
A Constructive Small Object Argument

MSc Thesis (Afstudeerscriptie)

written by

Paulus Johannes (Paul) Seip
(born February 9th, 1992 in Alphen aan den Rijn, The Netherlands)

under the supervision of Dr Benno van den Berg, and submitted to the
Examinations Board in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
September 17, 2024 Rodrigo Nicolau Almeida MSc

Dr Benno van den Berg (Supervisor)
Dr Léonard Guetta
Dr Petter Törnberg (Chair)

Abstract

The small object argument is an important tool in homotopy theory and recently also in
logic. Originally proved by Quillen in 1967, it has evolved significantly over time. In recent
work Bourke and Garner proved the most general version of the small object argument
thus far, using the notion of cofibrant generation by a double category. Moreover,
they proved that this version is sufficient to generate all interesting algebraic weak
factorisation systems. However, their proof is not constructively valid. In this thesis we
prove a constructive version of Bourke and Garner’s small object argument by restricting
to the finitary case. We introduce the notion of a finitary algebraic weak factorisation
system, and we identify conditions on a double category under which it generates a
finitary AWFS. Two crucial steps in the proof are constructing the free algebra for a
finitary pointed endofunctor, and constructing colimits in the category of finitary monads
on a cocomplete category. We show that our result is an important step in building a
constructive model of homotopy type theory based on effective Kan fibrations, a line of
research recently initiated by van den Berg and Faber.

Title: A Constructive Small Object Argument
Author: Paul Seip,
Supervisor: dr. Benno van den Berg,
Defence date: September 17, 2024

Institute for Logic, Language and Computation
University of Amsterdam
Science Park 107, 1098 XG Amsterdam
http://www.illc.uva.nl

http://www.illc.uva.nl

Acknowledgements

First and foremost, I would like to thank my supervisor Benno van den Berg. For your
trust in me, your excellent guidance – in writing this thesis and beyond, and for giving
me the opportunity to undertake relevant research in the area of category theory. You
introduced me to the elegance of category theory, it has been a wonderful journey. Thanks
to John Bourke, for your involvement in this thesis, providing useful suggestions and
directions for future research. Thanks to the committee members, for carefully reading
my thesis and providing interesting questions and remarks. Thanks to Wijnand van
Woerkom, for proofreading this thesis, useful comments, and several fruitful discussions.
Thanks to Alyssa Renata, for giving feedback on my thesis presentation. Thanks to Nick
Bezhanishvili, for being my academic mentor and for inspiring me as one of my first
teachers in logic.
Thanks to all the other teachers that inspired me in mathematics and logic during

these years; your passion for the subject always made studying feel like an an exciting
prospect to me rather than an obligation.

Thanks to all the students I had the pleasure of TA’ing over the past years, for making
teaching so much fun.
Thanks to all the friends that accompanied me on this journey. The dinner gang, for

being like family to me. The “fixed residents” of the MoL room, for making a day of
study so much more fun. Cycling friends, for all the coffee and cake we enjoyed during
our many rides throughout the Netherlands and beyond. Climbing/bouldering friends,
for climbing to new heights together and for sharing some of the most magnificent views
I have seen. Ping-pong friends, for providing a lively distraction during a day of study.
Wijnand, for being in the intersection of these groups; Bürak, for studying countless
hours together on Zoom; Katja, for being a great neighbour; Ezra, for sharing your
knowledge so generously.

My life would not have been the same without you all. Your friendship truly made my
time in Amsterdam incredible, it has been one of the best in my life.

Last but not least, I want to thank my family and in particular my parents. For your
constant support and love, I dedicate this thesis to you.

Contents

1. Introduction 3
1.1. Small Object Argument . 3
1.2. Constructive Mathematics . 5
1.3. A Constructive Model of Homotopy Type Theory 5
1.4. Effective Kan Fibrations . 6
1.5. Contribution and Structure of this Thesis 7

2. Preliminaries 9
2.1. Smallness in Categories . 9
2.2. Algebraic Weak Factorisation Systems . 9
2.3. Lifting Structures . 14
2.4. Double Categories . 16

3. A Beck Theorem for AWFS 20
3.1. Semantics Functors . 20
3.2. Monads over the Codomain Functor . 24
3.3. Essential Image of the Semantics Functors 27

4. Free Algebras for Pointed Endofunctors 29
4.1. Algebraic Chains . 29
4.2. Existence of the Free Algebra . 32

5. Free Monads and Finitary Monads 39
5.1. Category of Monads . 39
5.2. Existence of the Free Monad . 42
5.3. Colimits of Finitary Monads . 44

5.3.1. Well-pointed Endofunctors . 44
5.3.2. The Category T/C . 46
5.3.3. Effective Repletions . 47
5.3.4. Constructing the Colimit . 50

6. Cofibrant Generation by a Category 59
6.1. Lifting Operations . 59
6.2. Split Epimorphisms . 60
6.3. The Finitary Small Object Argument for Categories 62

7. Cofibrant Generation by a Double Category 68
7.1. Double Categorical Lifting Operations . 68

1

7.2. The Finitary Small Object Argument for Double Categories 70
7.3. Presheaf Categories . 72

8. Conclusion 73

Bibliography 75

A. Category Theory Background 77
A.1. Monads and Comonads . 77
A.2. Beck’s Monadicity Theorem . 78
A.3. Kan Extensions . 80

2

1. Introduction

1.1. Small Object Argument

Weak Factorisation Systems. A weak factorisation system (WFS) on a category C
consists of two classes of morphisms, a left class L and a right class R, satisfying certain
axioms, for example that each morphism in C factors as a left map followed by a right
map. These systems arise naturally in many areas of mathematics and are particularly
ubiquitous in homotopy theory. For instance every model category has two interacting
weak factorisation systems [13, 20]. The small object argument, originally proved by
Quillen in 1967 [19], is an important tool to generate such systems. Starting with a
set I of morphisms in C subject to certain smallness conditions, it states that the weak
factorisation system ‘freely generated’ by I exists; this is called the WFS cofibrantly
generated by I. The proof relies on a transfinite construction to factorise a morphism
into a left and a right map.

Over the years the theory of weak factorisation systems has evolved significantly, which
has resulted in the ‘algebraization’ of the concept of a weak factorisation system. That
is, a more structured version of the concept where properties are turned into algebraic
structure. This led to the concept of natural weak factorisation systems, introduced by
Grandis and Tholen in 2006 [11]. Instead of a left class L and a right class R, we now have
a category of coalgebras L-Coalg and a category of algebras R-Alg for some comonad L
and monad R. Subsequently the concept algebraic weak factorisation systems (AWFS)
arose [21]. This is a natural weak factorisation system with an additional distributivity
law of the comonad over the monad.

This algebraic version of a weak factorisation system has several advantages. Firstly it
makes the theory more constructive, as it leads to explicit lifts, explicit factorisations,
and explicit structure that shows that a morphism is a left or right map. Secondly it
captures more examples than the non-algebraic variant, making it more general. For
instance the split Grothendieck fibrations occur as the class of right maps of an AWFS,
but not of a WFS. Other examples include classical homotopical structures [10, 21] and
also several variants of fibrations emerging in type theory and homotopy type theory [2,
9]. Thirdly, it has better categorical properties. For example it comes with a category of
left maps closed under colimits and a category of right maps closed under limits.

The Algebraic Small Object Argument. Along with this evolution of weak fac-
torisation systems, the small object argument has evolved as well. Indeed, since this is
the standard tool to generate weak factorisation systems, one would desire an algebraic
variant of this as well. This adaptation was done by Garner in 2009 [10], when he proved
the algebraic small object argument. This uses the notion of cofibrant generation by a

3

small category instead of a set. He shows that under a suitable size condition,1 every
small category generates an accessible algebraic weak factorisation system, that is, an
AWFS (C, L,R) where the underlying monad R and comonad L preserve κ-filtered colimits
for some regular cardinal κ. However, it was noted in a subsequent paper by Bourke and
Garner [7] that the notion of cofibrant generation by a category is insufficient to capture
all interesting AWFS. They introduce the notion of cofibrant generation by a double
category. They then prove an even more general version of the small object argument,
which states that under a suitable size condition any small double category generates an
accessible AWFS. Moreover, they also prove a converse result: every accessible AWFS
is generated by some small double category, thus proving that this version of the small
object argument is sufficient to generate all interesting examples.

Constructivity. What is still missing in this picture is a constructive small object
argument. The constructive issue here is that the theory of ordinals and cardinals is
classical, and is not well-developed constructively. In their proof, Bourke and Garner
rely on Kelly’s monumental work [15] for the existence of several free structures using
transfinite constructions that are not constructively valid (using for instance the fact
that the ordinals are well-ordered).
The aim of this thesis is to prove a constructive version of Bourke and Garner’s

algebraic small object argument for double categories. We circumvent the constructive
issues by introducing the notion of a finitary AWFS. This is an AWFS (C, L,R) where
the underlying monad R and comonad L are finitary, i.e. preserve ω-filtered colimits.
We then proceed to prove a finitary version of the small object argument: we identify
conditions under which a double category generates a finitary AWFS. More specifically,
we prove the following theorem.

Theorem (finitary small object argument). Let C be a locally small, (countably) co-
complete category,2 and let U : J → Sq(C) be a double functor subject to the following
conditions

1. J is small,

2. the object Uj is ω-compact3 for every object j ∈ J0.

Then the AWFS cofibrantly generated by U exists and is finitary.

It appears as Theorem 6 in this thesis. Moreover, the proof we provide is constructive. In
the rest of the introduction, we illustrate the usefulness of the above theorem by showing
that it is an important step in the development of a constructive model of homotopy
type theory based on effective Kan fibrations. Let us first give a brief introduction to
constructive mathematics.

1The base category C is locally presentable.
2In this thesis, we show the theorem for cocomplete categories, but inspecting the proof shows that it
can easily be adapted to the case of a countably cocomplete category.

3That is, the functor homC(Uj,−) : C → Sets is finitary.

4

1.2. Constructive Mathematics

Constructive mathematics is distinguished from classical mathematics by the logic that it
is based on: intuitionistic logic instead of classical logic. Certain axioms that are true in
classical logic, such as the law of the excluded middle, are not valid intuitionistically. The
program of defining the foundations of mathematics on intuitionistic logic was started
by L.E.J. Brouwer and further developed by his student Arend Heyting. The standard
explanation of intuitionistic logic is the BHK interpretation, which emphasises the notion
of a proof as an effective procedure. For example ‘there exists’ is interpreted as ‘we can
construct’. This point of view is strengthened by the Curry–Howard isomorphism, which
establishes a one-to-one correspondence between proofs in intuitionistic propositional
logic and terms in lambda calculus. This enables one to transfer between both worlds,
which led to the interpretation of ‘propositions as types’ and ‘proofs as programs’, thus
showing that intuitionistic logic and computation are fundamentally linked. Therefore,
providing a constructive proof of a theorem has the following advantages over a classical
proof:

• By the above correspondence, a constructive proof has a computational content,
we could in principle carry out the proof algorithmically. This makes constructive
proofs particularly well-suited for implementation in theorem provers such as Coq.

• Since the axiom system of intuitionistic logic is a subset of classical logic, a
constructive proof is ‘stronger’ and thus more general. They can be internalised to
arbitrary Grothendieck toposes (not just Sets).

In this thesis, we work in Aczel’s constructive set theory CZF [18], which is a subsystem
of classical ZF, Zermelo-Fraenkel set theory (without choice). This means that we cannot
make use of certain classical principles that are common in mathematical arguments.
One example is the least number principle

A ⊆ N,∃x ∈ N(x ∈ A) ⇒ A has a smallest element.

This is not constructively true, since there might not be an effective procedure to find
such a smallest element. The theory of ordinals and cardinals is also not well-developed
constructively. For instance, it is not true constructively that the ordinals are totally
ordered, since it is not decidable whether α < β, α = β, or α > β. This makes most
transfinite arguments constructively invalid. However, induction on the natural numbers
is constructively valid. In Chapter 4 we make use of this; we work with the ordinal ω+ω,
for which the order is decidable.

1.3. A Constructive Model of Homotopy Type Theory

The classical Kan–Quillen model structure on the category of simplicial sets [19] is a
model category which is seen as the cornerstone of modern simplicial homotopy theory,
it provides a combinatorial model of homotopy theory. Kan fibrations play an important

5

role in this: they are the fibrations in the Kan–Quillen model structure, they serve as
combinatorial analogs of Serre fibrations of topological spaces.

One step in the construction of the Kan–Quillen model structure is to prove that Kan
fibrations form the right class of a weak factorisation system. Specifically, one can show
that

(Anodyne morphisms,Kan fibrations)

is a weak factorisation system. The proof of this relies on the Quillen small object
argument.
Though they originated in homotopy theory, weak factorisation systems have now

become important in logic as well, in particular for models of (homotopy) type theory [1].
Voevodsky [14] constructed a model of homotopy type theory based on the Kan–Quillen
model structure. However, his proof is not constructive. Indeed, it was shown by Bezem,
Coquand and Parmann [4] that it is constructively unprovable that Kan fibrations are
closed under pushforward along Kan fibrations. Since the type families are interpreted as
Kan fibrations in Voevodsky’s model, it is crucial that one can prove this property. In an
attempt to circumvent this problem, roughly two alternative approaches arose. Firstly,
to abandon simplicial sets and to turn to cubical sets. Researchers in this direction have
been able to constructively build a model of homotopy type theory in cubical sets [8].
Secondly, to stick with simplicial sets, but to introduce an alternative notion of a Kan
fibration, an ‘effective Kan fibration’ [2]. We zoom in a bit further on this approach in
the next section.

1.4. Effective Kan Fibrations

In [2] van den Berg and Faber introduce the notion of an effective Kan fibration as a tool
to constructively build a model of homotopy type theory.
In [3] van den Berg and Geerligs show that the effective Kan fibrations are the right

class of an algebraic weak factorisation system (AWFS). However, this result relies on
the small object argument for double categories as presented in [5] (equivalent to the one
presented by Bourke and Garner in [7]), which is not constructively valid. The question
of whether a constructive proof exists of their result is left as an open problem.
Their construction is along the following lines.

• A decidable sieve of ∆n is a sieve S ⊆ ∆n such that for any 0 ≤ m ≤ n and any
p : ∆m → ∆n it is decidable whether or not p factors through S.

• They define a double category over Sq(sSet), Dℓ → Sq(sSet), where the objects
of Dℓ are the decidable sieves. They show that RLP(Dℓ) is exactly the category of
effective Kan fibrations.

• Finally they apply [5, Proposition 18] to conclude that (LLP(RLP(Dℓ)),RLP(Dℓ))
is an AWFS, which means that the effective Kan fibrations are the right class in an
AWFS.

6

For the last step, note that the category Dℓ is small and the category sSet is locally
presentable, so that the conditions of the small object argument for double categories
are satisfied. In fact, even stronger conditions apply. We have that Dℓ is countable, and
moreover that every decidable sieve is a finite colimit of representables.
Corollary 4 then implies that the conditions of Theorem 6 are satisfied, whence in

order to provide a constructive proof of the fact that the effective Kan fibrations are the
right class of an AWFS, it suffices to provide a constructive proof of Theorem 6.

1.5. Contribution and Structure of this Thesis

Goal. The aim of this thesis is to provide a constructive proof of a finitary version of
the small object argument, as stated in Theorem 6, and thereby to provide a solution
to the open problem left in [3]. Since this version is sufficient to show that the effective
Kan fibrations are the right class of an AWFS, this is an important step in building a
constructive model of homotopy type theory based on effective Kan fibrations.

For the outline of the proof of Theorem 6, we follow the paper of Bourke and Garner
[7]. The goal is thus twofold. Firstly, to adapt the parts that are constructively valid in
this proof to the finitary case and to present them in a more detailed way. Secondly, to
identify the non-constructive parts in the proof, and to replace these with constructively
valid proofs, adapted to the finitary version of the small object argument.

Bourke and Garner’s proof proceeds roughly in three steps:
Firstly they prove a Beck theorem for AWFS, which characterises the image of the

semantics functor (−)-Alg : AWFSlax → DBL2. This is helpful in the proof of the small
object argument since it allows one to prove that a double category is the right class of
an AWFS by checking the conditions of the Beck theorem.

Secondly they prove a small object argument for categories, which is equivalent to the
algebraic small object argument proved by Garner [10]. The crucial ingredient here is
the existence of the free algebra for an accessible pointed endofunctor, for which they
invoke Kelly [15, Theorem 22.3]. The proof uses a transfinite argument which is not
constructively valid.

Thirdly they prove a small object argument for double categories. The crucial ingredi-
ent here is the existence of coequalisers of accessible monads. For this they use another
result by Kelly [15, Theorem 27.1], which is also not constructively valid.

Contributions. The original contributions of this thesis can be summarised as follows:

• We introduce the notion of a finitary AWFS, and we formulate a finitary version of
the small object argument for categories (Theorem 5) and for double categories
(Theorem 6).

• We adapt the proof of Bourke and Garner’s small object argument [7] to this finitary
case.

7

• We identify the non-constructive parts of this proof, and replace these with con-
structive proofs. This can be summarised in two major steps:

(i) Constructing the free algebra on a finitary pointed endofunctor (Theorem 2).
Our proof of this is based on [6, Appendix A], and is adapted to the finitary
case.

(ii) Constructing colimits in the category of finitary monads on a cocomplete
category (Theorem 4). Our proof strategy is based on [15], again adapted to
the finitary case. The proof relies on the existence of the free algebra on a
pointed endofunctor, for which we use (i). Throughout the proof we explicitly
keep track of the construction and we introduce the notion of an effective
repletion to avoid the use of the axiom of choice.

Structure. In Chapter 2 we recall the preliminaries about algebraic weak factorisation
systems and double categories.

In Chapter 3 we recall the Beck theorem for AWFS proved by Bourke and Garner [7].
The proof of this is already constructively valid, we fill in the details left out in [7].

In Chapter 4 we provide a constructive proof that the free algebra on a finitary pointed
endofunctor (P, ρ) exists.

In Chapter 5 we show that the construction in Chapter 4 also provides the free monad
T on a pointed endofunctor, namely the monad induced by the free-forgetful adjunction
of the free algebra on (P, ρ). This was proven by Kelly [15], and we check that the proof
is constructively valid. Moreover, if P is finitary, then so is T. Subsequently we use our
result from Chapter 4 to constructively prove that the category of finitary monads on a
cocomplete category is cocomplete, which is a finitary version of [15, Theorem 27.1]. A
corollary of our construction is that the algebra functor which assigns to a monad its
category of algebras preserves limits, something that we need in the proof of Theorem 6
in Chapter 7.
In Chapter 6 we recall the notion of cofibrant generation by a category, and we give

a constructive proof of the finitary small object argument for categories. We depend
on Chapter 4 for a constructive proof of the existence of the free algebra for a finitary
pointed endofunctor, and on Chapter 5 to show that the resulting monad is again finitary,
and free on a pointed endofunctor.
In Chapter 7 we then give a proof of Theorem 6 which is constructively valid. The

proof relies on the finitary small object argument for categories as proven in Chapter
6, and depends on Chapter 5 to obtain coequalisers in the category of finitary monads
which are moreover preserved by the algebra functor.

Finally, in Chapter 8, we end with a summary of the thesis and some directions for
future research.

8

2. Preliminaries

In this chapter we give a brief introduction to the theory of algebraic weak factorisation
systems, a more detailed treatment can be found in [22].

2.1. Smallness in Categories

We first recall certain smallness conditions on a category. Let κ be a regular cardinal. A
category C is κ-filtered if every diagram I → C with |I1| < κ has a cocone.1 A κ-filtered
colimit is one over a κ-filtered category.

Definition 1. Let C be a category, X an object in C and κ a regular cardinal. We say
that

(i) X is κ-compact if the corepresentable functor

homC(X,−) : C → Sets

preserves κ-filtered colimits.

(ii) X is small if it is κ-compact for some regular cardinal κ.

A subclass S ↪→ Ob(C) generates C if every object in C is a colimit of objects in S,
that is, the colimit over a small diagram

D → C0 ↪→ C,

where C0 is the full subcategory on S. A category C is locally presentable if it is locally
small, has all small colimits, and if there exists a set S ↪→ Ob(C) of small objects that
generates C.
We call a presheaf finitely generated if it can be written as a finite colimit of repre-

sentables.
We call a functor that preserves all filtered colimits a finitary functor. We call a monad

R finitary if its underlying endofunctor R is finitary.

2.2. Algebraic Weak Factorisation Systems

Algebraic weak factorisation systems were originally introduced by Grandis and Tholen
[11] (under the name natural weak factorisation systems) as a more structured version

1We may just write ‘filtered’ for ω-filtered.

9

of weak factorisation systems. The first ingredient is a functorial factorisation system
on a category C. This is a functor F : C2 → C3 which is a section of the composition
functor ◦ : C3 → C2. Here C2 is the arrow category of C and C3 is the category of
composable pairs of arrows in C. Note that such a functor consists of three ‘components’
F = (L,E,R), where an arrow f : X → Y is sent to the pair

X
Lf
// Ef

Rf
// Y.

Since F is a section of the composition functor, we have Rf ◦ Lf = f , so that indeed we
have a factorisation of f . A functorial factorisation comes equipped with two natural
transformations η : 1 ⇒ R and ϵ : L⇒ 1 whose components at f are given respectively
by

X Ef

Y Y

Lf

Rff

1

ηf

X X

Ef Y

f

1

Rf

Lf
ϵf

Hence we have a pointed endofunctor (R, η) and a copointed endofunctor (L, ϵ). We now
define an algebraic weak factorisation system as follows.

Definition 2. An algebraic weak factorisation system (AWFS) on C consists of

• A functorial factorisation (L,E,R) on C,

• An extension of (L, ϵ) to a comonad L = (L, ϵ, δ),

• An extension of (R, η) to a monad R = (R, η, µ),

• The following square

Ef

LRf

��

δf
// ELf

RLf

��

ERf µf
// Ef

constitutes a distributive law LR⇒ RL of the comonad L over the monad R. This
is equivalent to the much simpler Garner equation [2],

δf ◦ µf = µLF ◦ E(δf , µf) ◦ δRf .

We call an AWFS accessible if its comonad L and monad R preserve κ-filtered colimits
for some regular cardinal κ. We call an AWFS finitary if its comonad and monad are
finitary.

