
;
|

8

i
a

A
AN
N

| | |
|| | | | NA
|| | | | | | | | | | \
LIDM FIL AA NA
PIE IC III) ye
(JCI JC Jt

—

BI
ER

n
e

D.M.G.

DE CHAMPEAUX

DE LABOULAYE

ALGORITHMS

IN ARTIFICIAL INTELLIGENCE

ALGORITHMS

IN ARTIFICIAL INTELLIGENCE

ACADEMISCH PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN

DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN

AAN DE UNIVERSITEIT VAN AMSTERDAM

OP GEZAG VAN DE RECTOR MAGNIFICUS

DR. D.W. BRESTERS

HOCGLERAAR IN DE FACULTEIT DER WISKUNDE EN NATUURWETENSCHAPPEN,

IN HET OPENBAAR TE VERDEDIGEN

OP WOENSDAG 29 APRIL 1981 DES NAMIDDAGS TE 15.00 UUR PRECIES

IN DE AULA DER UNIVERSITEIT

(TIJDELIJK IN DE LUTHERSE KERK, INGANG SINGEL 411, HOEK SPUI)

DOOR

DENIS MARIE GABRIEL de CHAMPEAUX de LABOULAYE

GEBOREN TE TOULOUSE

Promotor : Dr. P. van Emde Boas

Copromotor : Dr. A.B. Frielink

Coreferent : Dr. N.V. Findler

ALGORITHMS IN ARTIFICIAL INTELLIGENCE

Dennis de Champeaux

University of Amsterdam

Jodenbreestr 23

1011 NH Amsterdam

Netherlands

tel 020-525 4262/3

voor mijn moeder

voor Marijke

Contents

INTRODUCTION

l. Artificial Intelligence tn a nutshell
1.1 Taxonomy of A.I.

1.2 A.I. as a Sub-Discipline of Computer
Science

1.3 A.I. and Other Sciences
1.4 Methodology of A.I.
1.5 Achievements and Non~Achievements of A.I.
1.6 A.I. in the Future
2. A.I. and this thesis

BI-DIRECTIONAL HEURISTIC SEARCH

1. Introduction

2. Bi-directional heuristic front-to-front

algorithm)
3. Minimal path and optimality theorems’ for

BHFFA2

4. Worst case analysis
5. Implementation results
6. Open problems and loose ends

SUBSTITUTION IN LISP

1. Tntroduction

2. Substitution Functions

3. Verification of LISP Functions

3.1 The State Description Language
3.2 The Symbolic Evaluator
3.3 The Deductive Machinery
4. Verification of the Substitution Functions

4.1 SUBSTSUPF1

4.2 SUBSTSUPF2

4.3 SUBSTADI

4.4

4.5
5

SUBSTAD2
SUBSTADP

- Implementation Results
6. Conclusions
APPENDIX

TWO THEOREM PROVER PREPROCESSORS

1. Motivation
2. Compressed Mini-Scope and INSTANCE
3. INSURER
4. Interplay between INSURER and INSTANCE
5. Implementation results
6. What next

CONCLUS LON

SAMENVATTING (in Dutch)

REFERENCES

=

H
e

e
t

a
d

e
e

ee

e
d

®

E
e

a
a

a

ad
.

as
Ui

°

Page

W
N

=

10
20
23

m
d

16

22
35
46

18
30
32
37

INTRODUCTION

1. Artificial Intelligence in a nutshell

This introduction begins with a description of Artificial

Intelligence (= A.I.) not only because our thesis is concerned with

it, but also because we feel that A.I. is not yet well known in the

Netherlands. Moreover, every young science traditionally has the urge

to demarcate its field, and A.I., about 25 years old, is no exception.

There is yet another good reason for a description. A.I. has a broad

scope. It, for instance, aims at computer programs which can play

chess on champion level, can translate English into French and/or can

drive a car in heavy traffic (none of these goals are within close

reach, but to make our position immediately clear, we refuse to

pronounce them unattainable). By reflecting what A.I. is all about and

how goals and achievements relate to one another, one may aspire to

keep A.I.°s hubris under control.

After this more general description of A.I., we will give an

overview of the subsequent chapters. Although each chapter can stand

on its own == their contents being primarily extractions from

published papers -- we sketch how their results could be integrated.

We shall characterize A.I. from a variety of perspectives which

include the following:

== a short taxonomic description of A.I., presupposing an intuitive

understanding of the topics mentioned;

== the perspective of its (potential) encompassing science Computer

Science (called Informatics in the Netherlands);

-- its relationships with more established disciplines;

== a look at the methodology and goals of A.I.;

== an overview of achievements and non-achievements of A.I.; and

-- some speculations about future developments.

It is our aim that this chapter should be intelligible to

everyone, but because of our obligation to specialists, we could not

always avoid technical jargon.

1.2

1.1 Taxonomy of A.I.

For a short taxonomic description of A.I., we use the session

names of the Sixth International Joint Conference On Artificial

Intelligence, Tokyo 1979. This taxonomy is an end-of-the-70’s snapshot

of A.I. since no two A.I. conferences - they are biannual — have had

the same collection of sessions. We grouped them into six categories:

-- vision - image analysis

- region and edge detection

- shape and shading
— texture

- motion

- object detection

== natural language — processing
— dialogue and discourse
- question answering

— parsing

— semantics

-- problem solving — program synthesis

- planning

— program understanding

-- deduction - theorem proving
- deductive methods

- reasoning models

== psychological A.I. — cognitive psychology
— induction and learning

-- miscellaneous ~ databases

- robotics

- distributed A.I.

- games

- representation

— architectures for A.I.

To illustrate the arbitrariness of this list, we mention some section

names of the 1977 A.I. conference: knowledge acquisition,

problem-solving and search, aids to programming, specialized systems,

etc. The 1975 conference had sessions like: mathematical and

theoretical aspects of A.I., speech understanding, A.I. software, etc.

In section 1.5, we follow the latter taxonomy to discuss’ the

achievement level of A.I.

1.2 A.I. as a Sub-Discipline of Computer Science

Investigating Computer Science in order to get a better grip on

A.I. is asking for trouble since Computer Science itself is in

turmoil. Computer Science resembles Radio Astronomy, a discipline that

has emerged as a consequence of a technical invention [35]. Unlike

Radio Astronomy, the content and scope of Computer Science is not yet

stabilized. This birth from technology initially led to a

preoccupation with logic gates and their electronic realization. By

now those gadgets have disappeared from the mental luggage of most

Computer Science specialists. As with this example, other issues have

also appeared as though in need of close investigation but have

subsequently drifted to the horizon. Compiler design is a case in

point. Operating systems, communication networks and parallel

processing are now en vogue. In spite of thís ongoing fluidity some

shapes in the Computer Science landscape are solidifying. The most

notable have to do with the intrinsic properties of computers; thus

leading to the cluster of automata theory, computability, formal

languages, complexity theory, etc. The next cluster, somewhat vaguer

in outline, concerns practical aspects, but is still remote from

concrete applications. It contains such topics as: architecture,

programming languages, algorithms, programming methodology, operating

systems, data structures, input, output and file structures, etc. The

third cluster is again more practically oriented but does not (yet)

belong to other disciplines. It contains such topics as: process

control, database management, system design, numerical and statistical

algorithms, simulation and modelling, graphics, image processing,

computer assisted instruction, etc.

Given this tripartition - for more sophisticated distinctions

see e.g. [80] - the question arises whether A.I. actually belongs to

this family and if so to which section. In [80] (1974), A.I. was

subsumed under fundamental informatics, thus belonging to the first

cluster. In [64] (1979), A.I. was thrown out completely and was

considered to be a subclass of simulation activities practiced in the

social sciences. We consider both choices to be incorrect. A.I. ín

1980, using the characterization of the taxonomy above, has parts in

common with cluster two and three, and also has subparts that
ee ennn

ultimately belong to other disciplines, some of which may temporarily
be rejecting their legitimate off-spring. What complicates things are
the strong centrifugal forces now working in A.I. The natural language
section is spinning off under the banner of Computational Linguistics.

The deduction section is starting to organize its own conferences and

is considering setting up its own journal. Psychological A.I. began a

Cognitive Science journal in 1977. The vision group has its own

conferences, etc. Consequently, it does not make much sense to

delineate precisely the relationship between Computer Science and what

constitutes A.I. at this moment. One may expect the picture to change

drastically within a few years. One may characterize A.I. therefore as

a “laboratory” somewhere between Computer Science and the other

sciences, where new problems and new approaches to older problems

emerge, which, when matured, drift off and reject their place of

birth. So what holds A.I. together is not primarily its object of

study, but the extreme tolérance for unorthodox research as long as

complicated programs are involved.

1.3 A.I. and Other Sciences

Now let us look at the relationship of A.I. to other sciences.

The above mentioned taxonomy already singles out sciences having a

potential relationship with A.I.: Linguistics, Psychology, Logic and

Mathematics are obvious candidates. Reality however is otherwise. For

example there is a strong antagonism, to phrase it politely, between

the Computational Linguistics section of A.I. and the hawks of

Chomskyan linguistics. For an appalling fight between the two, see

[26,88,27]. The Computational Linguists acknowledge the achievements

of the Chomskyan Linguists but suggest the possibility to approach

language with a different methodology, as outlined below. The

Chomskyans hammer that there is only one scientific way to deal with

language and they claim the exclusive rights to it. The Chomskyans,

after making the language performance/ competence distinction, set out

(here simplified deliberately) to describe the competence of a

language user with (non-deterministic) generation rules,

transformation rules and restriction rules for the grammar of the

language. They, however, ignore the competence that should account for

the content, the communicative purpose of language usage. They also

never get beyond the unit of a sentence. They frequently confuse the

mathematical notion of the (non-deterministic) generative capacity of

a grammar with the human capacity to generate sentences, which is

certainly a purposeful, non-non-deterministic process [88]. In

contrast, Computational Linguistics studies language from the

perspective of communication and deals not only with sentences, but

with text, stories and dialogues. Grammaticalness, the idol of

Chomskyan Linguistics, is not worshipped, if only because

non-grammatical sentences still can carry their communicative purpose.

Although classical Linguistics clings to Chomskyan views, some

(psycho-) linguists [6,43,59,86] do appreciate the study of language

by making programs which actually understand text and/or generate

sentences in communicative situations.

The relationship between A.I. and Psychology is much healthier.

There is A.I. research where the results are expected to have

psychological relevance and research where such relevance is not

required. What allows the cooperation to be relaxed is that A.I.

research usually starts with self observation for a good idea. So even

when no psychological relevance is pursued a result can still be a

first approximation to a theory that does have psychological

relevance. The fact that introspection is the beginning of simulation

programs ultimately bridges the gap between Behavioristic and

pre-Behavioristic Psychology. At last a powerful method becomes

available able to structure tentatively the inside of black boxes and

pluck from the wealth of intuitions otherwise lying idle (although we

hasten to add that their formalization is a painful process).

A relationship between the deduction section (theorem proving)

on one hand, and Logic and Mathematics on the other, is virtually

non-existent. They are simply not interested in each other. Remarkable

is the fact that the tools of Logic, already in development for more

than 2000 years, are inadequate for proving theorems in practice. In

fact, this phenomenon is slumbering in mathematical circles but

receives little attention. Logic has always been interested in the

theoretical adequacy of sets of derivation rules and/ or logical

axioms schemata. Pragmatical adequacy was never an issue at stake.

Logic has still nothing to offer to day-to-day reasoning, as many

1.6

people loaded with expectations will have painfully experienced when

starting a logic course. 1 Though the rule and not the exception,

inconsistent collections of facts have always been avoided like the

plague. (See e.g. the primitive attempts to deal with non-monotonic

logic [79,25].-)

A perhaps surprising relationship of A.I. with philosophy is

extensively discussed in [78]. The author shows convincingly that age

old problems disappear or are given a new approach, when mental

phenomena become more accessible through simulation.

More generally, we believe that in the same way that most

sciences in the last five decades, have undergone the process of

mathematization — more accurately: formalization - they are now going

through the revolution of computerization.

Take for example computer assisted instruction (= C.A.I.)

subsumed above under Computer Science. Operational C.A.I. programs -

like the PLATO-program — are produced by Computer Science specialists.

Somewhat more sophisticated C.A.I. was done in A.I. and resulted in

the Sophie program [7]. It should be obvious however that ultimately

C.A.I. should be nurtured by Psychology/ Pedagogy. At the moment there

are no implementable theories about learning that match different

goals with different techniques. There is not much insight into how to

build a user model from the user responses as well as a lack of mature

natural language interfaces. In particular, there is a lack of insight

into the wealth of discourse patterns. Consequently, C.A.I. programs

are conceived by the “technicians” of Computer Science, who rely on

the crudest principles.

1) In contrast to the contribution of logic to a better foundation of

mathematics.

We know that in making this assertion we will step on many toes,

but we feel that a sizeable part of science will be reincarnated in

the Procrustean, nuts and bolts environment of Computer Science, under

tension from outsiders.

1.4 Methodology of A.I.

“Time” may be likened to a suppressed minority in Western

scientific thinking. Logicians were nearly succesful in eradicating

the temporal meaning in “if ... then” and “and”. The question of when

a modus ponens operation (or any other derivation rule) should be

performed is always left to the discretion of the user. The “possible

worlds” concept, a recent acquisition to the logicians tool box, is

fairly clumsy for dealing with time related issues. A physical process

is often best described by using a many dimensional space where,

coincidentally, one of the axes stands for time. Complex phenomena in

time: history, music, thinking, walking, etc. have always been

relegated to the future or, at best, have received marginal attention.

Simulation is the method to study the behavior and result of

many interacting operations. Computers, in the role of symbol

manipulators, have cleared the way for handling those problems which

are not amenable to direct simulation. When the duality of states and

changes/actions is acknowledged, and we admit that time has always

been projected outward, or captured in a state-framework, then we may

foresee the addition of executable algorithms/procedures augmenting

considerably our capacity to describe reality.

Of course, we exaggerated the lack of attention for the temporal

dimension of reality. Indeed, mathematical modelling techniques do

exist which capture regularities of changes and which can even be

employed for making sophisticated predictions. Yet we believe that the

tools offered by Logic/Mathematics are too coarse to describe complex

processes.

1.8

Instead of merely looking at reality and trying to extract laws

describing the behavior of phenomena — actually the job of an empirist

- we are now able to generate complex behavior. This generation is

under control, can be repeated, can be slowed down, can be tuned and

can be made part of an ever-expanding generation procedure. Each

single transition can be “classically” grasped; but when there are

long chains of transitions, when the repertoire from which each

transition can emerge is large, and when arbitrary cross- or

self-recursions are allowed, the total behavior cannot be

“classically” supervised any longer.

The basic assumption of this game is that when a program behaves

— according to a sizable set of input-output pairs - like a process to

be explained, the program embodies a first-order approximation of the

mechanisms underlying the process. Observe that one has stretched what

counts as an explanation. The unwillingness of the spokesmen for

classical Chomskyan Linguistics [26,27] to accept the contribution of

Natural language handling programs to the understanding of language,

is rooted in their more restricted view of explanations and their

self-restriction to ignore the performance dimension.

Other people, however, are so enthousiastic about algorithms/

procedures for describing complex phenomena that they overshoot and

mix things up. Johnson-Laird, a psycho-linguist, describes in [43] the

compiler metaphor for processing natural language:

—- a programmer “utters” a program in a computer language (ALGOL,

FORTRAN, etc), a compiler translates it such that the semantics are

preserved in machine excutable code;

—- a speaker utters a sentence in natural language, the hearer

activates a procedure (in A.I. called a parser), which translates’ the

sentence into executable code, to be executed subsequently.

First of all, we question the psychological soundness of

following this metaphor to the extent that the output of the parser

always has the form of a program. Certainly, processing a declarative

sentence may require, after having it parsed, an action, for instance

a store in the memory, but it is not necessary that the output of the

parser be executable code in order to have this action performed.

Secondly, we wonder why Johnson-Laird calls this “procedural

semantics” for natural language. Also, when the output of the parser

is always a procedure, when we acknowledge that the parser is a

procedure, and when we allow that the parser may invoke lexical

entries also having a mini-procedure form, then we still would not

like to label this “procedural semantics” for natural language.

Instead we are perfectly happy to see it labeled as a _ procedural

account of the understanding process, We will illustrate

Laird-Johnson’s sloppy usage of this phrase with two quotations: "In

order to provide a glimpse of procedural semantics im action ..."

[emphasis added], “Finally, it should be emphasized that procedural

semantics is more a methodology than a specific theory.”. These

category mistakes/slips are particularly painful when we recall that

“procedural semantics” has a clearcut interpretation: the meaning of

operations/ actions/ commands as meticulously developed for computer

languages. Surprisingly, Johnson-Laird knew this as well. On the

second page of his paper, he writes: "... procedural semantics deals

with the meaning of procedures that computers are told to execute.”.

Consequently, in the context of a natural language, we would like to

restrict “procedural semantics” to the description of utterances/

sentences that express actions/ operations/ changes/ etc. rather than

apply it to the way how utterances/ sentences are processed.

The methodology of using algorithms/ procedures to describe

processes leads to psychologically relevant results when the generated

behavior conforms to additional observable characteristics of the

simulated real-life process. Without these additional conditions, this

methodology is the heart of performance goals. In both cases this

methodology has an engineering flavour. Sloman (in [78], page 16)

wraps it all up with: (the title of his book is “The ‘Computer

Revolution in Philosophy: Philosophy, Science and Models of Mind")

One of the main themes of the revolution is that the pure

scientist needs to behave like an engineer: designing and testing

working theories. The more complex the process studied, the

closer the two must become. Pure and applied science merge. And

philosophers need to join in. [emphasis as quoted.]

1 „10

1.5 Achievements and Non-=Achievements of A.I.

We will give a rough sketch here what is going on in A.I. these

days (end of 1979) to give some insight into the current achievement

level. We follow the IJCAI79 partitioning as presented above.

1.5.1 Vision

To deal with inflowing visual data, there are two strategies

available. One prescribes combining data components until some

meaningful pattern emerges. The other strategy starts out with a group

of patterns and checks the patterns one at the time to determine

whether the data fits them. The former strategy is called data-driven

or bottom-up, the latter is called expectation-driven or top-down.

Obviously, a more effective strategy would be a combination of the

two, each technique coming into action at the right moment. According

to the overview given by D. Marr [55], most research in visual

information processing deals with the development of data-driven

procedures. He distinguishes three transitions: (a) from the raw image

to a so-called primal sketch, in which intensity changes are

described, and distinguished locations are labeled; (b) to a so-called

2 1/2 dimensional sketch, which represents contours of surface

discontinuity, depth and orientation of visible surface elements, all

combined in a coordinate frame that is centered on the viewer; (c)

ending in a 3-dimensional model representation with shape description

that includes volumetric shape primitives of a variety of sizes,

projected onto an object-centered coordinate system. The first two

transitions are so to speak, under control. The last one - as far as

we can judge ~ is hampered by a lack of insight into the data

representation of the 3-dimensional model. This omission is also

responsible for the impossibility of setting up expectation-driven

procedures. The role -- or even the existence -—- of an iconic-memory

(and similarly for olfactic, auditive, tactile, etc. memories) in this

type of data processing remains thoroughly unclear.

With the exception of one paper at the IJCAI79 conference, all

contributions concerning images dealt with input processing. The one

that discussed the generation of images described a running program

which was even claimed to produce art. The claim was substantiated by

a referral to the remarks of the public at the DOCUMENTA 6 exhibition,

1977, Kassel, Germany, and of those attending a five-month exhibition

at the prestigeous (term used by the author) Stedelijk Museum in

Amsterdam, where the program continuously generated line drawings. No

component of this program might be identified as something akin to an

iconic memory. Still, the viewers claimed to recognize image fragments

as referring to the real world. He even reports: “Some of the viewers,

who knew my work from my pre-computing, European, days claimed that

they could “recognize my hand’ in the new drawings.” We feel that this

phenomenum resides in the human urge to make sense amidst chaos and

cannot be fully attributed to the program. Although we admit that

making such programs must be a lot of fun, we fail to see how they

contribute to the general problem of image processing (input, output

as well as internal representation).

In spite of the rudimentary state of the knowledge

representation for image input processing, some applications do exist

in industrial environments. A description is given in [87] of a

vision-based robot system capable of picking up parts randomly placed

on a moving conveyor belt. A built-in training component — sensitive

for a wide class of complex curved parts - alleviates’ the

reprogramming task when new objects need to be recognized.

1.5.2 Natural Language

Before discussing A.I.’s attempts at natural language

understanding we want to make it clear that natural language is a

fairly clumsy tool for inter-human communication. Many prerequisites

must be fulfilled, such as common cultural background, ages not too

far apart, similar general goals and expectations, etc., before there

will be a reasonable chance that inter-human natural language

communication can be fully successful. Only against this background is

it possible to discuss the nearly complete failure of current programs

to interact in unrestricted natural language.

Suppose we feed a program the following mini-story:

John is hungry.

He fetches his purse.

Every program, provided its lexicon contains the words from the story,

can handle the syntax of these two sentences. Even the anaphoric

references “he” and “his” could be deciphered with a “hack”: pick the

most recent entity of the right type. Most programs could do

processing which has a semantic flavour. Thus, they can answer

correctly questions like: Is John a man? Who owns the purse? etc. One

would be very impressed when a program would answer the question “Why

does John fetch the purse?” with “To eat it.”. Even more impressive

would be the answer “To eat its contents.”. There is a program [76]

provided with a _ restaurant-script, which may rush to answer “To pay

the bill’, instead of pondering the possibility that John is heading

for a supermarket (or the purse containing chewing-gum).

It should be obvious after this simple example that more complex

natural language processing - stories with interacting participants,

or man-machine interaction involving shifting initiative; stories with

different roles, or with a broad range of topics, etc. — are out of

the question. In fact, the failure of a program to do this kind of

processing does not arise from its lack of insight into natural

language, but in its being unable to evoke appropriate cognitive

common-sense processes, like deduction, plausible reasoning, planning,

plan recognition, etc.. One is led to suspect that current natural

language processing programs know too much of the language and try to

solve upcoming semantic/ pragmatic problems with inappropriate

linguistic knowledge.

In spite of all the above mentioned shortcomings, tools have

been developed that are of practical significance. For example, when a

certain task domain is well understood and requires an interactive

component, it will be easy to develop a sub-natural language

pre-processor, by using the special purpose ATN-language [90,91,92].

Several actual applications, making data bases of realistic size more

accessible, were reported in [40]. It is even claimed that the

reported package requires only minimal adaptation and installation

effort in new environments.

Most promising research directions, in our view, are those that

break away from natural language proper by regarding natural language

usage as a special case of goal-directed behavior while trying to

formalize — first in dialogue contexts — the notion of speech acts. An

example reported in [2] describes a program which plays the role of a

clerk at a train station information booth.

1.5.3 Problem Solving

Problem solving encompasses the most consolidated area of A.I.,

namely search. This area has been investigated profoundly. Abstract

search algorithms have been developed, which work whenever a problem

can be represented as a sequence of states on which operators apply.

Many techniques such as plan generation, algorithm generation,

deduction, etc., ultimately boil down to special cases of search. Its

generality is also its weakness: its capability always to find a

solution often presupposes irrealistic computational resources. Still,

search is important for theoretical reasons, because it unifies many

individual algorithms/ techniques.

Most contexts in which problem solving has been experimented

with, have been static mini-worlds, static in the sense that only the

problem solving program could make changes. Since the mini-worlds have

largely been simulated, complete information about the initial

situation is assured. Examples are programs which can solve indefinite

integrals, can deal with 8/15/24-puzzle configurations, can manipulate

in a block-world, and which can generate simple sorting-algorithms.

The power of problem solving programs is crucially dependent on

the availability of a heuristic function (or of procedurally built-in

knowledge). Such a (strong) heuristic function is also a theoretical

weakness, in as much as its format is ad hoc. It is composed of

feature detecting functions implemented as some arbitrary programs.

Here again, we encounter the problem of representing knowledge such

that many different cognitive operations - here hypothetical reasoning

— can be supported.

1.14

Given this state of affairs, one will not be surprised that

problem solving by A.I. programs in a dynamic world and/or with

incomplete initial knowledge is not yet too impressive. One project

resulted in the design of a simulated taxi-driver in a simulated city,

having to go from one location to another, confronted with simulated

interruptions like red lights, pedestrians and road blocks [56,57].

Theoretical discussions, concentrating on the question of how to make

a model resistant to uncertainty, and how to represent small changes,

can be found in [25,51,83]. (Ten years ago these issues were known as

the “frame problem” [58]; these days one talks about “truth

maintenance with a non-monotonic logic’ .)

When problem solving requires dealing (buying, threatening,

bribing, commanding, requesting, etc.) with other autonomous

intelligent entities, whether human or robots, then we know only of

one relevant project [9,11] (ignoring game playing programs). This

study resulted in the POLITICS program. It closely resembles an old

design of Abelson [1] which permits dynamic plan adaptation and is

capable to replan in obstructive and counterplanning situations.

A well-known application of problem solving research is the

above mentioned indefinite integration program, MATHLAB. This program

has been extended with many other useful mathematical symbolic

operations, and is widely available over the ARPA-network. A potential

application travel-schedulling, provided one could easily handle the

frequent changes of time tables [42].

1.5.4 Deduction

Like problem solving, deduction has important theoretical

results. Many algorithms are known and have been experimented with.

Every algorithm (or, certainly, almost every algorithm) is complete,

i.e. provided with unlimited resources, algorithms can recognize every

valid formula from the first order predicate calculus (its expressive

power is sufficient for capturing virtually all of mathematics, and

presumably all of day-to-day conscious or subconscious deductive

demands). The unlimited resources are, of course, here also the

problem. Even easy theorems are frequently beyond the effective power

of current deductive machines.

Several other problems are dependent on deduction. Plan

generation requires a theorem prover for checking whether an operator

can be applied in a hypothetical situation. It is even possible to

reformulate plan generation as a deduction problem [37]. The frame

problem, however, requires the introduction of so many axioms,

expressing explicitly which configurations are preserved when an

operator is applied, that this reformulation has no practical

significance. People involved with program verification have already

introduced the notion of an “oracle” as a deductive component in their

systems. Such oracles are mostly implemented as an interactive request

to the user. A notable exception is promised by the work of Boyer &

Moore [4]. Their theorem prover is acquinted with an impressive amount

of knowledge about recursive functions, has a rich vocabulary and has

access to a data base containing lemmas and instructions as to their

use. The authors intend to apply this machinery to the verification of

fair-sized FORTRAN programs.

Almost all research on deduction with the resolution technique

concerns refining the resolution rule by syntactic means such that

generation of instantiations of already available formulas can be

prevented. Even when no such spurious formulas are generated, there is

still no hope that significant proofs would be found, since the

generative power of the resolution rule is immense, and creates

unmanageable amounts of data. In general, preventing the generation of

garbage is a strategy implausible to success. Deduction, as done by

humans, relies on knowledge leading to models, counter-examples,

analogical reasoning, hypothesis generation, etc. and various

deductive mechanisms, all gracefully cooperating. They are really not

available in current programs.

In spite of twenty years of research investment in thís branch

of A.I., we consider the plane geometry prover [36], written at the

end of the fifties, as the best example of how deductive programs

should be designed. In contrast with the bulk of later programs, it

contained a combination of two techniques: derivation rules and a

model for checking the truth-value of formulas. The model allowed to

1.16

reject immediately over 99% of subgoals generated by the derivation

rules.

For further discussion about deduction see section 1 of chapter

4,

1.5.5 Psychology related A.I.

As argued above all of A.I. is potentially relevant for the

description/ simulation of natural intelligence. What goes under

“Psychological A.I.", however, is limited to two foci of interest:

formalization of intentional behavior, and learning.

The PARRY program, of which there are several incarnations [32],

is a full fledged simulation of a personality, a paranoid patient,

able to converse about a limited number of topics. An urge to realize

primary goals sets up first-order intentions. When their realization

somehow gets blocked (frustrated), they will lead to imbalanced

affective parameters and a recovery action will have to be initiated,

setting up second-order intentions, etc. A more sophisticated model of

intentions such as this is implemented in PARRY3 [30,31].

Personality traits label different behavioral patterns,

exhibited by different individuals in identical situations (corrected

for contextual differences). Their explanation is attempted in [9,10]

where it is postulated that different goal hierarchies are associated

with different traits. A frequently occurring deviation from a

(culture dependent) typical goal hierarchy, which causes a significant

behavioral difference, will be codified as a personality trait.

Knowledge about such deviations, for instance the ability to set up

behavioral predictions when traits are mentioned, is a prerequisite

for understanding stories. Different goal hierarchies, hence different

traits, may not only generate different behavior - when they are

procedurally used - but also may cause different interpretation of

events/ stories — when the same hierarchy is interpretatively used.

Such goal hierarchies together with planning/ counterplanning

strategies are implemented in the already mentioned POLITICS program

and demonstrate subjective understanding of simple natural language

accounts of international political conflicts.

PARRY and POLITICS are, by the way, good illustrations of the

viewpoint that natural language should be attacked along a “detour”

after we have first acquired a profound insight into cognitive

procedures involved.

Learning was for quite a while a controversial topic in A.I.

Proposals for increasing the intelligence of programs through learning

had to be firmly rejected when the learning was more ambitious than

the tuning of already predesigned parameters of built-in functions.

Only after we have acquired more insight into the “space’/ knowledge

representation formalism in -which non-trivial learned “objects” /

structures should fit, can the issue of learning be reconsidered.

The following distinctions can be made along the

method-dimension:

-- learning by being “spoon fed” (loading a program into a computer is

an extremely surgical educational act);

== learning by being told;

-- learning by teaching, thus providing a sequence of problems of

increasing difficulty;

-- learning by self-discovery.

Along the result-dimension one may distinguish [69]:

-- rote learning, input of raw data;

== parameter tuning;

-- method (plan, algorithm, strategy, ...) learning;

== concept learning.

Although the teaching method for learning is also not clearcut,

A.I.’s interest lies in self-discovery learning. Samuel’s checker

program [75] shows that parameter learning is under reasonable

control. Simple method learning, by generalization of constructed

plans, was demonstrated by the STRIPS problem solver [33]. Automatic

programming, self-discovery of algorithms, from input-output

specifications, or from input-output examples, still only leads to

toy-algorithms [3].

1.18

The program BACON [47] can construct invariants from tables with

numerical data and was able to “rediscover”:

the ideal gas law: PV/NT = k,,

Kepler’s third law: a (a - kot)? = ky,

Coulomb’s law: rd? /ala2 = ky,

Galileo’s law: dP*/Lt” = kg and

Ohm’s law: Td*/(1c - kec) = kj.

An early result in concept formation by teaching was done by

Winston [89]. He could “educate” the concept “ARCH” by giving examples

and near-misses. Self-discovery of concepts is ascribed to Lenat’s

program AM [49], which can generate concepts from elementary number

theory. The relevance of this work is difficult to ascertain as a

consequence of the generality of the built in meta-concepts on which

the generation was based.

In any case, self-discovery of complex concepts, together with

intricate coupling of declarative and procedural aspects is far from

being solved.

1.5.6 Miscellaneous Problems

We mention here topics that do not fit into the already

mentioned categories but are equally vital.

Intelligent data bases, robotics and games, respectively have a

great potential for application, a great layman’s appeal and

(especially chess) a great debt to A.I. since they contributed less

than the credit they got. 2 A more interesting hardware development is

the design of architectures supporting A.I. languages. Several

hardware LISP-machines are already in operation; the Japanese

especially are coming up fast. (The MIT machine with disk, software,

etc. sells for a bargain $80,000.) Coupling of and cooperation between

several mini-computers have been realized for the HEARSAY project

[50], capable of understanding coherent spoken English -~ in a limited

domain, with a vocabulary of about 1000 words. 3 These days many

people feel that most problems of A.I. converge on one issue:

knowledge representation. Frequently, research reports contain the

conclusion that more knowledge should be effectively accessible to

obtain a better performance as well as to break an improvement

barrier. Past research has shown that general knowledge representation

design has not been done by those who felt the greatest need for it.

Their efforts bear the limitations of their specialization, since a

sound knowledge representation has to support many cognitive

operations rather than just one. The issue has been dealt with,

2) Most disappointing is the development of special hardware for chess

programs. Having available a match box which can generate a legal

chess move in the nano-second range, does not advance an inch towards

the defeat by a program of the world chess champion. Recently,

interest has been growing in the design of Go-programs. We have not

discerned that they build on top of 20 years of chess programming

experience.

3) Each mini-computer contained a “specialist” responsible for one

aspect of the understanding process (phoneme analyser, word

recognition, syntax checker, semantic checker, etc). Each specialist

had access to a central “blackbord” where requests, hypothesis and

solutions to sub-problems could be read and written. This blackbord,

residing also in a mini the “manager”, was the sole communication

channel for the specialists.

- 20

however, from another angle, the design of structures originating from

general, minimal and intuitively obvious requirements. Currently the

most applauded knowledge representation scheme was designed by

Brachman [5]. He succeeded in cleaning up ambiguities, the “ISA-link”

being a notorious example, which abounded in prior semantic-networks.

Nonetheless, there is something seriously wrong with his formalism.

Nowhere does he define its scope, the kind of knowledge it is supposed

to handle and, more importantly, its raison d°’etre. Its ability to

interface effectively with cognitive procedures is left to the

imagination of the reader as witnessed by a recent in-depth study

which has revealed that several of the “links” in his formalism are

insufficiently defined. Worrysome is the way how he introduces links.

Just a few examples are given to justify them. When all is said and

done, the reader still wonders whether or not the introduced links

actually form a complete set.

Clearly, these two extreme groups of people - those designing

knowledge based cognitive procedures and those designing the moulds in

which knowledge can be _ poured - still have a long way to go before

meeting each other.

1.6 A.I. in the Future

Before attempting some predictions we refer briefly the

predictions obtained by a Delphi-study under A.I. specialists,

published in 1973 [34]. Below is a part of a table from that report

containing predictions up to the year 2010. This excerpt covers the

entries only with median prototype dates up to 1980.

Product Median Median

prototype commercial

date date

Automatic identification system 1976 1980

Automatic diagnostician 1977 1982

Industrial robot 1977 1980

Automated inquiry system 1978 1985

Personal biological model 1980 1985

Computer-controlled artificial organs 1980 1990

Voice response order-taker 1978 1983

Insightful weather analysis system 1980 1985

Universal game player 1980 1985

This table shows that the estimates were overly optimistic. Only

the industrial robot — and still hardly to be called as sophisticated

— can be encountered outside the laboratory. The other products are in

a limited Stage of development. For instance, an automatic

diagnostician exists only for isolated fragments of medical knowledge.

(To prevent horror fantasies: the conclusions worked out by such

programs are not ment to be revealed to patients. Although these

programs may extract information from patients, interactive reasoning

is left to the physicians. Potentialy, these programs bridge the gap

between medical frontier knowledge and the obsolete knowledge of

individual physicians.)

Now that we have cleared ourselves of any pretentions to making

infallible predictions, we are ready for a glimpse into the future.

Confronted with diminishing resources, our society must increase

its productivity/ efficiency in order to maintain its standard of

living (not to imply that we must adhere to the consumption level

attained by the Western societies). We believe that currently

available A.I. knowledge is sufficient for the effective increase of

productivity (and for maintaining appalling levels of consumption). We

have mentioned before the applicability of intelligent databases

(databases equipped with simple natural language interfaces and/or

simple inference capabilities). For instance, the job market, the

housing market, the real estate market, second hand car market, etc.

1.

can be made transparant by relatively simple intelligent databases,

and ultimately, directly accessible to the public. We feel that public

transportation can similarly be made more efficient by improving the

match between supply and demand, or by “preventing” transportation

instance with distributed offices, 1.e. people working in their

own home, at a terminal).

We also anticipate a great future for garbage collecting robots,

given our continuing potential to generate it. It seems that cleaning

the mess of the Three Miles Island nuclear reactor accident awaits

the availability of robots. Those robots will need to be robust since

computer memories are also sensitive to radiation [93].

The further one looks into the future and/or the wider the scope

the considerations, the more tentative the speculations become.

What follows is only one of many possible scenarios.

Suppose Earth’s capacity to support humanity has been exceeded in

this century and as a means of realizing/ maintaining the Western

consumption level around the globe one has successfully

diminished the world population. We expect that a shortage of

labour necessary to maintain the diversity of tasks will have to

be supplemented by robots.

The following scenario was taken from [78]:
|

In

The state of the world gives little cause for optimism. Maybe the

robots will be generous and allow us to inhabit asylums and

reserves, where we shall be well cared-for and permitted to harm

only other human beings, with no other weapons than clubs and

stones, and perhaps the occasional neutron-bomb to control the

population.

Humans possess the fascinating properties of self-improvement

self-consciousness. A.I. programs are not (yet) near these

phenomena. Computer components/ chips, however, have been designed by

computers, automatic programming is not impossible, and once ina

while, self-reflection pops up in the literature as a design goal.

Will humanity find in intelligent machines a rival or a worthy

companion? Doesn’t it depend on the view on our fellow men?

2. A.I. and this thesis

Somehow we managed in the former section to circumvent. the

Laoconian task of characterizing intelligence. Implicitly we suggested

one dimension of it: a wide spectrum of capabilities all supporting

purposeful — though as yet injected from the outside - behavior.

Whether speed of goal attainment is another independent dimension is

not even clear since broadness of the behavior spectrum may be

inversely related to speed. Although the range of A.I.”s interest is

nearly unmanagebly wide it obviously does not cover the entire range

of intelligence. Visual imagery, motoric agility, social

identification, decision making while incompletely informed or in

paradoxical situations, etc. are abilities which are not (yet) studied

in A.I. Finally, the major problem, also not even being attacked, is

the integration of all the separate achievements. Thus there is a fair

chance that the distinct results are yet no more than ad hoc.

The wide range of A.I. is reflected in this thesis. The chapters

that follow concentrate on topics which at first sight may seem quite

disparate. We will first give a brief overview of the different

chapters and then mention some cross relations between then.

Chapter two deals with a particular incarnation of search

techniques. We recall that a search technique can be used for finding

a sequence of operations that will transform a given start state into

a desired goal state. When the goal state is explicitly given, one may

attempt to construct a plan by working (pseudo) simultaneous from

both sides. This is precisely the topic of chapter two. Theoretical

results concern the generalization of theorems which are known to hold

for the uni-directional A*-algorithm [63]. The main one says that when

an employed heuristic function satisfies certain conditions, the

algorithm will find a “best” path, i.e. no shorter paths exist.

Search techniques by the way can be used to counterattack the

stance that computers cannot really be intelligent since they are not

creative, i.e. their outcomes have been (implicitly) built-in

beforehand. Search techniques, however, can come up with brand new

solutions to arbitrary complex problems. Certainly one could retort

1 „24

that the space to be searched has to be specified by the programmer.

Nevertheless it is fairly easy to formulate a very general space once

and for all, covering any kind of well defined problem formulation,

such that a program outfitted with such a data structure may be

considered to have reached “adulthood” with respect to problem

understanding (which does not imply that every solvable problem will

in fact be resolved since resolution depends on effectively limiting

the size of the search space for each particular problem).

Chapter three is a bit hybrid. It centers around a few specific

substitution functions in the LISP program language. A destructive

substitution function SUBSTAD is shown to be much faster than the

“classic” function SUBST. Moreover, that an unification algorithm -

the workhorse for theorem provers and pattern matchers — can benefit

from SUBSTAD such that it is faster and consumes less free space than

the corresponding unification algorithm with the substitution function

SUBST. Due to the destructive property of SUBSTAD, which may cause

complicated side effects, its correctness proof is a fullblown

research project on its own. Several versions of SUBSTAD are proven to

be correct (partially done automatically with the theorem prover

described in chapter four, which contains the unification algorithm

with SUBSTAD). Although the method for proving them is amenable to

automatization and is theoretically adequate, one version of the

SUBSTAD function shows that the method is far from being applicable on

a large scale in practice. The bottle neck is surprisingly enough not

the limitations of available deductive power but the Limited

expressive power of the predicate calculus used to formulate precisely

how that particular version of SUBSTAD is supposed to work. While

correctness proofs should eliminate errors in code we are faced with

the paradox that the description of that particular SUBSTAD version

requires (estimated) more than hunderd times more text than its code.

