sebastian for a very memorable wintersport trip,
even though I managed to break my wrist on the first day. Then, I would like
to thank Nikhil for inviting me to his wedding, Subha, Quinten, Hema, Llorenç,
Sebastian and Chelsea for making wonderful memories there, and Lynn and Chris
for an eventful extra trip through India – I’m afraid I will have to adopt a puppy
somewhere in the future though to make up for my mistakes. Also, I would like to
thank Chris and Fran for roaming the state of Illinois together, similarly I have
to thank Marten, Jordi, Emiel, Alicja, Garazi, Fran and Llorenç for a proper
detached-from-the-world experience in two RV’s through the deserts and nature

xii

parks of California, and I thank Marten, Garazi and Fran for helping me avoid the
covid winter by going on a two-week “working” trip to Tenerife. Finally, I would
like to thank Garazi for some wonderful getaways in and around the Netherlands
and all the time spent together. I hope you don’t mind that I will forever wonder
about the similarity between trees and standing rocks.

One thing about life at QuSoft that cannot be left unmentioned is the daily
habit of playing a game of foosball after lunch, and oftentimes several more later
in the afternoon. I have to thank Álvaro for very passionately teaching me the
basic strategy of the game, as well as Nikhil for providing by far the best audio
feedback to any game I’ve ever played. Due to foosball, for me de klassieker
will forever refer to a foosball match of Sander & Mathé vs. Farrokh & me, and
I’m afraid I will never again be able to use the words snake, flash and German
score in any serious context. Finally, thanks to Tom there is a camera system
that tracks the ball, keeps the score, and keeps track of everyone’s defense and
attack rating. I have supplied a graph of the progression of my rating over time
in Figure 0.0.1. Am I the only one wondering if this graph will receive new data
points in the years to come?

1200

1300

1400

1500

1600

1700

2019 2020 2021 2022

Figure 0.0.1: The progression of my foosball rating throughout my PhD, as of
January 16th, 2023, over a total of 730 (rated) games. The black and gray lines
are the attack and defense scores, respectively. One can clearly observe the covid
period, as well as my internship at IBM.

Then there are still a lot of people of QuSoft that I haven’t explicitly thanked,
but all of you deserve a mention here. Thanks a lot to Jana for pointing out to
me that my dance moves are maybe not on point – I will continue to own it,
don’t worry – as well as to Yinan for guiding several of us around Shenzhen. I
also thank Har&Kar, Jop, Michael, Florian, Jonas, Jeroen, András, Koen, Peter,
Joris, Jan, Freek, Yfke, Philip, René, Dmitry, Randy, Galina, Yanlin, Jelena,
Dyon, Niels, Bas, Sebastian de Bone, Arie, Chanelle, Crownie, Simona, Mathys,
Alex, Chris Majenz, Ido, Davi, Léo, Mert, Yaroslav, Mehrdad, Simon, Seeni-
vasan, John, Adam, Akshay, Victor, Yvonne and Susanne for a wonderful time at
QuSoft. Finally, I would like to thank Doutzen in particular for enthusiastically
and tirelessly making everyone feel like a part of the family, and organizing many
social get togethers, both during and outside of covid. Those were what made it
so much fun to be in QuSoft, and even through the covid period we had quite
some memorable moments in the digital QuTeas.

xiii

Not only was I a part of QuSoft, but I felt very much at home at CWI as well,
and became an active member of the activity committee. First, I would like to
thank all the people that regularly showed up to the events that we organized,
ranging from riddle and casino nights to chess, table tennis and, of course, foosball
tournaments. In particular, Dick, pubquizzing will never be the same without you,
and a big tanks to Wessel, Sander, Alexander, Pieter, Chris Wesseling, Adrian,
Christian, and all the others that joined our events.

Of course I also need to extend a big thanks to all the members of the committe
that made organizing all these events so much fun. A big shout out to Giulia,
Esteban, Muriel, Ruben, Mark, Hema, Léon, Mathé, Shane, Ludo, Vlad, Nikhil,
Max and Sanne, you are all awesome! In particular, I have to thank Isabella for
being an extremely devoted and enthusiastic organizer of events. I know I was not
always the most organized person when it came to committee things, so I’m very
happy that we were able to chair together – I don’t think I would have managed
on my own. And besides that, I seem to remember that you enjoyed our first
house party a lot, don’t you agree?

Lastly, I would like to thank the members of the CWI Choir, together with
Francien, Jelle, Māris, Joris, Aljosja, Léon, Steven, Ute, Lynda, Stacey, Kareljan
and Rianne we performed quite some interesting pieces. In particular, though, I
have to thank Doutzen for organizing it and convincing me to join, as I have to
say I would have never expected that I would like it as much as I did.

Of course these last four years have not only revolved about work-related
things, as there was also a life outside of the realm of PhD. First and foremost I
would like to thank my parents and sister for letting me do my thing as much as
I like, but simultaneously always being there for me and unconditonally helping
out wherever possible. Of course, Maaike, I also have to thank you for organizing
all these trips we took – I would have never seen as much of China, Poland,
France, Switzerland, Italy, Guatemala and Mexico if it weren’t for your planning
and dedication.

And finally, we reach the part where I thank all my friends that were there for
me throughout my PhD, which is arguably the most important category of all.
First, I would like to mention de Fissagroep for many barbecues, game nights,
chill sessions, and I think we can be quite proud that we managed to maintain
biweekly virtual board game nights throughout almost all of the covid period. So
a big thanks to Maurice for all the fun we had (is that chicken curry?), Erwin for
tireless barbecuing, Anne for all the results of ample baking sessions, and Jenny
and Mike for all the memorable moments, like climbing Djevelporten in winter
and Arie Pannenkoek. Special thanks go out to Hugo for playing a major role
in organizing so many getaway trips, most notably twice to Norway and twice
to Lancaster, and of course for coming all the way to New York to pay me a
visit and take me on a weekend trip to Washington DC. Also special thanks go
out to Stan for being an awesome person and never allowing any dull moment to
happen – and no, I still don’t really have an answer to what you should do if you

xiv

accidentally break someone else’s couch in half. Finally, special thanks go out to
Hazel for taking me on an impromptu and epic Curaçao trip and always being
down for the most yolo option available – I don’t know anyone who I share that
sentiment more convincingly with.

Next, I would like to thank Alex, Luke and Mirela for several musical distrac-
tions, and on top of that together with Joey and Tom for some good away-from-
the-science-world drinks. Besides all that I would like to thank Mathijs, Anda
and Erik for some very fun and successful programming sessions – I’m sure that
I’m never again going to forget to make my Github repo’s private.

Then I would like to thank Tom, David, Mago, Jesse and Ilin for two very
memorable trips, to the Czech republic and to Macedonia. I’m still not sure if it
was to be expected to find Dutch music in a night club in Ohrid, but I am sure
that the song Gekke boys will never sound the same to me again.

Of course I will also have to thank all the members of Team Krekhut, Ilin,
Jesse and Gera, for joining the Baltic Sea Circle rally. There are too many
memories of this trip to list here, but I’m sure that the song On the road again
will always bring all of them back. And in the unlikely event that you guys are
ever considering a surströmming tasting, I’m in.

Next I would like to thank Erik, Matthias and Ilin for the regular drinks
sessions. Even though all our lives went into very different directions over the
last four years, I thoroughly enjoyed every single time we got back together – and
I still cannot think of a better way to spend the night before going to a conference
in the US than by getting a few too many beers with you guys.

Lastly, there is no better way to end this section than by thanking my room-
mates. Through all my adventures, de Krekhut has always been the place that I
could call home, and that is completely because of the three of you. First, Jesse,
we have lived together for almost six years, and even though recently we have
mostly been living our separate lives, we still have quite some memorable house
parties and board game nights to share. And I will never be able to enjoy the
game of pesten as much as I did with you.

Then, Jente, I could literally not imagine a nicer roommate to live with. My
tea consumption absolutely skyrocketed after you moved in, and it facilitated
many very chill moments that allowed for proper unwinding of the craziness of
life and work. And, of course, I will not ever forget our impromptu trip to Vienna
– if I ever desperately need to figure out where to sleep at an airport, I know who
to call.

And finally, Ilin, I recently realized that I know you for well over half of my life.
We have had so many chess nights, TrackMania sessions, sporcle adventures, and
so many other forms of chilling that I cannot list them all. I hope you don’t mind
all the random WhatsApp messages I sent you about anything and everything,
especially all the audio fragments in the middle of the night. A big thanks to all
the fun we had, and whenever I see the wind blow through the trees, I will forever
wonder whether this is the correct meaning of шушка молика.

xv

As you can probably tell by the length of this acknowledgment section, I
thoroughly enjoyed my time as a PhD student. Even though I tried in this text, I
cannot put into words how fortunate I feel to have experienced all this. Ultimately,
all I can conclude with is that I am very grateful to all of you who were a part
of this journey, and that I hope I have been able to bring some happiness to you
somewhere along the way as well.

Het is mooi geweest, op naar iets nieuws.

January 16th, 2023.

xvi

Chapter 1

Introduction

The ability to perform computations has been a catalyst in many developments.
Numerous accounts indicate that a computational device called an abacus was
used already in ancient times to perform simple arithmetic, for instance for ac-
counting purposes in ancient Greece and the Roman empire, as well as during
the Chinese dynasties. Later, during the second world war, the development of
the electrical computer played a crucial role in the ability of the allied forces
to decrypt communication between German commanders, and over the decades
afterwards, similar computational devices revolutionized society with the advent
of the information age. Even more recently, the development of more efficient
and more powerful graphical processing units have opened up the ability for a
boom in artificial intelligence, with countless emerging applications ranging from
self-driving cars to computer-aided diagnosis.

Along with the aforementioned physical advances in the ability to perform
computations, came a deeper understanding of the complexity of computational
problems of interest. At first, this understanding mainly manifested in the de-
velopment of algorithms that solve these problems, i.e., explicit descriptions of
sequences of operations to be performed on these computational devices. For
instance, Euclid’s algorithm describes how one can calculate the greatest com-
mon divisor of two integers using an abacus. Similarly, Dijkstra’s algorithm can
be used to find the shortest distance between two cities in a road network us-
ing a conventional computer. And finally, the backtracking algorithm, which tells
us how we can optimize the parameters of a neural network, has a particularly
efficient implementation on graphical processing units.

In parallel to the aforementioned development of algorithms came a better un-
derstanding of the hardness of computational problems of interest. For instance,
Alan Turing exhibited a problem, known as the halting problem, that cannot be
solved using any algorithm run on a conventional computer [Tur37]. Similarly, a
large class of problems, i.e., the NP-complete problems, has been discovered with
the conjectured property that any algorithm that solves them on a conventional

1

2 Chapter 1. Introduction

computer necessarily requires a number of steps that is exponential in the size of
the input [Coo71; Lev73].

When we specify a computational problem, a computational device, and a
way of measuring the cost of an algorithm run on this device, then we can look
for an optimal algorithm that solves the given problem on the given device with
minimal cost. Surprisingly, one can show that such an optimal algorithm does not
always exist [Blu67], but if it does then its cost is referred to as the computational
complexity of the given problem on the given device. A large area within computer
science is dedicated to characterizing these computational complexities of all sorts
of problems, and this field of research is called complexity theory.

Over the past decades, the idea of a quantum computer rapidly caught traction
in the scientific community. Rather than classical computers whose physics can
be described by classical mechanics, which includes laptops, graphical processing
units and modern-day supercomputers, the proposed quantum computers rely on
the principles of quantum mechanics to perform computations. The idea arose
during the cold war independently on both sides of the iron curtain, by Yuri Manin
in 1980 in the Soviet Union [Man80], and by Paul Benioff in the USA [Ben80].
Later, the idea was popularized in the west by Richard Feynman, who asserted
that in order to simulate complicated quantum mechanical systems, we need a
computational device that natively supports quantum operations.

Broadly speaking, the study of performing computations on such quantum
devices is called quantum computing. Within this field, one can investigate similar
questions about the complexity of computational problems of interest, under all
kinds of cost models. We typically refer to the complexity of a computational
problem on a quantum computer as the quantum computational complexity of the
given problem.

In some cases, there are surprisingly big discrepancies between the classical
and quantum complexities. Probably the most well-known result of this type is
Shor’s algorithm [Sho97], which describes a way to find divisors of a composite
integer with exponentially fewer elementary quantum operations than the number
of steps that the current best-known algorithm on a classical computer performs
to solve the same problem. Similarly, a wide range of search problems feature
a quadratic cost reduction between the classical and quantum setting due to
Grover’s algorithm [Gro96].

Broadly speaking, the field of quantum computing lies at the intersection be-
tween physics, mathematics, and computer science. In order to grasp the underly-
ing theory that governs the computational foundations of a quantum computer, a
thorough understanding of quantum mechanics is of paramount importance. Ad-
ditionally, to analyze the behavior of the newly-developed quantum algorithms,
a fair amount of non-trivial mathematics is typically involved. Finally, many of
the algorithmic techniques used to design quantum algorithms find their origin
in (classical) computer science.

In this thesis, we make progress on understanding the quantum complexity

1.1. Overview 3

of several computational problems. In the process, we develop new algorithmic
techniques, as well as new proof techniques to arrive at hardness results in the
quantum setting.

This thesis is the result of a four-year PhD program, conducted from 2018 to
2022 at QuSoft, which is a collaboration between University of Amsterdam (UvA)
and the Center of Mathematics and Computer Science (CWI).

1.1 Overview

This thesis is structured as follows. In Chapter 2, we define some notation, and
we explain the computational model we will be presenting our work in. The idea
is that the quantum devices that are being designed and built at the moment,
can in the future efficiently implement the algorithms that are defined in the
computational model we describe here. Subsequently, we recall a couple of well-
known algorithmic primitives that we will be using throughout the remainder of
this thesis to build new algorithms upon.

After that the thesis is subdivided into two parts. In Part I, we introduce sev-
eral quantum algorithms that solve separate computational problems of interest.
The common theme among all of these is that they estimate some mathematical
object up to a given accuracy, and typically the quantum algorithm’s cost has a
better dependence on the desired accuracy than its classical counterpart.

We now individually describe the quantum algorithms in Part I in more detail.
In Chapter 3, we introduce a quantum algorithm that solves the quantum mean
estimation problem, i.e., that computes the mean of a multivariate random vari-
able X taking values in Rd. In our model, we assume to have access to a quantum
routine that prepares a coherent superposition over the underlying events, and
we measure the cost of our algorithm by counting the number of inverse and/or
controlled calls to this routine. This model closely mimics the classical setting in
which we count the sample complexity of a random process. The crucial observa-
tion that we make in this chapter is that one can only obtain a quantum speed-up
if the number of calls n to the oracle exceeds the dimension of the random variable
d, i.e., we have a quantum speed-up if and only if n > d.

In Chapter 4, we describe a quantum algorithm that solves the quantum state-
tomography problem, i.e., that finds an approximation to a state ρ given access to
a unitary that prepares a purification of it. We assume that ρ ∈ Cd×d, and that
we know a priori that the rank of ρ is at most r ≤ d. In the model we consider,
we measure the cost of our algorithm as the number of inverse and/or controlled
queries made to the state-preparation unitary. We characterize the quantum com-
plexity of this problem to be Θ̃(rd/ε) queries to the state-preparation oracle, by
explicitly describing a quantum algorithm and subsequently showing a matching
lower bound.

In Chapter 5, we describe a quantum algorithm that solves the partition func-

4 Chapter 1. Introduction

tion estimation problem, i.e., it finds an approximation to the partition function
at a given inverse temperature. The technique employed here is called simulated
annealing, and the approach outlined in this chapter improves over a long line
of previous work. In the process, we develop several new algorithmic techniques,
and showcase our result with a wide range of applications.

Subsequently, in Part II, we present the span program formalism, which is
a particular technique that can be used to design quantum algorithms. Parts
of the theory developed in this part are present in various different parts of the
scientific literature, so the main contribution of this part is to provide a self-
contained and unified introduction into the existing theory. On top of that, we
extend the framework in several new directions, and improve some of the existing
constructions along the way. Throughout, we focus on the special case where the
function being computed is a decision problem, i.e., its output is a single bit.

In Chapter 6, we provide a self-contained introduction to the formalism. The
central objects are called span programs, and the formalism provides a way to
constructively convert such a span program into a quantum algorithm. We define
span programs slightly more generally compared to the existing literature, and
spend significant effort in explaining formalism in a pictorial and intuitive manner.
We also show how these objects relate to feasible solutions to a semidefinite
program known as the adversary bound, that characterizes the quantum query
complexity of a boolean function.

In Chapter 7, we discuss several composition results. Broadly speaking, these
constructions allow for taking many smaller span programs, and combining them
into bigger ones that can potentially solve much more complicated problems. We
present two types of composition results, logical and graph compositions, and we
show that the latter is a generalization of the former. We also discuss that such
compositions are much more efficient when performed on the span program level,
compared to when one would perform them directly on the quantum algorithm
level. Additionally, we discover a new property of span programs that neatly
relates the operational properties of span programs and their logical compositions
through the theory of complex analytic functions. Finally, we show how graph
composition can be used to turn a classical algorithm into a quantum one, and
sometimes obtain a quantum speed-up in the process.

In Chapter 8, we consider a slight generalization of the span program frame-
work known as approximate span programs. We use the theory developed in the
previous chapters to devise an improved quantum algorithm that evaluates such
approximate span programs, and we show its optimality up to polylogarithmic
factors. Finally, we show how approximate span programs are complete for a
specific class of quantum algorithms.

Finally, in Chapter 9, we end this thesis with some final remarks and potential
topics of future research.

1.2. Relation to the literature 5

1.2 Relation to the literature
The following papers form the basis for this thesis:

• The following paper forms the basis for Chapter 3:

[CHJ22] Arjan Cornelissen, Yassine Hamoudi, and Sofiène Jerbi. “Near-
optimal Quantum algorithms for multivariate mean estimation”.
In: 54th Annual ACM SIGACT Symposium on Theory of Com-
puting (STOC 2022). ACM, 2022, pp. 33–43. Presented at:
25th Annual Conference on Quantum Information Processing
(QIP 2022). arXiv:2111.09787

• The following paper forms the basis for Section 7.3:

[CMP22] Arjan Cornelissen, Nikhil S. Mande, and Subhasree Patro. Im-
proved Quantum Query Upper Bounds Based on Classical Deci-
sion Trees. 2022. Presented at: 17th Conference on the Theory
of Quantum Computation, Communication and Cryptography
(TQC 2022). Accepted to: 42nd IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2022). arXiv:2203.02968

• The following paper forms the basis for Chapter 4:

[vACG+22] Joran van Apeldoorn, Arjan Cornelissen, András Gilyén, and Gi-
acomo Nannicini. Quantum tomography using state-preparation
unitaries. 2022. Accepted to: Symposium on Discrete Algo-
rithms (SODA 2023) and the 26th Conference on Quantum In-
formation Processing (QIP 2023). arXiv:2207.08800

• The following paper forms the basis for Chapter 5:

[CH22] Arjan Cornelissen and Yassine Hamoudi. A Sublinear-Time
Quantum Algorithm for Approximating Partition Functions.
2022. Accepted to: Symposium on Discrete Algorithms
(SODA 2023) and the 26th Conference on Quantum Information
Processing (QIP 2023). arXiv:2207.08643

We also provide a summary of the results obtained in the following paper, but
we don’t include all the details.

• A summary of the following paper is provided in Section 8.3:

https://arxiv.org/abs/2111.09787
https://arxiv.org/abs/2203.02968
https://arxiv.org/abs/2207.08800
https://arxiv.org/abs/2207.08643

6 Chapter 1. Introduction

[CJO+20] Arjan Cornelissen, Stacey Jeffery, Māris Ozols, and Alvaro
Piedrafita. “Span Programs and Quantum Time Complexity”. In:
Proceedings of the 45th International Symposium on Mathemat-
ical Foundations of Computer Science, (MFCS 2020). Vol. 170.
2020, 26:1–26:14. arXiv:2005.01323

On top of that, several components of the span program part are new research,
but are not contained in the above-mentioned papers. Specifically, we mention
the following new results here:

1. We discover a new property of span programs called the characteristic func-
tion, and show how it can be used to turn span programs into approximation
algorithms in Section 7.1.3.

2. We generalize the existing st-connectivity construction for span programs
to a composition result in Section 7.2.

3. We present an algorithm that evaluates approximate span programs in Sec-
tion 8.2. It improves over the best-known approximate span program algo-
rithm and achieves tight complexity bounds, up to polylogarithmic factors.

Even though these last parts are not yet turned into self-contained papers, it
is my expectation that they will form the basis of future publications.

Additionally, the following papers also appeared over the course of my PhD,
but they are not part of this PhD thesis:

[Cor19] Arjan Cornelissen. Quantum gradient estimation of Gevrey func-
tions. 2019. arXiv:1909.13528

[CBG21] Arjan Cornelissen, Johannes Bausch, and András Gilyén. Scal-
able Benchmarks for Gate-Based Quantum Computers. 2021.
arXiv:2104.10698

[CJ21] Arjan Cornelissen and Sofiene Jerbi. Quantum algorithms for
multivariate Monte Carlo estimation. 2021. arXiv:2107.03410

[CMO+21] Arjan Cornelissen, Nikhil S. Mande, Maris Ozols, and Ronald de
Wolf. Exact quantum query complexity of computing Hamming
weight modulo powers of two and three. 2021. arXiv:2112.14682

In all papers mentioned, the amount of work was divided equally among all
authors.

https://arxiv.org/abs/2005.01323
https://arxiv.org/abs/1909.13528
https://arxiv.org/abs/2104.10698
https://arxiv.org/abs/2107.03410
https://arxiv.org/abs/2112.14682

Chapter 2

Preliminaries

In this chapter, we introduce the necessary background information that the rest
of the thesis is built upon. We start by introducing some notational conventions
in Section 2.1. After that, we describe the basics of quantum mechanics in Sec-
tion 2.2. Next, we explain how the theory of quantum computing fits into the
more general framework provided by quantum mechanics, in Section 2.3. Finally,
we present some well-known algorithmic primitives that are used in several places
throughout this thesis in Section 2.4.

2.1 Notation

We start by listing some notational conventions that we will be using throughout
this thesis. For all natural numbers n ∈ N, we denote [n] = {1, . . . , n}, and we
let [n]0 = [n] ∪ {0}. For all expressions a, b, we define the Kronecker delta as

δa,b =

{
1, if a = b,

0, otherwise.

We use specific notation to perform truncations, i.e., for a, b, x ∈ R with a < b,
we let

JxKba =

{
x, if a ≤ x ≤ b,

0, otherwise.
(2.1.1)

Setting the value to 0, rather than the closest endpoint, is mostly done to sim-
plify the exposition of the analyses later on. One could also set x to the closest
endpoint, i.e., let JxKba = a whenever x < a, and similarly when x > b.

We let R>0 = {x ∈ R : x > 0} and R≥0 = {x ∈ R : x ≥ 0} be the sets of
positive and non-negative reals, respectively. Vectors in Rd are often represented
in boldface and we typically assume the indexing to these vectors to be 1-based,
i.e., (x1, . . . , xd) = x ∈ Rd.

7

8 Chapter 2. Preliminaries

Hilbert spaces are complete inner product spaces. In this text, we assume all
Hilbert spaces to be finite-dimensional and over the complex field C, unless oth-
erwise stated. As is customary in quantum mechanics, we assume inner products
to be linear in the second variable, and antilinear in the first.

Unit vectors in Hilbert spaces are referred to as states for short. We denote
them with the ket-notation, i.e., |·⟩. Therefore, unless stated otherwise, we assume
in particular that every ket denotes a unit vector, i.e., a vector with norm 1. If
the Hilbert space H is defined explicitly over some finite basis set Ω, i.e., H = CΩ,
then we associate the corresponding standard basis vectors with the notation |ω⟩,
for all ω ∈ Ω. For any n ∈ N, we let Cn denote C[n−1]0 , which in turn is equal to
Span{|j⟩ : j ∈ [n− 1]0}. In particular, this means that C2 = Span{|0⟩ , |1⟩}.

We use the bra-notation, i.e., ⟨·|, to denote vectors in the dual of a Hilbert
space. Formally, a bra is a linear functional on the Hilbert space, defined by
taking the inner product. That is, a dual vector ⟨ψ| : H → C evaluated at a
vector |ϕ⟩ ∈ H equals the inner product between |ψ⟩ and |ϕ⟩, denoted by ⟨ψ|ϕ⟩.
The latter is referred to as a braket.

Let {|e1⟩ , . . . , |en⟩} and {|f1⟩ , . . . , |fm⟩} be orthonormal bases for two Hilbert
spaces H1 and H2, respectively. Then, we denote the tensor product H1 ⊗H2 to
be the space that is spanned by tuples of the basis states, i.e., Span{|ej⟩ ⊗ |fk⟩ :
j ∈ [n], k ∈ [m]}. The resulting space does not explicitly depend on the choice of
basis, and we can easily observe that the Hilbert space dimension of the tensor
product is the product of the Hilbert space dimensions, i.e., dim(H1 ⊗ H2) =
dim(H1) dim(H2).

All spaces of linear operators between two Hilbert spaces, we endow with the
operator norm by default. For a linear operator A, we denote its spectrum by
σ(A) ⊆ C. We denote its adjoint by A†, and we say that an operator is Hermitian
if it equals its adjoint. For Hermitian operators, we recall that their spectrum is
contained in the reals, and that the operator norm is the same as the maximum
absolute value of its eigenvalues. A Hermitian operator is positive semidefinite if
all its eigenvalues are non-negative, and it is positive definite if all its eigenvalues
are positive. If A is positive semidefinite, or PSD for short, we write A ⪰ 0, and
if A is positive definite, or PD, we write A ≻ 0.

Following common conventions in the computer science domain, we take all
logarithms to be base 2, and we denote the natural logarithm, i.e., the logarithm
base e, by ln.

Let f, g : D → R, with D ⊆ Rd. Suppose that we can find constants C ≥ 0
and C1, . . . , Cd ∈ R such for all (x1, . . . , xd) = x ∈ Rd,

|f(x)| ≤ C|g(x)|, (2.1.2)

if there exists a j ∈ [d] such that xj ≥ Cj. Then, we write f = O(g). This
is known as the big-O-notation, and it is important to stress that the notation
demands that the bound in Equation (2.1.2) holds whenever we take the limit to
∞ in any parameter, even when keeping the others fixed.

2.1. Notation 9

Oftentimes, we will not define the above functions f and g very formally. As
an example, suppose that we write

sin2(ε)

t
= O

(
ε2

t

)
, (ε ↓ 0, t→ ∞). (2.1.3)

What we formally mean is that we consider the two functions f, g : R2
>0 → R,

defined as

f(x1, x2) =
sin2(1/x1)

x2
, and g(x1, x2) =

1/x21
x2

,

and we claim that f = O(g) as defined above. The choice of replacing ε by 1/x1
is justified by the fact that x1 → ∞ indeed coincides with ε ↓ 0, as indicated in
Equation (2.1.3). Similarly, λ ↑ 1 could get replaced by 1 − 1/xj, for instance,
but other choices are also possible. Oftentimes, we will also drop the limiting
regimes that we mean in our usage of the big-O-notation, when they are clear
from context.

Next, we use the big-Õ-notation if we want to additionally suppress polylog-
arithmic factors. Formally, if we have two functions f, g : D → R, with D ⊆ Rd,
then we say that f = Õ(g), if we can find constants p1, . . . , pd > 0 such that

f(x) = O

(
g(x) ·

d∏
j=1

logpj(xj)

)
,

where xj is the jth entry of a vector x ∈ Rd. As an example, we observe that

x1 log(x1x2) + x2 log(x1) = Õ(x1 + x2).

Sometimes one cannot infer from the notation directly what space Rd we mean
when we use the big-Õ-notation. For instance, if we write

log(1/δ)

ε
= Õ

(
1

ε

)
,

in the limit where ε, δ ↓ 0, then from the expression on the right-hand side it is not
clear that there is a logarithmic factor in 1/δ that has been suppressed. Therefore,
if there can be any confusion about the parameters involved, we explicitly mention
the parameters in which polylogarithmic factors have been suppressed.

The big-O-notation is useful for providing upper bounds on functions in some
limits of the parameters’ range. Sometimes, we want to similarly provide lower
bounds, for which we employ the big-Ω-notation. We simply say that f = Ω(g)

if and only if g = O(f), and similarly f = Ω̃(g) if and only if g = Õ(f). Finally,
if we have both, i.e., f = O(g) and f = Ω(g), then we say that f = Θ(g), and
similarly with Θ̃.

We conclude this section with the formal definition of the cyclic distance.

10 Chapter 2. Preliminaries

2.1.1. Definition (Cyclic distance). Let a, b, p ∈ R. We define the cyclic dis-
tance between a and b with period p as:

cyclic-distp(a, b) = min{|a− b+ zp| : z ∈ Z}. ◀

We can think of the cyclic distance as representing the shortest distance be-
tween two points when they are placed on a circle of length p. If we omit p, we
assume that p = 1.

2.2 Basics of quantum mechanics

Quantum mechanics is a theory that describes the laws that govern the physical
world around us. It provides this description through four postulates, which are
referred to as the postulates of quantum mechanics. We briefly recap them here,
and we refer the interested reader to [NC00] for a more elaborate introduction
into quantum mechanics.

Postulate I: State space The first postulate of quantum mechanics asserts
that every physical system has an associated state space, which is simply a Hilbert
space. By physical system we mean any set of particles in the real world, e.g.,
your neighbor’s bicycle, or a cell in your body. A quantum state, or state for
short, of a physical system is a unit vector in its state space. It captures all the
properties of the physical system, i.e., the energy levels of the electrons in its
atoms, the position of all its particles in the universe, etc.

As far as we know, there is no reason why we could not use quantum mechanics
to describe everyday phenomena. However, if we tried to describe the quantum
state of an everyday object, like your neighbor’s bike, we would end up with a
very unwieldy object in an extremely large Hilbert space. Consequently, quantum
mechanics finds its application predominantly in describing very small physical
systems, on the level of atoms and molecules.

Postulate II: System composition The second postulate of quantum me-
chanics states that the state space of a composite physical system is the tensor
product of the individual systems. Specifically, suppose that we have two physical
systems with corresponding state spaces H1 and H2. Then, the state space of the
combined physical system is H1 ⊗H2.

An interesting observation to make here is that if we describe the state of a
composite physical system, which is simply a unit vector in H1 ⊗ H2, then this
state cannot always be written as a tensor product |h1⟩ ⊗ |h2⟩, with |h1⟩ ∈ H1

and |h2⟩ ∈ H2. Thus, there is a very important conceptual distinction to make.
If we can write the state of a composite system as a tensor product of states of
the individual systems, then we say that this state is a separable state, or product

2.2. Basics of quantum mechanics 11

state. On the other hand, if the state of a composite system is not separable,
then we say that it is entangled, in which case the quantum state of either of its
individual subsystems is not a well-defined mathematical object.1

Postulate III: Time evolution The third postulate of quantum mechanics
postulates that the time-evolution of a physical system’s state can be modeled as
a unitary operation acting on its state space. The quantum state of a physical
system prior to the operation is then related to its posterior state by a single
application of this unitary operator.

It is important to note here that this postulate inherently assumes that the
physical system is isolated, i.e., that during the time evolution it does not interact
with other physical systems. Indeed, we have already seen in the composition
postulate that the quantum state of a composite system can become entangled,
in which case the quantum states of the two individual physical systems becomes
an ill-defined object. If we consider a composite system, with state spaces H1 and
H2, and we apply a unitary operation U to the first system, and do not perform
any operation on the second, then the corresponding unitary operation on the
composite system is U ⊗ I.

Postulate IV: Measurement The final postulate of quantum mechanics de-
scribes how we can extract information from a quantum state. To that end, we
let H be the state space of some physical system, and we let Ω be a set, referred
to as the set of measurement outcomes. To every outcome ω ∈ Ω, we associate a
subspace Sω ⊆ H, and we demand that all these subspaces form an orthogonal
decomposition of H, i.e.,

H =
⊕
ω∈Ω

Sω.

Then, the set Ω with its associated subspaces defines a measurement operation. If
the quantum state of the system is |ψ⟩ ∈ H, then for every ω ∈ Ω, the probability
of obtaining measurement outcome ω is given by

P(ω) = ∥ΠSω |ψ⟩∥
2 ,

where ΠSω is the operation that projects onto the subspace Sω. Furthermore, if
the measurement outcome is ω, then the post-measurement quantum state of the
system is

|ψ′⟩ = ΠSω |ψ⟩√
P(ω)

.

We say that the quantum state has collapsed to the subspace Sω.
1If instead of state vectors, as we do here, one uses density matrices to describe quantum

states, then one can can always describe the reduced density matrix on a subsystem. We do
not elaborate on that here, and refer the interested reader to [NC00].

12 Chapter 2. Preliminaries

The above definition teaches us something very important: performing a mea-
surement on a physical system inherently affects the state. Indeed, the resulting
state will always be in one of the subspaces Sω, and therefore if we started with
a quantum state that had overlap with multiple subspaces Sω, it will definitely
be altered by the measurement operation itself. Indeed, somewhat surprisingly,
it turns out that this is indeed an accurate description of the real world, i.e., at
the atomic level it is impossible to obtain information about the system without
affecting it. The most well-known example of this is Heisenberg’s uncertainty
principle [Hei27], that asserts that one cannot measure the position of a particle
without affecting its momentum, and vice versa.

In the special case where the set of measurement outcomes is contained in
the reals, i.e., Ω ⊆ R, we can very neatly combine the set Ω and its associated
projectors into a single operator on the state space, i.e., we can write

O =
∑
ω∈Ω

ωΠSω .

The resulting operator O is a Hermitian operator on the state space H, and it is
referred to as an observable. Conversely, we also observe that the eigendecompo-
sition of any Hermitian operator uniquely defines a set of outcomes Ω ⊆ R with
corresponding subspaces, and as such there exists a one-to-one correspondence
between observables and Hermitian operators on the state space.

As a final remark, we state that the expectation of an observable measurement
can be very succinctly written. Suppose that we have a quantum system in
state |ψ⟩, and a measurement operation described by an observable O, then the
expectation of the outcome is given by ⟨ψ|O |ψ⟩. It is a nice exercise for the
reader to verify that this is indeed the case, given the measurement postulate
that we defined here.

2.3 Basics of quantum computing

In this section, we shift gears a little bit and narrow our scope to quantum
computing. That is, we explain how the principles of quantum mechanics give
rise to a model of computation.

Qubits The fundamental carrier of information in quantum computing is a
qubit, i.e., a physical system whose state space is C2 = Span{|0⟩ , |1⟩}. Qubit is
short for quantum bit, and it is the quantum equivalent of a bit, or binary digit, in
classical computing. Indeed, we see that a qubit can be in the states |0⟩ or |1⟩. In
addition, its state can also be a linear combination of these two, i.e., α |0⟩+ β |1⟩
with α, β ∈ C and |α|2 + |β|2 = 1. We refer to such a state as a superposition
over |0⟩ and |1⟩. If α = β, we say that it is a uniform superposition.

2.3. Basics of quantum computing 13

The third postulate of quantum mechanics tells us that every operation we
can perform on a qubit is a unitary acting on C2. We refer to these unitaries as
quantum gates, and we define a few particular elementary operations, which we
refer to as the elementary single-qubit gates. To that end, we associate |0⟩ and
|1⟩ with the vectors [1 0]T and [0 1]T , so that we can conveniently write these
operations as 2× 2-matrices. They are listed in Table 2.1.

Name Symbol Matrix

Pauli-X X

[
1 0
0 1

]
Pauli-Y Y

[
0 −i
i 0

]
Pauli-Z Z

[
1 0
0 −1

]
Hadamard H 1√

2

[
1 1
1 −1

]
Phase gate S

[
1 0
0 i

]
T -gate T

[
1 0

0 e
πi
4

]
Table 2.1: Elementary single-qubit quantum operations.

We also define a very simple measurement. We let Ω = {0, 1}, S0 = |0⟩ ⟨0|
and S1 = |1⟩ ⟨1|. We refer to the resulting measurement operation as the standard
basis measurement. It returns 0 when we are in state |0⟩, and 1 when we are in
state |1⟩, and hence it allows us to recover a classical bit of information from the
quantum state stored in a qubit. If the qubit state is some superposition over |0⟩
and |1⟩, then the measurement outcome will be probabilistic, as described by the
measurement postulate.

When we combine several qubits, we obtain a physical system with a larger
dimension. As such, we can also apply larger unitary operations to these sys-
tems. For instance, if we have a system containing two qubits, we can perform a
controlled-NOT operation on them, denoted by CNOT, and defined as

CNOT = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗X =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
The above operation can be interpreted as a conditional operation: if the first
qubit is in state |0⟩, then we apply the identity operation to the second qubit,
and if the first qubit is in state |1⟩, we apply an X-operation to the second
qubit. Furthermore, note that the X-operation indeed plays the role of the NOT-
operation, because it maps |0⟩ to |1⟩ and vice versa.

14 Chapter 2. Preliminaries

The state space of an n-qubit system is (C2)⊗n, which has 2n dimensions. To
every integer j ∈ [2n − 1]0, with binary representation j = j1j2 . . . jn, we can
associate the n-qubit standard basis vector |j⟩ = |j1⟩ ⊗ · · · ⊗ |jn⟩. As such, a
computational basis measurement on an n-qubit system is a measurement with
2n projections onto these standard basis states, and corresponding measurement
outcomes in [2n − 1]0.

To be able to reason about qubits and their states more easily, we typically
group several qubits into a register, and then talk about the state of this register
rather than the state of the individual qubits themselves. For instance, an n-qubit
register is the system we used in the previous paragraph, which has state space
(C2)⊗n.

Additionally, we usually take the liberty to think of the state space of a register
not necessarily as a tensor products of qubits, but as an arbitrary Hilbert space,
and our operations merely as unitaries on this Hilbert space. This means that
if we want to actually implement our operations on a physical device, we would
need to embed the Hilbert space into the state space of an n-qubit register, and
subsequently we would need to decompose our unitaries into elementary single-
qubit and two-qubit operations. Oftentimes, we will not give this embedding of
the Hilbert space and decomposition of the unitary explicitly, but merely rely on
results that this can in principle always be done, like [Kit97], or the construction
presented in [NC00, Chapter 4].

Quantum algorithms A quantum computation, or quantum algorithm is a
sequence of unitary operations and measurements performed on a set of qubits.
For the purposes of this thesis, we will always assume that the initial state of the
system is the all-zeros state, i.e., every qubit is initialized to the state |0⟩ at the
start of the computation.

In this thesis, we make a distinction between a quantum circuit and a quantum
algorithm. By a quantum circuit, we mean a sequence of unitary operations
applied to a sequence of qubits. Hence, a quantum circuit does not consist of any
measurement operations. A quantum algorithm, on the other hand, is allowed to
perform unitary operations, as well as measurement operations on a set of qubits.

The benefit of making this distinction is that quantum circuits have a few
properties that don’t in general hold true for quantum algorithms. First, since a
circuit consists of just unitary operations, its overall action can be described as a
unitary as well. We say that the circuit implements this overall unitary operation.

Furthermore, all unitaries are invertible, and as such a quantum circuit admits
an operational inverse. That is, we can implement the inverse of a quantum circuit
by reversing the order of all the gates that make up the circuit, and then also
inverting all the gates individually as well. One can easily verify that if we run
a quantum circuit, followed by its inverse, then we end up implementing the
identity operation, i.e., we do nothing.

2.3. Basics of quantum computing 15

For many computational problems, we naturally have an input that we would
like to feed into an algorithm that solves the computational problem for that
particular input. For instance, if we want to add two integers a, b ∈ N, then
we typically design an algorithm that can add any two integers, and then feed
it the integers a and b as input. Similarly, if we consider Dijkstra’s algorithm
that computes the smallest distance between two cities in a road network, the
input to the algorithm is a description of the cities in the network, and the roads
connecting them.

Since we start our quantum computation in the all-zeros state, one might
wonder how we supply this input to the quantum algorithm in this computational
model. The typical assumption is to provide a circuit that explicitly depends
on the input, known as an oracle, that the algorithm can call or query. It is
important to realize that oracles can themselves call other oracles, and hence this
model allows for nesting several layers of computation, which mimics the setting
of classical programming.

To give an example of a quantum algorithm that uses such an oracle, we
present Deutsch’s algorithm. Given a function f : {0, 1} → {0, 1}, it decides
whether f(0) = f(1). We can encode this function in an oracle Of , acting on one
qubit, that for all b ∈ {0, 1} acts as

Of : |b⟩ 7→ (−1)f(b) |b⟩ .

Now, the quantum algorithm proceeds as follows. We use a single qubit, and then
apply the Hadamard gate to obtain the uniform superposition, i.e., the state

1√
2
(|0⟩+ |1⟩).

Then, we apply the oracle, which by linearity will map the state to

1√
2
((−1)f(0) |0⟩+ (−1)f(1) |1⟩) = (−1)f(0)√

2
(|0⟩+ (−1)f(0)⊕f(1) |1⟩),

where by a⊕ b we denote binary addition, i.e., a⊕ b = 0 if and only if a = b, and
1 otherwise. Next, we apply the Hadamard gate again, and we can easily verify
that we end up in the state

(−1)f(0) |f(0)⊕ f(1)⟩ .

Thus, we are either in a scalar multiple of the state |0⟩, if f(0) = f(1), or |1⟩ if
f(0) ̸= f(1). Hence, if we now perform a computational basis measurement on
our qubit, we obtain 0 when f(0) = f(1), and 1 when f(0) ̸= f(1) with certainty.

Note that in the above algorithm, we only made a single query to the input,
i.e., to the oracle Of . This is remarkable, since one could naively expect that
comparing two function values, i.e., f(0) and f(1), would also require two calls

16 Chapter 2. Preliminaries

to an operation that computes the function. Thus, here we see the first signs of
quantum effects coming into play, i.e., we managed to solve this problem with
fewer queries than we would need if we were to solve the same problem in a
similar setting on a classical computer. More precisely, we observe the quantum
interference effect, where a positive and a negative contribution to an amplitude
result in it vanishing altogether.

If we have access to some oracle Ox, encoding some input x, that acts on a
Hilbert space H, then it will often be very convenient to assume that we also
have access to circuits that derive from Ox. For instance, the inverse of Ox is the
circuit O†

x that acts on H as well. Furthermore, the controlled version of Ox is
the circuit that acts on C2 ⊗H as |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗Ox.

Throughout this thesis we will always assume that if we have access to Ox,
then we also have access to its inverse, its controlled version, and the controlled
version of its inverse. This assumption is not very restrictive once one observes
that it is recursively satisfied. That is, suppose that Ox itself queries some input
oracle O′

y. Then, having access to the inverse of O′
y, and the controlled version

of O′
y and its inverse, can easily be seen to imply that we also have access to Ox,

its inverse, and the controlled versions. Thus, once we satisfy this assumption at
the lowest level, i.e., where the input circuit is simply a collection of elementary
gates, it automatically carries over through all consecutive layers of nesting that
we encounter.

Finally, we remark that since the outcome of a quantum measurement is inher-
ently probabilistic, we sometimes end up implementing algorithms that output
the correct answer only with high probability. Specifically, when an algorithm
outputs the correct answer to the computational problem with certainty, we say
that the algorithm is exact. On the other hand, if it outputs the correct an-
swer with probability at least 2/3, then we say that the algorithm solves the
computational problem with bounded error.

Cost The cost of a quantum algorithm can be measured in many different ways.
One relatively simple way is to count the number of elementary operations that are
performed throughout the execution of the algorithm. This cost measure we refer
to as the gate cost, or time cost. In line with the discussion in the introduction,
we now define the gate complexity, or time complexity of a particular problem to
be the minimal gate cost of an algorithm that solves it.

Another relatively simple cost measure is known as the space cost, and simply
counts the number of qubits that the algorithm uses throughout its execution.
We similarly define the space complexity of a problem as the minimum number
of qubits one needs to solve it.

If an algorithm uses input that is supplied to it by means of oracles, then
there is a very natural third measure that we can consider, which is to simply
count the number of times we call the input oracles. This measure we refer to as

2.3. Basics of quantum computing 17

the query cost, and similarly we define the query complexity of a problem as the
minimum number of queries that one needs in order to solve the problem.

Note that these complexities can be very different based on whether we want
to solve our computational problem exactly, or with bounded error. For instance,
the search problem takes as input a bit string x ∈ {0, 1}n, and finds an index
j ∈ [n] such that xj = 1, or outputs that no such index exists. The input bit
string is encoded in an oracle Ox acting on C[n], that for all j ∈ [n] acts as

Ox : |j⟩ 7→ (−1)xj |j⟩ .

There is a trivial exact algorithm that solve this problem in n queries. For any j ∈
[n], observe that the controlled oracle Ox, on the subspace Span{|0⟩ |j⟩ , |1⟩ |j⟩},
acts as the oracle operation in Deutsch’s algorithm, with the function f : {0, 1} →
{0, 1} defined as f(0) = 0 and f(1) = xj. Thus, by running Deutsch’s algorithm
for every j ∈ [n], we can recover the whole bit string x with n queries to Ox in
total, and consequently also output the answer to the search problem.

Surprisingly, though, in the bounded-error setting there exists a quantum al-
gorithm that solves this problem with O(

√
n) queries [Gro96]. We also know that

these exact and bounded-error algorithms are optimal, since we have lower bounds
on the query complexity that match these expressions up to constants [BBB+97].
Thus, the search problem has a quadratic separation between its exact and
bounded-error query complexity.

Throughout this thesis we will predominantly consider this third complexity
measure, i.e., the query complexity. One reason is that there exists a beautiful
theory and a lot of prior work on upper and lower bounding query complexity,
paving the way for tightly characterizing it for many different computational
problems. Another reason is that the resulting expressions are usually easier
to state in the text, easier to parse by the reader, and hence more effective in
generating understanding of the difficulty of a computational problem. A third
reason is that it circumvents having to be explicit about the embedding of the
registers and unitaries onto the level of qubits and their elementary operations.
But most importantly, both space and gate complexity likely will not accurately
reflect the total amount of physical operations that need to be executed on an
actual quantum device, due to architecture constraints and error reduction and
mitigation considerations, all of which are still very active research at the moment.
Query complexity is not affected by these implementation details, and as such is
a more relevant quantity to compute at the moment.

Physical implementation The physical realization of a quantum computa-
tional device essentially comes down to developing a physical system whose state
space is C2, or at least has a subspace into which C2 can be embedded, so that
can be used to represent a single qubit. The device must then be able to apply
the elementary operations defined in Table 2.1 to these qubits, and it must also

18 Chapter 2. Preliminaries

be able to perform some operation like the CNOT that acts on multiple qubits
at once, so that their states can be entangled. Finally, it must be able to perform
computational basis measurements on the individual qubits, so that we can learn
properties of the quantum state it stores. If the device is able to perform all these
things, then we can run our quantum computations on the given device.

Of course there are many challenges that designers of these quantum chips
face. To hint at a few of them, we mention here that they have to find ways to
deal with errors that occur during the computations, or cannot always perform
two-qubit gates on pairs of qubits that are physically separated far from one
another.

On the other hand, there are several things that might be possible to realize
in the lab that are not captured well by the model presented in this section. For
instance, suppose that we have a register that holds the index of some qubit in
a larger array of data qubits, and we would like to use the quantum state stored
in this particular data qubit. This is commonly known as a random-access gate,
and in the model presented in this section would require at least a number of
elementary gates that scales linearly in the number of data qubits. However,
there are several proposed constructions of such random-access gates that can
be implemented in significantly fewer physical operations, or at least in total
execution time that scales sub-linearly in the number of data qubits used. This
data structure is usually called QRAM (Quantum Random Access Memory), and
it is at this moment not clear whether quantum devices ultimately will have access
to such features or not.

Even though the challenges mentioned in these paragraphs are very interesting
topics of research in their own right, they are beyond the scope of this thesis.

2.4 Algorithmic primitives

Now that we have introduced the model of computation that we will be using
throughout the remainder of this thesis, we can describe several well-known al-
gorithmic primitives that we will be using. This is not meant to be a full-fledged
introduction into all these techniques, instead we refer to [NC00; dWol22; Chi22]
for more complete introductions.

We start by defining a particular unitary operation on an n-qubit register,
known as the quantum Fourier transform.

2.4.1. Definition. Let n ∈ N. The quantum Fourier transform on n qubits is
an operation that for all j ∈ [2n − 1]0 performs the mapping

QFT2n : |j⟩ 7→ 1√
2n

2n−1∑
k=0

e
2πijk
2n |k⟩ . (2.4.1)

2.4. Algorithmic primitives 19

For ease of notation, for all j ∈ R we define the state

|QFT2n(j)⟩ =
1√
2n

2n−1∑
j′=0

e
2πijk
2n |k⟩ . (2.4.2)

We refer to this as the QFT-state of j on n qubits. ◀

Note that unlike in many branches of physics, in quantum computing it is
customary to define the quantum Fourier transform without a minus sign in the
exponent. Thus, when comparing the above definition with other disciplines, this
one is closer to the inverse Fourier transform in many other fields.

Furthermore, note that for all j ∈ [2n − 1]0, we indeed have QFT2n |j⟩ =
|QFT2n(j)⟩, as the notation suggests. The benefit of the newly-introduced no-
tation is that |QFT2n(j)⟩ is also defined whenever j is not integer, whereas
QFT2n |j⟩ is not.

Next, we prove a very useful lemma about computational basis measurements
of QFT-states. The proof here is very similar in flavor to the analysis provided
in [NC00, Section 5.2.1].

2.4.2. Lemma (Measurement of a QFT-state in the QFT-basis). Let k ∈ N and
j ∈ R. If we measure QFT†

2k
|QFT2k(j)⟩ in the computational basis and denote

the outcome by j̃ ∈ [2n − 1]0, then for all ℓ ∈ [2n − 1]0,

P[̃j = ℓ] =
sin2(π(j − ℓ))

22n sin2(π(j − ℓ)/2n)
,

where we take limits if the denominator evaluates to 0. In particular, for all
integer m ≥ 2,

P[cyclic-dist2n(j, j̃) > m] ≤ 1

2(m− 1)
.

Proof:
We directly write out the state before the computational basis measurement, and
obtain

QFT†
2n |QFT2n(j)⟩ =

1

2n

2n−1∑
ℓ=0

2n−1∑
k=0

e
2πi(j−ℓ)k

2n |ℓ⟩ = 1

2n

2n−1∑
ℓ=0

1− e2πi(j−ℓ)

1− e
2πi(j−ℓ)

2n

|ℓ⟩ ,

where we used a formula for the partial sums of the geometric series. Using that
|1− e2ix| = 2| sin(x)| for all x ∈ R, we obtain for all ℓ ∈ [2n − 1]0:

P[̃j = ℓ] =
∣∣∣⟨ℓ|QFT†

2n |QFT2n(j)⟩
∣∣∣2 = 1

22n

∣∣∣∣1− e2πi(j−ℓ)

1− e
2πi(j−ℓ)

2n

∣∣∣∣2
=

sin2(π(j − ℓ))

22n sin2(π(j − ℓ)/2n)
.

20 Chapter 2. Preliminaries

Since the functions sin2(πx) and sin2(πx/2n) are periodic with period 2n, we can
substitute j − ℓ with cyclic-dist2n(j, ℓ). We also observe that among all possible
choices for ℓ ∈ {0, . . . , 2n − 1}, there are at most 2 such that cyclic-dist2n(j, ℓ) ∈
(k, k+1], for all k ∈ [2n−1− 1]0. Furthermore, observe that sin2(πx) is increasing
on the interval [0, 1/2], and thus

P[cyclic-dist2n(j̃, j) > m] =
2n−1∑
ℓ=0

cyclic-dist2n (j,ℓ)>m

P[̃j = ℓ]

≤
2n−1∑
ℓ=0

cyclic-dist(j,ℓ)>m

1

22n sin2(π cyclic-dist2n(j, ℓ)/2
n)

≤ 2

22n

2n−1−1∑
ℓ=m

1

sin2(πℓ/2n)
.

Now, we use the numerical inequality sin2(πx) ≥ (2x)2, for all x ∈ [0, 1/2], and
obtain

P[cyclic-dist2n(j̃, j) > m] ≤ 2

22n

2n−1−1∑
ℓ=m

22n

4ℓ2
≤

∞∑
ℓ=m

1

2ℓ2

≤
∫ ∞

m−1

1

2ℓ2
dℓ =

[
− 1

2ℓ

]∞
m−1

=
1

2(m− 1)
.

This completes the proof. 2

The lemma presented above plays a crucial role in the analysis of the phase
estimation algorithm, which is the algorithm we present next. It was first intro-
duced in [Kit96].

Algorithm 2.4.3: Phase estimation
Input:
1: k ∈ N: the number of bits of precision.
2: U : a quantum circuit acting on H that implements a unitary U .
3: C|ψ⟩: a quantum circuit acting on H that implements |0⟩ 7→ |ψ⟩.

Derived objects:
1: Let the eigendecomposition of U be

U =
r∑
ℓ=1

e2πiθℓ |ψℓ⟩ ⟨ψℓ| ,

where for all ℓ ∈ [r], θℓ ∈ (−1/2, 1/2].
2: Let Φ be a random variable taking values in {θℓ : ℓ ∈ [r]}, such that for all
j ∈ [r],

P[Φ = θℓ] = | ⟨ψ|ψℓ⟩ |2 =: pℓ.

2.4. Algorithmic primitives 21

Output: A number ϕ ∈ (−1/2, 1/2] such that for all ℓ ∈ [r] and integer m ≥ 2,

P[cyclic-dist(θℓ, ϕ) ≤ m · 2−k] ≥ pℓ

(
1− 1

2(m− 1)

)
.

Queries:
1: Number of queries to U : 2k − 1.
2: Number of queries to C|ψ⟩: 1.

Procedure: Phase-Est(k, U , C):
We start in the state |0⟩ ⊗ |0⟩ ∈ (C2)⊗k ⊗H.

1: Apply C|ψ⟩ to the second register.
2: Apply H⊗k to the first register.
3: Conditioned on the first register being in state |j⟩, apply U j on the second

register.
4: Apply QFT†

2k
to the first register.

5: Measure the first register in the computational basis. Denote the outcome by
j ∈ {−2k−1 + 1, . . . , 2k−1}.

6: Output ϕ = j/2k.

Proof of the properties of Algorithm 2.4.3:
We easily obtain the claimed number of calls to U and C|ψ⟩ from the description
of the procedure. Thus, it remains to check the claimed outcome probabilities.

To that end, we track the state throughout the algorithm. After step 2, we
are in the state

1√
2k

2k−1∑
j=0

|j⟩ ⊗ |ψ⟩ .

Since U is unitary, the set {|ψj⟩ : j ∈ [r]} is an orthonormal basis of H. Thus,
we can decompose |ψ⟩ in this basis, and obtain that after step 2 we have the
following state:

1√
2k

2k−1∑
j=0

|j⟩ ⊗
r∑
ℓ=1

⟨ψℓ|ψ⟩ |ψℓ⟩ .

After step 3, we obtain the state

r∑
ℓ=1

⟨ψℓ|ψ⟩√
2k

2k−1∑
j=0

e2πijθℓ |j⟩ ⊗ |ψℓ⟩ =
r∑
ℓ=1

⟨ψℓ|ψ⟩
∣∣QFT2k(2

kθℓ)
〉
⊗ |ψℓ⟩ ,

where we used the definition of the QFT-state, i.e., Definition 2.4.1. Thus, by
applying the inverse Fourier transform to the first register, we obtain the state

r∑
ℓ=1

⟨ψℓ|ψ⟩QFT† ∣∣QFT2k(2
kθℓ)

〉
⊗ |ψℓ⟩ .

22 Chapter 2. Preliminaries

Hence, the probability that at the end of step 5 we obtain outcome j′ ∈ {−2k−1+
1, . . . , 2k−1}, becomes

P[j = j′] =
r∑
ℓ=1

pℓ ·
sin2(π(2kθℓ − j′))

22k sin2(π(2kθℓ − j′)/2k)
, (2.4.3)

where we used Lemma 2.4.2. Using the same analysis as in said lemma, we obtain
that, for all integer m ≥ 2,

P[cyclic-dist2k(2kθℓ, j) ≤ m] ≥ pℓ ·
(
1− 1

2(m− 1)

)
,

and so we obtain that at the end of step 6,

P[cyclic-dist(θℓ, ϕ) ≤ m · 2−k] ≥ pℓ ·
(
1− 1

2(m− 1)

)
.

This completes the proof. 2

Note in particular that if U |ψ⟩ = e2πiϕ |ψ⟩, then we recover the result from
Nielsen and Chuang, i.e., [NC00, Equation (5.34)].

Next, we simply recall a couple of algorithms and their properties, but re-
fer for their specific implementation, and the proof of their properties to their
corresponding papers.

We continue with the amplitude estimation algorithm, which was first intro-
duced in [BHM+02].

Algorithm 2.4.4: Amplitude estimation [BHM+02, Theorem 12]
Input:
1: M ∈ N: a parameter that decides the number of iterations.
2: C|ψ⟩: a quantum circuit acting on H that implements |0⟩ 7→ |ψ⟩.
3: R: a quantum circuit acting on H that reflects through a subspace A ⊆ H.

Derived objects: p = ∥ΠA |ψ⟩∥2.
Output: A number p̃ ∈ [0, 1] that satisfies

|p̃− p| ≤
2π
√
p(1− p)

M
+

π2

M2
.

Success probability: Lower bounded by 8/π2.
Queries:
1: Number of calls to C|ψ⟩: M .
2: Number of calls to R: O(M).

Procedure: Amp-est(M , C|ψ⟩, R).

2.4. Algorithmic primitives 23

Next, we continue with fixed-point amplitude amplification, first introduced
in [YLC14], and later reproved via more general techniques in [GSL+19, Theo-
rem 27].

Algorithm 2.4.5: Fixed-point amplitude amplification [YLC14; GSL+19]
Input:
1: ε > 0: a precision parameter.
2: δ > 0: a proximity parameter.
3: RA: a quantum circuit that reflects through a subspace A ⊆ H.
4: C|ψ⟩: a quantum circuit that implements |0⟩ 7→ |ψ⟩, acting on H.

Assumption: ∥ΠA |ψ⟩∥ ≥ δ.
Output: A quantum state |ψ′⟩ such that∥∥∥∥|ψ′⟩ − ΠA |ψ⟩

∥ΠA |ψ⟩∥

∥∥∥∥ ≤ ε.

Queries:
1: Number of calls to RA: O(log(1/ε)/δ).
2: Number of calls to C|ψ⟩: O(log(1/ε)/δ).

Procedure: Fixed-point-ampl(ε, δ, RA, C|ψ⟩).

Now, we provide linear amplitude amplification, which is slightly different from
fixed-point amplitude amplification. It follows from the techniques introduced in
[GSL+19], with a particular choice of polynomial that is for instance constructed
in [GL20, Lemma 11].

Algorithm 2.4.6: Linear amplitude amplification [GSL+19; GL20]
Input:
1: f ∈ [0, 1]: the multiplication factor.
2: δ > 0: the norm error tolerance parameter.
3: C: a quantum circuit acting on H that implements the mapping

C : |0⟩ 7→ √
p |ψ⟩+

√
1− p |⊥⟩ ,

where |ψ⟩ ∈ A ⊆ H, |⊥⟩ ∈ A⊥.
4: RA: a circuit that reflects around A.

Assumption: fp < 1/4.
Output: A circuit that implements the mapping

|0⟩ 7→
√
fp |ψ⟩+

√
1− fp |⊥⟩ ,

up to norm error δ.
Queries: Number of calls to C and RA: O(log(1/δ)

√
f).

Procedure: Linear-ampl-ampl(f , δ, C, RA).

24 Chapter 2. Preliminaries

Finally, we recall two more results from quantum signal processing. First, we
describe an oracle conversion technique that first appeared in [GAW19, Theo-
rem 14].

Algorithm 2.4.7: Probability to phase oracle conversion [GAW19]
Input:
1: δ > 0: the norm error tolerance parameter.
2: U : a circuit acting on CD⊗H⊗C2 that for all x ∈ D implements the operation

U : |x⟩ |0⟩ |0⟩ 7→ |x⟩ ⊗
(√

px |ψx,1⟩ |1⟩+
√

1− px |ψx,0⟩ |0⟩
)
,

where for all x ∈ D, px ∈ [0, 1], and |ψx,0⟩ , |ψx,1⟩ ∈ H.
Output: A circuit acting on CD, that implements the operation

O : |x⟩ 7→ eipx |x⟩ ,

up to norm error δ.
Queries: Number of queries to U : O(log(1/δ)).
Procedure: Probability-to-phase(U , δ).

Finally, we reference a very special case of a much more general result on
Hamiltonian simulation. The specific version we are using here is [GSL+19,
Corollary 63].

Algorithm 2.4.8: Special case of Hamiltonian simulation [GSL+19]
Input:
1: C: a quantum circuit acting on CX⊗H, with X some finite set, that performs

the mapping
|x⟩ |0⟩ 7→ |x⟩ ⊗ (p(x) |0⟩+ |⊥⟩),

where for all x ∈ X, p(x) ∈ [0, 1], and |⊥⟩ is some unnormalized state that is
orthogonal to |0⟩, and may depend on x.

2: t > 0: the amplification parameter.
3: δ > 0: the norm error tolerance.

Output: A quantum circuit acting on CX that performs the mapping

|x⟩ 7→ eitp(x) |x⟩ ,

up to norm error δ.
Queries: Number of calls to C: O(t+ log(1/δ)).
Procedure: Ham-sim(C, t, δ).

Part I

Quantum algorithms

Chapter 3

Quantum mean estimation

In this chapter, we consider the fundamental problem in statistics of estimating
the mean of a random variable. We consider the setting where we can take quan-
tum samples, i.e., where we can generate coherent superpositions over all possible
values that the random variable can attain, weighted by their probabilities. We
also specifically allow for the case where the random variable is multivariate, and
do not require any additional information besides that its covariance matrix is
well-defined. The quantum algorithm we construct estimates the mean using a
number of samples set a priori, and with this constraint performs optimally up to
polylogarithmic factors. This tight characterization leads to the interesting ob-
servation that quantum computers only offer an advantage over classical ones in
terms of precision, if the number of samples exceeds the dimension of the random
variable.

This chapter is based on [CHJ22]. We start by introducing prior work on
this topic in Section 3.1. Then, in Section 3.2, we precisely define how we are
given access to the random variable, and state the naive classical algorithm that
solves this problem essentially optimally. Next, in Section 3.3, we introduce a
useful subroutine that solves the slightly less general bounded mean estimation
problem. After that, in Section 3.4, we show how this subroutine can be used to
solve the general mean estimation problem. Finally, in Section 3.5, we prove the
optimality of the approach outlined in this chapter. We end with some general
remarks in Section 3.6.

3.1 Introduction

Monte Carlo methods are used extensively in various fields of science and engi-
neering, such as statistical physics [BH10], finance [Gla03], and machine learning
[AdFD+03]. At the core of these methods is a Monte Carlo process, e.g., a
randomized algorithm, whose expected outcome is to be estimated via repeated
random executions. Quantum computers can speed up this approach at two dif-

27

28 Chapter 3. Quantum mean estimation

ferent levels [Mon15]. First, novel algorithmic techniques such as Hamiltonian
simulation [Fey82] or quantum walks [Sze04] provide faster Monte Carlo simula-
tion processes. Second, quantum metrology algorithms (such as phase estimation
[Kit96]) give better error rates for computing statistics on these processes. This
chapter focuses on this second point through the lens of the mean estimation
problem. In this problem, the objective is to compute the closest possible esti-
mate µ̃ to the mean µ = E[X] of a random variable X representing the output
of some black-box process. Given the ability to repeat this process n times (the
sample complexity), one seeks to minimize the error ∥µ̃− µ∥2 made with high
probability.

In the classical setting, a beautiful theory [LM19] has been developed to solve
the mean estimation problem in Euclidean norm. Under the sole assumption that
the covariance matrix Σ of X exists, it turns out that the optimal non-asymptotic
error behaves as if X followed the Gaussian distribution N(µ,Σ). This motivated
the use of the adjective sub-Gaussian to qualify the optimal classical estimators.
In one dimension, the most well-known sub-Gaussian estimator is arguably the
median-of-means [NY83; JVV86; AMS99]. The first computationally efficient
sub-Gaussian estimator in high dimension was only found recently by Hopkins
[Hop20]. These estimators achieve an optimal error of ∥µ̃− µ∥2 = O(

√
Tr(Σ)/n+√

∥Σ∥ log(1/δ)/n with probability at least 1− δ.

In the quantum setting, the univariate case X ∈ R has been studied since
the early works on quantum counting [BBH+98]. The celebrated amplitude es-
timation algorithm [BHM+02] provides a smaller error rate for estimating the
mean of any Bernoulli random variable compared to the classical estimators. For
general univariate distributions, a series of quantum estimators [Gro98; Ter99;
AW99; Hei02; WCN+09; BDG+11; Mon15; HM19; Ham21] culminated into a
near-optimal algorithm that outperforms any classical estimator. On the other
hand, the multivariate case X ∈ Rd, appearing notably in machine learning ap-
plications, remains largely unaddressed by quantum algorithms. Classically, it
admits a simple near-optimal approach: the d coordinates of µ can all be esti-
mated simultaneously with d univariate sub-Gaussian estimators run in parallel
(i.e., using the same samples from X) with only a logarithmic overhead log(d)
in sample complexity (due to the Hoeffding bound and a union bound over the
d coordinates). In the quantum scenario however, this simultaneous evaluation
of several univariate expectation values is more complicated. Indeed, the quan-
tum algorithms for the univariate case rely on quantum amplitude estimation
[BHM+02], which involves as a critical step an encoding of the expectation value
in the relative phase of a quantum register. At first sight, it is unclear how a
vector of d phases could be encoded simultaneously into d registers without re-
quiring a linear overhead in d. In fact, a lower bound proved by Heinrich [Hei04]
rules out the possibility of simply a log(d) overhead for the quantum multivariate
mean estimation problem.

3.2. Preliminaries 29

This chapter develops near-optimal and computationally efficient quantum
mean estimators for vector-valued random variables of arbitrary dimension with
binary oracle access. Unlike in the univariate setting (d = 1), where the optimal
quantum estimator [Ham21] is strictly more efficient than any classical estimator,
we identify two different regimes in higher dimension: (i) if a quantum estimator
is limited to accessing the input at most d times (i.e., n ≤ d) then no advantage
can be gained over the classical sub-Gaussian estimators, (ii) if it can access the
input at least d times (i.e., n ≥ d) then the approximation error can be reduced
by a near-optimal factor of

√
d/n compared to classical sub-Gaussian estimators.

3.2 Preliminaries

In this section, we introduce the model that we will be using throughout this
chapter. We start by formally defining a random variable.

3.2.1. Definition (Mean and covariance matrix).
Let Ω be a finite set, (Ω, 2Ω,P) be a probability space, and let R ⊆ Rd be a finite
set. Then X : Ω → R is a d-dimensional random variable, and we define

E[X] =
∑
ω∈Ω

P(ω)X(ω), and Cov(X) = E[XXT]− E[X]E[X]T .

We refer to E[X] ∈ Rd as the mean or expectation, and frequently denote it by
µ. Similarly, we refer to Cov(X) ∈ Rd×d as the covariance matrix, and frequently
denote it by Σ. ◀

We assume here that Ω and R are finite sets, which has two benefits. First, it
ensures that the expectation and covariance matrix are always well-defined, which
is not necessarily the case when Ω and R can be any sets. Second, to construct a
quantum algorithm we will need to embed Ω and R into finite-dimensional Hilbert
spaces, so assuming that Ω and R are finite from the start saves us from having
to use discretizations later on.

Next, we define how a quantum algorithm can access the random variable.
This is the objective of the next definition.

3.2.2. Definition (Random variable access model).
Let Ω be a finite set, (Ω, 2Ω,P) be a probability space, and X : Ω → R ⊆ Rd be
a d-dimensional random variable.

1. The probability distribution oracle UP acts on CΩ and implements the oper-
ation

UP : |0⟩ 7→
∑
ω∈Ω

√
P(ω) |ω⟩ .

30 Chapter 3. Quantum mean estimation

2. The random variable oracle OX acts on CΩ ⊗ CR and implements the op-
eration, for all ω ∈ Ω,

OX : |ω⟩ |0⟩ 7→ |ω⟩ |X(ω)⟩ ,

where |0⟩ is some arbitrary reference state in CR. ◀

In the above definition, we associate a computational basis state |r⟩ to every
element r ∈ R. In general we don’t require any particular embedding of the states
|r⟩ into qubit registers, as the most convenient way of designing this embedding
might depend on the architecture of the device on which the algorithm is to be
implemented. The only requirement is that two states |r⟩ and |r′⟩, for r, r′ ∈ R,
are orthogonal if r ̸= r′.

If R ⊆ Rd, then every element r ∈ R is a d-dimensional vector (r1, . . . , rd)
T ,

where for each j ∈ [d], rj ∈ R is specified up to some finite precision. In that case
we can for instance think of |r⟩ as

|r⟩ = |r1⟩ ⊗ · · · ⊗ |rd⟩ ,

i.e., the state |r⟩ contains a full binary description of all the elements of r. This
particular embedding corresponds with the typical way in which vectors in Rd

are encoded in classical computers too.
We also remark that one can easily obtain a classical sample of the random

variable X, by performing the following sequence of operations. First, execute
UP to make a superposition over all events ω ∈ Ω, then call OX to compute the
random variable, and subsequently measure the final register. Thus, obtaining
classical samples from X can be done by making one call to each of the two
routines that provide quantum access.

The question that we seek to answer in this chapter is how precisely we can
estimate the mean of the random variable X, if we are allowed to make at most n
queries to both UP and OX . In the classical setting, we can very easily construct an
algorithm that achieves a precision of O(

√
Tr[Σ]/n) with high probability, where

Σ is the covariance matrix of X. For ease of reference, we state this algorithm
below, and prove its properties.

Algorithm 3.2.3: Classical mean estimation
Input:
1: X : Ω → Rd: a random variable on a probability space (Ω, 2Ω,P).
2: n ∈ N: the number of samples (up to logarithmic factors).
3: δ > 0: the failure probability tolerance.
4: UP: the probability distribution oracle, as defined in Definition 3.2.2.
5: OX : the random variable oracle, as defined in Definition 3.2.2.

Derived objects:
1: N = ⌈18 log(2/δ)⌉.

3.2. Preliminaries 31

Output: A vector µ̃ ∈ Rd that satisfies ∥µ̃− E[X]∥2 ≤ 2
√
3Tr[Σ]/n.

Success probability: Lower bounded by 1− δ.
Queries: O(n log(1/δ)) queries to UP and OX .
Procedure: Classical-mean-est(X, n, δ, UP, OX):
1: For j = 1, . . . , N , let µ̃j ∈ Rd be the average of n independent classical

samples of X.
2: Output µ̃ ∈ Rd such that for the strict majority of indices j ∈ [N], we have

∥µ̃j − E[X]∥2 ≤
√
3Tr[Σ]/n, or FAILURE if such a vector µ̃ does not exist.

Proof:
For all j ∈ [N], let X(1), . . . , X(n) be the random variables that describe the
classical samples of X obtained in the jth iteration of step 1 of the algorithm.
Furhermore, let Xℓ be the ℓth entry of the d-dimensional random variable X.
Then,

E[∥µ̃j − E[X]∥22] = E

∥∥∥∥∥ 1n
n∑
k=1

X(k) − E[X]

∥∥∥∥∥
2

2


= E

(1

n

n∑
k=1

X(k) − E[X]

)T (
1

n

n∑
k=1

X(k) − E[X]

)
=

1

n2
E

[
n∑
k=1

n∑
ℓ=1

(X(k) − E[X])T (X(ℓ) − E[X])

]
=

1

n2

n∑
k=1

E
[∥∥X(k) − E[X]

∥∥2
2

]
=

1

n
E[∥X − E[X]∥22] =

1

n

n∑
ℓ=1

E
[
(Xℓ − E[Xℓ])

2
]
=

n∑
ℓ=1

Var(Xℓ) = Tr[Σ],

and hence we find by Markov’s inequality that for all j ∈ [N],

P

[
∥µ̃j − E[X]∥2 >

√
3Tr[Σ]

n

]
≤

E[∥µ̃j − E[X]∥22]n
3Tr[Σ]

=
1

3
.

Now, let Bj be the Bernoulli random variable that is 1 if and only if we have
∥µ̃j − E[X]∥2 ≤

√
3Tr[Σ]/n. Let p := E[Bj] ≥ 2/3. By Hoeffding’s inequality,

we find that

P

[
N∑
j=1

Bj ≤
N

2

]
≤ P

[∣∣∣∣∣
N∑
j=1

Bj − pN

∣∣∣∣∣ ≤ N

∣∣∣∣p− 1

2

∣∣∣∣
]
≤ 2 exp

(
−2N2

N

∣∣∣∣p− 1

2

∣∣∣∣2
)

≤ 2 exp

(
−N

18

)
≤ δ,

where the last inequality follows from the choice of N in the algorithm statement.
Thus, with probability at least 1− δ, E[X] is a possible choice for µ̃ that satisfies

32 Chapter 3. Quantum mean estimation

the conditions of step 2 in the algorithm. Moreover, by the pigeonhole principle,
any µ̃ we choose has the property that at least one j ∈ [N] satisfies ∥µ̃− µ̃j∥2 ≤√
3Tr[Σ]/n and ∥E[X]− µ̃j∥2 ≤

√
3Tr[Σ]/n. Thus, by the triangle inequality,

we find that ∥µ̃− E[X]∥2 ≤ 2
√
3Tr[Σ]/n. This completes the proof. 2

Note that the above algorithm can be easily rephrased into a form where we
set the precision guarantee as a parameter. Indeed, with O(n log(1/δ)) samples
we obtain precision

ε = O

(√
Tr[Σ]

n

)
,

with probability at least 1− δ, and so if we want to obtain precision ε, it suffices
to use a number of samples n that satisfies

n = Θ

(
Tr[Σ]

ε2
log

(
1

δ

))
.

However, the downside of the latter formulation is that we need to know (an upper
bound on) Tr[Σ] when we choose the number of samples to run in our algorithm.
This is why the first formulation, where we express the obtained precision in
terms of ε, is a bit more flexible.

If one carefully compares the logarithmic overhead in the above algorithm
to the best classical algorithms in the literature, then one finds that the above
algorithm can be slightly improved [LM19]. However, in this chapter we only
focus on the polynomial dependence on the parameters d, n, Tr[Σ], 1/ε and 1/δ.
As such, we will present all subsequent results in Õ-notation, where the tilde
hides polylogarithmic factors in the five above-mentioned quantities.

3.3 Bounded mean estimation
As a first stepping stone towards developing a quantum algorithm that solves
the general mean estimation problem, we consider the restricted case where the
range of the random variable is contained in the unit ℓ2-ball in Rd, i.e., we assume
that X : Ω → R ⊆ {x ∈ Rd : ∥x∥2 ≤ 1}. Later, in Section 3.4, we generalize
the results obtained in this section to the setting where the random variable has
unbounded range.

We start by defining the dual grid, which plays a central role in many quantum
algorithms that compute multivariate objects. This technique was first introduced
in [Jor05], and later developed in [GAW19; vApe21; CJ21].

3.3.1. Definition (Dual grid). Let d, n ∈ N. Then, for every index vector j ∈
{−2n−1, . . . , 2n−1 − 1}d, we define a corresponding grid vector

xj =
j+ 1

2
1

2n
⊆
[
−1

2
,
1

2

]d
,

3.3. Bounded mean estimation 33

where 1 ∈ Rd is the all-ones vector. We let

Gd
n = {xj : j ∈ {−2n−1, . . . , 2n−1 − 1}d},

be the set of all these grid vectors, and we refer to Gd
n as the d-dimensional dual

grid on n qubits. ◀

We include a graphical representation of the dual grid in Figure 3.3.1. Note
that Gd

n has 2n grid points in every direction, and thus contains 2nd grid points
in total.

x

y

1
2

−1
2

1
2

−1
2

Figure 3.3.1: The dual grid for d = 2 and n = 3.

For every grid vector x ∈ G, there exists a unique j ∈ {−2n−1, . . . , 2n−1 − 1}d
such that x = xj. We will use this correspondence to define the quantum state
that represents x, i.e., if x = xj, we let

|x⟩ := |j⟩ :=
d⊗

k=1

|jk⟩ , (3.3.1)

where every |jk⟩ is an n-qubit computational basis state representing the integer
jk ∈ {−2n−1, . . . , 2n−1 − 1}.

Using the above identification of |x⟩ with a d-fold tensor product of n-qubit
states, we can use the grid vectors to obtain a more intuitive understanding of the
d-fold tensor product of the quantum Fourier transform over n qubits, as defined
in Definition 2.4.1. This is the objective of the following lemma.

3.3.2. Lemma. Let d, n ∈ N, and let k ∈ {−2n−1, . . . , 2n−1 − 1}d. Then,

QFT⊗d
2n |k⟩ = αk√

2nd

∑
x∈Gd

n

e2πix
Tk |x⟩ ,

where αk ∈ C and |αk| = 1.

34 Chapter 3. Quantum mean estimation

Proof:
From the definition of the vector |k⟩ in Equation (3.3.1) and the quantum Fourier
transform in Definition 2.4.1, we observe that

QFT⊗d
2n |k⟩ =

d⊗
ℓ=1

QFT2n |kℓ⟩ =
d⊗
ℓ=1

1√
2n

2n−1∑
jℓ=0

e
2πijℓkℓ

2n |jℓ⟩

=
1√
2nd

d⊗
ℓ=1

e
−2πi(12+2n−1)kℓ

2n

2n−1−1∑
jℓ=−2n−1

e
2πi(jℓ+

1
2)kℓ

2n |jℓ⟩

=
1√
2nd

e
−2πi(12+2n−1)

∑d
ℓ=1 kℓ

2n︸ ︷︷ ︸
αk

∑
j∈{−2n−1,...,2n−1−1}d

e2πix
T
j k |j⟩

=
αk√
2nd

∑
x∈Gd

n

e2πix
Tk |x⟩ .

This completes the proof. 2

Thus, the above lemma tells us that up to a global phase, we can think of the
multidimensional quantum Fourier transform applied to the state |k⟩ as making a
uniform superposition over all dual grid vectors x, and then computing the inner
product of a dual grid vector with the objective vector k in the phase.

Crucially, we now observe that the multidimensional quantum Fourier trans-
form is a unitary operation, and as such can be inverted. Hence, intuitively, if
we have the ability to compute the inner product of a given dual grid vector x
with some vector k in the phase, then we can recover k using the inverse multi-
dimensional quantum Fourier transform. More specifically, if we have access to
an operation that implements the mapping

Ok : |x⟩ 7→ e2πix
Tk |k⟩ , (3.3.2)

then we can recover k by first making a uniform superposition over all vectors in
the dual grid, then applying this operation Ok, and finally performing the inverse
multidimensional quantum Fourier transform.

The core idea of the multivariate quantum mean estimation algorithm is to
apply the approach outlined above to the vector k = E[X]. To that end, we
observe that it suffices to build an operation that computes the inner product
with a dual grid vector x ∈ Gd

n and E[X] in the phase.
We slowly work towards constructing this operation. The high-level idea is to

first encode the inner product we are after, i.e., xTE[X], in the amplitude of a
quantum state that we can efficiently prepare, and then to use existing techniques
from [GAW19] to compute this inner product in the phase.

One detail we have to take into account is that for any element ω ∈ Ω, the
inner product xTX(ω) might be as large as

√
d, and as such we cannot prepare

3.3. Bounded mean estimation 35

a state that encodes xTX(ω) as an amplitude. To resolve this, we introduce
a truncation parameter M > 0, and prepare the amplitudes

√
JxTX(ω)KM0 /M

and
√
−JxTX(ω)K0−M/M instead, where the notation J·K denotes truncation, and

is defined in Equation (2.1.1). In the following subroutine, we explain how we
can construct a state that encodes these amplitudes using a single call to the
probability distribution and random variable oracles UP and OX .

Algorithm 3.3.3: Probability inner product oracle
Input:
1: X : Ω → R ⊆ Rd: a random variable on a probability space (Ω, 2Ω,P).
2: M > 0: the truncation parameter.
3: UP: the probability distribution oracle as defined in Definition 3.2.2.
4: OX : the random variable oracle as defined in Definition 3.2.2.

Output: A circuit acting on four registers with state spaces CGd
n , CΩ, CRd , C2,

respectively. The operation implemented is, for all x ∈ Gd
n,

|x⟩ |0⟩ |0⟩ |0⟩ 7→ |x⟩
∑
ω∈Ω

√
P(ω) |ω⟩ |X(ω)⟩

⊗

(√
JxTX(ω)KM0

M
|1⟩+

√
1− JxTX(ω)KM0

M
|0⟩

)
,

Queries: 1 call to UP and OX .
Procedure: Inner-product-probability(X, M , UP, OX):
1: Apply UP to the second register.
2: Apply OX to the second and third registers.
3: For vectors x ∈ Gd

n and y ∈ R, apply

|x⟩ |y⟩ |0⟩ 7→ |x⟩ |y⟩ ⊗

(√
JxTyKM0
M

|1⟩+
√

1− JxTyKM0
M

|0⟩

)
to the first, third and fourth registers.

Proof of the properties of Algorithm 3.3.3:
We track the state throughout the execution of the circuit. For all x ∈ Gd

n, we
find

|x⟩ |0⟩ |0⟩ |0⟩ 7→ |x⟩
∑
ω∈Ω

√
P(ω) |ω⟩ |0⟩ |0⟩ 7→ |x⟩

∑
ω∈Ω

√
P(ω) |ω⟩ |X(ω)⟩ |0⟩

7→ |x⟩
∑
ω∈Ω

√
P(ω) |ω⟩ |X(ω)⟩ ⊗

(√
JxTX(ω)KM0

M
|1⟩+

√
1− JxTX(ω)KM0

M
|0⟩

)
.

This completes the proof. 2

Now, we observe via Algorithm 2.4.7 that we can turn this probability oracle
into a phase oracle. This is the objective of the next algorithm we present here.

36 Chapter 3. Quantum mean estimation

Algorithm 3.3.4: Phase inner product oracle
Input:
1: X : Ω → R ⊆ Rd: a random variable on a probability space (Ω, 2Ω,P).
2: M ∈ 3N: the truncation parameter.
3: δ > 0: the norm error tolerance.
4: UP: the probability distribution oracle, as defined in Definition 3.2.2.
5: OX : the random variable oracle, as defined in Definition 3.2.2.

Derived objects:
1: A = Inner-product-probability(X, 1/M , UP, OX).

Output: A circuit acting on a single register with state space CGd
n , implementing

the mapping
|x⟩ 7→ e2πi·

1
3
E[JxTXKM−M] |x⟩ ,

up to norm error δ.
Queries: Number of calls to UP and OX : O(M log(M/δ)).
Procedure: Inner-product-phase(X, M , δ, UP, OX):
1: Run Probability-to-phase(A, 3δ/(2M)) M/3 times.
2: Map |x⟩ 7→ |−x⟩.
3: Run Probability-to-phase(A, 3δ/(2M)) M/3 times in reverse.
4: Map |x⟩ 7→ |−x⟩.

Proof of the properties of Algorithm 3.3.4:
Since A performs exactly one call to UP and OX , the total number of calls we
make to these operations is O(M log(M/δ)), by the properties of Algorithm 2.4.7.
Moreover, since we make 2M/3 calls to Algorithm 2.4.7, and in each make a norm
error of at most 3δ/(2M), we end up making a norm error of at most δ.

It remains to check that we approximately implement the right operation. To
that end, we track the state throughout the algorithm, i.e., for all x ∈ Gd

n,

|x⟩ 7→ e2πi
1
3
E[JxTXKM0] |x⟩ 7→ e2πi

1
3
E[JxTXKM0] |−x⟩

7→ e2πi
1
3
(E[JxTXKM0]−E[J−xTXKM0]) |−x⟩ 7→ e2πi

1
3
(E[JxTXKM0]−E[J−xTXKM0]) |x⟩ ,

where we can rewrite the expression within the brackets in the exponent as

E[JxTXKM0]− E[J−xTXKM0] = E[JxTXKM0 + JxTXK0−M] = EJxTXKM−M .

This completes the proof. 2

Now, we can give the full bounded quantum mean estimation algorithm that
estimates the mean of a random variable X : Ω → R ⊆ {∥x∥2 ≤ 1} up to
precision ε > 0 in ℓ∞-norm.

Algorithm 3.3.5: Bounded quantum mean estimation

3.3. Bounded mean estimation 37

Input:
1: X : Ω → R ⊆ {x ∈ Rd : ∥x∥2 < 1}: a random variable on a probability space

(Ω, 2Ω,P).
2: ε > 0: the precision parameter.
3: δ > 0: the failure probability tolerance.
4: UP: the probability distribution oracle, as defined in Definition 3.2.2.
5: OX : the random variable oracle, as defined in Definition 3.2.2.

Derived objects:
1: N = ⌈18 log(2d/δ)⌉.
2: n = ⌈log(9/ε)⌉.
3: M = 3⌈

√
ln(22n512π2d)/18⌉.

Output: a vector µ̃ ∈ Rd such that ∥µ̃− E[X]∥∞ ≤ ε.
Success probability: Lower bounded by 1− δ.
Queries: Number of calls to UP and OX : Õ(1/ε).
Procedure: Bounded-mean-estimation-ell-infty(X, ε, δ, UP, OX):
1: For k = 1, . . . , N , run the following operations on a single register with state

space CGd
n :

1. Prepare the uniform superposition over the grid vectors.
2. Call Inner-product-phase(M , 2−n/24, UP, OX) 2n times.
3. Apply the inverse multidimensional quantum Fourier transform, i.e.,

(QFT†
2n)

⊗d.
4. Measure in the computational basis.

