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Abstract

We consider the modal logic ML∞, the extension of standard modal logic where
the modality ♦∞ is added to the signature. Interpreted using Kripke seman-
tics, the ♦∞ modality captures the distinction between finite and infinite. We
first provide a collection of results on the model theoretic aspects of this logic.
Introducing an alternative definition of bisimulation, we establish a collection
of invariance results as well as a characterization of ML∞ in terms of this new
notion of bisimulation. Furthermore we adapt the Hennessy-Milner property
to the ML∞ framework and characterize a collection of frames that enjoy this
property.

In a second line of research we establish some positive results on the finite
axiomatization of ML∞. We introduce the ML∞ logics K∞ and S5∞ and we
show that they are, respectively, sound and weakly complete with respect to the
class of Kripke frames and the class of equivalent Kripke frames.
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Introduction.

This master thesis introduces the logic ML∞; the extension of standard modal
logic (ML) where we boost the ML language by introducing the modality ♦∞,
embodying the existence of infinitely many successors enjoying a certain prop-
erty. The modal logic ML∞ is interpreted on Kripke models with a unique
accessibility relation, where a world w satisfies the formula ♦∞ϕ if and only if it
has infinitely many successors satisfying ϕ. Inspired by the extensive research
that has occurred around ML, this master thesis aims to provide a first analysis
of some model theoretic and axiomatic properties of the modal logic ML∞.

Our motivation. Generalized quantifiers have been an active field of research
in the logic community since they were first defined in the late 50’s by Mostowski
[Mos57]. The abstract model theoretic properties of cardinal quantifiers have
been a prominent line of research in the past decades. In the 50’s and 60’s
FO∞, the extension of first-order logic with the cardinal quantifier ∃∞ embody-
ing the finite/infinite distinction, was taken as an object of research in this
field. However, it was soon noticed that FO∞ lacks of important model theo-
retic properties such as compactness (see Section 1.1 of Chapter IV in [BF17]),
Craig-Interpolation property (see [Mos68] ), axiomatization and the Löwenheim-
Skolem property (see Proposition 1.3.2 of Chapter IV in [BF17]). Therefore the
logic community opted to substitute this logic for other cardinal logics that en-
joy better model theoretic properties (see [Fuh65; Vau64; Kei70; BF17]). Recent
research, however by Carreiro et al. [Car+18] has led to positive improvements
on the model theoretic and complexity aspects of the monadic fragment of FO∞.
Thus, in this thesis we extend the object of research considered by Carreiro et
al. to the monadic fragment of FO∞ with an additional binary relation and
provide positive results on the model theoretic and axiomatization properties of
this fragment.

The interplay between generalized quantifiers and modal logic has been, to some
extent, a minor area of research in both modal logic and generalized quantifier
theory. However, the connections that can be drawn between these two theories
has resulted in positive results. In particular we should highlight the celebrated
results obtained by van der Hoek and de Rijke [VD93] on the expressive power
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of graded modal logic in connection to the generalized quantifiers expressible
in first-order logic. In other respects, model theory has played a major role in
modal logic, not only to answer model theoretic questions in the modal frame-
work, but model theoretic techniques have been used to study the expressive
properties of modal logics [HM85], to characterize modal logics [TBV07; De 95],
or to study the interplay between modal logics and first and second order logic
[Ben76; Ros97].

Related work. Whilst the literature devoted to the study of ML∞ is lim-
ited, the next paragraph provides an overview of the research surrounding this
field:

It was in the early 80’s when Emerson and Halper [EH86] first proposed an
interpretation of the ♦∞ modality to the temporal logic framework. Influenced
by a previous paper from Clarke and Emerson [EC80] where the infinite quan-
tifier ∃∞ is introduced to the field of automata theory, Emerson and Halper
introduced the infinite modality F∞, capturing the existence of events that
occur infinitely often. This modality is established in the language of the tem-
poral logic CTL∗, an extension of propositional logic that is equipped with the
modalities F (”sometimes”), X (”next time”), U (”until”) as well as the pre-
viously mentioned modality F∞ (”infinitely often”). CTL∗, furthermore, was
conceived primarily to unify the branch and linear interpretation of temporal
logic discussed in [Lam80] into a unique language, and has been proven to enjoy
both positive complexity and expressive properties.

In 2007, van Benthem et al. [TBV07] introduced the logic ML•. The language
of this logic is obtained by introducing a weaker version of the ♦∞ modality
to the ML language, namely the • modality. This new modality is interpreted
on Kripke models where a world satisfies the formula •ϕ if and only if it has
infinitely many reflexive successors satisfying ϕ. In addition, van Benthem et
al. show that ML• is a non elementary extension of ML that is not contained in
first-order logic, but is still well behaved in model theoretic terms. Meaning that
ML• satisfies the Löwenheim-Skolem Theorem (see Proposition 3.7 in [TBV07]),
the Compactness Theorem (see Page 14 in [TBV07]), the Craig-Interpolation
property (see Proposition 3.11 in [TBV07]) and it is finitely axiomatizable (see
Proposition 3.9 in [TBV07]).

Our contribution. The contributions of this master thesis are of different
flavours. In a first line of research we introduce an alternative notion of bisimu-
lation, namely ML∞-bisimulation, that is enhanced in such a way that is able to
capture the infinite behaviour of ♦∞. Under this new definition we show that a
significant amount of the preservation results are recovered. Moreover, we show
that under this new definition of bisimulation the class of ℵ∞0 -saturated mod-
els (an adaptation of the concept of saturation) enjoy of the Hennessy-Milner
property. Our contribution in the expressive power of ML∞ ends with an adap-
tation of the celebrated van Benthem characterization theorem on the ML∞
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framework.

On a second line of research we introduce the logics K∞ and S5∞, the sup-
plements of the well-known modal logics K and S5. In Chapter 6, we provide
a finite axiomatization of these logics and show that they are weakly complete
with respect to the class of Kripke models (for the K∞ case) and with respect
to the class of equivalence frames (for the S5∞ case).

In the following paragraphs the reader can find a more detailed breakdown
of the analysis this thesis provides:

Chapter 2 deals with all the preliminary syntactic and semantic concepts. We
introduce the language of ML∞, an extension of standard modal logic with an
additional modality ♦∞ embodying the finite/infinite distinction. We provide
the standard Kripke-style semantics for this language, restricting them to a
unique accessibility relation. A contribution of this chapter is the introduction
of an alternative semantic for ML∞ based on Kripke models equipped with
two accessibility relations, where each relation captures the behaviour of each
modality. We conclude this chapter by showing a method to convert the bi-
modal Kripke models to the standard Kripke models while still preserving the
truth value of the ML∞ formulas (see Lemma 2.29).

In Chapter 3 we tackle the bisimulation variance failure by providing a stronger
definition of bisimulation that is able to capture the infinite behaviour of ♦∞.
This is achieved by adapting the bisimulation game, allowing Spoiler to launch
two types of challenges towards Duplicator. Each of the movements is able to
capture, in game-theoretic terms, the semantic behaviour of the modalities ♦
and ♦∞. Finally, under this new bisimulation we are able to recover all the
desired preservation results that hold in ML.

In Chapter 4 our study focuses on the research of the Hennessy-Milner property
of ML∞, i.e. the classes of frames for which the concept of ML∞-bisimulation
and ML∞-equivalence coincide. Motivated by this topic and the research on
the bisimulation invariance of ML∞ that is discussed in Chapter 5, a major sec-
tion of this chapter is devoted to introducing the reader to the model theoretic
concepts of FO∞; the extension of first-order logic with an additional cardinal
quantifier ∃∞ embodying the finite/infinite distinction. In addition, we intro-
duce the reader to the concepts of ω-types and κ∞-saturation. Two concepts
that are conceived as a natural extension of the model theoretic concepts of type
and saturated models, but with the additional power that allows us to prove
the Hennessy-Milner property for the class of ℵ∞0 -saturated models.

Building on the preservation results obtained in 3 and following the tradition
of van Benthem’s work [Ben76] on the relationship between ML and first-order
logic, in Chapter 5 we will show a bisimulation invariance theorem for ML∞. In
particular, we show that the modal logic ML∞ represents the ML∞-bisimulation
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invariant fragment of FO∞. The failure of the Compactness Theorem was an
inevitable obstacle to follow van Benthem’s original strategy to show the de-
sired result. However, Rosen’s technique [Ros97] on the bisimulation invariance
result over finite structures is powerful enough that it could be applied to our
framework and hence obtain the desired result of ML∞-bisimulation invariance.

Motivated by the lack of axiomatization for FO∞ we conclude this master thesis
by throwing some light onto this matter. We start Chapter 5 by introducing the
reader to the logics K∞ and S5∞, two ML∞ logics that supplement the normal
modal logics K and S5. A direct consequence of the failure of the Compactness
Theorem is the failure of the usual strategy using Canonical Models to prove
the completeness result. To overcome this complication we adapt the filtrated
canonical models as in [FL79] combined with the model theoretic machinery
described in Chapter 3 and thus showing that S5∞ is sound and weakly com-
plete with respect to the class of Kripke frames equipped with an equivalence
accessibility relation.

On the contrary, some additional problems arose when we tried to show com-
pleteness for the logic K∞. This problem was resolved by introducing the unrav-
elling technique of bi-modal Kripke to the model theoretic machinery developed
to prove completeness for the logic S5∞. We conclude this chapter by showing
that that K∞ is complete with respect to the class of Kripke frames.
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Preliminaries.

This section is intended to introduce the reader to the necessary background in-
formation required to follow this thesis. First, we present the language of ML∞,
an extension of the language of standard modal logic where we add an addi-
tional modality to the modal signature. Second, we introduce two variants of
the Kripke semantics on which ML∞ is interpreted. On one hand we introduce
the standard semantic utilizing Kripke models with a unique binary relation
and we observe that under this semantic the compactness property is not satis-
fied. On the other hand we introduce an alternative interpretation of the ML∞

language. This new interpretation is an adaptation, on the ML∞ framework,
of the alternative semantics proposed by van Benthem et al. [TBV07]. In par-
ticular, the alternative Kripke models that we propose are equipped with two
accessibility relations where each relation captures the semantic behaviour of
each modality. We conclude this chapter by providing a technique to trans-
form Kripke structures with two accessibility relations to Kripke models with a
unique accessibility relation while preserving the truth value of the ML∞ for-
mulas.

For the sake of simplicity we fix an arbitrary countably infinite set of proposi-
tional variables that is denoted by Φ and we denote by P(X) the power set of
X.

2.1 Syntax of ML∞.

Definition 2.1. Let Φ be a collection of propositional variables. The collection
of ML∞(Φ)-formulas (over Φ) is defined by the following grammar:

ϕ ::= ⊥ | p | ϕ ∧ ϕ | ¬ϕ | ♦ϕ | ♦∞ϕ,

where p is a propositional variable in Φ. Apart from the well-known expressions
ϕ→ ψ,ϕ ∨ ψ or �ϕ we let �∞ϕ to be ¬♦∞¬ϕ. Since we have fixed a set Φ of
propositional variables, we will write ML∞ instead of ML∞(Φ). Any subset of
ML∞ is said to be an ML∞-theory.
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Definition 2.2. For any ML∞ formula ϕ we define its modal depth, noted by
md(ϕ) as follows:

md(p) := 0 for every p ∈ Φ ∪ {⊥},
md(¬ϕ) := md(ϕ),

md(ϕ ∧ ψ) := max{md(ϕ), md(ψ)},
md(©ϕ) := md(ϕ) + 1 where © ∈ {♦,♦∞}.

2.2 Kripke semantics.

As we mentioned at the beginning of this chapter, we will interpret the ML∞

language using Kripke models. In this section, thus, we introduce the Kripke
semantics for the modal logic ML∞. In addition we present the well-known
concepts of generated submodel, disjoint union and bounded morphism. We
conclude this section by introducing the unravelling technique. A method to
construct new Kripke models from old ones presenting particular properties
that will be used later in connection with the blooming technique (see Lemma
2.29).

Definition 2.3. A Kripke frame is a tuple F = (W,R), where W , the uni-
verse of worlds, is a non-empty set and R ⊆ W × W is the accessibility re-
lation. A Kripke model over a set of propositional variables Φ is a triple
M = (W,R, V ) where (W,R) is a Kripke frame equipped with a valuation
function V : Φ→ P(W ).

A pointed Kripke model denoted by (M , w) is a tuple where w is a world
of the universe of M . We denote by R[w] the set of successors of w.

Definition 2.4. Let M be a Kripke frame. Given a set W ′ ⊆W , the submodel
of M induced by W ′, denoted by M |W ′ is the triple (W ′, R′, V ′) where R′ =
R ∩ (W ′ ×W ′) and V ′(p) = V (p) ∩W ′ for every p ∈ Φ. A submodel M ′ of M
is said to be a generated submodel if it is closed under the following rule:

If w ∈W ′ and wRv, then v ∈W ′.

Moreover for any set X ⊆W we let MX to be the smallest generated submodel
of M containing X. If M is a Kripke model generated by a singleton {w} we
say that M is rooted at w.

Definition 2.5. Let M = (W,R, V ) and M ′ = (W ′, R′, V ′) be two Kripke
models. A map ρ : W →W ′ is a bounded morphism if the following properties
are satisfied:
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� w and ρ(w) satisfy the same propositional variables (atomic)

� If wRu, then ρ(w)R′ρ(u), (forth)

� If ρ(w)R′u′ then there is some u such that ρ(u) = u′ and wRu. (back)

If, in addition ρ satisfies the following condition:

� If X ⊆ R[x] is an infinite set, so is {ρ(x) | x ∈ X}, (strongforth)

we say that ρ is a strong bounded morphism. If there exists a surjective strong

bounded morphism from M to M ′ we denote it by M
s
�M ′.

Definition 2.6. Let Mi = (Wi, Ri, Vi) be a collection of Kripke models indexed
by a set I. We define the disjoint union

⊎
i∈I Mi = (W,R, V ) to be the Kripke

model where:

� W :=
⊎
i∈I

Wi is the disjoint union of universes,

� R :=
⊎
i∈I

Ri is the disjoint union of the accessibility relations,

� V (p) :=
⊎
i∈I

Vi(p) for every p ∈ Φ.

Definition 2.7. Let (M , w) be a pointed Kripke model. For, every natural
number n we define the n-neighbourhood of w, denoted by Nn(w), recursively
as follows:

� N0(w) := {w},

� Nn+1 := {v ∈W | there is a u ∈ Nn(w)(uRv or vRu or v = u)}.

Definition 2.8. A Kripke model M = (W,R, V ) is said to be a tree model if
there exists a unique world w ∈W satisfying the following properties:

� W = R∗[w],

� for every t ∈W\{w} there exists a unique t′ ∈W such that t′Rt,

� the accessibility relation R is acyclic, meaning that for every t ∈W (¬tRt).

where R∗ is the transitive and reflexive closure of R. If this is the case we say
that M is rooted at w. Furthermore, M is an n-pseudotree for some natural
number n if the submodel M |Nn(w) is a tree rooted at w.
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Definition 2.9. For any pointed Kripke model (M , w) we define the satisfac-
tion relation  recursively as follows:

M , w  p⇐⇒Def w ∈ V (p).

M , w ⊥ ⇐⇒Def Never.

M , w  ¬ϕ⇐⇒Def M , w 1 ϕ.

