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Abstract
In the thesis, we extend the proof-theoretic notion of automatability to a parameterized version called
fpt-automatability. Automatability gives an indication whether for a proof system automated theorem
search is feasible. We develop parameterized automatability results that enrich the theory of automata-
bility with a collection of graph parameters for the proof systems Extended Frege and resolution. We
use methods such as interpolation and polynomial simulation for bounded arithmetic formulas, and we
exploit properties for intersection graphs. Also, with fpt-dominance, we show relationships between the
parameters.
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1 Introduction
Proof complexity is a subfield of computational complexity. If computational complexity is seen as
the study of computational resources needed to solve computational problems, then, proof complexity
concerns itself with the computational resources needed to prove or refute statements. This includes
questions such as the existence of proofs for a given tautology, the resources to automate proof search or
bounds for the lengths of the proofs. A motivation for research on lower bounds of the lengths of proofs
is the conjecture that NP ̸= coNP is equivalent to the statement that no propositional proof system has
polynomial-size proofs for every tautology [CR23].

A motivation for research on automatability is the exploration of proof search and of what is possible
and feasible even before software automate proving statements in large scales. If a proof system is
automatable, we can find for every tautology of the proof system a proof in time polynomial in the
shortest proof for the tautology [BPR00]. Thus, the theory of automatability indicates the feasibility
with regard to time needed for proof search.

This motivation leads to the aproach of applying parameterized complexity to proof complexity.
Parameterized complexity grants a setting to enrich a theory by introducing parameters that are signif-
icant to the problem. The thesis presents parameters that are significant for automatability and results
bounding the proof length of a tautology. For this, we introduce the notion of fpt-automatability and
fpt-boundedness whereby the prefix ’fpt’ stands for fixed-parameter tractable and expresses feasibility for
small values of the respective parameters.

The parameters that we consider are graph parameters. This is due to the fact that the representation
of the proof as a proof graph or the representation of the tautology as a graph are natural parameters
and therefore, good data structures for algorithms that automate proof systems.

We prove results for two proof systems: An extension of Frege proof systems, called Extended Frege
and resolution. Frege proof systems are propositional proof systems that imitate Hilbert style calculus.
We focused on Extended Frege since it is relevant to proof complexity and widely discussed in the
literature (see for example [AB04], [Bus12], [BPR00] or [Kra95]).

Resolution is a proof system that is connected to the Boolean satisfiability problem in computational
complexity. Many of the concrete algorithms that have been developed in the past decades to solve the
Boolean satisfiability problem are based on a search procedure that can be seen as a form of resolution
(see eg Theorem 4.2.1 in [Kra95], [AFT11] or [BN21] for a general survey).

We present the collection of fpt-automatability results separately, first, for Extended Frege, then, for
resolution. Within the same proof system, we set the parameters in context via a term from parameterized
complexity called fpt-dominance. The dominance of one parameter to another structures the thesis and
forms a lattice on the order of the parameters.

In the following, we sketch our results. The overview map should guide through the thesis and struc-
ture its content. The results on non-fpt-automatability are conditional, thus, rely on hardness assumptions
and whenever we mention non-fpt-automatability, we implicitly mean that they are conditional.

special tree width ✗incidence cut width ✓

incidence path width ✓

one-sided tree width ✓

incidence tree width ✓

primal tree width ✓

strongly chordal
tree width ✗

directed spaghetti width ✗

spaghetti width ✗

tree width ✗

clique width ✗

Figure 1: Overview over the parameters
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Each node stands for an fpt-automatability (denoted by ✓) or (conditional) non-fpt-automatability
result (denoted by ✗). We connect a parameter k with parameter k′ by an edge from parameter k′ to
parameter k if k′ dominates k. Furthermore, we classify the type of result by the style of the nodes. A
thin, rectangular node stands for non-fpt-automatability for Extended Frege, a thin, circle-shaped node
stands for fpt-automatability for resolution and a thick, circle-shaped node stands for fpt-automatability
and fpt-boundedness for resolution.

1.1 Contributions
In the thesis, we introduced the new terms fpt-automatability and fpt-boundedness. Built on these terms
we developed a collection of fpt-automatability and fpt-boundedness results illustrating the applicability
of the terms.

We use different methods to prove our results. In particular, we use interpolation to show a building
stone result on the parameter tree width since interpolation is closely related to automatability [BPR00].
Feasible interpolation refers to being able to tell apart two sets with help of a polynomial size circuit. An
interpolation that is not feasible can tell apart the two sets but might need bigger circuits to do so.

In sequence, we generalize the result on tree width and motivate parameters such as spaghetti tree
width via graph theory. Here, we stress the relationships between the parameters, visible in the lattice
structure of our results.

In addition, the section on resolution that comes with many automating results describes algorithms
how to constructs refutations for a given unsatisfiable formula. For this, we make use of the concept of
dynamic programming and try to illustrate fpt-automation algorithmically.

The collection of results should show the use of the parameterized setting for automatability: Due to
parameters that come along with an intuition/application, we can improve our estimation of what are
feasible automatability problems in proof complexity.
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2 Preliminaries
We split the preliminaries into the proof complexity part, parameterized complexity part and a part that
merges the two previous ones to parameterized proof complexity. Parameterized proof complexity is a
relatively new area and therefore, in sequence, we add only a short review of the literature of concepts
that relate to proof complexity and parameterized complexity.

2.1 Proof complexity
The very base of proof complexity is the definition of a proof system. Proof systems are logical systems
in which proofs can be deduced. For formalizing proving a statement, let us have a look at the definition
of a propositional proof system given by Krajicek [Kra95].

Definition 2.1. A propositional proof system is a surjective, polynomial time function P whose range
is the set of tautologies and that maps proofs to tautologies.

Surjectivity ensures that every tautology has a proof, thus, that the respective proof system is sound.
Note that here we allow all kinds of functions to be proof systems. Nonetheless, there are a few established
proof systems with proofs based on defined rules and axioms. These rules and axioms vary over the
different proof systems. Some rely on a single rule but a variety of axioms such as the resolution proof
system, some focus on a small number of axioms but have more rules such as Gentzen style sequent
calculus. Another proof system is the Frege proof system.

Definition 2.2. A Frege rule is a k+1-tuple of formulas A0, . . . , Ak in atoms p1, . . . , pn written as

A1, . . . , Ak
A0

such that any assignment α : {p1, . . . , pn} → {0, 1} satisfying all formulas A1, . . . , Ak also satisfies
formula A0 (soundness of the rule).

Intuitively, we can see a Frege proof as a machine that takes an initial set of axioms, and sequentially
applies Frege rules to obtain new formulas until it reaches the formula that is the statement that was to
prove. Formally, we define the Frege proof system similarly to Krajicek in [Kra95]:

Definition 2.3. Let F be a finite collection of Frege rules.

1. A Frege proof of a formula η0 from formulas {η1, . . . , ηu} is a finite sequence θ1, . . . , θk of formulas
such that every θi is either an element of {η1, . . . , ηu} of inferred from some earlier θj with j < i
by a rule from F and such that the last formula is η0.

2. F is implicationally complete if and only if for any set {η1, . . . , ηu} such that every assignment
satisfying all formulas in this set also satisfies η0, the formula η0 is F -provable from {η1, . . . , ηu}.

3. F is a Frege proof system if and only if it is implicationally complete.

There is not just one single Frege proof system but several ones because there is a plenitude of Frege
rules. Since proof complexity aims to quantify computational resources needed for proving a statement
in a certain proof system, it makes sense to compare the computational resources needed to prove a fixed
statement in different proof systems. For this, we cite the notion of a polynomial simulation by Krajicek
in [Kra95]. Thus, if we have a proof given in a proof system, simulations formalize the translation process
of the proof to another proof system. With that, we can build a hierarchy of proof systems depending
on whether two proof systems polynomially simulate each other.

Definition 2.4. A polynomial simulation from Q to P (in short, p-simulation or Q ≤p P ) is a polynomial
time function f(w, τ) such that for all w and τ

Q(w) = τ → P (f(w, τ)) = τ.

We say that the stronger, more expressive proof system p-simulates the weaker system. So, for any
proof in the weaker proof system, we can find a corresponding proof in the stronger proof system. Frege
systems are on the same level of this hierarchy since every two Frege systems p-simulate each other (see
Theorem 4.4.13 in [Kra95]). For extensions of Frege system such as Extended Frege this is not necessarily
the case: Extended Frege polynomial simulates Frege proof systems but it is an open problem whether
Frege systems can simulate Extended Frege [BBP95].
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Definition 2.5. Let F be a Frege system. An extended Frege proof is a sequence of formulas θ1, . . . , θk
such that every θi either is obtained from some previous θj by a Frege rule or has the form

q ≡ ψ

where:

1. the atom q appears in neither ψ nor θj for some j < i

2. the atom q does not appear in θk

3. α ≡ β abbreviates (α ∧ β) ∨ (¬α ∧ ¬β).

A formula of this form is called an extension axiom and the atom q is called an extension atom.
An extended Frege system EF is the proof system whose proofs are the extended Frege proofs.

Proofs in propositional proof systems such as Frege can be associated with a graph. The graph induced
by a Frege proof has vertices for all axioms needed during the proof and formulas inferred by rules and
connects two vertices if and only if one is inferred by the other by a rule. We call the graph associated
with a Frege proof a proof graph. Depending on the proof system, we are going to build on the notion of
a proof graph.

As a consequence, graph theory and graph measures such as tree width, path width or cut width can
be applied to proofs. Aligned to that, we define the property of a proof being treelike.

Definition 2.6. A Frege proof θ1, . . . , θk is called treelike if and only if every step θi is a hypothesis of
at most one inference in the proof.

This is equivalent of saying that the proof graph of a proof should be a tree. For all other proof
systems, we are going to be introduce later on, we also call a proof treelike if the graph associated with
the proof is a tree. We stress again that for other proof systems the associated graph to proof is obtained
differently than for a Frege proof.

To be able to differentiate between proofs of different proof systems, we stick with the notion of a
P -proof, denoting that the proof is obtained via the proof system P . Furthermore, consider that the size
of a formula φ we denote by |φ| and is defined by the number of symbols in φ. The size of a proof π we
denote by |π| and is defined by the number of symbols in π.

This notion of size is needed for the definition of an automatable proof system. As the word indicates,
we want to automate finding a proof and give an indication if the time needed to do so is feasible. Similar
to problems in computational complexity, we cannot gain results to indicate the exact number of com-
putation steps for any proof system as we cannot give the exact run time for an arbitrary computational
problem. Instead, we have to relate the hardness of the problem to a sensible measure. For automatability
as introduced by Maria Luisa Bonet, Toniann Pitassi and Ran Raz in [BPR00], we consider the measure
of the shortest proof. Clearly, we cannot find a proof faster than the shortest proof there is.

Definition 2.7. A proof system P is automatable if for any tautology φ we can find a P -proof π in
polynomial time in the size of shortest proof of φ and we say that a proof system P is non-automatable
otherwise.

A practical motivation for results showing that a proof system is non-automatable is the indication
of the difficulty of proof search for this proof system. If a proof system is not automatable it might be
difficult to design a good algorithm for proof search in this proof system.

Aligned with the latter motivation, we want to show non-automatability results that indicate the
complexity of finding a proof. One framework building upon computational complexity is parameterized
complexity.

2.2 Parameterized complexity
Parameterized complexity introduces parameters for the respective computational problem that are sig-
nificant to it. Subsequently, it measures the complexity of the problem in addition to the input size of the
problem in the respective parameter. We call a problem fpt-tractable if it has effective running time with
regard to the parameter k and the input size n. For small parameter values and effectively computable
functions f , this should yield fast algorithms in practice.
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Definition 2.8. A problem is fpt-tractable with respect to a parameter k if there is a computable function
f and the problem can be solved in time f(k) · p(n).

Take for example the NP-complete problem VERTEX COVER [LGJ83]. Even though the problem is
NP-complete, it is also fpt-tractable with regard to the parameter size of the potential vertex cover k.
For small parameter values, this yields good algorithm O(2kn), see chapter 4, page 31 in [Nie06]. This
example should illustrate that knowing about the fpt-tractability might give some additional practical
insights.

Similar to the hierarchy of complexity classes in the conventional setting, there is a hierarchy of
parameterized complexity classes where it is so far unknown if the inclusion is strict.

Two prominent parameterized complexity classes are FPT and W[P]. While FPT is the class of decision
problems that are fpt-tractable, the definition introduced in [SFG07] of the class W[P] is the following:

Definition 2.9. W[P] is the class of problems that can be decided by a nondeterministic h(k)|x|O(1)-time
Turing machine that makes at most O(f(k) log(n)) nondeterministic choices in the computation on (x, k).

The work focuses on the notion of fpt-tractability and attempts to translate this to proof complexity.

2.3 Parameterized proof complexity
In the following, we want to apply the parameterized setting to proof theoretic definitions. In the lit-
erature, different paramerized setting were introduced for proof theory. The work of Stefan Dantchev,
Barnaby Martin and Stefan Szeider introduces a framework for parameterized resolution with the pa-
rameter Hamming weight of the clauses in the resolution [DMS07]. Alternatively, the work of Jörg Flum
and Moritz Müller introduces notions of fpt-simulations between proof systems employing parameters
such as the number of applications of certain rules within the proof [FM12]. We extend the definition of
p-bounded proof system of Jörg Flum and Moritz Müller to an fpt-bounded proof system:

Definition 2.10. A proof system P is fpt-bounded with respect to parameter k if there is a computable
function f such that for every tautology φ a P -proof π has size at most f(k) · p(n) for |φ| = n.

Similarly to the definition of fpt-bounded, we take the definition of an automatable proof system and
modify it. While the term fpt-bounded talks about the size of a proof for a given tautology with respect
to the size of the tautology, the term fpt-automatable refers to the time to find a proof of a tautology
with respect to the proof length. In the conventional setting, we take the shortest proof as a reference to
the time to find a proof. In the parameterized setting, we have a different reference, namely the minimal
candidate value, to estimate the time.

This notion is needed to make the technicalities of the definition work since the minimal candidate
value is dependant on our parameterization. When we parameterize a problem, we look for a significant
parameter and rephrase the problem with respect to the parameter. The parameter can be a fixed value
k or the value of a parameter function κ. We see that parameter functions like tree width allow several
interpretations of the value of κ. The parameter k could be for example k = minGπ treewidth(Gπ) over
all graphs G corresponding to a proof π. On the other hand, we could take the tree width of the shortest
proof k = treewidth(Gπ̂) for π̂ = minπ |π|. Since these variants lead to valid parameters, we fix in our
definition the way how the value k is obtained by κ. This definition naturally implies fpt-bounded and
fpt-automatability with regard to a fixed value if we consider κ as a constant function with value k.

Definition 2.11. Let the minimal candidate value vφ,f,κ,P,p with regard to tautology φ, function f ,
parameter function κ with k = κ(φ, π), proof system P and polynomial p be the value over the minimum
over all potential proofs π of the statement φ in the proof system P of the term f(k)·p(n) for the parameter
function κ with |π| = n. In short, vφ,f,κ,P,p := minπ f(k)p(n).

With the definition of the minimal candidate value, we can define an fpt-automatable proof system
as follows:

Definition 2.12. A proof system P is fpt-automatable with regard to parameter k = κ(φ, π) if we can
find a computable function f such that for any tautology φ, we have a P -proof π in time polynomial
q in the minimal candidate value vφ,f,κ,P,p for a polynomial p and we say that a proof system P is
non-fpt-automatable with regard to a parameter k otherwise.

The function κ takes as input a propositional formula φ and a P -proof π that computes a value
κ(φ, π). This value is our parameter. In the following, we give an example on how to determine the
minimal candidate value for Frege proofs.
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Example 2.13. Let φ = f be the function f(x) = 2x and P a proof system. Take as a parameter function
κ the minimal size of the biggest cycle over all potential proofs in the proof system. Then, there are several
potential Frege proofs π of the statement φ. Consider two imaginary ones that yield the following proof
graphs.

φ1 after applying rule 2

φ2 after applying rule 1axiom 1

φ after applying rule 3

(a) Graph G1 of proof π1

φ1 after applying rule 1

axiom 2axiom 1

φ after applying rule 2

(b) Graph G2 of proof π2

Figure 2: Example of determining parameter k

We see that the biggest cycle of G1 has size 3, whereas the biggest cycle of G2 is 2. We conclude that
k = min{22, 23} = 4.

Since the definition relies on the parameter k, there are fpt-automatable proof systems with regard to
the one parameter k that are non-fpt-automatable with regard to an other parameter k′. For example, Ex-
tended Frege is not fpt-automatable with regard to tree width (see Theorem 3.27) but is fpt-automatable
with regard to path width (see Corollary 4.4). Just as well, it is possible to gain automatability results
for proof systems that do not hold for other proof systems. Nonetheless, we see that there is a connection
between the results for different proof systems if one polynomially simulates the other.

Lemma 2.14. If a proof system P1 polynomially simulates proof system P2 (P2 ≤q P1), P2 is fpt-
automatable with regard to a parameter k and vφ,f,κ,P1,p ≥ vφ,f,κ,P2,p, we have that the proof system P1

is fpt-automatable with regard to parameter k.

Proof. Since P1 polynomially simulates proof system P2, we can translate any proof in P2 in polynomial
time q to a proof in P1. Since P2 was fpt-automatable, we can find a proof in time g(vφ,f,κ,P2,p) for a
polynomial g for any tautology φ. Subsequently, we find a proof in time q(g(vφ,f,κ,P2,p)) for any tautology
φ and since q ◦ g is a polynomial and vφ,f,κ,P1,p ≥ vφ,f,κ,P2,p, the assertion follows.

