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Abstract

There is little agreement in formal argumentation on how to evaluate bipolar
argumentation, where supporting arguments are considered in addition to at-
tacking arguments. In contrast, informal argumentation has well established
approaches to argumentation that deal with supports. In this thesis, we pro-
vide a new approach to bipolar argumentation that incorporates two features
of informal argumentation: arguments have structure and one is allowed to
doubt unattacked arguments. For that purpose, we define structured bipolar
argumentation frameworks (SBAFs), which differ from bipolar argumentation
frameworks by having structured arguments and from structured argumenta-
tion by having an explicit support relation. We provide two types of extension-
based semantics for SBAFs: one that gives argument extensions and one that
gives language extensions, where the latter are sets of sentences instead of
arguments. We show that what we call coherent argument extensions and ad-
equate language extensions correspond under certain assumptions. We further
show how preferred semantics can be retrieved from weakly coherent argument
extensions and how deductive support can be retrieved from strongly coherent
argument extensions. We additionally provide a brief principled comparison
of weakly and strongly coherent argument extensions and show that they are
distinguished by the principle “directionality”. Finally, we indicate how a form
of knowledge-based reasoning can be implemented in SBAFs by distinguish-
ing between doubtable and contestable sentences, where the latter have to be
accepted in absence of attacks.
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Chapter 1

Introduction

Debates are ubiquitous in today’s society. Be it in person amongst friends, in news media
reporting about political topics, or online in social media, we are relentlessly exposed to
controversial issues where multiple sides are trying to convince us of their viewpoints. As
such debates can easily come to contain a vast number of arguments and claims, it can be
exceedingly difficult to make sense of everything and arrive at a final verdict on what to
believe. Perhaps we have some intuitions about a few arguments and claims that are made
in a debate and end up accepting or rejecting them, but it is often unclear whether our
position thus delineated is coherent. After all, by accepting some arguments and claims,
it is easy to unwittingly incur inconsistent or indefensible commitments. What we would
need, then, is a tool with which a user or agent could check whether their position in a
debate is coherent or that could tell them how they would need to adapt their position in
order to make it so.

A prominent approach that could lead to a tool for checking the coherence of a position
in a debate has been introduced by Dung in form of abstract argumentation (Dung 1995).
His approach models debates as directed graphs, where the nodes stand for arguments and
the edges indicate attacks between them. Importantly, abstract argumentation forgets
about any content arguments might have and does not consider any positive relation
between them. While this is means that the model of a debate works with very limited
information, we can nevertheless use it to evaluate a debate into rationally acceptable sets
of arguments, called extensions. There might be some disagreement on what counts as
a rationally acceptable set of arguments and, accordingly, various semantics have been
proposed. Each semantics specifies which extensions map out the space of rationally
acceptable positions in a debate and thus allows agents to check whether their positions
can be seen as being coherent. Many different semantics for abstract argumentation have
been proposed in the literature, but most of them share many basic assumptions, a crucial
one being that unattacked arguments have to be accepted.

When it comes to the usefulness of abstract argumentation for evaluating actual de-
bates, we should question whether forgetting all content of the arguments and only con-
sidering attacks between them really retains enough information. Indeed, if we look at
relations between claims in a debate, i.e. propositional relations, then we find that at-
tacks are the least common type of relation. Koszowy et al. analyse six debate corpora
and distinguish three types of propositional relations: rephrase, inference, and conflict
(Koszowy et al. 2022). Rephrase means that two claims have the same argumentative
relations, but express their propositional content in different ways. Inference means that
one claim supports an other and makes it more plausible, while two claims are in conflict
if they cannot be true together. Interestingly, across all corpora, Koszowy et al. find that
inference is the most frequent relation (62%), followed by rephrase (23%) and conflict
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coming in last (15%) (Koszowy et al. 2022, p. 64). Abstract argumentation can account
for conflicts as they form the basis for attacks between arguments, and it seems reasonable
to forget about rephrases when modelling a debate. However, this still leaves 62% of all
propositional relations unaccounted for. Even though it can be argued that inferences
occur mostly within arguments and are thus implicitly represented in abstract argumenta-
tion, empirical evidence suggests that this is not enough to capture the positive relations
between arguments we find in practice (Polberg and Hunter 2018). These limitations of
abstract argumentation have led to the development of bipolar argumentation (Cayrol and
Lagasquie-Schiex 2005b), where a support relation is added to abstract argumentation, in
order to explicitly take positive relations between arguments into account.

In contrast to purely attack based abstract argumentation, and as Yu et al. note, there
is no commonly accepted semantics for bipolar argumentation that would tell us which
sets of arguments are rationally acceptable once supports are taken into account (L. Yu
et al. 2023). In that sense, the situation in the formal study of argumentation is markedly
different compared to that of more philosophically and linguistically oriented approaches
to argumentation (see e.g. Johnson 1996, van Eemeren and Grootendorst 2004). In the
latter, informal approaches, inference and support play a much more central role. This
difference is based on two features of informal argumentation: arguments are taken to
be structured, that is, they are taken to consist of premises and a conclusion, and agents
are allowed to doubt arguments and reject them even if they are not attacked. Both of
these features have important implications for supports between arguments. Consider the
following argument: “The certified meteorologist Alexa claims that it will rain next week,
hence we can assume it will indeed rain next week.” We can distinguish the two premises
that (1) Alexa is a certified meteorologist and (2) she claims it will rain next week. This
structure of the argument is important if, for instance, it is both attacked and supported.
Without presupposing any specific semantics for bipolar argumentation, it is clear that the
situation has to be evaluated very differently depending on whether, say, both attacks and
supports concern premise (1) or whether (1) is attacked and (2) is supported. Doubt comes
into play when there is no attack present. If unattacked arguments have to be accepted,
as is the case in most abstract and bipolar semantics, there is no point in supporting, say,
that Alexa really did claim that it will rain next week. In contrast, if an agent doubts
whether Alexa made the claim, then it makes sense to cite some evidence and support
that premise.

In this thesis, we import structured arguments and doubt into bipolar argumentation.
We introduce the notion of structured bipolar argumentation frameworks that add struc-
tured arguments to bipolar frameworks with supports and attacks and provide a number of
semantics for them. While there are approaches to structured argumentation in the liter-
ature (see Besnard et al. 2014), none of them make use of an explicit support relation and
they employ a different notion of structured arguments as we understand it here. Further,
our semantics come with two novelties: first, they allow agents to doubt arguments even
if they are unattacked, thus implementing a notion of doubt, and, second, they evaluate
argumentation both on the level of which arguments one should accept and on the level of
which claims or statements one should accept. This duality of the argument and language
levels gives two complementary perspectives that lets agents choose whether they want
to think about whole arguments or just about individual claims in order to define their
position in a debate.

In our approach, we focus on extension-based semantics, where a debate is evaluated
into sets of rationally acceptable sets of arguments (see Baroni et al. 2018a for an overview).
This contrasts with gradual semantics where each argument is given an acceptability de-
gree, which is usually represented as a real number between 0 and 1 (see Baroni et al. 2019
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for an overview). Our focus on extensions has two reasons: First, it makes it easier for our
agents to interpret extensions and define their own positions, rather than them having to
translate the real numbers given by gradual semantics into a position of accepted and un-
accepted arguments. Second, extension-based semantics offer more conceptual clarity, as
gradual approaches often suffer from technical difficulties in how the acceptability degrees
are calculated.

The remainder of this chapter introduces all the necessary background in formal and
informal argumentation theory as well a first account of how we can think of structured
bipolar argumentation. Chapter 2 then examines existing semantics for bipolar and struc-
tured argumentation and details where they fail to take structured arguments or doubt
into account. Our own proposal for semantics for structured bipolar argumentation is
presented in Chapter 3. We introduce strongly and weakly coherent argument extensions
as well as strongly and weakly adequate language extensions and show that the argument
and language perspectives correspond. We also describe how support behaves according
to our semantics and how they compare to standard semantics in abstract and structured
argumentation. Finally, Chapter 4 concludes this thesis.

1.1 Argumentation Theory
Argumentation theory in its modern form as an academic field can be traced back to
Toulmin’s book The Uses of Argument (updated edition 2003) as well as Perelman and
Olbrechts-Tyteca’s The New Rhetoric (1969), both originally published in 1958. Each in
their own way, the two books went against the then dominant logical view of argumentation
(see van Eemeren et al. 2020, Chapter 3). There, assessment of an argument consists of
two steps: First, it is checked whether the premises of an argument logically entail its
conclusion, i.e. whether it is valid, and, second, it is checked whether the premises are
actually true, i.e. whether the argument is also sound. In contrast, Toulmin focused
on a richer account of argument structure, identifying several different components that
culminated in the Toulmin Scheme (Figure 1.1). Perelman and Olbrechts-Tyteca took on
a rhetorical perspective and put the audience, to which an argument should be convincing,
in the centre. From these beginnings, various approaches have developed, the relevant ones
here being pragma-dialectics and informal logic.

Pragma-dialectics has been developed by van Eemeren and Grootendorst (1984; 1992;
2004) in an effort to provide a comprehensive framework for studying argumentation.
Its fundamental notion is that of a difference of opinion between, paradigmatically, two

Datum Qualifier , Claim

Backing Rebuttal

Warrant

Figure 1.1: The Toulmin scheme, where a qualified claim is inferred from some datum via
a warrant. Backing supports the warrant and the rebuttal lists exceptions for when the
claim does not follow. The traditional example is the following: Because Harry was born
in Bermuda (datum), he is presumably (qualifier) a British subject (claim), since a person
born in Bermuda will generally be a British subject (warrant). This is because of legal
provisions (backing) and holds unless, for instance, both parents are legal aliens (rebuttal)
(Toulmin 2003, p. 92).

5



agents. Argumentation is then employed as a reasonable means of resolving this difference
of opinion. What ensues is called a critical discussion and pragma-dialectics sets out the
rules which such an ideal discussion should follow.

In brief, a critical discussion consists of four stages (van Eemeren and Grootendorst
2004, pp. 59-62): In the confrontation stage, the difference of opinion is established. Van
Eemeren and Grootendorst distinguish between mixed and non-mixed differences of opin-
ion. In a non-mixed difference, there is only one standpoint at play that is doubted by
a participant. A mixed difference of opinion occurs if both a standpoint and its negation
are in play.

After the confrontation, an opening stage follows. First, the participants determine
their respective roles in the critical discussion. In a non-mixed difference, there is a
protagonist that puts forth a standpoint (usually a statement they claim to be true) and an
antagonist that has doubts about the standpoint of the protagonist. In a mixed difference
of opinion, the antagonist can have a standpoint of their own, for instance if they not
only doubt the standpoint of the protagonist but also assert its negation. In that sense,
there is a significant difference between merely doubting a standpoint and claiming that
a standpoint is false. There can also be more than one standpoint involved, which would
lead to a “multiple” difference of opinion, but we will focus on the simplest case of a single
non-mixed difference of opinion. The protagonist and antagonist also use the opening stage
to determine which common ground they share. This can include a set of statements that
both agents accept and an agreement on which types of inferences are allowed (Krabbe
2017).

Confrontation
Stage

A difference of opinion
is established.

Opening Stage The roles of protagonist
and antagonist as well
as a common ground are
determined.

Argumentation
Stage

The protagonist defends
their standpoint against
the doubts of the antag-
onist.

Concluding Stage Either the protagonist
retracts their stand-
point or the antagonist
accepts it.

Figure 1.2: The four stages of a critical dis-
cussion with a single non-mixed difference of
opinion.

The third and most extensive stage is
the argumentation stage. Since the an-
tagonist expressed doubt about the pro-
tagonist’s standpoint in the confrontation
stage, the protagonist has to produce ar-
guments in its favour. The antagonist as-
sesses the arguments and checks whether
they are acceptable or require more justifi-
cation.

Finally, a critical discussion ends with a
concluding stage. The two agents establish
the result of the discussion. The difference
of opinion counts as resolved if both agents
agree either that the protagonist’s stand-
point should be accepted or that the an-
tagonist’s doubt wins and the standpoint
should be retracted. The four stages are
summmarised in Figure 1.2.

The whole critical discussion is ori-
ented around speech acts (Austin 1962).
Pragma-dialectics sets our rules for which
speech acts each agent is allowed to per-
form at each stage of the discussion and what consequences these have. For instance, a
crucial rule for the argumentation stage reads as follows (van Eemeren and Grootendorst
2004, p. 144):

Rule 6
a. The protagonist may always defend the standpoint that he adopts in the
initial difference of opinion or in a sub-difference of opinion by performing
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a complex speech act of argumentation, which then counts as a provisional
defense of this standpoint.
b. The antagonist may always attack a standpoint by calling into question the
propositional content or the justificatory or refutatory force of the argumenta-
tion.
c. The protagonist and the antagonist may not defend or attack standpoints
in any other way.

Pragma-dialectics is mainly interested in argumentation as a dialectical activity be-
tween two agents. In recent years, its model has also been extended to integrate rhetorical
aspects of argumentation such as strategic manoeuvring within the allowed space of speech
acts (van Eemeren 2010) and distinguishing different argumentative styles (van Eemeren
et al. 2022). Further, there have been different formal dialogue frameworks modelled after
pragma-dialectics, most notably by Krabbe (2017) and Visser (2013; 2015; 2017). How-
ever, this school of argumentation theory does not focus much on individual argumentative
moves and their evaluation.

In contrast, the school of informal logic makes the evaluation of individual arguments
its central goal. Originated by Johnson and Blair in 1977 (2006), it focused from the
beginning on critical thinking and developing methods for dealing with argumentation in
practice, such as as found in politics and newspapers (Johnson 1996). For our purposes,
we are mostly interested in the development of argument schemes that can be used to
categorise and evaluate arguments (Walton et al. 2008).

An argument scheme takes a typical pattern of reasoning found in practice and gives a
general formulation of it. In doing so, schemes abstract away from some of the content of
full arguments, but they go nowhere near the level of a logical reconstruction. A common
example for an argument schemes is that from expert opinion (Walton and Koszowy 2017):

Argument from Expert Opinion
(1) Source E is an expert in subject domain S containing proposition A.
(2) E asserts that proposition A is true (false).
(3) A is true (false).

This scheme gives the general form of arguments relying on someone’s expertise to justify
some claim. It consists of a first premise to establish the expertise of the cited source with
respect to the proposition in question and a second premise stating that the proposition is
indeed asserted (resp. rejected). It then concludes that the proposition is true (resp. false).
Arguably, both premises are required to justify the conclusion. Without the source being
an expert, we have little reason to trust their claim and without them saying anything
about the proposition in question, we have no reason to conclude anything about it. But
are the two premises themselves already enough to justify their conclusion?

Argument schemes not only allow us to identify arguments in practice and reconstruct
them in a principled way, they also come with a list of critical questions that help us
evaluate arguments that fit the schemes (S. Yu and Zenker 2020). The critical questions
for the argument from expert opinion are the following (Walton and Koszowy 2017):

Expertise Question: How credible is E as an expert source?

Field Question: Is E an expert in the [subject domain S] that A is in?

Opinion Question: What did E assert that implies A?

Trustworthiness Question: Is E personally reliable as a source?
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Consistency Question: Is A consistent with what other experts assert?

Backup Evidence Question: Is E’s assertion based on evidence?

These questions point to potential problems with an argument from expert opinion and
should any of these questions be answered negatively, the argument fails. Some of these
questions point to potential problems with the premises (e.g. the field and opinion ques-
tions), others point to problems with the inference from an expert’s claim to the truth
of the claim (e.g. the trustworthiness and backup evidence questions), and finally some
questions point to potential arguments for the opposite conclusion (e.g. the consistency
question).

Importantly, the inferences in argument schemes are assumed to be generally war-
ranted. If there is no reason to assume that some exceptional situation occurs, we are
able to infer the truth or falsity of a claim from the assertion of an expert. That is, while
most critical questions need to be answered once asked, questions that point to exceptions
for the inference are only relevant if they themselves can be backed up with an argument
(Walton et al. 2008, p. 386).

In terms of structured arguments and doubt, there are two things to note here. First,
we can identify three types of components that constitute and argument: premises, an
inference step, and a conclusion. Toulmin’s scheme is more fine-grained in also recognising
backing, qualifiers and rebuttals. However, the three part structure of arguments is the
most widely shared in the literature (see also Brun and Betz 2016; Rigotti and Greco
2019 and with some caveats Johnson 2000). Second, both in pragma-dialectics and in
argument schemes, whoever is confronted with an argument is allowed to have doubt
about the components of the argument. In pragma-dialectics, this is reflected in Rule 6b
that allows the antagonist to always express doubt which forces the protagonist to react.
With argumentation schemes, it is the critical questions that allow expression of doubt.
When it comes to questions concerning the premises of an argument, then uttering them
already forces the arguer to react. In contrast, questions about the inference need to
be substantiated. This is somewhat mirrored in pragma-dialectics where the inferences
of arguments are supposed to be part of the common ground (Krabbe 2017). Thus we
can speak of two types of doubt: mere doubt and reasoned doubt. The latter requires
justification through an argument (usually doubt about the inference of an argument),
whereas the former is effective simply by being expressed. Notably, allowing for mere
doubt makes it non-trivial to evaluate argumentation where no attacking arguments are
present. In particular, a non-mixed difference of opinion in pragma-dialectics proceeds
with supports only. This is in stark contrast to formal argumentation. Of course, the
latter recognises reasoned doubt in the sense that attacked arguments do not have to be
accepted, but it lacks a notion of mere doubt.

1.2 Abstract and Bipolar Argumentation
Abstract argumentation takes a very different approach to studying arguments than the
schools of the previous section. Initiated by Dung (1995), all internal content of argu-
ments is abstracted away and only the relations between arguments are considered. More
specifically, only attacks between arguments are recognised. As no content of arguments
is considered, no one specific meaning is attached to the notion of attack, except that is
expresses some general notion of incompatibility between arguments. Rather, the argu-
ments and their attacks are assumed to be given. Abstract argumentation then uses this
information to build an argument graph and aims to evaluate which sets of arguments are
acceptable.
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Accordingly, the basic notion is that of an abstract argumentation framework, which
specifies which arguments there are and which attacks are present. Figure 1.3 gives an
example. As we are interested in modelling debates, we can restrict our attention to finite
frameworks.

Definition 1 (Abstract Argumentation Framework). An abstract argumentation frame-
work (AF) is a tuple A = ⟨A,→⟩ where A is a finite set of arguments and → ⊆ A×A an
attack relation.

We write a → b in case (a, b) ∈ → and generalise to sets of arguments, i.e. E → b in
case a→ b for some a ∈ E and a→ E in case a→ b for some b ∈ E. We say that a set of
arguments E ⊆ A defends an argument a ∈ A if ∀b ∈ A : b→ a =⇒ E → b.

The next step is to define semantics that tell us for each AF which sets of arguments
are acceptable. We can think of them as follows. If an agent is confronted with some
arguments, they can go through each argument and decide whether they accept it. Given
such a set of accepted arguments, we can then ask whether the agent is rational in accepting
these arguments. Of course, without knowing the content of the arguments, we cannot
say much about the rationality of accepting any individual argument (except, perhaps, if
it is self-attacking). However, we can exclude some sets of arguments from being rational
by considering the attacks between arguments. We will call a rationally acceptable set of
arguments an extension. We will not explicitly model agents and their beliefs (see e.g.
Sakama 2024; Sakama and Son 2020; Shi et al. 2018 for explicit representations of agents in
abstract argumentation). Rather, we use agents informally as a background consideration
and interpret extensions as possible positions an agent could have in a debate. Different
semantics then implement different notions of what is a rational position, though almost
all semantics share some basic assumptions. For instance, it seems uncontroversial enough
to claim that arguments a1 and a2 in Figure 1.3 cannot rationally be accepted together, as
they attack each other. This is encoded in the notion that extensions should be conflict-
free, meaning that no accepted argument should attack another accepted argument.

Next to conflict-freeness, the other fundamental notion employed by Dung in defining
his semantics is that of defence (Dung 1995). The basic idea is that if you want to accept
an argument that is being attacked, then you also need to accept an argument that attacks
the attacker. If there is a counter to an argument you accept, then you cannot simply
ignore it, you need to react. In our example, this means that you should not accept only
argument a4, as it is being attacked by a3. Rather, you should also react to that attack by
accepting either a1 or a2. One way to encode this idea is by requiring that any acceptable
extension E must be such that if there is an argument a such that a → E, we also have
E → a. However, it is useful to go through the characteristic function of an AF, which
calculates for each set of arguments the set of arguments that it defends (Dung 1995).

a1 a2

a3

a4

Figure 1.3: An example of an abstract argumentation framework.
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Definition 2 (Characteristic Function). Let A = ⟨A,→⟩ be an AF. We define its char-
acteristic function FA : 2A → 2A as

FA(E) := {a ∈ A | E defends a}.

For instance, in Figure 1.3, we have FA({a1}) = {a1, a4}, as a1 both defends itself
from the attack by a2 and a4 from the attack by a3. We can now formulate the defence
requirement as E ⊆ FA(E), meaning that all arguments in the set are defended.

If an extension is both conflict-free and defended, then we call it admissible, as it passes
the most basic requirements for a rationally acceptable set of arguments. For instance,
in Figure 1.3, {a1} is admissible, as is {a1, a4}, and also ∅. However, most semantics for
abstract argumentation go a step further, requiring that a rational extension is not only
admissible, but also contains all arguments it defends. This is called completeness and
can be expressed by saying that an extension should be a fixpoint of the characteristic
function. In our example, there are three complete extensions: ∅, {a1, a4}, {a2, a4}. Note
that ∅ is complete, because it does not defend any argument, and, say, {a1} would not be
complete because it defends a4 without containing it. Since there can be multiple complete
extensions, we can also talk about minimal and maximal (w.r.t. set-inclusion) complete
extension, called grounded (in this case ∅) and preferred (in this case {a1, a4}, {a2, a4}),
respectively. All of this is summarised in the following definition.

Definition 3 (Dung Semantics). Let A = ⟨A,→⟩ be an AF. An extension E ⊆ A is called

Conflict-Free: if ∀a, b ∈ E : a ̸→ b,

Defended: if E ⊆ FA(E),

Admissible: if it is conflict-free and defended,

Complete: if it is conflict-free and E = FA(E),

Grounded: if it is ⊆-minimal among complete extensions,

Preferred: if it is ⊆-maximal among complete extensions.

Dung also defines an extension E to be stable if it is admissible and for each a ∈ A\E,
we have E → a. However, this type of extension will not play much of a role in this thesis.

Now we examine some properties of these semantics. All the results listed in this
subsection stem from Dung’s original paper (1995), though the presentation also follows
Baroni et al. (2018) and Grossi and Modgil (2019). Starting with the existence of exten-
sions, we can first note that ∅ is always admissible. For complete extension, we require a
few lemmas. The characteristic function is monotonic:

Lemma 1. Let A = ⟨A,→⟩ be an AF and FA its characteristic function. Then for any
E ⊆ E′ ⊆ A, we have FA(E) ⊆ FA(E′).

We also observe that for admissible extensions, the characteristic function is increasing:

Lemma 2. Let A = ⟨A,→⟩ be an AF and FA its characteristic function. Then for any
admissible extension E ⊆ A, we have E ⊆ FA(E) and FA(E) is also conflict-free.

Since we only consider finite AFs, these two lemmas together give us our first existence
result for complete semantics:

Proposition 1. Let A = ⟨A,→⟩ be an AF. Then there exists a complete extension.
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Corollary 1. Let A = ⟨A,→⟩ be an AF. Then there exists at least one grounded and at
least one preferred extension.

We can further note that preferred extensions are not only maximal among complete
extensions, but also maximal among admissible extensions.
Proposition 2. Let A = ⟨A,→⟩ be an AF. Then E ⊆ A is a preferred extensions if and
only if E is ⊆-maximal amongst admissible extensions.

This proposition gives us that every admissible extension is a subset of a preferred and
thus also of a complete extension. Further, it can be shown that there exists a unique
grounded extension for every AF, but the result requires some set-up. We use Davey and
Priestly (2002) as a reference for the following definitions and fact. A partial order ≤ on
a set L is a binary relation that is reflexive (∀x, y, z ∈ L, we have x ≤ x), anti-symmetric
(if x ≤ y and y ≤ x, then x = x), and transitive (if x ≤ y and y ≤ z, then x ≤ z). A
greatest lower bound (resp. least upper bound) of a subset S ⊆ L is the greatest (resp.
least) element x ∈ L such that x ≤ y (resp. y ≤ x) for all y ∈ S.
Definition 4 (Complete Lattice). A complete lattice L is a non-empty, partially-ordered
set, such that for any S ⊆ L, there exists a greatest lower bound

∧
S and a least upper

bound
∨
S.

Fact 1 (Knaster-Tarski Fixpoint Theorem). Let L be a complete Lattice and F : L → L
a monotonic function. Then there exists a least fixpoint of F .
Lemma 3. Let A = ⟨A,→⟩ be an AF and E any admissible extension. Then {E′ ⊆
A | E ⊆ E′} is a complete lattice.

It then follows from Lemmas, 1 and 3 and the Knaster-Tarski fixpoint theorem that
the grounded extension is unique. To see that the least fixpoint is indeed conflict-free,
we can note that it is contained in all fixpoints, hence we can infer conflict-freeness from
Proposition 1.
Proposition 3. Let A = ⟨A,→⟩ be an AF. Then there exists a unique grounded extension.

We can also iteratively construct the grounded extension from the empty extension:
Proposition 4. Let A = ⟨A,→⟩ be an AF and E its grounded extension.

Then E =
⋃

i∈N F
i
A(∅), where F 0

A(S) = S and F i+1
A (S) = FA(F i

A(S)).
We end by mentioning a result that shows how all completeness-based semantics co-

incide in a large number of AFs. We say an AF is well-founded if there exists no infinite
path of attacking arguments a1 → · · · → an → . . . . Since we restrict our attention to
finite AFs, this means that an AF does not contain any cycle.
Proposition 5. Let A = ⟨A,→⟩ be a well-founded AF. Then there exists a unique com-
plete extension.

Recall that our main interest lies in also examining supports between arguments, rather
than only attacks. For that purpose, we can add a support relation to AFs, leading to the
following definition.
Definition 5 (Bipolar Argumentation Framework). A bipolar argumentation framework
(BAF) is a triple B = ⟨A,→,→·· ⟩ where A is a finite set of arguments, → ⊆ A × A an
attack relation, and →·· ⊆ A×A a support relation.

Definitions of a→·· b, E→·· b, and a→·· E are as with attacks. Sometimes, it is assumed
that the support and attack relations are disjoint (e.g. Oren and Norman 2008), but for
now we leave open the possibility that an argument can at the same time support and
attack another argument. We will discuss various semantics that have been proposed for
BAFs in Chapter 2, but first we introduce some structure to the arguments.

11



1.3 Structured Bipolar Argumentation
Our goal is to provide a framework for bipolar argumentation that follows the insights
of Section 1.1. Accordingly, it is useful to introduce here how we formally understand
structured argumentation. Other frameworks such as ASPIC+(to be discussed in detail in
Section 2.2.2) approach structured argumentation as a form of knowledge-based reasoning.
That is, arguments are constructed from a knowledge base by means of inference rules.
Our approach is different in that it is somewhat closer to abstract argumentation. We
assume the arguments to be given, for instance by a debate where various arguments are
put forth. As in abstract argumentation, we simply start with a set of arguments, but we
also add some content to the nodes of an AF.

As mentioned in Section 1.1, we assume arguments to consist of three types of compo-
nents: premises, a conclusion, and an inference step from the premises to the conclusion.
In order to represent these components, we need a language. The basic notion we will use
is that of sentences. Sentences of our language represent the statements made in a debate
and they can be used to express premises, conclusions, and inference steps. Arguments
then consist of sentences and the relations between arguments will be based on relations
between their sentences. What we need for that is an indication for which sentences are
incompatible with each other. Take two sentences such as s: “This wall is red” and t:
“This wall is blue”. It cannot be the case that both of them are true at the same time,
thus they are incompatible with each other. This notion will then underlie our definition
of attacks. For instance, two arguments, one concluding with s and one with t would
certainly attack each other.

