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Abstract

This thesis explores the effect of social structure on the beliefs and knowledge
of agents who reason in an evidence-based manner. This is done by formally
analysing the mechanisms of information flow in the networks formed by the
agents. This thesis is a contribution to the formal foundation of the idea that
a distinct Social Epistemology is needed to account for real-world doxastic and
epistemic phenomena. The first part of the original contribution of this work
is bridging the gap between multi-agent Topological Evidence Models (Parti-
tional Models) and Threshold models for diffusion. The resulting framework,
which we call Evidence Diffusion Models, allows for the formal analysis of multi-
agent evidence-based reasoning in the context of a social network where evidence
pieces are being communicated between agents via threshold-limited diffusion.
The second part of the original contribution of this work is this formal analysis
per se. We show that, in our setting, network structures are expressible and
known both defeasibly and infallibly by the agents. We prove that defeasible
knowledge and (defeasible) distributed knowledge are easily lost under the diffu-
sion of pieces of evidence in a network, whereas distributed evidence is strongly
robust. Further, we obtain so-called Cluster Theorems characterising the evi-
dential and network conditions for evidence cascades to form, and for individuals
and groups to obtain knowledge in the diffusion process. Finally, we prove re-
sults about four special networks — the Total network, the Star network, the
Cycle, and the Wheel network — characterising their speed of evidence diffusion
and epistemic reliability, and probe the generalisability of the results that were
obtained by Zollman about the same networks, but whilst working in a different
paradigm.
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1 Introduction
Real-world reasoners are prone to failures of all kinds — from poor memory access or

memory loss, to computational limitations, to the use of fallacious reasoning steps. Even
in scientific practice, our highest and most stringent means to discover facts about the
world, such deficiencies abound. A kind of failure that has come under more focused media
and scientific attention in recent years has to do with the social aspect of science. On the
one hand, the history of science is replete with examples where groundbreaking findings
were delayed or dismissed due to the influence of established norms and hierarchies, and
on the other there are many cases where results were established on shaky foundations
that propagated through popularity rather than correctness. Let us briefly provide an
illustration of the latter here.

The replication crisis in psychology [20] is a prime example of scientists acting as if
scientific rumors, i.e. barely or poorly replicated experiments that become popular, are
well-established results. The by now infamous social priming experiments purportedly
showed that our behavior is strongly influenced by subtle environmental cues. Before
it was shown that many of these experiments failed to replicate, they generated a great
amount of subsequent research, and were even sold to the general public as undeniable
parts of human psychology. The Nobel-prizewinning economist Daniel Kahneman wrote
in his international best-seller Thinking, Fast and Slow :

“When I describe priming studies to audiences, the reaction is often disbelief.
[...] Disbelief is not an option. The results are not made up, nor are they
statistical flukes. You have no choice but to accept that the major conclusions
of these studies are true. More important, you must accept that they are true
about you”. [49]

Clearly, this is a case where the scientific community failed on social grounds, too much
trust in one’s fellow scientist and not enough cross-verification of results being two of
the main factors of the crisis. Ideally, we would like to understand the underpinnings of
such failures in order to avoid hurdles in the advancement of knowledge, misinforming the
general public and tarnishing the authority of science.

In recent years, the intersection of epistemic logic and social epistemology has emerged
as a significant area of inquiry [21, 22, 24, 23, 60, 72, 75, 91]. Also recently, advances
in epistemic logic have permitted the formalisation of evidence based reasoning using
topological tools [9, 70, 69, 36, 13, 15]. We therefore find ourselves at a pivotal moment
in research, where the effects of network structure on the dynamics of evidence, belief,
and knowledge can be rigorously modelled and understood. With this thesis, we aim to
contribute to this understanding by leveraging the aforementioned topological methods
in epistemic logic, as well as the logical modelling of social networks to model the propa-
gation, or diffusion, of evidence in social networks and its effects on individual and group
knowledge and belief. By doing this, we aim to shed light on the mechanisms that lead to
both the successes and failures of collective reasoning in science, with the ultimate goal
of enhancing the reliability and speed of scientific inquiry.

The thesis is structured as follows. In Chapter 2, we lay the Philosophical groundwork
for our thesis by presenting three arguments for the need of Social Epistemology. In section
2.1, we analyse the historical case of Ignaz Semmelweis, where the failure of individual
rationality leading to group rationality lead to many losses in human lives. In section 2.2
we present the philosophical concept of epistemic dependence as a reason for the need
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for Social Epistemology. In section 2.3 we present the so-called Independence Thesis —
which states that rational individuals might form irrational groups, and rational groups
might be formed of irrational individuals — as well as Zollman’s formal results [92, 93, 94]
pertaining to the trade-offs between the speed and reliability of scientific networks. We
also set-up our thesis as a continuation of this line of work.

In Chapter 3, we develop the formal model that represents a great part of the novel
contribution of this thesis. We begin by presenting the preliminary knowledge of topology
required for the development of this model in Section 3.1, and by detailing the epistemic
significance of topology. In sections 3.2, 3.3, and 3.4 we present the parent-frameworks of
our model. Respectively, these are Topological evidence models for single-agent evidence-
based knowledge and belief, Partitional models, the multi-agent extension of topological
evidence models, and Threshold models for diffusion. In Section 3.5 we present the main
contribution of this thesis, which we call Evidence Diffusion Models. These models allow
for multi-agent evidence-based reasoning in the context of a social network where evidence
pieces are being communicated between agents via threshold-limited diffusion.

In Chapter 4, we analyse the effect of social structure on the beliefs and knowledge
of agents who reason in an evidence-based manner by focusing on the mechanisms of
information flow in these networks. In Section 4.1, we provide graph-theoretic network
measures that will be important in our analysis of connectivity’s effect on knowledge, as
well as highlight four networks which we pay special attention to. We also investigate
our language’s expressive power with regard to these networks. In Section 4.2, we zoom
in on the process of evidence diffusion, and analyse what effects it has on individual or
group knowledge gain, or loss. In Section 4.3, we obtained sweeping results regarding
the necessary and sufficient conditions for evidence cascades (i.e. when pieces of evidence
reach all agents) and individual and group learning. In Section 4.4, we focus on the
four special networks and analyse their speed and reliability, whereafter in Section 4.5,
we compare these results with Zollman’s results on the speed and reliability of the same
networks. Finally, we conclude, state some of the limitations of our model and outline
further lines of research.

3



2 Epistemology in a Group Setting
Though it is individuals that hold knowledge, the use and acquisition of knowledge are

processes of an unquestionably social nature. First, we rarely ever come to know things on
our own. Most often, we learn about the world from our close community, the educational
system, books and other media, and so on. Second, in big-scale projects like discovering
the cure for a disease, it is often the case that almost every person is mission-critical, as
no individual scientist would know how to advance the process of discovery on their own,
but the group collectively knows.

Traditionally, epistemology asks questions that put the individual agent in focus:
When does an agent possess knowledge, as opposed to belief? [48] What counts as good
enough justification for beliefs to accede to knowledge? [78, §3] What are the sources of
an agent’s knowledge? [78, §5] etc. This epistemic individualism is said to be traceable to
Descartes’ Meditations [67, §1, 38, Preface]. A recent offshoot of this branch of philosophy
is social epistemology, which adds a social dimension to the more traditional individual
epistemology. Questions pertaining to social influence on knowledge have been asked be-
fore (for instance see [26, 54]), but it was Alvin Goldmann’s book, Knowledge in a Social
World, that laid the foundations for and kick-started contemporary social epistemology
as the discipline that evaluates social practices by their causal contributions to knowledge
or error [38, p. 69].

The links between the social and the epistemic have not been probed only by a few
isolated questions, but by entire philosohpical frameworks [38, §1.2]. The approach pio-
neered by Goldman stands in contrast with these by its veritisic nature. That is to say
that its main preoccupation is with the selection of the social practices which best ad-
vance knowledge, where we evaluate the goodness of a practice in terms of truth-related
dimensions [38, p. 79], as opposed to, e.g. the assent or dissent produced by the practice
[38, §3.1.A] or the utility produced by the practice [38, §3.1.B]. And since truth is central
to individual epistemology [48, §1.1], veritistic social epistemology can be said to be the
true social development of individual epistemology. We proceed to give three reasons for
the study of social epistemology: one historical, one philosophical, and another formal.

2.1 A Historical Reason for Social Epistemology

It might not be immediately apparent why the social aspect of knowledge creation
needs to be given explicit attention — can we not easily adapt the well-established ac-
counts of individual rationality [9, 47, 59] by just allowing the agents to communicate?
Incidents from the history of science — such as the cases of Ignaz Semmelweis [18] or the
Einstein-de Haas effect [34, 85] — point to the fact that the reality of knowledge accrual
and proliferation strays quite far from the classical picture of the lone reasoner deductively
deriving more and more from a few first principles. It turns out there are several interfer-
ing mechanisms in the interaction between individual rationality and group rationality,
resulting in differences between what it is best for individuals to do to acquire knowledge,
compared to what is best for groups to do to acquire knowledge.

As an illustration, let us see how individual inquiry did not lead to group knowledge
in the case of Semmelweis. The 19th Century physician discovered that chlorine hand-
washing quashed the mortality rate due to childbed fever at any institution where the
protocols were implemented [18, p. 53]. The way he arrived at this conclusion was by
critical analysis and rigorous hypothesis-testing — a perfectly rational process [18, pp. 45–
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2.2 A Philosophical Reason for Social Epistemology

53]. However, his ideas did not spread and gain wide acceptance, but were rather shunned,
and he was professionally berated [18, pp. 53–61]. The number of lives which could have
been saved had chlorine hand-washing been implemented earlier is so great as to be
difficult to estimate.

So why did the perfectly good scientific theory of Semmelweis take so long to be ac-
cepted, and why did a community of scientists block a perfectly rational answer? The
answer lies in the social characteristics of the scientific community. Its authority struc-
tures, its resistance to new ideas, the general attitude towards evidence — all factors in the
social realm — came in the way of rational inquiry [18, pp. 55–61]. If we are to prevent
such situations from happening in current scientific practice, we ought to have a good
grasp of exactly what goes wrong at the border between individuals and groups when it
comes to knowledge.

2.2 A Philosophical Reason for Social Epistemology

The phenomenon of epistemic dependence offers another clear motivation for the study
of the dynamics of knowledge and belief in social groups. In traditional epistemology, a
reason R to believe a proposition P has as a necessary condition some notion of support
between the content of R and P . But beliefs can be justified by more than content-
related reasons. For instance, in order to justify one’s belief in P one might appeal to
an expert’s competence and point to the fact that they believe P . As an illustration,
consider Sam, an amateur bodybuilder, who is discussing muscle hypertrophy with Dr.
Mike Israetel, a professor of exercise science: clearly it would be rational for Sam to allow
his beliefs about building muscle to be steered by Dr. Mike’s judgement, as his experience
and knowledge of this domain assures a better chance at approximating the truth. For
a discussion of such principles, often called deference to experts principles, in the setting
of Bayesian epistemology, see [79, §5.2, 30]. If he did that, Sam would be manifesting
epistemic dependence with respect to Dr. Mike.

This picture suggests the following intuitive definition for epistemic dependence.

A agent i manifests social epistemic dependence just in case i’s epistemic
standing causally depends on other persons, or on other features of the broader
social environment [42, p. 114].

Stated in terms of reasons, the previous discussion boils down to the following. It
is completely tenable epistemically that an agent has the following reason R′ to believe
P : ‘agent i is an expert in P ’s subject matter and i believes P ’. One can find even
stronger reasons of the same kind. For instance, take the reason R′′ to believe P : ‘agents
{i1, ..., in}, constituting an overwhelming majority of the community of experts for P ’s
subject matter, believe P ’. Notice that neither R′, nor R′′ offer any kind of direct support
for the truth of P . At most, we might say that they offer indirect support to the truth
of P , via the assumption that if i is an expert, and i believes P , then i themselves must
have a (direct) reason for believing P .

Note that these direct reasons might not be easily communicable to the other agent.
Scientific communication is, after all, a difficult process. The schooling, scientific tech-
niques and intuitions based on years that the expert has and that lead them believe P , are
not as easily transferable to the agent as a fact like “the chance it will rain in Amsterdam
tomorrow is 80%”. Thus, even in the presence of all the facts, it might still be rational for
the agent to defer to the expert’s analysis. All of this is to say that, quite contrary to the
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2.3 A Formal Reason for Social Epistemology

picture sketched by Cartesian epistemology, “rationality sometimes consists in refusing to
think for one-self” [45, p. 336].

One need not even look for cases as extreme as complete deference to another agent to
observe the manifestation of epistemic dependence. Let us say that an agent has a reason
R to believe P , which is based upon a set of pieces of evidence {e1, ..., en}, which could
be experiments, forensic evidence, direct observations, or other forms of evidence. Let us
further say that R is an argument constructed by the agent themselves on the basis of
this evidence. If the evidence has not been collected entirely by the agent, can we say
that the agent’s epistemic standing is not causally dependent on other persons? It may
well be that one piece of evidence in the set which is critical for the argument is a faulty
result from a lab that did not meet cleanliness standards. Could we possibly blame the
agent themselves, and ascribe them a fault of reasoning? We think not.

This suggests a fault in the above definition. Indeed, the definition is considered
somewhat deficient in the social epistemology literature, for it cannot distinguish between
individualist and anti-individualist stances on epistemology [42, p. 116]. The definition
over-attributes dependence, since any person is, in practice, epistemically dependent upon
others in this sense. In other words, using this definition, we cannot make a difference be-
tween epistemologies that are truly anti-individualist, i.e. that claim that there are parts
of epistemology that are irreducible to individual epistemology together with communi-
cation between agents, and individualist epistemologies, that claim that this reduction is
possible. [42] contrasts “mere reliance” with “vulnerable dependence”, the former involving
knowledge of the dependability of those depended on, and the latter the absence of this.

But we enter here into rather thorny territory, because it seems like requiring knowledge
of the dependability of those depended on makes almost all cases of dependence vulnerable
dependence. Even if we relaxed the requirement for knowledge, the distinction between
mere reliance and vulnerable dependence is not so easy to parse. After all, if I commit
myself to a doxastic or epistemic attitude on the basis of an argument that uses a piece
of evidence received from another agent, I am making myself vulnerable to failure if it
turns out that this agent’s method of evidence collection was faulty. As such, in this
thesis, we will consider most cases of dependence to be vulnerable dependence. This is
partly because the framework we present in Section 3 ought to act as a toy model for
scientific networks, and often whist working in the context of a scientific network, one
places complete trust that other scientists’ results that you base your work upon is well
done. As a matter of fact, our model will reflect this in a big way, since agents will be
at the risk of losing knowledge on the basis of the social connections they choose to form.
But more on this later.

2.3 A Formal Reason for Social Epistemology

Besides the historical cases and epistemic dependence, a formal result highlights the
need for social epistemology. The independence thesis states that “rational individuals can
form irrational groups; and rational groups might be composed of irrational individuals”
[62]. The result is deeply unintuitive, given that it seems to point out that we call agents
rational when there is a context in which they do not act rationally. Furthermore, this
misalignment carries over to knowledge creation, where the best course to the creation of
individual knowledge might not necessarily be the best course to the creation of group
knowledge. This is precisely what makes the independence thesis a strong argument for
the existence of independent standards of rationality for individuals and groups.
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2.3 A Formal Reason for Social Epistemology

It seems like drawing a distinction between two levels of analysis teases out the place
where this divergence happens. First there is the ‘micro’ level — an agent’s individual
reaction to and management of new facts or data coming in. Second there is the ‘macro’
level, studying, after some assumptions about the epistemic properties of the individuals
within, what “community structures best serve the epistemic aim of that community” [92,
p. 574]. Based on this divergence, in a series of very well-appreciated papers [92, 93,
94], Zollman sets out to provide a model of scientific networks using earlier work by Bala
and Goyal [4, 3]. His purpose in doing this is to tease out general principles that may
underlie the functioning of (and therefore aid in optimizing) actual scientific networks. In
summary, his results state the following:

First, in some contexts, a community of scientists is, as a whole, more reliable
when its members are less aware of their colleagues’ experimental results.
Second, there is a robust trade-off between the reliability of a community and
the speed with which it reaches a correct conclusion. [92, p. 574]

The first part is motivated by the fact that a less connected network experiences less
change in strategy due to random strings of misleading evidence remaining more local,
and not spreading to the entire network [92, pp. 582–583]. The reason for the second part
is simply that there is more communication in the more connected network.

To start with, Zollman studies three special networks: the total network (which he
calls “the complete graph”), the cycle, and the wheel. These are illustrated in figure 2.3,
for six agents.

1

2
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5

6

A cycle

1

2

3

4

5

6

The total network

1

4

5

2

6

3

A wheel for 1

Figure 1: The cycle, the wheel, and the total network for six agents

In this model, presented by [92, 93, 94] and originally formulated in [4], there are
two states of the world, φ1 and φ2, and two actions available to each agent, A1 and A2.
The expected utility of A1 is the same irrespective of the world we are in, whereas the
expected utility of A2 is lower in φ1 and higher in φ2. The expected utilities are common
knowledge among the agents, but which world is the actual one is unknown to any agent.
However, they do form beliefs regarding this matter, and at each round, they take the
action with the highest expected payoff. The players observe the outcomes of their own
action and of the actions of their neighbors.

Running this game 10,000 times on a computer obtains Zollman the following results.
For reliability, meaning the probability of learning the actual world, we have the plot in
Figure 2.3. The x axis is the number of agents in the network, and the y axis represents
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2.3 A Formal Reason for Social Epistemology

the percentage out of the 10,000 runs where the agents successfully learned the actual
world.

Figure 2: Reliability results from Zollman’s simulations. Plot from [92, p. 580]

The original formulation is clearly observed on this plot: the sparser the network,
the more reliable it is. As for speed, the plot in Figure 3 shows that the more densely
connected a network, the faster it reaches the desired result.

Figure 3: Speed results from Zollman’s simulations. Plot from [92, p. 581]

Zollman then finds that the trade-off between speed and reliability generalizes by
performing an analysis of all the networks between size 3 and 6 [92, p. 581]. Thus, it
might seem that this is a universal principle that governs social networks of rational
agents. However, the models of Bala and Goyal make critical assumptions about the
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2.3 A Formal Reason for Social Epistemology

agents’ cognitive and computational limitations [4, 3] and rely on computer simulations
and statistical methods to derive results [92, 93, 94].

In order to test the broader applicability of these results, it is of paramount importance
to develop a parallel framework in which such questions can get their answer. This thesis
aims to undertake precisely this task, and does so by abstracting away from the setting
that Zollman uses for his quantitative analysis. We instead focus on the direct mechanisms
of information flow in social-epistemic contexts in which the kind of reasoning being done is
evidence-based reasoning. This is done by providing a logical framework for the treatment
of the evidence-based individual and group knowledge and belief for agents that are placed
within the context of a social network.
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3 A Model for Evidential Networks
We argue that logic is the appropriate setting for the treatment of the issues outlined

in the previous framework. At the end of this section, it will also become clear that the
developed framework fits naturally within the logical literature on social epistemology.
Social networks have long been formally studied with the tools of graph theory [29, Ch.
2] and, likewise, the notion of knowledge, together with its dynamics, have received ample
formal treatment in the discipline of modal logic [47, 28, 15]. It is only recently that
frameworks integrating the two have begun to emerge in order to study problems with
regard to the logic of social network creation [77], the epistemic dimension of networks
[12], informational cascades [11], rational groups [86] etc. A similarly recent advancement
in epistemic logic is the use of topology [51], and more specifically topological evidence
models [70, 69, 9], which allow for a much more nuanced analysis of knowledge, encoding
a variety of notions as evidence, arguments and justifications [69, Ch. 5]. In what follows,
we put these ingredients together and develop multi-agent topological models for the
diffusion of pieces of evidence within a social network.

First, we introduce some preliminaries in the form of topological definitions and their
epistemic interpretations. Second, we introduce the setting of single-agent topological
evidence models. Third, we present partitional models, which we defend as the natural
multi-agent extension to topological evidence models. Fourth, we introduce threshold
models for diffusion and their logical setting. Finally, we put these ingredients together
and present our main contribution: evidence diffusion models.

3.1 Preliminaries

3.1.1 Topological Preliminaries

We start by introducing the basic topological notions that will be used throughout
the formal part of the thesis. For a more in-depth introduction to topology, we refer the
reader to any standard textbook of the topic (such as [65, 31]). Throughout this section,
we refer to a fixed set X as the domain of a topology.

Definition 1 (Topological Subbasis and Basis). A family of sets X ⊆ ℘(X) is a subbasis
if and only if for every x ∈ X there exists a set U ∈ X such that x ∈ U . Equivalently,⋃

X = X. We call X a basis if and only if, in addition to being a subbasis, X satisfies:
for every U,U ′ ∈ X and every x ∈ U ∩ U ′ there exists U ′′ such that U ′′ ⊆ U ∩ U ′ and
x ∈ U ′′.

It is easy to see that the closure of any subbasis under finite intersections is a basis.
Topological bases are often introduced before topologies, because they underlie topologies
and their properties are often easier to prove. That is helpful because often properties of
the bases transfer neatly to topologies themselves. This is because there is a notion of a
basis generating a topology, which we introduce now.

Definition 2 (Topology Generated by Basis). Let X be a basis. Then the family of sets
τ obtained by requiring that if U ⊆ X , then

⋃
U ∈ τ is called the topology generated by

X .

The relationship between subbases, bases and topologies is neatly captured in the
diagram below ([5, Lecture 1.1, Slide 32]):
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3.1 Preliminaries

Subbasis Basis Topology
finite intersections arbitrary unions

Figure 4: Relationship between subbases, bases and topologies

This gives a hint of the general definition of a topology: it is a basis that is closed
under arbitrary unions. We can now formulate a definition of a topology starting from
the original set X itself.

Definition 3 (Topology). A family τ ⊆ ℘(X) is called a topology on X if and only if
(i) X ∈ τ — it contains the whole set;
(ii) if U ⊆ τ with U finite, then

⋂
U ∈ τ — it is closed under finite intersections;

(iii) if U ⊆ τ , then
⋃

U ∈ τ — it is closed under arbitrary unions.

The pair ⟨X, τ⟩ is called a topological space. We call elements x ∈ X points and
elements U ∈ τ open sets or opens. The complements of the open sets are called closed
sets. Note that openness and closedness are not mutually exclusive properties: for example
the set X is both open and closed, since its complement, ∅ is open by virtue of it being
the vacuous union. The sets that are both open and closed are called clopen sets.

Definition 4 (Open Neighborhood). Let τ be a topology on X. For an x ∈ X and a
U ∈ τ , we call U an open neighborhood of x if and only if x ∈ U .

With this definition in hand, we go on to define two notions that will be important
for topological modal logic: the interior and closure of a set.

Definition 5 (Interior, Closure). Let ⟨X, τ⟩ be a topological space, A ⊆ X and x ∈ X.
Then x is an interior point of A if and only if there exists an open neighborhood of x, U ,
such that U ⊆ A. Then we define the interior of A as Int(A) = {x | x is an interior point
of A}. Equivalently, Int(A) =

⋃
{U ⊆ A | U ∈ τ}. Thus, the interior of A is the greatest

open contained in A. The closure of A is Cl(A) =
⋂
{C ⊇ A | C = X\U for some U ∈ τ}.

Thus, the closure of A is the smallest closed set containing A.

Much like the diamond and box operators of modal logic, these notions are dual to
each other. That is, Cl(A) = X \ Int(X \ A). It is also not difficult to see from the
definitions above that Int and Cl can be defined as operators on ⟨X, τ⟩. These operators
satisfy the following axioms, which are known as the Kuratowski axioms [31, pp. 14–15].
For any A,B ⊆ X,

(I1) Int(X) = X (C1) Cl(∅) = ∅
(I2) Int(A) ⊆ A (C2) A ⊆ Cl(A)
(I3) Int(A ∩B) = Int(A) ∩ Int(B) (C3) Cl(A ∪B) = Cl(A) ∪ Cl(B)
(I4) Int(Int(A)) = Int(A) (C4) Cl(Cl(A)) = Cl(A)

Finally, we define the following notions:

Definition 6 (Dense Sets, Nowhere Dense Sets). A ⊆ X is dense in X if and only if
Cl(A) = X, or equivalently if for all U ∈ τ \ {∅}, A∩U ̸= ∅. It is called nowhere dense if
and only if Int(Cl(A)) = ∅. For any B ⊆ X, A is dense in B if and only if B ⊆ Cl(A∩B).

11



3.1 Preliminaries

For our setting, it will be important that we have a way to ‘move’ from a topological
space to a subpart of that space. It is important to do this in a way that preserves the
topological structure we are interested in — this is where the notion of subspace topology
comes in.

Definition 7 (Subspace Topology). For the topological space ⟨X, τ⟩ and for A ⊆ X, we
define τ

∣∣
A
= {A ∩ U | U ∈ τ} and say that ⟨A, τ

∣∣
A
⟩ is a subspace of the original space.