M , w  ϕ ∧ ψ ⇐⇒Def M , w  ϕ and M , w  ψ.

M , w  ♦ϕ⇐⇒Def there is a v ∈W (wRv and M , v  ϕ).

M , w  ♦∞ϕ⇐⇒Def there are infinitely many v ∈W (wRv and M , v  ϕ).

If two pointed Kripke models (M , w) and (M ′, w′) satisfy the same ML∞-
formulas we say that (M , w) and (M ′, w′) are ML∞-equivalent and we will
denote it by M , w ≡∞ M ′, w′. Moreover we say that (M , w) and (M ′, w′)
are ML∞n -equivalent and denote it by M , w ≡∞n M ′, w′ if both pointed Kripke
models satisfy the same ML∞-formulas up to modal depth n.

Remark 2.10. For any formula ϕ and any Kripke frame F we say that ϕ is
valid in F and denote it by F  ϕ if for every pointed Kripke model (M , w)
where F is the underlying frame of M the following holds: M , w  ϕ. More-
over, if F is a collection of Kripke frames and Γ, {ϕ} are two sets of ML∞

formulas, we denote by Γ F ϕ the following property:

If for every F ∈ F and every ψ ∈ Γ: F  ψ, then F  ϕ for every F ∈ F.

Observation 2.11. As we mentioned in the beginning of this chapter, ML∞

is not a compact logic. Recall that a logic Λ is compact given that for every set
Γ ⊆ Λ, if every finite subset A of Γ has a model that satisfies every formula in
A, then there exists a model that satisfies every formula in Γ.

Now consider the following ML∞-theory T := {♦ψn | n ∈ N} ∪ {¬♦∞>} where
ψn :=

∧
i<n ¬pi ∧ pn and p0, ..., pn are distinct propositional variables in Φ. It

is not difficult to see that every finite subset of T has a finite Kripke model that
satisfies every formula in it. However, every pointed Kripke model (M , w) that
satisfies all the formulas in {♦ψn | n ∈ N} must have infinitely many successors.
But if this is the case, (M , w) does not satisfy the ¬♦∞> formula. Therefore
ML∞ is not a compact logic.

2.2.1 Unravelling a Kripke model

In this subsection we present the unravelling technique. This method has been
widely studied in standard modal logic and allows us to transform old Kripke
models to pseudotrees while still preserving the semantic behaviour of the old
Kripke model. To achieve this goal we first introduce the reader to the concepts
of path and family of a path. Then we give a formal definition of the unravelling
of a Kripke model.
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Definition 2.12. Let F = (W,R) be a Kripke frame and let n be a natural
number. An R-path of length n over W is a sequence (w0, w1, ..., wn) such that
wiRwi+1 for every i < n. The collection of R-paths of length n over W starting
at w will be denoted by Pathn(w).

Remark 2.13. Let ā be any R-path over W of length n. We denote by last(ā)
the last element ā. Moreover, for every element w ∈ W we denote by ā ∗ w to
be the sequence extending ā where we add w to the extreme of ā. Finally, if b̄
is an R-path of length k for some k > n we say that ā is the n-subpath of b̄ if
there exists some wn+1, ..., wk ∈W such that b̄ = ā ∗ wn+1 ∗ ... ∗ wk.

Definition 2.14. For any Kripke frame F = (W,R) rooted at w ∈W and any
n ∈ N we define the set Sn[w] to be:

Sn[w] :=
⋃
i≤n

Pathi(w).

Definition 2.15. For any Kripke frame F = (W,R), any natural number n ∈ N
and any R-path ā of length n we define the family of ā, denoted by Fam(ā) to
be:

Fam(ā) := {(w, ā) | w ∈Wlast(ā)}

where Wlast(ā) is the universe of the generated submodel M{last(ā)}. Moreover,
we let π0 : Fam(ā) → W be the projection map such that for any (w, ā) ∈
Fam(ā):

π0((w, ā)) := w.

The n-unravelling of a Kripke model M rooted at w is done in two steps. In
the first step we construct the tree section of the new model by taking all the
R-paths starting from w that have at most length n. We then equip this set
with a binary relation in the following way: An R-path ā is linked to an R-path
b̄ if b̄ = ā ∗ last(b), meaning that b̄ is the extension of ā by adding an element
at the end of the sequence. The reader might have noticed that under this
relation, the tuple formed by the set of R-paths of length at most n and the
binary relation described forms a tree:

Figure 2.1: Figure representing the tree we described in the previous paragraph.
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On the second step of the unravelling technique we now complete the tree. For
every leaf ā in the tree, we take a copy of its family and glue it to the model.
We do so by preserving the relation of the old model in this newly glued copy
of the family of ā, meaning that two worlds in the family of a leaf are linked by
the new accessibility relation if and only if these worlds are linked by the old
accessibility relation. Moreover, we link a leaf ā to any element of its family if
last(ā) is linked to such world in the old model:

Figure 2.2: Figure representing the n-unravelling of a Kripke model

Definition 2.16. Let M = (W,R, V ) be a Kripke frame rooted at w ∈W . For
any n ∈ ω, we let Wn[w] to be:

Wn[w] := Sn[w] ∪
⋃

ā∈Pathn(w)

Fam(ā)

Moreover, we let χn : Wn[w]→W to be the map such that for every α ∈Wn:

χn(α) :=

{
last(ā) If α = ā for some ā ∈ Sn[w],

π0(α) If α ∈ Fam(b̄) for some b̄ ∈ Pathn(w).

Finally, we equip the set Wn[w] with an accessibility relation Rn[w] and a
valuation function Vn[w] to define the Kripke model Mn[w]:

� For every α, β ∈ Wn[w], αRn[w]β if one of the following properties is
satisfied:

i α = ā ∈ Pathk(w), β = b̄ ∈ Pathk+1(w) for some k < n and ā is the
k-subsequence of b̄.

ii α = ā ∈ Pathn(w), β ∈ Fam(ā) and χn(ā)Rχn(β), i.e. last(ā)Rπ0(β).

iii α, β ∈ Fam(c̄) for some c̄ ∈ Pathn(w) and χn(ā)Rχn(β), i.e. π0(α)Rπ0(β).

� Vn[w](p) := {α ∈Wn[w] | χn(α) ∈ V (p)} for every p ∈ Φ.
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Example 2.17. Consider the following example of the unravelling of a Kripke
model. The figure on the left represents a Kripke model M rooted at w (the
black node). The figure on the middle represents the 1-unravelling of M around
w and the third figure is the 2-unravelling of M around w. Moreover the
different colors of the nodes represent the maps χ1 and χ2 i.e. the χ1-image of
any green node in the second figure is the green node in the first figure:

Figure 2.3: The Kripke
model M rooted at w.

Figure 2.4: The Kripke
model M1[w].

Figure 2.5: The Kripke
model M2[w].

2.3 ML∞-Kripke semantics.

In this section we introduce an alternative semantic for the ML∞ language
based on bimodal Kripke models that we will denote by ML∞-Kripke models. In
contrast to the previous semantics, each accessibility relation of the ML∞-Kripke
model describes the behaviour of one of the modalities. As in the previous
section, we introduce the concept of bounded morphism and generated submodel
to this framework. We conclude this section by introducing an adaptation of
the unravelling technique.

Definition 2.18. A ML∞-Kripke frame is a triple F = (W,R,R∞) where the
tuple (W,R) is a Kripke frame and R∞ ⊆ R is the infinite accessibility relation.
A ML∞-Kripke model over a set of propositional variables Φ is a quadruple
M = (W,R,R∞, V ), where the triple (W,R, V ) is a Kripke model over Φ and
the triple (W,R,R∞) is a ML∞-Kripke frame.

Remark 2.19. For any ML∞-Kripke modelM = (W,R,R∞, V ) we let (W,R, V )
be its underlying Kripke model and we will denote it by M .

Definition 2.20. Let M = (W0, R0, R
∞
0 , V0) and M′ = (W1, R1, R

∞
1 , V1) be

two ML∞-Kripke models. M′ is a ML∞-submodel of M if M1 is a submodel
of M0 and R∞1 = R∞0 ∩ (W1 × W1). Similarly M′ is the ML∞-submodel of
M generated by X if M1 is the submodel of M0 generated by X and M′ is a
ML∞-submodel of M. As in the Kripke semantics, for every set X ⊆ W0 we
denote by M|X the ML∞-submodel ofM induced by X and we denote byMX

the smallest ML∞-submodel of M generated by X.

Furthermore, a map ρ : W0 → W1 is said to be a ML∞-bounded morphism
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if ρ is a bounded morphism with respect to both accessibility relations, mean-
ing the following properties are satisfied:

� w and ρ(w) satisfy the same propositional variables, (atom)

� If wRu, then ρ(w)R′ρ(u), (R-forth)

� If wR∞u, then ρ(w)R
′∞ρ(u), (R∞-forth)

� If ρ(w)R′u′, then there is a u such that ρ(u) = u′ and wRu, (R-back)

� If ρ(w)R
′∞u′, then there is a u such that ρ(u) = u′ and wR∞u.(R∞-back.)

Moreover if there exists a surjective bounded morphism from M to M′ we
denote it by M�M′.

Definition 2.21. For any pointed ML∞-Kripke model (M, w) we define the
infinity satisfaction relation ∞ recursively as follows:

M, w ∞ p⇐⇒Def w ∈ V (p).

M, w ∞⊥ ⇐⇒Def Never.

M, w ∞ ¬ϕ⇐⇒Def M, w 1 ϕ.

M, w ∞ ϕ ∧ ψ ⇐⇒Def M, w ∞ ϕ and M, w ∞ ψ.

M, w ∞ ♦ϕ⇐⇒Def there is a v ∈W (wRv and M, v ∞ ϕ).

M, w ∞ ♦∞ϕ⇐⇒Def there is a v ∈W (wR∞v and M, v ∞ ϕ).

Moreover, two pointed ML∞-Kripke models (M, w) and (M′, w′) are ML∞-
equivalent, denoted by M, w ≡∞ M′, w′ if they satisfy the same ML∞ for-
mulas. For every natural number n, we say that (M, w) and (M′, w′) are
ML∞n -equivalent, denoted by M, w ≡∞n M′, w′, if (M, w) and (M′, w′) satisfy
the same ML∞ formulas up to modal depth n.

2.3.1 Unravelling a ML∞-Kripke model

Definition 2.22. For any ML∞-Kripke model M = (W,R,R∞, V ) rooted at
w ∈W and any natural number n, we define its n-unravelling around w, denoted
by Mn[w] to be the tuple (Wn[w],Rn[w],R∞n [w],Vn[w]), where:

� (Wn[w],Rn[w],Vn[w]) is the n-unravelling around w of M .

� R∞n [w] := {(α, β) ∈Wn[w]×Wn[w] | αRn[w]β and χn(α)R∞χn(β)}

Proposition 2.23. Let Mn[w] be the n-unravelling of a ML∞-Kripke model
M rooted at w ∈W . For every α, β ∈ Sn[w] and every γ ∈Wn[w] the following
holds:

If αRn[w]γ and βR∞n [w]γ, then α = β.

Proof. Follows directly from Definition 2.22 and Definition 2.16 by making two
distinctions. One where γ lies in Sn[w] and another case where γ lies in Fam(ā)
for some R-path ā of length n.
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Proposition 2.24. Let M = (W,R,R∞, V ) be a finite ML∞-Kripke model
rooted at w ∈W . For every natural number n ∈ N its n-unravelling, Mn[w], is
also a finite ML∞-Kripke model.

Proof. Follows from a combinatorial argument where the key observation is that
at most

∑
i≤n |W |n many elements were added to the pseudotree segment of the

n-unravelling and at most |W |many elements were added to each of the families.
Therefore the set Wn[w] has at most (

∑
i≤n |W |n) · (1 + |W |) many worlds.

2.4 The blooming Technique

We conclude this chapter by introducing the blooming technique. This method
aims to transform ML∞-Kripke models to Kripke models but maintain the
truth value of the ML∞-formulas. Meaning that for every pointed ML∞-Kripke
(M, w), its Bloomed pointed Kripke model, (M , w) satisfies the same ML∞-
Kripke formulas. In the following paragraph the reader can find a brief intro-
duction to the blooming technique:

First, we transform the universe W by substituting any world that lies in the
image of the R∞-function to countably infinite many copies of the same world.
Second, we transform the accessibility relation R and link those worlds in the
new universe if and only their correspondent in the old universe were linked
by the accessibility relation R. Finally any world in the new model will satisfy
p ∈ Φ if its original copy satisfies p in M.

However, it was noted that the truth value of the ML∞-formulas was not pre-
served throughout this method. We found out that when blooming an ML∞-
Kripke infinitely many successors could be added to a world, leading to misad-
justments on the truth value of ML∞-formulas (see Observation 2.27). In order
to resolve this issue, we first observed that tree ML∞-Kripke models did not
suffer from these misadjustments, therefore combining the unravelling technique
previously described with the blooming technique led us to our desired result.

Definition 2.25. LetM = (W,R,R∞, V ) be a ML∞-Kripke model. We define
the non-empty set W as follows:

W := {(v, n) | v ∈
⋃
w∈W R∞[w] and n ∈ N} ∪ {(v, 0) | v ∈W\

⋃
w∈W R∞[w]}.

Moreover, let π : W →W be the surjective projection map such that:

π((w, i)) := w for every (w, i) ∈W .

Finally we equip the set W with a binary relation R and a valuation function
V : Φ→ P(W ) to define the bloomed Kripke model M = (W,R, V ) of M:

� R := {((w, i), (v, j)) ∈W 2 | π(w, i)Rπ(v, j)}

� V (p) := {(w, i) ∈W | π(w, i) ∈ V (p)} for every p ∈ Φ.
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Example 2.26. In the following diagram we provide a graphic example of
Definition 2.25. On the left the reader can find a figure representing a ML∞-
Kripke model M. The paths coloured in black represent those elements that
are related by the accessibility relation R but not by the accessibility relation
R∞. On the contrary the arrows coloured in red represent those worlds that
are linked by the accessibility relation R∞. The figure of the left represents a
ML∞-Kripke model M and the figure located represents the Kripke model M ,
the bloomed Kripke model of M:

Figure 2.6: The ML∞-Kripke modelM.

......

Figure 2.7: The bloomed model M .

Observation 2.27. As we stated in the beginning of this section, the blooming
technique does not always preserve the theory of a pointed ML∞-Kripke model.
To show this, consider the following ML∞-Kripke model M := (W,R,R∞, V ),
where W := {a, b, c, d}, R := {(a, b), (b, d), (a, c), (c, d)} and R∞ := {(c, d)}.
Moreover, consider the simple case where Φ consists of a unique propositional
variable p and let V (p) := {d}. The following figure represents the ML∞-Kripke
model, where the black arrow represents the R-relation and the red one represent
the R∞-relation:

a

bc

d

Figure 2.8: The ML∞-Kripke model M.

Note that under the ML∞-semanticsM, b ∞ ♦p∧¬♦∞p. If we now apply the
blooming technique towards M we obtain the Kripke model M := (W,R, V ):
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a0

b0c0

...
d1d0 dn

...

Figure 2.9: The Kripke model M .

Therefore M , b0  ♦p∧♦∞p. Hence the theory of (M , b) is not preserved under
the blooming technique.

