
Sequent Calculus with Zippers

MSc Thesis (Afstudeerscriptie)

written by

Xiaoshuang Yang

under the supervision of Dr Malvin Gattinger, and submitted to the Examinations Board in
partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
August 27, 2024 Dr Benno van den Berg (Chair)

Dr Malvin Gattinger (Supervisor)
Dr Andres Goens Jokisch
Dr Marianna Girlando

Abstract

Sequent calculus, a method of formal logical argumentation developed by Gerhard
Gentzen, is often used for backward-searching proofs. The success of sequent calculus is
significantly influenced by the specific order and choice of inference rules and principal
formulas used. The selection of appropriate rules and principal formulas in conventional
sequent calculus provers often requires repeated trial and error, which is, however, a
time-consuming and memory-intensive process.

To address this issue, in this thesis we develop a sequent calculus prover that employs
zippers, a data structure introduced by Gérard Huet in 1997. Zippers can facilitate
efficient navigation and modification of hierarchical data structures, such as trees and lists,
enabling rapid, targeted updates without the necessity for complete reconstruction. The
use of zippers enables the dynamic management of the proof tree, thereby facilitating the
application of different rules to specific sequents while maintaining the integrity of the
remainder of the proof tree.

We investigate whether the use of zippers can enhance the efficiency of the proof search
process and reduce the requisite computational resources. We developed two generic
modular provers. One uses the conventional tree representation, and another uses a zipper.
For both provers, we then implement the three systems G3C, G3I, and G3K. Subsequently,
we make a comparison of their efficiency in terms of run time and memory usage.

Our findings indicate that in some cases where the formula is unprovable, the zipper-
based prover consumes a markedly reduced amount of time and memory compared to the
tree-based prover. This improvement can be attributed to the fact that the zipper-based
prover does not (or almost does not) have to perform garbage collection, which optimises
the proof search process by efficiently handling the unfocused components of the proof tree.

1

Contents

1 Introduction 4

2 Zipper 5

2.1 Zipper for Lists . 5

2.2 Zipper for Trees . 7

3 Logics and Proofs 9

3.1 Propositional Logic . 9

3.2 Modal Logic . 10

3.3 Automated Theorem Prover . 12

3.4 Proof Systems . 12

4 Haskell Implementation: The General Prover 13

4.1 Sequent . 13

4.2 Proof . 15

4.3 Tree-Based Prover and Zipper-Based Prover . 16

4.4 The Tree-Based Prover . 18

4.4.1 Preliminary . 18

4.4.2 ExtendT . 19

4.4.3 Provability and Visualization . 20

4.5 The Zipper-Based Prover . 21

4.5.1 Helper Functions . 21

4.5.2 The Proving Process . 21

4.5.3 Comparison . 23

5 Haskell Implementation: The Logics 23

5.1 G3C for Classical Propositional Logic . 23

5.2 G3I for Intuitionistic Propositional Logic . 25

5.3 G3K for Minimal Modal Logic . 28

6 Test and Benchmarks 31

2

6.1 Formulas . 31

6.1.1 Unit Tests . 31

6.1.2 Parameterized Formulas . 31

6.2 Additional Correctness Tests . 33

7 Results 34

7.1 Test Results . 34

7.2 Run Time . 37

7.3 Memory Usage . 39

7.4 Discussion . 42

8 Future Work 43

9 Acknowledgement 44

Bibliography 44

3

1 Introduction

Sequent calculus, developed by Gerhard Gentzen, is a method of formal logical argumentation. It
is particularly useful for backwards searching proofs. However, the effectiveness of this method,
especially in intuitionistic logic and modal logic, depends heavily on the precise order and choice
of inference rules as well as active formulas. Conventional sequence calculus provers often require
repeated trial and error to select the correct rules and active formulas and to find the optimal
order in which to apply the rules, and this demands considerable time and memory.

To address this problem, my thesis aims to develop a sequent calculus prover that uses zippers,
a data structure introduced by Gérard Huet [Hue97] in 1997. Zippers enable efficient navigation
and modification of hierarchical data structures such as trees and lists. They allow for fast,
targeted updates without complete reconstruction. By using zippers, the proof tree can be
dynamically managed, meaning that we can simply apply different rules to the focused sequents
and keep the rest of the proof tree. Our research question is this:

Will using zippers make the proof search process more efficient and reduce the
required computational resources significantly?

We implement two generic modular provers in Haskell for each of the systems G3C, G3I and
G3K. One prover for each logic uses the conventional tree representation. Another will use a
Zipper. We then compare their efficiency in terms of memory use and run time.

Chapter 2 In this chapter we introduce the concept of zippers and explore their application to
lists, trees and proof trees. We provide a detailed explanation of how zippers work and why
they are useful for efficiently managing hierarchical data structures.

Chapter 3 This chapter covers the logics we will implement: classical propositional logic,
intuitionistic propositional logic, and minimal modal logic K. We also introduce the notion of
provers and the sequent calculus as a proof system, providing the theoretical background for
our implementations.

Chapter 4 Here we describe in detail our Haskell implementation of the generic modular
provers. One prover uses the conventional tree representation, while the other uses a zipper.
We discuss the design and architecture of these implementations and how they address the
challenges of sequent calculus proof search.

Chapter 5 In this chapter, we discuss the three sequent calculus systems used and their corre-
sponding Haskell implementations: G3C for classical propositional logic, G3I for intuitionistic
propositional logic, and G3K for minimal modal logic K. We provide detailed descriptions of
each system and how they are encoded in Haskell.

Chapter 6 This chapter presents the formulas and schemata used for tests and benchmarks.

Chapter 7 In this chapter we present the results of tests and benchmarks. We compare the
two provers in terms of run time and memory usage when proving the same formulas. We
discuss the observed performance differences and analyse the reasons for the efficiency of the
zipper-based prover, especially in cases of unprovable formulas constructed using foldr.

4

Chapter 8 We conclude with possibilities for future work. Given more time, we could
implement additional modal logics using our modular provers. In addition, zippers could be
very useful for falsifying proof systems such as tableau systems. Based on our results, we discuss
possible directions for further research and improvements.

Here, we provide all the Haskell code used in this thesis in the following GitHub repository:
https://github.com/XiaoshuangYang999/Sequent-Calculus-With-Zippers.git .

2 Zipper

The zipper is a family of data structures that allows traversal and modification of another
aggregate data structure while maintaining the context of the position within the structure.
Essentially, it provides a means to navigate and edit elements of a data structure while efficiently
keeping track of the location. The zipper achieves this by “splitting” the structure into two
parts: the focused part (where the current operation is happening) and the rest of the structure,
often referred to as the context or the path.

This concept was introduced by Gérard Huet in his seminal 1997 paper “Functional Pearl: The
Zipper.” Huet’s work presented the zipper as a technique for managing pointers in a functional
setting.

Huet describes the zipper as follows:

“The tree is turned inside-out like a returned glove, pointers from the root to the
current position being reversed in a path structure. The current location holds both
the downward current subtree and the upward path. All navigation and modification
primitives operate on the location structure. Going up and down in the structure
is analogous to closing and opening a zipper in a piece of clothing, whence the
name.” [Hue97]

The zipper technique can be used for many recursively defined data structures, like lists and
trees. In this thesis, we will elaborate on how to read and understand zippers for lists, trees,
and proof trees in the context of Haskell. We will also cover navigate and mutate functions
such as move left, move right, move up, move down, delete, insert, change, and the translation
between zipped and unzipped structures.

2.1 Zipper for Lists

In Haskell, lists are a homogeneous data structure, meaning they are ordered containers that
store multiple objects of the same type.

-- The empty list
emptyList :: [()]
emptyList = []

-- A string : a list of characters
aString :: String

5

aString = "HelloWorld"
-- We can also define lists of Integers , Booleans ...

Since a list is ordered, what if we want to have a focus on the list and perform local changes?
Below we define a class for the navigation and modification functions we want [Gat23a]:

class ListLike l where
-- | Create a zipper with a single item.

singleton :: a -> l a
-- | Get the item at the current point.

get :: l a -> a
-- | Move left , assuming we are not at the head already.

moveLeft :: l a -> l a
-- | Move right , assuming we are not at the end already.

moveRight :: l a -> l a
-- | Insert an item afer the current point.

insertAfter :: a -> l a -> l a
-- | Delete item at current point , assuming it is not the last.

delete :: l a -> l a

One way is to create a new data structure consisting of a list and an integer that represents the
location:

data LocList a = Loc [a] Int

However, this approach only tells us the location of our focus. It still does not make it easy to
change the value at the focus, and the memory usage is higher.

instance ListLike LocList where
singleton x = Loc [x] 0
get (Loc xs x) = xs !! x
moveLeft (Loc _ 0) = error "Cannot move left!"
moveLeft (Loc xs x) = Loc xs (x - 1)
moveRight (Loc xs x) = if x + 1 == length xs

then error "Cannot move right"
else Loc xs (x + 1)

insertAfter w (Loc xs x) = Loc (take (x + 1) xs ++ [w] ++ drop (x + 1) xs) x
delete (Loc xs x) = if x + 1 == length xs

then error "Cannot delete last element"
else Loc (take x xs ++ drop (x + 1) xs) x

Instead, we can use a zipper for lists:
-- zipper for lists
data ZipList a = Zip [a] a [a]

ziplExample :: ZipList Char
ziplExample = Zip "olleH" ’W’ "orld"

loclExample :: LocList Char
loclExample = Loc "HelloWorld" 5

Next, we create a ListLike instance for ZipList:
instance ListLike ZipList where

singleton x = Zip [] x []
get (Zip _ p _) = p
moveLeft (Zip [] _ _) = error "Cannot move left!"
moveLeft (Zip (x:xs) p ys) = Zip xs x (p:ys)
moveRight (Zip _ _ []) = error "Cannot move right!"
moveRight (Zip xs p (y:ys)) = Zip (p:xs) y ys
insertAfter w (Zip xs x ys) = Zip xs x (w:ys)
delete (Zip _ _ []) = error "Cannot delete last element!"
delete (Zip xs _ (y:ys)) = Zip xs y ys

6

Finally, here is the translation between ZipList and LocList
fromZipL :: ZipList a -> LocList a
fromZipL (Zip ys x xs) = Loc (reverse ys ++ [x] ++ xs) (length ys)

toZipL :: LocList a -> ZipList a
toZipL (Loc xs x) = Zip (reverse (take x xs)) (xs!!x) (drop (x + 1) xs)

2.2 Zipper for Trees

Trees are hierarchical and non-linear data structures, making them more complex than lists.
They consist of nodes connected by edges, with each node containing a value and pointers to its
children. The Zipper structure can be effectively applied to trees to allow for efficient traversal
and modification while keeping track of the context.

The following is a standard definition of trees in Haskell
data Tree a = Node a [Tree a]

The zipper for trees works similarly to the zipper for lists. It focuses on a particular subtree
while retaining the path to reach its root.

data Path a = Top | Step a (Path a) [Tree a] [Tree a]

data ZipTree a = ZT (Tree a) (Path a) -- location

In the Path type, the first argument a of Step a (Path a) [Tree a] [Tree a] refers to the
parent node of the current node. The next argument, of type Path a, indicates the path of the
parent node. The first list refers to the list (ordered) of the right siblings of the current node,
and the second list refers to the left siblings.

To make this more concrete, let’s look at some examples:

Example 2.1. Here is an easy example for a ZipTree:

0

1 2 3 4

5 6 7

The following is the code for this tree:
aZipTree :: ZipTree Int
aZipTree = ZT (Node 2 [Node 5 []]) (Step 0 Top [Node 1[]] [Node 3 [], Node 4 [Node 6[],

Node 7[]]])

Here, we focus on the subtree Node 2 [Node 5 []]. 0 is its parent node, and it’s the root of
the whole tree. The subtree has one right sibling, Node 1 [], and two left siblings, Node 3 []
and Node 4 [Node 6[], Node 7[]]].

Example 2.2. We use our current location in the thesis as a more complex example.