In the same vein, we will need an operation of putting multiple topologies together
in a structure-preserving way. This will be achieved by using the so-called join topology,
which we define now.

Definition 8 (Join Topology). Let Ag = {1, ..., n} and for each i ∈ Ag, let τi be a topology
on X. Then the join topology, denoted by

∨
i∈Ag τi is the smallest topology containing τi

for each i ∈ Ag. Formally,
⋃

i∈Ag τi constitutes a subbasis and
∨

i∈Ag τi is the topology
generated by this subbasis.

3.1.2 Epistemic Interpretation of Topology

Epistemic logic, for which there is a long-standing tradition, pioneered by [47], allows
for an axiomatic analysis of knowledge and belief, taken as primitive notions. In practice,
however there are other pieces of information that help us derive or arrive at these beliefs
or at knowledge. This granularity should be taken into consideration in an analysis of
epistemic and doxastic dynamics and so we make the assumption, together with others
in the literature [9, 84, 83, 82], that rational beliefs and knowledge are based on the
primitive notion of evidence. We define evidence broadly, as the informational resources
that an agent uses in their process of reasoning; or in other words that which founds their
beliefs [52]. This definition is, in fact, very broad — it includes false or misleading pieces
of information that seem (to the agent) to be true, priors, biases and a priori knowledge
[9, p. 2].

In order to capture these notions formally, topology is a natural setting, for “topolog-
ical spaces emerge naturally as information structures that can provide a deeper insight
into the evidence-based justification of knowledge and belief” [9, p. 2]. In fact, topological
spaces have a broad spectrum of applications in formal epistemology. Tracing back to
intuitionistic languages, where open sets were interpreted as pieces of evidence or observ-
able properties [80], to topological evidence models [9, 6, 69, 10, 7], and formal learning
theory [13, 14, 51, 50, 36, 37].

Having ⟨X, τ⟩ as a topological space, we think of the points x ∈ X as possible worlds.
The parallel with Kripke models [17] becomes immediately apparent: we replace the
(epistemic or doxastic) accessibility relation with a topology. But if the accessibility
relation in Kripke models meant epistemic indistinguishability, or doxastic priority, what
are the open sets of the topology to mean? Following [9, 69], we think of the sets in the
subbasis S as directly observable pieces of evidence, of those in the basis B as pieces of
combined evidence (as they are obtained by closing S under finite intersection, which is
like conjunction) and of the sets in the topology τ simply as evidence (as they are obtained
by closing B under arbitrary unions, a stronger version of disjunction). This will allow us
to define the evidence based notions we are after.

12



3.2 Topological Evidence Models

3.2 Topological Evidence Models

We shall now present the setting that underlies our contribution, in its single-agent
variant. This framework provides a topological semantics for the epistemic notions of
evidence, argument, justification, belief and knowledge, and allows for the exploration of
their interplay [9]. It has been explored in [9, 69, 8, 70], and this section more closely
follows [69, Ch.5]1. The setting is that of topological evidence models (or for short, topo-e
models). First, we give the language we will be using and then the definition for topo-e
models proper.

Definition 9. The language Ls of single-agent logic for evidence, belief, and knowledge
is defined via the recursive rule below. We take p ∈ P, where P is a countable set of
propositional atoms.

p | ¬φ | (φ ∧ φ) | Eφ | E∼φ | □φ | □∼φ | [∀]φ | Kφ | Bφ

The modality Eφ is read as ‘the agent has a basic piece of evidence for φ’ and the
modality □φ is read as ‘the agent has a factive basic piece of evidence for φ’. The

modalities E
∼

and □
∼

are the same, except they make reference to combined evidence, and
not to basic evidence. The modality [∀]φ is read as ‘the agent infallibly knows φ’. K
and B are the knowledge and belief operators, and they are read as ‘the agent defeasibly
knows (respectively, believes) φ’. We follow the standard conventions in omitting brackets
when there is no ambiguity.

Definition 10 (Single-agent Topo-e Model). A topo-e model is a triple M = ⟨X, E , J·K⟩,
where X is a set of possible worlds, taken to be nonempty, E ⊆ ℘(X) is a set of basic pieces
of evidence, satisfying X ∈ E and ∅ ̸∈ E, and J·K : P 7→ ℘(X) is a valuation function.

Note that our definition is actually that of uniform evidence models, after [84], since
[9, 69] include the topology of evidence as part of the model. Yet, since van Benthem and
Pacuit [84] do not explicitly make use of the topological aspect, and [9, 69], together with
us which follow them, do, and furthermore the topology of evidence can be generated
from E , we take the liberty to call these models topo-e-models.

Pieces of evidence are represented here as subsets of the set of possible worlds. The
set E of basic pieces of evidence comes with some constraints, however. Namely, it must
contain the set of all possible worlds, X, and not contain the empty set. These two formal
requirements correspond to the following conceptual requirements: tautologies are always
evidence and, respectively, contradictions are never evidence [84].

Now, as stated before, we are using a broad and inclusive notion of evidence: evi-
dence may be false (in the sense that a set in E might not contain the actual world), or
inconsistent (in the sense that intersections of the subsets of E may be empty). Despite
this, we want our agent to be able to put these pieces of evidence together finitely and
consistently, so that, ultimately, they use informational resources that are in some sense
‘good’ to arrive at their epistemic or doxastic attitudes. This is where the notion of body
of evidence comes in. In what follows, for any two sets A and B, we use A ⊆fin B to mean
that A ⊆ B and A is finite.

1Note, however, that our thesis makes use of different notation. In [69], notions that have to do with
basic evidence are subscripted with 0 (E0, E0,□0), whereas we use no subscript. This is because we will

later index these sets with agents. For combined evidence [69] uses E , E,□, but we use E
∼
, E
∼
, □
∼

.
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3.2 Topological Evidence Models

Definition 11 (Body of Evidence, Combined Evidence, Topology of Evidence). Given a
basic evidence set E, a subset F ⊆ E is a body of evidence if and only if F ̸= ∅ and for all
F ′ ⊆fin F , if F ′ ̸= ∅, then

⋂
F ′ ̸= ∅. When F is finite we call it a finite body of evidence.

Let F = {F | F is a body of evidence} and let Ffin = {F | F is a finite body of evidence}.
We define E∼= {

⋂
F | F ∈ Ffin} to be the family of combined evidence. Naturally, we

call any e ∈ E∼ a piece of combined evidence. Note that E∼ is a topological basis, and the

topology of evidence τ is generated from E∼ by closing it under arbitrary unions.

Before we proceed it would be worth it to introduce a few of the semantic notions we
will be working with. Given a topo-e model, M = ⟨X, E , J·K⟩, and a world x ∈ X, we
define satisfaction for the propositional variables and Boolean operators in the usual way:

• M, x ⊨ p if and only if x ∈ JpK;

• M, x ⊨ ¬φ if and only if it is not the case that M, x ⊨ φ;

• M, x ⊨ φ ∧ ψ if and only if M, x ⊨ φ and M, x ⊨ ψ.

The other Boolean operators are taken to be short-hand notations for the following: for
any φ, ψ ∈ Ls, φ∨ψ := ¬(¬φ∧¬ψ), φ→ ψ := ¬(φ∧¬ψ) and φ↔ ψ := (φ→ ψ)∧ (ψ →
φ). We also introduce the following short-hands for the possibility operators corresponding

to our modalities: ♢φ := ¬□¬φ, ♢
∼
φ := ¬□∼¬φ, ⟨K⟩φ := ¬K¬φ, ⟨B⟩φ := ¬B¬φ. When

it is not the case that M, x ⊨ φ, we will write M, x ̸⊨ φ.
Now, we know by definition that for any propositional letter p ∈ P, JpK ⊆ X. This

is the set of worlds at which p is true, which we will call the truth set of p, or the
propositional atom’s corresponding proposition. The function J·K can be extended so that
its domain is the entirety of Ls, and not just P. For the Boolean operators, we do this
in the standard way, and we leave the discussion of truth-sets for the other operators for
later in this section.

Propositions are convenient to work with in this topological setting, because many of
the logical operations we employ correspond very naturally to set-theoretical operations
that are relevant for topology. In this vein, it is easy to observe that for any φ, ψ ∈ Ls,
J¬φK = X \ JφK, Jφ∧ψK = JφK∩ JψK, Jφ∨ψK = JφK∪ JψK etc. Oftentimes, when we work
with an arbitrary proposition, i.e. an arbitrary subset of the set of worlds X, we will, for
simplicity’s sake, use the uppercase letter P instead of using the truth set notation JpK.
We move on with the presentation of the evidential notions in the framework.

Definition 12 (Evidential support). A body of evidence F supports a proposition P ⊆ X
if and only if

⋂
F ⊆ P .

In words, the definition above amounts to a body of evidence supporting P if P is true
in every state satisfying all the evidence in F [69, p. 53]. Said otherwise, if we conjoin
the evidence in body F , and obtain that the world is one of several states (the states
consistent with the intersection

⋂
F ), and in all of those states P is true, then our body

of evidence supports P . The definition of a basic or combined piece of evidence supporting
a proposition P is the obvious adaptation of the one above.

Given this definition, and as in the real world, it is entirely possible that there are
multiple evidence sets supporting P . A body of evidence that supports P is merely one
evidential path to the proposition P . Oftentimes, more than one such evidential path is
required to support a proposition in a satisfactory way. We will now define an object that
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3.2 Topological Evidence Models

brings together a multiplicity of evidential paths to some proposition P : an argument for
P .

Definition 13 (Argument for P ). An argument A for a proposition P is defined as

A =
⋃

E∼′, where E∼′ ⊆ E∼ and E∼′ ̸= ∅ and for all e ∈ E∼′, e ⊆ P or equivalently A ⊆ P . We
call A factive at x ∈ X if and only if x ∈ A.

Very conveniently, from a topological point of view, an argument for a proposition P
corresponds to an open set contained in P — a set U ∈ τ \ {∅} such that U ⊆ P . Thus,
Int(P ) is the weakest (by virtue of restricting the possible worlds the least) argument for
P .

Definition 14 (Justification for P ). A justification J for P is an argument such that for

all e ∈ E∼, J ∩ e ̸= ∅. We call J factive at x ∈ X if and only if x ∈ J .

A justification is a stronger notion than that of argument. In fact, it is an argument
that is, in some sense, undefeated, or consistent with all the evidence. Topologically, the
fact that it has to have a non-empty intersection with all available evidence amounts to it
being dense: a justification for P is a dense open subset of P . Now that we have defined
these notions, we move on to give semantics to all the modal operators in Ls. Given a
topo-e-model M = ⟨X, E , J·K⟩ and a world x ∈ X,

• M, x ⊨ [∀]φ if and only if JφK = X;

• M, x ⊨ Eφ if and only if there exists e ∈ E such that e ⊆ JφK;

• M, x ⊨ □φ if and only if there exists e ∈ E such that e ⊆ JφK and x ∈ e;

• M, x ⊨ E
∼
φ if and only if there exists e ∈ E∼ such that e ⊆ JφK;

• M, x ⊨ □
∼
φ if and only if there exists e ∈ E∼ such that e ⊆ JφK and x ∈ e.

The first is the global modality, [∀], which encodes the strongest notion of knowledge
in this framework. When [∀]φ holds, φ is absolutely certain information for the agent:
the alternative is not even considered possible. It holds when all the worlds in X satisfy
φ. Importantly, when it holds, it is true at all possible worlds. This will be a feature of

E and E
∼

as well, since their clauses make no reference to the world of evaluation itself.
The truth set of J[∀]φK is then defined in the following way:

J[∀]φK =

{
X if JφK = X;

∅ otherwise.

The next modality, Eφ, amounts to ‘having a basic piece of evidence for φ’ and E
∼
φ

to ‘having a combined piece of evidence for φ’. Eφ holds when there is a basic piece of

evidence supporting φ, and E
∼
φ when there is a combined piece of evidence supporting φ.

Their definitions are straight-forward, and so too are their truth sets.

JEφK =

X if there exists e ∈ E
such that e ⊆ JφK;

∅ otherwise.
JE
∼
φK =


X if there exists e ∈ E∼

such that e ⊆ JφK;
∅ otherwise.
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3.2 Topological Evidence Models

The corresponding box modalities are □ and □
∼

, which can be read as ‘there is a
factive basic (respectively combined) piece of evidence for φ’. They are defined in much
the same way, except they make reference to the world of evaluation, which is precisely
what encodes the notion of factivity we are interested in. This is a local notion of factivity
— instead of there being a designated unique ‘actual world’, we take a piece of evidence
to be factive from the point of view of the world of evaluation, if the piece of evidence
contains that world. In other words, ‘actual’ is, as far as our definitions are concerned,
indexical with respect to the world of evaluation. The truth sets of formulas using these
modalities are defined as follows:

J□φK = {x ∈ X | there exists e ∈ E such that e ⊆ JφK and x ∈ e}
J□
∼
φK = {x ∈ X | there exists e ∈ E∼ such that e ⊆ JφK and x ∈ e}

With these notions in hand, we can define evidence-based belief and defeasible knowl-
edge, in the sense of the defeasibility theory of knowledge developed in [58, 57, 55, 56],
in a natural way. First, we give simple satisfaction clauses for the B and K operators.
Then, we discuss in more detail how these clauses correspond to our prior definitions and
to other topological notions. For a topo-e model M = ⟨X, E , J·K⟩,

• M, x ⊨ Bφ if and only if there exists a justification J for φ;

• M, x ⊨ Kφ if and only if there exists a factive justification J for φ.

So, we cash out our earlier definitions of evidential concepts by defining notions of
belief and knowledge that are, as we desired, evidentially justified. As before, we provide
the truth sets of Bφ and Kφ.

JBφK =

{
X if there exists a justification J for φ;
∅ otherwise.

JKφK = {x ∈ X | there exists a justification J for φ and x ∈ J .}

Not only are K and B defined in terms of the evidential concepts, but it turns out that
these notions are also purely topological in nature [69, §5.3.2. for discussion], unlike in
prior accounts [84, 83, 82]. They are topological in the sense that, as the next proposition
shows, our doxastic (and later, epistemic) attitudes correspond exactly to topological
concepts. The following proposition, due to [69, p. 62, 9, Proposition 2], showcases the
various equivalent definitions of belief that we obtain through the notions defined earlier.

Proposition 1 ([69, Proposition 5.3.4]). The following are equivalent:

1. Bφ holds at any state, or equivalently, there is a justification for φ

(there exists U ∈ τ such that U ⊆ JφK and for all e ∈ E∼, U ∩ e ̸= ∅);
2. φ is supported by all “sufficiently strong” evidence

(for all F ∈ Ffin there exists F ′ ∈ Ffin such that F ⊆ F ′ and
⋂
F ′ ⊆ JφK);

3. Every piece of evidence can be strengthened to some evidence supporting φ

(for all e ∈ E∼ there exists e′ ∈ E∼ such that e′ ⊆ e ∩ JφK);

4. Every argument can be strengthened to an argument for φ
(for all U ∈ τ \ {∅} there exists U ′ ∈ τ \ {∅} such that U ′ ⊆ U ∩ JφK);
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5. JφK includes some dense open set
(there exists U ∈ τ such that U ⊆ JφK and Cl(U) = X);

6. Int(JφK) is dense in τ
(Cl(Int(JφK)) = X);

7. [∀]♢
∼
□
∼
φ holds at any state.

Point (1) is the basic definition for belief, and it makes use of the concept of justifi-
cation. The fact that justifications are open encode the fact that they are based on the
available evidence, and the density condition encodes the fact that beliefs must be coher-
ent with all the available evidence — these properties appear explicitly in (5). Thus, what
we defined is a notion of evidentially justified belief. Justifications were in turn defined
using the more primitive notions of bodies of evidence, combined evidence and arguments.
(2), (3) and (4) show that there are equivalent definitions of belief that make use only of
these primitives. (6) is interesting from a topological point of view because it makes use
of the customary closure and interior operators. (7) shows that B is definable in terms of

[∀] and □
∼

. A similar proposition obtains for knowledge as well [69, p. 69, 9, Proposition
4].

Proposition 2 ([69, Proposition 5.5.1]). The following are equivalent:

1. There is a factive justification for φ at x

(there exists U ∈ τ such that U ⊆ JφK, x ∈ U , and for all e ∈ E∼, U ∩ e ̸= ∅);
2. Kφ holds at x.

(there exists U ∈ τ such that U ⊆ JφK);

3. Int(JφK) contains x and is dense in τ ;

4. Bφ ∧ □
∼
φ holds at x.

As has become evident from the above, this is a notion of knowledge as correctly
justified belief or belief based on true justification. It is, however, not just ‘justified true
belief’, as that would fall prey to Gettier counterexamples [35]: justified true belief is
too easily lost, and consistent with having wrong justifications for a true conclusion [69,
p. 49]. The knowledge defined here (captured by the modal operator K) is also not
absolutely certain (like that captured by modal operator [∀]) — it is amenable to revision,
or defeasible. In terms of strength, it is stronger than the knowledge characterized by the
“no false lemma” of Clark [25], since our concept of justification requires not only the use
of no falsehood, but also consistency with all available (combined) evidence [9, p. 25], and
weaker than that of the defeasibility theory of knowledge [58, 57, 55, 56]. For an ample
discussion of both of these assessments, we refer the reader to [9, pp. 25–29]

So far, we have presented the evidence-based belief- and knowledge-forming process
as somewhat of a static process, where all the information that the agent has is fixed
and readily-available. But, of course, it would be more realistic if the model had a way
to account for changes in information, such as the agent learning a fact with absolute
certainty (what we will call truthful public announcements) or gaining a new piece of
evidence (evidence addition). [69] presents the topological versions of these evidence
dynamics initially formalized by [84] as model transformers.

Formally, we can think of model transformers as operations on models, so we shall say
‘model M′ is the result of applying operation f to model M’. For what follows, let us fix
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a topo-e model M = ⟨X, E , J·K⟩. We present truthful public announcements and evidence
addition here, and later on, when defining evidence diffusion models, we will define model
transformers that are more closely related to our own modelling setting. Topologically,
modelling the effect of a truthful public announcement with φ amounts to moving to the
φ-consistent subspace of the original space.

Definition 15 (Truthful Public Announcement). The result of a truthful public announce-
ment of φ in M is the model M!φ = ⟨X !φ, E !φ, J·K!φ⟩, where:

• X !φ = JφK;

• E !φ = {e ∩ JφK | e ∈ E with e ∩ JφK ̸= ∅};
• JpK!φ = JpK ∩ JφK for every p ∈ P.

Evidence addition is defined in the obvious way: by letting all other objects in the
model be the same, and just adding the newly acquired piece of evidence to the basic
evidence set.

Definition 16 (Evidence Addition). The result of applying evidence addition with evi-
dence e ⊆ X to M is the model M+e = ⟨X, E+e, J·K⟩, where, E+e = E ∪ {e}.

As one might expect, the effect of a truthful public announcement with φ on a model
is that that sentence becomes true at all possible worlds in that model (given that we have
eliminated all φ-inconsistent worlds). Of course, then, it becomes known (both fallibly
and defeasibly) and believed by all agents — in fact it becomes common knowledge. As
for evidence addition, it is difficult to say in general what effects it will have on the agents’
knowledge. Adding a piece of evidence might make an agent acquire more knowledge, or it
might make the agent lose knowledge. We shall explore this later on in this chapter. Now
that we have defined informational dynamics for topo-e models as well, let us consider an
example model in this setting, for clarity’s sake.

Example 1. Our agent, Alice, a pest-management entomologist, has been hired by a large
houseplant producer to assess and resolve a pest infestation on their Monstera Deliciosa
farm. The producer is scared about some kind of insect that they saw. She knows with
absolute certainty that the only2 insects that are seen on or around Monsteras are: spider
mites, mealybugs, scale insects, thrips, soil mites and springtails. In reality, and quite
unfortunately, thrips are infesting the Monsteras. After a day of looking at the plants
on the farm and at the insects that infest them, she has gathered the following evidence:
there is damage to the leaves, the insect is dark in color. On the second day, after bringing
a loop to more closely see the insect, she gathers the evidence that the insect is thin as
well.

Formally, we model the situation on the first day using M = ⟨X, E , J·K⟩, where X =
{Thr(ips), Spr(ingtails), Sca(le), Spi(der mites), Mea(lybugs), Soi(l mites)}. Let us use
the propositional letters l, d, t to mean ‘there is damage to the leaves’, ‘the insect is dark
in color’, and ‘the insect is thin’ respectively; and for convenience, let us also designate
thr, spr,mea, spi, sca, soi as propositional atoms, each standing for one of the insects. We
set JlK = {Thr, Spi, Mea, Sca} (green in 5), JdK = {Thr, Spi, Sca} (blue in 5), JtK = {Thr,
Spr} (red in 5) and the truth sets of the other propositions that were mentioned are

2There might be more insects that thrive around Monsteras that I do not know about, but for the
sake of this example, let us say that these are the only ones.
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3.3 Partitional Models as Multi-Agent Topo-e Models

assigned in the obvious way. Of course, the set of basic pieces of evidence is E = {JlK, JdK}.
The model on the second day will be M+{Thr, Spr} We can represent the two models and
the change between them in a diagram such as the one below (see Figure 5). Above, we
said that the infestation is actually due to thrips, so we are fixing the usually indexical
notion of actuality to the world Thr, which we mark by making the node have a double
outline.

Spi Sca

Thr Spr

Soi

Mea

M

+{Thr, Spr}

Spi Sca

Thr Spr

Soi

Mea

M+{Thr, Spr}

Figure 5: Single-agent Topo-e Model and Evidence Addition

Let us illustrate some of the concepts introduced by looking at the second model. In
this model, we have that Ed, Et and El are true, since JdK, JtK, JlK ∈ E+{Thr,Spr} . By virtue

of the fact that E∼+{Thr,Spr} is the closure of E+{Thr,Spr} under finite unions, we also have

JdK∩ JtK = JthrK ∈ E∼+{Thr,Spr}, so we obtain E
∼
thr, whereas we do not have Ethr — there

is no direct observation pointing to thrips. The same applies to the modalities □ and □
∼

,
as all evidence sets mentioned thus far contain the actual world. Notice now that the set
{Thr} is open in the topology of evidence τ+{Thr,Spr} = {X, JdK, JtK, JlK, JthrK, J¬soiK, ∅}
obtained by closing E∼+{Thr,Spr} under arbitrary unions. Furthermore, it is dense by virtue
of the fact that it has non-empty intersection with all other non-empty open sets. So,
{Thr} is, and therefore contains, a dense open set, soKthr holds at Thr — Alice defeasibly
knows that the infestation she was called for is a thrips infestation.

Now that the single-agent setting is defined and exemplified, we want to aim our
attention towards the principles that guide the interactions between the knowledge and
beliefs of multiple agents, and so we move on to defining the multi-agent version of topo-e
models.

3.3 Partitional Models as Multi-Agent Topo-e Models

A natural next step for any single-agent setting in epistemic logic is to extend it to be
able to a multi-agent one. As discussed in [9, 1, 33], in the case of topological evidence
models, the extension is neither immediate, nor obvious. In this section, based closely on
[33], we present a multi-agent extension to topo-e models, as well as the conceptual issues
that motivate some of the design choices of this setting. We might think a simple way
to define the multi-agent setting would be to specify a set of basic pieces of evidence for
each agent, as in M = ⟨X, {Ei}i∈Ag, V ⟩ where Ag is the set of agents. This would give rise
to natural agent-particular definitions for knowledge and belief in terms of openness and
density in the topologies generated from the appropriate basic evidence sets. For example,
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we might propose a satisfaction clause for the belief operator for agent i as: M, x ⊨ Biφ
if and only if JφK has a subset that is open and dense in τi, the topology generated by Ei.

However, as [33] points out, this approach has some issues. Firstly, we are making the
undesirable assumption that all agents have the same ‘hard’ information, because they
all consider the same set of worlds possible. Note that this is particularly visible in the
equivalence between the density definition for knowledge — φ is known if JφK includes some

dense open set containing the actual world — and the formula [∀]♢
∼

i□
∼

iP (for any i ∈ Ag).
In particular, the outermost operator is the global modality, which makes no reference
to any agent. Secondly, the natural semantics borne out of these models validates some
interaction principles that are undesirable. For example, for any two agents i, j we have
that ⟨Ki⟩Kiφ → Kj⟨Ki⟩Kiφ is valid. In words, this means that if an agent considers it
epistemically possible that they know φ, then any agent knows this. Once again, this is
an undesirable principle.

The principal cause of these problems seems to be that we did not adopt fully local
notions of knowledge and belief. In order to have true locality, we must give up the
assumption that all agents possess the same hard information. To do so, we have to
change the type of models we work with. The framework presented in this section is the
one originally introduced in [33].

Firstly, the set X now represents the set of worlds that any agent considers possible.
Secondly, a particular agent’s ‘horizon’ of epistemic possibility is no longer the whole set
of possible worlds X, but is encoded by a partition of X: the worlds an agent considers
possible at a world x will be those in the equivalence class of x. We formally define
partitions and introduce some notation that will be useful in later sections.