However as we noted in the introduction of this section, if we combine the
unravelling technique with the blooming technique we achieve our goal. Lemma
2.29 shows that ifM is a finite n-pseudotree rooted at w, the theory Tn := {ϕ ∈
ML∞ | qd(ϕ) ≤ n and M, w} is preserved under the blooming procedure.

Proposition 2.28. Let M∞n [w] be the n-unravelling of a finite ML∞-Kripke
model M rooted at w ∈ W . Moreover, let Mn[w] be the bloomed Kripke
model of Mn[w]. Let α ∈ Wn[w] be any world such that π(α) ∈ Pathk(w) for
some k < n. If the set Rn[w][α] is infinite, then there exists an infinite set
X ⊆ Rn[w][α] and some b ∈Wn[w] such that:

i π[X] = {b},

ii π(α)R∞n [w]b.

Proof. By 2.24, the set Wn[w] is finite. Therefore π(α) has finitely many suc-
cessors. By Definition 2.25, every β ∈ Wn[w] is an Rn[w]-successor of α if
and only if π(β) is an Rn[w]-successor of π(α). Combining these facts with
the pigeonhole principle we can find an infinite set X ⊆ Rn[w][α] and a unique
b ∈Wn[w] such that π[X] = {b}. Finally, it suffices to show that π(α)R∞n [w]b.

By the Definition 2.25 there exists some c ∈ Wn such that cR∞n [w]b. Besides,
by our assumption π(α) ∈ Pathk(w) for some k < n. Therefore, in view of
Proposition 2.23, we conclude that b = c and thus π(α)R∞n [w]b.

Lemma 2.29. Let Mn[w] be the n-unravelling of a finite ML∞-Kripke model
M rooted at w. For every α ∈Wn[w], if π(α) ∈ Pathk(w) for some k ≤ n and
for every ϕ ∈ ML∞ with md(ϕ) ≤ n− k the following holds:

Mn[w], α  ϕ⇐⇒Mn[w], π(α) ∞ ϕ. (2.1)
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Proof. This proof follows by reverse induction on k, where the only non-trivial
case involve the modalities. Let α ∈Wn[w] such that π(α) ∈ Pathk(w) for some
k < n. Moreover, consider any ϕ with md(ϕ) = n − k. Then consider the two
possible cases:

� Suppose that ϕ = ♦ψ with md(ψ) = n− (k + 1). Then:

Mn[w], α  ♦ψ =⇒ ∃β ∈Wn(αRn[w]β ∧Mn[w], β  ψ) ( definition)

=⇒ ∃β ∈Wn[w](π(α)Rn[w]π(β) ∧Mn, β  ψ) (Blooming technique)

=⇒ ∃β ∈Wn[w](π(α)Rn[w]π(β) ∧Mn[w], π(β) ∞ ψ) (Inductive hypoyhesis)

=⇒ ∃b ∈Wn[w](π(α)Rn[w]b ∧Mn[w], b ∞ ψ) (Equivalent formulation)

=⇒Mn[w], π(α) ∞ ♦ψ (∞ definition)

Mn[w], π(α) ∞ ♦ψ =⇒ ∃b ∈ Pathk+1(w)(π(α)Rn[w]b ∧Mn[w], b ∞ ψ) ( definition)

=⇒ ∃β ∈Wn(π(β) = b ∧ π(α)Rn[w]b ∧Mn[w], b ∞ ψ) (π is surjective)

=⇒ ∃β ∈Wn(π(α)Rn[w]π(β) ∧Mn[w], π(β) ∞ ψ) (Equivalent formulation)

=⇒ ∃β ∈Wn(αRn[w]β ∧Mn[w], β  ψ) (Inductive hypothesis)

=⇒Mn[w], α  ♦ψ (∞ definition)

� Alternatively suppose that ϕ = ♦∞ψ with md(ψ) = n− (k + 1). Then:

Mn[w], α  ♦∞ψ =⇒ ∃∞β ∈Wn[w](αRn[w]β ∧Mn[w], β  ψ) ( definition)

=⇒ ∃b ∈Wn[w](π(β) = b ∧ π(α)R∞n [w]b ∧Mn[w], β  ψ) (Proposition 2.28)

=⇒ ∃b ∈Wn[w](π(α)Rn[w]∞b ∧Mn[w], b ∞ ψ) (Inductive hypothesis)

=⇒Mn[w], π(α) ∞ ♦∞ψ (∞ definition)

Mn[w], π(α) ∞ ♦∞ψ =⇒ ∃b ∈ Pathk+1(w)(π(α)R∞n [w]b ∧Mn[w], b ∞ ψ) (∞ definition)

=⇒ ∀n ∈ N(π(α)Rn[w]π((b, n)) ∧Mn[w], π((b, n)) ∞ ψ) (Mn[w] definition)

=⇒ ∃∞β ∈Wn[w](π(α)Rn[w]π(β) ∧Mn[w], π(β) ∞ ψ) (Equivalent formulation)

=⇒ ∃∞β ∈Wn[w](αRn[w]β ∧Mn[w], β  ψ) (Inductive hypothesis)

=⇒Mn[w], α  ♦∞ψ ( definition)
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Bisimulation in ML∞.

Just as the Kripke semantics of basic modal logic is invariant under bisimulation
(see Theorem 3.3 in [TBV07]), in this chapter we observe that this condition
does not hold for the Kripke semantics of ML∞. In order to solve this issue and
introduce a notion of bisimulation that recovers the invariant results, we present
the notion of ML∞-bisimulation. We do so by adapting the bisimulation game,
a game-theoretical definition of bisimulation (see Section 3.1 in [GO07]), to
the Kripke semantics and we allow Spoiler to launch two types of challenges
towards Duplicator. Next we focus on the concept of bisimulation on the
ML∞-Kripke semantics that we proposed in the previous chapter. Since in these
semantics the ♦∞ was interpreted in terms of the R∞ accessibility relation we
observe that a version of the general bisimulation game is strong enough to
achieve our purpose. We conclude this section by showing that the satisfaction
relation defined in Kripke semantics for the logic ML∞ is invariant under ML∞-
bisimulation. In a parallel way we also prove that the ML∞-Kripke semantics
is invariant under bisimulation.

3.1 The ML∞-bisimulation game.

Observation 3.1. Firstly, we will show that the modal logic ML∞ is not invari-
ant under bisimulation. Recall that for two Kripke models M = (W,R, V ) and
M ′ = (W ′, R′, V ′) a bisimulation is a binary relation Z ⊆ W ×W ′ satisfying
the following properties:

� If vZv′ then v and v′ satisfy the same propositional variables. (atom)

� If vZv′ and vRu then there is some u′ such that v′R′u′ and uZu′.(forth)

� If vZv′ and v′R′u′ then there is some u such that vRu and uZu′. (back)

If two points (v, v′) ∈ W × W ′ are linked by a bisimulation we say that are
bisimilar and denote it by M , w↔M ′, w′. On one hand consider the Kripke
model M = (W,R, V ) where W := {n | n ∈ N}∪{ω}, R := {(ω, n) | n ∈ N} and
V (p) := {n | n ∈ N} for every p ∈ Φ. On the other hand consider the Kripke
model M = (W,R, V ) where W ′ := {a, b}, R′ := {(a, b)} and V ′(p) := {b}
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for every p ∈ Φ. Moreover, notice that the binary relation Z := {(n, b) | n ∈
N} ∪ {(ω, a)} is a bisimulation over these two structures:

ω

...
10 n

...
b

a

Figure 3.1: The bisimulation between M and M ′

However, notice that for every p ∈ Φ we have that M , ω  ♦∞p whereas
M ′, a 1 ♦∞p. Hence in the ML∞ framework bisimulation does not imply
ML∞-equivalence.

Definition 3.2. The ML∞- bisimulation game is played by two players, Spoiler
(that is a male) and Duplicator (that is a female) over two Kripke models, M0

and M1. Moreover, each of the models is equipped with a pebble. Each round
of the ML∞-bisimulation game over M0 and M1 has a starting configuration
(w0, w1) ∈ W0 ×W1 (the worlds that were pebbled in the previous round) and
continues as follows:

Spoiler chooses one of the two structures i.e. Mi, then he continues by making
one of the two possible moves allowed:

F.O.M.: Spoiler moves the pebble located at wi to a successor world w+
i ∈ Wi.

Duplicator replies by moving the M−i-pebble from w−i to a successor
world w+

−i.

S.O.M.: Alternatively, Spoiler chooses an infinite set X of successors of wi, i.e.
X ⊆ {v ∈ Wi | wiRiv}. Duplicator replies by choosing an infinite set Y
of successors of w−i, i.e. Y ⊆ {v ∈ W−i | w−iR−iv}. Finally, Spoiler
moves the M -pebble from wi to a world w+

i ∈ Y and Duplicator responds
by placing the Mi-pebble from wi to a world w+

i ∈ X.

Duplicator wins the game either if at some round each of the worlds constitut-
ing the initial configuration does not have any successors or if she can survive
indefinitely. On the contrary, Spoiler wins the game if at any round the worlds
constituting the outcome configuration do not satisfy the same propositional
variables.

We denote the ML∞-bisimulation game over M0 and M1 with initial config-
uration (w0, w1) by Bis∞(M0,M1)@(w0, w1).
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Remark 3.3. The following diagram gives a more graphic explanation of the
second order movement we have just introduced:

w0

w1

w+
0

w+
1

M0 M1

X0

X1

Figure 3.2: Second order movement.

In this case suppose that the round has started with the initial configuration
(w0, w1) and suppose that Spoiler launches a second order challenge towards
Duplicator by taking X0, an infinite set of R0-successors of w0. Duplicator

replies by choosing an infinite set X1 of R1-successors of w1. Spoiler continues
by choosing the world w+

1 in X1 and Duplicator answers by taking the element
w+

0 in X0. Spoiler wins the round and the game if w+
0 and w+

1 are not atomi-
cally equivalent. On the contrary, if w+

0 and w+
1 satisfy the same propositional

variables Duplicator survives the round.

Remark 3.4. We say that Duplicator has a winning strategy in Bis∞(M0,M1)
with initial configuration (w0, w1) if she can respond to any challenge that
Spoiler may launch at her.

Definition 3.5. Let (M , w) and (M ′, w′) be two pointed Kripke models. We
say that (M , w) is ML∞-bisimilar to M , w′ and denote it by (M , w ↔∞
M ′, w′) if Duplicator has a winning strategy in Bis∞(M ,M ′) @ (w,w′).

Definition 3.6. Given two pointed Kripke models (M0, w0) and (M1, w1) and a
natural number n we define the ML∞-bisimulation game of length n over M0 and
M1 with initial configuration (w0, w1), denoted by Bis∞n (M0,M1)@(w0, w1),
to be the ML∞-bisimulation game that terminates after n rounds.
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Definition 3.7. Let n be a natural number and let (M , w) and (M ′, w′) be
two pointed Kripke models. We say that M , w is ML∞n -bisimilar to M , w′

and denote it by M , w ↔∞n M ′, w′ if Duplicator has a winning strategy in
Bis∞n (M ,M ′) @ (w,w′).

3.2 The bisimulation game over ML∞-Kripke mod-
els.

In this section we introduce the concept of bisimulation for the ML∞-Kripke
semantics. As in the previous section we will adapt the standard bisimulation
game taking into account the interpretation of the ♦∞ modality in this seman-
tics. We do so by allowing Spoiler to make two kinds of moves, each of which
is aims to capture the behaviour of each modality.

Definition 3.8. For any two pointed ML∞-Kripke models (M0, w0) and (M1, w1),
the bisimulation game over M0 and M1 with initial configuration (w0, w1)
(denoted by Bis(M0,M1)@(w0, w1)) is played by two players Spoiler and
Duplicator. As in the ML∞-bisimulation game, each structure has a pebble.
A round of the ML∞-bisimulation with configuration (u0, u1) goes as follows:

Spoiler chooses one of the two structures, namely Mi, and makes one of the
permitted moves:

R-move: Spoiler moves theMi-pebble from ui to an Ri-successor world u+
i . Then

Duplicator advances theM−i-pebble from u−i to an R−i-successor world
u+
−i.

R∞-move: Alternatively, Spoiler moves theMi-pebble from ui to an R∞i -successor
world u+

i . Duplicator replies to the challenge by moving theM−i-pebble
from u−i to an R∞−i-successor u+

−i.

Spoiler wins the game if at any round of the game Duplicator cannot reply to
a challenge launched by Spoiler or if the outcome sequence is not atomically
equivalent. On the contrary, Duplicator wins the game if she can effectively
reply to any challenge that Spoiler launches at her.

Remark 3.9. We would like to clarify some issues that might arise from Defini-
tion 3.8. The misunderstanding that can arise from this definition is concerned
with the R-move. Note that since the accessibility relations R∞ and R are
related in the following way: R∞ ⊆ R, the following situation can occur and is
in fact a valid movement: Spoiler makes an R-move and relocates the Mi-
pebble from a world wi to an Ri-successor w+

i but for which it is not the case
that wiR

∞
i w

+. Then Duplicator replies by moving w−i to an R∞−i-successor

w+
−i. If w+

i and w+
−i are atomically equivalent Duplicator survive this round
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of the game.

However the converse situation is not a valid movement. If Spoiler makes
an R∞-movement and relocates the Mi-pebble from a world wi to an R∞i -
successor w+

i , Duplicator must move the M−i-pebble from the world w−i to
an R∞i -successor. She is not allowed to move the world w−i to an Ri-successor
w+
−i for which it is not the case that w−iR

∞
−iw

+
−i.

Definition 3.10. Let (M, w) and (M′, w′) be two pointed ML∞-Kripke mod-
els. We say that (M, w) is bisimilar to (M′, w′) and denote it by M , w↔M ′, w′

if Duplicator has a winning strategy in Bis(M,M′)@(w,w′).

3.3 Invariance results.

We conclude Chapter 3 by showing a significant amount of the preservation
results that hold for ML.

Lemma 3.11. For any two pointed Kripke models (M , w) and (M ′, w′):

If M , w ↔∞ M ′, w′, then M , w ≡∞ M ′, w′.

Proof. As in theorem 2.20 in [BRV02], this is shown by induction on the ML∞-
formulas. The fundamental observation relies on the connection between the
capability of Duplicator to reply to every first (second) order move and the
semantic behaviour of ♦ (♦∞).

Lemma 3.12. For any two pointed ML∞-Kripke models (M, w) and (M′, w′):

If M, w↔M′, w′, then M, w ≡∞M′, w′.

Proof. See theorem 2.20 in [BRV02].

Lemma 3.13. Let (M , w) and (M ′, w′) be two pointed Kripke models, then
the following properties are satisfied:

i If M , w ↔∞ M ′, w′ then M , w↔M ′, w′,

ii If M , w↔∞n M ′, w′ then M , w↔n M ′, w′,

for every n ∈ N.

Proof. Note that if Duplicator has a winning strategy in Bis∞(M ,M ′)@(w,w′)
(Bis∞n (M ,M ′)@(w,w′)) then she has a winning strategy in Bis(M ,M ′)@(w,w′)
(Bisn(M ,M ′)@(w,w′)). In view of Proposition 28 in [GO07] we obtain our
desired result.
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Lemma 3.14. Let M = (W,R, V ) and M ′ = (W ′, R′, V ′) be two Kripke
models and w ∈W . Then the following properties are satisfied:

i M , w ↔∞ M ′, w if M = M ′
X for some X ⊆W ′ and w ∈W .

ii M , w ↔∞ M ′, ρ(w) if ρ : M →M ′ is a strong bounded morphism.

iii M , w ↔∞ M ′, w if M ′ =
⊎
i∈I

Mi is a disjoint union where M = Mi for

some i ∈ I and w ∈W .