Here, we also note that there is a relation between fpt-automatability and automatability with regard
to the same proof system.

Lemma 2.15. If a proof system P is is automatable, it is fpt-automatable with regard to any parameter
k.

Proof. A proof system P is fpt-automatable with regard to parameter k if for any tautology φ, we can
find a computable function f and a P -proof π in time of polynomial in the minimal candidate value
vφ,f,κ,P,p = minπ f(k)p(n) with |π| = n. Since

p(min
π
|π|) ≤ min

π
f(k)q(|π|)

for a polynomials p and q, we have that a proof system P is fpt-automatable with regard to any parameter
k, if it is automatable.

Intuitively, this makes sense since with the introduction of a parameter, we aim to obtain more
information and enrich the theory of automatability. If there were proof systems that are only fpt-
automatable with regard to a certain parameter but not with regard to the shortest proof, we would have
a contradiction between the parameterized setting and conventional automatability results.
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2.4 Relation to other work
We introduced proof systems as mappings from proofs to tautologies as used in literature in [Bus12],
[DMS07], [PS10] and [FM12]. But there is another canonical definition of a proof system P that is used
by Krajicek in [Kra95]. Here, we switch the domain and the range of the function in the definition of
a proof system. To differentiate between the two definitions of proof systems, we denote the alternative
version of proof system that maps tautologies to proofs with P ′.

Definition 2.16. A propositional proof system is a polynomial time function P ′ whose domain is the set
of tautologies and that maps no two different tautologies to the same proof.

Thus, on the contrary to Definition 2.1, we map tautologies to proofs. The condition that the proof
system maps no two different tautologies to the same proof implies injectivity of P ′. We assume P ′ to
be total, thus, for f : X → Y for every x ∈ X, we have that f(x) ∈ Y . While totality is implicit for
proof systems P ′, for proof systems P , we demand surjectivity in Definition 2.1. As a consequence, we
can consider a surjective proof system that maps proofs to tautologies as the right inverse1 of a proof
system that maps tautologies to proofs. Similarly, we consider P ′ as a left inverse to P .

The relationship between proof systems P and P ′ makes it possible to transfer results that rely on dif-
ferent proof system definitions to each other. For this, we define when a proof system P ′ is fpt-bounded
analogously to when a proof system P is fpt-bounded.

Definition 2.17. A proof system P is fpt-bounded with respect to parameter k if for every tautology φ
there is a computable function f and a P -proof π with size at most f(k) · p(n) for |φ| = n.

And with this definition, we can easily prove the following:

Proposition 2.18. A proof system P ′ that maps tautologies to proofs is fpt-bounded if and only if the
respective surjective proof system P that maps proofs to tautologies is fpt-bounded.

Proof. Assume that a proof system P ′ that maps tautologies to proofs is fpt-bounded. Then, the proof
system P ′ maps each tautology φ to a proof of size at most f(k)p(n) for a computable function f and a
parameter k. Thus, the image of P ′ are proofs that of size at most f(k)p(n) for a computable function
f and a parameter k. But the image of P ′ is the domain of the left inverse P : A surjective left inverse
exists vacuously if the domain and the range are finite. Since P is surjective, each tautology φ in the
range of P has a proof π in the domain with P (π) = φ. But the proofs in the domain were all bounded in
size. It follows that every tautology has a proof of size at most f(k)p(n) and therefore, P is fpt-bounded.

Assume that a proof system P ′ that maps proofs to tautologies is fpt-bounded. Then, any tautology
φ has a P ′-proof of size f(k)nO(1) for a computable function f and parameter k. But a proof system
P ′ that maps no two different tautologies to the same proof is a right inverse to P : The injective right
inverse exists vacuously for a surjective P ′ if domain and range are finite. But if every tautology has
a proof of size at most f(k)p(n) as preimage, then, P ′ maps every tautology to a proof of size at most
f(k)p(n). Thus, P ′ is fpt-bounded.

The equivalence of fpt-boundedness leads us to the natural question whether a proof system P is if and
only if automatable if P ′ is automatable. But here, we fail to give a good definition for an automatable
proof system P ′ due to the following reason: On the contrary to fpt-boundedness, automatability relies
on the fact that there are several proofs for a single tautology. There needs to be at least one proof due
to the completeness of the respective proof system. The definition of automatability relies on measuring
the time to find a proof with respect to a reference proof (namely, the shortest one). If there is only one
proof since the image of an element cannot contain more than one element for a conventional function,
the definition of automatability becomes nonesensical.

This also serves as a motivation to stick with our definition of a proof system P .
In the following, we start a survery of fpt-automatability with regard to different parameters and

proof systems P .
1As common in analysis, we define a right inverse of a function f : X → Y as the function r : Y → X such that

f ◦ r = idY . Similarly, we define the left inverse of a function f : X → Y as the function l : Y → X such that l ◦ f = idX .
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3 Parameters for Frege proof systems
In sequence, we want to classify fpt-automatability results with respect to different parameters. We
separate the parameters with regard to the proof system and whether they yield fpt-automatability. For
each parameter, we introduce the respective tools to show fpt-automatability. First, we dive into the
theory of bounded arithmetic.

3.1 Bounded arithmetic and Gentzen proofs
Bounded arithmetic requires the range of quantifiers to be bounded. With that, bounded arithmetic is
a weaker theory than first-order arithmetic since there, we allow ranges over unbounded and infinite do-
mains. Since we require quantifier ranges to be bounded, those formulas can be rewritten as propositional
formulas. But first, let us formally introduce the concept of a bounded formula as in [Kra95].

Definition 3.1. We define the function | · | that takes as input a term and outputs the length of the
binary representation of the term. The class Σb0 = Πb0 of sharply bounded formulas consists of formulas
in which all quantifiers have have form

∃x ≤ |t| or ∀x ≤ |t|

for a term t that may not depend on the variable it is bounding. We call a formula bounded if all quantifiers
have the form

∃x ≤ t or ∀x ≤ t.

To illustrate the translation of a bounded formula to a propositional formula consider the following
example.

Example 3.2. Let φ = ∀x ≤ 10∃x ≤ y.x = 10 + y. Then, φ is a bounded formula. We can rewrite φ to

10∧
x=0

x∨
y=0

x = 10 + y

and this formula is propositional since both x and y take eleven different values.
The following formula φ′ is a sharply bounded formula since the binary representation of the number

10 is 10102 and has length four and the length of the binary representation of y is ⌈log2(y + 1)⌉. With
that, we can write φ as

φ′ := ∀x ≤ |10|∃x ≤ |y|.x = 10 + y

or also
φ′ := ∀x ≤ 4∃x ≤ ⌈log2(y + 1)⌉.x = 10 + y.

In particular, we see that a sharply bounded formula is also a bounded formula.

An extension of sharply bounded formulas are the classes of formulas Σb1 and Πb1.

Definition 3.3. The classes Σb1 and Πb1 are the smallest classes satisfying

• Σb0 ⊆ Σb1 ∩Πb1

• Σb1 and Πb1 are close under sharply bounded quantification, disjunction and conjunction

• Σb1 is closed under bounded existential quantification

• Πb1 is closed under bounded universal quantification

• the negation of a Πb1-formula is a Σb1-formula and the negation of a Σb1-formula is a Πb1-formula

We see that the example before is a Σb1-formula as well as a Πb1-formula due to the first condition. We
modify our example to obtain a formula that is part of Σb1 but that is not a Σb0-formula:
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Example 3.4. Let φ = ∃w ≤ 8∀z < 9∀x ≤ 10∃x ≤ y.x = 10 + y + w + z ∨ x = w − z. Then, φ is a
Σb1-formula. Nonetheless, φ is not part of the class Πb0 since Πb0 is not closed under bounded existential
quantification.

We can still rewrite φ to
8∧

x=0

8∨
y=0

10∧
y=0

x∨
w=0

x = 10 + y ∨ x = w − z

and this formula is propositional since x, y, z and w take finitely many different values.

Building on the definition of bounded formulae, we want to introduce another two proof systems: S1
2

and G1. For proofs that can be derived in the proof system S1
2 , we have a proof translation to the G1

proof system that is bounded in size.
The proof system S1

2 builds upon the BASIC proofs system that entails 32 axioms and the symbols
{0, 1,+,−, ∗, <,=, ⌊x⌋, |x|, x#y} for variables x and y. For the full list of the axioms, see Definition 5.1
in the appendix.

Definition 3.5. The proof system S1
2 is a language extending BASIC by the polynomial induction axiom

PIND
ϕ(0) ∧ ∀x.(ϕ(⌊x

2
⌋)→ ϕ(x))→ ∀xϕ(x)

for all Σb1-formulas ϕ(a). The formula ϕ(a) may have other free variables than a.

We cited this definition from Krajicek (see Definition 5.2.3 [Kra95]) as well as the definition of a
Gentzen proof (see Definition 4.3.2 and 4.6.2 [Kra95]). The Gentzen proof system is also called sequent
calculus since its main objects are sequents.

Definition 3.6. A a sequent is an ordered pair of two finite sequences (possibly empty) of formulas
written as

ϕ1, . . . ϕn −→ ψ1, . . . , ψn.

A proof in the Gentzen proof system is a sequence of sequents that are obtained using several rules.
In comparison to Frege systems, the focus lies more on the rules than on the axioms.

Definition 3.7. A G-proof is a sequence of sequents in which every sequent is either a sequent of the
form

A −→ A, 0 −→ or −→ 1

with A an atom or is derived from previous sequents by one of the following rules:

1. weakening rules Γ −→ ∆left
A,Γ −→ ∆

and Γ −→ ∆right
Γ −→ ∆, A

2. exchange rules Γ1, A,B,Γ2 −→ ∆
left

Γ1, B,A,Γ2 −→ ∆
and Γ −→ ∆1, A,B,∆2right

Γ −→ ∆1, B,A,∆2

3. contraction rules Γ1, A,A,Γ2 −→ ∆
left

Γ1, A,Γ2 −→ ∆
and Γ −→ ∆1, A,A,∆2right

Γ −→ ∆1, A,∆2

4. ¬ introduction rules Γ −→ ∆, A
left ¬A,Γ −→ ∆

and A,Γ −→ ∆
right

Γ −→ ∆,¬A

5. ∧ introduction rules A,Γ −→ ∆
left

A ∧B,Γ −→ ∆

and A,Γ −→ ∆
left

B ∧A,Γ −→ ∆
and Γ −→ ∆, A Γ −→ ∆, B

right
Γ −→ ∆, A ∧B

6. ∨ introduction rules A,Γ −→ ∆ B,Γ −→ ∆
left

A ∨B,Γ −→ ∆

and Γ −→ ∆, A
right

Γ −→ ∆, A ∨B
and Γ −→ ∆, A

right
Γ −→ ∆, B ∨A

7. cut-rule Γ −→ ∆, A A,Γ −→ ∆

Γ −→ ∆

8. ∀ introduction rules
A(B),Γ −→ ∆

left ∀xA(x),Γ −→ ∆
and

Γ −→ ∆, A(p)
right

∀xA(x),Γ −→ ∆,∀xA(x)
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9. ∃ introduction rules
A(p),Γ −→ ∆

left ∃xA(x),Γ −→ ∆
and

Γ −→ ∆, A(B)
right

∀xA(x),Γ −→ ∆,∃xA(x)

We call a proof G1-proof if it contains only Σb1-formulas. We call a proof G∗
1-proof if it allows only

Σb1-formulas and is treelike.

With the definition of the proof system S1
2 and G∗

1, we have the vocabulary to cite a theorem needed
to prove the non-fpt-automatability result with regard to parameter proof tree width.

Theorem 3.8 (Propositional translation). Let A(a) be a Σb1-formula. Assume that

S1
2 ⊢ A(a).

Then there is a bounding polynomial q(x) for A such that for all m the formulas ∥A∥mq(m) have size mO(1)

G∗
1-proofs. (See Theorem 9.2.6 in Chapter 9 in the book in [Kra95].)

Note that this theorem holds for all choices of m and that ∥A∥mq(m) refers to a specific translation. See
Section 5 in the appendix for more details on how to construct ∥A∥mq(m). Intuitively, the theorem tells us
that there is a good translation to the Gentzen proof system such that the translated proofs are bounded
in size and treelike.

The second tool needed to prove the fpt-automatability result with regard to parameter proof tree width
is a polynomial simulation between G∗

1 and Extended Frege. The proof is rather technical and the first
direction splits into a polynomial simulation from G∗

1 to SF and SF to G∗
1 which together gives the poly-

nomial simulation from G∗
1 to Extended Frege. The other direction is proven on induction. Let us define

the intermediate proof system as described by Krajicek in Definition 4.5.1 in [Kra95].

Definition 3.9. The substitution rule allows simultaneous substitution of formulas for atoms in one
inference step

θ(p1, . . . , pn)
θ(ϕ1, . . . , ϕn)

A Frege system with the additional substitution rule will be denoted by SF.

Thus, the proof system SF is similar to Extended Frege just an extension of a common Frege proof
system.

Lemma 3.10. The proof system G∗
1 and Extended Frege polynomially simulate each other.

Proof. We take the polynomial simulations described in Lemma 4.6.3, Lemma 4.4.8, Lemma 4.5.4, 4.4.10
and 4.4.9 in [Kra95].

First, we want to show that G∗
1 polynomially simulates SF.

Since G∗
1 simulates any Frege system [CR23] and SF is a Frege system with the additional substitution

rule, it suffices to show that G∗
1 simulates an instance of the substitution rule:

θ(p1, . . . , pn)
θ(ϕ1, . . . , ϕn)

For this, we want to construct a treelike G1-proof by assuming −→ θ(p1, . . . , pn) and concluding −→
θ(ϕ1, . . . , ϕn).

To the sequent −→ θ(p1, . . . , pn), we apply n-times ∀ right to obtain

−→ ∀x1 . . . ∀xnθ(x1, . . . , xn).

By assuming the axiom of the atomic sequent A −→ A, we can deduce by a constant length G∗
1-proof

that
θ(ϕ1, . . . , ϕn) −→ θ(ϕ1, . . . , ϕn)

by the introduction rules. By n application of ∀ left, it follows from θ(ϕ1, . . . , ϕn) −→ θ(ϕ1, . . . , ϕn) that

∀x1 . . . ∀xnθ(x1, . . . , xn) −→ θ(ϕ1, . . . , ϕn).

With the cut rule, we infer from
−→ ∀x1 . . . ∀xnθ(x1, . . . , xn)
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and
∀x1 . . . ∀xnθ(x1, . . . , xn) −→ θ(ϕ1, . . . , ϕn)

that
−→ θ(ϕ1, . . . , ϕn).

Second, we want to show that if G∗
1 polynomially simulates treelike SF, G∗

1 also polynomially simulates
EF.

Let q1 ≡ ψ1, . . . , qr ≡ ψr be all the extension axioms introduced in an EF proof θ1, . . . , θk of an given
statement τ of size m. We can reorganise the EF proof such that q1 ≡ ψ1, . . . , qr ≡ ψr are the first steps
of the proof. By definition of the extension rule, all qi do not occur in τ but may appear in subsequent
proof steps.

For the following implication

qr ≡ ψr → (qr−1 ≡ ψr−1 → (. . . (q1 ≡ ψ1)) . . . )→ τ

of size O(m), we want to construct a Frege proof of size O(m2). This reduces to the problem of finding
a Frege proof for one implication ψ → q of size O(m) and from that, we successively build the full
implication of implications. Assume that q has a proof η1, . . . , ηk.

We have that

Aj1 , . . . , Ajr
Ak

is an Frege rule and therefore, the following formula is a tautology for a fixed z:

((z → Aj1)→ (· · · → (z → Ak) . . . )

Take ηi inferred by ηj1 , . . . , ηjl and use the substitution rule, to obtain:

((ψ → ηj1)→ (· · · → (ψ → ηjl)→ (ψ → ηi) . . . )

From this formula, together with ψ → ηjs for s ≤ l, it follows with modus ponens that ψ → ηi.
Since η1, . . . , ηk was a proof of q, we can successively build a proof for ψ → q. We iterate this over

the nested implication and obtain a Frege proof of

qr ≡ ψr → (qr−1 ≡ ψr−1 → (. . . (q1 ≡ ψ1)) . . . )→ τ.

We apply the substitution rule and substitute ψr for qr

ψr ≡ ψr → (qr−1 ≡ ψr−1 → (. . . (q1 ≡ ψ1)) . . . )→ τ.

We can derive ψr ≡ ψr by a proof of size O(|ψr|) since we can substitute the ψi for atoms pi.
By repeated application of modus ponens to the implication and ψi ≡ ψi, we get a proof of τ in size

O(m2).

In sum, we have that SF polynomially simulates EF and G∗
1 polynomially simulates SF and therefore,

G∗
1 polynomially simulates EF.

