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Abstract

This paper formalizes knowledge base embedding algorithms using categorical
logic, focusing on box embeddings. We introduce a novel approach utilizing
hyperdoctrines, a categorical construction, to analyze the relationship between
a knowledge base and its embedding space. We provide a proof of the incom-
pleteness of state-of-the-art box embedding approaches like BoxEL, and then
use algebraic tools to extend box space embeddings to a novel MultiboxEL em-
bedding approach. We establish that every EL++ knowledge base possesses a
finite model and use that to show completeness of MultiboxEL with respect to
EL++. We further extend our embedding to ALC knowledge bases. Finally, we
implement and compare our new embedding strategies against state-of-the-
art box embedding models, providing empirical evidence for the usefulness
and limitation of our approach. These contributions collectively offer a ro-
bust, algebraic method for knowledge base embeddings, advancing the field
and opening new avenues for the application of categorical logic in artificial
intelligence and machine learning.
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Introduction

In recent years, the importance of well-curated knowledge bases, that record
specialized information, has become increasingly evident across various indus-
tries and domains. Such repositories serve as critical tools for the development
of specialized algorithms. The process of data collection, annotation, and vali-
dation by domain experts is called knowledge base curation.

These knowledge bases are often formally documented using description
logics due to their strong algorithmic properties ([Staab and Studer, 2009]). An
important case study was EL, a description logic which allows for conjunction
and existential restrictions while also being tracable ([Brandt, 2004]).

In Pushing the EL Envelope, it has been shown that it is possible to add a
bottom element and nominals (concepts that are satisfied by only one object) to
the language while maintaining tractability. The new language is called EL++.
EL++ has seen use in many applications including large parts of the Galen
medical knowledge base ([Rector and Horrocks, 1997]) and the Gene Ontology
([Ashburner et al., 2000]).

Despite its critical importance, knowledge base curation presents numer-
ous challenges. The sheer volume and diversity of information sources, cou-
pled with the dynamic nature of knowledge, make the curation process com-
plex and resource-intensive.

Knowledge base completion is the task of automating curation by infer-
ring missing facts through the information already present in the knowledge
base. One such approach is knowledge base embeddings. Knowledge base
embeddings represent entities and relationships within the knowledge base as
vectors in a low-dimensional metric space. By treating the distance function
of the space as a similarity score between vectors, the embedding allows us to
complete the knowledge base with potentially new connections between enti-
ties.

This led to the development of the state-of-the-art methods BoxEL ([Xiong
et al., 2022a]) which represents concepts in EL++ as boxes (i.e., axis-aligned
hyperrectangles) and roles as affine transformations. While BoxEL manages
to preserve many structural properties of the knowledge base, it is unable to
capture one-to-many, many-to-one, or many-to-many relations and thus is lim-
ited in its ability to faithfully represent inclusion relations in EL++. Followup
papers attempted to improve BoxEL by devising representations for the EL++

constructors that faithfully preserve the underlying structure of the logic.
A reasonable requirement for these embeddings is that any inferred facts

from the embeddings are correct inferences from the existing knowledge base,
preventing the introduction of incorrect information. And that all possible
true facts that can be inferred from the existing knowledge are captured, ensur-
ing no relevant information is missed. These two requirements can be phrased
in terms of soundness and completeness. While proving these results is crucial
for ensuring the faithfulness of the embeddings and their interpretable value,
most knowledge base embeddings do not lay a mathematical foundation deep
enough to verify these properties.
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To formalize and analyze the relationship between a knowledge base and
its embedding space, we would use hyperdoctrines. Hyperdoctrines are a cat-
egorical construction that describes a relationship between first-order logics
and geometric spaces ([Lawvere, 1969]). Hyperdoctrines allow us to uniquely
construct the representation of the EL++ constructors within a space in which
concepts are represented as subsets of a space, which also preserves all the
logical structure of the underlying knowledge base. Due to these properties
of hyperdoctrines, we believe them to be very useful in the discussion about
knowledge-base embeddings.

The motivating example for our approach would be box embeddings of
EL++ and ALC knowledge bases. Box embedding is a popular embedding
method of EL++. In this approach, concepts are represented as hyperrectan-
gles (or boxes) in a vector space. We would prove soundness and completeness
of the box embedding representation that we construct using categorical logic
and experiment with AI embedding algorithms to compare the performance
and accuracy of our categorical logic-based embeddings against traditional box
emebddings.

We conclude this paper with an implementation of a new embedding strat-
egy called MultiboxEL. The MultiboxEL embedding allow us to represent EL++

as well as more expressive and non-tractable languages such as ALC.
This thesis makes several significant contributions to the field of knowledge

base embeddings:

1. Formalization of Box Embeddings for Description Logics through Hy-
perdoctrines: We provide a formal framework using hyperdoctrines to
represent and reason about box embeddings for description logics, en-
suring soundness and completeness. Unlike previous papers that took
an experimental approach to represent logical operations, our algebraic
method allows us to compute directly and uniquely what the representa-
tions of the operations should be to ensure completeness.

2. Proof that Box Embeddings are Not Complete Against EL++ Knowl-
edge Bases: We show that traditional box embeddings fail to achieve
completeness when applied to EL++ knowledge bases, despite the robust
literature that applies them for EL++ knowledge base embeddings.

3. Proof that Every EL++ Knowledge Base has a Finite Model: We estab-
lish that every EL++ knowledge base possesses a finite model. Despite the
wide usage of EL++, we could not find a proof of this important result.

4. A New Strategy for Embedding EL++ Knowledge Bases Using Multi-
boxes: We introduce a novel embedding approach utilizing multiboxes,
which we show to be complete with respect to EL++ knowledge bases.

5. A Strategy for Embedding ALC Knowledge Bases Using Multiboxes:
We extend our multibox embedding strategy to ALC knowledge bases,
demonstrating its applicability to a broader range of description logics.
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6. Experimentation Section: We implement our new embedding strategies
using a model called MultiboxEL. We then conduct experiments compar-
ing the performance and accuracy of our embeddings against classical
models in the literature, providing empirical evidence of the effective-
ness of our approach.

Related Works

Hyperdoctrines

The use of lattices to interpret logical systems marked a significant milestone
in the history of logic. It offered an algebraic representation of the operations
of propositional calculus [Birkhoff, 1967].

Hyperdoctrines, introduced by Lawvere [Lawvere, 1969], showed that through
the categorical notion of adjoint functor, it is possible to algebraically repre-
sent quantifiers over lattices, thus allowing for an algebraic representation of
first-order logic. Hyperdoctrines require the lattices to be generated above a
category of contexts.

Knowledge Base Embeddings

Early works in knowledge base embeddings embed entities and relations be-
tween them as vectors ([Bordes et al., 2013]). The measure of how much rela-
tion r holds between two entities a,b is represented as a translation b− (a + r).
While such models manage to predict the relation between entities well, they
do not represent concepts and subsumption relation and thus are incapable of
representing ontological data and complex logical queries.

Other models suggested to use convex spaces such as balls to represent
concepts ([Gutiérrez-Basulto and Schockaert, 2018], [Kulmanov et al., 2019a]).
[Xiong et al., 2022b] proposed to use boxes because they are a computationally
efficient representation, while also capturing faithfully the meaning of con-
junction as intersection of two boxes and thus introduced the model BoxEL.
Following the original TransE, roles were represented in BoxEL as affine trans-
formations. [Jackermeier et al., 2024a] managed to represent both concepts
and roles as boxes with the model BoxSquaredEL. While the researchers man-
aged to show that their system is sound with respect to EL++1, they have not
considered completeness. Moreover, since their representation does not rely
on algebraic methods, they cannot express complicated logical queries with
their approach, nor extend it to new description logics. We show in this paper
that their method is in fact not complete with respect to EL++ and propose a
representation that manages to express complicated concepts and is extend-
able.

1We say an embedding is sound if when the loss measure of the embedding with respect to a
knowledge base is zero, then the embedding satisfies the knowledge base
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Chapter 1

Description Logic

Knowledge representation is a field of study in artificial intelligence that fo-
cuses on how knowledge can be represented, organized, and stored. A system
of knowledge representation needs to be sufficiently expressive, in order to
capture as much information of the domain subject as possible.

A knowledge representation also needs to be computationally efficient. That
is, given a set of facts, and a query about the facts, the problem of solving the
query should have low complexity.

First-order logic is often considered as an initial framework for knowledge
representation. It provides a formal language for expressing statements and
rules about objects, relationships, and properties in a domain.

However, despite its expressiveness, first order logic is not sufficient for
many applications due to the fact that first order logic is not decidable [Avron
et al., 2008]. Knowledge representation focuses on decidable fragments of first
order logic. Description logics (DLs) are a family of first order languages with
decidable properties.

In the following sections, we describe the syntax and semantics of the de-
scription logics analyzed in this thesis. This chapter relies on the construction
found in [van Harmelen et al., 2007].

1.1 ALC Syntax and Semantics

We begin by introducing the syntax and semantics of one of the most expres-
sive DLs, namely the Attributive Concept Language with Complements DL
(ALC).

1.1.1 Syntax

The syntax of a DL is defined by a signature and grammar. The signature
defines the set of primitive names of the DL (e.g., concept names, role names,
and individual names). The grammar defines how to combine primitive names

8
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to form complex names (e.g., concepts and roles). The set of complex names is
called the set of concepts and roles of the DL.

Definition 1.1 (Signature). Given a description logic (DL), a signature Σ is a
triple Σ = (NC ,NR,O), where NC , NR, and O are pairwise disjoint sets of concept
names, roles, and individuals, respectively.

A description logic is defined by the set of constructors it supports. The
constructors of ALC are ∃, ∀, ⊓, ⊔, ¬, ⊤, and ⊥.

Definition 1.2 (ACL Role). Given a signature Σ and a natural number n, aALC-
role R is defined as a chain R1 ◦ · · · ◦Rn where R1, . . . ,Rn ∈NR.

The set of ALC-roles over a signature Σ is denoted by R and is defined as the
smallest set that contains NR ⊆ C and every ALC-role.

Definition 1.3 (ACL Concept). Given a signature Σ, aALC-concept C is defined
recursively by the following grammar:

C ::= A | ⊤ | ⊥ |D ⊓E |D ⊔E | ¬D | ∃R.D | ∀R.D

where A ∈ NC , R ∈ R and D,E are previously defined ALC-concepts. The set of
ALC-concepts over a signature Σ is denoted by C and is defined as the smallest set
that contains NC ⊆ C and every concept C that can be recursively constructed from
the primitive concepts in NC using the above grammar.

1.1.2 Semantics

In logic, the semantics of a language describe how to interpret the language
in some domain. The semantics of a DL is defined as a set of elements that
can be used to interpret the primitive names of the DL. The interpretation is a
mapping from the primitive names of the DL to elements of the fixed domain.
The interpretation of a complex name is defined in terms of the interpretation
of its subnames. The standard semantics of ALC treats concepts as subsets of
the fixed domain and roles as binary relations over the fixed domain.

Definition 1.4 (Interpretation). Given a signature Σ, an interpretation I is a
triple I = (∆I , ·IC , ·

I
R, ·
I
O), where ∆I is a non-empty set called the domain of I ,

And we have interpretation maps

·IC : C → P∆I

·IO : O→ ∆I

·IR :R→P (∆I ×∆I )

such that ·IC maps each concept C ∈ C to a subset CI ⊆ ∆I , and ·IR maps each role
names R1, . . . ,Rn ∈NR to a binary relation RI1 , . . . ,R

I
n ⊆ ∆I ×∆I .

The interpretation function ·I must satisfies the following conditions:

• ⊤I = ∆I and ⊥I = ∅.
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• (C ⊓D)I = CI ∩DI and (C ⊔D)I = CI ∪DI .

• (¬C)I = ∆I \CI .

• (R1 ◦ · · · ◦Rn)I = RI1 ◦ · · · ◦RIn

• (∃R.C)I = {x ∈ ∆I | ∃y ∈ ∆I .(x,y) ∈ RI ∧ y ∈ CI }.

• (∀R.C)I = {x ∈ ∆I | ∀y ∈ ∆I .(x,y) ∈ RI =⇒ y ∈ CI }.

1.1.3 Knowledge Base

Description logics are used to represent knowledge about a domain of interest
(e.g., a medical domain). The knowledge about a domain of interest is rep-
resented by a knowledge base. A knowledge base is a set of axioms where
an axiom is a statement that describes a relation between concepts, roles, and
individuals. The semantics of a knowledge base is defined in terms of the se-
mantics of its axioms.

Definition 1.5 (TBox and Subsumption). Given a signature Σ, a TBox T is a
finite set of subsumption axioms of the form C ⊑ D or R ⊑ K , where C,D ∈ C and
R,K ∈ R.

Notation 1.6 (Definition). Given a signature Σ, a definition, denoted as C ≡ D,
is an abbreviation for the subsumption axioms C ⊑D and D ⊑ C.

Definition 1.7 (ABox and Assertion). Given a signature Σ, an ABox A is a finite
set of assertion axioms of the formC(a) orR(a,b), whereC ∈ C, R ∈ R, and a,b ∈ O.

Definition 1.8 (Satisfiability). Given an interpretation I , we say that

• I satisfies a concept C ∈ C if CI , ∅.

• I satisfies a role R ∈ R if RI , ∅.

• I satisfies a subsumption axiom C ⊑D if CI ⊆DI and R ⊑ K if RI ⊆ KI .

• I satisfies an assertion axiom C(a) if aI ∈ CI .

• I satisfies an assertion axiom R(a,b) if (aI ,bI ) ∈ RI .

• I satisfies a TBox T if I satisfies every subsumption axiom in T .

• I satisfies an ABox A if I satisfies every assertion axiom in A.

Definition 1.9 (Knowledge Base). Given a signature Σ, a knowledge base K is a
pair K = (T ,A), where T is a TBox and A is an ABox.

Definition 1.10 (Model). Given a knowledge base K = (T ,A) and an interpreta-
tion I , we say that I is a model of K if I satisfies T and A.

We say that a knowledge base K is consistent if it has a model.

Notation 1.11 (Satisfiability). We will write I ⊨ L if I satisfies L.

Under this semantics, a query q is entailed by a knowledge base K if q is
true in all models of K. We denote this by K ⊢ q.
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1.2 EL++ Syntax and Semantics

For most applications, ALC is too computationally expensive to be used in
practice. For example, the subsumption problem in ALC is PSPACE-complete
[Schmidt-Schauß and Smolka, 1991]. To address this issue, a number of tractable
DLs have been proposed.

One of the most popular tractable DLs is the EL family of DLs. The EL
family of DLs is a subset of the ALC family of DLs that contains only the con-
structors ∃, ⊓ and ⊤.

Definition 1.12 (EL Role). EL-roles are the same as ALC roles.

Definition 1.13 (EL Concept). Given a signature Σ, an EL-concept C is defined
recursively by the following grammar:

C ::= A | ⊤ |D ⊓E | ∃R.D

where A ∈ NC , R ∈ R and D,E are previously defined EL-concepts. The set of EL-
concepts over a signature Σ is denoted by C and is defined as the smallest set that
contains NC ⊆ C and every concept C that can be recursively constructed from the
primitive concepts in NC using the above grammar.

Interpretation of EL-concepts is similar to the interpretation ofALC-concepts.
The main advantage of EL is that subsumption in EL is polynomial time [Baader,
2003]. In [Baader et al., 2005] it was shown that adding the constructor ⊤ and
nominality does not increase the complexity of subsumption. The resulting DL
is called EL++.

Definition 1.14 (EL++ Concept). Given a signature Σ, an EL++-concept C is
defined recursively by the following grammar:

C ::= A | ⊤ | ⊥ |D ⊓E | ∃R.D | {a}

where A ∈NC , a ∈ O, R ∈ R and D,E are previously defined EL++-concepts. The set
of EL++-concepts over a signature Σ is denoted by C and is defined as the smallest
set that contains NC ⊆ C and every concept C that can be recursively constructed
from the primitive concepts in NC using the above grammar.

Note that the inclusion of {a} as concepts allows us to form TBoxes such as
C ⊑ {a}. Such constructor is called nominal.

One powerful result for EL++ is the normalization theorem:

Definition 1.15 (Basic Concept). We define the set of basic concepts as BC =
{ai}ai∈O ∪NC ∪ {⊤,⊥}.