Definition 6 (Language). A language L = ⟨L, , n⟩ consists of a set of sentences L, an
incompatibility function : L→ 2L, and a naming function n : 2L × L→ L.

The naming function is how we can have sentences that express the inference steps of
arguments. This will be useful to define undercutting attacks later on. In practice and in
reconstructions using argument schemes, it is often only the premises and the conclusion of
an argument that are made explicit. That there is an argument present can, for instance,
be indicated through linguistic markers such as “hence” or “it follows that” (Johnson and
Blair 2006, p. 13). We then infer that there is an implied inference step from the premises
to the conclusion. For instance, when someone says “The wall looks red, hence it is red”,
there is no need to state the inference step explicitly. Adding something like “That the
wall looks red implies that it is red” is somewhat redundant—it adds no new information
that what was already present in the previous sentence. Nevertheless, on the formal level
it is useful to talk about the inference claim and this is done using the naming function.
For each argument, it specifies a sentence that represents its implicit inference claim.

An example for a language could be propositional logic with a defeasible conditional
⇝. L would then be the set of well-formed formulas, incompatibility could be defined
as φ := {ψ ∈ L | φ ∧ ψ |= ⊥}, and the naming function as n(⟨{φ1, . . . , φn}, ψ⟩) :=
(φ1 ∧ · · · ∧ φn)⇝ ψ. In the following, we will not rely on any specific language. The only
assumption we will make is that our language contains a negation ¬, such that for any
sentence s, we have ¬s ∈ s. This is purely for ease of notation so that we have a canonical
incompatible sentence to refer to.

Note that there is no claim towards the truth of the implicit inference claim of an
argument. That is, we do not assume that arguments are valid. Rather, any combination
of premises with a conclusion will count as an argument. Keeping with the propositional
language, ⟨{p}, q⟩ would as much be an argument as ⟨{p, q}, p⟩ or ⟨{p, p ⇝ q}, q⟩. In the
last case, it is useful to distinguish defeasible conditionals in general from implicit inference
claims, as that of the latter argument would be (p∧ (p⇝ q))⇝ q. A further consequence
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of the lack of standards for inferences is that we assume all premises to be relevant for
the argument. We simply assume that given an argument, the claim is that its premises
justify the conclusion. If it contains irrelevant premises, then it might be a bad argument,
but it is an argument nonetheless.

Definition 7 (Arguments). An argument in a language L = ⟨L, , n⟩ is a tuple a =
⟨Prem(a), Conc(a)⟩ where Prem(a) ⊆ L (non-empty) and Conc(a) ∈ L. We also define
Sent(a) := Prem(a) ∪ {Conc(a)}.

This view of arguments differs somewhat from that of other approaches to structured
argumentation such as ASPIC+. While arguments here are assumed to be built using
only one inference step, ASPIC+arguments can use an arbitrary number of inference rules
to connect the premises to the conclusion. Every single inference step is then said to
create a sub-argument of the original argument. This idea of sub-arguments is absent in
our definition. Rather, in ASPIC+’s terms, each inference rule creates its own argument.
Nevertheless, our representation of arguments is closer to the view found in informal
argumentation theory.

With this structure of arguments in mind, we can now think about how they can be
related to each other. It seems clear that we should expect the relations to be based on the
components of the arguments. Moreover, we assume that the relations are based on the
conclusions of the arguments. That is, whether an argument supports or attacks another
argument depends on how the conclusion of the former relates to the components of the
latter. This is a fairly standard assumption, though it is not always made explicit (e.g.
Betz 2010; Cohen et al. 2018; Modgil and Prakken 2014).

Definition 8 (Support and Attack). Let a, b be arguments in some language L.
We say that a supports b if Conc(a) ∈ Prem(b).
We say that a attacks b if Conc(a) ∈ s for some s ∈ Sent(b) or if Conc(a) ∈ n(b).

An argument a attacks an argument b if it is incompatible with any of its components.
Since there are three types of components: premises, conclusion, and implicit inference
claim, we can distinguish three types of attacks: undermines (contradicting a premise),
rebuts (contradicting the conclusion), and undercuts (contradicting the implicit inference
claim, represented using the naming function). This distinction can also be found in
ASPIC+(Modgil and Prakken 2014) and goes back to Pollock (1987).

According to our definition, supports are more limited than attacks. Namely, only
confirming a premise counts as a support, while there is no notion of inference-support
or conclusion-support. The absence of inference-support is a general phenomenon in the
literature. ASPIC+does not have it, Krabbe’s formalisation of pragma-dialectics does not
allow supporting an inference step through argument (Krabbe 2017), and even Cohen et
al.’s survey of different types of support in structured argumentation does not consider it
(Cohen et al. 2018). One notable exception of this is Toulmin’s argument scheme, which
explicitly includes the option of backing (supporting) a warrant (an inference) (Toulmin
2003). Nevertheless, we stay with the majority here and do not allow supports on inference
claims. Conclusion-support can be found in Cohen et al. (2018). However, it is hard to
see how two arguments with the same conclusion support each other. While they both
support the same sentence and thus make their conclusion more plausible, the strength
of an argument should not depend on the plausibility of its conclusion. Arguing that you
will win the lottery because you saw it in your dreams is a bad argument, even if there is
an independent argument that makes it very plausible that you will win the lottery (e.g.
if the game is rigged). In sum, we only recognise premise-support as defined here.

It is important at this point not to confuse conditional sentences that occurs as premises
with the implicit inference claims of arguments. The implicit inference claim is always
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a1 : ⟨{s}, t⟩ a2 : ⟨{t}, u⟩ a3 : ⟨{v, w},¬n(a2)⟩

a4 : ⟨{w},¬t⟩

Figure 1.4: A first example of an SBAF.

that all premises together justify the conclusion, whereas the premises might well contain
a conditional, for instance in a modus ponens. It is useful to distinguish between what
we might informally think of general inference rules and the specific applications of these
rules. An example for a general inference rule could be “If an expert claims something in
their field of expertise, then we can assume their claim to be true”. In the example from
the introduction, this would be “If a certified meteorologist claims something about the
weather, then we can assume their claim to be true”. We can easily add that rule to the
premise that the certified meteorologist Alexa claims that it will rain next week, to get
a somewhat more complete argument in favour of the claim that it will rain next week.
But note that the implicit inference claim is very different from the general inference rule.
Namely, the implicit claim is that if the certified meteorologist Alexa claims that it will
rain next week, then we can assume that it will rain next week. That is, it is the general
inference rule applied to the specific case of Alexa and her claim about next week.

It is possible to support a general inference rule, since it will appear as a premise of
the argument, but it is not possible to support the implicit inference claim. While one
could take an argument a and add its inference claim n(a) to its premises, this would
create a new argument a′ with a new implicit inference claim n(a′). It would also be
somewhat redundant. Since the inference claim simply takes what is already implicit in
the argument, it would not add anything to it. With these definitions in place, we can
define a structured bipolar argumentation framework:

Definition 9 (Structured Bipolar Argumentation Framework). A structured bipolar ar-
gumentation framework (SBAF) is a tuple SB = ⟨L, A,→,→·· ⟩ where A is a finite set
of arguments in language L (Definition 7) and →,→·· are the corresponding attack and
support relations (Definition 8).

As we only deal with finite SBAFs, it is worth noting that an SBAF is guaranteed to
be finite if it is based on a finite language. Namely, the number of arguments in an SBAF
has an upper bound of (2|L| − 1)|L|, since any non-empty subset of sentences can be used
as the premises and any sentence can be a conclusion.

Figure 1.4 presents a first example of an SBAF. a1 supports a2, a3 undercuts a2,
and a4 both rebuts a1 and undermines a2. Note that the rebut between a4 and a1 goes
in both directions. This is a general feature of rebuts, as later on we will assume the
incompatibility function to be symmetric.

The closest analogue of SBAFs in the literature can be found in logic-based argumen-
tation (see e.g. Arieli et al. 2021; Besnard and Hunter 2001) and the statement graphs
of Hecham et al. (2018; 2020). While arguments in SBAFs (as simple premise-conclusion
structures) have very similar analogues in these approaches, there are two main differ-
ences: both logic-based argumentation and statement-graphs represent knowledge-based
reasoning where the arguments are explicitly constructed, whereas SBAFs take arguments
as given. Further, our notion of undercuts is not in the same way present in either of the
other approaches.
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Chapter 2

An Opinionated Survey on Bipolar
Argumentation

In this chapter, we review a range of approaches to bipolar argumentation and evaluate
them from the perspective of SBAFs and doubt. Early arguments in favour of adding a
support relation to abstract argumentation go back to Amgoud, Cayrol, and Lagasquie-
Schiex (Amgoud et al. 2008; Cayrol and Lagasquie-Schiex 2005b, 2009). From the be-
ginning, bipolar argumentation has been approached from a wide variety of perspectives.
Sometimes it is seen as a generalisation of Dung Semantics (Cayrol and Lagasquie-Schiex
2005b; Potyka 2021), other times it is used as a form of logic programming (Nouioua
and Risch 2011), and in some cases it is taken as a form of legal reasoning (L. Yu et al.
2023). All these approaches are extension-based in that the bipolar semantics they pro-
pose define sets of acceptable arguments. During the same time, there has been a parallel
development of gradual semantics in bipolar argumentation (e.g. Amgoud and Ben-Naim
2016, 2018; Amgoud et al. 2008; Baroni et al. 2015; Cayrol and Lagasquie-Schiex 2005a;
Potyka 2018; Rago et al. 2016). There, the idea is that arguments should not only be
evaluated into accepted and not accepted, as extensions do, but they should rather receive
an acceptability degree, most often a value between 0 and 1. The acceptability degree of
an argument then depends on the acceptability of its attackers and supporters.

All of the approaches mentioned above treat arguments as abstract entities and simply
provide semantics for BAFs. There is an independent family of approaches for structured
argumentation (Besnard et al. 2014). This tradition is most prominently manifested in
ASPIC+(Modgil and Prakken 2013, 2014) and assumption-based argumentation (ABA)
(Toni 2014), so we will mostly discuss those.

When we survey all these approaches, we are not interested in whether they are ade-
quate for their originally intended purposes. Rather, we investigate how they fare from the
perspective of informal argumentation theory, namely from the perspective of structured
arguments and mere doubt. Of course, as ASPIC+and ABA are already structured, we
will focus on doubt when discussing them.

2.1 Structure in Bipolar Argumentation
We have introduced SBAFs in Section 1.3, with the main departure from BAFs being
that arguments now have premises and a conclusion. We argue that for capturing support
between arguments, recognising their structure is crucial. In essence, we claim that the
effect of supports and their interaction with attacks take on a different form, depending
on how they relate to the components of the arguments. With abstract arguments as
we have them in BAFs, we cannot distinguish between different cases and have to treat
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a1 a2

(a) A simple abstract attack.

a1 : ⟨{s},¬t⟩ a2 : ⟨{t, u}, v⟩

(b) A structured instance of an attack.

Figure 2.1: Comparing abstract and structured attacks.

all supports and interactions with attacks the same. Before seeing this problem at play
in standard bipolar semantics, it is useful to consider why structured arguments are less
important if we only have attacks to consider.

Take the following two arguments:

a1: s : Alexa never finished her degree in meteorology.
¬t : Alexa is not a certified meteorologist.

a2:
t : Alexa is a certified meteorologist.
u : Alexa claims that it will rain next week.
v : It will rain next week.

Clearly, a1 attacks a2, since its conclusion, that Alexa is not a certified meteorologist, is
incompatible with the premise of a2, that Alexa is a certified meteorologist. The situation
is depicted in Figure 2.1 in both abstract and structured terms. The effect of the attack
is clear: as long as there is no response to a1, a2 cannot be accepted. Note that this effect
does not depend the specifics of the attack. In order for a2 to be acceptable, Alexa both
needs to be a certified meteorologist and must have claimed that it will rain next week.
Of course, we should also not have reason to doubt the inference of the argument. If it
turns out that Alexa is not a certified meteorologist, we have not much reason to believe
her claim about next week’s weather. And if it turns out that Alexa never claimed that
it will rain next week, there is again no reason to believe that it will rain. Similarly, if
there would be evidence that Alexa was lying, then the inference of the argument fails
and with it the whole argument. The only attack that would not directly result in the
unacceptability of a2 would be an argument for a contrary conclusion. If there would be
another meteorologist claiming that it will be sunny next week, then we might still choose
to accept a2. However, this will also be clear from the abstract perspective, as there would
be a mutual attack between the two arguments.

As this example illustrates, an argument fails as soon as one of its components is shown
to be problematic. Which specific component it is or how many other components there
are does not change the result. Thus, there seems to be no feature of the attack that we
can recognise on the structured perspective that would lead to a different evaluation of the
situation than the abstract perspective. For this reason, there is less need to use structured
arguments when we only consider attacks. As we will see in the next two sections, the
situation is different when it comes to support.

2.1.1 Deductive and Necessary Support

Some of the earliest proposed semantics for bipolar argumentation frameworks work with
very strong notions of support. As we have seen that an attack can make an argument
unacceptable, it might be reasonable to consider analogous notions of support, where
supports can force acceptance of arguments. Suppose we have arguments a and b such
that a supports b (i.e. a→·· b). If we understand this support deductively, then accepting
a will entail accepting b. In that sense, a deductively entails b (Boella et al. 2010; Cayrol
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a1

a2 a3

(a) A bipolar framework.

a1

a2 a3

(b) An attack framework with a sup-
ported attack.

Figure 2.2: A supported attack.

a1 a3

a2

(a) A bipolar framework.

a1 a3

a2

(b) An attack framework with a medi-
ated attack.

Figure 2.3: A mediated attack.

and Lagasquie-Schiex 2013). Alternatively, we can understand support as necessary. For
instance, we can say that we can only accept b if we can support it. Then accepting b
would entail accepting a, i.e. a is necessary for b (Nouioua 2013; Nouioua and Risch 2011).

Interestingly, both ideas can be captured in pure attack frameworks. We start with
deductive support. Given a bipolar framework, we can add suitable attacks and then
use the usual Dung semantics. The idea can be illustrated the following way: Consider
the bipolar framework in Figure 2.2a. There, a1 deductively supports a2, which in turn
attacks a3. But if you cannot accept a1 without also accepting a2, then in some sense a1
also attacks a2, namely through a supported attack. Similarly, in Figure 2.3a, a1 again
supports a2, but this time a3 attacks a2. If we now think about what the support does,
we can note that a3 in some sense attacks a1. This is because it attacks something that is
directly implied by a1. We call this a mediated attack.

Formally, we can define supported and mediated attacks as follows (Cayrol and Lagasquie-
Schiex 2013; L. Yu et al. 2023):

Definition 10 (Supported and Mediated Attacks). Let B = ⟨A,→,→·· ⟩ be a bipolar argu-
mentation framework and take a, b ∈ A.

We say that a supported attacks b if there exists c ∈ A such that a→·· c and c→ b.
We say that a mediated attacks b if there exists c ∈ A such that b→·· c and a→ c.

Definition 11 (Deductive Support Semantics). Let B = ⟨A,→,→·· ⟩ be a bipolar argumen-
tation framework. We define the set of complex attacks,

→ded :=
⋃
i∈N
→i,

where→0:=→ and→i+1:=→i∪{(a, b) ∈ A×A | a supported or mediated attacks b w.r.t. →i}.
An extension E ⊆ A is called d-admissible, d-complete, d-grounded, or d-preferred if it

is admissible and closed under →·· , complete, grounded, or preferred in A = ⟨A,→ded⟩.

The notion of necessary support can be developed analogously. The intuition remains
the same, except that the direction changes. Now, if some argument a supports some other
argument b, accepting b entails accepting a. Thus if we have a situation as in Figure 2.4a,
where a2 supports a1 and is attacked by a3, we can add a secondary attack from a3 to
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a1

a2 a3

(a) A bipolar framework.

a1

a2 a3

(b) An attack framework with a sec-
ondary attack.

Figure 2.4: A secondary attack.

a1 a3

a2

(a) A bipolar framework.

a1 a3

a2

(b) An attack framework with an ex-
tended attack.

Figure 2.5: An extended attack.

a1. The intuition is that a1 needs to be defended against a3, since it attacks a supporter.
Similarly, in Figure 2.5a, we can capture the support from a2 to a1 by adding an extended
attack from a1 to a3. This is because accepting a1 directly implies accepting an attacker
of a3. Thus in some sense, a1 can be said to attack a3.

We can then define the semantics for necessary supports as follows (Nouioua and Risch
2011; L. Yu et al. 2023):

Definition 12 (Secondary and Extended Attacks). Let B = ⟨A,→,→·· ⟩ be a bipolar argu-
mentation framework and take a, b ∈ A.

We say that a secondary attacks b if there exists c ∈ A such that c→·· b and a→ c.
We say that a extended attacks b if there exists c ∈ A such that c→·· a and c→ b.

Definition 13 (Necessary Support Semantics). Let B = ⟨A,→,→·· ⟩ be a bipolar argumen-
tation framework. We define the set of complex attacks,

→nec :=
⋃
i∈N
→i,

where→0:=→ and→i+1:=→i∪{(a, b) ∈ A×A | a secondary or extended attacks b w.r.t. →i}.
An extension E ⊆ A is called n-admissible, n-complete, n-grounded, or n-preferred if

it is admissible and closed under →··−1, complete, grounded, or preferred in A = ⟨A,→nec⟩,
where →··−1 = {(a, b) ∈ A×A | (b, a) ∈ →·· }.

It is worth noting that deductive support can be translated to necessary support (and
vice-versa) by inverting the support relation (Cayrol and Lagasquie-Schiex 2013).

Proposition 6. Let B = ⟨A,→,→·· ⟩ and B′ = ⟨A,→,→··−1⟩ be bipolar argumentation
frameworks. Then an extension E ⊆ A is d-complete, d-grounded, or d-preferred in B iff
it is n-complete, n-grounded, or n-preferred in B′.

There is a further notion of support that can be seen as a variant of necessary support,
namely evidential support (Oren and Norman 2008). The basic idea here is that some
arguments can only be accepted if they are supported by evidence. For that purpose, Oren
and Norman introduce a special argument η, which stands for the environment (which we
can understand as the evidence). Intuitively, for an argument a to be acceptable, there
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a3 a4

a1 a2

(a) Simple abstract supports.

a3 : ⟨{w}, s⟩ a4 : ⟨{x}, u⟩

a1 : ⟨{s},¬t⟩ a2 : ⟨{t, u}, v⟩

(b) Structured instances of supports.

Figure 2.6: Extended example from Figure 2.1

needs to be a support chain with η as its root and a as its head. This is then built into an
new notion of admissibility, where each argument needs to be supported by evidence and
defended only against attacks of arguments that are themselves supported by evidence.
In a later paper, Polberg and Oren show that evidential support can be translated into
necessary support (Polberg and Oren 2014, Theorem 5.8.). The main difference is that
evidential argumentation systems allow for collective supports and attacks. That is, sup-
port and attack are not relations between arguments but are subsets of 2A × A. While
it is possible to define collective support and attack relations with structured arguments
(see Yun et al. 2020 for structured collective attacks), SBAFs work with relations between
arguments. Hence, we can consider evidential support a version of necessary support as
defined above.

Let us now examine deductive and necessary support from the perspective of SBAFs
and return to the example of Alexa the meteorologist (page 16). Previously, we only had
an attack, so let us introduce the following two supporting arguments:

a3: w : Alexa didn’t pass her final exams.
s : Alexa never finished her degree in meteorology.

a4: x : Alexa claimed it will rain next week in an interview with the local newspaper.
u : Alexa claims that it will rain next week.

The new SBAF and its corresponding AF are depicted in Figure 2.6. We now have
argument a3 supporting a1 and argument a4 supporting a2 and we can ask: should these
supports be deductive or necessary?

If we consider the structured arguments, the situation is clear. Accepting a3 means
that one accepts the claim that Alexa never finished her degree in meteorology. But note
that argument a1 infers directly from that claim that Alexa is not a certified meteorologist.
Further, as far as the information in the SBAF is concerned, there is no reason to doubt
the inference of a1. All of this together strongly suggests that accepting a3 should entail
accepting a1, just as deductive support would require. However, the situation is different
when it comes to the support from a4 to a2. The difference is that a2 relies on two
premises: that Alexa is a certified meteorologist and that she claims it will rain next
week. As before, accepting the supporting argument a4 requires one to accept a premise
of a2, namely that Alexa claims it will rain next week. But now this is only one of two
premises, whereas before the supported argument (a1) relied on only one premise. It is
very much reasonably possible to accept that Alexa’s claim happened, while at the same
time maintaining that she is not a certified meteorologist (e.g. by accepting a1). Thus a4
does not deductively support a2.

We have two supports in our example, one that seems to be deductive and one that
does not seem so. There is an important difference between the two supports and we
should not treat them equally when evaluating the argumentation. Crucially, we cannot
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tell the supports apart in the abstract BAF version of the arguments, as seen in Figure
2.6a. The problem with bipolar semantics that only consider abstract arguments is that
it has to treat all supports the same in all cases. While we have seen that this is plausible
for attacks, it is less plausible for supports. We will make this point throughout this and
the next section.

The situation is similar when it comes to necessary support. There are cases where
it seems reasonable that accepting the supported argument should entail accepting the
supporting argument. For instance, this is the case when somewhat minimal arguments
are involved that use the same sentence as premise and conclusion. In essence, a minimal
argument simply states the sentence and is an edge case of an argument. But if we have
a situation such as this: a1 : ⟨{s}, s⟩ →·· a2 : ⟨{s, t}, u⟩, where the minimal argument a1
supports a2, this support seems to be necessary. If we accept a2, then we should also accept
sentence s. But a1 is just that sentence restated, so a1 should also be accepted, making
its support necessary. But as we have seen before in Figure 2.6, most other supports
are not necessary. Again, the point is that supports behave very differently in different
situations, but we can only distinguish these situations once we recognise the structure of
the arguments.

2.1.2 Gradual Support

Apart from deductive and necessary support, a large literature has developed around
notions of gradual support. Gradual evaluation of BAFs differs from extension-based
approaches in that instead of calculating sets of acceptable arguments, each argument
is given an acceptability degree. Usually, this is a real number between 0 and 1, but
in theory any real number could be seen as specifying the acceptability of an argument
(Mossakowski and Neuhaus 2016). The idea then is that attacks and supports can influence
the acceptability of arguments in degrees. Baroni et al. (2019) give a general overview
on a range of graded approaches. Early approaches to gradual bioplar argumentation go
back to Cayrol and Lagasquie-Schiex (2005) and Amgoud et al. (2008).

We have seen in the previous section that not all support is deductive. If a supporting
argument only supports one of many premises of the supported argument, the support is
not deductive, but might still be thought to increase the acceptability of the supported
argument. While extension-based approaches have difficulties capturing support that is
weaker than deductive (or necessary), gradual approaches are very well suited for that
purpose. In these, supports can increase the acceptability of an argument to just some
degree, without having to deductively entail it.

Most gradual approaches start by putting initial weights on arguments that represent
their initial plausibility, independently of the other arguments in the framework. These
weights will then be updated to take the whole framework into account and give each
argument an acceptability degree.

Definition 14 (Weighted Bipolar Argumentation Framework). A weighted bipolar argu-
mentation framework (WBAF) WB = ⟨A,w,→,→·· ⟩ is a BAF with a function w : A →
[0, 1], specifying for each argument an initial weight.

There are many different ways to update the initial weight of an argument (Amgoud
and Ben-Naim 2016, 2018; Baroni et al. 2015; Mossakowski and Neuhaus 2016; Potyka
2018; Rago et al. 2016). Here is one such way (Amgoud and Ben-Naim 2018):

Definition 15 (Euler-based Semantics). LetWB = ⟨A,w,→,→·· ⟩ be a well-founded WBAF
such that w(a) < 1 for all a ∈ A. The acceptability degree of an argument a ∈ A is defined
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a3 : 0.17
0.17 a6 : 0.60

0.60

a1 : 0.00
0.00 a4 : 0.40

0.40 a7 : 0.60
0.56 a9 : 0.10

0.17 a10 : 0.99
0.99

a2 : 0.99
0.99 a5 : 0.40

0.30 a8 : 0.60
0.54

Figure 2.7: An example for the Euler-based semantics (Amgoud and Ben-Naim 2018,
p. 51). The numbers are initial weight

acceptability degree .

recursively as

DegWB(a) = 1− 1− w(a)2

1 + w(a) · eE
, where E =

∑
b→·· a

DegWB(b)−
∑
c→a

DegWB(c).

Figure 2.7 gives an example for the Euler-based semantics. Note the restriction to
well-founded WBs. This is a general restriction for other graded bipolar semantics as
well (Baroni et al. 2015; Rago et al. 2016). We can attempt to use the Euler-based
semantics on non-well-founded WBAFs by iteratively updating the acceptability degrees
of each argument starting with the initial weight. Figure 2.8 gives an example of a non-
well-founded WBAF where the iterative application of the Euler-based semantics does not
converge on a unique acceptability degree. While there are two approaches in the literature
that (potentially) give well-defined results under some assumptions in non-well-founded
frameworks (Mossakowski and Neuhaus 2016; Potyka 2018), there is no approach in the
literature that is known to give well-defined results in all frameworks.

Apart from the restriction to well-founded frameworks, gradual evaluations of bipolar
argumentation again deal only with abstract arguments and thus have to treat all supports
the same. It is interesting to consider the case where supports and attacks interact, that
is, where one argument is both supported and attacked. This is the case, for instance, with
argument a6 in Figure 2.7, that is attacked by a3 and supported by a9. Notably, in this

a1 : 0.5 b1 : 0.4

a2 : 0.5 b2 : 0.4

a3 : 0.5 b3 : 0.4

(a) A non-well-founded WBAF where
the Euler-based semantics does not con-
verge.
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(b) The acceptability degrees of arguments ai and
bj with multiple iterations of DegWB.

Figure 2.8: The Euler-based semantics does not always converge on non-well-founded
frameworks. The example stems from Mossakowski and Neuhaus (2018).
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case the attacker and supporter have the same acceptability degree, so the acceptability
of a6 remains unchanged from its initial weight. In that sense, the attack and support
cancel out. Amgoud and Ben-Naim call this the strict Franklin property (Amgoud and
Ben-Naim 2018, p. 44).

In general, there are three possibilities when attacks and supports interact: (1) Attacks
outweigh supports, (2) they cancel each other, or (3) Supports outweigh attacks. Amgoud
and Ben-Naim dismiss option (3), at least in the case where the attacks and supports
are equally strong, and in their Euler-based semantics, they choose option (2), while
admitting that (1) would be reasonable as well (Amgoud and Ben-Naim 2018, p. 44). From
the perspective of SBAFs, the answer depends on which components of the argument are
attacked and supported. For instance, in the example of Figure 2.6, argument a2, claiming
that it will rain next week, since the certified meteorologist Alexa says so, is both attacked
and supported. But note that the support concerns the premise that Alexa did indeed
claim that it will rain next week, while the attack concerns the premise that Alexa is
indeed a certified meteorologist. We have noted that for an argument to be acceptable,
each premise has to be acceptable. That is, if one premise fails, the whole argument fails.
Thus, the attacker a1 renders a2 unacceptable, irrespective of how its strength compares to
that of the supporter a4. In general, supports only have the potential to cancel or outweigh
attacks if they concern the same component. The limitation of gradual semantics, even
with weighted BAFs, is that they have to choose the same outcome of the interaction in all
cases and cannot distinguish the different situations where supports either never outweigh
attacks or where they sometimes might.