For showing that EF polynomially simulates G∗
1, we refer to literature. Initially, the Lemma appears

as Lemma 4.6.3 in [Kra95]. Krajicek has written a second book on the matter that was published 26
years later. There, we can find the lemma as Theorem 4.1.3 in [Kra19]. For more detail on how the p-
simulation is constructed, we refer to Theorem VII.4.16 in [CN10]. Cook and Nguyen prove the statement
on induction on the number of sequents in a proof in G∗

1 and sequents of the form

α1(p), . . . , αi(p), . . . ,∃x1β1(p,x1), . . . ,∃xjβj(p,xj), . . .
→ γ1(p), . . . , γs(p), . . . ,∃y1δ1(p,y1), . . . ,∃ytδt(p,yt), . . .

with variable vectors p,xi and yt and quantifier-free formulas αi(p) and γs(p).
For the induction step, they make a case distinction depending on the Gentzen rule and construct a

Extended Frege proof for each of the cases.
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Let us summarize what we have got so far: The notion of certain types of bounded formulas and the
result that returns a polynomial size Gentzen proof for formulas in Σb1 that are derived in S2

1 . Furthermore,
we can build upon the theorem since there is a polynomial simulation from Gentzen proofs to Extended
Frege proofs. From that, we want to obtain a treelike Extended Frege proof. Recall that the proof graph
of a Frege proof is has formulas as vertices and edges if a formula is inferred by the another formula.
Similarly, we define the proof graph of an Extended Frege proof (as it is not yet defined by Krajicek).
Here, we can have vertices that contain extension axioms and edges that stand for inferences based on
extension atoms.

The definition leads to the following result:

Lemma 3.11. Treelike Extended Frege p-simulates Extended Frege.

Proof. For this, we want to show that we can transform an EF proof π of a tautology φ in polynomial
time to a treelike EF proof π∗ of φ.

Consider π. First, we reorganise the EF proof such that q1 ≡ ψ1, . . . , qr ≡ ψr are the first steps of the
proof. Call the (conjunction of) the lines based on extension axioms Ext.

The proof π0 can be seen as a Frege proof for the entailment Ext |= φ where the lines of Ext are
additional assumptions, resulting in the formula φ at the end of the proof.

We can transform π0 in polynomial time to an treelike Frege proof π∗
0 by using the result of Krajicek

about treelike Frege, i.e., Thm 2.2.1 in the new book or Lem 4.4.8 in the old book. This is still a proof
for the entailment Ext |= φ.

Since Ext contains only extension axioms of π, we know that π∗
0 is a treelike EF proof for φ. We let

π∗ = π∗
0 and conclude that treelike Extended Frege p-simulates Extended Frege.

It is relevant that the property of being treelike is preserved since we want to show non-fpt-automatability
with regard to tree width. Before we formally introduce the notion of tree width, we give motivation why
the theorem that provides a polynomial size Gentzen proof is crucial to the fpt-automatability result. We
aim to show that if the size of a certain proof is polynomial, we can transform the proof into a circuit
that interpolates a cryptographic problem.

3.2 Cryptographic problems and feasible interpolation
If a circuit interpolates the problem of differentiating two sets, loosely speaking, the circuit outputs 1 if
an element is in one of the sets and 0 if it is in the other set. With that, it is clear that the sets are not
the same. Consider the following RSA encryption scheme from cryptography and the problem whether
an attacker can break the encryption scheme.

Definition 3.12. Take two sufficiently large primes p and q and compute the product n := p · q. An
encoding key, that is public, is a pair (n, e), where 1 < e < n. An x < n is encoded by y := xe mod n.
The secret decoding key is a number d such that e · d ≡ 1 mod φ(n), where φ(n) is the Euler function.
To decode x from y compute x := yd mod n.

In cryptography, we want to encode messages from a sender to a recipient such that no attacker can
easily decipher the message. The RSA (Rivest Shamir Adleman) protocol was introduced 1978 [RSA78]
and is still used in practice. The notion of breaking a cryptographic protocol means that the attacker
can easily decipher the message. More rigorously, we define:

Definition 3.13. We call a cryptographic protocol secure if the attacker cannot deterministically and
fully recover the message from the encrypted message with circuits of polynomial size in the input.

We aim to interpolate the RSA problem and phrase it as a differentiation problem between the two
sets:

A0 := {(n, e, y) | ∃x, d, r < n.x ≡ 0 mod 2 ∧ xe ≡ y mod n ∧ ye ≡ x mod n ∧ yr ≡ 1 mod n ∧ gcd(e, r) = 1}
A1 := {(n, e, y) | ∃x, d, r < n.x ≡ 1 mod 2 ∧ xe ≡ y mod n ∧ ye ≡ x mod n ∧ yr ≡ 1 mod n ∧ gcd(e, r) = 1}

The idea is that we can only differentiate the sets A0 and A1 if we find a polynomial size circuit that
breaks RSA. The fact that RSA is still used in practice together with number theoretic results on the
complexity of integer factorization, make it unlikely that it is easy to break RSA. Thus, it should be
unlikely that we can easily find an interpolating circuit that differentiates between A0 and A1. Formally,
we define an interpolant likewise as in [KP98] as a formula that is a tautology if combined with the
formulas α(x) or β(y) and stress that x,y and z are vectors by writing them in bold font.
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Definition 3.14. An interpolant of a tautological formula α(x,y)→ β(x, z) is a formula γ(x) such that
α(x,y) → γ(x) and γ(x) → β(x, z) are tautologies. The size of an interpolant is the number of gates
needed to represent the interpolant as a circuit.

Note that here, the interpolant is any kind of formula. The representation of a formula as a circuit and
vice versa is possible since we can transform bounded formulas to propositional formulas (see [Kra95])
and for each connector in a propositional formula, there is a corresponding gate. In addition to that, we
can represent an interpolant as set.

Therefore, we also call the set I an interpolant of α(x,y)→ β(x, z) if it separates the sets A and B
induced by α(x,y) and β(x, z).

Lemma 3.15. The formula γ(x) is an interpolant of α(x,y) → β(x, z) if and only if there is a set I
with I ⊆ A and I ∩B = ∅ where

A := {v ∈ {0, 1}n | ∃y ∈ {0, 1}kα(v,y) = 1}
B := {v ∈ {0, 1}n | ∃z ∈ {0, 1}l¬β(v, z) = 1}.

Proof. Assume we have an interpolant γ given for the tautology α(x,y)→ β(x, z). We want to construct
a set I such that I ⊆ A and I ∩B = ∅. Define the set I as follows

I := {v ∈ {0, 1}n | γ(v) = 1 ∧ ∃y ∈ {0, 1}kα(v,y) = 1}.

It vacuously holds that I ⊆ A.
For showing that I ∩B = ∅, assume that there is an x ∈ I and x ∈ B. Then, we have that γ(x) = 1

and that there exists a z ∈ {0, 1}l such that ¬β(x, z) = 1. With that, we have β(x, z) = 0 but this
contradict the fact that γ(x)→ β(x, z) is a tautology.

For the other direction, we see that the following set is the biggest set such that I ⊆ A and I ∩ B = ∅.
As a result, every other I ′ needs to be contained in I.

I := {v ∈ {0, 1}n | ∃y ∈ {0, 1}kα(v,y) = 1 ∨ ∀z ∈ {0, 1}l¬β(v, z) = 0}.

We want to show that there is a γ such that α(x,y) → γ(x) and γ(x) → β(x, z) are tautologies. Let
γ(x) = ∃y ∈ {0, 1}kα(x,y) = 1 ∨ ∀z ∈ {0, 1}l¬β(x, z) = 0.

Assume for contradiction that there are x,y with γ(x) = 0 and α(x,y) = 1. But this is a contradiction
if γ(x) = 0, we have ∀y ∈ {0, 1}kα(v,y) = 0 which contradicts α(x,y) = 1.

Assume for contradiction that there are x, z with γ(x) = 1 and β(x, z) = 0. If we have a y ∈
{0, 1}kα(v,y) = 1, this is a contradiction because α(x,y)→ β(x, z) is tautology.

But if ∀z ∈ {0, 1}l¬β(v, z) = 0 this is also contradiction since we cannot have ∀z ∈ {0, 1}l¬β(x, z) = 0
and β(x, z) = 0 at the same time.

Note that there is another definition of interpolant used by Maria L. Bonet, Tonnian Pitassi and Ran
Raz in [BPR00]. For completeness, we prove the equivalence of this definition to the two preceding ones.

Lemma 3.16. The formula γ(x) is an interpolant of tautology α(x,y) → β(x, z) if and only if for the
unsatisfiable formula α(x,y) ∧ ¬β(x, z), there is a function i for the formula α(x,y) ∧ ¬β(x, z) that
takes a truth assignment t of x as input and outputs 1 only if α(x,y) is unsatisfiable, 0 only if β(x, z)
is unsatisfiable and an arbitrary value if both α(x,y) and ¬β(x, z) are unsatisfiable.

Proof. Assume we an interpolant function i given for the unsatisfiable formula α(x,y)∧¬β(x, z). Since
α(x,y) ∧ ¬β(x, z) is unsatisfiable, we have that α(x,y)→ β(x, z) is tautological. Let γ(x) = i(t,x) for
a truth assignment t and variables x.

If α(x,y) = 1 for any x, y, then γ(x) = 1 for any x. But if so, we have that α(x,y) → γ(x) is a
tautology. In addition, we have that γ(x)→ β(x, z) is a tautology.

If α(x,y) = 0 for some x,y, we have that β(x, z) = 1 for any x,y since α(x,y) → β(x, z) was
tautological. But then, we have that α(x,y)→ γ(x) are γ(x)→ β(x, z) is a tautologies.

Assume there is a γ such that α(x,y) → γ(x) and γ(x) → β(x, z) are tautologies and let i(t,x,y) =
¬γ(x) If γ(x) = 0, we have because α(x,y)→ γ(x) that α(x,y) = 0 for all x,y, thus α is unsatisfiable.
Similarly, if γ(x) = 1, we have with γ(x)→ β(x, z) that β(x, z) = 1 for all x, z, so ¬β is unsatisfiable.
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From now on, we switch between different representations of an interpolant: The interpolant appears
as a formula, as a circuit or as a set. The notion of differentiating two sets in polynomial time was also
called ’The canonical NP/coNP-pair of α is polynomially separable’ in [AB04], Definition 6, page 187.
We see that the choice of A0 and A1 are in the case of RSA canonical and in the definition by Atserias
and Bonet, they constitute the NP/coNP-pair.

In sequence, we build on the definition of interpolation of a problem by specifying the size of the in-
terpolating circuit. Intuitively, it makes sense that a problem that proves to be difficult to solve such as
RSA, is not interpolated by small size circuits.

Definition 3.17. We say that a problem has a feasible interpolation if there is a polynomial size circuit
called the interpolating circuit C such that for every tautology φ of the form α(x,y)→ β(x, z), we have
that there is a truth assignment t on the variables x such that

Cφ(t) =

{
0 if and only if α(t(x),y)is a tautology
1 if and only if ¬β(t(x), z)is a tautology.

Equivalently, we also say that the circuit C is a feasible interpolation of the problem of separating the sets
if C is polynomial in the input size and if

A := {t ∈ {0, 1}n | ∃y ∈ {0, 1}kα(t,y) is true}

and
B := {t ∈ {0, 1}n | ∃y ∈ {0, 1}l¬β(t, z) is true}.

To show non-fpt-automatability with regard to tree width, we are constructing a contradiction on
the feasible interpolation of RSA. RSA is a widely used encryption scheme, thus, is used to encode bits
that are believed to be safe from decryption in polynomial size circuits by an attacker who does not
know about the message or the secret key [Ale+88]. As a result, RSA is likely not to admit an feasible
interpolation.

There are many characterizations of interpolation and therefore, interpolation works well in describing
a problem of separating two sets. The RSA problem was our example for an application of a problem
where we need to separate two sets and it is intuitive that other problems can be as well formulated as
separating two sets.

The following definition leads to a theorem that is a second motivation why it makes sense to consider
the term interpolation.

Definition 3.18. We say P is closed under restrictions if, whenever φ(x) has an P -proof of size m, any
restriction of φ(x) by a partial truth assignment on x has an P -proof of size at most polynomial in m.

Here, we can think of closed under restriction as a certain kind of monotonicity: Even if we restrict
the truth assignment function, thus, only map some elements of the domain to the image, we can find a
corresponding proof.

As one might have noted, we switched from Theorem 3.8 that provides a polynomial proof search
algorithm to an attacker of an encryption scheme that has polynomial size circuits as resources. We can
do so, due to a connection between interpolation and automatability for some proof systems.

Lemma 3.19. If EF ⊢ α→ β for a formula α→ β and we can find a proof of α→ β in time polynomial
in |α→ β|, then there is an interpolating function i for α→ β that is polynomial in its input.

Proof. This proof is a modification of Theorem 1.1 in [BPR00].
With EF ⊢ α→ β, we can compute an Extended Frege proof π of α→ β in time p(n) for a polynomial

p and |α→ β| =: n with an algorithm A. Since EF is closed under restrictions, we can take the algorithm
A and check if it returns a proof of ¬α in time p(|¬α|). If so, define that i returns 0. Otherwise, let i
return 1. This is an interpolant since if A cannot find a proof of ¬α, there is no proof of ¬α since A could
find a proof of α → β in time p(n). But if there is no proof of ¬α, then α is a tautology. Similarly, we
have that there is a proof of ¬α in time p(|¬α|), we see that α cannot be a tautology and since α→ β is
a tautology, we have that β is a tautology.

We have that i is polynomial in its input size because we run A twice polynomial long in at most
n.
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More general, we can cite the following connection between automatability and interpolation. Here,
we denote with weak automatability of a proof system P that there exists proof system Q and an algorithm
that, given a tautology, produces a Q-proof of it in time polynomial in its smallest P -proof (introduced
by [AB04]).

Theorem 3.20. For a proof system proving its own soundness and that is closed under restrictions,
feasible interpolation is equivalent to weak automatability.

For the direction from feasible interpolation to automatability, see Theorem 1.1 in [BPR00], for the
other direction see Proposition 3.6 in [Pud03].

Since Extended Frege proves its own soundness and is closed under restrictions [Kra95], we obtain
the following corollary. Note that the proof system resolution does not prove its own soundness [AB04]
and thus, the corollary would not be true for resolution.

Corollary 3.1. In Extended Frege, weak automatability is equivalent to feasible interpolation.

With the definition of interpolation, we can put together the tools we have gathered so far, to prove
the a non-fpt-automatability result with regard to proof tree width.

3.3 Tree width
The tree width of a graph is a measure to estimate how close the graph resembles a tree. Throughout
the work, we call a tree an acyclic, finite graph. If the tree width of a graph equals one, the graph is a
tree, if the tree width is a very high integer, say 1234, the graph needs a lot of modification before it can
be turned into a tree. More formally, we define tree width as in Definition 10.1 in [Nie06].

Definition 3.21. Let G = (V,E) be a graph. A tree decomposition of G is a pair ⟨{Xi | i ∈ I}, T ⟩ where
each Xi is a subset of V , called a bag, and T is a tree with the elements of I as nodes. The following
three properties must hold:

1.
⋃
i∈I Xi = V

2. for every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi

3. for all i, j, l ∈ I, if j lies on the path between i and l in T then Xi ∩Xl ⊆ Xj.

The width of ⟨{Xi | i ∈ I}, T ⟩ is defined as max{|Xi| | i ∈ I} − 1. The tree width of G (tw(G)) is the
minimum k such that G has a tree decomposition of width k.

Since the tree width is a measure to determine how close a graph is a tree, it seems reasonable that
tree have tree width one.

Lemma 3.22. Any tree T = (V,E) has tree width one.

Proof. For any edge in T , we introduce a bag containing this edge. If two bags have a nonempty
intersection, we introduce an edge in the underlying graph of the tree decomposition.

With that we have that property one of the definition is satisfied since ∪e∈E {e} = V . Furthermore,
we have property two since every edges equals an Xi. In addition, we have property three, since for
any path (i, j, l) of three different vertices i, j, l, we have that Xi ∩ Xl = ∅. Finally, we have that the
underlying graph of the tree decomposition is actually a tree since, if we had a cycle, then, there is a
cycle in G. Since G was a tree, we can conclude that any tree T = (V,E) has tree width one.

In the following, we look at an example that shows a graph that is not a tree and the corresponding
tree decomposition.

Example 3.23. Take the graph G = (V,E) depicted as follows.
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Figure 3: Graph G

The following figure shows a tree composition of graph G. Formally, the tree decomposition can be
described as ⟨{v1, v2, v4, v5}, {v4, v5}, {v5, v6}, {v3, v6, v7, v8}, T ⟩ and T consists of three vertices and two
edges (X1, X2), (X2, X3), (X3, X4) and (X4, X5). The structure ⟨{Xi | i ∈ {1, 2, 3, 4}, T ⟩ fits the definition
of a tree composition since we see that T forms a tree and every vertex is in one of the three dashed bags and
each edge is contained in at least in of the bags. Furthermore, we have that X1∩X4 = ∅ ⊆ X3 = {v5, v6},
X2 ∩X4 = ∅ ⊆ X3 = {v5, v6} and X1 ∩X2 = {v5} ⊆ X3 = {v5, v6}.

X1

X3

X2
X4 X5

v2

v5

v1

v6 v7

v3

v8

v4

Figure 4: The bags of a tree decomposition of G

We see that this sketch does not yet uniquely define the tree decomposition since several choices for T
are possible. In the following, we sketch two possible T .

X3

X1

X2

X4 X5 X2

X1

X3

X4 X5

The width of this tree composition is 2 because the biggest bag X1 contains 3 elements. We see that
this is the smallest width for a tree decomposition since for T to be a tree, we have to include cliques in
a bag, otherwise, we violate condition 3. Furthermore, we cannot use several bags to cover a clique due
to the following Lemma.

Lemma 3.24. If a graph G contains a clique C, for a tree decomposition the clique must be contained
in a bag.

Proof. Assume there was a tree decomposition ⟨{Xi}i | T ⟩ and C is contained in two bags X1 and X2

but for neither of them, we have C ⊆ X1 or X ⊆ X2. Subsequently, we have a v ∈ X1 \ X2 and a
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w ∈ X2 \X1. But since C is a clique, there is an edge between v and w and because of v ∈ X1 \X2 and
a w ∈ X2 \X1, we have that the edge is neither contained in X1 nor in X2. If there is no additional bag
containing {v, w}, we have a contradiction with the second property of the definition.

