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Abstract

Secure Multi-party Computation (MPC), which allows multiple parties to
jointly compute a function over their inputs while keeping the inputs private,
is one of the important research directions in cryptography, and plays a vital
role in fields like auctions and electronic votes.

Oblivious Transfer (OT) protocols are sufficient to construct MPC protocols.
We provide a construction turning any (classical) Zero-Knowledge (ZK) protocol
into a composable quantum Oblivious Transfer (OT) protocol, using weaker
assumptions compared to previous works while keeping a protocol optimal in
communication.

In particular, this construction only requires collision-resistant quantum
one-way functions, instead of collision-resistant hiding hash functions, to build
a 2-message quantum OT protocol in the random oracle model.

Internally, we rely on a quantum version of the Goldreich-Levin theorem
that we generalize to arbitrary length-preserving one-way functions instead of
one-way permutations. This theorem provides a way to generate a quantum
hard-predicate that is used in the protocol to hide one bit of information
without relying on the hiding property.
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Chapter 1

Introduction

Multi-Party Computation (MPC) protocols allow multiple parties to jointly
compute a function over their input while keeping the inputs private. MPC
protocols can play a vital role in fields like auctions, electronic voting, and
more. A typical example of MPC is the Millionaires’ problem [Yao82], where
a set of parties gets to know the identity of the richest person, in such a way
that the fortune of each party is never leaked to others.

MPC protocols are usually quite complicated to study directly. However,
it is proven that there is a simpler primitive called Oblivious Transfer (OT)
which is sufficient for constructing multi-party computation (MPC) [Kil88]. An
OT protocol is a protocol in which a sender holds two messages: the receiver
can choose to learn one of these messages, without revealing their choice to
the sender.

Until now, classical OT protocols rely on trapdoor functions. Trapdoor
functions are functions that are easy to compute and hard to invert, but easy
to invert with the knowledge of a secret trapdoor. One can construct trapdoor
functions assuming the hardness of certain highly structured problems such
as factoring [EGL85], or by relying on the problem of finding the shortest
vector in a lattice [PVW08, BD18, Qua20]. In other words, classically, OT lives
in Cryptomania [Imp95], the possible world where public-key cryptography
is possible. On the other hand, information hidden in quantum states can
only be revealed using some “correct” operations, and will be destroyed by
“incorrect” ones. This feature makes it possible for OT to exist under weaker
assumptions. As a result, quantumly, OT lives in MiniQcrypt [GLS+21,
BCK+21], the possible world where one-way functions exist but where public-
key cryptography is not known to be possible. The article [CMS23] provides the
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CHAPTER 1. INTRODUCTION

first OT construction in MiniQcrypt requiring the exchange of only 2 messages
(which is optimal), assuming the existence of a collision-resistant hiding hash
function, which is a function that is hard to invert, for which it is hard to find
2 preimages mapping to the same image, and such that it is hard to find the
second bit of the preimage given the image.

It is still unclear which possible world of complexity we live in and specific
assumptions might be broken in the future. For example, the SIDH protocol
was proven to be insecure in a breakthrough result [CD23], and there have been
challenges to the hardness of LWE, and a recent attempt is [Che24], though
this paper was found to contain a subtle bug. As a result, we want to construct
OT protocols using even weaker assumptions. When considering classical
functions, one of the most fundamental property is the notion of one-wayness,
denoting the fact that the function is hard to invert. It is natural to ask if
OT protocols can be obtained from one-way functions, but [CMS23] left this
fundamental question unanswered:

Can we construct OT using collision-resistant quantum one-way functions,
i.e. without relying on the hiding bit property?

The following theorem we prove in this thesis answers the question positively.

Theorem 1.1 (Informal). Assuming the existence of collision-resistant length-
preserving quantum one-way functions, and the existence of any n-message ZK
proof (or argument) of knowledge, we can obtain an n+ 1-message OT (in the
CRS model), or an n+ 2-message OT (in the plain model).

Corollary 1.2 (Informal). Assuming the existence of collision-resistant length-
preserving quantum one-way functions, there exists a 2-message OT composably
secure in the random oracle model.

Moreover, we obtain the following result:

Theorem 1.3 (Informal). Assuming the existence of quantum one-way per-
mutation, and the existence of any n-message ZK proof (or argument) of
knowledge, we can obtain an n+ 1-message OT without additional assumptions.

To obtain these protocols we rely on the quantum Goldreich-Levin theorem,
which indicates that any length-preserving quantum one-way function can
be converted into another quantum one-way function with a quantum hard-
predicate. This quantum hard-predicate, informally speaking, is used to hide
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one bit of information without assuming the hiding property of the function.
The article [AC02] provides a proof of a quantum Goldreich-Levin theorem
that applies to quantum one-way permutations, and we prove that the result
can be generalized to any length-preserving quantum one-way function.

Organization. In Chapter 2, we introduce the notations and definitions
we use in the thesis. In Chapter 3, we provide an informal overview of
the construction of the protocol. In Chapter 4, we generalize the Quantum
Goldreich-Levin Theorem to quantum one-way functions. In Chapter 5, we
give the formal version of the protocol, as well as its correctness proof and
security proof. And in Chapter 6, we conclude the contents of the thesis and
leave some open questions for future work.
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Chapter 2

Preliminaries

2.1 Basic notations

For any bit strings x and y, xi is the i-th element of x, starting from 1. x||y
denotes the string in which y follows x. For 2 bit strings x, y that have the
same length n, x⊕y denotes the string z of length n such that zi = xi⊕yi. The
dot product between two strings is defined as ⟨y, x⟩ := ⊕ni=1yixi. For a matrix
M , we denote as M † := MT the conjugate transpose of the original matrix.
We write Pr

x
$←S

[·] to denote the probability when x is sampled uniformly at
random from the domain S; we also write Prx[·] as a shortcut when the domain
is clear in the context.

2.2 Quantum Computing

Here we introduce some basic quantum computing notions that we will use in
the thesis. More information about quantum computing can be found in the
book by Nielsen and Chuang [NC10].

2.2.1 Hilbert space and Dirac notation

To every quantum system we associate a Hilbert space H = Cd, and we use
the so-called Dirac notation to represent vectors in this Hilbert space:

|ψ⟩ :=


ψ1
...
ψd

 , ⟨ψ| := (
ψ̄1 · · · ψ̄d

)
(2.1)
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This way, dot products can be represented naturally:

⟨ϕ|ψ⟩ =
(
ϕ̄1 · · · ϕ̄d

)
ψ1
...
ψd

 , |ψ⟩ ⟨ϕ| =

ψ1
...
ψd

(ϕ̄1 · · · ϕ̄d
)

(2.2)

2.2.2 Qubit

A qubit is the most fundamental object in quantum computing, which can be
seen as the quantum generalization of a bit.

A (pure) qubit can be represented as a vector |ψ⟩ ∈ C2 such that:

|ψ⟩ =
(
α

β

)
(2.3)

where |α|2 + |β|2 = 1, which means that ⟨ψ|ψ⟩ = 1.
Moreover, we define the standard basis, also known as the computational

basis {|0⟩, |1⟩} as

|0⟩ :=
(

1
0

)
, |1⟩ =

(
0
1

)
(2.4)

and the Hadamard basis {|+⟩ , |−⟩} as

|+⟩ := 1√
2

(
1
1

)
, |−⟩ = 1√

2

(
1
−1

)
(2.5)

Like in the classical setting, we need to handle cases with multiple qubits.
Tensor product provides a way to describe multiple vector spaces by using one
larger vector space.

Definition 2.1 (Tensor product). For matrix A that is m× n and B that is
p× q, the tensor product A⊗B is defined as the following mp× nq matrix:

A⊗B =


A1,1B . . . A1,nB

...
...

Am,1B . . . Am,nB

 (2.6)

For vector spaces A and B, with basis V = {vi} and W = {wj} respectively,
the tensor product A ⊗B is defined as the vector space that is spanned by
{vi ⊗ wj}.
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CHAPTER 2. PRELIMINARIES

We define multiple qubits as follows:
A (pure) state of n qubits can be represented as a vector |ψ⟩ in the vector

space (C2)⊗n = Cd where d = 2n such that

|ψ⟩ =


ψ1
...
ψd

 (2.7)

and ∑d
i=1 |ψi|2 = 1, that is, ⟨ψ|ψ⟩ = 1.

For a state |ϕ⟩ of m qubits and a |ψ⟩ of n qubits, we naturally define the
composition of these 2 states as |ϕ⟩ ⊗ |ψ⟩, which is a state of m+ n qubits, i.e.
of dimension 2m+n.

The standard basis {|x⟩}x∈{0,1}n is defined as

|x⟩ = ⊗ni=1 |xi⟩ =


α1
...
αd

 (2.8)

where αi = 1 if x is the binary representation of i− 1, otherwise αi = 0. For
example, in the 2-qubits space, the standard basis consists of the following
states:

|00⟩ =


1
0
0
0

 = |0⟩ ⊗ |0⟩, |01⟩ =


0
1
0
0

 = |0⟩ ⊗ |1⟩ (2.9)

|10⟩ =


0
0
1
0

 = |1⟩ ⊗ |0⟩, |11⟩ =


0
0
0
1

 = |1⟩ ⊗ |1⟩ (2.10)

2.2.3 Unitary operation

Just like with classical bits, we can perform operations on qubits. One can
do two kinds of operations on a quantum state: unitaries and measurements.
Unitary operations map quantum states to quantum states in a reversible way.

Definition 2.2 (Unitary operation). An operation U is unitary operation on
a vector of dimension d iff U is a d× d matrix such that U †U = UU † = I.
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2.2. QUANTUM COMPUTING

We also list some unitaries that we use in the thesis.

1. The Hadamard gate H is defined as

H = 1√
2

(
1 1
1 −1

)
. (2.11)

This unitary transforms the computational basis into Hadamard basis,
that is,

H|0⟩ = |+⟩ , H|1⟩ = |−⟩ , H |+⟩ = |0⟩, H |−⟩ = |1⟩. (2.12)

2. The bit-flip gate X is defined as

X =
(

0 1
1 0

)
. (2.13)

This unitary does a bit flip in the standard basis, and does a phase flip
on state |−⟩, that is,

X|0⟩ = |1⟩, X|1⟩ = |0⟩, X |+⟩ = |+⟩ , X |−⟩ = − |−⟩ . (2.14)

3. The phase-flip gate Z is defined as

Z =
(

1 0
0 −1

)
. (2.15)

This unitary does a bit flip in the Hadamard basis, and does a phase flip
on state |1⟩, that is,

Z|0⟩ = |0⟩, Z|1⟩ = −|1⟩, Z |+⟩ = |−⟩ , Z |−⟩ = |+⟩ . (2.16)

4. The controlled phase-flip gate CZ is defined as

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (2.17)

This unitary operates on 2 qubits and only does a phase flip on the basis
state |11⟩, that is

CZ |00⟩ = |00⟩ , CZ |01⟩ = |01⟩ , CZ |10⟩ = |10⟩ , CZ |11⟩ = − |11⟩ .
(2.18)

5. For any function f : {0, 1}n → {0, 1}m, there is a unitary Uf : C2n ⊗
C2m → C2n ⊗ C2m such that for every x in the domain of f and b ∈
{0, 1}m:

Uf |x⟩ |b⟩ = |x⟩ |b⊕ f(x)⟩ . (2.19)

11



CHAPTER 2. PRELIMINARIES

2.2.4 Density matrices

In practice, we may face a situation that a state is a probability distribution
over different (pure) states. To describe this kind of situation, we use den-
sity matrices to generalize the notion of quantum state. We first give some
mathematical definitions.