Lemma 1.16 ([Baader et al., 2005]). Given a TBox T , we can generate (in linear
time) a normalized TBox T ′ of T such that all subsumptions in it are of the form

C1 ⊑D, C1 ⊑ ∃R.C2

C1 ⊓C2 ⊑D, ∃R.C1 ⊑D
R ⊑ S, R1 ◦R2 ⊑ S
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where C1,C2 ∈ BC\ {⊥}, D ∈ BC\ {⊤} and R,R1,R2,S ∈NR and where every model
of T ′ is a model of T and every model of T can be extended to a model of T ′ .

Given any knowledge base K = (T ,A), we can generate a normalized knowledge
base K′ = (T ′ ,A′) of K where T ′ is the normalized form of T , every assertion a :
{b} ∈ A is removed from A′ and added as a subsumption a ⊑ {b} ∈ T ′ . We have that
every model of K′ is a model of K and every model of K can be extended to a model
of K′ .



Chapter 2

Knowledge Base Embeddings

Neuro symbolic AI is a field of research that studies the application of symbolic
representations of knowledge in neural network algorithms. In this chapter,
we explain what a deep learning algorithm is and how knowledge bases can
be used in the field. We begin by exploring what a learning algorithm is, then
describe the particular class of neural network algorithms and finish with the
application of such algorithms called knowledge base embedding.

Supervised learning algorithms attempt to locate function f : A → B that
is most optimal for solving a certain task from a list of functions indexed by
a set P of parameters I : P × A → B, given a set of points called the dataset
D := {(a1,b1), . . . }. We call b1, . . . the labels of the dataset. In neural network
algorithms, P is some hyperplane R

n. The optimal solution can be character-
ized through a distance function called the loss function L : A × B → R that
measures the distance of a particular function on some input I(p,−)(a) to the
desired output b.

The most straightforward approach for finding the optimal solution is to
compute the partial derivative over the set of parameters and identify the crit-
ical points. That is, solving the equation

∇P L(I(−),−) = 0⃗ (2.1)

However, it is not always feasible to solve 2.1.

Instead, neural networks converge to a local critical point through a stochas-
tic gradient descent algorithm. Given a constant known as the learning rate
η ∈R and some ε ∈R, the gradient descent algorithm is:

13



14 CHAPTER 2. KNOWLEDGE BASE EMBEDDINGS

Algorithm 1 Stochastic Gradient Descent
1: Randomly sample a p ∈ P
2: while L(I(−),−) < ε do
3: Sample a subset D ⊆D.
4: for (a,b) ∈D do
5: Compute the loss L(I(a,−),b).
6: Compute the gradient ∇L(I(p,a),b).
7: Update the parameters p← p − η∇L(I(p,a),b).
8: end for
9: end while

It is important to note that the gradient descent algorithm usually does not
reach the critical point. Rather, it approximates it sufficiently well.

The gradient descent process is called the learning algorithm. The compu-
tation of gradient is called a backward pass and the computation of the loss
function is called the forward pass.

Parameters that remain fixed throughout the learning process such as η and
ε are called hyper parameters.

2.1 The Neural Network Architecture

Definition 2.1 (Neural Network Architecture). A neural network architecture is
a tuple ⟨G, {σL}L≤N∈N⟩ such that

• G is a finite directed graph ⟨V ,R⟩ where V :=
⊔
L≤N+1VL and for any (v,w) ∈

R, there exists some L ≤N such that v ∈ VL and w ∈ VL + 1.

• For any L, we have that σL is a non linear function σL : R→R.

We call V1 and VN+1 the input and output layers of the neural network. For any L,
we call |VL| the width of the Lth layer and σL the activation function. We call N + 1
the depth of the network.

The neural network architecture represents the I function in the previous
section.

Definition 2.2 (Neural Network). Given a neural network architecture ⟨G, {σL}L≤N∈N⟩
and a compact space K ⊆ R

d a neural network is a function f : K → R
|VL+1 | such

that

1. There exists a set of linear functions {TL(x) := WL(x) + bL}L∈[1,N+1] where the
dimensions of W1 are d × |V1|.

2. The dimensions of WL+1 are |VL| × |VL+1|.

3. There exists some enumeration VL := {v1,L, . . . , vn,L},VL+1 := VL := {v1,L+1, . . . , vm,L+1}
such that if (vq,L,vp,L+1) < R then Wp,q = 0.
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4. We have that
f (x) = (TN+1 ◦ σN ⊙ TN ◦ · · · ◦ σ1 ⊙ T1)(x)

where ⊙ represents component wise composition.

Given a layer L, WL is called the weights of layer L and bL is called the biases of
layer L.

The biases are hyper parameters of the algorithm and P =W1 × · · · ×WN+1.
One important reason that neural networks are very useful is the fact that

they can limit any continuous function.

Theorem 2.3 (Universal approximation theorem, [Haykin, 1999]). Given a func-
tion σ : R→R, we have that σ is non-linear if and only if for every natural numbers
d,m, compact space K ⊆ R

d , continuous map f : K → R
m and ε > 0, there exists a

neural network g : K →R
m with architecture ⟨G, {σ }⟩ such that

sup
x∈K
∥f (x)− g(x)∥ < ε

Notice that theorem 2.3 tells us that for any such map f , there exists a neu-
ral network architecture of depth 3 that satisfies the condition. However, it
does not specify how to find such a function. Furthermore, it has been empiri-
cally observed that deep and narrow neural networks tend to be more optimal
for finding an approximating function better than wide and shallow neural
networks [Nguyen et al., 2021]. Finding a good architecture relies more on
empirical rather than theoretical work.

2.2 Knowledge Base Embedding

Given a signature Σ and a given knowledge baseK, a knowledge representation
learning task is a training task for finding interpretations of the description
logic that approximate the satisfaction of K. That is, the task is to produce an
interpretations (Rn, ·IC , ·

I
D) where we interpret the subsumption relation using

some function ⊏: Rn ×Rn → R and we measure how effective is this interpre-
tation using some cost function L : R×R→R that measures how well does the
interpretation satisfies the subsumption relation between concepts in K. The
interpretations I are called knowledge base embeddings. Usually, a training
task searches for such an embedding under a fixed domain. That is under a
fixed dimension of R.

The reason we are interested in such tasks is that storing complete knowl-
edge bases and computing the subsumption relation between concepts within
them can be very computationally and memory expensive. Knowledge base
embeddings allow us to find a computationally cheap representation that cap-
tures the core structure of the graph.



Chapter 3

Categorical Logic

Algebraic and categorical logic are rich languages that allow us to mathemati-
cally formulate what it means for a given embedding to capture the structure
of a knowledge base and to find an optimal representation of different concepts
from the knowledge base that respect the different description logic operators.
We would begin this section by covering the algebraic logic structures and then
move to describing them in the language of category theory.

3.1 Algebraic Logic

Algebraic logic is a mathematical description of logic that uses posets to repre-
sent the relation between formulas.

Definition 3.1 (Poset). A poset is a pair (A,≤) where A is a set and ≤ is a relation
such that

• For any p ∈ A, we have that p ≤ p (reflexivity).

• For any p,q ∈ A, if p ≤ q and q ≤ p then p = q (antisymetry).

• For p,q, r ∈ A, if p ≤ q and q ≤ r then p ≤ r (transitivity).

Definition 3.2 (Bounded poset). A poset is bounded if and only if there exists two
elements 0 and 1 in A such that for any p ∈ A we have that 0 ≤ p and p ≤ 1.

Example 3.3 (Propositional logic). Given a set of propositions P , the provability
relation ⊢ (that is p ⊢ q if assuming p then q is true) forms a poset over P . Moreover,
the propositions ⊥ and ⊤ bound the poset.

The ⊢ relation is sufficient all the logic operators by describing their relation
to provability

16
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Definition 3.4 (Meets and join). For any two elements p,q of a poset (P ,≤), we
define the meet p∧ q and the join p∨ q as the elements such that for any t ∈ P ,

t ≤ p∧ q ⇐⇒ t ≤ p and t ≤ q
p∨ q ≤ t ⇐⇒ p ≤ t and q ≤ t

Given a subset S ⊆ P , we define the arbitrary meet
∧
S and arbitrary join

∨
S as

the elements such that

t ≤
∧

S ⇐⇒ ∀p ∈ S,t ≤ p∨
S ≤ t ⇐⇒ ∀p ∈ S,p ≤ t

Definition 3.5 (Implication). Given a poset (P ,≤) and two elements p,q ∈ P , we
define the implication p→ q as an object such that for any t ∈ P ,

t ≤ p→ q ⇐⇒ t ∧ p ≤ q

If
∨
{t : t ∧ p ≤ q} exists, then it is equal to p→ q.

Definition 3.6 (Negation). Given an element of a poset p ∈ P , we define negation
¬p as p→⊥

Definition 3.7 (Lattices). Given a poset (P ,≤), we say that

• (P ,≤) is a join semi-lattice if every pair of elements p,q have a join element
p∨ q. Likewise, a meet semi-lattice if every pair has a meet element p∧ q.

• (P ,≤) is a lattice if it is both a meet and a join semi-lattice.

• (P ,≤) is a complete join semi-lattice if it has all arbitrary joins. That is, for
every subset S we have an element

∨
S. Likewise, (P ,≤) is a meet semi-lattice

if it has all arbitrary meets.

• (P ,≤) is a complete lattice if it is both a complete join semi-lattice and a com-
plete meet semi-lattice.

Definition 3.8 (Heyting and Boolean algebras). A Heyting algebra is a structure
(H,≤,∧,∨,→,⊥,⊤) such that (H,≤,∧,∨,⊥,⊤) is a bounded lattice and → is an
implication operator.

A Boolean algebra is a structure (B,≤,∧,∨,→,⊥,⊤) such that (B,∧,∨,⇒,⊥,⊤)
is a Heyting algebra and→ satisfies the law of excluded middle a∨¬a =⊤ for every
a ∈ B.

Definition 3.9 (Atomic element). Given a bounded poset P , an atom a is an ele-
ment such that a ,⊥ and for any other element p, if ⊥ < p ≤ a then a ≤ p.
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3.2 Categories

Definition 3.10 (Category). Given a collection of objects C0 and a collection of
maps C1, a category C is a tuple (C0,C1,◦) where

• Each map f ∈ C∞ is assigned two objects A,B ∈ C0 called the domain and
codomain respectively. We denote maps as f : A→ B

• ◦ : C1 × C1 → C1 is a partial operation such that for every f : A → B and
g : B→ C, we have a composite map g ◦ f : A→ C (composition).

• For every A ∈ C0, there exists an identity map 1A : A→ A such that for every
other map f : A→ B, we have f ◦ 1A = f and 1B ◦ f = f .

• For every f : A → B and g : B → C and h : C → D, we have h ◦ (g ◦ f ) =
(h ◦ g) ◦ f (associativity).

Given a category C and two objects A,B ∈ C, we often denote the set of all
maps between A and B as C(A,B).

Definition 3.11 (Isomorphism). Given a category C and two objects A,B in C, we
say thatA is isomorphic to B (denoted byA � B) if there exists two arrows f : A→ B
and g : B→ A such that f ◦g = 1B and g◦f = 1A. It is easy to show that g is unique.
We call g the inverse of f and denote it by f −1.

Example 3.12 (Category of sets). The category of sets Set is a category such that

• The objects of Set are the sets.

• The morphisms of Set are the functions between sets.

• The composition of two maps f : A→ B and g : B→ C is the regular compo-
sition of functions g ◦ f : A→ C.

• The identity map of a set A is the map 1A : A→ A such that for any a ∈ A,
1A(a) = a

• Two sets A and B are isomorphic if and only if there exists a bijection between
the two of them.

Definition 3.13 (Subcategory). Given a category C, a subcategory D of C is a pair
of subsets D0 ⊆ C0 and D1 ⊆ C1 such that

• For every A ∈ D0, 1A ∈ D1

• For every f : A→ B ∈ D1, A,B ∈ D0

• For every f : A→ B ∈ D1 and g : B→ C ∈ D1, g ◦ f ∈ D1

Definition 3.14 (Initial and Terminal Objects). Given a category C, an object
A ∈ C0 is called initial if for every B ∈ C0, there exists a unique map f : A → B.
An object A ∈ C0 is called terminal if for every B ∈ C0, there exists a unique map
f : B→ A. We denote these objects by ⊥ and ⊤ respectively.
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Example 3.15 (The initial and terminal objects in Set). The empty set ∅ is an
initial object in the category Set. Every singleton set {∗} is a terminal object in the
category Set.

Definition 3.16 (Binary Products and coproducts). Given a category C and two
objects A,B ∈ C0, a binary product of A and B is an object A×B equipped with two
maps πA : A×B→ A and πB : A×B→ B such that for any object C ∈ C0 and two
maps f : C → A and g : C → B, there exists a unique map (f ,g) : C → A ×B such
that

π1 ◦ (f ,g) = f and π2 ◦ (f ,g) = g

A binary coproduct of A and B is an object A + B and two maps iA : A → A + B
and iB : B→ A + B such that for any object C ∈ C0 and two maps f : A→ C and
g : B→ C, there exists a unique map f + g : A+B→ C such that

f + g ◦ iA = f and f + g ◦ iB = g

Example 3.17 (Products and Coproducts in Set). In Set, the products are the
cartesian products and the coproducts are the disjoint unions. Given two sets A,B,
the maps πA and πB are the projection maps. The maps iA and iB are the injections.

Given a set C with maps f : C→ A and g : C→ B, the unique map (f ,g) : C→
A × B is the map (f ,g) : c 7→ (f (c), g(c)). Given a set C with maps f : A→ C and

g : B→ C, the unique map f + g : A⊔B→ C is f + g : a 7→

f (a) if a ∈ A
g(a) if a ∈ B

.

For a proof see [Riehl, 2017].

Remark 3.18 (Duality). Notice that the definition of a coproduct is the same as
the definition of a product but with the arrows reversed. When this is the case, we
say that the object is dual to the other object, Often times duality allows us to prove
theorems about one object by proving the dual theorem about the dual object (i.e. by
reversing the arrows).

The dual of a category C is called the opposite category and denoted by Cop. It is
defined as the category with the arrows of C reversed.

Definition 3.19 (Product and coproduct). Given a collection of objects {Ai}i∈I , a
product ×i∈IAi is an object alongside a collection of arrows {πi : ×i∈IAi → Ai}i∈I
such that for any object C ∈ C0 and collection of maps {fi : C→ Ai}i∈I there exists a
unique map h : C→×i∈IAi such that for any i ∈ I we have that πih = fi .

Lemma 3.20 (Binary products and terminal object imply finite products, [Riehl,
2017]). If a category has all binary products and a terminal object, it has all finite
products. That is, if the category has a terminal object and for every two objects A,B
there exists a product A × B, it has all products of sets of objects {Ai}i∈I where I is
finite.

Dually, a category has all coproducts if it has an initial object and all coproducts.

Definition 3.21 (Exponential object). Given a category C and two objects A,B ∈
C0, an exponential of A and B is an object BA and a map ϵ : BA×A→ B such that for
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any object C ∈ C0 and a map f : C ×A→ B, there exists a unique map g : C → BA

such that
ϵ ◦ (g,1A) = f

Definition 3.22 (Cartesian closed category). We call a category C Cartesian closed
if it has a terminal object and all binary products and exponential objects. That is,
for any two objects A,B in C we have a product object A × B and an exponential
object BA.

Example 3.23 (Heyting algebra as a category). Every Heyting algebra can be
considered as a Cartesian closed category that furthermore has an initial object and
is closed under coproducts. That is, for every pair of objects A,B we have an object
A+B. The interpretation is

Initial Object ⊥ Lower bound ⊥
Terminal Object ⊤ Upper bound ⊤

Product A×B Meet p∧ q
Coproduct A+B Join p∨ q
Exponential BA Implication p→ q

Remark 3.24 (Lattices as categories). Likewise, every semi-lattice, bounded poset
and lattice can be considered as a category with a suitable structure. E.g. a meet
semi-lattice has all binary products, a bounded poset has terminal and initial ob-
jects, a complete lattice has arbitrary products and coproducts, etc.

3.2.1 Limits and Colimits

We would not provide a detailed description of limits and colimits in this chap-
ter, but due to their importance, we would offer some key characterizations of
these objects.

Definition 3.25 (Pullback and pushout). Given a category C and two arrows
f : A → C and g : B → C, the pullback of f and g is an object A ×C B and two
arrows p1 : A×C B→ A and p2 : A×C B→ B satisfying

• f ◦ p1 = g ◦ p2.

• For any object X and arrows h1 : X → A and h2 : X → B such that f ◦ h1 =
g ◦ h2, there exists a unique arrow u : X → A×C B such that p1 ◦ u = h1 and
p2 ◦u = h2.