We give some speculations about what might be done to remedy this

situation.

Chapter four is about deduction and more particularly, about

modules for theorem provers. In contrast with many other practitioners

in the theorem proving community, we see a deduction program as made

up of many cooperating, special purpose components which will not only

be fed with bare, minimally specified problems, but as well with the

theory to which a problem at hand is belonging, with similar theories

to provide the food for analogy reasoning, with models to guide

control decisions, etc. The uniform approach that is pursued by most,

as we see it, is the inheritance of the logician’s preoccupation with

logic systems per se and therefore remote from applicability in “real

life”. These systems have the feature that while one can reason about

them and even prove properties about them (by hand), they are

inadequate for doing deductions with them. In spite of these critical

remarks, chapter four has the same stigma: properties are proven about

deductive modules. A special case theorem prover which is claimed to

recognize that a predicate calculus formula is a special case and/or

an alphabetic variant of another 1s shown to be sound. A module which

can decompose a predicate calculus formula into an equivalent

conjunction (thus leading to subproblems easier to be handled) is

shown to produce maximal decompositions. However, in addition to these

theoretical results, we offer illustrative examples where these

modules drastically simplify the task for the (blind) search

component.

Cross-relations between these different topics are numerous.

Theorem proving is a special case of search techniques. While in

general operators modify the “state of affairs” by rendering certain

facts invalid and adding new facts, in theorem proving no old facts

are removed but only new facts are added. At the other hand theorem

proving may be necessary in plan formation. Testing for the

applicability of an operator in a certain situation may require

sophisticated theorem proving. Switching back again: theorem proving

without a (global) plan amounts to blind search in rapidly expanding

Spaces. Proving a theorem having the special form of an equality may

benefit from bi-directional search, modifying both sides of the

equality.

Algorithm generation can be considered a generalization of plan

formation. Not only linear operator sequences are permitted in the

solution range, but also case distinctions, loops and recursions.

Correctness proof techniques contribute to the algorithm generation

problem because it requires the ability to give precise descriptions

„25

‚26

of algorithm behavior. This links the material in chapter two and

three. The link with chapter four should be obvious since correctness

proofs depend on deductive power. The link in the other direction we

mentioned already: we focus our attention in chapter three on a

specific function which plays a crucial role in unification algorithms

- the core procedure of theorem provers. Thus we have all the

ingredients for a self-improving program: a theorem prover fitted out

with a unification algorithm using the less sophisticated function

SUBST can potentially replace its unification algorithm with a version

using the more economical function SUBSTAD, after passing through a

cyclic process of algorithm generation and correctness proof. This

sketch of a self-improving program must not be taken too literally.

The level on which the modification is supposed to occur is

microscopic. One may not expect that an tintelligent program has

available a self-description of such a small grain size as given in

this SUBST/ SUBSTAD replacement example. (One does not achieve insight

into his own DNA-structure by self-observation, nor is he able to

remodel his DNA-structure by an internal process.) Yet we maintain the

general idea to be a realistic one.

BI-DIRECTIONAL HEURISTIC SEARCH

1. Introduction

Problem solving is considered to be a sub-discipline of A.I. In

a sense, it is a Troyan horse since when this sub-discipline lived up

to its name, it would swallow the rest of A.I. and ultimately all

other sciences. As yet its practitioners are struggling with smaller

issues. Problem solving is fairly fashionable because it has

consolidated results, abstract algorithms about which even theorems

have been proven, and fairly successful (toy) programs written.

The field of problem solving can be partitioned according to

different criteria. One way of partitioning might be done by looking

close at what constitutes the class of problems. One might distinguish

fuzzy versus clear problems, essentially incompletely specifiable

versus completely specifiable problems, specific case versus general

problems, small versus infinitely large or practically infinitely

large problems, decidable versus non decidable problems, one world

(accumulative logic) versus many, non-compatible worlds problems, and

SO Olle

Another way of partitioning takes into account the supposed

result of the problem-solving activity. One might distinguish yes/no

answers, collections of entities which satisfy criteria, plans (= a

sequence of operators which, when executed, will fulfil a higher-order

goal), conditional plans, algorithms (= a conditional plan augmented

with loops and/or recursion, and always halting), procedures (= an

algorithm possibly not always halting), analogies, general interesting

concepts, interesting conjectures, etc.

Again another way of partitioning focusses on the techniques

employed in problemsolving activity. Several approaches have been

developed: means-end analysis [62], problem reduction [29] (where one

aims to replace a problem P by “Pl and P2" such that each Pi can be

solved independently of the other one), problem pseudo reduction

[74,82] (where one also aims to replace a problem P by “Pl and P2" but

without requiring that solving Pi will not affect a solution to the

other problem), deduction [85,71,46,61], trial and error [8], search

[60], heuristic search [41], (postponement to next day, month, year,

decade, ..., running away as fast as possible), etc.

All the distinctions above should not be taken too seriously.

They are certainly not orthogonal or even exclusive. Problemsolving

is a young g discipline as yet far removed from the establisment of

the equivalent to a periodic table of elements, in which classes of

problems, types of outcomes and the conceivable techniques fit

together nicely. Obviously, some kinds of problems, answers and

techniques are made for each other. Clear problems, formulated in

predicate calculus, requiring a yes/no answer can be attacked by

deduction, or in fact by a whole range of deductive techniques (see

chapter 4). Specific case problems, of a simple nature, where the

solution is in the range of specific plans (of course, the solution is

ultimately the outcome of the executed plan) may be handled by search.

A taxonomy of problem-solving techniques is already beyond current

insights. Deduction, for instance, can certainly be seen as search in

a single world, accumulative logic space; search is a disciplined and

systematic way of performing trials and testing for progress and

errors; problem reduction as well as pseudo reduction have also been

imbedded in search formalisms [20,12]. At the same time,

plan-generation and also algorithm-generation -- at first sight

belonging to the realm of search -- have been performed by deductive

machinery [37].

In the sequel, we limit ourselves to search techniques. They

apply to those problems which:

-- fit the statel-operator-state2 paradign,

-- have a goal description in the form of a Start State to be

transformed into an explicitly described, Desired State, or as a

Start State and a testable decidable criterion of Desired States,

and

-- possess a mechanism to decide whether two states are essentially

equal or different.

Depth-first and breadth-first search are standard techniques.

The former is easily implementable within a stack environment, the

latter enjoys the property of always ending up with a shortest path to

the solution. Both techniques are uni-directional searches. In case

the goal is explicitly given, one has the options to do

uni-directional search in either direction from Start to Goal State or

the opposite way {round, or working from both sides. We confine

ourselves to the last option.

When working from both sides in a breadth-first manner, one may

expect a considerable gain as a consequence of a reduced number of
—————

states that have to be visited in the search space (see fig 2.1).

me Start state

distance goal state

L, # expanded nodes

Fig. 2.1. When working from both sides in a breadth-first
manner, less states will have to be visited.

A difficulty, however, is that the halting condition is more

involved. Instead of checking whether a Frontier State of an

uni-directional tree is a Goal State, one has to check whether a

Frontier State of one tree is perhaps equivalent to any of the

frontier states, at the opposite tree. With e.g. a hash coding trick

on states, one may hope that the disadvantage of this more complicated

halting condition does not offset the gain of having to visit lesser

States.

Uni-directional search improves drastically when a heuristic is

available, which allows one to estimate the distance between two

states (in terms of the minimum number of operator applications

necessary to transform one into the other). Such a heuristic permits

to give more attention to promising states and may thus narrow the

search tree. The method is often referred to as “best-first” search.
ee oe —

In [66,67], a first attempt is described to provide a

bi-directional algorithm with such a heuristic. This algorithm in fact

performs two independent uni-directional searches, a forward search

guided by the heuristic toward the Goal State and a backward search

guided toward the Start State. The disadvantage is that in a search

Space where more than one path exists from start to goal, the two

searches often proceed along two different paths, and so the two sets

of visited states grow into nearly complete uni-directional trees

before intersecting each other, see fig 2.2.

start state

goal state

Fig. 2.2. The two search trees miss each other and do not
meet in the 'middle' of the space.

In [17], we have described a second attempt. The algorithm presented

needs an extensive revision (16) and will be reformulated in the next

section. Section 3 is devoted to the generalization of the theorems

*
known about the uni-directional heuristic A -algorithm. A worst-case

analysis of the bi-directional algorithm will be given in section 4.

The results of an implementation geared to the 15-puzzle and one

example of the 24-puzzle will be given in section 5.

2. Bi-directional heuristic front-to-front algorithm

As mentioned above, the key disadvantage of Pohl’s

bi-directional algorithm is that solution components do not meet in

the “middle” of the search space. The reason for this behavior is that

the path components are not directed toward each other. The forward

path component is directed to the Goal State and the backward path

component to the Start State. This fault was remedied in the

bi-directional algorithm given in [17] by directing the forward path

component to the most promissing state for which a path was

constructed from the Goal State (and a similar process guiding towards

the best state reachable from the Start State). The algorithm halted

with a solution when at a certain iteration, a state was considered

which had already been reached from the opposite side.

Recently, M. Taunton and T. B. Boffey of the University of

Liverpool have convinced us that the algorithm as presented in [17]

would not always end up with a shortest path as claimed under the

proper condition. The halting condition as formulated was too “eager”

and there was a bug in the theorem which claims that, when the

heuristic used never overestimates the real distance between pairs of

states, a solution found should be of minimal length. Fig. 2.3 shows a

simple graph on which the algorithm of [17] will halt with the

non-minimal path s-t of length 3 -- instead of finding the minimal

path s-x-t of length 2 (while the heuristic is uniformly zero and

backward and forward searches alternate).

Start state 3 goal state

S t

Fig. 2.3. Example of a graph on which a former bi-directional
algorithm halts with the non-minimal path s-t of

length 3.

We will now give a sketch of the Bi-directional Heuristic

Front-to-Front Algorithm (BHFFA2) before presenting precise

definitions and its specification. The BHFFA2 consists of two loops.

When control resides in the upper loop, the situation is as sketched

in fig. 2.4 or fig. 2.5.

Fig. 2.4. The situation when control is in the upper loop
and no path has yet been found.

Ss

Fig. 2.5. The situation when control is in the upper loop
and a path has been found since S and T intersect.

Here, s and t are the unique start and goal nodes respectively

(node is a synonym for state), which have to be connected through a

(shortest) path. The nodes in SUS and TUT are respectively

reachable from s and t. Further S and T are nodes which have already

been expanded (i.e. for which all states reachable in one step are

known); S and T are nodes from which one is to be selected for

expansion. In fig. 2.4, no path between s and t has yet been found

since the intersection of S and T is empty. Expanding, say, node n in

fig. 2.4 will either lead to the same configuration or, eventually,

the situation in fig. 2.5 will arise. The selection of nodes is

governed by a heuristic function H which estimates the real distance

H. If one is not interested in the length of the solution path or H <=

H, the precondition of Theorem 1 in the next section, does not hold,

the proper halting condition is: halt in case the intersection of 5

and T is non-empty. (See, however, also the remark after the

introduction of step (3.1) at the end of this section.) In the other

case, the search has to continue as fig. 2.3 shows. When the next node

to be expanded, say nl, is a member of 5 but not of T, then control

remains in the upper loop of BHFFA2. When the heuristic prescribes the

selection of a node in the intersection of S and T, say, n2 then

control shifts to the lower loop, for which the situation is as

sketched in fig. 2.6.

va
l

ak

Fig. 2.6. The situation when control is in the lower loop,

Once control ís fn the lower loop, it stays there until the

halting with a shortest path (under the upper-bound condition H <= H

of Theorem 1). Here, P is the set of closed nodes which have emerged

from open nodes in the intersection of 5 and T and thus lie on paths

from s to t.

To make this presentation self-containing we will redefine the

ingredients of BHFFA2 along the lines of [1]. Each node x (we exclude

the start node and goal node for obvious reasons) which has been

visited has associated with it:

== one or two pointers p.,(x) and p,(x), where a pointer py (x)

indicates a node lying on a path from x to the start node or goal

node; and

== one or two numbers gs(x) and gt(x), where a number gi(x) is an

upperbound for the distance along py) from x to the start node or

goal node, more precisely defined in the sequel.

Let us denote with

s the start node,

t the goal node,

S the collection of nodes reached from s which have been expanded and

which do not belong to P,

T the same with respect tot,

wl

the collection of nodes which are neither in S nor in P but are

direct successors of nodes in S or P,

rl

the same with respect to T,

P the collection of closed nodes which emerged from nodes in the

intersection of S and T,

H(x,y) the minimum distance between nodes x and y,

H(x,y) a nomnegative estimator of the distance between x and y with

H(x,y) = H(y,x),
gamma(x) the finite set of nodes obtained through applicable operators

on x,

gamma(n;x) the set of nodes which are n steps from x,

gammai(x) like gamma(x) but with inverse operators instead,

gammai(n;x) like gamma(n;x),

1(n,x) the nonnegative edge length between n and x, for x in gamma(x)

or in gammai(x),

gs(y) for y in S, S or P, the sum of l(y,p,(y)) and the value which

gs(p.(y)) had when the gs(y) value was initialized or most recently

updated,

gt(y) the same with respect to t for y in T, T or P,

hs(n) the minimum over y in T of (H(n,y) + gt(y)) for all n in 8S,

ht(m) the minimum over y in S of (H(m,y) + gs(y)) for all m in T,

fs(n) = gs(n) + hs(n),

ft(m) = gt(m) + ht(m),
|p| the minimum over p in P of (gs(p) + gt(p)).

Now we give a definition of BHFFA2 interspersed with comment.

The phrase “there is an x such that” (existential quantification) will

be abbreviated by (E x).

As indicated above, BHFFA2 consists of two loops, FIND A PATH

and FIND BEST PATH. Initially, control is in the FIND A PATH loop

until control shifts permanently to the FIND BEST PATH loop. Both

loops have as main actions:

-- the determination of the set of nodes promissing as to expansion;

-- a control decision concerning the shift to the other loop from the

FIND A PATH loop, or halting in the BEST PATH loop; and

~- the expansion of a node.

A node will be expanded in the FIND A PATH loop only when it belongs

to {5 ~ T} U {T - S}. In the other loop, a node can be expanded when

it belongs either to the same set or to T NS (so, in fact, when a

node belongs to S U T; the two cases lead to different actions in the

BEST PATH loop, however). To prevent describing twice how a node in

{S - T} U {T - S} is expanded, we first characterize this as a

subroutine, assuming forward search. Thus the node, n, to be expanded

belongs to § - T.

EXPAND NODE n in § - T.

descendants(n):= gamma(n); S:= S U {n}; S:= S$ - {n}.
For each x in descendants(n) do:

If x in P then CHECKgsx(P,{S,T}) else
if x in S then CHECKgsx(0,0) else
if x in S then CHECKgsx(S,{S}) else
[S:= 5 U {x}; provide a Ps (nm) pointer at x;

store gs(n)+l(n,x) as gs-value at x];

continue with the next descendant of n.

The macro CHECKgsx can be explained by giving the expansion of

CHECKgsx(P, {S,T}):

if gs(n)+l(n,x) < gs(x)

then [redirect the p,(x) pointer to n;

store gs(n)tl(n,x) as gs-value at x;

Thus the first argument of CHECKgsx names the set for which a

removal instruction has to be generated (we assume that the macro will

not generate O:= 0 - {x}), while the second argument contains a list

of sets for which addition instructions have to be generated.
nnen nn eT

Remark: The first case “x in P” never holds in the FIND A PATH

loop.

Expansion of a node in SNT in the lower loop proceeds

similarly and will also be described as a subroutine to simplify the

description of the main algorithm.

EXPAND NODE n in S NT.
P:= P U {n};
S:= S — {n}; T:= T - {n};
descendants(n):= gamma(n) U gammatf(n).
For each x in descendants(n) do:

If x in P then CHECKgstx(P,{S,T}) else | As
if x ín S then MA EN

[CHECKgsx(0,0); An x
S:i= 5 — {x}; S:= SU {x}; T:= TU {x};
provide a P‚-pointer and store \

gt(n)+l(n,x) as gt-value at x] else

if x in T then .

[CHECKgtx(0,0); po
T:= T — {x}; S:= SU {x}; T:= TU {x};
provide a p,~pointer and store

gs(n)+t1(n,x) as gs-value at x] else

if x neither in S nor in T then
[S:= SU {x}; T:= TU {x};

provide Ps” and P, pointers and

gs- and gt-values at x] else

[if x in S then CHECKgsx(0,0)
else { S:= 5 U {x};

provide a p,—pointer and gs-value at x };

1f x in T then CHECKgtx(0,0)
else { T:= TU {x};

provide a p‚-pointer and gt-value at x }];

continue with the next descendant of n.

The macro CHECKgtx works like CHECKgsx but takes gt and py

instead of gs and P,* The macro CHECKgstx works like CHECKgsx and like

CHECKgtx, thus whenever the gs- and/or gt-value needs to be updated

then the appropriate action will be taken.

Now the stage is set for BHFFA2:

(1)

(2)

(3)

(4)

(5)

INITIALIZATION.

S := {s}; T := {tks P := S :=T := 0; IP] := infinite.

FIND A PATH LOOP which extends up to step (5).
If S = 0 or T = O then halt without a solution.
Decide to go forward, step (3), or backward, step (5). (E.g., go
forward when the size of S is less than the size of T. Every other
decision procedure however is also allowed, e.g. going forward

continuously.)

FORWARD SEARCH; determine the subset of nodes from S which are
plausible for expansion and try to postpone entering the lower

loop (possibly by shifting to backward search).
aa:= min over x in S of fs(x).
A:= { x | x in S with fs(x) = aa }.
If (E n){ ninA-T }
then { let n be such a node and continue with step (4)].
If (E a)(E c){ a in A and c in T ~ S and

aa = gs(a) + H(a,c) + gt(c) }
then [go backward, step (5), skip determining aa and A, and

expand such a node c inT- 5].
Go to the FIND BEST PATH loop, step (10).

EXPAND NODE n in S - T. (see above)
Go to step (2).

BACKWARD SEARCH.

Do step (3) through (4) with (s, S, S, T, gamma) replaced by (t,
T, T, 5, gammai); CHECKgsx should be replaced by CHECKgtx and vice
versa.

_As argued in the sequel, the following FIND BEST PATH component of

BHFFA2 is only relevant when the H <= H condition holds.

„14

(10) FIND BEST PATH LOOP.

If (E a){ a in A and gs(a) + gt(a) = aa } then halt with a path
through a.

Select n in A with minimal bb:= gs(n) + gt(n).
\Pl:= min(IPÍ, bb).

(11) EXPAND NODE n in S N T. (see above)

(12) DECIDE FORWARD2/BACKWARD2 EXPANSION

If S = 0 or T = O then

[halt with a shortest path through a node in P].
Decide to go forward2, step (13) or backward2, step (15); see the
comment at step (2).

(13) FORWARD2 SEARCH.

aa:= min over x in S of fs(x).
If |P <= aa then

[halt with a shortest path through a node in P J.
A:= { x | x in S and aa = fs(x) }.
If (E n){ n in A - T } then

{ let n be such a node and go to step (14)].
If (E a)(E c){ ainA ande in T ~ S and

aa = gs(a) + H(a,c) + gt(c) }
then [go to backward2, step (15), skip determining aa and A and

expand such a node c in T-S].
Go to step (10).

(14) EXPAND NODE n in S - T. (see above)
Go to step (12).

(15) BACKWARD2 SEARCH.

Do step (13) through (14) with (s, S, S, T, gamma) replaced by (t,
T, T, S, gammai); CHECKgsx should be replaced by CHECKgtx and vice
versa.

The following invariants hold: the sets S, T, S, T, P are all pairwise

disjoint, with the exception of the pair S, T, which may intersect.

As already stated above, if one is not interested in the

shortness of solution path or if H <= H does not hold, the lower loop,

step (10) - step (16), can be eliminated and step (3) should be

replaced by:

(3.1) FORWARD SEARCH.

If S$ NT = 0 then [halt with a solution path].

Let n be a node for which fs(n) = min over x in S of fs(x) and

continue with step (4).

If H <= H does not hold, it does no harm to use step (3)

together with the lower loop. Halting will be postponed and,

consequently, shorter paths may be found in the meantime.

Whether H <= H holds or not, one may replace step (3) for

efficiency reasons by:

(3.2) FORWARD SEARCH.

Determine aa and A as in (3);

let n be in A with preference that n be also in T;

if n in T then [go to the lower loop, step (10)]

else [continue with step (4) }.

The advantage of using (3) instead of (3.2) is that execution of

the upper loop is cheaper than execution of the lower loop, since P is

not yet around. The advantage of (3.2) is that halting with an optimal

path (shortest when H <= H) May occur earlier.

We will use the formulation with step (3) for the theoretical

discussion in the next section. The results apply also when (3.2) is

used instead.

3. Minimal path and optimality theorems for BHFFA2

Before proceeding with the minimal path theorem, we have to

prove two lemmas that will be needed. They have to do with the

properties of optimal paths holding before BHFFA2 halts.

LEMMA 1. If H(x,y) <= H(x,y) and q te an optimal path from s to t then

when control tis in the upper loop, step (2)-(5), there extst open

nodes n in S, min T on q with fs(n) <= H(s,t) and ft(m) <= H(s,t).

The proof is similar to the proof of lemma 1 in [17].

PROOF. Let n be the first node on q, counted from s, with n in S. Let

m be the first node on q, counted from t, with m in T. (They exist

because otherwise all nodes on q would be closed and control would be

in the lower loop.) 7

fs(n) = gs(n) + hs(n) by definition of fs,

= gs(n) + H(n,y) + gt(y) for the y in T where hs realizes its

minimum,

<= gs(n) + H(n,m) + gt(m) by definition of hs,

<= gs(n) + H(n,m) + gt(m) precondition of lemma,

= H(s,t) since we are on an optimal path.

ft(m) <= H(s,t) is proved in the same way. <<

The next lemma ís like lemma 1 but deals with the lower loop

instead.

LEMMA 2. If H(x,y) <= H(x,y) and q te an optimal path then when

control ts in the lower loop, step (10)-(15), etther there existe open

nodes nin S, min Ton q with fs(n) <= H(s,t) and ft(m) <= H(s,t) or

there te a node n on q with n tn P and |P| = H(s,t) = gs(n) + gt(n)

(thus the path q is already found).

PROOF. If all nodes on q are closed then one of them, say n, was the

last one. Thus n is in P and the required properties hold since we are

on an optimal path. If not every node is closed the argument of

lemma 1 applies. <<

The phrasing of the minimal path theorem is the same as in [17],

the proof is only slightly different.

THEOREM 1. If H(x,y) <= H(x,y), tf all edge labels are at least a

posttive d, and if there ts at least one path between s and t then

BHFFA2 halte with a shortest path between s and t.

PROOF. Suppose theorem 1 does not hold. Then we have three cases: (1)

BHFFA2 does not halt; (2) BHFFA2 halts without a solution path; (3)

BHFFA2 halts without a shortest path.

Case 1: According to lemma 1, lemma 2 and the halting condition

in step (13), only those nodes will be expanded which have f-values

less than or equal to H(s,t). Consequently, their g-values are less

than or equal to H(s,t). Thus BHFFA2 only expands nodes at most

H(s,t)/d steps away from s or t, and this is a finite number. Let Ms

and Mt be the sets of all nodes which are ever generated from s and t,

respectively. As every node has only a finite number of successors,

and the maximum number of steps any node is away from s and t ts

finite, both Ms and Mt can only contain a finite number of nodes, and

so M = Ms U Mt is of finite size c. Let r, be the (necessarily finite)

maximum number of paths from s to m and from t to m for m in M, and

let r be the maximum over all Cnt Then r is the maximum number of

different times a node can be reopened. After r.c iterations of

BHFFA2, all nodes are permanently closed. So S U T = O and the BHFFA2

halts, which produces a contradiction.

Case 2: If BHFFA2 halts without a solution then S = 0 or T = 0

and control must have been in step (2). Lemma 1 prohibits this

however.

Case 3: The BHFFA2 can only halt with a solution in step (10),

step (12) and in step (13), all in the lower loop.

Step (10): Thus we have aa > H(s,t). If step (10) was entered

from the upper loop, we have an immediate contradiction, because

lemma 1 prescribes that aa <= H(s,t). Otherwise, step (10) was entered

from step (13). In case no optimal path has been found yet, lemma 2

.18

prescribes that aa <= H(s,t) should hold. In case an optimal path

already crosses P, BHFFA2 would already have halted in step (13) with

an optimal path since then aa > |P| = H(s,t).

Step (12): Lemma 2 prescribes that when S = 0 or T = 0, an

optimal path should cross P and would thus be selected.

Step (13): If an optimal path does not yet crosses P then

according to lemma 2 aa <= H(s,t) < Pl. Contradiction. <<

To bring all the theoretical results together, we will restate

and prove here the bi-directional version of the optimality theorem

(which first appeared in [18]). Again, we first present two lemmas.

LEMMA 3. If H(x,y) <= H(x,y) then for every node closed, coming from S

(respectively T), fs(n) <= H(s,t) (and, respectively, ft(n) <= H(s,t)/

holds.

PROOF. Immediate consequence of lemma 1, lemma 2 and the [Pl <= aa

condition in step (13). <<

LEMMA 4. If H(x,y) <= H(x,y) and H(x,z) <= H(y,z) + H(x,y) (the

so-called consistency property of H), then for every node n coming

from § (respectively T) which te closed, in the upper as well ae in

the lower loop, it ie the case that gs(n) = H(s,n) (and, respectively,

gt(n) = H(t,n))-

Consequently, when the preconditions of lemma 4 are fulfilled,

all the checks “gs(n) + 1(n,x) < gs(x)” which pertain to nodes in S or

T may be inactivated from BHFFA2, since a shortest path to them ts

already found.

PROOF. Suppose the opposite, see fig 2.6A.

B

…
e
=

N

Fig. 2.6A. See the proof of lemma 4.

Let n be a node (from say S) which will be closed and for which

gs(n) > H(s,n). Let q be an optimal path from s to n. Let m be the

first node on q in S (m exists, otherwise gs(n) would be equal to

H(s,n)). fs(n) = gs(n) + H(n,y) + gt(y) for some y in T.

fs(m) = gs(m) + hs(m) by definition of fs,

<= gs(m) + H(m,y) + gt(y) by definition of hs,

H(s,m) + H(m,y) + gt(y) because m is on the optimal path to s,

H(s,m) + H(m,n) + H(m,y) - H(m,‚n) + gt(y),

H(s,n) + H(m,y) ~ H(m,n) + gt(y),
gs(n) + H(m,y) - H(m,n) + gt(y) is our assumption, =

<= gs(n) + H(n,y) + gt(y) as a consequence of consistency,

= fs(n).

Contradiction

of n. <<

<

because m would have been chosen for expansion instead

„20

Two heuristics can be compared when the estimates they produce

differ in a uniform way; for instance, when one of the heuristics

persistently estimates distances smaller than the other heuristic. The

heuristic B= 0, which does not provide any information,

underestimates consistently with respect to the “maximally informed”

real distance H. More generally H is a better heuristic than B when

for all unequal pair of nodes x and y we have B(x,y) < H(x,y) <=

H(x,y).

The optimality theorem restricts the behavior of BHFFA2 with a

“good” heuristic H with respect to a “bad” heuristic B. Since the

decision procedure for forward and backward search is not specified in

BHFFA2, it should not be surprising that the decision procedure is

mentioned when the set of nodes expanded by H and by B are related.

The strategy is to show that the good heuristic will not expand more

nodes than the bad heuristic.

THEOREM 2. If two heuristics H and B are related by:

H(x,y) <= H(x,y),
H(x,z) <= H(y,z) + H(x,y) (consistency of W and

B(x,y) < H(x,y) for x + y (which makes Ha better heuristic than B),

and there ts a solution, then for every decision procedure employed by

B there ie a decision procedure for H euch that HR will at moet expand

the nodes that will be expanded by B (which justifies the goodness of

HW .

PROOF. Suppose the opposite. So there is at least one pair of nodes

(n,m) in S x T for which it holds that H is forced to expand at least

one node of such a pair while B will never expand them.

Let at iteration i,, when H is used, n in S and m in T be the first

pair of nodes for which this holds. Since (n,m) is the first pair of

nodes, (n,m) will at some iteration ij, when B is used, belong to Sp

and T,, and they will remain in Sp and Tp. (If they would not surface

in Sp and Tp then their parents would not have been expanded by B.

Also it would hold for another pair that H has to expand one of them

but B none of them, and that would occur at an iteration before 1,-)

Suppose n = m, thus H finds a path with length gs(n)+gt(m) = fs(n). No

2.21

shorter solution path exists, since lemma 1 or lemma 2 would prescribe

the expansion of another node or to halt with such a shorter path.

Consequently, B has to find another path with equal length, but before

being allowed to halt with that path, B has to expand node on.

Contradiction, thus n is unequal to m.

Denote the fs-values, using B on iteration j, by fBj and when H is

used by fHj.

Denote the gs-value, using B on iteration j, by gsBj and when H is

used by gsHj.

So we get on each iteration j when i, <= j:

£Bj(n) = gsBj(n) + min over y in Tg of (B(n,y) + gtBi(y)),

<= geBj(n) + B(n,m) + gtBj(m),
= gsHij(n) + B(n,m) + gtHi,(m), since according to lemma 4,

gs(n) and gt(m) cannot improve anymore.

< gs(n) + H(n,m) + gt(m), since n is unequal m,

B will stop, say on iteration k (with 1, <= k, since otherwise (n,m)

would not be the first pair of nodes, etc.) with a path of length

H(s,t) and with an f-value equal to H(s,t). So H(s,t) <= fBk(n),

because otherwise B would have expanded n.

Thus H(s,t) <= fBk(n) < fHi,(n).

Contradiction with lemma 3. <<

2. 22

4. Worst case analysis

A crude technique to compare different algorithms is to

investigate how they behave in worst case circumstances. For a certain

search space, we give formulas for the number of expanded nodes with

the uni-directional algorithm, the bi-directional Pohl algorithm and

with BHFFA2. We assume that the heuristic functions used will give a

maximum error within relative bounds.

Let the search space be an undirected graph containing a

countable collection of nodes; two nodes, the start and goal nodes,

have m edges (m > 1), and there is a unique path of length K between

them. From all other nodes emanate mtl edges; there are no cycles; and

all the edge lengths are one, see fig. 2.6B.

Fig. 2.6B. Example of a graph with m=3 and K=4,

So all nodes, except the start and the goal node, have ml

successors, of which one is the direct ancestor. Since for the

uni-directional, the bi-directional Pohl and BHFFA2 algorithms, the

direct ancestor will be found in the set of closed nodes and will

subsequently be ignored (in this space, there is only one g-value

possible so that cannot be improved), we consider only the remaining m

successors. From an uni-directional point of view, the space is a tree

with branching rate m since the algorithm will not look beyond the

goal node.

Due to the error of the heuristic function, nodes, which form

side trees hanging off the solution path (=s.p), are expanded. The

depth, n, of a side tree at node x on the s.p. in the uni-directional

case depends on the distance, R, of x to the goal node; thus n=u(R)

for some function u. Similarly in the case of Pohl”s bi-directional

algorithm, we get n=u(R), where R is the distance of x to the goal

node or start node dependent of the side to which x belongs. Suppose

that, in the case of BHFFA2, the heuristic forces complete expansion

of a side tree at x before the successor of x on the s.p. will be

expanded. Then the depth of a side tree is also a function n=u(R),

where R is the distance of x to the opposite front.

At depth l off the s.p., there are m - 1 nodes, at depth i there

are mt) (m1) nodes, and so the total number of nodes in one such side

tree of depth u(R) is given by:

u(R)-1 i
VR=) m (m1)

1=0

= (arl) (oR)-1) / ari)

If we denote by Ff[a] the total number of nodes erroneously

expanded by algorithm a, we get the following results:

1. Uni-directional: R is the distance to the goal node, going

from s to t on the s.p.; R decreases in steps of 1 from K till 1 and

SO

K
F[uni-directional]= } Va

2. Bi-directional Pohl: For some node lying on the s.p. and

expanded by the forward algorithm, R is the distance to the goal node,

and this distance decreases in steps of 1 from K for the start node to

K/2+1 for the intersection node. So the forward algorithm expands a

total of :

K

Vv
R=K/ 22+] R

„23

2. 24

nodes off the s.p.. The same number is expanded by the backward

algorithm. (For convenience, we assume that for the bi-directional

cases K is even and that forward and backward search is alternated;

slight changes are required when K is odd.) So

K

F[bi-directional Pohl]= 2.) Vi:
=K/2+1

3. BHFFA2: First s is expanded then t. Suppose a is the

successor of s lying on the s.p. and b is the predecessor of t on the

s.p. Then for the side tree of s, R=R(s,b)=K-l, and so the depth of

the side tree hanging off s is u(K-l). The same goes for the tree

hanging off t. When a and b are expanded after the side trees at s and

t are completed, the distances from a and b to the opposite front are

K-3, etc. So in this case, R is decreasing in steps of 2 from K-l

until 1 is reached; therefore the total number of nodes in all the

side trees is given by

K/2

F[BHFFA2]= 2.). Vor:
R=]

These results hold independently to the form of u(R). It ís

reasonable to assume that the smaller the real distance, the more

accurate (or the less erroneous) will be the estimated distance. Thus

we expect that the depth of the side tree hanging off a node on the

s.p. will become smaller as R becomes smaller. In that case, u(R) is a

monotonic function. Figures 2.7, 2.8 and 2.9 give an idea of the

depths of the side trees (represented by the lengths of the bars) for

all nodes on the solution path if this assumption holds.

2.25

u(K-1)

u(K-3) /

u(K)

u(K-1) /

distance

L, # expanded nodes

2.7 2.8 2.9

€

Fig. 2.7. Uni-directonfal. R decreases with steps of 1.
2.8. Bi-directenfal Pohl. Since at i, R is still K/2,

n never gets very small.
2.9. BHFFA2. R decreases with steps of 2.

If RI<R2 implies u(RI)<u(R2), then also RI<R2 implies Vri VR2

(Vr denotes the number of nodes in the side tree with depth R), and so

K/2
2.. L Vor]

K/2 K/2

=] Rel
K

R=1
K K

< E Vat Ì Va
R=K/2+1 =K/2+1

or F[BHFFA2] < F[uni-directional] < F[bi-directional Pohl].

- 26

Now we show that u(R) is indeed a monotonic function if we

assume that the heuristic H gives a maximum error within relative

bounds. We have studied two heuristic functions. Let d > 0:

1) H(n,m) = H(n,m)/(1+d) if at least one of n and m is not on the Sep

H(n,m) = H(n,m) when n and m are both on the s.p.; thus H only

under estimates H;

2) H(n,m) is as above if at least one of n and m is not on the s.p.;

H(n,m) = H(n,m).(1+d) when n and m are both on the s.p.; thus this

H is more erroneous than the former one.

We give proofs and derive formulas for the more _ erroneous

heuristic. Only slight changes are necessary for the other heuristic.

Some formulas for the other heuristic will be given but without their

derivation.

We first deal with the monotonicity in the uni-directional

algorithm and the bi-directional Pohl algorithm (see fig 2.10).

VA

Fig. 2.10. H(s,t) = K, uni-directional.
t'

If x on s.p., y on s.p., y in gamma(x), and z not on s.p. but n

steps away from x, then z will be expanded iff

g(z)th(z) <= g(y)th(y), or
K-R+nt(Rtn)/(1+d) <= K-R+1+(R-1)(1+d), or

n(1+1/(1+d)) <= -R/(1+d)+(R-1)(1+d)+1, or

n(l+d+1) <= -R+(1+d)+(R-1)(1+d)2, or

n(2+d) <= -R+1+d+R+2Rd+Rd2-1-2d-d2, of
n(2+d) <= Rd(2+d)-d(1+d), or

n <= Rd-d(d+1)/(d+2), or

n <= INT{Rd-d(d+1)/(d+2)}, if INT{x} denotes the largest integer

smaller than or equal to x. And so we see that in this case the

monotonicity condition holds. { A similar derivation for the less

erroneous heuristic yields: n <= INT{Rd/(2+d)}. }

Now we deal with the monotonicity in case of BHFFA2. When BHFFA2

expands nodes coming alternatively from S and T, and when it uses the

heuristic’ H(x,y)=H(x,y)(1l+d) with both x and y are on the s.p., and

H(x,y)=H(x,y)/(1+d) in all other cases, then

(a) when a node x, x on s.p., x in S, is expanded, it realizes its

minimum in a node y on s.p., y in T;

(b) whenever a node x in S, x on s.p., is expanded, then at the next

iteration a node y in T, y on s.p., will be expanded with

H(t,y)=H(s,x);

(c) a node in the side tree hanging off x on s.p. will always realize

its minimum in a node y°, y° in gammai(y), y on s.p., y” on s.p., and

a node in the side tree of y on s.p. will always realize its minimum

in a node x° in gamma(x), x on s.p., x” on S.pe5

(d) after expansion of x” in gamma(x), x and x° on s.p., and y in

gammai(y), y and y~ on s.p., no other nodes in the side trees of x and

y will be expanded.

(a), (b) and (c) will be proved by induction. First, we check

the statements for s and t. (a) at the moment s is expanded, it

realizes its minimum in t; (b) s and t are expanded immediately after

each other; (c) for x in gamma(n;s), y in gammai(n;t), s° in gamma(s),

t“ in gammai(t), s° and t” on s.p., x and y not on s.p.;,

gs(x)+H(x,t”)+gt(t”)= nt(K-14+n) /(1+d)+1

< otf(Ktntn) /(1+d)+n

= gs(x)tH(x,y)tget(y)-
So x realizes its minimum in t° and not in y in gammai(n;t). The same

holds for y with respect to s°.

Now we proceed with the induction steps (see fig. 2.11).

2.28

Fig. 2.11. BHFFA2. Dashed line is fs(zl), dotted line is
ft(z2), both before expansion: of x' and y'.

Suppose (a), (b) and (c) hold for nodes x and y, x in 5, y inT,

x and y on s.p.; then we prove that they also hold for x” in gamma(x),

x” on s.p., and for y~ in gammai(y), y~ on s.p.

Let H(x,y”)=R, then H(s,x)=H(t,y)=[K-(R+1)]/2 (they are equal

according to (b)). Inductive proofs for (a), (b), (c) and (d) follow.

(a) As the branching rate is constant, and as x and y were expanded

immediately after each other, the side trees at x and y will grow in

exactly the same way and so, for some nodes zl in gamma(n;x) and z2 in

gamma(n;y), at even iterations fs(zl)=ft(z2). Since, according to (c)

they realize their minimum in y” and x” respectively expansion of zl

does not change the value of z2; descendants of zl will have larger

f-values than zl, and so z2 will be expanded next. Therefore, y° will

not be expanded as long as x° is not expanded. Furthermore, x will

not be expanded as long as it realizes its minimum in some node in the

side tree at y, because when this is the case, there is always some

node zl in the side tree at x with the same fs-value to y” and then

this zl will be chosen for expansion instead of x”. (We had a worst

case so ties are always resolved in the most unfavorable way.) So, at

the moment x” is expanded, it realizes its minimum in y”, and at the

same moment y realizes its minimum in x’, and fs(x°)=ft(y") is the

minimum of all distances between nodes from S and T. <<

(b) At that iteration, fs(x") < fs(zl) = ft(z2), or

gs(x”)H(x ,y”)tet(y”) < gs(zl)Hi(zl,y”)+gt(y”),

and thus

[K-(R+1)] /2+1+(R-1) (1+d)+[K-(R+1)] /24+1<

< [K-(R+1)] /2+mt+(Rtn) /(1+d)+[K-(R+1)] /2+1,

or

[K-CR+1)]4+2+(R-1) (14d) <

< [K—-CR+1)]+mtl+(Rtn)/(1ltd). ...sseeeeeeeeeeee(Al)

At the next iteration, we have in S three kinds of nodes: x" in

gamma(x”), x" on s.p.e; Vv in gamma(x”), v not on s.p.3; zl in

gamma(n;x), zl not on s.p.. So

ft(z2)

= gt(z2)+{min over u in S of (gs(u)H(u,z2)}

nt (K-(R+1)] /2+min{ [K-(R+1)] /2+2+[n+(R-1)]/(1+d);

[K-(R+1)] /2+2+[n+(R+1)]/(1+d);

[K-(R+1)] /2+nt[2nt+(R+1)]/(1+d) }

nt [K-(R+1)] /2+[K-(R+1)]/2+[n+(R-1)] /(1+d)+2

[K-(R+1)]+n+(R+tn) /(1+d)-1/(1+d)+2,

while

ft(y~)<= gs(x")+gt(y~)+H(x",y~)
= [K-(Rt1)]/2+2+[K-(R+1)]/2+1+(R-2) (1+d).