Definition 17 (Partition, Equivalence Class and Relation). A family of sets Π ⊆ ℘(X) \
{∅} is a partition of X if and only if it covers X (

⋃
π∈Π π = X) and its elements are

pairwise disjoint (for any π, π′ ∈ Π, π ̸= π′ entails π ∩ π′ = ∅). We call π ∈ Π an
equivalence class, and for any x ∈ X, we denote the unique π ∈ Π such that x ∈ π by
Π(x) and call it the equivalence class of x. The unique relation ∼ ⊆ X ×X such that for
any x, y ∈ X, x ∼ y if and only if x, y ∈ π for some π ∈ Π is an equivalence relation on
X. We call it the equivalence relation induced by Π and we call Π the partition induced
by ∼.

There are many ways to partition a set. Some partitions contain more equivalence
classes than others, and beyond the number of equivalence classes, sometimes every equiv-
alence class in a partition is a subset of some equivalence class of another. It turns out
that, because of these facts among others, a natural order arises between the partitions
of a set. In fact, the partitions of a set form a lattice structure, for which we direct the
interested reader to [16]. For our purposes, it will be useful to introduce a few of these
notions that aid in comparing partitions.

Definition 18 (Partition Order, Coarsest Common Refinement). Let Π1,Π2 be partitions
of a set X. Then we say Π2 is finer than Π1 (and Π1 coarser than Π2) if and only if for
every π2 ∈ Π2 there exists π1 ∈ Π1 such that π2 ⊆ π1. For partitions Π1, ...,Πn of X, we
define the coarsest common refinement

∧n
i=1Πi in Equation 1.

n∧
i=1

Πi = {
n⋂

i=1

πi | πi ∈ Πi and
n⋂

i=1

πi ̸= ∅}. (1)
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3.3 Partitional Models as Multi-Agent Topo-e Models

These notions have natural epistemic interpretations. The finer a partition, i.e. the
more equivalence classes it has, the more an agent can distinguish between possible worlds
and therefore the more hard information they have. The coarsest common refinement is
going to be very useful in the next section, for it can encode the operation whereby agents
share all their hard information and combine it — as if they openly shared all of their
infallible knowledge.

Wrapping up the discussion of how we change topo-e models to obtain partitional
models, each agent gets their own set of basic pieces of evidence, which, much like the
single-agent basic evidence sets, require that hard information is evidence too. In the
context of these partitions, though, we not only require that X ∈ Ei, but also that
Πi ⊆ Ei. The formal definition of a partitional model is below.

Definition 19 (Partitional Models). Given a fixed, finite and non-empty set of agents
Ag, M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, J·K⟩ is a partitional model, where X is a nonempty set
of possible worlds, Ei ⊆ ℘(X) is a set of basic pieces of evidence for agent i, Πi is agent
i’s partition, and J·K is the valuation function. For every i ∈ Ag, we require X ∈ Ei and
Πi ⊆ Ei.

Note that after this point, we continue to use finite and non-empty sets of agents, even
if we do not explicitly mention this. Furthermore, as we ‘localized’ hard information and
evidence for each agent, it is only natural that we will require a local notion of density,
which we introduce below.

Definition 20 (i-local Density). Given a partitional model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, J·K⟩,
we let τi be the topology generated from Ei. For U ⊆ X we say it is i-locally dense in
π ∈ Πi if and only if U is dense in ⟨π, τi

∣∣
π
⟩. We call U i-locally dense if and only if it is

i-locally dense for every π in Πi.

We now define the language of multi-agent logic for evidence, belief, and knowledge.
As one can see, it is basically the same language as the single-agent Ls, but each modality
is relativized to an agent. The modality [Πi] ought to capture a notion of infallible
knowledge, just like [∀] did in the single-agent setting.

Definition 21 (Language). Let Ag be a set of agents and let P be a countable set of propo-
sitional atoms. The language Lm of multi-agent logic for evidence, belief, and knowledge
is defined by the recursive rule below. We take p ∈ P to be a propositional atom.

φ := p | ¬φ | (φ ∧ φ) | Eiφ | E∼iφ | □iφ | □∼iφ | [Πi]φ | Kiφ | Biφ

The reading of these operators is the same as for the single-agent topological evi-
dence models, for which we refer the reader to Definition 9, except we are now indexing
the modalities by the agents. For example Eiφ is read as ‘agent i has a basic piece of
evidence for φ’. The reading of [Πi]φ is ‘agent i knows that φ infallibly’. As for the
semantics, for the sake of brevity, we will resort to giving the satisfaction clauses for
each operator instead of providing the truth sets as well, except for one illustrative case.
The truth sets are easily derived from the definitions provided. For a partitional model
M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, J·K⟩ and a world x ∈ X,

• M, x ⊨ p iff x ∈ JpK;

• M, x ⊨ ¬φ iff M, x ̸⊨ φ;
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3.3 Partitional Models as Multi-Agent Topo-e Models

• M, x ⊨ φ ∧ ψ iff M, x ⊨ φ and M, x ⊨ ψ;

• M, x ⊨ Eiφ iff there exists e ∈ Ei such that e ∩ Πi(x) ⊆ JφK;

• M, x ⊨ E
∼
iφ iff there exists e ∈ E∼i such that e ∩ Πi(x) ⊆ JφK;

• M, x ⊨ □iφ iff there exists e ∈ Ei such that e ∩ Πi(x) ⊆ JφK and x ∈ e;

• M, x ⊨ □
∼

iφ iff there exists e ∈ E∼i such that e ∩ Πi(x) ⊆ JφK and x ∈ e;

• M, x ⊨ [Πi]φ iff Πi(x) ⊆ JφK;

• M, x ⊨ Biφ iff there exists U ⊆ JφK such that U is open in τi and i-locally dense in
Πi(x);

• M, x ⊨ Kiφ iff there exists U ⊆ JφK such that U is open in τi and i-locally dense in
Πi(x) and x ∈ U .

Just like before, the clauses for the modalities Ei, E
∼
i, and [Πi] make no reference to the

world of evaluation, except for Πi(x) to implement the locality to the relevant partition.
In the single-agent setting, this resulted in these notions being ‘global’. But since we have
localized our definitions with respect to the equivalence classes of partitions, in effect,
from the point of view of a world x within equivalence class π, the new ‘global’ is π itself,
not X. The truth sets for these modalities will reflect this: if a world x in an equivalence
class satisfies the clause for, say, Eiφ, then all the worlds in Πi(x) will satisfy it too. As
an example truth set, for Ei, we have

JEiφK =
⋃
π∈Πi

π where π is such that there exists e ∈ Ei such that e ∩ π ⊆ JφK.

At the beginning of this section, we highlighted two problems with the naive approach
to multi-agent topo-e models: the conceptual issue of hard information, and the unwanted
validity ⟨Ki⟩Kiφ → Kj⟨Ki⟩Kiφ. It is quite obvious that the first issue is solved by
partitional models — the fact that each agent has their own infallible information is now
encoded in the models themselves. As for the second issue, we point to the result in [33,
Ch. 3], showing that the logic of n-agent partitional models is the fusion logic combining
S4.2Ki for each i ∈ {1, ..., n}. In other words, the logic of the knowledge-only fragment of
these models is exactly the sum of n many single-agent knowledge-only logics. From this,
it is clear that no strange interaction principles such as the one above will be present in
our semantics.

Example 2. As an example model in this framework, let us enrich the story from Example
1. Bob is the owner of the farm. He doesn’t know much about Monsteras, let alone about
pests. But, he cares about the profitability of his farm, so when he heard from his
gardeners that there might be an infestation, he took matters into his own hands and
went to check the plants out. He is sure that he saw no flying insects on the farm. He is
not absolutely convinced, but he thinks that there was a relatively big, elongated insect
on one plant — he mistook a bit of dirt for an insect. After some searching the internet,
he (mistakenly) thinks that the insect should be one of eight: the six from before, and
additionally caterpillars or fruit flies. He also trusts his eyes, and so he takes it that he
gathered the following evidence: the insect is dark in color and it is large and elongated
(which he takes to mean that it should be either an agglomeration of scale, or a caterpillar).
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3.3 Partitional Models as Multi-Agent Topo-e Models

Formally, we model this using M = ⟨X, {Ea, Eb}, {Πa,Πb}, J·K⟩. X is now the set
of worlds that any agent considers possible, so we have to add fruit flies and caterpil-
lars: X = {Thr(ips), Spr(ingtails), Sca(le), Spi(der mites), Mea(lybugs), Soi(l mites),
(Fruit) Fly, Cat(erpillar)}. As before, we use propositional letters l, d, t, e to mean
‘there is damage to the leaves’, ‘the insect is dark in color’, ‘the insect is thin’, and
‘the insect appears elongated’ respectively; and for convenience, let us also designate
thr, spr,mea, spi, sca, soi, f ly, cat as propositional atoms, each standing for one of the
insects. We set JlK = {Thr, Spi, Mea, Sca} (green), JdK = {Thr, Spi, Sca, Cat} (blue),
JtK = {Thr, Spr} (red), JeK = {Sca, Cat} (purple) and the truth sets of the other propo-
sitions that were mentioned in the obvious way.

Now, Alice’s partition is Πa = {π1, π2}, with π1 = X\π2 and π2 = {Fly, Cat}, encoding
what in Example 1 was implicit in the model’s set of worlds: she knows with certainty
that fruit flies and caterpillars do not affect monsteras. As for Bob’s partition, we have
Πb = {π3, π4} with π3 = X \ π4 and π4 = {Fly}, for he is certain that the insect does not
fly. As for their evidence, we now have Ea = {X, π1, π2, l, d, t} and Eb = {X, π3, π4, d, e}.
The diagram for the model3 is shown below, see Figure 6.

Spi Sca

Thr Spr

Soi

Mea

Cat

Fly

π1 π2

Ma

Spi Sca

Thr Spr

Soi

Mea

Cat

Fly

π3

π4

Mb

Figure 6: Multi-agent topo-e model

Now let us point out some facts about this model that illustrate the concepts intro-
duced in this section. From here on, when we say φ is true, we mean M, thr ⊨ φ. Firstly,
notice that we have Ea(thr ∨ spr ∨ mea ∨ spi ∨ sca ∨ soi), whereas this is not true for
Bob. This comes from the condition that Πi ⊆ Ei for every i ∈ Ag: more specifically, from
π1 ∈ Ea. Further, we have that Ea(thr∨ spi∨ sca) is true, but Eb(thr∨ spi∨ sca) is false.
This is because we require the existence of e ∈ Eb such that e ∩ π3 ⊆ Jthr ∨ spi ∨ scaK,
and there is no such e for Bob. What explains this difference between the two agents is
the difference in their partitions: π1 ∩ JdK = {Thr, Spi, Sca}, whereas π3 ∩ JdK = JdK.
For what Alice knows and believes, we point out that ⟨X, τa

∣∣
π1
⟩ is exactly the topological

space of the model in Example 1, so many of her beliefs and knowledge will be the same
as in that model, except that she now has beliefs and knowledge about Bob’s beliefs and
knowledge, and beliefs and knowledge that include the new possibilities fly and cat. Bob,
on the other hand, has a partition with less hard information at the actual world, and a
piece of evidence that is false, so his strongest piece of knowledge is thr ∨ spi∨ sca∨ cat.
On the other hand, his strongest, i.e. most restrictive in terms of the number of states he
believes the real world could be, belief is Bb(sca ∨ cat) — a false belief. This is because
Jsca ∨ catK is dense in ⟨X, τb

∣∣
π3
⟩.

Now note that Alice knows that Bob believes sca∨cat. This is because JBb(sca∨cat)K =
π3 and for KaBb(sca ∨ cat) we require U ⊆ π3 that is open and locally dense in π1:

3We split M in Ma = ⟨X, Ea,Πa, J·K⟩ and Mb = ⟨X, Eb,Πb, J·K⟩ for clarity.
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{thr, spi, sca} ∈ τa is just such a set. Bob, on the other hand, neither knows nor believes
that Alice knows thr. He doesn’t even believe that she believes it! This is because
JBathrK = π1, so for either BbBathr or KbBathr we would need U ⊆ π1 which is open
and b-locally dense in π3 and there is no such set. Actually, because all of Bob’s pieces
of evidence contain the world cat, which is outside π1, Alice’s beliefs and knowledge are
absolutely opaque to Bob, for he doesn’t have an open that is a subset of π1. So we
can see that now our setting contains not only the means to reason about evidence-based
knowledge and belief, but also about what agents know or believe about what other agents
know or believe.

A keen reader might have already wondered — what if Alice, the expert, shares her
evidence with Bob? And what if Bob told Alice about his mistaken observation when
she got on the farm, and the latter took it for granted? If Bob had all the evidence Alice
possesses, then he would know thr ∨ sca, which is certainly an improvement, since he
reduced the possible suspect-pests from four to two. If Alice had the evidence Jsca∨ catK
in her set, JthrK would no longer be dense, and Alice would no longer know thr. She
would not even believe it! This illustrates the fact that communication between agents
is an important part of doxastic-epistemic dynamics, which has the potential to both aid
and impair agents’ efforts to find the truth. This makes it an especially fascinating avenue
to explore in the context of this thesis.

Some work in the classic paradigm of Dynamic Epistemic Logic has been done in
this direction. For example, in [69], as well as in the previous section of this thesis,
topological versions of the model transformers from [84] are presented. These formalize
notions like public announcements, evidence addition, and others, but only for the single-
agent case. Apart from these operators in the classical dynamic paradigm, we will be
interested in studying a different kind of communication protocol — diffusion. Diffusion
via communication is generally defined as the passive, sequential process by means of
which information spreads across a network, as long as some conditions hold. For the
purposes of this thesis, this type of communication protocol is interesting because it
enables us to study the ‘long-term’ effects of social influence on beliefs and knowledge, as
well as the effects of network structure in scientific communities.

3.4 Threshold Models for Diffusion

The dynamics of diffusion under threshold-limited influence have received a lot of
scientific attention, gaining early traction through [41, 74, 73], and continuing with [29, 39,
53, 61, 64]. There is also a rich body of literature within the logic community that studies
precisely this kind of effect [21, 22, 24, 23, 60, 72, 75, 91]. In this section, closely based
on [12], we present threshold models, which are used to study the spread of behaviors,
opinions, fashions etc. across a network of agents.

The dissemination of information is formalized via a rule that mimics the effects of
social pressure: an agent will adopt, say, a behavior, when the proportion of agents in
their social network who have adopted that behavior to the total number of agents in their
network is over some threshold. [12] presents a logical setting to reason about threshold-
limited influence and its dynamics. We have adapted the notation in that paper to be
closer to that used in this thesis. The first notion we introduce is the notion of (social)
network.

Definition 22 (Network). A network is a pair ⟨Ag,N⟩, where Ag is a non-empty finite
set of agents and N : Ag 7→ ℘(Ag) is a function such that for every i, j ∈ Ag we have:
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i ̸∈ N (i) (irreflexivity); j ∈ N (i) if and only if i ∈ N (j) (symmetry); for every i ̸= j there
exist k0, ..., kn agents such that k0 = i, kn = j and for every ℓ ∈ {1, ..., n}, kℓ ∈ N (kℓ−1)
(connectedness).

As is visible, there are some pre-imposed constraints on the structure of the network.
These are supposed to encode a notion of symmetric contact, or ‘friendship’. The irreflex-
ivity requirement is there to ensure that we are not counting any person as their own
friend. Symmetry is there to encode the bilateral nature of friendship. Connectedness is
enforced to ensure that there are no junctions or isolated agents in the network. This is
because we want to study one network at a time, and not multiple.

We will now introduce the simplest kind of models to study threshold-limited influence.
These encode one behavior that an agent in the network may or may not have, which
we take to be extensional. That is to say that the adopted behavior, denoted by B, is
represented by the set of agents that have adopted it. Furthermore, the adoption threshold
is uniform in these models.

Definition 23 (Threshold Model). A threshold model is a tuple M = ⟨Ag,N , B, θ⟩, where
B ⊆ Ag is a behavior and θ ∈ [0, 1] is a uniform adoption threshold.

Threshold models consist of a network, together with a behavior and a uniform adop-
tion threshold. Now that we have defined these models, in order to study threshold-limited
influence, a dynamic process, we must define an update rule that transforms one model
into another based on the network, behavior, and threshold, whilst taking into account
our target mechanism. The rule defined below is the way to do this.

Definition 24 (Threshold Model Update). Let M = ⟨Ag,N , B, θ⟩ be a threshold model.
Then the model M′ = ⟨Ag,N , B′, θ⟩ is called its update, where

B′ = B ∪ {i ∈ Ag | |N (i) ∩B|
|N (i)|

≥ θ}

Observe that the new set B′ of adopters contains the old set (so that B ⊆ B′) and
those agents for whom the proportion of adopters in their network (N (i)∩B) to all their
neighbors (N (i)) is at least as large as the threshold (θ). This is the standard definition
of adoption rule in the literature [12, 29].

The above update rule can be applied infinitely often, and what obtains from this is
an infinite sequence of models — we call this a diffusion sequence, and give the formal
definition below. Effectively, this allows us to have a ‘history’ of the spread of the behavior
we are investigating.

Definition 25 (Diffusion Sequence). Let M = ⟨Ag,N , B, θ⟩ be a threshold model. The tu-
ple SM = ⟨M0,M1, ...⟩ is a diffusion sequence, where for every n ∈ N, Mn = ⟨Ag,N , Bn, θ⟩
such that Bn is given by: B0 = B and Bn+1 = B′

n.

Even though these sequences are infinite by definition, a neat property of our definition
of threshold model update is the fact that a fixed point is always reached. In other words,
for any diffusion sequence, there exists a certain point after which no more changes occur.

Proposition 3. Let SM be a diffusion sequence. For some n ∈ N < |Ag|, we reach a fixed
point such that Mn = Mn+1.
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The interested reader can consult a proof of this in [12, Proposition 2.1]. We will prove
a similar proposition for our new system in the next section in more detail, see Proposition
12. Now we will define the language used to describe the situation in a threshold model
at a given point.

Definition 26 (Language). Let Ag be a finite set and let atoms be given by Φ = {Nij | i, j ∈
Ag} ∪ {βi | i ∈ Ag}. The language L[] is given by the following recursive rule:

φ := Nij | βi | ¬φ | φ ∧ φ | [adopt]φ

This language has a static component, consisting of all sentences that do not involve
the modality [adopt], and a dynamic component, consisting of those sentences that do
involve the modality. The atom βi encodes that an agent has adopted in the model, and
the atom Nij encodes that agent i and j are connected. The dynamic modality [adopt]
encodes the sentences that will be true after the next update. The next definition provides
the truth conditions for these linguistic objects.

Definition 27 (Truth Clauses for L[]). Given a model M = ⟨Ag,N , B, θ⟩, Nij, βi ∈ Φ
and φ, ψ ∈ L[]:

• M ⊨ βi iff i ∈ B;

• M ⊨ Nij iff j ∈ N (i);

• M ⊨ ¬φ iff M ̸⊨ φ;

• M ⊨ φ ∧ ψ iff M ⊨ φ and M ⊨ ψ;

• M ⊨ [adopt]φ iff M′ ⊨ φ, where M′ is the updated threshold model (Definition 24).

It is not a difficult observation to make that threshold models pre-encode the next
rounds, in the sense that all the information required to compute the updates is already
in the model. This is reflected in our language as well, in the sense that we can construct
sentences which, in some sense, ‘predict’ what is going to happen at the next rounds. We
therefore define the following abbreviations, for which we credit [12].

Abbreviation. The abbreviation [adopt]nφ, defined recursively as

[adopt]0φ := φ

[adopt]n+1φ := [adopt][adopt]nφ

Abbreviation.

βN (i)≥θ :=
∨

{G⊆F⊆Ag | |G|
|F |≥θ}

(∧
j∈F

Nij ∧
∧
j ̸∈F

¬Nij ∧
∧
j∈G

βj

)

The first abbreviation introduces a neater way to write sentences that talk about what
happens at later rounds, so that instead of writing the [adopt] modality many times, we
can just write the number of the future round we are talking about as a superscript to
the adopt modality. The second abbreviation encodes the fact that agent i will adopt at
the next round. Note that the set of agents is finite, so we can read

∨
as an existential

quantifier and
∧

as a universal quantifier. Then, βN (i)≥θ is true if and only if there exist
two sets: F such that every agent in F is connected to i and none of the agents outside
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F are — so exactly i’s network — and G, a subset of F such that the proportion of agents
in the group to all of i’s friends is over the threshold and all the agents in this group have
adopted.

The reason why we are interested in this kind of diffusion dynamic is because of
the ease with which cascades can be studied in this context. A cascade is like a ‘chain
reaction’ in the diffusion sequence: an agent adopting causes another agent to adopt,
which causes another agent to adopt, and so on. A cascade is called full (or complete [12])
when the behavior is adopted by all agents. Note here that, even though we previously
proved that every diffusion sequence reaches a fixed point, this does not mean that every
diffusion sequence reaches a full cascade. This is, in fact, not the case in this setting, as
the counterexample below shows. From here on, if we use the terms ‘cascade’ and ‘full
cascade’ interchangeably, and always mean full cascade.

Example 3. Let us say that each node represents an agent, that the connecting lines
represent the network, and that the agents in red are the ones that adopted. Let us also
say that the threshold is θ = 3

4
. Agent 3 will never adopt, because exactly half of his

network has adopted, and exactly half of his network has not adopted. Thus, a cascade
is never reached.

3

4

5

1

2

Figure 7: Threshold model reached fixed point, but not cascade.

Our language is already expressive enough to capture whether or not a model will
eventually form a full cascade. This is achieved via the abbreviation below, which, says
that in |Ag|−1 updates, all agents have adopted. We make a claim about the (|Ag|−1)th

update because we know, via Proposition 3 that the update sequence has certainly reached
a fixed point at that point.

Abbreviation.
cascade := [adopt]|Ag|−1

∧
i∈Ag

βi

In what follows, we look at the necessary and sufficient conditions for cascades to form.
For some intuition, it will be worth looking at the example above and considering what
prevented the formation of a full cascade. Literally speaking, we have already done this
in the explanation above: agent 3 will never adopt. However, we can also put things in
a different light: the group of agents {1, 2, 3} as a unit will never adopt, because they
form a group that, together, is quite resilient to adopting. And why are they resilient?
Because every agent in that group has enough non-adopting neighbors to never adopt the
behavior. This “enough” is a notion of density that we can capture formally. We introduce
the concept of a cluster of density d in the network now, after [12, 29].

Definition 28 (Cluster of Density d). Given a network ⟨Ag,N⟩ and a subset of the set
of agents C ⊆ Ag, we say it is a cluster of density d if and only if for all i ∈ C,

|N (i) ∩ C|
|N (i)|

≥ d
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The subgroup {1, 2, 3} of non-adopting agents is a cluster of density 0.5. A classic
result in the study of threshold limited influence [64, 29, Ch. 19.3] states that this is
precisely the condition that prevents cascades from forming, and more precisely that the
cluster is of density greater than 1− θ = 1− 3

4
= 1

4
= 0.25 < 0.5. We formulate the result

for threshold models here, as in [12].

Theorem 1 (The Cluster Theorem). Given a threshold model M with threshold θ ̸= 0
and a set B ⊂ Ag who have adopted, all agents will eventually adopt if and only if there
exists no cluster of density greater than 1− θ in Ag \B.

As before, it turns out that we can express that a group C is a cluster of density d in
our language. The proof of this Proposition is given in [12, Proposition 2.3].

Proposition 4. A group C is a cluster of density d in ⟨Ag,N⟩ iff M = ⟨Ag,N , B, θ⟩
satisfies ∧

i∈C

∨
{G⊆F⊆Ag | |G∩C|

|F | ≥d}

(∧
j∈F

Nij ∧
∧
j ̸∈F

¬Nij

)

And further, we can use the fact that our set of agents is finite, and use disjunction
as a kind of existential quantifier to express the existence of a cluster of a certain density.
Below, we showcase a sentence presented by [12] that encodes the existence of a cluster
of density d of agents that have not adopted the behavior.

Abbreviation.

∃C≥d¬β :=
∨

C⊆Ag

∧
i∈C

∨
{G⊆F⊆Ag | |G∩C|

|F | ≥d}

(∧
j∈F

Nij ∧
∧
j ̸∈F

¬Nij ∧
∧
j∈G

¬βj

)

With this, as it has become quite clear, we can express the cluster theorem within our
language as well. We follow [12] in the formulation. For M = ⟨Ag,N , B, θ⟩ with θ ̸= 0:

M ⊨ cascade↔ ¬∃C>1−θ¬β

Threshold models are a great tool to study the effects of network structure on social
influence. Their simplicity also makes it easy to implement in other settings as well, which
is exactly what we will proceed to do in the following section. We will study the effects
of social network structure on the diffusion of pieces of evidence in networks where agents
form evidence-based beliefs and knowledge.

