
PageZero: Mitigating Speculative Execution Attacks
by Clearing Page Tables

MSc Thesis (Afstudeerscriptie)

written by

Floris Westerman

under the supervision of dr. Klaus von Gleissenthall and dr. Balder ten Cate, and
submitted to the Examinations Board in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
November 5th, 2024 dr. Klaus von Gleissenthall

dr. Balder ten Cate
dr. Malvin Gattinger
dr. Tobias Kappé
dr. Benno van den Berg

Abstract

The discovery and subsequent disclosure of the Spectre and Meltdown
vulnerabilities have kickstarted an era of speculative execution vulnerabilities
that exploit hidden microarchitectural CPU features to exfiltrate secret
data. So far, awaiting hardware-level fixes in new products, the majority
of mitigations for existing platforms have been ‘spot’ mitigations. These
fix specific vulnerabilities in specific vulnerable and high-risk code paths,
unleashing a game of ‘Whac-A-Mole’ to keep computers secure. Even
worse, these mitigations impose significant runtime overhead, making them
unattractive.

We introduce PageZero, a novel approach for a more comprehensive
solution to speculative execution vulnerabilities that combines powerful
features from previous work by both VUSec and Microsoft, in the form of
Quarantine and Secret-Free Hypervisor. In this hybrid approach, we separate
virtual machine workloads between physical cores, while also clearing the
hypervisor kernel page tables to prevent leaks via the hypervisor. We will
show the effectiveness of this approach against Spectre v1 by introducing a
generic and flexible speculative semantics that can be used to model various
speculative execution attacks.

Contents

1 Introduction 3

2 Background - Computer Architecture 5
2.1 Memory Hierarchy . 5
2.2 Virtual Memory . 6

2.2.1 Address Spaces . 7
2.2.2 Page Tables . 7

2.3 Protection Rings . 8
2.3.1 Interrupts and Page Faults . 9
2.3.2 Memory Protection . 9
2.3.3 Kernel Memory Layout . 9

2.4 Virtualisation . 10

3 Background - Speculative Execution Attacks 11
3.1 Out-of-Order Execution . 11
3.2 Speculative Execution . 12
3.3 Side Channels . 13

3.3.1 Timing Attacks . 13
3.3.2 Cache Attacks . 14

3.4 Speculative Execution Attacks . 14
3.4.1 Spectre . 14
3.4.2 Consequences . 17

3.5 Further Attacks . 17

4 Mitigating Speculative Execution Attacks 19
4.1 State of the Art . 19

4.1.1 Common Mitigations . 19
4.1.2 Comprehensive Approaches . 20

4.2 PageZero . 21
4.2.1 Contributions . 21

4.3 Attacker Model . 21

5 Formal Model for Speculative Execution 23
5.1 Meta Programming Language . 23
5.2 Sequential Semantics . 24

5.2.1 System State . 24
5.2.2 Expression Evaluation . 25
5.2.3 Reduction Relation . 25
5.2.4 Big-Step Semantics . 27

5.3 Speculative Semantics . 27
5.3.1 Staged Pipeline Model . 27

1

5.3.2 Out-of-Order Execution . 28
5.3.3 Configurations . 29
5.3.4 Fetch Directive Rules . 29
5.3.5 Execute Directive Rules . 31
5.3.6 Retire Directive Rules . 34
5.3.7 Handling Page Faults . 35
5.3.8 Big-Step Semantics . 35

5.4 Example . 35
5.4.1 Sequential Execution . 36
5.4.2 Speculative Execution . 36

6 Proving Effectiveness of PageZero against Spectre v1 38
6.1 Confluence . 39

6.1.1 Progress . 39
6.1.2 Linking fetches and retires . 41
6.1.3 Eager Directives . 43
6.1.4 Confluence, at Last . 45

6.2 Consistency . 50
6.3 Security . 56

6.3.1 Integrity of Speculative Execution . 57
6.3.2 Empty Page Tables . 57
6.3.3 Arbitrary Initial Page Tables . 58
6.3.4 Equivalence . 59

7 Conclusions and Discussions 60

A Complete Syntax 62

B Bibliography 63

2

Chapter 1

Introduction

Back in 2018, the discovery of Spectre [1] and Meltdown [2] ushered in a new era of computer
security research. Code that was previously thought to be secure turned out to be vulnerable
to speculative execution exploits, allowing attackers to exfiltrate all system memory, even from
Javascript code in a web browser [1]. After its disclosure, a flood of new and similar vulnerabilities
was unleashed [3–9].

Due to the widespread issues and severe security impacts of these vulnerabilities, vendors and
developers raced to implement mitigations for the code paths that were most affected. Unfortunately,
since at its core these vulnerabilities are hardware issues, it is not always possible or feasible to
mitigate the issues in software alone [10–12].

Since then, new vulnerabilities and subsequent mitigations have followed each other in rapid
succession. While some issues are fixed in newer hardware revisions, lowering the software mitigation
overhead [11], new vulnerabilities continue to be found. Most machines are left only partially
protected because of the high performance impact of some mitigations [10], while developers keep
struggling to find more and more vulnerable code paths [13, 14].

Clearly, a more comprehensive approach is highly desired, and such attempts have been made [15–
20]. Of particular interest are the approaches by Microsoft and VUSec: Secret-Free Hypervisor [16]
and Quarantine [15]. Both operate in a hypervisor-virtual machine context, and try to rigorously
prevent speculative execution attacks by either making the hypervisor an uninteresting target, or
by physically moving it away from guest code, to another processor core.

We will present PageZero, a new comprehensive approach aimed at consolidating ideas from both
Secret-Free Hypervisor and Quarantine, without the implementation complexities of either. In
this hybrid approach, for each virtual machine, the hypervisor kernel has a separate set of page
tables, thus making the kernel an uninteresting target for speculative execution attacks, while
simultaneously continuing to function normally for benign workloads. Additionally, different VMs
are physically separated across different cores, to prevent microarchitectural leaks between VMs.

The research work is divided among two MSc theses; one for formally showing effectiveness of
the approach, and one for a prototype implementation and evaluation of the design [21]. In this
thesis, we will do the former: we will present a formal model used for reasoning about speculative
execution, and use it to formally prove the effectiveness of our approach.

The model we will present is based on previous work [22] and features an x86-inspired three-stage
processor design with support for out-of-order and speculative execution. We extend the model
to integrate page tables, speculative memory access, and store forwarding. Whereas the original
model was used to prove specific code fragments secure against speculative execution, we will now
use the model to show overall system integrity. Further details can be found in Chapter 5.

3

To show the effectiveness of our approach, we will first present both sequential and speculative
semantics for our model in Section 5.2 and Section 5.3. We will establish confluence for the
speculative semantics (Theorem 1), which we will then use to show consistency between the two
semantics (Theorem 2). Lastly, we will prove a ‘transfer’ result (Lemma 6.3.6) that enables us to
transfer specific properties about programs under sequential semantics to the speculative realm. In
turn, this allows us to show the effectiveness of clearing page tables against Spectre v1 attacks.

The formal model used in this thesis is not limited to Spectre v1, and can easily be modified
and extended to implement other vulnerabilities like Spectre v2 [1], Meltdown [2], RIDL [4], LVI
[5], Fallout [7], and ZombieLoad [3]. The transfer result obtained in this thesis is more widely
applicable than only memory safety, and can be used to port various memory properties to the
speculative execution context.

4

Chapter 2

Background - Computer
Architecture

Before we can start analysing the work in this thesis, it is important to have a solid understanding
of the inner workings of present-day computers and their operating systems. This chapter is
devoted to exactly that: providing an overview of concepts such as the memory hierarchy, address
spaces, page tables, protection rings, and virtualisation. We will introduce these concepts from
the bottom up: starting with low-level hardware details as building blocks for high-level software
implementations. The information in this chapter largely appears in the other thesis as well, but
the content has been tailored to the specific thesis. For more information on these concepts, refer
to the excellent book by Tanenbaum [23].

2.1 Memory Hierarchy
A core concept in computer architecture that impacts all aspects of software design is the so-called
memory hierarchy. Many people might be familiar with the basic distinction between RAM
(Random-Access Memory) and hard drive storage, with RAM being the faster, smaller, and volatile
‘working memory’, and a hard drive providing slower, larger, and long-term data storage.

In reality, there is an entire hierarchy of memory techniques, as shown in Figure 2.1.1. Of note is
the logarithmic scale in this illustration: every next ‘tier’ is at least an order of magnitude slower
in terms of latency, but also typically has a significantly larger storage size. Concretely: if a CPU
needs to load a value from a register, it can do so immediately; while a value from cache will
already take tens of clock cycles. Conversely, a modern CPU only has 16 general-purpose registers
(each 64 bits wide), while modern caches reach sizes of multiple megabytes.

Of note is the gigantic gap in latency between RAM and solid state drives, of three orders of
magnitude. This gap is why (volatile) ‘memory’ is treated completely differently from ‘storage’ in
computer architectures; although in recent years, technological developments are starting to close
the gap [24].

For the purposes of this thesis, we are only interested in the top three tiers of volatile memory:
registers, cache, and RAM. In particular, the gap between the caches and RAM is important.

CPU Caches

Typical x86-based CPUs from Intel and AMD contain a layered cache structure of three to
sometimes four layers, simply called ‘L1’, ‘L2’, ‘L3’, and ‘L4’ cache [25]. The higher the number,
the slower and bigger the cache. The various cache levels employ different strategies in terms of

5

Remote Storage

Hard Drive Disk ~10M cycles

Solid State Drive ~100K cycles

RAM ~100 cycles

Cache ~10 cycles

Register
1 cycle

⋮

Figure 2.1.1: Memory hierarchy in computers. The faster the memory, the lower
the capacity and the higher the price, and vice versa. The top three tiers are typically
volatile memory, while the rest is typically non-volatile, long-term storage. The
amount of cycles refers to the latency of a read operation in clock cycles. Modern
processors achieve around 4 GHz clock frequency.

data structures and eviction rules. Typically, every core in a CPU will have its own L1 and L2
caches, while L3 and L4 are shared between cores.

We should note that these cache layers are built to be transparent implementation details from the
perspective of code running on the computer. Code written in Assembly, which amounts to direct
instructions to the CPU, deals with registers and memory addresses only. When moving up in
abstraction to programming languages like C, even registers are no longer a concern for the user.

Behind the scenes, the CPU will manage the cache for us. For example, if we issue a LOAD
instruction for a particular address 𝑎, the CPU will first look for the value in all cache layers. In
case the address is not found (a cache miss), the RAM will be queried (which will take ~100 cycles).
After a successful query from RAM, the value will be stored in the cache, typically in L1 cache. If
we then issue another LOAD instruction for the same address, the cache can be used (a cache hit),
and thus performance is greatly improved.

2.2 Virtual Memory
Early computer designs allowed programs full control over system memory: only a single program
was running at a time, and it could thus be offered full control over the entire system, including
the memory. This quickly became too limiting: multiple users started to want to use a system
simultaneously, or a single user wanted to run multiple programs at the same time.

Nowadays, of course, a computer runs hundreds or thousands of programs at the same time, without
them interfering. This is achieved by isolating the various processes, in particular through the use
of virtual memory. Concretely, and most relevant for our work, each process running on a computer
gets its own virtual memory address space. The CPU has a so-called memory management unit
(MMU) that will translate accessed virtual memory addresses into physical addresses using the
page tables. This is illustrated in Figure 2.2.1.

6

P1 P2

Physical Memory

Figure 2.2.1: Illustration of how two virtual address spaces P1 and P2 map to
physical memory. Coloured sections indicate memory contents, the rest of the address
space is empty and unused.

2.2.1 Address Spaces
Modern machines are typically ‘64-bit’, which means that all memory addresses (both virtual and
physical) are 64 bits (or 8 bytes) long. In theory, that would mean that each virtual address space
would have 264 ≈ 18.4 EB of memory addressable. In practice, hardware limitations cause ‘only’
48 bits to be usable, yielding 256 TB of addressable memory per address space.

Note that we only consider addressable memory here - the number of memory addresses that are
well-formed and ‘valid’ for the CPU. In practice, there does not (yet) exist any machine that
actually has that much physical memory. Operating systems need to manage the physical memory
carefully, and thus ‘interleave’ the sections of virtual memory that are in use to the physical memory
space, as seen in Figure 2.2.1. There is not a single best way of arranging data into physical
memory, and there is a large design space for so-called memory allocation algorithms with the
objective to reduce fragmentation and optimise utilisation.

2.2.2 Page Tables
As mentioned, when using virtual memory, every process has its own virtual memory space, making
it unaware of the actual physical memory layout in the system. The program can just read and
write to virtual addresses as if they were physical ones, and the CPU (specifically, the MMU)
translates them properly. This procedure can be modelled by a simple map function taking virtual
addresses to physical ones.Of course, the mapping itself would also need to be stored in memory,
which poses a problem: with a domain of 264 entries, such a map is far too large to store.

To combat this problem, computers divide the memory space into pages of 4096 bytes, corresponding
to the last 12 (least significant) addressing bits. A page is then the smallest unit of memory
managed by a machine, and so the virtual to physical memory mapping only needs to map pages
and not individual addresses. This leaves us with a domain of 252 entries, still too large to be of
any practical use.

To further reduce the size of the mapping, CPUs make use of a data structure called page tables.
These are essentially a sparse prefix tree, encoded as simple lookup tables. As mentioned before,
current architectures typically use 48 out of 64 available bits. Removing the 12 bits used to identify
addresses within a page, this leaves us with 36 bits to identify a page, which are split up in 4 levels
of page tables, each resolving 9 address bits. Because of their sparse nature, only memory that is
actually in use needs to be backed by page tables - saving a lot of memory space.

As seen in Figure 2.2.2, the PML4 (‘Page Map Level 4’) table is the root of the lookup process.
This table contains 29 = 512 entries, one for each possible value of bits 39..48 in the memory
address1. Each entry (when present) contains the (physical) address of the appropriate PDPT

1Each table entry is 64 bits and thus 8 bytes long, therefore each table is exactly 8 ⋅ 512 = 4096 bytes long -
exactly a page!

7

012

Offset

21

PTE

30

PDE

39

PDPTE

48

PML4E

64

VA

PTPDPDPTPML4

124864

PA

Figure 2.2.2: Illustration of structure and implementation of page tables. The 64-bit
virtual memory address at the top is decomposed in 6 sections: the final 12 bits are
the offset within a page, the next 4 blocks of 9 bits serve as offsets in the respective
layer of page tables, and the first 16 bits are currently ignored. An entry in any of
the layers contains a physical address pointing to the next layer of page tables, or
to the actual backing page. The final physical address is reconstructed as the page
address stored in the last-level page table entry, combined with the offset within the
page from the virtual address.

(‘Page Directory Pointer Table’)2, which will resolve the next 9 bits. After the PDPT follows the
PD (‘Page Directory’), and finally the PT (‘Page Table’). At PT level, an entry contains the
physical address of the memory page containing the data for the requested virtual address.

Note that the use of virtual memory adds a lot of complexity (and latency) to the processor
runtime. In the worst case, where nothing is cached, a single lookup of a virtual address can trigger
4 additional round trips to RAM to load all the page tables! Even when the page tables are cached
to some extent, the CPU still needs 4 round trips to the cache. Therefore, the CPU employs yet
another cache: the Translation Lookaside Buffer (TLB), which stores virtual to physical address
mappings.

2.3 Protection Rings
As we saw, Virtual Memory is one of the tools used to isolate processes, but it is certainly not
the only one. Another core concept in modern computer architectures are the so-called protection
rings, which dictate the ‘privileges’ of a process. On x86, there are 4 protection rings numbered 0
to 3, with ring 0 being the most privileged and ring 3 being the least privileged.

In practice, most modern operating systems only use 2 of these rings: numbers 0 and 3. Ring 0
is used for the kernel of the operating system, where it can manage all hardware resources, and
in particular the lifecycle of virtual address spaces and page tables. Ring 3 is then used for ‘user
code’; any program a user will interact with.

2As mentioned, the entries are 64 bits, and the tables are the size of an entire page. Therefore, only 48 − 12 = 36
bits in the entry are relevant for finding the next level table. The remaining bits are used for metadata of the page,
such as read/write/execute permissions.

8

Communication between rings, and switching control between them, can be done in various ways.
Roughly speaking, the architectural design assumes a system to be running in ring 3 (user code) as
the default. Either a special ‘syscall’ instruction or an interrupt will trigger the CPU to enter ring
0, requesting the kernel to handle the event. Afterwards, the kernel will return control back to the
user.

2.3.1 Interrupts and Page Faults
Interrupts, as the name suggests, cause the CPU to halt execution of the current code and switch
to a so-called interrupt handler. Interrupts can be triggered by both hardware and software.
Hardware interrupts include clock signals, disk read operations being ready, or simply a keyboard
key being pressed. Software interrupts can be triggered by a special instruction, or through various
exceptions such as dividing by zero.

One interrupt in particular is important for the work in this thesis: the page fault. A page fault is
triggered when user code attempts to access a virtual address that is not accessible, for example
because the virtual address cannot be resolved to a physical address using the page tables as
described above.

When a page fault is triggered, it is the responsibility of the kernel to resolve the situation. In case
the memory access is indeed incorrect or forbidden, the kernel will likely terminate the offending
program, resulting in the infamous Segmentation Fault. In other cases, the memory might not have
been available yet, because most kernels will only allocate memory on demand, as it is being used.

This last part is a crucial optimisation in kernel design: when a program requests the allocation of
a block of memory, odds are that not every single byte of that allocation will be used. Therefore,
kernels will internally record the reserved allocation, but will not actually ‘hand out’ the physical
memory yet, and will thus not yet make the memory available in the process’ page tables. Only
after the user code tries to access this section of memory, when a page fault is triggered, the kernel
will perform the allocation, update the page tables, and return control back to the user.

When page faults (or other exception-based software interrupts) are handled by the kernel, this
is not visible to the user code. From the perspective of the user, the ‘failed’ memory access just
succeeded directly without any issues. This allows us to abstract away the implementation of page
tables and demand paging from the user.

2.3.2 Memory Protection
Switching between protection rings does not switch the virtual address space. Without any further
measures, that would mean that a user process could manipulate all kernel memory, which of course
is not desirable. To solve this, each page table entry comes with a set of metadata, indicating
whether the memory for that address should be readable, writeable and/or executable, and whether
it is only accessible by the kernel (ring 0), or any process. The kernel will then mark all its own
memory as ‘protected’, while allowing the user access to its own memory. In case a user does try
to access a protected address, this will trigger a page fault which the kernel will then handle by
killing the offending program.

2.3.3 Kernel Memory Layout
Typically, a kernel will employ a design where the upper half of the virtual address space is reserved
for kernel use, with all its memory addresses marked to only allow kernel access. This upper half is
then shared between all processes - every virtual address space created will have the same upper
half. This can be easily achieved by copying the last 256 entries of the PML4 table, letting them
point to the same underlying page table hierarchies.

Furthermore, a kernel typically contains a so-called direct map, a memory region where all
the physical memory is made available by linearly mapping a physical address x to a virtual

9

address x + a, with a some constant. In case of Linux, this direct map is made available from
0xFFFF888000000000 onwards [26].

2.4 Virtualisation
Finally, we will shortly discuss virtualisation. Virtualisation allows us to run an entire operating
system on our machine as if it was a normal user process. The host will typically run a normal
operating system with potentially other programs running, among which is a special one (the
hypervisor) running the virtual machine3. Within the VM, also called the guest, the computer
behaves like normal: the act of virtualising a system is fully transparent.

One might wonder how this is achieved: after all, how can the guest run code in ring 0 while
not conflicting with the host kernel that also runs in ring 0? This is achieved through hardware
features enabling the ‘switching’ between entire different operating systems. These features are
sometimes colloquially called ‘ring -1’, as intuitively they are ‘more privileged’ than normal kernel
code in ring 0.

The full implementation of virtualisation is very complex, but to us one aspect will be relevant:
the handling of page tables.

Nested Paging

Modern CPUs support a feature called nested paging or second level address translation (SLAT),
that helps with implementing virtual memory inside a virtual machine [27].

As discussed before, in a normal machine, user code deals with virtual addresses, which are
translated to physical address through the page tables. Each process has its own virtual address
space, and the kernel manages the single physical address space. When adding virtualisation on
top of this, we need a way to allow the guest to use virtual memory like normal, while still only
using a single physical address space in the host.

Nested paging enables this by allowing virtual machines to use two sets of page tables: inside the
guest, the operating system will ‘see’ a single (virtualised) physical memory address space, and
will set up paging like normal. So, user code inside the guest will access a guest virtual address,
which will be translated by the CPU to a guest physical address. In reality, though, the ‘physical
memory’ seen by the guest is just a virtual address space in the host. The guest physical address
(i.e. the host virtual address) is then again translated by the CPU to a host physical address.

This is a very clean approach: to the virtual machine guest, this process is completely transparent,
while for the host, the virtual machine can be treated as any other process for memory management.

Unfortunately, a big issue with this approach is performance. For normal paging, in the worst case
without caching, 5 round trips to RAM are needed to perform a single address lookup. However,
for nested paging the situation is worse, since the guest page tables are located inside the guest
physical memory, so in the host virtual memory! Therefore, each of the 5 guest physical memory
lookups might trigger 5 more host RAM round trips - yielding 25 round trips in total.

Luckily, in practice, these major overheads are barely noticeable, and virtual machines typically
are nearly as performant as the host operating system. Next, we will see how processors achieve
this, and how this affects security.

3There exist special operating systems where the hypervisor is the only thing that runs as part of the kernel. In
all cases, the code responsible for managing the VM is what we call the hypervisor.

10

Chapter 3

Background - Speculative
Execution Attacks

With a decent understanding of the relevant aspects of computer architecture, we can turn towards
the topic of speculative execution attacks. Speculative execution is just one of a range of features
and ‘tricks’ employed by modern computers to improve performance. Unfortunately, it is one that
brought with it a host of unintended vulnerabilities that have shaped the system security landscape
since the initial discovery of the Meltdown and Spectre vulnerabilities [1, 2].

By diving into speculative execution, we cross the boundary between architectural and microarchi-
tectural behaviour. Architectural behaviour and features are those that are described in official
‘Instruction Set Architecture’ (ISA) specifications, such as AMD64 [27]. This is what we would
typically call the ‘behaviour of a system’. For example, registers, page tables, and virtual address
spaces are all included in the ISA, while the various levels of caching are left out. The microarchi-
tecture of a system, then, refers to the implementation of a particular ISA. It describes what truly
occurs in the hardware - not just what ‘we’, the programmers, can observe in our code. So in our
example, the existence and behaviour of the caches are part of the microarchitecture.

This chapter will discuss microarchitectural behaviour that is present in most modern chips, but in
particular our explanations will apply to recent Intel and AMD CPUs, from the last 10-15 years.
ARM and RISC-V CPUs will have similar behaviour, but with subtle differences and often different
names, and will be out of scope. As before, the information in this chapter is largely shared with
the other thesis, but has been tailored to fit this thesis.

3.1 Out-of-Order Execution
The classic architectural view of code execution is that the CPU will execute the program instructions
one-by-one, in order, and as atomic units. This representation allows developers to reason about
their code more easily, as a sequence of instructions. However, it could not be further from the
truth: in reality, CPUs will break up instructions in various micro-operations, will change the order
of execution at will, and will rerun instructions regularly - all in an effort to improve performance.
Luckily, this is all hidden from the developer: the ISA requires the CPU to only ever present a
coherent and valid state to the user, pretending as if the CPU is executing instructions neatly in
order.

The process of executing a single instruction can be decomposed into many smaller steps, which
are executed as ‘stages’ in a pipeline. The exact implementation will differ between CPU vendors
and models, but modern Intel CPUs employ as many as 19 stages [28]. For our purposes, we can
roughly identify the following steps:

11

Fetching the next instruction to be executed, possibly reading from main memory.

Decoding this instruction to determine what the instruction is, and what its arguments are.

Executing the instruction, for example requesting a load from RAM, or performing a floating
point operation.

Retiring the executed instruction, possibly writing the result to the appropriate registers or
memory locations.

As we saw when looking at the memory hierarchy in Section 2.1, loading a memory address can
take up to 100 clock cycles. When adding nested paging to the mix, these numbers grow rapidly.
If the CPU were to execute all instructions one-by-one and in-order, the entire CPU would halt
for 100 cycles while waiting for data, which would be very inefficient. Therefore, modern CPUs
are strongly parallelised and pipelined: every stage will be doing something at every clock cycle.
Furthermore, CPUs execute instructions out of order: while one instruction might be waiting for
a data load from RAM, the next instruction might be a simple floating point operation that is
independent of the previous load. The CPU will then opportunistically execute the floating point
operation while waiting for the data from memory.