So

ft(y”)<= [K-(RHL)]+3+(R-2) (14d)
= [K-(R+1)]+2+(R-1)(1+d)-d
< [K-(R+1)]+2+(R-1) (1+d)

< [K-(RH1)]+nt1+(Rtn)/(1+d) (according to (Al))

< [K-(RHI)]+nt(Rtn) /(1+d)+2-1/(1+d)=ft(z2),

and so now y° will be expanded. <<

„29

. 30

(c) A node in the side tree of x” always realizes its minimum in y"

and vice versa, because if zl in gamma(nl;x°) and z2 in gammai(n2;y”),

gs(zl)+gt(y")+H(zl,y")=
< gs(zl)+gt(z2)+H(zl,22) because gt(y") <= gt(z2) and H(zl,y") <

H(zl,z2). <<

(d) fs(x")<= gs(x")+gt(y”)+H(x”,y")
= gs(x")+gt(y”)+1+H(x",y")

gs(x")+gt(y~)+H(x",y~) because d>0

£t(y”)
< ft(z2) because y° was expanded instead of 22;

A

and so z2 will not be expanded any more. <<

Suppose we have x in S, x° in gamma(x), z ín gamma(n;x), x on

S-p-, X on s.p., z not on s.p., y in T, y° in gammai(y), y on s.p.,

y° on s.p. (see fig 2.12); then z will be expanded iff

gs(z)+hs(z)<= gs(x°)ths(x”),or

gs(z)tegt(y~)+H(z,y~)<= g(x”)tgt(y)H(x ,y°), or
[K-(R+1)] /2+nt [K-(R+1)] /24+1+(R+n) /(1+d)

<= 2([K-(R+1)] /2+1)+(R-1) (1+d)

and this yields n=INT{Rd-d(d+1)/(d+2)}, the same as for the

uni-directional and the bi-directional Pohl algorithms. (This could

also be derived from the fact that side trees in the case of BHFFA2

become fully developed before the next node on the s.p. is expanded

and consequently a translation argument reduces the BHFFA2 case to the

uni-directional case.)

2.31

ye

ye

Fig. 2.12. H(s,t) = K, BHFFA2.

If we denote d(d+1)/(d+2) by cd, we get VR= mINT(Rd-cd)_) | Now

we give approximations for the Fas assuming n = Rd-cd instead of n =

INT{Rd-cd}. We will here also give the approximations for the less

erroneous heuristic by using n = R.qd instead of n = INT{R.qd}, where

qd stands for d/(d+2).

1. F{uni-directional] =) V

= mo C4, (mk4-1) /(m4-1)-K;
the less erroneous heuristic yields:

nad, (M94 +K_7 y / (14-1)-xK;

K
2. F[bi-directionalPohl] = 2...) Va =

R=K/2+1

= 9 ml /2)d-cd | (mK4/2_)) / (md-1)-K;

the less erroneous heuristic yields:

2.mId(L4K/2) | (qad-K/2_)) /(m94-1)-K;

K/2
3. F[BHFFA2] = 2. Vor- 7

2.32

2.mdred, md) /(m4-1)-K;

the less erroneous heuristic yields:

2.m94, (mdd -K/2_4 /(m99-1)-K.

Examples for K=4, m2, d=l are shown in Figures 2.13

(uni-directional), 2.14 (bi-directional Pohl) and 2.15 (BHFFA2).

Fig. 2.13. Examples of worst-case situations.
H(x,y) = H(x,y)(1+6) if both x and y are on the
solution path, and H(x,y) = H(x,y)/(1+8) otherwise

\ A (unidirectional, y = t always; bidirectional Pohl,
y = s or t). Filled-in circles are nodes visited and
expanded; empty circles are nodes visited but not
expanded. For all the examples K=4, m=2, and é=1. 6
The numbers beside the nodes are the ?-values; the

order of expansion for the first two algorithms is
then easily derived. INT is a function that produces
the integer part of the expression following it. oy
(a) Unidirectional. Wiley

Fa iNT Seg) Kb) md y-K = 29% (24-1) /(2!+1)-4=11.
See below for part (b) and for part (c).

2.33

Fig. 2.14. Bidirectional Pohl.
E omENTL C1+K/2) Beb R/2)8_ 1) 7 mei) -k _

{> A = 2X2X(2°-1)/(2'-1)-4 = 20.
i must be expanded before the algorithm terminates.

‚34

Fig. 2.15. BHFFA2. The order of expansion is shown in brackets;
the P=values are those at the moment of expansion.

| L Fe amENT (8c) (mKO-1)/ (25-1) Ke 2%2% (24-1) 22-1) 46.
§-9

“_ | net An AN pen ovppdlentt 2.35

5. Implementation results

We report here the results of an implementation that accompanied

the presentation of the BHFFA-algorithm [17] since we feel that the

changes of BHFFA2 with respect to BHFFA do not significantly change

the comparison between the empirical results _ obtained by an

uni-directional implementation and our results (moreover the

implementation deviated already from BHFFA). The modified algorithm

has been implemented as a FORTRAN program geared towards the

15-puzzle. In this search space, all edge lengths are taken as unity.

The modifications made are the following:

(1) If the program has not found a solution path after expanding 1000

nodes, it gives up.

(2) The number of open nodes in a front is restricted to some maximum

m, which ís given to the program as an input parameter but must be

less than 100. This restriction is realized by deleting (“pruning”)

the worst node of a front whenever inserting a new one would mean that

the front would contain more than m nodes. The pruning is mainly

necessary to save time, as the number of comparisons needed to

calculate hs(x) for a node in S is equal to the number of nodes in T

and vice versa. But this also means that the algorithm is no longer

admissible (an algorithm satisfying Theorem 1 is called admissible),

since it is possible that some node on the optimal path will be thrown

out because it looked bad at some iteration. In a search space where

only one path exists from start to goal node, some backtracking

mechanism would be required to ascertain that this path is found. In

the case of the 15-puzzle, the actual influence did not appear to be

very large when m was set at 50 (or larger), as can be seen in the

sequel.

(3) The section of step (5) of BHFFA2, in which occurrence of a new

node in the collection of closed nodes on its own side is checked, was

eliminated. This was done because we thought that the time possibly

gained by expanding a few nodes less would not balance the loss caused

by searching through the set of closed nodes for every open node.

(4) The lower loop was eliminated and step (3) was replaced by:

(31) Determine aa and A as in (3);

while in (5) another test was added:

"If x in TUT then halt with a solution path.”

2.36

That the testing of x is in T U T, instead of just inT, is a

necessary consequence of the pruning, as it is possible that a

descendant of a closed node is deleted from the front of open nodes.

The addition of x to S in step (5) was made by estimating all

distances to the opposite front and inserting node x in one of the

ordered fronts of open nodes (the ordering is given by the f-values of

the open nodes). A nasty side effect was that the insertion of a new

node in S could imply a reordering of T and vice versa. The ordering

was done by using a square matrix in which all combinations of the

H(x,y)-values of the fronts were stored.
eas

=

An (n2 - 1) puzzle, for n => 3, consists of an n x n square with

(n2 - 1) tiles, identifiable for instance by numbers. Tiles can change

locations using the rule that one of the tiles adjoining the empty

position can be moved into the empty position. Thus for example in

Table 2.0, configuration Al allows the movement of tile 11 or 12,

while configuration AlO allows changing the tiles 7, 15, 3, or l.

Three heuristic functions were implemented in the program:

(1) P(x,y) =) 4P4>

with p,; being the Manhattan distance between the positions of tile i
ee

ENE Cio

in x and in y.

(2) S(x,y) = J ,pzh?-?,

where p,; is as in (1) and h, is the distance in x from tile i to the

empty square.

(3) R(x,y) is the number of reversals in x with respect to y, where a

reversal has the meaning that x(i)=y(j) and x(j)=y(1), and i and j are

adjacent tiles.

2.37

Of these functions, (1) and (2) come from [24] and (3) comes

from [66].

In order to compare our results with the uni-directional case,

the program was run with the same 15-puzzle problems as were used in

[66]. (See Table 2.0, for the tile configurations of problem Al -

AlO.) Furthermore, the same heuristic function was used with the

w-values (the value infinite is a weight implying the elimination of

8):
fl= g + WP with w= 1,2,3,4,8,16,inf,

f2= g +w(P+20R) with w= 1,2,3,4,8,16, inf,

f3= gtwS with w= 0.5,.75,1,1.5,2,3,4,16,inf,

f4= gtw(St20R) with w= 0.5,0.75,1,1.5,2,3,4,16,inf,

(this, in fact, means f1(x)= gs(x)+min{over y in T of

(w.-P(x,y)t+gt(y))}, etc.). As there were ten different 15-puzzles, this

amounts to a total of 320 problems, of which our program solved 240

wheras the uni-directional program of Pohl solved 203 of them. It can

be seen that in nearly all these cases, the heuristic is not a lower

bound on the real effort to be made. This is the main reason why many

of the solutions found are not optimal, both for Pohl’s program and

ours.

The results are given in Tables 2.1-2.4. Table 2.1 gives the

number of problems solved for each of the ten puzzles with each

function. Subtotals are made for each puzzle and each function. Table

2.2 gives a score for the path lengths. It was obtained as follows:

The program with the shortest path for some problem scored 1 and the

other program scored O (and any path is counted shorter than no path

at all). If the same path length was found, both programs scored 1. If

a problem was not solved by either of them they both scored 0. Table

2.3 gives a similar score for the number of nodes expanded. Table 2.4

gives for each problem the shortest path found, the average path

length over all solved cases, and the average number of expanded nodes

over all solved cases.

2.38
EE

 ce

(
i

Insofar as the solution quality is concerned, BHFFA2 is an

improvement over the uni-directional algorithm: it solves more

problems, finds in general shorter paths, and expands fewer nodes on

the average, although the last effect is less prominent than we

expected. BHFFA2 performs particularly well with a strong heuristic

function; with £4, the total number of nodes expanded by our program

was 32% less than that by Pohl’s program.

The front length adequate for the problems was found

jempirically. Experimental runs were made with front lengths of 25, 32

| and 50. An increasing number of problems was solved and higher

stability was reached (by stability, we mean the chance that a longer dahan

front length preserves a solution obtained with a shorter front

length; pruning tricks are the obstructing force here). As could be

expected, the performance with respect to the front length depends on

both the solution path length and the heuristic used: the better the

estimator, the smaller the front length required. All problems have

been run with a front length of 50, and the least satisfactorily

solved problems were run again with a front length of 99, in order to

see whether the maximum number of 1000 expanded nodes or the pruning

in the fronts created the bottleneck. In general, the former seems to

be the case since no significant improvements were made. (An exception

was fl on A9, ware six, instead of one, out of seven problems were

solved.)

The main disadvantage of Pohl’s bi-directional algorithm,

mentioned in section 2.1 appeared to be remedied. The fronts now did

meet near the middle of the search space, which we could see by

comparing gs and gt of the intersection nodes.

By removing the 1000 expanded nodes limitation and changing a

simple parameter, it was possible to run the “most difficult” example

from the 24-puzzle. The solution characteristics are given in Table

2.5. Again the path components meet near the middle of the search

space.

2.39

A serious disadvantage of our algorithm is the time consuming

calculation of the distance estimator. How much more expensive BHFFA2

is depends on the heuristic used: the more complicated this function

is, the larger will be its share in the total computation time needed

for a solution, and the smaller will be the share of the other

computations, which have to be done for BHFFA2 as well as for the

uni-directional algorithm. So, with a front length of m, BHFFA2 will

be in the limit (with an infinitely complicated heuristic) m times as

expensive as the uni-directional algorithm when they end up with a

‘solution path of the same length. In general, the loss of efficiency |

will not be sufficiently offset by the shorter paths found.

Nevertheless, it may well pay off in, for example, an ABSTRIPS-like

environment (see [73]), where it is crucial to find an optimal path

from among many different existing paths, as the number of subproblem

searches depends on the path length found in the dominating problem

space. There BHFFA2, or a similar algorithm with a strong heuristic,

may find an optimal path more efficiently than an uni-directional

program with a heuristic satisfying the lower bound condition because

this kind of heuristics tends to be rather weak and results ina fast

explosion of the number of nodes expanded.

2.40

p
a

SF
e
d
 ON

A

A

m~
OO

ON
UN
Lamm,

m
u
n

Oo
sr
ret

d
M

e
d

n
n

a

d

ms
O
N
 re

T
e
t
o
n
s

ed
A

N
W
N

ed
OA

et

o
n
a
n

A

f
n

e
n

e
b

e
n

n
e

o
e

5

512 7 4

configurations Table 2.0 The initial

of the 15-puzzles.

| | fl £2 £3 £4 | Sum |

| | P B P B PB P B | P B |

| Al | 7 7 7 7 9 9 9 9 | 32 32 |

| A2 | 7 7 7 7 1 9 9 9 | 24 32 |

| A3 | 3 4 3 7 5 3 8 9 | 19 23 |

| A4 | 7 7 7 7 9 8 9 9 | 32 31 |

|A5 | 2 6 5 7 3 8 9 9 | 19 30 |

| A6 | 3 2 6 6 6 3* 8 9 | 23 20 |

| A7 | 5 4 6 6 OO 3 8 9 | 19 22 |

| A8 | 0 3% 3 5 01 7 9 | 10 18 |

| A9 | 2 6% 4 5 10 6 9 ĳ 13 20 |

| A10 01 3 3 2 1 7 7 | 12 12 |

Sum | 36 47 5160 36 45 80 88 | 203 240 |

Table 2.1 The number of problems solved for

for BHFFA2 (B). The maximum achievable score

for the columns headed by fl and f2 is 7 and
for the columns headed by f3 and f4 is 9 (see
text). The entries marked with a * are those

problems which were run with a front length

of 99. All others were run with front length
50.

2.42

‘
o
O

5

Sum

=

o
e
s

a
o
e

+

9

9

2

3

8

3%

3

1

0

1

9

1

4

9

1

5

0

0

1

2

| sum | 22 42 30 48 32 39 23 82] 107 211 |
A. al. a

solution path for

lengths. A program scored 0 for a problem
2.2 The score Table

solution or its

solution of the

other program. Otherwise, a program scored l.

when it did not -found a
solution was longer than a

„43
N
e

NN N

+

—

o
e

a

f
n

e
e

e
e

e
e

e
e

a

a
a

+
.

—

—
-

u
i

a
5

n=
Oo

rd
st

re
oO

st
ur)

N

N

u

Ne)
ie)

wy
Oo

2

a
se)

eN
N

re
re

N

ea
ed

A

ra
ec

re
fo

C

=)
wy

ef
ua

©

ce
fo @)

©

Ne)
uy

te |
Cw

uw)
ie)

e

Uu
Au

“

A

N

re
ce

A

Oo
8

ti
Ht
E
E

Ee

e
e

d
t

hl
le @)

o
e
)

+

j=a|
©

roa)
~

m
d

I
=

T

n
=

fo
@)

a
n

Ne)
w
y

5

U

Uy
le)

Q
O

Au
oa)

len)
N

foo)
N

la)
N

A

le)
N

(sa)
8

Mo)
U

*
+

he
~Q

I
n

o
n

N

N

a
s

N

foe]
r
e

©

e
t

wo“
le)

en
HM

O0
Uy

A

o
n

Au
oo

ie,
tT

fo)
NN

wy
len}

en)
A

eN
en

UW

co
o

8
a
A

I
=

r
e

ve)
s
t

u

s
t

e
t

se)
e
N

N

N

ei
Hi

N

©
0

Um
en

vo
Oo

As
o

Ne)
ee

en
N

N

wy
N

en
N

en
n

el

*
*

ms
ce)

fQ
sw

N

st
ns

Ne)
e

re
en

Ve)
ei

ery
5

{

ro
A

Ul
io)

Au
Oo

wr)
eN

ie,
©

en
st

le)
ed

©

lan |
en

mS
e

+.
o
O
o

St
O
e

eo
-

-
nee

e
e

en
Msn

se
d
e
n
n
e
n

nr
eo

n
t

s0
N

VU
ao]

$
9
2
5
9

9
S318]

28
2
2
?
@
2
3
2
2
3
2

32
2

«2
«
2
1
4

2
6

4

cm
a

a

e
e

et
tt

A

U

solution.

than the other program

a expand for finding

when it did not found a solution or when it

Otherwise, a program scored l.

expanded more nodes
had to

„44

| | II III |
| | |
LIP BP BP B |

| Al [42 12 12 12 12.6 12.9 |

| A2 | 26 26 42.8 27.3 161.5 54.4 |

| A3 | 36 34 64.8 44.0 389.1 320.9 |

| A4 | 20 20 21.8 24.3 90.2 108.6 |

| A5 | 38 32 56.7 39.7 310.4 250.1 |

| A6 | 32 32 42.8 37.1 335.7 333.4 |

| A7 | 36 36 56.6 53.7 365.4 429.3 |

| AB | 85 61 132.0 93.0 605.6 485.9 |

| A9 | 86 88 152.9 118.5 551.2 563.5 |

| ALO | 64 60 92.3 90.0 609.3 532.3 |

Table 2.4 In column I, the shortest path found
the average for each problem; ín column II,

path length;

number of nodes expanded (only over the solved
problems).

and in column III, the average

Start

24
20 19
15 14
10 9

5 4

Front

Nodes

Nodes

node

23 22 21
18 17 16
13 12 11

8 7 6
3 2 1

length 75.
visited 6896.
expanded 2671.

Goal node

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20
21 22 23 24

Solution path length 340 (177+163).
Solution time 1130 cpu sec (C.D.C.).

Table 2.5 A 24-puzzle example with the solution
characteristics.

„45

2.46

6. Open problems and loose ends

BHFFA2 can be further simplified by not calculating the

heuristic distance to every node in the opposite front but only to the

better half or even fewer of them. This idea is inspired by the fact

that, in the limited number of cases where we checked it, a node

realized its minimum nearly always in a node which belonged to the

best ten of the opposite front. Another simplification would be to

delete the resequencing of the opposite front as the consequence of

adding a node to a front. The sensitivity of the solution quality to

these attempts to reduce the computation time, needs still to be

tested.

A crude solution to the costs of calculating the heuristic

distances to all nodes of the opposite front may come from the rising

tide of multi-processors. One may even expect that with an unlimited

number of processors available, a solution may be found twice as fast

when working from both ends.

ACKNOWLEDGEMENT. Discussions with Ira Pohl, when he was a

Visiting Lecturer at the Vrije Universiteit, are appreciated.

The coding of the implementation was done by Marleen Sint.

Mr M. Taunton and dr T.B. Boffey of the University of Liverpool

notified us in June 1979 about the incorrectness of the BHFFA

algorithm as presented in [17].

SUBSTITUTION IN LISP

1. Introduction

LISP is one of the oldest languages around emerging like FORTRAN

at the end of the fifties. But here the resemblance ends. The most

obvious difference between the two languages is that FORTRAN programs

need to be compiled while those of LISP are mostly interpreted.

Because of the inefficiency of interpretation the latter are not

likely to be used in a production environment. In a research

environment, on the other hand, not needing the intermediate step of

compilation adds up to an attractive advantage and here LISP

flourishes. One proviso must be made however: numerical operations can

be done in LISP but when long calculations have to be done, FORTRAN is

to be preferred. LISP is effective for non-numerical symbol

manipulation, where the processing is not a matter of depth but of

breadth.

A unique feature of LISP is its incremental character. For other

computer languages, there is an urge to standardize. Not so in LISP.

Certainly, every LISP implementation will contain a core of basic

functions but every implementation also contains functions which might

be available in most other implementations but not necessary to all,

and there may even be functions which are unique to a particular

implementation. Contrary to what one might expect, there is no mob in

the LISP community promoting standardization, the reason being that

missing functions can always easily be simulated by user-provided

functions. There is more incrementality. Most LISP implementations are

accompanied by compilers which allow selective compilation of parts of

LISP programs. Thus it is possible to have both the advantages of

compilation and of interpretation. Programming is easy in a high level

language like LISP and inefficiency can be reduced by spotting the

code where control resides most of the time - often a small part of

the total code — and subsequently compiling that part. 2 rymon.. teat

Sometimes LISP compilers produce intermediate assembler code in

a language which is also available to the programmer making more

optimization possible. Stated otherwise: the user has a tool to extend

LISP according to his personal needs. A further step is the addition

to the standard LISP repertoire of new functions, thus making them

available to every user. In this fashion, LISP grew during the last 20

years from an initial 80 built-in functions to the approximately 600

functions that are available in INTERLISP.

In this chapter, we shall describe the fare of SUBSTAD, a

substitution function, as added to the repertoire of a LISP

implementation. The aim of this addition was to increase the

efficiency of the theorem prover described in the next chapter. This

operation in turn led to an optimization of the core procedure, the

unification algorithm. We had noticed that the originally implemented
_—

version of this general pattern matcher generated a lot of garbage and

accounted for a large measure of unnecessary condition-testing

resulting from the generality of the employed SUBST substitution

function. By tailoring a substitution function and slightly changing

the unification algorithm, we have realized savings in the unification

procedure.

We have developed two versions of the SUBSTAD function. The

first and more complicated one, uses pointer-reversal instead of

recursion, which would have been the more obvious method since the

data have a recursive structure == trees of arbitrary depth. Of

course, we still have disguised recursion since the stack is

dynamically constructed inside the data. Later we realized that this

pointer reversal technique is only worthwhile when the tree depth is

so large that the stack may overflow. Marking during garbage

collection is a typical example where this pointer reversal technique

is appropriate. Other operations, however are always recursively

implemented, using the stack, and there is no particular reason why

substitution should be an exception. Therefore the second, faster

version is a mixture of recursion and iteration.

3.3

Both versions are interesting from the perspective of program

verification because they both are designed with support functions

having side effects the most tricky of which is the e pointer-reversal
Ln een sedans, nnn

version. In order to verify both versions we have chosen the method of

symbolic execution [44,22]. In brief, this method requires the

addition of input/output descriptions to the program code and of
Ne ren

invariants to each loop. Subsequently the code must be executed with

symbolic input values conforming to the input specifications,

producing a symbolic value for every branch through the code for which

the output condition has to be verified, “manually” or with a theorem

prover. Analogous to the EFFIGY-program, which symbolically interprets

PL/1 style programs [44], we have developed a symbolic interpreter for

a subset of LISP, that includes the primitives used in several SUBSTAD

‘versions. This interpreter is an indispensable tool for obtaining

rigorous proofs. It automatically deals with many petty details doing

all the book-keeping while simultaneously following the different

branches of the computation tree.

We must admit that verifying these “small” versions was a

non-trivial task, in spite of this sophisticated tool (and having

available a theorem prover - the one partly described in chapter 4 -

which could automatically decide many verification conditions).

Specifying the input/output conditions and the loop invariants and

defining the (specific !) properties of the intermediate data

structures requires a formalism more than a hundred (estimated) times

as long as the mere code in the case of the pointer reversal SUBSTAD

function.

For this reason we are sympathetic to the point raised in [23]

that program verification is (as yet) unworkable (we consider

non-formalized input/output specifications and informal proofs

irrelevant, since it is precisely in the fine points that bugs are

hiding.) Nevertheless, we do not agree with their conclusion that

program verification will remain forever an illusion. We wish with

good reasons that research in this field will be continued.
enge

-_

In a previous publication [13] we reported some magnificent

results obtained by comparing unification algorithms using SUBSTAD

versus SUBST. Two years later, it turned out that the results were

biased by a bug in the machine implementation of SUBST. This bug must

have been slumbering for at least 5, if not more than 10, years. The

total LISP interpreter is “gigantic”, about 14000 lines of assembler

code. It consists of a large number of small packages for which, in

most cases, small equivalent formulations exist in LISP code. Although

no easy task, it is certainly not inconceivable, as suggested in [23],

that these LISP formulations can be rigorously verified. A compiler

(and an optimizer) would subsequently produce faultless code. Greater

justification lies in the realization that this bug in SUBST was not

the only one in the interpreter. In fact, we have devoted about 10% of

our time during the last five years to debugging the LISP interpreter

(not to mention the time lost due to errors in the operating system).

At the same time we are ill at ease with the tools developed by

the theoreticians of program verification (for an overview of this

subject, see [38,39]). The languages developed (Dynamic Logic, etc.)

abstract away from real application, concern toy-like programming

languages and tend to be seen as interesting objects in themselves.

The proliferation of notations used does not make it any easier to

remain sympathetic to these efforts.

We feel closer to concrete efforts, such as the one expounded in

[84] to verify the correctness of the Schorr-Waite marking algorithm

[77], which also works with pointer reversals. On the one hand, this

algorithm is more complicated since cyclic data structures are

allowed. On the other hand, the side effects in our program are more

complicated than the side effects of just marking accessible

structures. Another difference is that Topor is concerned with a

correctness proof of an algorithm instead of a program. Thus bugs

which would have otherwise been introduced by implementing the

algorithm into a concrete language will not be captured.

3.5

The proof itself is in the style one encounters in mathematics

books, so we hesitate to accept his statement "We believe however,

that the present proof is the first one which is rigorous, easy to

follow, and amenable to machine checking”. Indeed, the proof is

reasonable to follow but machine checking requires another level of

rigour, as we will illustrate with the many painstaking details in our
— ee _

own proof fragments. — rene

A radically different strategy to verify pointer reversal

marking and copying algorithms is given in [48]. They begin with a

definition of marking in set-theory language, deliberately ignoring

most aspects of control and efficiency. Subsequently, they give an

informal correctness proof of this “archetypical” algorithm which is

gradually modified by the addition of more details and making more

commitments about control. They present those modifications with

general applicable transformations, suggesting that their faithfulness

need be demonstrated once only, and so reducing the verification

effort when they can be applied. However, the generality of these

transformation rules did not strike us as their main characteristic.

We consider their main contribution their ability to derive different

but related algorithms from one rudimentary algorithm. From the

perspective of machine verification, their correctness proofs were not

as rigorous as one would have desired.

In the next section we define several versions of the standard

substitution function SUBST, of recursive destructive substitution

functions and of a pointer-reversal destructive substitution function.

The subsequent section 3 gives the framework of verification of LISP

code by symbolic execution. This is then applied in section 4 to

several versions of the substitution functions. Section 5 gives the

results of experiments comparing SUBST with the recursive destructive

SUBSTAD, and the results obtained by equipping a unification algorithm

with SUBSTAD.

2. Substitution Functions

We will describe the different functions primarily by giving

their coding in elementary LISP functions, since we assume familiarity

with that language. To pave the way for the symbolic evaluator, to be

described in the next section, we summarize the basic characteristics

of LISP: |
- The syntax is in preorder Polish notation, e.g. atb is coded as

(PLUS A B); sometimes (+ A B) is also allowed;

- The data objects are mostly trees, called S-expressions, having two

branches at non-terminal nodes, while a terminal node, also called

an atom, can be a number or a string; however, cycles leading to

directed bi-graphs - each non-terminal node has exactly two

out-going edges — are also allowed;

- The parameter passing is call-by-reference with either (1)

evaluation of the parameters from left to right and passing the

pointers thus obtained to the calling function, which happens with

functions like CAR, CDR, CONS, EQ, EQUAL, RPLACA, RPLACD; or (2)

non-evaluation of the parameters and passing their pointers to the

calling function, for instance with COND, SETQ, QUOTE, PROG. In this

case, the calling function itself can decide when to evaluate

arguments. The examples given above pertain to built-in functions

but user functions can also have either of these parameter

mechanisms. Since the LISP repertoire contains the function EVAL,

the evaluation of arguments can range from complete and automatic to

arbitrary selective.

- User functions are accessible as S-expressions (and it is even

possible to construct dynamically new functions to be executed in

the same run). This feature makes it easy to program a symbolic

evaluator for LISP code in LISP. Eventually, one might even attempt

to have the verifier verify itself. Of course, a positive outcome is

only to be trusted when the verifier is in fact correct.

- There is an “unlimited” number of free cells available for CONS-ing

up, tree structures (or constructing bi-graphs).

3.7

Most built-in functions can be expanded as compositions made up

of a small set of core functions. As a warming-up we give the

expansion of the function EQUAL, which returns T iff its two arguments

are trees of the same form and have identical terminal nodes at

corresponding leaf positions, and NIL otherwise (text between question

marks is comment):

(EQUAL(LAMBDA(S1 S2) (COND

((EQ Sl $2)T)
((ATOM S1)NIL)

((ATOM S2)NIL)

((EQUAL(CAR S1)(CAR S2))

(EQUAL(CDR S1)(CDR S2)))

(T NIL)
))) 2end of EQUAL?

We have noted already that there is no standard LISP. The example

above shows we assume that EQ will not hiccup when non-atomic

arguments are given. It is supposed to be generalized in such a way

that it can recognize whether two arguments have identical “addresses”

and thus need not be descended all the way down to their leaves.

Otherwise the first two lines of the COND-ition would have to be

replaced by the more clumsy formulation:

((ATOM S1)
(COND((ATOM S2)(EQ S1 S2))

(T NIL)))

Now we are ready for the standard version of SUBST:

(SUBST(LAMBDA(S1 S2 S3)(COND

((EQUAL S2 S3)S1)

((ATOM S3)S3)

(T(CONS(SUBST Sl S2(CAR S3))

(SUBST Sl S2(CDR S3))))

)))?end of SUBST?

which can be phrased as follows: replace in S3 every subtree watch ie,

EQUAL to S2 by Sl (and do not destroy S3)., sak ap im DMA
yw | ni BA . Are Ww

1A x AY | uO}
\ \ x

This version eats up three times as much stack space as
Se

necessary. The next version using the support function SUBSTSUPF1

remedies this fault:

(SUBST(LAMBDA(S1 S2 S3)(SUBSTSUPF1 S3)))

(SUBSTSUPF1 (LAMBDA(S3) (COND
((EQUAL S2 S3)S1)
((ATOM S3)S3) D
(T(CONS(SUBSTSUPFI (CAR S3)) 4 | A

(SUBSTSUPF1(CDR S3)))) t!
)))?end of SUBSTSUPF1? | Ae”

Another nasty property is still present in thís version. It copies all

of the non affected S3, even when no substitutions are performed. With

a little additional computational effort, thys space consumption can

be curbed, saving garbage collection conpurgeton later on. In the next

version, CONS-ing happens only when a change occurred ín aA subtree

(using as a check the liberated EQ / function (!) and using the

auxiliary variable X for saving intermediate results):

(SUBSTSUPF2 (LAMBDA(S3) (PROG(X) (RETURN(COND

((EQUAL $2 S3)S1)
((ATOM S3)S3)
((EQ(CAR S3)(SETQ X(SUBSTSUPF2(CAR S3))))

(COND((EQ(CDR S3)(SETQ X(SUBSTSUPF2(CDR S3))))S3)
(T(CONS(CAR S3)X))))

(T(CONS X(SUBSTSUPF2(CDR S3))))

))))) 2end of SUBSTSUPF2?

We now switch to the non-copying, destructive substitution

functions. In these functions, only non-numeric atoms are allowed as

their second argument, because that is how substitutions are mostly

used in applications. This restriction allows us to remove the

EQUAL-testing on the inside of the S3-tree. The definition function is

formulated with a support function.

(SUBSTAD(LAMBDA(S1 LAT $3) (COND

((NOT(ATOM LAT))

(EXIT with an error))
((NUMBERP LAT)

(EXIT with an error))
((ATOM 53)
(COND((EQ LAT S3)S1)

(T S3)))
(T(SUBSTAD1 S3)S3)

)))?end of SUBSTAD?

(SUBSTAD1(LAMBDA(S3) (PROG2

(COND((ATOM(CAR S3))

(COND((EQ LAT(CAR S3))(RPLACA S3 S1))))

(T(SUBSTADI(CAR 53))))

(COND((ATOM(CDR S3))

(COND((EQ LAT(CDR S3))(RPLACD S3 S1))))

(T(SUBSTADI(CDR S3))))
)))?end of recursive SUBSTAD1?

The quintessence of this support function is that it works by side

effect. It does not need to return a significant value because at the

top level SUBSTAD still “knows” the root of the S3-tree.

The next version capitalizes on this feature by throwing out the

recursion on the CDR-branch, while another small modification reduces

CAR/CDR-actions:

(SUBSTAD2(LAMBDA(S3) (PROG(HH)

AGAIN

(COND((ATOM(SETQ HH(CAR $3)))
(COND((EQ LAT HH)(RPLACA S3 S1))))

(T(SUBSTAD2 HH)))

(COND((ATOM(SETQ HH(CDR S3)))

(COND((EQ LAT HH)(RPLACD S3 S1))))

(T(SETQ $3 HH)
(GO AGAIN)))

)))?end of half recursive/iterative SUBSTAD2?

It would of course also have been possible to maintain recursion on

the CDR-branch and to throw out CAR-branch recursion. Measurements in

practice however, have shown that the atom/list ratio for the CAR was

1.33, while this ratio for the CDR was 0.37 [21]. Consequently the

choice embodied in SUBSTAD2 reduces stack usage.

The next version of the support function for SUBSTAD is

radically different since it uses pointer reversal.

3.10

(SUBSTADP(LAMBDA(S3) (PROG(EX HH)

L2

L4

L5

(SETQ EX $) /1

(SETQ HH(CAR S3))

(COND((NOT(ATOM HH)) /2
(MARK S3 1) /3
(RPLACA S3 EX) /4

(SETQ EX S3)
(SETQ S3 HH)
(GO L2))

((EQ LAT HH)(RPLACA S3 S1))) /5

(SETQ HH(CDR S3))
(COND((ATOM HH)) /6

((NOT(EQ EX $)) /7
(RPLACD S3 EX)
(SETQ EX $3)
(SETQ S3 HH) /8
(GO L2))

(T(SETQ S3 HH) /8
(GO L2)))

(COND((EQ LAT HH)(RPLACD S3 S1))) /9
(COND((EQ EX $)(RETURN))) /10

/11
(SETQ HH $3)
(SETQ S3 EX)
(COND((MARKB S3) /12

(MARK S3 0) /13
(SETQ EX(CAR S3)) /14
(RPLACA S3 HH)
(GO L4)))

(SETQ EX(CDR $3)) /15
(RPLACD S3 HH)
(GO L5)

))) ?end of the pointer reversal SUBSTADP?

(1)

(2)

The numbers after the slashes refer to the following comments:

$ should be an atom non-accessible by the user. In the initial S3
the CAR- respectively CDR-part, if these are non-atomic, will be
replaced by $ to indicate the end of a reversed pointer chain; see

also (7).
Go down along CAR if CAR is not atomic.

(3) A bit associated with memory cell S3 is temporarily turned on. If

(4)
(5)
(6)
(7)

(8)

there is no parallel garbage collection the garbage collection bit

can be used.
Store end of the chain or reversed pointer.
Replace CAR terminal if identical to LAT.
CAR part finished thus now inspect CDR part.
In case EX=S then the current S3 is the current top lying on the

CD...DR chain of the original input S3. Since SUBSTAD still
“knows” the root of the input S3 the reversed pointer chain will

not be extended. Thus after reaching the bottom of CD...DR°s. one

does not need to climb back and restore the original pointers. In
case EX is not equal to $, S3 is somewhere inside the CAR of the

current top and the reversed chain has to be extended.
Go down along CDR.

(9) Replace CDR terminal if identical to LAT.

(10) Quit if CD...DR°s terminal of original top is reached.

(11) Go up instead.

(12) MARKB returns T iff the mark bit of S3 is on, indicating that the

CDR-part still has to be treated.
(13) Set mark bit off.
(14) Restore original downward pointer.
(15) Go further up.

In the next section we develop the tools for the formal

verification of these functions.

3. 12

3. Verification of LISP Functions

Since we take the position that verification of programs should

be done rigorously or not at all, we have decided to develop a program

which could keep track of the many details that are involved when

checking all possible branches of computation trees. We have chosen

the method of symbolic execution because it guarantees that every

branch is visited and that all preconditions to operations are

considered. Hand simulation is so cumbersome that one is willing to

skip obvious checks, and it is of course exactly in these that bugs

hide. The program is by no means complete. Side effects as generated

by RPLACX (= RPLACA or RPLACD) are only provisionally dealt with.

Nonetheless the program shaped our ideas on the proper treatement of

side effects.

The method of symbolic execution requires the following:

== to have a language in which abstract states can be described;

-- to have a symbolic evaluator which embodies the semantics of the

built-in operators and which for every applicable operator from the

considered program language can transform one state configuration

into another faithfully describing the new situation; |

== to have a deductive component, which can confirm that preconditions

of operators are fulfilled, that loop invariants hold and that

specified output conditions are fulfilled for every computation

path through the code being verified.

3.1 The State Description Language

In order to facilitate the deductive requirements, the state

description language uses first-order predicate calculus. We start off

with a countable domain of cells C and a countable domain of atoms A,

where C and A are disjunct. Let D be their union: D=CUA. We will

have the partial functions:

== car and cdr, with domain C and range D; and

-- addr, with domain D and range N, the natural numbers.

We will have the partial predicate:

3.13

== atom with domain D, and which, where defined, coincides with the

characteristic predicate of A.

Using the addr-function, we define the relation eqa with:

(d)(e){ eqa(d,e) <--> addr(d)=addr(e) },

for d, e in D where addr is defined. It is easy to see that eqa is an

equivalence relation.

We will have the following axioms:

AXIOM 1.

(d)(e){ eqa(d,e) --> [atom (d) --> dze] },
for d, e in D; i.e. two elements of D are identical when they have the

same address and one of them is atomic.

AXIOM 2.

(d)(e){ [“atom(d) & eqa(d,e) &

car(d) = car(e) & cdr(d) = cdr(e)] -->

d=e };
for d, e in D. Observe that the former axiom ensures that e is also

non~atomic. This axiom says that two elements of D are identical, when

they have the same address and their respective car°s and cdr°s are

identical. It precludes configurations similar to those found in

figure 3.1.

(LA Nn

Fig. 3.1. Axiom 2 prohibits p unidentical q.

DEFINITION.

A data object D, te an element of the power set of D:

1) with D, of finite size,

2) with c‚ and A, the elements of D, respectively in C and A,

3) with car(C,) and cdr(C,) subsets of Dy and

4) with a unique element rinD,, the root of D,, which has the

property that all other members of D, can be reached from r by

finite car/cdr chains.

Alternatively each data object can be seen as a directed bi-graph with

a unique node from which all other nodes can be reached along the

directed edges.

From now on we mention data objects by referring to their roots.

Recursive definitions on data objects run the risk of being

undefined due to infinite regress because data objects may contain

cycles - a cell which reaches itself along a car/cdr chain. The

finiteness of data objects is the way out of this problem. Most

recursive definitions we will give in the sequel, apply to data

objects that have the special format of a tree. The generalization for

some of them will be given in the appendix to this chapter.

Recursive definitions on trees invoke in proofs an appeal to the

so-called car/cdr induction. Whenever a formula P(x) reduces to a

formula P(car(x)) and/or P(cdr(x)) then car/cdr induction allows the

conclusion that P(x) has been inferred. This is justified by the

observation that a well founded relation can be constructed (mostly

the number of reachable cells from x) which decreases on each

recursive reference. A similar trick requiring somewhat more care

applies on recursive definitions in which non-tree type of arguments

are also allowed.

Since we are dealing with partially defined functions and

predicates we frequently require a selective reading of the logical

connectives. For example an implication P --> Q, we take to be true

when P is false, although the falseness of P renders Q in fact

undefined, such as in “atom(x) --> car(x)=y.

Next we give definitions of the predicates partof and loopfree.

The definition of partof works only on trees. The appendix contains a

generalization to arbitrary data objects (& is the conjunction

connective):

(d)(e){ partof(d,e) <-->
[partofcar(d,e) OR partofcdr(d,e)] }

(d)(e){ partofcar(d,e) <-->
[~atom(e) &

(d=car(e) OR partof(d,car(e)))] }

(d)(e){ partofedr(d,e) <-->
[~atom(e) &

(d=cdr(e) OR partof(d,cdr(e)))] }

(d){ loopfree(d) <--> loopfreel(d,0) }

(d)(V){ loopfreel(d,V) <-->
[atom(d) OR

{ “(d in V) &
loopfreel(car(d),{d} U V) &
loopfreel(cdr(d),{d} U V) }] }.

