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Chapter 1

Introduction

Computational Learning Theory (CLT) emerged as a prominent area of study in the latter half of the past
century, one of the sub-disciplines studied under this area is Exact Learning with membership queries.
This sub-discipline operates under two central assumptions: First, each object gives rise to a particular set
of examples/properties it possesses, called positive examples, and a set of examples/properties it doesn’t
possess, called negative examples (see section 2.4). Second, each object can be uniquely identified by
a subset of its positive and negative examples (see thm. 2.4.6). These sets are referred to as unique
characterizations with respect to the target concept (see def. 2.4.5).

Investigations have been made to find the upper-bounds of these unique characterizations (see works
[GK95], [RS94], [SDHK91]). In particular, cases where the object of study are Boolean functions, over a
specified set of variables, have also been studied (see works [ABCS92], [BI95]). In [ABCS92], it is proven
that if our objects of study consists of all the possible Boolean functions, over a specified set of variables,
then every unique characterization must be exponential in size. The natural response to this negative
result is to restrict ourselves to some particular set of Boolean formulas for finding ‘better’ upper-bounds.
In the works [ABCS92] and [BI95] many such restrictions have been explored. This motivates the first
question we address in the thesis: (1) Precisely which sets of propositional formulas, over a specified set
of variables, have ‘better’ upper-bounds? Through this question what we are asking for is a complete
characterization of the formulas.

The case where our objects of study are modal formulas, over a specified set of variables, have also been
investigated. In a recent work by ten Cate and Koudijs [tCK24], it has been shown that if our objects are
all the possible modal formulas over a specified set of variables, then none of the unique characterizations
can be finite. This makes finite characterizations more appealing for the second question we address
in our thesis: (2) Precisely which sets of modal formulas formed from {�,♦} and set of propositional
variables Pr, over a specified set of variables, have finite upper-bounds? In the work [tCK24], it is already
established that some important classes of modal formulas do have finite characterizations.
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Motivation and Outline of the Thesis

In this thesis we propose the study of propositional and modal clones to produce characterizations an-
swering (1) and (2) (see def 3.1.10 and 4.1.11). As a consequence, the thesis splits off into two parts:
propositional and modal. Clone Theory has been studied extensively in Universal Algebra (see [Lau06]),
additional it has been employed in branches of Theoretical Computer Science like CSP. One of the promi-
nent results in clone Theory is due to E. Post, who in his work [Pos41], characterized all the size 2 clones.
Victor Dalmau, in his work [Dal99], provided a complete classification of boolean functions based on
learnability under certain cryptographic assumptions. This serves as the initial motivation of this thesis.
We follow Dalmau’s proof closely to provide three complete characterizations regarding different upper-
bounds of unique characterizations, namely theorems 3.2.26, 3.3.22.1 and 3.3.26. However there are two
key differences from Dalmau’s original proof.

First, we use fragments of propositional and modal logic instead of clones (see def. 3.1.10 and 4.1.11).
In definitions 3.1.10 and 4.1.11, we have developed the motivation as of why fragments can be identified
with clones. This well-known correspondence between fragments and clones facilitates the translation of
many results from the theory of clones to fragments (for eg. theorem 3.1.19). The advantage we get by
using fragments is that we can generalise it easily to the modal case, whereas it will be difficult to do so
solely using clone theory.

Second, Dalmau used pwm-reductions, which were introduced by D. Angluin in [Ang87]. We develop a
weaker version of the reductions, namely PC-reductions (see section 2.5). Building upon the three results
mentioned above, we also establish three results pertaining to exact learnability, namely theorems 3.2.28,
3.3.31 and 3.3.32. Interestingly, we get back Dalmau’s original result in [Dal99], minus the cryptographic
assumptions, in the form of 3.2.28. Hence, the propositional part of the thesis is a partial extension of
Dalmau’s work [Dal99]. To close off this part, we discuss the decidibility of the characterization problems.

Similarly, the modal part of the thesis is an extension of ten Cate and Koudijs work in [tCK24]. We
uplift the results from the propositional part and establish one crucial theorem 4.2.22. Finally, we are
able to produce the characterizations in theorem 4.2.24 and 4.2.25, leading up to our main result 4.2.26.
The results mentioned are again classification results of three particular sub-lattices of the lattice of all
modal fragments, based upon whether a particular fragment admits finite characterization. Additionally,
we discuss exact learnability in 4.2.31, 4.2.32 and 4.2.33. We also take into account the decidibility of
these problems.

Structure of the Thesis

In Chapter 2 we start off by introducing all the necessary mathematical structures. It is in this chapter
that we introduce PC-reductions(see section 2.5) and state some results (see 2.5.3, 2.5.2, 2.5.1) on how it
preserves unique characterizations.

In Chapter 3, i.e.the propositional part of the thesis firstly introduces fragments of propositional
logic, followed by the correspondence of Post’s Lattice with the lattice of all propositional fragments.
Subsequently we closely follow Dalmau’s proof to establish our first main result 3.2.26 and its learnability
counterpart. Following that we provide an analysis of the propositional fragment generated by x⊕ y ⊕ z
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(see result 3.3.7.1 and 3.3.7.2). We provide the next main results 3.3.22.1, 3.3.26. We also discuss the
decidibility of the unique characterization problems and some characterizations for the notions of exact
learnability.

Chapter 4, i.e. the modal part, follows the same blueprint. Due to the lack of representation of the
lattice of all modal fragments, we focus on three important sub-lattices of it. In the result 4.1.17, we
establish that all of them are isomorphic to the Post’s Lattice and hence to each other. The result 4.2.22,
states that every propositional concept class is PC-reducible to some particular modal concept classes.
The results pertaining to unique characterization for this part are 4.2.24, 4.2.25 and 4.2.26. We refine
these results to establish their learnability counterpart 4.2.31, 4.2.32 and 4.2.33. The decidibility of the
unique characterization results are again discussed.

In the conclusion we discuss the various open problems and the scope of future work.

7



Chapter 2

Preliminaries

Our goal is to view fragments of Propositional and Modal logic as concept classes, and provide classifi-
cations of them based on unique characterizations. The purpose of this chapter is to formally introduce
the Mathematical structures and the relevant framework that will aid our goal.

To start with, we introduce the mathematical structures necessary for our characterizations. In the
first section we gloss over various notions from order theory, building up to splitting pairs (see def. 2.1.7)
and lattices (see def. 2.1.8 and 2.1.9). The following section is dedicated to the theory of Clones. After
defining what clones are (see def. 2.2.4), we briefly point out the recent development of this field of study,
and introduce Post’s Lattice. To end the section, we look at some of the splitting pairs of the Post’s
Lattice that we will be using in the thesis.

The final section is used to lay down the framework of Computational Learning Theory (or CLT).
We discuss various notions of Unique Characterisations (see def. 2.4.5, 2.4.7, 2.4.8, 2.4.10 and 2.4.9)
and Learning (see def. 2.4.12, 2.4.13, 2.4.14, 2.4.15). We also provide some connections between them.
Roughly, we discuss the following implications.

1. Exactly Learnable with membership queries ⇒ Polynomial Sized unique characterization (see thm.
2.4.16).

2. Exactly Learnable dependent on size ⇒ Upper bound dependent on size (see thm. 2.4.17 i.).

3. Exactly Learnable dependent on polynomial size⇒ Polynomial upper bound dependent on size (see
thm. 2.4.17 ii.).

4. Effectively Learnable with membership queries ⇒ Finite Characterizations (see thm. 2.4.17 iii.).

5. Computable Finite Characterizations with countably many concepts ⇒ Effectively Learnable with
membership queries (see thm. 2.4.18).

The formal introduction of Propositional and Modal fragments have been delayed to their respective
chapters. Lastly, we introduce an important tool, namely PC-reductions which will be instrumental in
our characterizations.
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2.1 Partial Order and Lattices
Partial Orders are relatively simple mathematical structures, they are defined as follows:

Definition 2.1.1 (Partial Orders). A partial ordering is a pair P = (P,≤) where P is a set and ≤ is a
binary relation on P which is:

• (Reflexive ) : ∀x ∈ P (x ≤ x)

• (Anti-symmetric ) : ∀x∀y[(x ≤ y ∧ y ≤ x)→ x = y]

• (Transitive ) : ∀x∀y∀x[(x ≤ y ∧ y ≤ z)→ x ≤ z]

There are various concepts that can be developed from partial orderings, two of them are supremum and
infimum.

Definition 2.1.2 (Infimum and Supremum). Let (P,≤) be any partial order and let S ⊆ P . We call e a
lower bound on S if e ≤ s for every s ∈ S. Furthermore, if there exists an e∗ s.t. e∗ is a lower bound of
S and for any other lower bound e of S, e ≤ e∗, then we call e∗ the infimum of S; written as inf (S). An
analogous definition applies to supremum.

Of our particular interest are anti-chains. For developing anti-chains we need to introduce the concept of
incomparable elements.

Definition 2.1.3 (Incomparable elements). Let P = (P,≤ ) be a partial ordering and let a, b ∈ P . We
say that a, b are incomparable if neither a ≤ b nor b ≤ a holds.

The name ‘partial ordering’ comes from the existence of such incomparable elements in the set. Chains
and anti-chains are important notions within partial Orderings.

Definition 2.1.4 (Chain). Let P = (P,≤ ) be a partial ordering. We call a set C ⊆ P an anti-chain of
P if for any a, b ∈ C, a and b are not incomparable. In other words, for every a, b ∈ C either a ≤ b or
b ≤ a.

Definition 2.1.5 (Anti-chain). Let P = (P,≤ ) be a partial ordering. We call a set C ⊆ P an anti-chain
of P if for any a, b ∈ C, a and b are incomparable. Furthermore, C is a maximal anti-chain if,

1. C is an anti-chain, and

2. for any c 6∈ C there is a c′ ∈ C s.t. either c ≤ c′ or c′ ≤ c.

Anti-chains also give rise to splitting pairs. Intuitively, splitting pairs can be thought of as generators
of the partial ordering. To establish the claim formally, we first define upsets and downsets.

Definition 2.1.6 (Upsets and Downsets). Given a partial order (P,≤), a set F ⊆ P is called an upset
if for every a, a′ with a ∈ F and a ≤ a′, we have that a′ ∈ F . Similarly, D ⊆ P is a downset if for every
a, a′ with a ∈ D and a′ ≤ a, we have that a′ ∈ D.
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Given a set S, we can talk about upset generated by the set. We define the upset, generated by a subset
S of a partial order P = (P,≤) as:

↑S = {s ∈ P : ∃c ∈ S[c ≤ s]}

Similarly, downset generated by S can be defined as:

↓S = {s ∈ P : ∃c ∈ S[s ≤ c]}

Definition 2.1.7 (Splitting Pairs). Let P = (P,≤ ) be a partial ordering. We call a pair of sets (A,B)
a splitting pair if A ∪B is an anti-chain and P = ↑A ∪ ↓B.

Splitting pair will be a handy tool while discussing Post’s Lattice. Lattices are yet another kind of
mathematical structure which will be helpful in our study. We can introduce the structure in two possible
ways, using order theory or algebra, both of which are equivalent.

Definition 2.1.8 (Order Theoretic). A lattice L = (L,≤), in the order theoretic sense, is a partial order
s.t. for any elements a, b the following two elements are well defined:

1. a+ b := sup {c ∈ L : a ≤ c ∧ b ≤ c}

2. a · b := inf {c ∈ L : c ≤ a ∧ c ≤ b}

where sup and inf means supremum and infimum of a given set.

Definition 2.1.9 (Algebraic). A lattice L = (L,+, · ), in the order theoretic sense, is an ordered triple,
where L is a set and +, · are commutative and associative binary operations on A. Futhermore, both of
them satisfy the following condition for any a, b ∈ L:

1. (a · a) = a = (a+ a)

2. [a+ (a · b)] = a = [a · (a+ b)]

The two definitions are indeed equivalent. The order theoretic definition provides a blueprint of how
to go from it to the algebraic definition. On the other hand we can do a similar thing, start from the
algebraic definition and go to the order theoretic one. In a lattice L = (L,+, · ), defined in the algebraic
sense, for any two elements a, b ∈ L define

a ≤ b ⇐⇒ a+ b = b

or equivalently a ≤ b if and only if a · b = a. What we have defined on L is a partial ordering.
The following can be easily verified.

Proposition 2.1.10. The relation ≤ induces a partial ordering on L. �
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We refrain from settling on a particular definition of lattice, while the order theoretic one provides
more intuition, the algebraic definition is easier to use. Hence, we will be oscillating between the two
definitions, but the reader can figure out the definition so used from the context.

Sometimes in a lattice there are maximal and minimal elements. Sub-lattices is also a concept that
will be of importance to us. We define all the terms mentioned above in the following way:

Definition 2.1.11. Let t, b be two elements from a lattice L = (L,+, · ). We say t is the top element if
for any a ∈ L, we have a · t = a and a+ t = t. Similarly, we say b is the bottom element if for any a ∈ L
we have that b+ a = a and b · a = b.

Definition 2.1.12. Given a lattice L = (L,+, · ) a sub-lattice L′ = (L′,+, · ) is a lattice with the following
properties: firstly L′ ⊆ L, and if a, b ∈ L′ then a · b ∈ L′ and a+ b ∈ L′.

It is standard in the literature to denote the top and bottom elements of a lattice L by the symbols >L
and ⊥L respectively. We will be cautious about dropping the subscript since both the symbols mentioned
above also refers to standard terminologies in logic. If top and bottom elements exist in a lattice, then we
call it a lattice with end points. The intuition behind using the terms ‘top’ and ‘bottom’ is understood
better by the partial ordering counter-part of the definition.

So far we have established lattices as a special kind of partial ordering, hence concepts like anti-chains
and dualities are also applicable to them. In the coming section we will harness these tools to examine in
depth the structure of Post Lattice.

2.2 The Theory of Clones and Post’s Lattice
Let us denote by N the set of all natural numbers, then we define N+ = {1, 2, 3 . . . }, i.e. the set of
all natural numbers excluding 0. A finitary operation f , over a given set A, is a function of the form
f : An → A where n ∈ N+. We define an algebra as:

Definition 2.2.1 (Algebra). An algebra is an ordered pair A = (A,F ), where A is a set and F is a set
of finitary operations over A.

For defining clones, we need the help of compositions and projections.

Definition 2.2.2 (Projections). Let n, k ∈ N+ and k ≤ n. Given a set A, by the projection map
πnk : An → A we mean the function πnk : (x1, . . . xn) 7→ xk, i.e the function that maps every n tuple to the
kth element of that tuple.

Definition 2.2.3 (Compositions). Let f1, . . . fn be a collection of m-ary functions over a set A, and let
f be a n-ary function over the same set. By composition of f over f1 . . . fn we mean a m-ary function
defined in the following way:

f(f1, . . . , fn)(x1, . . . , xm) := f(f1(x1, . . . xm), . . . , fn(x1, . . . , xm)
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In the definition above, f1, . . . , fn were assumed to be the same arity, but that does not cause us to
loose generality. Indeed we can use the projection map and the above definition to ‘increase’ the arity of
any function. For an example, consider the bi-variate function f(x, y). We can make it into a tri-variate
function in the following way:

f ′(x, y, z) = f(π31(x, y, z), π
3
2(x, y, z))

‘z’ in the above example acts like a place holder. A similar treatment can be applied to a finite set of
functions g1, . . . , gn. Pick the function with the greatest arity and ‘increase’ the arity of all the others, to
make all of their arity uniform.

Let A = (A,F ) be an algebra and n ∈ N+, by OAn we denote the class of all functions from An to A
(there might be functions that are not in F ). Finally, we can define the set of all finitary functions as

OA =
⋃

n∈N+

OAn

Roughly speaking, clones are composition-closed sets of functions that contain projections. More formally,
clones are defined as:

Definition 2.2.4 (Clones). For a set A, a clone is a set C ⊆ OA, satisfying the two given conditions:

1. All the projections are in C, i.e. for any n, k ∈ N+ and k ≤ n, πkn is in C.

2. C is closed under compositions, i.e. for any f1, . . . , fn ∈ (OAm ∩C) and f ∈ (OAn ∩C), we have that
f(f1, . . . , fn) is also in C.

Lattices are often used to arrange mathematical objects of interest. For our purpose, we will be looking
at the lattice of all possible clones over a given a domain A. Let L denote the set of all clones of the
algebra A = (A,F ). Given two clones C1, C2 of A, it is easy to verify that C1∩C2 is also a clone of A. In
fact for any arbitrary set of clones {Ci : i ∈ I},

⋂
i∈I Ci also forms a clone of A. Given a set T of finitary

functions over A, we define

Cl(T ) :=
⋂
{C ∈ L : T ⊆ C and C is a clone}

We call Cl(T ) the clone generated by T , which is the smallest clone containing T . For every clone C,C ′

of an algebra A, define t(C,C ′) = Cl(C ∪ C ′), this definition helps us to state the following result

Theorem 2.2.5. For any algebra A = (A,F ), the set (L ,t ,∩ ) forms a lattice, where L is set of all
clones of A.

Proof. Fix an algebra A and let L be set of all its clones. ∩ and δ are by definition commutative and
associative operations on L. We just need to verify that they follow the given two conditions of the lattice
definition.

12



But notice that for any clone C, C ∩ C = C and Cl(C ∪ C) = Cl(C) = C (since C is already a clone
of A). Now let C,D be arbitrary clones, as C ⊆ Cl(C ∪D) we can infer that

C ∩ Cl(C ∪D) = C

On the other hand Cl(C ∪ (C ∩D)) can be written as Cl(C ∩ (C ∪D)) using De Morgan’s Laws. However
C ∩ (C ∪D) = C so,

Cl(C ∩ (C ∪D)) = Cl(C) = C

since C is already a clone. As C,D were arbitrary, this concludes our proof.

Clone Theory as a discipline investigates algebras irrespective of their signature. Hence, for any
Algebra A = (A,F ) the purpose of clone theory is to study the domain of the algebra, namely A. One of
the areas of study, following the theorem above, is the following: Given a set A, identify the lattice of all
of its clones LA.

The following section is dedicated to the case when |A| = 2, which forms the heart of our thesis.

2.3 The Post Lattice
Whilst there is ongoing research for the cases |A| ≥ ℵ0 (see [GP07] and the references within), vast
majority of the research focuses on the cases where A is finite. Even in the finite case, the situation gets
too complex even for lower cardinalities. In addition to the sheer size of the lattices when |A| ≥ 3, there
are results that state the structure of them is much intricate (see [BUL93]). In the case of |A| ≥ 4, it
has been shown that every finite product of sub-lattices of LA is a sub-lattice of LA (see [Bul94]).

Fortunately, the landscape when |A| = 2, also known as the boolean case, is a lot clearer to us. The
lattice corresponding to all the clones of |A| = 2 (known as Boolean clones), though infinite, has been
classified fully. The breakthrough work was done by Emil Post in 1941 book [Pos41], though he first
announced his results in 1920s. The lattice of all Boolean clones came to be known as Post’s Lattice.

Formally, Post’s Lattice is the lattice of all the clones of the algebra B = ({0, 1},∅). Each of the
elements in the lattice, i.e. each Boolean clone, is generated by a finite set of boolean function.

Definition 2.3.1. A function f is called a boolean function if dom(f) = {0, 1}n for some n ∈ N+ and
ran(f) = {0, 1}.

13



Figure 2.1: The Post Lattice
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Clones Generating Formulas

U ¬,⊥

AP x⊕ y ⊕ z

A x↔ y,>

DM (x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z)

∧,>,⊥

V ∨,>,⊥

MPT∞
0 x ∧ (y ∨ z)

MPT∞
1 x ∨ (y ∧ z)

PT∞
0 x ∧ (y → z)

PT∞
1 x ∨ (y ⊕ z)

M ∧,∨,>,⊥

Boolean functions can be expressed using propositional formulas. Every propositional truth table can be
thought of as a ‘boolean connective’, indeed formally every truth table over n variables is a function from
{0, 1}n → {0, 1}. Our claim follows from one of the classic theorems in Propositional Logic.

Theorem 2.3.2 (see [Men09]). There is a propositional formula corresponding to every truth table. �

Following definition 2.3.3 of generating clone given below, we are justified in thinking that every clone
is generated by a set of propositional formulas (to be more precise, every clone is generated by the boolean
connectives corresponding to the truth tables of a given set of propositional formulas).

Definition 2.3.3. Let C be a boolean clone. A finite set C ⊆ C is called it’s generating set if

C =
⋂
{c ∈ LB : C ⊆ c}

where LB is the set of all boolean clones.

If C is the generating set of a clone C, then we write C = Cl(C). The table above denotes some of the
clones in Post’s Lattice. These clones would be crucial in our thesis later on. Another important thing
about the presented list is that some combinations of them produce splitting pairs in the Post Lattice.
We introduce some splitting to us in the subsequent chapters.

S1 := ({DM, MPT∞
0 , MPT∞

1 }, {,V,A})
S2 := ({M, PT∞

0 , PT∞
1 }, {,V, U})

S3 := ({P0,VP1}, {MP, U})
S4 := ({AP, MPT∞

0 , MPT∞
1 }, {,V, U})
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The final remark we want to make before moving forward is that the problem of deciding whether a
particular boolean connective belong to a clone is decidable.

Theorem 2.3.4 (see [Vol09]). Given a boolean connective f and a finite class of boolean connectives C,
it is decidable whether f ∈ Cl(C) or not. �

2.4 Computational Learning Theory and Concept Classes
We now focus on developing the framework we work with in this thesis, namely Computational Learning
Theory. CLT is a relatively recent branch of study in Artificial Intelligence and focuses on a computer’s
ability to ‘learn’ from examples. The questions we examine falls under the umbrella of CLT, in this section
we introduce the reader to the type of inquiry we are aiming towards and how it binds to Algebra and
Logic.

CLT is based upon the premise that concepts can be distinguished using examples. We start off by
defining what concept classes are.

Definition 2.4.1 (Concept classes). A concept class is an ordered triple C = (C,E, λ) where:

• C is a set, which we call the concept space.

• E is another set which we call the example space.

• λ : C → P(E) is a function that maps each concept to a set of examples.

In addition to examples we often use labelled examples. Since we distinguish concepts based on examples,
we emphasis on equivalent concepts.

Definition 2.4.2 (Equivalent concepts). Let C = (C,E, λ) be a concept class. We call c, c′ ∈ C equivalent,
denoted as c ∼= c′, if λ(c) = λ(c′).

Definition 2.4.3 (Labelled examples). Let C = (C,E, λ) be a concept class. The set of labelled examples
El of C is the set El = E × {+,−}.

Definition 2.4.4. Suppose C = (C,E, λ) is a concept class and let T ⊆ El. We say a concept c ∈ C fits
T if the following two conditions holds:

• (t,+) ∈ T ⇒ t ∈ λ(c)

• (t,−) ∈ T ⇒ t 6∈ λ(c)

We often call labelled examples of the form (t,+) as positive examples and (t,−) as negative examples.
It is easy to see that two non-equivalent concepts are distinguishable if there exists a labelled example
that distinguishes them. In other words we have that c 6∼= c′, for some concepts c, c′ in a concept class
C = (C,E, λ), if there is some example t s.t. t ∈ λ(c) and t 6∈ λ(c′). As evident in the previous discussion,
distinction between various concepts within a concept class is dictated by examples. Therefore it is
worthwhile to look for a representative set of examples given a concept c.

16



Definition 2.4.5 (Unique characterization). Suppose C = (C,E, λ) is a concept class, we say that a set
T ⊆ El uniquely characterizes a concept c ∈ C if

• c fits T and

• for any concept c′ that fits T we have that c ∼= c′.

It is easy to see that every concept c of any given concept class C = (C,E, λ) has at-least one unique
characterization; we just consider the set λ(c).

Theorem 2.4.6. For every concept c, of any given concept class C = (C,E, λ), there exists at-least one
unique characterization.

The interesting part is, as the reader might guess, there might be multiple unique characterizations.
In the following paragraph will illustrate two examples.

Consider the concept class C(N) = (N,O, λN), where N is the set of all natural numbers, O is the set
of all examples of the form ‘< n ’, where n is again a natural number. Finally, λN is defined the following
way:

` < n ’ ∈ λN(s) ⇐⇒ s < r

Notice that, following the previous theorem, for each concept c, there is an unique characterization of
(countably) infinite many examples. But again every natural number, n say, has a unique characterization
of size 2! Consider this set {(` < n + 1 ’,+), (` < n − 1 ’,−)}. Hence we are interested in such ‘better’
unique characterizations.

We introduce some general notions of unique characterizations that we will adapt for our purposes in
the later chapters.

Definition 2.4.7 (Finite Characterizations). We a concept class C = (C,E, λ) has finite characterization
if for every concept c ∈ C we have an unique characterization Tc of c s.t. Tc is finite.

In the definitions below, |E| will denote the size of the example space E, but in a liberal sense. The
reader should think of |E| as map from E to N s.t. for every example space E,E′

E ⊆ E′ ⇒ |E| ≤ |E′|

On top of that, the notions we introduce are about collection of concept classes, instead of a particular
concept class. The choice is justified as follows: Let C be a finite concept class (i.e. the concept space
and the example space is finite). In this case C will always have a polynomial bounding the size of unique
characterizations. Hence, the study of one (finite) concept class regarding polynomial bounds is trivial.

Definition 2.4.8 (Polynomial sized Unique characterization). Let X be a collection of concept classes.
We say X has Polynomial sized unique characterization (or PSUC) if there exists a polynomial p(x, y)
s.t. for every concept class C = (C,E, λ) in the collection X and every concept c ∈ C, there is an unique
characterization Tc of the concept c s.t. |Tc| ≤ p(|c|, |E|).
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Definition 2.4.9 (Upper bound dependent on concept size). Let X be a collection of concept classes. We
say X has an upper dependent only on concept size if There exists a function f(x) s.t. for every concept
class C = (C,E, λ) in the collection X and every concept c ∈ C, there is an unique characterization Tc of
the concept c s.t. |Tc| ≤ f(|c|).

Definition 2.4.10 (Polynomial upper bound dependent on concept size). Let X be a collection of concept
classes. We say X has a polynomial upper dependent only on concept size if there exists a polynomial
p(x) s.t. for every concept class C = (C,E, λ) in the collection X and every concept c ∈ C, there is an
unique characterization Tc of the concept c s.t. |Tc| ≤ p(|c|).