7

Contents

Introduction Zipper Logics and Proofs · · · Future work

for Lists for Trees Propositional Logic · · · Proof Systems

The following is the Haskell code for it:
ourLocation :: ZipTree String
ourLocation = ZT

(Node "for Trees" [])
(Step "Zipper"

(Step "Contents" Top
[Node "Introduction" []]
[Node "Logics and Proofs"

[Node "Propositional Logic" []
,Node "Modal Logic" []
,Node "Automated Theorem Prover" []
,Node "Proof Systems" []]

,Node "Haskell Implementation: The General Prover"
[Node "Sequent" []
,Node "Proof" []
,Node "Tree -Based Prover and Zipper -Based Prove" []
,Node "The Tree -Based Prover" []
,Node "The Zipper -Based Prover" []]

,Node "Haskell Implementation: The Logics"
[Node "G3C for Classical Propositional Logic" []
,Node "G3I for Intuitionistic Propositional Logic" []
,Node "G3K for Minimal Modal Logic" []]

,Node "Tests and Bencmarks"
[Node "Formulas" []
,Node "Additional Correctness Tests" []]

,Node "Results"
[Node "Test Results" []
,Node "Run Time" []
,Node "Memory Usage" []
,Node "Discussion" []]

,Node "Future Work" []
]

)
[Node "for Lists" []]
[])

Similarly with ListLike, we define a class TreeLike for all the navigation and modifications
we want. (We will also use this class for proof trees). We only want the class to contain the
minimal functions we want

class TreeLike z where
zsingleton :: a -> z a
move_left :: z a -> z a
move_right :: z a -> z a
move_up :: z a-> z a
move_down :: z a -> z a
zdelete :: z a -> z a

Now we can add a TreeLike instance for ZipTree:
instance TreeLike ZipTree where

zsingleton x = ZT (Node x []) Top
move_left (ZT c (Step s p (x:xs) ys)) = ZT x (Step s p xs (c:ys))
move_left _ = error "cannot go left"
move_right (ZT c (Step s p xs (y:ys))) = ZT y (Step s p (c:xs) ys)
move_right _ = error "cannot go right"
move_up (ZT c (Step s p xs ys)) = ZT (Node s ((c:xs) ++ ys)) p
move_up _ = error "cannot go up"
move_down (ZT (Node s (x:xs)) p) = ZT x (Step s p [] xs)
move_down _ = error "cannot go down"

8

zdelete (ZT _ (Step x p xs ys)) = ZT (Node x (xs++ys)) p
zdelete _ = error "cannot delete top"

Here is the translation between zipped and unzipped Trees
fromZipT :: ZipTree a -> Tree a
fromZipT (ZT t Top) = t
fromZipT (ZT t (Step x p xs ys)) = fromZipT $ ZT (Node x (xs ++ (t:ys))) p

toZipT :: Tree a -> ZipTree a
toZipT t = ZT t Top

Later, in Chapter 4, we will introduce zipper for proof trees.

3 Logics and Proofs

In this chapter, we will cover the logics we will implement: classical propositional logic,
intuitionistic propositional logic, and minimal modal logic K. We will also introduce the notion
of provers and proof systems, especially sequent calculus used in our implementation.

3.1 Propositional Logic

Definition 3.1 (The language LPL). We fix a list of symbols and the well-formed formulas of
LPL are given by:

φ ::= ⊥ | ⊤ | p | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | φ↔ φ

Haskell Implementation of LPL

The following Haskell code defines LPL. We define formulas of LPL to be of type FormP. Notice
that in our implementation, we choose ⊥,∧,∨,→ to be our primitive symbols and follow proof
theory’s convention to define ⊤,¬,↔[TS00]:

⊤ := ⊥ → ⊥
¬φ := φ→ ⊥
φ↔ ψ := (φ→ ψ) ∧ (ψ → φ)

type Atom = Char
data FormP = BotP | AtP Atom | ConP FormP FormP | DisP FormP FormP | ImpP FormP FormP

deriving (Eq ,Ord)

topP :: FormP
topP = Imp BotP BotP

negP :: FormP -> FormP
negP f = ImpP f BotP

iffP :: FormP -> FormP -> FormP
iffP f g = ConP (ImpP f g) (ImpP g f)

9

Now we can define a Show instance for FormP so we can print it.
instance (Show FormP) where

show BotP = "⊥"
show (AtP a) = [a]
show (ConP f g) = "(" ++ show f ++ " ∧ " ++ show g ++ ")"
show (DisP f g) = "(" ++ show f ++ " v " ++ show g ++ ")"
show (ImpP f g) = "(" ++ show f ++ " → " ++ show g ++ ")"

We also create an Arbitrary instance for FormP so we can generate random formulas to perform
tests.

instance Arbitrary FormP where
arbitrary = sized genForm where

factor = 2
genForm 0 = oneof [pure BotP , AtP <$> choose (’p’,’t’)]
genForm 1 = AtP <$> choose (’p’,’t’)
genForm n = oneof

[pure BotP
, AtP <$> choose (’p’,’t’)
, ImpP <$> genForm (n ‘div ‘ factor) <*> genForm (n ‘div ‘ factor)
, ConP <$> genForm (n ‘div ‘ factor) <*> genForm (n ‘div ‘ factor)
]

Classical Propositional Logic and Intuitionistic Propositional Logic

The difference between classical propositional logic (CPL) and intuitionistic propositional logic
(IPL) lies in the number of valid formulas, with IPL having fewer valid formulas. From the
perspective of proof theory, CPL can be seen as an extension of IPL. Specifically, CPL can be
viewed as IPL plus one of the following schemata: the law of excluded middle, double negation,
or Peirce’s law.

3.2 Modal Logic

Definition 3.2 (The language LML). We fix a list of symbols and the well-formed formulas of
LML are given by:

φ ::= ⊥ | ⊤ | p | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | φ↔ φ | 2φ | 3φ

Haskell Implementation of LML

The following Haskell code defines LML. We define formulas of LML to be of type FormM.

Notice that in our implementation, we choose ⊥,∧,∨,→,2 to be our primitive symbols and
view 3 as the dual of 2.

3φ := ¬2¬φ

data FormM = BotM | AtM Atom | ConM FormM FormM | DisM FormM FormM | ImpM FormM FormM | Box
FormM

deriving (Eq ,Ord)

10

negM :: FormM -> FormM
negM f = ImpM f BotM

topM :: FormM
topM = negM BotM

iffM :: FormM -> FormM -> FormM
iffM f g = ConM (ImpM f g) (ImpM g f)

diaM :: FormM -> FormM
diaM f = negM $ Box $ negM f

We also define Show instance and Arbitrary instance for FormM.
instance (Show FormM) where

show BotM = "⊥"
show (AtM a) = [a]
show (ConM f g) = "(" ++ show f ++ " ∧ " ++ show g ++ ")"
show (DisM f g) = "(" ++ show f ++ " v " ++ show g ++ ")"
show (ImpM f g) = "(" ++ show f ++ " → " ++ show g ++ ")"
show (Box f) = "(" ++ " 2 " ++ show f ++ ")"

instance Arbitrary FormM where
arbitrary = sized genForm where

factor = 2
genForm 0 = oneof [pure BotM , AtM <$> choose (’p’,’t’)]
genForm 1 = AtM <$> choose (’p’,’t’)
genForm n = oneof

[pure BotM
, AtM <$> choose (’p’,’t’)
, ImpM <$> genForm (n ‘div ‘ factor) <*> genForm (n ‘div ‘ factor)
, ConM <$> genForm (n ‘div ‘ factor) <*> genForm (n ‘div ‘ factor)
, Box <$> genForm (n ‘div ‘ factor)
]

We know that all formulas of LPLare also formulas of LML, since modal logic is an extension of
propositional logic. But now ML formulas and PL formulas have different types. So we create a
translation function here.

pTom :: FormP -> FormM
pTom BotP = BotM
pTom (AtP x) = AtM x
pTom (ConP x y) = ConM (pTom x) (pTom y)
pTom (DisP x y) = DisM (pTom x) (pTom y)
pTom (ImpP x y) = ImpM (pTom x) (pTom y)

The Minimal Modal Logic K

Minimal modal logic, often called modal logic K, is one of the foundational systems in the study
of modal logic. Introduced by Saul Kripke in the 1960s, the logic extends classical propositional
logic by incorporating modal operators 2 and 3. The semantics of modal logic are defined in
terms of Kripke models, which consist of possible worlds and reachability relations between them.
A formula 2φ is considered true if it holds in all its reachable worlds. For more information,
please see [BDRV01].

The most typical tautology in K is called the K axiom, whence the name of minimal modal
logic, where φ,ψ can be any modal formulas

2(φ→ ψ) → (2φ→ 2ψ)

11

3.3 Automated Theorem Prover

An automated theorem prover, or prover for short, is a computer program designed to verify
the validity of logical statements. Provers work by applying a set of inference rules to derive
conclusions from given premises. They explore possible logical derivations until a proof is found
or the statement is deemed unprovable.

Provers can be implemented using a variety of programming languages and paradigms. For
example, the LoTREC system, written in Java, is a generic tableau theorem prover for modal
logic, which can build models or counter-models for formulas [GHLS19].On the other hand,
writing provers in functional languages such as Haskell could have great potential because of
their strong support for recursion and higher-order functions, which are well suited to logical
operations. For example, SMCDEL [Gat24] is a symbolic model checker for Dynamic Epistemic
Logic written in Haskell.

In practice, provers are used for formal verification of software and hardware, to ensure that
systems behave as expected by their specifications. They are also used for reasoning tasks
in artificial intelligence, for automated reasoning in mathematical theorem proving, and in
academic research to explore new logical systems and their properties.

3.4 Proof Systems

Proof systems are formal frameworks used to derive logical conclusions from a set of axioms
and inference rules. Proofs are typically presented as trees, which are constructed according to
the axioms and rules of inference of a given logical system.

Sequent Calculus

Sequent calculus, developed by Gerhard Gentzen in 1933, is a proof system particularly useful
for backward searching proofs. For a general intro, refer to [TS00]. The Gentzen-style calculi
have many variants for propositional logic, such as one-sided, G1-calculi, G2-calculi, G3-calculi,
and more. For simplicity in implementation, we use the G3-calculi. The most significant feature
of G3-calculi is that it incorporates structural rules (like contraction and weakening) into the
logical rules.

In G3-calculi, we derive sequents, which are expressions like Γ ⇒ ∆, where Γ and ∆ are finite
multisets of formulas. This expression should be understood as

∧
Γ →

∨
∆.

The proof in G3-calculi is defined as follows [TS00]:

Proofs are labelled finite trees with a single root, with axioms at the top nodes, and
each node label connected with the labels of the (immediate) successor nodes (if any)
according to one of the rules. The rules are divided into left- (L-) and right- (R-)
rules. For a logical operator

⊗
say, L

⊗
, R

⊗
indicate the rules where a formula

with
⊗

as main operator is introduced on the left and on the right respectively.

12

Definition 3.3 (G3C). G3C, is the sequent calculus for classical propositional logic:

(L⊥)
Γ,⊥ ⇒ ∆

(Ax)
Γ, p⇒ ∆, p

Γ, α, β ⇒ ∆(L∧)
Γ, α ∧ β ⇒ ∆

Γ ⇒ ∆, α Γ ⇒ ∆, β(R∧)
Γ ⇒ ∆, α ∧ β

Γ, α⇒ ∆ Γ, β ⇒ ∆(L∨)
Γ, α ∨ β ⇒ ∆

Γ ⇒ ∆, α, β(R∨)
Γ ⇒ ∆, α ∨ β

Γ, β ⇒ ∆ Γ ⇒ ∆, α(L→)
Γ, α→ β ⇒ ∆

Γ, α⇒ ∆, β(R→)
Γ ⇒ ∆, α→ β

Below is a proof of Pierce’s Law in G3C.

Example 3.1. ⊢G3C ((p→ q) → p) → p

(Ax) p⇒ p (Ax) p⇒ p, q(L→)
(p→ q) → p⇒ p

(R→)
⇒ ((p→ q) → p) → p

We will introduce two more G3-calculi in Chapter 5. They are G3I for intuitionistic propositional
logic and G3K for the minimal modal logic K.

Other proof systems, equivalent to sequent calculus, include Hilbert systems, natural deduction,
and Tableau.

