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Abstract

A major challenge in multiagent systems research is to design good aggregation rules for combining
the judgments—or beliefs, or opinions—of different autonomous software agents collaborating with
each other. If the chosen rule is too sophisticated, we may encounter algorithmic difficulties. But if
it is too simple, we may encounter some of the paradoxes of social choice theory and end up with
inconsistent information at the system level. We report on an empirical study aimed at improving
our understanding of how frequently these paradoxes strike in practice for a class of simple aggre-
gation rules, the uniform quota rules. Our results indicate that quota rules can be expected to work
significantly better in practice than the still relatively scarce theoretical results may suggest.

1 Introduction
Aggregating the opinions of a group of agents into a collective decision is a problem that arises both
in the context of human decision making, e.g., in an election, and in the context of decision making in
multiagent systems in artificial intelligence [13, 15]. The field of social choice theory [1] deals with the
normative and mathematical aspects of collective decision making, and computational social choice [3]
adds an algorithmic perspective, which is often crucial for applications in artificial intelligence. When
individual opinions consist of the acceptance or rejection of several issues, and when there are some
interdependencies between those issues, we speak of judgment aggregation [5, 8, 11]. Several rules
for aggregating individual judgments have been proposed and studied in the literature. A well-known
and much-used family are the (uniform) quota rules [4]. They accept or reject issues based on the
number of supporters they have: if an issue has more supporters than a certain threshold (the quota),
then it is accepted. Quota rules are attractive due to their conceptual simplicity and low computational
complexity, but they also have a serious drawback: it is possible for a group of agents to submit rational
judgements over a set of issues, with the aggregation rule nevertheless producing an irrational outcome.

Example 1. Suppose five intelligent robots are tasked with providing basic services in a large congress
centre. They each have a sensor for measuring the temperature and they each are equipped with a
camera to assess how busy the centre is. Based on this kind of information, they have to decide whether
to switch on the air conditioning system. They make the following individual judgments:

Warm Busy A/C

Robot 1: Yes Yes Yes
Robot 2: Yes Yes Yes
Robot 3: Yes No No
Robot 4: No Yes No
Robot 5: Yes No No

How should they find a consensus? In other words, what should be the collective judgment of this multi-
robot system regarding the issues Warm, Busy, and A/C? If they use the (weak) majority rule, under
which an issue is accepted if at least 50% of the individuals accept it, the system will accept Warm and
Busy but reject A/C. Now suppose we impose the integrity constraint Warm ∧ Busy → A/C, meaning
that we consider it irrational if someone accepts that it is warm and busy, but rejects the proposition that



the A/C should be switched on. Under this view, each individual robot is rational, but the system view
produced by the majority rule is not. This is an instance of the famous doctrinal paradox [9,10]. We also
say that the majority rule violates collective rationality, because it does not (always) preserve rationality
during aggregation. Of course, the circumstances under which this paradox manifests itself are fairly
narrow: For instance, if Robot 3 changes its vote to that of Robot 1, there is no problem (because A/C
will be accepted). Alternatively, if we increase the quota required for acceptance of an issue from 50%
to 67%, there also is no problem (because Busy will be rejected, i.e., the outcome is rational). Finally,
if we change the integrity constraint to ¬Warm → ¬A/C (“if it’s cold, don’t switch on the A/C”), then
there also is no problem (because the majority outcome satisfies this new constraint). �

How pervasive is this violation of collective rationality? Theoretical results have identified certain
special cases, relating the quota to the logical structure of the integrity constraint, in which we can
guarantee collective rationality [4, 7]. For instance, as is easy to check, in our example with integrity
constraint Warm ∧ Busy → A/C, a quota of 67% (as well as any higher quota) guarantees a rational
output for any profile of rational inputs. Unfortunately, theoretical guarantees of this kind rely on fairly
strong assumptions, and these assumptions cannot always be satisfied in real-world applications. For
example, the quota required to guarantee collective rationality may be too high for the corresponding
rule to be of practical interest, if such levels of consensus cannot be reached in a given group.