10

Every algebraic weak factorisation system has an underlying weak factorisation system.
This can be recovered in two ways. Firstly we can take (L,R) = (L-Map, R-Map),
where L-Map is the class of maps in C that admit a coalgebra structure for the copointed
endofunctor (L, ϵ) and R-Map is the class of maps in C that admit an algebra structure
for the pointed endofunctor (R, η). Secondly, we can take L-Coalg and R-Alg, the
coalgebras for the comonad L and the algebras for the monad R and close these classes
under retracts. The following proposition states that these two are equivalent.

Proposition 1. Let (C, L,R) be an AWFS, then

(i) (L-Map, R-Map) is a weak factorisation system,

(ii) L-Map is the retract closure of L-Coalg and R-Map is the retract closure of
R-Alg.

Proof. See for instance [21].

For an AWFS to be finitary, it is sufficient that either its monad or its comonad is
finitary, as the next lemma states.

Lemma 1. Let (C, L,R) be an AWFS. If R is a finitary monad or L is a finitary comonad,
then the AWFS is finitary.

Proof. A map f : X → Y in C2 factors as X
Lf→ Ef

Rf→ Y . Since C2 is a presheaf category,
colimits are calculated pointwise. Hence L is finitary if and only if E : C2 → C is finitary,
and similarly for R.

Given the factorisation of a morphism f in C as Rf ◦ Lf , note that Rf underlies the
free R-algebra Rf = (Rf, µf) and Lf underlies the cofree L-coalgebra Lf = (Lf, δf).
Since the free R-algebra functor C2 → R-Alg : f 7→ (Rf, µf) is left adjoint to the
forgetful functor R-Alg → C2, we have that for any R-algebra g = (g, α) and morphism
(h, k) : f → g in C2 there is a unique arrow ℓ making the left diagram commute

A

Lf

f

��

h // C

g

��

Ef

Rf
��

∃!ℓ

>>

B
1
// B

k
// D

A

Lg
��

1 // A

g

��

Eg

α

>>

Rg
// B

(2.1)

and such that (ℓ, k) is an algebra morphism Rf → g. In particular, taking f = g and
(h, k) the identity, there is a unique filler ℓ for the diagram on the right such that (ℓ, 1) is
an algebra morphism Rg → g. But α itself has these properties. This shows that an
R-algebra is uniquely determined by its liftings against L-coalgebras. The dual fact can
also be stated for L-coalgebras.

11

Before we turn to morphisms of AWFS, we need the following lemma which states that
there is a one-to-one correspondence between lax monad morphisms over a functor T
and liftings of T to the category of algebras.

Lemma 2 [12, Lemma 1]. Let H = (H, η, µ) and K = (K, ι, ν) be two monads on
categories C and D respectively. There is a natural one-to-one correspondence between
liftings of T to the categories of algebras,

H-Alg

UH

��

T // K-Alg

UK

��

C
T

// D

and natural transformations λ : KT → TH making (T, λ) : H → K into a lax monad
morphism in the sense of [23], that is, making the following diagram commute

T

Tη !!

ιT // KT

λ
��

KKT
νToo

Kλ
��

TH KTH

λH
��

THH.
Tµ

dd

(2.2)

Proof. Assume we have a lax monad morphism (T, λ) : H → K. For an H-algebra
ξ : HX → X we define

T (HX
ξ→ X) = KTX

λX→ THX
Tξ→ TX.

To see that this is indeed a K-algebra, we observe the following two diagrams

TX
TηX

$$

1

��

ιTX // KTX

λX
��

THX

Tξ
��

TX.

KKTX

νTX

��

KλX // KTHX

λHX
��

KTξ
// KTX

λX
��

THHX
THξ

//

TµX
��

THX

Tξ
��

KTX
λX

// THX
Tξ

// TX.

In the left diagram, the upper triangle commutes since λ is a lax monad morphism,
and the lower triangle commutes since ξ is an H-algebra. In the right diagram, the left
square commutes since λ is a lax monad morphism, the upper right square commutes by
naturality of λ, and the lower right square commutes since ξ is an H-algebra.
Conversely, suppose we have a lifting T : H-Alg → K-Alg which commutes with

the forgetful functors. Note that we have the free-forgetful adjunctions FK ⊣ UK and

12

FH ⊣ UH . We firstly define λ : FKT → TFH as the transpose of the map T
Tη→ TH =

TUHFH = UKTFH . Next we define λ as

KT = UKFKT
UKλ−→ UKTFH = TUHFH = TH.

We leave it to the reader to verify that this is indeed a lax monad morphism and that
the two constructions are mutually inverse.

Given two AWFS (L,R) and (L′,R′) on categories C and D respectively, a morphism
(F, α) : (C, L,R) → (D, L′,R′) consists of a functor F : C → D and a natural family of
maps αf : E′Ff → FEf such that for every morphism f : X → Y the following diagram
commutes

FX
L′Ff

{{

FLf

##

E′Ff

R′Ff ##

αf
// FEf

FRf{{

FY

Moreover we require the induced map (α, 1) : R′F 2 ⇒ F 2R to be a lax monad morphism
and similarly the induced map (1, α) : L′F 2 ⇒ F 2L to be an oplax comonad morphism.
This means that these natural transformations satisfy unit and associativity conditions.
For the former, we have the following two commutative diagrams

R′F 2

(α,1)

��

F 2

F2η ""

η′F2
<<

F 2R

R′F 2R
(α,1)R

// F 2RR

F2µ

��

R′R′F 2

R′(α,1)
99

µ′F2 %%

R′F 2

(α,1)
// F 2R.

(2.3)

For the oplax comonad morphism, we require the following two diagrams to commute

L′F 2

ϵ′F2

||

(1,α)

��

F 2

F 2L
F2ϵ

bb

L′F 2L
(1,α)L

// F 2LL

L′L′F 2

L′(1,α)
99

L′F 2
δ′F2

ee

(1,α)
// F 2L

F2δ

OO (2.4)

13

A transformation (F, α) ⇒ (G, β) between two morphisms of AWFS is a natural
transformation µ : F ⇒ G such that for every f : X → Y the following square commutes

E′Ff

E′(µX ,µY)
��

αf
// FEf

µEf

��

E′Gf
βf
// GEf.

These components form a 2-categoryAWFSlax. Note that we have a functorAWFSlax →
Cat2 which sends an AWFS (C,R, L) to the forgetful functor UR : R-Alg → C2. To see
that this is indeed a functor, suppose we have a morphism (F, α) : (C, L,R) → (D, L′,R′) of
AWFS. Then since F underlies a monad morphism, by Lemma 2 the functor F 2 : C2 → D2

lifts to a functor F : R-Alg → R′-Alg as in the following diagram

R-Alg

UR
��

F // R′-Alg

UR
′

��

C2

F2
// D2.

F sends an R-algebra (f, s) to the R′-algebra (Ff, t) where t = (t0, idFY) with t0 defined
as the composition

E′Ff
αf
// FEf

Fs0 // FX.

In the next section we introduce lifting structures, it turns out that there is a close
connection between lifting structures and R-algebras, L-coalgebras.

2.3. Lifting Structures

Given a commutative square σ : g → f , we call σ a lifting problem for g and f , and a
diagonal filler φ of σ a solution to the lifting problem σ:

g

��

σ0 //

f

��

σ1
//

φ
??

.

We say that f has the right lifting property (RLP) against g if for every lifting problem
σ : g → f a solution exists. Equivalently, we say that g has the left lifting property
against f (LLP). For a class of morphisms I in C, we write ⋔I for the class of maps in C
having the LLP against all maps in I and I⋔ for the class of all maps having the RLP
against all maps in I.
Let C be a category and m : I → C2 be a functor. We define the category of right

lifting structure I⋔ as follows.

14

• Objects are pairs (f, φ), where f : X → Y is a morphism in C and φ is an operation
that picks a lift φi(σ) for every lifting problem σ : m(i) → f ,

m(i)

��

σ0 //

f

��
σ1
//

??

m(j)

��

m(α)0
//

m(i)

��

σ0 //

f

��

m(α)1

//

77

σ1
//

??

subject to the condition that for any α : j → i in I, we have that φi(σ) ◦m(α)1 =
φj(σ ◦m(α)).

• A morphism (f, φ) → (g, ψ) is a map τ : f → g such that for any lifting problem
σ : m(i) → f , we have ψi(τ ◦ σ) = τ0 ◦ φi(σ).

m(i)

��

σ0 //

f

��

τ0 //

g

��
σ1
//

?? 77

τ1
//

Let (C, L,R) be an AWFS. Given an L-Map (f, λ) and an R-Map (g, ρ), we have a
canonical lifting operation

Φf ,g(σ) = ρ ◦ E(σ) ◦ λ, (2.5)

as illustrated in the following diagram

A
Lf

!!

f

��

σ0 // C
Lg

||

g

��

E(f)
Rf

}}

E(σ0,σ1)
// E(g)

Rg
""

ρ

DD

B
λ

DD

σ1
// D.

This gives us a map Φ : R-Map → L-Coalg⋔. This map is an isomorphism with inverse
given by (g, φ) 7→ (g, φLg,g(ϵg)), where Lg = (Lg, δg) is the cofree L-coalgebra on g.

X

Lg
��

1 // X

g

��

Ef

ρ
>>

Rg
// Y

(2.6)

The next lemma characterises the image of the induced map R-Alg → L-Coalg⋔.

Lemma 3 [7, Lemma 1]. The functor Φ : R-Alg → L-Coalg⋔ is injective on objects,
fully faithful, and its image is given by exactly those lifting structures (g, φ) for which we
have

φLf (u, v) ◦ µf = φLRf (φLf (u, v), v ◦ µf), (2.7)

15

as depicted in the following two diagrams,

A

Lf
��

1 // A

Lf

��

u // Y

g

��

Ef

LRf

��

ERf

==

µf
// Ef

FF

v
// X

A

Lf
��

u // Y

g

��

Ef

LRf

��

<<

ERf

EE

v◦µf
// X

Note that we have µf ◦ LRf = 1Ef by one of the unit laws of a monad.

Proof. See [7] or [22].

In the next section we introduce double categories and we show that the functor
AWFSlax → Cat2 can in fact be seen as a functor AWFSlax → DBL2, that is, the
forgetful functor upgrades to a double functor R-Alg → Sq(C).

2.4. Double Categories

A double category A is an internal category in Cat. This means that A consists of
two categories A0 and A1. The former consists of objects and horizontal arrows, while
the latter consists of vertical arrows and squares. Moreover, A comes equipped with a
composition, domain, codomain, and identity arrow, as shown in the following diagram.

A1×A0A1
◦ // A1

cod
//

dom //
A0.idoo

A double functor F : C → D is a pair of functors F0 : C0 → D0, F1 : C1 → D1 which is
compatible with squares, that is, it sends a square α : f → g to

F0(sf) F0(sg)

F1α=⇒

F0(tf) F0(tg) .

F1f

F0(sα)

F1g

F0(tα)

A typical example of a double category is the category of squares on any category C. The
objects are objects of C, the horizontal arrows as well as the vertical arrows are arrows in
C, and the squares are commutative squares in C. It is denoted by Sq(C). We define a
concrete double category over C as a functor V : A → Sq(C) such that V0 is the identity
and V1 is faithful.
Given an AWFS (L,R) on a category C we may consider the category R-Alg as a

double category, denoted as R-Alg, as follows.

16

• Objects are object of C,
• Horizontal morphisms are morphisms of C,
• Vertical morphisms are R-algebras,

• Squares are maps of R-algebras.

Given two composable R-algebras (g : X → Y, α : Rg → g) and (h : Y → Z, β : Rh→ h),
we need to define the vertical composition of these, i.e. we need to exhibit an R-algebra
structure κ : R(hg) → hg on the composition hg : X → Z,

E(hg)

R(hg)
��

κ // X

hg
��

Z
1Z

// Z

We define κ as the following composition

E(hg)
δhg
// EL(hg)

E(1,β◦E(g,1))
// E(g)

α // X,

where δ : L → L2 is the comonad multiplication. Denote this vertical composition by
β • α. It can be verified that this vertical composition works well with composition of
squares. That is, if we have two morphisms of R-algebras (u, v) : (f, α) → (h, γ) and
(v, w) : (g, β) → (k, λ), then (u,w) is a morphism (gf, β • α) → (kh, λ • γ). Hence we
indeed get a double category R-Alg. Dually we can also define the double category
L-Coalg. Note that, due to Lemma 3 every R-algebra is uniquely associated with a
lifting structure against L-coalgebras. One can verify that the canonical lifting structure
associated with the vertical composition h · g is given by

Φf ,h·g(u, v) = Φf ,g(u,Φf ,h(gu, v)), (2.8)

the ‘stepwise lift’ of f against h and g,

f

��

u //

g

��

h

��

v
//

??

GG

.

The forgetful functor UR : R-Alg → Sq(C) is a concrete double category over C.

Lemma 4. Let (C, L,R) be an AWFS, and consider the double categories R-Alg and
L-Coalg. For every f : X → Y in C the following two diagrams are squares of algebras

17

and coalgebras respectively

Ef

Rf

��

δf
// ELf

RLf

��

Ef

Rf
��

Y
1
// Y

X

Lf
��

1 // X

Lf

��

Ef

LRf
��

ERf µf
// Ef

Proof. We focus on the right diagram. By the dual of Lemma 2.7, the functor L-Coalg →
⋔R-Alg is fully faithful and injective on objects. Thus, it is sufficient to show that its
image (1, µf) is a morphism in the category ⋔R-Alg between the lifting structures induced
by LRf ·Lf and Lf . Note that by the dual of (2.8) the lifting operation associated to
LRf ·Lf is the stepwise lifting operation

ΦLRf ·Lf ,g(σ0, σ1) = ΦLRf ,g(ΦLf ,g(σ0, σ1 ◦ LRf), σ1). (2.9)

Now let (u, v) : Lf → g be a lifting problem with g an R-algebra. To show that (1, µf)
is a morphism of lifting structures, we need to show that

ΦLRf ·Lf ,g(u, v ◦ µf) = ΦLf ,g(u, v) ◦ µf .

But by (2.9) this is precisely (2.7) in Lemma 3. Thus, the statement that the right
diagram is a square of algebras is a reformulation of (2.7). Dually we have that the
square on the left is a square of coalgebras.

In the next proposition we show that the ‘semantics functor’ is in fact a functor to
DBL2, the arrow category of double categories. Firstly we need a lemma that shows
how the canonical lifting operation interacts with morphisms of AWFS.

Lemma 5. Let (F, α) : (C, L,R) → (D, L′,R′) be a morphism of AWFS. For each
morphism f in C, R-algebra g = (g, p), and morphism (u, v) : Lf → g we have

FΦLf ,g(u, v) ◦ αf = ΦL′Ff ,Fg(Fu, Fv ◦ αf),

where Lf = (Lf, δf) is the cofree L-coalgebra.

Proof. We calculate:

FΦLf ,g(u, v) ◦ αf = F (p ◦ E(u, v) ◦ δf) ◦ αf (Def. Φ)

= Fp ◦ FE(u, v) ◦ Fδf ◦ αf (Functoriality F)

= Fp ◦ FE(u, v) ◦ αLf ◦ E′(1, αf) ◦ δ′Ff (2.4)

= Fp ◦ αg ◦ E′(Fu, Fv) ◦ E′(1, αf) ◦ δ′Ff (Naturality α)

= Fp ◦ αg ◦ E′(Fu, Fv ◦ αf) ◦ δ′Ff (Functoriality E′)

= ΦL′Ff ,Fg(Fu, Fv ◦ αf) (Def. Φ)

18

Proposition 2. We have a functor (−)-Alg : AWFSlax → DBL2 which sends an
AWFS (L,R) to the forgetful double functor UR : R-Alg → Sq(C). This is called the
(right) semantics functor. Dually we have the (left) semantics functor

(−)-Coalg : AWFSoplax → DBL2 .

Proof. In order to prove the proposition, we need to show that the lifted functor F :
R-Alg → R′-Alg is in fact a double functor

R-Alg

UR

��

F // R′-Alg

UR
′

��

Sq(C)
F2
// Sq(D).

That is, we need to show that F preserves vertical composition. So let g = (g : X → Y, p)
and h = (h : Y → Z, q) be two R-algebras, with vertical composition h · g = (hg, q • p).
We want to show that F (h · g) = F (h) · F (g). by (2.6) it is sufficient to show that the
corresponding lifting operations are equal for the following square

FX

L′F (hg)
��

1FX // FX

F (hg)
��

E′F (hg)

66

R′F (hg)
// FZ

To this end, firstly by Lemma 2.4 we have that for each morphism f , R-algebra g, and
morphism (u, v) : Lf → g,

FΦLf ,g(u, v) ◦ αf = ΦL′Ff ,Fg(Fu, Fv ◦ αf).

Now using this together with (2.8) we calculate:

ΦL′Ff ,F (h·g)(Fu, Fv ◦ αhg) = FΦLf ,h·g(u, v) ◦ αhg
= F (ΦLf ,g(u,ΦLf ,h(gu, v)) ◦ αhg
= ΦL′Ff,Fg(Fu, FΦLf ,h(gu, v) ◦ αhg)
= ΦL′Ff,Fg(Fu,ΦL′Ff,Fh(F (gu) ◦ Fv ◦ αhg))
= ΦL′Ff,Fh·Fg(Fu, Fv ◦ αhg).

Finally, if we instantiate this with f = hg, (u, v) = (1, Rhg), and use the fact that
FR(hg) ◦ αhg = R′F (hg), we find that

ΦL′F (hg),F (h·g)(1, R
′F (hg)) = ΦL′F (hg),Fh·Fg(1, R

′F (hg)),

as desired.

As a result of Proposition 2 we have a left and a right semantics functor

(−)-Coalg : AWFSoplax → DBL2, (−)-Alg : AWFSlax → DBL2 .

In the next chapter, we prove a Beck theorem for AWFS, which characterises the image
of these functors.

19

3. A Beck Theorem for AWFS

In this chapter we recall a Beck theorem for AWFS (Theorem 1) which was proved
by Bourke and Garner [7]. Whereas the original Beck monadicity theorem (Theorem
7, Appendix A.2) characterises the essential image of the algebra functor (−)-Alg :
Mnd(C)op → Cat /C, the Beck theorem for AWFS characterises the essential image of
the semantics functor (−)-Alg : AWFSlax → DBL2, which sends an AWFS to its right
class. Proving that a small double category J → Sq(C) generates an AWFS then reduces
to verifying that J⋔⋔ → Sq(C) satisfies the two conditions of the Beck theorem. It is an
important tool to streamline the proof of the small object argument.
This chapter is based on [7, Section 3]. We fill in the details omitted there.

3.1. Semantics Functors

Firstly, we show that the semantics functors are in fact fully faithful.

Proposition 3 [7, Proposition 2]. The functors (−)-Coalg : AWFSoplax → DBL2 and
(−)-Alg : AWFSlax → DBL2 are fully faithful.

Proof. By duality, it is sufficient to consider the case (−)-Alg. We need to show that the
functor induces a bijection

homAWFSlax
((C, L,R), (D, L′,R′)) ∼= homDBL2(R-Alg UR→ Sq(C),R′-Alg UR

′

→ Sq(D)).

Assume we have a morphism as on the left,

R-Alg

UR

��

F // R′-Alg

UR
′

��

Sq(C)
Sq(F)

// Sq(D).

R-Alg

UR
��

F // R′-Alg

UR
′

��

C2

F2
// D2.

Note that every functor Sq(C) → Sq(D) must be of the form Sq(F) for some functor
F : C → D. By looking at the action on vertical arrows, we get an induced morphism
as on the right above. By Lemma 2 this is induced by a unique lax monad morphism
λ : R′F 2 → F 2R. The unit condition implies that we have the following commutative

20

diagram on the left

FX

FLf

''

Ff
��

L′Ff
// EFf

R′Ff
��

λ0 // FEf

FRf
��

FY

1

881
// FY

λ1
// FY

E′Ff

E′F (u,v)
��

αf
// FEf

FE(u,v)

��

E′Fg αg
// FEg

It follows that λ is of the form λ = (α, 1) for natural maps αf , with the property that
αf ◦ L′Ff = FLf for all f ∈ C2. Naturality of α means that for every morphism
(u, v) : f → g we have a commutative square as on the right. In particular, if we take the
morphism (f, 1) : f → 1 and use that Rf = E(f, 1), we obtain that FRf ◦ αf = R′Ff .
It remains to check that (1, α) : L′F 2 → F 2L is a lax comonad morphism L → L′ over
F 2. Note that the counit condition is given exactly by FRf ◦ αf = R′Ff . It remains to
show the condition for the comultiplication. To this end, we observe the following two
diagrams

E′Ff

R′Ff

��

δ′Ff
// E′L′Ff

R′L′Ff
��

E′(1,αf)
// E′FLf

R′FLf
��

αLf
// FELf

FRLf

��

E′Ff αf
//

R′Ff
��

FEf

FRf
��

1
// FEf

FRf
��

FBFB
1

// // FB
1

// FB
1

// FB

E′Ff

R′Ff

��

αf
// FEf

FRf

��

Fδf
// FELf

FRLf

��

FEf

FRf
��

FB
1
// FB

1
// FB

All squares in these diagrams are morphisms of R-algebras. Indeed, the leftmost square
and the rightmost square are so by Lemma 4; the other squares are because (α, 1) is a lax
monad morphism. Hence, the outer squares are also maps of R-algebras. Now we claim
that if we compose both squares on the left with the unit morphism (L′Ff, 1) : Ff →
R′Ff , they have the same composite, namely FLLf . Note that the following diagram
commutes

FX

L′L′Ff
��

1 // FX

L′FLf
��

1 // FX

FLLf
��

E′L′Ff
E′(1,αf)

// E′FLf αLf
// FELf

The left square is the morphism L′(1, αf), whereas the right square is the counit condition
for Lf . Using this and the fact that δg ◦ Lg = LLg for all g, we compute:

αLf ◦ E′(1, αf) ◦ δ′Ff ◦ L′Ff = αLf ◦ E′(1, αf) ◦ L′L′Ff

= αLf ◦ L′FLf

= FLLf

21

= F (δf ◦ Lf)
= Fδf ◦ FLf
= Fδf ◦ αf ◦ L′Ff.