Note that only the execute stage will be out-of-order; fetching instructions is still in-order because
the code is written in-order, and importantly, retiring instructions is also in-order, to maintain
data consistency and causality guarantees. To allow for sufficient parallelisation and out-of-order
execution, CPU pipelines are very wide - up to 600 instructions can be in flight simultaneously [29].

Out-of-order execution combined with a strongly pipelined architecture improves CPU performance
significantly, at the cost of a significant increase of implementation complexity. Many of the
stages in the CPU pipeline are dedicated to safely reordering instructions, virtually aliasing
registers, and ensuring (architectural) consistency. Of particular interest for us are the following
microarchitectural features:

The reorder buffer contains all instructions that have been fetched and decoded, and are ready
for execution.

The store buffer contains store operations that have been executed and committed - so the
values are final - but not yet retired. The store buffer is used to forward these pending stores
to future instructions without having to wait for the memory write and load operations.

3.2 Speculative Execution
Even with a massively parallel microarchitecture with very large reorder buffers, a CPU will still
hit choke points during execution: branches. No matter how well a CPU is parallelised, if the
program contains a conditional jump (if/else) that is dependent on a memory load, your program
will inevitably halt until the load has been resolved.

For the next leap in performance, processors jump to speculative execution: for each branch point,
hardware-level heuristics will speculate and predict an outcome for the pending instructions, in
part based on execution history. The CPU will contain a dedicated branch predictor to assist in
this process.

When the CPU has made a prediction, it will speculatively and opportunistically start fetching,
decoding, and executing the selected code path - all in parallel and out of order, of course. Once
the branch point has finally been resolved, either the prediction is confirmed and execution can
continue, or a misprediction has occurred, triggering a complete rollback of the processor state to
the branch point. Architecturally, then, these mispredictions are invisible and execution remains
consistent and predictable.

12

Let us clarify some terminology: the act of predicting a branch point and opportunistically
continuing execution is called speculative execution. The time between a misprediction and the
eventual rollback is called a transient window, while the work done by the CPU in that window is
referred to as transient execution.

3.3 Side Channels
As previously established, there is a difference between the architecture and microarchitecture of a
processor. In previous sections, we often mentioned that architecturally, any microarchitectural
features and optimisations (such as the L1-3 caches, speculative execution, etc.) are invisible.
However, it turns out that by employing side channels, we are able to observe and analyse ‘hidden’
details of the microarchitecture.

Side channels often appear in computing science - they are ‘channels’ to exfiltrate information from
a system that is not intended to be exposed, but without breaking a system. In most cases, side
channels are an unintended consequence of a particular implementation of a system or protocol,
rather than the design of that system or protocol itself.

A good example of a simple side channel would be an audio recording of someone typing on their
keyboard. On most keyboards, every key will make a slightly different sound when pressed, and
thus an audio recording can be used to deduce the message that was typed, such as a password.
There are numerous online demonstrations of this technique [30], which the reader is encouraged
to try out.

For speculative execution attacks, we will focus on a combination of two specific side channels:
timing attacks and cache attacks. Our objective is to deduce (secret) memory data based on the
time it takes to read specific memory addresses.

3.3.1 Timing Attacks
In a timing attack, (microarchitectural) implementation details that influence latencies in the
system are exploited to deduce information about system internals that should be hidden from
the user. For example, consider a login system that will compare the hash of an entered password
against the ‘correct’ password hash, where each hash has a length of 128 bytes. If the comparison
implementation aborts as soon as an incorrect byte has been found, an attacker could measure the
response time of the system for many possible entered passwords, and deduce how many of the
input characters are correct: the longer the response time, the more characters have been checked.

0 100 200 300 400 500

Memory Access Latency for Cache Hits vs. Cache Misses

Cache Hits
Cache Misses

Figure 3.3.1: Memory access latency measurements for both cache hits and cache
misses on an Intel Xeon 6150 CPU. Memory locations were flushed before cache miss
tests. A clear separation in latencies (clock ticks) can be seen.

13

The timing attack we will consider is one involving the microarchitectural aspects discussed above.
As we have seen in Section 2.1, reading from cache is significantly quicker than reading from RAM.
And indeed, in practice, it is very easy to distinguish cache ‘hits’ from cache ‘misses’, as seen
from the experimental data in Figure 3.3.1. This allows us to ‘break’ the abstraction and actually
analyse what is going on in the caches.

3.3.2 Cache Attacks
In a cache attack, information gathered about the cache is used to deduce other information about
the target system. In our case, a cache attack works as follows:

• We set up a memory region of at least 256 bytes1.

• We initialise this region with some dummy data, thus ensuring all addresses have been
accessed once and all parts of the region have the same microarchitectural state.

• We request the CPU to flush the region from all caches, which can be done as normal user
code - no special privileges are needed.

• We ‘trick’ some other program, our target, to read data from our memory region. In particular,
we would like the target to read a single address. This will cause the address to be populated
in the various CPU caches.

• Using a timing attack, we can then deduce which address was read, since only the target
address is in cache.

Depending on the characteristics of your target program, the address that was loaded will tell you
something about the internals of your target. For example, if your target program will read at an
offset i, this attack can deduce the value of i, which might be secret.

3.4 Speculative Execution Attacks
We now turn to the main topic of this thesis: speculative execution attacks. The Spectre vulnerability
[1] can be seen as the archetypical speculative execution attack, and since its discovery in 2018 a
plethora of similar attacks have been described [3–9].

All such attacks depend on microarchitectural features or details that are not properly rolled back
upon a misprediction. For example, when speculatively executing a LOAD instruction, the loaded
address will remain in cache even after the rollback. This makes sense, since the cache itself is a
microarchitectural implementation detail, so not performing the rollback properly for the cache
does not affect the architectural state.

Speculative execution attacks need two more ingredients: they need to trigger a (sufficiently large)
transient window, and they need a side channel to exfiltrate information about the microarchitectural
feature that is not properly rolled back.

3.4.1 Spectre
Spectre combines the fact that CPU caches do not properly get rolled back with the aforementioned
cache side channel. Together with an appropriate transient window, this typically allows Spectre
attacks to read any arbitrary memory address in the current virtual address space.

Over the years, many Spectre variants have been discovered - typically only with different transient
window triggers, but with the same objective to use the cache side channel. We will discuss some
of these variants, starting with the original ‘v1’, the simplest and earliest Spectre attack.

1In practice, due to CPU memory prefetching, 256 bytes is not sufficient, and a much larger memory region of
about 256 pages (so 1 MB) is needed.

14

(a)
1 int find_item(uint key, int *items) {

2 if(key >= max_key) {

3 return -1; // Out-of-bounds

4 }

5
6 int index = map[key];

7 return items[index];

8 }

(b)
1 int spectre_gadget(uint x, int *buffer) {

2 if(x >= max) {

3 return -1; // Out-of-bounds

4 }

5
6 int y = arr[x];

7 return buffer[y];

8 }

Code Snippet 3.4.1: Spectre v1 proof of concept. Snippet (a) is made more readable
by giving some more useful variable names; (b) is a default Spectre template. Under
normal circumstances, this is perfectly valid and safe code, but under speculative
execution, it is possible to bypass the bounds check and perform a memory read of
any arbitrary key (or x), thus leaking the value of any memory address.

Spectre v1

Consider the code in Code Snippet 3.4.1a. At face value, this looks like perfectly normal code: it
provides some kind of lookup behaviour inside the provided items array, based on some integer value
key. To prevent an out-of-bounds read on map, an appropriate guard is inserted. Architecturally,
this is perfectly safe. Unfortunately, when adding speculative execution into the mix, this code can
be exploited to read any arbitrary memory address. In fact, any code pattern with some kind of
bounds check followed by a double pointer dereference can be vulnerable. In Code Snippet 3.4.1b
we have renamed all variables to more clearly show the Spectre ‘template’. The exploit works as
follows:

1) The attacker will prepare a special buffer to be used in a cache attack; most importantly, the
buffer contents are flushed from any caches.

2) The attacker will call spectre_gadget repeatedly using some value x < max, in a perfectly
valid way. This way, the branch predictor is ‘mistrained’: it is more likely to assume that the
next call will again not satisfy the condition on line 2.

3) Now, the attacker will call spectre_gadget using any invalid value x >= max, and the prepared
buffer.

4) The bounds check is a branching point that will open a transient window. For example, the
check could depend on loading the value max from main memory, so after the ‘mistraining’
from before, the CPU might make the incorrect guess that the bounds check is not violated
and will continue executing the next instructions.

5) Within the transient window, arr[x] is loaded - which is out of bounds for the array!
Therefore, this could point to any arbitrary memory location in the current virtual address
space. The CPU will load this value like normal, since of course a process has access to all
its own memory, and no memory permission check has been violated.

6) Next, within the transient window, the loaded value for arr[x] (y) is used to index into our
special buffer. The CPU will load the yth entry of the buffer, thus bringing that value into
cache.

7) At some later point, the CPU will finally complete the evaluation of x >= max, and determine
that the bounds check has failed. Now, the transient execution will be rolled back, so that
architecturally the system behaves as if nothing has happened. Crucially, however, the cache
loads will not be rolled back.

8) Now, the function will return and the attacker can perform a timing attack on the special
buffer to determine which entry was loaded - and thus reveal the value of y!

15

1 int spectre_gadget(uint x, int *buffer) {

2 int y = arr[x];

3 return buffer[y];

4 }

5 int no_op(uint x, int *buffer) {}

6
7 // Method takes a callback function accepting two parameters,

8 // both with the same signature as the two functions above.

9 int target(uint x, int *buffer, int (*callback)(uint, int *)) {

10 (*callback)(x, buffer);

11 }

Code Snippet 3.4.2: Proof of concept for Spectre v2. Again, without speculative
execution, this is perfectly fine code that will not cause any issues. Under speculative
execution, the indirect jump inside target() will be mispredicted by the CPU due to
earlier ‘training’, thus causing the spectre_gadget() to be run, which will speculatively
load an arbitrary memory address.

This attack is also called ‘Bounds Check Bypass’, after the fact that the bounds check in the code
is bypassed. This allows the attacker to read any arbitrary memory address by encoding its value
in the buffer cache. Code snippets of the same format (bounds check + double dereference) are
called Spectre gadgets.

Spectre v3

Spectre variant 3 is also known as Meltdown or ‘Rogue Data Cache Load’ [2], and is a special case
of variant 1, with the addition of a severe hardware bug in older Intel CPUs. In short, the hardware
bug entailed that for a LOAD instruction, memory access permissions would only be checked in
the retire stage, rather than during execution itself. Concretely, this allowed a user process to
transiently read kernel memory in addition to only user memory as in Spectre v1. Since most
kernels have access to all physical memory through the direct map, this would allow an arbitrary
user process to leak all system memory.

Spectre v2

The last variant of Spectre we will discuss is also called ‘Branch Target Injection’ [1], and differs
from the other two variants by the method through which a transient window is opened. Instead
of a direct (mispredicted) conditional statement, variant 2 tricks the CPU into mispredicting an
indirect jump.

The sample code in Code Snippet 3.4.2 shows the various components needed for this attack. We
again need some kind of ‘gadget’ code that performs a double pointer dereference to our liking.
Now, we also need some kind of no-op function, and our Spectre target that will perform an indirect
jump - i.e. a jump or function call that is not fixed in code, but dependent on some memory value.
The attack is performed as follows:

1) The attacker will again prepare a special buffer suitable for a cache attack, which is flushed
from cache.

2) The attacker will now repeatedly call target() with a valid array index x - so a value that
is within bounds and will not cause any execution error. The callback &spectre_gadget is
provided, which will ‘train’ the branch predictor that the indirect jump inside target() will
point to spectre_gadget.

16

3) Now, the attacker will call target() again, but with an invalid array index x and callback
&no_op.

4) At the branching point inside target, the CPU will mispredict that again spectre_gadget()

is the jump destination, and will start speculative execution of that function with parameters
x and buffer.

5) In this transient window, the double dereference inside spectre_gadget is performed again,
but now with an invalid x that could point anywhere in memory.

6) Lastly, the CPU will resolve the misprediction and will rollback the state. However, as before,
the transiently-loaded value is already encoded in the buffer.

3.4.2 Consequences
At first sight, it might be unclear why variants 1 and 2 are exactly an issue. If an attacker can
allocate and prepare a buffer, call the gadget function, and then do a timing attack, why wouldn’t
the attacker just try to dereference the target pointer directly? Of course, in cases where an
attacker controls the code being compiled, Spectre is a non-issue. There are, however, plenty of
cases where Spectre does pose a significant risk, mainly when an attacker can control the flow of
other code paths:

• A direct pointer dereference will trigger a page fault when the address is not mapped, which
will crash your program with a segmentation fault. However, inside a transient window, a
page fault is not yet triggered - the speculative load will fail and only when it is being retired,
a page fault would be triggered. In the case of Spectre, that will never happen, since the
operation is rolled back. This way, Spectre allows for (architecturally) undetected memory
probing.

• Many modern applications run in sandboxes: Java code runs in the Java Virtual Machine,
browser Javascript code is executed in isolated environments, etc. However, they all typically
reside in the same process, and thus share a virtual address space. While the sandboxed code
itself is not able to perform a direct memory accesses, it is possible to write code reproducing
Spectre conditions, therefore being able to read the memory for all tabs in a browser, for
example [1].

• Even outside sandboxes that provide a shared virtual address space, native Linux shared
memory features pose a similar risk. Consider a third-party library (say, for cryptography)
that can be communicated with to perform basic crypto tasks through a shared memory
space. If this library contains an appropriate Spectre gadget, an attacker could leak all
memory of this library - including potential encryption keys.

• Lastly, the kernel itself is a prime target for Spectre attacks, as a process shares its entire
memory with the kernel. If we find appropriate Spectre gadgets in kernel code, then we could
potentially leak all system memory, since the kernel has access to all physical memory. As it
turns out, there are thousands of such gadgets in Linux already [13, 14].

3.5 Further Attacks
As mentioned before, Spectre was only the tip of the iceberg, and ever since its discovery there
has been a continuous trickle of new speculative execution attacks [8]. While they are not the
main subject of this thesis, we will still quickly discuss some of them to give an impression of the
enormous scope of the problems with speculative execution, and the size of the attack surface that
exists in modern CPUs.

Rogue In-Flight Data Load allows an attacker to leak memory across different virtual address
spaces after a CPU will mistakenly speculatively use data values from other threads through

17

the so-called Line Fill Buffer [4].

Fallout allows an attacker to leak arbitrary memory after a CPU will mistakenly forward a store
in the store buffer, without properly checking whether the addresses match [7].

Load Value Injection leaks arbitrary internal CPU data caused by the fact that a failed LOAD
(e.g. because of a page fault) will still transiently resolve with stale data from earlier operations
[5].

Foreshadow allows an attacker to read data from the Intel ‘Software Guard eXtensions’, a
separate ‘trusted execution environment’ on Intel CPUs [6].

ZombieLoad is another attack where a failing LOAD instruction allows the attacker to extract
stale data from internal CPU buffers [3].

CrossTalk is one of the few cross-core attacks, allowing an attacker to leak data from other cores
[9].

As is clear from this short overview, these attacks target nearly all microarchitectural details and
features of CPUs as a way to access ‘forbidden’ data, which is then exfiltrated using the typical
cache side channel, similar to what we saw before.

18

Chapter 4

Mitigating Speculative Execution
Attacks

Now that we have identified the major issues surrounding speculative execution that plague modern
CPUs, we should seek to solve them. How are these vulnerabilities typically resolved? Can they
even be fixed fully? We will discuss common mitigation approaches and where they fall short, and
then we discuss new, more comprehensive approaches. We will also introduce the contribution of
this thesis: a new comprehensive approach to mitigating speculative execution vulnerabilities.

4.1 State of the Art
Unfortunately, there is no one-size-fits-all solution that will mitigate and fix all speculative
execution vulnerabilities. So far, every newly found vulnerability is approached with a combination
of microcode updates, spot mitigations, and hope that the vulnerability is not too severe.

After all, typically, speculative execution vulnerabilities are hardware-level bugs in the silicon of
CPUs. Therefore, a proper fix would require updates to the hardware design, which can only be
introduced on new products, leaving existing devices vulnerable. For this last category, then, we
are left to mitigate the effects of the issue, rather than solving the issue itself.

4.1.1 Common Mitigations
Sometimes, partial mitigations can be applied in microcode. Microcode is yet another microarchitec-
tural implementation detail of CPUs. Not all instructions in the x86 ISA are actually implemented
directly in hardware: some are coded in microcode, which decomposes a single x86 instruction into
multiple low-level so-called micro-operations. For some vulnerabilities, microcode updates can add
additional cache flushes or buffer clears, to mitigate or solve a speculative execution vulnerability.

In most cases, however, developers resort to spot mitigations: fine-grained code injections all over
codebases to dismantle or prevent the abuse of gadgets. For example, to mitigate the Spectre
variants we discussed, we could insert a FENCE instruction in between both pointer dereferences.
Such an instruction will halt all speculation and force all instructions currently in the reorder
buffer to be resolved and retired before continuing execution. This will fix the vulnerability, since
it closes the transient window, at the cost of some performance.

As is probably already clear: such spot mitigations are very ad hoc in nature, and it is extremely
hard to comprehensively find and fix all imaginable gadgets [13]. Furthermore, their performance
hit is significant: each mitigation approach can quickly add 30% but even up to 1,000% runtime
overhead for common benchmarks [8, 10–12]. While newer hardware revisions seem to reduce the

19

performance hit [11], the cumulative nature of these mitigations still pose major issues for overall
system performance.

Consequently, the status quo is that existing systems are left vulnerable with only some high-risk
code paths being ‘patched’ to mitigate underlying vulnerabilities, while taking a significant hit to
performance. Since new vulnerabilities continue to be found, simply waiting for new hardware to
be released is not a viable long-term strategy either.

4.1.2 Comprehensive Approaches
Due to the issues with the common route of spot mitigations, several attempts have been made at
a more comprehensive approach to fix or mitigate all aspects of a particular vulnerability [15, 16,
19, 22]. Specifically, we will focus on virtual machine workloads, in particular in a cloud setting
where we are the ‘service provider’.

In such a setting, we first note that we are not interested in preventing exploits within applications
or virtual machines, as that is not our responsibility as service provider. We are interested in
keeping our platform and customer data secure from attackers, so we care about attacks on the
infrastructure, the hypervisor, or other virtual machines running on the platform.

Secret-Free Hypervisor

An early comprehensive approach was investigated and implemented by Microsoft as part of its
Secret-Free Hypervisor [16]. The underlying approach sounds very simple: we make sure the
hypervisor does not contain any secret data, and therefore no secret data can be leaked, making
the hypervisor an uninteresting target.

At its core, this idea has some practical issues: a hypervisor will inevitably need to access some
secret (guest machine) data, for example to handle interrupts and manage VM state. The approach
in the SF hypervisor is to only temporarily make this data available when absolutely needed, by
adding an ephemeral map to the page tables that is removed as soon as possible.

The paper reports a minimal overhead of at most around 10% compared to a baseline without
traditional spot mitigations, but this result was only achieved after heavy optimisations in the
implementation that complicate the design. Unfortunately, the implementations have not been
open sourced, so it is hard to replicate the results. Of note is that according to the paper, the
approach has been put into production use on Azure.

Quarantine

A completely different approach was previously taken by VUSec in the form of Quarantine [15].
This approach tries to eliminate speculative execution vulnerabilities by physically separating the
hypervisor runtime from the virtual machine guests: the hypervisor kernel will run on an isolated,
dedicated ‘kernel core’, separate from the guests.

The paper shows how most speculative execution vulnerabilities depend on same-core leaks: either
the data is leaked from a core-internal buffer or cache, or the current virtual address space is used
to leak an arbitrary address. Furthermore, cache side channels also depend on running on the
same core. Consequently, by isolating all hypervisor work on a dedicated core, and having the VM
guests run elsewhere with a minimal ‘kernel layer’ that only handles relaying data to and from
the hypervisor core, we can eliminate the necessary conditions for an attack for nearly all known
vulnerabilities.

The implementation is complicated by constantly switching cores, and scheduling issues limit the
scalability of the approach. Overhead is reported to be in the range of 10-30%, but with strong
core count dependency.

20

In some sense, this approach is orthogonal to the Secret-Free Hypervisor: whereas Quarantine
provides physical isolation between the hypervisor and guests, SF Hypervisor provides temporal
isolation by only mapping memory ephemerally.

4.2 PageZero
In this MSc thesis project, we propose PageZero as a hybrid approach combining the strong features
of both Quarantine and SF Hypervisor, while cutting out the troublesome parts. In this approach,
virtual machines are still physically isolated across cores, like in Quarantine. This will eliminate
any cross-VM attacks that depend on core-local microarchitectural features. However, the kernel
itself will not be physically isolated - it will instead be made ‘practically secret-free’: it will only
contain secrets of the current virtual machine, but not of any others. This way, any speculative
execution attack targeting the hypervisor from a specific virtual machine will only be able to reach
uninteresting memory, or memory from itself, but crucially no memory from other virtual machines
and other customers.

The trick is in how we make the kernel ‘practically secret-free’: we achieve this by emptying the
page tables of a particular virtual memory space before starting the VM. This way, as soon as
we (inevitably) hit a page fault, we know that the memory access was not speculative (since page
faults are not triggered speculatively), allowing us to safely re-map the virtual memory address in
the page tables. From now on, this address can be speculatively accessed, since we know it is ‘safe’
for the current VM to access.

4.2.1 Contributions
For this thesis, we will show a formal model and proof of the claim that emptying the page tables
is sufficient to prevent most speculative execution attacks. We limit our scope to just Spectre v1,
but the approach should easily extend to include other attacks as well. In particular, we will make
the following contributions:

• We will present a formal model used for reasoning about (speculative) execution. This model
contains a translation from a meta programming language into micro-operations, with a
three-stage pipeline inspired by x86 design.

• We will present both sequential and speculative semantics for the formal model, where we
make sure that page faults are not handled speculatively.

• We will show confluence for the speculative semantics.

• We will show consistency between both semantics, ensuring that the two semantics produce
architecturally equivalent results.

• Finally, we will show how emptying page tables allows us to ‘transfer’ any property of the
observed sequential memory accesses behaviour into the speculative realm.

This last result allows us to immediately conclude that a sequentially ‘secure’ program (for any
definition of security) is also speculatively secure when emptying the page tables up front. This
transfer approach is more general, allowing not only security claims to be ported into the speculative
realm, but any other property of the set of accessed addresses (e.g. cache-friendliness) as well.

4.3 Attacker Model
For us to be able to properly analyse our approach, we should define an attacker model. This
defines the capabilities of our attacker, and what we consider to be in-scope and out-of-scope for
the project.

21

As mentioned above, we assume a hypervisor-guest model where the hypervisor kernel is the target
of a speculative execution attack from within a VM. We assume the attacker can run arbitrary
code within the VM, and is able to perform any speculative execution attack type. We assume
the host to be fully up-to-date, such that the attacker is unable to use any software-level exploits.
Lastly, we assume the attacker to not employ any unrelated hardware issues or vulnerabilities -
in particular, we assume the CPU and RAM to not display any Byzantine behaviour under any
circumstances.

Specifically for the proof work, we can assume an even stronger attacker: one with full control over
all caches, and who can observe all memory activity - but not any memory data. We assume the
attacker to have full control over the order of operations of the CPU, and the predictions made by
the CPU - thus generalising any attack depending on prediction behaviour.

22

Chapter 5

Formal Model for Speculative
Execution

In this chapter, we will introduce the formal machinery used in the rest of this thesis. This will
consist of a mini meta programming language that we will use as our program input, and then
a model and semantics for both sequential and speculative execution. These will be designed to
closely follow real CPU behaviour, and to capture speculative execution attack vulnerabilities.

The foundations of this setup are inspired by the paper introducing Blade, a tool that is used to
automatically eliminate speculative execution risks from code [22]. The work in this chapter shares
the ideas on the three processor stages and the ‘Just-in-Time’ conversion of programming language
code into low-level instructions, but we simplify the meta programming language, overhaul the
low-level instructions to more closely match x86 micro-operations, and improve notation. On top
of that, we add a virtual memory system, we model page tables and page faults, and therefore
we rework nearly all the reduction rules. A comprehensive listing of all syntax can be found in
Appendix A.