The expression partof(d,e) signifies that the data object e contains a

cell or atom identical to the root of d. Loopfree defines the property

that a data object does not contain a cycle.

„15

„16

Figure 3.2 shows data objects p and q for which simultaneously

partof(p,q) and partof(q,p).

Fig. 3.2. For p and q we have partof(p,q) as well as partof(q,p).

We continue with the definition of the equal-predicate for cycle

free data objects:

(d)(e){ equal(d,e) <-->
[d = e OR

(“atom(d) & ~atom(e) &
equal(car(d),car(e)) &

equal(cdr(d),cdr(e)))] }.

When we assume that p and q in fig. 3.1 do have different addr’s then

we have an example of two non-identical data objects p and q for which

still equal(p,q) holds.

DEFINITION.

A state deseription ie a conjunction of faete referring to a finite

number of data objects, always containing the data objects nil and t,

corresponding with NIL and T, members of A for which holde:

atom(nil), atom(t) and ~(t=nil).

A state description may refer to “virtual” data objects, which

are inherited from former state descriptions but no longer exist. We

now define the compatability of two data objects (not containing

cycles) a property which implies that they can co-exist:

3.17

(d)(e){ compatible(d,e) <-->
[atom(d) OR atom(e) OR

(eqa(d,e) & d=e) OR

(~eqa(d,e) &

compatible(d,car(e)) & compatible(d,cdr(e)) &
compatible(car(d),e) & compatible(cdr(d),e))]}.

In other words, d and e are compatible when they do not contain cells

having the same address unless those cells are identical. When two

data objects are non-compatible at least one must be virtual. The

appendix contains the generalization of compatible which allows

arguments having cycles.

The RPLACX operations are responsible for “killing” data objects

which then become virtual.

DEFINITION.

An alist ts a finite liet of pairs (Cajsrj), <<, (apsr,)) with a,

atoms unequal nil and Ty the roots of data objects, and for each pair

Ty, Ty we have; compatible(r;,r;)-

The alist (= association list) contains the current bindings of

the atoms. A data object is virtual with respect to an alist if it is

non-compatible with an r,; from that alist. An atom may occur more than

once as a lefthand side of a pair, which may happen for instance as a

consequence of recursion. LISP functions retrieve and update leftmost

occurrences. Side effects may propagate to the right in the alist.

Extensions and contractions, as a consequence of entering a

respectively higher and lower stack level, also occur at the lefthand

side.

DEFINITION.

A state configuration ts a pair (AL,FL) with AL an aliet and FL a

state description. Atomicity of nil, t and all atoms (i.e. lefthand

side of pairs) on the alist is implicitly a part of the FL, which

embodies the current fact list.

3.18

Example 1. When AL contains only one pair (Al.rl) and FL is

empty [the fact atom(Al) is implicitly given] then (AL,FL) is a state

configuration because the compatible-requirement is trivially

fulfilled.

Example 2. If AL = ((Al.rl)(A2.r2)) and

FL = “atom(rl) & eqa(rl,r2) & car(rl)=nil & car(r2)=rl

then (AL,FL) is not a state configuration because the requirement

rl=r2 cannot be fulfilled.

Example 3. If AL = ((Al.rl)) and

FL = “atom(rl) & eqa(rl,r2) & car(rl)=nil & car(r2)=rl

then (AL,FL) is a state configuration because the compatibility

requirement is automatically fulfilled. The data object r2 is virtual

since we have eqa(rl,r2), atom(car(rl)) and “atom(car(r2)), which

excludes rl=r2.

3.2 The Symbolic Evaluator

The symbolic evaluator generates, when given LISP-code and a

state configuration, a tree of state configurations, corresponding to

all possible computation paths through the code. The symbolic

evaluator works like a real LISP evaluator. It has a code pointer,

corresponding to a program counter, pointing to that part of the code

which has to be executed, it contains modules which correspond to

built-in LISP functions and it knows what to do with user defined

functions.

A non-numerical atomic form is evaluated by retrieving the most

recent (leftmost) binding from the current alist.

For built-in functions, the recipe consists of checking whether

preconditions, parametrized for the current arguments, are fulfilled;

when the check succeeds, the state configuration is updated. An

exception is made when treating the COND-function since this function

leads to the generation of one or more bifurcations of the current

3.19

State configuration. The correctness of a bifurcation (satisfiability

of a test expression and its negation) is not proven by means of the

deduction machinery but by the construction or availability of two

models that possess opposite truth values with respect to the test

expression and that are both consistent with the current state

configuration. A simple technique for constructing these models ís to

let the user provide several examples, which are processed

concurrently with the symbolic input specification for the code. The

models also play another role, as will be explained in the sequel. We

will see that testing by running examples and formal verification

should not be considered as two mutually exclusive methods. They must

go hand in hand.

User provided functions have to be accompanied by input

conditions which should be fulfilled before the function is entered,

and by an output assertion which is the description of how the state

configuration ought to be updated in terms of the actual argument

bindings in the context (a function with side effect needs in addition

a procedure (!) for updating the alist, see the sequel). The user

should indicate for each user function whether he also wishes it to be

verified in which case he will have to provide its body, to allow

“opening” it. For obvious reasons recursive user functions will be

opened no more than once. A well-founded relation, user provided,

should be used when verifying that arguments of a recursive call score

less with respect to that well-founded relation than the arguments at

the top level call. This was not implemented; the number of

non-terminal nodes in trees will be the well-founded relation for most

of the cases we will encounter.

Modules are implemented for the following subset of standard

LISP functions: ATOM, CAR, CDR, COND, CONS, EQ, EQUAL, GO, NOT, NULL,

PROG, PROGN, QUOTE, RETURN, RPLACA, RPLACD and SETQ. The functions

COND, GO, PROG, PROGN, QUOTE and SETQ are of type FSUBR, i.e.

evaluation of their arguments is to their own discretion. The other

functions have automatic - left to right — argument evaluation before

module-spécific actions are taken.

3.20

An essential requirement for the modules is that the

compatability property of state configurations is preserved. We have

to worry about RPLACA, RPLACD and SETQ because only those functions

affect the alist.

Here follows a description of some of these modules.

ATOM

Let the argument of ATOM evaluate to x. A new symbolic value will be

generated, say gl, which will be returned as the value, while the fact

list will be expanded with:

{ gl=t & atom(x) } OR { gl=nil & “atom(x) }.

The implemented version behaves differently for efficiency

reasons. It deals immediately with the atomicity of x. It returns t,

nil or generates a bifurcation of the current computation branch with

t in one branch and atom(x) is added to the fact list, while nil in

the other branch and “atom(x) added to the fact list belonging to that

branch. The first or second option is chosen when atomicity or

non-atomicity of x can easily be derived from the given fact list.

When this cannot be decided, the user is consulted. He may indicate

apart from t or nil that both possibilities are to be pursued in case

the current fact list does not determine the truth value of atom(x).

CAR (and analogously CDR)

Let the argument of CAR evaluate to x. In contrast with ATOM there is

a precondition check for CAR: “atom(x) should be derivable from the

current fact list. If that derivation succeeds then a new _ symbolic

value, say g2 is generated, which will be returned, and g2=car(x) will

be added to the fact list.

COND

This function leads to bifurcation(s) of the current computation

branch, as described for the implemented version of ATOM. See also the

remark above concerning the availability of models in which test

expressions have opposite truth values.

CONS

3.21

Let the arguments of CONS evaluate to x and y. A new symbolic value,

say g3, is generated and will be returned, while the fact list will be

extended with:

~atom(g3), car(g3)=x and cdr(g3)=y.

EQ

Let the arguments evaluate to x and y. Let g4 be a fresh symbolic

value, which will be returned. The fact list will be extended with:

{ g4=t & x=y } OR { g4=nil & “(xey) }.

A similar modification was made and implemented as described under

ATOM.

EQUAL

This module works in the same way as for EQ, but generates instead:

{ g5=t & equal(x,y) } OR { g5=nil & ~equal(x,y) }.

GO

We assume only backward jumps. The loop invariant, associated with the

label to which GO refers - provided by the user —- parametrized for the

current bindings, should be derivable from the current fact list. A

non-looping check, based on a well founded relation should also be

performed. After a jump the current computation branch can be ignored.

RPLACA (and analogously RPLACD)

Let the arguments of RPLACA evaluate to x and y. The precondition for

RPLACA is “atom(x). A new symbolic value, say g6, is generated, which

will be returned, and the fact list will be extended with:

eqa(x,g6), car(g6)=y and cdr(g6)=cdr(x).

The next step is updating the alist, possibly by adding more new facts

to the fact list, a necessary step since bindings on the alist

identical to x or “above” x are affected indirectly by the RPLACA

operation. Consequently a non-atomic binding zl, which is affected,

has to be replaced by a new binding z2 for which eqa(zl,z2) minimally

holds. In general, when a RPLACX operation causes xl to be replaced by

x2 then each binding on the alist yl, will be replaced by a fresh

binding y2, (unless it can be proven that the original binding is not

affected by the xl-x2 replacement, for instance with lemma 1 and lemma

2) while the fact list will grow with:

22

eqaupto(yl,y2,xl,x2),

which says y2 is identical with yl unless there is a substructure of

yl that is identical with xl. The predicate eqaupto is defined (for

non cyclic arguments) as:

(yl) (y2) (xl) (x2){ eqaupto(yl,y2,xl,x2) <-->
[eqa(yl,y2) &

{yl=xl --> y2=x2} &
{[~Cyl=xl) & ~atom(yl)] -->
[eqaupto(car(yl) ,car(y2),xl,x2) &
eqaupto(cdr(yl) ,cdr(y2),xl,x2) J}J}.

The definition of eqaupto that allows arguments with cycles is again

to be found in the appendix.

Remark: when the original binding yl is atomic then according to

axiom 1 the new binding y2 will be identical with yl, as can be

checked by opening the eqaupto definition.

When the replaced value x2 is identical with xl then the net

effect is nihil as expressed by:

LEMMA 1.

{xl=x2 & eqaupto(yl,y2,xl,x2)} --> yl=y2.

PROOF. According to the above remark we can exclude the case that yl

is atomic. Obviously we can also skip the case that yl=xl since we

then immediately obtain y2=x2=xl=yl. Thus we get:

eqaupto(car(yl),car(y2),xl,x2) and

eqaupto(cdr(yl) ,cdr(y2),x1l,x2).

Induction yields respectively car(yl)=car(y2) and cdr(yl)=cdr(y2).

Together with eqa(yl,y2) and axiom 2 we obtain yl=y2. <<

LEMMA 2.

{~(xl=yl) & “partof(xl,yl) & eqaupto(yl,y2,xl,x2)} -->

yl=y2.

PROOF. Again we can skip the case that yl is atomic, and we can also

exclude xl=yl. Therefore we obtain:

eqaupto(car(yl),car(y2),xl,x2) and

eqaupto(cdr(yl) ,cdr(y2),x1l,x2),

while ~partof(xl,yl) yields:

3.23

~(xl=car(yl)) & ~partof(xl,car(yl)) &

~(xl=cdr(yl)) & ~partof(xl,cdr(yl)).

Induction settles, as in lemma 1, with axiom 2 the consequence. <<

These lemmas can be used to curb updating activities.

An essential requirement for the symbolic evaluator and

therefore for its modules, is that it preserves the compatability of

the alist bindings. Up to RPLACX we did not have to worry about this

property being violated, since the alist was not modified. The next

theorem ensures that an updated alist inherits compatability from the

former alist when an RPLACX induced modification occurs.

THEOREM 1. Let yl and zl be old bindings which are respectively

replaced by y2 and z2 due to an RPLACX-operation causing xl to be

changed into x2, thus with eqa(xl,x2), then compatible(yl,zl),

eqaupto(yl,y2,xl,x2) and eqaupto(zl,z2,x1,x2) implies

compatible(y2,z2).

PROOF. Although we can give a precise formal proof here we prefer a

“loose” one. The property compatible(yl,zl) says that when two cells p

and q are reachable from respectively yl and zl and for them holds

eqa(p,q), then they must be identical, p=q. Suppose that we have such

a pair (p,q) which is affected by an RPLACX-operation, causing xl to

be replaced by x2. Let p” and q° be the cells that replace

respectively the cells p and q. Obviously we have p°=q"° and therefore

the property compatible(y2,z2) is secured. <<

Remark: Theorem 1 holds also for bindings possibly containing

cycles.

SETQ

Let the second argument evaluate to x. The precondition for SETQ is

that the non-evaluated first argument is atomic, say A. The binding of

the leftmost occurrence of A on the alist will be replaced by x. If A

does not occur on the alist - which only makes sense when A is a

globally accessible variable — then (A.x) will be added to the

righthand side of the alist. Preservation of alist-compatability is

3.24

ensured when the evaluation of the second argument yields a value

compatible with the current bindings, i.e when the values produced by

the built-in and user functions yield compatible results. Above, we

treated the least obvious RPLACX, of the built-in functions. In the

sequel, we treat a most troublesome class of user functions in a

similar vein.

The modules not described trigger obvious updatings.

System and user functions which generate RPLACX-type side

effects will have even more complicated alist updating schemes than

the one given above for RPLACX. To show what is involved, we give an

example of a side effect generated by the system function NCONC. This

function concatenates two S-expressions by destructively modifying its

first argument, using the function RPLACD.

Suppose we execute (NCONC LIS Sl), where the bindings of LIS and

Sl are respectively lis and sl. The rightmost leaf of Sl, which must

be NIL, will be replaced by a pointer to its second argument Sl.

In figure 3.3, bindings for Al and A2, al and a2, are introduced

with al “above” lis and a2 referring to a cell on the “spine” of lis.

The bindings of Al and A2 are affected by the (NCONC LIS Sl) action

for these particular choices of lis, al and a2.

3.25

ELN "2 DN

j
a
n

E
n

Í v

lis

NIL |, | |

Fig. 3.3. When Aj» Ay, LIS, S, are bound to aj, ag, lis, sj then
(NCONC LIS S1) affects the bindings of A; and Ag.

We will describe an alist update scheme for a class of side

effect generating functions, including NCONC, EFFACE and our SUBSTAD

support functions SUBSTAD1 and SUBSTAD2. It applies to those functions

which cause replacement of a cell, say xl, by a cell, say x2, (thus we

have eqa(xl,x2)).

Every binding, zl, on the alist will be replaced by a fresh

binding, z2, and the fact list will be expanded with:

transf(zl,z2,x1l,x2).

The predicate transf and its supporting predicate trl and tr2 works by

double recursion. First, it is checked whether zl is identical with

xl, or — using trl — identical with a cell reachable from xl. If the

trl-case applies then the predicate tr2 is invoked to relate zl and

z2. Second, when zl is not identical with xl or a subcell of xl then

transf is called recursively to test whether subcells of zl are

3.26

affected by the xl-x2 replacement.

The predicate transf is defined (for non cyclic arguments) as:

(yl) (y2)(«1)(«2){ transf(yl,y2,xl,x2) <-->

[eqa(yl,y2) &
{xl=yl --> y2=x2} &
{[“atom(yl) & ~(xl=yl) & trl(yl,xl,x2)] -->
tr2(yl,y2,xl,x2)} &

{[“atom(yl) & ~(xl=yl) & ~trl(yl,xl,x2)] -->
[transf(car(yl) ,car(y2),xl,x2) &
transf(cdr(yl) ,cdr(y2) ,xl,x2)J}]},

with trl defined as:

(yl) (x1) (x2){ trl(yl,xl,x2) <-->
[“atom(xl) &

eqa(xl,x2) &
{yl=xl OR
trl(yl,car(xl),car(x2)) OR
trl(yl,cdr(xl) ,cdr(x2))}]}, and

and with tr2 defined as:

(yl) (y2)(x1)(x2){ tr2(yl,y2,xl,x2) <-->
[{yl=xl --> y2=x2} &
{~(yl=xl) -->
[{trl(yl,car(xl),car(x2)) -->
tr2(yl,y2,car(xl),car(x2))} &

{trl(yl,cdr(xl) ,cdr(x2)) -->

tr2(yl,y2,cdr(xl),cdr(x2))}]}]}.

The meaning of the transf(zl,z2,xl,x2) formula can be phrased as

follows: let yl be zl or a subcell of 1, let ul be xl or a subcell of

xl, while ul has been replaced by u2 (so u2 is identical wit. x2 or

with a subcell of x2), then, when yl is identical with ul, there is a

corresponding cell in z2, which is identical with u2. The

generalization of transf, trl and tr2 is to be found in the appendix.

In analogy with lemma 1 and lemma 2, we have:

LEMMA 3.

{xl=x2 & transf(yl,y2,xl,x2)} --> yl=y2.

PROOF. When yl is atomic then we need only to invoke axiom 1; when

xl=yl we are through also. Hence we can assume “atom(yl) and ~(xl=yl).

In case we have “trl(yl,xl,x2), we apply car/ cdr induction as in

lemma 1 and 2.

In case of trl(yl,xl,x2) the problem reduces to:

{~(xl=yl) & trl(yl,xl,x2) & tr2(yl,y2,xl,x2) & xl=x2} -->

yl=y2.

After opening trl(yl,xl,x2), we may assume w.l.o.g.:

trl(yl,car(xl),car(x2)),

while opening the tr2-formula gives:

tr2(yl,y2,car(xl),car(x2)).

Certainly, we also have: car(xl)=car(x2). When yl=car(xl), we can

easily get yl=y2 from the last tr2-formula. Thus the problem reduces

to:

{~(yl=car(xl) & trl(yl,car(xl),car(x2)) &

tr2(yl,y2,car(xl),car(x2)) & car(xl)=car(x2)} -->

yl=y2.

Car-induction settles this subproblem. <<

LEMMA 4.

[(z){[z=xl OR partof(z,xl)] -->

[~(z=yl) & ~partof(z,yl)]} &

transf(yl,y2,xl,x2)] -->

yl=y2.

PROOF. The reasoning is analogous to the proof of lemma 3. <<

Invariance of the compatible-requirement for the alist is seen

Fe
THEOREM 2. Let yl and zl be old bindings which are respectively

replaced by y2 and z2 due to a side-effect operation causing xl to be

changed into x2, thus with eqa(xl,x2), then compatible(yl,zl),

transf(yl,y2,xl,x2) and transf(zl,z2,xl,x2) implies compatible(y2,z2).

PROOF. Case reasoning and induction on the structures of yl, y2, zl

and z2 along the lines of the proof of theorem 1. <<

‚28

Remark: Theorem 2 also holds when the bindings contain cycles.

The limitations of this updating scheme can be seen from the

function NCONC2, defined as:

(NCONC2 (LAMBDA(LIS1 LIS2 $1)

(NCONC LISI(NCONC LIS2 S1))))

A binding referring to the “spine” of the input binding of LIS2 cannot

be recognized and therefore will not be updated, even though it is no

longer up to date.

Apparantly, we cannot avoid the conclusion that the user must be

given the option of specifying for a function causing side-effects, a

specific alist updating mechanism. The latter increments’ the

verification burden since the compatible-requirement for the updated

alist will have to be shown. Updated bindings which are in fact

non-affected need potentially complicated proofs to show their

invariance. In the face of these complications, one can hear the siren

call to extend the PC with a formalism embodying

“oldbinding=newbinding provided consistency of this assumption” [79].

3.3 Tre Deductive Machinery

It must be clear from the description above that deductive

machinery is the backbone of program verification. Preconditions from

system and user functions as well as loop invariants and output

assertions need to be deduced.

A code verification program is best designed with two

cooperating components: a language specific verification condition

generator and a general deductive component (possibly implemented only

as an interactive request to the user). The interaction between the

verification condition generator and the deductive component, when

accomplished by throwing the fact list and the conjecture at the

deductive component, is conceptually nice and an easy task for the

generator. From the perspective of the deduction component, it must be

considered minimal. A cross-indexed structure would already simplify

3.29

searches for matings. Direct availability of redundant knowledge,

concerning for instance virtualness of data objects, may prevent the

attack of hopeless subgoals. For further discussion on the necessity

of non-minimal problem specifications, see the next chapter.

Since general deductive machines are fairly weak, it pays to

give the deduction component language specific knowledge. In our case,

it is of great help to have a procedural “watch dog” for car/cdr

induction when recursive definitions are expanded. This conforms with

the methodology of distributing deductive power over separate,

cooperating, procedural specialists.

Furthermore, it is advisable to build some simple deductive

knowledge, specific for LISP, into the precondition check generators.

An obvious tactic is to check for membership in the fact list when a

verification condition is a simple literal formula.

We end this section with an example showing that a deductive

specialist which selectively opens recursive definitions simplifies

proofs.

Assume that the EQUAL function of section 2 is a user defined

function instead of a system function. It would not have preconditions

since there are no restrictions on the two arguments. Suppose the

arguments evaluate to x and y and out ‘s the value returned by EQUAL.

We now have to check for every path through the EQUAL code:

{ out=t & equal(x,y) } OR { out=nil & ~equal(x,y) }.

We repeat the EQUAL definition:

(EQUAL(LAMBDA(S1 S2)(COND

((EQ Sl S2)T)
((ATOM S1)NIL)
((ATOM S2)NIL)
((EQUAL(CAR S1)(CAR S2))
(EQUAL(CDR $1)(CDR S2)))

(T NIL)

))) ?end of equal?

The alist for all paths will be:

((Sl.x)(S2.y)).

3 - 30

Path 1. This path will be taken when the first test expression

(EQ Sl S2) is assumed to return T. As a consequence, the fact list

will have been expanded with x=y. EQUAL will return with T, which

leads to the substitution of t for out, yielding as output assertion

to be checked:

{ t=t & equal(x,y) } OR { t=nil & ~equal(x,y) }.

As a consequence of ~(t=nil), there is no hope that the second part of

the disjunction can play a role. So we have to prove:

x=y ==> { t=t & equal(x,y) }.

The first subproblem is trivial and remains:

x=y ==> equal(x,y).

Opening up equal(x,y) gives:

x=y --> { x=y OR

[~atom(x) & “atom(y) &

equal(car(x),car(y)) &

equal(cdr(x),cdr(y)) J},

which is obviously correct.

Path 2. Since path 1 is not chosen, the fact list will have been

expanded with ~(x=y), due to (EQ Sl S2)=NIL, and with atom(x), due to

(ATOM SI)=T. EQUAL returns with NIL, so we have to deal with:

[atom(x) & ~(xy)] ==>

[{ nil=t & equal(x,y) } OR { nil=nil & ~equal(x,y) }].

For the same reasons as above, we better try:

[atom(x) & ~(x=y)] --> ~equal(x,y),

or after expansion:

[atom(x) & ~(xy)] ==>

~{ x=y OR

[~atom(x) & “atom(y) &

equal(car(x),car(y)) &

equal(cdr(x),cdr(y)) J},

or after working the negation inwards:

[atom(x) & ~(x=y)] ==>

{ Gey) &

[atom(x) OR atom(y) OR

~equal(car(x),car(y)) OR

~equal(cdr(x),cdr(y)) J}.

This again is correct.

3.31

Path 3. This requires proving:

[atom(y) & “atom(x) & “(x=y)] -->

[{ nil=t & equal(x,y) } OR { nil=nil & ~equal(x,y) }].

This is analogous as in path 2.

Path 4. This is the interesting case. EQUAL will return with

out2. The fact list will be:

(Ll) “Gey) & “atom(x) & “atom(y) &

[{ outl=t & equal(car(x),car(y)) } OR

{ outl=nil & ~equal(car(x),car(y)) }] & outl=t &

[{ out2=t & equal(cdr(x),cdr(y)) } OR

{ out2=nil & ~equal(cdr(x),cdr(y)) }].

The symbolic evaluator when confronted with the code:

(EQUAL(CAR S1)(CAR S2))

will recognize that the function EQUAL is under consideration and

should not be opened again. As argued before, it takes for granted

that {(CAR Sl) (CAR S2)} is “less” than {Sl S2} according to some well

ordered relation. The output assertion parametrized for the current

arguments will then be added to the fact list. The recursive call on

the CDR°s is treated similarly. The instantiated output assertion will

be:

(II) { out2=t & equal(x,y) } OR { out2=nil & ~equal(x,y) }.

We have to show: (1) ==> (II).

First we simplify (I) to:

~(x=y) & “atom(x) & “atom(y) &

equal(car(x),car(y)) &

[{ out2=t & equal(cdr(x),cdr(y)) } OR

{ out2=nil & ~equal(cdr(x),cdr(y)) }]-

Case reasoning with out2=t requires:

[“Gey) & “atom(x) & “atom(y) &

equal(car(x),car(y)) &

equal(cdr(x),cdr(y))] ==>

equal(x,y).

Expanding equal(x,y) leads to success.

The other case with out2=nil requires:

[“Gey) & “atom(x) & “atom(y) &

equal(car(x),car(y)) &

~equal(cdr(x) ,cdr(y))] -->

“equal(x,y).

Opening “equal(x,‚y) again and subsequently working ~ inwards settles

this case as well.

Path 5. The fact list will have grown to:

(I) “Gey) & “atom(x) & “atom(y) &

[{ outl=t & equal(car(x),car(y)) } OR

{ outl=nil & ~equal(car(x) ,cdr(y)) }] & outl=nil.

The instantiated output assertion will be:

(II) { nil=t & equal(x,y) } OR { nil=nil & ~equal(x,y) }.

Formula (1) simplifies to:

~(x=y) & “atom(x) & “atom(y) &

~equal(car(x) ,car(y)).

Formula (II) simplifies to: “equal(x,y). Expanding this formula and

working ~ inwards again settles this last path.

We expect the reader to be surprised by the great abundance of

detail, though much which is to be handled by a mechanical theorem

prover, has been omitted for such a simple example. In fact, we

suspect that most resolution type theorem provers would have already

been choked by the generation of garbage clauses when attempting the

path 4 check.

The phenomen has occurred several times above, and we have

observed it frequently elsewhere, that when say a disjunction P OR Q

has to be proven, the context allows one to prove a stronger result,

for instance P. The ability to recognize these situations simplifies

the task for blind-search deductive components. Models can be employed

for pinpointing essential parts of formulas. For example, when Sl is

bound to x and the evaluation of (CAR Sl) in an available environment

yields an error then the prover can concentrate on proving atom(x)

when it has to prove atom(x) OR car(x)=y.

4. Verification of the Substitution Functions

In this section, we will verify the substitution functions

SUBSTSUPF1, SUBSTSUPF2, SUBSTADI, SUBSTAD2 and SUBSTADP as defined in

section 2. They will not be treated in as much detail as was the case

for EQUAL in the former section. Rather, we will spell out only the

most interesting paths through the code since we feel that making the

deductions, although no trivial task, is not the most difficult.

Accurate formulation of the output assertions and loop invariants is

more challenging.

The proofs presented here for the functions SUBSTSUPFl and

SUBSTAD1 are basically transcriptions of the proofs constructed by the

symbolic evaluator and the deduction program. Although more laborious

we expect the proofs for SUBSTSUPF2 also to be in the realm of the

currently available deductive component. Extensions to be made to the

deduction complex to facilitate handling of the proofs for SUBSTAD2

are still conceivable. Mechanical proofs for SUBSTADP, the pointer

reversal version, have not been attempted due to the practical

infeasibility of formulating the general version of the loop

invariants.

4.1 SUBSTSUPF1

We begin with the free space gobbler SUBSTSUPF1 and repeat its

definition:

(SUBSTSUPF 1 (LAMBDA(S3) (COND

((EQUAL S2 S3)S1)

((ATOM S3)S3)

(T(CONS(SUBSTSUPF1(CAR S3))

(SUBSTSUPF1(CDR S3))))

)))-

There are no _ preconditions, it is only required that Sl, S2 and S3

have bindings on the alist, say

((Sl.vsl) (S2.vs2) (S3.vs3)).

The output assertion, assuming that the value returned will be out,

is:

replacedn(vsl,vs2,vs3,out),

where the predicate replacedn (replacement without destruction) is

.33

- 34

defined as:

(xl) (x2)(x3)(ot) {replacedn(xl,x2,x3,ot) <-->
[(equal(x2,x3) --> ot=xl) &

{(~equal(x2,x3) & atom(x3)) --> ot=x3} &
{(“equal(x2,x3) & ~atom(x3)) -->
(“atom(ot) &
replacedn(xl,x2,car(x3),car(ot)) &

replacedn(xl ,x2,cdr(x3),cdr(ot))) }] }.

That the proofs for the verification conditions corresponding to the

three distinct paths through the code are _ straightforward is a

consequence of the “isomorphism” between the code of the function

SUBSTSUPF1l and the definition of the predicate replacedn (as was the

case with EQUAL and equal). We confine ourselves to the third and most

interesting path.

As a consequence of not entering path 1 and 2, we have on the

fact list (after simplification):

“equal(vs2,vs3) & ~atom(vs3).

The first recursive CAR-call will return a value outl and will add to

the fact list:

va=car(vs3) & replacedn(vsl,vs2,va,outl).

The second recursive CDR-call will return a value out2 and will add:

vb=cdr(vs3) & replacedn(vsl,vs2,vb,out2).

Finally the CONS-call will return with out3 and will add:

“atom(out3) & car(out3)=outl & cdr(out3)=out2.

The value out3 will be returned by the toplevel SUBSTSUPF1 call and so

we need to verify:

replacedn(vsl,vs2,vs3,out3).

Opening this formula once generates three subproblems which can be

dealt with straightforwardly.

4.2 SUBSTSUPF2

The other support function SUBSTSUPF2 is more careful with free

Space consumption:

3.35

(SUBSTSUPF 2 (LAMBDA(S3) (PROG(X) (RETURN(COND
((EQUAL S2 S3)S1)
((ATOM S3)S3)

((EQ(CAR S3)(SETQ X(SUBSTSUPF2(CAR S3))))
(COND((EQ(CDR S3)(SETQ X(SUBSTSUPF2(CDR S3))))S3)

(T(CONS(CAR S3)X))))
(T(CONS X(SUBSTSUPF2(CDR S3))))

)))))-

We could state the output assertion of this function by again using

replacedn, but this would not acknowledge its more austere behavior. A

more subtle output assertion is:

replacedn2(vsl,vs2,vs3,out),

with replacedn2 defined as:

(x1)(x2)(x3)(ot){replacedn2(xl,x2,x3,ot) <-->
[(equal(x2,x3) --> ot=xl) &
{(~equal(x2,x3) & atom(x3)) --> ot=x3} &
{(~equal(x2,x3) & ~atom(x3) & ~occure(x2,x3)) -->
ot=x3} &

{(~equal(x2,x3) & ~atom(x3) & occure(x2,x3)) -->
(“atom(ot) &

replacedn2(xl,x2,car(x3),car(ot)) &
replacedn2(xl ,x2,cdr(x3),cdr(ot)))}]},

where occure is defined as:

(x2) (x3) {occure(x2,x3) <-->
(occurecar(x2,x3) OR occurecdr(x2,x3))},

and occurecar and occurecdr are defined as:

(x2) (x3) {occurecar(x2,x3) <-->
[~atom(x3) &
(equal(x2,car(x3)) OR occure(x2,car(x3)))]}, and

(x2) (x3) {occurecdr(x2,x3) <-->
[~atom(x3) &

(equal(x2,cdr(x3)) OR occure(x2,cdr(x3))) J}.

The predicate replacedn2 is like replacedn, but specifies in addition

that the “output” ot is identical to the “input” x3 when x2 does not

occur somewhere inside the car or the cdr of x3.

There are five paths through the code. We will concentrate on

path 3, where (EQ(CDR S3)...) evaluates to T, and path 5, on which

(CONS X(...)) gets evaluated.

3.36

Path 3. First we describe the situation after evaluation of

(EQ(CAR...)) and after assuming that its result was T. The alist will

contain a binding for X:

((X.vxl) (Sl.vsl) (S2.vs2) (S3.vs3)).

The fact list will be:

~equal(vs2,vs3) & ~atom(vs3) &

xa=car(vs3) & replacedn2(vsl,vs2,xa,vxl) & vxl=xa.

After evaluation of (EQ(CDR...)) and assuming again that its result is

T we get another binding for X, say vx2, and to the fact list will

have been added:

xd=cdr(vs3) & replacedn2(vsl,vs2,xd,vx2) & vx2=xd.

Since the value returned is vs3 we must infer:

replacedn2(vsl,vs2,vs3,vs3).

Opening this formula, using the definition of rplacedn2 yields four

subproblems:

(1) equal(vs2,vs3) --> vs3=vsl, this is trivially solved since the

negation of the premise belongs to the fact list;

(2) ~equal(vs2,vs3) & atom(vs3) --> vs3=vs3, this is obviously

correct;

(3) ~equal(vs2,vs3) & “atom(vs3) & ~occure(vs2,vs3) --> vs3=vs3, this

subproblem is also trivial;

(4) ~equal(vs2,vs3) & ~atom(vs3) & occure(vs2,vs3) -->

[~atom(vs3) &

replacedn2(vsl,vs2,car(vs3),car(vs3)) &

replacedn2(vsl,vs2,cdr(vs3) ,cdr(vs3)) J,

again this leads to three trivially solvable subproblems.

Path 5. Just before entering CONS, the fact list will be

(remember X is still bound to vxl):

“equal(vs2,vs3) & ~atom(vs3) &

xa=car(vs3) & replacedn2(vsl,vs2,xa,vxl) &

~(vxl=xa).

After CONS-ing X with the recursive call on the CDR, the fact list

will have grown with:

xd=cdr(vs3) & replacedn2(vsl,vs2,xd,otl) &

car(ot2)=vxl & cdr(ot2)=otl & “atom(ot2).

Since the value returned will be ot2, the parametrized output

assertion will be:

3.37

replacedn2(vsl,vs2,vs3,ot2).

Opening this formula leads to four subproblems, of which the first two

solve immediately since the fact list contains the negation of their

premises. Therefore remain:

(3) ~equal(vs2,vs3) & “atom(vs3) & ~occure(vs2,vs3) -->

ot=vs3, and

(4) ~equal(vs2,vs3) & “atom(vs3) & occure(vs2,vs3) -->

[~atom(ot2) &

replacedn2(vsl,vs2,car(vs3),car(ot2)) &

replacedn2(vsl,vs2,cdr(vs3),cdr(ot2))].

Simple substitutions make the three consequences in (4) equal to

formulas of the fact list and settle (4). Subproblem (3) is solved by

deriving occure(vs2,vs3) from the fact list and thus squeezing the

premise of (3). We do this with:

LEMMA 5.

[replacedn2(vsl,vs2,xa,vxl) &

~(vxl=xa) &

“atom(vs3) &

xa=cxr(vs3) { exr is car or cdr }] ==>

occure(vs2,vs3).

PROOF. By expanding replacedn2 we distinguish four cases:

(1) equal(vs2,xa) and vxl=vsl. Thus certainly we get occurecar(vs2,xa)

or occurecdr(vs2,xa), and therefore occure(vs2,vs3).

(2) ~equal(vs2,xa) & atom(xa) and vxl=xa. The preconditions of the

lemma exclude this case.

(3) ~equal(vs2,xa) & “atom(xa) & “occure(vs2,xa) and xa=vxl. This case

like (2) is also excluded by the preconditions.

(4) ~equal(vs2,xa) & ~atom(xa) & occure(vs2,xa) and [...]. Combining

occure(vs2,xa) and xa=cxr(vs3) we get our conclusion by expanding

occure(vs2,vs3). <<

Application of this theorem also settles path 5.

3.38

Although the output generated when SUBSTSUPFl is used differs

from the output generated when SUBSTSUPF2 is employed, the two must

nevertheless be EQUAL. This corresponds with:

LEMMA 6.

{ replacedn(xl,x2,x3,otl) & replacedn2(xl,x2,x3,ot2) } --—>

equal(otl,ot2).

PROOF. We expand replacedn and replacedn2 and consider the different

cases.

(1) equal(x2,x3) yields otl=xl and ot2=xl and thus certainly

equal(otl,otl) (by opening equal).

(2) ~equal(x2,x3) & atom(x3) yields otl=x3 and ot2=x3, and so we have

the same argument as in case (1).

(3) ~equal(x2,x3) & “atom(x3) & ~occure(x2,x3) yields

I “atom(otl) &

replacedn(xl,x2,car(x3),car(otl)) &

replacedn(xl ,x2,cdr(x3),cdr(otl)), and

II x3=ot2.

Application of car/cdr induction on equal, occure and replacedn

gives equal(x3,otl) and thus equal(ot2,otl) as well.

(4) ~equal(x2,x3) & “atom(x3) & occure(x2,x3) yields

I “atom(otl) &

replacedn(xl ,x2,car(x3),car(otl)) &

replacedn(xl ,x2,cdr(x3),cdr(otl)), and

II “atom(ot2) &

replacedn2(xl,x2,car(x3),car(ot2)) &

replacedn2(xl,x2,cdr(x3) ,cdr(ot2)).

By induction we infer:

equal(car(otl),car(ot2)) and

equal(cdr(otl) ,cdr(ot2)),

and so also equal(otl,ot2). <<

As a consequence of this lemma, we have:

THEOREM 3. The output of SUBST with support function SUBSTSUPF1 de

EQUAL to the output of SUBST when the support function SUBSTSUPF2 16

used instead.

3.39

4.3 SUBSTAD1

Now we switch to the support functions for the destructive

substitution function SUBSTAD. The code for the recursive SUBSTADI:

(SUBSTAD1(LAMBDA(S3) (PROG2
(COND((ATOM(CAR $3))

(COND((EQ LAT(CAR S3))(RPLACA $3 S1))))
(T(SUBSTAD1(CAR $3))))

(COND((ATOM(CDR $3))
(COND((EQ LAT(CDR S3))(RPLACD S3 $1))))

(T(SUBSTADI(CDR $3))))
)))-

The preconditions are:

— the binding of S3, say vs3, is not atomic; Uh Y

— the binding of LAT, say lat, is atomic; and | ef. PAN

- lat is not a leaf of the binding of Sl, say vsl.

To simplify the proofs, we will also assume that vsl does not

share substructure with vs3. Consequently, lemma 4 will apply and

therefore updating of the Sl binding will never occur (when vsl does

share structure we still can invoke lemma 2, since lat is not a leaf

of vsl).

Since we assume the preconditions to hold, the fact list will

contain (or these forms can be derived from the fact list):

atom(lat) & “atom(vs3) & ~partof(lat,vsl).

The input alist is:

((Sl.vsl) (LAT.lat) (S3.vs3)).

Assume the output alist to be:

((Sl.vsl) (LAT.lat) (S3.nvs3)).

The output assertion to be verified will be:

replacedd(vsl,lat,vs3,nvs3),

with replacedd (replacement with potential destruction of vs3) defined

as:

- 40

(x1) (x2) (x3) (ot) {replacedd(xl,x2,x3,ot) <-->
[eqa(x3,ot) &

{atom(car(x3)) -->
[(x2=car(x3) --> car(ot)=xl) &

(~(x2=car(x3)) --> car(ot)=car(x3)) J} &

{~atom(car(x3)) --> replacedd(xl,x2,car(x3),car(ot)) } &
{atom(cdr(x3)) -->

[(x2=cdr(x3) --—> cdr(ot)=xl) &
(~(x2=cdr(x3)) --> cdr(ot)=cdr(x3))]} &

{~atom(cdr(x3)) --> replacedd(xl,x2,cdr(x3),cdr(ot)) }]}.

We also postulate that the alist updating scheme using transf, as

described in section 3.2, applies.

There are 9 different paths through the code, consisting of

different combinations of the three distinct paths through the two top

COND’ s. We will work our way through just one of the paths.

Initially the fact list contains:

atom(lat) & “atom(vs3) & ~partof(lat,vsl).

Assuming that (ATOM(CAR S3)) yields T we get in addition:

xa=car(vs3) & atom(xa).

Assuming that (EQ LAT(CAR S3)) yields T we also get on the fact list:

lat=xa.

The subsequent RPLACA action will generate a new value, say nvl, and

will add:

eqa(nvl,vs3) & car(nvl)=vsl & cdr(nvl)=cdr(vs3).

