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Abstract

The present thesis studies the programmatic and formal choices made in the development of Re-
verse Mathematics (RM), a framework for the analysis and extraction of foundational assumptions
underlying ordinary-mathematical theorems. It offers a critique of RM, based on its unfaithful rep-
resentation of the latter. Among other issues, the main two problems preventing the classical RM to
fulfil its foundational ambitions are the arbitrary techniques of encoding the informal mathematics,
and the lack of distinction between a theorem and its proof that in practice leads to the possibility
of calibrating a single theorem with different set-existence principles. Then, the Constructive RM
is tried against the same questions. The thesis concludes that the constructive frameworks for RM
offer a more fine-grained analysis together with a more faithful representation of some significant
portions of informal mathematics, but they cannot analyze theorems whose constructive versions
are viewed within classical mathematics as inequivalent to their classical counterparts.
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A Practice-Based Critique of
Reverse Mathematics

Taking the Principle of the Excluded Middle from
the mathematician is the same as prohibiting the
boxer the use of his fists
Hilbert
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A witty by-passer in my hometown of
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0 | An Overview of the Big Five

The Outline of the Thesis

For the purposes of this thesis I have to move back and forth between the technical results and

features of different formal frameworks on the one hand, and the philosophical discussion of their

meaning and consequences on the other. It is therefore sometimes challenging to square this with

conciseness and clear exposition of the progression of the reasoning in my investigation. For these

aims, I introduce the material as follows. The present chapter 0 is a presentation of the most

important facts about the so-called Big Five subsystems of the Second Order Arithmetic (Z2).

Then, I discuss the features of this framework with more depth and give a brief example of the

reverse-mathematical practice.

In chapter 1 I introduce more context to the rise of reverse mathematics, a bit of its history and

a review of its goals as a foundational endeavor together with the methods it employs to achieve

some of these aims. Then, in chapter 2 I discuss the technical and philosophical problems occurring

within the framework presented in chapter 0 in unison with using it as a case study to develop a

series of constraints a suitable reverse-mathematical framework should satisfy.

Chapter 3 begins with an introduction of the constructive approaches to reverse mathematics and

evaluates how they score against the constraints put forth in the previous chapter.



2 0.1. THE FRIEDMAN-SIMPSON PROGRAM

0.1 The Friedman-Simpson Program

The research project that goes by the name of the Friedman-Simpson style reverse mathematics

(from now on I will call it the Classical RM), was started in the 70s by a series of papers by Harvey

Friedman. Historically, second order arithmetic appeared way before, with [HA38] being sometimes

cited as the first textbook treatment of it1, but it seems that it was Friedman who recognized its

usefulness for analysis of ordinary mathematical theorems. Put more precisely, the goal of Classical

RM is to answer the question: Which set existence axioms are needed to prove the theorems of

ordinary, non-set-theoretic mathematics? Here, non-set-theoretic mathematics corresponds to a

rough distinction between “countable” and “uncountable” mathematics2 or

that body of mathematics which is prior to or independent of the introduction of ab-

stract set-theoretic concepts. We have in mind such branches as geometry, number

theory, calculus, differential equations, real and complex analysis, countable algebra,

the topology of complete separable metric spaces, mathematical logic, and computabil-

ity theory. [Sim99, p. 1]

The objects of thus understood ordinary mathematics are almost always countable or separable,

therefore it seems fitting to choose a framework “where countable objects occupy center stage”

[Sim99, p. 2]. Moreover, the study of objects of areas such as calculus usually requires quantification

over sets (e.g. when one wants to state something about a set of functions). For these reasons

Classical RM is done in second order arithmetic.

Z2 is a system in a two-sorted language, with number- and set-variables. The atomic formulae are

t1 = t2, t1 < t2 and t1 ∈ X where t1, t2 are numerical terms (with number variables ranging over

ω) and X is a set variable. It is axiomatized by (universal closures of) three kinds of axioms:

• the usual axioms for +,× and <

n+ 1 ̸= 0

m+ 1 = n+ 1 → m = n

m+ 0 = m

1In fact, comprehension schemas go even earlier to none other than Gödel’s Incompleteness paper [Göd86] or even
Ramsey’s [Ram26], [DW16].

2This delineation is indeed rather vague; I discuss its inherent problems further below in 2.2.
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m+ (n+ 1) = (m+ n) + 1

m · 0 = 0

m · (n+ 1) = (m · n) +m

¬m < 0

m < n+ 1 ↔ (m < n ∨m = n)

• induction axiom:

(0 ∈ X ∧ ∀n(n ∈ X → n+ 1 ∈ X)) → ∀n(n ∈ X)

• comprehension scheme:

∃X∀n(n ∈ X ↔ ϕ(n))

where ϕ(n) is any second order formula in which X does not occur freely. Comprehension

schemes in the context of Reverse Mathematics (RM) are labelled as CA (as in “comprehension

axiom”).

A subsystem of that theory is axiomatized by the same set of axioms only that the defining com-

prehension scheme (or a different set-existence principle) is restricted to formulae from a designated

level of the arithmetical hierarchy as defined in Definition 0.1.

For instance, the subsystem RCA0 is the system consisting of the basic axioms, the induction axiom

(not the full scheme) and a comprehension scheme which is restricted to ϕ(n) being a ∆0
1 formula.

Def. 0.1 (Σ0
k and Π0

k formulas).

An L2 formula ϕ which is equivalent to a formula with only bounded quantifiers is said to be Σ0
0

and Π0
0.

An L2 formula ϕ is Σ0
k+1 if it is of the form ∃n0 · · · ∃nmθ where θ is Π0

k.

An L2 formula ϕ is Π0
k+1 if it is of the form ∀n0 · · · ∀nmθ where θ is Σ0

k.

If ϕ is both Σ0
k and Π0

k then we classify it as ∆0
k.

Remark 0.2. The index n in Σn
k and Πn

k signifies the number of set quantifiers, as opposed to
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number quantifiers in ϕ. In Classical RM (Classical RM) we only speak of subsystems (including

Z2) which only have one set quantifier. Therefore Z2 =
⋃
k∈ω

Π1
k-CA0, but it is traditionally denoted

as Π1
∞-CA0. ◀

RCA0 is one of the five subsystems of Z2 that hold a unique place among others. This group is called

the Big Five: RCA0, WKL0, ACA0, ATR0, Π1
1-CA0, each of which is strictly weaker (in the sense

specified above) than the ones on the right-hand-side to it, thus forming a hierarchy reminiscent of

the Gödel Hierarchy. The research had quickly revealed that significantly many key theorems of

“undergraduate” mathematics are either provable in RCA0 or equivalent to one of its extensions in

the Big Five3. Below, following [Sim99], I briefly discuss the contents of these subsystems.

0.1.1 RCA0

To begin with the weakest one, RCA0 comprises of the basic axioms, the induction restricted to Σ0
1

formulae, Σ0
1-IND, and recursive comprehension scheme, also known as ∆0

1 comprehension scheme.

Def. 0.3 (Σ0
1 induction). Σ0

1-IND is the restriction of the second order induction scheme (as defined

above) to L2-formulae ϕ(n) which are Σ0
1. Thus we have the universal closure of

(ϕ(0) ∧ ∀n(ϕ(n) → ϕ(n+ 1))) → ∀nϕ(n)

where ϕ(n) is a Σ0
1 formula.

All subsystems of Z2 used in RM only have this restricted form of induction.4

Def. 0.4 (∆0
1 comprehension). The ∆0

1 comprehension scheme consists of universal closures of the

formulae of the form

∀n(ϕ(n) ↔ ψ(n)) → ∃X∀n(n ∈ X ↔ ϕ(n))

where ϕ(n) is a Σ0
1 formula, ψ(n) is a Π0

1 formula, n is a number variable and X is a set variable

which does not occur freely in ϕ(n).

The minumum ω-model of RCA0 is exactly the collection of subsets A of ω that are recursive. That
3The “reversals” in the literature most often refer to the implication from a theorem to an axiom, but I will mean

the whole equivalence between an ordinary-mathematical theorem and a subsystem.
4In Z2, Σ0

1-IND is equivalent to Π0
1-IND, as proved in (§II.3) of [Sim99].
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is, given a set B ∈ P(ω), there is a unique smallest ω-model of RCA0 containing B, consisting of all

sets A ∈ P(ω) which are recursive in B. That is why this system roughly corresponds to recursive

analysis and is perfect for formalizing recursive mathematics. More to this point, any theorem of

the first order theory Σ0
1-Peano Arithmetic (PA) (PA with the induction axiom restricted to Σ0

1

formulae) is a theorem of RCA0 and vice versa, i.e. Σ0
1-PA is the first order part of RCA0 [Sim99,

p. 25]. Most importantly, RCA0 has the same consistency strength as, and is conservative over,

Primitive Recursive Arithmetic (PRA) (for Π0
2 sentences)5 [Sim99, pp. 57–8]. Apart from that,

being relatively weak, RCA0 usually serves as a base system of Classical RM: the reversals are

proved as theorems of this system.

0.1.2 WKL0

WKL0 comprises of RCA0 + Weak König’s Lemma i.e. the assertion that any infinite subtree of

a binary tree has an infinite path6. It is strictly stronger than RCA0, as the latter’s minimum

ω-model does not satisfy weak König Lemma. Regarding the mathematical motivation for this

subsystem, it turns out that it has a close connection to the notion of compactness: it is equivalent

to the Heine/Borel covering lemma: Every covering of the closed interval [0, 1] by a sequence of

open intervals has a finite subcovering. This concept, in a sense expressing that one can find a

“well-behaved” (finite, controllable) substructure of a given structure falls nothing short of one of

the most important of the modern mathematical practice. With this subsystem we reach the level

of certain core theorems of infinitary mathematics. Many properties of continuous functions are

provable in (and often equivalent to) WKL0: uniform continuity, the maximum principle or Riemann

integrability. That is why [Sim84, p. 786] calls this system a theory of continuity.

A paramount and somewhat surprising result is the proof of WKL0’s conservativity over PRA for

Π0
2-sentences (i.e. essentially arithmetical statements)7 [Sim99, p. 381]. This means that WKL0 has

the same consistency strength as PRA.

Formally, WKL0 is equivalent to Σ0
1-separation schema, which is a universal closure of the formulae

5PRA and Σ0
1 −PA have the same consistency strength and their proof-theoretic ordinal is ωω .

6A full binary tree is defined as a set of finite sequences of 0’s and 1’s, {0, 1}<N.
7Harrington even showed that WKL0 is Π1

1-conservative over RCA0 [Sim99, p. 372].
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of the form

(∀n¬(ϕ(n) ∧ ψ(n))) → ∃X(∀n(ϕ(n) → n ∈ X) ∧ ∀n(ψ(n) → n /∈ X))

where ϕ(n), ψ(n) are Σ0
1 formulae and X does not occur freely in ϕ.

0.1.3 ACA0

This subsystem is given by the comprehension schema restricted to arithmetical formulae i.e. the

formulae with no set quantifiers. A couple of useful results show that arithmetical comprehension,

i.e. Π1
0-CA0, is equivalent to Σ0

1-CA0, which is in fact equivalent to any Σ0
k-CA0 as well as to Π0

k-CA0

for 1 ≤ k ∈ ω [Sim99, p. 26]. Arithmetical comprehension together with the induction axiom give

rise to the arithmetical induction scheme.

Def. 0.5 (arithmetical induction scheme).

(φ(0) ∧ ∀n(φ(n) → φ(n+ 1))) → ∀n(φ(n))

where φ(n) is any L2 arithmetical formula.

Importantly, it can be showed that any theorem of first order arithmetic PA is a theorem of ACA0

[Sim99, p. 7]. In model theoretic terms, we have that for any model (M,P(M),+M, ·M, 0M, 1M, <M)

of ACA0, its first order part, (M,+M, ·M, 0M, 1M, <M) is a model of PA. It follows that ACA0 is

a conservative extension of PA and its proof-theoretic ordinal is ε0.

The minimum ω-model of ACA0 consists of all subsets of ω that are definable over (ω,+, ·, 0, 1, <)

or equivalently the set of those subsets of ω that are Turing-reducible to some nth Turing jump of

the empty set.

In a sense, ACA0 plays a central role in all of Classical RM; it is significantly weaker than the

theories “above” it and by virtue of that it often can serve as a base theory for reversals about some

pretty strong principles, but at the same time it is strong enough to prove many key ordinary-

mathematical theorems that are unprovable in weaker systems. It often serves as a reference point

for the plethora of theories in RM [AD18].
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[Sim84, p. 786] says that ACA0 provides a good theory of sequential completeness and convergence.

And indeed it is equivalent over RCA0 to Bolzano/Weierstrass theorem: Every bounded sequence

or reals has a convergent subsequence, the Ascoli lemma: For a sequence of continuous mappings

⟨fn : n ∈ N⟩ of a compact metric space A into a compact metric space B, fn : A −→ B, there exists

a uniformly convergent subsequence, or to some combinatorial principles (e.g. König’s lemma),

as well as some important results in algebra, such as existence of maximal ideals for countable

commutative rings. The exceptions to what is provable in ACA0 tend to involve ordinal numbers;

most of these exceptions are provable in Π1
1-CA0.

Philosophically, ACA0 is sometimes identified with predicative mathematics [Sim99, p. 42], as de-

veloped by Feferman in [Fef64] and [Fef68]. Following Weyl’s conception, Feferman took N as given

and in his system only admitted objects defined with parameters of previously defined sets, thus

avoiding the arbitrary reference to any set in the set-theoretic universe
∨

, which is common in

classical mathematics. This system closely corresponds to ACA0.

0.1.4 ATR0

ATR0 is an “intermediate” system that was historically discovered as a response to the needs of

RM. Being strictly stronger than ACA0 and strictly weaker that Π1
1-CA0, it provides an important

enhancement to the calibration of the framework to the study of ordinary mathematics.

The system consists of ACA0 plus a set existence principle called arithmetical transfinite recursion.

Def. 0.6 (arithmetical transfinite recursion). Let φ(n,X) be an arithmetical formula, possibly

with parameters. It can be viewed as an “arithmetical operator” Φ : P(N) −→ P(N) defined by

Φ(X) = {n ∈ N : φ(n,X)}

Now, let (A,<A) be some countable well-ordering. If we transfinitely iterate the operator Φ along

(A,<A), we get some set Y ⊆ N, satisfying the condition that for each a ∈ A, Y a is the result of

iterating Φ along (A,<A) up to (but not including) a. Arithmetical transfinite recursion asserts the

existence of a set Y which is the result of applying Φ one more time (i.e. Y a < Y for any a ∈ N).

More concisely, the axiom asserts that the Turing jump operator can be iterated along any countable
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well-ordering, starting at any set. Therefore the formation of sets in ATR0 is bounded by ωCK
1 , the

first countable ordinal that is not the order type of a recursive well-ordering of ω. Needless to say,

then, that [Sim99, p. 48] calls it the theory of countable ordinals.

An ω-model HYP, which is the collection of all hyperarithmetical subsets of ω is the intersection

of all β-models of ATR0; HYP, however, is still too small to model ATR0 and the theory does not

possess a minimum ω-model.

ATR0 is conservative over Feferman’s first-order theory of predicative analysis IR for Π1
1-sentences

and it has been shown that its proof-theoretic ordinal is Γ0, the Feferman-Schütte ordinal. Therefore

[Sim99, p. 41] identifies it philosophically with “predicative reductionism” (the program of reducing

mathematics to predicative methods, analogously to Hilbert’s finitism).

ATR0 is significantly stronger than ACA0 and there are important results provable in the former for

which the latter does not suffice. For instance, ACA0 cannot even prove comparability of countable

ordinals. ATR0 is the first theory on our hierarchy in which one can work out certain results about

uncountable sets in topology or descriptive set theory; some important theorems include Souslin’s

theorem or the perfect set theorem. In fact, the latter is equivalent to the subsystem.