Proof. (ii) follows immediately since the (forth) and (back) conditions present
a method for Duplicator to reply to every first order challenge launched by
Spoiler. Similarly, the previous two conditions combined with (strongforth)
determine a strategy for Duplicator to reply to every second order challenge
launched by Spoiler. (i) and (iii) follow since the maps id : M → M ′ is a
strong bounded morphism in both cases.

Lemma 3.15. Let M = (W,R,R∞, V ) and M′ = (W ′, R′, R
′∞, V ′) be two

ML∞-Kripke models and w ∈W . Then the following properties hold:

i M, w↔M′, ρ(w) if ρ : W →W ′ is a bounded morphism and w ∈W .

ii M , w↔M ′, w if M =M′X for some X jW ′ and w ∈W .

Proof. See Proposition 2.19 in [BRV02].

Proposition 3.16. Let M = (W,R,R∞, V ) be a ML∞-Kripke model rooted
at w ∈W . For every n ∈ N and every a ∈Wn[w] : Mn[w], a ↔∞ M , χn(a).

Proof. Follows immediately from Lemma 3.15 part ii since the map χn is a
surjective strong bounded morphism.
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Model theory of FO∞

At the end of the previous chapter we proved the invariance result for the modal
logic ML∞. In other words we demonstrated that if two pointed Kripke models
are ML∞-bisimilar then they are ML∞-equivalent. It is a well-known result
from modal logic that bisimulation implies modal equivalence. However, the
converse of this result does not always hold. Therefore a natural question on
this matter arises: For which Kripke models does the notion of equivalence and
bisimulation coincide? Positive results by Hennessy and Milner [HM85] on this
question paved the concept of the Hennessy-Milner property:

Hennessy-Milner property: A collection C of pointed Kripke models has
the Hennessy-Milner property if for every (M , w), (M ′, w′) ∈ C the following
holds:

(M , w)↔ (M ′, w′) if and only if (M , w) ≡ (M ′, w′).

Therefore the core goal of this section is to study the Hennessy-Milner property
on the modal logic ML∞. To achieve such goal we first need to introduce the
reader to predicate logic FO∞, an extension of first order logic with an addi-
tional quantifier ∃∞. This new quantifier improves the expressive power of first
order logic by manifesting the existence of infinitely many elements satisfying a
certain formula.

This chapter is divided into two sections. In the first, we introduce the reader to
the basic semantic and syntactic concepts of FO∞. In addition we define ω-type,
a generalization of the model theoretic concept of type and κ∞-saturation, an
adaptation of the model theoretic concept of saturation to the FO∞ framework.

In the second section we adapt the definition of the Hennessy-Milner property
to the ML∞ framework and prove the main results of this chapter, namely that
the class of image-finite Kripke models and the class of ℵ0-saturated Kripke
models enjoy the Hennessy-Milner property.
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4.1 Basic concepts of FO∞

As we previously mentioned, we first introduce all the basic semantic and syntac-
tic concepts of FO∞. Most of these definitions are adaptations of the standard
model theoretic concepts that can be found in [Mar02].

Definition 4.1. A signature L is a set containing a possibly empty collection
of constant symbols, a possibly empty collection of function symbols of finite
arity and a possibly empty collection of relation symbols of finite arity.

Definition 4.2. Let L be a signature. The set of L -terms, denoted by
Term(L ) is defined by the following grammar:

t ::= c | x | f(t, ..., t),

where c is a constant symbol in L , x is a variable and f is a n-ary function
symbol in L .

Definition 4.3. Let L be a signature. We define FV : Term(L ) → P(Var)
recursively as follows:

� FV(x) = {x} for every variable x,

� FV(c) = ∅ for every constant symbol c,

� FV(f(t1, ..., tn)) =
⋃
i≤n FV(ti) for every f(t1, ..., tn) ∈ Term(L ).

Definition 4.4. The collection of atomic L -formulas denoted by Atom(L ) is
defined by the following grammar:

α ::= t1 = t2 | R(t0, ..., tn),

where t1, ..., tn ∈ Term(L ) and R is a n-ary relation symbol in L . Moreover, the
collection of L∞-formulas, denoted by Form∞(L ) is defined by the following
grammar:

ϕ ::= α | ¬ϕ | ϕ ∧ ϕ | ∃xϕ | ∃∞xϕ,

where α ∈ Atom(L ) and x is a variable. Moreover, we let Form(L ) to be the
fragment of Form∞(L ) where ∃∞ does not occur.

Definition 4.5. For any formula ϕ in Form∞(L ) we define its quantifier depth,
noted by qd(ϕ) as follows:

� qd(α) = 0 for every α ∈ Atom∞(L ),

� qd(¬ϕ) = qd(ϕ),

� qd(ϕ ∧ ψ) = max{qd(ϕ), qd(ψ)},

� qd(Qxϕ) = qd(ϕ) + 1 where Q ∈ {∃,∃∞}.
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Definition 4.6. We define FV : Form∞(L )→ P(Var) recursively as follows:

� FV(R(t1, ..., tn)) :=
⋃

0<i≤n
FV(ti),

� FV(¬ϕ) := FV(ϕ),

� FV(ϕ ∧ ψ) := FV(ϕ) ∩ FV(ψ),

� FV(Qxϕ)) := FV(ϕ)\{x} where Q ∈ {∃,∃∞}.

Moreover, we say that a formula ϕ ∈ Form∞(L ) is a sentence if FV(ϕ) = ∅.
The collection of all sentences in Form∞(L ) will be denoted by Sent∞(L ).

Definition 4.7. An L -structure M is a tuple (dom(M), (·)M ), where:

� dom(M) is a non-empty set.

� (·)M is an interpretation function on L satisfying the following properties:

i cM ∈ dom(M) for every constant symbol c,

ii fM : dom(M)n → dom(M) for every n-ary function symbol f in L ,

iii RM ⊆Mn for every n-ary relation symbol R in L .

Definition 4.8. For any L -structure M we define the satisfaction relation �
by induction on the complexity of the formulas as follows:

M � (t = s)⇐⇒Def (sM = tM ),

M � R(t0, ..., tn)⇐⇒Def (tM0 , ..., tMn ) ∈ RM ,
M � ϕ ∧ ψ ⇐⇒Def M � ϕ and M � ψ,

M � ¬ϕ⇐⇒Def M 2 ϕ,
M � ∃xϕ(x)⇐⇒Def there exists some m ∈M such that M � ϕ(m),

M � ∃∞xϕ(x)⇐⇒Def there are infinitely m ∈M such that M � ϕ(m).

Definition 4.9. Two L -structures M and N are FO∞-elementary equivalent,
denoted by M ≡∞ N given that for every ϕ ∈ Sent∞(L ):

M � ϕ⇐⇒ N � ϕ.

Moreover, for any n ∈ N, we write M ≡∞n N if and only if for every sentence
ϕ ∈ Sent∞L with qd(ψ) ≤ n, the following holds:

M � ϕ⇐⇒ N � ϕ.

Definition 4.10. Let ϕ and ψ be two Form∞(L ) formulas, we say that ϕ is
equivalent to ψ up to logical equivalence if M � ϕ↔ ψ for every structure M .
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Definition 4.11. A map η : dom(M) → dom(N) between two L -structures
M and N is an L -embedding if η is injective and the following properties are
satisfied:

i η(cM ) = cN for every constant symbol c,

ii η(fM (t1, ..., tn)) = fN (η(t1), ..., η(tn)) for every n-ary function symbol
f ∈ L and terms t1, ..., tn ∈ Term(L ),

iii (t1, ..., tn) ∈ RM if and only if (η(t0), ..., η(tn)) ∈ RN for every n-ary
relation symbol R ∈ L and terms t1, ..., tn ∈ Term(L ).

A bijective L -embedding is called an L -isomorphism. In addition an L -
embedding η is said to be FO∞-elementary if for every ϕ(x0, ..., xn) ∈ Form∞(L )
and any (m0, ...,mn) ∈ dom(M)n+1:

M � ϕ(m0, ...,mn)⇐⇒ N � ϕ(η(m0), ..., η(mn)).

Definition 4.12. Let η : {m0, ...,mk}dom(M) → dom(N) be a partial map
between two L -structures M and N . We say that η is a local isomorphism if
for every atomic formula α(x0, ..., xk):

M � α(m0, ...,mk)⇐⇒ N � α(η(m0), ..., η(mk)).

Definition 4.13. An L∞-theory T is a subset of Form∞(L ). An L∞-theory
T is satisfiable if there exists an L -structure M that makes true every ϕ ∈ T .
Moreover, we say that T is finitely satisfiable if there exists a L -structure M
that satisfies every finite subset of T .

Definition 4.14. For any L -structure M , we let Th∞(M) to be:

Th∞(M) := {ψ ∈ Form∞(L ) |M � ψ}

4.2 FO∞-Ehrenfeucht–Fräıssé games

We now introduce FO∞-Ehrenfeucht–Fräıssé game, a generalization of the well-
known Ehrenfeucht–Fräıssé game to the FO∞ framework. Moreover, we de-
fine the finite version of the FO∞-Ehrenfeucht–Fräıssé game and we show that
Duplicator has a winning strategy on the version of this game that ends after
n rounds if and only if the structures on which Spoiler and Duplicator are
playing are FO∞n -equivalent.

Definition 4.15. LetM0,M1 be two L -structures. The FO∞-Ehrenfeucht–Fräıssé
game on M0 and M1, denoted by EF∞(M0,M1), is played by Spoiler (that is a
male) and Duplicator (that is a female). The (n+1)-round of EF∞(M0,M1) has
an initial configuration (m̄0; m̄1) where m̄0 ∈ dom(M0)n and m̄1 ∈ dom(M1)n.
Spoiler starts by making a move that Duplicator replies immediately after-
wards. Spoiler is allowed to perform two kinds of moves:
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First order move: Spoiler chooses an arbitrary element of one of the two structures, i.e.
mi ∈ dom(Mi). Duplicator responds to this move by picking an element
of the other structure m−i ∈ dom(M−i).

Second order move: Spoiler chooses an infinite set of one of the structures Xi ⊆ dom(Mi).
Spoiler responds by choosing an infinite subset of the domain of the
other structure: X−i ⊆ dom(M−i). Finally, Spoiler chooses an element
m−i ∈ X−i and Duplicator responds by choosing an element mi ∈ Xi.

After a move is completed, the sequence m̄i is extended by adding the selected
element at the end of the sequence: m̄i

′ = m̄i ∗mi and the partial map fn+1 :
m̄′0 → m̄′1 is defined, where:

fn+1(mi,0) = mi,1.

Spoiler wins the game if at any of the rounds, the constructed map fn : m̄0 →
m̄1 does not form a local isomorphism. On the contrary, Duplicator wins the
game if she can survive every round of the FO∞-Ehrenfeucht–Fräıssé game.

Definition 4.16. Let M and N be two L -structures. Duplicator has a win-
ning strategy in EF∞(M,N) if Duplicator can effectively respond to any chal-
lenge launched by Spoiler.

Definition 4.17. Let M,N be two L -structures and n ∈ N. We let EF∞n (M,N)
be the FO∞-Ehrenfeucht–Fräıssé game that terminates after n rounds. Anal-
ogous to our previous definition, Spoiler wins the EF∞n (M,N) game if at any
of the rounds the partial map fk is not a local isomorphism. On the contrary,
Duplicator wins the FO∞-Ehrenfeucht–Fräıssé game of length n if she can
survive the n rounds of the game.

Definition 4.18. Let M and N be two L -structures. We write M ∼=∞n N
when Duplicator has a winning strategy in the EF∞n (M,N) game. Moreover,
for any m ∈ dom(M) and any n ∈ dom(N) we write (M,m) ∼=∞n (N,n) whenever
Duplicator has a winning strategy in the EF∞n (M,N) with initial configuration
(m;n).

Lemma 4.19. Let L be a finite signature without function symbols. For every
n ∈ ω, the collection:

Form∞n (L ) := {ϕ ∈ Form∞(L ) | qd(ϕ) ≤ n}

is finite up to logical equivalence.

Proof. Follows by a straightforward adaptation of Lemma 2.4.8 in [Mar02] to
the FO∞ framework.
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Theorem 4.20. Let L be a finite signature without function symbols and let
M,N be two L -structures. The following are equivalent:

i M ∼=∞n N ,

ii M ≡∞n N .

Proof. This is a generalization of Lemma 2.4.9 in [Mar02].

4.3 Types and saturated models

In this section we introduce the concepts of ω-type and κ∞-saturation. These
are generalization of the well-known model theoretic sconcepts of type and sat-
uration. Moreover, we conclude by showing that if an ℵ∞0 -saturated model
finitely satisfies an ω-type, then it realizes such type.

Definition 4.21. Let M be an L -structure. For every X ⊆ dom(A), we define
the signature LX to be the extension of L , where we add a constant symbol
for every element in X.

Definition 4.22. Let M be an L -structure and let X ⊆ dom(M). Moreover,
let p ⊆ Form∞(LX) such that for every ϕ ∈ p:

FV(ϕ) ⊆ {x1, ..., xn}.

We call p an n-type if p ∪ ThX(M) is satisfiable. We say that p is a complete
type if for every ϕ ∈ Form∞(LX) either ϕ ∈ p or ¬ϕ ∈ p. Otherwise we say
that p is a partial n-type. Finally, we let SMn (X) be the collection of all the
complete n-types over X.

Definition 4.23. Let p be an n-type over X. For every k < n, we let the
k-type p|k to be:

p|k := {ϕ ∈ p | FV(ϕ) ⊆ {x1, ..., xk}}

Definition 4.24. Let p be an n-type over X. We say that the LX -structure
M satisfies p if there exists a tuple (m1, ...,mn) ∈ dom(M)n such that:

M � ϕ(m1, ...,mn) for every ϕ(x1, ..., xn) ∈ p.

If not such tuple exists, we say that M omits the type p. Moreover, we say that
p is finitely satisfied by M if for every finite subset Σ ⊆ p, there exists a tuple
(mΣ,1, ...,mΣ,n) ∈ dom(M)n that realizes Σ.

29



Definition 4.25. A set p ⊆ Form∞(LX) is said to be an ω-type if there exists
a sequence (pn)n∈N such that:

i pn is an n-type for every n ∈ N,

ii pn ⊆ pn+1 for every n ∈ N,

iii p =
⋃
n∈N pn.

The ω-type is finitely realized by the L -structure M if every pk is finitely
realized by M . Moreover an ω-sequence (mn)n∈N ∈ dom(M)ω realizes p if for
every k ∈ ω, the subsequence (m0, ...,mk) realizes pk.

Definition 4.26. Let κ be a cardinal and M be a L -structure. We say that M
is a κ∞-saturated model if for every set X ⊆ dom(M) with |X| < κ and every
n-type p over X the following property is satisfied:

If (M,x)x∈X finitely satisfies p, then (M,x)x∈X satisfies p.

Proposition 4.27. Let M be an ℵ∞0 -saturated L -structure. Moreover, let p
be a complete (n + 1)-type. If p is finitely satisfied by M and there exists a
tuple ā ∈ dom(M)n that satisfies p|n, then there exists some an+1 ∈ dom(M)
that satisfies p(ā, xn+1) in (M, ā).