In this paper, we therefore ask how frequently rationality of the outcome is achieved in practice,
even when it cannot be guaranteed for every single rational input profile. To this end, we have created
a number of aggregation problems (represented by their integrity constraints) and generated a large
number of profiles of rational judgments for a group of agents (for varying assumptions on how many
random “mistakes” an agent may make on specific issues), to then determine, for a given quota q,
how frequently the outcome produced by the quota rule with quota q is rational. By varying q, this
approach allows us to derive recommendations for what kind of quota might be appropriate for a given
aggregation problem with certain parameters, so as to ensure rational outcomes in most cases, even
when a full theoretical guarantee is infeasible. To the best of our knowledge, this is the first empirical
study in judgment aggregation trying to investigate the practical relevance of paradoxes, the theoretical
aspects of which have been the subject of a large and still growing literature.

The remainder of this paper is organised as follows. In Section 2 we introduce the formal framework
we will use. Section 3 describes how we have generated the synthetic data for our experiments, and
Section 4 presents a series of such experiments and discusses our findings. Section 5 concludes.

2 Binary Aggregation with Integrity Constraints
There are a number of different formal frameworks for judgment aggregation available [5, 8, 11]. We
will work with a framework known as binary aggregation with integrity constraints [6]. In this section,
we recall the basic definitions for this framework as well as some relevant known results.

2.1 Formal Framework
Let I = {1, . . . ,m} be a finite set of binary issues. A ballot is a vector B = (b1, . . . , bm) ∈ {0, 1}m,
indicating for each issue j ∈ I whether it is accepted (bj = 1) or rejected (bj = 0). We associate each
j ∈ I with a propositional variable pj . To specify which ballots should be considered rational, we use
an integrity constraint Γ, a formula of propositional logic over the set of variables induced by I. For
example, the integrity constraint Γ = (p1 ∨ p2) says that at least one of the first two issues must be
accepted. We write Mod(Γ) for the set of models of Γ, i.e., Mod(Γ) is the set of rational ballots. For
example, assuming m = 3, we get (1, 0, 1) ∈ Mod(p1 ∨ p2), i.e., accepting the first and the third issue,
but rejecting the second, would be rational w.r.t. Γ = (p1 ∨ p2).

W.l.o.g., we assume that integrity constraints are always given in conjunctive normal form (CNF),
i.e., as conjunctions of clauses (possibly just a single clause). A k-clause is a disjunction of k literals
(with no propositional variable occurring more than once). A positive k-clause (or k-pclause for short)
is a k-clause with only positive literals; negative k-clauses (or k-nclauses) are defined analogously.

Let N = {1, . . . , n} be a finite set of agents. A profile is a vector of ballots B = (B1, . . . , Bn),
one for each agent. A (resolute) aggregation rule is a function F : Mod(Γ)n → {0, 1}m, mapping any
given profile of rational ballots into a single consensus ballot (which need not always be rational).



In this paper, we will focus on the family of uniform quota rules. For a given quota q ∈ [0, 1], a real
number between 0 and 1, the corresponding quota rule Fq accepts issue j ∈ I if and only if at least q ·n
of the individual agents do. Thus, F0.5 is the weak majority rule, F1 is the unanimity rule accepting
only those issues accepted by all agents, and F0 is a trivial rule that always accepts all issues.

Example 2. We can now present our initial example more formally. There are m = 3 issues and n = 5
agents. The profile is B = (B1, B2, B3, B4, B5) with B1 = B2 = (1, 1, 1), B3 = B5 = (1, 0, 0), and
B4 = (0, 1, 0). We have F0.5(B) = (1, 1, 0) and F0.67(B) = (1, 0, 0). Writing p1 rather than Warm,
and so forth, the first integrity constraint becomes p1 ∧ p2 → p3, which can equivalently be written as
the 3-clause ¬p1 ∨ ¬p2 ∨ p3. Of the 23 = 8 possible ballots, (1, 1, 0) is the only one not satisfying this
constraint, i.e., (1, 1, 0) 6∈ Mod(¬p1 ∨ ¬p2 ∨ p3). Thus, F0.5(B) is not rational, while F0.67(B) is. �

An aggregation rule F is called collectively rational w.r.t. an integrity constraint Γ if and only if we
get F (B) ∈ Mod(Γ) for every profile B = (B1, . . . , Bn) with Bi ∈ Mod(Γ) for all i ∈ N (in other
words, if rationality of all ballots in the profile implies rationality of the outcome). Thus, our example,
for instance, proves that the rule F0.5 is not collectively rational (while it is not conclusive on F0.67).

2.2 Known Results
When Γ is a positive clause, to obtain a violation we must reject all of the literals in Γ in the outcome,
i.e., this will only happen for relatively high quotas. Thus, low quotas are likely to preserve rationality
for integrity constraints that are positive, and by a similar argument, high quotas are likely to ensure ra-
tionality for negative integrity constraints. By a known result [7, Corollary 24], we can fully characterise
the class of uniform quota rules that are collectively rational for certain integrity constraints:1

Proposition 1. A uniform quota rule Fq with quota q ∈ [0, 1] is collectively rational w.r.t.:

(i) an integrity constraint that is a k-pclause if and only if q · n 6 dnk e;
(ii) an integrity constraint that is a k-nclause if and only if q · n > bn·(k−1)

k c.

Note that in case k divides n, these bounds simplify to q 6 1
k and q > k−1

k , respectively. As it is known
that the set of integrity constraints w.r.t. which a given aggregation rule is collectively rational is closed
under taking conjunctions [7, Lemma 3], the above bounds also apply to conjunctions of k-pclauses and
conjunctions of k-nclauses, respectively. These results mirror similar results for other frameworks of
judgment aggregation [4]. For integrity constraints that mix positive and negative literals, the conditions
under which collective rationality can be guaranteed currently are not as well understood.

Importantly, quota rules without guaranteed collective rationality may still return rational outcomes
in a significant number of cases in practice. The purpose of our experiments will be to understand how
well these rules do when the assumptions of Proposition 1 are not satisfied.

3 Generation of Data for Experiments
For our experiments, we require several aggregation problems and large numbers of profiles for these
aggregation problems. In this section, we describe how we have generated this data.

3.1 Drawing an Integrity Constraint
An aggregation problem is defined by a number of issues m and an integrity constraint Γ involving
(at most) the propositional variables p1, . . . , pm. We have generated integrity constraints Γ in CNF
characterised by the following three parameters (besides m):

• ` ∈ N: the number of clauses in Γ (which might be 1, if Γ is simply a clause);
• k ∈ N: the number of literals in each clause;
• k+ 6 k: the number of literals per clause that are positive.

1Our statement of this result differs from the original [7, Corollary 24], because we represent quotas as ratios (numbers
between 0 and 1), while in the original work they are represented as absolute thresholds (numbers between 0 and n).



Thus, for k+ = k we obtain k-pclauses and for k+ = 0 we obtain k-nclauses. W.l.o.g., in every clause
we let the first k+ literals be the positive ones. As an example, the integrity constraint (p1∨p5∨¬p2)∧
(p5 ∨ p3 ∨ ¬p1) could have been generated by the parameters m = 5, ` = 2, k = 3, and k+ = 2.

The parameters fully determine an integrity constraint, except for the identity of the propositional
variable to occur in each of the k positions in a clause. We generate constraints by drawing, for each
clause, a permutation of (p1, . . . , pm) from the uniform probability distribution over all such permuta-
tions, to then instantiate the clause with the first k elements of that permutation. This ensures that all
k-clauses are well-formed in the sense of not containing the same variable more than once.

Of course, for some settings of parameters, there only exists a single integrity constraint. For exam-
ple, modulo reordering of disjuncts (i.e., modulo logical equivalence), there is only one 4-pclause for 4
issues, namely p1 ∨ p2 ∨ p3 ∨ p4 (here the parameters are ` = 1, k = k+ = 4).