Definition 2.3 (Hermitian matrix). A linear operator M : Cd → Cd is Hermi-
tian if M † = M .

By the spectral theorem, a Hermitian matrix M can always be represented
in the form M = ∑

i λi |ψi⟩ ⟨ψi| where λi’s are real eigenvalues of M , and |ψi⟩’s
are orthonormal vectors, that is, ⟨ψi|ψi⟩ = 1, and ⟨ψi|ψj⟩ = 0 if i ̸= j.

Definition 2.4 (Positive semidefinite matrix). A Hermitian matrix M is
positive semidefinite, denoted by M ≥ 0, if all its eigenvalues {λi}i are non-
negative, i.e. λi ≥ 0.

Now we define the notion of density matrix:

Definition 2.5 (Density matrix). Consider a quantum system with state space
Cd. A density matrix ρ is a linear operator ρ : Cd → Cd such that

1. ρ ≥ 0,

2. Tr ρ = 1.

The terms density matrix and density operator are often used interchange-
ably.

For a pure state |ψ⟩, its density matrix is defined as |ψ⟩ ⟨ψ|. Also, by
the spectral theorem, a density matrix ρ can be written in the form ρ =∑
i pi |ψi⟩ ⟨ψi| where pi ≥ 0, ∑i pi = 1, and |ψi⟩’s are orthonormal. This

expression shows that a density matrix can be seen as an ensemble of pure
states, associated with some probability distribution.

We naturally define the result of performing a unitary U on the density
matrix ρ to be UρU †.

2.2.5 Measurement

A quantum state cannot be read directly. Instead, to retrieve information from
it, we need to perform a measurement. A general definition of measurement is
the positive operator-valued measurement (POVM). For convenience, we use
the Kraus operator representation of POVM here.

12



2.2. QUANTUM COMPUTING

Definition 2.6 (Kraus operator representation of POVM). A measurement
on Cd is a set of linear operators Nx : Cd → Cd such that

∑
xN

†
xNx = I

For a density operator ρ, if we measure it with a measurement {Nx}, the
probability px that we get the outcome x is given by

px = Tr[NxρN
†
x] (2.20)

and the post-measurement state (conditioned on the outcome x) is

ρ|x = NxρN
†
x

Tr[NxρN
†
x]

(2.21)

Instead of measuring the whole state, we can also perform measurement on
a subsystem.

For a density operator ρAB on the Hilbert space A ⊗B, if we measure it
with a measurement {Nx} on A , the probability px that we get the outcome
x is given by

px = Tr[(Nx ⊗ I)ρAB(N †x ⊗ I)] (2.22)

and the post-measurement state (conditioned on the outcome x) is

ρAB|x = (Nx ⊗ I)ρAB(N †x ⊗ I)
Tr[(Nx ⊗ I)ρAB(N †x ⊗ I)]

(2.23)

Especially, if {|ψx⟩}x is an orthonormal basis, and {Nx}x = {|ψx⟩ ⟨ψx|}x,
then we say the system is measured in the corresponding basis.

The above equations show that two states are perfectly indistinguishable if
they share the same density matrix. One corollary is that, for pure states, the
global phase cannot be observed: since for pure states |ψ⟩ and |ϕ⟩ = eiθ |ψ⟩,
we have

ρψ = |ψ⟩ ⟨ψ| = eiθ |ψ⟩ ⟨ψ| e−iθ = |ϕ⟩ ⟨ϕ| = ρϕ (2.24)

which means that these 2 states share the same density matrix.

2.2.6 Trace distance

A natural question is the distinguishability between 2 states. The notion of
trace distance provides a way to describe such distinguishability.

13
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We first introduce some linear algebra notions. For any Hermitian matrix
A, the trace norm of A is defined as ∥A∥1 := Tr(

√
A†A) = ∑

i |λi| where λi’s
are the eigenvalues of A.

With the fact that if ρ and σ are Hermitian, then ρ− σ is also Hermitian,
we define the trace distance as follows:

Definition 2.7. For quantum states ρ, σ, the trace distance is defined as

TD(ρ, σ) = 1
2 ||ρ− σ||1. (2.25)

Note that the following equality holds, which connects the trace distance
and the distinguishability between 2 states:

Theorem 2.8 ([NC10]).

TD(ρ, σ) = max
N

1
2
∑
x

|Tr[NxρN
†
x]− Tr[NxσN

†
x]| (2.26)

where the maximum is taken over all possible POVMs.

2.2.7 Quantum circuit and Quantum algorithm

A quantum algorithm is an algorithm that runs on a model of quantum
computation, and the most commonly used model is the quantum circuit
model. A quantum circuit is a model for quantum computation equipped with
a specific (universal) set of quantum gates, in which computation is a sequence
of initializations of qubits, quantum gates, and measurements. Quantum gates
are unitaries operating on a small number of qubits. A quantum circuit can
perform a unitary by using a combination of quantum gates. A set of gates is
said to be universal for quantum computation if any unitary operation can be
approximated to arbitrary accuracy by a quantum circuit involving only those
gates. For a quantum circuit which has input size n, and the total number
of operations is upper bounded by p(n), we say that the circuit runs in p(n)
time, and has size p(n). If p is a polynomial, we say that the circuit runs in
polynomial time, and has polynomial size.

2.3 Cryptography

Here we introduce some basic cryptography notions that we will use in the
thesis.

14
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2.3.1 Negligible Functions

An important concept in cryptography is negligible functions. Intuitively, the
notion of negligible denotes the fact that the quantity (often a probability or a
difference in probability) is so small that it cannot be told apart from 0. We
formally define the notion as follows:

Definition 2.9 (Negligible functions). A function f is negligible if for every
polynomial p, we have limn→∞ p(n)f(n) = 0

So, if there is an algorithm that succeeds with negligible function of proba-
bility, then the success probability is close to 0 and repeating the algorithm
for a polynomial number of times cannot significantly improve the success
probability.

2.3.2 Quantum Stand-alone Security Model

[HSS11] defined a quantum stand-alone security model that we use to prove
the security of our protocol. We quickly summarize it here.

Quantum Machine Model.

We use the notion of quantum interactive machine to formalize the parties that
are involved in the protocol and security proof.

A quantum interactive machine (QIM) A is an ensemble of interactive
quantum circuits {An}n∈N working on 3 registers: an input register for input
and workspace, an output register for output, and a networking register for
the communication with other machines. We say that a machine A is QPT if
there is some polynomial p such that for every n, An runs in p(n) time, i.e. if
the number of gates of each circuit is bounded by p(n).

A (two-party) protocol Π = (A,B) is a couple of QIMs. By A ↭ B we
denote the sequence of quantum maps (indexed by n ∈ N) representing the
interaction between An and Bn. More specifically, each map in this sequence
takes the inputs to provide to An and Bn, forwards these inputs to An and Bn,
lets them interact until they stop, and outputs the final outputs of An and Bn
after the interaction. A protocol is said to be poly-time if all the parties run in
polynomial time. A functionality is a QIM interacting with all parties: for two
QIMs A and B, we similarly denote as A F

↭ B the sequence of quantum maps
where each map takes as input the inputs to provide to An and Bn, provides
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CHAPTER 2. PRELIMINARIES

these inputs to, respectively, An and Bn, lets An and Bn only interact with
the functionality F , and outputs the final outputs of An and Bn after the
interaction.

An adversary A is a QIM able to corrupt parties (in the two-party setting,
corrupting a party can be simply thought of as A replacing the corrupted party).
We only consider static adversaries here, which means that the adversary
chooses which party to corrupt before the beginning of the protocol. We denote
by Â the adversary that corrupts A and B̂ the adversary that corrupts B. We
define Π ↭ A as the quantum map obtained when the protocol Π is run in
the presence of the adversary A.

Ideal-world Protocol and Secure Realization of a Functionality.

The security proof relies on the simulation paradigm involving real worlds and
ideal worlds. A real world is a run of the protocol where some of the parties
might be corrupted. The ideal world is an idealized protocol where the honest
party is replaced by an idealized version and the corrupted party is replaced
by a simulated version such that both parties are only allowed to interact
with some idealized functionality. Take OT as the example, the idealized
functionality of OT would basically accept b from Alice and two messages
m0 and m1 from Bob, and after that outputs mb to Alice. The functionality
characterizes the security properties of the protocol by playing the role of a
trusted third party that keeps perfect security. Still take OT as the example,
Alice only receives one message mb from the functionality so Alice cannot learn
the information of m1−b; Bob receives nothing so it is impossible for Bob to
learn any information of b.

Informally speaking, if the real world and the ideal world are indistinguish-
able, then the protocol is secure since every attack made to the real world
would also apply to the ideal world, which is secure by the definition of the
ideal functionality. To achieve this, we use a QIM Z called a distinguisher, that
receives the outputs of the parties, as well as some possible auxiliary qubits,
and outputs one bit based on whether it thinks it is interacting with the real
world or the ideal world, to distinguish these two worlds.

For the ideal world, in order to simulate the real world, we replace any
honest party A by an idealized party Ã that honestly interacts with F , where it
honestly forwards the inputs/outputs to the functionality. We write Π̃ := (Ã, B̃)
to denote this dummy protocol. For the corrupted parties, based on A, we try

16
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σλ
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(a) Real world.
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Figure 2.1: Real world and ideal world executions when Bob is malicious.

to construct an adversary SA that corrupts the same party as A. We call such
adversaries simulators and their goal is to simulate the output of A.

Now we formalize the notion of ideal and real worlds.

Definition 2.10. Let Π = (A,B) be a two-party protocol, A be a static
adversary as defined above, SA be a simulator, SA and SB denote the input
registers of A and B respectively, σ = {σn ∈ SA(n)⊗ SB(n)⊗W(n)}n∈N be a
sequence of quantum states and Z be a QIM called environment outputting a
single classical bit. We denote by REALσΠ,A,Z := Z((Π ↭ A)⊗I)σ the (sequence
of) binary random variables outputted by the environment Z at the end of an
interaction where the adversary A corrupts some parties in Π. More specifically,
σ consists of 3 parts: the inputs of A, B and Z. Then, the ((Π ↭ A)⊗ I)σ
denotes the output of the protocol Π, with corrupted party A, runs with inputs
of A, B, together with the unchanged input of Z. So Z((Π ↭ A)⊗I)σ denotes
the final outcome of Z when receiving the output of the protocol and inputs of
Z. Similarly, we denote IDEALσ,FΠ̃,SA,Z

:= Z((Π̃ F
↭ SA)⊗ I)σ as the (sequence

of) binary random variables output by the environment Z at the end of an
interaction where the simulator can corrupt some dummy parties interacting
with the ideal functionality F .

A protocol realizing a functionality informally means that the protocol is
secure when considering the corresponding functionality. Before we formally
define the realization of a functionality, we need to define formally the notion
of indistinguishable quantum maps.

Definition 2.11 (Indistinguishable random variables). Two sequences of ran-
dom variables X = {Xn}n∈N and Y = {Yn}n∈N are said to be ε-indistinguishable,
denoted X ≈ε Y, if |Pr [Xn = 1 ] − Pr [Yn = 1 ] | ≤ ε(n). In particular, if
ε = negl(n), X and Y are said to be indistinguishable, denoted X ≈ Y.
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Definition 2.12 (Computationally indistinguishable quantum maps). Two
sequences of quantum maps X = {Xn}n∈N and Y = {Yn}n∈N are said to
be computationally indistinguishable, denoted X ≈c Y, if for any poly-time
Z = {Zn}n∈N and any sequence of bipartite advices σ = {σn}n∈N, Z(X⊗ I)σ ≈
Z(Y⊗ I)σ.