5.1 Meta Programming Language
We will consider a very small ‘programming language’ as input code in our system. The language
supports variables, pointers, arrays, if-statements, and while-loops. While minimal, it is inspired
by a language like C, and thus it is able to easily and comprehensively capture the behaviour we
need for our work.

First, some basic variable and data type definitions. In here, for example, the set of variables is
called Var, and if we come across an 𝑥 in an expression later on, we know that we refer to some
element of Var. We store arrays as a tuple of starting memory address and length, instead of the
array containing all values directly. Keeping track of the length explicitly is not necessary, but
simplifies some expressions down the line.

Variables (Var): 𝑥
Integers (Num): 𝑛 ∈ ℕ

Booleans (Bool): 𝑏 ∈ {true, false}
Virtual Memory Addresses (Addr): 𝑎 ∈ ℕ

Arrays (Array): 𝑥𝑠 ⩴ ⟨𝑎, 𝑛⟩ (base address and length)
Values (Val): 𝑣 ⩴ 𝑛 ∣ 𝑏 ∣ 𝑎 ∣ 𝑥𝑠

23

Next, we introduce the language itself. A program is treated as a sequence of commands, called a
command stack.

Expressions (Expr): 𝑒 ⩴ 𝑣 ∣ 𝑥 ∣ 𝑒 + 𝑒 ∣ 𝑒 < 𝑒 ∣ 𝑒 ⊗ 𝑒 ∣ 𝑒 ? 𝑒 : 𝑒 ∣ len(𝑒) ∣ base(𝑒)
Right-hand Sides: 𝑟 ⩴ 𝑒 ∣ * 𝑒 ∣ 𝑥𝑠 [𝑒]

Commands (Comm): 𝑐 ⩴ skip ∣ 𝑥 := 𝑟 ∣ * 𝑒 := 𝑒 ∣ 𝑥𝑠[𝑒] := 𝑒
∣ if 𝑒 then 𝑐𝑠 else 𝑐𝑠 ∣ while 𝑒 do 𝑐𝑠

Command Stacks ([Comm]): 𝑐𝑠 ⩴ 𝑐 ∶ 𝑐𝑠 ∣ []

For expressions, we support simple sums, comparisons, bitwise XOR, a simple (atomic) ternary
value, and array metadata accessors for the length and base address. Right-hand sides can be
expressions, pointer dereferences, or array accesses. In commands, it is possible to assign to
variables, pointer locations, or array elements. Commands are always written using monospaced
fonts.

Notation 5.1.1 Types for sequences of another type are written as [Foo], and elements of such
a type have ‘plural’ variable names (e.g. 𝑥𝑠), similar to notation in Haskell. Constructing such
sequences is done in a similar fashion as well, where [] denotes the empty sequence, 𝑥 ∶ 𝑥𝑠 adds a
single element 𝑥 to the front of the sequence, and 𝑥𝑠1 ⧺ 𝑥𝑠2 concatenates two sequences. We allow
writing array literals like [𝑥, 𝑦]. ⌟

In this notation, we can construct a Spectre v1 gadget similar to Code Snippet 3.4.1 as follows:

if 𝑖 > len(𝑥𝑠) then [skip] else [𝑥 :=𝑥𝑠[𝑖], 𝑦 := 𝑦𝑠[𝑥]], (5.1.1)

where we renamed some variables to be in line with the notation conventions.

5.2 Sequential Semantics
First, we will construct a sequential semantics, modelling the traditional in-order non-pipelined
execution model. We will construct a notion of system state, and a reduction relation between
such states based on the command stack.

5.2.1 System State
For our system state, we will consider a processor with a number of registers (corresponding to
variables), a physical memory store, and a set of page tables to map between virtual and physical
addresses.

Register Maps (Reg): 𝜌 ∈ Var → Val

Physical Memory Addresses (PAddr): 𝑝𝑎 ∈ ℕ
Page Tables: 𝜏 ∈ Addr → (PAddr ∪ ⊥)

True Page Mapping: 𝑀 ∈ Addr → PAddr

Physical Memory Stores: 𝜇 ∈ PAddr → Val

Sequential Program State (SeqState): 𝑆 ⩴ ⟨𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩, where 𝜏 ⊆ 𝑀

In case a virtual address 𝑎 is not mapped, 𝜏(𝑎) = ⊥. We distinguish between the set of page tables
𝜏, that we will use and adapt during execution, and a ‘ground truth’ mapping 𝑀. The latter is
used as an abstraction of some kernel page fault handler that will allocate and manage physical
memory for us. In our semantics, the page fault handler will be abstracted away by using entries
from 𝑀 to update 𝜏. For the system state to be valid, we require 𝜏 to conform to this ground truth
mapping 𝑀.

24

5.2.2 Expression Evaluation
Before we can define the reduction relation, we should establish how expressions of type Expr can
be evaluated. Since expressions can use variables, but cannot use pointers, we only need the register
map 𝜌 to evaluate expressions. We define the evaluation function ⟦⋅⟧⋅ ∈ (Expr× Reg) → Val case
by case on Expr:

⟦𝑣⟧𝜌 = 𝑣
⟦𝑥⟧𝜌 = 𝜌(𝑥)

⟦𝑒1 + 𝑒2⟧𝜌 = ⟦𝑒1⟧𝜌 + ⟦𝑒2⟧𝜌

⟦𝑒1 < 𝑒2⟧𝜌 = ⟦𝑒1⟧𝜌 < ⟦𝑒2⟧𝜌

⟦𝑒1 ⊗ 𝑒2⟧𝜌 = ⟦𝑒1⟧𝜌 ⊗ ⟦𝑒2⟧𝜌

⟦𝑒𝑏 ? 𝑒1 : 𝑒2⟧𝜌 = {
⟦𝑒1⟧𝜌 if ⟦𝑒𝑏⟧𝜌 = true

⟦𝑒2⟧𝜌 if ⟦𝑒𝑏⟧𝜌 = false

⟦base(𝑒)⟧𝜌 = {𝑎 if ⟦𝑒⟧𝜌 = ⟨𝑎, _⟩
⟦len(𝑒)⟧𝜌 = {𝑛 if ⟦𝑒⟧𝜌 = ⟨_, 𝑛⟩

For missing cases in the array metadata, so when base or len are used on non-array variables, the
function is undefined.

5.2.3 Reduction Relation
We implement the sequential semantics as a reduction relation on system states, where each action
can possibly emit some observation for the attacker. For now, we only consider a memory access
observation - for the speculative semantics, we will add more.

Observations: 𝑜 ⩴ touch(𝑝𝑎)
Observation Trace: 𝑂 ⩴ 𝑜 ∶ 𝑂 ∣ []

The (small-step) semantics itself is quite straightforward as a reduction relation on SeqState,
denoted with a double arrow: 𝑆 ⟹𝑂 𝑆′. We will drop the observation trace subscript when no
observations are emitted, to simplify notation. Since sequential execution behaves like normal
computation, we are not concerned with micro-architectural CPU implementation details.

Seq-Skip

⟨skip ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⟹ ⟨𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

Seq-Assign
𝑐 = 𝑥 := 𝑒 𝑣 = ⟦𝑒⟧𝜌 𝜌′ = 𝜌[𝑥 ↦ 𝑣]

⟨𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⟹ ⟨𝑐𝑠, 𝜌′, 𝜏 , 𝜇⟩

The rule for skip is very straightforward, and for an assignment we simply evaluate the expression
and assign the result to the correct variable. In case an expression is invalid (say, using base on
a non-array variable), execution will get stuck, since the antecedent requiring evaluation of the
expression cannot be satisfied.

Seq-If-Else
𝑐 = if 𝑒 then 𝑐𝑠true else 𝑐𝑠false 𝑏 = ⟦𝑒⟧𝜌

⟨𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⟹ ⟨𝑐𝑠𝑏 ⧺ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

Seq-While
𝑐 = while 𝑒 do 𝑐𝑠𝑙 𝑏 = ⟦𝑒⟧𝜌 𝑐𝑠true = 𝑐𝑠𝑙 ⧺ [𝑐] 𝑐𝑠false = []

⟨𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⟹ ⟨𝑐𝑠𝑏 ⧺ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

25

For both the if and while commands, we evaluate the guard expression to a boolean 𝑏. Based on
its value, we replace the command by the correct branch.

Seq-Pointer-Read-Present
𝑐 = 𝑥 := * 𝑒 𝑎 = ⟦𝑒⟧𝜌 𝜏(𝑎) ≠ ⊥ 𝑝𝑎 = 𝜏(𝑎)

𝑣 = 𝜇(𝑝𝑎) 𝜌′ = 𝜌[𝑥 ↦ 𝑣]

⟨𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⟹[touch(𝑝𝑎)] ⟨𝑐𝑠, 𝜌′, 𝜏 , 𝜇⟩

Seq-Pointer-Read-Miss
𝑐 = 𝑥 := * 𝑒 𝑎 = ⟦𝑒⟧𝜌 𝜏(𝑎) = ⊥ 𝑝𝑎 = 𝑀(𝑎)

𝑣 = 𝜇(𝑝𝑎) 𝜌′ = 𝜌[𝑥 ↦ 𝑣] 𝜏 ′ = 𝜏[𝑎 ↦ 𝑝𝑎]

⟨𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⟹[touch(𝑝𝑎)] ⟨𝑐𝑠, 𝜌′, 𝜏 ′, 𝜇⟩

For a pointer read, we consider two cases: either the address 𝑎 is mapped in the page tables, or it
is not. If it is mapped, we can simply resolve the physical address 𝑝𝑎 = 𝜏(𝑎), and read the memory
𝜇(𝑝𝑎), which we store in the right variable. For a miss, we will use the ‘ground truth’ page map 𝑀
to resolve the correct address 𝑝𝑎 and update the page tables in addition to loading the right value.
This mimics the behaviour of a real page fault, which is architecturally transparent to the program.
In both cases we emit a touch(𝑝𝑎) observation, since the attacker can observe our memory access.

Seq-Pointer-Write-Present
𝑐 = * 𝑒𝑎 := 𝑒𝑣 𝑎 = ⟦𝑒𝑎⟧𝜌 𝜏(𝑎) ≠ ⊥ 𝑝𝑎 = 𝜏(𝑎)

𝑣 = ⟦𝑒𝑣⟧𝜌 𝜇′ = 𝜇[𝑝𝑎 ↦ 𝑣]

⟨𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⟹[touch(𝑝𝑎)] ⟨𝑐𝑠, 𝜌, 𝜏 , 𝜇′⟩

Seq-Pointer-Write-Miss
𝑐 = * 𝑒𝑎 := 𝑒𝑣 𝑎 = ⟦𝑒𝑎⟧𝜌 𝜏(𝑎) = ⊥ 𝑝𝑎 = 𝑀(𝑎)

𝑣 = ⟦𝑒𝑣⟧𝜌 𝜇′ = 𝜇[𝑝𝑎 ↦ 𝑣] 𝜏 ′ = 𝜏[𝑎 ↦ 𝑝𝑎]

⟨𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⟹[touch(𝑝𝑎)] ⟨𝑐𝑠, 𝜌, 𝜏 ′, 𝜇′⟩

For writes, we have equivalent cases as for pointer reads: in case of a miss we transparently resolve
the page fault by updating the page tables, and in both cases we update the physical memory and
emit the appropriate observation.

Next, we repeat the same four rules but now for arrays instead of pointers. The behaviour is
identical, except for using an additional expression to resolve the memory address for the array value.
We could have defined these rules differently, where they merely ‘translate’ the array operation to
an equivalent pointer operation, but then we lose the one-to-one link between reduction steps and
command execution, which we will need later during our proofs.

Seq-Array-Read-Present
𝑐 = 𝑥 :=𝑥𝑠[𝑒] 𝑒𝑖 = base(𝑥𝑠) + 𝑒 𝑎 = ⟦𝑒𝑖⟧

𝜌

𝜏(𝑎) ≠ ⊥ 𝑝𝑎 = 𝜏(𝑎) 𝑣 = 𝜇(𝑝𝑎) 𝜌′ = 𝜌[𝑥 ↦ 𝑣]

⟨𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⟹[touch(𝑝𝑎)] ⟨𝑐𝑠, 𝜌′, 𝜏 , 𝜇⟩

Seq-Array-Read-Miss
𝑐 = 𝑥 :=𝑥𝑠[𝑒] 𝑒𝑖 = base(𝑥𝑠) + 𝑒 𝑎 = ⟦𝑒𝑖⟧

𝜌

𝜏(𝑎) = ⊥ 𝑝𝑎 = 𝑀(𝑎) 𝑣 = 𝜇(𝑝𝑎) 𝜌′ = 𝜌[𝑥 ↦ 𝑣] 𝜏 ′ = 𝜏[𝑎 ↦ 𝑝𝑎]

⟨𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⟹[touch(𝑝𝑎)] ⟨𝑐𝑠, 𝜌′, 𝜏 ′, 𝜇⟩

26

Seq-Array-Write-Present
𝑐 = 𝑥𝑠[𝑒] := 𝑒𝑣 𝑒𝑖 = base(𝑥𝑠) + 𝑒 𝑎 = ⟦𝑒𝑖⟧

𝜌 𝜏(𝑎) ≠ ⊥
𝑝𝑎 = 𝜏(𝑎) 𝑣 = ⟦𝑒𝑣⟧𝜌 𝜇′ = 𝜇[𝑝𝑎 ↦ 𝑣]

⟨𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⟹[touch(𝑝𝑎)] ⟨𝑐𝑠, 𝜌, 𝜏 , 𝜇′⟩

Seq-Array-Write-Miss
𝑐 = 𝑥𝑠[𝑒] := 𝑒𝑣 𝑒𝑖 = base(𝑥𝑠) + 𝑒 𝑎 = ⟦𝑒𝑖⟧

𝜌 𝜏(𝑎) = ⊥
𝑝𝑎 = 𝑀(𝑎) 𝑣 = ⟦𝑒𝑣⟧𝜌 𝜇′ = 𝜇[𝑝𝑎 ↦ 𝑣] 𝜏 ′ = 𝜏[𝑎 ↦ 𝑝𝑎]

⟨𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⟹[touch(𝑝𝑎)] ⟨𝑐𝑠, 𝜌, 𝜏 ′, 𝜇′⟩

5.2.4 Big-Step Semantics
To simplify execution analysis, we also introduce a big-step semantics. For the purposes of this
work, the big-step semantics is a simple transitive reflexive closure of the small-step reduction
relation. In contrast to more typical big-step semantics, we do not require termination - which we
will define more formally later. The relation is 𝑆 ⇓𝑂 𝑆′, with the following inductive definition:

Seq-Done

⟨𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⇓[] ⟨𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

Seq-Step
⟨𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⟹𝑂1

⟨𝑐𝑠′, 𝜌′, 𝜏 ′, 𝜇′⟩ ⟨𝑐𝑠′, 𝜌′, 𝜏 ′, 𝜇′⟩ ⇓𝑂2
⟨𝑐𝑠″, 𝜌″, 𝜏″, 𝜇″⟩

⟨𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⇓𝑂1⧺𝑂2
⟨𝑐𝑠″, 𝜌″, 𝜏″, 𝜇″⟩

5.3 Speculative Semantics
With our sequential definition in mind, we can look at how we extend and adapt the model to
support speculative execution. Our final objective is, of course, to keep both semantics consistent:
execution results should be comparable between the two. We will formally prove this in Section 6.2.

5.3.1 Staged Pipeline Model
As mentioned before, we will model three processor ‘stages’, mimicking real behaviour: fetching,
execution, and retiring. The fetch stage will convert a command to an equivalent low-level
instruction - analogous to micro-operations in a real CPU. These instructions are stored in a queue,
taking the role of the reorder buffer. The execute stage will perform all computation: resolving
expressions and reading from memory, converting an instruction into a ‘final’ form that is then
ready to be retired. Like in a real CPU, the retire step will make the effect of an instruction final
and architectural, which means updating registers and writing to memory.

Instruction Labels: ℓ
Instruction Trace: ℓ𝑠 ⩴ ℓ ∶ ℓ𝑠 ∣ []

Instructions (Instr): 𝑖 ⩴ NOP ∣ MOV⟨𝑥, 𝑒⟩ ∣ LOAD⟨𝑥, 𝑒, 𝑝𝑣, 𝑐𝑠⟩ ∣ STORE⟨𝑒𝑎, 𝑒𝑣, 𝑐𝑠⟩
∣ ASSERT⟨𝑒, 𝑏, 𝑐𝑠⟩ ∣ FAULT⟨𝑎, 𝑖, 𝑐𝑠⟩

Reorder Buffers ([Instr]): 𝑖𝑠 ⩴ 𝑖ℓ ∶ 𝑖𝑠 ∣ []

We have six different instructions, corresponding to no-op (NOP), simple variable stores (MOV),
memory read (LOAD) and write (STORE), and finally an assertion (ASSERT) and a page fault (FAULT).

27

Inside a sequence of instructions, modelling the reorder buffer, we label all instructions. This allows
us to track the ‘flow’ of instructions through their various forms from fetch to retire.

The LOAD instruction carries the variable to store the result into, an expression to compute the
(virtual) memory address, a predicted value that is populated upon a speculative load or store
forward, and a command stack to rollback to in case the prediction was incorrect or when the
address was not mapped.

Similarly, the STORE carries expressions for the address to store to, and the value to store, as well
as a command stack as rollback point for a page fault.

The assertion is used at a branch point in code, such as an if or while. In our speculative
semantics, we will make a prediction for this expression, opening a transient window. If at some
later point, after evaluating 𝑒, we find that the prediction was incorrect, we will rollback and reset
the command stack to the carried 𝑐𝑠.

The page fault is used to implement page faults: when a memory load or store fails, we substitute the
faulting instruction for a FAULT, which carries the faulted address (to be mapped) and instruction,
as well as the command stack to reset to during the rollback.

5.3.2 Out-of-Order Execution
Speculative execution in our model is out-of-order, so we need to a way to determine when we
will fetch, retire, or execute. We do so using directives, which we define for each possible ‘action’
in the model. Later on, every reduction rule will only be valid for a specific directive. In our
attacker model, the attacker has full control over these directives. Sequences of directives are called
schedules.

Directives: 𝑑 ⩴ fetch ∣ fetch 𝑏 ∣ exec 𝑛 ∣ retire ∣ map
Schedule: 𝐷 ⩴ 𝑑 ∶ 𝐷 ∣ []

Since we support out-of-order execution, the exec directive carries an argument 𝑛 deciding which
instruction index in the reorder buffer should be executed. Furthermore, we have two types of
fetches: either with or without a speculative prediction for branch points.

When executing an instruction 𝑛, we will (try to) include the effect of all earlier instructions in the
reorder buffer 𝑖𝑠 into the evaluation of expressions. Just like in real CPUs, if instructions have
been resolved already, but have not yet been retired, their result is already used in subsequent
computations.

Predicted Values (PVal): 𝑝𝑣 ⩴ 𝑣 ∣ ⊥
Predicted Register Maps (PReg): ̃𝜌 ∈ Var → PVal

We introduce two new predictive types: predicted values and predicted register maps. When the
value is ⊥, the result is unavailable. For some instruction at index 𝑛 in the reorder buffer, then,
we need to ‘propagate’ the effect of previous instructions into the register map, which results in
the predicted register map. Any expression evaluation on this state will then produce a predicted
value.

To compute the predicted register map, we introduce a function 𝜑 ∈ (PReg× [Instr]) → PReg,
which will ‘simulate’ the effect of the instructions in the given reorder buffer 𝑖𝑠. This can only be
determined for instructions that have been computed already - if a final result is not known, we

28

clear the value for that register. We define 𝜑 case by case on Instr:

𝜑(̃𝜌, []) = ̃𝜌
𝜑(̃𝜌,MOV⟨𝑥, 𝑣⟩ ∶ 𝑖𝑠) = 𝜑(̃𝜌[𝑥 ↦ 𝑣], 𝑖𝑠)
𝜑(̃𝜌,MOV⟨𝑥, 𝑒⟩ ∶ 𝑖𝑠) = 𝜑(̃𝜌[𝑥 ↦ ⊥], 𝑖𝑠)
𝜑(̃𝜌, LOAD⟨𝑥, 𝑒, 𝑝𝑣, 𝑐𝑠⟩ ∶ 𝑖𝑠) = 𝜑(̃𝜌[𝑥 ↦ 𝑝𝑣], 𝑖𝑠)
𝜑(̃𝜌, 𝑖 ∶ 𝑖𝑠) = 𝜑(̃𝜌, 𝑖𝑠)

In addition, we need to update our evaluation function ⟦⋅⟧⋅ to deal with predicted values. We
update our function to be in (Expr× PReg) → PVal now, which is backwards compatible with our
previous definition: any cases where ⊥ is now produced would cause computation to get stuck in
the sequential model, and we will only consider programs where this does not happen. These are
the updated rules:

⟦𝑒𝑏 ? 𝑒1 : 𝑒2⟧ ̃𝜌 =
⎧{
⎨{⎩

⟦𝑒1⟧ ̃𝜌 if ⟦𝑒𝑏⟧ ̃𝜌 = true

⟦𝑒2⟧ ̃𝜌 if ⟦𝑒𝑏⟧ ̃𝜌 = false

⊥ otherwise

⟦base(𝑒)⟧ ̃𝜌 = {𝑎 if ⟦𝑒⟧ ̃𝜌 = ⟨𝑎, _⟩
⊥ otherwise

⟦len(𝑒)⟧ ̃𝜌 = {𝑛 if ⟦𝑒⟧ ̃𝜌 = ⟨_, 𝑛⟩
⊥ otherwise

Definition 5.3.1 An expression 𝑒 is calculable under predicted register map ̃𝜌 when for all variables
𝑥 in 𝑒, ̃𝜌(𝑥) ≠ ⊥. ⌟

5.3.3 Configurations
To make the difference between sequential and speculative execution clearer, we will call the
speculative counterpart of the state a configuration. A speculative configuration will carry a reorder
buffer, in addition to the command stack, register map, memory map, and page tables of the
sequential state.

Observations: 𝑜 ⩴ touch(𝑝𝑎) ∣ rollback(ℓ𝑠)
Configurations (Conf): 𝐶 ⩴ ⟨𝑖𝑠, 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩, where 𝜏 ⊆ 𝑀

We introduce a new observation, the rollback. This observation will be emitted upon a rollback,
for example after a misprediction or a page fault. It carries the trace of instruction labels that
were rolled back. Again, we require the page tables in a configuration to be consistent with the
ground truth memory map.

For speculative execution, the semantics will always have a single arrow, for both the small-step
and big-step semantics. The small-step semantics is defined in terms of a reduction relation on
Conf: 𝐶

𝑑
−→𝑂 𝐶′. In words: the system in configuration 𝐶 transitions to configuration 𝐶′ upon

directive 𝑑, emitting observation trace 𝑂. Again, to simplify notation, empty observation traces
are dropped.

5.3.4 Fetch Directive Rules
All reduction rules for the fetch directive convert the first command on the stack into an equivalent
instruction at the end of the reorder buffer, adorning it with a fresh label ℓ. By design, fetching is
done in-order, just like on real CPUs where only the execute stage is out-of-order.

29

Fetch-Skip
fresh(ℓ)

⟨𝑖𝑠, skip ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch
−−−→ ⟨𝑖𝑠 ⧺ [NOPℓ], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

Fetch-Assign
fresh(ℓ)

⟨𝑖𝑠, 𝑥 := 𝑒 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch
−−−→ ⟨𝑖𝑠 ⧺ [MOV⟨𝑥, 𝑒⟩ℓ], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

Fetch-Pointer-Load
𝑐 = 𝑥 := * 𝑒 𝑖 = LOAD⟨𝑥, 𝑒, ⊥, 𝑐𝑠⟩ fresh(ℓ)

⟨𝑖𝑠, 𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch
−−−→ ⟨𝑖𝑠 ⧺ [𝑖ℓ], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

The predicted value in the LOAD instruction is only populated later in one of the exec rules, and
so for now the loaded value is unknown: ⊥. Our rollback point is the command stack excluding
the current command 𝑐, since that command is now translated to instruction ℓ which is not thrown
away in a rollback later.