3.2 Drawing a Rational Profile
Suppose we have fixed an integrity constraint Γ, as well as n (the number of agents) and m (the number
of issues). We assume that there exists an objectively “correct” ballot B? = (b?1, . . . , b

?
m), which we

draw from the uniform probability distribution over Mod(Γ), the set of all rational ballots. We further
assume that each agent wants to report the “correct” ballot, but that she might make mistakes. Specifi-
cally, we assume she proceeds as follows. Fix some probability p > 0.5, representing the observability
of issues for our agent. For every issue j, she correctly reproduces b?j with probability p. Of course, that
way she might end up with a ballot that is not rational. If that happens, she throws away her ballot and
tries again from scratch. Thus, to obtain her own ballot B = (b1, . . . , bm), she executes this algorithm:

repeat
for j = 1, . . . ,m do

bj :=

{
b?j with probability p
1− b?j with probability 1− p

end for
until B ∈ Mod(Γ)

For p = 0.5, this reduces to the uniform distribution over Mod(Γ), corresponding to the impartial
culture assumption in voting theory [12]. For p = 1.0, every agent perfectly reproduces B?.

In practice, generating profiles in this manner would be too time-consuming. Instead, we first com-
pute the corresponding probability distribution ∆p

Γ,B? over rational ballots (parametrised by Γ, B?,
and p) and then draw ballots from that distribution. Let B be a rational ballot in Mod(Γ) that disagrees
with B? on k issues. That is, k is the Hamming distance H(B,B?) := #{j ∈ I | bj 6= b?j} between
B and B?. What should be the probability P (B) of drawing B under ∆p

Γ,B?? If we omit the rationality
check at the end, then that probability is easily seen to be P ′(k) := pm−k ·(1−p)k. But P (B) is greater
than that, as we might first draw an irrational ballot and then get a second chance to draw B. The proba-
bility of drawing one of the ballots that pass the rationality check is Prat :=

∑
B′∈Mod(Γ) P

′(H(B′, B?)).
That is, to compute Prat we go through all rational ballots B′, compute for each of them their Hamming
distance to B?, and then add the probability of drawing some ballot of that distance to B? using our first
formula. The probability of drawing B then is P (B) = P ′(k)/Prat, which defines ∆p

Γ,B? .
To summarise, given an integrity constraint Γ and an observability p, we generate a rational profile

as follows. We first draw B? from the uniform probability distribution over Mod(Γ). We then draw n
individual ballots from the probability distribution ∆p

Γ,B? defined above.

4 Empirical Results
In this section, we report on a series of experiments, where we have tested how frequently quota rules
with different quotas produce rational outcomes on profiles drawn from the kinds of distributions de-
scribed in Section 3. A single run in an experiment consists of the application of an aggregation rule F
to a rational profile for some integrity constraint. For a given experiment, consisting of a set of such runs
generated using a given set of parameters, let us call the rationality ratio (RR) of aggregation rule F the
number of runs in the set where F returns a rational outcome, divided by the total number of runs.

We have run each of our experiments for every quota q ∈ {0, 0.1, 0.2, . . . , 1}. In the graphs, the
quota q is shown on the x-axis and the average RR (in percent) is shown on the y-axis.



4.1 Effect of Observability
In our first experiment we investigate the effect of the probability p (the observability of issues for the
agents) on the RR in our generative model. We do so for integrity constraints consisting either of a
single positive clause or a single negative clause.

Experiments were performed for n = 10 and m = 4 on 4-pclauses and 4-nclauses (i.e., ` = 1
and k = 4), with p ranging from 0.5 to 1.0, in steps of 0.1. Recall that p = 0.5 corresponds to a
uniform distribution over rational ballots and p = 1.0 corresponds to perfect agreement amongst the
agents. Note that there exist only a single 4-pclause and a single 4-nclause for this setting (modulo
logical equivalence). We have run each experiment 50,000 times by generating 50,000 profiles (using
the method of Section 3.2). The results are shown in Figure 1. We have repeated the same experiment
for m = k = 5 (not shown here) to verify that small changes in the experimental setup do not have a
significant impact on the results.