Proof. Since M is ℵ∞0 -saturated, it suffices to show that p(ā, xn+1) is finitely
realized by (M, ā). Thus, take any finite subset Σ ⊆ p(x̄, xn+1) and let:

ψ(x̄) = ∃xn+1

( ∧
σ(x̄,xn+1)∈Σ

σ(x̄, xn+1)

)
Since p(x̄, xn+1) is a complete type, ψ(x̄) ∈ p(x̄, xn+1), otherwise ¬ψ(x̄) ∈
p(x̄, xn+1) and this will contradict the fact that M finitely realizes p(x̄, xn+1).

Since ψ(x̄) ∈ p(x̄, xn+1) and FV (ψ(x̄)) ⊆ x̄, we can infer that ψ(x̄) ∈ p(x̄)|n.
By assumption ā realizes p(x̄)|n, hence:

M � ψ(ā).

Therefore there is some m ∈ dom(M) that realizes Σ. Since the choice of Σ is
arbitrary, we conclude that (M, ā) finitely realizes p(ā, xn). By the ℵ∞0 -saturated
nature of M we can find some an+1 ∈M that realizes p(ā, xn+1).

Proposition 4.28. Let L be a signature such that |L | ≤ ℵ0 and let p be an
ω-type that is finitely satisfied by an L -structure M . Then p can be extended
to a complete ω-type q that is finitely satisfied by M .

Proof. Note that by assumption |Form∞(L )| = ℵ0. Let {ϕi | i ∈ N} be an
enumeration of Form∞(L ). Now, we construct a sequence of ω-types (qi)i∈ω
such that q0 ⊆ ... ⊆ qi ⊆ qi+1 ⊆ ... as follows:
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� q0 = p

� qi+1 = qi∪{ϕi} if M finitely satisfies qi∪{ϕi} and we let qi+1 = qi∪{¬ϕi}
otherwise.

We now show by induction on i that M finitely realizes qi. Note that by our
assumption M finitely realizes q0. Now, suppose for sake of contradiction that
qi ∪ {ϕi} and qi ∪ {¬ϕi} are not finitely realized by M . Then, without loss of
generality, we can find two finite subsets Σ0,Σ1 ⊆ qi such that for every σ0 ∈ Σ0

and σ1 ∈ Σ1:

FV(σ0) = FV(σ1) = FV(ϕi) = x̄

and moreover:

M � ∀x̄(
∧

σ0∈Σ0

σ0(x̄)→ ¬ϕi(x̄))

M � ∀x̄(
∧

σ1∈Σ1

σ1(x̄)→ ϕi(x̄)).

Since Σ0 and Σ1 are finite, so is Σ := Σ0∪Σ1. Since by the inductive hypothesis
qi is finitely satisfiable,we can find some m̄ ∈ dom(M)k such that:

M �
∧
σ∈Σ

σ(m̄)

Leading us into a contradiction. Thus, M finitely satisfies qi∪{ϕi} or qi∪{¬ϕi}
and hence qi+1 is finitely satisfiable by M . Finally if we let q =

⋃
i∈N qi, it is

clearly a complete type and is, as we have shown, finitely satisfiable by M .

Proposition 4.29. Let M be a ℵ∞0 -saturated model. Moreover, suppose that p
is a complete ω-type. If M finitely satisfies p, then there exists some (mn)n∈N ∈
dom(M)ω that realizes p.

Proof. Let p be a complete ω-type and and let (pn)n∈N be the sequence of types
as in Definition 4.25. We construct a sequence (mn)n∈N by induction on n such
that for every i ∈ N, (m1, ...,mi) realizes pi.

Since p is a complete type, so is p1. Moreover, since M finitely realizes p,
M also finitely satisfies p1. By the ℵ∞0 -saturated nature of M , there exists
some m1 ∈M that realizes p1. Now suppose that (m1, ...,mn) realize pn. Since
M finitely realizes p, M finitely satisfies pn+1. If we combine these facts with
Proposition 4.27, we can find some mn+1 that realizes pn+1(m1, ...,mn, xn+1).
Thus (m0, ...,mn+1) realizes pn+1.

Therefore, by construction (mn)n∈N realizes p.
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4.4 The Hennessy-Milner property in ML∞.

We conclude Chapter 4 by proving the Hennessy-Milner property for the class of
finite Kripke models and the class of ℵ∞0 -saturated Kripke models. To achieve
this goal we first need to embed the Kripke semantics into FO∞-semantics.
Therefore the first part of this section will be devoted to give a clear introduction
of how to achieve this. We then conclude this chapter by proving the results
stated above.

Definition 4.30. Given a set of propositional variables Φ we define the signa-
ture LΦ := {P | p ∈ Φ} ∪ {R}, where P is a unary relation and R is a binary
relation. Therefore every Kripke model (over Φ) M = (W,R, V ) is interpreted
as an LΦ-structure where:

� dom(M ) := W ,

� PM := V (p) for every p ∈ Φ,

� RM := {(w, v) ∈ dom(M )2 | wRv}

Remark 4.31. In what remains of section we will fix the signature LΦ of an
arbitrary but fixed set of propositional variables Φ. Therefore we let Form∞ to
be Form∞(LΦ).

Definition 4.32. We define the standard translation STx : ML∞ → Form∞

recursively as follows:

� STx(p) := P (x) for every p ∈ Φ,

� STx(⊥) := (x 6= x),

� STx(¬ϕ) := ¬STx(ϕ),

� STx(ϕ ∧ ψ̂) := STx(ϕ) ∧ STx(ψ̂),

� STx(♦ϕ) := ∃y(R(x, y) ∧ STx(ϕ)),

� STx(♦∞ϕ) := ∃∞y(R(x, y) ∧ STx(ϕ)).

Theorem 4.33. For any pointed Kripke model (M , w) and any ϕ ∈ ML∞ the
following two conditions hold:

i M , w  ϕ⇐⇒M � STx(ϕ)[w],

ii M  ϕ⇐⇒M � ∀xSTx(ϕ).

Proof. It can be easily proven by a simultaneous induction on the formula ϕ̂.
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Definition 4.34. A Kripke model M = (W,R, V ) is image finite if for every
w ∈W the set R[w] is finite.

We now have enough information to prove the first of our results:

Theorem 4.35. Let C be the class of finite pointed Kripke models. Then for
every (M , w), (M ′, w′) ∈ C the following holds:

M , w ↔∞ M ′, w′ if and only if M , w ≡∞ M ′, w′.

The rest of the section is concerned with the proof of our second result:

Proof. Since (M , w), (M ′, w′) are two finite-image Kripke models notice that
the following holds: M , w ↔∞ M ′, w′ if and only if M , w ↔ M ′, w′ and
M , w ≡ M ′, w′ if and only if M , w ≡∞ M ′, w′. In view of theorem 2.24
in [BRV02], we conclude that M , w ↔∞ M ′, w′ if and only if M , w ≡∞
M ′, w′.

Definition 4.36. Let M be a Kripke model. For any world w ∈ W and
any infinite set A of successors of w satisfying the same ML∞-formulas, i.e.
A ⊆ {v ∈W | wRv} and any natural number n ∈ N we let:

ΣAn := {STxn
(ϕ) | ϕ ∈ML∞ and M , a  ϕ} ∪ {R(w, xn)}

Moreover, we let ΣA :=
⋃
n∈ω

ΣAn ∪ {xi 6= xj | i 6= j}.

Proposition 4.37. Let (M0, w0) and (M1, w1) be two pointed ℵ∞0 -saturated
Kripke models. Suppose that M0, w0 ≡∞ M1, w1. If A0 ⊆ R0[w0] is an infinite
set of modally equivalent worlds, then the ω-type ΣA[w1/w0] is finitely satisfied
by (M1, w1).

Proof. Firstly, define Γ to be:

Γ := {ϕ | ϕ ∈ ML∞ such that M0, a  ϕ for every a ∈ A}.

Claim 1: For every finite subset ∆ ⊆ Γ, the set:

Y := {v ∈W1 | w1Rv and M1, v  δ for every δ ∈ ∆}

is infinite.

Claim proof: Fix an arbitrary finite set ∆ ⊆ Γ and let δ :=
∧
ϕ∈∆ ϕ. Note

that every a ∈ A makes δ true, therefore M0, w0  ♦∞δ. Since by assumption
M0, w0 ≡∞ M1, w1, we conclude that M1, w1  ♦∞δ. Therefore Y is an
infinite set. �
Therefore every finite ∆ ⊆ Γ is realized in (M1, w1). Combining Theorem
4.33 with the previous claim we infer that ΣA[w1/w0] is finitely satisfiable in
(M1, w1).
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Corollary 4.38. Let (M0, w0) and (M1, w1) be two pointed ℵ∞0 -saturated
Kripke models such that M0, w0 ≡∞ M1, w1. If A ⊆ R0[w0] is an infinite
set of modally equivalent worlds, then there exists an infinite set B ⊆ R1[w1] of
modally equivalent worlds such that for every a ∈ A and b ∈ B:

M0, a ≡∞ M1, b.

Where R0 and R1 are the accessibility relations in M1 and M2 respectively.

Proof. In view of Proposition 4.37, (M1, w1) finitely realizes ΣA[w1/w0]. More-
over, by Proposition 4.28, we can extend Σ[w1/w0] to a complete ω-type Γ that
is finitely realized by (M1, w1). Finally, in view of Proposition 4.29, we can find
an ω-sequence (bn)n∈N ∈ (W1)ω that realizes Γ. If we let B = {bi | i ∈ N}, it
suffices to show that for every a ∈ A and every b ∈ B, M0, a ≡∞ M1, b. To
prove so fix an arbitrary a ∈ A and an arbitrary b ∈ B. Note that the standard
translation of every ML∞-formula that a satisfies is in Σ, then by definition
b satisfies such ML∞-formula. To prove the converse suppose that a does not
make an ML∞ formula ϕ true, then a satisfies ¬ϕ. By our previous argument
b will satisfy ¬ϕ. Hence we conclude that M0, a ≡∞ M1, b.

Theorem 4.39. Let M0 and M1 be two ℵ∞0 -saturated Kripke models. For
every w0 ∈W0 and w1 ∈W1:

If M0, w0 ≡∞ M1, w1, then M0, w0 ↔∞ M1, w1.

Proof. We show that Duplicator has a winning strategy in the Bis∞n (M0,M1)
game with initial configuration (w0, w1). This is shown by induction on the
round and we will discuss, without loss of generality, the n-round of the game
that starts with configuration (M0, u0; M1, u1). Moreover, we will assume that
the pointed Kripke model (M0, u0) is modally equivalent to (M1, u1) and that
Spoiler decides to make a move on M0. Then we can consider two cases:

� Firstly, suppose that Spoiler moves the M0-pebble from u0 to an R-
successor element u+

0 . Then we let:

Σ := {STx(ϕ) | ϕ ∈ML∞ and M0, u
+
0  ϕ}

Since u0 ≡∞ u1, the 1-type Γ := Σ ∪ {u1R1x} is finitely satisfiable in
(M1, u1). Invoking the ℵ∞0 -saturated property of M1, we can find some
u+

1 that realizes Γ. Clearly u1R1u
+
1 and u+

0 ≡∞ u+
1 . Therefore Spoiler

survives to the first order challenge.

� Secondly, suppose that Spoiler selects an infinite set A ⊆ R0[u0]. Such
set A can be split into λ many disjoint and modally equivalent sets for
some cardinal λ. Therefore A :=

⊎
α<λAα where Aα ⊆ A is a modally

equivalent collection of worlds.

Claim 1: We claim that for every α < λ, there exists a Bα ⊆ R1[u1] such
that:
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i For every a ∈ Aα, b ∈ Bα : M0, a ≡∞ M1, b,

ii |Aα| < ℵ0 if and only if |Bα| < ℵ0.

Claim proof: Fix an arbitrary α < λ. Firstly suppose that Aα is a finite
set. Since Aα is a modally equivalent set, we fix an arbitrary a ∈ Aα. By
the argument discussed on the previous point we can find some b ∈ R1[u1]
such that M0, a ≡∞ M1, b. If we let Bα = {b}, we get that |Bα| < ℵ0

and for any a ∈ A : M0, a ≡∞ M1, b.

Secondly, suppose that Aα is an infinite set. In view of Corollary 4.38,
there exists a set Bα ⊆ R1[u1] such that |Bα| ≥ ℵ0 and for every a ∈
Aα, b ∈ Bα : M0, a ≡∞ M1, b.

Then we get that for every α < λ, there exists a set Bα ⊆ R1[u1] sat-
isfying i and ii. �

Now, if we let B :=
⋃
α<λBα Note that since A is infinite, so is B. Finally,

for every b ∈ B on which Spoiler might place the M1-pebble, Duplicator
can reply by advancing the M0-pebble from u1 to some a ∈ A such that
M0, a ≡∞ M1, b. Hence we conclude that Duplicator has a winning
strategy on the ML∞-bisimulation game.

Corollary 4.40. Let M0 and M1 be two ℵ∞0 -saturated Kripke models. For
every w0 ∈W0 and w1 ∈W1:

M0, w0 ≡∞ M1, w1 if and only if M0, w0 ↔∞ M1, w1.

Proof. The left-to-right direction of the proof follows from Theorem 4.39. The
left-to-righ direction follows from Lemma 3.11.
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ML∞-Bisimulation Invariance Theorem.

We conclude the research on the expressiveness of the modal logic ML∞ by
showing an adaptation of the celebrated van Benthem Characterization theo-
rem [Ben76] to the modal logic ML∞. We showed at the end of Chapter 4 that
the modal logic ML∞ is a fragment of the predicate logic FO∞ (see Theorem
4.33). Therefore, it is only natural to research into this direction in order to
provide a full characterisation of ML∞.

We soon noticed that the original proof by van Benthem could not be adapted to
ML∞. The failure of the Compactness Theorem (see Observation 2.11) was an
obstacle that could not be avoided, therefore a different approach was needed to
fulfill our goal. We then noticed that Rosen developed an alternative technique
to prove the bisimulation preservation theorem (see [Ros97]). Unlike van Ben-
them’s approach, Rosen’s strategy does not rely on the Compactness Theorem
in any way. In this chapter we follow an adaptation of Rosen’s original proof
and Goranko’s and Otto’s approach in [GO07].

Before sharing all the details of the proof, we would like to take the oppor-
tunity to provide some insight of the strategy we follow to achieve our last goal.
As we already mentioned, our strategy is based on Rosen’s technique. Such
technique was developed in the framework of modal logic with finite signature.
This restriction allows us to draw an equivalence between the concept of bisim-
ulation and logical equivalence (see Theorem 5.4): However, the key point of
Rosen’s technique resides in the link he drew between the model theory of modal
logic and the model theory of first order logic. He first observed that first order
formulas that are bisimilar invariant also enjoy the property of being n-local for
some n ∈ N (see Corollary 5.12), meaning that the truth value of such formula
is preserved under pointed structures where Duplicator has a winning strategy
in the Ehrenfeucht–Fräıssé game of length n (see Definition 4.17). Moreover,
he managed to quantify how long such Ehrenfeucht-Fräıssé game based on the
quantifier depth of the formula. Finally, he recognized that two pointed struc-
tures that are n-elementary equivalent are also n-bisimilar. Combining these
three observations, Rosen managed to prove that preservation under bisimula-
tion implies preservation under sufficiently large finite bisimulation.
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We notice that these three properties do not vary when we move from the
ML framework to the ML∞ framework. In order to give a clear description
on why these observations are preserved from ML to ML∞, consider a tree-like
Kripke model. First notice that the ♦∞ modality is only concerned with the
horizontal behaviour of the Kripke model, meaning that it can capture how
wide certain branches of the Kripke model is. However, Rosen’s observations
are uniquely based on the length of the tree, on what we might think to be the
vertical properties of the Kripke model:

Horizontal

Vertical

Figure 5.1: Figure representing the tree we described.

