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Abstract

The gossip problem is an information distribution problem where agents try to share information between each other
in the most efficient way. While an optimal order of communication is easily computed, agents often find themselves
in a decentralised system and therefore rely on gossip protocols for efficiently coordinating their communication.
Protocol-dependent knowledge in epistemic logic expresses knowledge that an agent can deduce by assuming that a
certain protocol is common knowledge. Protocol-dependent epistemic logic for the gossip problem has been studied
semantically, but a sound and complete axiomatisation is yet to be found. While axiomatisations exist for various
versions of the gossip problem, none of these include protocol-dependent knowledge.

In this thesis we provide a sound and complete axiomatisation for the logic of gossip with a single protocol-
dependent knowledge modality and we further show that these axioms remain sound for the logic including multiple
such modalities. In order to do so we analyse existing axiomatisations for non-protocol-dependent gossip and link
them to existing semantic results, and we show that the language of gossip with multiple protocol modalities is
considerably more expressive than the language without any such modalities.

These results aid in understanding the effects of protocols on agent knowledge in the gossip problem and provide
insight in the effects of protocol-dependent knowledge modalities on expressivity of epistemic logic.
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Chapter 1

Introduction

The gossip problem, first introduced as the telephone problem [Tij71], describes the distribution of information
(secrets) between agents using peer-to-peer pairwise communication (calls). The goal of the problem is for all agents
to learn all secrets (become experts), and to do so as efficiently as possible.

It is assumed that each of the finitely many agents initially holds a single secret. In each call, agents share the
secrets that they know, including other secrets that they have learnt, hence the name for the problem. Agents do not
share any other knowledge. In particular, they do not share higher-order epistemic information1, such as information
about who knows what.

The problem is applicable to many environments, most notably in distributed systems. The combination of
information over multiple sources using limited communication resources is a common problem in this field. Examples
are updating distributed databases [Kar+00] and network discovery [HLL99].

Albeit its name suggests otherwise, the gossip problem does not model socially-driven behaviour of agents, and
instead only focusses on the collaborative effort of sharing information openly. However, epistemic logic can also be
used to model social dynamics of gossip [Kle17].

Epistemic logic studies the knowledge of agents. The modality K encodes “knowing”, such that Kaφ means
“agent a knows that φ is true”. This knowledge is usually based on which worlds in a Kripke frame the agent considers
possible: an agent knows something if it is true in all worlds they consider possible. This relation between worlds is
called the epistemic relation or indistinguishability relation of an agent.

This definition of knowledge usually makes no assumptions, but this changes with protocol-dependent knowledge
[Dit+19]. The formula KP

a φ comes to mean that “agent a knows that φ is true, assuming that protocol P was
common knowledge”. With the assumption that all agents behave according to a specific set of rules, the agent can
often derive more knowledge and thus achieve a larger knowledge base.

While assumptions can always be encoded in the epistemic relation for a knowledge modality Ka, the novelty
lies in the arbitrary combination of protocols. In this way the language can express knowledge relative to different
protocols: the formula KP

a φ ∧ ¬KQ
a φ expresses “agent a knows that φ is true if protocol P was followed, but does

not know that φ is true if protocol Q was followed”.

Related Work

The gossip problem goes back to 1971 and research was first focused on finding the minimum number of messages
required in various settings. The most well-known result is a minimum of 2n− 4 calls for n ≥ 4 agents [Tij71; BS72].

However, this result is in many ways overly optimistic. In practice, agents are often in a distributed setting,
lacking the authority of a centralised scheduler. These settings require agents to coordinate with limited information
and means of communication. This has led to research into distributed algorithms, called gossip protocols or epidemic

1Other settings exist where agents can share higher-order knowledge [HM17].
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Chapter 1 – Introduction

protocols, which often employ randomized calling [Kar+00]. More recently, distributed gossip has been studied
from the perspective of epistemic logic, making use of epistemic protocols which leverage agent knowledge to make
informed decisions on what call to execute [Att+14; AGH15]. Additionally, the formalisms from epistemic logics
have led to bounds on the amount of agent knowledge that can be achieved [HM17; DG22; DG24].

Much of the epistemic logic research into gossip uses a semantic approach, as research into proof systems for the
gossip problem is still limited. Even within these semantics, many studies use different languages and models, often
catering to specific versions of gossip or the topic of study. This has also led to different formal languages for the
gossip problem that are either limited [DG24] or extended to different levels of expressivity [DGR23; Dit+19; AW17].

There have also been different approaches modelling the gossip problem in epistemic logic. Some attempts include
using action models [Att+14] or using a “knowing-whether” modality [HMP21]. Recent work has provided a more
efficient method using atomic knowing for secret representation and knowledge transformers for modelling dynamic
updates [Gat18].

So far only one study has provided axiomatisations for logics describing the gossip problem [DHK20]. In doing
so, the authors attempt to unify the different semantics for gossip based on three parameters. Unfortunately,
these axiomatisations have not seen practical application: more recent research has not been able to apply these
axiomatisations yet, instead still resorting to semantic proofs of validities [DG24]. The vastly more modular approach
to defining a gossip model that the authors of [DHK20] take, can be identified as a difficulty in applying their work
effectively.

Meanwhile, the notion of protocol-dependent knowledge has been studied in epistemic logic outside of gossip
[Dit+14]. Within gossip, this notion has been extended to a protocol-specific knowledge modality to express the
knowledge of agents under the assumption of a protocol [Dit+19]. This work does not provide an axiomatisation yet,
leaving it an open question what the logic of protocol-dependent gossip is.

There are three central sources that we use in this thesis, denoted in Table 1.1. While [DHK20] already provides
an axiomatisation for many versions of gossip, the semantics and language do not align with [Dit+19] and [DG24].
In this thesis we attempt to bridge the gap between these three works.

Table 1.1. Three recent studies using different languages and semantics.
Property Strengthening [Dit+19] Logic of Gossiping [DHK20] Limits to Gossip [DG24]
Privacy Synchronous ( ) All ( , , ) Asynchronous ( )
Directionality bidirectional (⋄) All (▷, ◁, ⋄) bidirectional (⋄)
Observance Inspect-then-merge (β) All (α, β) Inspect-then-merge (β)
Graph Topology Dynamic Total Total
Dynamic Modality [π] [ab] –
Knowledge Modality KP K K

Completeness No Yes No

Contribution

We propose axioms for synchronous protocol-dependent gossip as defined in [Dit+19]. We show completeness for the
language and models with a single protocol, and provide axioms for extending this result to languages containing
multiple protocols. We do so by employing a method similar to [DHK20]. While doing so, we make minor changes
to the original axiomatisation by [DHK20] and we introduce a different model definition for protocol-dependent
gossip using arbitrary initial models.

We furthermore show that the language with protocol-dependent knowledge operators has higher expressivity
than the language with only a general epistemic knowledge operator.

Lastly, we identify the logic used in [DG22] by relating the semantics to those of [DHK20]. We thereby show that
the results in [DG22] can be derived syntactically too.
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Chapter 1 – Introduction

These contributions help better understand the effects of protocols on agent knowledge in the gossip problem.
More generally, they provide insight in the definition of protocol-dependent knowledge by [Dit+19] and how it might
be used in other epistemic settings than the gossip problem.

Outline

In chapter 2 we give the necessary background and definitions, including the main syntax and semantics of the
original gossip problem without protocol-dependency. Chapter 3 continues by explaining two existing axiomatisations
due to [DHK20], to which we make minor contributions before relating one of them to [DG22].

Chapter 4 introduces protocol-dependent gossip. We provide an alternative definition of protocol-dependent
gossip models, which we use to show completeness for the axiomatisation for protocol-dependent gossip with a single
protocol, that we provide in chapter 5. In chapter 6 we build on this axiomatisation and suggest ways to translate
this to the multi-protocol setting.

The last contribution can be found in chapter 7, which provides an analysis of the difference in expressivity
between the languages for basic gossip and protocol-dependent gossip. We discuss the results in chapter 8 and
conclude this thesis in chapter 9.
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Chapter 2

Preliminaries

We first give general definitions of the gossip problem. We then introduce the language and models for gossip based
on [DHK20]. These do not include the notion of protocols and we will therefore call them basic gossip.

2.1 General Definitions for Gossip

Throughout this thesis we will use the following definitions and notation.

Definition 2.1 (Agents). Let Ag be the finite set of agents. We denote agents by a Roman lowercase letter.

We assume that each agent possesses a personal secret. The set of agents and set of secrets is therefore a bijection.
Moreover, it is always assumed that the agent knows their own secret. Because we view the secrets as so intrinsically
connected to the agent, we re-use the agent names to denote their secrets, rather than defining a separate set of
secrets.

Definition 2.2 (Secrets). Let S = Ag be the set of secrets, so that each secret is defined by its agent.

It might seem that this causes confusion, but in the gossip problem we are not interested in what the secret of
some agent is, or whether this secret is true. We only care about the secret distribution: who knows whose secret.
We therefore never need to talk about the secret specifically: referring to “the secret a” may as well be “the secret of
agent a”.

Definition 2.3 (Calls). A call (a, b) is an ordered pair of agents a ̸= b ∈ Ag. We call the first agent the caller and
the second agent the callee. We usually omit the brackets and simply write ab.

There are n · (n− 1) possible calls for n agents and each call can always be executed. In some settings however,
distinction between the role of caller and callee is not important. In such settings, symmetric calls ab and ba are
sometimes viewed as a single call [Gat18]. The direction of calls is important for instance when the problem includes
a non-total graph [Gat18], when secrets are not shared symmetrically [DHK20], or when protocols are considered
[Dit+19], like in this thesis.

Definition 2.4 (Call Sequence). A call sequence σ is a sequential series of calls and is denoted by a Greek lowercase
letter. The empty sequence is denoted by ϵ. We write concatenation of calls with a period, such that ab.cd is the call
sequence consisting of ab followed by cd and σ.ab.τ is the sequence σ followed by call ab and followed by sequence τ .
We write |σ| for the length of a call sequence σ.

Definition 2.5 (Involved & External Agents). We call an agent c involved in a call ab if they are the caller or
callee, that is c ∈ {a, b}. An agent is involved in call sequence σ if they are involved in at least one call in σ. We
denote the set of involved agents in a call sequence σ by Ag(σ). We call an agent who is not involved external.
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Chapter 2 – Preliminaries

Agents attempt to learn all secrets. We call them experts when they have achieved this goal. The goal for the
gossip problem is for all agents to become experts. Other goals have been studied too, including higher-order goals
[DGR23].

Definition 2.6 (Expert). An agent is an expert if they know the secrets of all agents.

2.2 Call Types

Call types have been introduced to better describe the various semantic properties (of calls) in different gossip
settings [DHK20]. We will limit ourselves to only the most common call types, but introduce the notion fully here in
order to relate to the axiomatisation of [DHK20].

The following three parameters form the basis of the call type. We only introduce them conceptually. We
formalise their meaning when defining the semantics in section 2.4.

Definition 2.7 (Privacy). The level of privacy determines how much agents can observe of the calls happening
around them. There are three privacy types p.

= transparent / observable: agents see exactly each call that takes place.

= synchronous: agents notice that a call takes place, but not which.

= asynchronous: agents notice only calls they participate in.

Privacy type ( ) is also a synchronous setting in the sense that there is a global awareness of some call taking
place and many results that rely on this property hold for both privacy levels. Such a notion is also called a global
clock. However, in all relevant literature, synchronicity is used exclusively to the weaker form ( ), because a scenario
where the specifics of all calls are fully known is in many cases unrealistic. We therefore refer to ( ) as transparent,
as the actions of any agent are visible to all other agents. The term observable is also used in literature [DHK20].

Definition 2.8 (Directionality). A gossip call can exchange information in three ways, which is the directionality
type d. Throughout this thesis, we limit ourselves to directionality type d = ⋄.

▷ = push: only the caller shares secrets

◁ = pull: only the callee shares secrets

⋄ = bidirectional / push-pull: both share secrets

Definition 2.9 (Observance). Agents may observe the secrets shared with them in the call in two observation types
o. Throughout this thesis, we limit ourselves to observance type o = β.

α = after: merge-then-inspect. Agents observe the union of their sets of secrets.

β = before: inspect-then-merge. Agents observe each other’s set of secrets separately.

Together the three parameters privacy, directionality, and observance combine into 18 different call types
t = (p, d, o) with different semantics. The logics corresponding to each of these semantics have been each axiomatised
by [DHK20].

While these call parameters are useful in explicitly defining the various design options, they are not all equally
commonly used. In fact, while sources exist that use each option for each parameter, the directionality type is
usually ⋄ and the observance type is usually β. It is only the privacy type that can be viewed as an equally studied
property, and even then only the and cases are relatively common.

We will therefore often omit the directionality type and observance type and implicitly assume them to be ⋄ and
β. We write t = or t = instead of t = ( , ⋄, β) or t = ( , ⋄, β).
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2.3 Language and Syntax for Basic Gossip

The first notable choice in the language is how we describe secrets. We are not interested in the values of the secrets,
so we do not necessarily want to encode them in propositions. Instead we are interested in the distribution of secrets.
Various attempts have been made in choosing an effective strategy. An overview of the various options and their
considerations can be found in [Gat18].

We call the notion that we will use to describe secrets atomic knowing, where atoms in the language describe
what an agent knows [Gat18]. The atomic propositions in our language are defined Sab for agents a, b ∈ Ag, to mean
“Agent a knows the secret of agent b”. Some authors use either ba or FaB instead, the latter using F for familiar with
and capitals to differentiate the secrets (upper case) from their agents (lower case) [DHK20]. We choose to use Sab

as we wish to differentiate language constructs (upper case for the S proposition) from variables (lower case for
agents and their secrets a, b, c) and secret is the more intuitive natural language equivalent. It is furthermore useful
to distinguish atoms by their type when introducing extra atoms, such as representing phone numbers, denoted by
Nab [DG22].

The basic language contains atoms for each agent pair, the usual boolean connectives for negation and conjunction,
the agents’ knowledge modality and a dynamic call modality. The atoms Sab describe the distribution of secrets,
and Ka is the usual epistemic knowledge operator for each agent a. The dynamic modality [ab] describes a call
between two agents a and b. As agents exchange secrets, a call usually incurs factual change: modification of the
truth of atomic propositions.

Definition 2.10 (Basic Language of Gossip). Let a, b ∈ Ag be agents. We define the language LG as

φ ::= Sab | ¬φ | (φ ∧ φ) | Kaφ | [ab]φ.

The operators ∨, →, ⊤, and ⊥ are defined as abbreviations in the usual way. We also define the epistemic dual
of K by ˆ︁Ka := ¬Ka¬.

For some agent a and set of secrets R ⊆ S we furthermore define the following abbreviation to describe that a
only knows the secrets in R.

OaR :=
⋀︂
b∈R

Sab ∧
⋀︂
b/∈R

¬Sab

Throughout this thesis we will often use the static fragment of LG, which omits the dynamic modality [ab]. As
this modality represents a call in the setting of gossip, we also use the term call-free.

Definition 2.11 (Call-Free Languages). For any language of gossip L we define a call-free fragment L[−] which
omits the [ab] modality. For the basic language of gossip we get the following definition.

Let a, b ∈ Ag be agents. We define the language LG
[−] as

φ ::= Sab | ¬φ | (φ ∧ φ) | Kaφ.

2.4 Models and Semantics for Basic Gossip

We now introduce gossip models as defined by [DHK20], but we restrict ourselves to only the definitions relevant for
t = ( , ⋄, β) and t = ( , ⋄, β). Contrary to other literature, the models defined by these authors are more general
and are based on arbitrary initial models that describe an initial setting of the gossip problem. A gossip model then
follows from lifting this definition to include calls.

This class of such gossip models is not usually of interest. Classically, the gossip problem starts in a specific
state: each agent knows only their own secret and this is common knowledge. To retrieve the desired model, we
start from a specific initial model that coincides with this state. We call this initial model the initial root model and
the gossip model that follows from it the tree model.

– 7 –



Chapter 2 – Preliminaries

Initial Models for Basic Gossip

We only require that two basic assumptions in the gossip problem are fulfilled: agents know their own secret, and
they are aware of what secrets they know.

Definition 2.12 (Initial Model for Basic Gossip). An initial model is a triple I = ⟨W0, R0, V0⟩ where W0 is a set of
initial worlds, R0 : Ag → 2W0×W0 is an equivalence relation for each agent, and V0 : Ag ×W0 → 2S is a function
mapping each agent to the initial set of secrets known in some world, which satisfies (i) a ∈ V0(a,w) for all w ∈ W

and (ii) if (w1, w2) ∈ R0(a) then V0(a,w1) = V0(a,w2).

An initial model may therefore contain possible worlds that (some) agents cannot distinguish, as the following
example shows.