But then it follows by freeness of R′Ff , as in (2.1), that we have

αLf ◦ E′(1, αf) ◦ δ′Ff = Fδf ◦ αf .

We conclude that (1, α) is an oplax comonad morphism, which completes the proof.

The following proposition shows that constructing an AWFS for a given monad R on
C2 is equivalent to equipping the category of R-algebras with a vertical composition.

Proposition 4 [7, Proposition 4]. Let R be a monad on C2 over the codomain functor.
Then the right semantics functor (−)-Alg : AWFSlax → DBL2 induces a bijection
between AWFS (C, L,R) and extensions of R-Alg to a concrete double category of C.

Proof. Suppose we have a vertical composition law on R-algebras h, g 7→ h ∗ g which
is associative, unital, and compatible with R-algebra morphisms. We show that there
is a canonical AWFS (L,R) associated with this. We define the comonad L = (L, δ, ϵ)
as follows. L : C2 → C2 is defined by sending a morphism f to the upper map of the
unit of R, ηf : f → Rf . We define the counit ϵf := (1, Rf) : Lf → f in the usual
way. This gives us a pointed endofunctor (L, ϵ); it remains to define the comultiplication
δ : L → L2. Using diagram (2.1), we let δf be the unique arrow making the following
diagram commute

X

Lf

f

��

LLf
// ELf

RLf
��

Ef

Rf
��

δf

<<

Ef

Rf
��

Y
1
// Y

1
// Y

such that (δf , 1) : Rf → Rf∗RLf is an algebra morphism. This implies that γ◦E(δf , 1) =
δf ◦ µf where γ is the vertical composition of the algebras RLf and Rf . Note that
indeed, if ∗ would arise from an AWFS, then this square is exactly the left square in
Lemma 4, and hence it would be the unique possible choice for δf . We now firstly show
that the (lower components of) δ form a natural transformation δ : E → EL. To the end,
let f : X → Y be a morphism in C. We must show that for any morphism (u, v) : f → g
the following diagram commutes

Ef
E(u,v)

//

δf
��

Eg

δg
��

ELf
EL(u,v)

// ELg.

22

To show this, we observe the following two diagrams

X

f

��

Lf
// Ef

Rf

��

E(u,v)
// Eg

Rg

��

δg
// ELg

RLg

��

Eg

Rg
��

Y
1
// Y v

// B
1
// B

X

f

��

Lf
// Ef

Rf

��

δf
// ELf

RLf
��

EL(u,v)
// ELg

RLg

��

Ef
E(u,v)

//

Rf
��

Eg

Rg
��

Y
1
// Y v

// B
1
// B.

Note that every square is a morphism of R-algebras, and hence both outer squares are
morphisms of R-algebras. We claim that the upper morphisms of both diagrams are
equal. We compute:

EL(u, v) ◦ δf ◦ Lf = EL(u, v) ◦ LLf
= LLg ◦ u
= δg ◦ Lg ◦ u
= δg ◦ E(u, v) ◦ Lf.

For the first and the third equality we use the property of δ that comes with its definition.
For the second and the last equality we use the fact that for every (u, v) : α→ β, we have
E(u, v) ◦Lα = Lβ ◦ u. Now by freeness of Rf it follows that δg ◦E(u, v) = EL(u, v) ◦ δf .

Next we will show the coassociativity axiom, so we need to show that E(1, δf) ◦ δf =
δLf ◦ δf . This time, we look at the following two diagrams

Ef

Rf

��

δf
// ELf

RLf
��

E(1,δf)
// ELLf

RLLf
��

Ef

Rf
��

δf
// ELf

Rf∗RLf
��

Y
1
// Y

1
// Y

Ef

Rf

��

δf
// ELf

RLf
��

δLf
// ELLf

RLf∗RLLf
��

Ef

Rf
��

1 // Ef

Rf
��

Y
1
// Y

1
// Y.

Again, if we can show that their transposes along the free-forgetful adjunction are equal,
we can conclude that they are equal. To this end, we calculate:

E(1, δf) ◦ δf ◦ Lf = E(1, δf) ◦ LLf
= LLLf

= δLf ◦ LLf
= δLf ◦ δf ◦ Lf.

We leave the counit and distributivity axioms to the reader. It remains to show that the
vertical composition induced by the AWFS1 coincides with ∗. To the end, let h, g be two

1We denote this vertical composition with •.

23

morphisms and denote f = hg. We look at the following two diagrams,

A

LLf ""

Lf

��

1 // A

g

��

ELf

RLf
��

ℓ

==

B

h

��

Ef

Rf
��

1
// Ef

Rf
��

m

==

C
1
// C

1
// C

Ef

Rf

��

δf
// ELf

RLf

��

ℓ // A

g

��

Ef
m //

Rf
��

B

h
��

C
1
// C

1
// C.

Using again diagram (2.1), the map m is the unique map induced by (g, 1) : f → h, and
the map ℓ is the unique map induced by (1,m) : Lf → g. Hence, the two squares on
the right in the right diagram are R-algebra morphisms. Moreover, the left square in
the right diagram is an algebra morphism Rf → Rf ∗RLf by definition. It is also an
algebra morphism Rf → Rf •RLf by Lemma 4. But composing this with Lf gives the
identity, ℓ ◦ δf ◦ Lf = ℓ ◦ LLf = 1. We conclude that (ℓ ◦ δf , 1) : Rf → f is the algebra
structure of both h ∗ g and h • g, and thus they coincide. This concludes the proof.

3.2. Monads over the Codomain Functor

Before we can prove the Beck theorem, we still need a result which characterises when a
monad is isomorphic to one over the codomain functor; this is the next proposition.

Proposition 5 [7, Proposition 5]. A monad R on C2 is isomorphic to a monad over the
codomain functor if and only if:

(a) Each identity map has an R-algebra structure, denoted by 1X ;

(b) For every f : X → Y there is an algebra map (f, f) : 1X → 1Y ;

(c) For every R-algebra g : A→ B there is an algebra map (g, 1) : g → 1B.

Moreover, the algebra structure on identity arrows is unique.

Proof. Firstly, we recall that a monad R over the codomain means that we have a
commutative diagram

C2

cod
��

R // C2

cod
��

C

and moreover that cod(ηf) = 1 and cod(µf) = 1 for all f ∈ C2.

24

Assume R is a monad on C2 which is isomorphic to one over the codomain functor.
Clearly the properties (a) - (c) are invariant under isomorphism, so we may assume that
R itself is a monad over the codomain functor. From this, we see that there is a functor
E : C2 → C such that R maps an object f : X → Y of C2 to Rf : Ef → Y , and a
morphism (u, v) : f → g to (E(u, v), v) : Rf → Rg,

Ef

Rf
��

E(u,v)
// Eg

��

Rg
��

C v
// D

X

f
��

ηf
// Ef

Rf
��

Y
1
// Y

ERf

RRf
��

µf
// Ef

Rf
��

Y
1
// Y

We claim that the unique algebra structure on 1A is given by (R(1A), 1A) : R(1A) → 1A.
To prove this, firstly note that the unit for every f looks as the middle diagram above.
In particular, we have that R(1A) ◦ η1A = 1A. This shows that the unit condition
is satisfied. For the multiplication, we have a diagram as on the right above. In
particular, we have for f = 1A that R(1A) ◦ µ1A = RR(1A). Combined with the fact that
R(R(1A), 1A) = (E(R(1A), 1A), 1A) : RR(1A) → 1A, we calculate

R(1A) ◦ E(R(1A), 1A) = RR(1A) = R(1A) ◦ µ1A .

This shows the multiplication condition, and hence proves that 1A has an algebra structure
given by (R(1A), 1A) : R(1A) → 1A. To see that this is unique, note that any R-algebra
on 1A has to satisfy the unit condition, as shown in the following diagram

A

1A

((

1A
��

η1A
// E(1A)

R(1A)
��

// A

1A
��

A

1A

55
1A // A // A.

Clearly this is only satisfied by (R(1A), 1A) and is thus the unique R-algebra structure
on 1A. We show that with this algebra structure 1A conditions (b) and (c) are satisfied.
Note that a morphism (u, v) : f → g in C2 is an R-algebra morphism (f, p) → (g, k) if in
addition we have k ◦E(u, v) = u◦p. To see that (f, f) : 1A → 1B is an algebra morphism,
Note that R(f, f) : R(1A) → R(1B) is given by

E(1A)

R(1A)
��

E(f,f)
// E(1B)

R(1B)
��

A
f

// B.

Thus, we have R(1B) ◦ E(f, f) = f ◦ R(1A), which shows that (f, f) : 1A → 1B is
an algebra morphism. Lastly, let g = (g, p) be an R-algebra. We have to show that

25

(g, 1) : g → 1B is an algebra morphism. Applying R to the morphism (g, 1) gives a
commutative diagram on the left below

Eg

Rg
��

E(g,1B)
// E(1B)

R(1B)
��

B
1B

// B

Eg

Rg
��

p
// A

g

��

B
1B
// B.

Combining this with the algebra structure p as defined by the right diagram above, we
have

R(1B) ◦ E(g, 1B) = Rg = g ◦ p,

which shows that (g, 1) : g → 1B is an algebra morphism.

Conversely, suppose R satisfies conditions (a) - (c). Let the unit map ηf be given by
(r, s) : f → Rf , as shown on the left below.

A

f
��

r // C

Rf
��

B s
// D

A

f

''

f
��

r // C

Rf
��

t // B

1B
��

B

1B

77s
// D u

// B

We show that s is invertible. To this end, we note that since Rf underlies the free
R-algebra on f , for the map (f, 1B) : f → 1B there is a unique R-algebra morphism
(t, u) : Rf → 1B making the diagram on the right above commute. It follows that
u ◦ s = 1B, and hence it remains to show that s ◦ u = 1D. Using (b) we have an algebra

map Rf
(t,u)−→ 1B

(s,s)−→ 1D, and using (c) we have an algebra map (Rf, 1) : Rf → 1D.
Precomposing with the unit (r, s) : f → Rf we see that these two maps coincide, as
shown in the following diagram

A

f
��

r // C

Rf

''

Rf
��

t // B

1B
��

s // D

1D
��

B s
// D

1D

77u
// B s

// D

Indeed, we have s ◦ u ◦ s = 1 ◦ s = s, and s ◦ t ◦ r = s ◦ f = Rf ◦ r. But this means, by
the free-forgetful adjunction, that the original two maps coincide. In particular we have
s ◦ u = 1D, and so indeed s is invertible. Hence we can define a functor R′ : C2 → C2 as

R′f = u ◦Rf . Then we have (u, 1) : Rf
∼=→ R′f for all f ∈ C2. Now we can transport the

26

monad structure of R to R′ via this isomorphism. That is, we define the unit η′f : f → R′f
as (r, 1B), as shown on the left below.

A

f
��

(ηf)0
// C

Rf
��

B

1B

(ηf)1
// D

u
��

B

E

RRf
��

(µf)0
// C

Rf
��

F

u′◦Ru
��

(µf)1
// D

u
��

B
1B
// B

Note that the lower triangle commutes by definition of u. We define the multiplication
µ′f : R′R′f → R′f as µ′f = ((µf)0, 1B), as shown on the right above. We use here that

R′R′f = u′ ◦RR′f = u′ ◦R(u ◦Rf) = u′ ◦Ru ◦RRf.

To see that the lower square commutes in the right diagram, note first that by the monad
axioms we have that (µf)1 ◦ (ηRf)1 = 1D. Since u

′ is by definition the inverse of (ηRf)1,
it follows that u′ = (µf)1. Thus we compute:

u′ ◦Ru = (µf)1 ◦Ru = u ◦ (µf)1.

Therefore we have that R′ is a monad over the codomain functor, and thus conclude that
R is isomorphic to a monad over the codomain functor.

3.3. Essential Image of the Semantics Functors

Now we are ready to state the main theorem of this chapter, the Beck theorem, which
characterises the essential image of the semantics functor.

Theorem 1 [7, Theorem 6]. The functor (−)-Alg : AWFSlax → DBL2 has as its
essential image exactly those concrete double categories V : A → Sq(C) such that:

(i) The functor V1 : A1 → C2 on vertical arrows is strictly monadic;

(ii) For each vertical arrow f : A→ B in A, the following is a square in A,

A

f
��

f
// B

1
��

B
1
// B.

Proof. Firstly we have to show that the forgetful functor UR : R-Alg → Sq(C) has
properties (i) and (ii). Note that it is indeed a concrete double category. Clearly its
action on vertical arrows, which is the forgetful functor R-Alg → C2, is strictly monadic.

27

Furthermore, property (ii) holds because of Proposition 5, since the monad R associated
with an AWFS is indeed a monad over the codomain functor.

Conversely, suppose we have a concrete double category V : A → Sq(C) that satisfies
both conditions of the theorem. Since V1 is strictly monadic, it follows that A1 is
isomorphic over C2 to the category of algebras for some monad R, which is the monad
that comes from the adjunction between V1 and its left adjoint,

A1

!!

∼= // R-Alg

{{

C2.

Then it follows from assumption (ii) that this R satisfies part (c) of Proposition 5. Part
(a) and (b) are satisfied because of the double categorical structure on A. Indeed, for
(a), let X ∈ C. Then X is an object in A0 since V0 is the identity. We have a functor
id : A0 → A1, so 1X is a vertical morphism, i.e. an object in A1. Since the above
diagram commutes, we have that 1X admits an R-algebra structure. Moreover, applying
the functor id : A0 → A1 to the morphism f : 1X → 1Y in C2 (and thus in A0) and using
that V1 is faithful gives us a square (f, f) : 1X → 1Y in A1. Since the above diagram
commutes, it follows that (f, f) : 1X → 1Y is an algebra map. Thus condition (b) is also
satisfied.
Hence we have that R is isomorphic to a monad R′ over the codomain functor. Now

we can transport the double categorical structure along the isomorphisms A1
∼= R-Alg ∼=

R′-Alg. This yields a concrete double category V ′ : A → Sq(C) over C which by
Proposition 4 is in the image of the semantics functor.

A concrete double category is called right-connected if it has property (ii) above and
monadic right-connected if it has both properties (i) and (ii). We can now combine the
result of Theorem 1 and Proposition 3 to obtain the following result.

Corollary 1 [7, Corollary 7]. The category AWFSlax is equivalent to the full subcategory
of DBL2 on the monadic right-connected concrete double categories.

28

4. Free Algebras for Pointed
Endofunctors

One crucial ingredient in the proof of the small object argument is the existence of the
free algebra for an accessible pointed endofunctor. Bourke and Garner [7] rely on Kelly
[15] for this step, using a transfinite argument that is not constructively valid. For our
purposes, it suffices to show that the free algebra for a finitary pointed endofunctor
exists. We give a constructive proof of this in the current chapter (Theorem 2). Our
strategy is to use the notion of algebraic chains, originally introduced by Koubek and
Reiterman [16]. This approach emphasises the explicit formulae involved by focusing not
only on the free algebra but also on the free algebraic chain. We prove that for finitary
functors, the induced algebraic chain stabilises at stage ω, leading to the free algebra
TXω → Xω+1

∼= Xω.
This chapter is an adaptation of [6, Appendix A] to the finitary case.

4.1. Algebraic Chains

An ω + ω-chain in C is a functor X : ω + ω → C from the category ω + ω to C. A
morphism of ω + ω-chains is a natural transformation between them.

Definition 3. Given a pointed endofunctor (T, η) on a category C, an ω + ω-algebraic
chain (X,x) is a ω + ω-chain X1 equipped with maps xn : TXn → Xn+1 for every
n ∈ ω + ω such that

(i) for all n,

Xn

jn+1
n ""

ηXn // TXn

xn
��

Xn+1

(ii) and for all n < m,

TXn

xn
��

T (jmn)
// TXm

xm
��

Xn+1
jm+1
n+1

// Xm+1

1from now one, we just write ‘chain’ and ‘algebraic chain’, leaving out the ω + ω.

29

commutes. Here we write jn+1
n for X(n ↪→ n+ 1).

Thus the first few ‘stages’ of an algebraic chain can be represented by a (not necessarily
commutative) diagram as shown below

TX0

x0

##

T (j10) // TX1

x1

##

T (j21) // TX2
T (j32) //

x2

##

TX3
//

x3

""

· · ·

X0

ηX0

OO

j10

// X1

ηX1

OO

j21

// X2

ηX2

OO

j32

// X3

ηX3

OO

// . . .

A morphism f : (X,x) → (Y, y) of algebraic chains is a chain morphisms f : X → Y that
commutes with the maps xn and yn for all n,

TXn

xn
��

T (fn)
// TYn

yn

��

Xn+1
fn+1

// Yn+1

These form a category which we denote as T -Algω. It comes with a forgetful functor
V : T -Algω → C which sends an algebraic chain (X,x) to X0. Note that for condition
(ii) of Definition 3 to hold for all n,m ∈ ω + ω with n < m it is sufficient that it holds
for the two cases m = n+ 1 and for the limit ordinal m = ω. Now suppose we have a
chain X with maps xn satisfying condition (i). Then condition (ii) in the case m = n+ 1
becomes equivalent to the following diagram being a fork

TXn

Txn◦TηXn //

Txn◦ηTXn
// TXn+1

xn+1
// Xn+2 (4.1)

Indeed, using the fact that xn ◦ ηXn = jn+1
n for all n, we have

xn+1 ◦ T (jn+1
n) = jn+2

n+1 ◦ xn
⇐⇒ xn+1 ◦ T (xn ◦ ηXn) = xn+1 ◦ ηXn+1 ◦ xn
⇐⇒ xn+1 ◦ Txn ◦ TηXn = xn+1 ◦ Txn ◦ ηTXn ,

where we use naturality of η : 1 → T in the last step. In the limit m = ω case the
condition boils down to the following diagram being a fork

TXn

Tjmn //

ηXm◦jmn+1◦xn
// TXm

xm // Xm+1 (4.2)

for every n < m. Indeed, we have

xm ◦ Tjmn = xm ◦ ηXm ◦ jmn+1 ◦ xn

30

⇐⇒ xm ◦ Tjmn = jm+1
m ◦ jmn+1 ◦ xn

⇐⇒ xm ◦ Tjmn = jm+1
n+1 ◦ xn.

If C has filtered colimits, then the latter condition is equivalent to the condition that the
diagram

colimn<m TXn

⟨Tjmn ⟩
//

⟨ηXm◦jmn+1◦xn⟩
// TXm

xm // Xm+1 (4.3)

is a fork. The following propositions show that if C is cocomplete, then V has a left
adjoint.

Proposition 6 [6, Proposition 21]. If C is cocomplete, then the forgetful functor V :
T -Algω → C has a left adjoint which sends an object X ∈ C to the algebraic chain X•
defined as follows:

• X0 = X,X1 = TX, j10 = ηX : X → TX and x0 = 1 : TX → TX.

• At an ordinal of the form n+ 2, Xn+2 is defined as the coequaliser

TXn

Txn◦TηXn //

Txn◦ηTXn
// TXn+1

xn+1
// Xn+2

and jn+2
n+1 = xn+1 ◦ ηXn+1.

• At the limit ordinal m = ω, we define Xω = colimn<ωXn with the connecting maps
jmn the colimit inclusions. We define Xω+1 as the coequaliser

colimn<ω TXn

⟨Tjωn ⟩ //

⟨ηXω◦jωn+1◦xn⟩
// TXω

xω // Xω+1,

with jm+1
m = xm ◦ ηXm.

Proof. We have to show that there is a natural bijection

homT-Algω(X•, (Y, y)) ∼= homC(X,Y0).

Since the unit of the adjunction is the identity, it is sufficient to show that for every map
f : X → Y0 = V (Y, y) there is a unique map f̃ : X• → (Y, y) such that f̃0 = f . To define
f̃1, we look at the square on the left below.

TX

x0=1
��

Tf
// TY0

y0
��

TX
f̃1

// Y1

TXn

T f̃n
��

Txn◦TηXn //

Txn◦ηTXn
// TXn+1

T f̃n+1

��

xn+1
// Xn+2

f̃n+2

��

TYn
Tyn◦TηYn //

Tyn◦ηTYn
// TYn+1

yn+1
// Yn+2

31

Since we want f̃ to be a morphism of algebraic chains this has to commute, whence we
are forced to put f̃1 = y0 ◦ Tf . In order to define f̃n+2, we look at the diagram on the
right above. The upper row of the diagram is a coequaliser by definition, and the lower
row is a fork by (4.1). Since both squares on the left commute, there exists a unique
map f̃n+2 : Xn+2 → Yn+2 making the square on the right commute. This is exactly
the condition for f̃ being a morphism of algebraic chains, so we have a unique choice
for f̃n+2. Now let m be the limit ordinal ω and suppose we have already defined the
maps f̃n : Xn → Yn for all n < m. Then we have a cocone with vertex Ym, given by
(jmn ◦ f̃n : Xn → Ym)n<m. We define f̃m as the unique map Xm = colimn<mXn → Ym
such that for every n < m we have that jmn ◦ f̃n = f̃m ◦ jmn , which is exactly the condition
we need to make f̃ a chain morphism. Therefore it is our unique choice for f̃m. Lastly,
to define f̃m+1 : Xm+1 → Ym+1 we use a similar argument as for the case n+ 2, namely
by (4.3) there is a unique map f̃m+1 from the coequaliser Xm+1 to Ym+1 satisfying
f̃m+1 ◦ xm = ym ◦ T f̃m. Hence, we get a morphism of algebraic chains f̃ : X• → Y with
f̃0 = f , and since its definition was forced for every Xn, it follows that this is the unique
morphism with this property, as desired. We leave it to the reader to check naturality.

4.2. Existence of the Free Algebra

Note that the usual forgetful functor2 U : T -Alg → C factors through the forgetful
functor V : T -Algω → C by the functor ∆ : T -Alg → T -Algω which sends a T -algebra
(X, γ : TX → X) to the constant algebraic chain with Xn = X for every n, and xn = γ
for every n. We say that an algebraic chain (X,x) stabilises at an ordinal n if for all
m > n the map jmn : Xn → Xm is invertible.

Lemma 6. Let (X,x) be an algebraic chain which stabilises at n. Define

γn := (jn+1
n)−1 ◦ xn : TXn → Xn+1

∼= Xn.