The pushout is the dual object to the pullback. That is, given two arrows f :
A→ B and g : A→ C, the pushout of f and g is an object B+A C and two arrows
i1 : B→ B+A C and i2 : C→ B+A C satisfying

• i1 ◦ f = i2 ◦ g.
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• For any object X and arrows h1 : A→ B and h2 : A→ C such that h1 ◦ f =
h2 ◦ g, there exists a unique arrow u : B+A C → X such that u ◦ i1 = h1 and
cu ◦ i2 = h2.

Example 3.26 (Pullbacks and pushouts in the category of sets). Given two func-
tions f : A→ C and g : B→ B, the pullbacks in Set is the set A×CB = {(a,b) : f (a) =
g(b)} with the projection maps.

Given two functions f : A→ B and g : A→ C, define an equivalence relation ∼
on the disjoint union b ⊔C as the finest equivalence relation such that f (a) ∼ g(a)
for all a ∈ A.

The pushout is the quotient B⊔C/ ∼ with i1 : b 7→ [a] and i2 : c 7→ [c].

Definition 3.27 (Equalizer and co-equalizers). Given a category C and two ar-
rows f ,g : A→ B in C, the equalizer of f and g is an object E and an arrow e : E→ A
such that f ◦e = g◦e and for any objectX and arrow h : X→ A such that f ◦h = g◦h,
there exists a unique arrow u : X→ E such that e ◦u = h.

E A

X B

e

hu fg

The co-equalizers are the dual object.

Example 3.28 (Equalizers and coequalizers in Set). Given two functions f : A→
B and g : A→ B, the equalizer in Set is the set {a ∈ A : f (a) = g(a)}. The unique
map u is the corestriction of h to E - h ↾E : x 7→ h(x).

Define the equivalence relation ∼ on B as the smallest equivalence relation such
that for any a ∈ A we have that f (a) ∼ g(a).

The coequalizer is then the quotient B/ ∼ alongside the quotient map q : B →
B/ ∼. Given a set X with map q′ : B → X such that q′f = q′g, the unique map
u : B/ ∼→ X is q′ itself.

For a proof see [Riehl, 2017].

The limit would always be a unique object that is initial to other objects like
it. That is, there exists a unique map from it to other objects like it.

Co-limit is the dual notion.

Definition 3.29 (Finitely Complete Category). A category is finitely complete if
it has equalizers and all finite products. Dually, a category is called co-complete if
it has all coequalizers and all finite coproducts.

Lemma 3.30 (Characterization of finitely complete categories, [Riehl, 2017]).
The following conditions are equivalent

• C is finitely complete.

• C has all pullbacks and a terminal object.
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• C has all equalizers, binary products, and a terminal object.

Dually for finitely co-complete categories.

Example 3.31 (Heyting Algebras). A Heyting algebra is a category that is both
finitely complete and finitely cocomplete.

3.3 Functors and Natural Transformations

Definition 3.32 (Covariant Functor). Given two categories C and D, a functor
F : C →D is a pair of maps F0 : C0→D0 and F1 : C1→D1 such that

• Any arrow f : A→ B in C is mapped to an arrow F1(f ) : F0(A)→ F0(B) in D

• For any A ∈ C0, F0(1A) = 1F0(A)

• For any f : A→ B, F1(f ) : F0(A)→ F0(B) and for any f : A→ B and g : B→
C, F1(g ◦ f ) = F1(g) ◦F1(f )

Definition 3.33 (Contravariant Functor). Given categories C, we call a functor
contravariant if its domain is the dual of C. That is F : Cop→D and for any f ,g in
C, F(g ◦ f ) = F(f ) ◦F(g).

Example 3.34 (Morphisms between Heyting Algebras). Given two Heyting alge-
bras A and B, seen as categories, a functor between these two algebras is a function
f : A→ B that respects the order of the two categories. That is p ≤ q in A implies
that f p ≤ f q in B. We call such maps monotonic.

Definition 3.35 (Category of categories). The category of categories Cat is a cat-
egory such that

• The objects of Cat are the categories.

• The morphisms of Cat are the functors.

An important example of a category of categories is the category of Heyting
algebras treated as categories Heyt≤ where the objects are Heyting algebras and
the maps are the monotone maps. Note that monotone maps do not preserve
additional structure of Heyting algebras. That is, given a functor f : A → B,
the fact that a→ b in A does not imply that f (a→ b) is f a→ f b in B. When
a property of a collection of objects S in A implies a similar property in the
image of those objects in B, we say that functor f preserves that structure.

Definition 3.36 (Heyting morphism). We call a functor f between two Heyting
algebras a Heyting morphism if f preserves binary products, binary coproducts,
meets, joins and exponential object. That is

f (a∧ b) = f (a)∧ f (b)

f (a∨ b) = f (a)∨ f (b)

f (a→ b) = f (a)→ f (b)

f (⊥) =⊥
f (⊤) =⊤
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Likewise, a lattice morphism is a morphism that preserves all binary products
and binary coproducts. A meet semi-lattice morphism preserves only the product,
etc.

Definition 3.37 (Category of Heyting algebras and category of categories of
Heyting Algebras). The category of Heyting algebras Heyt is the category with
Heyting algebras as objects and Heyting morphisms as arrows. The category of
categories of Heyting algebras Heyt≤ is the category with Heyting algebras as objects
and monotone maps as arrows.

Likewise we can think of the category of meet semi-lattices with meet semi-
lattice morphisms MeetSemiLat and the category of meet semi-lattice as a cat-
egory of categories MeetSemiLat≤. We can do this for all the lattice structures.

We can also talk about arrows between functors

Definition 3.38 (Natural transformation). Given two functors F,G : C → D, a
natural transformation η : F → G is a family of arrows {ηA : F(A)→ G(A)}A∈C0

⊆
D1 such that for any arrow f : A→ B in C, the following diagram commutes:

F(A) G(A)

F(B) G(B)

F(f )

ηA

ηB

G(f )

Definition 3.39 (Natural Isomorphism). A natural isomorphism is a natural
transformation η such that for any object A we have that ηA is an isomorphism.

3.4 Adjunction

Definition 3.40 (Adjoint functors). Given two categories C and D, two functors
L : C → D and R : D → C are called adjoint with L left adjoint to R and R right
adjoint to L if there exists natural transformations η : 1C → RL and ϵ : LR→ 1D
such that (εL) ◦ (Lη) = IdL and (Rε) ◦ (ηR) = IdR. We say that η is the unit of the
adjunction and ϵ is the counit of the adjunction. We denote the adjunction by L ⊣ R.

Theorem 3.41 (Adjunctions preserve limits and colimits, [Riehl, 2017]). Left
adjoints preserve colimits and right adjoints preserve limits.

Theorem 3.42 (Characterization of Adjunction, [Riehl, 2017]). Given functors
L : C →D and R :D→ C, the following are equivalent:

1. L ⊣ R

2. For any A ∈ C0 and B ∈ D0, there exists a bijection

D(LA,B) � C(A,RB)
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such that for every A1,A2 ∈ C and B1,B2 ∈ D and f : A2→ A1, g : B1→ B2,
we have that µB ◦ F(f ) = G(f ) ◦ µA. When this condition is met, we say that
the following diagram commutes:

D(LA1,B1) C(A1,RB1)

D(LA2,B2) C(A2,RB2)

f ◦− −◦g

This criteria is called a natural bijection.

Lemma 3.43 (Uniqueness of Adjunction, [Riehl, 2017]). The left adjoint or right
adjoint to a functor, if it exists, is unique up to natural isomorphism.

3.5 Hyperdoctrines

The last section would explain how to use the category theory to interpret first-
order logic. We begin by introducing the language of first-order logic, then
develop the categories used for interpreting first-order logic and finish by ex-
plaining how this interpetation is done.

3.5.1 Types and Terms

Definition 3.44 (Language). A language L is a triple (T ,R,F ) where T ,R,F
are pairwise disjoint sets of type, relation and function symbols respectively, each
function symbol f ∈ F is assigned an arity (σ1, . . . ,σn)→ τ where σ1, . . . ,σn, τ are
all type symbols and each relation symbol R ∈ R is assigned an arity (σ1, . . . ,σn)
where σ1, . . . ,σn are all type symbols.

Definition 3.45 (Context). Given a language L, a context in the language L is
a finite sequence Γ := (x1 : σ1, . . . ,xn : σn) where x1, . . . ,xn are pairwise distinct
variables and the σi are types in the language L.

Definition 3.46 (Term). Let L be a language. The terms in the language L of type
σ in context Γ are defined by induction as follows:

1. If x : σ ∈ Γ , then x is a term of type σ in context Γ .

2. If t1, . . . , tn are terms of types σ1, . . . ,σn respectively in a context Γ , and f is a
function symbol in L of arity (σ1, . . . ,σn)→ τ , then f (t1, . . . , tn) is a term of
type τ in context Γ .

Remark 3.47 (Constants). Note that this setting also allows us to form constant
terms as well. A function symbol from an empty sequence of types c : ()→ τ repre-
sents a fixed term in the type τ .

We shall show how to interpret terms and contexts in categorical language.
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Definition 3.48 (Context morphism). Let Γ and ∆ be contexts in language L
with ∆ = (x1 : σ1, . . . ,xn : σn). Then a context morphism Γ → ∆ is a sequence
s⃗ = (s1, . . . , sn) of terms of types σ1, . . . ,σn respectively, in context Γ .

Remark 3.49 (The empty context is the terminal object). Notice that by this
definition of context morphism, every context Γ has a unique vacuous mapping to
the empty context ().

Definition 3.50 (Term substitution). Given a term t of type σ in context ∆ and a
context morphism s⃗ = (s1, . . . , sn) : Γ → ∆, then the substitution t[⃗s] is a term of type
σ in context Γ , defined recursively by:

1. If t = xi for xi : σi ∈ ∆, then t[⃗s] = si .

2. If t = f (t1, . . . , tn), then t[⃗s] = f (t1 [⃗s], . . . , tn [⃗s]).

Notation 3.51 (Constants). Given a constant c : ()→ σ , we denote the fixed term
by c = c().

A logic above a language consists of the allowed ways of recursively con-
structing formulas in a given context Γ over language L. We consider for now
the most basic construction.

Definition 3.52 (Formula in context). Let L be a language. A first order formula
ϕ in context Γ in language L is defined recursively by the following grammar:

⊤ | ⊥ | s =σ t | R(t1, . . . , tn) | ψ ∧χ | ψ ∨χ | ψ→ χ | ∃x : σ.ψ | ∀x : σ.ψ

Where ψ,χ are previously constructed formulas, s, t, t1, . . . , tn are terms in context Γ
and R is a relation symbol.

Definition 3.53 (Substitution). Letϕ be a formula in context ∆ and s⃗ = (s1, . . . , sn) :
Γ → ∆ be a context morphism. Then the substitution ϕ[⃗s] is the formula in context
Γ is defined recursively as follows:

1. If ϕ =⊤ or ϕ =⊥, then ϕ[⃗s] = ϕ

2. if ϕ = s =σ t, then ϕ[⃗s] = s[⃗s] =σ t[⃗s].

3. If ϕ = χ□ψ, then ϕ[⃗s] = χ[⃗s]□ψ[⃗s] whenever □ ∈ {∧,∨,→}.

4. If ϕ = R(t1, . . . , tn), then ϕ[⃗s] = R(t1 [⃗s], . . . , tn [⃗s]).

5. If ϕ = Qx : σ.ψ, then ϕ[⃗s] = Qy : σ.ψ[⃗s,y] where [⃗s,y] : Γ , y : σ → ∆,x : σ is
a context morphism (hence y : σ < Γ ) and Q ∈ {∀,∃}.
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3.5.2 Hyperdoctrines

Given a context Γ , we can think of the set of formulas in context Γ as a poset
PΓ . Given a context morphism s⃗ : Γ → ∆, we can consider the substitution as a
morphism ◦[⃗s] := Ps⃗ : ∆→ Γ .

Definitions 3.52 and 3.53 should hint that the image of the mapping P
needs to be a Heyting Algebra with extra-structure that respects the relation
symbols and the quantifiers.

Given a projection π : (Γ ,x : σ )→ Γ and two formulas ϕ in Γ ,x : σ and ψ in
Γ , we have that ϕ ⊢Γ ,x:σ ψ, if and only if ∃x : σ.ϕ ⊢Γ ψ. Dually, for ϕ in Γ and ψ
in Γ ,x : σ , we have that ϕ ⊢Γ ,x:σ ψ, if and only if ϕ ⊢Γ ∀x : σ.ψ.

For these conditions to truly represent the existential and universal quanti-
fiers, they need to also satisfy further conditions that would make them behave
correctly under substitutions.

Definition 3.54 (Frobenius Condition). Given a functor in Heyt≤, π−1 : A→ B,
with a left adjoint ∃π : B→ A, we say that ∃π satisfies the Frobenius condition if
for any a ∈ A and b ∈ B,

∃π(a∧π−1(b)) � ∃π(a)∧ b

Definition 3.55 (Beck-Chevalley Condition). Given a category C with all finite
products and a functor P : Cop→Heyt≤, we say that P satisfies the Beck-Chevalley
condition if for any pullback diagram

Γ ×π,σ ∆ Γ

Γ ×∆ Γ

π′

π

σ ′ σ

where π and π′ are projections, we have that ∃π′ ◦ P σ ′ � P σ ◦ ∃π and ∀π′ ◦ P σ ′ �
P σ ◦∀π.

Putting these conditions together, we have that

Definition 3.56 (First Order Hyperdoctrine). Given a category C with all finite
products, a hyperdoctrine over C is a functor P : Cop→Heyt such that

1. For every projection π : Γ ×Λ→ Γ , the map P π : P Γ → P (Γ ×Λ) has a left ∃π
and right ∀π adjoints in Heyt≤.

2. For every objects Γ ,∆,Θ and pair of maps f : ∆→Θ and πΘ : Γ ×Θ→Θ, the
pullback diagram

Γ ×∆ ∆

Γ ×Θ ΘπΘ

f

π∆

(IdΓ ,f )
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satisfies the Beck-Chevalley condition.

3. Every projection π satisfies the Frobenius condition.

We denote P π by π−1 and call C the category of contexts.

In general, a hyperdoctrine is a functor from a category of contexts to some
poset category (lattice, semi-lattice, etc.) such that some collection of mor-
phisms preserve the Beck-Chevalley and the Frobenius condition.

Lastly, if ϕ is a formula in context x : σ,y : σ , then we have that ⊤ ⊢x:σ ϕ⇔
x =σ y ⊢x:σ,y:σ ϕ, This is captured by considering ∃ and ∀ as respectively the
left and right adjoints of the projection map.

Definition 3.57 (Diagonal Map). Let C be a category with binary products. For
every object X, we have by the definition of the product a unique map X → X ×X
such that the following diagram commutes

X

X X ×X X

δidX idX

πXπX

δ is called the diagonal.

Example 3.58 (Diagonal in Set). In Set the diagonal map is x → (x,x). Notice
that in Set this map corresponds to the equality relation =⊆ X ×X.

3.5.3 Interpretations and Soundness

We showed how to represent a first-order theory using types, terms and con-
texts as well as defined the categories we shall use to interpret formulas over
them. We finish by showing how to connect between formulas and categories
using interpretations.

Definition 3.59 (Interpretation). Let P be a hyperdoctrine with base C and L be a
language. An interpretation of L in the hyperdoctrine P is a mapping ⟦·⟧ : which:

• Assigns to each type σ in L an object ⟦σ⟧ in C.

• Assigns to each function symbol f with arity (σ1, . . . ,σn)→ τ in L a morphism
⟦f ⟧ : ⟦σ1⟧× · · · × ⟦σn⟧→ ⟦τ⟧ in C.

• Assigns to each relation symbol R with arity (σ1, . . . ,σn) an element ⟦R⟧ ∈
P(⟦σ1⟧× · · · × ⟦σn⟧).

Given Γ = x1 : σ1, . . . ,xn : σn, denote ⟦Γ ⟧ = ⟦σ1⟧× . . .⟦σn⟧.

Definition 3.60 (Interpretation of terms). If t is a term of type σ in context Γ ,
then the interpretation ⟦t⟧ : ⟦Γ ⟧→ ⟦σ⟧ is defined by recursively as:
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1. For xi : σi ∈ Γ , we have that the interpretation of xi : σi is the ith projection
⟦xi⟧ = πi : ⟦Γ ⟧→ ⟦σi⟧.

2. if t1, . . . , tn are terms of types σ1, . . . ,σn in context Γ , f is a function symbol
with arity (σ1, . . . ,σn) → τ and the interpretation of each ti is ⟦ti⟧ : ⟦Γ ⟧ →
⟦σi⟧, then ⟦f (t1, . . . , tn)⟧ is the composition: ⟦f ⟧ ◦ (⟦t1⟧, . . . ,⟦tn⟧).