Definition 2.13 (Statistically indistinguishable quantum maps). Two se-
quences of quantum maps X = {Xn}n∈N and Y = {Yn}n∈N are said to be statis-
tically indistinguishable, denoted X ≈s Y, if for any unbounded Z = {Zn}n∈N
and any sequence of bipartite advices σ = {σn}n∈N, Z(X⊗ I)σ ≈ Z(Y⊗ I)σ.

With the above definition, we can define the realization of a functionality
as follows:

Definition 2.14 (Quantum stand-alone (C-QSA) realization of a functional-
ity [HSS11]). Let F be a poly-time two-party functionality and Π be a poly-
time two-party protocol. We say that Π computationally quantum-stand-alone
(C-QSA) realizes F if for any poly-time adversary A there is a poly-time (in
the time taken by A) simulator SA such that for any poly-time environment Z
and family of states σ = {σn}n∈N, REALσΠ,A,Z ≈ IDEALσ,FΠ̃,SA,Z

.

Definition 2.15 (Quantum stand-alone (S-QSA) realization of a functional-
ity [HSS11]). Let F be a poly-time two-party functionality and Π be a poly-time
two-party protocol. We say that Π statistically quantum-stand-alone (S-QSA)
realizes F if for any unbounded adversary A there is a poly-time (in the time
taken by A) simulator SA such that for any unbounded environment Z and
family of states σ = {σn}n∈N, REALσΠ,A,Z ≈ IDEALσ,FΠ̃,SA,Z

.

Protocols in Hybrid Models.

In practice, it is always handy to analyze modularized protocols, that is,
some protocol realizing a functionality F assuming there exists some protocol
realizing a (more primitive) functionality G. We say that we are in G − hybrid
model if such assumption is made. We call such a protocol a G − hybrid

protocol, and denote it ΠG . If no such an assumption is made, then we say
that we are in the plain model.

Also, the following composition theorem shows that sub-protocols can be
combined to realize a functionality:

Theorem 2.16. Let F and G be poly-time functionalities. Let ΠG be a
G − hybrid protocol that C-QSA (resp. S-QSA) realizes F , and Γ be a protocol
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that C-QSA (resp. S-QSA) realizes G, then ΠG/Γ, denoting the protocol deriving
from ΠG that uses Γ to replace G in ΠG , C-QSA (resp. S-QSA) realizes F .

Ideal Functionalities.

Here we define the ideal functionalities we use in the thesis.

We start with the Oblivious Transfer functionality.

Definition 2.17 (Functionality for Oblivious Transfer). We define the ideal
functionality FOT for oblivious transfer as follows:

• it receives one (classical) message from Bob’s interface.

• it receives one (classical) message from Alice’s interface.

• if the message from Bob is a binary pair (m0,m1) and the message from
Alice is a bit b, it sends mb to Alice, otherwise it sends ⊥.

We define trivially the idealized parties interacting with FOT , that is, the parties
that honestly forward their input/output to the functionality.

We then proceed to the zero-knowledge functionality. Informally speaking,
in (classical) Zero-knowledge proofs, the prover can prove to the verifier that
some given statement is true without revealing any information except the fact
that the statement is true.

Definition 2.18 (Functionality for Zero-knowledge). We define the ideal func-
tionality FR

ZK for zero-knowledge as follows, where R is a relation describing
a given language L such that x ∈ L⇔ ∃w, xRw :

• it receives one message from the prover’s interface.

• if the message from the prover is a binary pair (x,w) such that xRw,
then the verifier receives x, otherwise the verifier receives ⊥.

We define trivially the idealized parties that interacts with FR
ZK .

In our protocol, the properties of the main protocol are strongly related
to the properties of the ZK scheme. Depending on different assumptions,
we obtain different ZK protocols, and thus get different results of the main
protocol.
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[HSS11] defines a protocol realizing FR
ZK in the plain model. A non-

interactive protocol in the random-oracle model, which is the model where
parties have access to an oracle that responds to every unique query with a
random response chosen uniformly from its output domain, is shown in [Unr15],
and [CMS23] shows that it realizes FR

ZK in the framework of quantum stand-
alone model.

Sampling functions is another important part in our protocol. This proce-
dure prevents trivial attacks of finding collision in a single function. Like the
ZK part, there are multiple choices for the sampling procedure. One way to do
this is to use a Common Reference String (CRS) assumption. CRS assumes
that all parties can get access to the same string that is honestly sampled by
some fixed procedure thus can save one message of communication compared
to the method we use in the plain model.

Now we model CRS as the following ideal functionality:

Definition 2.19 (Functionality for CRS). We define the ideal functionality
FGen
CRS for CRS as follows, where Gen is a PPT sampling procedure,

• it samples x← Gen(1n) and outputs x to all parties.

We define trivially the idealized parties that interacts with FGen
CRS.

2.3.3 Quantum One-way Function

Informally speaking, a quantum one-way function is a function that can be
efficiently computed but that is hard to reverse. In this thesis, we only consider
length-preserving functions. So we obtain the following formal definition:

Definition 2.20 (Quantum One-Way Function). A (sequence of) function
fn : {0, 1}n → {0, 1}n is a (sequence of) quantum One-Way Function if fn can
be computed by a circuit of size nO(1) and there is no quantum circuit C of size
nO(1) such that Pra[fn(C(fn(a))) = fn(a)] ≥ 1/nO(1).

2.3.4 Collision-resistance

We also define the notion of collision-resistance.

Definition 2.21 (Collision-resistance). A family of functions {fk : {0, 1}n →
{0, 1}n}k∈K is said to be (computationally) collision-resistant if there exists a
polynomial generation algorithm k ← Genf (1n) such that for any k ∈ K, fk
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can be evaluated in polynomial time, and for any QPT adversary A and advice
{σn}n∈N:

Pr
[
x ̸= x′ ∧ fk(x) = fk(x′)

∣∣ k ← Genf (1n), (x, x′)← A(k, σn)
]
≤ negl(n)

(2.27)

Obviously, if a function f is injective, then {f} is collision-resistant. How-
ever, when the functions in {fk} are not necessarily injective, then we need
to sample the function fk after the beginning of the protocol. The reason is,
if fk is chosen before the beginning of the protocol, then an adversary taking
advice that contains a collision can easily find a collision. So, the procedure
of sampling fk is contained in the protocol, and there are multiple ways to
sample fk, depending on different settings:

• If we assume the existence of an injective function f0, then we let {f0} be
the family of collision-resistant function, then there is a trivial 0-message
protocol that both parties output 0.

• If we assume we run the whole protocol in the CRS model, then there is a
trivial 0-message protocol that both parties output the number generated
by FGen

CRS .

• There is a 1-message protocol that Bob samples x← Gen(1n) and sends
x to Alice, and Alice outputs x only if x ∈ K.

In practice, we can use a fixed well known function which is believed to be
secure against collision attacks. This plays in a sense the role of a CRS.

In the previous paragraph, we see that there are different ways to sample
fk given different assumptions. In order to avoid the security proof relying on
specific settings, we define an idealized functionality of sampling fk abstracting
the procedure of sampling fk:

Definition 2.22 (Ideal functionality FGen
F ). Let {fk : {0, 1}n → {0, 1}n}k∈K

be a family of collision-resistant functions generated by Gen. we define the ideal
functionality FGen

F as follows. FGen
F receives an input c from Bob’s interface, if

c = ⊤, the functionality samples k ← Gen(1n) and sends k to both parties, and
if c ∈ K, it forwards c to Alice’s interface. The ideal party of A just forwards
the received k, while the ideal party of B sends c = ⊤ to the functionality and
outputs the received k.
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It can be proven that the above functionality can be realized by the protocols
described above (in their corresponding settings). More formally, we have the
following lemmas:

Lemma 2.23 (FF in the Injective Function Setting). In the Injective Function
Setting (where the family of collision-resistant functions contains a single
injective function f0), the trivial 0-message protocol that both parties output 0
realizes FGen

F .

Lemma 2.24 (FF in the CRS model). In the CRS model (FCRS-hybrid model),
the trivial 0-message protocol that both parties output the number generated by
FGen
CRS realizes FGen

F .

Lemma 2.25 (FF in the plain model). In the plain model, the 1-message
protocol that Bob samples x← Gen(1n) and sends x to Alice, and Alice outputs
x only if x ∈ K realizes FGen

F .

Proof of Lemma 2.24 and Lemma 2.25 is shown in [CMS23]. We prove
Lemma 2.23 as follows:

Proof. We prove in 3 cases that the real world equals the ideal world.
For the case that both parties are honest, then both parties output 0, and

in the ideal world, the ideal parties also output 0, so the real world equals the
ideal world.

For the case of malicious Alice, we let the simulator be malicious Alice
receiving 0 from the functionality. In this setting the real world equals the
ideal world.

For the case of malicious Bob, we let the simulator be malicious Bob sending
c = ⊤ to the functionality and receiving 0 from the functionality. In this setting
the real world equals the ideal world.

So in all 3 cases the real world and the ideal world are equal, which ends
the proof.

2.4 A Quantum Goldreich-Levin Theorem

The Goldreich-Levin Theorem in [GL89] shows how every one-way function can
be modified to obtain a one-way function that has a hardcore-predicate that
can be used to hide information. Generally speaking, this theorem transforms
any length-preserving quantum one-way function to quantum one-way function
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with a quantum hard-predicate and we can use the converted function to hide
information.

A quantum Goldreich-Levin theorem is introduced in [AC02]. Generally
speaking, this theorem transforms any quantum one-way permutation to quan-
tum one-way permutation with a quantum hard-predicate and we can use the
converted function to hide information.

We first define the new function that is constructed from the old one.

Definition 2.26. For a function f : {0, 1}n → {0, 1}n, F : {0, 1}n×{0, 1}n →
{0, 1}n × {0, 1}n is defined as F (y, x) = (f(y), x) for all (y, x) ∈ {0, 1}n ×
{0, 1}n.

Then we define the quantum hard-predicate.

Definition 2.27 (Quantum hard-predicate). The quantum hard-predicate
h(y, x) is defined as h(y, x) = ⟨y, x⟩ = ⊕ni=1yixi.

Then we have the quantum Goldreich-Levin theorem. This theorem mainly
says that if f itself can be computed efficiently and the hard-predicate can be
predicted efficiently with non-negligible probability, then f can be inverted
efficiently with non-negligible probability. More formally,

Theorem 2.28 (Quantum Goldreich-Levin Theorem). For a permutation
f : {0, 1}n → {0, 1}n, if f can be computed with a quantum circuit of size
o(T ), and there is a quantum circuit G that also has size o(T ) such that
Pry,x[G(F (y, x)) = h(y, x)] ≥ 1

2 + ε, then there exists a quantum circuit C of
size O(T/ε) such that Pra[C(f(a)) = a] ≥ ε/2.

This theorem is not enough for our protocol since we use length-preserving
quantum one-way functions instead of permutations. However, similar proof
strategy can be used to prove a generalized version of this theorem. We prove
the generalized version in Chapter 4.
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Overview of the Protocol

In this section, we provide a quick informal overview of the protocol. Informally,
the OT functionality is connected to two parties: a sender Bob holds 2 messages
m0 and m1, and a receiver Alice holds a bit b. Alice forwards b to the
functionality and Bob forwards m0 and m1 to the functionality; then the
functionality outputs mb to Alice. Since no message is sent to Bob, we expect
Bob to be unable to learn any information on b when Alice is honest, and Alice
cannot learn both m0 and m1 if Bob is honest since only one of them is sent
by the functionality.