Then (Xn, γn) is a T -algebra which is a reflection of (X,x) along ∆. Specifically, we have
a bijection

homT -Algω((X,x),∆(A, a)) ∼= homT -Alg((Xn, γn), (A, a)),

induced by sending a morphism f : (X,x) → ∆(A, a) to fn : Xn → A.

Proof. Firstly note that (Xn, γn) is indeed a (T, η)-algebra on Xn since both triangles in
the following diagram commute

Xn

jn+1
n ##

1

**

ηXn
��

TXn xn
// Xn+1

(jn+1
n)−1

// Xn.

Now let f : (Xn, γn) → (A, a) be a T -algebra morphism. We show that this induces
a unique morphism (X,x) → ∆(A, a) of algebraic chains with fn = f . Since we have

2Here we write T -Alg for the category of algebras for the pointed endofunctor (T, η).

32

fn := f : Xn → A, the rest of the morphism is uniquely determined. Indeed, by the
fact that it has to be a chain morphism all the squares in the following diagram have to
commute

X0

f0
��

j10 // X1

f1
��

j21 // . . . // Xn

fn
��

jn+1
n // Xn+1

fn+1

��

jn+2
n+1

// . . .

A
1
// A

1
// . . .

1
// A

1
// A

1
// . . .

This forces us to define:

fk =

{
fn ◦ jnk , k < n,

fn ◦ (jkn)−1, k > n.

It remains to show that the resulting map is a morphism of algebraic chains. We
distinguish three cases. In the case that k = n, note that the following diagram commutes
since f is a morphism of algebras,

TXn

γn
""

xn
��

T (fn)
// TA

a

��

Xn+1
(jn+1
n)−1

// Xn
fn
// A.

so we have fn+1 ◦ xn = a ◦ T (fn). In the case k < n, we look at the following diagram

TXk

xk
��

T (jnk) // TXn

xn
��

T (fn)
// TA

a

��

Xk+1

1
��

jn+1
k+1

// Xn+1

(jn+1
n)−1

��

Xk+1 jnk+1

// Xn
fn

// A

Since every inner square in the diagram commutes, the outer square also commutes,
which shows that fk+1 ◦ xk = a ◦ T (fk). The case k > n is analogous.

Conversely, it is easy to see from the above considerations that if f : (X,x) → ∆(A, a)
is a morphism of algebraic chains, then fn : Xn → A is an algebra morphism (Xn, γn) →
(A, a).

The following proposition shows that if the algebraic chain X• stabilises, we can
compute the free T -algebra on X.

Proposition 7 [6, Proposition 7]. If X• stabilises at n, then (Xn, γn) is the free T -algebra
on X.

33

Proof. To prove that (Xn, γn) is the free algebra on X, we need to show that for any
T -algebra (A, a) there is a bijection

homT -Alg((Xn, γn), (A, a)) ∼= homC(X,A).

To see this, we make use of the fact that U factors through V , and that we have already
constructed a left adjoint of V in Proposition 6.

T -Alg C

T -Algω

U

∆

(−)•

V

⊣
Using this fact, together with Lemma 6 for the algebraic chain X•, we have:

homC(X,A) ∼= homC(X,V∆(A, a))
∼= homT -Algω(X•,∆(A, a))
∼= homT -Alg((Xn, γ), (A, a)).

The next proposition gives a sufficient criterion for the algebraic chain X• to stabilise.
Before we prove it, we prove a lemma that will be useful.

Lemma 7. If jω+1
ω is invertible in the algebraic chain X•, then j

n
ω is invertible for every

n ≥ ω.

Proof. Firstly note that
jnω = jnn−1 ◦ . . . ◦ jω+2

ω+1 ◦ j
ω+1
ω .

Hence, it is sufficient to show that jn+1
n is invertible for every n ≥ ω. We do so by

induction; the base case holds by assumption. Now assume jn+1
n is invertible for some

n ≥ ω. We show that then jn+2
n+1 is also invertible. To this end, we claim that the following

diagram is a coequaliser diagram

TXn

Txn◦TηXn //

Txn◦ηTXn
// TXn+1

xn◦T (jn+1
n)−1

// Xn+1.

Firstly we show that it is a fork. We calculate, on the one hand

xn ◦ T (jn+1
n)−1 ◦ Txn ◦ TηXn = xn ◦ T ((jn+1

n)−1 ◦ xn ◦ ηXn)
= xn ◦ T ((jn+1

n)−1 ◦ jn+1
n)

= xn ◦ T (1Xn) = xn,

while on the other hand

xn ◦ T (jn+1
n)−1 ◦ Txn ◦ ηTXn = xn ◦ T ((jn+1

n)−1 ◦ xn) ◦ ηTXn
= xn ◦ ηXn ◦ (jn+1

n)−1 ◦ xn

34

= jn+1
n ◦ (jn+1

n)−1 ◦ xn
= 1Xn+1 ◦ xn = xn.

For the second equality we have used the naturality diagram

TXn

(jn+1
n)−1◦xn

��

ηTXn // TTXn

T ((jn+1
n)−1◦xn)

��

Xn ηXn
// TXn.

Now suppose we have a map h : TXn+1 → C which also coequalises the pair Txn ◦ TηXn
and Txn ◦ ηTXn . We have to show that there is a unique map ψ : Xn+1 → C such that
the following diagram commutes

TXn

Txn◦TηXn //

Txn◦ηTXn
// TXn+1

h
((

xn◦T (jn+1
n)−1

// Xn+1

φ

��

C

We define φ = h ◦ ηXn+1 . To show that this makes the triangle commute, we compute:

φ ◦ xn ◦ T (jn+1
n)−1 = h ◦ ηXn+1 ◦ xn ◦ T (jn+1

n)−1

= h ◦ Txn ◦ ηTXn ◦ T (jn+1
n)−1

= h ◦ Txn ◦ TηXn ◦ T (jn+1
n)−1

= h ◦ T (xn ◦ ηXn ◦ (jn+1
n)−1)

= h ◦ T (jn+1
n ◦ (jn+1

n)−1)

= h ◦ T (1Xn+1) = h.

For the second equality we use naturality of η, and for the third equality the coequaliser
property of h. For uniqueness, suppose we have a morphism ψ : Xn+1 → C for which
the triangle commutes, i.e. we have ψ ◦ xn ◦ T (jn+1

n)−1 = h. Then we have

φ = h ◦ ηXn+1

= ψ ◦ xn ◦ T (jn+1
n)−1 ◦ ηXn+1

= ψ ◦ xn ◦ ηXn ◦ (jn+1
n)−1

= ψ ◦ jn+1
n ◦ (jn+1

n)−1

= ψ ◦ 1Xn+1 = ψ.

Thus, we get an isomorphism Xn+1
∼= Xn+2. Moreover, since the triangle on the left

below commutes, this isomorphism is given by jn+2
n+1 : Xn+1 → Xn+2.

TXn+1

xn+1
((

xn◦T (jn+1
n)−1

// Xn+1

jn+2
n+1

��

Xn+2

TXn+1

1
��

T (jn+1
n)−1

// TXn

T (jn+1
n)

��

xn // Xn+1

jn+2
n+1

��

TXn+1 1
// TXn+1 xn+1

// Xn+2.

35

Indeed, we observe that every square in the diagram on the right commutes, and thus
the outer square commutes, which is the same as the triangle on the left. This shows
that jn+2

n+1 is invertible, and therefore completes the proof.

Proposition 8 [6, Proposition 23]. If T preserves the colimit Xω = colimn<ωXn, then
X• stabilises at ω.

Proof. Firstly note that the maps xn : TXn → Xn for n < ω form a morphism between
chains of length ω,

TX0

x0
��

T (j10) // TX1

x1
��

T (j21) // TX2

x2
��

// . . . // colimn<ω TXn

x′ω
��

X1
j21

// X2
j32

// X3
// . . . // colimn<ωXn.

Thus we get a unique morphism between their colimits colimn<ω TXn → colimn<ωXn

making the above diagram commute. Since T preserves the colimit Xω, we have a
canonical isomorphism colimn<ω TXn

∼= T (Xω) and thus we may consider the morphism
x′ω as a morphism T (Xω) → Xω. We claim that the following diagram is a coequaliser

colimn<ω TXn

⟨Tjωn ⟩ //

⟨ηXω◦jωn+1◦xn⟩
// TXω

x′ω // Xω.

Firstly we show that it is a fork. We compute for n < ω:

x′ω ◦ Tjωn = jωn+1 ◦ xn = x′ω ◦ ηXω ◦ jωn+1 ◦ xn.

Here we use that x′ω ◦ηXω = 1Xω . To prove this, note that both are maps out of a colimit,
whence it suffices to show that they are equal upon precomposition with the colimit
inclusion maps. We calculate

x′ω ◦ ηXω ◦ jωn = x′ω ◦ T (jωn) ◦ ηXn
= jωn+1 ◦ xn ◦ ηXn
= jωn+1 ◦ jn+1

n

= jωn .

Here the first step uses naturality of η and the second step uses the definition of an
algebraic chain. Next, we show that it also has the universal property of the coequaliser.
Assume we have some morphism h : TXω → C which coequalises the pair ⟨Tjωn ⟩ and
⟨ηXω ◦ jωn+1 ◦xn⟩. We have to show that there exists a unique map φ : Xω → C such that
φ ◦ x′ω = h

colimn<ω TXn

⟨Tjωn ⟩ //

⟨ηXω◦jωn+1◦xn⟩
// TXω

h
""

x′ω // Xω

φ

��

C.

36

To define φ, note that we have a cocone (h ◦ Tjωn ◦ ηXn)n≥1 on (Xn)n<ω with vertex C.
To see that this indeed forms a cocone, note that for any k, n < ω the following diagram
commutes

Xk

jnk
��

ηXk // TXk

Tjnk
��

Tjωk // TXω

1
��

h // C

1
��

Xn ηXn
// TXn

Tjωn

// TXω
h
// C.

Thus we get an induced map φ : Xω → C with the property that for all n < ω,

φ ◦ jωn = h ◦ Tjωn ◦ ηXn .

We claim that φ ◦ x′ω = h. In order to show this, firstly we show that h ◦ ηXω = φ. Since
both are maps out of a colimit, it suffices to show that they coincide upon precomposition
with the colimit inclusions. We have

h ◦ ηXω ◦ jωn = h ◦ Tjωn ◦ ηXn = φ ◦ jωn .

So we have h ◦ ηXω = φ. Now to see that φ ◦ x′ω = h note again that both are maps out
of a colimit, whence it suffices to show that they coincide upon precomposition with the
colimit inclusions. We compute:

h ◦ Tjωn = h ◦ ηXω ◦ jωn+1 ◦ xn
= φ ◦ jωn+1 ◦ xn
= φ ◦ x′ω ◦ Tjωn .

In the first equality we use the ‘coequaliser property’ of h. Lastly we need to show that
φ is the unique map with this property. So suppose ψ : Xω → C also has the property
that ψ ◦ x′ω = h. To show that φ = ψ, it suffices to show that φ ◦ jωn = ψ ◦ jωn for all
n < ω. We compute

φ ◦ jωn = h ◦ Tjωn ◦ ηXn
= ψ ◦ x′ω ◦ Tjωn ◦ ηXn
= ψ ◦ x′ω ◦ ηXω ◦ jωn
= ψ ◦ jωn .

Here we use that x′ω ◦ ηXω = 1Xω , as shown before.
It follows that Xω

∼= Xω+1, where we note that the isomorphism is given by jω+1
ω since

the following diagram commutes

TXω

xω
##

x′ω // Xω

jω+1
ω

��

Xω+1

To see this, again one can calculate that both maps agree upon precomposition with the
colimit inclusion. So we have that jω+1

ω is invertible. An application of Lemma 7 now
completes the proof.

37

We obtain the following theorem.

Theorem 2 [6, Theorem 24]. Let (T, η) be a pointed endofunctor on a cocomplete category
C. If T preserves colimits of ω-chains (in particular if T is finitary), then the free T -
algebra exists for every object X in C. This extends to a functor F : C → T -Alg which is
left adjoint to the forgetful functor U : T -Alg → C.

Proof. Combining Proposition 7 and 8 shows that the free T -algebra exists for every
object X in C. This extends to a functor F , left adjoint to U , which is defined on
morphisms in the usual way: we send f : X → Y to the induced map between their free
T -algebras f̃ : FX → FY .

38

5. Free Monads and Finitary Monads

In this chapter we study the category of monads. In Chapter 4 we constructed the
free algebra on a finitary pointed endofunctor (P, ρ), which induces a left adjoint to
the forgetful functor (P, ρ)-Alg → C. In this chapter we prove that the induced monad
of this adjunction is in fact the free monad over the pointed endofunctor (P, ρ) and is
finitary when P is finitary (Theorem 3). An important tool in the proof is the notion of
an algebraically-free monad.
We will need these results in Chapter 6 to show that the generated AWFS is finitary

and that its associated monad is free on a pointed endofunctor.
Lastly, in Section 4 of this chapter we give a constructive proof that the category of

finitary monads on a cocomplete category is cocomplete (Theorem 4). We will need this
in Chapter 6 to construct a coequaliser of finitary monads. Moreover, our construction
implies that these colimits are ‘algebraic’, another fact that we need in Chapter 6.
Most of the results in this chapter occur in some form in Kelly [15], though the

presentation here is quite different. We rephrase them and adapt certain results to the
finitary case, we make sure that the results are constructively valid, and we fill in the
details.

5.1. Category of Monads

Let us start by looking at the category of monads on a category C. Recall that in Lemma
2 we defined a (lax) monad morphism H → K between two monads H = (H, η, µ) and
K = (K, ι, ν) on categories C and D respectively. This was defined as a tuple (T, λ) with a
functor T : C → D and a natural transformation λ : KT → TH which is compatible with
the monad units and multiplications, i.e. making diagram (2.2) commute. However, when
H and K are over the same category C, then we take the oplax direction as standard (and T
to be the identity). So concretely, a monad morphism H → K is a natural transformation
λ : H → K which respects both the monad units and the monad multiplications, that is,
the following two diagrams commute

1

η
��

ι

H
λ
// K

HH

µ

��

Hλ // HK
λK // KK

ι
��

H
λ

// K.

We denote the category of monads over C by Mnd(C), and the full subcategory of finitary
monads by Mndf(C). Now by Lemma 2 we have that the assignment

(−)-Alg : Mnd(C)op −→ Cat /C : H 7−→ H-Alg,

39

is part of a functor which is fully faithful.1

We also have the category PtEnd(C) of pointed endofunctors (P, ρ) over a category
C. A morphism between two pointed endofunctors is a natural transformation between
them which respects the units, we call these pointed transformations. Clearly, we have
a forgetful functor Mnd(C) → PtEnd(C). We define what it means for a monad to be
free over a pointed endofunctor, and algebraically-free over a pointed endofunctor.

Definition 4. Let C be a category. A monad H = (H, η, µ) on C is called free over a
pointed endofunctor (P, ρ) on C if it is the free object relative to the forgetful functor
Mnd(C) → PtEnd(C). A monad H is called algebraically-free over (P, ρ) if we have an
isomorphism H-Alg ∼= (P, ρ)-Alg over C, where the former is the category of algebras for
the monad H and the latter is the category of algebras for the pointed endofunctor (P, ρ).

We want to show that if a monad H is algebraically free over (P, ρ), then it is also free
over (P, ρ). To this end, we need the following lemma.

Lemma 8. Let (P, ρ) be a pointed endofunctor and K = (K, ι, ν) a monad on a category
C. Then there is a natural one-to-one correspondence between pointed transformations
(P, ρ) → (K, ι) and functors K-Alg → (P, ρ)-Alg which commute with the forgetful
functors. That is, we have a natural bijection

homPtEnd(C)((P, ρ), (K, ι)) ∼= homCat /C(K-Alg, (P, ρ)-Alg).

Proof. Firstly suppose we have a pointed transformation λ : (P, ρ) → (K, ι). We define
a functor K-Alg → (P, ρ)-Alg as follows. On objects we map a K-algebra (X,α) to
(X,α ◦ λX). This is indeed a (P, ρ)-algebra since the diagram on the left commutes

X

1X

��

ιX

""

ρX // PX

λX
��

KX

α
��

X

PX

λX
��

Pf
// PY

λY
��

KX

α
��

Kf
// KY

β
��

X
f
// Y

Indeed, the upper triangle commutes because λ is a pointed transformation, while the lower
triangle commutes because α is a K-algebra. On morphisms, we map f : (X,α) → (Y, β)
to itself. This is a map of (P, ρ)-algebras because the diagram on the right commutes.

Conversely, suppose we have a functor S : K-Alg → (P, ρ)-Alg which commutes with
the forgetful functors. We define a natural transformation λ : P → K at X ∈ C as follows.
Firstly note that we have the free K-algebra on X which is given by (KX, νX). Applying S
and noting that S commutes with the forgetful functors, we get S(KX, νX) = (KX, θ(X))

1As mentioned previously, the ‘op’ comes from the fact that the direction of the monad changes from
lax to oplax.

40

for some θ(X) : PKX → KX. Now we define λX : PX → KX as the following
composition

PX
P (ιX)−→ PKX

θ(X)−→ KX.

We need to show that this is indeed a pointed transformation between (P, ρ) and (K, ι).
Note that since (KX, θ(X)) is a (P, ρ)-algebra, we have that θ(X) ◦ ρKX = 1KX . Now
we have the following commutative diagram on the left below

X

ιX
��

ρX // PX

P (ιX)
��

KX

1KX $$

ρKX
// PKX

θ(X)
��

KX

PX

Pf
��

P (ιX)
// PKX

PKf
��

θ(X)
// KX

Kf
��

PY
P (ιY)

// PKY
θ(Y)

// KY

where the upper square commutes by naturality of ρ : 1 → P . This shows that λX ◦ρX =
ιX , and so λ is pointed. To show naturality, let f : X → Y be a morphism in C. We look
at the diagram on the right above. The left square commutes by naturality of ι. We claim
that the right square also commutes. To see this, note that by naturality of ν we have a
morphism Kf : (KX, νX) → (KY, νY) in T-Alg. Applying S and using the fact that it
commutes with the forgetful functors we have a morphismKf : (KX, θ(X)) → (KY, θ(Y))
in (P, ρ)-Alg. This shows that also the right square commutes and thus naturality holds.
To see that these operations are mutually inverse, firstly let λ : (P, ρ) → (K, ι) be a

pointed transformation. Then S(λ) maps (KX, νX) to (KX, νX ◦ λKX), and thus the
induced natural transformation λ′ : P → K at X is given by

λ′X = νX ◦ λKX ◦ P (ιX) = νX ◦K(ιX) ◦ λX = λX ,

where we use naturality of λ and the unit law of the monad K respectively. Conversely, let
S : K-Alg → (P, ρ)-Alg be a functor over C. Then the induced transformation λ : P → K
is given at X by λX = θ(X) ◦ P (ιX), with θ(X) defined by S(KX, νX) = (KX, θ(X)).
Thus, the induced functor S′ : K-Alg → (P, ρ)-Alg is given by (X,α) 7→ (X,α ◦ θ(X) ◦
P (ιX)). To see that this is equal to S, we note that α : KX → X is a morphism in T-Alg
between the T-algebras (KX, νX) and (X,α). Therefore its S image is a morphism in
the category (P, ρ)-Alg, which means that the diagram below commutes

PKX

θ(X)
��

P (α)
// PX

S(X,α)
��

KX α
// X.

Using this we calculate:

S′(X,α) = α ◦ θ(X) ◦P (ιX) = S(X,α) ◦P (α) ◦P (ιX) = S(X,α) ◦P (α ◦ ιX) = S(X,α).

We leave it to the reader to verify that this bijection is natural.

41

Proposition 9 [15, Proposition 22.2]. A monad H which is algebraically-free on a pointed
endofunctor (P, ρ) is free on (P, ρ).

Proof. Suppose H is algebraically-free on a pointed endofunctor (P, ρ). Thus by assump-
tion we have an isomorphism H-Alg ∼= (P, ρ)-Alg over C. To show that it is free on
(P, ρ), let K = (K, ι, ν) be an arbitrary monad. We have the following string of bijections

homMnd(C)(H,K) ∼= homCat /C(K-Alg,H-Alg) (Lemma 2)

∼= homCat /C(K-Alg, (P, ρ)-Alg) (by assumption)

∼= homPtEnd(C)((P, ρ), (K, ι)). (Lemma 8)

5.2. Existence of the Free Monad

Proposition 20 states that for a monad T the forgetful functor UT : T-Alg → C creates
all limits that exist in the codomain and creates colimits which are preserved by T . The
situation for a pointed endofunctor is similar: the forgetful functor U : (P, ρ)-Alg → C
creates all colimits that exist in its codomain and are preserved by the corresponding
endofunctor P , as is proved in the next lemma.

Lemma 9. Let (P, ρ) be a pointed endofunctor on some category C. Then the forgetful
functor U : (P, ρ)-Alg → C creates all colimits that exist in its codomain and are preserved
by P .

Proof. Let X : I → (P, ρ)-Alg be a functor and (C, σ) be a colimiting cocone for U ◦X.
We denote the P -algebra X(i) as (Xi, αi). We need to construct a (P, ρ)-algebra structure
on C, i.e. a map α : PC → C such that α ◦ ρC = 1C . By assumption P preserves the
colimit of U ◦ X, so the cocone (PC,P (σi)) is in fact colimiting. Therefore to give a
morphism PC → C is equivalent to giving a compatible family of maps {PXi → C}i∈I .
We take the family of maps {σi ◦ αi}i∈I . Now for any morphism f : i → j in I, since
Xf is a map of algebras (Xi, αi) → (Xj , αj), we have that Xf ◦ αi = αj ◦ P (Xf). Since
(C, σ) is a cocone on U ◦X we have σj ◦Xf = σi. Thus we compute:

σj ◦ αj ◦ P (Xf) = σj ◦Xf ◦ αi = σi ◦ αi.

It follows that (C, σi ◦ αi)i∈I a cocone on P ◦ U ◦X. Therefore we have a unique map

42

α : PC → C with the property that α ◦ P (σi) = σi ◦ αi, as shown in the diagram below.