Example 2.13. See Figure 2.1. There are three agents. Agent a knows her own secret as well as those of agent
b and c. Agent c knows which secrets a knows, but only knows their own secret themselves. Agent b knows that c
only knows their own secret, but does not know what secrets a knows and only knows his own secret himself. In this
setting, some secrets are shared and some are not. Moreover, the distribution of secrets is not common knowledge: b
is not be aware what the secret distribution is, but agent c and a are.

w1, ϵ

∅

w2, ϵ

Sab

w3, ϵ

Sab, Sac

b b

b

Figure 2.1. The initial model for Example 2.13. We omit Saa for all agents a which hold in
all worlds, as well as reflexive relations. The actual world is w3. Agent b does not know this,
while a and c do.

Initial models are straightforward Kripke frames. We could define semantics on them in the standard way. We
do not need these semantics for basic gossip, but we will define semantics on initial models for protocol-dependent
gossip in chapter 4.

Lifting an Initial Model

An initial model describes the situation before any calls take place and has no notion of calls. In order to get a
gossip model, we lift the definition of the initial model. This effectively induces calls into the model. Lifting the
worlds and valuation is relatively straightforward, while lifting the relation is most consequential for the semantics of
the resulting gossip model.

Definition 2.14 (Gossip State). Given an initial model I = ⟨W0, R0, V0⟩, a gossip state is a pair (w, σ) where
w ∈ W0 is an initial world and σ is a call sequence. We let W I be the set of all gossip states relative to I and we
write W when the initial model is clear from context.

A gossip states describes exactly any situation in a gossip model: given an initial setting, the effects of calls are
fully deterministic.

The secrets known by an agent, and thus the valuation of atoms for that agent, is defined as follows. We implicitly
assume bidirectional calls (⋄): both the caller and callee share all secrets that they know.
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Definition 2.15. Given an initial model I = ⟨W0, R0, V0⟩, we denote the set of secrets known by a, given some
gossip state (w, σ) ∈ W , by V (a,w, σ) or Va(w, σ) for short. We define V recursively as follows.

Va(w, ϵ) = V0(a,w) Empty sequence

Va(w, σ.bc) = Vb(w, σ) ∪ Vc(w, σ) iff a ∈ {b, c}

Va(w, σ.bc) = Va(w, σ) iff a /∈ {b, c}

We finally need to lift the relation. It is only at this point that the privacy type p affects the definition. Here we
define the synchronous ( ) and asynchronous ( ) version. For a complete overview, we refer to [DHK20].

Synchronicity or asynchronicity is solely determined by whether or not agents can necessarily distinguish call
sequences of different length. In order to make the semantics synchronous, we will require that call sequences of
related states are of the same length. We do not make this requirement in the asynchronous version. The last case
of the definition reflects this difference.

As a result, agents in the asynchronous case are oblivious to any calls taking place that they are not involved in.
In particular this means they consider it possible from the very start that any arbitrary number of calls has taken
place without their involvement.

Definition 2.16 (Basic Epistemic Relation). Given an initial model I = ⟨W0, R0, V0⟩, we lift the initial relation
R0(a) ⊆ W0 ×W0 for some agent a to ∼a⊆ W ×W such that:

(wi, ϵ) ∼a (wj , ϵ) iff (wi, wj) ∈ R0

(wi, σ.ab) ∼a (wj , τ.ab) iff (wi, σ) ∼a (wj , τ);

and Vb(wi, σ) = Vb(wj , τ);

(wi, σ.ba) ∼a (wj , τ.ba) iff (wi, σ) ∼a (wj , τ)

and Vb(wi, σ) = Vb(wj , τ);

and for the synchronous privacy type we let

(wi, σ.bc) ∼a (wj , τ.de) iff (wi, σ) ∼a (wj , τ)

and a /∈ {b, c, d, e};

while for the asynchronous privacy type we let

(wi, σ.bc) ∼a (wj , τ) iff (wi, σ) ∼a (wj , τ)

and a /∈ {b, c}.

Remark 2.17. In other literature there are no (arbitrary) initial models and therefore no definition of R0 [DG22;
DGR23; Dit+19]. In these cases, the relations are defined in the same way but the initial worlds wi, wj are omitted
and the base case is simply ϵ ∼ ϵ.

Gossip Models

With all elements of the induced model defined, all that remains is to tie them together. A gossip model is an initial
model that is lifted to include specific call semantics. Given a certain call type, the gossip model is fully determined
by its initial model.

Definition 2.18 (Basic Gossip Model). Let I := ⟨W0, R0, V0⟩ be an initial model. Given a call type t = (p, d, o),
we define the (induced) gossip model M t(I) := ⟨W,∼, V ⟩ with W and V as defined in definitions 2.14 and 2.15
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respectively, and the epistemic relation ∼a for each agent a ∈ Ag as defined in definition 2.16. When the initial
model or call type are clear from context, we omit them and write M or M t.

Remark 2.19. As we use a fixed d = ⋄ and o = β, we will only specify the privacy type p and write M or M .

After lifting an initial model to an induced model M t(I) to include all call sequences, we find that M t(I) forms
a forest, with each initial world as the root of a call tree, depicted in Figure 2.2.

w1, ϵ

∅

w2, ϵ

Sab

w3, ϵ

Sab, Sac

b b

b

w1, ab

Sab, Sba

w2, ab

Sab, Sba

w3, ab

Sab, Sac, Sba, Sbc

abab ab

...
...

...

w1, bc

Sbc, Scb

w2, bc

Sbc, Scb

w3, bc

Sbc, Scb

bcbc bc

...
...

...

. . .. . . . . .

Figure 2.2. A partial gossip model for p = induced from the initial model I from
example 2.13. The three red states are b-indistinguishable from each other. Reflexive arrows
are omitted.

Definition 2.20 (Semantics on Basic Gossip Models). We define |= on pointed gossip models as follows. Let M be
a gossip model induced from I = ⟨W0, R0, V0⟩ and w ∈ W0 some initial world. Finally, let σ be a call sequence.

M, (w, σ) |= Sab ⇐⇒ b ∈ Va(w, σ)

M, (w, σ) |= ¬φ ⇐⇒ M, (w, σ) |̸= φ

M, (w, σ) |= φ ∧ ψ ⇐⇒ M, (w, σ) |= ψ and M, (w, σ) |= ψ

M, (w, σ) |= Kaφ ⇐⇒ M, (w′, σ′) |= φ for all (w′, σ′) s.t. (w, σ) ∼a (w′, σ′)

M, (w, σ) |= [ab]φ ⇐⇒ M, (w, σ.ab) |= φ

For a class of models M, we call a formula φ valid on M if for all models M ∈ M and for all states s of M we
have M, s |= φ. For a single model M , we call φ valid on M if for all states s of M we have M, s |= φ.

Tree Models

When the initial world is common knowledge among the agents – hence the initial distribution of secrets is common
knowledge – I consists of only one world. Such an initial distribution of secrets could be arbitrary, but we often talk
about the most common setting for gossip: each agent knows only their own secret and this is common knowledge
[DHK20].

Definition 2.21 (Initial Root Model for Basic Gossip). Let Iroot := ⟨Wroot, Rroot, Vroot⟩ be an initial model, where

• Wroot := {wroot};

• Rroot(a) := {(wroot, wroot)} for all agents a ∈ Ag;

• Vroot(a,wroot) := {Saa} for all agents a ∈ Ag.

We call Iroot the initial root model. See Figure 2.3.
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Chapter 2 – Preliminaries

wroot

Saa, Sbb, Scc

a, b, c

Figure 2.3. The Initial Root Model for three agents a, b, c.

We can then lift a tree model from Iroot. The name refers to the structure of the model, which is now a single
tree of calls. There is a tree model for each call type t, but we only mean models lifted from Iroot by this name.

Definition 2.22 (Tree Models for Basic Gossip). A tree model M t
tree := M t(Iroot) is a gossip model lifted from the

initial root model Iroot given a call type t. When the tree model that we consider is clear from context, we often omit
it fully and simply refer to the call sequences, such that σ |= φ as a shorthand for M t

tree, (wroot, σ) |= φ.

Remark 2.23. In literature, the term tree model is not used other than by [DHK20]. Other studies often consider
the tree model as the only model and usually focus on one type of semantics.

In the tree model, the initial state is easily defined by the following formula.

Definition 2.24 (Initial state – φϵ). We define the following formula to describe the initial state at the empty call
sequence ϵ in the tree model.

φϵ :=
⋀︂
i=j

Sij
⋀︂
i̸=j

¬Sij

Lemma 2.25. The following statements are equivalent.

• M t
tree, (wroot, σ) |= φϵ for any call type t.

• σ = ϵ

• |σ| = 0

Proof. It is clear that φϵ holds in (wroot, ϵ). After any (first) call ab, two agents necessarily exchange their secrets, so
Sab and Sba hold, so φϵ does not anymore. As agents do not forget secrets, this will remain true for any following
calls.
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Chapter 3

Axiomatisations for Basic Gossip

In this section we discuss the axiomatisation for basic logic as proposed and shown to be sound and complete by
[DHK20]. This proof system consists of three layers: a call-free proof system, call axioms, and tree rules. Each
additional layer generates a larger logic.

We additionally make some contributions by proposing a few stylistic alterations to the proof systems. Specifically,
we show that the call-free proof system is not minimal, and that some axioms are longer than strictly needed. Lastly,
we relate these logics to the semantic definitions used in [DG24].

The axiomatisation as introduced originally is highly parameterised because it incorporates versions for all call
types. We limit ourselves here to only the two most prevalent call types ( , ⋄, β) and ( , ⋄, β) and do not discuss any
other. Throughout this section, we will therefore assume the bidirectional (⋄) and inspect-then-merge (β) types and
do not specify when axioms depend on these types. See [DHK20] for a complete overview of the axioms and their
dependence on the call type.

3.1 Axiomatisation for Call-Free Basic Gossip

The following axiomatisation is sound and strongly complete for call-free gossip [DHK20]. The proof system has
many familiar elements: it contains the axioms of S5 and the only additions are gossip-specific axioms Own, PFi,
and NPi. These correspond directly to the requirements on the initial models.

Table 3.1. The rules and axioms of G defined by [DHK20].

Propositional Knowledge Secrets (static)
Prop propositional tautologies K Ka(φ → ψ) → (Kaφ → Kaψ) Own Saa
MP ⊢ φ,⊢ φ → ψ imply ⊢ ψ T Kaφ → φ PFi Sab → KaSab
Sub ⊢ φ ↔ ψ implies ⊢ χ ↔ χ[φ/ψ] 4 Kaφ → KaKaφ NPi ¬Sab → Ka¬Sab

5 ¬Kaφ → Ka¬Kaφ
Nec(K) ⊢ φ implies ⊢ Kaφ

The system G is not closed under uniform substitution but instead under substitution of equivalents, denoted by
Sub. In particular, the axioms for secrets cannot be uniformly substituted. We do however consider the logic a
normal modal logic as by [HHI13] of closure under modus ponens (MP), the K axiom and necessitation (Nec(K)).
This normality is sufficient for our goals.

PFi and NPi respectively provide positive and negative introspection on atoms: agents know what they do and
do not know. However, while G includes both, only one is strictly needed. Regardless of which one we choose, the
other can be derived using symmetry (B). We give the derivation in the following proof. While B is not part of the
axiomatisation, it is commonly known that S5 = BT45 and so B still follows from our proof system [BRV01].
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Chapter 3 – Axiomatisations for Basic Gossip

While only one of the two axioms is needed, we will still include both in the system. In the first place because
both are equally intrinsic properties of the problem, so excluding one would become an arbitrary choice. Secondly,
future work might consider asymmetric gossip models and accidentally lose the excluded introspection property.

Lemma 3.1. The axiom NPi follows from the other axioms in G.

Proof. We assume ¬Sab to prove KP
a ¬Sab with the following derivation. By →-introduction then ¬Sab → KP

a ¬Sab.
The indented lines contain technical steps for substitution and may be ignored for the general proof structure.

1 ¬Sab

2 ¬Sab → KP
a

ˆ︁KP
a ¬Sab B

3 KP
a

ˆ︁KP
a ¬Sab MP, 2, 1

4 ˆ︁KP
a ¬Sab ↔ ¬KP

a ¬¬Sab Def. ˆ︁KP
a

5 KP
a

ˆ︁KP
a ¬Sab ↔ KP

a ¬KP
a ¬¬Sab Sub, 4

6 KP
a ¬KP

a ¬¬Sab MP, 3, 5

7 ¬¬Sab ↔ Sab Prop

8 KP
a ¬KP

a ¬¬Sab ↔ KP
a ¬KP

a Sab Sub, 7

9 KP
a ¬KP

a Sab MP, 6, 8

10 Sab → KP
a Sab PFi

11 (Sab → KP
a Sab) → (¬KP

a Sab → ¬Sab) Prop (∗)

12 ¬KP
a Sab → ¬Sab MP, 11, 10

13 KP
a (¬KP

a Sab → ¬Sab) Nec(K), 12

14 KP
a (¬KP

a Sab → ¬Sab) → (KP
a ¬KP

a Sab → KP
a ¬Sab) K

15 KP
a ¬KP

a Sab → KP
a ¬Sab MP, 13, 14

16 KP
a ¬Sab MP, 9, 15

(∗) We use an instance of the tautology of contrapositives: ⊢ (p → q) → (¬q → ¬p).

3.2 Adding Call Reduction Axioms

We now add axioms to G that describe calls. Which axioms are sound depends on the call type, but we only vary
between two call types that only differ in their privacy type. Because the call axioms will contain reduction axioms,
these axioms are strongly complete for the class of gossip models too.

We first introduce the axioms for call basics and call effects, which can be found in Table 3.2. Adding just these
axioms to G does not provide any system of interest, but they do not depend on the privacy type and therefore will
be part of both the synchronous and asynchronous proof system. The call basics axioms describe the interactions of
calls. Specifically they ensure that the call modality is normal and functional. The call effects describe how the
truth of atoms changes during calls.

There is one more set of call axioms that we must add and this is where the two proof systems start diverging. The
observance axioms for the synchronous and asynchronous case are displayed in Tables 3.3 and 3.4 respectively. Together
with the call-free proof system G and the previous call axioms, they form a sound and complete axiomatisation for
either synchronous or asynchronous arbitrary gossip models [DHK20]. We call these systems G and G respectively
and obtain them by combining the axioms from Table 3.1 and Table 3.2 with those of Table 3.3 (for synchronous
type ) or with those of Table 3.4 (for asynchronous type ).
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Table 3.2. The call axioms for gossip with directionality type d = ⋄ and observance type
o = β. These axioms are used in all privacy types.

Call Basics Call Effects
K([ab]) [ab](φ → ψ) → ([ab]φ → [ab]ψ) Eff [ab]Scd ↔ (Sad ∨ Sbd) c ∈ {a, b}
Fnc [ab]¬φ ↔ ¬[ab]φ Ext [ab]Scd ↔ Scd c /∈ {a, b}
Nec([ab]) ⊢ φ implies ⊢ [ab]φ

Agents are aware of the calls they are involved in regardless of the privacy type, but the privacy type does
decide what they learn about other calls. The Obs axioms describe the knowledge of both agents in some call.
They do so by considering all calls that may have happened. This is relatively straightforward in the synchronous
case. For the asynchronous case, an arbitrary number of other calls may have happened immediately after the
call an agent was involved in. As there are infinite possibilities, we can no longer consider all of them. Instead
[DHK20] has defined a constant bound that does not depend on φ, but only on the number of agents. Specifically,
Ea(n) := {σ | |σ| ≤ n and σ ∼a ϵ} is the set of call sequences of at most length n that are a-indistinguishable to the
empty sequence1.

While the Pri axioms have a different name, they are observance axioms too in the sense that they describe what
external agents observe. For the synchronous privacy axiom Pri , an agent knows something after a call (that they
are not involved in) if they know it after every call they are not involved in. For the asynchronous case, we combine
two privacy axioms: Pri1 states that an agent’s knowledge is not influenced by calls they do not participate in; Pri2

describes that an agent’s knowledge must persist after any call sequence that they were not involved in, because
they consider it possible that the sequence has happened already.

Table 3.3. Observance axioms for t = ( , ⋄, β).

Synchronous Observance for Basic Gossip
Obs1 [ab]Kaφ ↔

⋁︁
R⊆S(ObR ∧Ka(OaR → [ab]φ)) a ∈ {a, b}

Obs2 [ab]Kbφ ↔
⋁︁

R⊆S(OaR ∧Kb(ObR → [ab]φ)) b ∈ {a, b}
Pri [ab]Kcφ ↔

⋀︁
d,e ̸=c Kc[de]φ c /∈ {a, b}

Table 3.4. Observance axioms for t = ( , ⋄, β).

Asynchronous Observance for Basic Gossip
Obs1 [ab]Kaφ ↔

⋁︁
R⊆S(ObR ∧Ka(ObR →

⋀︁
σ∈Ea(2|Ag|3)[ab.σ]φ)) a ∈ {a, b}

Obs2 [ab]Kbφ ↔
⋁︁

R⊆S(OaR ∧Kb(OaR →
⋀︁

σ∈Ea(2|Ag|3)[ab.σ]φ)) b ∈ {a, b}
Pri1 [σ]Kcφ ↔ Kcφ c /∈ Ag(σ)
Pri2 Kcφ ↔ Kc[σ]φ c /∈ Ag(σ)

Remark 3.2. The Obs axioms are completely symmetric. This should be expected, as the directionality type d = ⋄
is symmetric too. For this reason, [DHK20] uses the following single but different axiom for , which is sound but
introduces redundant disjuncts. The version exists too.