The definition 2.4.9 and 2.4.10 will be adapted in the form of ‘upper-bound dependent on variables’
and ‘polynomial upper-bound dependent on variables’ in the chapter where we analyse Propositional
Logic. To define the notions of learnability that we use, we need the concept of membership queries.

Definition 2.4.11 (Membership Queries). Let c be a concept from the concept class C = (C,E, λ). A
membership query MQc(x) is an oracle that takes in any example e from E and labelled it according to c,
i.e. MQc(e) = + if and only if e ∈ λ(c), otherwise MQc(e) = −.

Definition 2.4.12 (Exactly Learnable with membership queries). Let X be a collection of concept classes.
We say X is exactly learnable with membership queries if there exists an algorithm Alg(x) and a polynomial
p(x, y) s.t. for every concept class C = (C,E, λ) ∈ X , and for every concept c ∈ C, if the algorithm has
access to the membership query MQc(x), then the algorithm Alg(|E|), on input |E|, halts with at-most
p(|c|, |E|) many steps and returns a concept c′ s.t. c ∼= c′.

Definition 2.4.13 (Exactly Learnable dependent on size). Let X be a collection of concept classes. Fix
a concept d from any concept class C = (C,E, λ) ∈ X . We say X is exactly learnable dependent on size
if there exists an algorithm Alg(x) and a function f(x) s.t. for every concept class C = (C,E, λ) ∈ X
and concept c of C, if the algorithm has access to the membership query MQc(x), then the algorithm
Alg(|E|), on input |E|, eventually halts and returns a concept c′ s.t. c ∼= c′, and for every concept class
C = (C,E, λ) ∈ X with d ∈ C, if the algorithm has access to the membership query MQd(x), then the
algorithm Alg(|E|), on input |E|, halts with at-most f(|d|) many steps and returns a concept d′ s.t. d ∼= d′,

Definition 2.4.14 (Exactly Learnable dependent on polynomial size). Let X be a collection of concept
classes. Fix a concept d from any concept class C = (C,E, λ) ∈ X . We say X is exactly learnable with
polynomial dependent on size if there exists an algorithm Alg(x) and a function p(x) s.t. for every concept
class C = (C,E, λ) ∈ X and concept c of C, if the algorithm has access to the membership query MQc(x),
then the algorithm Alg(|E|), on input |E|, eventually halts and returns a concept c′ s.t. c ∼= c′, and for
every concept class C = (C,E, λ) ∈ X with d ∈ C, if the algorithm has access to the membership query
MQd(x), then the algorithm Alg(|E|), on input |E|, halts with at-most p(|d|) many steps and returns a
concept d′ s.t. d ∼= d′.

Definition 2.4.15 (Effectively Learnable with membership queries). We say a concept class C = (C,E, λ)
is effectively learnable with membership queries if there exists an algorithm Alg(x) s.t. for every concept
c ∈ C, if the algorithm has access to the membership query MQc(x), then the algorithm Alg(|E|), on input
|E|, halts and returns a concept c′ s.t. c ∼= c′.
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We now establish how the notions of unique characterization(s) and exact learnability we developed
are interconnected.

Theorem 2.4.16. For every collection of concept classes X , if X is exactly learnable with membership
queries then it has polynomial sized unique characterization.

Proof. Suppose that X is exactly learnable with membership queries. therefore there is an algorithm
Alg(x) and polynomial p(x) that witness it. We define the following set:

Kc = {(e,MQc(e)) : Alg(|E|) invokes MQc(e) while running on input |E|}

Now the algorithm Alg(x) inquires the membership query MQc(x), for any c, at most p(|c|, |E|) many
times. Hence, |Kc| ≤ p(|c|, |E|). It is easy to verify that Kc is an unique characterization.

The same holds for other notions as we will state now. We skip the proofs of these theorems since
they are essentially the same.

Theorem 2.4.17. For every collection of concept classes X , and concept class C, the following holds,

i. If X is exactly learnable dependent on size then X has upper bound dependent on concept size.

ii. If X is exactly learnable polynomial dependent on size then X has polynomial upper bound dependent
on concept size.

iii. If C is effectively learnable then C has finite characterization. �

In chapter 3, we will prove that for propositional fragments the converse of i. and ii. for theorem 2.4.17
holds. It is also true that the converse of iii. in the above theorem holds under some special restrictions.

Theorem 2.4.18. Let C = (C,E, λ) be a concept class where |C| ≤ |N| and the concept class has finite
characterization. Furthermore, for each c ∈ C, there is an computable finite characterization of c. Under
these assumptions, C is effectively learnable.

Proof. Let C = (C,E, λ) satisfying all the constraints in the theorem. Enumerate all the concepts of C
as follows:

c1, c2, . . . cn, . . .

Now there should exist an algorithm, Alg1(x) say, which on input ci should output an unique characteri-
zation Tci of ci. Now we define an algorithm Alg as follows.

Alg goes through each of the concept ci and simulates the working of Alg1(ci) and obtains the unique
characterization Tci . Following that, for each (t, q) ∈ Tci asks its accessible membership query whether
MQc(t) = q or not. If above constraint is satisfied for every (t, q) ∈ Tci , then the algorithm Alg halts,
otherwise it moves onto ci+1. It is evident that for some j, cj = c and the machine will eventually halt.

We conclude this chapter here, the following chapter will be focused on introducing an important tool,
namely PC-reductions, that will crucial for our analysis. The subsequent chapters will formally introduce
Propositional and Modal Logic as concept classes, and that is where our analysis will take place.
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2.5 PC Reductions
Inspired from [AK95], in this section we introduce a specific type of reduction which will be crucial for
our study. The main aim of these reductions, which we will call PC reductions, is to preserve unique
characterization, modulo polynomial blowup. Upon a closer look, the reader might recognize that these
reductions are indeed a special case of pwm-reductions, as used in [AK95, Dal99]. The reason we propose
an alternate reduction is due to the scope of this thesis, PC reductions preserve less things (unlike pwm-
reductions which preserve learnability with membership queries) and hence are easier to define between
concept classes.

Before defining the reduction formally, we need some definitions. Let C = (C,E, λ) be a concept class
then by NC we mean the following set:

(c, t) ∈ NC ⇐⇒ c is a concept in C, t is a labelled example s.t. c fits {t}.

The next idea is that of a critical set of a concept class. Let C = (C,E, λ) be a concept class, we say
Cr(C) ⊆ E is a critical set if for any concepts c, c′ ∈ C we have an e ∈ Cr(C) distinguishing them, i.e
e 6∈ λ(c) ∩ λ(c′) for any concepts c, c′.

Now, let C1 = (C1, E1, λ1) and C2 = (C2, E2, λ2) be two concept classes. We say C1 is pc-reducible to
C2, written as C1 ≤pc C2, if there exists f, g and p such that

1. f : C1 → C2 is a function mapping concepts to concepts and h : E1 ⇀ E2 be a partial function with
Cr(C1) ⊆ dom(h), and for any concept c ∈ C1 and any example e ∈ E1, if e is a positive (negative)
example of c then h(e) is a positive (negative) example of f(c).

2. g : NC2 ⇀ P(El2) is a partial map, mapping concepts and their fitting examples to a subset of
labelled examples s.t. for every (c, t) ∈ NC2 if c ∈ ran(f) then (c, t) ∈ dom(g). Additionally g
should satisfy that for any c ∈ C2 and for t ∈ El2, if (f(c), t) ∈ LN2 then c should fit g(f(c), t).

3. p is a non-decreasing polynomial in two variables s.t. for any (c, t) ∈ LC2 , the size of g(c, t) is
bounded by p(|c|, |E2|), i.e |g(c, t)| ≤ p(|c|, |E2|).

4. If c ∈ C1 be such that c fit g(f(k), t), for some (f(k), t) ∈ LC2 , then f(c) fit t.

Sometimes our h will be entire functions i.e. dom(h) = E1, in those cases we do not explicitly mention the
existence of critical set. To see that PC Reductions indeed preserve polynomial sized unique characteri-
zation, we first fully state what it means to have Polynomial Sized Unique Characterization (PSUC for
short). Remember that by C(LO[Prop]) we denote a collection of concept classes instead of one particular
instance. Our generalization would extend that concept to all concept classes.

We say a collection (or class) of concept classes X has polynomial sized unique characterization if
there is a non-decreasing polynomial p(x, y) s.t. for any C = (C,E, λ) ∈ X and any concept c of C, we
have that c has a unique characterization with at-most p(|c|, |E|) many examples. Similarly, we say a
collection of concept classes X has finite sized unique characterization if for each concept class C ∈ X and
each c ∈ C there is a finite sized unique characterization for c. If X = {C1} then we just say {C1} has
PSUC (and accordingly, finite characterization).
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In the previous definition |c| stands for ‘size of the concept’ and |E| stands for ‘size of the example
space’. We do not formally define what ‘size’ and ‘length’ should be, it because of the abstract nature of
concept classes. But for our purposes, if we fix the set of formulas O and list of propositional variables
Prop then for C(LO[Prop]) ‘size of the concept’ is the connectives used in the formula and ‘size of the
example space’ is |Prop|.

Now we begin to uncover the properties of PC reductions. The next proposition is esay to infer.

Proposition 2.5.1. Let C = (C,E, λ) and D = (D,E, λ) be two concept classes s.t. C ⊆ D. It follows
that C ≤pc D.

Proof. Our choice of functions are the following. Take f to be the identity map from C to D. Furthermore,
g((d, t)) = t whenever (d, t) ∈ NC . Finally, h again the identity map and p(x) = 1, the constant
polynomial. The reader can verify our choices of f, g, h and p is a PC-reduction from C to D.

Secondly, PC reductions are supposed to preserve polynomial sized unique characterization. Instead
of proving the above, we prove something stronger.

Theorem 2.5.2. Let X ,Y be two classes consisting of concept classes. Fix positive integers k, k′,m and
a polynomial p(x, y). Suppose for each C1 = (C1, E1, λ1) ∈ X , there is a C2 = (C2, E2, λ2) ∈ Y s.t. there
are functions f, g, h satisfying the following:

1. f, g, h, p witnesses a PC reduction from C1 to C2.

2. |E2| ≤ m|E1|

3. for any concepts c1 ∈ C1 and |f(c1)| ≤ k|c1|

then if Y has polynomial sized unique characterization then so does X .

Proof. Fix k, k′,m. Pick any concept class C1 = (C1, E1, λ1) ∈ X , and assume there is C2 = (C2, E2, λ2)
and f, g, h, p which satisfies the above properties. Let q witness X ’s polynomial sized unique characteri-
zation.

Pick a concept c ∈ C1, and let T be a polynomial sized unique characterization of f(c). We know
|T | ≤ q(|f(c)|, |E2|), . Consider the set

S =
⋃
{g(f(c), t) | t ∈ T}

We claim S uniquely characterizes c. It is evident from definition of PC reduction itself that c fits S, since
c fits each of g(f(c), t). Now, suppose c′ ∈ C1 also fits S, which again from the definition gives us f(c′)
fits T . Since T was an unique characterization, we can conclude f(c) ∼= f(c′), now if c 6∼= c′ then without
the loss of generality we can assume that there is an example e s.t. c fits e but c′ does not. Therefore,
h(e) is a positive example of f(c) but a negative example of f(c′) which is contradiction, since they are
equivalent. Hence, we conclude c ∼= c′.
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We have proven S is a unique characterization, now we put a bound to it’s size. Notice that for each
t ∈ T ,

g(f(c), t) ≤ p(|f(c)|, |E2|) ≤ p(k|c|+ k′|E1|,m|E1|)

Now, as
|T | ≤ q(|f(c)|, |E2|) ≤ p(k|c|+ k′|E1|,m|E1|)

using the union bound lemma we can see that |S| ≤ p(k|c|+ k′|E1|,m|E1|) · q(k|c|+ k′|E1|,m|E1|) which
is a bi variate polynomial in c, E1. Since C1, c was arbitrary, we can conclude that X has polynomial sized
unique characterization property, whenever the conditions in the theorems are satisfied.

With minor changes in the original proof we can establish the two corollaries given below. Suppose
X = {C1} and Y = {C2}, then using the above theorem we have the next two corollaries:

Corollary 2.5.2.1. Let C1 = (C1, E1, λ1), C2 = (C2, E2, λ2) be two concept classes. Suppose there are
k,m ∈ N and a non-decreasing polynomial p(x, y) s.t.

1. |e2| ≤ k|e1| for any e1 ∈ E1 and e2 ∈ E2

2. for any concepts c1 ∈ C1 and c2 ∈ C2, we have |c2| ≤ m|c1|

3. There are f, g, h s.t. C1 ≤pc C2 and f, g, h, p witnesses the reduction.

then if C2 has polynomial sized unique characterization then so does C1. �

Corollary 2.5.2.2. Let C1 = (C1, E1, λ1), C2 = (C2, E2, λ2) be two concept classes. Suppose there is
constant p > 0 s.t. there are f, g, h . C1 ≤pc C2 and f, g, h, p witnesses the reduction. Then if C2 has finite
unique characterization then so does C1. �

As it is the case with the last corollary, even the general case requires less constraints if we are aiming
to preserve finiteness.

Corollary 2.5.2.3. Let X ,Y be two classes consisting of concept classes. Suppose there is a constant
p > 0 s.t. for each C1 = (C1, E1, λ1) ∈ X there is a C2 = (C2, E2, λ2) ∈ Y satisfying the following: There
are f, g, h s.t. C1 ≤pc C2 and f, g, h, p witnesses the reduction. It follows that if Y has polynomial sized
unique characterization then so does X . �

Theorem 2.5.3. Let X ,Y be two collection of concept classes. Fix positive integers k,m and a constant
polynomial p(x). Suppose for each C ∈ X , there is a C′ ∈ Y s.t. there are functions f, g, h satisfying the
following:

1. f, g, h, p(x) witnesses a PC reduction from C to C′.

2. for every concept c ∈ C we have |f(c)| ≤ k|c|

then if Y has an upper bound dependent on concept size, then so does X .
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Proof. The proof is almost the same as in theorem 2.5.2. Let α be the function witnessing concept
size dependent upper-bound on Y and assume the antecedent of our theorem. Fix a concept c of C, and
consider its image f(c) in C′.Suppose T is an unique characterization of f(c) s.t. |T | ≤ α(|f(c)|). Consider
the set

S =
⋃
{g(f(c), t) | t ∈ T}

We claim S uniquely characterizes c. It is evident from definition of PC reduction itself that c fits S,
since c fits each of g(f(c), t). Now, suppose d ∈ C also fits S, which again from the definition gives us f(d)
fits T . Since T was an unique characterization, we can conclude f(c) ∼= f(d), now if c 6∼= d then without
the loss of generality we can assume that there is an example e s.t. c fits e but d does not. Therefore,
h(e) is a positive example of f(c) but a negative example of f(d) which is contradiction, since they are
equivalent. Hence, we conclude c ∼= d.

To put a bound on the size of S, we see that

|S| ≤ p|T | ≤ p× α(|f(c)|) ≤ p× α(k|(c)|)

Therefore |S| is again bounded by a function of |c|.

In the subsequent sections we will use PC reductions on various collections of concept classes, it will
be a crucial tool in establishing some of the results in this thesis.
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Chapter 3

Case Study: The Propositional
Fragments

As we remarked earlier, our goal is to view fragments of propositional and modal Logic as concept classes
and provide classifications upon various notions unique characterizations. In this chapter we tackle the
task for the propositional case. To start with, we provide a very brief introduction of propositional Logic,
covering all the essential concepts needed to define fragments of this logic (see def. 3.1.10). Following that,
through a sequence of results, we establish that the lattice of all propositional fragments is isomorphic to
the Post’s Lattice (see thm. 3.1.19).

The rest of the chapter is inspired from, and is an extension of V. Dalmau’s work in [Dal99]. We
establish three characterizations with respect to unique characterizations, namely theorem 3.2.26, 3.3.22.1
and 3.3.26 , and three characterizations with respect to exact learnability, namely theorem 3.2.27, 3.3.31
3.3.32. We provide two tables (Table 3.1 and Table 3.2) listing all of our findings. In this table we look
at fragments of propositional logic parameterized by a set of propositional formulas Pr. The contents
to the left of the table is linked by an ‘if-and-only-if’ condition on the right of the table. Furthermore,
we establish that each of these problems are decidable, i.e there is an algorithm that takes as input a
finite set of propositional formulas and outputs whether the fragment formed by that set has any of these
properties or not.

The first table mentions three different notions of unique characterizations. The notions differ from
each based upon the function witnessing the upper bound. ‘Polynomial sized unique characterization’
or PSUC is witnessed by a bi-variate polynomial dependent on size of concept and the specified set of
propositional variables, p(|varphi|, |Prop|) say (see def. 2.4.8). On the other hand ‘unique characterization
based on variables’ is witnesses by an uni-variate function dependent on variables of a given formula,
f(|vars(ϕ)|) say, which is not necessarily a polynomial (see def. 2.4.9). Finally, ‘polynomial unique
characterization based on variables’ is the case where the witnessing function, f(x) say, for the case of
‘unique characterization based on variables’ is an uni-variate polynomial (see def. 2.4.10).

For the latter table we look into three notions of exact learnability. These three notions now differ due
to the admitted running time of the algorithm. A fragment admitting ‘Exactly learnable with membership
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C(LPr) admits ... Cl(Pr) is a subset of

Polynomial Sized unique (i) Cl(∧,⊥,>)

characterization (ii) Cl(∨,⊥,>) or

(iii) Cl(↔,⊥).

Unique characterization (i) Cl(∧,∨,⊥,>) or

based on variables (ii) Cl(¬,⊥).

Polynomial unique (i) Cl(∧,⊥,>)

characterization based (ii) Cl(∨,>,⊥) or

on variables (iii) Cl(¬,⊥).

Table 3.1: Table for Unique characterization

queries’ would be witnessed by an algorithm halting in polynomial time depending on size of the formula
and the specified set of propositional variables, p(|ϕ|, |Prop|) say (see def. 2.4.12). ‘Exactly learnable
dependent on variables’ is more complicated. If a fragment admits this property then all the formulas
from this fragment are effectively learnable (see def. 2.4.13) but some of the formulas are learnt in time
< f(|vars(ϕ)|), where f(x) is a non-decreasing function. ‘Exactly learnable dependent on variables’ is
the same as in the previous case, the only difference being f(x) = p(x) for some polynomial p(x) (see def.
2.4.14).

The bulk of this chapter is dedicated to establishing various PC reductions and analysis of particular
fragments. For the first result, theorem 3.2.26, we follow V. Dalmau’s proof blueprint. For the positive
results we analyse the fragments formed by the sets {x ∧ y,>,⊥}, {x ∧ y,>,⊥} and {x⊕ y,>}. For the
negative results we resort to PC-reductions.

The second result, namely theorem 3.3.22.1, follows the same proof strategy. For positive results we
analyse the fragments formed by {x ∧ y, x ∨ y,>,⊥} and by {¬x,⊥}. For the negative results we firstly
analyse the fragment {x⊕ y ⊕ z} and resort to using PC-reductions.

The last result, namely theorem 3.3.26, is a refinement of the theorem 3.3.22.1 and 3.3.26. The results
pertaining to learnability are established by providing explicit algorithms and using theorems 2.4.17 and
2.4.16. The reader is encouraged to read the concerned sections for detailed proofs.

3.1 Propositional Logic and Propositional Fragments
We introduce the notion of propositional fragments and look into it’s correspondence with Post’s Lattice.

Definition 3.1.1. The full propositional logic over a set of propositional variables Prop, denoted as LProp,
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C(LPr) admits .... Cl(Pr) is a subset of

Exactly Learnable with (i) Cl(∧,⊥,>)

membership queries (ii) Cl(∨,⊥,>) or

(iii) Cl(↔,⊥).

Exactly Learnable (i) Cl(∧,∨,⊥,>) or

dependent on variables (ii) Cl(¬,⊥).

Exactly Learnable (i) Cl(∧,⊥,>)

polynomially dependent (ii) Cl(∨,>,⊥) or

on variables (iii) Cl(¬,⊥).

Table 3.2: Table for Exact Learnability

is generated recursively by,
ϕ ::= p | ¬ϕ | p ∧ p | p ∨ p | > | ⊥

where p ∈Prop.

There is no restriction on Prop to be finite (or infinite). Notice that we omitted some functions like
→, this can be defined from other functions such as p→ q = ¬p ∨ q.

Definition 3.1.2. Given a propositional formula ϕ, vars(ϕ) denote the variables occurring in that for-
mula.

Definition 3.1.3 (Variable assignment). A function µ : Prop→ {0, 1} is called a variable assignment.

Definition 3.1.4 (Models of propositional logic). Let LProp denote the set of all propositional formulas
over the set Prop. An model (of a propositional logic) is a function µ̂ : LProp → {0, 1}, that follows the
following conditions for any ψ, θ ∈ LProp.:

µ̂(ψ ∧ θ) = 1 ⇐⇒ µ̂(ψ) = 1 and µ̂(θ) = 1

µ̂(ψ ∨ θ) = 0 ⇐⇒ µ̂(ψ) = 0 and µ̂(θ) = 0

µ̂(¬ψ) = 1 ⇐⇒ µ̂(ψ) = 0

µ̂(>) = 1 µ̂(⊥) = 0

Definition 3.1.5 (Satisfaction in propositional logic). Given a propositional model µ̂ and a propositional
formula ϕ over a set of variables Prop, we say µ̂ |= ϕ if and only µ̂(ϕ) = 1.

Notice that every function µ : Prop → {0, 1}, can be extended to a model of propositional logic µ̂ and
vice-versa. We will often abuse notation and state variable assignments as models, the reader can easily
infer our intentions from the context.
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Proposition 3.1.6 (see [Men09]). For any propositional formula ϕ(p1, . . . , pn)(over a set of variables
Prop) with all of its variables listed, we have the that for any models µ̂, ν̂ over Prop,

µ̂(ϕ) = ν̂(ϕ) ⇐⇒ µ̂(vars(ϕ)) = ν̂(vars(ϕ))

The previous lemma establishes that satisfaction of every formula ϕ is dependent only on vars(ϕ).
This fact will be crucial in the subsequent definition. Remember that AB stands for all the possible
functions from B to A, and for any function f , (f � S) denotes the restriction of f to the subset S.

Definition 3.1.7 (Boolean functions defined by formulas). For every propositional formula ϕ ∈ LProp, the
function defined by ϕ, denoted by fϕ, is a function fϕ : {0, 1}vars(ϕ) → {0, 1} s.t. for each µ ∈ {0, 1}Prop,
we have that fϕ(µ) = µ̂(ϕ).

Following the completeness of Propositional Logic, every formula of propositional Logic can be identified
with a function of the above form (see [Men09] chapter on propositional Logic for more details). This
observation will be crucial in connecting Boolean Clones and propositional fragments, once we formally
define fragments.

Notice that there is a natural equivalence relation on LProp. Pick any two ψ,ϕ ∈ LProp, we say ψ ∼ ϕ
if for each propositional model µ̂,

µ̂ |= ψ ⇐⇒ µ̂ |= ϕ

Following the result given below (see Prop 3.1.8), ∼ will partition the set LProp. By JϕK∼ we will denote
the equivalence class to which ϕ belongs.

Proposition 3.1.8. The relation ∼ is an equivalence relation on LProp. �

Definition 3.1.9 (Substitution of propositional formulas). Suppose ψ1, . . . , ψn are propositional formulas
and ϕ(p1, . . . , pn) is a propositional formula with all of its variables listed (in other words vars(ϕ) =
{p1, . . . , pn}). By ϕ(ψ1, . . . , ψn) we denote the propositional formula obtained by replacing every pi by the
formula ψi.

Definition 3.1.10 (Fragments of propositional logic). Fix a set of variables Prop and let LProp denote
the set of all propositional formulas over Prop. We say a subset F ⊆ LProp is a fragment if,

i. for each p ∈ Prop, p ⊆ F .

ii. for every ψ1, . . . , ψn ∈ F and ϕ(p1, . . . , pn) ∈ F , we have ϕ(ψ1, . . . , ψn) ⊆ F .

iii. If ψ ∈ F then JψK∼ ∈ F .

Definition 3.1.11 (Generating set). Let F be propositional fragment, we say a set of propositional
formulas Pr generates F , if Pr ⊆ F and for every fragment F ′ with Pr ⊆ F ′, we have F ⊆ F ′. We write
F := F(Pr).
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Notice that fragments of propositional logic depends on the set of variables we start from. From now on
till the end of this section, we talk about propositional fragment over an infinite set IProp, where

IProp = {p1, . . . , pn, . . . }

Much like Boolean clones, propositional fragments are also closed under arbitrary intersections. We define
an operation t in the following way:

t(F1,F2) :=
⋂
{F : F1 ∪ F2 ⊆ F}

where F1,F2 are propositional fragments. If we denote the class of all propositional fragments (over
IProp) as LIProp, then the following triple forms a lattice (LIProp,∩,∆). The claims are rather easy to
verify.

Proposition 3.1.12. Let I be an indexing set. If {Fi : i ∈ I} is a set of propositional fragments, then
F =

⋂
{Fi : i ∈ I} is again a propositional fragment. �

Proposition 3.1.13. The ordered triple (LIProp,∩ ,∆) forms a lattice. �

Now we move onto the task of representing the lattice (LIProp,∩ ,∆). We do so by showing that the
Post’s Lattice isomorphic to the above lattice. Let Pr be a finite set of propositional formulas, then define

Func(Pr) = {fϕ : ϕ ∈ Pr}

The correspondence we want to establish is the following:

Theorem 3.1.14. Let Pr be a set of finite propositional formulas over IProp, then the following equiv-
alence holds

ϕ ∈ F(Pr) ⇐⇒ fϕ ∈ Cl(Func(Pr))

This correspondence strongly on the correlation between substitution and function composition. In fact
we can prove that substitution is, in a specific way, equivalent to composition. We will come back to
theorem 3.1.14 after proving the following theorem:

Theorem 3.1.15. Let ψ1, . . . , ψn be propositional formulas over the set IProp and fψ1 , . . . , fψn be their
corresponding Boolean functions. Additionally, let ϕ(p1, . . . , pn) is another propositional formula with all
of its variables listed. Suppose θ = ϕ(ψ1, . . . , ψn), then we have:

fθ = fϕ(fψ1 , . . . , fψn)

Proof. Suppose vars(φ1) 6= vars(φ2) for some formulas φ1 and φ2. We can pad the formulas in the
following way: Let vars(φ1) ∪ vars(φ2) = {q1, . . . , qm} and define

φ′i := φi ∧ (¬(q1 ∧ · · · ∧ qm) ∨ (q1 ∧ · · · ∧ qm))
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where i ∈ {1, 2}. Notice that vars(φ′1) = vars(φ′2). From this argument, we can assume without the loss
of generality

vars(ψ1) = ... = vars(ψn)

Now our proof goes on by induction on the complexity of ϕ. Suppose ϕ has complexity 0, it means that
ϕ = p for some p ∈ Prop and Tϕ = p. Hence it follows trivially that Tθ = Tϕ(Tψ) for any ψ. Our base
case is done.