Denote the outcome by mk ∈ {−2n−1, . . . , 2n−1 − 1}d.

2: Let m be the coordinate-wise median of m1, . . . ,mN .
3: Output µ̃ = 3m/2n.

Proof of the properties of Algorithm 3.3.5:
Since we make N · 2n calls to Algorithm 3.3.4 with truncation parameter M and
norm error parameter δ = 2−n/24, we calculate the total number of calls to UP
and OX to be

O
(
N · 2nM log

(
M

δ

))
= O

(√
log(d)

ε
log

(√
log(d)

ε

)
log

(
d

δ

))
,

which by suppressing all the logarithmic overhead indeed becomes Õ(1/ε).
It remains to check the lower bound on the success probability. We track the

state throughout the algorithm, and obtain that step 2 implements the mapping

1√
2nd

∑
x∈Gd

n

|x⟩ 7→ 1√
2nd

∑
x∈Gd

n

e2πi
2n

3
E[JxTXKM−M] |x⟩ =: |ψ⟩ .

38 Chapter 3. Quantum mean estimation

We calculate the norm difference between |ψ⟩ and |ϕ⟩, where the latter is defined
as

|ϕ⟩ := 1√
2nd

∑
x∈Gd

n

e2πi
2n

3
E[xTX] |x⟩ =

d⊗
j=1

|QFT2n(2
nE[X]j/3)⟩ ,

where the notation |QFT(·)⟩ is defined in Definition 2.4.1. To that end, observe
that

∥|ψ⟩ − |ϕ⟩∥2 = 1

2nd

∑
x∈Gd

n

∣∣∣e2πi· 2n3 E[xTX] − e2πi·
2n

3
EJxTXKM−M

∣∣∣2
≤ 22n4π2

9
E

x∼U(Gd
n)

[
E
[
xTX − JxTXKM−M

]2]
, (3.3.3)

where we used that |eix − eiy| ≤ |x− y|, for all x, y ∈ R. Since for all ω ∈ Ω and
x ∈ Gd

n, Cauchy–Schwarz implies that |xTX(ω)| ≤ ∥x∥2 · ∥X(ω)∥2 ≤
√
d, we can

bound for any x ∈ Gd
n,

E
[
xTX − JxTXKM−M

]2 ≤ √
d · E

∣∣xTX − JxTXKM−M
∣∣ .

Plugging this bound into Equation (3.3.3) and swapping the expectations yields

∥|ψ⟩ − |ϕ⟩∥2 ≤ 22n4π2
√
d

9
E
[

E
x∼U(Gd

n)

∣∣xTX − JxTXKM−M
∣∣]

≤ 22n4π2d

9
max
ω∈Ω

P
x∼U(Gd

n)

[
|xTX(ω)| > M

]
, (3.3.4)

where the final inequality holds by observing that for all ω ∈ Ω, |xTX(ω)| ≤
√
d,

and the fact that xTX(ω)− JxTX(ω)KM−M is zero whenever |xTX(ω)| ≤M . Now,
observe by Hoeffding’s inequality, for all ω ∈ Ω,

P
x∼U(Gd

n)

[∣∣xTX(ω)
∣∣ > M

]
≤ 2 exp

(
− 2M2

∥X(ω)∥22

)
≤ 2 exp(−2M2) ≤ 1

22n256π2d
,

where the last inequality follows from the choice of M . Plugging this into Equa-
tion (3.3.4) yields

∥|ψ⟩ − |ϕ⟩∥2 ≤ 22n4π2d

9
· 1

22n256π2d
=

(
1

24

)2

.

Hence, the norm difference between |ψ⟩ and |ϕ⟩ is at most 1/24. Since we also
make an additional global norm error of at most 1/24 in the calls to the inner
product phase oracle, we construct |ϕ⟩ up to norm error 1/12.

3.3. Bounded mean estimation 39

Thus, we can assume that we are in the state |ϕ⟩ at the end of step 2 in the
loop, at the expense of 1/12 in the measurement probabilities. Furthermore, if we
apply the multidimensional inverse quantum Fourier transform to |ϕ⟩, we obtain

(QFT†
2n)

⊗d |ϕ⟩ =
d⊗
j=1

QFT†
2n |QFT2n(2

nE[X]j/3)⟩ .

Thus, according to Lemma 2.4.2, we now have for every k ∈ [N] and j ∈ [d],

P
[
cyclic-dist2n

(
(mk)j,

2n

3
E[X]j

)
≤ 3

]
≥ 3

4
− 1

12
=

2

3
,

where cyclic-dist is defined in Definition 2.1.1, and the 1/12 comes from the
imperfections in the constructed state. Since E[X]j ∈ [−1, 1], we obtain that
2nE[X]j/3 ∈ [−2n/3, 2n/3]. Moreover, since 2n/3 + 3 ≤ 2n−1, we find that
cyclic-dist((mk)j, 2

nE[X]j/3) ≤ 3 ⇔ |(mk)j − 2nE[X]j/3| ≤ 3, and so

P
[∣∣∣∣(mk)j −

2n

3
E[X]j

∣∣∣∣ ≤ 3

]
= P

[
cyclic-dist2n

(
(mk)j,

2n

3
E[X]j

)
≤ 3

]
≥ 2

3
.

Now, let j ∈ [d] and for all k ∈ [N] let Akj be the Bernoulli random variable
that is 1 whenever |(mk)j − 2nE[X]j/3| ≤ 3. Since the different runs are inde-
pendent and identical, we find that p := E[Akj] ≥ 2/3 is independent of k and
j, and the sequence of random variables (Akj)

N
k=1 is independent and identically

distributed. Moreover, since by the properties of the coordinate-wise median, if
|mj − 2nE[X]j/3| > 3, then Akj must be 0 for at least half of the k’s, i.e., the
sum of the Akj’s over k is at most N/2. The probability that this happens can
be upper bounded by Hoeffding’s inequality, as

P

[
N∑
k=1

Akj ≤
N

2

]
= P

[∣∣∣∣∣
N∑
k=1

Akj −Np

∣∣∣∣∣ ≤ N

∣∣∣∣p− 1

2

∣∣∣∣
]

≤ 2 exp

(
−2N2

N

∣∣∣∣p− 1

2

∣∣∣∣2
)

≤ 2 exp

(
−2N ·

(
1

6

)2
)

= 2 exp(−N/18) ≤ δ

d
,

where the last inequality follows from the choice of N . Thus, by the union bound
over all j ∈ [d], we obtain that

P
[∥∥∥∥m− 2n

3
E[X]

∥∥∥∥
∞

≤ 3

]
≥ 1− δ,

and if this event happens, then we also have

∥µ̃− E[X]∥∞ =
3

2n
·
∥∥∥∥m− 2n

3
E[X]

∥∥∥∥
∞

≤ 9

2n
≤ ε,

40 Chapter 3. Quantum mean estimation

where the last inequality follows by the choice of n. This completes the proof. 2

Thus, we have now constructed a quantum algorithm that computes the mean
of a d-dimensional random variable up to precision ε in ℓ∞-norm.

To better understand how this algorithm relates to the classical procedure,
Algorithm 3.2.3, which naturally estimates the mean up ε-error in the ℓ2-norm,
we turn the bounded mean estimation algorithm into one that approximates the
mean up to ℓ2-norm as well, using standard norm conversions. Hölder’s inequality
tells us that

∥µ̃− E[X]∥2 ≤
√
d ∥µ̃− E[X]∥∞ ,

and thus if we want to obtain precision ε w.r.t. the ℓ2-norm, we can run the
bounded mean estimation algorithm with precision ε/

√
d in the ℓ∞-norm. This

induces an extra factor
√
d in the number of queries to both UP and OX .

Interestingly, this leads to the observation that the quantum algorithm does
not beat the classical one in all regimes. Indeed, with Algorithm 3.2.3 and the ob-
servation that Tr[Σ] ≤ 1 whenever the range of X is contained in the unit ℓ2-ball,
we can approximate the mean of a bounded random variable X : Ω → {x ∈ Rd :
∥x∥2 < 1} up to precision ε in ℓ2-norm with n = O(1/ε2) classical samples, which
is smaller than the resources required to run the quantum algorithm whenever
ε = Ω(1/

√
d).

Thus, if ε is large, i.e., if it is Ω(1/
√
d), then it is more beneficial to run the clas-

sical algorithm, i.e., Algorithm 3.2.3. We refer to this regime as the low-precision
regime. On the other hand, if ε = O(1/

√
d), then the quantum algorithm is more

efficient in terms of the number of queries to UP and OX required, and we refer
to this regime as the high-precision regime.

For convenience, we state the full algorithm that makes a distinction and
handles both regimes below.

Algorithm 3.3.6: Bounded quantum mean estimation in ℓ2-norm
Input:
1: X : Ω → R ⊆ {x ∈ Rd : ∥x∥2 < 1}: a random variable on a probability space

(Ω, 2Ω,P).
2: ε > 0: the precision parameter.
3: δ > 0: the failure probability tolerance.
4: UP: the probability distribution oracle, as defined in Definition 3.2.2.
5: OX : the random variable oracle, as defined in Definition 3.2.2.

Output: a vector µ̃ ∈ Rd such that ∥µ̃− E[X]∥2 ≤ ε.
Success probability: Lower bounded by 1− δ.
Queries: Number of calls to UP and OX :

K := Õ

(
min

{
1

ε2
,

√
d

ε

})
. (3.3.5)

3.4. General mean estimation 41

Procedure: Bounded-mean-estimation(X, ε, δ, UP, OX):
1: if ε > 1/

√
d then,

2: Output µ̃ = Classical-mean-est(X, 1/ε2, δ, UP, OX).
3: else
4: Output µ̃ = Bounded-mean-estimation-ell-infty(X, ε/

√
d, δ, UP,

OX).
5: end if

Proof of the properties of Algorithm 3.3.6:
It follows directly from the properties of Algorithms 3.2.3 and 3.3.5 that if we
either results in an estimate of E[X] with precision ε in ℓ2-norm, with probability
at least 1− δ.

By comparing the number of calls made to UP and OX in both approaches,
we obtain that in the classical approach, we make Õ(1/ε2) calls, whereas in the
quantum approach, the number of queries we make is Õ(

√
d/ε). We easily verify

that by choosing the classical approach whenever ε > 1/
√
d, we indeed choose

the minimum of these two quantities. This completes the proof. 2

Somewhat surprisingly, as we will see in Section 3.5, the above algorithm is
indeed essentially optimal. In particular this implies that the distinction between
the low-precision and the high-precision regimes is something fundamental – it
is not specifically a property of the algorithm that we design here, but rather it
reflects a qualitative difference in the difficulty of the mean estimation problem
between these two regimes. Moreover, it implies that there is no “hybrid” ver-
sion of the bounded mean estimation algorithm, i.e., one cannot cleverly combine
classical samples with a multidimensional phase estimation technique to interpo-
late between the high- and low-precision regimes and smoothen out the apparent
discontinuity in the query complexity.

3.4 General mean estimation
Next, we show how the bounded mean estimation subroutine that we developed
in the previous subsection can be used to construct a mean estimation algorithm
for general random variables X : Ω → R ⊆ Rd, without any restriction on
their range. First, in Section 3.4.1, we consider the setting where we know an
upper bound S ≥ Tr[Σ], where Σ is the covariance matrix of X. Afterwards,
in Section 3.4.2, we generalize our approach so that we can also handle the case
where such an upper bound is not available a priori.

3.4.1 Known upper bound on Tr[Σ]

We first consider the case where we know an upper bound S on Tr[Σ], where
Σ is the covariance matrix of the d-dimensional random variable X. The first

42 Chapter 3. Quantum mean estimation

observation that we make is that this upper bound gives us some idea of the
spread of X, i.e., how far apart one can expect realizations of X to be from its
mean. The following lemma makes this more precise.

3.4.1. Lemma. Let Ω be a finite set, (Ω, 2Ω,P) be a probability space, and X :
Ω → R ⊆ Rd be a random variable with R finite as well. Let µ = E[X] and
Σ = Cov(X), and let S > 0 such that Tr[Σ] ≤ S. Furthermore, let µ ∈ Rd such
that ∥µ− µ∥2 ≤

√
S. Then, with t > 0,

E
[
∥X − µ∥22

]
≤ 2S and P

[
∥X − µ∥2 ≥

√
2tS
]
≤ 1

t
.

Proof:
For the left claim, we observe by standard probability theory that

E[∥X − µ∥22] = E[∥X − µ+ µ− µ∥22] = E[(X − µ+ µ− µ)T (X − µ+ µ− µ)]

= E[(X − µ)T (X − µ)] + (µ− µ)TE[X − µ]

+ E[(X − µ)T](µ− µ) + (µ− µ)T (µ− µ)

= E[XTX]− µTµ+ ∥µ− µ∥22 = Tr[E[XXT]− µµT] + ∥µ− µ∥22
= Tr[Σ] + ∥µ− µ∥22 ≤ S + S = 2S.

Then, by Markov’s inequality, we obtain that

P
[
∥X − µ∥2 ≥

√
2tS
]
= P

[
∥X − µ∥22 ≥ 2tS

]
≤ E[∥X − µ∥22]

2tS
≤ 1

t
.

This completes the proof. 2

Next, we introduce the concept of a ring variable.

3.4.2. Definition (Ring variable). Let Ω be a finite set, (Ω, 2Ω,P) be a proba-
bility space, and X : Ω → R ⊆ Rd be a random variable with R a finite set as
well. Let µ ∈ Rd and 0 < a < b. We define

p
(a,b)
X,µ = P[a ≤ ∥X − µ∥2 < b].

We refer to p(a,b)X,µ as the ring probability around µ with inner radius a and outer
radius b.

Furthermore, let R′ = {(x − µ)/b : x ∈ R, a ≤ ∥x− µ∥2 < b} ∪ {0} and let
R

(a,b)
X,µ : Ω → R′ ⊆ Rd be defined as

R
(a,b)
X,µ (ω) =

{
X(ω)−µ

b
, if a ≤ ∥X(ω)− µ∥2 < b,

0, otherwise.

We refer to R
(a,b)
X,µ as the ring variable around µ with inner radius a and outer

radius b. ◀

3.4. General mean estimation 43

We observe that newly-defined range R′ in the above definition is automati-
cally contained in the unit ℓ2-ball in Rd, and as such any ring variable satisfies
the condition required in the bounded mean estimation algorithm, i.e., Algo-
rithm 3.3.6. Thus, this opens up the possibility of a routine that estimates the
mean of a ring variable, which is the objective of the following algorithm.

Algorithm 3.4.3: Mean estimation of a ring variable
Input:
1: X : Ω → R ⊆ Rd: a random variable on a probability space (Ω, 2Ω,P).
2: µ ∈ Rd: a vector in Rd.
3: a > 0: the inner radius of the ring.
4: b > 0: the outer radius of the ring.
5: ε > 0: the desired precision.
6: p ∈ (0, 1]: an upper bound on the ring probability p(a,b)X,µ .
7: δ > 0: the failure probability tolerance.
8: UP: the probability distribution oracle, as defined in Definition 3.2.2.
9: OX : the random variable oracle, as defined in Definition 3.2.2.

Derived objects:
1: C: A circuit acting on CR, implementing the mapping

C : |x⟩ 7→

{
|x⟩ , if a ≤ ∥x− µ∥2 < b,

− |x⟩ , otherwise.

2: U ′ = Linear-ampl-ampl(1/(4p), δ/(2K), OX(UP ⊗ I), I ⊗ C), acting on
CΩ ⊗ CR, where K is as in Equation (3.3.5).

3: O′ = (I ⊗ Z)(OX ⊗ I), acting on CΩ ⊗CR ⊗CR′ , where Z is a circuit acting
on CR ⊗ CR′ as

|x⟩ |0⟩ 7→

{
|x⟩
∣∣x−µ

b

〉
, if a ≤ ∥x− µ∥2 < b,

|x⟩ |0⟩ , otherwise.

Output: A vector µ̃ ∈ Rd that satisfies∥∥∥µ̃− E
[
R

(a,b)
X,µ

]∥∥∥
2
≤ ε.

Success probability: Lower bounded by 1− δ.
Queries: Number of calls to UP and OX :

Õ

(
min

{
p

ε2
,

√
d

ε

}
·
√
p

)
. (3.4.1)

Procedure: Ring-mean-estimation(X, µ, a, b, ε, p, δ, UP, OX):
1: Let µ̃(a,b)

X,µ = Bounded-mean-estimation(R(a,b)
X,µ , ε/(4p), δ/2, U ′, O′).

44 Chapter 3. Quantum mean estimation

2: Output µ̃ = 4pµ̃
(a,b)
X,µ .

Proof of the properties of Algorithm 3.4.3:
First, we check that we satisfy the assumption in the linear amplitude amplifi-
cation procedure, i.e., Algorithm 2.4.6. To that end, observe that the operator
OX(UP ⊗ I) performs the mapping

|0⟩ |0⟩ 7→
∑
ω∈Ω

√
P(ω) |ω⟩ |X(ω)⟩ ,

and hence the total squared overlap of the state on the right-hand side with the
subspace that is left invariant by C is exactly∑

ω∈Ω
a≤∥X(ω)−µ∥2<b

P(ω) = P[a ≤ ∥X − µ∥2 < b] = p
(a,b)
X,µ ≤ p.

Thus, multiplying by 1/(4p) gives at most 1/4, which means that the assumption
required by the linear amplitude amplification routine is satisfied.

Next, observe from Algorithm 2.4.6 that U ′ calls UP and OX a total of Õ(1/
√
p)

times, and that the other derived circuits don’t query UP and OX at all. Fur-
thermore, from Algorithm 3.3.6, we observe that the number of calls to U ′ is K
defined in Equation (3.3.5). Multiplying the two indeed proves the number of
queries claimed in Equation (3.4.1).

Thus, it remains to check the claimed lower bound on the success probability.
To that end, we observe directly from Definition 3.4.2 that R(a,b)

X,µ indeed is a
random variable whose range is bounded by 1 in ℓ2-norm. We also observe that
U ′, acting on CΩ ⊗ CR, prepares the superposition

U ′ : |0⟩ |0⟩ 7→
∑
ω∈Ω

a≤∥X(ω)−µ∥2<b

√
P(ω)
4p

|ω′⟩+ |⊥⟩ ,

up to norm precision δ/(2K), where we used the shorthand notation |ω′⟩ =
|ω⟩ |X(ω)⟩, and |⊥⟩ only has support on the states |ω⟩ |X(ω)⟩ where we have
∥X(ω)− µ∥2 ̸∈ [a, b). Furthermore, the circuit O′ acting on CΩ ⊗ CR ⊗ CR′ ,
implements the operation

O′ : |ω′⟩ |0⟩ = |ω⟩ |X(ω)⟩ |0⟩ 7→ |ω⟩ |X(ω)⟩
∣∣∣R(a,b)

X,µ (ω)
〉
= |ω′⟩

∣∣∣R(a,b)
X,µ (ω)

〉
.

Thus, U ′ is a probability oracle of the probability distribution P′ with an extra
multiplicative factor of 1/(4p) for all ω for which R(a,b)

X,µ (ω) is non-zero, i.e., P′(ω) =
P(ω)/(4p) for all ω ∈ Ω that satisfy a ≤ ∥X(ω)− µ∥2 < b. Furthermore, O′ is a
random variable oracle for the ring variable R(a,b)

X,µ .

3.4. General mean estimation 45

Since we call U ′ a total of K times in the bounded mean estimation algorithm,
i.e., Algorithm 3.3.6, the total norm error caused by the imperfect implementation
of U ′ is at most δ/2. Since Algorithm 3.3.6 succeeds with probability at least
1− δ/2, we find with probability at least 1− δ that∥∥∥∥µ̃(a,b)

X,µ − 1

4p
· E[R(a,b)

X,µ]

∥∥∥∥
2

≤ ε

4p
,

and from there it follows directly that∥∥∥µ̃− E[R(a,b)
X,µ]

∥∥∥
2
≤ ε.

This completes the proof. 2

Note that the number of queries performed by the ring estimation algorithm
is better than what one would naively expect from the bounded mean estimation
routine. Indeed, if one were to run the bounded mean estimation routine directly
with precision ε, then one would end up making Õ(min{1/ε2,

√
d/ε}) queries,

whereas the ring estimation routine attains an improvement of at least a factor√
p. Hence, the ring estimation procedure is especially efficient in the settings

where we can choose p to be very small.
To exploit the above observation, the mean estimation algorithm divides up

Rd into several concentric rings centered at a crude estimation of the mean, µ,
with an increasing sequence of radii 0 = a0 < a1 < · · · < ak. We then find that

E[X] ≈ µ+
k∑
j=1

ajE[R
(aj−1,aj)
X,µ],

where we have to choose our last radius ak big enough so that the approximation
is sufficiently close. We then approximate each of the above terms individually.
A visualization of the concentric rings and their radii are depicted in Figure 3.4.1.

The crucial insight is now that we can use Lemma 3.4.1 to upper bound the
ring probabilities p(a,b)X,µ , which can subsequently be used to obtain more efficient
ring estimation routines, i.e., Algorithm 3.4.3.

It remains to show how to choose the radii a1, . . . , ak. We do this in the
algorithm statement below.

Algorithm 3.4.4: Mean estimation, with a known upper bound on Tr[Σ]

Input:
1: X : Ω → R ⊆ Rd: a random variable.
2: S > 0: an upper bound on Tr[Σ], where Σ = Cov(X).
3: ε > 0: the desired precision.
4: δ > 0: the failure probability tolerance.

46 Chapter 3. Quantum mean estimation

µ a1

a2

ak
...

Figure 3.4.1: Visualization of the algorithm that performs mean estimation. The
space Rd is divided up into rings that are separated by concentric circles around
a crude estimate of the mean, µ.

5: UP: the probability distribution oracle, as defined in Definition 3.2.2.
6: OX : the random variable oracle, as defined in Definition 3.2.2.

Derived objects:
1: k = ⌈log(8S/ε2)⌉.
2: a0 = 0.
3: For all j ∈ [k], we let aj =

√
2j · 2S.

Output: A vector µ̃ ∈ Rd such that ∥µ̃− E[X]∥2 ≤ ε.
Queries: The number of calls to UP and OX is

Õ

(
min

{
S

ε2
,

√
dS

ε

})
. (3.4.2)

Procedure: Mean-estimation(X, S, ε, δ, UP, OX):
1: Let µ = Classical-mean-est(X, 12, δ/2, UP, OX).
2: For j = 1, . . . , k, let µ̃j = Ring-mean-estimation(X, µ, aj−1, aj, ε/(2kaj),

1/2j−1, δ/(2k), UP, OX).
3: Output µ̃ = µ+ a1µ̃1 + · · ·+ akµ̃k.

Proof of the properties of Algorithm 3.4.4:
We start by checking the claim on the number of queries. To that end, observe
that in the first step, only Õ(1) queries to UP and OX are performed.

In the second step, we call Algorithm 3.4.3 a total of k times. According to

3.4. General mean estimation 47

Equation (3.4.1), the number of calls in the jth iteration, with j ∈ [k], is

Õ

(
min

{
8k2a2j
2jε2

,
2kaj

√
d

ε

}
·
√

2

2j

)
.

Since min{a, b} + min{c, d} ≤ min{a + c, b + d}, for all a, b, c, d ∈ R, we obtain
that the total number of queries can be written as Õ(min{A,B}), where

A =
k∑
j=1

8
√
2k2a2j

23j/2ε2
≤ 16

√
2k2S

ε2
·

∞∑
j=1

(
1√
2

)j
=

16
√
2k2S

ε2(
√
2− 1)

= Õ
(
S

ε2

)
,

and similarly

B =
k∑
j=1

2
√
2kaj

√
d

2j/2ε
=

2
√
2k

√
2dS

ε
·

k∑
j=1

2j/2

2j/2
=

2
√
2k2

√
2dS

ε
= Õ

(√
dS

ε

)
.

Thus, we indeed obtain the expression from Equation (3.4.2).
It remains to prove the lower bound on the claimed success probability. To

that end, we can assume that all subroutines succeed, since their cumulative fail-
ure probability is at most δ. In particular, from the properties of Algorithm 3.2.3,
we find that ∥µ− E[X]∥2 ≤ 2

√
3Tr[Σ]/12 =

√
Tr[Σ] ≤

√
S, and thus the as-

sumption in Lemma 3.4.1 is satisfied.
Next, we check that for all j ∈ [k], the ring probability p

(aj−1,aj)
X,µ is indeed

upper bounded by 1/2j−1, as we asserted by choosing this as our upper bound
when we call the ring estimation algorithm. To that end, observe that the bound
is trivial for j = 1, and whenever j > 1, we find by Lemma 3.4.1 that

p
(aj−1,aj)
X,µ ≤ P [∥X − µ∥2 ≥ aj−1] = P

[
∥X − µ∥2 ≥

√
2j−1 · 2S

]
≤ 1

2j−1
.

Now, it remains to check that µ̃ indeed approximates E[X] precisely enough.
To that end, observe by the triangle inequality that

∥µ̃− E[X]∥2 ≤
k∑
j=1

aj

∥∥∥µ̃j − E[R(aj−1,aj)
X,µ]

∥∥∥
2
+

∥∥∥∥∥E[X]− µ−
k∑
j=1

ajE[R
(aj−1,aj)
X,µ]

∥∥∥∥∥
2

.

We observe by the properties of Algorithm 3.4.3 that the first terms are all
bounded by ε/(2k), and thus it remains to check that the last term in the above
expression is upper bounded by ε/2. To that end, observe by the Cauchy–Schwarz

48 Chapter 3. Quantum mean estimation

inequality that

∥∥∥∥∥E[X]− µ−
k∑
j=1

ajE[R
(aj−1,aj)
X,µ]

∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥
∑
ω∈Ω

∥X(ω)−µ∥2≥ak

P(ω) (X(ω)− µ)

∥∥∥∥∥∥∥∥
2

≤
∑
ω∈Ω

∥X(ω)−µ∥2≥ak

P(ω) ∥X(ω)− µ∥2

≤
√√√√ ∑

ω∈Ω
∥X(ω)−µ∥2≥ak

P(ω) ·
∑
ω∈Ω

∥X(ω)−µ∥2≥ak

P(ω) ∥X(ω)− µ∥22

≤
√

P[∥X − µ∥2 ≥
√
2k · 2S] · E[∥X − µ∥22] ≤

√
ε2

8S
· 2S =

ε

2
,

where in the last inequality, we used Lemma 3.4.1. This completes the proof. 2

In the above algorithm, we have chosen k rings, where k is logarithmic in
all the relevant parameters. In the high-precision regime, the number of queries
performed to estimate the mean of each of the ring variables is roughly equal,
namely roughly Õ(

√
dS/ε). However, intuitively, the contribution of these queries

is different. In the inner-most rings, we don’t have a very strong upper bound on
the ring probability, so we can spend all the effort in estimating the mean of the
ring variable through the bounded mean estimation routine. On the other hand,
in the outer-most rings, we have a very strong upper bound on the ring probability,
and as such we spend a lot of work in the linear amplitude amplification routine
in Algorithm 3.4.3, and a bit less in the bounded mean estimation routine.

3.4.2 Unknown upper bound on Tr[Σ]

In the previous subsection, we developed a quantum algorithm that estimates the
mean of a random variable, if we a priori know an upper bound on the trace of
the covariance matrix, i.e., we know an S > 0 such that Tr[Σ] ≤ S. However, this
result is qualitatively different from the classical result, Algorithm 3.2.3, since
there we don’t need any prior knowledge about Tr[Σ], other than that it is well-
defined. So, one might wonder whether there is a way to improve on the mean
estimation algorithm from the previous subsection, to remove the necessity of
knowing an upper bound on Tr[Σ] a priori.

In this subsection, we answer this question affirmatively. The core idea is to
estimate the radii of the rings, i.e., the aj’s in Algorithm 3.4.4, using a routine
called quantile estimation. The approach we present here is a slightly modified
version of the approach that was first introduced in [Ham21].

First, we define quantiles formally.

3.4. General mean estimation 49

3.4.5. Definition (Quantiles and approximate quantiles).
Let (Ω, 2Ω,P) be a probability space, and let X : Ω → R be a random variable.

1. Let p ∈ [0, 1], and let x ∈ R be a real number such that P[X ≤ x] = p.
Then x is a p-quantile of X.

2. Let p ∈ [0, 1], and let ε > 0. Let x ∈ R be a real number such that
|p− P[X ≤ x]| ≤ ε. Then x is an ε-approximate p-quantile of X. ◀

To make the exposition of the algorithm we develop in this section easier,
we assume that the probability distribution is sufficiently smooth, so that every
quantile that we refer to below actually exists. With some extra work this as-
sumption can most likely be removed, but it would make the analyses somewhat
more involved. We leave this for future work.1

Now, we present a quantum algorithm that finds an approximate p-quantile.

Algorithm 3.4.6: Quantile estimation
Input:
1: X : Ω → R: a random variable on a probability space (Ω, 2Ω,P).
2: p ∈ (0, 1): the probability value of the quantile.
3: δ > 0: the failure probability tolerance parameter.
4: ε > 0: the proximity parameter.
5: UP: the probability distribution oracle, as defined in Definition 3.2.2.
6: OX : the random variable oracle, as defined in Definition 3.2.2.

Derived objects:
1: N = ⌈ln(4/δ)/(2ε2)⌉.

Output: An ε-approximate p-quantile.
Success probability: Lower bounded by 1− δ.
Queries: Number of calls to UP and OX : Õ(1/ε2).
Procedure: Quant-Est(X, p, ε, δ, UP, OX):
1: Generate N classical samples: x1, . . . , xN .
2: Sort the generated samples.
3: Return xℓ, where ℓ = round(pN − 1/2) + 1/2. Denote the outcome by q.

Proof of the properties of Algorithm 3.4.6:
The claim on the number of queries to UP and OX follows immediately from the
choice of N . Thus, it remains to verify the claimed lower bound on the success
probability.

To that end, let z ∈ R arbitrarily, and for all j ∈ [N], let Xj be the Bernoulli
variable that is 1 if and only if xj ≤ z. Then, E[Xj] = P[X ≤ z].

1One particularly hideous way of removing this assumption is to take the convolution product
of the distribution of X with an infinitesimally small symmetric kernel function – this does not
change the mean and allows us to control the smoothness of our distribution easily. We leave
it for future work to find more elegant ways of dealing with this detail.

50 Chapter 3. Quantum mean estimation

Next, let z ∈ R be the smallest value for which P[X ≤ z] ≥ p − ε. If q ≤ z,
then at least pN of the xj’s must have been at most z, and so by Hoeffding’s
inequality,

P[q ≤ z] ≤ P

[
n∑
j=1

Xj ≥ pN

]

≤ P

[∣∣∣∣∣
N∑
j=1

Xj − (p− ε)N

∣∣∣∣∣ ≥ N |p− (p− ε)|

]
≤ 2 exp

(
−2Nε2

)
≤ δ/2.

A similar argument shows that when we let z ∈ R be the largest value such that
P[X ≤ z] ≤ p+ ε, then P[q ≥ z] ≤ δ/2 as well. Thus, the probability that q is an
ε-approximate p-quantile of X is at least 1− δ. This completes the proof. 2

Note that the above analysis can be improved by substituting Hoeffding’s
inequality by the Chernoff bound. The improved analysis especially makes a
difference in the limits where p is close to 0 or 1. Since we will only use Algo-
rithm 3.4.6 in the setting where p is far away from the endpoints of the interval
[0, 1], we refrain from giving that improvement here.

The idea, now, is to start the algorithm the same way as in the previous
section, i.e., by finding a µ ∈ Rd that approximates µ = E[X] up to preci-
sion

√
Tr[Σ] in ℓ2-norm. Then, the idea is to find a value for a1, such that

P[∥X − µ∥2 ≥ a1] ≤ 1/2. Subsequently, one can use the value for a1 to build a cir-
cuit U ′

P that samples over all ω’s under the constraint that ∥X(ω)− µ∥2 ≥ a1. Us-
ing this new U ′

P, one can find a value a2 > a1, such that P[∥X − µ∥2 ≥ a2] ≤ 1/4.
This sequence of aj’s generated in this way then replaces the sequence of aj’s used
in Algorithm 3.4.4.

The following algorithm makes this sketch precise.

Algorithm 3.4.7: Circle radius estimation
Input:
1: X : Ω → R ⊆ R: a random variable on a probability space (Ω, 2Ω,P).
2: n ∈ N: a parameter governing the number of samples taken.
3: δ > 0: the failure probability tolerance.
4: UP: the probability distribution oracle, as defined in Definition 3.2.2.
5: OX : the random variable oracle, as defined in Definition 3.2.2.

Derived objects:
1: k = ⌈2 log(n)⌉.
2: a0 = 0.

Output: A sequence a1, . . . , ak, such that for all j ∈ [k],

1/2j+1 ≤ P[X ≥ aj] ≤ 1/2j.

3.4. General mean estimation 51

Success probability: Lower bounded by 1− δ.
Queries: Number of queries to UP and OX : Õ(n).
Procedure: Circle-radii-est(X, n, δ, UP, OX):
1: For j = 1, . . . , k:

1. Let C(j) be a circuit acting on CR that performs the operation

|x⟩ 7→

{
|x⟩ , if x ≥ aj−1

− |x⟩ , otherwise.

2. Define U (j)
P = Fixed-point-ampl(UP, O†

X(I⊗C(j))OX , 1/
√
2j, δ/(2kK)),

where K = Õ(k2) is the number of times U (j)
P is called in the next step.

3. Let aj = Quant-est(X, 1/2 + 1/(8k), 1/(8k), δ/(2k), U (j)
P , OX).

Proof of the properties of Algorithm 3.4.7:
First, we check the claimed query complexities. To that end, we observe from the
properties of the fixed-point amplitude amplification algorithm, Algorithm 2.4.5,
that in the jth iteration, the operation U

(j)
P makes Õ(

√
2j) calls to UP and OX .

Moreover, we observe from Algorithm 3.4.6 that naive quantile estimation algo-
rithm makes O(k2) = Õ(1) queries to U (j)

P and OX . By multiplying both together
and summing over j ∈ [k], we obtain that the total number of queries to UP and
OX is Õ(A), with

A =
k∑
j=1

√
2j ≤ k

√
2k = Õ(n).

Thus, it remains to check the claimed lower bound on the success probability.
To that end, we first of all assume that all the subroutines succeed, since their
cumulative failure probability is at most δ. Thus, it remains to show that the
algorithm indeed produces a sequence of quantiles a1, . . . , ak such that for all
j ∈ [k], we have 1/2j+1 ≤ P[X ≥ aj] ≤ 1/2j.

To that end, we prove a slightly stronger statement by induction. We prove
that (

1

2
− 1

4k

)j
≤ P[X ≥ aj] ≤

(
1

2

)j
. (3.4.3)

Indeed, when j = 1, we find immediately from the properties of Algorithm 3.4.6
that 1/2 ≤ P[X ≤ a1] ≤ 1/2 + 1/(4k), from which the statement follows. This
provides the basis of induction.

Now, suppose that Equation (3.4.3) holds for some j ∈ [k− 1]. Then, we find
by the properties of Algorithm 3.4.6 that

1

2
≤ P[X ≤ aj+1|X ≥ aj] ≤

1

2
+

1

4k
.

52 Chapter 3. Quantum mean estimation

Thus, we find that(
1

2
− 1

4k

)j+1

≤ P[X > aj] · P[X > aj+1|X ≥ aj] = P[X > aj+1],

and similarly

P[X > aj+1] = P[X > aj] · P[X > aj+1|X ≥ aj] ≤
1

2j
· 1
2
=

1

2j+1
.

This proves the induction hypothesis. Finally, we observe that for all j ∈ [k],(
1

2
− 1

4k

)j
≥ 1

2j
·
(
1− 1

2k

)k
>

1

2j
· 1√

e
>

1

2j+1
.

This completes the proof. 2

Now, we show how using the above quantiles of the random variable ∥X − µ∥2
gives rise to a quantum algorithm that estimates the mean of X without any prior
knowledge on Tr[Σ].

Algorithm 3.4.8: Mean estimation without prior knowledge of Tr[Σ]
Input:
1: X : Ω → R ⊆ Rd: a random variable on a probability space (Ω, 2Ω,P).
2: n ∈ N: a parameter governing the number of samples taken.
3: δ > 0: the failure probability tolerance.
4: UP: the probability distribution oracle, as defined in Definition 3.2.2.
5: OX : the random variable oracle, as defined in Definition 3.2.2.

Derived objects:
1: k = ⌈2 log(n)⌉.
2: a0 = 0.
3: U ′ = OX(UP ⊗ I).

Output: A vector µ̃ ∈ Rd such that

∥µ̃− E[X]∥2 = Õ

(
min

{√
Tr[Σ]

n
,

√
dTr[Σ]

n

})
.

Queries: Number of calls to UP and OX : Õ(n).
Procedure: Mean-est(X, n, δ, UP, OX):
1: Let µ = Classical-mean-est(X, 12, δ/3, UP, OX).
2: Let (a1, . . . , ak) = Circle-radii-est(∥X − µ∥2, n, δ/3, U ′, Cµ), where R′

µ =

{∥x− µ∥2 : x ∈ R} and Cµ be the circuit that acts on CR ⊗ CR′ , and imple-
ments the operation

|x⟩ |0⟩ 7→ |x⟩ |∥x− µ∥2⟩ .

3.4. General mean estimation 53

3: For j = 1, . . . , k, let µ̃j = Ring-mean-estimation(X, µ, aj−1, aj, εj/k,
1/2j−1, δ/(3k), UP, OX), with

εj =
1√
2j

·min

{√
1

n
,

√
d

n

}
.

4: Output µ̃ = µ+ µ̃1 + · · ·+ µ̃k.

Proof of the properties of Algorithm 3.4.8:
First we check the number of queries performed throughout the algorithm. In
the first step, from the properties of Algorithm 3.2.3, we deduce that we make
only Õ(1) queries to UP and OX . In the second step, we find by the properties
of Algorithm 3.4.7 that we make a total of Õ(n) queries to U ′, which in turn is
constructed using a single query to both UP and OX . Then, for all j ∈ [k], in the
jth iteration in the third step, we make a number of queries to UP and OX that
is

Õ

(
min

{
2

2jε2j
,

√
d

εj

}
·
√

2

2j

)
.

Hence, if we choose εj =
√

1/(2jn), then the first term in the above expressions
ensures that the resulting number of queries is Õ(n). On the other hand, if we
choose εj =

√
d/2j/n, then the second term ensures that the resulting number

of queries is Õ(n). This completes the proof of the claimed number of queries.
Thus, it remains to prove the lower bound on the success probability. To that

end, we first assume that all the subroutines succeed, since their cumulative failure
probabilities sum to δ. We also observe that assuming that the first step succeeds
implies that the preconditions for Lemma 3.5.2 are satisfied, and assuming that
the second step succeeds provides the guarantee that the assumptions required
in step 3 are satisfied.

Next, let j ∈ [k]. Suppose that aj >
√

2Tr[Σ] · 2j. Then, by choosing S =
Tr[Σ] in Lemma 3.5.2, we find that

P [∥X − µ∥2 ≥ aj] ≤ P
[
∥X − µ∥2 >

√
2Tr[Σ] · 2j+1

]
<

1

2j+1
.

This contradicts the choice of the aj’s, and as such we observe that for every
j ∈ [k], we have aj ≤

√
2Tr[Σ] · 2j.

Next, as in the analysis of Algorithm 3.4.4, we use the triangle inequality to
bound

∥µ̃− E[X]∥2 ≤
k∑
j=1

aj

∥∥∥µ̃j − E[R(aj−1,aj)
X,µ]

∥∥∥
2
+

∥∥∥∥∥E[X]− µ−
k∑
j=1

ajE[R
(aj−1,aj)
X,µ]

∥∥∥∥∥
2

.

54 Chapter 3. Quantum mean estimation

From the properties of the ring variable estimation routine, Algorithm 3.4.3, we
obtain that the the jth term is at most ajεj/k, and so we obtain.

k∑
j=1

aj

∥∥∥µ̃j − E[R(aj−1,aj)
X,µ]

∥∥∥
2
≤

n∑
j=1

ajεj
k

≤
√
2Tr[Σ] ·min

{√
1

n
,

√
d

n

}

= Õ

(
min

{√
Tr[Σ]

n
,

√
dTr[Σ]

n

})
.

Thus, it remains to prove that the final term is bounded by the same expression.
To that end, we obtain using the Cauchy–Schwarz’s inequality that∥∥∥∥∥E[X]− µ−

k∑
j=1

ajE[R
(aj−1,aj)
X,µ]

∥∥∥∥∥
2

≤
∑
ω∈Ω

∥X(ω)−µ∥2>ak

P(ω) ∥X(ω)− µ∥2

≤
√

P [∥X − µ∥2 ≥ ak] · E
[
∥X − µ∥22

]
≤
√

1

2k
· 2Tr[Σ] ≤

√
2Tr[Σ]

n
,

where in the last line we used Lemma 3.5.2 with S = Tr[Σ]. The resulting
expression is smaller than both expressions in the accuracy claim, and thus the
proof is complete. 2

This completes the construction of the mean estimation algorithm. In the
next section, we will prove that the approach presented here is optimal, up to
polylogarithmic factors.

3.5 Lower bound

In this section, we prove that the quantum mean estimation algorithm that we de-
signed in this chapter is optimal in terms of the number of calls to the probability
distribution oracle UP, up to polylogarithmic factors.

As is customary with lower bounding, we would like to embed a problem
whose hardness has already been shown before in the setting we consider here,
in order to conclude that the mean estimation problem must be at least as hard
to solve. We start by considering the problem of recovering a constant fraction
of the bits in a bit string when we are given access to it by means of a fractional
phase oracle.

3.5.1. Lemma. Let ε ∈ (0, π], d ∈ N, and suppose that we have access to a bit
string b ∈ {0, 1}d through controlled calls to a fractional phase oracle Fε : |j⟩ 7→
eiεbj |j⟩. Then, in order to find a bit string b̃ ∈ {0, 1}d such that ∥b̃− b∥1 ≤ d/4
with probability at least 2/3, we must make at least Ω(d/ε) calls to Fε.

3.5. Lower bound 55

Proof:
First, we argue that it is sufficient to consider the case where ε = π. Indeed,
in general, the query complexity of any problem is increased by a multiplicative
factor of Θ(1/ε), when one changes the input model from a regular phase oracle
Fπ to a fractional phase oracle Fε. In Appendix B of [LMR+11], this is proven
for problems that can be phrased as computing a binary function. However, since
the problem we consider here does not have a unique correct output on every
given input, we must combine their technique with the general adversary bound
for relations, as derived by [Bel15], to arrive at the desired result. More details
can be found in [CJ21].

Thus, it remains to focus on the case where ε = π. Suppose that we have an
algorithm A that finds a bit string b̃ ∈ {0, 1}d such that with probability at least
2/3, we have ∥b̃ − b∥1 ≤ d/4, i.e., b̃ and b differ in at most d/4 bits. Then, we
can let B be the quantum algorithm that first runs A to obtain such a bit string
b̃, and then selects uniformly at random a bit string b ∈ {0, 1}d that satisfies
∥b− b̃∥1 ≤ d/4. We have M =

∑⌊d/4⌋
t=0

(
d
t

)
possible choices, which implies that the

probability of this algorithm outputting b exactly is lower bounded by 2/3 ·1/M .
By the information-theoretic lower bound, i.e., Equation (4) in [FGG+99], the
number of queries to Fπ, performed by B and hence also by A, denoted by Q,
satisfies

2d ≤ 3

2
·
⌊ d

4⌋∑
t=0

(
d

t

) Q∑
t=0

(
d

t

)
≤ 3

2
· 2d(H(

1
4)+H(

Q
d)),

where in the final inequality, we used a well-known upper bound on sums of
binomial coefficients, as proven for instance in Lemma 16.19 in [FG06], and
H(x) = −x log(x) − (1 − x) log(1 − x) is the binary entropy function. Taking
logarithms on both sides yields that H(Q/d) ≥ 1−H(1/4) + o(1), which implies
that Q = Ω(d), completing the proof. 2

We now show how the hardness of the problem considered in the previous
lemma can be used to lower bound the query complexity in the mean estimation
problem.

3.5.2. Lemma. Let d ∈ N, 0 < ε ≤ 1/16, and suppose that we have a quantum
algorithm that finds an approximation µ̃ to the mean µ of any d-dimensional
random variable with values contained in the unit ball in ℓ2 norm, using n queries
to UP, such that ∥µ̃− µ∥1 ≤ ε, with probability at least 2/3. Then,

n = Ω

(
d

ε

)
.

Proof:
Let ε′ = arcsin(16ε), and suppose that we have access to some hidden bit string

56 Chapter 3. Quantum mean estimation

b ∈ {0, 1}d by means of controlled calls to a fractional phase oracle Fε′ : |j⟩ 7→
eiε

′bj |j⟩. We know from Lemma 3.5.1 that it takes Ω(d/ε′) calls to find a bit
string b̃ such that ∥b̃− b∥1 ≤ d/4.

Now, let Ω = [d]×{0, 1}, and for every b ∈ {0, 1}d, let the probability measure
Pb on Ω be defined as

Pb(j, x) =
1

d
cos2

(
π

4
+ (−1)x

ε′bj
2

)
, for all j ∈ [d], x ∈ {0, 1}.

Observe that with one call to Fε′ , we can implement

1√
2d

d∑
j=1

(|j⟩ |0⟩+ i |j⟩ |1⟩) Fε′7→ 1√
2d

d∑
j=1

(|j⟩ |0⟩+ ieiε
′bj |j⟩ |1⟩) (3.5.1a)

=
d∑
j=1

ei
π
4
+i

ε′bj
2

√
2d

(
e−i

π
4
−i

ε′bj
2 |j⟩ |0⟩+ ei

π
4
+i

ε′bj
2 |j⟩ |1⟩

)
(3.5.1b)

I⊗(SH)7→
d∑
j=1

ei
π
4
+i

ε′bj
2

√
d

(
cos

(
π

4
+
ε′bj
2

)
|j⟩ |0⟩+ sin

(
π

4
+
ε′bj
2

)
|j⟩ |1⟩

)
(3.5.1c)

=
∑

(j,x)∈Ω

ei
π
4
+i

ε′bj
2

√
d

cos

(
π

4
+ (−1)x

ε′bj
2

)
|j⟩ |x⟩ (3.5.1d)

=
∑

(j,x)∈Ω

√
Pb(j, x)e

iπ
4
+i

ε′bj
2 |j⟩ |x⟩ , (3.5.1e)

and hence we can implement UPb
with one call to Fε′ .2

Next, let the random variable X : Ω → Rd be defined as X(j, x) = xej. Then,

µ = E[X] =
1

d

d∑
j=1

cos2
(
π

4
− ε′bj

2

)
ej =

1

2d
1+

sin(ε′)

2
b =

1

2d
1+

8ε

d
b,

Thus, if we find an approximation µ̃ to µ such that ∥µ̃− µ∥1 ≤ ε, then

min
b̃∈{0,1}d

∥∥∥∥ d8ε
(
µ̃− 1

2d
1

)
− b̃

∥∥∥∥
1

=
d

8ε
min

b̃∈{0,1}d

∥∥∥∥µ̃− 1

2d
1− 8εb̃

∥∥∥∥
1

≤ d

8ε
∥µ̃− µ∥1 ,

2Note that we don’t have to worry about the extra global phase here – we can absorb it in
the definition of the state |ω⟩, i.e., if ω = (j, x) we can define |ω⟩ = eiπ/4+iε′bj/2 |j⟩ |x⟩, and then
simply use the resulting probability distribution oracle UP.

3.5. Lower bound 57

and hence if we let b̃ be the bit string for which the minimum in the above
expression is attained, then we find that∥∥∥b̃− b

∥∥∥
1
≤
∥∥∥∥ d8ε

(
µ̃− 1

2d
1

)
− b̃

∥∥∥∥
1

+

∥∥∥∥ d8ε
(
µ̃− 1

2d
1

)
− b

∥∥∥∥
1

≤ d

8ε
∥µ̃− µ∥1 +

d

8ε
∥µ̃− µ∥1 =

d

4ε
∥µ̃− µ∥1 ≤

d

4
.

We know that constructing such a bit string b̃ requires Ω(d/ε) queries to Fε′ , and
hence we find that in order to find an ε-precise ℓ1-approximation of the mean of
a random variable, we need to make at least Ω(d/ε) calls to UP as well. This
completes the proof. 2

We now add a final norm conversion to the lemma we proved above, to obtain
a lower bound for estimating the mean of a random variable up to ℓ2-norm. This
yields the main theorem in this section.

3.5.3. Theorem. Let d ∈ N, 0 < ε ≤ 1/16, and suppose that we have a quantum
algorithm A that finds an approximation µ̃ to the mean µ of any d-dimensional
random variable with values contained in the unit ball in ℓ2 norm, using n queries
to UP, such that ∥µ̃− µ∥2 ≤ ε, with probability at least 2/3. Then,

n = Ω

(
min

{
1

ε2
,

√
d

ε

})
.

Proof:
First, suppose that ε < 1/(16

√
d). Then, we know from Hölder’s inequality that

if we can find a µ̃ ∈ Rd such that ∥µ̃− µ∥2 ≤ ε, then we additionally have, with
ε′ =

√
dε,

∥µ̃− µ∥1 ≤
√
d ∥µ̃− µ∥2 ≤

√
dε = ε′.

Since ε′ ≤ 1/16, we can now use Lemma 3.5.2 to obtain

n = Ω

(√
d

ε

)
.

On the other hand, suppose that 1/(16
√
d) < ε ≤ 1/16. Then, let d′ = ⌊1/(16ε)⌋.

Now, we have d′ ≥ 1, and we can use A to solve the mean estimation problem on d′
dimensions, by embedding any d′-dimensional random variable into d dimensions
by simply padding with zeros. We know from Lemma 3.5.2 that this requires a
number of queries that scales at least as

n = Ω

(
d′

ε

)
= Ω

(
1

ε2

)
.

58 Chapter 3. Quantum mean estimation

This completes the proof. 2

Thus, we have proved the optimality of the bounded mean estimation algo-
rithm, Algorithm 3.3.6. Since the bounded mean estimation problem is an easier
problem than the general mean estimation problem, this lower bound naturally
extends to an optimality proof for the general mean estimation problem. Thus,
in particular, we find that Algorithms 3.3.6, 3.4.4 and 3.4.8 are all optimal up to
polylogarithmic factors.

3.6 Discussion

In this chapter, we have developed a quantum mean estimation algorithm, and
showed that it is essentially optimal. We sketch the graphs showing the precision
that one can obtain with n samples in the classical and quantum case in Fig-
ure 3.6.1. We can see that there is only a difference between the classical and
quantum performance in the high-precision regime, i.e., where n = Ω(d). Thus,
we observe that we can only obtain a quantum advantage for mean estimation
if the number of samples we are allowed to use, n, exceeds the dimension of the
random variable whose mean we try to estimate.

n

ε(n)

dLow-precision
regime

High-precision
regime

Classical precision
Quantum precision

Figure 3.6.1: A graph of the precision ε that can be obtained using n samples,
with a classical algorithm, as well as with a quantum one. The two graphs differ
only in the high-precision regime, i.e., where n = Ω(d).

There are quite some natural follow-up questions to consider. First, the con-
struction we present is only optimal up to polylogarithmic factors. It would be
nice to figure out how many of the polylogarithmic factors that show up in the
expressions for the number of queries can be removed. Very recently, Kothari and
O’Donnell showed that in the univariate case, all of them can be removed if we
set the failure probability δ to a constant, say 1/3 [KO22]. It would be nice to
see if their approach can be generalized to the multivariate setting as well.

3.6. Discussion 59

Another interesting question is whether the approach outlined in this section
can be shown to be optimal in other ℓp-norms as well. The most general question
we can pose in this regard is the following. Let p, q ∈ [1,∞] and let X : Ω →
R ⊆ {x ∈ Rd : ∥x∥q ≤ 1}, i.e., let X have values bounded by the unit ball
w.r.t. ℓq-norm, and suppose that we want to estimate µ = E[X] up to precision
ε in ℓp-norm. What is the query complexity of this problem? In this chapter
we answer this question in the case where p = q = 2. Some subsequent insights
indicate that it is likely possible to answer this question for all values of p and q,
and would most probably only require somewhat more intricate norm conversion
results than those used in this chapter.

Finally, it is not clear whether the parameter Tr[Σ] is always the most conve-
nient parameter to characterize the complexity of the mean estimation problem,
especially when approximating the mean in norms other than the ℓ2-norm. For
instance, in the ℓ∞-norm, there exists a classical algorithm that attains preci-
sion ε with Õ(maxj∈[d]

√
Var(Xj)/ε

2) samples. It would be interesting to figure
out whether quantumly one can also attain an algorithm that similarly depends
on the maximum of the variances, whilst improving over the dependence in 1/ε
quadratically. We leave this for future work.

Chapter 4

State tomography

In the previous chapter, we took a look at the classical problem of mean esti-
mation, and developed a quantum algorithm that solves it more efficiently than
the optimal classical algorithm. As such, the input model that we used in the
quantum algorithm represented the corresponding access model in the classical
case as best as possible.

In contrast, one can also consider estimation problems that are inherently
quantum, i.e., that don’t necessarily bear a classical counterpart. In this chapter,
we take a look at one particularly useful problem of this form, known as quantum
state tomography, where our task is to output an approximate classical description
of some quantum state that we can only access through a black box that prepares
it.

We end up tightly characterizing the required number of calls to such a black
box up to polylogarithmic factors. Without proper introduction of the relevant
terminology, we briefly mention the takeaway message here: for a mixed state
ρ of rank r and dimension d, it costs Θ̃(dr/ε) (controlled, inverse) calls to the
unitary that prepares its purification, to obtain an ε-approximate description of
ρ in trace norm. We additionally show a series of consequences of this tight
characterization, in Section 4.8.

This chapter is based on [vACG+22] and contains some subsequent improve-
ments obtained recently. We start with some introductory remarks in Section 4.1,
and explain the model we are working with in more detail in Section 4.2. Then,
we develop three separate techniques, all of which are of independent interest:

1. In Section 4.3 we introduce a norm conversion lemma that beats Hölder’s
inequality in the low-precision regime.

2. In Section 4.4 we introduce an unbiased version of the phase estimation
algorithm, i.e., Algorithm 2.4.3.

3. In Section 4.5 we show how we can use it to estimate many non-commuting
observables simultaneously, improving over a result from [HWM+21].

61

62 Chapter 4. State tomography

Finally, we show in Section 4.6 how all these ideas can be used in conjunction
to obtain an essentially optimal mixed-state tomography algorithm. The corre-
sponding lower bound is proved in Section 4.7. Finally, we give some immediate
consequences of our work in Section 4.8.

4.1 Introduction

Quantum state tomography is the process of obtaining a classical description of
a quantum state. Tomography is a fundamental tool in quantum information sci-
ence, where it finds numerous applications. In the context of quantum algorithms,
pure quantum state tomography can be used to retrieve a classical description of
the final state of the algorithm, e.g., the solution of a linear system [HHL09] or
the evolution of a quantum system [Llo96].

The more general mixed quantum state tomography finds applications in
quantum information theory, and in the simulation of quantum many-body and
thermodynamic systems. In some settings we are not interested in the full state,
but only in its expectation value under a certain set of (possibly overlapping)
measurements. This was first introduced by Aaronson [Aar20] under the name
shadow tomography, and has since received a lot of attention in the literature,
e.g., [HKP20; ASS21; HLY+22].

Most of the existing work on this topic has focused on the sample complexity of
these problems: how many copies of the state are needed to perform tomography?
In this chapter we consider the problem under a different input model: we assume
access to a unitary (and its inverse) that prepares the state. This model is very
natural when the state is the output of a quantum algorithm, but it has received
little attention so far. The main improvements in this model come from the
ability to use techniques related to amplitude estimation to reduce the dependence
on the error parameter, but attaining such quadratic improvements requires the
development of several new tools, and the analysis does not follow from a simple
application of amplitude estimation.

Throughout this chapter we consider either a d-dimensional pure state |ψ⟩ =∑d−1
j=0 αj |j⟩ or a rank-r mixed state ρ ∈ Cd×d. We are interested in learning

the state up to error ε in some ℓq-norm or Schatten q-norm, often with some
probability of failure ≤ δ. In the introduction we often use Õ(· · ·) notation
to hide polylogarithmic factors in the parameters d, r, 1/ε, and 1/δ, even if
these parameters do not appear polynomially in the Õ(· · ·). For more precise
complexity statements we refer to the relevant theorems in the main text.

Related work. Classical algorithms that estimate probabilities generally de-
pend quadratically on 1/ε, as that many samples are required to bring down the
variance. In certain settings quantum algorithms can improve on this classical

4.2. Preliminaries 63

complexity. Brassard et al. [BHM+02] introduced the amplitude estimation al-
gorithm, and showed that it can estimate an amplitude (or probability) with a
1/ε dependence, if a state-preparation unitary and its inverse are available.

Van Apeldoorn [vApe21] generalized this for finding an ℓ∞-norm estimate of
a discrete probability distribution. In the model of van Apeldoorn, access to the
distribution is given by a state-preparation oracle (and its inverse), such that the
probability distribution corresponds to computational-basis measurements of the
prepared state. Van Apeldoorn [vApe21] showed that Õ(1/ε) applications of the
input unitary are sufficient to compute the desired ℓ∞-norm estimate. In the
same paper the question was posed whether one can also speed up the estimation
of multiple expectation values over the same distribution. A lower bound of
Ω(min{

√
m/ε, 1/ε2}) was given when m expectation values need to be estimated

op to precision ε. It was later shown by Huggins et al. [HWM+21] that Õ(
√
m/ε)

queries are sufficient even when estimating expectation values of observables on
a pure quantum state.

Besides these few results for pure quantum state tomography, the most fre-
quently studied setting is that of mixed-state tomography. In this setting we want
to determine how many copies of ρ are necessary to obtain a classical description
with a given maximum error ε in trace norm; it is often assumed that some upper
bound r on the rank of the state is known (if the state is pure, r = 1). An
algorithm of Gross et al. [GLF+10], that applies measurements on one copy of
the state at once, achieves O(dr2/ε2) sample complexity. Haah et al. [HHJ+17]
show that the bound is optimal when the measurements are on a single copy at
a time, and Chen et al. [CHL+22] complete our understanding of this setting by
showing that the bound cannot be improved even with adaptive measurement
schemes, as long as we require single-copy measurements. A better sample com-
plexity can be achieved if we allow joint measurements on multiple copies of the
state: with this more powerful access model, the best algorithm for tomography
is also due to Haah et al. [HHJ+17] and O’Donnell and Wright [OW16], and it
requires Õ(dr/ε2) copies of the quantum state; see also [OW16]. Haah et al. also
show matching lower bounds up to polylogarithmic factors (these polylogarithmic
factors are eliminated by Yuen [Yue22]), therefore their algorithm is essentially
optimal. The main drawback of their approach is that it does not only require
joint measurements on many states at once, but it also has time complexity ex-
ponential in d.

4.2 Preliminaries
In this section, we define the objects that we will be using in the remainder of
this chapter. First, we formally define density matrices.

4.2.1. Definition (Density matrix). Let H be a Hilbert space of dimension d ∈
N. A density matrix on a Hilbert space is a positive semidefinite operator ρ acting

64 Chapter 4. State tomography

on H, i.e., 0 ⪯ ρ ∈ L(H), such that Tr[ρ] = 1. Its rank 1 ≤ r ≤ d is the number
of non-zero eigenvalues, counting multiplicity. If r = 1, then we say that ρ is a
pure state, otherwise we say that ρ is a mixed state. ◀

We can embed a density matrix into a quantum state through the concept of
a purification. This is the topic of our next definition.

4.2.2. Definition (Purification). Let |ψ⟩ ∈ H ⊗ W be a quantum state. We
define the linear operator TrW : L(H⊗W) → L(H) as the unique map that for
all ρ ∈ L(H) and σ ∈ L(W) acts as

Tr(ρ⊗ σ) = Tr[σ]ρ.

Next, let ρ ∈ L(H) be a density matrix, and let |ψ⟩ ∈ H ⊗ W be a quantum
state. If TrW(|ψ⟩ ⟨ψ|) = ρ, then we say that |ψ⟩ is a purification of ρ. ◀

Note that every density matrix ρ ∈ L(H) always admits a purification, since
we can write the eigendecomposition of the rank-r density matrix ρ as

ρ =
r∑
j=1

λj |ψj⟩ ⟨ψj| ,

which implies that the state |ψ⟩ ∈ H ⊗ C[r]

r∑
j=1

√
λj |ψj⟩ ⊗ |j⟩

is a purification of ρ.
In this chapter, we consider the problem of estimating ρ ∈ L(H), given access

to a unitary that prepares its purification.

4.2.3. Definition (State-preparation unitary). Let ρ ∈ L(H) be a density ma-
trix, and let U be a unitary that maps

U : |0⟩ 7→ |ψ⟩ ,

where |ψ⟩ is a purification of ρ. Then, U is a state-preparation unitary of ρ. ◀

When we say that we have access to a state-preparation unitary, we mean
that we can apply this operation U , and its inverse U †. Moreover, we assume
that we can also apply these operations U controlled on an auxiliary qubit being
in the state |1⟩. Similarly, when we count the number of queries to U , we mean
the total number of calls to any of these routines.

In order to measure the distance of our approximation ρ̃ to ρ, we specify a
family of distance measures on L(H).

4.3. Bounded norm conversion 65

4.2.4. Definition (Schatten norms). Let A ∈ L(H) be a linear operator on H.
Let λ1, . . . , λr be its singular values. For every p ∈ [1,∞], we let ∥A∥p denote the
ℓp-norm of this vector of singular values, i.e.,

∥A∥p =

(
r∑
j=1

|λ|p
) 1

p

,

and we refer to ∥A∥p as the Schatten p-norm of A. Specifically,

1. We refer to ∥A∥1 as the trace norm.
2. We refer to ∥A∥2 as the Frobenius norm.
3. We refer to ∥A∥∞ as the operator norm. ◀

4.3 Bounded norm conversion
If we have an estimate of a vector with error at most ε in, for example, the ℓ∞-
norm, then we can use Hölder’s inequality to show that this is also an estimate
with error at most εd1/q in the ℓq-norm, where q ∈ [1,∞]. However, this bound is
poor for large d. Here, we show that we can do better if we know that the vector
we are estimating is normalized in some ℓs-norm, for s ∈ [1,∞], using the fact
that such a vector cannot have too many large entries.

We start by proving a “norm sandwiching” lemma, i.e., a lemma that tells us
how we can bound the ℓq-norm of a vector, when we know bounds on its ℓ∞-norm
and ℓs-norm, with 1 ≤ s < q <∞.

4.3.1. Lemma (Norm sandwiching). Let ε > 0, s ∈ [1,∞], v ∈ Rd, and suppose
that ∥v∥s ≤ 1, and ∥v∥∞ ≤ ε. Then, for all q ∈ (s,∞), we have

∥v∥q ≤ min
{
ε · d

1
q , ε1−

s
q

}
.

Proof:
The first part of the minimum follows directly from Hölder’s inequality. On the
other hand, we have

∥v∥qq =
d∑
j=1

|vj|q ≤
d∑
j=1

|vj|s · |vj|q−s ≤ εq−s.

The claim follows by taking the power of 1/q on both sides. This completes the
proof. 2

A visualization of the above lemma in the special case where s = 1 and q = 2
is provided in Figure 4.3.1. We can see that there are indeed inherently two

66 Chapter 4. State tomography

x

y

Figure 4.3.1: Visualization of the norm conversion lemma, in the case where s = 1
and q = 2, in two dimensions with ε = 3/4. The vectors v are constrained to
being in the gray area. Its maximal ℓ2-norm is the radius of the smallest circle
we can draw around this set, which is indicated by the dashed line.

regimes: either ε is big enough that some part of the ℓ∞-cube with radius ε sticks
out of the ℓs-ball, in which case the best upper bound on the ℓq-norm is ε1−s/q,
or the ℓ∞-cube with radius ε is completely contained in the unit ℓs-ball, in which
case one cannot do any better than Hölder’s inequality.

The above lemma can be used in cases where we are given an ℓ∞-estimate of
a vector which we a priori know to be normalized in some ℓs-norm. This is the
objective of the following lemma.

4.3.2. Lemma (Norm conversion lemma). Let s ∈ [1,∞], and let v ∈ Rd be such
that ∥v∥s = 1. Suppose furthermore that we have a vector ṽ ∈ Rd such that
∥ṽ − v∥∞ ≤ ε. Let v ∈ Rd be such that ∥v∥s = 1, and the difference ∥v − ṽ∥q is
minimized. Then, for all q ∈ (s,∞), we have

∥v − v∥q ≤ 4min
{
ε · d

1
q , ε1−

s
q

}
.

Proof:
First, observe that v ∈ Rd is the vector that is closest to ṽ w.r.t. ℓq-norm,
while being normalized in ℓs-norm. In particular, this implies that ∥v − ṽ∥q ≤
∥v − ṽ∥q, and thus by the triangle inequality we obtain that

∥v − v∥q ≤ ∥v − ṽ∥q + ∥v − ṽ∥q ≤ 2 ∥v − ṽ∥q .

We also know by the triangle inequality that

∥v − ṽ∥s ≤ ∥v∥s + ∥ṽ∥s = 2,

4.4. Unbiased phase estimation 67

and so we can apply Lemma 4.3.1 to the vector (v − ṽ)/2, and with ε′ = ε/2.
Thus, we obtain

∥v − v∥q ≤ 2 ∥v − ṽ∥q ≤ 4min{ε′ · d
1
q , (ε′)1−

s
q } ≤ 4min{ε · d

1
q , ε1−

s
q }.

This completes the proof. 2

We remark here that this result similarly applies to density matrices, since
the Schatten p norms are simply ℓp-norms on the eigenvalue vectors. As such, we
can simply apply the above lemma to those vectors of eigenvalues to obtain the
same statement in terms of Schatten norms.

In high-level terms, the lemma presented here characterizes the optimal norm
error we can achieve, if we have a procedure that naturally produces ℓ∞-estimates
of the vector that we are interested in. It is tempting to ponder over the applica-
bility of this norm conversion lemma to the mean estimation setting. However,
the situation in the mean estimation setting is subtly different: there we have two
possible algorithmic techniques to obtain our estimate, either we use a quantum
technique that naturally yields an ℓ∞-estimate, or we use a classical technique to
naturally obtain an ℓ2-estimate. Thus, if one were to generalize the above lemma
to also include the case where the approximation ṽ ∈ Rd of v ∈ Rd is assumed to
satisfy ∥v − ṽ∥2 ≤ ε, then one could probably close the open question from the
previous chapter asking for the optimal sample complexity of bounded mean esti-
mators w.r.t. other ℓq-norms. Initial attempts seem to indicate that the resulting
expressions become very messy, but this is definitely a very interesting direction
of future research.

4.4 Unbiased phase estimation

In this section, we describe a method for phase estimation that is unbiased. More
precisely, it is symmetric in the sense that for a phase ϕ it provides an estimate
φ such that the probability of getting estimate ϕ + ε is the same as getting
estimate ϕ − ε (modulo 2π) for all ε. Note that this is not satisfied by ordinary
phase estimation, but this property is highly desirable, as we showcase in our
applications. In particular, we need unbiased phase estimation to recover unbiased
estimates of the entries of a density matrix, allowing us to give tighter error
bounds with high probability.

We start this section by introducing the basic algorithm, in Section 4.4.1.
Subsequently, in Section 4.4.2, we show how the tail bounds of this basic algorithm
can be improved. Then, in Section 4.4.3, we show an application of this algorithm
to unbiased probability estimation.

68 Chapter 4. State tomography

4.4.1 Basic algorithm

Our method is based on adding and later subtracting a random phase shift; this
idea is not new, see, e.g., [LdW21, Section 3]. We present the algorithm and its
analysis below.

Algorithm 4.4.1: Unbiased phase estimation
Input:
1: k ∈ N: the number of bits of precision.
2: U : a quantum circuit acting on H that implements a unitary U .
3: C|ψ⟩: a quantum circuit acting on H that implements |0⟩ 7→ |ψ⟩.

Derived objects:
1: r = dim(H).
2: Let the eigendecomposition of U be

U =
r∑
j=1

e2πiθj |ψj⟩ ⟨ψj| ,

where for all j ∈ [r], θj ∈ (−1/2, 1/2].
3: Let Φ be a random variable taking values in {θj : j ∈ [r]}, such that for all
j ∈ [r],

P[Φ = θj] = | ⟨ψ|ψj⟩ |2 =: pj.

4: Ck = 1− 2−k.
Output: A random variable ϕ ∈ (−1/2, 1/2] such that

E[e2πiϕ] = Ck

r∑
j=1

pje
2πiθj ,

and for all ℓ ∈ [r] and integer m ≥ 2,

P[cyclic-dist(θℓ, ϕ) ≤ m · 2−k] ≥ pℓ

(
1− 1

2(m− 1)

)
.

Queries:
1: Number of calls to U : 2k − 1.
2: Number of calls to C|ψ⟩: 1.

Procedure: Unbiased-phase-est(k, U , C|ψ⟩):
1: Choose ϕ ∈ (−1/2, 1/2] uniformly at random.
2: Let ϕ̃ = Phase-est(k, e2πiϕU , C|ψ⟩).
3: Let ϕ = ϕ̃− ϕ, and add or subtract an integer such that ϕ ∈ (−1/2, 1/2].
4: Output ϕ.

4.4. Unbiased phase estimation 69

Proof of the properties of Algorithm 4.4.1:
The claims on the number of calls to U and C|ψ⟩ follow immediately from the
properties of Algorithm 2.4.3. Moreover, the tail bound also follows directly.
Thus, it remains to compute the expectation of e2πiϕ.

To that end, observe from the analysis of the phase estimation algorithm, i.e.,
Equation (2.4.3), that conditioned on the choice of ϕ in step 1, the measurement
outcome ϕ̃ equals ϕ′ ∈ {−2k−1 + 1, . . . , 2k−1} with probability

P
[
ϕ̃ = ϕ′

∣∣∣ϕ] = r∑
ℓ=1

pℓ ·
sin2(π · 2k(θℓ + ϕ− ϕ′))

22k sin2(π(θℓ − ϕ′))
.

Hence, the probability distribution for ϕ becomes

P
[
ϕ = ϕ′∣∣ϕ] = r∑

ℓ=1

pℓ ·
sin2(π · 2k(θℓ − ϕ′))

22k sin2(π(θℓ + ϕ− ϕ′))
,

where the dependence on ϕ only comes back in the possible choices for ϕ′, since
the above relation only holds whenever ϕ′ + ϕ ∈ {−2k−1 − 1, . . . , 2k−1}. Thus,
averaging over ϕ will only smoothen out the possible values that ϕ′ can attain1,
and thus we obtain that the probability density function for ϕ is

fϕ(ϕ
′) =

r∑
ℓ=1

pℓ ·
sin2(π · 2k(θj − ϕ′))

2k sin2(θj − ϕ′)
.

Thus, we can directly compute the expectation of ϕ, as

E
[
e2πiϕ

]
=

r∑
ℓ=1

pℓE
[
e2πiϕℓ

]
,

where ϕℓ is a random variable taking values in (−1/2, 1/2] with probability density
function

fϕℓ(ϕ
′) =

sin2(π · 2k(θj − ϕ′))

2k sin2(θj − ϕ′)
.

It remains to prove that for all ℓ ∈ [r], the expectation of e2πiϕℓ is equal to Cke2πiθℓ .
To that end, observe that

E[e2πi(ϕℓ−θℓ)] =
∫ 1/2

−1/2

e2πi(x−θℓ) · sin
2(π · 2k(x− θℓ))

2k sin2(π(x− θℓ))
dx

=

∫ 1

0

e2πix · sin
2(π · 2kx)

2k sin2(πx)
dx,

1A proper proof should not be very difficult, but it would require some measure theory. We
will omit it here for readability.

70 Chapter 4. State tomography

where in the last equality we substituted x for x+θj, and used that the integrand is
periodic with period 1. Thus, it remains to prove that the final integral expression
equates to Ck. To that end, observe that the integrand is periodic with period 1,
and that the factor sin2(π · 2kx)/(2k sin2(πx)) is symmetric around 0. Thus,∫ 1

0

e2πix · sin
2(π · 2kx)

2k sin2(πx)
dx =

∫ 1
2

0

[
e2πix + e−2πix

] sin2(π · 2kx)
2k sin2(πx)

dx

=

∫ 1
2

0

2 cos(2πx)
sin2(π · 2kx)
2k sin2(πx)

dx =

∫ 1
2

0

(
2− 4 sin2(πx)

) sin2(π · 2kx)
2k sin2(πx)

dx

= 1− 4

2k

∫ 1
2

0

sin2(π · 2kx) dx = 1− 4

2k

∫ 1
2

0

[
1

2
− 1

2
cos(2π · 2kx)

]
dx

= 1− 4

2k

[x
2

] 1
2

0
= 1− 1

2k
= Ck.

This completes the proof. 2

4.4.2 Improved tail bounds

Note that the tail bound in Algorithm 4.4.1 is only hyperbolic. Thus, we conclude
that the random variable ϕ might be quite heavy-tailed, which can be a problem
for potential applications. Fortunately, we can obtain a much more narrow dis-
tribution by a median trick on the unit circle, which is what we introduce in the
algorithm below.

Algorithm 4.4.2: Unbiased phase estimation with boosted precision
Input:
1: k ∈ N: the number of bits of precision.
2: k′ ∈ N: the boosting parameter.
3: U : a quantum circuit acting on H that implements a unitary U .
4: C|ψ⟩: a quantum circuit acting on H that implements |0⟩ 7→ |ψ⟩.

Derived objects:
1: Let the eigendecomposition of U be

U =
r∑
j=1

e2πiθj |ψj⟩ ⟨ψj| ,

where for all j ∈ [r], θj ∈ (−1/2, 1/2].
2: Let Φ be a random variable taking values in {θj : j ∈ [r]}, such that for all
j ∈ [r],

P[Φ = θj] = | ⟨ψ|ψj⟩ |2 =: pj.

4.4. Unbiased phase estimation 71

Output: A random variable ϕ ∈ (−1/2, 1/2] such that

E[e2πiϕ] = Ck,k′
r∑
j=1

pje
2πiθj ,

where 1− 2−k ≤ Ck,k′ ≤ 1, and for all ℓ ∈ [r] and m ≥ 6,

P[cyclic-dist(θℓ, ϕ) ≤ m · 2−k] ≥ pℓ

(
1− (m/6)−k

′/2
)
.

Queries:
1: Number of calls to U : k′(2k − 1).
2: Number of calls to C|ψ⟩: 1.

Procedure: Unbiased-boosted-phase-est(k, k′, U , C|ψ⟩):
1: Choose ϕ ∈ (−1/2, 1/2] uniformly at random.
2: For j = 1, . . . , k′, let ϕ̃j = Phase-est(k, e2πiϕU , C|ψ⟩), where all of the runs

are performed without re-initializing the state |ψ⟩.
3: Find the smallest arc of the unit circle that contains at least a strict majority

of the points e2πiϕ̃1 , . . . , e2πiϕ̃k′ . Let ϕ̃ ∈ (−1/2, 1/2] be such that e2πiϕ̃ is the
midpoint of this arc.

4: Let ϕ = ϕ̃− ϕ, and add or subtract integers until ϕ ∈ (−1/2, 1/2].
5: Output ϕ.

In step 2 of the algorithm, we stress that we re-use the output state of the
previous run of phase estimation. This way we ensure that all our outcomes
belong to the same θℓ, and thus it makes sense to take the median on the unit
circle. Coincidentally, this is similar to the multiple runs of phase estimation we
will come back to in Definition 8.2.2.
Proof of the properties of Algorithm 4.4.2:
The number of calls to U and C|ψ⟩ follow immediately from the description of the
algorithm. Thus, it remains to check the properties of the output.

To that end, observe that since we don’t reinitialize |ψ⟩, we can analyze this
setting as if |ψ⟩ is exactly an eigenvector of U , i.e., U |ψ⟩ = e2πiθ |ψ⟩. It remains
to prove that in this case, the expectation of e2πiϕ equals Ck,k′e2πiθ, and that
the cyclic distance between ϕ and θ is at most m · 2−k with probability at least
1− exp(−k′m).

We start with the latter claim. To that end, suppose that the cyclic distance
between θ and ϕ is bigger than m · 2−k. Then, less than half of the points ϕ̃j
are located in the interval (−m/2 · 2−k,m/2 · 2−k) around θ, because if a strict
majority were in this interval, by the pigeonhole principle there would be one
point both in this interval and in the interval centered around m · 2−k, but then
that interval would have to be wider than m/2 · 2−k in radius. Thus, we find that

72 Chapter 4. State tomography

P[cyclic-dist(θ, ϕ) > m · 2−k] ≤
(

k′

⌈k′/2⌉

)
P[cyclic-dist(θ, µ̃j) > ⌊m/2⌋ · 2−k]k′/2

≤ 2k
′/2

2k′/2(m/2− 2)k′/2
≤ (m/6)−k

′/2.

Finally, the post-processing method in step 3 of the algorithm is easily seen
to be symmetric, and so the expectation of e2πiϕ is a constant times e2πiθ. More-
over, we observe that the concentration we achieve here is tighter than in Algo-
rithm 4.4.1, and thus Ck,k′ ≥ 1− 2−k. This completes the proof. 2

4.4.3 Unbiased probability estimation

One particularly neat application of the unbiased phase estimation routine that we
developed in the previous subsections is to a problem called unbiased probability
estimation. In this problem, we are given access to a unitary that implements
the mapping

C : |0⟩ 7→ √
p |ψ1⟩ |1⟩+

√
1− p |ψ0⟩ |0⟩ =: |ψ⟩ ,

for some unknown value p ∈ [0, 1], and we are asked to estimate it.
The standard algorithm that solves this is known as amplitude estimation,

and it first appeared in [BHM+02]. It performs phase estimation on an operation
that is known as the Grover operator, which is defined by

G = C(2 |0⟩ ⟨0| − I)C†(I ⊗ (2 |1⟩ ⟨1| − I)).

If in the algorithm proposed by [BHM+02], we substitute normal phase estimation
with the unbiased version we developed in this section, then it turns out we can
exactly calculate the total bias of the estimator of p. Surprisingly, the expectation
of the resulting algorithm’s outcome is a linear function of p, and hence we can
invert it and obtain an unbiased estimator for p.

We state the resulting algorithm and prove its properties below.

Algorithm 4.4.3: Unbiased probability estimation
Input:
1: k ∈ N: the precision parameter.
2: C: a quantum circuit that implements the mapping

|0⟩ 7→ √
p |ψ1⟩ |1⟩+

√
1− p |ψ0⟩ |0⟩ .

Derived objects:
1: θ = arcsin(

√
p)/π.

4.4. Unbiased phase estimation 73

2: G = C(2 |0⟩ ⟨0| − I)C†(I ⊗ (2 |1⟩ ⟨1| − I)).
Output: A random variable p̃ that satisfies E[p̃] = p, and if we let p = 1/2 −

(1− 2−k)(1/2− p̃), then for all integer m ≥ 2,

P

[
|p− p| >

4π2
√
p(1− p)m2

2k
+

(
2πm2

2k

)2
]
≤ 1

2(m− 1)
. (4.4.1)

Queries: Number of queries to C: 2k+1 − 1.
Procedure: Unbiased-probability-est(k, C):
1: Let ϕ = Unbiased-phase-est(k, G, C).
2: Let p = 1

2
− cos(2πϕ)

2

3: Output p̃ = 1
2
− cos(2πϕ)

2(1−2−k)
.

Proof of the properties of Algorithm 4.4.3:
The claim about the number of queries follows directly from the properties of
unbiased phase estimation, i.e., Algorithm 4.4.1.

It can be easily shown that G has eigenvectors

G |ψ±⟩ = e∓2πiθ |ψ±⟩ , where |ψ±⟩ = (|ψ1⟩ |1⟩ ± i |ψ0⟩ |0⟩) ,

and where θ = arcsin(
√
p). Since we can write

i√
2
(−e−πiθ |ψ+⟩+ eπiθ |ψ−⟩) = |ψ⟩ ,

we obtain in Algorithm 4.4.1 that

P[Φ = ±θ] = | ⟨ψ±|ψ⟩ |2 =
1

2
.

Thus, we find that

E[e2πiϕ] = Ck ·
e2πiθ + e−2πiθ

2
= Ck cos(2πθ) = Ck cos(2 arcsin(

√
p))

= Ck(1− 2p).

Therefore, by taking the real part on both sides, we obtain that

E[p̃] =
1

2
− E[cos(2πϕ)]

2(1− 2−k)
=

1

2
− Ck(1− 2p)

2Ck
= p.

Thus, it remains to check the tail bound from Equation (4.4.1). To that end,
observe that the distributions arising from the phases 2πθ and −2πθ are mirrored
in phase 0, and so we can take the absolute value of ϕ without changing the shape

74 Chapter 4. State tomography

of its distribution. Thus, from the properties of Algorithm 4.4.1, we find that for
all m ≥ 2,

P
[
cyclic-dist(|ϕ|, θ) > m · 2−k

]
≤ 1

2(m− 1)
.

Next, suppose that cyclic-dist(ϕ, θ) ≤ t, for some t > 0. Then,

|p− p| ≤ |cos(2πϕ)− cos(2πθ)|
2

≤ 2| sin(π(ϕ− θ)) sin(π(ϕ+ θ))|

= 2| sin(π(ϕ− θ))| · | sin(2πθ − π(θ − ϕ))|
= 2| sin(π(ϕ− θ))| · | cos(π(θ − ϕ)) sin(2πθ)− cos(2πθ) sin(π(θ − ϕ))|
≤ 4 sin |π(ϕ− θ)|

√
p(1− p) + 2 sin |π(θ − ϕ)|2

≤ 4π
√
p(1− p)t+ 2π2t2,

where we used that cyclic-dist(ϕ, θ) ≤ t implies that sin |π(θ − ϕ)| ≤ πt. The
above bound on |p − p| also holds if we exchange ϕ for −ϕ, and thus we obtain
that cyclic-dist(|ϕ|, θ) ≤ t implies that |p − p| ≤ 4π

√
p(1− p)t + 2π2t2. Hence,

for all m ≥ 2, we have

P

[
|p− p| >

4π
√
p(1− p)m

2k
+

(
2πm

2k

)2
]
≤ 1

2(m− 1)
.

This completes the proof. 2

We observe that the boosted routine achieves the same precision as in the
seminal work [BHM+02], up to a multiplicative constant. Thus, our technique is
essentially a black-box improvement over the classic amplitude estimation algo-
rithm, since it provides an estimate with the same accuracy, and with the extra
property that it is unbiased. A very interesting direction for future research is
to see what potential implications this has for algorithms that use amplitude
estimation as a subroutine.

One additional remark to make here is that even though the expectation of p̃
is p ∈ [0, 1], that does not mean that every realization of p̃ will be contained in
the interval [0, 1]. Hence, any algorithm that would like to use our routine as a
black box, will have to deal with these exceptions.

One way to circumvent this out-of-bounds behavior is by outputting p instead,
i.e., to disregard the normalization factor 1/Ck. This would ensure that p̃ is always
contained in the interval [0, 1], at the expense of having a small bias on the order
of O(2−k).

We also briefly remark here that one can also use the boosted version of
the unbiased phase estimation routine to obtain an unbiased probability with an
improved tail bound. Using the exact same proof techniques as displayed above,
we observe that if we substitute the boosted unbiased phase estimation routine

4.5. Estimating multiple observables with a state-preparation oracle 75

with parameters k, k′, i.e., Algorithm 4.4.2, in step 1 of Algorithm 4.4.3, then for
any m ≥ 6,

P

[
|p− p| >

4π
√
p(1− p)m

2k
+

(
2πm

2k

)2
]
≤
(

6

m

)k′/2
. (4.4.2)

In particular, the boosting parameter, k′, allows for regulating the polynomial
dependence on the tail bound – if we take k′ = 2, we get a linear dependence
on 1/m, whereas if we ramp up k′ a bit higher, the exponent of the decay is
increased accordingly. In particular, if we choose k′ > 4, then the decay is bigger
than inverse quadratic inm, which is favorable if we want to compute the variance
of p̃, a property that we haven’t touched on yet in this chapter. Setting k′ even
higher will also ensure that higher-order central moments of p̃ are small. We
develop these ideas further in Section 5.2.

4.5 Estimating multiple observables with a state-
preparation oracle

To perform efficient mixed-state tomography we rely on an algorithm that esti-
mates multiple observables simultaneously. Specifically, suppose we have access
to some density matrix ρ ∈ L(H) through a unitary that prepares its purification,
as defined in Definitions 4.7.1 and 4.2.3. Next, we define m Hermitian operators
E1, . . . , Em ∈ L(H), and we define the vector z ∈ Rm such that for all j ∈ [m],
zj = Tr[ρEj]. The question we address in this section is how many (inverse, con-
trolled) calls to the state-preparation unitary are required to obtain an ε-precise
estimate of z in ℓ∞-norm.

We assume that the observables E1, . . . , Em are known a priori. For simplic-
ity, we don’t count the cost of implementing these in a quantum circuit. See
[vACG+22] for a more detailed account on the number of gates in the algorithm
designed in this section.

The algorithm is based on constructing the phase oracle for a function whose
gradient is the vector of the desired expectation values, similarly to the approach
presented in Section 3.3. As was the case before, to ensure that the function is
properly normalized we need to bound the weighted combination of expectation
values, where the weights are taken from the dual grid, as defined in Defini-
tion 3.3.1. In this setting, we require some results on random matrices, which
we use by translating properties that hold for uniformly random matrices into
properties that hold for all but a constant fraction of the points in the dual grid.