Convention 5.1. In order to simplify the arguments of this chapter we will
denote ML∞-formulas by ϕ̂, ψ̂, χ̂ etc. On the contrary FO∞-formulas will be
denoted by ϕ,ψ, χ etc. Since we will be working with the language of ML∞ over
a finite set of propositional variables, we fix an arbitrary finite set of proposi-
tional variables Φ := {p1, ..., pn}. Moreover, in view of Remark 4.31 we will
denote the set Form∞(LΦ) by Form∞.

Proposition 5.2. For every n ∈ N the set ML∞n is finite up to logical equiva-
lence.

Proof. In view of Proposition 4.33, we know that ML∞ is a fragment of Form∞.
It is not difficult to check that for every ϕ̂ ∈ ML∞: md(ϕ̂) = qd(STx(ϕ̂)).
Combining both results we conclude that for every n ∈ N, ML∞n is a fragment
of Form∞n . It then follows from Lemma 4.19 that ML∞n is finite up to logical
equivalence.

Convention 5.3. We know by Proposition 5.2 that ML∞n is finite, up to logical
equivalence, for every n ∈ N. We then let {ϕ̂0, ..., ϕ̂n} be an enumeration of the
representatives of ML∞n .

Theorem 5.4. Let (M , w) and (M ′, w′) be two pointed Kripke models. The
following are equivalent:
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i M , w ↔∞ M ′, w′,

ii M , w ≡∞ M ′, w′.

Proof. The (i =⇒ ii) direction is shown by induction on the modal depth of the
formulas. To prove the converse we first suppose that M , w 6↔∞n M ′, w′. Com-
bining the winning strategy of Spoiler and Proposition 5.2 we can construct
an ML∞ formula ψ̂ with md(ψ̂) ≤ n such that M , w  ψ̂ and M ′, w′ 1 ψ̂.

Corollary 5.5. Let C be a collection of pointed Kripke models, let C′ be a
subcollection of C and n ∈ N be a natural number. The following are equivalent:

i For every (M ′, w′) ∈ C′ and every (M , w) ∈ C\C′: M , w 6↔∞n M ′, w′.

ii There exists a formula ψ̂ ∈ ML∞n such that C′ = {(M , w) |M , w  ψ̂}.

Proof. Follows directly from Theorem 5.4.

Lemma 5.6. Let M ,M ′ be two n-pseudotrees rooted at w ∈W and w′ ∈W ′
respectively. If M , w↔∞n M ′, w′ then there exists two n-pesudotrees N and
N ′ rooted at v ∈WN and v′ ∈WN ′ such that:

i M , w ↔∞ N , v,

ii M ′, w′ ↔∞ N ′, v′,

iii N |Nn(v) = N ′|Nn(v′).

Proof. By assumption: M , w ↔∞n M ′, w′. Therefore the two pointed Kripke
models (M , w) and (M ′, w′) are n-bisimilar in the standard modal logic sense
i.e. (M , w)↔n (M ′, w′). In view of Definition 2.30 in [BRV02], we can find an
n+ 1-sequence of binary relations Z0 ⊆ ... ⊆ Zn ⊆ (Nn(w)×Nn(w′)) with the
following properties (for i+ 1 < n):

(i) wZ0w
′.

(ii) If uZiu
′ then u and u′ satisfy the same propositional variables.

(iii) If uZiu
′ and uRv, then there exists some v′ with u′R′v′ and vZi+1v

′.

(iv) If uZiu
′ and u′R′v′, then there exists some v with uRv and vZi+1v

′.

Now, we define an n+ 1-sequence of sets S0 ⊆ ... ⊆ Sn ⊆ Zn by induction:

� S0 := {(w,w′)}

� Si+1 := Si ∪ {(u, u′) ∈ Zn | ∃(v, v′) ∈ Ni(vRu and v′R′u′)}.

The set Sn is a refinement of the n-bisimulation Zn where we only take into
account those tuples (u, u′) in Zn where the tuple formed from the predecesor
worlds worlds (u−, u

′−) also lie in Zn.

Claim 1: The following two conditions hold in Sn:
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� If u ∈ Nn(w) then there exists some u′ ∈ Nn(w′) such that uSnu
′.

� If u′ ∈ Nn(w′) then there exists some u ∈ Nn(w) such that uSnu
′.

Claim proof: Note that for every u ∈ Nn(w) (Nn(w′)) there exists an R-path
(R′-path) w = w0, ..., wk of length at most n. Therefore in view of the observa-
tions (ii) and (iii) above the previous statement follows directly. �

Claim 2: There exists a tree Kripke model S rooted at s such that:

� M , w↔∞n S , s,

� M ′, w′↔∞n S , s.

Claim proof: First, we equip the set S with an accessibility relation RS and a
valuation function VS as follows:

� (u, u′)RS(v, v′)⇐⇒Def uRv and u′R′v′,

� (u, u′) ∈ VS(p)⇐⇒Def u ∈ V (p) and u′ ∈ V ′(p).

Thus, we define the model S to be the tuple (Sn, RS , VS). Note that since
M and M ′ are two n-pseudotrees the binary relation RS is acyclic and every
element in WZ has a unique predecessor. By the first claim we conclude that
Sn = R∗S [(w,w′)]. Moreover, it follows from the first claim and the definitions
of RS and VS that M , w↔∞n S , (w,w′) and M ′, w′↔∞n S , (w,w′). �

Finally we will construct the Kripke models N and N ′ by extending S in two
different ways. The strategy that we follow may remind the reader of the unrav-
elling technique previously described. We extend S into N Kripke model by
gluing a copy of the universe of the generate submodel Mu of every leaf (u, u′)
in Sn. Similarly we extend S to N ′ by attaching a copy of the universe of the
generate submodel M ′

u′ for every leaf (u, u′) in Sn.

Claim 3: There exists two n-pseudotrees N and N ′ rooted at z and z′ such
that:

i M , w ↔∞ N , z,

ii M ′, w′ ↔∞ N ′, z′,

iii N |Nn(z) = S = N ′|Nn(z′).

Claim proof: As we already mentioned we will construct N and N ′ using a
method that resembles the unravelling technique. Since the procedure is parallel
in both cases we will only describe the method to construct N from S . For
sake of simplicity let LS be the seat of leafs in S . Now we define the set N to
be:

39



N := Sn ∪
⋃

(l,l′)∈LS

{(u, (l, l′)) | u ∈Wl}

where Wl is the universe of the submodel of M generated by the singleton {l}.
Moreover, we let π0 : N → W be the projection map, sending every tuple to
its first element. We now equip the set N with a binary relation RN and a
valuation function VN as follows:

� (u, u′)RN (v, v′) if one of the following situations is satisfied:

i If (u, u′), (v, v′) ∈ Sn and (u, u′)RS(v, v′).

ii If (u, u′) ∈ LS , v ∈Wu, v′ = (u, u′) and uRv.

iii If u′ = v′ = (x, x′) ∈ LS , u, v ∈Wx and uRv.

� (u, u′) ∈ VN (p) if and only if u ∈ V (p).

It can be easily verified that the projection map π0 from N = (N,RN , VN ) to
M is a strong bounded morphism. Hence in view of Proposition 3.16 we can
conclude that N , (w,w′) ↔∞ M , w. Similarly, the n-neighbourhood of N is
just Sn thus we infer that N |Nn(w,w′) = S . Obtaining our desired result �

Example 5.7. To clarify the previous proof consider the following case. Let
M = (W,R, V ) and M ′ = (W ′, R′, V ′) be the following Kripke models over
Φ := {p, q}:

a

b
p

d

p

e

q

c
q

g

q

f

p

d′

p

e′

p

f ′

q

g′

p

h′

q

i′

p

b′
p

c′
q

a′

Figure 5.2: Caption

It is not difficult to see that M , a↔∞2 M ′, a′. In fact the n-bisimulation relation
Z2 ⊆W ×W ′ can be represented by the following diagram:
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(d, d′) (d, e′) (d, g′) (e, f ′) (e, h′) (f, d′) (f, e′) (f, g′) (g, f ′) (g, h′)

(b, b′)(b, b′) (c, c′)

(a, a′)

Figure 5.3: The bisimulation Z

We then clean the set Z2 to only take into account those tuples in Z2 whose
predecessors are a tuple in Z2 as well. We denote such set to be S and we
construct a Kripke model S in the following way:

(d, d′)

p

(d, e′)

p

(e, f ′)

q

(f, g′)

p

(g, h′)

q

(b, b′)
p

(c, c′)
q

(a, a′)

Figure 5.4: The cleaned Kripke model S .

Finally we extend the Kripke model Z to the 2-peusotrees N and N ′. In the
case of N we do not need to add any extra world because the projections of the
leafs of S in M do not have any world that is not already present on S . In the
case of N ′, note that the projection of the tuple (g, h′) in M ′ has a successor
that has not been added to S , i.e. the family of the projection of (g, h′) in M ′

is a non-empty set. Hence we need to add this worlds to complete the Kripke
model N ′:
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(d, d′)

p

(d, e′)

p

(e, f ′)

q

(f, g′)

p

(g, h′)

p

(b, b′)
p

(c, c′)
q

(a, a′)

Figure 5.5: The 2-pseudotree N

(d, d′)

p

(d, e′)

p

(e, f ′)

q

(f, g′)

p

(g, h′)

p

(b, b′)
p

(c, c′)
q

(a, a′)

(i, (g, h′))
p

Figure 5.6: The 2-pseudotree N ′

Definition 5.8. Let ϕ(x) ∈ Form∞. We say that ϕ is ML∞-bisimulation invari-
ant if for any two pointed Kripke models (M , w) and (M ′, w′):

(M , w ↔∞ M ′, w′) implies that (M � ϕ(w)⇐⇒M ′ � ϕ(w′)).

Definition 5.9. Let ϕ(x) ∈ Form∞. We say that ϕ(x) is FO∞n -local if for
any two pointed Kripke models (M , w) and (M ′, w′) the following condition is
satisfied:

If (M |Nn(w) , w
∼=∞n M ′|Nn(w′) , w

′), then (M � ϕ(w)⇐⇒M ′ � ϕ(w′)).

Definition 5.10. Let M be a Kripke model. We define the Gaifman distance
gaif(·, ·) : W 2 → N as follows:

� gaif(w,w) = 0 for every w,

� gaif(w,w′) = 1 given that M � (wRw′ ∨ w′Rw),

� gaif(w,w′) ≤ n+1 if and only if there is some v such that gaif(w, v) ≤ n
and gaif(v, w′) = 1,

� gaif(w,w′) = n if and only if gaif(w,w′) ≥ n and gaif(w,w′) 6≤ n+ 1.

Lemma 5.11. Let ϕ(x) ∈ Form∞ with qd(ϕ) = q be a ML∞-bisimilar invariant
formula. Then for every Kripke model M rooted at w ∈W the following holds:

M � ϕ(w)⇐⇒ N � ϕ(w),

where N = M |Nn(w) and n = 2q − 1.

Proof. To prove this statement we will adapt the proof of Lemma 58 [GO07] to
the ML∞ framework. Our first task then is to show the following statement:
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M ] O, w ∼=∞q N ] O, w,

where O is the disjoint union of q-many copies of M and q-many copies of
N . In order to provide a clear proof we will introduce some notation that will
make the argument easier to follow. Firstly, we will label the copies of O in the
following way:

� M ] O = M ]
⊎
i≤q

M M
i ]

⊎
i≤q

N M
i .

� N ] O = N ]
⊎
i≤q

M N
i ]

⊎
i≤q

N N
i .

Moreover for each X,Y ∈ {M ,N } and i ≤ q we label the universe of the Kripke
model XY

i in O as follows:

� WXY
i

:= {(w, Y, i) | w ∈WX}.

Lastly, we define πM : M ] O →M ]N and πN : N ] O →M ]N to be
the projection maps such that for every X ∈ {M ,N } and any w ∈ X ] O:

πX(w) :=

{
w If w ∈ X,
v If w = (v, Y, i) for some i ≤ q and Y ∈ {M ,N }.

As previously mentioned, we will first show that M ] O, w ∼=∞q N ] O, w
by adapting the proof of Lemma 58 in [GO07]. To do so we will show that
Duplicator has a winning strategy in EF∞n (M ,N ) with initial configuration
(w,w).

Claim 1: Duplicator has a winning strategy in EF∞n (M ]O,N ]O)@(w,w).
Claim proof: We show by induction on the round number k that the partial map
constructed from the sequences (w = m0, ....,mk;w = n0, ...., nk) of the worlds
that have been selected by Spoiler and Duplicator forms a local isomorphism
satisfying the following conditions:

i gaif(mi,mj) ≥ 2q−k ⇐⇒ gaif(ni, nj) ≥ 2q−k

ii If gaif(mi,mj) < 2q−k, then gaif(ni, nj) = gaif(mi,mj).

iii If gaif(ni, nj) < 2q−k, then gaif(ni, nj) = gaif(mi,mj).

Note that the base case follows immediately. Therefore we will only deal with
the inductive case. Suppose that (w = m0, ....,mk−1;w = n0, ...., nk−1) is the
ordered sequence containing the elements that Spoiler and Duplicator have
chosen in the first k rounds of the game. Moreover suppose that conditions
(i)-(iii) are satisfied by this sequence. Then the k + 1-round of the game starts
and Spoiler chooses one of the two movements that are allowed. For sake of
simplicity we will assume that he decides to make a movement in the M ] O
structure.

43



If Spoiler makes a first order move, Duplicator must respect the critical
distance of 2q−k. Meaning that if the chosen world mk by Spoiler lies within
distance 2q−k from an already pebbled element i.e. mi, then Duplicator must
respect that distance and choose the world nk such that:

� gaif(mi,mk) = gaif(ni, nk)

� mk and nk satisfy the same atomic formulas.

If on the contrary the world mk chosen lies further than the distance 2q−k from
every already pebbled element in M ] O, then Spoiler answers by selecting
the world mk of an isomorphic copy of M or N that has not been pebbled yet.
For a further explanation of this strategy please see Lemma 58 in [GO07].

Now suppose that he makes a second order move and selects an infinite subset
X of M ] O. For every i < k, we define the set Xi to be:

Xi := {x ∈ X | gaif(x,mi) < 2q−k}.

Intuitively, Xi captures all the elements in X that lie within a distance 2q−k of
mi. Therefore for each i < k and each x ∈ Xi we can find a unique copy of x,
denoted by yx, in the universe of N ] O such that:

� πM (x) = πM (yx),

� gaif(mi, x) = gaif(ni, yx),

Since the element yx is located at the same distance from ni as x is from mi

and x and yx satisfy the same propositional variables we infer that:

M � α(m0, ..., x)⇐⇒ N � α(n0, ..., yx) for every atomic formula α.