Now suppose our claim holds for any formula with complexity < n. Suppose ϕ is of complexity n. We
have three cases, but showing the results for ¬,∧ should suffice.

• Case 1: (ϕ = ¬φ)
In this case notice that fϕ(p1,...,pn) = 1− fφ(p1,...,pn). Since complexity of φ is less than n, using I.H.
we get that fφ(ψ1,...,ψn) = fφ(fψ1 , . . . , fψn). Putting both facts together we get that

Tϕ(ψ1,...,ψn) = 1− fφ(fψ1 , . . . , fψn) = fϕ(fψ1 , . . . , fψn)

• Case 2: (ϕ = φ ∧ κ)
In this case notice that fϕ(p1,...,pn) = min(fφ(p1,...,pn), fκ(p1,...,pn)). Since the complexity of both, φ
and κ are less than n, we can use I.H. to infer that fφ(ψ1,...,ψn) = fφ(fψ1 , . . . , fψn) and fκ(ψ1,...,ψn) =
fκ(fψ1 , . . . , fψn). Using both the facts together we get,

fϕ(ψ1,...,ψn) = min(fφ(ψ1,...,ψn), fκ(ψ1,...,ψn)) = fϕ(fψ1 , . . . , fψn)

This closes our induction cases and we have proven the result.

Proof of theorem 3.1.14. : Fix a set of formulas Pr. and consider the propositional fragment F = F(Pr).
Furthermore, notice that Cl(Func(F)) = Cl(Func(Pr)). We know that IProp ⊆ F , and hence fp,
for any propositional variable p, is a projection map and in turn fp ∈ Cl(Func(F)). Now let πnk be a
projection map. The formula

θ := (p1 ∨ ¬p1) ∧ · · · ∧ pk ∧ . . . (pn ∨ ¬pn)

has πnk as its truth table. Now, θ is equivalent to pk and hence θ ∈ F .
Now suppose we have established that for any ϕ(p1, . . . , pm), ψ1, . . . , ψm ∈ F , we have that fϕ, fψ1 , . . . , fψm ∈

Cl(Func(F)). By the property of clones and using the theorem above, we get fϕ(fψ1 , . . . , fψm) =
fϕ(ψ1,...,ψn) ∈ Cl(Func(F)). For the converse, let us assume that fϕ, fψ1 , . . . , fψm ∈ Cl(Func(F)), where
|vars(ϕ)| = m, and ϕ,ψ1, . . . , ψm ∈ F . It implies that JϕK, Jψ1K, . . . , JψmK ⊆ F , again by definition of
fragments and the theorem above we get that, ϕ(ψ1, . . . , ψm) ∈ Cl(Func(F)).

Just like we talked about Boolean clones generated by propositional formulas, we can talk about
propositional fragments generated by Boolean formulas. Let F be any Boolean formulas. Define

Form(F ) := {ϕ : fϕ ∈ F}

So we denote the fragment formed by F by F(Form(F )). The following is again easy to verify.
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Proposition 3.1.16. F(Form(F )) is a propositional fragment for any finite set of Boolean formulas F .
�

Proposition 3.1.17. Let Cl be a Boolean clone, then we have that Form(Cl) forms a propositional frag-
ment, i.e. F(Form(Cl)) = Form(Cl). Similarly, if F is a propositional fragment then Cl(Func(F)) =
Func(F).

Proof. We prove the first one and leave out the latter, since they follow the same structure.
Let Cl is a Boolean Clone it contains all the projections and hence we can conclude IProp ⊆ Form(Cl).

Again, it is straightforward to see Form(Cl) is closed under substitution, since Cl is closed under com-
position and using theorem 3.1.15.

We developed a way of generating a clone from a fragment and vice versa, now we ask the question ‘Will
we get back the same fragment, if we start with one, go to its clone and come back?’ The answer is Yes.

Theorem 3.1.18. For any propositional fragment F , we have that F = F(Form(Cl(Func(F)))). Sim-
ilarly, for any Boolean clone Cl, we have that Cl(Func(F(Form(Cl)))) = Cl.

Proof. For any formula ϕ, use thm 3.1.14 to obtain

ϕ ∈ F(F) ⇐⇒ fϕ ∈ Cl(Func(F))

Notice that F(F) = F . Again by previous theorem, we get that ϕ ∈ F(Form(Cl(Func(F)))) if and
only if ϕ ∈ Form(Cl(Func(F)). Now by definition, it follows ϕ ∈ Form(Cl(Func(F))) if and only if
fϕ ∈ Cl(Func(F)). We have this chain of equivalences:

ϕ ∈ F ⇐⇒ fϕ ∈ Cl(Func(F)) ⇐⇒ ϕ ∈ Form(Cl(Func(F))) ⇐⇒ F(Form(Cl(Func(F))))

This closes our first claim.
The other claim is established in an analogous way. This closes the proof.

The above proof that the natural map from the collection of propositional fragments to the collection
of Boolean clones, given by h(F) = Cl(Func(F)) is a bijection.

Theorem 3.1.19. h is an isomorphism between (LIProp,∩ ,∆) and the Post’s Lattice.

Proof. For showing that it is an bijection, notice that for any two fragments F1,F2, using proposition
3.1.17 we have:

Func(F1) = Cl(Func(F1)) = Cl(Func(F2)) = Func(F2)

Now by definition of Func and fragments, F1 = F2. Now for every clone Cl, there is a pre-image of it,
namely F(Func(Cl)).

Now for showing that h is an isomorphism, it is enough to show that h preserves order, i.e if F1 ⊆ F2,
then h(F1) ⊆ h(F2) for every fragments F1,F2. But notice that if F1 ⊆ F2 then Func(F1) ⊆ Func(F2).
Again following proposition 3.1.17 and the chain of equalities given above, we get our result.
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It follows that (LIProp,∩ ,∆) looks exactly like Post’s lattice. Till now we have recognized many
analogues between boolean clones and propositional fragments, the reason behind such a connection was
propositional models had strong connections towards clones theory. In the subsequent section we move to
Modal Logic and Modal Fragments, where we generalise the notion of fragments. Unlike the propositional
case, we do not have functions as models for modal logic and that would make the investigations more
challenging.

We are in a place to define propositional fragments as concept classes. Let Pr be a set of propositional
formulas, and Prop be a set of finite propositional variables. By C(LPr[Prop]) = (C,E, λ) we denote the
concept class where

C = {ϕ ∈ F(Pr) : vars(ϕ) ⊆ Prop}

i.e. C consists of all the formulas from FPr which has variables from Prop. As our examples E we use
the set of all variable assignments from Prop → {0, 1}. Finally, the function λ maps each propositional
formula to the set of all variable assignments that makes it true, i.e. for any ϕ ∈ C, we define

λ(ϕ) = {t ∈ E : t |= ϕ}

In this thesis we will often be interested in a collection of concept classes rather than one particular
concept class. Fix a set of formulas (boolean or modal) and define IPROP = {p1, p2, . . . }. We denote

C(LPr) := {C(LPr[Prop]) : Prop ⊆fin PROP}

In addition, we would like to consider infinite propositional concept classes. For any finite set of proposi-
tional formulas, define the concept class C(LPr[IProp]) = (CI , EI , λI) as follows:

CI = {ϕ ∈ F(Pr) : vars(ϕ) ⊆ Iprop}
EI = {0, 1}IProp

λI(ϕ) = {t ∈ E : t |= ϕ}

Finally, going forward we will abuse notation and write Cl(Pr) to mean Cl(Func(Pr)) for any set of
propositional formulas. Furthermore we often drop the variables in the subscript while writing proposi-
tional concept classes and clones i.e instead of writing C(Lx∧y[Prop]), we will simply write C(L∧[Prop])
and instead of writing Cl({x ∧ y}) we will write Cl(∧).

3.2 Polynomial Sized Unique Characterization for Propositional Frag-
ments

This part of our results is heavily influenced by V. Dalmau’s work in [Dal99]. We produce a complete
characterization for Boolean fragments, similar to the main work in the aforementioned paper. The main
aim is to establish the following theorem,

Theorem 3.2.1. For any set of propositional formulas Pr, the following the equivalent:
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• There exists a polynomial p(x, y) s.t. for every finite Prop, and every ϕ ∈ C(LPr[Prop]), there is
a set of labelled examples T that uniquely characterizes ϕ with |T | < p(|ϕ|, |Prop|)

• Cl(Pr) is a subset of either of the three (i) Cl(∧,⊥,>), (ii) Cl(∨,⊥,>) or (iii) Cl(↔,⊥).

Similar to V. Dalmau’s original work, the proof of the above theorem is by establishing reductions
between concept classes. Unlike the original, we swap the pwm-reductions for PC-reductions. The
formulas we choose as the range of the PC-reductions is also the exact same as used in V. Dalmau’s
proof. As stated in the introduction, this theorem is related to V.Dalmau’s result in the sense that
we obtain V. Dalmau’s result, minus the cryptographic assumptions, as a direct corollary (see theorem
3.2.27).

The first step is to prove that the fragment C(L∧,∨,¬[Prop]) = C(L∧,¬[Prop]) does not admit PSUC.

Lemma 3.2.2. The fragment C(L∧,∨,¬[Prop]) does not admit polynomial sized unique characterization.

Proof. Suppose there is a polynomial p(x, y) s.t. for every concept class C(L∧,∨,¬[Prop]) ∈ C(L∧,∨,¬) and
concept ϕ of C there is an unique characterization of size < p(|ϕ|, |Prop|). Consider the formula

ΨProp =
∧

p∈Prop
p

According to our assumptions ΨProp would always require < p(|Prop|, |Prop|) many examples for unique
characterization, irrespective of |Prop|. This is a clear contradiction to [ABCS92], since a polynomial
bound on Prop for ΨProp does not exist.

3.2.1 Reduction from C(L∧,∨,¬[Prop]) to R[Prop]

We now immediately move onto the PC-reductions. For our reductions we will always use p(x) = 1 as the
polynomial witnessing our reduction. For the f, g and h we will use the functions σi, τi, γi respectively.

The reduction is C(L∧,∨,¬[Prop]) ≤pc C(L∧,∨,¬[Prop′]), where Prop is a finite set of propositional
variables and Prop′ is defined as follows.

Prop′ = Prop ∪ {qi : pi ∈ Prop}

Define σ∗1 inductively from the concepts of C(L∧,∨,¬[Prop]) to the ones in C(L∧,∨,¬[Prop]) as follows:

σ∗1(pi) = pi σ∗1(¬pi) = qi

σ∗1(ϕ ∧ ψ) = σ∗1(ϕ) ∧ σ∗1(ψ) σ∗1(ϕ ∨ ψ) = σ∗1(ϕ) ∨ σ∗1(ψ)
Now we define σ1 from the concepts of C(L∧,∨,¬[Prop]) to the ones in C(L∧,∨,¬[Prop])

σ1(ϕ) = (σ∗1(ϕ) ∨
∨

1≤i≤n
(pi ∧ qi)) ∧

∧
1≤i≤n

(pi ∨ qi)

Let t be a variable assignment over Prop′. Notice that if t(pi) = t(qi) = 0 for some i then for every
concept ϕ of C(L∧,∨,¬[Prop]) we have that t 6|= ϕ. Similarly, if for some i, t(pi) = t(qi) = 1 then for every
ϕ of C(L∧,∨,¬[Prop]) it follows that t |= ϕ. It immediately follows:
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Proposition 3.2.3. Let ϕ,ψ ∈ ran(σ1), if t |= ϕ and t be a variable assignment over Prop′. If ψ 6|= ϕ,
then t(pi) = 1− t(qi) for every i. �

Now to define a new concept class denoted by R[Prop] = (CR, ER, λR) where CR = ran(σ1),

ER = {t : is a variable assignment over Prop′ & t(pi) = 1− t(qi) for every i}

and finally λR(ϕ) = {t ∈ E : t |= ϕ}. Finally define

R = {R[Prop] : Prop is a finite set of propositional variables}

We claim the following:

Proposition 3.2.4. For any set of propositional variables, Prop say, If the concept class C(L∧,∨) has
PSUC then so does R.

Proof. Suppose ϕ is a concept of R[Prop] ∈ R. It follows that ϕ is also a concept of C(L∧,∨[Prop′]).
Now according to our assumptions, ϕ has an unique characterization, Tϕ say, w.r.t. C(L∧,∨[Prop′]). We
define

T ′
ϕ = {t ∈ Tϕ : t(pi) = 1− t(qi)}

We will prove that T ′
ϕ is an unique characterization of ϕ w.r.t. R[Prop]. Suppose ψ,ψ′ are concepts from

R[Prop] and hence from C(L∧,∨[Prop′]). Therefore, there should be a t ∈ Tϕ that distinguishes them.
But from proposition 3.2.3 it follows that t ∈ T ′

ϕ. Hence, T ′
ϕ is an unique characterization of ϕ w.r.t.

R[Prop]. Furthermore,
|T ′
ϕ| ≤ |Tϕ| ≤ 2|Prop|

This tells us p(x) = 2x+ 1 witnesses the PSUC for R.

The next observation is concerning the examples of R[Prop] and C(L∧,∨,¬[Prop]). Let t be an example
of C(L∧,∨,¬[Prop]), then define

t′(pi) = t(pi) t′(qi) = 1− t(pi)

The correspondence is one-one. Notice that every example of the example space of R[Prop] is can from
an example of the example space of C(L∧,∨,¬[Prop]). This motivates the following theorem.

Theorem 3.2.5. For any concept ϕ of ϕ of C(L∧,∨,¬[Prop]) and any example t of C(L∧,∨,¬[Prop]) we
have

t |= ϕ ⇐⇒ t′ |= σ1(ϕ)

Proof. We assume that ϕ is a DNF. The proof is via induction the complexity of formulas. Notice that
the base case follows trivially since t(pi) = t′(pi).

For the case of ϕ = ¬ψ, it follows ψ = pi and the rest follows simply by definition of satisfaction. The
same goes for ϕ = ψ ∧ θ and ϕ = ψ ∨ θ.
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We now focus on providing the first PC-reduction, namely C(L∧,∨,¬[Prop]) ≤pc R[Prop]. Let ϕ be a
concept of R[Prop] and (t′, p) a labelled example of R[Prop]. We define

τ1(ϕ, (t
′, p)) = (t, p)

where t′ is the unique example of R[Prop] obtained from t. Again, for any example t of R[Prop] we
define γ1(t) = t′. Notice that conditions 1, 2 and 4 of the PC-reductions are satisfied.

Lemma 3.2.6. For every finite set of variables Prop, C(L∧,∨,¬[Prop]) ≤pc R[Prop]. �

Lemma 3.2.7. If R has PSUC, then so does C(L∧,∨,¬).

Proof. We invoke theorem 2.5.2 with k = 2,m = 2 and p(x) = 1.

Theorem 3.2.8. The collection C(L∧,∨) does not have PSUC.

Proof. Suppose it does, then proposition tells us R has PSUC and lemma 3.2.7 gives us C(L∧,∨,¬) has
PSUC. A contradiction.

3.2.2 Positive Results and Reduction from C(L↔,>[Prop]) to C(L⊕,>[Prop])

Let us define three particular propositional formulas

maj(x, y, z) = (x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z)
AOR(x, y, z) = (x ∧ y) ∨ z

OAND(x, y, z) = (x ∨ y) ∧ z

One can verify that Cl(Func(maj)) = DM , Cl(Func(OAND)) = MPT∞
0 , Cl(Func(AOR)) = MPT∞

1 .
In the subsequent parts of this section we will prove that each of the C(Lmaj),C(LAOR),C(LOAND) does
not have PSUC. But before that, we will prove that a particular fragment has PSUC, namely C(L↔,⊥).
Firstly notice that,

Theorem 3.2.9 (Anthony et al. [ABCS92]). The class C(L⊕,>) has PSUC, with respect to the polynomial
p(|Prop|) = |Prop|+ 1. �

Our proof now depends on defining a PC reduction from a concept class C(L⊕,>[Prop]) to the concept
class C(L↔,⊥[Prop]). In our proof, Prop will be arbitrary and hence we can invoke theorem 2.5.2 yet
again to get the result. We start again with defining a function σ3, from the concepts of C(L↔,⊥[Prop]) to
the concepts of C(L⊕,>[Prop]), for any arbitrary finite set of variables Prop. The definition is inductive.

σ2(p) = p σ2(⊥) = >⊕>

σ2(φ↔ ψ) = σ2(φ)⊕ σ2(ψ)⊕>
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Proposition 3.2.10. Let t be any variable assignment on Prop. For any concept ϕ of C(L↔,⊥[Prop]),
we have

t |= ϕ ⇐⇒ t |= σ(ϕ)

Proof. The proof is by induction on the complexity of the formula ϕ. For propositional variables the result
is trivial.

Suppose t makes φ ↔ ψ true, then either both of φ, ψ are true or both of them are false. Apply the
I.H., in the former case σ2(φ), σ2(ψ) both are true then σ2(φ)⊕σ2(ψ)⊕> is true, a similar thing happens
in the latter case. For the converse, let t make σ2(φ)⊕ σ2(ψ)⊕> = σ2(φ↔ ψ) true. Then by definition
we have either both of σ2(φ), σ2(ψ) are true or both of σ2(φ), σ2(ψ) are false. In either of the cases, using
I.H. we have that φ↔ ψ is true. This closes the induction and our claim is proven.

Lemma 3.2.11. For any set Prop, we have that C(L↔,⊥[Prop]) ≤pc C(L⊕,>[Prop]).

Proof. Define γ(t) = t and define τ is as follows, where ϕ is a concept of C(L⊕,>[Prop]) and t a variable
assignment over Prop.

τ(ϕ, (t,+)) = (t,+)

τ(ϕ, (t,−)) = (t,−)

Notice that, σ2, τ2, γ2, p(x) = 1 satisfies all the points of the PC reduction.

Theorem 3.2.12. The collection C(L↔,⊥) has PSUC.

Proof. We already know that the collection C(L⊕,>) has PSUC. We invoke theorem 2.5.2, notice that
C(L↔,⊥[Prop]) is PC-reducible to C(L⊕,>[Prop]) via σ1, τ1, γ1, having k = 2,m = 2 and p(x) = 1 as
constants.

Before moving onto the other reductions, we mention two other fragments that are of importance to
us, namely C(L∧,>,⊥) and C(L∨,>,⊥). As proven in [ABCS92], these two fragments has PSUC.

Theorem 3.2.13 (Anthony et al. [ABCS92]). The collections of concept classes C(L∧,>,⊥) and C(L∨,>,⊥)
has PSUC. �

3.2.3 Reduction from C(L∧,∨[Prop]) to C(Lmaj[Prop∗])

Like in the previous section, we start from a finite set of propositional variables, Prop say, and put
Prop∗ = Prop ∪ {x0, x1}. We define a map σ∗3 from the concepts of C(L∧,∨[Prop]) to the concepts of
C(Lmaj[Prop

∗]) recursively.
σ∗3(p) = p

σ∗3(φ ∧ ψ) = maj(x0, σ∗3(φ), σ∗3(ψ))

σ∗3(φ ∨ ψ) = maj(x1, σ∗3(φ), σ∗3(ψ))
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Using the above map σ∗3 we define a map σ3.

σ3(ϕ) = maj(σ∗3(ϕ), x0, x1)

As a result of this definition, one result is immediate:

Proposition 3.2.14. Let ϕ be a formula in C(L∧,∨[Prop]), and t a variable assignment on Prop ∗ with
t(x0) = 0 = 1− t(x1), then

t |= σ3(ϕ) ⇐⇒ (t � Prop) |= ϕ

Proof. Firstly notice that if a variable assignment t on Prop ∗ with t(x0) = 0 = 1 − t(x1) makes σ3(ϕ)
true then it is sufficient and necessary that t makes σ∗3(ϕ) true. Now we proceed by induction on the
complexity of ϕ.

If the complexity of ϕ is 0, then ϕ = p = σ∗3(ϕ) for some prop variable in Prop. This case follows
trivially.

Suppose our hypothesis holds for any ϕ of complexity < n. Now, let ϕ is of complexity n. Since ϕ
is in C(L∧,∨[Prop]), ϕ is either of the form ϕ = φ ∧ ψ or ϕ = φ ∨ ψ. Now, suppose t makes σ∗3(ϕ) true
and t(x0) = 0 = 1− t(x1), and ϕ = φ ∧ ψ, then it makes both σ∗3(φ) and σ∗3(ψ) both true and using I.H.
we conclude that t �Prop makes φ ∧ ψ true. For the converse, let t �Prop make both φ and ψ true, and
t(x0) = 0 = 1 − t(x1), then using I.H. σ∗3(φ), σ∗3(ψ) are both made true by t and hence t makes σ∗3(ϕ)
true. Now if ϕ = φ ∨ ψ then t(x1) = 1 tells us t making σ∗3(ϕ) true would entail either of σ∗3(φ) or σ∗3(ψ)
to be true, but this directly tells, using I.H., φ ∨ ψ should be true. For the converse again let t � Prop
make either φ ∨ ψ true, and t(x0) = 0 = 1 − t(x1), then according to our I.H., either σ∗3(φ) or σ∗3(ψ) is
made true by t, which translates to t making σ∗3(ϕ) true. This closes the induction clause and our claim
is proven.

Now let us assume t be any variable assignment on Prop∗ and let ϕ be any member of C(L∧,∨[Prop]).
Notice that if t(x0) = t(x1) = 0 then σ3(ϕ) is false and if t(x0) = t(x1) = 1 then ζ2(ϕ) is true. The
above theorem classifies the case when t(x0) = 0 = 1 − t(x1). We want to look at the case when
t(x0) = 1 = 1 − t(x1). We will provide a theorem similar to theorem 1 but before that we need to learn
how to flip a formula in C(L∧,∨[Prop]).

Let Fl be a function from the concepts of C(L∧,∨[Prop]) defined recursively. Suppose p, q is in Prop,
then

Fl(p ∧ q) = p ∨ q F l(p ∨ q) = p ∧ q

F l(φ ∧ ψ) = Fl(φ) ∨ Fl(ψ) Fl(φ ∨ ψ) = Fl(φ) ∧ Fl(ψ)

Proposition 3.2.15. Let ϕ be a formula in C(L∧,∨[Prop]), and t a variable assignment on Prop∗ with
t(x0) = 1 = 1− t(x1),

t |= σ3(ϕ) ⇐⇒ (t � Prop) |= Fl(ϕ)

Proof. Notice that if a variable assignment t on Prop ∗ with t(x0) = 1 = 1− t(x1) makes σ3(ϕ) true then
it is sufficient and necessary that t makes σ∗3(ϕ) true. Now we proceed by induction on the complexity of
ϕ.
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The proof is again by induction the complexity of ϕ. The base case is trivial. We assume the I.H.
holds for any formula of complexity < n.

If ϕ = φ∧ ψ then σ∗3(ϕ) = maj(x0, σ∗3(φ), σ∗3(ψ)). Suppose t is a variable assignment with t(x0) = 1 =
1− t(x1). Now t makes σ∗3(ϕ) true iff t makes either σ∗3(φ) or σ∗3(ψ) true. But the latter condition implies
t �Prop makes either Fl(φ) or Fl(ψ) true by I.H., giving us t �Prop makes Fl(φ) ∨ Fl(ψ) = F (ϕ) true.
For the converse let t �Prop makes Fl(φ) ∨ Fl(ψ) true then by I.H t either makes σ∗3(φ) or σ∗3(ψ) true
then it follows that t makes σ∗3(ϕ) true since t(x0) = 1.

Similarly, let ϕ = φ ∨ ψ. Suppose t is a variable assignment with t(x0) = 1 = 1− t(x1). Now t makes
σ∗3(ϕ) true iff t makes σ∗3(φ) and σ∗3(ψ) true. But the latter condition implies t �Prop makes F (φ) and
F (ψ) true by I.H., giving us t �Prop makes F (φ)∧F (ψ) = F (ϕ) true. For the converse let t �Prop makes
F (φ)∧F (ψ) true then by I.H t either both σ∗3(φ) and σ∗3(ψ) true, then it follows that t makes σ∗3(ϕ) true
since t(x1) = 0. This closes the induction and gives us our result.

For any variable assignment t on Prop∗, define t∗(x) = 1−t(x) for each x ∈ Prop∗. One easy induction
gives us the following result:

Proposition 3.2.16. If ϕ is a formula in C(L∧,∨) and t a variable assignment on Prop∗, then

t |= ϕ ⇐⇒ t∗ 6|= Fl(ϕ)

�

We combine all the above theorem to provide the third reduction.

Lemma 3.2.17. For any set Prop, we have that C(L∧,∨[Prop]) ≤cp C(Lmaj[Prop
∗]).

Proof. Define for any variable assignment on Prop,

γ3(t) = t ∪ {(x0, 0), (x1, 1)}

The definition of τ3 is a little more involved. Let x = σ3(ϕ)

τ3(x, (t,+)) = (t � Prop,+) if t(x0) = 0 = 1− t(x1)
τ3(x, (t,+)) = (t∗ � Prop,−) if t(x0) = 1 = 1− t(x1)
τ3(x, (t,−)) = (t � Prop,−) if t(x0) = 0 = 1− t(x1)
τ3(x, (t,−)) = (t∗ � Prop,+) if t(x0) = 1 = 1− t(x1)

Finally, we map (x, (t,+)), (x, (t,−)) ∈ NC(Lmaj[Prop∗]) to {(t∗ �,+), (t∗ �,−)} via τ3 whenever t(x0) = 1 =
t(x1) or t(x0) = 0 = t(x1).

It is a routine verification to check σ3, τ3, γ3, p(x) = 3 witnesses the PC-reduction.

Theorem 3.2.18. C(Lmaj) does not have PSUC.

Proof. We already know C(L∨,∧) does not have PSUC due to theorem 3.2.8. We again invoke theorem
2.5.2, notice that C(L∧,∨[Prop]) is PC-reducible to C(Lmaj[Prop

∗]) via σ3, τ3, γ3, having k = 2,m = 2
and p(x) = 2 as constants. So C(Lmaj) having PSUC means C(L∧,∨) has it as well, a contradiction.