Notably, ATR0 is equivalent to the Σ1
1-separation scheme, which yields an elegant order of strength:

RCA0≡
∆0

1-CA0
<

WKL0≡
Σ0

1separation
<

ACA0≡
Π1

0-CA0
<

ATR0≡
Σ1

1separation
< Π1

1-CA0
8

0.1.5 Π1
1-CA0

Π1
1-CA0 is the strongest of the Big Five that is the result of making possible to quantify over elements

of sets:

∃X∀n(n ∈ X ↔ φ(n))

(where φ(n) is a Π1
1 formula in which X does not occur freely) is the defining comprehension scheme

of the subsystem, which is equivalent to the existence of the hyperjump of every set and strong

enough to establish existence of sets of functions.
8Sadly, ACA0 is not equivalent to ∆1

1-CA0, which in fact is somewhat stronger than it.
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Similarly to the previous subsystem, Π1
1-CA0 is too strong to have a minimum ω-model. Instead,

a subset S of ω is a β-model of Π1
1-CA0 if and only if A ∈ S implies HJ(A) ∈ S, where HJ(A)

denotes the hyperjump of A. And we have a minimum β-model for Π1
1-CA0, namely

{A ∈ P(ω) : ∃n ∈ ω(A ≤H HJ(n,∅))}

where A ≤H B means that A is hyperarithmetical in B. We also have minimum β-models for each

Π1
k-CA, 1 ≤ k ≤ ∞.

Π1
1-CA0 is a strong system in which one can develop significant portions of topology and descriptive

set theory, inaccessible to the previous systems. For instance, some (encodings of) classical results

about Borel and analytic sets are doable in Π1
1-CA0; notable examples are the Cantor/Bendixon

Theorem (Every closed set in NN is a union of a perfect closed set and a countable set) or Kondo’s

Theorem (coanalytic sets in Cantor spaces have the uniformization property). In fact, both are

equivalent to the subsystem’s characteristic axiom9. Moreover, Π1
1-CA0 gives some illuminating

results about relations between the Ramsey Theorem and the Axiom of Determinacy (AD). This is

generally because the system provides a good theory of countable well founded trees. [Sim99, p. 22]

identifies it with impredicative mathematics.

In his [Tak67], Takeuti established the consistency strength of Π1
1-CA , a strong subsystem with

full induction, at the ordinal ΨΩ1
(Ωω) (where Ψ is an appropriate collapsing function in the

Buchholz-Schütte notation). Later the proof-theoretic strength of Π1
1-CA0 was located at Ψ0(Ωω) =

sup{Ψ0(Ωn) : n < ω}10 which is much bigger than Γ0, but turns out to be a recursive ordinal still

smaller than that of Kripke-Platek set theory (KP).

To give more insight into the practice of RM, we continue with a remark on practice of proving

reversals and a sketch of such a result following [Sim99, pp. 32–33].
9Admittedly though, the former holds over ACA0 and the latter over ATR0 and not over RCA0. We will discuss

the meaning of this later in section 2.2.
10See [Tak13, ch. 5] and for its position in relation to other ordinals see [Mad17].
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0.2 Reversals

Typically, a proof in RM begins with choosing a suitably weak base theory11 T and formalizing a

theorem Thm under consideration in the language of the second order arithmetic L2, thus obtaining

a formal version ϑ of Thm. This is done via encodings of mathematical objects in the conventional

fashion, with q ∈ Q being an ordered pair of positive integers and a real being a sequence of rational

numbers ⟨qk : k ∈ N⟩ such that ∀k∀i(|qk − qk+i| ≤ 2−k) and functions being coextensional with

“many-one” relations which are defined as sets, etc. (see e.g. [Sim99, pp. 73–76]).12 If ϑ is not

provable in T (which after Friedman began to be shown with model-theoretic tools), one takes a

stronger extension T′ of T, and proves ϑ within it (often by a straightforward formalisation of

the ordinary-mathematical proof of Thm [Eas15, pp. 1–2]. Then, for the other direction of the

equivalence, one assumes T+ϑ and sets out to prove the stronger axioms of T′. This establishes a

reversal between ϑ and T′ modulo the base theory T. Let us now turn to an example of employing

this strategy. I will later compare it with the constructive one in section 3.3.4.

0.2.1 An Example of a Reversal

Def. 0.7 (Bolzano-Weierstraß). Every bounded sequence of real numbers has a convergent subse-

quence.

First, we define a real number as above.

Def. 0.8 (within RCA0). A real number is defined to be a sequence of rational numbers ⟨qk : k ∈ N⟩

such that ∀k∀i(|qk − qk+i| ≤ 2−k). Two real numbers ⟨qk : k ∈ N⟩, ⟨q′k : k ∈ N⟩ are equal if

∀k(|qk − q′k| ≤ 2−k+1).

Observe that this definition varies from the ordinary-mathematical one, where a real is identified

with an equivalence class of Cauchy sequences. This choice of simplified representation is forced by

the fact that L2 is ill-fitted to represent such an “infinitary” concept.
11In the present thesis whenever a reversal is presented and the base theory is not specified, we assume that it is

RCA0, unless explicitly stated otherwise.
12Already at this point I want to stress that although classical methods of encoding are deeply cemented in the

reverse-mathematical practice of formalization, they are by no means the only ones available. Alternative methods
have a lasting presence and go at least as far back as to [GMR58], where Grzegorczyk et al. were able to avoid some
of the coding machinery that must otherwise be used when only quantification over sets is permitted within a second
order functional calculus.
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Now, we define sequences of real numbers in L2.

Def. 0.9 (within RCA0). A sequence of real numbers is a function f : N×N −→ Q such that for

each n ∈ N the function fn : N −→ Q defined by fn(k) = f(k, n), is a real number.

We say that a sequence is monotone if it is increasing or decreasing, i.e. if either fn(k) < fn+1(k)

when n < n + 1 or fn+1(k) < fn(k) when n + 1 < n, for all n, n + 1 ∈ N. We say that such a

sequence converges to x, (where x = limn xn) if ∀0<ϵ∃n∀i (|x− xn+i| < ϵ). We say that a sequence

is convergent if the limit x exists.

We are now ready to state the reversal.

Thm. 0.10 (Friedman). Over RCA0, the Bolzano-Weierstraß theorem is equivalent to the arith-

metical comprehension scheme.

Proof. First we show that the usual proof of the Bolzano-Weierstraß goes through in ACA0. For

this, we show that if a sequence of reals is bounded, then by the monotone convergence theorem, it

also has a convergent subsequence.

Let f be an arbitrary bounded sequence of reals. Since f is bounded, we can define g : N −→ N by

g(k) = the largest i < 2k such that i · 2−k ≤ xn ≤ (i+ 1) · 2−k for infinitely many n ∈ N. g exists

by the Π1
0 comprehension (similarly for the case of an infimum of decreasing sequences).

Now, set x = ⟨qk : k ∈ N⟩ where qk = g(k) · 2−k. We can readily compare it with the definition 0.9

to verify that ∀0<ϵ∃m∀n (m < n → xn < x + ϵ) and that ∀0<ϵ∀m∃n (m < n ∧ |x − xn| < ϵ), i.e.

that x = lim supnxn.

Now define the subsequence ⟨xn : n ∈ N⟩ of f to be the sequence satisfying |x − xn| ≤ 2−k of

“peaks” of f , that is the sequence of supn. Clearly x = limk xnk
, so we have that ACA0 proves that

a bounded sequence of reals has a subsequence converging to x, thus yielding the forward direction

of the equivalence.13

For the second direction we reason in RCA0. Assume the Bolzano-Weierstraß theorem. Since
13Note that we used the sequential completeness of reals, which is equivalent to ACA0; in the key step we also

used the monotone convergence theorem, which is equivalent to ACA0 (for proof through the sequential least upper
bound principle, see [Sti18, pp. 113–118]).
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ACA0 is equivalent to Σ0
1-CA, it suffices to prove for some Σ0

1 formula φ(n) stating the existence of

{n : φ(n)}. So we choose

φ(n) ≡ ∃k θ(k, n) (1)

where θ is of course Σ0
0, such that for each k ∈ N we define

ck =
∑

{2−n : n < k ∧ (∃m < k θ(m,n)}

Then ⟨ck : k ∈ N⟩ is an increasing sequence of rational numbers which is bounded by k. This

sequence exists by ∆0
1-comprehension (that we have in RCA0). By the Bolzano/Weierstraß theorem,

c = limk ck exists. So we have the formula

∀n(φ(n) ↔ ∀k (|c− ck| < 2−n → ∃m < k θ(m,n)) (2)

But this means that 1 and 2 are equivalent and since they are Σ0
1 and Π0

1 respectively, by ∆0
1-

comprehension we have

∃X ∀n (n ∈ X ↔ φ(n))

This establishes the Σ0
1-comprehension and therefore also the arithmetical comprehension. ■

With this we conclude our bird’s eye view over the Big Five. The following section offers a reading

of the deeper goals underlying the reverse mathematical endeavor.



1 | Preliminaries: the Motivations Be-
hind Reverse Mathematics

1.1 The Roots of Reverse Mathematics

RM is a foundational program whose goal is most concisely described as finding the sufficient and

necessary axioms to prove given mathematical theorems. It strives to give insight about what

one might call “the epistemic weight” of studied theorems. The characteristic attitude of RM is

not finding ways to prove a given statement by any means necessary, but trying to pin down the

minimal collection of assumptions that imply it. In this way, the objective is to specify the “right”

axioms in the sense that these axioms can be proved from the theorem [Fri75, p. 235] (hence reverse

mathematics).

As much as philosophical considerations motivated the inception of RM as a branch of mathematical

logic in the ’70s, the idea of finding the “right” axioms is seemingly as old as systematic mathematics

itself. Conditioned by a century-long study of countless formal logics, today we tend to have a pretty

relativistic inclinations with regard to axiom systems, but for generations of mathematicians “axiom”

was identified with an intuitive and obvious assumption. That is why Euclid’s fifth postulate,

believed to be far from trivial, troubled geometers since antiquity. Not being able to show that

it is derivable from the first four axioms, they tried to prove that its negation contradicts these

assumptions. This has lead to discoveries of equivalences between the postulate and several other

statements (notably the existence of a rectangle, the sum of a triangle’s angles being equal to two

right angles, or that three noncollinear points lie on a circle)1, and ultimately to a demonstration
1For a broader historical commentary of the V Postulate, see [Hea56].
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of its independence from the previous four axioms by Beltrami and Poincaré. These equivalences

shed more light on how strong these theorems are, i.e. that given a base theory of the first four

axioms, one cannot derive them without assuming something more. At the same time these results

show how significant the fifth postulate is for the development of Euclidean geometry: the hallmark

Pythagorean theorem is also equivalent to the parallel postulate, and therefore independent of the

“obvious” axioms. These results were a by-product of a quest to find the most suitable assumptions

for the Euclidean geometry or in other words, to find the true Euclidean axioms.

The ardent demand for foundational clarification was rekindled when the consequences of the use

of the so-called infinitary methods began to be uncovered in the early 20th century. Until that era

mathematics tended to be stubbornly algorithmic (and so constructive), but the new mathematics2

developed in the fields such as real analysis, algebraic number theory, point-set topology and set

theory by Heine, Borel, Russell, Cantor, Dedekind, Lebesgue, Steinitz, Hausdorff or J. Tannery was,

mostly implicitly, using methods such as the Axiom of Choice (AC)3 [Moo82, pp. 8–16, 21], thus

resolutely departing from the constructive nature of the science as hitherto known. This direction

naturally resulted in Cantor’s claim of the well-orderability of any set (later proved by Zermelo

to be equivalent with the full AC), which was treated scathingly by many thereafter. The titanic

work [Sie18] by Sierpiński and the Lvov-Warsaw School unveiled how significant the axiom was

by showing its indispensability in important results established even by its critics (e.g. Lebesgue).

For that reason Sierpiński thought that it should be precisely determined which proofs depended

upon the axiom, notwithstanding the foundational ideology one might endorse [Moo82, p. 200].

While Sierpiński did not use any formal framework (in today’s sense of the term) to study AC, his

investigation motive was extremely close to the basic inspiration of RM and arguably helped pave

the way of the future research in the field due to his clear statement of the pragmatic dimension of

the inquiry; this was different from the philosophical or methodological stimulus surrounding the

analysis of the parallel postulate. The emphasis was put on finding the role the axiom plays in

mathematics instead of finding the “true” extent of the necessity of AC4. But the case of AC is just

one of many problems mathematics faced in the wake of the foundational crisis.
2Simpson might call it the “set-theoretic” sort.
3Though rarely in its uncountable version and most often in the form of employing denumerably many arbitrary

choices or dependent choices. Countable and Dependent Choice is today widely accepted as constructive, but the
infinitary tendency that followed soon after is also essential in this form of the axiom.

4Of course the conclusions about latter stem from those about the former, modulo one’s foundational stance.
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In 1902 Hilbert included the challenge for finding a finitistic proof of consistency of arithmetic

on his list of the most pressing issues in mathematics of the day [Hil02] to settle all arguments

about admissibility of the newly developed infinitistic methods. The idea was to show that even

if mathematicians did apply the so-called ideal methods, the latter could be safely reduced to the

“concrete” finitistic ones by showing in the abstract that arithmetic (and all other fields that were

reducible to it) could be proved to be a consistent theory solely through finitistic means. That

would effectively establish that the infinitary mathematics is merely a useful tool, a shorthand for

the practically more arduous but “safe” finitistic portion and that it does not bring in any additional

precarious content. The popular belief has it that Gödel’s Incompleteness Results demolished such

ambitions as the II Incompleteness Theorem (II GIT) states that if a given formal theory T with

a humble portion of arithmetic is consistent, the sentence expressing its consistency Con(T ) is

unprovable in T 5. But the story is not that simple: together with limitations, Gödel’s results came

with several paths forward6. One of them was called the “Gödel Hierarchy” [Sim10]. It is a hierarchy

of theories T0, T1, ... where any Ti satisfies the conditions of the I Incompleteness Theorem (I GIT)

and we write

Ti < Tj

for any two theories such that “Ti is consistent” is a theorem of Tj . Then we say that consistency

strength of Ti is less than that of Tj or that Tj has an oracle for Ti, or that Ti is interpretable in Tj

but not vice versa7. Notably, many important foundational theories are linearly ordered by <. An

alternative ordering of theories stems from I GIT, where we write

Ti ⊂ Tj

meaning that the set of theorems of Ti comprises a proper subset of theorems of Tj . In this way,

we can think of Ti ⊂ Tj as stating that Tj is stronger than Ti. ⊂- and <-orderings in many

cases coincide, but that’s not always the case. One can always “artificially” construct a pair of

incomparable theories, but what makes the Hierarchy significant is that “mathematically natural”

theories abide by a smooth order [Sim10, p. 3]. I am going to discuss what “mathematically natural”
5Constructively unprovable, as Gentzen gave an infinitary proof through cut-elimination.
6An important one that I will not deal with is described in Artemov’s [Art19], where consistency of PA is proved

in PA, but not by encapsulating the consistency property in a single formula.
7This hierarchy was anticipated in Tarski’s work on truth predicate and formally studied in Turing’s [Tur04] PhD

thesis.
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might actually mean in section 2.1 of the next chapter and for now will just focus on the meaning

of the Hierarchy for RM.

From previous examples we know that if assumptions one uses to prove results are stated clearly

enough, it is in principle possible to analyze them and compare them with theorems, gaining more

insight into the nature of the studied axioms. For instance, consider the three following statements:

(a) For any set X of nonempty sets, there exists a choice function f that is defined on X and

maps each set of X to an element of that set.