Part of this limitation could be overcome by putting weights on attacks as well as
arguments (Yun and Vesic 2021). Then, if a support is turned ineffective because another
component of the supported argument is attacked, this could be modelled by putting the
weight of the support to 0. However, a good understanding of the role of structure in
the interaction between supports and attacks is still needed in order to know how to put
weights on attacks.

2.2 Doubt in Bipolar and Structured Argumentation
We have seen that many semantics for abstract bipolar argumentation cannot be directly
adapted to structured bipolar argumentation. The reason is that they have to treat all
supports and interactions between supports and attacks the same, whereas recognising
the structure of arguments allows us to distinguish many situations that lead to different
treatment of supports. But structure is not the only feature of informal argumentation
that we discussed in Section 1.1. We also saw that there is a notion of mere doubt at play,
meaning that one is at least sometimes allowed to reject an argument or sentence based
on doubt, rather than only through counter-arguments. In this section, we review more
bipolar semantics and some approaches to structured argumentation and discuss how a
lack of mere doubt manifests.

In essence, the problem is that all the approaches we discuss here either use Dung’s
complete semantics or semantics based on it such as grounded or preferred. Recall that a
complete extension has to contain all arguments that it defends. This means in particular
that all unattacked arguments have to be accepted. In other words, you cannot doubt
an argument without there being a counter-argument. This leads to a wide range of
cases where supports between arguments do not have any or very little impact on the
acceptable extensions. To see that mere doubt is needed even when we recognise the
structure of arguments, we can consider what happens to support when we use complete
semantics in SBAFs.
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a2 : ⟨{c},¬a⟩ a3 : ⟨{d}, a⟩

a1 : ⟨{a}, b⟩

Figure 2.9: An attack and a support on the same component.

Going back to Figure 2.6, we can see that there is only one complete extensions,
namely {a1, a3, a4}, and everything we have said about the interpretation of support thus
far agrees with that. Since a1 is unattacked, it has to be accepted, making the support
on it superfluous. As a4 only supports one of the two premises of a2, there is no issue
in accepting the supporting argument without also accepting the supported argument.
More generally, we have seen that attacks outweigh supports if they concern different
components on an argument. Taken together with the feature of complete extensions that
all defended arguments need to be accepted, it seems that support can at most play a role
if it concerns an attacked component of an argument.

Figure 2.9 depicts the situation where an attack and a support go to the same com-
ponent of an argument. Note that the attacker, a2, and the supporter, a3, rebut each
other. This will in general be the case: the conclusion of the attacker is incompatible with
the same premise of the attacked argument that forms the conclusion of the supporter.
But now a3 not only supports a1, it also defends it. Thus, even in complete semantics,
the support makes a1 acceptable in that {a1, a3} is a complete extension. This raises the
question: is all impact from the support of a3 to a1 captured by the notion of defence?
Indeed, it seems that complete semantics render support as a relation superfluous even
in SBAFs. Implementing a notion of doubt, e.g. by using admissibility-based semantics,
where one is not forced to accept defended arguments, can remedy this problem. We will
present our semantics for SBAFs in Chapter 3. For now, we examine how other approaches
to bipolar and structured argumentation fare with respect to doubt.

2.2.1 Selection and Defence-Based Support

Recall that Dung semantics sometimes give multiple extensions that are deemed accept-
able. For instance, the BAF in Figure 2.10 has four preferred extensions: {a1, a3}, {a1, a4},
{a2, a3}, and {a2, a4}. If we want to use these semantics not as a way to check the rea-
sonability of our own view, but to figure out what we should believe, this might be unsat-
isfying. Selection-based semantics reduce the number of acceptable extensions by using
supports between arguments to make a selection of the extensions given by Dung seman-
tics (Gargouri et al. 2021). Thus, supports are used to reduce the number of extensions
that are deemed reasonable.

There are various ways to select extensions given by Dung semantics and indeed, the
semantics we provide in Chapter 3 can be seen as versions of selection-based semantics.
The point we focus on here, however, is that in the literature, all support-score based
semantics select extensions that are complete. For the purpose of illustration, it then suf-
fices to introduce a comparatively simple version of these semantics that selects preferred
extensions (L. Yu et al. 2023):

Definition 16 (Internal Coherence Semantics). Let B = ⟨A,→,→·· ⟩ be a BAF. An exten-
sion E ⊆ A is called internally coherent if

(i) it is preferred and
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a3 a4

a1 a2

Figure 2.10: An example for support-score based semantics

(ii) for all preferred extensions E′: |{a→·· b | a, b ∈ E}| ≥ |{a→·· b | a, b ∈ E′}|.

In Figure 2.10, there is one internally coherent extension, namely {a1, a3}, as a3 sup-
ports a1. That way, support plays an active role in determining which extensions are
acceptable in a BAF. Of course, we could also choose some other complete semantics
than preferred semantics, and we could consider different scores. For instance, if we chose
to count the supports coming from outside the extension, {a1, a4} would be the chosen
extension in Figure 2.10.

While this type of semantics does find a role for support in complete semantics, that
role is fairly limited. As noted in Proposition 5 (p. 11), all frameworks with a well-founded
attack relation have one unique complete extension. Thus, in these cases there is nothing
to select and support cannot play a role. That is, no matter what the support relation looks
like, selection-based semantics will always chose the same complete extension. A similar
point goes for unattacked arguments. As they are always part of any complete extension,
they will be accepted no matter which extension is selected. Hence, supporting them will
not increase their acceptability in any way. This point can be extended by observing that,
in attack-free frameworks, all arguments are accepted. Thus, support can at most play
a role in relation to attacks. This is in stark contrast with the empirical prevalence of
support (Koszowy et al. 2022) and the critical discussions of pragma-dialectics, where all
non-mixed differences of opinion proceed without any attacks. Selection-based semantics
hence have very limited space for support to play a role and the main reason for this is
their reliance on complete semantics.

A different way of taking supports in BAFs into account is to strengthen the defence
requirement in Dung semantics. Yu et al. propose three different ways of doing so: (i)
defending arguments need to support the defended argument, (ii) defending arguments
need to be supported, and (iii) supporters of attackers also need to be defended against
(L. Yu et al. 2023).

Definition 17 (Strengthened Defence). Let B = ⟨A,→,→·· ⟩ be a BAF. An extension
E ⊆ A is said to defend an argument a ∈ A if

(i) for each b ∈ A s.t. b→ a, there exists c ∈ E s.t. c→ b and c→·· a.

(ii) for each b ∈ A s.t. b→ a, there exists c ∈ E s.t. c→ b and E→·· c.

(iii) for each b ∈ A s.t. b→ a, E → b, and for each c ∈ A s.t. c→·· b, E → c.

Figure 2.11 illustrates the different types of defence. Based on these notions, complete,
grounded, and preferred semantics are then defined as usual. Important for us is that
semantics with strengthened defence are still completeness-based. As we have observed
with selection-based semantics, the consequence of this is that support is only subsidiary
to attacks. Generally with complete semantics this is implicit in that it turns out that
supporting an argument in absence of attacks will not make a difference, but here it
is explicit. Support is only taken into account in terms of defence. Hence, evaluating
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(i) a1 a2 (ii) a1 a2 (iii) a1 a2

a3 a3 a4 a3 a4 a5

Figure 2.11: The three types of strengthened defence. In (i), a3 defends a1. In (ii), a3 and
a4 together defend a1. In (iii), a3 and a5 together defend a1.

frameworks without attacks is trivial, as all arguments are simply accepted. Again, mere
doubt is not allowed and thus support only plays a minor role.

In terms of structured arguments, defence (i) correlates with our observations about
complete semantics in SBAFs. Namely, we saw that, assuming completeness, the only
supports that seem to make a difference from the structured perspective are those that go
to already attacked components of arguments (see Figure 2.9). But then the supporting
argument will rebut the attacker and thus defend it. This suggest that defence (i) shares
the following view: assuming completeness, the only supports that play a role are those
of arguments that also defend the supported argument. However, as argued above, it is
not satisfactory if the role of support is exhausted by that.

Of course, there are more proposals for extension based support semantics in the litera-
ture. For instance, Potyka (2021) provides a semantics that is suitable for argumentation
where pro- and con-arguments are weighed against each other. A consequence of this
perspective is that the resulting semantics does not need to be conflict-free, as it is very
possible to accept both an attacker and a supporter in this context. Also, Cohen et al.
(2012) propose a bipolar framework based on the Toulmin scheme. However, their se-
mantics reduce to abstract argumentation frameworks in a similar way as deductive and
necessary supports.

2.2.2 ASPIC+and Assumption-Based Argumentation

All of the approaches we have discussed so far were abstract in the sense that arguments
were abstract entities without structure. Now we discuss two notable approaches to struc-
tured argumentation: ASPIC+(Modgil and Prakken 2013; Prakken 2010) and assumption-
based argumentation (ABA) (first introcuded by Bondarenko et al. 1997, 1993). Interest-
ingly, neither of them use an explicit support relation between arguments. They make up
for this by giving arguments a richer structure than they have in SBAFs where supporting
arguments are interpreted as sub-arguments. We first introduce ASPIC+and then ABA.

Since we are interested in comparing ASPIC+to SBAFs, we will only define its aspects
relevant for our purposes. Thus, ASPIC+as presented here is somewhat simplified com-
pared to its full version. In general, ASPIC+takes into account features of argumentation
that are not present in SBAFs, such as strict inference rules that cannot be questioned and
preference rankings between arguments to represent their relative strength. We will note
the omissions as we go on. The presentation mainly follows Modgil and Prakken (2014).

As in SBAFs, we start with a language from which arguments are built. This is very
similar to Definition 6, except that we add a set of inference rules R and the naming
function n now gives names to rules instead of arguments. This stems from a difference in
perspective between SBAFs and ASPIC+. In SBAFs, we assume the arguments to be given,
for instance through a reconstruction of a debate. We are then interested in evaluating
the arguments as they are. In ASPIC+, however, the arguments are constructed inside
the framework. For that, we need to have inference rules that tell us which sentences can
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be inferred from which others.
Definition 18 (Argumentation System). An argumentation system is a tuple AS =
⟨L, ,R, n⟩ where L is a set of sentences, : L → 2L\{∅} maps sentences to sets of
contrary sentences, R is a set of rules of the form φ1, . . . , φn ⇒ ψ with φ1, . . . , φn, ψ ∈ L
(φ1, . . . , φn are called antecedents and ψ the consequent of the rule) and n : R → L gives
names to rules.

In the full version of ASPIC+, the set of rules contains both defeasible and strict
rules. Strict rules are intended to represent logically valid inferences and they cannot be
undercut. However, as there is no notion of logically valid arguments in SBAFs, we omit
these rules here.

In order to construct arguments, we not only need inference rules but also a knowledge
base. It contains the starting assumptions that form the premises of arguments and to
which rules can be applied. As with strict rules, the full version of ASPIC+distinguishes
between axioms and ordinary premises, where axioms cannot be attacked. As there is no
notion of axioms present in SBAFs, we again omit them.
Definition 19 (Argumentation Theory). An argumentation theory AT = ⟨AS,K⟩ is a
tuple consisting of an argumentation system and a knowledge base K ⊆ L.

Now we can construct arguments. As mentioned, they have a richer structure in
ASPIC+than in SBAFs, as they can contain sub-arguments. Intuitively, each SBAF ar-
gument contains one rule application, represented by what we call its implicit inference
claim. ASPIC+arguments, in contrast, can contain any number of rule applications, so
long as the original premises are part of the knowledge base. Each rule application creates
a sub-argument, whose conclusion can then be used together with further rules. In that
sense, ASPIC+arguments resemble inference trees, where the nodes are connected via rules
and the leaves need to be in the knowledge base. Suppose, for instance, that we have the
knowledge base {p} with rules {p ⇒ q, q ⇒ r}. We get the following arguments: a1 : p
itself, a2 : a1 ⇒ q, where the conclusion of a1 is used together with the first inference rule
to infer q, and a3 : a2 ⇒ r, where the conclusion of a2 is used together with the second
inference rule to infer r. We say that a1 and a2 are sub-arguments of a3, as the inference
tree for r traces back through these arguments to premise p in the knowledge base. In
comparison, in an SBAF, we would say that a1 supports a2 and it in turn supports a3.
Definition 20 (ASPIC+Arguments). Let AT = ⟨AS,K⟩ be an argumentation theory.
An argument a is:
(1) φ if φ ∈ K with: Prem(a) = {φ}, Conc(a) = φ, Sub(a) = {φ}, Rules(a) = ∅.

(2) a1, . . . , an ⇒ ψ

if a1, . . . , an are arguments and there is a rule Conc(a1), . . . , Conc(an)⇒ ψ in R.
Prem(a) = Prem(a1) ∪ · · · ∪ Prem(an),
Conc(a) = ψ,
Sub(a) = Sub(a1) ∪ · · · ∪ Sub(an) ∪ {a},
Rules(a) = Rules(a1) ∪ · · · ∪Rules(an) ∪ {Conc(a1), . . . , Conc(an)⇒ ψ}.
TopRule(a) = Conc(a1), . . . , Conc(an)⇒ ψ.

Attacks between arguments (in absence of strict rules and axioms) are defined similarly
as in SBAFs: ASPIC+also distinguishes between undermines, undercuts, and rebuts. The
main difference is that, since arguments need to draw their premises from the knowledge
base, arguments can also be attacked on sub-arguments. That is, they can be attacked by
showing that their conclusions cannot be traced back to the knowledge base.
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a1 : p a4 : s a5 : t

a2 : a1 ⇒ q a6 : a4, a5 ⇒ u

a3 : a2 ⇒ r

Figure 2.12: An ASPIC+framework with K = {p, s, t}, R = {p⇒ q; q ⇒ r; s, t⇒ u}, and
u ∈ p, p ∈ u. Dashed lines indicate sub-arguments.

Definition 21 (ASPIC+Attacks). An argument a

(i) undercuts argument b if Conc(a) ∈ n(r) for some rule r ∈ Rules(b),

(ii) rebuts argument b if Conc(a) ∈ ψ for some sub-argument b′1, . . . , b′n ⇒ ψ of b,

(iii) undermines argument b if Conc(a) ∈ ψ for some ψ ∈ Prem(b).

In its full version, ASPIC+distinguishes between attacks and defeats, where the latter
represents successful attacks. Here, ASPIC+uses a preference ordering over the arguments.
An attack is deemed successful if it is an undercut or the attacked argument is not preferred
over the attacker. The preference ordering over arguments can be given directly or it can be
aggregated from preferences over premises and inference rules. Since we omit preferences,
we can deal directly with attacks and end up with a simplified definition of a structured
argumentation framework.

Definition 22 (Structured Argumentation Framework). Given an argumentation theory
AT = ⟨AS,K⟩, we can define a structured argumentation framework (SAF) SA = ⟨A,→⟩,
where A is the set of arguments that can be created from AT according to definition 20
by using a finite number of inference rules, and → is the corresponding attack relation
according to definition 21.

Figure 2.12 presents an example for a SAF . Note that a6 attacks both a2 and a3 by
attacking their sub-argument a1.

Even though ASPIC+represents an approach to structured argumentation, SAFs are
evaluated using standard Dung semantics, namely completeness-based semantics such
as preferred or grounded. Thus, the structure of arguments is only used in order to
compute their attacks. In Figure 2.12, there are the following complete extensions:
{a1, a2, a3, a4, a5}, {a4, a5}, and {a4, a5, a6}. Note that since they are unattacked, a4
and a5 have to be accepted.

In spite of its abstract evaluation, ASPIC+satisfies some rationality postulates that
ensure that the extensions given by Dung semantics make sense also from the structured
perspective. In the somewhat limited version of ASPIC+presented here, there are two
relevant rationality postulates: sub-argument closure and direct consistency (Modgil and
Prakken 2013). For any extension E in some SA = ⟨A,→⟩, we can formulate them as
follows:

Sub-argument Closure: For any a ∈ E, Sub(a) ⊆ E.

Direct Consistency: For all a, b ∈ E, Conc(a) ̸∈ Conc(b).

Proposition 7. Let E be an admissible extension in some SA = ⟨A,→⟩. Then it satisfies
direct consistency. If it is also complete, is further satisfies sub-argument closure.
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Figure 2.13: An ABA framework with A = {p, s, t}, R = {q ← p; r ← q;u ← s, t}, and
u = p.

As most of the discussion on ASPIC+also applies to assumption-based argumentation,
we now introduce ABA. The presentation here mainly follows Toni (2014) and Čyras et al.
(2017). As ASPIC+, ABA frameworks uses inference rules to construct arguments from a
set of assumptions, which takes the place of the knowledge base. A notable difference is
that ABA does not use a naming function, as rules cannot be attacked.

Definition 23 (ABA Framework). An ABA framework is a tuple AB = ⟨L,R,A, ⟩
where L is a set of sentences and R a set of rules of the form σ0 ← σ1, . . . , σn with σi ∈ L
for all i ≤ n (σ0 is called head and σ1, . . . , σn are called body). A ⊆ L is a (non-empty)
set of assumptions and : A→ L maps any assumption to its contrary sentence.

It is sometimes assumed that the ABA frameworks are flat, meaning that no rule
concludes an assumption (Toni 2014).1 In flat frameworks, assumptions are indeed only
starting points for arguments and cannot be supported by further reasoning. However, for
our purposes, we do not need this assumption.

ABA arguments are then constructed similarly to ASPIC+arguments. They are full
inference trees, starting with assumptions as premises and containing arbitrarily many
rule applications. Rebutting and undercutting attacks are absent from ABA, as only the
assumptions of an argument can be attacked. Nevertheless, it is possible to model more
general defeasible reasoning in ABA, see Toni (2008).

Definition 24 (ABA Arguments). An argument is a deduction S ⊢ σ where S ⊆ A,
σ ∈ L, and there is a finite tree with σ as the root, where each leave is in S or is empty
in case of rules with empty bodies, and for each non-leave node there is a rule such that
the node is the head and its children the body.

A set of assumptions S ⊆ A attacks T ⊆ A (S → T ) if there is an argument S′ ⊢ σ
such that S′ ⊆ S and σ ∈ T .

Figure 2.13 presents an example of an ABA framework. It is uses the same assumptions
and rules as the example for ASPIC+in Figure 2.12. Note that all arguments need to start
from assumptions, thus instead of 6 arguments as in ASPIC+, we only have 2 arguments
here: {p} ⊢ r and {s, t} ⊢ u. Further, only assumptions have contraries, thus we cannot
express that p is contrary to u, as we specified in Figure 2.12. The attack on p is also not
transferred to attacks on the sub-deductions for q and r as it would be in ASPIC+.

ABA semantics come in two types: either they define acceptable sets of arguments
or acceptable sets of assumptions. Acceptable sets of arguments are determined as in
ASPIC+according to Dung semantics (Toni 2014). In order to determine sets of acceptable

1Note that flat frameworks are defined differently in Čyras et al. 2018 using the notion of closed sets of
assumptions, see Definition 25. According to them, an ABA framework is flat if all subsets of assumptions
are closed. The two definitions are not quite equivalent in presence of rules that can never be reached in
a deduction. However, for our purposes, it does not matter which definition we choose.
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assumptions, Dung semantics are adapted in a fairly straightforward way (Čyras et al.
2018, 2017). The only complication is that since we do not restrict ourselves to flat
ABA frameworks, acceptable sets of assumptions need to be closed under deductions of
assumptions (not sentences in general).

Definition 25 (ABA Semantics). Let AB = ⟨L,R,A, ⟩ be an ABA framework and
S ⊆ A.

Closure: S is closed if S = {σ ∈ A | ∃S′ ⊆ S : S′ ⊢ σ}.

Conflict-free: S is conflict-free if S ̸→ S

Defence: S is defended if S → T for each closed T ⊆ A such that T → S.

Admissible: S is admissible if it is closed, conflict-free, and defended.

Complete: S is complete if it is admissible and contains all assumptions it defends, where
S defends an assumption σ if S → T for all closed T ⊆ A such that T → {σ}.

Grounded: S is grounded if it is ⊆-minimal amongst complete sets.

Preferred: S is preferred if it is ⊆-maximal amongst complete sets.

In Figure 2.13, there is only one complete set of assumptions, {s, t}, as anything
containing p would not be defended.

As the sentences of the language are directly represented in frameworks for structured
argumentation, it is very natural not only to ask about which arguments one should ac-
cept, but also about which sentences one should accept (Baroni et al. 2018b). Hence,
focusing on sets of assumptions offers this additional perspective.

Neither ASPIC+nor ABA rely on an explicit support relation. Nevertheless, they are
able to capture various forms of support. ASPIC+is mostly associated with necessary
support. If we think of sub-arguments as supporting arguments, then their necessary
character becomes clear. After all, sub-argument closure in ASPIC+guarantees that if an
argument is accepted, so are its sub-arguments, resp. its supporters. This is confirmed
by Cohen et al. (2018). To make this observation formal, they first define simple SAFs
by requiring that no argument contains an inference loop, where two sub-arguments share
the same conclusion.

Definition 26 (Simple Structured Argumentation Framework). A simple structured ar-
gumentation framework (SSAF) is a SAF SA = ⟨A,→⟩ such that there exists no a ∈ A
such that for some a′, a′′ ∈ Sub(a) we have a′ ̸= a′′ and Conc(a′) = Conc(a′′).

For these SSAFs, Cohen et al. then prove that sub-arguments correspond to necessary
support (Cohen et al. 2018, Proposition 7):

Proposition 8. Let SA = ⟨A,→⟩ be a SSAF. We define its corresponding BAF as B =
⟨A,→,→·· ⟩ where a→·· b iff a ∈ Sub(b) and a ̸= b. Then an extension E ⊆ A is complete,
grounded, or preferred in SA iff it is n-complete, n-grounded, or n-preferred in B.

In addition, Prakken (2014) finds a natural correspondence between ASPIC+and evi-
dential support.

For ABA, Čyras et al. show that it can model both necessary and deductive support
(Čyras et al. 2017). For that purpose, they introduce bipolar ABA frameworks:
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Definition 27 (Bipolar ABA Frameworks). An ABA framework AB = ⟨L,R,A, ⟩ is
called bipolar if every rule in R is of the form σ0 ← σ1 where σ1 ∈ A and either σ0 ∈ A
or σ0 = σ2 for some σ2 ∈ A.

Essentially, bipolar ABA frameworks are such that all involved sentences are assump-
tions or contraries of assumptions and all rules have singleton bodies. This allows capturing
necessary and deductive supports the following way: Given a BAF, it can be translated
into a bipolar ABA framework such that admissible and preferred sets of assumptions cor-
respond to admissible and preferred extensions either according to necessary or deductive
support.

Definition 28 (From BAFs to ABA). Let B = ⟨A,→,→·· ⟩ be a BAF. We build a bipolar
ABA framework as follows:

L = A ∪ {ac | a ∈ A}

RN = {bc ← a | a→ b} ∪ {a← b | a→·· b}

RD = {bc ← a | a→ b} ∪ {b← a | a→·· b}

: a = ac for all a ∈ A

For necessary support, the corresponding ABA framework is ABN = ⟨L,RN , A, ⟩ and
for deductive support it is ABD = ⟨L,RD, A, ⟩.

In accordance with the observation about the duality between necessary and deductive
support (Proposition 6), the only difference between the translations for necessary and
deductive support is the direction of the rules representing support. We then get the
following correspondence (Čyras et al. 2017, Propositions 4, 5, 7, and 8):

Proposition 9. Let B = ⟨A,→,→·· ⟩ be a BAF. Then E ⊆ A is n-admissible or n-preferred
in B iff it is admissible or preferred in ABN and it is d-admissible or d-preferred iff it is
admissible or preferred in ABD.

It is notable that both ASPIC+and ABA have natural connections with necessary and
deductive support, since we have criticised those notions of support as being not well-suited
for structured argumentation (Section 2.1.1). For ABA, though, capturing necessary and
deductive support comes at the cost of severely limiting the structure of the arguments.
Bipolar ABA frameworks only allow rules with singleton bodies, meaning that arguments
with multiple premises are impossible to construct. Indeed, in such a setting, we will show
a similar result for SBAFs (Proposition 15). However, we would expect for structured
argumentation to also capture supports between arguments with multiple premises.

ASPIC+fares better in that regard, as it implements a notion of necessary support
with more complex arguments. However, support, here conceived as sub-argument, only
plays a role in argument construction. The evaluation of the arguments follows Dung
semantics and is accordingly completeness-based (as is ABA’s for that matter). Thus,
once an argument is constructed, it has to be accepted in absence of attacks (or presence
of defenders). In that sense ASPIC+(and ABA) do not leave room for doubt in their
semantics. It is also worth mentioning that the rationality postulate of sub-argument
closure only holds for complete extensions, hence the semantics are also not easily adapted
to incorporate doubt.

As support only plays a role in the construction of ASPIC+and ABA arguments,
perhaps we could implement doubt there. Namely, all arguments need to be traced back
to the knowledge base, resp. the set of assumptions. One way to incorporate doubt into
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a1 : p a5 : t p t

a2 : a1 ⇒ q q

a3 : a2 ⇒ r r

q←p

r←q

Figure 2.14: The frameworks of Figures 2.12 and 2.13 with K = A = {p, t}.

ASPIC+and ABA would be to adapt the knowledge base and set of assumptions to the
beliefs of an agent considering a debate (see Wallner et al. 2024 for such an approach). In
the example above, the knowledge base and set of assumptions are the set {p, s, t}. But
perhaps some agent doubts sentence s and would only accept it as the conclusion of an
argument, but not as a premise or assumption. Hence, they might not want to have it as
part of the knowledge base or set of assumptions. This would result in the frameworks
depicted in Figure 2.14. Our agent would then end up with attack-free frameworks and
could accept all arguments.

An issue with this way of incorporating doubt into ASPIC+and ABA is that each
agent considering a debate will end up with their own framework, rather than different
extensions in the same framework. Thus it can be difficult to compare the views of different
agents, as they would not even recognise the same set of arguments. In particular, this
would open up doubt as a strategy for defence. Note, for instance, that argument a3 and
{p} ⊢ r are unattacked in Figure 2.14, but not in Figures 2.12 and 2.13. Hence, whether an
agent accepting a3 or {p} ⊢ r needs to defend it against a4 or {s, t ⊢ u} depends on their
knowledge base. In essence, if they do not want to (or cannot) defend the argument, they
can simply doubt a premise of the attacker. Then, it will not even be constructed in their
framework and there would be no need for defence. This strategy of ignoring attackers
would work in all cases where the attacker is not solely based on the same premises as the
accepted arguments. While ignoring opposing arguments might be an effective rhetorical
strategy, it should hardly count as reasonable (see Betz (2016) for a similar argument).

We can also consider the question whether you need to defend an argument against an
attacker of which you doubt a premise from the pragma-dialectical perspective. Recall the
two roles of protagonist and antagonist in a critical discussion, where the protagonist tries
to convince the antagonist from their standpoint. If you are in the role of the antagonist
and you do not want to accept an argument of the protagonist, it is sufficient to express
mere doubt about a premise. It is then the protagonists responsibility to provide further
justification. Thus, if we ask the question “Does an agent have to accept argument a?”,
then it can be answered negatively in case the agent has doubts. However, the roles
are different if the agent already accepts an argument which is then attacked. Now the
question is “How do you defend your accepted argument a?”, to which mere doubt is not
an adequate response. In some sense, the agent is now in the role of the protagonist,
defending their standpoint. Thus, the agent needs to actively defend their argument and
show where the attacking argument goes wrong.

In sum, there might be ways of incorporating doubt into structured argumentation in
the style of ASPIC+or ABA, but it would require substantial work. The simple way of
making the knowledge base agent-dependent would allow questionable dialectical strategies
for defence that go against reasonable discourse.

31



Chapter 3

Structured Bipolar Argumentation

This chapter is dedicated to studying structured argumentation frameworks and their
semantics. The first section introduces both coherent argument extensions and adequate
language extensions and shows that they correspond. Afterwards, Section 3.2 takes the
perspective of bipolar semantics and considers principles and support-related properties
of semantics for SBAFs. The last two sections, 3.3 and 3.4, relate our semantics to Dung
semantics and ASPIC+.