(a) one 4-pclause for n = 10 and m = 4 (b) one 4-nclause for n = 10 and m = 4

Figure 1: Effect of observability (p) of issues for 4-pclauses and 4-nclauses

First, we find that the RR increases with the observability p (i.e., as noise in the profile decreases). This
is not surprising. For example, for p = 1.0 every agent reports the same ballot, so any quota rule will
copy that ballot and be rational.

Second, we find that for positive clauses, the RR decreases as the quota increases (and vice versa
for negative clauses). This also is not surprising (as discussed at the start of Section 2.2). But, third,
we find that the rules perform much better than what could have been expected given Proposition 1
alone. The vertical lines in Figure 1 indicate the bounds for guaranteed collective rationality implied by
Proposition 1. For 4-pclauses, for instance, we know that any quota equal to at most d 10

4 e/10 = 0.3
guarantees rationality. But in fact, we also get a RR of (almost) 100% for quotas up to 0.5, even for
maximal noise in the input (i.e., for observability p = 0.5). This can be explained by our generative
model, which entails that the probability of a given issue having value 1 is just over 50% (see Section 4.2
for a precise statement of this point). Thus, the probability that, for each of the 4 issues, more than half
of the agents pick a 0 becomes vanishingly small (albeit not 0).

In summary, particularly but not only for groups of agents that are reasonably well aligned in their
judgments, we can expect rational outcomes for a much wider range of quotas than those that guarantee
collective rationality by Proposition 1.

4.2 Effect of the Number of Agents
In our second experiment, we investigate how the number of agents influences the RR. We focus on
positive clauses and two specific values for p (observability), one corresponding to completely random
input (p = 0.5) and one modelling moderately high agreement amongst agents (p = 0.8).

We again set m = k = 4 and ` = 1 (i.e., we work with a single 4-pclause for 4 issues) and we let n
vary from 9 to 89, in steps of 20. Note that Proposition 1 guarantees collective rationality only for quotas
below roughly 1

k = 0.25 for these parameters (the exact bound depends on n, and more specifically on
how far off an integer n

k is). We again have run each individual experiment 50,000 times. The results
are shown in Figure 2. The effects observed are similar for even numbers of agents (not shown), but
somewhat more clearly pronounced for odd n. Results for negative clauses (not shown) are analogous
(in the sense in which they were for our first experiment).



(a) one 4-pclause for m = 4 and p = 0.5 (b) one 4-pclause for m = 4 and p = 0.8

Figure 2: Effect of the number of agents (n) for 4-pclauses with p = 0.5 and p = 0.8

First, note that, as expected, the two graphs for n = 9 are almost identical to the corresponding graphs
for n = 10 in the lefthand part of Figure 1. The small anomaly for p = 0.8 is due to the fact that for 9
agents the quota rules with q = 1 and q = 0.9 are in fact identical.

Second, we observe that the abruptness with which the RR decreases for increasing quota becomes
more pronounced as we increase the number of agents n. This may be best understood by considering
what happens for n→∞, given our generative model. For Γ = (p1 ∨ p2 ∨ p3 ∨ p4), the only irrational
ballot is (0, 0, 0, 0), leaving 24 − 1 = 15 rational ballots. Thus, if we draw ballots from the uniform
probability distribution over Mod(Γ), as we do for p = 0.5, the probability of a given issue getting
value 1 is 8

15 ≈ 0.53. Thus, by the Law of Large Numbers, for n→∞, we can expect for every issue j
almost exactly 53% of the agents picking a 1. Thus, for any quota below 53% the collective choice will
be 1, and for any quota above 53% it will be 0. As this is so for all issues, we get the rational outcome
(1, 1, 1, 1) for small quotas and the irrational outcomes (0, 0, 0, 0) for high quotas. This situation is
similar for other values of p. For small values of n, we still get this general effect as far as very low and
very high quotas are concerned, but things change more smoothly in between. This also explains why
the lines for different n cross at some point. This effect is more pronounced for p = 0.8, but it is also
present for p = 0.5.