37



3.2.4 Reduction from C(L∧,∨[Prop]) to C(LOAND[Prop]) and C(LAOR[Prop])

Now we focus on the dual fragments C(LAOR) and C(LOAND). The proof strategy of establishing C(L∧,∨) ≤pc
C(LAOR) is identical to that of proving C(L∧,∨) ≤pc C(LOAND), hence we provide a detailed proof of one
the reductions and only provide the blueprint for the other.

We proceed similarly as we did in C(Lmaj). We start from a finite set of propositional variables, Prop
say, and define Prop# = Prop∪{x0}. Let’s define σ∗4 from the concepts of : C(L∧,∨[Prop]) to the concepts
of C(LAOR[Prop

#]) recursively.

σ∗4(p) = p

σ∗4(φ ∧ ψ) = AOR(σ∗4(φ), σ∗4(ψ), x0)
σ∗4(φ ∨ ψ) = AOR(σ∗4(φ), σ∗4(φ), σ∗4(ψ))

We define σ4 using the function σ∗4

σ4(ϕ) = AOR(σ∗4(ϕ), σ∗4(ϕ), x0)

Proposition 3.2.19. If t is a variable assignment on Prop# with t(x0) = 0, and ϕ is a concept of
C(L∧,∨[Prop]), then

t � Prop |= ϕ ⇐⇒ t |= σ4(ϕ)

Proof. From the previous definition it is sufficient and necessary that for t to make σ4(ϕ) true, for some
ϕ in C(L∧,∨[Prop]), t should make σ∗4(ϕ) true. The proof is now by induction on complexity of ϕ.

Suppose t(x0) = 0 and t is an assignment on Prop#. Now, if ϕ = p = σ∗4(p) then our theorem is
trivially true.

Assume that for any formula of complexity < n our theorem holds. Now, let ϕ be a formula of
complexity n. Let t(x0) = 0 and t is an assignment on Prop#. If ϕ = φ∧ψ then and t �Prop makes both
φ and ψ true, then by I.H. t makes σ∗4(φ) and σ∗4(ψ) true. Then by definition σ∗4(ϕ) is made true by t. For
the converse, if σ∗4(ϕ) is made true by t then both σ∗4(φ), σ

∗
4(ψ) must be made true by it too and hence

by I.H. φ, ψ should be made true by t �Prop, which is equivalent to t �Prop making ϕ true. Similarly,
if ϕ = φ ∨ ψ, then t making σ∗4(ϕ) true means either σ∗4(φ) is made true by t or σ∗4(ψ). Using I.H. we
can conclude that t �Prop makes φ true or ψ true, which is equivalent to saying t �Prop makes ϕ true.
For the converse, suppose t �Prop makes ϕ true, which implies it either makes φ or ψ true. Using I.H. it
implies t makes either σ∗4(φ) or σ∗4(ψ) true, which implies t makes σ∗4(ϕ) true. This closes the induction
clause and our claim is proven

Lemma 3.2.20. For every finite set of variables Prop, C(L∧,∨[Prop]) ≤pc C(LAOR[Prop
#])

Proof. For any variable assignment t on Prop, define

γ4(t) = t ∪ {(x0, 0)}
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The definition of τ4 is a little more involved. Let x = τ4(ϕ).

τ4(x, (t,+)) = {(t � Prop,+)} if t(x0) = 0

τ4(x, (t,−)) = {(t � Prop,−)} if t(x0) = 0

Finally, if (x, (t,+)) ∈ NC(LAOR[Prop]) with t(x0) = 1, then

τ4(x, (t,+)) = {(t � Prop,+), (t � Prop,−)}

It is again a routine verification to see that every condition of PC-reduction is satisfied by σ4, τ4, γ4 and
p(x) = 3.

Theorem 3.2.21. The collection C(LAOR) does not have PSUC.

Proof. We already know C(L∨,∧) does not have PSUC due to theorem 3.2.8. We again invoke theorem
2.5.2, notice that C(L∧,∨[Prop]) is PC-reducible to C(LAOR[Prop

#]) via σ4, τ4, γ4, having k = 2,m = 6
and p(x) = 2 as constants. So C(LAOR) having PSUC means C(L∧,∨) has it as well, a contradiction.

We are only left with the collection C(LOAND). Since it is the dual of C(LAOR), the proof of it’s lack
of PSUC follows almost the same proof trajectory. Due to the sake of brevity, we just motivate and state
the theorems that will hold in this collection and leave it to the reader to reconstruct the proof on their
own.

We start from a finite set of propositional variables, Prop say, and define Prop# = Prop ∪ {x1}.
As it was the case with all the other cases σ∗5 from the concepts of C(L∧,∨[Prop]) to teh concept of
C(LOAND[Prop#]) recursively.

σ∗5(p) = p

σ∗5(φ ∧ ψ) = OAND(σ∗5(φ), σ
∗
5(φ), σ

∗
5(ψ))

σ∗5(φ ∨ ψ) = OAND(σ∗5(φ), σ
∗
5(ψ), x1)

We use the map σ∗5, to define the map σ5 as follows

σ5(ϕ) = OAND(σ∗5(ϕ), σ
∗
5(ϕ), x1)

As the dual of the case with C(LAOR[Prop
#]), for any variable assignment t on Prop#, t say, if

t(x1) = 0 then trivially t 6|= σ5(ϕ) for any concept ϕ of C(L∧,∨[Prop]). Now we investigate case when
t(x1) = 1, which again is reminiscent of the proposition 3.2.19,

Proposition 3.2.22. If t is a variable assignment on Prop# with t(x1) = 1, and ϕ is an element of
C(L∧,∨[Prop]), then t �Prop makes ϕ true iff t makes σ5(ϕ) true.

Proof. The proof is exactly the same as in 3.2.19, just change x0 with x1, σ∗4 with σ∗5, σ4 with σ5, and
finally t(x0) = 0 with t(x1) = 1 in the proof.
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This smoothly transitions to the dual analogue of theorem 3.2.20, which is

Lemma 3.2.23. For every finite set of variables Prop, C(L∧,∨[Prop]) ≤pc C(LOAND[Prop#])

Proof. For any variable assignment t over Prop, define

γ5(t) = t ∪ {(x1, 1)}

Let x = σ5(ϕ), then we define

τ5(x, (t,+)) = (t � Prop,+) if t(x1) = 1

τ5(x, (t,−)) = (t � Prop,−) if t(x1) = 1

Finally, if (x, (t,+)) ∈ NC(LAOR[Prop]) with t(x1) = 0, then τ5(x, (t,−)) = {(t �,+), (t �,−)}. One can
verify that the conditions of PC reduction are satisfied.

Theorem 3.2.24. The collection of classes C(LOAND) does not have PSUC.

Proof. Suppose it did. Then we use k = 2,m = 2 and p(x) = 3 and invoke theorem 2.5.2 for the
PC reduction from C(L∧,∨[Prop]) to C(LOAND[Prop#]). This will tell us that C(L∧,∨) has PSUC, a
contradiction.

3.2.5 Main Result

We are almost ready to prove the main result of this section. We state the following result first.

Lemma 3.2.25. If for some sets of propositional formulas Pr, Pr′, we have that if F(Pr) ⊆ F(Pr′) then
C(LPr′) having PSUC implies C(LPr) has PSUC as well.

Proof. Theorem 2.5.1 tells us C(LPr[Prop]) ≤pc C(LPr′ [Prop]). Now we can use k = 2,m = 2 and
p(x) = 2 to invoke 2.5.2.

As a contraposition of the previous result, not having PSUC is upwards closed. Through our results
[3.2.12], [3.2.13], [3.2.18], [3.2.21], [3.2.24] we have provided a classification of a splitting pair in the lattice
of all propositional fragments. The splitting pair in the question is

{F(∧,>,⊥), F(∨,>,⊥), F(↔,>), F(AOR), F(OAND), F(maj)}

which corresponds to the anti-chain

S1 = {{DM, MPT∞
0 , MPT∞

1 }, {,V,A}}

in Post’s Lattice. Using lemma 3.2.25, our main result follows immediately

Theorem 3.2.26. For any set of propositional formulas Pr, the following the equivalent:

40



• There exists a polynomial p(x, y) s.t. for every finite Prop, and every ϕ ∈ C(LPr[Prop]), there is
a set of labelled examples T that uniquely characterizes ϕ with |T | < p(|ϕ|, |Prop|)

• Cl(Func(Pr)) is a subset of either of the three (i) Cl(∧,⊥,>), (ii) Cl(∨,⊥,>) or (iii) Cl(↔,⊥)

�.

In fact this result can be modified to a certain extent, notice that lemma 3.2.25 also provides us an
size bound for the unique characterizations, and every one of the fragments that have PSUC has linear
size bound, in other words every unique characterization is bounded by |Prop| + 1. Now we state the
following

Corollary 3.2.26.1. For any set of propositional formulas Pr exactly one of 1. or 2. holds.

1. For every finite Prop, and every concept ϕ of C(LPr[Prop]), there is a set of labelled examples T
that uniquely characterizes ϕ with |T | ≤ |Prop|+ 1.

2. The collection C(LPr) does not admit PSUC. �

We look back to the main source that encouraged us to talk about Unique Characterization, in other
words we again analyze V.Dalmau’s paper [Dal99], but from a learning theoretic point of view. Dalmau’s
main theorem in the paper mentioned above is as follows,

Theorem 3.2.27 (V.Dalmau in [Dal99]). For any set of boolean functions O and a set of propositional
variables Prop, precisely one of the following holds:

i. C(LO[Prop]) is exactly learnable with |Prop|+ 1 many membership queries.

ii. C(LO[Prop]) is not polynomially predictable with membership queries under the assumption that
any of the following three problems are intractable: testing quadratic residues modulo a composite,
inverting RSA encryption, or factoring Blum integers.

(If the reader wants to inquire more about the technical terms used in condition ii., we would like to
refer them to Angluin and Kharitonov’s original work [AK95].) The result(s) we prove in this section is a
slight variation to V.Dalmau’s original work. Instead of working with various cryptographic assumptions,
we will work with a notion which we will call Learnability with Membership Queries.

Our main objective is to establish an analogue of Dalmau’s main theorem in terms of learnability using
polynomial queries, but first we prove a theorem in the spirit of our result 3.2.26

Theorem 3.2.28 (V. Dalmau in [Dal99]). For any set of propositional formulas Pr, the following are
equivalent

i. C(LPr) is learnable with membership queries.

ii. Cl(Pr) is a subset of either of the three sets (i)Cl(∧,>,⊥), (ii)Cl(∨,>,⊥) or (iii)Cl(↔,⊥).
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The first step is to provide three algorithms that will learn C(L∧,>,⊥), C(L∨,>,⊥) and C(L↔,⊥) with
polynomial queries. The algorithms will then in turn prove the ii. to i. part of our theorem. We remind
the reader that t+p and t−p are special variable assignments s.t.

t+p (x) = 1 ⇐⇒ x = p and t−p (x) = 0 ⇐⇒ x = p

And 0 and 1 are variable assignments that assign all the propositional variables to 0 and 1 respectively.

Data: x is the number of propositional variables present in Prop
if (MQ(1) = 0) then

Print ⊥ and exit the program
end
ϕ = >;
for 1 ≤ i ≤ x do

if (MQ(t−pi) = 0) then
ϕ = ϕ ∧ pi

end
end
Print ϕ

Algorithm 1: Poly(∧,>,⊥)(x)

Data: x is the number of propositional variables present in Prop
if (MQ(0) = 1 then

Print > and exit the program
end
ϕ =⊥;
for 1 ≤ i ≤ x do

if (MQ(t+pi) = 1) then
ϕ = ϕ ∨ pi

end
end
Print ϕ

Algorithm 2: Poly(∨,>,⊥)(x)

Lemma 3.2.29. For any set of propositional formulas Pr, if collection Cl(Pr) is a subset of either
(i) Cl(∧,>,⊥), (ii) Cl(∨,>,⊥) or (iii) Cl(↔,>) then the collection C(LO) is learnable with membership
queries. �

Proof of theorem 3.2.28. After proving the ii. to i. direction, we prove the other direction. Again this
proof will take us to the analysis of Post Lattice. Reconsider the splitting pair

S1 = {{DM, MPT∞
0 , MPT∞

1 }, {,V,A}}
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Data: x is the number of propositional variables present in Prop
y ← MQ(1);
Based on y do either of the two cases

Case 1: y=1;
ϕ =⊥↔⊥ for 1 ≤ i ≤ x do

if MQ(t−pi) = 0 then
ϕ = ϕ↔ pi

end
end
Print ϕ and exit the program

Case 2: y=0;
ϕ =⊥ for 1 ≤ i ≤ x do

if MQ(t−pi) = 1 then
ϕ = ϕ↔ pi

end
end
Print ϕ and exit the program

Algorithm 3: Poly(↔,⊥)(x)

Let us assume Cl(Pr) is NOT a subset of (i) Cl(∧,>,⊥), (ii) Cl(∨,>,⊥) and (iii) Cl(↔,>) and C(LO) is
learnable with polynomial membership queries. As it turns out, the former assumption says that Cl(Pr)
is a superset of (iv) Cl(maj), (v) Cl(OAND) or (vi) Cl(AOR) from the splitting pair we mentioned.
According to our result 3.2.26, C(LPr) cannot have PSUC. On the other hand C(LPr) is learnable with
polynomial membership queries implies C(LPr) has PSUC using theorem 2.4.16. hence a contradiction.
So, C(LPr) is NOT learnable with membership queries.

We now slightly refine the result we obtained just now. Notice that the algorithms we mentioned run
in |Prop|+ 1 computation steps.

Corollary 3.2.29.1. For any set of propositional formulas Pr, for the collection C(LPr) precisely one
of the following two conditions hold:

i. C(LPr) is learnable with polynomial membership queries that is witnessed by an algorithm that runs
in |Prop|+ 1 many computation steps.

ii. C(LPr) is NOT learnable with polynomial membership queries.

Proof. Again consider the anti-chain C1, if C(LO) is a subset of (i) Cl(∧,>,⊥), (ii) Cl(∨,>,⊥) and
(iii) Cl(↔,>), then our algorithms give us the condition ii. If C(LO) is NOT a subset of (i) Cl(∧,>,⊥),
(ii) Cl(∨,>,⊥) and (iii) Cl(↔,>) then it is a superset of (iv) Cl(maj), (v) Cl(OAND) or (vi) Cl(AOR),
but theorem 2.4.16 says they are not learnable.
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3.3 Upper bounds dependent on variables and Polynomial upper bounds
dependent on variables

The results 3.2.26 and 3.2.26.1 that we unraveled in the first section, are in essence dichotomy theorems.
On top of that, theorem 3.3.7.1 motivates us to once again to analyse the Post lattice and establish more
characterizations in the spirit of result 3.2.26. Our dichotomies will be based on two different questions,
namely:

1. Which (prop.) fragments have an upper-bound dependent on the variables ?

2. Which (prop.) fragments have a polynomial upper-bound dependent on the variables ?

The polynomial clause in the latter question means the following: A fragment has polynomial upper-
bound dependent on the variables if the fragment has an upper-bound dependent on the variables, which
is witness by a function, α say, where α(x) = p(x) where p is a polynomial.

Based upon the two questions, we establish the following two dichotomies:

Theorem 3.3.1. For any set of propositional formulas Pr the following are equivalent,

• For every Prop, and every concept ϕ of C(LPr[Prop]), there is an unique characterization Tϕ of ϕ
with |Tϕ| < 2(|vars(ϕ)|+1)

• Cl(Pr) is a subset of either of the three (i) Cl(∧,∨,⊥,>), (ii) C(¬,⊥).

Theorem 3.3.2. For any set of propositional formulas Pr the following are equivalent,

• There exists a polynomial p(x) s.t. for every Prop, and every concept ϕ of C(LPr[Prop]), there is
an unique characterization Tϕ that uniquely characterizes ϕ with |Tϕ| < p(|vars(ϕ)|)

• Cl(Pr) is a subset of either of the three (i) Cl(∧,⊥,>), (ii) Cl(∨,⊥,>) or (iii) Cl(¬,>).

PC reductions will again be vital in establishing these results. For the purpose of this section, we are
interested in the fragments generated by the clones PT∞

1 , PT∞
0 and AP. For the sake of simpler notation,

we re-introduce the propositional formulas generating the fragments as follows:

AIMP(x, y, z) = x ∧ (y → z)

3XOR(x, y, z) = x⊕ y ⊕ z
OXOR(x, y, z) = x ∨ (y ⊕ z)

3.3.1 Upper Bounds of the Fragment C(L3XOR)

We start this section through the analysis of this particular fragment. The main property we will be
concerned with is the following

Definition 3.3.3. We say a collection of propositional concept classes X has as an upper bound dependent
on variables if,
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1. There exists a non-decreasing function α : N→ N s.t.

2. for every concept class C ∈ X and every concept ϕ of C, there exists an unique characterization Tϕ
of ϕ s.t.

|Tϕ| < α(|vars(ϕ)|)

In theorem 2.5.3 we can modify the meaning of ‘size’ for a concept. In particular for any formula ϕ,
we can stipulate that |vars(ϕ)| as the ‘size’ of ϕ. Hence we can adapt theorem 2.5.3 to preserve upper
bounds on varibles.

One of the main aims of this section is to prove the following

Theorem 3.3.4. There exists no upper bound dependent on variables for the collection C(L3XOR).

We make the assumption, aiming for a contradiction, that C(L3XOR) has an upper-bound dependent
on the variable, which is witnessed by α. Let ϕ ∈ C(L3XOR[Prop]), now according to definition ϕ ∈
C(L3XOR[Q]) for any set Q ⊇ Prop. Furthermore, for every concept class C(L3XOR[Q]) containing ϕ, from
our assumptions, there is an unique characterization of ϕ size at-most α(vars(ϕ)) w.r.t. C(L⊕,>[Q]). In
other words for every ϕ, there is an unique characterization Tϕ that is unaffected by the size of Prop for
any concept class that contains it.

Suppose we have fixed a concept ϕ s.t. ϕ ∈ C(L3XOR[Prop]), and Tϕ is an unique characterization of
ϕ. We assume ϕ is of the following form:

ϕ := pi1 ⊕ · · · ⊕ pin

where n is odd. By Tr(Tϕ) we mean the following set:
For each propositional variable p occurring in ϕ, we add (tp,+) ∈ Tr(T ), where tp is the variable assign-
ment that makes only p true and other variables false. Now if (t,−) ∈ T then (t,−) ∈ Tr(T ). Lastly, we
consider the case when t |= ϕ and (t,+) ∈ T . In this case we put (t′,−) ∈ Tr(T ), where t′(p) = 0 for any
p occurring in ϕ and t(q) = t′(q) for any q not occurring in ϕ. We claim the following:

Lemma 3.3.5. If T uniquely characterizes ϕ w.r.t. C(L3XOR[Prop]), then so does Tr(Tϕ).

Proof. Firstly for all the (tp,+) ∈ Tr(Tϕ) implies any φ fitting Tr(Tϕ) must have all the propositional
variables p in ϕ occurring it. Suppose φ fits Tr(Tϕ), we can assume φ = ϕ⊕ ψ.

Now, if p 6∼= ψ, then there is a (t, q) ∈ T that distinguishes between them, where q ∈ {+,−}. If t 6|= ϕ,
then t ∈ Tr(Tϕ) and we are done. Otherwise t |= ϕ, which gives us t 6|= ϕ⊕ ψ. Then we have that t |= ψ
(as t |= ϕ and if t 6|= ψ would lead to t |= ϕ⊕ ψ), but this tells us t′ |= ψ (as none of the p in ϕ occur in
ψ and definition of t′) and t′ 6|= ϕ. Hence, (t′,−) ∈ Tr(Tϕ) differentiates φ and ϕ. So any concept fitting
Tr(Tϕ) should be equivalent to ϕ. This closes our proof.

A bound on the size of Tr(Tϕ) can be easily given, it easy to see that

|Tϕ| ≤ |T |+ |vars(ϕ)| ≤ α(vars(ϕ)) + |vars(ϕ)|
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If we define β(x) = α(x)+x then Tr(Tϕ) is bounded by β(vars(ϕ)), which is again a function dependent
(only) on variables. Furthermore our choice of ϕ was arbitrary, so we can find Tr(Tϕ) for every ϕ and
every concept class of the form C(L⊕,>[Prop]). As opposed to Tϕ, the unique characterization Tr(Tϕ)
gives us more information and hence it is easier to work with. One obvious thing is Tr(Tϕ) always has
exactly vars(ϕ) many positive examples and at-most α(vars(ϕ)) many negative ones.

Now if we change our concept class from C(L3XOR[Prop]) to C(L3XOR[Q]), where Q ⊇ Prop, we still
have ϕ as a concept of C(L3XOR[Q]). From the previous assumptions, we get that C(L3XOR[Q]) also has
an unique characterization, TQϕ say, of size at-most α(vars(ϕ)), and we define Tr(TQϕ ) as above. Finally
the previous theorem should tell us Tr(TQϕ ) also uniquely characterize ϕ (since the previous lemma does
not make use of the concept class class C(L3XOR[Prop])).

We can take Q to be arbitrarily large, and the larger it is, there are more formulas of the form

Ψ(q, r) = ϕ⊕ q ⊕ r

where q, r are propositional variables from Q not occurring in ϕ and q 6= r. Now, Tr(TQϕ ) is tasked with
differentiating all such Ψ(q, r) from ϕ. Notice that any positive example of Tr(TQϕ ) cannot distinguish
between ϕ and Ψ(q, r) for any q, so the separation must be done by a negative example. Furthermore the
size of Tr(TQϕ ) should be bound by β(vars(ϕ)).

Alternatively, every variable assignment t on Q naturally gives rise to a set P (t) ⊆ Q s.t.

q ∈ P (t) ⇐⇒ t(q) = 1

This kind of representation of variable assignments helps us to develop a set-theoretic formulation of our
statements. Suppose a labelled assignment (t,−) is in Tr(TQϕ ), upon fixing q0, r0 we see that t distinguishes
between ϕ and Ψ(q0, r0) if and only if precisely t(q0) = 1− t(r0). In other words, the value of t disagree
on q0 and r0, which is in turn equivalent to stating |P (t) ∩ {q0, r0}| = 1. we claim the following which is
obvious from the discussion we had.

Lemma 3.3.6. For every q, r ∈ Q s.t. q, r does not occur in ϕ and q 6= r, we have that

1. there exists a labelled variable assignment (t,−) ∈ Tr(TQϕ ) s.t.

2. |P (t) ∩ {q, r}| = 1 �

But the previous lemma gives way to a contradiction, as mentioned above the size of Tr(TQϕ ) only
depends on vars(ϕ) and not on the size of Q. The following theorem states the opposite

Theorem 3.3.7 (see [(ht]). Let X be any set and A ⊆ P(X) be s.t. for any x, y ∈ X there is some Y ∈ A
with

|Y ∩ {x, y}| = 1

It follows that |A| ≥ log2(|X|). �
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In particular, if we define a set

P (Tr(TQϕ )) = {P (t) : t ∈ Tr(TQϕ )}

and notice that Q \ vars(ϕ) and P (Tr(TQϕ )) satisfies the antecedent of theorem 3.3.7 as X and A re-
spectively. It easy to see if we take Q to be large enough we can surpass the bound β(vars(ϕ)), hence a
contradiction! We formally state what we have proven.

Corollary 3.3.7.1. The collection C(L3XOR) does not admit have an upper bound on the variables. In-fact
no formula ϕ from the concept class C(L3XOR[Prop]) with vars(ϕ) ⊆ Prop, has an unique characterization
dependent on variables. �

Corollary 3.3.7.2. The fragment C(L3XOR[InfProp]) does not have finite characterization.

Proof. Suppose it has finite characterization. Let ϕ be a concept of C(L3XOR[InfProp]), so it follows that
ϕ is also a concept of C(L3XOR[Prop]), where vars(ϕ) ⊆ Prop.

Suppose Tϕ is an unique characterization of ϕ w.r.t. C(L3XOR[InfProp]). Notice that

T ′
ϕ = {t � Prop : t ∈ Tϕ}

is also an unique characterization of ϕ w.r.t. C(L3XOR[Prop]). Now, notice that |Tϕ| is constant, and
does not depend on Prop, which is a contradiction to 3.3.7.1.

3.3.2 Positive results and reduction from C(L∧,→[Prop]) to C(LAIMP[Prop∗])

We start off by looking into the collection C(L∨,∧,>,⊥). Let us develop the idea why it is sufficient to prove
the following proposition to prove that C(L∨,∧,>,⊥) does have an upper-bound dependent on variables.

Proposition 3.3.8. For any set of variables Prop and any concept ϕ of the concept class C(L∨,∧,>,⊥),
the following are equivalent

• ϕ is uniquely characterized by m positive examples and n negative examples.

• ϕ is equivalent to a DNF with m terms and to a CNF with n clauses.

Indeed, given any concept ϕ of C(L∨,∧,>,⊥[Prop]), we can use the distributive laws and De Morgan
Laws to transform ϕ into a CNF and a DNF. Perhaps an example might help, suppose ϕ = x∧(z∨(y∧w)).
Clearly ϕ is neither in CNF nor in DNF, but we can use the distributive laws to change it to a CNF,
namely ϕ ∼= x∧ (z ∨ y)∧ (z ∨w), and subsequently use De Morgan’s Laws to change it to a DNF, namely
ϕ ∼= (x ∧ z ∧w) ∨ (x ∧ y ∧ z ∧w). Moreover, it can be seen that using distributive laws and De Morgan’s
Laws do not change the number of variables that we had in the original formula. Hence we can see that ϕ
can be characterized by an unique characterization that contains at-most 2|vars(ϕ)| positive examples and
at-most 2|vars(ϕ)| negative examples. So in total, we can an unique characterization of size 2|vars(ϕ)|+1.