This task was recently studied in [HWM+21]. They constructed an algo-
rithm that solves this problem using O(

√∑m
j=1 ∥Ej∥2/ε) applications of the state-

preparation unitary and its inverse. This is O(
√
m/ε) under the assumption

∥Ej∥ ≤ 1. We present a subtle but crucial improvement over [HWM+21], since

76 Chapter 4. State tomography

we give an algorithm with a sample complexity of Õ(
√
∥
∑m

j=1E
2
j ∥/ε), i.e., we

move the summation and square inside the norm. Ultimately, as we will see in
the next section, this leads to a saving of a factor d when applied to mixed-state
tomography. For a discussion of other existing approaches to solve the prob-
lem of computing expectation values, we refer to the excellent introduction in
[HWM+21].

4.5.1 Tail bounds on uniform matrix series

As mentioned above, we first need to prove some properties of uniform random
matrices. We do this by adapting a result on Gaussian / Rademacher random
matrices given below. Here and in the remainder of this section, for a random
matrix Y we define v(Y) := ∥E[Y 2]− (E[Y])2∥ as its variance.

4.5.1. Theorem ([Tro15, Theorem 4.6.1]). Let E1, . . . , Em be d × d Hermitian
matrices. Let λ1, . . . , λm be drawn from iid standard normal distributions and let
Y =

∑m
ℓ=1 λℓEℓ. Then E[Y] = 0, v(Y) = ∥

∑m
ℓ=1E

2
ℓ ∥ and

P[∥Y ∥ ≥ t] ≤ 2de−
t2

2v(Y) .

The same bounds hold when {λj} is iid uniformly random over {−1, 1}.

In order to adapt the above result to our setting, we invoke a technical state-
ment from [Tro15].

4.5.2. Proposition ([Tro15, Theorem 3.6.1]).
Consider a finite sequence (Eℓ)

m
ℓ=1 of independent, random, Hermitian matrices

of the same size. Then for all t ∈ R we have

P

[
λmax

(
m∑
ℓ=1

Eℓ

)
≥ t

]
≤ inf

θ>0
e−θtTr

[
exp

(
m∑
ℓ=1

logE
[
eθEℓ

])]
.

With the help of this result we prove the following variant of Theorem 4.5.1
for bounded random variables.

4.5.3. Theorem (Bounded Matrix series inequality). Let E1, . . . , Em be d × d
Hermitian matrices. Let λ1, . . . , λm be independent symmetrically distributed
random variables supported on [−1, 1] and let Y =

∑m
ℓ=1 λℓEℓ. Then E[Y] =

0, v(Y) ≤ ∥
∑m

ℓ=1E
2
ℓ ∥ and

P[∥Y ∥ ≥ t] ≤ 2de−
t2

2v(Y) .

4.5. Estimating multiple observables with a state-preparation oracle 77

Proof:
We follow the proof of [Tro15, Theorem 4.6.1] and modify it where necessary.
First we note that for all ℓ ∈ [m],

E[eλℓEℓ] = E

[
∞∑
k=0

λkℓ
k!
Ek
ℓ

]
=

∞∑
k=0

E[λkℓ]
k!

Ek
ℓ =

∞∑
q=0

E[λ2qℓ]
(2q)!

E2q
ℓ

⪯
∞∑
q=0

1

(2q)!
E2q
ℓ ⪯

∞∑
q=0

1

q!
(E2

ℓ /2)
q = eE

2
ℓ /2, (4.5.1)

where we used that E[λkℓ] = 0 for all odd integers k, and in the last line we used
that (2q)! ≥ 2qq!. This implies that

m∑
ℓ=1

log
(
E[eλℓEℓ]

)
⪯

m∑
ℓ=1

log

(
e

E2
ℓ
2

)
=

m∑
ℓ=1

E2
ℓ

2
,

where we used 0 ≺ A ⪯ B ⇒ log(A) ⪯ log(B), since the logarithm is a monotone
function on (0,∞). Similarly, the exponent function is monotone on all of R, and
so we can take the matrix exponential on both sides to obtain

exp

(
m∑
ℓ=1

log
(
E[eλℓEℓ]

))
⪯ exp

(
m∑
ℓ=1

E2
ℓ

2

)
.

Now, taking the trace on both sides leads to

Tr

[
exp

(
m∑
ℓ=1

log
(
E[eλℓEℓ]

))]
≤ Tr

[
exp

(
m∑
ℓ=1

E2
ℓ

2

)]
,

where we used that A ⪯ B implies B−A ⪰ 0, and so Tr[B]−Tr[A] = Tr[B−A] ≥
0. Now, using Proposition 4.5.2, we obtain

P[λmax(Y) ≥ t] ≤ inf
θ>0

e−θtTr

[
exp

(
m∑
ℓ=1

logE[eθλℓEℓ]

)]

≤ inf
θ>0

e−θtTr

(
exp

(
θ2

2

m∑
ℓ=1

E2
ℓ

))
≤ inf

θ>0
e−θtd ·

∥∥∥∥∥exp
(
θ2

2

m∑
ℓ=1

E2
ℓ

)∥∥∥∥∥
= inf

θ>0
e−θtd · exp

(
θ2

2

∥∥∥∥∥∑
ℓ=1

E2
ℓ

∥∥∥∥∥
)

= d inf
θ>0

exp

(
−θt+ θ2

2
v(Y)

)
.

Plugging in θ = t
v(Y)

yields

P[λmax(Y) ≥ t] ≤ de−
t2

2v(t) .

By symmetry we get the same bound for the smallest eigenvalue. This completes
the proof. 2

78 Chapter 4. State tomography

4.5.2 Algorithm for estimating multiple observables

With the ideas used in the construction of the unbiased phase estimation algo-
rithm, Algorithm 4.4.2, and the tail bounds on the operator norm of linear combi-
nations of the operators derived in the previous subsection, we can now construct
an algorithm that estimates multiple observables simultaneously. The idea is to
take the bounded mean estimation algorithm, Algorithm 3.3.6, make it unbiased
using the techniques introduced in Section 4.4, and analyze the truncation error
throughout the algorithm using the techniques from Section 4.5.1.

We state the full algorithm below. To improve the clarity of the proof of its
properties, we refer to the analyses of the algorithms introduced earlier.

Algorithm 4.5.4: Multiple observable estimation
Input:
1: (Eℓ)

m
ℓ=1: a finite sequence of observables on H.

2: 0 < ε < maxℓ∈[m] ∥Eℓ∥∞ /2: the precision parameter.
3: δ > 0: the failure probability parameter.
4: U : a state-preparation oracle acting on H⊗W , that implements |0⟩ 7→ |ψ⟩.

Derived objects:
1: d = dim(H).
2: ρ = TrW [|ψ⟩ ⟨ψ|].
3: z ∈ Rm, where for all j ∈ [m], zj = Tr[ρEj].
4: S = maxj∈[m] ∥Ej∥∞.
5: k = ⌈log

(
36S
ε

)
⌉.

6: k′ = ⌈2 log
(
4m
δ

)
⌉.

7:

M =

√√√√2 ·

∥∥∥∥∥
m∑
ℓ=1

E2
ℓ

∥∥∥∥∥ · ln
(
4k′22kdm2

9δ

)
.

Output: A random variable z̃ that is δ-close in total variation distance to a
random variable z′ ∈ Rm that has independent entries, satisfies ∥z′ − z∥∞ ≤ ε
almost surely, and satisfies E[z′] = z.

Queries: Number of calls to U :

Õ

(√
∥
∑m

ℓ=1E
2
ℓ ∥

ε

)
.

Procedure: Multiple-observable-est((Eℓ)mℓ=1, ε, δ, U)
1: For j′ = 1, . . . , k′,

1. Choose a vector ϕ ∈ (−1/2, 1/2]m uniformly at random.
2. Prepare the superposition

1√
2km

∑
x∈Gm

k

e2πix
Tϕ |x⟩ ,

4.5. Estimating multiple observables with a state-preparation oracle 79

where Gm
k is the dual grid, defined in Definition 3.3.1.

3. Apply the operation Ham-sim(A, 2kM/(3S), δ/(4k′)), where A is the
circuit acting on CGm

k ⊗H ⊗W ⊗ C2 that consists of the following op-
erations:

(a) Apply U to the second and third registers.
(b) Apply the following operation to the first, second and fourth regis-

ters:

|x⟩ |χ⟩ |0⟩ 7→ |x⟩

I
2
+

1

2M

t
m∑
ℓ=1

xℓEℓ

|M

0

 |χ⟩ |0⟩+ |⊥⟩

 ,

where |⊥⟩ is an unnormalized state that is orthogonal to |χ⟩ |0⟩, and

JAKM0 =

{
A, if ∥A∥∞ ≤M,

0, otherwise.

(c) Apply U † to the second and third registers.
4. Apply the inverse m-dimensional quantum Fourier transform.
5. Measure in the computational basis, and denote the output by j ∈

{−2k−1 + 1, . . . , 2k−1}m.
6. Let ϕ̃(j′) = j/2k − ϕ, and add or subtract integers element-wise until all

entries of ϕj′ are in the interval (−1/2, 1/2].

2: For all j ∈ [m], find the shortest arc on the unit circle that contains a strict

majority of the points e2πiϕ̃
(j′)
j , with j′ ∈ [k′]. Let ϕ̃ ∈ (−1/2, 1/2]m be such

that for all j ∈ [m], e2πiϕ̃j is the midpoint of this arc.
3: Output z̃ = 3Sϕ̃.

Proof of the properties of Algorithm 4.5.4:
We start by counting the number of queries to U that the algorithm performs.
From the properties of Algorithm 2.4.8, we obtain that in step 1.3, we perform
O(2kM/(3S)+log(δ/(4k′))) calls to U , and we execute this step k′ = Õ(1) times.
Thus, the total number of times we call U is the product of these, which evaluates
to the expression from the algorithm statement.

It remains to check the claimed properties on the output of the algorithm. To
that end, we first investigate the action of the operation defined in step 1.3. Let’s
first write the Schmidt decomposition of |ψ⟩ ∈ H ⊗W , as

|ψ⟩ =
r∑
j=1

√
λj |ψj⟩ |χj⟩ ,

80 Chapter 4. State tomography

where {|ψj⟩ : j ∈ [r]} and {|χj⟩ : j ∈ [r]} are orthonormal sets of vectors in H
and W , respectively. This implies that

ρ =
r∑
j=1

λj |ψj⟩ ⟨ψj| .

Now, observe that if we apply the operations in steps 1.3a–1.3c, to the state
|x⟩ |0⟩ |0⟩ |0⟩, then after step 1.3a we have the state

|x⟩
r∑
j=1

√
λj |ψj⟩ |χj⟩ |0⟩ .

Then, after step 1.3b, we obtain the state

|x⟩
r∑
j=1

√
λj

I
2
+

1

2M

t
m∑
ℓ=1

xℓEℓ

|M

0

 |ψj⟩ |χj⟩ |0⟩+ |⊥⟩ ,

where |⊥⟩ is orthogonal to |ψj⟩ |χj⟩ |0⟩, for, for all j ∈ [r]. Hence, after step 1.3c,
the overlap of the state with |0⟩ |0⟩ |0⟩ in the second, third and fourth register,
respectively, is

r∑
j=1

λj ⟨ψj|

I
2
+

1

2M

t
m∑
ℓ=1

xℓEℓ

|M

0

 |ψj⟩ =
1

2
+

1

2M
Tr

ρt
m∑
ℓ=1

xℓEℓ

|M

0

 .
Thus, from the properties of Algorithm 2.4.8, we obtain that in step 1.3 altogether,
we implement the operation

|x⟩ 7→ exp

2πi · 2
k

3S
Tr

ρt
m∑
ℓ=1

xℓEℓ

|M

0

 |x⟩ ,

where we neglect a global phase eπi2kM , which doesn’t depend on x and hence
does not influence the measurement probabilities. Thus, when we apply step 1.3
to the state prepared in step 1.2, then we obtain the state

1√
2km

∑
x∈Gm

k

exp

2πi

xTϕ+
2k

3S
Tr

ρt
m∑
ℓ=1

xℓEℓ

|M

0

 |x⟩ =: |χ′⟩ .

As in the proof of Algorithm 3.3.6, we analyze the influence of the truncation
on the state, i.e., we analyze the norm difference between |χ′⟩ and

|χ⟩ := 1√
2km

∑
x∈Gm

k

exp

(
2πi

(
xTϕ+

2k

3S
Tr

[
ρ

m∑
ℓ=1

xℓEℓ

]))
|x⟩ .

4.5. Estimating multiple observables with a state-preparation oracle 81

To that end, observe that we can express the norm difference as

∥|χ⟩ − |χ′⟩∥2

=
1

2km

∑
x∈Gm

k

∣∣∣∣∣∣exp
2πi

xTϕ+
2k

3S
Tr

ρt
m∑
ℓ=1

xℓEℓ

|M

0


− exp

(
2πi

(
xTϕ+

2k

3S
Tr

[
ρ

m∑
ℓ=1

xℓEℓ

]))∣∣∣∣∣
2

≤ 22k4π2

9S2
E

x∼U(Gm
k)

Tr
ρ
 m∑

ℓ=1

xℓEℓ −

t
m∑
ℓ=1

xℓEℓ

|M

0

2
≤ 22k4π2

9S2
E

x∼U(Gm
k)

∥∥∥∥∥∥
m∑
ℓ=1

xℓEℓ −

t
m∑
ℓ=1

xℓEℓ

|M

0

∥∥∥∥∥∥
2

∞

 ,

where we used that |eix − eiy| ≤ |x − y|, for all x, y ∈ R, and |Tr[AB]| ≤
Tr[A] · ∥B∥∞ for Hermitian operators A,B ∈ L(H), with A ⪰ 0.

Next, remember that S = maxj∈[d] ∥Ej∥, and so the operator norm of
∑m

ℓ=1 xℓEℓ
is always upper bounded by mS/2. Thus,

∥|χ⟩ − |χ′⟩∥2 ≤ 22kπ2m2S2

9S2
· P
x∼U(Gm

k)

[∥∥∥∥∥
m∑
ℓ=1

xℓEℓ

∥∥∥∥∥
∞

≥M

]

≤ 22k2π2dm2

9
· exp

(
− M2

2 ∥
∑m

ℓ=1E
2
ℓ ∥

)
≤ δ

4k′
,

where in the last line we used Theorem 4.5.3, and the choice of M in the algorithm
statement.

Thus, in the remainder of the proof, we assume that we are in the state |χ⟩
after step 1.3. Moreover, we let ϕ(j′), ϕ and z be the variables ϕ̃(j′), ϕ̃ and z̃
one would have obtained if the state after step 3 would have been |χ⟩. Since we
make a total norm error of δ/4 in the construction of |χ⟩, as well as a total norm
error of δ/4 in the calls to Hamiltonian simulation, every pair of these variables
is δ/2-close in total variation distance.

82 Chapter 4. State tomography

Next, observe that we can rewrite

|χ⟩ = 1√
2km

∑
x∈Gm

k

exp

(
2πi

(
xTϕ+

2k

3S
Tr

[
ρ

m∑
ℓ=1

xℓEℓ

]))
|x⟩

=
1√
2km

∑
x∈Gm

k

exp

(
2πi

(
xTϕ+

2k

3S

m∑
ℓ=1

xℓTr [ρEℓ]

))
|x⟩

=
1√
2km

∑
x∈Gm

k

exp

(
2πi

(
xT
(
ϕ+

2k

3S
z

)))
|x⟩

=
m⊗
ℓ=1

∣∣∣∣QFT2k

(
ϕj +

2k

3S
zj

)〉
,

where the notation |QFT2k(·)⟩ is introduced in Definition 2.4.1. From the analysis
of Algorithm 4.4.2, we now obtain that all the coordinates of ϕ, and hence also
all the entries of z, are independent from one another. Moreover, for all j ∈
[m], E[e2πiϕj] = e2πizj/(3S), and the probability distribution of e2πiϕj is symmetric
around e2πizj/(3S).

Furthermore, we find that
|zj|
3S

=
|Tr[ρEj]|

3S
≤

∥Ej∥∞
3S

≤ 1

3
.

Since we required that ε < S/2, the interval [zj/(3S)− ε/(3S), zj/(3S) + ε/(3S)]
is contained in the interval (−1/2, 1/2). Thus, from the properties of Algo-
rithm 4.4.2, we obtain that for all j ∈ [m],

P[|zj − zj| > ε] = P
[
cyclic-dist

(
ϕj,

zj
3S

)
>

2kε

2k · 3S

]
≤
(
2kε

18S

)−k′/2

≤ 2−k
′/2 ≤ δ

4m
,

where the last two inequalities hold by the choices of k and k′. Thus, by the
union bound, we find that

P [∥z− z∥∞ ≤ ε] ≥ 1− δ

4
.

Now, we define the random variable z′ ∈ Rd as the random variable that is equal
to z if ∥z− z∥∞ ≤ ε, and z otherwise. Since we are only changing the random
variable z with probability at most δ/4, z′ and z are δ/2-close in total variation
distance. In particular, this implies that z̃ and z′ are δ-close in total variation
distance.

Finally, observe that z′ satisfies ∥z′ − z∥∞ ≤ ε by assumption, its coordinates
are independent and its distribution is symmetric around z. In particular, this
implies that E[z′] = z. This completes the proof. 2

4.6. Mixed-state tomography 83

4.6 Mixed-state tomography
In this section, we show how the algorithm that estimates multiple observables
simultaneously can be used to construct an algorithm that performs mixed-state
tomography. The core idea is remarkably straightforward – if the dimension of
the density matrix is d, then we simply define O(d2) observables that estimate
all of the entries of the matrix individually, and plug them into Algorithm 4.5.4.

This naive approach naturally only gives us coordinate-wise guarantees on
the precision of our estimate of the density matrix we are after. Thus, we need a
lemma that relates entry-wise estimators of matrices to their operator norm. We
present this lemma first, and afterwards state the resulting algorithm.

4.6.1. Definition (Subgaussian random variable [RV10, Definition 2.2]).
A random variableX is subgaussian if there exists aK > 0, called the subgaussian
moment of X, such that for all t ≥ 0,

P[|X| > t] ≤ 2e−t
2/K2

. ◀

We easily observe that every bounded random variable X ∈ [−B,B] has
subgaussian moment ≤

√
ln(2)B. Next, we recall a concentration inequality on

the operator norm of a matrix, if all of its entries are independent and subgaussian
random variables.

4.6.2. Lemma (Operator norm of subgaussian matrices [RV10, Proposition 2.4]).
Let X be an N ×n random matrix whose entries are independent mean-zero sub-
gaussian random variables whose subgaussian moments are bounded by K. Then,
for all t ≥ 0, we have

P
[
∥X∥
K

> C(
√
N +

√
n) + t

]
≤ 2e−ct

2

,

where C and c denote positive absolute constants.

Now, for all j, j′ ∈ [d], consider the d-dimensional observables

Ej,j′ =
|j′⟩ ⟨j|+ |j⟩ ⟨j′|

2
, and E ′

j,j′ =
|j′⟩ ⟨j| − |j⟩ ⟨j′|

2i
. (4.6.1)

For any density matrix ρ ∈ Cd×d, we find that

Tr[ρEj,j′] =
ρj,j′ + ρj′,j

2
= Re[ρj,j′], and Tr[ρE ′

j,j′] =
ρj,j′ − ρj′,j

2i
= Im[ρj,j′],

where we use that ρ is Hermitian. Thus, if we run Algorithm 4.5.4 with the
observables Ej,j′ for all integer 1 ≤ j′ ≤ j ≤ d, then we obtain the real part of ρ,
and similarly if we run it with the observables E ′

j,j′ for all integer 1 ≤ j′ < j ≤ d,
then we obtain the imaginary part of ρ.

We develop this approach in more detail in the algorithm below.

84 Chapter 4. State tomography

Algorithm 4.6.3: Mixed-state tomography w.r.t. the operator norm
Input:
1: U : a quantum circuit acting on H⊗W , implementing the operation |0⟩ 7→ |ψ⟩.
2: ε > 0: the precision tolerance parameter.
3: δ > 0: the failure probability tolerance parameter.
4: 1 ≤ r ≤ d: an upper bound on the rank of the density matrix ρ.

Derived objects:
1: ρ = TrW(|ψ⟩ ⟨ψ|).
2: For all j, j′ ∈ [d], we let Ej,j′ and E ′

j,j′ be as in Equation (4.6.1).
3: Let c and C be as in Lemma 4.6.2, and

ε′ =
ε

4 ln(2)

(√
ln
(
8
δ

)
/c+ 2C

√
d

) .
Output: A density matrix ρ̃ ∈ Cd×d with rank at most r such that ∥ρ̃− ρ∥∞ ≤ ε.
Success probability: Lower bounded by 1− δ.
Queries: Number of calls to U : Õ(d/ε).
Procedure: Mixed-state-tomography(U , ε, δ, r):
1: Let z = Multiple-observable-est((Ej,j′)1≤j′≤j≤d, ε′, δ/4, U).
2: Let z′ = Multiple-observable-est((E ′

j,j′)1≤j′<j≤d, ε′, δ/4, U).
3: Let

ρRe =
d∑
j=1

[
zj,j |j⟩ ⟨j|+

j−1∑
j′=1

zj,j′ |j⟩ ⟨j′|+ zj,j′ |j′⟩ ⟨j|

]
.

4: Let

ρIm =
d∑
j=1

j−1∑
j′=1

z′j,j′ |j⟩ ⟨j′| − z′j,j′ |j′⟩ ⟨j| .

5: Let ρ = ρRe + iρIm.
6: Among all density matrices ρ̃ ∈ Cd×d of rank at most r, output the one that

minimizes the operator distance ∥ρ̃− ρ∥∞.

Proof of the properties of Algorithm 4.6.3:
To verify the claim on the number of queries, we must calculate the sum of the
squares of the observables. To that end, observe that for every j, j′ ∈ [d] with
j ̸= j′, we have

E2
j,j′ =

|j⟩ ⟨j|+ |j′⟩ ⟨j′|
4

= (E ′
j,j′)

2,

and if j = j′, we have E2
j,j = |j⟩ ⟨j|. Thus,

d∑
j=1

j∑
j′=1

E2
j,j′ =

d∑
j=1

|j⟩ ⟨j|+ d− 1

4

d∑
j=1

|j⟩ ⟨j| = d+ 3

4
I,

4.6. Mixed-state tomography 85

and similarly
d∑
j=2

j−1∑
j′=1

(E ′
j,j′)

2 =
d− 1

4

d∑
j=1

|j⟩ ⟨j| = d− 1

4
I.

Thus, the norms of the right-hand sides are O(
√
d). Moreover, observe that

ε′ = Ω̃(ε/
√
d), and so the number of queries in steps 1 and 2 are both

Õ

(√
d

ε′

)
= Õ

(
d

ε

)
.

Hence, it remains to check the validity of the output. To that end, observe that
up to total variance distance δ/2, both random variables z and z′ are unbiased
and contained in an ℓ∞-cube of radius ε around the expectation values of the
observables. Hence, ρRe and ρIm are unbiased estimators of Re[ρ] and Im[ρ], with
independent entries, and all the entries of ρRe−Re[ρ] and ρIm−Im[ρ] are contained
in the interval [−ε′, ε′], and as such are subgaussian with subgaussian moment
K = ln(2)ε′. Next, from Lemma 4.6.2, we obtain that

P
[
∥ρRe − Re[ρ]∥∞ ≥ ε

4

]
= P

[
∥ρRe − Re[ρ]∥∞

K
≥ 2C

√
d+

ε

4K
− 2C

√
d

]
≤ 2 exp

(
−c
(ε

4K
− 2C

√
d
)2)

= δ/4,

where the last equality holds by the choice of ε′ in the algorithm statement. Sim-
ilarly we find that with probability at most δ/4, ∥ρIm − Im[ρ]∥∞ ≥ ε/4. Putting
everything together, we obtain that with probability at least 1− δ

∥ρ− ρ∥∞ ≤ ∥ρRe − Re[ρ]∥∞ + ∥ρIm − Im[ρ]∥∞ ≤ ε

2
.

Finally, observe that ρ is itself a density matrix of rank at most r that is
at most ε/2 away from ρ. Hence, ∥ρ̃− ρ∥∞ ≤ ε/2, and thus we find from the
triangle inequality that

∥ρ̃− ρ∥∞ ≤ ∥ρ̃− ρ∥∞ + ∥ρ− ρ∥∞ ≤ ε.

This completes the proof. 2

Thus, we have constructed an algorithm that performs state tomography up
to precision ε w.r.t. the operator norm. Now, as the final step, we use the norm
conversion results from Section 4.3 to analyze how well this algorithm performs
w.r.t. other Schatten norms.

Algorithm 4.6.4: Mixed-state tomography w.r.t. Schatten norms
Input:

86 Chapter 4. State tomography

1: U : a quantum circuit acting on H⊗W , implementing the operation |0⟩ 7→ |ψ⟩.
2: q ∈ [1,∞]: the Schatten norm.
3: ε > 0: the precision tolerance parameter.
4: δ > 0: the failure probability tolerance parameter.
5: 1 ≤ r ≤ d: an upper bound on the rank of the density matrix ρ.

Derived objects:
1: ρ = TrW(|ψ⟩ ⟨ψ|).
2: ε′ = max{ε/r1/q, ε1/(1−1/q)}.

Output: A density matrix ρ̃ with rank at most r, such that ∥ρ̃− ρ∥q ≤ ε.
Success probability: Lower bounded by 1− δ.
Queries: Number of calls to U :

Õ

(
min

{
dr

1
q

ε
,

d

ε
1

1− 1
q

})
.

Procedure: Mixed-state-tomography(U , q, ε, δ, r):
1: Output ρ̃ = Mixed-state-tomography(U , ε′, δ, r).

Proof of the properties of Algorithm 4.6.4:
Observe from the properties of Algorithm 4.6.3 that ∥ρ̃− ρ∥∞ ≤ ε′. Thus, we
obtain from Lemma 4.3.2, with s = 1 and applied to the r-dimensional vector of
eigenvalues of ρ̃− ρ, that

∥ρ̃− ρ∥q ≤ min{ε′ · r
1
q , (ε′)1−

1
q }.

Hence, if ε′ = ε/r1/q, then the first term becomes ε, and similarly if ε′ = ε1/(1−1/q),
then the second term becomes ε. Thus, we indeed obtain an ε-precise approx-
imation of ρ̃ w.r.t. the Schatten q-norm, and plugging in ε′ into the number of
calls to U in Algorithm 4.6.3 yields

Õ
(
d

ε′

)
= Õ

(
min

{
dr

1
q

ε
,

d

ε
1

1− 1
q

})
.

This completes the proof. 2

This completes the construction of the mixed-state tomography algorithm.
In the next section, we turn to proving a matching lower bound on the query
complexity of the mixed-state tomography problem, and hence proving optimality
up to polylogarithmic factors of Algorithm 4.6.4. Afterwards, in Section 4.8, we
list several direct implications of these algorithms.

4.7 Lower bounds
In this section, we prove tight lower bounds on the problem of mixed state tomog-
raphy. More specifically, we prove that the algorithm outlined in Section 4.6 is

4.7. Lower bounds 87

essentially optimal in all Schatten q-norms. The optimality in all other Schatten
norms follows directly from it. The results obtained in this section are summa-
rized in Theorem 4.7.7.

The core idea is to take a bit string b ∈ {0, 1}dr, and hide it in a density matrix
ρb ∈ Cd×d, with rank at most r, such that its purification can be constructed with
exactly one fractional phase query Oε

b . Next, we show that if we learn a classical
description ρ̃ of ρb such that ∥ρ̃− ρb∥1 ≤ ε, we narrow down the size of the set
of bit strings b′ ∈ {0, 1}dr that satisfy ∥ρ̃− ρb′∥1 ≤ ε to O(2(1−c)dr), for some
constant c > 0. Finally, we show that this must require Ω(dr/ε) queries to Oε

b ,
and hence the state tomography algorithm must make at least this number of
queries to the state preparation unitary too.

We start by defining the density matrices ρb ∈ Cd×d, in which we hide the bit
string b ∈ {0, 1}dr, in the following definition.

4.7.1. Definition. Let ε ∈ [0, 1], d ∈ N, r ∈ [d], and U (0), . . . , U (r−1) ∈ Cd×d

unitaries to be fixed later. Let b ∈ {0, 1}dr be a bit string of length dr. We
write b = (b(0), . . . , b(r−1)), where b(j) is the jth block of size d. Let |ψb⟩ ∈
C2 ⊗ C[d−1]0 ⊗ C[r−1]0 be explicitly defined as

|ψb⟩ =
1√
dr

r−1∑
j=0

d−1∑
k=0

∑
c∈{−1,1}

√
1

2
+

1

2
cε(−1)b

(j)
k |c⟩U (j) |k⟩ |j⟩ ,

and let ρb be the density matrix that is obtained by tracing out the last register
of |ψb⟩ ⟨ψb|. ◀

We easily compute that the norm of |ψb⟩ is 1, and so it defined a valid quantum
state. We can directly derive some interesting properties of the density matrices
ρb defined above, without fixing the unitaries U (j), as we discuss in Lemma 4.7.2.
We will choose the unitaries explicitly in Definition 4.7.3.

4.7.2. Lemma. Let ε, d, r and U (0), . . . , U (r−1) as in Definition 4.7.1. Let b, b ∈
{0, 1}dr. Let (δ(0), . . . , δ(r−1)) = δ ∈ {−2, 0, 2}dr be such that for every j ∈ [r−1]0
and k ∈ [d− 1]0, δ

(j)
k = (−1)b

(j)
k − (−1)b

(j)
k . Furthermore, let X, Y ∈ C[d−1]0×[r−1]0

be defined as

X =
[
U (0)δ(0) · · · U (r−1)δ(r−1)

]
, and Y =

[
U (0)1 · · · U (r−1)1

]
,

where 1 ∈ C[d−1]0 is the all-ones vector in d dimensions. Then

∥ρb − ρb∥1 ≥
ε

rd

∥∥XY †∥∥
1
− 4ε2.

Proof:
By taking the partial trace, we obtain that

ρb =
1

dr

r−1∑
j=0

d−1∑
k,k′=0

∑
c,c′∈{−1,1}

√
1

2
+

1

2
cε(−1)b

(j)
k ·
√

1

2
+

1

2
c′ε(−1)b

(j)

k′ |c⟩ ⟨c′|

⊗ U (j) |k⟩ ⟨k′|
(
U (j)

)†
.

88 Chapter 4. State tomography

Next, we approximate both square roots by their tangents around 1/2, i.e., we
write

√
1/2 + x ≈ (1+x/2)/

√
2, and subsequently we neglect the the cross term,

i.e., we write (1 + x)(1 + y) ≈ 1 + x+ y when x, y ∈ R are small. We denote the
resulting matrix by ρb, and we can express it directly as

ρb =
1

2dr

r−1∑
j=0

d−1∑
k,k′=0

∑
c,c′∈{−1,1}

(
1 +

1

2
cε(−1)b

(j)
k +

1

2
c′ε(−1)b

(j)

k′

)
|c⟩ ⟨c′|

⊗ U (j) |k⟩ ⟨k′|
(
U (j)

)†
.

Next, we characterize the total error introduced by the above approximations.
To that end, observe that if c(−1)b

(j)
k and c′(−1)b

(j)

k′ are equal, then both expres-
sions under the square root are equal, and hence their product becomes exactly
the product of the linearizations. Thus, the only entries in which the matrices ρb
and ρb differ are those for which c(−1)b

(j)
k and c′(−1)b

(j)

k′ differ. This allows us to
write the difference between ρb and ρb succinctly, as

ρb − ρb =
1−

√
1− ε2

2dr

r−1∑
j=0

∑
c,c′∈{−1,1}

d−1∑
k,k′=0

c(−1)
b
(j)
k ̸=c′(−1)

b
(j)

k′

|c⟩ ⟨c′| ⊗ U (j) |k⟩ ⟨k′|
(
U (j)

)†
.

Thus, by taking the trace norm, applying the triangle inequality, removing the
unitary transformations on the last register, and using 1 −

√
1− ε2 ≤ ε2, we

obtain that

∥ρb − ρb∥1 ≤

ε2

2dr

r−1∑
j=0


∥∥∥∥∥∥∥∥∥∥
[
1 0
0 1

]
⊗

d−1∑
k,k′=0

(−1)
b
(j)
k ̸=(−1)

b
(j)

k′

|k⟩ ⟨k′|

∥∥∥∥∥∥∥∥∥∥
1

+

∥∥∥∥∥∥∥∥∥∥
[
0 1
1 0

]
⊗

d−1∑
k,k′=0

(−1)
b
(j)
k =(−1)

b
(j)

k′

|k⟩ ⟨k′|

∥∥∥∥∥∥∥∥∥∥
1

 .
Since the 2× 2 matrices both have 2 eigenvalues that are both of modulus 1, we
can factor them out at the expense of a factor of 2. Then, after reordering rows
and columns such that all k’s with b(j)k = 1 are at the upper-left corner, we obtain
two big diagonal all-ones blocks, i.e.,

∥ρb − ρb∥1 ≤

ε2

dr

r−1∑
j=0


∥∥∥∥∥∥∥∥

b
(j)
k = 1 b

(j)
k = 0[]

b
(j)
k′ = 1 1 0

b
(j)
k′ = 0 0 1

∥∥∥∥∥∥∥∥
1

+

∥∥∥∥∥∥∥∥
b
(j)
k = 1 b

(j)
k = 0[]

b
(j)
k′ = 1 0 1

b
(j)
k′ = 0 1 0

∥∥∥∥∥∥∥∥
1

 .

4.7. Lower bounds 89

The trace norm of the left term is d, since the two diagonal blocks have the single
eigenvalues |b(j)| and d − |b(j)|. On the right-hand side, the two eigenvalues are
±
√
|b(j)|(d− |b(j)|), and so the trace norm is 2

√
|b(j)|(d− |b(j)|) ≤ 2

√
d2/4 = d.

Plugging these bounds into the above equation yields ∥ρb − ρb∥1 ≤ 2ε2. Thus, we
have

∥ρb − ρb∥1 ≤ ∥ρb − ρb∥1 + ∥ρb − ρb∥1 + ∥ρb − ρb∥1 ≤ ∥ρb − ρb∥1 + 4ε2,

and hence it suffices to prove that ∥ρb − ρb∥1 = ε
∥∥XY †

∥∥
1
/(dr).

To that end, observe that we can write the difference as

ρb − ρb =
ε

4dr

r−1∑
j=0

d−1∑
k,k′=0

∑
c,c′∈{−1,1}

(
cδ

(j)
k + c′δ

(j)
k′

)
|c⟩ ⟨c′| ⊗ U (j) |k⟩ ⟨k′|

(
U (j)

)†
.

Next, some of the indices can be decoupled from one another, which results in

ρb − ρb =
ε

4dr

 r−1∑
j=0

∑
c∈{−1,1}

c |c⟩
∑

c′∈{−1,1}

⟨c′| ⊗ U (j)

d−1∑
k=0

δ
(j)
k |k⟩

d−1∑
k′=0

⟨k′|
(
U (j)

)†
+

r−1∑
j=0

∑
c∈{−1,1}

|c⟩
∑

c′∈{−1,1}

c′ |c′⟩ ⊗ U (j)

d−1∑
k=0

|k⟩
d−1∑
k′=0

δ
(j)
k′ ⟨k′|

(
U (j)

)† .
Now, we can let

V =

[
X
−X

]
, and W =

[
Y
Y

]
,

from which we can directly observe that the expression for ρb − ρb simplifies to

ρb − ρb =
ε

4rd

[
VW † +WV †] .

To evaluate the trace norm, we observe that

∥ρb − ρb∥1 = Tr

[√
(ρb − ρb)

2

]
=

ε

4dr
Tr

[√
(VW † +WV †)2

]
.

By direct calculation, we find that V †W = W †V = 0, and so when we expand
the square, two of the terms cancel, and we end up with

∥ρb − ρb∥1 =
ε

4rd
Tr
[√

VW †WV † +WV †VW †
]
.

Again, since V †W = W †V = 0, we find that the two terms underneath the square
root are only acting non-trivially on mutually orthogonal subspaces. Therefore,
the square root of the sum is the sum of the square roots, and we end up with

∥ρb − ρb∥1 =
ε

4rd

[
Tr
[√

VW †WV †
]
+ Tr

[√
WV †VW †

]]
.

90 Chapter 4. State tomography

We rewrite the term on the left within parentheses as

Tr
[√

VW †WV †
]
= Tr

[√[
2XY †Y X† −2XY †Y X†

−2XY †Y X† 2XY †Y X†

]]

= Tr

[√[
2 −2
−2 2

]
⊗XY †Y X†

]
.

The (non-zero) spectrum of the expression inside the square root is 4σ(XY †Y X†),
and hence the trace becomes 2Tr[

√
XY †Y X†] = 2

∥∥XY †
∥∥
1
. Analogously, the

term on the right yields 2
∥∥Y X†

∥∥, and since
∥∥A†

∥∥
1
= ∥A∥1, for any matrix A, we

obtain the expression from the statement of the lemma. 2

It is worth noting that the matrix XY † from the previous lemma statement
is in general not Hermitian. Therefore, it is important to stress that the trace
norm has to be interpreted as the sum of the singular values, rather than merely
the sum of the absolute eigenvalues.

Next, we fix the unitary matrices U (j), for j ∈ [r − 1]0.

4.7.3. Definition. Let d, r ∈ N, and let j ∈ [r]. Define U (j) ∈ Cd×d as

U
(j)
kℓ =

1√
d
ω
(j−k)ℓ
d .

◀

The benefit of this particular choice of unitaries U (j) is that they further
simplify the expressions that appear in Lemma 4.7.2. The details are presented
in the lemma below.

4.7.4. Lemma. Let ε, d and r as in Definition 4.7.1. Then, for all j ∈ [r − 1]0,
U (j) is unitary,

Y =
[
U (0)1 · · · U (r−1)1

]
=

√
d

[
Ir
0

]
,

where 1 ∈ C[d−1]0 is the all-ones vector in d dimensions, and we have ∆ ∈
C[d−1]0×[r−1]0 such that

∥ρb − ρb∥1 ≥
ε

r
√
d
∥∆∥1 − 2ε2, with ∆kj = ωjkd δ

(j)
k .

Proof:
Let j ∈ [r − 1]0, and ℓ, ℓ′ ∈ [d− 1]0. Then,

[(
U (j)

)†
U (j)

]
ℓ,ℓ′

=
d−1∑
k=0

U
(j)

kℓ U
(j)
kℓ′ =

1

d

d−1∑
k=0

ω
−(j−k)ℓ
d ω

(j−k)ℓ′
d =

1

d

d−1∑
k=0

ω
(ℓ′−ℓ)k
d = 1ℓ=ℓ′ ,

4.7. Lower bounds 91

and thus indeed
(
U (j)

)†
U (j) = I. Next, let j ∈ [r − 1]0 and k ∈ [d − 1]0. We

observe that

Yjk =
(
U (j)1

)
k
=

d−1∑
ℓ=0

U
(j)
kℓ =

1√
d

d−1∑
ℓ=0

ω
(j−k)ℓ
d =

√
d · 1j=k,

as claimed. Finally, for the trace norm, observe that it suffices to show that
∥X∥1 = ∥∆∥1. To that end, for all j ∈ [r − 1]0 and k ∈ [d− 1]0,

[(
U (0)

)†
X
]
kj

=
[(
U (0)

)†
U (j)δ(j)

]
k
=

1

d

d−1∑
ℓ,ℓ′=0

ωkℓd ω
(j−ℓ)ℓ′
d δ

(j)
ℓ′

=
1

d

d−1∑
ℓ′=0

[
d−1∑
ℓ=0

ω
(k−ℓ′)ℓ
d

]
ωjℓ

′

d δ
(j)
ℓ′ .

The inner summation vanishes if k ̸= ℓ′, and evaluates to d when k = ℓ′. There-
fore, the whole expression simplifies to ωjkd δ

(j)
k = ∆kj. Thus, ∆ =

(
U (0)

)†
X, and

since U (0) is unitary, X and ∆ have the same singular values, and hence the same
trace norm as well. This completes the proof. 2

Next, we choose two bit strings b, b ∈ {0, 1}dr uniformly at random, and we
analyze the probability of the trace norm of the difference ρb − ρb being small.
On a high level, the smaller this probability is, the fewer ρb’s are close to a ρb
that is chosen uniformly at random.

4.7.5. Lemma. Let ε ∈ [0, 1/128], d ∈ N and r ∈ [d]. Let b, b ∈ {0, 1}dr uniformly
at random. Then, there exist constants c, d0 > 0 such that for all d > d0,

P
[
∥ρb − ρb∥1 ≤

ε

64

]
≤ e−crd.

Proof:
By the previous lemma, we know that if ∥∆∥1 ≥ r

√
d/32, then ∥ρb − ρb∥1 ≥

ε/32 − 2ε2 ≥ ε/32 − ε/64 = ε/64. Thus, it suffices to prove that there exist
constants c, d0 > 0 such that for all d > d0,

P

[
∥∆∥1 ≤

r
√
d

32

]
≤ e−crd.

Next, let A ∈ Cd×d be such that ∥A∥∞ ≤ 1, and let ∆ = UΣV be the
singular value decomposition of ∆, with the singular values σ1, . . . , σr (where we
allow the σ’s to be 0 if the rank turns out to be strictly smaller than r). For
technical reasons, we pad the matrices Σ and V with zeros, such that we have

92 Chapter 4. State tomography

U,Σ, V ∈ Cd×d. Let uj and vj denote the jth columns of U and V , respectively.
Then,

|Tr [A∆]| = |Tr [AUΣV]| = |Tr [V AUΣ]| ≤
r∑
j=1

∣∣∣[V AU]jj∣∣∣σj = r∑
j=1

∣∣∣v†
jAuj

∣∣∣σj
≤

r∑
j=1

σj = ∥∆∥1 ,

where we used that |v†
jAuj| ≤ ∥vj∥ · ∥A∥∞ · ∥uj∥ ≤ 1. Thus, it is sufficient to

find some matrix A ∈ Cd×d such that ∥A∥ ≤ 1, which is allowed to depend on ∆,
and prove that there exists a constant c > 0 such that

P

[
|Tr [A∆]| ≤ r

√
d

32

]
≤ e−crd.

The core idea is to turn the matrix ∆ into an upper triangular matrix by
modifying it column by column. To that end, we find a unitary matrix A1 such
that the first column of A1∆ is a multiple of the standard basis vector e1. Next,
we find a unitary matrix A2 such that the second column of A2A1∆ has only
zeros below the diagonal. We continue this process, until we reached the rth and
last column of ∆. Then, we let A = Ar · · ·A1.

Since all the matrices Aj are unitary, we find ∥Ar · · ·A1∥∞ ≤ 1. Moreover,
we can analyze the probability distribution over the diagonal entries of A∆, and
show an exponential tail bound on the trace in its lower limit.

Now, we formalize the above idea. To that end, for any vector v, we let the
matrix Av be the operation that reflects through the subspace Span{v}⊥, i.e.,

Av = I − 2
vv†

∥v∥2
.

Since Av is a reflection, Av is a unitary matrix and in particular we have ∥Av∥ ≤ 1.
Additionally, suppose we have v and w with ∥v∥ = ∥w∥ = 1 and Im(v†w) = 0,
then since (v −w)†(v +w) = ∥v∥2 − ∥w∥2 = 0, we obtain

Av−wv = Av−w · 1
2
[v −w + v +w] =

1

2
[−v +w + v +w] = w.

Now, for all j ∈ [r], we denote the jth column of ∆ by xj. We let y1 = x1,
and for all j ∈ [r] recursively define

zj =


yj

∥yj∥ ·
(yj)1
|(yj)1| , if (yj)1 ̸= 0,

yj

∥yj∥ , if yj ̸= 0,

e1, if yj = 0,

φj =

{
(yj)1
|(yj)1| if (yj)1 ̸= 0,

1, if (yj)1 = 0,
,

4.7. Lower bounds 93

and

Aj =

[
Ij−1 0
0 φjAzj−e1

]
,

and furthermore

Aj · · ·A1xj+1 =

[
wj+1 ∈ Cj

yj+1 ∈ Cd−j

]
, and A = Ar · · ·A1.

From the construction, it is clear that all Aj’s are unitary, and so ∥A∥ ≤ 1.
Additionally,

Axj = Ar · · ·A1xj = Ar · · ·Aj
[
wj

yj

]
= Ar · · ·Aj+1

[
wj

φjAzj−e1yj

]
.

We can directly observe that Im(e†1zj) = 0, for all j ∈ [r]. If (yj)1 ̸= 0, then we
find φjAz1−e1yj = |(yj)1| ∥yj∥φjAz1−e1z1/(yj)1 = ∥y1∥ e1. Similarly, if (yj)1 = 0
but yj ̸= 0, then φjAz1−e1yj = ∥y1∥Az1−e1z1 = ∥y1∥ e1. Finally, if yj = 0, then
φjAz1−e1yj = 0 = ∥yj∥ e1. Thus, in all cases we find

Axj = Ar · · ·Aj+1

[
wj

∥yj∥ e1

]
=

[
wj

∥yj∥ e1

]
.

Moreover, observe that Aj · · ·A1 is unitary and it only depends on the vectors
x1, . . . ,xj. Therefore, yj+1 is a projection of xj+1 onto an (d − j)-dimensional
subspace, which we denote by Sj+1, and we observe that Sj+1 does not depend
on the vector xj+1 itself.

Finally, we have

∥∆∥1 ≥ |Tr[A∆]| =
r∑
j=1

∥yj∥ ≥
min{r,⌊d/2⌋}∑

j=1

∥yj∥ .

Now, if there are at least r/4 js in 1, . . . ,min{r, ⌊d/2⌋} for which ∥yj∥ >
√
d/8,

then this would imply that ∥∆∥1 > r
√
d/32. Thus, by the contrapositive, if

∥∆∥1 ≤ r
√
d/32, then there must be at least min{r, ⌊d/2⌋} − r/4 + 1 ≥ r/4 js

for which ∥yj∥ ≤
√
d/8. Let us label them by j1 < · · · < jk ≤ d/2, where we now

know that k ≥ r/4. Then,

P

[
k∧
ℓ=1

∥yjℓ∥ ≤
√
d

8

]
=

k∏
ℓ=1

P

[
∥yjℓ∥ ≤

√
d

8

∣∣∣∣∣
ℓ−1∧
m=1

∥yjm∥ ≤
√
d

8

]
.

Now, recall that yjℓ = ΠSjℓ
xjℓ . Since the entries of xjℓ are independent and sub-

Gaussian with constant K = 2, we know from [RV13, Corollary 3.1], combined

94 Chapter 4. State tomography

with the complexification techniques outlined in the last paragraph of said paper,
that there exists a constant c′ > 0 such that

P

[∥∥∥ΠSjℓ
xjℓ

∥∥∥ ≤
√
d

8

]
≤ P

[∣∣∣∥∥∥ΠSjℓ
xjℓ

∥∥∥−√d− jℓ

∣∣∣ ≤ ∣∣∣∣∣√d− jℓ −
√
d

8

∣∣∣∣∣
]
≤ 2e−c

′d.

Moreover, since this bound holds for all subspaces Sjℓ of dimension d − jℓ, we
obtain

P

[
∥∆∥1 ≤

r
√
d

32

]
≤

k∏
ℓ=1

P

[∥∥∥ΠSjℓ
xjℓ

∥∥∥ ≤
√
d

8

∣∣∣∣∣
ℓ−1∧
m=1

∥yjm∥ ≤
√
d

8

]
≤
(
2e−c

′d
)k
.

Thus, whenever d ≥ ln(2)/c′ =: d0, we can choose c = (c′ − ln(2)/d)/4. Then,
c > 0, and

P

[
∥∆∥1 ≤

r
√
d

32

]
≤
(
2e−c

′d
)k

=
(
2e−(4c+

ln(2)
d)d

)k
= e−4cdk ≤ e−cdr,

where in the last step, we used that k ≥ r/4. This completes the proof. 2

Now, we are able to finish the lower bound proof for mixed-state tomography
w.r.t. the trace norm. The proof strategy followed from here onward is very
similar to the lower bound proof presented in Section 3.5.

4.7.6. Theorem. Let ε ∈ [0, 1/128], d ∈ N, and r ∈ [d]. Suppose that we have
a Q-query quantum algorithm that given access to an (inverse) state-preparation
unitary for a purification of a d×d density matrix ρ of rank at most r, outputs an
approximation ρ̃ such that ∥ρ̃− ρ∥1 ≤ ε/128, with probability at least 2/3. Then
Q = Ω(dr/ε).

Proof:
Let G be a bipartite graph with 2·2rd nodes, labeled by the bit strings b ∈ {0, 1}rd
on one side, and b ∈ {0, 1}rd on the other. Let there be an edge between b and
b, if ∥ρb − ρb∥1 ≤ ε/64. From the previous lemma, we obtain that there exist
constants c, d0 > 0 such that whenever d ≥ d0, the number of edges m in G
satisfies

m ≤ 22rd · e−crd.
We abbreviate f = e−crd, and observe that∑

b∈{0,1}rd
deg(b) = m ≤ f · 22rd,

where deg(b) denotes the degree of b in G. Next, let B = {b ∈ {0, 1}rd : deg(b) ≥
2rd

√
f}, i.e., the set of nodes on the left side that have high degree. Then, by the

pigeonhole principle, we obtain that |B| ≤ 2rd
√
f .

4.7. Lower bounds 95

Let b ∈ {0, 1}rd \ B, and suppose that we have access to b through the phase
oracle

Ob,ε : |j⟩ 7→ eiεbj |j⟩ .

We now use our Q-query mixed-state tomography algorithm to construct a new
algorithm that recovers b with some very low probability.

The first step is to implement the unitary Ub that maps

Ub : |0⟩ 7→
1√
r

r−1∑
j=0

∣∣∣ψ(j)
b

〉
|j⟩ .

Using the same construction as in Equation (3.5.1), we can construct a circuit
implementing this unitary Ub with K calls to Ob,ε, where K = Θ(1). Next, since
this unitary Ub prepares a purification of ρb, we can use Q queries to it to obtain
an estimate ρ̃, such that ∥ρ̃− ρb∥1 ≤ ε/128, with probability at least 2/3.

Next, suppose that b ∈ {0, 1}rd satisfies ∥ρ̃− ρb∥1 ≤ ε/128. Then, by the
triangle inequality, we have that ∥ρb − ρb∥1 ≤ ∥ρb − ρ̃∥1 + ∥ρ̃− ρb∥1 ≤ ε/64, and
hence we find that b and b are neighbors inG. Since we chose b to be in {0, 1}rd\B,
we know that deg(b) ≤ 2rd

√
f , and hence there are at most 2rd

√
f choices for b,

among which is b itself. Thus, if we uniformly choose one such b, it will be equal
to b with probability at least 2/3 · 2−rdf−1/2.

The procedure above uses KQ queries to Ob,ε, and recovers b with probability
at least 2/3 · 2−rdf−1/2. It is known that if we can solve this problem with KQ
queries to the fractional phase oracle Ob,ε, we can also solve it with at most
K ′KQ queries to the regular phase oracle Ob, with K ′ = Θ(ε).2 According to
[FGG+99], Equation 4, this implies that

2rd − |B| ≤ 3

2
· 2rd

√
f ·

K′KQ∑
k=0

(
rd

k

)
≤ 3

2
· 2rd

√
f · 2rdH

(
K′KQ

rd

)
,

whereH(x) = −x log(x)−(1−x) log(1−x) is the binary entropy function, and the
rightmost inequality can be found in several text books, e.g., [FG06], Lemma 16.19.

We can now plug everything into the above equation. Since |B| ≤ 2rd
√
f ≤

2rde−1/2 ≤ 2rd/
√
2, and hence we write

2
rd+log

(
1− 1√

2

)
≤ 2

log(3)−1+rd−crd log(e)+rdH
(

K′KQ
dr

)
.

Comparing the exponents we obtain

log(3)− 1− log

(
1− 1√

2

)
+ rd

(
−c log(e) +H

(
K ′KQ

dr

))
≥ 0,

2The argument for this is sketched in the proof of Lemma 3.5.1.

96 Chapter 4. State tomography

and thus H(K
′KQ
dr

) = Ω(1). Since the binary entropy function is monotonously
increasing from 0 to 1 in the interval [0, 1/2], we find that K ′KQ = Ω(dr), and
hence Q = Ω(rd/ε). 2

We can now derive the lower bounds for all other Schatten norms too.

4.7.7. Theorem. Let ε ∈ [0, 1/128], d ∈ N, r ∈ [d] and q ∈ [1,∞]. Suppose that
we have a quantum algorithm that estimates a density matrix ρ up to precision ε in
Schatten q-norm, using Q (inverse) queries to a unitary preparing its purification.
Then,

Q = Ω

(
min

{
dr

1
q

ε
,

d

ε
1

1− 1
q

})
.

Proof:
First, suppose that ε ≤ 1/(256r1−1/q). Then, using Hölder’s inequality, we can
obtain a r1−1/qε-precise approximation of ρ in trace norm in Q queries. Since
r1−1/qε ≤ 1/128, using Theorem 4.7.6 we find that

Q = Ω

(
dr

r1−1/qε

)
= Ω

(
dr

1
q

ε

)
.

On the other hand, if 1/(128r1−1/q) < ε ≤ 1/128, then we can choose an integer
1 ≤ r′ < r, such that 1/(256(r′)1−1/q) < ε ≤ 1/(128(r′)1−1/q). By the previous
argument for the case ε ≤ 1/(256r1−1/q), we can now use Q queries to obtain
a 2ε-precise Schatten q-approximation of any density matrix of rank at most r′,
using our algorithm for density matrices of rank r. We already know that this
takes Ω(d(r′)1/q/ε) queries, and since r′ = Θ(1/ε1/(1−1/q)), we obtain that

Q = Ω

(
d(r′)

1
q

ε

)
= Ω

(
d

ε1+
1/q

1−1/q

)
= Ω

(
d

ε
1

1− 1
q

)
.

Finally, observe that d/ε1/(1−1/q) < dr1/q/ε is equivalent to ε1/(q−1) > 1/r1/q, and
hence to ε > 1/r1−1/q, so indeed the minimum picks out the right branch of the
lower bound. This completes the proof. 2

Note that this exactly matches the complexity that we obtained in Algo-
rithm 4.6.4. Thus, up to polylogarithmic factors, we have completely character-
ized the query complexity of state tomography in this model.

4.8 Implications
Over the course of the previous sections, we developed a mixed-state tomography
algorithm, and proved its optimality up to polylogarithmic factors. In particular,

4.8. Implications 97

we conclude from Algorithm 4.6.4 and Theorem 4.7.7 that in order to estimate
a density operator ρ ∈ Cd×d of rank at most r up to precision ε > 0 in Schatten
q-norm, with q ∈ [1,∞], requires

Θ̃

(
min

{
dr

1
q

ε
,

d

ε
1

1− 1
q

})

(inverse, controlled) queries to a unitary that prepares a purification of ρ.
In this section, we take a look at several immediate implications of this result.

We start with the problem of pure-state tomography, which is the special case of
the mixed-state tomography problem where we know ahead of time that the rank
is 1. In the pure case, we have the following well-known connection between the
Euclidean distance between two state vectors, and the operator distance between
the corresponding density matrices.

4.8.1. Lemma (Connection between operator distance and Euclidean distance).
Let |ψ⟩ , |ϕ⟩ ∈ H be quantum states. Then,

1√
2
min
χ∈R

∥∥|ψ⟩ − eiχ |ϕ⟩
∥∥ ≤ ∥|ψ⟩ ⟨ψ| − |ϕ⟩ ⟨ϕ|∥∞ =

√
1− |⟨ψ|ϕ⟩|2 ≤ ∥|ψ⟩ − |ϕ⟩∥ .

Proof:
The statement is trivial for |ψ⟩ = |ϕ⟩, so suppose that |ψ⟩ ̸= |ϕ⟩. We start by
proving the inner equality. To that end, if a |ψ⟩ + b |ϕ⟩ is an eigenvector of this
difference operator with eigenvalue λ, then

λ

[
a
b

]
=

[
1 −⟨ψ|ϕ⟩

⟨ϕ|ψ⟩ −1

] [
a
b

]
.

Thus, we find that the eigenvalues of |ψ⟩ ⟨ψ|− |ϕ⟩ ⟨ϕ| satisfy λ2−1+ |⟨ψ|ϕ⟩|2 = 0,
from which we obtain that |λ| =

√
1− |⟨ψ|ϕ⟩|2. This proves the equality.

For the remaining inequalities, observe that for all χ ∈ R,∥∥|ψ⟩ − eiχ |ϕ⟩
∥∥2 = ⟨ψ|ψ⟩+ ⟨ϕ|ϕ⟩ − eiχ ⟨ψ|ϕ⟩ − e−iχ ⟨ϕ|ψ⟩ = 2− 2Re

[
eiχ ⟨ψ|ϕ⟩

]
.

Thus, the choice of χ that minimizes the above expression is the one for which
eiχ ⟨ψ|ϕ⟩ ≥ 0, in which case∥∥|ψ⟩ − eiχ |ψ⟩

∥∥2 = 2(1− | ⟨ψ|ϕ⟩ |) ≤ 2(1− | ⟨ψ|ϕ⟩ |)(1 + | ⟨ψ|ϕ⟩ |)
= 2(1− | ⟨ψ|ϕ⟩ |2) = 2 ∥|ψ⟩ ⟨ψ| − |ϕ⟩ ⟨ϕ|∥2∞ .

On the other hand, we have

1− | ⟨ψ|ϕ⟩ |2 = (1− | ⟨ψ|ϕ⟩ |)(1 + | ⟨ψ|ϕ⟩ |) ≤ 2(1− Re ⟨ψ|ϕ⟩) = ∥|ψ⟩ − |ϕ⟩∥2 .

98 Chapter 4. State tomography

This completes the proof. 2

The above lemma tells us how we can use our mixed-state tomography algo-
rithm to perform pure state tomography. Indeed, if we want to approximate a
state |ψ⟩ up to global phase in Euclidean norm with precision ε, the inequality
on the left in Lemma 4.8.1 tells us that it suffices to approximate the density op-
erator |ψ⟩ ⟨ψ| with another rank-1 density matrix up to operator norm distance
ε/
√
2. On the other hand, the inequality on the right in Lemma 4.8.1 tells us

that this is tight. Thus, we conclude that estimating a pure state up to Euclidean
distance ε costs Θ̃(d/ε) calls to its state-preparation oracle.

Another interesting problem to consider is classical probability distribution
reconstruction. Suppose that we have a d-dimensional probability distribution
p ∈ ∆d = {p ∈ Rd

≥0 :
∑d

j=1 pj = 1}, and that we are given access to it through a
quantum circuit U that implements the mapping

U : |0⟩ 7→
d∑
j=1

√
pj |j⟩ =: |ψ⟩ . (4.8.1)

How many (inverse, controlled) calls to U suffice to find an approximate distri-
bution p̃ ∈ ∆d such that ∥p− p̃∥1 ≤ ε? We can also readily answer this question
due to the following lemma.

4.8.2. Lemma. Let p, p̃ ∈ ∆d, and let

|ψ⟩ =
d∑
j=1

√
pj |j⟩ , and |ψ′⟩ =

d∑
j=1

√
p̃j |j⟩ .

Then,
∥p− p̃∥1 ≤ 2 ∥|ψ⟩ − |ψ′⟩∥ .

Proof:
We use the Cauchy–Schwarz inequality to obtain

∥p− p̃∥1 =
d∑
j=1

|pj − p̃j| =
d∑
j=1

|√pj −
√
p̃j| · (

√
pj +

√
p̃j)

=
d∑
j=1

|√pj −
√
p̃j| ·

√
pj +

d∑
j=1

|√pj −
√
p̃j| ·

√
p̃j

≤

√√√√ d∑
j=1

|√pj −
√
p̃j|2 ·

√√√√ d∑
j=1

pj +

√√√√ d∑
j=1

|√pj −
√
p̃j|2 ·

√√√√ d∑
j=1

p̃j

= 2 ∥|ψ⟩ − |ψ′⟩∥ .

4.8. Implications 99

This completes the proof. 2

Hence, we can solve the probability distribution reconstruction problem using
our techniques as well. We can use Õ(d/ε) calls to the state-preparation unitary to
obtain an estimate |ψ′⟩ of |ψ⟩, defined in Equation (4.8.1), with Euclidean distance
ε/4. Then, we find the probability distribution p̃ ∈ ∆d such that its quantum
state approximates |ψ′⟩ as well as possible, and then we find by Lemma 4.8.2 that
∥p̃− p∥1 is at most ε. Thus, recovering a probability distribution up to ℓ1-norm
ε can be done with Õ(d/ε) queries to the state-preparation oracle as well. This
recovers a result from [vApe21].

Using simplified version of the techniques employed in this chapter, we can
also consider the above questions in more general ℓp-norms. More details about
the results in these settings can be found in [vACG+22]. We mention here that
approximating a probability distribution p ∈ ∆d with precision ε > 0 in ℓp-norm,
with p ∈ [1,∞], costs

Θ̃

(
min

{
d

1
p

ε
,

1

ε
1

1− 1
p

})
(inverse, controlled) queries to the state-preparation unitary defined in Equa-
tion (4.8.1). The upper bound proof can be found by combining the algorithm
from [vApe21] with Lemma 4.3.2. The lower bound follows by combining Lem-
mas 48 and 53 from [vACG+22]. This result generalizes the construction in
[vApe21], and the special case where p = 2 resolves an open question from that
paper.

We conclude this chapter by remarking that the state-tomography problem
seems to be completely resolved up to polylogarithmic factors. The most natural
follow-up question is whether these polylogarithmic factors can be removed. After
all, the lower bounding technique yields “nice” complexities without any trailing
logarithmic factors, so it would be very elegant if there exists an algorithm that
could meet these lower bound results up to constants. In the algorithmic con-
struction that we presented in this chapter, though, we obtain many logarithmic
factors in many different places, so such an algorithm would at the very least have
to look quite different from the approach displayed here. We leave this question
for future research.

Chapter 5

Partition function estimation

In this chapter, we develop a quantum algorithm that estimates partition func-
tions using a number of Gibbs state reflections that is sub-linear in the logarithm
of the size of the state space.

Partition functions play a key role in statistical mechanics, and as such be-
ing able to estimate them helps understanding the behavior of physical systems
governed by the laws of statistical physics. Additionally, several computational
problems can be embedded in partition functions, and consequently our algorithm
provides a new state-of-the-art solution to these problems.

Along the way, we come up with several new algorithmic techniques. First,
we come up with a new way of removing the bias from the phase estimation
routine, which is different from the technique introduced in Section 4.4. We also
construct an unbiased, low-variance amplitude estimation routine, which has the
remarkable property of being non-destructive, i.e., it restores the initial state at
the end of the procedure.

This chapter is based on [CH22]. We start with an introduction to the topic
of partition functions in Section 5.1. Then, we derive some new algorithmic
techniques, in Section 5.2. After that, we show how these subroutines can be used
to perform unbiased and non-destructive mean estimation in Section 5.3. And
finally, we tie everything together and show how to compute partition functions,
in Section 5.4.

5.1 Introduction

The Boltzmann–Gibbs distribution is a paradigmatic tool for modeling systems
that obey the principle of maximum entropy. It arises in several fields of research
such as statistical mechanics [Geo11; FV17; Sin82], economic modeling [DY00],
image processing [GG84; Bes86], statistical learning theory [Cat04], etc. The
probability assigned by the Gibbs distribution to each possible configuration of a
system is inversely proportional to the exponential of its energy multiplied by the

101

102 Chapter 5. Partition function estimation

inverse temperature. Mathematically, for a classical Hamiltonian of degree n, i.e.,
a function H : Ω → {0, . . . , n}, specifying the energy level of each configuration
x ∈ Ω, the Gibbs distribution at inverse temperature β is given by πβ(x) =

1
Z(β)

e−βH(x) where the normalization factor

Z(β) =
∑
x∈Ω

e−βH(x) (5.1.1)

is called the partition function. While it is often straightforward to evaluate
the partition function at high temperature (when β = 0, it is just the number
of possible configurations), the low-temperature regime captures ground state
properties that are challenging to compute. For instance, Z(∞) can represent the
cardinalities of exponentially large combinatorial structures (such as the number
of colorings of a graph [Jer95; SVV09], the volume of convex bodies [DFK91;
DF91] or the permanent of non-negative matrices [JSV04]) which are generally
#P-hard to compute exactly [Val79; DF88; JS93].

The standard approach for evaluating partition functions at low tempera-
ture is to resort to Markov chain Monte Carlo methods [JS96]. A celebrated
line of works [VC72; JVV86; DF91; BSV+08; SVV09] has shown how to turn
the ability of efficiently sampling from the Gibbs distribution into that of effi-
ciently approximating the partition function. At a high level, these works rely
on the same two-stage simulated annealing algorithm. First, they compute a
short cooling schedule, which is an increasing sequence of inverse temperatures
0 = β1 < · · · < βℓ = ∞ with limited fluctuations in Gibbs distributions be-
tween two consecutive values. Next, the partition function at low temperature is
expressed as a telescoping product

Z(∞) = Z(0)
ℓ−1∏
i=0

Z(βi+1)

Z(βi)
(5.1.2)

which is approximated by using a suitable product estimator.
As an example, the seminal algorithm of Štefankovič, Vempala and Vigoda

[SVV09] generates a so-called “Chebyshev cooling schedule” with schedule length
ℓ = Õ(

√
log |Ω|) (ignoring logarithmic dependences on the degree n, which

is often on the order of n ∼ log |Ω|) where each ratio Z(βi+1)/Z(βi) is ex-
pressed as the expectation value of a random variable Xi with bounded rela-
tive second moment E[X2

i] = O(E[Xi]
2). Such schedules are known to admit

a product estimator that requires O(ℓ2/ε2) classical Gibbs samples to estimate
Z(∞) = Z(0) · E[X1] · · ·E[Xℓ] with relative error ε. Thus, if we let δ denote
the spectral gap of a (ergodic reversible) Markov chain generating samples from
the considered Gibbs distributions, the overall cost of the algorithm presented
in [SVV09] is Õ(log |Ω|/(ε2δ)).

The theory of quantum algorithms provides several directions for accelerat-
ing the computation of partition functions. Quantum Markov chains [Sze04;

5.2. Modified quantum subroutines 103

MNR+11] can prepare coherent “qsample” encodings |πβ⟩ =
∑

x

√
πβ(x) |x⟩ of

the Gibbs distribution with a quadratic improvement in spectral gap for the rate
of convergence (but an increase dependence on other parameters). Quantum
phase estimation [Kit96] and amplitude estimation [BHM+02] lead to quadrat-
ically better convergence rates for estimating expectation values [Ter99; AW99;
Hei02; BDG+11; Mon15; HM19; Ham21]. Yet, while this may hint at the exis-
tence of an Õ(

√
log |Ω|/(ε

√
δ)) quantum algorithm for estimating partition func-

tions, the best-known algorithms [HW20; AHN+21] still require a linear scaling
Õ(log |Ω|/(ε

√
δ)) in the logarithm of the size of the state space. This bottleneck

is due to additional challenges posed by current quantum algorithmic techniques.
It is for instance significantly harder to prepare the qsample |πβ⟩ (at low temper-
ature) than to implement the reflection I − 2 |πβ⟩ ⟨πβ| through it. This obstacle
requires using non-destructive procedures [MW05; WA08; WCN+09; TOV+11;
ORR13; HW20] to recycle the same qsamples all along the algorithm, and to
rely mostly on the reflection operator. Another fundamental limitation faced by
current best quantum mean estimators [Mon15; HM19; Ham21] is the presence
of biases in the estimates that degrade the convergence guarantee of the product
estimators.

Our main contribution is to develop the first quantum algorithm for approx-
imating Gibbs partition functions with a complexity scaling sublinearly with re-
spect to the logarithm of the size of the state space. More precisely, we prove the
next theorem in Section 5.4.

5.1.1. Theorem (Informal statement of Theorem 5.4.1).
There is a quantum algorithm that, given a Gibbs distribution generated by a
Markov chain with spectral gap δ, computes an estimate Z̃ of the partition function
at zero temperature that satisfies |Z̃ − Z(∞)| ≤ εZ(∞) using

Õ
(
log3/4(|Ω|) log3/2(n)/(ε

√
δ)
)

steps of the quantum walk operator.

Our result reduces the polynomial dependence on log |Ω| by a factor of 1/4 and
it achieves state-of-the-art dependence on the spectral gap δ and the accuracy ε
up to logarithmic factors. We provide a comparison with prior work in Table 5.1.

5.2 Modified quantum subroutines

Our starting point is the amplitude estimation algorithm, as first introduced in
[BHM+02] and restated in Algorithm 2.4.4 for convenience. We note that the
amplitude estimation algorithm can naturally be used to estimate probabilities,
by simply squaring the output of the algorithm.

104 Chapter 5. Partition function estimation

Schedule Mean-value Total
Source generation estimation cost
[DF91; BSV+08] 0 (non-adaptive) Õ(k2/(ε2δ)) Õ(k2/(ε2δ))

[SVV09; Hub15; Kol18] Õ(k/δ) Õ(k/(ε2δ)) Õ(k/(ε2δ))

[WCN+09] Uses [BSV+08] Õ(k2/(ε
√
δ)) Õ(k2/(ε

√
δ))

[Mon15] Uses [SVV09] Õ(k/(ε
√
δ)) Õ(k(1/δ + 1/ε

√
δ))

[HW20; AHN+21] Õ(
√

log |Ω|/δ) Uses [Mon15] Õ(k/(ε
√
δ))

This chapter Uses [HW20; AHN+21] Õ(k3/4/(ε
√
δ)) Õ(k3/4/(ε

√
δ))

Table 5.1: Comparison of the complexity (in terms of Markov chain steps) needed
to compute partition functions over a state space Ω, where δ is the spectral gap of
the Markov chain and ε is the accuracy parameter. We use the shorthand notation
k = log |Ω|, and we omit polylogarithmic dependencies on the degree n of the partition
function, which is typically on the order of n ∼ log |Ω|, as well as k, 1/ε and 1/δ. The
first two rows are classical algorithms only.

In the previous chapter, we already saw how we can modify the approach from
[BHM+02] to make the probability estimation procedure unbiased, which resulted
in Algorithm 4.4.3. The core idea, introduced for the first time in [LdW21], is to
add a random phase to the phase estimation subroutine, and subsequently argue
by symmetry that any bias is automatically removed.

In this section, we modify Algorithm 4.4.3 in such a way that it has the
following three properties:

1. Unbiased : The difference between the expectation of the subroutine’s out-
come and the estimated quantity can be exponentially suppressed with poly-
nomial overhead.

2. Low-variance: The variance of the subroutine’s outcome is of the same order
as the size of the interval of high-concentration.

3. Non-destructive: The subroutine restores the initial state at the end of its
execution.

We proceed by giving the algorithm and proving its properties.

Algorithm 5.2.1: Unbiased, low-variance, non-destructive probability
estimation
Input:
1: k ∈ N: the precision parameter.
2: k′ ≥ 9: the boosting parameter.
3: R|ψ⟩: a quantum circuit that reflects through

|ψ⟩ = √
p |ψ1⟩ |1⟩+

√
1− p |ψ0⟩ |0⟩ ∈ H ⊗ C2,

i.e., it acts on H⊗ C2 and performs the operation 2 |ψ⟩ ⟨ψ| − I.

5.2. Modified quantum subroutines 105

4: A single copy of the state |ψ⟩.
Derived objects:
1: θ = arcsin(

√
p).

2: Ck,k′ as in Algorithm 4.4.2.
3: G = R|ψ⟩(I ⊗ (2 |1⟩ ⟨1| − I)).

Output:
1: A random variable p̃ that satisfies E[p̃] = p,

Var[p̃] = O(p(1− p)/22k + 1/24k). (5.2.1)

and with p = 1/2− Ck,k′(1/2− p̃), we have for all m ≥ 6,

P

[
|p− p| >

4π2
√
p(1− p)m

2k
+

(
2πm

2k

)2
]
≤
(

6

m

)k′/2
, (5.2.2)

2: A copy of the state |ψ⟩.
Queries: Expected number of queries to R|ψ⟩: O(2k − 1).
Procedure: Prob-est(k, k′, R|ψ⟩, |ψ⟩):
1: Repeat

1. Let ϕ = Unbiased-boosted-phase-est(k, k′, G, ·), run without the
state-preparation routine, but on the state |ψ⟩ directly instead.

2. Set p̃ = 1
2
− cos(2πϕ)

2Ck,k′
.

3. Measure the observable |ψ⟩ ⟨ψ| and denote the result by b ∈ {0, 1}.
Until the measurement outcome b = 1.

2: Return the p̃ that was obtained in the first iteration.

Proof of the properties of Algorithm 5.2.1:
First, we observe from the properties of Algorithm 4.4.2 that we perform O(2k−1)
calls to R|ψ⟩, every time we execute step 1. Thus, in order to verify the claimed
number of queries, it suffices to compute the expected number of iterations that
we perform in step 1.

To that end, it is important to notice that the Grover iterate G acts on a
two-dimensional space containing |ψ⟩, i.e., there exists another vector

∣∣ψ⊥〉 such
that the state vector remains in the space Span{|ψ⟩ ,

∣∣ψ⊥〉}. Hence, if we end up
with a measurement outcome 0 at the end of step 1.3, then we know that we are
in the state

∣∣ψ⊥〉.
The crucial observation, now, is that since the states |ψ⟩ and

∣∣ψ⊥〉 are or-
thogonal, the resulting states we obtain right before the measurement in step 1.3
when we start with |ψ⟩ or

∣∣ψ⊥〉 are orthogonal as well. Thus, if we start in |ψ⟩
at step 1.1, and then get output 1 with some probability q ∈ [0, 1] in step 1.3,
then we would get output 1 with probability 1− q if we started in the state

∣∣ψ⊥〉
instead. In other words, the algorithm remains in the state |ψ⟩ or

∣∣ψ⊥〉 with

106 Chapter 5. Partition function estimation

probability q, and transitions from one state to the other with probability 1− q.
This phenomenon first appeared in [MW05].1

Thus, given this value q, we either stop directly after the first iteration, which
happens with probability q, or we stop after t ≥ 2 iterations if we transition
from |ψ⟩ to

∣∣ψ⊥〉 in the first iteration, then stay in
∣∣ψ⊥〉 for t− 2 iterations, and

then transition back to |ψ⟩ in the tth iteration, which happens with probability
(1 − q)2qt−2. In other words, we can express the probability distribution of T ,
i.e., the number of iterations that we make, by

P[T = t] =

{
q, if t = 1,

(1− q)2qt−2, if t > 1.

Next, we compute the expectation of T to obtain

E[T] = 1 + E[T − 1] = 1 +
∞∑
t=2

(t− 1)P[T = t] = 1 + (1− q)2
∞∑
t=2

(t− 1)qt−2

= 1 + (1− q)2
d

dq

[
∞∑
t=2

qt−1

]
= 1 + (1− q)2

d

dq

[
q

1− q

]
= 1 + (1− q)2

d

dq

[
1

1− q
− 1

]
= 1 +

(1− q)2

(1− q)2
= 2.

This completes the proof of the number of queries. It also proves that we get
back to the state |ψ⟩ almost surely.

Hence, it remains to check the claimed properties of the output of the al-
gorithm. To that end, we observe from the properties of Algorithm 4.4.2 that
E[p̃] = p. Furthermore, recall from Equation (4.4.2) that

P

[
|p− p| >

4π2
√
p(1− p)m

2k
+

(
2πm

2k

)2
]
≤
(

6

m

)k′/2
,

with p = 1/2− Ck,k′(1/2− p̃). Thus, we find

p̃ =
1

2
− 1

Ck,k′

(
1

2
− p

)
,

and so Var[p̃] = Var[p]/C2
k,k′ . Finally, we observe that

Var[p] ≤ E[(p− p)2] =

∫ ∞

0

2tP [|p− p| ≥ t] dt.

1The idea of using the techniques from [MW05] in the amplitude estimation setting was also
coined in [HW20]. However, the authors seem to assume that q = 1/2, which we could not find
any justification for. Here, we provide the missing details.

5.2. Modified quantum subroutines 107

In the case where
√
p(1− p) ≥ 6π/2k, we analyze the resulting integral

by splitting it up in three regimes. First, if t ≥ 8p(1 − p), then let m =
2k
√
t/2/(2π) ≥ 2k

√
p(1− p)/π. We observe that |p− p| ≥ t implies

|p− p| ≥ t = 2

(
2πm

2k

)2

≥ 2πm

2k
·
2π · 2k

√
p(1− p)/π

2k
+

(
2πm

2k

)2

=
4πm

√
p(1− p)

2k
+

(
2πm

2k

)2

,

and hence in this regime we have

P [|p− p| > t] ≤

(
6 · 2π
2k
√
t/2

)k′/2

=

(
12
√
2π

2k

)k′/2

· t−k′/4.

Similarly, if 48π
√
p(1− p)/2k < t ≤ 8p(1 − p), then we assign the value

m = 2kt/(8π
√
p(1− p)) ≤ 2k

√
p(1− p)/π. Similarly as before, we observe that

|p− p| ≥ t implies that

|p− p| ≥ t =
8πm

√
p(1− p)

2k

≥
4πm

√
p(1− p)

2k
+

4πm
√
p(1− p)

2k
· m

2k
√
p(1− p)/π

=
4πm

√
p(1− p)

2k
+

(
2πm

2k

)2

,

and hence in this regime, we have

P [|p− p| > t] ≤

(
6 · 8π

√
p(1− p)

2kt

)k′/2

=

(
48π
√
p(1− p)

2k

)k′/2

· t−k′/2.

Finally, if t ≤ 48π
√
p(1− p)/2k, we just use the trivial upper bound that

P[|p− p| > t] ≤ 1. Putting everything together yields,

Var[p] ≤
∫ 48π

√
p(1−p)/2k

0

2t dt+

(
48π
√
p(1− p)

2k

)k′/2 ∫ 8p(1−p)

48π
√
p(1−p)/2k

2t · t−k′/2 dt

+

(
12
√
2π

2k

)k′/2 ∫ ∞

8p(1−p)
2t · t−k′/4

=
[
t2
]48π√p(1−p)/2k

0
+

(
48π
√
p(1− p)

2k

)k′/2 [
−2t−k

′/2+2

k′/2− 2

]8p(1−p)
48π

√
p(1−p)/2k

+

(
12
√
2π

2k

)k′/2 [
− t−k

′/4+2

k′/4− 2

]∞
8p(1−p)

= O
(
p(1− p)

22k

)
.

108 Chapter 5. Partition function estimation

On the other hand, if
√
p(1− p) < 6π/2k, then the middle term in the above

integral drops out, and we can resort to using the trivial bound in the regime
where t ≤ 288π/22k. Thus,

Var[p] ≤
∫ 288π/22k

0

2t dt+

(
12
√
2π

2k

)k′/2 ∫ ∞

288π/22k
2t · t−k′/4 dt

≤
[
t2
]288π/22k
0

+

(
12
√
2π

2k

)k′/2 [
−2t−k

′/4+2

k′/4− 2

]∞
288π/22k

= O
(

1

22k

)
.

Finally, recall that Var[p̃] = O(Var[p]), and so Var[p̃] is O(p(1− p)/22k + 1/24k).
This completes the proof. 2

We have now constructed an unbiased, low-variance, non-destructive variant
of probability estimation, achieving the same precision as the well-known algo-
rithm of [BHM+02], as well as achieving the same query complexity, albeit only
in expectation. Since the amplitude estimation routine derived in [BHM+02]
is very frequently used in other quantum algorithms, we expect that there are
settings where convenient immediate improvements can be obtained by simply
substituting our result in a black-box way.

The second term in the variance of the resulting probability estimator, as in
Equation (5.2.1), is a bit mysterious. After all, in the classical case, if we toss a
biased coin n times, we can estimate its success probability p unbiasedly, with an
estimator that has variance p(1−p)/n. Hence, in order to get a proper quadratic
improvement in sample complexity over the classical case, we would expect a
quantum routine obtaining variance p(1 − p)/n2. In Equation (5.2.1), we can
see that we are almost there, but the second term makes the estimator perform
slightly worse in the regime where p is either very close to 0 or very close to 1.

Below, we showcase a routine that circumvents this problem by running a
two-stage algorithm. First, we run the above algorithm to get a good estimate of
p, and if it turns out to be very close to 0 or 1, then we first use linear amplitude
amplification, Algorithm 2.4.6, to get out of this regime. The downside of this
approach is that we lose exact unbiasedness, and can only ensure a very small
bias instead.

Algorithm 5.2.2: Low-bias, low-variance, non-destructive probability
estimation
Input:
1: t ∈ N: the precision parameter.
2: δ > 0: the bias tolerance parameter.

5.2. Modified quantum subroutines 109

3: R|ψ⟩: a quantum circuit that reflects through

|ψ⟩ = √
p |ψ1⟩ |1⟩+

√
1− p |ψ0⟩ |0⟩ ∈ H ⊗ C2,

i.e., it acts on H⊗ C2 and performs the operation 2 |ψ⟩ ⟨ψ| − I.
4: A single copy of the state |ψ⟩.

Derived objects:
1: k = ⌈log(48πt)⌉.
2: k′ = ⌈2 log(64/δ)⌉.

Output:
1: A random variable p̃ that satisfies |E[p̃]− p| ≤ δ, and

Var[p̃] = O(p/t2 + δ). (5.2.3)

2: A copy of the state |ψ⟩, up to norm error δ/16.
Queries: Expected number of queries to R|ψ⟩: K := Õ(t).
Procedure: Low-bias-prob-est(t, δ, R|ψ⟩, |ψ⟩):
1: Let q′ = Prob-est(k, R|ψ⟩, |ψ⟩), and let q = 1/2 − Ck,k′(1/2 − q′), where
Ck,k′ is as in Algorithm 5.2.1.

2: If q ≤ 1/t2, then

1. Prepare the state |ψ′⟩ by applying L, where
L = Linear-ampl-ampl(t2/64, δ/(16K), R|ψ⟩, I ⊗ 2(|1⟩ ⟨1| − I)).

2. Repeat

(a) Measure the final qubit, denote the outcome with b′ ∈ {0, 1}.
(b) Measure the operator |ψ′⟩ ⟨ψ′|, using the reflection LR|ψ⟩L

†. Denote
the outcome by b ∈ {0, 1}.

until the measurement outcome b = 1.
3. Restore |ψ⟩ using L†.
4. Output 64b′/t2, where b′ was obtained in the first iteration.

3: Else, output p̃ = Prob-est(k, R|ψ⟩, |ψ⟩).

Proof of the properties of Algorithm 5.2.2:
We observe that the total number of calls to R|ψ⟩ in steps 1 and 3 follows easily
from the properties of Algorithm 5.2.1. In step 2, we perform again a state
reconstruction scheme based on the protocol from [MW05], which we presented
already in the proof of Algorithm 5.2.1. The proof in this setting is identical, and
we spend O(1) iterations in step 2.2 in expectation. Therefore, we perform O(1)
calls to L in expectation, and the number of calls to R|ψ⟩ in L follows from the
properties of Algorithm 2.4.6. Putting everything together verifies the claim on
the number of queries.

Thus, it remains to check the validity of the output of the algorithm. To that
end, observe that the output of the algorithm is always in the interval [−2, 2], and

110 Chapter 5. Partition function estimation

so if p̃ differs only by δ/8 from an unbiased estimator in total variation distance,
then the total bias in the algorithm is at most δ. Thus, it suffices to ensure that
the total variation distance picked up throughout the analysis is at most δ/8.

To that end, we first observe that the total norm error picked up by the
imperfect implementation of L is at most K · δ/(16K) = δ/16.

Next, suppose that p ≤ 1/(16t2). Then, q ≥ 1/t2 implies

|q − p| ≥ 1

2t2
≥

√
p

t
+

(
1

2t

)2

≥
4π
√
p(1− p) · 12

2k
+

(
24π

2k

)2

and so, with m = 12, we obtain through Equation (5.2.2) that

P
[
q ≥ 1

t2

]
≤ P

[
|q − p| ≥ 1

2t2

]
≤ P

[
|q − p| ≥

4π
√
p(1− p) ·m

2k
+

(
2πm

2k

)2
]

≤
(
1

2

)k′/2
≤ δ

64
.

On the other hand, suppose that p ≥ 16/t2. Then, q ≤ 1/t2 implies

|q − p| ≥ p− 1

t2
≥ p− p

16
≥ p

2
=
p

4
+
p

4
≥

√
p

4
· 4
t
+

4

t2
≥

√
p

t
+

(
1

2t

)2

≥
4π
√
p(1− p) · 12

2k
+

(
24π

2k

)2

,

and so again through Equation (5.2.2) with m = 12, we find that

P
[
q ≤ 1

t2

]
≤ P

[
|q − p| ≥ 1

2t2

]
≤ P

[
|q − p| ≥

4π
√
p(1− p) ·m

2k
+

(
2πm

2k

)2
]

≤
(
1

2

)k′/2
≤ δ

64
.

Thus, by assuming that p ≤ 1/(16t2) ⇒ q ≤ 1/t2 and p ≥ 16/t2 ⇒ q ≥ 1/t2, we
incur at most 2 · (δ/64+δ/64) = δ/16 error in total variation distance. Combined
with the total variation distance picked up from the imperfect implementation of
L, we conclude that the total variation distance picked up throughout the analysis
is δ/8.

Thus, it suffices to prove that the output of step 2 is correct as long as p ≤
16/t2, and that the output of step 3 is correct as long as p ≥ 1/(16t2). The
latter claim follows easily from Algorithm 5.2.1, and so we verify the correctness
of step 2.