Obs [ab]KP
c φ ↔

⋁︂
Q,R⊆S

(OaQ ∧ObR ∧KP
c ((OaQ ∧ObR) → [ab]φ))

1We do not use this bound in this thesis. See corollary 5.6 in [DHK20] for more information.
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These disjuncts vary over the possible sets of secrets that the agent c ∈ {a, b} knows. However, as c knows what
secrets she knows herself, this is not needed. In this thesis we change the axiom to avoid this redundancy. For a
proof of the soundness of these versions, we refer to the proof of lemma 5.14, which shows the soundness of the
protocol-dependent versions. The proof is easily adapted to the basic case.

The proof systems G and G contain reduction axioms for the call modality [ab]. These are axioms that are
equivalences where the formulas within any call modality on the right hand side are strict subformulas of the formula
within the call modality on the left hand side [DHK20].

These call reductions play a crucial role: because the proof system G is strongly complete for the call-free
language on the gossip models, the call reduction axioms allow us to immediately obtain strong completeness for the
full language without any additional work.

One reduction axiom is missing: the K([ab]) axiom is an implication and not an equivalence. However, using
functionality of the call modality (Fnc) one can show its converse to obtain the following validity [DHK20].

Fact 3.3. G ⊢ [ab](φ → ψ) ↔ ([ab]φ → [ab]ψ)

The following result has been proven for all call types [DHK20]. However, the authors have omitted the proofs
for the two call types that we consider. We give the proof for the synchronous case here because it is similar to the
protocol-dependent setting. In [DHK20], this is the call type t = ( , ⋄, β). The asynchronous version ( , ⋄, β) is more
involved and requires a different measure for the induction.

Lemma 3.4. For every formula φ ∈ LG there is a formula LG
[−] such that G ⊢ φ ↔ ψ.

Proof. Without loss of generality we assume that φ only contains the boolean connectives ¬ and → as these are
truth-functionally complete. Using Sub it furthermore suffices to consider formulas of the form φ = [ab]χ with
χ ∈ LG

[−]. We use induction on the structure of χ to show ⊢ [ab]χ ↔ ψ for some ψ ∈ LG
[−].

Base case. Suppose χ = Scd. If c /∈ {a, b}, then Ext yields ⊢ [ab]Scd ↔ Scd. Else we have c ∈ {a, b} and Eff
yields ⊢ [ab]Scd ↔ (Sad ∨ Sbd). Both Scd ∈ LG

[−] and (Sad ∨ Sbd) ∈ LG
[−], which concludes the base case.

Induction Hypothesis. Let χ ∈ LG
[−] be a formula. Suppose that for every strict subformula χ′ of χ, we have

some ψ′ ∈ LG
[−] such that ⊢ [ab]χ′ ↔ ψ′.

Induction Step.

• Suppose χ = ¬χ′. From Fnc we obtain ⊢ [ab]¬χ′ ↔ ¬[ab]χ′. By IH on χ′ we have ⊢ [ab]χ′ ↔ ψ′. With Sub
we find that ⊢ [ab]¬χ′ ↔ ¬ψ′, the right hand of which is in LG

[−].

• Suppose χ = (χ′ → χ′′). By fact 3.3 we have ⊢ [ab](χ′ → χ′′) ↔ ([ab]χ′ → [ab]χ′′). By IH on χ′ and χ′′ we
get ⊢ [ab]χ′ ↔ ψ′ and ⊢ [ab]χ′′ ↔ ψ′′. Using Sub this yields ⊢ [ab](χ′ → χ′′) ↔ (ψ′ → ψ′′), the right hand of
which is in LG

[−].

• Suppose χ = Kcχ
′. We distinguish three cases for c.

For c = a we use Obs1 to get [ab]Kcχ
′ ↔

⋁︁
R⊆S(ObR∧Kc(OaR → [ab]χ′)). By IH on χ′ we have ⊢ [ab]χ′ ↔ ψ′.

Using Sub we find that [ab]Kcχ ↔
⋁︁

R⊆S(ObR∧Kc(OaR → ψ′)), the right hand of which is a formula in LG
[−].

For c = b we instead use Obs2 and proceed analogously.

For c /∈ {a, b} we use Pri to get [ab]Kcχ ↔
⋀︁

d,e̸=c Kc[de]χ′. By IH on χ′ we have ⊢ [ab]χ′ ↔ ψ′ and
⊢ [de]χ ↔ ψde for all d, e ̸= a. Using Sub we find that [ab]Kcχ ↔

⋀︁
d,e̸=c Kcψde, the right hand of which is a

formula in LG
[−].

This finishes the induction on χ. We conclude that for every [ab]χ ∈ LG we have an equivalent ψ ∈ LG
[−]. As every

formula φ ∈ LP can be written in this form, we are done.

For each formula we can find a call-free version, which we call its call reductions.

Definition 3.5 (Call-Reduction). Given a formula φ ∈ LG, we call ψ ∈ LG
[−] the call reduction of φ if ⊢ φ ↔ ψ.
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3.3 Axiomatisations for Tree Models

At this point we have three proof systems: G for the call-free language, G for synchronous arbitrary gossip models
and G for asynchronous arbitrary gossip models. However, none of these are models often used in literature, where
only the specific tree models are considered. We can obtain the axiomatisation for these models by adding yet one
final set of rules, which stipulates that any validities that follow from the initial root world of the tree model must
be included. We call these tree rules and write Gtree and Gtree to denote the proof systems including them. Table 3.5
contains the synchronous tree rule and Table 3.6 lists the asynchronous tree rules.

The main challenge with the tree rules is the common knowledge in the initial world: the gossip language does not
have a modality for common knowledge, but it can be approximated [DHK20]. The approach to this approximation
is different for the synchronous and asynchronous case, leading to different axiomatisations.

In the synchronous case, this can be done rather straightforwardly using n-bisimulation. The asynchronous case
is again more involved. Whereas with the synchronous case an agent considers only a finite number of call sequences
possible, in the asynchronous case this becomes infinite: any call sequence of arbitrary length may have happened
without their knowledge.

The formula root equals φϵ and describes the initial distribution of secrets in the tree model. The synchronous
version uses rootn to approximate the common knowledge in the initial root world up to n-bisimilarity. We will
discuss this construction in more detail in chapter 5. For the rationale behind the asynchronous version we refer to
[DHK20].

root0 := φϵ

rooti+1 := rooti ∧
⋀︂

a∈Ag

Karooti

Table 3.5. Tree rules for privacy type p = , where n is the degree of φ and m is the number
of n-bisimilarity classes.

Synchronous Tree Rule
Tree If ⊢ rootn → [σ]φ for all σ s.t. |σ| ≤ m then ⊢ φ

Table 3.6. Tree rules for privacy type p = , where n is the degree of φ and m is the number
of n-bisimilarity classes.

Asynchronous Tree Rules

Tree ,m
1 If ⊢ root → [σ]φ for all σ s.t. |σ| ≤ m · (|(|τ) + 1)

and (wroot, σ) ∼a (wroot, τ) then ⊢ root → [τ ]Kaφ

Tree ,m
2 If ⊢ root → [σ]φ for some σ s.t. |σ| ≤ m · (|(|τ) + 1)

and (wroot, σ) ∼a (wroot, τ) then ⊢ root → [τ ] ˆ︁Kaφ

Tree ,m
3 If ⊢ root → [σ]φ for all σ s.t. |σ| ≤ m then ⊢ φ

3.4 Identifying the Logic for “Limits to Gossip”

The paper “Limits to Gossip” [DG22] and its later extension [DG24] demonstrate a limit to the level of higher order
epistemic knowledge that can be achieved in the gossip problem. We show that there must exist a syntactic proof in
the proof system Gtree because the semantics in [DG22] coincide with the tree model defined in definition 2.22.
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Throughout this section, we will distinguish the operators defined in [DG22] from those defined in chapter 2 with
the superscript (·LtG).

Fact 3.6. For any agent, the epistemic relation between call sequences in [DG22] is equivalent to the asynchronous
epistemic relation in definition 2.16 on the asynchronous tree model Mtree, that is

∀a : σ ∼LtG
a τ ⇐⇒ (wroot, σ) ∼a (wroot, τ).

Lemma 3.7. Let φ ∈ LG
[−] and σ be some call sequence. We have σ |=LtG φ if and only if Mtree, (wroot, σ) |= φ.

Proof. We use induction on the structure of φ. We omit all cases except the knowledge modality, as they are not
very insightful.

Induction Hypothesis. Let φ ∈ LP 1
[−] be arbitrary. Suppose that for all strict subformulas ψ of φ we have

σ |=LtG ψ if and only if Mtree, (wroot, σ) |= φ.
Induction Step. Let φ = Kaψ.

Mtree, (wroot, σ) |= Kaψ

⇐⇒ For all (w′, σ′) : (wroot, σ) ∼a (w′, σ′) implies Mtree, (w′, σ′) |= ψ (Def. semantics Ka)

⇐⇒ For all (wroot, σ
′) : (wroot, σ) ∼a (w′, σ′) implies Mtree, (wroot, σ

′) |= ψ (Def. Mtree)

⇐⇒ For all (wroot, σ
′) : σ ∼LtG

a σ′ implies Mtree, (wroot, σ
′) |= ψ (By fact 3.6)

⇐⇒ For all σ′ : σ ∼LtG
a σ′ implies σ′ |=LtG ψ (By IH)

⇐⇒ σ |=LtG Kaψ (Def. semantics of KLtG
a )

Hence, the semantics of the model in [DG22] are equivalent to those of Mtree, for which we have a sound and
complete proof system for the language LG. Since LG

[−] is a fragment of LG we can use its proof system to obtain a
proof in LG.

Theorem 3.8. Let φ ∈ LG
[−]. If we have σ |=LtG φ for all σ, then there exists a proof for φ in Gtree.

Proof. Let φ ∈ LG
[−] be arbitrary. By lemma 3.7 the semantics on |=LtG are equivalent to the semantics of Mtree.

Since LG
[−] is a fragment of LG, we have φ ∈ LG too. Because Gtree is a complete proof system for LG on Mtree, we

can thus derive φ from it.

The main result of [DG22] is a semantic proof that ¬EEExpAg is a validity. It uses two abbreviations that we
have not yet discussed:

• Eφ :=
⋀︁

a∈Ag Kaφ for “Everyone knows that φ is true” ;

• ExpA :=
⋀︁

a,b∈Ag Sab for “Agents A ⊆ Ag are experts”.

The formula is thus read as “Not everyone knows that everyone knows that everyone is an expert”. Moreover, the
more recent extension of this paper shows that for some agent a, the formula ¬KaEExpAg is a validity too [DG24].

Corollary 3.9. There exists a syntactic proof for ¬EEExpAg and ¬KaEExpAg in Gtree.
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Chapter 4

Protocol-Dependent Gossip

In this section we introduce the notion of protocol-dependent knowledge in gossip models. We define gossip models
with protocol-dependent knowledge in a novel way, that unites their original definition by [Dit+19] with the model
construction of [DHK20].

4.1 Language and Syntax

Definition 4.1 (Protocol & Protocol Conditions). A protocol P is a set of n · (n− 1) protocol conditions Pab for
each pair of agents a ̸= b ∈ Ag. We denote a protocol by a Roman capital letter and let P be the set of all protocols.

Definition 4.2 (P -Permitted Calls). Given a protocol P , a call ab is P -permitted if the protocol condition Pab

is true in the state at which the call is made. A call sequence σ is P -permitted if for each call ab in σ its protocol
condition Pab is true when the call was made. When a call or sequence is not P -permitted, we call it P -illegal. In
both cases, we simply say permitted or illegal if the protocol is clear from context.

There are various well-known protocols for gossip, such as the protocol LNS (Learn New Secrets). In LNS, agents
are only allowed to make a call to an agents whose secret they do not yet know. We will also make use of the
somewhat trivial protocol ANY (Any Call), which allows any call.

Definition 4.3 (Learn New Secrets). Let LNS be the protocol defined by the following protocol conditions.

LNSab := ¬Sab for all a ̸= b ∈ Ag

Definition 4.4 (Any Call). Let ANY be the protocol defined by the following protocol conditions.

ANYab := ⊤ for all a ̸= b ∈ Ag

The language for protocol-dependent gossip is defined as follows [Dit+19]. As there are infinitely many protocols,
the following language has infinitely many knowledge modalities.

Definition 4.5 (Protocol-dependent Language). Let a, b ∈ Ag be agents and P ∈ P a protocol. We define the
language LP for arbitrary protocols P as

φ ::= Sab | ¬φ | (φ ∧ φ) | KP
a φ | [ab]φ.

We again define a static version of this language LP
[−] by omitting the call modality.

The relation between the protocol P in definition 4.1 and the epistemic operator KP
a in definition 4.5 may be seen

as follows [Dit+19]: for n agents, let KP
a (Pab, ..., Pmn, φ) be an operator with arity n · (n− 1) + 1 for the n · (n− 1)
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protocol conditions and the subformula φ itself. In order to ensure that such a definition is well-founded, we do not
allow self-reference of protocols: a protocol condition of P cannot contain the KP operator (for any agent), nor can
it contain any protocol that itself refers to KP , directly or indirectly.

With this syntactic justification it becomes natural to view the protocol conditions as subformulas of KP
a . We

provide the formal definition here, which was not yet provided by [Dit+19].

Definition 4.6 (Subformula in LP ). The set of subformulas in LP is defined as follows.

sub(Sab) := {Sab}

sub(¬φ) := {¬φ} ∪ sub(φ)

sub(φ ∧ ψ) := {φ ∧ ψ} ∪ sub(φ) ∪ sub(ψ)

sub(KP
a φ) := {KP

a φ} ∪ {Pab | a ̸= b ∈ Ag} ∪ sub(φ)

sub([ab]φ) := {[ab]φ} ∪ sub(φ)

We call sub(φ) \ φ the set of strict subformulas of φ.

The protocol-dependent language does not have a regular knowledge modality. However, we define Ka := KANY
a

as an abbreviation in LP because ANY is semantically equivalent to the basic epistemic modality Ka [Dit+19].
While LP permits any protocol, we can also restrict this language by limiting the protocols that can be used.

Various results in this thesis will be about the language restricted to only one protocol.

Definition 4.7 (Protocol-Dependent Language with a Single Protocol). Let a, b ∈ Ag be agents and P be an
arbitrary but fixed protocol. We define the language LP 1 as follows.

φ ::= Sab | ¬φ | (φ ∧ φ) | KP
a φ | [ab]φ.

4.2 Models and Semantics

We now propose a definition for protocol-dependent gossip models. This definition differs from [Dit+19] and aims to
unify the semantics of protocol-dependent knowledge with the model construction from chapter 2. In particular, we
will define initial models for protocol-dependent gossip, which generalise the setting of the gossip problem.

Initial Models

We first define initial models for protocol-dependent gossip. These models generalise the problem for arbitrary
distributions and agent knowledge as in section 2.4, but in the protocol-dependent setting they also generalise the
concept of protocol violation, allowing that protocols may already be violated in the initial state.

Definition 4.8 (Initial Model for Protocol-Dependent Gossip). Let P be a set of protocols. A protocol-dependent
initial model is a triple IP = ⟨W0, R0, V0⟩ where W is a set of initial worlds, R0 : Ag × P → 2W0×W0 is a relation
for each agent and protocol that is transitive and symmetric, and V0 : Ag ×W0 → 2S is a function mapping each
agent to the initial set of secrets known in some world, which satisfies (i) a ∈ V0(a,w) for all w ∈ W and (ii) if
(w1, w2) ∈ R0(a) then V0(a,w1) = V0(a,w2). When the set of protocols is clear from context, we omit it and write I.

The definition above is very similar to definition 2.12. There are two differences. Firstly, R0 is now extended to
a unique relation for each P ∈ P. More importantly, the relations have lost their reflexivity and therefore are no
longer necessarily equivalence relations. Definition 4.8 permits reflexive relations too, making it a generalisation of
definition 2.12 of initial models for basic gossip.
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Remark 4.9. These models may contain unconnected worlds. We usually relate an unconnected world to protocol
violation. However, a protocol cannot be violated when no calls have happened. Since initial models describe the
situation before any calls, it makes sense to require that the model is reflexive. We could model such a situation simply
in the same way as definition 2.12, with one relation per agent that all are equivalence relations. Definition 4.8 is
more lenient however and loses the relation between unconnectedness and protocol violation. We motivate this choice
with two arguments. Most importantly, we will need this loosened definition in order to construct the canonical model
and show completeness. Secondly, we are not particularly interested in gossip models starting in arbitrary states.
Because we are mainly looking for an axiomatisation for the tree model, there is no problem in utilising a larger class
of models to achieve this. We discuss these decisions in more detail in chapter 8.