3.1 A Framework for Doubt
We first reintroduce SBAFs with a bit more detail than before. Then, we introduce our
semantics and add some discussion of the results we present.

3.1.1 Structured Bipolar Argumentation Frameworks

Now we can start to build a framework that takes all the discussion above into account.
Let us first repeat some definitions for SBAFs, now with some technicalities added, that
were not relevant before.

Definition 29 (Language (cf. Def. 6)). A language L = ⟨L, , n⟩ consists of a set of
sentences, an incompatibility function : L→ 2L, and a naming function n : 2L×L→ L.

We assume to be symmetric, i.e. ∀s, t ∈ L : s ∈ t ⇐⇒ t ∈ s. Additionally, we
assume that n(⟨{t}, t⟩) = ∅.

We add the condition of symmetry to the incompatibility function, since it is intended
to capture the notion of contrariness that says two sentences cannot be true together. This
notion is clearly symmetric, but it is noteworthy that both ASPIC+and ABA work with
a more general, non-symmetric contrariness notion. It will further be useful to introduce
the notion of a minimal argument, just consisting of one premise and concluding with
the same sentence. Clearly, such an argument does not really contain an inference step
and hence should not be able to be undercut, which is why its name should not have
contraries. However, this condition can lead to some technical difficulties in defining
the contrariness function with specific logical languages. For instance, the propositional
contrariness mentioned in Section 1.3, φ = {ψ ∈ L | φ∧ψ |= ⊥} together with the naming
function n(⟨{φ1, . . . , φn}, ψ⟩) = (φ1 ∧ · · · ∧ φn) ⇝ ψ would give ⊥ ∈ n({φ}, φ). Thus,
extra care needs to be taken there.

Definition 30 (Arguments (cf. Def. 7)). An argument in a language L = ⟨L, , n⟩ is a
tuple a = Prem(a), Conc(a)⟩ where Prem(a) ⊆ L (non-empty) and Conc(a) ∈ L.
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We also define the set of sentences of an argument a as Sent(a) := Prem(a) ∪
{Conc(a)}. The set of sentences generalises for sets of arguments Sent(A) =

⋃
a∈A Sent(a).

We say a is a minimal argument for statement s ∈ L if a = ⟨{s}, s⟩.

Definition 31 (Support and Attack (cf. Def. 8)). Let a, b be arguments in language L.
We say that a supports b if Conc(a) ∈ Prem(b).
We say that a attacks b if Conc(a) ∈ s for some s ∈ state(b) or if Conc(a) ∈ n(b).

Note the asymmetries between supports and attacks. We have already discussed the
more limited range of supports in Section 1.3. But it is also worth noting that while
attacks are based on a contrariness function, which can be based on some notion of logical
entailment as in the example of propositional logic, supports require the identity of the
conclusion with a premise of the supported argument. Contrariness allows for sentences
to conflict very indirectly, as it can sometimes be hard to tell whether two sentences are
contraries or not. It would be possible to base support on a notion of logical entailment,
where the conclusion of a supporting argument only needs to entail a premise of the
supported argument. Of course, then it will also be very demanding to determine whether
an argument supports another. However, it would also have beneficial effects. For instance,
some very intuitive supports are not recognised according to the current definition. Take
arguments a1 : ⟨{p}, q∧ r⟩ and a2 : ⟨{q, r}, s⟩. It seems clear that a1 should support a2, as
its conclusion is simply the conjunction of the premises of a2. However, according to our
definition, there is no support here, as the conclusion of a1 is not identical to either premise
of a2. Defining support through entailment would solve this problem. Nevertheless, we
keep to the more standard notion of support we have defined here. Thus, the problem of
conjunctive conclusions needs to dealt with by splitting it into two arguments: a′1 : ⟨{p}, q⟩
and a′′1 : ⟨{p}, r⟩.

Definition 32 (Structured Bipolar Argumentation Framework (cf. Def. 9)). A structured
bipolar argumentation framework (SBAF) is a tuple SB = ⟨L, A,→,→·· ⟩ where A is a
finite set of arguments in language L and →,→·· are the corresponding attack and support
relations.
SB is called saturated if ∀s ∈ Sent(A) s.t. ∃t ∈ Sent(A) ∩ s, there is a minimal

argument for s or for t in A, and ∀u ∈ Sent(A) s.t. u ∈ n(a) for some a ∈ A, there is a
minimal argument for u in A.
SB is called strongly saturated if ∀s ∈ Sent(A) s.t. ∃t ∈ Sent(A)∩s, there is a minimal

argument for s and for t in A, and ∀u ∈ Sent(A) s.t. u ∈ n(a) for some a ∈ A, there is a
minimal argument for u in A.

The notions of saturated and strongly saturated frameworks will be needed later on
for some results. The idea is that if there are contrary sentences present in a framework,
saturated frameworks should contain a minimal argument for at least one of them, while
strongly saturated frameworks contain them for both. Also, both notions require minimal
arguments for undercutting sentences. Clearly, strongly saturated frameworks are also
saturated.

Figure 3.1 gives an example of an SBAF. Note that it is not saturated, since there is
no minimal argument for t or ¬t, whereas there is a minimal argument for s. Further, it is
useful to observe that minimal arguments always defend themselves against any attacks.
This is because they cannot be undercut and since incompatibility is symmetric, any attack
ends in mutual rebut.

Observation 1. Let SB = ⟨L, A,→,→·· ⟩ be an SBAF and a ∈ A a minimal argument.
Then {a} is defended (and hence admissible).
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a4 : ⟨{s}, t⟩ a5 : ⟨{v},¬t⟩

a1 : ⟨{s}, s⟩ a2 : ⟨{u}, v⟩ a3 : ⟨{w}, v⟩

Figure 3.1: An example of an SBAF.

3.1.2 Semantics for SBAFs

What should a semantics for SBAFs look like? Since we deal with structured arguments,
we can answer this question from two perspectives: we can talk about which arguments
should be accepted (as in ASPIC+) or we can talk about which sentences should be ac-
cepted (similar to ABA). Thus we are interested in both argument extensions and language
extensions. Since argument extensions are more familiar, we start with those.

We argued above that it should be possible for agents to doubt arguments or sentences.
In that sense, the semantics should be oriented around admissible semantics. But of course
the requirements of admissible semantics are too weak, as it would allow to ignore sup-
port. Hence, we need to add some additional condition to admissibility that takes support
into account. Note also that admissibility does not take the structure of the arguments
into account. The basic idea is that we move somewhat towards the notion of complete
extensions in the sense that what we call a coherent argument extensions should be ad-
missible and include certain arguments—just not all arguments it defends. Essentially, if
an argument extension commits an agent to accept all premises of an argument, then that
argument should generally be accepted as well. We call this notion sentence-respect, since
it requires argument extensions to take into account how its associated sentences relate to
other arguments.

First, we need a notion of which sentences an (agent accepting an) argument extension
is commited to. The easy answer is that the set of sentences corresponding to a set of
arguments contains all and only the sentences that figure either as premises or as conclu-
sion of accepted arguments. Second, we now need to specify under which circumstances
accepting certain sentences commits an agent to accepting certain arguments. One con-
dition is clear: all premises need to be accepted. There is also a clear condition for when
one does not have to accept an argument: when there is reason to doubt the inference of
the argument, i.e. if an undercut of the argument is accepted. These two conditions give
us a notion of strong sentence-respect: If you accept all premises and no undercut of an
argument, then you need to accept the argument as well.

Interestingly, strong sentence-respect might require an extension to contain conflicting
arguments. In Figure 3.1, accepting arguments a1 and a2 would commit you to both
accepting a4 and a5, even though these arguments rebut each other. Hence, one might want
to weaken sentence-respect somewhat, so that it only applies to defended arguments. This
gives us weak sentence-respect: If you accept all premises and no undercut of a defended
argument, then you need to accept the argument as well. This would make accepting only
a1 and a2 possible. Weak sentence-respect is somewhat closer to complete semantics. The
two versions of sentence-respect then give us two notions of coherent argument extensions:

Definition 33 (Coherent Argument Extensions). A strongly coherent argument extension
in an SBAF SB = ⟨L, A,→,→·· ⟩ is an admissible extension E ⊆ A that satisfies:

Strong Sentence-Respect: ∀a ∈ A : if Prem(a) ⊆ Sent(E) and n(a) ∩ Sent(E) = ∅, then
a ∈ E.
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A weakly coherent argument extension is an admissible extension E that satisfies:

Weak Sentence-Respect: ∀a ∈ A : if Prem(a) ⊆ Sent(E), n(a) ∩ Sent(E) = ∅, and E
defends a, then a ∈ E.

We will sometimes speak only of strongly or weakly coherent extensions and drop the
mention of “argument” if it is clear that argument extensions are meant. Further, we use
the shorthand of coherent semantics to express that strongly or weakly coherent extensions
are seen as the rationally acceptable ones.

In Figure 3.1, we have the following strongly coherent argument extensions: ∅, {a1, a4},
{a2, a5}, {a3, a5}, {a2, a3, a5}, and {a5}. For instance, accepting a1 means that strong
sentence-respect forces you to also accept a4, since you then accept all premises and no
undercut. The situation is similar with a2 or a3, each of which would force acceptance
of a5 under strong sentence-respect. Thus, there can be no strongly coherent argument
extension accepting a1 together with either a2 or a3, even though these arguments are
not directly in conflict with each other. In contrast, weak sentence-respect can only force
acceptance of arguments that are already defended. Thus, it is allowed to accept, say, a1
together with a2, as neither a4 nor a5 are defended by these arguments. Weak sentence-
respect then does not force acceptance of either a4 or a5. Thus, on the weakly coherent
side, all admissible extensions are acceptable. That is, all extensions that do not contain
both a4 and a5. This illustrates that weakly coherent argument extensions give somewhat
less weight to supports between arguments.

It is worth noting that the empty extension is always strongly and weakly coherent, so
we know that such argument extensions always exist. But for weakly coherent extensions,
we can say more.

Observation 2. In an SBAF, complete extensions are weakly coherent.

Figure 3.1 contains an example of a complete (even preferred) extension, {a1, a2, a3, a5},
which is not strongly coherent, as strong sentence-respect would require to also contain
a4.

In terms of the relation between strongly and weakly coherent extensions, as their
naming suggests, strongly coherent extensions are also weakly coherent, but not the other
way around.

Observation 3. In an SBAF, strongly coherent argument extensions are weakly coherent.

We can also relate strongly coherent extensions to complete extensions as follows.

Proposition 10. Let SB = ⟨L, A,→,→·· ⟩ be an SBAF. Then for each strongly coherent
argument extension E ⊆ A, there exists a weakly coherent argument extension E′ ⊆ A
such that E ⊆ E′ that is also complete.

Proof. We have seen that every admissible extension is a subset of a complete extension.
Clearly, strongly coherent argument extensions are admissible, thus Observation 2 gives
the result.

We mentioned that we can both think about what arguments we should accept and
about what sentences we should accept. Indeed, in some applications it might be more
intuitive to think directly about sentences than about arguments. For instance, if you are
listening to a debate, it can take a lot of mental effort to think about what exactly the
arguments are and with which ones you agree. It is then easier to take each sentence as it
comes and think about whether you agree with it or not. The latter approach gives you
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a language extension, i.e. a set of sentences that you accept. We can now examine what
properties such an extension should have in order to count as rational.

The most basic condition we can require of a language extension is that it should not
contain incompatible sentences.2 This mirrors conflict-freeness of argument extensions in
being a basic consistency requirement. It should at least be possible that all sentences you
accept are true together.

Compatibility: A language extension S ⊆ Sent(A) in an SBAF SB = ⟨L, A,→,→·· ⟩ is
compatible if ∀s, t ∈ S, we have s ̸∈ t.

Similarly as argument extensions should take the sentences of the arguments into
account, we would also expect language extensions to take account of the arguments.
After all, we are not presented with a mere set of sentences from which we can choose
to accept some. Rather, the sentences are organised into arguments and they occur in
a dialectical situation. Thus we need to know which arguments an agent should accept
given their accepted sentences. As with sentence-respect above, we have two ways of
determining that: either you should accept all arguments of which you accept all premises
and no undercut (which gives you the strong argument set), or amongst those you only
accept the ones you can also defend (which gives you the weak argument set). We then have
strong and weak language extensions, depending on how we calculate their corresponding
set of accepted arguments.

Using strong argument sets, we have a clear an easy criterion to determine whether an
agent accepting some sentences is committed to accepting an argument. We only need to
look at the accepted sentences and compare them with the sentences at play in a given
argument. The situation for the weak argument set is different, as you only need to accept
the arguments you can also defend. This opens up the possibility of there being multiple
argument sets that could be a plausible interpretation of the commitments of an agent.
To see this, consider the simple example in Figure 3.2 and suppose some agent accepts
sentences s and t. To what argument are they committed to? It seems plausible for
them to accept a1, as they accept both involved sentences and a1 defends itself. However,
the agent could also claim to accept no argument at all, as they might accept s and t
independently of the arguments. This would also give a set of arguments satisfying the
conditions for a weak argument set, as the agent would not defend a1 and thus would not
have to accept it. This seems undesirable, as then we cannot tell by a set of accepted
sentences which arguments an agent is required to accept. In general, it would dissociate
the accepted sentences from the accepted arguments quite a lot and simply claiming to
accept no arguments at all will be an allowed move in many cases. It is part of the point of
putting forth arguments that they should have some bearing on agents that accept their
premises. But if we are not careful with weak argument sets, this point gets somewhat
lost. One way out of this is that we require an agent to at least accept the arguments
of which they accept all sentences. This way, we have some basis from which we can
determine which arguments should be accepted.

The problems with weak argument sets are not over yet, though. Figure 3.3 illustrates
the next problem. Suppose some agent accepts again s and t. This seems plausible, as
there are two minimal arguments for these sentences (a3 and a4). However, proceeding as
above by requiring the agent to accept all arguments of which they accept all sentences
would require them to accept also a2, meaning they would end up with an undefended
argument set. But our agent might accept these sentences based on the arguments a1

2How basic this requirement is heavily depends on the specific incompatibility function we use. Using
a logical notion of contrariness (i.e. two sentences together imply a contradiction) can also be extremely
demanding on agents as it essentially requires logical omniscience.
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a1 : ⟨{s}, t⟩ a2 : ⟨{¬t},¬t⟩

Figure 3.2: In this SBAF, both ∅ and {a1} could be reasonable interpretations for the
argument set of the language extension {s, t}.

a1 : ⟨{¬n(a2)},¬n(a2)⟩

a3 : ⟨{s}, s⟩ a2 : ⟨{s}, t⟩ a4 : ⟨{t}, t⟩

Figure 3.3: This example shows that not all argument of which all sentences and no
undercuts are accepted belong to the argument set of a language extension, as otherwise
{a3, a4} would not have an acceptable corresponding language extension.

and a4, without taking a2 into account. Since that would be a weakly coherent argument
extension, we should also allow that from the language perspective. The solution here is
to allow an agent to reject an argument even though they accept all its sentences if they
cannot defend it.

Formally defining the corresponding set of arguments to a language extension requires
a bit of set-up. Calculating the set of arguments for strong language extensions is fairly
straightforward, but the set for weak language extensions requires a fixpoint construction.
Thus, we first define a respect function, which is both a version of the characteristic
function in abstract argumentation and a formulation of weak sentence-respect.

Definition 34 (Respect Function). Given an SBAF SB = ⟨L, A,→,→·· ⟩ and a set of
sentences S ⊆ Sent(A), we define its respect function RS

SB : 2A → 2A as

RS
SB(E) := {a ∈ A | Prem(a) ⊆ S, n(a) ∩ S = ∅ and E defends a}.

We drop the subscript SB if there reference is clear. It will prove useful to note that
RS
SB, like the characteristic function, is monotonic and can preserve admissibility.

Lemma 4. Let SB = ⟨L, A,→,→·· ⟩ be an SBAF, S ⊆ Sent(A), and E,E′ ⊆ A. If E ⊆ E′,
then RS(E) ⊆ RS(E′).

Proof. Take any E,E′ ⊆ A such that E ⊆ E′. Let a ∈ RS(E). Then we know that
Prem(a) ⊆ S, n(a) ∩ S = ∅, and E defends a. We immediately get Prem(a) ⊆ S,
n(a) ∩ S = ∅, and E′ defends a, which is sufficient for a ∈ RS(E′) as desired.

Lemma 5. Let SB = ⟨L, A,→,→·· ⟩ be an SBAF, S ⊆ Sent(A). Then for any admissible
extension E ⊆ A such that for all a ∈ E: Prem(a) ⊆ S and n(a) ∩ S = ∅, we have that
E ⊆ RS(E) and RS(E) is admissible.

Proof. Let E be admissible and Prem(a) ⊆ S and n(a) ∩ S = ∅ for all a ∈ E. Take any
a ∈ E, then it is clear that Prem(a) ⊆ S and n(a) ∩ S = ∅. Also, since E is admissible,
it defends a, thus a ∈ RS(E) as desired.

Note that E ⊆ RS(E) gives us that RS(E) is defended. Further, recall from Lemma
2 that FSB(E) is conflict-free. Since we clearly have RS(E) ⊆ FSB(E), we can conclude
that RS(E) is also conflict-free and thus admissible.
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a1 : ⟨{s}, t⟩ a2 : ⟨{t}, u⟩ a4 : ⟨{v}, w⟩

a3 : ⟨{¬u},¬v⟩

Figure 3.4: An example for argument sets.

Using this function, we can now define the strong and weak argument sets for a lan-
guage extension.

Definition 35 (Argument Sets). Given a set of sentences S in SB = ⟨L, A,→,→·· ⟩, we
define its strong argument set Args(S) := {a ∈ A | Prem(a) ⊆ S and n(a) ∩ S = ∅}.

If S is compatible, then its initial set, Init(S) is defined as the largest admissible subset
of {a ∈ A | Sent(a) ⊆ S and n(a) ∩ S = ∅}.

The weak argument set of a compatible S, Argw(S), then is the least fixpoint of RS
SB

that contains Init(S).

Consider the example in Figure 3.4. Suppose we start with the language extension
S = {s, t, v, w}. We can immediately see that its strong argument set is Args(S) =
{a1, a2, a4}. While its weak argument set arrives at the same result, it proceeds in steps.
Based on the accepted sentences, we should in some sense directly include a1 and a4, but
since a4 is undefended, we start with Init(S) = {a1}. The first application of the respect
function yields RS({a1}) = {a1, a2} and the second then gives us the weak argument set
Argw(S) = RS({a1, a2}) = {a1, a2, a4}. To see the differences between the strong and weak
argument sets, take the language extension S′ = {t,¬u}. The strong argument set would
commit to the conflicting arguments Args(S′) = {a2, a3}, since of both all premises and no
undercuts are accepted. The weak argument set, however, starts out with Init(S′) = ∅ and
ends with Argw(S′) = RS′(∅) = {a2}. Finally, note that S′ are somewhat unsatisfactory
as they it does not accept all conclusion of the accepted arguments. This means we will
have to require language extensions to respect their arguments.

Before defining adequate language extensions, note that the weak argument set is only
well-defined if the underlying set of sentences is compatible. For instance, in Figure 3.2,
there is no (unique) largest admissible subset of {a ∈ A | Prem(a) ⊆ {s, t,¬t} and n(a)∩
{s, t,¬t} = ∅}. However, if S is compatible, then Argw(S) is well defined. We start by
showing that Init(S) is well-defined.

Lemma 6. Let SB = ⟨L, A,→,→·· ⟩ be an SBAF and S ⊆ Sent(A) a compatible language
extension. Then there exists a unique maximal admissible subset of {a ∈ A | Sent(a) ⊆
S and n(a) ∩ S = ∅}.

Proof. We first show that {a ∈ A | Sent(a) ⊆ S and n(a)∩S = ∅} is conflict-free. Suppose
it contains argument a, b such that a→ b. Then either Conc(a) ∈ s for some s ∈ Sent(b),
which contradicts compatibility of S, or Conc(a) ∈ n(b), contradicting that n(b) ∩ S = ∅.
Thus, the set is conflict-free.

Now we show that the union of all admissible subsets of the set is admissible, thus
clearly being its unique maximal admissible subset. Since the whole set is conflict-free, so
are all subsets and thus also their union. Further, the union of defended sets is defended,
thus the union of all admissible subsets is also defended and hence admissible itself.

In order to show that the weak argument set is well-defined, it remains to show that
there indeed exists a least fixpoint of RS

SB containing Init(S). The proofs of Lemma 7
and Proposition 11 follow closely Grossi and Modgil (2019).

38



Lemma 7. Let SB = ⟨L, A,→,→·· ⟩ be an SBAF and S ⊆ Sent(A) a compatible language
extension. Then there exists a least fixpoint of RS containing Init(S).

Proof. By Lemma 3, the set {E ⊆ A | Init(S) ⊆ E} is a complete lattice. Further, Lemma
4 gives that RS is a monotonic function. Thus the claim follows from the Knaster-Tarski
fixpoint theorem (Fact 1).

This is enough to show that Argw(S) is well-defined for compatible language exten-
sions. However, we can go a step further and explicitly construct the set as

⋃
i∈NR

S
i (Init(S)),

where RS
0 (Init(S)) = Init(S) and RS

i+1(Init(S)) = RS(RS
i (Init(S)). In order to show

that, we first need another version of lemma 5.

Lemma 8. Let SB = ⟨L, A,→,→·· ⟩ be an SBAF and S ⊆ Sent(A) a compatible language
extension. Then for each i ∈ N, RS

i (Init(S)) ⊆ RS
i+1(Init(S)), and RS

i+1(Init(S)) is
admissible.

Proof. We proceed by induction on i.
For the base case, we know that Init(S) is admissible and it is clear by its construction

that for all a ∈ Init(S), we have Prem(a) ⊆ S and n(a)∩ S = ∅. Thus Lemma 5 gives us
Init(S) ⊆ RS(Init(S)) and RS(Init(S)) is admissible.

For the induction step, note that Lemma 5 applies to all RS
i+1(Init(S)), as RS

i (Init(S))
is admissible by the induction hypothesis and by definition of RS , we have that for all
a ∈ RS

i (Init(S)), Prem(a) ⊆ S and n(a) ∩ S = ∅.

This now lets us prove the following.

Proposition 11. Let SB = ⟨L, A,→,→·· ⟩ be an SBAF and S ⊆ Sent(A) a compatible
language extension. Then

Argw(S) =
⋃
i∈N

RS
i (Init(S)).

Proof. Note that Lemma 8 gives us that
⋃

i∈NR
S(RS

i (Init(S))) =
⋃

i∈NR
S
i (Init(S)). Thus

we can prove that
⋃

i∈NR
S
i (Init(S)) is a fixpoint by showing that

RS(
⋃
i∈N

RS
i (Init(S))) =

⋃
i∈N

RS(RS
i (Init(S))).

⊆: Let a ∈ RS(
⋃

i∈NR
S
i (Init(S))). Then Prem(a) ⊆ S, n(a) ∩ S = ∅, and a is defended

by
⋃

i∈NR
S
i (Init(S)). Since, by Lemma 8, RS

i (Init(S)) ⊆ RS
i+1(Init(S)), this gives

us some i such that a is defended byRS
i (Init(S)), meaning that a ∈ RS(RS

i (Init(S)))
and also a ∈

⋃
i∈NR

S(RS
i (Init(S))) as desired.

⊇: Let a ∈
⋃

i∈NR
S(RS

i (Init(S))). Again, by Lemma 8, this gives us some i such that
a ∈ RS(RS

i (Init(S))), meaning that Prem(a) ⊆ S, n(a) ∩ S = ∅, and a is defended
by RS

i (Init(S)). The latter gives us that a is defended by
⋃

i∈NR
S
i (Init(S)) and in

sum we have a ∈ RS(
⋃

i∈NR
S
i (Init(S))).

It remains to show that
⋃

i∈NR
S
i (Init(S)) is the least fixpoint containing Init(S). Assume

for a contradiction that there is some fixpoint E such that E ⊊
⋃

i∈NR
S
i (Init(S)). By

Lemma 8, this gives us some i such that E ⊊ RS
i (Init(S)). Note that we also have

Init(S) ⊊ E, since otherwise Init(S) would itself be the least fixpoint and we would have
Init(S) =

⋃
i∈NR

S
i (Init(S)). But then, by i applications of Lemma 4, RS

i (Init(S)) ⊆
RS

i (E) = E ⊊ RS
i (Init(S)), a contradiction.

Thus, we conclude that
⋃

i∈NR
S
i (Init(S)) is the least fixpoint containing Init(S).
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a4 : ⟨{s}, t⟩ a5 : ⟨{v},¬t⟩

a1 : ⟨{s}, s⟩ a2 : ⟨{u}, v⟩ a3 : ⟨{w}, v⟩

Figure 3.5: The SBAF from Figure 3.1

Corollary 2. Let SB = ⟨L, A,→,→·· ⟩ be an SBAF and S ⊆ Sent(A) a compatible language
extension. Then Argw(S) is admissible.

Given a language extension and its corresponding set of arguments, we can then add
further conditions for it to be rationally acceptable. First, we should still require defence
for the set of arguments. We argued above that defending your arguments is required even
if we allow for doubt, thus we should also keep it here. Second, we should make sure that
accepting an argument has consequences. Namely, we would not want someone to accept
an argument, based on some sentences they accept, without concluding anything from it.
Accordingly, we require that all sentences of an accepted argument are accepted.

Definition 36. A strongly adequate language extension in an SBAF SB = ⟨L, A,→,→·· ⟩ is
a compatible set of sentences S ⊆ Sent(A) such that Args(S) is defended and it satisfies:

Argument-Respect: ∀a ∈ Args(S) : Sent(a) ⊆ S.

A weakly adequate language extension S ⊆ Sent(A) is a compatible language extension
that satisfies argument-respect w.r.t. Argw(S).

As with argument extensions, we will sometimes only talk about strongly or weakly
adequate extensions if it is clear that language extensions are meant. We further use
the shorthand adequate semantics to express the idea that strongly or weakly adequate
extensions are the rationally acceptable ones. Also note that, by Corollary 2, Argw is
always admissible, so we do not have to require defence explicitly as with strongly adequate
extensions. Finally, Proposition 14 will show that all strongly adequate extensions are also
weakly adequate.

Let us go back to the SBAF of Figure 3.1, seen here again as Figure 3.5, to illustrate
language extensions. The extension S = {s, u, v, w} is weakly adequate, but not strongly
adequate. We have Argw(S) = {a1, a2, a3}, while Args(S) = {a1, a2, a3, a4, a5}. With the
latter, argument-respect is clearly not satisfied. In general, we have the following strongly
adequate extensions: ∅, {t}, {¬t}, {s, t}, {v,¬t}, {u, v,¬t}, {w, v,¬t}, {u, v, w,¬t}. Note
that while some extensions have the same strong argument set (e.g. both {t} and {¬t}
accept no arguments), all argument sets are strongly coherent. For weakly adequate
extensions, all compatible sets of sentences are weakly adequate, except if u or w occur
without v. Again, all weak argument sets are weakly coherent.

Now we have two perspectives on the range of rationally acceptable positions. We can
either view it through arguments or directly through sentences. The obvious question is
how they relate, and indeed strongly coherent argument extensions correspond to strongly
adequate language extensions and the same goes for weak extensions. However, as seen
in the above example, the correspondence is not one-to-one. Nevertheless, this correspon-
dence guarantees us that argument extensions are also reasonable when considered from
the language perspective. This can be seen as satisfying rationality postulates such as
direct consistency.
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a1 : ⟨{s}, t⟩ a2 : ⟨{¬s}, t⟩

Figure 3.6: While {a1, a2} is strongly coherent, its set of sentences {s,¬s, t} is not com-
patible and thus not strongly adequate.