But if we have that additional bag there is no way to align the three bags to in a path such that
property thre is true.

As a result, all cliques must be contained in a bag!

Due to the central notion of parameter based on proof graphs, we abbreviate fpt-automatability with
regard to the minimal candidate value.

Definition 3.25. For any proof system P , and P -proof π, computable function f and proof graph Gπ
(for Frege systems) or associated graph with π of a tautology φ and polynomial p, we abbreviate the
parameter function κ of G with regard to the minimal candidate vφ,f,κ,P,p as proof parameter function
of G. Equally, we denote the proof tree width of G as κ(G).

With the definition of proof tree width and the assumption that RSA is secure, we have the necessary
definitions to prove non-fpt-autmatability with regard to treewidth. For this, we are going to take a
formula that expresses the irreconcilability of two sets A0 and A1. The two sets are constructed such that
they encode the problem RSA. The RSA encryption scheme can be deciphered by the inverse logarithm,
nonetheless, computing the inverse logarithm is in practice not feasible [McC90].

As a result, we want to contrast that RSA can be deciphered if we assume fpt-automatability and
more formally, we want to show that we can prove in S1

2 that we can distinguish the sets A0 and A1,
nonetheless, this distinction should not lead to an effective algorithm to break RSA.

Lemma 3.26. There is a proof in S1
2 for the formula

∃x, d, r.α0(n, e, y, x, d, r)→ ¬∃x, d, r.α1(n, e, y, x, d, r).

Proof. See also proof of Theorem 1 in [KP98].
We want to show that in S2

1 for every y there is at most one x < n which satisfies the defining formula
of either A0 or A1 which are for i ∈ {0, 1} defined as follows:

Ai := {(n, e, y) | ∃x, d, r < n.x ≡ i mod 2 ∧ xe ≡ y mod n ∧ ye ≡ x mod n ∧ yr ≡ 1 mod n ∧ gcd(e, r) = 1}

Suppose that there are two x0, x1 < n and r0, d0, d1 with yr0 ≡ 1 mod n, gcd(e, r0) = 1 that satisfy

xei ≡ y mod n ∧ ydi ≡ xi mod n

for i ∈ {0, 1}. From this, it follows that

xr0i ≡ (ydi)r0 ≡ (yr0)di ≡ 1 mod n

for i ∈ {0, 1}. Due to the Extended Euclidean algorithm and gcd(e, r0) = 1, we have that there exists an
inverse d′ to e mod r0, thus, for an integer k we have d′e = 1+ kr0. With xr0i = 1 mod n, for i ∈ {0, 1}
we have

yd
′
≡ xed

′

i ≡ x1+kr0i ≡ xi mod n,

whence x0 = x1 since yd
′
independent of i. Subsequently, for any y there is at most one x satisfying the

given formulas of either A0 or A1.

Together with the Lemma and the assumption fpt-automatability, in the following theorem, we want
to use the tools introduced in the previous sections and construct a contradiction to RSA security.

Theorem 3.27. If the RSA protocol is secure, Extended Frege is non-fpt-automatable with regard to
proof tree width.

Proof. This proof builds on Corollary 10 in [KP98].
For i ∈ {0, 1}, consider the following set:

Ai := {(n, e, y) | ∃x, d, r < n.x ≡ i mod 2 ∧ xe ≡ y mod n ∧ ye ≡ x mod n ∧ yr ≡ 1 mod n ∧ gcd(e, r) = 1}

Let ∃x, d, r.αi(n, e, y, x, d, r) be the Σb1-formula that defines Ai. We see that this is actually a Σb1-
formula since the range of x, d and r is bounded and only one existential quantifier appears at the start
of the formula. Subsequently, the following formula is a Πb1-formula:

ψ := ∃x, d, r.α0(n, e, y, x, d, r)→ ¬∃x, d, r.α1(n, e, y, x, d, r)
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We have that
S1
2 ⊢ ψ

due to Lemma 3.26.
Because ψ is a Πb1-formula, we get via Theorem 3.8 a proof translation to G∗

1.
Due to Lemma 3.10 and Lemma 3.11, we can polynomially simulate this proof to Extended Frege and

obtain a treelike Extended Frege proof π that has polynomial size in the length n of the proposition ψ.
Assume that Extended Frege is fpt-automatable with regard to proof tree width. Then, every tautol-

ogy in S1
2 has a computable function f and a P -proof π in polynomial time in the minimal candidate value

vψ,f,EF,p′′ . As a result, we can find a computable function f such that the size of π is upper bounded
by f(k)p′′(n) with k the tree width of the associated graph of π. Since π is treelike with Lemma 3.22,
we can upper bound the size of π by f(1)p′′(n). Since Extended Frege is sound, we follow with S1

2 ⊢ ψ
that ψ is a tautology. Therefore, we can find a proof of the proposition ψ for a polynomial p′ in time
p′(vψ,f,EF,p′′). Furthermore, we upper bound p′ by a polynomial p that is monotone increasing which is
possible since we can polynomially upper bound any monotone decreasing part.

By definition of the minimal candidate value with regard to the tautology ψ, the function f and the
proof system EF, we have vψ,f,EF,p′′ ≤ f(1)p′′(n) and since p is monotone increasing, it follows that
p(vψ,f,EF,p′′) ≤ p(f(1)p′′(n)). With that, we can upper bound the time needed to find a proof of ψ by
p(f(1)p′′(n)), thus, by a polynomial in n.

By Lemma 3.19, there is a circuit with size polynomial in n that interpolates ψ. But we have assumed
that RSA is secure, thus, that no attacker can differentiate A0 and A1 with circuits in polynomial size in
n. Contradiction! It follows that Extended Frege is not fpt-automatable with regard to tree width.

3.4 Fpt-dominance
With the help of fpt-dominance, we aim to link different parameters to each other and transfer fpt-
automatability results from one parameter to the other. The preceding result on non-fpt-automatability
with regard to tree width will be our base for this.

Definition 3.28. Call parameter k dominated by parameter k′ if there exists a computable and surjective
function g over non-negative integers such that k ≤ g(k′).

In the following, we use fpt-dominance to deduce results on fpt-automatability.

Lemma 3.29. If k is dominated by k′ and a proof system P is fpt-automatable with regard to parameter
k, then the proof system is also fpt-automatable with regard to parameter k′.

Conversely, if k is dominated by k′ and a proof system P is non-fpt-automatable with regard to
parameter k′, then the proof system is also non-fpt-automatable with regard to parameter k.

Proof. Assume the proof system P is fpt-automatable with regard to the parameter k. With that, we
can find a proof for any tautology φ in polynomial time p in the minimal candidate value vφ,f,κ,P,p for a
computable function f . Without loss of generality, we assume f to be monotone increasing. Let the time
needed to find φ be captured by the function p′(f(k)p(n)) for a monotone polynomial p′ with n := |φ|.

But if k is dominated by k′, we have that the proof search algorithm with regard to parameter k,
should output a proof in time p′(f(g(k′))p(n)) for the computable composition f ◦ g. We conclude that
P is fpt-automatable with regard to k′.

Assume that the proof system P is non-fpt-automatable with regard to the parameter k′. With that, we
cannot find a proof search algorithm for a tautology φ in polynomial time p in the minimal candidate
value vφ,f,κ′,P,p for a computable function f . Without loss of generality, we assume f to be monotone
increasing. Thus, we can assume that the best algorithm exceeds the time p′(f(k)p(n)) for a monotone
polynomial p′ with n := |φ|.

But if k is dominated by k′, we have that the proof search algorithm with regard to parameter k,
cannot output a proof in even less time p′(f(g−1(k))p(n)) where g−1 denotes the left-inverse that exists
since g was surjective. We conclude that P is non-fpt-automatable with regard to k.

Similarly, we can prove a relationship for fpt-boundedness.

Lemma 3.30. If k is dominated by k′ and a proof system P is fpt-bounded with regard to parameter k,
then the proof system is also fpt-bounded with regard to parameter k′. Conversely, if k is dominated by
k′ and a proof system P is not fpt-bounded with regard to parameter k′, then the proof system is also not
fpt-bounded with regard to parameter k.
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Proof. Assume that a proof system P is fpt-bounded with regard to parameter k. With that, any proof
of a formula has size at most f(k)nO(1). Without loss of generality, we assume f to be monotone in-
creasing. Due to fpt-dominance, any proof of a formula has size at most f(g(k′))nO(1) and with that P
is fpt-bounded with regard to parameter k′.

Assume that a proof system P is not fpt-bounded with regard to parameter k′. With that, there is
a formula and a proof that exceeds f(k′)nO(1). Without loss of generality, we assume f to be monotone
increasing. But if k is dominated by k′, we have that the proof needs to exceeds p(f(g−1(k))nO(1)) where
g−1 denotes the left-inverse that exists since g was surjective. We conclude that P is not fpt-bounded
with regard to k.

By applying these lemmas, an other parameter comes along with a natural non-fpt-automatability
result.

3.5 Clique width
Clique width is a parameter function taking a graph as input and returning a natural number. Here, a
general motivation is to quantify how close a graph is to containing no clique. On the contrary to tree
width or path width, it is not defined via a decomposition of a graph G but via steps needed to build G.
Each such building step refers to an algebraic expression and therefore, a chain of algebraic expressions
translates to an instruction on how to build G.

Formally, we are going to define clique width as in [Fel+09]. For this, we take an initial graph G
defined as follows:

Definition 3.31. A k-graph is a graph whose vertices are labeled by integers from {1, ..., k}. We call the
k-graph consisting of exactly one vertex v (say, labeled by i ∈ {1, ..., k}) an initial k-graph and denote it
by i(v).

From this class of graphs, we build the given graph G with three different operations. Depending on
how many different elements the initial graph must contain, we obtain the clique width.

Definition 3.32. The clique width clw(G) of a graph G is the smallest integer k such that G can be
constructed from initial-graphs through repeated application of the following three operations.

• Disjoint union (denoted by ⊕)

• Relabeling: changing all labels i to j (denoted by ρi→j)

• Edge insertion: connecting all vertices labeled by i with all vertices labeled by j, i ̸= j (denoted by
ηi,j or ηj,i)

Let us consider two examples of graphs G, the corresponding algebraic term describing G and its
clique width.

Example 3.33. Consider the graph G (also known as K3).

u

w

v

Figure 6: Graph G

The following expression builds G from the initial 2-graphs:

η1→2(ρ1,2(η1→2(2(u)⊕ 1(v)))⊕ 2(w))

The operation ρ1,2(η1→2(2(u) ⊕ 1(v)) inserts an edge between vertex u and v. Then, we relabel, so that
both u and v have the label 1. With the edge insertion, we add the edges {v, w} and {u,w}.

We have that we can build this graph from the initial graphs consisting of the vertices 2(u), 1(v) and
2(w). As a result, G is built from initial 2-graphs since the vertices u, v and w are labeled with only two
different labels 1 and 2. Therefore, G has clique width two.
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The second example is more complicated but shows the expressivity of the three operators.

Example 3.34. Take the following graph G.

b

c

a

d f

e

g

h

Figure 7: Graph G

We see that the first example is contained in the second example and we modify it, so that we obtain
the graph induced by the vertices a, b, c, and h with the term

η1→2(ρ1,2(η1→2(2(u)⊕ 1(v))⊕ 2(w))⊕ 1(h)).

Now, we want to build the graph induced by the vertices d, e, f and g without interference to what we have
built so far. As a result, the vertices a, b, c and h must have a different label, so that we do not build
unwanted edges while building the graph induced by d, e, f and g. Here, we see that we need d to have a
different label than a, b, c and h and with that, the clique width is to be at least 3.

We see that

η1,3(ρ1→2(η2,3(η1→2(ρ1,2(η1→2(2(u)⊕ 1(v))⊕ 2(w))⊕ 1(h)⊕ 3(d))))︸ ︷︷ ︸⊕1(e)⊕ 1(f)⊕ 3(g))

builds the remaining graph. The bracket denotes the graph induced by a, b, c, h and d with label 2 for a, b, c
and h and label 3 for vertex d. We conclude that G has clique width three.

In Example 3.23, we have seen that the same graph as in the example above has tree width two. This
is no coincidence since in general, we have due to [CO00] that

Theorem 3.35. For any graph G, clw(G) ≤ 3 · 2tw(G)−1.

But with that, we have that tree width dominates clique width and therefore, we can apply fpt-
dominance with Lemma 3.29.

Corollary 3.2. Extended Frege is non-fpt-automatable with regard to proof clique width if RSA secure.

In sum, we can see that fpt-dominance is a useful method to deduce automatability results. We see
that we could artificially construct many more parameters that are dominated by tree width by relieving
the constraints on the tree decomposition or the algebraic operators. For example, we obtain a modified
clique width parameter if we only allow the operators disjoint union and edge insertion. Nonetheless, this
parameter is very limited in its expression and does not go along with the general intuition of a clique
width parameter.

As a result, we focus on the other direction. Namely, we focus on parameters that dominate tree width.
With that, we cannot apply fpt-dominance, nor show fpt-automatability or non-fpt-automatability.

The general motivation in looking for parameters “above” tree width is, first, to find a fpt-automatability
result and a very close non-fpt-automatability result, so that we can reason about properties that are
responsible for the jump from non-fpt-automatability to automatability. Note, that we would have have
a jump here, since the relation of fpt-dominance is transitive and therefore, if we draw all parameters as
a lattice structure, we can fit a line such that above, all parameters are fpt-automatable and below, all
parameters are non-fpt-automatable.

A second motivation are the parameters themselves. If they bear a certain structure, we come closer
to what is relevant to automation. Parameters such as tree width and clique width come with the natural
intuition of how much we need to modify a graph to obtain either a tree or clique-free graph. Other
parameters might give information via the structure that they inherit.
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3.6 Special tree width and intersection graphs
Intersection graphs are graphs that are obtained by defining a graph from a class of graphs. The theory
of intersection graphs comes from graph theory and has many mathematical applications (see [MM99]).

Definition 3.36. The intersection graph of a family of graphs F is the graph GF whose vertices are
the members of the family such that two distinct vertices f , f ′ of GF are adjacent, if and only if the
corresponding graphs have a common vertex.

We can also build a family of graphs from a single graph and then, build the intersection graph
from the graph family. For example, we can split a graph into all its paths. These paths are graphs
themselves, thus, form a graph family. From the collection of paths, we can build an intersection graph.
This is captured in the following definition.

Definition 3.37. A path graph of a graph G is the intersection graph built from the set of paths between
any two vertices in G.

Consider the following example.

Example 3.38. Take the following graph and the set {e, d, f}, {e, g}, {e, h}, {d, f} of undirected paths.

df

e

g

h

Figure 8: Tree T rooted in e

Then, we obtain the following path graph with the given paths as vertices and edges whenever there is
a nonempty intersection between sets associated with the vertices.

e, d, f e, g

e, h

d, f

Figure 9: Path graph on T

As a result of this, we can further section classes of path graphs as it was introduced by Monma and
Wei [MW86].

Definition 3.39. A graph is an undirected vertex path graph (UV graph) if it is the intersection graph
of a set of paths in a tree. Similarly, call a graph a directed vertex path graph (DV graph) if it is the
intersection graph of a set of directed paths in a directed tree and call a graph rooted directed vertex path
graph (RDV graph) if it is the intersection graph of directed paths in a rooted tree.

In the following, consider a modification of Example 3.38 for a graph that is an DV graph but doesn’t
qualify as an RDV graph since the underlying graph is not rooted.

Example 3.40. Take the directed paths (e, d, f), (e, g), (e, h), (d, f), (i, f). Then, we can construct from
the tree on the left the DV graph on the right. We see that the graph on the left is not rooted since both
vertex i and vertex e have only incoming edges.
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e, d, f e, g
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d, f

i, f

Figure 10: Path graph on T

With the new definitions in mind, we can define some new graph parameters. These graph parameters
relate to proof complexity since we obtain a graph by representing a proof in for example Frege calculus
and on this graph, we can apply graph parameters. Intersection graphs give additional information on
parameters. This is best seen by a characterization result on tree width by Bodlaender [Bod98].

Theorem 3.41. A graph has tree width at most k if and only if it is a subgraph of a chordal graph with
clique number at most k + 1.

The property of having a certain tree width is translated to containment in a class. We define chordal
graphs as follows:

Definition 3.42. A chord in a cycle of a graph, is a pair of adjacent vertices on the cycle that are not
consecutive on the cycle. A graph is chordal, if each cycle with length at least four has a chord.

Let us test the theorem by checking that an example with a certain tree width has the guaranteed
clique number.

Example 3.43. Take the following graph G from Example 3.23 that has tree width two.

b

c

a

d f

e

g

h

Figure 11: Graph G with tree width two

We want to check that the graph has clique number at most three and this is the case since the biggest
clique has size 3: The vertices a, b and c form a clique whereas the vertices e, d, f and g form only a cycle.

Furthermore, we see that the graph is a subgraph of a chordal graph since there is only one cycle with
length at least four and if we add an edge between e and f , we have that the vertices e and f are vertices
on the cycle that are not consecutive and therefore, e and f form a chord.

Theorem 3.41 also shows that we could define tree width via containment in the class of chordal
graphs. This poses the question of defining parameters via containment in other classes. In sequence, we
define parameters via containment in the classes of UV graphs, DV graphs and RDV graphs as it is done
in [Bod+17]. The parameter special tree width was first introduced by Courcelle in [Cou12].