We can define semantics on these initial models. We will use these in the completeness proof and therefore define
the semantic relation here.

Definition 4.10 (Semantics on Protocol-Dependent Initial Models). By |=i we denote the following standard
semantic relation for modal logics on pointed initial models. Let I be an initial model and w a world in I.

I, w |=i Sab ⇐⇒ b ∈ V0(a,w, σ)

I, w |=i ¬φ ⇐⇒ I, w ̸|=i φ

I,w |=i φ ∧ ψ ⇐⇒ I, w |=i φ and I, w |=i ψ

I,w |=i K
P
a φ ⇐⇒ I, w′ |=i φ for all w′ s.t. (w,w′) ∈ R0(a, P )

Lifting the Model

The definitions for the set of states and the valuations of these states remain the same as the basic case and can be
reviewed in definitions 2.14 and 2.15.

With protocol-dependent knowledge, Agents only consider states possible whose call sequences are permitted by
the protocol they assume. For each protocol P ∈ P we must verify whether the call sequence σ satisfies the protocol
conditions at each call.

The following definition for the synchronous case stays close to [Dit+19]. In particular, this relation is a partial
equivalence and therefore is transitive and symmetric. It is an equivalence relation when restricted to P -permitted
states. The asynchronous case was not defined before but is a simple modification.

Definition 4.11 (Protocol-Dependent Relation). Given an initial model IP = ⟨W0, R0, V0⟩, we lift the initial
relation R0(a, P ) ⊆ W0 ×W0 for some protocol P and agent a to ∼P

a ⊆ W ×W such that:

(wi, ϵ) ∼P
a (wj , ϵ) iff (wi, wj) ∈ R0;

(wi, σ.ab) ∼P
a (wj , τ.ab) iff (wi, σ) ∼P

a (wj , τ)

and Vb(wi, σ) = Vb(wj , τ)

and (wi, σ) |= Pab and (wj , τ) |= Pab;

(wi, σ.ba) ∼P
a (wj , τ.ba) iff (wi, σ) ∼P

a (wj , τ)

and Vb(wi, σ) = Vb(wj , τ)

and (wi, σ) |= Pba and (wj , τ) |= Pba;

and for the synchronous privacy type we let

(wi, σ.bc) ∼P
a (wj , τ) iff (wi, σ) ∼P

a (wj , τ)

and a /∈ {b, c}

and (wi, σ) |= Pbc and (wj , τ) |= Pde;
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while for the asynchronous privacy type we let

(wi, σ.bc) ∼P
a (wj , τ) iff (wi, σ) ∼P

a (wj , τ)

and a /∈ {b, c}

and (wi, σ) |= Pbc.

Definition 4.12 (Protocol-Dependent Gossip Model). Let IP := ⟨W0, R0, V0⟩ be a protocol-dependent initial model
for a set of protocols P. Given a call type t, we define an (induced) gossip model M t

PD(I) := ⟨W,∼, V ⟩ with W and
V as defined in definitions 2.14 and 2.15 respectively„ and the epistemic relation ∼P

a for each agent a ∈ Ag and
protocol P ∈ P as defined in definition 4.11. When the initial model or privacy level are clear from context, we omit
them and write M or M t

PD.

Observe that while protocols may not allow certain calls, it is always possible to execute each call. The trees are
therefore identical in shape to the basic gossip models.

Remark 4.13. We could use definition 4.8 as initial models for basic gossip models too. However, this will lead to
a larger class of basic (induced) gossip models and this class of models would not satisfy S5.

We again define the semantics on these models in the standard way. The only difference with the semantics on
the basic gossip is the replacement of the Ka modality for KP

a .

Definition 4.14 (Semantics on Protocol-Dependent Gossip Models). We define |= on pointed protocol-dependent
gossip models as follows. Let M = M t

PD(I) be a gossip model induced from I = ⟨W0, R0, V0⟩ and w ∈ W0 some
initial world. Finally, let σ be a call sequence.

M, (w, σ) |= Sab ⇐⇒ b ∈ Va(w, σ)

M, (w, σ) |= ¬φ ⇐⇒ M, (w, σ) |̸= φ

M, (w, σ) |= φ ∧ ψ ⇐⇒ M, (w, σ) |= ψ and M, (w, σ) |= ψ

M, (w, σ) |= KP
a φ ⇐⇒ M, (w′, σ′) |= φ for all (w′, σ′) s.t. (w, σ) ∼P

a (w′, σ′)

M, (w, σ) |= [ab]φ ⇐⇒ M, (w, σ.ab) |= φ

For a class of models M, we call a formula φ valid on M if for all models M ∈ M and for all states s of M we
have M, s |= φ. For a single model M , we call φ valid on M if for all states s of M we have M, s |= φ.

Tree Models

We finally introduce the tree model of protocol-dependent gossip classes, in the same way as with the basic gossip
classes. It is important to stress that the initial tree model remains identical to definition 2.21, except for the
technical addition of extending the initial relation to a protocol set P. This also means that all relations in the
initial tree model are equivalence relations and satisfy S5. However, this property is lost for any non-trivial protocol
as soon as the initial model is lifted.

Definition 4.15 (Protocol-Dependent Initial Root Model). Given a set of protocols P, let IP
root = ⟨Wroot, Rroot, Vroot⟩

with:

• Wroot := {wroot};

• Rroot(a, P ) := {(wroot, wroot)} all agents a ∈ Ag and protocols P ∈ P;

• Vroot(a,wroot) := {Saa} all agents a ∈ Ag.
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Definition 4.16 (Tree Models for Protocol-Dependent Gossip). A protocol-dependent tree model M t
PDtree :=

M t
PD(IP

root) is a gossip model induced from the initial root model IP
root given a call type t. When the tree model is

clear from context, we often omit it fully and simply refer to the call sequences, such that σ |= φ is a shorthand for
M t

PDtree, (wroot, σ) |= φ.

4.3 Effects of Protocol-Dependent Knowledge

Protocol-dependent knowledge modalities allow us to combine protocols freely. Without it, one could still model
protocol-dependent knowledge by encoding it in the regular epistemic relation. However, such a model could only
ever assume one protocol. We have already given an example formula in the introduction, but let us now use concrete
protocols.

KANY
a φ ∧ ¬KLNS

a φ “A knows φ given ANY but not given LNS”

This formula should never be true: ANY allows any call, so all call sequences are ANY-permitted. LNS is a
more specific protocol, so the agent considers less call sequences possible. Hence the epistemic relation of ∼LNS

a is
contained in the relation ∼ANY

a . If φ holds in all ANY-related sequences, then it holds in all LNS-related sequences.
This formula is indeed unsatisfiable in the tree model for protocol-dependent gossip. We can even generalise LNS

to an arbitrary protocol, because no protocol is less restrictive than ANY.

Fact 4.17. In the tree model KANY
a φ implies KP

a φ for any protocol P ∈ P.

The P -dependent relation effectively filters out P -illegal call sequences by verifying each new call. Suppose that
a protocol permits the sequence ab.ba.cd. If we only made the call ab so far, we have not yet violated any protocol
condition. Hence ab and ab.ba are also still P -permitted.

Fact 4.18. All prefixes of a P -permitted call sequence are P -permitted too.

The initial root world is permitted by every protocol, so in the tree model we also get a stronger property.

Fact 4.19. In the tree model, the empty sequence cannot violate any protocol.

Recall that calls, even P -illegal ones, are still always possible. It would not make sense to forbid executing them
because we never settle on one protocol, instead allowing the use of any KP modality at any point. The modality
effectively puts a constraint on the history: we limit the sequences that an agent consider possible. What happens
however if we find ourselves in a P -illegal sequence?1

As can be seen in definition 4.11, a P -illegal sequence is excluded from the epistemic relation ∼P
a . This not only

means that it is unconnected from all gossip states, but also that it is not connected to itself. Since there is not a
single P -dependent relation, the agent starts believing anything vacuously, even ⊥. The agent has turned insane.
We should be clear that the state itself is not inconsistent, only the knowledge base of the agent. Moreover, only
their knowledge base relative to P . It is therefore more correct to say that they are P -insane.

In the tree model this property is stronger. Firstly, any sequence satisfying KP
a ⊥ must be P -illegal because no

initial world can violate any protocol. The violation must come from some call in the sequence. Secondly, the initial
model’s relation agrees for agents and all protocols. We can therefore guarantee that the alarm is globally recognised
by all agents: violation of P for a is identical to violation of P for b.

Corollary 4.20 (Global Alarm). Given the tree model. If a call sequence is P -illegal, then it satisfies KP
a ⊥ for any

agent a.

Corollary 4.21. Given the tree model. If a call sequence is P -permitted, then it satisfies ˆ︁KP
a ⊤ for any agent a.

1This happens almost constantly. Consider the protocol NOTANYab := ⊥ that allows Not Any Call. Every gossip state with a
non-empty sequence is NOTANY-illegal.
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Chapter 5

Axiomatisations for Single
Protocol-Dependent Gossip

In this section we propose axioms for arbitrary protocol-dependent and synchronous gossip models and protocol-
dependent knowledge therein. We will do so in three layers similar to chapter 3 and show soundness and completeness
results for each. Throughout this section we use P as an arbitrary fixed protocol in the language LP 1 and assume
all models to be synchronous.

5.1 Axiomatisation for Call-Free Protocol-Dependent Gossip

The protocol-dependent initial models defined in chapter 4 are in many ways similar to the basic initial models. The
only semantic difference is the lack of reflexivity, which means that the T axiom is no longer sound. We do however
have a transitive and symmetric relation. The axioms that correspond to these properties are 4 and B respectively
[BRV01]. We therefore obtain proof system GP1 in Table 5.1. It generates a normal logic up to the exception of
uniform substitution, similar to its counterpart G in chapter 3 for basic gossip.

Table 5.1. The rules and axioms of GP1 for call-free protocol-dependent gossip with a single
protocol P .

Propositional Knowledge Secrets (static)
Prop propositional tautologies K(P ) KP

a (φ → ψ) → (KP
a φ → KP

a ψ) Own Saa

MP ⊢ φ,⊢ φ → ψ imply ⊢ ψ B(P ) φ → KP
a

ˆ︁KP
a φ PFi(P ) Sab → KP

a Sab
Sub ⊢ φ ↔ ψ implies ⊢ χ ↔ χ[φ/ψ] 4(P ) KP

a φ → KP
a K

P
a φ NPi(P ) ¬Sab → KP

a ¬Sab
Nec(P ) ⊢ φ implies ⊢ KP

a φ

Lemma 5.1. GP1 is sound for the class of protocol-dependent initial models with a single protocol.

Proof. Let a ∈ Ag and IP = ⟨W0, R0, V0⟩ be an arbitrary initial model. The soundness of B(P ) and 4(P ) are
immediate from the symmetry and transitivity of R0(a, P ) in definition 4.8. Own is sound because we have
a ∈ V0(a,w) for all initial worlds w by definition 4.8.

For PFi(P ) and NPi(P ), let w ∈ W0 and a ∈ Ag be arbitrary. We have V0(a,w) = V0(a,w′) for all w′ satisfying
(w,w′) ∈ R0(a, P ) by definition 4.8. Hence for all b ∈ Ag we have that all R0(a, P )-related worlds agree on Sab. By
semantics of KP

a we therefore obtain both w |= Sab implies w |= KP
a Sab as well as w |= ¬Sab implies w |= KP

a ¬Sab.
As w and a were arbitrary, this holds globally and thus PFi(P ) and NPi(P ) are sound.

Lemma 5.2. GP1 is sound for the class of protocol-dependent gossip models with a single protocol.
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Proof. Let a ∈ Ag and Mp
PD(I) = ⟨W,∼, V ⟩ be an arbitrary gossip model with p ∈ { , }. Axioms B(P ) and 4(P )

are sound because ∼P
a in definition 4.11 is symmetric and transitive.

Own is sound in the initial model by lemma 5.1, so for all w ∈ W0 we have Saa ∈ Va(w, ϵ). Own remains sound
for Mp

PD(I) because for any sequence σ and call ab we have Va(w, σ) ⊆ Va(w, σ.ab) by definition 2.15.
Finally, ∼P

a in definition 4.11 retains the same condition for each relation as R0(a, P ) in the initial model, so
PFi(P ) and NPi(P ) also remain sound.

We now show that GP1 is complete for the call-free language on both the initial models and gossip models with
a single protocol. The proof method is similar to that of [DHK20] and relies on defining a canonical initial model
that can be lifted to a canonical gossip model.

We will use the following basic definitions.

Definition 5.3. Given a language L and a logic λ, a set ∆ is λ-consistent if λ,∆ ̸⊢ ⊥ and maximal if for all φ ∈ L
either φ ∈ ∆ or ¬φ ∈ ∆. A set ∆ is maximally λ-consistent (λ-MCS) if it is both maximal and λ-consistent. We
omit the logic λ whenever it is clear from context.

Definition 5.4. Let (KP
a )−∆ := {φ | KP

a φ ∈ ∆} be the modal projection of ∆ for protocol P and agent a.

The canonical initial model is constructed in the standard way, with MCSs as worlds, the valuation of atoms
matching with membership of the MCS, and the modal relationship based on the modal projection of the MCSs.

Definition 5.5 (Canonical Initial Model). The canonical initial model Ic = ⟨W c
0 , R

c
0, V

c
0 ⟩ is given by

• W c
0 := {Γ | Γ is a GP1-MCS};

• Rc
0(a, P ) := {(Γ,∆) ∈ W c ×W c | (KP

a )−Γ ⊆ ∆} for all agents a ∈ Ag;

• V c
0 (a,Γ) := {b | Sab ∈ Γ} for all agents a ∈ Ag and worlds Γ ∈ W c

0 .

While we can lift Ic to obtain a gossip model, we will first limit ourselves to the initial model Ic only. It will
become apparent that this is sufficient for our completeness result.

We first show an existence lemma relating the LP 1
[−]-MCSs to one another. The proof is standard for normal

modal logics [BRV01].

Lemma 5.6 (Existence Lemma). Let Γ be a GP1-MCS. For any agent a ∈ Ag, if ¬KP
a φ ∈ Γ then there is an MCS

∆ such that ¬φ ∈ ∆ and (KP
a )−Γ ⊆ ∆.

Proof. Let a be an arbitrary agent. Let Γ be an MCS and suppose that KP
a φ ∈ Γ. We show that there exists an

MCS ∆ such that ¬φ ∈ ∆ and (KP
a )−Γ ⊆ ∆.

Let ∆− := {¬φ} ∪ (KP
a )−Γ. We claim that ∆− is consistent. For suppose not, then there is a finite set ψ1, ..., ψn

such that ⊢ (ψ1 ∧ ... ∧ ψn) → ¬¬φ, because (KP
a )−Γ is consistent by definition. By propositional calculus this is

equivalent to ⊢ (ψ1 ∧ ... ∧ ψn) → φ and by Nec(K) we find that ⊢ KP
a (ψ1 ∧ ... ∧ ψn) → KP

a φ. As GP1 is normal1,
we have ⊢ (KP

a ψ1 ∧ ... ∧KP
a ψn) → KP

a (ψ1 ∧ ... ∧ ψn) and by MP we obtain ⊢ (KP
a ψ1 ∧ ... ∧KP

a ψn) → KP
a φ.

We have (KP
a ψ1 ∧ ...∧KP

a ψn) ∈ Γ since KP
a ψ1, ...,K

P
a ψn ∈ Γ and Γ is maximal, and so by MP we have KP

a φ ∈ Γ.
By assumption ¬KP

a φ ∈ Γ, so we find that Γ ⊢ ⊥. This is a contradiction as Γ is consistent. We conclude that ∆−

must be consistent too.
Let then ∆ be the MCS extending ∆−. By construction we have ¬φ ∈ ∆ and (KP

a )−Γ ⊆ ∆ as required. As a
was arbitrary, this holds for all agents.

While the Existence Lemma 5.6 is phrased in syntactic terms only, we should note that the condition on ∆
is equivalent to the definition of Rc

0(a, P ) in definition 5.5 of the canonical initial model. The lemma therefore
immediately guarantees the existence of a Rc

0(a, P )-related world ∆ ∈ W c in the canonical initial model.
1We do not have uniform substitution, but that is not necessary for this result.
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Next we show a truth lemma relating the logic GP1 to the canonical initial model Ic. Recall from definition 4.10
that |=i is the semantic relation on the initial model.

Lemma 5.7 (Truth Lemma). Let Ic be the canonical initial model. For every GP1-MCS Γ and every φ ∈ LP 1
[−], we

have
Ic,Γ |=i φ if and only if φ ∈ Γ.

Proof. By contraposition it suffices to show Ic,Γ ̸|=i φ iff φ /∈ Γ. We use induction on the structure of φ.
Base Case. Suppose φ = Sab. The statement follows immediately from the definition of V c

0 (a,Γ) and the fact
that Γ is an MCS.

Induction Hypothesis. Let φ ∈ LP 1
[−] and suppose Ic,Γ |̸= ψ iff ψ /∈ Γ is true for all strict subformulas ψ.

Induction Step.