The alist update scheme for RPLACA prescribes the generation of a new

binding for S3, say ivs3, and the alist will change into:

((Sl.vsl) (LAT.lat) (S3.ivs3)),

while the fact list grows with:

eqaupto(vs3,ivs3,vs3,nvl).

Assuming that (ATOM(CDR S3)) yields NIL we get on the fact list:

xd=cdr(ivs3) & ~atom(xd).

The next action concerns the recursive call on the CDR. Its

parametrized and simplified input condition:

“atom(xd) & atom(lat) & “partof(lat,vsl),

is trivially satisfied. The function will not be opened, but instead

the fact list grows with:

replacedd(vsl,lat,xd,nxd) & transf(ivs3, jvs3,xd,nxd),

while the alist changes again into:

((Sl.vsl) (LAT.lat) (S3.jvs3)).

The output assertion to be proven for this particular path will be:

replacedd(vsl,lat,vs3, jvs3).

Opening this formula produces five subproblems:

(1) eqa(vs3, jvs3).

By expanding the given eqaupto formula we derive eqa(vs3,ivs3).

Opening the transf formula yields eqa(ivs3, jvs3). As a consequence of

the transitivity of eqa, this case is closed.

(2) atom(car(vs3)) -->

[(lat=car(vs3) --> car(jvs3)=vsl) &

(~(lat=car(vs3)) --> car(jvs3)=car(vs3))].

Since the premise of this implication holds as well as the

premise of the first implication in the consequence, this problem

reduces to: car(jvs3)=vsl. From the eqaupto formula we can infer that

ivs3=nvl and so we certainly have: vsl=car(nvl)=car(ivs3). Informally

we can argue that since lat isn’t a leaf of vsl, ~partof(lat,vsl), any

replacement inside cdr(ivs3) will not affect vsl. More precisely we

have to prove:

{xd=cdr(ivs3) & ~atom(xd) &

replacedd(vsl,lat,xd,nxd) &

transf(ivs3, jvs3,xd,nxd) &

vsl=car(ivs3) &

~partof(lat,vsl)} -->

car(ivs3)=car(jvs3).

Loopfreeness allows us to infer: ~(xd=ivs3) as well as

~trl(ivs3,xd,nxd). Consequently we infer by expanding the transf

formula:

transf(car(ivs3) ,car(jvs3) ,xd,nxd).

We rewrite our problem as:

{~atom(xd) &

replacedd(vsl,lat,xd,nxd) &

transf(car(ivs3) ,car(jvs3),xd,nxd) &

vsl=car(ivs3) &

~partof(lat,vsl)} -->

car(ivs3)=car(jvs3).

242

Now we distinguish whether car(ivs3) (=vsl) is atomic or not.

Assume vsl is atomic. Since we can infer from the transf

formula: eqa(car(ivs3),car(jvs3)), we can activate axiom 1 to obtain:

car(ivs3)=car(jvs3).

Assume vsl is not atomic. Let us abbreviate car(car(ivs3)) by ia

and car(car(jvs3)) by ja. We will show ia=ja and since the same

argument will apply to cdr(car(ivs3)) and cdr(car(jvs3)) we can invoke

axiom 2, because we also have eqa(car(ivs3),car(jvs3)). This line of

reasoning leads us again to our goal.

Assume ia=xd, then loopfreeness and subsequently opening

transf(car(ivs3),car(jvs3),xd,nxd) yields ja=nxd. By induction, we can

prove xd=nxd, from replacedd(vsl,lat,xd,nxd) and “partof(lat,vsl)

(which gives “partof(lat,xd)). And this gives ia=ja.

Assume ~(ia=xd) and trl(ia,xd,nxd). We now have reduced our

problem to:

{~(ia=xd) & “atom(xd) &

tr2(ia,ja,xd,nxd) &

~partof(lat,ia) &

replacedd(vsl, lat ,xd,nxd)} -->

ia=ja,

which can be settled with car/cdr induction on xd and nxd.

Assume ~(ia=xd) and ~trl(ia,xd,nxd), we can infer:

transf(car(ia),car(ja) ,xd,nxd),

and thus our problem reduces to:

{~atom(xd) &

replacedd(vsl,lat,xd,nxd) &

transf(car(ia) ,car(ja) ,xd,nxd) &

~partof(lat,car(ia))} -->

car(ia)=car(ja),

and similarly for cdr(ia) and cdr(ja). This is of the same form as the

problem we started with and so by car/cdr induction we obtain

car(ia)=car(ja) as well as cdr(ia)=cdr(ja). Consequently we apply

axiom 2 to obtain ia=ja.

3.43

(3) “atom(car(vs3)) --> ...

The negation of the premise belongs to the fact list and so we can

skip this case.

(4) atom(cdr(vs3)) --> [...]

We have cdr(vs3)=cdr(nvl)=cdr(ivs3)=xd. We also have ~atom(xd); thus

the negation of the premise can be inferred from the fact list.

(5) “atom(edr(vs3)) -->

replacedd(vsl,lat,cdr(vs3) ,cdr(jvs3)).

This problem reduces after two substitutions to:

replacedd(vsl,lat,xd,xdn) ,

which is a member of the fact list.

Thus we have completed this path. The other paths can be

verified in a similar way. But subproblem (5) is somewhat hairy for on

this path there is CAR as well as CDR _ recursion. In that case

edr(vs3)=cdr(ivs3) can no longer be inferred due to the possibility of

structure sharing and RPLACX operations on shared cells.

It is certainly to be expected that SUBSTAD and SUBST produce

EQUAL results under SUBSTAD’s restrictions.

When we have dealt with the special case that the third argument

S3 has an atomic binding then it remains to show:

LEMMA 7.

(xl) (x2) (x3) (otl)(ot2)

[{atom(x2) & ~atom(x3) &

replacedn(xl,x2,x3,otl) & replacedd(xl,x2,x3,ot2)} -->

equal(otl,ot2)].

PROOF. By induction it is easy to see that “atom(x3) implies

~atom(otl) as well as ~atom(ot2). Therefore it suffices to show:

(1) equal(car(otl),car(ot2)), and

(2) equal(cdr(ot1),cdr(ot2)).

The proof of (2) is analogous to the proof of (1), so we concentrate

on (1) by digging into three cases:

3.44

(I) atom(car(x3)) & x2=car(x3).

Twice opening the replacedn-formula (since we have “equal(x2,x3) and

“atom(x3) yielding replacedn(xl,x2,car(x3),car(otl))) allows us to

infer car(otl)=xl. Once opening the replacedd-formula gives

car(otl)=xl, thus certainly: equal(car(otl),car(ot2)).

(II) atom(car(x3)) & ~(x2=car(x3)).

We conclude car(ot2)=car(x3) as well as ~equal(x2,car(x3)) and so also

car(otl)=car(x3). Therefore we have again equal(car(otl),car(ot2)).

(III) “atom(car(x3))

We infer ~equal(x2,car(x3)) and thus we have:

replacedn(xl,x2,car(car(x3)),car(car(otl))) and

replacedn(xl,x2,cdr(car(x3)),cdr(car(otl))).

By car/cdr-induction, we get equal(car(otl),car(ot2)). <<

As a consequence of this lemma, we have:

THEOREM 4. The functions SUBST and SUBSTAD with support function

SUBSTAD1 produce EQUAL results when the second argument ts a _ literal

atom and does not occur in the first argument.

4.4 SUBSTAD2

We have to admit that the treatment of SUBSTADI1 as given above

was slightly incorrect. Although it did not affect the result. The

reason is that SUBSTAD does not use the value returned by SUBSTADI,

which is of no significance. Upon entry of SUBSTADI the alist is in

fact:

((S3.vs3) (Sl.vsl) (LAT.lat) (S3.vs3)),

where the first occurrence of S3 comes from SUBSTAD1 and the second

from SUBSTAD. The output assertion of SUBSTADI did refer to the second

occurrence of vs3. This more subtle treatment of the alist is

essential for the half recursive half iterative support function

SUBSTAD2. We first repeat its definition:

3.45

(SUBSTAD2(LAMBDA(S3) (PROG(HH)
AGAIN

(COND((ATOM(SETQ HH(CAR S3)))
(COND((EQ LAT HH)(RPLACA S3 S1))))

(T(SUBSTAD2 HH)))
(COND((ATOM(SETQ HH(CDR $3)))

(COND((EQ LAT HH)(RPLACD S3 S1))))
(T(SETQ S3 HH)

(GO AGAIN)))
>)

Due to the assignment of the local S3 to its CDR before jumping back

to AGAIN, the local S3 is not significant when SUBSTAD2 is exiting.

The global S3 is the handle on the datastructure as a whole and

enables a correct update of the calling environment after exiting.

The input alist is as given above. The output alist, after

exiting from SUBSTAD2 will be:

((Sl.vsl) (LAT.lat) (S3.nvs3)).

The preconditions are the same as for SUBSTADI:

atom(lat) & “atom(vs3) & ~partof(lat,vsl).

The output assertion is also the same:

replacedd(vsl,lat,vs3,nvs3).

The major difference with SUBSTADI is that we have to provide a loop

invariant, since the body of SUBSTAD2 contains the label AGAIN. The

loop assertion will refer to the current bindings of the variables and

thus we must also give an alist at the label:

((HH.vhh) (S3.1s3) (Sl.vsl) (LAT.lat) (S3.gs3)).

The value 1s3 is the local value of S3, and gs3 is the global value of

S3. The loop assertion will be:

atom(lat) & ~atom(1s3) & ~atom(vs3) & ~partof(lat,vsl) &

spine(vsl,lat,vs3,gs3,1s3).

Before giving the definition of spine and other support predicates, we

sketch the situation at the label AGAIN, see figure 3.4.

3.46

vs3

gs3

Fig. 3.4. The top triangle stands for the original binding
vs3, the other triangle represents the situation
at the label AGAIN. The global S3 binding is gs3, the
local S3 binding is 1s3. Structure sharing (p to the
left of z is identical with p to the right of z) has
caused the modification of the 'not yet visited' right-
hand side part of z-l1s3.

3.47

The binding of the 53 outside the body of SUBSTAD2 changed

possibly due to RPLACX actions and is set to gs3. The local S3, bound

to 1s3, points to a cell on the spine of gs3, the current incarnation

of the cdr-chain sprouting at vs3. Every leaf at the left of 153 has

already been investigated and appropriate modifications have been

made. So for a non-atomic side tree at car(yold), hanging off yold on

the spine, there is a corresponding side tree car(ynew) with ynew on

the spine of vs3 above 1s3, for which we have:

replacedd(vsl,lat,car(yold) ,car(ynew)).

The subtree hanging at 1s3 need not be identical with the

corresponding subtree hanging at z (of course we have eqa(z,1s3)),

since structure sharing may have led to side effects in a subtree of

z- For instance, the replacement of the subtree p, occurring twice in

vs3 at the lefthand side of z, by q, simultaneously affects the

occurrence at the righthand side of z. Although 1s3 is on the spine of

gs3, there is not necessarily a corresponding cell z on the spine of

vs3. Structure sharing may have caused the replacement of the right

most leaf of vs3 by a pointer to vsl, see fig. 3.4. So 153 may

eventually reside on the spine of vsl for which there is no

corresponding cell on the spine of vs3 (hence the precondition

“partof(lat,vsl), to avoid cycles). The loop invariant is expressed by

the predicates spine, spinel, spine2, sidetree, onspine and sidefct.

The predicate spine distinguishes between the special case that

xl=x3, which only holds upon entrance of SUBSTAD2, and otherwise gives

the responsability to spinel for describing the situation. When the

latter holds we are assured that xl resides somewhere on the spine

below xg.

(x1) (xa) (x3) (xg) (x1)
{ spine(xl,xa,x3,xg,xl) <-->

[(xl=x3 --> xg=x3) & .
(~(xl=x3) --> spinel(xl,xa,x3,xg,xl,x3,xg))]}.

The predicate spinel slides along the cdr-chains of x3-xg. It

expresses that the car°s are properly investigated and possibly

updated, using sidetree. When the bottom of the x3-spine is hit,

structure sharing has caused replacement of the right most leaf of x3

and control resides somewhere on the spine of xl, which is expressed

with onspine. When the xl-cell on the spine of gs3 is reached instead,

sidefct is used to describe the remainder of x3-xg still to be

3.48

investigated, possibly modified as a consequence of structure sharing.

(x1) (xa) (x3) (xg) (x1) (xo) (xn)
{ spinel(xl,xa,x3,xg,xl,xo,xn) <-->

[eqa(x3,xg) &
sidetree(xl,xa,car(x3),car(xg)) &
{atom(cdr(x3)) -->
[edr(x3)=xa & cdr(xg)=xl & onspine(xl,x1)]} &

{~atom(cdr(x3)) -->
[{xl=cdr(xg) -->

sidefct(xo,xn,cdr(x3) ,xo,xn,cdr(x3),x1l)} &

{~(xl=cdr(xg)) -->
spinel(xl,xa,cdr(x3) ,cdr(xg) ,x1,xo,xn) }]}]}.

The predicate sidetree simply separates whether the car of an already

visited spine element was originally atomic or not and describes in

each case the possibly updated result.

(x1) (xa) (x3a) (xga)
{ sidetree(xl,xa,x3a,xga) <-->

[{~atom(x3a) --> replacedd(xl,xa,x3a,xga)} &
{atom(x3a) ==> [{x3a=xa --> xga=xl} &

{~(x3a=xa) --> xga=x3a}]}]}.

The predicate onspine says only that xl is somewhere on the spine of

xl.

(x1)(x1){ onspine(xl,xl) <-->
[xl=xl OR {~atom(xl) & onspine(cdr(xl),x1)}]}.

The predicate sidefct is used to describe the fact that xp-xq which is

a part of the not yet visited subtree x3-xl of the original-current

incarnation xo-xn is unchanged unless structure sharing has led to

side effects (the predicates trl and tr2 that occur in the body of

sidefct have been defined above in section 3), see fig. 3.5. which

depicts the parameters of sidefct.

Fig. 3.5. The top triangle again is the original binding, the
other one is the current binding. The predicate sidefct
is used to express that when xp inside x3 corresponds
with yp inside xso (xso-xsn has already been visited)
then xq corresponds with yq.

3.50

(xo) (xn) (x3) (xso) (xsn) (xp) (xq)
{ sidefct(xo,xn,x3,xso,xsn,xp,xq) <-->

[eqa(xp,xq) &
{xso=x3 -->
[{atom(car(xp)) --> car(xp)=car(xq)} &
{~atom(car(xp)) --—>
sidefct(xo,xn,x3,xo,xn,car(xp),car(xq))} &

{atom(cdr(xp)) --> cdr(xp)=cdr(xq)} &

{~atom(cdr(xp)) --> |
sidefct(xo,xn,x3,xo,xn,cdr(xp) ,cdr(xq))}]} &

{~(xso=x3) -->
[{car(xso)=xp --> car(xsn)=xq} &
{~(car(xso)=xp) ==>
[{trl(xp,car(xso) ,car(xsn)) -->

tr2(xp,xq,car(xso) ,car(xsn))} &

{~trl(xp,car(xso) ,car(xsn)) -->
sidefct(xo,xn,x3,cdr(xso) ,cdr(xsn) ,xp,xq) }]}]}]}.

Verifying SUBSTAD2 requires the following checks:

(I) deducing the loop invariant when control reaches the label AGAIN

upon entering the function;

(II) deducing the output assertion for six paths, the combinations of

the three paths generated by the first COND and the two paths

generated when (ATOM(SETQ HH(CDR S3))) yields T;

(III) deducing the loop invariant for the three paths when the same

test (ATOM ...) yields NIL.

We will describe only one check from each category.

(I)

When we sink into the label AGAIN, we have as alist:

((HH.nil) (S3.vs3) (Sl.vsl) (LAT.lat) (S3.vs3)).

The fact list is:

atom(lat) & ~atom(vs3) & “partof(lat,vsl).

The parametrized loop assertion to be checked is:

atom(lat) & “atom(vs3) & ~atom(vs3) & ~partof(lat,vsl) &

spine(vsl,lat,vs3,vs3,vs3).

Only the last term needs attention. Opening spine gives two

subproblenms:

{vs3=vs3 --> vs3=vs3} &

{~(vs3=vs3) --> ...},

which are obvious. This settles (I).

(II)
We will work our way along the path where SUBSTAD2 ís recursively

called on the CAR and where the atomic CDR ís replaced. We start at

label AGAIN with its alist:

((HH.vhh) (S3.1s3) (Sl.vsl) (LAT.lat) (S3.gs3)),

and fact list:

atom(lat) & ~atom(1s3) & ~atom(vs3) & ~partof(lat,vsl) &

spine(vsl,lat,vs3,¢gs3,1ls3).

After the first ATOM test is assumed to return with NIL, the alist has

been replaced by:

((HH.vhhl) (S3.1s3) ...),

and on the fact list has been stored:

vhhl=car(1s3) & “atom(vhhl).

The preconditions for the recursive call on HH are satisfied and thus

the fact list will grow with:

replacedd(vsl,lat,vhhl,vhh2).

The alist updating scheme wakes up and generates the alist:

((HH.ivh) (S3.ils3) (Sl.vsl) (LAT.lat) (S3.igs3)),

and adds to the fact list:

transf(vhhl,ivh,vhhl,vhh2) &

transf(1s3,ils3,vhhl,vhh2) &

transf(gs3,igs3,vhhl,vhh2).

We assume the second ATOM test to yield T and so the alist becomes:

((HH.vhh3) ...),

while the fact list has grown with:

vhh3=cdr(ils3) & atom(vhh3).

To complicate matters, we assume that replacement will occur, so we

get on the fact list:

vhh3=lat &

eqa(ils3,jls3) & car(ils3)=car(jls3) & cdr(jls3)=vsl.

The RPLACD alist update scheme transforms the alist into:

((HH.vhh3) (S3.11s3) (Sl.vsl) (LAT.lat) (S3.1gs3)),

and adds to the fact list:

eqaupto(ils3,11s3,ils3,jls3) &

eqaupto(igs3,1gs3,i1s3, j153).

From this fact list, we have to infer:

replacedd(vsl,lat,vs3,1lgs3).

Expansion of replacedd gives five problems.

(1) eqa(vs3,1gs3).

Opening up the given spine formula and subsequently the resulting

spinel formula allows the inference:

vs3=gs3 OR eqa(vs3,gs3).

Opening transf(gs3,igs3,vhhl,vhh2) gives:

eqa(gs3,igs3).

Opening eqaupto(igs3,lgs3,ils3,jls3) gives:

eqa(igs3,lgs3).

The transitivity of eqa settles (1).

(2) atom(car(vs3)) ==>

[(lat=car(vs3) --> car(lgs3)=vsl) &

(~(lat=car(vs3)) --> car(1gs3)=car(vs3))].

We distinguish between vs3=l1s3 and ~(vs3=ls3). The first

assumption solves (2) immediately since we have vhhl=car(1s3) and

“atom(vhhl), which renders the premise of (2) false. We proceed with

the assumption “(vs3=ls3). Opening the spine formula under this

assumption, spinel gives among other forms the formula:

sidetree(vsl,lat,car(vs3) ,car(gs3)).

Opening this formula gives:

{~atom(car(vs3)) --> ... } &

{atom(car(vs3)) -->

[{lat=car(vs3) --> car(gs3)=vsl} &

{~(lat=car(vs3)) --> car(gs3)=car(vs3)}]}.

Consequently it remains to show that:

car(gs3)=car(lgs3),

whether the car(vs3) was replaced or not. In both cases, we can infer

from transf(gs3,igs3,vhhl,vhh2):

car(gs3)=car(igs3).

Similarly, we can infer from eqaupto(igs3,1gs3,ils3, jls3):

car(igs3)=car(lgs3).

Combining them settles (2).

3.53

(3) ~atom(car(vs3)) -->

replacedd(vsl,lat,car(vs3) ,car(lgs3)).

In contrast with (2), both cases 1s3=vs3 and ~(1s3=vs3) should

be considered. Assuming the latter, we infer as under (2), by opening

spine, spinel and sidetree:

~atom(car(vs3)) --> replacedd(vsl,lat,car(vs3),car(gs3)).

As under (2), we infer car(gs3)=car(igs3)=car(lgs3), which yields (3).

Assuming the former, 1s3=vs3, gives gs3=vs3. From

replacedd(vsl,lat,vhhl,vhh2), we get:

replacedd(vsl,lat,car(vs3),vhh2).

From transf(gs3,igs3,vhhl,vhh2), we get:

car(igs3)=vhh2,

so we infer:

replacedd(vsl,lat,car(vs3) ,car(igs3)).

From eqaupto(igs3,1gs3,i1s3, jls3), we obtain:

car(igs3)=car(lgs3),

and thus (3) is obtained again.

(4) atom(cdr(vs3)) -->

[(lat=cdr(vs3) --> cdr(lgs3)=vsl) &

(~(lat=cdr(vs3)) --> cdr(1lgs3)=cdr(vs3))].

Again we distinguish between vs3=ls3 and ~(vs3=1s3). By

induction 1s3 resides on the spine sprouting at gs3. So according to

the premise of (4), we can exclude “(vs3=153). Therefore gs3=vs3 and

so also according to transf(gs3,igs3,vhhl,vhh2), we have:

cdr(vs3)=cdr(gs3)=cdr(igs3)=cdr(1ils3)=vhh3=lat.

Thus the premise of (4) and the premise of the first implication in

its consequence are fulfilled. We have cdr(jls3)=vsl and with

ils3=igs3 and eqaupto(igs3,1gs3,ils3,jls3) we get:

cdr(jls3)=cdr(1lgs3),

which yields:

cdr(1lgs3)=vsl,

resolving (4).

(5) “atom(edr(vs3)) -->

replacedd(vsl,lat,cdr(vs3) ,cdr(1gs3)).

This time the assumption vs3=l1s3 flounders in atom(vhh3), since

this assumption would again lead to:

cdr(vs3)=cdr(gs3)=cdr(igs3)=cdr(ils3)=vhh3.

Thus we continue with ~(vs3=l1s3). Therefore by opening spine we infer:

spinel(vsl, lat ,vs3,¢gs3,1s3,vs3,g¢s3).

Naming this formula Sd we have to prove: Sd --> (5).

Opening this formula Sd we infer, with the premise of (5), among

other forms:

{1s3=cdr(gs3) -->

sidefct(vs3,gs3,cdr(vs3) ,vs3,gs3,cdr(vs3),1s3)} and

{~(1s3=cdr(gs3)) -->

spinel(vsl,lat,cdr(vs3) ,cdr(gs3) ,1s3,vs3,gs3)}.

Assuming the premise of the latter, we derive the formula:

spinel(vsl,lat,cdr(vs3) ,cdr(gs3) ,1s3,vs3,gs3)},

from which we still need to derive (5); cdr-induction settles this

case. Thus we continue with the assumption ls3=cdr(gs3). The sidefct

formula expresses the fact that if cdr(vs3) (or a substructure of it)

occurred in car(vs3), it has already been investigated (so if it

contained lat in leaf positions those leaf positions will have been

replaced already by pointers to vsl.) Whenever the cell cdr(vs3),

corresponding with 1s3, has already been visited we have:

replacedd(vsl,lat,cdr(vs3) ,cdr(gs3)),

and also: cdr(gs3)=cdr(lgs3), since all lat leaves will have

disappeared.

Otherwise we get [cadr(x) stands for car(cdr(x))]:

“atom(cadr(vs3)) & replacedd(vsl,lat,cadr(vs3),cadr(lgs3)) &

atom(cddr(vs3)) & cddr(vs3)=lat & cddr(1lgs3)=vsl,

and therefore we again have:

replacedd(vsl,lat,cdr(vs3) ,cdr(lgs3)).

This finishes one of the paths of category (II).

(III)

We will have to show that the loop invariant holds when control

reaches the (GO AGAIN) instruction. We will use the same path as

followed under (II) until the ATOM test on the CDR of S3. Initially we

have as alist:

3.55

((HH.vhh) (S3.1s3) (Sl.vsl) (LAT.lat) (S3.gs3)),

and as fact list:

atom(lat) & ~atom(1s3) & ~atom(vs3) & ~partof(lat,vsl) &

spine(vsl,lat,vs3,gs3,1s3).

When the ATOM test on the CDR of S3 is assumed to yield NIL we have as

alist:

((HH.vhh3) (S3.ils3) (Sl.vsl) (LAT.lat) (S3.igs3)),

while the fact list has grown with:

vhhl=car(1s3) & ~atom(vhhl) &

replacedd(vsl,lat,vhhl,vhh2) &

transf(vhhl,ivh,vhhl,vhh2) &

transf(1s3,ils3,vhhl,vhh2) &

transf(gs3,igs3,vhhl,vhh2) &

vhh3=edr(ils3) & ~atom(vhh3).

The next action causes the local S3 binding to be replaced and

resulting in the alist:

((HH.vhh3) (S3.vhh3) (Sl.vsl) (LAT.lat) (S3.igs3)).

According to this alist, we have to verify the loop invariant:

atom(lat) & “atom(vhh3) & ~atom(vs3) & ~partof(lat,vsl) &

spine(vsl,lat,vs3,igs3,vhh3).

The first four subproblems are trivially solved because they belong to

the fact list. Expanding the spine formula to be proven reduces the

problem to (since we have ~(vhh3=vs3), otherwise, as a consequence of

eqa(vs3,igs3) and vhh3 on the spine of igs3, we would have a cycle):

spinel(vsl,lat,vs3,igs3,vhh3,vs3,igs3),

on which cdr induction will be applied. Expanding this spinel formula

gives the subproblems:

eqa(vs3,igs3) &

sidetree(vsl,lat,car(vs3) ,car(igs3)) &

{atom(cdr(vs3)) -->

[cdr(vs3)=lat &

cdr(igs3)=vsl &

onspine(vsl,vhh3)]} &

{~atom(cdr(vs3)) -->

[{vhh3=cdr(igs3) -->

sidefct(vs3,igs3,cdr(vs3) ,igs3,cdr(vs3),vhh3)} &

{~(vhh3=cdr(igs3)) -->

spinel(vsl,lat,cdr(vs3) ,cdr(igs3) ,vhh3,vs3,igs3)}]}.

3.56

We will not treat these problems in as great detail as hitherto

has been our practice. The general strategy should now be clear: it is

a combination of subproblem recognition, case reasoning, expansion of

recursive definitions and application of car/cdr induction.

(1) eqa(vs3,igs3)

This problem solves by considering vs3=l1s3 as well as its negation and

in each case expanding the given spine-formula and the transf formula

containing igs3.

(2) sidetree(vsl,lat,car(vs3) ,car(igs3))

Again the two cases, vs3=ls3 and its negation, have to be considered.

The first case is fairly easy and only requires expanding the sidetree

formula. The other case is more laborious and requires expansion of

the given spine formula and the resulting spinel formula yielding the

formula:

sidetree(vsl,lat,car(vs3),car(gs3)).

As before, it subsequently can be shown that we have

car(igs3)=car(gs3), which settles this subproblem.

(3) {atom(cdr(vs3)) -->

[edr(vs3)=lat &

cdr(igs3)=vsl &

onspine(vs1,vhh3)] }

The premise of this subproblem cannot be satisfied whether

vs3=l1s3 or not. The first case gives:

cdr(vs3)=cdr(igs3)=cdr(ils3)=vhh3,

and so the negation of the premise is reached. The second case,

~(vs3=1s3) cannot occur, because 153 is on the spine of gs3, and

cannot have passed the atomic cdr(vs3) (which is not affected by any

actions on car(vs3)).

(4) {~atom(cdr(vs3)) -->

{ {vhh3=cdr(igs3) -->

sidefct(vs3,igs3,cdr(vs3) ,igs3,cdr(vs3),vhh3)} &

{~(vhh3=cdr(igs3)) -->

spinel(vsl,lat,cdr(vs3) ,cdr(igs3) ,vhh3,vs3,igs3) }]}.

The first case vs3=1s3 satisfies the premise because

3.57

non-atomicity of cdr(vs3) is preserved with respect to actions on

car(vs3) and we have ~atom(vhh3). This case will lead to satisfaction

of vhh3=cdr(igs3) and by induction we can handle the sidefct formula.

The second case, ~(vs3=1s3), also satisfies the premise but leads to

satisfaction of “(vhh3=cdr(igs3)). The resulting problem, the spinel

formula, is solved by cdr induction.

This settles this path from category (III).

Since SUBSTADI has the same output assertion as SUBSTAD2, we

have:

THEOREM 5. The output of the funetion SUBSTAD when using the support

funetion SUBSTADl1 is EQUAL to the output when the support function

SUBSTAD2 ts used instead.

4.5 SUBSTADP

The disparity between amount of code and amount of ad hoc

definitions is even greater for the pointer reversal support function

SUBSTADP. The code contains three labels, so in addition to the input

and output assertion we have to formulate three loop invariants. We

shall limit our selves here to the first label only since that will

take up enough space on its own. Moreover, as argued in the sequel, we

consider the input configuration only as a special case.

As stated earlier the pointer reversal technique does not use a

stack when descending down trees. Instead, a cell that has to be

descended, say down the CAR-pointer, will be appropriately marked.

After the CAR-pointer has been saved, it will be replaced by a pointer

to the parent of its cell. Figure 3.6 depicts an example.

3.58

$3 —> | \ +—> EX

HH id 53 —l| /
— 7

Fig. 3.6. Example of pointer reversal. The righthand side gives
the situation after S3 goes down one level in the CAR-
direction. Observe that the mark-bit is set.

A typical configuration at label L2 is given in figure 3.7. The

left part depicts the non-atomic third argument vs3, in which atomic

leaves identical with lat have to be (destructively) replaced by vsl.

The right part shows the configuration midway during this process. A

cell on the spine of g2, corresponding to a cell on the spine of the

former vs3, has a CAR pointing to the special atom $, indicating the

end of the present reversed pointer chain. A terminal of vs3 identical

with lat, to the left of the spine-cell pointing to $, has been

visited and has been replaced by vsl. A similar occurrence of lat at

the right hand side is not yet affected.

3.59

vs3

lat

Fig. 3.7. The lefthand side depicts the original binding, the
righthand side is a typical configuration at label L2.

This typical situation is by no means the general situation. In

the configuration in fig. 3./7b, both the cell containing the pointer

to $ as well as the cell 12 which points to that part of the tree

under the reversed pointer chain that is still to be investigated,

have corresponding cells in the original tree vs3, respectively the

cells p and q in fig. 3./7a. Fig. 3.8 shows a configuration where there

is no corresponding cell in vs3 for 12. The three occurrences of the

leaf lat in vs3 are the consequence of structure sharing in vs3.

Therefore visiting the leftmost occurrence of lat leads to its

replacement by vsl in all these occurences. Consequently, the reversed

pointer chain will temporarily descend into vsl when reaching the

place of the former second (and third) occurrence of lat, and thus

temporarily modify the Sl-binding. (By the way, this will also happen

when vsl shares structure with the original vs3.)

vs3

bat lat lat Arjen (Nia

Fig. 3.8. Example of a situation in which there is no
corresponding cell in vs3 for 12,

Figure 3.9 shows a configuration where the S$-cell is also

outside the realm of vs3. Structure sharing here has caused the

replacement of the right most CDR, accidentally pointing to lat, by a

pointer to vsl. Since we also assume that vsl is non-atomic the cell

pointing to $ will ultimately reside on the spine of vsl.

lat lat EV, r | w $
vs 1 vsl

Fig. 3.9. Example of a configuration in which the $-cell is
outside the realm of vs3; vsl is temporarily modified
into vsl*.

We have depicted in figure 3.10 other atypical positions of the

$-cell and the ex-cell as they depend on how vsl is related to vs3.

UD LK
Ava

{vsl n vs3 = OF & {ex in vsl*} &{ex not in n belonging to vs3}

[NX LR
{vsl n vs3 # @} & fex in vsl*} & {ex in cell belonging to vs3}

vs3

$

vs l ex

{spine of vsl on spine of vs3} & {$-cell in vsl*} &
{ex in vslx} & {ex in cell belonging to vs3}

Fig. 3.10. Examples of other atypical positions of the
$-cell and the ex-cell.

3.62

We are concerned with only the simplest case, i.e. we will

assume that vsl is atomic. This assumption makes the typical case of

fig. 3.7 also the general case. Even after this drastic

simplification, we get an inflated number of definitions due to the

complications arising from potential structure sharing in vs3. In

order to give the definitions for the other cases we would need a

staggering amount of additional definitions which only obscure what is

actually the matter. For the same reason, we omit specifying the loop

invariants for L4 and L5 and rather concentrate on what happens at the

L2 label when a jump is made to it from the nearest GO-instruction.

We begin with some definitions of test-predicates that are

repeatedly used in the simplified loop invariant.

(ex) (x){ onichain(ex,x) <-->
[~atom(ex) &

{ex=x OR [markb(ex) & onichain(car(ex),x)] OR
[~markb(ex) & onichain(cdr(ex) ,x)]}]}.

The predicate onichain formalizes the notion that the second argument

resides on the inverted pointer chain sprouting at the first argument.

This predicate assumes the availability of an elementary predicate

markb (the counterpart of the function MARKB), which expresses whether

the mark-bit that is supposed to be associated with each non-atomic

cell is off or on. This mark-bit (which may be the one employed by the

garbage collector) is used here to indicate whether the car- or the

cdr-part of a cell contains an inverted pointer (when mark(y) holds,

it is the car which contains the inverted pointer). Next we define a

predicate that expresses whether a cell of a tree, that at first sight

has not yet been treated, has in fact already been visited as a result

of structure sharing. This visited predicate uses the additional

predicates visited2 and partv.

(tp2)(ex)(x){ visited(tp2,ex,x) <-->

[{~(car(tp2)=$) -->
[partv(car(tp2),ex,x) OR visited(cdr(tp2),ex,x)]} &

{car(tp2)=$ --> visited2(ex,ex,x)}]}.

(ex) (chel) (x){ visited2(ex,chel,x) <-->
[{“markb(chel) &
[partv(car(chel) ,ex,x) OR visited2(ex,cdr(chel) ,x)]} OR

{markb(chel) & ~(car(chel)=$) &
visited2(ex,car(chel) ,x)}]}.

The body of the partv definition uses existential quantifiers, as will

3.63

do other predicates in the sequel, because the “next” cell of the

inverted pointer chain is “invisible” and we know only that there

exists a next cell.

(tre) (ex) (x){ partv(trc,ex,x) <-->
[~atom(trc) &
{~(tre=x) -->
[{~onichain(ex,tre) -->

[partv(car(trc) ,ex,x) OR partv(cdr(trc) ,ex,x)]} &
{onichain(ex,trc) -->
[{markb(trc) -->
[partv(cdr(tre) ,ex,x) OR
(E icel){onichain(ex,icel) & partv(icel,ex,c) &

[markb(icel) --> car(icel)=trc] &

[“markb(icel) --> cdr(icel)=trc]}]} &
{“markb(trc) -->
[partv(car(trc) ,ex,x) OR
(E icel){onichain(ex,icel) & partv(icel,ex,c) &

[markb(icel) --> car(icel)=trc] &

[~markb(icel) --> cdr(icel)=trec] }]}]}J]}]}.

The visited-predicate will be used to test cells which are encountered

“under” and at the “right hand side” of the inverted pointer chain.

The cell to be investigated, x, is systematically compared with cells

at the left hand side of the inverted pointer chain. The comparison is

made by checking whether x is a part of subtrees hanging off the spine

above the $-cell (the partv predicate has to be used instead of partof

since structure sharing may lead to a virtual appearance of the

reversed pointer chain to the left of chain), or is a part of a

subtree hanging off the left hand side of the inverted pointer chain,

which is accomplished by the visited2-predicate.

These tools enable us to express the simplified and therefore

incomplete loop invariant at label L2. We assume that at the entrance

of the function SUBSTADP, S3 is bound to vs3 and Sl is bound to vsl

and we assume that the local alist is:

((EX. ex) (HH.hh2)(S3.13)(Sl.vsl*)(LAT.lat) (S3.g3)),

and the fact list:

“atom(13) & atom(lat) & “atom(g3) & ~partof(lat,vsl) &

atom($) &

{ex=$ --> [vslk=vsl & spine(vsl,lat,vs3,g3,13)]} &

{~(ex=$) -->
[{atom(vsl) -->

[vsl*=vsl & 1b2atl(vsl,lat,g3,ex,13,vs3,g3)]} &

{~atom(vsl) --> ...}]}.

So we have to specify the predicate lb2atl which describes how the

3. 64

structures hanging at g3 and at ex relate to the original tree vs3. We

will also have to specify the other support predicates 1b2at2, 1b2at3,

lb2at4 and 1b2at5.

(vsl) (lat) (g3) (ex) (13) (ol) (nw)
{ 1b2atl(vsl,lat,g3,ex,13,ol,nw) <-->

[eqa(ol,nw) &
{car(nw)=$ --> 1b2at2(vsl,lat,g3,ex,13,ol,nw)} &
{“(car(nw)=$) -->
[lb2atl(vsl,lat,g3,ex,13,cdr(ol) ,cdr(nw)) &
{atom(car(ol)) -->
[{car(ol)=lat --> car(nw)=vsl} &
{“(car(ol)=lat) --> car(nw)=car(ol)}]} &

{~atom(car(ol)) -->
1lb2at3(vsl,lat,ex,13,car(ol) ,car(nw))}]}]}.

The last two arguments of lb2atl lie respectively on the spine of vs3

and on the spine of its current incarnation g3. It recursively invokes

itself over the cdr’s of ol and nw until the $-cell on the spine is

reached. In the meantime it asserts with the predicate lb2at3 that

subtrees hanging off the spine above the $-cell have been visited and

that proper replacements have been made. Whenever the $-cell is

reached the responsability for describing the situation is handed over

to l1b2at2 which assumes that its last two arguments are eqa and that

the last argument lies on the inverted pointer chain.

3.65

(vsl) (lat) (g3) (ex) (13) (ol) (nw)
{ 1b2at2(vsl,lat,g3,ex,13,ol,nw) <-->

[eqa(ol,nw) &

{visited(g3,ex,nw) --> 1b2at5(vsl,lat,ex,13,ol,nw)} &
{~visited(23,ex,nw) —-
[{ex=nw —> '

[{markb(nw) --—>

[1lb2at4(vsl,lat,g3,ex,13,car(ol),13) &
{atom(edr(ol)) --> cdr(ol)=cdr(nw)} &
{~atom(cdr(ol)) -->
lb2at4(vsl,lat,g3,ex,13,cdr(ol) ,cdr(nw))}]} &

{~markb(nw) --—>
[1b2at4(vsl,lat,g3,ex,13,cdr(ol) ,13) &
{atom(car(ol)) -->
[{car(ol)=lat --> car(nw)=vsl} &
{“(car(ol)=lat) --> car(nw)=car(ol)}]} &

{~atom(car(ol)) --—>
replacedd(vsl,lat,car(ol) ,car(nw))}]}]} &

{~(ex=nw) -->
{{markb(nw) -->

[{atom(edr(ol)) --> cdr(ol)=cdr(nw)} &
{~atom(cdr(ol)) -->
1lb2at4(vsl,lat,g3,ex,13,cdr(ol) ,cdr(nw))} &

(E icel){onichain(ex,icel) &
lb2at2(vsl,lat,g3,ex,13,car(ol),icel) &
[markb(icel) --> car(icel)=nw] &

[“markb(icel) --> cdr(icel)=nw]}]} &
{~markb(nw) --—>
[{atom(car(ol)) -->

[{car(ol)=lat --> car(nw)=vsl} &
{~(car(ol)=lat) --> car(nw)=car(ol)}]} &

{~atom(car(ol)) ==>
1b2a3(vsl, lat ,ex,13,car(ol) ,car(nw))} &

(E icel){onichain(ex,icel) &
lb2at2(vsl,lat,g3,ex,13,cdr(ol),icel) &
[markb(icel) --> car(icel)=nw] &

[~markb(icel) --> cdr(icel)=nw] }]}]}]}]}.-

The main distinction inside 1lb2at2 depends on whether the nw-cell -

which is on the inverted pointer chain - has already been visited,

i.e. whether there is an occurrence of nw to the left of the inverted

pointer chain. If so the predicate 1lb2at5 takes over. Otherwise it

checks whether the end of the inverted pointer chain has been reached

(ex=nw). In either case a distinction must be made depending on

whether the inverted pointer resides in the car- or cdr-part of nw,

which is checked with the markb-predicate. The next predicate

describes the situation that nw has been visited already.