3.1 An intuition: A naive approach

We start from the following observation. For a qubit |ϕ⟩, if it is in the
computational basis, then performing a Z gate on it just adds a global phase
on it. More specifically, we have Z|0⟩ = |0⟩, which does not change the state
at all, and Z|1⟩ = −|1⟩, which only adds a −1 phase to it.When consider their
density matrices, we have

|0⟩ ⟨0| = Z|0⟩ ⟨0|Z† (3.1)
|1⟩ ⟨1| = (−1)|1⟩ ⟨1| (−1) = Z|1⟩ ⟨1|Z† (3.2)

This means that it is physically impossible to distinguish whether a Z gate is
performed on a qubit in the computational basis. On the other hand, whether
a Z gate is performed on a qubit in the Hadamard basis can be detected by
performing a measurement in the Hadamard basis.

Also, we can observe that it is physically impossible to distinguish a random
qubit in the computational basis from a random qubit in the Hadamard basis:
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let ρ be the density matrix of the qubit in the computational basis and σ the
density matrix of the qubit in the Hadamard basis, then we have

ρ =1
2 |0⟩ ⟨0|+

1
2 |1⟩ ⟨1| (3.3)

=1
2(1

2(|0⟩ ⟨0|+ |0⟩ ⟨1|+ |1⟩ ⟨0|+ |1⟩ ⟨1|) (3.4)

+ 1
2(|0⟩ ⟨0| − |0⟩ ⟨1| − |1⟩ ⟨0|+ |1⟩ ⟨1|)) (3.5)

=1
2( 1√

2
(|0⟩+ |1⟩)(⟨0|+ ⟨1|) 1√

2
+ 1√

2
(|0⟩ − |1⟩)(⟨0| − ⟨1|) 1√

2
) (3.6)

=1
2(|+⟩ ⟨+|+ |−⟩ ⟨−|) (3.7)

=σ (3.8)

This observation gives us the intuition of a first, naive protocol: Alice sends
|ψ(b)⟩, randomly chosen from |+⟩ and |−⟩, and |ψ(1−b)⟩, randomly chosen from
|0⟩ and |1⟩ to Bob; Bob then performs Zm0 and Zm1 on the received qubits
and sends them back to Alice; then Alice measures in the Hadamard basis
the b-th qubit, which is equal to Zmb |ψ(b)⟩ before the measurement, and can
successfully obtain mb by checking the measurement outcome and comparing
it with |ψ(b)⟩.

In this naive approach, since |ψ(b)⟩ is randomly chosen from |+⟩ and |−⟩
and |ψ(1−b)⟩ is randomly chosen from |0⟩ and |1⟩, their density matrices are the
same, which means that Bob cannot distinguish |ψ(b)⟩ and |ψ(1−b)⟩. This solves
one part of the problem, that Bob should not learn b if Alice is honest. Similarly,
since rotating a qubit in the computational basis leaves the state unchanged,
a semi-honest Alice that actually sends one qubit in the computational basis
cannot recover the value of the other message m1−b from the measurements of
Bob.

However, Alice can easily obtain both messages by sending both qubits in
Hadamard basis.

3.2 A Protocol using ZK and the Quantum Goldreich-
Levin Theorem

In order to avoid this cheating strategy, we want to ensure that at least
one qubit sent by Alice is in the computational basis, that is, not in some
superposition. However, it is physically impossible to check if a qubit is actually
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in a computational basis state or not, and we cannot let Alice tell Bob directly
what qubits she sent, as this will easily let Bob know b. Instead, we let Alice
send some bigger states, containing some extra qubits that allow Bob to check
whether there is one state in the computational basis without disturbing the
state when it is honestly prepared.

First, Alice samples 4 classical strings, 3 of which are used as the classical
description of the quantum states they will send (one is in superposition
and one is not), showing which basis these quantum states are allowed to be
in, and the last one of them is an invalid string, which is a dummy object
that prevents Bob from trivially finding b based on the different number of
descriptions of quantum states. More specifically, Alice samples 4 strings
d||v(c)

d ||x
(c)
d ||u

(c)
d ∈ {0, 1}× {0, 1}n−1×{0, 1}× {0, 1}n−1 for c, d ∈ {0, 1} where

3 of these are valid strings and 1 is invalid. However, to prevent Alice from
using the invalid string to construct a superposition, we need to add different
marks on valid and invalid strings. However, these marks should not be known
by Bob, otherwise Bob can still easily know b. The quantum hard-predicates
play the role of the marks here. In practice, for some randomly chosen l, Alice
samples the invalid string v(1−b)

(1−l) ||x
(1−b)
(1−l) ||u

(1−b)
(1−l) randomly, post-selecting on the

fact that h((1− l)||v(1−b)
(1−l) , x

(1−b)
(1−l) ||u

(1−b)
(1−l) ) = 1. Alice samples the valid strings

similarly, post-selecting on the fact that the quantum hard-predicates equal 0.

Alice then obtains a function F with quantum hard-predicate by using the
generalized quantum Goldreich-Levin Theorem. Instead of sending directly the
strings to Bob, Alice uses F to compute the images of the strings and sends the
images to Bob. The quantum hard-predicates prevent Bob from knowing which
string is invalid, but the images of the strings are still sufficient for Bob to
check by a unitary whether the quantum states are honestly prepared without
disturbing the states. More specifically, Alice computes F (d||v(c)

d , x
(c)
d ||u

(c)
d ). For

convenience, we write w(c)
d = v

(c)
d ||x

(c)
d ||u

(c)
d . Then, Alice prepares two quantum

states |ψ(b)⟩ := |0⟩ |w(b)
0 ⟩ + (−1)r(b) |1⟩ |w(b)

1 ⟩ and |ψ(1−b)⟩ := |l⟩ |w(1−b)
l ⟩ and

sends the images and states to Bob.

However, hiding the information of the quantum hard-predicate raises
another question: how can Bob know that Alice marked one of the strings
invalid? A ZK proof can convince Bob that what Bob receives are the images
of 4 strings in which one of the strings is invalid. So, after Alice sends the
quantum states and F (d||v(c)

d , x
(c)
d ||u

(c)
d ), two parties run a ZK proof such

that Bob is convinced that one of the strings is invalid. For now, Bob
checks that the classical strings are honestly prepared, then Bob needs to
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check whether the quantum states are honestly prepared. To do this, Bob
runs a unitary check on the quantum states to see if they are honestly pre-
pared. More specifically, Bob applies the unitary U such that U |i||v||x||u||0⟩ =
|i||v||x||u||h(i||v, x||u) ̸= 1 ∧ ∃d, F (i||v, x||u) = F

(c)
d ⟩ and measures the last qubit

in the computational basis. This unitary checks whether a basis state corre-
sponds to one of the valid strings. If the states pass the check, this means that
Bob checks the quantum states are honestly prepared. Then, Bob can trace out
the additional qubits, just leaving the first qubit of two states, while keeping
the states in superposition and computational basis, respectively. To achieve
this, Bob cannot simply ignore the additional qubits, since the entanglement
can disturb the remaining state. Instead, Bob measures the second register
of the states in Hadamard basis, then performs Zmc on the remaining qubit,
and measures in the Hadamard basis. Bob then sends all the measurement
outcomes to Alice and Alice can recover the desired message.

3.3 Security against some common attacks

In this part, we give an informal security check to see why the above protocol
is secure against some common attacks. We use the security model described
in Section 2.3.2 to formalize the security proof in Section 5.3.

We first consider attacks from Bob. Bob cannot learn b from strings
F (d||v(c)

d , x
(c)
d ||u

(c)
d ) since the information of which string is invalid is hidden by

the quantum hard-predicate. Bob cannot learn b from the ZK part since the
ZK protocol does not leak information of the strings to Bob except that there
is an invalid string. The quantum states sent to Bob also give no information
about b since Bob does not know l and r, the density matrices of these two
states are the same for Bob so Bob cannot learn anything from the states.

Then we consider attacks from Alice. If Alice wants to learn m1−b, then
|ψ(1−b)⟩ needs to be in superposition after the unitary check performed by
Bob. This unitary check prevents Alice from sending a state that has nonzero
amplitude in invalid basis, because if Alice does so, then either the measurement
outcome is 0, which means that the test fails and the protocol abort; or the
measurement outcome is 1, but the state will collapse to superposition that
only contain valid strings due to the measurement. So, if |ψ(1−b)⟩ is still
in superposition after the unitary check, then there are 4 strings that are
valid. However, the ZK proof ensures that at most 3 of the preimages of
F (d||v(c)

d , x
(c)
d ||u

(c)
d ) are valid. This means that it is possible for Alice to find a

collision of F , which contradicts the assumption that F is collision-resistant.
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The above arguments show that the protocol is secure against some common
attacks. However, to rule out all possible attacks, we formalize the proof in
Section 5.3.
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Generalized Quantum
Goldreich-Levin Theorem

4.1 Preliminaries and Definition

The quantum Goldreich-Levin theorem in [AC02] transforms any quantum
one-way permutation to a quantum one-way permutation with a quantum
hard-predicate. However, this is not enough for our protocol, since we use
quantum one-way functions, instead of quantum one-way permutations. So we
prove a generalized version of quantum Goldreich-Levin theorem here, which
states that any length-preserving quantum one-way function can be converted
to a quantum one-way function with a quantum hard-predicate.

The converted function F and the quantum hard-predicate h are defined
as in Section 2.4. Since we are using F , instead of f in the protocol, we need
F to be collision-resistant. So we show that this transformation from f to F
preserves collision-resistance. This means that if we assume the existence of
a family of length-preserving collision-resistant quantum one-way functions,
then we have a family of length-preserving collision-resistant quantum one-way
functions with quantum hard-predicates. More formally,

Theorem 4.1. If {fk} is collision-resistant, then {Fk} is collision-resistant.

Proof. Assume that {Fk} is not collision-resistant, we show that {fk} is not
collision-resistant.

For every Genf (1n), let GenF (12n) be the same algorithm as Genf (1n), then,
by the assumption, there is a QPT adversary A and (possible) advice {σn}n∈N

29



CHAPTER 4. GENERALIZED QUANTUM GL THEOREM

such that

Pr
[
x||y ̸= x′||y′ ∧ Fk(x||y) = Fk(x′||y′)

∣∣ k ← Genf (1n), (x, y, x′, y′)← A(k, σn)
]

(4.1)

is not negligible.
Note that Fk(x||y) = Fk(x′||y′) iff fk(x) = fk(x′) ∧ y = y′ by the definition

of Fk. So

x||y ̸= x′||y′ ∧ Fk(x||y) = Fk(x′||y′) (4.2)
iff x||y ̸= x′||y′ ∧ fk(x) = fk(x′) ∧ y = y′ (4.3)
⇒x ̸= x′ ∧ fk(x) = fk(x′) (4.4)

So the following holds:

Pr
[
x ̸= x′ ∧ fk(x) = fk(x′)

∣∣ k ← Genf (1n), (x, x′)← A(k, σn)
]

(4.5)

is not negligible.
This shows exactly that {fk} is not collision-resistant, which ends the

proof.

Then we formalize the generalized quantum Goldreich-Levin theorem as
follows:

Theorem 4.2. For a function f : {0, 1}n → {0, 1}n, if f can be computed
with a quantum circuit of size o(T ), and there is a quantum circuit G that also
has size o(T ) such that Pry,x[G(F (y, x)) = h(y, x)] ≥ 1

2 + ε, then there exists a
quantum circuit C of size O(T/ε) such that Pry[f(C(f(y))) = f(y)] ≥ ε/2.

For an intuition, we consider the ideal case where there is a circuit G that
can perfectly predict h(y, x) given (f(y), x) as input, and we try to invert f .
Given f(y), we define x(i) as the string such that x(i)

j = 1 iff i = j. We run G

on inputs (f(y), x(i)) for 1 ≤ i ≤ n. By the definition of x(i), h(y, x(i)) = yi,
and we can invert f by combining the outputs of G. Unfortunately, this attack
fails as soon as G can do mistakes, hence a clever approach is needed.