4 Haskell Implementation: The General Prover

In this chapter, we explain the Haskell implementation of our two sequent calculus provers, with
standard trees and with zippers. Both provers are generic in the sense that they are not defined
for a specific logic. We then specify concise implementations for classical propositional logic,
intuitionistic propositional logic and modal logic in Chapter 3.

4.1 Sequent

We assume f to be a formula type. We have defined two concrete formula types in Chapter 3:
FormP for propositional logic and FormM for modal logic.

In sequent calculus, a sequent has the form of Γ ⇒ ∆, where Γ and ∆ are multisets of formulas.
We now need to choose the Haskell type of these multisets. We have three data structures from
different libraries to choose from: List (from Data.List), MultiSet (from Data.MultiSet),
and Set (from Data.Set).

13

List The simplest option. However, in our prover, we frequently need to check sublist re-
lations and membership. Lists have isSubsequenceOf and elem operations, but mem-
bership checking in lists has a time complexity of O(n), and the time complexity for
isSubsequenceOf is O(n · m) for isSubsequenceOf xs ys where length xs = m and
length ys = n. .

MultiSet More efficient for membership checking due to tree-like storage structures, but
checking sublist relations is more complex and time-consuming due to multiple occurrences
of the same element. Additionally, Data.MultiSet provides fewer functions.

Set Provides O(log n) complexity for membership checking with member, similar to MultiSet, but
without the complexities involved in sublist checking. It has a built-in function isSubsetOf
with time complexity O(m log(n

m
+ 1)) for isSubsetOf xs ys where length xs = m and

length ys = n..

In the logics we choose here, the multiplicity of formulas in sequents does not affect the
derivations. So we can choose the Set type for representing multisets in sequent calculus.
Using the Gentzen style of sequent calculus, we have formulas on the left and right sides of the
implication. A straightforward representation could be:

data Sequent ’ f = S (Set f) (Set f)

However, in sequent calculus, left implication moves formulas from left to right and right
implication moves formulas from right to left, which complicate the implementation.

A more convenient method is to tag each formula with a position label using Haskell type
Either, which simplifies manipulations and provides helper functions.

Thus, we define a sequent as:
type Sequent f = Set (Either f f)

We define functions to print a sequent in the usual form, separating the set into the left and
right sides:

-- helper functions
leftsSet :: Ord a => Set (Either a a) -> Set a
leftsSet xs = Set.map fromEither $ Set.filter isLeft xs

rightsSet :: Ord a => Set (Either a a) -> Set a
rightsSet xs = Set.map fromEither $ Set.filter isRight xs

-- pretty printing a list of formulas
ppList :: Show f => [f] -> String
ppList [] = ""
ppList [f] = show f
ppList (f:fs@(_:_)) = show f ++ " , " ++ ppList fs

-- pretty printing a set of formulas
ppForm :: Show f => Set f -> String
ppForm ms = ppList (Set.toList ms)

-- pretty printing a sequent of formulas
ppSeq :: (Show f, Ord f) => Sequent f -> String
ppSeq xs = ppForm (leftsSet xs) ++ " => " ++ ppForm (rightsSet xs)

The output will look like:

14

-- ghci > ppSeq . Set.fromList $ [Left (AtP ’p’), Left (AtP ’q’), Right (AtP ’r’)]
-- "p , q => r"

4.2 Proof

Now that we have sequents, we can define proofs and print them.

First, we have a string as RuleName, for example, like R →, L∨.

Since sequent calculus is particularly useful for backtracking proofs, our prover will prove
formulas backwards. This means the root of the proof tree will be the sequent we aim to prove.
Although the sequent calculus rule is technically applied to the children sequents, resulting in
the parent sequent, for simplicity, we will describe the process as applying the “rule” from the
parent to the children. Thus, the second “rule” should be considered the inverse of the actual
sequent calculus rule.

In this implementation, when we refer to the “parent” sequent, we mean the resulting sequent
after applying a sequent calculus rule. Conversely, the “child” sequent refers to the preceding
sequent in the application of the rule.

A proof of formula type f can be of two forms:

Proved indicating this branch is proved/closed, similar to "Q.E.D." used in mathematical
proofs.

Node (Sequent f) RuleName [Proof f] a tree with a sequent as its root, a list of proofs as
its children, and a RuleName indicating the rule/axiom applied to go from the parent to
the children.

type RuleName = String
data Proof f = Proved | Node (Sequent f) RuleName [Proof f]

deriving (Eq ,Ord ,Show)

There cannot be children without rules, and there cannot be rules without children.

In all versions of sequent calculus we will use, in a proof, every branch can have at most two
children. We also create a function to check this condition to ensure that the output proofs are
indeed well-defined proofs for our systems.

hasLeqTwoChildren :: Eq f => Proof f -> Bool
hasLeqTwoChildren Proved = True
hasLeqTwoChildren (Node _ _ ts) = length ts <= 2 && all hasLeqTwoChildren ts

Based on the structure, we can define a function isClosedPf that determines whether a proof
is closed:

isClosedPf :: Eq f => Proof f -> Bool
isClosedPf Proved = True
isClosedPf (Node _ _ ts) = ts /= [] && all isClosedPf ts

15

The visualization of proofs is done via the Haskell library Graphviz [MS23]. And we use the
DispAble class defined in [Gat23b].

class DispAble t where
toGraph :: t -> DotM String ()
disp :: t -> IO ()
disp x = runGraphvizCanvas Dot (digraph ’ $ toGraph x) Xlib
dot :: t -> IO ()
dot x = graphvizWithHandle Dot (digraph ’ $ toGraph x) Canon $ \h -> do

hSetEncoding h utf8
SB.hGetContents h >>= SB.putStr

svg :: t -> String
svg x = unsafePerformIO $ withSystemTempDirectory "tapdleau" $ \tmpdir -> do

_ <- runGraphvizCommand Dot (digraph ’ $ toGraph x) Svg (tmpdir ++ "/temp.svg")
readFile (tmpdir ++ "/temp.svg")

pdf :: t -> IO FilePath
pdf x = runGraphvizCommand Dot (digraph ’ $ toGraph x) Pdf "temp.pdf"

instance (Show f,Ord f) => (DispAble (Proof f)) where
toGraph = toGraph ’ "" where

toGraph ’ pref Proved =
node pref [shape PlainText , toLabel "2"]

toGraph ’ pref (Node fs rule ’ ts) = do
node pref [shape PlainText , toLabel $ ppSeq fs]
mapM_ (\(t,y’) -> do

toGraph ’ (pref ++ show y’ ++ ":") t
edge pref (pref ++ show y’ ++ ":") [toLabel rule ’]
) (zip ts [(0:: Integer)..])

4.3 Tree-Based Prover and Zipper-Based Prover

Now that we have sequents and proofs defined, we can introduce our two sequent calculus
provers based on different types: one on ProofWithH, and one on ZipProof.

The type ProofWithH is a pair of a list of sequents and a proof. The first element is the "history,"
which includes all the sequents seen before in the process of developing this proof. It’s designed
for history-tracking and mainly designed to prove formulas in intuitionistic logic. If we get to a
point where one of the new sequents has been seen before, then we know we have entered a
loop, so we need to terminate the prover.

type ProofWithH f = ([Sequent f], Proof f)

In contrast, ZipProof is a proof along with a path. Similar to Path in Chapter 2, the ZipPath
indicates the location of the focused subtree: it includes an additional argument RuleName,
which indicates the rule applied from the parent of the focused subtree’s root to the root.

data ZipPath f = Top | Step (Sequent f) RuleName (ZipPath f) [Proof f] [Proof f]

data ZipProof f = ZP (Proof f) (ZipPath f)

Notice that the first RuleName in Proof is the rule applied from the root to its children, whereas
the RuleName in the path is the rule applied from the parent of the root to the root.

Now we can define the type of rules for these two methods. We will have RuleT f and RuleZ f.

For either rule type, it’s a function that takes two arguments: one is of type ProofWithH f
/ ZipProof f, which is the current proof to be extended; the second argument is a tagged

16

principal formula, which we assume is an element of the sequent we are extending.

After receiving these inputs, the function of type RuleT/RuleZ will return [[(RuleName,[Sequent f])]].
type RuleT f = ProofWithH f -> Either f f -> [[(RuleName ,[Sequent f])]]

type RuleZ f = ZipProof f -> Either f f -> [[(RuleName ,[Sequent f])]]

To understand the necessity of the second argument, it’s important to recognize that in all the
logics discussed in this thesis, given a fixed principal formula (or formulas), there is only one
rule that corresponds to this formula (or formulas).

But this is not the case in other proof systems. For example, in G3S[TS00], the sequent calculus
system for modal logic S4 has rule K2 and R2:

Σ ⇒ β(K2)
Γ,2Σ ⇒ 2β,∆

2Σ ⇒ β(R2)
Γ,2Σ ⇒ 2β,∆

The resulting sequents in K2 and R2 have exactly the same structures and the same principal
formulas. But their previous sequents are not the same. As we are proving formulas backwards,
we can only know the sequents below and identify the principal formulas among them.

We explain the result type of RuleT and RuleZ in three parts:

Outer most brackets The outermost brackets function like the "Maybe" type, indicating
that if there is an applicable rule for this formula (in the sense that a rule in the sequent
calculus system is found and the condition-checking is satisfied), then the output will be a
singleton of type [(RuleName, [Sequent f])]. If no applicable rule is found, the output
will be an empty list.

We use these brackets instead of Maybe because it can be dangerous to extract values from
Maybe. The function fromJust may return an error if the argument is Nothing.

The middle brackets The middle brackets indicate all possible ways of applying the same
rule. This is only used in modal logic, where we have a rule K2:

Σ ⇒ β(K2)
Γ,2Σ ⇒ 2β,∆

Even if we specify the right box formula as the right principal formula, there are still
multiple ways of choosing the principal formulas on the left side, resulting in different
possible sequents from the same sequent. This is what we mean by "different possible
ways of applying the same rule." For CPL and IPL, this layer of the list will always be a
singleton.

The pair (RuleName, [Sequent f]) The first element is the name of the rule we find appli-
cable to the given input. The second element is a list of resulting children after the rule
application. The brackets represent branching, which happens in R∧, L∨, L→.

Now, we can define what a logic is. A logic for formula type f needs to have:

17

• neg: negation

• bot: Bottom

• isAtom: to determine whether a formula is an atom

• isAxiom: to determine whether a sequent is an axiom

• Safe and unsafe rule

– safeRuleT: a rule function for ProofWithH. Here, for safe rule, we mean all the
invertible rules in sequent calculus. These rules will only have one principal formula
in the resulting sequent/ the parent sequent

– unsafeRuleT: a list of rule functions for ProofWithH. In our actual usage, it will
either be empty or a singleton. By unsafe rules, we mean those rules that will lose
information after being applied, for example, R→ in G3I and K2 in G3K

– Similarly for safeRuleZ and unsafeRuleZ

data Logic f = Log
{ neg :: f -> f
, bot :: f
, isAtom :: f -> Bool
, isAxiom :: Sequent f -> Bool
, safeRuleT :: RuleT f
, unsafeRuleT :: [RuleT f]
, safeRuleZ :: RuleZ f
, unsafeRuleZ :: [RuleZ f]
}

4.4 The Tree-Based Prover

4.4.1 Preliminary

Suppose we want to prove a formula φ. In sequent calculus, we always start by building a
sequent ⇒ φ and try to prove it backwards.

We use startForT to build a "start point": an incomplete proof with an empty history:
startForT :: f -> ProofWithH f
startForT f = ([],Node (Set.singleton (Right f)) "" [])

Now we define some helper functions for our main proving function extendT.

isClosedPfT will determine whether a given ProofWithH is closed. A proof with history is
closed if the proof itself is closed.

isApplicableToT will determine whether a rule is applicable for a proof with history and a
principal formula, by applying the arguments to the rule function. It is applicable as long as
the output is not an empty list.

isClosedPfT :: Eq f => ProofWithH f -> Bool
isClosedPfT (_,fs) = isClosedPf fs

isApplicableToT :: ProofWithH f -> Either f f -> RuleT f -> Bool
isApplicableToT fs f r = not . List.null $ r fs f

18

4.4.2 ExtendT

Now we are ready to define our extendT function. The goal of extendT is to extend the “start
point” to a list of complete proofs. For a closed branch, the leaf will be Proved, and for an open
branch, the leaf will be a sequent without children.

extendT takes two arguments: the first is a logic, and the second is a proof with history. The
output will be a list of all possible proofs with their history.