Further, in general, it works only for saturated frameworks. Figure 3.6 shows a sim-
ple example where the correspondence fails in an unsaturated framework. The underly-
ing reason that there is no correspondence is unsaturated SBAFs is that argumentation
frameworks only recognise relations between arguments, but the compatibility condition
for language extensions considers relations between sentences. Thus, to make them cor-
respond, we need to import sufficient information on the relations between sentences into
the argument level of SBAFs. In practice, saturated SBAFs contain that information.

Proposition 12. Let SB = ⟨L, A,→,→·· ⟩ be a saturated SBAF. Then for every strongly
adequate language extension S, its strong argument set Args(S) is a strongly coherent
argument extension.

Also, for every strongly coherent argument extension E, its set of sentences Sent(E)
is a strongly adequate language extension.

Proof. Let S be a strongly adequate language extension. We check all conditions for strong
coherence of Args(S).

Conflict-Free: Suppose there are arguments a, b ∈ Args(S) such that a → b. Since
b ∈ Args(S), we know that n(b) ∩ S = ∅, hence, by argument-respect, Conc(a) ̸∈
n(b). Thus we know that Conc(a) ∈ Sent(b), but then argument-respect leads to a
violation of compatibility of S. Thus, Args(S) is conflict-free.

Defence: This is given by definition.

Strong Sentence-Respect: First, we show that Sent(Args(S)) ⊆ S. So first take any
s ∈ Sent(Args(S)). Then there exists some a ∈ Args(S) such that s ∈ Sent(a). By
argument-respect, we have Sent(a) ⊆ S, meaning that s ∈ S as desired. Now
suppose that for some a ∈ A, we have Prem(a) ⊆ Sent(Args(S)) and n(a) ∩
Sent(Args(S)) = ∅. Since Sent(Args(S)) ⊆ S, we directly have Prem(a) ⊆ S.
It remains to show that n(a)∩S = ∅. Suppose for a contradiction that there is some
t ∈ n(a)∩S. By saturatedness of SB, there is a minimal argument b ∈ A for t. Since
t ∈ S, we also know that b ∈ Args(S). But then t ∈ Sent(Args(S)), contradicting
that n(a)∩Sent(Args(S)) = ∅. Thus, we conclude that n(a)∩S = ∅ and hence that
a ∈ Args(S) as desired.

Now let E be a strongly coherent argument extension. We check all conditions for
strong adequacy of Sent(E).

Compatibility: Suppose there are s, t ∈ Sent(E) such that s ∈ t. Then there are argument
a, b ∈ E such that s ∈ Sent(a) and t ∈ Sent(b). Further, by saturatedness of
SB, there is a minimal argument c for either s or t. Since we assume for minimal
arguments that n(c) = ∅, strong statement-respect gives us c ∈ E. But then either
c→ a or c→ b, contradicting conflict-freeness of E. Thus we conclude that Sent(E)
is compatible.

Defence: We show that Args(Sent(E)) = E, from which defence follows directly. Thus
take a ∈ Args(Sent(E)). Then we know that Prem(a) ⊆ Sent(E) and n(a) ∩
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Sent(E) = ∅. Strong sentence-respect then gives a ∈ E as desired. Now take
a ∈ E. Then we know that Prem(a) ⊆ Sent(E). We need to show that n(a) ∩
Sent(E) = ∅ in order to get a ∈ Args(Sent(E)). Thus assume there is some t ∈
n(a)∩Sent(E). By saturatedness of SB, we get a minimal argument b for t. Strong
sentence-respect gives b ∈ E, but since b→ a, this contradicts conflict-freeness of E.
We conclude that n(a) ∩ Sent(E) = ∅ and that a ∈ Args(Sent(E)) as desired. In
sum, Args(Sent(E)) = E.

Argument-Respect: Recall that Args(Sent(E)) ⊆ E. Thus for any a ∈ Args(Sent(E)),
we know that a ∈ E and also that Sent(a) ⊆ Sent(E), meaning that Sent(E)
satisfies argument-respect.

Note that we do not need saturatedness of SB for conflict-freeness of Args(S). We
can also prove the same correspondence for weak extensions, but we need a few lemmas.
First, we show that the conditions for weak sentence-respect can be reduced in saturated
SBAFs if we know that the extension in question is admissible.

Lemma 9. Let SB = ⟨L, A,→,→·· ⟩ be a saturated SBAF, E an admissible extension, and
a ∈ A any argument. If Prem(a) ⊆ Sent(E) and E defends a, then n(a) ∩ Sent(E) = ∅.

Proof. Suppose that Prem(a) ⊆ Sent(E) and E defends a. Further, suppose for a contra-
diction that there is some t ∈ n(a)∩Sent(E). By saturatedness of SB, there is a minimal
argument b for t. Since E defends a, we have E → b. This means there is some argument
c ∈ E with Conc(c) ∈ t. But we also have that t ∈ Sent(E), so there is an argument
d ∈ E with t ∈ Sent(d). But then c→ d, contradicting conflict-freeness of E.

Next, we show that in saturated SBAFs, weakly coherent argument extensions are
fixpoints of the respect function. The restriction to saturated frameworks is required,
since otherwise there could be undercutting sentences that only occur as premises and
never as a conclusion. In such a case, the impact of such sentences on the acceptability of
the arguments they undercut would not be visible on the argument level.

Lemma 10. Let SB = ⟨L, A,→,→·· ⟩ be a saturated SBAF. Then for any weakly coherent
argument extension E, we have RSent(E)(E) = E.

Proof. Weak sentence-respect of E gives us directly that RSent(E)(E) ⊆ E. For the other
direction, take any a ∈ E. Then Prem(a) ⊆ Sent(E) and E defends a, thus by Lemma
9, we have that n(a) ∩ Sent(E) = ∅, meaning that a ∈ RSent(E)(E) as desired.

Finally, we need a lemma showing that for weakly adequate language extensions, their
initial set of arguments is already their weak set of arguments. This is essentially due to
the condition of argument-respect.

Lemma 11. Let SB = ⟨L, A,→,→·· ⟩ be a SBAF and S a weakly adequate language exten-
sion. Then Argw(S) = Init(S).

Proof. We know by definition that Init(S) ⊆ Argw(S). For the other direction, we show
that Argw(S) ⊆ {a ∈ A | Sent(a) ⊆ S and n(a)∩S = ∅}. Take any a ∈ Argw(S). Then by
argument-respect, Sent(a) ⊆ S. Now suppose there is some t ∈ n(a) ∩ S. Then certainly
a ̸∈ Init(S). Recall that Argw(S) =

⋃
i∈NR

S
i (Init(S)). Thus there is some i such that

a ̸∈ RS
i (Init(S)), but a ∈ RS

i+1(Init(S)). However, RS
i+1 = RS(RS

i (Init(S))) = {a ∈
A | Prem(a) ⊆ S, n(a) ∩ S = ∅, and RS

i (Init(S)) defends a}. Since the middle condition
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of the last set is not given for a, we have a ̸∈ RS
i+1(Init(S)), a contradiction. Thus we

conclude that n(a) ∩ S = ∅, meaning that a ∈ {a ∈ A | Sent(a) ⊆ S and n(a) ∩ S = ∅}.
Thus also Argw(S) ⊆ {a ∈ A | Sent(a) ⊆ S and n(a) ∩ S = ∅}, and since Argw(S) is
admissible (Lemma 8), we have Argw(S) ⊆ Init(S) as desired.

With all these lemmas in place, we are ready to prove the correspondence between
weakly coherent argument extensions and weakly adequate language extensions.

Proposition 13. Let SB = ⟨L, A,→,→·· ⟩ be a saturated SBAF. Then for every weakly ad-
equate language extension S, its weak argument set Argw(S) is a weakly coherent argument
extension.

Also, for every weakly coherent argument extension E, its set of sentences Sent(E) is
a weakly adequate language extension.

Proof. Let S be a weakly adequate language extension. We check all conditions of
Argw(S).

Conflict-Free: Follows from Corollary 2.

Defence: Follows from Corollary 2.

Weak Sentence-Respect: Assume for some a ∈ A that Prem(a) ⊆ Sent(Argw(S)), n(a)∩
Sent(Argw(S)) = ∅, and Argw(S) defends a. We need to show that a ∈ Argw(S).
First note that Sent(Argw(S)) ⊆ S, as Lemma 11 shows that Argw(S) = Init(S)
and all sentences occuring in arguments of Init(S) are already contained in S. Thus
we have Prem(a) ⊆ S. Further, we can show that n(a) ∩ S = ∅. Suppose for a
contradiction that there is some t ∈ n(a) ∩ S. By saturatedness of SB, there is a
minimal argument b for t, for which we know that b → a. Since Argw(S) defends
a, we know that there is some c ∈ Argw(S) such that c→ b. By b being a minimal
argument, we know that Conc(c) ∈ t, and we further know by argument-respect
that Conc(c) ∈ S. But this contradicts compatibility of S, since also t ∈ S. Thus
we conclude that n(a)∩ S = ∅. Now we can use that Argw(S) is a fixpoint of RS to
conclude that, since Argw(S) also defends a, we have a ∈ Argw(S) as desired.

Now let E be a weakly coherent argument extension. We check all conditions for
Sent(E).

Compatibility: Suppose there are s, t ∈ Sent(E) such that s ∈ t. Then we have arguments
a, b ∈ E such that s ∈ state(a) and t ∈ state(b). Further, by saturatedness of SB,
there is w.l.o.g. a minimal argument c for s (note that c → b). For Proposition
12, we could use the facts that Prem(c) ⊆ Sent(E) and n(c) = ∅ to conclude that
c ∈ E. Here, we first need to additionally show that E defends c. Note that since
s ∈ Sent(a), any attack on c is also an attack on a. Since E defends a, E thus also
defends c. Weak sentence-respect then gives c ∈ E. But since c→ b, this contradicts
conflict-freeness of E. Thus we conclude that Sent(E) is compatible.

Defence: We show that E = Argw(Sent(E)), from which defence follows directly. By
Lemma 10, we know that RSent(E) = E, thus it suffices to show that E = Init(S)
(since then Init(S) will itself be the smallest fixpoint containing it).

⊆: Take any a ∈ E. Then we have Sent(a) ⊆ Sent(E). Further, we know that E
defends a and SB is saturated, thus by Lemma 9, we know that n(a)∩Sent(E) =
∅. This gives us that a ∈ {a ∈ A | Sent(a) ⊆ Sent(E) and n(a) ∩ Sent(E) =
∅}. But note that we have just now shown that E ⊆ {a ∈ A | Sent(a) ⊆
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Sent(E) and n(a) ∩ Sent(E) = ∅} and E being admissible, we can directly
infer that E ⊆ Init(Sent(E)), as the latter is the largest admissible subset of
{a ∈ A | Sent(a) ⊆ Sent(E) and n(a) ∩ Sent(E) = ∅}.

⊇: Take any a ∈ Init(Sent(E)). Then we have that Sent(a) ⊆ Sent(E) and
n(a) ∩ Sent(E) = ∅. If we can show that E defends a, then weak sentence-
respect gives us the desired a ∈ E. Thus take any attacker b of a. There are
two cases. (1) Conc(b) ∈ s for some s ∈ Sent(a). Since Sent(a) ⊆ Sent(E),
there is some argument c ∈ E such that s ∈ Sent(c). But then b → c, and
since E defends c, we also have E → b. That is, E defends a against b.
(2) Conc(b) ∈ n(a). By saturatedness of SB, there is a minimal argument
c for Conc(b). Note that c → a and since a is defended by Init(Sent(E)),
there is some argument d ∈ Init(Sent(E)) such that d → c. This gives us
in particular Conc(d) ∈ Sent(E) and since c is a minimal argument, we also
have Conc(d) ∈ Conc(b). Further, Conc(d) ∈ Sent(E) gives us some argument
e ∈ E such that Conc(d) ∈ Sent(e). Recall that incompatibility is symmetric,
thus b → e. Finally, since E defends e, we have E → b, that is, E defends a
against b.
In sum, E defends a and weak sentence-respect gives us a ∈ E as desired.

Argument-Respect: Take any a ∈ Argw(Sent(E)). Since Argw(Sent(E)) ⊆ E, we have
a ∈ E and thus Sent(a) ⊆ Sent(E)) as desired.

Now we can show that, indeed, strongly adequate language extensions are also weakly
adequate.

Proposition 14. In an SBAF, strongly adequate language extensions are also weakly
adequate.

Proof. Let S be a strongly adequate language extension. We show that Args(S) =
Argw(S). It is immediate that Init(S) ⊆ Args(S). Further, since RS is monotonic
(Lemma 4) and RS(Args(S)) ⊆ Args(S) (strong sentence-respect) we also have Argw(S) ⊆
Args(S). Now consider any a ∈ Args(S). Then by argument-respect, we have Sent(a) ⊆ S
and by the conditions of Args(S) also n(a) ∩ S = ∅. Thus a ∈ {a ∈ A | Sent(a) ⊆
S and n(a) ∩ S = ∅}. This gives Args(S) ⊆ {a ∈ A | Sent(a) ⊆ S and n(a) ∩ S = ∅}
and since Args(S) is admissible (part of proof of Proposition 13 which does not depend
on saturatedness), we further have Args(S) ⊆ Init(S) ⊆ Argw(S).

Figure 3.7 gives an overview over the different semantics for SBAFs.

3.1.3 Discussion

In Section 1.1, we saw that doubt is a central idea that allows informal argumentation
theory to capture a rich notion of support between arguments and in Section 2.2, we
argued that existing formal approaches to argumentation have no straightforward way of
incorporating doubt. Given its importance, it might be surprising that neither coherent
nor adequate semantics explicitly employ a notion of doubt. This mainly due to doubt
being an agent-centric notion, whereas coherence and adequacy just talk about sets of
arguments and sentences respectively. But if we consider the situation from an agent’s
perspective, we can see that they are allowed to have mere doubt. Our semantics do not
come with a completeness requirement on acceptable extensions, thus our agents are not
required to accept any unattacked arguments or sentences. If they merely doubt something
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weakly coherent argument extensions weakly adequate language extensions

strongly coherent argument extensions strongly adequate language extensions

correspond directly

⊆ correspond directly ⊆

Figure 3.7: Overview on SBAF semantics. The set of strongly coherent argument ex-
tensions (resp. strongly adequate language extensions) is contained in the set of weakly
coherent argument extensions (resp. weakly adequate language extensions). Argument
extensions and language extensions correspond directly in that the set of sentences of a
strongly (resp. weakly) coherent argument extension is a strongly (resp. weakly) coherent
language extension. Further, the argument set of a strongly (resp. weakly) adequate lan-
guage extension is a strongly (resp. weakly) coherent argument extension.

without having a direct counter-argument, they are generally allowed not to accept it. Of
course, there are limits to doubt, otherwise there would not be much point in arguing at
all. Hence, agents are not allowed to doubt conclusions of accepted arguments. This is
the way coherent and adequate semantics incorporate doubt while retaining interesting
argumentative constraints on acceptable extensions.

The requirement that conclusions of accepted arguments have to be accepted as well
clearly relies on structured arguments. And with structured arguments there comes a
language that allows us to specify the components of the arguments. This allows us to ask
both “Which argument should one accept?” and “Which sentences should one accept?”.
That is, we can evaluate argumentation on both the perspective of the argument level and
that of the language level and our approach to evaluating SBAFs accordingly uses both
coherent argument extensions and adequate language extensions with equal importance.
The correspondence results between coherent and adequate extensions then confirm that
the resulting extensions make sense from both perspectives. While the two perspectives
have some precedent in the literature around ABA (see also Baroni et al. 2018b), most
approaches to structured argumentation almost exclusively deal with the argument level.
This is somewhat surprising as, in some sense, argumentation is essentially about the
language level: we argue in order to convince people of a specific claim or standpoint.
In actual debates, we are also primarily exposed to sentences, whereas we often have
to put extra effort into reconstructing arguments. It can thus be easier for agents to
determine their accepted set of sentences and compare it to the language extensions of
some semantics, than to determine the set of arguments they accept. In that sense, it is
more natural to think about the beliefs or the position of an agent in terms of the sentences
they accept.

Given a set of accepted sentences, it is not always easy to determine which arguments
the agent should accept. We have seen how particularly weak argument sets are difficult
to determine. In this respect, Corollary 2 is quite interesting. It says that for any not
outright contradictory set of sentences, we can find a corresponding set of arguments
that is admissible. This very much implements an attempt at making the agents out to
be reasonable. But it is interesting that it is almost always possible to find a, at least
somewhat, reasonable interpretation for a set of sentences. Of course, argument-respect
might still fail, so agents that accept some sentences should still be careful, but it shows
that they have quite a bit of leeway. This is in stark contrast with strong argument
sets, where it is very clear for any set of sentences which arguments correspond to it.
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a3 : ⟨{w}, s⟩ a4 : ⟨{x}, u⟩

a1 : ⟨{s},¬t⟩ a2 : ⟨{t, u}, v⟩ a5 : ⟨{y, z},¬v⟩

Figure 3.8: Extended example of Alexa, the meteorologist.

Strong argument sets will often be conflicting, even if the underlying set of sentences is
compatible. This raises the question: How can we decide whether to use strong or weak
argument sets (resp. strongly or weakly coherent argument extensions)?

Recall the example of Alexa, the meteorologist. She claimed that it will rain next
week, but there was an objection claiming she is not in fact a certified meteorologist. In
order to illustrate the differences between strong and weak argument sets, we can add
another meteorologist, Susan, claiming that it will not rain next week. Figure 3.8 gives
the example and here are the translations:

s: Alexa never finished her degree in meteorology.
t: Alexa is a certified meteorologist.
u: Alexa claims it will rain next week.
v: It will rain next week.
w: Alexa did not pass her final exams.
x: Alexa claimed it will rain next week in an interview with a local newspaper.
y: Susan is a certified meteorologist.
z: Susan claims it will not rain next week.

We have seen that weak argument sets are somewhat more generous to the agents
than strong sets, as more effort is put in into interpreting the sentences they accept as
an admissible argument extensions. Take, for instance, an agent that accepts t, u, y, and
z while doubting everything else. That is, they accept that both Alexa and Susan are
certified meteorologists and that they made contradictory claims about whether it will
rain next week. If we take the strong argument set, then our agent is committed to both
a2 and a5 and thus has to accept contradictory arguments. This is because without an
explicit undercut, strong argument sets assume the arguments to work. Taking the weak
argument set, in contrast, interprets the agent as accepting no argument at all, which
makes the agent’s position weakly adequate.

In case of two contradicting experts, it seems reasonable to accept neither argument
and not take a stance as to whether it will rain next week or not. Taking weakly adequate
language extensions allows for that possibility. However, there is still some tension there, as
the set of accepted sentences strongly suggest contradictory claims. This tension can only
be resolved by finding an undercut for one of the arguments or by rejecting a premise.
Once this is done, we reached a strongly adequate language extension. In that sense,
strongly adequate extensions are more settled and have less tension in them.3

A somewhat stranger case for weakly adequate extensions is when our agent still ac-
cepts t, u, y, and z, but additionally accepts ¬v as well. The weak argument set now
contains a5, which makes the extension still weakly adequate. The inference of argument
a2 is assumed to fail without providing an explicit undercut. Rather, the reasoning al-
lowed by the weak argument set is of the form “I accept all premises of this argument,

3The tension between rebutting arguments could also be resolved by introducing a preference ranking
between arguments, representing their relative strengths. This could then be used to determine which of
the rebutting arguments is successful (cf. Amgoud and Cayrol 1998; Amgoud and Vesic 2011; Kaci et al.
2018).
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a1 : ⟨{¬s}, t⟩ a2⟨{¬n(a3)},¬n(a3)⟩ a3 : ⟨{u},¬s⟩ a4 : ⟨{s}, w⟩

Figure 3.9: {a1, a2, a4} would be strongly and weakly coherent, but its set of sentences
{s,¬s, t, w,¬n(a3)} is not compatible.

but I cannot defend it against attacks, hence I conclude that something in its inference
must have gone wrong.” This might work well as heuristic reasoning on how to continue
the debate, but it is dialectically unsatisfactory. It already assumes that the agent has
a reasonable position in the debate and uses that to conclude that some argument does
not need to be accepted. This allows the protagonist of a standpoint to essentially ignore
any direct rebut put forth by the antagonist, even if the rebutting argument is based on
shared premises.

Interestingly, the weak argument set and weakly coherent argument extensions are
closer to standard Dung semantics than their strong counterparts. We have already seen
that complete extensions are weakly, but not strongly coherent (Observation 2). In Sec-
tion 3.3, we will further see that a certain type of weakly coherent extensions correspond
to preferred extensions.

There is much further work to be done in examining and understanding coherent ar-
gument extensions and adequate language extensions. One open question is whether the
saturatedness requirement on SBAFs can be relaxed. It is clear that some form of satu-
ratedness is required, as otherwise argument extensions can accept incompatible premises.
Further, the following obvious relaxation does not work. It might be thought that it is
enough to require that from a pair of incompatible sentences, at least one needs to occur
as a conclusion of an argument. However, Figure 3.9 presents a counterexample to that
claim.

Another open question is whether it is possible to formulate the defence requirement
on adequate language extensions on the level of sentences. While coherent argument ex-
tensions can be mostly defined on the level of arguments, adequate language extensions
import a lot of the argument level through the defence requirement. It would be inter-
esting to see whether it is possible to formulate adequacy for language extensions more
independently.

3.2 Support in Presence of Doubt
The previous section did not contain much discussion of the support relation. Indeed,
while support never featured explicitly, it was there implicitly, namely in the notion of
sentence-respect. The effect of this condition (in its weak and strong version) is that we
get the following versions of support between (sets of) arguments:

Definition 37 (Collective Support). Let SB = ⟨L, A,→,→·· ⟩ be an SBAF. A set of argu-
ments E ⊆ A is said to collectively support an argument a ∈ A if Prem(a) ⊆ Sent(E).

Strong and weak sentence-respect now give us different conditions under which col-
lective support is sufficient in the sense that any extension that collectively supports an
argument also contains the argument. In essence, they are just a reformulation of sentence-
respect in the language of support.

Observation 4. Let SB = ⟨L, A,→,→·· ⟩ be an SBAF and E a strongly coherent extension
that collectively supports a ∈ A. If n(a) ∩ Sent(E) = ∅, then a ∈ E.
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a1 : ⟨{s}, s⟩

a3 : ⟨{s}, t⟩ a2 : ⟨{s, t}, u⟩

Figure 3.10: An argument (a1) can sufficiently support another (a2) without directly
supporting all premises.

Observation 5. Let SB = ⟨L, A,→,→·· ⟩ be an SBAF and E a weakly coherent extension
that collectively supports a ∈ A. If n(a) ∩ Sent(E) = ∅ and E defends a, then a ∈ E.

It is worth noting that these observations do not capture all sufficient support there
is. For instance, it only takes direct support into account, whereas indirect support can
sometimes also be relevant. The latter would be a case shown in Figure 3.10, where
supporting a supporting argument also leads to sufficient support. Further, somewhat
counter-intuitively, collective support does not need to be based on the support relation.
For instance, in the same figure, {a2} collectively supports a1 and a2.

Nevertheless, what these reformulations suggest, is that in some circumstances, strongly
coherent extensions follow the notion of deductive support (see Section 2.1.1). While de-
ductive support, contrary to collective support, is a binary relation, the two notions can
coincide if all arguments have exactly one premise. Further, if we assume that there are
no undercutting sentences in play, support in strongly coherent extensions starts to be
come deductive in the following sense:

Proposition 15. Let SB = ⟨L, A,→,→·· ⟩ be an SBAF where ∀a ∈ A : |Prem(a)| = 1 and
¬∃t ∈ Sent(A),∃a ∈ A : t ∈ n(a). Then an extension E ⊆ A that is strongly coherent is
also d-admissible.

If further ∀a, b ∈ A, we have Prem(a) ̸= Prem(b), then an extension E ⊆ A that is
d-admissible is also strongly coherent.

Proof. Let E be strongly coherent. We first check closure under→·· . Suppose there is some
a ∈ E and b ∈ A such that a→·· b. Since |Prem(a)| = 1, we know that Prem(a) ⊆ Sent(E)
and since there are no undercuts, we know that n(a) ∩ Sent(E) = ∅. Thus, by strong
sentence-respect, we have b ∈ E and E is closed under →·· .

Now we show inductively that E is admissible according to →ded. We know by defi-
nition that E is admissible w.r.t. →, hence it remains to show that E is admissible w.r.t.
→i+1, assuming it is admissible w.r.t. →i. We show defence first. Take any a ∈ E such
that there exists some b ∈ A with b→i+1 a. There are three cases: (i) if also b→i a, then
we have E →i b by assumption. (ii) if b supported attacks a, then there exists c ∈ A such
that b→·· c and c →i a. By assumption, we have E →i c and thus E mediated attacks
b, i.e. E →i+1 b. (iii) if b mediated attacks a, then there exists c ∈ A such that a→·· c
and b →i c. By closure under →·· , we have c ∈ E and by assumption E →i b, thus also
E →i+1 b. In sum, E is defended. For conflict-freeness, take any a, b ∈ E. We know that
a ̸→i b by assumption. Further, since both arguments are in E and E is closed under →·· ,
both a supported or a mediated attack from a to b would contradict conflict-freeness of
E under →i. In sum, E is admissible for each →i and thus also for →ded. Together with
closure under →·· , this means that E is d-admissible.

Now assume that ∀a, b ∈ A, we have Prem(a) ̸= Prem(b) and let E be d-admissible. It
is clear that E is admissible in SB, as there are only fewer attacks to consider. It remains
to check strong sentence-respect. Thus take any a ∈ A such that Prem(a) ∈ Sent(E)
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(recall that there are no undercuts). Our assumption guarantees that then there is some
b ∈ E such that b→·· a, and by closure under →·· , we get a ∈ E as desired.

The second direction indeed requires the extra condition. If we just have two argu-
ments, a1 : ⟨{s}, t⟩ and a2 : ⟨{s}, u⟩, it would be d-admissible to just accept a1. However,
it would not be strongly coherent, because it would commit to accepting s and thus all
premises (and no undercuts) of a2. Hence, strongly coherent extensions would have to
be either empty or contain both arguments. Interestingly, this shows that strongly (and
weakly) coherent extensions differ from admissible extensions even in the absence of sup-
ports.

3.2.1 Support Principles

In comparison to other support semantics, it is instructive to consider principles that
have been used to characterise different notions of support. Most of the presentation here
follows a selection of the principles in Yu et al. (2023). The principles have been developed
for abstract BAFs and consider changes in acceptable extensions when some supports are
added or removed. For instance, there are support removal robustness principles, stating
that acceptable extensions should not change if a support is removed. Such principles
cannot be directly studied in SBAFs, since we are not free to change the support relation
without changing the structure of the arguments. However, by reinterpreting the principles
slightly, they can still give interesting characterisation of support in SBAFs.

Instead of changing the support relation, we will adapt the premises of an argument.
In the process of arguing, it is common that not all premises are always made explicit
immediately. Rather, we start with some first intuition that some sentences justify some
other sentence. To use our original example, we might start to make an argument simply by
saying that it will rain next week, because Alexa says so. Only later on we might notice
that we relied on a further premise in our argument, namely that Alexa is a certified
meteorologist. Thus, we add this premise to our argument. Similarly, we might realise
at some point in a discussion that we used a redundant premise somewhere. Perhaps we
got a bit carried away and claimed that Alexa is very popular amongst her colleagues in
further support of her claim. But since this seems rather irrelevant as to whether she is
correct in claiming that it will rain next week, we might retract that claim as a premise
of our argument.

In that sense, changing the premises of arguments is a very common dynamic in practice
(see also Pandžić 2022) and it is interesting to see how some semantics react to such
changes. Further, comparing arguments with added or removed premises can give us a
general insight into the relevance of the number of premises in an argument. We have seen
above that it is at least somewhat relevant, as if there is always only one premise, we can
end up with deductive support.