We will prove this theorem in the following sections.

4.2 The Generalized GL Problem

We define a similar black box problem as in [AC02]. To deal with the problem
that the function is not necessarily injective, we add an extra equivalence
relation in the initial setting, and replace the EQ query with the EQR query.
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We first define a generalized version of the GL problem as follows.

Definition 4.3 (Generalized GL problem). For some equivalence relation
R ⊆ {0, 1}n×{0, 1}n, and for some a ∈ {0, 1}n, the goal is to find an x ∈ {0, 1}n
such that xRa, by using only 2 kinds of queries: the IP queries and the EQR
queries.

We define the IP queries as follows (the same definition as in [AC02]):

Definition 4.4 (Quantum inner product query). A quantum inner product
(IP ) query (with bias ε) is a unitary transformation UIP , or its inverse U †IP ,
acting on n+m qubits, satisfying the following properties:

1. If x ∈ {0, 1}n is uniformly randomly chosen and the last qubit of UIP |x⟩ |0m⟩
is measured, outputting w, then Pr[w = a · x] ≥ 1

2 + ε.

2. For any x ∈ {0, 1}n and y ∈ {0, 1}m, the first n qubits of UIP |x⟩ |y⟩ is
|x⟩.

Then we define the EQR queries.

Definition 4.5 (Quantum equivalence relation query). A quantum equivalence
relation (EQR) query is the unitary operation UEQR such that for all x ∈
{0, 1}n and b ∈ {0, 1},

UEQR |x⟩ |b⟩ =

|x⟩ |b⟩ if ¬xRa
|x⟩ |1− b⟩ if xRa

(4.6)

Figure 4.1: Quantum circuit C
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[AC02] shows that by running the Quantum circuit C (as shown in Fig. 4.1)
on input |0n, 0m, 0⟩ and by measuring the first n qubits in computational basis,
the probability that the outcome is a is at least 4ε2. More precisely, the
following equation holds:

⟨a, 0m, 1|C |0n, 0m, 0⟩ ≥ 2ε. (4.7)

So, if the process is repeated O(1/ε2) times and each result is checked using
an EQR query, then we can find some x such that xRa with some constant
probability. Moreover, we have the following theorem in [BHM+02]:

Theorem 4.6. Let A be any quantum algorithm that uses no measurements,
we denote the set of all possible measurement outcomes after performing A to
be S. For any Boolean function χ : S → {0, 1}, we say x ∈ S is a good solution
of A if χ(x) = 1. Then, for any such A and any χ, if the probability of finding
a good solution of A, by running A once and measuring, is a > 0, then there is
an algorithm that finds a good solution with a constant probability using O( 1√

a
)

applications of A and A†.

If we apply the above amplitude amplification to this process, then we can
achieve a constant success probability using O(1/ε) queries.

In conclusion, we obtain the following theorem:

Theorem 4.7. For an IP query with bias ε, the generalized GL problem can
be solved with constant probability using O(1/ε) UIP , U †IP and UEQR queries.

4.3 Proof of the Generalized Quantum Goldreich-
Levin Theorem

We first prove the following lemma:

Lemma 4.8. If Pry,x[G(F (y, x)) = h(y, x)] ≥ 1
2 + ε, then

Pr
y

[Pr
x

[G(F (y, x)) = h(y, x)] ≥ 1
2 + ε

2] ≥ ε. (4.8)

Proof. Assume that it is not the case that Pry[Prx[G(F (y, x)) = h(y, x)] ≥
1
2 + ε

2 ] ≥ ε. We call y “good” if Prx[G(F (y, x)) = h(y, x)] ≥ 1
2 + ε

2 . Then it
holds that Pry[y is “good”] < ε. With the above inequality, we have

Pr
y,x

[G(F (y, x)) = h(y, x)] (4.9)
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= Pr
y

[y is “good”] Pr
y,x

[G(F (y, x)) = h(y, x)|y is “good”] (4.10)

+ Pr
y

[y is not “good”] Pr
y,x

[G(F (y, x)) = h(y, x)|y is not “good”] (4.11)

<Pr
y

[y is “good”]× 1 + Pr
y

[y is not “good”]× (1
2 + ε

2) (4.12)

<ε× 1 + (1− ε)(1
2 + ε

2) (4.13)

=1− ε2

2 + ε (4.14)

<
1
2 + ε (4.15)

contradicting the assumption that Pry,x[G(F (y, x)) = h(y, x)] ≥ 1
2 + ε.

The above lemma says that if a circuit G can predict h(y, x) with a relatively
high probability, then there is a set of y’s such that, when we fix a y from that
set and only x is sampled randomly, G can predict h(y, x) with a relatively
high probability.

Now we proceed to prove Theorem 4.2 using Theorem 4.7.

Proof. This proof is similar to the proof of the quantum Goldreich-Levin
Theorem (for quantum permutations) in [AC02]. The main idea is to reduce
the problem of inverting f to the Generalized GL Problem.

«««< HEAD More specifically, in the setting of inverting f , the equivalence
relation R is defined as xRy iff f(x) = f(y). Then we consider the selection
of a. We consider the case where we fix a to be some y that is “good”, that
is, Prx[G(F (a, x)) = h(a, x)] ≥ 1

2 + ε
2 . Now the goal is to find some x such

that xRa. We simulate UIP and UEQR queries using the given information of
f(a) and the circuits that compute f and predict h(y, x) from F (y, x). For
the EQR query, since we are allowed to compute f , we can construct the
unitary that maps |x⟩ |z⟩ |b⟩ to |x⟩ |z⟩ |1− b⟩ if f(x) = z, and maps |x⟩ |z⟩ |b⟩
to |x⟩ |z⟩ |b⟩ if f(x) ̸= z. This unitary simulates the EQR query when we input
f(a) to the second register. For the IP query, since a is “good”, performing
G on (f(a), x) simulates IP query (with bias ε/2). Then, by Theorem 4.7,
there is a circuit C that has size O(2

ε × T ) = O(T/ε) that inverts f with
constant probability (WLOG, we can set the probability to be 1

2). This circuit
C is independent of the choice of a, which means that for every a that is
“good”, Pr[f(C(f(a))) = f(a)] ≥ 1/2. Also, by the previous lemma, along with
the assumption from the theorem that Pry,x[G(F (y, x)) = h(y, x)] ≥ 1

2 + ε,
we conclude that Pry[Prx[G(F (y, x)) = h(y, x)] ≥ 1

2 + ε
2 ] ≥ ε, which means
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CHAPTER 4. GENERALIZED QUANTUM GL THEOREM

that when y is uniformly randomly sampled, then at least ε of all y’s are
“good”, meaning that when we use C to invert f , Pry[f(C(f(y))) = f(y)] ≥
Pry[y is “good”] Pry[f(C(f(y))) = f(y)|y is “good”] ≥ ε× 1

2 = ε/2.
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Chapter 5

Quantum OT Protocol

Of course, our analysis in Chapter 3 is very informal, and cannot really exclude
other kinds of attacks. Hence, in this section, we formalize the notions that we
described above.

5.1 The Protocol

First we define the OT protocol shown in Protocol 1. And we prove the following
main theorem, where w(c)

d = v
(c)
d ||x

(c)
d ||u

(c)
d ∈ {0, 1}n−1×{0, 1}× {0, 1}n−1 and

h
(c)
d = h(d||v(c)

d , x
(c)
d ||u

(c)
d ):

Theorem 5.1. Let {Fk}k∈K be constructed from {fk}k∈K, a family of collision-
resistant length preserving quantum one-way functions, such that Fk(y, x) =
(fk(y), x) for every k. Let ΠF = (AF ,BF ) be a protocol C-QSA realizes FGen

CRS,
and Πzk = (Azk,Bzk) be a protocol that C-QSA realizes FR

ZK where

(F (0)
0 , F

(0)
1 , F

(1)
0 , F

(1)
1 )R(w(0)

0 , w
(0)
1 , w

(1)
0 , w

(1)
1 )⇔ ∀c, d, F (d||v(c)

d , x
(c)
d ||u

(c)
d ) = F

(c)
d

(5.1)

and ∃c, d, h(c)
d = 1. (5.2)

Then Protocol 1, with F obtained by running ΠF first, C-QSA realizes FOT .

To check that a protocol realizes a functionality, we need to check a number
of properties, for different (possible) corrupted parties: when everyone is honest,
when Alice is malicious, and when Bob is malicious. We study these cases
separately in the following sections.
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Protocol 1: Protocol for 2-message chosen bit Oblivious Transfer
Alice(b ∈ {0, 1}) Bob((m0,m1) ∈ {0, 1}2)

// Witness for L(b) = {0, 1}:

∀d ∈ {0, 1}, w(b)
d

$← {0, 1}2n−1 such that h(b)
d = 0

For convenience, We decompose w(c)
d into w(c)

d =
v

(c)
d ||x

(c)
d ||u

(c)
d ∈ {0, 1}n−1 × {0, 1} × {0, 1}n−1 and

h
(c)
d = h(d||v(c)

d , x
(c)
d ||u

(c)
d )

By randomly sampling w(c)
d O(n) times, Alice can

get an appropriate w(c)
d with probability ≈ 1.

// Witness for L(1−b) = {l}:

l $← {0, 1}
w

(1−b)
l

$← {0, 1}2n−1 such that h(1−b)
l = 0

w
(1−b)
1−l

$← {0, 1}2n−1 such that h(1−b)
(1−l) = 1

// Compute the characterization

// of the languages:

∀(c, d) ∈ {0, 1}2, F
(c)
d := F (d||v(c)

d , x
(c)
d ||u

(c)
d )

F is a collision-resistant length-preserving quantum
OWF with quantum hard predicate h distributed
using some FF .

// Proof that at least one language

// contains a single element

π := (NI)ZK proof that:
∃(w(c)

d )c,d,∀c, d, F (c)
d = F (d||v(c)

d , x
(c)
d ||u

(c)
d )

and ∃c, d such that h(c)
d = 1.

If the ZK proof is interactive, then we actually run
the ZK protocol (before sending the quantum state)
instead of sending the proof (of course this adds
additional rounds of communication).// Define the quantum states:

r(b) $← {0, 1}

|ψ(b)⟩ := |0⟩ |w(b)
0 ⟩+ (−1)r(b)

|1⟩ |w(b)
1 ⟩

|ψ(1−b)⟩ := |l⟩ |w(1−b)
l ⟩ ∀(c, d) : F (c)

d , π, |ψ(0)⟩ , |ψ(1)⟩
// Check that one language has size ≤ 1:

Check (or run if interactive proof) π.
// Check that the state contains a superposition

// of (valid) elements of L(0) and L(1):

We can define a Boolean function g(i||v||x||u) such that
g(i||v||x||u) = 1 if h(i||v, x||u) ̸= 1 ∧ ∃d, F (i||v, x||u) = F

(c)
d ,

and g(i||v||x||u) = 0 otherwise. Hence, we can define uni-
tary U that maps |i||v||x||u||0⟩ to |i||v||x||u||1⟩ if h(i||v, x||u) ̸=
1 ∧ ∃d, F (i||v, x||u) = F

(c)
d , and to |i||v||x||u||0⟩ otherwise. ∀c, apply on |ψ(c)⟩ |0⟩ the unitary U

measure the last (output) register
and check that the outcome is 1.

∀c,measure the second register of |ψ(c)⟩
At that step, |ψ(b)⟩ = |0⟩ ± |1⟩
and |ψ(1−b)⟩ = |l⟩, but Bob does
not know b. in the Hadamard basis (outcome s(c)).