To that end, first of all observe that with the same idea from [MW05], the
output state is again |ψ⟩. Moreover, the amplification factor in L is t2/64, and

5.3. Unbiased and non-destructive mean estimation 111

hence from p · t2/64 ≤ 16/t2 · t2/64 = 1/4 we find that the assumption in the
linear amplitude amplification algorithm, Algorithm 2.4.6, is satisfied.

Finally, observe that in the first iteration, we obtain output b′ = 1 with proba-
bility t2/64 ·p. Thus, the expectation E[b′] = pt2/64 and hence the expectation of
p̃ is exactly p. Furthermore, the variance of b′ is upper bounded by pt2/64, from
which we find that the variance of p̃ is upper bounded by 64p/t2 = O(p(1−p)/t2).
This completes the proof. 2

We can easily improve the first term in the variance of the above construction
to O(p(1− p)/t2), rather than O(p/t2). The trick is to perform a slight modifica-
tion of step 2 in Algorithm 5.2.2, in case q ≥ 1− 1/t2. We omit the details here,
because we don’t need this particular feature in subsequent sections.

As a demonstration of the applicability of the low-bias, low-variance, non-
destructive probability estimation algorithm, we continue this chapter by devel-
oping a partition function estimator, which uses the probability estimation proce-
dure outlined above, and crucially relies on its non-destructive, low-variance and
low-bias properties.

5.3 Unbiased and non-destructive mean estima-
tion

In the previous section, we constructed a low-variance, non-destructive probability
estimation routine. In this section, we show how this routine can be used to
perform mean estimation non-destructively, with small bias and low variance.
We employ very similar ideas to those in Chapter 3, but in a slightly simpler
setting since we only consider univariate random variables here.

We start with developing a bounded mean estimation routine.

Algorithm 5.3.1: Low-bias, low-variance, non-destructive bounded mean
estimation
Input:
1: X : Ω → R ⊆ [0, 1]: a random variable on a probability space (Ω, 2Ω,P).
2: t > 0: a precision parameter.
3: δ > 0: the bias tolerance parameter.
4: A quantum state

|ψ⟩ =
∑
ω∈Ω

√
P(ω) |ω⟩ ∈ CΩ.

5: R|ψ⟩: a quantum circuit acting on CΩ that reflects through |ψ⟩.
6: OX : a quantum circuit that acts on CΩ ⊗ CR, and implements the mapping,

for all ω ∈ Ω,
|ω⟩ |0⟩ 7→ |ω⟩ |X(ω)⟩ .

112 Chapter 5. Partition function estimation

Derived objects:
1: U : a quantum circuit acting on CR ⊗ C2, as

|r⟩ |0⟩ 7→ |r⟩ ⊗
(√

r |1⟩+
√
1− r |0⟩

)
.

2: C = (I ⊗ U)(OX ⊗ I), acting on CΩ ⊗ CR ⊗ C2.
Output:
1: A random variable µ̃ such that |E[µ̃]− E[X]| ≤ δ, and

Var[µ̃] ≤ O(E[X]/t2 + δ).

2: The state |ψ⟩ up to norm error δ.
Queries: Number of queries to R|ψ⟩ and OX : Õ(t).
Procedure: Bounded-mean-est(X, t, δ, |ψ⟩, R|ψ⟩, OX):
1: Apply C to |ψ⟩ |0⟩ |0⟩ to obtain |ψ′⟩ ∈ CΩ ⊗ CR ⊗ C2.
2: Output µ̃ = Low-bias-prob-est(t, δ, CR|ψ⟩C

†, |ψ′⟩).
3: Uncompute step 1.

Proof of the properties of Algorithm 5.3.1:
The claim on the number of queries follows immediately from the properties of
Algorithm 5.2.2. Hence, it remains to check the validity of the output. To that
end, we must check that the state |ψ′⟩ indeed encodes E[X] as a probability.
Indeed,

|ψ′⟩ =
∑
ω∈Ω

√
P(ω) |ω⟩ |X(ω)⟩

(√
X(ω) |1⟩+

√
1−X(ω) |0⟩

)
,

=
√

E[X] |ψ1⟩ |1⟩+
√
1− E[X] |ψ0⟩ |0⟩ ,

for suitably chosen unit vectors |ψ0⟩ , |ψ1⟩. Thus, |ψ′⟩ satisfies the assumptions of
Algorithm 5.2.2, and hence the proof is complete. 2

Now, we use the bounded estimator to calculate the mean in the more general
setting where we merely know an upper bound on the variance of the random
variable, and have access to crude estimate of the mean beforehand.

Algorithm 5.3.2: Mean estimation with upper bound on variance
Input:
1: X : Ω → R ⊆ [0, 1]: a random variable on a probability space (Ω, 2Ω,P).
2: t > 0: a precision parameter.
3: δ > 0: the variance tolerance parameter.
4: S > 0: an upper bound on the variance of X.
5: µ ∈ R: a crude estimate of the mean.
6: A quantum state

|ψ⟩ =
∑
ω∈Ω

√
P(ω) |ω⟩ ∈ CΩ.

5.3. Unbiased and non-destructive mean estimation 113

7: R|ψ⟩: a quantum circuit acting on CΩ that reflects through |ψ⟩.
8: OX : a quantum circuit that acts on CΩ ⊗ CR, and implements the mapping,

for all ω ∈ Ω,
|ω⟩ |0⟩ 7→ |ω⟩ |X(ω)⟩ .

Derived objects:
1: k = ⌈log(8S/δ)⌉.
2: δ′ = min{δ/(8(2k − 1)

√
S), 3/(4(4k − 1)t2)}.

3: a0 = 0.
4: For every ℓ ∈ [k], let aℓ = 2ℓ

√
S.

5: For every ℓ ∈ [k], let R±
ℓ = {(±x− µ)/aℓ : x ∈ R, aℓ−1 ≤ ±x− µ < aℓ} ∪ {0}.

6: For every ℓ ∈ [k], let X±
ℓ : Ω → Rℓ be defined as

X±
ℓ (ω) =

{
±X(ω)−µ

aℓ
, if aℓ−1 ≤ ±(X(ω)− µ) < aℓ,

0, otherwise.

7: U±
ℓ : a circuit acting on CR⊗CR±

ℓ , implementing the operation, for all r ∈ R,

|r⟩ |0⟩ 7→ |r⟩ ⊗

{∣∣∣± r−µ
aℓ

〉
, if aℓ−1 ≤ ±(x− µ) < aℓ

|0⟩ , otherwise.

Assumption: |µ− E[X]| ≤
√
3S.

Output:
1: A random variable µ̃ such that

|E[µ̃]− E[X]| ≤ δ and Var[µ̃] = O
(
S

t2

)
.

2: The state |ψ⟩ up to norm error 2δ′.
Queries: Number of queries to R|ψ⟩ and OX : Õ(t).
Procedure: Mean-est(X, t, δ, S, µ, |ψ⟩, R|ψ⟩, OX):
1: For ℓ = 1, . . . , k,

1. Let µ̃+
ℓ = Bounded-mean-est(X+

ℓ , t, δ′, |ψ⟩, R|ψ⟩, (I⊗U+
ℓ)(OX ⊗ I)).

2. Let µ̃−
ℓ = Bounded-mean-est(X−

ℓ , t, δ′, |ψ⟩, R|ψ⟩, (I⊗U−
ℓ)(OX ⊗ I)).

2: Output µ̃ = µ+
∑k

ℓ=1 aℓ(µ̃
+
ℓ − µ̃−

ℓ).

Proof of the properties of Algorithm 5.3.2:
The claimed number of queries to R|ψ⟩ and OX follows immediately from the
properties of Algorithm 5.3.1. Thus, it remains to check the claimed properties
of the algorithm’s output.

114 Chapter 5. Partition function estimation

To that end, we start by calculating the bias of the estimator µ̃. Observe that

|E[µ̃]− E[X]| =

∣∣∣∣∣µ− E[X] +
k∑
ℓ=1

aℓ(E[µ̃+
ℓ]− E[µ̃−

ℓ])

∣∣∣∣∣
=

∣∣∣∣∣µ− E[X] +
k∑
ℓ=1

aℓ(E[X+
ℓ]− E[X−

ℓ])

∣∣∣∣∣+ 2
k∑
ℓ=1

aℓδ
′.

The second term can easily be shown to be upper bounded by δ/2, since

2δ′
k∑
ℓ=1

aℓ = 2δ′
√
S

k∑
ℓ=1

2ℓ = 4δ′
√
S · (2k − 1) ≤ δ

2
.

Thus, it remains to upper bound the first term by δ/2. To that end, observe that

k∑
ℓ=1

aℓ

(
E
[
X − µ

aℓ
1aℓ−1≤X−µ<aℓ

]
+ E

[
X − µ

aℓ
1aℓ−1≤−(X−µ)<aℓ

])

=
k∑
ℓ=1

E[(X − µ) · 1aℓ−1≤|X−µ|<aℓ] = E[(X − µ)1|X−µ|<ak],

and so ∣∣∣∣∣µ− E[X] +
k∑
ℓ=1

aℓ(E[X+
ℓ]− E[X−

ℓ])

∣∣∣∣∣ = ∣∣E[(X − µ)1|X−µ|≥ak]
∣∣

≤ 1

ak
E
[
(X − µ)2

]
≤ 4S

ak
=

4S√
S · 2k

≤ δ

2
,

where the final inequality holds due to our choice of k. Thus, we indeed conclude
that the bias in the algorithm is at most δ.

Next, we turn our attention to the variance of the estimator µ̃. We have

Var[µ̃] =
k∑
ℓ=1

a2ℓ(Var[µ̃
+
ℓ] + Var[µ̃−

ℓ]) = O

(
k∑
ℓ=1

a2ℓ ·
(
E[X+

ℓ] + E[X−
ℓ]

t2
+ 2δ′

))
.

We first focus on the final term within the parenthesis. Summing over ℓ yields

2δ′
k∑
ℓ=1

a2ℓ = 2δ′
k∑
ℓ=1

S · 4ℓ = 4

3
Sδ′(4k − 1) ≤ S

t2
.

On the other hand, for all ℓ ∈ [k] with ℓ ≥ 2,

E[X+
ℓ] =

1

aℓ
E
[
(X − µ)1aℓ−1≤X−µ<aℓ

]
≤ 1

aℓaℓ−1

E
[
(X − µ)2 · 1aℓ−1≤X−µ<aℓ

]
,

5.3. Unbiased and non-destructive mean estimation 115

and similarly

E[X−
ℓ] =

1

aℓ
E
[
−(X − µ)1aℓ−1≤−(X−µ)<aℓ

]
≤ 1

aℓaℓ−1

E
[
(X − µ)2 · 1aℓ−1≤−(X−µ)<aℓ

]
.

Finally, when ℓ = 1, we have

E[X+
ℓ] ≤

1

a1
E[(X − µ)10≤X−µ<a1] ≤ 1,

and similarly E[X−
ℓ] ≤ 1. Thus,

k∑
ℓ=1

a2ℓ ·
E[X+

ℓ] + E[X−
ℓ]

t2
≤ 2S

t2
+

2

t2

k∑
ℓ=2

E
[
(X − µ)2 · 1aℓ−1≤|X−µ|<aℓ

]
≤ 2S

t2
+

2

t2
E
[
(X − µ)2

]
≤ 4S

t2
.

This completes the proof. 2

The general mean estimation algorithm that we constructed here is very sim-
ilar to the multivariate mean estimation algorithm that we developed in Sec-
tion 3.4.1. However, there is one intricate qualitative difference, namely in Sec-
tion 3.4.1 we didn’t need a crude estimate of the mean as the input to the algo-
rithm, since we could start the algorithm by obtaining a few classical samples to
compute such an estimate.

The issue with this approach in Algorithm 5.3.2 is that taking classical samples
is an inherently destructive operation. For instance, suppose that |ψ⟩ is a uniform
superposition over all possible outcomes ω ∈ Ω. Performing a measurement will
collapse this state to one of the outcomes. Moreover, the resulting state inherently
has very small overlap with the initial state |ψ⟩, and as such it takes a lot of work
to reconstruct |ψ⟩. Thus, taking classical samples is not an available algorithmic
tool in the setting considered in this chapter.

This leaves the question how one obtains a crude estimate µ to the mean of
a random variable, to be used as input to Algorithm 5.3.2. We observe that the
quantiles of our random variable tell us something about the spread. In particular,
we can relate the quantiles at 1/3 and 2/3 to the mean and variance by means of
the following lemma.

5.3.3. Lemma. Let X : Ω → R be a univariate random variable, with well-defined
mean µ and variance σ2. Let x ∈ R. Then,

P[X ≥ x] >
1

3
⇒ x− µ <

√
3σ,

P[X ≥ x] <
2

3
⇒ x− µ > −

√
3σ.

116 Chapter 5. Partition function estimation

Proof:
Suppose that x− µ ≥

√
3σ. Then, by Chebyshev’s inequality,

P [X ≥ x] ≤ P
[
X − µ ≥

√
3σ
]
≤ 1

3
.

Thus, taking the contrapositive of the statement above yields the first claim. The
second claim follows similarly. This completes the proof. 2

Thus, if we can find an x ∈ R such that P[X ≥ x] ∈ (1/3, 2/3), then we find
that |x− µ| ≤

√
3σ. In other words, in order to generate a crude estimate of the

mean that we can use as input to the non-destructive mean estimation algorithm,
Algorithm 5.3.2, it suffices to be able to find quantiles of the random variable.

In the special case where the support of the random variable contains only
finitely many values, say n, we can use binary search and probability estimation
to find a suitable quantile with O(log(n)) steps. Below we sketch an algorithm
that achieves this.

Algorithm 5.3.4: Non-destructive quantile estimation with finite support
Input:
1: X : Ω → R = {x1, . . . , xn}: a univariate random variable on a probability

space (Ω, 2Ω,P).
2: p ∈ [0, 1]: a quantile.
3: ε > 0: the precision parameter.
4: δ > 0: the failure probability tolerance.
5: A copy of the state

|ψ⟩ =
∑
ω∈Ω

√
P(ω) |ω⟩ .

6: R|ψ⟩: a quantum circuit acting on CΩ that reflects through |ψ⟩.
7: OX : a quantum circuit acting on CΩ ⊗ CR, that implements the operation

OX : |ω⟩ |0⟩ 7→ |ω⟩ |X(ω)⟩ .

Derived objects:
1: k = ⌈log(96π

ε
)⌉.

2: k′ = ⌈2 log(log(n)/δ)⌉.
Output:
1: An ε-approximate p-quantile of X.
2: The state |ψ⟩.

Success probability: Lower bounded by 1− δ.
Queries: Number of calls to OX : Õ(log(n)/ε).
Procedure: Quant-est(X, p, ε, δ, |ψ⟩, OX):
1: Set a = 0 and b = n.
2: Repeat

5.4. Partition function estimation 117

1. Set k = ⌈(a+ b)/2⌉.
2. Apply the operation U to |ψ⟩ |0⟩ ∈ CR ⊗ C2, where

U : |r⟩ |0⟩ 7→ |r⟩ ⊗

{
|1⟩ , if r ≥ xk,

|0⟩ , otherwise.

Denote the resulting state |ψ′⟩.
3. Let p = Prob-est(k, k′, U(R|ψ⟩⊗I)U †, |ψ′⟩), where we take the output
p rather than p̃.

4. Uncompute step 2.2.
5. If p ≥ p, set a = k, else set b = k − 1.

Until a = b.
3: Output xa.

Proof of the properties of Algorithm 5.3.4:
The algorithm runs binary search, and as such performs O(log(n)) iterations.
Furthermore, the cost per iteration is Õ(1/ε), as follows directly from the prop-
erties of Algorithm 5.2.1.

Thus, it remains to check the validity of the output. To that end, we must
ensure that throughout the algorithm, the failure probability is at most δ. To that
end, observe that if in all iterations P[X ≥ xk] ≤ p − ε implies that p < p, and
similarly P[X ≥ xk] ≥ p+ ε implies that p ≥ p, then we find a suitable outcome.
Thus, we bound the probability of either of these implications not holding in any
of the iterations. To that end, observe that in any iteration

P[|p− p| ≥ ε] ≤ P

[
|p− p| ≥ 48π

2k
+

(
24π

2k

)2
]
≤ 1

2k′/2
≤ δ

log(n)
.

Thus, the total failure probability is at most δ. This completes the proof. 2

Thus, the idea for non-destructive mean estimation is to first find a crude
estimate of the mean using this quantile estimator, and subsequently run Algo-
rithm 5.3.2 to obtain a proper low-bias estimate of the mean. In the next section,
we will see how the low-variance, low-bias and non-destructive properties play a
crucial role in estimating partition functions.

5.4 Partition function estimation
In this section, we showcase an application of our newly-constructed quantum
mean estimation algorithm. Specifically, we show how it can be used to speed up
existing quantum algorithms for estimating partition functions. In Section 5.4.1,
we elaborate on the generic algorithm for partition function estimation and how
our results provide a speed-up. Subsequently, in Section 5.4.2, we discuss how
this gives rise to more efficient quantum algorithms for several applications.

118 Chapter 5. Partition function estimation

5.4.1 Algorithm overview

In this subsection, we first describe our partition function estimation algorithm
on a high level, and define the required notation along the way. We follow the
exposition in [HW20], but use slightly different notation to match the rest of this
document more closely.

Let Ω be a state space, and let H : Ω → {0, . . . , n} be a classical Hamiltonian,
i.e., a function associating a numerical value to each of the states. Our goal will
be to compute the number of states whose value is 0, i.e., |H−1(0)|. To that end,
we define the partition function Z : [0,∞] → R as

Z(β) =
∑
x∈Ω

e−βH(x),

and we observe that Z(0) = |Ω|, and Z(∞) = |H(−1)(0)|.
Next, we define a sequence of inverse temperatures 0 = β0 < β1 < · · · < βℓ =

∞, and express Z(∞) as the product

Z(∞) = Z(0) · Z(β1)
Z(0)

· Z(β2)
Z(β1)

· · · · ·
Z(∞)

Z(βℓ)
= Z(0)

ℓ−1∏
i=0

Z(βi+1)

Z(βi)
. (5.4.1)

Since throughout the sequence of βi’s, we are increasing the inverse temperature,
and hence decreasing the temperature, this sequence is referred to as a cooling
schedule. Its length ℓ is called the schedule length. The core idea for estimating
Z(∞) is to evaluate each of the factors in the product on the right-hand side of
Equation (5.4.1) individually.

Thus, let i ∈ [ℓ]. We endow Ω with a probability distribution πβi , called the
Gibbs distribution in statistical physics, and define a random variable Xi : Ω → R
on it, with

πβi(x) =
e−βiH(x)

Z(βi)
and Xi(x) = e−(βi−βi−1)H(x).

It follows immediately that

E[Xi] =
∑
x∈Ω

e−βiH(x)

Z(βi)
· e−(βi+1−βi)H(x) =

∑
x∈Ω

e−βi+1H(x)

Z(βi)
=
Z(βi+1)

Z(βi)
.

The idea is now to devise a procedure that samples from the Gibbs distribution
and obtains an estimator µ̃i of E[Xi].

In order to be able to sample from the Gibbs distribution, we encode it in
a quantum state. To that end, we define the Gibbs state |πβi⟩ ∈ CΩ at inverse
temperature βi as

|πβi⟩ =
1√
Z(βi)

∑
x∈Ω

√
e−βiH(x) |x⟩ .

5.4. Partition function estimation 119

In typical applications (see the next subsection), it can be much easier to reflect
through the Gibbs state than to prepare it. Therefore, we estimate E[Xi] using a
nondestructive mean estimation algorithm, which we constructed in the previous
sections. This has the benefit of enabling access to the Gibbs state even after
the computation of µ̃i, which makes it possible to reuse it for computing the next
factor in the product on the right-hand side of Equation (5.4.1).

It remains to choose the cooling schedule, i.e., the sequence of inverse temper-
atures β1, . . . , βℓ−1. For reasons that are sketched below on a high level, we want
our cooling schedule to have the following two properties.

1. B-Chebyshev. For any B ≥ 1, a cooling schedule is called B-Chebyshev if
for any two subsequent βi−1 and βi, we have

E[X2
i]

E[Xi]2
=
Z(2βi+1 − βi)Z(βi)

Z(βi+1)2
≤ B.

This requirement can be viewed as a tail bound – it tells us that Xi con-
centrates well around its mean E[Xi].

2. B-slowly varying. For any B ≥ 1, a cooling schedule is called B-slowly
varying if

∣∣〈πβi∣∣πβi+1

〉∣∣2 = Z
(
βi+βi+1

2

)2
Z(βi)Z(βi+1)

≥ 1/B.

This requirement can be seen as a proximity requirement – it tells us that the
Gibbs states |πβi⟩ and

∣∣πβi+1

〉
have some non-negligible overlap. It ensures

that we can anneal, i.e., transform, |πβi⟩ into
∣∣πβi+1

〉
without having to

do too much work, and hence circumvents having to prepare
∣∣πβi+1

〉
from

scratch for estimating the next mean E[Xi+1].

When we set B = e2, it is shown in [SVV09] that there exists a cooling
schedule of length ℓ = Õ(

√
log |Ω| log(n)), which is B-Chebyshev. Subsequently,

it was shown [HW20] that one can modify the construction so that the resulting
cooling schedule is not only B-Chebyshev, but also B-slowly varying. Moreover,
computing this cooling schedule can be done on the fly, with associated cost
scaling approximately linearly in the schedule length.

Combining previous work [SVV09; HW20] with our new unbiased and non-
destructive mean estimation techniques gives rise to the following result.

5.4.1. Theorem (Partition function estimator). Let H : Ω → {0, . . . , n}
be a Hamiltonian, and let Z be its partition function. Suppose that, for every
inverse temperature β, the associated Gibbs distribution πβ is the stationary dis-
tribution of an ergodic reversible Markov chain with spectral gap at least δ. Then,

120 Chapter 5. Partition function estimation

we can estimate Z(∞) up to multiplicative error ε, with probability at least 2/3,
by using

Õ
(
log3/4 |Ω| log3/4(n)/ε+

√
log |Ω| log3/2(n)/

√
δ
)

steps of the quantum walk operator in expectation.

Proof:
We run the algorithm from [HW20] to compute the cooling schedule on the fly.
The total number of Gibbs-state reflections used for that is Õ(

√
log |Ω| log3/2 n),

as proved in [HW20, Theorem 13], and the resulting cooling schedule is both
e2-slowly varying and e2-Chebyshev, and of length ℓ = Õ(

√
log |Ω| log n). For

computing the product in Equation (5.4.1), we estimate each of the factors in-
dividually with Algorithm 5.3.2, with relative variance vi = ε2/(2ℓ) for the ith
factor. The resulting relative variance v of the product estimator then satisfies

1 + v =
ℓ∏
i=1

(1 + vi) =

(
1 +

ε2

2ℓ

)ℓ
≤ eε

2/2 ≤ 1 + ε2,

where we used that 1+v with v the relative variance is multiplicative for product
estimators. The total number of Gibbs state reflections used in this algorithm
is Õ(log3/4 |Ω| log3/4(n)/ε +

√
log |Ω| log3/2 n). With standard failure probabil-

ity reduction techniques, we obtain that the number of Gibbs-state reflections
performed by the resulting algorithm scales as the sum of the two complexities.
Finally, by a well-known result [Sze04; MNR+11], each reflection through a Gibbs
state πβ can be implemented with O(1/

√
δ) steps of the quantum walk operator

corresponding to a Markov chain with spectral gap at least δ generating πβ. 2

The core of our improvement lies in our product estimator – the one used in
[HW20] is quadratic in the schedule length, whereas ours is subquadratic. Thus,
more generally, if we are in a setting where a cooling schedule that is shorter than
Õ(
√
log |Ω| log(n)) suffices, then our resulting algorithm scales with the schedule

length to the power of 3/2. A typical setting where this is the case is when we a
priori know a lower bound on Z(∞) – then we can terminate the annealing at a
lower inverse temperature, and hence obtain a shorter cooling schedule. We leave
working out the details in this setting for future work.

5.4.2 Applications

The quantum partition function estimator can be applied to several counting
problems. See [HW20] for more possible applications. In all applications we list
in this section, n scales at most polylogarithmically in |Ω|, so we can hide any
dependence on log(n) in the tilde of the big-O notation.

5.4. Partition function estimation 121

Counting k-colorings. Let G = (V,E) be an undirected simple graph with
degree at most ∆, and suppose we have k > 2∆ colors. We would like to count
the number of ways we can color the vertices such that no two adjacent ones
have the same color. We let Ω be the set of all colorings x ∈ [k]V , which means
Z(0) = |Ω| = k|V |. We defineH(x) to be the number of monochromatic edges inG
when each vertex v ∈ V is colored with xv. Then, Z(∞) = |H(−1)(0)| is exactly
the number of k-colorings. Jerrum [Jer95] constructed a Markov chain whose
stationary distribution is the Gibbs state at infinite temperature, and showed
that its mixing time is O(|V | log |V |). With a Metropolis sampling correction this
can be turned into Gibbs states at arbitrary temperatures, and thus performing
an approximate Gibbs state reflection takes time Õ(

√
|V |). Multiplying by the

complexity in Theorem 5.4.1, we can obtain an ε-multiplicative approximation to
Z(∞) in Õ(log3/4(|Ω|)

√
|V |/ε) = Õ(|V |5/4/ε) steps in the graph.

Ising model. Let G = (V,E) be an undirected simple graph of maximum
degree ∆, and assign a sign ±1 to each of its vertices. We let Ω be the set of
all assignments x ∈ {−1, 1}V of signs to the vertices, which readily implies that
|Ω| = 2|V |. We let H(x) be the number of edges whose endpoints have the same
sign, when the sign of each vertex v ∈ V is xv. Then, Mossel and Sly [MS13]
constructed a Markov chain whose stationary distribution is the Gibbs state at
arbitrary temperature. They also show that it mixes in time O(|V | log |V |) as
long as (∆− 1) tanh(β) < 1. Thus, for any inverse temperature β satisfying such
a condition, we can evaluate Z(β) up to relative error ε in Õ(|V |5/4/ε) steps in
the graph.

Counting matchings. Let G = (V,E) be an undirected simple graph. A
matching x ⊆ E is a subset of disjoint edges. We let Ω be the set of all matchings,
and we set H(x) = |x| to be the number of edges in the matching. Then Z(0) =
|Ω| is the number of matchings, and Z(∞) = 1. Now, the setting is slightly
different than before, since the partition function is easy to calculate at zero
temperature (β = ∞), rather than at infinite temperature (β = 0). The core
idea is to run the same algorithm as outlined before, but anneal in the opposite
direction. Previous works [HW20; Mon15] justify this idea in more detail. Jerrum
and Sinclair [JS89] constructed a Markov chain whose stationary distribution is
the Gibbs state at zero temperature, and analyzed that the mixing time of this
Markov chain is O(|V ||E|). Similarly as before, the Markov chain can be easily
adapted by a metropolis sampling correction so that its stationary distribution
is a Gibbs state at an arbitrary temperature, and so we can perform Gibbs state
reflections in time Õ(

√
|V ||E|). The state space of this random walk is of size

|Ω| = O(|V |!2|V |), which implies that log |Ω| = O(|V | log |V |). Thus, combining
with the complexity in Theorem 5.4.1, we can find an ε-multiplicative estimate
of the number of matchings in Õ(|V |5/4|E|1/2/ε) steps in the graph.

122 Chapter 5. Partition function estimation

Computing the volume of a convex body. Finally, we describe a quantum
algorithm for estimating the volume of convex bodies that provides an improve-
ment over the algorithm given in [CCH+19]. The problem statement is as follows.
Let K ⊆ Rd be a convex body, and let R > 0 be such that B(1) ⊆ K ⊆ B(R),
where B(r) = {x ∈ Rd : ∥x∥2 ≤ r} is the ball of radius r centered at 0. We
wish to estimate the volume Vol(K) of K up to multiplicative precision ε, i.e.,
to output Ṽ such that (1 − ε)Vol(K) ≤ Ṽ ≤ (1 + ε)Vol(K). We assume to
have access to the convex body by means of a membership oracle OK , i.e., for
any point x ∈ Rd, we can query whether x ∈ K. We are interested in the query
complexity of this problem, i.e., we wish to minimize the number of queries made
to the membership oracle. We note here that previous work also consider time-
efficient implementations of algorithms that solve this problem [CCH+19]. We
expect that similar techniques could also be used to implement our algorithm
time-efficiently, but we leave this for future work.

First, observe that if the precision ε is smaller than ε ≤ (3/4)d then any
polylogarithmic overhead in 1/ε is polynomial in the dimension d. Thus, in this
regime we can run a simple adaption of approximate counting on a suitably dense
discretization of B(R) – this will run with O(1/ε) queries, which, when adding
polylogarithmic overhead in 1/ε, already achieves the desired Õ(d3 + d2.25/ε)
query complexity. Thus, without loss of generality, we can focus on the regime in
which ε > (3/4)d.

Previous works make use of the pencil construction, introduced in [LV06],
where the idea is to define a new convex body K ′ ∈ Rd+1 with one extra dimen-
sion, as

K ′ = {x = (x0, x) ∈ Rd+1 : x ∈ K ∧ x0 ∈ [0, 2R] ∧ ∥x∥2 ≤ x0}.

The algorithm now consists of two steps. First, the volume of K ′ is esti-
mated up to multiplicative precision ε/2 using the Markov Chain Monte Carlo
framework, with the partition function defined as

Z(β) =

∫
K′
e−βx0 dx.

For sufficiently large values of β, the value of the partition function is almost
completely determined by the tip of the pencil, whose shape is known to us a
priori. On the other hand, for sufficiently small values of β, the partition function
essentially captures the volume of K ′. These claims are made more precise in
[CCH+19] and the references therein, resulting in Algorithm 4 in said paper
which uses a cooling schedule of length m = Θ̃(

√
d). We can speed up this part

by using our unbiased product estimator in Step 2 of said algorithm. This reduces
the number of steps of the quantum walk by a factor of

√
m = Θ̃(d1/4). Hence,

we can estimate the volume of K ′ with Õ(d3 + d2.25/ε) calls to the membership
oracle.

5.4. Partition function estimation 123

The second step of the algorithm relates the volumes of K and K ′. It relies
on the observation that RVol(K) ≤ Vol(K ′) ≤ 2RVol(K) since [R, 2R] × K ⊆
K ′ ⊆ [0, 2R] ×K. The idea is then to use rejection sampling to obtain an ε/2-
precise multiplicative estimate of the ratio between Vol(K ′) and Vol(K). The
procedure outlined in [CCH+19, Page 29] prepares approximately uniform sam-
ples from K in Õ(d2.5) calls to the membership oracle. These samples can be
trivially converted to samples from [0, 2R] ×K by sampling uniformly from the
interval [0, 2R] and adding the result as an extra dimension. Classically, one
could now take O(1/ε2) uniform samples from [0, 2R]×K, and count the fraction
that is contained in K ′. This yields an ε-precise multiplicative estimate of the
ratio between Vol(K) and Vol(K ′). Quantum approximate counting speeds up
this step and only requires O(1/ε) quantum samples, yielding a total of Õ(d2.5/ε)
queries to the membership oracle in this step of the algorithm.

We claim that the second step can be done with Õ(d2/ε) instead of Õ(d2.5/ε)

queries, essentially because sampling from K requires in fact only Õ(d2) quantum
queries. For simplicity in the proof, we describe a slightly different rejection sam-
pling strategy achieving this complexity. Instead of sampling from [0, 2R] × K
and checking whether the sample is contained in K ′, we sample from K ′ and
check whether the resulting sample is contained in [R, 2R]×K. Using the same
analysis as above, we obtain an ε/2-precise multiplicative estimate of the ratio
between Vol(K) and Vol(K ′), using O(1/ε) quantum samples from K ′. Sampling
approximately uniformly from K ′ can be achieved with the simulated annealing
schedule from [CCH+19, Algorithm 3] that requires Õ(d2) calls to the member-
ship oracle. It remains to check that the obtained samples from K ′ are sufficiently
close to uniform, which they are if we marginally increase the length of the cooling
schedule.

Let ε1 > 0 be fixed later, and let β′ ≤ ε1/(2R). We show that the Gibbs
state at this inverse temperature, denoted by |π′⟩ =

∣∣π′
β′

〉
, is close to the uniform

distribution over K ′, denoted by |π⟩. To that end, recall that Vol(K ′) ≥ Z(β′),
and so

Vol(K ′)(1− ⟨π|π′⟩) =
∫
K′

(
1−

√
Vol(K ′)

Z(β′)
e−β

′x0

)
dx ≤

∫
K′

(
1− e−β

′x0
)

dx

≤
∫
K′
β′x0 dx ≤ 2β′RVol(K ′) ≤ ε1Vol(K

′),

which implies that ∥|π⟩ − |π′⟩∥ = 2
√

1− ⟨π|π′⟩ ≤ √
ε1.

Next, we can prepare |π′⟩ by choosing m = ⌈
√
d log(4dR/ε1)⌉ in [CCH+19,

Algorithm 3], where m denotes the length of the cooling schedule. The final in-
verse temperature then satisfies β′ ≤ 2d(1−1/

√
d)

√
d log(4dR/ε1) ≤ 2de− log(4dR/ε1) =

ε1/(2R). Since in every annealing step we are performing N Gibbs state re-
flections, where N = O(1), we can implement these reflections with precision

124 Chapter 5. Partition function estimation

√
ε1/(mN), to ensure that the total norm error from the imperfections of these

Gibbs state reflections amounts to
√
ε1 as well. Thus, we end up preparing a

uniform quantum sample up to precision 2
√
ε1, with a total number of reflections

through Gibbs states that satisfies O(m log(mN/
√
ε1)) = Õ(

√
d log(1/ε1)).

Now, with ε1 = 1/A2(2N ′)2 = Θ(ε2), whereN ′ = Θ(1/ε) is the number of calls
to the state-preparation unitary in the approximate counting algorithm, we obtain
that the total accumulated error throughout the whole procedure is at most 1/A.
With A a large enough constant, we ensure that the error probability of this step
is negligible. Thus, we obtain that the total number of Gibbs state reflections in
this second part of the procedure becomes Õ(N ′

√
d log(1/ε1)) = Õ(

√
d/ε). Since

every reflection through a Gibbs state can be performed with Õ(d1.5polylog(1/ε))

membership queries, the total number of calls to OK becomes Õ(d2/ε). Thus,
this second step is less costly than the first step, and the resulting total query
complexity becomes Õ(d3 + d2.25/ε).

Part II

Span programs

Chapter 6

The span program formalism

The span program formalism is a method to design quantum algorithms. On very
high level, one takes a computational problem, and embeds it in the geometry of a
Hilbert space by constructing a mathematical object called a span program. The
formalism, then, provides a way to turn this mathematical object into a quantum
algorithm, and analyzes its cost.

Span programs were first introduced in the classical literature in the study
of logspace complexity [KW93]. Later, they were introduced to quantum com-
puting through the study of evaluating boolean formulas [RŠ12]1. They gained
most attention when they were used in a landmark result to prove that the quan-
tum adversary bound is a tight characterization of quantum query complexity
of boolean functions, first up to polylogarithmic factors [Rei09], and later up to
constants [Rei11].

Afterwards, progress was made in two directions. First, the formalism was
extended in several ways, e.g., to include functions over non-boolean alpha-
bets [Jef14], and an approximate version of span programs was introduced [IJ19].
Later, the formalism was also extended to accommodate functions with non-
binary output [BT19].

Second, several explicit constructions for span programs were introduced, most
notably for st-connectivity [BR12; JJK+18], cycle detection and bipartiteness
testing [Āri15; CMB18], k-distinctness [Bel12], formula evaluation [RŠ12; Rei09;
JK17], and oracle identification [Tag22]. Additionally, conversions from classical
algorithms to span programs exist [BT20; BTT22; CMP22], as well as conversions
from quantum algorithms to approximate span programs [Jef14; Jef20; CJO+20].

In this chapter, we give a self-contained introduction to span programs. Along-
side presenting formal proofs, we specifically emphasize building intuition for the
mathematical objects defined, theorems stated and proofs given. Most of this in-
tuition is conveyed through visualizations, and to accommodate those, we change

1The first version of this work appeared in 2007, so it indeed predates the other results
mentioned here.

127

128 Chapter 6. The span program formalism

the notation in this text slightly from the notation used in the existing literature.
We highlight along the way how the new notation relates to that used in prior
works.

Furthermore, in this text, we constrain ourselves to the case of computing
functions with boolean output, i.e., decision problems. It might be possible to
generalize many of the results presented here to the more general setting where
the function output can take more than two values, however such generalizations
are likely not straightforward. We leave these for future work.

This chapter is structured as follows. In Section 6.1, we formally define the for-
malism and show how it can be used to build quantum algorithms. Subsequently,
in Section 6.2, we show how span programs relate to the quantum adversary
bound.

6.1 Definition and basic properties
In this first section, we formally define span programs, and present their basic
properties. The analysis presented here can be found in several previous works,
albeit with different notation [Rei09; Jef14; IJ19; BT20]. The emphasis in this
section is on developing a more intuitive approach and a pictorial interpretation
of the mathematical objects that we define along the way. These interpretations
are the core novelty in this section.

6.1.1 Span programs and witnesses

We start by formally defining span programs.

6.1.1. Definition (Span program). A span program consists of the following
mathematical objects:

1. The state space: A Hilbert space H of finite dimension.
2. The domain: A finite set D, whose elements are referred to as inputs.
3. The input-dependent subspaces : to every input x ∈ D, we associate an

input-dependent subspace H(x) ⊆ H.
4. The input-independent subspace: K ⊆ H.
5. The initial state: |w0⟩ ∈ K⊥, with ∥|w0⟩∥ = 1.

Then P = (H, x 7→ H(x),K, |w0⟩) is a span program on D. We make a distinction
between positive and negative inputs, as such:

1. x ∈ D is a positive input, if |w0⟩ ∈ K+H(x), i.e., if there exist |k⟩ ∈ K and
|h⟩ ∈ H(x) such that |w0⟩ = |k⟩+ |h⟩.

2. x ∈ D is a negative input, if the projection of |w0⟩ onto K⊥ ∩ H(x)⊥ is
non-zero.

6.1. Definition and basic properties 129

We let f : D → {0, 1} with f(x) = 1 if and only if x is a positive input of P , and
we say that P computes f . We say that P is constant if the function it computes
is constant. ◀

The definition presented here differs subtly from definitions used in previous
works. Most notably, in all prior works one of the ingredients of a span program
is a linear operator A called the span program operator, mapping the Hilbert
space H into some auxiliary vector space V [Rei09; Jef14; IJ19; BT20]. The
analysis presented in these works then crucially depends on the null-space of this
operator, i.e., Ker(A) ⊆ H. Our input-independent subspace K ⊆ H plays the
same role as Ker(A) in previous works, hence the choice to use the letter K to
denote this subspace. Using the space K directly instead of having to define the
span program operator A removes the necessity of using an auxiliary space V ,
and thus simplifies the exposition and proofs that accompany the span program
formalism.

Furthermore, in previous works it was always assumed that the domain D is
a subset of strings containing characters from some alphabet, i.e., D ⊆ Sn, where
S is some finite set of symbols. The subspaces H(x) were then required to be
decomposable into n mutually orthogonal subspaces, each related to one symbol
from the input string x ∈ Sn [Rei09; Jef14; IJ19; BT20]. However, the analysis
of most of the results within the span program formalism goes through without
this assumption, so we will only explicitly require this assumption when we need
to.

In order to build some intuition for the span program definition, Figure 6.1.1
provides a visual depiction of the components that make up a span program,
and showcases the difference between positive and negative inputs. It is a simple
linear-algebraic exercise to show that (K+H(x))⊥ = K⊥ ∩H(x)⊥. Thus, we can
easily observe from the picture that x is indeed either a positive or a negative
input.

The visualization in Figure 6.1.1 already gives us a first rough idea of how a
quantum algorithm can distinguish between positive and negative inputs. Sup-
pose one starts in the state |w0⟩, and then iteratively applies two reflections, first
through H(x) and then through K. If x is a positive input, then the visualization
suggests that the entire vector |w0⟩ starts rotating, whereas if x is a negative
input, a non-zero component of |w0⟩ remains stationary. It is this dichotomy
between positive and negative inputs that the span program algorithm exploits,
as we will see in Section 6.1.3.

Furthermore, as is apparent from Definition 6.1.1 as well as from Figure 6.1.1,
span programs naturally encode a decision problem, i.e., there is a natural dis-
tinction between positive and negative inputs. There exist generalizations of span
programs to functions with more than two outcomes, most notably in [LMR+11;
BT20].

Informally speaking, some inputs are more positive or negative than others,

130 Chapter 6. The span program formalism

Positive input Negative input

0

K⊥ ∩H(x)⊥

H(x)

K

|w0⟩
0

K⊥ ∩H(x)⊥

H(x)

K

|w0⟩

Figure 6.1.1: The difference between positive and negative inputs. If x is a
positive input, |w0⟩ ∈ K +H(x), i.e., |w0⟩ lies in the ground plane of the picture
on the left-hand side. Alternatively, if x is a negative input, then |w0⟩ has a
non-trivial overlap with K⊥ ∩ H(x)⊥, and |w0⟩ sticks out of the ground plane in
the picture on the right-hand side.

as we can intuitively see in Figure 6.1.1. For instance in the negative case, if the
overlap of |w0⟩ with the stationary subspace K⊥ ∩H(x)⊥ is very small, then |w0⟩
is very close to the ground plane, and hence we can say that the input is “almost”
positive. Similarly, in the positive case, if K and H(x) are very close together,
i.e., the angle between them is very small, then the rotation of |w0⟩ will be very
slow, and thus we can say that it is “almost” stationary. With this intuition, then,
we can say that x is very close to being a negative input.

The objects we introduce next, dubbed witnesses, serve a dual purpose. First,
they can be used as a certificate for either positivity or negativity, i.e., exhibiting a
witness can be used to prove that a particular input is either positive or negative.
Second, analyzing the size of these witnesses can be used to formally quantify the
above intuition about “how positive” or “how negative” the input is.

6.1.2. Definition (Span program witnesses). Let P = (H, x 7→ H(x),K, |w0⟩)
be a span program on D, and let x ∈ D.

1. Suppose that |w⟩ ∈ H(x), and |w⟩ − |w0⟩ ∈ K. Then, we refer to |w⟩
as a positive witness for x. We refer to ∥|w⟩∥2 as the size of the witness.
For every input x for which at least one positive witness exists, we call the
unique positive witness for x with smallest size the minimal positive witness
for x. Consequently, the minimal positive witness size for x is defined as

w+(x,P) = min{∥|w⟩∥2 : |w⟩ is a positive witness for x}. (6.1.1)

2. Suppose that |w⟩ ∈ K⊥ ∩ H(x)⊥ such that ⟨w0|w⟩ = 1. Then, we refer to
|w⟩ as a negative witness for x, and we refer to ∥|w⟩∥2 as its size. For every
input x for which at least one negative witness exists, we call the unique

6.1. Definition and basic properties 131

negative witness for x with smallest size the minimal negative witness for
x. Consequently, the minimal negative witness size for x is defined as

w−(x,P) = min{∥|w⟩∥2 : |w⟩ is a negative witness for x}. (6.1.2)

In both cases above, we use the convention that the minimum of an empty set is
∞. Finally, we define the positive and negative witness complexity of P , respec-
tively, as

W+(P) = max
x∈D

x positive

w+(x,P), and W−(P) = max
x∈D

x negative

w−(x,P),

where we use the convention that the maximum of an empty set is 0. We define
the span program complexity of P as C(P) =

√
W+(P)W−(P). ◀

In order to check the well-definedness of the above definition, observe that
both in the positive and the negative case, the constraints on the vectors |w⟩ are
linear, and thus the sets of positive and negative witnesses form affine subspaces
of H. Since H is finite-dimensional, these sets are closed, and since taking the
squared norm is continuous, both sets on the right-hand side of Equations (6.1.1)
and (6.1.2) are closed as well. Thus, the minima are well-defined, and are attained
at the unique vectors in the affine subspaces.

Observe that the above well-definedness crucially relies on the Hilbert space
H having finite dimension. It might be possible to generalize Definition 6.1.1 to
allow for infinite-dimensional Hilbert spaces, but it is not clear what benefits that
would bring. Therefore, we will restrict ourselves to the finite-dimensional case
in this text.

We can add these newly-defined objects to our visualization in Figure 6.1.1,
which yields Figure 6.1.2. On the left-hand side, we can see how the existence
of a positive witness certifies that |w0⟩ is indeed in the ground plane, and hence
that x is a positive input. Similarly, on the right-hand side, we observe that the
existence of a negative witness implies that |w0⟩ is indeed not in the ground plane,
and hence x must be a negative input.

Furthermore, from Figure 6.1.2, we can now build some intuition on how the
size of the witnesses plays a role in quantifying “how positive” or “how negative” a
particular input is. Indeed, in the positive case, if the angle between K and H(x)
is very small, then the size of |w⟩ will be very large. Thus, intuitively speaking,
bigger positive witnesses indicate more difficult positive instances. Similarly, in
the negative case, if |w0⟩ has a very small overlap with the stationary subspace
K⊥ ∩ H(x)⊥, then the vector |w⟩ becomes very long. Thus, a higher negative
witness size indicates a more difficult negative instance.

We proceed by formally proving some basic properties of the positive and neg-
ative witnesses, in the following lemma. We also formalize some of the intuitions
introduced in the previous paragraphs.

132 Chapter 6. The span program formalism

Positive input & witness Negative input & witness

0

K⊥ ∩H(x)⊥

H(x)

K

|w0⟩

|w⟩ 0

K⊥ ∩H(x)⊥

H(x)

K

|w0⟩
|w⟩

Figure 6.1.2: Graphical depiction of the positive and negative witnesses. Positive
witnesses are vectors in H(x) that can be reached from |w0⟩ by adding an element
from K, as can be seen in the picture on the left-hand side. Negative witnesses
are vectors in |w⟩ ∈ K⊥ ∩ H(x)⊥, such that the difference vector |w⟩ − |w0⟩ is
orthogonal to |w0⟩ itself, as is shown on the right-hand side.

6.1.3. Lemma (Basic properties of span program witnesses).
Let P be a span program on D, and let x ∈ D. Then,

1. w+(x,P) ≥ 1 and w−(x,P) ≥ 1.
2. w+(x,P) <∞ ⇔ x is positive ⇔ w−(x,P) = ∞.
3. w+(x,P) = ∞ ⇔ x is negative ⇔ w−(x,P) <∞.
4. W+(P), W−(P) and C(P) are all finite.
5. If P is non-constant, then W+(P), W−(P) and C(P) are all at least 1. If

P is constant, then C(P) = 0.

Proof:
For the first claim, suppose that |w⟩ is the minimal positive witness for x. Then,

w+(x,P) = ∥|w⟩∥2 = ∥|w⟩ − |w0⟩∥2 + ∥|w0⟩∥2 ≥ 0 + 1 = 1.

Similarly, suppose that |w⟩ is the minimal negative witness for x. Then,

w−(x,P) = ∥|w⟩∥2 = ∥|w⟩∥2 ∥|w0⟩∥2 ≥ |⟨w|w0⟩|2 = 1,

where we used the Cauchy–Schwarz inequality. This completes the proof of the
first claim.

For the second claim, we supply a list of equivalences that proves the left-hand
equivalence, as follows:

w+(x,P) <∞ ⇔ min{∥|w⟩∥2 : |w⟩ ∈ H(x) ∩ (|w0⟩+K)} <∞
⇔ H(x) ∩ (|w0⟩+K) ̸= ∅
⇔ ∃ |w⟩ ∈ H(x), |k⟩ ∈ K : |w0⟩ = |w⟩+ |k⟩
⇔ |w0⟩ ∈ K +H(x)

⇔ x is a positive input.

6.1. Definition and basic properties 133

Similarly, for the right-hand equivalence, we have

w−(x,P) = ∞ ⇔ min{∥|w⟩∥2 : |w⟩ ∈ K⊥ ∩H(x)⊥, ⟨w|w0⟩ = 1} = ∞
⇔ {|w⟩ ∈ K⊥ ∩H(x)⊥, ⟨w|w0⟩ = 1} = ∅
⇔ ∀ |w⟩ ∈ K⊥ ∩H(x)⊥, ⟨w|w0⟩ = 0,

⇔ |w0⟩ ∈ (K⊥ ∩H(x)⊥)⊥

⇔ |w0⟩ ∈ K +H(x)

⇔ x is a positive input.

In the third equivalence, we used that K⊥∩H(x)⊥ is a linear subspace. Indeed, if
any |w⟩ ∈ K⊥∩H(x)⊥ satisfies ⟨w|w0⟩ = c ̸= 0, then |w′⟩ := |w⟩ /c ∈ K⊥∩H(x)⊥

satisfies ⟨w′|w0⟩ = ⟨w|w0⟩ /c = 1. The contrapositive provides the ⇒-part of the
third equivalence above. This completes the proof of the second claim.

The third claim is simply the negation of the second claim, and therefore
follows easily. The fourth claim also follows easily from claims 2 and 3, and the
definition of the objects W+(P), W−(P), and C(P) in Definition 6.1.1. Finally,
for the fifth claim, we observe that if P is non-constant, then there exists at
least one positive and negative input, and thus the positive and negative witness
complexity are at least 1. Similarly, if P is constant, then the positive or negative
witness complexity is 0, and thus so is C(P). This completes the proof. 2

We end this introductory section with the construction of some particular
span programs, which we will use as running examples through the rest of this
chapter. The reader is encouraged to verify the claimed properties of these span
programs in the statements below.

6.1.4. Example (Identity span program).
Let D = {0, 1}. Let H = Span{|∗⟩},K = {0}, |w0⟩ = |∗⟩, and for all x ∈ D,

H(x) =

{
H, if x = 1,

{0}, if x = 0.

Then P = (H, x 7→ H(x),K, |w0⟩) is a span program that evaluates the identity
function f : D → {0, 1} with f(x) = x, and W+(P) = W−(P) = C(P) = 1. ◁

6.1.5. Example (Span program evaluating the AND-function).
Let D = {0, 1}n. Let H = Cn, K = {0}, for all x ∈ D, H(x) = Span{|j⟩ : xj = 1},
and

|w0⟩ =
1√
n

n∑
j=1

|j⟩ .

134 Chapter 6. The span program formalism

Then P = (H, x 7→ H(x),K, |w0⟩) is a span program that evaluates the AND-
function on n bits, and for all x ∈ D,

w+(x,P) =

{
∞, if |x| < n,

1, if |x| = n,
and w−(x,P) =

{
n

n−|x| , if |x| < n,

∞, if |x| = n,

which implies that W+(P) = 1, W−(P) = n and C(P) =
√
n. ◁

6.1.6. Example (Span program evaluating the OR-function).
Let D = {0, 1}n. Let H = Cn, for all x ∈ D, H(x) = Span{|j⟩ : xj = 1},

|w0⟩ =
1√
n

n∑
j=1

|j⟩ ,

and K = Span{|w0⟩}⊥. Then, P = (H, x 7→ H(x),K, |w0⟩) is a span program
that evaluates the OR-function on n bits, and for all x ∈ D,

w+(x,P) =

{
∞, if |x| = 0,
n
|x| , if |x| ≥ 1,

and w−(x,P) =

{
1, if |x| = 0,

∞, if |x| ≥ 1,

which implies that W+(P) = n, W−(P) = 1 and C(P) =
√
n. ◁

This concludes the definition of span programs and their witnesses. At this
point, we have only introduced some vague intuitive idea about the hardness of
instances, and how it relates to the size of the corresponding witnesses. The fol-
lowing subsection develops this idea further, and formalizes it into an operational
interpretation of the witness sizes.

6.1.2 Operational interpretation

In the previous subsection we already hinted at the existence of a quantum algo-
rithm that distinguishes between positive and negative inputs of a span program.
In this subsection, we further develop this idea, and prove the core theoretical
result that makes this algorithm possible. The main result of this section is Theo-
rem 6.1.13, which provides an operational interpretation of the witnesses defined
in Definition 6.1.2.

We start by introducing a purely linear-algebraic concept, which we refer to
as an inverse projection.

6.1.7. Definition (Inverse projection). Let H be a Hilbert space, with a linear
subspace A ⊆ H. Let |ψ⟩ ∈ H, such that |ψ⟩ ̸∈ A⊥. We define the inverse
projection of |ψ⟩ onto A as

Π
(−1)
A (|ψ⟩) = ∥|ψ⟩∥2

∥ΠA |ψ⟩∥2
· ΠA |ψ⟩ .

We refer to Π
(−1)
A : H \ A⊥ → A as the inverse projective map onto A. ◀

6.1. Definition and basic properties 135

Since we assumed that |ψ⟩ ̸∈ A⊥, we have ΠA |ψ⟩ ̸= 0, and thus Π
(−1)
A (|ψ⟩)

is well-defined. Moreover, Π(−1)
A is not a linear operator, which can already be

observed from the fact that it is only well-defined on the set H \ A⊥, which is
not a linear subspace of H. To emphasize that the inverse projective map onto
A is merely a function, and not a linear operator, we write the argument of
the function in parentheses behind Π

(−1)
A , i.e., we write Π

(−1)
A (|ψ⟩) rather than

Π
(−1)
A |ψ⟩.

Next, we prove a variational characterization of inverse projections. The state-
ment of the following lemma already indicates a connection to the definition of
the witnesses, in Definition 6.1.2.

6.1.8. Lemma (Variational characterization of inverse projections). Let H be a
Hilbert space, with a linear subspace A ⊆ H. Let |ψ⟩ ∈ H, such that |ψ⟩ ̸∈ A⊥.
Then,

∥|ψ⟩∥2 ∥ΠA |ψ⟩∥−1 = ∥Π(−1)
A (|ψ⟩)∥ = min{∥|ϕ⟩∥ : |ϕ⟩ ∈ A, ⟨ϕ|ψ⟩ = ∥|ψ⟩∥2},

and |ϕ⟩ = Π
(−1)
A (|ψ⟩) is the unique vector attaining the minimum on the right-

hand side.

Before we give a formal proof of Lemma 6.1.8, we provide a slightly naive
geometric depiction of inverse projections in Figure 6.1.3. In the picture, we can
easily deduce that the inner product between Π

(−1)
A (|ψ⟩) and |ψ⟩ is equal to the

inner product of |ψ⟩ with itself, which is equal to ∥|ψ⟩∥2. We also have two
similar triangles, i.e., △OQP ∼ △OPR. Thus, using elementary geometry, we
find OP/OQ = OR/OP , and so

∥|ψ⟩∥2 ∥ΠA |ψ⟩∥−1 =
OP 2

OQ
= OP · OP

OQ
= OP · OR

OP
= OR = ∥Π(−1)

A (|ψ⟩)∥.

A

|ψ⟩

ΠA |ψ⟩

Π
(−1)
A (|ψ⟩)

O

P
Q

R

Figure 6.1.3: Graphical depiction of the inverse projection.

We now proceed by formalizing this proof sketch of Lemma 6.1.8.
Proof of Lemma 6.1.8:
The left equality follows directly from the definition of the inverse projection, so

136 Chapter 6. The span program formalism

we focus on the right equality. To that end, for any vector |ϕ⟩ in the set on the
right-hand side, we have

∥|ψ⟩∥2 = ⟨ϕ|ψ⟩ = ⟨ϕ|ΠA |ψ⟩+ ⟨ϕ|ΠA⊥ |ψ⟩ = ⟨ϕ|ΠA |ψ⟩ ,

where in the last equality, the last term vanishes because |ϕ⟩ ∈ A by definition.
Thus, requiring that ⟨ϕ|ψ⟩ = ∥|ψ⟩∥2 is equivalent to imposing the constraint that
⟨ϕ|ΠA |ψ⟩ = ∥|ψ⟩∥2. We can directly verify that one such vector |ϕ⟩ is indeed
Π

(−1)
A (|ψ⟩), and it follows that all vectors |ϕ⟩ are in the affine subspace

Π
(−1)
A (|ψ⟩) + (A ∩ Span{ΠA |ψ⟩}⊥).

Since Π
(−1)
A (|ψ⟩) ∈ Span{ΠA |ψ⟩}, it is orthogonal to all vectors in the subspace

A∩Span{ΠA |ψ⟩}⊥. Thus, the unique shortest vector in the above affine subspace
is indeed Π

(−1)
A (|ψ⟩) itself, completing the proof. 2

With the variational characterization in mind, we can now prove a connection
between the inverse projection and the witnesses of a span program.

6.1.9. Lemma. Let P = (H, x 7→ H(x),K, |w0⟩) be a span program on D, and
let x ∈ D be an input.

1. If x is a negative input for P, then the minimal negative witness for x is
the vector Π

(−1)

K⊥∩H(x)⊥
(|w0⟩).

2. If x is a positive input for P, then the minimal positive witness for x is the
vector Π

(−1)
H(x)∩(K⊕Span{|w0⟩})(|w0⟩).

Proof:
The first claim follows directly from the variational characterization of inverse pro-
jections, i.e., Lemma 6.1.8, the definition of negative witnesses in Definition 6.1.2,
and the property that ∥|w0⟩∥ = 1, as defined in Definition 6.1.1.

For the positive case, using that |w0⟩ ∈ K⊥ and ∥|w0⟩∥ = 1, we observe that
for any vector |w⟩ ∈ H, we have

|w⟩ is a positive witness for x
⇔ |w⟩ ∈ H(x) ∧ |w⟩ − |w0⟩ ∈ K
⇔ |w⟩ ∈ H(x) ∩ (K ⊕ Span{|w0⟩}) ∧ ⟨w|w0⟩ = 1.

Then, the second claim also follows from the variational characterization of inverse
projections, i.e., Lemma 6.1.8. This completes the proof. 2

Now that we have introduced the concept of inverse projections, we proceed by
developing the technique we employ to differentiate between positive and negative
inputs. The core idea is to alternate reflections through H(x) and K. We formally
define the unitary that performs these reflections consecutively, and we take a look
at its eigendecomposition.

6.1. Definition and basic properties 137

6.1.10. Definition (Span program unitary and ideal phase variable).
Let P = (H, x 7→ H(x),K, |w0⟩) be a span program on D, and let x ∈ D. We
define the span program unitary for input x as

U(x,P) = (2ΠK − I)(2ΠH(x) − I).

Next, let S = {ϕ ∈ (−1/2, 1/2] : e2πiϕ ∈ σ(U(x,P))}, where σ(U(x,P)) denotes
the spectrum of U(x,P). We write Eϕ = {|ψ⟩ ∈ H : U(x,P) |ψ⟩ = e2πiϕ |ψ⟩}, for
all values ϕ ∈ (−1/2, 1/2], i.e., Eϕ = {0} when ϕ ̸∈ S. The eigendecomposition
of the span program unitary becomes

U(x,P) =
∑
ϕ∈S

e2πiϕΠEϕ
.

Finally, we define the random variable Φ, referred to as the ideal phase variable
on input x as

P [Φ = ϕ] =
∥∥ΠEϕ

|w0⟩
∥∥2 .

We refer to S as the support of Φ, and denote it by supp(Φ). ◀

First, we check that Φ is well-defined. Since U(x,P) is acting on a finite-
dimensional Hilbert space, S is finite, and thus Φ is a discrete random variable
with support on S. Moreover, the eigenspaces Eϕ, with ϕ ∈ S form an orthogonal
decomposition of the Hilbert space H, and thus if we sum all the probabilities
P[Φ = ϕ] with ϕ ∈ S, we obtain ∥|w0⟩∥2, which is 1 by definition. Thus, Φ is
indeed a well-defined random variable.

Note that the span program unitary U(x,P) depends on the input x, and
hence so do the eigenspaces Eϕ and, in particular, the ideal phase variable Φ.
Therefore, perhaps the notation Φ(x,P) would be more apt, but it has the down-
side of making the expressions more cumbersome later on. Thus, in the remainder
of this text, we will leave the ideal phase variable’s dependence on the input x
implicit.

Since the span program unitary is a product of two reflections, we take a closer
look at the properties of such unitaries. To that end, we recall a classic linear-
algebraic result known as Jordan’s lemma [Jor75]. A more modern statement of
this lemma and a proof sketch can also be found in [Sze04, Theorem 1]. For our
purposes, however, we need some more subtle consequences of Jordan’s lemma
than those proved in [Sze04], and therefore we provide a self-contained proof here.

6.1.11. Lemma (Jordan’s lemma). Let H be a finite-dimensional Hilbert space,
and let A,B ⊆ H be linear subspaces. Let U = (2ΠB − I)(2ΠA − I). For every
ϕ ∈ (−1/2, 1/2], let Eϕ = {|ψ⟩ ∈ H : U |ψ⟩ = e2πiϕ |ψ⟩}. Then, we can find
a k ∈ N, such that for all j ∈ [k − 1], we can find a two-dimensional subspace
Rj ⊆ H and an angle θj ∈ (0, π), such that the following properties hold:

138 Chapter 6. The span program formalism

1. The 1-eigenspace of U is R0 := E0 = (A ∩B)⊕ (A⊥ ∩B⊥). We let θ0 = 0.
2. The −1-eigenspace of U is Rk := E1/2 = (A⊥ ∩ B) ⊕ (A ∩ B⊥). We let

θk = π.
3. For all j ∈ [k]0, U leaves Rj invariant and it acts as a rotation over angle

θj on it.
4. Let ϕ ∈ (0, 1/2). We have the decompositions

H =
k⊕
j=0

Rj, Eϕ ⊕ E−ϕ =
k−1⊕
j=1

θj=2πϕ

Rj,

A =
k⊕
j=0

(A ∩Rj), B =
k⊕
j=0

(B ∩Rj),

and similarly for A⊥ and B⊥. Moreover, for all j ∈ [k − 1], we can decom-
pose Rj into sets of one-dimensional components, i.e.,

Rj = (A ∩Rj)⊕ (A⊥ ∩Rj) = (B ∩Rj)⊕ (B⊥ ∩Rj).

The angle between A∩Rj and B ∩Rj is θj/2, and their intersection is {0}.

Proof:
We consider the operator ΠBΠA, and write its singular value decomposition as

ΠBΠA =
r∑
j=1

sj |ψj⟩ ⟨ϕj| ,

where we order the terms such that 0 < s1 ≤ · · · ≤ sr ≤ 1. Next, we define

1. k = |{j ∈ [r] : sj ̸= 1}|+ 1.
2. For all j ∈ [k − 1], we define the subspace Rj = Span{|ψj⟩ , |ϕj⟩}.
3. For all j ∈ [k − 1], we let θj = 2arccos(sj) ∈ (0, π).

We now check that all claims from the lemma statement are satisfied. For the
first claim, observe that we have, for all |ψ⟩ ∈ H,

(2ΠB − I)(2ΠA − I) |ψ⟩ = |ψ⟩ ⇔ 4ΠBΠA |ψ⟩ − 2ΠA |ψ⟩ − 2ΠB |ψ⟩+ |ψ⟩ = |ψ⟩
⇔ ΠB(ΠA − I) |ψ⟩+ (I − ΠB)ΠA |ψ⟩ = 0 ⇔ ΠBΠA⊥ |ψ⟩ = −ΠB⊥ΠA |ψ⟩
⇔ ΠBΠA⊥ |ψ⟩ = ΠB⊥ΠA |ψ⟩ = 0.

Now, observe that ΠBΠA⊥ |ψ⟩ = 0 is equivalent to either |ψ⟩ ∈ A, or 0 ̸=
ΠA |ψ⟩ ∈ B⊥. This can be concisely rephrased to |ψ⟩ ∈ A⊕ (A⊥∩B⊥). Similarly
ΠB⊥ΠA |ψ⟩ = 0 is equivalent to |ψ⟩ ∈ A⊥ ⊕ (A ∩B). Thus,

U |ψ⟩ = |ψ⟩
⇔ |ψ⟩ ∈ (A⊕ (A⊥ ∩B⊥)) ∩ (A⊥ ⊕ (A ∩B)) = (A ∩B)⊕ (A⊥ ∩B⊥).

6.1. Definition and basic properties 139

This proves the first claim. Next, observe that (2ΠA − I)(2ΠB⊥ − I) = −U , and
thus we obtain the second claim from the first one by substituting B for B⊥.

Now, for all j ∈ [k − 1], we have |ϕj⟩ ∈ A and |ψj⟩ ∈ B, and so

(2ΠB − I)(2ΠA − I) |ϕj⟩ = (2ΠB − I) |ϕj⟩ = 2ΠBΠA |ϕj⟩ − |ϕi⟩
= 2sj |ψj⟩ − |ϕj⟩ ,

(2ΠB − I)(2ΠA − I) |ψj⟩ = (2ΠB − I)(2ΠAΠB |ψj⟩ − |ψj⟩)
= (2ΠB − I)(2sj |ϕj⟩ − |ψj⟩) = 4ΠBΠA |ϕj⟩ − 2sj |ϕj⟩ − |ψj⟩
= (4s2j − 1) |ψj⟩ − 2sj |ϕj⟩ .

This implies that

U(|ψj⟩ − e±iθj/2 |ϕj⟩) = (4s2j − 1− 2e±iθj/2sj) |ψj⟩ − (2sj − e±iθj/2) |ϕj⟩

=

[
4

(
eiθj/2 + e−iθj/2

2

)2

− 1− 2e±iθj/2
(
eiθj/2 + e−iθj/2

2

)]
|ψj⟩

−
[
2

(
eiθj/2 + e−iθj/2

2

)
− e±iθj/2

]
|ϕj⟩

=
[
2 + eiθj + e−iθj − 1− 1− e±iθj

]
|ψj⟩ − e∓iθj/2 |ϕj⟩

= e∓iθj |ψj⟩ − e∓iθj/2 |ϕj⟩ = e∓iθj
[
|ψj⟩ − e±iθj/2 |ϕj⟩

]
.

Thus, for all j ∈ [k − 1], we have found two eigenvectors of U in Rj, with
eigenvalues e±iθj . Therefore, indeed U acts as a rotation on Rj over angle θj.
This proves claim 3.

Next, we observe that

r∑
j=1

s3j |ϕj⟩ ⟨ψj| = (ΠBΠA)(ΠBΠA)
†ΠBΠA = ΠBΠAΠBΠA = (ΠBΠA)

2

=
r∑

j,k=1

sjsk |ψj⟩ ⟨ϕj|ψk⟩ ⟨ϕk| .

Thus, for all j, k ∈ [r], we obtain that ⟨ϕj|ψk⟩ = sjδj,k. Since ⟨ϕj|ϕk⟩ = ⟨ψj|ψk⟩ =
δj,k by the properties of the singular value decomposition, we deduce that Rj’s
are mutually orthogonal.

Next, extend the right singular vectors {|ϕ1⟩ , . . . , |ϕr⟩} of ΠBΠA to a basis
{|ϕ1⟩ , . . . , |ϕn⟩} for A. Observe that now {|ψk⟩ , . . . , |ψr⟩} is a basis for A ∩ B,

140 Chapter 6. The span program formalism

and {|ψr+1⟩ , . . . , |ψn⟩} is a basis for A ∩B⊥. Moreover,

ΠB⊥ΠA = ΠA − ΠBΠA =
n∑
j=1

|ϕj⟩ ⟨ϕj| −
r∑
j=1

sj |ψj⟩ ⟨ϕj|

=
k−1∑
j=1

(|ϕj⟩ − sj |ψj⟩) ⟨ϕj|+
n∑

j=r+1

|ϕj⟩ ⟨ϕj|

=
k−1∑
j=1

√
1− s2j

|ϕj⟩ − sj |ψj⟩√
1− s2j

⟨ϕj|+
n∑

j=r+1

|ϕj⟩ ⟨ϕj| ,

where the final expression is a singular value decomposition of ΠB⊥ΠA. We can
also express ΠBΠA⊥ and ΠA⊥ΠB⊥ in a similar way. All of the resulting expressions
start with k−1 terms, each of which acts on the rotation space Rj with j ∈ [k−1],
and then add a projection onto the intersection of the two spaces projected upon.
Since ΠAΠB + ΠA⊥ΠB + ΠAΠB⊥ + ΠA⊥ΠB⊥ = I, no non-zero element of H is in
the kernel of all four operators, and thus we find that H can be decomposed into
the spaces Rj, for j ∈ [k]0.

Next, for all ϕ ∈ (0, 1/2), we know that the eigenspaces Eϕ and E−ϕ must
be orthogonal to R0 and Rk, since eigenspaces with different eigenvalues are
orthogonal to one another. Therefore, we have that Eϕ⊕E−ϕ must be contained
in the vector sum of the spaces Rj, where j ∈ [k − 1]. Since every space Rj

is spanned by two eigenvectors of U with a conjugate pair of eigenvalues, these
spaces must coincide and we find the expression from the lemma statement.

Using the basis we constructed for A, the decomposition of A from the lemma
statement follows directly. Using similar constructions of bases, the same decom-
position results can be shown for B, A⊥ and B⊥. Next, observe that Span{|ϕj⟩} =
A∩Rj, and Span{|ϕj⟩ − sj |ψj⟩} = A⊥ ∩Rj. Similarly, we can find a decomposi-
tion of Rj into one-dimensional spaces B∩Rj and B⊥∩Rj. Finally, observe that
⟨ϕj|ψj⟩ = sj, which implies that the angle between the two subspaces A∩Rj and
B ∩Fj is arccos(sj) = θj/2. Finally, sj ̸= 0, and so (A∩Rj)∩ (B ∩Rj) = {0}. 2

Note that the angles θ1, . . . , θk−1 in Jordan’s lemma need not be distinct, i.e.,
there might be several rotation spaces Rj that rotate over the same angle. In
that case, the choice of these rotation spaces is not unique. Furthermore, observe
that the spaces R1, . . . , Rk−1 are all two-dimensional, but this is not necessarily
the case for R0 and Rk. These could even be the trivial subspace, {0}.

We now use Jordan’s lemma to understand the span program operator, as
defined in Definition 6.1.10. To that end, recall that we defined the span program
unitary as U(x,P) = (2ΠK − I)(2ΠH(x)− I), and so if we choose B = K and A =
H(x), then we can apply Jordan’s lemma to this unitary. Thus, using the notation
from Lemma 6.1.11, we observe that the span program unitary decomposes H into
k + 1 subspaces R0, . . . , Rk, and for each j ∈ [k]0, the operator acts on Rj as a

6.1. Definition and basic properties 141

rotation over angle θj ∈ [0, π]. Moreover, K and H(x) can be decomposed into
the subspaces K∩Rj and H(x)∩Rj, respectively, where j ranges from 0 to k. A
visualization of these decompositions is presented in Figure 6.1.4.

R0

0

K ∩H(x)

∣∣∣w(0)
+

〉

⊕

0

K⊥ ∩H(x)⊥

∣∣∣w(0)
0

〉

∣∣w−
〉

⊕

R1

K

H(x)

θ1
2

K⊥

H(x)⊥

|w(1)
0 ⟩

|w(1)
+ ⟩

· · ·

⊕ · · · ⊕ ⊕

Rk−1

K

H(x)

θk−1

2

K⊥

H(x)⊥ |w(k−1)
0 ⟩ |w(k−1)

+ ⟩

Rk

0

K ∩H(x)⊥

⊕

0

K⊥ ∩H(x)

∣∣∣w(k)
0

〉
∣∣∣w(k)

+

〉

Figure 6.1.4: Visualization of H, K, H(x), |w0⟩, a positive witness |w+⟩ and a
negative witness |w−⟩, in light of the decompositions provided by Jordan’s lemma.

Next, we investigate how the initial state |w0⟩, and the negative and positive
witnesses can be visualized in Figure 6.1.4. To that end, observe that |w0⟩ ∈ K⊥.
Since Jordan’s lemma tells us that we can decompose K⊥ into the subspaces
K⊥∩Rj for j ∈ [k]0, we can decompose |w0⟩ into its components |w(j)

0 ⟩ ∈ K⊥∩Rj.
Additionally, we observe by Definition 6.1.1 that |w(0)

0 ⟩ is zero if and only if the
input x is a positive input. Additionally, every negative witness |w−⟩ lives in
K⊥ ∩H(x)⊥, which is a subspace of R0, as can be seen in Figure 6.1.4.

Furthermore, every positive witness |w+⟩ is an element of H(x), and as such
can be decomposed into its components |w(j)

+ ⟩ ∈ H(x) ∩ Rj. Moreover, |w+⟩ −
|w0⟩ ∈ K by the definition of positive witnesses, and therefore we know that in
each of the subspaces Rj, |w(j)

+ ⟩ − |w(j)
0 ⟩ ∈ K. We can see from the visualization,

i.e., Figure 6.1.4, that there is only one possible choice for |w(j)
+ ⟩ for all j ∈ [k],

which is the inverse projection of |w(j)
0 ⟩ onto H(x) ∩ Rj. Hence, any freedom in

choosing positive witnesses relies on the choice of |w(0)
+ ⟩, which can be any vector

in K ∩H(x). It then follows immediately that we minimize the size of a positive
witness by choosing |w(0)

+ ⟩ = 0.
Finally, observe that for all j ∈ [k−1], the angle between the subspace K∩Rj

and H(x) ∩ Rj provide an interesting relation between the norms of |w(j)
0 ⟩ and

|w(j)
+ ⟩. Indeed, we can see using Figure 6.1.4 and some elementary geometry that

sin(θj/2) =
∥|w(j)

0 ⟩∥
∥|w(j)

+ ⟩∥
.

142 Chapter 6. The span program formalism

These observations give us a handle on expressing the size of the minimal witnesses
in terms of the projections of |w0⟩ on the subspaces Rj. This is the objective of
the following lemma.

6.1.12. Lemma. Let P = (H, x 7→ H(x),K, |w0⟩) be a span program on D, and
let x ∈ D be an input. Let R0, . . . , Rk and θ0, . . . , θk ∈ [0, π] be as in Jordan’s
lemma, i.e., Lemma 6.1.11, applied to the span program operator U(x,P). For
all j ∈ [k]0, let |w(j)

0 ⟩ = ΠRj
|w0⟩. Then,

1. Suppose x is a negative input. Then |w(0)
0 ⟩ ≠ 0, the minimal negative witness

is exactly Π
(−1)
R0

(|w0⟩), and its size is

w−(x,P) =
1

∥|w(0)
0 ⟩∥2

.

2. Suppose x is a positive input. Then |w(0)
0 ⟩ = 0. Let |w+⟩ ∈ H, and for all

j ∈ [k]0, let |w(j)
+ ⟩ = ΠRj

|w+⟩. Then, |w+⟩ is a positive witness if and only
if |w(0)

+ ⟩ ∈ K ∩H(x), and for all j ∈ [k],

|w(j)
+ ⟩ = Π

(−1)
Rj∩H(x)(|w

(j)
0 ⟩).

Moreover, the minimal positive witness satisfies |w(0)
+ ⟩ = 0, and its size is

w+(x,P) =
k∑
j=1

∥|w(j)
0 ⟩∥2

sin2(θj/2)
.

Proof:
We start by proving claim 1. To that end, suppose that x is a negative input.
From Definition 6.1.1, we obtain that |w(0)

0 ⟩ ̸= 0. Next, we use Jordan’s lemma
to express R0 = (K ∩ H(x)) ⊕ (K⊥ ∩ H(x)⊥). Since |w0⟩ ∈ K⊥, we find the
simplification ΠR0 |w0⟩ = ΠK⊥∩H(x)⊥ |w0⟩. Thus,

Π
(−1)
R0

(|w0⟩) =
1

∥ΠR0 |w0⟩∥2
ΠR0(|w0⟩) =

1∥∥ΠK⊥∩H(x)⊥ |w0⟩
∥∥2ΠK⊥∩H(x)⊥ |w0⟩

= Π
(−1)

K⊥∩H(x)⊥
(|w0⟩),

which by Lemma 6.1.9 is the minimal negative witness. It then follows from
Lemma 6.1.8 that w−(x,P) = ∥Π(−1)

R0
(|w0⟩)∥2 = 1/∥ΠR0 |w0⟩ ∥2 = 1/∥|w(0)

0 ⟩∥2,
proving claim 1.

For the second claim, suppose that x is a positive input. Then, from Def-
inition 6.1.1 we immediately obtain that |w(0)

0 ⟩ = 0, and we have the following

6.1. Definition and basic properties 143

sequence of equivalences:

|w+⟩ is a positive witness for x
⇔ |w+⟩ ∈ H(x) ∧ |w+⟩ − |w0⟩ ∈ K
⇔ ∀j ∈ [k]0, |w(j)

+ ⟩ ∈ H(x) ∩Rj ∧ |w(j)
+ ⟩ − |w(j)

0 ⟩ ∈ K ∩Rj

⇔ |w(0)
+ ⟩ ∈ (H(x) ∩R0) ∩ (K ∩R0) = K ∩H(x)

∧ ∀j ∈ [k], |w(j)
+ ⟩ ∈ H(x) ∩Rj ∧ ⟨w(j)

+ |w(j)
0 ⟩ = ∥|w(j)

0 ⟩∥2,

where in the final step, we used that K∩Rj is one-dimensional, and hence equal
to Span{|w(j)

0 ⟩}⊥ ∩Rj. From Lemma 6.1.8, we obtain that for j ∈ [k], the in-
verse projection Π

(−1)
H(x)∩Rj

(|w(j)
0 ⟩) is a vector that satisfies these criteria. Further-

more, any other vector that satisfies these criteria, must also satisfy the relation
|w(j)

+ ⟩ − Π
(−1)
H(x)∩Rj

(|w(j)
0 ⟩) ∈ (H(x) ∩Rj) ∩ (K ∩Rj). From Lemma 6.1.11, we ob-

tain that this subspace is {0} for all j ∈ [k], and thus we obtain that the inverse
projection is the only possible choice for |w(j)

+ ⟩. This completes the proof for the
characterization of the positive witnesses.

The norm of such a positive witness |w+⟩ is

∥|w+⟩∥2 =
k∑
j=0

∥|w(j)
+ ⟩∥2 = ∥|w(0)

+ ⟩∥2 +
k∑
j=1

∥Π(−1)
H(x)∩Rj

(|w(j)
0 ⟩)∥2.

It is clear that this norm is minimized when we choose |w(0)
+ ⟩ = 0, and using

Lemma 6.1.8, the resulting expression then becomes

w+(x,P) =
k∑
j=1

∥|w(j)
0 ⟩∥4

∥ΠH(x)∩Rj
|w(j)

0 ⟩∥2
=

k∑
j=1

∥|w(j)
0 ⟩∥2

sin2(θj/2)
.

In the last equality, we used that |w(j)
0 ⟩ ∈ K⊥ ∩ Rj, and that for all j ∈ [k − 1],

the angle between K∩Rj and H(x)∩Rj is θj/2 by Lemma 6.1.11. On the other
hand, when j = k, we have that |w(k)

0 ⟩ ∈ K⊥ ∩H(x), and thus we easily verify
that the same relation holds. This completes the proof. 2

The final observation in this section is that the size of |w(j)
0 ⟩ = ΠRj

|w0⟩ is re-
lated to the probability of the ideal phase variable Φ attaining the value θj/(2π).
More precisely, we can think of the ideal phase variable as the result of the follow-
ing randomized procedure: we select a subspace Rj with probability ∥ΠRj

|w0⟩ ∥2,
and then output the θj/(2π). With this connection in mind, we can translate the
expressions for the witness sizes derived in Lemma 6.1.12, as statistical properties
of Φ. This is the objective of the following theorem.

144 Chapter 6. The span program formalism

6.1.13. Theorem (Operational interpretation of the witness sizes).
Let P be a span program, and Φ its ideal phase variable on input x. Then,

w−(x,P) =
1

P [Φ = 0]
, and w+(x,P) = E

[
1

sin2 (πΦ)

]
.

Proof:
Let U(x,P) be the span program unitary, and decompose H by applying Jordan’s
lemma, i.e., Lemma 6.1.11, to the span program unitary U(x,P). That is, let
the subspaces R0, . . . , Rk be such that for all j ∈ [k]0, U(x,P) acts on Rj as a
rotation over angle θj ∈ [0, π], where 0 = θ0 < θ1 ≤ · · · ≤ θk−1 < θk = π. As
before, we write |w(j)

0 ⟩ = ΠRj
|w0⟩, for all j ∈ [k]0.

We first focus on the claim on the left-hand side. To that end, observe that

P [Φ = 0] = ∥ΠE0 |w0⟩∥2 = ∥ΠR0 |w0⟩∥2 = ∥|w(0)
0 ⟩∥2.

If x is a positive input, then P[Φ = 0] evaluates to 0, and indeed we have that
w−(x,P) = ∞ by Lemma 6.1.3. If x is a negative input, then the equation follows
directly from claim 1 in Lemma 6.1.12.

We now focus on the claim on the right-hand side. Suppose that x is a
negative input. Then, P[Φ = 0] ̸= 0, and thus the expectation evaluates to ∞.
From Lemma 6.1.3, we obtain that w+(x,P) = ∞ too, proving the validity of the
equation in the negative case.

Thus, it remains to focus on the situation where x is a positive input. Then,
P[Φ = 0] = 0, and so

E
[

1

sin2(πΦ)

]
=

∑
ϕ∈supp(Φ)

P[Φ = ϕ]

sin2(πΦ)
=

∑
ϕ∈supp(Φ)

ϕ>0

∥ΠEϕ⊕E−ϕ
|w0⟩ ∥2

sin2(πϕ)
.

From Lemma 6.1.11, we know that we can decompose Eϕ⊕E−ϕ into the rotation
spaces Rj that satisfy ϕ = 2πθj. Thus, we rewrite the right-hand side to

E
[

1

sin2(πΦ)

]
=

k∑
j=1

∥ΠRj
|w0⟩ ∥2

sin2(θj/2)
=

k∑
j=1

∥|w(j)
0 ⟩∥2

sin2(θj/2)
= w+(x,P),

where we used claim 2 from Lemma 6.1.12 to conclude the final equality. This
completes the proof. 2

On a broader level, we can interpret Theorem 6.1.13 as a connection between
a purely linear-algebraic object, i.e., the witnesses, and an operational object, i.e.,
the ideal phase variable. The result we presented here is the minimum depth in
which we must understand this connection in order to develop the span program
algorithm.

6.1. Definition and basic properties 145

We remark here that the above intuitive picture directly leads to other inter-
esting characterizations as well, e.g., it is an instructive exercise for the reader to
show that the following relations hold:∥∥ΠH(x) |w0⟩

∥∥2 = E[sin2(πΦ)],
∥∥ΠKΠH(x) |w0⟩

∥∥2 = E[cos2(πΦ) sin2(πΦ)],
(6.1.3a)∥∥ΠH(x)⊥ |w0⟩

∥∥2 = E[cos2(πΦ)],
∥∥ΠK⊥ΠH(x)⊥ |w0⟩

∥∥2 = E[cos4(πΦ)]. (6.1.3b)

In Section 7.1.3, we delve more deeply into the connections between the linear-
algebraic decomposition of |w0⟩ and the operational interpretation via the ideal
phase variable Φ.

Operationally, we can interpret the ideal phase variable Φ as the outcome of
an ideal run of phase estimation, i.e., a run of phase estimation where the pre-
cision is infinite. Hence, the size of the witnesses tell us something about the
outcome probabilities of an ideal run of phase estimation. This is ultimately the
fundamental idea that enables us to develop a quantum algorithm that distin-
guishes between positive and negative inputs, which is the objective of the next
subsection.

6.1.3 Span program algorithm

In the previous subsection, we have seen how the size of the witnesses can be
interpreted in terms of the ideal phase variable. Operationally, the ideal phase
variable is the outcome of phase estimation if we were to run it with infinite
precision.

In any explicit quantum algorithm, however, we can only run phase estimation
with finite precision, which means that truncation errors come into play. In the
next theorem we analyze these finite precision effects in more detail.

6.1.14. Theorem (Operational interpretation with finite precision). Let P be a
span program, and Φ its ideal phase variable on input x. Next, let k ∈ N and
let Φk be the outcome of a run of phase estimation with k ∈ N bits of precision,
unitary U(x,P) and initial state |w0⟩. Then,

1

w−(x,P)
= P [Φ = 0] ≤ P [Φk = 0] ≤ 1

22k
E
[

1

sin2(πΦ)

]
=
w+(x,P)

22k
.

Proof:
First, we decompose |w0⟩ into the eigenbasis of U(x,P), i.e., we write

|w0⟩ =
∑

ϕ∈supp(Φ)

αϕ|w(ϕ)
0 ⟩, where U(x,P)|w(ϕ)

0 ⟩ = e2πiϕ|w(ϕ)
0 ⟩.

146 Chapter 6. The span program formalism

Now, recall the phase estimation algorithm, Algorithm 2.4.3. We observe from
its analysis that the probability of obtaining the measurement outcome 0 is

P [Φk = 0] =
∑

ϕ∈supp(Φ)

|αϕ|2
sin2(π2kϕ)

22k sin2(πϕ)
,

where we can take limits if the denominator equates to 0. Now, by the definition
of the ideal phase variable in Definition 6.1.10, for all ϕ ∈ supp(Φ), we have
|αϕ|2 =

∥∥ΠEϕ
|w0⟩

∥∥2 = P[Φ = ϕ]. Thus, the above expression simplifies to

P [Φk = 0] = E
[
sin2(π2kΦ)

22k sin2(πΦ)

]
. (6.1.4)

Since if Φ = 0, the argument of the expectation evaluates to 1, we obtain that
P[Φk = 0] ≥ P[Φ = 0]. On the other hand, we use that the numerator is always
upper bounded by 1 to obtain that P[Φk = 0] ≤ E[sin−2(πΦ)]/22k. This completes
the proof of both the inequalities. The equalities on the outside both follow from
Theorem 6.1.13. This completes the proof. 2

Now that we have analyzed the outcome probabilities of phase estimation on
the span program unitary, we can make a first attempt at designing an algo-
rithm that distinguishes the positive and negative inputs. The result is Algo-
rithm 6.1.15.