Thus, as before, we see that in practice we can work safely with significantly higher quotas than
the known theoretical results might suggest. Furthermore, for moderate numbers of agents performance
decreases only relatively slowly as we increase the quota, while for large numbers of agents there is a
fairly abrupt change, so choosing a suitable quota becomes more critical.

4.3 Effect of Using Mixed Clauses
To be able to compare our empirical findings with the theoretical bounds offered by Proposition 1, in
our first two experiments we have restricted attention to very simple integrity constraints, either a single
positive clause or a single negative clause. However, in practice integrity constraints can be expected to
be much more complex. To address this, in our third experiment we work with constraints consisting of
more than one clause, each of which mixes positive and negative literals.

Experiments were performed for n = 10 and m = 4, for both p = 0.5 and p = 0.8. In each
experiment, the integrity constraint consists of two clauses (` = 2). The variables varied are k (the length
of each clause) and k+ (the number of positive literals per clause). For each individual experiment, we
have generated 5 different integrity constraints (using the method of Section 3.1), to prevent results from
being heavily dependent on a specific choice of constraint. Then, for each of these integrity constraints
(and for each quota q ∈ {0, 0.1, 0.2, . . . , 1}), we have generated 10,000 rational profiles (thus, we again
have a total of 50,000 runs per quota). The results are shown in Figure 3.

First, note that in case either all literals are positive or all literals are negative, we obtain graphs very
similar to those in Figure 1, i.e., the effect of now having two rather than just one clause as well as the
effect of having shorter clauses is, in itself, not highly significant. We also again see the effect discussed
before, of increased observability (p = 0.8 rather than p = 0.5) improving results.

Second, in case clauses are truly mixed, i.e., neither purely positive nor purely negative, we see a
very marked increase of the RR. We can explain this effect as follows. If q is relatively low, then issues
tend to get accepted by Fq , so positive literals in the integrity constraint are likely to be satisfied (recall



(a) two 2-clauses with n = 10, m = 4, p = 0.5 (b) two 2-clauses with m = 10, n = 4, p = 0.8

(c) two 3-clauses with n = 10, m = 4, p = 0.5 (d) two 3-clauses with n = 10, m = 4, p = 0.8

(e) two 4-clauses with n = 10, m = 4, p = 0.5 (f) two 4-clauses with n = 10, m = 4, p = 0.8

Figure 3: Effect of length of clauses (k = 2, 3, 4) and number of positive literals (k+ = 0, . . . , k)

that satisfying just one literal in a clause is enough to satisfy the clause). If q is relatively high, by the
same kind of argument, the negative literals are likely to be satisfied. Thus, if a clause has both positive
and negative literals, then chances are good that at least one of these two ways of satisfying the clause
is triggered, whatever the quota. This analysis also explains why for the 4-clauses the case of k+ = 2
(i.e., the case that balances positive and negative literals the most) works best.

Third, we can see some evidence for performance being better with shorter clauses, although it is
difficult to isolate these effects from the effect caused by varying the proportion of positive literals. We
can offer some speculative explanation here. If clauses are shorter, the set of rational ballots is smaller.
Thus, shorter clauses imply increased cohesion in the profile, which is likely to improve the RR. At the
same time, having fewer ballots that are rational also means that it will be harder to satisfy rationality
in the outcome, i.e., here we have an effect pulling in the opposite direction. Our experimental findings
thus suggest that, in practice, the first effect is somewhat stronger than the second.

Overall, these are very positive results. For the most realistic scenario, namely integrity constraints
being conjunctions of several mixed clauses, albeit being harder to analyse than the more clearly struc-
tured earlier cases, we in fact obtain the best performance in terms of RR.