PC

α
��

C

Xi

σi

<<

Xf
// Xj

σj
bb

PXi

P (σi)

66

αi

OO

P (Xf)
// PXj

αj

OO

P (σj)

hh

Thus, each map σi : Xi → C becomes a morphism of algebras (Xi, αi) → (C,α) as soon
as we can show that (C,α) is indeed an algebra for the pointed endofunctor (P, ρ), that
is, α◦ρC = 1C . Since both are maps out of a colimit, it suffices to show that they become
equal after precomposing with the colimit inclusions. We calculate

α ◦ ρC ◦ σi = α ◦ P (σi) ◦ ρi = σi ◦ αi ◦ ρi = σi,

where the first equality is due to naturality of ρ, the second is by the property of α, and
the third is because each (Xi, αi) is an algebra for the pointed endofunctor (P, ρ).
It remains to verify that (C,α) together with the maps σi : (Xi, αi) → (C,α) is the

colimit of X in the category (P, ρ)-Alg; we leave this to the reader.

We are now ready to prove the first main result of this chapter, namely the existence
of the free monad over a pointed endofunctor under suitable conditions.

Theorem 3 [15, Theorem 22.3]. Let (P, ρ) be a pointed endofunctor on a cocomplete
category C. If the forgetful functor U : (P, ρ)-Alg → C has a left adjoint F , then the
free monad T = (T, η, µ) on (P, ρ) exists, and it is given by the monad induced by the
adjunction F ⊣ U . Moreover, if P is finitary, then so is the induced monad T.

Proof. By Proposition 16 it follows that U creates coequalisers of U -split pairs. Since
it also has a left adjoint F , it follows by Beck’s monadicity theorem (Theorem 7 in
Appendix A.2) that U is (strictly) monadic.2 But then we have that the comparison
functor

K : (P, ρ)-Alg → T-Alg : (X,α) 7→ (X,U(ϵ(X,α)) : UFX → X)

is an isomorphism. Thus, the monad T is algebraically-free over (P, ρ), and thus by
Proposition 9 it is free on (P, ρ).

Now suppose that P is finitary. Then by Lemma 9 it follows that the forgetful functor
U creates ω-filtered colimits since C has them, and hence U also preserves them. Since
F is a left adjoint it preserves all colimits, and therefore T = UF preserves ω-filtered
colimits.
2For a certain class of functors, the ‘amnestic isofibrations’, the notions of monadic and strictly monadic
coincide; typical examples of such functors are forgetful functors.

43

Proposition 10. The category PtEnd(C) of pointed endofunctors on a category C is
cocomplete when C is cocomplete.

Proof. Let X : J → PtEnd(C) be a diagram, and denote X(j) = (Tj , τj). We extend
the diagram J to a new diagram J ′ by adding an initial object 0 to it. We define
X ′ : J ′ → End(C) (where End(C) denotes the category of endofunctors on C) as
X ′(j) = Tj , and X

′(0) = idC the identity functor. We set X ′(! : 0 → j) = τj : 1 → Tj .
Recall that in a functor category [C,D], if D has (co)limits of shape J , then so does
[C,D] for any category C, and (co)limits are ‘computed pointwise’. Thus we can take the
colimit T of the diagram X ′ in End(C). Define τ : 1 → T as τ = r0, the colimit inclusion
of the identity functor X ′(0). We leave it to the reader to verify (T, τ) is the colimit of
X in PtEnd(C).

Corollary 2. Let C be cocomplete, then the forgetful functor Mndf(C) → PtEndf(C)
mapping a finitary monad to its underlying pointed endofunctor has a left adjoint.

Proof. Combine Theorems 2 and 3.

5.3. Colimits of Finitary Monads

In this section, we construct colimits in the category of finitary monads, using the strategy
of Kelly [15, Theorem 27.1]: taking the limit of the induced diagram of their algebra
categories in Cat /C, and showing that the algebra functor (−)-Alg : Mnd(C)op →
Cat /C creates limits. One step in the proof uses the existence of the free algebra for a
finitary pointed endofunctor, for which we rely on Theorem 2 for a constructive proof.
For the rest of the proof we explicitly keep track of the construction. Specifically, we
introduce the notion of an effective repletion to avoid the use of the axiom of choice.

5.3.1. Well-pointed Endofunctors

Firstly, let us introduce well-pointed endofunctors. We call a pointed endofunctor (S, σ)
well-pointed if Sσ = σS : S → S2. We need some technical lemmas about well-pointed
endofunctors.

Lemma 10. Suppose we have a pullback diagram of categories as on the left below

D

��

// F

��

C ⊥
V
// E

Koo

KV

ϵ
��

KηV // KTV

µ

��

1 ρ
// P

with K ⊣ V , and with F ∼= (T, η)-Alg for some pointed endofunctor (T, η) on E. Then
D ∼= (P, ρ)-Alg, for some pointed endofunctor (P, ρ) on C, where P and ρ are defined by
the pushout on the right above. Moreover, if (T, η) is well-pointed, then so is (P, ρ).

44

Proof. An object of the pushout D is given by an object X ∈ C and T -algebra structure
α : TV X → V X subject to the unit condition as on the left below.

V X

1 $$

ηVX // TV X

α
��

V X

KVX

ϵX
%%

KηVX// KTV X

α
��

X

Transposing this diagram, we get the commutative diagram on the right for the map
α : KTV X → X. But by the universal property of a pushout this is the same as a map
PX → X such that ρX ◦ α = 1, i.e. an algebra structure for the pointed endofunctor
(P, ρ).

Next, we show that (P, ρ) is well-pointed. That is, for every object A of C we need to
show that PρA = ρPA. Firstly, since (T, η) is well-pointed, we have that TηV A = ηTV A
for all A in C. Note that since K ⊣ V , the map µ : KTV → P induces a transpose map
ϕ : TV → V P . We leave it to the reader to verify that this map satisfies the following
commutative diagram

V
ηV

}}

V ρ

!!

TV
ϕ

// V P.

(5.1)

Now we calculate:

V PρA ◦ ϕA = ϕPA ◦ TV ρA (naturality of ϕ)

= ϕPA ◦ T (ϕA ◦ ηV A) (5.1)

= ϕPA ◦ TϕA ◦ TηV A (functoriality of T)

= ϕPA ◦ TϕA ◦ ηTV A ((T, η) is well-pointed)

= ϕPA ◦ ηV PA ◦ ϕA (naturality of η)

= V ρPA ◦ ϕA. (5.1)

Transporting this equality along the adjunction we obtain PρA ◦ µA = ρPA ◦ µA. By
naturality of ρ we also have PρA ◦ ρA = ρPA ◦ ρA. Hence, since PρA and ρPA become
equal after precomposing with both pushout inclusion maps, it follows that they are
equal, which finishes the proof.

Lemma 11 [15, Proposition 5.2]. Let (S, σ) be a well-pointed endofunctor on C.

(i) For any map g : SB → A, let f = g ◦ σB : B → A. Then Sf = σA ◦ g : SB → SA.

(ii) For an object A in C, A admits a (unique) (S, σ)-algebra structure if and only if
σA is an isomorphism.

Proof. (i) We calculate:

Sf = Sg ◦ SσB = Sg ◦ σSB = σA ◦ g.

45

In the second equality we use that S is well-pointed, while the third equality follows
from naturality of σ.

(ii) Suppose A admits an (S, σ)-algebra structure a : SA→ A. Then a ◦ σA = 1A by
definition. But then also σA ◦a = S(1A) = 1SA by part (i), so σA is an isomorphism.
The converse is immediate.

Lemma 12 [15, Proposition 7.1]. Let (S, σ) be a well-pointed endofunctor on C and
ϕ : S → T a natural transformation for which every ϕA is an epi. Then (T, τ) is a well-
pointed endofunctor, with τ = ϕ◦σ. Moreover, (T, τ)-Alg consists of those (S, σ)-algebras
for which ϕA is an isomorphism.

Proof. To show that (T, τ) is well-pointed, we need to show that TτA = τTA for all
objects A in C. Note that by definition we have τA = ϕA ◦ σA, and thus by Lemma 11 it
follows that SτA = σTA ◦ ϕA. We calculate:

τTA ◦ ϕA = ϕTA ◦ σTA ◦ ϕA = ϕTA ◦ SτA = TτA ◦ ϕA.

here the last step follows from naturality of ϕ. We conclude that TτA = τTA since ϕA is
epi.

Now by Lemma 11 we have that A admits a (T, τ) algebra if and only if τA = ϕA ◦σA is
an isomorphism. We claim that this is the case if and only if A admits and (S, σ)-algebra
structure and ϕA is an isomorphism. Suppose A admits an S-algebra structure and
ϕA is an isomorphism. Then by Lemma 11 σA is an isomorphism, and hence so is τA.
Conversely, suppose τA = ϕA ◦σA is an isomorphism. Then σA has a left inverse SA→ A,
which is thus a (S, σ)-algebra. Again by Lemma 11 it follows that σA is an isomorphism,
and therefore ϕA is also an isomorphism.

5.3.2. The Category T/C

Given an endofunctor T : C → C, we have the comma category T/C. Its objects are
triples (A, a,B) with A,B objects in C and a : TA→ B a morphism in C. A morphism
(A, a,B) → (A′, a′, B′) consists of two maps f : A → A′ and g : B → B′ such that the
following diagram commutes

TA

a
��

Tf
// TA′

a′

��

B g
// B′.

We have two forgetful functors U1, U2, mapping an object and a morphism to its first
and second components respectively. We recall some facts about the category T/C.

Lemma 13 [15, Section 14.1]. Let C be cocomplete and T : C → C and endofunctor.
Then T/C is cocomplete.

46

Proof. A functor J → T/C is given by two functors X,Y : J → C together with a
natural transformation x : TX → Y . Its colimit is given by (colimX, a,B) where a,B
are defined by the pushout

colimTX

T̃
��

colimx // colimY

b
��

T colimX a
// B

(5.2)

where T̃ is the canonical comparison map. We leave it to the reader to verify that this is
indeed the colimit of the diagram J → T/C.

If we have a natural transformation α : T ′ → T , this induces a functor α∗ : T/C → T ′/C
which sends (A, a,B) to (A, a ◦ αA, B). It has a left adjoint α∗ : T

′/C → T/C given by
sending (C, c,D) to (C, c̄, D̄), defined by the following pushout

T ′C

αC
��

c // D

ĉ
��

TC
c̄
// D̄.

Note that for the functor T = 1, we have that 1/C ∼= C2. Thus if we have a pointed
endofunctor (T, τ), we have an adjunction

T/C C2.
τ∗

τ∗⊣ (5.3)

5.3.3. Effective Repletions

For a pointed endofunctor (T, τ), we have a full embedding (T, τ)-Alg ↪→ T/C given by
mapping an algebra (A, a) to (A, a,A) and a map of algebras f to the pair (f, f). So
(T, τ)-Alg is a full subcategory of T/C. Our next objective is to construct the repletion
of (T, τ)-Alg in T/C as a category of algebras for a pointed endofunctor (S, σ) on T/C.
Let us first define what a repletion is.

Definition 5. A subcategory D of C is replete if for any object X in D and any
isomorphism f : X ∼= Y in C, both Y and f are also in D. Any subcategory is contained
in a smallest replete subcategory D ⊆ Repl(D) ⊆ C, called its repletion.

To make our proof constructive, we define an effective repletion of a subcategory
i : D ↪→ C to be a repletion Repl(D) of D in C, equipped with a map on objects

G : Repl(D) → D and for every D ∈ Repl(D) an isomorphism αD : D
∼=→ iG(D).

Lemma 14. Let (Repl(D), G, (αD)D∈Repl(D)) be an effective repletion of a full subcategory
i : D ↪→ C. Then G extends to a functor G : Repl(D) → D which is left adjoint to the
inclusion functor i.

47

Proof. Since we are dealing with a full subcategory, the repletion Repl(D) is simply the
full subcategory of C determined by those objects which are isomorphic to some object of
D. We make G functorial by sending a morphism f : A→ B in Repl(D) to the unique
map Gf : GA→ GB making the following diagram commute

A

f
��

αA
∼=
// iGA

iGf
��

B αB

∼= // iGB.

Explicitly: Gf = αB ◦f ◦α−1
A . This is indeed a morphism in D since i is a full embedding.

Note that the definition of G on morphisms ensures that α : 1
∼=→ iG becomes a natural

isomorphism. Therefore we get the following chain of natural bijections

homD(GC,D) ∼= homRepl(D)(iGC, iD) ∼= homRepl(D)(C, iD).

The first isomorphism follows from the fact that i is fully faithful, while the second
isomorphism follows from the natural isomorphism 1 ∼= iG. We conclude that G ⊣ i, as
desired.

The full embedding (T, τ)-Alg ↪→ T/C is not replete. Indeed, an object (A, a,B) is
isomorphic to a (T, τ)-algebra if and only if the map a ◦ τA is an isomorphism, as the
next lemma shows.

Lemma 15. Let (T, τ) be a pointed endofunctor on a category C. An element (A, a,B)
is isomorphic to a (T, τ) algebra if and only if a ◦ τA is an isomorphism.

Proof. Suppose first that (A, a,B) is isomorphic to a (T, τ)-algebra c : TC → C, so
that we have an isomorphism (f, g) : (A, a,B) → (C, c, C). Since we have two forgetful
functors U1, U2 projecting a morphism on the first and second component, it follows
that f : A→ C and g : B → C are isomorphisms. We have the following commutative
diagram

A

f∼=
��

τA // TA

Tf∼=
��

a // B

g∼=
��

C

1C

66
τC // TC

c // C

The left square commutes because of naturality of τ and the right square commutes since
(f, g) is a morphism in T/C. It follows that a ◦ τA is an isomorphism with inverse f−1 ◦ g.

Conversely, suppose (A, a,B) is an object in T/C such that a ◦ τA is an isomorphism,
with inverse f : B → A. Then f ◦ a : TA→ A is a (T, τ)-algebra, and is isomorphic to

(A, a,B) via the isomorphism (1A, f) : (A, a,B)
∼=→ (A, f ◦ a,A).

In the next proposition we construct an endofunctor S : T/C → T/C together with a
unit σ : 1 → S such that the category of algebras for the pointed endofunctor (S, σ) is
the repletion of (T, τ)-Alg, which is in fact effective.

48

Proposition 11 [15, Theorem 14.4]. Let C be a category and (T, τ) a pointed endofunctor
on C. There exists a well-pointed endofunctor (S, σ) on T/C such that (S, σ)-Alg is part
of an effective repletion of (T, τ)-Alg in T/C.

Proof. We have an adjunction cod ⊣ id : C → C2. The induced monad of this adjunction
R on C2 has as its underlying endofunctor R = id ◦ cod, which thus sends an object
(A, a,B) to (B, 1B, B). Its unit ρ : 1 → R is given at (A, a,B) by ρ(A,a,B) = (a, 1). Now
note that for an object (A, a,B) in C2, the map a : A→ B is an isomorphism if and only
if (A, a,B) admits a (R, ρ)-algebra structure. By Lemma 15 we have that (A, a,B) in
T/C is isomorphic to a (T, τ)-algebra if and only if a ◦ τA is an isomorphism, and thus if
and only if τ∗(A, a,B) is an (R, ρ)-algebra. In other words, we see that the repletion of
(T, τ)-Alg in T/C is given by the pullback as on the left below.

Repl((T, τ)-Alg)

��

// (R, ρ)-Alg

��

T/C ⊥
τ∗

// C2
τ∗oo

τ∗τ
∗

ϵ

��

τ∗ρτ∗
// τ∗Rτ

∗

ψ
��

1 σ
// S

It follows from Lemma 10 that Repl((T, τ)-Alg) ∼= (S, σ)-Alg, where S and σ are
constructed by the pushout as on the right above. It is not hard to check that (R, ρ) is
well-pointed, and therefore (S, σ) is also well-pointed by Lemma 10.

Explicitly, the functor S : T/C → T/C maps an object (A, a,B) to (B, b, C), where
b : TB → C is given by the coequaliser of the two parallel maps

TA
τTA //

TτA
// T

2A
Ta // TB. (5.4)

The unit σ : 1 → S at (A, a,B) is given by σ(A,a,B) = (a ◦ τA, b ◦ τB).
To make the repletion effective, note that if (A, a,B) admits an (S, σ)-algebra (α0, α1) :

S(A, a,B) → (A, a,B), it follow by Lemma 11 that σ(A,a,B) is an isomorphism with
inverse (α0, α1). In particular a ◦ τA is an isomorphism with inverse α0. Thus (A, a,B) is
isomorphic to the (T, τ)-algebra α0 ◦a : TA→ A, which gives us a map G : (S, σ)-Alg →
(T, τ)-Alg : (A, a,B) 7→ (A,α0 ◦ a,A). Moreover, we see from the proof of Lemma 11
that this isomorphism is witnessed by α(A,a,B) = (1A, α0). We conclude that we have an
effective repletion.

Lemma 16. For a (T, τ)-algebra a : TA → A (seen as the object (A, a,A) in T/C),
a : TA→ A is a coequaliser of (5.4), whence S(A, a,A) = (A, a,A).

Proof. Since a is a (T, τ)-algebra we have a ◦ τA = 1A. Thus the coequaliser of the
two parallel maps in (5.4) boils down to the coequaliser of Ta ◦ τTA and 1TA, i.e. the
coequaliser of τA ◦ a and 1TA by naturality. The map a coequalises these maps since
a ◦ τA = 1A. If γ : TA→ X also coequalises these two maps, then we have a unique map
ϕ : A→ X with ϕ ◦ a = γ, given by ϕ = γ ◦ τA.

49

5.3.4. Constructing the Colimit

Now let V : J → Mndf(C) be a diagram in the category of finitary monads (seen as
a full subcategory of Mnd(C)), we aim to construct its colimit. Denote the monad
V (j) as Tj = (Tj , τj , µj) for every j ∈ J . Compose V op with the algebra functor
(−)-Alg : Mnd(C)op → Cat /C, which gives us a diagram in Cat /C. Since Cat /C is
complete, we can take its limit, which we denote as V -Alg. In fact we can give a concrete
description of V -Alg. An object is an object X ∈ C, together with an algebra structure
aj : TjX → X for the monad Tj for every j ∈ J , such that the collection of this algebras
is compatible with morphisms in J . That is, for every α : i → j in J , the following
diagram commutes

TiX

ai
!!

V (α)X
// TjX

aj
||

X.

We call such an object a V -algebra. A morphism of V -algebras f : X → X ′ is a map of
Tj-algebras for every j ∈ J . We write Qj : V -Alg → Tj-Alg for the projection functors.
Since (−)-Alg : Mnd(C)op → Cat /C is fully faithful, for any monad P on C we have

homMnd(C)(Tj,P) ∼= homCat /C(P-Alg,Tj-Alg).

Thus, a cocone r = (rj : Tj → P)j∈J induces a cone (rj : P-Alg → Tj-Alg)j∈J in Cat /C
and thus a unique morphism r : P-Alg → V -Alg over C making the following diagram
commute for any α : j → i in J .

P-Alg

r
��ri

rj

��

V -Alg
Qi

yy

Qj

%%

Ti-Alg
V (α)

// Tj-Alg

Moreover, by full- and faithfulness of the (−)-Alg functor it follows easily that any map
P-Alg → V -Alg over C is of this form. We say that the monad P with the cocone r is
the algebraic colimit of V : J → Mnd(C) if the induced map r : P-Alg → V -Alg is an
isomorphism.

Proposition 12 [15, Proposition 26.2]. When the algebraic colimit of V : J → Mnd(C)
exists, it is also the colimit of V in the ordinary sense.

Proof. By definition P-Alg is the limit of the diagram (Tj-Alg)j∈J in Cat /C. Since the
functor (−)-Alg : Mnd(C)op → Cat /C is fully faithful (see Section 5.1) it reflects limits,
whence we conclude that P is the colimit of the diagram (Tj)j∈J in Mnd(C).

50

Note that we have a forgetful functor U : V -Alg → C. If we show that U is monadic,
then we have V -Alg ∼= P-Alg over C for some monad P, namely the monad induced
by the adjunction. Then P the algebraic colimit of V , and hence by Proposition 12 the
colimit of V . Thus we aim to show that U is monadic. To apply Beck’s monadicity
theorem (Theorem 7), we need to check that U creates coequalisers of U -split pairs and
has a left adjoint. The former is not hard to check, and we deal with this in the next
lemma.

Lemma 17. The forgetful functor U : V -Alg → C creates coequalisers of U -split pairs.

Proof. Suppose we have a U -split pair f, g : (A, (aj)) → (B, (bj)) in V -Alg. Then the
bottom line of the diagram below is a split coequaliser in C. Since split coequalisers are
absolute, it is preserved by every Tj , and therefore the middle and the top row are also a
split coequaliser. Hence, we get a unique arrow cj : TjC → C making the lower part of
the diagram commute

TjTjA

Tjaj
��

T 2
j f
//

T 2
j g
// TjTjB

T 2
j e
//

Tjbj
��

// TjTjC

Tjcj
��

cj◦(µj)C

��

TjA

aj

��

Tjf
//

Tjg
// TjB

bj
��

Tje
// TjC

cj

��

A
f

//

g
// B e

// C

The fact that the lower right square commutes means that e is a Tj-algebra morphism
(B, bj) → (C, cj). It remains to show that cj satisfies the unit condition and multiplication
condition. For the former, we have to verify that cj ◦ (τj)C = 1C . To this end, it is
sufficient to show that both maps become equal after precomposition with e (e being a
coequaliser). We compute:

cj ◦ (τj)C ◦ e = cj ◦ Tje ◦ (τj)B = e ◦ bj ◦ (τj)B = e,

where we use naturality of τj : 1 → Tj in the first equality, commutativity of the
bottom right square in the second equality, and the fact that bj satisfies the unit
condition in the third equality. For the multiplication condition we need to verify that
cj ◦ (µj)C = cj ◦ Tj(cj). This follows from the fact that both maps satisfy the property
of the unique map TjTjC → C which arises from the fact that e ◦ bj ◦ Tjbj coequalises
T 2
j f and T 2

j g, as shown in the diagram above. Thus we get a Tj-algebra structure on
C for every j ∈ J . We leave it to the reader to verify that these algebra structures are
compatible with morphisms in J , and that the resulting object is indeed the coequaliser
of f, g in V -Alg. This completes the proof that U creates U -split coequalisers.