3. If s⃗ = (s1, . . . , sn) : Γ → ∆ is a context morphism, we can also define: ⟦s⃗⟧ =
(⟦s1⟧, . . . ,⟦sn⟧) : ⟦Γ ⟧→ ⟦∆⟧

Definition 3.61 (Lawvere Equality). We define the diagonal map δ : Γ × Γ → Γ as
the map (IdΓ ,IdΓ ). The Lawvere equality on Γ is the element EqΓ ∈ P(Γ × Γ ) given
by:

EqΓ = ∃δ(⊤)

Definition 3.62 (Interpretation of formulas). Given a formula ϕ in context Γ ,
the interpretation of ϕ is defined recursively on Γ as:

1. ⟦⊤⟧ and ⟦⊥⟧ are the ⊤ and ⊥ elements of PΓ .

2. Given terms s, t if type σ in context Γ and the interpretation (⟦s⟧,⟦t⟧) : ⟦Γ ⟧→
⟦σ⟧× ⟦σ⟧, then ⟦s =σ t⟧ is (⟦s⟧,⟦t⟧)−1(Eq⟦σ⟧).

3. Given terms t1, . . . , tn of types σ1, . . . ,σn in context Γ , a relation symbol R of
arity (σ1 . . . ,σn) and the interpretation (⟦t1⟧, . . . ,⟦tn⟧) : ⟦Γ ⟧ → ⟦σ1⟧ × · · · ×
⟦σn⟧, then ⟦R(t1, . . . tn)⟧ is (⟦t1⟧, . . . ,⟦tn⟧)−1(⟦R⟧).

4. If ϕ and ψ are formulas in context Γ , then ⟦ϕ□ψ⟧ is ⟦ϕ⟧□⟦ψ⟧ for □ ∈
{∧,∨,→}.

5. Ifϕ is a formula in context Γ ,x : σ andπ : ⟦Γ ⟧×⟦x : σ⟧→⟧Γ ⟧ then ⟦Qx : σ.ϕ⟧
is Qπ(⟦ϕ⟧) for Q ∈ {∃,∀}.

Definition 3.63 (Validity). Given formulas ϕ and ψ in context Γ , we say that
ϕ ⊢ ψ is valid under the interpretation ⟦·⟧ on hyperdoctrine P if ⟦ϕ⟧ ≤ ⟦ψ⟧ in PΓ .
We say that ϕ is valid if ⊤ ⊢ ϕ is valid.

We say that ϕ ⊢ ψ is true under an interpretation ⟦ϕ⟧ ≤ ⟦ψ⟧ if it is valid under
all contexts.

Definition 3.64 (Soundness). Given an interpretation ⟦·⟧ on a hyperdoctrine P
and a logic Λ, we say that Λ is sound with respect to ⟦·⟧ if ϕ ⊢Λ ψ entails that
ϕ ⊢ ψ is true under ⟦·⟧.

Example 3.65 (The hyperdoctrine of Set). Consider the functor that maps each
set to the lattice of its powerset

P : Set→ Latt

A 7→ (PA,⊆,∩,∪,→,A,∅)

where U → V =UC ∪V for any U,V ⊆ A.
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For any projection map π : A×B→ A that

π−1 : S 7→ {(a,b) ∈ A×B | a ∈ S}
∃π : S 7→ {a ∈ A | there exists b ∈ B such that (a,b) ∈ S}
∀π : S 7→ {a ∈ A | for all a ∈ A we have that (a,b) ∈ S}

In the hyperdoctrine of sets, every function f : A→ B has left and right adjoints:

f −1 : S 7→ {a ∈ A | f (a) ∈ S}
∃f : S 7→ {b ∈ B | there exists a ∈ A such that f (a) = b and a ∈ S}
∀f : S 7→ {b ∈ B | for all a ∈ A such that f (a) = b we have that a ∈ S}

The empty context is the singleton set {∗}. Note that indeed every set has a unique
map to the singleton set. Furthermore, each map s : {∗} → A fixes an element s in A.

s−1 : S 7→

{∗} s ∈ S
∅ s < S
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Chapter 4

Box Spaces

In this section we use categorical logic to formalize the interpretation of EL++

using boxes found in [Jackermeier et al., 2024b]. [Jackermeier et al., 2024b]
suggests that their interpretation adheres to the underlying semantics of EL++

while offering a computationally efficient embedding of the knowledge due to
the usage of computationally nice objects (boxes). We will use the semantics
found in 3.5.1 to formalize the box system. We will finish this chapter by
showing that this system is not complete with respect to EL++.

4.1 The EL++ Language

Definition 4.1 (EL++ language). Given a signature (NC ,R,O), as defined in defi-
nition (1.1), the corresponding EL++ language is ({σ },R∪NC ∪O,∅).

Where the arity of any relation symbol R ∈ R is (σ,σ ), the arity of any concept
symbol C ∈NC and the arity of any individual a ∈ O is σ .

Definition 4.2 (EL++ formula). An EL++ formula ϕ in context Γ is defined recur-
sively by the following grammar:

⊤ | ⊥ | R(t1, t2) | C(t) | ψ ∧χ | ∃x : σ.R(x, t)∧ϕ(t)

where ϕ,ψ are previously constructed formulas, t, t1, t2 are terms in context Γ , a is
a constant symbol, R is a relation symbol and C is a concept symbol.

Notice that the EL++ concept ∃R.ϕ is interpreted as ∃x : σ.R(x, t)∧ϕ(t).
The rules for term and formula substitution are as found in definitions 3.50,

3.53.
Lastly, notice that we do not fix terms. That is, maps ()→ σ do not exist in

our language. The reason we choose to represent individuals as boxes is that
machine learning algorithms struggle differentiating between very small boxes
and boxes with volume zero. Hence, it is preferable to represent individuals as
boxes with non-zero volume. If we were to use maps ()→ σ to represent indi-
viduals, then they would be represented as singleton elements in our space.

31
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Definition 4.3 (EL++ Hyperdoctrine). Given a category C with all finite products,
a EL++ hyperdoctrine over C is a functor P : Cop → BoundMeetSemiLat where
BoundMeetSemiLat is the category of bounded meet semi-lattices, such that

1. For every projection π : Γ ×Λ→ Γ , the map P π : P Γ → P (Γ ×Λ) has a left
adjoint ∃π in BoundMeetSemiLat≤.

2. ∃π satisfies the Beck-Chevalley condition and the Frobenius reciprocity.

4.2 Box Space Category

We first construct the box space category.

Definition 4.4 (Box). Given a subset S of Rn, we define a box over S as a subset of
the form {x⃗ ∈ S :mi ≤ xi ≤Mi} where for any i, we have that mi ,Mi ∈R∪ {−∞,∞}

We denote a box by BB(m⃗,M⃗) or B when we do not care about the precise coor-
dinates and underlying subset. We denote∞ = (∞, . . . ,∞) and −∞ = (−∞, . . . ,−∞).
Note that B(−∞,∞) = S and B(−∞,−∞) = B(∞,∞) = ∅.

Definition 4.5 (Box space). Given S ⊆R
n, we define a box space B over S as a set

of boxes of S where

• S,∅ ∈ B.

• B is closed under arbitrary intersections.

Example 4.6 (Discrete box space). For any subset S of Rn, we have that (S, {B ⊆
S | B is a box in S}) is a box space.

Notice that B induces a meet semi-lattice (B,⊑,⊓).

Definition 4.7 (Box space morphism). Given two box spaces (S,B) and (S ′ ,B′),
we define a box space morphism f : (S,B)→ (S ′ ,B′) as a function f : S → S ′ such
that for all B′ ∈ B′ we have that f −1[B′] ∈ B.

Since preimages preserve intersections, we have that

Lemma 4.8. Every box space morphism f : (S,B)→ (S ′ ,B′) induces a meet semi-
lattice morphism f −1 : B′→B.

Lemma 4.9. For any two box space morphisms f : (S,B)→ (S ′ ,B′) and g : (S ′ ,B′)→
(S ′′ ,B′′), we have that g ◦ f is a box space morphism.

These results lead to a category Box with box spaces as objects and box
space morphisms as arrows.

Furthermore, we have a functor from the box category to the category of
meet semi-lattices U : Boxop→MeetSemiLat:

U0 : (S,B) 7→ B
U1 : f (·) 7→ f −1[·]

We shall show that this induces a hyperdoctrine.
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Category of contexts

We begin by showing that Box contains all finite products. We shall show this
by proving that Box has all binary products and a terminal object. We de-
fine the concatenation of two vectors x⃗ := (x1, . . . ,xn), y⃗ := (y1, . . . , ym) as (x⃗, y⃗) :=
(x1, . . . ,xn, y1, . . . , ym).

Denote the product of two boxes:

B(m⃗,M⃗)×B(m⃗′ , M⃗ ′) = B((m⃗, m⃗′), (M⃗,M⃗ ′))

Definition 4.10 (Product box space). Given two box spaces (S,B) and (S ′ ,B′), we
define their product box space (S × S ′ ,B × B′) as the set of all subsets of the form
B×B′ with B ∈ B and B′ ∈ B′ .

Lemma 4.11. The product box space is the product in Box.

Proof. As every box morphism is also a function of the underlying sets, it suf-
fices to show that the projections πS : S × S ′ → S,π′S ′ : S × S ′ → S ′ are box mor-
phisms and that for every box space (C,C) with box morphisms f : (C,C) →
(S,B), g : (C,C)→ (S ′ ,B′) the unique morphism (f ,g) : c→ (f (c), g(c)) is a box
morphism.

Given box spaces (S,B), (S ′ ,B′) and a box B(m⃗,M⃗) ∈ B, notice thatπ−1[B(m⃗,M⃗)] =
B(m⃗,M⃗) ×B(−∞,∞). As this is inside of B ×B′ , we get that for every box in B,
its preimage is in B ×B′ .

Given a box space (A,S) and two box morphisms f : (A,S)→ (S,B) and g :
(A,S)→ (S ′ ,B′), the unique map of sets (f ,g) : x→ (f (x), g(x)) that commutes
with the projections is also a box morphism. This is because for any B × B′ ∈
B ×B′ , we have that

(f ,g)−1[B×B′] = f −1[B]∩ g−1[B′]

As f and g are box morphisms, the preimages are in the box space S . As box
spaces are closed under intersection, f −1[B]∩g−1[B′] is in the box space. Thus,
(f ,g) is a box morphism.

Notice that every pair of box spaces has a binary product.

Lemma 4.12 (The terminal object in Box). The box space ({0}, {∅, {0}}) is the ter-
minal object in Box.

Proof. Given any box space (A,B), there exists a single unique map ! : A→ {0}.
This map is a box morphism because !−1[{0}] = A ∈ B.

By Lemma Theorem 3.20, these results imply that

Lemma 4.13. Box has all finite products.
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Left adjoint

To define the existential quantifier, we first define a closure operator.

Definition 4.14 (Closure operator). Given a set S, a closure operator is a function
Cl : PS→PS that satisfies the following conditions

1. A ⊆ Cl(A) (extensivity).

2. A ⊆ B implies Cl(A) ⊆ Cl(B) (monotinicity).

3. Cl(Cl(A)) ⊆ Cl(A) (idempotency).

Definition 4.15 (Box closure operator). Given a box space (S,B), we define the
box closure operator

Cl : P (S)→B

A 7→
⋂
{B ∈ B : A ⊆ B}

Remark 4.16. Notice that the box closure operator is the left adjoint to the forgetful
functor

U : B → P (S)

B 7→ B

Given a subset K ⊆ S and a box B ∈ B, we have that Cl(K) ⊆ B if and only if
K ⊆ Cl(B) = B.

We notice that the closure operator satisfies the closure conditions: for any
A ⊆ S, we have that

1. A ⊆ Cl(A) (extensivity).

2. A ⊆ B implies Cl(A) ⊆ Cl(B) (isotonicity).

3. Cl(Cl(A)) ⊆ Cl(A) (idempotency).

Furthermore, for any box B ∈ B, we have that Cl(B) = B.

Definition 4.17 (Existential quantifier in Box). We define the existential quanti-
fier as:

∃(·) : Box((S,B), (S ′ ,B′))→ Cat(B,B′)
f (·) 7→ Cl ◦ f [·]

It is easy to see that the existential quantifier when restricted to boxes is a
functor between two meet semi-lattices as Cl ◦ f is always monotone.

Remark 4.18. Notice that for any projection π we have that the existential quan-
tifier restricted to boxes is ∃π[◦] = π[◦]. This fact is important because the later
categories we would construct would not have a general existential quantifier but
only a quantifier for projection when restricted to the objects of the underlying poset.
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Lemma 4.19 (Existential quantifier is a left adjoint). For any morphism

π : (S,B)→ (S ′ ,B′)

the existential operator ∃π is the left adjoint of π−1 in MeetSemiLat≤.

Proof. We shall show that for any B ∈ B and B′ ∈ B′ ,

∃π[B] ⊆ B′ if and only if B ⊆ π−1[B′]

⇒ Suppose that Cl ◦ π[B] = ∃π[B] ⊆ B′ . Let x⃗ ∈ B. Then by extensivity of
closure π(x⃗) ∈ π[B] ⊆ Cl ◦π[B]. Hence π(x⃗) ∈ B′ . Thus x⃗ ∈ π−1[B′].
⇐ Suppose that B ⊆ π−1[B′]. Then π[B] ⊆ B′ . By isotonicity Cl(π[B]) ⊆

Cl(B′) = B′ .

Notice that the proof of the left adjunction relies solely on the closure prop-
erties.

By Theorem 3.42, we also get the following property

Corollary 4.20. For any morphism π : (S,B) → (S ′ ,B′) and objects B ∈ B and
B′ ∈ B′ , we have that ∃π ◦π−1B ⊆ B and B′ ⊆ π−1 ◦∃πB′

Remark 4.21 (Existential quantifier and the product box space). Given a prod-
uct box space and a projection π : (S × S ′ ,B × B′)→ (S,B), we have in particular
that

∃π(B×B′) = {x⃗ ∈ S | ∃x⃗′ ∈ B′ : (x⃗, x⃗′) ∈ B×B′} ∈ B

We need to show that the existential operator satisfies the Beck-Chevalley
condition and the Frobenius reciprocity.

Lemma 4.22 (Beck-Chevalley Condition for Box). Given any three box spaces
(A,A), (C,C) and (D,D), a map f : (C,C)→ (D,D) and pullback diagram

(A×C,A×C) (C,C)

(A×D,A×D) (D,D)

π

f(IdA,f )

π′

in Box, the Beck-Chevalley condition holds in MeetSemiLat.

∃π ◦ (IdA, f )−1 = f −1 ◦∃π′

Proof. Given B×B′ ∈ A×D, we have that

∃π ◦ (IdA, f )−1(B×B′) = Clπ(IdA, f )−1(B×B′) = Clπ(B× f −1[B′]) = Cl f −1[B′] = f −1[B′]

f −1 ◦∃π′ (B×B′) = f −1Clπ′(B×B′) = f −1Cl(B′) = f −1[B′]
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To finish the construction of the hyperdoctrine, we need to show that the
existential operator satisfies the Frobenius reciprocity.

Lemma 4.23 (Frobenius reciprocity for Box). Given a projection box space mor-
phism π : (A×B,A×B)→ (A,A), the existential operator ∃π satisfies the Forbenius
reciprocity. That is, for any two boxes B×C ∈ A×B and B′ ∈ A,

∃π(π−1(B′)∩ (B×C)) = B′ ∩∃π(B×C)

Proof. Unpacking the definitions:

∃π(π−1(B′)∩ (B×C)) = Clπ((B′ ×∞)∩ (B×C)) = Clπ((B′ ∩B)×C) = Cl(B′ ∩B) = B′ ∩B
B′ ∩∃π(B×C) = B′ ∩Clπ(B×C) = B′ ∩B

Combining the two lemmas, we can conclude the following statement:

Theorem 4.24 (Box spaces form a hyperdoctrine). The functor Box→ BoundMeetSemiLat
is a EL++ hyperdoctrine.

4.3 Box Interpretations

Our interpretation of EL + + follows directly from definitions 3.60 and 3.62.
We assign σ to S ⊆ R

n, each relation symbol R to a box in B of S × S and each
individual a to a box {a} that is atomic in B.