3.66

(vs1) (lat) (ex) (13) (01) (nw)

{ 1b2at3(vsl,lat,ex,13,ol,nw) <-->
[eqa(ol,nw) &

{onichain(ex,nw) --> 1b2at5(vsl,lat,ex,13,ol,nw)} &
{~onichain(ex,nw) -->
[{atom(car(ol)) -->

[{car(ol)=lat —-> car(nw)=vsl} &
{~(car(ol)=lat) --> car(nw)=car(ol)}]} &

{~atom(car(ol)) -—>
1lb2at3(vsl,lat,ex,13,car(ol) ,car(nw))} &

{atom(cdr(ol)) -->
[{edr(ol)=lat --—> cdr(nw)=vsl} &
{~(edr(ol)=lat) --> cdr(nw)=cdr(ol)}]} &

{~atom(cdr(ol)) -->
1b2at3(vsl,lat,ex,13,cdr(ol) ,cdr(nw))}]}]}.

The main distinction in 1b2at3 depends on whether nw — which is

already visited - is residing on the inverted pointer chain, as a

consequence of structure sharing. If so the predicate 1b2at5 will

describe the situation. The next predicate pertains to those

situations where the last argument nw lies “under” 13 or to the right

of the inverted pointer chain.

(vs1) (lat) (g3) (ex) (13) (ol) (nw)
{ 1b2at4(vsl,lat,g3,ex,13,ol,nw) <-->

[eqa(ol,nw) &

{visited(g3,ex,nw) --> 1b2at3(vsl,lat,ex,13,ol,nw)} &
{~visited(g3,ex,nw) -->
[{onichain(ex,nw) --> 1b2at2(vsl,lat,g3,ex,13,ol,nw)} &
{~onichain(ex,nw) -->
[{atom(car(ol)) --> car(ol)=car(nw)} &
{“atom(car(ol)) --—>
1lb2at4(vsl,lat,g3,ex,13,car(ol) ,car(nw))} &

{atom(cdr(ol)) --—> edr(ol)=cdr(nw)} &
{~atom(cdr(ol)) -->
1lb2at4(vsl,lat,g3,ex,13,cdr(ol) ,cdr(nw)) }] }J}]}.-

Although the argument nw lies “under” 13 or to the right of the

inverted pointer chain, we still have to check whether nw has already

been visited as a consequence of structure sharing. If so we can back

up to predicate lb2at3. Otherwise we have to deal with the question

whether nw lies on the inverted pointer chain or not. Finally, the

predicate lb2at5 applies to the case that nw is on the inverted chain

and has also been visited.

(vsl1) (lat) (ex) (13)(01) (nw)

{ 1b2at5(vsl,lat,ex,13,ol,nw) <-->
[eqa(ol,nw) &
{ex=nw —>
[{markb(nw) -->
[replacedd(vsl,lat,car(ol) ,13) &

{atom(edr(ol)) -->
[{edr(ol)=lat --> cdr(nw)=vsl} &
{“(edr(ol)=lat) --> cdr(nw)=cdr(ol1)}]} &

{~atom(cdr(ol)) -->
replacedd(vsl,lat,cdr(ol) ,cdr(nw))}]} &

{~markb(nw) --—>
{atom(car(ol)) -->
[{car(ol)=lat --> car(nw)=vsl} &
{~(car(ol)=lat) --> car(nw)=car(ol)}]} &

{~atom(car(ol)) -->
replacedd(vsl,lat,car(ol) ,car(nw))} &
replacedd(vsl,lat,cdr(ol) ,13)]}]} &

{~(ex=nw) --—>
[{markb(nw) -->

[{atom(cdr(ol)) -—->
[{edr(ol)=lat --> cdr(nw)=vsl} &
{“(edr(ol)=lat) --> cdr(nw)=cdr(ol)}]} &

{~atom(cdr(ol)) -->
1b2at3(vsl,lat,ex,13,cdr(ol) ,cdr(nw))} &

(E icel){onichain(ex,icel) &
lb2at5(vsl,lat,ex,13,car(ol),icel) &

[markb(icel) --> car(icel)=nw] &

[“markb(icel) --> cdr(icel)=nw]}]} &
{~markb(nw) -->
[{atom(car(ol)) -->

[{car(ol)=lat --> car(nw)=vsl} &
{“(car(ol)=lat) --> car(nw)=car(ol)}]} &

{~atom(car(ol)) -—>
1lb2at3(vsl,lat,ex,13,car(ol) ,car(nw))} &

(E icel){onichain(ex,icel) &
lb2at5(vsl,lat,ex,13,cdr(ol),icel) &
[markb(icel) --> car(icel)=nw] &

[~markb(icel) --> cdr(icel)=nw] }]}]}]}.

Verification activities at label L2 amount to checking the

instantiated loop invariant (see also the source code of SUBSTADP in

section 2):

== when control reaches L2 after entering SUBSTADP;

== when a deeper level of the tree is explored by following a

CAR-branch; and

-- when a deeper level of the tree is explored by following a

CDR-branch (in fact there are again two distinct cases here: one in

which the inverted pointer chain has been extended, and one in

which this extention was not necessary as the consequence of being

in a spine-cell).

„67

‚68

We concentrate on the first two, because the third task would

require a specification of the L4 loop invariant.

The first task is rather trivial. The binding of EX has just

been set to $ and therefore the problem reduces to showing:

vsl=vsl & spine(vsl,lat,vs3,vs3,vs3).

For the second subproblem, we can refer to the foregoing section where

the same problem was solved for SUBSTAD2.

The second task amounts to showing that, starting with the alist

and loop invariant at L2 and updating the alist and fact list on the

basis of the actions encountered on the path to the nearest (GO L2)

instruction, the thusly obtained alist and fact list can be proven to

comply with the loop invariant.

We start with the alist:

((EX.ex) (HH. hh2)(S3.13)(S1.vsl*)(LAT.lat) (S3.g3)).

The fact list contains the loop invariant, which we may simplify

assuming that vsl is atomic, and will be:

atom(vsl) & ~atom(vs3) & atom(lat) & ~atom(g3) &

“partof(lat,vsl) & ~atom(13) & atom($) &

{ex=$ --> [vsl*=vsl & spine(vsl, lat,vs3,g3,13)]} &

{~(ex=$) --> [vsl*=vsl & 1b2atl(vsl,lat,g3,ex,13,vs3,g3)]}.

The execution of (SETQ HH(CAR S3)) changes the HH-binding, to

say hh3, and will add to the fact list:

hh3=car(13).

The next instruction is a COND-ition of which we will only

pursue the branch where the first test is assumed to yield T. The

alist remains the same while the fact list grows as a consequence of

this assumption with:

“atom(hh3).

The (MARK S3 1) instruction adds to the fact list:

markb(13).

The (RPLACA S3 EX) instruction modifies the alist into:

((EX.ex2) (HH.hh3) ($3.14) (S1.vsl*)(LAT.lat) (S3.¢4)),

while the fact list grows with:

eqa(13,14) & car(14)=ex & cdr(14)=cdr(13) &

eqaupto(ex,ex2,13,14) &

eqaupto(23,24,13,14).

The EX-binding has to be updated since we may have the special case

that the CAR as well as the CDR of the original cell corresponding to

ex, were both pointing to 13. The g3-binding of S3 has to be updated

whenever 13 can be reached from g3, which is the case when ex is equal

to $. Observe that these two updatings cannot both be effective, thus

we have:

~(ex=ex2) --> g3=g4 and

~(g3=¢4) --> ex=ex2=S.

The hh3-binding need not be replaced, because the cycle freeness of

vs3 and therefore of 13 precludes that the cell 13 occurs again in hh3

(= car(13)).

Subsequently there are two assignment instructions:

(SETQ EX S3) and

(SETQ S3 HH),

which only affect the alist, producing:

((EX.14) (HH.hh3) (S3.hh3) (Sl.vsl*)(LAT.lat) (S3.g4)).

Finally we get to the jump: (GO L2).

The jump instruction leads to the following piece de resistance:

atom(vsl) & “atom(vs3) & atom(lat) & “atom(g4) &

atom($) & “atom(hh3) & ~partof(lat,vsl) &

{14=$ --> ...} &

{~(14=$) --> [vsl*=vsl & lb2atl(vsl,lat,2g4,14,hh3,vs3,g4)]}.

The consequence of 14=$ has not been specified since the

condition cannot be fulfilled (we have atom($), “atom(13) and

eqa(13,14)).

„69

3.70

This problem reduces to showing:

1lb2atl(vsl,lat,g4,14,hh3,vs3,g4). We distinguish between two cases:

Case l: ex=$.

Let us first assume in addition that 13=vs3. Expansion of the

lb2atl-formula leads to the subproblems:

eqa(vs3,g4) &

{car(g4)=$ --> 1b2at2(vsl,lat,g4,14,hh3,vs3,24)} &

{~(car(g4)=$) ==> ...}.

The spine-formula in the fact list gives:

vs3=13=g3.

One of the given eqaupto-formula allows the inference:

lá=g4.

Since we also have in the fact list: eqa(13,14), we have dealt with

the first subproblen.

Having available 14=g4 and having in the fact list car(14)=ex,

allows us to infer with the assumption ex=$ that the premise in the

second subproblem holds and thus we can dismiss immediately the third

subproblem {car(g4)=$ --> ...}. Therefore the second subproblem

reduces to the 1b2at2-formula. Expanding this formula yields the

subproblems:

eqa(vs3,2g4) &

{visited(g4h,l4,gá) --> ...} &

{~visited(24,14,24) -->

[{14=g4 -->

[{markb(g4) -->

[lb2at4(vsl,lat,¢4,14,hh3,car(vs3),hh3) &

{atom(cdr(vs3)) --> cdr(vs3)=cdr(2¢4)} &

{~atom(cdr(vs3)) -->

1b2at4(vsl,lat,¢4,14,hh3,cdr(vs3) ,cdr(g4)}]} &

{~markb(24) --> ...}]} &

{~(14=g4). --> ...}]}.

The first subproblem has already been solved. The visited-formula is

false since g4 cannot be a part of subtrees hanging off the spine

above the $-cell, since it is itself the $-cell a fact that can easily

be confirmed by expansion of the visited- and visited2- predicate.

Thus we are left with the third subproblem, made up out of two

3.71

alternatives which themselves contain two alternatives. Since we

obviously still have 14=g4 we can dismiss the second alternative. The

premise made up by the markb(g4) formula cannot be decided as yet. The

RPLACX-triggered updatings should be extended such that when a

non-atomic cell x is modified into y, the fact markb(x) <--> markb(y)

is in addition added to the fact list (the mark-bit is not affected by

updatings of the car/cdr sections of a cell). This extension to the

RPLACX updating mechanism, allows the inference that markb(g4) holds

because we have in the fact list markb(13) and thus since we still

have 14=g4 we can infer markb(14). We therefore obtain the next

problem simplification:

1b2at4(vsl,lat,g4,14,hh3,car(vs3),hh3) &

{atom(cdr(vs3)) --> cdr(vs3)=cdr(24)} &

{~atom(cdr(vs3)) --—>

1lb2at4(vsl,lat ,24,14,hh3,cdr(vs3) ,cdr(g4)}.

The second subproblem is easy since we have 13=vs3, 14=g4 and in

the fact list the formula cdr(14)=cdr(13) allowing us to infer the

consequence.

The third subproblem which leads to expansion of the

lb2at4-formula, requires an inductive argument and is similar to the

first subproblem to which we turn now.

Expansion of l1b2at4(vsl,lat,g4,hh3,car(vs3),hh3) produces the

reduction:

eqa(car(vs3),hh3) &

{visited(g4,14,hh3) --> ...} &

{“visited(g4,14,hh3) -->

[{onichain(14,hh3) --> ...} &

{~onichain(14,hh3) -->

[{atom(caar(vs3)) --> caar(vs3)=car(hh3)} &

{~atom(caar(vs3)) ==>

1b2at4(vsl, lat,¢4,14, hh3,caar(vs3),car(hh3))} &

{atom(cdar(vs3)) ==> ...} &

{~atom(cdar(vs3)) --> ...}]}]}.-

The eqa-formula is trivial since we have hh3=car(13) in the fact list

and we assume vs3=13.

3.72

The premise with the visited-formula can not hold since we just

entered vs3 according to our assumption; otherwise one should

investigate both cases, a course which will lead to inductive

arguments.

The premise with the onichain-formula cannot hold either; 14 is

the beginning as well as the end of the inverted pointer chain and

thus hh3 cannot be on the inverted pointer chain.

Ed

Therefore we focus our attention on the four formulas following

the ~onichain(14,hh3)-premise. As a result of hh3=car(vs3) we obtain

the consequences of the first and third implication. The consequences

of the second and fourth formulas are handled by inductive arguments.

Without the assumption that 13=vs3 we have essentially the same

line of reasoning only with more recourse to inductive reasoning to

treat the more general situations.

Case 2: ~(ex=$)

As is case 1 we have to show:

lb2atl(vsl,lat,g4,14,hh3,vs3,24).

Expansion of this formula leads to:

eqa(vs3,2¢4) &

{car(g4)=$ --> ...} &

{~(car(g4)=$) -->

[lb2atl(vsl,lat,g4,14,hh3,cdr(vs3) ,cdr(g4)) &

{atom(car(vs3)) -->

[{car(vs3)=lat --—> car(g4)=vsl} &

{~car(vs3)=lat --> car(g4)=car(vs3)}]} &

{~atom(car(vs3)) -—>

1b2at3(vsl,lat,g4,14,car(vs3) ,car(g4))}]}.

The first subproblem, the eqa-formula, requires an induction

argument. Let us assume that we had _ eqa(vs3,g3). From the

eqaupto-formula containing g3 and g4, we obtain eqa(lg3,g4) giving us

with our assumption eqa(vs3,g4). In a similar way one should be able

to show the invariant:

eqa(vs3,~ binding 2nd occurrence of S3 on alist’),

3.73

for all paths starting at the label L2 and ending in L2. This property

certainly holds the first time L2 is entered (since the 2nd occurrence

of S3 will have the binding vs3). Thus we are done with the first

subproblen.

The second subproblem {car(g4)=$ --> ...} leads to the expansion

of the predicate lb2at2, which we handled already for case 1, and

which we here take for granted.

The third subproblem requires, assuming ~(car(g4)=$), us to

show:

lb2atl(vsl, lat ,g4,14,hh3,cdr(vs3),cdr(g4)) &

{atom(car(vs3)) -->

[{car(vs3)=lat --> car(g4)=vsl} &

{~car(vs3)=lat --> car(24)=car(vs3)}]} &

{~atom(car(vs3)) -->

1b2at3(vsl,lat,g4,14,car(vs3),car(g4))}.

The first subproblem can be dismissed by our reliance on cdr

induction.

Let us assume the premiss of the second subproblem:

atom(car(vs3)). Expansion of the Il1b2atl-formula in the fact list

yields:

atom(car(vs3)) -->

[{car(vs3)=lat --> car(g4)=vsl} &

{~car(vs3)=lat --> car(g4)=car(vs3)}].

Expansion of the eqaupto-formula containing g3 and g4 gives

car(g3)=car(g4) and completes the second subproblem.

Assuming the premise of the third subproblem instead,

“atom(car(vs3)), gives the same argument.

In a similar way, the proofs can be given:

-- when the loop invariants have been specified for the other labels,

-- when the path is followed from label L4 to the RETURN-statement,

-- when the restriction atom(vsl) is dropped, and finally

3.74

== when the restriction ~partof(vsl,vs3) is dropped (see again fig.

3.10).

After all these laborious proofs - admittedly infeasible without

machine support — we can state:

THEOREM 6. The output of the function SUBSTAD when using the support

funetion SUBSTADP ts EQUAL to the output when the support funetion

SUBSTAD1 (or SUBSTAD2) te used instead.

Consequently, no matter which support function is used, the

outputs of SUBST and SUBSTAD are EQUAL provided the second argument is

a literal atom and does not occur in the first argument.

5. Implementation Results

We give here time and space consumption comparisons of SUBST,

SUBSTAD with the pointer reversal support function SUBSTADP and

SUBSTAD with the half recursive half iterative support function

SUBSTAD2. Subsequently, unification algorithms with different

substitution functions will be compared.

To account for the COPYing property of SUBST we asured not

only the time and space needed by SUBSTAD but also COPY operation

followed by a SUBSTAD operation. Two different objécts were used:

-- a list of the form (ABCDEABCDEA 25) of length 2560, and

== a balanced tree of depth 10 with at its leaves (ABCDE).

In case of the balanced tree it mattered for the space consumption

whether A or E was replaced by a SUBST operation as can be seen from

table 2.

Operation time space

SUBST 77 2565
COPY+SUBSTADP 38 2570
COPY+SUBSTAD2 38 2570
SUBSTADP 10 9
SUBSTAD2 9 9

Table 1. Time and space measurements for the
different substitution functions and in
combination with COPY on a list of length 2560.

Operation time space

SUBST on A 164 2056
SUBST on E 185 6152
COPY+SUBSTADP 104 6153

COPY+SUBSTAD2 91 6153

SUBSTADP 34 9

SUBSTAD2 19 9

Table 2. Time and space measurements for the
different substitution functions and in
combination with COPY on a balanced tree of
depth 10 with at its leaves (ABCD E).

Two values are given for the space consumption
of SUBST; the “on A” value pertains to the
replacement of A, the “on E“ value to the
replacement of E.

2/5

Jal tl
JE i |

We can conclude from these measurements:

| [-- The half recursive half iterative SUBSTAD2 is to b neten to

; 7 the pointer reversal version SUBSTADP since it is ‘faster while

L having equal space consumption.

== When one need not worry about preservation of the original

S-expression, the SUBSTAD versions are to be preferred to SUBST,

and the savings are “gigantic”.

-- When the original S-expression must be maintained and a COPY needs

to be performed, it is still better to use the SUBSTAD functions

over SUBST with respect to speed, but space consumption may

deteriorate.

To investigate how the last mentioned trade-off behaves in

practice, we outfitted a unification algorithm with SUBST as well as

with SUBSTAD and exercised them on 13 unifiable strings. After

compilation of these unification algorithms we “hand-optimized” the

version using SUBSTAD2. Table 3 contains the measurements for the

three different unification algorithms.

Provided that the used strings are representative for unifiable

strings we may conclude that the unification SUBSTAD2 algorithms

out-perform the unification SUBST algorithm. Of course it is also

possible to hand-optimize the unification version with SUBST. It

should be noted however, that on non*unifiable strings the

optimized-SUBSTAD2 version will have a zero space consumption (since

COPY-ied structure can be recovered) while COPY-ied structure by SUBST

cannot be recognized.

3

jobJect unification with |

| | | | optimized|

| | SUBST | SUBSTAD2 | SUBSTAD2 |
| | time spacel time spacel time space

ol	31 465	18 465	15 315
o2	10 315	8 315	9 165
03	18 345	11 405	11 315
04	14 345	12 345	8 255
05	15 405	12 345	11 255
06	12 345	13 390	11 300
07	18 495	13 390	9 300
o8	12 375	13 405	8 195
o9	15 375	14 405	8 195
o10	22 450	15 465	11 225
o11	26 450	14 465	14 225
012	25 675	15 405	16 165
013	23 540	16 405	14 165

| totall 241 5580 | 174 5205 | 145 3075 |

Table 3. Time and space consumption of a
unification algorithm implemented with
SUBST, SUBSTAD2 and a hand optimized
unification algorithm with SUBSTAD2. To
improve the time measurements, all
unifications were repeated 15 times (as

can be seen from the space usages which

all have 15 as divisor). Due to the loop
overhead we may expect that the relative
improvement of the SUBSTAD algorithms
with respect to the SUBST algorithm is
even better than shown.

Finally, we report the measurements of unifying (xl ... xn) and

(a .……. a) for n=100, 200 up to n=800 with the unification algorithms

employing SUBST and SUBSTAD2 and the hand-optimized unification

algorithm with SUBSTAD2. Table 4 contains the results. As to be

expected, the unification algorithms with SUBSTAD) have a better

performance than those with SUBST.

UN,

jobiece| unification with |

| length | | optimized |
| | SUBST | SUBSTAD2 | SUBSTAD2 |
| [time spaceltime spaceltime spacel

| 100 | .5 413] .1 413] .1 213|
| 200 | 2.1 813] .4 813] .4 413]
| 300 | 4.7 1213] .8 1213] .8 613
| 400 | 8.3 1613] 1.5 1613] 1.5 813]
| 500 [13.1 2013| 2.3 2013] 2.3 1013]
| 600 [18.9 2413] 3.2 2413] 3.2 1213]
| 700 [25.7 28131 4.4 2813] 4.4 1413]
| 800 [33.5 3213] 5.8 3213] 5.7 1613]

t LI La La

Table 4. Time and space consumption for
the same unification algorithms as in

table 3. In contrast with table 1, 2 and
3, the time units in this table are
seconds instead of milliseconds.
Apparently the time complexity of all

versions is quadratic.

6. Conclusions

It turns out that the substitution function SUBSTAD is a

worthwhile addition to the LISP repertoire. A simple unification

algorithm could be modified such that it takes advantage of SUBSTAD

and has a better performance than the version that uses the function

SUBST. Whether a similar improvement can be obtained for a linear

unification algorithm [65] is an interesting issue to be investigated.

The attempt to give correctness proofs for several versions of

SUBSTAD revealed that the method of symbolic execution — although

theoretically adequate - flounders in some cases in a practical

problem: the formal description of input/output statements as well as

loop invariants lead to a proliferation of ad hoc definitions to

unmanageable amounts. We suspect that this disadvantage holds for all

currently available verification techniques. If so, verification

specialists may be well-advised to give more attention to the

practical implications of their theories, rather than devote all their

energy to esoteric refinements, or the design of logics that become an

end in themselves.

We feel that the bottle-neck lies in the necessity to specify in

state-description terms what a function is supposed to do. Whether a

function is recursive or not is not even explicitly expressible in its

specification. Somehow people feel closer to a definition of a

function in procedural terms, such as “the terminals equal to lat will

be replaced by vsl" and “the tree will be visited from left to right”.

Proving correctness of a function “reduces” then to showing that the

function behaves according to these expectations rather than that

input/output description pairs conform to a certain relation.

The technique we have developed for describing evolving states

using an alist, a fact list and predictates like eqaupto and transf

that capture specific side effects, may be of interest to other areas

of A.I. The alist can be considered a collection of individual

concepts, where the bindings are the actual extensions. A new

situation differs primarily in that some concepts have different

extensions which is reflected in fresh facts. Outdated facts do not

„79

3.80

have to be deleted but merely become invisible since they contain

arguments that no longer reside on the alist.

The old frame problem [58] linked with the usage of the

predicate calculus for state descriptions has evaporated. There ís no

need for unwieldy axioms to express that, when P(x,...,z,sl) holds in

situation sl and additional conditions are fulfilled, the fact

P(x,---,2,82) can be inferred in s2. Instead we have a different frame

problem. A fact may seem obsolete (since an argument has been removed

from the alist) while an analogous fact can be inferred for a newly

introduced extension. We have encountered this in lemma 1-4 where

particular circumstances allow us to equate old and new binding. Since

updatings and the recognition of identities are object centered, and

may affect many facts simultaneously, this frame problem appears to be

less obstructive than the original one; but more thinking and/or

experimenting is needed to validate this suggesttom-
can jes „Lure

To end thís section on the positive side: although program

verification cannot as yet be promoted as a tool for wide

distribution, it pays off to have a second look at one’s program from

\ a verification perspective. After all, writing this chapter forced us

to rethink the conditions in which the function SUBSTAD is applicable.

The specification we published five years ago, turned out to be too

liberal!

APPENDIX

The following are generalizations of formerly given recursive

definitions to arbitrary data objects, thus possibly containing

cycles. It should be borne in mind that all arguments are made up of

only a finite number of cells.

(d)(e){ partof(d,e) <--> partofl(d,e,0) }

(d)(e)(V){ partofl(d,e,V) <-->
[partofcar(d,e,V) OR partofcdr(d,e,V)] }

(d)(e)(V){ partofcar(d,e,V) <-->
[~“atom(e) & ~(e in V) &

{ d=car(e) OR partofl(d,car(e),{e} UV) }] }

(d)(e)(V){ partofedr(d,e,V) <-->
[~“atom(e) & “(e in V) &

{ d=cdr(e) OR partofl(d,cdr(e),{e} UV) }] }

(d)(e){ compatible(d,e) <--> compatiblel(d,e,0,0) }

(d)(e)(V)(W){ compatiblel(d,e,V,W) <-->
[atom(d) OR atom(e) OR (d in V) OR (e in W) OR

{ eqa(d,e) & d=e } OR
{ ~eqa(d,e) &
compatiblel(d,car(e),V,{e} U W) &
compatiblel(d,cdr(e),V,{e} U W) &
compatiblel(car(d),e,{d} U V,W) &
compatiblel(cdr(d),e,{d} U V,W) }] }

(yl) Cy2) (x1) (x2){ eqaupto(yl,y2,x1l,x2) <-->
eqauptol(yl,y2,x1,x2,0) }

Cyl) (y2) (x1) (x2)(V){ eqauptol(yl,y2,xl,x2,V) <-->
[eqa(yl,y2) &

{ (yl in V) --> yl=y2 } &
{ “(yl in V) -->

[{ yl=xl --> y2=x2 } &
{ [~(yl=xl) & “atom(yl)] -->

[eqauptol(car(yl),car(y2),xl,x2,{yl} U V) &

eqauptol(cdr(yl),cdr(y2),x1,x2,{yl} U V)]})}]}

(yl) (y2) (x1) (x2){ transf(yl,y2,xl,x2) <-->
transfl(yl,y2,x1,x2,0) }

81

-82

(yl) Cy2) (x1) (x2)(V){ transfl(yl,y2,xl,x2,V) <-->

[{ (yl in V) --> yl=y2 } &
{ ~(yl in V) -->

[eqa(yl,y2) &
{ xl=yl --> y2=x2 } &
{ [“atom(yl) & ~(xl=yl) & trl(yl,xl,x2,0)] -—

tr2(yl,y2,xl,x2,0) } &
{ [“atom(yl) & “(xl=yl) & “trl(yl,xl,x2,0)] -->

[transfl(car(yl),car(y2),xl,x2,{yl} U V) &
transfl(cdr(yl),cdr(y2),xl,x2,{yl} U V)]}]}]}

(yl) (x1) (x2)(V){ trl(yl,xl,x2,V) <-->
[“(xl in V) & “atom(xl) & eqa(xl,x2) &

{ yl=xl OR

trl(yl,car(xl),car(x2),{xl} U V) OR
trl(yl,cdr(xl) ,cdr(x2),{xl} U V) }]}

(yl) Cy2) (x1) (x2)(V){ tr2(yl,y2,x1,x2,V) <-->
[~Cxl in V) &

{ yl=xl --> y2=x2 } &

{ “(yl=xl) -->
[{ trl(yl,car(xl),car(x2),{xl} U V) --—>

tr2(yl,y2,car(xl),car(x2),{xl} U V) } &
{ trl(yl,cdr(xl),cdr(x2),{xl} U V) -->

tr2(yl,y2,cdr(xl),cedr(x2),{xl} U V) }]}]}

The generalization of equal to arbitrary data objects deviates from

the pattern given above. We use <x.y> to indicate the ordered pair

formed from x and wy; Pl and P2 stand respectively for selectors on

ordered pairs.

(el)(e2){ equal(el,e2) <--> equall(el,e2,0,0) }

(el) (e2)(V)C(W){ equall(el,e2,V,W) <-->
[el=e2 OR

{ [eqt(el,V) --> eqck(el,e2,V,W)] &
[~eqt(el,V) -->

{ ~eqt(e2,W) & ~atom(el) & ~atom(e2) &
equall(car(el),car(e2) ,<el.V>,<e2.W>) &

equall(cdr(el) ,cdr(e2) ,<el.V>,<e2.W>) }J}]}

(el) (V){ eqt(el,V) <-->

[~(v=0) &
{ el=P1(V) OR eqt(el,P2(V))}]}

(el) (e2)(V)(W){ eqek(el,e2,V,W) <-->
[~(V=0) &

{ el=P1(V) --—> e2=P1(W) } &
{ ~(el=P1(V)) --> eqck(el,e2,P2(V),P2(W))}]}.

TWO THEOREM PROVER PREPROCESSORS

1. Motivation

Several schools can be distinguished within the Automatic

Theorem Proving community. The method employed divides them. The two

leaders are “resolution” and “natural deduction". Resolution has been

more thoroughly investigated and is more attractive from a theoretical

point of view since completeness can be easily verified. Natural

deduction, however, seems closer to the method employed by human

beings, and what goes on in a natural deduction proof can be readily

interpreted. Moreover, recent results of natural deduction are more

impressive than those obtained by resolution.

For many years yet another school, the proceduralists, have been

beating the drum pervasively. In order to achieve real deductive

power, they combine deductive rules with advice as to how and when

they should be used. This technique depends upon an explicit reference

to the characteristics of a specific domain. Consequently, a theorem

prover equipped with these peppers is no longer general while its

specificness does not reside in a replaceable component. They even

developed a special language for this approach: QA4 [72] (QA3 [37],

its predecessor, is a resolution type theorem prover). In fact, it was

immediately obsolete and was absorbed into QLISP/INTERLISP. Until now,

theorem provers have not been implemented in these languages, as far

as we know. Moreover, these languages are geared rather toward plan

generation and automatic programming than theorem proving. They will

have to find a cure against the allurement to write adhoc deductive

procedures to prevent that this school may disappear from the

deductive scene.

Contrary to what one may expect as a consequence of its deep

roots into the past, the predicate calculus (PC) has no standard

setting lending it to deductive tasks. While the syntax for

PC-formulas is certainly standard, axioms and derivation rules range

from several axiom schemata, standing for an infinite number of

axioms, and only modus ponens, to no axioms and many derivation rules.

Dependent on the aims of the investigator/user, an arbitrary selection

in this range may be made.

Resolution, which uses a heavily restricted subset of the PC,

has a minimal amount of connectives, and no quantifiers while only one

derivation rule is employed (considering factoring a part of

resolution). Consequently, implementing resolution-based theorem

provers required - in the beginning - minimal programs. Furthermore a

translator is required to transform PC-formulas into

conjunctive-normal-form (CNF), the current champion of unnatural

knowledge representation. Unnaturalness is in itself no disadvantage

since one can get accustomed to it; what counts is the near

impossibility to set up a cooperation between a resolution theorem

prover and non-syntactic heuristics, knowledge sources and models.

Another extreme is natural deduction without axioms, employing

many derivation rules and working with the full PC. An immediate

advantage of this technique is that it does not require the

translation to CNF. Thereby making the object under consideration more

familiar, permitting construction of humanlike deductive operations. A

disadvantage is that such a theorem prover becomes opaque. With many

derivation rules, the issue of control becomes paramount. One

assignment of priorities to the derivation rules may be very effective

for solving some problems while it is singularly unsuccessful for

solving others.

If the proceduralists are confronted with serious troubles, the

resolution and natural deduction schools also have inherent problems.

Both have in common the view that finding a proof is regarded as a

search problem, where objects in the search space are respectively

clauses and predicate calculus formulas. They differ only in the kind

of operators used. Resolution people have been busy ever since 1965

refining the resolution rule in order to limit the generation of

redundant clauses. A recent addition to the field is the connection

graph [46], a data representation for clauses where the label on an

edge represents the substitution of unifiable literals. This

representation is attractive because it requires no search for

unifiable literals. The question as to which pair of unifiable

literals to resolve upon remains wide open. Resolution as well as

natural deduction have a certain "flatness" in common which is the

consequence of their uniform data representation.

In contrast, we advance the thesis that deduction consists of

distinct operations, each requiring another optimal representation for

the objects on which they work. (This observation is after all not

far-fetched; one only has to look at the different subdisciplines of

mathematics to stumble on a wealth of formalisms.) From this

perspective, one can even justify resolution with its CNF. Whenever

one runs out of deductive “high order” operations on a problem one

may, as a last resort effort, submit it to the search mechanism of a -

refined — resolution prover.

Resolution as well as natural deduction can be critized for not

being sensitive to “obvious” peculiarities of problems to be solved.

They do not know the difference between an axiom, a theorem, a

definition, or a recursive definition. They do not know when to ignore

the fact that a formula is an equation or make explicit use of such a

fact. They are not flexible with respect to the decision to continue

proving something instead of trying to find a counterexample. They

cannot juggle with several interpretations of a set of formulas to

guide decisions. They cannot recognize that a proof in fact allows the

assertion of a stronger conclusion than the conjecture started off

with. (When an assumption is introduced and it can be recognized that

the subsequent proof does not depend on it one can prevent repeating

the proof under the negated assumption). They are ignorant of other

theories and thus cannot attempt adapting proofs by analogical

reasoning (with the notable exception of a first attempt in [45]).

Summarized: the deduction rules tool box is supposed to do too

much work and its tools are clumsy, while useful data - models, other

theories, distinctions between formulas or even the proof sequence of

already proven theorems — are inaccessible.

Consequently, we envision a different “architecture” for more

powerful theorem provers. They should be arranged as cooperating

deductive “specialists”, each one embodying sound deductive power and

when productive - in the sense of a production system — able to ensure

a positive contribution to a solution. No single one needs to be

complete. The issue of completeness, constantly popping up in the

automatic deduction literature and drawing an undue amount of

attention, also becomes unimportant. When for example, a simple

resolution specialist belongs to the community all discussions about

completeness become unnecessary.

Of course another problem — well known in production systems

circles - comes up when there are many deductive specialists around:

how to decide cheaply which specialist is applicable, and when more

than one is applicable, which one to give control to? When we are

getting used to supplying more information than just axioms and a

conjucture to a community of deductive specialists, as argued above,

this problem might be alleviated in a non adhoc way.

We will describe in this chapter two deductive specialists:

-- INSTANCE, which is able to decide whether a conjecture is a special

case, an alphabetic variant and/or an and/or-connective permutation

variant of an already accepted axiom, theorem, lemma, intermediate

result, etc.

-- INSURER, which is able to recognize when a conjecture can be

rewritten into independent, easier to handle subproblems.

These specialists - which can be considered as preprocessors for

conventional theorem provers - were implemented — together with a

simple applier of definitions - and integrated with a connection

graph, resolution-based theorem prover. The augmented power of this

deduction complex with respect to the sole theorem prover will be

shown by examples.

Some of this work has been reported in [15]. In the mean time,

it has turned out that the cooperation between the two preprocessors

could be increased, making one of them still more effective, and

maintaining their algorithmic, always halting nature. The cooperation

has become so tight that we have the following apparent paradox:

although the output format of INSURER is the input format of INSTANCE,

INSTANCE has processing responsibilities deep down, inside INSURER.

The next section is devoted to the definition of INSTANCE and a

description of some of its properties. In section 3, INSURER is

defined and its properties explored. Section 4 describes the structure

of the supervisor of the theorem prover COGITO, containing INSTANCE,

INSURER, a definition opener and a connection graph resolution

component, with which the examples to be discussed in section 5 have

been handled.

2. Compressed Mini~Scope and INSTANCE

As discussed in the former section, distinct deductive

specialists may require distinct data representations for the objects

on which they operate. Here we want to describe another data

representation, Compressed Mini-Scope (CMS), which allows the support

of operations like “for symmetry reasons it is sufficient to consider

only ... and “since A is a special case/alphabetic variant of B we

conclude that ...”.

While our intention is to treat the full PC, we will first

illustrate what is at stake with the propositional calculus.

Let us start with a propositional calculus formula Po, which

stands for a conjecture. We can transform Pg with a well known recipe

into an equivalent formula P, such that P; is in CNF, say:

(To simplify the notation we use the “Einstein” convention, thus for

instance &R, abbreviates &(R,,---,R,); & stands for and.)

P, may be simplified with the following rules:

(1) if Rig Riy (with x unequal y) then drop Riy from Ry (whenever only

one element of the disjunction remains then drop the

or-connective);

(2) if Ray Rij then drop R, from Py;

(3) if each element Ry, in R; has a corresponding element R; in Rj
y

with R;,=R., then drop Rj from Py;
jy

(5) if no R, remains then Po:=TRUE.

4.7

Whenever the resulting formula Po is a conjunction while Po is

not then we have decomposed the problem Po into subproblems which are

in general easier to solve than Po- Rule 1 simplifies subproblems.

Rule 2 removes tautologies. Rule 3 takes care for removing identical

subproblems. Its generalization to the PC removes subproblems that

disappear on symmetry type of arguments. Rule 4 is a watch dog against

non-sensical problems. Rule 5 makes these rules a special case theorem

prover.

The generalization of the translator and the rules 1-5 to PC

input is the topic of the next section. (The translator INSURER

applies the rules while transforming to CMS - the analogue for CNF -

instead of applying those rules afterwards.) The rules 1-4 presuppose

a simple test to check whether propositional constants are related in

such a way that a rule may “fire”. For example rule 1 requires only a

test for the identity of Rix and Riy: The generalization of these

tests to the PC is the topic of this section and yields the definition

of the INSTANCE algorithn.

Roughly speaking, a CMS-formula is a closed mini-scope

PC-formula (see [85]), with the additional properties that

(a) no two arguments of an and or oP subformula are in an INSTANCE

relationship,

(b) no two arguments of such a subformula are in a half-negated

INSTANCE relationship (two formula’s F and G are in a half-negated

INSTANCE relation when the negation of F is in an INSTANCE

relationship with G), and

(c) each quantifier has a unique variable.

Apart from the necessity to be more precise about mini-scope, we

have to face the complication that the INSTANCE relationship is

mentioned in the definition of CMS while the INSTANCE algorithm

definition presupposes that its two arguments will come from the CMS

domain. Recursion will be the way out of this paradox.

Let us first define mini-scope. It does not contain the

connectives ==> and <-->, and is generated by the following pseudo-BNF

rules {comment is added inside curly brackets}:

<miniscope> :=: &<topAform* | <topAform | TRUE | FALSE.

{The * indicates a repetition of at least two elements, so a

mini- scope formula is a conjunction with <topAform arguments

or a <topAform formula.}

<topAform :=: OR<topOform* | <topO0form.

<topOform :=: <form with var nil>,

{ntl occupies here an argument position of <form with var ...>

and shows that a mini-scope formula does not have free

variables.}

<form with var X> :=: <literalform X> | (Y¥)<uqbody xX, Y | (E

Y)<eqbody X, YD.

{X, Y, Z stand for sets of free variables, e.g. if X= (xl,x2)

then <literalform X> can be P(a,xl,x2). <uqbody ooo?

(respectively <eqbody>) stands for the body of a universal

(existential) quantified formula.}

<literalform X> :=: <atomicform X> | ~<atomicform X>.

{Since we assume that the reader knows already about atomic

forms, we will not expand them. Observe that the negation sign

can occur only in front of atomic forms.}

<uqbody X Y> :=: <literalform X U Y> | (E Z)<eqbody X U Y,Z>

| OR<form with var YU Z,>, with U Z, = X.

<eqbody X Y> :=: <literalform XU Y> | (Z)<uqbody X U Y,Z>

| &<form with var Y U Z4>, with U Z, = X. i i

Comment: The double parameters of <uqbody ...> (and <eqbody

>) are introduced to ensure that all arguments of a disjunctive

(conjunctive) body of <uq ...> (<eq ...>) will contain the variables

in X, preventing the push of a quantifier to the right by factoring an

argument out of an and/or-connective.

The definition above is more rigorous than [68] and [85] and

seems to deviate on some points. Instead of meticulously describing

the differences and their inaccuracies, we believe that the authors

had the above definition in mind.

4.9

We still have to refine this mini-scope subset to CMS. Let the

AND/OR-level of a formula be the maximum number of AND/OR-connectives

one may encounter by going from the toplevel to a literal terminal.

Suppose CMS has been defined up to level n-1 and INSTANCE has already

been defined on this CMS subset, then an n-AND/OR-level mini-scope

formula is in CMS iff no arguments of its nth-level AND/OR-connective

is in the INSTANCE- or half negated INSTANCE- relationship (which is

defined since those are at most of level n-1).

Before continuing with the definition of INSTANCE, we will

present examples to clarify the direction in which we are going.

(1) (x){A(a) & A(x)} is not mini-scope.