We let Yi be the collection of the worlds yx:

Yi := {y ∈WN ]O | ∃!x ∈ Xi(πM (x) = πN (y) and gaif(mi, x) =
gaif(ni, y))}.

Note that since we have respected the critical distance of 2q−k with respect to
the already pebbled elements the following conditions hold:

� |Xi| = |Yi|

� |Xi ∩Xj | = |Yi ∩ Yj |

for every i, j < k. Therefore there exists a 1-1 map between
⊔
i<kXi and Y .

Next we take the collection of worlds in X that lie further than a distance 2q−k

from any already pebbled element mi, i.e. X\
⋃
i<kXi and partition it into

two disjoint sets. On one hand we will collect all those worlds that are in an
isomorphic copy of M and on the other hand we collect those worlds that lie in
an isomorphic copy of N :

� XM := {x ∈ X\
⋃
i∈kXi | πM (x) ∈WM},
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� XN := {x ∈ X\
⋃
i∈kXi | πM (x) ∈WN }

Since only k − 1-many rounds have been completed so far, there are at least
q− (k− 1) many isomorphic copies of M and N in N ]O that have not been
pebbled yet. We will assume, without loss of generality, that M N

0 and N N
0 are

two isomorphic copies of M and N that have not been pebbled yet. Moreover,
we define the functions:

� ηM : XM →M N
0 where ηM (x) := (πM (x),M , 0).

� ηN : XN → N N
0 where ηN (x) := (πN (x),N , 0).

Now we define YM to be image of the map ηM . In a similar way we define YN

to be image of the map ηN :

� Y M = ηM [XM ].

� Y N = ηN [XN ].

Since every world x in XM ∪XN cannot be reached from any already pebbled
world mi by the R accessibility relation R we conclude that:

M � α(m0, ..., x)⇐⇒ N � α(n0, ..., ηZ(x))

for every Z ∈ {M ,N }, x ∈ XZ and atomic formula α. Note that by con-
struction for every element y in Y M (Y N ) the set η−1

M (y) (η−1
N (y)) has at most

q-many elements. Therefore XM (XN ).

Finally let Y :=
⋃
i∈k Yi∪Y M∪Y N . Since X is infinite, at least

⋃
i∈kXi, X

M or

XN must be finite. Then by our previous argument
⋃
i∈k Yi, Y

M or Y M is in-
finite, hence Y is an infinite set. Moreover for any y ∈ Y that Spoiler chooses
Duplicator can find a unique x ∈ X such that the map fk : (m0, ..., x) →
(n0, ..., y) is a local isomorphism. Therefore Duplicator has a winning strategy
in EF∞n (M ] O,N ] O)@(w,w). �

In view of Theorem 4.20, we infer that M ] O ≡∞q N ] O. We now have all
the necessary information to show our desired result:

M � ϕ(w)⇐⇒M ] O � ϕ(w) (Lemma 3.15 and Lemma 3.11)

⇐⇒ N ] O � ϕ(w) (M ] O ≡∞q N ] O)

⇐⇒ N � ϕ(w) (Lemma 3.15 and Lemma 3.11)

Corollary 5.12. Let ϕ(x) ∈ Form∞ be a ML∞-bisimilar invariant formula with
qd(ϕ) = q. Then ϕ(x) is FO∞n -local for n = 2q − 1.
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Proof. Let (M , w) and (M ′, w′) be two arbitrary pointed Kripke models such
that M |Nn(w) , w

∼=∞n M ′|Nn(w′) , w
′. Now, let N = M{w} and N ′ = M ′

{w′}
be the generated submodels of M and M ′ respectively. Since M |Nn(w) , w

∼=∞n
M ′|Nn(w′) , w

′ it follows that N |Nn(w) , w
∼=∞n N ′|Nn(w′) , w

′. Finally, consider
the following derivation:

M � ϕ(w)⇐⇒ N � ϕ(w) (Lemma 3.15 and Lemma 3.11)

⇐⇒ N |Nn(w) � ϕ(w) (Lemma 5.11)

⇐⇒ N ′|Nn(w′) � ϕ(w′) (Since N |Nn(w) , w
∼=∞n N ′|Nn(w′) , w

′)

⇐⇒ N ′ � ϕ(w′) (Lemma 5.11)

⇐⇒M ′ � ϕ(w′). (Lemma 3.15 and Lemma 3.11)

Therefore ϕ(x) is a FO∞n -local formula.

Theorem 5.13. Let ϕ(x) ∈ Form∞. Then the following are equivalent:

i ϕ(x) is ML∞-bisimilar invariant.

ii ϕ ≡ STx(ϕ̂) for some ϕ̂ ∈ ML∞.

Proof. The (ii =⇒ i) direction falls directly from Proposition 4.33 and Lemma
3.11. Conversely suppose that (i) holds. Note that in view of Lemma 5.5 it
suffices to show that ϕ(x) is ML∞n -bisimulation invariant formula.

In view of corollary 5.12, ϕ(x) is FO∞n -local. Now, consider any two Kripke
pointed models (M , w) and (M ′, w′) such that M , w↔∞n M ′, w′. In view of
Lemma 3.15 M , w ↔∞ N , w and M ′, w′ ↔∞ N ′, w′, where N (N ′) is the
submodel of M (M ′) generated by {w} ({w′}).

Now let Nn[w] and N′n[w′] be the n-unravelling of N and N ′ along w and
w′ respectively. In view of Proposition 3.16 and Lemma 3.15 we conclude that
Nn[w], (w) ↔∞ N , w and N′n[w′], (w′) ↔∞ N ′, w′. Combining this result
with our assumption we conclude that Nn[w], (w) ↔∞n N′n[w′], (w′). Finally,
in view of Lemma 5.6, there are two n-pseudotrees U, U′ rooted at u ∈ WU,
u′ ∈WU′ such that:

� U, u ↔∞ Nn[w], (w),

� U′, u ↔∞ N′n[w′], (w′),

� U|Nn(u) = U′|Nn(u′).

Since ϕ(x) is an FO∞n -local formula by Corollary 5.12 and U|Nn(w) = U′|Nn(w)

implies that U|Nn(w)
∼=∞n U′|Nn(w) we infer that:

U � ϕ(u)⇐⇒ U′ � ϕ(u′).

46



Therefore:

M � ϕ(w)⇐⇒M � ϕ(w′).

Hence ϕ(x) is a ML∞n -bisimulation invariant formula. In view of Corollary 5.5
we can find some ϕ̂ ∈ ML∞ such that ϕ ≡ STx(ϕ̂).

Remark 5.14. In the following diagram we provide a more visual interpretation
of the strategy we have followed to show the (ii =⇒ i) direction of the previous
theorem:

M , w ↔∞ N , w ↔∞ Nn[w], (w) ↔∞ U, u ↔∞n U|Nn(u) , u

↔
∞n

↔
∞n

↔
∞n

↔
∞n

∼=
∞n

M ′, w′ ↔∞ N , w′ ↔∞N′n[w′], (w′) ↔∞ U′, u′ ↔∞ U|Nn(u) , u
′

Figure 5.7: Strategy
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Soundness and completeness.

We conclude this master thesis by exploring the finite axiomatizability of the
modal logic ML∞. We start this chapter by introducing the concept of ML∞-
normal modal logic, a variation of the normal modal logic definition, where we
take into account the interplay between the ♦ and the ♦∞ definition. After
introducing the usual concepts of soundness and completeness.

We first noticed that a direct consequence of the failure of the Compactness
Theorem for the modal logic ML∞ (see Observation 2.11) was the impossibility
to apply the usual strategy of Canonical Models to prove the completeness re-
sult. Therefore we adapt the finitary method developed by Fischer and Ladner
[FL79] in the context of PDL to the ML∞ framework. This method is based on
the filtration of the Canonical models over a finite set of formulas. We conclude
this section by proving the Truth Lemma over the ML∞ semantics.

In the second section of this chapter we introduce the ML∞-normal modal logic
S5∞, a supplement of the well-known modal logic S5 in the ML∞ context. We
first prove that under this fragment of ML∞, the issue that is highlighted in
Observation 2.27 does not occur. Therefore we show that combining the bloom-
ing technique with the Truth Lemma obtained for the ML∞-semantics we can
show that S5∞ is weakly complete with respect to the class of pointed Kripke
models whose accessibility relation R is an equivalence relation.
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6.1 Basic concepts.

Definition 6.1. A set Λ ⊆ ML∞ is a ML∞-normal modal logic if it contains
the following axioms:

All propositional tautologies. (Taut)

�(p→ q)→ (�p→ �q). (K)

�∞(p→ q)→ (�∞p→ �∞q). (K
∞

)

�p↔ ¬♦¬p. (Dual)

�∞p↔ ¬♦∞¬p. (Dual
∞

)

�p→ �∞p. (Dist)

Moreover it is closed under the following rules:

If ϕ,ϕ→ ψ ∈ Λ then ψ ∈ Λ. (MP)

If ϕ ∈ Λ then ϕ[θ/p] ∈ Λ for every p ∈ Φ and θ ∈ ML∞. (Subs)

If ϕ ∈ Λ then �ϕ ∈ Λ. (N)

We define the smallest ML∞-normal modal logic to be the logic K∞.

Definition 6.2. Let Λ be a ML∞-normal modal logic and let ϕ0, ...ϕn, ψ be a
collection of ML∞-formulas. It is said that ψ is Λ-deducible from ϕ0, ...ϕn if:

(
∧
i≤n

ϕi → ψ) ∈ Λ.

Moreover for every (possibly infinite) set Γ ⊆ ML∞ set. We say that ψ is Λ-
deducible from Γ, denoted by Γ `Λ ψ if there exists a finite set of formulas
{θ0, ..., θn} ⊆ Γ such that ψ is Λ-deducible from θ0, ..., θn. Furthermore Γ is
Λ-consistent if Γ 0Λ⊥.

Remark 6.3. For any Γ,∆ ∈ P(ML∞) and any ϕ0, ..., ϕn, ψ ∈ ML∞, we will
make use of the following notation:

� `Λψ ⇐⇒ ∅ `Λ ψ,

� Γ `Λ ∆⇐⇒ Γ `Λ ψ for every ψ ∈ ∆,

� ϕ0, ..., ϕn ` ψ ⇐⇒ {ϕ0, ..., ϕn} `Λ ψ,

� Γ,∆ `Λ ψ ⇐⇒ Γ ∪∆ `Λ ψ.

Definition 6.4. Let F be a collection of Kripke frames. A ML∞-normal modal
logic Λ is sound with respect to F if:

Λ ⊆ {ϕ ∈ ML∞ | F  ϕ}.
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Definition 6.5. A ML∞-normal modal logic Λ is strongly complete with respect
to a class of frames F if for every Γ ⊆ ML∞ and any ϕ ∈ ML∞:

If Γ F ϕ then Γ `Λ ϕ.

Definition 6.6. A ML∞-normal modal logic Λ is weakly complete with respect
to a class of frames F if:

{ϕ ∈ ML∞ | F  ϕ} ⊆ Λ.

Definition 6.7. For any ML∞-formula ϕ we define ∼ϕ to be θ in the case
that ϕ is the negation of the ML∞-formula θ. Otherwise we define it to be ¬ϕ.
Moreover, for every set X of ML∞-formulas, we let ∼X to be the smallest set
containing X that is closed under the following rule:

If ϕ ∈ X then ∼ϕ ∈ X.

Remark 6.8. By a straight-forward combinatorial argument it can be shown
that for every finite set X of ML∞-formulas, the set ∼X is finite as well.

Definition 6.9. For any set X ⊆ ML∞ we define the closure of X, denoted by
CL(X) to be the smallest set containing X that is subformula closed and closed
under the following rule:

If ♦∞ϕ ∈ CL(X) then ♦ϕ ∈ CL(X).

Remark 6.10. It can be easily verified by induction that the closure of every
ML∞-formula is finite. Similarly, the closure of every finite set is finite.

Definition 6.11. Let Λ be a ML∞-normal modal logic and let Σ ⊆ ML∞ be
a set of formulas. A set A ⊆ ∼CL(Σ) is a Λ-atom over Σ if A is a maximal
Λ-consistent set over ∼CL(Σ). We denote the collection of Λ-atom over Σ as
AtΛ(Σ).

Proposition 6.12. For any atom A ∈ AtΛ(Σ) the following properties are
satisfied:

i For every ϕ,ϕ→ ψ ∈ ∼CL(Σ): If ϕ,ϕ→ ψ ∈ A then ψ ∈ A,

ii (Λ ∩ ∼CL(Σ)) ⊆ A,

iii For any ϕ ∈ ∼CL(Σ): Either ϕ ∈ A or ∼ϕ ∈ A,

iv For any ϕ ∨ ψ ∈ ∼CL(Σ): (ϕ ∨ ψ) ∈ A⇐⇒ ϕ ∈ A or ψ ∈ A.

Proof. Follows immediately by adapting the proof of Lemma 4.81 in [BRV02]
to the framework of ML∞.
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Proposition 6.13. For any Λ-consistent formula ϕ ∈ ∼CL(Σ) there exists some
A ∈ AtΛ(Σ) such that ϕ ∈ A.

Proof. Follows from an adaptation of Lemma 4.83 in [BRV02] to the ML∞

framework.

Definition 6.14. For any ML∞-normal modal logic Λ and any finite set of
formulas Σ ⊆ ML∞, we define the tuple MΛ,Σ = (WΛ,Σ, RΛ,Σ, R

∞
Λ,Σ, VΛ,Σ)

where:

� WΛ,Σ := AtΛ(Σ),

� RΛ,Σ := {(A,B) ∈W 2
Λ,Σ | (Â ∧ ♦B̂) is Λ-consistent},

� R∞Λ,Σ := {(A,B) ∈W 2
Λ,Σ | (Â ∧ ♦∞B̂) is Λ-consistent},

� VΛ,Σ(p) := {A ∈WΛ,Σ | p ∈ A} for any p ∈ Φ.

By the (Dist) axiom in Definition 6.1 it is easy to see that R∞Λ,Σ ⊆ RΛ,Σ.
Therefore for any ML∞-normal modal logic Λ and any finite set Σ ⊆ ML∞

MΛ,Σ is an ML∞-Kripke model.

Lemma 6.15. For any A ∈ WΛ,Σ and any ϕ ∈ ML∞. If ♦ϕ ∈ A, then there
exists some B ∈WΛ,Σ such that ϕ ∈ B and ARΛ,ΣB.

Proof. Combining the adaptation of Lemma 4.86 in [BRV02] to the ML∞ frame-
work and Definition 6.1 we obtain the desired result.

Lemma 6.16. For any A ∈ WΛ,Σ and any ϕ ∈ ML∞. If ♦∞ϕ ∈ A, then there
exists some B ∈WΛ,Σ such that ϕ ∈ B and AR∞Λ,ΣB.

Proof. By a straightforward adaptation of Lemma 6.15 to the ♦∞ modality.

Lemma 6.17. Let Λ be any normal modal logic and Σ ⊆ ML∞ be a finite set.
Then for any A ∈WΛ,Σ and any ϕ ∈ ∼CL(Σ):

ϕ ∈ A⇐⇒MΛ,Σ, A ∞ ϕ.