Algorithm 6.1.15: The naive span program algorithm
Input:
1: P = (H, x 7→ H(x),K, |w − 0⟩): a span program on D.
2: W+: an upper bound on W+(P).
3: W−: an upper bound on W−(P).
4: C|w0⟩: a quantum circuit acting on H that implements |0⟩ 7→ |w0⟩.
5: U : a quantum circuit acting on H that implements U(x,P).

Derived objects:
1: k = ⌈log(

√
W+W−)⌉+ 1/2.

Output: 1 if x is positive for P , 0 otherwise.
Success probability: Lower bounded by min{1/W−, 1− 1/(2W−)}.
Queries:
1: Number of calls to C|w0⟩: 1
2: Number of calls to U : O(

√
W+W−).

Procedure: Naive-Span(P , W+, W−, C|w0⟩, U):
1: Run Phase-Est(k, U , C|w0⟩). Denote the outcome by Φk.
2: If Φk = 0, output 0. Else output 1.

Proof of properties of Algorithm 6.1.15:
The claims about the number of queries all follow directly from the properties of

6.1. Definition and basic properties 147

phase estimation, as stated in Algorithm 2.4.3. Therefore, we are left with check-
ing the claimed success probability. To that end, observe from Theorem 6.1.14
that if x is negative, then

P [Φk = 0] ≥ P [Φ = 0] =
1

w−(x,P)
≥ 1

W−(P)
≥ 1

W−
.

On the other hand, if x is positive, then

P[Φk = 0] ≤ w+(x,P)

22k
≤ W+(P)

2W+W−
≤ 1

2W−
,

where we used the value of k as stated in the algorithm description. This com-
pletes the proof. 2

Note that the number of calls to U(x,P) is what we expect – if we know
the witness complexities W−(P) and W+(P) exactly, then we can design a quan-
tum algorithm that makes O(

√
W+(P)W−(P)) = O(C(P)) controlled queries to

U(x,P). Thus, the span program complexity indeed coincides with the number
of calls made to U(x,P) in the naive span program algorithm.

However, the success probability is not quite what we expected. If W−(P)
is big, then the best attainable success probability 1/W−(P) can indeed become
very small.

There are several approaches to deal with this problem. The easiest option
is to simply run the naive span program algorithm a couple of times to gather
statistics on the outcome being 0 or 1. From these statistics one could then try
to infer whether the probability of obtaining outcome 1 is bigger than 1/W−, or
smaller than 1/(2W−). This can be done using O(W−) iterations, bringing the
total number of queries to U(x,P) to O(W−

√
W−W+).

A slightly more involved approach is to run amplitude estimation on the out-
put of the naive span program algorithm being 0. With this approach, one would
attain a multiplicative overhead of only O(

√
W−), bringing the total number of

queries to U(x,P) to O(W−
√
W+).

However, there exists a way to circumvent having any overhead at all, obtain-
ing an algorithm with success probability at least 2/3, and a mere O(

√
W−W+)

controlled calls to U(x,P). The fundamental idea is to use span program renor-
malization, which is a technique that already exists in several different forms in
previous literature. The core idea is to simultaneously decrease W−(P) and in-
crease W+(P), in such a way that their product stays the same up to constants.
Here, we follow the exposition in [IJ19], and give slight improvements of both the
construction and the analysis.

6.1.16. Definition (Span program renormalization).
Let P = (H, x 7→ H(x),K, |w0⟩) be a span program on D. We let |∗⟩ be a unit

148 Chapter 6. The span program formalism

vector orthogonal all vectors in H, and β > 0. Then, with x ∈ D, we define

H′ = H⊕ Span{|∗⟩}, H′(x) = H(x),

K′ = K ⊕ Span{|w0⟩ − β |∗⟩}, |w′
0⟩ =

β |w0⟩+ |∗⟩√
1 + β2

.

Then the span program P ′ = (H′, x 7→ H′(x),K′, |w′
0⟩) is P renormalized with

parameter β. ◀

Note that this construction is a direct simplification of [IJ19, Theorem 2.14],
since we require one dimension less.

Next, we investigate how the witnesses of the original span program are re-
lated to those in the renormalized version. This is the objective of the following
theorem.

6.1.17. Theorem (Witness anatomy of renormalized span programs). Let P be
a span program, and let P ′ be P renormalized with parameter β > 0. Then,

1. P and P ′ compute the same function.
2. |w⟩ is a positive witness for x in P ⇔ (

√
1 + β2/β) |w⟩ is a positive witness

for x in P ′.
3. |w⟩ is a negative witness for x in P ⇔ (β |w⟩+ |∗⟩)/(

√
1 + β2) is a negative

witness for x in P ′.
4. w+(x,P ′) = (1 + 1/β2)w+(x,P).
5. w−(x,P ′) = (β2w−(x,P) + 1)/(β2 + 1).
6. W+(P ′) = (1 + 1/β2)W+(P).
7. If P has at least one negative input, then W−(P ′) = (β2W−(P)+1)/(β2+1).
8. If P has at least one negative input, then C(P ′)2 = C(P)2 +W+(P)/β2.

It is possible to give a direct proof to the above theorem, as is for instance
done in [IJ19, Theorem 2.14]. However, such a proof is quite tedious and not
so insightful. Instead, we will present several span program composition results,
in Section 7.1, which allow for a much more direct and elegant proof of Theo-
rem 6.1.17. We only note here that claims 1 and 4-8 follow directly from claims
2 and 3, the remainder of the proof can be found in Theorem 7.1.8.

Now, we are able to complete the construction of the span program algorithm.

Algorithm 6.1.18: The span program algorithm
Input:
1: P = (H, x 7→ H(x),K, |w0⟩): a span program.
2: W+: an upper bound on W+(P).
3: W−: an upper bound on W−(P).
4: C|w0⟩: a quantum circuit acting on H implementing |0⟩ 7→ |w0⟩.
5: U : a quantum circuit acting on H implementing U(x,P).

6.1. Definition and basic properties 149

Derived objects:
1: β = 1/

√
2W−.

2: W
′
+ = 3W+W−.

3: P ′ = (H′, x 7→ H′(x),K′, |w′
0⟩): P renormalized with parameter β.

4: Rβ: a quantum circuit acting on H′, implementing the mapping

|0⟩ 7→ β |0⟩+ |∗⟩√
1 + β2

, and |∗⟩ 7→ |0⟩ − β |∗⟩√
1 + β2

.

5: C|w′
0⟩: the quantum circuit C|w0⟩Rβ, acting on H′.

6: U ′: the quantum circuit C|w0⟩Rβ(2 |∗⟩ ⟨∗| − I)R†
βC

†
|w0⟩U , acting on H′.

Output: 1 if x is positive for P , 0 otherwise.
Success probability: Lower bounded by 2/3.
Queries:
1: Number of calls to U : O(

√
W+W−).

2: Number of calls to C|w0⟩: O(
√
W+W−).

Procedure: Span(P , W+, W−, C|w0⟩, U):
1: Run Naive-Span(P ′, W ′

+, 3/2, C|w′
0⟩, U

′).

Proof of the properties of Algorithm 6.1.18:
We easily verify the claims on the number of queries, hence it remains to prove the
lower bound on the success probability of the algorithm. To that end, observe
that if the inputs we supply to the naive span program algorithm satisfy the
assumptions listed in Algorithm 6.1.15, then we succeed with probability at least

max

{
1
3
2

, 1− 1

2 · 3
2

}
=

2

3
.

Thus, it remains to prove that we satisfy the assumptions from Algorithm 6.1.15.
To that end, we first prove that W ′

+ and 3/2 are indeed upper bounds for W+(P ′)
and W−(P ′), respectively. To that end, observe that by Theorem 6.1.17,

W+(P ′) =

[
1 +

1

β2

]
W+(P) ≤

[
1 + 2W−

]
W+ ≤ 3W−W+ = W

′
+,

where we used that W− ≥ 1 by Lemma 6.1.3. Similarly,

W−(P ′) =
β2W−(P) + 1

β2 + 1
≤

1
2W−

·W− + 1

1
2W−

+ 1
≤ 3

2
.

Hence, it remains to check that the routines C|w′
0⟩ and U(x,P ′) implement the

right operations. To that end, observe that we have

C|w′
0⟩ |0⟩ = C|w0⟩

β |0⟩+ |∗⟩√
1 + β2

=
β |w0⟩+ |∗⟩√

1 + β2
= |w′

0⟩ ,

150 Chapter 6. The span program formalism

where we used the convention that C|w0⟩ acts as identity on |∗⟩. Next, using the
same convention, we observe that U acts as identity on |∗⟩. Thus, also on H′ it acts
as U(x,P) = (2ΠK−I)(2ΠH(x)−I). Now, recall that K′ = K⊕Span{|w0⟩−β |∗⟩},
and thus we can write

U(x,P ′) = (2ΠK′ − I)(2ΠH(x) − I)

=

(
I − 2

(|w0⟩ − β |∗⟩)(|w0⟩ − β |∗⟩)
1 + β2

)
(2ΠK − I)(2ΠH(x) − I)

= −
(
2
(|w0⟩ − β |∗⟩)(|w0⟩ − β |∗⟩)

1 + β2
− I

)
U(x,P).

Thus, up to global phase, it remains to implement a reflection through the state
|ψ⟩ = (|w0⟩ − β |∗⟩)/

√
1 + β2. To that end, we observe that if C : |∗⟩ 7→ |ψ⟩

constructs this state, then C(2 |∗⟩ ⟨∗|− I)C† reflects through it. Thus, it remains
to check that C = C|w0⟩Rβ indeed prepares |ψ⟩. To that end, observe that

C|w0⟩Rβ |∗⟩ = C|w0⟩
|0⟩ − β |∗⟩√

1 + β2
=

|w0⟩ − β |∗⟩√
1 + β2

= |ψ⟩ ,

where we again used the convention that C|w0⟩ acts as identity on |∗⟩. This
completes the proof. 2

The algorithm presented here makes use of the observation that it is not
necessary to run amplitude estimation with the phase estimation routine as the
state-preparation circuit, as is for instance proposed in [IJ19]. In fact, the renor-
malization procedure is sufficient to boost the probability of measuring 0 in the
phase estimation part to 2/3 already, so there is no more post-processing required
on the outcome of phase estimation.

Now that we have completed the construction of the span program algorithm,
we can take a step back and investigate whether improvements are possible. The
most obvious question to address in this context is whether the renormalization
procedure is really necessary. At a high level it appears to be difficult to answer
this question.

One possibility is that one might have to interpret the extra dimension |∗⟩ that
is added in the renormalization procedure, as an output register. This is similar
to the construction in [LMR+11], where the output register in fact has multiple
values, which enables their construction to evaluate non-boolean functions. It
would be an interesting future research direction to investigate whether the span
program renormalization step indeed is related to, or even maybe a special case
of the construction in [LMR+11].

6.2. Relation to the quantum adversary method 151

6.2 Relation to the quantum adversary method

Span programs bear very close connection to the quantum adversary method.
In fact, this connection provides a very prominent appeal for investigating span
programs in the first place. In this section, we showcase this connection. We first
introduce the quantum adversary method and then show how span programs are
related to it.

In the literature, there exists a long line of work that attempts to lower bound
the quantum query complexity of boolean functions. By and large, there are two
main methods to do this. One is known as the polynomial method [BBC+01;
ABP19], which has for instance been used to provide tight bounds for the ele-
ment distinctness problem [AS04]. The other well-known lower bound technique
is the quantum adversary method [Amb02; Amb06; HLŠ07; Rei09; Bel15]. It pro-
vides a characterization of the quantum query complexity of boolean functions,
in terms of a semidefinite program (SDP) referred to as the adversary bound. The
characterization is tight up to constants.

Feasible solutions to the maximization version, known as the primal adver-
sary bound, give rise to lower bounds on the quantum query complexity of boolean
functions. Similarly, feasible solutions to the minimization version, known as the
dual adversary bound, can be used to upper bound the quantum query complexity.
Moreover, as we will see in this section, the adversary bound satisfies strong dual-
ity, which means that optimal solutions of both versions have the same objective
value.

In this section, we first introduce the primal adversary bound, in Section 6.2.1,
and we show that it is indeed an SDP. Then, we take the SDP dual to arrive at the
dual adversary bound in Section 6.2.2, and we reformulate it slightly. Finally, in
Section 6.2.3, we show how feasible solutions to this reformulated dual adversary
bound are in one-to-one correspondence with span programs of a specific type.

6.2.1 The primal adversary bound

The central objects in the primal adversary bound are adversary matrices, so we
start by defining these.

6.2.1. Definition (Adversary matrix). Let f : D → {0, 1}. Then, a Hermitian
matrix Γ ∈ RD×D is called an adversary matrix for f , if for all x, y ∈ D, Γ[x, y] = 0
whenever f(x) = f(y). ◀

In Figure 6.2.1, one can see a graphical depiction of an adversary matrix.
Adversary matrices have the fundamental property that their spectra are con-

tained in the real line and symmetric around 0. We prove this in a small lemma
below.

152 Chapter 6. The span program formalism

0

0AT

A

Γ =

f
(x
)
=

0
f
(x
)
=

1

f(y) = 0 f(y) = 1

Figure 6.2.1: Graphical depiction of an adversary matrix Γ ∈ RD×D for a function
f : D → {0, 1}. Only the hatched areas can have non-zero entries.

6.2.2. Lemma (Spectrum of adversary matrices). Let f : D → {0, 1} be a func-
tion, and let Γ be an adversary matrix for f . Then, the spectrum of Γ is contained
in the real line, and symmetric around 0.

Proof:
We can characterize the spectrum of Γ in terms of the singular values of A ∈
Rf−1(0)×f−1(1), in Figure 6.2.1. To that end, write the singular value decomposition
of A as

A =
r∑
j=1

ujsjv
T
j ,

where r is the rank of A, 0 < s1 ≤ · · · ≤ sr, and {u1, . . . ,ur} and {v1, . . . ,vr}
are orthonormal sets of vectors in Rf−1(0) and Rf−1(1), respectively. Then, we can
find 2r mutually orthogonal eigenvectors of Γ since,[

0 A
AT 0

] [
uj
vj

]
= sj

[
uj
vj

]
, and

[
0 A
AT 0

] [
uj
−vj

]
= −sj

[
uj
−vj

]
.

Finally, since rank is subadditive, the rank of Γ is at most 2r. Therefore, we
have found all the eigenvectors corresponding to non-zero eigenvalues, and thus
we conclude that the spectrum of Γ is {−sj, sj : sj ∈ σ(A)}, which is indeed
contained in the real line and symmetric around 0. 2

We can now state the primal adversary bound as it is most commonly found
in the literature, e.g., in [HLŠ07].

6.2.3. Theorem (Primal adversary bound [HLŠ07, Theorem 2]). Let f : D →
{0, 1}, with D ⊆ {0, 1}n. For all i ∈ [n], let ∆i ∈ {0, 1}D×D with

∆i[x, y] =

{
1, if xi ̸= yi,

0, otherwise.

6.2. Relation to the quantum adversary method 153

The adversary bound is defined as

ADV±(f) = max
Γ adversary matrix for f

∥Γ∥
max
j∈[n]

∥Γ ◦∆j∥
,

where ◦ denotes the entry-wise product, or Hadamard product. The query com-
plexity of f is lower bounded by the adversary bound up to constants, i.e., Q(f) =
Ω(ADV±(f)).

The matrices that show up in the denominator of the objective function in
Theorem 6.2.3, Γ ◦∆j, can also be visualized. This is achieved in Figure 6.2.2.

Γ ◦∆j =

f
(x
)
=

0
f
(x
)
=

1

x
j
=

0
x
j
=

1
x
j
=

0
x
j
=

1

f(y) = 0 f(y) = 1

yj = 0 yj = 1 yj = 0 yj = 1

0

0

0

0

0

0

0

0

0

0

0

0BT

B

CT

C

Figure 6.2.2: The matrix that appears in the denominator of the primal adversary
bound. Since we take the entry-wise product with a boolean matrix, we are
basically setting elements of Γ to 0. The hatched blocks in the above visualization
are the parts that remain untouched.

Using this visualization, we can now attempt to build an intuitive understand-
ing for the primal adversary bound. To that end, observe that in the denominator,
we are selecting some submatrices of Γ. The adversary matrix Γ that maximizes
the fraction, minimizes the denominator, and hence computing the adversary
bound comes down to finding a Γ where all of these submatrices have a norm
which is as small possible, while keeping the overall norm of Γ large.

It is not immediately clear why the above is a semidefinite program, i.e.,
how we can construct a semidefinite program that has ADV±(f) as its optimal
value. However, explicitly formulating an SDP that computes ADV±(f) is very
beneficial, because it enables us to use solvers to find or approximate the optimal
adversary matrix Γ. We use ideas from [Rei09, Theorem 6.2], and reformulate
the above optimization problem into a more favorable form for implementation
using conventional solvers.

154 Chapter 6. The span program formalism

6.2.4. Theorem (Reformulated primal adversary bound). Let f : D → {0, 1},
with D ⊆ {0, 1}n. Then, ADV±(f) is the optimal value of the following SDP:

max
∑
x,y∈D

Γ[x, y], (6.2.1a)

s.t. diag(β)− Γ ◦∆j ⪰ 0, ∀j ∈ [n], (6.2.1b)
Γ[x, y] = 0, ∀x, y ∈ D, f(x) = f(y), (6.2.1c)∑
x∈f−1(1)

β[x] =
1

2
, (6.2.1d)

∑
y∈f−1(0)

β[y] =
1

2
, (6.2.1e)

where diag(β) ∈ RD×D denotes the diagonal matrix with diagonal entries given by
β, and the optimization is over all symmetric matrices Γ ∈ RD×D, and entry-wise
non-negative vectors β ∈ RD.

Proof:
First, observe that we can write the original formulation as

max ∥Γ∥
s.t. ∥Γ ◦∆j∥ ≤ 1, ∀j ∈ [n],

Γ[x, y] = 0, ∀x, y ∈ D, f(x) = f(y),

where the maximization is over all symmetric matrices Γ ∈ RD×D. Note that
by virtue of Lemma 6.2.2, we can change ∥Γ∥ into λmax(Γ). Furthermore, note
that Γ ◦∆j is itself an adversary matrix again, and hence we can also exchange
∥Γ ◦∆j∥ for λmax(Γ ◦∆j). Moreover, λmax(Γ ◦∆j) ≤ 1 is equivalent to requiring
that I − Γ ◦∆j ⪰ 0. Thus, we obtain that the above optimization problem can
be equivalently formulated as

max λmax(Γ)

s.t. I − Γ ◦∆j ⪰ 0, ∀j ∈ [n],

Γ[x, y] = 0, ∀x, y ∈ D, f(x) = f(y).

Next, we use that λmax(Γ) is the maximum of vTΓv over all vectors v ∈ RD

with ∥v∥ = 1. Moreover, without loss of generality we can require that v is
entry-wise non-negative, since we can always absorb the signs in v into Γ by
multiplying the corresponding rows and columns by −1, without changing its
objective value or feasibility. But this implies that we can also define an entry-
wise non-negative vector β ∈ RD such that

√
β[x] = v[x]. With this change of

variables, the constraint ∥v∥ = 1 becomes linear in terms of β, and we are left

6.2. Relation to the quantum adversary method 155

with the following formulation of the optimization problem:

max
∑
x,y∈D

√
β[x]Γ[x, y]

√
β[y] (6.2.2a)

s.t. I − Γ ◦∆j ⪰ 0, ∀j ∈ [n], (6.2.2b)
Γ[x, y] = 0, ∀x, y ∈ D, f(x) = f(y), (6.2.2c)∑
x∈D

β[x] = 1, (6.2.2d)

where the maximization is over all symmetric matrices Γ ∈ RD×D, and entry-wise
non-negative vectors β ∈ RD. Next, suppose that we have a feasible solution
(Γ, β), and let

s =
∑

x∈f−1(1)

β[x], and β′[x] =

{
1
2s

· β[x], if f(x) = 1,
1

2(1−s) · β[x], if f(x) = 0.
.

Then,∑
x∈D

β′[x] =
1

2s

∑
x∈f−1(1)

β[x] +
1

2(1− s)

∑
y∈f−1(0)

β[y] =
s

2s
+

1− s

2(1− s)
= 1,

and so (Γ, β′) is also a feasible solution to Equation (6.2.2). Moreover, since Γ[x, y]
is only non-zero whenever f(x) ̸= f(y), the objective value becomes bigger as∑

x,y∈D

√
β′[x]Γ[x, y]

√
β′[y] =

1

2
√
s(1− s)

∑
x,y∈D

√
β[x]Γ[x, y]

√
β[y],

≥
∑
x,y∈D

√
β[x]Γ[x, y]

√
β[y],

where we used that 2
√
s(1− s) ≤ 1 for s ∈ [0, 1]. Finally, we observe that∑

x∈f−1(1)

β′[x] =
1

2s

∑
x∈f−1(1)

β[x] =
1

2
= 1−

∑
x∈f−1(1)

β′[x] =
∑

y∈f−1(0)

β′[x],

and thus we can rewrite the SDP from Equation (6.2.2) into the following equiv-
alent form:

max
∑
x,y∈D

√
β[x]Γ[x, y]

√
β[y] (6.2.3a)

s.t. I − Γ ◦∆j ⪰ 0, ∀j ∈ [n], (6.2.3b)
Γ[x, y] = 0, ∀x, y ∈ D, f(x) = f(y), (6.2.3c)∑
x∈f−1(1)

β[x] =
1

2
, (6.2.3d)

∑
y∈f−1(0)

β[y] =
1

2
. (6.2.3e)

156 Chapter 6. The span program formalism

Next, we show that we can take any feasible solution to the optimization
problem in Equation (6.2.3), and turn it into a feasible solution of the optimization
problem in Equation (6.2.1). To that end, let (Γ, β) be a feasible solution to
Equation (6.2.3), and let D ∈ RD×D be the diagonal matrix where the [x, x]-
element contains

√
β[x]. We define Γ′ = DΓD. Then, for all v ∈ RD, we have

vT (diag(β)− Γ′ ◦∆j)v = vTD(I − Γ ◦∆j)Dv

= (Dv)T (I − Γ ◦∆j)(Dv) ≥ 0,

and hence (Γ′, β) is a feasible solution to Equation (6.2.1). Moreover, the objective
value becomes ∑

x,y∈D

Γ′[x, y] =
∑
x,y∈D

√
β[x]Γ[x, y]

√
β[y],

which completes the proof that the objective value of the SDP from the theorem
statement is at least ADV±(f).

It remains to prove that we can take any feasible solution to Equation (6.2.1)
and turn it into a feasible solution to Equation (6.2.3) with the same objective
value. To that end, let (Γ′, β) be a feasible solution to Equation (6.2.1). We let
D′ ∈ RD×D be a diagonal matrix, with

D′[x, x] =

{
0, if β[x] = 0,
1
β[x]

, otherwise,

and we let Γ = D′Γ′D′. With a similar argument as before, we obtain that (Γ, β)
is a feasible solution to Equation (6.2.3).

It remains to check that the resulting objective values are the same, for which
we need to check that the entries in Γ′ are 0 whenever either their row or column
label is x and β[x] = 0. To that end, let x, y ∈ D be such that x ̸= y and
β[x] = 0. Let j be such that xj ̸= yj. We consider the 2 × 2 submatrix from
diag(β)−Γ′◦∆j, indexed by rows and columns x and y. Since taking submatrices
preserves positive semidefiniteness, we obtain that[

0 −Γ′[x, y]
−Γ′[x, y] β[y]

]
⪰ 0.

Since the determinant of this matrix, which is the product of its eigenvalues, is
−Γ′[x, y]2 ≤ 0, the only way for this matrix to be positive semidefinite is when
Γ′[x, y] = 0. Thus, the objective values of the two optimization problems are the
same, and the proof is complete. 2

Note that even though the optimal value in Theorem 6.2.4 equals the quan-
tity defined in Theorem 6.2.3, the adversary matrices Γ that attain the optimal

6.2. Relation to the quantum adversary method 157

solutions in both formulations are not the same. The proof of Theorem 6.2.4
reveals how to convert the latter into the former. If (Γ, β) is an optimal solution
for Theorem 6.2.4, then one must define D = diag(

√
β), so that Γ′ = DΓD is an

optimal solution for Theorem 6.2.3. Thus, we can use Theorem 6.2.4 not only
to compute ADV±(f), but also to compute explicit adversary matrices that are
optimal in the original formulation of the adversary bound, Theorem 6.2.3.

There are two benefits to the formulation of Theorem 6.2.4. First, the for-
mulation is much simpler. The objective function and all constraints are either
linear or semidefinite. This makes the conversion of this SDP to standard form
much simpler and as such it can be much more easily implemented in a solver.
Second, it provides a new way to visualize the adversary bound, as illustrated by
Figure 6.2.3.

0 ⪯ diag(β)− Γ ◦∆j =

f
(x
)
=

0
f
(x
)
=

1

x
j
=

0
x
j
=

1
x
j
=

0
x
j
=

1
f(y) = 0 f(y) = 1

yj = 0 yj = 1 yj = 0 yj = 1

0

0

0

0

0

0

0

0

BT

B

CT

C

β

Figure 6.2.3: Visual interpretation of the semidefinite constraints in the reformu-
lated primal adversary bound, i.e., Equation (6.2.1).

The objective function suggests to put as much weight on the (off-diagonal)
entries of the adversary matrix Γ as possible. By Lemma 6.2.2, though, this
necessarily creates negative eigenvalues for Γ ◦ ∆j, which makes it non-PSD.
To compensate for that, one can put some values β[x] on the diagonal, with
the constraint that the total budget spent on both parts of the diagonal is 1/2,
i.e., the part where f(x) = 0 and the part where f(x) = 1. Thus, solving the
reformulated primal adversary bound comes down to playing a balancing game
between adding weight on the off-diagonal entries of Γ and compensating for that
on the diagonal, i.e., in the vector β.

6.2.2 The dual adversary bound

Since we have now obtained a simple SDP that computes the adversary bound, we
can relatively straightforwardly arrive at its dual using standard techniques. In

158 Chapter 6. The span program formalism

the literature, one can find several equivalent formulations of the resulting SDP,
all referred to as the dual adversary bound2. The formulation that we present
here is essentially the form that appears in [Rei09].˙

6.2.5. Theorem (Dual adversary bound [Rei09, Theorem 6.2]). Let f : D →
{0, 1}, with D ⊆ {0, 1}n. Then, ADV±(f) is the optimal value of the follow-
ing SDP:

min max
x∈D

n∑
j=1

Xj[x, x] (6.2.4a)

s.t.
n∑
j=1
xj ̸=yj

Xj[x, y] = 1, ∀x, y ∈ D, f(x) ̸= f(y), (6.2.4b)

Xj ⪰ 0, ∀j ∈ [n], (6.2.4c)

where the optimization ranges over all positive semidefinite matrices X1, . . . , Xn ∈
RD×D.

We can immediately see from the above formulation of the dual adversary
bound, that if we have a feasible solution X1, . . . , Xn, we can obtain a new feasible
solution by adding the identity matrix to each of the components, i.e., X1 +
I, . . . , Xn + I. We find for all j ∈ [n] that Xj + I ⪰ I ≻ 0, and hence we
have found a strictly feasible solution. This implies that our dual SDP satisfies
the Slater’s conditions, which in turn ensures that the adversary bound satisfies
strong duality.

As was the case with the primal adversary bound, we give a slightly differ-
ent but equivalent formulation of the dual adversary bound. This formulation
facilitates the connection with span programs in the next subsection.

6.2.6. Theorem (Reformulated dual adversary bound). Let f : D → {0, 1},
with D ⊆ {0, 1}n. Then, ADV±(f) is the optimal value of the following min-

2Not all formulations are exactly equivalent. For instance, the formulation used in [Bel15],
differs by a factor of 2 from most of the other formulations one can find in the literature. In
most cases this is of little concern, since the characterization of the quantum query complexity
is up to constants anyway. However, in this thesis we also care about exact optimal values, so
for us this difference is relevant to point out.

6.2. Relation to the quantum adversary method 159

imization program:

min

√√√√ max
x∈f−1(0)

n∑
j=1

Xj[x, x] · max
x∈f−1(1)

n∑
j=1

Xj[x, x] (6.2.5a)

s.t.
n∑
j=1

Xj[x, y] = 1, ∀x, y ∈ D, f(x) ̸= f(y), (6.2.5b)

Xj[x, y] = 0, ∀x, y ∈ D, xj = yj ∧ f(x) ̸= f(y), (6.2.5c)
Xj[x, y] = 0, ∀x, y ∈ D, xj ̸= yj ∧ f(x) = f(y), (6.2.5d)
Xj ⪰ 0, ∀j ∈ [n], (6.2.5e)

where the optimization ranges over all positive semidefinite matrices X1, . . . , Xn ∈
RD×D.

Proof:
We show that the optimal values of the optimization problems in Equations (6.2.4)
and (6.2.5) are the same. To that end, we show that we can take a feasible solution
to one, and turn it into a feasible solution to the other with an objective value
that is the same or smaller, and vice versa.

Thus, let X1, . . . , Xn be a feasible solution to the SDP from Equation (6.2.4).
For every j ∈ [n], we define the matrix Dj ∈ {0, 1}D×D as

Dj[x, y] =


1, if xj ̸= yj and f(x) ̸= f(y),

1, if xj = yj and f(x) = f(y),

0, otherwise.

After rearranging rows and columns, this matrix is a diagonal block matrix, with
two all-ones blocks. Therefore, it is positive semidefinite, from which we find that
X ′
j = Xj ◦Dj is positive semidefinite too. We easily verify that X ′

1, . . . , X
′
n is a

feasible solution to Equation (6.2.5), and since the diagonal elements of the new
X ′
j’s didn’t change, we observe that this objective value is smaller than the pre-

vious one by the AM-GM inequality. Thus, the optimal value of Equation (6.2.5)
is at most the optimal value of Equation (6.2.4).

On the other hand, let X1, . . . , Xn be a feasible solution to Equation (6.2.5).
We define

W+ = max
x∈f−1(1)

n∑
j=1

Xj[x, x], and W− = max
x∈f−1(0)

n∑
j=1

Xj[x, x].

Now, we define the matrix D ∈ RD×D,

D[x, y] =


√

W−
W+

, if f(x) = f(y) = 1,√
W+

W−
, if f(x) = f(y) = 0,

1, if f(x) ̸= f(y).

,

160 Chapter 6. The span program formalism

Moreover, observe that for all α > 0,[
α 1
1 1

α

]
=

[√
α√
1
α

] [√
α
√

1
α

]
⪰ 0.

Since we can freely duplicate rows and columns without affecting positive semidef-
initeness, we observe by setting α = (W−/W+)

1/2 that D is positive semidefinite.
Next, for every j ∈ [n], we let X ′

j = Xj ◦ D, where ◦ denotes the Hadamard
product, and consequently X ′

j is positive semidefinite as well. Finally, the entries
X ′
j[x, y] where f(x) ̸= f(y) are left unchanged compared to Xj, and therefore the

constraints of Equation (6.2.5) still hold. These constraints are more stringent
than the ones in Equation (6.2.4), from which we find that X ′

1, . . . , X
′
n is a feasible

solution to said SDP as well.
It remains to compute the objective values. In this maximization program,

the objective value for X1, . . . , Xn is:√√√√ max
x∈f−1(0)

n∑
j=1

Xj[x, x] · max
x∈f−1(1)

n∑
j=1

Xj[x, x] =

√
W−W+.

Furthermore, we have

max
x∈D

n∑
j=1

X ′
j[x, x]

= max

 max
x∈f−1(0)

n∑
j=1

Xj[x, x] ·

√
W+

W−
, max
x∈f−1(1)

n∑
j=1

Xj[x, x] ·

√
W−

W+


= max

{√
W+W−,

√
W+W−

}
=

√
W+W−.

Thus, we can change any solution to Equation (6.2.5) into a feasible solution to
Equation (6.2.4) with the same objective value. We conclude that both problems
must have the same optimal value. 2

The reformulated dual adversary bound also admits a visual interpretation,
which we provide in Figure 6.2.4.

Using the visual interpretation, we can now intuitively understand how to find
the optimal solution to the reformulated dual adversary bound. One has to make
sure that summations along all the rods where f(x) ̸= f(y) become exactly 1, so
it is necessary to put some weights on the off-diagonal entries. However, as we saw
in the intuitive understanding of the reformulated primal adversary bound, these
off-diagonal entries will necessarily create negative eigenvalues, which have to be
compensated for on the on-diagonal block. In contrast to the primal adversary

6.2. Relation to the quantum adversary method 161

Xn

X2

y1 = 0 y1 = 1 y1 = 0 y1 = 1

f(y) = 0
f(y) = 1

x
1
=

1
x
1
=

0
x
1
=

1
x
1
=

0

f
(x

)
=

1
f
(x

)
=

0

X1

Figure 6.2.4: Graphical depiction of the dual adversary bound. The matrices
X1, . . . , Xn are arranged in an array. The equality constraints can be viewed
as a summation along a rod, poking through all the matrices at entries [x, y]
where f(x) ̸= f(y). The sparsity constraints force given hatched pattern on the
matrices, i.e., only the hatched areas in the picture can be non-zero. Since the
area where x1 ̸= y1 is different from the area where x2 ̸= y2, etc., we have different
sparsity patterns across the matrices X1, . . . , Xn.

bound, though, here we can use the whole block on the diagonal to achieve this
compensation, rather than only the diagonal elements. To compute the objective
value, one finds the maximal summations along a rod which pokes through the
matrices at a diagonal entry [x, x], where f(x) = 0, and f(x) = 1, respectively.
The resulting objective value is the geometric mean of these two maxima.

Note that even though we have proven that the objective values of both SDPs
are the same, this doesn’t imply that the solutions themselves are the same too.
However, the proof of Theorem 6.2.6 suggests how one can take a solution of the
reformulated version, and turn it into one for the original dual adversary bound
with the same objective value. Moreover, as we will see shortly, solutions to the
reformulated dual adversary bound have a very nice connection to span programs.

162 Chapter 6. The span program formalism

6.2.3 Conversion between span programs and the dual ad-
versary bound

In this subsection, we proceed to prove the connection between span programs
and the dual adversary bound. To that end, we introduce a particular type of
span program.

6.2.7. Definition (Query-efficient span programs).
Let P = (H, x 7→ H(x),K, |w0⟩) be a span program on D ⊆ {0, 1}n. Suppose
that we can orthogonally decompose H into subspaces H1, . . . ,Hn ⊆ H, i.e., that
we can write

H = H1 ⊕ · · · ⊕ Hn.

Furthermore, suppose that for every j ∈ [n], we can orthogonally decompose Hj

into Hj(0),Hj(1), i.e., that we can write

Hj = Hj(0)⊕Hj(1).

Finally, suppose that for every x ∈ D, we have

H(x) =
n⊕
j=1

Hj(xj).

Then, we say that P is a query-efficient span program. ◀

Many prior works require these query-efficient conditions in their standard
definition of span programs [Rei09; Jef14; Bel15]. We post it as a separate con-
dition, because as we have seen in Section 6.1, it is not a necessary assumption
for the construction of the span program algorithm.

By calling these span programs query-efficient, we suggest that the span pro-
gram algorithm compiled from these span programs can be implemented query-
efficiently. The following lemma warrants this claim. More precisely, we prove
that the span program unitary, U(x,P), can be implemented using only a single
call to the a phase oracle that encodes x, i.e., an operation Ox that performs the
mapping |j⟩ 7→ (−1)xj |j⟩, for all j ∈ [n].

6.2.8. Lemma (Query-efficiency of query-efficient span programs).
Let P be a query-efficient span program on D ⊆ {0, 1}n, and let x ∈ D be an
input. Then U(x,P) can be implemented with one query to a binary oracle Ox,
which for all j ∈ [n] acts as

Ox : |j⟩ 7→ (−1)xj |j⟩ .

6.2. Relation to the quantum adversary method 163

Proof:
Recall that U(x,P) = (2ΠK − I)(2ΠH(x) − I). Since 2ΠK − I doesn’t depend
on the specific input x, we can implement this part without making any queries
to Ox. Thus, it remains to implement 2ΠH(x) − I with one query to Ox.

To that end, observe that by our assumptions we can find a basis of H such
that

H = Span{|hj,b,k⟩ : j ∈ [n], b ∈ {0, 1}, k ∈ [dim(Hj(b))]},

with |hj,b,k⟩ ∈ Hj(b) for all j ∈ [n], b ∈ {0, 1} and k ∈ [dim(Hj(b))]. Without
making any queries, we can implement a basis transformation U which for all
j ∈ [n], b ∈ {0, 1} and k ∈ dim(Hj(b)) performs the mapping

U : |j⟩ |b⟩ |k⟩ 7→ |hj,b,k⟩ .

We now claim that the operation U(Ox ⊗ Z ⊗ I)U † implements 2ΠH(x) − I. To
that end, let j ∈ [n], b ∈ {0, 1}, and k ∈ [dim(Hj(b))]. Then,

U(Ox ⊗ Z ⊗ I)U † |hj,b,k⟩ = U(Ox |j⟩ ⊗ Z |b⟩ ⊗ |k⟩) = (−1)xj+bU(|j⟩ |b⟩ |k⟩)
= (−1)xj+b |hj,b,k⟩ .

Thus, indeed, we add a minus sign only when xj ̸= b, i.e., when |hj,b,k⟩ ∈ H(x)⊥.
This completes the proof. 2

Note that the above lemma only makes a claim about the query complexity of
implementing U(x,P). In general it is much more involved to make claims about
the time complexity of implementing this operation. Whether a time-efficient
implementation for U(x,P) exists usually depends heavily on the specific span
program itself.

Now that we have introduced this specific class of span programs, we can show
how feasible solutions to the reformulated dual adversary bound are related to
query-efficient span programs.

6.2.9. Theorem (Span program to dual adversary bound solution).
Let P be a query-efficient span program over a real Hilbert space, with notation
as in Definition 6.2.7. Let f : D → {0, 1} be the function computed by P. For
every x ∈ D, let |wx⟩ be a corresponding witness (positive if x is positive, negative
if not). For all j ∈ [n], we define the matrix Xj ∈ RD×D as

Xj[x, y] = ⟨wx|ΠHj
|wy⟩ .

Then, X1, . . . , Xn is a feasible solution to the reformulated dual adversary bound
for f , with objective value equal to

√
W+W−, where

W+ = max
x∈f−1(1)

∥|wx⟩∥2 , and W− = max
x∈f−1(0)

∥|wx⟩∥2 .

164 Chapter 6. The span program formalism

Proof:
First, we show that X1, . . . , Xn forms a feasible solution to the reformulated dual
adversary bound. To that end, we let |wx,j⟩ = ΠHj

|wx⟩, and we observe that we
can write

Xj = W †
jWj, with Wj =

[
· · · |wx,j⟩ · · ·

]
x
: RD → Hj.

Thus, Xj ⪰ 0 and Wj is a Gram vectorization of Xj.
Next, let x, y ∈ D be such that f(x) = 1 and f(y) = 0. Then, |wx⟩ and

|wy⟩ are positive and negative witnesses for x and y, respectively. From their
properties in Definition 6.1.2, we observe that

1 = ⟨w0|wy⟩+ 0 = ⟨wx|ΠK⊥ |wy⟩+ ⟨wx|ΠK |wy⟩ = ⟨wx|wy⟩

=
n∑
j=1

⟨wx|ΠHj
|wy⟩ =

n∑
j=1

Xj[x, y].

Furthermore, if f(x) = 1, f(y) = 0 and xj = yj, then we have that

Xj[x, y] = ⟨wx|ΠHj
|wy⟩ = ⟨wx|ΠHj(xj) |wy⟩ = 0,

where in the second equality we used that |wx,j⟩ ∈ H(x) ∩ Hj = Hj(xj), and in
the last one that |wy,j⟩ ∈ H(y)⊥ ∩ Hj ⊆ Hj(xj)

⊥. Similarly if f(x) = f(y) = 1,
xj = 1 and yj = 0, then

Xj[x, y] = ⟨wx|ΠHj
|wy⟩ = ⟨wx|ΠHj(1)ΠHj(0) |wy⟩ = 0,

and if f(x) = f(y) = 0, xj = 1 and yj = 0, then

Xj[x, y] = ⟨wx|ΠHj
|wy⟩ = ⟨wx|ΠHj(1)⊥∩Hj

ΠHj(0)⊥∩Hj
|wy⟩ = 0.

Thus X1, . . . , Xn is a feasible solution to the reformulated dual adversary bound,
and it remains to compute the objective value. To that end, observe that for all
x ∈ D,

n∑
j=1

Xj[x, x] =
n∑
j=1

⟨wx|ΠHj
|wx⟩ = ⟨wx|wx⟩ = ∥|wx⟩∥2 .

Thus, indeed, the objective value becomes√√√√ max
x∈f−1(1)

n∑
j=1

Xj[x, x] · max
x∈f−1(0)

n∑
j=1

Xj[x, x] =
√

max
x∈f−1(1)

∥|wx⟩∥2 · max
x∈f−1(0)

∥|wx⟩∥2

=

√
W+W−.

This completes the proof. 2

6.2. Relation to the quantum adversary method 165

We have now shown how one can take a span program and turn it into a
solution to the reformulated dual adversary bound. Moreover, if we take the
optimal witnesses in Theorem 6.2.9, then we observe that the objective value
of the reformulated dual adversary bound solution is C(P). Therefore, we have
shown that for any query-efficient span program P over a real Hilbert space
computing f , we have

ADV±(f) ≤ C(P).

The natural question that comes to mind is whether we can similarly construct a
query-efficient span program P over the reals from a feasible solution to the re-
formulated adversary bound, such that the above inequality becomes an equality.
This can indeed be done, as the following theorem shows.

6.2.10. Theorem (Dual adversary bound solution to span program).
Let f : D → {0, 1}, with D ⊆ {0, 1}n. Let X1, . . . , Xn ∈ RD×D be a feasible
solution to the reformulated dual adversary bound for f . Then, for all j ∈ [n], we
take Gram vectorizations

Xj = W †
jWj, where Wj =

[
· · ·

∣∣w′
x,j

〉
· · ·
]
x
∈ RD → Hj.

We write

Hj(0) = Span{
∣∣w′

x,j

〉
: x ∈ f−1(1), xj = 0},

Hj(1) = Span{
∣∣w′

x,j

〉
: x ∈ f−1(1), xj = 1},

Hj = Hj(0) ⊕ Hj(1), and H =
⊕n

j=1Hj. Furthermore, for every x ∈ D, we let
|w′

x⟩ =
⊕n

j=1

∣∣w′
x,j

〉
, and

K = Span{|w′
x⟩ −

∣∣w′
y

〉
: x, y ∈ f−1(1)}.

Finally, we let |w′
0⟩ be the shortest vector in the affine subspace |w′

x⟩+K, for any
x ∈ f−1(1), and write N = ∥|w′

0⟩∥. Now, we let

|w0⟩ =
1

N
|w′

0⟩ , |wx⟩ =
1

N
|w′

x⟩ , and |wy⟩ = N
∣∣w′

y

〉
,

for all x ∈ f−1(1) and y ∈ f−1(0). Then, the span program P = (H, x 7→
H(x),K, |w0⟩) computes f , uses a real Hilbert space H, has witnesses |wx⟩ for
every x ∈ D, is query-efficient, and its complexity C(P) is at most the objective
value of the reformulated dual adversary bound.

Proof:
Observe that every input x ∈ f−1(1) is indeed a positive input for P , since by
definition, |w′

0⟩ can be written as a sum of |w′
x⟩ ∈ H(x), and a vector in K.

Furthermore, observe that |w′
0⟩ can be written as

|w′
0⟩ =

∑
x∈f−1(1)

αx |w′
x⟩ , where

∑
x∈f−1(1)

αx = 1,

166 Chapter 6. The span program formalism

for some real numbers αx ∈ R. Thus for every y ∈ f−1(0), we have

⟨w0|wy⟩ =
〈
w′

0

∣∣w′
y

〉
=

∑
x∈f−1(1)

αx
〈
w′
x

∣∣w′
y

〉
=

∑
x∈f−1(1)

αx

n∑
j=1

⟨w′
x|ΠHj

∣∣w′
y

〉
=

∑
x∈f−1(1)

αx

n∑
j=1

Xj[x, y] =
∑

x∈f−1(1)

αx = 1.

Thus, it remains to check that |wy⟩ ∈ K⊥ ∩ H(y)⊥. Since (⟨w′
x| − ⟨w′

x′ |)
∣∣w′

y

〉
=

1 − 1 = 0 for x, x′ ∈ f−1(1), we easily obtain that |wy⟩ ∈ K⊥, hence it remains
to check that |wy⟩ ∈ H(y)⊥. It suffices to show that for every j ∈ [n], we have∣∣w′

y,j

〉
∈ Hj(yj)

⊥ ∩ Hj. Thus, we must show that
∣∣w′

y,j

〉
is orthogonal to all∣∣w′

x,j

〉
’s, where x ∈ f−1(1) and xj = yj. But we know that〈

w′
x,j

∣∣w′
y,j

〉
= Xj[x, y] = 0,

since X1, . . . , Xn is a feasible solution to the reformulated dual adversary bound.
Thus, P indeed computes the same function f , and for every x ∈ D, |wx⟩ is a
witness.

It is easily seen that P is indeed query-efficient over a real Hilbert space,
so it remains to show that its complexity is at most the objective value of the
reformulated adversary bound. To that end, observe that

C(P)2 = W+(P)W−(P) ≤ max
x∈f−1(1)

∥|wx⟩∥2 · max
y∈f−1(0)

∥|wy⟩∥2

= max
x∈f−1(1)

∥|w′
x⟩∥

2 · max
y∈f−1(0)

∥∥∣∣w′
y

〉∥∥2
= max

x∈f−1(1)

n∑
j=1

Xj[x, x] · max
y∈f−1(0)

n∑
j=1

Xj[y, y].

This completes the proof. 2

Thus, we have now proven that given the optimal solution to the reformulated
dual adversary bound, we can generate a query-efficient span program whose
complexity equals ADV±(f). For completeness, we show how this observation
can be used to reprove [Rei11, Theorem 1.3].

6.2.11. Corollary. For every f : D → {0, 1}, with D ⊆ {0, 1}n, we have

Q(f) = Θ(ADV±(f)).

Proof:
We have already stated the lower bound, in Theorem 6.2.3. For the upper
bound, we can take an optimal solution to the reformulated dual adversary

6.2. Relation to the quantum adversary method 167

bound, and convert it into a query-efficient span program P with complexity
C(P) = ADV±(f). Since according to Lemma 6.2.8 we can implement the span
program unitary U(x,P) with one query, we find from Algorithm 6.1.18 that we
can implement an algorithm that evaluates P using O(C(P)) queries to the input.
Thus, Q(f) = O(ADV±(f)), completing the proof. 2

Note that in the above two conversions, we restrict ourselves to span programs
over real Hilbert spaces. This is because the adversary bound formulations are all
over the reals as well. One could equivalently define all the optimization problems
considered in this section over complex vector spaces, and achieve a similar cor-
respondence between reformulated dual complex adversary bound solutions and
query-efficient span programs.

There is one very important benefit of doing everything over the reals, though.
Since we have been able to show that the adversary bound over the reals is already
a tight characterization, we have shown that there is no need to generalize all
previous results to complex spaces. In particular, it means that if we are interested
in the query complexity of a particular function, it suffices to solve the adversary
bound over the reals and we don’t need to bother about complex numbers at all.

We have shown a one-to-one correspondence between feasible solutions to the
reformulated dual adversary bound, and query-efficient span programs over the
reals. This correspondence gives us a very powerful and elegant way to interpret
dual adversary bound solutions, which at face value are nothing more than n
tableaux of numbers. However, by turning these tableaux into span programs, one
can use the span program framework and its subsequent analysis to understand
better how a quantum algorithm actually computes the function at hand with
the given cost. Moreover, we will see in the next section that one can also use the
span program framework to modify and combine dual adversary bound solutions.

There is one final thing to observe. In Theorem 6.2.10, the dimension of
the space H turns out to be the sum of the dimensions of the vectors in the
Gram vectorization of all Xj’s. But these dimensions are the ranks of the Xj’s,
and hence we find that any feasible solution X1, . . . , Xn to the reformulated dual
adversary bound gives rise to a span program with Hilbert space H, where

dim(H) =
n∑
j=1

rank(Xj).

This provides a connection between the rank of dual adversary bound solutions
and the space requirements of span programs, and consequently also quantum
algorithms.

The construction we present here starts with a solution to the reformulated
dual adversary bound. It should be noted that one can also start from a solution
to the original dual adversary bound, i.e., Theorem 6.2.5, as is for instance done
in [Bel14, Theorem 3.39]. The construction presented here saves a factor of 2 in

168 Chapter 6. The span program formalism

the dimension of the Hilbert space, though.
We remark that the space requirements of span programs are further developed

in [Jef20], where it is shown that space-efficient query-efficient span programs
always exist. Thus, we might be able to show a more substantial connection
between the space requirements of a quantum algorithm, dim(H), and the sum of
the ranks of an optimal solution to the reformulated dual adversary bound. We
leave these connections for future work.

Finally, we emphasize that there exist generalizations of the dual adversary
bound to functions with non-boolean input and output, e.g., in [Rei09, Theo-
rem 6.4]. It has also been shown that these solutions can be turned into efficient
quantum query algorithms [LMR+11]. There has also been some progress in gen-
eralizing the concept of span programs to the setting where the function input is
non-boolean [Jef14], and where the output is non-boolean [BT19]. Thus, there is
quite some existing literature already on the non-boolean case, and it would be
interesting to phrase all those results in a similar language as presented here, and
to see which of the upcoming parts of the theory follow through in this generalized
setting. We leave all this for future work.

Chapter 7

Compositions of span programs

One property of span programs that makes them particularly appealing is the
relative ease with which they can be composed through a series of composition
constructions. In this chapter, we introduce two classes of these. First, in Sec-
tion 7.1, we introduce logical compositions, that allow for evaluating ANDs, ORs
and NOTs of the decision problems that are evaluated by individual span pro-
grams. Afterwards, in Section 7.2, we introduce a more general class of such
compositions, known as graph compositions.

7.1 Logical composition of span programs

First, we formally state and prove the logical composition results, in Section 7.1.1.
Then, we study how these results can be interpreted on the level of dual adversary
bound solutions, in Section 7.1.2. Finally, we more deeply analyze the operational
implications, in Section 7.1.3.

7.1.1 Definition and basic properties

We start with a simple observation. Observe that the dual adversary bound in
Theorem 6.2.5, and its reformulation in Theorem 6.2.6, are invariant under taking
the negation of f . That is, a feasible solution to the minimization problem for f is
also a feasible solution to the minimization problem for ¬f , and the corresponding
objective value is the same. From this we find that ADV±(f) = ADV±(¬f). This
is not surprising, since the adversary bound tightly characterizes quantum query
complexity and computing f and ¬f should be equally difficult.

Since there is a direct correspondence between dual adversary bound solu-
tions and query-efficient span programs, every query-efficient span program P
computing f should also have a counterpart that computes ¬f with the same
complexity. However, from the intuitive picture developed in Figure 6.1.2, it is
not immediately clear how such a span program should look like. After all, there

169

170 Chapter 7. Compositions of span programs

is a qualitative difference between positive and negative inputs, i.e., in the posi-
tive case each component of |w0⟩ starts rotating while in the negative case it has
a non-negative overlap with the stationary subspace.

From the construction in Theorem 6.2.10, we can get some idea of how we
can convert a query-efficient span program computing a function f , into one that
computes the function ¬f . Indeed, if one carefully investigates what happens
when we run the construction presented in Theorem 6.2.10 for the function ¬f
rather than f , and if we assume that we use the matrices Wj that are of mini-
mal dimensions, then we observe that the new spaces H′

j(0) and H′
j(1) become

Hj(1) = Hj(0)
⊥ ∩Hj and Hj(0) = Hj(1)

⊥ ∩Hj, respectively, and the new space
K′ becomes (K ⊕ Span{|w0⟩})⊥. In short, this gives us a direct way to convert a
query-efficient span program P computing a function f , into one that computes
the function ¬f .

Surprisingly, it turns out that this conversion can be generalized to the set-
ting where the span program is not necessarily query-efficient. We refer to this
technique as span program negation, and we formally present it in the following
definition. This construction was first introduced in [Rei09, Lemma 4.1], where
it was called span program complementation instead. The existence of such a
construction was already hinted at in [RŠ12, Definition 2.7], but only a special
case was presented there. A construction in a more restricted setting was already
present in [CF02; NNP04].

7.1.1. Definition. Let P = (H, x 7→ H(x),K, |w0⟩) be a span program, com-
puting a function f : D → {0, 1}. We let

H′(x) = H(x)⊥, ∀x ∈ D,
K′ = (K ⊕ Span{|w0⟩})⊥.

Then the negation of P is the span program ¬P = (H, x 7→ H′(x),K′, |w0⟩). ◀

We analyze its properties in the theorem below.

7.1.2. Theorem (Properties of span program negation). Let P be a span pro-
gram on D that computes the function f : D → {0, 1}. Then, with x ∈ D,

1. ¬P computes ¬f .
2. The positive/negative witnesses for x in ¬P are exactly the negative/positive

witnesses for x in P, respectively.
3. The minimal positive/negative witness for x in ¬P is the minimal nega-

tive/positive witness for x in P, respectively.
4. w+(x,¬P) = w−(x,P) and w−(x,¬P) = w+(x,P).
5. W+(¬P) = W−(P) and W−(¬P) = W+(P).
6. C(¬P) = C(P).
7. P is query-efficient if and only if ¬P is query-efficient.

7.1. Logical composition of span programs 171

8. U(x,¬P) = −(2 |w0⟩ ⟨w0| − I)U(x,P).

Proof:
Let x ∈ D, and |w⟩ ∈ H arbitrarily. We derive the following sequence of equiva-
lences.

|w⟩ ∈ (K′)⊥ ∩H′(x)⊥ ⇔ |w⟩ ∈ (K ⊕ Span{|w0⟩}) ∩H(x)

⇔ |w⟩ ∈ H(x) ∧ ∃α ∈ C : |w⟩ − α |w0⟩ ∈ K.

Using these equivalences, we obtain by elementary linear algebra that

|w⟩ is a negative witness in ¬P
⇔ |w⟩ ∈ (K′)⊥ ∩H′(x)⊥ ∧ ⟨w0|w⟩ = 1

⇔ |w⟩ ∈ H(x) ∧ ∃α ∈ C : |w⟩ − α |w0⟩ ∈ K ∧ ⟨w0|w⟩ = 1

⇔ |w⟩ ∈ H(x) ∧ |w⟩ − |w0⟩ ∈ K
⇔ |w⟩ is a positive witness in P .

Since we easily check that ¬(¬P) = P , we can apply the above sequence of
equivalences to ¬P to obtain that |w⟩ is a negative witness in P if and only
if |w⟩ is a positive witness is ¬P . Claims 1 and to 6 in the theorem follow
directly from these equivalences of the witnesses. Claim 7 follows immediately
from H′(x) = H(x)⊥ and the definition of query-efficiency, i.e., Definition 6.2.7.
Claim 8 follows from

U(x,¬P) = (2Π(K⊕Span{|w0⟩})⊥ − I)(2ΠH(x)⊥ − I)

= (2(ΠK + |w0⟩ ⟨w0|)− I)(2ΠH(x) − I)

= (I − 2 |w0⟩ ⟨w0|)(2ΠK − I)(2ΠH(x) − I)

= −(2 |w0⟩ ⟨w0| − I)U(x,P).

This completes the proof. 2

Even though the above proof is very short and direct, it is difficult to develop
intuition for how P and ¬P relate to one another. For instance, if we consider
the visualization of the subspaces K and H(x) from Figure 6.1.4, it is difficult to
imagine how the new spaces K′ and H′(x) can be visualized on top of this same
figure. Developing a more visual interpretation of the above result would be an
interesting topic of further research.1

Now that we know how to compute the negation of a span program, the
immediate question that arises is whether we can similarly find constructions

1I did make several attempts to visualize this in three dimensions, one of which involved
poking an object called a “satéprikker” through a piece of paper. Unsurprisingly, the results
were not very impressive.

172 Chapter 7. Compositions of span programs

that compute other logical compositions. For instance, if we have span programs
P and P ′, computing the functions f and f ′, can we construct a span program
that computes f ∨ f ′, or f ∧ f ′? The answer is yes, as was first shown in [RŠ12]
in the special case where f and f ′ themselves are given by formulas, and later
showed more generally for span programs in [Rei09, Theorem 4.3]. The AND-
composition we construct below is based on the direct-sum construction in [Rei09,
Definition 4.5].

The core idea of the AND-composition is as follows. Let P(1), . . . ,P(n) be n
span programs, all on the same domain D, and for all j ∈ [n], we write the com-
ponents of the span program explicitly as P(j) = (H(j), x 7→ H(j)(x),K(j), |w(j)

0 ⟩).
Recall that for x ∈ D and j ∈ [n], x is a positive input in P(j) if and only if
|w(j)

0 ⟩ ∈ K(j) +H(j)(x), i.e., we can reach the vector |w(j)
0 ⟩ by taking a linear com-

bination of vectors in K(j) and H(j)(x). Now, we define a new vector space H
by simply taking the direct sum of all H(j)’s, and similarly define K and H(x),
and we let |w0⟩ be a linear combination of the |w(j)

0 ⟩’s with non-zero coefficients.
Then, reaching |w0⟩ by taking a linear combination of vectors in K and H(x),
can only be done if we can reach each of the individual components |w(j)

0 ⟩ in each
of the spaces K(j) +H(j)(x) separately. Thus, we find that x is a positive input
in this composed span program P = (H, x 7→ H(x),K, |w0⟩) exactly when it is a
positive instance for all the individual span programs P(j), with j ∈ [n].

We now formalize this idea in the following definition.

7.1.3. Definition (AND-composition of span programs). Let P(1), . . . ,P(n) be
span programs on D, and we write P(j) = (H(j), x 7→ H(j)(x),K(j), |w(j)

0 ⟩) for all
j ∈ [n]. Let α1, . . . , αn > 0 be some coefficients. We define the normalized
coefficients α′

1, . . . , α
′
n > 0 as

α′
j =

αj∑n
k=1 αk

,

for all j ∈ [n]. Then, we let

H =
n⊕
j=1

H(j), H(x) =
n⊕
j=1

H(j)(x),

K =
n⊕
j=1

K(j), |w0⟩ =
n∑
j=1

√
α′
j|w

(j)
0 ⟩,

and we let P = (H, x 7→ H(x),K, |w0⟩). We call this span program P the AND-
composition of P(1), . . . ,P(n) with weights α1, . . . , αn, and refer to it using the
shorthand notations

α1P(1) ∧ α2P(2) ∧ · · · ∧ αnP(n), and
n∧
j=1

αjP(j).

7.1. Logical composition of span programs 173

In these shorthand notations, we omit αj if it is 1, i.e., we write P(j) instead of
1P(j). ◀

Note that in the shorthand notations, we do not require the coefficients to be
properly normalized, i.e., if we write

n∧
j=1

αjP(j),

we don’t require the αj’s to sum to 1. Instead, in the AND-composition itself, the
coefficients are first normalized to a sequence α′

1, . . . , α
′
n that sums to 1, and are

subsequently used in the definition of |w0⟩. The reason for this is that it makes
the notation significantly less cumbersome later on.

Similarly as we did with span program negation, we now analyze the properties
of the AND-composition of span programs.

7.1.4. Theorem (Properties of the AND-composition of span programs).
Let P(1), . . . ,P(n) be span programs on D, where for all j ∈ [n], P(j) computes the
function f (j) : D → {0, 1}. Let α1, . . . , αn > 0 be strictly positive coefficients, and
let α′

1, . . . , α
′
n > 0 be their normalized counterparts, as in Definition 7.1.3. Let

P =
n∧
j=1

αjP(j).

Let x ∈ D. Then, P has the following properties:

1. P computes
∧n
j=1 f

(j).
2a. If x is a positive input, then the positive witnesses for x in P are exactly

the vectors |w⟩ ∈ H of the form

|w⟩ =
n∑
j=1

√
α′
j|w(j)⟩, (7.1.1)

where for all j ∈ [n], |w(j)⟩ is a positive witness for x in P(j).
2b. If x is a negative input, then the negative witnesses for x in P are exactly

the vectors |w⟩ ∈ H of the form

|w⟩ =
n∑
j=1
βj ̸=0

βj√
α′
j

|w(j)⟩+
n∑
j=1
βj=0

|w(j)⟩, (7.1.2)

where for all j ∈ [n], βj ∈ C such that
∑n

j=1 βj = 1, |w(j)⟩ is a negative
witness for x in P(j), and |w(j)⟩ ∈ (K(j))⊥ ∩H(j)(x)⊥ ∩ Span{|w(j)

0 ⟩}⊥.

174 Chapter 7. Compositions of span programs

3a. If x is a positive input for P, then the minimal positive witness for x in P
is |w⟩ in Equation 7.1.1, where for every j ∈ [n], we choose |w(j)⟩ to be the
minimal positive witness for x in P(j).

3b. If x is a negative input for P, then the minimal negative witness for x in
P is |w⟩ in Equation 7.1.2, where for all j ∈ [n], we choose

βj =
α′
j

w−(x,P(j))
·

[
n∑
j=1

α′
j

w−(x,P(j))

]−1

,

|w(j)⟩ to be the minimal negative witness for x in P(j) and |w(j)⟩ = 0.
4. We have

w+(x,P) =
n∑
j=1

α′
jw+(x,P(j)) and w−(x,P) =

[
n∑
j=1

α′
j

w−(x,P(j))

]−1

.

5. Suppose that none of the P(j)’s nor P compute a constant function. Then,

W+(P) ≤
n∑
j=1

α′
jW+(P(j)) and W−(P) ≤ max

j∈[n]

W−(P(j))

α′
j

,

and in particular,

C(P)2 ≤
n∑
j=1

αjW+(P(j)) ·max
j∈[n]

W−(P(j))

αj
.

6. Suppose that none of the P(j)’s compute a constant function, and suppose
furthermore that we can decompose D =×n

j=1
D(j), and that for every input

(x(1), . . . , x(n)) = x ∈ D, H(j)(x) only depends on x(j). Then, all inequalities
from item 5 turn into equalities. Moreover, if for all j ∈ [n], we choose
αj = W−(P(j)), then we minimize C(P), and

C(P)2 =
n∑
j=1

C(P(j))2.

7. P is query-efficient if and only if for every j ∈ [n], P(j) is.
8. U(x,P) =

∏n
j=1 U(x,P(j)).

Proof:
Claims 1 and 5-8 follow easily from claims 2-4, so we focus on proving those. We
start by checking claims 2a, 3a and 4a, by characterizing the positive witnesses
for an input x ∈ D and analyzing their sizes. To that end, we let |w⟩ ∈ H,

7.1. Logical composition of span programs 175

and we write |w(j)⟩ = (α′
j)

−1/2ΠH(j) |w⟩. Then, |w⟩ is indeed decomposed as in
Equation 7.1.1. Furthermore,

|w⟩ is a positive witness for x in P
⇔ |w⟩ ∈ H(x) ∧ |w⟩ − |w0⟩ ∈ K
⇔ ∀j ∈ [n],ΠH(j) |w⟩ ∈ H(j)(x) ∧ ΠH(j)(|w⟩ − |w0⟩) ∈ K(j)

⇔ ∀j ∈ [n],
√
α′
j|w(j)⟩ ∈ H(j)(x) ∧

√
α′
j|w(j)⟩ −

√
α′
j|w

(j)
0 ⟩ ∈ K(j)

⇔ ∀j ∈ [n], |w(j)⟩ ∈ H(j)(x) ∧ |w(j)⟩ − |w(j)
0 ⟩ ∈ K(j)

⇔ ∀j ∈ [n], |w(j)⟩ is a positive witness for x in P(j).

This proves claim 2a. For claim 3a, we observe that we minimize the size of the
positive witness if we minimize the size of each of its components, i.e., to that
end we must choose the minimal positive witnesses for x in each of the P(j)’s.
The resulting size, then, becomes

w+(x,P) = ∥|w⟩∥2 =
n∑
j=1

αj∥|w(j)⟩∥2 =
n∑
j=1

αjw+(x,P(j)),

proving claim 4a too.
Next, we turn to claims 2b, 3b and 4b. To that end, we characterize the

negative witnesses in P for an input x ∈ D. Let |w⟩ ∈ H, and for all j ∈ [n],
write |w(j)⟩ = ΠH(j) |w⟩ and βj = (α′

j)
1/2⟨w(j)

0 |w(j)⟩. If βj ̸= 0, we also define
|w(j)⟩ = β−1

j (α′
j)

1/2|w(j)⟩. Then, we observe that we have indeed decomposed |w⟩
in the form of Equation 7.1.2.

For all j ∈ [n] for which βj ̸= 0, by definition ⟨w(j)
0 |w(j)⟩ = 1, which implies

that |w(j)⟩ is a negative witness for x in P(j) if and only if it is in (K(j))⊥∩H(j)(x)⊥.
It follows that

|w⟩ is a negative witness for x in P
⇔ |w⟩ ∈ K⊥ ∩H(x)⊥ ∧ ⟨w0|w⟩ = 1

⇔ ∀j ∈ [n], |w(j)⟩ ∈ (K(j))⊥ ∩H(j)(x)⊥︸ ︷︷ ︸
A

∧
n∑
j=1

√
α′
j⟨w

(j)
0 |w(j)⟩ = 1︸ ︷︷ ︸
B

.

By the definition of βj, we easily see that

B ⇔
n∑
j=1

βj = 1,

so it remains to further evaluate statement A. To that end, observe that if βj ̸= 0,

176 Chapter 7. Compositions of span programs

|w(j)⟩ and |w(j)⟩ differ only by scalar multiplication, and so

A⇔ ∀j ∈ [n],

{
|w(j)⟩ ∈ (K(j))⊥ ∩H(j)(x)⊥, if βj ̸= 0,

|w(j)⟩ ∈ (K(j))⊥ ∩H(j)(x)⊥ ∩ Span{|w(j)
0 ⟩}⊥, if βj = 0,

⇔ ∀j ∈ [n],

{
|w(j)⟩ is a negative witness in P(j), if βj ̸= 0,

|w(j)⟩ ∈ (K(j))⊥ ∩H(j)(x)⊥ ∩ Span{|w(j)
0 ⟩}⊥, if βj = 0.

This proves claim 2b.
For claim 3b, it remains to compute the minimal vector |w⟩ ∈ H that satisfies

the constraints above. To that end, observe that if f (j)(x) = 1, then there does
not exist a negative witness |w(j)⟩ for x in P(j), and so the only possibility is that
βj = 0. Thus,

∥|w⟩∥2 ≥
n∑
j=1
βj ̸=0

|βj|2

α′
j

∥∥|w(j)⟩
∥∥2 ≥ n∑

j=1
f (j)(x)=0

|βj|2

α′
j

w−(x,P(j))

≥

∣∣∣∣∣
n∑
j=1

βj

∣∣∣∣∣
2

·

 n∑
j=1

f (j)(x)=0

α′
j

w−(x,P(j))


−1

=

[
n∑
j=1

α′
j

w−(x,P(j))

]−1

,

where we used the Cauchy–Schwarz inequality2, and w−(x,P(j)) = ∞ whenever
f (j)(x) = 1. Moreover, we observe that we have equality in all inequalities above,
when we choose all |w(j)⟩’s to be 0, all |w(j)⟩’s to be the minimal negative witnesses
for x in P(j), and

βj =
α′
j

w−(x,P(j))
·

[
n∑
j=1

α′
j

w−(x,P(j))

]−1

,

for all j ∈ [n]. This completes the proof of claim 3b and 4b, and hence the proof
is complete. 2

Note that in item 5 of the above theorem, we use the unnormalized coefficients
αj, rather than the normalized ones α′

j, to upper bound the span program com-
plexity C(P). This is not a typo – rather, we observe here that the normalized
coefficients α′

j arise in the numerator and denominator in the bound on the pos-
itive and negative witness complexity, respectively. Therefore, the normalization
prefactor cancels in the upper bound of the span program complexity.

In the AND-construction in Definition 7.1.3, we require that all span programs
have the same domain D. However, the construction can also be used if we have

2This particular form of the Cauchy–Schwarz inequality is also known as Sedrakyan’s in-
equality.

7.1. Logical composition of span programs 177

several span programs on different domains. For instance, suppose we have a
span program P(1) on D(1) and P(2) on D(2), computing the boolean functions
f (1) : D(1) → {0, 1} and f (2) : D(2) → {0, 1}, respectively. Note that we can
reinterpret the span program P(1) to act on D(1) × D(2), where to every input
(x(1), x(2)) ∈ D(1)×D(2), we simply associate H((x(1), x(2))) = H(x(1)). If we do the
same with P(2) we now have two span programs that act on the same domain, and
plugging them in the AND-composition yields a span program that computes the
function f : D(1)×D(2) → {0, 1}, defined as f((x(1), x(2))) = f (1)(x(1))∧f (2)(x(2)).
Moreover, in this case the assumptions from claim 6 in Theorem 7.1.4 hold, and
thus, if we choose the αj’s appropriately, the span program complexity becomes
the squared sum of the individual ones.

One might wonder whether the above composition result admits a converse,
i.e., if we have a span program that evaluates the function f =

∧n
j=1 f

(j), can
we decompose the span program into n individual span programs computing
the functions f (j), for j ∈ [n]? And if we then plug these span programs back
into the AND-composition, do we get back the original span program computing
f =

∧n
j=1 f

(j) again? This is indeed an interesting question for future research,
and we briefly revisit this question at the end of the next subsection.

Now that we know how to compute “AND”s and “NOT”s, we can use De
Morgan’s formula to compute “OR”s as well, as is presented in the following
definition.

7.1.5. Definition (OR-composition of span programs).
Let P(1), . . . ,P(n) be span programs on some common domain D, and we write
P(j) = (H(j), x 7→ H(j)(x),K(j), |w(j)

0 ⟩) for all j ∈ [n]. Let α1, . . . , αn > 0 be
coefficients, and for all j ∈ [n], we define the normalized coefficients

α′
j =

αj∑n
j=1 αj

.

Now, we define the span program P by

P = ¬
n∧
j=1

αj(¬P(j)),

and we refer to it as the OR-composition of span programs (P(j))nj=1 with coeffi-
cients (αj)

n
j=1. We denote P by the shorthand notations

α1P(1) ∨ α2P(2) ∨ · · · ∨ αnP(n), and
n∨
j=1

αjP(j).

Similarly as in the AND-composition, we omit αj if it is 1, i.e., we write P(j)

instead of 1P(j). ◀

178 Chapter 7. Compositions of span programs

Most of the properties of the OR-composition follow directly from the prop-
erties of the AND-composition, proved in Theorem 7.1.4. For completeness and
ease of reference, we include the full statement of its properties here.

7.1.6. Theorem (Properties of the OR-composition of span programs).
Let P(1), . . . ,P(n) be span programs on a domain D, where for all j ∈ [n], P(j)

computes the function f (j) : D → {0, 1}. Let α1, . . . , αn > 0 be coefficients, and
let their normalized counterparts α′

1, . . . , α
′
n be as in Definition 7.1.5. Let

P =
n∨
j=1

αjP(j),

and we write P = (H, x 7→ H(x),K, |w0⟩). Let x ∈ D. Then, P has the following
properties:

1. P computes
∨n
j=1 f

(j).
2a. If x is a positive input, then the positive witnesses for x in P are exactly

the vectors |w⟩ ∈ H of the form

|w⟩ =
n∑
j=1
βj ̸=0

βj√
α′
j

|w(j)⟩+
n∑
j=1
βj=0

|w(j)⟩, (7.1.3)

where for all j ∈ [n], βj ∈ C such that
∑n

j=1 βj = 1, |w(j)⟩ is a positive
witness for x in P(j), and |w(j)⟩ ∈ K(j) ∩H(j)(x).

2b. If x is a negative input, then the negative witnesses for x in P are exactly
the vectors |w⟩ ∈ H of the form

|w⟩ =
n∑
j=1

√
α′
j|w(j)⟩, (7.1.4)

where for all j ∈ [n], |w(j)⟩ is a negative witness for x in P(j).
3a. If x is a positive input for P, then the minimal positive witness for x in P

is |w⟩ in Equation 7.1.3, where for all j ∈ [n], we choose

βj =
α′
j

w+(x,P(j))
·

[
n∑
j=1

α′
j

w+(x,P(j))

]−1

,

|w(j)⟩ to be the minimal positive witness for x in P(j), and |w(j)⟩ = 0.
3b. If x is a negative witness for P, then the minimal negative witness for x in

P is |w⟩ in Equation 7.1.4, where for every j ∈ [n], we choose |w(j)⟩ to be
the minimal negative witness for x in P(j).

7.1. Logical composition of span programs 179

4. We have

w+(x,P) =

[
n∑
j=1

α′
j

w+(x,P(j))

]−1

and w−(x,P) =
n∑
j=1

α′
jw−(x,P(j)).

5. Suppose that none of the P(j)’s nor P compute a constant function. Then,

W+(P) ≤ max
j∈[n]

W+(P(j))

α′
j

and W−(P) ≤
n∑
j=1

α′
jW−(P(j)),

and in particular,

C(P)2 ≤
n∑
j=1

αjW−(P(j)) ·max
j∈[n]

W+(P(j))

αj
.

6. Suppose that none of the P(j)’s compute a constant function, and suppose
furthermore that we can decompose D =×n

j=1
D(j), and that for every input

(x(1), . . . , x(n)) = x ∈ D, H(j)(x) only depends on x(j). Then, all inequalities
from item 5 turn into equalities. Moreover, if for all j ∈ [n], we choose
αj = W+(P(j)), then we minimize C(P), and

C(P)2 =
n∑
j=1

C(P(j))2.

7. P is query-efficient if and only if for every j ∈ [n], P(j) is.
8. U(x,P) = (−1)n+1(2 |w0⟩ ⟨w0| − I)

∏n
j=1(2|w

(j)
0 ⟩⟨w(j)

0 | − I)U(x,P(j)).

One interesting thing to note is that a distributive law does not seem to hold
on the level of span programs. For instance, if P1,P2,P3 are all span programs
on some common domain D, then

P1 ∨ (P2 ∧ P3), and (P1 ∨ P2) ∧ (P1 ∨ P3)

do not have the same witnesses or witness sizes in general. On the contrary,
in many situations one formula results in span programs with strictly smaller
complexity compared to the other. Thus, even though we can in principle evaluate
any boolean formula using the techniques introduced here, the specific form of
this formula influences the complexity of the resulting span program non-trivially.

An immediate consequence of these composition results is that we can recover
[Rei10, Corollary 1.6], i.e., any boolean function that can be represented as a
formula of length k has query complexity O(

√
k).

7.1.7. Theorem. Let f : {0, 1}n → {0, 1} be a boolean function that can be
represented as a formula of length k, i.e., it can be represented as a formula with
∧, ∨’s and ¬’s, and k variables. Then, Q(f) = O(

√
k).

180 Chapter 7. Compositions of span programs

Proof:
First, observe that any ¬’s that appear in the formula are insignificant, since
if we have a span program that evaluates any given formula, we can build a
span program with the same cost that evaluates the negation of this formula,
using Definition 7.1.1. Moreover, by item 7 of Theorem 7.1.2, query-efficiency is
preserved in this conversion.

We give a proof using induction to the length of the formula. To that end, we
start by proving that the statement holds when the length of the formula is 1.

For all j ∈ [n], we can use the construction from Example 6.1.4 to define a span
program that computes the bit xj, i.e., we let P(j) = (H(j), x 7→ H(j)(x),K, |w(j)

0 ⟩)
on {0, 1}n, where

H = Span{|j⟩}, H(x) =

{
Span{|j⟩}, if xj = 1,

{0}, otherwise,

K(j) = {0}, |w(j)
0 ⟩ = |j⟩ .

Then, P(j) is query-efficient, evaluates the length-1 formula xj, and W+(P(j)) =
W−(P(j)) = C(P(j)) = 1. This provides our basis for induction.

Next, suppose that for any formula of length ℓ, where ℓ ≤ k, we can construct
a query-efficient span program that computes this formula with complexity at
most

√
ℓ. Next, suppose that we have a formula f of length k+1. We can break

up this formula in two parts, i.e., we can write the formula as f as f1 ∧ f2, or
f1 ∨ f2, with lengths ℓ1 and ℓ2, respectively, such that ℓ1 + ℓ2 = k + 1. The two
cases are very similar, so we only provide the proof for the case where we have
f = f1 ∧ f2.

Now, by our induction hypothesis, we can find query-efficient span programs
P1 and P2 that evaluate f1 and f2, with complexities at most

√
ℓ1 and

√
ℓ2,

respectively. Then, we let α1 = W−(P1) and α2 = W−(P2), and from item 5 in
Theorem 7.1.4 we find that with P = α1P1 ∧ α2P2,

C(P)2 ≤ (α1W+(P1) + α2W+(P2)) ·max

{
W−(P1)

α1

,
W−(P2)

α2

}
= W−(P1)W+(P1) +W−(P2)W+(P2) = C(P1)

2 + C(P2)
2

= ℓ1 + ℓ2 = k + 1.

Moreover, by item 7 of Theorem 7.1.4, we find that P is query-efficient. Thus,
we have constructed a query-efficient span program that evaluates a formula of
length k+1 with complexity

√
k + 1, completing the proof of the induction step.

Thus, we find that for any formula of length k ∈ N, we can find a query-efficient
span program that computes this formula with complexity at most

√
k.

Finally, We know from Algorithm 6.1.18 and Lemma 6.2.8 that for query-
efficient span programs, the query complexity of the function it computes is upper
bounded by the span program complexity, up to constants. Thus, we find that

7.1. Logical composition of span programs 181

any formula of length k can be computed using a quantum algorithm making at
most O(

√
k) queries. This completes the proof. 2

As a further showcase of these techniques, we give the missing proof of Theo-
rem 6.1.17.

7.1.8. Theorem (Witness anatomy of renormalized span programs).
Let P = (H, x 7→ H(x),K, |w0⟩) be a span program, and β > 0. Let P ′ be P
renormalized with constant β, as defined in Definition 6.1.16. Let x ∈ D. Then:

1. P and P ′ compute the same function.
2. If x is a positive input, then the positive witnesses for x in P ′ are the vectors√

1 + 1/β2 |w⟩, where |w⟩ is a positive witness for x in P.
3. If x is a negative input, then the negative witnesses for x in P ′ are the

vectors (β |w⟩+ |∗⟩)/
√

1 + β2, where |w⟩ is a negative witness for x in P.

Proof:
Let x ∈ D, and define

H = Span{|∗⟩}, H(x) = {0}, K = {0}, |w0⟩ = |∗⟩ .

Let T = (H, x 7→ H(x),K, |w0⟩) be a span program. Then T computes the
constant function x 7→ 0.

By comparing Definition 6.1.16 with the composition results introduced in this
section, we observe that P ′ = β2P ∨ T . Thus, by claim 1 of Theorem 7.1.6, P ′

computes the same function as P , and by claims 2a and 2b of said theorem, the
positive witnesses for P ′ are the vectors

√
1 + 1/β2 |w⟩, where |w⟩ is a positive

witness in P , and the negative witnesses are the vectors (β |w⟩+ |∗⟩)/
√

1 + β2,
where |w⟩ is a negative witness in P . This completes the proof. 2

Note that in the proof of the previous theorem, we could not use the results
from claims 5 and 6 of Theorem 7.1.6, since the OR-composition involved the
span program T , which computes a constant function. Indeed, if we compute the
complexity of P ′, we can see that it does not satisfy the formulae in these claims.

Now that we know how to compute AND’s and OR’s of functions, it is a
natural question to ask whether we can also compute the XOR of two functions.
The following theorem shows that this can indeed be done, using both the AND
and OR constructions that were introduced earlier.

7.1.9. Theorem (XOR-composition of span programs). Let P1 and P2 be span
programs on a common domain D, computing functions f1, f2 : D → {0, 1},
respectively. Let α1, α2, β1, β2, γ1, γ2 > 0 be defined by

α1 =
√
W−(P1)W−(P2), α2 =

√
W+(P1)W+(P2),

β1 =
√
W+(P1)W+(P2), β2 =

√
W−(P1)W−(P2),

γ1 = α1W+(P1) + α2W−(P2), γ2 = β1W−(P1) + β2W+(P2).

182 Chapter 7. Compositions of span programs

Next, let

P = γ1(α1P1 ∧ α2(¬P2)) ∨ γ2(β1(¬P1) ∧ β2P2) =: XOR(P1,P2).

Then, P computes f : D → {0, 1},

f(x) =

{
1, if f1(x) ̸= f2(x),

0, otherwise,

and
C(P) ≤ C(P1) + C(P2).

Proof:
We verify immediately from the first claims of Theorems 7.1.4 and 7.1.6 that P
indeed computes f . Thus, it remains to check the claim on its complexity, i.e., it
remains to upper bound C(P). First, we define

Nγ = γ1 + γ2, and Nαβ = α1 + α2 = β1 + β2.

Now, let x ∈ D. Using the formulae from claims 4 in Theorems 7.1.2, 7.1.4
and 7.1.6, we find that

w+(x,P) = Nγ

[
γ1

w+(x, α1P1 ∧ α2(¬P2))
+

γ2
w+(x, β1(¬P1) ∧ β2P2)

]−1

= NγN
−1
αβ

[
γ1

α1w+(x,P1) + α2w−(x,P2)
+

γ2
β1w−(x,P1) + β2w+(x,P2)

]−1

,

and similarly we find that

w−(x,P) = N−1
γ [γ1w−(x, α1P1 ∧ α2(¬P2)) + γ2w−(x, β1(¬P1) ∧ β2P2)]

= N−1
γ Nαβ

[
γ1

[
α1

w−(x,P1)
+

α2

w+(x,P2)

]−1

+ γ2

[
β1

w+(x,P1)
+

β2
w−(x,P2)

]−1
]
.

Now, we distinguish four cases. First, suppose that f1(x) = f2(x) = 1. Then,

w−(x,P) = N−1
γ Nαβ

[
γ1

[
0 +

α2

w+(x,P2)

]−1

+ γ2

[
β1

w+(x,P1)
+ 0

]−1
]

≤ N−1
γ Nαβ

[
γ1
α2

W+(P2) +
γ2
β1
W+(P1)

]
= N−1

γ Nαβ

[[
α1

α2

+
β2
β1

]
W+(P1)W+(P2) +W−(P2)W+(P2) +W−(P1)W+(P1)

]
= N−1

γ Nαβ

[
2C(P1)C(P2) + C(P1)

2 + C(P2)
2
]
= N−1

γ Nαβ[C(P1) + C(P2)]
2.

7.1. Logical composition of span programs 183

Similarly, if f1(x) = f2(x) = 0, then

w−(x,P) = N−1
γ Nαβ

[
γ1

[
α1

w−(x,P1)
+ 0

]−1

+ γ2

[
0 +

β2
w−(x,P2)

]−1
]

≤ N−1
γ Nαβ

[
γ1
α1

W−(P1) +
γ2
β2
W−(P2)

]
= N−1

γ Nαβ

[[
α2

α1

+
β1
β2

]
W−(P1)W−(P2) +W−(P2)W+(P2) +W−(P1)W+(P1)

]
= N−1

γ Nαβ

[
2C(P1)C(P2) + C(P1)

2 + C(P2)
2
]
= N−1

γ Nαβ[C(P1) + C(P2)]
2.

On the other hand, if f1(x) = 0 and f2(x) = 1, then

w+(x,P) = NγN
−1
αβ

[
0 +

γ2
β1w−(x,P1) + β2w+(x,P2)

]−1

≤ NγN
−1
αβ · β1W−(P1) + β2W+(P2)

γ2
= NγN

−1
αβ ,

and similarly, if f1(x) = 1 and f2(x) = 0, then

w+(x,P) = NγN
−1
αβ

[
γ1

α1w+(x,P1) + α2w−(x,P2)
+ 0

]−1

≤ NγN
−1
αβ · α1W+(P1) + α2W−(P2)

γ1
= NγN

−1
αβ .

Thus, we arrive at

C(P) =
√
W+(P)W−(P) ≤

√
NγN

−1
αβ ·N−1

γ Nαβ[C(P1) + C(P2)]2

= C(P1) + C(P2).

This completes the proof. 2

As a final showcase of these composition techniques, we demonstrate how one
can compute the parity of span programs. That is, if we have span programs
P(1), . . . ,P(n) on a common domain D. We devise a span program that computes
whether on any given input x ∈ D, the number of these n span programs for
which this is a positive input, is even or odd.

7.1.10. Corollary (PARITY-composition of span programs).
Let P1, . . . ,Pn be span programs on a common domain D, where for all j ∈ [n],
Pj computes the function fj : D → {0, 1}. We define f : D → {0, 1}, such that
for all x ∈ D,

f(x) =

{
1, if |{j ∈ [n] : fj(x) = 1}| is odd,
0, if |{j ∈ [n] : fj(x) = 1}| is even.

184 Chapter 7. Compositions of span programs

Then, we define T1 = P1, and we inductively define Tj+1 = XOR(Pj+1, Tj), for
all j ∈ [n − 1]. We label P = Tn. It follows by the principle of mathematical
induction that P computes f , with complexity

C(P) =
n∑
j=1

C(Pj).