• The boolean cases follow as usual.

• Suppose φ = KP
a ψ. Forwards we use the following implications.

Ic,Γ ̸|=i K
P
a ψ

=⇒ ∃∆ s.t. ΓRa∆ and Ic,∆ |=i ¬ψ (Sem. KP
a )

=⇒ ∃∆ s.t. (KP
a )−Γ ⊆ ∆ and Ic,∆ ̸|=i ψ (Def. Ra + Sem. ¬)

=⇒ ∃∆ s.t. (KP
a )−Γ ⊆ ∆ and ψ /∈ ∆ (IH on ψ)

=⇒ ψ /∈ (KP
a )−Γ (Def of ⊆)

=⇒ KP
a ψ /∈ Γ (Def of (KP

a )−)

Backwards we use the Existence Lemma 5.6 as follows.

KP
a ψ /∈ Γ

=⇒ ¬KP
a ψ ∈ Γ (Maximality of Γ)

=⇒ ∃∆ s.t. (KP
a )−Γ ⊆ ∆ and ¬ψ ∈ ∆ (Existence Lemma 5.6)

=⇒ ∃∆ s.t. (KP
a )−Γ ⊆ ∆ and ψ /∈ ∆ (Consistency of ∆)

=⇒ ∃∆ s.t. (KP
a )−Γ ⊆ ∆ and Ic,∆ ̸|=i ψ (IH on ψ)

=⇒ Ic,Γ ̸|=i K
P
a ψ (Sem. KP

a )

This completes the induction.

Lemma 5.8. GP1 is strongly complete for LP
[−] on the class of protocol-dependent initial models with a single

protocol.

Proof. Let Γ be a consistent set of formulas. We show the existence of a protocol-dependent initial model I and a
state w such that I, w |=i Γ.

Let Ic = ⟨W c
0 , R

c
0, V

c
0 ⟩ be the canonical initial model and let Γ+ be any MCS extending Γ. By Truth lemma 5.7

we have that Ic,Γ+ |=i Γ. We verify that Ic is a protocol-dependent initial model. Recall definition 4.8.
We show that the frame of Ic is transitive. Let u, v, w ∈ W c

0 and a ∈ Ag be arbitrary such that (u, v) ∈ Rc
0(a, P )

and (v, w) ∈ Rc
0(a, P ). We show that (u,w) ∈ Rc

0(a, P ). Suppose some φ ∈ w. Then by the respective relations,ˆ︁KP
a φ ∈ v and ˆ︁KP

a
ˆ︁KP

a φ ∈ u. Since u is maximal it contains 4(P ) and also ˆ︁KP
a

ˆ︁KP
a φ → ˆ︁KP

a φ which follows from it.
By MP we find ˆ︁KP

a ∈ u, thus (u,w) ∈ Rc
0(a, P ) as required.

We show that the frame is symmetric. Let u, v ∈ W c
0 and a ∈ Ag be arbitrary such that (u, v) ∈ Rc

0(a, P ).
We show that (v, u) ∈ Rc

0(a, P ). Suppose φ ∈ u. Since u ∈ W c
0 , it is an MCS, so it contains the B(P ) axiom
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φ → KP
a

ˆ︁KP
a φ and by MP then KP

a
ˆ︁KP

a ∈ u. As (u, v) ∈ Rc
0(a, P ) we find ˆ︁KP

a φ ∈ v and thus we have (v, u) ∈ Rc
0 as

required.
We show that agents know their own secret. Let w ∈ W c

0 and a ∈ Ag be arbitrary. Observe that w is an MCS.
Then by Own we have Saa ∈ w. By definition of V c

0 then Saa ∈ V c
0 (w) as required.

We finish by showing agents are aware of what secrets they know. Let u, v ∈ W c
0 and a ∈ Ag be arbitrary such

that (u, v) ∈ Rc
0(a, P ). We show that we have V c

0 (a, u) = V c
0 (a, v). Let Sab be a secret atom for arbitrary b ∈ Ag.

We suppose Sab ∈ V c
0 (a, v) to get the following chain of implications.

Sab ∈ V c
0 (a, v)

=⇒ Sab ∈ v (Def. V c
0 )

=⇒ Ic, v |=i Sab (Truth Lemma 5.7)

=⇒ Ic, u |=i
ˆ︁KP

a Sab (Sem. ˆ︁KP
a and uRc

0v)

=⇒ ˆ︁KP
a Sab ∈ u (Truth Lemma 5.7)

=⇒ Sab ∈ u (NPi(P ) + MP)

=⇒ Sab ∈ V c
0 (a, u) (Def. V c

0 )

In the last step we use the dual of NPi(P ) which is ˆ︁KP
a Sab → Sab, resulting in Sab ∈ u by MP.

Since Ic is symmetric, we also have (v, u) ∈ Rc
0(a, P ) so we can re-apply the proof starting with Sab ∈ V c

0 (a, u)
and using (v, u) ∈ Rc

0(a, P ) to find that Sab ∈ V c
0 (a, u) =⇒ Sab ∈ V c

0 (a, v) too. Hence we conclude that
Sab ∈ u ⇐⇒ Sab ∈ v and so V c

0 (a, u) = V c
0 (a, v) as required.

Lemma 5.9. GP1 is sound and strongly complete for LP 1
[−] on the class of protocol-dependent initial models with a

single protocol.

Proof. Immediate by soundness from lemma 5.1 and completeness from lemma 5.8.

The above completeness result is in relation to initial models. Luckily, we can lift it to a synchronous gossip
model while preserving its canonicity in the root states of the induced model2. We can therefore use the induced
gossip model M c := MPD(Ic) as lifted canonical gossip model.

Lemma 5.10. Let Ic be the canonical initial model and M c = MPD(Ic) be its lifted gossip model. For any formula
φ ∈ LP 1

[−] and any MCS Γ we have

M c, (Γ, ϵ) |= φ if and only if Ic,Γ |=i φ.

Proof. As M c is synchronous, by definition 4.11 a state (Γ, σ) can only be ∼P
a -related to another state with a call

sequence of the same length as σ. Thus root states can only be ∼P
a -related to other root states. By definition this

holds if and only if they were R0(a)-related in Ic. Furthermore Va(Γ, ϵ) = V0(a,Γ) by definition. It then follows
from a straightforward induction on φ ∈ LP 1

[−] that M c, (Γ, ϵ) |= φ if and only if Ic,Γ |=i φ.

We can therefore define a truth lemma with respect to the root states of the canonical gossip model.

Lemma 5.11 (Truth Lemma). For every MCS Γ and every φ ∈ LP 1
[−], we have M c, (Γ, ϵ) |= φ if and only if φ ∈ Γ.

Proof. Immediate from Truth Lemma 5.7 and lemma 5.10.

That M c is a protocol-dependent gossip model is furthermore immediate from its definition: any model induced
from a protocol-dependent initial model is a protocol-dependent gossip model.

2This only applies to synchronous models and fails with asynchronous gossip models.
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Theorem 5.12. GP1 is sound and strongly complete for LP 1
[−] on the class of protocol-dependent gossip models with

a single protocol.

Proof. Completeness is immediate by definition 4.12 of protocol-dependent gossip models and lemma 5.8. Soundness
was shown in lemma 5.1.

We have now obtained completeness for a class of gossip models, but we only used root states of the lifted
canonical gossip model. Truth Lemma 5.11 guarantees that any set of formulas satisfied at any state (∆, τ) somewhere
in M c is in fact an MCS, and therefore is already included in the canonical initial model and consequently in a root
state of the lifted gossip model. We only get this property after proving the truth lemma, but using the root states
is a fundamental part of the completeness proof.

5.2 Adding Synchronous Call Reduction Axioms

We now extend the proof system to include calls and call effects. We limit ourselves to only axioms that are sound
for the synchronous case. Similar to chapter 3, we will ensure that these are call reduction axioms. Together with
the completeness for the call-free language from Theorem 5.12, we can then immediately retrieve the completeness
result for the full language.

The proof system G for basic gossip forms a strong basis. In fact, the axioms describing the call effects in
Table 3.2 remain sound. They do not use any knowledge modality, so they are expressible in the language and the
call semantics have not changed.

The observance axioms do require change, as they relate to knowledge. The protocol-dependent observance
axioms share many characteristics of the basic versions and can be found in Table 5.2.

Table 5.2. Observance axioms for synchronous protocol-dependent gossip.

Synchronous Observance for Protocol-Dependent Gossip
Obs1(P ) [ab]KP

a φ ↔ (Pab →
⋁︁

R⊆S(ObR ∧KP
a (Pab → (ObR → [ab]φ)))) a ∈ {a, b}

Obs2(P ) [ab]KP
b φ ↔ (Pab →

⋁︁
R⊆S(OaR ∧KP

b (Pab → (OaR → [ab]φ)))) b ∈ {a, b}
Pri (P ) [ab]KP

c φ ↔ (Pab →
⋀︁

d,e ̸=a K
P
c (Pde → [de]φ)) c /∈ {a, b}

Remark 5.13. Like with the non-protocol dependent observance axioms, the axioms Obs1(P ) and Obs2(P ) are
completely symmetric. We could alternatively define both cases c ∈ {a, b} at once with the following formula, which
is sound but introduces redundant disjuncts.

[ab]KP
c φ ↔ (Pab →

⋁︂
Q,R⊆S

(OaQ ∧ObR ∧KP
c (Pab → (OaQ ∧ObR → [ab]φ))))

The protocol-dependent observance axioms are similar in structure to their original counterparts in Table 3.3.
The main difference is the addition of the protocol conditions. These are introduced both for the hypothetical
situations that agent c considers possible, as well as for the actual call to be permitted.

The difference between these two uses of the protocol conditions is clearest in the proof for Pri (P ), where the
two usages are with respect to different variables ab and de.

Lemma 5.14. The axioms Obs1(P ), Obs2(P ), and Pri (P ) are sound for the class of synchronous protocol-
dependent gossip models with a single protocol.

Proof. We omit the proof for Obs2(P ) as it is analogous to Obs1(P ). Let (w, σ) be an arbitrary gossip state in
some gossip model M and let φ ∈ LP be arbitrary.
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For Obs1(P ) we have the following chains of equivalences. Recall that Vb(w, σ) is not a formula but the set of
secrets that agent b knows at gossip state (w, σ). At step (∗) we use a disjunct to enumerate all possible sets of
secrets Vb(w, σ) that agent b might know. There is precisely one set Vb(w, σ) = R ⊆ S such that ObR holds.

(w, σ) |= [ab]KP
a φ

⇐⇒ (w, σ.ab) |= KP
a φ (Sem. [ab])

⇐⇒ ∀(w′, τ.de) s.t. (w, σ.ab) ∼P
a (w′, τ.de) : (w′, τ.de) |= φ (Sem. KP

a )

⇐⇒ ∀(w′, τ) s.t. (w, σ.ab) ∼P
a (w′, τ.ab) : (w′, τ.ab) |= φ (Def. ∼P

a )

⇐⇒ ∀(w′, τ) s.t. (w, σ) ∼P
a (w′, τ) : (Def. ∼P

a )

if (w, σ) |= Pab and (w′, τ) |= Pab and Vb(w, σ) = Vb(w′, τ)

then (w′, τ.ab) |= φ

⇐⇒ ∀(w′, τ) s.t. (w, σ) ∼P
a (w′, τ) : (Semantics)

If (w, σ) |= Pab then (w′, τ) |= Pab → (ObVb(w, σ) → [ab]φ))

⇐⇒ (w, σ) |= Pab → KP
a (Pab → (ObVb(w, σ) → [ab]φ)) (Sem. KP

a )

⇐⇒ (w, σ) |= Pab →
⋁︂

R⊆S
(ObR ∧KP

a (Pab → (ObR → [ab]φ))) (∗)

For Pri (P ) we have the following chain of equivalences.

(w, σ) |= [ab]KP
c φ

⇐⇒ (w, σ.ab) |= KP
c φ (Sem. [ab])

⇐⇒ ∀(w′, τ.de) s.t. (w, σ.ab) ∼P
c (w′, τ.de) and c ̸= d, e : (w′, τ.de) |= φ (Sem. KP

c )

⇐⇒ ∀d, e ̸= c : ∀(w′, τ) s.t. (w, σ) ∼P
c (w′, τ) : (Def. ∼P

c )

if (w, σ) |= Pab and τ |= Pde then (w′, τ.de) |= φ

⇐⇒ ∀d, e ̸= c : ∀(w′, τ ′) s.t. (w, σ) ∼P
c (w′, τ) : (Semantics)

if (w, σ) |= Pab then (w′, τ) |= Pde → [de]φ

⇐⇒ If (w, σ) |= Pab then ∀d, e ̸= c : (w, σ) |= KP
c (Pde → [de]φ) (Sem. KP

c )

⇐⇒ (w, σ) |= Pab →
⋀︂

d,e̸=c

KP
c (Pde → [de]φ)

The three axioms in Table 5.2 are call-reduction axioms for the operator KP
a , and the other axioms in GP1 still

cover the other cases for atoms, implication, and negation like they did in the basic case. We can therefore again
prove that each formula in LP 1 is equivalent to a call reduction in LP 1

[−].
We should first reassure ourselves that we can again use the converse of K([ab]).

Lemma 5.15. GP1 ⊢ [ab](φ → ψ) ↔ ([ab]φ → [ab]ψ)

Proof. Immediate by fact 3.3 and the fact that K([ab]) and Fnc are axioms in GP1 .

The proof is then similar to lemma 3.4. The only difference is in the use of protocol-dependent axioms.

Lemma 5.16. For every formula φ ∈ LP 1 there is a formula ψ ∈ LP 1
[−] such that GP1 ⊢ φ ↔ ψ.

Proof. Without loss of generality we assume that φ only contains the boolean connectives ¬ and → as these are
truth-functionally complete. Using Sub it furthermore suffices to consider formulas of the form φ = [ab]χ with
χ ∈ LP 1

[−]. We use induction on the structure of χ to show ⊢ [ab]χ ↔ ψ for some ψ ∈ LP 1
[−].

Base case. Suppose χ = Scd. If c /∈ {a, b}, then Ext yields ⊢ [ab]Scd ↔ Scd. Else we have c ∈ {a, b} and Eff
yields ⊢ [ab]Scd ↔ (Sad ∨ Sbd). Both Scd ∈ LP 1

[−] and (Sad ∨ Sbd) ∈ LP 1
[−], which concludes the base case.
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Induction Hypothesis. Let χ ∈ LP 1
[−] be a formula. Suppose that for every strict subformula χ′ of χ, we have

some ψ′ ∈ LP 1
[−] such that ⊢ [ab]χ′ ↔ ψ′.

Induction Step.

• Suppose χ = ¬χ′. From Fnc we obtain ⊢ [ab]¬χ′ ↔ ¬[ab]χ′. By induction hypothesis on χ′ we have
⊢ [ab]χ′ ↔ ψ′. With Sub we find that ⊢ [ab]¬χ′ ↔ ¬ψ′, the right hand of which is in LP 1

[−].

• Suppose χ = (χ′ → χ′′). By fact 3.3 we have ⊢ [ab](χ′ → χ′′) ↔ ([ab]χ′ → [ab]χ′′). By induction hypothesis
on χ′ and χ′′ we get ⊢ [ab]χ′ ↔ ψ′ and ⊢ [ab]χ′′ ↔ ψ′′. Using Sub this yields ⊢ [ab](χ′ → χ′′) ↔ (ψ′ → ψ′′),
the right hand of which is in LP 1

[−].

• Suppose χ = KP
c χ

′. We consider three cases for c.

For c = a we use Obs1(P ) to get ⊢ [ab]KP
a χ

′ ↔ (Pab →
⋁︁

R⊆S(ObR ∧ KP
a (Pab → (ObR → [ab]χ′)))).

By induction hypothesis on χ′ we have ⊢ [ab]χ′ ↔ ψ and using Sub we find that ⊢ [ab]KP
a χ

′ ↔ (Pab →⋁︁
R⊆S(ObR∧KP

a (Pab → (ObR → ψ)))). Recall that Pab is a subformula of χ and χ is call-free. Thus the right
hand of the equivalence is a formula in LP 1

[−].

For c = b we instead use Obs2(P ) and proceed analogously.

For c /∈ {a, b} we use Pri (P ) to get ⊢ [ab]KP
c χ

′ ↔ (Pab →
⋀︁

d,e ̸=a K
P
c (Pde → [de]χ′)). By induction hypothesis

on χ′ we have ⊢ [ab]χ′ ↔ ψ′. Using Sub we find that ⊢ [ab]KP
c χ ↔ (Pab →

⋀︁
d,e ̸=a K

P
c (Pde → ψ′)). Recall

that Pab and Pde for all d, e ̸= a are subformulas of χ and χ is call-free. Thus the right hand of the equivalence
is a formula in LP 1

[−].

This finishes the induction on χ. We conclude that for every [ab]χ ∈ LP 1 we have an equivalent ψ ∈ LP 1
[−]. As every

formula φ ∈ LP can be written in this form, we are done.