For the reformulation of the principles, we use the following notation for an argu-
ment a and a sentence s: a\{s} := ⟨Prem(a)\{s}, Conc(a)⟩ if Prem(a) ̸= {s} and
⟨{Conc(a)}, Conc(a)⟩ otherwise. a ∪ {s} := ⟨Prem(a) ∪ {s}, Conc(a)⟩. In the follow-
ing, we assume a fixed SBAF SB = ⟨L, A,→,→·· ⟩ and arguments a, b, c ∈ A.

Transitivity: Suppose a →·· b and b →·· c. An argument extension E is strongly/weakly
coherent in SB iff it is strongly/weakly coherent in SB′ = ⟨L, A′,→′,→·· ′⟩ where
A′ = (A\{c}) ∪ {c ∪ {Conc(a)}}.

(Admissible) Extension Selection: If an argument extension E is strongly/weakly coher-
ent in SB, then it is also admissible.
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Support Removal Robustness: Suppose a→·· b. If an argument extension E is strongly/weakly
coherent in SB, then it remains so in SB′ = ⟨L, A′,→′,→·· ′⟩ where A′ = (A\{b}) ∪
{b\{Conc(a)}}.

Monotony of Status: If there exists a strongly/weakly coherent extension E containing b
in SB, then there is also a stongly/weakly coherent extension E in SB′ = ⟨L, A′,→′
,→·· ′⟩ where A′ = (A\{b}) ∪ {b ∪ {Conc(a)}}.

Directionality: Let U ⊆ A be such that A\U ̸ →··U and A\U ̸→ U . We define SB|U =
⟨L, U,→ ∩ (U × U),→·· ∩ (U × U)⟩. Then an extension E ⊆ U is strongly/weakly
coherent in SB′ iff there exists a strongly/weakly coherent extension E′ ⊆ A such
that E = E′ ∩ U .

Briefly, transitivity states that the support is transitive, where a relation is transitive
if a→·· b and b→·· c imply that a→·· c. The claim then is that the set of acceptable extensions
does not change if we make the support relation transitive. Extension selection says that
strongly and weakly coherent extensions can be seen as using the support relation to select
certain extensions given by some other semantics. In our case, it is admissible semantics.
Support removal robustness, as mentioned above, says that removing supports does not
change the acceptability of an extensions. Here this means that removing a supported
premise from an argument will not impact the acceptable extensions. Monotony of status
is intended to specify that adding a support to an argument should not decrease its
acceptability. Here, specifically, this is interpreted as saying that adding new supported
premise to an argument should not decrease its acceptability. Directionality expresses
that the efffect of supports and attacks should only go in the direction of the relation.
Thus, a subgraph of an SBAF with no ingoing edges should not have different acceptable
extensions than the full graph, except, of course, that they only contain arguments from
the subgraph. It says that the extensions of the subgraph are exactly the restrictions of
the SB extensions to the subgraph.

Proposition 16. Strongly coherent extensions satisfy extension selection and support re-
moval robustness. They fail transitivity, monotony of status, and directionality.

Weakly coherent extensions satisfy extension selection, support removal robustness, and
directionality. They fail transitivity and monotony of status.

Proof. Figure 3.11 gives the counterexample for transitivity of both strongly and weakly
coherent extensions. Extension selection is immediate as both strongly and weakly coher-
ent extensions are defined to be admissible.

For support removal robustness, take any weakly coherent extension E. If a ̸∈ E, then
E will remain weakly coherent if the support to a is removed. If a ∈ E, we check its
properties. It is clear that conflict-freeness remains. Similarly for defence, as there are
only fewer ingoing attacks. Further, weak sentence-respect remains unaffected, as no new
argument will fulfil the conditions. In sum, E remains weakly coherent and as strongly
coherent extensions are also weakly coherent, this gives the result for those as well.

Figure 3.12 gives the counterexample for monotony of status of both strongly and
weakly coherent extensions. Figure 3.13 gives the counterexample for directionality of
strongly coherent extensions. For weakly coherent extensions, first let E ⊆ U be such
that E = E′ ∩ U for some weakly coherent E′ ⊆ A. Then E is clearly weakly sentence-
respecting. Further, it is also admissible, since E is conflict-free and defended against any
attacks within U . Thus E is weakly coherent. Now we assume that E is weakly coherent in
SB|U . Note that the closure of E under RSent(E)

SB is weakly coherent, as shown by Lemma
5. Thus there exists a weakly coherent extension E′ ⊆ A such that E = E′ ∩ U .
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a1 : ⟨{s}, s⟩ a2 : ⟨{s}, t⟩ a3 : ⟨{¬s, t},¬s⟩

a1 : ⟨{s}, s⟩ a2 : ⟨{s}, t⟩ a′3 : ⟨{s,¬s, t},¬s⟩

Figure 3.11: This example shows that support with weakly and strongly coherent exten-
sions doesn’t satisfy transitivity, as {a3} is strongly coherent, whereas {a′3} is not.

a1 : ⟨{t}, u⟩ a3 : ⟨{s}, s⟩

a2 : ⟨{¬t},¬t⟩ a4 : ⟨{¬u},¬u⟩

a1 : ⟨{t}, u⟩ a′3 : ⟨{s, u}, s⟩

a2 : ⟨{¬t},¬t⟩ a4 : ⟨{¬u},¬u⟩

Figure 3.12: This example shows that monotony of status fails for strongly and weakly
coherent extensions. {a3} is both strongly and weakly coherent, but there is no weakly
coherent extension containing a′3.

There are some insights to be drawn from these results. First, extension selection is
fairly trivial, since strongly and weakly coherent extensions are defined to be admissible.
Nevertheless, it is interesting that they can be seen as part of the same class of extensions as
the support-score based semantics described in Section 2.2.1. Recall that these semantics
rank, say, complete extensions according to the number of internal or external supports
they receive and select those that maximise that number. Thus they have a very different
approach to support than strongly and weakly coherent extensions.

The failure of transitivity and monotony of status as well as the satisfaction of support
removal robustness all point to the same feature of coherent semantics: It is better for an
argument to have as few premises as possible. Transitivity and monotony of status both
fail because adding a supported premise to an argument also opens it up to new attacks.
Support removal robustness, in contrast, is satisfied because removing a premise from an
argument means that it is less susceptible to attacks. Thus extensions might lose their
acceptability status when supported premises are added, but they will keep it if premises
are removed. Whether this is a desirable result is debatable. On one hand, it incentivises
arguments with no redundant premises. This can be useful, as we did not make any
assumption on the relevance of the premises of an argument to its conclusion. Now we can
see that while arguments can contain irrelevant premises, it would be strategically better
to remove them. On the other hand, sometimes arguments get more plausible if more
premises are added. Take Alexa, the meteorologist, again. We can give more credence
to her claim that it will rain next week by saying that she is a certified meteorologist. If
we further say that her claim is based on detailed calculations and she has an impeccable
track record with these claims, we can be seen as adding premises that should make
the argument as a whole more plausible. However, in our framework, this would be a
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a2 : ⟨{s}, v⟩

a1 : ⟨{s, t}, u⟩ a3 : ⟨{t},¬v⟩

Figure 3.13: This example shows that directionality fails for strongly coherent extensions,
as {a1} is strongly coherent if we disregard arguments a2 and a3. However, in the presence
of those arguments, accepting a1 would, by strong sentence-respect, require to accept both
a2 and a3. But then the extension would not be conflict-free. Thus, there is no strongly
coherent extension containing a1 in the full framework.

strategically bad move, since it only opens up the argument to more potential attacks.
Directionality is interesting because it distinguishes between strongly and weakly co-

herent extensions. The reason it fails for strongly coherent extensions is that strong
coherence has demanding requirements that go beyond the explicit attack and support
relations. Since accepting an argument means you also accept its premises, this can com-
mit you to accepting another argument as well if it shares the premises. In some cases,
this can lead to accepting conflicting arguments. While weakly coherent extensions in
general also have requirements that go beyond the explicit attack and support relations,
the requirements are such that acceptability is not infringed. Since weak sentence-respect
requires defended arguments, it will never force accepting conflicting arguments.

Table 3.1 compares strongly and weakly coherent extensions with the extension-based
support semantics introduced in Chapter 2.

Trans. Ext. Select. Supp. Rem. Rob. Mon. of Stat. Direct.
Strong Coherence ✗ ✓ ✓ ✗ ✗

Weak Coherence ✗ ✓ ✓ ✗ ✓

Deductive Support ✓ ✗ ✓ ✓ ✗

Necessary Support ✓ ✗ ✓ ✗ ✓

Internal Coherence ✗ ✓ ✗ ✓ ✗

Strength. Def. (i) ✗ ✗ ✗ ✓ ✓

Strength. Def. (ii) ✗ ✗ ✗ ✓ ✓

Strength. Def. (iii) ✗ ✗ ✓ ✓ ✓

Table 3.1: Principled comparison between support semantics. The values for BAF seman-
tics come from L. Yu et al. (2023) and follow the original formulations of the principles.

3.2.2 Acceptability Degrees

We can further investigate the acceptability of arguments and how support impacts it.
Note that the above principles mostly worked with adding or removing supports among the
existing arguments in a framework. This cannot be directly translated to SBAFs, except
for adding and removing premises of arguments. While this corresponds to some natural
dynamics in argumentation, it is perhaps not the most obvious way of approaching the
impact of support. Alternatively, we can investigate in what way the acceptable arguments
change if new supporting arguments are added to an SBAF. This matches the situation
where a debate continues over time and new arguments are added as time goes on.

Instead of going about this by means of principles as above, we will do it pseudo-
empirically. That is, we will go through a number of examples to get an idea of how
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a4 : ⟨{s}, t⟩ a5 : ⟨{v},¬t⟩

a1 : ⟨{s}, s⟩ a2 : ⟨{u}, v⟩ a3 : ⟨{w}, v⟩

(a) The SBAF of Figure 3.1.

ρA
s ρA

w ρL
s ρL

s

a1 0.167 0.6 0.125 0.5
a2 0.334 0.5 0.25 0.4
a3 0.334 0.5 0.25 0.4
a4 0.167 0.2 0.125 0.167
a5 0.667 0.4 0.5 0.267

(b) Acceptability degrees of Figure 3.1.

Figure 3.14: An example for acceptability degrees.

adding supporting arguments change the acceptability of the supported arguments. A
very simple measure of the acceptability of an argument a is the following: we take the
ratio of acceptable extensions that contain a over the acceptable extensions in general (cf.
Betz 2012; Dondio 2018).

Definition 38 (Acceptability Degree). Let SB = ⟨L, A,→,→·· ⟩ be an SBAF and a ∈ A.
We define its argument-based strong and weak acceptibility degree as

ρA
s/w(a) := |{E ⊆ A | a ∈ E and E is strongly/weakly coherent}|

|{E ⊆ A | E is strongly/weakly coherent}| .

Its language-based strong and weak acceptability degree is

ρL
s/w(a) := |{S ⊆ Sent(A) | a ∈ Args(S)/Argw(S) and S is strongly/weakly adequate}|

|{E ⊆ A | S is strongly/weakly adequate}| .

The table in Figure 3.14b gives the values for all four versions of the acceptability degree
of an argument in the original SBAF example in Figure 3.1. First, we can observe that
the values for strong acceptability are quite similar between the argument and language
version. They give the same relative ranking and they both agree that a1 and a4 are equally
strong. The values for weak acceptability are also quite similar between the argument and
language version. The biggest difference between the strong and weak version is the value
of a1. Interestingly, according to strong coherence, a1 is weaker than the other unattacked
arguments a2 and a3, while weak coherence leads to a1 being stronger.

The difference between strong and weak coherence we see at play here is that with
strong sentence-respect, a1 deductively entails a4, whereas this is not the case with weak
sentence-respect. Thus there is much more room for accepting a1 in terms of weak coher-
ence, which leads to its higher acceptability degree compared to strong coherence. That
the acceptability of a1 with weak coherence is higher than that of a2 and a3 come from
it being a minimal argument. With weak sentence-respect, it is in some sense easier to
accept a minimal argument than a non-minimal one, as the former is immediate as soon
as it’s one sentence is accepted. Accepting non-minimal arguments takes accepting more
than one sentence and is thus generally a bit less likely. Interestingly, with strong coher-
ence and a1 being a minimal argument in favour of a4, you can accept a1 if and only if
you accept a4. This explains that the two arguments have the same acceptability with
strong coherence.

Figure 3.15 gives an example that shows a very counterintuitive result for both strong
and weak argument-based acceptability. Namely, if we just consider a1 on its own, it
has an acceptability of 0.5, which makes sense: either you accept it or not. But if we
add the supporting argument a2, the acceptability of a1 decreases to 0.334. Thus, adding
a support can decrease the acceptability of an argument even in complete absence of
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a1 : ⟨{s, t}, u⟩

(a2 : ⟨{s}, s⟩)

(a) An SBAF where a2 gets added.

ρA
s ρA

w ρL
s ρL

s

a1 0.5 0.5 0.143 0.143

ρA
s ρA

w ρL
s ρL

s

a1 0.334 0.334 0.143 0.143
a2 0.667 0.667 0.429 0.429

(b) Acceptability degrees without and
with a2.

Figure 3.15: A problematic case for argument-based acceptability.

a1 : ⟨{s, t}, u⟩

(a2 : ⟨{v}, s⟩)

(a) An SBAF where a2 gets added.

ρA
s ρA

w ρL
s ρL

s

a1 0.5 0.5 0.143 0.143

ρA
s ρA

w ρL
s ρL

s

a1 0.5 0.5 0.2 0.2
a2 0.5 0.5 0.3 0.3

(b) Acceptability degrees without and
with a2.

Figure 3.16: Another problematic case for argument-based acceptability.

attacks! This happens because of a similar situation as in the previous example, where
we also had a support by a minimal argument. If we add a2, it is not acceptable to
accept a1 without a2 (but it is allowed to accept a2 without a1). Thus amongst the
three acceptable extensions, ∅, {a2}, {a1, a2}, only one third contain a1. This is clearly
undesirable. Looking at the values of language-based acceptability, we get a much more
reasonable result: the acceptability does not change. While a2 does support a1, note that
a2 is a minimal argument and thus does not provide any additional reason for premise s.
Rather, it just restates it. Hence, it indeed should not increase the plausibility of a1 and
the language-based acceptability values get the right result here.

Even worse for argument-based acceptability, adding a supporting argument if the
supported argument has more than one unsupported premises does not impact the ac-
ceptability at all. However, language-based acceptability is able to capture it, as seen in
Figure 3.16b. Thus we conclude that language-based acceptability values should be used.
Using them, we can confirm our observation earlier on that it is better for arguments to
have fewer premises. Namely, arguments with fewer premises tend to have higher accept-
ability degrees. We can already see this in Figures 3.15 and 3.16. Figure 3.17 gives a direct
comparison of unrelated arguments with a different number of premises. It is worth noting
that the result stays the same when we change the example such that the two arguments
in the figure rebut each other.

A final observation at this point is the following. We have seen in some examples that
sentence-respect has effects that go beyond the explicit support relation. For instance, if
arguments share premises, accepting one might also trigger sentence-respect, even though
there is no support between the arguments (this leads to the failure of directionality
in Figure 3.13). Thus one might wonder whether the support relation even matters.
Perhaps sentence-respect is such that what actually matters is whether some argument
share sentences, rather than whether one supports the other. However, we can now see
that support matters for the acceptability degrees of arguments. Figure 3.18 compares
two arguments when they simply share a premise and when one supports the other. We
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a1 : ⟨{s, t}, u⟩

a2 : ⟨{v}, w⟩

(a) An SBAF with unrelated argu-
ments.

ρA
s ρA

w ρL
s ρL

s

a1 0.5 0.5 0.143 0.143
a2 0.5 0.5 0.334 0.334

(b) Acceptability degrees without and
with a2.

Figure 3.17: Fewer premises seem to lead to higher acceptability.

SB : a1 : ⟨{s}, t⟩ a2 : ⟨{s}, u⟩

SB′ : a1 : ⟨{s}, t⟩ a2 : ⟨{u}, s⟩

(a) Two SBAFs, one with shared
premises and one with support.

SB ρA
s ρA

w ρL
s ρL

s

a1 0.5 0.5 0.2 0.2
a2 0.5 0.5 0.2 0.2

SB′ ρA
s ρA

w ρL
s ρL

s

a1 0.334 0.334 0.5 0.5
a2 0.667 0.667 0.25 0.25

(b) Acceptability degrees of SB and
SB′.

Figure 3.18: Support matters for acceptability degrees.

again see that the support decreases acceptability when we use argument-based values,
but language-based values recognise the difference between sharing premises and support.
Accordingly, the supported version of a1 has higher acceptability than the unsupported
one.

In this section, we examined the role of support in SBAFs, though everything we pre-
sented here are preliminary observations that should be investigated further. For instance,
a full principled analysis of support is missing and it would be useful to better compare
coherent semantics to other support semantics in the literature. Also, all examples and
observations concerning acceptability degrees are very simple and while they might hint
at interesting properties, there is much further work to be done in order to understand
the values arguments receive. For instance, it is currently unclear whether acceptability
degrees can be used as a full gradual or ranking semantics or not (for ranking seman-
tics, see Amgoud and Ben-Naim 2013; Besnard and Hunter 2001; Pu et al. 2014, 2015).
Nevertheless, we have characterised support to some extent, showing that it is worth in-
vestigating further. One important feature we have illustrated is that support has impact
on acceptable extensions even in absence of any attacks.

Table 3.2 summarises distinguishing features for each SBAF semantics:

Strongly Coherent Captures deductive support, does not satisfy directionality
Weakly Coherent Satisfies directionality, closer to Dung semantics

(e.g. includes all complete extensions)
Strongly Adequate Useful for acceptability degrees, ranks minimal arguments low
Weakly Adequate Useful for acceptability degrees, ranks minimal arguments high

Table 3.2: Summary of Properties for SBAF semantics.
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a1 : ⟨{s}, s⟩ a2 : ⟨{t,¬s}, t⟩

Figure 3.19: An example for maximising the set of accepted sentences.

3.3 Doubtless Extensions
We have argued that in order to find room for support in formal argumentation, we need a
notion of mere doubt. We are now in a position to consider this claim formally. Namely, we
can show that if we do not allow agents to merely doubt sentences, then weakly coherent
argument extensions are just preferred extensions. As preferred extensions do not take
support (or the structure of arguments) into account, we conclude that support plays no
role in absence of mere doubt.

Before we start, it should be noted that there is no correspondence between strongly
coherent argument extensions and preferred extensions, as we have seen back in Figure
3.1 (p. 34). There, the preferred extensions of the SBAF were not strongly coherent, but
they were weakly coherent. Moreover, according to Observation 2, we know that complete
extensions are weakly coherent. This, together with preferred extensions being ⊆-maximal
admissible, already gives the following further observation:

Observation 6. Let SB = ⟨L, A,→,→·· ⟩ be an SBAF. Then E ⊆ A is ⊆-maximal amongst
weakly coherent extensions iff it is preferred.

However, there is a more interesting perspective. Namely, we can model a lack of mere
doubt about sentences by requiring language extensions to be ⊆-maximal. That is, if you
can accept a sentence, then you need to accept it. This way, there can be no mere doubt
about sentences and we can show that we again end up with preferred extensions.

Definition 39 (Confident Extensions). Let SB = ⟨L, A,→,→·· ⟩ be an SBAF. A language
extension S ⊆ Sent(A) is called a confident strongly (resp. weakly) adequate language
extension if it is ⊆-maximal amongst strongly (resp. weakly) adequate language extensions.

An argument extensions E ⊆ A is called a confident strongly (resp. weakly) coherent
argument extension if there exists a confident strongly (resp. weakly) adequate language
extension S ⊆ Sent(A) such that E = Args(S) (resp. E = Argw(S)).

As before in Propositions 12 and 13, confident argument extensions and confident
language extensions correspond. But now the set of sentences of a confident argument
extension might not itself be confident. Take the example in Figure 3.19. There, {a1}
is a confident strongly and weakly coherent argument extension, but its set of sentences
only includes s, whereas {s, t} would be the corresponding confident strongly and weakly
adequate language extension. Nevertheless, we get the following correspondence.

Proposition 17. Let SB = ⟨L, A,→,→·· ⟩ be a saturated SBAF. Then for every confident
strongly (resp. weakly) adequate language extension, its strong (resp. weak) argument set
is confident strongly (resp. weakly) coherent.

Also, for every confident strongly (resp. weakly) coherent argument extension E, there
exists a confident strongly (resp. weakly) adequate language extension S such that Args(S) =
E (resp. Argw(S) = E).

Proof. The first part of the proposition follows directly from Propositions 12 and 13.
The second part is immediate by definition.
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While it is obvious that any strongly or weakly adequate language extension can be
extended to a confident one, it is less obvious for argument extensions. In fact, it will be a
corollary of the following proposition. Since we are here interested in the interplay between
the language and argument perspectives, we need to restrict ourselves to saturated SBAFs.

Proposition 18. Let SB = ⟨L, A,→,→·· ⟩ be a saturated SBAF. Then any preferred ex-
tension E ⊆ A is confident weakly coherent.

Proof. Let E be a preferred extension. Since it is then also complete, Observation 2 gives
us that it is weakly coherent. It thus remains to show that there exists a confident weakly
adequate language extension S such that E = Argw(S).

Consider the set {S ⊆ Sent(A) | E = Argw(S) and S is weakly adequate}. Note that
it is non-empty, since Sent(E) is weakly adequate and Argw(Sent(E)) = E (Proposition
13). Recall that we only consider finite frameworks, thus there exists a ⊆-maximal element
S′ that is weakly adequate and Argw(S′) = E. It remains to show that S′ is also ⊆-
maximal amongst weakly adequate language extensions.

Take any weakly adequate S′′ such that S′ ⊊ S′′. Since S′ is ⊆-maximal amongst
weakly adequate extensions with Argw(S) = E, we know that Argw(S′′) ̸= E. We first
show that E ⊊ {a ∈ A | Sent(a) ⊆ S′′ and n(a) ∩ S′′ = ∅}. Take any a ∈ E. Then
clearly, Sent(a) ⊆ Sent(E) ⊆ S′ ⊊ S′′. Now suppose there is some t ∈ n(a) ∩ S′′. Then,
by saturatedness, there exists a minimal argument b for t. Note that b → a and since
E is defended, there is some c ∈ E such that c → b, that is, Conc(s) ∈ t. But since
Sent(c) ⊆ Sent(E) ⊆ S′ ⊆ S′′, this contradicts compatibility of S′′. Hence, n(a)∩ S′′ = ∅
and we can note that E ⊊ {a ∈ A | Sent(a) ⊆ S′′ and n(a) ∩ S′′ = ∅}. Since E is
admissible, this gives E ⊆ Init(S′′) ⊆ Argw(S′′).

In sum, E ⊊ Argw(S′′), but since Argw(S′′) is admissible (Proposition 13), this con-
tradicts that E is preferred. Hence, there exists not weakly adequate S′′ such that S′ ⊊ S′′

and we conclude that E is confident weakly coherent.

We get the following corollary, since any admissible extension can be extended to a
preferred one.

Corollary 3. Let SB = ⟨L, A,→,→·· ⟩ be a saturated SBAF and E ⊆ A a strongly (resp.
weakly) coherent argument extension. Then there exists a confident strongly (resp. weakly)
coherent argument extension E′ such that E ⊆ E′.

Interestingly, the other direction of Proposition 18 does not hold for saturated SBAFs,
as can be seen again in Figure 3.19. There, ∅ is confident, because {¬s, t} is confident
weakly adequate with an empty argument set. Nevertheless, we can show the other direc-
tion for strongly saturated SBAFs.

Proposition 19. Let SB = ⟨L, A,→,→·· ⟩ be a strongly saturated SBAF. Then any confi-
dent weakly coherent argument extension E ⊆ A is preferred.

Proof. Let E be weakly coherent and suppose it is not preferred. We show that E is not
confident. We need to show that for any S ⊆ Sent(A) such that Argw(S) = E, there
exists an adequate language extension S′ such that S ⊊ S′.

Since E is admissible, there exists a preferred extension E′ such that E ⊊ E′. By
Proposition 18, we know that E′ is confident weakly coherent. Hence, there exists a
confident weakly adequate language extension S′ such that Argw(S′) = E′.

Now take any S ⊆ Sent(A) such that Argw(S) = E. We show that S ⊊ S′. Take
any s ∈ Sent(A)\S′. Then s ̸∈ S′ and since S′ is confident, we know that S′ ∪ {s} is
not weakly adequate. We can show that S′ ∪ {s} is not compatible. Suppose it is. Then
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Argw(S′ ∪ {s}) is admissible (Lemma 8), and we know that E′ ̸⊆ Argw(S′ ∪ {s}) (since
otherwise either S′ ∪ {s} would be weakly adequate, if E′ = ArgwS

′ ∪ {s}, or E′ not
preferred, if E ⊊ ArgwS

′ ∪ {s}). This lets us take an argument a ∈ E′\(S′ ∪ {s}) and we
know that s ∈ n(a) (since otherwise a ∈ Init(S′ ∪{s})). By saturatedness of SB, we then
have a minimal argument b for s. Note that b→ a and since E′ is defended, there is some
c ∈ E′ such that Conc(c) ∈ s. But note that Sent(c) ⊆ Sent(E) = Sent(Argw(S′)) ⊆ S′

(see proof of Proposition 13), contradicting compatibility of S′ ∪{s}. Thus, we know that
S′ ∪ {s} cannot be compatible. But then there is some t ∈ S′ such that t ∈ s. By strong
saturatedness, there exists a minimal argument d for t. Since it is a minimal argument,
{d} is admissible (Observation 1) and hence d ∈ Init(S′) ⊆ E′. Since d → b, we also
have E′ → b. But since E ⊆ E′, we know that b ̸∈ E (since otherwise E′ would not be
conflict-free). Finally, since b is a minimal argument for s, we know that s ̸∈ S (since
otherwise b ∈ Argw(S) = E). In sum, S ⊆ S′.

It remains to note that S ̸= S′, since otherwise E = Argw(S) = warg(S′) = E′.
Thus S ⊊ S′ and E is not confident. This establishes the result, since we know that any
preferred E ⊆ A is weakly coherent.

Finally, it is worth noting that we can also translate abstract argumentation frame-
works into SBAFs and use confident weakly coherent extensions to calculate preferred
extensions. Namely, we can get an SBAF with the same attack relations between ar-
guments as an AF A = ⟨A,→⟩, by defining the structure of an argument a ∈ A as
aA = ⟨{sa} ∪ {tb | b ∈ A : b → a}, sa⟩, where we assume that tb ∈ sb ∀b ∈ A. It is
then obvious that SBA = ⟨L, AA,→, ∅⟩ has the same attack relation as A. Note that the
constructed SBAF might not be saturated. We then get the following result.

Proposition 20. Let A = ⟨A,→⟩ be an AF and SBA = ⟨L, AA,→, ∅⟩ be its corresponding
SBAF. Then an argument extension E ⊆ AA is confident weakly coherent if it is preferred.

Proof. Let E be preferred. Then it is weakly coherent (Observation 2), so it remains to
check whether it is confident. As in the proof of Proposition 18, we show that a ⊆-maximal
element S′ of {S ⊆ Sent(A) | E = Argw(S) and S is weakly adequate} is confident. Thus
let S′′ be weakly adequate such that S′ ⊊ S′′. Since there are no undercutting sentences in
SBA and S′ is ⊆-maximal in the set above, we know that Argw(S′) ⊊ Argw(S′′). But this
contradicts that E is preferred. Thus we conclude that E is confident weakly coherent.

Interestingly, the other direction of this proposition does not hold. The counterexample
is the AF a → b, for which the corresponding SBAF is that of Figure 3.19. As we have
seen, ∅ is confident weakly coherent, but not preferred.