We conclude this subsection by making a couple of final observations. The
logical composition results we developed here are all on the level of span programs.
Using common techniques, one can also achieve such logical compositions directly
on the level of quantum algorithms. For instance, if we want to compute the parity
of n functions fj : D → {0, 1}, and for every j ∈ [n] we have a quantum algorithm
Aj that computes the function fj, then one approach we could take is to simply
run each of the algorithms Aj once, count the number of 1’s we obtained in the
process, and subsequently output whether this number is even or odd.

If all the algorithms Aj are exact, i.e., they output the right answer with
certainty, then this yields a similar result to Corollary 7.1.10, i.e., we can compute
the parity of the n function fj, using the sum of the number of queries required
to compute each of the individual functions. Requiring that all the algorithms
Aj are exact, though, is quite a restrictive assumption, since for many functions
it is known that exact computation is significantly harder than performing the
same task with bounded error.

The situation slightly changes, however, when we assume that each of the algo-
rithms Aj merely computes the function fj with bounded error, say with success
probability at least 2/3. Then, running each of the algorithms Aj independently
means that we can expect all of the algorithms Aj to succeed simultaneously
only with a probability that is exponentially small in n. Thus, if we use sepa-
rate independent runs of the individual algorithms Aj, we can merely guarantee
that we correctly compute the parity of all the outcomes with probability at least
1/2+O(exp(−n)), i.e., we only obtain an exponentially small advantage in terms
of the success probability over randomly guessing 0 or 1.

The typical solution, then, is to wrap each of the algorithms Aj in an error-
reduction routine. For instance, one can run the algorithm Aj a number of times,
and take the majority of the observed outcomes. This exponentially suppresses
the failure probability, i.e., if we run Aj a total of N times, and take the majority
of the outcomes, the failure probability is brought down to O(exp(−N)). From
this, it follows that if we run each of the algorithms Aj N = O(log(n)) times,
we can compute the parity of the n functions with bounded error. In short, the
error reduction techniques introduce a multiplicative logarithmic overhead in the
query complexity.3

3For the specific setting where we want to know the parity of the outcomes of n algorithms,
the extra log(n) overhead can be avoided using different techniques, as shown in [BNR+07].

7.1. Logical composition of span programs 185

The beauty of span program composition is that this multiplicative logarith-
mic overhead can be avoided. If instead of having quantum algorithms Aj com-
puting the functions fj, we have query-efficient span programs Pj that evaluate fj,
then we can use the parity composition from Corollary 7.1.10, and subsequently
the conversion from span programs to bounded-error quantum query algorithms,
Algorithm 6.1.18, to obtain a quantum algorithm that computes the parity of
the n functions with a number of queries that truly is the sum of the span pro-
gram complexities, without multiplicative logarithmic overhead. This highlights
exactly the true higher-level benefit of using span programs, as they ease the pro-
cess of taking individual algorithmic components, and stitching them together to
compute more involved problems.

In the above discussion, we used computing the parity of function outcomes as
an example, but using the AND- and OR-constructions presented in this chapter,
similar arguments can be made for computing the AND and OR on n function
outputs. Furthermore, there are most likely more intricate logical composition
results to be discovered. For instance, it would be interesting to figure out how to
build a threshold-composition, i.e., given n span programs Pj evaluating functions
fj, can we build a span program that decides whether at least k of the function
outputs are 1? This is a very interesting question for future research.

The inherent precondition for all these composition results, though, is that
we can construct these individual span programs Pj, computing the functions
fj, in the first place. This is in general a difficult task, but it motivates why,
even if we have efficient quantum algorithms that compute a particular boolean
function f : D → {0, 1}, there is still inherent value in coming up with an explicit
construction of a span program that evaluates the given function with optimal
complexity. For many functions, it is not completely understood what an optimal
span program computing it looks like. We make some progress on this question
for several specific functions later on in this chapter, but we already mention here
that this is a very interesting direction for future research too.

7.1.2 Relation to dual adversary bound solutions

Recall that the NOT-, AND- and OR-compositions introduced in the previ-
ous subsection preserve query-efficiency, and that by virtue of Theorems 6.2.9
and 6.2.10, query-efficient span programs over real Hilbert spaces have a one-to-
one correspondence with solutions to the reformulated dual adversary bound, as
defined in Theorem 6.2.6. This naturally leads to the realization that we can just
as well interpret these composition results on the dual adversary bound level, and
perform these compositions with its solutions.

More specifically, let f (1), . . . , f (m) : D → {0, 1} be m boolean functions with
a common domain D, and suppose that we want to generate a solution to the dual
adversary bound for the function f = f (1) ∧ · · · ∧ f (m). Given feasible solutions
to the reformulated dual adversary bound for the functions f (j) with j ∈ [m], we

186 Chapter 7. Compositions of span programs

can convert these into query-efficient span programs, compose the span programs
using the AND-composition, i.e., Theorem 7.1.4, and then convert the resulting
span program back into a feasible solution to the reformulated dual adversary
bound for f .

The core thing to realize is that the connection between dual adversary bound
solutions and query-efficient span programs is through their Gram vectorization
and witnesses, as proved in Theorems 6.2.9 and 6.2.10. Thus, by understanding
how the witnesses compose during the composition results derived in the previous
subsection, we can understand how the dual adversary bound solutions can be
composed as well.

We start by stating the span program negation result, i.e., Theorem 7.1.2,
in terms of feasible solutions to the dual adversary bound. From said theorem,
we observe that the witnesses are not changed during the negation process, so
therefore we also don’t need to change the adversary bound solution itself. Thus,
we straightforwardly arrive at the following theorem.

7.1.11. Theorem (Negation of dual adversary bound solutions).
Let f : D → {0, 1}, with D ⊆ {0, 1}n. Let X1, . . . , Xn be a feasible solution to the
reformulated dual adversary bound for f . Then X1, . . . , Xn is also a solution to
the dual adversary bound for ¬f , with the same objective value.

Proof:
The result can be directly observed from the statement of the reformulated dual
adversary bound, i.e., Theorem 6.2.6. 2

Strictly speaking, the above result proves ADV±(¬f) ≤ ADV±(f). However,
if we again apply the same result to the function ¬f and observe that ¬¬f = f ,
we also obtain the reverse inequality, and hence have proved that

ADV±(¬f) = ADV±(f). (7.1.5)

Next, we turn to the AND-composition, i.e., Theorem 7.1.4. The goal is to
phrase this theorem completely in terms of feasible solutions to the reformulated
dual adversary bound. The resulting composition construction on the level of
dual adversary bound solutions is implicitly implied through the results in [Rei09;
Bel14; Bel15], but to the best of our knowledge they are not explicitly exhibited.

Before stating and proving the result formally, we first sketch the resulting con-
struction. To that end, let D ⊆ {0, 1}n and for all j ∈ [m], let f (j) : D → {0, 1},
and let X(j)

1 , . . . , X
(j)
n be a feasible solution to the dual adversary bound for the

function f (j). We wish to find a feasible solution X1, . . . , Xn for the reformulated
dual adversary bound for the function f =

∧m
j=1 f

(j).
To that end, we let α1, . . . , αm > 0, like in Theorem 7.1.4. Next, we write

the Gram vectorization X
(j)
k = (W

(j)
k)†W

(j)
k , and we recall that the columns of

W
(j)
k define the witnesses of a query-efficient span program compiled from the

7.1. Logical composition of span programs 187

dual adversary bound solution. Then, we observe that Equation 7.1.1 and Equa-
tion 7.1.2 characterize the positive and negative witnesses for the composed span
program. Inspired by these relations and using the notation from there, we
multiply the columns of W (j)

k by the constants that appear in the characteriza-
tions, as displayed in Figure 7.1.1, to obtain the matrix (W

(j)
k)′. Next, we define

(X
(j)
k)′ = ((W

(j)
k)′)†(W

(j)
k)′, which is displayed in the same figure. Finally, we

define the matrices that feature the solution to the reformulated dual adversary
bound as Xk =

∑m
j=1(X

(j)
k)′.

(W
(j)
k)′ =

Multiply by√
α′
j

Set to 0

Multiply by
βj [x]√

α′
j

f (j)(x) = 1 f (j)(x) = 1 f (j)(x) = 0

f(x) = 1 f(x) = 0

(X
(j)
k)′ =

Multiply by
α′
j

Multiply by
βj [y]

Multiply by
βj [x]

Multiply by
βj [x]βj [y]

α′
j

Set to 0

Set to 0

Set to 0

Set to 0 Set to 0

f
(j
) (
x
)
=

1
f
(j
) (
x
)
=

1
f
(j
) (
x
)
=

0

f
(x
)
=

1
f
(x
)
=

0

f (j)(y) = 1 f (j)(y) = 1 f (j)(y) = 0

f(y) = 1 f(y) = 0

Figure 7.1.1: Schematic overview of how to obtain (W
(j)
k)′ and (X

(j)
k)′ from W

(j)
k

and X
(j)
k , respectively. The matrices displayed are W

(j)
k and X

(j)
k , and after

applying the operations indicated in the figure, one obtains (W
(j)
k)′ and (X

(j)
k)′.

The constants α′
1, . . . , α

′
m > 0 sum to 1, and the constants βj[x] ∈ R are chosen

such that
∑

j∈J βj[x] = 1, for all x ∈ f−1(0), where J = {j ∈ [n] : f (j)(x) = 0}.

Now, we present the result formally.

188 Chapter 7. Compositions of span programs

7.1.12. Theorem (AND-composition of dual adversary bound solutions).
Let f (1), . . . , f (m) : D → {0, 1} be m boolean functions on a common domain
D ⊆ {0, 1}n. For all j ∈ [m], let X(j)

1 , . . . , X
(j)
n be a feasible solution to the

reformulated dual adversary bound for the function f (j), with objective value A(j).
Let

f =
m∧
j=1

f (j) : D → {0, 1}.

Next, let α1, . . . , αm > 0, and define, for all j ∈ [m],

α′
j =

αj∑m
k=1 αk

.

Furthermore, for all j ∈ [m] and y ∈ (f (j))−1(0), let βj[y] ∈ R be such that for all
x ∈ f−1(0),

m∑
j=1

f (j)(x)=0

βj[x] = 1.

For all j ∈ [m] and k ∈ [n], we define the matrix (X
(j)
k)′ ∈ RD×D as

(X
(j)
k)′[x, y] =



α′
j ·X

(j)
k [x, y], if f(x) = 1 ∧ f(y) = 1,

0, if f(x) = 0 ∧ f (j)(x) = 1,

0, if f(y) = 0 ∧ f (j)(y) = 1,

βj[x] ·X(j)
k [x, y], if f(y) = 1 ∧ f(x) = 0 ∧ f (j)(x) = 0,

βj[y] ·X(j)
k [x, y], if f(x) = 1 ∧ f(y) = 0 ∧ f (j)(y) = 0,

βj [x]βj [y]

α′
j

·X(j)
k [x, y], if f(x) = f(y) = 0 ∧ f (j)(x) = f (j)(y) = 0.

Finally, for all k ∈ [n], we define X ′
k ∈ RD×D as

Xk =
m∑
j=1

(X
(j)
k)′.

Then,

1. X1, . . . , Xn is a solution to the reformulated dual adversary bound for f .
2. The optimal choice for the coefficients βj[x] is, for all j ∈ [m] and all

x ∈ (f (j))−1(0),

βj[x] =
α′
j∑n

k=1X
(j)
k [x, x]

·

[
m∑
j=1

α′
j∑n

k=1X
(j)
k [x, x]

]−1

.

We assume that we use these βj[x]’s in subsequent claims.

7.1. Logical composition of span programs 189

3. If for all j ∈ [m], f (j) are all non-constant, and f is non-constant either,
then the objective value A of the solution to the reformulated dual adversary
bound for f satisfies

A2 ≤

[
m∑
j=1

αj max
x∈(f (j))−1(1)

n∑
k=1

X
(j)
k [x, x]

]
·

[
max
j∈[m]

1

αj
max

x∈(f (j))−1(0)

n∑
k=1

X
(j)
k [x, x]

]
.

4. Suppose that for all j ∈ [m], f (j) is non-constant, and that we can decompose
n = n1 + · · · + nm, for positive integers nj. Furthermore, suppose that
D =×m

j=1
D(j) where for all j ∈ [m], D(j) ⊆ {0, 1}nj , such that f (j) only

depends on D(j). Then the above inequality becomes an equality, and the
optimal choice for the αj’s becomes

αj = max
x∈(f (j))−1(0)

n∑
k=1

X
(j)
k [x, x],

for all j ∈ [m], in which case

A2 =
m∑
j=1

(A(j))2.

Proof:
For every j ∈ [m], we first use Theorem 6.2.10 to generate a query-efficient
span program P(j) that computes f (j) from the dual adversary bound solution
X

(j)
1 , . . . , X

(j)
n . Next, we compose the span programs using Theorem 7.1.4, with

coefficients α1, . . . , αm, and we denote the resulting span program by P . From
claim 7 in Theorem 7.1.4, we find that P is query-efficient, and hence we can
use Theorem 6.2.9 to turn P into a solution to the reformulated dual adversary
bound X1, . . . , Xn.

We can check by direct calculation from claims 3a and 3b in Theorem 7.1.4
that the resulting matrices Xk defined in the theorem statement indeed equal
those that come out of the span program construction. Then, claims 1, 2, 3 and
4 above are simply claims 1, 3, 5 and 6 of Theorem 7.1.4, reformulated in the new
language. This completes the proof. 2

We have now seen two statements of the AND-composition result, i.e., one on
the span program level, Theorem 7.1.4, and one on the dual adversary bound level
Theorem 7.1.12. Even though they both have the same theoretical implications,
one could argue that the composition result looks a bit more natural on the span
program level, since the conversion from X

(j)
k to (X

(j)
k)′ in Theorem 7.1.12 looks

fairly non-trivial.
By feeding the optimal solutions to the reformulated dual adversary bound

for f (j) in the above composition result, we find that for non-constant functions

190 Chapter 7. Compositions of span programs

f (j),

ADV±

(
m∧
j=1

f (j)

)2

≤
m∑
j=1

ADV±(f (j))2. (7.1.6)

One might wonder whether the above inequality can be turned into an equality,
i.e., whether the span-program-based construction is indeed optimal regardless
of the choice of the functions f (j). This turns out to be the case as long as
these functions f (j) have mutually disjoint support, as imposed by claim 3 of
Theorem 7.1.12.

In order to show the reverse inequality of Equation (7.1.6), we turn to the
reformulated primal adversary bound, i.e., Theorem 6.2.4. Specifically, we show
that the reformulated primal adversary bound admits a similar AND-construction
as the result in Theorem 7.1.12. The resulting theorem, Theorem 7.1.13, can
already implicitly be obtained from the results presented in [HLŠ07; Rei09; Bel14;
Bel15], but here we give an explicit construction.

7.1.13. Theorem (AND-composition of primal adversary bound solutions).
Let n1, . . . , nm be such that n = n1 + · · · + nm. Next, for every j ∈ [m],
let D(j) ⊆ {0, 1}nj and f (j) : D(j) → {0, 1} be non-constant. Finally, we define
D =×m

j=1
D(j), and we let

f =
m∧
j=1

f (j) : D → {0, 1}, f(x) =
m∧
j=1

f (j)(x(j)),

for all (x(1), . . . , x(m)) = x ∈ D. Let α1, . . . , αm > 0 be strictly positive coefficients,
and let their normalized versions be, for all j ∈ [m],

α′
j =

αj∑m
k=1 αk

.

Next, for all j ∈ [m], suppose that (Γ(j), β(j)) is a solution to the reformulated
primal adversary bound for f (j), as stated in Theorem 6.2.4, with objective value
A(j). We use the abbreviations

P
(j)
β [x] =

m∏
j′=1
j′ ̸=j

(2β(j′)[x(j
′)]) and Pβ[x] =

m∏
j=1

(2β(j)[x(j)]).

Then, we define Γ ∈ RD×D, such that for the inputs (x(1), . . . , x(m)) = x ∈ D and
(y(1), . . . , y(m)) = y ∈ D,

Γ[x, y] =


√
α′
jP

(j)
β [x] · Γ(j)[x(j), y(j)],

if [f(x) = 1 ∧ ∃j ∈ [m] : f (j)(y(j)) = 0

∧∀j′ ∈ [m] \ {j}, x(j′) = y(j
′)]

∨[f(y) = 1 ∧ ∃j ∈ [m] : f (j)(x(j)) = 0

∧∀j′ ∈ [m] \ {j}, x(j′) = y(j
′)],

0, otherwise.

7.1. Logical composition of span programs 191

Furthermore, we let β ∈ RD be defined such that for all (x(1), . . . , x(m)) = x ∈ D,

β[x] =


1

2
Pβ[x], if f(x) = 1,

α′
j

2
Pβ[x], if

∃j ∈ [m] : f (j)(x(j)) = 0

∧∀j′ ∈ [m] \ {j}, f (j′)(x(j
′)) = 1,

0, otherwise.

Then,

1. (Γ, β) is a feasible solution to the reformulated primal adversary bound for f .

2. The objective value is
m∑
j=1

√
α′
jA

(j),

which is maximized by choosing αj = (A(j))2, for all j ∈ [m], in which case
the objective value becomes

√√√√ m∑
j=1

(A(j))2.

Proof:
First, observe that for any (x(1), . . . , x(m)) = x ∈ D, P (j)

β [x] only depends on
the values of x(j′), where j′ ̸= j. Thus, in the first condition of the definition
of Γ, we require that all these x(j′)’s are equal to all these y(j′)’s, and thus in
this case P (j)

β [x] = P
(j)
β [y]. Now, the definition preserves symmetry and thus Γ

is symmetric. We also observe that β contains exclusively non-negative entries.
Moreover, observe that the entry Γ[x, y] can only be non-zero whenever f(x) ̸=
f(y). We also obtain

∑
x∈f−1(1)

β[x] =
1

2

∑
x∈f−1(1)

m∏
j=1

(2β(j)[x(j)]) =
1

2

m∏
j=1

∑
x(j)∈(f (j))−1(1)

(2β(j)[x(j)])

=
1

2
·
m∏
j=1

1 =
1

2
,

192 Chapter 7. Compositions of span programs

and similarly,

∑
x∈f−1(0)

β[x] =
1

2

m∑
j=1

α′
j

∑
x(j)∈(f (j))−1(0)

∑
∀j′∈[m]\{j},

x(j
′)∈(f (j′))−1(1)

m∏
j′=1

(2β(j′)[x(j
′)])

=
1

2

m∑
j=1

α′
j

∑
x(j)∈(f (j))−1(0)

(2β(j)[x(j)]) ·
m∏
j′=1
j′ ̸=j

∑
x(j

′)∈(f (j))−1(1)

(2β(j′)[x(j
′)])

=
1

2

m∑
j=1

α′
j · 1 ·

m∏
j′=1
j′ ̸=j

1 =
1

2
.

Next, we check the semidefinite constraint. To that end, let k ∈ [n], and
suppose that k is an index to a bit in the jth part of the input, i.e., in x =
(x(1), . . . , x(m)), xk is a bit of x(j). Next, suppose that x, y ∈ D are such that
xk ̸= yk and Γ[x, y] ̸= 0. Then, it must be that for all j′ ∈ [m]\{j}, x(j′) = y(j

′). As
such, we find that we can decompose Γ◦∆k into block-diagonal submatrices where
for all j′ ∈ [m]\{j}, x(j′) = y(j

′). Hence, in order to check that diag(β)−Γ◦∆k ⪰ 0,
it suffices to prove that each of the blocks is positive semidefinite.

Thus, fix inputs x(j′) ∈ (f (j′))−1(1), for all j′ ∈ [m] \ {j}, and let Γ′, β′ and
∆′
k be the submatrices of Γ, β and ∆k corresponding to these inputs, i.e., for all

x(j), y(j) ∈ D(j), Γ′[x(j), y(j)] = Γ[x, y], β′[x(j)] = β[x] and ∆′
k[x

(j), y(j)] = ∆k[x, y].
We prove that diag(β′) − Γ′ ◦ ∆′

k ⪰ 0. To that end, observe that if f (j)(x(j)) ̸=
f (j)(y(j)), then

Γ′[x(j), y(j)] =
√
α′
jP

(j)
β [x]Γ(j)[x(j), y(j)],

and since from the definition of P (j)
β [x] we observe that it does not depend on

x(j), we obtain that Γ′ is a scalar multiple of Γ(j). Similarly, if x(j) ∈ (f (j))−1(1),
then

β′[x] =
1

2
Pβ[x] = P

(j)
β [x]β(j)[x(j)],

and if x(j) ∈ (f (j))−1(0), then

β′[x] =
α′
j

2
Pβ[x] = α′

jP
(j)
β [x]β(j)[x(j)].

Hence, after rearranging rows and columns in such a way that the positive inputs
for f (j) are in the first block, and the negative inputs in the second, we can write

Γ(j) ◦∆′
k =

[
0 M (j)

(M (j))† 0

]
, and β(j) =

[
β
(j)
+

β
(j)
−

]

7.1. Logical composition of span programs 193

from which we obtain that

diag(β′)− Γ′ ◦∆′
k = P

(j)
β [x] ·

[
diag(β

(j)
+)

√
α′
jM

(j)√
α′
j(M

(j))† α′
j diag(β

(j)
−)

]

= P
(j)
β [x] · (diag(β(j))− Γ(j) ◦∆′

k) ◦
[

1√
α′
j

] [
1
√
α′
j

]
⪰ 0,

where the semidefinite inequality holds since P
(j)
β [x] ≥ 0, (Γ(j), β(j)) forms a

feasible solution to the reformulated primal adversary bound for the function
f (j), and the right-most matrix is a projection and thus positive semidefinite.
This completes the proof of claim 1.

For the second claim, we compute the objective value∑
x,y∈D

Γ[x, y] = 2
∑

x∈f−1(1)

m∑
j=1

∑
y(j)∈(f (j))−1(0)

Γ[x, (x(1), . . . , y(j), . . . , x(m))]

=
m∑
j=1

√
α′
j

∑
∀j′∈[m]\{j},

x(j
′)∈(f (j′))−1(1)

P
(j)
β [x]

∑
x(j),y(j)∈D

Γ(j)[x(j), y(j)]

=
m∑
j=1

√
α′
j

m∏
j′=1
j′ ̸=j

∑
x(j

′)∈(f (j′))−1(1)

(2β(j′)[x(j
′)]) · A(j)

=
m∑
j=1

√
α′
j

m∏
j′=1
j′ ̸=j

1 · A(j) =
m∑
j=1

√
α′
jA

(j).

Hence, using the Cauchy–Schwarz inequality, we obtain that the objective value
satisfies

m∑
j=1

√
α′
jA

(j) ≤

√√√√ m∑
j=1

α′
j ·

√√√√ m∑
j=1

(A(j))2 =

√√√√ m∑
j=1

(A(j))2,

and the inequality becomes an equality when for all j ∈ [m], we choose αj =
(A(j))2. This completes the proof. 2

Thus, if we plug the optimal solutions to the reformulated primal adversary
bound for the functions f (j) in the above composition result, we obtain that

ADV±

(
m∧
j=1

f (j)

)2

≥
m∑
j=1

ADV±(f (j))2, (7.1.7)

and so we indeed obtain Equation (7.1.6) with the reverse inequality. Hence,
both results together prove equality, as we formally state below. This results is

194 Chapter 7. Compositions of span programs

to the best of our knowledge not mentioned explicitly anywhere in the existing
literature, however it is considered folklore.

7.1.14. Corollary. Let n1, . . . , nm be such that {0, 1}n =×m

j=1
{0, 1}nj , and for

every j ∈ [m], let D(j) ⊆ {0, 1}nj , and f (j) : D(j) → {0, 1} be non-constant. Then,

ADV±

(
m∨
j=1

fj

)2

= ADV±

(
m∧
j=1

fj

)2

=
m∑
j=1

ADV±(f (j))2.

Proof:
The right equality follows directly from Equations (7.1.6) and (7.1.7). This result
can be extended to the setting where we take the OR of m functions, rather than
AND, by cleverly using De Morgan’s law and Equation (7.1.5), to obtain

ADV±

(
m∨
j=1

f (j)

)
= ADV±

(
¬

m∧
j=1

¬f (j)

)
= ADV±

(
m∧
j=1

¬f (j)

)

=
m∑
j=1

ADV±(¬f (j))2 =
m∑
j=1

ADV±(f (j))2.

This completes the proof. 2

Thus, in this subsection we have exactly characterized the adversary bound
of computing the AND or OR of n functions, in terms of the adversary bounds
of the individual functions. Moreover, our results prove that in the setting where
the individual functions have disjoint support, i.e., non-overlapping inputs, the
span program composition constructions presented in Theorems 7.1.4 and 7.1.6
achieve this optimal bound, and as such cannot be improved.

There are many more interesting questions that one could try to tackle from
here. The most immediate one is to achieve a similar result for the PARITY-
construction that we presented in Corollary 7.1.10. In order to do that, one
would have to prove a similar composition result of reformulated primal adversary
bound solutions as showcased in Theorem 7.1.13, but now for the parity function
rather than the AND-function. It would be interesting to see how this PARITY-
construction manifests explicitly on the level of solutions to the primal and dual
adversary bounds.

Another interesting question to ask is whether instead of composition results
of span programs or dual adversary bound solutions, we can also obtain reverse
constructions, i.e., decomposition constructions. More specifically, suppose that
we have a solution (Γ, β) to the reformulated dual adversary bound for some func-
tion f =

∧m
j=1 f

(j), where all the f (j)’s have disjoint support. Can we somehow
decompose this solution to generate individual solutions (Γ(j), β(j)) to the refor-
mulated dual adversary bound for the functions f (j), in such a way that when

7.1. Logical composition of span programs 195

we feed them back into the AND-composition result, i.e., Theorem 7.1.4, we get
either back the same original solution, or at least an improved one? And if yes,
how does such a decomposition result translate back to span programs? Initial
attempts have revealed that these questions are surprisingly tricky, and it would
be nice to figure this out somewhere in the future.

Finally, it would also be interesting to broaden the arsenal of composition
results that we have available to us, and especially prove the optimality of these
compositions. One example for instance is the following setting. Suppose we have
m functions f (j) on disjoint domains, and we want to compute the function f that
for a tuple of inputs (x(1), . . . , x(m)) checks whether at least k of the functions f (j)

evaluate to 1. We refer to such a composition result as a threshold composition.
It would be nice to characterize the dual adversary bound of this function f
exactly, given the adversary bounds of the individual functions f (j). At this
stage, however, we don’t even have a candidate expression that we expect to
capture this relation optimally. This is a very nice direction for future research,
because it will teach us a lot about optimally composing many smaller functions
into a bigger one.

7.1.3 Characteristic functions

The NOT-, AND-, and OR-composition results introduced in Section 7.1.1, allow
for constructing span programs that evaluate logical compositions of functions
computed by smaller individual span programs. In this subsection, we investigate
how these composition results can be interpreted operationally. Specifically, we
derive a way to characterize the probability distribution of the ideal phase variable
of composed span programs.

We start by introducing a new property of span programs, called the charac-
teristic function. It is a function defined on the Riemann sphere C∞ = C∪ {∞}.

7.1.15. Definition (Characteristic function). Let P = (H, x 7→ H(x),K, |w0⟩)
be a span program on D, and let x ∈ D. Next, we define the linear operator on
K⊥ as

p = ΠK⊥ΠH(x)⊥ΠK⊥ ∈ L(K⊥).

Since p projects onto K⊥ as the final operation, its image is indeed contained
in K⊥, and since it is Hermitian we can think of p as an operator acting on the
Hilbert space K⊥, rather than on H. Next, we define χx : C∞ → C∞. For all
z ∈ C for which the following expression is well-defined, we let

χx(z) = ⟨w0| (p− (1− z)I)−1 |w0⟩ ,

where the inverse is taken in L(K⊥). We then identify χx with its analytic con-
tinuation, and say that χx is the characteristic function of P for input x. ◀

196 Chapter 7. Compositions of span programs

In order to develop some intuition for the characteristic function, we define a
slight modification of the ideal phase variable, which we dub the modified phase
variable. The ability to express our results in terms of this new quantity leads to
less cumbersome expressions later on.

7.1.16. Definition (Modified phase variable). Let P be a span program on D,
and let x ∈ D. Let Φ be the ideal phase variable for x in P . Then, we define the
modified phase variable for x in P as Q = sin2(πΦ). Similarly as for Φ, we define
its support supp(Q) to be the set of values q ∈ [0, 1] such that P[Q = q] > 0. ◀

Next, we prove several properties of these newly-defined objects. In particular,
we discover that there is a surprisingly direct relation between the characteristic
function and the probability distribution of the modified phase variable.

7.1.17. Lemma (Properties of the characteristic function).
Let P = (H, x 7→ H(x),K, |w0⟩) be a span program on D, and let χx be its
characteristic function for input x ∈ D. Let Q be the modified phase variable for
x in P. Then,

1. χx is a rational, analytic function, and the sum of residues in C is 1.
2. For all z ∈ C∞,

χx(z) = E
[

1

z −Q

]
.

3. For all q ∈ C∞,
P [Q = q] = lim

z→q
(z − q)χx(z).

4. The minimal positive and negative witness size for x is

w+(x,P) = −χx(0), and w−(x,P) = lim
z→0

1

zχx(z)
.

Proof:
We start with proving claim 2. To that end, let z ∈ C be such that the expres-
sion for χx(z) in Definition 7.1.15 is well-defined. Furthermore, let k ∈ N, the
subspaces R0, . . . , Rk ⊆ H and θ0, . . . , θk ∈ [0, π] be as in Jordan’s lemma, i.e.,
Lemma 6.1.11. From said lemma, recall that we can write

K⊥ =
k⊕
j=0

(K⊥ ∩Rj), and H(x)⊥ =
k⊕
j=0

(H(x)⊥ ∩Rj),

and that for all j ∈ [k]0, the angle between K⊥∩Rj and H(x)⊥∩Rj is θj/2. From
these observations, we deduce that we can write

p =
k∑
j=0

cos2(θj/2)ΠK⊥∩Rj
∈ L(K⊥),

7.1. Logical composition of span programs 197

and thus we can write

p− (1− z)I =
k∑
j=0

(cos2(θj/2)− 1 + z)ΠK⊥∩Rj
=

k∑
j=0

(z − sin2(θj/2))ΠK⊥∩Rj
,

where both sides of the equality are elements in L(K⊥). Thus, p − (1 − z)I de-
composes into projections with a scalar multiple on several mutually orthogonal
subspaces that together span K⊥. As such, its inverse is the same sum of pro-
jections, but with the reciprocal of all the scalar multiples, which allows us to
obtain

χx(z) = ⟨w0|
(
ΠK⊥ΠH(x)⊥ΠK⊥ − (1− z)I

)−1 |w0⟩

=
k∑
j=0

1

z − sin2(θj/2)
⟨w0|ΠK⊥∩Rj

|w0⟩ =
k∑
j=0

∥∥ΠRj
|w0⟩

∥∥2
z − sin2(θj/2)

=
∑

ϕ∈supp(Φ)

P [Φ = ϕ]

z − sin2(πϕ)
=

∑
q∈supp(Q)

P[Q = q]

z − q
= E

[
1

z −Q

]
.

We can now analytically extend both sides of the equality to all the values of z
for which the expression for χx(z) is not well-defined, which completes the proof
of claim 2.

Next, we turn to claim 1. To that end, since the spectrum of Φ is discrete, so is
the spectrum of Q, and we can take p1, . . . , pn, q1, . . . , qn ∈ [0, 1] such that for all
j ∈ [n], P[Q = qj] = pj, and for all other values q ̸∈ {qj : j ∈ [n]}, P[Q = q] = 0.
Then, we can write

χx(z) =
n∑
j=1

pj
z − qj

.

It follows that χx is indeed a rational function. Moreover, its residues in C are
at qj, for all j ∈ [n], and we have Res(χx; qj) = pj. Therefore, the sum of the
residues in C is the sum of the pj’s, which is 1 since they form a probability
distribution. This completes the proof of claim 1.

For claim 3, observe that for all z ∈ C \ {qj : j ∈ [n]}, we have that χx does
not have a pole, and therefore the limit from claim 3 becomes 0. On the other
hand, for all k ∈ [n],

lim
z→qk

(z − qk)χx(z) = lim
z→qk

n∑
j=1

(z − qk)
pj

z − qj
= pk = P[Q = qk].

Thus, we have proven claim 3.
Finally, observe from Theorem 6.1.13 that

−χx(0) = −E
[
− 1

Q

]
= E

[
1

sin2(πΦ)

]
= w+(x,P),

198 Chapter 7. Compositions of span programs

and
lim
z→0

1

zχx(z)
=

1

P[Q = 0]
=

1

P[Φ = 0]
= w−(x,P).

This completes the proof. 2

From Definition 7.1.15, we have seen that the characteristic function is defined
directly in terms of the geometrical objects that make up a span program. On
the other hand, we have observed in Lemma 7.1.17 that it bears an interesting
connection to the operational analysis of span programs through the modified
phase variable. Moreover, it is a rational and analytic function, which opens up
the possibility for us to study these objects using tools from both polynomial
algebra and complex analysis.

In order to further develop the intuition for characteristic functions and their
relation to the modified phase variable, we draw both in Figure 7.1.2. We observe
that the function has simple poles of first order exactly at the values that the
modified phase variable attains with non-zero probability, and the residues at
these poles are exactly equal to these probabilities.

q
0

P[
Q

=
q]

1

Figure 7.1.2: The relation between the modified phase variable Q and the charac-
teristic function. The latter’s asymptotes are exactly at the values that Q attains
with non-zero probability.

Recall from Lemma 6.1.3 that x is a negative input for P if and only if the ideal
phase variable is 0 with non-zero probability. Thus, we can easily visually observe
whether the characteristic function corresponds to a negative input – it does if
and only if it has an asymptote at the left end of the spectrum, i.e., at 0. On the
other hand, if x is a positive input, then the y-value at which the characteristic
function passes through the vertical axis is minus the positive witness size.

One of the most striking properties of the characteristic function is that it
relates the properties of the modified phase variable of any span program and its
negation. The following theorem characterizes this relation.

7.1.18. Theorem. Let P be a span program on D, and let x ∈ D. Let χx and
χ′
x be the characteristic functions for x in P and ¬P, respectively. Then, for all

7.1. Logical composition of span programs 199

z ∈ C∞,

χ′
x(z) =

1

z(z − 1)χx(z)
.

Proof:
By analytic continuation, it suffices to prove that the above relation holds for
all z ∈ C such that χx(z) and χ′

x(z) are well-defined. Thus, let z ∈ C sat-
isfy this assumption, and let P = (H, x 7→ H(x),K, |w0⟩) and ¬P = (H, x 7→
H′(x),K′, |w0⟩). Then, we define the vectors |v⟩ ∈ K⊥ and |v′⟩ ∈ (K′)⊥ =
K ⊕ Span{|w0⟩} as

|v⟩ = (p− (1− z)I)−1 |w0⟩ , and |v′⟩ = (p′ − (1− z)I)
−1 |w0⟩ ,

where p′ = ΠK⊕Span{|w0⟩}ΠH(x)ΠK⊕Span{|w0⟩} ∈ L((K′)⊥). Rewriting yields

|w0⟩ = (p− (1− z)I) |v⟩ , (7.1.8a)
|w0⟩ = (p′ − (1− z)I) |v′⟩ . (7.1.8b)

Next, we decompose the vectors |v⟩ and |v′⟩ according to the subspaces generated
by Jordan’s lemma, i.e., Lemma 6.1.11, with the spaces A = K and B = H(x).
For all j ∈ [k]0, we write

|w(j)
0 ⟩ = ΠK⊥∩Rj

|w0⟩ , |v(j)⟩ = ΠK⊥∩Rj
|v⟩ , and |(v′)(j)⟩ = ΠK∩Rj

|v′⟩ ,

and subsequently we choose α ∈ C, such that

|w0⟩ =
k∑
j=0

|w(j)
0 ⟩, |v⟩ =

k∑
j=0

|v(j)⟩, and |v′⟩ =
k∑
j=0

|(v′)(j)⟩+ α |w0⟩ . (7.1.9)

We can now substitute these decompositions into Equation (7.1.8a), to obtain

k∑
j=0

|w(j)
0 ⟩ =

k∑
j=0

(ΠK⊥ΠH(x)⊥ΠK⊥ − (1− z)I)|v(j)⟩

=
k∑
j=0

[
cos2

(
θj
2

)
− (1− z)

]
|v(j)⟩ =

k∑
j=0

[
z − sin2

(
θj
2

)]
|v(j)⟩

from which we find that for all j ∈ [k]0, by projecting onto Rj we are left with

|w(j)
0 ⟩ =

[
z − sin2

(
θj
2

)]
|v(j)⟩.

Thus,

χx(z) = ⟨w0|v⟩ =
k∑
j=0

⟨w(j)
0 |v(j)⟩ =

k∑
j=0

[
z − sin2

(
θj
2

)]−1

∥|w(j)
0 ⟩∥2. (7.1.10)

200 Chapter 7. Compositions of span programs

Similarly, we can plug the decompositions from Equation (7.1.9) into Equa-
tion (7.1.8b). To that end, we observe that Span{|w0⟩} and K are orthogonal
subspaces, and so we can write ΠK⊕Span{|w0⟩} = ΠK + |w0⟩ ⟨w0|. Thus, we obtain

|w0⟩ =
(
ΠKΠH(x)ΠK +ΠKΠH(x) |w0⟩ ⟨w0|
+ |w0⟩ ⟨w0|ΠH(x)ΠK + |w0⟩ ⟨w0|ΠH(x) |w0⟩ ⟨w0| − (1− z)I

)
|v′⟩ .

We evaluate the 5 terms individually, to obtain

ΠKΠH(x)ΠK |v′⟩ =
k∑
j=0

ΠKΠH(x)|(v′)(j)⟩ =
k∑
j=0

cos2
(
θj
2

)
|(v′)(j)⟩,

(7.1.11a)

ΠKΠH(x) |w0⟩ ⟨w0|v′⟩ = α

k∑
j=0

ΠKΠH(x)|w(j)
0 ⟩, (7.1.11b)

|w0⟩ ⟨w0|ΠH(x)ΠK |v′⟩ = |w0⟩
k∑
j=0

⟨w(j)
0 |ΠH(x)|(v′)(j)⟩, (7.1.11c)

|w0⟩ ⟨w0|ΠH(x) |w0⟩ ⟨w0|v′⟩ = α |w0⟩
k∑
j=0

⟨w(j)
0 |ΠH(x)|w(j)

0 ⟩

= α |w0⟩
k∑
j=0

sin2

(
θj
2

)
∥|w(j)

0 ⟩∥2, (7.1.11d)

−(1− z) |v′⟩ =
k∑
j=0

−(1− z)|(v′)(j)⟩ − α(1− z) |w0⟩ . (7.1.11e)

Summing everything on the right-hand side and projecting onto the space K∩Rj,
for j ∈ [k]0, yields

0 =

[
cos2

(
θj
2

)
− (1− z)

]
|(v′)(j)⟩+ αΠKΠH(x)|w(j)

0 ⟩,

which implies that

αΠKΠH(x)|w(j)
0 ⟩ = −

[
z − sin2

(
θj
2

)]
|(v′)(j)⟩. (7.1.12)

Similarly, summing everything on the right-hand side of Equation (7.1.11) and
projecting onto Span{|w0⟩} yields

1 =
k∑
j=0

⟨w(j)
0 |ΠH(x)|(v′)(j)⟩+ α

k∑
j=0

[
sin2

(
θj
2

)
− (1− z)

]
∥|w(j)

0 ⟩∥2. (7.1.13)

7.1. Logical composition of span programs 201

For every j ∈ [k]0, we rewrite the first summand using Equation (7.1.12), to
obtain

⟨w(j)
0 |ΠH(x)|(v′)(j)⟩ = −α

[
z − sin2

(
θj
2

)]−1

⟨w(j)
0 ΠH(x)ΠKΠH(x)|w(j)

0 ⟩

= −α
[
z − sin2

(
θj
2

)]−1

∥ΠKΠH(x)|w(j)
0 ⟩∥2

= −α
[
z − sin2

(
θj
2

)]−1

cos2
(
θj
2

)
sin2

(
θj
2

)
,

where the latter equality can be observed from the visualization of Jordan’s lemma
in Figure 6.1.4. We can use this relation to rewrite Equation (7.1.13), and obtain

1 = −α
k∑
j=0

[
z − sin2

(
θj
2

)]−1

sin2

(
θj
2

)
cos2

(
θj
2

)
∥|w(j)

0 ⟩∥2

− α
k∑
j=0

[
(1− z)− sin2

(
θj
2

)]
∥|w(j)

0 ⟩∥2

= −α
k∑
j=0

[[
z − sin2

(
θj
2

)]−1

cos2
(
θj
2

)
− 1

]
sin2

(
θj
2

)
∥|w(j)

0 ⟩∥2

− α
k∑
j=0

(1− z)∥|w(j)
0 ⟩∥2

= −α
k∑
j=0

[[
z − sin2

(
θj
2

)]−1

(1− z) sin2

(
θj
2

)
+ (1− z)

]
∥|w(j)

0 ⟩∥2

= −α(1− z)
k∑
j=0

[
z − sin2

(
θj
2

)]−1 [
sin2

(
θj
2

)
+ z − sin2

(
θj
2

)]
∥|w(j)

0 ⟩∥2

= −αz(1− z)
k∑
j=0

[
z − sin2

(
θj
2

)]−1

∥|w(j)
0 ⟩∥2 = −αz(1− z)χx(z),

where in the last step we used Equation (7.1.10). Finally, we find

χ′
x(z) = ⟨w0|v′⟩ = α =

1

z(z − 1)χx(z)
,

completing the proof. 2

The above proof is quite non-trivial. Even though we mentioned at the begin-
ning of this chapter that we would lay emphasis on the intuitive interpretation
of the results that we present here, coming up with an intuitive understanding of

202 Chapter 7. Compositions of span programs

the above proof has proven futile. It would certainly be an interesting direction
of future research to obtain a better geometrical understanding of the above re-
sult, and especially if it can be understood in the context of the visualization of
Jordan’s lemma, i.e., Figure 6.1.4.

One potentially related piece of literature is [BSS14, Section 3.1]4 – especially
Figure 3.1 in said paper is very reminiscent of Figure 7.1.2. In the cited paper, the
spectrum of the operator A+ |v⟩ ⟨v| is analyzed, for a Hermitian operator A and a
vector |v⟩ from the Hilbert space acted on by A. It is not directly clear how their
setting relates to ours, though, i.e., it is not clear how one should choose A and |v⟩
to recover the setting we are interested in here. Moreover, the mentioned paper
only investigates the spectrum, whereas here the newly-computed characteristic
function also captures the overlap with the eigenspaces of the new operator. We
leave developing connections between this text and the paper mentioned for future
work.

One implication of the above proof is particularly elegant. Where the proba-
bility distribution of the original modified phase variable is concentrated on the
points where the characteristic function has its asymptotes, the probability dis-
tribution of the negated modified phase variable, i.e., the modified phase variable
of the negated span program, is concentrated on the locations of its zeros. This
is illustrated in Figure 7.1.3.

q
0

P[
Q

=
q]

1

Figure 7.1.3: Relation between the characteristic functions and the modified phase
variables of the original and negated span programs, shown in black and gray,
respectively. For both endpoints, we see that either the original, or the negated
modified phase variable has non-zero probability, and in the interval (0, 1), we see
that the zeros of the characteristic functions coincide with the locations of the
non-zero probabilities of the negated modified phase variable.

The visualization in Figure 7.1.3 suggests a remarkable property of modified
phase variables of span programs and their negations. Suppose that Q is the
modified phase variable of a span program P , and let Q′ be the modified phase
variable of ¬P . We write q1, . . . , qn for the values that Q attains with non-zero
probability, and similarly q′1, . . . , q

′
n′ for Q′. Now, the characteristic function χx

4This connection was pointed out by Prof. M.C. Veraar in personal communication.

7.1. Logical composition of span programs 203

in P has asymptotes at all qj’s, and it has zeros at all q′j’s. Since the function χx
is continuous between two asymptotes, it must pass through the horizontal axis,
and thus in between two consecutive values qj and qj+1 there must be a value
q′j′ , and vice versa. In other words, the supports of Q and Q′ are interlaced, i.e.,
if one draws them in the interval [0, 1], one obtains an alternating pattern. We
would like to explicitly point out that this property is very easily observed from
the visualization of the characteristic function, but is in no way obvious from our
geometrical understanding of span programs, e.g., Figure 6.1.2 or Figure 6.1.4.

We also remark that if one knows the probability distribution of the modified
phase variable Q of a span program P , i.e., one knows q1, . . . , qn ∈ [0, 1] and
p1, . . . , pn ∈ [0, 1] such that P[Q = qj] = pj for all j ∈ [n], then it is very easy to
explicitly calculate the probability distribution of the modified phase variable Q′

of the negation ¬P . Indeed, one can write the characteristic function

χx(z) =
n∑
j=1

pj
z − qj

,

and then find the new probability distribution q′1, . . . , q′n′ ∈ [0, 1] and p′1, . . . , p′n′ ∈
[0, 1] by performing a partial fraction decomposition on the negated characteristic
function χ′

x and write it in the following form

χ′
x(z) =

1

z(z − 1)χx(z)
=

n′∑
j=1

p′j
z − q′j

.

One might wonder whether the probabilities in the resulting probability distribu-
tion indeed sum to 1 again, i.e., whether in the above equation

n′∑
j=1

p′j = 1.

From the theory we have developed thus far, we can deduce that this should be
the case – after all, χ′

x is again a characteristic function, and hence it possesses
the properties described in Lemma 7.1.17. We can also prove this directly from
the relation derived in Theorem 7.1.18, and the proof is too elegant not to include
it in this text.

7.1.19. Theorem. Let χx and χ′
x be two analytic functions of the form

χx(z) =
n∑
j=1

pj
z − qj

, and χ′
x(z) =

1

z(z − 1)χx(z)
=

n′∑
j=1

p′j
z − q′j

,

where pj, qj, p′j′ , q′j′ ∈ C, for all j ∈ [n] and j′ ∈ [n′]. Then,

n′∑
j=1

p′j =

[
n∑
j=1

pj

]−1

.

204 Chapter 7. Compositions of span programs

In particular, if either summation is 1, then so is the other.

Proof:
Since χ′

x is an analytic function, we know that the sum of all its residues on the
Riemann sphere must be 0. Using that for every analytic function f , we have the
formula −Res(f ;∞) = Res(z 7→ f(1/z)/z2; 0), we obtain that

n′∑
j=1

p′j =
n′∑
j=1

Res(χ′
x; q

′
j) = −Res(χ′

x;∞) = −Res

(
z 7→ 1

z(z − 1)χx(z)
;∞
)

= Res

(
z 7→ 1

z2
· z(

1
z
− 1
)
χx
(
1
z

) ; 0) = lim
z→0

1(
1
z
− 1
)
χx
(
1
z

)
= lim

z→0

[
n∑
j=1

pj

1
z
− 1

1
z
− qj

]−1

=

[
lim
z→0

n∑
j=1

pj
1− z

1− zqj

]−1

=

[
n∑
j=1

pj

]−1

.

This completes the proof. 2

We can use the same techniques to recover relations between the moments of
the modified phase variable and its negated counterpart.

7.1.20. Theorem. Let P be a span program on D, and x ∈ D. Let χx and χ′
x

be the characteristic functions for x in P and ¬P, respectively. Let Q and Q′ be
the modified phase variables for x in P and ¬P, respectively. Then, we have the
power series

∞∑
k=0

E[(Q′)k]zk =

[(
1

z
− 1

)
χx

(
1

z

)]−1

=
∞∑
ℓ=0

[
∞∑
k=1

E[Qk−1(1−Q)]zk

]ℓ
.

In particular, for all m ≥ 0, we have

E[(Q′)m] =
∑
k∈N∗
Σk=m

∏
k∈k

E
[
Qk−1(1−Q)

]
,

where N∗ denotes all finite positive integer sequences of arbitrary length, including
the empty sequence k = ∅, and for every k ∈ N∗, we denote the sum of all entries
by Σk. For the first values of m, this yields

E[(Q′)0] = 1,

E[Q′] = E[1−Q],

E[(Q′)2] = E[1−Q]2 + E[Q(1−Q)],

E[(Q′)3] = E[1−Q]3 + 2E[Q(1−Q)]E[1−Q] + E[Q2(1−Q)].

7.1. Logical composition of span programs 205

Proof:
Just like in Theorem 7.1.19, we write

χx(z) =
n∑
j=1

pj
z − qj

, and χ′
x(z) =

1

z(z − 1)χx(z)
=

n′∑
j=1

p′j
z − q′j

,

where pj, qj, p′j′ , q′j′ ∈ C, for all j ∈ [n] and j′ ∈ [n′]. Next, let k ∈ [n]. Then,

E[(Q′)k] =
n′∑
j=1

p′j(q
′
j)
k =

n′∑
j=1

Res
(
z 7→ zkχ′

x(z); q
′
j

)
= −Res

(
z 7→ zk

z(z − 1)χx(z)
;∞
)

= Res

(
z 7→ 1

z2 · zk · 1
z
·
(
1
z
− 1
)
χx
(
1
z

) ; 0)

= Res

z 7→ 1

zk+1

[(
1

z
− 1

)
χx

(
1

z

)]−1

︸ ︷︷ ︸
f(z)

; 0

 .

We already saw in the previous lemma that f is analytic near 0, as f(z) → 1
when z → 0. Thus, we can expand f into its Taylor series around z = 0, and
then the above relation tells us that the coefficient in this Taylor series in front
of the term zk is exactly E[(Q′)k]. Thus, we have

∞∑
k=0

E[(Q′)k]zk =

[(
1

z
− 1

)
χx

(
1

z

)]−1

.

This proves the first equality.
For the second equality, we observe that

χx

(
1

z

)
= E

[
1

1
z
−Q

]
= zE

[
1

1− zQ

]
=

∞∑
k=0

E[Qk]zk+1,

and hence(
1

z
− 1

)
χx

(
1

z

)
=

∞∑
k=0

E[Qk]zk −
∞∑
k=1

E[Qk−1]zk = 1−
∞∑
k=1

E[Qk−1(1−Q)]zk.

Thus, [(
1

z
− 1

)
χx

(
1

z

)]−1

=
∞∑
ℓ=0

[
∞∑
k=1

E[Qk−1(1−Q)]zk

]ℓ
,

206 Chapter 7. Compositions of span programs

proving the second equality.
Next, we rewrite the right-hand side. To that end, we use the convention that

N0 = {∅}, and the empty product equals 1. Then,

∞∑
k=0

E[(Q′)k]zk =
∞∑
ℓ=0

∑
k∈Nℓ

∏
k∈k

zkE[Qk−1(1−Q)]

=
∞∑
m=0

zm
∞∑
ℓ=0

∑
k∈Nℓ

Σk=m

∏
k∈k

E[Qk−1(1−Q)],

from which we find that for all m ≥ 0,

E[(Q′)m] =
∑
k∈N∗
Σk=m

∏
k∈k

E[Qk−1(1−Q)].

This completes the proof. 2

We note here that the above results can also be directly obtained from the
geometrical picture presented in Figure 6.1.4. For instance, using relations of the
form of Equation (6.1.3), observe that

E[(Q′)2] = E[sin4(πΦ′)] =
∥∥ΠK⊕Span{|w0⟩}ΠH(x) |w0⟩

∥∥2
=
∣∣⟨w0|ΠH(x) |w0⟩

∣∣2 + ∥∥ΠKΠH(x) |w0⟩
∥∥2

=
∥∥ΠH(x) |w0⟩

∥∥4 + ∥∥ΠKΠH(x) |w0⟩
∥∥2

= E[cos2(πΦ)]2 + E[cos2(πΦ) sin2(πΦ)] = E[1−Q]2 + E[Q(1−Q)].

Even though we found direct expressions for the moments of Q′, i.e., E[(Q′)m],
these formulae become very cumbersome for higher values of m. Thus, in princi-
ple, one could from here define the moment-generating function t 7→ E[exp(tQ′)]
and from there infer the probability distribution ofQ′. However, the characteristic
function provides this probability distribution much more directly.

Now that we have seen how the characteristic function behaves under negation
of the span program, we can also investigate how it behaves under the AND- and
OR-composition constructions from Theorems 7.1.4 and 7.1.6, respectively. This
is the objective of the following theorem.

7.1.21. Theorem. Let P1, . . . ,Pn be span programs on a common domain D.
Let α1, . . . , αn > 0, and for all j ∈ [n], let

α′
j =

αj∑n
k=1 αk

.

Let x ∈ D, and let χ(j)
x be the characteristic function for x in Pj.

7.1. Logical composition of span programs 207

1. Let χx be the characteristic function for x in
∧n
j=1 αjPj. Then,

χx(z) =
n∑
j=1

α′
jχ

(j)
x (z).

2. Let χ′
x be the characteristic function for x in

∨n
j=1 αjPj. Then,

χ′
x(z) =

[
n∑
j=1

α′
j

χ
(j)
x (z)

]−1

.

Proof:
For claim 1, we let P =

∧n
j=1 αjPj, and we write out the definition of the charac-

teristic function χx for x in P . To that end, let z ∈ C be such that we have the
well-defined relation

χx(z) = ⟨w0| (p− (1− z)I)−1 |w0⟩ .

For all j ∈ [n], we write Pj = (H(j), x 7→ H(j)(x),K(j), |w(j)
0 ⟩). Then, we recall

from Definition 7.1.3 that K and H(x) are simply the vector sum of the K(j)’s
and H(j)(x)’s, respectively. Thus, we can decompose the operator

p =
n∑
j=1

p(j),

where each p(j) ∈ L(K⊥ ∩ H(j)). As these spaces are mutually orthogonal with
j ∈ [k]0, p is a block-diagonal operator, and as such the inverse can be taken term
by term as well. Therefore, we obtain that

χx(z) =
n∑
j=1

α′
j⟨w

(j)
0 |
(
p(j) − (1− z)I

)−1 |w(j)
0 ⟩ =

n∑
j=1

α′
jχ

(j)
x (z).

This completes the proof of claim 1.
For claim 2, we recall from Definition 7.1.5 that the definition of

∨n
j=1 αjPj

is given via the NOT- and AND-construction, and as such we obtain that for all
z ∈ C∞,

1

z(z − 1)χ′
x(z)

=
n∑
j=1

α′
j

z(z − 1)χ
(j)
x (z)

.

The factor z(z − 1) cancels on both sides, and after taking the reciprocal, we are
left with the expression from the theorem statement, completing the proof. 2

We can now use these characteristic function relations to pictorially under-
stand what happens during the span program renormalization procedure. To

208 Chapter 7. Compositions of span programs

that end, recall from the proof of Theorem 7.1.8 that we can view the renormal-
ization procedure as generating span program P ′ = β2P ∨ T , where we choose
β = 1/

√
2W−(P), and T = (Span{|∗⟩}, x 7→ {0}, {0}, |∗⟩). For any input x, the

characteristic function for T is

χ(T)
x (z) = ⟨∗| (I − (1− z)I)−1 |∗⟩ = 1

z
,

and thus, using Theorem 7.1.18, we find that for any x ∈ D, the characteristic
function for x in ¬T is

χ(¬T)
x (z) =

1

z(z − 1)χ
(T)
x (z)

=
1

z(z − 1) · 1
z

=
1

z − 1
,

and we also see that the modified phase variable Q(¬T) is 1 with probability 1.
Now, observe that P ′ = ¬(β2(¬P) ∧ ¬T). Thus, using Theorems 7.1.18

and 7.1.21, we obtain that we go from χ
(P)
x to χ(P ′)

x in four steps:

1. Start with the characteristic function χ(P)
x

2. Take the negation to obtain

χ(¬P)
x (z) =

1

z(z − 1)χ
(P)
x (z)

.

3. AND-compose with ¬T to obtain

χ(β2(¬P)∧¬T)
x (z) =

β2

1 + β2
χ(¬P)
x +

1

(1 + β2)(z − 1)
.

4. Take the negation to obtain

χ(P ′)
x (z) =

1

z(z − 1)χ
(β2(¬P)∧¬T)
x (z)

.

We illustrate this procedure in Figure 7.1.4, and use it to visually interpret
the renormalization construction. The core idea is to push almost all the weight
of the probability distribution of Q to the left-hand side of the spectrum, while
preserving whether the input is positive or negative for P . Thus, we cannot
add some weight directly at q = 0 (by performing an AND-construction with a
span program whose modified phase variable would have a single peak at q = 0),
because this would also turn every positive input into a negative one. However,
what we can do is first negate the span program, then put some weight on the
right-hand side, i.e., at q = 1 (by performing an AND-construction with ¬T)
and then negate again. We can see that this has the effect of making any peak
at q = 0 larger, if it exists, as desired. It also pushes the peaks that are in the
interval (0, 1) closer to 0 in the process.

7.1. Logical composition of span programs 209

Negative input Positive input

P
q

0

P[
Q

=
q]

1
q

0

P[
Q

=
q]

1

↓ Negate Negate

¬P
q

0

P[
Q

=
q]

1
q

0

P[
Q

=
q]

1

↓ AND-compose with T AND-compose with T

¬P ′

q
0

P[
Q

=
q]

1
q

0

P[
Q

=
q]

1

↓ Negate Negate

P ′

q
0

P[
Q

=
q]

1
q

0

P[
Q

=
q]

1

Figure 7.1.4: Illustration of the renormalization procedure. The core idea is to
push almost all the “weight” of the probability distribution left-hand side of the
spectrum. This is achieved by negating, adding some weight on the right, and
negating again.

210 Chapter 7. Compositions of span programs

As a final note, we mention how the quantum approximate counting algorithm
ties in with the notions that we have introduced in this section. To that end,
we consider the domain D = {0, 1}n, and we would like to devise a quantum
query algorithm that outputs the hamming weight of any input x ∈ D. Let
P = (H, x 7→ H(x),K, |w0⟩) be a span program on D, defined as

H = Cn, H(x) = Span{|j⟩ : xj = 0}, K = {0}, |w0⟩ =
1√
n

n∑
j=1

|j⟩ .

Then, we obtain that the ideal and modified phase variables Φ and Q for an input
x in P capture the hamming weight in the heights of the peaks at 0 or 1, i.e.,

P[Q = 0] = P [Φ = 0] =
∥∥ΠH(x)⊥ |w0⟩

∥∥2 = |x|
n
, and

P[Q = 1] = P
[
Φ =

1

2

]
=
∥∥ΠH(x) |w0⟩

∥∥2 = 1− |x|
n
.

Consequently, the characteristic function for an input x ∈ D is

χx(z) = ⟨w0|
(
ΠH(x)⊥ − (1− z)I

)−1 |w0⟩ =
|x|
nz

+
n− |x|
n(z − 1)

.

If we now perform span program negation, the resulting characteristic function
χ′
x in ¬P becomes

χ′
x(z) =

1

z(z − 1)χx(z)
=

n

|x|(z − 1) + (n− |x|)z
=

1

z − |x|
n

.

Hence, the resulting modified phase variable Q′ for input x in ¬P has exactly one
peak, located at |x|/n, from which we find that the ideal phase variable Φ′ for
input x in ¬P has exactly one peak at

ϕ|x| = arcsin

(
1

π

√
|x|
n

)
.

Thus, we conclude that we can run phase estimation on the span program
unitary U(x,¬P) to obtain an estimate of ϕ|x| with additive error, which we can
then use to solve for |x|. Even though the analysis is completely different, this
exactly recovers the quantum approximate counting algorithm, as first introduced
in [BHM+02].

The example of quantum approximate counting hints at a very exciting new
direction of potential research – even though we constructed a span program P ,
which in principle only decides between positive and negative inputs, we used the
characteristic function and its relations to the modified and ideal phase variable
to arrive at an algorithm that performs an estimation, and as such steps out

7.1. Logical composition of span programs 211

P ¬P

q
0

P[
Q

=
q]

1|x|
n

q
0

P[
Q

=
q]

1|x|
n

Figure 7.1.5: The quantum approximate counting algorithm. We show the char-
acteristic function χx for an input x, in P , on the left, and in ¬P , on the right.
We can see that the root of the function on the left-hand side is the location of
the peak on the right-hand side, which is at q = |x|/n.

of the setting of merely solving decision problems. For now, quantum approxi-
mate counting remains the only application for these techniques, but it is very
interesting to figure out if the characterization of the ideal phase variable’s proba-
bility distribution can be used to give estimation algorithms in more complicated
settings.

A very interesting follow-up question that comes to mind is whether these
ideas can be used to perform mean estimation of random variables, as was the
topic of Chapter 3. Somewhat surprisingly, the answer to this question might very
well be yes. In a recent work, Kothari and O’Donnell [KO22] gave an optimal
quantum mean estimation algorithm that estimates the mean of a univariate
random variable, removing the logarithmic overhead of the approach outlined
earlier on in this thesis. The analysis of their algorithm is very reminiscent of
the techniques presented in this work. It would be very interesting to investigate
possible connections further in the near future.

As a final note, we remark that the definition of characteristic functions,
Definition 7.1.15, is not very intuitive, that is, it is difficult to capture the objects
that appear in the definition concisely in a geometrical picture. Perhaps this
is also why the proof of the negation relation, i.e., Theorem 7.1.18, is not very
intuitive either. It would be nice to figure out if there is a more elegant way to
define the characteristic function. One possibility that comes to mind is whether
it is possible to give a variational characterization just like we did in Lemma 6.1.8,
i.e., given any z ∈ C, can we find a specific subset of vectors |v⟩ ∈ H(x) such that
the shortest vector in this subset has size χx(z)? It would be interesting to figure
out whether this characterization sheds some new light on the results proved in
this subsection. We leave this for future work.

212 Chapter 7. Compositions of span programs

7.2 Graph composition of span programs

The attentive reader might have already noticed that there is something peculiar
about the formulae for the positive and negative witness sizes in the AND- and
OR-constructions. Indeed, these formulas are very reminiscent of those that ap-
pear when one computes the effective resistance in an electrical network, when
the resistors are parallel or in series. In this section, we argue that this is not a
coincidence, and we develop a more thorough connection between span programs
and electrical networks.

This connection was first introduced in [BR12], and the analysis was succes-
sively improved in [JK17], and later in [JJK+18]. The result presented here is a
bit more general compared to the existing literature, since prior works only use
a graph to generate a span program from scratch, whereas here we use a graph
to compose many smaller span programs into a bigger one.

We start by introducing some background on electrical networks and how
they can be interpreted in the Hilbert space setting, in Section 7.2.1. Then, we
show how this leads to a construction that composes span programs using these
networks, referred to as the graph composition, in Section 7.2.2. After that,
we consider a special case of this construction, where the graph is planar, in
Section 7.2.3.

7.2.1 Electrical networks

Let G = (V,E) be an undirected graph, possibly with double edges and self-loops.
To every edge e ∈ E, we associate a “default direction,” i.e., when we say that e
connects node u to v, a default direction from u to v is implied. We also associate
a strictly positive weight re > 0 to every edge, as well as a separate dimension in
a Hilbert space HG, i.e., we have HG = Span{|e⟩ : e ∈ E}.

We now build an intuition for the vectors in HG. To that end, think of the
graph G as an electrical network, where every edge e is a wire with a resistance re.
Through a wire e ∈ E, we can send an “edge flow” fe ∈ C. If the edge flow fe on
a given edge e ∈ E is positive, we can think of electrical current flowing through
e in its default direction, and similarly if fe < 0, we can think of electrical current
flowing through the wire in the opposite direction.

An assignment of such edge flows to all the edges in the graph (fe)e∈E ⊆ C is
referred to as a “flow”, and to this flow we associate the vector |f⟩ ∈ HG, defined
as

|f⟩ =
∑
e∈E

fe
√
re |e⟩ .

Since there is a one-to-one relation between the object (fe)e∈E ⊆ C and |f⟩ ∈ HG,
we will refer to both of them as the flow, and use them interchangeably. We
immediately find that the size of |f⟩, i.e., the squared norm of the vector |f⟩, can

7.2. Graph composition of span programs 213

be expressed as
∥|f⟩∥2 =

∑
e∈E

|fe|2re.

Hence, if all the edge flows are real we can think of the squared norm of the vector
|f⟩ as the energy dissipated in the electrical network in a unit of time, and as
such we refer to ∥|f⟩∥2 as the energy of |f⟩.

The analogy with electrical currents breaks when we take imaginary flows,
i.e., when the vector |f⟩ ∈ HG has imaginary entries, since it’s not clear how
to make sense of imaginary currents in an electrical network. However, for the
purpose of developing intuition for the results to come, it usually suffices to think
about flows with real entries only.

In electrical networks, we have the “law of conservation of current,” also known
as “Kirchhoff’s current law”, which tells us that at every junction, the sum of
the incoming flow should be the same as the sum of the outgoing flow. Flows
that satisfy this law are called “circulations”, and we can think of the space of
circulations CG as a subspace of the flow space HG.

The following definition formalizes flows and circulations.

7.2.1. Definition (Circulation, flow and effective resistance). Let G = (V,E)
be an undirected graph, with strictly positive weights (re)e∈E. We refer to
HG = Span{|e⟩ : e ∈ E} as the flow space of G. For every vertex v ∈ V , let
N+(v), N−(v) ⊆ E denote the set of edges with outgoing and incoming default
directions, respectively. Then,

1. Let |f⟩ =
∑

e∈E fe
√
re |e⟩ ∈ HG. If for all vertices v ∈ V we have conserva-

tion of flow, i.e.,

∀v ∈ V,
∑

e∈N+(v)

fe −
∑

e∈N−(v)

fe = 0, (7.2.1)

then we say that |f⟩ is a circulation. The space of all circulations is called
the circulation space of G, and denoted by CG ⊆ HG.

2. Let |f⟩ =
∑

e∈E fe
√
re |e⟩ ∈ HG. Furthermore, let s, t ∈ V , such that s ̸= t,

and suppose that

∀v ∈ V,
∑

e∈N+(v)

fe −
∑

e∈N−(v)

fe =


1, if v = s,

−1, if v = t,

0, otherwise.
(7.2.2)

Then we say that |f⟩ is a unit st-flow. The set of all unit st-flows is denoted
by Fst ⊆ HG.

214 Chapter 7. Compositions of span programs

3. For every |f⟩ =
∑

e∈E fe
√
re |e⟩, we refer to the squared norm ∥|f⟩∥2 as the

energy of |f⟩. As such, we refer to the vector |f⟩ ∈ Fst that minimizes ∥|f⟩∥2
as the minimum-energy unit st-flow. We denote this minimum energy by
Rs,t, and call it the effective resistance between s and t, i.e.,

Rs,t(G, (re)e∈E) = min{∥|f⟩∥2 : |f⟩ ∈ Fst}.

For notational convenience, we write that the effective resistance is ∞ when-
ever s and t are not connected in G, and 0 whenever s = t. ◀

We now prove several properties of these newly-defined objects.

7.2.2. Lemma (Properties of flows). Let G = (V,E) be an undirected graph, with
strictly positive weights (re)e∈E. Then,

1. The circulation space CG ⊆ HG is a linear subspace.
2. Let s, t ∈ V , with s ̸= t. The set Fst ⊆ HG is an affine subspace, and can

be written as |f⟩+ CG, where |f⟩ ∈ C⊥
G is the unique minimum-energy unit

st-flow.

Proof:
The first claim follows immediately from the observation that the constraints
imposed on the circulations in Equation (7.2.1) are all linear and homogeneous.
For the second one, if |f⟩ and |f ′⟩ are both unit st-flows, then from the constraints
in Equation (7.2.2) it is directly clear that |f⟩ − |f ′⟩ is a circulation. Thus Fst

is indeed an affine subspace that can be written as |f⟩ + CG, with |f⟩ any unit
st-flow. In particular, we can choose |f⟩ to be the minimum-energy unit st-flow,
which, since the energy of a flow is the norm squared, must be the unique element
in Fst that minimizes the norm. Thus, it must be in the orthogonal complement
of CG, completing the proof. 2

The vectors in C⊥
G , i.e., the orthogonal complement of the circulation space,

have the interesting property that they admit the definition of a potential function.
We formally define this concept below.

7.2.3. Definition. LetG = (V,E) be an undirected graph, with strictly positive
weights (re)e∈E. We refer to any function U : V → C as a potential function. The
flow derived from U with weights (re)e∈E is the vector

∑
e∈E fe

√
re |e⟩, where if

e ∈ E connects v to w, then

fe =
Uv − Uw

re
. ◀

One can wonder what flows can be defined through these potential functions.
It turns out that these are exactly the flows |f⟩ ∈ C⊥

G . We prove this in the
following lemma.

7.2. Graph composition of span programs 215

7.2.4. Lemma (Characterization of potential functions). Let G = (V,E) be an
undirected graph, with strictly positive weights (re)e∈E. Let |f⟩ ∈ HG be a flow.
Then |f⟩ ∈ C⊥

G if and only if there exists a potential function U such that |f⟩ is
the flow derived from U with weights (re)e∈E. In that case, any unit st-flow |f ′⟩
satisfies ⟨f ′|f⟩ = Us − Ut.

Proof:
First, suppose that U is a potential function, and that |f⟩ is the flow derived
from U . Let

∑
e∈E f

′
e

√
re |e⟩ = |f ′⟩ ∈ CG be a circulation. Then,

⟨f |f ′⟩ =
∑
e∈E

feref
′
e =

∑
e∈E
e:v→w

(Uv − Uw)f
′
e =

∑
v∈V

Uv

 ∑
e∈N+(v)

f ′
e −

∑
e∈N−(v)

f ′
e

 = 0,

where e : v → w denotes that e connects v to w. Thus, we find that |f⟩ ∈ C⊥
G .

Conversely, suppose that |f⟩ ∈ C⊥
G . In every connected component of G,

we take one vertex v ∈ V arbitrarily, and set U(v) = 0. Next, for any vertex
w ∈ V , we find a path that reaches w from one of the nodes v for which we set
U(v) = 0. We denote the edges along this path by e1, . . . , en, with directions
m1, . . . ,mn ∈ {−1, 1}, that is, for all j ∈ [n], if the path from v to w along the
edges e1, . . . , en traverses the edge ej in its default direction, we set mj = 1, and
otherwise we set mj = −1. Then, let

U(w) =
n∑
j=1

mjfejrej .

It remains to check that U is well-defined, i.e., independent of the path we took
from v to w. To that end, suppose that there are two paths e1, . . . , en and
e′1, . . . , e

′
n′ with directions m1, . . . ,mn and m′

1, . . . ,m
′
n′ , that connect v to w. Let

U(w) and U ′(w) be defined as above based on the two different paths, respectively.
We must prove that U(w) = U ′(w).

To that end, observe that e1, . . . , en, e′n′ , . . . , e′1 with the associated directions
m1, . . . ,mn,−m′

n′ , . . . ,−m′
1 is a cycle in G. Consequently, we can send unit flow

along this cycle and obtain a circulation |f ′⟩, defined as

|f ′⟩ =
n∑
j=1

mj
√
rej |ej⟩ −

n′∑
j=1

m′
j

√
re′j
∣∣e′j〉 .

Since |f ′⟩ is a circulation, it is orthogonal to |f⟩, and thus we find

U(w)− U ′(w) =
n∑
j=1

mjfejrej −
n′∑
j′=1

mj′fej′rej′ = ⟨f ′|f⟩ = 0.

216 Chapter 7. Compositions of span programs

Hence, indeed, U is well-defined.
Finally, let |f⟩ =

∑
e∈E fe

√
re |e⟩ ∈ C⊥

G be derived from U : V → C, and let
|f ′⟩ =

∑
e∈E f

′
e

√
re |e⟩ be a unit st-flow. Then,

⟨f ′|f⟩ =
∑
e∈E

fe
′
refe =

∑
e∈E
e:v→w

fe
′
[Uv − Uw]

=
∑
v∈V

Uv

 ∑
e∈N+(v)

fe
′ −

∑
e∈N−(v)

fe
′

 = Us − Ut.

This completes the proof. 2

Thus, we have proved that the existence of a potential function is a property of
a flow being in C⊥

G . As such, we find from Lemma 7.2.2 that any minimum-energy
flow can be associated to a potential function.

In the electrical networks picture, Kirchhoff’s second law asserts the existence
of such a potential function. Thus, using the above lemma, we can reinterpret
Kirchhoff’s second law as stating that any flow in an electrical network must
necessarily be in the subspace C⊥

G .

7.2.2 Definition and basic properties

Now that we have introduced the necessary background on electrical networks,
we can show how this theory is related to the study of quantum algorithms. The
primary connection is through the construction of a particular span program,
known as st-connectivity, i.e., a span program that given an undirected graph
G = (V,E) decides whether s and t are connected, where the input x to the
span program tells us which of the edges e ∈ E are present and which are not.
This span program was first introduced in [BR12] and also appeared in [Bel14].
Its analysis of the positive and negative witnesses was subsequently improved
in [JK17] in the special case where the graph is planar, and finally a complete
characterization of the positive and negative witness sizes was given in [JJK+18]
in the general case.

In this subsection, we extend the result by not only allowing the construction
of a single st-connectivity span program, but we show how one can associate
individual span programs to each of the edges in the graph, and as such arrive
at a novel technique to compose span programs. We refer to the resulting span
program as the graph composition of span programs, and we give a full character-
ization of its positive and negative witnesses in Theorem 7.2.7.

The high-level idea is to define an undirected graph G = (V,E), with distinct
source and sink nodes s, t ∈ V . We also associate strictly positive weights re > 0
to every edge in the graph, in such a way that the effective resistance between
s and t is 1. Next, to every e ∈ E we associate a span program P(e) on some

7.2. Graph composition of span programs 217

common domain D. Every input x ∈ D defines a subgraph G+(x) of G in a
natural way, i.e., every edge e ∈ E is present in G+(x) if and only if x is a
positive input for P(e). We now construct a composed span program P that for
a given input x ∈ D computes whether s and t are connected in the subgraph
G+(x). We give an example illustration of such a composition in Figure 7.2.1.

s

t

a b

re1P(e1) re2P(e2)

re3P(e3) re4P(e4)

re5P(e5)

Figure 7.2.1: An example of a graph composition of five span programs,
P(e1), . . . ,P(e5), with weights re1 , . . . , re5 . If span program P(ej) computes function
fj, then the above graph composition evaluates the function (f1∧f3)∨(f2∧f4)∨f5.

The core idea in the construction of this composed span program P is to
embed the flow space HG into the direct sum of the Hilbert spaces of the span
programs associated to each of the edges. More concretely, for every e ∈ E, we
write P(e) = (H(e), x 7→ H(e)(x),K(e), |w(e)

0 ⟩), and define the Hilbert space H and
embedding E : HG → H as

H =
⊕
e∈E

H(e), and E : |e⟩ 7→ |w(e)
0 ⟩. (7.2.3)

As such, the embedding E defines an isometry between the flow space of the graph
HG, and the subspace of H spanned by all the initial states of the individual span
programs that make up the composition. Next, on high level, we relate the
circulation space CG to the input-independent subspace K, and the minimum-
energy st-flow in G to the initial state |w0⟩, which has the elegant consequence
that all positive witnesses in P can be interpreted as st-flows inG, and all negative
witnesses in P can be interpreted as potential functions.

The following definitions and theorem make these statements more precise.

7.2.5. Definition (Graph composition of span programs). Let G = (V,E) be
an undirected graph, with strictly positive weights (re)e∈E. Let s, t ∈ V be such
that s ̸= t and such that s and t are connected in G. We define

r′e =
re

Rs,t(G, (re)e∈E)
,

218 Chapter 7. Compositions of span programs

where the denominator is the effective resistance between s and t in G weighted
with (re)e∈E, as defined in Definition 7.2.1.

Next, let |f⟩ ∈ HG be the minimum-energy unit st-flow in G with weights
(r′e)e∈E. We associate a span program P(e) = (H(e), x 7→ H(e)(x),K(e), |w(e)

0 ⟩) on
a fixed domain D to every edge e ∈ E. We recall the embedding E : HG → H
from Equation (7.2.3), we let

H =
⊕
e∈E

H(e), H(x) =
⊕
e∈E

H(e)(x),

K =
⊕
e∈E

K(e) ⊕ E(CG), |w0⟩ = E(|f⟩),

and we let P = (H, x 7→ H(x),K, |w0⟩). Then, we refer to P as the graph
composition of G with weights (re)e∈E and span programs (P(e))e∈E. ◀

In order to check the well-definedness of the span program P , we must check
that |w0⟩ has unit norm, and is an element of K⊥. Since E is an isometry, we
obtain that

∥|w0⟩∥2 = ∥E(|f⟩)∥2 = ∥|f⟩∥2 = Rs,t(G, (r
′
e)e∈E) =

Rs,t(G, (re)e∈E)

Rs,t(G, (re)e∈E)
= 1,

where we used that the size of |f⟩ is the effective resistance by Definition 7.2.1,
and that multiplying all resistances with some scalar, also multiplies the effective
resistance by that same scalar. Thus, it remains to check that |w0⟩ ∈ K⊥. To
that end, we observe that |w0⟩ is a linear combination of the individual |w(e)

0 ⟩’s,
and as such is orthogonal to all K(e)’s. Moreover, since |f⟩ is a minimum-energy
unit st-flow, we find by Lemma 7.2.2 that it is in C⊥

G , and thus |w0⟩ = E(|f⟩) ∈
E(C⊥

G) ⊆ E(CG)⊥. Thus, |w0⟩ is indeed in K⊥, proving the well-definedness of the
span program P in Definition 7.2.5.

Now, we analyze the properties of the graph composition construction pre-
sented in Definition 7.2.5 more closely, to obtain the results similar in flavor to
those presented in Theorems 7.1.4 and 7.1.6 for the AND- and OR-compositions,
respectively. To that end, we first define the availability graph G+(x) and the
unavailability graph G−(x) that derive from G given a particular input x ∈ D.

7.2.6. Definition (Availability and unavailability graphs). Let G = (V,E) be
an undirected graph. Let P be a graph composition of G, with strictly positive
weights (re)e∈E, and span programs (P(e))e∈E on a common domain D. Let x ∈ D.

1. We let
E+(x) = {x ∈ D : x is positive in P(e)}.

Then, we define the availability graph G+(x) = (V,E+(x)), and we put the
weights (r+e)e∈E+(x) on its edges, where for all e ∈ E+(x),

r+e = r′ew+(x,P(e)).

7.2. Graph composition of span programs 219

2. We let
E−(x) = E \ E+(x).

For all v ∈ V , we denote Sv(x) ⊆ V to be the set of vertices in the same
connected component as v in G+(x), and we let V −(x) = {Sv(x) : v ∈ V },
i.e., the set of all connected components in G+(x). Next, we define the
unavailability graph G−(x) = (V −(x), E−(x)), where we interpret the edge
e ∈ E−(x) that connects v to w in G, as an edge connecting Sv(x) to Sw(x)
in G−(x). We put the weights (r−e)e∈E−(x) on its edges, where

r−e =
r′e

w−(x,P(e))
.

◀

Next, we characterize the positive and negative witnesses of a graph compo-
sition of span programs.

7.2.7. Theorem (Properties of the graph composition of span programs).
Let G = (V,E) be an undirected graph. Let P be a graph composition of G,
with strictly positive weights (re)e∈E, and span programs (P(e))e∈E on a common
domain D. Let x ∈ D, and let G+(x) = (V,E+(x)) and G−(x) = (V −(x), E−(x))
with weights (r+e)e∈E+(x) and (r−e)e∈E−(x) be defined as in Definition 7.2.6. Then,

1. x is a positive input for P if and only if s and t are connected in G+(x)
and if and only if Ss(x) = St(x).

2a. If x is a positive input for P, then the positive witnesses for x in P are the
vectors |w⟩ of the form

|w⟩ =
∑
e∈E
f ′e ̸=0

f ′
e

√
r′e|w(e)⟩+

∑
e∈E
f ′e=0

|w(e)⟩,

where
∑

e∈E+(x) f
′
e

√
r+e |e⟩ ∈ HG+(x) is a unit st-flow in G+(x), f ′

e = 0

when e ∈ E−(x), |w(e)⟩ is a positive witness for x in P(e), and finally
|w(e)⟩ ∈ K(e) ∩H(e)(x).

2b. If x is a negative input for P, then the negative witnesses for x in P are
the vectors |w⟩ of the form

|w⟩ =
∑
e∈E
f ′e ̸=0

f ′
e

√
r′e|w(e)⟩+

∑
e∈E
f ′e=0

|w(e)⟩,

where |w(e)⟩ is a negative witness for x in P(e), and |w(e)⟩ ∈ (K(e))⊥ ∩
H(e)(x)⊥ ∩ Span{|w(e)

0 ⟩}⊥ ∩ H(e), f ′
e = 0 whenever e ∈ E+(x), and f ′

e =
f−
e /w−(x,P(e)) whenever e ∈ E−(x), with

∑
e∈E−(x) f

−
e

√
r−e |e⟩ ∈ HG−(x) a

flow in G−(x) that derives from a potential function U− : V −(x) → C using
the weights (r−e)e∈E−(x), satisfying U−

Ss(x)
− U−

St(x)
= 1.

220 Chapter 7. Compositions of span programs

3a. For all x ∈ D,
w+(x,P) = Rs,t(G

+(x), (r+e)e∈E+(x)).

3b. For all x ∈ D,

w−(x,P) = RSs(x),St(x)(G
−(x), (r−e)e∈E−(x))

−1.

Proof:
We start by proving claims 2a and 3a. To that end, suppose that x is a positive
input and let |w⟩ ∈ H. For all e ∈ E, we denote the projection of |w⟩ onto
the subspace H(e) by |w(e)⟩, and we let f ′

e = ⟨w(e)|w(e)
0 ⟩/

√
r′e. If f ′

e ̸= 0, we write
|w(e)⟩ = |w(e)⟩/(

√
r′ef

′
e). We also write

|f ′⟩ =
∑
e∈E

f ′
e

√
r′e |e⟩ ∈ HG, and

∣∣f+
〉
=

∑
e∈E+(x)

f ′
e

√
r+e |e⟩ ∈ HG+(x).

Then, we have the sequence of equivalences

|w⟩ is a positive witness for x⇔ |w⟩ ∈ H(x) ∧ |w⟩ − |w0⟩ ∈ K

⇔
[
∀e ∈ E, |w(e)⟩ ∈ H(e)(x) ∧ |w(e)⟩ − f ′

e

√
r′e|w

(e)
0 ⟩ ∈ K(e)

]
∧ E(|f ′⟩)− E(|f⟩) ∈ E(CG)

⇔ ∀e ∈ E,

{
|w(e)⟩ ∈ H(e)(x) ∧ |w(e)⟩ − |w(e)

0 ⟩ ∈ K(e), if f ′
e ̸= 0,

|w(e)⟩ ∈ K(e) ∩H(e)(x), if f ′
e = 0

∧ |f ′⟩ ∈ |f⟩+ CG
⇔ |f ′⟩ ∈ HG is a unit st-flow on G

∧ ∀e ∈ E,

{
|w(e)⟩ is a positive witness for x in P(e), if f ′

e ̸= 0,

|w(e)⟩ ∈ K(e) ∩H(e)(x), if f ′
e = 0

⇔
∣∣f+
〉
∈ HG+(x) is a unit st-flow on G+(x)

∧ ∀e ∈ E,

{
|w(e)⟩ is a positive witness for x in P(e), if f ′

e ̸= 0,

|w(e)⟩ ∈ K(e) ∩H(e)(x), if f ′
e = 0.

This proves claim 2a. Using the notation above, the size of any positive witness
|w⟩ can be written as

∥|w⟩∥2 =
∑
e∈E
f ′e ̸=0

|f ′
e|2r′e

∥∥|w(e)⟩
∥∥2 +∑

e∈E
f ′e=0

∥∥|w(e)⟩
∥∥2 ,

which is minimized when for all e ∈ E where f ′
e = 0, we choose |w(e)⟩ = 0, and

for all e ∈ E where f ′
e ̸= 0, we choose the minimal positive witness for x in P(e).

Then, the witness size simplifies to

∥|w⟩∥2 =
∑

e∈E+(x)

|f ′
e|2r′ew+(x,P(e)) =

∑
e∈E+(x)

|f ′
e|2r+e ,

7.2. Graph composition of span programs 221

which is minimized when we take |f+⟩ to be the minimal unit st-flow in the graph
G+(x), with weights r+e for all e ∈ E+(x), in which case the above expression
becomes the effective resistance between s and t in G+(x). This proves claim 3a.