We mainly focus on the case where the second argument is of the form pt@(h, Node fs "" []),
which is the only case used in the proving process. Other cases are defined to avoid warnings.

Given a logic l and a ProofWithH pt@(h, Node fs "" []), the program checks four things
sequentially:

1. Is there a left bottom in fs?

If so, we can simply output [(h, Node fs "L⊥" [Proved])].

If not, we will move to the next question.

2. Is fs an axiom?

If so, we can simply output [(h, Node fs "Ax" [Proved])].

If not, we will move to the next question.

3. Is any formula in fs applicable to the safe rule function of logic l?

If so, lookupMin picks a formula that satisfies this condition. Although minimality is not
required, it helps in picking any applicable formula. If such a formula is found, we extend
the proof by applying the rule to each child sequent in the result. This creates a list of
lists of completed proofs with history, which we combine using pickOneOfEach to get all
possible proofs. Each proof is then added as a child of the original sequent with the rule
name therule. If no such formula exists, we proceed to the next question.

pickOneOfEach :: [[a]] -> [[a]]
pickOneOfEach [] = [[]]
pickOneOfEach (l:ls) = [x:xs | x <- l, xs <- pickOneOfEach ls]

4. Does logic l have an unsafe rule?

If not, then we reach a dead end. We stop the proving process.

If yes, we check if any formula in fs is applicable to this rule. If not, the sequent is
unprovable. If such formulas exist, we apply the rule and extend the new sequent. For
each resulting proof, we append it as a child of the original proof tree. We combine all
possible ways to get a list of all completed proofs with history. If any proof is closed, we
return the first such proof. Otherwise, the sequent is unprovable.

extendT :: (Eq f, Show f, Ord f) => Logic f -> ProofWithH f -> [ProofWithH f]
extendT l pt@(h, Node fs "" [])=

case (Left (bot l) ‘Set.member ‘ fs,
isAxiom l fs,
Set.lookupMin $ Set.filter (\g -> isApplicableToT pt g (safeRuleT l)) fs,
unsafeRuleT l
) of

19

(True ,_, _,_) -> [(h, Node fs "L⊥" [Proved])]
-- fs is an axiom
(_,True , _,_) -> [(h, Node fs "Ax" [Proved])]
-- The safe rule can be applied
(_ ,_,Just f,_) -> [

(h, Node fs therule (List.map snd ts)) |
(therule ,result) <- head $ safeRuleT l pt f,
ts <- pickOneOfEach [extendT l (fs : h, Node nfs "" [])| nfs <- result

]
]

-- The logic has no unsafe rule -> CPL
(_ ,_,Nothing ,[]) -> [(h, Node fs "" [])]
-- The logic has an unsafe rule -> IPL , K
(_ ,_,Nothing ,r:_) -> case checkEmpty $ Set.filter (\g -> isApplicableToT pt g r) fs of

-- No applicable formulas in fs
Nothing -> [(h, Node fs "" [])]
-- fs contains applicable formulas
Just gs -> if any isClosedPfT nps

then List.take 1 (List.filter isClosedPfT nps)
else [(h, Node fs "" [])]

where
nps = concat $ List.concatMap tryExtendT gs
-- tryExtendT :: Either f f -> [[([Sequent f], Proof f)]]
tryExtendT g = [List.map (\pwh -> (h, Node fs therule [snd pwh]))

$ extendT l (fs : h, Node (head result) "" [])
| (therule ,result) <- head $ (head.unsafeRuleT $ l) pt g]

-- just for pattern matching
extendT l (h,Node fs r@(_:_) xs@(_:_))= [(h,Node fs r $ List.map snd nfs)

| nfs <- List.map (\f -> extendT l (fs:h,f)) xs]
extendT _ (h,Proved) = [(h,Proved)]
extendT _ (_,Node _ (_:_) [])= error"cannot have rules and no children"
extendT _ (_,Node _ [] (_:_)) = error"cannot have children and no rules"

4.4.3 Provability and Visualization

Now we have the extendT function. We can use it to actually prove things. In proveT we first
use startForT to build the original ProofWithH for the formula and then feed it to the extendT
function. Eventually, it transforms all the resulting ProofWithH into proofs.

Then isProvableT will output whether the formula f is provable or not, based on whether
there are closed proofs among those proofs we found through proveT l f.

proveT :: (Eq f, Show f,Ord f) => Logic f -> f -> [Proof f]
proveT l f = List.map snd $ extendT l (startForT f)

isProvableT :: (Eq f, Show f, Ord f) => Logic f -> f -> Bool
isProvableT l f = any isClosedPf (proveT l f)

The function provePrintH will print the proof we found. For the provable formula, the proof
will be closed. For the unprovable formula, the proof won’t be closed.

The function provePdfH is using the method pdf in the Displayable class. provePdfH l f
will create a "temp.pdf" of the proof.

proveprintT :: (Eq f, Show f,Ord f) => Logic f -> f -> Proof f
proveprintT l f = if isProvableT l f

then head $ List.filter isClosedPf (proveT l f)
else head (proveT l f)

provePdfT :: (Ord f,Show f, Eq f) => Logic f -> f -> IO FilePath
provePdfT l f= pdf $ proveprintT l f

20

4.5 The Zipper-Based Prover

4.5.1 Helper Functions

Remember that in Chapter 2, we define a class TreeLike:
class TreeLike z where

zsingleton :: a -> z a
move_left :: z a -> z a
move_right :: z a -> z a
move_up :: z a-> z a
move_down :: z a -> z a
zdelete :: z a -> z a

Now we add a TreeLike instance for ZipProof:
instance TreeLike ZipProof where

zsingleton x = ZP (Node (Set.singleton (Right x)) "" []) Top
move_left (ZP c (Step s r p (x:xs) ys)) = ZP x (Step s r p xs (c:ys))
move_left _ = error "cannot go left"
move_right (ZP c (Step s r p xs (y:ys))) = ZP y (Step s r p (c:xs) ys)
move_right _ = error "cannot go right"
move_up (ZP c (Step s r p xs ys)) = ZP (Node s r ((c:xs) ++ ys)) p
move_up _ = error "cannot go up"
move_down (ZP (Node s r (x:xs)) p) = ZP x (Step s r p [] xs)
move_down _ = error "cannot go down"
zdelete (ZP _ (Step s _ Top _ _)) = ZP (Node s "" []) Top
zdelete (ZP _ (Step s _ p _ _)) = ZP (Node s "" []) p
zdelete _ = error "cannot delete top"

We also define a function that transforms a ZipProof into Proof so that we can reuse the
DispAble instance for Proof:

fromZip :: ZipProof f -> Proof f
fromZip (ZP x Top) = x
fromZip zp = fromZip (move_up zp)

4.5.2 The Proving Process

We introduce the order of extending proofs for a zip type (left-biased). Since we are implementing
sequent calculus here, every node has at most two branches.

• When we reach a node and find a rule to apply, we move to and try to extend its left child
(by method move_down).

• Whenever we find a dead end, we initially try to move to its right sibling. If there isn’t
any, we move to its parent. If its parent has a right sibling, we move there. If not, we
move up again. We call this switch process function switch.

-- A function that tells whether a node has right siblings
hasRsibi :: ZipPath f -> Bool
hasRsibi (Step _ _ _ _ (_:_))= True
hasRsibi _ = False

-- Switch path , left -biased
switch :: ZipProof f -> ZipProof f
switch (ZP pf Top) = ZP pf Top
switch (ZP pf p) = if hasRsibi p

21

then move_right (ZP pf p)
else switch.move_up $ ZP pf p

The proving logic behind extendZ is essentially the same as extendT, except for different
methods for manipulating data structures. We gightlight the differences in the comments in the
code below.

startForZ :: f -> ZipProof f
startForZ f = ZP (Node (Set.singleton (Right f)) "" []) Top

isClosedZP :: Eq f => ZipProof f -> Bool
isClosedZP (ZP fs Top) = isClosedPf fs
isClosedZP (ZP fs p) = isClosedPf fs && (isClosedZP . switch $ ZP fs p)

isApplicableToZ :: ZipProof f -> Either f f -> RuleZ f -> Bool
isApplicableToZ fs f r = not . List.null $ r fs f

extendZ :: (Ord f,Eq f) => Logic f -> ZipProof f -> [ZipProof f]
extendZ l zp@(ZP (Node fs "" []) p) =

case (Left (bot l) ‘Set.member ‘ fs,
isAxiom l fs,
Set.lookupMin $ Set.filter (\g -> isApplicableToZ zp g (safeRuleZ l)) fs,
unsafeRuleZ l) of

-- Switch the path if the current sequent is closed
(True ,_,_ ,_) -> extendZ l (switch (ZP (Node fs "L⊥" [Proved]) p))
(_,True ,_ ,_) -> extendZ l (switch (ZP (Node fs "Ax" [Proved]) p))
-- Find a safe rule to use
(_ ,_ ,Just f,_) -> extendZ l (move_down $ ZP (Node fs therule ts) p) where

(therule ,result) = head . head $ safeRuleZ l zp f
ts = [Node nfs "" []| nfs <- result]

-- Check if there is unsafe rule
-- Whenever a dead end is found , stop the proving process

(_ ,_ ,Nothing ,[]) -> [ZP (Node fs "" []) p]
-- Has an unsafe rule

(_,_ ,Nothing ,r:_) -> case checkEmpty $ Set.filter (\g -> isApplicableToZ zp g r)
fs of

-- Not applicable
Nothing -> [ZP (Node fs "" []) p]
-- Find a list of formulas to apply
Just gs -> if any isClosedZP nps

then List.take 1 (List.filter isClosedZP nps)
else [ZP (Node fs "" []) p]

where
nps = concat $ List.concatMap tryExtendZ gs
tryExtendZ g = [extendZ l (ZP (Node (head result) "" []) (Step fs

therule p [] []))
| (therule ,result) <- head $ (head.unsafeRuleZ $ l) zp g]

extendZ _ (ZP Proved p) = [ZP Proved p]
extendZ _ (ZP (Node _ (_:_) []) _)= error"cannot have rules and no children"
extendZ _ (ZP (Node fs r@(_:_) xs@(_:_)) p)= [ZP (Node fs r xs) p]
extendZ _ (ZP (Node _ [] (_:_)) _) = error"cannot have children and no rules"

Similarly, we can define provability check functions and visualization functions.
proveZ :: (Eq f, Ord f) => Logic f -> f -> [Proof f]
proveZ l f = List.map fromZip $ extendZ l (startForZ f)

isProvableZ :: (Eq f, Ord f) => Logic f -> f -> Bool
isProvableZ l f = any isClosedZP $ extendZ l (startForZ f)

proveprintZ :: (Eq f, Ord f) => Logic f -> f -> Proof f
proveprintZ l f = if isProvableZ l f

then head $ List.filter isClosedPf (proveZ l f)
else head (proveZ l f)

provePdfZ :: (Show f, Eq f,Ord f) => Logic f -> f -> IO FilePath
provePdfZ l f = pdf $ proveprintZ l f

22

4.5.3 Comparison

We highlight three kinds of differences between these two proves:

• Data Structure:

– extendT operates on ProofWithH, which uses lists to keep track of history and current
proof state.

– extendZ operates on ZipProof, which uses a zipper data structure for navigation
and updates within the proof tree.

• Traversal and Backtracking:

– extendT uses straightforward list operations for history and backtracking.

– extendZ leverages the zipper’s ability to move left, right, up, and down.

• Implementation Complexity:

– extendT was simpler to implement due to the use of basic list operations.

– extendZ is more complex but provides a cleaner and more modular approach to
navigating and modifying the proof tree.