(b) Every filter on a set can be extended to an ultrafilter.8

(c) For every set X there is an ordinal α such that X is equipollent to some subset of the power

set of α.9

What is the relation between them? The first two are well-known principles and (c) seems to be

closely related to them. A logician will probably know that (a) is the strongest of them, but the

relation between (b) and (c) is not at all obvious. It turns out that in ZF, (a) indeed implies the

other two, but interestingly (b) and (c) are independent of each other despite the fact that both

imply the Ordering Principle10 [Moo82, p. 329]. From these results one can not only learn that

AC is significantly stronger than both of these highly non-constructive principles, but also that the

axiom has consequences in seemingly distant fields like abstract algebra and set theory, and that

they have an important intersection in the form of the Ordering Principle. All of these methods

could have been discovered without the foundational study, but these relations would have remained

uncovered.

Now, what Gödel Hierarchy brings to the picture is the promise of a single “measure” that would

give even more clarity to our understanding of the connections between these principles by relating

them to a linear and relatively uniform hierarchy of consistency statements. This is an important

enhancement because without it any result connecting theorems and axioms was being established

in isolation, whereas now we have a single book-keeping device.
8The Ultrafilter Theorem is equivalent to the Boolean Prime Ideal Theorem.
9This statement is equivalent to the Kinna-Wagner Principle: For every set X there is a function f such that, for

each subset A of X with two or more elements, f(A) is a non-empty proper subset of A.
10“Every set can be ordered.”
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Somewhat anachronistically, one can compare that idea with different projects employing such

ladders for foundational ends, such as infinitary logic, Gentzen’s ordinal analysis or set-theoretic

hierarchy of cardinal axioms, but it turns out that the “easy” partial order given by the Gödel

Hierarchy and some of the related ladders is not enough to classify many results, and that some

might fall far from any notion of comparability with it [NS17]. For these ends, one needs to refine

the framework and place ordinary mathematics in focus. And that seems to be the distinguishing

aspect of RM.

1.2 The Ascending and Descending Tendencies in Classical

RM

In hindsight, it seems that for Friedman, Classical RM was but an intermediate stage of a grander

program of “delivering incompleteness at the doorstep of all mathematicians”, a plan aiming at show-

ing that concrete and simple statements occurring in ordinary mathematical practice are sometimes

independent of the accepted formal frameworks (such as ZFC); a way of arguing for integrating

stronger assumptions such as some large cardinal axioms into popular mathematical practice. I call

this objective “the ascending tendency” in RM, due to its orientation of incorporating ever-stronger

principles into mathematics. Despite (or perhaps due to) the truly Gödelian nature of the idea, the

research went in the opposite direction11, namely showing how much of fundamental theorems in

mathematics are provable in or equivalent to the relatively weak systems and in this way trying to

recover Hilbert’s Program12, according to the idea laid down in [Kre68]. [Fef88] gives the survey of

it as follows.

Let T1 and T2 be theories in L1 and L2 respectively, both containing PRA. Let Φ ⊆ FormL1
∩

FormL2 be a primitive recursive set of formulae containing all closed terms t1 = t2. Then a proof-

theoretic reduction of T2 to T1 which conserves Φ is a partial recursive function f that given any
11Notably though, there were significant developments concerning various versions the finite Ramsey Theorem and

related principles being independent of the casual systems [Yok23]. Some fruits of Friedman’s pursuit are a massive
unpublished manuscript [Fri11] and a more recent attempt [Fri17].

12To inspect the discrepancy in purposes compare Simpson’s “Unfortunately, Gödel’s [incompleteness] theorem
shows that any such realization of [full ambitions of Hilbert’s Program] is impossible” [Sim88, 352, italics added]
with Friedman’s “[W]e have continued the search for additional Concrete Mathematical Incompleteness that opens
up new connections with normal mathematics. [...] The extent to which these new developments invade mathematics
remains to be seen” [Fri11, 8–9, italics added].
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T2-proof of a sentence ϕ ∈ Φ produces a T1-proof of it. The core goal is to prove the existence of f

in T1. Now, if T2 proves “0 = 1” then f will yield a T1-proof of “0 = 1”, from which it follows that

T1 proves (the formalisation of) “If T1 is consistent then T2 is consistent”.

Such a relative consistency proof establishes a finitary reduction of T2 to T1 assuming that T1 is

a finitary system. These reductions are of great foundational significance as they give a base of

finitary justification to portions of mathematical practice [Sim85]. This strategy admittedly follows

Tait’s thesis that “finitary” is to be identified with PRA [Tai81]. Simpson [Sim88, p. 352] asserts

that

There seems to be a certain naturalness about PRA which supports Tait’s conclusion.

PRA is certainly finitistic and “logic-free”, yet sufficiently powerful to accommodate all

elementary reasoning about natural numbers and manipulations of finite strings of sym-

bols. PRA seems to embody just that part of mathematics which remains if we excise

all infinitistic concepts and modes of reasoning. For my purposes here I am going to

accept Tait’s identification of finitism with PRA.

These heuristic remarks account for what Simpson says about the justification of Tait’s thesis and

having thus established clearly the system to which infinitary reasoning should be reduced to, he

continues with a discussing the systems conservative over PRA. From the previous section we

know that both RCA0 and WKL0 satisfy Simpson’s aims, but it turns out that we can go even

further. Let α denote a sequence of dense subcollections of 2N which is arithmetically definable

from a given set. Simpson and Brown showed that WKL0 + “there exists an infinite sequence of 0’s

and 1’s which meets each of the given αi’s”13 is Π1
1-conservative over RCA0. In conjunction with

Parsons’ result of conservation of RCA0 over PRA, this implies WKL+
0 ’s conservation over PRA

for Π0
2 sentences.

This is a tremendous result from the perspective of partial realization of Hilbert’s Program, as

[Sim88, p. 361] estimates that at least 85% of existing mathematics can be formalized within WKL0

or WKL+
0 . I call Simpson’s goal of founding as much mathematics as possible on the firm finitistic

grounds “the descending tendency” of RM. Its divergence with Friedman’s ideal is again acutely felt
13this subsystem is labelled as WKL+

0 , and its characteristic principle is equivalent to a stronger version of Baire
category theorem for Cantor space 2N.
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in context of the above “85% remark” when Friedman proclaims that “normal mathematical activity

up to now represents only an infinitesimal portion of eventual mathematical activity” [Fri11, p. 8].

But this is not to suggest that these tendencies are essentially incompatible. It seems perfectly

reasonable to try and delineate what portion of ordinary mathematics is reducible to finitistic – or

possibly computable – methods, while simultaneously discovering ever-stronger principles that are

independent of portions identified as decidedly infinitistic which are however useful for the practice.

The upshot of this distinction for the present thesis is that these tendencies are governed by different

ambitions hence a philosophical evaluation of Classical RM must be informed by the intrinsic goal for

which specific parts of the program are executed. For instance, the notion of mathematical practice

must be viewed through the lens of this distinction, because the ascending tendency’s notion of

practice roughly refers to the methods mathematicians (now or in the future) would employ to

prove more theorems, without any restriction as to what techniques should be used14, whereas the

central focus of the notion of practice at play in the descending tendency is the computational,

recursive or numerical content of the theorems that are proved. The latter aims at basing what

mathematicians do on the finitistic mathematical practice, the former at exploding what they do

to reach new horizons. Therefore it seems important not to conflate these notions and apply the

expectations of one to the results of another.

Nevertheless, what binds both tendencies into a philosophically unified enterprise is the apparent

accommodating nature of Classical RM with regards to hitherto developed foundational programs.

According to [Sim99, p. 42], one of the virtues of the Big Five is that they correspond to “various

well known, philosophically motivated programs in foundations of mathematics”, as suggested in

table 1.1.

Subsystem Program Identified With
RCA0 constructivism Bishop
WKL0 finitistic reductionism Hilbert
ACA0 predicativism Weyl, Feferman
ATR0 predicative reductionism Friedman & Simpson
Π1

1-CA0 impredicativism Feferman et. al.

Table 1.1: Foundational programs and the Big Five [Sim99, p. 42]
14The slogan of this attitude could be Wittgenstein’s “Don’t for heaven’s sake, be afraid of talking nonsense! But

you must pay attention to your nonsense” from Culture and Value.
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As discussed in the outline of the Big Five, we already know what Simpson means by “finitistic

reductionism” in regards to WKL0 and “predicativism” for ACA0. “Predicative reducibility” of ATR0

refers to Friedman’s conservation result over Feferman’s IR, which implies that any Π1
1 consequence

of any theorem provable in ATR0 is predicatively true (see the discussion in [Sim85, pp. 154–

156]). The impredicativity of Π1
1-CA0 is pretty self-explanatory. It is true that some of these

subsystems can be legitimately identified with some of the famous stances in the foundations. But

the identification is far from complete. There are important projects such as Sam Buss’s Bounded

Arithmetic ([Bus86],[BS90]) connecting the study of feasible computability and complexity with

questions about provability, that cannot be included as subsystems of Z2 due to it being too strong

to handle feasibility even within RCA∗
0.

However Simpson never claimed that the Big Five (or generally the subsystems of Z2) are an

exhaustive representation of various foundational approaches problematic case is the identification

of RCA0 with constructivism. Bishop-style analysis (that is claimed to be roughly represented by

RCA0) and that in RCA0 diverge as soon as on the the definition of a real number and equality

between two reals15. Friedman, Simpson and Smith say in [FSS83, p. 146] that “The axioms of

RCA0 are ‘constructive’ in the sense that they are formally consistent with the statement that every

total function from N into N is recursive”, a rather deficient notion of constructivity indeed. Still,

they do not fail to acknowledge three crucial formal differences16:

(i) The constructivists assume unrestricted induction on the natural numbers, while in RCA0 we

only assume Σ0
1 induction.

(ii) We always assume the law of the excluded middle, while [constructivists] deny it.

(iii) The meaning which the constructivists assign to the logical connectives and quantifiers is

incompatible with our classical interpretation.

There are therefore some fundamental points of discord between the two programs, rendering the

inclusion of constructive mathematics into Classical RM unattainable. This situation is undesirable

for at least three reasons. First, from the perspective of philosophy of mathematics, it seems
15Bishop [BB85, pp. 18–19] defines a real number to be a regular sequence of rationals, a condition superfluous

in case of RCA0, and gives a method of construction of an integer-valued index witnessing the transitivity of the
equivalence relation between two real numbers, which [Sim99, p. 74] does not have to bother himself with.

16[Sim99, p. 31] cites exactly the same differences.
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that a foundational program claiming to subsume traditional schools within a single architecture

which disregards intuitionism or constructivism (that are the approaches that arguably experienced

the most extensive developments throughout the past century) is detrimentally incomprehensive.

Second, the reason for which it should be preferable to employ constructive methods and theories in

the analysis of ordinary mathematics is exactly the same as the reason for using a weak theory as a

basis for proving reversals. Since constructive theories are typically weaker than the classical ones,

intuitively they should provide a finer metric for RM’s purposes; at the same time, there is little

reasons to worry that they would be too weak, as we have many conservation results for systems

based on intuitionistic logic over classical systems. Third, and this has to do with the very nature of

constructive methods, the cause of (iii), the root of this incompatibility is constructivists’ concern

about the meaning of the terms they use. In Takeuti’s phrasing,

The fact that no contradiction arises does not explain what it means to say that a

theorem is provable from the comprehension axiom. Nonconstructive proofs provide no

insight into this important question. On the other hand, a constructive proof strengthens

our intuition and adds meaning to the theorem. [Tak13, p. 298]

In other words, using constructive methods for reverse mathematics holds a promise of more insight

into the substance of reversals and shedding more light on the structure of the equivalences between

theorems and axiom schemes.

But without a solid presentation of the consequences of both the philosophical underpinnings and

choice of framework of Classical RM that would provide a motivation to look into the constructive

solutions, it would seem rather arbitrary to move on to them, save for sheer curiosity. After all,

maybe Classical RM does what we expect of it just fine? This prompts the first main theme of the

present thesis.

Question 1. What are the formal or philosophical disadvantages of Classical RM that hinder the

foundational analysis? ◀

Now, if the results of this investigation will pose some problems for accepting Classical RM or

specific parts of its framework, switching to constructivism is but one of many possible reactions.

A thorough examination of all of these is beyond both the scope of the present work as well as
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my expertise. Studying possible constructive reactions should therefore be seen as a conscious

choice of research direction rather than the only resort. I believe that taking this path is especially

plausible given that there are several constructive approaches to finding the “proper” axioms for

ordinary-mathematical theorems, such as reverse mathematics based on BISH as developed by

Hajime Ishihara and others (see the overview in [Ish06]); Feferman’s Explicit Mathematics (EM)

based on Bishop’s mathematics, but of a slightly different flavor (developed in [Fef75], see broader

discussion in [Fef79]); work in second order Heyting Arithmetic (HA), proposed by Troelstra and

Kreisel in [KT70] and developed by Ishihara, Nemoto and others. Therefore my work is going to

amount to a practical and philosophical evaluation and comparison of different frameworks, rather

than formulating an original system and reinventing the wheel. That being said, the answers to

Question 1 will naturally guide towards a specific build-up of a plausible system for RM.

Finally, prompted by Benedict Eastaugh’s [Eas15], I will come full circle and compare the facets of

the classical and constructive approaches, trying to compare the advantages and disadvantages of

these analyses. This poses the second main question of the present thesis:

Question 2. Does Constructive RM face similar or additional issues and if so, which approach is

preferable? ◀

The rationale behind this question is that depending on the answers to Question 1, I will try to see

how does the Constructive Reverse Mathematics (Constructive RM) score against the challenges

of foundational analysis of ordinary mathematics that Classical RM faces. If it goes down well, I

will try to see whether some portions of Classical RM can be recovered from the point of view of

Constructive RM or conversely, whether there are any practical (i.e. stemming from the formal

determinants of the systems considered) visions for accommodating some form of constructivist

language within the Friedman-Simpson program – which hopefully will help dam up the “detrimental

incomprehensiveness” of Classical RM. In the next chapter I examine the first Question, chapter 3

is devoted to a discussion of Constructive RM and attempts at answering the second Question.



2 | The Difficulties of Classical RM

2.1 The Shortcomings of the Build-up of the Framework

Remark 2.1 (Heuristics and Preview). The very phrasing of the title of this chapter begs the

question of what should one qualify as a difficulty of a given formal framework. In what follows

I endorse a somewhat pragmatic approach: The previous sections equipped us with a general

understanding of both the formal aspects and the philosophical buildup of Classical RM and I

believe that the most appropriate way to examine it is by trying it against its own goals and

motivations; I believe that if a scientific theory’s practice succeeds in tackling the problems it poses

for itself, the theory is justified. I will therefore avoid pushing any full-blooded philosophical charges

of a Brouwerian (or any other) ideological flavor.

Given the discussion in the preceding sections, we can identify three main goals of Classical RM:

(1) Calibration Faithful representation of ordinary mathematical theorems, followed by the

classification of their proof-theoretic strength.

(2) Simpson Realizing the Partial Hilbert’s Program, i.e. showing that essentially infinitary

theories can be founded upon the finitary ones through conservation results.

(3) Friedman Provision of practical reasons for accepting strong set-existence axioms by

demonstrating that they are necessary for the ordinary-mathematical practice.

Throughout this chapter I present the philosophical and practical roots of Reverse Mathematics as a

foundational program developed in the tradition of Hilbert’s Program following the incompleteness

theorems. The takeaway from Gödel’s Hierarchy can be understood in two ways: either that a
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substantial portion of mathematics can be developed finitistically (the descending tendency) and

therefore Hilbert’s idea of ensuring the safety of mathematics is partially recovered, or that the

infinitistic methods are needed to develop some (not necessarily numerous) important theorems

or areas of mathematics (the ascending tendency) and therefore cannot be given up. Then, I

introduce the technical and philosophical problems that the program as developed in the Friedman-

Simpson tradition faces and I try to demonstrate their importance with respect to Question 1. I

will claim that if the RM-framework in practice or by construction results in frustrating the faithful

representation of informal mathematics, it should be reconsidered – either by changing its elements

responsible for the problems or, in face of no alternatives – by giving up some of its ambitions.