3.5 Evidence Diffusion Models

The main phenomenon we would like to investigate in our framework, which combines
Partitional Models with Threshold Models, is the diffusion of pieces of evidence in the
context of a scientific social network. Concretely, we can think of a group of scientists that
have all performed experiments so that each has a specific set of (possibly inconsistent)
pieces of evidence, as well as some scientific contacts which they often talk to or collaborate
with. As time goes on, they might perform more experiments and obtain new pieces of
evidence, either alone, or in collaboration with other scientists. They might also often talk
to their scientific contacts about various pieces of evidence that one or the other has not
heard about, and spread awareness about new results. These are the kinds of phenomena
we would like to model in this section.
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3.5 Evidence Diffusion Models

3.5.1 Semantic Notions

As the reader might expect, the formalization of evidence, evidence-based beliefs and
(defeasible) knowledge will be taken care of by the (multi-agent) topo-e models we have
presented in the previous sections. As is the case in partitional models, any agent has the
ability to reason about the evidence, beliefs, and knowledge of any other agent. However,
we would not want, in the present modelling setting, to unrealistically assume that com-
munication and collaboration also happen in this unfettered way, for this is very rarely
how things happen in reality. For this reason, in our setting, two agents being scientific
contacts of each other boils down to the existence of an avenue to share pieces of evidence
with each other — a scientific network. We also separate scientific collaboration from
scientific communication. We understand the former to be the joined effort of multiple
agents to create new evidence, for instance through experimentation. The latter we un-
derstand to be the sharing and diffusion of certain information or of evidence from agents
who possess it to agents who do not.

We model the spread of evidence across the network as a communication process which
is social, local [81, 44], and threshold-limited [29, 76]. It is social in the sense that you
adopt pieces of evidence not on the basis of some individual rational process, but on
the basis of the evidence others are using. It is local in the sense that you take into
account not what everyone is doing, but precisely what your close contacts are doing.
It is threshold-limited in the sense that a specific proportion of your scientific contacts
will need to possess a piece of evidence for you to adopt it. A keen reader might already
anticipate the way we shall formalize this: an agent i will adopt a piece of evidence e
if out of his network of scientific contacts, N (i), the proportion of agents who have this
piece of evidence in their evidence sets to all the agents in N (i) is over some threshold θ.

Definition 29 (Evidence Diffusion Model). Given a fixed, finite and non-empty set of
agents Ag and a threshold θ ∈ [0, 1] that is fixed for all agents and pieces of evidence,
M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag,N , J·K⟩ is an evidence diffusion model. For every i ∈ Ag, we
require X ̸= ∅, X ∈ Ei, ∅ ̸∈ Ei, and Πi ⊆ Ei. Finally, N : Ag 7→ ℘(Ag) is a neighbor
function, satisfying: irreflexivity (a ̸∈ N (a)), symmetry (a ∈ N (b) implies b ∈ N (a)) and
connectedness (for every i ̸= j there exist k0, ..., kn agents such that k0 = i, kn = j and for
every ℓ ∈ {1, ..., n}, kℓ ∈ N (kℓ−1)).

The first ingredients of our modelling setting are the set of agents and the so-called
diffusion threshold. In this particular setting, we are letting the diffusion threshold be
constant for all agents and all possible pieces of evidence. Against this background,
our Evidence Diffusion models consist of a set of possible worlds, a set of basic pieces
of evidence for each agent, an information partition for each agent, a valuation, and a
neighbor function specifying the social network.

We constrain the network in three significant ways, all conceptually motivated by
the phenomenon we are trying to model. Firstly, we take scientific connections to be
symmetric — if I am open to sharing my evidence with you, then so are you with me.
Secondly, we impose the constraint of connectedness — this eliminates the possibility
of agents that have no connections, which is desirable since our focus is on scientific
networks proper. Finally, we take the network to be irreflexive — this is because we want
the threshold θ to reflect the proportion of genuine scientific connections required for
evidence adoption, and counting oneself as a connection doesn’t make much sense.

Before we move on with the formal presentation of the language and semantics we
will be using, it would be worth discussing the point at which the analogy between our
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3.5 Evidence Diffusion Models

intended interpretation of evidence as ‘experiments’ and real-world experiments breaks
down. In our framework, a piece of evidence is represented as the set of possible worlds
consistent with that evidence. We may put this, equivalently, as the piece of evidence being
represented as the strongest (most restrictive) hypothesis it supports, as propositions can
also be taken as the set of worlds at which they are true. This latter equivalence highlights
a simplifying assumption of our model and an incongruence between the framework and
the way the concept of ‘evidence’ is normally understood [52, 2]. Colloquially, even if
two different experiments e1 and e2 support the exact same hypothesis H, they will not
be understood as equivalent, but as two separate avenues of support for H. Not so in
our framework. Thus, when we say ‘experiment’, we really use this semantic notion
of experiment, and when we say ‘experimental validation’, we really mean ‘experimental
validation of a hypothesis H by any experiment e such that H is the maximally restrictive
hypothesis supported by e’. With this in mind, we go on to define the language of evidence
diffusion.

Definition 30 (Language). Let Ag be a finite set of agents and let P be a countable set
of propositional atoms. Then we define the language of evidence diffusion for individual
knowledge and belief Ld by the following recursive rule, where p ∈ P and i, j ∈ Ag:

φ := p | Nij | ¬φ | φ ∧ φ | Eiφ | [Πi]φ | Kiφ | Biφ

This language is different from that of Lm, the language of multi-agent evidence,
belief, and knowledge in two major ways. Firstly, we have added the set of network atoms
{Nij | i, j ∈ Ag}, which give us the linguistic means to capture network properties in
the language itself. Secondly, we replaced the four evidence modalities from before with
just one evidence modality, E, which, though using the same notation, will be interpreted
differently than in the previous section. We read Nij as ‘j a neighbor of i’ and Eiφ as ‘the
proposition φ is part of i’s basic evidence set’. Note that this latter reading is different
from ‘i has a basic piece of evidence for φ’ — the difference will become clearer after
we provide a semantics for this language. Later on, we will add several new modalities
pertaining to group knowledge and dynamics. We provide satisfaction clauses for the
notions introduced so far.

Definition 31 (Satisfaction). Let M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ be an evidence
diffusion model, x ∈ X be a world, p ∈ P a propositional atom, and i, j ∈ Ag agents. We
define the semantics as follows:

• M, x ⊨ p iff x ∈ JpK;

• M, x ⊨ Nij iff j ∈ N (i);

• M, x ⊨ ¬φ iff M, x ̸⊨ φ;

• M, x ⊨ φ ∧ ψ iff M, x ⊨ φ and M, x ⊨ ψ;

• M, x ⊨ Eiφ iff JφK ∈ Ei;
• M, x ⊨ [Πi]φ iff Πi(x) ⊆ JφK;

• M, x ⊨ Biφ iff there exists U ⊆ JφK such that U is open in τi and i-locally dense in
Πi(x);

• M, x ⊨ Kiφ iff there exists U ⊆ JφK such that U is open in τi and i-locally dense in
Πi(x) and x ∈ U .
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Notably, the modality E requires that φ’s truth set itself be a part of i’s set of basic
evidence. This is very different from the way we interpreted E in the context of partitional
models, which only required the existence of a piece of evidence whose intersection with
the equivalence class of the world of evaluation is a subset of φ. Having this modality
which more precisely picks out evidence sets is desirable for us because it will allow us to
encode relevant properties of diffusion sequences, much like the atom βi does in the case
of threshold models. Moreover, it matches the diffusion sequence’s ‘blindness’ to agents’
partitions in the sense that a piece of evidence may get transmitted, which counts as a
piece of evidence for some proposition φ for an agent, but not for another, like in Example
2.

Since later on in this section we will be proving some properties of the notions intro-
duced above, we define entailment and validity for evidence diffusion models. Note that
we are universally quantifying over thresholds, so that if a proposition is valid, it is valid
for all thresholds.

Definition 32 (Entailment, Validity). For any Γ ⊆ Ld and any φ ∈ Ld we write Γ ⊨ φ if
and only if for any threshold θ, for any evidence diffusion model M for θ, for any world
x ∈ X, if for every γ ∈ Γ, M, x ⊨ γ, then M, x ⊨ φ and say that Γ entails φ. If ∅ ⊨ φ
we write ⊨ φ and call φ valid or a validity. We write M ⊨ φ if for every world x ∈ X,
M, x ⊨ φ.

With the semantic notions pertaining to evidence diffusion models introduced, we can
move on to the discussion of knowledge and evidence dynamics on these models.

3.5.2 Dynamics

It is quite clear that the scientific process is dynamic and continuous. As such, a model
of scientific networks ought to capture at least a part of this dynamicity. We think that
collaboration and communication, which, we remind the reader, are different notions for
us, are two essential epistemic actions that occur within the context of actual scientific
networks. In this subsection, we introduce three model transformers and corresponding
dynamic operators that capture these two processes. We capture collaboration by means
of arbitrary evidence addition, which encodes the discovery of a piece of evidence by
a subgroup of agents. We also formalize two types of communication: the sharing of
hard information, or certain knowledge, and that of soft information, or evidence. Law
establishment is the way we encode the sharing of certainties: it is the operation whereby
all agents come together and combine their infallible knowledge to obtain the ‘laws’ of
their field. Evidence diffusion is how we encode the sharing of evidence: and we take it to
be the process by means of which soft information spreads across the network. We start
by introducing evidence diffusion, which is the main focus of our modelling setting.

We think of evidence-sharing as taking place in ‘diffusion rounds’. At each such round,
the agents accept from their neighbours the basic pieces of evidence that are at or above
the threshold, incorporating this new piece of evidence into their own set of basic pieces of
evidence. We restrict attention to the basic pieces of evidence because, from a modelling
point of view, they much more closely fit the phenomenon at hand. This is because
the combined pieces of evidence and the open sets in the topology of evidence represent
the result of agents’ reasoning with the basic pieces of evidence, and we only want the
‘empirical data’ to be transmitted, so agents on the receiving end can do their own logical
reasoning on the basis of it. This communication procedure is borne out in the update
rule defined below.
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Definition 33 (Evidence Diffusion). The result of applying evidence diffusion to the evi-
dence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ for θ is the evidence diffusion

model M······ = ⟨X, {E ······
i }i∈Ag, {Πi}i∈Ag,N , J·K⟩ for θ, where for any i ∈ Ag,

E ······
i = Ei ∪ {e ∈

⋃
j∈Ag

Ej |
|{j | j ∈ N (i) and e ∈ Ej}|

|{j | j ∈ N (i)}|
≥ θ}.

Note that neither this nor any other opdate changes the threshold for diffusion. As
one might imagine, this model transformer can be applied repeatedly, creating a sequence
of models, where each model is the result of applying evidence diffusion to the previous
one. We call such a sequence a diffusion sequence, and give the definition as well as some
notational conventions regarding these sequences below.

Definition 34 (Diffusion Sequence). Let M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag,N , J·K⟩ be an evi-
dence diffusion model. We define its diffusion sequence to be the tuple SM = ⟨M0,M1, ...⟩

where M0 = M and for any n ∈ N, Mn+1 = M
······
n. When it is convenient and clear within

the context, we will refer to the basic evidence set of agent i in the model Mk for k ∈ N
by Ek

i and similarly by E∼k
i for their combined evidence set and τ ki for their topology of

evidence.

The way we capture the sharing of hard information will have to do with the partitions
which we used to encode each agent’s infallible knowledge. Formally, the result of all the
agents putting together their infallible knowledge will be that they all end up with the
same partition of the set of possible worlds. This partition will be the coarsest common
refinement of all of their partitions — the least refined partition that takes into account
all of the hard information in each agent’s partition. Note that the change to the agents’
basic evidence sets is required to make M

∧
an evidence diffusion model.

Definition 35 (Law Establishment). The result of applying law establishment to M is
the model M

∧
= ⟨X, {E

∧
i }i∈Ag, {Π

∧
i }i∈Ag,N , J·K⟩, where for every i ∈ Ag, Π

∧
i =

∧
j∈Ag Πj

(recall Definition 18) and E
∧
i = Ei ∪ Π

∧
i .

Arbitrary evidence addition is defined in the obvious way: by keeping all the elements
of the model the same, but adding to the basic evidence set of each agent in the desired
subgroup the piece of evidence in question. For us, arbitrary evidence addition will play
the role of formalizing the discovery of new pieces of evidence by direct observation or
experimentation.

Definition 36 (Arbitrary Evidence Addition). The result of applying arbitrary evidence
addition with evidence e ⊆ X for subgroup G ⊆ A to M is the model M+Ge = ⟨X,
{E+Ge

i }i∈Ag, {Πi}i∈Ag,N , J·K⟩, where for every i ∈ Ag we have

E+Ge
i =

{
Ei ∪ {e} if i ∈ G;
Ei otherwise.

.

Having these model transformers, we can naturally extend our language with dynamic
modalities corresponding to these and obtain easy semantic clauses for them.
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Definition 37 (Language). Let Ag be a finite set of agents and let P be a countable
set of propositional atoms. Then we define the dynamic language of evidence diffusion
for individual knowledge and belief L[]

d by the following recursive rule, where p ∈ P and
i, j ∈ Ag:

φ := p | Nij | ¬φ | φ ∧ φ | Eiφ | [Πi]φ | Kiφ | Biφ | [ ······ ]φ | [
∧

]φ | [+Ge]φ

For an evidence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ and a world
x ∈ X, we have the following new semantic clauses, the rest staying the same as before.

• M, x ⊨ [ ······ ]φ if and only if M······ , x ⊨ φ;

• M, x ⊨ [
∧
]φ if and only if M

∧
, x ⊨ φ;

• M, x ⊨ [+Ge]φ if and only if M+Ge, x ⊨ φ.

We now move on to the presentation of the group knowledge modalities.

3.5.3 Group Knowledge Modalities

As the tension between individual and social epistemology is a focus of our thesis, it
is only natural that our formal setting would encode various notions of group knowledge.
By exploring the formal relationships between our definitions of group knowledge and in-
dividual evidence-based knowledge and belief, we tease out possible relationships between
individual and group rationality. By having the linguistic and semantic means to reason
about the structure of the agent network and the diffusion sequence, our setting can place
these relationships in the context of the evidential dynamics within scientific networks.
And by doing so, our results provide insights into how the structure of the agent network
affects various epistemic factors: the robustness of (defeasible) knowledge, truth-tracking
capabilities, speed of evidence diffusion, speed of knowledge-formation etc.

There are multiple possible avenues for defining group knowledge in our setting. We
are mostly interested here in notions of knowledge that capture what the agents would
know if they were to communicate with each other. As it turns out, there are multiple
notions that could fit this description in this framework. One of them, which is the one
introduced in Definition 39, we will call ‘distributed evidence’, and we denote it by the
modal operator DE. The other will be called ‘distributed knowledge’, and indeed it will
correspond to the traditional notion of distributed knowledge [43, 32, 46, 87, 71]. We will
denote it by DK. We augument the language further, by adding the clauses DEφ | DKφ to
our initial definition (to which, recall, we also added the dynamic modalities).

Definition 38 (Language). Let Ag be a finite set of agents and let P be a countable set
of propositional atoms. Then we define the dynamic language of evidence diffusion for
group knowledge L[]

dg by the following recursive rule, where p ∈ P and i, j ∈ Ag:

φ := p | Nij | ¬φ | φ ∧ φ | Eiφ | [Πi]φ | Kiφ | Biφ | [ ······ ]φ | [
∧

]φ | [+Ge]φ | DEφ | DKφ

Definition 39 (Distributed Evidence). M, x ⊨ DEφ if and only if for every i ∈ Ag, there
exists Ui ∈ τi such that:
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1. Cl∨τ∩(
⋂

i∈Ag Ui) =
⋂

i∈Ag Πi(x), where ∨τ∩ =
∨

i∈Ag τi

∣∣∣⋂
i∈Ag Πi(x)

4.

(If the agents communicated all their information, hard and soft, without boundaries,
they would have a justification...)

2. x ∈
⋂

i∈Ag Ui;

(...which is factive...)

3.
⋂

i∈Ag Ui ⊆ JφK;

(... and which entails φ.)

What this notion encodes is the knowledge the agents would come to possess if they
put all of their evidence and infallible knowledge together and reasoned as one agent. It
was formally defined by [1] and it was explored by [33] whether it is the appropriate notion
of distributed knowledge for Partitional Models (which was answered in the negative, and
for which the notion in Definition 40 was provided). In our framework, since we have
actual encodings of inter-agent communication, we shall find that this will coincide with
the knowledge of an agent given certain conditions, which we prove in Proposition 14.

As [69] points out, this notion of knowledge is not monotonic, in the sense that some
proposition φ might be individual knowledge (there is an agent i such that Kiφ holds at
the actual world) but not hold under distributed evidence (the actual world doesn’t make
DEφ true). This should be pretty clear, as we have seen in Example 2 that sometimes,

adding evidence to an agent’s set does not confer them more knowledge, but less.

Definition 40 (Distributed Knowledge). M, x ⊨ DKφ if and only if for every i ∈ Ag,
there exists Ui ∈ τi such that:

1. Ui is Πi(x)-locally dense;

(All agents have justifications...)

2. x ∈
⋂

i∈Ag Ui;

(... which are factive ...)

3.
⋂

i∈Ag Ui ⊆ JφK.

(... and when put together, these justifications entail φ.)

This notion is more akin to the regular understanding of distributed knowledge [43,
32, 46, 87, 71], coinciding with the one on Kripke models in the sense that distributed
knowledge is that which is entailed by what the agents know individually. Despite its
conceptual appeal, as we shall see in the next section, this notion is not robust whatsoever.
That is to say that knowledge is very easily lost under evidence diffusion.

To illustrate how these notions work in concert, we give an example, much like in the
previous sections.

4For the definition of the join topology,
∨

i∈Ag τi, see Definition 8.
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Figure 8: Evidence Diffusion Model and Update

Example 4. We can consider a similar story to the one in Example 2, but with a few
twists. We will let Alice and Bob be in the same position, and have the same pieces of
evidence as before. We are adding one additional agent, Clarice, who is a gardener on
the Monstera farm. Clarice waters the plants every day, and so she, like Alice, noticed
that many leaves look damaged. She also knows with certainty, from an old gardener’s
handbook which we take to be infallible, that caterpillars and fruit flies do not affect
Monsteras. We shall say that all three agents communicate openly the day after Alice’s
arrival on the farm (so after Alice gathered all her evidence).

All of this information is encoded in the model on the top. Note that we set the
threshold to θ = 0.51, so that one agent in your network having a piece of evidence will
be insufficient to receive that piece of evidence. Using the straight arrows, we represent

the network: everyone is connected to everyone else. The model on the bottom, M······ is
the result of applying the evidence diffusion rule to M.

After one round of evidence diffusion, Alice’s evidence set remains the same, because
any evidence she might receive from other agents is either already in her evidence set, or
has too few adopting agents to be adopted. This means that her knowledge (excluding
knowledge about other agents’ knowledge and beliefs) will also remain the same. Clarice
gains the piece of evidence {Thr, Spi, Sca, Cat}, as both Bob and Alice possess it, and
Bob receives the piece of evidence {Thr, Spi, Sca, Mea}, since both Alice and Clarice have
it. This diffusion round is epistemically good for both Bob and Clarice, as they now both
know thr ∨ spi ∨ sca, more than they knew before.

Note that DEthr does not hold at the actual world in either model. To see why, recall
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that every agent is required to have a set in their topology of evidence such that that
set is dense in ∨τ∩ =

∨
i∈Ag τi

∣∣∣⋂
i∈Ag Πi(x)

. Since ∨τ∩ contains the set {Sca}, we see that

it is impossible to select sets from the three agents such that the requirements of DEthr
are met. At the same time, DKthr holds at the actual world in both models, since every
agent has a Πi(x) locally dense set ({Thr, Spr} for Alice, {Thr, Spi, Sca, Cat} for Bob
and Clarice) such that they all contain thr and their intersection is a subset of {Thr}.
This is a happy example in which Distributed Knowledge is not lost after an update, but
as we shall see, this is certainly no rule, but an exception.

In this chapter, we introduced several formal frameworks, closing with the contribution
of this thesis, evidence diffusion models in Section 3.5. This framework provides the means
of expressing and analyzing different notions of group knowledge in the context of a social
network subject to evidence diffusion phenomena. For this reason, it serves as a (toy)
model for scientific networks, which means that we can interpret formal facts about the
model as good indications for the validity of the epistemological concepts introduced in
Chapter 2. We therefore proceed to the next chapter, which consists of this analysis of
formal facts about the system in the light of formal social epistemology.
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4 Epistemic and Evidential Phenomena on Evidence
Diffusion Models

In this chapter we analyse some of the formal properties of evidence diffusion models.
First, we look at properties of agent networks, and introduce several network topologies
that we will pay special attention to. Second, we focus on diffusion as a model transformer,
and assess the stability (or invariance) of the modalities introduced in the previous chapter
under this transformation. Third, we take networks and diffusion together, and we look at
the interplay between the two. Fourth, we focus in on the special networks introduced in
the first section of this chapter and investigate possible measures of speed and reliability
for these. Finally, we compare our results with Zollman’s claims about the same networks.

4.1 Networks

An essential ingredient to our modelling setting are the social networks that the agents
form. Not only are they the base for diffusion phenomena, but since what spreads through
the network are pieces of evidence, and the notions of knowledge and belief we have
defined are evidence-based, networks critically affect the epistemic and doxastic attitudes
that agents hold as well.

Our networks are specified by graphs, which are mathematical objects that have the
double advantage of being intuitive and easy to illustrate, as well as supported by a rich
literature, including literature that focuses on social networks specifically [29, 88, 41,
40, 19, 90, 89]. We now introduce some graph-theoretic notions, including measures on
graphs that we will interpret as measures of connectivity in Section 4.5. In doing this,
we use definitions from [88]. For the following, take a non-empty finite set of agents Ag
and a network N : Ag 7→ ℘(Ag) satisfying: irreflexivity (a ̸∈ N (a)), symmetry (a ∈ N (b)
implies b ∈ N (a)) and connectedness (for every i ̸= j there exist k0, ..., kn agents such
that k0 = i, kn = j and for every ℓ ∈ {1, ..., n}, kℓ ∈ N (kℓ−1)).

Definition 41 (Path). A path between two agents i, j ∈ Ag is a sequence of agents which
starts at i, ends at j, and repeats no vertices. Formally, a path between i and j is a tuple
⟨a1, ..., an⟩, where a1 = i, an = j, for every k, ℓ ∈ {1, ..., n}, ak+1 ∈ N (ak), and if k ̸= ℓ,
then ak ̸= aℓ. The length of a path is the number of edges that appear in it, or equivalently
one less than the number of vertices.

An important measure for social networks is how ‘close’ or ‘far’ two agents are from
each other — we will call this the distance between two agents and define it as the smallest
path connecting them. Another measure we will also look at is the distance between the
two agents that are farthest from each other — we will call this the diameter of the network
and define it as the maximum distance between any two agents.

Definition 42 (Distance, Diameter). Let Pij = {P | P is a path between i and j}. We
denote the distance between two agents i and j by d(i, j) = minP∈Pij

(|P |). The diameter
of the network is specified by maxi∈Ag(maxj∈Ag(d(i, j))).

We might also wonder: given a network and a random agent in that network, how
far can we expect them to be from all other agents? This is another measure of network
inter-connectivity, which we will call average node distance.
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Definition 43 (Average Node Distance). Let Pairs = {(i, j) | i, j ∈ Ag, (j, i) ̸∈ Pairs}.
We define the average node distance of the network as

Avg :=

∑
(i,j)∈Pairs d(i, j)

|Pairs|

Note that the set Pairs is just the set of pairs of agents where order does not matter,
or the combination of the set of agents taken 2 at a time, so that |Pairs| = C2

|Ag| =
|Ag|·(|Ag|−1)

2
.

In principle, as long as the constraints of Definition 29 are met, the network in an
evidence diffusion model could be arranged in any way. This means that the number of
possible networks is very large, even given a relatively small number of agents. For this
reason, and for the sake of comparing our formal setting with earlier work that uses these
[92, 93, 94], we will restrict our attention to specific classes of networks in what follows.

Notation. We will use T to denote the network T : Ag 7→ ℘(Ag) such that for every
i ∈ Ag, T (i) = Ag \ {i}. We will denote by ⋆i the network ⋆i : Ag 7→ ℘(Ag) such that
⋆i(i) = Ag and for every i ̸= j ∈ Ag, ⋆i(j) = {i}. We will denote by ⃝ the network
⃝ : Ag 7→ ℘(Ag) such that for every i, there exist distinct j, k such that j, k ∈ N (i) and
for every ℓ ∈ Ag \{i, j, k}, ℓ ̸∈ N (i). We will denote by Wi the network Wi : Ag 7→ ℘(Ag)
such that for every j, j ∈ N (i) and for every j, there exist distinct k, ℓ ∈ Ag \ {i, j} such
that k, ℓ ∈ N (j) and for every m ∈ Ag \ {i, j, k, ℓ},m ̸∈ N (j).