Now, we turn to the negative case. To that end, let |w⟩ ∈ H. Again, we let
|w(e)⟩ be the projection of |w⟩ onto H(e), and we write f ′

e = ⟨w(e)|w(e)
0 ⟩. If f ′

e ̸= 0,
we write |w(e)⟩ = |w(e)⟩/(

√
r′ef

′
e). We also let

|f ′⟩ =
∑
e∈E

f ′
e

√
r′e |e⟩ ∈ HG, and

∣∣f−〉 = ∑
e∈E−(x)

f−
e

√
r−e |e⟩ ∈ HG−(x),

with f−
e = f ′

ew−(x,P(e)) for all e ∈ E−(x). Then, we have the sequence of
equivalences

|w⟩ is a negative witness for x⇔ |w⟩ ∈ K⊥ ∩H(x)⊥ ∧ ⟨w0|w⟩ = 1

⇔ ∀e ∈ E, |w(e)⟩ ∈ (K(e))⊥ ∩H(e)(x)⊥ ∩H(e)

∧ E(|f ′⟩) ∈ K⊥ ∧ E(|f ′⟩)†E(|f⟩) = 1

⇔ ∀e ∈ E,

{
|w(e)⟩ ∈ (K(e))⊥ ∩H(e)(x)⊥ ∩H(e), if f ′

e ̸= 0,

|w(e)⟩ ∈ (K(e))⊥ ∩H(e)(x)⊥ ∩ Span{|w(e)
0 ⟩}⊥ ∩H(e), if f ′

e = 0

∧ |f ′⟩ ∈ C⊥
G ∧ ⟨f ′|f⟩ = 1

⇔ ∃U : V → C s.t. |f ′⟩ ∈ HG is derived from U with weights (r′e)e∈E

∧ Us − Ut = 1

∧ ∀e ∈ E,

{
|w(e)⟩ is a negative witness for x in P(e), if f ′

e ̸= 0,

|w(e)⟩ ∈ (K(e))⊥ ∩H(e)(x)⊥ ∩ Span{|w(e)
0 ⟩}⊥ ∩H(e), if f ′

e = 0,

where in the last equivalence we used that every flow |f⟩ ∈ C⊥
G ⊆ HG is derived

from a potential function U : V → C, according to Lemma 7.2.4. Furthermore,
in the final statement observe that if f ′

e ̸= 0, then |w(e)⟩ is a negative witness
for x in P(e), and in particular x is a negative input for P(e), which implies that
e ∈ E−(x), and thus |f ′⟩ only has support on E−(x). Therefore, the function
U : V → C must be constant on every connected component in G+(x), and thus
we can define the function U− : V −(x) → C such that Uv = U−

Sv(x)
. This is a

potential function on G−(x), and as such using the weights (r−e)e∈E−(x) generates
a flow which for every e ∈ E−(x) connecting v and w in G has value

U−
Sv(x)

− U−
Sw(x)

r−e
=
U−
Sv(x)

− U−
Sw(x)

r′e
· w−(x,P(e)) = f ′

ew−(x,P(e)) = f−
e .

Thus, the existence of a potential function U on G that generates the flow |f ′⟩
with weights (r′e)e∈E, is equivalent to the existence of a potential function U− on
G−(x) that generates the flow |f−⟩ with weights (r−e)e∈E−(x). Hence, we can push

222 Chapter 7. Compositions of span programs

the series of equivalences one step further, and obtain that

|w⟩ is a negative witness for x
⇔ ∃U− : V −(x) → C s.t.

∣∣f−〉 ∈ HG−(x) is derived from U−

with weights (r−e)e∈E−(x) ∧ U−
Ss(x)

− U−
St(x)

= 1

∧ ∀e ∈ E,

{
|w(e)⟩ is a negative witness for x in P(e), if f ′

e ̸= 0,

|w(e)⟩ ∈ (K(e))⊥ ∩H(e)(x)⊥ ∩ Span{|w(e)
0 ⟩}⊥ ∩H(e), if f ′

e = 0.

This proves claim 2b.
Moreover, using the notation introduced above, we can express the size of a

negative witness |w⟩ as before as

∥|w⟩∥2 =
∑
e∈E
f ′e ̸=0

|f ′
e|2r′e

∥∥|w(e)⟩
∥∥2 +∑

e∈E
f ′e=0

∥∥|w(e)⟩
∥∥2 .

Thus, to minimize this norm, we choose |w(e)⟩ to be the minimal negative witness
whenever f ′

e ̸= 0, and we choose |w(e)⟩ = 0 whenever f ′
e = 0. Then, we obtain

∥|w⟩∥2 =
∑

e∈E−(x)

|f ′
e|2r′ew−(x,P(e)) =

∑
e∈E−(x)

|f−
e |2

r′e
w−(x,P(e))

=
∑

e∈E−(x)

|f−
e |2r−e ,

where for all e ∈ E−(x) with e connecting Sv(x) to Sw(x) and v, w ∈ V , we have
f−
e = (U−

Sv(x)
− U−

Sw(x))/r
−
e , and U−

Ss(x)
−U−

St(x)
= 1. In order to compute w−(x,P),

we must choose U− : V −(x) → C such that we minimize the above expression.
To that end, observe that |f−⟩ ∈ C⊥

G−(x), and that |f−⟩ must have inner
product 1 with any unit Ss(x)St(x)-flow in G−(x). Therefore, if we let |fmin⟩
be the minimum-energy Ss(x)St(x)-flow in G−(x), we find that we must choose
|f−⟩ ∈ |fmin⟩ /∥ |fmin⟩ ∥2 + (Span{|fmin⟩}⊥ ∩ C⊥

G−(x)). It follows that we minimize
the norm of |f−⟩ if we choose it to be equal to |fmin⟩ /∥ |fmin⟩ ∥2, from which we
derive that the minimum negative witness size becomes

w−(x,P) =
∥∥∣∣f−〉∥∥2 = ∥|fmin⟩∥2

∥|fmin⟩∥4

=
1

∥|fmin⟩∥2
=

1

RSs(x),St(x)

(
G−(x), (r−e)e∈E−(x)

) ,
where the last equality follows from the definition of the effective resistance, i.e.,
item 3 in Definition 7.2.5. This completes the proof of claim 3b.

Finally, claim 1 follows easily from claims 3a and 3b using Lemma 6.1.3, and
thus the proof is complete. 2

7.2. Graph composition of span programs 223

We can use the graph composition of span programs to recover the AND- and
OR-composition constructions from the previous section, i.e., Definitions 7.1.3
and 7.1.5. For the AND-construction, using the notation from Definition 7.1.3,
we can take G = (V,E) to be the line graph of length n, with s and t being the
nodes at both ends of the line. To each of the edges e1, . . . , en ∈ E, we associate
a span program P(j) and a weight αj, with j ∈ [n]. It is then an easy task to
check that the graph composition of G with weights (αj)ej∈E and span programs
(P(j))ej∈E equals the AND-composition from Definition 7.1.3. We can recover the
OR-composition from Definition 7.1.5 in a similar manner, but by using a graph
with n parallel edges instead. These graphs are respectively referred to as a series
and parallel graph, and they visualized in Figure 7.2.2.

One of the nice properties of the graph composition construction is that it
is recursive, i.e., the span programs used as inputs to graph composition, can
themselves be constructed using the graph composition construction. Such a
recursive definition can also be visually observed on the graph level, i.e., one can
replace an edge e connecting v to w by an st-connectivity graph, where s and t
are identified with v and w. This can be observed in Figure 7.2.3.

In doing so, it becomes apparent that recursive applications of the AND-
and OR-construction allow for performing graph compositions with any series-
parallel graph, i.e., a graph that can be constructed by starting with a single
edge, and iteratively substituting edges by series or parallel graphs as shown in
Figure 7.2.2. However, since not every graph is series-parallel, the graph com-
position construction introduced in this section is indeed more general than the
AND- and OR-compositions introduced in the previous section.

7.2.3 Special case: planar graphs

In the special case where G is a planar graph, and it remains planar when we add
an edge between s and t, then we can interpret the negative witnesses a bit more
elegantly. The reason is that a planar graph admits a planar dual, and it turns
out that we can interpret the negative witnesses as flows in this dual graph. In
doing so, we recover the characterization from [JK17]. Moreover, we show that
applying graph composition of span programs using the planar dual, is the same
as taking the negation of a graph composition of span programs with the original
graph.

We start with developing an intuitive idea of planar duality in the graph
composition setting. To that end, suppose that we have an undirected graph
G = (V,E), and distinct source and sink nodes s, t ∈ V . Furthermore, suppose
that G remains planar if we add an edge between s and t. Without loss of
generality, we can always embed G into the plane in such a way that s and t
are on the outside of the graph5. Now, we can think of the nodes s and t as

5There exists a quite elegant proof of this fact – consider any planar embedding of the graph

224 Chapter 7. Compositions of span programs

AND-composition OR-composition

s

t

...

α1P(1)

αnP(n)

s

t

· · ·

α
1
P

(1
)

α
2
P

(2
)

α
n
P

(n
)

Figure 7.2.2: Graph compositions that recover the AND- and OR-composition
results. The graph on the left- and right-hand sides are referred to as series and
parallel graphs, respectively.

s

t

a

α1P(1)

α2P(2)

α3P(3)

s

t

a′ b′

βaP(a) βbP(b)

βcP(c) βdP(d)

s

t

β
e
P

(e
)

β
f
P

(f
)

β
g
P

(g
)

7→

s

t

a

a′

b′

γaP(a)

γbP(b)

γcP(c)

γdP(d)

α2P(2)

γeP(e)

γfP(f)

γgP(g)

Figure 7.2.3: Visualization of recursive span program composition in terms of
graphs. If the weights βa, . . . , βg are chosen such that the smaller graphs are
properly normalized, i.e., such that their effective resistances are 1, then the
resulting weights γa, . . . , γg just become the product of the weight on both edges,
i.e., γa = α1βa, and similarly for the other weights.

being on two opposite banks of a river, and the vertices as islands in this river,

with the added edge {s, t} in the complex plane C. Now take some point on the edge {s, t} and
compose the embedding with any Möbius transformation that has a pole at this location. Since
this is a continuous operation, the resulting embedding of the graph is still planar. Moreover,
s and t are connected through ∞, and as such are located on the outside of the graph.

7.2. Graph composition of span programs 225

connected by dams which represent the edges of the graph. An example is shown
in Figure 7.2.4.

s

t

a bcs† t†a†
b†

Figure 7.2.4: The planar dual of an st-connectivity graph. One can think of s
and t as being located on two opposite banks of a river. The faces of its planar
embedding form the set of nodes in the dual graph. Every edge in the original
graph has a corresponding dual edge in the dual graph that crosses it.

Next, let’s say that we consider a restricted graph G+(x), where only a subset
of the edges of G are present. Let G† be the planar dual graph (to be formally
defined shortly, in Definition 7.2.8), and we similarly consider a restriction of
the dual graph (G†)+(x) by only selecting the edges that are dual to those not
present in G+(x). Then, with the visualization in Figure 7.2.4 in mind, it becomes
apparent that we are in exactly one of two cases, i.e., either there exists a path
vertically going from s to t in G+(x) (i.e., we can cross the river along the dams,
like in Figure 7.2.4), or there is a path horizontally going from s† to t† in (G†)+(x)
(i.e., a boat can pass through the river).

Now, recall from the previous subsection that a positive input in the graph
composition construction is an input such that there exists a path from s to t in
the restricted graph G+(x). Thus, for a negative input, there exists a path from
s† to t† in the restricted dual graph (G†)+(x). Hence, if instead of performing
a graph composition P with graph G and span programs (P(e))e∈E, we perform
a graph composition with the dual graph G†, and the negated span programs
(¬P(e))e∈E, we end up computing the negation of the function that is computed
by P .

It turns out that this analogy can be pushed further by also taking the recip-
rocals of the weights, i.e., by setting the weights on the dual edges to be 1/re.
We show in Theorem 7.2.10 that with this choice of weights, we end up exactly
constructing ¬P .

First, we formally define the planar dual.

7.2.8. Definition (Planar dual of a graph). Let G = (V,E) be an undirected
planar graph with distinct source and sink nodes s and t that remains planar
when we add an edge between s and t. Let F be the set of faces of a planar
embedding of G with the added edge between s and t. For every edge e ∈ E, let

226 Chapter 7. Compositions of span programs

e† be an edge connecting the two faces adjacent to e, and let the default direction
of e† be connecting the left face to the right face, when we traverse e ∈ E in its
default direction. Let E† = {e† : e ∈ E} be the set of dual edges. The planar dual
graph is G† = (F,E†). Furthermore, let s† and t† be the faces that are adjacent
to the edge between s and t. ◀

It turns out that we can very elegantly characterize the circulation space and
the minimum-energy unit s†t†-flow of the dual graph. This is the objective of the
following lemma.

7.2.9. Lemma (Properties of the flow space of the dual graph). Let G = (V,E)
be an undirected planar graph with distinct source and sink nodes s, t ∈ V , that
remains planar when we add an edge between s and t. Let (re)e∈E be strictly
positive weights on the edges. Let G† = (F,E†) be the planar dual, with distinct
source and sink nodes s†, t† ∈ F . For all e ∈ E, let re† = 1/re, and identify |e⟩ in
HG and |e†⟩ in HG†, implying HG = HG†. Let |f⟩ be the minimum-energy unit
st-flow in G with weights (re)e∈E. Then,

HG = CG ⊕ Span{|f⟩} ⊕ CG† = HG† . (7.2.4)

Moreover, if |f †⟩ is the minimum-energy s†t†-flow in G† with weights (re†)e†∈E†,
then |f⟩ = |f †⟩.

Proof:
The main thing to prove here is that any st-flow in the primal graph is orthogonal
to any circulation in the dual graph. To that end, let |f⟩ be an st-flow inG, and let
v ∈ V be an internal vertex (i.e., v ̸∈ {s, t}). Consider the faces that are adjacent
to this vertex, and let e†1, . . . , e†n ∈ E†, with directions m1, . . . ,mn ∈ {−1, 1} be
the cycle in the dual graph encircling this vertex in the clockwise direction. Then,
for all j ∈ [n], mj = 1 if and only if ej, i.e., the primal edge of e†j, is outgoing
from v. Thus, if we send a flow of 1 along this cycle, we obtain a circulation in
G†

|f †⟩ =
n∑
j=1

mj

√
re†j

|e†j⟩ ∈ CG† .

Moreover, CG† is spanned by such circulations, and thus it remains to show that
|f⟩ is orthogonal to |f †⟩. To that end, observe that

⟨f †|f⟩ =
n∑
j=1

mj

√
re†j
fej

√
rej =

n∑
j=1

mjfej =
∑

e∈N+(v)

fe −
∑

e∈N−(v)

fe = 0.

Thus, indeed, any st-flow in G is orthogonal to CG† . Finally, using claim 2 from
Lemma 7.2.2, we indeed obtain Equation (7.2.4), and from symmetry it follows
that |f⟩ = |f †⟩. This completes the proof. 2

7.2. Graph composition of span programs 227

We now proceed with analyzing the properties of graph compositions of span
programs using the planar dual graph rather than the original one. The following
theorem shows that if one negates the original span programs, and takes the
reciprocal of the weights, then one essentially constructs the negation of the
original graph composition span program.

7.2.10. Theorem (Span program negation and the planar dual).
Let G = (V,E) be an undirected planar graph with distinct source and sink nodes
s, t ∈ V and strictly positive weights (re)e∈E, that remains planar when we add
an edge between s and t. Let G† = (F,E†) be its planar dual with source and sink
nodes s†, t† ∈ F , and for all edges e ∈ E, let re† = 1/re. Furthermore, for all
e ∈ E, let P(e) be a span program on some fixed domain D, and let P be the graph
composition of G with edge weights (re)e∈E and span programs (P(e))e∈E. Let P†

be the graph composition of G† with edge weights (re†)e†∈E† and span programs
(¬P(e))e†∈E†. Then, P† = ¬P.

Proof:
Write P = (H, x 7→ H(x),K, |w0⟩) and P† = (H†, x 7→ H†(x),K†, |w†

0⟩). Simi-
larly, for all e ∈ E, we write P(e) = (H(e), x 7→ H(e)(x),K(e), |w(e)

0 ⟩), and ¬P(e) =
(H(e†), x 7→ H(e†)(x),K(e†), |we†0 ⟩). To show that P† is indeed the negation of P ,
we must check that their four components are related as in the definition of span
program negation, i.e., Definition 7.1.1.

We easily observe that H† = H, since

H† =
⊕
e†∈E†

H(e†) =
⊕
e∈E

H(e) = H.

Similarly, for any x ∈ D, we have

H†(x) =
⊕
e†∈E†

H(e†)(x) =
⊕
e∈E

(
H(e)(x)⊥ ∩H(e)

)
= H(x)⊥.

Since the minimum-energy unit flows from s to t and s† to t† in the primal and
dual graphs, |f⟩ and |f †⟩, respectively, are the same by virtue of Lemma 7.2.9, we
obtain that |w0⟩ = |w†

0⟩. Thus, it remains to check that K† = (K⊕Span{|w0⟩})⊥.
To that end, observe that for every e ∈ E, we have K(e†) = H(e) ∩ (K(e) ⊕

228 Chapter 7. Compositions of span programs

Span{|w(e)
0 })⊥. Thus, we have

K† =
⊕
e†∈E†

K(e†) ⊕ E(CG†)

=

[⊕
e∈E

H(e) ∩
(
K(e) ⊕ Span{|w(e)

0 ⟩}
)⊥]

⊕ E(HG ∩ (CG ⊕ Span{|f⟩})⊥)

=

[⊕
e∈E

(
H(e) ∩ (K(e))⊥

)
∩
⊕
e∈E

(
H(e) ∩ (Span{|w(e)

0 ⟩})⊥
)]

⊕
[
E(HG) ∩ E(CG)⊥ ∩ Span{|w0⟩}⊥

]
=

[⊕
e∈E

K(e)

]⊥
∩

[⊕
e∈E

Span{|w(e)
0 ⟩}

]⊥
⊕
(
E(HG) ∩ E(CG)⊥ ∩ Span{|w0⟩}⊥

)
=

[⊕
e∈E

K(e) ⊕ E(HG)

]⊥
⊕
(
E(HG) ∩ E(CG)⊥ ∩ Span{|w0⟩}⊥

)
=

[⊕
e∈E

K(e) ⊕ E(CG)

]⊥
∩ Span{|w0⟩}⊥ = K⊥ ∩ Span{|w0⟩}⊥.

This completes the proof. 2

Thus, we have found a way to interpret the negation of a span program P
formed by taking a graph composition with a planar graph, i.e., we build the
negation P† by taking the graph composition using the dual graph G†, and using
the negations of the span programs that are associated to the edges of the original
graph, and the reciprocals of the edge weights. We can now use the properties
proved in Theorem 7.1.2 to interpret the witnesses of P in P† and vice versa. In
particular, we remark here that the negative witnesses in P can be interpreted as
positive witnesses in P†, which by Theorem 7.2.7 we know to be unit s†t†-flows
in the availability graph of G†.

7.2.4 Graph composition examples

We continue this section with a showcase of the techniques developed thus far.
To that end, we devise an optimal span program that computes the threshold
function. This is the objective of the following example.

7.2.11. Example (Span program for the threshold function). Let k ∈ [n] and J

7.2. Graph composition of span programs 229

be a finite set of size n, i.e., |J | = n. Define f (J)
k : {0, 1}J → {0, 1}, as

fJk (x) =

{
1, if |x| ≥ k,

0, otherwise.

For every j ∈ J , we define the identity span program (recall Example 6.1.4)
that takes a bit string x ∈ {0, 1}J and evaluates the bit xj. The resulting span
program is P(j) = (Span{|∗⟩}, x 7→ Hj(x), {0}, |∗⟩) on {0, 1}J , where

Hj(x) =

{
Span{|∗⟩}, if xj = 1,

{0}, otherwise.

Then, for all j ∈ J , P(j) computes xj, and W+(P(j)) = W−(P(j)) = 1. In a slight
abuse of notation, we will write xj for the span program P(j).

Now, we inductively define span programs ThkJ that compute the threshold
function on J with threshold k, by

Th1
J =

∨
j∈J

xj, and Thk+1
J =

∨
j∈J

((n− k)xj ∧ kThkJ\{j}).

We refer to ThkJ as the threshold span program on J with threshold k. For all
x ∈ {0, 1}J , we have

w+(x,Th
k
J) =

{
n−k+1
|x|−k+1

, if |x| ≥ k,

∞, otherwise,
w−(x,Th

k
J) =

{
∞, if |x| ≥ k,
k

k−|x| , otherwise.
(7.2.5)

Thus, ThkJ indeed computes fkJ , and we have

W+(Th
k
J) = n− k + 1, W−(Th

k
J) = k, and C(ThkJ) =

√
k(n− k + 1).

◁

Proof of the witness sizes in Example 7.2.11:
We give a proof by induction to k of the formulae for the witness sizes, as stated in
Equation (7.2.5). If k = 1, then the expressions for the positive and negative wit-
nesses reduce to those of the OR-span program, as introduced in Example 6.1.6.
Thus, this provides the basis for induction.

Now, suppose that the expressions for the positive and negative witness sizes
hold for all integers up to k ∈ N. We then show that they also hold for k+1. To

230 Chapter 7. Compositions of span programs

that end, suppose that x ∈ {0, 1}J such that |x| ≥ k + 1. Then,

w+(x,Th
k+1
J) = w+

(
x,
∨
j∈J

((n− k)xj ∧ kThkJ\{j})

)

=

[
1

n

∑
j∈J

1

w+(x, (n− k)xj ∧ kThkJ\{j})

]−1

=

[
1

n

∑
j∈J

n− k + k

(n− k)w+(x, xj) + kw+(x,Th
k
J\{j})

]−1

=

∑
j∈J
xj=1

1

(n− k) + k n−k
|x|−k


−1

=

[
|x|(|x| − k)

(n− k)(|x| − k) + k(n− k)

]−1

=
n− k

|x| − k
,

and so we find that the formula for the positive witness size also holds for k + 1.
Similarly, suppose that |x| ≤ k. Then,

w−(x,Th
k+1
J) = w−

(
x,
∨
j∈J

((n− k)xj ∧ kThkJ\{j})

)

=
1

n

∑
j∈J

w−
(
x, (n− k)xj ∧ kThkJ\{j}

)
=

1

n

∑
j∈J

n− k + k
n−k

w−(x,xj)
+ k

w−(x,ThkJ\{j})

=
∑
j∈J
xj=0

1

n− k + k k−|x|
k

+
∑
j∈J
xj=1

1

k k−|x|+1
k

=
n− |x|
n− |x|

+
|x|

k − |x|+ 1
=

k + 1

k + 1− |x|
.

Thus, the expression for the negative witness size also holds for k + 1. This
completes the proof of the induction step, and hence we conclude the validity
of Equation (7.2.5). The expressions for the witness complexities and the span
program complexity follow immediately. This completes the proof. 2

Note that the complexity we obtain, i.e.,
√
k(n− k + 1), matches the optimal

value of the adversary bound for the threshold function on n bits with threshold
k, as proved in [Bel14, Proposition 3.32]6. Furthermore, since we have defined
the threshold span programs through AND- and OR-compositions, we can also
view the entire construction as a graph composition of a series-parallel graph. We
have drawn this graph in the case where n = 4 and k = 3 in Figure 7.2.5.

6It already follows from combining the results in [BBC+01; BHM+02; Rei11] that the ad-
versary bound for the threshold function on n bits with threshold k is Θ(

√
k(n− k + 1), and

[Bel14] settles the exact constant.

7.2. Graph composition of span programs 231

Layer 0 Weights 2

Layer 1 Weights 4

La
ye

r
2

W
eights

4

s

t

1 2 3 4

12 13 14 21 23 24 31 32 34 41 42 43

x1 x2 x3 x4

x2 x3 x4 x1 x3 x4 x1 x2 x4 x1 x2 x3

x3,
x4

x2
, x4

x2
, x3

x3
, x

4

x
1
,
x
4

x
1
,
x
3

x
2
,
x
4

x
1 ,
x
4

x
1 , x

2

x
2 , x

3

x
1 , x

3

x
1 , x

2

Figure 7.2.5: Illustration of the graph composition construction of a span program
that evaluates the threshold function on n = 4 bits with threshold k = 3. The
weights on all the edges in Layers 0, 1, 2 are 2, 4, 4, respectively.

Layer 0 Weights 2

Layer 1 Weights 4

La
ye

r
2

W
eights

2

s

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

t

x1 x2 x3 x4

x2

x3

x4

x1

x3

x4

x1

x2

x4

x1

x2

x3

x3

x4
x2
x4 x2 x3 x1 x4

x1
x3

x1

x2

Figure 7.2.6: Illustration of the alternative graph composition construction of a
span program that evaluates the threshold function on n = 4 bits, with threshold
k = 3. The weights on the edges in Layers 0, 1, 2 are 2, 4, 2, respectively.

232 Chapter 7. Compositions of span programs

Recall that the number of dimensions in the Hilbert space of a span program
formed by the graph composition construction is the sum of the dimensions of the
Hilbert spaces in the individual span programs. In Example 7.2.11, each of the
individual span programs are one-dimensional, which implies that the number of
dimensions in the Hilbert space of Thkn is the number of edges in the graph. In the
construction above, one can easily calculate that the number of edges is n!/(n−k)!,
which scales super-exponentially in n for large values of k. Thus, even though
we have constructed a span program with optimal span program complexity, the
dimension of the Hilbert space might still be very large. Since the number of
qubits required to implement the span program algorithm, Algorithm 6.1.18, is
at least the logarithm of the dimension of the Hilbert space H, we ultimately
obtain that the number of qubits scales super-linearly in n for large values of k as
well. Note that the approximate counting algorithm in [BHM+02] achieves the
optimal complexity, with a number of qubits logarithmic in n, so the algorithm
constructed here is very suboptimal in terms of its space requirements.

One way to reduce the number of required qubits is by finding a graph com-
position with fewer edges that still computes the threshold function with optimal
span program complexity. It turns out that we can indeed construct such a
graph, but for that purpose we have to step out of the planar setting. This is the
objective of the following example.

7.2.12. Example (Alternative span program for the threshold function).
Let k ∈ [n], and let fkn : {0, 1}n → {0, 1} be defined as

fkn(x) =

{
1, if |x| ≥ k,

0, otherwise.

For every bit of the input, we define the identity span program (recall Exam-
ple 6.1.4) that evaluates said bit, i.e., for every j ∈ [n], we define the span
program P(j) = (Span{|∗⟩}, x 7→ Hj(x), {0}, |∗⟩) on {0, 1}n, where

Hj(x) =

{
Span{|∗⟩}, if xj = 1,

{0}, otherwise.

Then P(j) computes xj, and thus we use xj as shorthand notation for P(j).
Now, we describe a graph G = (V,E) with k+1 layers (see Figure 7.2.6 for an

example). In the 0th layer, we have node s, and in the kth layer, we have node t.
In the jth layer, with j ∈ [k− 1], we have nodes labeled by S ⊆ [n], with |S| = j.

Next, we connect s to all nodes in the first layer, and label the edge connecting
s to {j} by xj. Similarly, from every vertex in the (k − 1)th layer labeled by S,
we let n−k+1 edges go to t, respectively labeled by xj for all j ∈ [n]\S. Finally,
with j ∈ [k − 2], there is an edge between a pair of nodes Sj and Sj+1 in layers j
and j + 1, precisely when we can write Sj+1 = Sj ∪ {j′} for some j′ ∈ [n], and if
this is the case the edge is labeled by xj′ .

7.2. Graph composition of span programs 233

It remains to put weights on the edges. To that end, if an edge connects layer
j to j + 1, for j ∈ [k − 1]0, the corresponding weight is

rj =
(k − 1)!(n− k + 1)

(k − j − 1)!j!
.

Strong numerical evidence shows that the graph composition of graph G with
weights (re)e∈E and span programs (P(e))e∈E computes the function fkn , and the
witness sizes and complexities are the same as in Example 7.2.11. ◁

We provide an illustration of this alternative construction for the threshold
span program for n = 4 and k = 3 in Figure 7.2.6. We have gathered strong
numerical evidence that this alternative construction achieves the same witness
sizes and complexities as in Example 7.2.11. The analysis appears to be rather
tricky, though, so we leave that for future work.

The number of edges in the new construction can be evaluated to be

k∑
ℓ=0

(
n

ℓ

)
(n− ℓ) = n

k∑
ℓ=0

(
n− 1

ℓ

)
≤ n2n−1.

Thus, the number of dimensions in the Hilbert space of the threshold span pro-
gram constructed in Example 7.2.12 scales only exponentially in n, rather than
super-exponentially as was the case in Example 7.2.11. This implies that the
number of qubits required to implement this algorithm is linear in n, which is
better than the construction in Example 7.2.11, but still severely suboptimal.

Finally, we observe that we can use the span program for the threshold func-
tion as a black box to build a span program for the exact-weight function. This
is the objective of the following example.

7.2.13. Example (Span program for the exact-weight function).
Let k ∈ [n] and let J be a finite set of size n, i.e., |J | = n. We define the
exact-weight function fkJ : {0, 1}J → {0, 1} as

fkJ (x) =

{
1, if |x| = k,

0, otherwise.

We define the span program that computes the exact-weight function by

EWk
J = kThkJ ∧(n− k)(¬Thk+1

J).

Then, for all x ∈ {0, 1}J , we have

w+(x,EW
k
J) =

{
n+2k(n−k)

n
, if |x| = k,

∞, otherwise,
w−(x,EW

k
J) =

{
∞, if |x| = k

n
||x|−k| , otherwise.

234 Chapter 7. Compositions of span programs

Thus, EWk
J indeed computes fkJ and the resulting complexities are

W+(EW
k
J) =

n+ 2k(n− k)

n
, W−(EW

k
J) = n,

and
C(EWk

J) =
√
n+ 2k(n− k).

◁

Proof:
We check the formulae for the witness sizes directly. Suppose that x ∈ {0, 1}J
with |x| = k. Then,

w+(x,EW
k
J) = w+(x, kTh

k
J ∧(n− k)(¬Thk+1

J))

=
kw+(x,Th

k
J) + (n− k)w+(x,¬Thk+1

J)

k + n− k

=
kw+(x,Th

k
J) + (n− k)w−(x,Th

k+1
J)

n

=
k(n− k + 1) + (n− k)(k + 1)

n
=
n+ 2k(n− k)

n
,

and similarly, if |x| ≠ k, then,

w−(x,EW
k
J) = w−(x, kTh

k
J ∧(n− k)(¬Thk+1

J))

=

[
1

k + n− k

[
k

w−(x,Th
k
J)

+
n− k

w−(x,¬Thk+1
J)

]]−1

= n

[
k

w−(x,Th
k
J)

+
n− k

w+(x,Th
k+1
J)

]−1

.

If |x| < k, then we can further rewrite this to

w−(x,EW
k
J) = n

[
k
k − |x|
k

]−1

=
n

k − |x|
=

n

||x| − k|
,

and similarly if |x| > k, then we obtain

w−(x,EW
k
J) = n

[
(n− k)

|x| − k

n− k

]−1

=
n

|x| − k
=

n

||x| − k|
.

The witness complexities and the span program complexity then follow immedi-
ately. This completes the proof. 2

The remarkable thing about the above construction is that numerical evidence
strongly suggests that it is optimal, i.e., it seems that

√
n+ 2k(n− k) is indeed

7.3. Quantum algorithms from classical decision trees 235

the value of the adversary bound for the exact-weight function on n bits with
weight k. If true, then this relation is a novelty. The easiest way to prove it
would be to come up with primal adversary bound solutions whose objective
values match the complexity of the span program constructed here. We leave this
for future work.

The obvious next step is to generalize the above construction for the exact-
weight function to the more general class of interval functions, i.e., functions that
output 1 whenever the Hamming weight |x| of the input is in some interval a ≤
|x| ≤ b. Indeed, one can construct a span program of the form αThaJ ∧β(¬Thb+1

J),
but it turns out that even by optimizing the choice of the weights α and β, one
cannot always obtain a span program whose complexity equals the adversary
bound for the corresponding interval function.

The smallest non-trivial example is the function f : {0, 1}5 → {0, 1}, where
f(x) = 1 if and only if 2 ≤ |x| ≤ 3. The best span program complexity that can
be achieved with the above construction appears to be

√
12, but we have numeri-

cally generated a solution to the reformulated dual adversary bound that attains
an objective value of approximately

√
11.8892. At this point, we have no credible

closed-form formula for the interval function that predicts this value 11.8892, nor
do we have any graph composition construction for this interval function that at-
tains this complexity. Thus, this function is a very natural next step in obtaining
a better understanding of optimal solutions to the reformulated dual adversary
bound. It would be very interesting to come up with graph constructions that
achieve optimality for all symmetric functions.

Finally, a very nice question for future research is whether we can use the
construction for the threshold and exact-weight functions in the more general
setting where the inputs are functions themselves again. That is, let f1, . . . , fn
be boolean functions with disjoint support, and suppose that we would like to
know if k or more of these functions evaluate to 1 on some given tuple of inputs
x(1), . . . , x(n). Can we characterize the adversary value of this decision problem in
terms of the adversary values of the individual functions ADV±(f (j)), to obtain a
result similar in flavor to Corollary 7.1.14? This problem is still wide open, and
provides a very nice follow-up question from this work.

7.3 Quantum algorithms from classical decision
trees

As a concrete demonstration of the applicability of the graph composition of span
programs, we showcase how it can be used to take any classical algorithm that
solves a decision problem, and turn it into a quantum one. The results achieved in
this section are heavily based on [CMP22], even though there are slight differences
in the approach used to arrive at them.

236 Chapter 7. Compositions of span programs

7.3.1 Introduction

Observe that any deterministic classical query algorithm computing a function
f : D → R with D ⊆ [ℓ]n and R any set, can be visualized as a decision tree. The
root node of the decision tree is the start of the algorithm, and every internal
node, i.e., non-leaf node, is labeled by an index j ∈ [n]. The outgoing edges from
this node are labeled by elements from [ℓ]. The leaves are labeled by elements
from the range R.

The classical deterministic algorithm represented by the decision tree traverses
it by starting at the root node, querying the input at the labeled element, and
then traverses the outgoing edge labeled by the outcome of the query. Once a
leaf is reached, the label of the corresponding leaf is the output of the function.
See Figure 7.3.1 for an example.

x1

1 x2

1 x3

1 0

1 0

1 0

1 0

Figure 7.3.1: Illustration of a decision tree that computes the OR-function on 3
bits, i.e., x1 ∨ x2 ∨ x3. The classical algorithm starts at the root node, where it
queries the first bit, x1. Then, it traverses the edge labeled by the outcome of
this query, and repeats this process. Once it reaches a leaf, it outputs the label
of the leaf.

It is clear that the classical deterministic algorithm based on a decision tree
T performs depth(T) queries in the worst case, where depth(T) is the length of
the longest path from the root node to a leaf. The high-level question that we
consider in this section is whether one can use the description of the decision
tree to construct a quantum algorithm that computes the same function with
bounded error, whilst making a number of queries that is significantly smaller
than depth(T).

There have been several recent works that formulate an answer to this ques-
tion. In [LL16], Lin and Lin showed how a decision tree computing a function
f : D → R, with D ⊆ {0, 1}n and R any set, can be turned into a quantum
query algorithm that computes f with bounded error. The construction requires
a “guessing scheme,” i.e., at every internal node in the decision tree, one arbitrary
outgoing edge is labeled the “guessed edge” and its associated outcome is referred

7.3. Quantum algorithms from classical decision trees 237

to as the “guessed outcome”. The quantum algorithm they construct requires
O(
√
G · depth(T)) queries to the input in the worst-case, where G is the max-

imum number of non-guessed edges in a path from root to leaf in the decision
tree. Since G ≤ depth(T), their quantum algorithm is always at least as efficient
as its classical counterpart.

Next, in [BT20], Beigi and Taghavi reprove the result from [LL16] in the
more general setting where the decision tree computes the function f : D → R,
with D ⊆ [ℓ]n, ℓ ∈ N and R any set. They arrive at this result through care-
fully constructing a feasible solution to the dual adversary bound, and showing
that the objective value is at most O(

√
G · depth(T)), where G is as before.

Subsequently, in [BTT22], Beigi, Taghavi and Tajdini showed that the resulting
algorithm can also be implemented time-efficiently, and in [Tag22], Taghavi used
these techniques to construct a query-optimal quantum algorithm for the oracle
identification problem, simplifying an earlier construction by Kothari [Kot14].

In this section, we restrict ourselves to the setting where f : D → {0, 1} with
D ⊆ {0, 1}n, and show that in this setting, the result in [BT20] can be phrased
as a graph composition construction. We also argue that the optimal guessing
scheme, as required in the constructions showcased in [LL16; BT20], bears a direct
connection to the decision tree rank, as introduced by [EH89]. We subsequently
improve over the construction presented in [BT20] by providing a better weight
assignment on the edges of the graph. We also prove that this assignment of the
weights is optimal, and derive a bound on the number of queries performed by the
resulting algorithm in terms of the size of the decision tree. The collective state-
of-the-art results, i.e., the combined results from [BT20; CMP22], are summarized
in Theorem 7.3.8.

7.3.2 Decision trees and its properties

Intuitively speaking, the size of the decision tree tells us something about the
complexity of the algorithm it represents. However, there are several ways in
which the size of the decision tree can be measured. We restrict ourselves to
decision trees that solve a decision problem with binary input, i.e., that compute
a boolean function f : D → {0, 1} with D ⊆ {0, 1}n. We formalize several of
these size measures in the following definition.

7.3.1. Definition (Decision tree). Let T = (V,E) be a tree, with root node
r ∈ V . We refer to every vertex in V that is not a leaf of the tree as an internal
node, and we assume that all internal nodes have exactly two outgoing edges.
We label every leaf ℓ with an output bit bℓ, every internal node v with an index
jv ∈ [n], and for every internal node we label its outgoing edges by 0 and 1. The
graph T with all its labels is referred to as a decision tree.

1. The decision tree depth is defined to be the maximum length of a path from
the root node to a leaf. We denote it by depth(T).

238 Chapter 7. Compositions of span programs

2. The decision tree size is defined to be the number of internal nodes. We
denote it by size(T).

3. The decision tree rank is defined to be the largest number of edge layers of
a full binary tree that can be obtained by contracting vertices of the tree.
We denote it by rank(T).

4. A guessing scheme is a set of edges, that for every internal node contains
exactly one of its outgoing edges. We refer to these edges as the guessed
edges. The guessing number of a particular scheme is the maximum number
of non-guessed edges in any path going from the root node to a leaf. The
guessing complexity is the minimum guessing number across all guessing
schemes. ◀

In [LL16, page 4], Lin and Lin ask the question whether the guessing num-
ber7 as defined above has some interpretation as a combinatorial measure studied
in classical decision-tree complexity. Here, we answer that question in the affir-
mative, and proceed by proving that the guessing complexity of a decision tree,
i.e., the guessing number of the optimal guessing scheme, is equal to its rank.
The decision tree rank was indeed introduced earlier, in [EH89], in the context of
learning theory.

We start by proving the following recursive characterization of the decision
tree rank.

7.3.2. Lemma. Let T = (V,E) be a decision tree, v ∈ V be a node of the decision
tree, and let Tv be the decision tree rooted at v, i.e., containing all the nodes and
vertices that are either v itself or below v. If v is a leaf, then rank(v) = 0. On
the other hand, if v is an internal node, we let its children be vL and vR. Then,
we have

rank(Tv) =

{
max{rank(TvL), rank(TvR)}, if rank(TvL) ̸= rank(TvR),

rank(TvL) + 1, if rank(TvL) = rank(TvR).

Proof:
If v is a leaf, then Tv is a single node, as such contains no edges and hence the
rank is 0. Thus, it remains to consider the case where v is an internal node. In
that case, we observe that

max{rank(TvL), rank(TvR)} ≤ rank(Tv) ≤ max{rank(TvL), rank(TvR)}+ 1.

The left inequality follows from the fact that if we can find a full binary tree with
r edge layers below vL, then it is by definition also below v, and similarly for vR.
The right inequality follows from the fact that if we can find a full binary tree
with r layers below v, then at least r − 1 of those layers will be below vL or vR
(or both).

7The guessing number is G in their notation.

7.3. Quantum algorithms from classical decision trees 239

Thus, it remains to show that rank(Tv) > max{rank(TvL), rank(TvR)} if and
only if rank(TvL) = rank(TvR). To that end, observe that if it so happens that
rank(Tv) > max{rank(TvL), rank(TvR)}, then the maximum binary tree in T con-
tains v, which means that it contains two binary trees with rank(Tv)−1 edge layers
below vL and vR. Thus, indeed, we have rank(TvL) = rank(Tv)− 1 = rank(TvR).
On the other hand, if rank(TvL) = rank(TvR), then the two binary trees below
vL and vR combine to form a binary tree of size rank(TvL) + 1 below v. This
completes the proof. 2

The above characterization allows us to very succinctly define an optimal
guessing scheme.

7.3.3. Theorem (Guessing complexity and decision tree rank). Let T = (V,E)
be a decision tree. Then the decision tree rank of T and the guessing complexity
of T are equal.

Proof:
We can directly observe that the guessing complexity of T is at least the decision
tree rank of T . Indeed, let rank(T) = r, and by the definition of rank we can
obtain a full binary tree with r edge layers by contracting nodes within T . Any
guessing scheme of T naturally induces a guessing scheme on this full binary tree
with smaller or equal guessing number, and in a full binary tree there is always at
least a path going from root to leaf that traverses exclusively non-guessed edges.
Thus, the guessing complexity is at least r.

For the other inequality, we define a particular guessing scheme, and induc-
tively show that its guessing number is exactly the rank of T . To that end, let v be
an internal node, with children vL and vR. Suppose that rank(TvL) ̸= rank(TvR),
and without loss of generality assume that rank(TvL) > rank(TvR). Then, we
label the edge going from v to vL as the guessed edge. On the other hand, if
rank(TvL) = rank(TvR), then we choose the guessed edge outgoing from v arbi-
trarily.

We now prove that the guessing number of this particular guessing scheme is
equal to the rank of T . The leaves provide the basis for induction, since the rank
and guessing complexity of a decision tree containing only a single node are both
trivially 0. Next, let v be an internal node with children vL and vR, and observe
that the guessing scheme for T naturally induces a guessing scheme on Tv, TvL
and TvR . Suppose that the guessing numbers of TvL and TvR are equal to their
respective ranks. Then, if rank(TvL) > rank(TvR), we obtain that the guessing
number of Tv is the maximum of rank(TvL) and rank(TvR) + 1, which is simply
rank(TvL). On the other hand, if rank(TvL) = rank(TvR) = r, then the guessing
number of Tv is r+1. By Lemma 7.3.2, we obtain that in both cases, the guessing
number on Tv is equal to rank(Tv), completing the proof. 2

240 Chapter 7. Compositions of span programs

7.3.3 Graph composition of a decision tree

Next, we show how a decision tree can be turned into a quantum algorithm using
the graph composition of span programs. The core idea we employ next is to
transform the decision tree T = (V,E) into an st-connectivity graph G = (V ′, E ′)
with distinct source and sink nodes s, t ∈ V ′. To that end, we let G be the graph
that is derived from T by pruning all the leaves labeled 0 and contracting all the
leaves labeled 1 into a single node labeled t. We let s be the root of T . If an
edge e in the decision tree T has label b and is outgoing from a node v, then it is
associated with the identity span program P(e) that computes xjv if b = 1, and
¬xjv if b = 0, where jv is the element of the input that is being queried at node v.
See Figure 7.3.2 for the resulting graph G constructed from the decision tree T
showcased in Figure 7.3.1.

s

a

b

t

x1

¬x1

x2

¬x2

x3

Figure 7.3.2: Illustration of the resulting graph G constructed from the decision
tree T for the OR-function on three bits in Figure 7.3.1.

Now, we let P be the graph composition of G with span programs (P(e))e∈E′

and some strictly positive weights (re)e∈E′ to be fixed later. We easily observe that
it evaluates the same function f : {0, 1}n → {0, 1} as the classical deterministic
algorithm that traverses the decision tree T . Thus, we have indeed constructed
a span program from a classical algorithm, which can be turned into a bounded-
error quantum query algorithm using Algorithm 6.1.18.

In order to analyze the number of queries performed by this quantum algo-
rithm, or equivalently the complexity of the composed span program, it remains
to choose the weights in this composition. To that end, suppose that we choose
the weights (re)e∈E′ . As in Definition 7.2.5, we will refer to the normalized weights
by

r′e =
re

Rs,t(G, (re)e∈E′)
.

We can now evaluate the positive and negative witness sizes according to
Theorem 7.2.7. For a positive input x ∈ {0, 1}n, the classical algorithm traverses
a unique path from the root node to a 1-labeled leaf in the decision tree T , and

7.3. Quantum algorithms from classical decision trees 241

as such there will be a unique path Px ⊆ E ′ that connects s to t. The positive
witness size, therefore, is the sum of the normalized weights along this path, i.e.,

w+(x,P) =
∑
e∈Px

r′e. (7.3.1)

On the other hand, suppose that we have a negative input x ∈ {0, 1}n. Since
the graph G is planar, we can think of a negative witness as a flow from s† to t†
in the dual graph G†. To exhibit such a flow, consider the path Px in G traversed
by the classical algorithm, and let Vx ⊆ V be the set of nodes that it visits. Next,
let P x be the set of edges that are outgoing from Vx, but are not in Px. Then, we
observe that the dual edges {e† : e ∈ P x} form a path from s† to t† in the dual
graph. See also the visualization in Figure 7.3.3. As such, we find that

w−(x,P) ≤
∑
e∈Px

1

r′e
. (7.3.2)

s

a

b

t

s†

a†

b†

t†x1

x2

x3

x1

x2

¬x1

¬x2

¬x1

¬x2

¬x3

Figure 7.3.3: Visualization of a negative witness in the span program compiled
from a decision tree. For each internal vertex visited by the classical algorithm,
take the alternative edges that were not traversed by it. The duals of these edges
forms an s†t†-path in the dual graph.

It is important to remark that this is truly an upper bound on the negative
witness size, since we have only exhibited one possible negative witness and we
have no guarantee that it is the optimal one. Indeed, one can construct cases
where the inequality in Equation (7.3.2) is not tight.

We can interpret these witnesses directly in terms of the decision tree T . To
that end, suppose that we assign a strictly positive weight re to every edge in T .
These weights naturally induce normalized weights (r′e)e∈E′ on the derived graph
G, and we refer to the graph composition P of G with weights (r′e)e∈E′ as the
span program compiled from T with edge weights (re)e∈E. We let Path(T) be the
set of paths from the root to a leaf in T , and for every path P ∈ Path(T), we

242 Chapter 7. Compositions of span programs

x1

1 x2

1 x3

1 0

0 1

0 1

0 1

Figure 7.3.4: Visualization of the path P and its complement P . If the solid lines
represent the path P , then its complement P is the set of dashed edges, i.e., the
edges that are outgoing from the nodes traversed by P , but not traversed by P
itself. The dotted edges are neither part of P nor P in this example.

let P be the set of edges that are outgoing from a node traversed by P , but not
traversed by P itself. See Figure 7.3.4 for an example.

Now, we observe that

W+(P) ≤ max
P∈Path(T)

∑
e∈P

r′e, and W−(P) ≤ max
P∈Path(T)

∑
e∈P

1

r′e
,

since for every positive input x, the path Px in G is also a path P in T , and for
every negative input x, the edge set P x in G is a subset of a path complement P
in T . It follows that

C(P)2 ≤ max
P∈Path(T)

∑
e∈P

re · max
P∈Path(T)

∑
e∈P

1

re
. (7.3.3)

Note that we dropped the normalization factor Rs,t(G, (re)e∈E′) from the re’s in
the above equation, since they cancel when we multiply the positive and the
negative witness sizes together.

Interestingly, the right-hand side of Equation (7.3.3) reduces to the upper
bound on the span program complexity given in [BT20], for a particular assign-
ment of the weights (re)e∈E. In [CMP22], we achieve the same expression as the
right-hand side of Equation (7.3.3), and we show how it is a generalization of
[BT20]. We also show in [CMP22] how to choose the weights (re)e∈E so that the
right-hand side of Equation (7.3.3) is minimized, which we proceed to showcase
in the next subsection.

7.3.4 Optimal weight assignment

The task that remains is to choose the weights (re)e∈E in such a way that the
right-hand side of Equation (7.3.3) is minimized. To that end, we give a recursive

7.3. Quantum algorithms from classical decision trees 243

definition of these weights. For all v ∈ V , let Tv = (Vv, Ev) be the decision tree
obtained from starting at node v in T , rather than at the root node. Let C2

v be
the optimal value of the right-hand side of Equation (7.3.3) when applied to Tv,
i.e.,

C2
v = min

(re)e∈Ev

 max
P∈Path(Tv)

∑
e∈P

re · max
P∈Path(Tv)

∑
e∈P

1

re

 .
It follows that Cv = 0 whenever v is a leaf, because there are no paths in the
graph Tv.

Now, let v ∈ V be an internal node. It has two children, vL and vR, connected
to v by edges eL and eR. We claim that

Cv =
CvL + CvR +

√
(CvL − CvR)

2 + 4

2
,

and that the optimal weights for the edges eL and eR are

reL =
CvR − CvL +

√
(CvL − CvR)

2 + 4

2
and (7.3.4a)

reR =
CvL − CvR +

√
(CvL − CvR)

2 + 4

2
. (7.3.4b)

We prove these claims in the following sequence of lemmas.

7.3.4. Lemma. Let v ∈ V be an internal node in T and let vL and vR be its
children. Then,

Cv ≤
CvL + CvR +

√
(CvL − CvR)

2 + 4

2
.

Proof:
Let (re)e∈EvL

and (re)e∈EvR
be optimal edge weights in TvL = (VvL , EvL) and

TvR = (VvR , EvR), i.e., assignments of (re)e∈EvL
and (re)e∈EvR

that minimize the
right-hand side of Equation (7.3.3) applied to the decision trees TvL and TvR ,
respectively. Then, we define

C+
vL

= max
P∈Path(TvL)

∑
e∈P

re, C−
vL

= max
P∈Path(TvL)

∑
e∈P

1

re
,

C+
vR

= max
P∈Path(TvR)

∑
e∈P

re, C−
vR

= max
P∈Path(TvR)

∑
e∈P

1

re
.

Next, we define

∀e ∈ EvL , r′e =

√
C−
vL

C+
vL

re, and ∀e ∈ EvR , r′e =

√
C−
vR

C+
vR

re,

244 Chapter 7. Compositions of span programs

and we let

(C+
vL
)′ = max

P∈Path(TvL)

∑
e∈P

r′e, (C−
vL
)′ = max

P∈Path(TvL)

∑
e∈P

1

r′e
,

(C+
vR
)′ = max

P∈Path(TvR)

∑
e∈P

r′e, (C−
vR
)′ = max

P∈Path(TvR)

∑
e∈P

1

r′e
,

to obtain that

(C+
vL
)′ =

√
C+
vL
C−
vL

= CvL =
√
C+
vL
C−
vL

= (C−
vL
)′, and

(C+
vR
)′ =

√
C+
vR
C−
vR

= CvR =
√
C+
vR
C−
vR

= (C−
vR
)′,

where we used that the re’s were the optimal choice to begin with, and hence
C+
vL
C−
vL

= C2
vL

, and similarly for vR. Now, we let reL and reR as in Equa-
tion (7.3.4), and we obtain that

C+
v := max

P∈Path(Tv)

∑
e∈P

r′e = max
{
reL + (C+

vL
)′, reR + (C+

vR
)′
}

= max {reL + CvL , reR + CvR} ,

and similarly,

C−
v := max

P∈Path(Tv)

∑
e∈P

1

r′e
= max

{
1

reR
+ (C−

vL
)′,

1

reL
+ (C−

vR
)′
}

= max

{
1

reR
+ CvL ,

1

reL
+ CvR

}
.

Thus, we obtain that

Cv ≤
√
C+
v C

−
v ≤ max{C+

v , C
−
v }

= max

{
reL + CvL , reR + CvR ,

1

reR
+ CvL ,

1

reL
+ CvR

}
.

It follows easily that the first two expressions inside the maximum evaluate to
the desired expression. To show that the last two expressions in the maximum
also simplify to the same expression, it remains to show that reLreR = 1. To that
end, we use the formula (a+ b)(a− b) = a2− b2 with a =

√
(CvL − CvR)

2 + 4 and
b = CvR − CvL , to deduce that

4reLreR = (CvR − CvL +
√

(CvL − CvR)
2 + 4)(CvL − CvR +

√
(CvL − CvR)

2 + 4)

= (CvL − CvR)
2 + 4− (CvR − CvL)

2 = 4.

This completes the proof. 2

Now, we proceed with the opposite inequality.

7.3. Quantum algorithms from classical decision trees 245

7.3.5. Lemma. Let v ∈ V be an internal node in T and let vL and vR be its
children. Then,

Cv ≥
CvL + CvR +

√
(CvL − CvR)

2 + 4

2
.

Proof:
Let (re)e∈Ev be any weight assignment to the edges in Tv. Then, we define

C+
vL

= max
P∈Path(TvL)

∑
e∈P

re, C−
vL

= max
P∈Path(TvL)

∑
e∈P

1

re
,

C+
vR

= max
P∈Path(TvR)

∑
e∈P

re, C−
vR

= max
P∈Path(TvR)

∑
e∈P

1

re
,

C+
v = max

P∈Path(Tv)

∑
e∈P

re, C−
v = max

P∈Path(Tv)

∑
e∈P

1

re
.

We let eL and eR be the edges connecting v with vL and vR, respectively. Then,

C+
v = max{reL + C+

vL
, reR + C+

vR
}, and C−

v = max

{
1

reR
+ C−

vL
,
1

reL
+ C−

vR

}
.

We let γ =
√
C+
v /C

−
v . Then, we have√

C+
v C

−
v =

C+
v

γ
= γC−

v ,

and hence we also find that√
C+
v C

−
v =

1

2

[
C+
v

γ
+ γC−

v

]
.

Next, let δ ∈ [0, 1], and we observe that for for all real a and b, we have
max{a, b} ≥ δa+ (1− δ)b. Thus,√

C+
v C

−
v

=
1

2

[
max

{
reL
γ

+
C+
vL

γ
,
reR
γ

+
C+
vR

γ

}
+max

{
γ

reR
+ γC−

vL
,
γ

reL
+ γC−

vR

}]
≥ 1

2

[
δ

(
reL
γ

+
C+
vL

γ

)
+ (1− δ)

(
reR
γ

+
C+
vR

γ

)
+ δ

(
γ

reR
+ γC−

vL

)
+ (1− δ)

(
γ

reL
+ γC−

vR

)]
=

1

2

[
δ

(
C+
vL

γ
+ γC−

vL

)
+ (1− δ)

(
C+
vR

γ
+ γC−

vR

)
+

(
δ
reL
γ

+ (1− δ)
γ

reL

)
+

(
δ
γ

reR
+ (1− δ)

reR
γ

)]
≥ δ
√
C+
vL
C−
vL

+ (1− δ)
√
C+
vR
C−
vR

+ 2
√
δ(1− δ).

246 Chapter 7. Compositions of span programs

where we used that for any a, b ≥ 0, (a + b)/2 ≥
√
ab. Now, we observe that√

C+
vL
C−
vL

≥ CvL , and similarly for the right part. Thus, we obtain that√
C+
v C

−
v ≥ δCvL + (1− δ)CvR + 2

√
δ(1− δ).

We now write ∆ = CvL − CvR , and we define

δ =
1

2
+

∆

2
√
∆2 + 4

.

Then indeed δ ∈ [0, 1], and

√
C+
v C

−
v ≥ CvL + CvR

2
+

∆2

2
√
∆2 + 4

+ 2

√
1

4
− ∆2

4(∆2 + 4)

=
CvL + CvR

2
+

∆2

2
√
∆2 + 4

+

√
4

∆2 + 4

=
CvL + CvR

2
+

∆2 + 4

2
√
∆2 + 4

=
CvL + CvR +

√
∆2 + 4

2
.

Since this holds for every weight assignment (re)v∈Ev , it also holds for the op-
timal one in particular. But for the optimal weight assignment we have that
Cv =

√
C+
v C

−
v by definition, and hence we obtain the inequality from the lemma

statement. This completes the proof. 2

We have now found a recursive characterization of the optimal upper bound on
the complexity of a span program compiled from a decision tree. We summarize
this recursive result in the corollary below.

7.3.6. Corollary. Let T = (V,E) be a decision tree, and let v ∈ V . If v is a
leaf, then Cv = 0. If v ∈ V is an internal node of T with children vL and vR, then

Cv =
CvL + CvR +

√
(CvL − CvR)

2 + 4

2
.

This gives us a recursive way to compute the complexity of the span program P
that is compiled from the decision tree T with the optimal weight assignment. We
can use this recursive computation to prove an upper bound on the complexity
in terms of the size of the decision tree. This is the objective of the following
lemma.

7.3.7. Lemma. Let P be the span program compiled from the decision tree T with
the optimal weight assignment. Then C(P) ≤

√
2 size(T).

7.3. Quantum algorithms from classical decision trees 247

Proof:
We give a proof by induction. If T is a single node, then it computes a constant
function, and hence indeed C(P) = 0 =

√
2 · 0 =

√
2 · size(T). This provides the

basis for induction.
Next, let v ∈ V be an internal node of T , and let vL and vR be its children.

Let nL = size(TvL) and nR = size(TvR) be the number of internal nodes in the
trees rooted at vL and vR, respectively, and suppose that CvL ≤

√
2nL, and

CvR ≤
√
2nR. Then, using Corollary 7.3.6 and the formula (a + b)2 ≤ 2(a2 + b2)

for all a, b ≥ 0, we obtain

C2
v ≤ 2(CvL + CvR)

2 + 2(CvL − CvR)
2 + 8

4
= C2

vL
+ C2

vR
+ 2

≤ 2(nL + nR + 1) = 2 size(Tv).

This provides the induction step, and thus the proof is complete. 2

Thus, we have proved that if we compile a span program P from a decision tree
T with the optimal weight assignment, then the span program complexity C(P)
is at most the square root of twice the number of internal nodes in the decision
tree. We can combine this observation with the result from [LL16, Theorem 8],
to obtain the following theorem.

7.3.8. Theorem. Let T be a decision tree that computes a boolean function f :
{0, 1}n → {0, 1}. Then,

1. D(f) ≤ depth(T).
2. Q(f) = O(min{

√
rank(T) depth(T),

√
size(T)}).

Proof:
Claim 1 is trivial. The first part of the minimum in claim 2 is proved in [LL16,
Theorem 8], and reproduced in [BT20, Section 3]8, and the second part is proved
in Lemma 7.3.7. This completes the proof. 2

7.3.5 Discussion

From the statement of Theorem 7.3.8, there are a few follow-up questions that
naturally come to mind. First, one might wonder whether both terms in the
minimum that appears in claim 2 are necessary, or whether one is stronger than
the other. In Figure 7.3.5, we present two different examples of decision trees,
one in which depth(T) rank(T) ≪ size(T), and one where the opposite is true.
Thus, we conclude that the two parts of the minimum in claim 2 are in general
incomparable.

8The results in [LL16] and [BT20] are phrased using the guessing complexity, rather than
the decision tree rank. However, since we proved in Theorem 7.3.3 that these two are equal, we
phrase the result here in terms of decision tree rank.

248 Chapter 7. Compositions of span programs

Complete binary tree Balanced binary-AND tree

n leaves

depth
log n

n leaves

depth
log n n

leaves

C(P)= O(log n) C(P)= O(
√
n)√

rank(T) depth(T)= O(log n)
√
rank(T) depth(T)= O(

√
n log n)√

size(T)= O(
√
n)

√
size(T)= O(

√
n)

Figure 7.3.5: Examples showing separations between the two bounds derived in
claim 2 of Theorem 7.3.8. The shaded regions represent complete binary trees. In
the left example rank(T) depth(T) ≪ size(T), and in the right example size(T) ≪
rank(T) depth(T).

Another question that comes to mind is if the results presented here can
be generalized to randomized classical query algorithms, i.e., can we also take
a randomized classical query algorithm with bounded error and turn it into a
bounded-error quantum query algorithm? The answer is yes – since in the classi-
cal randomized setting, one can without loss of generality assume that a sufficient
number of random bits are generated before the execution of the algorithm starts,
we can think of a randomized classical algorithm with failure probability δ1 > 0
as a family of decision trees, where the specific instance is chosen according to the
random bits being generated before the execution of the algorithm. If one now
takes such a randomly generated decision tree and turns it into a quantum query
algorithm with bounded-error δ2 > 0, then this whole procedure is a quantum
query algorithm with failure probability at most δ1 + δ2. Standard failure prob-
ability suppression techniques can ensure that δ1 and δ2 are small enough such
that their sum is at most 1/3. More details are supplied in [BT20; CMP22].

There are many interesting directions of future research to pursue from this
result. For instance, before arriving at Equation (7.3.3), we merely used an upper
bound on the negative witness size. It would be interesting to figure out if we can
more tightly characterize the negative witness size, in terms of quantities that are
derived directly on the decision tree itself.

Finally, the result in [BT20] also holds in the setting where the input and
output of the function is arbitrary, rather than boolean. It would be interesting
to figure out whether we can interpret the constructions in these more general
settings as st-connectivity graph compositions as well.

Chapter 8

Approximate span programs

In the previous chapter, we provided a construction to turn classical query algo-
rithms into span programs, which subsequently can be turned into quantum query
algorithms with bounded error. We also showed that this black-box approach is
capable of achieving quantum speed-ups in terms of the number of queries the
algorithm performs.

A natural analogue of this question is whether it is possible to turn a quan-
tum query algorithm into a span program as well. The difficulty here is that the
most natural class of quantum algorithms to consider consists of those that have
bounded error, i.e., that succeed with a probability that is lower bounded by 2/3.
It turns out that the ability to handle such imperfections requires a modifica-
tion of the span program framework. To that end, we introduce the concept of
approximate span programs.

The presentation in this chapter is mostly based on [IJ19], but it has some
subtle but crucial differences. We first introduce the concept of approximate
span programs in Section 8.1. After that, we give an algorithm to evaluate such
approximate span programs, in Section 8.2, which attains a polynomial improve-
ment over the algorithm from [IJ19]. Finally, we discuss how approximate span
programs are equivalent to quantum query algorithms with bounded error, in
Section 8.3.

8.1 Definition and basic properties

Recall from Figure 6.1.2 that we label an input x ∈ D as a positive input if
and only if there is no component of |w0⟩ in K⊥ ∩ H(x)⊥. This is a very rigid
cut-off – pictorially, even if |w0⟩ is hovering a tiny bit above the ground plane in
Figure 6.1.2, we dub it a negative input (with a very high negative witness size).

The idea of approximate span programs is to move the decision rule for inputs
being positive a little bit in favor of those inputs for which |w0⟩ is very close to
the ground plane. We formalize this idea in the following definition.

249

250 Chapter 8. Approximate span programs

8.1.1. Definition (Approximate span program).
Let P = (H, x 7→ H(x),K, |w0⟩) be a span program on a domain D. Let δ ∈ (0, 1]
be an approximation parameter. We say that P δ-approximates the function
fδ : D → {0, 1}, defined as

fδ(x) =

{
0, if

∥∥ΠK⊥∩H(x)⊥ |w0⟩
∥∥2 ≥ δ,

1, otherwise.

For every x ∈ D, we say that x is a δ-approximate positive input whenever fδ(x) =
1, and we say that it is a δ-approximate negative input whenever fδ(x) = 0.

For every x ∈ D, we define the approximate positive witness size as

w̃+(x,P) = min{∥|w⟩∥2 : |w⟩ ∈ H(x), |w⟩ − ΠK+H(x) |w0⟩ ∈ K}, (8.1.1)

and we say that the vectors |w⟩ that satisfy the constraints of the set on the
right-hand side are approximate positive witnesses for x in P .

Finally, we define the quantities

W̃−(P , δ) = max
x∈f−1

δ (0)
w−(x,P), W̃+(P , δ) = max

x∈f−1
δ (1)

w̃+(x,P),

and
λ(P , δ) = max

x∈f−1
δ (1)

1

δw−(x,P)
. ◀

In Figure 8.1.1, we develop some intuition for the objects we just defined. An
input is dubbed positive if the squared distance between |w0⟩ and the ground
plane, i.e., the size of the vertical component of |w0⟩ is smaller than δ. We also
define approximate positive witnesses to be vectors |w⟩ that are in the ground
plane, and that can be reached from the projection of |w0⟩ onto the ground plane,
i.e., |w′

0⟩ = ΠK+H(x) |w0⟩, by adding an element from K.
Even though the definition of approximate span programs we employ here for

the most part resembles the definition of negatively approximating span programs
in [IJ19], there is a slight difference in the definition of the approximate positive
witnesses. In our notation, the definition of the approximate positive witness size
used in [IJ19] is

w+(x,P) = min{∥|w⟩∥2 : |w⟩ − |w0⟩ ∈ K ∧ |w⟩ − ΠK⊥∩H(x)⊥ |w0⟩ ∈ H(x)}.

The reason that we use a different definition, i.e., Equation (8.1.1) instead, is
because it features a more convenient operational interpretation, which we derive
later in Lemma 8.1.3. From Figure 8.1.1, we observe directly that w̃+(x,P) ≤
w+(x,P), since the approximate positive witnesses according to Definition 8.1.1
are projections onto the ground plane of those according to [IJ19].

8.1. Definition and basic properties 251

0

K⊥ ∩H(x)⊥

H(x)

K

|w′
0⟩

|w0⟩
≤

√
δ

|w′⟩

|w⟩

Figure 8.1.1: Illustration of a positive input in an approximate span program.
|w′

0⟩ = ΠK+H(x) |w0⟩ is the projection of |w0⟩ onto the ground plane. The vector
|w⟩ is an approximate positive witness according to the definition in [IJ19, Defi-
nition 2.4]. The vector |w′⟩ is an approximate positive witness according to the
definition we use in this document, i.e., Definition 8.1.1.

Another thing that is important to understand is the role of λ(P , δ). To
that end, suppose that we have a span program P with approximation param-
eter δ ∈ (0, 1]. If x is a δ-approximate negative input for P , then we immedi-
ately find from Definition 8.1.1 that 1/w−(x,P) =

∥∥ΠK⊥∩H(x)⊥ |w0⟩
∥∥2 ≥ δ. On

the other hand, if x is a δ-approximate positive input for P , then we find that
w−(x,P) ≥ 1/(δλ(P , δ)), or equivalently 1/w−(x,P) ≤ δλ(P , δ). Thus, we ob-
serve that λ(P , δ) ∈ [0, 1) defines a “gap” between positive and negative inputs,
and this gap vanishes in the limit where λ(P , δ) ↑ 1.

As in the exact case in Theorem 6.1.13, we can develop an operational inter-
pretation of the approximate positive witness size. This is the objective of the
next lemma.

8.1.2. Lemma. Let P be a span program on D. Let x ∈ D, and let Φ be the ideal
phase variable for x in P. Then, the corresponding approximate positive witness
size is

w̃+(x,P) = P [Φ ̸= 0]E
[

1

sin2(πΦ)

∣∣∣∣Φ ̸= 0

]
.

Proof:
The proof presented here is very similar to the proof of Theorem 6.1.13. Let
R0, . . . , Rk and θ0, . . . , θk be as in Jordan’s lemma, i.e., Lemma 6.1.11. We decom-
pose |w0⟩ into the subspaces Rj, i.e., for all j ∈ [k]0, we write |w(j)

0 ⟩ = ΠRj
|w0⟩.

Now, we observe that (K +H(x))⊥ = K⊥ ∩H(x)⊥ = K⊥ ∩R0, and thus

ΠK+H(x) |w0⟩ = |w0⟩ − |w(0)
0 ⟩ =

k∑
j=1

|w(j)
0 ⟩.

252 Chapter 8. Approximate span programs

Hence, the approximate positive witnesses are exactly the vectors |w⟩ ∈ H of the
form

|w⟩ = |w(0)⟩+
k∑
j=1

|w(j)⟩,

where |w(0)⟩ ∈ K ∩ H(x), and for all j ∈ [k] we have that |w(j)⟩ is the unique
vector in Rj such that ⟨w(j)

0 |w(j)⟩ = 1. The size of the corresponding vector |w⟩
is expressed as

∥|w⟩∥2 = ∥|w(0)⟩∥2 +
k∑
j=1

∥|w(j)⟩∥2,

which is minimized when we choose |w(0)⟩ = 0. In that case, using elementary
geometry and the visualization in Figure 6.1.4, the witness size can be rewritten
to

w̃+(x,P) =
k∑
j=1

∥|w(j)⟩∥2 =
k∑
j=1

∥|w(j)
0 ⟩∥2

sin2(θj/2)
=

∑
ϕ∈supp(Φ)\{0}

P[Φ = ϕ]

sin2(πϕ)

= P [Φ ̸= 0]E
[

1

sin2(πΦ)

∣∣∣∣Φ ̸= 0

]
.

This completes the proof. 2

Similar to Theorem 6.1.14, the above result can be recast into a finite-precision
result on the probability of obtaining 0 after a run of phase estimation with a
finite number of bits of precision, as is shown in the next lemma.

8.1.3. Lemma. Let P = (H, x 7→ H(x),K, |w0⟩) be a span program on D, and
let x ∈ D. Suppose we run phase estimation with k ∈ N bits of precision, on the
initial state |w0⟩, with span program unitary U(x,P), and denote the output by
Φk. Then,

P [Φ = 0] ≤ P [Φk = 0] ≤ P [Φ = 0] + P [Φ ̸= 0] · 1

22k
E
[

1

sin2(πΦ)

∣∣∣∣Φ ̸= 0

]
= P [Φ = 0] +

w̃+(x,P)

22k
.

Proof:
We follow the proof of Theorem 6.1.14. The left-most inequality is already proved
there, so it remains to prove the upper bound on P[Φk = 0]. To that end, recall
from Equation (6.1.4) that we can write

P[Φk = 0] = E
[
sin2(π2kΦ)

22k sin2(πΦ)

]
,

8.2. Approximate span program algorithm 253

where we take limits if the expression is ill-defined due to the denominator being
equal to 0. Indeed, if Φ = 0, then the expression within the expectation evaluates
to 1, and thus we obtain

P[Φk = 0] = P[Φ = 0] + P[Φ ̸= 0]E
[
sin2(π2kΦ)

22k sin2(πΦ)

∣∣∣∣Φ ̸= 0

]
.

Finally, we use that sin2(π2kΦ) ≤ 1, and plug in the formula for w̃+(x,P) from
Lemma 8.1.2. This completes the proof. 2

8.2 Approximate span program algorithm

With the observations from the previous subsection in mind, we would like to de-
velop a quantum algorithm that computes the function fδ that is δ-approximated
by a span program P . Such an algorithm is constructed in [IJ19], and we restate
the relevant theorem here.

8.2.1. Theorem ([IJ19, Corollary 3.7]: Approximate span program algorithm).
Let P be a span program and δ ∈ (0, 1]. Let fδ : D → {0, 1} be the function it
δ-approximates. Then, there exists a quantum algorithm that computes fδ, which
depends only on the input x ∈ D through calls to the span program operator
U(x,P), and performs this operation a number of times that scales as

O


√
W̃+(P , δ)W̃−(P , δ)
(1− λ(P , δ))3/2

log
1

1− λ(P , δ)

 .

Note that the above big-O-notation holds in the limit where λ ↑ 1. That is,
even though the above expression evaluates to 0 whenever λ(P , δ) = 0, that does
not mean that the query complexity is 0 in that case.

The polynomial dependence on 1−λ(P , δ) is a bit mysterious, that is, it is not
intuitively clear where the exponent 3/2 comes from, and whether it is necessary
in the first place. In this section, we show that the power of 3/2 can indeed
be improved to 1, at the expense of some additional polylogarithmic factors in
W̃+(P , δ), W̃−(P , δ) and 1/(1 − λ(P , δ)). Thus, we improve over the algorithm
from [IJ19] by a factor of 1/

√
1− λ(P , δ).

One of the core elements of the approximate span program algorithm is that
we will be performing several runs of phase estimation consecutively on the same
state, i.e., without measuring and repreparing the state in between. To accom-
modate the analysis of this algorithmic technique, we define some notation for
this first, in the following definition.

254 Chapter 8. Approximate span programs

8.2.2. Definition (Multiple runs of phase estimation). Let P = (H, x 7→ H(x),K, |w0⟩)
be a span program. Let n ∈ N, and let k = (k1, . . . , kn) ∈ (N ∪ {∞})n be a pre-
cision vector. Now, consider the following algorithm.

1. Prepare a register A in the state |w0⟩.
2. For ℓ = 1, . . . , n,

(a) If kℓ = ∞, then measure the state in A in the eigenbasis of U(x,P).
Denote the measured phase by Φℓ and output it.

(b) Otherwise, add a register of kℓ auxiliary bits, initialized in state |0⟩⊗kℓ .
(c) Run phase estimation, i.e., Algorithm 2.4.3, with these kℓ bits of pre-

cision, on register A and with span program unitary U(x,P). Denote
the outcome by Φℓ.

We refer to the joint random variable (Φ1, . . . ,Φℓ) as the outcomes of multiple
runs of phase estimation with precision vector k. We write the state that is left
in register A after post-selecting on all runs of phase estimation giving outcome
0, by |w(k)

0 ⟩. ◀

One of the crucial properties we will be using is that the order in which we
perform these runs of phase estimation is not important, i.e., that all of these
runs commute. The following lemma makes this claim precise.

8.2.3. Lemma. Let P be a span program, and let k ∈ (N ∪ {∞})n be a preci-
sion vector. Let π ∈ Sn be a permutation, and let k′ = k ◦ π be the precision
vector formed by permuting the entries of k according to π. Let (Φ1, . . . ,Φn) and
(Φ′

1, . . . ,Φ
′
n) be the outcomes of multiple runs of phase estimation with precision

vectors k and k′, respectively. Then, (Φ1, . . . ,Φn) = (Φ′
π(1), . . . ,Φ

′
π(n)). As such,

for any event A, we have that P[(Φ1, . . . ,Φn) ∈ A] is independent of the order in
which we perform the individual runs of phase estimation.

Proof:
What we need to prove here is that two runs of phase estimation commute. If
k and k′ are both finite, we easily observe on the circuit level that the runs of
phase estimation with k and k′ bits of precision commute. Similarly, we find that
a controlled application of the unitary U(x,P) leaves its eigenspaces invariant,
and as such a run with infinite precision also commutes with a finite precision
run on the circuit level. Two infinite-precision runs also trivially commute since
they are the same operations. This completes the proof. 2

Thus, by virtue of the previous lemma, in the remainder of this section we
will simply claim that we perform multiple consecutive runs of phase estimation,
without specifying the order in which we run them.

The core idea of the approximate span program algorithm is to run phase
estimation with slowly increasing levels of precision. In particular, we let k =

8.2. Approximate span program algorithm 255

(1, . . . , k), and we let (Φ1, . . . ,Φk) be the outcome of multiple runs of phase
estimation with precision vector k. Then, we estimate the quantity

P

[
k⋂
ℓ=1

Φℓ = 0

]
=

k∏
ℓ=1

P

[
Φℓ = 0

∣∣∣∣∣
ℓ−1⋂
ℓ′=1

Φℓ′ = 0

]
, (8.2.1)

where equality holds because of the definition of conditional probability. Each
of the factors on the right-hand side can be obtained by preparing the state
|w(1,...,ℓ−1)

0 ⟩ ∈ H, then running phase estimation with ℓ bits of precision on this
initial state, and finally running amplitude estimation on the output being 0.

The crucial observation is that we can use the approximate positive witness
size to lower bound the factors in this product individually a priori, which we
present in the following lemma. This lower bound ultimately allows us to favor-
ably bound the number of iterations required in the amplitude estimation step.

8.2.4. Lemma. Let P be a span program, and let k ∈ N. Let k = (1, 2, . . . , k,∞)
be a precision vector, and let (Φ1, . . . ,Φk,Φ) be the outcomes of multiple runs of
phase estimation with precision vector k. Then,

P

[
Φk = 0

∣∣∣∣∣
k−1⋂
ℓ=1

Φℓ = 0

]
≥ P [Φ = 0]

P
[⋂k−1

ℓ=1 Φℓ = 0
] ≥ 1− 1

22(k−1)P[Φ=0]
w̃+(x,P)

+ 1
.

Proof:
Using the definition of conditional probabilities, we obtain that

P

[
Φk = 0

∣∣∣∣∣
k−1⋂
ℓ=1

Φℓ = 0

]
=

P
[⋂k

ℓ=1 Φℓ = 0
]

P
[⋂k−1

ℓ=1 Φℓ = 0
] . (8.2.2)

For the numerator, we observe using Bayes’s rule that

P

[
k⋂
ℓ=1

Φℓ = 0

]
≥ P

[
k⋂
ℓ=1

Φℓ = 0

∣∣∣∣∣Φ = 0

]
P[Φ = 0] = P[Φ = 0],

where the first factor is 1 since if we first run phase estimation with infinite
precision and post-select on the outcome being 0, then all subsequent finite-
precision runs of phase estimation will output 0 with certainty. Thus, plugging
this back into Equation (8.2.2), we obtain that

P

[
Φk = 0

∣∣∣∣∣
k−1⋂
ℓ=1

Φℓ = 0

]
≥ P [Φ = 0]

P
[⋂k−1

ℓ=1 Φℓ = 0
] .

This proves the first inequality.

256 Chapter 8. Approximate span programs

Next, by standard probability theory, we find that P[
⋂k−1
ℓ=1 Φℓ = 0] ≤ P [Φk−1 = 0],

and thus

P [Φ = 0]

P
[⋂k−1

ℓ=1 Φℓ = 0
] ≥ P[Φ = 0]

P[Φk−1 = 0]
≥ P[Φ = 0]

P[Φ = 0] + w̃+(x,P)

22(k−1)

.

where we used the operational interpretation of the approximate witness size, i.e.,
Lemma 8.1.3, in the last inequality. Rewriting the right-hand side yields

P [Φ = 0]

P
[⋂k−1

ℓ=1 Φℓ = 0
] ≥ 1−

w̃+(x,P)

22(k−1)

P[Φ = 0] + w̃+(x,P)

22(k−1)

= 1− 1
22(k−1)P[Φ=0]
w̃+(x,P)

+ 1
.

This completes the proof. 2

Now, we turn to describing the approximate span program algorithm in detail.
Before giving the final result in Algorithm 8.2.9, we present a few subroutines,
starting with one that prepares the state |w(1,...,ℓ)

0 ⟩, in Algorithm 8.2.5.

Algorithm 8.2.5: Construction of the post-selected initial state.
Input:
1: P = (H, x 7→ H(x),K, |w0⟩): a span program.
2: ℓ ∈ N: the maximum number of bits of precision used in phase estimation.
3: δ > 0: a failure probability parameter.
4: C|w0⟩: a quantum circuit acting on H that implements |0⟩ 7→ |w0⟩.
5: U : a quantum circuit acting on H that implements U(x,P).

Derived objects:
1: For all j ∈ [ℓ], a register Dj containing j qubits.
2: For all j ∈ [ℓ], PEj: the phase estimation circuit with j bits of precision,

acting on Dj ⊗H.
3: The circuit R0 acting on

⊗ℓ
j=1Dj that reflects through the state that is |0⟩

on all registers Dj.
4: The circuit C =

∏ℓ
j=1 PEj · C|w0⟩ acting on

⊗ℓ
j=1Dj ⊗H.

Assumption: |(⟨w(1,...,ℓ)
0 | ⊗ ⟨0|⊗ℓ)C|0⟩| ≥ 1/2.

Output: A state |ψ′⟩ ∈
⊗ℓ

j=1Dj ⊗H such that∥∥∥|ψ′⟩ − |0⟩⊗ℓ ⊗ |w(1,...,ℓ)
0 ⟩

∥∥∥ ≤ δ.

Queries:
1: Number of calls to U(x,P): O(2k log(1/δ)).
2: Number of calls to C|w0⟩: O(log(1/δ)).

Procedure: Constr-init-state(ℓ, δ, C|w0⟩).
1: Run Fixed-point-ampl(1/2, δ, R0, C).

8.2. Approximate span program algorithm 257

Proof of the properties of Algorithm 8.2.5:
The claims about the number of calls follow directly from the properties of the
fixed-point amplitude amplification algorithm, Algorithm 2.4.5. Thus, it remains
to prove that the resulting state |ψ′⟩ is indeed δ-close to |0⟩⊗ℓ ⊗ |w(1,...,ℓ)

0 ⟩.
To that end, observe that the circuit C performs ℓ consecutive runs of phase

estimation on the initial state |w0⟩, with precision vector (1, . . . , ℓ). By definition,
if we post-select on the measurement outcome of all these runs of phase estimation
resulting in 0, then the resulting state in H is the state |w(1,...,ℓ)

0 ⟩. Thus, we can
write

C |0⟩ = a |0⟩⊗ℓ ⊗ |w(1,...,ℓ)
0 ⟩+ |⊥⟩ ,

where |⊥⟩ does not have any overlap with the subspace A = Span{|0⟩⊗ℓ} ⊗ H,
and we know that |a| ≥ 1/2 by assumption. Moreover, observe that R0 reflects
through this subspace A, and hence by the properties of the fixed-point amplitude
amplification algorithm, Algorithm 2.4.5, we end up preparing a state |ψ′⟩ such
that ∥∥∥|ψ′⟩ − |0⟩⊗ℓ ⊗ |w(1,...,ℓ)

0 ⟩
∥∥∥ ≤ δ.

This completes the proof. 2

For technical reasons, we assume that the overlap between C |0⟩ and |w(1,...,ℓ)
0 ⟩

is at least 1/2. If we let (Φ1, . . . ,Φℓ) be the outcome of multiple runs of phase
estimation with precision vector (1, . . . , ℓ), then we can rewrite this assumption
as

P

[
ℓ⋂

ℓ′=1

Φℓ′ = 0

]
≥ 1

4
.

Whenever we call the above subroutine, we will have to check that this assumption
is indeed satisfied.

Next, we show how we can compute approximations to the individual factors
in the product in Equation (8.2.1). To that end, we introduce the zero-phase
overlap estimation routine, in Algorithm 8.2.6.

Algorithm 8.2.6: Zero-phase overlap estimation
Input:
1: P = (H, x 7→ H(x),K, |w0⟩): a span program.
2: ℓ ∈ N: the maximum number of bits of precision in phase estimation.
3: M > 0: a precision parameter.
4: δ > 0: a failure probability tolerance parameter.
5: C|w0⟩: a circuit acting on H that implements |0⟩ 7→ |w0⟩.
6: U : a routine acting on H that implements U(x,P).

Derived objects:
1: N = ⌈18 ln(2/δ)⌉.

258 Chapter 8. Approximate span programs

2: (Φ1, . . . ,Φℓ) is the outcome of multiple runs of phase estimation with U(x,P)
on |w0⟩, with precision vector (1, . . . , ℓ).

3: For all j ∈ [ℓ], let Dj be a register of j qubits.
4: Let C ′ = constr-init-state(ℓ − 1, 1/(9M), C|w0⟩) be a circuit acting on⊗ℓ−1

j=1Dj ⊗H that approximately prepares |w(1,...,ℓ)
0 ⟩.

5: Let C = PEℓ · C ′ be a circuit acting on
⊗ℓ

j=1Dj ⊗ H that performs phase
estimation with U(x,P) on |w(1,...,ℓ)

0 ⟩ with ℓ bits of precision.
6: Let R0 be the circuit that reflects through the all-zeros state of Dℓ.

Assumption:

P

[
ℓ−1⋂
ℓ′=1

Φℓ′ = 0

]
≥ 1

4
.

Output: p(ℓ)0 ∈ [0, 1] such that |p(ℓ)0 − p| ≤ 2π
√
p(1− p)/M + π2/M2, where

p = P

[
Φℓ = 0

∣∣∣∣∣
ℓ−1⋂
ℓ′=1

Φℓ′ = 0

]
.

Success probability: Lower bounded by 1− δ.
Queries:
1: Number of calls to U : O(2ℓM log(M) log(1/δ)).
2: Number of calls to C|w0⟩: O(M log(M) log(1/δ)).

Procedure: Zero-phase-est(P , ℓ,M, δ, C|w0⟩, U)
1: Output the median of N independent runs of Amp-est(M , C, R0).

Proof of the properties of Algorithm 8.2.6:
The claims about the number of queries follow directly from the properties of the
amplitude estimation algorithm, Algorithm 2.4.4, and the initial-state construc-
tion algorithm, Algorithm 8.2.5. Thus, it remains to prove the lower bound on
the success probability.

To that end, we first observe that in every run of amplitude estimation, we
make M calls to the routine that constructs the initial state |w(1,...,ℓ)

0 ⟩. Since
we run each of these preparation routines with norm precision 1/(9M), the total
norm error that accumulates due to this part is at most 1/9. Thus, a single run of
amplitude estimation succeeds with probability p′ ≥ 8/π2 − 1/9 > 2/3, in which
case it outputs a number p̃ such that

|p̃− p| ≤
2π
√
p(1− p)

M
+

π2

M2
.

Now, for all j ∈ [N], letXj be the random variable that is 1 if the above inequality
is satisfied on the jth iteration, and 0 otherwise. Then, we obtain by Hoeffding’s

8.2. Approximate span program algorithm 259

inequality that

P

[
N∑
j=1

Xj ≤
N

2

]
≤ P

[∣∣∣∣∣
N∑
j=1

Xj −Np′

∣∣∣∣∣ ≥
∣∣∣∣N2 −Np′

∣∣∣∣
]
≤ 2 exp

(
−
2|N

2
−Np′|2

N

)

≤ 2 exp

(
−2N

∣∣∣∣12 − 2

3

∣∣∣∣2
)

= 2 exp

(
−N

18

)
≤ 2 exp

(
−18 ln(2/δ)

18

)
= δ.

This completes the proof. 2

Next, we introduce an algorithm that given a span program P computes the
function that it 1/2-approximates, i.e., whose approximation parameter is δ = 1/2
as defined in Definition 8.1.1. This results in Algorithm 8.2.7.

Algorithm 8.2.7: Renormalized approximate span program algorithm
Input:
1: P = (H, x 7→ H(x),K, |w0⟩): a span program.
2: W+: an upper bound on W̃+(P , 1/2).
3: λ ∈ (0, 1): an upper bound on λ(P , 1/2).
4: C|w0⟩: a quantum circuit acting on H that implements |0⟩ 7→ |w0⟩.
5: U : a quantum circuit acting on H that implements U(x,P).

Derived objects:
1: k = ⌈1

2
log
(

4W+

1−λ

)
⌉+ 1.

2: For all ℓ ∈ [k], M (ℓ) = max{⌈32πk
√
W+

(1−λ)2ℓ−2 ⌉, ⌈ 4π
√
k√

1−λ
⌉}.

Output: 1 if x is a positive 1/2-approximate input, 0 otherwise.
Success probability: Lower bounded by 2/3.
Queries: Number of calls to U and C|w0⟩: Õ(

√
W+/(1− λ)).