5 Haskell Implementation: The Logics

In this section, we will explain the Haskell implementation for the three logics introduced in
Chapter 3. First, we need to choose a sequent calculus system for each logic and then implement
the rules in Haskell. We choose G3C for classical propositional logic, G3I for intuitionistic logic,
and G3K for minimal modal logic.

5.1 G3C for Classical Propositional Logic

Here we implement classical propositional logic using the G3C system introduced in definition
3.3.

Remember, a logic is constructed as follows:
data Logic f = Log

{ neg :: f -> f
, bot :: f
, isAtom :: f -> Bool
, isAxiom :: Sequent f -> Bool
, safeRuleH :: RuleH f
, unsafeRuleH :: [RuleH f]
, safeRuleZ :: RuleZ f
, unsafeRuleZ :: [RuleZ f]
}

23

To define CPL, we already defined negation and bottom for FormP in Chapter 3. We still need
to define isAtom and isAxiom before implementing the rules.

We define isatomP and isAxiomP and will use them both in classical and intuitionistic proposi-
tional logic.

isatomP :: FormP -> Bool
isatomP (AtP _) = True
isatomP _ = False

isAxiomP :: Sequent FormP -> Bool
isAxiomP fs = any (\f -> isatomP f && Right f ‘Set.member ‘ fs) (leftsSet fs)

Now we can implement the connective rules. The function safeCPL takes a labelled formula and
returns a list of type [(RuleName, [Sequent FormP])]. This list is either empty, meaning the
labelled formula is a labelled atomic formula, or a singleton of a pair, where the first element of
the pair is the name of the rule and the second one is the resulting list of sequents after applying
this rule.

safeCPL :: Either FormP FormP -> [(RuleName ,[Sequent FormP])]
safeCPL (Left (ConP f g)) = [("L∧", [Set.insert (Left g) $ Set.singleton (Left f)])]
safeCPL (Left (DisP f g)) = [("Lv", [Set.singleton (Left f) , Set.singleton (Left g)])]
safeCPL (Left (ImpP f g)) = [("L→", [Set.singleton (Left g) , Set.singleton (Right f)])]
safeCPL (Right (ConP f g)) = [("R∧", [Set.singleton (Right f) , Set.singleton (Right g)])]
safeCPL (Right (DisP f g)) = [("Rv", [Set.insert (Right g) $ Set.singleton (Right f)])]
safeCPL (Right (ImpP f g)) = [("R→", [Set.insert (Right g) $ Set.singleton (Left f)])]
safeCPL _ = []

We now define two helper functions that transform a function of type

Either f f -> [(RuleName, [Sequent f])] into RuleH f and RuleZ f. We will use these
again when implementing G3K.

These functions take a function fun (such as safeCPL for FormP), an argument of the form
(_, Node fs "" []) or ZP (Node fs "" []) _, and a formula g of type Either f f. They
compute the new child sequents by combining the context formulas in fs with the new formulas
generated by fun.

To notice: we always require g to be a member of fs when using replaceRuleT and replaceRuleZ.
replaceRuleZ :: (Eq f,Ord f) => (Either f f -> [(RuleName ,[Sequent f])]) -> RuleZ f
replaceRuleZ fun (ZP (Node fs "" []) _) g =

[[(fst . head $ fun g
,[Set.delete g fs ‘Set.union ‘ newfs | newfs <- snd . head $ fun g])]
| not (List.null (fun g))]

replaceRuleZ _ _ _ = []

replaceRuleT :: (Eq f,Ord f) => (Either f f -> [(RuleName ,[Sequent f])]) -> RuleH f
replaceRuleT fun (_,Node fs "" []) g =

[[(fst . head $ fun g
,[Set.delete g fs ‘Set.union ‘ newfs | newfs <- snd . head $ fun g])]
| not (List.null (fun g))]

replaceRuleT _ _ _ = []

Since all the rules in G3C are invertible, G3C has no unsafe rules. We now define classical as:
classical :: Logic FormP
classical = Log

{ neg = negP
, bot = BotP
, isAtom = isatomP
, isAxiom = isAxiomP

24

, safeRuleT = replaceRuleT safeCPL
, unsafeRuleT = []
, safeRuleZ = replaceRuleZ safeCPL
, unsafeRuleZ = []
}

Example 5.1. Here we present the identical proof of Pierce’s law generated by our two provers,
which is the same as in Example 3.1

 => (((p → q) → p) → p)

((p → q) → p) => p

R→

 => p , (p → q)

L→

p => p

L→

p => p , q

R→

☐

Ax

☐

Ax

5.2 G3I for Intuitionistic Propositional Logic

Many calculi implement intuitionistic propositional logic. However, most calculi require that
the succedent be either empty or a singlet. This setting is different from the one we choose for
classical propositional logic and would be harder to implement.

Here we choose a variant of the system called Maehara’s Calculus, m-G3i. It was originally
proposed in [Mae54], but here we follow [Dyc16]. It is known as Maehara’s multi-succedent
version m-G3i, where the only non-invertible rule is R→, and all indeterminacy during the proof

25

search lies in this rule. This makes it easier to implement. Some of its original rules, such as
L→, have built-in contraction (keeping a copy of the original formula in the new sequence), and
others don’t. Even if rules like L→ are invertible, they can still cause the program to lead to a
loop without detecting repeated formulas. So we need to check the saturation condition. The
easier way to do this is to add built-in contraction to every rule and perform the saturation
check in every step.

Definition 5.1 (G3I). We use G3I to denote our variant of m-G3i.

(L⊥)
Γ,⊥ ⇒ ∆

(Ax)
Γ, p⇒ ∆, p

Γ, α, β, α ∧ β ⇒ ∆(L∧)
Γ, α ∧ β ⇒ ∆

Γ ⇒ ∆, α, α ∧ β Γ ⇒ ∆, β, α ∧ β(R∧)
Γ ⇒ ∆, α ∧ β

Γ, α ∨ β, α ⇒ ∆ Γ, α ∨ β, β ⇒ ∆(L∨)
Γ, α ∨ β ⇒ ∆

Γ ⇒ ∆, α, β, α ∨ β(R∨)
Γ ⇒ ∆, α ∨ β

Γ, β, α→ β ⇒ ∆ Γ, α→ β ⇒ ∆, α(L→)
Γ, α→ β ⇒ ∆

Γ, α⇒ β, α → β(R→)
Γ ⇒ ∆, α→ β

Similarly as safeCPL, we define safeIPL and unsafeIPL for R→.
safeIPL :: Either FormP FormP -> [(RuleName ,[Sequent FormP])]
safeIPL (Left (ConP f g)) = [("L∧", [Set.insert (Left g) $ Set.singleton (Left f)])]
safeIPL (Left (DisP f g)) = [("Lv", [Set.singleton (Left f) , Set.singleton (Left g)])]

-- branch
safeIPL (Right (ConP f g)) = [("R∧", [Set.singleton (Right f) , Set.singleton (Right g)])]

-- branch
safeIPL (Right (DisP f g)) = [("Rv", [Set.insert (Right g) $ Set.singleton (Right f)])]
safeIPL (Left (ImpP f g)) = [("L→", [Set.singleton (Left g) , Set.singleton (Right f)])]

-- branch
safeIPL _ = []

unsafeIPL :: Either FormP FormP -> [(RuleName ,[Sequent FormP])]
unsafeIPL (Right (ImpP f g)) = [("R→", [Set.insert (Right g) $ Set.singleton (Left f)])]
unsafeIPL _ = []

To see if a rule is applicable, we also need to check two additional things:

• Saturation check: if all the resulting principal formulas in one of the resulting sequents are
already in the current sequent, we call this situation saturated, and we do not apply this
rule. Since we have built-in contraction here, if we do not detect saturation, we may end
up in a loop of repeatedly adding the same formulas to the sequents, which is a complete
waste of time.

• History check: we check whether applying a rule will get us any sequent seen in the history.
This is because if we have seen this sequent before, we are not making any process of
applying this rule. This check will efficiently speed up our algorithm.

Both checks are implemented in Haskell as follows:

26

saturated :: Sequent FormP -> Either FormP FormP -> Bool
saturated fs f@(Right (ImpP _ _)) = any (‘Set.isSubsetOf ‘ fs) (snd . head . unsafeIPL $ f)
saturated fs f = List.null (safeIPL f)

|| any (‘Set.isSubsetOf ‘ fs) (snd . head . safeIPL $ f)

-- return true iff has appeared before
historySearch :: ZipPath FormP -> Sequent FormP -> Bool
historySearch Top _ = False
historySearch (Step xs _ p _ _) ys = Set.isSubsetOf ys xs || historySearch p ys

-- return true iff doesn ’t result in loop
historyCheckZ :: ZipPath FormP -> Sequent FormP -> Either FormP FormP -> Bool
historyCheckZ p fs f@(Right (ImpP _ _)) = not (historySearch p (head xs)) where

xs = applyIPL fs f (snd(head(unsafeIPL f)))
historyCheckZ _ _ _ = False

historyCheckT :: [Sequent FormP] -> Sequent FormP -> Either FormP FormP -> Bool
historyCheckT hs fs f@(Right (ImpP _ _)) = not $ any (Set.isSubsetOf (head xs)) hs where

xs = applyIPL fs f (snd(head(unsafeIPL f)))
historyCheckT _ _ _ = False

Unlike G3C and G3K, which are both systems without built-in contraction, G3I has a built-in
contraction. That is to say, we must retain a copy of the original principal formula after applying
the rule. So we need a different version of replaceRule functions.

For the safe rules, We define replaceRuleIPLsafe and replaceRuleIPLsafeT; and for R→,
we define replaceRuleIPLunsafe and replaceRuleIPLunsafeT.

replaceRuleIPLsafeZ :: (Either FormP FormP -> [(RuleName ,[Sequent FormP])]) -> RuleZ FormP
replaceRuleIPLsafeZ fun (ZP (Node fs "" []) _) g = [[(fst . head $ fun g

,[fs ‘Set.union ‘ newfs | newfs <- snd .
head $ fun g])]

| not (saturated fs g)
&& not (List.null (fun g))
]

replaceRuleIPLsafeZ _ _ _= []

replaceRuleIPLsafeT :: (Either FormP FormP -> [(RuleName ,[Sequent FormP])]) -> RuleT FormP
replaceRuleIPLsafeT fun (_,Node fs "" []) g = [[(fst . head $ fun g

,[fs ‘Set.union ‘ newfs | newfs <- snd .
head $ fun g])]

| not (saturated fs g)
&& not (List.null (fun g))
]

replaceRuleIPLsafeT _ _ _= []

-- helper function for replaceRuleIPLunsafeZ and replaceRuleIPLunsafeT
applyIPL :: Sequent FormP -> Either FormP FormP -> [Sequent FormP] -> [Sequent FormP]
applyIPL fs f = List.map (Set.insert f (leftOfSet fs) ‘Set.union ‘)
-- leftOfSet = Set.filter isLeft

replaceRuleIPLunsafeZ :: (Either FormP FormP -> [(RuleName ,[Sequent FormP])]) -> RuleZ
FormP

replaceRuleIPLunsafeZ fun (ZP (Node fs "" []) p) g = [[(fst . head $ fun g
, applyIPL fs g (snd(head(unsafeIPL g)

)))]
| not (saturated fs g)
&& historyCheckZ p fs g
&& not (List.null (fun g))
]

replaceRuleIPLunsafeZ _ _ _= []

replaceRuleIPLunsafeT :: (Either FormP FormP -> [(RuleName ,[Sequent FormP])]) -> RuleT
FormP

replaceRuleIPLunsafeT fun (h,Node fs "" []) g = [[(fst . head $ fun g
, applyIPL fs g (snd(head(unsafeIPL g))))

]
| not (saturated fs g)

27

&& historyCheckT h fs g
&& not (List.null (fun g))
]

replaceRuleIPLunsafeT _ _ _= []

Finally, we define our logic intui as follows:
intui :: Logic FormP
intui = Log

{ neg = negP
, bot = BotP
, isAtom = isatomP
, isAxiom = isAxiomP
, safeRuleT = replaceRuleIPLsafeT safeIPL
, unsafeRuleT = [replaceRuleIPLunsafeT unsafeIPL]
, safeRuleZ = replaceRuleIPLsafeZ safeIPL
, unsafeRuleZ = [replaceRuleIPLunsafeZ unsafeIPL]
}

Example 5.2. Here we present the identical proof of (p ∧ (p→ q)) → ((p→ q) → q) generated
by our two provers.