(2) Ala) & (x)Alx) is not CMS because Ala) is in the INSTANCE

relationship with (x)A(x).

(3) ~“ACa) & (x)Alx) is not CMS because ~A(a) is in the half-negated

INSTANCE relationship with (x)A(x).

(4) (x)Alx) is in CMS.

Remark: example (2) may be rewritten to (x)A(x) and example (3)

rewrites to FALSE.

And now INSTANCE. Its input consists of:

(1) a CMS formula T to be investigated for being a special case and/or

alphabetic variant of:

(2) another CMS formula K.

The output of INSTANCE is Y or nil whether or not T is an “instance”

of K respectively. Being an “instance” is in fact defined in the

sequel in a procedural way by an algorithm with as main characteristic

that it is stronger than implication. After its specification we will

show that INSTANCE(T,K) implies: |- K --> T.

The first action of INSTANCE is to Skolemize K and to

anti-Skolemize T, thus existential quantifiers in K and universal

quantifiers in T are removed by replacing the associated variables by

fresh functions, while universal quantifiers in K and existential

quantifiers in T remain. Those functions have variables dependent on

the preceding universal and existential quantifiers respectively.

4.10

Example: Consider the formula Z: (x)(E y)P(x,y). In case Z is

the second argument K of INSTANCE, the Skolemization of Z yields

(x)P(x,F(x)), with F a fresh unary Skolem function. In case Z is the

first argument T of INSTANCE then anti-Skolemization of Z yields

(E y)P(f,y) where f is a Skolem constant since there are no preceding

existential quantifiers to "(x)".

LEMMA 1. Jf S1(K) te the result of the Skolemization of K and $2(T)

the result of the anti-Skolemization of T then:

|- s1(K) --> S2(T) iff |- K --> T.

PROOF. Obviously we have:

(1) |- K --> T iff |- °K ORT.

According to lemma 42A, page 275 of [28], we have:

(2) |- °K iff |- ~S1(K).

In analogy with the construction of the Skolemnormal-form SNI(F) for

any first order PC-formula F, one may construct the anti-Skolem normal

form SN2(F), which consists of a sequence of universal quantifiers

(possibly empty) over individual variables and/or function variables,

followed by a sequence of existential quantifiers (possibly empty)

over inidividual variables, followed by a quantifier free matrix and

for which we have:

(3) |- F <--> SN2(F).

This construction is obvious when F is quantifier free. We induct on

the number of quantifiers in F. By using standard transformations, we

can transform F in an equivalent formula G, not containing the

equivalence- and implication- connective any more. By working “not”

inwards we get an equivalent formula H. When H has a leading

connective “and” or “or” we treat each argument separately (possibly

after renaming variables, such that no variable is bound more than

once). Thus we obtain say &(SN2(H1),...,SN2(Hk)). By pushing the

quantifiers to the left and reordering quantifiers, which is allowed

since SN2(Hi) and SN2(Hj) still do not have variables in common, we

obtain a formula of the required format.

4.

Suppose H is of the form (i)I(i). Let c be a fresh constant and

J(c):= SN2(I(c)). Then we have by induction:

|- J(c) <--> I(e),
and by generalization:

I- (z){ J(z) <--> I(z) }.

Let K:= SN2(H) and suppose that not |- K <--> H. So there is an

interpretation with:

(I) VAL(K) = true and VAL(H) = false or

(II) VAL(K) = false and VAL(K) = true.

Assume case I.

K= (f1)...(fk)(E1)...M(i,f1(1,...),...,fk(i,...),oe0)s

In this interpretation thus:

VAL(M(1,f1(i,...),.--)) = true,

while VAL(I(i)) = false.

For i we have |- J(i) <--> I(i), and

J(i)= (gl)...(gk)..-M(i,gl(...),---)-

We are free to construct for each gj lambda expressions gj such that

in this interpretation:

M(i,gl(..-),---)=M(i,f1(i,...),.2-).

Consequently, VAL(I(i)) = true. Contradiction.

Case II is analogous to case I.

Since (3) has been dealt with, we can derive from it:

(4) |- F iff |- S2(F).

From left to right, this is obvious since |- SN2(F) --> S2(F) and

together with (3), we obtain |- S2(F).

From right to left, we apply generalization on |- S2(F) to obtain

|- SN2(F), and again with (3), we obtain |- F.

Combining (4) with (2) yields:

(5) I- “K ORT iff |- ~S1(K) OR S2(T).

Combining (1) with (5) produces:

|- s1(K) --> $2(T) iff I- K --> T. <<

The next action of INSTANCE, after anti-Skolemizing and

Skolemizing its two arguments, is to call the recursive support

function INS2 with:

INS2(S2(T), S1(K), nil, nil),

where the 3rd and 4th argument stand for respectively the set of free

variables in S2(T) and S1(K), and since we start off with closed

formulas, they will be empty at the top level of INS2.

The output of INS2 is:

== NO, signifying that S2(T) is not an instance with respect to the

INS2 procedure of S1(K) and will cause INSTANCE to return with nil,

or

== a non-empty list of substitutions, where each substitution ss

allows to infer:

|- S1(K) --> S2(T),

and will cause INSTANCE to return with Y.

At the top level call of INS2, it is sufficient that INS2

returns with only one substitution in order to allow INSTANCE to

report success. The reason for letting INS2 produce possibly more than

one substitution is that generating more than one substitution on a

lower level may may prevent INS2 returning with NO on a higher level.

An example where more than one substitution will be returned by INS2

is:

S2(T) = (E x)A(x,x),

S1(K) = (y)(ACp,y) & A€q,y)) with the two substitutions:

(x <-- p, y <-- p) and (x <-- q, y <-- q)-

We now define the support function INS2. To simplify the

notation we represent S2(T) and S1(K) respectively by ST and SK. VARST

and VARSK are respectively the set of variables in ST and SK. We also

need the following notations:

X.tt stands for performing the substitution tt on X. {A substitution

is of the form ((xj <-- Sj) «++ (xX, <-- s,)) with x; not in 8;

and all x, different; nil is the empty substitution}.

tttss stands for concatenation of the substitutions tt and ss.tt (a

variable may not occur in ss as well as in tt at the left hand

side, and no left hand side variable occurs in any right hand

4.13

side).

P*tt is the formula obtained by:

„== removing each quantifier in P for which there exists a

replacement prescription in tt for its accompanying variable;

and

== subsequently performing Pl.tt on the formula Pl obtained thus.

A unifier has to be understood as a most general unifier in the

sense of [/1]. We have generalized the unification algorithm slightly

to allow also matching of formulas. For example &(A(x) ,B(b,x)) and

&(A(a) ,B(y,z)) will have the unifier:

(x <-- a, y <-- b, z <-= a).

INS2(ST, SK, VARST, VARSK) :=
if ST and SK are unifiable, with respect to the free variables of ST

and SK as given by VARST and VARSK, with unifier ss
then {ss}
else

if SK = (x)Form(x)

then INS2(ST, Form(x), VARST, VARSK U {x})
else .

if ST = (E x)Form(x)
then INS2(Form(x), SK, VARST U {x}, VARSK)
else

if SK = OR(Kj, ---, K‚)

then [UU:= INSORK(nil, ST, (Kj, --., K,))3

if UU = nil then NO else UU]
{Where INSORK is a recursive function defined as:

INSORK(ss, STST, (KK 5, eee, KK) 35

if j = ml, thus all K; have been treated already

then {ss}
else [tt := INS2(STST, KK 5, VARST, VARSK) ;

if tt = NO then return nil

else return(U U,)] |

with U,=INSORK(ttss,STST*t,(KK jj -t,+++,KK,-t))
for t in tt}

else

if ST = &(Tj ; es Ty

then [UU := nil;
INSANDT (nil, (Tj; es Tj)» SK)

{which works like INSORK in the former case};
if UU = nil then NO else UU]

else

if SK = &(K,, ---, K,)

then [UU := nil;

for each K; do

{U5 := INS2(ST, Kj, VARST, VARSK);

if Uy unequal NO then UU := UU U Up};

if UU = nil then NO else UU]

else

if ST = OR(T}, eee, To)

then [UU := nil;

for each Ty do

{Uy := INS2(T,, SK, VARST, VARSK);
if Uj unequal NO then UU := UU U Up};

if UU = nil then NO else UU]

else NO.

To prove the soundness of INSTANCE, we first have to prove an

already announced property of INS2.

LEMMA 2. If ss ts a substitution in INS2(ST, SK, VARST, VARSK) then

|- (Vk)SK --> (E Vt)ST,

where Vt from VARST and Vk from VARSK are respectively the free

vartables of ST and SK.

PROOF. By case reasoning and induction on the length of the formulas.

case 1: If SK and ST are unifiable with substitution ss then SK*ss =

ST*ss and thus obviously

(1) |- SK*ss --> ST*ss.

As a consequence of:

(2) |- (Vk)SK --> SK*ss,

(3) |- ST*ss --> (E Vt)ST and

(4) |- { ((Vk)SK --> SK*ss) -->

[(ST*ss --> (E Vt)ST) -->

{(SK*ss --> ST*ss) --> ((Vk)SK --> (E Vt)ST)}]},

we conclude by deleting left hand sides of implications in (4), using

mep. with (1), (2) and (3) as premisses:

(Vk)SK --> (E Vt)ST.

case 2: Let ss in INS2(ST, Form(x), VARST, VARSK U {x}). Thus we have:

|- (Vk) (x)Form(x) --> (E Vt)ST,

and thus:

|- (Vk)SK --> (E Vt)ST.

4.15

case 3: This case with ST = (E x)Form(x) runs parallel to the former

case.

case 4: Assume ss in INSORK(nil,ST,(K,,---,K,))- We have to show:

|- (Vk)OR(K,,--.,K,) => (E VEST.

We proceed by induction on the INSORK calls. Thus assume that Kj, .«..,

Ky have been dealt with already and that ss has been obtained thus

far with: STST = ST*ss, KK, = K,*ss and

(1) |- (Vk)OR(K,,+++,K 5.7) --> (E Vt)ST.

Let tt in INS2(STST, KK j, VARST, VARSK), thus we have:

(2) |- (Vk)KK; --> (E Vt)STST.

Since we have:

(3) |- (Vk)K3 --> (Vk)KK,,

(4) |- (E Vt)STST --> (E Vt)ST and

(5) |- {((Vk)K ; --> (VK)KK 5) ==

[((E Vt)STST --> (E Vt)ST) -->

{((Vk)KK, ==>) (E Vt)STST) -->

((Vk)Ky --> (E vt)sT)}]},
we get from (2), (3), (4) and (5):

(6) (Vk)K ; ==) (E Vt)ST.

Combining (1) and (6) yields:

(VK)OR(K, +++ 4K),

and thus we are done with the induction step. The base case is obvious

since we have:

|- FALSE --> ST.

case 5: This case with ST = &(T, ,-++,T,) runs parallel again to the

former case.

case 6: Let ss in INS2(ST, &(K,,---,K,), VARST, VARSK), thus there is

a K‚ with ss in INS2(ST, K,, VARST, VARSK). So we have:

|- (Vk)K, --> ST.

„16

Since obviously:

|- (Vk) &(K,,+++,K,,) —-> (Vk)Ki,

we are done.

case 7: This case with ST = OR(T),--+-,T,) runs parallel again to case

6.

Now we have dealt with all cases of the INSTANCE algorithm thus

confirming the induction step. The base of the induction was dealt

with in case l. <<

Combining lemma 1 and lemma 2, we get:

THEOREM. If T and K are closed, compressed mint-scope, predicate

ealeulus formulas while INSTANCE(T, K) holds then |- K --> T, thus

INSTANCE ts sound.

PROOF. According to lemma 1, we have:

I- K --> T iff |- S1(K) --> S2(T).

Since (Vk)S1(K) = S1(K) and (E Vt)S2(T) = S2(T) because S1(K) as well

as S2(T) are closed formulas, application of lemma 2 gives the

required result. <<

As a consequence of the transitivity of implication:

{(P --> Q) & (Q --> R)} |- (P --> RJ
one may wonder whether INSTANCE(K,L) and INSTANCE(L,M) implies

INSTANCE(K,M) for arbitrary K, L and M. As yet we have not been able

to prove it or find a counter-example. A preliminary investigation

suggests that substitutions ss and tt obtained by:

ss in INS2(S2(K), S1(L), nil, nil) and

tt in INS2(S2(L), S1(M), nil, nil)

might be used to construct a substitution rr in INS2(S2(K), S1(M),

nil, nil), leading to the transitivity of INSTANCE.

Remark: The definition of CMS given in the beginning of this

section mentions INSTANCE. As long as a different INSTANCE procedure

satisfies our theorem we can accept another delineation of a subset of

the PC claiming the name CMS. A non-interesting example would be

INSTANCE(T,K) iff T=K. Since all results of the next section refer

only to the theorem in this section they immediately generalize

other — stronger - versions of INSTANCE.

to

4.18

3. INSURER

INSURER is the theorem prover preprocessor which expects for its

input a problem, specified as a closed predicate calculus formula, and

tries to rewrite it in an equivalent formula with the leading

connective and [while refraining itself of being funny and e.g.

rewriting P into P & Pj. If the output does have such a leading

connective then its arguments can be seen as subproblems, which can be

attacked one at the time. When all of them can be solved the original

problem has been dealt with. Our concern here focuses on the question

of whether INSURER gives a maximal decomposition into independent

subproblems.

As we have already stated in [15], the set of rewrite rules that

make up INSURER is - coincidentally - a subset of the rewrite rules

that make up a PC-CNF translator. Since we will eventually be arguing

that this PC-CNF translator remedies deficiencies of the one described

in [19], [54] and [53], we will first describe the PC-CNF translator

and discuss its properties.

The translator consists of the following steps:

1- Eliminate “if ... then” and “if and only”.
Replace A --> B by OR(~A, B) and

A <--> B by &(OR(~A, B), OR(A, ~B)).

2- Move “not” inwards.

Replace ~(x)A by (E x)TA,

“(E x)A by (x)TA,

~(OR(A],--+,4A,)) by &(~Ay,-¢++5 AL)s

~&(A},--+,A,) by OR(~A,,--+, A,) and

~~A by A.

3- Push quantifiers to the right.
Let (Qx) be (x) or (E x), and let XX be & or OR.
3.1 Excise parts without free variables.

Replace (Qx)XX(Az, +++ sjees An) by

XX{A,,(Qx) (Aj; eee sAz-y sAy4y > eee A

when x not free in A;.

3.2 Straighten out “and’s and “or’s.

Replace XX(Ay +++ Ay XX(By «== sBs Agee vAn) by

3.3

3.4

3.5

3.6

3.7

XX(Ay 4+ - Ay By yee + sBs Agis: Ay):

ad

Distribute “and” over “or” in the context of (x) or vice

in the context of (E x).

Replace
(x)OR(A],-++,Ay (Bj, + «+ +Bie) Agis es A) by

(x) &(OR(By „Aj, ++ +5A,), ves ,OR(Bys Aj se + -+A)) and

(E X)&(Aj,-«.,A,,OR(Bj,-«-, Bj) sAgs7s ==) by

(E X)OR(&(Bj ‚Aj, 5A.) yee yh (By Ay 5 +++5,A,))-

Eliminate redundant forms.
Replace ECA y+ sAgyeee,Agye++ Ap) by

ECA eee sAgsee es Ag y Asiz see + Ay) when

INSTANCE(Aj,A;) holds.
Replace OR(Aj +++ sAgyeeesAgyeeesAn) by

OR(A] 5 +++ ,Agye ++ Aga Ager ++ An) when

INSTANCE (A, ,A 3) holds.

Try to collapse forms.
Replace ECA ye ++ sAps eee sAjs ee An) by FALSE when

INSTANCE (movenotinwards("A;),A;) holds.

{movenotinwards performs step 2}
Replace OR(Ajs--vsAjs ere sAjs eee sAr) by TRUE when

INSTANCE (movenotinwards(~A,),A;) holds.

Try further collapsing.

Replace &(A),+-+,A;,TRUE,A;415+++,A,) by

&(Ay yee Ag sAqaz eee AQ)>

Re place &(A},+++,A;,FALSE,As4]5+++,4A,) by FALSE.

Replace OR(A,,-++,A;,TRUE,As4)5+++,A,) by TRUE.

Replace OR(A,,--+,A;,FALSE,A;415-++,A,) by

OR(Aj > +++ Ag sAqgz oe 02 AQ)>

Distribute quantifiers over connectives.

Replace (x) &(A),--+,A,) by &((x)A,,-++,(X)A,) and

Replace (E x)OR(A),--+,A,) by OR((E x)A,,-++,(E x)A,)>

Eliminate existential quantifiers by Skolem functions.
Pick out the leftmost well-formed part of the form (E y)B(y) and
replace it by B(f£(x,,-+-,X,)) where:

a)

versa

Xjes 5X are the free variables of (E y)B(y) which are
n

universally quantified to the left of (E y)B(y); and
b) f is a “fresh’-n-ary function constant.

5- Eliminate universal quantifiers.

6- Distribute “and” over “or”.

-20

6.1 Attempt the rewrite rules 3.2, 3.4, 3.5 and 3.6.

6.2 Replace OR(Ay, +++, Az ,&(By +++ By) Agyy yee 0, A) by

& (OR(By , A, ,+++5A,),+++,OR(B,, A] ,+++,A,))-

7- Do nothing.

The following rules should also be observed:

-- If step(i) can be reapplied it has precedence over step(itl) (,

which motivates the void step 7).

== A sequence of universal (or existential) quantifiers should get

special attention in step 3.1. Since quantifiers may be permuted,

using the rule (x)(y)A <--> (y)(x)A, and similarly for existential

quantifiers, rule 3.1 is allowed to look beyond the right-most

quantifier.

== While rule 2 and 4 must be applied top-down, rule 3 and 6 must be

applied bottom up.

-- When distributing in step 3.3 or step 6.2, each bound variable

inside formulas getting a multiple occurrence should be renamed to

preserve the requirement that each quantifier has a unique

variable.

== When a conjunction or disjunction as a consequence of application

of rule 3.4 or 3.6 winds up with one argument, the connective will

be deleted.

The main difference between this PC-CNF translator and the ones

described in [19], [53] and [54] is the incorporation of INSTANCE. The

translator in [19] is based on first producing prenex normal form,

which is done with rule 1 and 2, followed by pushing quantifiers to

the left. Consequently, Skolem functions may be introduced with an

unnecessary number of arguments, e.g. (x){A(x)OR(E y)B(y)} will be

transformed into (x)(E y){A(x) OR B(y)} leading to the CNF A(x) OR

B(f(x)). Instead, it can be transformed into (x)A(x)OR(E y)B(y)

leading to the simpler form: A(x) OR B(g). The translator in [53]

lacks rule 3.3 and its preparatory step 3.2, while the translator in

[54] lacks 3.2, 3.3 and 3.7. Consequently, these translators may be

forced to generate Skolem functions with too many arguments.

Remark: Since we have not been able to show the transitivity of

INSTANCE, the generation of canonical output may be endangered by a

rash application of rule 3.4. If ever a triple (K,L,M) surfaced with

INSTANCE(K,L), INSTANCE(L,M) but not INSTANCE(K,M), application of

rule 3.4 on &(K,L,M) may end up with &(K,M) while in fact it can be

replaced by M, by the application of 3.4 such that the intermediate

result &(L,M) is obtained.

In [53], theorem 1.5.1, is shown that the translator preserves

unsatisfiability. Combining this result with application of the

soundness theorem in the former section on the rules containing

INSTANCE-related rewriting, leads also to preservation of

unsatisfiability by the translator detailed here.

Now we define INSURER simply as a subset of the PC-CNF

translator rules by omitting rule 4 and 5 concerning the elimination

of existential and universal quantifiers. INSURER produces closed PC

formulas and since all transformations concern equivalences we have:

LEMMA 1. If Q := INSURER(P) then |- P <--> Q.

While the input format of INSURER is the unrestricted PC the

next observation concerns its output format.

LEMMA 2. INSURER maps PC into compressed mint-ecope.

PROOF. To facilitate the proof, we introduce a stepping stone; we

define a subset of the PC which we will show to encompass the format

produced by rule 1-3:

<out3> :=: &<top2Aform* | <top2Aform | TRUE | FALSE;

<top2Aform :=: OR <top20form* | <topOform;

<top20form :=: &<top2Aform* | <topOformd.

An immediate feature of the subset <out3> is that the connectives -->

and <--> may not occur. This is being taken care of by rule l. The

next feature concerns the occurrence of “5 the negation sign may occur

only in front of literal formulas. This is handled by rule 2 and the

subsequent rules do not affect this property. Another characteristic

of <out3> is that conjunctions (disjunctions) do not contain terms

„22

which are themselves conjunctions (disjunctions). This is prevented by

rule 3.2. Minimal scope of quantifiers is checked by rule 3.1, 3.3 and

3.7. These features taken together make up <out3> and therefore the

output of rule 3 conforms to the format prescribed by <out3>.

CMS is partially defined in an operational way by reference to

INSTANCE (which cuts away redundancies, as recognized by INSTANCE, in

conjunctions and disjunctions). Since INSTANCE is incorporated at the

proper places in rule 3 we are assured that, in addition to the

requirements of <out3>, conjunctions and disjunctions in <topOform>

components of rule 3°s output are not INSTANCE-redundant.

Cad

Finally the “and” over “or” distribution in rule 6 takes care

that the <miniscope> format is reached as well as that the additional

INSTANCE-testing is performed. <<

INSURER turns out to be a special case theorem prover. It can at

least recognize ground tautologies.

LEMMA 3. If Q ts a valid Pc formla without quantifiers then

INSURER(Q) = TRUE.

PROOF. Since the output of INSURER is in mini-scope INSURER(Q) is

TRUE, FALSE or of the form <topOform, OR<top0form* or &<topAform*.

The case FALSE is prohibited by lemma 1. The case <topOform>

contradicts the validity assumption because the value false may be

assigned to <topOform.

Suppose the output is of the form OR<topOform*, thus like

OR(0,,---,0,)- If all 0; are positive (or all are preceded by a

negation sign) then we have a contradiction since we can assign all O;

the value false (true). Thus we can rewrite the disjunction as

follows:

{OR(P,,---,P,)} OR {OR(“N, ,---,N,)}- No P,; can be equal to a Nj since

that would have been recognized in rule 6.1 of INSURER. Again we get a

contradiction with validity by assigning all Py the value false and

all Ny the value true. Consequently OR<topOform* is ruled out.

Applying the former cases on every argument of &<topAform* eliminates

4.23

this case as well.

Thus INSURER(Q) can only be TRUE. <<

A generalization to monadic predicate calculus turns out not to

hold. A counter-example is:

(x)Q(x) <--> [Cy) {Q(y) OR PCy) }&(z){Q(z) OR ~P(z)}],
which is valid and will be translated into:

(x)Q(x) OR (y){Q(y) OR P(y)} OR (z){~Q(z) OR “~P(z)},
instead of TRUE.

The role on INSURER may be clarified by observing that a PC-CNF

translator mostly works in a resolution environment where its input is

among other formulas a negated conjecture. In contrast, INSURER’s

input will be mostly a non-negated conjecture.

INSURER is an independent subproblem recognizer since INSURER is

“strongly motivated" to rewrite its input into an equivalent (lemma 1)

formula which is a conjunction. In case the output is a conjunction,

each of the two arguments are independent to each other with respect

to the implicative testing on INSTANCE. We wrote strongly motivated"

since it is not possible to prove that INSURER gives a maximal

conjunctive decomposition. Even an atomic formula P can be

equivalently rewritten into the conjunction (P OR Q)&(P OR “Q) for an

arbitrary Q. This conjunction, however, is an example of case

reasoning because it can be rewritten as:

(Q --> P)&(~Q --> P), embodying: in order to prove P it is sufficient

that Q as well as its negation implies P.

We are going to show that when a non-conjunctive output (or

output component) Q of INSURER can be equivalently rewritten into a

conjunction 6&R,, then &R, embodies case reasoning on Q. Since one

cannot expect that INSURER takes the initiative to case reasoning we

will conclude that INSURER gives maximal decompositions. First we deal

with supporting lemmas.

LEMMA 4. Let Q and R be quantifier free and in CMS, while Q in

<topAform, thus not a conjunctton, and R a conjunction, thus R = ER; ,

4. 24

and suppose |- Q <--> &(Q OR R‚),

assume Q = OR(Q] +++ +5Qq) (posstbly with q=1), and

R; = OR(Rs15-++sRyy) (possibly r=1),

then for each R, there is a Ri defined as:

% e e °

Ry, c= tf there ts a Qy with Qy = Rix then FALSE else Rix

Ri := OR(R; x); while deleting those Riy that are equal to FALSE such

that |- Q <--> &(Q OR R;) and |- “RG

PROOF. Applying the rule A OR B --> A OR A OR B gives:

Q OR Rj --> Q OR Ry.

Applying the rule A OR A OR B —-> A OR B gives:

Q OR R, ~-> Q OR Rj.

Consequently: |- Q <--> &(Q OR Ri).

Suppose |- ~8Ry does not hold. Consequently there is an assignment to

* &
all Ry (possibly when R,; is a disjunction by giving assignments to its

k k
constituents) such that VAL(~&R,) = false, thus VAL(&R,) = true. So

for all Ri we get VAL(R,) = true. As a consequence of the definition

*
of the R;s we are free to give an arbitrary assignment to Q. Letting

VAL(Q) = false gives a contradiction with:

|- Q <--> &(Q OR Ri). <<

LEMMA 5.

If 1) Q ts in CMS and in <topAform. thus not a conjunction,

2) Rts in CMS and a conjunction, thus R = &R, with R, tn

<topAform and

3) |- Q <--> ER; ;

then &R, ts directly or indireetly an example of case reasoning on Q.

PROOF. From l- Q <--> ER; it is easy to see that:

(1) I- Q <--> &(Q OR R,)-

Assume that Q = Q, OR ... OR Q (possibly q=1) and

Ry; = Ryz OR .-- OR Ry, (possibly r=1).

Define Rixo *= if there is a Qy with INSTANCE(Q, , Ry x) and

INSTANCE(R, „,Q,) then FALSE else Rise

Rio := OR(R,,) while deleting those Ry, equal FALSE.

We still have:

(2) I- Q <--> &(Q OR Ryo).

Now we have two possibilities:

(I) |= ~&R,,, thus we are dealing with an immediate example of case id

reasoning, or

(II) not |- ~&R;9- From (2) and by defining Q := Q we get:

(3) I= Qo <--> &(Qq OR Ryo),

and from (3):

(4) I- &Ryg --> Q%-

By lemma 4, we can conclude that (3) and also (4) should contain at

least one quantifier.

We will construct a terminating sequence of {Q,} and {R,,}

fulfilling (1), ultimately leading to case (1), by stripping away

quantifiers.

Assume that {Q,} and {R,,} have already been constructed.

Constructton rule 1. If there is a Rin such that:

Rin = COR sin OR Rion OR ..- OR Rien? and we have a derivation of Qn

in which the full power of the universal quantifier is not used (i.e.

the derivation tree for Qn can be modified such that all occurrences

of Rin on leaf positions can be replaced by instantiations for x of

Rin) we define:

Qntl 7 Ow

- 26

Rint? *= Ry, for i not equal j,

Rin °° &{R «1 (uk) OR Rjo, OR --- OR Rien)» where {uk} is the finite

set of required instances for (x)R (x) to derive Qn°
jin

So we have: &Rj, > Qn

| JAN
| |
| |

\1/ \1/

ER tl > Qn+1

Example of applicability of construction rule 1:

Q(a,b) <--> [{Q(a,b) OR Q(a,a)} &

{Q(a,b) OR (x)(“Q(x,x) OR Q(x,b))}].

Rig = Q(a,a); Rog = (x)CQ(x,x) OR Q(x,b)); the finite set of

necessary instances is here {a}.

Construction rule 2. If Q, is of the form:

(x)Q1, OR Qo, OR +--+ OR Qan then weaken Q, by instantiating x with a

new constant c and thus define:

Qntl ?= Wyle) OR Mpp OR «+. OR Quy, and

Rini *= Ran:

So we have: &R;, > Qa

/\\ |
| |
| |

\1/ \1/
ER; ntl > Qatl

Example of applicability of construction rule 2:

(x)Q(x) <--> [Cy) {QCy) OR PCy) }&(z){Q(z) OR “P(z)}]
replacing (x)Q(x) by Q(c).

Construction rule 3. If Q, is of the form:

(E x)Q1n(*) OR Qn OR ..- OR Qan and we have a derivation of (4) which

allows us to strengthen Qn by instantiating x by a constant c then

define:

Rintl e= Rin and

Qnt] may not be in <topAform anymore, since Qinfc) can bea

conjunction. If so, we obtain as many examples of (1) as there are

terms in the conjunction by distributing “and” over “or”.

So we have: &R,, > Qn

AN JAN
| |
| |

\1/ |
ER n+] > Qn+1

Example of applicability of construction rule 3: Begin with:

(E x)Q(a,x) <--> [{(E x)Q(a,x) OR (y)(P(y) OR Q(a,y))} &

{(E x)Q(a,x) OR (E z)~P(z)}].
One obtains:

Qo = (E x)Q(a,x),

Rig (y){P(y) OR Q(a,y)} and

Roy = (E zZz) P(z).

By application of construction rule 4 (see next rule), one obtains for

instance:

QQ = Qo» Ri4 = Rio and Roy = ~P(c). Since &(Ry 1 »Ro1) not only allows

us to derive Q, but also Q(a,c), application of construction rule 3

leads to Q) = Q(a,c).

Construction rule 4. If there is a Rin such that:

Ran = (E *)R 51 OX) OR R son OR ..- OR Rey then strengthen Rin by n

instantiating x with a new constant c and thus define:

Rin 55 Rin for i not equal j, and

Rent := Raj 6c) OR Ron OR ... OR Ren’

As with construction rule 3, R intl may not be in <topAform when

4.28

Ray nlc) is a conjunction. By distributing “and” over “or” we simply

get more {Ry 4 1}7s than {Ri J's:

So we have: E&R; > Qn

AN JAN
| |
| |
| \1/

ER; ntl > QnH

For an example of applicability of construction rule 4, see the

example at the former rule above.

When a construction rule was applicable, we go back to check

whether the condition of case (1) holds, leading to an example of case

reasoning.

It remains to show that at least one construction rule applies.

We immediately can rule out the cases that Q, contains a universal

quantifier or &R;, an existential quantifier, since applicability of

construction rule 2 respectively rule 4 depends only on these

syntactic features. So we are left with Qn containing an existential

quantifier and/or &R;,, containing a universal quantifier. Assume Q,

contains an existential quantifier. Thus we have:

(5) |= &Ry, --> {(E x)Q],(%) OR Qo, OR «…. OR Aan):

A derivation tree for (5) can be modified into a derivation tree for:

ER in --> {Qj „(ed OR Qo, OR «++ OR Oan?

where c is fresh constant, by propagating modifications from the root

to the leaves, unless a leaf of the tree is of the form (E Rind):

This, however, we have already ruled out since it would lead to

applicability of rule 4.

The case that &R;,, contains a universal quantifier leads to a

similar contradiction.

This process halts because we start with a finite number of

quantifiers and we strip off a quantifier each time a construction

rule applies. <<

THEOREM. Let X be the output of INSURER, while it te not a conjunction

or else an arbitrary member of the conjunction. INSURER produces a

maximal conjunctive decomposition in the sense that there te no

equivalent conjunctive decomposition of X when we dtsregard case

reasoning on X.

PROOF. Apply lemma 5. <<

Remark: It still may occur that when the output of INSURER is

say Q)6&Q9, Qy can be decomposed while using Q)-

Example: Qj = (x)(x=1 OR x=2 OR ... OR XEN),

Qo = (x)P(x).

Q,4Q5 = INSURER(Q, &Q,), however we have also:

I- Q)8Q5 <--> Q)&P(1)&...&P(N).

4.30

4. Interplay between INSURER and INSTANCE

INSURER, INSTANCE, a connection graph resolution=based

contradiction recogniser, a PC-CNF-translator and a simple definition

opener were imbedded in a “fixed” regime. Input for the prover

consists of axioms, supporting theorems (proof sequence is not taken

into account), definitions (again without sequence), and the

conjecture. For the next description, we should remember that

activation of the connection graph component should be postponed at

all costs.

Roughly, a supervisor triggers the following activities:

step l: If the conjecture is an INSTANCE of an axiom, a theorem or an

already proven theorem (see step 2) then return with success.

step 2: If the conjecture, using INSURER, decomposes into the

sub-problems Cy > EE | Ch

then for each C; go (recursively) to step 1

if the value returned for treating C; is succesful

then add C,; to the collection of already proven

theorems

else quit with failure;

return with success.

step 3: If the conjecture contains a predicate defined in one of the

definitions (non-recursive) then substitute for each

occurrence in the conjecture the instantiated body of the

definition and go to step l.

step 4: Translate the axioms, supporting theorems and the negation of

the conjecture into conjunctive normal form, call the

contradiction resolution type recognizer and return the value

which rsesults from this call (a resource parameter ensures

termination).

This is a simple-minded supervisor and made only to demonstrate

the effectiveness of INSTANCE and INSURER. The deduction complex used

for program verification, chapter 3, has a somewhat more sophisticated

controller. Much remains to be desired. An attractive alternative

would be to implement the supervisor as a multi-process scheduler. The

overall structure of the cooperating specialists would be more

transparant, facilitating the addition of a new specialist, and

opening up the way to parallel processing which, but for the lack of

available languages like QLISP, INTERLISP and MAGMA-LISP, would have

been possible.

„31

4.32

5. Implementation results

Our first example looks terribly simple but a straight forward

treatment, after direct translation into CNF by the resolution

component, had not yet found a contradiction after generating 35

clauses. It consists only of the following:

definition:

(s)(t){SETEQ(s,t) <-->

(x) (ESTI(x,s) <--> ESTI(x,t))},

and conjecture:

(u) (v) {SETEQ(u,v) <--> SETEQ(v,u) }.

INSURER immediately recognizes that the conjecture reduces to two

subproblems:

(ul)(vl){“SETEQ(ul,vl) OR SETEQ(vl,ul)} &

(u2)(v2){~SETEQ(v2,u2) OR SETEQ(u2,v2) }

INSTANCE will recognize that the second subproblem is an alphabetic

variant of the first subproblem so we have only to bother about the

first one. The definition opener will recognize its applicability and

will rewrite the first subproblem into:

(ul) (vl) {~(x1)(ESTI(x1l,ul) <--> ESTI(xl,vl)) OR

(x2) (ESTI(x2,vl) <--> ESTI(x2,ul))}.

Again INSURER will be invoked for this formula. To appreciate its

result, we will zoom in on its actions. First <--> is removed and ~ is

moved inwards resulting in:

(ul)(vl)[OR(E x3){~ESTI(x3,ul) & ESTI(x3,vl)}

(E x4){ ESTI(x4,ul) & ~ESTI(x4,v1)}

(&(yYI){TESTI(yl,vl) OR ESTI(yl,ul)}

(y2){ ESTI(y2,vl) OR ~ESTI(y2,ul)})].

The structure of this formula is:

(ul)(vl)[OR O1

02

(& Al A2)]

Since the body is a disjunction, the universal quantifiers cannot be

distributed. The third argument of the disjunction is a conjunction

however, allowing the production of a conjunction as body of the

quantifiers. So we obtain the following:

(ul)(vl)[&{OR Al 01 02}

{OR A2 01 02}]

4.33

Before pushing the quantifiers to the right, the disjunctions are

scrutinized since simplifications may be possible after the

distribution. The first disjunction is in fact:

[OR(y1){~ESTI(yl,vl) OR ESTI(yl,ul)}

(E x3){"ESTI(x3,ul) & “ESTI(x3,vl)}]

(E x4){ ESTI(x4,ul) & ~ESTI(x4,vl)}].

INSTANCE will find that the negation of the first argument is an

alphabetic variant of the second argument, so this disjunction

collapses to TRUE. The second disjunction collapses in a similar way.

Thus the whole formula collapses to TRUE and we are finished. Notice

that the resolution component remained sound asleep.

The next example comes from group theory, see box l. The axioms

(1-5) do not constitute a minimal characterization of a group. A

subset of a group is represented by a predicate-variable. SUBGR, which

expresses the property of a subgroup, is therefore a 2nd order

predicate. Equality of subsets is expressed by SETEQ in (7). The

notion of a right-coset is defined by (8); COSET(g,xx,HH) should be

read as "xx is the right-coset with respect to the subgroup HH and the

group element g”. SETEQ and COSET are like SUBGR 2nd order predicates.

Theorem (9) says that the element g belongs to the subgroup HH iff HH

is equal to the g-HH-coset.

| (A) Cx)(y)(z) x(yz)=(xy)z |
| (2) (x) xe=x |
| (3) (x) exex |

| (4) (x) xI(x)=e |
| (5) (x) I(x)x=e |
| (6) (H) (SUBGR(H) <--> |
| [& (E x) H(x) |
| (x)(y) {H(x)&H(y) --> H(xy)} |
| (x) {H(x) --> H(I(x))}]) |
| (7) (HI)(H2) (SETEQ(H1,H2) <--> |
| (x)(H1(x) <--> H2(x))) |
| (8) (g)(xx)(H) (COSET(g,xx,H) <--> |
| [& SUBGR(H) |
| (x) {xx(x) <--> |

| (E y)(H(y) & x-yg)}]) |
| (9) (g)(xx)(H) (COSET(g,xx,H) --> |
| [H(g) <--> SETEQ(xx,H)]) |

Box 1. Axioms - not minimal - (1-5), definitions (6-8) and a theorem

(9) from group theory.

. 34

Direct translation of (1-8) and the negation of (9) into conjunctive

normal form yields 39 clauses with altogether 109 literals. INSURER

however recognizes that (9) can be decomposed into:

(10) (g)(H) (H(g) OR (xx) {OR ~COSET(g,xx,H)

~SETEQ(xx,H)}) and

(11) (g)(H) (CH(g) OR (xx) {OR ~COSET(g,xx,H)

SETEQ(xx,H)}).

Working on (10) the definitions of COSET, SETEQ and SUBGR are

respectively substituted. The result is negated and together with

(1-5) translated into conjunctive normal form yielding 14 clauses with

23 literals. After removing COSET and SETEQ in (11), it turns out that

INSURER applies again splitting up (11) into two subproblems. Each one

ends up with 13 clauses and 20 literals. Although the resolution

component is not able to handle these three subproblems, the chance of

finding a solution has increased by an “infinite” amount when compared

to the non-decomposed situation.

INSURER also can handle the sorted predicate calculus that was

described in [14]. The same coset example formulated in sorted

predicate calculus — without decomposition - yields 28 clauses with 61

literals. INSURER also finds here three subproblems each having 12

clauses with respectively 16, 14 and 14 literals. A significant

reduction again, although the connection graph resolution component,

in the mean time extended with paramodulation facilities, still cannot

handle them. (Instead of relying on paramodulation, we consider adding

an equality specialist to the deductive community.)

The next example was taken from [37] and was already worked on

as reported in [14], see box 2. It was originally used in [37] for

illustrating automatic programming. A simple sorting algorithm was

generated by adding an “answer-predicate” to the negated conjecture

and submitting all the formulas to the QA3 resolution theorem prover.

C. Green admits that the axioms are “tuned” for the algorithm

generation. The conjecture contains for instance the function “sort”

which is not referred to by the other axioms. In fact one can prove

from the axioms the expression (7) with “R(cdr(x),sort(cdr(x)))~

replaced by:

“(E z)R(cdr(x),z)” , from which (7) can be inferred.

The main predicate is Sd which expresses that its argument, a

list, is sorted. The expression R(x,y) signifies that the list y is a

sorted permutation of the list x; Equal(x,y) signifies that the list x

is identical with the list y, the empty list is indicated by nil. The

function merge corresponds with merging a list with a sorted list such

that a sorted list is the result. The function cons corresponds to

adding an element in front to a list. The functions car and cdr

respectively produces the first element and the remainder of a list.

| (1) Gy) (Sd(y) --> Sd(merge(x,y))) |
| (2) (x)(y)(u) {(Sd(y) & Same(x,y)) --> |
| Same(cons(u,x) ,merge(u,y))} |
| (3) (x) (Equal(x,nil) --> R(x,nil)) |

| (4) (x) (“Equal(x,nil) --> |
| Equal(x,cons(car(x) ,cdr(x)))) |
| (5) (x)(u)(v) ((Equal(x,u) & Same(u,v)) --> |
| Same(x,v)) |
| (6) (x)(y) (R(x,y) <--> (Same(x,y) & Sd(y))) |
| (7) (x)(E y) (&(Equal(x,nil) --> R(x,y)) |
| ((~Equal(x,nil) & R(cdr(x),sort(cdr(x))))|

| ==) R(x,y))) |

Box 2. These formulas were used by Green to generate a sorting

algorithm (with an answer predicate), see [37]. Axioms (1-5),

definition (6) and conjecture (7).