Definition 4.25 (Categorical Semi-Interpretation of EL++ in Box). Given a EL++

language ({σ },R∪NC ∪O,∅), a box space Semi-interpretation of the language is a
box space (S,B), along with a mapping

⟦·⟧ :NC→B
⟦·⟧ :R→B ×B
⟦·⟧ :O→B \ {⊥}

Notice that our language does not have any functions. However, the trivial projec-
tion χ : X � {∗} × S → {∗} that sends all of S to {∗} has an inverse χ−1 : {⊤,⊥} :=
{{∗},∅} → S that sends ⊤ to S and ⊥ to ∅. The left adjoint of this projection ∃χ := χ
sends non-empty sets to ⊤ and the empty set to ⊥. This map is important because it
allows us to argue within the language that a formula C in context S is not empty:
⊤ ⊆ ∃χ.C.

Given a formula ϕ in context σ , the interpretation of ϕ is defined recursively on
σ as:

1. If ϕ is ⊤ or ⊥ then ⟦ϕ⟧ is S or ∅ respectively.

2. If ϕ := ψ ∧χ, then ⟦ϕ⟧ = ⟦ψ ∧χ⟧ := ⟦ϕ⟧∩ ⟦ψ⟧.



4.3. BOX INTERPRETATIONS 37

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

π−1
B (Parent)

π−1
A (Person)

isChildOf

isChildOf⊓π−1
B (Parent)

[
]

Figure 4.1: Visualization of the box representation of Example 4.28. The bold
line is ∃isChildOf.Parent.

3. If ϕ := ∃x : σ.ψ where ψ is in context x : σ,y : σ with projections π1 and π2,
then ⟦ϕ⟧ = ⟦∃x : σ.ψ⟧ := Cl ◦π1(⟦ψ⟧).

Definition 4.26 (Categorical Interpretation of EL++). Given a EL++ semi-interpetation
((S,B),⟦·⟧) is a EL++ interpretation if it satisfies the following additional condition

• If ⟦ψ⟧ ⊆ ⟦{a}⟧ for some ψ ,⊥, then ⟦{a}⟧ ⊆ ⟦ψ⟧.

Recall that ∃R.C is read as ∃y : σ.R∧C. That is

⟦∃y : σ.R(x,y)∧C(y)⟧ = Cl ◦π1(⟦R(x,y)∧C(y)⟧) = Cl ◦π1(⟦R⟧∩π−1
2 ⟦C⟧)

Notation 4.27. We denote ∃R.C := ∃y : σ.R(x,y)∧C(y) and ∀R.C := ∀y : σ.R(x,y)∧
C(y).

Case Example

We shall show how to interpret the description logic existential quantifier in
our system. [Xiong et al., 2022a] used the family relation dataset to originally
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motivate the implementation of box space approaches, as they are able to ex-
press the complicated operators of EL++ with simple spatial operations.

Parent ⊑ Person (4.1)

Person ⊑ ∃isChildOf.Parent (4.2)

Figure ?? demonstrates how such an embedding would be represented us-
ing our box space representation.

Example 4.28. A model of (4.1) and (4.2) is two box spacesA := (R, {R,Parent,Person,∅})
and B := (R, {R,Parent,Person,∅}) such that Parent := [−1,1],Person := [−2,2]
and isChildOf := [−3,3]× [−3,3]. Notice that

∃isChildOf.Parent = ∃πA(isChildOf⊓π−1
B (Parent))

= Cl ◦πA([−3,3]× [−3,3]⊓ [−∞,∞]× [−1,1])

= Cl ◦πA([−3,3]× [−1,1])

= Cl([−3,3]) = [−3,3]⇒
Person = [−1,1] ⊑ [−3,3] = ∃isChildOf.Parent

Thus both conditions are met.

4.3.1 Model Theoretic Results

Every Satisfiable Knowledge Base has a Finite Set Theoretic Model

We will show that every satisfiable knowledge base K in EL++ has a finite
model. Our result follows from [Baader et al., 2017] and we will use results
from that book whenever needed.

We will first prove the following result about EL++:

Theorem 4.29. Given any knowledge base K of EL++, if K is satisfiable, then there
exists a finite model of K.

We begin by defining some important concepts:

Definition 4.30 (Size and Subconcepts). Given a concept C of EL++, we define
the set of subconcepts sub(C) and the size size(C) recursively as

• If C is a basic concept A ∈ BC, then size(C) = 1 and sub(C) = {A}.

• If C = C1 ⊓ C2 then size(C) = 1 + size(C1) + size(C2) and sub(C) = {C} ∪
sub(C1)∪ sub(C2).

• If C = ∃R.D, then size(C) = 1 + size(D) and sub(C) = {C} ∪ sub(D).

Given an ABoxA, we define sub(A) := (
⋃
a:C∈A sub(C)∪{a})∪(

⋃
(a,b):R∈A sub(C)∪

{a} ∪ {b}) and size(A) :=
∑
a:C∈A size(C). Given a TBox T , we define sub(T ) :=⋃

C⊑D∈T sub(C)∪sub(D) and size(A) :=
∑
C⊑∈T size(C)+size(D). Given a knowl-

edge baseK = (T ,A), we define sub(K) := sub(T )∪sub(A) and size(K) := size(T )+
size(A).
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Let M := (∆I , ·I ) be a model of a closed knowledge base K. Define the
equivalence relation ∼ between elements of ∆I :

x ∼ y if and only if for any C ∈ sum(K) we have that x ∈ C if and only if y ∈ C

Denote the equivalence classes generated by ∼ as |x|.

Definition 4.31 (Filtrated model). Given a model M := (∆I , ·I ) of a knowledge
base K , we define a filtrated model Mf := (∆If , ·

I
f ) to be a EL++ model with ∆If =

{|x| | x ∈ ∆I } and for any basic concept A in sub(K) and role R ∈ R in sub(K) we
have that AIf = {|x| | x ∈ AI },RIf = {(|x|, |y|) | ∃x′ ∈ |x|, y′ ∈ |y| : (x′ , y′) ∈ RI }.

Notice that for any x,y ∈ ∆I we have that if (x,y) ∈ RI then (|x|, |y|) ∈ RIf . We
prove a useful lemma.

Lemma 4.32. Given a role R and elements x,y ∈ ∆I , if (|x|, |y|) ∈ RIf , then for any

∃R.C ∈ sub(K), we have that y ∈ CI implies x ∈ (∃R.C)I .

Proof. Since (|x|, |y|) ∈ RIf , there exists x′ ∈ |x|, y′ ∈ |y| such that (x′ , y′) ∈ RI .

Since ∃R.C ∈ sub(K), we also have that C ∈ sub(K). As y ∈ CI and y ∼ y′ , we
have that y′ ∈ CI . This implies that x′ ∈ (∃R.C)I . Since x ∼ x′ , this means that
x ∈ (∃R.C)I

Lemma 4.33. Let Mf be a filtrated model of M through knowledge base K. Then
for any C ∈ sub(K), and all x ∈ ∆I , we have that x ∈ CI if and only if |x| ∈ CIf .

Proof. We proceed through induction on the size of C. Suppose that C is of size
1. Then it follows from definition that x ∈ CI if and only if |x| ∈ CIf . For any
concept C of size n > 1, one of the following cases hold:

• C = C1 ⊓C2 for concepts C1,C2 of size less than C. We have that D,L ∈
sub(K). By induction hypothesis, x ∈ CIi if and only if |x| ∈ CIi for i ∈
{1,2}. Which imply that x ∈ (C1 ⊓C2)I if and only if x′ ∈ (C1 ⊓C2)If .

• C = ∃R.D for D of size less than C. Suppose that x ∈ (∃R.D)I . Then there
exists y ∈DI such that (x,y) ∈ RI . SinceD ∈ sub(K), we have by induction
hypothesis that |y| ∈DIf . Since (|x|, |y|) ∈ RIf , we have that |x| ∈ (∃R.D)If .

Suppose that |x| ∈ (∃R.D)If . Then there exists |y| ∈ DIf such that (|x|, |y|) ∈
RIf . By induction hypothesis, y ∈DI . By Lemma 4.32, x ∈ (∃R.D)I .

As these are the only cases, this proves the induction hypothesis.

The above lemma shows that a filtrated model is a model of K.
Consider the mapping

∆If →P (sub(K))

|x| 7→ {C ∈ sub(K)) | x ∈ CI }
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This mapping is injective, which means that |∆If | ≤ |P (sub(K))| = 2sub(K). Which
proves Theorem 4.29.

Incompleteness

Lastly, we show that Box is not complete with respect to EL++ by considering
the following system:

a : A b : B c : C

A ⊑ AB B ⊑ BC A ⊑ AC
B ⊑ AB C ⊑ BC C ⊑ AC

A⊓B ⊑ ⊥ B⊓C ⊑ ⊥ A⊓C ⊑ ⊥
AB⊓BC ⊑ B AC⊓BC ⊑ C AB⊓BC ⊑ C

This knowledge base is satisfiable by the model {a,b,c} with the interpreta-
tion:

AI = {a} BI = {b} CI = {c}
ABI = {a,b} BCI = {b.c} ACI = {a,c}

We would show that it has no box space model by assuming it does have one
and showing that this leads to a contradiction.

Observe the following facts

Lemma 4.34 (Boxes are convex). Let B be a box in S ⊆ R
n and an element z ∈ S,

if for any i there exist some x,y ∈ B such that xi ≤ zi ≤ yi , then z ∈ B.

Proof. Denote the bounds of the box as m⃗,M⃗. For any i, since x,y ∈ B, we have
that mi ≤ xi ≤ zi ≤ yi ≤Mi and zi ∈ [mi ,Mi]. And so, z ∈ B.

Assume for contradiction that this system can be represented using a box
space (S ⊆R

n,B). Denote the boxes by B□ := B(m⃗□, M⃗□) where□ ∈ {A,B,C,AB,BC,AC}.

Claim 4.35. If for a given j, we have mABj < mAj ≤M
A
j < M

AB
j , then we must have

mACj =mAj ,M
AC
j =MA

j .

Proof. First, observe that for any i ∈ [n], we have mAi ≤
2mAi +(MA

i −m
A
i )

2 ≤MA
i . By

convexity and the fact that BA is a subset of both BAB and BAC , we find for all

i ∈ [n] that
2mAi +(MA

i −m
A
i )

2 is also in [mABi ,MAB
i ] and [mACi ,MAC

i ].
Let j be an index where mABj < mAj ≤M

A
j < M

AB
j . Since BA ⊆ BAC , we have

mACj ≤ mAj ≤M
A
j ≤M

AC
j . Assume that mACj < mAj . We show that there exists a

point x such that x ∈ (BAB ∩ BAC) \ BA. Thus, we reach a contradiction. Then
one of two cases holds

1. mABj < mACj < mAj . By convexity, the point x = (
2mAi +(MA

i −m
A
i )

2 χi,j+(
2mACi +(mAi −m

AC
i )

2 χi=j )i∈[n]

is both in AB and AC, but not in A.
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2. mACj < mABj < mAj . By convexity, the point x = (
2mAi +(MA

i −m
A
i )

2 χi,j+(
2mABi +(mAi −m

AB
i )

2 χi=j )i∈[n]

is both in AB and AC, but not in A.

Since we reached a contradiction in both cases, we conclude that mAi = mACj .

By a similar argument we have that MA
j =MAC

j .

Similarly, if we have mABj < mBj ≤ M
B
j < M

AB
j , then we must have mBCj =

mBj ,M
BC
j =MB

j .
Observe that for any j ∈ [n], one of three cases holds:

i. mABj < mAj ≤M
A
j <M

AB
j .

ii. mABj =mAj .

iii. MA
j =MAB

j .

Likewise, B satisfies one of those three cases with respect to AB.

Claim 4.36. Since BAB ∩BAC = BA, for any i, we have mAi = max(mABi ,mACi ) and
MA
i = min(MAB

i ,MAC
i ).

Since we must have BC ⊆ BAC ∩ BBC and BB ⊆ BAB ∩ BBC , we can find a
contradiction by showing BAC ⊆ S \ BBC or BAB ⊆ S \ BBC . We shall show that
there is an index k for which MAC

k < mBCk , MAB
k < mBCk or MAC

k < mABk .
Since BA∩BB = ∅, there exists some k for which eitherMA

k < m
B
k orMB

k < m
A
k .

Without loss of generality, assume that MA
k < m

B
k holds.

Then one of the following cases must be true

1. For both A and B, case (i) is not satisfied on k and AB. Notice that since
MA
k < mBk , we must have mAk = mABk and MB

k = MAB
k . This means that

MAC
k =MA

k < m
B
k =mABk and we reached a contradiction.

2. Case (i) is satisfied for A on k but not for B on k and AB. This means that
MB
k = MAB

k , and so mBCk = mBk or mABk = mBk . By Claim 4.35 on A, we also
have MAC

k = MA
k < m

B
k = mBCk or MAC

k = MA
k < m

B
k = mABk . As in (1), we

reached a contradiction.

3. Case (i) is satisfied for B on k but not for A on k and AB. This means that
mAk =mABk , and so MAC

k =MA
k or MAB

k =MA
k . By Claim 4.35 on B, we also

have MAC
k = MA

k < m
B
k = mBCk or MAB

k = MA
k < m

B
k = mBCk . As in (1), we

reached a contradiction.

4. Case (i) is satisfied for both A and B on k and AB. Then by Claim 4.35,
we have MAC

k =MA
k < m

B
k =MBC

k .
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Since we reached a contradiction in all four cases, we showed that it cannot
be the case thatMA

k < m
B
k . Similarly, we can show that it cannot be the case that

MB
k < m

A
k . Hence BA ∩BB , ∅. This is in contradiction to the assumption that

the box space represents our knowledge base.
This proof implies that:

Theorem 4.37. Box is incomplete with respect to EL++.

In the previous section, we showed that every satisfiable EL++ knowledge
base has a finite model. As to our knowledge, this result has not been shown
previously in the literature. Our proof was an adaptation of a similar proof
for ALC shown in [Baader et al., 2017]. We will later Theorem ?? to prove
completeness of EL++ on a stronger class of embeddings.

Previous box embedding papers such as [Xiong et al., 2022b] and [Jack-
ermeier et al., 2024a] have shown, in their word, that box spaces are faithful
representations of EL++. E.g., given concepts B,C,D, if BB ∩ BC ⊆ BD then
B⊓C ⊑D.

However, none of the papers we have reviewed have acknowledged the
incompleteness of box spaces against EL++. This fact implies that there are
knowledge bases for which there does not exist a model that can faithfully
represent them.



Chapter 5

Multibox Spaces

While Box is incomplete with respect to EL++, we can extend the category to a
larger category that is complete with respect to EL++.

5.1 Multibox Category

Definition 5.1 (Multibox space). Given a box space B, a multibox spaceM := B
is the closure of B over finite unions and finite intersections. A subset of a multibox
space M ∈M is called a multibox. The subsetsM∩B are called boxes.

Many of the results in this section would rely on algebraic properties of
sets. We would not prove most of these results but instead present them as
they are. However, we would show the following

Lemma 5.2 (Sets are distributive). Given a finite set J , a collection of finite sets
{Ij }j∈J and a collection of sets {Ai,j }i∈Ij ,j∈J , denote F = {f : J→

⊔
j∈J Ij | For any j we have f (j) ∈

Ij }. Then we have that ⋂
j∈J

⋃
i∈Ij

Ai,j =
⋃
f ∈F

⋂
j∈J
Af (j),j

Proof. Given a set
⋂
j∈J

⋃
i∈Ij Ai,j , consider F = {f : J→

⊔
j∈J Ij | For any j we have f (j) ∈

Ij }. Notice that |F| =
∏
j∈J |Ij |. As J and Ij for any j ∈ J are finite, the right hand

side of that expression is finite. Consider
⋃
f ∈F

⋂
j∈J Af (j),j .

Given x ∈
⋂
j∈J

⋃
i∈Ij Ai,j , for any j ∈ J there exists ix ∈ Ij such that x ∈ Aix ,j .

Fix a function f ∈ F such that f (j) = ix. This shows that there exists f ∈ F such
that for any j ∈ J we have that x ∈ Af (j),j . That is, x ∈

⋃
f ∈F

⋂
j∈J Af (j),j .

Lemma 5.3. Given a finite set J , a collection of finite sets {Ij }j∈J and a collection of

43
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sets {Ai,j }i∈Ij ,j∈J , there exists finite sets K such that⋃
j∈J

⋃
i∈Ij

Ai,j =
⋃
k∈K

Ak

Proof. The set K =
⊔
j∈J {j} × Ij is finite and satisfies the requirement.

Lemma 5.4. Any multibox M is expressible as a finite union of boxes M =
⋃
i∈I Bi .