Fetch-Pointer-Store
𝑐 = * 𝑒𝑎 := 𝑒𝑣 𝑖 = STORE⟨𝑒𝑎, 𝑒𝑣, 𝑐𝑠⟩ fresh(ℓ)

⟨𝑖𝑠, 𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch
−−−→ ⟨𝑖𝑠 ⧺ [𝑖ℓ], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

For both pointer operations, unlike in the sequential case, we do not care about whether the address
is mapped in the page tables. In fact, we do not even know the address yet. The address is only
computed later, as part of the exec rules, and only then a page fault might be triggered.

Fetch-Array-Load
𝑐 = 𝑥 :=𝑥𝑠 [𝑒] 𝑒𝑖 = base(𝑥𝑠) + 𝑒 𝑖 = LOAD⟨𝑥, 𝑒𝑖, ⊥, 𝑐𝑠⟩ fresh(ℓ)

⟨𝑖𝑠, 𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch
−−−→ ⟨𝑖𝑠 ⧺ [𝑖ℓ], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

Fetch-Array-Store
𝑐 = 𝑥𝑠[𝑒] := 𝑒𝑣 𝑒𝑖 = base(𝑥𝑠) + 𝑒 𝑖 = STORE⟨𝑒𝑖, 𝑒𝑣, 𝑐𝑠⟩ fresh(ℓ)

⟨𝑖𝑠, 𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch
−−−→ ⟨𝑖𝑠 ⧺ [𝑖ℓ], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

The array operations are similar to the pointer operations again, with a specific expression for the
memory address. Again, we rely on the exec rules to compute the actual addresses.

Fetch-If-Predict-True
𝑐 = if 𝑒 then 𝑐𝑠1 else 𝑐𝑠2 𝑖 = ASSERT⟨𝑒, true, 𝑐𝑠2 ⧺ 𝑐𝑠⟩ fresh(ℓ)

⟨𝑖𝑠, 𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch true
−−−−−−→ ⟨𝑖𝑠 ⧺ [𝑖ℓ], 𝑐𝑠1 ⧺ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

Fetch-If-Predict-False
𝑐 = if 𝑒 then 𝑐𝑠1 else 𝑐𝑠2 𝑖 = ASSERT⟨𝑒, false, 𝑐𝑠1 ⧺ 𝑐𝑠⟩ fresh(ℓ)

⟨𝑖𝑠, 𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch false
−−−−−−→ ⟨𝑖𝑠 ⧺ [𝑖ℓ], 𝑐𝑠2 ⧺ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

30

Fetch-While-Predict-True
𝑐 = while 𝑒 do 𝑐𝑠𝑙 𝑖 = ASSERT⟨𝑒, true, 𝑐𝑠⟩ fresh(ℓ)

⟨𝑖𝑠, 𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch true
−−−−−−→ ⟨𝑖𝑠 ⧺ [𝑖ℓ], 𝑐𝑠𝑙 ⧺ 𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

Fetch-While-Predict-False
𝑐 = while 𝑒 do 𝑐𝑠𝑙 𝑖 = ASSERT⟨𝑒, false, 𝑐𝑠𝑙 ⧺ 𝑐 ∶ 𝑐𝑠⟩ fresh(ℓ)

⟨𝑖𝑠, 𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch false
−−−−−−→ ⟨𝑖𝑠 ⧺ [𝑖ℓ], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

For the if and while constructs, we require the fetch to come with a branch prediction. While
normally the CPU has dedicated branch prediction circuitry, in our model the attacker can make
the predictions to their liking. This way, we capture any possible branch predictor behaviour,
including any possible attacker manipulation of such behaviour. During the fetch, we assume the
prediction to be correct, and modify the command stack accordingly. In case the prediction is
incorrect, the ASSERT instruction will carry the ‘alternative’ command stack that is to be restored
upon a rollback.

5.3.5 Execute Directive Rules
Since the exec directive takes an argument 𝑛, we will have to split the reorder buffer accordingly
for every reduction rule, to make sure we can work with this 𝑛th instruction. To ease notation,

we will introduce an auxiliary relation
(̃𝜌,𝜏,𝜇)
−−−−→→ 𝑂 that accepts a tuple ⟨𝑖𝑠1, 𝑖, 𝑖𝑠2, 𝑐𝑠⟩ where the

instruction-to-execute is already isolated, and will return a new state tuple ⟨𝑖𝑠′, 𝑐𝑠′⟩ with the full
new reorder buffer and command stacks. This relation is passed some read-only data in the form of
the predicted register map ̃𝜌, the current page tables 𝜏, and the memory map 𝜇, and will emit an
observation trace 𝑂. Again, when no observation is emitted, the subscript is dropped for brevity.

Execute-𝑛th-Instruction

|𝑖𝑠1| = 𝑛 − 1 ̃𝜌 = 𝜑(𝜌, 𝑖𝑠1) ⟨𝑖𝑠1, 𝑖ℓ, 𝑖𝑠2, 𝑐𝑠⟩
(̃𝜌,𝜏,𝜇)
−−−−→→ 𝑂 ⟨𝑖𝑠′, 𝑐𝑠′⟩

⟨𝑖𝑠1 ⧺ [𝑖ℓ] ⧺ 𝑖𝑠2, 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
exec 𝑛
−−−−→𝑂 ⟨𝑖𝑠′, 𝑐𝑠′, 𝜌, 𝜏 , 𝜇⟩

We use the previously-defined ‘simulation’ function 𝜑 to propagate the effect of computed-but-
not-yet-retired instructions in 𝑖𝑠1. Furthermore, this rule shows that none of the execute rules
will change the architectural state (𝜌, 𝜏, or 𝜇), since the execute stage is a microarchitectural
implementation detail.

Execute-Assign
𝑖 = MOV⟨𝑥, 𝑒⟩ 𝑣 = ⟦𝑒⟧ ̃𝜌 𝑖′ = MOV⟨𝑥, 𝑣⟩

⟨𝑖𝑠1, 𝑖ℓ, 𝑖𝑠2, 𝑐𝑠⟩
(̃𝜌,𝜏,𝜇)
−−−−→→ ⟨𝑖𝑠1 ⧺ [𝑖′

ℓ] ⧺ 𝑖𝑠2, 𝑐𝑠⟩

Executing a MOV only requires us to compute the expression, but we do not store this result yet -
that is the job of the retire stage, which will make our work architectural.

Branch Prediction

Execute-Assert-Success
𝑖 = ASSERT⟨𝑒, 𝑏, 𝑐𝑠′⟩ ⟦𝑒⟧ ̃𝜌 = 𝑏

⟨𝑖𝑠1, 𝑖ℓ, 𝑖𝑠2, 𝑐𝑠⟩
(̃𝜌,𝜏,𝜇)
−−−−→→ ⟨𝑖𝑠1 ⧺ [NOPℓ] ⧺ 𝑖𝑠2, 𝑐𝑠⟩

31

The inserted NOP might seem redundant here, but it is used to still have an instruction to retire
later. This prevents instructions from magically ‘disappearing’. It allows us to maintain a one-to-one
correspondence between instructions fetched and instructions retired, which we will need for our
proofs later.

Execute-Assert-Fail
𝑖 = ASSERT⟨𝑒, 𝑏, 𝑐𝑠′⟩ ⟦𝑒⟧ ̃𝜌 = 𝑏′ 𝑏 ≠ 𝑏′

⟨𝑖𝑠1, 𝑖ℓ, 𝑖𝑠2, 𝑐𝑠⟩
(̃𝜌,𝜏,𝜇)
−−−−→→ [rollback(ℓ𝑠2)] ⟨𝑖𝑠1 ⧺ [NOPℓ], 𝑐𝑠′⟩

We again insert the NOP instruction for the previously mentioned reasons. Furthermore, we emit a
rollback observation since our prediction turned out to be incorrect. It carries the remainder of
the reorder buffer (that is now being discarded), and the command stack is reset to the point just
after fetching the assertion (but now with the correct branch).

Memory Loads

We now introduce a number of rules dealing with LOAD instructions. There are two rules that will
populate the predicted value, either from a store forward, or by speculatively loading a memory
address. Then, there are three rules for verifying this speculative operation: one for triggering a
page fault in case the address is not in the page tables, and two for transforming the load into
a MOV instruction - thus finalising the memory load. Together, these rules mimic the real-life
behaviour of CPUs that is relevant for this thesis.

Execute-Load-Predict
𝑖 = LOAD⟨𝑥, 𝑒, ⊥, 𝑐𝑠′⟩ 𝑎 = ⟦𝑒⟧ ̃𝜌 STORE⟨𝑎, _, _⟩ ∉ 𝑖𝑠1

𝑝𝑎 = 𝜏(𝑎) 𝑝𝑎 ≠ ⊥ 𝑖′ = LOAD⟨𝑥, 𝑎, 𝜇(𝑝𝑎), 𝑐𝑠′⟩

⟨𝑖𝑠1, 𝑖ℓ, 𝑖𝑠2, 𝑐𝑠⟩
(̃𝜌,𝜏,𝜇)
−−−−→→ [touch(𝑝𝑎)] ⟨𝑖𝑠1 ⧺ [𝑖′

ℓ] ⧺ 𝑖𝑠2, 𝑐𝑠⟩

Since we allow out-of-order execution, our LOAD instruction might be preceded by a STORE to the
same address. This rule will speculatively load a value, based on a ‘best effort’ determination of
whether there is a preceding store to the same address. This rule can only be used when there
is no known store to the same address - however, there might be store instructions that have
uncomputed address expressions that will point to the same address, or store instructions that
write to a different virtual address that maps to the same physical address. Therefore, this is a
speculative load.

This speculative value can then (speculatively) be used in later instructions through the propagation
function 𝜑, as introduced before. Later on, we will confirm our prediction: if it was incorrect, we
perform a rollback.

Note that we only perform a speculative load on addresses that are mapped in the page tables 𝜏,
as otherwise there is nothing to load. This rule could be modified to load Byzantine data in case
of unmapped addresses, which would model vulnerabilities like RIDL [4], LVI [5], and ZombieLoad
[3].

Execute-Load-Forward
𝑖 = LOAD⟨𝑥, 𝑒, ⊥, 𝑐𝑠′⟩ 𝑎 = ⟦𝑒⟧ ̃𝜌 STORE⟨𝑎, 𝑣, _⟩ ∈ 𝑖𝑠1 𝑖′ = LOAD⟨𝑥, 𝑎, 𝑣, 𝑐𝑠′⟩

⟨𝑖𝑠1, 𝑖ℓ, 𝑖𝑠2, 𝑐𝑠⟩
(̃𝜌,𝜏,𝜇)
−−−−→→ ⟨𝑖𝑠1 ⧺ [𝑖′

ℓ] ⧺ 𝑖𝑠2, 𝑐𝑠⟩

When an already-computed store for the same address is pending before the current load, we can
speculatively forward this store as a ‘predicted value’ into the current LOAD instruction. This value
will then get propagated by 𝜑 for use in later instructions.

32

This ‘pending store’ models the CPU behaviour of a store buffer, where committed-but-not-yet-
retired stores are held before writing back upon retiring. Note that these pending stores might not
be the final value (there might be other unknown stores to this address, or the computed value
might itself depend on speculative values), so the forwarded value is still a prediction. Later, we
will check whether the prediction is correct.

We could modify this rule by dropping the match between store target address and load address,
which would model Fallout [7].

Execute-Load-Present-Correct
𝑖 = LOAD⟨𝑥, 𝑎, 𝑣, 𝑐𝑠′⟩ STORE⟨_, _, _⟩ ∉ 𝑖𝑠1

𝜏(𝑎) ≠ ⊥ 𝑣′ = 𝜇(𝜏(𝑎)) 𝑣 = 𝑣′ 𝑖′ = MOV⟨𝑥, 𝑣⟩

⟨𝑖𝑠1, 𝑖ℓ, 𝑖𝑠2, 𝑐𝑠⟩
(̃𝜌,𝜏,𝜇)
−−−−→→ ⟨𝑖𝑠1 ⧺ [𝑖′

ℓ] ⧺ 𝑖𝑠2, 𝑐𝑠⟩

This is the first of three verification rules that will check the predicted values. These verification
rules can only take place if there are no preceding stores pending1, making sure that any value is
truly final.

Note that we require the LOAD to carry a non-⊥ predicted value, thus forcing either a store forward
or speculative load to have taken place before. This way, this rule can be purely a verification rule
that does not have to produce a second touch observation. We convert the instruction into a MOV,
marking the load ‘final’.

In practice, a speculative load will not be checked this way - instead, the CPU will detect writes
to a previously-speculatively-loaded address and will then mark the speculation to be incorrect.
Our approach is taken because it is simpler to model, and acts more ‘locally’ in the reorder
buffer, drastically simplifying later analysis. In terms of (attacker-)observable behaviour, the two
approaches are equivalent.

Execute-Load-Present-Mispredict
𝑖 = LOAD⟨𝑥, 𝑎, 𝑣, 𝑐𝑠′⟩ STORE⟨_, _, _⟩ ∉ 𝑖𝑠1

𝜏(𝑎) ≠ ⊥ 𝑣′ = 𝜇(𝜏(𝑎)) 𝑣 ≠ 𝑣′ 𝑖′ = MOV⟨𝑥, 𝑣′⟩

⟨𝑖𝑠1, 𝑖ℓ, 𝑖𝑠2, 𝑐𝑠⟩
(̃𝜌,𝜏,𝜇)
−−−−→→ [touch(𝜏(𝑎)),rollback(ℓ𝑠2)] ⟨𝑖𝑠1 ⧺ [𝑖′

ℓ], 𝑐𝑠′⟩

Again, we require a non-⊥ predicted value. This rule is for the case where the predicted value is
incorrect. We perform a rollback of any speculation after this mispredicted load, while rereading
from memory to find the correct value, thus producing two observations. After the rollback, the
load can be committed directly since we just read the correct value (there are no pending stores).

Execute-Load-Miss
𝑖 = LOAD⟨𝑥, 𝑒, 𝑝𝑣, 𝑐𝑠′⟩ 𝑎 = ⟦𝑒⟧ ̃𝜌 𝜏(𝑎) = ⊥

𝑖′ = FAULT⟨𝑎, LOAD⟨𝑥, 𝑎, 𝑝𝑣, 𝑐𝑠′⟩, 𝑐𝑠′⟩ 𝑖″ = MOV⟨𝑥, 0⟩ fresh(ℓ″)

⟨𝑖𝑠1, 𝑖ℓ, 𝑖𝑠2, 𝑐𝑠⟩
(̃𝜌,𝜏,𝜇)
−−−−→→ ⟨𝑖𝑠1, ⧺[𝑖′

ℓ, 𝑖″
ℓ″] ⧺ 𝑖𝑠2, 𝑐𝑠⟩

In case the address to load is not in the page tables, we will trigger a page fault at the current
instruction and with the given recovery command stack.

This rule will also introduce a new instruction with fresh label ℓ″, thus messing with the layout
of the reorder buffer and potentially breaking our correspondence between fetches and retires of
instructions. Luckily, this is safe: the FAULT instruction itself can never be retired, and the page

1This rule could be made a bit more flexible, by allowing preceding stores but requiring them all to have their
address be computed and different from 𝑎, as long as we ensure 𝑀 to be injective - preventing multiple virtual
addresses from mapping to the same physical address.

33

fault handling rule later will always perform a rollback - thus clearing this extra MOV from the
reorder buffer.

The extra MOV loads the value 0 only in an effort to not halt the CPU and allow further speculation,
as happens in real CPUs as well. We could modify this to load Byzantine data, which would again
model other vulnerabilities [3–5].

Memory Stores

The situation for memory stores is a lot simpler: we only have rules for a store to an address
present in the page tables, or for a miss. There are no new predictions being made here, so no
rollbacks are needed either. While the computed values might depend on predicted values, these
predictions will be rolled back at the point of introduction.

Like in a real CPU, the execute rules will determine the address and value, without actually writing
to memory. This corresponds to ‘committing’ a store on a real CPU, which puts the store result
in the store buffer, without committing the data to cache or RAM. The store buffer is used as a
source for store forwards to later LOAD instructions, as we saw above. Both the store and the load
might be in a transient window, and could be reverted in case of an earlier misprediction.

Execute-Store-Present
𝑖 = STORE⟨𝑒𝑎, 𝑒𝑣, 𝑐𝑠′⟩ 𝑎 = ⟦𝑒𝑎⟧ ̃𝜌 𝑣 = ⟦𝑒𝑣⟧ ̃𝜌 𝜏(𝑎) ≠ ⊥ 𝑖′ = STORE⟨𝑎, 𝑣, 𝑐𝑠′⟩

⟨𝑖𝑠1, 𝑖ℓ, 𝑖𝑠2, 𝑐𝑠⟩
(̃𝜌,𝜏,𝜇)
−−−−→→ ⟨𝑖𝑠1 ⧺ [𝑖′

ℓ] ⧺ 𝑖𝑠2, 𝑐𝑠⟩

Execute-Store-Miss
𝑖 = STORE⟨𝑒𝑎, 𝑒𝑣, 𝑐𝑠′⟩ 𝑎 = ⟦𝑒𝑎⟧ ̃𝜌 𝑣 = ⟦𝑒𝑣⟧ ̃𝜌 𝜏(𝑎) = ⊥

𝑖′ = FAULT⟨𝑎, STORE⟨𝑎, 𝑣, 𝑐𝑠′⟩, 𝑐𝑠′⟩ 𝑖″ = STORE⟨𝑎, 𝑣, 𝑐𝑠′⟩ fresh(ℓ″)

⟨𝑖𝑠1, 𝑖ℓ, 𝑖𝑠2, 𝑐𝑠⟩
(̃𝜌,𝜏,𝜇)
−−−−→→ ⟨𝑖𝑠1 ⧺ [𝑖′

ℓ, 𝑖″
ℓ″] ⧺ 𝑖𝑠2, 𝑐𝑠⟩

Similar to the case for a page fault during a memory load, we introduce an additional instruction
𝑖″ to the reorder buffer. This is used to allow store forwarding of the computed value to later
instructions, so speculation is not halted. Again, all these instructions will be rolled back when the
FAULT gets resolved, so they have no impact on the architectural state.

5.3.6 Retire Directive Rules
The retire step is where any results and computations become architectural - this is the place
where we write to memory and update any registers. Retiring needs to happen in-order, and can
only happen for the first instruction in the reorder buffer - enforcing the ordering and ensuring
that the instruction can not be rolled back. The rules themselves are quite straightforward.

Retire-Nop

⟨NOPℓ ∶ 𝑖𝑠, 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
retire
−−−−→ ⟨𝑖𝑠, 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

Retire-Mov

⟨MOV⟨𝑥, 𝑣⟩ℓ ∶ 𝑖𝑠, 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
retire
−−−−→ ⟨𝑖𝑠, 𝑐𝑠, 𝜌[𝑥 ↦ 𝑣], 𝜏 , 𝜇⟩

Retire-Store
𝑖 = STORE⟨𝑎, 𝑣, 𝑐𝑠′⟩ 𝑝𝑎 = 𝜏(𝑎) 𝑝𝑎 ≠ ⊥ 𝜇′ = 𝜇[𝑝𝑎 ↦ 𝑣]

⟨𝑖ℓ ∶ 𝑖𝑠, 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
retire
−−−−→[touch(𝑝𝑎)] ⟨𝑖𝑠, 𝑐𝑠, 𝜌, 𝜏 , 𝜇′⟩

34

Only upon retiring a write to memory, a touch observation is finally emitted, since only then the
write is actually performed.

5.3.7 Handling Page Faults
Finally, we need to consider how to deal with page faults. Rules [Execute-Load-Miss] and
[Execute-Store-Miss] introduce a FAULT instruction, which we need to resolve for execution to
proceed. As explained in Section 2.3.1, a page fault will normally trigger an interrupt in the CPU,
handing control to the kernel to evaluate the faulted memory operation. The kernel will add the
address to the page tables in case it is a valid operation.

The exact implementation of the page fault handler is not of our concern, and not important
for the scope of this thesis. Therefore, we abstract away the entire page fault handling as being
represented by the ‘ground truth’ memory map 𝑀, describing how each virtual address should be
mapped to a physical one. For this model, we do not consider memory permissions or memory
that has not been allocated, and thus we do not consider segmentation faults and similar issues.

In our model, we handle page faults through a dedicated map directive. Page faults are only
handled when they are the first instruction in the reorder buffer - this ensures that any earlier
instructions have been fully resolved and retired. This way, page faults are only handled when
speculation has stopped. Similar to real CPUs, we perform an effective rollback: the reorder buffer
is cleared and the command stack is reset to the value carried by the FAULT.

Map-Address
𝑖 = FAULT⟨𝑎, 𝑖′, 𝑐𝑠′⟩ 𝜏 ′ = 𝜏[𝑎 ↦ 𝑀(𝑎)]

⟨𝑖ℓ ∶ 𝑖𝑠, 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
map
−−−→rollback(ℓ𝑠) ⟨[𝑖′

ℓ], 𝑐𝑠′, 𝜌, 𝜏 ′, 𝜇⟩

5.3.8 Big-Step Semantics
Again, we will introduce a big-step semantics as a simple transitive reflexive closure of the small-step
semantics. For the speculative version, the relation carries a directive schedules 𝐷, emitting an
observation trace 𝑂. We again write a single arrow 𝐶 ↓𝐷

𝑂 𝐶′.

Done

⟨𝑖𝑠, 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ↓[]
[] ⟨𝑖𝑠, 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

Step
⟨𝑖𝑠, 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

𝑑
−→𝑂1

⟨𝑖𝑠′, 𝑐𝑠′, 𝜌′, 𝜏 ′, 𝜇′⟩ ⟨𝑖𝑠′, 𝑐𝑠′, 𝜌′, 𝜏 ′, 𝜇′⟩ ↓𝐷
𝑂2

⟨𝑖𝑠″, 𝑐𝑠″, 𝜌″, 𝜏″, 𝜇″⟩

⟨𝑖𝑠, 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ↓𝑑∶𝐷
𝑂1⧺𝑂2

⟨𝑖𝑠″, 𝑐𝑠″, 𝜌″, 𝜏″, 𝜇″⟩

5.4 Example
To illustrate the behaviour of both the sequential and speculative semantics, we will show how our
Spectre gadget from Equation 5.1.1 can be executed, and how the speculative semantics captures
the speculative behaviour enabling the Spectre attack.

For our system state, we define 𝜇(5) = 42, and 𝜇(𝑎) = 0 otherwise. Furthermore, we have 𝜌(𝑖) = 3,
𝜌(𝑥𝑠) = ⟨2, 2⟩, and 𝜌(𝑦𝑠) = ⟨100, 256⟩. For the page tables, we have 𝑀(𝑎) = 𝑎 and 𝜏(𝑎) = 𝑎. In
words: we have a secret value 42 at memory address 5 that we do not want to leak, we have an
index 𝑖 that will read out-of-bounds of array 𝑥𝑠, and an array 𝑦𝑠 that acts as our attacker-controlled
buffer. The page tables are a simple lienar map from virtual to physical address.

35

5.4.1 Sequential Execution
In the case of sequential execution, nothing interesting happens:

⟨[if 𝑖 > len(𝑥𝑠) then [skip] else [𝑥 :=𝑥𝑠[𝑖], 𝑦 := 𝑦𝑠[𝑥]]], 𝜌, 𝜏 , 𝜇⟩
⟹ ⟦𝑖 > len(𝑥𝑠)⟧𝜌 = ⟦𝑖⟧𝜌 > ⟦len(𝑥𝑠)⟧𝜌 = 3 > 2 = true, [Seq-If-Else]

⟨[skip], 𝜌, 𝜏 , 𝜇⟩
⟹ [Seq-Skip]

⟨[], 𝜌, 𝜏 , 𝜇⟩.