It remains to show that U has a left adjoint F , i.e. that the free V -algebra exists.
The colimit of V is then given by the monad P arising from the adjunction F ⊣ U . By
Lemma 10 the category of pointed endofunctors has colimits. Let (T, τ) be the colimit

51

of the diagram (Tj , τj)j∈J of pointed endofunctors, with colimit inclusions rj : Tj → T .
Note that giving a (T, τ)-algebra a : TA → A is the same as giving component maps
aj = a◦(rj)A : TjA→ A for each j, subject to the compatibility conditions ai = aj◦V (α)A
for every map α : i → j in J , and the unit condition aj ◦ (τj)A = 1A for all j ∈ J .
Indeed, since the colimit T is calculated pointwise we have that TA is the colimit of
(TjA)j∈J with colimit inclusions (rj)A, as shown in the following diagram

A

TA

a

OO

TiA

ai

::

(ri)A

<<

V (α)A

// TjA.
(rj)A

bb

aj

dd

The unit condition a ◦ τA = 1A is equivalent to aj ◦ (τj)A = 1A for all j ∈ J . It follows
that V -Alg is a full subcategory of (T, τ)-Alg, consisting of exactly those T -algebras
a : TA→ A for which the components aj : TjA→ A not only satisfy the unit condition,
but also the multiplication condition for the monad Tj . We thus have the full inclusions

V -Alg ⊂ (T, τ)-Alg ⊂ T/C. (5.5)

We shall now construct a pointed endofunctor (L, λ) : T/C → T/C such that (L, λ)-Alg
is the repletion of V -Alg in T/C. Explicitly, we define L(A, a,B) = (B, c,D), where
c : TB → D is defined as the joint coequaliser for all j ∈ J of the parallel pairs

TjA
Tj(τj)A

!!

T 2
j A

(µj)A
==

1
// T 2
j A

Tjaj
// TjB

(rj)B
// TB.

(5.6)

where aj = a ◦ (rj)A as before. L acts on morphisms in the obvious way.

Lemma 18. A (T, τ)-algebra a : TA → A is a V -algebra if and only if it coequalises
(5.6) for all j ∈ J .

Proof. We have seen that a (T, τ) algebra (A, a) is the same as a collection of algebras
aj : TjA → A for the pointed endofunctor (Tj , τj) which are compatible with the
morphisms in J . Thus, such an element is a V -algebra if and only if it also satisfies the
multiplication condition aj ◦ (µj)A = aj ◦ Tjaj for every j ∈ J . Since each aj satisfies
the unit condition we have Tjaj ◦ Tj(τj)A = 1TjA, and thus it satisfies the multiplication
condition exactly when a coequalises the diagram (5.6) for every j ∈ J .

52

Consider the following diagram

TjA

(rj)A
��

Tj(τj)A
//

(τj)TjA

// T 2
j A

Tjaj
//

(rjrj)A
��

// TjB

(rj)B
��

TA
TτA //

τTA
// T 2A

Ta
// TB.

Every one of the three squares commutes. Since (µj)A ◦ (τj)TjA = 1TjA the upper row3

is given by pre-composing the diagram (5.6) with (τj)TjA. It therefore follows that
c : TB → D coequalises the upper row of the diagram, and therefore also the lower row
for every j ∈ J . Moreover, since the (rj)A are colimit inclusions for all j ∈ J they are
jointly epimorphic. Therefore c coequalises Ta ◦ TτA and Ta ◦ τTA, and thus it factors
through the coequaliser b : TB → C as defined in the construction of the well-pointed
endofunctor (S, σ) in (5.4). So we have c = qb for a regular epimorphism q : C → D.
This induces an epimorphic natural transformation ϕ : S → L, with ϕ(A,a,B) = (1, q).
Now applying Lemma 12 gives us a well-pointed endofunctor (L, λ) with λ = ϕ ◦ σ. We
claim that its category of algebras is the repletion of V -Alg in T/C.

Proposition 13 [15, Section 27.1]. (L, λ)-Alg is part of an effective repletion of V -Alg
in T/C.

Proof. We have the following commutative diagram of embeddings

(T, τ)-Alg // (S, σ)-Alg

%%

V -Alg

&&

88

T/C.

(L, λ)-Alg

33

(5.7)

The embedding V -Alg → (T, τ)-Alg is the one from (5.5), the embedding (T, τ)-Alg →
(S, σ)-Alg follows from Lemma 11, the fact that (S, σ)-Alg is the repletion of (T, τ)-Alg.
The embeddings (S, σ)-Alg → T/C and (L, λ)-Alg → T/C are just the forgetful functors.
Lastly, the embedding V -Alg → (L, λ)-Alg sends (A, (aj : TjA → A)) to (A, a,A),
where a : TA → A is the unique map induced by the (aj)j∈J . We have to equip it
with an action S(A, a,A) = (A, c,D) → (A, a,A). The first component is the identity
map 1A. The second component is a map from the joint coequaliser D of (5.6) to A.
Such a map exists since the map a : TA→ A also coequalises this diagram for every j
by Lemma 18. Hence we get a unique map g : D → A such that gc = a, thus making
(1A, g) : S(A, a,A) → (A, a,A) into a morphism in T/C.

3We call the parallel pair (rj)B ◦ Tjaj ◦ Tj(τj)A, (rj)B ◦ Tjaj ◦ (τj)TjA the “upper row”, and the parallel
pair Ta ◦ TτA ◦ (rj)A, Ta ◦ τTA ◦ (rj)A the “lower row”.

53

Now to show that (L, λ)-Alg is the repletion of V -Alg we want to show that an
element (A, a,B) is isomorphic to a V -algebra if and only if it admits an (L, λ)-algebra
structure. We have seen in diagram (5.7) that every V -algebra admits an (L, λ)-algebra
structure; and thus if (A, a,B) is isomorphic to a V -algebra, so does (A, a,B).
For the converse, suppose (A, a,B) admits an (L, λ)-algebra structure (α0, α1) :

L(A, a,B) → (A, a,B). By Lemma 12 we have that (A, a,B) admits an (S, σ)-algebra
structure and that ϕ(A,a,B) is an isomorphism. Explicitly this induced (S, σ)-action is given
by (α0, α1q) : S(A, a,B) → (A, a,B), with S(A, a,B) = (B, b, C), as defined in (5.4). By
Lemma 11 we have that (S, σ)-Alg is the repletion of (T, τ)-Alg, and that (A, a,B) is iso-

morphic to the (T, τ)-algebra (A,α0 ◦ a), witnessed by (1, α0) : (A, a,B)
∼=→ (A,α0 ◦ a,A).

We also recall from Lemma 11 that σ(A,a,B) = (a ◦ τA, b ◦ τB) is an isomorphism with
inverse (α0, α1q), so that a ◦ τA is an isomorphism with inverse α0 and b ◦ τB is an isomor-
phism with inverse α1 ◦ q. By Lemma 18 it follows that the (T, τ)-algebra (A,α0 ◦ a) is
in V -Alg as soon as we can show that α0 ◦ a coequalises (5.6) for all j ∈ J . To see this,
recall that ϕ(A,a,B) : S(A, a,B) → T (A, a,B) is given by (1, q) : (B, b, C) → (B, c,D),
where q : C → D is the unique map induced by the coequaliser b : TB → C, since
c : TB → D also coequalises the maps in (5.4). Since ϕ(A,a,B) is an iso, q is also an iso.
But then it follows that b also coequalises the pairs in (5.6) for all j ∈ J . Now consider
the following diagram

TjA
Tj(τj)A

!!

T 2
j A

(µj)A
==

1
// T 2
j A

Tj(α0◦a)j ""

Tjaj
// TjB

Tj(α0)∼=
��

(rj)B
// TB

Tα0
∼=
��

b // C

α0α1q∼=
��

TjA
(rj)A

// TA α0◦a
// A.

The rightmost square is the composition of the maps

S(A, a,B)
(α0,α1q)

// (A, a,B)
(1,α0)

∼=
// (A,α0 ◦ a,A).

The square left to it commutes because of naturality of rj : Tj → T . The triangle to the
left of that commutes because

(α0 ◦ a)j = α0 ◦ a ◦ (rj)A = α0 ◦ aj .

Thus the diagram commutes and the three vertical maps are isomorphisms because
α0, α1 ◦ q are isomorphisms. Hence since b coequalises the upper row, α0 ◦ a coequalises
the lower row, which is exactly (5.6) for the algebra α0 ◦ a. An application of Lemma 18
then finishes the proof.
Tracing the construction explicitly, we see that the repletion is effective in a similar

manner as in Proposition 11, namely G : (L, λ)-Alg → V -Alg sends an (L, λ)-algebra
(α0, α1) : L(A, a,B) → (A, a,B) to the V -algebra induced by the (T, τ)-algebra α0 ◦ a :

TA→ A. The isomorphism α(A,a,B) is given by (1, α0) : (A, a,B)
∼=→ (A,α0 ◦ a,A).

54

The last ingredient we need in order to prove that the category of finitary monads has
colimits is the fact that L is finitary, which we prove in Lemma 20. Before we prove this
lemma, we need the following technical lemma which implies as a special case that a
colimit of finitary functors on a cocomplete category is finitary.

Lemma 19. Let F : I → [C,D] be a diagram of functors and X : J → C a diagram for
which the colimit exists in C and is preserved by all the functors Fi. Suppose that D has
colimits of type I,J , and I × J . Then the colimit colimi∈I Fi exists in [C,D], and also
preserves the colimit of X.

Proof. Firstly recall that if D has (co)limits of shape I, then so does [C,D] for any
category C, and (co)limits are ‘computed pointwise’. Therefore the colimit of F of F
exists and we have

F (C) = (colimi∈I Fi)(C) ∼= colimi∈I Fi(C).

Let A be the following composition of functors

I × J F×X−→ [C,D]× C ev−→ D : (i, j) 7−→ Fi(Xj).

It is well-known that limits commute with limits and dually colimits commute with
colimits; that is

colimi∈I colimj∈J A(i, j) ∼= colim(i,j)∈I×J A(i, j) ∼= colimj∈J colimi∈I A(i, j)

if all the relevant colimits exist. Denote X for the colimit of X. To show that F preserves
X, we compute:

F (colimj∈J Xj) = (colimi∈I Fi)(X)
∼= colimi∈I Fi(X)

= colimi∈I Fi(colimj∈J Xj)
∼= colimi∈I colimj∈J Fi(Xj)
∼= colimj∈J colimi∈I Fi(Xj)
∼= colimj∈J (colimi∈I Fi)(Xj)

= colimj∈J F (Xj).

We leave it to the reader to verify that this isomorphism is natural and that F also
preserves the colimit inclusions.

Corollary 3. Let C be a cocomplete category and (Ti)i∈I a diagram of finitary functors.
Then colimi∈I Ti exists and is also finitary.

Lemma 20. The functor L : T/C → T/C is finitary if C is cocomplete.

55

Proof. Firstly, since every (Tj , τj) is finitary and C is cocomplete, it follows by Corollary 3
that (T, τ) is finitary (since T is just the colimit of underlying the endofunctors Tj , as can
be seen in the proof of Lemma 10). Now suppose we have a diagram F : I → T/C with
I filtered, and which has a colimit in T/C. Then F consists of two functors X,Y : I → C
together with a natural transformation x : TX → Y . We denote F (i) = (Xi, xi, Yi). By
Lemma 13 we know its colimit is (colimX, a,B) where a,B are defined by the pushout in
(5.2). But since T is finitary it preserves the colimit of X, and thus T̃ is an isomorphism.
But since (5.2) is a pushout diagram, it follows that b is also an isomorphism. Hence
the colimit of F is given by the pointwise colimit (A, a,B) = (colimX, colimx, colimY)4.
Now we see that L(colimX, colimx, colimY) = (colimY, c,D), where c : T (colimY) → D
is the joint coequaliser for all j ∈ J of the parallel pairs

Tj(colimX)
Tj(τj)A

''

T 2
j (colimX)

(µj)A
77

1
// T 2
j (colimX)

Tjaj
// Tj(colimY)

(rj)B
// T (colimY),

But since T and every Tj preserves filtered colimits, it follows that c : T (colimY) → D
is in fact, up to isomorphism, the joint coequaliser of the parallel pairs

colimTjX
colimTj(τj)X

&&

colimT 2
j X

colim(µj)X
88

1
// colimT 2

j X
// colimTjY // colimTY.

(5.8)

On the other hand, we have LF (i) = (Yi, ci, Di), where ci : T (Yi) → Di is given by the
joint coequaliser for all j ∈ J of the parallel pairs

Tj(Xi)
Tj(τj)Xi

$$

T 2
j (Xi)

(µj)Xi
::

1
// T 2
j (Xi)

Tj(xi)j
// Tj(Yi)

(rj)Yi // T (Yi),

Again using that the colimit is calculated pointwise, we have an isomorphism colimLF ∼=
(colimY, colim ci, colimDi). But since the colimit functor itself is a left adjoint (to the
diagonal functor), it preserves colimits and in particular coequalisers. Thus, we obtain
that the map colim ci : colimT (Yi) → colimDi is a joint coequaliser of the diagram (5.8).
But as we have seen c : T (colimY) → D is up to isomorphism also a joint coequaliser
of this diagram. Therefore we obtain an isomorphism f : colimDi → D making the

4Formally, by (colimX, colimx ◦ T̃−1, colimY), but for readability we will just use colimx since this is

‘isomorphic’ to colimx ◦ T̃−1

56

following diagram commute:

T (colimY)
∼= //

=

��

colimTY

=

��

colim ci// colimDi

∼= f

��

T (colimY)

c

33
∼= // colimTY // D.

This shows that (1, f) : colimLF
∼=→ L(colimF) is an isomorphism, as desired.

Theorem 4. Let C be cocomplete, then the category of finitary monads Mndf(C) is also
cocomplete. Moreover, colimits are algebraic. That is, if T is the colimit of a diagram of
monads (Tj)j∈J , then T-Alg is the limit of the diagram of categories (Tj-Alg)j∈J in
Cat /C, and vice versa: the limit of the diagram (Tj-Alg)j∈J is of the form T-Alg for
some monad T which is the colimit of (Tj)j∈J . In other words, the functor (−)-Alg :
Mndf(C)op → Cat /C creates and preserves limits.

Proof. Let V : J → Mndf(C) be a diagram in the category of finitary monads; we aim
to construct its colimit. Denote the monad V (j) by Tj = (Tj , τj , µj) for every j ∈ J . We
have seen in this section that if the forgetful functor V -Alg → C has a left adjoint, then
the algebraic colimit P of J exists, and is by Lemma 12 also the ordinary colimit of V in
the category of monads. Thus the proof is complete if we can show that U : V -Alg → C
has a left adjoint and that P is finitary. We factor the forgetful functor as follows

V -Alg � �
i

⊥ // (L, λ)-Alg
Goo

� �

U

⊥ // T/C
Foo

τ∗
⊥ // C2
τ∗oo

dom

⊥ // C.
idoo

(5.9)

Here (T, τ) is an endofunctor on C and (L, λ) is an endofunctor on T/C, as constructed
earlier in this section. The adjunction G ⊣ i follows from Proposition 13 in combination
with Lemma 14. The adjunction F ⊣ U follows from Theorem 2. Indeed, by Lemma 13
the category T/C is cocomplete, and by Lemma 20 L is finitary, so the conditions of the
theorem are satisfied and we have that the free (L, λ)-algebra exists. The adjunction
τ∗ ⊣ τ∗ is the one from (5.3). Lastly the adjunction id ⊣ dom is the well-known identity
domain adjunction. It is easily verified that the composition of these four maps is indeed
the forgetful functor V -Alg → C, and therefore we conclude that it has a left adjoint.
It remains to show that the induced monad P from this adjunction is finitary. Let us
rewrite diagram (5.9) as

V -Alg � �
i

⊥ // (L, λ)-Alg
Goo

� �

U ′
⊥ // C
F ′

oo

with U ′ and F ′ the composition of the relevant functors in (5.9). It follows that the
underlying endofunctor of the monad P is given by P = U ′iGF ′. By Lemma 20 L is
finitary and by Lemma 13 T/C is cocomplete. Thus it follows from Lemma 9 that U is

57

finitary. The functor dom ◦ τ∗ projects an element (A, a,B) onto its first coordinate A,
so it follows by the explicit form of the colimit in T/C (Lemma 13) that this preserves all
colimits. F ′ also preserves all colimits since it is a left adjoint. Therefore we have that
U ′F ′ is finitary.
By Lemma 14 we have a natural isomorphism iG ∼= 1, and therefore it follows that

P = U ′iGF ′ ∼= U ′F ′ is finitary, which completes the proof.

58

6. Cofibrant Generation by a Category

In this chapter we prove the finitary small object argument for categories (Theorem 5).
The proof uses the Beck theorem of Chapter 3: we prove that J → C2 generates an
AWFS by verifying the conditions of the Beck theorem for J ⋔⋔ → Sq(C). We depend
on Chapter 4 for a constructive proof of the existence of the free algebra for a finitary
pointed endofunctor. We rely on Chapter 5 for a constructive proof that the induced
monad R is finitary and is free on a pointed endofunctor.

This chapter is based on [7, Section 5], and is adapted to the finitary case.

6.1. Lifting Operations

Given two categories J → C2 and K → C2, a (J ,K)-lifting operation is defined as a
natural family of functions φj,k which picks, for every j ∈ J , k ∈ K, and morphism
(u, v) : Uj → V k a lift, as shown in the diagram below

domUj

Uj

��

u // domV k

V k
��

codUj

φj,k(u,v)
99

v
// codV k.

An example we have seen before is the canonical (L-Coalg,R-Alg)-lifting operation (2.5)
for an AWFS. The assignment of (J ,K) to the collection of its (J ,K)-lifting operations
is the object part of a functor

Lift : (Cat /C2)op × (Cat /C2)op → Sets .

This induces the following adjunction.

Proposition 14 [10, Proposition 3.8]. Let C be a category. Each functor Lift(J ,−) and
Lift(−,K) is representable, whence we have an adjunction ⋔(−) ⊣ (−)⋔.

(Cat /C2)op Cat /C2.

⋔(−)

(−)⋔
⊥ (6.1)

Proof. The functor Lift(J ,−) : (Cat /C2)op → Sets is represented by the category
J ⋔ → C2, as introduced in Section 2.3. For more details we refer to [10] or [22].

59

If we have a (J , g) and a (J , h) lifting operation for some g : A→ B and h : B → C
in C2, then the composition hg also bears a canonical lifting operation which is defined
by taking the ‘stepwise lift’, as in

φj,hg(u, v) = φj,g(u, φj,h(gu, v)).

This provides a vertical composition for the category J ⋔ → C2 and turns it into a
concrete double category J ⋔⋔ → Sq(C), where we equip the identity map with the unique
lifting structure. We now define what a cofibrantly generated AWFS is.

Definition 6 (Cofibrant generation). An AWFS (C, L,R) is cofibrantly generated by
a small category J → C2 if R-Alg ∼= J ⋔⋔ over Sq(C). If J is large, we say that it is
class-cofibrantly generated by J → C2.

6.2. Split Epimorphisms

Let C be a cocomplete category. We can form the category SplEpi(C) of split epimor-
phisms in C. An object in this category is a pair consisting of a morphism f : A → B,
together with a section p : B → A. A morphism (f, p) → (g, q) is a morphism f → g
which commutes with the sections, as shown in the diagram on the left below

A

f
��

u // C

g

��

B

p

OO

v
// D

q

OO 1

1
��

m // 0

e
��

me

��

1 m
// 0.

Since we can compose sections, we have a vertical composition on split epis, and hence
get a concrete double category SplEpi(C) over C. Clearly this double category is right-
connected. Hence, by Theorem 1 it follows that SplEpi(C) is the right class in an
AWFS if we can show that the forgetful functor U : SplEpi(C) → C2 is strictly monadic.
Note that we can view SplEpi(C) as the presheaf category CS , where S is the free split
epimorphism and shown on the right above. Under this identification the functor U
becomes Cj : CS → C2, where j : 2 → S is the inclusion which selects the arrow e.

Lemma 21. The forgetful functor U : SplEpi(C) → C2 strictly creates colimits.

Proof. Suppose we have a diagram X : I → SplEpi(C) with colimiting cocone (D,σ)
for the diagram UX in C2. For every i ∈ I we denote Xi : Ai → Bi, with section
si : Bi → Ai, and we denote σi = (ui, vi) : Xi → D. We need to show that the map
D : A→ B also has a section. To do so, note that since colimits are computed pointwise
in presheaf categories, we have that (B, vi)i∈I is the colimit of the diagram (Bi)i∈I in C.

60

We claim that (A, ui ◦ si)i∈I is also a cocone for this diagram.

Bi

si

��

vi // B

s

��

Bj
vj
oo

sj

��

Ai

Xi
��

ui // A

D
��

Aj

Xj
��

uj
oo

Bi vi
// B Bjvj
oo

A

Ai

ui

??

Xi
��

X(α)0
// Aj

uj
``

Xj
��

Bi

si

OO

X(α)1

// Bj

sj

OO

To see this, let α : i→ j be a morphism in I. We need to show that uj ◦sj ◦X(α)1 = ui◦si.
To see this, we look at the diagram on the right above. The square commutes because
X(α) is a map of split epis. The triangle commutes because (D,σ) is a cocone on UX.
Thus we have

uj ◦ sj ◦X(α)1 = uj ◦X(α)0 ◦ si = ui ◦ si.

So we get an induced unique map s : B → A with the property that s ◦ vi = ui ◦ si for all
i ∈ I, as shown on the right above. Moreover, we claim that s is indeed a section of D,
i.e. that D ◦ s = 1B. To see this, note that both are maps out of a colimit, so it suffices
to show that they agree after precomposition with the colimit inclusions. We compute:

D ◦ s ◦ vi = D ◦ ui ◦ si = vi ◦Xi ◦ si = vi.

So we see that D is a split epi and moreover that σi : Xi → D commutes with the
sections. It remains to show that (D,σ) is indeed the colimit of X : I → SplEpi(C); we
leave this to the reader.

Proposition 15. Let C be a cocomplete category. Then SplEpi(C) ∼= (R, η)-Alg for some
monad R = (R, η, µ) which is algebraically-free over its underlying pointed endofunctor.
Moreover R is cocontinuous.