Proof of proposition 3.3.8. See [ABCS92] for the proof.
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After dealing with the collection C(L∨,∧,>,⊥), we deal with the collection C(L¬,⊥). It is a much simpler
fragment since the concepts of C(L¬,⊥[Prop]) can be precisely of the form ¬p, p,⊥,¬ ⊥. One might infer
from the simple nature of this fragment that it will allow much nicer upper bounds, and indeed it does.
To prove it rigorously we introduce some notations. Consider the example space of the concept class
C(L¬,⊥[Prop]), i.e the set of all variable assignments on Prop. We define the following the variable
assignments t+p and t−p ,

t+p (x) = 1 ⇐⇒ x = p t−p (x) = 0 ⇐⇒ x = p

We define 0 to be the variable assignment that assigns every propositional variable of Prop to 0. Similarly,
1 is the variable assignment that assigns every propositional variable of Prop to 1

Proposition 3.3.9. The collection C(L¬,⊥) has an upper bound dependent on variables. Moreover the
function witnessing the upper-bound is a constant.

Proof. Suppose ϕ is a concept of C(L¬,⊥[Prop]) for some arbitrary set of variables Prop. We do a case
analysis, firstly let ϕ = p. We claim that Tϕ = {(t+p ,+), (0,−)} uniquely characterizes ϕ, where 0 is the
variable assignment that maps every propositional variable to 0. It is easy to see that ⊥,¬ ⊥ cannot fit
Tϕ, since we have both a positive and negative example in our set. Similarly any formula of the form ¬q
cannot fit Tϕ, if it did then ¬q should satisfy 0 6|= ¬q which is a contradiction. Now finally if q 6= p fits Tϕ
then t+p would be a negative example of q, so it cannot fit Tϕ. Hence, Tϕ is an unique characterization.

If ϕ = ¬p then we define Tϕ = {(t−p ,+), (1,−)} as the set uniquely characterizing ϕ, where 1 again is
the variable assignment that maps every propositional variable to 1. It follows through a similar argument
that Tϕ again uniquely characterizes ϕ.

For the case of ϕ =⊥, we nominate Tϕ = {(1,−), (0,−)} to uniquely characterize it. ¬ ⊥ cannot fit
Tϕ negative examples so it cannot Tϕ. Now formulas of the form p also cannot fit Tϕ since 1 |= p and
similarly formulas of the form ¬p cannot fit Tϕ since 0 |= ¬p. For the final case let ϕ = ¬p, through a
similar argument as before we can establish that Tϕ = {(1,+), (0,−)} uniquely characterizes ϕ.

Lastly, notice that in each of the cases we have |Tϕ| ≤ 2, so there is a finite upper bound for the
collection C(L¬,⊥).

Lemma 3.3.10. The class C(L∧,→) does not have an upper bound dependent on variables.

Proof. Upon a glance at the Post’s Lattice we can see that Cl(3XOR) ⊆ Cl(→,∧). So we can conclude
that the concepts of C(L3XOR[Prop]) is a subset of the concepts of C(L→,∧[Prop]). Hence, if C(L→,∧) has
an upper bound dependent on the variables then so does C(L3XOR), a contradiction. Therefore, C(L→,∧)
cannot have an upper bound dependent on variables.

The strategy we employ is in line with the strategy in the first section - we show via PC reductions
that C(LAIMP) does not have an upper bound dependent on variables, subsequently we establish that not
having an upper bound dependent on variables is upwards closed, these two together give up the segment
of Post’s Lattice that would not not have an upper bound dependent on variables.
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We now move onto the reductions. We remind the reader that Prop# = Prop ∪ {x0}, where x0 does
not belong to Prop. We again define a map σ6 from the concepts of C(L3XOR[Prop]) to the concepts of
C(LOXOR[Prop#]). For any propositional variable pi, we have σ6(pi) = pi and for more complex formulas
ϕ = pi1 ⊕ · · · ⊕ pi2m+1 ,

σ6(ϕ) = x0 ∨ (pi1 ⊕ · · · ⊕ pi2m+1)

We define a function τ6. Let (c, (t, p)) be an ordered pair where c is a concept of C(LOXOR[Prop#])
and (t, p) is a labelled example of C(LOXOR[Prop#]) s.t. c fits {(t, l)}, we define

τ6(c, (t, p)) = {(t ∪ {(x0, 0)},+), (t ∪ {(x0, 0)},−)}

whenever c is not in the range of σ6. Now suppose c is in the range of σ6, we have that τ6(c, (t, p)) = {(t �
Prop, p)} whenever t(x0) = 0. Additionally if c is in the range of σ6, and t(x0) = 1, then t |= c and hence
we define τ6(c, (t, p)) = {(0,−)} whenever t(x0) = 1.

Lemma 3.3.11. If ϕ is a concept of C(L3XOR[Prop]), then ϕ fits τ6(σ6(ϕ), (t, p)).

Proof. It is easy to see that f(ϕ) fits τ6(σ6(ϕ), (t, p)) = {(t, p)} whenever t(x0) = 1 (in this case t = 0
and p = +). Furthermore τ6(σ6(ϕ), (t, p)) = {(t � Prop, l)} whenever t(x0) = 0, but remember that
σ6(ϕ) = x0 ∨ ϕ. So t |= x0 ∨ ϕ implies t |= ϕ, and hence (t � Prop) |= ϕ.

Lemma 3.3.12. If φ, ψ fit τ6(σ6(ϕ), (t, p)) then σ6(φ), σ6(ψ) fits (t, p).

Proof. Again our proof is on how t assigns the variable x0. If t(x0) = 1 then for any φ, ψ, σ6(φ), σ6(ψ)
fits τ6(σ6(ϕ), (t, p)) (here p is +).

Now fix t(x0) = 0 then for any ψ, φ, ϕ s.t. ψ, φ fits τ6(σ6(ϕ), (t, p)) means φ and ψ also fit {(t � Prop), p}
and {(t � Prop)}. Now, we get that σ6(φ) fit τ6(σ6(ϕ), (t, l)) from the following equivalence(s) for the
case where t(x0) = 0:

t |= σ6(φ) ⇐⇒ t |= x0 ∨ φ ⇐⇒ t |= φ ⇐⇒ (t � Prop) |= φ

A similar series of equivalences follow for ψ, and hence σ6(ψ) fit τ6(σ6(ϕ), (t, p))

We now provide a function γ6 from the example space of C(L3XOR[Prop]) to the example space of
C(LOXOR[Prop

#]). We simply define
γ6(t) = t ∪ {x0, 0}

It is a trivial exercise to prove the following

Lemma 3.3.13. If t is a positive (negative) example of ϕ then γ6(ϕ) is a positive (negative) example of
σ6(ϕ), where ϕ is a concept of C(L3XOR[Prop]). �

Lemma 3.3.14. For any Prop, the concept class C(L3XOR[Prop]) ≤pc C(LOXOR[Prop#])

Proof. The functions witnessing the reduction are σ6, τ6, γ6. The polynomial we choose is a constant
p(x) = 2. Lemmas 3.3.11, 3.3.12 and 3.3.13 tells us τ6 and γ6 satisfy conditions 1,2 and 4 of our reduction,
and p trivially satisfies our claims.
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Theorem 3.3.15. The collection C(LOXOR) does not have an upper bound dependent on variables.

Proof. Notice that |vars(σ6(ϕ))| = |vars(ϕ)|+ 1 for any concept ϕ of C(L3XOR[Prop]). We use this fact
along with theorem 3.3.14 to invoke lemma 2.5.3. This would tell us that the collection C(L3XOR[Prop])
has an upper-bound dependent on variables, a contradiction.

3.3.3 Reduction from C(L→,∧) to C(LAIMP)

After dissecting the collection C(LOXOR) for variable dependent upper bounds, we turn our attention to
the collection C(LAIMP). We want to establish a similar result as in 3.3.15 for the collection C(LAIMP).

Lemma 3.3.16. The collection C(L∧,→) does not admit an upper bound dependent on variables.

Proof. Notice that the concept class C(L3XOR[Prop]) is a sub concept class of the concept class C(L∧,→[Prop]),
for any Prop. Now, if C(L∧,→) has an upper bound dependent on variables then so does C(L3XOR), a
contradiction.

We move forward with our definition of σ∗7. For every propositional variable pi, we define σ∗7(pi) = pi.
Now suppose for any concepts ϕ,ψ of C(L∧,→[Prop])

σ∗7(ϕ ∧ ψ) = σ∗7(ϕ) ∧ (x1 → σ∗7(ψ))

σ∗7(ϕ→ ψ) = x1 ∧ (σ∗7(ϕ)→ σ∗7(ψ))

We now define a function σ7, with the aid of σ∗7. Define

σ7(ϕ) = x1 ∧ (x1 → σ∗7(ϕ))

Proposition 3.3.17. Let t be a variable assignment. If t(x1) = 1 then, t |= σ7(ϕ) if and only if t |= σ∗7(ϕ).
Additionally, if t(x1) = 0 then t 6|= σ7(ϕ). �

Lemma 3.3.18. Let t be a variable assignment on Prop#. If t(x1) = 1 then,

t |= ϕ ⇐⇒ (t � Prop) |= σ∗7(ϕ)

.

Proof. The proof is by induction on the complexity of formulas. The base case, where ϕ is a propositional
formula, pi say, we can see that whenever t(x1) = 1, σ7(ϕ) = pi. It is easy to infer that our claim holds.

Assume our claim holds for any ϕ of complexity < n. Now suppose ϕ is a formula of complexity n,
this means ϕ is either of the two forms ψ → θ or ψ ∧ θ, where ψ, θ are of complexity < n. For the latter
case, if t(x1) = 1, then σ∗7(ψ ∧ θ) ∼= σ∗7(ψ)∧ σ∗7(θ). Now, using our Induction hypothesis we conclude that
t |= σ∗7(ψ) ∧ σ∗7(θ) if and only if t |= ψ ∧ θ.

We now look at the case when ϕ = ψ → θ, again if t(x1) = 1 then following the definition σ∗7(ψ →
θ) ∼= σ∗7(ψ) → σ∗7(θ). Again using our Induction hypothesis we have t |= σ∗7(ψ) → σ∗7(θ) if and only if
t |= ψ → θ. This completes the proof.
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We now define a function τ7 on an ordered pair (c, (t, p)) where c is a concept of C(LAIMP[Prop
#]) and

(t, p) is a labelled example of C(LAIMP[Prop
#]). If c does not belong to the range of σ7 and if c belong to

the range of σ and t(x1) = 0, then

τ7(c, (t, p)) = {(t � Prop,+), (t � Prop,−)}

On the other hand, if c does belong to the range of σ7 then

τ7(c, (t, p)) = {(t � Prop, p)}

whenever t(x1) = 1. Define a function γ7 from the example space of C(L∧,→[Prop]) to the example space
of C(LAIMP[Prop

#]). For any example t of C(L∧,→[Prop]) we define

γ7(t) = t ∪ {x1, 1}

Lemma 3.3.19. For any concept ϕ and any example t of C(L∧,→[Prop]), if t is a positive (negative)
example of ϕ then γ7(t) is a positive (negative) example of ϕ. �

Lemma 3.3.20. For any concept ϕ of C(L∧,→[Prop]), if ψ fits τ7(γ7(ϕ), (t, p)) then γ7(ψ) fits (t, p),
where (t, p) is a labelled example of C(LAIMP[Prop

#]).

Proof. Fix any concept ϕ of C(L∧,→[Prop]) and a labelled example (t, p) of C(LAIMP[Prop
#]). If t(x1) = 0

then p = − and trivially, due to the way σ7 is defined, σ7(ϕ) fits (t, p). If t(x1) = 1 then lemma 3.3.18
settles our claim.

Theorem 3.3.21. For any Prop, C(L∧,→[Prop]) ≤pc C(LAIMP[Prop
#])

Proof. The functions witnessing the reductions are as follows σ7, τ7, γ7 and we can choose the polynomial
to be p(x) = 2. Lemmas 3.3.19 and 3.3.20 tell us that condition 1, 2 and 4 of the reduction are satisfied
and from the way τ7 is defined we get that condition 3 of the reduction is satisfied as well.

Corollary 3.3.21.1. The collection C(LAIMP) does not have an upper bound dependent on variables.

Proof. Suppose the collection C(LAIMP) admit an upper bound dependent on variables. Notice that
|vars(ζ6(ϕ))| = |vars(ϕ)|+1, and hence using this fact along with 3.3.21, we invoke theorem 2.5.3 which
tells us that the collection C(L∧,→) should have an upper bound dependent on variables, a contradiction.

3.3.4 Main Results

Consider the following splitting pair of the Post’s Lattice

{{U, M }, {AP, PT∞
0 , PT∞

1 }}

So for any set of boolean functions O, Cl(O) is either (i) a subset of U or M or (ii) a superset of AP, PT∞
0 ,

PT∞
1 . Expressing it in the terms of concept classes, the concept space of every concept class is either

(i) a subset of the concepts of C(L¬,⊥[Prop]) or C(L∧,∨,>,⊥[Prop]) or (ii) a superset of the concepts of
C(LAIMP[Prop]) or C(LOXOR[Prop]). We now state a lemma which will nicely transition into the main
result
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Lemma 3.3.22. Let C(LPr) and C(LPr′) be two collections of concept classes s.t. Cl(Pr) ⊆ Cl(Pr′).
Now, if C(LPr′) has an upper bound dependent on variables then so does C(LPr).

Proof. Let ϕ be a concept from a concept class C(LPr[Prop]) which in turn is from the collection C(LPr).
We assume that C(LPr′) has a variable dependent upper bound witnessed by α and Cl(Pr) ⊆ Cl(Pr′).

Now ϕ is also a concept of C(LPr′ [Prop]) from our assumptions. Now, our assumptions also say that
there is an unique characterization of ϕ of size α(|vars(ϕ)|), Tϕ say, w.r.t. to C(LPr′ [Prop]). But Tϕ
also is an unique characterization w.r.t C(LPr[Prop]) (since the concepts of C(LPr[Prop]) are a subset of
the concepts of C(LPr′ [Prop])). As ϕ was arbitrary we get that α also witnesses the variable dependent
upper bound for C(LPr).

Corollary 3.3.22.1. For any set of propositional formulas Pr the following are equivalent,

• For every Prop, and every concept ϕ of C(LPr[Prop]), there is an unique characterization Tϕ of ϕ
with |Tϕ| < 2(|vars(ϕ)|+1)

• Cl(Pr) is a subset of either of the two (i) Cl(∧,∨,⊥,>), (ii) C(¬,⊥).

Proof. The direction from the second point to the first point is straightforward and is an easy application
of the previous lemma. For the other direction, suppose Cl(Pr) is not a subset of Cl(∧,∨,⊥,>) nor of
Cl(¬,⊥). By inspecting the Post’s Lattice we get that Cl(Pr) must be a superset of either of D, PT∞

0

or PT∞
1 , if C(LPr) has an upper bound dependent on variables then so does one of C(L3XOR), C(LOXOR)

or C(LAIMP), following the previous lemma. As it leads to a contradiction, Cl(Pr) does not have an
upper-bound dependent on variables. The contradiction gives us the desired direction of proof.

The next main result of this section, is in some sense, a refinement of the results 3.2.26 and 3.3.22.1.
Our main goal is to base the dichotomy on polynomial sized upper-bounds dependent on variables, instead
of just ‘upper bounds’.

Definition 3.3.23. A collection of boolean concept classes C(LPr) has polynomial sized upper bound
dependent on variables if C(LPr) has an upper bound dependent on variables, and the function witnessing
it, α say, is a uni-variate non-decreasing polynomial.

The correspondence between polynomial upper bounds dependent on variables and PSUC is explained
by the result below

Lemma 3.3.24. If a collection C(LPr) has a polynomial sized upper bound dependent on variables, then
C(LPr) has PSUC.

Proof. Assume that C(LPr) has a polynomial sized upper bound dependent on variables, witnessed by a
polynomial α. Therefore for every concept ϕ of a concept class C(LPr[Prop]) of the collection C(LPr),
we have that there is an unique characterization Tϕ for ϕ s.t. |Tϕ| ≤ α(|vars(ϕ)|). But notice that
|vars(ϕ)| ≤ |Prop| so

|Tϕ| ≤ α(|vars(ϕ)|) ≤ α(|Prop|)
Therefore, as ϕ is arbitrary, we can use α as a witness for PSUC. Hence our claim is proven.
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This lemma highlights one key point, if a collection C(LPr) has an polynomial sized upper bound
dependent on variables then it must satisfy

(i) Cl(Func(Pr)) 6⊇ MPT∞
0

(ii) Cl(Func(Pr)) 6⊇ MPT∞
1

(iii) Cl(Func(Pr)) 6⊇ DM

Additionally since it is an upper bound dependent on variables, it should additionally satisfy:

(iv) Cl(Func(Pr)) 6⊇ AP

Consider the splitting pair
{{U, ,V}, {MPT∞

0 , MPT∞
0 , AP}}

where for each set of boolean functions O, Cl(O) is either a subset of U,,V, or a superset of MPT∞
0 ,

MPT∞
0 , AP. From conditions (i), (ii) and (iv) we have already inferred that if a collection C(LPr) has a

polynomial sized upper bound dependent on variables then it is must be a subset of U, or V. Now, if
a C(LPr) is such that Cl(Func(Pr)) is a subset of U, or V, then Cl(Pr) must have a polynomial sized
upper bound dependent on variables.

Lemma 3.3.25. Let C(LPr) and C(LPr′) be two collections of concept classes s.t. Cl(Func(Pr)) ⊆
Cl(Func(Pr′)). Now, if C(LPr′) has a polynomial sized upper bound dependent on variables then so does
C(LPr).

Proof. The proof is exactly the same as in lemma 3.3.22, we just need to change α to a non-decreasing
polynomial.

In [ABCS92] it is shown that the collection C(L∧,>,⊥) and C(L∨,>,⊥) has an upper bound |vars(ϕ)|+1,
for every concept ϕ in everyone of the concept classes in the collection. This fact along with lemma 3.3.25
gives us our other main result.

Theorem 3.3.26. For any set of propositional formulas Pr, the following are equivalent,

• There exists a polynomial p(x) s.t. for every Prop, and every concept ϕ of C(LPr[Prop]), there is
an unique characterization Tϕ that uniquely characterizes ϕ with |Tϕ| < p(|vars(ϕ)|)

• Cl(Pr) is a subset of either of the three (i) Cl(∧,⊥,>), (ii) Cl(∨,⊥,>) or (iii) Cl(¬,>).

Using the polynomial bounds of the collections C(L∧,>,⊥), C(L∨,>,⊥) and C(L¬,⊥) we can modify our
result to the following:

Corollary 3.3.26.1. For any set of propositional formulas Pr exactly one of 1. or 2. holds.

1. For every finite Prop, and every ϕ ∈ C(LPr[Prop]), there is a set of labelled examples T that
uniquely characterizes ϕ with |T | ≤ |vars(ϕ)|+ 1.
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2. The collection C(LPr) does not admit upper bounds dependent on variables. �

We look into another corollary, which will be important for the modal part of the thesis. Fix a set of
infinite propositional variables InfProp = {Pi : i ∈ N}, we claim

Corollary 3.3.26.2. The concept classes C(LOXOR[InfProp]) and C(LAIMP[InfProp]) doesn’t have finite
characterization.

Proof. Suppose C(LOXOR[InfProp]) has finite characterization. Now pick a concept ϕ of C(L3XOR[Prop])
and take it’s image σ6(ϕ). Now suppose Tσ6(ϕ) is an unique characterization of σ6(ϕ) w.r.t. C(LOXOR[InfProp]).
We again define

TPropσ6(ϕ)
= {(t � Prop#, p)Prop : (t, p) ∈ Tσ6(ϕ)}

Notice that it is an unique characterization of σ6(ϕ) w.r.t. C(LOXOR[Prop#]). Now the size of TPropσ6(ϕ)

is independent of the set of propositional variables Prop. Using PC reductions we can get an unique
characterization of ϕ, TPϕ rop say, w.r.t. C(LOXOR[Prop]) that is independent of the size of Prop. But
this contradicts the result 3.3.7.1.

Similarly, following Post’s Lattice ϕ is a formula of C(L∧,→[InfProp]). Suppose C(LAIMP[InfProp]) has
finite characterization, then following the above argument we again can derive a contradiction.

Now we look into the two other notions of learnability we introduced, namely learnable dependent on
concept size and learnable dependent on polynomial concept size. Here by size, we will mean the variables
used in the concept. We redefine notions for the reader.

Definition 3.3.27. For any set of propositional formulas Pr, we say the collection C(LPr) is learnable
with queries dependent on variables (LDoV for short) if for every concept class C(LPr[Prop]) and a
concept ϕ of that concept class, there exists an algorithm Alg(x) and a non-decreasing function f(x) s.t.
the following two conditions hold

i. If the algorithm Alg has access to the membership MQϕ(x), then it halts after f(|vars(ϕ)|) many
computation steps and returns a concept ϕ′ ∼= ϕ and

ii. for every other concept ψ of C(LPr[Prop]), if the algorithm Alg(x) has access to the membership
MQψ(x), then the algorithm Alg halts and returns a concept ψ′ ∼= ψ.

Definition 3.3.28. For any set of propositional formulas Pr, we say the collection C(LPr) is learnable
with polynomial queries dependent on variables (LPDoV for short) if for every concept class C(LPr[Prop])
and a concept ϕ of that concept class, there exists an algorithm Alg(x) and a non-decreasing polynomial
p(x) s.t. the following two conditions hold

i. If the algorithm Alg has access to the membership MQϕ(x), then it halts after p(|vars(ϕ)|) many
computation steps and returns a concept ϕ′ ∼= ϕ and

ii. for every other concept ψ of C(LPr[Prop]), if the algorithm Alg(x) has access to the membership
MQψ(x), then the algorithm Alg halts and returns a concept ψ′ ∼= ψ.
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Lemma 3.3.29. For any set of propositional formulas Pr, if the collection C(LPr) has LDoV then C(LPr)
has an upper bound dependent on variables.

Lemma 3.3.30. For any set of propositional formulas Pr, if the collection C(LPr) has LPDoV then
C(LPr) has a polynomial upper bound dependent on variables.

Both of the above lemmas are proven in the preliminaries, namely in the theorem 2.4.17.
The collections in question are C(L∧,∨,>,⊥) and C(L¬,⊥), we provide algorithms for each case. Fix

one particular ϕ from the concept class C(L∧,∨,>,⊥[Prop]). In the proof of proposition 3.3.8, we have
illustrated a way of producing an unique characterization of ϕ of size 2|vars(ϕ)|+1, we will call this unique
characterization Tϕ. We will assume the knowledge of this characterization in our algorithm. For the col-
lection C(L¬,⊥), we will provide an algorithm for the case when ϕ = pi for the concept class C(L¬,⊥[Prop]).
The reader can easily figure out the case for ϕ = ¬pi.

k ← 0;
for (t, q) ∈ Tϕ do

if MQ(t) 6= q then
k ← 1;
Exit the loop

end
end
Based on the value of k, do the following cases:

Case 1: k = 1;
Print ϕ and exit the program

Case 2: k = 0;
ψ =⊥;
for t in the example space of C(L∧,∨,>,⊥[Prop ]) do

if MQ(t) = 1 then
θ = >;
for x ∈ Prop do

if t(x) = 1 then
θ = θ ∧ x

end
end
ψ = ψ ∨ θ

end
end
Print ψ and exit the program

Algorithm 4: LDoVϕ(∧,∨,>,⊥)
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y0 ← MQ(0);
y1 ← MQ(1);
if y0 = y1 = + then

Print > and exit the program
end
if y0 = y1 = − then

Print ⊥ and exit the program
end
if MQ(t+pi) = 1 and y0 = 0 then

Print pi and exit the program
end
for x ∈ Prop do

if MQ(t+x ) = 1 and y0 = 0 then
Print x and exist the program

end
if MQ(t−x ) = 1 and y1 = 0 then

Print ¬x and exist the program
end

end
Algorithm 5: LDoVϕ(¬,⊥)

Theorem 3.3.31. For any set of propositional formulas Pr the following are equivalent:

• C(LPr) has LDoV.

• Cl(Pr) is a subset of either (i)C(L∧,∨,>,⊥) or (ii)C(L¬,⊥).

Proof. (⇐) The given algorithms 1 and 2 provides us with the proof for this direction.
(⇒) For this direction we analyse a particular anti-chain of the Post’s Lattice, namely

{U, M, D, PT∞
0 , PT∞

1 }

If we assume that Cl(O) is neither a subset of (i)C(L∧,∨,>,⊥) nor (ii)C(L¬,⊥) (which corresponds to
M and U respectively), we get that Cl(O) is a superset of either of D or PT∞

0 or PT∞
1 . Now if Cl(O)

has LDoV then following lemma 3.3.29 C(LO) has an upper dependent on variables. This in turn means
that C(LAIMP), C(LOXOR) or C(L3XOR) has an upper dependent on variables, contradicting our result
3.3.22.1. This means Cl(O) cannot have LDoV, the contraposition of what we proved gives us the desired
direction.

To close off this section we would like to prove our last result, providing a similar classification for
LPDoV.

Theorem 3.3.32. For any set of propositional formulas Pr the following are equivalent:
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• C(LPr) has LPDoV.

• Cl(Pr) is a subset of either (i)C(L∧,>,⊥), (ii) (i)C(L∨,>,⊥) or (iii)C(L¬,⊥).

Proof. (⇐) Algorithms 4 and 5 is enough for the cases of C(L∧,>,⊥) and C(L∨,>,⊥). Algorithm 8 can be
reused for this case too.
(⇒) Again we analyse a particular anti-chain in the Post’s Lattice, namely

{U, ,V, MPT∞
0 , MPT∞

0 , AP}

If we assume that is neither a subset of (i)C(L∨,>,⊥) nor (ii)C(L∧,>,⊥) nor (iii)C(L¬,⊥) (which corre-
sponds to V, and U respectively), we get that Cl(Pr) is a superset of either of AP or MPT∞

0 or MPT∞
1 .

Now if Cl(Pr) has LDoV then following lemma 3.3.30 C(LPr) has a polynomial upper dependent on vari-
ables. This in turn means that C(L∨,>,⊥), C(L∧,>,⊥) or C(L¬,⊥) has an upper dependent on variables,
contradicting our result 3.3.26. This means Cl(Pr) cannot have LPDoV, the contraposition of what we
proved gives us the desired direction.

3.4 On the Decidibility Aspect
Now we talk about the decidibility of our main results 3.2.26, 3.3.22.1 and 3.3.26. We claim that there
exists algorithms which, given a set of propositional formulas Pr, decides

• whether F(Cl(Func(Pr))) has PSUC.

• whether F(Cl(Func(Pr))) has an upper-bound dependent on variables.

• whether F(Cl(Func(Pr))) has a polynomial sized upper-bound dependent on variables.