5.4.2 Speculative Execution
For the speculative case, however, the attacker can evoke more interesting behaviour and leak the
secret value. For example, the directive schedule 𝐷 = [fetch false, fetch, fetch, exec 2, exec 3,
exec 1, retire, fetch, retire] will behave as follows:

⟨[], [if 𝑖 > len(𝑥𝑠) then [skip] else [𝑥 :=𝑥𝑠[𝑖], 𝑦 := 𝑦𝑠[𝑥]]], 𝜌, 𝜏 , 𝜇⟩
fetch false
−−−−−−→ [Fetch-If-Predict-False]

⟨[ASSERT⟨𝑖 > len(𝑥𝑠), false, [skip]⟩ℓ1
], [𝑥 :=𝑥𝑠[𝑖], 𝑦 := 𝑦𝑠[𝑥]], 𝜌, 𝜏 , 𝜇⟩

fetch
−−−→ [Fetch-Array-Load]

⟨[ASSERT⟨…⟩ℓ1
, LOAD⟨𝑥, base(𝑥𝑠) + 𝑖, ⊥, [𝑦 := 𝑦𝑠[𝑥]]⟩ℓ2

], [𝑦 := 𝑦𝑠[𝑥]], 𝜌, 𝜏 , 𝜇⟩
fetch
−−−→ [Fetch-Array-Load]

⟨[ASSERT⟨…⟩ℓ1
, LOAD⟨𝑥, base(𝑥𝑠) + 𝑖, ⊥, […]⟩ℓ2

, LOAD⟨𝑦, base(𝑦𝑠) + 𝑥, ⊥, []⟩ℓ3
], [], 𝜌, 𝜏 , 𝜇⟩

exec 2
−−−−→[touch(5)] ⟦base(𝑥𝑠) + 𝑖⟧𝜌 = 5, 𝜏(5) = 5, 𝜇(5) = 42, [Execute-Load-Predict]

⟨[ASSERT⟨…⟩ℓ1
, LOAD⟨𝑥, 5, 42, […]⟩ℓ2

, LOAD⟨𝑦, base(𝑦𝑠) + 𝑥, ⊥, []⟩ℓ3
], [], 𝜌, 𝜏 , 𝜇⟩

exec 3
−−−−→[touch(142)] 𝜑(𝜌, 𝑖𝑠1) = 𝜌[𝑥 ↦ 42], ⟦base(𝑦𝑠) + 𝑥⟧ ̃𝜌 = 142, [Execute-Load-Predict]

⟨[ASSERT⟨…⟩ℓ1
, LOAD⟨𝑥, 5, 42, […]⟩ℓ2

, LOAD⟨𝑦, 142, 0, []⟩ℓ3
], [], 𝜌, 𝜏 , 𝜇⟩

exec 1
−−−−→[rollback([ℓ2,ℓ3])] [Execute-Assert-Fail]

⟨[NOPℓ1
], [skip], 𝜌, 𝜏 , 𝜇⟩

retire
−−−−→ [Retire-Nop]

⟨[], [skip], 𝜌, 𝜏 , 𝜇⟩
fetch
−−−→ [Fetch-Skip]

⟨[NOPℓ4
], [], 𝜌, 𝜏 , 𝜇⟩

retire
−−−−→ [Retire-Nop]

⟨[], [], 𝜌, 𝜏 , 𝜇⟩.

While the architectural result at the end of this speculative execution is consistent with the
sequential execution due to the eventual rollback, the observation trace 𝑂 = [touch(5), touch(142),
rollback([…])] shows that the attacker was able to deduce our secret value 42 through the memory
access pattern - similar to how a real Spectre attack can use a cache side channel to obtain the
same observation and data leak.

As a short illustration of how our proposed mitigation - clearing the page tables before execution -
would help: upon the exec 2 directive, the [Execute-Load-Predict] rule cannot be applied since
𝜏(5) = ⊥ in this case. Instead, rule [Execute-Load-Miss] will be applied, transforming the LOAD

36

instruction into a FAULT. This blocks further speculative execution: the second load needs a value
for 𝑥 which cannot be determined by 𝜑 now, and the FAULT cannot be resolved before the ASSERT
is retired, which will trigger a rollback instead. Consequently, the Spectre attack is stopped in its
tracks.

37

Chapter 6

Proving Effectiveness of PageZero
against Spectre v1

This chapter is devoted to proving the effectiveness of PageZero against Spectre attacks. As shown
in Section 5.4, emptying the page tables worked in that particular example, but in this chapter we
will make our intuition more formal, and rigorously prove the result.

We will only focus on Spectre v1 attacks, where we can mispredict branches - as we modelled in
the semantics. While PageZero will also protect against other variants of Spectre, these are out of
the scope for this work - but they can be easily added to the model.

For proving effectiveness against Spectre v1, our final objective is to prove a ‘transfer result’ for
the speculative semantics: for any program (given as a command stack 𝑐𝑠), if the sequential, non-
speculative execution exhibits specific memory access behaviour, then under speculative semantics,
the code behaves the same as long as the page tables are cleared. We can then apply this to any
notion of ‘security’: if the sequential execution is considered ‘secure’ in terms of memory accesses,
then a speculative execution will be as well.

We will achieve this result in three parts: first, we will show confluence of our speculative semantics:
execution is ‘path-independent’ and the results will always converge to the same values. Then, we
will show that our speculative semantics is in fact consistent with the sequential semantics: any
speculative execution will produce the same architectural results as sequential execution. Lastly,
we will show the transfer result.

38

6.1 Confluence
Before we start, it is important to make an observation about one of the major differences between
our speculative and sequential semantics. As is intuitive, sequential execution is deterministic and
always follows the same ‘path’: for every state there is only a single reduction rule that can apply.
This can be easily seen from an inspection of the different reduction rules.

In contrast, speculative execution can follow exponentially many paths: at nearly every step along
the execution path, one can choose between executing/retiring one of (potentially many) ‘current’
instructions, or fetching a new command. There is no imposed ‘order of operations’, so things can
get very complicated very quickly.

For us to bring some order to this chaos, in this section, we will establish the confluence of our
speculative semantics. This implies that there is no ‘path dependence’ in the model: from any two
configurations on different paths with a common ‘origin’, it is always possible to converge to some
joint future configuration. This is illustrated in Figure 6.1.1, and formally stated below:

Theorem 1 (Confluence)
For any given configuration 𝐶, and two configurations 𝐶1, 𝐶2 such that there exist directive
schedules 𝐷1, 𝐷2 and observation traces 𝑂1, 𝑂2 such that 𝐶 ↓𝐷1

𝑂1
𝐶1 and 𝐶 ↓𝐷2

𝑂2
𝐶2, there exists a

configuration 𝐶′ such that there exist directive schedules 𝐷′
1, 𝐷′

2 and observation traces 𝑂′
1, 𝑂′

2 such
that 𝐶1 ↓𝐷′

1
𝑂′

1
𝐶′ and 𝐶2 ↓𝐷′

2
𝑂′

2
𝐶′. This shows that the big-step speculative semantics ↓𝐷

𝑂 is confluent.⌟

Intuitively, this can be seen from the existence of a notion of ‘progress’ in the model: the number
of commands that are fully processed. No matter the choice of directives, at some point every
command that is fetched will be retired (except for when the program gets stuck in an infinite
loop). Given some ‘root configuration’ 𝐶 then, no matter the paths taken towards 𝐶1 and 𝐶2,
there is always some future shared configuration where both paths have retired exactly as many
commands. Of course, this also hinges upon the fact that all computations are path-independent,
and so the registers, page tables, and memory should be deterministic.

6.1.1 Progress
Before we can make this intuition more formal, we first need to expand our vocabulary for discussing
directives and configurations:

𝐶
𝐶1

𝐶2

𝐶′

Figure 6.1.1: Graph representation of the confluence property, stating that for every
pair of nodes 𝐶1, 𝐶2 originating from a common node 𝐶, it is possible to find some
node 𝐶′ that is reachable by both.

39

Definition 6.1.1 (Architectural Configuration) A configuration 𝐶 is said to be architectural
when it takes the form 𝐶 = ⟨𝑐𝑠, [], 𝜌, 𝜏 , 𝜇⟩. In such a configuration, the reorder buffer is empty and
thus no speculation is taking place. We define an equivalence on architectural configurations and
sequential states as 𝐶 = ⟨𝑐𝑠, [], 𝜌, 𝜏 , 𝜇⟩ ≡ ⟨𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ = 𝑆. ⌟

Definition 6.1.2 (Valid Directive) A given directive 𝑑 is called valid for a configuration 𝐶 iff
there exists some next configuration 𝐶′ and some observation trace 𝑂 such that 𝐶

𝑑
−→𝑂 𝐶′. In other

words, valid directives are exactly those directives that can be applied to a configuration. ⌟

Definition 6.1.3 (Valid Schedule) A given directive schedule 𝐷 is called valid for a configura-
tion 𝐶 iff there exists some configuration 𝐶′ and observation trace 𝑂 such that 𝐶 ↓𝐷

𝑂 𝐶′. In other
words, valid schedules consist of only valid directives. ⌟

Definition 6.1.4 (Final Configuration) A configuration 𝐶 is said to be final when it takes the
form 𝐶 = ⟨[], [], 𝜌, 𝜏 , 𝜇⟩. In other words, there are no more instructions or commands to be executed.
Similarly, a sequential state 𝑆 is said to be final when it takes the form 𝑆 = ⟨[], 𝜌, 𝜏 , 𝜇⟩. ⌟

Alternatively, we could have defined finality to hold for a configuration that has no valid directives.
We choose the current definition because it matches the intuitive notion of the computation being
‘finished’: there are no commands or instructions left. In fact, it turns out that both definitions
are equivalent.

The first direction in this equivalence can be seen from our definitions directly: a final configuration
clearly does not have any valid directives, as every reduction rule requires at least one instruction
or command to be present in the configuration. The other direction requires a bit more work, and
we will show the contrapositive:

Proposition 6.1.5 (Progress) For any configuration 𝐶 that is not final, there exists some valid
directive 𝑑.

Proof
This can be seen from analysis of the form of 𝐶 = ⟨𝑖𝑠, 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩. From non-finality, we know that
at least 𝑖𝑠 ≠ [] or 𝑐𝑠 ≠ []. For all forms of 𝑖𝑠 and 𝑐𝑠, we will choose at least one valid directive as
follows:

• In case 𝑐𝑠 = 𝑐 ∶ 𝑐𝑠′, we distinguish the following forms of 𝑐:

𝑐 = if 𝑒 then 𝑐1 else 𝑐2: In this case, we choose 𝑑 = fetch 𝑏 where 𝑏 can be randomly
chosen between true and false. We thus apply either [Fetch-If-Predict-True] or
[Fetch-If-Predict-False].

𝑐 = while 𝑒 do 𝑐𝑠𝑙: In this case, we choose 𝑑 = fetch 𝑏 where 𝑏 can be randomly chosen
between true and false. We thus apply either [Fetch-While-Predict-True] or [Fetch-
While-Predict-False].

Otherwise: We choose 𝑑 = fetch and apply the relevant fetch rule corresponding to the
command.

• In case 𝑖𝑠 = 𝑖 ∶ 𝑖𝑠′, we have the following analysis of the form of 𝑖:

𝑖 = NOP: We choose 𝑑 = retire and use rule [Retire-Nop].

𝑖 = MOV⟨𝑥, 𝑣⟩: We choose 𝑑 = retire and use rule [Retire-Mov].

𝑖 = MOV⟨𝑥, 𝑒⟩: We choose 𝑑 = exec 1 and use rule [Execute-Assign].

𝑖 = LOAD⟨𝑥, 𝑒, 𝑝𝑣, 𝑐𝑠⟩: We choose 𝑑 = exec 1, but which rule applies depends on the values
of 𝑒 and 𝑝𝑣:

40

𝑝𝑣 = ⊥: Either [Execute-Load-Predict] or [Execute-Load-Miss] applies, depending
on the evaluation of 𝑝𝑎 in these rules. In any case, [Execute-Load-Forward] does
not apply, since 𝑖𝑠1 = [].

𝑒 = 𝑎 ∧ 𝑝𝑣 = 𝑣: Either [Execute-Load-Present-Correct] or [Execute-Load-Present-
Mispredict] applies, depending on the evaluation of 𝜇(𝜏(𝑎)) in these rules.

Otherwise: [Execute-Load-Miss] applies.

𝑖 = STORE⟨𝑎, 𝑣, 𝑐𝑠⟩: We choose 𝑑 = retire and rule [Retire-Store] applies.

𝑖 = STORE⟨𝑒𝑎, 𝑒𝑣, 𝑐𝑠⟩: We choose 𝑑 = exec 1, and either [Execute-Store-Present] or [Execute-
Store-Miss] applies, depending on the evaluation of 𝜏(𝑎) in these rules.

𝑖 = ASSERT⟨𝑒, 𝑏, 𝑐𝑠⟩: We choose 𝑑 = exec 1, and either [Execute-Assert-Success] or [Execute-
Assert-Fail] applies, depending on the evaluation of ⟦𝑒⟧ ̃𝜌 = 𝑏 in these rules.

𝑖 = FAULT⟨𝑎, 𝑖, 𝑐𝑠⟩: We choose 𝑑 = map and rule [Map-Address] applies. �

Note that Progress only shows that an execution cannot get stuck, i.e. it is always possible
to continue execution until termination. Crucially, it does not show that execution will always
terminate: a program could potentially end up in an infinite loop where there is always a next
instruction to execute, but that will never lead to a final configuration.

6.1.2 Linking fetches and retires
Next, we direct our attention towards analysing the structure of a directive schedule 𝐷. We seek
to formalise the notion that ‘every fetched command will be retired’, regardless of the path taken.
In particular, we want to show how we can link fetches and retires, and that after all speculation
has been resolved, the layout of the command stack is deterministic and path-independent.

Definition 6.1.6 For a directive schedule 𝐷, #𝑑(𝐷) denotes the number of occurrences of 𝑑 in
𝐷. In particular, #exec(𝐷) denotes the number of occurrences of exec 𝑛 for any 𝑛 in 𝐷, and
#fetch(𝐷) denotes the number of occurrences of both fetch and fetch 𝑏 for any 𝑏 in 𝐷. ⌟

Definition 6.1.7 Given any arbitrary configuration 𝐶 and a valid directive schedule 𝐷 with
associated observation trace 𝑂, a directive fetch or fetch 𝑏 in 𝐷 is called ignored when the
instruction 𝑖 with label ℓ it introduces in the reorder buffer is erased as part of a later rollback, so
when there exists a rollback(ℓ𝑠) in 𝑂 for which ℓ ∈ ℓ𝑠. A fetch directive that is not ignored is
called relevant. ⌟

Proposition 6.1.8 For any given configurations 𝐶 and 𝐶′, where 𝐶′ is architectural, with directive
schedule 𝐷 and associated observation trace 𝑂 such that 𝐶 ↓𝐷

𝑂 𝐶′, it is possible to construct a
bijective (partial) map from retire directives in 𝐷 to relevant fetch directives in 𝐷. When 𝐶 is
architectural as well, this map is a bijective function.

Proof
Let us first focus on the simpler case where 𝐶 is also architectural. We observe that each retire
directive only retires a single instruction at a time, each fetch directive only introduces a single
instruction at a time, and in most cases exec rules will only modify instructions in-place - thus
allowing a direct matching between fetch and retire directives based on instruction labels ℓ. The
procedure is illustrated in Figure 6.1.2.

At its core, we match a retire directive retiring an instruction labelled with ℓ to the fetch
directive producing the instruction with that same label ℓ. First, we will consider ‘normal
circumstances’: the situation in which no page faults or mispredictions, and thus no rollbacks take
place. In this case, execute rules never change the size of the reorder buffer and do not change

41

fetch ℓ1 ℓ2 ℓ3 ℓ4

ℓ5

ℓ6

ℓ7

ℓ8 ℓ9

retire ℓ0 ℓ1 ℓ2 ℓ3 ℓ4 ℓ8 ℓ9

rollback([ℓ5, ℓ6, ℓ7])

Figure 6.1.2: Graphical representation of the matching of retire and fetch directives.
The bijection is constructed based on the labels for the instructions fetched and retired.
In this case, fetch number 4 is a faulting instruction or a misprediction, causing later
fetches to be rolled back and thus ignored. In the constructed bijection, only fetches
performed after recovering from the fault or misprediction will be included.

instruction labels. Therefore, since both 𝐶 and 𝐶′ are architectural, we obtain that necessarily,
#fetch(𝐷) = #retire(𝐷). Consequently, our label-based mapping is a bijective function, as desired.

Let us now deal with the exceptions to the ‘normal circumstances’ from above:

• In case of a page fault, either rule [Execute-Load-Miss] or [Execute-Store-Miss] is activated.
These rules both increase the size of the reorder buffer by 1 and introduce a new instruction
label ℓ″; but we note that the extra instructions (beyond 𝑖′) can never be retired: 𝑖′ will cause
the [Map-Address] rule to clear the rest of the reorder buffer completely. Specifically, the
map will cause the execution to be reset to the configuration just after fetching the faulted
LOAD or STORE: 𝑐𝑠 is restored to the version carried by the FAULT, which originates from the
fetch rules, and 𝑖𝑠 is reset to only contain the current LOAD or STORE instruction. Since now
the page tables have been updated, this instruction will not fault again and the program
flows like no fault has ever happened. The label of the faulted instruction is reused, so that a
future retire will still be able to be linked to the original fetch directive.

Intuitively, this causes all fetches executed after the faulting fetch to be ‘undone’, and so
they are not relevant, as can be seen in Figure 6.1.2. From the map rule we can see that all
remaining instructions are recorded in the rollback observation, part of 𝑂, thus rendering
them ignored following Definition 6.1.7.

Since retire only affects the first element in the reorder buffer, none of the instructions
fetched after our faulting instruction can be retired. Crucially, this means that these extra
ignored fetches do not ‘link’ to any retire directive, allowing us to maintain the bijection
between retire and relevant fetch directives.

• In case of a misprediction, either rule [Execute-Load-Present-Mispredict] or [Execute-
Assert-Fail] is used. These rules both cause the remainder of the reorder buffer to be cleared
- thus all fetch directives after the misprediction are now ignored. In addition to clearing
the reorder buffer, these rules also reset the command stack to the state just after fetching
the mispredicted instruction - but now with the correct branch. Similar to page faults, this
information is carried in the ASSERT or LOAD instruction and put there by the appropriate
fetch rules. After the rollback, the instruction will not be a misprediction again, since the
‘other branch’ is now used - the program flows like the correct prediction had been made in
the first place.

This again causes all fetches executed after the mispredicted fetch to be recorded in a
rollback observation, and so they are not relevant, as can be seen in Figure 6.1.2. Since
retire only affects the first element in the reorder buffer, none of the instructions fetched
after our misprediction can be retired. Crucially, this means that these extra ignored fetches

42

do not ‘link’ to any retire directive, allowing us to maintain the bijection.

We can adapt the construction of the bijection to the more general situation where 𝐶 is not
architectural. In this case, the reorder buffer already contains some number of instructions that,
when retired, cannot be linked to an associated fetch in 𝐷. As illustrated in Figure 6.1.2, we do
not map these extra retire directives, as there is no fetch for the associated label ℓ. �

Proposition 6.1.9 For any given configuration 𝐶, and two architectural configurations 𝐶1 =
⟨[], 𝑐𝑠1, 𝜌1, 𝜏1, 𝜇1⟩, 𝐶2 = ⟨[], 𝑐𝑠2, 𝜌2, 𝜏2, 𝜇2⟩ such that there exist directive schedules 𝐷1, 𝐷2 with
associated observation traces 𝑂1, 𝑂2 such that 𝐶 ↓𝐷1

𝑂1
𝐶1 and 𝐶 ↓𝐷2

𝑂2
𝐶2; if #retire(𝐷1) =

#retire(𝐷2), then 𝑐𝑠1 = 𝑐𝑠2. In other words: for architectural configurations, the command stack
is only dependent on the number of retire directives.

Proof
From Proposition 6.1.8, we know that for both 𝐷1 and 𝐷2, there exist bijections between their
retires and the associated relevant fetches. Since the number of retires in both schedules is
equal, we must have that the number of relevant fetches in both schedules is equal as well (but
not necessarily equal to the number of retires): to end up in an architectural configuration, both
schedules need to clear the existing reorder buffer in 𝐶, in addition to retiring all the fetches done
in the schedule itself. We define 𝑘 to be the number of retire directives that do not have an
associated fetch; these are the retires needed to clear the existing reorder buffer in 𝐶.

Now we are left to prove that after (#retire(𝐷1) − 𝑘)-many relevant fetches on command stack 𝑐𝑠
(one fetch per retire), the command stacks in both 𝐶1 and 𝐶2 are the same. In other words: we
need to show that fetches always yield the same result. For this, we observe that all non-predictive
fetches are clearly deterministic: they always pop a single command off the command stack. This
leaves us with the four predictive fetch rules that have a more substantial impact on the command
stack.

Luckily, thanks to the rollback mechanics, for the predictive rules, the choice between fetch true

and fetch false is irrelevant. In case the correct prediction is made, the ASSERT instruction is
neatly executed into a NOP using [Execute-Assert-Success] which can be retired, leaving some
remaining command stack 𝑐𝑠′. In case the wrong prediction is made, the ASSERT instruction carries
the ‘alternative command stack’ 𝑐𝑠′, which will be reinstated in the configuration upon hitting the
rollback in rule [Execute-Assert-Fail]. This way, no matter the prediction, upon executing the
ASSERT (and retiring the produced NOP), the command stacks are the same. �

6.1.3 Eager Directives
Now that we have established a notion of ‘progress’ in our model, we need a way to ‘direct’ our
progress: at the end of the day we would like the two execution paths from 𝐶1 and 𝐶2 to converge.
For this, we introduce the concept of eager directives, which always prioritise clearing 𝑖𝑠, and
postpone any new fetches for as long as possible. Intuitively, this allows us to mimic sequential
execution in the speculative context: fetching, executing and retiring commands one by one, in
order.

Definition 6.1.10 (Eager Directive) For any non-final configuration 𝐶 = ⟨𝑖𝑠, 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩, out
of the set of valid directives, a unique eager directive 𝑑 is chosen according to the following rules:

(1) If retire is valid for 𝐶, then 𝑑 = retire.

(2) If map is valid for 𝐶, then 𝑑 = map.

(3) If exec 1 is valid for 𝐶, then 𝑑 = exec 1.

(4) If fetch is valid for 𝐶, then 𝑑 = fetch.

43

(5) If fetch 𝑏 is valid for 𝐶, then 𝑑 = fetch 𝑏, where 𝑏 is the ‘correct prediction’. ⌟

This definition is constructive, and it shows us how the eager directive is chosen. It will be helpful
to show some properties of these eager directives:

Lemma 6.1.11 (Properties of Eager Directives) For any non-final configuration 𝐶 = ⟨𝑖𝑠, 𝑐𝑠,
𝜌, 𝜏 , 𝜇⟩, the following claims hold:

(1) There exists an eager directive 𝑑,

(2) When 𝐶 is not an architectural configuration, the eager directive is not fetch or fetch 𝑏, and
vice versa,

(3) When only ever running the eager directive, execution will eventually reach an architectural
configuration 𝐶′.

Proof
(1) This follows from the proof of Proposition 6.1.5. The proof chooses a directive for each

possible non-final configuration, so one of these directives will always be in the set of valid
directives for 𝐶. It turns out that all these directives are possible candidates for the eager
directive, and so it is always possible to choose an eager directive.

(2) When 𝐶 is not architectural, this means that 𝑖𝑠 ≠ []. Again from the proof of Proposition 6.1.5,
we see that in this case, always either retire, exec 1, or map can be chosen. Since these all
have higher priority in the definition of the eager directive, that means that fetch or fetch 𝑏
will never be chosen for an architectural configuration.

The other way around is easy to see: when 𝐶 is architectural, necessarily 𝑖𝑠 = [], and so only
fetches are possible. Since 𝐶 is non-final, 𝑐𝑠 ≠ [] so following the proof of Proposition 6.1.5,
such a directive does exist.

(3) If we are already in an architectural configuration, we are done. Otherwise, from part (2) we
know that the eager directive will never be fetch or fetch 𝑏. Since none of the execute, map,
or retire rules increase the size of the instruction buffer1, it only remains to show that every
instruction is eventually retired by only running the eager directive. We show this using a
case inspection on the first instruction in the buffer 𝑖𝑠 = 𝑖 ∶ 𝑖𝑠′:

𝑖 = NOP: This is retired immediately by [Retire-Nop].

𝑖 = MOV⟨𝑥, 𝑣⟩: This is retired immediately by [Retire-Mov].

𝑖 = MOV⟨𝑥, 𝑒⟩: After an exec, converting this instruction to MOV⟨𝑥, 𝑣⟩ using [Execute-Assign],
we can retire as above.

𝑖 = LOAD⟨𝑥, 𝑎, 𝑣, 𝑐𝑠⟩: Using either [Execute-Load-Present-Correct] or [Execute-Load-
Present-Mispredict], the instruction is converted to MOV⟨𝑥, 𝑣⟩, which is retired following
the above.