Proof. By Lemma 21 U strictly creates colimits, so by the Beck monadicity theorem
(Theorem 7) it is (strictly) monadic as soon as it has a left adjoint C2 → SplEpi(C).
That is, we have to show that the free split epimorphism on an arrow f exists. Since C is
cocomplete, it has binary coproducts. The free split epi Rf on f : A → B is given by
⟨f, 1⟩ : A+B → B, with section the inclusion ιB : B → A+B. Indeed, one can verify
that for every morphism (u, v) : f → g where g is a split epi with section q, there is a
unique map (Rf, ιB) → (g, q) given by the diagram on the left

A+B

⟨f,1⟩
��

⟨u,qv⟩
// C

g

��

B

ιB

OO

v
// D

q

OO A

f
��

ιA // A+B

⟨f,1⟩
��

B
1
// B.

ιB

OO

Thus U : SplEpi(C) → C2 has a left adjoint F , with unit f → Rf given by the diagram
on the right above. It follows that U is strictly monadic, and thus by Theorem 1 we have

61

SplEpi(C) ∼= R-Alg over C2 for some monad R = (R, η, µ) which is the right class of an
AWFS. We recall from the proof of Theorem 1 that the monad R of the resulting AWFS
is in fact the monad induced by the adjunction F ⊣ U . So R = UF and the unit η is
given by the unit of the adjunction, that is, ηf = (ιA, 1) as on the right above.
We now claim that in fact (R, η)-Alg ∼= SplEpi(C), that is, SplEpi(C) is not only

isomorphic to the algebras for the monad R, but also to the algebras of the underlying
pointed endofunctor (R, η). To see this, note that every split epimorphism has an algebra
structure for the monad R, and thus certainly also an (R, η)-algebra structure. For the
converse, let f : A→ B be a morphism in C with an (R, η)-algebra structure α : Rf → f .
Then α ◦ ηf = 1, so the following diagram commutes

A

1A

%%

f
��

ιA // A+B

⟨f,1⟩
��

α0 // A

f
��

B

1B

991B
// B

ιB

OO

α1

// B

It follows that α1 = 1B and therefore α0 ◦ ιB is a section of f . Thus f is a split epi. We
conclude that the monad R is algebraically-free (and thus free by Proposition 9) over its
underlying pointed endofunctor (R, η).
Finally, we have that R = UF preserves colimits. Indeed, F is a left adjoint, so it

preserves colimits. Lemma 21 shows that U strictly creates colimits, and since C2 is
cocomplete (since C is cocomplete), it also preserves them. So we conclude that R is
cocontinuous.

6.3. The Finitary Small Object Argument for Categories

In order to prove the small object argument for categories, we need a few lemmas that are
needed in the main proof. Firstly we need a small lemma about natural transformations
between adjoints.

Lemma 22. If we have two adjunctions F1 ⊣ G1, F2 ⊣ G2 and a natural transformation
µ : G1 → G2, then we get an induced natural transformation between the left adjoints
µ : F2 → F1, which we call its mate.

F1 ⊣ G1

F2 ⊣ G2

µ µ

Proof. We define µ as the composition

F2
F2η
// F2G1F1

F2µF1 // F2G2F1

ϵF1 // F1

62

where η : 1 → G1F1 is the unit of the first adjunction and ϵ : F2G2 → 1 is the counit of
the second adjunction.

We need the following proposition to invoke Beck’s monadicity theorem in the proof of
the small object argument for categories.

Proposition 16. Let (P, ρ) be a pointed endofunctor on a category C. Then the forgetful
functor U : (P, ρ)-Alg → C creates U -split coequalisers.

Proof. Similar to Lemma 17.

We need one more lemma about the preservation of colimits.

Lemma 23. Let F : C → D2 be a functor. If dom ◦ F and cod ◦ F preserve colimits of
type I, then so does F .

Proof. Let D : I → C2 be a diagram in C for which the colimit exists and is preserved
by dom ◦ F and cod ◦ F . Then we have canonical isomorphisms colimi∈I domF (Di) ∼=
domF (colimi∈I Di) and colimi∈I codF (Di) ∼= codF (colimi∈I Di). Since D2 is a presheaf
category, we know that colimits are computed pointwise, which implies that (the vertex
of) colimi∈I F (Di) is given by the map

colimi∈I domF (Di) −→ colimi∈I codF (Di),

which is the unique map out of colimi∈I domF (Di) induced by the maps

domF (Di)
F (Di)−→ codF (Di)

ιcodi−→ colimi∈I codF (Di).

Now consider the following diagram

domF (Di)

domF (ιi)

++

F (Di)

��

ιdomi

// colimi∈I domF (Di)

colimi∈I F (Di)

��

∼= // domF (colimi∈I Di)

F (colimi∈I Di)
��

codF (Di)

codF (ιi)

33

ιcodi // colimi∈I codF (Di)
∼= // codF (colimi∈I Di)

Because the outer diagram, the left square, and the top and bottom triangles com-
mute, the map F (colimi∈I Di) composed with the two isomorphisms is also a map ϕ :
colimi∈I domF (Di) −→ colimi∈I codF (Di) with the property that ϕ◦ιdomi = ιcodi ◦F (Di).
Thus by unicity ϕ equals colimi∈I F (Di), that is, the right triangle commutes as well. It
follows that F (colimi∈I Di) is colimiting, as desired.

We are now ready to prove the finitary small object argument for categories.

63

Theorem 5. Let C be a locally small and cocomplete category and let U : J → C2 be a
small category over C2 such that for every j ∈ J the domain and the codomain of Uj are
ω-compact. Then the AWFS (C, L,R) cofibrantly generated by U exists and is finitary.
Moreover, the monad R is algebraically-free on a finitary pointed endofunctor.

Proof. Firstly, we claim that V : J ⋔⋔ → Sq(C) is right-connected. To see this, let φ−,g
be a vertical map in J ⋔⋔, that is, a morphism g : A → B in C equipped with a lifting
structure against J . We need to show that (g, 1) : φ−,g → φ−,1 is a square, i.e. a
morphism of lifting structures. So suppose we have a morphism (u, v) : m(j) → g. Then
we have:

g ◦ φj,g(u, v) = v = φj,1(gu, v).

Hence, by Theorem 1 it is sufficient to show that V1 : J ⋔ → C2 is strictly monadic. To
show this, firstly we note that an object of J ⋔ is a map g together with a section φ−g of
the natural transformation

ψ−g : homC(codU−,dom g) ⇒ homC2(U−, g) : J op → Sets .

which sends a map ϕ : codUj → dom g to the morphism (ϕ ◦ Uj, g ◦ ϕ) : Uj → g. A
section therefore provides for every j ∈ J and morphism σ : Uj → g a lift of the diagram
on the left below

domUj

Uj

��

σ0 // dom g

g

��

codUj

φj,g(σ)
99

σ1
// cod g

homC2(Ui, g)
φi,g
// homC(codUi, dom g)

homC2(Uj, g)

OO

φj,g
// homC(codUi, dom g).

OO

Moreover, naturality ensures that for every α : i → j in J we have a commutative
diagram as on the right above. So we have

φi,g(σ ◦ Uα) = φj,g(σ) ◦ U(α)1,

which is precisely the horizontal condition. A morphism (g, φ−g) → (h, φ−h) in J ⋔ is
then a map (u, v) : g → h in C2 for which the induced map ψ−g → ψ−h in [J op,Sets]2

commutes with the sections, as shown in the following diagram

homC(codUj,dom g)

ψj,g
��

// homC(codUj,domh)

ψj,h
��

homC2(Uj, g)

φj,g

ZZ

// homC2(Uj, h).

φj,h

DD

This means that for every lifting problem σ : Uj → g, we have

u ◦ φj,g(σ) = φj,h(uσ0, vσ1),

64

which is indeed a map between lifting structures as we have seen before. Hence, we have
the following pullback

J ⋔

V1
��

// SplEpi([J op,Sets])

��

C2
ψ

// [J op,Sets]2

We show that ψ has a left adjoint. To do so, firstly we claim that the composition of ψ
with the domain and codomain functor both have a left adjoint,

C2 ψ
// [J op,Sets]2

dom //

cod
// [J op,Sets].

Note that cod ◦ ψ : C2 → [J op,Sets] is given by

(cod ◦ ψ)(g)(j) = homC2(Uj, g).

We recognise this as the right adjoint of the Kan extension of U : J → C2 along the
Yoneda embedding (see Theorem 9, in Appendix A.3). Thus, cod ◦ ψ has a left adjoint
F1, as on the left below.

J [J op,Sets]

C2

y

U
F1 ψ·cod⊣

J [J op,Sets]

C2

y

id · cod ·U
F2 ψ·dom⊣

For dom ◦ ψ, we have

(dom ◦ ψ)(g)(j) = homC(codUj,dom g) ∼= homC2(idcodUj , g),

where the isomorphism follows from the adjunction id ⊣ dom : C2 → C. Again we
recognise this as the right adjoint of the Kan extension id ◦ cod ◦ U : J → C2 and
therefore dom ◦ ψ has a left adjoint F2. Now by Lemma 22 the natural transformation
ψ : dom ◦ ψ → cod ◦ ψ induces a natural transformation between its left adjoints
α : F1 → F2. Now we claim that the left adjoint K of ψ is given by sending f : X → Y
to the pushout of F1f : F1X → F1Y along αX : F1X → F2X,

F1X

F1f
��

αX // F2X

��

F1Y // Kf

To show this, we have to prove that

homC2(Kf, g) ∼= hom[J op,Sets]2(f, ψg).

65

Assume we have a morphism σ : f → ψg in [J op,Sets]2, as shown on the left below.

X

f

��

σ0 // domψg

ψg
��

Y σ1
// codψg

F1X

F1f
��

αX // F2X

σ0

��
F1Y σ1

// g

This diagram transposes under the adjunctions F1 ⊣ ψ ◦ cod and F2 ⊣ ψ ◦ dom to the
diagram on the right above. But a commutative diagram of this form is the same as
a map from the pullback Kf to g. So indeed we have a bijection homC2(Kf, g) ∼=
hom[J op,Sets]2(f, ψg) which is natural.

Next we claim that ψ preserves ω-filtered colimits. To see this, fix j ∈ J . Firstly we
claim that the domain and codomain of

ψj− : homC(codUj,dom−) ⇒ homC2(Uj,−)

preserve ω-filtered colimits. By assumption, codUj is ω-compact so that homC(codUj,−)
preserves filtered colimits. But the functor dom : D2 → D also preserves colimits (for any
category D), because D2 is a presheaf category and thus colimits are computed pointwise.
Thus we have that homC(codUj,dom−) preserves filtered colimits. Similarly, since both
the domain and codomain of Uj are ω-compact and C2 is a presheaf category, we have
that homC2(Uj,−) preserves filtered colimits. Thus, by Lemma 23 it follows that every
ψj− preserves filtered colimits. Lastly, again using that colimits are computed pointwise
in functor categories, we conclude that ψ preserves filtered colimits.

By Proposition 15 the category SplEpi([J op,Sets])1 can be identified with the category
(T, η)-Alg for some cocontinuous pointed endofunctor (T, η), which moreover extends to
a monad T = (T, η, µ) that is algebraically-free over its underlying pointed endofunctor.
Hence it follows by Lemma 10 that J ⋔ is isomorphic over C2 to the category of algebras
for the pointed endofunctor (P, ρ) given by the pushout on the left below.

Kψ

ϵ

��

Kηψ
// KTψ

��

1 ρ
// P

J ⋔

V1

∼= // (P, ρ)-Alg

U
zz

C2

Therefore the situation is as shown on the right above, and we can identify V1 with
the forgetful functor U : (P, ρ)-Alg → C2. By Proposition 16 it follows that U creates
coequalisers of U -split pairs. By Beck’s monadicity theorem (Theorem 7 in Appendix
A.2) it follows that U (and therefore V1) is (strictly) monadic as soon as we show that
it has a left adjoint, that is, we have to show that the free (P, ρ) algebra exists for an
arbitrary f ∈ C2. But this follows from Theorem 2 as soon as we can show that the

1Note that [J op,Sets] is a presheaf category and thus cocomplete.

66

conditions of the theorem are satisfied. Firstly, since C is cocomplete, so is C2. Secondly,
We need to show that P is finitary. But note that ψ, K, and T are all finitary. ψ as we
have shown above, K because it is a left adjoint, and T because it is cocontinuous by
Proposition 15. Hence P is a pushout of finitary functors, whence by Corollary 3 itself
finitary. Thus U has a left adjoint F and so V1 has a left adjoint F1, and it follows that
V1 is (strictly) monadic.
Lastly, in order to show that the resulting AWFS is finitary and that R is free on a

pointed endofunctor, we recall from the proof of Theorem 1 that the monad R of the
resulting AWFS is in fact the monad induced by the adjunction F1 ⊣ V1. Thus it follows
by Theorem 3 that R is finitary and is the algebraically-free monad on the finitary pointed
endofunctor (P, ρ). An application of Lemma 1 then shows that L is also finitary, and
thus we conclude that the induced AWFS is finitary.

67

7. Cofibrant Generation by a Double
Category

It turns out that cofibrant generation by categories is not sufficient to generate all
interesting AWFS. There are examples such as the lalis AWFS on Cat [7] which is not
generated by a small category.

To capture all interesting AWFS, we need to turn to the concept of cofibrant generation
by a double category. In this chapter, we constructively prove our main theorem: the
finitary small object argument for double categories (Theorem 6). The proof relies on
the Beck theorem (Theorem 1), the small object argument for categories (Theorem 5),
and on Chapter 5 to obtain a coequaliser of monad maps, and the fact that this induces
an equaliser diagram under the algebra functor.

7.1. Double Categorical Lifting Operations

Let U : J → Sq(C) and V : K → Sq(C) be two double functors. We define a (J,K)-
lifting operation to be a (J1,K1)-lifting operation which is also compatible with vertical
composition. That is,

φj,ℓ·k(u, v) = φj,k(u, φj,ℓ(V k · u, v)), and φj·i,k(u, v) = φj,k(φi,k(u, v · Uj), v)

for all vertically composable arrows j, i in J and ℓ, k in K. Diagrammatically, we have

Uj

��

u //

V k

��

V ℓ

��
v
//

??

GG

Ui

��

u //

V k

��

Uj

��

??

v
//

GG

An example of this is the lifting operation associated with an AWFS, which is a
(L-Coalg,R-Alg)-lifting operation. We have a functor

Lift : (DBL / Sq(C))op × (DBL /Sq(C))op → Sets,

which sends J,K to the collection of (J,K)-lifting operations. This induces the following
adjunction.

68

Proposition 17. Let C be a category. Each functor Lift(J,−) and Lift(−,K) is repre-
sentable, whence we have an adjunction ⋔⋔(−) ⊣ (−)⋔⋔

(DBL / Sq(C))op DBL / Sq(C).
⋔⋔(−)

(−)⋔⋔
⊥

Proof. The functor Lift(J,−) : (DBL /C2)op → Sets is represented by the double
category J⋔⋔ → C2, which is defined as follows.

• Objects are objects in C;

• Horizontal arrows are morphisms in C;

• Vertical arrows are pairs (g, φ−g) where g is a morphism in C and φ a right lifting
structure of g against J, that is, an operation φ which chooses for every vertical
morphism j ∈ J and square σ : Uj → g a solution φj,g(σ)

Uj

��

σ0 //

g

��
σ1
//

??

subject to the following conditions

1. Horizontal condition: for any square α : j → i in J, we have that φi(σ) ◦
U(α)1 = φj(σ ◦ U(α)).

Uj

��

U(α)0
//

U(i)

��

σ0 //

f

��

U(α)1

//

77

σ1
//

??

2. Vertical condition: for any vertical composition j · i in J and square σ :
U(j · i) → f , we have φj·i(σ) = φj(φi(σ0, σ1 ◦ U(j)), σ1).

Ui

��

σ0 //

g

��

Uj

��

?? GG

σ1
//

vertical composition is given by the ‘stepwise’ composition of lifting structures as
described in Section 6.1;

69

• Squares are morphisms of lifting structures as before. That is, a square τ : (f, φ) →
(g, ψ) is a commutative square as shown on the right of the following diagram

Ui

��

u //

f

��

τ0 //

g

��

?? 77

v
//

τ1
//

such that for any i ∈ J and (u, v) : Ui→ f we have that ψi(τ0◦u, τ1◦v) = τ0◦φi(u, v).
It follows easily from this definition that vertical composition of such squares is
compatible with the composition operation on vertical morphisms.

For more details on the proof we refer to [7] or [22].

In Definition 6 we defined cofibrant generation by a category. We can now extend this
definition to double categories. We say that an AWFS (L,R) is cofibrantly generated
by a small double category J → Sq(C) if there is an isomorphism of double categories
R-Alg ∼= J⋔⋔ over Sq(C). If this holds for a large double category J, then we say that
(L,R) is class-cofibrantly generated by J → Sq(C).

Proposition 18. Let (L,R) be an AWFS. Then we have an isomorphism of double
categories R-Alg ∼= (L-Coalg)⋔⋔ and dually L-Coalg ∼= ⋔⋔(R-Alg). In other words, (L,R) is
class-cofibrantly generated by L-Coalg → Sq(C) and class-fibrantly generated by R-Alg →
Sq(C).

Proof. See [7] or [22].

7.2. The Finitary Small Object Argument for Double
Categories

We are now ready to prove the main result of this thesis, the finitary small object
argument for double categories.

Theorem 6. Let C be a locally small, cocomplete category, and let U : J → Sq(C) be a
double functor subject to the following conditions

1. J is small,

2. the object Uj is ω-compact for every object j ∈ J0.

Then the AWFS cofibrantly generated by U exists and is finitary.

Proof. We write J2 = J1 ×J0 J1 for the category of vertically composable pairs in J, and
let m : J2 → J1 be the composition. Then we have a commutative triangle as on the left

J2

U1m

m // J1

U1~~

C2

J ⋔⋔
1

##

m⋔⋔
// J ⋔⋔

2

||

Sq(C).

70

This induces a morphism m⋔⋔ : J ⋔⋔
1 → J ⋔⋔

2 of concrete double categories over Sq(C) as on
the right above, which sends a (J1, g)-lifting operation φ−g to the (J2, g)-lifting operation
ψ−g, defined as on the left below:

ψ(j,i),g(u, v) = φj·i,g(u, v) θ(j,i),g(u, v) = φj,g(φi,g(u, v · Uj), v).

We can define an additional double functor of concrete double categories over C, δJ :
J ⋔⋔
1 → J ⋔⋔

2 which sends a (J1, g)-lifting operation φ−g to the (J2, g)-lifting operation θ−g
as defined on the right above. Now note that the inclusion J⋔⋔ → J ⋔⋔

1 is the equaliser
of this parallel pair of morphisms, since this is exactly the subcategory of J ⋔⋔

1 of lifting
structures also satisfying the vertical condition, i.e. ψ(j,i),g(u, v) = θ(j,i),g(u, v) for all
j, i, g, u, v. Thus, we have an equaliser diagram of concrete double categories over C as
shown below

J⋔⋔

""

// J ⋔⋔
1

��

m⋔⋔
//

δJ
// J ⋔⋔

2

||

Sq(C).

Since J ⋔⋔
1 and J ⋔⋔

2 are both right-connected, J⋔⋔ will also be right-connected. Thus by
Theorem 1 the AWFS cofibrantly generated by J exists precisely when (J⋔⋔)1 → C2 is
strictly monadic. Since J1,J2 are small and since Uj is ω-compact for every object
j ∈ J0 (in particular the domain and codomain of the image of every arrow in J1

and J2 is ω-compact), by Theorem 5 there exist AWFS (L1,R1) and (L2,R2) such that
J ⋔
1
∼= R1-Alg and J ⋔

2
∼= R2-Alg, where R1 and R2 are finitary monads which are free on

a pointed endofunctor. Thus the maps m⋔⋔ and (δJ)1 induce via the isomorphisms two
maps s∗, t∗ : R1-Alg → R2-Alg. In Section 5.1 we noted that the assignment

Mnd(C)op −→ Cat /C : H 7−→ H-Alg

is fully faithful. It follows that these maps are in fact induced by unique monad maps
s, t : R2 → R1. By Theorem 4 we can take the coequaliser (R, q) of s and t, and by
Corollary 3 it follows that R is also finitary. It also follows from Theorem 4 that q∗ is the
equaliser of s∗ and t∗, and hence we have a commutative diagram as below

(J⋔⋔)1
∼=
��

// J ⋔
1

∼=
��

m⋔⋔
//

(δJ)1
// J ⋔

2

∼=
��

R-Alg
q∗
// R1-Alg

s∗ //

t∗
// R2-Alg.

So we have (J⋔⋔)1 ∼= R-Alg over C2, and we conclude that (J⋔⋔)1 → C2 is strictly monadic
for a finitary monad R. Moreover, by Lemma 1 it follows that the comonad L of the
generated AWFS is also finitary, which concludes the proof.

71

7.3. Presheaf Categories

To obtain a corollary about presheaf categories, we need the following lemma.

Lemma 24. Let C be a small category and consider its category of presheaves Ĉ. If X
is a finitely generated presheaf, then X is ω-compact.

Proof. We have to show that the functor homĈ(X,−) : Ĉ → Sets preserves ω-filtered

colimits. Let J be a filtered category and Y : J → Ĉ a diagram of presheaves with
colimit colimj∈J Y (j). Since X is finitely generated we can write X ∼= colimi∈I0 yCi with
I0 finite.1 We calculate:

homĈ(X, colimj∈J Y (j)) ∼= homĈ(colimi∈I0 yCi, colimj∈J Y (j))
∼= lim

i∈I0
homĈ(yCi, colimj∈J Y (j))

∼= lim
i∈I0

(colimj∈J Y (j))(Ci)

∼= lim
i∈I0

colimj∈J Y (j)(Ci)

∼= colimj∈J lim
i∈I0

Y (j)(Ci)

∼= colimj∈J lim
i∈I0

homĈ(yCi, Y (j))

∼= colimj∈J homĈ(colimi∈I0 yCi, Y (j))
∼= colimj∈J homĈ(X,Y (j)).