Proof. We would prove this result by induction on the construction of multi-
boxes. For the initial case, every box is expressible using itself.

Suppose that M1, . . . ,Mn were constructed in up to k steps. By induction
hypothesis, those multiboxes are expressible using a finite union of boxesMj =⋃
i∈Ij Bi,j for any j ∈ [n]. Notice that

⋃
j∈[n]Mj =

⋃
j∈[n]

⋃
i∈Ij Bi,j =

⋃
k∈K Bk for

some finite set K . Thus the finite union of the multiboxes is expressible using
a finite union of boxes.

Likewise, notice that
⋂
j∈[n]Mj =

⋂
j∈[n]

⋃
i∈Ij Bi,j =

⋃
k∈K

⋂
l∈LBl,k . As boxes

are closed under finite intersection, we have that the right hand side of the
expression is a finite union of boxes. Thus the finite intersection of the multi-
boxes is expressible using a finite union of boxes.

Thus we have shown that multiboxes that are constructed in up to k + 1
steps can be expressible using finite union of boxes. By induction, this shows
that any multibox is expressible using a finite union of boxes.

Definition 5.5 (Multibox space morphism). Given two multibox spaces (S,M)
and (S ′ ,M′), we define a multibox space morphism f : (S,M)→ (S ′ ,M′) as a func-
tion f : S→ S ′ such that for all M ′ ∈M′ we have that f −1[M ′] ∈M.

Like with boxes, multibox morphisms induce a meet semi-lattice morphism.
We have a category MultiBox with multibox spaces as objects and multibox
space morphisms as arrows.

Furthermore, we have a functor from the box category to the category of
meet semi-lattices U : MultiBoxop→MeetSemiLat:

U0 : (S,B) 7→ B
U1 : f (·) 7→ f −1[·]

Category of contexts

We begin by showing that MultiBox contains all finite products. We shall show
this by proving that MultiBox has all binary products and a terminal object.

First observe that given two multibox spaces (S, B̄), (S ′ ,B′), since B ×B′ is a
box space, we have that B ×B′ is a multibox space.

Definition 5.6 (Product multibox space). Given two box spaces (S,B) and (S ′ ,B′),
we define their product multibox space as (S × S ′ ,B ×B′). GivenM = B,M′ = B′ ,
denoteM×M′ = B ×B′
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Lemma 5.7. Given a set X and two sequences of subsets {Ai}i∈I ⊆ PX and {Bj }j∈J ⊆
PX, we have that ⋂

i∈I
Ai ×

⋂
j∈J
Bj =

⋂
(i,j)∈I×J

Ai ×Bj⋃
i∈I
Ai ×

⋃
j∈J
Bj =

⋃
(i,j)∈I×J

Ai ×Bj

Lemma 5.8. Given two multibox spaces (S,M), (S ′ ,M′) and multiboxesM ∈M,M ′ ∈
M′ we have that M ×M ′ ∈M×M′ .

Proof. Expand M =
⋃
i∈I Bi ,M

′ =
⋂
l∈LBl

M ×M ′ =
⋃
i∈I
Bi ×

⋃
l∈L
Bl

=
⋃

(i,j)∈I×L
Bi ×Bl

As I,L are finite, I × L is finite. So the right hand side of the expression is a
multibox. Thus, the left hand side of the expression is a multibox.

Likewise, given M ∈ M×M′ , as there exist boxes {Bi}i∈I ∈ B ×B′ such that
M =

⋃
i∈I Bi , and as every box Bi in the product space is a product of boxes, we

have that all multiboxes of the product space are of the above form.
Before showing that the product box space is the product in MultiBox, ob-

serve the following result

Lemma 5.9 (The preimage preserves unions and intersections). Given any func-
tion f : X→ Y and subsets {Si}i∈I of Y , we have that

f −1

⋃
i∈I
Si

 =
⋃
i∈I
f −1 [Si]

f −1

⋂
i∈I
Si

 =
⋂
i∈I
f −1 [Si]

Lemma 5.10. The product multibox space is the product in MultiBox.

Proof. Given a projection (S×S ′ ,M×M′) and multiboxM =
⋃
i∈I Bi ∈M, notice

that π−1[M] =
⋃
i∈I Bi × S ′ which is a multibox.

Given a multibox space (A,A) and two multibox morphisms f : (A,A) →
(S,M) and g : (A,A)→ (S ′ ,M′), the unique map of sets (f ,g) : x→ (f (x), g(x))
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that commutes with the projections is also a multibox morphism. This is be-
cause for any M :=

⋃
i∈I B

1
i ×B

2
i ∈ B ×B′ , we have that

(f ,g)−1[M] = (f ,g)−1

⋃
i∈I
B1
i ×B

2
i


=
⋃
i∈I

(f ,g)−1[B1
i ×B

2
i ]

=
⋃
i∈I
f −1[B1

i ]× g−1[B2
i ]

As f and g are multibox morphisms, the preimage of both of them is a multibox
in A. Thus the final expression is a multibox in S . Thus, (f ,g) is a multibox
morphism.

Notice that every pair of box spaces has a binary product.

Lemma 5.11 (The terminal object). The box space ({0}, {∅, {0}}) is the terminal
object in MultiBox.

By Lemma Theorem 3.20, these results imply that

Lemma 5.12. MultiBox has all finite products.

Left adjoint

Definition 5.13 (Existential quantifier in MultiBox). Given a projection π : (S×
S ′ ,M×M′)→ (S,M), we define the existential quantifier as ∃π = π

It is clear that the existential quantifier is a functor.

Lemma 5.14 (Existential quantifier is a left adjoint). For any projection

π : (S × S ′ ,M×M′)→ (S,M)

the existential operator ∃π is the left adjoint of π−1 in MeetSemiLat≤.

As the proof of left adjunction relies on the properties of the projection
on the underlying sets, the proof of the lemma is similar to the proof of left
adjunction in Box.

And likewise

Corollary 5.15. For any morphism π : (S,M)→ (S ′ ,M′) and objects M ∈M and
M ′ ∈M′ , we have that ∃π ◦π−1M ⊆M and M ′ ⊆ π−1 ◦∃πM ′

Remark 5.16 (Existential quantifier and the product box space). Given a prod-
uct multibox space and a projection π : (S × S ′ ,M×M′) → (S,M), we have in
particular that

∃π(M ×M ′) = {x⃗ | ∃x⃗′ ∈M′ : (x⃗, x⃗′) ∈M ×M ′}
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We need to show that the existential operator satisfies the Beck-Chevalley
condition and the Frobenius reciprocity.

However, the proofs of both conditions are exactly like the proofs for the
Box case.

Lemma 5.17 (Beck-Chevalley condition for MultiBox). Given any three multi-
box spaces (A,A), (C,C) and (D,D), a map f : (C,C)→ (D,D) and pullback diagram

(A×C,A×C) (C,C)

(A×D,A×D) (D,D)

π

f(IdA,f )

π′

in MultiBox, the Beck-Chevalley condition holds in MeetSemiLat.

∃π ◦ (IdA, f )−1 = f −1 ◦∃π′

Lemma 5.18 (Frobenius reciprocity for MultiBox). Given a projection multibox
space morphism π : (A×B,A×B)→ (A,A), the existential operator ∃π satisfies the
Forbenius reciprocity. That is, for any two multiboxes M ×C ∈ A×B and M ′ ∈ A,

∃π(π−1(M ′)∩ (M ×C)) =M ′ ∩∃π(M ×C)

Combining the two lemmas, we can conclude that

Theorem 5.19 (Multibox spaces form a hyperdoctrine). The functorU : MultiBox→
MeetSemiLat is a EL++ hyperdoctrine.

5.2 Multibox Interpetations

The categorical interpretation ⟦·⟧ of EL++ in MultiBox is exactly the same as
in Box with concepts and individuals being mapped to multiboxes.

5.2.1 Model Theoretic Results

Theorem 5.20. Given a finite model (∆I , ·I ) of a knowledge base K, there exists a
multibox space that interprets K.

Proof. Consider an enumeration ∆I = {a1, . . . , an}. The underlying set would be
[0,n] and for every individual ai fix a box Ai = [n − 1

3 ,n + 1
3 ]. For every strict

subsetC ⊂ ∆I , defineMC =
⋃
i∈{i|ai∈C}Ai and define alsoM∆I = [0,n]. Likewise,

we construct for every subset R ⊆ ∆I ×∆I a corresponding product multibox
MR =

⋃
i,j∈[n],(ai ,aj )∈RAi ×Aj .
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Notice that for every two subsets C,D ⊆ ∆I , we have that ⟦C⟧ ∩ ⟦D⟧ =
MC ∩MD =MC∩D = ⟦C ∩D⟧. Also,

M∃R.C =M{a∈∆I |∃b.(a,b)∈R∧b∈C}

=
⋃

i∈{i|∃b.(ai ,b)∈R∧b∈C}
Ai

It is easy to see that
⋃

(i,j)∈{(i,j)|(ai ,bj )∈R∩(S×C)}Ai × Aj ⊆ MR ∩ (S ×MC). Let
x ∈ R∩ (S ×C). Since x ∈ R, there exists Ai ,Aj ,Ak such that ak ∈ C, (ai , aj ) ∈ R
and also x ∈ Ai ×Aj ,x ∈ S ×Ak . If j , k, then Ai ∩Aj = ∅ which would result in
a contradiction. Which implies that aj = ak ∈ C. Thus x ∈MR ∩ (S ×MC) which
implies that the two sets are equal to one another. This means that:

M∃R.C = π0[
⋃

(i,j)∈{(i,j)|(ai ,bj )∈R∩(S×C)}
Ai ×Aj ]

= π0[MR ∩ (S ×MC)] = π0[MR ∩π−1
1 [MC]] = ⟦∃R.C⟧

Lastly, we have that

ai ∈ C⇔ Ai ∈MC

C ⊆D⇔MC ⊆MD

Due to that, the following is an interpretation of K in (S,M)

⟦a⟧ := Ai where aI = ai
⟦C⟧ :=MCI

⟦R⟧ :=MRI

If a formula ϕ ⊑ ψ (including assertions {a} ⊑ ψ) is contained in K, then ⟦ϕ⟧ =
Mϕ ⊆Mψ = ⟦ψ⟧. Furtheremore, any point xaI is itself a box.

Lastly, it is easy to see that any box of an individual is atomic and that for
any individual ⟦∃x : σ.{a}⟧ = π[{xaI }] =⊤.

Combining Theorems ?? and 5.20, we get

Theorem 5.21. EL++ is complete with respect to MultiBox. That is, if a EL++

knowledge base is satisfiable, then it has a multibox interpretation.

5.3 Universal Quantification

The fact that multiboxes are closed under finite unions suggests that there is
also a functor from a multibox space to a lattice. Furthermore, in this section
we would show that the projections have a right adjoint that is a universal
quantifier. This would suggest that, assuming multiboxes also form a Heying
algebras, there might exist an interpretation of ALC using multibox spaces.
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However, note that the negation of a multibox lattice would not in general
be the complement (·)C . This would imply that for any object M, we would
probably not have M ∨ ¬M It is easy to show that ALC knowledge bases all
contain the law of excluded middle. Which would mean that ALC is probably
not complete with respect to this system.

In the following chapter we would introduce quasi-multiboxes, a system
that is complete against ALC. However, since it is easier to work with multi-
boxes, we would show that multiboxes have a universal quantifier and deduce
in the next chapter that this would imply that quasi-multiboxes also have a
universal quantifier.

Definition 5.22 (Box operator). Given a multibox product space (A,M)× (B,M′)
and projection π : A×B→ A, we define the box operator □ : P (A×B)→PA as:

□U := A \π[(A×B) \U ] = (π[UC])C

We would show that □ is a right adjoint to π and then show that the right
adjoint is a universal quantification in the hyperdoctrine.

5.3.1 Box operator is a right adjoint

Box operator is a functor

Lemma 5.23. Given a multibox projection πS : (S×S ′ ,M×M′)→ (S,M), we have
for any multiboxesM ∈M×M′ that□M = {x ∈ S | for all y ∈ S ′ we have that (x,y) ∈
M} =: KM .

Proof. Given x ∈ KM , there does not exist y such that (x,y) <M. Hence for all
y we have that (x,y) < MC . Which implies that x < π[MC]. As x was chosen
arbitrarily, we see that KM ⊆ □M.

Suppose that x < KM . Then there exists y ∈ S ′ such that (x,y) < M. Then
(x,y) ∈MC . Meaning that x ∈ π[MC] which implies that x < □M. This implies
that KCM ⊆ (□M)C . Meaning that □M ⊆ KM .

Lemma 5.24. For any multibox M, we have that KM is a multibox.

Proof. Expand M =
⋃
i∈I B

1
i × B

2
i . Define AM = {A ⊆ I |

⋃
i∈AB

2
i = S ′} and con-

sider ⋃
A∈AM

⋂
i∈A

B1
i

Notice that each A is finite and so
⋂
i∈AB

1
i is finite. As boxes are closed under

finite intersection
⋂
i∈AB

1
i is a box. Furthermore, |A|≤ |P I | = 2|I |. As the right

hand side of the equation is finite, A is finite and so the expression is a finite
union of boxes and thus a multibox.
⊆ Let x ∈ KM . Define the setA := {i ∈ I | For some y ∈ S ′ we have that (x,y) ∈

B1
i ×B

2
i }. As x ∈ KM , we have that

⋃
i∈AB

2
i = S ′ . Which means that A ∈ AM . Fur-

thermore, by definition we have for any i ∈ A that x ∈ B1
i . This implies that

x ∈
⋃
A∈AM

⋂
i∈AB

1
i .
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⊇ Suppose that x ∈
⋃
A∈AM

⋂
i∈AB

1
i . Then there exists A ∈ AM such that for

any i ∈ A we have that x ∈ B1
i . Furthermore, as

⋃
i∈AB

2
i = S ′ , we have that for

any y ∈ S ′ , there exists i ∈ A such that (x,y) ∈ B1
i ×B

2
i ⊆M. Thus x ∈ KM . This

shows that KM =
⋃
A∈AM

⋂
i∈AB

1
i .

Lemma 5.25 (The box operator is monotone). Given two boxesM,M ′ ∈M×M′ ,
if M ⊆M ′ then □M ⊆ □M ′ .

Proof.

M ⊆M ′⇒ (M ′)C ⊆MC

⇒ π[(M ′)C] ⊆ π[MC]

⇒ (π[MC])C ⊆ (π[(M ′)C])C

As the box operator is both monotone and preserves boxes, it is a functor
between meet lattices.

Box operator is right adjoint to the preimage

Theorem 5.26. Box operator is a right adjoint to the preimage.

Proof. Let M :=
⋃
B ∈M and K ∈M×M′ . We shall show that

M × S ′ = π−1(M) ⊆ K if and only if M ⊆ □K

⇒ Suppose that M × S ′ ⊆ K . Let x⃗ ∈ M and suppose that x⃗ ∈ π[KC]. That is,
there exists y⃗ ∈ S ′ such that (x⃗, y⃗) ∈ KC . But since (x⃗, y⃗) ∈M × S ′ , we also have
that (x⃗, y⃗) ∈ K . This is a contradiction, which implies that x⃗ < π[KC]. As x⃗ was
chosen arbitrarily, we get that M ⊆ (π[KC])C = □K .
⇐ Denote K :=

⋃
i∈I Bi × B′i Assume that M ⊆ □K = □(

⋃
i∈I Bi × B′i) = {x ∈

S | for all y ∈ S ′ we have that (x,y) ∈ K}. Given (x⃗, y⃗) ∈ M × S ′ , we have that
x⃗ ∈ {x ∈ S | for all y ∈ S ′ we have that (x,y) ∈ K}. And so (x,y) ∈ K .

5.3.2 Box operator is a universal quantifier

Denote the box operator □ on projection π by ∀π.

Lemma 5.27 (Beck-Chevalley condition for box operator in MultiBox). Given
any three multibox spaces (A,A), (C,C) and (D,D), a map f : (C,C)→ (D,D) and
pullback diagram

(A×C,A×C) (C,C)

(A×D,A×D) (D,D)

π

f(IdA,f )

π′
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in MultiBox, the Beck-Chevalley condition holds in MeetSemiLat.

∀π(IdA, f )−1 = f −1∀π′

As the proof relies solely on set theoretic properties, we would not show it here.

As ∀π is a functor that satisfies the Beck-Chevalley condition, we can con-
clude that it is the universal quantifier in our underlying category.



Chapter 6

Quasi-Multibox Sets

We would show that ALC is interpretable in a modified version of multibox
spaces. For this task, we would construct a functor from multibox spaces to
the category of Boolean algebras and show that ALC is complete with respect
to that system.