In what follows I suggest that the popular base theory RCA0 is not so weak and therefore too

coarse-grained for a faithful analysis of weak statements of ordinary mathematics, falling short of

the calibration goal. Another miscarriage I note is that the underlying classical logic often blocks

the direct delineation of the computational or combinatorial contents of theorems, most emphati-

cally witnessed by its limitation to non-uniform versions of theorems and failure to distinguish the

contrapositive versions of statements. Hence the presence of classical logic sometimes prevents a

clear foundational analysis by imposing a coarse-grained metric on the studied theorems. In the

same spirit, the Classical RM only allows for the extensional notion of a set which overlooks the

intensional aspects of mathematical objects. Thus I arrive at a constraint stating that, for the sake

of the possibly most accurate foundational analysis, the preferable framework for RM would be one

that is as fine-grained as possible while retaining the expressive power and one that admits the study

of intensional objects. Then, in a discussion of Simpson’s idea of “ordinary mathematics” I observe

that the informally done mathematics is too intertwined with the methods taken from logic and

set theory for one to clearly distinguish between the “ordinary” and “unordinary” mathematics and

therefore the distinction should be dropped. I note the significance of that constraint for Simpson’s

goal of showing that most of “ordinary mathematics” can be done finitistically. Next, I give several

examples of problems connected to formal representation of mathematics within Z2. Due to the

limitations of the framework to countable/separable objects, RM has to resort to indirect encodings

when it comes to the representation of more complex objects. There are cases when the coding

machinery overwhelms the set-existence assumptions of the pertinent reversal, which is unfaithful

with respect to informal mathematics. This is a self-inflicted wound, as the countable/separable
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mathematics typically do not need to be represented in these indirect ways within the subsystems

up to ACA0. In response, I propose for reversals to be supplied with the strength of coding methods

they use in addition to the base theory they are proved over. Finally, I will consider some examples

indicating that the true subject matter of RM are proofs, not theorems, also noting the historical

nature of the endeavor. ◀

2.1.1 Underlying Logic and Base Theory

Very much in the spirit of Simpson’s remark about PRA cited above, in order to satisfy goal (1), one

wants their framework to be as “logic-free” and neutral as possible. The assumptions introduced by

the underlying logic should play a minimal role, otherwise the framework will be too coarse grained

to discern differences between some statements. Coarse/fine grained-ness of a framework is rather

important to my analysis, so let me give a few examples for its meaning.

Example 2.2. Forster and Truss showed in [FT07] that in ZFC, the König Lemma is equivalent to

the Ramsey theorem for pairs (RT 2
2 ), while simultaneously it is well-known that in the framework

of Z2, which is much weaker than the former, König Lemma is strictly stronger than RT 2
2 . This is

a consequence of a result in [SS95] showing that there is no noncomputable information that can

be coded into a computable coloring of pairs that is recoverable from any homogenous set.

ZFC’s strong axioms, in particular the power set and the foundation, deprive this theory of a

“high-resolution” insight otherwise accessible through methods in computability theory. ◀

Of course, fine-grained-ness of subsystems of Z2 also varies from one to another. The stronger the

subsystem, the more coarse grained the metric, which allows one to prove more equivalences; but

this might be as much because of them really holding as due to the “low resolution” of a strong

theory.

Example 2.3. In their paper [MS05] initiating the RM of general topology, Mummert and Simpson

use Π1
1-CA0 as a base theory for the reversal between Π1

2-CA and the statement every countably

based MF space [a topological space whose points are maximal filters on some countable poset P ]

which is regular, is homeomorphic to a complete separable metric space. That is because the proof

uses Kondo’s uniformization theorem which is equivalent to Π1
1-CA0 [Sim99, pp. 225–6]1 and no

1Interestingly, the reversal of Kondo’s theorem to Π1
1-CA0 uses the rather strong ATR0 as a base theory.
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subsystem laying lower on the hierarchy would be able to attain that. Moreover, the notions such

as MF spaces are encodable only in ACA0 and not in, say, WKL0. Therefore it is only at the level

of the more coarse-grained Π1
1-CA0 that one can prove the reversal between the above statement

and Π1
2-CA , as the more fine-grained metric of, say, ATR0 would differentiate these two principles,

encodings notwithstanding. ◀

In general, we can think of the class of models of a weaker theory T as a class of models of a stronger

theory T ′ satisfying some restriction, e.g. the models of ATR0 are exactly those models of Π1
1-CA0

that do not allow for an uncountable set to be well-ordered; the models of RCA0 are exactly the

recursive sets within the class of ACA0’s models, etc. In short, because of finer-grained-ness of a

weaker theory, more statements are false in it.2

The easy takeaway is that since a weaker theory is typically more fine-grained than a stronger one

(although this is not always the case, for it often depends on the definition of “weaker”), one should

choose the weakest possible base theory for their RM-setting. The issue however is not that simple,

as this comes with a trade-off on the part of expressive force. Therefore one needs a theory weak

enough not to “stick” to many theorems and subsystems together, but strong enough to encode the

basic concepts that concern the reversals.

When it comes to Classical RM, despite the popular dubbing of RCA0 as a “weak base theory”,

it gives enough means to prove many important (formalizations of) theorems and define objects

in various areas ordinary mathematics, some of which being far from elementary. For instance, it

is strong enough to encode an analytic subset A of a Cantor space, and even a point X in A; it

also establishes uncountability of reals and the uniqueness of comparison maps between sets3; in

countable algebra, RCA0 proves the existence of a divisible closure of every Abelian group4; it is

also strong enough to encode complete separable metric spaces and open sets in them, together

with a measure for each such set. Interestingly, RCA0 is “almost strong enough” to prove some of

the admittedly heavy nonrecursive results. For example, though Peano’s existence theorem5 is only
2Note that it is not exactly about T being insufficient to prove a given statement that holds in T ′, but about T ′

recognizing equivalence between two statements and T failing to achieve that (such cases of course form a subset of
the former situations) – which is not directly caused by T ’s confined tools, but rather their increased precision.

3We say that f is a comparison map from X to Y if f : |X| ≤ |Y | or from Y to X if f : |Y | ≤ |X|.
4For an Abelian group D we say that it is divisible if for all d ∈ D and all n ≥ 1 there is c ∈ D such that n · c = d.

A divisible closure is a morphism h : D′ −→ D s. t. for all nonzero d ∈ D there is an n ∈ N, n ·d = h(d′) for d′ ∈ D′.
5“The initial value problem of an ordinary differential equation has a continuously differentiable solution on a

rectangle”.
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provable in WKL0, RCA0 proves Picard’s uniqueness and existence theorem [Sim99, pp. 158–159]:

Thm. 2.4 (Picard). Let f(x, y) have a modulus of uniform continuity h : N −→ N and satisfying

the Lipschitz condition

|f(x, y1)− f(x, y2)| ≤ L · |y1 − y2|

and |f(x, y)| ≤ M , where M,L are positive real numbers and M is the maximum of f . Then the

initial value prbolem has a unique solution y = φ(x) on the interval determined by the rectangle

and φ(x) has a modulus of uniform continuity. Moreover, this fact extends to the case involving

any finite number of functions.

The difference consisting in the assumption of the Lipschitz condition, which does not seem so

heavy.

Another example is the Bolzano-Weierstraß Theorem, discussed in section 0.2.1. Although RCA0

is too weak to prove the sequential completeness of R (which would be equivalent to the least

upper bound principle for R and to Bolzano-Weierstraß), it proves the nested interval completeness

property for reals6 which suffices to prove the Baire Category Theorem:

Thm. 2.5 (Baire category theorem for Rk). Let ⟨Un : n ∈ N⟩ be a sequence of dense open sets in

Rk. Then there exists x ∈ Rk such that x ∈ Un for all n ∈ N.

What lacks here for a statement of full Bolzano-Weierstraß is the claim that R is isomorphic to a

nested interval in R (which gives us some idea of how strong this claim is). Although it is much

weaker than Bolzano-Weierstraß, from the perspective of mathematical practice, Baire category

theorem suffices to prove many basic results that have similar applications [Sim99, p. 76].

It seems that the major source of RCA0’s strength is the Σ0
1 induction. Without it, some reversals do

not hold, including that of WKL0 and Peano’s existence theorem as well as one of the key results in

RM, the equivalence between ACA0 and König’s Lemma [Sim99, p. 411]. Indeed, even Simpson and

Smith [SS86, p. 290] note that Σ0
1-IND is a strong induction principle as it allows to define functions

from N to N by primitive recursion, without which some basic results in countable algebra would

be out of reach for RCA0. To give a few examples, let K be any countable field and f(x) be a
6i.e. the statement that any sequence of real numbers on an interval has a limit.
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polynomial with integer coefficients in one variable, then the following facts are unprovable without

Σ0
1-IND [SS86, p. 290]:

(a) f(x) has at least one factor over K which is irreducible over K.

(b) f(x) has a factorization into polynomials over K each of which is irreducible over K.

(c) The set of roots of f(x) in K is finite.

In view of that, one might ask therefore, how weak is our “weak base theory” and whether all of that

machinery is really needed. The reverse mathematics of RCA0 has been initiated by Friedman and

Simpson in [FS00] where they introduced a theory RCA∗
0 which has the induction axiom restricted

to Σ0
0 formulae and asserts the existence of the exponentiation function, whose first-order fragment

is EFA, the elementary function arithmetic. This weaker system has poorer coding machinery which

prevents the representation of some of the portions of analysis, but as [SS86] shows, several reversals

over RCA0 can be reproduced in RCA∗
0. Moreover, Takako Nemoto showed that most of the analysis

of determinacy statements can be successfully carried out in this theory; on top of that, RCA∗
0 has

proved to be more fine-grained than RCA0: in [Nem09] Nemoto was able to separate two statements

that are equivalent to WKL0 over RCA0. Therefore, the inability to establish equivalences between,

say, König’s Lemma and ACA0 over RCA∗
0 might be viewed as a virtue of this subsystem, rather

than a flaw. Yet, it has been suggested that RCA∗
0’s power and convenience especially in countable

algebra, the area for which it was designed, is extremely limited. Bounded primitive recursion is

the best that we can get from this subsystem, which in context of algebra is a pretty weak principle;

for the same reasons RCA∗
0 has significant limitations for imitating the constructive results that can

be carried out within it [Baz+24, p. 3].

One of the most convincing factors of doing reverse mathematics in RCA0 is its correspondence with

the recursive methods, which directly provides us with visions of progress within Simpson’s goal of

partially realizing Hilbert’s Program.

As much as this is true for mathematics within RCA0, when it comes to reversals over it, the issue

is less obvious. In a sense, many reversals based on RCA0 are not done via computable methods,

since in cases concerning stronger subsystems the models under consideration are the β-models,

not the ω-models that admit Turing reducibility. That is, these reversals over RCA0 are not proved
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through strictly computable methods. This is due to the simple fact that systems above ACA0 do

not have a minimal ω-model.7 Having several examples of ω-models of a statement is useful as

it helps to produce separations when they are needed, and yields a more complete understanding

of the theorem [DM22, p. 100]. In cases where the ω-models of a theorem become less significant

(because the theorem is too strong), we have less means of model-theoretic investigation and so

poorer understanding of a theorem even in presence of a reversal.

2.1.2 Nonuniformity

This situation becomes even more pressing when we want to extract the core combinatorial content8

from a reversal, aiming to understand the theorem even better. This aim is uniquely insightful as

it enriches with the information not just about one problem, but a whole class of related problems.

Such insights are attainable when we consider uniform versions of theorems.

Def. 2.6. A problem P uniformly admits computable solutions if there is a Turing functional Φ (a

function taking functions as arguments) so that Φ(X) is a solution to every instance X of P.

In general, for every sentence S of the form ∀X(A(X) → ∃Y (B(X,Y )) its uniform version ∃F∀X(A(X) →

B(X,F (X)) states the existence of a uniform procedure F to construct a solution to each instance

of the problem X. Informally, a uniform version of a theorem gives a proof which produces a choice

function whose range provides witnesses to each instance of a theorem, where the function satis-

fies some desired definability property such as being recursive or (in weaker instances) belonging to

some level of the arithmetical hierarchy. Uniformity, in a sense, “constructivises” the proof therefore

giving more information about the objects involved.

Simply because Classical RM uses classical logic, this level of clarity cannot be attained by it.

Classifications in reverse mathematics only capture the non-uniform content of problems,
7This important issue is brought to the forth in Shore’s program of computable RM, where only the latter models

are considered (see e.g. [Sho13]).
8This notion will be discussed in more depth below. For now, we roughly understand the combinatorial core

of a theorem to be the basic structure of its proof. As Hirschfeld puts it: When we say that principles P and Q
are equivalent over a theory T , we are saying that P and Q have the same “fundamental combinatorics” up to the
combinatorial procedures that can be performed in T , so we would like this class of procedures to be one we can
understand and think of as natural in some sense [Hir15, p. 13]. A good example of this idea is the observation
that Weak König’s Lemma represents the combinatorial core of Lindenbaum’s Lemma; see the discussion in [Hir15,
pp. 7–14].



30 2.1. THE SHORTCOMINGS OF THE BUILD-UP OF THE FRAMEWORK

i.e. , the way output parameters depend on input parameters in the worst case. Again

this is due to the usage of classical logic (opposed to intuitionistic logic). [BGP21, p. 41]

Moreover, Classical RM cannot distinguish between theorems and their contrapositions due to the

lack of uniformity. An example of this is the Heine-Borel covering theorem, which is computable, but

its contrapositive version is not; Classical RM automatically captures the stronger contrapositive

statement [BGP21, p. 33]. Another well-known example of this phenomenon is Brouwer’s fixed point

theorem [Jos23]. Another issue with tracking computability by RCA0 is that it cannot keep a record

of the number of parallel applications of rules in proofs thereof and fails to distinguish between a

single, a finite number of consecutive applications or a finite number of parallel applications of a

theorem, hence sometimes yielding results that are only computable in a very strong sense, mostly

due to the usage of unbounded search (which is admissible in RCA0). This is again due to the

underlying classical logic (as opposed to linear logic).

To sum up, classical logic together with the strength of RCA0 as a base theory appear to me as

preventing Classical RM from revealing the combinatorial structure of the theorems under consid-

eration. Given the tools developed in computable analysis in the last decades it seems only fitting

to make use of them for the advantage of RM. As long as partial realizations of Hilbert’s Program

are concerned though, RCA0 augmented with conservation results over PRA seems to stand on

solid ground. It is however debatable to me whether pursuing the idea of finitistic reductionism for

its own sake is a worthwhile goal. RM was conceived from the ambition to find the right axioms for

theorems in order to give a better understanding of their strength and structure they share with

other statements. As long as this goal is definitely inspired by Hilbert’s Program, it goes beyond it

in the sense that one does not ask any more about a specific set of finitistic methods the theorems

are to be reproduced with, but tries to classify the theorems with respect to any organised group of

concepts that promises elucidation of combinatorial content thereof – be it set existence principles,

function existence principles, degrees of (un-)computability or the “amount” of the law of excluded

middle one has to apply. If the insights offered by alternative frameworks prove to be richer with

respect to the discovery of structure and computational contents of ordinary mathematics, then

sticking to the letter of finitism as a philosophy seems to fall short of the spirit of finitism as a

practice rooted in Skolem’s, Herbrand’s, Gödel’s and Kleene’s inventions. Since it is the practice

of ordinary mathematics that lays in the center of focus of reverse mathematics, it is also the prac-
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tice of best methods accessible for the analysis of the theorems considered that should be put to

use. The preferable framework for RM is one which possesses the finest resolution with respect

to the combinatorial content of ordinary-mathematical theorems while simultaneously being strong

enough to represent the objects of ordinary mathematics.

In the next section I will elaborate on the other facet entrenched in the framework of Classical RM

that makes the analysis of computational contents of ordinary mathematics problematic.