In Figure 9 we illustrate the networks T , the total network, ⋆i, the star network,
where i is the star, ⃝, the cycle network, and Wi, the wheel network, for a six agent set.
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1
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A wheel for 1

Figure 9: T ,⋆i,⃝,Wi for |Ag| = 6

In the following table we apply the measures defined earlier for the four classes of
networks just introduced.

Proposition 5. For any set of agents with5 |Ag| ≥ 4 and for any network N : Ag 7→
℘(Ag) that satisfies irreflexivity (a ̸∈ N (a)), symmetry (a ∈ N (b) implies b ∈ N (a)) and
connectedness (for every i ̸= j there exist k0, ..., kn agents such that k0 = i, kn = j and for
every ℓ ∈ {1, ..., n}, kℓ ∈ N (kℓ−1)), if N is of the type specified in the first column, then
the measures in the next columns are satisfied.

5We impose this constraint because of the way we defined the wheel network — more specifically
because we imposed that for any non-central j, there exist k ̸= ℓ that are also non-central such that
k, ℓ ∈ N (j).
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4.1 Networks

Type Diameter Average Node Distance
Total 1 1
Star 2 2(|Ag|−1)

|Ag|

Cycle ⌊ |Ag|
2
⌋

∑⌊ |Ag|
2 ⌋

k=1 2k−((1−rem(
|Ag|
2

))·⌊ |Ag|
2

⌋)
|Ag|−1

Wheel

{
1 if |Ag| = 4

2 otherwise
2·(|Ag|−2)

|Ag|

Proof. For the total network, note that for every i ∈ Ag, j ∈ N (i) for every j ∈ Ag \ {i}.
Thus, the shortest path from an agent to another is simply their connection, which has
length 1. This immediately entails the fact that the average node distance is also 1.

Now, let us define the average distance between one agent and the other nodes in the
network. For any i ∈ Ag, let

Avgi :=

∑
j∈Ag\{i} d(i, j)

|Ag| − 1

Observe the following equalities:

Avg =

∑
(i,j)∈Pairs d(i, j)

|Pairs|

=
2 ·
∑

(i,j)∈Pairs d(i, j)

2 · |Pairs|

=

∑
(i,j)∈T d(i, j)

|T |

=

∑
i∈Ag

∑
j∈Ag\{i} d(i, j)

|Ag| · (|Ag| − 1)

=

∑
i∈Ag Avgi

|Ag|

So the average distance between the nodes of the network is equal the average of the
average distance between one agent and the other nodes.

For ⋆i, it is clear that i is at distance 1 from every other agent. For any j ̸= i ∈ Ag,
and for every other agent j′ ̸= i ̸= j ∈ Ag, we have the path ⟨j, i, j′⟩ of length 2. Thus,
the diameter of the network is 2. For i, the average distance to another agent is 1. For
any j ̸= i, the average distance is clearly 1+2·(|Ag|−2)

|Ag|−1
. Thus the average distance for this

network is

1 + (|Ag| − 1) · 1+2·(|Ag|−2)
|Ag|−1

|Ag|
=

1 + 1 + 2 · (|Ag| − 2)

|Ag|
=

2 + 2 · (|Ag| − 1)− 2

|Ag|
=

2(|Ag| − 1)

|Ag|

For the diameter of the cycle, observe first that every agent is in the same position
with respect to their distance to their network — they have two agents at distance 1, two
at distance 2, and so on. Note then that from any agent to another, there are two paths,
and that generally if the first path is of length x, the second is of length |Ag| − x. It is
clear then, that the maximal distance between two agents is obtained by maximising the
length of the paths on both sides. So, for even sets of agents, the diameter is |Ag|

2
. For
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4.1 Networks

odd sets of agents, observe that there are two ‘furthest’ agents, and the paths to either
are of length ⌊ |Ag|

2
⌋ and ⌈ |Ag|

2
⌉. Since the distance between two agents is defined as the

shortest path, we have established that the diameter of the cycle in general is ⌊ |Ag|
2
⌋.

As for the average length, as mentioned above, there are two agents at each path
length, up to ⌊ |Ag|

2
⌋ − 1. At path length ⌊ |Ag|

2
⌋ − 1, there is one agent on even networks,

and there are two agents on odd networks. Since this is for every agent, this will be the
overall average as well. So if we denote by rem(x

y
) the remainder of the division between

x and y, for every i ∈ Ag, we have:

Avg =

∑⌊ |Ag|
2

⌋
k=1 2k − ((1− rem( |Ag|

2
)) · ⌊ |Ag|

2
⌋)

|Ag| − 1

For the wheel for i network, if |Ag| = 4, then note that the network is total, so the
diameter is 1. Otherwise, similarly to the star, the diameter is 2, as every agent can be
reached by every other agent in at most 2 steps through i. For the average distance, like
before, i’s distance from every agent is 1, and so the average distance will also be 1. For
every j ̸= i, there are exactly 3 agents they are connected to, and hence at distance 1,
and the rest |Ag| − 3 of the agents are reachable through i via a path of length 2. So for
any j ̸= i, Avgj = 3+2·(|Ag|−3)

|Ag|−1
. And thus,

Avg =
1 + (|Ag| − 1) · 3+(|Ag|−3)·2

|Ag|−1

|Ag|
=

1 + 3 + (|Ag| − 3) · 2
|Ag|

=
2 · (|Ag| − 2)

|Ag|

Now that these measures are set in place, we can investigate what aspects of the
network structure are expressible in our logical language, and what the agents know
about the network. By making use of the finiteness of the set of agents and the atom Nij

in the language, we can introduce abbreviations that express that the network is one of
these four. After each abbreviation, we prove that the propositions correspond exactly to
the network structure. The first abbreviation we introduce is that for the total network,
which states that for every agent, and for every different agent, they are connected by the
network.

Abbreviation. The network is total:

tot :=
∧
i∈Ag

∧
j∈Ag\{i}

Nij.

Proposition 6. For any evidence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ ,
N = T if and only if M ⊨ tot.

Proof. Pick an arbitrary evidence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag,N , J·K⟩ and
an arbitrary world x ∈ X. N = T is by definition equivalent to the property that for
every i ∈ Ag, N (i) = Ag \ {i}. This is, again by definition, equivalent to saying that
for i ̸= j ∈ Ag, M, x ⊨ Nij. Since the set of agents is finite, we can transform this
universal quantification into a conjunction, which is exactly what tot is. Since we reasoned
with equivalences, and started from an arbitrary evidence diffusion model and world, the
proposition holds.
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4.1 Networks

For the star network, the following abbreviation captures the fact that the agent i is
connected to every other agent, and that no agent is connected to anybody but i.

Abbreviation. The network is a star for i:

stari :=
∧

j∈Ag\{i}

(Nij ∧ ¬
∨

k∈Ag\{i,j}

Njk).

Proposition 7. For any evidence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ ,
N = ⋆i if and only if M ⊨ stari.

Proof. Let M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ be an arbitrary evidence diffusion model
and x an arbitrary world. Note that the set of agents is finite, so a conjunction spanning
all agents acts as universal quantification, and disjunction as an existential quantification.
Thus M, x ⊨ stari if and only if for all agents j except i, j ∈ N (i) and it is not the case
that there exists some k other than i, j such that k ∈ N (j). In other words, i is connected
to every agent, and every other agent is connected only to i. This is precisely the definition
of the star network. Since we worked with equivalences and used an arbitrary world and
model, our proposition is proven.

To obtain the cycle, given our already existing constraints, we only need to ensure
that every agent is connected to exactly two other agents.

Abbreviation.

cycle :=
∧
i∈Ag

j ̸=k∨
j,k∈Ag\{i}

(Nij ∧Nik ∧
∧

ℓ∈Ag\{i,j,k}

¬Niℓ)

Proposition 8. For any evidence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ ,
N = ⃝ if and only if M ⊨ cycle.

Proof. The proof is analogous to the previous proof.

To obtain the wheel for i, what is required is that i is connected to every other agent,
and that every agent other than i is connected to exactly three agents.

Abbreviation. The network is a wheel for i:

wheeli :=
∧

j∈Ag\{i}

(Nij ∧
k ̸=ℓ∨

k,ℓ∈Ag\{i,j}

(Njk ∧Njℓ ∧
∧

m∈Ag\{i,j,k,ℓ}

¬Njm))

Proposition 9. For any evidence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ ,
N = Wi if and only if M ⊨ wheeli.

Proof. The proof is analogous to the previous proof.

As we have stressed earlier, and as we will go on to prove, the network topology will
affect the epistemic and doxastic attitudes in a major way. As such, a natural question
to ask is — do the agents know the network? As it turns out, they do. The following
propositions show that the agents have both infallible knowledge, defeasible knowledge,
and belief about the network.
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4.2 Diffusion

Proposition 10. Every agent infallibly knows the network. Formally, for every i, j, k ∈
Ag, ⊨ Njk ↔ [Πi]Njk.

Proof. Take an arbitrary threshold θ, an arbitrary model M, world x and agents i, j, k. For
the left to right direction, suppose M, x ⊨ Njk. Note that the truth clause for the network
atoms make no reference to the world of evaluation, so JNjkK = X, which immediately
means that for all y ∈ Πi(x), M, y ⊨ Njk, giving M, x ⊨ [Πi]Njk. For the right to left
direction, suppose M, x ⊨ [Πi]Njk. This means that every world in Πi(x) makes Njk true,
and since x ∈ Πi(x), M, x ⊨ Njk. Since θ,M, x and i, j, k were picked arbitrarily, our
proposition holds.

The same result easily obtains for defeasible knowledge, belief, and the evidence modal-
ities. The first is formulated in Proposition 11, whereas the latter are left out, since the
proofs are analogous to the given proof.

Proposition 11. Every agent defeasibly knows the network. Formally, for every i, j, k ∈
Ag, ⊨ Njk ↔ KiNjk.

Proof. Take an arbitrary threshold θ, an arbitrary model M, world x and agents i, j, k. For
the left to right direction, suppose M, x ⊨ Njk, meaning just like above that JNjkK = X.
Clearly, Πi(x) is dense in Πi(x) and Πi(x) ⊆ X, so M, x ⊨ KiNjk. Now for the right to
left direction, suppose M, x ⊨ KiNjk. This means that JNjkK contains a Πi(x) dense open
set, which means JNjkK ̸= ∅, immediately entailing JNjkK = X and M, x ⊨ Njk. Since
θ,M, x and i, j, k were picked arbitrarily, the proposition holds.

4.2 Diffusion

We now turn to a formal investigation of evidence diffusion, in the general sense. Diffu-
sion is, once again, defined as an operation on models. We are interested in the invariance
of the epistemic (and doxastic) operators we have defined under this operation, both from
a mathematical point of view, and from a philosophical point of view. Mathematically, the
invariance of the modalities under an operation is revelatory for the functioning of both
the former and the latter. Philosohpically, whether or not individual or group knowledge
is preserved under diffusion gives insights into evidence-based reasoning in a dynamic
environment where agents send and receive pieces of evidence.

First, let us establish a basic fact about diffusion sequences. Just like in [12], any
diffusion sequence reaches a fixed point bounded by the number of agents. The fact that
multiple evidence pieces spread does not affect this property, as the pieces of evidence do
not interact with each other, as far as diffusion is concerned.

Notation. For an evidence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ , we let
Age = {i ∈ Ag | e ∈ Ei}. For any k ∈ N, given the diffusion sequence SM = ⟨M,M1, ...⟩,
we let Agke = {i ∈ Ag | e ∈ Ek

i }, where Ek
i ∈ Mk.

Proposition 12. For any evidence diffusion model M, there exists some n ∈ N ≤ |Ag|−1
where we reach a fixed point in SM, i.e. for any Mm ∈ SM with m ≥ n, Mm = Mn. For
clarity, we will often denote the upper bound |Ag| − 1 by fix (for fixpoint).

Proof. Let M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ be an arbitrary evidence diffusion model.
By definition, for any i ∈ Ag and any k ∈ N, Ek

i ⊆ Ek+1
i . Thus, for any e ∈

⋃
i∈Ag Ei,

Agke ⊆ Agk+1
e ⊆ Ag. Note that the set of agents Ag is finite, and so for every e ∈

⋃
i∈Ag Ei,
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4.2 Diffusion

there exists n ∈ N such that Agne = Agn+1
e . Clearly, the slowest diffusion scenario for

some e ∈
⋃

i∈Ag Ei is that in which |Age| = 1 and for every k ∈ N, |Agk+1
e | = |Agke | + 1,

which is clearly bounded by |Ag| − 1. This concludes the proof.

We define the following abbreviation for iterations of the dynamic diffusion operator,
which will be convenient as we begin to prove properties about specific points in the
diffusion sequence.

Abbreviation. We define the formula [ ······ ]nφ as the abbreviation defined recursively by

[ ······ ]0φ := φ;

[ ······ ]n+1φ := [ ······ ][ ······ ]nφ.

Since all of the epistemic and doxastic attitudes we have defined are evidence-based,
and since agents receive pieces of evidence through the diffusion process, it will be useful
to have a short-hand way of referring to when a piece of evidence will be received by an
agent at the next round. Furthermore, we define when a piece of evidence will be received
by an agent at some round.

Definition 44 (Freeness of Evidence). We call a piece of evidence e ∈
⋃

i∈Ag Ei free for
i if and only if there exists G ⊆ N (i) such that e ∈ Ej for every j ∈ G and |G|

|N (i)| ≥ θ.
We say that e is free for i at some point in the diffusion sequence if and only if there
exists some point k ∈ N in the diffusion sequence SM = ⟨M,M1, ...⟩ such that there exists
G ⊆ N (i) with e ∈ Ek

i for every j ∈ G and |G|
|N (i)| ≥ θ.

As in [12], and as shown in Section 3.4, we can define an abbreviation for when a
certain piece of evidence is free for an agent at the next round (and with the help of [ ······ ],
at further rounds as well). We make essential use of the Ei modality for this purpose. The
abbreviation states: there exists a subset of the group of agents, F , and a subset of F ,
G, such that |G|

|F | ≥ θ and such that F contains exactly the agents that are in i’s network,
and every agent in G has JφK in their basic evidence set.

Abbreviation. We define the abbreviation фiφ, read ‘φ is фree (free) for i’, as

фiφ :=
∨

{G⊆F⊆Ag | |G|
|F |≥θ}

(
∧
j∈F

Nij ∧
∧
j ̸∈F

¬Nij ∧
∧
j∈G

Ejφ).

We can also express the fact that JφK is free at some point in the diffusion sequence
for i:

∨
k∈{1,...,fix}[ ······ ]k−1фiφ. The negation of this disjunction says that JφK is never free

for i, so that i will never have this piece of evidence in their set of basic pieces of evidence.
Note that they might still have this piece of evidence in their topology of evidence by
some finite intersection or arbitrary union.

The following proposition states that an agent has a piece of evidence JφK in their set
of basic pieces of evidence at the next round if and only if they had it at this round, or it
is free for i.

Proposition 13. For any i ∈ Ag, ⊨ [ ······ ]Eiφ↔ фiφ ∨ Eiφ.
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Proof. Let M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ be an arbitrary diffusion model, x ∈ X

an arbitrarily picked world and i ∈ Ag an arbitrary agent. M, x ⊨ [ ······ ]Eiφ means that

M······ , x ⊨ Eiφ, which by definition means that JφK ∈ E ······
i . Also by definition, either JφK ∈ Ei,

in which case M, x ⊨ Eiφ and by extension M, x ⊨ фiφ ∨ Eiφ, or JφK was received via
evidence diffusion, in which case there must exist G ⊆ N (i) such that |G|

|N (i)| ≥ θ and for
every j ∈ G, JφK ∈ Ej, which entails by definition that M, x ⊨ фiφ, and by extension
M, x ⊨ фiφ ∨ Eiφ. Since we reasoned with equivalences, we proved both directions at
once, and so M, x ⊨ [ ······ ]Eiφ ↔ фiφ ∨ Eiφ, and since the agent, world, and model were
picked arbitrarily, we obtain the desired result.

An important fact to point out is that, unlike in [12], where the atom β could be used
to fully specify the set of adopting agents B, we cannot always fully specify an agent’s
set of basic pieces of evidence using the modality Ei. On some models, there are pieces
of evidence in some agent’s set of evidence e ∈ Ei that are not captured by the valuation,
so that there is no φ ∈ Ld with JφK = e.

We begin our analysis of the modalities by proving a statement that was made in
the previous chapter. Namely, that defeasible evidence is the knowledge of a theoretical
agent that has all of the hard knowledge (‘laws’) and soft knowledge (evidence) of all of
the agents combined. Formally, we prove that distributed evidence holds of a proposition
if and only if that proposition is known at the end of the diffusion sequence by an agent
who is set to receive all available pieces of evidence and all hard information.

Proposition 14. For any evidence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ ,
if for every e ∈

⋃
j∈Ag Ej, e is free for i at some point in the diffusion sequence SM, then

M ⊨ DEφ↔ [
∧
][ ······ ]fixKiφ.

Proof. Let M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ be an arbitrarily picked evidence diffusion
model, x an arbitrarily picked world and suppose that for every e ∈

⋃
j∈Ag Ej, e is free

for i ∈ Ag at some point in the diffusion sequence. Now we want to show M, x ⊨ DEφ↔
[
∧
][ ······ ]fixKiφ.
We proceed via equivalences and prove both directions at the same time. M, x ⊨ DEφ

means that for every i ∈ Ag, there exists Ui ∈ τi such that: 1) Cl∨τ∩(
⋂

i∈Ag Ui) =⋂
i∈Ag Πi(x), where ∨τ∩ =

∨
i∈Ag τi

∣∣∣⋂
i∈Ag Πi(x)

; 2) x ∈
⋂

i∈Ag Ui; 3)
⋂

i∈Ag Ui ⊆ JφK. Now

let us look at the model M
∧

fix (the fixpoint of M
∧
’s diffusion sequence). By supposi-

tion, E
∧

fix
i =

⋃
j∈Ag Ej. Note that the closure of

⋃
j∈Ag Ej under finite intersections and

arbitrary unions (i.e. τ
∧

fix
i ) contains both the closure under finite intersections and ar-

bitrary unions of sets within the sets of basic evidence for each agent, but also between
the basic evidence sets of different agents. Thus, this closure contains just the same sets
as the closure of

⋃
j∈Ag τj under arbitrary unions and finite intersections (i.e.

∨
j∈Ag τj

by definition). As such, τ
∧

fix
i =

∨
j∈Ag τj. This means that all the sets which the def-

inition DE establishes the existence of are in i’s topology. Since topologies are closed
under finite intersections, and there are finitely many agents, the intersection of these sets⋂

j∈Ag Uj ∈ τ
∧

fix
i . Furthermore, since this is a model obtained after law distribution, we

have Π
∧

fix
i (x) =

⋂
j∈Ag Πi(x). By 1) we get that

⋂
j∈Ag Uj is Π

∧
fix

i (x)-locally dense, by
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2) we get that it is factive, and by 3) that it is a subset of JφK. Thus, M
∧

fix, x ⊨ Kiφ,
which entails M

∧
, x ⊨ [ ······ ]fixKiφ, which in turn yields M, x ⊨ [

∧
][ ······ ]fixKiφ.

Since M and x were chosen arbitrarily, the proposition is established.

Note that this agent need not exist for distributed evidence to hold of a proposition,
it is the knowledge of a hypothetical agent that is in possession of all hard and soft
information. As we shall see, the fact that distributed evidence makes a hypothetical
statement as opposed to a statement about the current state of affairs is important, as it
is the critical factor that makes it robust, i.e. invariant under diffusion, as we show in the
next proposition.

Proposition 15. ⊨ DEφ↔ [ ······ ] DEφ

Proof. Let θ ∈ [0, 1] be arbitrarily given and let M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ and
x ∈ X be arbitrary as well. For the left to right direction, suppose M, x ⊨ DEφ for some
arbitrary φ. We want to show M, x ⊨ [ ······ ] DEφ, which, by the definition of [ ······ ], is equivalent

to showing that M······ , x ⊨ DEφ. By definition, because M, x ⊨ DEφ, we have that for every
i ∈ Ag there exists Ui ∈ τi such that:

1.
⋂

i∈Ag Ui ⊆ JφK. But by the definition of M······ , we know that for every i ∈ Ag, τi ⊆ τ
······
i ,

the topology generated by the subbasis E ······
i , so that clearly for all i ∈ Ag there exists

Ui ∈ τ
······
i such that

⋂
i∈Ag Ui ⊆ JφK;

2. x ∈
⋂

i∈Ag Ui similarly entails that for every i ∈ Ag there exists Ui ∈ τ
······
i such that

x ∈
⋂

i∈Ag Ui;

3. Cl∨τ∩(
⋂
Ui) =

⋂
Πi(x), where ∨τ∩ =

∨
i∈Ag τi

∣∣∣⋂
i∈Ag Πi(x)

. But since
∨

i∈Ag τi is

the topology generated by
⋃

i∈Ag τi and by Definition 33, updates always introduce

pieces of evidence that were already in some agent’s basic evidence set,
∨

i∈Ag τ
······
i =∨

i∈Ag τi. Also, the evidence update rule leaves the partitions unchanged. So,∨
i∈Ag τ

······
i

∣∣∣∣⋂
i∈Ag Πi(x)

= ∨τ ·
·····
∩ = ∨τ∩ and thus, for every i ∈ Ag, there exists Ui ∈ τ

······
i

such that Cl
∨τ ······

∩

(
⋂

i∈Ag Ui) =
⋂

i∈Ag Πi(x).

So M······ , x ⊨ DEφ, which entails that M, x ⊨ [ ······ ] DEφ. Thus, M, x ⊨ DEφ→ [ ······ ] DEφ.
For the right to left direction, similar arguments pertaining to the fact that diffusion

does not affect points 1,2, and 3 of the definition of DEcan be made. Thus, we infer that
M, x ⊨ [ ······ ] DEφ→ DEφ. This means that M, x ⊨ DEφ↔ [ ······ ] DEφ.

And since we picked an arbitrary world, model and threshold, we obtain that DEφ↔
[ ······ ] DEφ is valid on evidence diffusion models.

By contrast, distributed knowledge, which makes a statement about the current knowl-
edge of the agents, is not robust, as the next proposition indicates. Recall that a proposi-
tion is distributed knowledge if the agents have factive justifications that together entail
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φ. Since some agent’s contribution to this factive justification might get defeated by in-
coming evidence, i.e. lose density, it stands to reason that distributed knowledge might
also be lost in this way. This is what the counterexample exploits.

Proposition 16. ̸⊨ DKφ→ [ ······ ] DKφ

Proof. We prove the proposition by providing a counterexample. We require a threshold
θ, a proposition φ, a model and a world at which DKφ is true, but at which [ ······ ] DKφ is
false. Consider, for threshold θ = 0.5, the model in Figure 10, pictured on the left —
call this model M. Formally, we have two agents, Ag = {Alice, Bob}, the set of worlds
X = {1, 2, 3, 4}, and we consider two propositions, p, q ∈ P with JpK = P = {1, 2} (green
in Figure 10) and JqK = Q = {1, 3} (blue in 10) and the rest of the propositions being
false at all worlds. Alice’s partition is the same as Bob’s: ΠAlice = ΠBob = {X}. Alice’s
evidence set is EAlice = {X,P,Q} and Bob’s evidence set is EBob = {X,P,¬(P ↔ Q)}.

1 2

3 4

Alice

1 2

3 4

Bob

······
1 2

3 4

Alice

1 2

3 4

Bob

Figure 10: Distributed knowledge loss

M, 1 ⊨ DKp, since: a) P is ΠAlice(1)-locally dense (X-locally dense) by virtue of having
non-empty intersection with all opens in τAlice and ΠBob(1)-locally dense (X locally dense)
by virtue of having non-empty intersection with all opens in τBob; b) x ∈ P , as defined;
c) P ∩ P ⊆ P , evidently.

M, 1 ̸⊨ [ ······ ] DKp. By the definition of [ ······ ], this is equivalent to showing that M······ , 1 ̸⊨
DKp. This is indeed the case, because for neither of the agents do we have a ΠAlice(1)-

locally dense (X-locally dense) set. After the agents put together their evidence the set
{3} = {1, 3} ∩ {2, 3} is part of both of their topologies, and so any dense set will have to
have non-empty intersection with this set, which is not the case.

This shows that DKφ→ [ ······ ] DKφ is not valid on evidence diffusion models.

The next proposition shows that distributed knowledge is not robust under strong
premises either — even if all the agents already know φ individually, it is possible that
after a round of diffusion, they don’t even know φ together! Note that this is even
stronger than saying that now none of them know φ, for if one of them knew φ, it would
automatically become distributed knowledge as well. What this shows is that distributed
knowledge is extremely fragile. As before, this is because they might have sets of evidence
that are inconsistent with each other (which is what happens in the counterexample).