The algorithms we discuss are based on the Uniform Clone Membership problem. The complexity analysis
of the problem can be found in [Vol09].

Theorem 3.4.1 (Uniform Clone Membership). There exists a algorithm that accepts a set of boolean
finite boolean functions O and a particular connective b, and decides whether b ∈ Cl(Pr) or not.

Proof. The proof outline is to generate all the functions of arity that is same as that of b, that we can
within Cl(Pr). We check the variables in b and generate all the functions possible via substitution, using
O and having the same variables as b. The final part is checking whether b is equal to one of the generated
functions.

For a detailed account of the proof, the reader is advised to check out the first chapter of N. Pippenger’s
book [Pip10]. Although the algorithm we have provided prove the decidability of the Uniform Clone
Membership problem, it is not the best complexity wise. In [BS00], the authors discussed the complexity
of various decidable problems In Abstract Algebra, one problem in particular was the Variety Equivalence
problem. Now for any algebra (A,F ) the Clone Membership problem asks whether a particular function
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g ∈ F or not. On the other hand, the Variety Equivalence problem asks whether the variety generated
by two algebras (A,F ) and (A,G) of the same similarity type are equal or not. The algorithm they
provide for the Variety Equivalence problem had better complexity than of the one described in the
previous theorem. The key observation that links the Uniform Clone Membership problem and the
Variety Equivalence problem for the case when A = {0, 1} is the following observation:

g ∈ F ⇐⇒ ({0, 1}, F ) and ({0, 1}, F ∪ {g}) are equivalent as varieties

For our purposes we will be building upon the Uniform Clone Membership algorithm, which we will denote
by CloMem(x, Y ). We additionally assume CloMem(x, Y ) will return 1 if the function x indeed belongs
to the clone generated by Y , and returns 0 otherwise. We now provide 3 distinct algorithms The above

Data: X is a set of boolean functions
if (CloMem(maj,X) = 1 or CloMem(OAND,X) = 1 or CloMem(AOR,X) = 1) then

Print ‘Cl(X) does not have PSUC.’
else

Print ‘Cl(X) does have PSUC.’
end

Algorithm 6: AlgPSUC(X)

Data: X is a set of boolean functions
if (CloMem(3XOR, X) = 1 or CloMem(OXOR,X) = 1 or CloMem(AIMP,X) = 1) then

Print ‘Cl(X) does not have PSUC.’
else

Print ‘Cl(X) does have PSUC.’
end

Algorithm 7: AlgUpVar(X)

Data: X is a set of boolean functions
if (CloMem(OAND, X) = 1 or CloMem(AOR,X) = 1 or CloMem(3XOR,x) = 1) then

Print ‘Cl(X) does not have PSUC.’
else

Print ‘Cl(X) does have PSUC.’
end

Algorithm 8: AlgUpPolyVar(X)

three algorithms give us three decidability results, namely

Theorem 3.4.2. It is decidable, given a set of propositional formulas Pr, whether the collection C(LPr)
will admit PSUC or not. �
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Theorem 3.4.3. It is decidable, given a set of propositional formulas Pr, whether the collection C(LPr)
will have an upper bound dependent on variables or not. �

Theorem 3.4.4. It is decidable, given a set of propositional formulas Pr, whether the collection C(LPr)
will have a polynomial sized upper bound dependent on variables or not. �
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Chapter 4

Case Study: The Modal Fragments

Leaving the propositional landscape behind, in this chapter, we focus on the modal counterpart of our
thesis. In the light of theorem 3.1.19, we were able to able to justify propositional fragments as propo-
sitional clones. In this chapter, we firstly define modal fragments (see def. 4.1.11) and identify them as
modal clones by using clones from Lindenbaum-Tarski algebra.

In contrast to the propositional case, we lack a representation of all the possible modal fragments, which
makes the analysis much harder. However, due to theorem 2.2.5, we can be sure that all the modal clones
form a lattice; therefore study of sub-lattices of the entire modal lattice is still feasible. We consider three
different sub-lattices (see 4.1.15 and 4.1.16), which are isomorphic to each other, and provide a complete
classification of them in terms of unique characterization and effective learnability .

This chapter is in-fact an extension of Cate and Koudijs’ work in [tCK24].The results they prove along
with our main result, thm 4.2.22, helps us to produce the characterizations 4.2.24,4.2.25 and 4.2.26. We
list our findings as Tables 4.1 and 4.2 below. The i in the tables below is one the three possible sets
{♦}, {�}, {�,♦} and depends on the sub-lattice considered, for e.g. if the sub-lattice considered is M♦,
then i = ♦ . (The description of the sub-lattices can be found in the following section). Similar to the
propositional case, the left and the right of the table are linked by an if-and-only-if clause.

As opposed to Tables 3.1 though, Table 4.1 only focuses on finite characterization. The three distinct
rows represent the sub-lattices of the entire lattice of modal fragments that we consider for each char-
acterization. The same follows Table 4.2, where we consider effective learnability of the three distinct
sub-lattices. The main focus of our analysis would be the modal logic K. We begin with the definitions of
all of the notions, to the make the manuscript self-contained and familiarise the reader with the notations
we use.

4.1 Modal Logic and sub-Lattices of the entire modal fragment lattice
Definition 4.1.1. The full modal logic over a set of propositional variables Prop, denoted as MLProp is
generated recursively by,

ϕ ::= p | �p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | > | ⊥
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Sub-lattice Considered C(Li,Pr) has finite characterization iff

Cl(Pr) is a subset of

M� (i) Cl(∧,∨,>,⊥) or

(ii) Cl(¬,⊥)

M♦ (i) Cl(∧,∨,>,⊥) or

(ii) Cl(¬,⊥)

M�,♦ (i) Cl(∧,∨) or

(ii) Cl(¬,⊥)

Table 4.1: Table for finite characterization

Sub-lattice Considered C(Li,Pr) is effectively learnable iff

Cl(Pr) is a subset of

M� (i) Cl(∧,∨,>,⊥) or

(ii) Cl(¬,⊥)

M♦ (i) Cl(∧,∨,>,⊥) or

(ii) Cl(¬,⊥)

M�,♦ (i) Cl(∧,∨) or

(ii) Cl(¬,⊥)

Table 4.2: Table for effectively learnability
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where p ∈Prop.

Notice that the ♦ modality can be expressed as ♦p = ¬�¬p. Definition 3.1.2 hold analogously for the
modal counterpart. Another thing we will be talking about is modal depth.

Definition 4.1.2. Given a formula ϕ ∈MLProp, we define the formula d(ϕ) in a recursive way. If ϕ = p
for some propositional variable p ∈ Prop, we put d(ϕ) = 0. Assume ψ, θ ∈MLProp and use

d(ψ ∨ θ) = max{d(ψ), d(θ)} = d(ψ ∧ θ)
d(¬ψ) = d(ψ)

d(�ψ) = d(ψ) + 1

The function d is called the modal depth operator, and d(ϕ) is referred to as the modal depth of ϕ.

As it was mentioned in the propositional case, Prop can be both finite or infinite, we will mostly
assume Prop to be infinite in this section. The main difference we notice is talking about the semantics
of modal logic. Unlike propositional models, modal models are Kripke models.

Definition 4.1.3 (Kripke models). A Kripke frame is an ordered pair MK = (W,R) where W is a set
of worlds and R is a binary relation on W . A Kripke model is an ordered triple M = (W,R, V ) where
(W,R) is a Kripke frame and V : Prop → P(W ) is a function, assigning to each propositional variable,
the set of worlds it is valid in.

Definition 4.1.4 (Semantics). Let M = (W,R, V ) be a Kripke model and let ϕ ∈ MLProp, if ϕ = p for
some propositional variable p ∈ Prop, we say M, s |= ϕ holds if s ∈ V (p). Now, the relation |= is defined
recursively: Assume ψ, θ ∈MLProp

M, s |= ¬ψ ⇐⇒ M, s 6|= ψ

M, s |= ψ ∧ θ ⇐⇒ M, s |= ψ and M, s |= θ

M, s |= ψ ∨ θ ⇐⇒ M, s |= ψ or M, s |= θ

M, s |= �ψ ⇐⇒ ∀w (sRw ⇒ M,w |= ψ)

A closer look at the above semantics reveals that modal logic is just propositional logic with � added to
it. The underlying set W behind every Kripke frame M , is called the set of all possible worlds. Sometimes
we will also talk about pointed Kripke models.

Definition 4.1.5 (Pointed Kripke models). A pointed Kripke model is a pair (M, s), where M = (W,R, V )
is a Kripke model and s ∈W . Furthermore for any w ∈W , there is a path w1R . . . Rwn s.t. w1 = s and
wn = w.

Fix any formula ϕ ∈MLProp. We say that ϕ is satisfiable if there exists a Kripke modelM = (W,R, V )
and a world s ∈W s.t. M, s |= ϕ. Furthermore, we say ϕ is valid if for any Kripke model M = (W,R, V ),
there exists a s ∈ W s.t. M, s |= ϕ. The next set of definitions and theorems would serve to illustrate
how satisfiability is preserved between pointed Kripke models.
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Theorem 4.1.6 (see [BdRV01]). Fix a set Prop and pick any ϕ ∈ LProp. The following equivalence
holds: ϕ is satisfiable if and only if there is a pointed Kripke model (M, s) s.t. M, s |= ϕ �.

Definition 4.1.7 (Bisimulation). Let M, s = (W,R, V ), s and N,w = (W ′, R′, V ′), w be pointed Kripke
models, We say M, s and N,w are bisimilar if there is a binary relation Z on W ×W ′ satisfying:

i. sZw holds, and if s′Zw′ then s′ ∈ V (pi) if and only if w′ ∈ V ′(pi), for every propositional variables
pi.

ii. (Back) If s′Zw′ and s′Rs′′ holds then there exists w′′ ∈W ′ s.t. s′′Zw′′ and w′R′w′′

iii. (Forth) If s′Zw′ and w′R′w′′ holds then there exists s′′ ∈W s.t. s′′Zw′′ and w′Rw′′

Definition 4.1.8 (n-Bisimulations). Let (M, s) = ((W,R, V ), s) and (N,w) = ((W ′, R′, V ′), w) be pointed
Kripke models, We say M, s and N,w are n-bisimilar if there is a chain of binary relations Z0, . . . , Zn
with Z0 ⊆ Z1 ⊆ · · · ⊆ Zn on W ×W ′ satisfying:

1. sZ0w holds, and if s′Znw′ then s′ ∈ V (pi) if and only if w′ ∈ V ′(pi), for every propositional variables
pi.

2. (Back) If s′Ziw′ and s′Rs′′ holds then there exists w′′ ∈W ′ s.t. s′′Zi+1w
′′ and w′R′w′′

3. (Forth) If s′Ziw′ and w′R′w′′ holds then there exists s′′ ∈W s.t. s′′Zi+1w
′′ and w′Rw′′

Theorem 4.1.9 (see [BdRV01]). Let (M, s) and (N,w) be pointed Kripke models s.t.(M, s) is bisimilar
to (N, s). For every modal formula ϕ, the following holds:

(M, s) |= ϕ ⇐⇒ (N, s) |= ϕ

�

Theorem 4.1.10 (see [BdRV01]). Let (M, s) and (N,w) be pointed Kripke models, then the following
are equivalent:

1. M, s |= ϕ ⇐⇒ (N,w) |= ϕ for every modal formula of depth ≤ n.

2. M, s and N,w are n-bisimlar. �

Based on the jargon we have developed so far, we can establish an equivalence relation ∼ML on the
set of all modal formulas MLProp. As it was the case with propositional formulas, for any two formulas
ϕ,ψ ∈ MLProp ϕ ∼ML ψ if for any Kripke model M = (W,R, V ) and s ∈ W , we have the following
equivalence:

M, s |= ϕ ⇐⇒ M, s |= ψ

We will use JϕK∼ML to denote the equivalence class ϕ belongs to. Additionally we can improve defini-
tion 3.1.9 to accommodate modal formulas. A simple change from ‘propositional formulas’ to ‘modal
formulas’ in the aforementioned definition is enough. We still use the notation ϕ(ψ1, . . . , ψm) for denoting
substitution of ψ1, . . . , ψm into ϕ(p1, . . . , pm).

All the jargon we have developed so far, helps us to define modal clones. We define it analogously to
the propositional fragments.
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Definition 4.1.11. Let M⊆MLProp, for a set of variables Prop. We say M is a modal fragment if it
satisfies the following:

1. It contains all the propositional variables, i.e. Prop ⊆M.

2. M is closed under composition, i.e. for every collection ϕ(p1, . . . , pm), ψ1, . . . , ψm ∈ M, it follows
that ϕ(ψ1, . . . , ψm) ∈M.

3. For every ϕ ∈M we have JϕK∼ML ∈M.

Definition 4.1.12. A set Md be a set of modal formulas is defined to be a generating set for a modal
fragment M, if Md ⊆M and every modal fragment M′ with Md ⊆M′ we have that M⊆M′. In such
cases we denote M as M(Md).

In the case of propositional logic we established through theorem 3.1.19 that propositional fragments
can be viewed as propositional clones. The main observation behind that was the following: each propo-
sitional formula correspond to a boolean function. But what about the case of modal fragments? Can we
be justified in calling them modal clones? The answer is yes!

Consider the Lindenbaum-Tarski algebra, (A,+, × , p q,m) of modal Logic K (see [BdRV01] chapter
7 for some details). Remember that IProp = {p1, . . . pn, . . . } is a set of infinite propositional variables.
A is defined as follows:

A = {JϕK∼ML : ϕ ∈MLIProp}

The operations are defined as follows, for ψ,ϕ ∈MLIProp:

JψK∼ML + JϕK∼ML = Jψ ∨ ϕK∼ML

JψK∼ML · JϕK∼ML = Jψ ∧ ϕK∼ML

pJψK∼MLq = J¬ψK∼ML

m(JψK∼ML) = J�ψK∼ML

Notice that the projection map can be defined in the following way,

πkn(Jψ1K∼ML , . . . , JψkK∼MLJψnK∼ML) =

(Jψ1K∼ML + pJψ1K∼MLq)× · · · × JψkK∼ML × · · · × (JψnK∼ML + pJψnK∼MLq)

Now we can consider clones over the set A as defined above. Notice that for each modal formula ϕ ∈
MLIProp, there is a corresponding operation/function on the set A. For example take the formula
(¬p∨ q)∧ r, it defines the operation (pxq+ y)× z over the set A. For each formula ϕ, we use fϕ to denote
the function ϕ corresponds to on the set A. We extend our definition of Func, let Md be a set of modal
formulas (over any set Prop), then

Func(Md) = {fϕ : ϕ ∈Md}
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Given a set of modal formulas Md, we can consider the clone over A generated by Func(Md), which we
denote by ClA(Func(Md)). Form can be extended in the following way. Given a set of functions F over
A, define

Form(F ) = {ϕ : fϕ ∈ F}

The following is easy but tedious to verify, we leave it to the reader to verify the following.

Proposition 4.1.13. For any set of modal formulas Md, we have that

M(Md) =M(Form(ClA(Func(Md))))

�

The other direction, i.e. given a set of functions F over A, whether holds

ClA(F ) = ClA(Func(M(Form(F ))))

or holds or not is an open question. As the set A is infinite, answering this question requires digressing
into infinite clone theory, so we avoid it for the sake of our analysis. This discussion justifies that the
study of modal fragments is just the study of modal clones.

We choose M as the denotation of all the modal fragments over a set of variables Prop. Any arbitrary
set M = {Mi : i ∈ I} of modal clones is also closed intersection. We abuse the notation and define a
function

t(M,M′) =
⋂
{m ∈M :M∪M′ ⊆ m}

where M,M′ are modal fragments. Again it is an easy verification task to establish the following is a
lattice.

Proposition 4.1.14. The ordered triple (M ,∩,t) forms a lattice. �

We take some time to contrast the propositional and modal cases. We have a complete representation
of all the propositional fragments in the form a lattice. This representation owes its existence to Post’s
Lattice, and the correspondence between them too is due to the semantics of propositional logic. Indeed,
when viewed from the semantic side, composition of the set of formulas ϕ(p1, . . . , pm), ψ1, . . . , ψm to form
ϕ(ψ1, . . . , ψm), is equivalent to composing the functions described by ϕ(p1, . . . , pm), ψ1, . . . , ψm to form
the function described by ϕ(ψ1, . . . , ψm).

Turning to the modal logic and trying to follow the same manipulation, we immediately encounter
two problems. Firstly, what does each modal formula represent semantically, i.e. what would each modal
formula stand for in terms of pointed Kripke models, and how it behaves under formula composition.
Secondly, we need to arrange the representation in terms of some mathematical structure (not necessarily
a lattice). Solving these two problems will give us a clear picture of all the modal fragments, but it is a
challenging task. Therefore, though we have established that M is a lattice, we cannot comment much
more on it’s structure.
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Fortunately, the structure of Post’s Lattice can employed further to generate interesting sub-lattices
of the entire modal lattice. Consider the sets of formulas of the form Pr� = {�p} ∪ Pr where Pr is a set
of propositional formulas, and p is a propositional variable. We claim that the class of modal fragments

M� = {M(Pr�) : Pr is a set of prop. formulas}

forms a sub-lattice of the lattice of all modal fragments.

Theorem 4.1.15. (M�,∩ ,t) forms a sub-lattice.

Proof. Firstly notice that for any set Pr�, the fragmentM(Pr) = F(Pr) is just a propositional fragment
and hence there is a finite generating set Prfin ⊆ Pr, s.t. M(Pr) = M(Prfin). Now it is easy to see
that M(Pr�) =M(Prfin).

Now consider any two sets Pr1� and Pr2�. Let Pr3 be the set s.t. M(Pr3) =M(Pr1) ∩M(Pr2).
It is the case that M(Pr3�) ⊆M(Pr1�) ∩M(Pr2�). On the other hand it also the case that

M(Pr3) ⊆M(Pr3�) ⊆M(Pr1�) ∩M(Pr2�)

and it is the case that �p ∈ M(Pr1�) ∩M(Pr2�), and hence M(Pr1�) ∩M(Pr2�) is a fragment that
contains the set Pr3�. It is trivial to see M(Pr3�) ⊆ M(Pr1�) ∩M(Pr2�). Combining the two facts
we get M(Pr3�) =M(Pr1�) ∩M(Pr2�).

On the other hand, let Pr4 be the set such that M(Pr4) =M(Pr1)tM(Pr2). Again, we have that
M(Pr4�) ⊆ M(Pr1�) tM(Pr2�) again from definition. Now notice that M(Pr1�) ⊆ M(Pr4�) and
M(Pr2�) ⊆M(Pr4�) and hence

(M(Pr1�) tM(Pr2�) ⊆M(Pr4�)

Combining them we have M(Pr1�) tM(Pr2�) =M(Pr4�). This proves our result.

Notice that we can similarly define Pr♦ and Pr♦,�. It is also the case that the sets M♦,� and M♦

form a sub-lattice with respect to the functions ∩ and t. The proof is exactly the same as in the previous
case.

Theorem 4.1.16. The ordered triples (M♦,�,∩,t) and (M♦,∩,t) form a sub lattice of the lattice
(M ,∩,t). �

The rest of this chapter is dedicated towards analysing the sub-lattices M�,M♦and M�,♦. Before
ending this section, we would like to make one crucial observation. Notice that from the proof of theorem
4.1.15, it follows that for every set of propositional formulas Pr1, Pr2

M(Pr1�) ⊆M(Pr2�) ⇐⇒ F(Pr1) ⊆ F(Pr2)

this correspondence tells us the sub-lattice M�
1 is isomorphic to the lattice of all propositional clones.

The same can be said about the sub-lattices, we state the following theorem which the reader can easily
verify

1We will abuse notation and call M� a sub-lattice, the reader will be able to figure out from the context that we actually
mean the triple (M�,∩,t). The same applies for M♦,� and M♦
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Theorem 4.1.17. The sub-lattices M♦,�, M♦ and M� are isomorphic to each other. In-fact they are
isomorphic to the Post’s lattice via the map

Iso :M(Pri) = Cl(Func(Pr))

where Pr is a set of propositional formulas and i ∈ {{♦,�},♦,�}. �

The sub-lattices M�,M♦ were considered in the works [BMS+11] and [BSS+07]. The scope of their
analysis were different from unique characterization and learnability. In-fact they considered the com-
plexity of reducing the various problems between the different fragments. Moreover [BSS+07] considers
some interesting applications of these complexity analysis in the real world scenarios.

4.2 Analysis of the sub-lattices M�, M♦ and M♦,�

This section builds up the work of Cate and Koudijs in [tCK24], based on the topics unique characterization
and learnability of various modal fragments. As opposed to the full propositional fragment, the full modal
fragment does not even have finite characterization. The main culprit of this negative result is the existence
of formulas that allows us to manipulate the height of a pointed Kripke model. Let us define a formula
heightn,

heightn := (�n+1 ⊥) ∧ (♦n>)

In [tCK24], it is established how heightn prevents us from having finite characterization for any modal
formula in the full modal fragment.

Theorem 4.2.1 (Cate and Kouijs in [tCK24]). No formula ϕ in the concept class C(L�,¬,∧[∅]) has finite
characterization.

Proof. This is an outline of the proof given in the original paper. Consider any formula ϕ and any
characterization Tϕ of it. If Tϕ is finite then we choose

n > {|W | : ((W,R, V ), s) ∈ Tϕ} ∪ {d(ϕ)}

Now if there exists a m ≥ n s.t. MK , s 6|= ϕ and MK has a path of length m starting from s, then we can
see that ϕ ∨ heightm fits Tϕ, but ϕ 6∼= (ϕ ∨ heightm). On the other hand if for all m ≥ n we have that
MK , s |= ϕ whenever K is a model that has a path of length m starting from s, then ϕ ∧ (¬heightm) fits
Tϕ but ϕ 6∼= ϕ ∧ (¬heightm). Hence, Tϕ cannot be finite.

4.2.1 The positive results

The natural successor to this observation is to ask whether there’s a modal fragment that admits finite
characterization. The answer is a positive one, and it is already established in [tCK24] that every concept
class C(L♦,∧,∨,>,⊥[Prop]) has finite characterization, whenever set Prop is finite. The proof employed for
this result is a remarkable one and spans over many papers, we try to provide an outline of the proof’s
structure so that the reader can appreciate it, leaving out all the excruciating details.
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Similar to the cases of modal and propositional logic, one can talk about the fragments of First Order
Logic2. One of the important fragments is the positive existential fragment, i.e. the set of all first order
formulas that can be expressed using the connectives ∃,∧,∨,>,⊥, modulo equivalence, over a schema S.
One can consequently talk about the concept class C(L∃,∧,∨,>,⊥[S]) = (C,E, λ), where C is the set of all
positive existential formulas over the schema S, E is set of all first order structures over the schema S
and finally λ maps every formula of C to the set of all structures that satisfies it.

One of the fundamental results in FOL is that homomorphisms (i.e. structure preserving maps)
between two structures preserve the truth values of positive existential formulas.

Proposition 4.2.2 (see [CK92]). Let (A,a) and (B, b) be two structures over the schema S. If the
structure (A,a) is homomorphic to the structure (B, b), then (A,a) |= ϕ implies (B, b) |= ϕ, whenever ϕ
is a positive existential formula (over the schema S). �

Homomorphisms allows us to talk about finite dualty pairs3 on the class of all S structures. A (finite)
duality pair is a finite ordered pair (F,D) s.t. for every S structure (A,a) either of the two happens:

i. there exists a (Fi, f ) ∈ F s.t. (Fi, f ) is homomorphic to (A,a), or

ii. there exists a (Di,d) ∈ D s.t. (A,a) is homomorphic to (Di,d)

Duality pairs coupled with some properties gives way to unique characterization for the concept class
C(L∃,∧,∨,>,⊥[S]).

Proposition 4.2.3. For any schema S and any concept ϕ of C(L∃,∧,∨,>,⊥[S]), the following are equivalent:

i. There exists a finite duality pair (F,D) s.t. for every positive example (A, a) of ϕ, there exists a
(A, a) (Fi, f ) ∈ F s.t. (Fi, f ) is homomorphic to (A,a).

ii. The set (F × {+}) ∪ (D × {−}) is an unique characterization of ϕ. In other words, ϕ has a finite
characterization. �

Cate and Dalmau, in their work [tCD22], showed that a class of FO formulas, namely c-connected
formulas, satisfy the first condition of proposition 4.2.3. In-fact they provide explicit effective construc-
tions of the duality pairs; in other words, there is an algorithm that, given a c-connected formula ϕ, can
construct ϕ’s duality pair (F,D). As it turns out, the positive existential FO formulas form a subclass of
c-connected formulas, and hence using proposition 4.2.3 we can conclude that C(L∃,∧,∨,>,⊥[S]) has finite
characterization.

The last part is to establish a connection between the concept classes C(L∃,∧,∨,>,⊥[S]) and C(L♦,∧,∨,>,⊥[Prop]).
Assume Prop = {p1, . . . , pn} is a finite set, and SProp = {R,P1, . . . , Pn} is a finite signature, where R
is a binary relation and P1, . . . , Pn are unary relations. Another fundamental jargon in the literature of
Modal Logic is standard translation (see [BdRV01] for the definition), which is an injective map from

2For a detailed introduction to FOL, we advise the reader see [Men09].
3Duality pairs can be studied more generally as a pre-order over the example set, but we leave the details to make sake

of brevity.
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the set of all modal formulas to the set of FO formulas with one free variable (over a certain signature).
If we are to restrict the standard translation, which we will denote by STx(ϕ), to the concept space of
C(L♦,∧,∨,>,⊥[Prop]), then the range of standard translation would be restricted to the concept space of
C(L∃,∧,∨,>,⊥[SProp]). Another possible translation is from the class of all FO structures over SProp to the
class of all pointed Kripke models (over Prop). For any SProp structure (A, a), where a is an element of
the underlying set of A, we define the following pointed Kripke model (MA, a) = ((W,R, V ), a). The set
of worlds W is same the underlying set of A, we also have that R = RA and finally

x ∈ PAi ⇐⇒ x ∈ V (pi)

We observe the following result.

Proposition 4.2.4 (see [BdRV01]). For any concept ϕ of C(L♦,∧,∨,>,⊥[Prop]), we have the following
equivalence

MA, a |= ϕ ⇐⇒ A, a |= STx(ϕ)

�

Theorem 4.2.5 (Cate and Koudijs in [tCK24]). For any finite set of variable Prop, the concept class
C(L♦,∧,∨,>,⊥[Prop]) has finite characterization.