Here (2) and (7) follow from the universal property of the colimit, (3) and (6) follow from
the Yoneda lemma, (4) follows from the fact that colimits of presheaves are computed
pointwise, and (5) follows from the fact that in Sets, filtered colimits commute with
finite limits (see e.g. [17, §IX.2 Thm. 1]). The composition gives the desired isomorphism

homĈ(X, colimj∈J Y (j)) ∼= colimj∈J homĈ(X,Y (j)).

We leave it to the reader to verify that homĈ(X,−) : Ĉ → Sets also preserves the colimit
inclusions of the colimit of Y .

Corollary 4. Let C be a small category and let U : J → Sq(Ĉ) be a double functor
subject to the following conditions

1. J is small,

2. Uj is finitely generated for every object j ∈ J0.

Then the AWFS cofibrantly generated by U exists and is finitary.

Proof. Note that Ĉ is locally small since C is small. Moreover, a presheaf category is
always cocomplete. By Lemma 24 every Uj is ω-compact. Thus we can apply Theorem
6 to conclude that the AWFS cofibrantly generated by U exists and is finitary.

1We denote y : C ↪→ Ĉ for the Yoneda embedding and yC for the representable functor
homC(−, C) : Cop → Sets.

72

8. Conclusion

In [7] Bourke and Garner prove the most general version of the small object argument thus
far, a small object argument for double categories. Moreover, they prove a converse result
which implies that this version is sufficient to generate all interesting AWFS. However,
their proof relies several times on the work of Kelly [15] for the existence of certain free
structures, which are obtained using transfinite constructions that are not constructively
valid. In this thesis we proved a constructive version of Bourke and Garner’s small
object argument. In order to do so, we restricted our attention to the finitary case. We
introduced the notion of a finitary AWFS, and we identified conditions under which a
small double category generates a finitary AWFS. This resulted in a finitary version of
the small object argument, as stated in Theorem 6, for which we gave a constructive
proof in this thesis. This theorem is sufficient to solve an open problem left in [3]: a
constructive proof of the fact that the effective Kan fibrations are the right class of an
AWFS. The proof of Theorem 6 has proceeded in several steps, below we give a brief
overview of the steps we took in the proof.

Step 1. Proving the Beck theorem for AWFS (Theorem 1, Chapter 3). This theorem
characterises the essential image of the semantics functor (−)-Alg : AWFSlax →
DBL2, which sends an AWFS to its right class. Thus proving that a small double
category J → Sq(C) generates an AWFS reduces to verifying that J⋔⋔ → Sq(C)
satisfies the two conditions of the Beck theorem.

Step 2. Constructing the free algebra for a finitary pointed endofunctor (Theorem 2,
Chapter 4). To this end, we used the notion of algebraic chains, originally introduced
by Koubek and Reiterman [16]. This approach emphasises the explicit formulae
involved by focusing not only on the free algebra but also on the free algebraic
chain. We proved that for finitary functors, the induced algebraic chain stabilises
at stage ω, leading to the free algebra TXω → Xω+1

∼= Xω.

Step 3. Constructing colimits in the category of finitary monads on a cocomplete cat-
egory (Theorem 4, Chapter 5). In Step 2 we constructed the free algebra on a
finitary pointed endofunctor, which induces a left adjoint to the forgetful functor
(P, ρ)-Alg → C. We proved that the induced monad of this adjunction is in fact
the free monad over the pointed endofunctor (P, ρ) and is finitary if P is finitary
(Theorem 3). Subsequently we constructed colimits in the category of finitary
monads on a cocomplete category, which we need in Step 5. From our construction
it follows that the algebra functor (assigning to a monad its category of algebras)
preserves limits, another fact that we need in Step 5.

73

Step 4. Proving the finitary small object argument for categories (Theorem 5, Chapter
6). In the proof we used the Beck theorem of Chapter 3. The major constructive
issue in the original proof by Bourke and Garner is the existence of the free algebra
on a pointed endofunctor. We relied on Chapter 4 for a constructive proof of its
existence for a finitary pointed endofunctor. We used a result of Chapter 5 for a
constructive proof that the induced AWFS is finitary, and that its monad is free on
a pointed endofunctor.

Step 5. Finally, we constructively proved Theorem 6, the finitary small object argument
for double categories (Chapter 7). To show that J⋔⋔ → Sq(C) generates an AWFS we
verified the conditions of the Beck Theorem. To this end we exhibited J⋔⋔ → Sq(C)
as an equaliser of J ⋔⋔

1 and J ⋔⋔
2 for two suitable categories J1 and J2 and maps

between them. Subsequently we used Step 4 to show that these two categories
generate a finitary AWFS. We then used Step 3 to obtain the coequaliser of the
induced monad maps, and the fact that this induces an equaliser diagram under the
algebra functor. This then shows that (J⋔⋔)1 ∼= R-Alg over C2, which is sufficient
to verify the conditions of the Beck theorem and thus completes the proof.

Based on the work in this thesis we have identified some directions for future research,
which are listed below.

• We have given a constructive proof of the small object argument for double categories.
A next step could be to formalise the proof in a theorem prover such as Coq.

• In our main theorem we imposed certain restrictions on the double category to make
sure that we stayed in ‘finitary territory’. An interesting question for future research
is whether these conditions can be relaxed, while still maintaining a constructive
small object argument. One could also investigate if a similar result holds if the
base category is locally finitely presentable.

• In [7], Bourke and Garner prove a converse result to the small object argument:
every accessible AWFS is generated by a small double category (under a suitable
size condition). We could ask ourselves the same question for finitary AWFS: can
we find a converse result? Is every finitary AWFS generated by a double category
as in Theorem 6, or are these conditions too strict?

• The crucial step in the proof of Theorem 6 was to show that the functor (J⋔⋔)1 → C2

is strictly monadic, in particular that it has a left adjoint. We did so using a
rather indirect argument, by using the small object argument for categories. An
interesting next step is to give an explicit description of this adjoint.

74

Bibliography

[1] Steve Awodey and Michael A. Warren. “Homotopy theoretic models of identity
types”. In: Math. Proc. Cambridge Philos. Soc. 146.1 (2009), pp. 45–55. issn:
0305-0041. doi: 10.1017/S0305004108001783. url: https://doi.org/10.1017/
S0305004108001783.

[2] B. van den Berg and E.E. Faber. Effective Kan Fibrations in Simplicial Sets.
Lecture Notes in Mathematics. Springer International Publishing, 2022. isbn:
9783031188992. url: https://books.google.nl/books?id=dGlgzwEACAAJ.

[3] Benno van den Berg and Freek Geerligs. Examples and cofibrant generation of
effective Kan fibrations. 2024. arXiv: 2402.10568.

[4] Marc Bezem, Thierry Coquand, and Erik Parmann. “Non-constructivity in Kan
simplicial sets”. In: 13th International Conference on Typed Lambda Calculi and
Applications. Vol. 38. LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-
Zent. Inform., Wadern, 2015, pp. 92–106. isbn: 978-3-939897-87-3.

[5] John Bourke. “An orthogonal approach to algebraic weak factorisation systems”.
In: Journal of Pure and Applied Algebra 227.6 (2023), p. 107294. issn: 0022-
4049. doi: https://doi.org/10.1016/j.jpaa.2022.107294. url: https:
//www.sciencedirect.com/science/article/pii/S0022404922002924.

[6] John Bourke. “Equipping weak equivalences with algebraic structure”. In: Mathema-
tische Zeitschrift 294 (2017), pp. 995–1019. url: https://api.semanticscholar.
org/CorpusID:85542362.

[7] John Bourke and Richard Garner. “Algebraic weak factorisation systems I: Acces-
sible AWFS”. In: J. Pure Appl. Algebra 220.1 (2016), pp. 108–147. issn: 0022-4049.
doi: 10.1016/j.jpaa.2015.06.002. url: https://doi.org/10.1016/j.jpaa.
2015.06.002.

[8] Cyril Cohen et al. “Cubical Type Theory: A Constructive Interpretation of the Uni-
valence Axiom”. In: 21st International Conference on Types for Proofs and Programs
(TYPES 2015). Ed. by Tarmo Uustalu. Vol. 69. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2018, 5:1–5:34. isbn: 978-3-95977-030-9. doi: 10.4230/LIPIcs.
TYPES.2015.5. url: https://drops.dagstuhl.de/entities/document/10.
4230/LIPIcs.TYPES.2015.5.

[9] Nicola Gambino and Marco Federico Larrea. “Models of Martin-Löf Type Theory
From Algebraic Weak Factorisation Systems”. In: The Journal of Symbolic Logic
(2021), pp. 1–48. doi: 10.1017/jsl.2021.39.

75

https://doi.org/10.1017/S0305004108001783
https://doi.org/10.1017/S0305004108001783
https://doi.org/10.1017/S0305004108001783
https://books.google.nl/books?id=dGlgzwEACAAJ
https://arxiv.org/abs/2402.10568
https://doi.org/https://doi.org/10.1016/j.jpaa.2022.107294
https://www.sciencedirect.com/science/article/pii/S0022404922002924
https://www.sciencedirect.com/science/article/pii/S0022404922002924
https://api.semanticscholar.org/CorpusID:85542362
https://api.semanticscholar.org/CorpusID:85542362
https://doi.org/10.1016/j.jpaa.2015.06.002
https://doi.org/10.1016/j.jpaa.2015.06.002
https://doi.org/10.1016/j.jpaa.2015.06.002
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2015.5
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1017/jsl.2021.39

[10] Richard Garner. “Understanding the small object argument”. In: Appl. Categ.
Structures 17.3 (2009), pp. 247–285. issn: 0927-2852. doi: 10.1007/s10485-008-
9137-4. url: https://doi.org/10.1007/s10485-008-9137-4.

[11] Marco Grandis and Walter Tholen. “Natural weak factorization systems”. eng. In:
Archivum Mathematicum 042.4 (2006), pp. 397–408. url: http://eudml.org/
doc/249802.

[12] P. T. Johnstone. “Adjoint lifting theorems for categories of algebras”. In: Bull.
London Math. Soc. 7.3 (1975), pp. 294–297. issn: 0024-6093,1469-2120. doi: 10.
1112/blms/7.3.294. url: https://doi.org/10.1112/blms/7.3.294.

[13] André Joyal. The Theory of Quasi-Categories and its Applications. Lectures at:
Advanced Course on Simplicial Methods in Higher Categories, CRM 2008.

[14] Krzysztof Kapulkin and Peter LeFanu Lumsdaine. “The simplicial model of univa-
lent foundations (after Voevodsky)”. In: J. Eur. Math. Soc. (JEMS) 23.6 (2021),
pp. 2071–2126. issn: 1435-9855,1435-9863. doi: 10.4171/JEMS/1050. url: https:
//doi.org/10.4171/JEMS/1050.

[15] G. M. Kelly. “A unified treatment of transfinite constructions for free algebras,
free monoids, colimits, associated sheaves, and so on”. In: Bull. Austral. Math. Soc.
22.1 (1980), pp. 1–83. issn: 0004-9727. doi: 10.1017/S0004972700006353. url:
https://doi.org/10.1017/S0004972700006353.

[16] Václav Koubek and Jan Reiterman. “Categorical constructions of free algebras,
colimits, and completions of partial algebras”. In: J. Pure Appl. Algebra 14.2 (1979),
pp. 195–231. issn: 0022-4049,1873-1376. doi: 10.1016/0022-4049(79)90007-0.
url: https://doi.org/10.1016/0022-4049(79)90007-0.

[17] Saunders MacLane. Categories for the Working Mathematician. Graduate Texts in
Mathematics, Vol. 5. New York: Springer-Verlag, 1971, pp. ix+262.

[18] M. Rathjen P. Aczel. Notes on constructive set theory. Tech. Rep. No. 40, Institut
MittagLeffler (2000/2001).

[19] Daniel G. Quillen. Homotopical algebra. Lecture Notes in Mathematics, No. 43.
Springer-Verlag, Berlin-New York, 1967, iv+156 pp. (not consecutively paged).

[20] Emily Riehl. A Concise Definition of a Model Category. Sept. 2009.

[21] Emily Riehl. “Algebraic model structures”. In: New York J. Math. 17 (2011),
pp. 173–231. url: http://nyjm.albany.edu:8000/j/2011/17_173.html.

[22] Paul Seip. Algebraic Weak Factorisation Systems. Bachelor’s Thesis. 2022. url:
https://scripties.uba.uva.nl/search?id=record_52614.

[23] Ross Street. “The formal theory of monads”. In: Journal of Pure and Applied Algebra
2.2 (1972), pp. 149–168. issn: 0022-4049. doi: https://doi.org/10.1016/0022-
4049(72)90019-9. url: https://www.sciencedirect.com/science/article/
pii/0022404972900199.

76

https://doi.org/10.1007/s10485-008-9137-4
https://doi.org/10.1007/s10485-008-9137-4
https://doi.org/10.1007/s10485-008-9137-4
http://eudml.org/doc/249802
http://eudml.org/doc/249802
https://doi.org/10.1112/blms/7.3.294
https://doi.org/10.1112/blms/7.3.294
https://doi.org/10.1112/blms/7.3.294
https://doi.org/10.4171/JEMS/1050
https://doi.org/10.4171/JEMS/1050
https://doi.org/10.4171/JEMS/1050
https://doi.org/10.1017/S0004972700006353
https://doi.org/10.1017/S0004972700006353
https://doi.org/10.1016/0022-4049(79)90007-0
https://doi.org/10.1016/0022-4049(79)90007-0
http://nyjm.albany.edu:8000/j/2011/17_173.html
https://scripties.uba.uva.nl/search?id=record_52614
https://doi.org/https://doi.org/10.1016/0022-4049(72)90019-9
https://doi.org/https://doi.org/10.1016/0022-4049(72)90019-9
https://www.sciencedirect.com/science/article/pii/0022404972900199
https://www.sciencedirect.com/science/article/pii/0022404972900199

A. Category Theory Background

A.1. Monads and Comonads

Definition 7. A monad on a category C is a triple T = (T, µ, η) with T : C → C an
endofunctor, multiplication µ : T 2 → T , and unit η : 1C → T , such that the following
two diagrams commute

T 3

µT
��

Tµ
// T 2

µ

��

T 2
µ
// T

T

1T

ηT // T 2

µ

��

T

1T~~

Tη
oo

T

Dually, we have the concept of a comonad

Definition 8. A comonad on a category C is a triple L = (L, δ, ϵ) with L : C → C an
endofunctor, comultiplication δ : L→ L2, and counit ϵ : L→ 1C , such that the following
two diagrams commute

L

δ
��

δ // L2

Lδ
��

L2
δL
// L3

L

δ
��

1L

~~

1L

L L2
ϵL
oo

Lϵ
// L

We want to investigate in which ways a monad arises from an adjunction.

Definition 9. Given a monad T = (T, µ, η), we define the category T-Alg of Eilenberg-
Moore algebras for the monad T or T-algebras, as follows.

• Objects are pairs (X,h) with X ∈ C and h : TX → X, satisfying

T 2X

µX
��

Th // TX

h
��

TX
h
// X

X
ηX //

1X !!

TX

h
��

X

• Morphisms (X,h) → (Y, k) are morphisms f : X → Y in C such that the following
diagram commutes

TX
Tf
//

h
��

TY

k
��

X
f
// Y

77

We have a functor F T : C → T-Alg which sends X to the ‘free’ algebra (TX, µX :
T 2X → TX). Dually, we have the concept of a coalgebra for a comonad.

Definition 10. Given a comonad (L, δ, ϵ), we define the category L-Coalg of coalgebras
for the comonad L or L-coalgebras, as follows.

• Objects are pairs (X,h) with X ∈ C and h : X → LX, satisfying

X

h
��

h // LX

δX
��

LX
Lh
// L2X

X
h //

1X !!

LX

ϵX
��

X

• Morphisms (X,h) → (Y, k) are morphisms f : X → Y in C such that the following
diagram commutes

X
f
//

h
��

Y

k
��

LX
Lf
// LY

Dually, we have a free functor FL : C → L-Coalg which sends X to the ‘free’ coalgebra
(LX, δX : LX → L2X).

Every adjunction induces a monad, as stated in the following proposition.

Proposition 19. Suppose we have an adjunction

C
F

⊥
//
D

G
oo

Then we have an induced monad T = (T, η, µ) on C, where T = GF , η is the unit of
the adjunction, and µ : T 2 ⇒ T is defined by µC = G(ϵFC) for every C in C (with ϵ the
counit of the adjunction).

A.2. Beck’s Monadicity Theorem

In the previous section we have seen the concept of monads and monad algebras. The
assigment that sends a monad T to its category of algebras T-Alg over C is in fact part
of a functor Mnd(C)op → Cat /C. Beck’s monadicity theorem characterises the essential
image of this functor. In this section we collect some definitions and results that are
related to Beck’s monadicity theorem.

Definition 11. A functor F : C → D creates limits of type I if for every functor
M : I → C and limiting cone (D,σ) for FM in D there is a unique cone (C, τ) for M in
C which is taken by F to (D,σ) and which is limiting for M in D. We say that F creates
limits if F creates limits of every small type I.

78

Proposition 20. Let T be a monad. The forgetful functor UT : T-Alg → C creates
limits of every type. Moreover it creates every colimit which is preserved by T.

Definition 12. Suppose we have an adjunction

C
F

⊥
//
D

G
oo

Let T be the induced monad on C, where T = GF . The comparison functor K : D →
T-Alg is defined by sending an object D ∈ D to the T-algebra GFG(D)

G(ϵD)−→ G(D),
and an arrow f : D → D′ to Gf . The functor G is called (strictly) monadic if K is an
equivalence (isomorphism).

Proposition 21. Let G : D → C be monadic, then G creates limits.

Definition 13. Let C be a category

1. A fork is a commutative diagram of the form

A
f
//

g
// B

e // C.

2. A split coequaliser is a fork together with morphisms s : C → B and t : B → A

A
f
//

g
// B

t
||

e // C.

s
{{

with s and t section of e and f respectively, and with gt = se. This is equivalent to
the statement that (f, e) : g → e has a section in C2.

3. Let G : D → C be a functor. A parallel pair f, g : A → B in C is called G-split if
the pair Gf,Gg has a split coequaliser in C.

4. The functor G : D → C is said to create coequalisers of G-split pairs if for any such
G-split pair, there exists a coequaliser e of f and g in D which is preserved by G,
and moreover any fork in D whose image in C is a split coequaliser must itself be a
coequaliser.

Theorem 7 (Beck’s monadicity theorem, [17, Section VI.7]). A functor G : D → C is
monadic if and only if

(i) G has a left adjoint, and

(ii) G creates coequalisers of G-split pairs.

79

A.3. Kan Extensions

The Kan extension is a universal construction to extend one functor along another functor.
It was famously referred to by MacLane as “the notion that subsumes all the other
fundamental concepts of category theory” [17]. Indeed, concepts such as limits, adjoints,
and the Yoneda lemma can be shown to be a specific instance of a Kan extension.

Definition 14. Let F : C → E and K : C → D be functors. A left Kan extension
of F along K is a functor LanK F : D → E equipped with a natural transformation
η : F ⇒ LanK F ◦ K such that any other pair (G : D → E , γ : F ⇒ GK), γ factors
uniquely through η.

C

K
��

F // E

D
LanK F

??

That is, there exists a unique natural transformation α : LanK F ⇒ G such that

C E C E

D E =

D E D E

F

K
η

1

F

K
γ

1LanK F

1
∃!α

1

G G

Dually, a right Kan extension of F along K is a functor RanK : D → E together with a
natural transformation ϵ : RanK F ◦K ⇒ F such that for any such pair (H : D → E , δ :
HK ⇒ F) there exists a unique factorisation β : H ⇒ RanK F of δ through ϵ.

The left and right Kan extension can be characterised as the left and right adjoint of
the composition functor, as the following theorem states.

Theorem 8. Let K : C → D be a functor which induces the composition functor
− ◦K : [D, E] → [C, E]. If for every F : C → E the Kan extension exists, then LanK −
and RanK − are respectively the left and the right adjoint of − ◦K.

[D, E] [C, E]−◦K

LanK −

RanK −

⊣
⊣

The following proposition gives a sufficient condition for the existence of Kan extensions.

80

Proposition 22 [17, Section X.3, Corollary 2]. If C is small and D is complete, then
any functor F : C → D has a right Kan extension along any functor K : C → E. Dually,
if C is small and D is cocomplete, then any functor F : C → D has a left Kan extension
along any functor K : C → E.

One instance of a Kan extension that occurs often in practise is the Kan extension
of a colimit preserving functor along the Yoneda embedding y : C ↪→ Ĉ. Specifically, we
have the following theorem.

Theorem 9. Let C be a small category and y : C ↪→ Ĉ the Yoneda embedding. Given
a category E which is locally small and cocomplete and a functor F : C → E, there is a
colimit preserving functor F! : Ĉ → E such that F! ◦ y ∼= F :

C
y
��

F // D

Ĉ.
F!

??

Moreover F! is, up to natural isomorphism, the unique colimit preserving functor with
this property. In addition, F! has a right adjoint F ∗ : Ĉ → D given by F ∗(D)(C) =
homD(FC,D).

81

	Introduction
	Small Object Argument
	Constructive Mathematics
	A Constructive Model of Homotopy Type Theory
	Effective Kan Fibrations
	Contribution and Structure of this Thesis

	Preliminaries
	Smallness in Categories
	Algebraic Weak Factorisation Systems
	Lifting Structures
	Double Categories

	A Beck Theorem for AWFS
	Semantics Functors
	Monads over the Codomain Functor
	Essential Image of the Semantics Functors

	Free Algebras for Pointed Endofunctors
	Algebraic Chains
	Existence of the Free Algebra

	Free Monads and Finitary Monads
	Category of Monads
	Existence of the Free Monad
	Colimits of Finitary Monads
	Well-pointed Endofunctors
	The Category T/C
	Effective Repletions
	Constructing the Colimit

	Cofibrant Generation by a Category
	Lifting Operations
	Split Epimorphisms
	The Finitary Small Object Argument for Categories

	Cofibrant Generation by a Double Category
	Double Categorical Lifting Operations
	The Finitary Small Object Argument for Double Categories
	Presheaf Categories

	Conclusion
	Bibliography
	Category Theory Background
	Monads and Comonads
	Beck's Monadicity Theorem
	Kan Extensions