While we know by definition that an agent choosing a preferred extension is one that
wants to maximise the set of accepted arguments, we can now see that this does not always
correspond to an agent that wants to maximise the set of accepted sentences. As Figure
3.19 shows, it is even possible that a maxiaml set of sentences corresponds to an empty
set of arguments. Thus, from the language perspective, preferred extensions only seem
natural in the specific class of strongly saturated SBAFs.

The translation from abstract AFs to SBAFs further illustrates the difficulties in char-
acterising Dung semantics from the language perspective. Maximising accepted sentences
does not correspond fully to preferred extension, though all preferred extensions maximise
accepted sentences. For complete semantics in general, the situation is more unclear. We
do not know of any natural condition for language extensions that would (at least par-
tially) correspond to complete extensions. From the language perspective, there is nothing
special about sentences that occur in defended arguments that would make it possible to

58



single them out for maximisation. However, it seems that something like that would be
needed in order to find a correspondence to complete extensions on the language level.

The results in this section also illustrate how a lack of doubt leads us to disregard
support between arguments. Namely, if we have no mere doubt about any sentence,
then we try to accept maximal sets of sentences, which leads us to accepting preferred
extensions. As the latter does not take any kind of support into account, we conclude that
support plays no role in the absence of doubt.

3.4 Knowledge-Based Reasoning
Most approaches to structured argumentation consider knowledge-based reasoning. That
is, arguments are constructed from a knowledge base and the semantics essentially tell us
what inference we can draw from a knowledge base. Our approach differs in that we do
not construct arguments and there is no notion of a knowledge base. In this section, we
examine to what extent knowledge-based reasoning can be recovered in our approach.

3.4.1 Frameworks with Contestable Sentences

As the various examples in the previous sections have illustrated, in any given SBAF,
there tend to be many strongly or weakly coherent argument extensions. This is in stark
contrast to Dung semantics, where there are usually only a few complete extensions and
in the large class of well-founded AFs, there is even a unique complete extension. Having
many rationally acceptable extensions is not necessarily a problem. For instance, if an
agent just wants to check whether their position in a debate is reasonable, then it does
not matter for them how many other such positions there are. In that sense, allowing
for many acceptable extensions represents a form of pluralism with respect to what is a
rational position. The situation is different if we want to know what we should believe,
given the arguments of a debate. If we ask what follows from a debate, then it is not
helpful to be given a dozen extensions for a rather small SBAF (e.g. as in Figure 3.1).

Perhaps, then, the notion of doubt we implemented in SBAFs is to sweeping. Allowing
agents to doubt essentially all sentences naturally leads to a great number of acceptable
extensions. Thus we might want to limit the extent to which sentences can be doubted. We
have seen that disallowing mere doubt for all sentences leads us to preferred extensions,
but we can still specify a subset of all sentences for which doubt needs to be justified.
Let us call such sentences contestable, in contrast to the normal doubtable sentences. The
idea then is that an agent needs to maximise the set of contestable sentences they accept,
whereas they are free to accept or reject any doubtable sentences (within the scope of
adequate extensions).

By adding contestable sentences, we also implement a notion of knowledge-based rea-
soning. It allows us to ask what follows from the contestable sentences given some argu-
ments. A knowledge base of contestable sentences will be defeasible, but they give some
starting point from which arguments can be constructed. Additionally, it allows us to
distinguish sentences that come with different burdens of proof (Walton 2010).

Formally, we introduce contestable sentences by adding an indicator function to the lan-
guage of a framework that tells us for each sentence whether it is contestable or doubtable.

Definition 40 (Language with Contestables). A language with contestables is a tuple
LC = ⟨L, g, , n⟩ where L, , and n are as in Definition 29 and g : L → {c, d} is an
indicator function.

For a sentence s ∈ L, g(s) = c indicates that sentence s is contestable, and g(s) = d
that it is doubtable. We use sc and sd as a shorthand. The set of all contestable sentences
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a1 : ⟨{sc}, td⟩ a2 : ⟨{td}, ud⟩

a4 : ⟨{wd}, vc⟩ a3 : ⟨{vc},¬ud⟩

Figure 3.20: An example for an SBAF with contestables.

is denoted by Lc and that of doubtable sentences by Ld.

From this, we build SBAFs with contestables the same way as normal SBAFs.

Definition 41 (SBAFs with Contestables). An SBAF with contestables is a tuple SBAFC =
⟨LC , A,→,→·· ⟩ where the arguments and relations are as in SBAFs.

The addition of contestable sentences is recognised by requiring acceptable extension
to maximise them. This mirrors the way we modelled a lack of mere doubt about all
sentences in the previous section, just that this time we only have a lack of mere doubt
about some sentences. This leads to the definition of sensible extensions.

Definition 42 (Sensible Extensions). Let SBAFC = ⟨LC , A,→,→·· ⟩ be an SBAF with
contestables. A strongly (weakly) adequate language extension S ⊆ Sent(A) is called
sensible if S∩Lc is ⊆-maximal in {S′∩Lc | S′ is strongly (weakly) adequate and S ⊆ S′}.

A strongly (weakly) coherent argument extension E ⊆ A is called sensible if there
exists a cautious strongly (weakly) adequate language extension S ⊆ Sent(A) such that
E = Args(S) (E = Argw(S)).

Figure 3.20 gives an example for an SBAF with contestables. We have the following
sensible strongly adequate language extensions: {sc, td, ud}, {vc,¬ud}, and {wd, vc,¬ud}.
Note that the latter two are not allowed to accept sc, since then they would have to
accept td and ud as well, making them incompatible. Similarly, the first extension is not
allowed to accept vc. The corresponding sensible strongly coherent argument extensions
are {a1, a2}, {a3}, and {a3, a4}. Note that the option of accepting no sentence or argument
is not allowed now. On the weak side, all compatible language extensions that contain sc,
vc, and td are sensible weakly adequate. td has to be accepted because it is the conclusion
of an unattacked argument with purely contestable premises. This gives the following
corresponding sensible weakly coherent argument extensions: {a1}, {a1, a2}, {a1, a2, a4},
{a1, a3}, and {a1, a3, a4}.

It is good to note that, since confident extensions are clearly sensible, we know that
sensible extensions always exist in saturated frameworks. Also, as is routine by now, sen-
sible adequate language extensions and sensible coherent argument extensions correspond
in saturated frameworks.

Proposition 21. Let SB = ⟨L, A,→,→·· ⟩ be a saturated SBAF. Then for every sensible
strongly (resp. weakly) adequate language extension, its strong (resp. weak) argument set
is sensible strongly (resp. weakly) coherent.

Also, for every sensible strongly (resp. weakly) coherent argument extension E, there
exists a sensible strongly (resp. weakly) adequate language extension S such that Args(S) =
E (resp. Argw(S) = E).

Proof. The first part of the proposition follows directly from Propositions 12 and 13. The
second part is immediate by definition.
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The full picture of the different semantics for SBAFs is given in Figure 3.21. For
computational interest, we provide an account of how some of these semantics can be
calculated using SAT-solvers in the appendix.

WCA WAL

SCA sensible WCA sensible WAL SAL

sensible SCA confident WCA confident WAL sensible SAL

confident SCA confident SAL

correspond directly

⊆ correspond directly⊆
correspond indirectly

⊆ ⊆

⊆

correspond indirectly

⊆
correspond indirectly

⊆ ⊆

⊆

correspond indirectly

⊆

Figure 3.21: All semantics for SBAFs. SCA: strongly coherent argument extensions,
WCA: weakly coherent argument extensions, WAL: weakly adequate language exten-
sions, SAL: strongly adequate language extensions. We say that an argument-based
semantics corresponds directly to a language-based semantics if the set of sentences of
each argument extension belongs to the language-based semantics and the argument set
of each language extension belongs to the argument-based semantics. An argument-based
semantics corresponds indirectly to a language-based semantics if for each argument exten-
sion, there exists a language extension that accepts the same arguments and the argument
set of each language extension belongs to the argument-based semantics.

The definition of sensible language extensions is a bit cumbersome, but it is easy to
provoke undesired consequences if defined differently. For instance, requiring a sensible
language extension to be maximal with respect to contestable sentences amongst all lan-
guage extensions, rather than amongst those extending it, can make it almost impossible
to reject a contestable sentence even if there are arguments against it (illustrated in Figure
3.22). Further, if we do not go through language extensions, but try to define sensible ar-
gument extensions directly, agents can be forced to accept unwanted doubtable sentences.
For instance, we could define a sensible argument extension E to be such that Sent(E)∩Lc

is ⊆-maximal in {Sent(E)′∩Lc | E′ is strongly (resp. weakly) coherent and E ⊆ E′}. But
then an argument of the form a1 : ⟨{sd, tc}, ud⟩ would have to be accepted, effectively mak-
ing sd and ud contestable sentences as well. Going through language extensions avoids
that problem.

Some problems remain, but they seem to be confined to unsaturated SBAFs with
contestables. Figure 3.23 gives an example of a framework where acceptance of a doubtable
sentence is forced, even though the sentence is not implied by contestable sentences. The
problem there can be avoided by making the framework saturated. This is not much of a
limitation, as tying sensible argument extensions to sensible language extensions already
relies on their correspondence in saturated frameworks. However, it is an open problem
how to exactly formulate the issue with forced acceptance of unwanted doubtable sentences
and, accordingly, whether it can always be avoided in saturated frameworks.

Another issue is that there is still a large number of sensible extensions in an SBAF, as
illustrated by the example in Figure 3.20 above. Already in that small framework, there
are too many sensible weakly adequate language extensions to easily write down. Also,
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a1 : ⟨{sd, td},¬ud⟩ a2 : ⟨{uc}, vd⟩

Figure 3.22: If sensible language extensions had to be maximal with respect to contestable
sentences amongst all language extensions, then it would not be possible to accept (all
sentences of) a1, as the extension {uc} would always be larger with respect to contestable
sentences.

a1 : ⟨{sd},¬td⟩

a2 : ⟨{td},¬ud⟩

a3 : ⟨{uc}, vd⟩

(a) In this SBAF with contestables,
the only sensible strongly coherent ex-
tension is {a1, a3}, meaning that sd

has to be accepted, even though it is
doubtable.

a1 : ⟨{sd},¬td⟩ a4 : ⟨{td}, td⟩

a2 : ⟨{td},¬ud⟩

a3 : ⟨{uc}, vd⟩ a5 : ⟨{¬ud},¬ud⟩

(b) The problem can be solved in this case
by making the framework saturated, then e.g.
{a2, a4, a5} is sensible strongly coherent.

Figure 3.23: An example showing a problem for sensible extensions in unsaturated SBAFs
with contestables.

some of those are not especially close to the notion of knowledge-based reasoning, as they
are free to contain doubtable sentences that are completely independent of the contestable
ones. For instance, the sensible weakly adequate language extension {sc, td, vc, ud, wd}
accepts wd, even though it is not in any way implied by the contestable sentences (our
version of a knowledge base).

We can construct weak extensions that enforce the notion of reasoning only from the
contestable sentences as follows. We start by using maximally compatible sets of con-
testable sentences as the initial set, then close under the respect function and argument-
respect. Extensions constructed that way will only accept what follows from the con-
testable sentences they start with. For instance, in Figure 3.20, we would start with
{sc, vc} and end up with {sc, td, vc}. That way, we can drastically reduce the number of
acceptable extensions. However, the construction requires that all contestable sentences
come with a minimal argument.

Definition 43 (Canonical Extensions). Let SBAFC = ⟨LC , A,→,→·· ⟩ be an SBAF with
contestables such that for each contestable sentence sc, we have ⟨{sc}, sc⟩ ∈ A.

A language extension S ⊆ Sent(A) is called canonical if there exists a maximally
compatible subset of contestable sentences Cont ⊆ Lc such that S =

⋃
i∈N S

i, where S0 =
Cont and Si+1 = Si ∪ {s ∈ Sent(A) | ∃a ∈ Argw(Si) : s = Conc(a)}.

Figure 3.24 adapts the example of Figure 3.20 in order to illustrate the construction
of canonical extensions. We start with S0 = {sc, vc}, which gives Argw(S0) = {a5, a6, a1}.
Adding the conclusions of accepted arguments, we get S1 = {sc, vc, td}. As Argw(S1) =
{a5, a6, a1} = Argw(S0). Thus we have S = {sc, vc, td}. The following proposition shows
that the canonical extension is indeed sensible weakly adequate and that it is ⊆-minimal
amongst sensible weakly adequate extensions. This last property confirms that the canon-
ical extension only accepts those doubtable sentences that follow from the contestables.
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a5 : ⟨{sc}, sc⟩ a1 : ⟨{sc}, td⟩ a2 : ⟨{td}, ud⟩

a6 : ⟨{vc}, vc⟩ a4 : ⟨{wd}, vc⟩ a3 : ⟨{vc},¬ud⟩

Figure 3.24: The SBAF of Figure 3.20 with minimal arguments for contestables.

a1 : {sc}, td⟩

a2 : ⟨{¬tc}, ud⟩

Figure 3.25: The construction of the canonical extension does not work if not all con-
testable sentences have a minimal argument. Start here with S0 = {sc,¬tc}, which has
Argw(S0) = {a1}. Accordingly, S1 = {sc,¬tc, td}, which is not compatible.

Proposition 22. Let SBAFC = ⟨LC , A,→,→·· ⟩ be an SBAF with contestables such that
for each contestable sentence sc, we have ⟨{sc}, sc⟩ ∈ A. Then any canonical extension is
a ⊆-minimal sensible weakly adequate language extension.

Proof. We first show that each Si is compatible. S0 is compatible by definition. Thus
assume Si is compatible and we show that Si+1 is compatible as well. Since Si is compat-
ible, we know that Argw(Si) is admissible (Lemma 8). In particular, all its conclusions
are compatible, meaning that Si+1 is compatible as well. Note that by definition, we have
Si ⊆ Si+1, thus we conclude that S is compatible.

We further note that for each i, Argw(Si) ⊆ Argw(Si+1). Let a ∈ Argw(Si). Then
clearly Sent(a) ⊆ Si+1. Further, since n(a)∩Si = ∅, the only way there can exists some t ∈
n(a)∩Si+1 is if there is an argument b ∈ Argw(Si) such that t = Conc(b). But then b→ a,
contradicting conflict-freeness of Argw(Si). Thus a ∈ {a ∈ A | Sent(a) ⊆ Si+1 and n(a)∩
Si+1 =}. Indeed, Argw(Si) ⊆ {a ∈ A | Sent(a) ⊆ Si+1 and n(a)∩ Si+1 =}, meaning that
Argw(Si) ⊆ Init(Si+1) ⊆ Argw(Si+1). This gives that Argw(S) =

⋃
i∈NArgw(Si).

For argument-respect, take any a ∈ Argw(S). Then, since Argw(S) =
⋃

i∈NArgw(Si),
for some i, we have a ∈ Argw(Si). This means that Prem(a) ⊆ Si and Conc(a) ⊆ Si+1,
meaning that Sent(a) ⊆ S. Thus S is weakly coherent. That S is sensible is immediate
by definition, as S0 is a maximally compatible set of contestables.

For ⊆-minimality, take any sensible weakly coherent language extension S′ ⊆ S. We
show that for each i, we have Si ⊆ S′, giving that S′ = S. It is clear that S0 ⊆ S′, otherwise
it would not be sensible. Supposing that we have Si ⊆ S′, we note that Init(Si) ⊆
{a ∈ A | Sent(a) ⊆ S′ and n(a) ∩ S′ = ∅} (we get n(a) ∩ S′ = ∅ from S′ ⊆ S and
Init(Si) ⊆ Argw(S), as the latter gives n(a) ∩ S = ∅). Since Init(Si) is admissible, we
get Init(Si) ⊆ Init(S′). By the construction of the weak argument set (Proposition 11),
we then know that Argw(Si) ⊆ Argw(S′). Argument-respect then gives Si+1 ⊆ S′. This
concludes the proof.

Finally, it is worth noting that the construction of the canonical extension requires all
contestable sentences to come with a minimal element. The problem that occurs if not is
shown in Figure 3.25.
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a3 : v av : {vc}, vc⟩

a1 : s a4 : a3 ⇒ ¬s as : ⟨{sc}, sc⟩ d4
SA : ⟨{vc},¬sd⟩

a2 : a1 ⇒ u a5 : a4 ⇒ w d2
SA : ⟨{sc}, ud⟩ d5

SA : ⟨{¬sd}, wd⟩

a6 : a5 ⇒ ¬n(s⇒ u) d6
SA : ⟨{wd},¬n(d2

SA)d⟩

Figure 3.26: An example for a translation from a SAF (left) to an SBAF (right).

3.4.2 Revisiting ASPIC+

We have seen in Section 2.2.2 that the straightforward ways of introducing doubt into
ASPIC+lead to a different notion of defence compared to standard formal argumentation
and also structured bipolar argumentation. Namely, adapting the knowledge base accord-
ing to which sentences some agent doubts allows them to ignore arguments if they doubt
a premise. In contrast, we require defence even if a premise is doubted. Thus, there is no
obvious way to translate an SBAF into an ASPIC+framework that gives the same results.
Nevertheless, it is possible to translate an ASPIC+framework into an SBAF and compare
the evaluations given by Dung semantics (used in ASPIC+) and coherent extensions.

The translation goes as follows. Let SA = ⟨A,→⟩ be an ASPIC+structured argumen-
tation framework with knowledge base KB and argumentation system AS = ⟨L, ,R, n⟩
with a symmetric contrariness function . We construct an SBAF with contestables.
Let each sentence in the knowledge base be contestable and let there be a minimal ar-
gument for each contestable sentence. That is, for each s ∈ KB, we create an argument
as : ⟨{sc}, sc⟩. These correspond to initial arguments in ASPIC+. Then, for each in-
ference rule d : s1, . . . , sn ⇒ t in R that occurs in some argument in SA, we create an
argument dSA : ⟨{sd/c

1 , . . . , s
d/c
n }, td/c⟩, where the sentences are determined to be doubtable

or contestable depending on whether they occur in the knowledge base. We need to limit
ourselves to inference rules that occur somewhere in an argument, as there can be rules
that never manifest in an argument as its premises cannot be deduced from the knowledge
base. ASPIC+’s naming function n for rules can then be directly taken over as a naming
function for arguments. Also the contrariness function can directly be used as an incom-
patibility function. Attacks and supports are then determined as usual. Figure 3.26 gives
an example.

We can now ask ourselves whether the acceptable argument extensions according to
ASPIC+and coherent argument extensions correspond. Figure 3.27 gives an example
where a SAF has more arguments than its corresponding SBAF, since arguments a3 and
a6 have the same top rule. Thus, we cannot directly compare extensions by the arguments
they contain. Rather, we need to compare them on the sentences they accept. We have
seen that extensions in a SAF are assumed to accept all conclusions of the arguments
they containt. By sub-argument closure, this guarantees that all sentences involved of
accepted arguments are accepted. Thus, if we want to know whether a an extension in
a SAF should count as, say, weakly coherent, we need to find a corresponding extension
in the translated SBAF with contestables, such that the two extensions accept the same
sentences. In short, for an extension in the SAF, we construct its corresponding extension
by adding all arguments that correspond to a rule used in some argument of the SAF
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a1 : s a4 : v as : ⟨{s}, s⟩ av : ⟨{v}, v⟩

a2 : a1 ⇒ t a5 : a4 ⇒ t d2
SA : ⟨{s}, t⟩ d5

SA : ⟨{v}, t⟩

a3 : a2 ⇒ u a6 : a5 ⇒ u d3
SA : ⟨{t}, u⟩

Figure 3.27: An example of a SAF, where the translation has fewer arguments.

extension.

Definition 44. Let SA = ⟨A,→⟩ be a SAF with knowledge base KB and argumentation
system AS = ⟨L, ,R, n⟩. Further, let SBSA = ⟨LC , ASA,→,→·· ⟩ be its corresponding
SBAF with contestables. For any extension E ⊆ A, we define its corresponding extension
ESA = {dSA | ∃a ∈ E : d ∈ Rules(a)} ∪ {as | s ∈ E}.

In the example of Figure 3.26, the extension {a3, a4, a5, a6} in the SAF would be
translated to the extension {av, d

4
SA, d

5
SA, d

6
SA}. We can then note that extensions in

SAFs only accept the conclusions of their arguments, while extensions in SBAFs accept all
involved sentences. This discrepancy can be overcome by focusing on complete extensions
in SAFs, as then sub-argument closure guarantees that they, too, accept all sentences
involved in accepted argument. And indeed, in our example, both extensions accept the
same sentences.

Lemma 12. Let SA = ⟨A,→⟩ be a SAF with knowledge base KB and argumentation
system AS = ⟨L, ,R, n⟩. Further, let SBSA = ⟨LC , ASA,→,→·· ⟩ be its corresponding
SBAF with contestables.

For any complete extension E ⊆ A, we have {Conc(a) | a ∈ E} = Sent(ESA).

Proof. We show set-inclusion in both directions. Take any s ∈ {Conc(a) | a ∈ E}. Then
there exists an argument a ∈ E such that s = Conc(a). If s ∈ KB, then it is immediate
that as ∈ ESA. If s ̸∈ KB, We have that s is the conclusion of the top-rule d of a, which
means that s = Conc(dSA) with dSA ∈ ESA. Hence, s ∈ Sent(ESA).

Now take any s ∈ Sent(ESA). Then s ∈ KB or there is a rule d ∈ R such that
s ∈ Sent(dSA) and d ∈ Rules(a) for some a ∈ E. By sub-argument closure, there exists
an argument a′ ∈ Sub(a) such that d is the top-rule of a′. If s is the conclusion of d, then
we know that s ∈ {Conc(a) | a ∈ E}. If it is a premise, we can again use sub-argument
closure to find a sub-argument a′′ ∈ Sub(a′) such that s = Conc(a′′) and we again get
s ∈ {Conc(a) | a ∈ E}.

This confirms that the translation from a SAF to an SBAF with contestables makes
sense in that we can find corresponding extensions. Of course, the question now is whether
SAF extensions are rational from the SBAF perspective. One of the main differences
between SAFs and SBAFs is the way attacks work. While each attack in an SBAF cor-
responds to an attack in the corresponding SAF, the other direction does not hold. In
ASPIC+, it is possible to attack an argument by attacking a sub-argument. As there is
no notion of sub-arguments in SBAFs, such attacks disappear in the translation. This
has consequences for which extensions count as defended. Thus, there are extensions that
count as rational in ASPIC+, but not when translated to SBAFs. Take again the example
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of Figure 3.26. In the SAF, there is a complete extension {a1, a2, a3}, since a1 defends
a2 by attacking a sub-argument of the attacker a6. However, this defence gets lost in
translation. Accordingly, the corresponding extension {as, av, d

2
SA} in the SBAF is not

defended.
We have already seen in Section 2.2.2 that different notions of defence present a problem

for translations from SBAFs to SAFs. Now defence is again an obstacle for translating
between SAFs and SBAFs. The difference here is that ASPIC+assumes that one can
only accept an argument by accepting all its sub-arguments. Every argument needs to be
linked back to the knowledge base and one can attack an argument by cutting that link.
No similar notion is present in SBAFs. Rather, it is allowed to accept an argument without
accepting all its supporting arguments. Perhaps there is a problem with the supporting
argument, but one might accept the supported premise independently of that support.
Hence, attacking the support does not impact the supported argument. This difference in
interpretation leads to defended extensions in SAFs to be undefended in SBAFs.

Finally, we can observe that canonical extensions in SBAFs implement a different
notion of knowledge-based reasoning than ASPIC+. This can again be seen again in
Figure 3.26. Namely, the canonical extension in the SBAF with contestables would be
{sc, vc}, accepting arguments as and av. Without giving a fully formal translation for the
general case, we can see that the corresponding extension in the SAF would be {a1, a3}.
While this is an admissible extension, it is not complete, as it does not contain a2, even
though it is defended. Again, the problem lies in the different attacks that are present
in the SAF but not in its corresponding SBAF. We can note, though, that the canonical
extension in the SBAF is somewhat similar to the grounded extension in the SAF. But
while the grounded extension never decides mutual conflicts (such as between a1 and a4),
the canonical extension decides them if a minimal argument for a contestable sentence is
involved. It does so by including the minimal argument.
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Chapter 4

Conclusion

This thesis contributes to the growing literature on bipolar argumentation as well as
to structured argumentation. We combine an explicit support relation with structured
arguments and thus define the new notion of structured bipolar argumentation frameworks.
When evaluating SBAFs, we define argument extensions as usual, but we also introduce
the notion of language extensions, i.e. rationally acceptable sets of sentences that are
used to build arguments. Language extensions might be easier for agents to interpret
and give more direct access to what debates are really about: multiple sides trying to
convince each other of some claim. We provide a range of semantics for both argument
and language extensions, centred around the notions of coherent argument extensions and
adequate language extensions. The main ideas incorporated into SBAFs and our semantics
stem from pragma-dialectics and informal logic. This means that arguments have a simple
premise-conclusion structure, in contrast to the full inference trees of ASPIC+and ABA,
and agents are allowed to doubt unattacked arguments and sentences.

We studied our semantics from a number of perspectives. First, we showed that co-
herent and adequate extensions correspond in saturated SBAFs, where contrary and un-
dercutting sentences occur as minimal arguments. This condition is required, as otherwise
not all relevant information about sentences is apparent in SBAFs, where only relations
between arguments are considered. Second, we checked our semantics against common
principles for bipolar semantics. We can distinguish strongly and weakly coherent exten-
sions by the principle directionality, as only the latter satisfies it. In general, semantics
for SBAFs would benefit from new principles, as many existing ones compare differences
in extensions when manipulating the support relation. Given that support in SBAFs is
based on the structure of the arguments, we cannot arbitrarily change the support re-
lation. Third, we show that we can characterise preferred extensions as a certain type
of weakly coherent argument extensions, called confident, where the set of accepted sen-
tences is maximised. While confident weakly coherent extension, maximising sentences,
and preferred extensions, maximising arguments, can differ in general, they are shown to
coincide in strongly saturated SBAFs. Fourth, we investigated a form of knowledge-based
reasoning in SBAF. Distinguishing sentences into two classes, doubtable and contestable,
allows to define sensible extensions that maximise contestable sentences, while doubtable
sentences can be doubted as usual. A particular version of sensible extensions, called the
canonical extension implements directly the idea that we start by accepting all contestable
sentences and only accept those doubtables that the arguments force to accept.

There is work to be done in checking whether some definitions can be refined. For in-
stance, the asymmetry between support, which requires identity between sentences of two
arguments, and attacks, which requires contrariness between sentences of two arguments,
could be resolved by basing support on a notion of entailment. An argument could be seen
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as supporting another one if its conclusion entails the premise of the other. This would
in some cases lead to a more natural notion of support. Further, it might be possible to
weaken the conditions for saturated SBAFs and thus have our results for a larger class of
frameworks. Further, it would be interesting to see whether the defence requirement on
adequate language extensions can be formulated directly on the language level. In terms
of studying the behaviour of coherent semantics, new principles need to be formulated.
We have seen that principles that manipulate the support relation are difficult to apply
to SBAFs, but adding and removing whole arguments might be a more promising way
to study SBAF semantics. For instance, we would expect that adding new supporting
arguments will not decrease the acceptability of the supported argument. It also remains
to be seen whether the acceptability degrees introduced in Section 3.2.2 can be seen as a
full gradual semantics.

With respect to knowledge-based reasoning, there might be a larger class of extensions
to be investigated than canonical extensions. While we showed that canonical extensions
are ⊆-minimal amongst sensible extensions, we did not show that they are the only such
extensions. Thus, it might be worthwhile to examine what we can call cautious extensions
in general, defined as ⊆-minimal sensible extensions. One benefit of that approach would
be that cautious extensions are well-defined even if not all contestables have corresponding
minimal arguments.