 => ((p ∧ (p → q)) → ((p → q) → q))

(p ∧ (p → q)) => ((p ∧ (p → q)) → ((p → q) → q)) , ((p → q) → q)

R→

p , (p ∧ (p → q)) , (p → q) => ((p ∧ (p → q)) → ((p → q) → q)) , ((p → q) → q)

L∧

p , (p ∧ (p → q)) , (p → q) => p , ((p ∧ (p → q)) → ((p → q) → q)) , ((p → q) → q)

L→

p , q , (p ∧ (p → q)) , (p → q) => ((p ∧ (p → q)) → ((p → q) → q)) , ((p → q) → q)

L→

☐

Ax

p , q , (p ∧ (p → q)) , (p → q) => q , ((p → q) → q)

R→

☐

Ax

5.3 G3K for Minimal Modal Logic

Here we implement the minimal modal logic using the system called "G3K" in [TS00].

Definition 5.2 (G3K). G3K is essentially the extension of G3C plus the modal rule K2.

(L⊥)
Γ,⊥ ⇒ ∆

(Ax)
Γ, p⇒ ∆, p

Γ, α, β ⇒ ∆(L∧)
Γ, α ∧ β ⇒ ∆

Γ ⇒ ∆, α Γ ⇒ ∆, β(R∧)
Γ ⇒ ∆, α ∧ β

28

Γ, α⇒ ∆ Γ, β ⇒ ∆(L∨)
Γ, α ∨ β ⇒ ∆

Γ ⇒ ∆, α, β(R∨)
Γ ⇒ ∆, α ∨ β

Γ, β ⇒ ∆ Γ ⇒ ∆, α(L→)
Γ, α→ β ⇒ ∆

Γ, α⇒ ∆, β(R→)
Γ ⇒ ∆, α→ β

Σ ⇒ β(K2)
Γ,2Σ ⇒ 2β,∆

First, we define isAtomM and isAxiomM for FormM. We need to do it again because FormM is not
FormP.

isatomM :: FormM -> Bool
isatomM (AtM _) = True
isatomM _ = False

isAxiomM :: Sequent FormM -> Bool
isAxiomM fs = any (\f -> isatomM f && Right f ‘Set.member ‘ fs) (leftsSet fs)

Then we implement the propositional rules:
safeML :: Either FormM FormM -> [(RuleName ,[Sequent FormM])]
safeML (Left (ConM f g)) = [("L∧", [Set.insert (Left g) $ Set.singleton (Left f)])]
safeML (Left (DisM f g)) = [("Lv", [Set.singleton (Left f) , Set.singleton (Left g)])]
safeML (Left (ImpM f g)) = [("L→", [Set.singleton (Left g) , Set.singleton (Right f)])]
safeML (Right (ConM f g)) = [("R∧", [Set.singleton (Right f) , Set.singleton (Right g)])]
safeML (Right (DisM f g)) = [("Rv", [Set.insert (Right g) $ Set.singleton (Right f)])]
safeML (Right (ImpM f g)) = [("R→", [Set.insert (Right g) $ Set.singleton (Left f)])]
safeML _ = []

We first define some helper functions that manipulate Box inside Either.
isLeftBox :: Either FormM FormM -> Bool
isLeftBox (Left (Box _)) = True
isLeftBox _ = False

isRightBox :: Either FormM FormM -> Bool
isRightBox (Right (Box _)) = True
isRightBox _ = False

fromBox :: Either FormM FormM -> Either FormM FormM
fromBox (Left (Box f)) = Left f
fromBox g = g

removeBoxLeft :: Sequent FormM -> Sequent FormM
removeBoxLeft xs = Set.map fromBox $ Set.filter isLeftBox xs

K2 is a rule where, even if we fix a sequent and the principal formula on the right, the results
may vary because we also need to select the principal formulas on the left. All other formulas
will be deleted in the resulting sequent. Consequently, we need to generate the powerset of box
formulas on the left.

func :: FormM -> Sequent FormM -> [(RuleName ,[Sequent FormM])]
func f fs = [("K2", [Right f ‘Set.insert ‘ fs])]

kboxT :: RuleT FormM
kboxT (_,Node fs "" []) (Right (Box f)) = Set.toList $ Set.map (func f) $ Set.powerSet.

removeBoxLeft $ fs
kboxT _ _ =[]

kboxZ :: RuleZ FormM

29

kboxZ (ZP (Node fs "" []) _) (Right (Box f)) = Set.toList $ Set.map (func f) $ Set.powerSet
.removeBoxLeft $ fs

kboxZ _ _ =[]

Now we can define our modal logic:
modal :: Logic FormM
modal = Log

{ neg = negM
, bot = BotM
, isAtom = isatomM
, isAxiom = isAxiomM
, safeRuleT = replaceRuleT safeML
, unsafeRuleT = [kboxT]
, safeRuleZ = replaceRuleZ safeML
, unsafeRuleZ = [kboxZ]
}

Example 5.3. Here we present the identical proof of K axiom generated by our provers.

 => ((☐ (a → b)) → ((☐ a) → (☐ b)))

(☐ (a → b)) => ((☐ a) → (☐ b))

R→

(☐ a) , (☐ (a → b)) => (☐ b)

R→

a , (a → b) => b

K☐

a => a , b

L→

a , b => b

L→

☐

Ax

☐

Ax

30

6 Test and Benchmarks

Given these provers, we now want to test them for correctness and benchmark their performance.
In this chapter, we will explain the formulas we use for tests and benchmarks

6.1 Formulas

6.1.1 Unit Tests

In table 1, we list the formulas we use to test the correctness of our provers. We include common
examples and ensure that we have both positive and negative examples for each logic.

Table 1: Provabilty of Formulas
G3C G3I G3K

⊥ × × ×
⊤ ✓ ✓ ✓
p ∧ ¬p × × ×
p→ p ✓ ✓ ✓
r ∧ (p ∨ ¬p) × × ×
Double negation: p↔ ¬¬p ✓ × ✓
Excluded middle: p ∨ ¬p ✓ × ✓
Pierce’s Law ((p→ q) → p) → p ✓ × ✓
¬¬(p ∨ ¬p) ✓ ✓ ✓
p→ ¬¬p ✓ ✓ ✓
(p→ (p→ q)) → (p→ q) ✓ ✓ ✓
phi: (p ∧ (p→ q)) → ((p→ q) → q) ✓ ✓ ✓
((((p→ q) → p) → p) → q) → q ✓ ✓ ✓
2⊤ - - ✓
2⊥ - - ×
K axiom: 2(p→ q) → (2p→ 2q) - - ✓
2(p→ q) → (2p→ (2q → 2r)) - - ×

6.1.2 Parameterized Formulas

We also define functions that take integers as input to generate formulas of increasing size. We
call the resulting formulas parameterized formulas and will mainly use them for benchmarks.

For some formulas, we also distinguish them by the function we use to generate them, foldr
and foldl. For more information about these two functions, please see [Hut16]. The functions
that end with "R" are generated by foldr, "L" otherwise.

To illustrate the distinction between them, we will use the examples of disPhiPieR and
disPhiPieL. In this example, the formula phi is the formula (p ∧ (p→ q)) → ((p→ q) → q) in

31

Table 1, valid in intuitionistic propositional logic.
disPhiPieR :: Int -> FormP
disPhiPieR k = foldr DisP phi (replicate (2*k) pierce)

disPhiPieL :: Int -> FormP
disPhiPieL k = foldl DisP phi (replicate (2*k) pierce)

We show the syntax trees for disPhiPieR 2 and disPhiPieL 2 in Figure 1 and Figure 2.

∧

∧

∧

pierce

pierce

pierce phi

Figure 1: disPhiPieR 2

∧

∧ pierce

∧ pierce

phi pierce

Figure 2: disPhiPieL 2

For arbitrary n, disPhiPieR n is logically equivalent to disPhiPieL n in any logic. But as
seen in Figure 1 and Figure 2, their constructions are not the same. Due to our prover for the
zipper being left-biased, we want to know if there will be a difference (whether in time or in
memory use) between them.

The rest of the parameterized functions are:
conBotR :: Int -> FormP
conBotR k = foldr ConP BotP (replicate k BotP)

-- ghci > conBotR 2
-- (⊥ ∧ (⊥ ∧ ⊥))

conBotL :: Int -> FormP
conBotL k = foldl ConP BotP (replicate k BotP)

-- ghci > conBotL 2
-- ((⊥ ∧ ⊥) ∧ ⊥)

conPieR :: Int -> FormP
conPieR k = foldr ConP pierce (replicate (2*k) pierce)

-- ghci > conPieR 2
-- ((((p → q) → p) → p) ∧ ((((p → q) → p) → p) ∧ ((((p → q) → p) → p) ∧ ((((p → q) → p) → p

) ∧ (((p → q) → p) → p)))))

conPieL :: Int -> FormP
conPieL k = foldl ConP pierce (replicate (2*k) pierce)

-- ghci > conPieL 2
-- (((((((p → q) → p) → p) ∧ (((p → q) → p) → p)) ∧ (((p → q) → p) → p)) ∧ (((p → q) → p) →

p)) ∧ (((p → q) → p) → p))

disPieR :: Int -> FormP
disPieR k = foldr DisP pierce (replicate (2*k) pierce)

-- ghci > disPieR 2
-- ((((p → q) → p) → p) v ((((p → q) → p) → p) v ((((p → q) → p) → p) v ((((p → q) → p) → p

) v (((p → q) → p) → p)))))

disPieL :: Int -> FormP
disPieL k = foldl DisP pierce (replicate (2*k) pierce)

32

-- ghci > disPieL 2
-- (((((((p → q) → p) → p) v (((p → q) → p) → p)) v (((p → q) → p) → p)) v (((p → q) → p) →

p)) v (((p → q) → p) → p))

We also add some extra tests for our modal logic K.
boxesTop :: Int -> FormM
boxesTop 0 = topM
boxesTop n = Box (boxesTop (n-1))

--ghci > boxesTop 3
--(2 (2 (2 (⊥ → ⊥))))

boxesBot :: Int -> FormM
boxesBot 0 = BotM
boxesBot n = Box (boxesBot(n-1))

--ghci > boxesBot 3
--(2 (2 (2 ⊥)))

listOfAt :: Int -> [FormM]
listOfAt n = map AtM $ take n [’c’..]

formForK :: Int -> FormM
formForK n = ImpM (Box (List.foldr ImpM (AtM ’a’) (listOfAt n)))

$ foldr (ImpM . Box) (Box (AtM ’a’)) (listOfAt n)
--ghci > formForK 3
--((2 (c → (d → (e → a)))) → ((2 c) → ((2 d) → ((2 e) → (2 a)))))

nFormForK :: Int -> FormM
nFormForK n = ImpM (Box (List.foldr ImpM (AtM ’a’) (listOfAt n ++ [AtM ’b’])))

$ foldr (ImpM . Box) (Box (AtM ’a’)) (listOfAt n)

--ghci > nFormForK 3
--((2 (c → (d → (e → (b → a))))) → ((2 c) → ((2 d) → ((2 e) → (2 a)))))

Here, formForK n generates variants of the K axiom with n+ 1 propositional variables, and
nFormForK n adds an extra variable b in the antecedent. Thus, formForK n is provable whereas
nFormForK n is not provable. We show the provability in Table 2 for these parameterized
formulas:

Table 2: Provability of Parametrized Formulas
Parametrized Formulas G3C G3I G3K
conBotR(L) × × ×
conPieR(L) ✓ × ✓
disPieR(L) ✓ × ✓
disPhiPieR(L) ✓ ✓ ✓
boxesTop - - ✓
boxesBot - - ×
formForK - - ✓
nFormForK - - ×

6.2 Additional Correctness Tests

Besides the tests in Section 6.1, we also want to run integration tests. That is, we want to check
that certain conditions are always satisfied regardless of the input formulas to our provers. This

33

is doable since we have defined Arbitrary instances for our formulas. We check the following:

• The results of the provability of a given formula should be identical for both the tree-based
and zipper-based provers.