Procedure: Renorm-Approx-Span(P ,W+, λ, C|w0⟩, U)
1: For ℓ = 1, . . . , k,

1. Run p(ℓ)0 = Zero-phase-est(P , ℓ− 1,M (ℓ), 1/(3k), C|w0⟩, U).
2. If

∏ℓ
ℓ′=1 p

(ℓ′)
0 < 1

2
− 1−λ

8
, stop and output 1.

3. If
∏ℓ

ℓ′=1 p
(ℓ′)
0 > λ

2
+ W+

22ℓ
+ 1−λ

8
, stop and output 0.

Proof of the properties of Algorithm 8.2.7:
We start by proving that the algorithm always outputs either 1 or 0. To that
end, observe that in the kth iteration, we have

λ

2
+
W+

22k
+

1− λ

8
<
λ

2
+

1− λ

4
+

1− λ

8
=

1

2
− 1− λ

8
,

260 Chapter 8. Approximate span programs

and hence we are guaranteed to obtain either output 1 or 0 in that iteration.
Next, we check the claims on the number of queries. Summing the cost ex-

pressions from Algorithm 8.2.6 yields that the number of calls to C|w0⟩ and U
scale as

O

(
k∑
ℓ=1

M (ℓ) log(M (ℓ)) log (k)

)
, and O

(
k∑
ℓ=1

2ℓM (ℓ) log(M (ℓ)) log(k)

)
,

respectively. Since the first part of the maximum in the definition of M (ℓ) domi-
nates the second part in all parameters, we obtain that

M (ℓ) = O

(√
W+

(1− λ)2ℓ

)
, and k = O

(
log

(
W+

1− λ

))
,

and thus the number of calls to C|w0⟩ and U scales as

Õ

(√
W+

1− λ

)
,

where the tilde hides factors that are polylogarithmic in W+ and 1/(1−λ). This
completes the proof of the claimed number of queries.

Thus, it remains to prove the lower bound on the success probability. To
that end, we first make the assumption that all calls to the zero-phase estimation
algorithm succeed. Since we know from Algorithm 8.2.6 that each call fails with
probability at most 1/(3k), the total probability that this assumption is not
satisfied is 1/3. Hence, under this assumption, it remains to prove that the
algorithm always succeeds.

To that end, we prove several properties of the state of the algorithm using
induction over the iterations. The induction hypothesis is that in the ℓth iteration,
with ℓ ∈ [k], the following two claims hold:

1. The assumption of the zero-phase overlap estimation algorithm is satisfied.
2. We have ∣∣∣∣∣

ℓ−1∏
ℓ′=1

p
(ℓ′)
0 − P

[
ℓ−1⋂
ℓ′=1

Φℓ′ = 0

]∣∣∣∣∣ ≤ 1− λ

8
· ℓ− 1

k
. (8.2.3)

Indeed, these two claims trivially hold in the first iteration. The assumption for
the zero-phase overlap estimation algorithm becomes 1 ≥ 1/4, and in the second
claim both the left- and right-hand side are 0.

Now, we suppose that the induction hypothesis holds for some ℓ − 1, with
ℓ ≥ 2. We proceed by proving the following four claims:

1. We have ∣∣∣∣∣
ℓ∏

ℓ′=1

p
(ℓ′)
0 − P

[
ℓ⋂

ℓ′=1

Φℓ′ = 0

]∣∣∣∣∣ ≤ 1− λ

8
· ℓ
k
.

8.2. Approximate span program algorithm 261

2. If we output 1, then the input to the span program is 1/2-approximately
positive.

3. If we output 0, then the input to the span program is 1/2-approximately
negative.

4. If we don’t output anything, then the assumption for the call to the zero-
phase overlap estimation algorithm in iteration ℓ+ 1 is satisfied.

Claims 1 and 4 provide the induction step. Claims 2 and 3 prove that the algo-
rithm always produces the correct output.

We start by proving claim 1. To that end, observe that since the previous
iteration did not terminate, we have

1

2
− 1− λ

8
≤

ℓ−1∏
ℓ′=1

p
(ℓ′)
0 ≤ λ

2
+
W+

22ℓ
+

1− λ

8
.

Now, suppose that we have a 1/2-approximate positive input. By Lemma 8.1.3
and the induction hypothesis, Equation (8.2.3), we have

P [Φ = 0] +
w̃+(x,P)

22(ℓ−1)
≥ P [Φℓ = 0] ≥ P

[
ℓ−1⋂
ℓ′=1

Φℓ′ = 0

]
≥

ℓ−1∏
ℓ′=1

p
(ℓ′)
0 − 1− λ

8

≥ 1

2
− 1− λ

4
,

and so, using Lemma 8.2.4 and the previous equation, we find that

P

[
Φℓ = 0

∣∣∣∣∣
ℓ−1⋂
ℓ′=1

Φℓ′ = 0

]
≥ 1− 1

22(ℓ−1)P[Φ=0]
w̃+(x,P)

+ 1
≥ 1− 1

22(ℓ−1)

w̃+(x,P)
·
(

1
2
− 1−λ

4

)
≥ 1− W+

22(ℓ−1) · 1
4

= 1− W+

22ℓ−4
.

On the other hand, suppose that we are in a 1/2-approximate negative input.
Then, again employing Lemma 8.2.4 and the induction hypothesis, Equation (8.2.3),
yields

P

[
Φℓ = 0

∣∣∣∣∣
ℓ−1⋂
ℓ′=1

Φℓ′ = 0

]
≥ P [Φ = 0]

P
[⋂ℓ−1

ℓ′=1Φℓ′ = 0
] ≥

1
2∏ℓ−1

ℓ′=1 p
(ℓ′)
0 + 1−λ

8

≥
1
2

λ
2
+ W+

22(ℓ−1) +
1−λ
4

≥ 1

1 + W+

22ℓ−3

≥ 1− W+

22ℓ−3
,

where we used that 1/(1 + x) ≥ 1 − x for all x ≥ 0. Thus, we have now proved
that in both the positive and the negative case, we have

p := P

[
Φℓ = 0

∣∣∣∣∣
ℓ−1⋂
ℓ′=1

Φℓ′ = 0

]
≥ 1− W+

22ℓ−4
.

262 Chapter 8. Approximate span programs

Hence, the zero-phase overlap estimation algorithm outputs an estimate p(ℓ)0 that
satisfies

|p(ℓ)0 − p| ≤
2π
√
p(1− p)

M (ℓ)
+

π2

(M (ℓ))2
≤ 2π

√
W+

2ℓ−2M (ℓ)
+

π2

(M (ℓ))2

≤ 1− λ

16k
+

1− λ

16k
=

1− λ

8k
.

Thus,∣∣∣∣∣
ℓ∏

ℓ′=1

p
(ℓ′)
0 − P

[
ℓ⋂

ℓ′=1

Φℓ′ = 0

]∣∣∣∣∣ =
∣∣∣∣∣p(ℓ)0

ℓ−1∏
ℓ′=1

p
(ℓ′)
0 − p · P

[
ℓ−1⋂
ℓ′=1

Φℓ′ = 0

]∣∣∣∣∣
≤

∣∣∣∣∣p(ℓ)0

ℓ−1∏
ℓ′=1

p
(ℓ′)
0 − p

(ℓ)
0 · P

[
ℓ−1⋂
ℓ′=1

Φℓ′ = 0

]∣∣∣∣∣+
∣∣∣∣∣(p(ℓ)0 − p

)
· P

[
ℓ−1⋂
ℓ′=1

Φℓ′ = 0

]∣∣∣∣∣
≤

∣∣∣∣∣
ℓ−1∏
ℓ′=1

p
(ℓ′)
0 − P

[
ℓ−1⋂
ℓ′=1

Φℓ′ = 0

]∣∣∣∣∣+ ∣∣∣p(ℓ)0 − p
∣∣∣

≤ 1− λ

8
· ℓ− 1

k
+

1− λ

8k
=

1− λ

8
· ℓ
k
.

This proves claim 1.
Next, if we output 1, then we have

P [Φ = 0] ≤ P

[
ℓ⋂

ℓ′=1

Φℓ′ = 0

]
≤

ℓ∏
ℓ′=1

p
(ℓ′)
0 +

1− λ

8
<

1

2
,

and hence we indeed have a 1/2-approximate positive input. This proves claim 2.
Similarly, if we output 0, then we find using Lemma 8.1.3 and Equation (8.2.3)

that

P[Φ = 0] +
w̃+(x,P)

22ℓ
≥ P [Φℓ = 0] ≥ P

[
ℓ⋂

ℓ′=1

Φℓ′ = 0

]
≥

ℓ∏
ℓ′=1

p
(ℓ′)
0 − 1− λ

8

>
λ

2
+
W+

22ℓ
,

and thus

1

δw−(x,P)
= 2P[Φ = 0] > λ ≥ λ(P , 1/2), or w̃+(x,P) > W+ ≥ W̃+(P , 1/2).

Directly from the definition of approximate span programs, i.e., Definition 8.1.1,
we observe that both imply x is a 1/2-approximate negative input. This proves
claim 3.

8.2. Approximate span program algorithm 263

Finally, if we don’t output anything on this iteration, then

P

[
ℓ⋂

ℓ′=1

Φℓ′ = 0

]
≥

ℓ∏
ℓ′=1

p
(ℓ)
0 − 1− λ

8
≥ 1

2
− 1− λ

4
≥ 1

4
.

Thus, the assumption for the zero-phase overlap estimation routine is satisfied.
This proves claim 4, and thus the proof is complete. 2

Now that we have presented the approximate span program algorithm in the
special case where the span program P is 1/2-approximating the function that
we wish to compute, we show how this result can also be used in the more
general setting where we want to compute the function that is δ-approximated
by P . Similar to the exact case, we employ span program renormalization, as
defined in Definition 6.1.16. To that end, we investigate the implications of the
renormalization construction in the approximate span program context, in the
following theorem.

8.2.8. Theorem (Approximate span program renormalization).
Let P be a span program, δ ∈ (0, 1] and β > 0. Next, let P ′ be P renormalized
with parameter β. Then,

1. P δ-approximates f : D → {0, 1} ⇔ P ′ δ′-approximates f , where

δ′ =
β2 + 1

β2/δ + 1
.

2. We have the relations

W̃−(P ′, δ′) =
β2W̃−(P , δ) + 1

β2 + 1
, W̃+(P ′, δ′) =

(
1 +

1

β2

)
W̃+(P , δ),

and
λ(P ′, δ′) =

β2 + δ
β2

λ(P,δ) + δ
.

Proof:
We denote P = (H, x 7→ H(x),K, |w0⟩), and P ′ = (H′, x 7→ H′(x),K′, |w′

0⟩).
Using the characterization of the witness sizes from Theorem 6.1.17, we obtain∥∥Π(K′)⊥∩H′(x)⊥ |w′

0⟩
∥∥2 ≥ δ′ ⇔ w−(x,P ′) ≤ 1

δ′

⇔ β2w−(x,P) + 1

β2 + 1
≤ β2/δ + 1

β2 + 1

⇔ w−(x,P) ≤ 1

δ
⇔

∥∥ΠK⊥∩H(x)⊥ |w0⟩
∥∥2 ≥ δ.

264 Chapter 8. Approximate span programs

This proves claim 1. For the second claim, the formulae for W̃−(P ′, δ′) and
W̃+(P ′, δ′) follow directly from Theorem 6.1.17, and thus it remains to check
the formula for λ(P ′, δ′). To that end, observe that

λ(P ′, δ′) = max
x∈f−1(1)

1

δ′w−(x,P ′)
= max

x∈f−1(1)

β2/δ + 1

β2 + 1
· β2 + 1

β2w−(x,P) + 1

= max
x∈f−1(1)

β2 + δ

β2δw−(x,P) + δ
=

β2 + δ
β2

λ(P,δ) + δ
.

This completes the proof. 2

Finally, we can now give the most general version of the approximate span
program algorithm, where we only require that δ < 1/2. The final result is
Algorithm 8.2.9.

Algorithm 8.2.9: Approximate span program algorithm
Input:
1: P : a span program.
2: δ ∈ (0, 1/2): an approximation parameter.
3: W+: an upper bound of W̃+(P , δ).
4: λ: an upper bound of λ(P , δ).
5: C|w0⟩: a circuit acting on H that implements |0⟩ 7→ |w0⟩.
6: U : a circuit acting on H that implements U(x,P).

Derived objects:
1: β =

√
1/(1/δ − 2).

2: P ′ = P renormalized with constant β.
3: W

′
+ =

(
1
δ
− 1
)
W+.

4: λ
′
= 1+λ

2
.

Output: 1 if x is a δ-approximate positive input for P , 0 otherwise.
Success probability: Lower bounded by 2/3.

Queries: Number of calls to C|w0⟩ and U : Õ(
√
W+/δ/(1− λ)).

Procedure: Approx-Span(P , δ,W+, λ, C|w0⟩, U):
1: Run Renorm-Approx-Span(P ′,W

′
+, λ

′
, C|w′

0⟩, U
′), where C|w′

0⟩ and U ′ are
constructed exactly like in Algorithm 6.1.18.

Proof of the properties of Algorithm 8.2.9:
Let fδ : D → {0, 1} be the function that P δ-approximates. Using the first
property of Theorem 8.2.8, we obtain that P ′ δ′-approximates fδ with

δ′ =
β2 + 1

β2/δ + 1
=

1
1
δ
−2

+ 1

1
δ
· 1

1
δ
−2

+ 1
=

1 + 1
δ
− 2

1
δ
+ 1

δ
− 2

=
1

2
.

8.2. Approximate span program algorithm 265

Thus, P ′ indeed 1/2-approximates the function we want to compute. Again using
Theorem 8.2.8, we observe that

W̃+(P ′, δ′) =

(
1 +

1

β2

)
W̃+(P , δ) ≤

(
1

δ
− 1

)
W+ = W

′
+.

We also observe using the formula for λ(P ′, δ′) in Theorem 8.2.8 that

λ(P ′, δ′) =
β2 + δ
β2

λ(P,δ) + δ
≤

1
1
δ
−2

+ δ

1

(1
δ
−2)λ

+ δ
=

1 + 1− 2δ
1
λ
+ 1− 2δ

= 1−
1
λ
− 1

1
λ
+ 1− 2δ

≤ 1− 1− λ

1 + λ
≤ 1− 1− λ

2
=

1 + λ

2
= λ

′
.

Next, we observe that C ′
|w0⟩ and U ′ indeed implement the initial state construc-

tion routine, and the new span program unitary U(x,P ′), respectively. Thus, we
can indeed use Algorithm 8.2.7 to compute fδ, and the cost requirements follow
directly. This completes the proof. 2

Finally, if P δ-approximate a particular function f , then it also 1/W̃−(P , δ)-
approximates the same function. Thus, we can always choose δ′ = 1/W̃−(P , δ),
and plug δ′ into the Algorithm 8.2.9. We prove this in the following corollary.

8.2.10. Corollary. Let P = (H, x 7→ H(x),K, |w0⟩) be a span program and
δ ∈ (0, 1/2) be an approximation parameter. Let fδ be the function that P δ-
approximates. Then, there exists a quantum algorithm that evaluates fδ with
probability at least 2/3, using

Õ


√
W̃+(P , δ)W̃−(P , δ)

1− λ(P , δ)


calls to a circuit that prepares the state |w0⟩, and a circuit that implements the
span program unitary U(x,P).

Proof:
We take δ′ = 1/W̃−(P , δ), W+ = W̃+(P , δ), and λ = λ(P , δ), and run Approx-
span(P , δ′, W+, λ, C|w0⟩, U). Indeed, we find that if x is a δ-approximate
negative input, then∥∥ΠK⊥∩H(x)⊥ |w0⟩

∥∥2 = 1

w−(x,P)
≥ 1

W̃−(P , δ)
= δ′,

and thus it is also a δ′-approximate negative input. Moreover, there exists an
input x for which the above inequality attains equality, and thus we find that

266 Chapter 8. Approximate span programs

δ′ ≥ δ. This also implies that if x is a δ-approximate positive input for P , it also
is a δ′-approximate positive input, and so fδ = fδ′ . We immediately find that

W̃+(P , δ′) = W̃+(P , δ) = W+,

and thus W+ is indeed an upper bound for W̃+(P , δ′). Finally, it follows that

λ(P , δ′) = max
x∈f−1

δ′ (1)

1

δ′w−(x,P)
≤ max

x∈f−1
δ (1)

1

δw−(x,P)
= λ(P , δ) = λ,

and thus λ is indeed an upper bound for λ(P , δ′). Thus, all the assumptions
of Algorithm 8.2.9 are satisfied, and the resulting complexity statement follows.
This completes the proof. 2

Comparing the statement of Corollary 8.2.10 with Theorem 8.2.1 from earlier
work reveals that we indeed speed up the algorithm presented in [IJ19, Corol-
lary 3.7] by a factor of

√
1− λ(P , δ).

We remark here that the assumption that δ ∈ (0, 1/2) is not really necessary.
One can also give a similar renormalization construction when δ ∈ (1/2, 1], simply
by taking an OR-composition of P with a trivial span program that has only pos-
itive inputs. In this way, one can turn any span program P that δ-approximates
f into one that 1/2-approximates f , and similarly use Algorithm 8.2.7.

We end this subsection with an example of an approximate span program that
computes the threshold function.

8.2.11. Example. Let x ∈ {0, 1}n, and define

H = Span{|j⟩ : j ∈ [n]}, H(x) = Span{|j⟩ : xj = 1},

K = {0}, |w0⟩ =
1√
n

n∑
j=1

|j⟩ .

Let P = (H, x 7→ H(x),K, |w0⟩) be a span program on {0, 1}n. For all k ∈ [n], let
δ = 1− (k− 1)/n. Then, P δ-approximates the threshold function fkn : {0, 1}n →
{0, 1} on n bits with threshold k, i.e.,

fkn(x) =

{
1, if |x| ≥ k,

0, otherwise.

For all x ∈ {0, 1}n, we have w−(x,P) = n/(n−|x|), and w̃+(x,P) = |x|/n. Thus,

W̃−(P , δ) =
n

n− k + 1
, W̃+(P , δ) =

k

n
, and λ(P , δ) = 1− 1

n− k + 1
.

8.3. Equivalence with quantum query algorithms 267

Thus, the approximate span program algorithm evaluates the threshold function
with a number of queries to U(x,P) that satisfies

Õ


√

n
n−k+1

· k
n

1−
(
1− 1

n−k+1

)
 = Õ

(√
k(n− k + 1)

)
.

Moreover, we can implement the span program unitary U(x,P) with a single
phase query to the bit string x, which means that the above expression is an
upper bound for the query complexity of the threshold function on n bits with
threshold k. ◁

It is remarkable that we recover the optimal query complexity for the threshold
function with the approximate span program framework, up to polylogarithmic
factors. In particular, this implies that the approximate span program algorithm
we derived in this subsection is essentially optimal in the parameters W̃+(P , δ),
W̃−(P , δ) and 1/(1− λ(P , δ)), i.e., optimal up to polylogarithmic factors, since
if we found an algorithm that had a better polynomial dependence on these
parameters, this would also improve the query complexity of the algorithm for
threshold function sketched above, which we know to be impossible.

Consequently, it is an interesting direction for further research to investigate
if the polylogarithmic overhead in the approximate span program algorithm can
be removed. If this is the case, then the above approximate span program would
indeed exactly recover the query complexity of the threshold function. However,
there are many places in the construction presented here where polylogarithmic
factors arise, and it is not at all clear how these can be overcome. It might
be required to develop some fundamentally new algorithmic techniques to fully
resolve this question, and we leave that for future work.

The improved algorithm for evaluating approximate span programs has a cou-
ple of interesting implications. Most notably, it directly improves the witness-size
estimation algorithm [IJ19, Theorem 3.8], which estimates the witness size of a
particular input x ∈ D to a span program P . We improve the dependence on the
precision from O(1/ε3/2) to O(1/ε). This algorithm is used as a subroutine in
some subsequent works, all of which are consequently improved as well. Exam-
ples include algorithms that estimate graph resistance [JK17, Lemma 25], graph
capacitance [JJK+18, Corollary 20], and circuit rank [DKW19, Theorem 8].

8.3 Equivalence with quantum query algorithms
We briefly mention here that it is possible to take a quantum query algorithm that
computes a boolean function f : D → {0, 1}, where D ⊆ {0, 1}n, with bounded
error, turn it into an approximate span program, and then turn it back into a
quantum algorithm that computes f with bounded error again. Moreover, this

268 Chapter 8. Approximate span programs

can be done without significant overhead in the number of queries and the space
requirements [Jef20]. Thus, if we are searching for a query-efficient or space-
efficient quantum algorithm to compute a given boolean function f : D → {0, 1},
we can without loss of generality instead look for an approximate span program
that computes this function.

In this section, we investigate whether we can obtain a similar result with
regards to the number of gates used in the quantum algorithm. That is, we
wonder whether it is possible to take a quantum algorithm computing a boolean
function f : D → {0, 1}, where D ⊆ {0, 1}n, with bounded error, turn it into
an approximate span program, and then turn it back into a quantum algorithm,
without incurring significant overhead in the number of gates. This section is
largely based on [CJO+20] and its main purpose is to explain how the results
presented in [CJO+20] can be read in the notation and context in which we
introduced approximate span programs in this thesis.

We make several assumptions on the quantum algorithm that we start with,
and we refer to the algorithms that satisfy these assumptions as clean algorithms.

8.3.1. Definition (Clean quantum algorithm). Let A be a quantum query al-
gorithm that does not perform any intermediate measurements, and acts on
C[n]×W = C[n]×W ′×{0,1} with the last register being the answer register. Sup-
pose that the number of gates used by A is T , the number of queries it performs
is Q, and the initial state has |0⟩ in the answer register, so it can be expressed
as |Ψ0⟩ = |ψ0⟩ |0⟩ for some |ψ0⟩ ∈ C[n]×W ′ . Define the final accepting state as
|ΨT ⟩ := |ψ0⟩ |1⟩. A is a clean quantum algorithm if it satisfies the following
properties:

1. Consistency: For all inputs x ∈ {0, 1}n,

| ⟨ΨT |ΨT (x)⟩ |2 = p1(x), and | ⟨ΨT | (I ⊗X) |ΨT (x)⟩ |2 = p0(x),

where pb(x) = ∥(I ⊗ |b⟩ ⟨b|) |ΨT (x)⟩∥2 is the probability that A outputs b
on input x, |ΨT (x)⟩ is the final state of algorithm A on input x, and X
denotes the Pauli matrix implementing the logical NOT.

2. Commutation: (I ⊗X) commutes with every unitary Ut of the algorithm,
where X acts on the answer register.

3. Query-uniformity: Two consecutive queries are not more than ⌊3T/Q⌋ time
steps apart, and the first and last queries are separated by at most ⌊3T/Q⌋
time steps from the start and the finish of the algorithm, respectively. ◀

In [CJO+20, Section 2.1], we prove that the above assumptions on the form
of a quantum algorithm are not really restrictive, as we show that one can take
any quantum algorithm A and turn it into a clean quantum algorithm A′ that
computes the same function with success probability that is at least the square

8.3. Equivalence with quantum query algorithms 269

of the success probability of A, uses only one extra qubit, and has a constant
multiplicative overhead in the number of queries and gates.

Next, we formalize a way to access the individual operations that a clean quan-
tum algorithm A performs on any given time step. This results in the definition
of the algorithm access oracles, as provided below.

8.3.2. Definition (Algorithm access oracles). Let A be a clean quantum algo-
rithm acting on Hilbert space H, with T time steps. Let S ⊆ [T] be the set of
time steps on which A performs a query to the input, and for all t ∈ [T] \ S, let
Ut be the unitary on H that A performs at time step t. Next, we define three
operations:

1. Let OA be a circuit that acts on C[T] ⊗H, and implements the operation

OA : |t⟩ |ψ⟩ 7→ |t⟩Ut |ψ⟩ .

We refer to this operation as the algorithm oracle.
2. Let OS be a circuit that acts on C[T] and implements the operation

OS : |t⟩ 7→

{
− |t⟩ , if t ∈ S,
|t⟩ , otherwise.

We refer to this operation as the query time step oracle.
3. Let Ox be the oracle acting on H that is performed by A on each of the

time steps t ∈ S. We refer to this operation as the input oracle. ◀

Now, we define how one can take a clean quantum algorithm A, and turn it
into a span program.

8.3.3. Definition (Span program compiled from a clean quantum algorithm).
Let A be a clean quantum algorithm acting on the state space C[n]×W , computing
a boolean function f : D → {0, 1} with D ⊆ {0, 1}n and with failure probability
at most ε > 0, with T time steps and Q queries performed at the time steps
S = {q1, . . . , qQ} ⊆ [T]. For notational convenience, let q0 = 0 and qQ+1 = T +1.
For all ℓ ∈ [Q+1], let Bℓ ⊆ [T +1] be the ℓth block of contiguous non-query time
steps. Let

a =

√
ε

2Q+ 1
, and M = max

ℓ∈[Q+1]

√
|Bℓ|.

Now, define the spaces

∀i ∈ [n], b ∈ {0, 1}, Hi,b = Span{|t, b, i, j⟩ : t+ 1 ∈ S, j ∈ W},
Htrue = Span{|t, 0, i, j⟩ : t+ 1 ∈ [T + 1] \ S, i ∈ [n], j ∈ W}.

270 Chapter 8. Approximate span programs

Then, for any input x ∈ {0, 1}n, let

H(x) =

(
n⊕
i=1

Hi,xi

)
⊕Htrue, and H =

 n⊕
i=1

b∈{0,1}

Hi,b

⊕Htrue.

Additionally, let Z = [n] ×W . For ℓ ∈ {2, . . . , Q}, we define the linear map
Φℓ from CZ to H as

Φℓ |ψ⟩ = |qℓ−1 − 1⟩ |−⟩√
2
|ψ⟩+ |qℓ − 1⟩ |+⟩√

2
Uqℓ−1 · · ·Uqℓ−1+1 |ψ⟩

+
1

M

qℓ−2∑
t=qℓ−1

|t⟩ |0⟩Ut · · ·Uqℓ−1+1 |ψ⟩ .

Similarly, we define the linear operator ΦQ+1 from CZ to H as

ΦQ+1 |ψ⟩ = |qQ − 1⟩ |−⟩√
2
+

1

M

T−1∑
t=qQ

|t⟩ |0⟩Ut · · ·UqQ+1 |ψ⟩

+
1

a
|T ⟩ |0⟩UT · · ·UqQ+1 |ψ⟩ .

Then, let

K =

Q+1⊕
ℓ=2

Φℓ(CZ).

Finally, let

|w0⟩ =
1

MN

q1−2∑
t=0

|t⟩ |0⟩Ut · · ·U1 |Ψ0⟩+ |q1 − 1⟩ |+⟩√
2
Uq1−1 · · ·U1 |Ψ0⟩

+
1

N(Ca2 + 1)

[
|qQ − 1⟩ |−⟩√

2
U †
qQ+1 · · ·U

†
T |ΨT ⟩

+
1

M

T−1∑
t=qQ

|t⟩ |0⟩U †
t+1 · · ·U

†
T |ΨT ⟩

− Ca

N(Ca2 + 1)
|T ⟩ |0⟩ |ΨT ⟩ ,

where

C =
T − qQ
M2

+
1

2
, and N =

√
q1 − 1

M2
+

1

2
+

C

Ca2 + 1
.

Then, let PA = (H, x 7→ H(x),K, |w0⟩). We refer to PA as the span program
compiled from A. ◀

8.3. Equivalence with quantum query algorithms 271

Finally, we state the core result from [CJO+20].

8.3.4. Theorem (Implementation of the span program algorithm of PA). Let A
be a clean quantum algorithm as defined in Definition 8.3.1, and let OA, OS and
Ox be as in Definition 8.3.2. Next, let PA be the span program compiled from
A, as defined in Definition 8.3.3. Suppose that A performs T time steps, Q
queries, acts on k qubits, and computes a boolean function f : D → {0, 1}, with
D ⊆ {0, 1}n and with failure probability at most ε < 1/10. Let δ = 1/(3(2S+1)).
Then,

1. PA is well-defined.
2. ¬PA δ-approximates ¬f .
3. W̃−(¬PA, δ) = O(Q).
4. W̃+(¬PA, δ) = O(Q).
5. λ(¬PA, δ) ≤ 5ε.

Moreover, we can implement the approximate span program algorithm from [IJ19],
i.e., Theorem 8.2.1, applied to ¬PA with

6. O(Q log(Q)) calls to Ox.
7. O(T log(Q)) calls to OA and OS .
8. O(T polylog(T)) additional gates.
9. O(polylog(T) + ko(1)) auxiliary qubits.

If we additionally require that the error probability of A is o(1/Q2), then the
log(Q) factors and the ko(1) term can be removed. Similarly, if we assume that
T = k1+Ω(1), we can also remove the ko(1) term.

Proof sketch:
For claim 1, we need to check that |w0⟩ is a unit vector. This follows from
[CJO+20, Lemma 19].

For claim 2, we must first check that the span program PA is actually the same
as the one constructed in [CJO+20]. This follows from [CJO+20, Definition 14,
Lemma 18 and Lemma 19].

Next, [CJO+20, Lemma 17] states that PA positively 5ε-approximates f ,
where the concept of positive approximation is defined in [CJO+20, Definition 6],
or equivalently in [IJ19]. From the discussion in [IJ19], we additionally observe
that negating a span program turns positive approximation into negative approx-
imation. We also observe that the definition of negative approximation in [IJ19]
coincides with the concept of δ-approximation in Definition 8.1.1, if we choose δ
equal to the reciprocal of the maximum negative witness size amongst the nega-
tive inputs. Thus, indeed, we find that ¬PA δ-approximates ¬f , where we must
choose

δ = max
x∈(¬f)−1(0)

1/w−(x,¬PA) = max
x∈f−1(1)

1/w+(x,PA) = 1/(3(2Q+ 1)),

272 Chapter 8. Approximate span programs

where the final equality is [CJO+20, Lemma 16].
Claims 3, 4 and 5 follow from [CJO+20, Lemma 16 and Lemma 17], and

claims 6–9 follow from [CJO+20, Theorem 20]. 2

The full proof of Theorem 8.3.4 is extremely tedious, not so insightful, and
would easily stretch ∼ 100 pages. Therefore, we omit it in this thesis, and refer
the interested reader to [CJO+20].

Interestingly, subsequent insights have revealed that the construction in Def-
inition 8.3.3 can be significantly improved, and in particular some back-of-the-
envelope calculations indicated that with the improved construction, the ko(1)

term and the factors log(Q) can be dropped in Theorem 8.3.4. One could try and
formalize these improvements to obtain a cleaner statement of Theorem 8.3.4.

A downside of the above construction is that it uses an approximate span pro-
gram rather than an exact one, and as such lacks the potential to be plugged into
the nice composition properties proved in Chapter 7. This limits the applicability
of the result outlined in this section.

To illustrate the above argument, consider the following possible application of
the above construction. Suppose that we have n quantum algorithms computing
boolean functions f (1), . . . , f (n) on a common domain, and we wanted to compute
some logical formula of the function outcomes, e.g., f (1)∧ · · · ∧ f (n). One possible
way to achieve this is to take the quantum algorithms, turn them into approximate
span programs with the construction in Theorem 8.3.4, compose them using a
logical composition construction, and then turn the composed span program back
into a quantum algorithm.

The issue is, however, that if one tries to port the logical composition con-
structions, e.g., Theorems 7.1.4 and 7.1.6, to the approximate setting, then the
approximation factors λ(P , δ) add. Hence, using Theorem 8.3.4 will cause the
resulting quantum algorithm to have an approximation factor λ(P , δ) that is the
sum of the failure probabilities of the individual quantum algorithms. Thus,
the composition result using approximate span programs requires logarithmic
overhead in boosting the success probability before performing composition, and
consequently we don’t achieve anything over performing the composition directly
on the level of the algorithms itself.

This is a negative observation regarding the use of approximate span pro-
grams for performing compositions. Hence, it underlines the fact that quantum
algorithms computing boolean functions with bounded error don’t compose well,
and supports the argument that exact span programs and dual adversary bound
solutions computing are in general more flexible and portable building blocks in
quantum algorithm design.

Chapter 9

Discussion

In this part, we saw a self-contained introduction into the theory of span pro-
grams. We end this part with some closing remarks on the subject.

The first thing to note is that constructing span programs is not an easy
task in general. Theoretically, through the connection with the dual adversary
bound, we should always be able to generate an optimal span program computing
f : D → {0, 1}, with D ⊆ {0, 1}n by solving the dual adversary bound for f , and
converting the resulting solution into a span program. However, the number of
degrees of freedom in the resulting SDP grows quadratically in the number of
elements in the domain, which itself is typically exponential in n. In practice,
then, this approach is typically not very useful whenever the domain size is larger
than approximately 100 inputs.

Secondly, the composition constructions from Sections 7.1 and 7.2 make span
programs a lot more well-behaved compared to the bounded-error quantum query
algorithms they generate. After all, as we argued at the end of Section 7.1.1,
we can use the exact notion of span programs to merge many small solutions
of computational problems into bigger ones, whilst avoiding having to mitigate
errors that occur in the intermediate stages of the computation. As such, span
programs are much more flexible objects than bounded-error quantum algorithms.

We note that this ease of composition, which makes the theory of exact span
programs very appealing, is lost when we switch to approximate span programs.
Intuitively speaking, since approximate span programs are inherently a little bit
imprecise, they too suffer from the necessity to mitigate these imperfections when
one tries to compose them. This also means that using the black-box conver-
sion from bounded-error quantum algorithms into approximate span programs,
as briefly hinted at in Section 8.3, comes with inherent limitations, and does
not enable the full potential of span programs on any computational problem for
which we have an efficient quantum algorithm available.

In the long run, we can expect that quantum algorithms that solve real-world
problems will have many different components, and stitching together all these

273

274 Chapter 9. Discussion

building blocks efficiently could potentially result in much more efficient quantum
algorithms for problems of interest. Recent papers on resource estimation for
specific quantum algorithms provide very suitable test cases for this proposition.
As such, it would be very interesting to see if span program composition results
can be used to improve the results obtained in these works. We explicitly mention
a recent work on Louvain’s algorithm for community detection as an exemplary
instance [CFN+22].

As a final note, we mention that one appealing future direction of research
is an attempt to find span program constructions that compute all symmetric
functions with optimal complexity. In this chapter we briefly mentioned how we
can compute functions like threshold, exact-weight and parity, but there are still
many symmetric functions that we don’t know optimal span program construc-
tions for. In an effort to categorize the current progress, we present Table 9.1. It
is a very nice direction of future research to try and fill this table with more rows,
and gradually understand better how we can construct and optimally compose
span programs that compute symmetric functions.

Function Positive inputs Optimal adversary value Note
AND |x| = n

√
n

OR |x| ≠ 0
√
n

Parity |x| odd n

Threshold-k |x| ≥ k
√
k(n− k + 1) (0 ≤ k ≤ n)

Exact-weight-k |x| = k
√
n+ 2k(n− k)* (0 ≤ k ≤ n)

Interval-1-k 1 ≤ |x| ≤ k
√
n/k + (k + 1)(n− k)* (0 < k < n)

Table 9.1: Current progress on categorizing optimal span program constructions
for symmetric functions f : {0, 1}n → {0, 1}. The second column defines the
particular function f , i.e., f(x) = 1 if and only if the expression in the second
column is true. The expressions labeled by * are not formally proved yet – we
have merely gathered strong numerical evidence.

Bibliography

[Aar20] Scott Aaronson. “Shadow Tomography of Quantum States”. In:
SIAM Journal on Computing 49.5 (2020). arXiv:1711.01053.

[ABP19] Srinivasan Arunachalam, Jop Briët, and Carlos Palazuelos. “Quan-
tum Query Algorithms Are Completely Bounded Forms”. In: SIAM
Journal on Computing 48.3 (2019), pp. 903–925. Appeared earlier
in the Proceedings of the 9th Innovations in Theoretical Computer
Science Conference, (ITCS 2018), arXiv:1711.07285.

[AdFD+03] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and
Michael I. Jordan. “An Introduction to MCMC for Machine
Learning”. In: Machine Learning 50.1-2 (2003), pp. 5–43.

[AHN+21] Srinivasan Arunachalam, Vojtěch Havĺıček, Giacomo Nannicini,
Kristan Temme, and Pawel Wocjan. “Simpler (Classical) and
Faster (Quantum) Algorithms for Gibbs Partition Functions”.
In: IEEE International Conference on Quantum Computing and
Engineering, (QCE 2021). 2021, pp. 112–122. arXiv:2009.11270.

[Amb02] Andris Ambainis. “Quantum Lower Bounds by Quantum Argu-
ments”. In: Journal of Computer and System Sciences 64.4 (2002),
pp. 750–767. Appeared earlier in the Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing
(STOC 2000), arXiv:quant-ph/0002066.

[Amb06] Andris Ambainis. “Polynomial degree vs. quantum query complex-
ity”. In: Journal of Computer System Sciences 72.2 (2006), pp. 220–
238. Appeared earlier in the Proceedings of the 44th Symposium
on Foundations of Computer Science (FOCS 2003), arXiv:quant-
ph/0305028.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. “The Space Com-
plexity of Approximating the Frequency Moments”. In: Journal of
Computer and Systems Sciences 58.1 (1999), pp. 137–147.

275

https://arxiv.org/abs/1711.01053
https://arxiv.org/abs/1711.07285
https://arxiv.org/abs/2009.11270
https://arxiv.org/abs/quant-ph/0002066
https://arxiv.org/abs/quant-ph/0305028
https://arxiv.org/abs/quant-ph/0305028

276 Bibliography

[Āri15] Agnis Āriņš. “Span-Program-Based Quantum Algorithms for
Graph Bipartiteness and Connectivity”. In: Proceedings of the 10th
International Doctoral Workshop on Mathematical and Engineering
Methods in Computer Science, (MEMICS 2015). 2015, pp. 35–41.
arXiv:1510.07825.

[AS04] Scott Aaronson and Yaoyun Shi. “Quantum lower bounds for the
collision and the element distinctness problems”. In: Journal of the
ACM 51.4 (2004), pp. 595–605. Appeared earlier in the Proceed-
ings of the 43rd Symposium on Foundations of Computer Science
(FOCS 2002), arXiv:quant-ph/0112086.

[ASS21] Atithi Acharya, Siddhartha Saha, and Anirvan M. Sengupta.
Informationally complete POVM-based shadow tomography. 2021.
arXiv:2105.05992.

[AW99] Daniel S. Abrams and Colin P. Williams. Fast quantum algo-
rithms for numerical integrals and stochastic processes. 1999.
arXiv:quant-ph/9908083.

[BBB+97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh
V. Vazirani. “Strengths and Weaknesses of Quantum Computing”.
In: SIAM Journal on Computing 26.5 (1997), pp. 1510–1523.
arXiv:quant-ph/9701001.

[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and
Ronald de Wolf. “Quantum lower bounds by polynomials”. In: Jour-
nal of the ACM 48.4 (2001), pp. 778–797. Appeared earlier in
the Proceedings of the 39th Annual Symposium on Foundations
of Computer Science, (FOCS 1998), arXiv:quant-ph/9802049.

[BBH+98] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. “Tight
bounds on quantum searching”. In: Fortschritte der Physik: Progress
of Physics 46.4-5 (1998), pp. 493–505.

[BDG+11] Gilles Brassard, Frédéric Dupuis, Sébastien Gambs, and Alain
Tapp. An optimal quantum algorithm to approximate the mean and
its application for approximating the median of a set of points over
an arbitrary distance. 2011. arXiv:1106.4267.

[Bel12] Aleksandrs Belovs. “Learning-Graph-Based Quantum Algorithm
for k-Distinctness”. In: Proceedings of the 53rd Annual IEEE Sym-
posium on Foundations of Computer Science, (FOCS 2012). 2012,
pp. 207–216. arXiv:1205.1534.

[Bel14] Aleksandrs Belovs. “Applications of the Adversary Method in
Quantum Query Algorithms”. University of Latvia, Riga, Latvia,
2014. arXiv:1402.3858.

https://arxiv.org/abs/1510.07825
https://arxiv.org/abs/quant-ph/0112086
https://arxiv.org/abs/2105.05992
https://arxiv.org/abs/quant-ph/9908083
https://arxiv.org/abs/quant-ph/9701001
https://arxiv.org/abs/quant-ph/9802049
http://arxiv.org/abs/1106.4267
https://arxiv.org/abs/1205.1534
https://arxiv.org/abs/1402.3858

Bibliography 277

[Bel15] Aleksandrs Belovs. Variations on quantum adversary. 2015. arXiv:
1504.06943.

[Ben80] Paul Benioff. “The computer as a physical system: A microscopic
quantum mechanical Hamiltonian model of computers as repre-
sented by Turing machines”. In: Journal of statistical physics 22.5
(1980), pp. 563–591.

[Bes86] Julian Besag. “On the statistical analysis of dirty pictures”. In: Jour-
nal of the Royal Statistical Society: Series B (Methodological) 48.3
(1986), pp. 259–279.

[BH10] Kurt Binder and Dieter W. Heermann. Monte Carlo Simulation in
Statistical Physics. Springer Berlin Heidelberg, 2010.

[BHM+02] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp.
“Quantum amplitude amplification and estimation”. In: Con-
temporary Mathematics 305 (2002), pp. 53–74. arXiv : quant -
ph/0005055.

[Blu67] Manuel Blum. “A Machine-Independent Theory of the Complex-
ity of Recursive Functions”. In: Journal of the ACM 14.2 (1967),
pp. 322–336.

[BNR+07] Harry Buhrman, Ilan Newman, Hein Röhrig, and Ronald de Wolf.
“Robust Polynomials and Quantum Algorithms”. In: Theory of
Computing Systems 40.4 (2007), pp. 379–395. arXiv : quant -
ph/0309220.

[BR12] Aleksandrs Belovs and Ben W. Reichardt. “Span Programs and
Quantum Algorithms for st-Connectivity and Claw Detection”. In:
Proceedings of the 20th Annual European Symposium on Algorithms
(ESA 2012). 2012, pp. 193–204. arXiv:1203.2603.

[BSS14] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava.
“Twice-Ramanujan Sparsifiers”. In: SIAM Review 56.2 (2014),
pp. 315–334. arXiv:0808.0163.

[BSV+08] Ivona Bezáková, Daniel Stefankovic, Vijay V. Vazirani, and Eric
Vigoda. “Accelerating Simulated Annealing for the Permanent and
Combinatorial Counting Problems”. In: SIAM Journal on Comput-
ing 37.5 (2008), pp. 1429–1454.

[BT19] Salman Beigi and Leila Taghavi. “Span program for non-binary
functions”. In: Quantum Information & Computing 19.9&10 (2019),
pp. 760–792. arXiv:1805.02714.

[BT20] Salman Beigi and Leila Taghavi. “Quantum Speedup Based on
Classical Decision Trees”. In: Quantum 4 (2020), p. 241. arXiv:
1905.13095.

https://arxiv.org/abs/1504.06943
https://arxiv.org/abs/1504.06943
https://arxiv.org/abs/quant-ph/0005055
https://arxiv.org/abs/quant-ph/0005055
https://arxiv.org/abs/quant-ph/0309220
https://arxiv.org/abs/quant-ph/0309220
https://arxiv.org/abs/1203.2603
https://arxiv.org/abs/0808.0163
https://arxiv.org/abs/1805.02714
https://arxiv.org/abs/1905.13095
https://arxiv.org/abs/1905.13095

278 Bibliography

[BTT22] Salman Beigi, Leila Taghavi, and Artin Tajdini. “Time-and Query-
optimal Quantum Algorithms Based on Decision Trees”. In: ACM
Transactions on Quantum Computing 3.4 (2022), pp. 1–31. arXiv:
2105.08309.

[Cat04] Olivier Catoni. Statistical learning theory and stochastic opti-
mization: Ecole d’Eté de Probabilités de Saint-Flour, XXXI-2001.
Vol. 1851. Springer Science & Business Media, 2004.

[CBG21] Arjan Cornelissen, Johannes Bausch, and András Gilyén. Scalable
Benchmarks for Gate-Based Quantum Computers. 2021. arXiv:
2104.10698.

[CCH+19] Shouvanik Chakrabarti, Andrew M. Childs, Shih-Han Hung,
Tongyang Li, Chunhao Wang, and Xiaodi Wu. Quantum algorithm
for estimating volumes of convex bodies. 2019. arXiv:1908.03903.

[CF02] Ronald Cramer and Serge Fehr. “Optimal Black-Box Secret Shar-
ing over Arbitrary Abelian Groups”. In: 22nd Annual International
Cryptology Conference (CRYPTO 2002). Vol. 2442. Lecture Notes
in Computer Science. Springer, 2002, pp. 272–287.

[CFN+22] Chris Cade, Marten Folkertsma, Ido Niesen, and Jordi Weggemans.
Quantum Algorithms for Community Detection and their Empirical
Run-times. 2022. arXiv:2203.06208.

[CH22] Arjan Cornelissen and Yassine Hamoudi. A Sublinear-Time Quan-
tum Algorithm for Approximating Partition Functions. 2022.
Accepted to: Symposium on Discrete Algorithms (SODA 2023)
and the 26th Conference on Quantum Information Processing
(QIP 2023). arXiv:2207.08643.

[Chi22] Andrew Childs. Lecture Notes on Quantum Algorithms. 2022. http:
//www.cs.umd.edu/~amchilds/qa/qa.pdf.

[CHJ22] Arjan Cornelissen, Yassine Hamoudi, and Sofiène Jerbi. “Near-
optimal Quantum algorithms for multivariate mean estimation”. In:
54th Annual ACM SIGACT Symposium on Theory of Computing
(STOC 2022). ACM, 2022, pp. 33–43. Presented at: 25th An-
nual Conference on Quantum Information Processing (QIP 2022).
arXiv:2111.09787.

[CHL+22] Sitan Chen, Brice Huang, Jerry Li, Allen Liu, and Mark Sellke.
Tight Bounds for State Tomography with Incoherent Measurements.
2022. arXiv.2206.05265.

[CJ21] Arjan Cornelissen and Sofiene Jerbi. Quantum algorithms for mul-
tivariate Monte Carlo estimation. 2021. arXiv:2107.03410.

https://arxiv.org/abs/2105.08309
https://arxiv.org/abs/2105.08309
https://arxiv.org/abs/2104.10698
https://arxiv.org/abs/2104.10698
https://arxiv.org/abs/1908.03903
https://arxiv.org/abs/2203.06208
https://arxiv.org/abs/2207.08643
http://www.cs.umd.edu/~amchilds/qa/qa.pdf
http://www.cs.umd.edu/~amchilds/qa/qa.pdf
https://arxiv.org/abs/2111.09787
https://arxiv.org/abs/2206.05265
https://arxiv.org/abs/2107.03410

Bibliography 279

[CJO+20] Arjan Cornelissen, Stacey Jeffery, Māris Ozols, and Alvaro
Piedrafita. “Span Programs and Quantum Time Complexity”.
In: Proceedings of the 45th International Symposium on Mathe-
matical Foundations of Computer Science, (MFCS 2020). Vol. 170.
2020, 26:1–26:14. arXiv:2005.01323.

[CMB18] Chris Cade, Ashley Montanaro, and Aleksandrs Belovs. “Time and
space efficient quantum algorithms for detecting cycles and testing
bipartiteness”. In: Quantum Information & Computation 18.1&2
(2018), pp. 18–50. arXiv:1610.00581.

[CMO+21] Arjan Cornelissen, Nikhil S. Mande, Maris Ozols, and Ronald
de Wolf. Exact quantum query complexity of computing Hamming
weight modulo powers of two and three. 2021. arXiv:2112.14682.

[CMP22] Arjan Cornelissen, Nikhil S. Mande, and Subhasree Patro. Im-
proved Quantum Query Upper Bounds Based on Classical Deci-
sion Trees. 2022. Presented at: 17th Conference on the Theory
of Quantum Computation, Communication and Cryptography
(TQC 2022). Accepted to: 42nd IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2022). arXiv:2203.02968.

[Coo71] Stephen A. Cook. “The Complexity of Theorem-Proving Proce-
dures”. In: Proceedings of the 3rd Annual ACM Symposium on The-
ory of Computing, (STOC 1971). ACM, 1971, pp. 151–158.

[Cor19] Arjan Cornelissen. Quantum gradient estimation of Gevrey func-
tions. 2019. arXiv:1909.13528.

[DF88] Martin E. Dyer and Alan M. Frieze. “On the Complexity of Com-
puting the Volume of a Polyhedron”. In: SIAM Journal on Com-
puting 17.5 (1988), pp. 967–974.

[DF91] Martin Dyer and Alan Frieze. “Computing the volume of convex
bodies: a case where randomness provably helps”. In: Probabilis-
tic combinatorics and its applications 44.123-170 (1991), pp. 0754–
68052.

[DFK91] Martin E. Dyer, Alan M. Frieze, and Ravi Kannan. “A Random
Polynomial Time Algorithm for Approximating the Volume of Con-
vex Bodies”. In: Journal of the ACM 38.1 (1991), pp. 1–17.

[DKW19] Kai DeLorenzo, Shelby Kimmel, and R. Teal Witter. “Applications
of the Quantum Algorithm for st-Connectivity”. In: 14th Confer-
ence on the Theory of Quantum Computation, Communication and
Cryptography, (TQC 2019). Vol. 135. 2019, 6:1–6:14. arXiv:1904.
05995.

https://arxiv.org/abs/2005.01323
https://arxiv.org/abs/1610.00581
https://arxiv.org/abs/2112.14682
https://arxiv.org/abs/2203.02968
https://arxiv.org/abs/1909.13528
https://arxiv.org/abs/1904.05995
https://arxiv.org/abs/1904.05995

280 Bibliography

[dWol22] Ronald de Wolf. Quantum Computing: Lecture Notes. 2022. arXiv:
1907.09415.

[DY00] Adrian Dragulescu and Victor M Yakovenko. “Statistical mechanics
of money”. In: The European Physical Journal B-Condensed Matter
and Complex Systems 17.4 (2000), pp. 723–729. arXiv:cond-mat/
0001432.

[EH89] Andrzej Ehrenfeucht and David Haussler. “Learning Decision Trees
from Random Examples”. In: Information and Computation 82.3
(1989), pp. 231–246.

[Fey82] Richard P Feynman. “Simulating Physics with Computers”. In: In-
ternational Journal of Theoretical Physics 21.6/7 (1982).

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity The-
ory. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2006.

[FGG+99] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael
Sipser. “Bound on the number of functions that can be distin-
guished with k quantum queries”. In: Physical Review A 60.6
(1999), p. 4331. arXiv:quant-ph/9901012.

[FV17] Sacha Friedli and Yvan Velenik. Statistical mechanics of lattice sys-
tems: a concrete mathematical introduction. Cambridge University
Press, 2017.

[GAW19] András Gilyén, Srinivasan Arunachalam, and Nathan Wiebe. “Op-
timizing quantum optimization algorithms via faster quantum gra-
dient computation”. In: Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, (SODA 2019). 2019.
arXiv:1711.00465.

[Geo11] Hans-Otto Georgii. “Gibbs measures and phase transitions”. In:
Gibbs Measures and Phase Transitions. de Gruyter, 2011.

[GG84] Stuart Geman and Donald Geman. “Stochastic Relaxation, Gibbs
Distributions, and the Bayesian Restoration of Images”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 6.6
(1984), pp. 721–741.

[GL20] András Gilyén and Tongyang Li. “Distributional Property Testing
in a Quantum World”. In: 11th Innovations in Theoretical Com-
puter Science Conference (ITCS 2020). Vol. 151. LIPIcs. 2020,
25:1–25:19. arXiv:1902.00814.

[Gla03] Paul Glasserman. Monte Carlo Methods in Financial Engineering.
Springer New York, 2003.

https://arxiv.org/abs/1907.09415
https://arxiv.org/abs/1907.09415
https://arxiv.org/abs/cond-mat/0001432
https://arxiv.org/abs/cond-mat/0001432
https://arxiv.org/abs/quant-ph/9901012
https://arxiv.org/abs/1711.00465
https://arxiv.org/abs/1902.00814

Bibliography 281

[GLF+10] David Gross, Yi-Kai Liu, Steven T Flammia, Stephen Becker, and
Jens Eisert. “Quantum state tomography via compressed sensing”.
In: Physical review letters 105.15 (2010), p. 150401. arXiv:0909.
3304.

[Gro96] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for
Database Search”. In: Proceedings of the Twenty-Eighth Annual
ACM Symposium on the Theory of Computing, Philadelphia,
Pennsylvania, USA, May 22-24, 1996. Ed. by Gary L. Miller.
ACM, 1996, pp. 212–219. arXiv:quant-ph/9605043.

[Gro98] Lov K. Grover. “A Framework for Fast Quantum Mechanical Algo-
rithms”. In: Proceedings of the Thirtieth Annual ACM Symposium
on the Theory of Computing (STOC 1998). ACM, 1998, pp. 53–62.
arXiv:quant-ph/9711043.

[GSL+19] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe.
“Quantum singular value transformation and beyond: exponential
improvements for quantum matrix arithmetics”. In: Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Comput-
ing (STOC 2019). 2019, pp. 193–204. arXiv:1806.01838.

[Ham21] Yassine Hamoudi. “Quantum Sub-Gaussian Mean Estimator”. In:
29th Annual European Symposium on Algorithms, (ESA 2021).
Vol. 204. LIPIcs. 2021, 50:1–50:17. arXiv:2108.12172.

[Hei02] Stefan Heinrich. “Quantum Summation with an Application to In-
tegration”. In: Journal of Complexity 18.1 (2002), pp. 1–50. arXiv:
quant-ph/0105116.

[Hei04] Stefan Heinrich. “On the Power of Quantum Algorithms for Vector
Valued Mean Computation”. In: Monte Carlo Methods Applications
10.3-4 (2004), pp. 297–310.

[Hei27] Werner Heisenberg. “Über den anschaulichen Inhalt der quanten-
theoretischen Kinematik und Mechanik”. In: Zeitschrift für Physik
43.3 (1927), pp. 172–198.

[HHJ+17] Jeongwan Haah, Aram W. Harrow, Zhengfeng Ji, Xiaodi Wu,
and Nengkun Yu. “Sample-Optimal Tomography of Quantum
States”. In: IEEE Transactions on Information Theory 63.9
(2017), pp. 5628–5641. arXiv:1508.01797.

[HHL09] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum
Algorithm for Linear Systems of Equations”. In: Physical Review
Letters 103 (15 2009), p. 150502. arXiv:0811.3171.

[HKP20] Hsin-Yuan Huang, Richard Kueng, and John Preskill. “Predicting
many properties of a quantum system from very few measurements”.
In: Nature Physics 16 (2020), pp. 1050–1057. arXiv:2002.08953.

https://arxiv.org/abs/0909.3304
https://arxiv.org/abs/0909.3304
https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/quant-ph/9711043
https://arxiv.org/abs/1806.01838
https://arxiv.org/abs/2108.12172
https://arxiv.org/abs/quant-ph/0105116
https://arxiv.org/abs/quant-ph/0105116
https://arxiv.org/abs/1508.01797
https://arxiv.org/abs/0811.3171
https://arxiv.org/abs/2002.08953

282 Bibliography

[HLŠ07] Peter Høyer, Troy Lee, and Robert Špalek. “Negative weights make
adversaries stronger”. In: Proceedings of the 39th Annual ACM Sym-
posium on Theory of Computing (STOC 2007). 2007, pp. 526–535.
arXiv:quant-ph/0611054.

[HLY+22] Hong-Ye Hu, Ryan LaRose, Yi-Zhuang You, Eleanor Rieffel, and
Zhihui Wang. Logical shadow tomography: Efficient estimation of
error-mitigated observables. 2022. arXiv:2203.07263.

[HM19] Yassine Hamoudi and Frédéric Magniez. “Quantum Chebyshev’s
Inequality and Applications”. In: 46th International Colloquium on
Automata, Languages, and Programming (ICALP 2019). Vol. 132.
2019, 69:1–69:16. arXiv:1807.06456.

[Hop20] Samuel B. Hopkins. “Mean estimation with sub-Gaussian rates
in polynomial time”. In: The Annals of Statistics 48.2 (2020),
pp. 1193–1213.

[Hub15] Mark Huber. “Approximation algorithms for the normalizing con-
stant of Gibbs distributions”. In: The Annals of Applied Probability
25.2 (2015), pp. 974–985. arXiv:1206.2689.

[HW20] Aram W. Harrow and Annie Y. Wei. “Adaptive Quantum Simu-
lated Annealing for Bayesian Inference and Estimating Partition
Functions”. In: Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, (SODA 2020). 2020, pp. 193–212. arXiv:
1907.09965.

[HWM+21] William J Huggins, Kianna Wan, Jarrod McClean, Thomas E
O’Brien, Nathan Wiebe, and Ryan Babbush. “Nearly Optimal
Quantum Algorithm for Estimating Multiple Expectation Values”.
In: (2021). arXiv:2111.09283.

[IJ19] Tsuyoshi Ito and Stacey Jeffery. “Approximate Span Programs”. In:
Algorithmica 81.6 (2019), pp. 2158–2195. arXiv:1507.00432.

[Jef14] Stacey Jeffery. “Frameworks for Quantum Algorithms”. PhD thesis.
University of Waterloo, Ontario, Canada, 2014.

[Jef20] Stacey Jeffery. “Span Programs and Quantum Space Complexity”.
In: Proceedings of the 11th Innovations in Theoretical Computer
Science Conference, (ITCS 2020). Vol. 151. 2020, 4:1–4:37. arXiv:
1908.04232.

[Jer95] Mark Jerrum. “A Very Simple Algorithm for Estimating the Num-
ber of k-Colorings of a Low-Degree Graph”. In: Random Struct.
Algorithms 7.2 (1995), pp. 157–166.

https://arxiv.org/abs/quant-ph/0611054
https://arxiv.org/abs/2203.07263
https://arxiv.org/abs/1807.06456
https://arxiv.org/abs/1206.2689
https://arxiv.org/abs/1907.09965
https://arxiv.org/abs/1907.09965
https://arxiv.org/abs/2111.09283
https://arxiv.org/abs/1507.00432
https://arxiv.org/abs/1908.04232
https://arxiv.org/abs/1908.04232

Bibliography 283

[JJK+18] Michael Jarret, Stacey Jeffery, Shelby Kimmel, and Alvaro
Piedrafita. “Quantum Algorithms for Connectivity and Related
Problems”. In: Proceedings of the 26th Annual European Symposium
on Algorithms, (ESA 2018). 2018, pp. 1–13. arXiv:1804.10591.

[JK17] Stacey Jeffery and Shelby Kimmel. “Quantum Algorithms for
Graph Connectivity and Formula Evaluation”. In: Quantum 1
(2017), p. 26. arXiv:1704.00765.

[Jor05] Stephen P Jordan. “Fast quantum algorithm for numerical gradi-
ent estimation”. In: Physical review letters 95.5 (2005), p. 050501.
arXiv:quant-ph/0405146.

[Jor75] Camille Jordan. “Essai sur la géom’etrie à n dimensions”. In: Bul-
letin de la Société Mathématique de France 3 (1875), pp. 103–174.

[JS89] Mark Jerrum and Alistair Sinclair. “Approximating the perma-
nent”. In: SIAM journal on computing 18.6 (1989), pp. 1149–1178.

[JS93] Mark Jerrum and Alistair Sinclair. “Polynomial-Time Approxima-
tion Algorithms for the Ising Model”. In: SIAM Journal on Com-
puting 22.5 (1993), pp. 1087–1116.

[JS96] Mark Jerrum and Alistair Sinclair. “The Markov chain Monte Carlo
method: an approach to approximate counting and integration”. In:
Approximation Algorithms for NP-hard problems, PWS Publishing
(1996).

[JSV04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. “A polynomial-
time approximation algorithm for the permanent of a matrix with
nonnegative entries”. In: Journal of the ACM 51.4 (2004), pp. 671–
697.

[JVV86] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. “Random
Generation of Combinatorial Structures from a Uniform Distribu-
tion”. In: Theoretical Computer Science 43 (1986), pp. 169–188.

[Kit96] Alexei Y. Kitaev. “Quantum measurements and the Abelian Stabi-
lizer Problem”. In: Electron. Colloquium Comput. Complex. TR96-
003 (1996). arXiv:quant-ph/9511026.

[Kit97] Alexei Y. Kitaev. “Quantum computations: algorithms and error
correction”. In: Russian Mathematical Surveys 52.6 (1997), p. 1191.

[KO22] Robin Kothari and Ryan O’Donnell. Mean estimation when you
have the source code; or, quantum Monte Carlo methods. 2022.
arXiv.2208.07544.

https://arxiv.org/abs/1804.10591
http://arxiv.org/abs/1704.00765
https://arxiv.org/abs/quant-ph/0405146
https://arxiv.org/abs/quant-ph/9511026
https://arxiv.org/abs/2208.07544

284 Bibliography

[Kol18] Vladimir Kolmogorov. “A Faster Approximation Algorithm for the
Gibbs Partition Function”. In: Conference On Learning Theory,
(COLT 2018). Vol. 75. Proceedings of Machine Learning Research.
PMLR, 2018, pp. 228–249. arXiv:1608.04223.

[Kot14] Robin Kothari. “An optimal quantum algorithm for the oracle iden-
tification problem”. In: 31st International Symposium on Theoret-
ical Aspects of Computer Science (STACS 2014). Vol. 25. 2014,
pp. 482–493. arXiv:1311.7685.

[KW93] Mauricio Karchmer and Avi Wigderson. “On Span Programs”. In:
Proceedings of the Eigth Annual Structure in Complexity Theory
Conference. 1993, pp. 102–111.

[LdW21] Noah Linden and Ronald de Wolf. Average-Case Verification of the
Quantum Fourier Transform Enables Worst-Case Phase Estima-
tion. 2021. arXiv:2109.10215.

[Lev73] Леонид Анатольевич Левин (Leonid Anatolievich Levin).
“Универсальные задачи перебора (Universal sequential search
problems)”. In: Проблемы передачи информации (Problemy
peredachi informatsii) 9.3 (1973), pp. 115–116.

[LL16] Cedric Yen-Yu Lin and Han-Hsuan Lin. “Upper Bounds on Quan-
tum Query Complexity Inspired by the Elitzur–Vaidman Bomb
Tester”. In: Theory of Computing 12.1 (2016), pp. 1–35. arXiv:
1410.0932.

[Llo96] Seth Lloyd. “Universal quantum simulators”. In: Science 273.5278
(1996), pp. 1073–1078.

[LM19] Gábor Lugosi and Shahar Mendelson. “Mean Estimation and Re-
gression Under Heavy-Tailed Distributions: A Survey”. In: Founda-
tions of Computational Mathematics 19.5 (2019), pp. 1145–1190.
arXiv:1906.04280.

[LMR+11] Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Špalek, and
Mario Szegedy. “Quantum Query Complexity of State Conversion”.
In: Proceedings of the 52nd Annual Symposium on Foundations of
Computer Science, (FOCS 2011). 2011, pp. 344–353. arXiv:1011.
3020.

[LV06] László Lovász and Santosh S. Vempala. “Simulated annealing in
convex bodies and an O*(n4) volume algorithm”. In: Journal of
Computer System Sciences 72.2 (2006), pp. 392–417.

[Man80] Юрий Манин (Yuri Manin). Вычислимое и невычислимое (Com-
putable and Noncomputable). Советское радио (Sovietskoe Radio),
1980.

https://arxiv.org/abs/1608.04223
https://arxiv.org/abs/1311.7685
https://arxiv.org/abs/2109.10215
https://arxiv.org/abs/1410.0932
https://arxiv.org/abs/1410.0932
https://arxiv.org/abs/1906.04280
https://arxiv.org/abs/1011.3020
https://arxiv.org/abs/1011.3020

Bibliography 285

[MNR+11] Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos San-
tha. “Search via Quantum Walk”. In: SIAM Journal on Computing
40.1 (2011), pp. 142–164. arXiv:quant-ph/0608026.

[Mon15] Ashley Montanaro. “Quantum speedup of Monte Carlo methods”.
In: Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 471.2181 (2015), p. 20150301. arXiv:1504.
06987.

[MS13] Elchanan Mossel and Allan Sly. “Exact thresholds for Ising–Gibbs
samplers on general graphs”. In: The Annals of Probability 41.1
(2013), pp. 294–328. arXiv:0903.2906.

[MW05] Chris Marriott and John Watrous. “Quantum Arthur-Merlin
games”. In: Computional Complexity 14.2 (2005), pp. 122–152.
arXiv:cs/0506068.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation
and Quantum Information. Cambridge University Press, 2000.

[NNP04] Ventzislav Nikov, Svetla Nikova, and Bart Preneel. “On the Size of
Monotone Span Programs”. In: 4th International Conference in Se-
curity in Communication Networks (SCN 2004). Vol. 3352. Lecture
Notes in Computer Science. Springer, 2004, pp. 249–262.

[NY83] Arkadij Semenovič Nemirovskij and David Borisovich Yudin. “Prob-
lem complexity and method efficiency in optimization”. In: (1983).

[ORR13] Maris Ozols, Martin Roetteler, and Jérémie Roland. “Quantum re-
jection sampling”. In: ACM Transactions on Computation Theory
5.3 (2013), 11:1–11:33. arXiv:1103.2774.

[OW16] Ryan O’Donnell and John Wright. “Efficient quantum tomogra-
phy”. In: Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, (STOC 2016). ACM, 2016, pp. 899–912.
arXiv:1508.01907.

[Rei09] Ben W. Reichardt. “Span Programs and Quantum Query Com-
plexity: The General Adversary Bound Is Nearly Tight for Every
Boolean Function”. In: Proceedings of the 50th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS 2009). 2009,
pp. 544–551. arXiv:0904.2759.

[Rei10] Ben Reichardt. “Span programs and quantum query algorithms”.
In: Electronic Colloquium on Computational Complexity TR10-110
(2010).

[Rei11] Ben W. Reichardt. “Reflections for quantum query algorithms”. In:
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2011). 2011, pp. 560–569. arXiv:
1005.1601.

https://arxiv.org/abs/quant-ph/0608026
https://arxiv.org/abs/1504.06987
https://arxiv.org/abs/1504.06987
https://arxiv.org/abs/0903.2906
https://arxiv.org/abs/cs/0506068
https://arxiv.org/abs/1103.2774
https://arxiv.org/abs/1508.01907
https://arxiv.org/abs/0904.2759
https://arxiv.org/abs/1005.1601
https://arxiv.org/abs/1005.1601

286 Bibliography

[RŠ12] Ben W. Reichardt and Robert Špalek. “Span-Program-Based Quan-
tum Algorithm for Evaluating Formulas”. In: Theory of Computing
8.1 (2012), pp. 291–319. arXiv:0710.2630.

[RV10] Mark Rudelson and Roman Vershynin. “Non-asymptotic theory of
random matrices: extreme singular values”. In: Proceedings of the
International Congress of Mathematicians 2010 (ICM 2010) (In
4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV:
Invited Lectures. 2010, pp. 1576–1602. arXiv:1003.2990.

[RV13] Mark Rudelson and Roman Vershynin. “Hanson-wright inequality
and sub-gaussian concentration”. In: Electronic Communications in
Probability 18 (2013), pp. 1–9. https://arxiv.org/abs/1306.
2872.

[Sho97] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factoriza-
tion and Discrete Logarithms on a Quantum Computer”. In: SIAM
Journal on Computing 26.5 (1997), pp. 1484–1509. arXiv:quant-
ph/9508027.

[Sin82] Ya Sinai. “Theory of phase transitions: rigorous results”. In: Inter-
national series in natural philosophy 108 (1982).

[SVV09] Daniel Stefankovic, Santosh S. Vempala, and Eric Vigoda. “Adap-
tive simulated annealing: A near-optimal connection between sam-
pling and counting”. In: Journal of the ACM 56.3 (2009), 18:1–
18:36. arXiv:cs/0612058.

[Sze04] Mario Szegedy. “Quantum Speed-Up of Markov Chain Based Algo-
rithms”. In: Proceedings of the 45th Symposium on Foundations of
Computer Science (FOCS 2004). 2004, pp. 32–41.

[Tag22] Leila Taghavi. “Simplified quantum algorithm for the oracle iden-
tification problem”. In: Quantum Machine Intelligence 4.2 (2022),
pp. 1–7. arXiv:2109.03902.

[Ter99] Barbara Terhal. “Quantum Algorithms and Quantum Entangle-
ment”. University of Amsterdam, 1999.

[TOV+11] Kristan Temme, Tobias J Osborne, Karl G Vollbrecht, David
Poulin, and Frank Verstraete. “Quantum metropolis sampling”. In:
Nature 471.7336 (2011), pp. 87–90. arXiv:0911.3635.

[Tro15] Joel A. Tropp. “An Introduction to Matrix Concentration Inequali-
ties”. In: Foundations and Trends in Machine Learning 8.1-2 (2015),
pp. 1–230. arXiv:1501.01571.

[Tur37] Alan M. Turing. “On computable numbers, with an application to
the Entscheidungsproblem”. In: Proc. London Math. Soc. s2-42.1
(1937), pp. 230–265.

https://arxiv.org/abs/0710.2630
https://arxiv.org/abs/1003.2990
arXiv:1306.2872
arXiv:1306.2872
https://arxiv.org/abs/quant-ph/9508027
https://arxiv.org/abs/quant-ph/9508027
https://arxiv.org/abs/cs/0612058
https://arxiv.org/abs/2109.03902
https://arxiv.org/abs/0911.3635
https://arxiv.org/abs/1501.01571

Bibliography 287

[vACG+22] Joran van Apeldoorn, Arjan Cornelissen, András Gilyén, and
Giacomo Nannicini. Quantum tomography using state-preparation
unitaries. 2022. Accepted to: Symposium on Discrete Algorithms
(SODA 2023) and the 26th Conference on Quantum Information
Processing (QIP 2023). arXiv:2207.08800.

[Val79] Leslie G. Valiant. “The Complexity of Computing the Permanent”.
In: Theoretical Computational Science 8 (1979), pp. 189–201.

[vApe21] Joran van Apeldoorn. “Quantum Probability Oracles & Multidi-
mensional Amplitude Estimation”. In: 16th Conference on the The-
ory of Quantum Computation, Communication and Cryptography,
(TQC 2021). Vol. 197. LIPIcs. 2021, 9:1–9:11.

[VC72] J.P. Valleau and D.N. Card. “Monte Carlo estimation of the free en-
ergy by multistage sampling”. In: The Journal of Chemical Physics
57.12 (1972), pp. 5457–5462.

[WA08] Pawel Wocjan and Anura Abeyesinghe. “Speedup via quantum sam-
pling”. In: Physical Review A 78.4 (2008), p. 042336. arXiv:0804.
4259.

[WCN+09] Pawel Wocjan, Chen-Fu Chiang, Daniel Nagaj, and Anura
Abeyesinghe. “Quantum algorithm for approximating partition
functions”. In: Physical Review A 80.2 (2009), p. 022340.

[YLC14] Theodore J. Yoder, Guang Hao Low, and Isaac L. Chuang. “Fixed-
point quantum search with an optimal number of queries”. In: Phys-
ical review letters 113.21 (2014), p. 210501. arXiv:1409.3305.

[Yue22] Henry Yuen. An improved sample complexity lower bound for quan-
tum state tomography. 2022. arXiv:2206.11185.

https://arxiv.org/abs/2207.08800
https://arxiv.org/abs/0804.4259
https://arxiv.org/abs/0804.4259
https://arxiv.org/abs/1409.3305
https://arxiv.org/abs/2206.11185

Abstract

Over the past half century, the advent of the computer has increased our ability
to perform computations tremendously. Consequently, we can now solve compu-
tational problems much more efficiently than ever before, the effects of which have
revolutionized many aspects of society, ranging from how government keeps track
of tax records, to how we use routing software to navigate to our destination.

However, over the last decade it has become increasingly apparent that the
development of conventional computational hardware is reaching its physical lim-
its. In an attempt to overcome this barrier, new research areas have focused on
rethinking the very physical principles based on which we perform computations.
Quantum computing has emerged among the most promising of these new areas,
and as such has experienced an explosive increase of interest over the past twenty
years.

Quantum computing loosely speaking encapsulates the idea of performing
computations based on the principles of quantum mechanics, and as such de-
scribes a computational model that is fundamentally different from its conven-
tional counterpart. The central question we address in this thesis is how powerful
this new computational model is, i.e., we take computational problems and as-
sess how efficiently they can be solved on a quantum computer. Oftentimes,
we compare the obtained results to those in the conventional setting, to quan-
tify the computational advantage that quantum computers provide us with on a
theoretical level.

The thesis is divided in two parts. In Part I, we develop quantum algorithms
that solve estimation problems. Specifically, we investigate three problems sep-
arately, namely mean estimation, state tomography, and partition function es-
timation. For the first two we generalize our findings to the multivariate set-
ting, and we augment our results with matching lower bound proofs, providing
a precise characterization of the problems’ quantum computational complexity.
Surprisingly, we conclude that for the mean estimation problem quantum com-
puters provide a computational advantage over conventional ones, if and only if

289

290 Abstract

the number of quantum samples used exceeds the dimension of the estimated
quantity.

In Part II, we investigate the span program formalism, which is a framework
for designing quantum algorithms. We provide a self-contained overview of the
formalism with emphasis on visual and intuitive interpretations of the relevant
objects. We elaborate on how the framework relates to the adversary bound,
and simplify the exposition over previous works. Moreover, we arrive at three
new results. First, we show how this framework can be used to turn classical
decision trees into quantum algorithms. Second, we improve the best-known al-
gorithm that evaluates approximate span programs. Finally, we show that quan-
tum algorithms of a particular type correspond to span programs that preserve
time-efficiency.

Samenvatting

Gedurende de afgelopen halve eeuw heeft de opkomst van de computer ons vermo-
gen om berekeningen uit te voeren flink vergroot. Daardoor kunnen we nu com-
putationele problemen op een veel efficiëntere manier oplossen dan ooit tevoren.
De effecten hiervan hebben de maatschappij in vele opzichten revolutionair veran-
derd, van de manier waarop de overheid de belastingen bijhoudt, tot de manier
waarop we naar onze bestemming navigeren aan toe.

Echter, gedurende het afgelopen decennium is het steeds duidelijker geworden
dat de ontwikkeling van conventionele rekenhardware tegen zijn natuurkundige
limitaties aanloopt. In een poging deze barrière te overwinnen hebben ver-
schillende onderzoeksgebieden zich gefocust op het heroverwegen van de natu-
urkundige principes, gebaseerd waarop wij onze berekeningen uitvoeren. Quan-
tum computing is daarbij als één van de meest veelbelovende van deze gebieden
uit de bus gekomen, en heeft daardoor gedurende de afgelopen twintig jaar een
explosieve toename in interesse meegemaakt.

Quantum computing omvat kortgezegd het idee om berekeningen uit te vo-
eren op basis van de principes van kwantummechanica, en dus beschrijft het een
rekenmodel dat fundamenteel anders is dan zijn conventionele tegenhanger. De
centrale vraag die we in dit proefschrift behandelen is hoe krachtig dit nieuwe
rekenmodel is, d.w.z., we beschouwen computationele problemen en bepalen hoe
efficiënt zij door een kwantumcomputer opgelost kunnen worden. Vaak vergelij-
ken we daarbij onze resultaten met die uit de conventionele context, om zodoende
in te schatten hoe groot het computationele voordeel is dat kwantumcomputers
op theoretisch niveau kunnen bieden.

Dit proefschrift is opgedeeld in twee delen. In Deel I ontwikkelen we kwan-
tumalgoritmen die schattingsproblemen oplossen. Specifiek onderzoeken we drie
aparte problemen, namelijk gemiddeldeschatting (Engels: mean estimation), toe-
standstomografie (Engels: state tomography), en partitiefunctieschatting (Engels:
partition function estimation). Voor de eerste twee problemen generaliseren we
onze bevindingen naar de multivariate context, en we voegen bewijzen van bij-

291

292 Samenvatting

passende ondergrensen aan onze resultaten toe, waarmee we een preciese karak-
terisatie van de computationele complexiteit in de kwantumcontext bereiken.
Verrassend genoeg concluderen we dat voor het gemiddeldebepalingsprobleem,
kwantumcomputers een computationeel voordeel bieden dan en slechts dan als
het aantal kwantumrealisaties dat we gebruiken groter is dan de dimensie van het
te schatten object.

In Deel II onderzoeken we het opspanningsprogrammaformalisme (Engels:
span program formalism), wat een raamwerk voor het ontwikkelen van kwan-
tumalgoritmen is. We geven een op zichzelf staand overzicht van het formalisme,
waarbij we de nadruk leggen op visuele en intüıtieve interpretaties van de relevante
objecten. We laten zien hoe het raamwerk zich tot de tegenstandergrens (Engels:
adversary bound) verhoudt, en versimpelen de uiteenzetting t.o.v. eerdere werken.
Bovendien komen we uit op drie nieuwe resultaten. Ten eerste laten we zien hoe
het raamwerk gebruikt kan worden om klassieke beslisbomen (Engels: decision
trees) in kwantumalgoritmen om te zetten. Ten tweede verbeteren we het best be-
kende algoritme dat benaderingsopspanningsprogramma’s (Engels: approximate
span programs) evalueert. Tot slot laten we zien dat kwantumalgoritmen van
een bepaald type corresponderen met opspanningsprogramma’s (Engels: span
programs) die de tijdsefficiëntie behouden.

Titles in the ILLC Dissertation Series:

ILLC DS-2018-02: Hugo Huurdeman
Supporting the Complex Dynamics of the Information Seeking Process

ILLC DS-2018-03: Corina Koolen
Reading beyond the female: The relationship between perception of author
gender and literary quality

ILLC DS-2018-04: Jelle Bruineberg
Anticipating Affordances: Intentionality in self-organizing brain-body-
environment systems

ILLC DS-2018-05: Joachim Daiber
Typologically Robust Statistical Machine Translation: Understanding and Ex-
ploiting Differences and Similarities Between Languages in Machine Transla-
tion

ILLC DS-2018-06: Thomas Brochhagen
Signaling under Uncertainty

ILLC DS-2018-07: Julian Schlöder
Assertion and Rejection

ILLC DS-2018-08: Srinivasan Arunachalam
Quantum Algorithms and Learning Theory

ILLC DS-2018-09: Hugo de Holanda Cunha Nobrega
Games for functions: Baire classes, Weihrauch degrees, transfinite computa-
tions, and ranks

ILLC DS-2018-10: Chenwei Shi
Reason to Believe

ILLC DS-2018-11: Malvin Gattinger
New Directions in Model Checking Dynamic Epistemic Logic

ILLC DS-2018-12: Julia Ilin
Filtration Revisited: Lattices of Stable Non-Classical Logics

ILLC DS-2018-13: Jeroen Zuiddam
Algebraic complexity, asymptotic spectra and entanglement polytopes

ILLC DS-2019-01: Carlos Vaquero
What Makes A Performer Unique? Idiosyncrasies and commonalities in ex-
pressive music performance

ILLC DS-2019-02: Jort Bergfeld
Quantum logics for expressing and proving the correctness of quantum pro-
grams

ILLC DS-2019-03: András Gilyén
Quantum Singular Value Transformation & Its Algorithmic Applications

ILLC DS-2019-04: Lorenzo Galeotti
The theory of the generalised real numbers and other topics in logic

ILLC DS-2019-05: Nadine Theiler
Taking a unified perspective: Resolutions and highlighting in the semantics of
attitudes and particles

ILLC DS-2019-06: Peter T.S. van der Gulik
Considerations in Evolutionary Biochemistry

ILLC DS-2019-07: Frederik Möllerström Lauridsen
Cuts and Completions: Algebraic aspects of structural proof theory

ILLC DS-2020-01: Mostafa Dehghani
Learning with Imperfect Supervision for Language Understanding

ILLC DS-2020-02: Koen Groenland
Quantum protocols for few-qubit devices

ILLC DS-2020-03: Jouke Witteveen
Parameterized Analysis of Complexity

ILLC DS-2020-04: Joran van Apeldoorn
A Quantum View on Convex Optimization

ILLC DS-2020-05: Tom Bannink
Quantum and stochastic processes

ILLC DS-2020-06: Dieuwke Hupkes
Hierarchy and interpretability in neural models of language processing

ILLC DS-2020-07: Ana Lucia Vargas Sandoval
On the Path to the Truth: Logical & Computational Aspects of Learning

ILLC DS-2020-08: Philip Schulz
Latent Variable Models for Machine Translation and How to Learn Them

ILLC DS-2020-09: Jasmijn Bastings
A Tale of Two Sequences: Interpretable and Linguistically-Informed Deep
Learning for Natural Language Processing

ILLC DS-2020-10: Arnold Kochari
Perceiving and communicating magnitudes: Behavioral and electrophysiologi-
cal studies

ILLC DS-2020-11: Marco Del Tredici
Linguistic Variation in Online Communities: A Computational Perspective

ILLC DS-2020-12: Bastiaan van der Weij
Experienced listeners: Modeling the influence of long-term musical exposure
on rhythm perception

ILLC DS-2020-13: Thom van Gessel
Questions in Context

ILLC DS-2020-14: Gianluca Grilletti
Questions & Quantification: A study of first order inquisitive logic

ILLC DS-2020-15: Tom Schoonen
Tales of Similarity and Imagination. A modest epistemology of possibility

ILLC DS-2020-16: Ilaria Canavotto
Where Responsibility Takes You: Logics of Agency, Counterfactuals and
Norms

ILLC DS-2020-17: Francesca Zaffora Blando
Patterns and Probabilities: A Study in Algorithmic Randomness and Com-
putable Learning

ILLC DS-2021-01: Yfke Dulek
Delegated and Distributed Quantum Computation

ILLC DS-2021-02: Elbert J. Booij
The Things Before Us: On What it Is to Be an Object

ILLC DS-2021-03: Seyyed Hadi Hashemi
Modeling Users Interacting with Smart Devices

ILLC DS-2021-04: Sophie Arnoult
Adjunction in Hierarchical Phrase-Based Translation

ILLC DS-2021-05: Cian Guilfoyle Chartier
A Pragmatic Defense of Logical Pluralism

ILLC DS-2021-06: Zoi Terzopoulou
Collective Decisions with Incomplete Individual Opinions

ILLC DS-2021-07: Anthia Solaki
Logical Models for Bounded Reasoners

ILLC DS-2021-08: Michael Sejr Schlichtkrull
Incorporating Structure into Neural Models for Language Processing

ILLC DS-2021-09: Taichi Uemura
Abstract and Concrete Type Theories

ILLC DS-2021-10: Levin Hornischer
Dynamical Systems via Domains: Toward a Unified Foundation of Symbolic
and Non-symbolic Computation

ILLC DS-2021-11: Sirin Botan
Strategyproof Social Choice for Restricted Domains

ILLC DS-2021-12: Michael Cohen
Dynamic Introspection

ILLC DS-2021-13: Dazhu Li
Formal Threads in the Social Fabric: Studies in the Logical Dynamics of
Multi-Agent Interaction

ILLC DS-2022-01: Anna Bellomo
Sums, Numbers and Infinity: Collections in Bolzano’s Mathematics and Phi-
losophy

ILLC DS-2022-02: Jan Czajkowski
Post-Quantum Security of Hash Functions

ILLC DS-2022-03: Sonia Ramotowska
Quantifying quantifier representations: Experimental studies, computational
modeling, and individual differences

ILLC DS-2022-04: Ruben Brokkelkamp
How Close Does It Get?: From Near-Optimal Network Algorithms to Subop-
timal Equilibrium Outcomes

ILLC DS-2022-05: Lwenn Bussière-Carae
No means No! Speech Acts in Conflict

ILLC DS-2023-01: Subhasree Patro
Quantum Fine-Grained Complexity

ILLC DS-2023-02: Arjan Cornelissen
Quantum multivariate estimation and span program algorithms

	arjan1
	arjan2
	Acknowledgments
	Introduction
	Overview
	Relation to the literature

	Preliminaries
	Notation
	Basics of quantum mechanics
	Basics of quantum computing
	Algorithmic primitives

	Part I: Quantum algorithms
	Quantum mean estimation
	Introduction
	Preliminaries
	Bounded mean estimation
	General mean estimation
	Known upper bound on `3́9`42`"̇613A``45`47`"603ATr[]
	Unknown upper bound on `3́9`42`"̇613A``45`47`"603ATr[]

	Lower bound
	Discussion

	State tomography
	Introduction
	Preliminaries
	Bounded norm conversion
	Unbiased phase estimation
	Basic algorithm
	Improved tail bounds
	Unbiased probability estimation

	Estimating multiple observables with a state-preparation oracle
	Tail bounds on uniform matrix series
	Algorithm for estimating multiple observables

	Mixed-state tomography
	Lower bounds
	Implications

	Partition function estimation
	Introduction
	Modified quantum subroutines
	Unbiased and non-destructive mean estimation
	Partition function estimation
	Algorithm overview
	Applications

	Part II: Span programs
	The span program formalism
	Definition and basic properties
	Span programs and witnesses
	Operational interpretation
	Span program algorithm

	Relation to the quantum adversary method
	The primal adversary bound
	The dual adversary bound
	Conversion between span programs and the dual adversary bound

	Compositions of span programs
	Logical composition of span programs
	Definition and basic properties
	Relation to dual adversary bound solutions
	Characteristic functions

	Graph composition of span programs
	Electrical networks
	Definition and basic properties
	Special case: planar graphs
	Graph composition examples

	Quantum algorithms from classical decision trees
	Introduction
	Decision trees and its properties
	Graph composition of a decision tree
	Optimal weight assignment
	Discussion

	Approximate span programs
	Definition and basic properties
	Approximate span program algorithm
	Equivalence with quantum query algorithms

	Discussion
	Abstract
	Samenvatting