∀c, apply Zmc on |ψ(c)⟩ and measure it
in the Hadamard basis (outcome z(c)).∀c, s(c), z(c)

Compute α := r(b) ⊕ ⟨s(b), w
(b)
0 ⊕ w

(b)
1 ⟩

return α⊕ z(b) // Should be mb
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5.2 Correctness Check

In this part, we check the correctness of the protocol, by analyzing the case
when both parties are honest.

We can divide the protocol into 4 parts: the first part obtains F (we assume
the existence of collision-resistant quantum OWFs), the second part samples
w

(c)
d and calculates F (c)

d , the third part runs the ZK protocol, and the fourth
part does the remaining calculation and communication of the protocol.

By the assumption of the completeness of the protocol generating F and
the ZK proof, we can always replace these parts with the ideal functionalities
and dummy parties.

For the second part, we need to sample valid strings w(c)
d . By randomly

sampling w(c)
d , and checking whether it is a valid string, and repeating this

procedure until a valid string is sampled or the procedure has been repeated
for O(n) times. This whole process takes polynomial time (intuitively, at every
sample we have a probability close to 1/2 of sampling a valid element), and
the success probability of obtaining a valid string is 1− 1/2O(n). For proof, see
Theorem A.1.

Then we consider the last part. Since the strings and states are generated
as in the second part, which means that ∀c, d, F (d||v(c)

d , x
(c)
d ||u

(c)
d ) = F

(c)
d and

∃c, d, h(c)
d = 1, so the ZK check succeeds. Also, the unitary maps |ψ(c)⟩ |0⟩ to

|ψ(c)⟩ |1⟩ for all c. Measuring the last register outputs 1 and leaves the other
qubits unchanged. More specifically, the unitary maps |i⟩ |w⟩ |0⟩ to |i⟩ |w⟩ |1⟩
only if h(i||v, x||u) ̸= 1 ∧ ∃d, F (i||v, x||u) = F

(c)
d where w = v||x||u, which is

true for all terms in |ψ(b)⟩ and |ψ(1−b)⟩ by construction, so we have:

|ψ(b)⟩ |0⟩ = |0⟩ |w(b)
0 ⟩ |0⟩+ (−1)r(b) |1⟩ |w(b)

1 ⟩ |0⟩ (5.3)

7→|0⟩ |w(b)
0 ⟩ |1⟩+ (−1)r(b) |1⟩ |w(b)

1 ⟩ |1⟩ = |ψ(b)⟩ |1⟩ (5.4)

|ψ(1−b)⟩ |0⟩ = |l⟩ |w(1−b)
l ⟩ |0⟩ (5.5)

7→ |l⟩ |w(1−b)
l ⟩ |1⟩ = |ψ(1−b)⟩ |1⟩ (5.6)

Measuring the last qubit outputs 1, and factors out the last qubit without
changing the remaining state.

Then we measure the second register in Hadamard basis, which is equivalent
to applying Hadamards to the second registers and measuring them in the
computational basis.
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For |ψ(b)⟩, the state after the Hadamards becomes (omitting the global
phase)

(I ⊗H2n−1) |ψ(b)⟩ (5.7)

= |0⟩H2n−1 |w(b)
0 ⟩+ (−1)r(b) |1⟩H2n−1 |w(b)

1 ⟩ (5.8)

= |0⟩
∑

s(b)∈{0,1}2n−1

(−1)⟨s(b),w
(b)
0 ⟩ |s(b)⟩+ (−1)r(b) |1⟩

∑
s(b)∈{0,1}2n−1

(−1)⟨s(b),w
(b)
1 ⟩ |s(b)⟩

(5.9)

=
∑

s(b)∈{0,1}2n−1

(|0⟩+ (−1)r(b)⊕⟨s(b),w
(b)
0 ⊕w

(b)
1 ⟩ |1⟩) |s(b)⟩ (5.10)

If we measure the second register and get the outcome s(b), then the first
register collapses to |0⟩+ (−1)α|1⟩ where α = r(b) ⊕ ⟨s(b), w

(b)
0 ⊕ w

(b)
1 ⟩.

For |ψ(1−b)⟩, since it is in computational basis, the first qubit is not entangled
with the rest of the qubits, the measurement does not change the state of the
first qubit. So the state collapses to |l⟩.

Then, the Zmc rotation changes these 2 states to (omitting the global
phase):

Zmb(|0⟩+ (−1)α|1⟩) = |0⟩+ (−1)α⊕mb |1⟩ (5.11)
Zm1−b |l⟩ = |l⟩ (5.12)

Then Bob measures in the Hadamard basis, let z(b) be the measurement
outcome of the remaining state of |ψ(b)⟩, then z(b) = α⊕mb, and mb = α⊕ z(b)

is exactly what Alice outputs in the end. So the protocol is proven to be
correct.

5.3 Security check

In this part, we check the security of the protocol, by analysing the cases
when one party is malicious. We use a hybrid game to define a sequence of
worlds, where in the first world (the real world) the parties run the actual
protocol, and in the last world (the ideal world) the parties run a simulated
version with ideal functionality, and by proving that every 2 adjacent worlds
are indistinguishable, by transitivity, we obtain the fact that the real world
and the ideal world are indistinguishable.
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5.3.1 Malicious Bob

We define World0 to World6 as follows:

• World0 (Fig. 5.1) is the real world.

• World1 (Fig. 5.2) is World0 except that the protocol that generates F is
replaced by the simulated version.

• World2 (Fig. 5.3) is World1 except that the ZK protocol is replaced by
the simulated version.

• World3 (Fig. 5.4) is World2 except that we send ∀c, d, F (c)
d without running

the ZK.

• World4 (Fig. 5.5) is World3 except that we sample w
(1−b)
1−l such that

h
(1−b)
1−l = 0.

• World5 (Fig. 5.6) is World4 except that we define |ψ(1−b)⟩ = |0⟩ |w(1−b)
0 ⟩+

(−1)r(1−b) |1⟩ |w(1−b)
1 ⟩ with some randomly sampled r(1−b).

• World6 (Fig. 5.7) is a reorder of the operations of World5, and is the
ideal world. More precisely, we can see that all the interaction and
calculation in World5, except the last operation that outputs α ⊕ z(b),
are independent of b, so we can just reorder these parts to Bob’s part
to construct a simulator that forwards 2 messages m(0) and m(1). For
the remaining part of Alice, we separate it into 2 parts: the idealized
functionality receives m(0) and m(1) from Bob and b from Alice, and
outputs m(b) to Alice, and the corresponding idealized party of Alice
that forwards b to the functionality, and outputs m(b) received from the
functionality.

Then we show that World0 ≈World6.

1. World0 ≈World1: Any distinguisher that distinguishes World0 and World1
can be converted to a distinguisher that distinguishes the protocol of
obtaining F and the idealized functionality FGen

F . We assumed that
FGen
F is realized by the protocol of obtaining F , so such distinguisher

does not exist. So World0 ≈World1.

2. World1 ≈World2: Any distinguisher that distinguishes World1 and World2
can be converted to a distinguisher that distinguishes the ZK protocol
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A(b ∈ {0, 1}) B̂(σB̂) Z(σZ)

Run AF to obtain F . B̂0

∀c, d, sample w(c)
d and F

(c)
d

like in the main protocol

Run Azk(∀c, d, w(c)
d , F

(c)
d ) B̂1

Sample |ψ(0)⟩,|ψ(1)⟩ like
in the main protocol

|ψ(0)⟩ , |ψ(1)⟩

Compute α like
∀c, s(c), z(c)

B̂2
state

in the main protocol
α⊕ z(b)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ return anything

Figure 5.1: World0

A(b ∈ {0, 1}) B̂(σB̂) Z(σZ)

Run FGen
F to obtain F .

F
SF,B̂0

i.e. check if F ∈ K.

∀c, d, sample w(c)
d and F

(c)
d

like in the main protocol

Run Azk(∀c, d, w(c)
d , F

(c)
d ) B̂1

Sample |ψ(0)⟩,|ψ(1)⟩ like
in the main protocol

|ψ(0)⟩ , |ψ(1)⟩

Compute α like
∀c, s(c), z(c)

B̂2
state

in the main protocol

α⊕ z(b)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ return anything

Figure 5.2: World1
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A(b ∈ {0, 1}) B̂(σB̂) Z(σZ)

Run FGen
F to obtain F ,

F
SF,B̂0

i.e. check if F ∈ K.

∀c, d, sample w(c)
d and F

(c)
d

like in the main protocol

Run FR
ZK

and outputs all F (c)
d

∀c, d, F (c)
d

Szk,B̂1

Sample |ψ(0)⟩,|ψ(1)⟩ like
in the main protocol

|ψ(0)⟩ , |ψ(1)⟩

Compute α like
∀c, s(c), z(c)

B̂2
state

in the main protocol

α⊕ z(b)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ return anything

Figure 5.3: World2

A(b ∈ {0, 1}) B̂(σB̂) Z(σZ)

Run FGen
F to obtain F ,

F
SF,B̂0

i.e. check if F ∈ K.

∀c, d, sample w(c)
d and F

(c)
d

like in the main protocol

Check . . .
∀c, d, F (c)

d
Szk,B̂1

Sample |ψ(0)⟩,|ψ(1)⟩ like
in the main protocol

|ψ(0)⟩ , |ψ(1)⟩

Compute α like
∀c, s(c), z(c)

B̂2
state

in the main protocol

α⊕ z(b)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ return anything

Figure 5.4: World3
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A(b ∈ {0, 1}) B̂(σB̂) Z(σZ)

Run FGen
F to obtain F ,

F
SF,B̂0

i.e. check if F ∈ K.

∀c, d, sample w(c)
d and F

(c)
d like

in the main protocol, except for

w
(1−b)
1−l

$← {0, 1}2n−1 such that h(1−b)
1−l = 0.

∀c, d, F (c)
d

Szk,B̂1

Sample |ψ(0)⟩,|ψ(1)⟩ like
in the main protocol

|ψ(0)⟩ , |ψ(1)⟩

Compute α like
∀c, s(c), z(c)

B̂2
state

in the main protocol

α⊕ z(b)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ return anything

Figure 5.5: World4

A(b ∈ {0, 1}) B̂(σB̂) Z(σZ)

Run FGen
F to obtain F ,

F
SF,B̂0

i.e. check if F ∈ K.

∀c, d, sample w(c)
d and F

(c)
d like

in the main protocol, except for

w
(1−b)
1−l

$← {0, 1}2n−1 such that h(1−b)
1−l = 0.

∀c, d, F (c)
d

Szk,B̂1

Sample |ψ( b )⟩ like in the main

protocol, r(1−b) $← {0, 1} and

|ψ(1−b)⟩ := |0⟩ |w(1−b)
0 ⟩

+(−1)r(1−b)
|1⟩ |w(1−b)

1 ⟩
|ψ(0)⟩ , |ψ(1)⟩

Compute α like
∀c, s(c), z(c)

B̂2
state

in the main protocol

α⊕ z(b)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ return anything

Figure 5.6: World5
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AI(b) and FOT SB̂(σB̂) Z(σZ)

(F, state0)← SF,B̂0
(σB̂)

Check if F ∈ K.

∀c, d, sample w(c)
d and F

(c)
d like

in the main protocol, except for

w
(1−b)
1−l

$← {0, 1}2n−1 such that h(1−b)
1−l = 0.