• The proof trees obtained by each prover for any given formula must be at most binary.

• In any logic, if f and g are provable, then their conjunction should also be provable.

• If a formula is provable in G3C, then its double negation should be provable in G3I.

• If a formula is provable in G3C, then it should also be provable in G3K.

7 Results

This chapter presents the results for test, run time and memory usage separately.

7.1 Test Results

All tests described in Section 6.1 pass and demonstrate the correctness of the implemented
provers. Below is the result after running stack test.

Unit tests
G3C.isProvableZ

Top [✓]
(p → p) [✓]
Double negation: ((((p → ⊥) → ⊥) → p) ∧ (p → ((p → ⊥) → ⊥))

) [✓]
Excluded middle: (p v (p → ⊥)) [✓]
Pierce ’s law: (((p → q) → p) → p) [✓]
(((p v (p → ⊥)) → ⊥) → ⊥) [✓]
(p → ((p → ⊥) → ⊥)) [✓]
((p → (p → q)) → (p → q)) [✓]
((p ∧ (p → q)) → ((p → q) → q)) [✓]
(((((p → q) → p) → p) → q) → q) [✓]

not.G3C.isProvableZ
Bot [✓]
(p ∧ (p → ⊥)) [✓]
(r ∧ (p v (p → ⊥))) [✓]

G3C.isProvableT
Top [✓]
(p → p) [✓]
Double negation: ((((p → ⊥) → ⊥) → p) ∧ (p → ((p → ⊥) → ⊥))

) [✓]
Excluded middle: (p v (p → ⊥)) [✓]
Pierce ’s law: (((p → q) → p) → p) [✓]

34

(((p v (p → ⊥)) → ⊥) → ⊥) [✓]
(p → ((p → ⊥) → ⊥)) [✓]
((p → (p → q)) → (p → q)) [✓]
((p ∧ (p → q)) → ((p → q) → q)) [✓]
(((((p → q) → p) → p) → q) → q) [✓]

not.G3C.isProvableT
Bot [✓]
(p ∧ (p → ⊥)) [✓]
(r ∧ (p v (p → ⊥))) [✓]

G3I.isProvableZ
Top [✓]
(p → p) [✓]
(((p v (p → ⊥)) → ⊥) → ⊥) [✓]
(p → ((p → ⊥) → ⊥)) [✓]
((p → (p → q)) → (p → q)) [✓]
((p ∧ (p → q)) → ((p → q) → q)) [✓]
(((((p → q) → p) → p) → q) → q) [✓]

not.G3I.isProvableZ
Bot [✓]
(p ∧ (p → ⊥)) [✓]
(r ∧ (p v (p → ⊥))) [✓]
Double negation: ((((p → ⊥) → ⊥) → p) ∧ (p → ((p → ⊥) → ⊥))

) [✓]
Excluded middle: (p v (p → ⊥)) [✓]
Pierce ’s law: (((p → q) → p) → p) [✓]

G3I.isProvableT
Top [✓]
(p → p) [✓]
(((p v (p → ⊥)) → ⊥) → ⊥) [✓]
(p → ((p → ⊥) → ⊥)) [✓]
((p → (p → q)) → (p → q)) [✓]
((p ∧ (p → q)) → ((p → q) → q)) [✓]
(((((p → q) → p) → p) → q) → q) [✓]

not.G3I.isProvableT
Bot [✓]
(p ∧ (p → ⊥)) [✓]
(r ∧ (p v (p → ⊥))) [✓]
Double negation: ((((p → ⊥) → ⊥) → p) ∧ (p → ((p → ⊥) → ⊥))

) [✓]
Excluded middle: (p v (p → ⊥)) [✓]
Pierce ’s law: (((p → q) → p) → p) [✓]

G3K.isProvableZ
Top [✓]
(p → p) [✓]
Double negation: ((((p → ⊥) → ⊥) → p) ∧ (p → ((p → ⊥) → ⊥))

) [✓]
Excluded middle: (p v (p → ⊥)) [✓]
Pierce ’s law: (((p → q) → p) → p) [✓]

35

(((p v (p → ⊥)) → ⊥) → ⊥) [✓]
(p → ((p → ⊥) → ⊥)) [✓]
((p → (p → q)) → (p → q)) [✓]
((p ∧ (p → q)) → ((p → q) → q)) [✓]
(((((p → q) → p) → p) → q) → q) [✓]
Box top [✓]
K axiom [✓]

not.G3K.isProvableZ
Bot [✓]
(p ∧ (p → ⊥)) [✓]
(r ∧ (p v (p → ⊥))) [✓]
Box ⊥ [✓]
((2 (a → b)) → ((2 a) → ((2 b) → (2 c)))) [✓]

G3K.isProvableT
Top [✓]
(p → p) [✓]
Double negation: ((((p → ⊥) → ⊥) → p) ∧ (p → ((p → ⊥) → ⊥))

) [✓]
Excluded middle: (p v (p → ⊥)) [✓]
Pierce ’s law: (((p → q) → p) → p) [✓]
(((p v (p → ⊥)) → ⊥) → ⊥) [✓]
(p → ((p → ⊥) → ⊥)) [✓]
((p → (p → q)) → (p → q)) [✓]
((p ∧ (p → q)) → ((p → q) → q)) [✓]
(((((p → q) → p) → p) → q) → q) [✓]
Box top [✓]
K axiom [✓]

not.G3K.isProvableT
Bot [✓]
(p ∧ (p → ⊥)) [✓]
(r ∧ (p v (p → ⊥))) [✓]
Box ⊥ [✓]
((2 (a → b)) → ((2 a) → ((2 b) → (2 c)))) [✓]

Additional Correctness Tests
Equivalence between two provers

In G3C [✓]
+++ OK, passed 1000 tests.

In G3I [✓]
+++ OK, passed 1000 tests.

In G3K [✓]
+++ OK, passed 1000 tests.

Proofs are at most binary
zipper for G3C [✓]

+++ OK, passed 100 tests.
tree for G3C [✓]

+++ OK, passed 100 tests.
zipper for G3I [✓]

+++ OK, passed 100 tests.

36

tree for G3I [✓]
+++ OK, passed 100 tests.

zipper for G3K [✓]
+++ OK, passed 100 tests.

tree for G3K [✓]
+++ OK, passed 100 tests.

If f and g isProvable , then Con f g isProvable
zipper for G3C [✓]

+++ OK, passed 100 tests.
tree for G3C [✓]

+++ OK, passed 100 tests.
zipper for G3I [✓]

+++ OK, passed 100 tests.
tree for G3I [✓]

+++ OK, passed 100 tests.
zipper for G3K [✓]

+++ OK, passed 100 tests.
tree for G3K [✓]

+++ OK, passed 100 tests.
If f isProvable in G3C , then neg neg f isProvable in G3I

zipper [✓]
+++ OK, passed 100 tests.

tree [✓]
+++ OK, passed 100 tests.

If f isProvable in G3C , then f isProvable in G3K
zipper [✓]

+++ OK, passed 100 tests.
tree [✓]

+++ OK, passed 100 tests.

Finished in 0.0460 seconds
105 examples , 0 failures

As we can see , all the test conditions outlined in Chapter 6
are passed.

7.2 Run Time

We use the Criterion Haskell library [O’S24] to obtain benchmark results for run time. Given
that we have many parameterized formulas to test, and many of them are very similar, here we
only present the run time results of the most interesting cases. All other cases are pretty similar
to ConPie for G3I.

• conBot for G3C, G3I, and G3K.

• conPie for G3I.

37

• boxesTop for G3K.

These cases highlight the prominent differences between the two provers. For additional run
time results, we refer to the “Plot” folder in the same route.

20 40 60 80 100

10−6

10−5

10−4

10−3

10−2

10−1

length of the formula

se
co

nd
s

TreeR ZipR TreeL ZipL

Figure 3: G3C conBot

20 40 60 80 100

10−6

10−5

10−4

10−3

10−2

10−1

length of the formula
se

co
nd

s

TreeR ZipR TreeL ZipL

Figure 4: G3I conBot

20 40 60 80 100

10−6

10−5

10−4

10−3

10−2

10−1

length of the formula

se
co

nd
s

TreeR ZipR TreeL ZipL

Figure 5: G3K conBot

20 40 60 80 100

10−5

10−4

10−3

10−2

10−1

100

length of the formula

se
co

nd
s

TreeR ZipR TreeL ZipL

Figure 6: G3I conPie
(note the different y-axis)

38

20 40 60 80 100

10−5

10−4

10−3

10−2

10−1

length of the formula

se
co

nd
s

Tree Zip

Figure 7: G3K boxesTop

Figures 3, 4, and 5 each represent the comparison between the zipper-based prover and the
tree-based prover for the formula conBot in the proof systems G3C, G3I, and G3K, respectively.
Figure 6 shows the comparison for the formula conPie in G3I.

In these four cases, each graph contains four lines. Lines starting with “Zip” represent the
runtime of the zipper-based prover, and lines starting with “Tree” represent the runtime of the
tree-based prover. Lines ending with “L” indicate that the formula was constructed using foldl,
while lines ending with “R” indicate construction using foldr. For example, the line “ZipR”
in Figure 3 represents the runtime of the zipper-based prover trying to prove conBotR n as n
grows from 0 to 100.

In all these cases, the formulas are not provable. As we can see, in all cases, the zipper-based
prover is always faster than the tree-based prover, and formulas constructed using foldr are
dealt-with faster than those constructed using foldl. Additionally, in the case of foldr, the
speed advantage of the zipper-based prover is significantly greater than in the case of foldl.

Figure 7 is different, as boxesTop is not constructed based on foldr or foldl. Therefore, it
only has two lines: one for the zipper-based prover and one for the tree-based prover. It is
also the only case, including those not shown here, where the zipper-based prover becomes
increasingly slower than the tree-based prover as the formula’s length grows.

7.3 Memory Usage

We use the Weigh library [Don23] to measure the memory usage when proving parameterized
formulas. In Table 3:

• "Allocated" refers to the amount of memory allocated during execution. This value is
measured in bytes and indicates the amount of memory the program has requested from
the system for its operations.

39

• "GCs" is an abbreviation for Garbage Collection. Garbage collection reclaims memory
that a program no longer needs, preventing memory leaks. In these tests, "GCs" refers to
the number of times the program performed garbage collection. Fewer garbage collections
typically indicate better memory management and performance.