Definition 3.44. A graph has special tree width at most k if and only if it is a subgraph of an RDV
graph with clique number at most k+1. A graph has directed spaghetti tree width at most k if and only
if it is a subgraph of a DV graph with clique number at most k + 1. A graph has spaghetti tree width at
most k if and only if it is a subgraph of a UV graph with clique number at most k + 1.

The naming width already indicates that there is an equivalent definition for the parameters that
depend on tree decompositions. Let us define the following decompositions:
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Definition 3.45. A special tree decomposition of a graph G is a tree decomposition ⟨{Xi}i | T}⟩ where
T is a rooted tree and for every vertex v in G, the bags containing v induce a directed path in T. Similarly,
a directed spaghetti tree decomposition of a graph G is a tree decomposition ⟨{Xi}i | T}⟩ where T is a
directed tree (not necessarily rooted) and for every vertex v in G, the bags containing v induce a directed
path in T and a spaghetti tree decomposition of a graph G is a tree decomposition ⟨{Xi}i | T}⟩ where
for every vertex v in G, the bags containing v induce a path in T .

These tree decompositions lead to an alternative definition of the parameters spaghetti tree width,
directed spaghetti tree width and special tree width.

Theorem 3.46. A graph G has special tree width at most k if and only if the minimum width sctw(G)
of all special tree decompositions of G is at most k.

We show both directions by giving a concrete algorithm how to make a special tree decomposition
from an RDV graph and the other way around. For this, we first walk through an example.

Example 3.47. We take the same graph as in Example 3.38 and note that the underlying graph is a
rooted, directed graph, therefore, we can construct a RDV graph on paths (e, d, f), (e, g), (e, h), (d, f) from
it.

We note that the RDV graph has clique number three.
Therefore, we want to construct a special tree decomposition with the size of the biggest bag at most

three.

df

e

g

h

(e, d, f), (d, f)(e, d, f), (d, f)

(e, d, f), (e, g), (e, h)

(e, g)

(e, h)

Figure 12: Constructing a special tree decomposition (right) from the underlying graph T (left) of an
RDV graph

We construct the special tree decomposition as follows: For each vertex v in T , we introduce a bag
and write all paths in the bag that contain v. We introduce an edge in the special tree decomposition for
every edge in T .

We see that the special tree decomposition is rooted, directed and induces a path for each vertex in the
RDV graph. Furthermore, it has the biggest bag size of three. It might not be the special tree decomposi-
tion with the minimal width but the minimal width can be only lower than three.

The other direction of the proof takes a special tree decomposition and constructs the underlying graph
for an RDV graph.

For this, we replace each of the bags by a fresh vertex and keep the edges. With that, we obtain the
underlying graph on the left.

Keeping the example in mind, we want to prove the theorem.

Proof. Assume that a graph G has special tree width at most k. We want to construct a special tree
decomposition whose biggest bag size is at most k + 1.

Since G is a subgraph of an RDV graph for paths P with clique number at most k + 1, we construct
a graph as before in the example: For each vertex v in T , we introduce a bag and write all paths in the
bag that contain v. We introduce an edge in the tree decomposition for every edge in T .

We see that the tree decomposition is directed and rooted since T must be directed and rooted. To
show that any vertex v in G, the bags containing v induce a directed path in the tree decomposition,
take such a vertex v in G. Since G is a path graph, the vertex is a directed path v = (p1, . . . , pn) in
P . Per definition, we have that the bag contains all paths that visit p1 naturally contains (p1, . . . , pn).
Similarly, we have that the bag contains all paths that visit p2 naturally contains (p1, . . . , pn) and since
(p1, . . . , pn) is a path in T , there is an edge between those two vertices. As a consequence, we have a
directed path that is induced by v. We have that no other bag contains v since the other bags b′ are
defined by containment of other v′ and b′ /∈ (p1, . . . , pn).
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Furthermore, we have that scrw(G) ≤ k since the special tree decomposition we have constructed has
a biggest bag size k + 1 since the RDV graph has clique of size k + 1 if and only if intersection of k + 1
paths is nonempty.

For the other direction, we assume that we have a special tree decomposition with sctw(G) ≤ k. Let
the underlying graph T of the tree decomposition be the underlying graph of an RDV graph. Since the
tree decomposition is special, we have that T is rooted and directed. Let P be the set of all paths in T
that are induced by a vertex in a bag of the special tree decomposition. By definition of a special tree
decomposition, these paths are directed. We have that the RDV graph on T and P has clique number at
most k+1 since the biggest bag size is at most k+1, thus, any k+2 elements of P must have an empty
intersection.

Since DV and UV graphs are defined similarly to RDV, the following corollary follows.

Corollary 3.3. A graph G has directed spaghetti tree width at most k if and only if the minimum width
dspghtw(G) of all directed spaghetti tree decompositions of G is at most k and has spaghetti tree width at
most k if and only if the minimum width spghtw(G) of all spaghetti tree decompositions of G is at most
k.

Proof. Since the proof is very similar for RDV, DV and UV graph, we prove the corollary for the UV
case.

Assume that the graph G has spaghetti tree width at most k. Thus, G is a subgraph of a UV graph,
allowing the underlying tree of the tree decomposition to contain more than one root. We use the same
construction as in the theorem for RDV graphs. Per construction and definition of a path graph, we have
that any vertex v ∈ G induces an undirected path in the spaghetti decomposition. Furthermore, we have
that the width of the tree decomposition is at most k + 1 since we have the clique number is at most
k+1, so that the intersection of more than k+1 elements in P is empty. But if it is empty, we know that
for a vertex v, we cannot add more p ∈ P to a bag, therefore, the biggest bag size is bounded by k + 1.

For the other direction, assume sptw(G) ≤ k and we also follow the construction of the theorem. We
have that the RDV graph on T and P has clique number at most k + 1 since the biggest bag size is at
most k+1, thus, any k+2 elements of the set of undirected paths P induced by the decomposition must
have an empty intersection.

The equivalent formulation of the parameters spaghetti tree width, directed spaghetti tree width and
special tree width makes it visible that they dominate each other.

Lemma 3.48. For any graph G, we have tw(G) ≤ spghtw(G) ≤ dspghtw(G) ≤ spctw(G).

Proof. Assume we have a directed tree decomposition ⟨{Xi | i ∈ I}, T ⟩ with width k and that tw(G) = k.
If for every vertex v in G, the bags containing v induce a path in T , it follows that spghtw(G) = k. If
there is a vertex v′ in G such that the bags containing v′ do not induce a path, this is not a spaghetti
tree decomposition. We have to increase the bag size and with that k < spghtw(G). In sum, tw(G) ≤
spghtw(G).

Assume we have a spaghetti tree decomposition ⟨{Xi | i ∈ I}, T ⟩ with width k and that spghtw(G) =
k. If for every vertex v in G, the bags containing v induce a directed path in T , it follows that
dspghtw(G) = k. If there is a vertex v′ in G such that the bags containing v′ do not induce a directed
path, this is not a directed spaghetti tree decomposition. But since it is a spaghetti tree decomposi-
tion any v in G induced a path that is not necessarily directed. If any spaghetti tree decomposition
⟨{Xi | i ∈ I}, T ⟩ with width k and that spghtw(G) = k contains v′ in G such that the bags containing v′
do not induce a directed path, we have to increase the bag size and with that k < dspghtw(G). In sum,
spghtw(G) ≤ dspghtw(G).

Assume we have a directed spaghetti tree decomposition ⟨{Xi | i ∈ I}, T ⟩ with width k and that
spghtw(G) = k. If T is rooted, we have that sptw(G) = k. If T and any other spaghetti tree decomposition
⟨{Xi | i ∈ I}, T ⟩ is not rooted, we have to increase the bag size and with that k < spctw(G). In sum,
dspghtw(G) ≤ sptw(G).

As already mentioned, we cannot use fpt-dominance to conclude non-fpt-automatability with regard
to spaghetti tree width, directed spaghetti tree width or special tree width. Rather, the fpt-dominance
shows that even if we modify tree width and add restrictions to the shape of the tree decomposition,
later we can show that Extended Frege is still not fpt-automatable with regard to the modified tree width
parameters.

To show that Extended Frege is not fpt-automatable with regard to spaghetti tree width, directed
spaghetti tree width or special tree width, we cite the following result by [Bod+17].
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Proposition 3.49. Let G be a graph. The following are equivalent.

• G has tree width at most one.

• G has spaghetti treewidth at most one.

• G has directed spaghetti treewidth at most one.

• G has special treewidth at most one.

Thus, if we have that a tree T , we have that the tree width of T is one. As a consequence, it follows
that T has spaghetti width one, directed spaghetti width one and special width one.

Theorem 3.50. If the RSA protocol is secure, Extended Free is non-fpt-automatable with regard to proof
spaghetti tree width, proof directed spaghetti tree width and proof special tree width.

Proof. Since we have already proven this similarly for tree width, we only sketch a proof.
First, we define two sets A0 and A1 that only be separated if RSA is not secure. Then, we construct a

treelike proof in Extended Frege that proves an implication separating the sets A0 and A1. Since the proof
is treelike, the graph representation of the proof has spaghetti tree width, directed spaghetti tree width
and special tree width at most one. With that, we can upper bound the size of the proof with respect to
the constant value one of the parameters. Assuming, automatability with respect of the parameters, we
obtain an effective algorithm to separate A0 and A1 which leads to a contradiction with the assumption
of RSA security. It follows that Extended Frege is not fpt-automatable with regard to proof spaghetti
tree width, proof directed spaghetti tree width and proof special tree width.

Let us summarize what we reasoned so far: There are natural parameters generalizing tree width,
namely spaghetti tree width, directed spaghetti tree width and special tree width. These parameters
dominate tree width. But even though we cannot use fpt-dominance, we obtain that Extended Frege is
not fpt-automatable with regard to these parameter since we can generalize the proof that shows that
Extended Frege is not fpt-automatable with regard to proof tree width.

With the additional non-fpt-automatability results, we can expand our lattice of parameters since
Farber showed that every RDV graph is strongly chordal [Far81].

But if every RDV graph is strongly chordal, we have that special tree width dominates strongly chordal
tree width.

Definition 3.51. The strongly chordal tree width of a graph G, denoted by sctw(G), is the minimum k
such that G is a subgraph of a strongly chordal graph with clique number k + 1.

Again, equivalently, we could define strongly chordal tree width via containment in the class of strongly
chordal graphs.

Due to Farber and Lemma 3.29, we conclude the following corollary.

Corollary 3.4. If RSA is secure, Extended Frege is non-fpt-automatable with regard to strongly chordal
proof tree width.

After we have seen result on non-fpt-automatability, we want to provide examples of parameters for
which a proof system is fpt-automatable. Practically, this means that we provide an algorithm that
constructs a proof for us and show that running the algorithm is fpt-tractable.

In the following, we look at a second proof system: resolution. Quite some notions are analogue to
Frege systems. Nonetheless, we can see that here, that there is more variety in the type of representation
that differs from the proof graphs for Frege systems. Furthermore, on the contrary to Extended Frege,
resolution seems easier to automate.
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4 Parameters for the proof system resolution
Resolution is a refutational proof system. Thus, we prove claims indirectly. Furthermore, resolution is
known due to its close connection to the satisfiability problem (see Theorem 4.2.1 in [Kra95]).

4.1 Resolution and graphs corresponding to a refutation
We define the proof system called resolution similar to [Ima17]. Resolution operates on propositional
conjunctive normal formulas and is therefore rather restricted.

Definition 4.1. The following rule, is a resolution rule for clauses C,D

C ∨ x,D ∨ x
C ∨D

The clause C ∨D is called resolvent.
A resolution refutation of a formula φ is a sequence of clauses C1, C2, . . . , Ck such that

• for each i the clause Ci is a clause occurring in φ or in a resolvent of two previous clauses

• the last clause Ck is an empty clause

Note that deducing a tautologies such as xi ∨ xi is not a valid resolution proof since we think of
resolution proofs as refutations and only deducing the empty set leads to a valid resolution refutation.

For resolution, there are different ways how to define the corresponding proof graph of a refutation.
Recall, that for Frege proofs, the proof graph had an edge between two vertices marked with a formula
if and only if only one formula was inferred by the other one via a Frege rule.

For resolution, we introduce two different corresponding graphs for a fixed refutation: the primal
graph and the incidence graph.

Definition 4.2. The primal graph of a refutation C1, . . . , Cn has a vertex for each variable occurring in
C1, . . . , Cn and an edge between two vertices if and only if the variables are both contained in a clause.

For both ways to construct a graph from a conjunctive normal form formula (CNF), we exemplify the
graph for the same formula.

Example 4.3. Take the formula F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5). The primal graph
of this formula is

x1 x2 x3

x4 x5

Figure 13: Primal graph of F

The second graph representation of a formula is the incidence graph. The incidence graph carries
more information than the primal graph since there are different types of vertices in the incidence graph
so that we can deduce which variables belong to which clauses. This is not always possible given a primal
graph.

Definition 4.4. The incidence graph of a refutation C1, . . . , Cn has a vertex for each clause Ci in
C1, . . . , Cn and for each variable occurring in C1, . . . , Cn and an edge between a clause and a variable if
and only if the variable is contained in the clause.
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For illustration of an incidence graph, we take the same formula as from the example before and then,
the incidence graph is as follows.

x1 x2 x3 x4 x5

(x1 ∨ x2 ∨ x3) (x2 ∨ x3 ∨ x5)

(x1 ∨ x3 ∨ x4)

Figure 14: Incidence graph of F

As already stated, with the proof system resolution, we have more options on how to represent a proof
as a graph. Before, we have considered graph parameters for arbitrary graphs but if we take resolution
as a proof system, our parameter can depend on the choice of the graph representation.

As a result, we add the name of the graph representation to the parameter. In place of tree width,
we are going to talk about primal tree width (in short ptw) or incidence tree width (in short itw).

4.2 Treelike resolution and primal tree width
We want to show that resolution is fpt-automatable with regard to primal tree width. We do so by splitting
this into two proofs. First, we show that a weaker version of resolution, namely, treelike resolution is
fpt-automatable with regard to primal tree width and provide some examples. Second, we show that
resolution is also fpt-automatable with regard to primal tree width. Here, we needed a multiple of the
time as in treelike resolution and examples explode in the number of clauses. Subsequently, we stay more
high-level and count on the intuition gained by reading through the proof and the examples for treelike
resolution.

But first, let us define treelike resolution.

Definition 4.5. A treelike resolution refutation of a formula φ is a sequence of clauses C1, C2, . . . , Ck
such that every clause that is inferred by a resolution rule can be used only at most once.

This restricts the shape of resolution proofs and therefore, treelike resolution is a weaker proof system
than resolution. In the following, consider an example of a refutation that is treelike and one that is not.

Example 4.6. Take the formula φ = (x1 ∨ x3 ∨ x5) ∧ (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x1) ∧ (x3 ∨ x4) ∧ (x3) ∧ (x1)
and the following refutation.

x2 ∨ x1 x1 ∨ x3 x3 ∨ x4
x2 ∨ x3 x1 ∨ x2

x2 x2

x3 x1

∅

x1 ∨ x3 ∨ x5 x1 ∨ x3 ∨ x5

This refutation is not treelike since the inferred clause x1 ∨ x3 is part of two different inferences.

But the following example is treelike.

Example 4.7. Take the same formula φ = (x1∨x3∨x5)∧(x1∨x3∨x5)∧(x2∨x1)∧(x3∨x4)∧(x3)∧(x1)
and the following refutation.
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x1 ∨ x3 ∨ x5 x1 ∨ x3 ∨ x5
x1 ∨ x3 x1 ∨ x2

x2 ∨ x3 x3
x2

x1 ∨ x3 ∨ x5 x1 ∨ x3 ∨ x5
x1 ∨ x3 x3 ∨ x2

x1 ∨ x2 x1
x2

∅
Here, we needed to copy the subprooftree of (x1 ∨ x3) which occurs twice and conclude that generally,
treelike resolution refutation tend to have more clauses and inferences.

For showing that treelike resolution is fpt-automatable with regard primal tree width, the idea is that
we use the tree decomposition as a framework for a dynamic programming approach: Starting from the
leaves from the tree decomposition, we iteratively build a resolution refutation that is complete when we
arrive at the root of the tree decomposition.

The difficulty lays in defining how to modify a resolution proof from one bag to the other. We
facilitate this difficulty by building our algorithm on a slightly modified tree decomposition, namely, nice
tree decompositions.

Definition 4.8. A nice tree decomposition is a tree decomposition such that for every bag Xi, we have
one of the following:

• (leaf) i is a leaf in T and |Xi| = 1

• (introduce) ∃v ∈ V.Xi = Xi−1 ∪ {v}

• (forget) ∃v ∈ V.Xi = Xi−1 \ {v}

• (join) i has two children i1 and i2 in T and Xi = Xi1 = Xi2

Note that nice tree decompositions are rooted since a bag/child cannot be obtained by two parents.
Nice tree decompositions facilitate the algorithmic aspect and can be easily computed from a regular tree
decomposition but might have more bags then a conventional tree decomposition. This has been proven
by Kloks (see Lemma 13.1.3 in [Klo94]):

Theorem 4.9. Given a tree decomposition of a graph G with n bags of width k, one can find a rooted
nice tree decomposition of G of width k and with at most 4n bags in O(n) time.

We are going to use this theorem as a subroutine for building a nice tree decomposition.
The tree decomposition is the framework for the algorithm that computes a refutation for a given

unsatisfiable formula. Since we can have more than one refutation for a formula and we want to prove
automatability, we look for the shortest refutation possible for a given formula. Therefore, we introduce
a measure for the length of a refutation.