We can now use the equivalence between formulas and their call reductions to immediately retrieve completeness
for the full language LP 1 on the synchronous protocol-dependent gossip models with a single protocol.

Theorem 5.17. GP1 is sound and strongly complete for LP 1 on the class of synchronous protocol-dependent gossip
models with a single protocol.

Proof. Completeness follows from lemma 5.16 and Theorem 5.12. Soundness follows from lemmas 5.1 and 5.14.

5.3 Axiomatisation for the Synchronous Tree Model

So far we have obtained soundness and completeness on the class of arbitrary models. We now extend the proof
system GP1 with a tree rule. We will show that the resulting proof system is sound and complete for LP 1 on the
synchronous tree model with a single protocol.

In order to do so, we will approximate the tree model. We define a notion of n-bisimilarity for protocol-dependent
gossip models that preserves truth and additionally provides a bound on the length of call sequences that can satisfy
a formula. Together with a formula to approximate the initial root world in the protocol-dependent setting, we
arrive at a sound tree rule.

Definition 5.18 (n-bisimulation for Protocol-Dependent Gossip Models). Let n ∈ N and M = ⟨W,∼, V ⟩ and
M ′ = ⟨W ′,∼′, V ′⟩ be protocol-dependent gossip models. Two states s ∈ W and s′ ∈ W ′ are n-bisimilar, denoted
M, s ↔n M ′, s′, if and only if the following conditions hold.

1. (Atoms) For every agent a we have Va(s) = V ′
a(s′).

Additionally if n > 0 we have for each a and P an instance of the following two conditions.

2. (Forth) For every t ∈ W we have: if s ∼P
a t then there is a t′ ∈ W ′ such that s′ ∼′P

a t′ and M, t ↔n−1 M
′, t′.
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3. (Back) For every t′ ∈ W we have: if s′ ∼P ′

a t′ then there is a t ∈ W such that s ∼P
a t and M, t ↔n−1 M

′, t′.

The n-bisimulation is an equivalence relation between states in a model. We write f(n) to denote the number of
n-bisimilarity classes.

We define the degree of a formula as follows. As discussed in chapter 2, we treat protocol conditions as subformulas
of the KP

a modality and use the maximum degree of all strict subformulas similar to conjunction.

Definition 5.19 (Degree). Given a formula φ ∈ LP 1, its degree d(φ) is defined recursively by

d(Sab) = 0

d(¬φ) = d(φ)

d(φ ∧ ψ) = max{d(φ), d(ψ)}

d(KP
a φ) = 1 +max{d(χ) | χ ∈ sub(KP

a φ) \ {KP
a φ}}

d([ab]φ) = d(φ)

where sub(KP
a φ) \ {KP

a φ} = {d(φ)} ∪ {d(Pab) | a ̸= b ∈ Ag} as in definition 4.6.

Accounting for the degree of protocol conditions is not necessary for showing modal equivalence: simply increasing
the degree (by 1) for each KP

a modality is sufficient. It is however important for the next result, which limits the
degree of the equivalent call-free formula of any φ ∈ LP 1.

Lemma 5.20. For any formula φ ∈ LP 1, its call-reduction ψ ∈ LP 1
[−] has degree d(ψ) ≤ d(φ).

Proof. We use induction on the structure of φ in the same way as the proof of lemma 5.16. We do not repeat all
steps, but observe that for each constructed call-free formula ψ in that proof, the statement holds and can be verified
by computing its degree. We explicitly show the induction step for KP

c with c = a.
Induction Hypothesis. Let χ ∈ LP 1

[−] be a formula. For each strict subformula χ′ of χ with call reduction ψ′

we have d(ψ′) ≤ d(χ′).
Induction Step. Suppose χ = KP

c χ
′. Thus φ = [ab]KP

c χ
′ for c /∈ {a, b}. Let n = d(φ).

By lemma 5.16 we find that the call reduction of φ is ψ = (Pab →
⋁︁

R⊆S(ObR ∧ KP
a (Pab → (ObR → ψ′)))),

where ψ′ is the call reduction of χ′. By definition, each of the strict subformulas of χ has a degree at most n− 1. By
IH on χ′ we have thus d(ψ′) ≤ d(χ′) < d(χ) = n and as Pab is a strict subformula of χ we have d(Pab) < d(χ) = n.
By computing the degree of ψ we conclude that d(ψ) ≤ n as required.

The following lemma is a well-known result in modal logic [BRV01]. While the lemma is usually an equivalence,
we will only need the forward direction, which states that truth is preserved under n-bisimulation.

Lemma 5.21. Let M, s and M ′, s′ be pointed gossip models and n ∈ N. If M, s ↔n M ′, s′ then for every formula
φ ∈ LP 1

[−] with d(φ) ≤ n we have M, s |= φ ⇐⇒ M ′, s′ |= φ.

Proof. Let M, s and M ′, s′ be pointed gossip models. Suppose M, s ↔n M ′, s′ for some n ∈ N. Let φ ∈ LP 1
[−] be

arbitrary such that d(φ) ≤ n. We use strong induction on n to show that M, s |= φ ⇐⇒ M ′, s′ |= φ.
Induction Hypothesis. Let n be arbitrary. Suppose that for all m < n we have that if M, s ↔m M ′, s′ then

for all ψ such that d(ψ) ≤ m we have M, s |= ψ ⇐⇒ M ′, s′ |= ψ.
Induction Step. Let n = d(φ) be arbitrary and suppose the induction hypothesis holds for all m < n.

• The atomic and boolean cases follow immediately from Atoms.

• φ = KP
a ψ.

(=⇒) Suppose M, s |= φ. For contradiction, suppose that M ′, s′ |̸= φ. Then there exists a world v′ such
that s′ ∼P

a t′ and M ′, t′ |̸= ψ. By Back there exists a t in M such that s ∼P
a t and M, t ↔n−1 M

′, t′. By
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definition of d(KP
a ψ) we have d(ψ) ≤ n− 1, so by IH we have M, t |̸= ψ. However, this implies M, s |̸= φ which

contradicts the initial supposition. We conclude instead that M ′, s′ |= φ.

(⇐=) We suppose M ′, s′ |= φ and use Forth in the same manner.

Lemma 5.21 only applies to call-free formulas. We could show that bisimulation is preserved under calls in order
to extend this result to the full language [DHK20], but we will instead use the call reductions from lemma 5.16.
With this approach we should be careful to use the degree of the call-reduction ψ ∈ LP 1

[−], rather than of the formula
φ ∈ LP 1 itself. However, it suffices to use d(φ) because we have d(ψ) ≤ d(φ) by lemma 5.20.

Lemma 5.22. Let M, s and M ′, s′ be pointed gossip models and n ∈ N some natural number. For any φ ∈ LP 1

with d(φ) ≤ n we have M, s ↔n M ′, s′ implies M, s |= φ ⇐⇒ M ′, s′ |= φ.

Proof. Let φ ∈ LP 1 be arbitrary and let n = d(φ). By lemma 5.16 we have an equivalent formula ψ ∈ LP 1
[−] such

that ⊢ φ ↔ ψ and moreover d(ψ) ≤ d(φ) by lemma 5.20. Let two models and states M, s and M ′, s′ be arbitrary
such that they are n-bisimilar. By lemma 5.21 we find that M, s |= ψ if and only if M ′, s′ |= ψ. However, φ ↔ ψ is
true in both states by soundness of GP1 . Therefore we conclude that M, s |= φ if and only if M ′, s′ |= φ.

We have shown that n-bisimulation preserves truth for LP 1. We can use this to bound the length of call sequences
that satisfy a formula in a gossip model to the number of n-bisimilarity classes that its states have.

Lemma 5.23. Let φ ∈ LP 1 and n = d(φ). For any state (w, σ.τ) in any gossip model M that satisfies φ there is a
sequence τ ′ such that |τ ′| ≤ f(n) and M, (w, σ.τ ′) |= φ, where f(n) the number of n-bisimilarity classes.

Proof. Let (w, σ.τ) and φ be arbitrary and suppose (w, σ.τ) |= φ. Furthermore let |τ | > f(n), as otherwise the
statement is already satisfied. As τ contains more calls than there are n-bisimilarity classes, there must be two
different initial fragments τ1 and τ2 of τ such that (w, τ1) ↔n (w, τ2). W.l.o.g. let τ1 be the shortest of the two.

Let τ3 be the remainder after τ2, such that τ = τ2.τ3. Then (w, σ.τ2) |= [τ3]φ by assumption. Moreover we have
d([τ3]φ) = d(φ) = n by definition. Since (w, σ.τ1) ↔n (w, σ.τ2), we find by lemma 5.22 that (w, σ.τ1) |= [τ3]φ. Hence
we conclude that (w, σ.τ1.τ3) |= φ.

Observe that |σ.τ1.τ3| < |σ.τ2.τ3| = |σ.τ | because τ1 ̸= τ2. If |σ.τ1.τ3| ≤ f(n), we are done. Else, we repeat the
argument until we have found a sequence that is at most length f(n).

With the above bound, we can ensure that any truth in a model will be true within at most f(n) many calls.
The value of f(n) is furthermore finite as there are only finitely many atoms [DHK20].

Next we will characterise the tree model. In the root of the synchronous tree model it is common knowledge that
every agent only knows their own secret. We cannot express common knowledge in LP 1

[−], nor in any of the other
gossip languages, but we can express an approximation thereof.

While in basic gossip models reflexivity was guaranteed by the model, protocol-dependent gossip models do not
make this guarantee. An initial model with one world that has the correct valuation but an empty relation will
induce a gossip model that vacuously satisfies any KP

a and therefore also rootn for any n. To avoid this we must
stipulate that each agent has a serial relation, i.e. there exists a relation at each step. We do so by including an
existential modality ˆ︁KP

a rootP
n to the recursive step.

Definition 5.24. Recall that φϵ was defined as the formula that is only true when every agent only knows their
own secret, which is the valuation of the root of the tree model. We define the following formula root recursively to
approximate common knowledge of this distribution.

rootP
0 := φϵ

rootP
i+1 := rootP

i ∧
⋀︂

a∈Ag

(KP
a rootP

i ∧ ˆ︁KP
a rootP

i )
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The following lemma shows that satisfying rootP
n guarantees n-bisimilarity to the root of the tree model.

Lemma 5.25. Let n ∈ N. For any model M and gossip state (w, σ) we have that

M, (w, σ) |= rootP
n implies M, (w, σ) ↔n MPDtree, (wroot, ϵ).

Proof. Let M and (w, σ) be an arbitrary model and state. Suppose that M, (w, σ) |= rootP
n . We show that

M, (w, σ) ↔n MPDtree, (wroot, ϵ) by induction on n.
Base case. Let n = 0. We have M, (w, σ) |= rootP

0 if and only if (w, σ) agrees on all atoms by definition of
rootP

0 = φϵ. Hence M, (w, σ) ↔0 MPDtree, (wroot, ϵ).
Induction Hypothesis. For arbitrary n we have M, (w, σ) |= rootP

n implies M, (w, σ) ↔n MPDtree, (wroot, ϵ).
Induction Step. Suppose M, (w, σ) |= rootP

n+1 for arbitrary an model and state. In particular then M, (w, σ) |=
rootP

n , so by IH M, (w, σ) ↔n MPDtree, (wroot, ϵ). We show that M, (w, σ) ↔n+1 MPDtree, (wroot, ϵ) too. Atoms is
immediate from the bisimulation.

Forth. Suppose there is some state v such that (w, σ) ∼P
a v. Because M, (w, σ) |= rootP

n+1 we have M,v |= rootP
n

and in particular M,v |= KP
a rootP

n . By IH thus M,v ↔n (wroot, ϵ). As (wroot, ϵ) ∼P
a (wroot, ϵ) by definition of MPDtree,

we are done.
Back. Suppose there is some state v′ such that (wroot, ϵ) ∼P

a v′. Then by definition of MPDtree we must have
v′ = (wroot, ϵ). Because (w, σ) |= rootn+1 and in particular it satisfies ˆ︁KP

a rootP
n , there exists a state v such that

(w, σ) ∼P
a v. As moreover v |= rootP

n , we have by IH that M,v ↔n MPDtree, (wroot, ϵ) and we are done.

Satisfying rootP
n therefore provides us with n-bisimilarity to the root of the tree model. We can relate this to

truths in all other states of the tree model. The following fact is immediate from the semantics of the call modality
and states that for any formula φ that is satisfied at some call sequence σ in the tree model, the formula [σ]φ is
satisfied at its root.

Fact 5.26. For all formulas φ ∈ LP 1
[−] we have MPDtree, (wroot, σ) |= φ if and only if MPDtree, (wroot, ϵ) |= [σ]φ.

We can now use the preservation of truth under n-bisimulation to show that rootP
n is a sufficiently close

approximation of the tree model.

Lemma 5.27. Let φ ∈ LP 1
[−] such that d(φ) ≤ n. For any model M and gossip state (w, τ) we have that

M, (w, τ) |= rootP
n implies MPDtree, (wroot, ϵ) |= [σ]φ ⇐⇒ M, (w, τ) |= [σ]φ.

Proof. Suppose M, (w, τ) |= rootP
n . By lemma 5.25 this implies that M, (w, τ) ↔n MPDtree, (wroot, ϵ). Modal

equivalence up to degree n then follows from lemma 5.22.

Combining fact 5.26 and lemma 5.27 we get the following corollary, which is the basis of the final rule of the
proof system.

Corollary 5.28. Let φ ∈ LP 1
[−] be a formula with degree at most n. Then MPDtree, (wroot, σ) |= φ if and only if for

all models M and sequences τ we have, we have M, (w, τ) |= rootP
n → [σ]φ.

Finally, we can apply the bound shown in lemma 5.23 to limit the number of call sequences we need to consider.
We obtain the rule Tree (P ) in Table 5.3 and add this rule to the proof system GP1 to obtain GP1tree.

Lemma 5.29. φ is valid on the tree model MPDtree(P ) if and only if it is provable in GP1tree. Formally, we have
GP1tree ⊢ φ if and only if for all call sequences σ we have MPDtree(P ), (wroot, σ) |= φ.

Proof. Let φ ∈ LP 1
[−] be arbitrary.

(=⇒) Suppose for all sequences σ we have MPDtree(P ), (wroot, σ) |= φ. By corollary 5.28 this holds if and only
if we have for all sequences σ that for all models M and all sequences τ that M, (w, τ) |= rootP

n → [σ]φ, hence
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Table 5.3. Tree rule for synchronous protocol-dependent gossip, where n is the degree d(φ)
and f(n) is the number of n-bisimilarity classes.

Tree Rule for synchronous single-protocol gossip
Tree (P ) If ⊢ rootP

n → [σ]φ for all σ s.t. |σ| ≤ f(n) then ⊢ φ

rootP
n → [σ]φ is a validity on the class of synchronous protocol-dependent gossip models. Following Theorem 5.17 we

find by completeness of GP1 that GP1 ⊢ rootP
n → [σ]φ. As GP1tree is stronger than GP1 , we then too obtain

GP1tree ⊢ rootP
n → [σ]φ. Finally by Tree (P ) we obtain GP1tree ⊢ φ as required.

(⇐=) Suppose GP1tree ⊢ φ. By soundness of all rules and axioms in GP1tree we find that MPDtree, σ |= φ for all
call sequences σ.

Theorem 5.30. Tree (P ) is sound and complete for MPDtree(P ).
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Chapter 6

Towards Completeness for
Multi-Protocol-Dependent Gossip

In chapter 5 we have introduced the proof systems GP1 and GP1tree and shown that these are complete on arbitrary
models and the tree model in a single protocol setting. We now discuss how to extend this result to multiple
protocols, working towards an axiomatisation for gossip settings that allow protocol-dependent knowledge modalities
for all protocols. The main objective is to account for protocol interactions. When there are multiple protocols in a
gossip model, their epistemic relations may interact with each other: knowledge based on protocol P may imply
knowledge based on protocol Q.

We discuss how one can adapt the proof system GP1tree to a system GPtree that is sound for any number of
protocols. We conjecture GPtree is complete for the tree model in the multi-protocol setting.

6.1 Soundness of Existing Axioms

Recall from definition 4.8 that a protocol-dependent initial model has a separate relation for each protocol P . The
soundness proofs of lemmas 5.1 and 5.2 for GP1 can be generalised to arbitrary protocols: each relation is still
transitive and symmetric, and each satisfies the secret introspection properties. Similarly, the proof of lemma 5.14
for the the protocol-dependent observance axioms only depends on the protocol’s own epistemic relation.

Let GP and GP be the proof systems GP1 and GP1 with each P -dependent axiom repeated for all P ∈ P.
The following corollaries now follow naturally from the earlier proofs.

Corollary 6.1. The proof system GP is sound for initial models with any set of protocols P ⊆ P.

Corollary 6.2. The proof system GP is sound for gossip models with any set of protocols P ⊆ P.

Corollary 6.3. The proof system GP is sound for synchronous gossip models with any set of protocols P ⊆ P.