𝑖 = LOAD⟨𝑥, 𝑒, ⊥, 𝑐𝑠⟩ and 𝑝𝑎 ≠ ⊥: Using [Execute-Load-Predict], the instruction is conver-
ted to the form LOAD⟨𝑥, 𝑎, 𝑣, 𝑐𝑠⟩, which is retired following the above.

𝑖 = LOAD⟨𝑥, 𝑒, 𝑝𝑣, 𝑐𝑠⟩: In this last remaining case for LOAD, exec will resolve with [Execute-
Load-Miss], and the instruction is converted to a FAULT⟨_, LOAD, _⟩. Using map and
[Map-Address], the fault is converted back to the same original load, but now 𝜏(𝑎) ≠ ⊥,
so the load can be retired following the previous case.

𝑖 = STORE⟨𝑎, 𝑣, 𝑐𝑠⟩: This can be retired immediately by [Retire-Store].
1The only exceptions are [Execute-Load-Miss] and [Execute-Store-Miss], but those cause the first

instruction in the reorder buffer to be FAULT (since 𝑖𝑠1 = [] because the eager directive always has 𝑛 = 1), and this
fault will immediately be resolved using map. The exec 1 and map together, then, cause the reorder buffer size to
change from ≥ 1 to 1.

44

𝑖 = STORE⟨𝑒𝑎, 𝑒𝑣, 𝑐𝑠⟩ and 𝜏(𝑎) ≠ ⊥: Using [Execute-Store-Present], the instruction is con-
verted to the form STORE⟨𝑎, 𝑣, 𝑐𝑠⟩, which is retired following the previous case.

𝑖 = STORE⟨𝑒𝑎, 𝑒𝑣, 𝑐𝑠⟩ and 𝜏(𝑎) = ⊥: Now, [Execute-Store-Miss] applies, and the instruction
is converted to a FAULT⟨_, STORE, _⟩. Using map and [Map-Address], the fault is
converted back to this same store, but now 𝜏(𝑎) ≠ ⊥, so the store can be retired
following the previous case.

𝑖 = ASSERT⟨𝑒, 𝑏, 𝑐𝑠⟩: Depending on the evaluation of ⟦𝑒⟧ ̃𝜌 = 𝑏, either [Execute-Assert-
Success] or [Execute-Assert-Fail] applies. In both cases the instruction is converted to
a NOP, which is retired following the first case.

𝑖 = FAULT⟨𝑎, 𝑖, 𝑐𝑠⟩: After map using [Map-Address], the instruction is replaced by the cached
instruction 𝑖. This instruction will be retired following all previous rule - in particular,
a nested FAULT can never exist as it is not introduced by any rule.

In this inspection, care is taken to only ever refer to ‘earlier’ rules, so that no cyclic dependency
can occur. �

6.1.4 Confluence, at Last

Theorem 1 (Confluence)
For any given configuration 𝐶, and two configurations 𝐶1, 𝐶2 such that there exist directive
schedules 𝐷1, 𝐷2 and observation traces 𝑂1, 𝑂2 such that 𝐶 ↓𝐷1

𝑂1
𝐶1 and 𝐶 ↓𝐷2

𝑂2
𝐶2, there exists a

configuration 𝐶′ such that there exist directive schedules 𝐷′
1, 𝐷′

2 and observation traces 𝑂′
1, 𝑂′

2 such
that 𝐶1 ↓𝐷′

1
𝑂′

1
𝐶′ and 𝐶2 ↓𝐷′

2
𝑂′

2
𝐶′. This shows that the big-step speculative semantics ↓𝐷

𝑂 is confluent.

Proof
We will constructively show the existence of a configuration 𝐶′ that is reachable from both 𝐶1 and
𝐶2. This can be done in two steps: first we will reach an architectural configuration, and then
we make both configurations ‘find’ each other. The situation is illustrated in Figure 6.1.3 that
shows the structure of speculative execution. For any two configurations in this graph, we will first
obtain the ‘nearest’ architectural configuration by clearing the reorder buffer without fetching new
commands. Then, we will traverse along the architectural configurations until the paths converge.

𝐶 𝐶′

…

…

…

Figure 6.1.3: Graph illustrating the structure of speculative execution. Double-
edged nodes represent architectural configurations: configurations with an empty
reorder buffer 𝑖𝑠. In this model, a transition ‘up’ represents a fetch, while a transition
‘down’ represents a retire. In other words, the vertical ‘distance’ from the baseline is
a measure of the amount of speculation taking place.

45

Finding Common Configuration

For the first step, we define architectural configurations 𝐶∗
1 and 𝐶∗

2 that we obtain by running
the eager directive on 𝐶1 and 𝐶2 respectively, until both have hit an architectural configuration.
Lemma 6.1.11 shows that such a configuration exists. We define 𝐷∗

1 and 𝐷∗
2 to be the original

schedules augmented with the eager directives used to reach the architectural configurations, such
that 𝐶 ↓𝐷∗

1 𝐶∗
1 and 𝐶 ↓𝐷∗

2 𝐶∗
2.

At this point, we define 𝑛1 = #retire(𝐷∗
1) and 𝑛2 = #retire(𝐷∗

2) to quantify the ‘progress’ in
execution for both configurations. Without loss of generality, we will assume that 𝑛1 < 𝑛2. We
then define architectural configuration 𝐶∗∗

1 that we obtain by continuing to run the eager directive
on 𝐶∗

1 until it holds that #retire(𝐷∗∗
1) = 𝑛2. It will turn out that 𝐶∗∗

1 = 𝐶∗
2, thus being our desired

𝐶′.

Such a configuration 𝐶∗∗
1 exists: Lemma 6.1.11 shows that since 𝐶∗

1 is architectural, the next eager
directive is a fetch. After that, from the same lemma, we know that all further eager directives
are not fetch until the next architectural state is hit. Since there is a bijection between retires
and fetches (Proposition 6.1.8), the fetch will have a single associated retire and thus #retire
will increase by 1 for each sequence of directives between two architectural configurations, as is
illustrated in Figure 6.1.3. Repeating this procedure allows us to traverse across exactly 𝑛2 − 𝑛1
architectural configurations, thus yielding the desired architectural configuration 𝐶∗∗

1 .

At this point, we have two architectural configurations 𝐶∗∗
1 and 𝐶∗

2 with directive schedules 𝐷∗∗
1 and

𝐷∗
2, such that 𝐶 ↓𝐷∗∗

1 𝐶∗∗
1 and 𝐶 ↓𝐷∗

2 𝐶∗
2. Additionally, we know that #retire(𝐷∗∗

1) = #retire(𝐷∗
2).

Therefore, from Proposition 6.1.9, we have that 𝑐𝑠∗∗
1 = 𝑐𝑠∗

2.

Equality of 𝜌, 𝜏, and 𝜇

It now remains to show that not only the command stacks and (empty) reorder buffers are the
same between the configurations, but in fact also the register map, page tables, and memory map
are the same. From inspection of the rules, we see that these only change during a retire or map
directive, which only operate on the front of the reorder buffer: they consume a single instruction
from the buffer at a time. From Proposition 6.1.8 we know that for each retire directive, we can
associate a unique fetch and thus a unique command 𝑐. Since the command stacks for both 𝐷∗∗

1
and 𝐷∗

2 are the same, each 𝑛th retire in both schedules is associated to the exact same command.

Since the effect of retire and map rules is fully and only dependent on the instructions that are at
the front of the reorder buffer, we can simplify our analysis: we consider all possible ‘paths’ from
an instruction generated by fetch to the final version of that instruction being retired by retire.
Then, we show for each of these paths that their final effect on 𝜌, 𝜏, and 𝜇 is independent of the
details of the directive schedule (predictions made, order of operations) - as long as it is a valid
schedule.

Note that these paths do not contain rollbacks, because in Proposition 6.1.8 we only consider
relevant fetch directives. As we already showed in that proposition, a rollback - either due to
misprediction or due to a page fault - will merely reset the command stack and reorder buffer, and
as such will not impact 𝜌 or 𝜇. However, a page fault (and thus map) will impact 𝜏, which is a
case we will discuss separately.

As mentioned before, the effect of retire rules on 𝜌, and 𝜇 is fully dependent on the instructions
that are consumed - in particular on the values of 𝑎, 𝑣, and 𝑥 in the various rules. Tracing back
the source of these values, we find that 𝑥 is determined fully by the fetch instructions, and is
therefore independent of the schedule. Furthermore, 𝑎 and 𝑣 are typically the result of evaluating
some expression ⟦𝑒⟧ ̃𝜌.

46

Schedule-Independence of ̃𝜌

Before analysing the various paths, we will argue that given an expression 𝑒 and predicted register
map ̃𝜌 = 𝜑(𝑖𝑠1, 𝜌), the result of ⟦𝑒⟧ ̃𝜌 is independent of the specific directive schedule. Here, 𝑖𝑠1 is
as in [Execute-𝑛th-Instruction]; the first part of the reorder buffer until the 𝑛th instruction that
is being executed.

We can see this independence by first noting that in all cases, 𝑒 must be calculable under ̃𝜌, as
otherwise the rule using its result could not have been invoked. In addition, since we consider
paths between fetch and retire directives, we know that the instruction 𝑖ℓ will not be rolled back,
so no misspeculation takes place anywhere in 𝑖𝑠1. Therefore, in a different directive schedule, all
instructions in 𝑖𝑠1 could have just as well been executed and retired before executing 𝑖, yielding
some different 𝜌′ with ̃𝜌′ = 𝜑([], 𝜌′) = 𝜌′. We claim that ⟦𝑒⟧ ̃𝜌 = ⟦𝑒⟧ ̃𝜌′

.

At its core, the argument is that 𝜑 ‘mimics’ the behaviour of the [Retire-Mov] rule. Let us consider
every possible 𝑖 in 𝑖𝑠1:

MOV⟨𝑥, 𝑣⟩ This instruction can be retired, causing 𝜌 ↦ 𝜌[𝑥 ↦ 𝑣]. This effect is the same between
[Retire-Mov] and 𝜑, and therefore the expression evaluation will remain consistent.

MOV⟨𝑥, 𝑒⟩ The implementation of 𝜑 will cause 𝑥 to be unmapped. Since we assume calculability,
either 𝑥 does not occur in our expression, or a later instruction will override the effect of this
instruction. In both cases, this instruction does not affect the expression evaluation.

LOAD⟨𝑥, 𝑒, 𝑝𝑣, 𝑐𝑠⟩ Since we assume calculability, we must have 𝑝𝑣 ≠ ⊥ in case 𝑥 occurs in our
expression, due to the implementation of 𝜑. Since we also assume no rollbacks, the instruction
must be of the form LOAD⟨𝑥, 𝑎, 𝑣, 𝑐𝑠⟩, so after an exec invoking [Execute-Load-Present-
Correct], this instruction is converted into a MOV that can be retired. Its effect is 𝜌 ↦
𝜌[𝑥 ↦ 𝑣], which is the same as through 𝜑.

For any other instruction that is not rolled back, it does not have an effect on 𝜌, and therefore
does not affect the evaluation of our expression.

Path Analysis of Retired Instructions

Now, we will analyse all ‘paths’ between fetches and retires: we write ⟨𝑖 → 𝑖′⟩ to denote the
bijection pair where instruction 𝑖′ is retired, which was originally generated by a fetch producing
𝑖. As before, this matching is based on the label ℓ. For each of the paths, we will show that their
effect on 𝜌, 𝜏, and 𝜇 is independent of the directive schedule.

⟨NOP → NOP⟩ In this path, no exec directive can be applied, since the produced instruction 𝑖
can immediately be retired. Therefore, this path is completely unaffected by the rest of the
program state.

⟨ASSERT⟨𝑒, 𝑏, 𝑐𝑠⟩ → NOP⟩ In this path, one of the if or while fetch rules produced an ASSERT,
which was converted to NOP by either [Execute-Assert-Success] or [Execute-Assert-Fail].
In all cases, given a directive schedule applying exec to the ASSERT, the result will be a NOP
instruction. While the contents of the reorder buffer or command stack might theoretically
vary based on ̃𝜌, we already established that these are the same in both 𝐶∗∗

1 and 𝐶∗
2, so we

can ignore them here.

⟨MOV⟨𝑥, 𝑒⟩ → MOV⟨𝑥, 𝑣⟩⟩ This is another simple case, where there is a single invocation of [Execute-
Assign] converting between 𝑖 and 𝑖′. The value of 𝑣 is dependent on 𝑒 (determined by the
command stack, so fixed) and ̃𝜌. This predictive map is, unfortunately, dependent on the
rest of the configuration; dependent on 𝜌 and 𝑖𝑠1 to be specific. However, as seen above, this
is not a big issue: regardless of whether exec is executed when 𝑖 is at the front or at the
back of the reorder buffer, the evaluation of 𝑒 under ̃𝜌 is the same.

47

⟨LOAD⟨𝑥, 𝑒, ⊥, 𝑐𝑠⟩ → MOV⟨𝑥, 𝑣⟩⟩ This is arguably the most complex case, as there are many routes
to be analysed. In general, each LOAD has two execute steps: first, speculatively a value is
populated through either [Execute-Load-Predict] or [Execute-Load-Forward], yielding an
instruction of the form LOAD⟨𝑥, 𝑎, 𝑝𝑣, 𝑐𝑠⟩. This value is not guaranteed to be correct: there
might be unresolved stores in the reorder buffer that will affect the outcome later, or the
memory address might not be mapped. The case for unmapped memory will be discussed
later.

Next, the predicted value is verified through either [Execute-Load-Present-Correct] or
[Execute-Load-Present-Mispredict], which will finally replace the LOAD with the correct
MOV instruction, preparing it to be retired.

Let us now analyse the flow of dependencies: the value of 𝑣 in the final MOV instruction is
determined by either of the two ‘verification’ rules; and in both cases it is equal to 𝜇(𝜏(𝑎)) as
these rules verify the predicted value against the real memory map. Since both rules require
there to be no stores in 𝑖𝑠1, we can be sure that the loaded value from memory is the correct
value - and since all stores have the same effect on the memory map (see below), we know
that the loaded value is fixed for the value of 𝑎.

The value of 𝑣 is therefore only dependent on the address 𝑎 as determined by the two
population rules, in both cases computed as 𝑎 = ⟦𝑒⟧ ̃𝜌. As seen in earlier cases, 𝑒 is fixed
since it is decided by the command stack, and we know that ⟦𝑒⟧ ̃𝜌 is then the same as well.
Therefore, the value of 𝑎 is the same for any execution, and we conclude that no matter the
prediction made or directive schedule chosen, the fetched LOAD will resolve to the same MOV.

⟨STORE⟨𝑒𝑎, 𝑒𝑣, 𝑐𝑠⟩ → STORE⟨𝑎, 𝑣, 𝑐𝑠⟩⟩ For this last case, we will again consider the page fault case
separately. This leaves only a single rule that can be used for this path: [Execute-Store-
Present]. The values of 𝑎 and 𝑣 in 𝑖′ are determined fully by 𝑒𝑎, 𝑒𝑣, and ̃𝜌. As in earlier
cases, both expressions are fixed by the command stack, and we know that also ⟦𝑒⟧ ̃𝜌 is fixed.
Therefore, 𝑖′ is independent of the directive schedule.

Path Analysis of Page Faults

We have now established that in addition to 𝑐𝑠∗∗
1 = 𝑐𝑠∗

2 and 𝑖𝑠∗∗
1 = 𝑖𝑠∗

2, we also have 𝜌∗∗
1 = 𝜌∗

2 and
𝜇∗∗

1 = 𝜇∗
2. Lastly, we need to deal with map directives and 𝜏. As we already showed in the proof of

Proposition 6.1.8, map directives cause the command stack and reorder buffer to be reset to the
state immediately after the original fetch. Similar to how we considered the ‘paths’ between fetch
and retire directives above, we can consider ‘paths’ between fetch and map directives. Since
map directives only change the page tables 𝜏, and since no retire can occur in the ‘path’ between
fetch and map, we know that all paths we consider keep 𝜌 and 𝜇 fixed - in line with what we
established already.

To show that the effect of map on 𝜏 is independent on the directive schedule, we observe that the
effect of map is only dependent on the faulted address 𝑎 (𝑀 itself is fixed). Therefore, the value
of 𝑎 should be independent of the directive schedule. Again, we analyse the various ‘paths’ from
fetch to map, written as ⟨𝑖 → 𝑖′⟩ denoting the path from a fetched instruction 𝑖 to the FAULT
instruction 𝑖′ handled by map:

⟨LOAD⟨𝑥, 𝑒, ⊥, 𝑐𝑠⟩ → FAULT⟨𝑎, 𝑖, 𝑐𝑠⟩⟩ The final FAULT instruction can only be generated by rule
[Execute-Load-Miss], which can immediately be applied to 𝑖. We should be careful to note
that a single exec on 𝑖 could also allow rule [Execute-Load-Forward] to be invoked, after
which [Execute-Load-Miss] can still be used. However, since 𝑎 must be unmapped, the
forwarded STORE instruction itself must cause a fault (discussed below), which will be ‘earlier’
in the reorder buffer. Since resolving a fault with map will clear the reorder buffer, a FAULT
generated after a stored forward will never be resolved during a map, so we can ignore this
case and focus only on the path where a single exec invoked [Execute-Load-Miss].

48

In this single rule, the value of 𝑎 is determined as ⟦𝑒⟧ ̃𝜌. As seen before, 𝑒 is fixed since it is
decided by the command stack, and therefore we know that ⟦𝑒⟧ ̃𝜌 is fixed as well. Consequently,
the value of 𝑎 is the same for any directive schedule.

⟨STORE⟨𝑒𝑖, 𝑒𝑣, 𝑐𝑠⟩ → FAULT⟨𝑎, 𝑖, 𝑐𝑠⟩⟩ Similar to the previous case, the final FAULT instruction can
only be generated by rule [Execute-Store-Miss]. In this rule, the value of 𝑎 is determined as
⟦𝑒𝑎⟧ ̃𝜌. And again, 𝑒𝑎 is fixed by the command stack, and ̃𝜌 is fixed as well. Therefore, the
value of 𝑎 is the same for any directive schedule.

In addition to showing that the effect of map directives on a particular faulted load or store is the
same, we should show that both 𝐷∗∗

1 and 𝐷∗
2 fault on the same addresses. This is straightforward:

since both schedules start from the same configuration 𝐶 their starting page tables are identical
as well. As we showed above, the addresses 𝑎 of the various rules are independent of the exact
directive schedule. For any accessed address 𝑎, if it is not in the page tables, a FAULT instruction is
injected, so the directive schedule must then use a map directive for each such faulted address.
Since we already know that 𝜌 and 𝜇 are fixed between both directive schedules, it must be the
case that they have accessed the same addresses and triggered the same page faults. Therefore, we
establish that also 𝜏∗∗

1 = 𝜏∗
2 .

To summarize, we have now obtained equality between 𝐶∗∗
1 and 𝐶∗

2 in terms of their command
stacks, reorder buffers, register maps, page tables, and memory maps. Therefore, 𝐶∗∗

1 = 𝐶∗
2, and

so it is the 𝐶′ we are looking for to prove confluence. �

49

6.2 Consistency
For our second result, we will investigate the relation between our speculative semantics and the
traditional sequential semantics. In particular, we will show consistency between the two: the
result of a computation is the same for both speculative and sequential semantics. This legitimises
the use of our speculative semantics.

Theorem 2 (Consistency)
For any program represented by command stack 𝑐𝑠 and initial state 𝜌, 𝜏, 𝜇, with a sequential
execution ⟨𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⇓𝑂 ⟨[], 𝜌′, 𝜏 ′, 𝜇′⟩, any complete directive schedule 𝐷 on 𝐶 = ⟨[], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
satisfies 𝐶 ↓𝐷

𝑂′ ⟨[], [], 𝜌′, 𝜏 ′, 𝜇′⟩. Therefore, the speculative semantics is consistent with the sequential
semantics. ⌟

To show this consistency, we will construct a specific directive schedule for any given sequential
execution. Then we can use confluence to show that not just this specific directive schedule is
equivalent, but any speculative execution is equivalent to sequential semantics.

Definition 6.2.1 (Complete Schedule) A valid directive schedule 𝐷 is called complete for a
configuration 𝐶 iff there exists a final configuration 𝐶𝑓 and an observation trace 𝑂 such that
𝐶 ↓𝐷

𝑂 𝐶𝑓. In other words, a schedule is complete iff it is valid and ends in a final configuration. ⌟

Proposition 6.2.2 (Equivalence of Complete Schedules) Given a configuration 𝐶, for any
complete schedules 𝐷1, 𝐷2, final configurations 𝐶1, 𝐶2, and observation traces 𝑂1, 𝑂2 such that
𝐶 ↓𝐷1

𝑂1
𝐶1 and 𝐶 ↓𝐷2

𝑂2
𝐶2, we have that 𝐶1 = 𝐶2.

Proof
The set up here is exactly the same as for confluence, so from Theorem 1 we know that there
must exist some configuration 𝐶′ for which there exist directive schedules 𝐷′

1 and 𝐷′
2 such that

𝐶1 ↓𝐷′
1 𝐶′ and 𝐶2 ↓𝐷′

2 𝐶′. However, by assumption 𝐶1 and 𝐶2 are final, so 𝐷′
1 and 𝐷′

2 must be
empty and in fact 𝐶1 = 𝐶2. �

The specific directive schedule we will construct to be equivalent to sequential execution will be
a sequential schedule; a schedule consisting entirely out of eager directives. As we have seen in

𝐶 𝐶′

…

…

…

Figure 6.2.1: Graph illustrating the relation between sequential and speculative
execution. This is the same as Figure 6.1.3, but now the bottom set of double arrows
have been added to represent sequential execution. Again, a transition ‘upwards’
represents a fetch, while a transition ‘down’ represents a retire.

50

the proof for confluence, executing eager directives will allow us to process commands from the
command stack one by one, in line with sequential semantics. This is illustrated in Figure 6.2.1,
where the bottom set of double arrows indicate the sequential execution.

Definition 6.2.3 (Sequential Schedule) A complete directive schedule 𝐷 is called sequential
for a configuration 𝐶 iff the schedule consists entirely out of eager directives. ⌟

Proposition 6.2.4 (Existence of Sequential Schedules) For any state 𝑆 = ⟨𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ and
sequential execution 𝑆 ⇓𝑂 ⟨[], 𝜌′, 𝜏 ′, 𝜇′⟩, there exists an equivalent sequential schedule 𝐷 such that
for configuration 𝐶 = ⟨[], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩, we have 𝐶 ↓𝐷

𝑂′ ⟨[], [], 𝜌′, 𝜏 ′, 𝜇′⟩.

Proof
We will prove this statement by induction on the big-step reduction ⇓. For each of the sequential
execution rules for ⟹, we will find a sequence of eager directives that has the same effect.
Concretely, given a state 𝑆𝑖 = ⟨𝑐𝑠𝑖, 𝜌𝑖, 𝜏𝑖, 𝜇𝑖⟩, if 𝑆𝑖 ⟹𝑂 ⟨𝑐𝑠𝑖+1, 𝜌𝑖+1, 𝜏𝑖+1, 𝜇𝑖+1⟩, we will find a set
of eager directives 𝐷𝑖 such that for the architectural configuration 𝐶𝑖 = ⟨[], 𝑐𝑠𝑖, 𝜌𝑖, 𝜏𝑖, 𝜇𝑖⟩ we have
𝐶𝑖 ↓𝐷𝑖

𝑂 ⟨[], 𝑐𝑠𝑖+1, 𝜌𝑖+1, 𝜏𝑖+1, 𝜇𝑖+1⟩.