Finally, our approach provides opportunities for adding further features of argumen-
tation. The use of preference rankings between arguments is widely established in the
literature and it would be interesting to see how they could be incorporated into SBAFs.
As with contestable sentences, we could add further types of sentences that come with
their own dialectical obligations. For instance, we could add controversial sentences that
can only be accepted if they are supported by an argument. This way, we could introduce
a notion of necessary support into SBAFs.
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Appendix A

CNFs for SBAFs

We detail how a solver for SBAF semantics can be set up using SAT methods. Some of
the methods described here have been adapted from the pygarg module for Python, which
is a SAT-based solver for Dung semantics (Mailly 2024).

Definition 45 (Conjunctive Normal Form). A propositional formula φ is said to be in
conjunctive normal form (CNF) if it is of the form φ = c1 ∧ · · · ∧ cn with ci = l1 ∨ · · · ∨ lm
and each lj is either a propositional variable or a negated propositional variable. We call
lj a literal and ci a clause.

A SAT-model of a CNF formula is a satisfying assignment. That is, an assignment of
propositional variables to True and False such that each clause is made true.

The general idea is that for a given framework SB = ⟨L, A,→,→·· ⟩, we construct a
CNF such that models correspond to extensions. In order to construct such a CNF, we
will often use the following equivalence: (p1 ∧ · · · ∧ pn)→ (q1 ∧ · · · ∧ qm) ⇐⇒ (¬p1 ∨ · · · ∨
¬pn ∨ q1) ∧ · · · ∧ (¬p1 ∨ · · · ∨ ¬pn ∨ qm).

We first define propositional variables for sentences and arguments. If the variable of a
specific sentence or argument is true in a model of the CNF, we interpret the corresponding
sentence or argument as being accepted.

The variable for a sentence s in Sent(A) is denoted by ps. The variable for an argument
a in A is denoted by qa. Following the approach in pygarg, we also introduce helper
variables that indicate whether an attacker of an argument a in A is accepted. They are
denoted by da.

We first define a CNF to encode the interpretation of the d-variables. It specifies that
if a variable da is true, then for at least one attacker of b of a, the variable qb must be
true, and if for any attacker b of a the variable qb is true, so is da.

CNFd :=
∧

a∈A

[(¬da ∨
∨

b→a

qb) ∧
∨

b→a

(¬qb ∨ da)].

Next, we make sure that the sets of accepted arguments and sentences correspond
properly. Given a set of arguments, we want that all accepted sentence are components
of accepted arguments. For that, it is useful to first encode argument-respect. It simply
says that for each accepted argument, all its sentences must be accepted. For instance,
for an argument a = ⟨{s, t}, u⟩, we use the formula qa → (ps ∧ pt ∧ pu).

CNFArgument−Respect :=
∧

a∈A

∧
s∈Sent(a)

(¬qa ∨ ps).

The CNF for the set of sentences of an argument extension adds to argument-respect
the other direction, meaning that for each accepted sentence, there must be an accepted
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argument containing that sentence.

CNFLanguage Set := CNFArgument−Respect ∧
∧

s∈Sent(A)
(¬ps ∨

∨
a∈A:s∈Sent(a)

qa).

Next, we define the strong argument set, given a language extension. For that, it is
useful to first define strong sentence-respect.

CNFStrong Sentence−Respect :=
∧

a∈A

[(
∨

s∈P rem(a)
¬ps) ∨ (

∨
t∈n(a)

pt) ∨ qa].

Now we can define the strong argument set. We only need to add that no undercut of
an accepted argument can be accepted. That all sentences of the argument are accepted
is taken care of by the CNF for the language set.

CNFStrong Argument Set := CNFStrong Sentence−Respect ∧
∧

a∈A

(¬qa ∨
∨

t∈n(a)

¬pt).

As the weak argument set is more difficult to define through CNFs, we will discuss it
later and continue now with the CNFs for the remaining properties of extensions. Com-
patibility and conflict-freeness are straightforward.

CNFCompatibility :=
∧

s∈Sent(A)

∧
t∈s

(¬ps ∨ ¬pt).

CNFConflict−Free :=
∧

a∈A

∧
b∈A:b→a

(¬qa ∨ ¬qb).

For defence, we make use of the additional d-variables. They allow us to define defence
by specifying that if an argument is accepted, an attacker for each attacker also needs to
be accepted.

CNFDefence :=
∧

a∈A

∧
b∈A:b→a

(¬qa ∨ db).

The last property at this point is weak sentence-respect, which also makes use of
d-variables the same way as in the CNF for defence.

CNFWeak Sentence−Respect :=
∧

a∈A

[(
∨

s∈P rem(a)
¬ps) ∨ (

∨
t∈n(a)

pt) ∨ (
∨

b∈A:b→a

¬db) ∨ qa].

This allows us to calculate strongly and weakly coherent argument extensions as well as
strongly adequate language extensions. Namely, these are models of the following CNFs:

CNFStrongly Coherent :=

CNFLanguage Set ∧ CNFConflict−Free ∧ CNFd ∧ CNFDefence ∧ CNFStrong Sentence−Respect .

CNFWeakly Coherent :=

CNFLanguage Set ∧ CNFConflict−Free ∧ CNFd ∧ CNFDefence ∧ CNFWeak Sentence−Respect .
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CNFStrongly Adequate :=

CNFStrong Argument Set ∧ CNFCompatibility ∧ CNFd ∧ CNFDefence ∧ CNFArgument−Respect .

Calculating weakly adequate language extensions is more difficult. The difficulties
mirror the more complex construction of the weak argument set. For instance, in order
to get the initial set, we need to find a maximally admissible subset of arguments. For a
given language extension, we can construct it using the following algorithm.

Algorithm 1 Finding Init(S)
1: Set i = 1
2: Define Argi = {a ∈ A | Sent(a) ⊆ S and n(a) ∩ S = ∅}.
3: while Argi is not defended do
4: Set i = i+1
5: Define Argi = ∅
6: for a ∈ Argi−1 do
7: if a is defended by Argi−1 then
8: Add a to Argi

9: Return Argi

The next step then to use the fact that Argw(S) =
⋃

i∈NR
S(Init(S)) in order to

construct the weak argument set by iteratively applying the respect function. Once we
have the weak argument set, checking whether the language extension is weakly adequate is
straightforward. However, this procedure is not directly adaptable to SAT-based methods
for finding weakly adequate language extensions.

We will revisit weakly adequate language extensions, but first we show how we can
calculate confident and sensible extensions. At this point, it is useful to introduce the
notion of a weighted CNF formula.

Definition 46 (Weighted CNF). A formula in weighted CNF is a CNF formula where
some clauses are associated with natural numbers representing their weight.

A clause that is given weight is called a soft clause and a clause without weight is called
a hard clause. For our purposes, it is only important whether a clause is hard or soft, thus
we will denote soft-clauses with ∗. It is useful to consider weighted CNF formulas when
unsatisfiable formulas are used. We are then interested in maximal satisfiable subsets
(MSS) of the weighted CNF formula. An important constraint is that hard clauses have
to be satisfied, while soft clauses can be removed in order to make the formula satisfiable.

Using weighted CNF formulas, it is then easy to encode confident and sensible strongly
adequate language extensions. Confident and sensible strongly coherent argument exten-
sions can then be calculated from them, at least in saturated SBAFs.

CNFConfident Strongly Adequate := CNFStrongly Adequate ∧
∧

s∈Sent(A)
p∗s.

CNFSensible Strongly Adequate := CNFStrongly Adequate ∧
∧

s∈Lc∩Sent(A)
p∗s.

Models of MSSs of these CNF formulas correspond to confident and sensible extensions
respectively. The hard clauses make sure the extensions are strongly adequate, while the
soft clauses specify that we either want to accept a maximal set of sentences overall or a
maximal set of contestable sentences.
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It seems clear that if we want to find weakly adequate extensions through CNF formu-
las, we also need them to be weighted. This is mainly because the initial argument set of
a language extension is a maximally admissible subset. More precisely, given a language
extension S, we can encode its initial set as follows, where the last clauses specify that the
initial set should be maximal w.r.t. the arguments of which all sentences and no undercut
are accepted.

CNF Initial Set :=

CNFConflict−Free ∧ CNFd ∧ CNFDefence ∧ CNFArgument−Respect∧∧
s∈S

ps ∧
∧
s ̸∈S

¬ps ∧
∧

a∈A

[(
∨

s∈Sent(a)
¬ps) ∨ (

∨
t∈n(a)

pt) ∨ qa]∗.

The problem with this approach is that we need to put in hard clauses that specify the
language extension for which we want to find the initial set. Removing these clauses make
the formula easily satisfiable if no sentences are accepted. Thus, we do not know how to
efficiently find weakly adequate language extensions, but, given a language extension, we
can efficiently test whether it is weakly adequate.
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Appendix B

Index for Argumentation
Frameworks and Semantics

AF Abstract Argumentation Framework, Def. 1, p. 9

BAF Bipolar Argumentation Framework, Def. 5, p. 11

SBAF Structured Argumentation Framework, Def. 9, p. 14, Def. 32, p. 33

WBAF Weighted Bipolar Argumentation Framework, Def. 14, p. 20

SAF Structured Argumentation Framework, Def. 22, p. 27

SSAF Simple Structured Argumentation Framework, Def. 26, p. 29

ABA Framework, Def. 23, p. 28

Bipolar ABA Framework, Def. 27, p. 30

Dung Semantics, Def. 3, p. 10

Deductive Support, Def. 11, p. 17

Necessary Support, Def. 13, p. 18

Euler-based Semantics, Def. 15, p. 20

Selection-based Semantics, Def. 16, p. 23

ABA Semantics, Def. 25, p. 29

Strongly and Weakly Coherent Semantics, Def. 33, p. 34

Strongly and Weakly Adequate Semantics, Def. 36, p. 40

Confident Semantics, Def. 39, p. 56

Sensible Semantics, Def. 42, p. 60

73



Bibliography

Amgoud, Leila and Jonathan Ben-Naim (2013), “Ranking-based semantics for argumen-
tation frameworks”, in Scalable Uncertainty Management (SUM13), ed. by Weiru Liu,
V. S. Subrahmanian, and Jef Wijsen, Springer, pp. 134-147.

— (2016), “Evaluation of arguments from support relations: Axioms and semantics”, in
International Joint Conference on Artificial Intelligence (IJCAI16), ed. by Subbarao
Kambhampati, International Joint Conferences on Artificial Intelligence, pp. 900-906.

— (2018), “Evaluation of arguments in weighted bipolar graphs”, International Journal
of Approximate Reasoning, 99, pp. 39-55.

Amgoud, Leila and Claudette Cayrol (1998), “On the Acceptability of Arguments in
Preference-based Argumentation”, in Uncertainty in Artificial Intelligence (UAI98),
ed. by Gregory F. Cooper and Serafín Moral, Morgan Kaufmann Publishers, pp. 1-7.

Amgoud, Leila, Claudette Cayrol, and Marie-Christine Lagasquie-Schiex (2008), “On Bipo-
larity in Argumentation Frameworks”, International Journal of intelligent Systems, 23,
pp. 1062-1093.

Amgoud, Leila and Srdjan Vesic (2011), “A new approach for preference-based argumen-
tation frameworks”, Annals of Mathematics and Artificial Intelligence, 63, pp. 149-
183.

Arieli, Ofer, AnneMarie Borg, Jesse Heyninck, and Christian Straßer (2021), “Logic-Based
Approaches to Formal Argumentation”, Journal of Applied Logics, 8, 6, pp. 1793-1898.

Austin, John L. (1962), How to Do Things With Words, Oxford University Press.

Baroni, Pietro, Martin Caminada, and Massimiliano Giacomin (2018a), “Abstract Argu-
mentation Frameworks and Their Semantics”, in Handbook of Formal Argumentation.
Volume 1, ed. by Pietro Baroni, Dov Gabbay, Massimiliano Giacomin, and Leendert
Van Der Torre, College Publications.

Baroni, Pietro, Massimiliano Giacomin, and Beishui Liao (2018b), “A general semi-structured
formalism for computational argumentation: Definition, properties, and examples of
application”, Artificial Intelligence, 257, pp. 158-207.

Baroni, Pietro, Antonio Rago, and Francesca Toni (2019), “From fine-grained properties
to broad principles for gradual argumentation: A principled spectrum”, International
Journal of Approximate Reasoning, 105, pp. 252-286.

Baroni, Pietro, Marco Romano, Francesca Toni, Marco Aurisicchio, and Giorgio Bertanza
(2015), “Automatic evaluation of design alternatives with quantitative argumentation”,
Argument and Computation, 6, 1, pp. 24-49.

Besnard, Philippe, Alejandro J. García, Anthony Hunter, Sanjay Modgil, Henry Prakken,
Guillermo R. Simari, and Francesca Toni (2014), “Introduction to structured argumen-
tation”, Argument and Computation, 5, 1, pp. 1-4.

74



Besnard, Philippe and Anthony Hunter (2001), “A logic-based theory of deductive argu-
ments”, Artificial Intelligence, 128, pp. 203-235.

Betz, Gregor (2010), Theorie dialektischer Strukturen, Klostermann.
— (2012), “On Degrees of Justification”, Erkenntnis, 77, pp. 237-272.
— (2016), “Assessing the epistemological relevance of Dung-style argumentation theories”,

Annals of Mathematics and Artificial Intelligence, 78, pp. 303-321.

Boella, Guido, Dov Gabbay, Leendert van der Torre, and Serena Villata (2010), “Support
in Abstract Argumentation”, in Computational Models of Argument (COMMA10), ed.
by Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Guillermo R. Simari,
IOS Press, pp. 111-122.

Bondarenko, Andrei, Phan Minh Dung, Robert Anthony Kowalski, and Francesca Toni
(1997), “An abstract, argumentation-theoretic approach to default reasoning”, Artifi-
cial Intelligence, 93, pp. 63-101.

Bondarenko, Andrei, Francesca Toni, and Robert Anthony Kowalski (1993), “An assumption-
based framework for non-monotonic reasoning”, in Proceedings of the second inter-
national workshop on Logic programming and non-monotonic reasoning, ed. by Luís
Moniz Pereira and Anil Nerode, MIT Press.

Brun, Georg and Gregor Betz (2016), “Analysing Practical Argumentation”, in The Ar-
gumentative Turn in Policy Analysis, ed. by Sven Ove Hansson and Gertrude Hirsch
Hadorn, Springer International Publishing, pp. 39-77.

Cayrol, Claudette and Marie-Christine Lagasquie-Schiex (2005a), “Gradual Valuation for
Bipolar Argumentation Frameworks”, in Symbolic and Quantitative Approaches to Rea-
soning with Uncertainty (ECSQARU05), ed. by Lluís Godo, Springer, pp. 366-377.

— (2005b), “On the acceptability of arguments in bipolar argumentation frameworks”, in
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU05),
ed. by Lluis Godo, Springer, pp. 378-389.

— (2009), “Bipolar abstract argumentation systems”, in Argumentation in Artificial In-
telligence, ed. by Iyad Rahwan and Guillermo R. Simari, Springer, pp. 65-84.

— (2013), “Bipolarity in argumentation graphs: Towards a better understanding”, Inter-
national Journal of Approximate Reasoning, 54, pp. 876-899.

Cohen, Andrea, Alejandro J. García, and Guillermo R. Simari (2012), “Backing and un-
dercutting in abstract argumentation frameworks”, in Foundations of Information and
Knowledge Systems (FoIKS12), ed. by Thomas Lukasiewicz and Attila Sali, Springer,
pp. 107-123.

Cohen, Andrea, Simon Parsons, Elizabeth I. Sklar, and Peter McBurney (2018), “A char-
acterization of types of support between structured arguments and their relationship
with support in abstract argumentation”, International Journal of Approximate Rea-
soning, 94, pp. 76-104.

Čyras, Kristijonas, Xiuyi Fan, Claudia Schulz, and Francesca Toni (2018), “Assumption-
Based Argumentation: Disputes, Explanations, Preferences”, in Handbook of Formal
Argumentation. Volume 1, ed. by Pietro Baroni, Dov Gabbay, Massimiliano Giacomin,
and Leendert van der Torre, College Publications, pp. 365-408.

Čyras, Kristijonas, Claudia Schulz, and Francesca Toni (2017), “Capturing Bipolar Argu-
mentation in Non-flat Assumption-Based Argumentation”, in Principles and Practice
of Multi-Agent Systems (PRIMA17), ed. by Bo An, Ana Bazzan, João Leite, Serena
Villata, and Leendert van der Torre, Springer International Publishing, pp. 386-402.

75



Davey, Brian A. and Hilary A. Priestly (2002), Introduction to Lattices and Order. Second
Edition, Cambridge University Press.

Dondio, Pierpaolo (2018), “Ranking semantics based on subgraphs analysis”, in Autonomous
Agents and Multiagent Systems (AAMAS18), ed. by Mehdi Dastani, Gita Sukthankar,
Elisabeth Andre, and Sven Koenig, International Foundation for Autonomous Agents
and Multiagent Systems, pp. 1132-1140.

Dung, Phan Minh (1995), “On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games”, Artificial Intel-
ligence, 77, pp. 321-357.

Gargouri, Anis, Sébastien Konieczny, Pierre Marquis, and Srdjan Vesic (2021), “On a
notion of monotonic support for bipolar argumentation frameworks”, in Autonomous
Agents and Multiagent Systems (AAMAS21), ed. by Ulle Endriss, Ann Nowé, Frank
Dignum, and Alessio Lomuscio, International Foundation for Autonomous Agents and
Multiagent Systems, pp. 546-554.

Grossi, Davide and Sanjay Modgil (2019), “On the graded acceptability of arguments in
abstract and instantiated argumentation”, Artificial Intelligence, 275, pp. 138-173.

Hecham, Abdelraouf, Pierre Bisquert, and Madalina Croitoru (2018), “On a flexible rep-
resentation for defeasible reasoning variants”, in Autonomous Agents and Multiagent
Systems (AAMAS18), ed. by Mehdi Dastani, Gita Sukthankar, Elisabeth Andre, and
Sven Koenig, International Foundation for Autonomous Agents and Multiagent Sys-
tems, pp. 1123-1131.

— (2020), “A Formalism Unifying Defeasible Logics and Repair Semantics for Existential
Rules”, in Ontologies and Concepts in Mind and Machine (ICCS20), ed. by Mehwish
Alam, Tanya Braun, and Bruno Yun, Springer Nature Switzerland, pp. 3-17.

Johnson, Ralph H. (1996), The Rise of Informal Logic: Essays on Argumentation, Critical
Thinking, Reasoning and Politics, Vale Press.

— (2000), Manifest rationality: A pragmatic theory of argument, Routledge.

Johnson, Ralph H. and J. Anthony Blair (2006), Logical Self-Defense, International Debate
Education Association.

Kaci, Souhila, Leendert van der Torre, Srdjan Vesic, and Serena Villata (2018), “Preference
in abstract argumentation”, Frontiers in Artificial Intelligence and Applications, 305,
pp. 405-412.

Koszowy, Marcin, Katarzyna Budzynska, Barbara Konat, Steve Oswald, and Pascal Gygax
(2022), “A Pragmatic Account of Rephrase in Argumentation: Linguistic and Cognitive
Evidence”, Informal Logic, 42, 1, pp. 49-82.

Krabbe, Erik C. W. (2017), “The Formalization of Critical Discussion”, Argumentation,
31, pp. 101-119.

Mailly, Jean-Guy (2024), “pygarg : A Python Engine for Argumentation”, Technical report
No. IRIT/RR–2024–02–FR (version 1.1).

Modgil, Sanjay and Henry Prakken (2013), “A general account of argumentation with
preferences”, Artificial Intelligence, 195, pp. 361-397.

— (2014), “The ASPIC+ framework for structured argumentation: A tutorial”, Argument
and Computation, 5, 1, pp. 31-62.

76



Mossakowski, Till and Fabian Neuhaus (2016), “Bipolar Weighted Argumentation Graphs”,
arXiv.

— (2018), “Modular Semantics and Characteristics for Bipolar Weighted Argumentation
Graphs”, arXiv.

Nouioua, Farid (2013), “AFs with Necessities: Further Semantics and Labelling Charac-
terization”, in Scalable Uncertainty Management (SUM13), ed. by Weiru Liu, V. S.
Subrahmanian, and Jef Wijsen, Springer, pp. 120-133.

Nouioua, Farid and Vincent Risch (2011), “Argumentation frameworks with necessities”, in
Scalable Uncertainty Management (SUM11), ed. by Salem Benferhat and John Grant,
Springer, pp. 163-176.

Oren, Nir and Timothy J. Norman (2008), “Semantics for Evidence-Based Argumenta-
tion”, in Computational Models of Argument (COMMA08), ed. by Philippe Besnard,
Sylvie Doutre, and Anthony Hunter, IOS Press, pp. 276-284.

Pandžić, Stipe (2022), “Structured argumentation dynamics”, Annals of Mathematics and
Artificial Intelligence, 90, pp. 297-337.

Perelman, Chaïm and Lucie Olbrechts-Tyteca (1969), The New Rhetoric. A Treatise on
Argumentation, University of Notre Dame Press.

Polberg, Sylwia and Anthony Hunter (2018), “Empirical evaluation of abstract argumen-
tation: Supporting the need for bipolar and probabilistic approaches”, International
Journal of Approximate Reasoning, 93, pp. 487-543.

Polberg, Sylwia and Nir Oren (2014), “Revisiting Support in Abstract Argumentation
Systems”, dbai Technical Report.

Pollock, John L. (1987), “Defeasible Reasoning”, Cognitive Science, 11, pp. 481-518.

Potyka, Nico (2018), “Continuous Dynamical Systems for Weighted Bipolar Argumenta-
tion”, in Principles of Knowledge Representation and Reasoning (KR18), Association
for the Advancement of Artificial Intelligence, pp. 148-157.

— (2021), “Generalizing Complete Semantics to Bipolar Argumentation Frameworks”, in
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU21),
ed. by Jiřina Vejnarová and Nic Wilson, Springer, pp. 130-143.

Prakken, Henry (2010), “An abstract framework for argumentation with structured argu-
ments”, Argument and Computation, 1, 2, pp. 93-124.

— (2014), “On support relations in abstract argumentation as abstractions of inferential
relations”, Frontiers in Artificial Intelligence and Applications, 263, pp. 735-740.

Pu, Fuan, Jian Luo, Yulai Zhang, and Guiming Luo (2014), “Argument ranking with
categoriser function”, in Knowledge Science, Engineering and Management (KSEM14),
ed. by Robert Buchmann, Claudiu Vasile Kifor, and Jian Yu, Springer, pp. 290-301.

— (2015), “Attacker and Defender Counting Approach for Abstract Argumentation”, in
Proceedings of the 37th Annual Meeting of the Cognitive Science Society (CogSci15),
ed. by David C. Noelle, Rick Dale, Anne S. Warlaumont, Jeff Yoshimi, Teenie Matlock,
Carolyn D. Jennings, and Paul P. Maglio, pp. 1913-1918.

Rago, Antonio, Francesca Toni, Marco Aurisicchio, and Pietro Baroni (2016), “Discontinuity-
free decision support with quantitative argumentation debates”, in Principles Of Knowl-
edge Representation And Reasoning (KR16), Association for the Advancement of Ar-
tificial Intelligence, pp. 63-72.

77



Rigotti, Eddo and Sara Greco (2019), Inference in Argumentation. A Topics-Based Ap-
proach to Argument Schemes, Springer Nature Switzerland.

Sakama, Chiaki (2024), “Argument and Belief”, in Computational Models of Argument
(COMMA24), ed. by Chris Reed, Matthias Thimm, and Tjitze Rienstra, IOS Press,
pp. 241-252.

Sakama, Chiaki and Tran Cao Son (2020), “Epistemic argumentation framework: Theory
and computation”, Journal of Artificial Intelligence Research, 69, pp. 1103-1126.

Shi, Chenwei, Sonja Smets, and Fernando R. Velázquez-Quesada (2018), “Beliefs supported
by binary arguments”, Journal of Applied Non-Classical Logics, 28, 2-3, pp. 165-188.

Toni, Francesca (2008), “Assumption-Based Argumentation for Closed and Consistent
Defeasible Reasoning”, in New Frontiers in Artificial Intelligence, ed. by Ken Satoh,
Akihiro Inokuchi, Katashi Nagao, and Takahiro Kawamura, Springer, pp. 390-402.

— (2014), “A tutorial on assumption-based argumentation”, Argument and Computation,
5, 1, pp. 89-117.

Toulmin, Stephen E. (2003), The Uses of Argument: Updated Edition, Cambridge Univer-
sity Press.

Van Eemeren, Frans H. (2010), Strategic Maneuvering in Argumentative Discourse, John
Benjamins.

Van Eemeren, Frans H., Bart Garssen, Sara Greco, Ton van Haaften, Nanon Labrie, Fer-
nando Leal, and Peng Wu (2022), Argumentative Style. A pragma-dialectical study of
functional variety in argumentative discourse, John Benjamins.

Van Eemeren, Frans H., Bart Garssen, Bart Verheij, Erik C. W. Krabbe, A. Francisca
Snoeck Henkemans, and Jean H. M. Wagemans (2020), Handbook of Argumentation
Theory, Springer.

Van Eemeren, Frans H. and Rob Grootendorst (1984), Speech acts in argumentative discus-
sions. A theoretical model for analysis of discussions directed towards solving conflicts
of opinion, Foris Publications.

— (1992), Argumentation, Communication, and Fallacies: A Pragma-dialectical Perspec-
tive, Routledge.

— (2004), A Systematic Theory of Argumentation. The pragma-dialectical approach, Cam-
bridge University Press.

Visser, Jacky (2013), “A formal account of complex argumentation in critical discussion”,
in Virtues of argumentation: proceedings of the 10th International Conference of the
Ontario Society for the Study of Argumentation (OSSA13), ed. by Dima Mohammed
and Marcin Lewiński, OSSA, pp. 1-14.

— (2015), “A Formal Perspective On The Pragma-Dialectical Discussion Model”, in In-
ternational Society for the Study of Argumentation (ISSA15), ed. by Bart Garssen,
David Godden, Mitchell Green, and A. Francisca Snoeck Henkemans, University of
Amsterdam, pp. 1471-1482.

— (2017), “Speech Acts in a Dialogue Game Formalisation of Critical Discussion”, Argu-
mentation, 31, pp. 245-266.

Wallner, Johannes P., Adam Wyner, and Tomasz Zurek (2024), “Value-Based Reasoning
in ASPIC+”, in Computational Models of Argument (COMMA24), ed. by Chris Reed,
Matthias Thimm, and Tjitze Rienstra, IOS Press, pp. 325-336.

78



Walton, Douglas (2010), “Types of dialogue and burdens of proof”, Frontiers in Artificial
Intelligence and Applications, 216, pp. 13-24.

Walton, Douglas and Marcin Koszowy (2017), “Arguments from authority and expert
opinion in computational argumentation systems”, AI and Society, 32, pp. 483-496.

Walton, Douglas, Chris Reed, and Fabrizio Macagno (2008), Argumentation Schemes,
Cambridge University Press.

Yu, Liuwen, Caren Al Anaissy, Srdjan Vesic, Xu Li, and Leendert van der Torre (2023), “A
Principle-Based Analysis of Bipolar Argumentation Semantics”, in Logics in Artificial
Intelligence (JELIA23), ed. by Sarah Gaggl, Maria Vanina Martinez, and Magdalena
Ortiz, Springer, pp. 209-224.

Yu, Shiyang and Frank Zenker (2020), “Schemes, Critical Questions, and Complete Argu-
ment Evaluation”, Argumentation, 34, pp. 469-498.

Yun, Bruno and Srdjan Vesic (2021), “Gradual Semantics for Weighted Bipolar SETAFs”,
in Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU21),
ed. by Jiřina Vejnarová and Nic Wilson, Springer, pp. 201-214.

Yun, Bruno, Srdjan Vesic, and Madalina Croitoru (2020), “Sets of attacking arguments
for inconsistent datalog knowledge bases”, Frontiers in Artificial Intelligence and Ap-
plications, 326, pp. 419-430.

79