Proof. Follows by a straightforward induction on the formula, where the only
interesting cases are the ones concerned with the modalities. However these
cases are a direct corollary of Lemma 6.15 and Lemma 6.16.
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6.2 The ML∞-normal modal logic S5∞

Definition 6.18. The ML∞-normal modal logic S5∞ is the smallest ML∞-
normal modal logic containing the following axioms:

p→ ♦p, (T)

♦♦p→ ♦p, (4)

♦�p→ p, (B)

♦∞p→ �♦∞p. (VB)

Definition 6.19. We let S5∞ be the collection of all Kripke frames whose
accessibility relation R is an equivalence relation, i.e. reflexive, transitive and
symmetric.

Lemma 6.20. The ML∞-normal modal logic S5∞ is sound with respect to S5.

Proof. The proof that every Kripke frames satisfies all the axioms of the ML∞-
normal modal logic K∞ is given in Lemma 6.29. Therefore, in view of Page 193
in [BRV02] it only suffices to show that S5 satisfies the (VB) axiom. However
this can be easily checked since R is an equivalence relation.

Proposition 6.21. Let Σ ⊆ ML∞ be a finite set. For any atom A ∈ WS5∞,Σ

the following properties hold:

i For every �ϕ ∈ ∼CL(Σ) : If �ϕ ∈ A, then ϕ ∈ A,

ii For every ♦♦ϕ ∈ ∼CL(Σ) : If ♦♦ϕ ∈ A, then ♦ϕ ∈ A,

iii For every ♦�ϕ ∈ ∼CL(Σ) : If ♦�ϕ ∈ A, then ϕ ∈ A,

iv For every �♦∞ϕ ∈ ∼CL(Σ) : If ♦∞ϕ ∈ A, then �♦∞ϕ ∈ A.

Proof. (i-iv) is proved similarly. Therefore we will only focus on (iv). Suppose
for sake of contradiction that ♦∞ϕ ∈ A but �♦∞ϕ 6∈ A. In view of Proposition
6.12 Part iii, we infer that ∼�♦∞ϕ ∈ A. Therefore we obtain that:

`S5∞ Â→ ∼�♦∞ϕ.

On the other hand, by the (VB) axiom we obtain that:

`S5∞ Â→ �♦∞ϕ.

Leading us into a contradiction. Therefore �♦∞ϕ ∈ A.
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Corollary 6.22. Let Σ ⊆ ML∞ be a finite set and any A,B,C ∈ WS5∞,Σ be
any atoms. The following properties hold:

i ARS5∞,ΣA,

ii ARS5∞,ΣB if and only if BRS5∞,ΣA,

iii If ARS5∞,ΣB and BRS5∞,ΣC, then ARS5∞,ΣC,

iv If ARS5∞,ΣB and BR∞S5∞,ΣC, then AR∞S5∞,ΣC.

Proof. (i-iv) follow automatically from clauses (i-iv) in Proposition 6.21.

Remark 6.23. Note that Corollary 6.22 (iv) is a weaker result that the one we
obtained in Proposition 2.23. However as we see in the following Proposition,
this condition is strong enough to avoid the node issue that we discussed in
Observation 2.27.

Proposition 6.24. Let Σ ⊆ ML∞ be a finite set and A,B,C ∈WS5∞,Σ be any
three atoms. If ARS5∞,ΣB and CR∞S5∞,ΣB, then AR∞S5∞,ΣB.

Proof. Suppose that ARS5∞,ΣB and CR∞S5∞,ΣB. In view of Definition 6.14,
CRS5∞,ΣB. Combining Corollary 6.22 (ii) and (iii) we infer that ARS5∞,ΣC.
Since ARS5∞,ΣC and CR∞S5∞,ΣB and in view of Proposition 6.22 (iv) we con-
clude that AR∞S5∞,ΣB.

Proposition 6.25. Let Σ ⊆ ML∞ be a finite set and (A, i) ∈ WS5∞,Σ be

a world in MS5∞,Σ. If there are infinitely many (B, j) ∈ WS5∞,Σ such that

(A, i)RS5∞,Σ(B, j), then there exists an infinite set X ⊆ RS5∞,Σ[(A, i)] and
some C ∈WS5∞,Σ such that:

i π[X] = {C}.

ii π(A, i)R∞S5∞,ΣC.

Proof. In view of Remark 6.8 and Remark 6.10 we infer that the setRS5∞,Σ[π(A, i)]
is finite. By the assumption we know that the set RS5∞,Σ[(A, i)] is infinite and

by Definition 2.25 we know π[RS5∞,Σ[(A, i)]] ⊆ RS5∞,Σ[(A, i)]. Then there ex-

ists an infinite set X ⊆ RS5∞,Σ[(A, i)] and an element C ∈ RS5∞,Σ[(A, i)] such

that π[X] = {C}. Moreover note that this is only possible if C is the R∞S5∞,Σ

successor of some atom D ∈ WS5∞,Σ. However in view of Proposition 6.25 this
implies that π(A, i)R∞S5∞,ΣC.

Lemma 6.26. For any finite set Σ ⊆ ML∞, any (A, i) ∈ WS5∞,Σ and any

ϕ ∈ ML∞:

MS5∞,Σ, A ∞ ϕ⇐⇒MS5∞,Σ, (A, i)  ϕ
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Proof. This is shown by induction on the formula ϕ. The base case as well as
the cases involved with the Boolean connectives can be easily proved by the
definitions. The case that involve the ♦ modality follow directly from Lemma
6.15 and Definition 2.25. Therefore we will only discuss the ♦∞ case:

Suppose that MS5∞,Σ, A ∞ ♦∞ϕ. In view of Lemma 6.16 there exists some
B ∈ WS5∞,Σ such that AR∞S5∞,ΣB and MS5∞,Σ, B ∞ ϕ. In view of the In-
ductive hypothesis, we conclude that for every n ∈ N, (A, i)R∞S5∞,Σ(B,n) and

MS5∞,Σ, (B,n)  ϕ. Hence we conclude that MS5∞,Σ, (A, i)  ♦∞ϕ.

Conversely suppose that MS5∞,Σ, (A, i)  ♦∞ϕ. By unfolding the semantics we

get that there are infinitely many (B, j) ∈WS5∞,Σ such that (A, i)RS5∞,Σ(B, j)

and MS5∞,Σ, (B, j)  ϕ. Combining the Inductive hypothesis with Proposition
6.25 we can find some C ∈ WS5∞,Σ such that AR∞S5∞,ΣC and MS5∞,Σ, C  ϕ.
Hence MS5∞,Σ, A ∞ ♦∞ϕ.

Theorem 6.27. The ML∞-normal modal logic S5∞ is weakly complete with
respect to S5.

Proof. Consider any ϕ ∈ ML∞ such that 0S5∞ ϕ. Therefore the ML∞ formula
¬ϕ is S5∞-consistent. Let Σ := {¬ϕ}. In view of Proposition 6.13 there exists
some atom A ∈ WS5∞,Σ such that ¬ϕ ∈ A. Moreover by Lemma 6.17 we
conclude that MS5∞,Σ, A ∞ ¬ϕ. Finally, in view of Lemma 6.26 we conclude
that MS5∞,Σ, (A, i)  ¬ϕ for some i ∈ N. Finally it just suffices to show
that the accessibility relation RS5∞,Σ is reflexive, transitive and symmetric.
However this follows directly from Corollary 6.22 and the fact that for any
(B, i), (C, j) ∈WS5∞,Σ:

π(B, i)RS5∞,Σπ(C, j) if and only if (B, i)RS5∞,Σ(C, j).

6.3 The ML∞-normal modal logic K∞

Definition 6.28. We let K to be the collection of all Kripke frames.

Lemma 6.29. The ML∞-normal modal logic K∞ is sound with respect to K

Proof. In view of Page 193 in [BRV02] it only suffices to show that every Kripke
frame validates the (Dual) and (K

∞
) axiom. However, it is not difficult to see

that the ♦∞ modality distributes over the ∨ connective and that �∞ is the dual
of the ♦∞ modality.
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Theorem 6.30. The ML∞-normal modal logic K∞ is weakly complete with
respect to K.

Proof. Consider any ϕ ∈ ML∞ such that 0K∞ϕ. Let Σ = ∼CL({¬ϕ}) and
n = qd(¬ϕ). Combining Proposition 6.13 and Lemma 6.17 we can find an atom
A ∈ AtK∞(Σ) such that ¬ϕ ∈ A and MK∞,Σ, A ∞ ¬ϕ. Secondly, let N be
the weak ML∞-Kripke submodel of MK∞,Σ generated by the singleton {A}.
Combining the previous result with Lemma 3.15 and Lemma 3.12, we conclude
that N , A ∞ ¬ϕ. The reader might have noticed that N is a ML∞-Kripke
model rooted at A. Following the unravelling technique described in Chapter
2, we let Nn[A] be the n-unravelling of N around A. In view of Proposition
3.16 we infer that Nn[A], (A) ∞ ¬ϕ. Since Nn[A] is a finite model and π is a
surjective map, we can find some α ∈Wn[A] such that π(α) = (A). Finally by
Lemma 2.29, we conclude that Nn[A], α  ¬ϕ and thus K 1 ϕ.
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Conclusion

In this thesis, we have introduced the modal logic ML∞ and have provide a
first line of research on the model theoretic and axiomatization aspects of this
logic. The first four chapters of the thesis have been concerned with the model
theoretic aspects of the modal logic ML∞, while Chapter 6 has provided some
contributions in the axiomatization of ML∞.

In Chapter 2, we introduced two different Kripke semantics for the modal logic
ML∞. First, we defined the standard semantics based on Kripke models with
a unique accessibility relation. Second, we introduced the ML∞-Kripke mod-
els, an alternative version of the Kripke semantics for the modal logic ML∞

based on structures equipped with two accessibility relations. Furthermore we
introduced the blooming technique, a model theoretic method that allows us
to transform ML∞-Kripke models to standard Kripke models. In Chapter 3,
we discussed the failure of the bisimulation invariance property and we pro-
posed an alternative definition of bisimulation for the modal logic ML∞. We
concluded this chapter by recovering a significant amount of the preservation
results. Chapter 4 provided an introduction to the basic syntactic and semantic
concepts of FO∞. In addition, we introduced the concept of κ∞-saturation, a
generalization of the well-known concept of saturation that arises in classical
model theory. We concluded this chapter by proving, in the ML∞ framework,
that the class of ℵ∞0 -saturated Kripke models enjoys of the Hennessy-Milner
property. In Chapter 5, we concluded our research on the model theoretic prop-
erties of ML∞ by proving the bisimulation invariance result for the modal logic
ML∞. In particular we showed that ML∞ is the fragment of FO∞ that is in-
variant under ML∞-bisimulation.

Chapter 6 provided an introduction to the concept of ML∞-normal modal logic,
and we introduced the ML∞-normal modal logics K∞ and S5∞. Employing the
blooming technique developed in Chapter 2, we proved that the logic S5∞ is
sound and weakly complete with respect to the class of equivalent Kripke mod-
els. In a second instance, we adapted the unravelling technique to the ML∞-
Kripke semantics and combining it with the blooming technique we showed that
K∞ is sound and weakly complete with respect to the class of Kripke frames.
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Future work

As we mentioned in the introduction, this thesis provides a first analysis on the
logic ML∞. Some positive results concerning the model theoretic and axiomati-
zability properties of ML∞ have been provided throughout this thesis. Moreover
the modal logic ML∞ opens up questions within this discipline and in relation to
other areas of logic such as graded modal logic and model theory. In the follow-
ing paragraphs we propose some directions in which the research could continue:

Correspondence. On Chapter 6 we show that the class of Kripke frames
and the class of equivalence Kripke frames can be defined in ML∞. A first
line of research would be to expand these results and provide a definability of
well-known Kripke frames (reflexive, reflexive and transitive etc.). Moreover,
we believe that a question to address would be to adapt the important research
done to the frame definability of standard modal logic (see [Ben93; GT75; Sah75;
Fit73] to the ML∞ framework.

ℵ∞0 -saturation. In Chapter 4 we introduce ℵ∞0 -saturation, an extension of the
classic model theoretic notion of saturation to the FO∞ framework. Unlike in
the first order logic situation, in the FO∞ framework we cannot elementary em-
bed every structure into a κ∞-saturated structure. However it is still unknown
if κ-saturated models can be elementary embedded into κ∞-ones. Therefore we
believe that a first line of research should be focused on the connections that
can be drawn between κ∞-saturation and κ-saturation.

In Theorem 4.39 we show that the class of ℵ∞0 -saturated Kripke models enjoy
of the Hennessy-Milner property. However, as we stated on the previous para-
graph, the existence of κ∞-saturated Kripke models is still unknown. Therefore,
we propose a second line of research that aims to show for which cardinal κ does
the class of κ-saturated Kripke models satisfy the Hennessy-Milner property.

Alternative semantics. Algebraic semantics have been a prominent struc-
ture for interpreting logic since more than a century ago. This tradition led to
an algebrization of modal logic by introducing the Boolean algebras with opera-
tors (BAO’s). A prominent result on the algebraization of standard modal logic
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is the Jónsonn-Tarski Thoerem [JT51] that opened a door to study the axioma-
tization of modal logic from an algebraic perspective. Furthermore, topological
semantics have been a more recent interpretation of logic. It was first observed
by Stone [Sto36] the connections between algebraic and topological semantics
of propositional logic. This result influenced the work of algebraists and topol-
ogists and was further exported onto other logics [Esa74; Gol74; Gol89].

We therefore propose a line of research in this direction, first by providing
an algebraization of the modal logic ML∞. Second by designing topological
semantics for ML∞ and in a later stage we propose to develop a duality rela-
tion between these two semantics. An important consideration that needs to
be done is the failure of the Compactness Theorem in ML∞. Recent techniques
developed by Bezhanishvili and Henke [HB20] have allowed us to overcome the
compactness failure of descriptive frames. In this sense, we believe that this
technique could be applied to this framework to obtain a topological compacti-
fication of the modal logic ML∞.

Lindström characterization. Characterizing logics based on their abstract
model theoretic properties has been an important program within logic since
Lindström first published the characterization of first order logic based on its
abstract model theoretic properties [Lin69]. Since then, positive results have
been obtained in the Lindström-style characterization of modal logics. First
by de Rijke [De 95] when he showed that standard modal logic is the most
expressive logic that enjoys the compactness property and the bisimulation in-
variance property. This result has been further improved by van Benthem et al.
[TBV07] where they provide Lindström-style characterization for graded modal
logic (see Theorem 3.14 in [TBV07]) and the binary guarded fragment (see The-
orem 3.23 in [TBV07]). In this thesis we have shown that ML∞ fails to satisfy
the Compactness Theorem (see Observation 2.11) and is not invariant under
bisimulation (see Observation 3.1). While we have not been able to provide
a property that substitutes compactness we have shown that the modal logic
ML∞ is closed under ML∞-bisimulation. Therefore we propose the following
question: Can the modal logic ML∞ be Lindström-style characterized in terms
of the invariance under ML∞-bisimulation?

Graded modal logic. Graded modal logic (GML) extends standard modal
logic by introducing a series of modalities ♦n for every natural number n. These
are modalities that enlarge the expressive power of standard modal logic by al-
lowing the language to capture the number of finite successors that satisfy a
certain property. However, the expressive power of this logic is stopped when
we reach the infinity boundary. ML∞ is more expressive than GML when we
reach the infinity, but lacks of expressive power on the finite cases. Therefore
we propose the modal logic GML∞, the extension of GML where we add the
♦∞ modality to the language as an object of study, where interesting questions
concerning the expressiveness, model theoretic properties can be considered.
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