5 Conclusion
We have evaluated the rationality ratio achieved by quota rules for synthetically generated profiles of
judgments for aggregation problems characterised by different integrity constraints and we have com-
pared the results obtained to known theoretical bounds for collective rationality guarantees. This com-



parison indicates that quotas can be set more freely in practice than those theoretical results would
suggest, especially in cases where the agents tend to agree with each other, i.e., in cases where the
Hamming distances between their judgments are small. This happens, for instance, when each agent
reports a noisy version of particular judgment, as might be the case when several experts are asked to
offer judgment, or when the agents are voters with similar political convictions. As we have seen, when
the integrity constraint consists of several clauses that mix positive and negative literals, the rationality
ratio tends to be higher than for the simple cases of purely positive or purely negative clauses covered
by the theoretical results. This is an encouraging result, as real-life integrity constraints will more often
than not exhibit this mixed structure.

Our approach to generating data for these experiments, while capturing some intuitions about typ-
ical features of realistic judgment profiles, is still relatively simplistic. In future work, this should be
complemented with experiments using real-world data. This is challenging, as real-world data of this
kind is not yet readily available, at least not in domains where collective rationality matters.2 An alter-
native direction therefore may be to come up with richer generative models, e.g., by defining a Bayesian
Network [2] over issues. This can make the generation process more natural, since voters typically hold
beliefs that influence their judgments on multiple issues. For example, an agent who believes that emis-
sions from cars increase global warming will be more likely to believe that the number of cars should
be reduced. We expect that the Bayesian Network approach will lead to more positive results than pre-
dicted by known theoretical results as well, because the Hamming distance between agents that accept
a specific issue will be small, leading to relative uniformity in profiles.

References
[1] K. J. Arrow, A. K. Sen, and K. Suzumura, editors. Handbook of Social Choice and Welfare.

North-Holland, 2002.
[2] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
[3] F. Brandt, V. Conitzer, and U. Endriss. Computational social choice. In G. Weiss, editor, Multia-

gent Systems, pages 213–283. MIT Press, 2013.
[4] F. Dietrich and C. List. Judgment aggregation by quota rules: Majority voting generalized. Journal

of Theoretical Politics, 19(4):391–424, 2007.
[5] U. Endriss. Judgment aggregation. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D.

Procaccia, editors, Handbook of Computational Social Choice. Cambridge University Press, 2016.
[6] U. Grandi and U. Endriss. Binary aggregation with integrity constraints. In Proc. 22nd Interna-

tional Joint Conference on Artificial Intelligence (IJCAI-2011), 2011.
[7] U. Grandi and U. Endriss. Lifting integrity constraints in binary aggregation. Artificial Intelligence,

199–200:45–66, 2013.
[8] D. Grossi and G. Pigozzi. Judgment Aggregation: A Primer. Synthesis Lectures on Artificial

Intelligence and Machine Learning. Morgan & Claypool Publishers, 2014.
[9] L. A. Kornhauser and L. G. Sager. The one and the many: Adjudication in collegial courts.

California Law Review, 81(1):1–59, 1993.
[10] C. List and P. Pettit. Aggregating sets of judgments: An impossibility result. Economics and

Philosophy, 18(1):89–110, 2002.
[11] C. List and C. Puppe. Judgment aggregation: A survey. In Handbook of Rational and Social

Choice. Oxford University Press, 2009.
[12] M. Regenwetter, B. Grofman, A. A. J. Marley, and I. Tsetlin. Behavioral Social Choice: Proba-

bilistic Models, Statistical Inference, and Applications. Cambridge University Press, 2006.
[13] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical

Foundations. Cambridge University Press, 2009.
[14] R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng. Cheap and fast—but is it good? Evaluating

non-expert annotations for natural language tasks. In Proc. Conference on Empirical Methods in
Natural Language Processing (EMNLP-2008). ACL, 2008.

[15] M. Wooldridge. An Introduction to Multiagent Systems. John Wiley and Sons, 2nd edition, 2009.

2There is empirical data for judgment aggregation, particularly data collected in crowdsourcing exercises, but only for prob-
lems without integrity constraints. The data on annotations of linguistic corpora collected by Snow et al. [14] is an example.