6.1 TheALC Fragment of First-Order Logic

Definition 6.1 (ALC Language). Given a signature (NC ,R,O), as defined in defi-
nition (1.1), the corresponding ALC language is ({σ },R∪NC ,O).

Where the arity of any relation symbol R ∈ R is (σ,σ ), the arity of any concept
symbol C ∈NC is σ and the arity of any individual a ∈ O is ()→ σ

Definition 6.2 (ALC Formula). An ALC formula ϕ in context Γ is defined recur-
sively by the following grammar:

⊤ | ⊥ | x =σ y | R(t1, t2) | C(t) | ψ ∧χ | ψ ∨χ | ∃x : σ.R(x, t)∧ϕ(t) | ∀x : σ.R(x, t)∧ϕ(t) | ¬ϕ

where ϕ,ψ are previously constructed formulas, x,y are terms in context Γ , a is a
constant symbol, R is a relation symbol and C is a concept symbol.

The rules for term and formula substitution are as found in definitions 3.50,
3.53.

Lastly, notice that this system has only two types of terms: fixed terms a : σ
and variables x : σ .

6.2 Quasi-Multiboxes are a Boolean Algebra

Notice that any box B in n dimensions can be represented as a Cartesian prod-
uct of intervals B =

�
j∈[n] Ij where Ij are intervals of the form [mj ,Mj ].
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Definition 6.3 (Quasi-Box and Almost Intervals). We define almost intervals Ĩj
interval as sets of the form (mj ,Mj ], [mj ,Mj ], [mj ,Mj ).

We define a quasi-box as a set consisting of a cartesian product of almost inter-
vals B̃ =

�
j∈[n] Ĩj .

Lemma 6.4 (Quasi-boxes are closed under intersection). Given a collection {B̃k}k∈K
where K is arbitrary, we have that

⋂
k∈K B̃k is a quasi-box.

Proof. It suffices to notice that any intersection of a set of almost intervals is
almost an interval and that

⋂
k∈K B̃k =

⋂
k∈K Ĩj,k =

�
j∈[n]

⋂
k∈K Ĩj,k .

Definition 6.5 (Quasi-box space). Given a set I and a set S, we call I ∩ S the set
I restricted to S.

We define a quasi-box space as a subset S ⊆ R
n and a collection of quasi-boxes

B̃ restricted to S closed under arbitrary intersections and containing ∅ and S.

Definition 6.6 (Quasi-multibox). We define a quasi-multibox as a set M̃ that can
be constructed using a finite union of quasi-boxes.

Lemma 6.7 (The complement of a quasi-box is quasi-multibox). Given B̃, there
exists a multibox M̃ such that B̃C = M̃.

Proof. Notice that for any almost interval Ĩ , we have that the complement ĨC is
a union of at most two almost intervals ĨC = Ĩ1 ∪ Ĩ2. Meaning that

B̃C = (
�
j∈[n]

Ĩj )
C

=
⋃
A⊊[n]

{x⃗ | for j ∈ A we have xj ∈ Ĩj and for j < A we have xj ∈ ĨCj }

=
⋃
A⊊[n]

{x⃗ | for j ∈ A we have xj ∈ Ĩj and for j < A we have xj ∈ Ĩ1,j ∪ Ĩ2,j }

=
⋃
A⊊[n]

{x⃗ | for j ∈ A we have xj ∈ Ĩj and for j < A we have xj ∈ Ĩ1,j }

∪ {x⃗ | for j ∈ A we have xj ∈ Ĩj and for j < A we have xj ∈ Ĩ2,j }

Notice that the right hand side is a finite union of quasi-multiboxes and so the
left hand side is a quasi-multibox.

Lemma 6.8 (The complement of a quasi-multibox is a quasi-multibox). Given
M̃, there exists a multibox M̃ ′ such that M̃C = M̃ ′ .

Proof. Notice that

M̃C = (
⋃
i∈I
B̃i)

C =
⋂
i∈I
B̃Ci

As the right hand side is a finite intersection of quasi-boxes, the left hand side
is a a quasi-multibox.
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Definition 6.9 (Quasi-multibox space). We define quasi-multibox space as the
closure of a quasibox space under finite unions, intersections and complements M̃ =
B̃.

Theorem 6.10. Every quasi-multibox space (S,M̃) is a Boolean algebra as a poset
under subsets and under the operations

⊤ S
⊥ ∅

M ∧N M ∩N
M ∨N M ∪N
M→N MC ∪N

Proof. To show that the space is a Heyting algebra, it suffices to observe that
for any M,N,L ∈ M̃, we have that

• ∅ ⊆M ⊆ S.

• L ⊆M ∩N if and only if L ⊆M and L ⊆N .

• M ∪N ⊆ L if and only if M ⊆ L and N ⊆ L.

• L ⊆MC ∪N if and only if L∩M ⊆N .

Lastly, notice that ¬M = M → ∅ = MC and that for any M we have that M ∪
MC = S.

6.2.1 The Quasi-Multibox Hyperdoctrine

Definition 6.11. Given two quasi-multibox spaces (S,M̃) and (S ′ ,M̃′), we define
a quasi-multibox morphism as a function f : S → S ′ such that for any A ∈ M̃′ we
have that f −1[A] ∈ M̃.

Notice that due to the fact that preimages in general preserve unions, in-
tersections and complements, the quasi-multibox morphisms is also a Boolean
algebra morphism.

It is easy to show that the morphisms are composable and associative and
that the identity function is a quasi-multibox morphism.

Definition 6.12 (Quasi multibox category). We define the quasi-multibox cat-
egory QuaMultiBox as the category with quasi-multibox spaces as objects and
quasi-multibox morphisms as morphisms.

Lemma 6.13. There exists a forgetful functor from the category of quasi-multiboxes
to the category of Boolean algebras U : QuaMultiBoxop → BoolAlg such that
(S,M̃) 7→ M̃ and f 7→ f −1.

Definition 6.14 (Product of quasi-multibox spaces). Given two quasi-multibox
spaces (S,M̃) and (S ′ ,M̃′), we define their product quasi-multibox space M̃ × M̃′

as (S × S ′ , B̃ × B̃′)
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By the same reasoning as in the multibox case, the quasi-multiboxes has
finite products and terminal object and so form a category of contexts.

Furthermore, given a projection π : S ×S ′→ S, the left and right adjoints to
π−1 are

∃π = π

∀π = (π[·C])C

and they satisfy the Beck-Chevalley condition and the Frobenius reciprocity.
Meaning that

Theorem 6.15 (Quasi-multibox spaces form a hyperdoctrine). The functor QuaMultiBox→
BoolAlg is a first-order hyperdoctrine.

6.3 Quasi-Multibox Interpretations

Definition 6.16 (Categorical Semi-Interpretation of ALC in QuaMultiBox).
Given anALC language ({σ },R∪NC∪O,∅), a quasi-multibox space semi-interpretation
of the language is a quasi-multibox space (S,M), along with a mapping

⟦·⟧ :C →M

⟦·⟧ :R→M×M

⟦·⟧ :O→M\ {⊥}

Given a formula ϕ in context σ , the interpretation of ϕ is defined recursively on
σ as:

1. If ϕ is ⊤ or ⊥ then ⟦ϕ⟧ is S or ∅ respectively.

2. If ϕ := ψ ∧χ, then ⟦ϕ⟧ = ⟦ψ ∧χ⟧ := ⟦ϕ⟧∩ ⟦ψ⟧.

3. If ϕ := ψ ∨χ, then ⟦ϕ⟧ = ⟦ψ ∧χ⟧ := ⟦ϕ⟧∪ ⟦ψ⟧.

4. If ϕ := ¬ψ, then ⟦ϕ⟧ = ⟦¬ψ⟧ := (⟦ϕ⟧)C .

5. If ϕ := ∃x : σ.ψ where ψ is in context x : σ,y : σ with projections π1 and π2,
then ⟦ϕ⟧ = ⟦∃x : σ.ψ⟧ := π1(⟦ψ⟧).

Definition 6.17 (Categorical Interpretation ofALC). Given aALC semi-interpetation
((S,M),⟦·⟧) is aALC interpretation if it satisfies the following additional condition

• If ⟦ψ⟧ ⊆ ⟦{a}⟧ for some ψ ,⊥, then ⟦{a}⟧ ⊆ ⟦ψ⟧.

Recall that ∃R.C is read as ∃y : σ.R∧C. That is

⟦∃y : σ.R(x,y)∧C(y)⟧ = Cl ◦π1(⟦R(x,y)∧C(y)⟧) = Cl ◦π1(⟦R⟧∩π−1
2 ⟦C⟧)
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6.3.1 Model Theoretic Results

Theorem 6.18 ([Baader et al., 2017]). Every satisfiable knowledge baseK = (T ,A)
of ALC has a finite model.

Theorem 6.19. Given a finite model (∆I , ·I ) of a knowledge base K, there exists a
quasi-multibox space that interprets K.

Proof. Consider an enumeration ∆I = {a1, . . . , an}. The underlying set would be
[0,n], for every i ∈ [1,n− 1] fix a box Ai = [n− 1

3 ,n+ 1
3 ] and lastly fix An =

⋂
ACi

. For every subset C ⊆ ∆I , define MC =
⋃
i∈{i|ai∈C}Ai . Likewise, we con-

struct for every subset R ⊆ ∆I × ∆I a corresponding product multibox MR =⋃
i,j∈[n],(ai ,aj )∈RAi ×Aj .

Notice that for every two subsets C,D ⊆ ∆I , we have thatMC∩MD =MC∩D
and MC ∪MD =MC∪D .

Notice that for any i we have that ACi =
⋃
j∈[n]\{i}Aj . Hence

(MC)C =
⋂
{i|ai∈C

ACi =
⋂
{i|ai∈C}

ACi =
⋂
{i|ai∈C}

⋃
j∈[n]\{i}

Aj =
⋃
{i|ai<C}

Ai =MCC

Lastly,M∃R.C = ∃R.(MC) andM∀R.C =M{a∈∆I |(a,b)<R∨b∈C} = dom(MRC∪S×C) =
dom(MC

R ∪MS×C) = ∀R.(MC)
defines a multibox. Lastly, we have that

ai ∈ C⇔ Ai ∈MC

C ⊆D⇔MC ⊆MD

Due to that, the following is an interpretation of K in (S,M)

⟦a⟧ := Ai where aI = ai
⟦C⟧ :=MCI

⟦R⟧ :=MRI

If a formula ϕ ⊑ ψ (including assertions {a} ⊑ ψ) is contained in K, then ϕI ⊆
ψI . Which implies that MϕI ⊆ MψI . Furtheremore, any point xaI is itself a
box.

Lastly, it is easy to see that any box of an individual is atomic and that for
any individual ⟦∃x : σ.{a}⟧ = π[{xaI }] =⊤.

Combining Theorems 6.18 and 6.19, we get

Theorem 6.20. ALC is complete with respect to QuaMultiBox.
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Experiments
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Chapter 7

Experimental Setup

We have shown that multibox spaces are sound and complete with respect to
EL++. This means that it is possible to find an accurate representation of every
knowledge base written in EL++ using a multibox space. However, the ques-
tion arises whether they are efficient for knowledge base completion tasks.

That is, can we produce a representation that not only accurately captures
the structure of the knowledge base but also allows for efficient inference and
prediction of missing relationships? To address this question, we design ex-
periments that test the practical performance of multibox spaces in knowledge
base completion tasks. We would use real-world knowledge bases written in
EL++ and compare box and multibox representations on the missing relation-
ship inference task.

To construct the representations, we would use a stochastic gradient de-
scent algorithm. We would initialize a random representation of the basic con-
cepts and roles in the knowledge base as (multi)boxes and iteratively adjust
the representations by minimizing a loss function that enforce the subsump-
tion relations C ⊑D.

The representations would then be evaluated against the evaluation data
of each dataset to test its usefulness for knowledge completion by using the
Hit@K metric.

7.1 Multibox Model

To test our new embedding, we implemented the MultiboxEL model [Aharoni,
2024]. Given a signature Σ = (NC ,R,O) and hyperparameters

• d for the dimensionality of the space.

• n for the amount of boxes per multibox.

• bo for bounds of the space (that is, our space would be a box S := [−bo,bo]d).
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• #QMC the amount of points to initialize for our quasi-Monte Carlo algo-
rithm, see comment below.

we define the model M such that the weights of the model are three tensors
A,M,R of the form |O| × 1 × 2d, |NC | × n × 2d,|R| × n × 4d correspondingly. For
each box BM of each multibox M, the first half represents the centre of the box
c⃗BM and the second half represents the offset l⃗BM . That is, a box is represented

as B = ( ⃗cBM− ⃗lBM , ⃗cBM+ ⃗lBM ). We use center-offset instead of minimum-maximum
as it makes it easier to initialize the weights such that all boxes are non-zero.

Our model receives as input subsets of rules of a knowledge base K writ-
ten in Σ and outputs a score of the distance of the current embedding from
satisfying these rules.

7.1.1 Loss Function and Monte-Carlo Method

In the box embedding literature, the loss function equation is standardized and
is measured by the level of subsumption of box B1 by box B2 using the center
and overlap of each box ([Kulmanov et al., 2019b]).

LA⊑B = 1− Vol(⟦A⟧∩ ⟦B⟧)
Vol(⟦A⟧)

Measuring the volume of a union of hyper dimensional boxes is known as
Klee’s measure problem [Klee, 1977] and has an upper bound complexity of
O(nd/2) where n is the amount of rectangles and d is the amount of dimensions
[Overmars and Yap, 1991].

Due to the high complexity of this problem and difficulty of implement-
ing a solution, we instead approximated the volume by using a Monte Carlo
algorithm. At the beginning of the training, we uniformly distribute across
S a #QMC amount of points P . Note that for any measurable set A ⊆ S we
have that Vol(A) ≈ 2bod

|P |
∑
p∈P χA(p) ([Asmussen and Glynn, 2007]). We use this

method to decrease computation costs.
To ensure that the loss is differentiable, we use a soft inclusion function in-

stead of computing the characteristic function. Given a multiboxK , we convert
the representation ofK to two tensorsMin := m⃗1×. . . m⃗n andMax := M⃗1×. . . M⃗n.
For each point p, we compute

χ̃K (p) := relu(max
i∈[n]

mean(σ (M⃗Bi − p),σ (p − m⃗Bi ))− 0.5)

where σ is the sigmoid function. maxi∈[n] mean(σ (M⃗Bi −p),σ (p− m⃗Bi )) is above
0.5 if and only if p is contained in K . Thus we defined the approximated vol-
ume function MonteCarlo(A) := 2bod

|P |
∑
p∈P χ̃A(p)

Since we would use models that were trained on EL++ as our benchmark,
we design our model only to handle concepts of EL++. This allows us to exploit
lemma 1.16 and use normal forms:
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• C ⊑D (NF1).

• C ⊓D ⊑ E (NF2).

• C ⊑ ∃R.D (NF3).

• ∃R.C ⊑D (NF4).

• R1 ◦R2 ⊑ S (role chain).

• R ⊑ S (role inclusion).

Our loss functions are then:

1. NF1:

1− MonteCarlo(⟦C⟧∩ ⟦D⟧)
MonteCarlo(⟦C⟧)

2. NF2:

1− MonteCarlo(⟦C ⊓D⟧∩ ⟦E⟧)
MonteCarlo(⟦C ⊓D⟧)

3. NF3:

1−
MonteCarlo(⟦C⟧∩π[⟦R⟧∩B({−bo}i∈[d], {bo}i∈[d])× ⟦D⟧])

MonteCarlo(⟦C⟧)

4. NF4:

1−
MonteCarlo(π[⟦R⟧∩B({−bo}i∈[d], {bo}i∈[d])× ⟦C⟧]∩ ⟦D⟧)

MonteCarlo(π[⟦R⟧∩B({−bo}i∈[d], {bo}i∈[d])× ⟦C⟧])

5. role chain: Note that for role chain we do not use a fully semantically
meaningful loss function, as it would be too large and too computation-
ally expensive to result in useful learning. Instead, we employ a simpli-
fied loss function

1− MonteCarlo(π0[⟦R1⟧]×π1[⟦R2⟧]∩ ⟦S⟧)
MonteCarlo(π0[⟦R1⟧]×π1[⟦R2⟧])

6. role inclusion:

1− MonteCarlo(⟦R⟧∩ ⟦S⟧)
MonteCarlo(⟦R⟧)
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7.1.2 Evaluation Method

We compare our models over the Hits@K, median reciprocal rank and mean
reciprocal rank as implemented in [Kulmanov et al., 2019b]. Given an evalu-
ation dataset {Ci ⊑ Dj }ni=0 where Ci ,Di are EL++ concepts and a distance func-
tion d : C × C → R, we can generate for each i ∈ [n] a sequence {Dkj,i }

n
j=0 such

that for any lj,i ∈ [n] we have that d(Ci ,Dlj,i ) ≤ d(Ci ,Dlj+1,i
). DenoteR(i) as the

rank j of Di . That is, DlR(i),i
=Di . The Hits@K is then defined as the number of

i ∈ [n] for whichR(i) < k. We also measured the mean and median rank of the
target concept for each data point. Thus our measurements are:

Hit@10 = |{i ∈ [n] |R(i) < 10}| Hit@100 = |{i ∈ [n] |R(i) < 100}|

mean =
1
n

∑
R(i) median = med{R(i) | i ∈ [n]}

Given a box embedding ⟦·⟧, we define the distance of two boxes B1,B2 as the
norm d(B1,B2) = |⃗cB1

− c⃗B1
|. The underlying assumption of the distance score

is that the correct subsumptions would be ranked higher. While a volume-
based approach for the distance might yield more accurate results, it would be
considerably more computationally expensive. Furthermore, it would strain
away from the common evaluation metric found in the literature ([Kulmanov
et al., 2019b]).