(state1)← Szk,B̂1
(∀c, d, F (c)

d , state0)

Sample |ψ(b)⟩ like in the main
protocol, r(1−b) $← {0, 1} and

|ψ(1−b)⟩ := |0⟩ |w(1−b)
0 ⟩

+(−1)r(1−b)
|1⟩ |w(1−b)

1 ⟩

(∀c, s(c), z(c), state2)← B̂2(|ψ(0)⟩ , |ψ(1)⟩ , state1)
m(0),m(1)

∀c,m(c) = (r(c) ⊕
⊕

i

s(c)[i](w(c)
0 ⊕ w

(c)
1 )[i])⊕ z(c)

FOT outputs m(b)
state2

m(b)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ return anything

Figure 5.7: World6

and the idealized functionality FR
ZK . We assumed that FR

ZK is realized by
a ZK protocol, so such distinguisher does not exist. So World1 ≈World2.

3. World2 = World3: By construction, the ideal Alice always samples valid
strings. So the ZK proof always passes and as a result, it is always the
case that ∀c, d, F (c)

d is forwarded.

4. World3 ≈World4: Suppose that World3 ̸≈World4, then there is a quantum
polynomial-time distinguisher that can distinguish these 2 worlds with
non-negligible probability. Then we can define C as the distinguisher
combined with the World3 except that w(1−b)

1−l is sampled externally and
only provides F (1−b)

1−l to C, which has size O(nk) for some k, then C

can distinguish the validity of the preimage of the given string with
non-negligible probability, that is (WLOG), for some c,

Pr
x,y

$←{0,1}n

[C(F (x, y)) = 1|h(x, y) = 1] (5.13)

− Pr
x,y

$←{0,1}n

[C(F (x, y)) = 1|h(x, y) = 0] (5.14)

≥ 1
nc

(5.15)
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Let

a = Pr
x,y

$←{0,1}n

[C(F (x, y)) = 1|h(x, y) = 1] (5.16)

b = Pr
x,y

$←{0,1}n

[C(F (x, y)) = 1|h(x, y) = 0] (5.17)

Given some F (x, y), we use C to predict h(x, y). Combined with Theo-
rem A.2, this gives us a success probability

Pr
success

= Pr
x,y

$←{0,1}n

[C(F (x, y)) = 1 ∧ h(x, y) = 1] (5.18)

+ Pr
x,y

$←{0,1}n

[C(F (x, y)) = 0 ∧ h(x, y) = 0] (5.19)

= Pr
x,y

$←{0,1}n

[C(F (x, y)) = 1|h(x, y) = 1] Pr
x,y

$←{0,1}n

[h(x, y) = 1]

(5.20)
+ Pr
x,y

$←{0,1}n

[C(F (x, y)) = 0|h(x, y) = 0] Pr
x,y

$←{0,1}n

[h(x, y) = 0]

(5.21)
=a Pr

x,y
$←{0,1}n

[h(x, y) = 1] + (1− b) Pr
x,y

$←{0,1}n

[h(x, y) = 0] (5.22)

=a(1
2 + negl(n)) + (1− b)(1

2 + negl(n)) (5.23)

≥1
2(1 + 1

nc
) + negl(n) (5.24)

which can be lower bounded by 1
2 + 1

nc′ for some c′.

To conclude the above, assume that World3 ̸≈ World4, there exists a
quantum circuit C of size O(nk) such that Pry,x[C(F (y, x)) = h(y, x)] ≥
1
2 + 1

nc′ for some k and c′.

Then, by Theorem 2.28, there is a polynomial-size quantum circuit
that inverts f with non-negligible probability, thus contradicting the
assumption that f is a quantum one-way function.

So World3 ≈World4.

5. World4 = World5: To distinguish World4 and World5 equals to distinguish
2 quantum states |x4⟩ and |x5⟩ corresponding to |ψ(1−b)⟩ in World4 and
World5. Let |0⟩ |w(1−b)

0 ⟩ = |x⟩, |1⟩ |w(1−b)
1 ⟩ = |x′⟩. Then |x4⟩ = |x⟩ with

probability 1
2 and |x4⟩ = |x′⟩ otherwise, and |x5⟩ = 1√

2(|x⟩+ |x′⟩) with
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probability 1
2 and |x5⟩ = 1√

2(|x⟩ − |x′⟩) otherwise. Let ρ4 and ρ5 be the
density matrices corresponding to |x4⟩ and |x5⟩, then we have,

ρ4 =1
2 |x⟩ ⟨x|+

1
2 |x

′⟩ ⟨x′| (5.25)

ρ5 =1
2( 1√

2
(|x⟩+ |x′⟩))( 1√

2
(⟨x|+ ⟨x′|)) + 1

2( 1√
2

(|x⟩ − |x′⟩))( 1√
2

(⟨x| − ⟨x′|))

(5.26)

=1
4((|x⟩ ⟨x|+ |x⟩ ⟨x′|+ |x′⟩ ⟨x|+ |x′⟩ ⟨x′|) + (|x⟩ ⟨x| − |x⟩ ⟨x′| − |x′⟩ ⟨x|+ |x′⟩ ⟨x′|))

(5.27)

=1
4(2 |x⟩ ⟨x|+ 2 |x′⟩ ⟨x′|) (5.28)

=1
2 |x⟩ ⟨x|+

1
2 |x

′⟩ ⟨x′| (5.29)

So the density matrices of |x4⟩ and |x5⟩ are the same, both equal 1
2(|x⟩ ⟨x|+

|x′⟩ ⟨x′|), it is therefore impossible to distinguish |x4⟩ and |x5⟩. So
World4 = World5.

6. World5 = World6: Since World6 is a reorder of World5, so the distribution
of outputs are the same as in World5. So World5 = World6.

By transitivity, we conclude that World0 ≈World6, which ends the proof of
this part.

5.3.2 Malicious Alice

We define World0 to World4 as follows:

• World0 (Fig. 5.8) is the real world.

• World1 (Fig. 5.9) is World0 except that the protocol that generates F is
replaced by the simulated version.

• World2 (Fig. 5.10) is World1 except that the ZK protocol is replaced by
the simulated version.

• World3 (Fig. 5.11) is World2 except that we do not perform the Z rotation
for |ψ⟩(1−b).

• World4 (Fig. 5.12) is a reorder of the operations of World3, and is the ideal
world. More precisely, we can see that all the interaction and calculation
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Â(σÂ) B(m0,m1) Z(σZ)

Â0 Run BF to obtain F

Â1 Run Bzk to obtain ∀c, d, F (c)
d

Â2
|ψ⟩(0)

, |ψ⟩(1)

Do the measurements and
rotations of the real protocol.

Â3
∀c, s(c), z(c)

state
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ return anything

Figure 5.8: Case 3 (malicious Alice): World0

Â(σÂ) B(m0,m1) Z(σZ)

SF,Â0

F
F ← Gen(1n)

Â1 Run Bzk to obtain ∀c, d, F (c)
d

Â2
|ψ⟩(0)

, |ψ⟩(1)

Do the measurements and
rotations of the real protocol

Â3
∀c, s(c), z(c)

state
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ return anything

Figure 5.9: Case 3 (malicious Alice): World1

in World3 are independent of m1−b, so we can just reorder these parts
to Alice’s part to construct a simulator that first forwards b, and gets
mb from the remaining part of Bob, which is seperated into 2 parts: the
idealized functionality receives m(0) and m(1) from Bob and b from Alice,
and outputs m(b) to Alice, and the corresponding idealized party of Bob
that forwards m(0) and m(1) to the functionality.

1. World0 ≈World1: Any distinguisher that distinguishes World0 and World1
can be converted to a distinguisher that distinguishes the protocol of
obtaining F and the idealized functionality FGen

F . We assumed that
FGen
F is realized by the protocol of obtaining F , so such distinguisher

does not exist. So World0 ≈World1.

2. World1 ≈World2: Any distinguisher that distinguishes World1 and World2
can be converted to a distinguisher that distinguishes the ZK protocol

46
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Â(σÂ) B(m0,m1) Z(σZ)

SF,Â0

F
F ← Gen(1n)

Szk,Â1
∀c, d, w(c)

d , F
(c)
d Run FZK , i.e. check if w’s

are valid witnesses for R

(notably ∃b, F (l∥w(b)
l ) = F

(b)
l ).

Â2
|ψ⟩(0)

, |ψ⟩(1)

Do the measurements and
rotations of the real protocol.

Â3
∀c, s(c), z(c)

state
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ return anything

Figure 5.10: Case 3 (malicious Alice): World2

Â(σÂ) B(m0,m1) Z(σZ)

SF,Â0

F
F ← Gen(1n)

Szk,Â1
∀c, d, w(c)

d , F
(c)
d Run FZK , i.e. check if w’s

are valid witnesses for R

(notably ∃b, F (l∥w(b)
l ) = F

(b)
l ).

Â2
|ψ⟩(0)

, |ψ⟩(1)

Do the measurements and
rotations of the real protocol,

Â3
∀c, s(c), z(c)

except Zm1−b .

state
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ return anything

Figure 5.11: Case 3 (malicious Alice): World3
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SÂ(σÂ) B̃(m0,m1) & FOT Z(σZ)

F ← Gen(1n)
state0 ← SF,Â0

(σÂ, F )

(∀c, d, w(c)
d , F

(c)
d , state1)← Szk,Â1

(state0)
Run FZK , i.e. check if w’s
are valid witnesses for R

(notably ∃b, F (l∥w(b)
l ) = F

(b)
l ).

b

(|ψ⟩(0)
, |ψ⟩(1)

, state2)← Â2(state1)
mb

Do the measurements and
rotations of the real protocol,
except Zm1−b .

state3 ← Â3(∀c, s(c), z(c), state2)
state3

−−−−−−−−−−−−−−−−−−−−−−→ return anything

Figure 5.12: Case 3 (malicious Alice): World4

and the idealized functionality FR
ZK . We assumed that FR

ZK is realized by
a ZK protocol, so such distinguisher does not exist. So World1 ≈World2.

3. World2 ≈World3: In this part, we consider 2 cases, depending on whether
F is a permutation or a collision-resistant function.

• We first consider the case when F is a permutation.
For |ψ⟩(1−b), we consider the step of applying the unitary U and
measuring the last qubit. If the outcome is 0, then the whole
procedure halts and in this case World2 is identical to World3.
Then we consider the case where the measurement outcome is 1. This
means that the state collapses to a superposition of ∑αj |i, v, x, u⟩
where h(i||v, x||u) ̸= 1∧ ∃d, F (i||v, x||u) = F

(c)
d . By injectivity, only

2 such strings satisfy ∃d, F (i||v, x||u) = F
(c)
d . And by the ZK proof,

we know that only one of the two strings satisfies h(i||v, x||u) ̸= 1.
This means that the state is |i, v, x, u⟩ for some string i, v, x, u.
Applying Zm1−b only adds a global phase flip to the state, which is
impossible to distinguish from the original state. So in this case we
also have World2 = World3

So World2 = World3.