Table 3: Memory Usage Benchmarks

Logic Formula Type Size Result Allocated GCs
G3C disPhiPieR Tree 100 True 445,744 0
G3C disPhiPieR Zip 100 True 337,632 0
G3C disPhiPieL Tree 100 True 440,952 0
G3C disPhiPieL Zip 100 True 332,840 0
G3C disPieR Tree 100 True 440,616 0
G3C disPieR Zip 100 True 333,032 0
G3C disPieL Tree 100 True 435,824 0
G3C disPieL Zip 100 True 328,240 0
G3C conPieR Tree 100 True 1,836,256 0
G3C conPieR Zip 100 True 1,290,272 0
G3C conPieL Tree 100 True 1,831,504 0
G3C conPieL Zip 100 True 1,285,520 0
G3C conBotR Tree 100 False 229,440 0
G3C conBotR Zip 100 False 6,304 0
G3C conBotL Tree 100 False 246,888 0
G3C conBotL Zip 100 False 118,792 0
G3I disPhiPieR Tree 100 True 13,108,920 3
G3I disPhiPieR Zip 100 True 13,092,920 3
G3I disPhiPieL Tree 100 True 14,482,200 3
G3I disPhiPieL Zip 100 True 14,466,192 3
G3I disPieR Tree 100 False 12,888,976 3
G3I disPieR Zip 100 False 12,748,704 3
G3I disPieL Tree 100 False 14,235,424 3
G3I disPieL Zip 100 False 14,095,152 3
G3I conPieR Tree 100 False 33,065,344 8
G3I conPieR Zip 100 False 24,648 0
G3I conPieL Tree 100 False 33,067,624 8
G3I conPieL Zip 100 False 4,792,176 1
G3I conBotR Tree 100 False 3,494,104 0
G3I conBotR Zip 100 False 7,088 0
G3I conBotL Tree 100 False 3,511,552 0
G3I conBotL Zip 100 False 1,250,736 0
G3M disPhiPieR Tree 100 True 516,600 0
G3M disPhiPieR Zip 100 True 408,488 0
G3M disPhiPieL Tree 100 True 511,808 0
G3M disPhiPieL Zip 100 True 403,696 0
G3M disPieR Tree 100 True 511,296 0
G3M disPieR Zip 100 True 403,712 0
G3M disPieL Tree 100 True 506,504 0

Continued on next page

40

Table 3: Performance Benchmarks (continued)

Logic Formula Type Size Result Allocated GCs
G3M disPieL Zip 100 True 398,920 0
G3M conPieR Tree 100 True 1,906,936 0
G3M conPieR Zip 100 True 1,360,952 0
G3M conPieL Tree 100 True 1,902,184 0
G3M conPieL Zip 100 True 1,356,200 0
G3M conBotR Tree 100 False 239,064 0
G3M conBotR Zip 100 False 13,528 0
G3M conBotL Tree 100 False 256,512 0
G3M conBotL Zip 100 False 126,016 0
G3M boxesTop Tree 1000 True 76,662,600 13
G3M boxesTop Zip 1000 True 272,224,024 54
G3M boxesBot Tree 1000 False 1,818,048 0
G3M boxesBot Zip 1000 False 1,505,184 0
G3M formForK Tree 20 True 85,799,671,352 20,518
G3M formForK Zip 20 True 85,799,650,696 20,518
G3M nFormForK Tree 20 False 85,799,677,072 20,518
G3M nFormForK Zip 20 False 85,799,564,808 20,518

In most cases, memory usage is quite similar between the provers. The zipper-based prover
generally uses fewer bytes in most cases. However, in some cases (colored red in the table), the
prominence of the zipper’s lower memory usage (allocated) is more obvious. These cases are
conBot in G3C, G3I, and G3K, and conPie in G3I.

Another phenomenon observed is that in these cases, the advantage of the zipper is more
apparent for formulas constructed by foldr than those constructed by foldl. For example, in
the case of G3I conPieR, the memory used by the tree-based prover is 1342 times that of the
zipper-based prover. However, for G3I conPieL, the memory used by the tree-based prover is
only 7 times that of the zipper-based prover.

The ratio comparison of these cases is shown in Table 4. The ratio is the ratio of the allocated
memory of the tree prover to the allocated memory of the zipper prover, rounded to the nearest
integer.

Table 4: The Ratio Comparisons

Logic Formula Foldr Ratio [
Tree allocated

Zipper allocated
] Foldl Ratio [

Tree allocated
Zipper allocated

]

G3C conBot 36 2
G3I conPie 1342 7
G3I conBot 493 3
G3K conBot 18 2

Also, in the case of conPie, the tree-based prover performs garbage collection 8 times, whereas
the zipper-based prover does it 0 or 1 time. However, in the case of boxes_top, the zipper-
based prover uses almost 3 times the memory of the tree-based prover and does more garbage

41

∧

⊥ ∧

⊥ ∧

⊥ ⊥

Figure 8: conBotR 3

∧

∧ ⊥

∧ ⊥

⊥ ⊥

Figure 9: conBotL 3

collections.

7.4 Discussion

The provers’ time and memory usage are generally quite close. The zipper-based prover generally
uses fewer bytes and less time.

The formula boxes_top is a special case (and the only such case in our test set) where the
zipper-based prover is significantly slower and uses more memory than the tree-based prover.
Unfortunately, we do not know the reason behind this.

In four cases that we frequently mentioned: conBot in G3C, G3I, and G3K, as well as conPie
in G3I, the advantage of shorter run time and lower memory usage of the zipper-based prover,
is much more prominent than in other cases. This is particularly noticeable when the formula is
constructed by foldr.

Another observation is that these are all cases where the formula is not provable. We claim that
this difference is due to the ease of navigating and modifying the zipper prover, which stops
immediately upon encountering an open branch. In contrast, the tree-based prover continues to
extend the other branches regardless. So, the zipper-based prover has fewer needs to perform
garbage collection, especially in the case where the formula is more complicated, such as conPie.
This feature is then reinforced by the structural differences between foldl and foldr because
the principle of extending the proof for the zipper is left-biased.

To understand this result, let’s first consider the structure of formulas generated by foldl and
foldr. Similar to Figure 2 and Figure 1, we now present the syntax trees for conBotR 3 and
conBotL 3.

Case conBotR As shown in Figure 8, we notice that ⊥ appears as the highest left branch of
conBotR. This means that after the first rule R∧ is applied, we will already have a left ⊥ in our
next sequent.

Our prover for the zipper is left-biased, meaning it will move directly to this branch: a single
node containing ⊥ before proving the other branch. Once the prover realizes that there is nothing
that can be done for this branch, it will return: Node (singleton (Right BotP)) “” [] for
this branch and instantly stop the whole proving process.

42

Whereas for the tree, it will create two sub-trees: the left one is a single node containing ⊥, and
the right one is a single node containing ⊥ ∧ (⊥ ∧ ⊥). It will extend both trees at the same
time. That is, the end of the first branch will not impact the second one. So even if the first
branch is a dead end, it will still extend the second branch.

Case conBotL However, in Figure 9, ⊥ is the highest right branch of conBotL. So after the
first rule R∧ is applied, we will have two sub-trees: the left one is a single node containing
⊥ ∧ (⊥ ∧⊥), and the right one is a single node containing ⊥.

Our prover for the zipper will first try to extend the left branch, so it will keep applying R∧
two times and focusing on extending the left subtree until getting a single node containing ⊥.
Then it will stop the proving process.

Whereas for the tree, it will also apply R∧ while, in the meantime, also trying to extend the
branches created in the process.

Summary To summarize, the zipper-based prover is much more efficient in these cases due to
its ability to focus on promising parts of the proof tree and quickly discard irrelevant branches,
especially with foldr-constructed formulas.

When encountering a branching rule, the zipper-based prover prioritizes the left branch, quickly
stopping further exploration when encountering a dead end, while the tree-based prover explores
all branches simultaneously. foldr-constructed formulas align well with the zipper prover,
placing critical parts early and allowing for faster identification of dead ends.

The differences are also reflected in the frequency of garbage collection. The zipper-based prover
requires fewer garbage collections, indicating better memory management. However, exceptions
like boxes_top show the zipper-based approach using more memory, suggesting its performance
depends on formula structure. This highlights the necessity for further optimisation and a
deeper understanding of the zipper-based approach.

8 Future Work

Several directions could be explored in future work.

1. Firstly, with our two generic modular provers, we can extend our implementation to other
logics, such as T, S4, and S5, in modal logic. These logics are commonly used in various
fields, such as computer science and philosophy. Implementing these logics should be easy.
We juse need to add more unsafe rules for each logic and modify our provers to handle
the case where there might be more than one unsafe rule.

2. Secondly, testing more complex cases in more complex logic systems could further optimize
our zipper-based prover. Although we already have many test cases, increasing their
complexity and variety will help identify more patterns and discover potential areas for
improvement.

3. Furthermore, the zipper-based prover’s prominent efficiency in identifying non-provable
formulas indicates the potential for employing the zipper structure in proof systems

43

focused on finding contradictions, such as the tableau method. Its main goal is to find
contradictions to determine the validity of a given formula. By using the zipper for
the tableau system, we can quickly traverse and discard redundant branches to find a
contradiction more efficiently.

9 Acknowledgement

I would like to express my deepest gratitude to my supervisor, Dr. Malvin Gattinger, for his
invaluable guidance, support, and encouragement throughout my research. His insights and
expertise have been instrumental in shaping this thesis.

I am also grateful to my committee members, Dr. Benno van den Berg, Dr. Andres Goens
Jokisch, and Dr. Marianna Girlando, for their valuable feedback. Special thanks to Dr. Marianna
Girlando for providing many suggestions and guidance during my research and introducing
propositional intuitionistic logic to enrich our proving patterns.

I would like to thank my friends at ILLC for their support, discussions, and encouragement
during this journey. Their insights have made this experience truly enriching: Alyssia Renata,
Chu TianYi, Hu Ruiting, Justus Becker, Liam Chung, Raufs Dunamalijevs, Vince Chang, Wang
Haitian, and Ye Lingyuan.

To my boyfriend Wang Yilun, thank you for your unwavering support in both my studies and
daily life.

To my parents Yang Liu and Yang Yi, thank you for your endless patience and belief in me.

I would also like to thank the CrossFit Amsterdam community, including coaches Alex, Clay,
and Nick, and my friends Dionne, Esther, Hayley (and her cat Poki), and everyone who has
cheered me on. One year of CrossFit has truly brightened my mind and given me countless
joyful memories.

I would like to thank my undergraduate friends Zhang Haoyu and Ji Yu for staying connected
across the distance.

To my therapist Amy and psychiatrist Alain, thank you for helping me regulate my emotions
and believe in myself.

Thank you all.

References

[BDRV01] Patrick Blackburn, Maarten De Rijke, and Yde Venema. Modal Logic, volume 53.
Cambridge University Press, 2001.

[Don23] Chris Done. Weigh, 2023. Haskell library. URL: https://github.com/fpco/weigh.

44

https://github.com/fpco/weigh

[Dyc16] Roy Dyckhoff. Intuitionistic Decision Procedures since Gentzen. Advances in proof
theory, pages 245–267, 2016.

[Gat23a] Malvin Gattinger. FP2023 lecture 9: Zippers and the Algebra of Data Types.
Unpublished lecture slides, 2023.

[Gat23b] Malvin Gattinger. Modal tableau interpolation, 2023. URL: https://github.com/
m4lvin/modal-tableau-interpolation.

[Gat24] Malvin Gattinger. Smcdel, 2024. URL: https://github.com/jrclogic/SMCDEL.

[GHLS19] Olivier Gasquet, Andreas Herzig, Dominique Longin, and Mohamad Sahade. Lotrec,
2019. URL: https://www.irit.fr/Lotrec/.

[Hue97] Gérard Huet. The Zipper. Journal of functional programming, 7(5):549–554, 1997.

[Hut16] Graham Hutton. Programming in Haskell, chapter 7, pages 73–91. Cambridge
University Press, 2016.

[Mae54] Shôji Maehara. Eine Darstellung der Intuitionistischen Logik in der Klassischen.
Nagoya Mathematical Journal, 7:45–64, 1954. doi:10.1017/S0027763000018055.

[MS23] Ivan Lazar Miljenovic Matthew Sackman. Graphviz, 2023. Haskell library. URL:
https://gitlab.com/daniel-casanueva/haskell/graphviz.

[O’S24] Bryan O’Sullivan. Criterion, 2024. Haskell library. URL: https://github.com/
haskell/criterion.

[TS00] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cambridge
University Press, 2000.

45

https://github.com/m4lvin/modal-tableau-interpolation
https://github.com/m4lvin/modal-tableau-interpolation
https://github.com/jrclogic/SMCDEL
https://www.irit.fr/Lotrec/
https://doi.org/10.1017/S0027763000018055
https://gitlab.com/daniel-casanueva/haskell/graphviz
https://github.com/haskell/criterion
https://github.com/haskell/criterion

	Introduction
	Zipper
	Zipper for Lists
	Zipper for Trees

	Logics and Proofs
	Propositional Logic
	Modal Logic
	Automated Theorem Prover
	Proof Systems

	Haskell Implementation: The General Prover
	Sequent
	Proof
	Tree-Based Prover and Zipper-Based Prover
	The Tree-Based Prover
	Preliminary
	ExtendT
	Provability and Visualization

	The Zipper-Based Prover
	Helper Functions
	The Proving Process
	Comparison

	Haskell Implementation: The Logics
	G3C for Classical Propositional Logic
	G3I for Intuitionistic Propositional Logic
	G3K for Minimal Modal Logic

	Test and Benchmarks
	Formulas
	Unit Tests
	Parameterized Formulas

	Additional Correctness Tests

	Results
	Test Results
	Run Time
	Memory Usage
	Discussion

	Future Work
	Acknowledgement
	Bibliography