6.2 A General Tree Rule

The last part of the axiomatisation is the tree rule. The tree rule as defined in Table 5.3 for a single protocol is no
longer sound in a multi-protocol setting, but we can make it sound by adapting the formula we use to approximate
the root world. Recall that rootn intends to approximate the initial root world and in particular the common
knowledge of this world up to degree n.

In chapter 5 we used a single protocol, but we can define the rootP
n for any finite set of protocols P by including a

conjunction over all knowledge modalities. This way we ensure that the modalities for all protocols in P approximate
the common knowledge.
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Definition 6.4. Let P be a finite set of protocols. We define rootP
n as follows.

rootP
0 := φϵ

rootP
i+1 := rootP

i ∧
⋀︂

P ∈P,a∈Ag

(KP
a rootP

i ∧ ˆ︁KP
a rootP

i )

Let Tree (P) then be the following rule, where n = d(φ) and f(n) is the number of n-bisimilarity classes.

If ⊢ rootP
n → [σ]φ for all σ s.t. |σ| ≤ f(n) then ⊢ φ.

It is clear that this approach does not work for infinite sets of protocols. We can however solve this by observing
that any formula φ only uses a finite number of protocol-dependent knowledge modalities. Let prot(φ) be the set of
protocols for which there are modalities in φ. It suffices to approximate the tree model for these modalities. The
result is a generalised version of the tree rule in Table 6.1.

Table 6.1. The Synchronous Tree Rule for Multi-Protocol-Dependent Gossip for any number
of protocols in P. With n = d(φ) and f(n) the number of n-bisimilarity classes.

Tree Rule for All Protocols

Tree (P) If ⊢ rootprot(φ)
n → [σ]φ for all σ s.t. |σ| ≤ f(n) then ⊢ φ

While Tree (P) is parameterized with P, the rule would work just as well for any other set of protocols, and
even in the single protocol setting. The set of protocols prot(φ) determines the relevant protocols in φ.

Conjecture 6.5. The Tree (P) rule is sound for the synchronous tree model with any set of protocols P ⊆ P.

While this conjecture is positive, there are some considerations about the tree rule in a setting with infinitely
many protocols. Recall from definition 4.8 that we have introduced separate epistemic relations for each protocol in
the initial models. This means that the modal similarity type of our language is no longer finite.

There are two moments where this may come into play. Firstly we have used preservation of truth under
n-bisimulation, recall lemma 5.21. This is a well-known property of n-bisimulation, as can be found in proposition
2.31 in [BRV01]. This source however requires additionally that the language has a finite modal similarity type.

While it appears that the proof of lemma 5.21 does not depend on this, we do run into another problem. We
have used the number of n-bisimilarity classes to finitely bound the number of call sequences in the conditions of the
tree rule. However, with infinitely many modalities, there may be infinitely many n-bisimilarity classes. This might
not be fatal, but does limit the application of such a rule in theorem provers.

We could potentially solve this problem, but by doing so most likely will introduce another: we can obtain a
finite modal similarity type if we instead view the modality KP

a as a single modality Ka with different subformulas
for each protocol. However, in doing so we remove the possibility to define separate protocol-dependent relations in
the canonical initial model. This is most likely a necessary part in the canonical model construction as presented in
chapter 5 when adapted to multiple protocols.

6.3 Protocol Interactions and Completeness

Finally, there is one more caveat. In a setting with more than one protocol, we should be careful about how protocols
interact with each other. The following rule is an example of such interaction. Whenever the protocol conditions of
P imply the conditions of Q, then knowledge relative to Q implies knowledge relative to P . The rule is sound on
MPDtree.
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Table 6.2. The Global Protocol Inclusion Rule for protocol interactions.

Global Protocol Inclusion Rule

GPI If ⊢ Pab → Qab for all a, b then ⊢ KQ
i φ → KP

i φ for all i

Before we show soundness, we prove an intermediate lemma that simplifies the inclusion of protocols to inclusion
of their epistemic relations.

Lemma 6.6. Let MPDtree be the synchronous tree model for protocol-dependent gossip. If Pab → Qab is true globally,
then for every two call sequences σ, τ we have that σ ∼P

i τ implies σ ∼Q
i τ .

Proof. Suppose that Pab → Qab is true globally for all a, b ∈ Ag. Let σ and τ be arbitrary sequences such that
σ ∼P

i τ . By synchronicity and definition of ∼P
i they have the same length. We use induction on the length n.

Base Case. Suppose σ = ϵ. Then also τ = ϵ. Then from the definition of ∼Q
i we too have ϵ ∼Q

i ϵ.
Induction Hypothesis. Let n be arbitrary |σ| = n and suppose we have for all τ that σ ∼P

i τ implies σ ∼Q
i τ .

Induction Step. We show the claim for σ.ij with length n+ 1. We distinguish two cases where the last call in
both sequences is equal and where it is not.

• Suppose σ.ij ∼P
i τ.ij. Then we have σ ∼P

i τ , Vj(σ) = Vj(τ), σ |= Pij , and τ |= Pij . By the IH we have σ ∼Q
i τ

and by assumption we have σ |= Qij and τ |= Qij . By definition we find σ.ij ∼Q
i τ.ij.

• Suppose σ.ab ∼P
i τ.cd for a, b, c, d ̸= i. Then σ ∼P

i τ , and σ |= Pab, and τ |= Pcd. By assumption then also
σ, |= Qab and τ |= Qcd and by IH σ ∼Q

i τ . Hence, by definition of ∼Q
i we have σ.ab ∼Q

i τ.ab.

Lemma 6.7. The GPI rule is sound for the synchronous protocol-dependent tree model MPDtree.

Proof. Suppose for all agents a, b we have that Pab → Qab is true for all call sequences. Let agent i and formula φ
be arbitrary. Consider an arbitrary call sequence σ such that σ |= KQ

i φ.
Let T = {τ | σ ∼P

i τ} and T ′ = {τ | σ ∼Q
i τ}. By definition of KQ

i we have τ |= φ for all τ ∈ T ′. By lemma 6.6
we have T ⊆ T ′. Hence we have τ |= φ for all τ ∈ T too, and by definition of KP

i we conclude that σ |= KP
i φ. As σ,

i, and φ were chosen arbitrarily, this holds for all sequences, agents, and formulas.

While this rule is sound, we conjecture that no such rules are needed if we restrict ourselves to the tree model,
due to two properties that this model has. Firstly, it is reflexive. Therefore any protocol violation must be caused by
a call, specifically by violating its protocol condition. Moreover, the epistemic relations ∼P

a for each protocol P in
the initial root model are identical to each other. Hence the only effect of protocols on agent knowledge is via the
protocol conditions.

We already have axioms that encapsulate this effect, namely the observance axioms. We therefore conjecture the
proof system GPtree to be complete for the tree model MPDtree with all protocols.

Conjecture 6.8. GPtree is sound and complete for the language LP on the synchronous protocol-dependent tree
model MPDtree.
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Chapter 7

Expressivity of
Multi-Protocol-Dependent Gossip

In this section we analyse the expressivity of the protocol-dependent knowledge modalities by comparing them to
the basic language. We specifically look at the language LP , which contains a modality for each protocol in P. It
turns out that we can use combinations of protocols to define formulas that characterise many properties of the
protocol-dependent tree model.

Throughout this section we assume the synchronous protocol-dependent tree model MPDtree. Recall that we write
σ |= φ and generally only mention the call sequence τ when referring to a state (wroot, τ).

7.1 Bisimulation for Basic Gossip Models

We start by finding states that satisfy the same formulas in the basic language LG and will use bisimulation for
this. We had already defined n-bisimulation for protocol-dependent gossip models, but we now define unbounded
bisimulation for basic gossip models.

Definition 7.1 (Bisimulation). Let M = ⟨W,∼, V ⟩ and M ′ = ⟨W ′,∼′, V ′⟩ be basic gossip models. A relation
Z ⊆ W ×W ′ is a bisimulation if for all gossip states s, s′ such that sZs′ we have:

1. (Atoms) For every agent a we have Va(s) = V ′
a(s′);

2. (Forth) For each agent a, if s ∼a t then there is a t′ such that s′ ∼a t
′ and tZt′;

3. (Back) For each agent a, if s′ ∼a t
′ then there is a t such that s ∼a t and tZt′.

We call two states s, t bisimilar and write s ↔ t if there exists a bisimulation Z such that sZt.

In particular we will now use bisimulation to relate two call sequences in the synchronous basic tree model: we
use σ ↔ τ as a shorthand for Mtree, (wroot, σ) ↔ Mtree, (wroot, τ).

Lemma 7.2. If two call sequences in Mtree are bisimilar then they satisfy the same formulas in LG.

Proof. Let σ, σ′ be call sequences such that σ ↔ σ′. By lemma 3.4 it suffices to consider call-free formulas, so let
φ ∈ LG

[−]. We show that σ |= φ iff σ′ |= φ by induction on the structure of φ.
Base Case. Suppose φ = Sab. By Atoms we have σ |= Sab ⇐⇒ σ′ |= Sab as required.
Induction Hypothesis. Let φ ∈ LG be arbitrary. Suppose that for all strict subformulas ψ of φ and for all call

sequences σ, σ′ we have σ ↔ σ′ implies σ |= ψ ⇐⇒ σ′ |= ψ.
Induction Step.
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• Suppose φ = ¬ψ. We use the induction hypothesis on ψ definition of ¬ to find

σ |= φ
def¬⇐⇒ σ |̸= ψ

IH⇐⇒ σ′ |̸= ψ
def¬⇐⇒ σ′ |= φ.

• Suppose φ = ψ ∧ χ. We use the induction hypothesis on ψ and χ and definition of ∧ to find

σ |= φ
def∧⇐⇒ (σ |= ψ and σ |= χ) IH⇐⇒ (σ′ |= ψ and σ′ |= χ) def∧⇐⇒ σ′ |= φ.

• Suppose φ = Kaψ. For the forwards direction, suppose we have σ |= Kaψ. Then for all τ such that σ ∼a τ we
have τ |= ψ by semantics of Ka. Let τ be an arbitrary sequence such that σ′ ∼′

a τ . We show that τ |= ψ. By
assumption σ ↔ σ′ and so by Back, there exists a call sequence τ such that σ ∼a τ and τ ↔ τ . By the IH on
ψ, this bisimilarity yields τ |= ψ. As τ was arbitrary, this holds for all τ such that σ′ ∼′

a τ . Thus by semantics
of Ka we conclude that σ′ |= Kaψ.

For the backwards direction we use Forth and proceed analogously.

In order to find bisimilar states in Mtree, we may be tempted to use disjoint call sequences. However, one might
easily overlook epistemic relations that invalidate a bisimulation, as example 7.3 shows. Recall from definition 2.16
that the synchronous epistemic relation only relates sequences of the same length.

Example 7.3 (Disjoint Call Sequences). Let Ag = {a, b, c, d}. Consider the two call sequences σ = ab.cd and
τ = cd.ab. The following is the partial call graph for these sequences.

ϵ

σ τ

ab cd

cd ab

On the surface it looks like these two sequences might be bisimilar: their atoms are the same and the epistemic
relations between the above five states satisfy the Forth and Back conditions.

However, at either σ or τ we have for each agent precisely two indistinguishable call sequences that all lie outside
the picture, denoted below. Each of these sequences is a permutation of the 3 other agents for the call that the agent
was not involved in. These sequence each satisfy different atoms, so there can be no bisimulation Z containing (σ, τ).

Agent a: ab.cd ∼a ab.bd and ab.cd ∼a ab.bc.

Agent b: ab.cd ∼b ab.ad and ab.cd ∼b ab.ac.

Agent c: ab.cd ∼c ad.cd and ab.cd ∼c bd.cd.

Agent d: ab.cd ∼d ac.cd and ab.cd ∼d bc.cd.

We do however have call sequences that are bisimilar, as example 7.4 shows.

Example 7.4. Let Ag = {a, b}. Consider σ = ab and τ = ba.ab with the following partial call graph.

ϵ

σ

τ

ab

ba
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As there are only two agents, the only calls that can be executed are repeated calls back and forth. The model is
therefore a binary tree, but the indistinguishability relations and atoms do not depend on the order of calls. We let Z
be the bisimulation that contains 2 equivalence classes: one containing only the empty sequence ϵ and one containing
all other call sequence.

Lemma 7.5. In example 7.4, σ and τ are bisimilar.

Proof. Let Z contain the total relation between all non-empty call sequences as well as the reflexive relation ϵZϵ.
Observe that thus (σ, τ) ∈ Z too. We claim that Z is a bisimulation.

First we observe that all atoms are satisfied after the first call, whether it is ab or ba. Next, both agents can
exactly distinguish each point in the model: they are involved in all calls. The epistemic relations of both agents
contain only reflexive relations.

1. (Atoms) For all reflexive relations in Z, Atoms holds trivially. For all other σ′Zτ , observe that they are
non-empty call sequences because ϵ only occurs reflexively in Z, hence the secrets are already shared. Thus
the atoms remain unchanged.

2. (Forth/Back) There are no epistemic relations except the reflexive ones, and each sequence has one. Forth
and Back are satisfied by copying this reflexive relation.

Because σ and τ are bisimilar, we know by lemma 7.2 that σ and τ model the same formulas in LG. Conversely,
there is no formula φ ∈ LG whose truth differs between σ and τ .

Corollary 7.6. In example 7.4, σ and τ satisfy the same formulas in LG.

7.2 Expressivity of the Protocol-Dependent Language

Next we look at the expressivity of the protocol-dependent language. Most importantly, we will show the existence
of formulas in LP that characterise properties in σ and τ from example 7.4 and even a formula that characterises
the two call sequences uniquely.

We also show that adding a new operator Cab for “Call ab has happened in the past” [DGR23] does not increase
expressivity of LP .

We will make heavy use of the global alarm: the property that all agents turn insane as soon as a P -illegal call
takes place. Recall that we can characterise an illegal sequence in the tree model with the formula Ka⊥. Its dualˆ︁KP

a ⊤ constitutes the lack of a violation and therefore a P -permitted sequence.

7.3 Counting Formulas

We first construct a way to count the length of any call sequence using protocol-dependent knowledge. We do so by
recursively defining a protocol for every natural number that depends on the previous protocol.

Definition 7.7 (Counting Protocols). We define the following protocols to determine the number of calls. For all
natural numbers k ≥ 0 and all agents a ̸= b, and an arbitrary agent u we have:

P 0
ab := ⊥ “Allow no calls”

P k+1
ab := ˆ︁KP k

u ⊤ “The previous protocol has not been violated”

We can leverage the global alarm of these protocols. A sequence that violates protocol Pn corresponds to it
exceeding length n. Recall however that a protocol can only be violated by an illegal call. Conversely, the lack of a
call can never cause violation. The counting protocols therefore act like an upper bound, but not a lower bound.
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Lemma 7.8. For all agents u, call sequences σ and all k ≥ 0 we have

σ |= ˆ︁KP k

u ⊤ if and only if |σ| ≤ k.

Proof. Let agent u and call sequence σ be arbitrary. We use induction on k.
Base case. Let k = 0.
(=⇒) Suppose σ |= ˆ︁KP 0

u ⊤. Hence σ has not violated the protocol P 0. However, P 0
ab = ⊥ for all calls ab, so no

calls are P 0-permitted. Therefore we find that σ = ϵ and we conclude that |σ| ≤ 0.
(⇐=) Suppose |σ| ≤ 0. Then σ = ϵ. As the empty call sequence cannot violate any protocol, it can also not

violate P 0. Hence σ |= ¬KP 0

u ⊥ which implies σ |= ˆ︁KP 0

u ⊤.
Induction Hypothesis. Let k be arbitrary and suppose we have σ |= ˆ︁KP k

u ⊤ if and only if |σ| ≤ k

Induction Step. Suppose the induction hypothesis holds for arbitrary k. We show it holds for k + 1. Let
σ = τ.ab be an arbitrary call sequence such that |σ| = k + 1. Using the semantics of [ab] and ˆ︁Ku and soundness of
Fnc we get the following equivalences.

τ.ab |= ˆ︁KP k+1

u ⊤ ⇐⇒ τ |= [ab] ˆ︁KP k+1

u ⊤ ⇐⇒ τ |= ¬[ab]KP k+1

u ⊥

We then distinguish three cases for agent u to find that τ |= ¬[ab]KP k+1

u ⊥ ⇐⇒ τ |= ˆ︁KP k

u ⊤. By applying the IH on
τ |= ˆ︁KP k

u ⊤ we find that |τ | ≤ k and conclude that |σ| ≤ k + 1.

• Suppose u /∈ {a, b}. We get the following equivalences. For the step at (∗) we use the definition of P k+1
ab in

both directions. Observe for the backwards direction that P k is not violated at τ , so neither is P k+1. This
means that we have a reflexive relation τ ∼P k+1

u τ which is sufficient to obtain τ |= ˆ︁KP k+1

u (P k+1
ab ∧ [ab]⊤). This

satisfies the disjunct for de = ab.