2.1.3 Extensionality

A theory whose language has only quantifiers ranging over the number variables has traditionally

been called an “arithmetic”, while a theory with quantifiers for set variables, such as Z2, is informally

referred to as “analysis”. That is because the second order language in which every countable

sequence of real numbers can be coded into a single real, and codes for real numbers can be

quantified over in second order arithmetic make it much more natural to express statements about

functions, which are the core of analysis. It is therefore natural to ask why are we using a set-

based language to talk about functions, which are represented in a way specific to a formal theory

like Z2?9 The cause of this is the classical assumption of co-extensionality of functions and sets

i.e. the identification of a function with an ordered pair which is of course a set. This treatment

is somewhat troublesome when it comes to representing ordinary mathematics when we want to

analyze the proof theoretic strength.

From a computational standpoint, if the sets under consideration are to be manipulated, we some-

times want to differentiate between two “names” or “symbolic representations” of what is usually

considered “the same set” [Bee85, p. 166]. This intuition is captured in constructive mathematics

where sets are given by their definitions (as opposed to identifying them with their elements): there

can be two sets with the same elements but different definitions functioning as different methods

for constructing the sets.

Although ordinary mathematics does not usually make such distinctions, the formal study of it

should. One important example witnessing this is the conservation result between IZF and ZF

9Consider the important difference: the typical statement of the least upper bound principle is that every set of
reals with an upper bound has a least upper bound; the version of the principle that is studied in RM states that
every bounded sequence of real numbers has a least upper bound.
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bearing on the double negation translation and the usage of intensional definitions. Since the goal of

Classical RM is establishing the relations between the set-existence principles and representations

of theorems in terms of proof-theoretic strength, it should make use of such tools exactly because

they give a finer-grained metric for distinguishing between different statements.

One way for accounting for that is introducing a function-based framework, a tactic employed

typically in constructive or recursive foundational theories. Quantifying over functions instead of

sets does not necessarily carry the import of extensionality, which can be of course retrieved if need

be. But if one wants to focus on the computational content of the theorems analysed – and extract

more information that RM cares about – this strategy seems to be the most natural one [Baz+24,

p. 4]. Indeed, Friedman originally introduced RCA0 in a functional language [Fri76], but shortly

after opted for a set-based approach. [Baz+24, p. 4] speculate that the reason for this might be the

import of primitive recursion into the system, which is otherwise proved (not assumed) in the set-

based approach. This, however, does not seem to be a significant cost for a more natural framework,

given that a system developed in a functional language can handle intensional definitions. In this

way, a RM-framework would be fine-grained also with respect to rare yet important intensional

objects in mathematics.

Constraint 1. A preferable framework for RM is one which admits a treatment of intensional

objects for the aim of a more precise analysis of ordinary mathematics. ◀

2.2 Ordinary Mathematics and its Representation

I now turn to the discussion of the meaning of “ordinary mathematics”. The Friedman-Simpson style

RM presents itself as a descriptive foundational analysis of mathematics in the sense that it focuses

on the areas possibly distant from the logical or foundational improts with metamathematical

flavors. Simpson identifies

as ordinary or non-set-theoretic that body of mathematics which is prior to or inde-

pendent of the introduction of abstract set-theoretic concepts. We have in mind such

branches as geometry, number theory, calculus, differential equations, real and complex

analysis, countable algebra, the topology of complete separable metric spaces, mathe-
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matical logic, and computability theory. [Sim99, p. 1]

The historical spirit of this identification is quite surprising and pincered by the path of development

of mathematics both before and after the introduction of set-theoretic concepts.

As noted in the section 1.1 above, the “set-theoretic concepts” such as AC have been in use in various

forms long before the introduction of the theory and the axiomatization of the latter only made this

fact clear. If, however, Simpson here means the informal development of set theory, one must bear

in mind that Cantor’s work was not done in isolation from the mathematics of the era (and by that

token it had not “introduced” any alien concepts hitherto unknown to the mathematical practice),

but rather naturally arose from his research in analysis that had ties to and roots in the work of

others (see e.g. [Dau91, pp. 30–36]). On the other hand, set theory has given mathematics some

extremely powerful tools that got integrated into the practice of various other fields long before

the beginnings of the Friedman-Simpson program. Today, the “the inter-penetration of intuitively

different areas of mathematics [is] a fact of life” [Rya23, p. 2] emphatically witnessed by the use of

methods from modular form theory in a proof of a purely arithmetical statement of Fermat’s Last

Theorem and many other examples; set theory is no exception from such interconnections. However

there are theorems that are uncontroversially independent of set theory, other results belonging

to the same area carry the influence of the abstract tools developed in it10, rendering a clear

distinction between set-theoretic and non-set-theoretic mathematics rather vague. The motivation

of this differentiation was the rehabilitation of Hilbert’s Program by showing that even if not all

mathematics can be done only by finitist means, the traditional, non-foundational fragments of it,

i.e. those fragments about whose “safety” we actually care (if we care at all), can be reduced to

finitistic methods. And the tendency is indeed correct if one considers the fact that when it comes

to reversals of theorems from areas deeply intertwined with set theory (such as classical topology

or ordinal arithmetic) always occupy the higher strata of the Big Five, with the exception of a few

basic results. Nevertheless, it cannot be said that systems such as Π1
1-CA0 and above are inhabited

only by the unordinary theorems with set-theoretic imports. If we understand “ordinariness” of

a theorem as a property such that it concerns objects of traditional areas of mathematics and
10This is a common occurrence in analysis, number theory or model theory. Interestingly, the main goal of Fried-

man’s conception of RM is to demonstrate exactly that: the indispensability of strong “set-theoretic” assumptions in
practice of prima facie finitistic mathematics.
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additionally relates to different such areas11, then the Graph Minor Theorem is an example of one

of the most ordinary statements recent mathematics has produced. R. Diestel comments in his

book on graph theory [Die06, p. 315] that it is

a single theorem, one which dwarfs any other result in graph theory and may doubtless

be counted among the deepest theorems that mathematics has to offer: in every infinite

set of graphs there are two such that one is a minor of the other. This graph minor

theorem (or minor theorem for short), inconspicuous though it may look at first glance,

has made a fundamental impact both outside graph theory and within.

Def. 2.7. Let e = xy be an edge of a graph G = (V,E). By G/e we denote a graph that is

obtained from G by contracting the the edge e into a new vertex ve, which becomes adjacent to all

the former neighbors of x and y. If G′ is obtained from G by deleting some vertices and edges and

then contracting some further edges, G′ is said to be the minor of G.

Thm. 2.8 (Robertson and Seymour). For a countably infinite sequence G0, G1, ... of finite graphs

there exists i < j such that Gi is isomorphic to a minor of Gj.

More than a decade before the theorem was proved, [FRS85] showed that the statement is inde-

pendent of Π1
1-CA0. Even if the GMT were the only “ordinary” theorem occupying the strata above

the Big Five, its importance and robustness provides enough justification to the claim that one

cannot discard these strong subsystems as unordinary or too set-theoretic. Therefore, there are

little reasons to uphold the “ordinary–set-theoretic” distinction with respect to the subject matter

of RM, as it proves to be arbitrary and detached from both the practice of ordinary mathematics

and reverse mathematics itself12.

Constraint 2. Reverse mathematics investigates the strength of theorems regardless of the

area of mathematics they come from. ◀

Remark 2.9. This suggests that the “ascending tendency” might turn out to be the correct philo-

sophical consequence of reverse mathematics. ◀

11Following [Mon11, p. 432] one could identify the second condition as robustness of a theorem.
12Reverse mathematics of ostensibly “set-theoretic” areas such as general topology [MS05] or theory of ordinal

numbers [Mad17] by now belong to the folklore.
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This would doubtlessly be the case if the subject of RM were the ordinary-mathematical theorems

as they stand. But as we have seen in 0.2.1, the contents of practice of RM are the encoded objects

expressed in the formal language of Z2. This fact is a source of trouble, as there are several reasons

for doubts about whether the codes faithfully represent the intended objects.

2.3 Problems with the Representation of Ordinary Mathe-

matics

The problem of faithful representation of ordinary mathematics is a pivotal theme in RM. Since

it is done in a formal language, it can only deal with representations of mathematical objects, not

the objects themselves. The way this is typically done is by encoding such objects with naturals

or sets of naturals in the traditional fashion of Gödel numbering. In turn, Classical RM can only

work with “miniaturisations” of theorems, i.e. the versions stated in terms of countable or separable

objects. Hence mainstream RM deals with theorems about countable groups, complete separable

metric spaces, etc. This significantly limits the scope of analysis of ordinary mathematics, since

some central fields of it deal with more complex objects. If we want to represent such objects in Z2,

we have to resort to highly non-trivial coding techniques, which, it has been argued, will sometimes

result in proofs whose claims verge on arbitrariness [DM22, p. 6]. Simpson himself notes in [Sim88,

pp. 360–1] that

The development of mathematics within Z2 or subsystems of Z2 involves a fairly heavy

coding machinery. Doesn’t this violate the claim of such subsystems to reflect mathe-

matical practice?

To which he answers

It is true that the language of Z2 requires mathematical objects such as real numbers,

continuous functions, complete separable metric spaces, etc. to be encoded as subsets

of N in a somewhat arbitrary way. [...] However, this coding in subsystems of Z2 is

not more arbitrary or burdensome than the coding which takes place when we develop

mathematics within, say, ZFC. Besides, the coding machinery could be eliminated

by passing to appropriate conservative extensions with special variables ranging over
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real numbers, etc. If this were done, the codes would appear only in the proofs of the

conservation results. I do not believe that the coding issue has any important effect on

the program [...].

However, the claim that coding in Z2 is not more arbitrary than that in ZFC is to no avail: the

former, as we have seen in example 2.2, is massively more coarse-grained than Z2. And the ready

availability of methods of constructive and computable mathematics beneficial for the calibration

of theorems that the project sets as its goal demand more precision than that of ZFC. When it

comes to the tentative solution to the coding issues proposed above, the conservative extensions

that Simpson talked of over 30 years ago have not yet arrived. Instead, it has become common to

include the discussion of coding conundrums in introductions to all important works on Classical

RM (see e.g. [DM22], [Hir15]). Moreover, in response to the coding issue the research in RM has

seen an out-pour of alternative methods to ensure minimal occurrence of arbitrariness, peaking with

Friedman proposing a program of strict reverse mathematics that is to try and provide a specific

coding method for each area of mathematics (as if they were disconnected from one another). This

should show how much effect the coding issue has had on the program.

Indeed, the usage of non-trivial coding methods leads to some truly pathological cases, which I bring

up as examples below. It seems to me that all in all, such issues beg the question of faithfulness of

the representations of the (miniaturisations of) ordinary-mathematical theorems.

Example 2.10 (General Topology). As mentioned in Example 2.3, [MS05] studies the reverse

mathematics of MF spaces with a countable basis that generates the topology. [Hun08, Proposition

2.15] investigated the strength of representational assumptions involved in the use of countable bases

and showed that the existence of a type-3 set of type-2 objects with cardinality ≤ ℶ1 is equivalent to

(E2). The axiom (E2) is extremely strong: it implies the full second order comprehension Π1
∞-CA,

so, in other words, the existence of a countable representation of a topological space of cardinality

2ℵ0 implies the entire second order arithmetic. As the original reversal is equivalent to “mere” Π1
2-CA,

Hunter’s result revealed how unfaithful to ordinary mathematics the methods used by Mummert

and Simpson were and posed a serious doubt about the meaning of the reversal. ◀

It can be argued that since general topology is an area with heavy set-theoretic imports and hence

does not belong to “ordinary mathematics” in Simpson’s sense, the above problem is irrelevant
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to the issues of representing mathematical objects in Z2. It is however but the most evident

example of heavy representational assumptions impairing a reversal. There is also another sense

in which one would desire the representation system to be faithful: the minimal use of nontrivial

coding techniques. A handbook example of trouble with that is the way continuous functions are

being represented in Z2. One has to use highly nontrivial encodings of open (or closed) balls

on complete separable metric spaces and ensure the satisfaction a number of relation conditions

imposed on codes so that they meet an analogue of the natural ϵ − δ requirements [DM22, Def.

10.3.3]. Now, it is true RCA0 suffices to do all of that13, but this does not mean that the coding

techniques used are obvious or naturally following the way we construct a continuous function

in ordinary mathematics. Kohlenbach [Koh17] used the higher-order arithmetic to show that the

coding of continuous functions fails to represent any given continuous functional Φ : N2 −→ N. This

would not be an important issue had continuous functions not be of central interest to analysis in

ordinary mathematics. Therefore, it comes as no surprise that the representation of continuity in

Z2 implicitly smuggles higher-order objects into the pertinent statements [San15, Cor. 4.3].

Finally, there is a family of problems related to comparison of (i) different formal representations of

a given theorem and (ii) ordinarily equivalent expressions of a given theorem. The discussion of the

latter will naturally point to one of the most pressing issues of Classical RM, namely the apparent

(iii) intensional nature of theorems, which, as I will argue, is not handled well in this framework.

2.3.1 Challenges of comparing theorems in a formal setting

(i) touches upon the issues that are more directly related to coding. A working logician has multiple

coding methods at their disposal. For instance, reals can be represented as converging Cauchy

sequences, Dedekind cuts, decimal expansions or in some constructivist settings as an arbitrarily

close approximation to some number x; converting some of these representations into another cannot

be carried out within RCA0 (tools from WKL0 or even ACA0 are sometimes needed [Hir07, §3]). On

top of that the conversions are not uniform.

This poses a problem for comparison of reversals proved via different coding techniques. If the

study of proof-theoretic strength of ordinary-mathematical theorems afforded by RM is to deliver
13If it were otherwise this would be the case of problems with representation bearing on the weight of assumptions

in the proof-theoretic sense, discussed in the example 2.10 above.



38 2.3. PROBLEMS WITH THE REPRESENTATION OF ORDINARY MATHEMATICS

a precise classification thereof, the research should ideally proceed within a unified coding practice,

apart from the consensus about the set-existence principles the theorems are classified into. But in

its development RM became a diverse area where there is no general agreement about the systems

for classification; aside from the obvious fundamental differences in classifications with the Classical

RM introduced by the computable and constructive frameworks, even the higher-order RM that

in its build-up is much closer to the Friedman-Simpson style RM produces a notably different

classification [San14, p. 2]. Different classifications stem from varying focus of the foundational

aspects under investigation: Classical RM focuses on the proof-theoretic strength in the traditional

sense, higher order reverse mathematics aims at distilling the effective content, computable reverse

mathematics focuses on the computable content in the broader sense, while Constructive RM focuses

on degrees of nonconstructivity in terms of the “amount” of the Law of Excludded Middle (LEM)

indispensable in a proof of a given theorem. As long as the insights into different aspects of a theorem

greatly enrich our foundational knowledge, they are obtained through different coding methods and

in this sense speak of slightly different objects. Currently there is no sight of delineating the purely

mathematical criteria to decide which coding system is best in order to unify the representations.

Instead, some have proposed informal heuristics for trying different coding methods [DM22, pp. 6–

7]:

(I) Utility : The utility of a coding system can be seen in the results it allows us to formalize and

analyze. The more results can be expressed in a coding system, the more “useful” it is. For

instance, the coding of real numbers with quickly converging Cauchy sequences leads to the

operations being uniformly computable.

(II) Local faithfulness: It ensures a coding system’s close relationship with the ordinary objects

that are being represented. To give an example:

There is significant [local faithfulness] in representing a countably infinite group by

numbering the elements and representing the group operation as a function from

ω×ω to ω. On the other hand, our coding for continuous functions is arguably not

as locally faithful as simply coding the function’s value for each element in a dense

subset. [DM22, p. 7]

The key aspect of a coding system being locally faithful or not is the amount of information
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it adds or removes from the original ordinary object. For example, representing a real not as

an equivalence class of Cauchy sequences but instead as a single convergent Cauchy sequence,

does remove some information from the original object.14

(III) Global faithfulness: It is the property that every object of the desired type has a code of the

desired type in the standard model. This property ensures that a coding system does not

exclude any actual objects of interest. For example, every real number is the limit of some

quickly converging Cauchy sequence of rationals, and every open set of reals is the union of a

sequence of open rational intervals. Thus, when interpreted in the standard model, a theorem

referring to coded objects like these retains its original scope.