INSURER will decompose the conjecture in two subproblems. When

INSTANCE would not have been incorporated in INSURER eight subproblems

would have been found of which six are redundant. Subsequently

INSTANCE recognizes that one of the subproblems is an instance of

axiom(3). The remaining subproblem was solved as well with as without

definition substitution (by adding the definition to the axioms). In

both cases a contradiction was found more easily than in the

non-decomposed case, see table 1.

35

4.36

program	input +	
and	generated	g-penetrance
strategy	clauses	

QA3	286	0.091
resolution only	38 (25)	0.579 (0.680)
+ INSURER and INSTANCE	28 (17)	0.785 (0.882)
+ definition substitution	20 (12)	0.800 (0.917)

Table 1 shows the effectiveness of INSURER and INSTANCE. The numbers
between brackets refer to values obtained when the sorted predicate
calculus is used [14]. The g-penetrance is defined as #(clauses in
proof)/ #(inputtgenerated clauses). The QA3 values were taken from
[37].

Our final example consists of only one formula:

[{(E xl) (yl)P (xl)<-->P (yl) }<-->{(E x2)Q(x2) <--> (y2)P(y2) }]
<-->

[{(E x3) (y3)Q(x2)<-->Q(y3) }K-->{(E x4) P(x4)<-->(y4)Q(y4) }].

P. Andrews posed this problem at the Fourth Workshop on

Automated Deduction, Austin, February 1979. He added that he was

willing to send the first 500 clauses for free. Resolution theorem

provers are drowned as a result of the many clauses generated by the

PC-CNF translator as a consequence of 7 equivalences which each time

double the length of the formula. INSURER, heavily invoking INSTANCE

resulted in 169 succesful instance recognitions, reducing the formula

to TRUE.

6. What next

The results of the preceding section suggest to us that a

deductive “architecture” built up from deductive specialists is

promising. Certainly it is advisable to pursue this road first with

the restriction that the deductive components are algorithmic and thus

always halting. Examples are: -- model evaluator to decide whether a

subgoal is hopeless (since not true in a model) [36], -- equality

substitution simplifier which replaces complex terms by equal but less

complex terms, — an if-then-else recognizer which can split a problem

into two subproblems of lesser complexity, etc. At a certain point,

this algorithmic restriction should be abandoned. Then the realm of

search is entered again, no longer on the modus ponens level but with

operators of greater scope: -- check whether it is worthwhile to

introduce an abbreviation for a recurring expression; -- apply key

theorem aa at bb; -- try to adapt the proof for a similar result in a

less general theory; -- try to prove a more general result which can

be expressed more concisely (and which is not falsified by any

available model); -- resort to induction in a specific context; -- try

to reinterpret the theory under consideration into other available

theories; etc.

Somehow the phenomena must be dealt with that at a certain stage

in a theory, some previous result will be applied “automatically” when

they can be applied. Thus when a theory becomes activated, some

theorems become active in a “compiled format”, as an additional

derivation rule. At the same time, we doubt that this “compilation is

an all-or-nothing matter; a theorem can gradually reach the status of

being applied automatically (while this process still always remains

backtrackable).

Frequently it has been stressed that something should be done

with a newly found proof, that it should be the input for some kind of

a learning component. Somehow, nobody has ever designed a procedure

that could do something useful with the many mechanical proofs that

have been generated in the last decades. But even when we refrain from

starting a learning process we still need a description of the proof

(and also of its associated theorem) in order to use it as a guideline

‚37

4.38

for setting up a proof in an analogy type of reasoning. We suspect

that the lack of a greater variety of deductive operators which hamper

proving interesting theorems, is also responsible for the

impossibility to make sense of obtained proofs.

When a larger collection of operators in a theory is available,

an obvious step would be to assign them priorities, automatically on

the basis of performance, or initially by “Acts of Gods” — hence by

programmers. Then it would be possible to generate - recursively, and

thereby introducing another dimension in which search is performed -

skeleton proofs, to be refined in the next level of recursion.

Sacerdoti in [73] has obtained convincing results with this technique

in the realm of plan generation.

Yet there is still a fair chance that the problem of

mechanically proving of difficult mathematical conjectures can

advantageously be replaced by another problem: how to generate

automatically (with respect to a given collection of definitions,

axioms, lemmas, theorems, models and similar theories) an interesting

conjecture or concept to be defined. This capability, at least to some

extent, might be essential for generating intermediate stepping stones

for a really difficult theorem.

CONCLUSION

A.I. has been expanding vigorously in the last 20 years, and the

number of publications continues to increase. The field has become so

large that a tendency has emerged to split it up into different

sections Computational Linguistics, Deduction, Cognitive Science and

Vision. A hidden motivation for this fragmentation may be a desire to

escape from the name “Artificial Intelligence” which arouses. strong

feelings in some circles. In spite of this centrifugal force the field

still (1981) manages to organize conferences where all sections come

together.

It is customarily pointed out that substantial progress in all

sections of A.I. awaits the capability of storing large amounts of

knowledge to be used for intelligent activities. This position is

certainly correct, but the snag is that before a lot of knowledge can

be amassed, profound insight into the activities to be supported is

required, otherwise the knowledge cannot be structured in such a way

that relevant facts will be found quickly. Thus we have a real chicken

and egg situation.

The substance of this thesis concerns algorithms for Search,

Program Verification and Deduction. These algorithms perform well

without support from massive knowledge. We believe that more such

algorithms can be developed. Nevertheless work in the realm of

permanent and temporal knowledge representation is to be recommended.

In particular, it is recommended that the main source of inspiration

for knowledge representation should not be the generalization of

lexicon structures, but the support of knowledge-intensive algorithms.

*
Giving heuristic functions, as they are used in the A =algorithm, a

firm footing in general knowledge representation schemes, is an

obvious example of the work to be done.

Chapter two deals with the generalization of the uni-directional

A“-algorithm to the bi-directional case. A uni-directional theorem

says that a shortest path will be found (without exhaustive searching)

provided the heuristic has certain properties. This theorem has been

generalized to the bi-directional algorithm, as well as the so called

„1

“optimality” theorem.

The results we reported about bi-directional heuristic search

suggest there is still room for improvement. Shorter solution paths

were found in comparison with uni-directional search, but at higher

computational costs. The potential advantage of working simultaneously

in both directions, as we as humans frequently do, has not yet been

formally clearified. Recently we initiated a new bi-directional

project to attack this problem anew.

The main results of chart? carve Ssuesticution functions coded

in STSP), sane actomatic verification of code with side effects.

„ut iietnod developed ensures correct description of side effects for a

subset of nasty LISP functions, which includes our newly irtrciuced

substitution function SUBSTAD. The verification of several versions,

some of which were done completely automatically, reveals that the

Formal description of some functions is at present practically

intractable. For instance, we estimate that the formal description of

loop invariants for a particular version of a support function for

SUBSTAD, requires several magnitudes more text than code (bearing in

mind that making up formal descriptions is certainly as difficult as

programming). This imbalance suggests that the expressive power of

computer languages has currently outgrown the expressive power of

state-description languages.

Although we agree with De Millo et al [23] that the present

verification tools do not lend themselves to practical use, we do not

share their conviction that the whole bussiness should be abandoned.

Verifiers will probably always run into resource limitations, but it

is premature to assume that they will never be able to use mechanisms

similar to those that enable humans to circumvent, without sacrificing

preciseness, some of these limitations.

Chapter four deals with algorithmic deductive modules and its

theoretical results concern obvious requirements for these modules. It

is reassuring to observe that when the one-way pattern matcher

INSTANCE reports success, one of the arguments can be inferred from

the other, which makes INSTANCE sound. It is likewise nice to know

5.3

that the subproblem recognizer gives maximal problem decompositions.

But still more important are the results of the implementation of the

modules. A deduction complex made up of a simple supervisor for these

modules, together with a definition applier and a (connection graph

resolution) refutation constructor, could solve problems which were

distinctly beyond the capability of the sole refutation machine. The

setup is structurally similar to the Hearsay [50] architecture, in

which separate specialist modules - here even located in different

machines, thus allowing parallel processing - were also cooperating.

We intend to develop other deductive modules and to give more

attention to elaborate supervisors as a means of pushing the deductive

limitations further away.

The relative ease with which fairly complicated problems can be

programmed, and the reasonable performance on a wide range of problem

instances of such programs, suggest that more attention should be

given to real-life application of A.I. A few years ago we managed in

two months time to program a natural language input processor for a

nice fragment of Dutch. This was no ad hoc program, but one which used

the special ATN language [90,91,92] that supports a wide range of

natural languages. With such tools, the development of commercial

products becomes feasible. The industry/ software houses should jump

at these opportunities [40].

Although we have studied quite disparate topics in A.I. the

method we employed has been consistently the same. A quick and

superficial literature study quided by fresh intuitions was translated

as rapidly as possible into a running program. Study of the results

and the behavior of the program then led to improvements,

generalizations and/or complete revision. The literature was

subsequently studied more carefully and some theory eventually

developed. Finally, experiments were performed using when possible

problems from the literature.

This method is time consuming, and not the way to present Flashy

Grand Theories. In fact, we shy away from F.G.T. because there have

been too many of them in the past lending to A.I. an exotic albeit

questionable reputation. We recommend this method as a way to study

A.I. “seriously”.

SAMENVATTING (in Dutch)

Aangezien Kunstmatige Intelligentie in Nederland niet erg bekend

is en omdat het vak snel verandert, begint dit proefschrift met een

tamelijk lange inleiding waarin een overzicht gegeven wordt van het

gehele gebied. Uiteraard pretenderen we geenszins dat naar

volledigheid gestreefd; daarvoor is het gebied te omvangrijk, terwijl

er geen duidelijke hoofdstroom is. Beoefenaars hebben

wijduiteenlopende achtergronden: wiskunde, psychologie en linguistiek.

De positionering van K.I. ten opzichte van de overige wetenschappen

wordt er niet eenvoudiger door. Een van de conclusies uit de inleiding

is, dat de samenhang die K.I. gedurende de afgelopen 25 jaar

ontegenzeggelijk getoond heeft, niet zozeer veroorzaakt wordt door een

onveranderd onderwerp van interesse, maar door een onorthodoxe

methodologie: het maken van theorieen die geimplementeerd kunnen

worden, zodat niet alleen uitkomsten, maar ín het bijzonder het gedrag

van programma’s en zo de daarmee corresponderende processen,

bestudeerd kunnen worden. Uiteraard “beperkt” men zich daarbij tot

intelligente processen, maar die zijn zeer divers en bij lange na niet

geinventariseerd, zodat dit niet een echte beperking genoemd kan

worden.

Een bekende karakterisering van K.I. ís dat ze nooit een succes

kan boeken. Elk behaald resultaat wordt meteen gekleineerd als een

onbetekenend speciaal geval van een nog ongebegrepen proces waarin de

“echte” intelligentie zich verschuilt. In deze zin hebben we ons met

echte K.I. bezig gehouden, want we kunnen niet pretenderen de

bestudeerde vraagstukken definitief te hebben verhelderd.

De afgelopen jaren hebben we ons in feite met verschillende

aandachtsgebieden uit de K.I. bezig gehouden, die men, zoals we in

sectie 1.2 hebben beargumenteerd, toch als samenhangend kan

beschouwen.

Hoofdstuk 2 heeft betrekking op de generalisatie van het z.g.n.

* k
A -algorithme. Het A -algorithme kan vanuit een gegeven toestand en

met gegeven operatoren een pad construeren naar een verlangde

toestand. Onder zekere voorwaarden is er de garantie dat, zonder de

brute kracht van het nagaan van alle mogelijkheden, toch een kortste

pad gevonden zal worden. Het gegeneraliseerde algorithme construeert

een oplossing door beurtelings vanaf twee kanten aan een pad te

werken. Onder gelijke voorwaarden geldt weer dat een gevonden

oplossing een gegarandeerd kortste pad is. Bovendien geldt dat de

pad-componenten elkaar ontmoeten in het “midden” van de zoekruimte,

daarmee een bekend nadeel van Pohl’s generalisatie vermijdend [66].

Een implementatie van het algorithme wijst uit, dat op een verzameling

van 320 problemen er kortere paden dan met het A“ -algorithme worden

gevonden, terwijl wanneer de beperking wordt opgelegd, dat er per

probleem niet meer dan 1000 toestanden worden bezocht, er ook meer

oplossingen worden gevonden. N
ne

» In ‘ hoofdstuk 3 worden een aantal substitutie functies

bestudeerd. Deze zijn vanjbelang omdat ze een centrale rol spelen bij

zegene unificatie-algorithmen, die op hun beurt weer de cruciale

onderdelen zijn van programma’s voor patroonherkenning en het

automatisch bewijzen van stellingen. Omdat de meeste tijd doorgaans

wordt doorgebracht in het unificatie-algorithme, is het de moeite

waard om efficientie daar tot het uiterste op te voeren. Enkele

bekende unificatie-algorithmen, geschreven in LISP, werden aanzienlijk

versneld door een niet-copieerende substitutie functie toe te voegen

aan het repertoire van LISP en de unificatie-algorithmen enigszins te

herschrijven. Het niet-copieren van deze substitutie functie is tot

stand gebracht met behulp van zijeffecten van enkele standaard

functies. Tot op heden heeft men weinig aandacht geschonken aan het

automatische verifieren van programma’s waarin zijeffecten optreden,

want het verifieren van gewone programma’s is al lastig genoeg. Het

was dan ook een uitdaging om de door ons geintroduceerde substitutie

functie op dit punt nader te bestuderen. Een theorie werd ontwikkeld

over de semantiek van LISP, waarin voor een ruime klasse van functies

met zijeffecten voorzieningen zijn aangebracht. De theorie kon verder

worden ontwikkeld dan een soortgelijke die voor PASCAL werd gemaakt

[52,81]. Aangezien programma-verificatie met de hand een zeer

bewerkelijke zaak is, ontwikkelden we een z.g.n. symbolische

evaluator, die met symbolische invoer alle paden van een programma

“doorrekend~. Met behulp van het deductieprogramma, dat in het

volgende hoofdstuk gedeeltelijk beschreven wordt, kan vervolgens

gecontroleerd worden of de symbolische uitvoer voldoet aan de

functiespecificatie, waarmee de verificatie voltooid is. We slaagden

erin enkele versies met deze techniek te verifieren, maar moeten

anderzijds rapporteren dat er een versie was die zich aan verificatie

onttrok, doordat specificatie een hoeveelheid tekst vereist die naar

schatting een meer dan honderdvoudige omvang zou krijgen dan de tekst

van de code zelf.

Het vierde en laatste hoofdstuk beschrijft een tweetal

algorithmische deductiemodulen. Het is algemeen bekend dat deductie

essentieel onoplosbaar is in die zin dat er geen algorithme kan

bestaan dat kan beslissen of een vermoeden al dan niet een theorema

is. De zoekruimte is zodanig, dat elk betrouwbaar programma er

oneindig lang in kan ronddolen zonder een beslissing te kunnen nemen.

Belangrijker is echter dat elk programma dat slechts gebruik maakt van

brute kracht, zelfs als te voren bekend is dat een vermoeden in feite

te bewijzen is, vastloopt in tijd- en ruimtebeperkingen alvorens het

juiste antwoord te vinden. Dat er iets mis is met de brute kracht

programma’s blijkt ook uit het feit, dat oplossingen die ze wel vinden

voor ons niet inzichtelijk zijn. Dit heeft ons er toe gebracht om

“deductieve trucs’, via introspectie verkregen, die een duidelijk

afgebakende werking hebben, in algorithmen onder te brengen. We kiezen

daarmee voor een deductie “familie” (in principe uitbreidbaar hoewel

we ons voorshands verre houden van leerproblemen) bestaand uit

algorithmische modulen die een probleem met een hogere prioriteit

kunnen aanpakken dan een algemene niet-algorithmische zoekmethode die

ook deel uitmaakt van de familie. Een van de modulen tracht een

probleem equivalent te herschrijven in een aantal deelproblemen, die

in principe eenvoudiger oplosbaar zijn. Een ander moduul kan herkennen

dat een probleem een alfabetische variant en/of een speciaal geval is

van een ander probleem of een al bekende formule.

Eigenschappen van deze modulen worden weer (met de hand)

bewezen. Deze modulen werden geintegreerd te samen met een eenvoudige

definitie-specialist en een klassieke stellingenbewijzer. Experimenten

met o.a. voorbeelden uit de literatuur hedBen aangetoond dat dit

deductiecomplex inderdaad krachtiger is dan de klassieke

zoekcomponent.

Als saillant detail zij tenslotte vermeld dat de niet-copieerende

substitutie-functie in de stellingbewijzer gebruikt wordt, die op zijn

beurt gebruikt is om de correctheid van die substitutie-functie aan te

tonen.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

ABELSON, R.P., The Structure of Beltef Systems, in R.C. Schank &

K.M. Colby (Ed), Computer Models of Thought and Language, pp

251-286, Freeman & Co, San Fransisco, 1973.

ALLEN, J.F. & C.R. PERRAULT, Plans, Inference and Indirect

Speech Acts, Proceedings of the 17th Annual Meeting of the

Association of Computational Linguistics, pp 85-87, August 1979.

BARSTOW. D.R., The Role of Knowledge and Deduction in Program

Synthesis, IJCAI6, pp 37-43, Tokyo, 1979.

BOYER, R.S. & J.S. MOORE, A Computational Logic, Academic Press

Inc., NY, 1979.

BRACHMAN, R.J., A Structural Paradigm for Representing

Knowledge, BBN Report no 3605, May 1978.

BRESNAN, J., A Realistic Transformational, in M. Halle et al

(Ed), Linguistic Theory and Psychological Reality, pp 1-59, MIT

Press, 1978.

BROWN, J.S. & R.R. BURTON, Multiple Representations of Knowledge

for Tutorial Reasoning, in D.G. Bobrow & A. Collins (Ed),

Representation and Understanding, Academic Press, 1975.

CAMPBELL, D., Blind Variation and Selective Survival as a

General Strategy in Knowledge-Processes, in M. Yovits and S.

Cameron (Ed.), Self-Organizing Systems, pp 205-231, Pergamon

Press, NY, 1960.

CARBONELL, J.G., Subjective Understanding: Computer Models of

Belief Systems, Ph.D.Th., Yale University, 1979.

CARBONELL, J.G., Computer Models of Human Personality Traite,

IJCAI6, pp 121-123, Tokyo, 1979.

CARBONELL, J.G., The Counter Planning Process: Reasoning under

Adversity, IJCAI6, pp 124-130, Tokyo, 1979.

CHAMPEAUX, D. de, Solutions and thetr Probleme, in E. Morlet and

D. Ribbens (Ed.), International Computing Symposium,

North-Holland, 1977, pp 119-127.

CHAMPEAUX, D. de, SUBSTAD: For Fast Substitution in LISP with

an Application on Unification, Information Processing Letters,

vol 7, no 1, January 1978, pp 58-62.

CHAMPEAUX, D. de, A Theorem Prover Dating a Semantie Network,

Proceedings of AISB/GI Conference, Hamburg 1978, pp 82-92.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

CHAMPEAUX, D. de, Sub-Problem Finder and Instance Checker, Two

Cooperating Preprocessors for Theorem Provers, IJCAI6, pp

191-196, Tokyo, 1979.

CHAMPEAUX, D. de, Bi-directional Heuristie Search Again,

submitted to the JACM.

CHAMPEAUX, D. de, & L. SINT, An Improved Bi-direetional

Heuristie Search Algorithm, JACM, vol 24, no 2, April 1977, pp

177-191. A slightly different version appeared first in IJCAI4,

pp 309-314, Tbilisi, 1975.

CHAMPEAUX, D. de, & L. SINT, An Optimality Theorem fora

Bi-directional Heurtstic Search Algorithm, The Computer Journal,

vol 20, no 2, pp 148-150.

CHANG, C.L. & R.C. LEE, Symbolte Logie and Mechanical Theorem

Proving, Academic Press, 1973.

CHANG, C.L. & J.R. SLAGLE, An Admisstble and Optimal Algorithm

for Searching AND/OR Graphe, Artificial Intelligence, vol 2, pp

117-128, 1971. |
CLARK, D.W. & G.C. GREEN, An Empirical Study of List Structure

tn LISP, CACM, vol 20, no 2, 1977, pp 78-87.

DARRINGER, J.A. & J.C. KING, Applications of Symbolic Execution

to Program Testing, IBM Report RC 6965, January 1977.

DE MILLO R.A. et al, Soctal Processes and Proofs of Theoreme and

Programs, CACM, vol 22, no 5, May 1979, pp 271-280.

DORAN, J. & D. MICHIE, Experiments with the Graph Traverser

Program, Proceedings of the Royal Society (A), 294, pp 235-259,

1966.

DOYLE, J., Truth Maintenance Systems for Problem Solving, A.l.

Laboratory, MIT, AI-TR-419, January 1978.

DRESHER, B.E. & N. HORNSTEIN, On Some Supposed Contributions of

Artificial Intelligence to the Seientifie Study of Language,

Cognition, vol 4, pp 321-398, 1976.

DRESHER, B.E. & N. HORNSTEIN, Reply to Winograd , Cognition, vol

5, pp 379-392, 1977.
ENDERTON, H.B., A Mathematical Introduction to Logic, Academic

Press, 1972.

ERNST, G. & A. NEWELL, G.P.S.. A Case Study in Generality and

Problem Solving, ACM Monograph Series, Academic Press, NY, 1969.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

FAUGHT, W.S., Motivation and Intenstonality in a Computer

Simulation Model of Paranoia, Basel: Birkhaeuser Verlag, 1978.

FAUGHT, W.S., Modelling Intentional Behavior Generation, IJCAI6,

pp 263-265, Tokyo, 1979.

FAUGHT, W.S., K.M. COLBY & R.C. PARKISON, inferences, Affects

and Intentions in a Model of Paranota, Cognitive Psychology, no

9, pp 153-187, 1977.

FIKES, R.E., P.E. HART & N.J. NILSSON, Learning and Executing

Generalized Robot Plans, Artificial Intelligence, vol 3, no 4,

pp 251-288, 1972.

FIRSCHEIN, O. et al, Forecasting and Assessing the Impact of

Artificial Intelligence on Society, IJCAI3, pp 105-2120,

Stanford, 1973.

FLECK, J., Artifteral Intelligence. A Case Study in Seientific

Development, AISB, 35, pp 3-6, October 1979.

GELERNTER, H., Realization of a Geometry Theorem Proving

Machine, Proceedings of an International Conference on

Information Processing, Paris: UNESCO House, 1959, pp 273-282,

reprinted in E.A. Feigenbaum & J. Feldman (Ed.), Computers and

Thought, McGraw-Hill, NY, 1963, pp 134-152.

GREEN, C., The Appl teation of Theorem-Proving to

Question-Answering Systeme, Stanford Artificial Intelligence

Project Memo AI-96, June 1969.

HAREL, D., Proving the Correctness of Regular Deterministic

Programs: A Untfying Survey Using Dynamite Logic, IBM Report

7557, March 1979.

HAREL, D., First Order Dynamic Logic, Springer Verlag, 1979.

HARRIS, L.R., Status Report on the ROBOT Natural Language Query

Processor, Sigart Newsletter, no 66, pp 3-4, August 1978.

HART, P., N. NILSSON, and B. RAPHAEL, A Formal Basis for the

Heuristie Determination of Minimum Cost Pathe, IEEE Trans. Sys.

Sci. Cybernetics, vol SSC-4, no 2, pp 100-107, July 1968.

HAYES, P.J., A Representation for Robot Plans, IJCAI4, pp

181-188, Tbilisi, 1975.
JOHNSON-LAIRD, P.N., Procedural Semanttes, Cognition, vol 5, no

3, September 1977, pp 189-214.

KING, J.C., Symbolic Executton and Program Testing, CACM, vol

19, no 7, July 1976, pp 385-394.

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

KLING, R.E., A Paradigm for Reasoning by Analogy, artificial

Intelligence, vol 2, pp 147-178, 1971.

KOWALSKI, R., A Proof Procedure Using Connection Graphs, JACM

22, no 4, October 1975, pp 572-595.

LANGLEY, P., Rediscovering Physics with BACON3, IJCAI6, pp
505-507, Tokyo, 1979.

LEE, S., W.P. de ROEVER & S.L. GERHART, The Evolution of List

Copying Algorithms, 6th Annual ACM Symposium on Principles of

Programming Languages, pp 53-67, San Antonio, 1979.

LENAT, D.B., AM: An Arttftetal Intelligence Approach to

Discovery in Mathematics as Heuristie Search, Memo AIM-286,

Stanford AI Lab, 1976.

LESSER, V.R. & L.D. ERMAN, A Retrospective Vieuw of the

HEARSAY-II Architecture, IJCAI5, pp 790-800, Cambridge, 1977.
LONDON, P.E., Dependency Networks as a Representation for

Modelling in General Problem Solvers, Department of Computer

Science, University of Maryland, TR-698, 1978.

LUCKHAM, D. & N. SUZUKI, Automatie Program Verification V, Memo

AIM-278, Stanford AI Lab, 1976.

LOVELAND, D.W., Automated Theorem Proving. A Logtcal Baste,

North-Holland, 1978.

MANNA, Z., Introduction to Mathematical Theory of Computation,

McGraw-Hill, NY, 1972.

MARR, D., Visual Information Processing, IJCAI6, pp 1108-1126,

Tokyo, 1979.

McCALLA, G. et al, Investigations into Planning and Executing in

An Independent and Continuously Changing Microworld, AI Memo

78-2, Department of Computer Science, University of Toronto,

July 1978.

McCALLA, G. & P.F. SCHNEIDER, The Executton of Plans in an

Independent Dynamite Microworld, IJCAI6, pp 553-555, Tokyo, 1979.

MCCARTHY, J. & P.J. HAYES, Some Philosophical Problems from the

Standpoint of Artifictal Intelligence, in B. Meltzer & D. Michie

(Ed), Machine Intelligence 4, Elsevier NY, 1969, pp 463-502.

MILLER, G.A., Semantic Relations among Words, in M. Halle et al

(Ed), Linguistic Theory and Psychological Reality, pp 1-59, MIT

Press, 1978.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

MOORE, E., The Shortest Path Through a Maze, Proc. Intern. Symp.

Theory Switching, Part II, April 2-5, 1957.

NEVINS, A.J., A Human Oriented Logie for Automatic

Theorem-Proving, JACM 21, no 4, October 1974, pp 606-621.

NEWELL, N. & H.A. SIMON, G-P.S. A Program that Simulates Human

Thought, Lernende Automaten, R. Oldenbourg KG, Munich, 1961,

reprinted in Computers and Thought, E.A. Feigenbaum & J. Feldman

(Ed), McGraw-Hill, NY, 1963, pp 279-296.

NILSSON, N.J., Problem-Solving Methods in Arttfictal

Intelligence, McGraw-Hill, NY, 1971.

Ontwikkelingsplan Informatica, Centrale Informatica Commissie

Universiteit van Amsterdam, Januari 1979.

PATERSON, M.S. & M.N. WEGMAN, Linear Untftcation, Proceedings

Eighth Annual ACM Symposium on Theory of Computing, Hershey,

Penn., May 1976, pp 181-186; and in JCSS, 16, 1978, pp 158-167.

POHL, I., Bidireetional Heuristic Search in Path Probleme,

Stanford University, California, 1969.

POHL, I., First Results on the Effect of Error tn Heuristic

Search, in B. Meltzer and D. Michie (Ed.), Machine Intelligence

5, pp 219-236, American Elsevier Publishing Company, NY, 1970.

QUINE, W.0., Methods of Logie, Holt N.Y., 1950.

RAPHAEL, B., The Thinking Computer, Freeman & Co, San Fransisco,

1976.

RATHENAU, G.W. et al, Rapport van de Adviesgroep

Micro-Electronica, Staatsuitgeverij, Den Haag, 1980.

ROBINSON, J.A., A Machine-Oriented Logic Based on the Resolution

Prinetple, JACM, vol 12, no 1, Jan 1965, pp 23-41.

RULIFSON, J.F., J.A. DERKSEN, R.J. WALDINGER, QA4: A Procedural

Caleulus for Intuitive Reasoning, Stanford Research Institute,

Technical Note 73, November 1972.

SACERDOTI, E.D., Planning in a Hierarchy of Abstraction Spaces,

IJCAI3, Stanford, pp 412-422, 1973.

SACERDOTI, E.D., A Structure for Plane and Behavior, Artificial

Intelligence Series, Elsevier Computer Science Library, 1977,

SAMUEL, A.L., Some Studies in Machine Learning Using the Game of

Checkers, IBM J.R.D., (3) pp 211-229, reprinted in E.A.

Feigenbaum & J. Feldman (Ed), Computers and Thought, pp /1-108,

McGraw-Hill NY, 1963.

7.6

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

SCHANK, R.C., SAM A Story Understander, Research Report no 43,

Yale University, August 1975.

SCHORR, H. & W.M. WAIT, An Efficient Machine Independent

Procedure for Garbage Collection in Various List Structures,

CACM, vol 10, pp 501-506, 1967.

SLOMAN, A., The Computer Revolution in Philosophy, Harvester

Press, Sussex, 1978.

Special Issue on Non-Monotonie Logic, Artificial Intelligence,

vol 13, no 1 & 2, April 1980.

Struktuurplan Informatica (W.0.), Academische Raad, December

1974,

SUZUKI, N., Automatte Vertficatton of Programs with Complex Data

Structures, Memo AIM-279, Stanford AI Lab, 1976.

TATE, A., Interacting Goals and their Use, IJCAI4, pp 215-218,

Tbilisi, 1975.

THOMPSON, A.M., Network Truth-Maintenanee for Deduction and

Modelling, IJCAI6, pp 877-879, Tokyo, 1979.
TOPOR, R.W., The correctness of the Schorr-Watte List Marking

Algorithm, Acta Informatica, vol 11, pp 211-221, 1979.

WANG, H., Toward Mechanical Mathematics, IBM Journal, Jan 1960,

pp 2-22.

WANNER, E. & M. MARATSOS, An ATN Approach to Comprehension, in

M. Halle et al (Ed), Linguistic Theory and Psychological

Reality, pp 60-118, MIT Press, Cambridge MA, 1978.

WARD, M.R., L. ROSSOL & S.W. HOLLAND, CONSIGHT: A Practical

Vieion-Based Robot Guidance System, Computer Science Department,

General Motors Research Laboratories, Warren Michigan, 1979.

WINOGRAD, T., On Some Contested Suppositions of Generative

Linguists about the Seientifie Study of Language, Cognition, 5,

pp 151-179, 1977.
WINSTON, P.H., Learning Structural Descriptions from Examples,

AI-TR-231, AI Lab MIT, 1970.
WOODS, W.A., Procedural Semantics for a Question- Answering

Machine, Proc. AFIPS 1968 Fall Joint Computer Conference, vol

38, Part I, MDI Publications, pp 457-471.

WOODS, W.A., Transition Network Grammars for Natural Language

Analysts, CACM, vol 13, no 10, pp 591-606, October 1970.

[92]

[93]

WOODS, W.A. et al, The Lunar Setences Natural Language

Information System, BBN Report no 2378, NTIS N72-28984, June

1972.

ZIEGLER, J.F. & W.A. LANFORD, The Effect of Cosmic Rays on

Computer Memories, IBM Report RC 7648, October 1979.

DUMMIES ARE
NICE, TOO!

ERRATA (March 19,

aan i

page Linels)
eere nme en En EE

2.7 : in top figure

|

2.25 in subseriptions
lof fig 2.7 & 2.8

2.32. in subscription
‚of fig 2.13

{
)

t

]
'

{
vpn enne me mR eee re nn or ene tee erm 8

2.33! in subscription
lof fig 2.33

replace

the capital S at the

top of fig 2.4

Uni-directonial | _
sae TT

Bi-directonial

(a)

1981)

all occurrences of B
_unidirectional
bidirectional

are

og

EN uni- directional

_ _bi- -directional |

_f-values
. f=m

_ Bidirectional _
_all occurrences of 6
TEE |

2. 34) in subscription
tof fig 2.15

|

3. 228! in fig

by

a small s

add a small t at the Botto!
of fig 2.4 as in fig 2.5

_Uni-directional

é.

te

d
e
n
e
n

3
w
a
e

c
a

d
e
.

m
e
e

Bi-directional

Bi- -directional |

3.58 a| top of fig

3.60 in fig 3.8

3.61; under top two
triangles.
‘under middle
| triangles

3.80: ‘last ‘line middle!

paragraph

oO

i

wo
 3th line From

„bottom

'

{
’

|
’
{
Í

dommen st:

FX

f=

the capital S.

the three occurrences

of vs1

ex not in

yf

suggestion

heeft

TPE

7 EK

ad
F=

mer ee sree

22
_f£-values -

_all occurrences of & ;

2x2xC

d mn a
€:

meenen een . oled en en

Pe,

s small 84

vs 1x

a See eme za ene ven

ex not in cell

ej

Veonjecture

| hebben

_Fevalues «ur

en a
be Erne ee an we eten

Log

~ mene ad ee es

ze, vafen
’ a

_ genie ~

- _ ae! <

coe

Wes pe oes fe

aa.

wt .
Se td eth ge.

~ meter re Pavan
: wy

Leet
N 1 vm ge ee

eR
oO :

derd perd. “4

hee

Cay
ts

~ ~ As rape

Vo

yl

- 4
had ~~ hadieth oor es a

Trop. oa

. EN

1

te ee

~ sae Ne

STELLINGEN

behorende bij het proefschrift
ALGORITHMS IN ARTIFICIAL INTELLIGENCE

van
D.M.G. de Champeaux de Laboulaye

29 april 1981

l.
Het algorithme beschreven in Solutions and their Problems, D. de
Chempeaux, International Computing Symposium 1977, (Ed.) E. Morlet &
D. Ribbens, North-Holland, 1977, bldz. 119-127, bedoeld voor het
behandelen van problemen waarbij reductieoperatoren ter beschikking

staan, die aanleiding geven tot de generering van afhankelijke
deelproblemen, is bestand tegen de noodzaak om een oplossingspad te
construeren waarop een deelprobleem N-l maal (voor willekeurige N)

opgelost en ongedaan gemaakt moet worden, alvorens een totale
oplossing bereikt kan worden,

2.
De z.g.n. ‘sorted predicate calculus', als beschreven in A Theorem
Prover Dating a Semantic Network, D. de Champeaux, Proceedings of the
AISB/GI Conference on A.I., Hamburg, 1978, bldz. 82-92, maakt het
mogelijk om een probleem compact te formuleren zodat, met een
aangepast unificatie-algorithme, een korter bewijs mogelijk wordt (en
daarmee de kans kleiner om tegen de grens van een beperkt
computergeheugen aan te lopen) dan wanneer de gewone
predicatencalculus wordt gebruikt,

3.
Met het programma beschreven in Een Gedemocratiseerde
Besluitvormingsmethode met een Komputer voor Lokaliseringsproblemen in
ce Planologie, B. Erwich & D. de Champeaux, Stedebouw &
Volkshuisvesting, no 12, december 1973, bldz. 473-482, kan de
positiebepaling van objecten in een twee-dimensionale ruimte zodanig
plaats vinden dat met verschillende visies van belanghebbenden
rekening wordt gehouden, terwijl het daarmee samenhangende
besluitvormingsproces doorzichtig is.

4.

De lineariteit van het unificatie-algorithme van M.S. Paterson en M.N.
wegman, ACM Sigact, 1976, bldz. 181-185, is misleidend omdat
~ van de veronderstelling wordt uitgegaan dat gelijksoortige structuur
binnen en tussen de argumenten te voren al onderkend is, en
— een gevonden substitutie van de gedaante ((xj -Vj) eee CV)

slechts voldoet aan de eigenschap: x; komt niet voor in vj voor i<=j

(in plaats van de eigenschap: x; komt niet voor in Vi).

5.
Fet voorstel tot standaardisatie van het invoerformaat van deductie
programma's/ deductieve modulen, Overbeek, R.A. & E.L. Lusk, Data

Structures and Control Architecture for Implementation of

Tneorem-Proving Programs, 5th Conference on Automatic Deduction, (Ed.)
W. Bibel & R. Kowalski, Springer-Verlag, 1980, bldz. 232-246, is
voorbarig, aangezien de bijdrage van de context waarin deductie plaats
vindt nog niet voldoende is onderzocht,

6.

Het belang van waarheidscondities voor het proces van het begrijpen
wordt overschat.

7.

Het begrip 'natuurlijk' dat in de wiskunde veelvuldig gehanteerd

wordt, vindt daarin z'n meest tegennatuurlijke toepassing.

8.
Algemenere toepasbaarheid, met veel moeite in een computerprogramma
ingebouwd, blijkt bij gebruik juist m.b.t. tot een andere dimensie
tekort te schieten.

9.
De beste algorithmen vindt men in kookboeken,

10.
Aan de wettelijke verplichting van een vakgroep om een onderzoeksplan

op te stellen, dienen concrete consequenties te worden verbonden,

ll. .
Het huidige systeem van drempelkriteria waarmee woningen al dan niet
tot de vrije sector behoren, heeft tot gevolg dat geringe verschillen
in woongenot aanleiding kunnen geven tot exorbitante verschillen in
woonlasten.

12.
De kwaliteit van de besluitvorming op het gebied van de ruimtelijke
ordening vindt een triest dieptepunt in de beslissing om 500 ha
weiland in de Houtrakpolder ten westen van Amsterdam te bedelven onder
opgespoten zand — daarbij Ruigoord tot een macaber surrealistisch
spookdorp makend — terwijl er in de afgelopen 15 jaar zelfs nog geen
begin is gemaakt met industriele vestiging.

13.
Een 'lijnen' stad, waarin een knooppunt op de lijn te voet te bereiken
is vanuit elk punt van de bebouwing, terwijl langs de verzonken lijn
openbaar transport plaats vindt, en reisafstanden verkleind worden
doordat een grotere dichtheid gerealiseerd kan worden (met al het
priveautoverkeer geelimineerd), verdient nadere bestudering door

stadsontwerpers.

14,
De moderne onleefbaarheid wordt niet zozeer veroorzaakt door grote

tegenslagen, maar veeleer door de veelvuldigheid van op zichzelf

weinig betekenende ergernissen.

15.
Iemand die zich opwindt over de zeehonden van de Waddenzee is

voornamelijk bezorgd voor zichzelf. En terecht,

16.
Het verdient aanbeveling om kentekenbewijs copie deel drie te
vervangen door deel vier.

17.
De overdaad aan regelknoppen van de hedendaagse Hi-Fi-apparatuur moet

de gebruikers de illusie geven althans iets te kunnen beheersen.

18.
In het licht van de volgende citaten:

Een complicatie bij het storten, c.q. ingraven is, dat het gevaar

bestaat voor het binnendringen van giftige of schadelijke stoffen
in de bodem, Hiertegen zal te allen tijde gewaakt moeten worden,
zowel uit bodemkundig oogpunt als ter bescherming van de kwaliteit
van het grondwater. ...
Verontreiniging van de bodem dreigt voorts door infiltratie van

industrieel afvalwater en olie en door langzame besmetting met

kleine doses schadelijke stoffen (bv. chemische plantenziekten-
bestrijdingsmiddelen, motordampen, industriele afvalprodukten,
enz.). De zorg voor de bodem vereist een zo groot mogelijke
bescherming, ook tegen deze invloeden,

uit de Tweede Nota van de Ruimtelijke Ordening in Nederland, 1966,

bldz. 72, doen recente uitspraken van autoriteiten over chemische

verontreinigingen denken aan struisvogelpolitiek.

19.
Als een volgende stelling, geformuleerd als deze, waar is, dan is dit

niet de laatste stelling.