Proposition 17. ̸⊨ ( DKφ ∧
∧

i∈AgKiφ) → [ ······ ] DKφ

Proof. Consult the counterexample in Figure 10 and observe that P is dense in τAlice in
the initial model, M, and thus M, 1 ⊨ KAlicep, and likewise for Bob, M, 1 ⊨ KBobp. So
we have that M, 1 ⊨

∧
i∈AgKip, and thus M, 1 ⊨ ( DKp ∧

∧
i∈AgKiφ), yet, as discussed in

the previous proof, M, 1 ̸⊨ [ ······ ] DKp. Thus, ( DKφ ∧
∧

i∈AgKiφ) → [ ······ ] DKφ is not valid on
evidence diffusion models.
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4.2 Diffusion

A natural question at this point would be: what are the conditions under which dis-
tributed knowledge is preserved? And what precisely does it mean for the basic evidence
sets of two agents to be inconsistent? For these reasons, we introduce the notion of mis-
leading evidence, customary to the literature on topological evidence models [69, 9]. The
notion introduced here is, of course, indexed by the agent, so that a piece of evidence
can be misleading for an agent i, but not for another agent, j. Intuitively, a piece of
evidence e is misleading for agent i in model M when in the model M+{i}e, i.e. when i
receives piece of evidence e in their basic evidence set, a false piece of evidence is created
by intersection with some piece of evidence that i already had.

Definition 45. We call a piece of evidence e i-misleading at x ∈ X if and only if there

is some e′ ∈ E∼i such that x ̸∈ (e ∩ e′) and (e ∩ e′) ̸∈ E∼i ∪ {∅}.

The condition that no agent i receives an i-misleading piece of evidence is sufficient
to ensure that distributed knowledge is preserved at the next diffusion round, as the next
proposition shows.

Proposition 18. If M, x ⊨ DKφ and for every i, there is no i-misleading piece of evidence
that is free for i, then M, x ⊨ [ ······ ] DKφ.

Proof. We suppose the antecedent and aim to show the consequent. Since M, x ⊨ DKφ,
for every i ∈ Ag there exists Ui ∈ τi such that: 1) Ui is Πi(x)-locally dense; 2) x ∈

⋂
Ui;

3)
⋂
Ui ⊆ JφK. From 2) and 3) we obtain that x ∈ JφK. By 1), for every i ∈ Ag, Ui is

Πi(x)-locally dense, meaning that for every V ∈ τi \{∅}, V ∩Πi(x) ̸= ∅ entails V ∩Ui ̸= ∅.
From the fact that no piece of evidence that is i-misleading is free for i, we deduce the fact

that for every i ∈ Ag and for every e ∈ E∼······
i , e ̸∈ E∼i entails x ∈ e. This immediately means

that the Ui that were invoked for M, x ⊨ DKφ are still dense in τ ·
·····
i , since for every e ∈ E∼······

i ,

x ∈ (Ui ∩ e). Thus we can use the same sets as before and claim that M······ , x ⊨ DKφ.

This condition that no agent i receives an i-misleading piece of evidence is, however,
not necessary for the preservation of distributed knowledge. Namely, there are models
and diffusion sequences where some agent receives an i-misleading piece of evidence, yet
still retains their knowledge. Consider the example below.

Example 5. In the initial model (Figure 11, below), Alice’s strongest knowledge is 1∨ 2.
In the diffusion sequence, she receives the piece of evidence {2}, which does not contain
the actual world, 1, so it is misleading. Yet, since {2} is a subset of {1, 2} Alice does not
lose her strongest piece of knowledge.

1 2

3 4

Alice

1 2

3 4

Bob

······
1 2

3 4

Alice

1 2

3 4

Bob

Figure 11: Alice receives misleading evidence, but still knows 1 ∨ 2
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4.3 Diffusion on Networks in General

In order to find necessary and sufficient conditions for the preservation of these opera-
tors under diffusion, we must take into account the critical factors contributing to the loss
of knowledge that we have been discussing. Both individual and distributed knowledge
require the existence of factive justifications, i.e. dense sets containing the actual world.
Many of our counterexamples have relied on newly received pieces of evidence breaking
the density of all the agent’s justifications, leading to knowledge loss. Thus, in order to
find the conditions for invariance, this situation must be prevented. Tools from network
analysis give us exactly the means to do this, and we turn to this next.

4.3 Diffusion on Networks in General

Before we proceed, recall the notion of Cluster of density d outlined in Definition 28.
The definition neatly transfers to the networks that underlie evidence diffusion models.
Furthermore, since we have the atoms Nij and the modality Ei, we can define parallel
abbreviations to the ones in Section 3.4, with the same caveat as before — the modality Ei

can only refer to pieces of evidence expressible by propositions. The parallel extends to a
more significant result, which we present now — a cluster theorem for pieces of evidence.

Theorem 2 (Evidence Cluster Theorem). For every M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N ,
J·K⟩with θ ̸= 0, for every piece of evidence e ∈

⋃
i∈Ag Ei, all agents will eventually adopt

e if and only if there does not exist a cluster of density greater than 1− θ in Ag \ Age.
Proof. We follow the same steps required to prove the original cluster theorem [64, 29].
Let M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ be an arbitrary evidence diffusion model with
θ ̸= 0 and let e ∈

⋃
i∈Ag Ei be an arbitrarily picked piece of evidence.

(⇒) We proceed contrapositively by supposing that there exists a cluster C of density
greater than 1− θ in Ag \ Age and showing that no agent in C will adopt e. Assume for
a contradiction that some i ∈ C does adopt e, and without loss of generality let us say
he is (among) the first adopter(s) from C. Then there exists a point k in the diffusion
sequence SM such that e ∈ Ek

i ∈ Mk but e ̸∈ Ek−1
i ∈ Mk−1. In order to adopt e at k, we

must have |N (i)∩Agk−1
e |

|N (i)| ≥ θ. Since C ∩ Agk−1
e = ∅, and since C has density greater than

1− θ, i.e. |N (i)∩C|
|N (i)| > 1− θ, it must be that |N (i)∩Agk−1

e |
|N (i)| < θ, contradiction.

As such, we have established that all agents eventually adopting e entails that there
is no cluster of density greater than 1− θ in Ag \ Age.

(⇐) We also prove this direction by contraposition, so suppose that there exists an
i ∈ Ag that has not adopted, i.e. for which e ̸∈ Efix

i . We aim to show that the set
C = Ag \ Agfixe is a cluster of density greater than 1 − θ. For this, take an arbitrary
j ∈ C. Since j ∈ C, he is part of the non-adopting agents, and thus |N (j)∩Agfixe |

|N (j)| < θ. This
entails that |N (j)∩C|

|N (j)| > 1 − θ. And since j was picked arbitrarily, this means that for all
j ∈ C, |N (j)∩C|

|N (j)| > 1 − θ, which is equivalent to C being a cluster of density greater than
1− θ.

So, we have established if there exists no cluster of density greater than 1 − θ in
Ag \ Age, then all agents will eventually adopt e.

And since e was picked arbitrarily, this holds for all e ∈
⋃

i∈Ag Ei. And since M was
also picked arbitrarily, this holds for any evidence diffusion model with θ ̸= 0. The result
is hence established.

This may not be very surprising — after all, there is not much of a difference between
threshold models (with multiple non-interacting behaviors) and our pieces of evidence.
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4.3 Diffusion on Networks in General

Furthermore, whether or not a full cascade forms for a piece of evidence might not im-
mediately seem very interesting from an epistemological point of view. The following
Corollary shows that, in fact, this Theorem gives quite a bit of insight into the epistemic
proclivities of the agents in this model.

Corollary 1. For every M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩with θ ̸= 0, for every piece
of evidence e ∈

⋃
i∈Ag Ei, for every agent i ∈ Ag, e ∈ Efix

i if and only if for every cluster
C of density greater than 1− θ with i ∈ C, there exists an agent j ∈ C such that e ∈ Ej.

Proof. Take an arbitrary evidence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ ,
an arbitrary piece of evidence e ∈

⋃
i∈Ag Ei and an arbitrary agent i ∈ Ag.

For the left to right direction, we go contrapositively and suppose there exists a cluster
of density greater than 1 − θ containing i where for all j ∈ C, e ̸∈ Ej. We assume for a
contradiction that e ∈ Efix

i . At some point k in the diffusion sequence SM, we must have
had |N (i)∩Agke |

|N (i)| ≥ θ. Now we reason by cases. In the first case, N (i)∩Agke ∩C = ∅, meaning
that all adopting agents in N (i) are outside of the cluster. But then i cannot have adopted
e, since, as explained in the proof of the theorem, it must be that |N (i)∩Agke |

|N (i)| < θ, so this
is a contradiction. In the second case, N (i) ∩ Agke ∩ C ̸= ∅. But there must have been
ℓ ≤ k such that C ∩Agℓe ̸= ∅, but C ∩Agℓ−1

e = ∅, i.e. there must have been a point in the
diffusion sequence where some agent(s) in C adopt e, where none have done so before. In
this case, reason analogously to obtain a contradiction. Since we obtained a contradiction
in both cases, we have, contrapositively, the left to right direction of this corollary.

For the right to left direction, we again aim to go contrapositively, and proceed exactly
as in the right to left direction of the evidence cluster theorem. Observe that i is part of
the set C constructed in that proof and that for all j ∈ C, e ̸∈ Ej, and that thus, C is
exactly the set required for this proof as well.

Since we worked with an arbitrary model, piece of evidence, and agent, the corollary
is established.

So, an agent will end up adopting a piece of evidence if and only if there is an ‘early
adopter’ [29, Ch. 19] of that piece of evidence in every Cluster of density greater than
1−θ that they are a part of. If we take cluster density as a measure of group cohesion, we
can rephrase this as saying: agents refrain from adopting pieces of evidence if they have
any contact group that is ‘close enough’ in which none of the members have adopted that
piece of evidence. Put in these terms, it certainly seems like the process of adopting pieces
of evidence from diffusion is not a rational process, as we would like to think that scientists
have the ability to individually and independently evaluate groundbreaking science when
they come across it. In many real cases of collective failure such as the case of Ignaz
Semmelweis outlined in Chapter 2 or the case of the Einstein-de Haas effect [85], though,
it certainly seems like precisely this kind of ‘groupthink’ is at play.

This Corollary not only provides the essential ingredient to establishing the necessary
and sufficient conditions for individual and distributed knowledge to be preserved in dif-
fusion, but also to be attained at the end of a diffusion sequence. We now go on to prove
theorems to this extent, the first pertaining to individual knowledge.

Theorem 3 (Knowledge Cluster Theorem). For any M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N ,
J·K⟩with θ ̸= 0, M, x ⊨ [ ······ ]fixKiφ if and only there exists E ⊆

⋃
j∈Ag Ej such that:

• There exists U ∈ τ+E
i , the topology generated from Ei∪E, such that x ∈ U∩Πi(x) ⊆

JφK; and
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4.3 Diffusion on Networks in General

• For every cluster C of density greater than 1− θ containing i:

– for every e ∈ E there is some j ∈ C such that e ∈ Ej; and
– for all E ′ ⊆

⋃
j∈Ag Ej, if there exists J ⊆ C such that for every e ∈ E ′ there is

j ∈ J with e ∈ Ej, then
⋂
E ′ ∩ (U ∩ Πi(x)) ̸= ∅.

For this theorem, it will be worth it to explain the conditions on a more intuitive level
before going on with the proof. Before anything else, bear in mind that there are two
main parts to this theorem: one we will call ‘receiving’, the second we call ‘blocking’. For
the receiving part, notice that we state that an agent attains individual knowledge of a
proposition φ at the end of the diffusion sequence if and only if there exists a subset of
the totality of pieces of evidence that all agents possess that satisfies certain conditions.
We can think of this subset as an ‘information package’ that the agent must have if he
is to know φ. The first condition is that, adding this package to the agent’s set of basic
pieces of evidence ensures the existence of a set U in the resulting topology that, when
intersected with the partition of the world of evaluation Πi(x), is a subset of JφK. In
other words, adding this package to the agent’s evidence generates evidence supporting
φ. The next condition also belongs to the ‘receiving’ part, as it ensures, according to the
Evidence Cluster Theorem, that all the pieces of evidence from E end up being part of
the agent’s set of basic evidence pieces at the end of the diffusion sequence. So, in sum,
up to this point, this information package exists and is received. For the ‘blocking’ part,
we have one condition left. Observe first the quantification and the part after ‘then’. We
are quantifying over all subsets of the total evidence that, if received, could make the set
U not dense. The conditions in between are once more taken from the Evidence Cluster
Theorem. So, in sum, the ‘blocking’ condition states: if there is a subset of pieces of
evidence that i already has, or will receive at some point, then it does not break U ’s
density. Putting all of these things together, we obtain a dense subset of JφK: exactly
what is needed for i to know φ. What follows is the proof of this theorem.

Proof. Let M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ be an arbitrary evidence diffusion model
with θ ̸= 0.

(⇒) Suppose that M, x ⊨ [ ······ ]fixKiφ. Thus, we have by the definition of [ ······ ] that
Mfix, x ⊨ Kiφ, which in turn means that there exists U ∈ τ fixi , the topology of evidence
generated from Efix

i , such that U ∩ Πi(x) ⊆ JφK and U is i-locally dense in Πi(x).
Now, for the set E required by the consequent, take E = Efix

i \ Ei. For the subset of
φ required, we take U mentioned above. Note that the topology generated by Ei ∪ E =
Ei ∪ (Efix

i \ Ei) = Efix
i is exactly the τ fixi . And so, we know by assumption that U ∈ τ fixi

and x ∈ U ∩ Πi(x) ⊆ JφK, so the first bullet point is satisfied.
Take any e ∈ E. Suppose towards a contradiction that there is a cluster C of density

greater than 1 − θ containing i with all j ∈ C having e ̸∈ Ej. By the corollary to the
evidence cluster theorem, i never adopts e. But we know by assumption that e ∈ Efix

i ,
contradiction. So the first requirement is met.

For the second requirement, take an arbitrary E ′ ∈
⋃

j∈Ag Ej and suppose there exists
J ⊆ C such that for every e ∈ E ′ there is j ∈ J with e ∈ Ej. By the corollary to the
evidence cluster theorem, we have that for every e ∈ E ′, e ∈ Efix

i , so that
⋂
E ′ ∈ τ fixi .

But note that, by assumption, U is i-locally dense in Πi(x) with respect to τ fixi . Thus,
we cannot have that

⋂
E ′ ∩ (U ∩ Πi(x)) = ∅. And since E ′ was picked arbitrarily, the

second requirement is met as well.

50
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This proves the consequent, and so the left-to-right direction of this theorem is estab-
lished.

(⇐) Now let us suppose the consequent and try to prove the antecedent, namely
M, x ⊨ [ ······ ]fixKiφ. This is the case if and only if Mfix , x ⊨ Kiφ, which in turn is equivalent
to the existence of a subset that is i-locally dense in Πi(x) with respect to τ fixi .

We know that there exists a set E ⊆
⋃

j∈Ag such that we have U ∈ τ+E
i , the topology

generated by Ei ∪ E with x ∈ U ∩ Πi(x) ⊆ JφK. By assumption, for every cluster C of
density greater than 1− θ containing i and for every e ∈ E, there is some j ∈ C such that
e ∈ Ej. Thus, by the corollary to the evidence cluster theorem, for every e ∈ E, e ∈ Efix

i ,
and indeed τ+E

i ⊆ τ fixi , entailing U ∈ τ fixi .
Now to show that U is i-locally dense in Πi(x) with respect to τ fixi , suppose the

contrary. This means that there exists A ∈ τ fixi such that (U ∩Πi(x)) ∩ (A ∩Πi(x)) = ∅.
From this we can infer that there exists e ∈ E∼fix

i such that (U ∩Πi(x))∩ (e∩Πi(x)) = ∅.
Further, we can obtain that there exists E ′ ⊆ Efix

i such that (U∩Πi(x))∩(
⋂
E ′∩Πi(x)) =

∅, which by the distributivity and idempotence of ∩ yields
⋂
E ′ ∩ (U ∩ Πi(x)) = ∅. But

now note that for every e′ ∈ E ′, e′ ∈ Efix
i , and so by the evidence cluster theorem we have

that for every cluster C of density greater than 1 − θ there must exist j ∈ C such that
e′ ∈ Ej. So we have found E ′ ⊆

⋃
j∈Ag such that there exists J ⊆ C with every e′ ∈ E ′

having a corresponding j ∈ J with e′ ∈ Ej, but
⋂
E ′ ∩ (U ∩Πi(x)) = ∅, contradiction. So

U is i-locally dense in Πi(x) with respect to τ fixi .
As such, JφK contains a factive τ fixi -open that is i-locally dense in Πi(x). By definition,

we have that Mfix , x ⊨ Kiφ and in turn M, x ⊨ [ ······ ]
fix
Kiφ. This establishes the right to

left direction of the theorem.
Both directions of the equivalence have been shown, so the proof is concluded and the

theorem holds.

Of course, from this theorem, we immediately obtain that if all agents are to know
something, that is, if the group is to have what is known as mutual knowledge [63, 32,
68, 27] of a proposition φ, the conditions must hold for all of the agents. The following
Corollary states this formally.

Corollary 2. For any evidence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩with
θ ̸= 0, M, x ⊨ [ ······ ]fix

∧
i∈AgKiφ if and only if the conditions in the previous theorem are

met for every agent.

Proof. Take an arbitrary evidence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N ,
J·K⟩with θ ̸= 0. For the left to right direction, suppose M, x ⊨ [ ······ ]fix

∧
j∈AgKjφ and pick

an arbitrary i ∈ Ag. We can infer that Mfix, x ⊨
∧

j∈AgKjφ and therefore M, x ⊨ Kjφ.
From the knowledge cluster theorem we thereby obtain that the conditions hold for i, and
since i was picked arbitrarily, they hold for all agents. Now for the right to left direction
suppose that the conditions hold for every agent. Applying the knowledge cluster theo-
rem for an arbitrary agent i yields M, x ⊨ [ ······ ]fixKiφ. Thus, Mfix, x ⊨ Kiφ. And since
i was arbitrary, for all i ∈ Ag, Mfix, x ⊨ Kiφ. Since the set Ag is finite, we can form
the conjunction and claim Mfix, x ⊨

∧
i∈AgKiφ. And by the definition of [ ······ ], we have

M, x ⊨ [ ······ ]fix
∧

i∈AgKiφ, as required. Since both directions were shown, the corollary
holds.
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For distributed knowledge, the conditions are similar, but they, of course, have to
mimic the definition of distributed knowledge instead of individual knowledge. What we
mean by this is that instead of requiring a factive dense open subset of φ, we require that
each agent has an ‘information package’ which gives them a factive dense set, and that all
of these sets taken together entail φ (i.e. their intersection is a subset of JφK). The proof
is similar to the previous one.

Theorem 4 (Distributed Knowledge Cluster Theorem). For any evidence diffusion model
M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩with θ ̸= 0, M, x ⊨ [ ······ ]fix DKφ if and only if for every
i ∈ Ag there exists E ⊆

⋃
j∈Ag Ej such that there exists Ui ∈ τ+E

i , the topology generated
by Ei ∪ E, with x ∈ Ui such that:

• for every cluster C of density greater than 1− θ containing i, we have:

– for every e ∈ E, there exists j ∈ C such that e ∈ Ej; and
– for every E ′ ⊆

⋃
j∈Ag Ej, if there exists J ⊆ C such that for all j ∈ J , e ∈ Ej,

then
⋂
E ′ ∩ (Ui ∩ Πi(x)) ̸= ∅;

•
⋂

i∈Ag Ui ⊆ JφK.

Proof. Let M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ be an arbitrary evidence diffusion model
with θ ̸= 0.

(⇒) Suppose that M, x ⊨ [ ······ ]fix DKφ. Thus, we have by the definition of [ ······ ] that
Mfix, x ⊨ DKφ, which in turn means that for every i ∈ Ag there exists Ui ∈ τ fixi such that:
1) Ui is i-locally dense in Πi(x) with respect to τ fixi ; 2) x ∈

⋂
i∈Ag Ui; 3)

⋂
i∈Ag Ui ⊆ JφK.

We proceed in a similar fashion to how we did in the proof of the knowledge cluster
theorem.

Let i ∈ Ag be arbitrarily picked. Now, for the set E required by the consequent, take
E = Efix

i \ Ei. For the subset of φ required, we take the Ui invoked above. Note that the
topology generated by Ei ∪ E = Ei ∪ (Efix

i \ Ei) = Efix
i is exactly the τ fixi . And so, we

know by assumption that U ∈ τ fixi and x ∈ Ui.
Take any e ∈ E. Suppose towards a contradiction that there is a cluster C of density

greater than 1 − θ containing i with all j ∈ C having e ̸∈ Ej. By the corollary to the
evidence cluster theorem, i never adopts e. But we know by assumption that e ∈ Efix

i ,
contradiction. So the first requirement is met.

For the second requirement, take an arbitrary E ′ ∈
⋃

j∈Ag Ej and suppose there exists
J ⊆ C such that for every e ∈ E ′ there is j ∈ J with e ∈ Ej. By the corollary to the
evidence cluster theorem, we have that for every e ∈ E ′, e ∈ Efix

i , so that
⋂
E ′ ∈ τ fixi .

But note that, by assumption, Ui is i-locally dense in Πi(x) with respect to τ fixi . Thus,
we cannot have that

⋂
E ′ ∩ (Ui ∩ Πi(x)) = ∅. And since E ′ was picked arbitrarily, the

second requirement is met as well.
Now note that we have by assumption that

⋂
j∈Ag Uj ⊆ JφK, and so the final bullet

point is also satisfied.
This proves the consequent, and so the left-to-right direction of this theorem is estab-

lished.
(⇐) Now let us suppose the consequent and try to prove the antecedent, namely

M, x ⊨ [ ······ ]fixKiφ. This is the case if and only if 1),2), and 3) mentioned above are
satisfied.
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Pick an arbitrary agent i ∈ Ag. We know that there exists a set E ⊆
⋃

j∈Ag such that
we have Ui ∈ τ+E

i , the topology generated by Ei ∪ E with x ∈ Ui. By assumption, for
every cluster C of density greater than 1 − θ containing i and for every e ∈ E, there is
some j ∈ C such that e ∈ Ej. Thus, by the corollary to the evidence cluster theorem, for
every e ∈ E, e ∈ Efix

i , and indeed τ+E
i ⊆ τ fixi , entailing Ui ∈ τ fixi .

Now to show that Ui is i-locally dense in Πi(x) with respect to τ fixi , suppose the
contrary. This means that there exists A ∈ τ fixi such that (Ui ∩Πi(x))∩ (A∩Πi(x)) = ∅.
From this we can infer that there exists e ∈ E∼fix

i such that (Ui ∩Πi(x))∩ (e∩Πi(x)) = ∅.
Further, we can obtain that there exists E ′ ⊆ Efix

i such that (Ui∩Πi(x))∩(
⋂
E ′∩Πi(x)) =

∅, which by the distributivity and idempotence of ∩ yields
⋂
E ′ ∩ (U ∩ Πi(x)) = ∅. But

now note that for every e′ ∈ E ′, e′ ∈ Efix
i , and so by the evidence cluster theorem we have

that for every cluster C of density greater than 1 − θ there must exist j ∈ C such that
e′ ∈ Ej. So we have found E ′ ⊆

⋃
j∈Ag such that there exists J ⊆ C with every e′ ∈ E ′

having a corresponding j ∈ J with e′ ∈ Ej, but
⋂
E ′ ∩ (U ∩Πi(x)) = ∅, contradiction. So

Ui is i-locally dense in Πi(x) with respect to τ fixi .
Since i was arbitrarily chosen, we can infer that for every agent there exists Ui ∈ τ fixi

such that Ui is i-locally dense in Πi(x) with respect to τ fixi and x ∈
⋂

i∈Ag Ui. Since we
are assuming

⋂
i∈Ag Ui ⊆ JφK, this requirement is met as well. So Mfix, x ⊨ DKφ, which

means M, x ⊨ [ ······ ]fix DKφ, as needed.
Both directions of the equivalence have been shown, so the proof is concluded and the

theorem holds.

As we have seen earlier, namely in Proposition 15, distributed evidence ( DE) is in-
variant under evidence diffusion. For this reason, a theorem similar to the ones we have
proven so far does not make sense for this modality, as it is unaffected by clusters, and
more generally by diffusion.

These results are stated in a general form, for arbitrary evidence diffusion models —
this is part of what makes the conditions so complex. In Section 4.1, we introduced four
special types of network: the total network, the star, the cycle, and the wheel. We would
therefore now be interested to see what special behavior these networks elicit, as well as
effects the extra assumptions imposed by these special networks have on the conditions
required for individual and distributed knowledge at the end of a diffusion sequence.
Furthermore, we would like to define measures of speed and reliability for these networks,
so that later on we can compare the results in our model with those of Zollman [92, 93,
94].