(IV) Professional judgement : The intuitive idea based on experience and expertise about what

frameworks to use for what ends.

The last point is pretty revealing about the stage of youth the search for optimal coding framework

finds itself in. But before that arrives, the research area would be much clearer if, in addition to

the base theory a reversal is proved over, one would specify the proof-theoretic strength of the

coding methods used for formalisation of the studied objects. This would simultaneously help in

developing mathematical criteria for choosing a preferable coding system: when it turns out that

in practice one system is used faithfully with respect to many important theorems, accepting it as

a “base coding system” will only be natural.

Constraint 3. The general form of a reversal result is: Over a base theory B, the theorem T is

equivalent to a set-existence principle X modulo the encoding of strength Y .

(ii) relates to the examination of strength of conversions between (ordinarily) equivalent statements

of a theorem. It elucidates the assumptions at play in these conversions. Sometimes, as in the case

of example 2.11 below, it turns out that the assumption of one form Ta of a theorem is too little to

straightforwardly prove (i.e. say, only using computable methods) the ordinarily equivalent form

Tb and one needs some more involved machinery to achieve that.

Example 2.11 (Ergodic Theory). In their paper [AS06], Simic and Avigad studied the reverse
14As noted above, the predominant issue here is that RM can only deal with countable/completely separable

objects.
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mathematics of some basic notions of analysis. They show that the mean ergodic theorem is natu-

rally formalizable and provable in ACA0. Ordinary mathematics recognizes a number of statements

equivalent to this theorem, but it takes the strength of ACA0 to state these equivalences [AS06,

Cor. 15.2]. That is, the assertion of equivalence of two forms of a theorem requires as much

proof-theoretic strength as a proof of the theorem itself. This means that either the equivalences

are not that natural (as they need relatively strong assumptions in order to be proved) or that

the combinatorial core of the mean ergodic theorem carries enough information so as to prove all

ordinarily equivalent expressions of the theorem. The latter would be of course desirable, but given

the coarse-grained machinery enforced by classical logic coupled with the fact that the core usually

conveys the bare minimum for proving a given statement, it is the naturalness of equivalences that

is brought into question. ◀

The relations between Ti’s will possibly be different when Ti’s are represented through different

coding methods, but it is important to realise that the sole fact that they are not “easily” equivalent

is a valuable insight afforded by reverse mathematics and does not necessarily mean that there is

something wrong with the representation. If anything, the above example indicates that what is

equivalent in ordinary mathematics is not obviously so under logical scrutiny.

2.3.2 Intensionality of theorems

This points the discussion towards a related problem (iii): does RM deal with theorems or proofs

thereof? Many of the reversals (the subsystem-to-theorem direction) are just formalizations of the

informal proofs and require little special tricks to be implemented in the framework of Z2. Hence

the reverse-mathematical folk parlance talks about reversing the theorems, be it as a shorthand or

a misconception – for the practice decidedly suggests otherwise. Intuitively, reverse mathematics,

just like any other area in the foundations, does not have any insight into the “objective” form of a

theorem and can only work with the imagery brought about by the constructions provided by its

proof. Let me clarify that with the some examples.

Example 2.12 (Cauchy/Peano theorem). The Cauchy/Peano theorem establishes the existence of

solutions of the initial value problems for continuous functions on a rectangle. Traditionally it has

been proved through the Ascoli lemma, which is equivalent to ACA0, by establishing the convergence
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of approximate solutions. But [Sim84] shows that Cauchy/Peano is equivalent to WKL0. The proof

of this reversal goes through some coding tricks, the application of the contrapositive of weak

König’s lemma and a certain construction due to Aberth [Abe71]15 to avoid the usage of the Ascoli

lemma. Simpson also shows that unlike WKL0, ACA0 is able to establish the existence of a maximal

solution to an initial value problem. In consequence, Simpson offered an alternative proof of the

Cauchy/Peano theorem that has provably distinct assumptions from the classical one. ◀

One might ask whether Simpson’s result simply establishes the RM-analysis of Cauchy/Peano and

thanks to the application of the tools of RM finds the true combinatorial core of the theorem. But

this is only possible due to Abarth’s prior analysis of the theorem from the perspective of tools

available in WKL0. In other words, it is only the presence of a reversal of a weaker statement that

enabled the claim of conclusive RM-analysis of the Cauchy/Peano theorem. The next example

shows the situation where this is not attainable.

Example 2.13 (Ergodic Szemeredi’s theorem). Szemeredi’s theorem about arithmetic progres-

sions in colorings of positive integers is a paramount result in Ramsey theory. Two years after it

was established by Szemeredi, Furstenberg came up with an alternative proof of the statement,

using methods from ergodic theory. Unlike the original combinatorial version, Furstemberg’s proof

uses rather strong infinitistic machinery. Thanks to the complexity-theoretic analysis by Ferenc

Beleznay and Matthew Foreman [BF96], it has been proved that the Furstenberg stucture theorem,

indispensable for the ergodic version of the proof, is very strong indeed (see [Avi09]):

Thm. 2.14. Over ACA0, the Furstenberg structure theorem is equivalent to Π1
1-CA0.

On the other hand, Gowers gave an exponential upper bound on the growth rate of the function

characterizing the original Szemeredi theorem; and indeed, despite the reversal of Szemeredi still

standing as an open problem of RM, Gowers, Tao, Friedman and a number of other celebrated

mathematicians believe that the original proof should go through with exclusive usage of primitive

recursive methods. This would imply that the original proof of Szemeredi’s theorem is provable in

RCA∗
0.16 ◀

15It might be informative to note that the traditional proof of Cauchy/Peano fails in computable mathematics due
to this result.

16A weak subsystem identified by the Σ0
0-IND (instead of the Σ0

1 induction of RCA0). It was first studied in [SS86].
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The example distinguishes between two proofs of a single theorem that vary in proof theoretic

strength, somewhat revealing the contextual or historical nature of RM: the analysis of the proof-

theoretic strength of a theorem depends on the knowledge of its proofs at a time. This suggests

that it is not the bare statements of theorems, but proofs, that is the subject matter of reversals.

Understanding a theorem as a name for the collection of its proofs, one arrives at the conclusion that

theorems are intensional objects, given the drastically different strength of the methods employed

therein.

Let me turn to a possible objection to this diagnosis. For instance, Bolzano proved the Bolzano-

Weierstraß theorem (equivalent to ACA0 over RCA0) as a lemma in the proof of the Intermediate

Value Theorem (equivalent to RCA0 over RCA0). That is, at that time the only known proof of

the IVT was through a much stronger Bolzano-Weierstraß theorem. One might hope that had he

have the tools of RM at his disposal, he would have realised that the “lemma” trivially implies the

theorem (in the sense that any recursive set is also an arithmetical set). But this holds only if we

have access to the reversal of the weaker theorem; in the realm of Platonic ideas where all theorems

are supplied with the set-existence principles they are equivalent to (modulo base theory) RM is

an analysis of theorems. But in the absence of reverse mathematics of, say, Szemeredi’s theorem,

one can only take the known RM-analysis of the proofs of it. The professional judgement that

anticipates the theorem to be provable in RCA∗
0 is of great importance for further progress, but it

remains in the realm of speculation until the reversal arrives (after all, even Hilbert could be wrong

about the capacity of finitistic methods).

Now, it can be argued that the RM-analysis of a statement reduces to the identification of the

strongest lemma used in its proof followed by reversing this lemma and in this way establishing

the reversal for the whole statement, thereby reducing the RM of proofs to RM of theorems. But

the key step in this strategy is the process of identification of the strongest lemma, the procedure

that assumes investigating the structure of the proof and finding its combinatorial core. So, in the

process of reducing a proof (intuitively understood as a directed graph whose nodes are assumptions

and lemmas and vertices are applications of certain rules) to its strongest lemma one still performs

the work necessary for the RM of a proof.

This challenges the common perspective according to which
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it is the “combinatorial core” that the analysis of a theorem in reverse mathematics actu-

ally reveals. For this reason, equivalent theorems (in the sense of reverse mathematics)

are sometimes said to have the same “underlying combinatorics” [DM22, p. 10].

If my argument is correct, we should speak of underlying combinatorics of a proof of a theorem.

Hence, if two theorems are said to be equivalent in the above sense, it is in fact two proofs sharing

the underlying combinatorics – and not the theorems themselves, since the subject matter of a

single theorem can be constructed with methods implying radically different set-existence principles.

Instead of identifying a theorem T with its content, it seems more plausible to identify it with a

body of ways the claimed content is constructed PrfTi ’s, corresponding to treating proofs as types

in the intensional frameworks. If that is correct, the claim of the constraint stated at the end

of the section 2.1.3 is refined into a necessary condition for a faithful foundational RM-analysis

of mathematics. For if the analysis of proofs of a single theorem yields different classifications,

RM seems to be a futile endeavor. I view this as a strong argument for the change of way of

thinking about the products given by the foundational analysis of RM, giving philosophical fuel for

restating the goals of the program in more constructivist terms. It also has consequences on the

way we understand Simpson’s “Main Question”: Which set existence axioms are needed to prove the

theorems of ordinary, non-set-theoretic mathematics? For if there is no general method of ensuring

that an informal proof, which is the conceptual and structural base for a reversal, employs the

weakest axioms and has the lowest possible complexity, this means that reversals are not unique

solutions to the main question about a theorem T .



3 | Does Constructive RM score bet-
ter?

The conclusion of the last chapter has hopefully demonstrated that the intensional nature of the-

orems as studied in RM (the practice of which heavily bases upon formalizations of the proofs)

prevents the classical framework from obtaining clear classifications. Together with the problems

concerning coding, these two seem to be the most fundamental obstacles for Classical RM to be a

successful foundational program. At the same time, the conclusions of the previous chapter give

ready-made guidelines for examination of Constructive RM: (i) does it face similar problems related

the way it handles intensional objects? (ii) does it face problems related to formal representation of

mathematical objects? (iii) does it face any other issues that Classical RM is free of? The conclu-

sions of the present chapter are that Constructive RM is closer to respecting the intensionality of

theorems of informal mathematics, does enrich the foundational analysis with more exact methods

of construction and insight into the numerical meaning of the theorems, but it is also limited in the

sense that some of the classical theorems cannot be faithfully analyzed within this framework.

3.1 Systems for Constructive RM

Upon inspection, one very quickly realizes that the practice of Constructive RM is not firmly em-

bedded in a single formal framework, as is the case with Z2 in Classical RM. There is a multitude of

formal systems that could serve as base theories, such as W. Veldman’s Basic Intuitionistic Mathe-

matics (BIM) [Vel14], I. Loeb’s “Weak Kleene-Vesley” (WKV) [Loe05], Kreisel’s and Troelstra’s EL

[KT70], or Heyting Arithmetic in finite types (HAω) used in [Koh08]. Though they differ in formal

buildup and sometimes in applications and proof-theoretic strength, each is based on intuitionistic
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logic and is developed in a functional language. Apart from the needless inflation of the size of

the present thesis, there are at least two reasons why the careful discussion of each of them is not

necessary.

First, it is possible to interpret the systems (in the sense of interpreting one system within another)

in such a way that – modulo the strength of the interpretation function – some of these systems

have the same proof-theoretic strength and can be treated as co-extensional. Moreover, they are

conservative over some of the subsystems of the Classical RM, which makes them more familiar to

us. Finding the interpretations between the systems is a powerful tool of relating them in terms

of their provability conditions and as a method extends to establishing the conservativity (for a

specified class of statements) result between the systems.1

To give a general understanding of the axiomatic build-up of some of the intuitionistic formal

systems2, we put:

• EL = successor, equations for all primitive recursive functions, λ-conversion, recursor axiom,

∆0
0-AC for number variables, full induction axiom.

• EL = axioms of basic arithmetic for + and ·, full induction axiom, ∆0
0-AC for number variables.

• EL0 = axioms of basic arithmetic for + and ·, Σ0
1-IND axiom, ∆0

0-AC for number variables.

• EL∗
0 = axioms of basic arithmetic and the defining equation for exp, ∆0

0-IND axiom, ∆0
0-AC

for number variables, and the following axiom for the restriction operator

α ↾ (0) = ⟨⟩ α ↾ (x+ 1) = α ↾ (x)∗⟨α ↾ (x)⟩

where ⟨⟩ is the (code of the) empty sequence, ∗ is the concatenation operator, and ⟨t⟩ is the

one-length sequence 1t.

• EL−
0 is obtained from EL∗

0 by replacing the ∆0
0-AC for number variables with the ∆0

0 bounded

search axiom.
1One notable example of that is the Gödel-Gentzen translation of PA into HA.
2For exact definitions cf. [Nem23, pp. 670–1, 691].



46 3.1. SYSTEMS FOR CONSTRUCTIVE RM

The diagram below shows their relations (including some systems not introduced above) as summed

up in [Nem23].

ACA0 ∼Π0
2
EL ∼ EL ∼ BIM ∼ WKV

∨

RCA0 ∼Π0
2
EL0 ∼ EL0

∨

RCA∗
0 ∼Π0

2
ELELEM ∼ EL−

0 ∼ EL∗
0

where ∨ means that the group of the systems above it is proof-theoretically stronger than the group

of the systems below it, T ∼Π0
2
T ′ means that T ′ is conservative over T for Π0

2 sentences and T ∼ T ′

designates mutual interpretability of T and T ′ over a certain polynomial-time computable function.

Thanks to the relations between the intuitionistic and classical systems and the information about

the latter from the previous chapters, one gets a rough understanding of the positioning of these

systems in the context of my discussion. Moreover, given that many of these systems are inter-

pretable in one another, there is no need to thoroughly introduce each one of them in order to

carry out my philosophical investigation, as establishing interpretation is a stronger result than

establishing conservativity for some class of sentences.

Second, Constructive RM can be developed in an informal fashion such that the results can always

be formalized in a sufficiently strong system such as one of the above (though the options are much

more abundant).

This has actually been the case in the first few decades after the inception of the program in the

1980s. Bishop’s [BB85] gave a great momentum to research in constructive mathematics in general

and constructive foundations is particular, and it was the framework developed in this book, now

often referred to as BISH, that served as an informal “base theory” for the investigation. It was only

in the early 2010s that the formal theories listed above began to be treated seriously in relation
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to Constructive RM. Even so, most of the results were proved in BISH and this direction is still

very much in practice (see e.g. [Han18]). In the context of foundational analysis, prima facie it by

default resolves all problems of formal representation that Classical RM struggles with. Therefore,

if we treat Constructive RM as BISH, then the answer to the (ii) question stated at the beginning

of this chapter is that Constructive RM is not immersed in problems of representation of ordinary

mathematical objects like Classical RM is. However, guided by the rising popularity of the formal

approach in Constructive RM, I believe that a closer look at the issue is still required.

3.2 Representation in Formal Systems

Section 2.3 of the previous chapter discussed the fact that Classical RM can only faithfully represent

countable or separable objects of ordinary mathematics. This constraint is taken even more seriously

in Constructive RM in the sense that while working in the “weaker” systems such as ones listed

above, the research focuses on “arithmetized” versions of theorems and gives up the ambition of

representing the higher-order objects through coding trickery. This is much easier to achieve in

the constructive setting given that the objects defined with a method of their construction are

commonly even more well-behaving and accessible than the countable and separable ones in the

classical setting.

Example 3.1 (EL and continuous bar induction). ACA0 can be characterized as a subsystem of

sequential convergence; being equivalent to the Bolzano-Weierstraß theorem that guarantees the

existence of a limit of a bounded sequence (but does not necessarily provide a method to find it), it

implies non-constructive existence claims. By contrast, EL, a system that is Π0
2-conservative over

ACA0 was used in [FK20] to characterize the continuous bar induction that guarantees that every

point-wise continuous function from NN to N is induced by an inductively generated neighborhood

function.