Definition 4.10. The resolution proof depth of a formula φ is the number of resolution rules needed to
deduce φ from a set of given formulas. If there is no resolution proof that refutes φ, the resolution proof
depth is infinity.

The following example should illustrate how to compute the resolution proof depth for a formula.

Example 4.11. Take the following set of clauses {x1∨x2∨x5, x1∨x2∨x5, x2∨x4∨x5, x1∨x4∨x5, x5}.
We can build the formula φ = (x1 ∨ x2 ∨ x5) ∧ (x1 ∨ x2 ∨ x5) ∧ (x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x4 ∨ x5) ∧ (x5)

from this set of clauses and find the following refutation for φ:

x1 ∨ x2 ∨ x5 x1 ∨ x2 ∨ x5
x2 ∨ x5

x2 ∨ x4 ∨ x5 x2 ∨ x4 ∨ x5
x2 ∨ x5

x5 x5
∅

From the proof tree, we can deduce that the clauses x1 ∨ x2 ∨ x5, x1 ∨ x2 ∨ x5, x2 ∨ x4 ∨ x5, x1 ∨ x4 ∨ x5
and x5 have depth zero since they are part of the clause set. The clauses x2 ∨ x5 and x2 ∨ x5 have depth
one, the clause x5 has depth three and the empty set has depth four.
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We see that for a treelike refutation, we obtain the depth of a child if we add the depth of all parents
and add one. Thus, we can compute the depth recursively.

We note that this is not true for refutations that are not treelike. There, we could obtain a smaller
resolution proof depth if a clause is part of several inference rules.

The resolution proof depth will be our measure to find the shortest refutation for a formula. We do
so, by finding the shortest refutation in fpt-time with regard to the parameter primal tree width. Recall,
that a proof system is automatable if we can find a proof in time polynomial in the shortest proof and
the shortest proof with regard to the resolution proof depth is shorter than the shortest proof with regard
to the primal tree width. This is captured in Lemma 2.15 but we adapt it in the following since due to
the proof system resolution, we take the shortest proof with regard to resolution proof depth and not the
number of symbols in a proof.

Lemma 4.12. The polynomial of the resolution proof depth of the proof of φ with the smallest primal
tree width has at least a polynomial of the resolution proof depth of the proof of φ with the least resolution
proof depth. Furthermore, we have

p(nπ̂) ≤ min
π
f(k)q(nπ̂)

for a function f , polynomial p and q and the proof π̂ with the shortest resolution proof depth nπ̂.

Proof. Take a proof with primal tree width k. Therefore, there must be a tree decomposition where the
biggest bag has size k + 1. We follow that the k + 1 variables form a clique in the primal graph. By
definition of the primal graph, we have for each two variables in the clique there is a clause that contains
both variables and for each clique K in the graph, we can form the respective set of clauses CK . All
these sets Ck together form the formula, otherwise there would be an edge missing in the primal graph.

We see that the proof with the shortest resolution proof depth has a smaller/equal resolution proof
depth than the addition of all shortest resolution proof depth of CK over all K since the proof of the
whole φ can make use of common proof parts.

We see that the shortest resolution proof depth of a CK is at most |CK | ≤ k + 1. Subsequently,
O(

∑
K |CK |) = O(k + 1) and with that we can upper bound the shortest refutation proof depth.

We follow that the polynomial of the resolution proof depth of the proof of φ with the smallest primal
tree width has at least a polynomial of the resolution proof depth of the proof of φ with the least resolution
proof depth.

The second part
p(nπ̂) ≤ min

π
f(k)q(nπ̂)

follows by the nature of the minimum since the right term minimizes over π and q is a polynomial. This
is similar to Lemma 2.15.

Thus, if we can show that we can find the shortest refutation in fpt-time, we have shown a weaker
property than automatability and a stronger property than fpt-automatability. Subsequently, we can
conclude that fpt-automatability with regard to primal tree width. Note that this result does not depend
on the resolution proof being treelike.

The following algorithm aims to find the shortest refutation in fpt-time with regard to primal tree
width, given the nice tree decomposition ⟨{Xi}i | T ⟩ of the primal graph of a formula φ.
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Algorithm 1 Computing a refutation with parameter primal tree width

Require: Nice tree decomposition ⟨{Xi}i | T ⟩ of the primal graph of a formula φ
Ensure: Refutation of φ
1: B ← all bags enumerated from leaves to root, branches from left to right
2: for b ∈ B do
3: Make a three column table T b = (T bj,1, T

b
j,2, R

b
j,3)j

4: Write all possible clauses cj over the variables in b in the left column, row j in T bj,1
5: if b is a leaf then
6: for cj ∈ T b do
7: if c ∈ φ then
8: T bj,2 ← 0
9: else

10: T bj,2 ←∞
11: end if
12: end for
13: else if b is a forget bag and h is the child of b then
14: T b ← copyChildTable(h,b)
15: if b is the root then
16: return refutation Rbj,2
17: end if
18: else if b is a introduce bag and h is the child of b then
19: T b ← copyChildTable(h,b)
20: T b ← T b append addMissingClauses(b)
21: T b ← checkForShorterRefutations(T b)
22: T b ← searchForNewClauses(T b)
23: else if b is a join bag and h and k are children of b then
24: T b ← mergeAndCopyChildrenTables(h,k,b)
25: T b ← checkForShorterRefutations(T b)
26: T b ← T b searchForNewClauses(T b)
27: end if
28: end for

In words, the algorithm computes a matrix T b for every bag b ∈ B. The ordering ensures that the
matrix of the children of a bag is computed first which is possible since the tree decomposition forms a
tree.

For each T b, we keep track of the refutation that is build iteratively. If one clause is inferred by two
other clauses, we save the two clauses in the third column Rb in row j for the resolvent cj . At the end
of the algorithm, we can trace back the refutation by jumping from the root to clause to clause until the
clause is contained in φ.

For simplicity, we denote with Rbj the whole refutation that is associated with clause cj for bag b and
not only the the last two clauses cj is inferred by.

In sequence, we fill the table T b depending on the type of the bag and the values in the the matrix of
the child of the bag. Due to the properties of a nice tree decomposition this case distinction is well-defined:
Either a bag has no children (leaf), exactly one child (forget bag and introduction bag) or exactly two
children (join bag).

If the bag b is a leaf bag, we initialize the matrix T b with possible clauses over the variable set b and
zero if the clause occurs in φ and ∞ if the clause does not occur in φ.

If the bag b is a forget bag, we call the method copyChildTable(h,b). This method copies all clauses
in Th that have a finite resolution proof depth over the variables b to the table T b. Since b is a forget bag,
we have b ⊆ h, therefore, we do not lose information over the clauses. Furthermore, we can ignore clauses
with an infinite resolution proof depth because we aim to find a refutation at the end of the algorithm.

If the bag b is a introduce bag, we call again the method copyChildTable(h,b) that copies all clauses
in Th that have a finite resolution proof depth over the variables b to the table T b. Since b is an introduce
bag, we have that the bag b contains one more variable than h. The method addMissingClauses(T b)
adds all possible clauses that contain xi = b \ h to the first column of T b and initialize the respective
resolution proof depth with zero if the clause is contained in φ and else ∞.

But the added clauses are not necessarily associated with the minimal resolution proof depth. It could
be that a shorter refutation is possible with the added clauses.
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Therefore, we check for all pairs of clauses in T b if shorter resolution proof can be obtained and
overwrite the resolution proof depth if that’s the case. Here, we make use from the fact that we assume
that the associated resolution proof depth copied from the child is actually a minimal one for the child,
so that it suffices to check if two clauses yield a shorter proof. Since the refutation is assumed to be
treelike, we can compute the resolution proof depth with the formula T bk,2 + T bl,2 +1. With that, we have
assigned to all clauses in T b the current minimal resolution proof depth.

In case of overwriting the resolution proof depth, we also keep track of a different resolution proof.
Therefore, we write ck and cl into the cell Rbj .

Algorithm 2 Helper method for Algorithm 1: checkForShorterRefutations

Require: The current table T b
Ensure: Table T b
1: for ck, cl ∈ T b do
2: if ck#cl = cj ∈ T bj,1 and T bj,1 > T bk,2 + T bl,2 + 1 then ▷ # denotes the resolution rule
3: T bj,2 ← T bk,2 + T bl,2 + 1

4: Update Rbj
5: end if
6: end for
7: return T b

In addition to all possible clauses over b, there could be clauses that can be inferred by the added
clauses and the clauses from the child. As a result, we call the following method.

Algorithm 3 Helper method for Algorithm 1: searchForNewClauses

Require: The current table T b
Ensure: Table T b
1: Add all pairs clause pairs ck, cl in T b to the set W b

2: while ck, cl ∈W b do
3: if ck#cl /∈ T bj,1 then
4: cw := ck#cl
5: Add cw to T b
6: T bw,2 ← T bk,2 + T bl,2 + 1

7: Update Rbj
8: Add all clause pairs ck, cw to W b

9: W b ←W b \ {ck, cl}
10: end if
11: end while
12: return T b

The method searchForNewClauses checks whether from the clauses in T b new clauses can be obtained
by using the resolution rule for any pair of clauses in T b. If the clause is new, we can update Rbj and add
the resolution proof depth with the formula T bk,2 + T bl,2 + 1 since the refutation is assumed to be treelike.
The new clause could be object to a new derivation, therefore, we check for pairs containing the new
clause if another new clause can be generated etc. We have that the while loop terminates since the set
of variables that were added that contained the variable xi has a fixed size and therefore, only a finitely
many new clauses can be found (see Lemma 4.15).

If the bag b is a join bag, we call the method mergeAndCopyChildrenTables(h,k,b) which is similar to
the method copyChildTable(h,b). The method mergeAndCopyChildrenTables(h,k,b) copies clauses
and the respective resolution proof depth from both children h and k. Whenever there is a clause that
occurs both in h and k, we copy the clause with the lower resolution proof depth.

Since the children can contain different clauses, we need to call the method checkForShorterRefutations(T b)
to check if new combinations yield a shorter refutation. When we have ensured that all clauses have their
shortest resolution proof depth, we call the method searchForNewClauses(T b) and check if we can
obtain new clauses.

We see that the algorithm only stops when we reach the root that is labeled with the empty set.
Since it is labeled with the empty set, it is necessarily a forget bag and due to the structure of a nice tree
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decomposition, we have that the whole algorithm terminates after considering all the bags below the root.

We start with an easy example to illustrate how the algorithm works.

Example 4.13. Consider the formula φ = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1). This formula is unsatisfiable
since with clause (x1) we need to set x1 to false but then either clause (x1 ∨ x2) or (x1 ∨ x2) will be
unsatisfied.

We can find the following refutation of φ and note that this is the shortest refutation of φ.

x1 ∨ x2 x1 ∨ x2
x1 x1

∅
The goal of the algorithm is to find this refutation (or an other refutation of the same size) and it does
so, by iteratively compose it through refutations of subformulas. The framework for the iterative build-up
is the nice tree decomposition of φ.

We have that the primal graph G of φ is the following:

x1 x2

Figure 15: The primal graph G of φ

And from that, we can make a nice tree decomposition ⟨{Xi}i | T ⟩ with X4 = ∅, X3 = {x1}, X2 =
{x1, x2} and X1 = {x1}.

x1 x1, x2 x1 ∅

Figure 16: A nice tree decomposition of G

Iteratively, we fill in the following table, starting with X1. For each Xi, we list all possible clauses
over the variables Xi and write them in the table. Some clauses occur in φ, those have resolution proof
depth zero and else ∞. Then, we try to deduce the other clauses in the list of Xi via resolution. We can
deduce them from clauses from the list of Xi that are already deduced or contained in φ.

In the algorithm, we have an additional column that saves the current resolution proof for each clause.
At the end of the algorithm, we trace back the refutation that is associated with the root. For simplicity,
in the examples, we only mark the steps that are relevant to the outcome of the refutation of the root
and do mark anything when the column is that short so that it clear. When a resolution rule is part of
the final refutation, we mark two clause and the resolvent of them with either a circle or a square and
additionally, mark the resolvent in bold.

X1 X2 X3 X4

∅ ∞ ∅ ∞ ∅ ∞ ∅ 2
(x1) ∞ (x1) 1○ (x1) 1
(x1) 0 (x1) 0 (x1) 0

(x2) 1
(x2) 1

(x1 ∨ x2) 0○
(x1 ∨ x2) 0
(x1 ∨ x2) 0○
(x1 ∨ x2) ∞

Table 1: Table to compute minimal size resolution proof

Both the clauses (x1∨x2) and (x1∨x2) occur in the formula φ and are therefore equipped with a zero.
If we apply the resolution rule to the clauses, we obtain (x1) and together with the clause that occurs
in the formula (x1), we can deduce with a second application of the resolution rule the empty set which
yields the refutation, we wanted to construct.
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Here, we see that different choices of tree decomposition lead to different refutations. In other words,
the output of the algorithm depends on the choice of tree decomposition. As a result, we want to show
that the algorithm is well-defined and outputs the shortest refutation independent of the choice of tree
decomposition.

But since in Example 4.13, we haven’t used the branch in the algorithm for join bags, let us first go
through a second, more complicated example.

Example 4.14. Consider the formula ψ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1) ∧ (x4).
This formula is unsatisfiable since with clause (x1) and (x4) we need to set x1 and x4 to false but then
with clause (x1∨x3∨x4), we need to set x3 to true and then, either clause (x1∨x2∨x3) or (x1∨x2∨x3)
will be unsatisfied.

We have that the primal graph G of ψ is the following:

x1 x2

x3 x4

Figure 17: The primal graph G of ψ

Since G contains a 3-clique, we have that the tree width of the graph is at least two. In this case, it
is exactly two.

We use the algorithm in [Klo94], to first build a normal tree decomposition and from that, a nice tree
decomposition.

x1 x1, x3 x1, x2, x3 x1, x3

x1, x3 x3 ∅

x1, x3x1, x3, x4x1, x3x1

Figure 18: A nice tree decomposition of G

For convenience, we enumerate the bags starting from the upper left to the bag containing x1, x3,
then starting from the lower left to the lower bag containing x1, x3 and then, starting from the join bag
containing x1, x3 until the root. We aim to simplify the table and split it into one table for the upper
branch, one for the lower branch and one for joining the upper and the lower branch. As it was done in
the previous example, we do not show the third column that saves the current resolution proof and just
illustrate the output refutation by circles and squares wrapped around the resolution proof depth of the
respective clauses. This yields the following tables.

x1 x1, x3 x1, x2, x3 x1, x3

(x1) 0 (x1) 0 (x1) 0 (x1) 0○
(x1 ∨ x2 ∨ x3) 0○ (x1 ∨ x3) 1○
(x1 ∨ x2 ∨ x3) 0○ (x3) 2○

(x1 ∨ x3) 1○
(x2 ∨ x3) □1
(x2 ∨ x3) □1

(x3) □2

Table 2: Table for the upper branch
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We omit the clauses that have an infinite resolution proof depth because they do not contribute to the
final resolution proof output.

x1 x1, x3 x1, x3, x4 x1, x3

(x1) 0 (x1) 0 (x1) 0 (x1) 0○
(x4) 0○ (x1 ∨ x3) 1○

(x1 ∨ x3 ∨ x4) 0○ (x3) 2○
(x1 ∨ x3) 1○
(x3 ∨ x4) 1

(x3) 2

Table 3: Table for the lower branch

The table that is the continuation of the table for the upper branch and the lower branch merges the
two branches. Even though the join bag contains the same variables as the last branch of the lower and
the upper branch, we obtain resolution proofs for more clauses.

x1, x3 x3 ∅
(x1) 3 (x3) 2 ∅ 5
(x1) 2 (x3) 2
(x3) 2
(x3) 2

(x1 ∨ x3) 1
(x1 ∨ x3) 1

Table 4: Table that joins the upper and the lower branch

The algorithm ends by filling in a finite number to empty clause. In this case, we obtain the number
five, thus, we have constructed a resolution proof of ψ of size five.

We can deduce the proof by tracking down the sub proofs that led to the number five.
First, in the table of the upper branch in column six, row four and seven, we deduced the clauses

(x1 ∨ x3) and then the clause (x3). Similarly, in the table of the lower branch, we deduced (x1 ∨ x3)
and (x3) in column six and eight. Together, we complete the refutation in Table 4 and obtain the empty
clause.

The proof tree for the constructed refutation of ψ looks like in the following:

x4 x1 ∨ x3 ∨ x4
x1 ∨ x3 x1

x3

x1

x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ x3
x1 ∨ x3

x3
∅

We see that this is the shortest refutation by trying out all other combinations.

With the two examples in mind, we want to prove the correctness of the algorithm.

Lemma 4.15. Algorithm 1 outputs the shortest refutation for an unsatisfiable formula independent of
the choice of the tree decomposition.

Proof. Since the tree decomposition is rooted, we can identify each bag with a level. The root has the
level of the longest path from root to leaf in the tree. The level of any other bag is the longest path from
root to leaf in the tree minus the length of the shortest path from the respective bag to the root.

We want to prove by induction on the levels that Algorithm 1 outputs the shortest refutation for an
unsatisfiable formula.

Base case: Take any bag b on level 0. Then, the bag b is a leaf. Therefore, we have |b| = 1 and the
algorithm trivially outputs the shortest refutation if it exists.

Induction hypothesis: For all bags of level n every clause is equipped with the correct resolution
depth and the corresponding resolution proof and the resolution proof of a clause in a bag h assumes
only clauses in Th.