τ |= ¬[ab]KP k+1

u ⊥

⇐⇒ τ |= ¬(P k+1
ab →

⋀︂
d,e ̸=u

KP k+1

u (P k+1
de → [de]⊥) (Pri1(P k+1))

⇐⇒ τ |= P k+1
ab ∧ ¬(

⋀︂
d,e̸=u

KP k+1

u (P k+1
de → [de]⊥)) (De Morgan)

⇐⇒ τ |= P k+1
ab ∧

⋁︂
d,e ̸=u

ˆ︁KP k+1

u (P k+1
de ∧ ¬[de]⊥) (De Morgan, Sem. ˆ︁Ku)

⇐⇒ τ |= P k+1
ab ∧

⋁︂
d,e ̸=u

ˆ︁KP k+1

u (P k+1
de ∧ [de]⊤) (Fnc)

⇐⇒ τ |= ˆ︁KP k

u ⊤ (∗)

⇐⇒ |τ | ≤ k (By IH)

⇐⇒ |σ| ≤ k + 1

• Suppose u = a. We get the following equivalences, which follow the same structure as the previous case. For
the backwards direction of the step at (†) observe that there is precisely one set Q ⊆ S such that ObQ. For all
other sets T ̸= Q the conjunct is satisfied with ¬ObT . The conjunct for R = Q is satisfied by the knowledge
operator: we use again the reflexive relation τ ∼P k+1

τ to obtain τ |= ˆ︁KP k+1

u (P k+1
ab ∧ObQ ∧ [ab]⊤).
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τ |= ¬[ab]KP k+1

u ⊥

⇐⇒ τ |= ¬(Pab →
⋁︂

R⊆S
(ObR ∧KP

u (Pab → (ObR → [ab]⊥)))) (Obs1(P k+1))

⇐⇒ τ |= Pab ∧
⋀︂

R⊆S
¬(ObR ∧KP

u (Pab → (ObR → [ab]⊥))) (De Morgan)

⇐⇒ τ |= Pab ∧
⋀︂

R⊆S
¬ObR ∨ ¬KP

u (Pab → (ObR → [ab]⊥)) (De Morgan)

⇐⇒ τ |= Pab ∧
⋀︂

R⊆S
¬ObR ∨ ˆ︁KP

u (Pab ∧ObR ∧ ¬[ab]⊥)) (De Morgan, Sem. ˆ︁Ku)

⇐⇒ τ |= Pab ∧
⋀︂

R⊆S
¬ObR ∨ ˆ︁KP

u (Pab ∧ObR ∧ [ab]⊤)) (Fnc)

⇐⇒ τ |= ˆ︁KP k

u ⊤ (†)

⇐⇒ |τ | ≤ k (By IH)

⇐⇒ |σ| ≤ k + 1

• Suppose u = b. We repeat the steps for u = a and instead apply Obs2(P k+1).

The truth of these formulas does not depend on the choice of an agent, so we pick an arbitrary agent and call
them u for “unlucky”. After all, we will abuse their knowledge base by purposefully driving them insane with respect
to our crafted protocols.

While the global alarm itself cannot be used to create a lower bound, we can easily negate the counting formula,
which also negates the bound to form a strict lower bound. What we get is a characterisation of the length of a call
sequence.

Definition 7.9 (Counting Formulas). We define φ0 := φϵ and for every other natural number k ≥ 1, let

φk := ˆ︁KP k

u ⊤ ∧KP k−1

u ⊥.

Lemma 7.10. We have for every call sequence σ and all k ∈ N that

σ |= φk if and only if |σ| = k.

Proof. We prove the statement directly using the result of lemma 7.8.

σ |= φk

⇐⇒ σ |= ˆ︁KP k

u ⊤ ∧KP k−1

u ⊥ (def. φk)

⇐⇒ |σ| ≤ k and ¬(|σ| ≤ k − 1) (lemma 7.8)

⇐⇒ |σ| ≤ k and |σ| > k − 1

⇐⇒ |σ| = k

This result is sufficient to conclude that LP is more expressive than LG. Recall that the two sequences in
example 7.4 were σ = ab and τ = ab.ba and thus of different length, yet no formula in LG can distinguish them.

Theorem 7.11. The protocol-dependent language LP is more expressive than the basic language LG.

Proof. We show that there are two sequences σ, τ such that they agree on all formulas in LG but there exists a
formula φ ∈ LP such that σ |= φ and τ |̸= φ.
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Let σ = ab and τ = ab.ba as per example 7.4. As shown in lemma 7.2 they agree on all formulas in LG. Consider
φ1 ∈ LP . By lemma 7.10 we have σ |= φ1 and σ |̸= φ1.

7.4 Forcing Call Sequences

With the use of counting formulas we obtain a lot of expressivity. We can for instance define a protocol that only
allows one specific call at the right moment. Combining multiple of these protocols recursively, we get a protocol
that enforces an entire sequence.

Definition 7.12 (Sequence Protocols). Let σ = a1b1.a2b2...ambm be a non-empty call sequence of length m. We
define the following protocols for k ∈ {0, ...,m}.

Pσ,0
ab := ⊥

Pσ,k+1
ij :=

{︄ ˆ︁KP σ,≤k

u ⊤ ∧ φk ij = ak+1bk+1

⊥ otherwise

Pσ,≤k
ab :=

⋁︂
j≤k

Pσ,j
ab

We call Pσ,≤m the sequence protocol of σ and simply write Pσ.

Recall that a protocol cannot enforce that a call sequence is actually completed. In order to ensure that we
recognise the entire sequence and not just a prefix, we combine the global alarm of the sequence protocol with the
counting formula for the length of the protocol.

Definition 7.13 (Sequence Formulas & Sequence Prefix Formulas). For any sequence σ of length m, we define two
formulas φ≤σ and φσ, which we call the σ-prefix formula and σ-sequence formula respectively.

φ≤σ := ˆ︁KP σ

u ⊤ σ-prefix formula

φσ := ˆ︁KP σ

u ⊤ ∧ φm σ-sequence formula

We will show that φσ exactly enforces σ, but first prove that ˆ︁KP σ≤,m

u enforces a prefix of σ of at most length m.

Lemma 7.14. Let σ be a call sequence. We have for all sequences τ and all m such that 0 ≤ m ≤ |σ|

τ |= ˆ︁KP σ,≤m

u if and only if τ is a prefix of σ and |τ | ≤ m.

Proof. Let σ be an arbitrary call sequence. We denote σ by a series of calls as follows: σ = a1b1.a2b2.a3b3.... Let τ
be an arbitrary call sequence. We use strong induction on m.

Induction Hypothesis. Let m be arbitrary and suppose τ |= φ≤k if and only if τ is a prefix of σ and |τ | ≤ k

holds for all k < m.
Induction Step. If τ = ϵ then we are done vacuously as ϵ cannot violate any protocol and is a prefix no longer

than 0 of every sequence σ. Let τ = µ.ab therefore be non-empty. We have

τ |= ˆ︁KP σ,≤m

u ⊤ if and only if µ |= Pσ,≤m
ab ∧ [ab] ˆ︁KP σ,≤m

a ⊤.

Since Pσ,≤m
ab =

⋁︁
j≤m Pσ,j

ab , we have this if and only if µ |= Pσ,k+1
ab for some k < m. By definition of Pσ,k+1

ab

µ |= ˆ︁KP σ,≤k

u ∧ φk ∧ [ab] ˆ︁KP σ,≤m

a ⊤.
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We use the IH on k to find that µ is a prefix of σ of at most length k and moreover |µ| = k by lemma 7.10.
Moreover, call ab can only have been Pσ,≤m permitted if ab = ak+1bk+1. Then τ = µ.ak+1bk+1, which is still a
prefix of σ. Because finally |τ | = k + 1 ≤ m, we are done.

This concludes the induction on m. As τ and σ arbitrary, this holds for all call sequences.

Lemma 7.15. We have τ |= φσ iff τ = σ.

Proof. The proof is immediate from the result of lemma 7.10 and lemma 7.14. We have τ |= ˆ︁KP σ,≤m

a ∧ φm if and
only if τ is a prefix of σ and |τ | = m = |σ|. Hence τ = σ.

7.5 Atom Formulas

We can also define protocols that are violated only when an atom becomes true. Clearly we can already express
atoms: they are after all atoms in the language. We will however derive some other properties from these formulas.

Definition 7.16 (Atom Protocols). For each atom Sab we define the protocol PSab as follows. Let for all agents
x, y the protocol condition be

PSab
xy := ¬[xy]Sab.

That is, the protocol allows any sequence of calls that do not make the atom Sab true. Or conversely: it does not
allow any call sequence that achieves Sab.

The definition of atom protocols is generally straightforward. We can apply again the use of the global alarm to
express the truth of atoms in terms of protocol-dependent knowledge.

Definition 7.17 (Atom Formulas). Let φSab := KP Sab

u ⊥ for agents a ̸= b ∈ Ag.

Lemma 7.18. Let a ̸= b ∈ Ag. We have σ |= φSab iff σ |= Sab

Proof. Let σ be some call sequence and a, b ∈ Ag agents such that a ̸= b.
(=⇒) Suppose σ |= φSab. Then there must have been some call xy such that σ = τ.xy.µ and xy violated the

protocol, that is τ |= ¬PSab
xy = ¬¬[xy]Sab. We thus find τ.xy |= Sab and as the truth of positive atoms is preserved

under calls by definition 2.15, we conclude that σ |= Sab.
(⇐=) Suppose σ |= Sab. Then σ ̸= ϵ since ϵ |̸= Sab by definition 4.15. So we can write σ = τ.xy.µ where xy is

the call after which Sab first became true. Then τ |= [xy]Sab, which equals τ |= ¬Pxy and so τ.xy was P -illegal.
Hence by definition 4.11 also σ was P -illegal and we conclude σ |= KP Sab

u ⊥.

There are two benefits in using the atom formula over the atom itself. Firstly, the global alarm will ensure that all
agents know (relative to the protocol) that Sab is true. Secondly, we can generalise this approach for other formulas.

It may be tempting to try this approach with arbitrary formulas, but this will fail. The reason the atom formulas
can use protocol conditions to force the atoms, is because the atoms are monotone in the sense that whenever they
become true, their truth is preserved under calls. This aligns with the property that violated protocols remain
violated after adding more calls.

7.6 Called operator

The language used by [DGR23] introduces a new operator Cab, which is true if a call ab has happened in the past.
Formally: σ |= Cab iff ab ∈ σ.

Whether a call has happened is not something that can be expressed in the basic language of gossip, so this
addition increases the expressivity of LG. For the protocol-dependent language LP it does not: we can define a
protocol that is violated precisely when call ab happens. That this is possible, follows from the observation that Cab
is a monotonic formula.
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Definition 7.19 (Call Formula). Let a ≠ b be agents. We then define the call formula φab := KP ab

a ⊥, where P ab is
the protocol allowing any call to happen except call ab, defined by the following conditions.

Pab = ⊥

Pxy = ⊤ ∀xy ̸= ab

The following corollary is immediate from these protocol conditions and the semantics of protocol violation.

Corollary 7.20. σ |= φab if and only if ab ∈ σ.
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Discussion

Protocol-Dependent Validities and Reasoning about History

Call reductions have played a large role in the axiomatisation of the basic gossip problem by [DHK20]. It seems
reasonable that calls are somewhat superfluous: the effects of a call, whether it is to the secret distribution or to
agent knowledge, can be predicted before executing it. The role of calls in protocol-dependent gossip is much bigger.
Calls can be permitted or not, and executing an illegal call has large consequences for the knowledge base of agents.
It is therefore somewhat surprising that the axiomatisation for protocol-dependent gossip still has call reductions.
While the effects have changed however, they remain clear before execution: it is clear that an agent will go insane
after an illegal call.

Still, the axiomatisation of protocol-dependent gossip looks almost identical to the basic proof system. Besides
the loss of reflexivity, the only significant change is the addition of protocol conditions to the observance axioms. It
is at least remarkable that the only meaningful change is in axioms that are used as reduction axioms. This should
mean that any additional knowledge that is gained from protocol-dependent knowledge, must be gained from doing
calls.

The strength of protocol-dependency seems to lie in the agent’s ability to unite their perception of the history
– the initial world and any calls that have been made – with the constraints of the protocol – which calls are
P -permitted. This ability is highest when the history is clearest, and it is clearest in the tree model. We therefore
suspect that the most interesting validities for protocol-dependent knowledge are consequences of the tree rule.
However, this rule does not have the most insightful structure and does not provide hints as to what sorts of validities
these are.

Definition of Protocol-Dependent Initial Models

We have defined a more general class of models for protocol-dependent gossip using arbitrary initial models. They
allow two properties that one might not expect from initial states of the protocol-dependent gossip problem: there
are different epistemic relations for each protocol, and protocols may even be violated already. Usually, we assume
that protocols can only be violated after a call, and up until violation, they agree with the basic epistemic relation
that an agent would have had.

We justify this with two reasons. Firstly and purely technical: we need the flexibility to construct a canonical
initial model. Secondly, we are mainly interested in an axiomatisation for the tree model, so there is no problem in
utilising a larger class of models to achieve this. It might be possible however to show completeness by other means
for these more well-behaved models and there are two reasons to attempt this.

Most importantly, it seems that these initial models – which the tree model is one of – have the property that all
protocol interactions follow from the protocol conditions. There would in such a case be no need for extra axioms
to relate different protocols. Secondly, these models satisfy the necessary conditions for the global alarm to take

– 45 –



Chapter 8 – Discussion

effect, which has been the main source of expressivity. We may therefore also expect interesting behaviour of the
protocol-dependent modalities on such models.

The Role of the Global Alarm

In chapter 7 we have seen that protocol-dependent knowledge modalities can express many things. Most notably,
the global alarm helps characterise each individual gossip state in the tree model. The global alarm is however a
strange semantic artefact and we claim that it should not be part of the semantics of protocol-dependent knowledge
for two reasons.

1. Exposure of calls. External agents should not know which call took place in a non-transparent setting, but
the global alarm informs them it was an illegal call (as opposed to a permitted call). This violates the privacy
level: agents can suddenly infer more than they should be able to about which calls may have taken place.

2. Knowledge of the conditions. External agents should not necessarily know whether a call was permitted,
because they might not know whether the protocol condition was violated. We do not usually require that a
protocol is epistemic for external agents, only for the agent who executes the call (the caller).

We could solve the second problem extrinsically by restricting ourselves only to protocols that satisfy these
requirements. rather than regular epistemic protocols1 we could require globally epistemic protocols such that any
agent knows whenever any condition holds. This puts a strong restriction on permissible protocols. Moreover, it
does not solve the first problem.

A more elegant solution lies in redefining the semantics of KP so that the alarm KP ⊥ only reaches the agent at
some later point when they become sure that none of the call sequences that can have happened are P -permitted.
We propose informally the following alternative semantics.

• After a call ab that was P -illegal, agent c does not know this call could have happened. In synchronous gossip,
the agent instead only considers possible the set of P -permitted calls (that they were not involved in).

These semantics come with a downside: the agent will reach a state of false belief. This might be an acceptable
trade-off, seeing that we already have this problem in P -illegal states. One could argue however that in the current
semantics this is more acceptable because knowledge is still truthful when restricted to P -permitted states.

1Protocols where the caller knows the protocol condition holds when it does: Pab → KaPab. See for instance [AGH15].
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Conclusion

We introduce the first proof systems for gossip including protocol-dependent knowledge modalities. Most importantly,
we show that GP1tree is sound and complete on the synchronous protocol-dependent tree model restricted to one
protocol-dependent modality. Additionally we show that the weaker system GP1 is sound and strongly complete
for arbitrary models in this setting, and demonstrate that it may be possible to extend the proof system to multiple
protocols and in particular to the synchronous tree model MPDtree as defined by [Dit+19]. To this end, we propose a
generalised system GPtree that we conjecture is sound and complete for MPDtree.

In doing so we unify the semantics for protocol-dependent gossip with semantics using arbitrary initial models.
Meanwhile, we also identify a sound and complete proof system for other semantics of basic gossip in [DG24].

We show that using of protocol-dependent modalities in the language of gossip increases its expressivity
significantly, but also raises questions about the desirability of its semantics, in particular the property of the global
alarm that violates assumptions in the gossip problem.

Future Work

The axiomatisation for the multi-protocol setting remains an open question. Our method may be further extended to
multiple protocols, but requires additional axioms for protocol interactions in arbitrary models. The system GPtree

might be a suitable candidate as a sound and complete axiomatisation for the synchronous protocol-dependent tree
model, although a different approach is required to show completeness without the use of arbitrary initial models.

Future research into the expressivity of protocol-dependent knowledge modalities is needed to better understand
the effects of the modality, both in different settings of gossip and settings outside gossip. This research may take
interest in analysing the expressivity of languages restricted to epistemic protocols or defining other restricted classes
of protocols. Within gossip, expressivity of the protocol-dependent language can also be tested on other models than
the tree model, such as models including arbitrary initial states.

Besides work in the direction of axiomatisations, future work could consider modifying the semantics of protocol-
dependent knowledge to avoid the global alarm property. A last direction is to find the syntactic derivation for both
¬EEExpAg and ¬KaEExpAg.
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