There is an obvious difference in the nature of the objects involved in these two statements. First,

in case of ACA0, there is no restriction to the domain of the functions, i.e. they can classically

range over the classical R, while the functions involved in the claim of EL range over the very

tame NN and pose no issues when it comes to formal representation. Secondly, the mathematical

description of a limit of any bounded sequence of reals might go well beyond the “coarse grained”



48 3.2. REPRESENTATION IN FORMAL SYSTEMS

vocabulary of ACA0 (or any other subsystem of Z2 for that matter), while one has direct access to

the values of the neighborhood function asserted by EL that is inductively generated. ◀

Similarly, if WKL0 is a system characterizing continuity ([Sim84, p. 786]), it does so only through

(violently) encoding continuous functions into it, while the constructive principle FAN, stating that

every bar is uniform, ensures the tameness of the involved objects from the get-go. This situation

also transfers to the representation of more complex objects in constructive mathematics.

Example 3.2 (Polish spaces in Constructive RM). Complete separable metric spaces are repre-

sented as completions (X̂, d̂) of countable metric spaces. The latter are unproblematically repre-

sented via primitive recursive enumeration of elements in X together with a functional representing

a pseudo-metric dX . Now, the completion (X̂, d̂) of (X, d) is represented as the completion of

(NN, dX) whose element is given by a constructively definable function h with a given modulus of

uniform continuity ωh. The enriching of data by such a modulus ωh is more convenient in practice

than the classical presentation as a Cauchy sequence of polynomials having rational coefficients,

since such a sequence is in general quite complicated to construct, whereas a modulus ωh can often

easily be written down [Koh08, p. 84]. Apart from the practical convenience, this method is in

agreement with the constructive constraints on functions. ◀

The key lesson from this comparison is that it is not just the formal design of the systems, but

the foundational assumptions underlying the mathematics developed in these systems that play the

main role in avoiding representational conundrums. In fact, any result in constructive analysis is

an example of this difference, which, in the context of formal representation, is of great value. The

self-inflicted wound of Classical RM stemming from representing the infinitary objects in a finitary

framework is here blocked by the restriction of the scope of investigation of mathematical objects.

In short, since constructive mathematics eschews infinitary and uncountable objects, encapsulating

them as “completed” objects via encodings is significantly rarer than in Classical RM. So, in com-

parison to the latter, there is no need to supplement a constructive reversal with the information

about the coding machinery it uses, as suggested in Constraint 2.3.1.

Remark 3.3 (Explicit Mathematics as RM). These considerations concern the systems of relatively

low proof-theoretic strength. Indeed, there are much stronger theories, such as ones developed in

the tradition of Explicit Mathematics that could be taken into consideration as potential tools for
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foundational analysis in the sense of RM. However, the strongest theory T0 does not admit easy

hierarchization of the pertinent axioms – the Elementary Comprehension and Inductive Generation

– through, say, arithmetical hierarchy, which results in the lack of subsystems that could serve as

reference points of reversals. On the other hand, the weakest base theory, EM0, has the same proof

theoretic strength as PA or ACA0, which is far too strong for a proper foundational analysis. Hence

the question of formal representation within EM should not even concern the investigation. ◀

After this brief detour through the constructive formal systems, let me resume the discussion of the

informal Constructive RM regarding questions (i) and (iii). Its conclusions will mostly transfer to

the formal case.

3.3 Intensionality in BISH and Related Systems

3.3.1 BISH as RM

BISH is an informal framework that is based on intuitionistic logic and assumes the axiom of

countable choice, dependent choice, unique choice. In it, every set X comes with its own equality

relation =X and every function is identified not with the collection of its values Y , but with the

method of assembling these values in Y . Therefore, extensionally identical sets can be distinguished

from each other by different methods of constructing them, which is reflected in their specific

equality relations. This results in, for example, the empty set not being unique, as in conventional

set theory, but there being many such uninhabited sets ∅Z, ∅Q or ∅R, etc.

It can serve as a base theory in the way that it can be extended to intuitionistic mathematics

(INT) by adding the principle of continuous choice and the Fan Theorem, so-called Russian

recursive mathematics (RUSS) (by adding Markov’s Principle (MP) and the Church’s thesis),

and to classical mathematics (CLASS) by adding LEM and the full axiom of choice [Ish06]. The

flexibility afforded by BISH results in not a single, but three directions for classifications, each

according to one of the modes of mathematics: intuitionistic, classical or recursive. The first

important observation about reversals in BISH is that the principles mathematical statements are

reversed to are either logical principles (such as LEM, Weak Law of Excluded Middle (WLEM),

Limited Principle of Omiscience (LPO), Lesser Limited Principle of Omiscience (LLPO), MP),
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set-existence principles (Fan Theorem (FAN) and its variations), principles about the nature of

continuity (e.g. “Every sequentially continuous map f : NN −→ N is point-wise continuous”

(BD−N)) or principles describing recursive sets (e.g. anti-FAN). The first group of principles

are the weakenings of LEM and this is what relates BISH to the study of classical mathematics.

Since I am interested in comparing the constructive and classical reverse mathematics of ordinary

mathematics (which by assumption is the common classical type), I will restrict the discussion only

to this group of principles3. The principles are listed descendingly in terms of strength:

• LEM: For any wff φ, φ ∨ ¬φ

• WLEM: For any wff φ, ¬φ ∨ ¬¬φ

• LPO: For any binary sequence (αn)n∈N we can decide whether

∀n∈N αn = 0 ∨ ∃n∈N αn = 1

• LLPO: For any binary sequence (αn) with at most one 1,

∀n∈N α2n = 0 ∨ ∀n∈N α2n+1 = 0

And give an idea of the hierarchy of classifications to these principles [Man88], [Han18]:

Proposition 3.4. LEM is equivalent to the statement that the supremum of every bounded, inhabited

subset of reals exists.

Proposition 3.5. WLEM is equivalent to the first De Morgan’s Law, ¬(φ ∧ ψ) ↔ ¬φ ∨ ¬ψ.

Proposition 3.6. LPO is equivalent to the following statements:

1. The trichotomy for reals: ∀x∈R x < 0 ∨ x = 0 ∨ x > 0

2. Every real number is either rational or irrational.
3Admittedly, though, some of the principles from the other groups are classically valid, but my ambitions of course

do not encompass studying each case a classical statement is treated in BISH; instead I want to draw conclusions
from representative examples.



3.3. INTENSIONALITY IN BISH AND RELATED SYSTEMS 51

3. Every bounded monotone sequence of real numbers converges.

4. Bolzano-Weierstraß Theorem

5. Ascoli Lemma

Proposition 3.7. LLPO is equivalent to the following statements:

1. Every real number has a binary expansion.

2. the Intermediate Value Theorem

3. Weak König’s Lemma

In order for BISH to be a full-fledged alternative to Classical RM, one needs to show that the

reversals are acceptable from the classical perspective. Ishihara [Ish06, p. 46] explains: constructive

mathematicians have been making every effort, for a given classical theorem Thm, to find its

constructive substitute Thmc such that4

BISH ⊢ Thmc and CLASS ⊢ Thm↔ Thmc.

Oftentimes one can find more than one such Thmc. But he also notes that in some cases, we have

to be content with Thmc such that BISH ⊢ Thmc and CLASS ⊢ Thm → Thmc. This can suffice

for applications, but the absence of the classical implication Thmc′ → Thm signalises that the

constructive theorem Thm is too weak to demonstrate its classical counterpart. This is due to the

fact that the domain of the classical objects is bigger than that of the constructive ones, making

the classical theorems ranging beyond the concrete numerical meaning. Although in theory it is

possible that a different Thmc that is equivalent to its classical version will be discovered, but given

this domain discrepancy it is to be expected that there are theorems that cannot be convincingly

analyzed by Constructive RM from the perspective of a believer of CLASS. In practice however,

there is some compensation for that. For the goal of comparing the treatment of theorems in

Constructive RM with that of Classical RM, I will now present the reversal between LPO and the
4Note that the symbol “⊢” does not denote the formal provability, as both BISH and CLASS are informal

frameworks. This, heartbreakingly to a logician, blocks showing conservativity of these frameworks for, say, the class
of arithmetical statements.
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Bolzano-Weierstraß theorem (due to Mandelkern [Man88]), analogous to that from 0.2.1. It will

later serve as a case study for my philosophical discussion.

Thm. 3.8. Over BISH, the following principles are equivalent:

1. LPO

2. Any sequence of positive integers is either bounded or unbounded.

3. Any bounded sequence of positive integers has a constant subsequence.

4. Bolzano-Weierstraß theorem

5. Any bounded monotone sequence of real numbers converges.

Proof. (1)⇒(2). Assuming LPO, given a sequence (αn), define

αm
n =:

n∨
k=1

(0 ∨ (αk −m ∧ 1))

then for each n, αm
n−1 is a sequence decided by LPO: if for all n, αm

n = 0, define cm = 1; and if

for some n, αm
n = 1, define cm = 0. Then (cm) is a decision sequence. For if all cm = 0, then the

initial sequence αn is unbounded, while if for some m, cm = 1, then αn is bounded by m.

(2)⇒(3) Define a sequence (βm
n ) such that given (αn) that is bounded by M , then for all n s.t.

1 ≤ m ≤ M , βn
m ≡ 1 if αn ̸= m, and βn

m ≡ n if αn = m. Observe that for each m, (βn
m) is either

bounded or unbounded. If each of these is bounded, choose i > βn
m for all m,n. This must mean

that αn ̸= m for all m, contradicting (αn)’s boundedness. Therefore there must exist an m such

that (βn
m) is unbounded and has a subsequence with all terms greater than 1. By construction of

(βn
m) this means that (αn) has a constant value m.

(3)⇒(4) We will go with the constructivisation of the usual “interval-halving” method.

Let (αn) be a sequence of reals bounded by l. Constructively, we cannot divide the interval [a0, b0]

into halves and claim that they compose the original interval. However, the following lemma [BB85,

Cor.2.17] helps:
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Lemma 3.9 (Constructive dichotomy). If x, y and z are real numbers with y < z, then either x < z

or x > y.

Proof. Since z − x+ x− y = z − y > 0, either z − x > 0 or x− y > 0, by [BB85, Prop. 2.16].

In this way we can use slightly overlapping intervals. So let [a0, b0] be divided into two slightly

overlapping subintervals [a0, z] and [y, b0]. Now the key nonconstructive method in BW comes in:

the decision that at least one of the subintervals contains infinitely many an’s from (αn). Given a

sequence of an’s within an interval [a0, b0], decide, for each n, whether ai with 0 ≤ i ≤ n lies in the

left [a0, z] or right [y, b0] subinterval, and define βn = 0 or βn = 1 accordingly. By continuing to

divide the subintervals into ever-smaller slightly overlapping subintervals we construct the sequence

of βn’s, that again is bounded. By applying (3), we get an infinite sequence of 0’s or of 1’s based

on (αn). Hence it is either strictly increasing (1’s) or strictly decreasing (0’s).5 Define αβn as a

subsequence of (αn) of an’s that comprises of the strictly increasing (resp. decreasing) elements

within the ever-smaller subintervals. Since the subintervals are ever-smaller with each an, this

subsequence is bounded and infinite. But since it’s strictly increasing (decreasing), the distance

|an − an+ 1| is ever smaller. So there is an x s. t. |an − x| ≤ k−1 for each k ∈ N. So x is the limit

that the subsequence αβn
converges to.

(4)⇒(5) Let (αn) be a bounded sequence of reals. We will show that its limit L is also a limit of a

monotone sequence. Without loss of generality, fix some ϵ > 0 s. t. there is an ai ∈ (αn) that lies

in the interval [L− ϵ, L]. It is the case by the construction of L. Observe that the subsequence of

(αn) within this interval is monotone, as it is strictly increasing from L − ϵ towards L. Now, for

the sake of contradiction, let the monotone sequence converge to a limit M with L < M . Then

there is an aj with i < j beyond L; but then the subsequence of (αn) also has to converge to M ,

so L = M , a contradiction. Therefore it must be the case that the monotone sequence converges

to the limit L.

(5)⇒(1) Let (αn) : N −→ {0, 1}. By the monotone convergence, the sequence (αn) converges to
5This is exactly the amount of classical mathematics we need to overcome the constructive counterexample from

[BB85, p. 29].
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some limit L = sup{an : n ∈ N}. Define

(βn) =

0, if ∀i≤n ai = 0

1, if ∃i≤n ai = 1

Now, observe that if an = 0 for all n, then L = 0, and the sequence is not monotone, but constant;

that immediately yields LPO. And if there exists n such that an = 1, then xn will be a strictly

positive sum, and thus L > 0.

So let (βn) be monotone and bounded by 1. It is a decision sequence: for a0 we have either L < 2
3 ,

in which case a0=0, or L > 1
3 , in which case a0 = 1 and there exists an n for which an = 1.

Continuing this method, we arrive at ∀n∈N βn = 0 ∨ ∃n∈N βn = 1. ■

This concludes the presentation of Constructive RM in general and BISH in particular, equipping

me to be able to discuss the question (i) about their handling of intensionality.

3.3.2 A remark on intensionality in Constructive RM

Intensionality, however consequential for the mode of mathematics developed in BISH, by itself

has scarce effects on the constructiveness (or lack thereof) of the constructive formal theories.

To see this, we can consider Heyting arithmetic in finite types supplemented with the axiom of

extensionality, E-HAω together with the full axiom of choice for finite types and a comprehen-

sion axiom for negative formulas in finite types. Kohlenbach shows in [Koh08, 119, Cor.7.10] that

E-HAω + AC + CAω
¬ does not even prove Σ0

1-LEM6. This result, in view of the well-known anal-

ogous result that constructive set theory with AC proves (by making a key use of the axiom of

extensionality) full LEM, shows how little the inclusion of extensionality changes in the context of

an ostensibly weaker theory such as HAω.7 It can be therefore expected that the difference in

the mathematics developed in intensional and extensional theories can only be brought about at a

sufficient expressive power and strength of the axioms involved.
6In fact, it does not even prove the considerably weaker Π0

1-LEM.
7Analogous phenomena are not foreign also to the Classical RM. For instance, [DM10, p. 5] show that some

versions of Zorn’s Lemma in Z2 are equivalent to ACA0 or even provable in RCA0.
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3.3.3 Intensionality of theorems in Constructive RM

That being said, the “intensionality of theorems” that I care about is in a sense a meta-property and

is not simply expressed by an axiom. A framework can be fully extensional but identify theorems

with their proofs thus satisfying this property. To see if, or to what extent does BISH or related

formal systems appreciate the distinction between a statement and its proof I have to inspect the

practice of Constructive RM.

The way ordinary mathematics is handled in the constructive setting is by “constructivizing” the

theorems, following Bishop’s remark:

Every theorem proved with idealistic [i.e. classical] methods presents a challenge: to

find a constructive version, and to give it a constructive proof. [BB85, p. 3]

The typical way to do the first step is to add “extra data”. For example, supplying a modulus

of uniform continuity to each continuous function (as it is done in BISH) is exactly that. After

giving a theorem a “numerical meaning”, one proceeds with finding a constructive proof of it. At

this point, what ensues in constructive mathematics can vary significantly from the practice of

Constructive RM: in the former, one often has to find creative methods that are rewarded with

more informative proofs8; in the latter, one has to find the constructively invalid principle in the

proof and demonstrate its indispensability (this sometimes amounts to performing both tasks,

when no “constructivized” version of the theorem is known), often however most steps in a proof

are constructively valid and the only task is to show the equivalence of the non-constructive steps

to one of the weakenings of LEM. In these cases, the reversals by default follow the steps in the

original proofs, thus sticking, in the sense of practice, the theorems with their proofs. This is the

case with many reversals of important theorems (e.g. Bolzano-Weierstraß and Ascoli Lemma to

LPO or IVT and weak König’s Lemma to LLPO [Han18, pp. 11, 22], [Ish90]).