Proof. Consider any formula ϕ of C(L♦,∧,∨,>,⊥[Prop]), and take the duality pair (F,D) of STx(ϕ). Now
define T+ = {((MA, a),+) : (A, a) ∈ F} and T− = {((MA, a),−) : (A, a) ∈ D}, we claim that T+ ∪ T−

uniquely characterizes ϕ. Suppose ψ be any formula s.t. ϕ 6∼= ψ, so by proposition 4.2.3 we get that
there is some (A, a) ∈ F ∪D s.t. (A, a) distinguishes between STx(ϕ) and STx(ψ). Now by proposition
4.2.4, (MA, a) should differentiate between ϕ and ψ. As ψ was arbitrary, this proves T+ ∪ T− is a finite
characterization.

It is worthwhile to point out the duality that this proof produces. Suppose C be the category consisting
of the following things as objects:

i. All modal formulas formed using {♦,∧,∨,>,⊥} (over the variable set Prop)

ii. all FO formulas formed using {∃,∧,∨,>,⊥} (over the set SProp)

The morphisms that exist are the standard translations between formulas, i.e f : ϕ→ STx(ϕ).
On the other hand we have a category D which consists of the following as objects

i. Finite duality pairs (F,D) of SProp structures as objects.

ii. Finite pointed Kripke models (G,H) (over Prop).

Now for every finite duality pair (F,D) over the structures of SProp, there is a morphism g ∈ D s.t.
the domain of g is (F,D) and the codomain of g is (G,H) where

G = {(MA, a) : (A, a) ∈ F} H = {(MA, a) : (A, a) ∈ D}
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Now we will define a contravariant functor α : Cop → D. For each FO formula ψ in C, we define
α(ψ) = (F,D) where (F,D) is the finite duality pair uniquely characterizing it, which is obtained using
the methods laid out in [tCD22]. On the other hand, for any modal formula ϕ ∈ C we define α(ϕ) = (G,H)
to be the (finite) pair of positive and negative examples characterizing it (we obtain (G,H) by following
the procedure discussed before theorem 4.2.5 and in the proof of the theorem). Fix any morphism f ∈ C,
it should be of the form f : ϕ → STx(ϕ), and by definition there is an unique morphism g ∈ D s.t.
g : α(STx(ϕ)) → α(ϕ). We simply let α(f) = g. It is easy to verify that F is indeed a contravariant
functor. The existence of the functor α provides a nice duality.

ϕ (G,H)

STx(ϕ) (F,D)

α

f

α

α(f)

The positive result from theorem 4.2.5 can be transferred over to the fragment C(L�,∧,∨,>,⊥[Prop]). In
[tCK24], it is already established that the aforementioned concept class has finite unique characterization.
The crux of the proof is the idea of negation translation. Fix a set PExt = {qi : pi ∈ Prop}, now for
every concept ϕ of C(L�,∧,∨,>,⊥[Prop]), there is a formula ψ of C(L♦,∧,∨,>,⊥[PExt]) s.t. if we change
every occurrence of qi with ¬pi in ψ, then ϕ and ψ are equivalent. In other words, the formula ¬ϕ ↔
(ψ[¬p1/q1, . . . ,¬pn, qn]) is derivable (in K). We call ψ the negation translation of ϕ, and denote it by ϕ−.

We can also translate pointed Kripke models in a similar fashion. Suppose (M, s) = ((W,R, V ), s) is
a pointed Kripke model, define (M−, s) = ((W,R, V −), s) where V −(pi) =W \ V (qi) for any proposition
pi. One key observation, which can be proved by a simple induction, is the following.

Lemma 4.2.6 (Cate and Koudijs in [tCK24]). For any concept ϕ of C(L♦,∧,∨,>,⊥[Prop]), and a pointed
Kripke model (M, s),

(M, s) |= ϕ− ⇐⇒ (M−, s) |= ϕ−[¬p1/q1, . . . ,¬pn, qn]

�

Theorem 4.2.7 (Cate and Koudijs in [tCK24]). The concept class C(L�,∧,∨,>,⊥[Prop]) admits finite
unique characterization

Proof. Consider any concept ϕ of C(L�,∧,∨,>,⊥[Prop]) and take it’s negation translation ϕ−. We already
know from theorem 4.2.5 that ϕ− has a finite unique characterization, T say. Now let define

U = {((M−, s)+) : ((M, s),+) ∈ T} ∪ {((M−, s)−) : ((M, s),−) ∈ T}

Following the previous lemma U should uniquely characterize ϕ.

We would also like to point out how the previous theorem builds upon the previous duality, to give
us a new duality. Firstly, we extend our category C to the category CE, whose objects are:
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i. All modal formulas formed using {�,∧,∨,>,⊥} (over the variable set Prop)

ii. All modal formulas formed using {♦,∧,∨,>,⊥} (over the variable set PExt)

iii. all FO formulas formed using {∃,∧,∨,>,⊥} (over the set SPExt)

Now for each formula ϕ described in i., we have a morphism f ∈ CE s.t. f : ϕ→ ϕ−. The other morphisms
are standard translation(s) from the formulas described in ii. to the formulas described in iii. Finally we
close the morphisms under compositionality.

Similarly, we extend the category D to DE, whose objects will be

i. Finite duality pairs (F,D) of SPExt structures as objects.

ii. Finite pointed Kripke models pairs (G,H) (over PExt).

iii. Finite pointed Kripke models (G,H) (over Prop).

We define a contravariant functor β from CE to DE. For every object x in CE satisfying condition ii.
or condition iii., we simply define β(x) = α(x), and for any object ϕ ∈ CE satisfying condition i. we
have an object ϕ−, which satisfies condition ii., using this fact we define β(ϕ) = α(ϕ−). For every
morpshim f between objects satisfying condition ii. to objects satisfying condition iii., we again define
β(f) = α(f). For morpshims f between objects satisfying condition i. to objects satisfying condition
ii., we define β(f) = idα(dom(f)) and finally For morpshims f between objects satisfying condition i. to
objects satisfying condition iii. we know that there is an object satisfying condition ii. and a morphism
g s.t. the following diagram commutes

ϕ ϕ−

STx(ϕ)

g

f
STx

We define β(f) = α(STx). The reader can verify that β is actually a functor. We now provide the diagram
of the duality

ϕ ϕ− (G−,H−) (G,H)

STx(ϕ
−) (F,D)

f

g◦f g

β

β(f)

β

β(g)
β(g◦f))

We turn our attention to a relatively simpler concept class, namely C(L♦,¬[Prop]). Notice that
the concept classes C(L♦,¬[Prop]) C(L♦,�,¬[Prop]) are the same. Every concept ϕ of the concept class
C(L♦,�¬[Prop]) is of the form

ϕ = Q1 . . . Qmq
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0 1 . . . nR R R

Figure 4.1: The frame of LChainn[S]

where Qi ∈ {�,♦} and q is either a propositional variables in Prop or the negation of some variable in
Prop (we will call such q′s as literals). Will call the segment Q1, . . . , Qm, the modal part of the formula
ϕ and q the propositional part of the formula ϕ.

We firstly introduce a special class of pointed Kripke models, for every S ⊆ Prop, called SRP [S] =
((W,R, V ), w), where W = {w}, R = {(w,w)} and w ∈ V (pi) if and only if w ∈ S.

Proposition 4.2.8. For every Q1, . . . , Qm ∈ {�,♦} and every variable p, we have

SRP [S] |= p ⇐⇒ SRP [S] |= Q1, . . . , Qnp

Proof. The proof is by induction on the number of modalities in-front of p. In the case the number of
modalities is 0, it is trivial. We assume that our claim holds if the number of modalities is n.

Now consider the formula Q1Q2 . . . Qn+1p. Assume SRP [S] |= p then it follows that SRP [S] |=
Q2 . . . Qn+1p from I.H. We consider two cases now, for the first case let Q1 = ♦, then by definition of
satisfiability, SRP [S] |= ♦Q2 . . . Qn+1p if and only if SRP [S] |= Q2 . . . Qn+1p. For the second case letQ1 =
�, then again by definition of satisfiability SRP [S] |= ♦Q2 . . . Qn+1p if and only if SRP [S] |= Q2 . . . Qn+1p.
So, we can conclude that SRP [S] |= Q2 . . . Qn+1p if and only if SRP [S] |= Q1Q2 . . . Qn+1p, which coupled
with the implication provided by I.H. gives us SRP [S] |= p implies SRP [S] |= Q1Q2 . . . Qn+1p.

For the other direction, let SRP [S] |= Q1Q2 . . . Qn+1p. We have already established in the last
paragraph that SRP [S] |= Q2 . . . Qn+1p if and only if SRP [S] |= Q1Q2 . . . Qn+1p, and now we use I.H.
to obtain SRP [S] |= Q2 . . . Qn+1p implies SRP [S] |= p. Combining all of these implications together, we
get that SRP [S] |= Q1Q2 . . . Qn+1p implies SRP [S] |= p. This concludes our proof.

Corollary 4.2.8.1. For every Q1, . . . , Qm ∈ {�,♦} and every variable p, we have

SRP [S] |= ¬p ⇐⇒ SRP [S] |= Q1, . . . , Qn¬p

�

Another class of important pointed Kripke models is that of linear chains. For any S ⊆ Prop, we put
LChainn[S] = ((W,R, V ), 0) where W = {0, . . . , n}; aRb holds if and only if b = a+1 and finally, for any
p ∈ Prop,

V (p) =

{
n if p ∈ S
∅ otherwise

Figure 4.1 provides a pictorial representation of the underlying frame of LChainn[S]. Similarly, we can
consider the class of frames called loop chains and pointed chains which we will denote by Ochainn[S]
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0 1 . . . n
RO RO RO

RO

Figure 4.2: The frame of OChainn[S]

n+ 1

0 1 . . . n
RP RP RP

RP

RP

Figure 4.3: The frame of PChainn[S]

and PChainn[S] respectively. The reader can consult the figures 4.2 and 4.3 for a better understanding.
Formally, Ochainn[S] = ((WO, RO, VO), 0) has as its set of worlds WO = {0, 1, . . . , n}, and

aROb ⇐⇒ b = a+ 1 or a = b = n

The function VO is the same as in the case of LChainn[S]. For the case of Pchainn[S] = ((WP , RP , VP ), 0),
we have as its set of worlds WP = {0, 1, . . . , n, n+ 1}, and

aRP b ⇐⇒ b = a+ 1 or a = b = n

The function VP is the same as in the case of LChainn[S]. One interesting property is LChainn[S],
OChainn[S] and PChainn[S] are n−bisimilar.

Proposition 4.2.9. For every n and S ⊆ Prop, we have that LChainn[S], OChainn[S] and PChainn[S]
are n-bisimilar.

Proof. We provide a set of relations Z0, . . . , Zn between LChainn[S] and OChainn[S] s.t. Z0 ⊆ · · · ⊆ Zn
and it satisfies all the conditions for being a n-bisimulation. We simply put Z0 = {(0, 0)}, and recursively
define Zi = Zi−1 ∪ {i, i} for any i ≤ n. Notice that it is already a n-bisimulation.

The same set of relations gives us a n-bisimulation between LChainn[S] and PChainn[S].

Since the formulas we are dealing with in the concept class of C(L♦,�,¬[Prop]) are rather simple, we
can define a weaker notion of n-bisimulation.

Definition 4.2.10 (weak n-bisimulation). Two pointed Kripke models (M, s) = ((WM , RM , VM ), s) and
(N, s′) = ((WN , RN , VN ), s

′) are weakly n-bisimilar if there exists a set of relations Z0, . . . , Zn between
WM and Wn s.t.

i. sZ0s
′.
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ii. If sZns′ then s and s′ agree on propositional variables.

iii. If wZiw′ and wRMu, then there exists v s.t. w′RNv and uZi+1v (where i+ 1 ≤ n).

iv. If wZiw′ and w′RNv, then there exists u s.t. wRMu and uZi+1v (where i+ 1 ≤ n).

The difference between this weak version and n-bismulation is the subset clause that we had between
the relations Z0, . . . Zn. But this weaker version is enough to make concepts of C(L♦,�,¬[Prop]) invariant.

Proposition 4.2.11. For every concept ϕ of the concept class C(L♦,�¬[Prop]) with d(ϕ) = n, condition
i. given below implies condition ii.

i. (M, s) and (N, s) are weakly n-bisimilar pointed Kripke models.

ii. (M, s) |= ϕ if and only if (N, s) |= ϕ.

Proof. The proof is by induction on the complexity or depth of the formula (in this case, both of them
coincide). If ϕ is of depth 0, then by condition ii of our weak n- bisimulation, the result follows. Now
assume our claim holds for formulas of depth < n.

Let ϕ be a formula of depth n, then either ϕ = �ψ or ϕ = ♦ψ, where d(ψ) < n. We analyse the former
case first. Suppose (M, s) |= �ψ and (M, s) is weakly n-bisimilar to (N, s′) via the relations Z0, . . . Zn. By
definition of satisfaction, for every w with sRMw, we have (M,w) |= ψ. But notice that by condition iv.
of weak n-bisimulation for every w′ s.t. s′RNw′ there is a w′′ s.t. sRMw′′ and w′Z1w

′′, and furthermore
(M,w′′) and (N,w′) are weakly n-1-bisimilar via the relations Z1, . . . Zn. We use the I.H. to conclude
that (N,w′) |= ψ, and since w′ was arbitrary we get that (N, s) |= �ψ. For the other direction we use a
similar argument using condition iii.

We focus on the case where ϕ = ♦ψ. Suppose (M, s) |= ♦ϕ and (M, s) is weakly n-bisimilar to (N, s′)
via Z0, . . . Zn. By definition of satisfaction, there is a w with sRMW s.t. (M,w) |= ψ. Using condition
iii. we conclude that there must exist a w′ s.t. s′Rw′ and wZ1w

′. Now notice that Z1, . . . Zn witnesses
a weak n-bisimulation between (M,w) and (N,w′). Using I.H. we can conclude that (N,w′) |= ψ and
hence (N, s′) |= ♦ψ.

Lemma 4.2.12. For every n and S ⊆ Prop, the pointed Kripke models SRP [S] and LChainn[S] are
weakly n-bisimilar.

Proof. We assume that the underlying set for SRP [S] is {0}. We define the relations Z0, . . . , Zn as
follows: Zi = {(0, i)}. It easily follows that Z0, . . . , Zn witnesses a weak n-bisimulation between SRP [S]
and LChainn[S].

Lemma 4.2.13. For every m > n and S ⊆ Prop, we have that LChainn[∅] is weakly n-bisimilar to
LChainm[S].

Proof. We again define the set of relations Z0, . . . , Zn as follows: Zi = {(i, i)}. It is easy to verify that is
a weak n-bisimulation.
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The previous results will aid us to answer questions on finite characterization of C(L�,¬,⊥[Prop]).
Firstly we take into account the formulas of the form ϕ1 = Q1, . . . , Qnp, where Qi ∈ {�,♦} and p ∈ Prop.
Define the set

TPropϕ1
= {(SRP [∅],−), (SRP [{p}],+), (SRP [Prop],+)}

Notice that if ψ fits (SRP [{p}],+) then the propositional part of ψ is with p or ¬q, where p 6= q, according
to result 4.2.8. Similarly if ψ fits (SRP [Prop],+) then the propositional part of ψ cannot be the negation
of any propositional variables. Hence, every ψ fitting TPropϕ1 must have p as its propositional part. To
manipulate the modal part, we propose the set

TMod
ϕ1

= {(LChainn[{p}],+), (LChainn[∅],−)}

Suposse ψ fits TMod
ϕ1

∪ TPropϕ1 and d(ψ) > n, so we can assume ψ = Q′
1 . . . Q

′
nV1 . . . Vkp (since ψ fits

TPropϕ1 , we can assume the propositional part to be p). Now V1 can either be � or ♦. In the former case,
LChainn[∅] would be a positive example for ψ, a contradiction. In the latter case, LChainn[{p}] will
be a negative example, again a contradiction. By lemma 4.2.12 and result 4.2.8, ϕ1 fits LChainn[{p}]
and (LChainn[∅],−). So any ψ fitting TMod

ϕ1
∪ TPropϕ1 must have d(ψ) ≤ n and the propositional part

as p. Infact, TMod
ϕ1

gives us a better bound on d(ψ), whenever ψ fits TMod
ϕ2

. Now suppose d(ψ) < n

and ψ fits TMod
ϕ1

∪ TPropϕ1 , we can assume again that ψ = Q′
1 . . . Q

′
kp, where k < n. By lemma 4.2.13,

proposition 4.2.11 and the proposition 4.2.8, we conclude that LChainn[∅] and LChainn[{p}] must be
negative examples of ψ, a contradiction! Hence d(ψ) = n and the propositional part of ψ should be p,
whenever ψ fits TMod

ϕ1
∪ TPropϕ1 .

To finish our finite characterization, we define the following sets for each Qi,

TQi
ϕ1

=

{
{(LChaini−1[∅],+)} if Qi = �

{(LChaini−1[∅],−)} if Qi = ♦

Now suppose ψ fits TMod
ϕ1
∪TPropϕ1 ∪TQ1

ϕ1 ∪· · ·∪T
Qn
ϕ1 . From our previous discussion, since ψ fits TMod

ϕ1
∪TPropϕ1 ,

we can assume ψ = Q′
1 . . . Q

′
np. Suppose Q′

i 6= Qi for some i ≤ n, then it follows that ψ does not fit TQi
ϕ1 .

It follows that TMod
ϕ1

∪ TPropϕ1 ∪ TQ1
ϕ1 ∪ · · · ∪ T

Qn
ϕ1 is an unique characterization of ϕ1.

We analyse the case for the formulas of form ϕ2 = Q1 . . . Qn¬p. Firstly, for every pointed Kripke model
(M, s) = ((W,R, V ), s) over the set Prop, we define (M, s)∗ = ((W,R, V ∗), s), where V ∗(p) = W \ V (p).
We have this nice result

Proposition 4.2.14. For any n, S ⊆ Prop and a formula ϕ of C(L�,¬[Prop]) with d(ϕ) ≤ n, the
following holds:

LChainn[S] |= ϕ ⇐⇒ LChainn[S]
∗ |= ¬ϕ

Proof. The proof is again by induction on the depth of the formula ϕ. If the depth is 0, then our claim
follows straight from the way LChainn[S]

∗ is defined. Suppose our claim holds for any formula ψ with
d(ψ) < n.
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Assume ϕ = ♦ψ is a formula with d(ϕ) = n. Suppose LChainn[S] |= ϕ, then by definition
(LChainn[S], 1) |= ψ.4 Now since (LChainn[S], 1) is weakly n-1 bisimilar to (LChainn−1[S], 0), get
that LChainn−1[S] |= ψ. Using I.H. we get that LChainn−1[S]

∗ |= ψ. Again, (LChainn−1[S]
∗, 0) is

weakly n-bisimilar to (LChainn[S]
∗, 1) and finally we have (LChainn[S], 1)

∗ |= ψ, which immediately
gives us LChainn[S]∗ |= ♦ψ.

For the converse direction, just notice that ((M, s)∗)∗ = (M, s), for every pointed Kripke model (M, s).
This closes the induction argument and completes our proof.

Notice that ¬ϕ2 is equivalent to a formula of the form ϕ1. We already know that ϕ1 has an unique
characterization, Tϕ1 say. We define

Tϕ2 = {((M, s)∗, u) : ((M, s), u) ∈ Tϕ1} ∪ {(SRP [Prop],−)} ∪ {(SRP [∅],+)}

Since every ψ that fits Tϕ2 should fit (SRP [Prop],−), it follows that the propositional part of ψ cannot
be >, similarly Tϕ2 should fit (SRP [Prop],+), which means the propositional part of ψ cannot be ⊥.
Therefore, if ψ fits Tϕ2 then ψ is a concept of C(L�,¬[Prop]). By the previous proposition it follows that
{((M, s)∗, u) : ((M, s), u) ∈ Tϕ1} distinguishes ϕ2 from all the other concepts of C(L�,¬[Prop]), hence Tϕ2

is an unique characterization of ϕ2.

We consider the formulas of the form ϕ3 = Q1 . . . Qn>. Since we have the equivalence �> ↔ >, we
can assume Qn = ♦. Notice that every formula ψ fitting the set

TPropϕ3
= {(SRP [Prop],+), (SRP [∅],+)}

must have > as its propositional part, following result 4.2.8. Now for determining the modal part, we
propose the set

TMod
ϕ3

= {(PChainn[∅],+), (LChainn[∅],+)}

Suppose a formula ψ = Q′
1 . . . Q

′
nV1 . . . Vk> fits TMod

ϕ3
and ψ is not equivalent to a formula ψ′ with

d(ψ′) ≤ n. Therefore, atleast one of Vi is ♦. Suppose V1 = ♦, then ψ cannot fit (LChainn[∅],+). On
the other hand let j be the least index s.t. Vj = ♦ and for all i < j, Vi = �. We consider the pointed
Kripke model PChainn[∅], we consider the path (n, . . . n, n+ 1) of length i− 1, where we loop around n
for i− 2 and then take the path n+ 1. It is clear that PChainn[∅], n 6|= V1 . . . Vk> and we know that

PChainn[∅], 0 |= ψ ⇐⇒ PChainn[∅], n 6|= V1 . . . Vk>

hence ψ cannot fit (PChainn[∅],+). So we have that any ψ fitting TMod
ϕ3

, must have d(ψ) ≤ n. On
the other hand if for some concept ψ of C(L¬,�,⊥[Prop]) with the propositional part of ψ being > and
d(ψ) ≤ n, it trivially follows that PChainn[∅] |= ψ. Since n was arbitrary and ϕ3 was not used in the
previous description, we can extend our observation

4This is abusive notation what we actually mean by (LChainn[S], 1) is the pointed model ((W,R, V ), 1) where
LChainn[S] = ((W,R, V ), 0). We will abuse notation for this particular proof, but the reader can figure it out from
the context.
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Proposition 4.2.15. For every concept ψ of C(L¬,�,⊥[Prop]) with the propositional part of ψ being >,
and for every m, the following equivalence holds:

PChainm[∅] |= ψ & LChainm[∅] |= ψ ⇐⇒ d(ψ) ≤ m

�

Keeping this result in mind we define the following sets

TQi
ϕ3

=

{
{(LChaini−1[∅],−), (PChaini−1[∅],+)} if Qi = ♦

{(LChaini−1[∅],+), (PChaini−1[∅],−)} if Qi = �

Finally we claim that TPropϕ3 ∪ TMod
ϕ3

∪ TQ1
ϕ3 ∪ · · · ∪ T

Qn
ϕ3 is an unique characterization of ϕ3. It follows

from our discussion that every concept ψ of (L¬,�,⊥[Prop]) that fits TPropϕ3 ∪ TMod
ϕ3

must have > as its
propositional part and d(ψ) ≤ n. If ψ fits TQi

ϕ3 , by the previous proposition, it follows that d(ψ) > i− 1.
Therefore, we can assume ψ = Q′

1, . . . , Q
′
n>. Now it follows that if ψ fits TQi

ϕ3 , then Qi = Q′
i. This gives

us ψ ∼= ϕ3.

Our final analysis is of the formulas of the form ϕ4 = Q1 . . . Qn ⊥. Due to the equivalence ♦ ⊥↔⊥,
we can assume that Qn = �. Notice that, any formula ψ fitting

TPropϕ4
= {(SRP [Prop],−), (SRP [∅],−)}

must have ⊥ as its propositional part. To manipulate the modal part we propose the set

TMod
ϕ4

= {(PChainn[∅],−), (LChainn[∅],−)}

Any formula ψ fitting TPropϕ4 ∪ TMod
ϕ4

must be of the form ψ = Q′
1 . . . Q

′
nV1 . . . Vk ⊥. Let’s assume, aiming

for a contradiction, that d(ψ) > n. It follows that atleast one of Vi is �, if V1 = ♦ then ψ would not fit
(LChainn[∅],−). On the other hand let j be the least index s.t. Vj = �. We take the path (n, . . . , n, n+1)
of length i− 1, where we loop around n for i− 2 times then use R to reach the node n+ 1. As it turns
out ψ does not fit (LChainn[∅],−), a contradiction in both cases. Lastly, we define a collection of sets

TQi
ϕ4

=

{
{(LChaini−1[∅],+), (PChaini−1[∅],−)} if Qi = ♦

{(LChaini−1[∅],−), (PChaini−1[∅],+)} if Qi = �

We claim that TPropϕ4 ∪ TMod
ϕ4

∪ TQ1
ϕ4 ∪ · · · ∪ T

Qn
ϕ4 is an unique characterization of ϕ4. It follows from our

discussion that every concept ψ of (L¬,�,⊥[Prop]) that fits TPropϕ4 ∪TMod
ϕ4

must have ⊥ as its propositional
part and d(ψ) ≤ n. Now if a formula ψ fits TPropϕ4 ∪ TMod

ϕ4
∪ TQ1

ϕ4 ∪ · · · ∪ T
Qn
ϕ4 we assume it to be of the

form ψ = Q′
1 . . . Q

′
n ⊥, notice that since ψ fits TQi

ϕ4 as well we get that Qi = Q′
i. Finally we conclude that

ϕ4
∼= ψ. This finishes our proof gives us the following result.
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n+ 1

0(p) 1(∅) 2(p) . . . n(∅)R R R R

R

R

Figure 4.4: Diagram of PChainn[{0, 2}, {p}], here V ′(p) = {0, 2}

Theorem 4.2.16. The concept class C(L¬,�,⊥[Prop]) admits finite characterization. �

Infact this result can be extended further to Polynomial sized unique characterization.

Corollary 4.2.16.1. The collection C(L¬,�,⊥) admits PSUC. �

Proof. Notice that for any Prop, and any concept ϕ of C(L¬,�,⊥[Prop]), there is an unique characteriza-
tion, Tϕ say, of ϕ s.t.

|Tϕ| ≤ 2d(ϕ) + 10

Now as d(ϕ) ≤ |ϕ|, we can conclude that the polynomial 2|ϕ|+10 witnesses the PSUC of C(L¬,�,⊥).