Induction step: Take any bag b of level n + 1. We want to show that all clauses in T b are equipped
with the correct resolution depth and the corresponding resolution proof that assumes only clauses in T b.
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Let us make a case distinction on the type of bag of b. We see that b can be a leaf since the tree
decomposition does not need to have all leaves on the same level. If b is a leaf, the assertion follows
trivially.

Case 1: If b is a forget bag and h is the child of b, all clauses over b are clauses over h since b ⊂ h.
Since we copy Th to T b, the assertion follows with the induction hypothesis.

Case 2: If b is an introduce/join bag and h is the child of b, we have that only the set of clauses whose
resolution proof depth number has been updated might not have a correct resolution proof depth due
to the induction hypothesis. But similarly, since we have a tree decomposition, thus, for all i, j, l ∈ I,
if j lies on the path between i and l in T then Xi ∩ Xl ⊆ Xj , we exhaust all possibilities of a shorter
resolution proof in the algorithm.

In sum, it follows that Algorithm 1 outputs the shortest refutation for an unsatisfiable formula.

For the second part, we have that Algorithm 1 outputs the shortest refutation independent of the choice
of the tree decomposition by definition of a nice tree decomposition: Each clause induces three edges e in
the primal graph. The variables of e need to be contained in at least a bag and when we reach the root
all edges and therefore, all clauses in φ were covered. Since we update for each bag if there are shorter
proof the order which the clauses appear in the tree decomposition does not matter. As a result, the
choice of tree decomposition does not matter.

For showing fpt-automatability the running time is important. We want to show that we can split it
into a part that is only dependent on the parameter primal tree width and a part that is only dependent
on the input length.

Lemma 4.16. Algorithm 1 has running time f(k)p(n) for a function f , polynomial p, parameter k =
ptw(π) and input length n for an unsatisfiable formula φ and refutation π of φ with the least resolution
proof depth.

Proof. Since the tree decomposition is part of the input, we have that the number of bags is smaller or
equal to n. We fix a bag b and want to show that the algorithm runs in time f(k) whereas f is not
dependent on n.

For a leaf, initializing the resolution proof depth value of each clause over b takes linear time in the
number of rows of T b. Since each bag has size at most k + 1, there are at most 2k+1 many clauses in a
table T b. With that, we can upper bound the number of rows in T b by 2k+1.

For a forget bag that is not the root, we have also a polynomial running time in 2k+1.
Since both introduce bag and join bag call similar methods, we focus on the running time of the join

bag. The method mergeAndCopyChildrenTables takes only polynomial time in the size of the tables Th
and T k and both Th and T k are bounded by 2k+1.

The method checkForShorterRefutations runs over all subsets of size two of the clauses contained in
T b. We upper bound this by

(|T b
1 |
2

)
≤ |T b1 |2 ≤ 2k+2. The checks in line 2 to 4 of checkForShorterRefutations

can be done in constant time, which results in a total running time of checkForShorterRefutations of
O(2k+2).

For the running time of the method searchForNewClauses, we see that the set W b can contain at
most

(|T b
1 |
2

)
≤ |T b1 |2 ≤ 2k+2 since the bag size of b is bounded by k + 1. The worst case in the following

while loop is if every pair in W b yields a new clause. But then, we need to add 2k+2 +2k+2 = 2k+3 since
there are at most 2k+2 such pairs.

For the join bag, we end up with a total running time of O(2k+3).
We note that the trace back of line 16, takes at most as long as the longest path from root to a leaf

times the number of resolution rules used for the refutation within the table for a fixed bag. We can upper
bound this by n ·maxb |T b| = n2k+1. We do this trace back only once at the very end of the algorithm
and therefore, we have a total running time of the algorithm of nO(2k+3) + nO(2k+1) = nO(2k+1).

With that, the theorem on the fpt-automatability follows easily.

Theorem 4.17. Treelike resolution is fpt-automatable with regard to primal tree width.

Proof. Take an unsatisfiable conjunctive normal form formula φ, then, there is a resolution proof refuting
φ (see Theorem 4.2.1 in [Kra95]).

Compute the primal graph for this formula and the corresponding nice tree decomposition. This can
be done in linear time [Klo94].

Due to Lemma 4.15 and Lemma 4.16, we know that the algorithm outputs the shortest refutation
in fpt time of the shortest refutation with regard to primal tree width. With Lemma 4.12, we follow
fpt-automatability with regard to primal tree width.
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4.3 Resolution and primal tree width
In the following, we want to generalize the result on fpt-automatability with regard to primal tree width
from treelike resolution to resolution. As we have seen, resolution is the stronger proof system, therefore,
we need a variation of the algorithm that computes a refutation also in the case of a refutation where an
inferred clause is used in several rules at the same time.

We adapt Algorithm 1, so that it can also output refutations that are not treelike.

Algorithm 4 Computing a potentially not treelike refutation with parameter primal tree width

Require: Nice tree decomposition ⟨{Xi}i | T ⟩ of the primal graph of a formula φ
Ensure: Refutation of φ
1: B ← all bags enumerated from leaves to root, branches from left to right
2: for b ∈ B do
3: Make a two column table Sb = (Sbi,1, R

b
i,2)i

4: Write possible subsets Si,1 of possible clauses over b in Sb1
5: Initialize Rbi,2 with ∞
6: We are going to write for each Si,1 the shortest resolution proof proving all elements Si,1
7: if b is a leaf then
8: for S ∈ Sb1 do
9: if ∀c ∈ S : c ∈ φ then

10: Rbi,2 ← ⟨c | c ∈ S⟩
11: else
12: Rbi,2 ←∞
13: end if
14: end for
15: else if b is a forget bag and h is the child of b then
16: Sb ← copyChildSubsetTable(h,b)
17: if b is the root then
18: return refutation Rbi,2
19: end if
20: else if b is a introduce bag and h is the child of b then
21: Sb ← copyChildSubsetTable(h,b)
22: Sb ← addMissingSubsetClauses(b)
23: Sb ← checkForShorterSubsetRefutations(Sb)
24: else if b is a join bag and h and k are children of b then
25: Sb ← mergeAndCopyChildrenSubsetTables(h,k,b)
26: Sb ← checkForShorterSubsetRefutations(Sb)
27: end if
28: end for

The above algorithm computes a matrix Sb for every bag b ∈ B and for each Sb, we keep track of the
refutation that is build iteratively. If one clause is inferred by two other clauses, we save them as children
of the resolvent in a tree in the second Rb. At the end of the algorithm, we output the refutation saved
in Rbi,2 for the root bag. In sequence, we fill the table Sb depending on the type of the bag and the values
in the the matrix of the child of the bag. With S1 we denote the first column of Sb.

If the bag b is a leaf bag, we initialize the matrix Sb with the set of clauses if all the clause occur in
φ and ∞ if at least one clause does not occur in φ.

If the bag b is a forget bag, we call the method copyChildSubsetTable(h,b). This method copies
the content of Sh to the table Sb. Since b is a forget bag, we have b ⊆ h, therefore, we do not lose
information over the clauses.

If the bag b is a introduce bag, we call again the method copyChildSubsetTable(h,b). Since b is an
introduce bag, we have that the bag b contains one more variable than h.

The method addMissingSubsetClauses(Sb) adds all possible subsets over all possible clauses that
contain xi = b\h and initializes them like the leaf bags. Subsequently, there could be shorter proofs that
make use of a subset whose clauses are contained in φ. Therefore, we call checkForShorterSubsetRefutations(Sb)
to update the current resolution proofs with help of the already existing proofs.
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Algorithm 5 Helper method for Algorithm 4: checkForShorterSubsetRefutations

Require: The current table Sb
Ensure: Table Sb
1: for (Sbi,1, R

h
i,2), (S

b
j,1, R

b
j,2) ∈ Sb do

2: for clause c ∈ Sbi,1 do ▷ Rbj,2|c denotes the subgraph of Rbj,2 rooted in c
3: if Rbj,2|c ̸= ∅ and Rbj,2|c has a lower resolution proof depth than Rbi,2|c then
4: ▷ Rbi,2 ←c Rbj,2 denotes the refutation where Rbi,2|c is replaced by Rbj,2|c
5: Sbi ← (Sbi,1, R

b
i,2 ←c Rbj,2)

6: end if
7: end for
8: end for
9: return Sb

Compared to the algorithm for treelike resolution, the method checkForShorterSubsetRefutations(Sb)
combines checkForShorterRefutations(T b) and searchForNewClauses(T b). This due to the clause
subsets. Since we already consider subsets, we cannot miss potential clauses over the variables in b.

If the bag b is a join bag, we call the following method to pick the best resolution proof for each subset
between from the pool of resolution proof from the children.

Algorithm 6 Helper method for Algorithm 1: mergeAndCopyChildrenSubsetTables

Require: The current table Sh and Sk
Ensure: Table Sb
1: for (Sh1 , R

h
2 ) ∈ Sh and (Sk1 , R

Sk
2 ) ∈ Sk do

2: for i ∈ {1, . . . , |Sh1 |} do
3: for j ∈ {1, . . . , |Sk1 |} do
4: if Shi,1 = Skj,1 and Rhi,2 has a lower or equal resolution proof depth than Rki,2 then
5: Sbi,1 ← (Shi,1, R

h
i,2)

6: else if Shi,1 = Skj,1 and Rki,2 has a lower resolution proof depth than Rhi,2 then
7: Sbi,1 ← (Ski,1, R

k
i,2)

8: end if
9: end for

10: Sbi,1 ← (Shi,1, R
h
i,2)

11: end for
12: end for
13: return Sb

After we collected the pairwise best proof, we check for a shorter refutation for pairs within Sb with
a call of the method checkForShorterSubsetRefutations. This has not been checked before and the
new mix of clause sets from both children can yield shorter refutations

We see that the algorithm only stops when we reach the root that is labeled with the empty set.
Since it is labeled with the empty set, it is necessarily a forget bag and due to the structure of a nice
tree decomposition, we have that the whole algorithm terminates after considering all the bags below the
root.

Since even for Example 4.13, we have that one column has size up to 28 = 256 clause subsets, we do
not provide examples. Since the algorithms are very similar, we see that the same induction proof as in
Lemma 4.15 works to show correctness for resolution.

Lemma 4.18. Algorithm 4 outputs the shortest (possibly not treelike) refutation for an unsatisfiable
formula independent of the choice of the tree decomposition.

Compared to treelike resolution, we have a higher running time: The size of the set of all clause
subsets increases the computational resources needed to construct the shortest refutation.

Lemma 4.19. Algorithm 1 has running time f(k)p(n) for a function f , polynomial p, parameter k =
ptw(π) and input length n for an unsatisfiable formula φ and refutation π of φ with the least resolution
proof depth.
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Proof. Since the tree decomposition is part of the input, we have that the number of bags is smaller or
equal to n. We fix a bag b. Due to similar reasoning as in Lemma 4.16, we focus on the running time for
introduce bags. We see that the running time of the method checkForShorterRefutation exceeds the
running time for copyChildSubsetTable and addMissingSubsetClauses and therefore, we restrict our
attention checkForShorterRefutation.

The first for loop iterates over all pairs of rows in Sb and since the size of Sb is bounded by the number
of all subsets of the biggest bag, we can upper bound the running time of the for loop by 22

2k

.
The second for loop in line 2 iterates over all clauses in Sbi,1 that are subset of variables in b and since

there are at most 2k such subsets, we upper bound the running time with 2k.
For the if clause, we perform a depth first search through both current resolution proof graphs. With

that, we can check if there is an entry at Rbj,2|c and obtain the resolution proof depth via a counter,
counting the edges above c. The running time of the depth first search can be upper bounded by the size
of a table Sb and the length of the tree decomposition since the algorithm only potentially extends the
current resolution proof per tuple (Sbi,1, R

h
i,2). Subsequently, lines 3 to 5 take at most 22

k · n time.
In sum, for a fixed b, we have running time 22

2k · 2k · 22kn and over all b, we have a total running time
of 22

2k · 2k · 22kn2.

With that, the theorem on the fpt-automatability follows easily.

Theorem 4.20. Treelike resolution is fpt-automatable with regard to primal tree width.

Proof. Compute the primal graph for this formula and the corresponding nice tree decomposition. This
can be done in linear time [Klo94].

Due to Lemma 4.18 and Lemma 4.19, we know that the algorithm outputs the shortest refutation
in fpt time of the shortest refutation with regard to primal tree width. With Lemma 4.12, we follow
fpt-automatability with regard to primal tree width.

Naturally, it poses the question if this is also true for the parameter incidence tree width.

4.4 Incidence tree width and one-sided tree width
We want show that resolution is fpt-automatable with regard to incidence tree width with help of fpt-
dominance.

Lemma 4.21. Incidence tree width fpt-dominates primal tree width. In particular we have for any graph
G that ptw(G) ≥ itw(G)− 1.

Proof. We show this by constructing an incidence graph from a primal graph G and show that if G has
primal tree width k, the translated incidence graph of G has incidence tree width at most ptw(G) plus
one.

Take a tree decomposition of a primal graph of φ. We see that the primal graph consists of cliques
for the respective clauses of φ. For each clique C, we add a vertex labelled with C and connect it with
all the vertices in the clique. Since in a primal graph there is an edge between two vertices if and only if
the two vertices are both contained in a clause, we can conclude that the clause variables have an edge
to vertices labelled with all variables contained in the clause.

As a result, we have constructed an incidence tree decomposition of width ptw(G) + 1.

Proposition 4.22. Resolution is fpt-automatable with regard to incidence tree width.

Proof. Since incidence tree width fpt-dominates primal tree width (Lemma 4.21) and resolution is fpt-
automatable with regard to primal tree width (Theorem 4.20), we conclude with Lemma 3.29 that
resolution is fpt-automatable with regard to incidence tree width.

Here, we see that the representation of the formula as a graph does not matter: If the depict the
formula as primal graph or as incidence graph, in both cases resolution is fpt-automtable with regard to
the respective parameters. Indeed, resolution is even fpt-automatable if we restrict the incidence graph
with regard to different types of vertices: those that originate from clauses and those that originate from
variables.

For this, let us introduce the parameter width of one-sided tree-decomposition as first defined in Def-
inition 1 in [CR19].
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Definition 4.23. Let ⟨{Xi}i | T ⟩ be a rooted incidence tree decomposition of φ. For each clause C of φ,
let VC denote the set of bags in T whose bags contain C. Then ⟨{Xi}i | T ⟩ is one-sided if for each C ∈ φ
we have that T [VC ] is a directed path. The one-sided (incidence) treewidth of φ is the smallest width of
an one-sided incidence tree decomposition of φ.

For illustration, let us take a look at the following example:

Example 4.24. Take the following incidence graph from the formula from Example 4.3.

x1 x2 x3 x4 x5

(x1 ∨ x2 ∨ x3) (x2 ∨ x3 ∨ x5)

(x1 ∨ x3 ∨ x4)

Figure 19: Incidence graph G

We want to build a rooted incidence tree decomposition based on this graph.
The following is a tree decomposition of G with X1 = {x4, (x1 ∨ x3 ∨ x4)}, X2 = {x1, x3, (x1 ∨ x3 ∨

x4)},X3 = {x1, x3, (x1∨x2∨x3)}, X4 = {x2, (x1∨x2∨x3), (x1∨x3∨x5)}, X5 = {x3, (x1∨x2∨x3), (x1∨
x3 ∨ x5)} and X6 = {x5,∨x3), (x1 ∨ x3 ∨ x5)}.

X1 X2 X3 X4 X5 X6

Figure 20: A one-sided tree decomposition of G

We see that the tree decomposition is rooted. We have the path for C = (x1 ∨ x3 ∨ x4), the path from
X1 to X2 for (x1 ∨ x2 ∨ x3) and the path from X3 to X4 to X5 for (x2 ∨ x3 ∨ x5) the path from X4 to X5

to X6. Subsequently, we have a rooted one sided incidence tree decomposition.

The parameter one-sided tree width takes motivation also from the fact that it is a parameter that
is not fpt-automatable but fpt-bounded. To show fpt-bounded, we cite the following theorem in [CR19].
Note that the introduction of the set of long clauses called LONG makes this theorem even stronger. If
we choose the empty set for LONG, the result grants only the existence of a resolution with a higher
size.

Theorem 4.25. Let φ be a CNF, LONG ⊆ φ to which we refer as long clauses and k > 0 be an integer.
Assume that φ \ LONG has a one-sided tree decomposition (T,B) of the incidence graph of path width
at most k. Then there is a resolution of φ of size (n+ |LONG||LONG|) · n · 2O(k2+k·|LONG|).

Since the function (n+ |LONG||LONG|) ·n ·2O(k2+k·|LONG|) can be written in the form p(n) ·f(k) for
a polynomial p, we can find for every tautology in for the proof system resolution, a fpt-bounded proof.
Since a proof system that contains resolutions, simulates resolution, it follows that any proof system
containing resolution is fpt-bounded with regard to the parameter one-sided tree width.

Corollary 4.1. Resolution is fpt-bounded with regard to the parameter one-sided tree width.

In this case, we have also fpt-automatability. Intuitively, this expresses that there are short, thus,
potentially easy proofs and it’s easy to find them.

We show fpt-automatability by fpt-dominance.
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Lemma 4.26. The parameter one-sided tree width is dominates by primal tree width.

Proof. One-sidedness is a restriction on the shape of the graph whereas special tree width has no restric-
tion on the shape of the graph.

Similar to the fpt-dominance results we have seen before, we can deduce fpt-automatability. Since
the result on special tree width relies on the assumption that RSA is secure, we need to carry over this
assumption.