4.4 Diffusion on the Total, Star, Cycle, and Wheel Networks

Investigating the principles that guide diffusion on these special networks seems to
be a clear enough goal — we will see how the extra assumptions we are making about
the networks allow us to modify the cluster conditions from the previous theorems. It
is not yet clear, however, what speed and reliability are in this setting — for we need
different metrics compared to those of Zollman (see Chapter 2) — and there are many
possible avenues of definition, so these notions will need to be clarified before we proceed
with our analysis. In general, these measures will have to be tied to the behavior of
evidence diffusion on the four networks, since even if we look at the speed or reliability of
accession to knowledge (or learning), the epistemic and doxastic attitudes we have defined
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are evidence-based.
In this framework, given the step-wise nature of evidence diffusion, a natural measure

of speed is the number of rounds it takes for a specific outcome to be reached. For example,
the speed of a cascade for a specific piece of evidence is the number of diffusion rounds
it takes for every agent to acquire that piece of evidence through diffusion. Similarly,
the speed of the accession of an agent i to knowledge of a proposition φ is defined as the
number of diffusion rounds that have to pass before the agent robustly knows φ. Formally,
this would be the least number k ∈ N such that Mk, x ⊨ Kiφ and for every k′ ≥ k,
Mk′ , x ⊨ Kiφ. The definition for distributed knowledge is analogous, and the definition
for distributed evidence need not be provided, as DEand diffusion do not interact.

Throughout this section, we will mostly be looking at the speed with which these
networks reach the fixpoint in the diffusion sequence, as it would be difficult to tease
out the speed of accession to knowledge without further assumptions — a fact which will
become clear after our discussion about reliability.

Indeed, reliability on evidence diffusion models is a very difficult characteristic to
associate to the networks directly. As opposed to speed, where we might be interested in
the speed of evidence diffusion in general, and not just the speed of accession to knowledge,
reliability is much more closely related to the success or failure of the network to reach
a specific, ‘good’ epistemic state. This will inevitably depend on the seed sets [61] of
the pieces of evidence. By seed set for a piece of evidence e ∈

⋃
i∈Ag Ei, we mean the

initial set of adopters Age, or those agents who have adopted the piece of evidence before
any diffusion rounds have occurred. In what follows, we outline the three main factors
that contribute to the reliability of evidence diffusion models in general, and discuss
what conclusions can be drawn about networks after that. We tease these out from the
Knowledge Cluster Theorem.

Firstly, the Knowledge Cluster Theorem requires the existence of a subset of
⋃

i∈Ag Ei
with certain properties. Earlier, we called this subset the ‘information package’ that the
agent must receive in order to have a factive (combined) piece of evidence for φ. Of course,
such an information package must exist in the first place for an agent (or the group) to
attain (distributed) knowledge, and this existence requirement is wholly dependent on the
set
⋃

i∈Ag Ei. This does not depend on the network, but rather on the pieces of evidence
that the agents have to begin with.

Secondly, the agent must be in a position to receive such an information package. The
agent’s receptivity for these ‘good’ pieces of evidence would be a measure that is calculated
across evidence diffusion models, not within an evidence diffusion model, since whether
or not an agent receives such an information package in a specific model is a yes-or-no
question, and does not lie on a spectrum. There are many possible ways to specify such
a measure, but this lies beyond the scope of this thesis. Finally, the agent must be in a
position to fend off all of the possible pieces of evidence that would break the density of
their justification for φ. Much like the previous measure, this non-receptivity for ‘bad’
pieces of evidence would be a cross-model measure. We bring this subject up again in the
next, concluding chapter, which traces limitations and future lines of research.

What further complicates the analysis of reliability is that it seems like most of the
network-related factors that would make an agent more receptive to ‘good’ evidence would
make them more receptive to ‘bad’ evidence as well. For example, networks that will form
full cascades with relatively low thresholds (such as the Cycle, see below) put the agent
in the best spot to receive the good information packages, but at the same time in the
most vulnerable position to receive ‘bad’ pieces of evidence. Thus, even out of the select
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few networks we have highlighted, it will be difficult to formally capture which is more
reliable than which with the tools we have been using so far. As well, we conjecture
that the size of the agent set, as well as the size of the set of possible worlds, both affect
reliability, the former by making it likelier that the ‘bad’ pieces of evidence will be further
from the agent, and the latter by increasing the number of possible pieces of evidence
that break a justification’s density. Nevertheless, we proceed with our analysis of these
special networks.

4.4.1 The Total Network

As one may imagine, the total network makes talk of clusters somewhat obsolete, since
all agents are connected to all other agents. In practice, this intuition is materialized
in the following proposition, which is the Evidence Cluster Theorem (henceforth ECT)
adapted to the stronger assumption of a total network. What is noteworthy is that what
is required now for a full cascade with a piece of evidence is simply that there exist a
numerous enough subset of adopters, where ‘numerous enough’ means |Age|

|Ag|−1
≥ θ.

Proposition 19 (ECT for Total Network). For any evidence diffusion model M = ⟨X,
{Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ , e ∈ Efix

i if and only if e ∈ Ei or |Age|
|Ag|−1

≥ θ.

Proof. For the left to right direction, note that Efix
i is the basic evidence set of i at the end

of the diffusion sequence, which means that e ∈ Ei or e was received by i through diffusion.
In case e ̸∈ Ei and it was received through diffusion it must be that |N (i)∩Age|

|N (i)| ≥ θ. But
since the network is total, N (i) = Ag \ {i}, so |N (i)| = |Ag| − 1. We know i ̸∈ Age, and
N (i) = Ag \ {i}, so N (i) ∩ Age = Ag(e). Thus, |N (i)∩Age|

|N (i)| ≥ θ if and only if |Age|
|Ag|−1

≥ θ,
so the disjunction holds and the left to right direction is established. For the right to left
direction, e ∈ Ei or |Age|

|Ag|−1
≥ θ. If the former is the case, note that Ei ⊆ Efix

i and we are
done. If the latter is the case, by arguments similar to those for the previous direction, e is
received by i through diffusion, so e ∈ Efix

i . The right to left direction is also established,
which proves the equivalence.

This has a strong influence on the number of diffusion rounds that are required to
reach the fixpoint. Since no non-adopting agent will become an adopter unless there is a
numerous enough set of adopters, and all of them will if there is such a set, all diffusion of
evidence will happen in one round — for every piece of evidence, it either gets transmitted
to the entire network, or it stays in the seed set. Thus, a fixpoint is reached for this kind
of network in one round, as the following proposition encodes. This means that the total
network is maximal in terms of speed.

Proposition 20. ⊨ tot → ([ ······ ]1φ → [ ······ ]2φ). In words, if the model’s network is total,
then the diffusion sequence reaches its fixpoint after one round.

Proof. Let M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ be an arbitrary evidence diffusion model
and x ∈ X an arbitrary world. We want to show that M, x ⊨ tot→ ([ ······ ]φ→ [ ······ ][ ······ ]φ), so

we suppose M, x ⊨ tot and M, x ⊨ [ ······ ]φ and aim to show that M, x ⊨ [ ······ ][ ······ ]φ. M, x ⊨ tot,
so by Proposition 6, we know that N = T and so for every i ∈ Ag, N (i) = Ag \ {i}. For
any piece of evidence e and agent i ̸∈ Age, because of the totality of the network, e is
adopted at the next diffusion round by i if and only if |Ae|

|Ag|−1
. Since this is the case for every

non-adopting agent, they will act in unison — either all of them adopt, or non of them
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adopt. If they adopt, then Ag ·
·····
e = Ag, and if they do not, then Ag ·

·····
e = Age. In the former

case, nothing regarding e can change anymore, as a full cascade has already been reached,
and in the latter case, again nothing can change after an additional diffusion round, since

the set Ag ·
·····
e will remain the same for the same reasons it did not change during the first

round. Since this holds for every piece of evidence, the evidence sets of all agents will
remain fixed after the first diffusion round. This clearly entails that M2, x ⊨ φ, and thus
M, x ⊨ [ ······ ][ ······ ]φ. Since we reasoned with an arbitrary model and world, our proposition

is proved: tot→ ([ ······ ]φ→ [ ······ ][ ······ ]φ) is valid on evidence diffusion models.

We can now replace the cluster-dependent conditions in the Knowledge Cluster The-
orem(s) (henceforth KCT) using Proposition 19, where the following obtains.

Proposition 21 (KCT for Total Network). For any M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N ,
J·K⟩ , if N = T , then M, x ⊨ [ ······ ]fixKiφ if and only if:

• there exists E ⊆
⋃

j∈Ag Ej such that E ⊆ Ei or for every e ∈ E, |Age|
|Ag|−1

≥ θ, and
there exists U ∈ τ+E

i such that x ∈ U ⊆ JφK;

• For every E ′ ⊆
⋃

j∈Ag Ej, if E ′ ⊆ Ei or for every e ∈ E ′, |Age|
|Ag|−1

≥ θ, then
⋂
E ′ ∩

(U ∩ Πi(x)) ̸= ∅.

Proof. The proposition obtains immediately by substituting the conditions in the KCT
with those obtained in Proposition 19.

From the point of view of epistemic reliability, a few comments can be made about
this network. A positive aspect of it, which we obtain from the second condition, is that
it seems like it could be quite robust to negative results. If a false piece of evidence
somehow makes its way into an agent’s set of basic pieces of evidence — we may imagine
a faulty experiment, or an artefact in the data — then it would need to be independently
reproduced by enough agents before it could make its way to all other agents, and we know
that faulty experiments rarely reproduce. A negative aspect, which we obtain from the
first condition, would be that, if an agent doesn’t have the necessary information package
in their set of basic pieces of evidence, then many (depending on the threshold) other
agents would have to have this package for it to transmit, so that agents are needlessly
resistant to accepting pieces of evidence from which they have a lot of epistemic advantages
to gain. Both aspects seem to point to a kind of conservativity to non-well-vetted evidence.
Depending on the overall evidence available, and on the seed sets for every piece of
evidence, this could yield both good and bad results.

4.4.2 The Star Network

We move on to the star (for i) network. As one would expect, our analysis will find
that the agent i will have a lot of authority in this network, in the sense that their evidence
will be transmitted without any hurdles, and they will act as a barrier to the diffusion of
much of the other evidence. The following proposition encapsulates the first part of what
was just mentioned.

Proposition 22. For any M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ , if N = ⋆i, then Ei ⊆ E ······
j

for every j ∈ Ag.
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Proof. Let M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag,N , J·K⟩ be arbitrarily picked, and take an arbitrary
world x. Suppose N = ⋆i and suppose e ∈ Ei. We have N (i) = Ag \ {i} and N (j) = {i}
for every j ̸= i ∈ Ag. Thus, it is clear that for every e ∈ Ei and for every j ̸= i ∈ Ag,
|N (j)∩Age|

|N (j)| = |{i}|
|{i}| = 1 ≥ θ. As such, for every j ∈ Ag, for every e ∈ Ei, we have e ∈ E ······

j .
And since M and x were arbitrarily picked, the proposition holds.

It is clear now that i’s evidence gets transmitted to everybody else after one round, but
what of the evidence of the other agents? We capture what happens with that evidence
by investigating the conditions in which i does not have a piece of evidence initially, but
receives it after one diffusion round. In short, the requirement from the total network
shows up again: there must be a group of adopters numerous enough for i to adopt.

Proposition 23. For any M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ , if N = ⋆i and e ̸∈ Ei,

then e ∈ E ······
i if and only if |Age|

|Ag|−1
≥ θ.

Proof. Let us take an arbitrary evidence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag,
N , J·K⟩with N = ⋆i. Suppose some piece of evidence e ̸∈ Ei. Now for the left to

right direction suppose e ∈ E ······
i . This means that e was received through diffusion, i.e.

|N (i)∩Age|
|N (i)| ≥ θ. But since N (i) = Ag\{i} and i ̸∈ Age, we have that the previous inequality

is equivalent to |Age|
|Ag|−1

≥ θ. For the right to left direction, by a similar argument, i will

receive e at the next round, so that e ∈ E ······
i . The equivalence and thus the proposition as

a whole are proven.

Note that, if i receives a piece of evidence as the previous proposition describes, then
we may apply Proposition 22 once more, leading to everyone else receiving that piece
of evidence. Thus, the two previous results together give us the necessary and sufficient
conditions for an agent to have a piece of evidence at the end of the diffusion sequence.

Proposition 24 (ECT on Star Network). For any evidence diffusion model M = ⟨X,
{Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ , if N = ⋆i, then e ∈ Efix

j if and only if e ∈ Ej or e ∈ Ei or
|Age|
|Ag|−1

≥ θ.

Proof. Take an arbitrary evidence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N ,
J·K⟩with N = ⋆i. For the left to right direction, note that Efix

j is the basic evidence
set of j at the end of the diffusion sequence, which means that e ∈ Ej or e was received
by j through diffusion. In case e ̸∈ Ej and it was received through diffusion, let us draw

a case distinction. If e ∈ Ei, then by Proposition 22, e ∈ E ······
j , whereby e ∈ Efix

j . If e ̸∈ Ei,
then since i is j’s only connection, by Proposition 23 and then Proposition 22, e ∈ E2

i .
So the disjunction holds. For the right to left direction, we argue in much the same way,
using the previous propositions. This proves the equivalence.

In short, for an agent to end up with a piece of evidence at the fixpoint, they must
have either started with it, received it from i during the first round, or received it from i
during the second round. An analogue of Proposition 20 can be proven for star networks.
Star networks are thus slower than total networks.
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Proposition 25. ⊨ stari → ([ ······ ]2φ→ [ ······ ]3φ). In words, if the model’s network is a star
for i, then we reach a fixpoint at diffusion round 2.

Proof. Analogous to Proposition 20.

As before, we can substitute the cluster conditions for the ones that we derived with
the extra assumption of the star network.

Proposition 26 (KCT for Star Network). for any M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ ,
if N = ⋆i, then M, x ⊨ [ ······ ]fixKjφ if and only if:

• there exists E ⊆
⋃

k∈Ag Ek such that E ⊆ Ej or E ⊆ Ei or for every e ∈ E, |Age|
|Ag|−1

≥ θ,
and there exists U ∈ τ+E

i such that x ∈ U ⊆ JφK;

• For every E ′ ⊆
⋃

k∈Ag Ek, if E ′ ⊆ Ej or E ′ ⊆ Ei or for every e ∈ E ′, |Age|
|Ag|−1

≥ θ, then⋂
E ′ ∩ (U ∩ Πi(x)) ̸= ∅.

Proof. The proposition obtains immediately by substituting the conditions in the KCT
with those obtained in Proposition 24.

From the point of view of reliability, it seems hard to put this network above the
total network. The same condition for a full cascade — that enough agents over-all
are in possession of a piece of evidence — is present here, as it was in the case of the
previous network. But additionally, we see that the central authority is able to spread
their evidence without hurdle or rebuttal. Quite obviously, if the star of the network has
false or misleading pieces of evidence, the entire network has to pay the price. Even if the
central authority is known to be reliable, the process of verification that the total network
encapsulates seems to be more epistemically healthy.

4.4.3 The Cycle Network

For the cycle network, it is harder to obtain general conditions, like we have been
doing so far. Thankfully, however, there is a property that this network has which still
makes it tenable to analysis. Namely, all clusters except the whole set of agents and the
singleton sets have a density of 1

2
.

Proposition 27. For any M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ , If N = ⃝, for every
C ⊊ Ag, where for every i ∈ C there exists j ∈ C with j ∈ N (i), C is a cluster of density
1
2
.

Proof. Take any C ⊊ Ag such that for every i ∈ C there exists j ∈ C with j ∈ N (i).
Since N = ⃝, the sets that we are excluding with the aforementioned conditions are Ag
and the singletons {i} for any i ∈ Ag. There are finitely many such sets, since the set of
agents is finite. If |C| = 2, note that each agent in C has a neighbor in C, and a neighbor
outside C, meaning |N (i)∩C|

|N (i)| = 1
2

for both of these agents. This carries over to |C| > 2, for
the agents that are on the edges of the set — and there are always such agents because
we are excluding the set Ag. For the agent in the middle we have |N (i)∩C|

|N (i)| = 1, as we
know from the properties of the cycle that every agent is connected exclusively to two
neighbors, and both are in the set by assumption. This proves the proposition.
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Given this, we can analyse what happens in case the threshold is less than or equal to,
or greater than 1

2
. Starting with the former, it should be clear that, if a piece of evidence

e is in some agent’s basic evidence set, there will be no clusters of density strictly greater
than 1

2
in Ag \ Age, which means that there will be a full cascade with that piece of

evidence. And since this happens with all pieces of evidence, the agents fully and openly
share all pieces of evidence. This is captured and proven in the following proposition.

Proposition 28. For every M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩with N = ⃝, if θ ≤ 1
2
,

then for every i ∈ Ag, Efix
i =

⋃
j∈Ag Ej.

Proof. Evidently, for any e ∈
⋃

i∈Ag Ei, if Age = Ag, then Agfixe = Ag. From Proposition
27, we can derive that for any e ∈

⋃
i∈Ag Ei with Age ̸= Ag, there is no cluster of density

greater than 1− θ in Ag \Age, which, by the ECT, means that Agfixe = Ag. Putting this
all together, we get exactly that for every i ∈ Ag, Efix

i =
⋃

j∈Ag Ej, as required.

An immediate consequence of this is that all agents have, as their topology of evidence,
the join topology

∨
i∈Ag τi. Thus, we can simplify the KCT(s) and make no reference to

information packages or clusters, since we know directly what topology the agents will
obtain at the end of the diffusion sequence.

Proposition 29 (KCT for Cycle with θ ≤ 1
2
). For any M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N ,

J·K⟩with N = ⃝ and θ ≤ 1
2
, M, x ⊨ [ ······ ]fixKiφ if and only if there exists U ∈

∨
j∈Ag τj

such that x ∈ U ⊆ JφK and U is i-locally dense in Πi(x).

Proof. Take an arbitrary evidence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ for
θ ≤ 1

2
and with N = ⃝. By Proposition 28, for any i ∈ Ag, Efix

i =
⋃

j∈Ag Ej. Thus,
as we have shown before in the proof of Proposition 14, Efix

i =
⋃

j∈Ag Ej entails τ fixi =∨
j∈Ag τj. So, the necessary and sufficient condition for [ ······ ]fixKiφ is the existence of a

factive
∨

j∈Ag τj-open subset of JφK that is i-locally dense in Πi(x).

The Distributed KCT is modified in a similar way, in the sense that every agent i must
have a factive

∨
j∈Ag τj-open that is i-locally dense in Πi(x), and the intersection of these

has to be a subset of JφK. Note that even though the agents do have the same topology,
they do not have the same partitions, and so not everybody knows the same propositions,
and distributed knowledge does not coincide with any particular agent’s knowledge in
a necessary manner. It should be clear, though, that if we apply law distribution to
the model, then since all agents will have the same topology and partition, all forms of
knowledge will coincide.

We now prove an upper bound for the fixpoint of a diffusion sequence based on a model
with this network. Unlike before, we cannot say exactly how many diffusion rounds there
will be before the fixpoint is reached. This is because, on this network, the number of
diffusion rounds depends on the seed set [61] for each piece of evidence. For example, a
model in which there is only one piece of evidence e ⊊ X, and it has only been adopted
by one agent. Even though it will form a cascade according to our previous results, the
number of rounds it will take to propagate is ⌊ |Ag|

2
⌋. On the other hand, if Age = Ag \ {i}

for some i, it will only take one round before we reach a full cascade with the one and only
piece of evidence, therefore reaching the fixpoint. For these parameters, this is clearly the
slowest network we have seen so far, and the slowest over all.
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Proposition 30. For any evidence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N ,
J·K⟩with θ ≤ 1

2
, M ⊨ cycle→ ([ ······ ]⌊

|Ag|
2

⌋φ→ [ ······ ]⌊
|Ag|
2

⌋+1φ)

Proof. Let M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ be an arbitrary evidence diffusion model
with θ ≤ 1

2
, take an arbitrary world x and suppose M, x ⊨ cycle and M, x ⊨ [ ······ ]⌊

|Ag|
2

⌋φ.
Take an arbitrary piece of evidence e and suppose it has the minimal seed set Age = {i} for
some i. Then, for i’s neighbors, as θ ≤ 1

2
, they will adopt, and so too for their neighbors,

and so on. The set of agents is finite, and so we reach a full cascade in ⌊ |Ag|
2
⌋. Since this

was the minimal seed set, diffusion with evidence that has more numerous seed sets can

only happen faster. So, for every i ∈ Ag, E⌊ |Ag|
2

⌋
i =

⋃
j∈Ag Ej. This clearly entails that

M, x ⊨ [ ······ ]⌊
|Ag|
2

⌋+1φ, as needed.

For θ ≤ 1
2
, we might say that this network is the least reliable so far. The unfettered

diffusion of all pieces of evidence means that all bad results will spread to all agents. As
always, the evidence available over-all is important, but with these parameters, the cycle
has no way to fend against bad evidence.

We move on now to the other case, where θ > 1
2
. Intuitively speaking, since any agent

is only connected to two other agents, and in order to obtain a piece of evidence more than
half of the agents need to possess that piece of evidence, the only case where diffusion
happens is when we have adopter-non-adopter-adopter configurations. That is, when a
non-adopting agent has neighbors who are both adopters. This intuition is made precise
with the following proposition: the agent’s set of basic pieces of evidence will consist of
their own initial set, together with the pieces of evidence that both his neighbors have.

Proposition 31 (ECT for Cycle with θ > 1
2
). For any evidence diffusion model M = ⟨X,

{Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩with N = ⃝ and θ > 1
2
, for any i ∈ Ag and for every

e ∈
⋃

j∈Ag Ej, e ∈ Efix
i if and only if e ∈ Ei ∪ (Ej ∩ Ek) where N (i) = {j, k}.

Proof. Take an arbitrary evidence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ for
θ > 1

2
with N = ⃝. For the left to right direction, note that Efix

i is i’s basic evidence
set at the end of the diffusion sequence, so let us draw the following case distinction
for an arbitrary piece of evidence e. If e ∈ Ei, then clearly e ∈ Ei ∪ (Ej ∩ Ek) where
N (i) = {j, k}. If e ̸∈ Ei, then at some round, e was received through diffusion, which
requires |N (i)∩Age|

|N (i)| ≥ θ > 1
2
, and since i is only connected to j and k, this means that

both must have e at some round. Suppose towards a contradiction that e ̸∈ Ej ∩ Ek, i.e.
either j or k doesn’t have it in the initial model. Then, since they both have it at some
later round, one of them, without loss of generality say j, must have received it at some
later round. Analogously, for j to receive e at a later round, i must have had e at an
earlier round, which we know is false. So e ∈ Ej ∩ Ek, which establishes the left to right
direction. For the right to left direction, we easily observe that if e ∈ Ei, then e ∈ Efix

i ,
and if e ∈ Ej ∩Ek, then e is received by i through diffusion at the next round, so e ∈ Efix

i .
The proposition is proven.

Similarly to the previous case, this proposition gives us precisely the topology that
the agent will have after diffusion, so we can omit the mention of clusters and specify the
condition for knowledge after diffusion directly.

Proposition 32 (KCT for Cycle with θ > 1
2
). For any M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N ,

J·K⟩with N = ⃝, if θ > 1
2

then M, x ⊨ [ ······ ]fixKiφ if and only if there exists U ∈ τ ′i , the
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topology generated by Ei ∪ (Ej ∩ Ek), where N (i) = {j, k}, such that x ∈ U ⊆ JφK and U
is i-locally dense in Πi(x)

Proof. It is clear from Proposition 31 that Ei ∪ (Ej ∩ Ek), where N (i) = {j, k}, is the
subbasis for τ fixi , so [ ······ ]fixKiφ holds by definition if and only if, in the fixpoint model,
there is a factive τ fixi -open subset of JφK that is i-locally dense in Πi(x).

As we have stated before, the only cases where diffusion happens on the cycle network
with thresholds greater than 1

2
are adopter-non-adopter-adopter configurations, which

turn into adopter-adopter-adopter configurations in one round. This means that a fixpoint
is reached after exactly one round of diffusion. For these parameters, the cycle matches
the speed of the total network.

Proposition 33. For any evidence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N ,
J·K⟩with θ > 1

2
, M ⊨ cycle→ ([ ······ ]1φ→ [ ······ ]2φ)

Proof. Let M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ be an arbitrary evidence diffusion model
with θ > 1

2
, take an arbitrary world x and suppose M, x ⊨ cycle and M, x ⊨ [ ······ ]1φ. Take

an arbitrary agent i ∈ Ag. Either E1
i =

⋃
j∈Ag Ej, in which case i cannot receive any

further pieces of evidence, or E1
i ̸=

⋃
j∈Ag Ej. In this latter case, for any piece of evidence

e ∈
⋃

j∈Ag Ej \ E1
i , to receive it at the next round, it must be the case that e ∈ E1

j ∩ E1
k

where {j, k} = N (i). Since e ̸∈ E1
i , we know e ̸∈ Ej or e ̸∈ Ek. Without loss of generality,

say e ̸∈ Ej but e ∈ E1
k . Then for e ∈ E2

i , e ∈ E1
j , which requires e ∈ E1

i . We know this is
not the case, so e ̸∈ E2

i , and since e and i were arbitrary, this means that we have reached
a fixpoint in diffusion, and thus, M, x ⊨ [ ······ ]2φ, proving the proposition.