• Then we consider when F is not necessarily injective, but still holds
the property of collision-resistance.
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For |ψ⟩(1−b), we consider the step of applying the unitary U and mea-
suring the last qubit. The state collapses to |ψ⟩ = (∑αj |i, v, x, u⟩) |t⟩.
If t = 0, then the whole process stops. If t = 1, then h(i||v, x||u) ̸=
1 ∧ ∃d, F (i||v, x||u) = F

(c)
d . We define x∗ to be the string such

that F (x∗) = F
(1−b)
l , then we can always write the remaining

state (with some auxiliary qubits) to a pure state |ψ⟩ = (
√
β |ϕ⟩+√

1− β |x∗⟩ |ϕ∗⟩) |t⟩ such that Tr((|x∗⟩ ⟨x∗| ⊗ I) |ϕ⟩ ⟨ϕ|) = 0.
Now we have 2 observations: Firstly, we observe that by measuring
the state |ψ⟩, we can find a collision with probability ≥ tβ.
Secondly, we can observe that the trace distance between |ψ⟩ and
the state after the (possible) Z operation is ≤ 2t

√
β:

For the case t = 0, the Z rotation is not performed, so the trace
distance between these 2 states is 0.
For case t = 1, by using the triangle inequality we have the following:

TD(|ψ⟩ , Zm1−b |ψ⟩) (5.30)
≤TD(|ψ⟩ , |x∗⟩ |ϕ∗⟩ |t⟩) + TD(|x∗⟩ |ϕ∗⟩ |t⟩ , Zm1−b |x∗⟩ |ϕ∗⟩ |t⟩)

(5.31)
+ TD(Zm1−b |x∗⟩ |ϕ∗⟩ |t⟩ , Zm1−b |ψ⟩) (5.32)

=
√
β + 0 +

√
β = 2

√
β = 2t

√
β (5.33)

Then, for any distinguisher trying to distinguish World2 and World3,
we can define 2 operations: ξ0 is the combination of all the operation
before the (possible) Z rotation on |ψ⟩, and ξ1 is the combination of
all the operation after the (possible) Z rotation on |ψ⟩. These opera-
tions can be converted to the form of POVM. Then, by Theorem 2.8,
we have

|Pr[World3 = 1]− Pr[World2 = 1]| (5.34)
≤E|ψ⟩←ξ0(σ)|Pr[ξ1 |ψ⟩ = 1]− Pr[ξ1Z

m1−b |ψ⟩ = 1]| (5.35)

=E|ψ⟩←ξ0(σ)
1
2(|Pr[ξ1 |ψ⟩ = 1]− Pr[ξ1Z

m1−b |ψ⟩ = 1]| (5.36)

+ |Pr[ξ1 |ψ⟩ = 0]− Pr[ξ1Z
m1−b |ψ⟩ = 0]|) (5.37)

≤E|ψ⟩←ξ0(σ) TD(|ψ⟩ , Zm1−b |ψ⟩) (5.38)

≤E|ψ⟩←ξ0(σ)2t
√
βψ (5.39)

On the other hand, the average probability of finding a collision is
E|ψ⟩←ξ0(σ)tβψ.
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Since E|ψ⟩←ξ0(σ)2t
√
βψ ≤ 2

√
E|ψ⟩←ξ0(σ)tβψ, which means that |Pr[World3 =

1]−Pr[World2 = 1]| ≤ 2
√
E|ψ⟩←ξ0(σ)tβψ, Also, the possibility to find

a collision is negligible, that is, E|ψ⟩←ξ0(σ)tβψ is negligible, which
means that 2

√
E|ψ⟩←ξ0(σ)tβψ is also negligible. As a result, we can

conclude that |Pr[World3 = 1]− Pr[World2 = 1]| is negligible.
So World2 ≈World3.

To conclude the above argument, we show that World2 ≈World3.

4. World3 = World4: Since World4 is a reorder of World3, so the distribution
of outputs are the same as in World3. So World3 = World4.

By transitivity, we conclude that World0 ≈World4, which ends the proof of
this part.
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Chapter 6

Conclusion

6.1 Summary

The oblivious transfer protocols can be used to construct multi-party computa-
tion protocols, that can play a vital role in fields like auctions and electronic
votes. Classical OT protocols require trapdoor functions, while a 2-message
quantum OT protocol in [CMS23] constructed out of (non-interactive) zero-
knowledge proof requires the assumption of collision-resistant hiding functions.
However, since specific assumptions might be broken in the future, it is natural
to study whether weaker assumptions can be applied to construct a protocol
for OT.

In this thesis, we show that we can construct a quantum OT protocol out of
(non-interactive) zero-knowledge proof that does not require the hiding property
of the function, but only requires the assumption of length-preserving collision-
resistant quantum one-way functions, while keeping the protocol optimal in
communication.

The generalized quantum Goldreich-Levin Theorem plays a vital role in
the construction of the protocol. This theorem mainly states that any length-
preserving quantum one-way function can be converted to a quantum one-way
function with a quantum hard-predicate, where the quantum hard-predicate
plays the role of the hiding bit to hide information in the protocol. An original
version of the theorem is shown in [AC02], that only applies to quantum
one-way permutations. We generalize the results to length-preserving quantum
one-way functions by defining a generalized version of the GL problem and
reduce the problem of inverting the function to the generalized GL problem.
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CHAPTER 6. CONCLUSION

We use a quantum stand-alone security model described in [HSS11] to
prove the security of the protocol, that is, given the existence of collision-
resistant length-preserving quantum one-way functions and the existence of
non-interactive ZK proof, we can obtain a 2-message OT protocol that is
computational secure.

6.2 Future Work

The method also raises a number of open questions.

Removing length-preserving property. The generalized Goldreich-Levin
Theorem requires the assumption of being length-preserving. We expect that
the theorem also holds without the assumption of length-preserving, thus we
can remove the assumption from the protocol.

Even weaker assumptions. [JLS18] introduces the notion of Pseudoran-
dom Quantum States, which can be constructed assuming quantum one-way
functions. This weaker assumption (compared with quantum one-way func-
tions) can be used to build OT protocols [AQY22]. It is interesting to study
whether it can be applied to a protocol similar to the one described in this
thesis, thus leading to more efficient protocols.
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Appendix A

Appendix

A.1 Sampling w
(c)
d and the Probability Distribution

of h
(c)
d

In this part, we show that sampling valid w
(c)
d = v

(c)
d ||x

(c)
d ||u

(c)
d can be done in

polynomial time, with negligible probability of failure, more formally,

Theorem A.1. For any c, b, by sampling w(c)
d

$← {0, 1}2n−1 O(n) times, with
probability 1−negl(n), one can obtain some w(c)

d such that ⟨c||v(c)
d , x

(c)
d ||u

(c)
d ⟩ = b.

We also show:

Theorem A.2. for every b, Pr
x

$←{0,1}n,y
$←{0,1}n

[⟨y, x⟩ = b] = 1
2 ± negl(n).

The following main lemma proves the above 2 theorems:

Lemma A.3 (Main Lemma). For any c, b, Pr
u

$←{0,1}n−1,v
$←{0,1}n−1,x

$←{0,1}
[⟨c||v, x||u⟩ =

b] = 1
2 ± negl(n)

To prove the main lemma, we have the following lemmas:

Lemma A.4. Pr
u

$←{0,1}n−1
[⟨0n−1, u⟩ = 1] = 0

Proof. Trivial.

Lemma A.5. For v ∈ {0, 1}n−1 \ {0n}, Pr
u

$←{0,1}n−1
[⟨v, u⟩ = 1] = 1

2
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Proof. Since v ̸= 0n, we may assume that vk = 1.
Then we have

Pr
u

$←{0,1}n−1
[⟨v, u⟩ = 1] (A.1)

= Pr
u

$←{0,1}n−1
[vkuk ⊕

⊕
i ̸=k

viui = 1] (A.2)

= Pr
u

$←{0,1}n−1
[uk ⊕

⊕
i ̸=k

viui = 1] (A.3)

= Pr
u

$←{0,1}n−1
[uk = 0] Pr

u
$←{0,1}n−1

[uk ⊕
⊕
i ̸=k

viui = 1|uk = 0] (A.4)

+ Pr
u

$←{0,1}n−1
[uk = 1] Pr

u
$←{0,1}n−1

[uk ⊕
⊕
i ̸=k

viui = 1|uk = 1] (A.5)

=1
2 Pr
u

$←{0,1}n−1
[
⊕
i ̸=k

viui = 1] + 1
2 Pr
u

$←{0,1}n−1
[
⊕
i ̸=k

viui = 0] (A.6)

=1
2 Pr
u

$←{0,1}n−1
[
⊕
i ̸=k

viui = 1] + 1
2 Pr
u

$←{0,1}n−1
[
⊕
i ̸=k

viui ̸= 1] (A.7)

=1
2 (A.8)

Proof. [Proof of Lemma A.3] Realize that

Pr
u

$←{0,1}n−1,v
$←{0,1}n−1,x

$←{0,1}
[⟨0||v, x||u⟩ = 1]+ Pr

u
$←{0,1}n−1,v

$←{0,1}n−1,x
$←{0,1}

[⟨0||v, x||u⟩ = 0] = 1

(A.9)

and

Pr
u

$←{0,1}n−1,v
$←{0,1}n−1,x

$←{0,1}
[⟨1||v, x||u⟩ = 1]+ Pr

u
$←{0,1}n−1,v

$←{0,1}n−1,x
$←{0,1}

[⟨1||v, x||u⟩ = 0] = 1

(A.10)

We just need to prove the following:

1.

Pr
u

$←{0,1}n−1,v
$←{0,1}n−1,x

$←{0,1}
[⟨0||v, x||u⟩ = 1] = 1

2 ± negl(n) (A.11)
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2.

Pr
u

$←{0,1}n−1,v
$←{0,1}n−1,x

$←{0,1}
[⟨1||v, x||u⟩ = 1] = 1

2 ± negl(n) (A.12)

1.

Pr
u

$←{0,1}n−1,v
$←{0,1}n−1,x

$←{0,1}
[⟨0||v, x||u⟩ = 1] (A.13)

= Pr
u

$←{0,1}n−1,v
$←{0,1}n−1

[⟨v, u⟩ = 1] (A.14)

=
∑

v′∈{0,1}n−1

Pr
u

$←{0,1}n−1,v
$←{0,1}n−1

[v = v′] Pr
u

$←{0,1}n−1,v
$←{0,1}n−1

[⟨v, u⟩ = 1|v = v′]

(A.15)
=

∑
v′∈{0,1}n−1\{0n}

Pr
u

$←{0,1}n−1,v
$←{0,1}n−1

[v = v′] Pr
u

$←{0,1}n−1,v
$←{0,1}n−1

[⟨v, u⟩ = 1|v = v′]

(A.16)
+ Pr
u

$←{0,1}n−1,v
$←{0,1}n−1

[v = 0n] Pr
u

$←{0,1}n−1,v
$←{0,1}n−1

[⟨v, u⟩ = 1|v = 0n]

(A.17)

=
∑

v′∈{0,1}n−1

1
2n−1 Pr

u
$←{0,1}n−1

[⟨v′, u⟩ = 1] + 1
2n−1 Pr

u
$←{0,1}n−1

[⟨0n, u⟩ = 1]

(A.18)

=(2n−1 − 1) 1
2n−1

1
2 + 0 (A.19)

=1
2 −

1
2n (A.20)

2.

Pr
u

$←{0,1}n−1,v
$←{0,1}n−1,x

$←{0,1}
[⟨1||v, x||u⟩ = 1] (A.21)

= Pr
u

$←{0,1}n−1,v
$←{0,1}n−1,x

$←{0,1}
[x = 0] Pr

u
$←{0,1}n−1,v

$←{0,1}n−1,x
$←{0,1}

[⟨1||v, x||u⟩ = 1|x = 0]

(A.22)
+ Pr
u

$←{0,1}n−1,v
$←{0,1}n−1,x

$←{0,1}
[x = 1] Pr

u
$←{0,1}n−1,v

$←{0,1}n−1,x
$←{0,1}

[⟨1||v, x||u⟩ = 1|x = 1]

(A.23)

=1
2 Pr
u

$←{0,1}n−1,v
$←{0,1}n−1

[⟨v, u⟩ = 1] + 1
2 Pr
u

$←{0,1}n−1,v
$←{0,1}n−1

[⟨v, u⟩ = 0]

(A.24)
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=1
2 Pr
u

$←{0,1}n−1,v
$←{0,1}n−1

[⟨v, u⟩ = 1] + 1
2 Pr
u

$←{0,1}n−1,v
$←{0,1}n−1

[⟨v, u⟩ ≠ 1]

(A.25)

=1
2 (A.26)
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