For simplicity of writing, we will find the set 𝐷𝑖 for any arbitrary 𝑖 and drop the labels:

[Seq-Skip] In this case, ⟨skip ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⟹ ⟨𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩. We use the schedule 𝐷 = [fetch, retire],
which will transform as follows:

⟨[], skip ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch
−−−→ [Fetch-Skip]

⟨[NOPℓ], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
retire
−−−−→ [Retire-Nop]

⟨[], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

[Seq-Assign] We now have ⟨𝑥 := 𝑒 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⟹ ⟨𝑐𝑠, 𝜌[𝑥 ↦ 𝑣], 𝜏 , 𝜇⟩ where 𝑣 = ⟦𝑒⟧𝜌. We use the
schedule 𝐷 = [fetch, exec 1, retire] as follows:

⟨[], 𝑥 := 𝑒 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch
−−−→ [Fetch-Assign]

⟨[MOV⟨𝑥, 𝑒⟩ℓ], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
exec 1
−−−−→ 𝑣 = ⟦𝑒⟧ ̃𝜌 and ̃𝜌 = 𝜑([], 𝜌) = 𝜌 - [Execute-Assign]

⟨[MOV⟨𝑥, 𝑣⟩ℓ], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
retire
−−−−→ [Retire-Mov]

⟨[], 𝑐𝑠, 𝜌[𝑥 ↦ 𝑣], 𝜏 , 𝜇⟩

[Seq-Pointer-Read-Present] We now have a more complex scenario with a number of additional
variables: ⟨𝑥 := * 𝑒 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⟹[touch(𝑝𝑎)] ⟨𝑐𝑠, 𝜌[𝑥 ↦ 𝑣], 𝜏 , 𝜇⟩. Here, 𝑎 = ⟦𝑒⟧𝜌, 𝑝𝑎 = 𝜏(𝑎) ≠

51

⊥ and 𝑣 = 𝜇(𝑝𝑎). We use the schedule 𝐷 = [fetch, exec 1, exec 1, retire] as follows:

⟨[], 𝑥 := * 𝑒 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch
−−−→ [Fetch-Pointer-Load]

⟨[LOAD⟨𝑥, 𝑒, ⊥, 𝑐𝑠⟩ℓ], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
exec 1
−−−−→[touch(𝑝𝑎)] 𝑎 = ⟦𝑒⟧𝜌, 𝑝𝑎 = 𝜏(𝑎), 𝑣 = 𝜇(𝑝𝑎) - [Execute-Load-Predict]

⟨[LOAD⟨𝑥, 𝑎, 𝑣, 𝑐𝑠⟩ℓ], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
exec 1
−−−−→ [Execute-Load-Present-Correct]

⟨[MOV⟨𝑥, 𝑣⟩ℓ], 𝜌, 𝜏 , 𝜇⟩
retire
−−−−→ [Retire-Mov]

⟨[], 𝑐𝑠, 𝜌[𝑥 ↦ 𝑣], 𝜏 , 𝜇⟩

[Seq-Pointer-Read-Miss] This time, we also have to deal with a page fault: ⟨𝑥 := * 𝑒 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
⟹[touch(𝑝𝑎)] ⟨𝑐𝑠, 𝜌[𝑥 ↦ 𝑣], 𝜏 [𝑎 ↦ 𝑝𝑎], 𝜇⟩, where all variables are the same as before, but
𝑝𝑎 = 𝑀(𝑎). Now, we use the schedule 𝐷 = [fetch, exec 1, map, exec 1, exec 1, retire] as
follows:

⟨[], 𝑥 := * 𝑒 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch
−−−→ [Fetch-Pointer-Load]

⟨[LOAD⟨𝑥, 𝑒, ⊥, 𝑐𝑠⟩ℓ], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
exec 1
−−−−→ [Execute-Load-Miss]

⟨[FAULT⟨𝑎, LOAD⟨𝑥, 𝑎, ⊥, 𝑐𝑠⟩, 𝑐𝑠⟩ℓ,MOV⟨𝑥, 0⟩ℓ′], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
map
−−−→ 𝑝𝑎 = 𝑀(𝑎) - [Map-Address]

⟨[LOAD⟨𝑥, 𝑎, ⊥, 𝑐𝑠⟩ℓ], 𝑐𝑠, 𝜌, 𝜏 [𝑎 ↦ 𝑝𝑎], 𝜇⟩
exec 1
−−−−→[touch(𝑝𝑎)] [Execute-Load-Predict]

⟨[LOAD⟨𝑥, 𝑎, 𝑣, 𝑐𝑠⟩ℓ], 𝑐𝑠, 𝜌, 𝜏 [𝑎 ↦ 𝑝𝑎], 𝜇⟩
exec 1
−−−−→ [Execute-Load-Present-Correct]

⟨[MOV⟨𝑥, 𝑣⟩ℓ], 𝑐𝑠, 𝜌, 𝜏 [𝑎 ↦ 𝑝𝑎], 𝜇⟩
retire
−−−−→ [Retire-Mov]

⟨[], 𝑐𝑠, 𝜌[𝑥 ↦ 𝑣], 𝜏 [𝑎 ↦ 𝑝𝑎], 𝜇⟩

[Seq-Pointer-Write-Present] For writes, the impact is on 𝜇 instead of 𝜌: ⟨* 𝑒𝑎 := 𝑒𝑣 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
⟹[touch(𝑝𝑎)] ⟨𝑐𝑠, 𝜌, 𝜏 , 𝜇[𝑝𝑎 ↦ 𝑣]⟩. Here, 𝑎 = ⟦𝑒𝑎⟧𝜌 and 𝑣 = ⟦𝑒𝑣⟧𝜌. For the speculative route,
we use the straightforward schedule 𝐷 = [fetch, exec 1, retire]:

⟨[], * 𝑒𝑎 := 𝑒𝑣 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch
−−−→ [Fetch-Pointer-Store]

⟨[STORE⟨𝑒𝑎, 𝑒𝑣, 𝑐𝑠⟩ℓ], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
exec 1
−−−−→ [Execute-Store-Present]

⟨[STORE⟨𝑎, 𝑣, 𝑐𝑠⟩ℓ], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
retire
−−−−→[touch(𝑝𝑎)] [Retire-Store]

⟨[], 𝑐𝑠, 𝜌, 𝜏 , 𝜇[𝑝𝑎 ↦ 𝑣]⟩

52

[Seq-Pointer-Write-Miss] For write misses, we once again have to deal with a page fault:
⟨* 𝑒𝑎 := 𝑒𝑣 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⟹[touch(𝑝𝑎)] ⟨𝑐𝑠, 𝜌, 𝜏 [𝑎 ↦ 𝑝𝑎], 𝜇[𝑝𝑎 ↦ 𝑣]⟩, with all the variables
the same as before. We use the schedule 𝐷 = [fetch, exec 1, map, retire]:

⟨[], * 𝑒𝑎 := 𝑒𝑣 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch
−−−→ [Fetch-Pointer-Store]

⟨[STORE⟨𝑒𝑎, 𝑒𝑣, 𝑐𝑠⟩ℓ], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
exec 1
−−−−→ [Execute-Store-Miss]

⟨[FAULT⟨𝑎, STORE⟨𝑎, 𝑣, 𝑐𝑠⟩, 𝑐𝑠⟩ℓ, STORE⟨𝑎, 𝑣, 𝑐𝑠⟩ℓ′], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
map
−−−→ [Map-Address]

⟨[STORE⟨𝑎, 𝑣, 𝑐𝑠⟩ℓ], 𝑐𝑠, 𝜌, 𝜏 [𝑎 ↦ 𝑝𝑎], 𝜇⟩
retire
−−−−→ [Retire-Store]

⟨[], 𝑐𝑠, 𝜌, 𝜏 [𝑎 ↦ 𝑝𝑎], 𝜇[𝑝𝑎 ↦ 𝑣]⟩

[Seq-Array-Read-Present] This rule is essentially the same as [Seq-Pointer-Read-Present],
except that we are not given an index expression 𝑒, but instead we compute 𝑒𝑖 = base(𝑥𝑠) +
𝑒. Consequently, we can use the exact same directive schedule as for that rule, 𝐷 =
[fetch, exec 1, exec 1, retire]. To shorten analysis, we will only show that the configuration
after fetch is identical to the above:

⟨[], 𝑥 :=𝑥𝑠[𝑒] ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch
−−−→ [Fetch-Array-Load]

⟨[LOAD⟨𝑥, 𝑒𝑖, ⊥, 𝑐𝑠⟩ℓ], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

[Seq-Array-Read-Miss] As above, again this is the same as [Seq-Pointer-Read-Miss] but with 𝑒𝑖 =
base(𝑥𝑠)+𝑒 instead of 𝑒 itself. We use again 𝐷 = [fetch, exec 1, map, exec 1, exec 1, retire],
and from the derivation for the ‘present’ case, we see that the first fetch does indeed give
the same configuration.

[Seq-Array-Write-Present] Again, we compare to [Seq-Pointer-Write-Present] but with 𝑒𝑖 =
base(𝑥𝑠) + 𝑒 again instead of 𝑒 as target memory address. Therefore, we again use 𝐷 =
[fetch, exec 1, retire] and we will show equivalence of the configuration after the first fetch:

⟨[], 𝑥𝑠[𝑒] := 𝑒𝑣 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch
−−−→ [Fetch-Array-Store]

⟨[STORE⟨𝑒𝑖, 𝑒𝑣, 𝑐𝑠⟩ℓ], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

[Seq-Array-Write-Miss] And again, we compare to [Seq-Pointer-Write-Miss]. So, again 𝐷 =
[fetch, exec, map, retire] can be used, and the first fetch is the same for this and the
‘present’ case.

[Seq-If-Else] For if-else statements, we deal with ⟨if 𝑒 then 𝑐𝑠true else 𝑐𝑠false ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⟹
⟨𝑐𝑠𝑏 ⧺ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩, where 𝑐𝑠𝑏 is the command stack chosen based on 𝑏 = ⟦𝑒⟧𝜌. We can choose
directive schedule 𝐷 = [fetch 𝑏, exec 1, retire], where the predicted value 𝑏 in fetch 𝑏 is
always correct by construction of the eager directive.

53

In case we correctly predict 𝑏 = true:

⟨[], if 𝑒 then 𝑐𝑠true else 𝑐𝑠false ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch true
−−−−−−→ [Fetch-If-Predict-True]

⟨[ASSERT⟨𝑒, true, 𝑐𝑠false ⧺ 𝑐𝑠⟩ℓ], 𝑐𝑠true ⧺ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
exec 1
−−−−→ [Execute-Assert-Success]

⟨[NOPℓ], 𝑐𝑠true ⧺ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
retire
−−−−→ [Retire-Nop]

⟨[], 𝑐𝑠true ⧺ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

And in case 𝑏 = false:

⟨[], if 𝑒 then 𝑐𝑠true else 𝑐𝑠false ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch false
−−−−−−→ [Fetch-If-Predict-False]

⟨[ASSERT⟨𝑒, false, 𝑐𝑠true ⧺ 𝑐𝑠⟩ℓ], 𝑐𝑠false ⧺ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
exec 1
−−−−→ [Execute-Assert-Success]

⟨[NOPℓ], 𝑐𝑠false ⧺ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
retire
−−−−→ [Retire-Nop]

⟨[], 𝑐𝑠false ⧺ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

[Seq-While] Lastly, we consider while statements, where we have to deal with ⟨while 𝑒 do 𝑐𝑠𝑙 ∶
𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⟹ ⟨𝑐𝑠𝑏 ⧺ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ where again 𝑐𝑠𝑏 is the command stack chosen based on
𝑏 = ⟦𝑒⟧𝜌, and 𝑐𝑠true = 𝑐𝑠𝑙 ⧺ [𝑐] and 𝑐𝑠false = []. We can choose directive schedule 𝐷 =
[fetch 𝑏, exec 1, retire], where the prediction 𝑏 is again always correct due to eagerness.

In case 𝑏 = true:

⟨[], while 𝑒 do 𝑐𝑠𝑙 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch true
−−−−−−→ [Fetch-While-Predict-True]

⟨[ASSERT⟨𝑒, true, 𝑐𝑠⟩ℓ], 𝑐𝑠𝑙 ⧺ 𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
exec 1
−−−−→ [Execute-Assert-Success]

⟨[NOPℓ], 𝑐𝑠𝑙 ⧺ 𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
retire
−−−−→ [Retire-Nop]

⟨[], 𝑐𝑠𝑙 ⧺ 𝑐 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

And, finally, in case 𝑏 = false:

⟨[], while 𝑒 do 𝑐𝑠𝑙 ∶ 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
fetch false
−−−−−−→ [Fetch-While-Predict-False]

⟨[ASSERT⟨𝑒, false, 𝑐𝑠𝑙 ⧺ 𝑐 ∶ 𝑐𝑠⟩ℓ], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
exec 1
−−−−→ [Execute-Assert-Success]

⟨[NOPℓ], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
retire
−−−−→ [Retire-Nop]

⟨[], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ �

54

We can now proceed to use the existence of sequential schedules to prove consistency between
sequential and speculative semantics.

Theorem 2 (Consistency)
For any program represented by command stack 𝑐𝑠 and initial state 𝜌, 𝜏, 𝜇, with a sequential
execution ⟨𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⇓𝑂 ⟨[], 𝜌′, 𝜏 ′, 𝜇′⟩, any complete directive schedule 𝐷 on 𝐶 = ⟨[], 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
satisfies 𝐶 ↓𝐷

𝑂′ ⟨[], [], 𝜌′, 𝜏 ′, 𝜇′⟩. Therefore, the speculative semantics is consistent with the sequential
semantics.

Proof
This proof is a simple combination of the previous proposition and confluence. From Pro-
position 6.2.4, we know that there exists a specific complete sequential schedule 𝐷 satisfying
𝐶 ↓𝐷

𝑂′ ⟨[], [], 𝜌′, 𝜏 ′, 𝜇′⟩. Then, since 𝐷 is complete, from Proposition 6.2.2, we have that any
other complete schedule 𝐷′ on 𝐶 also satisfies 𝐶 ↓𝐷′

𝑂′ ⟨[], [], 𝜌′, 𝜏 ′, 𝜇′⟩. We can conclude that the
speculative semantics is consistent with traditional sequential semantics. �

55

6.3 Security
The previous sections have established confluence and consistency of our speculative semantics,
thus providing a degree of legitimacy to its design. In Section 5.4, we have already seen how our
semantics allow us to capture the risks of speculative execution, as we model both store forwarding
and speculative loads. What remains now is to show the core of PageZero: to establish that, as
suspected, clearing page tables allows us to mitigate speculative execution attacks.

We approach this issue by proving a ‘transfer’ result that allows us to transfer any property of the
memory access behaviour of a program under sequential semantics into the speculative realm - as
long as we clear the page tables. Thus, if a program is deemed ‘secure’ under sequential semantics
(for any notion of ‘security’), then it will remain ‘secure’ under speculative semantics when the
page tables are cleared.

Our proof will not be specific to a particular notion of security, instead, we will prove the more
general and stronger property that the set of accessed addresses is consistent between sequential
and speculative semantics. Consequently, any property that describes a set of memory addresses,
including ‘security’, will be ported from the sequential into the speculative realm.

This property might seem counter-intuitive at first, due to the nature of speculative execution.
The crucial ‘trick’ is to impose that in the speculative setting, the page tables are cleared before
execution. This way, we don’t stop speculation altogether, but we stop it just enough to prevent
undesirable accesses. The intuition is that the first time a memory address is accessed, the access is
‘validated’ through the page fault mechanism. Since page faults do not happen speculatively, this
stops invalid accesses. Once it is determined that an address is accessible, it will become available
for speculation in the future.

Notation 6.3.1 By PAddr(𝑂) we denote the set of physical addresses emitted by all touch
observations in 𝑂. ⌟

Definition 6.3.2 We define a memory property 𝑃 ⊆ P(PAddr) to hold for a set of physical
addresses 𝑋 ∈ P(PAddr) when 𝑋 ∈ 𝑃. ⌟

Theorem 3 (Memory Access Equivalence)
Consider any program represented by command stack 𝑐𝑠 and initial state 𝜌, 𝜇 with a sequential
execution ⟨𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⇓𝑂 ⟨[], 𝜌′, 𝜏 ′, 𝜇′⟩ with arbitrary 𝜏. Then, any complete directive schedule 𝐷
on 𝐶 = ⟨[], 𝑐𝑠, 𝜌, ∅, 𝜇⟩ with 𝐶 ↓𝐷

𝑂′ ⟨[], [], 𝜌′, 𝜏∅, 𝜇′⟩ satisfies the property that PAddr(𝑂) = PAddr(𝑂′).
In other words, the set of touched physical addresses for sequential execution is the same as for
speculative execution. ⌟

This result will immediately give us the ‘transfer property’ we need to show PageZero effective.

Corollary (Memory Property Transfer) Consider any program represented by command stack
𝑐𝑠 and initial state 𝜌, 𝜇, with a sequential execution ⟨𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⇓𝑂 ⟨[], 𝜌′, 𝜏 ′, 𝜇′⟩ with arbitrary 𝜏,
where some memory property 𝑃 holds for PAddr(𝑂). Then, for any complete directive schedule 𝐷 on
𝐶 = ⟨[], 𝑐𝑠, 𝜌, ∅, 𝜇⟩ with 𝐶 ↓𝐷

𝑂′ ⟨[], [], 𝜌′, 𝜏∅, 𝜇′⟩, 𝑃 also holds for PAddr(𝑂′). Therefore, by clearing
the initial page tables, any memory property can be ‘transferred’ into the speculative realm. ⌟

56

6.3.1 Integrity of Speculative Execution
We will now direct our attention to the integrity of speculative execution. In other words, we seek
to prove that speculative execution can only access memory available according to the page tables
𝜏.

Proposition 6.3.3 (Integrity) For any configuration 𝐶 = ⟨𝑖𝑠, 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩, there does not exist a
valid directive 𝑑 on 𝐶 with an observation trace 𝑂 containing touch(𝑝𝑎) where 𝑝𝑎 ∉ Im(𝜏) (image
of 𝜏). In other words, under speculative semantics it is not possible to access unmapped memory.

Proof
To prove this property, we analyse all rules in the speculative semantics that emit a touch
observation. These rules are [Execute-Load-Predict], [Execute-Load-Present-Mispredict], and
[Retire-Store]. We see that in each of these rules, the 𝑝𝑎 that is emitted in touch is determined
as 𝑝𝑎 = 𝜏(𝑎). This immediately means that, in fact, 𝑝𝑎 ∈ Im(𝜏). �

6.3.2 Empty Page Tables
Next, we will analyse the behaviour of programs when clearing the page tables before execution.
Clearing the page tables will be the ‘trick’ that allows us to safely run programs under speculative
semantics. We will show a parallel between speculative and sequential semantics.

Proposition 6.3.4 For any configuration 𝐶 = ⟨𝑖𝑠, 𝑐𝑠, 𝜌, ∅, 𝜇⟩ where the page tables are empty
(i.e. the domain of 𝜏 is empty), and for any architectural configuration 𝐶′ = ⟨[], 𝑐𝑠′, 𝜌′, 𝜏 ′, 𝜇′⟩ for
which there exists a directive schedule 𝐷 and observation trace 𝑂 such that 𝐶 ↓𝐷

𝑂 𝐶′, it holds that
PAddr(𝑂) = Im(𝜏 ′). In other words, the set of accessed memory addresses is exactly the set of
addresses mapped in the page tables after execution.

Proof
To show PAddr(𝑂) = Im(𝜏 ′), we will show inclusion both ways:

PAddr(𝑂) ⊆ Im(𝜏 ′) During execution, our page tables expand from ∅ to 𝜏 ′. Since only [Map-
Address] can change 𝜏 and since this rule will only expand the map, we can clearly see
that ∅ ⊆ 𝜏1 ⊆ ⋯ ⊆ 𝜏𝑖 ⊆ ⋯ ⊆ 𝜏 ′ (in terms of their images). Here, 𝜏𝑖 corresponds to the
configuration after executing the 𝑖th directive from 𝐷. Note that while [Map-Address] might
in theory change an entry in 𝜏, in practice FAULT instructions are only generated when 𝑎 is not
yet mapped in 𝜏 (by rules [Execute-Load-Miss] and [Execute-Store-Miss]). Furthermore,
the action of [Map-Address] cannot be rolled back - this can be seen both from the fact that
the rule only operates on the first item in the reorder buffer, and because all other rollback
rules ([Execute-Assert-Fail] and [Execute-Load-Present-Mispredict]) do not touch the
page tables.

Since our directive schedule 𝐷 is valid, from Proposition 6.3.3, we know that 𝑂 does not
contain any touch(𝑝𝑎) where 𝑝𝑎 ∉ Im(𝜏𝑖) ⊆ Im(𝜏 ′) where 𝜏𝑖 corresponds to the intermediate
configuration associated with the emission of the touch. We conclude that PAddr(𝑂) ⊆
Im(𝜏 ′).

Im(𝜏 ′) ⊆ PAddr(𝑂) For the other direction, we again observe that our page tables expend from ∅ to
𝜏 ′, and that we have the ‘hierarchy’ of 𝜏𝑖. We see that every expansion of 𝜏 by [Map-Address]
puts an instruction back in the reorder buffer. Since we consider an architectural 𝐶′, we
know that this instruction must be executed and retired – it can’t be erased as part of a
rollback since it will be the first element in the reorder buffer.

The instruction that is put back in the reorder buffer is determined by [Execute-Load-
Miss] and [Execute-Store-Miss]. In the latter case, the STORE instruction is for the exact
same address as the fault, so the address that is mapped will also be accessed by [Retire-
Store] afterwards. Similarly, in the load case, the LOAD instruction is for the exact same

57

address as the fault as well. When executing the LOAD, this address is accessed by either
[Execute-Load-Predict] or [Execute-Load-Present-Mispredict].

We conclude that every map, and thus every expansion of the page tables, will be followed
by an access to that same address, before reaching 𝐶′. Therefore, since we start with empty
page tables, every address in the page tables is also being accessed: Im(𝜏 ′) ⊆ PAddr(𝑂). �

Note that in particular, Proposition 6.3.4 holds for complete schedules 𝐷 and final configurations
𝐶𝑓 as a special case of the valid schedules and architectural configurations. For this case, the
sequential semantics turns out to have the same behaviour:

Proposition 6.3.5 For any sequential state 𝑆 = ⟨𝑐𝑠, 𝜌, ∅, 𝜇⟩ for which there exists a final state
𝑆𝑓 = ⟨[], 𝜌′, 𝜏 ′, 𝜇′⟩ and observation trace 𝑂 such that 𝑆 ⇓𝑂 𝑆𝑓, it holds that PAddr(𝑂) = Im(𝜏 ′).

Proof
We again show equivalence by showing inclusion both ways:

PAddr(𝑂) ⊆ Im(𝜏 ′) Similar to the speculative case, we will consider the sequential rules that
produce a touch observation. These are the pointer read and write, and array read and
write rules, each for the present and miss case – 8 rules in total. For all the ‘present’ rules, we
see that the emitted 𝑝𝑎 is determined as 𝑝𝑎 = 𝜏(𝑎), and so we are sure that 𝑝𝑎 ∈ Im(𝜏𝑖) for
the intermediate state 𝑆𝑖. Similarly, for all the ‘miss’ rules, 𝑝𝑎 is determined as 𝑝𝑎 = 𝑀(𝑎),
after which 𝜏 is updated to 𝜏[𝑎 ↦ 𝑝𝑎] - so again we are sure that 𝑝𝑎 ∈ Im(𝜏𝑖).

As for the speculative case, we can build a ‘hierarchy’ in page tables during execution, where
∅ ⊆ 𝜏1 ⊆ ⋯ ⊆ 𝜏𝑖 ⊆ ⋯ ⊆ 𝜏 ′ in terms of images. Therefore, every 𝑝𝑎 ∈ Im(𝜏 ′), so we conclude
that PAddr(𝑂) ⊆ Im(𝜏 ′).

Im(𝜏 ′) ⊆ PAddr(𝑂) For the other direction, we consider all rules that update the page tables: the
four ‘miss’ variants of the pointer and array reads and writes. An update to the page tables
is only ever additive: in each of these rules, the update is 𝜏[𝑎 ↦ 𝑝𝑎], where it was established
that 𝜏(𝑎) = ⊥. Next, we observe that each of these rules will also emit a touch for the 𝑝𝑎
that was just mapped.

Since we start execution with empty page tables, and since every addition is also being
accessed during execution, we must conclude that Im(𝜏 ′) ⊆ PAddr(𝑂). �

By now, we have shown that given empty page tables, both speculative and sequential semantics
access the same set of addresses: exactly the set that is being mapped into the page tables. This is
reassuring and further highlights the consistency between sequential and speculative execution.

Note that we could not have reached the same result by simply invoking our earlier consistency
result: Theorem 2 does not consider equivalence of, or any other relation between the observation
traces 𝑂 for both sequential and speculative semantics.

6.3.3 Arbitrary Initial Page Tables
Next, we show that sequential execution does not need to start with empty page tables to limit its
set of accessed addresses; the set of accessed addresses is independent of the starting 𝜏.