As for reliability, these parameters seem to better poise cycle networks against false
evidence. That being said, the fact that what an agent adds to their evidence set during
diffusion is wholly dictated by what their immediate neighbors agree on seems to be a
principle of poor epistemic standing.

4.4.4 The Wheel Network

As with the cycle network, we can obtain an upper bound on the density of the clusters
appearing in wheel networks. As expected, this upper bound is higher than the previous
one, since the wheel is more densely connected than the cycle.

Proposition 34. For every C ⊊ Ag where for every j ∈ C there exists k ∈ C with
k ∈ N (j), C is a cluster of density at most 2

3
.

Proof. Take any C ⊊ Ag such that for every j ∈ C there exists k ∈ C with k ∈ N (j).
Since N = Wi, the sets that we are excluding with the aforementioned conditions are Ag
and the singletons {j} for any j ∈ Ag. There are finitely many such sets, since the set of
agents is finite. If i ̸∈ C, then if |C| = 2, note that each agent in C has a neighbor in C,
and two neighbors outside C, meaning |N (i)∩C|

|N (i)| = 1
3

for both of these agents. This carries
over to |C| > 2, for the agents that are on the edges of the set — and there are always
such agents because we are excluding the set Ag. For the agent in the middle we have
|N (i)∩C|
|N (i)

= 2
3
, as we know from the properties of the cycle that every agent is connected

exclusively to two neighbors and to i. If i ∈ C, then every non-i agent that is not on
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the edges of the set, has |N (i)∩C|
|N (i)

= 1, those on the edges have |N (i)∩C|
|N (i)

= 2
3

and i has
|N (i)∩C|
|N (i)

= |C|−1
|Ag|−1

. If this latter fraction is lower than 2
3
, that becomes the density of C,

but if it is larger 2
3

is the density by definition. These were all the possible cases, so the
highest density of such a cluster is 2

3
, as stated.

What we immediately obtain as a consequence of the ECT is that, for thresholds at
least as low as 1− 2

3
, a full cascade forms for all pieces of evidence.

Proposition 35. For every M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩with N = Wi, if θ ≤ 1
3
,

then for every j ∈ Ag, Efix
j =

⋃
k∈Ag Ek.

Proof. Evidently, for any e ∈
⋃

i∈Ag Ei, if Age = Ag, then Agfixe = Ag. From Proposition
34, we can derive that for any e ∈

⋃
i∈Ag Ei with Age ̸= Ag, there is no cluster of density

greater than 1− θ in Ag \Age, which, by the ECT, means that Agfixe = Ag. Putting this
all together, we get exactly that for every i ∈ Ag, Efix

i =
⋃

j∈Ag Ej, as required.

In terms of speed, for these parameters, we prove the following proposition.

Proposition 36. For every M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ , if θ ≤ 1
3
,

M ⊨ wheeli → ([ ······ ]

⌈
⌈|Ag|−1⌉

3 −1

2

⌉
+1

φ→ [ ······ ]

⌈
⌈|Ag|−1⌉

3 −1

2

⌉
+2

φ)

Proof. Take an arbitrary M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ for θ ≤ 1
3

and suppose

M ⊨ wheeli and M, x ⊨ [ ······ ]

⌈
⌈|Ag|−1⌉

3 −1

2

⌉
+1

φ. Then we can infer that N = Wi. Let

k =

⌈
⌈|Ag|−1⌉

3
−1

2

⌉
+ 1. Now note that Mk is the model after

⌈
⌈|Ag|−1⌉

3
−1

2

⌉
+ 1 diffusion

rounds. Observe that ⌈ |Ag|−1
3

⌉ is the upper bound of the number of agents needed to
make i adopt, for we know that i is connected to every other agent, and that θ ≤ 1

3
. Then

note that, in the slowest diffusion scenario, i.e. when there is one non-i initial adopter,
two agents adopt per round, so that at round t there are 1 + 2t adopters of this piece
of evidence. Thus to obtain our upper bound we simply solve ⌈ |Ag|−1

3
⌉ ≥ 1 + 2t, getting

⌈|Ag|−1⌉
3

−1

2
≥ t. Putting

⌈
⌈|Ag|−1⌉

3
−1

2

⌉
ensures that i will adopt, so the round after that,

k + 1, is an upper bound for the fixpoint. This proves the proposition

Next up, we substitute the cluster conditions in the KCT. This case is exactly analo-
gous to the cycle with θ ≤ 1

2
.

Proposition 37 (KCT for Wheel with θ ≤ 1
3
). For any M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N ,

J·K⟩with N = Wi and θ ≤ 1
3
, M, x ⊨ [ ······ ]fixKiφ if and only if there exists U ∈

∨
j∈Ag τj

such that x ∈ U ⊆ JφK and U is i-locally dense in Πi(x).

Proof. Analogous to Proposition 29.

For thresholds where full cascades are not guaranteed, we observe properties similar
to those of the star network and of the cycle, which the wheel is a combination of. Much
like in the star network, the agent in the center of the wheel has a high level of authority,
but it is somewhat blunted when compared to the star network. On the star network, the
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evidence of the central agent was diffused to all other agents with no caveat, but here, we
observe that the central agent must have at least one other agent to support his case for
a piece of evidence, so to speak, for that evidence to reach a full cascade. This is what
the next proposition shows.

Proposition 38. For every M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩with N = Wi, if θ ∈
(1
3
; 2
3
], then for every e ∈

⋃
j∈Ag Ej, if i ∈ Age and there is some j ̸= i with j ∈ Age, then

Agfixe = Ag.

Proof. Take an arbitrary evidence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N ,
J·K⟩with N = Wi and θ ∈ (1

3
; 2
3
]. Take an arbitrary e ∈

⋃
j∈Ag Ej and suppose that

i, j ∈ Age with i ̸= j. By the definition of Wi, we have that there exist k, ℓ ∈ N (j) with
k, ℓ, i all distinct. Observe that for k, since i, j ∈ Age, we have |N (k)∩Age|

|N (k)| = |{i,j,m}∩{i,j}|
|{i,j,m}| =

2
3
≥ x for any x ∈ (1

3
; 2
3
], so that k adopts e at the next round. Similarly for ℓ. This

argument can be repeated, until we reach a full cascade, which we are assured to do, since
Ag is finite. Since we picked an arbitrary piece of evidence, this happens for all pieces of
evidence. The proposition is proven.

For θ > 1
3
, the necessary and sufficient conditions for a full cascade to form for a

piece of evidence are not as clear cut as in the other cases, so we do not provide modified
versions of the ECT and KCT. We present this as a reliability advantage at the end of
the section.

Proposition 39. For any evidence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N ,
J·K⟩with θ ∈ (1

3
; 2
3
], M ⊨ wheeli → ([ ······ ]⌊

|Ag|−1
2

⌋φ→ [ ······ ]⌊
|Ag|−1

2
⌋+1φ)

Proof. Let M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ be an arbitrary evidence diffusion model
with θ ≤ 1

2
, take an arbitrary world x and suppose M, x ⊨ wheeli and M, x ⊨ [ ······ ]⌊

|Ag|−1
2

⌋φ.
Take an arbitrary piece of evidence e and suppose it has the seed set Age = {i, j} for
some j ̸= i. Then, for j’s neighbors, as θ ∈ (1

3
; 2
3
], they will adopt, and so too for their

neighbors, and so on. The set of agents is finite, and so we reach a full cascade in ⌊ |Ag|−1
2

⌋,
by analogy with the cycle network. Note that if the seed set contains i and is greater, then
diffusion can only happen faster, and that if it it does not contain i, but a cascade forms,
then necessarily there have to be enough agents to make i adopt, after which the same
pattern of diffusion happens, so that it is still faster than the seed set {i, j}. This provides
a clear upper bound to the speed of diffusion, so M, x ⊨ [ ······ ]⌊

|Ag|−1
2

⌋+1φ, as needed.

So, for θ ∈ (1
3
; 2
3
], the wheel network is slightly faster than the cycle network, by virtue

of being one round faster for some sets of agents.
The following example shows that even for high thresholds, an agent’s set of basic

pieces of evidence isn’t completely determined by their immediate neighbors. We can see
this as a consequence of the central agent acting as a ‘bridge’ between all the other agents.

Example 6. Let Ag = {1, ..., 6} and let N = W1. Consider an evidence diffusion model
M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ for threshold θ > 2

3
and let us focus on a piece of

evidence e where Age = {2, 4, 5, 6}. Below we depict the network of agents, with the red
nodes being the agents that are in possession of the piece of evidence e at the depicted
round. After one diffusion round, since 4

5
> 2

3
, 1 receives e in their basic evidence set. Note

that at this round, 3 does not receive e since only two out of three connections possess e.
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At the next round, however, all of 3’s contacts are in possession of e, and so 3 receives it
too. So we observe that, unlike in the case of the cycle network, Efix

3 ̸= E3∪ (E2∩E4∩E1),
since e ̸∈ E1, e ̸∈ E3, but e ∈ Efix

3 .

1

4

5

2

6

3

······
1

4

5

2

6

3

······
1

4

5

2

6

3

In fact, this example is a great illustration of the upper bound on the fixpoint for
diffusion for the wheel network for θ > 2

3
. The only scenario in which diffusion happens

for a non-central agent is when all their neighbors are adopters and they are not. The only
scenario in which diffusion happens for a central agent is when |Age|

|Ag|−1
≥ θ. A sequence

of these two is the maximal diffusion sequence for the wheel network with such a high
threshold. Thus, the speed with which the fixpoint is reached is as good as the star
network.

Proposition 40. For any evidence diffusion model M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N ,
J·K⟩with θ > 2

3
, M ⊨ wheeli → ([ ······ ]2φ→ [ ······ ]3φ)

Proof. Let M = ⟨X, {Ei}i∈Ag, {Πi}i∈Ag, N , J·K⟩ be an arbitrary evidence diffusion model
with θ > 2

3
, take an arbitrary world x and suppose M, x ⊨ wheeli and M, x ⊨ [ ······ ]2φ.

Take an arbitrary piece of evidence e. Either i ∈ Age or i ̸∈ Age. If i ∈ Age, then for
every j such that k, ℓ ∈ N (j) with k, ℓ, i all distinct and k, ℓ ∈ Age, j ∈ Ag1e . After this,
it is clear that Ag1e = Ag2e , since no non-adopting agent j has k, ℓ ∈ N (j) with k, ℓ, i all
distinct and k, ℓ ∈ Age. If i ̸∈ Age, then either |Age|

|Ag|−1
≥ θ, in which case i ∈ Ag1e and the

situation from the previous case repeats, or otherwise i ̸∈ Age and so since i is a neighbor
of all agents, for all j ∈ Ag, |N (j)∩Age|

|N (j)| < θ. As just demonstrated, the fixpoint is at most

2 in every case. So M, x ⊨ [ ······ ]3φ, as needed.

Now let us discuss the reliability of this network. This network seems to be the most
reliable so far, as it manages to strike a great balance between speed and reliability. A
first advantage is that it is for a less broad spectrum of thresholds than for the cycle
networks that we encounter the negative scenario in which all pieces of evidence cascade.
The second advantage has to do with its relationship with the star and the cycle. For
higher thresholds, we did not provide substitutions for the cluster conditions in the ECT
and KCT. Though this might initially seem like a negative aspect of the wheel, it is a
sign of the diversity of diffusion behavior given different seed sets. This we interpret to
be a strength of the network, because it shows a form of rational balance between the
authority of the central agent in the star network and the rigidity of evidence diffusion
(for high thresholds) in the cycle network.

4.5 Zollman’s Findings in This Model

Before we begin this comparison, it is important to note a major caveat: the radically
different nature of the two analyses makes it close to impossible to draw any practical
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conclusions regarding which model is ‘better’. As outlined in Chapter 2, in the model
Zollman uses there are two states of the world, φ1 and φ2, and two actions available
to each agent, A1 and A2. The agents have expected utilities for these actions, and
they form beliefs about which is the actual world given the utilities they receive after
acting. Learning means learning which is the actual world In our model, there are possibly
infinitely many worlds, and the agents have pieces of evidence they form beliefs and
knowledge on the basis of. Learning in our context is broader, as any proposition can
be learned. We therefore present our results and this comparison as a companion to the
work of Zollman [92, 93, 94], and not as a competitor.

Still, it is important to note the strengths and weaknesses of both approaches to the
issue. Zollman ran 10, 000 simulations on each network [92, p. 579]. Furthermore, for a
limited number of agents, he explored the properties of all possible networks [92, §3.2]. As
things stand currently, this kind of quantitative analysis is beyond the scope of this thesis.
What we have done in this thesis, however, is to provide propositions and theorems, i.e.
mathematical facts, about the networks, which is a more difficult task for a quantitative
setting. With this in mind, we proceed with the analysis.

In order to compare the results in our framework with those in Zollman’s [92, 93,
94], we first discuss the ordering of the networks in terms of connectivity. Earlier in
this chapter, we introduced two measures for connectivity: the diameter of the network,
and the average node distance. In the table below, we can observe several values for the
general functions from Proposition 5, where the diameter is in the first position, and the
average node distance is in the second. As is quite obvious, the order of the networks
from most connected to least connected is as follows: Total, Wheel, Star, Cycle.

Network
|Ag| 4 5 6 ...

Total (1,1) (1,1) (1,1) ...
Star (2, 1.5) (2,1.6) (2,1.66667) ...
Cycle (2,1.333...) (2,1.5) (3,1.8) ...
Wheel (1,1) (2,1.2) (2,1.333...) ...

To measure connectivity, Zollman used different graph metrics, namely density, the
percentage of possible connections that actually appear in the graph, and the clustering
coefficient, the degree to which one’s neighbors are connected to each other [92, 66]. For
the Total, Cycle and Wheel networks, which are the ones we will be focusing on due to
Zollman’s focus on them, these give the same ordering.

If we are to compare the speed with which the fixpoint in the model is reached with
the speed of learning in Zollman’s model, our results differ quite drastically. For Zollman,
the more highly connected a network is, the faster it converges. In our framework, a
comparable trend is that the total network is the fastest, arriving at the fixpoint in one
round, and the cycle is potentially the slowest (for θ ≤ 1

2
), with the maximum diffusion

speed being ⌊ |Ag|
2
⌋. That being said, the wheel is more connected than the star, but is

at most as fast as it. Likewise, the cycle is as fast as the very fastest network, the total
network, for a large part of the possible thresholds, i.e. for every θ > 1

2
, despite being the

least well connected.
There is a point to be made here about the validity of the comparison. After all, the

fixpoint of a diffusion sequence is merely that stage of the diffusion sequence after which
nothing more changes. This is quite dissimilar to the way Zollman sets the problem up,
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where agents have to choose between which of two actions to pursue and update their
beliefs and actions based on the payoffs [92, pp. 578–579]. However, recall that our model
offers no guarantee of learning, and that in fact the conditions for learning are based on
multiple, rather complex factors. And then, if we are assured that a proposition will be
learned, then the speed with which the learning occurs would still depend on the speed
of diffusion, for which speed of reaching the fixpoint is a proxy.

As for the reliability, Zollman finds that more sparsely connected networks more re-
liably track the truth [92, p. 579]. As discussed above, reliability is a concept that is
difficult to model in our framework. For this reason, we will limit ourselves to the relia-
bility analysis we made in terms of the epistemic properties of different networks. In this
arena as well, we find that our results differ from Zollman’s. The most sparsely connected
network we found to be the least reliable, as, for low thresholds it guaranteed the diffusion
of misleading evidence to all agents, and for higher thresholds it exhibited a large amount
of rigidity, in the sense that an agent received only the pieces of evidence that were pos-
sessed by both the agent’s neighbors. The next we found to be the total network, where
the agents showed an interesting amount of conservativeness to new pieces of evidence.
Given a small extra assumption that false pieces of evidence appear less often than true
ones (assuming a fixed actual world), we may see this as a good property to have, and one
that increases reliability. The most reliable network was the wheel, where full cascades
with all pieces of evidence happen on a less broad spectrum of thresholds, and where, for
the rest of the spectrum of thresholds, we neither ran into the issue of the star network,
where the star agent had too much authority, nor into the issue of the cycle, where an
agent rigidly accepts only that which their neighbors can agree on.

One noteworthy aspect of the previous discussion is that the ranking is based on
interpretations of the formal properties we obtained and the comparison between our work
and Zollman’s relies on the different modeling choices that were made. These choices are
crucial to take into account when reflecting on the comparison. In future work, other such
choices or deviations, for example exploring alternative epistemic principles to rank the
networks, or performing a quantitative analysis, would be fascinating to see.
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5 Limitations, Conclusion, and Further Research
This thesis has explored the complex dynamics of evidence diffusion in networks of

evidence-based reasoners. By bridging the gap between topological evidence models and
threshold models, we have developed evidence diffusion models for multi-agent systems,
providing insights into the effects of network structure on both individual and group
knowledge.

In Chapter 2, we laid the philosophical groundwork for our contributions by providing
three arguments for the necessity of Social Epistemology; that is, for its irreducibility to
Individual Epistemology with communication. Through the historical case study of Ignaz
Semmelweis, we demonstrated the potentially deadly effects of poor scientific network
organization. Through the concept of epistemic dependence, we highlighted the fact that
agents come to believe and know things by more than individual means. By outlining the
Independence Thesis and Zollman’s results pertaining to the potential trade-offs between
network speed and reliability, we showed that there is ample formal support for Social
Epistemology. We furthermore set our thesis up as a continuation of this formal support.

Chapter 3 introduced the formal model that is at the core of this thesis’ contribu-
tion. In Section 3.1 we outlined the topological preliminaries that we need for our models
and results and we outlined their epistemic interpretations. We then presented Topolog-
ical Evidence Models for single-agent evidence-based belief and knowledge (Section 3.2),
Partitional Models as the natural multi-agent extension of Topological Evidence Models
(Section 3.3) and Threshold Models for diffusion (Section 3.4) as the parent-frameworks
for our own. The chapter culminated with the development of Evidence Diffusion Models
in Section 3.5, the main contribution of this thesis. These models allow for individual and
group notions of knowledge and belief to be studied in the context of a network of evidence-
based reasoners in which pieces of evidence are being communicated via threshold-limited
diffusion.

In Chapter 4, we applied the developed models to analyse the dynamics of information
flow in the context of evidential networks. In Section 4.1, graph-theoretic network mea-
sures were outlined that helped us analyse network connectivity’s effect on knowledge. We
also highlighted the four special networks to which Section 4.4 was dedicated. Further-
more, we demonstrated our language’s power to express the properties of these networks
and we showcased the agents’ knowledge regarding the networks they find themselves
in. In Section 4.2, we focused on the invariance of the individual and group knowledge
modalities under the evidence diffusion model transformer. We also provided epistemic
interpretations of these formal results, pertaining to the robustness of Distributed Evi-
dence and the fragility of Defeasible Knowledge and (Defeasible) Distributed Knowledge.
In Section 4.3, we obtained sweeping results regarding evidence cascades and individual
and group learning. These were formulated as ‘Cluster Theorems’, whereby we can learn,
from the available evidence in the network and the network structure in the initial model
alone, what evidence agents will have, as well as what they will know individually and
in a group at the end of a diffusion sequence. In Section 4.4 we provided speed and
reliability results for the four special networks that we defined earlier. Finally, in Section
4.5, we compare these results with Zollman’s results on the speed and reliability of the
same networks and indeed point out some stark differences between our results. We also
point out that these divergences are more than likely caused by the stark differences in
modeling paradigms, and that further comparative work is needed.

It is important to point out the limitations of the model at its current stage of de-
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velopment. We presently see three potential interconnected limitations. The first is that
no axiomatization was presented, or is currently known, for Evidence Diffusion Models.
The second is that our work so far would be difficult to explore quantitatively as well.
Second, once computer implementation for Evidence Diffusion Models becomes feasible,
simulations could be run so that results more similar to Zollman’s in nature could be ob-
tained, and a more faithful comparison could be drawn. Finally, a more rational diffusion
process, which involves checking and cross-validation could be implemented to model a
more realistic, softer social influence. For instance, agents would become aware of a piece
of evidence once enough of their friends are as well, and they check it when this condition
is met. Checking a piece of evidence could involve probabilities, whereby true evidence
‘replicates’ with a very high probability, and false evidence ‘replicates’ with a very low
probability.

We see many avenues for further work beyond the ones mentioned just now. First,
one might explore variations of this model where the thresholds are not uniform across
agents, i.e. each agent might have their own threshold. This would be a good setting
to model the difference between agents that are more or less skeptical of new results.
The doxastic and epistemic effects of skepticism in a scientific network of evidence-based
reasoners would be fascinating to see.

Second, one might explore a variation of this model where each piece of evidence has
its own threshold for adoption. This would seem like a good modelling setting for the
plausibility of evidence pieces. In this setting, we can imagine that some evidence pieces
that are ‘obvious’ or ‘very plausible’ would reach all agents, whereas ‘not so plausible’
evidence pieces might be limited to only a few clusters. Of course, combinations of the
two aforementioned extensions would be highly complex, but also highly interesting.

A third avenue for further research could be the exploration of qualitative expert
deference principles. The principle by which agents choose to adopt pieces of evidence in
our model is quantitative, since it is based on a proportion, but in Chapter 2 we outlined
an expert deference principle that is not based on anything numerical. There are several
ways this could look in an extension of our model. For example, the agents in the network
might be labelled as ‘experts’ or ‘non-experts’ and choose what to believe based on the
following principle: non-expert agent i believes φ if and only if there exists j ∈ N (i) such
that j is an expert and believes φ.

A fourth possible extension of our model would be the addition and exploration of
other group modalities. Our line of work mostly focused on potential knowledge that
can be obtained by communication, i.e. distributed knowledge (and evidence). A parallel
line of work is that which focuses on common knowledge — that which everybody knows,
and everybody knows that everybody knows, and so on. Much like the distinction be-
tween distributed knowledge and distributed evidence, one might define the analogues of
common knowledge and common evidence, and explore their properties under evidence
diffusion.

A final avenue for further research would be to probe the Independence Thesis in
our model in a more systematic way. This could be done by exploring the differences in
individual and group knowledge that the combination of properties of the family of sets of
evidence {Ei}i∈Ag and the network N yield. For example, one might imagine it beneficial
for both individual agents and for groups if no agent possesses any false evidence, but
if false evidence is relegated to a cluster of the network, then false evidence might be
bad individually, but neutral for the distributed knowledge of the group, since the agents
outside this false-evidence cluster could still reason with true evidence only.
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[24] Zoé Christoff and Jens Ulrik Hansen. “A Two-Tiered Formalization of Social In-
fluence”. In: Logic, Rationality, and Interaction. Ed. by David Hutchison et al.
Vol. 8196. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 68–81.

[25] M. Clark. “Knowledge and Grounds: A Comment on Mr. Gettier’s Paper”. In: Anal-
ysis 24.2 (1963), pp. 46–48.

[26] C. A. J. Coady. Testimony: A Philosophical Study. New York: Oxford University
Press, 1992.
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[87] Yı̀ N. Wáng and Thomas Ågotnes. “Public Announcement Logic with Distributed
Knowledge: Expressivity, Completeness and Complexity”. In: Synthese 190.S1 (2013),
pp. 135–162.

73



REFERENCES

[88] Stanley Wasserman and Katherine Faust. Social Network Analysis: Methods and
Applications. 8. Cambridge ; New York: Cambridge University Press, 1994.

[89] Duncan J. Watts, Peter Sheridan Dodds, and John Deighton served as editor and
Tulin Erdem served as associate editor for this article. “Influentials, Networks, and
Public Opinion Formation”. In: Journal of Consumer Research 34.4 (2007), pp. 441–
458.

[90] Duncan J. Watts and Steven H. Strogatz. “Collective Dynamics of ‘Small-World’
Networks”. In: Nature 393.6684 (1998), pp. 440–442.

[91] Liang Zhen and Jeremy Seligman. “A Logical Model of the Dynamics of Peer Pres-
sure”. In: Electronic Notes in Theoretical Computer Science 278 (2011), pp. 275–
288.

[92] Kevin J. S. Zollman. “The Communication Structure of Epistemic Communities”.
In: Philosophy of Science 74.5 (2007), pp. 574–587.

[93] Kevin J. S. Zollman. “The Epistemic Benefit of Transient Diversity”. In: Erkenntnis
72.1 (2010), pp. 17–35.

[94] Kevin J.S. Zollman. “Network Epistemology: Communication in Epistemic Com-
munities”. In: Philosophy Compass 8.1 (2013), pp. 15–27.

74