4.2.2 The negative results

The next concept class we focus on analysing the fragments C(L♦,3XOR[Prop]),C(L♦,AIMP[Prop]) and
C(L♦,OXOR[Prop]) and its � counterparts. The difference between these concept classes from the others
we have discussed so far is that they do not admit finite characterization. To prove this formally, we
take the help of PC reductions. The main observation behind the proof is that the modal Logic K is not
locally tabular i.e. given a finite set of variables, there are only infinitely many non-equivalent formulas.
For example the sets

{p,♦p,♦♦p, . . .♦ip . . . } {p,�p,��p, . . .�ip . . . }

are infinite sets where no two formulas are equivalent. The idea is to replace/mimic each variable pi by
the formula ♦ip or �ip, for any formula of the concerned concept classes.

We firstly generalise our class of models PChainn[S]. For every n, S ⊆ Prop and S ⊆ {0, 1, . . . n},
we define a class of pointed Kripke models PChainn[S, S]. The underlying frame of PChainn[S, S] is the
same as PChainn[S], the only difference is the valuation function. Formally, assume that PChainn[S] =
((W,R, V ), 0), then PChainn[S, S] = ((W,R, V ′), 0), where

i ∈ V ′(p) ⇐⇒ i ∈ S

for every p ∈ S. Similarly we define the class LChainn[S, S], the reader can check the figures 4.4 and 4.5
for a better intuition. The following result is immedaiate.
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0(p) 1(∅) 2(p) . . . n(∅)R R R R

Figure 4.5: Diagram of LChainn[{0, 2}, {p}], here V ′(p) = {0, 2}

Proposition 4.2.17. For every pointed Kripke frame PChainn[S, S], we have the following equivalence

PChainn[S, S] |= �ip ⇐⇒ i ∈ S & p ∈ S

�

Proposition 4.2.18. For every pointed Kripke frame LChainn[S, S], we have the following equivalence

LChainn[S, S] |= �ip ⇐⇒ i ∈ S & p ∈ S

�

The next step is to define, for every set of propositional formulas Pr, two concept classes, namely
Rd♦(Pr) and Rd�(Pr). Remember that C(LPr[InfProp]) is the concept class which has all the proposi-
tional formulas formed using the infinite set of variables InfProp, as concepts. The example space is the
set of all variable assignments over InfProp. We define Rd♦(Pr) = (C,E, λ) as follows: For every concept
ϕ(pi1 , . . . , pik) of C(LPr[InfProp]) with it’s free variables displayed we define,

C = {ϕ(♦i1p/pi1 , . . . ,♦ikp/pik) : ϕ(pi1 , . . . pik) is a concept of C(LPr[InfProp])}

E is again the set of all pointed Kripke models, and λ(ψ) = {(N, s) ∈ E : (N, s) |= ψ}.
The concept class Rd�(Pr) is also defined similarly. The concepts of Rd♦(Pr) is the set

{ϕ(�i1p/pi1 , . . . ,�
ikp/pik) : ϕ(pi1 , . . . pik) is a concept of C(LPr[InfProp])}

The example space of Rd�(Pr) is same as that of Rd♦(Pr), and the assignment function for each concept
ψ of Rd�(Pr) is also the same as in Rd♦(Pr). It is easy of infer that Rd♦(Pr) and Rd�(Pr) are sub
concept classes of C(L♦,P r[{p}]) and C(L�,P r[{p}]), respectively.

For every set of propositional formulas Pr, there is a natural bijection from the concepts of C(LPr[InfProp])
to the concepts of Rd♦(Pr). We define the bijection, denoted by NDiaPr, as follows:

NDiaPr(ϕ(pi1 , . . . , pin)) = ϕ(♦i1p/pi1 , . . . ,♦
ikp/pik)

Analogous to NDiaPr, we define the function NBoxPr from the concepts of C(LPr[InfProp]) to the concepts
of Rd�(Pr),

NBoxPr(ϕ(pi1 , . . . , pin)) = ϕ(�i1p/pi1 , . . . ,�
ikp/pik)
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which is again a bijection. Our original goal is to define PC reductions from the concept class C(LPr[InfProp])
to the concept classes Rd�(Pr), and Rd♦(Pr). Following that we want to define a function TDiaPr, on
each pair (c, t), where c is a concept of Rd♦(Pr) and t = (e, q) is a labelled example of Rd♦(Pr) that fits
c. We define TDiaPr in the following way: TDiaPr(c, (e, q)) = {(α, q)} where,

α(pm) = 1 ⇐⇒ e |= ♦mp

Similarly, we define TBoxPr, on a pair (c′, (e′, q′)). Here c′ is a concept of Rd�(Pr) and (e′, q′) is a labelled
example of Rd�(Pr) that fits c. Define TBoxPr(c′, (e′, q′)) = {(α′, q)} where,

α′(pm) = 1 ⇐⇒ e′ |= �mp

Notice that TBoxPr and TDiaPr is invariant of the concepts (c′, c respectively) and just depend on the
example of the labelled example pairs ((e′, q′), (e, q) respectively). Furthermore, since for every Pr, the
example spaces of RdPr are identical, we get that TBoxPr(c, (e, q)) = TBoxPr′(c, (e, q)) where (e, q) is a
labelled example of Rd�(Pr) and Cl(Pr′) ⊆ Cl(Pr). We can say the same thing for TDiaPr,TDiaPr′ . As
a result of the previous definitions, we can prove the following claim:

Lemma 4.2.19. For every set of propositional formulas Pr, and every concept ϕ of C(LPr[InfProp]) we
have the following:

i. For any example e of Rd♦(Pr), NDiaPr(ϕ) fits (e, q) if and only if ϕ fits TDiaPr(ϕ, (e, q)).

ii. For any example e of Rd�(Pr), NBoxPr(ϕ) fits (e, q) if and only if ϕ fits TBoxPr(ϕ, (e, q)).

Proof. Notice that it is sufficient to prove the theorem for the set of propositional formulas {¬,∧}. Since
every set of boolean connectives Pr, any concept ϕ of the concept class C(LPr[InfProp]) can be expressed
as a DNF formula, ϕ′ say. We get that NDiaPr(ϕ) fits (e, q) iff NDia{¬,∧}(ϕ′) fits (e, q), on the other hand
ϕ fits TDiaPr(ϕ, (e, q)) iff ϕ′ fits TDia{¬,∧}(ϕ′, (e, q)). A similar statement hold for NBoxPr,NBoxPr.

We focus on i. first and proceed by induction on the complexity of ϕ. Suppose that (e, q) is a labelled
example and q is 1(0), additionally let ϕ = pk is a propositional variable i.e. a formula of complexity 0.
Assuming TDia(e, q) = (α, q), ϕ fits (α, q) if and only if α(pk) = 1(α(pk) = 0). By definition, α(pk) = 1 if
and only if e |= ♦kp. But notice that ♦kp = NDia(pk). This closes the base case.

Now assume for any formula of length < n, our claim holds. Let ψ be any formula of length n. ψ
either of the form ψ = ¬θ or ψ = η ∧ θ. For the former case, NDia(ψ) fits (e, q) if and only if NDia¬,∧(θ)
fits (e, 1− q). Using I.H. we get that NDia{¬,∧}(θ) fits (e, 1− q) if and only if θ fits TDia{¬,∧}(θ, (e, 1− q)).
Notice that TDia{¬,∧}(θ, (e, 1 − q)) = ({α, 1 − q}), if and only if TDia{¬,∧}(¬θ, (e, q)) = ({α, q}) and
by the definition of satisfaction we have that θ fits TDia{¬,∧}(θ, (e, 1 − q)) if and only if ¬θ = ψ fits
TDia{¬,∧}(¬θ, (e, q)). The chain of equivalences gives us our claim.

For the latter case, we see that NDia{¬,∧}(ψ) fits (e, q) depends on the value of q. Firstly, we assume
q = 1, then we have that the last condition happens iff NDia{¬,∧}(θ) and NDia{¬,∧}(η) both fits (e, q).
Using I.H. we get the last condition happens iff θ fits TDia{¬,∧}(θ, (e, q)) and η fits TDia{¬,∧}(η, (e, q)).
Again following the definition of the satisfaction relation, we conclude θ fits TDia{¬,∧}(θ, (e, q)) and η fits
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TDia{¬,∧}(η, (e, q)) iff θ ∧ η = ψ fits TDia{¬,∧}(η ∧ θ, (e, q)). This closes the induction case and our claim
is proven.

For the case of ii., we reuse the above proof. The reader can verify that the above proof changes to
a proof of ii., just by changing ♦ to � and the functions NDia{¬,∧},TDia{¬,∧} to NBox{¬,∧},TBox{¬,∧}
respectively.

The previous theorem shows us that NDiaPr and TDiaPr satisfy the second and fourth requirements
of PC reduction from C(LPr[InfProp]) to Rd♦(Pr). Similarly, the previous theorem again shows us that
NBoxPr and TBoxPr satisfy the second and fourth requirements of PC reduction from C(LPr[InfProp]) to
Rd�(Pr). in both the cases the constant polynomial p(x) = 1 satisfy the third condition of our reduction.
We focus on the fourth condition.

Definition 4.2.20. We call a variable assignment µ : InfProp→ {0, 1} eventually zero, if there exists an
i s.t. for every j ≤ i, µ(pj) = 0.

The interesting thing about eventually zero assignments is that they form a critical set of the for
every concept class C(LPr[InfProp]). In other words, if ϕ and ψ are two non-equivalent concepts of
C(LPr[InfProp]) then there is an eventually zero variable assignment, t say, s.t. t 6|= ϕ↔ ψ. Fortunately
for us, we can represent eventually zero variable assignments as pointed Kripke models. We define a
collection of functions RDiaPr and RBoxPr, from the example set of C(LPr[InfProp]) to the example set
of Rd♦ and Rd� respectively. Let t denote an eventually zero variable assignment, where i witness the
index s.t. for every j ≥ i, t(pj) = 0 let S be defined as follows: S = {m : t(pm) = 1}. Now we define,

RDiaPr(e) = LChaini[S, {p}]

RBoxPr(e) = PChaini[S, {p}]

The next result is immediate following propositions 4.2.17 and 4.2.18.

Lemma 4.2.21. For every concept ϕ and example e of C(LPr[InfProp]), we have the following

i. e |= ϕ if and only if RDiaPr(e) |= NDiaPr(ϕ).

ii. e |= ϕ if and only if RBoxPr(e) |= NBoxPr(ϕ).

Proof. It is enough to prove the theorem for the set {¬,∧}. Firstly, the definitions of RBoxPr and
RDiaPr are independent of Pr. So, for any e, RDiaPr(e) = RDia{¬,∧}(e). Again, notice that NDia{¬,∧}, is
distributive i.e. NDia{¬,∧}(ψ ∧ θ) = NDia{¬,∧}(ψ) ∧ NDia{¬,∧}(θ), and NDia{¬,∧}(¬ψ) = ¬NDia{¬,∧}(ψ).
We know what every concept class C(LPr[InfProp]) is a sub concept class of C(L{¬,∧}[InfProp]), and so
every concept ϕ of C(LPr[InfProp]), is also a concept of C(L{¬,∧}[InfProp]). Hence, from the definition,
NDiaPr(ϕ) = NDia{¬,∧}(ϕ).

We start by proving i and proceed via induction. The base case is simply given my the proposition
4.2.19. Now let our claim hold for any formula of complexity < n. Now assume that ϕ is a formula of
complexity n, therefore ϕ is either of the form ¬ψ or of the form ψ ∧ θ.
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For the former case, e |= ϕ if and only if e 6|= ψ. Now the latter case happens if and only if
RDia{¬,∧}(e) 6|= NDia{¬,∧}(ψ), using I.H. Now the latter case happens if and only if RDia{¬,∧}(e) |=
¬NDia{¬,∧}(ψ). But notice that ¬NDia{¬,∧}(ψ) = NDia{¬,∧}(¬ψ).

For the latter case, e |= ϕ if and only if e |= ψ and e |= θ. Using I.H. the latter statement holds
iff RDia{¬,∧}(e) |= NDia{¬,∧}(ψ) and RDia{¬,∧}(e) |= NDia{¬,∧}(θ). Now notice that NDia{¬,∧}(ψ) ∧
NDia{¬,∧}(θ) = NDia{¬,∧}(ψ∧θ). Therefore, RDia{¬,∧}(e) |= NDia{¬,∧}(ψ) and RDia{¬,∧}(e) |= NDia{¬,∧}(θ)
iff RDia{¬,∧}(e) |= NDia{¬,∧}(ψ ∧ θ). This closes the induction case and our claim is proven.

The proof for ii. is analogous. Again, just change NDia to NBox and RDia to RBox.

Theorem 4.2.22. For every set of propositional formulas Pr, the concept class C(LPr[InfProp]) is PC
reducible to the concept class Rd♦(Pr), and to the concept class Rd�(Pr)

Proof. For the reduction from C(LPr[InfProp]) to Rd♦(Pr), we use the maps NDiaPr,TDiaPr, RDiaPr and
the function p(x) = 1. Lemma 4.2.19 tells us condition 2 and 4 of the reduction is satisfied by our chosen
maps, and lemma 4.2.21 tells us condition 1 of the reduction holds as well. p(x) = 1 trivially satisfies
condition 3.

For the other reduction from C(LPr[InfProp]) to Rd�(Pr), we use the maps NBoxPr,TBoxPr, RBoxPr
and the function p(x) = 1. The previously mentioned lemmas work here as well, and so does p(x) = 1.

Theorem 4.2.23. For any set of propositional formulas Pr, if C(LPr[InfProp]) does not have finite
characterization, then C(L♦,P r[{p}]) and C(L�,P r[{p}]) does not have finite characterization as well.

Proof. The proof is trivial, suppose C(L♦,P r[{p}]) has finite characterization then Rd♦(Pr) has finite char-
acterization as well. Now from the previous theorem and using theorem 3.3.7.2 it implies C(LPr[InfProp])
have finite characterization. The contraposition is the statement of the theorem.

The same argument works for C(L�,P r[{p}]) as well, just change Rd♦(Pr) to Rd�(Pr).

Corollary 4.2.23.1. For every set of variables Prop 6= ∅, the concept classes C(L♦,3XOR[Prop]),
C(L♦,AIMP[Prop]) and C(L♦,OXOR[Prop]) does not admit finite characterizations.

Proof. Directly follows from the results 3.3.7.2 and 3.3.26.2 and the previous theorem.

4.2.3 The Main Results

We are now equipped with all the necessary tools to provide the main results of this section. The first group
of results provide complete characterizations of all the modal concept classes of the form C(L♦,P r[Prop])
and C(L♦,P r[Prop]), based on finite characterization. We exploit the structure of the lattices M� and
M♦, remember that they are both isomorphic to Post’s Lattice.

Theorem 4.2.24. For any set of propositional formulas Pr, the following are equivalent:

i. The concept class C(L♦,P r[Prop]) has finite characterization, where Prop is finite and non-empty.

ii. Cl(Func(Pr)) is a subset of (i) Cl(∧,∨,>,⊥) or (ii) Cl(¬,⊥)
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The above theorem is indeed a full classification of the sub-lattice M♦. To see this, suppose M(S)
denote any fragment from the sub-lattice M♦. It is the case thatM(S) =M({♦}∪Pr), where Pr is a set
of propositional formulas and Cl(Pr) should correspond to a clone in the Post Lattice (following theorem
4.1.16). Hence the above theorem is truly a complete classification of the sub-lattice M♦.

This is

Proof of theorem 4.2.24: Our proof strategy is the same as the propositional case: We carefully pick out
a splitting pair in the Post Lattice and analyse each of the fragments corresponding to the lattice. The
splitting pair we choose is the following:

{{M,U} , {PT∞
0 ,PT∞

1 ,AP}}

First suppose Cl(Func(Pr)) is a subset of M= Cl(∧,∨,>,⊥) or U= Cl(¬,⊥), which means C(L♦,P r[Prop])
is a sub concept class of either C(L♦,∧,∨,>,⊥[Prop]) or C(L♦,¬,⊥[Prop]). From the theorems 4.2.16 and
4.2.5 and 2.5.1 it follows that C(L♦,P r[Prop]) has finite characterization.

On the other hand if Cl(Func(Pr)) is a superset of PT∞
0 = Cl(AIMP),PT∞

1 = Cl(OXOR),AP =
Cl(3XOR), then C(L♦,AIMP[Prop]), C(L♦,AIMP[Prop]) or C(L♦,AIMP[Prop]) is a sub concept class of C(L♦,P r[Prop]).
Now from corollary 4.2.23.1, we can infer that in any of the cases C(L♦,P r[Prop]) does not have finite
characterization. This closes the proof.

We state a similar result for the fragment M�. The proof is essentially the same, we just need to
change every ♦ to � in the above proof.

Theorem 4.2.25. For any set of propositional formulas Pr, the following are equivalent:

i. The concept class C(L�,P r[Prop]) has finite characterization, where Prop is finite and non-empty.

ii. Cl(Func(Pr)) is a subset of (i) Cl(∧,∨,>,⊥) or (ii) Cl(¬,⊥) �

In the spirit of theorems 4.2.24 and 4.2.25, we can provide a classification of the sub-lattice M♦,�. As
we described earlier, the sub-lattice M♦,� is again isomorphic to the Post’s lattice and hence our proof
strategy is effectively the same. Our proof again depends on Cate and Koudijs’ work in [tCK24], where
they prove that the fragment C(L♦,�,∧,∨[Prop]).

Theorem 4.2.26. For any set of propositional formulas Pr, the following are equivalent:

i. The concept class C(L♦,�,P r[Prop]) has finite characterization, where Prop is finite and non-empty.

ii. Cl(Func(Pr)) is a subset of (i) Cl(∧,∨) or (ii) Cl(¬,⊥) �

Proof. We consider the splitting pair

{{MP,U} , {P0,VP1,AP}}

First suppose Cl(Func(Pr)) is a subset of MP= Cl(∧,∨) or U= Cl(¬,⊥), which means C(L♦,P r[Prop])
is a sub concept class of either C(L♦,�,∧,∨,[Prop]) or C(L♦,�,¬,⊥[Prop]). From Cate and Koudijs’s work
in [tCK24], theorem 4.2.16 and 2.5.1 it follows that C(L♦,�,P r[Prop]) has finite characterization.
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On the other hand if Cl(Func(Pr)) is a superset of P0 = Cl(∧,⊥),∨P1 = Cl(∨,>),AP = Cl(3XOR),
then C(L♦,∧,⊥[Prop]), C(L♦,∨,>[Prop]) or C(L♦,3XOR[Prop]) is a sub concept class of C(L♦,P r[Prop]). Now
from corollary 4.2.23.1 and results 2.5.1 and 2.5.2.2, we can infer that in any of the cases C(L♦,P r[Prop])
does not have finite characterization. This closes the proof.

The next group of results is focused on dedicability. We would like to remind the reader that for a
set of propositional formulas Pr, F(Pr) denotes the propositional formulas described by the elements of
Pr. Notice that given two sets of formulas of the form {♦p} ∪Pr1 and {♦p} ∪Pr2 where Pr1 and Pr2 are
propositional, the following holds

M({♦p} ∪ Pr1) ⊆M({♦p} ∪ Pr2) ⇐⇒ Cl(F({♦p} ∪ Pr1)) ⊆ Cl(F({♦p} ∪ Pr2))

Since the right hand side of the above equivalence is decidable, it is also decidable whether or not {♦p}∪
Pr1 ⊆ {♦p} ∪ Pr2. We build upon this result to have the following theorem

Theorem 4.2.27. Given a set of formulas of the form {♦p} ∪ Pr, where Pr is a set of propositional
formulas, it is decidable whether or not M({♦p} ∪ Pr ) has finite characterization.

Proof. We describe an algorithm that takes in an input {♦p} ∪ Pr and outputs yes or no depending
on whether or not M({♦p} ∪ Pr) has unique characterization. The algorithm simply asks whether
Cl(F(Pr)) ⊆ Cl(∧,∨,>,⊥) and Cl(F(Pr)) ⊆ Cl(¬,⊥). In the case both of the two queries is no,
the algorithm returns no, otherwise it returns yes.

We can provide a similar analysis of the formulas of the form {�p}∪Pr and of the form {�p,♦p}∪Pr.
This would in turn give us the following decidability results:

Theorem 4.2.28. Given a set of formulas of the form {�p} ∪ Pr, where Pr is a set of propositional
formulas, it is decidable whether or not M({�p} ∪ Pr ) has finite characterization. �

Theorem 4.2.29. Given a set of formulas of the form {�p,♦p} ∪ Pr, where Pr is propositional, it is
decidable whether or not M({�p,♦p} ∪ Pr ) has finite characterization. �

Following the results on unique characterizations, we want to focus on the learnability aspect. Since
we are concerned with finite characterizations we focus on effectively learnability.

Following the results 2.4.18 and 2.4.17, it is evident that eventual learnability and finite character-
izations coincide. It is easy to see that for every finite Prop, the concept class C(L♦,�,P r[Prop]) has
countably many concepts. We would like to point out to the reader that in the paper [tCD22], it is
proven that the concept class C(L∃,∧,∨,>,⊥[S]) has effective finite characterization (for any signature S),
via Alg1(x) say. Additionally, the translation from a S-structure (A, a) to a pointed Kripke model (MA, a)
is also effective, i.e. there is an algorithm that can return (MA, a) upon the input (A, a), let’s assume
this is done by Alg2(x). Therefore, for each concept ϕ of C(L♦,∧,∨,⊥,>[Prop]) we first change it to a
formula ϕ′ of C(L∃,∧,∨,⊥,>[SProp]). Now we get the unique characterization Tϕ′ of ϕ′ using Alg1(ϕ′) and
then emulate Alg2(A, a) for each (A, a) ∈ Tϕ′ . Therefore, we have an effective unique characterization for
C(L♦,∧,∨,⊥,>[Prop]).
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Moreover, the proof of obtaining an unique characterization for C(L♦,�,¬,⊥,>[Prop]) in theorem 4.2.16
can be done by an algorithm. Hence we have that C(L♦,¬,⊥[Prop]) has effective finite characterization.
On the other hand if we consider any other concept class of the form C(L♦,P r[Prop]), where Pr is a set
of propositional formulas and Cl(Pr) is not contained in Cl({♦,∧,∨,>,⊥}) nor Cl({♦,¬,>,⊥}) then
C(L♦,P r[Prop]) does not have finite characterization (following theorem 4.2.24). We use the theorems
2.4.17 and 2.4.18 to reach the following result.

Theorem 4.2.30. Let Pr be a set of propositional formulas, then the following equivalence holds:

C(L♦,P r[Prop]) is effectively learnable ⇐⇒ C(L♦,P r[Prop]) has finite characterization

Proof. Following the discussion above and theorems 2.4.17 and 2.4.18, we immediately get our result.

Theorem 4.2.31. For a set of propositional formulas Pr, the following are equivalent:

i. The concept class C(L♦,pr[Prop]) is effectively learnable, where Prop is finite and non-empty.

ii. Cl(Func(Pr)) is a subset of (i) Cl(∧,∨,>,⊥) or (ii) Cl(¬,⊥) �

Let ϕ be a concept of the concept class of C(L�,P r[Prop]), where Pr is a set of propositional formulas.
Remember that we can construct an unique characterization of ϕ from the unique characterization of its
negation translation ϕ−. Now remember that ϕ− is a concept of the concept class C(L♦,P r[PExt]), which
has effective characterization and we can effectively translate each element of the unique characterization
of ϕ− to form an unique characterization of ϕ. Hence, C(L�,P r[Prop]) has effective characterization, so
it is learnable. This allows us to extend the previous result.

Theorem 4.2.32. For a set of propositional formulas Pr, the following are equivalent:

i. The concept class C(L�,P r[Prop]) is effectively learnable, where Prop is finite and non-empty.

ii. Cl(Func(Pr)) is a subset of (i) Cl(∧,∨,>,⊥) or (ii) Cl(¬,⊥) �

Proof. The proof is basically the same as in theorem 4.2.31. We again just change ♦ to � and we are
done.

In addition to showing that C(L♦,�,∧,∨[Prop]) has finite characterization, Cate and Koudijs in their
work [tCK24] showed that the concept class C(L♦,�,∧,∨[Prop]) has effective finite characterization. We
build upon this result to provide the last result of this chapter.

Theorem 4.2.33. For a set of propositional formulas Pr, the following are equivalent:

i. The concept class C(L♦,�,P r[Prop]) is effectively learnable, where Prop is finite and non-empty.

ii. Cl(Func(Pr)) is a subset of (i) Cl(∧,∨) or (ii) Cl(¬,⊥) �
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Chapter 5

Conclusion and Future Work

To summarize, we provided six classifications for the propositional case. Three of those classifications
were about unique characterizations based on various upper-bound we considered; the other other were
the exact learnability notions stemming from those characterizations.

Similarly, in the modal case we provide six more classifications. Unlike the propositional case, in these
characterizations we consider three sub-lattices of the lattice all the possible modal fragments. We classify
the three sublattices based on finite characterizations, giving us our first three results. The latter three
results are characterizing these lattices based on effective learnability.

While providing the characterizations we have noticed that the results pertaining to the propositional
cases are in-fact stronger. Indeed the propositional classifications take into account all the fragments,
whereas the modal classifications are restricted to a particular sub-lattice of M . This gives way to the
first problem we encounter

1. Provide a complete classification of M , i.e. the lattice of all modal fragments.

This is a formidable task since the modal fragments are not investigated upon, and the lattice of infinite
clones has a complex structure.

The next question comes from the modal expressivity problem. Given a formula ϕ and a set of modal
formulas Md, we say ϕ is expressible inM(Md) if ϕ ∈M. The modal expressivity problem asks: Is there
an algorithm that takes as input ϕ and the set of modal formulas Md and return whether ϕ is expressible
in M(Md) or not? M.F. Ratsa proved that in the case of the logic S4, the answer is no (see [Rat89] in
Russian). B. Ten Cate’s work [tC09] proves that it is undecidable for K4 as well. So our next question is:

2. What is the answer to modal expressivity problem in the case of modal Logic K?

In the case of propositional logic, the answer was given by the fact that given a set of propositional
variables, there can only be finitely many non-equivalent formulas of it. The case where this property
doesn’t hold is yet to be investigated.

Out last set of questions is aimed at connecting our study to yet another branch of algebra, namely
varieties. The questions in this part is more speculative/non-rigorous due to the lack of literature con-
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necting these topics. The connection between hypervarieties and clones have been somewhat investigated
in the works [Tay73] and [Wis95].

3. What is the connection between varieties and the theory of clones?

4. If such a connection is established, can it be used to understand more about the fragments of modal
logic?

The existence of these connections would help us to use the pre-exisiting literature on varieties to under-
stand the structure of modal clones further.
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