When there is more work to be done than just identifying the non-constructive steps in proofs, the

notorious feature of reversing theorems in BISH is, by design, following what might be called the

constructive pattern of proof, i.e. basing the reasoning on the objects already constructed through

giving them an exact numerical meaning. In this way, there is much less variation on the methods
8A beautiful example of that is Bishop’s proof of irrationality of

√
2, which gives an upper bound on the distance

of this number from the closest rational one.
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used in proofs of a given statement, that in essence results in a closer identification of a statement

with its proof.

Moreover, as the key non-constructive steps are logical principles, the argument amassed in a proof

usually follows a specific line of reasoning that accounts for the usage of these laws. In contrast

to the set-existence principles in Classical RM that do not emphasize the method of construction

of such a set, the use of a logical principle like LPO stems from a specific line of reasoning about

the sequences of numbers, that forces the preceding construction of objects enabling the use of

the principle. In effect, the proofs follow patterns of argument based on the constructions and the

reasoning necessary to admit the use of these principles, resulting in close relationship between a

theorem and its proof.

Finally, having said that, one sociological qualification is in order: since constructive mathematics

as a field of research is much less popular than conventional mathematics, it might be the case

that it is yet-unexplored in the sense that improved or alternative ways of proof might be found,

resulting in multiple proofs of a single theorem. That would fuel the inadequacy of speaking of, say,

an equivalence between a principle and a theorem, just like in case of Classical RM as discussed in

section 2.3.2. Even if that is to be the case however, it seems to me much less frequent than in the

classical case, due to the method of constructive mathematics.

3.3.4 Comparison of Reversals

After these general remarks let me turn to the specific example by comparing the above reversal

between LPO and the Bolzano-Weierstraß theorem with its classical counterpart with respect to

two questions: (a) In what way do the “constructivized” objects change the (reverse) mathematics

developed? (b) Is the constructive reversal more informative w.r.t. the numerical content of the

objects involved?

Since the direction LPO⇒BW admits the use of the non-constructive principle, both proofs are

relatively similar in this part. Hence I focus on the differences between the proofs. An obvious one

is the use of the constructive dichotomy for reals instead of the division on an interval into two

equal parts. This introduces a difference in the feasibility of finding the limit, since in general one

has to make more decisions (divisions) if the subintervals overlap (i.e. are bigger than halves). This
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is a practical difference that does not influence the reversal since both frameworks admit countably-

many iterations of a principle. Apart from that, both proofs use (in the forward direction) a decision

method that yields the limit of the sequences.

But in the direction from the theorem to the principle (ACA0/LPO) the difference of constructive

and classical approach is fully fleshed out. Observe that in the classical case, the content of the

formula 1 defining the subsequence is completely unrelated to the demonstration of the reversal; the

only thing that matters is its logical complexity that lets one “plug it” into the ∆0
1-CA, to prove the

Σ0
1 scheme. One could use any other Π0

1 or Σ0
1 formula to arrive at this conclusion. This suggests

that either the Σ0
1 sentences bear some essential determinants of formulas about the suprema of

sequences of rationals, or that the reversal is not really informative about what is going on in BW.

There is some definite merit to the former, since a supremum of a sequence of numbers can only be

described by at least a Σ0
1 or Π0

1 formula; no Σ0
0 formula can express it. Herein lies both the strength

and weakness of the Classical RM: the sole focus on what sets exist under assumptions of different

theorems enable making many theorems equivalent, but the use of the objects these theorems talk

of plays a secondary role and sometimes is not significant at all.9 Compare this with the proof that

BW implies LPO though the monotone convergence theorem. The decision sequence (βn) that is

exactly the LPO is constructed in close relation to the original monotone sequence (αn), utilizing

the division into subintervals.

In case of BW, the constructive handling does not introduce important changes to the mathematical

objects, but this is by no means a rule, as discussed before. On the other hand, we get a clear

method of constructing the decision sequence.

3.4 Evaluation and Conclusion

3.4.1 Resource-sensitivity

As to the question (iii) about possible other problems entrenched in Constructive RM, one has to

look into resource-sensitivity. To reiterate, a resource-sensitive framework is one that distinguishes
9In the abstract, it is then possible that there is no obvious way of proving in informal classical mathematics that

Thm → Thm′ for ϑ ⇔ (·) − CA0 ⇔ ϑ′ holding in Classical RM, where ϑ is a formalization of Thm. But I do not
know of such examples.
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between a single, a finite number or countable amount of consecutive or parallel applications of a

principle.

Generally, the (non-)resource-sensitivity comes from the logic underlying a framework. Constructive

RM, be it in BISH or formal systems, is even less resource-sensitive than its classical counterpart.

This is mainly due to unrestricted use of the axiom of countable choice, which results in complete

freedom of parallel usage of a principle (or a theorem) countably many times [BGP21, p. 42]. This

is important because some of the reversals cannot be proved only with finite uses of a theorem.

For example, LLPO⇔ weak König’s Lemma requires iterating the principle countably many times

[Han18, p. 24], making the result look weaker than it actually is from the perspective of what is

practically computable10. Therefore, if a framework were to distinguish reversals based on resource-

sensitivity, it would be even more fine-grained. An obvious path towards that would be using

intuitionistic linear logic (that specifically focuses on the amount of uses of available tools) instead

of intuitionistic one, but this approach has not yet been implemented. An alternative approach

to this issue is presenting the reversals in the form Thm ⇔ Principle + (some) axiom of choice,

emphasizing the use of non-resource sensitive axioms.

3.4.2 Different Mathematics?

It is sometimes claimed that since intuitionistic mathematics (unlike intuitionistic logic) involves

constructions contradictory to ordinary mathematics, it cannot serve as a tool for foundational

analysis of the latter. The stronger intuitionistic theories are only Π0
2-conservative over the classical

ones, which, in presence of their great expressive power and proof-theoretic strength amounts to

little conservativity indeed. For if a theory such as T0 or CZF+REA’s11 is Π0
2 conservative over ∆1

2-

CA+BI12 [Rat17, p. 402], can such a result be viewed as any improvement of HA’s conservativity

over PA? I do not think so. If a theory is fit to develop more complex areas of mathematics such

as analysis and topology, its agreement on arithmetic with the classical counterparts seems to be a

fact of obvious folklore at best and a waste of assets at worst. If the conservativity, which expresses

the possibility of serving as a theory for both classical and constructive mathematics, only concerns
10The implication from Weak Limited Principle of Omniscience, that lays between LPO and LLPO, to WKL only

requires a single use of the unique choice, making the result more feasible from the resource-sensitivity perspective
at the expense of using a stronger classical principle.

11REA is an axiom stating that every set is included in a regular set, effectively strengthening the theory.
12Bar Induction.
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arithmetical statements, then there is no need for theories beyond the strength of HA.

On the other hand, these theories are admittedly too strong. By contrast, when it comes to

intensionality and weak intuitionistic theories, they seem to be still too weak to produce problems

when AC meets the axiom of extensionality in their context, that is, they do not imply LEM.

These issues are expected to occur with vindication of the expressive power. Gödel’s remark that

in the context of arithmetic, intuitionism (and its implicit rejection of extensionality) makes no

real difference remains in force. And it seems that this holds also for large portions of intuitionistic

analysis, given its careful treatment of objects such as point-wise continuous functions. But one can

expect that LEM will eventually begin to pop up if AC and extensionality will be used in stronger

theories, appropriate to handle more involved objects of intuitionistic analysis and topology. In

the context of my reasoning, this means that if one assumes the constructive framework to be the

correct one for treating intensional objects of mathematics such as theorems, as I’ve argued above

in section 3.3.3, the proofs can be assumed to be co-extensional with theorems within constructive

frameworks up to high, but not too high strata of the hierarchy of proof-theoretic strength. It

seems apparent from the constructive approach to mathematical objects that given a statement, in

constructive mathematics there is less room for using proof methods of radically different strength

in the process of demonstrating it, and this phenomenon might account for the uniqueness of proofs

in the lower strata of intuitionistic theories.

Now, BISH can serve as a basis of foundational analysis of the ordinary classical mathematics due

to its neutrality towards both the latter and intuitionistic mathematics. In this sense, it does not

carry the burden of uncanny objects that Brouwer’s mathematics had to be cleansed of. I believe

that a different classification (from the classical one) of theorems that BISH arrives at stems from

this framework’s advantage of using the finer-grained base logic (that can, for instance distinguish

a statement and its contrapositive) and the in-built uniformity and countability of objects. This

claim goes against Simpson, who says that

our approach in [Sim99] is to analyze the provability of mathematical theorems as they

stand, passing to stronger subsystems of Z2 if necessary. [Sim99, 32, emphasis mine]

Since working in BISH on ordinary statements requires their constructivization, the changes in-

troduced might seem suspicious from the perspective of faithfulness of representation. To this I



60 3.4. EVALUATION AND CONCLUSION

respond that (1) these “changes” are not real definitional differences and from the classical perspec-

tive can be viewed as restrictions on the objects considered, not actual changes of the theorems.

For instance, the constructive version of the Heine/Borel covering lemma will speak of a subset

of continuous functions, namely the uniformly continuous functions, for which the result of course

also holds in classical mathematics. Additionally, there is a reward for this restriction in the form

of more precise numerical information on the behaviour of the functions and the construction of

coverings. In this sense, the constructivization of statements also results in treating the theorems

“as they stand”, only for a smaller class of objects. And the restriction seems far from arbitrary.

Apart from that, as [Eas15, p. 52] remarks

an apparent enrichment is not always a genuine enrichment: a statement that employs

an enriched notion may turn out to be equivalent to an alternative formalisation that

does not.

An easy example of this is that the “enrichment” resulting in distinguishing the Fan Theorem

from weak König’s Lemma is silent from the classical perspective: in classical mathematics these

statements are equivalent to each other.

Moreover, from the perspective of practice, the constructivizations in important cases do not change

the sets of objects that mathematicians are actually interested in. Simpson [Sim99, pp. 136–7] notes

that

“any continuous function [from Rk into R] which arises in practice” can be proved in

RCA0 to have a modulus of uniform continuity on any closed bounded subset of its

domain.

But then he insists

This situation has prompted some authors, for example [BB85, p. 38], to build a modu-

lus of uniform continuity into their definitions of continuous function. Such a procedure

may be appropriate for Bishop since his goal is to replace ordinary mathematical the-

orems by their “constructive” counterparts. However ... our goal is quite different.

Namely, we seek to draw out the set existence assumptions which are implicit in the

ordinary mathematical theorems as they stand. ... Thus Bishop’s procedure would not
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be appropriate for us. [Sim99, 137, original emphasis]

In other words, Simpson was eager to give up the precisification of the statements together with

mathematical practice merely to preserve the expression of classical statements “as they stand”.

The misconception responsible for this choice is, I believe, expressed when Simpson says that

“[Bishop’s] goal is to replace ordinary mathematical theorems by their ‘constructive’ counterparts”.

This would be true if Simpson’s discussion referred to Brouwer’s constructivism, that indeed bluntly

rejected huge portions of classical mathematics. However, one of the most influential of Bishop’s

contributions to constructivism was the observation that classical mathematics has a substantial

underpinning of constructive truth [BB85, p. 12]. Bishop’s constructivism is fully consistent with

classical mathematics, which simply is an extension of it. Therefore, the “constructivized” versions

of theorems within BISH are a part of classical mathematics.(2) The insistence on safeguarding

classical mathematics as it stands seems all the more dazzling when one considers the formal

acrobatics that have to be involved to represent classical mathematics in Z2. As discussed in

chapter 2, encoding ordinary objects most often requires “arithmetization” of objects on top on

other definitional changes which immediately should pose questions about the faithfulness of the

representation. In any case, I believe it is clear that the statements Classical RM works on are

far from being “as they stand” in the ordinary mathematical practice. Plainly put, the choice

between Classical RM and Constructive RM in the context of faithfulness of representation is a

choice between infinitary statements being forced into a finitary form and finitary statements. In

this sense, Constructive RM is much more faithful to the mathematical practice as it stands.



A | Definitions

Def. A.1 (ω-model). An ω-model is a L2-structure

(ω, S,+, ·, 0, 1, <)

where ∅ ̸= S ⊆ P(ω). Thus an ω-model differs from the intended model only by having a possibly
smaller collection S of sets to serve as the range of the set variables.

Def. A.2 (Turing-reducibility). Let g be a finitary function on ω. The class of functions partial
computable from g (the class of partial gcomputable functions) is the smallest class which includes
every function that is primitive recursive in g and is closed under composition, primitive recursion,
and applying the minimum operator.

A function f is computable from g (or Turing reducible to g written f ≤T g, if it is partial
computable from g and total.

Turing reducibility can be characterized by ∆0
1 definability.

Def. A.3 (Turing functional). A (Turing) functional is a function Φ defined on ωω such that for
some e ∈ ω,

Φ(g) = λ−→n Ξ(e,−→n , g)
for all g ∈ ωω, where Ξ is a universal computable function. We call e an index for Φ and we say
that Φ is k-ary, where k is the length of −→n .

Def. A.4 (1-consistency of T ). A finite set of sentences S is said to be 1-consistent if S + TΠ0
1

is
consistent where T 0

Π1 is the set of all true Π0
1 sentences.

Def. A.5 (β-model). A β-model is an ω-model S ∈ P(ω) with the following property. If σ is any
Π1

1 or Σ1
1 sentence possibly with parameters from S, then (ω,P(S),+, ·, 0, 1, <) satisfies σ iff the

intended model, i.e. (ω,P(ω),+, ·, 0, 1, <), satisfies σ.

Def. A.6 (hyperarithmetical set). We define the hyperjump operation inductively:

HJ(0, X) = X

HJ(n+ 1, X) = HJ(HJ(n,X))
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A set X is hyperarithmetical in a set Y if X ≤T Y O for some well ordering O computable from Y
If X is hyperarithmetical in Y we write X ≤HY P Y .

Hyperarithmetical sets are exactly the ∆1
1-definable subsets of ω.
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RCA0 Recursive Comprehension. 1, 3, 4, 5, 7, 9, 20, 26, 27, 28, 30, 32, 41, 42

WKL0 Weak König Lemma. 1, 4, 5, 20, 26, 27, 28, 41

ACA0 Arithmetic Comprehension. 1, 4, 6, 7, 9, 20, 26, 27, 28, 29, 40, 42

ATR0 Arithmetic Transfinite Recursion. 1, 4, 7, 8, 9, 20, 25, 26

Π1
1-CA0 Π1

1-Comprehension. 1, 4, 7, 8, 9, 20, 25, 26, 33, 34

BISH Bishop’s Constructive Analysis. 1, 22, 46, 49, 50, 51, 52, 53, 54, 55, 56, 59, 61

Z2 Second Order Arithmetic. 1, 2, 4, 25, 31, 35, 37, 40

Classical RM Classical RM. 2, 4, 5, 6, 17, 19, 20, 21, 22, 23, 26, 29, 30, 31, 32, 35, 38

RM Reverse Mathematics. 3, 6, 7, 9, 10, 13, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 34, 35, 37, 38,
39

PA Peano Arithmetic. 5, 6

PRA Primitive Recursive Arithmetic. 5, 17, 25, 30

AD Axiom of Determinacy. 9

KP Kripke-Platek set theory. 9

AC Axiom of Choice. 14, 16, 33, 54, 59

II GIT II Incompleteness Theorem. 15

I GIT I Incompleteness Theorem. 15

EM Explicit Mathematics. 22, 48

HA Heyting Arithmetic. 22



70 Acronyms

Constructive RM Constructive Reverse Mathematics. 22, 38

RT 2
2 Ramsey theorem for pairs. 25

LEM Law of Excludded Middle. 38, 49, 50, 54, 59

HAω Heyting Arithmetic in finite types. 44

MP Markov’s Principle. 49

LPO Limited Principle of Omiscience. 49, 55, 56

LLPO Lesser Limited Principle of Omiscience. 49, 50, 55
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