Lemma 6.3.6 Consider any sequential state 𝑆 = ⟨𝑐𝑠, 𝜌, ∅, 𝜇⟩ for which there exists a final state
𝑆𝑓 = ⟨[], 𝜌′, 𝜏 ′, 𝜇′⟩ and observation trace 𝑂 such that 𝑆 ⇓𝑂 𝑆𝑓. For any 𝜏, the state 𝑆𝜏 = ⟨𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
satisfies 𝑆𝜏 ⇓𝑂 ⟨[], 𝜌, 𝜏 ′

𝜏, 𝜇′⟩ for the same observation trace 𝑂. In addition, it holds that 𝜏 ′
𝜏 = 𝜏 ∪ 𝜏 ′.

58

Proof
This property can be seen easily by inspecting the rules for sequential execution. For each pointer
or array read or write, two rules can apply: a ‘present’ rule or a ‘miss’ rule. The latter will update
the page tables to include the new address, but apart from that, the behaviour of both rules is
identical: the same modifications to 𝜌 and 𝜇 take place, and the same observation touch(𝑝𝑎) is
emitted. Therefore, 𝑂 is the same for all these executions and starting states 𝑆𝜏.

In Proposition 6.3.5, the argument for PAddr(𝑂) ⊆ Im(𝜏 ′) was independent of the assumption
that computation started with empty page tables. Therefore, PAddr(𝑂) ⊆ Im(𝜏 ′

𝜏) as well. In
fact, from Proposition 6.3.5 we also know that PAddr(𝑂) = Im(𝜏 ′) since 𝑆 has empty page tables:
Im(𝜏 ′) ⊆ Im(𝜏 ′

𝜏).

Furthermore, as observed before, all ‘miss’ rules are only additive: existing entries in the page
tables are not changed. Therefore, also Im(𝜏) ⊆ Im(𝜏 ′

𝜏). Since page table entries are only added
one-by-one, and since all additions during execution of 𝑆𝜏 are in 𝜏 ′ as well, it must be the case
that 𝜏 ′

𝜏 = 𝜏 ∪ 𝜏 ′. �

Note that this property can clearly not apply in the speculative realm: there are exponentially
many complete directive schedules that would perform the execution from 𝐶 to 𝐶𝑓. Each of these
directives can come with completely different observation traces: consider rollbacks and speculative
memory accesses that turn out to be incorrect, which is the entire problem we’re trying to address.

6.3.4 Equivalence
We will now achieve our objective: to show that under speculative semantics, when starting with
empty page tables, the same set of memory addresses is accessed as under sequential execution
with arbitrary page tables.

Theorem 3 (Memory Access Equivalence)
Consider any program represented by command stack 𝑐𝑠 and initial state 𝜌, 𝜇 with a sequential
execution ⟨𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩ ⇓𝑂 ⟨[], 𝜌′, 𝜏 ′, 𝜇′⟩ with arbitrary 𝜏. Then, any complete directive schedule 𝐷
on 𝐶 = ⟨[], 𝑐𝑠, 𝜌, ∅, 𝜇⟩ with 𝐶 ↓𝐷

𝑂′ ⟨[], [], 𝜌′, 𝜏∅, 𝜇′⟩ satisfies the property that PAddr(𝑂) = PAddr(𝑂′).
In other words, the set of touched physical addresses for sequential execution is the same as for
speculative execution.

Proof
With the work done in previous sections, we can simply chain our arguments. As seen in
Lemma 6.3.6, the particular sequential execution ⟨𝑐𝑠, 𝜌, ∅, 𝜇⟩ ⇓𝑂 ⟨[], 𝜌′, 𝜏∅, 𝜇′⟩ will have an identical
observation trace 𝑂, and therefore identical PAddr(𝑂).

By Theorem 2, we know that any complete directive schedule on 𝐶 = ⟨[], 𝑐𝑠, 𝜌, ∅, 𝜇⟩ will yield the
same ⟨[], [], 𝜌′, 𝜏∅, 𝜇′⟩, but with potentially different 𝑂′.

Lastly, from Proposition 6.3.5, we know that PAddr(𝑂) = Im(𝜏∅). In addition, from Proposition 6.3.4,
we also know that PAddr(𝑂′) = Im(𝜏∅). We conclude that PAddr(𝑂) = PAddr(𝑂′), as desired. �

59

Chapter 7

Conclusions and Discussions

In this MSc thesis, we have formally shown the effectiveness of PageZero against Spectre v1. We
have introduced a formal model for reasoning about speculative execution, and used it to prove
that when clearing page tables, any speculative execution of a program accesses the exact same
set of memory addresses as a traditional sequential execution. We showed this for a very strong
attacker model, with deep insight into and control over CPU behaviour.

Model for Speculative Execution

While the current model only demonstrates effectiveness of PageZero against Spectre v1, other
speculative execution vulnerabilities are easy to incorporate. In particular, Spectre v2 should be
easy to implement by adding an indirect jump to the meta programming language and introducing
appropriate reduction rules.

Vulnerabilities like RIDL [4], LVI [5], ZombieLoad [3], and Fallout [7] are also easy to model, but
need further thought in terms of what the Byzantine data could be, and how the ‘security’ claim
needs to be adapted.

The current model also lacks any notion of a process, a thread, or a core. While the current
approach suffices to model and protect a kernel, the model is not immediately fit for user-space
processes in a multi-process and multi-user environment. While such additions would make the
model more powerful, it will also get increasingly more complicated as the surface for interactions
between parts of the model (kernel and user space, multiple processes) grows quickly. It might be
more feasible to make dedicated models for different use cases, focusing on the important aspects
for each use case.

PageZero

While we have only proved effectiveness against Spectre v1, in principle, PageZero also protects
against most other speculative execution vulnerabilities: the security of PageZero hinges on the
fact that even speculative execution cannot access unmapped memory, and that cross-core attacks
are not possible. Vulnerabilities that break this condition, like CrossTalk [9] or Meltdown [2], are
not mitigated by this approach.

In the other MSc thesis, we show a prototype implementation of PageZero in the Linux kernel [21].
Unfortunately, fully clearing the page tables is inherently not possible in practice, as we quickly hit
a chicken-and-egg problem: the page fault handler itself also has to be mapped in the page tables.
Therefore, specific regions of memory have to be made available on an allow-list basis, after which
the page fault handler can handle the rest of the address space.

60

Fundamentally, any implementation will face this trade-off between security and implementation
complexity or performance. Fortunately, a significant portion of the practical attack surface can
already be eliminated by clearing only the direct map region of the kernel page tables. This is
also the approach we take for our prototype implementation. Future research might make the
implementation more fine-grained, by clearing more regions of the kernel page tables.

Nevertheless, we manage to show that a ‘lightweight’ version of PageZero, achieving a great
degree of protection against speculative execution attacks, can be implemented in practice. The
implementation requires minimal code changes in the KVM subsystem of Linux, and has relatively
low runtime overhead compared to enabling all relevant mitigations. This shows that PageZero is
a promising, more comprehensive approach to mitigating speculative execution attacks.

61

Appendix A

Complete Syntax

This is a full and complete listing of all syntax used in the thesis.

Variables (Var): 𝑥
Integers (Num): 𝑛 ∈ ℕ

Booleans (Bool): 𝑏 ∈ {true, false}
Arrays (Array): 𝑥𝑠 ⩴ ⟨𝑎, 𝑛⟩ (base address and length)

Virtual Memory Addresses (Addr): 𝑎 ∈ ℕ
Physical Memory Addresses (PAddr): 𝑝𝑎 ∈ ℕ

Values (Val): 𝑣 ⩴ 𝑛 ∣ 𝑏 ∣ 𝑎 ∣ 𝑥𝑠
Predicted Values (PVal): 𝑝𝑣 ⩴ 𝑣 ∣ ⊥

Expressions (Expr): 𝑒 ⩴ 𝑣 ∣ 𝑥 ∣ 𝑒 + 𝑒 ∣ 𝑒 < 𝑒 ∣ 𝑒 ⊗ 𝑒 ∣ 𝑒 ? 𝑒 : 𝑒 ∣ len(𝑒) ∣ base(𝑒)
Right-hand Sides: 𝑟 ⩴ 𝑒 ∣ * 𝑒 ∣ 𝑥𝑠 [𝑒]

Commands (Comm): 𝑐 ⩴ skip ∣ 𝑥 := 𝑟 ∣ * 𝑒 := 𝑒 ∣ 𝑥𝑠[𝑒] := 𝑒
∣ if 𝑒 then 𝑐𝑠 else 𝑐𝑠 ∣ while 𝑒 do 𝑐𝑠

Command Stacks ([Comm]): 𝑐𝑠 ⩴ 𝑐 ∶ 𝑐𝑠 ∣ []
Instruction Labels: ℓ

Instructions (Instr): 𝑖 ⩴ NOP ∣ MOV⟨𝑥, 𝑒⟩ ∣ LOAD⟨𝑥, 𝑒, 𝑝𝑣, 𝑐𝑠⟩ ∣ STORE⟨𝑒𝑎, 𝑒𝑣, 𝑐𝑠⟩
∣ ASSERT⟨𝑒, 𝑏, 𝑐𝑠⟩ ∣ FAULT⟨𝑎, 𝑖, 𝑐𝑠⟩

Reorder Buffers ([Instr]): 𝑖𝑠 ⩴ 𝑖ℓ ∶ 𝑖𝑠 ∣ []
Directives: 𝑑 ⩴ fetch ∣ fetch 𝑏 ∣ exec 𝑛 ∣ retire ∣ map
Schedule: 𝐷 ⩴ 𝑑 ∶ 𝐷 ∣ []

Observations: 𝑜 ⩴ touch(𝑝𝑎) ∣ rollback(𝑖𝑠)
Observation Trace: 𝑂 ⩴ 𝑜 ∶ 𝑂 ∣ []

Register Maps (Reg): 𝜌 ∈ Var → Val

Predicted Register Maps (PReg): ̃𝜌 ∈ Var → PVal

Page Tables: 𝜏 ∈ Addr → (PAddr ∪ ⊥)
True Page Mapping: 𝑀 ∈ Addr → PAddr

Physical Memory Stores: 𝜇 ∈ PAddr → Val

Configurations (Conf): 𝐶 ⩴ ⟨𝑖𝑠, 𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩
Sequential Program State (SeqState): 𝑆 ⩴ ⟨𝑐𝑠, 𝜌, 𝜏 , 𝜇⟩

62

Appendix B

Bibliography

[1] Paul Kocher et al. ‘Spectre Attacks: Exploiting Speculative Execution’. In: Communications
of the ACM 63.7 (18th June 2020), pp. 93–101. issn: 0001-0782. doi: 10.1145/3399742. url:
https://dl.acm.org/doi/10.1145/3399742 (visited on 31/03/2024).

[2] Moritz Lipp et al. ‘Meltdown: Reading Kernel Memory from User Space’. In: Communications
of the ACM 63.6 (21st May 2020), pp. 46–56. issn: 0001-0782, 1557-7317. doi: 10.1145/
3357033. url: https://dl.acm.org/doi/10.1145/3357033 (visited on 31/03/2024).

[3] Michael Schwarz et al. ‘ZombieLoad: Cross-Privilege-Boundary Data Sampling’. In: Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
CCS ’19: 2019 ACM SIGSAC Conference on Computer and Communications Security. Lon-
don United Kingdom: ACM, 6th Nov. 2019, pp. 753–768. isbn: 978-1-4503-6747-9. doi:
10.1145/3319535.3354252. url: https://dl.acm.org/doi/10.1145/3319535.3354252

(visited on 24/09/2024).

[4] Stephan Van Schaik et al. ‘RIDL: Rogue In-Flight Data Load’. In: 2019 IEEE Symposium
on Security and Privacy (SP). 2019 IEEE Symposium on Security and Privacy (SP). San
Francisco, CA, USA: IEEE, May 2019, pp. 88–105. isbn: 978-1-5386-6660-9. doi: 10.1109/
SP.2019.00087. url: https://ieeexplore.ieee.org/document/8835281/ (visited on
24/09/2024).

[5] Jo Van Bulck et al. ‘LVI: Hijacking Transient Execution through Microarchitectural Load
Value Injection’. In: 2020 IEEE Symposium on Security and Privacy (SP). 2020 IEEE
Symposium on Security and Privacy (SP). San Francisco, CA, USA: IEEE, May 2020, pp. 54–
72. isbn: 978-1-72813-497-0. doi: 10.1109/SP40000.2020.00089. url: https://ieeexplore.
ieee.org/document/9152763/ (visited on 24/09/2024).

[6] Jo Van Bulck et al. ‘FORESHADOW: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution’. In: ().

[7] Claudio Canella et al. ‘Fallout: Leaking Data on Meltdown-resistant CPUs’. In: Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security. CCS
’19: 2019 ACM SIGSAC Conference on Computer and Communications Security. London
United Kingdom: ACM, 6th Nov. 2019, pp. 769–784. isbn: 978-1-4503-6747-9. doi: 10.1145/
3319535.3363219. url: https://dl.acm.org/doi/10.1145/3319535.3363219 (visited on
24/09/2024).

[8] Claudio Canella, Michael Schwarz and Moritz Lipp. ‘A Systematic Evaluation of Transient
Execution Attacks and Defenses’. In: ().

63

https://doi.org/10.1145/3399742
https://dl.acm.org/doi/10.1145/3399742
https://doi.org/10.1145/3357033
https://doi.org/10.1145/3357033
https://dl.acm.org/doi/10.1145/3357033
https://doi.org/10.1145/3319535.3354252
https://dl.acm.org/doi/10.1145/3319535.3354252
https://doi.org/10.1109/SP.2019.00087
https://doi.org/10.1109/SP.2019.00087
https://ieeexplore.ieee.org/document/8835281/
https://doi.org/10.1109/SP40000.2020.00089
https://ieeexplore.ieee.org/document/9152763/
https://ieeexplore.ieee.org/document/9152763/
https://doi.org/10.1145/3319535.3363219
https://doi.org/10.1145/3319535.3363219
https://dl.acm.org/doi/10.1145/3319535.3363219

[9] Hany Ragab et al. ‘CrossTalk: Speculative Data Leaks Across Cores Are Real’. In: 2021 IEEE
Symposium on Security and Privacy (SP). 2021 IEEE Symposium on Security and Privacy
(SP). San Francisco, CA, USA: IEEE, May 2021, pp. 1852–1867. isbn: 978-1-72818-934-5. doi:
10.1109/SP40001.2021.00020. url: https://ieeexplore.ieee.org/document/9519489/
(visited on 29/09/2024).

[10] Michael Larabel. The Brutal Performance Impact From Mitigating The LVI Vulnerability.
Phoronix. 12th Mar. 2020. url: https://www.phoronix.com/review/lvi-attack-perf

(visited on 24/09/2024).

[11] Jonathan Behrens, Adam Belay and M. Frans Kaashoek. ‘Performance Evolution of Mitigating
Transient Execution Attacks’. In: Proceedings of the Seventeenth European Conference on
Computer Systems. EuroSys ’22: Seventeenth European Conference on Computer Systems.
Rennes France: ACM, 28th Mar. 2022, pp. 251–265. isbn: 978-1-4503-9162-7. doi: 10.1145/
3492321.3519559. url: https://dl.acm.org/doi/10.1145/3492321.3519559 (visited on
24/09/2024).

[12] Michael Larabel. In Light Of Spectre BHI, The Performance Impact For Retpolines On Modern
Intel CPUs. Phoronix. 10th Mar. 2022. url: https://www.phoronix.com/review/spectre-
bhi-retpoline (visited on 24/09/2024).

[13] Brian Johannesmeyer et al. ‘Kasper: Scanning for Generalized Transient Execution Gadgets in
the Linux Kernel’. In: Proceedings 2022 Network and Distributed System Security Symposium.
Network and Distributed System Security Symposium. San Diego, CA, USA: Internet Society,
2022. isbn: 978-1-891562-74-7. doi: 10.14722/ndss.2022.24221. url: https://www.ndss-
symposium.org/wp-content/uploads/2022-221-paper.pdf (visited on 24/09/2024).

[14] Sander Wiebing et al. ‘InSpectre Gadget: Inspecting the Residual Attack Surface of Cross-
privilege Spectre V2’. In: ().

[15] Mathé Hertogh et al. ‘Quarantine: Mitigating Transient Execution Attacks with Physical
Domain Isolation’. In: Proceedings of the 26th International Symposium on Research in Attacks,
Intrusions and Defenses. RAID 2023: The 26th International Symposium on Research in
Attacks, Intrusions and Defenses. Hong Kong China: ACM, 16th Oct. 2023, pp. 207–221.
isbn: 9798400707650. doi: 10.1145/3607199.3607248. url: https://dl.acm.org/doi/10.
1145/3607199.3607248 (visited on 22/01/2024).

[16] Hongyan Xia et al. ‘A Secret-Free Hypervisor: Rethinking Isolation in the Age of Speculative
Vulnerabilities’. In: 2022 IEEE Symposium on Security and Privacy (SP). 2022 IEEE Sym-
posium on Security and Privacy (SP). May 2022, pp. 370–385. doi: 10.1109/SP46214.2022.
9833726. url: https://ieeexplore.ieee.org/document/9833726 (visited on 22/01/2024).

[17] AMD. AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection and More.
White Paper. Jan. 2020.

[18] Jonathan Behrens et al. ‘Efficiently Mitigating Transient Execution Attacks Using the
Unmapped Speculation Contract’. In: ().

[19] Ofir Weisse et al. ‘NDA: Preventing Speculative Execution Attacks at Their Source’. In:
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO ’52: The 52nd Annual IEEE/ACM International Symposium on Microarchitecture.
Columbus OH USA: ACM, 12th Oct. 2019, pp. 572–586. isbn: 978-1-4503-6938-1. doi:
10.1145/3352460.3358306. url: https://dl.acm.org/doi/10.1145/3352460.3358306

(visited on 25/09/2024).

[20] Qian Ge et al. ‘Time Protection: The Missing OS Abstraction’. In: Proceedings of the
Fourteenth EuroSys Conference 2019. EuroSys ’19: Fourteenth EuroSys Conference 2019.

64

https://doi.org/10.1109/SP40001.2021.00020
https://ieeexplore.ieee.org/document/9519489/
https://www.phoronix.com/review/lvi-attack-perf
https://doi.org/10.1145/3492321.3519559
https://doi.org/10.1145/3492321.3519559
https://dl.acm.org/doi/10.1145/3492321.3519559
https://www.phoronix.com/review/spectre-bhi-retpoline
https://www.phoronix.com/review/spectre-bhi-retpoline
https://doi.org/10.14722/ndss.2022.24221
https://www.ndss-symposium.org/wp-content/uploads/2022-221-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2022-221-paper.pdf
https://doi.org/10.1145/3607199.3607248
https://dl.acm.org/doi/10.1145/3607199.3607248
https://dl.acm.org/doi/10.1145/3607199.3607248
https://doi.org/10.1109/SP46214.2022.9833726
https://doi.org/10.1109/SP46214.2022.9833726
https://ieeexplore.ieee.org/document/9833726
https://doi.org/10.1145/3352460.3358306
https://dl.acm.org/doi/10.1145/3352460.3358306

Dresden Germany: ACM, 25th Mar. 2019, pp. 1–17. isbn: 978-1-4503-6281-8. doi: 10.1145/
3302424.3303976. url: https://dl.acm.org/doi/10.1145/3302424.3303976 (visited on
18/07/2024).

[21] Floris Westerman. ‘PageZero: Mitigating Speculative Execution Attacks by Clearing Page
Tables’. MSc Thesis. Rijksuniversiteit Groningen, forthcoming.

[22] Marco Vassena et al. ‘Automatically Eliminating Speculative Leaks from Cryptographic Code
with Blade’. In: Proceedings of the ACM on Programming Languages 5 (POPL 4th Jan. 2021),
pp. 1–30. issn: 2475-1421. doi: 10.1145/3434330. url: https://dl.acm.org/doi/10.1145/
3434330 (visited on 13/02/2024).

[23] Andrew S. Tanenbaum and Todd Austin. Structured Computer Organization. 6th ed. Boston:
Pearson, 2013. 775 pp. isbn: 978-0-13-291652-3.

[24] Vladimir Mironov et al. ‘Performance Evaluation of the Intel Optane DC Memory With
Scientific Benchmarks’. In: 2019 IEEE/ACM Workshop on Memory Centric High Performance
Computing (MCHPC). 2019 IEEE/ACM Workshop on Memory Centric High Performance
Computing (MCHPC). Nov. 2019, pp. 1–6. doi: 10.1109/MCHPC49590.2019.00008. url:
https://ieeexplore.ieee.org/document/8946136 (visited on 17/09/2024).

[25] Bevin Brett. Memory Performance in a Nutshell. Intel. 6th June 2016. url: https://www.
intel.com/content/www/us/en/developer/articles/technical/memory-performance-in-

a-nutshell.html (visited on 17/09/2024).

[26] Kernel Development Community. Memory Management. The Linux Kernel Documentation.
url: https://www.kernel.org/doc/html/v6.6/arch/x86/x86_64/mm.html (visited on
24/09/2024).

[27] AMD. AMD64 Architecture Programmer’s Manual, Volume 2: System Programming, 24593.
June 2023. url: https://www.amd.com/content/dam/amd/en/documents/processor-tech-
docs/programmer-references/24593.pdf.

[28] Anand Lal Shimpi. Intel’s Haswell Architecture Analyzed: Building a New PC and a New Intel.
AnandTech. url: https://www.anandtech.com/show/6355/intels-haswell-architecture
(visited on 18/09/2024).

[29] Anton Ertl. Reorder Buffer Size of Various CPUs. url: http://www.complang.tuwien.ac.
at/anton/robsize/ (visited on 18/09/2024).

[30] Georgi Gerganov. Keytap3: Acoustic Keyboard Eavesdropping. C++ and stuff. 25th Apr. 2022.
url: https://keytap3.ggerganov.com/ (visited on 19/09/2024).

65

https://doi.org/10.1145/3302424.3303976
https://doi.org/10.1145/3302424.3303976
https://dl.acm.org/doi/10.1145/3302424.3303976
https://doi.org/10.1145/3434330
https://dl.acm.org/doi/10.1145/3434330
https://dl.acm.org/doi/10.1145/3434330
https://doi.org/10.1109/MCHPC49590.2019.00008
https://ieeexplore.ieee.org/document/8946136
https://www.intel.com/content/www/us/en/developer/articles/technical/memory-performance-in-a-nutshell.html
https://www.intel.com/content/www/us/en/developer/articles/technical/memory-performance-in-a-nutshell.html
https://www.intel.com/content/www/us/en/developer/articles/technical/memory-performance-in-a-nutshell.html
https://www.kernel.org/doc/html/v6.6/arch/x86/x86_64/mm.html
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.anandtech.com/show/6355/intels-haswell-architecture
http://www.complang.tuwien.ac.at/anton/robsize/
http://www.complang.tuwien.ac.at/anton/robsize/
https://keytap3.ggerganov.com/

	Introduction
	Background - Computer Architecture
	Memory Hierarchy
	Virtual Memory
	Address Spaces
	Page Tables

	Protection Rings
	Interrupts and Page Faults
	Memory Protection
	Kernel Memory Layout

	Virtualisation

	Background - Speculative Execution Attacks
	Out-of-Order Execution
	Speculative Execution
	Side Channels
	Timing Attacks
	Cache Attacks

	Speculative Execution Attacks
	Spectre
	Consequences

	Further Attacks

	Mitigating Speculative Execution Attacks
	State of the Art
	Common Mitigations
	Comprehensive Approaches

	PageZero
	Contributions

	Attacker Model

	Formal Model for Speculative Execution
	Meta Programming Language
	Sequential Semantics
	System State
	Expression Evaluation
	Reduction Relation
	Big-Step Semantics

	Speculative Semantics
	Staged Pipeline Model
	Out-of-Order Execution
	Configurations
	Fetch Directive Rules
	Execute Directive Rules
	Retire Directive Rules
	Handling Page Faults
	Big-Step Semantics

	Example
	Sequential Execution
	Speculative Execution

	Proving Effectiveness of PageZero against Spectre v1
	Confluence
	Progress
	Linking fetches and retires
	Eager Directives
	Confluence, at Last

	Consistency
	Security
	Integrity of Speculative Execution
	Empty Page Tables
	Arbitrary Initial Page Tables
	Equivalence

	Conclusions and Discussions
	Complete Syntax
	Bibliography