For multibox spaces, given each multibox ⟦Ci⟧ :=
⋃
j∈Ji Bj,i and each box

Bj,i = B(m⃗j,i , M⃗j,i) we would samples a set of points Pj,i from a uniform distri-

bution between the minimal and maximal values m⃗j,i , M⃗j,i . Then we define the
measure di(Ci ,Dl) =

∑
p∈Pj,i χp∈Dl .

7.1.3 Choice of Parameters

The choice of parameters for our experiment has proved to be difficult due
to the amount of hyperparameters our model used and the lack of time and
computational resources required for optimization.

We chose a low dimensional multibox space (d = 5) since we observed
experimentally that increasing the amount of dimensions resulted in mostly
empty intersections between multiboxes and thus no learning over NF2.

We observed that below 10,000 points for the Monte-Carlo algorithm, MultiBoxEL
scored only 0 on the evaluation data. We set the amount of points for the
Monte-Carlo algorithm to be the highest number we were able to generate
without exceeding the allowed memory allocation of our GPU on the lowest
amount of boxes per multibox. We ran our experiment with 20,000 sampled
points per training session.

We trained each model for 5 epochs as we observed MultiBoxEL plateau on
the fifth iteration.

We then set the amount of boxes per multibox to the highest number within
our memory allocations (5 boxes per multibox).
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Figure 7.1: MultiboxEL 5 epochs of training

Figure 7.2: BoxSquaredEL 5 epochs of training

In [Jackermeier et al., 2024b] experiment setting, the researchers passed the
entire dataset to the model as a tensor. However, this was not possible due to
memory limitations. Thus we split the datasets into 5 batches. Under these
parameters, the training procedure of MultiBoxEL was close to 8 hours per
session.

These hyperparameters represent each concept by a 2·d ·n dimensional vec-
tor. Hence we evaluated the MultiBoxEL model against BoxEL and BoxSquaredEL
with a box space of dimension d ·n.

It is important to note that although we trained all models for only 5 epochs,
BoxEL and BoxSquaredEL did not plateau. Figure 7.2 shows 5 downward
jumps in the loss at each epoch (after 500 steps, 1k steps, 1.5k steps, etc.).
This is in contract with Figure 7.1 which clearly shows that the training of the
multibox squared model quickly plateaus.
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7.2 Results

Results

We tested three models: the original box model BoxEL ([Xiong et al., 2022a]),
BoxSquaredEL ([Kulmanov et al., 2019b]) and our own model MultiBoxEL on
two biomedical ontologies GALEN [Pole, 1996] and Gene Ontology (GO) [Ash-
burner et al., 2000]. We used the BoxSquaredEL code base as a baseline for
our model and as a baseline for the training procedure. For each ontology, our
benchmark consists of axioms split into training (80%), validation (10%), and
testing (10%) sets for each normal form. Table 7.1 provides us with the num-
ber of datapoints in each dataset and the ratios of the normal forms in each
dataset.

Dataset Subset Role Chain Role Inclusion NF1 NF2 NF3 NF4

GALEN
Train 58 (0.09%) 958 (1.42%) 22,299 (33.00%) 10,876 (16.10%) 22,494 (33.30%) 10,877 (16.10%)
Val 0 (0%) 0 (0%) 2,759 (33.53%) 1,329 (16.15%) 2,803 (34.08%) 1,337 (16.24%)
Test 0 (0%) 0 (0%) 2,756 (33.42%) 1,346 (16.32%) 2,804 (34.00%) 1,341 (16.27%)

GO
Train 6 (0.01%) 3 (0.00%) 68,376 (65.71%) 9,704 (9.32%) 16,259 (15.62%) 9,703 (9.32%)
Val - - 7,604 (63.77%) 1,177 (9.87%) 1,968 (16.51%) 1,176 (9.86%)
Test - - 7,601 (63.63%) 1,178 (9.86%) 1,987 (16.63%) 1,181 (9.88%)

Table 7.1: Counts and percentages of points in each subset for GALEN and GO
datasets

Even though BoxSquaredEL was also originally tested against ANATOMY,
we omitted that dataset due to the fact that evaluation over it was too compu-
tationally expensive for our available resources. We documented the results in
Tables 7.2, 7.3 and 7.4.

GO MultiBoxEL GALEN MultiBoxEL

NF1 NF2 NF3 NF4 Combined NF1 NF2 NF3 NF4 Combined

Mean 17886 16742.8 41343.4 19582 22294.4 12238.6 12538.2 27690.6 13326.2 16790.4
Median 15725 12912.2 41344.4 18819 22033.2 11490.75 11191.75 23142 13653.5 19168
Top10 0.06 0 0 0 0.028 0.018 0 0 0 0.012
Top100 0.068 0 0 0 0.032 0.042 0 0.002 0.004 0.018

Table 7.2: Results for GO MultiBoxEL and GALEN MultiBoxEL with best scor-
ing model on each column bolden

GO BoxSquaredEL GALEN BoxSquaredEL

NF1 NF2 NF3 NF4 Combined NF1 NF2 NF3 NF4 Combined

Mean 9740.8 16025.8 23171.6 20476.8 13636.4 5381.4 11928 12116.4 10918.6 9633
Median 5402.6 14871.4 23864.8 19795.4 10145.2 3480.4 12206.6 11540.8 10567.8 8797.2
Top10 0.02 0.002 0 0 0.006 0.004 0 0 0 0.002
Top100 0.056 0.02 0.002 0 0.04 0.054 0.008 0.048 0 0.032

Table 7.3: Results for GO BoxSquaredEL and GALEN BoxSquaredEL with best
scoring model on each column bolden
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GO BoxEL GALEN BoxEL

NF1 NF2 NF3 NF4 Combined NF1 NF2 NF3 NF4 Combined

Mean 13857 20360.8 20744 14589.8 15707.4 6482.2 14362.4 10643.4 10320.8 9796.2
Median 5854.4 19885.4 20520.8 8204 9780.4 1891.2 15609.4 10449.6 11081 9517.2
Top10 0.01 0 0 0.476 0.05 0.046 0 0 0.11 0.036
Top100 0.046 0 0 0.476 0.082 0.198 0 0.02 0.266 0.118

Table 7.4: Results for GO BoxEL and GALEN BoxEL with best scoring model
on each column bolden

7.2.1 Discussion

Upon analysis, the multibox approach appears to outperform the other models
in the Hits@K GO tasks and the GALEN NF2 median rank. Figure 7.3 shows
that MultiBoxEL learned a good representation quickly on NF1. However, for
the other normal forms, the loss function of MultiBoxEL was not as efficient at
finding a gradient towards a direction of descent, as can be seen in Figures 7.5
and 7.6. A similar analysis of the loss function over GALEN reveals that this
pattern is consistent over the training of the MultiBoxEL model.

These results suggest that MultiBoxEL performed well on GO specifically
due to the high ratio of NF1 data points in the dataset. Recall that the proof
of incompleteness result of box spaces (Theorem 4.37) and the completeness
of multibox spaces (Theorem 5.20) relied solely on subsumption relations of
type NF1 and NF2. This might suggest that the reason for the high success of
MultiBoxEL in those tests is due to the expressivity of the representation over
NF1.

Figures 7.3 through 7.6 compare the three models’—Boxsqel (blue), Boxel
(orange), and our model, MultiboxEL(green)—on the GO dataset. The vertical
axis represents the normalized loss values, scaled between the loss function
values of all three models for a common range. The horizontal axis indicates
the number of computational steps up from the beginning of training up to the
end of last, fifth, epoch

In each training epoch we shuffled the data and divided it to equally sized
batches. This shuffling introduces variability in the batches the model sees,
which can impact the loss values between steps.

In Figure 7.4, the BoxSquaredEL model (blue line) demonstrates the behav-
ior we expect from a learning algorithm under such conditions. Initially, the
loss decreases sharply, reflecting a rapid reduction in error as the model begins
to learn from the data. This steep drop indicates effective early-stage learning.

However, at the beginning of a new epoch, the model’s loss exhibits oscilla-
tions. These fluctuations occur because the model encounters slightly different
combinations of data in each batch, leading to variability in the optimization
path. Despite these oscillations, BoxSquaredEL continues to show an overall
downward trend, confirming that it is learning and making progress. In Fig-
ures 7.3 and 7.5, we barely see any learning of BoxSquaredEL, which reflects a
poor learning procedure. However, BoxSquaredEL still maintained a competi-
tive edge in our evaluation.



7.2. RESULTS 65

Figure 7.3: NF1 Loss over GO

In Figures 7.5 and 7.3 we see that MultiBoxEL, learns a representation early
on and then plateaus for the other 4 epochs while in 7.4 and 7.6 we see an
immediate plateau.

The early plateauing behavior of MultiBoxEL indeed suggests that the model
might be falling into local minima, unable to escape and continue improving
its performance. This kind of behavior often arises when the optimization pro-
cess gets stuck at a suboptimal point in the loss landscape, rather than con-
verging to a global minimum. Adding regularizing factors can help address
this issue by encouraging the model to explore the loss landscape more thor-
oughly and avoid overfitting to these local minima.

We did not expect the multibox model to perform poorly on the NF3 and
NF4 tasks since the multiboxes model uses the most semantically accurate rep-
resentation of the existential operator out of the three models. Out of the three
models, BoxEL consistently performed the best on NF3 and NF4 despite hav-
ing the least expressive representation for relations. Both BoxSquaredEL and
MultiBoxEL represent relations using two boxes, one for the domain and one
for the codomain of the relation (alternatively, as a product of two boxes and
a projection to the embedding space). Due to the complexity of the expression
for the existential operator, it is possible that the loss function for NF3 and
NF4 is too complicated for the algorithm to find a local minimum in the given
number of epochs. [Jackermeier et al., 2024b] claims that BoxSquaredEL per-
forms better than BoxEL on NF3. The failure in replication could be the result
of running the experiments on low dimensional spaces and for less time.

To test this hypothesis, we trained both BoxSquaredEL and MultiBoxEL on
a smaller dataset, for which we could run 300 epochs. We saw that BoxSquaredEL
managed to converge to a good representation while MultiBoxEL could not.

Furthermore, we can see in 7.2.1 that MultiBoxEL achieves a lower loss by
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Figure 7.4: NF2 Loss over GO

Figure 7.5: NF3 Loss over GO
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Figure 7.6: NF4 Loss over GO

Figure 7.7: BoxSquaredEL (left) and MultiBoxEL (right) representation of a
family dataset after 300 epochs
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Figure 7.8: Caption

minimizing the areas of the boxes instead of attempting to satisfy the sub-
sumption relations. This could have been avoided by adding regularization
factors to MultiBoxEL to prevent such learning.

In Figure 7.8, we see a visualization of a multibox representation of the
knowledge base from the incompleteness result in Theorem 4.37. In Figure
7.2.1, we see a visualization of embedding spaces, based on the same knowl-
edge base as training data, generated by the BoxSquaredEL and MultiBoxEL
models. As expected, neither of them correctly represented the knowledge
base.

In the BoxSquaredEL representation, concept C is not subsumed by con-
cept AC and BC, concept AB ⊓ AC is not subsumed by A, concept B is not
subsumed by AB and is incorrectly intersecting concept AC. An advantage of
the BoxSquaredEL representation is that the boxes area remains large (except
for concept C) which helps in interpretability.

In the MultiBoxEL representation, most of the concepts are not correctly
subsumed. The only pair that is correctly related to one another is C andAC. It
appears that the model has minimized the loss function by reducing the areas
of the subsumed concepts (see concept A). This further shows the need for
regularization and the tendency of MultiBoxEL towards weak local minima.

7.3 Summary

This chapter presents an experimental evaluation of three models for knowl-
edge representation: the original box model BoxEL, the state of the art BoxSquaredEL
model, and a new multibox-based model MultiBoxEL. The experiments were
conducted on two biomedical ontologies: GALEN and Gene Ontology (GO),
with a focus on the models’ performance on different normal forms (NF1, NF2,
NF3, NF4).

The computational complexity of the MultiBoxEL made the choice of pa-
rameters and optimization difficult. Training a multibox model is only feasible
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Figure 7.9: BoxSquaredEL (left) and MultiBoxEL (right) representation of a
incompleteness result dataset after 300 epochs

within a low-dimensional vector space due to the high memory and compu-
tational requirements of handling higher-dimensional spaces. As the number
of dimensions increases, the model’s training becomes more computationally
expensive, and the resulting intersections between multiboxes often become
sparse, leading to inefficiencies in learning. Therefore, a low-dimensional multi-
box space (with d = 5) was selected to balance expressivity and computational
feasibility, but this choice limits the expressivity of the model.

To compute the multibox loss function effectively, we had to rely on a Monte
Carlo method for sampling points due to the complexity of the multiboxes and
the high computational demands of calculating their intersections. We used
20,000 sampled points per training session, which was the maximum number
we could process without exceeding the GPU’s memory allocation. This choice
of Monte Carlo sampling allowed us to approximate the loss function over
the multiboxes, but also introduced challenges in ensuring that the samples
were sufficiently representative while staying within memory constraints. The
performance of the model was highly dependent on the number of samples,
and insufficient sampling could result in poor learning or failure to compute
meaningful gradients for optimization.

In the results, MultiBoxEL outperformed the other models on the Hits@K
GO tasks and the GALEN NF2 median rank, likely due to the high proportion
of NF1 data points in the datasets. However, it struggled with other normal
forms (NF3 and NF4), where BoxEL performed better despite having a less ex-
pressive representation. This failure was attributed to the complexity of the
NF3 and NF4 tasks and the difficulty of the loss function in finding a suit-
able minimum within the limited number of epochs. Additionally, the need
for regularization became apparent, as the MultiBoxEL model exhibited a ten-
dency to fall into weak local minima. The absence of regularization resulted
in suboptimal training, with the model minimizing the box areas rather than
satisfying the necessary subsumption relations. This further emphasizes the
importance of adding regularizing factors to help the model explore the loss
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landscape more effectively and avoid overfitting to poor minima.
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In this thesis, we set up a strong ground mathematical foundation for work-
ing with box space embeddings and offered potential extensions of the system
for complete representation of knowledge bases.

We proved important results for EL++, including its incompleteness against
box space embeddings and the fact that every satisfiable EL++ knowledge base
has a finite model.

We motivated the usage of hyperdoctriens for the research of knowledge
base embeddings by demonstrating how they can be used to discover the left
and right adjoints and thus the existential and universal operators for different
embeddings and used hyperdoctrines to extend box spaces to spaces for which
EL++ and ALC are complete.

Lastly, we tested our new embeddings and compared the results to other
models in the literature. While the results point to the fact that there are a
class of datasets that could not currently be represented using box space mod-
els, further work needs to be done before we can conclude whether a multi-
box approach is a practical alternative. Primarily, the data analysis shows that
the loss function of multibox spaces needs to be revised - regularized to avoid
boxes, simplified to avoid vanishing gradients and to be made more differen-
tiable and lastly, further optimizations should be explored in order to decrease
the run time required for learning.

Furthermore, we refrained from testing our multibox model against ALC.
Further work would be needed to verify the expressibility and computational
requirements of a multibox model against an ALC dataset.

Nevertheless, our analysis demonstrates that even in the current state, multi-
box spaces power of expressibility could make them more useful for handling
datasets enriched with subsumptions relations of type NF1 and NF2.
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