Corollary 4.2. Resolution is fpt-automatable with regard to the parameter proof one-sided tree width.

Proof. Since resolution is fpt-automatable with regard to one-sided tree width and one-sided tree width
dominates incidence tree width, it follows with Lemma 3.29 that resolution is fpt-automatable with regard
to the parameter one-sided tree.

Similar to the hierarchy for Extended Frege, we consider the parameter path width.

4.5 Incidence path width
The parameter function path width is defined analogously to tree width. Here, we decompose a graph
into a path decomposition. The tree decomposition was a modification of a graph G to turn G into a
graph. Similarly, the path decomposition is a modification of a graph G that assembles/thickens paths
of G so that the path decomposition forms a single path.

Definition 4.27. Let G = (V,E) be a graph. A path decomposition of G is a pair ⟨{Xi | i ∈ I}, P ⟩
where each Xi is a subset of V , called a bag, and P is a path with the elements of I as nodes. The
following three properties must hold:

1. for every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi

2. for all i, j, l ∈ I, if j lies on the path between i and l in P then Xi ∩Xl ⊆ Xj.

The width of ⟨{Xi | i ∈ I}, P ⟩ is defined as max{|Xi| | i ∈ I}− 1. The path width of G is the minimum
k such that G has a path decomposition of width k.

Consider the following example.

Example 4.28. Take the graph G = (V,E) depicted as follows.

v2

v5

v1

v6 v7

v3

v8

v4

Figure 21: Graph G

The following figure shows a tree composition of graph G. Formally, the path decomposition can be
described as ⟨{v1, v2, v4, v5}, {v4, v5, v6}, {v3, v6, v7}, {v3, v7, v8}P ⟩ and P consists of the four vertices that
form a path . The structure ⟨{Xi | i ∈ {1, 2, 3, 4}, P ⟩ fits the definition of a path composition since
we see that P forms a path since each edge is contained in at least in of the bags and we have that
X1 ∩X3 = ∅ ⊆ X2 = {v5, v6} and X2 ∩X4 = ∅ ⊆ X3 = {v3, v6, v7}.
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X1

X2

X3
X4

v2

v5

v1

v6 v7

v3

v8

v4

Figure 22: A path decomposition of G

The width of this tree composition is 2 because the biggest bag X1 contains 3 elements. We see that this
is the smallest width for a path decomposition since we cannot make the bag {v1, v2, v5} smaller without
violating the property that the path decomposition should be a path. Furthermore, there is only one path
P that we can associate with the choice of bags due to the second property of the definition. The path P
starts in X1 and ends in X4.

The parameter incidence path width is a version of the path width for Extended Frege on incidence
graphs. Consider the following Theorem 2 in [Ima17]:

Theorem 4.29. There exists an algorithm that takes a CNF formula φ and the path decomposition
(T,X) with one of the following properties for each edge vertex Xi

• (introduce) ∃v ∈ V.Xi = Xi−1 ∪ {v}

• (forget) ∃v ∈ V.Xi = Xi−1 \ {v}

of its incidence graph with path width pw(φ) as inputs, runs in 2O(pw(φ))|φ|O(1) time, and

• produces a satisfying assignment of φ if φ is satisfiable.

• constructs a resolution refutation of size O(3pw(φ)) if φ is unsatisfiable.

Here, we have hidden the definition of a nice path decomposition within the theorem. We note that
the property of a nice path decomposition is captured with the introduce and forget bags. For a nice tree
decomposition as defined in Definition 4.8, we have the additional join bag which naturally is not part
of a path decomposition.

We conclude that the proof system resolution produces proofs that are bounded in size with regard
to the parameter path width.

Corollary 4.3. Resolution is fpt-bounded with regard to the parameter (incidence) path width.

Although fpt-boundedness does not necessarily imply fpt-automatability, in this case we have both.
Since we can find such a proof in time 2O(pw(φ))|φ|O(1), we have:

Corollary 4.4. Resolution is fpt-automatable with regard to the parameter (incidence) path width.

Note that here, in comparison to tree width, we do not minimize over all φ, the running time
2O(pw(φ))|φ|O(1) depends on the parameter value pw(φ). Similar to primal tree width and incidence
tree width, we decided to call the parameter path width instead of proof path width. Nonetheless, one
could think of a parameter proof path width that is defined analogously to proof tree width and that
minimized over all φ. Since the fpt-automatability result holds for all choices of φ, in particular, it is
true for the minimum and therefore, we have that resolution is fpt-automatable with regard to proof path
width.

The attentive reader might have noticed that there is a second way how we could show fpt-automatability.

Corollary 4.5. Resolution is fpt-automatable with regard to the parameter (incidence) path width.
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Proof. We have that incidence path width fpt-dominates one-sided tree width because every path de-
composition is also one-side tree decomposition: Both decomposition build on incidence graphs and the
property that for the set of bags induced by any clause vertex should form a path is weaker than if all bags
need to form a path. Since resolution is fpt-automatable with regard to primal tree width (Corollary 4.2),
we conclude with Lemma 3.29 that resolution is fpt-automatable with regard to incidence tree width.

The parameter path width is particularly interesting since we can also embed in into the Frege
hierarchy.

Lemma 4.30. Path width dominates special tree width.

Proof. Take a a path decomposition. We see that this is also a special tree decomposition since the
property that for every vertex in G, the bags induce a directed path is weaker than that the all bags
together form a path. The path of a path decomposition is rooted and can be therefore transformed to
a directed graph.

Therefore, it seems natural to ask whether Frege is fpt-automatable with regard to path width. If
this was the case, parameters that dominate path width are also fpt-automatable.

Conjecture 4.31. Treelike, bounded depth Frege is fpt-automatable with regard to path width.

Since we associate a graph with a Frege proof, we can restrict the depth, thus the longest path from
leaf to root, of the proof graph. This allows a smaller class of possible proofs and is therefore, more likely
to be fpt-automatable.

In the thesis, we have not focused on results fpt-boundedness results, even though they are a natural
continuation of applying parameterized complexity to questions in proof complexity. One reason why we
have shown fpt-automatability for incidence path with help of Theorem 4.29 is that it additionally grant
fpt-boundedness.

Nonetheless, we see again that fpt-dominance is a very strong tool. Furthermore, we are going to use
it to deduce an other parameter. This is possible since the graph measures path width and cut width are
related.

4.6 Incidence cut width
Cut width is another parameter function such as path width and tree width. Furthermore, cut width is
closely related to them. Formally, we define cut width as follows.

Definition 4.32. Given a graph G = (V,E), |V | = n, a numbering of G is a one-to-one mapping
L : V → {1, . . . , n}. The cut width of an order L is max1≤p≤n |{(u, v) ∈ E : L(u) ≤ p < L(v)}|. The cut
width c(G) of G is the minimum cut width over all orders.

Consider the following example. Note that the graph in the example is the same one as in the example
of tree width Example 3.23 and path width Example 4.28.

Example 4.33. Take the graph G = (V,E) depicted as follows.

v2

v5

v1

v6 v7

v3

v8v4

Figure 23: Graph G

We order the vertices from in a row such that L(v1) = 1 for the left-most vertex v1 and the ordering
increases going to the right. For the the right-most vertex v3, we have L(v3) = 8.
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v1 v2 v5 v4 v6 v7 v8 v3

Figure 24: An ordering of graph G

We see that any vertical cut crosses at most two edges. Furthermore, we can modify the ordering to
decrease this number since v1, v2, v3 form a cycle. Subsequently, we have cw(G) = 2.

Let cw(G) denote the cut width of a graph G and let pw(G) denote the path width of a graph G.

Lemma 4.34. For every graph G, pw(G) ≤ cw(G).

Proof. See [KS93], Lemma 3.

Proposition 4.35. Resolution is fpt-automatable with regard to the parameter cut width.

Proof. Due to the previous Lemma 4.34, we have that cut width is dominated by path width. Since with
resolution is fpt-automatble with regard to path width (see Corollary 4.4), we conclude with Lemma 3.29
that resolution is fpt-automatable with regard to cut width.

In exactly the same way, we get a fpt-bounded result.

Proposition 4.36. Resolution is fpt-automatable with regard to the parameter cut width.

Proof. Due to the previous Lemma 4.34, we have that cut width is dominated by path width. Since with
resolution is fpt-automatble with regard to path width (see Corollary 4.3), we conclude with Lemma 3.30
that resolution is fpt-automatable with regard to cut width.

The fpt-results for treelike resolution and resolution have their correspondents within the theory of
automatability.

4.7 Literature on automatability results for resolution
Similar to the proof for non-fpt-automatability with regard to tree width, the following theorems show
that if resolution is automatable then something unlikely is true. In case of non-fpt-automatability with
regard to tree width, the unlikely event was to break the encryption scheme RSA. For the following result,
the unlikely event is that parts of the parameterized hierarchy collapses.

Definition 4.37. The class FPR (fixed-parameter randomized) of parameterized problems consists of all
languages L ⊆ Σ∗ × N for which there exists a probabilistic algorithm Φ, a constant c, and a recursive
function f : N→ N such that

• the running time of Φ(x, k) is at most f(k)|x|c

• if (x, k) ∈ L, then P [Φ(x, k) = 1] ≥ 1
2

• if (x, k) /∈ L, then P [Φ(x, k) = 1] ≥ 0.

The class coFPR is the set of all languages whose complement is in FPR. Thus, coFPR := {L | Σ∗ \ L ∈
FPR}.

Since coFPR is an expressive complexity class it could be that case that W[P] ⊆ coFPR. We have
that FPR = FPT with the derandomization of Eickmeyer-Grohe-Gruber [EGG08], so if FPT ̸= W[P],
the following theorem by Michael Alekhnovich and Alexander Razborov (Theorem 2.7 in [AR08]) can be
interpreted as an automatability result.

Theorem 4.38. If either resolution or tree-like resolution is automatable, then W[P] ⊆ coFPR.

Another result by Albert Atserias and Moritz Müller shows that resolution is not automatable unless
P = NP (see in [AM20]).

Theorem 4.39. Resolution is not automatable in polynomial time unless NP ⊆ P.

Even though automatability and fpt-automatability are related (Lemma 2.15), we see that the au-
tomatability result do not contradict the fpt-automatability result. Indeed, there even add to the motiva-
tion to research on fpt-automatability since the result show that with regard to some parameters difficult
problems such as automating resolution become feasible.
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5 Conclusion
In the thesis, we have developed the notion of fpt-automatability and fpt-boundedness and used them to
show a sequence of results. Recall the following sketch overviewing them.

special tree width ✗incidence cut width ✓

incidence path width ✓

one-sided tree width ✓

incidence tree width ✓

primal tree width ✓

strongly chordal
tree width ✗

directed spaghetti width ✗

spaghetti width ✗

tree width ✗

clique width ✗

We can see that the sketch splits into disjoint parts on resolution and Extended Frege. While all the re-
sults on resolution show fpt-automatability, Extended Frege seems more likely to be not fpt-automatable.
Intuitively, this makes sense since Extended Frege is a more expressive proof system.

To show the results, we used very different methods. We started with the theory of interpolation and
showed that Extended Frege is not fpt-automatable with regard to tree width. For this, we carved out
results from bounded arithmetic and proof translations and subsequently, constructed a contradiction
with the security of the encryption scheme RSA.

With the graph-theoretic notion of intersection graphs, we motivated the parameters special tree
width, strongly chordal tree width, directed spaghetti width and spaghetti width. As a consequence, we
generalized the result on tree width, taking advantage of a characterization result of these parameters.
From these results on, with fpt-dominance, we concluded the non-fpt-automatability of clique width.

For showing fpt-automatability for resolution, we provided an algorithm for the parameter primal tree
width that computes a refutation and presented this algorithm in a version for treelike resolution and
conventional resolution. We have that this parameter is particularly interesting due to the jump from
the fact that Extended Frege is non-fpt-automatable with regard to tree width whereas resolution is
fpt-automatable with regard to incidence tree width.

For the parameter incidence path width, we cited a similar refutation algorithm and by fpt-dominance,
we concluded the fpt-automatability of one-sided tree width and incidence cut width, noting the additional
property fpt-boundedess.

The thesis focused on automatability but an analogue research question to this paper would be a collec-
tion of parameters for fpt-boundedness. Some results such as one-sided tree width, incidence path and
incidence cut width have this property. If we were to make a hierarchy, those parameters would be at
the very top since they are fpt-automatable and at the same time fpt-bounded.

In addition, one could add other proof systems to the overview map. It poses the question where we
would locate the difficulty of automation/boundedness. A starting point for this, could be our conjecture
that bounded depth Frege is automatable with regard to path width. From this, we could generalize the
proof to Extended Frege and hence, have an example for fpt-automatability for Extended Frege.

Similarly, further research could try to loosen the assumptions for the non-fpt-automatability results
for Extended Frege. So far, we assumed that RSA is secure building on a paper by Krajicek and Pudlak
[KP98]. A paper by Bonet, Pitassi and Raz [BPR97] logically follows the paper by Krajicek and Pudlak,
generalizing the results. They show that a weaker Frege proof system called TC0-Frege is connected to
the security of the encryption protocol Diffie-Hellman. Further research could work on fpt-automatability
results analogue to our results based on the security of Diffie-Hellman.
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Appendix
Definition 5.1. The theory BASIC consists of the following 32 axiom in the language L:

1. a ≤ b→ a ≤ b+ 1

2. a ̸= a+ 1

3. 0 ≤ a

4. (a ≤ b ∧ a ̸= b)→ a+ 1 ≤ b

5. a ̸= 0→ 2a ̸= 0

6. a ≤ b ∨ b ≤ a

7. (a ≤ b ∧ b ≤ a)→ a = b

8. (a ≤ b ∧ b ≤ c)→ a ≤ c

9. |0| = 0

10. a ̸= 0→ (|2a| = |a|+ 1 ∧ |2a+ 1| = |a|+ 1)

11. |1| = 1

12. a ≤ b→ |a| ≤ |b|

13. |a#b| = |a · b|+ 1

14. |0#a| = 1

15. a ̸= 0→ (1#(2a) = 2(1#a)) ∧ (1#(2a+ 1) = 2(1#a))

16. a#b = b#a

17. |a| = |b| → a#b = a#c

18. |a| = |b|+ |c| → a#d = (b#d) · (c#d)

19. |a| ≤ |a|+ |b|

20. (a ≤ b ∧ a ̸= b)→ (2a+ 1 ≤ 2b ∧ 2a+ 1 ̸= 2b)

21. a+ b = b+ a

22. a+ 0 = a

23. a+ (b+ 1) = (a+ b) + 1

24. a+ (b+ c) = (a+ b) + c

25. a+ b ≤ a+ c→ b ≤ c

26. a · 0 = 0

27. a · (b+ 1) = a · b+ a

28. a · b = b · a

29. a · (b+ c) = a · b+ a · c

30. 1 ≤ a→ ((a · b ≤ a · c) ≡ (b ≤ c))

31. a ̸= 0→ |a| = |⌊(a2 )⌋|+ 1

32. a = ⌊( b2 )⌋ ≡ (2a = b ∨ 2a+ 1 = b)
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Definition 5.2. Let A(a1, . . . , ak) be a bounded formula in Σb1. Let q(x) be a bounding polynomial for
the formula A. For every m, we construct a bounded quantified formula ∥A∥mq(m) with atoms pi for

i ∈ {1, . . . , k} and pi = (p0i , . . . , p
q(m)
i ). We proceed by induction on the formula A:

• For an atomic formula t(a) = s(a) define

∥A∥mq(m) := ∃x0 . . . xq(m), y0 . . . yq(m)Bt(p1, . . . , pk, qj/xj) ∧Bs(p1, . . . , pk, qj/yj) ∧
∧

i≤q(m)

xi ≡ yi

where we define the tuples p1, . . . , pk, q in B have q(m) + 1 bits, with pji for j > m not occurring
and with not all qj necessarily occurring.

• For an atomic formula t(a) ≤ s(a) define

∥A∥mq(m) := ∃x0 . . . xq(m), y0 . . . yq(m)Bt(p1, . . . , pk, qj/xj) ∧Bs(p1, . . . , pk, qj/yj)

∧
∧

0≤i≤q(m)

((
∧

i+1≤j≤q(m)

xi ≡ yi) ∧ xi → yi)

(the last conjunct defines the lexicographic order on x, y).

• For A = ¬A1 define
∥A∥mq(m) = ¬∥A1∥mq(m)

• For A = A1 ◦A2 where ◦ is either ∧ or ∨ define

∥A∥mq(m) = ∥A1∥mq(m) ◦ ∥A2∥mq(m)

• For A(a) = ∃x ≤ |t|.A1(a, x) define

∥A∥mq(m) =
∨
ε

∥b ≤ |t| ∧A(a, b)∥mq(m)(q/ε)

and for A(a) = ∀x ≤ |t|.A1(a, x) define

∥A∥mq(m) =
∧
ε

∥b ≤ |t| → A(a, b)∥mq(m)(q/ε)

where ε ranges over q(m) + 1 tuples of 0, 1 such that εi = 0 for i > |q(m)|.

• For A(a) = ∃x ≤ t.A1(a, x) with t not of the form |s| define

∥A∥mq(m) =
∨
ε

∥b ≤ t ∧A(a, b)∥mq(m)(q/x)

and for A(a) = ∀x ≤ t.A1(a, x) with t not of the form |s| define

∥A∥mq(m) =
∧
ε

∥b ≤ t→ A(a, b)∥mq(m)(q/x)

where q is the tuple associated with b.
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