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Abstract

Beginning with the study of the Liar paradox, philosophers have proposed several com-

peting theories of truth, each built on different intuitions, and they provide distinct

classifications of sentences as true, false, paradoxical, or hypodoxical. In the current

literature, the two dominant approaches are Kripke’s minimal fixed point construction

and the Revision Theory of Truth. This thesis introduces a novel alternative: resting on a

new underlying intuition that yields an alternative classification. I will argue that this

theory is very natural and, in many respects, superior to existing accounts.

In our framework, every sentence corresponds to a function, which is determined by

the sentences it depends on together with the T -schema. We then classify each sentence by

the number of fixed points its associated function has. After presenting the formal theory,

we compare our theory with Kripke’s minimal fixed points and with the Revision Theory,

showing how our approach admits certain circular tautologies without arbitrariness and

captures a broader range of non-paradoxical puzzles. Finally, although the development

takes place in an infinite propositional language, the last chapter sketches how these ideas

can be adapted to first order logic, outlines the remaining obstacles, and suggests possible

strategies for overcoming them.
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Chapter 1

Introduction

The Liar paradox has a long tradition in philosophy. Let the sentence L be “L is not

true”. Then we can find a contradiction: assume L is true, then what it says must be the

case, so L is not true; assume L is not true, then, since this is exactly what L says, it is

true. Therefore, L is true if and only if L is not true, a contradiction since a sentence

must be either true or not true, but not both. Note that this is an issue for classical

logic because one can conclude anything from a contradiction, and thus the logical system

becomes trivial. Moreover, there is an important principle figuring in the above reasoning:

Tarski’s T -schema, which states that a sentence ϕ is true if and only if what it says is the

case.

Tarski (1956) attempted to solve this problem by giving a hierarchy of truth, each

applicable to sentences in a certain level. However, as pointed out by (Kripke, 1975), it

suffers from a significant problem: failing to respect our use of “true” in natural language

(Kripke, 1975). Two dominant hierarchy-free solutions have been proposed in the literature

— Kripke’s minimal fixed point (Kripke, 1975) and the Revision Theory of truth (Gupta

and Belnap, 1993; Herzberger, 1982a). However, I will argue in later chapters that neither

theory is entirely satisfactory.

The aim of this thesis is to advocate for another theory of truth which keeps “true”

hierarchy-free. In this framework, each sentence corresponds to a function, and the

patterns of fixed points of these functions are used to classify the semantic status of

sentences. I will argue that this theory (1) is not an ad-hoc solution just for the Liar

but instead give a general criterion for classifying the semantic status of sentences that

refer to each other, (2) provides an explanation for the paradox by (2.1) acknowledging

the paradoxical phenomenon in the Liar sentence (and other problematic sentences) and

(2.2) explaining it in a way that is harmonious with our intuition, and (3) it has certain

advantage over some dominant hierarchy-free theories of truth — namely, Kripke’s minimal

The introduction part of this Chapter and Section 1.1 is based on an essay I wrote for an individual
project done with Dr. Thomas Schindler.
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fixed points and the Revision Theory. Moreover, the theory has robust applications in the

study of paradoxes.

The structure of the thesis is organised as follows. In the remainder of the first chapter,

I present Tarski’s hierarchical solution of the Liar, and I use Kripke’s argument to show

that the truth predicate it gives does not respect the use of “true” in natural language.

Then I will motivate the proposed theory of truth by reflecting on how we reason with

paradoxes (and more generally, sentences that refer to each other) pre-theoretically, and I

will introduce the idea of corresponding a function to each sentence.

In Chapter 2, I present the formal theory of truth in a language of infinite propositional

logic. I will present the language and the denotation function, and how to model our

sentences of interest using this language. I will also define the dependence relation between

sentences in this language, and I will show how to assign a function to each sentence

that takes as input a hypothetical truth value and outputs the truth value according to

Tarski’s T -schema. In the last two sections I will discuss the issue with the interpretation

of the theory. These two sections are marked with a star, and skipping them in a first

reading will not affect the understanding of the rest of this thesis.

In the next two Chapters (3 and 4), I compare the proposed theory with two dominant

theories of truth — Kripke’s minimal fixed points and the Revision Theory of truth. Since

they are originally developed in the first order language, instead of the propositional

language I use, I will first present basic ideas of both theories and then discuss how the

underlying idea can be used to yield a theory in the propositional language. Then I will

formally compare the differences between the two theories and my proposed theory.

In Chapter 5, we will see how the theory can be applied to answer several questions

about paradoxes, and how it can be adapted to meet certain intuitions. In particular,

the theory suggests a sense in which the hypodoxical sentences, like the Truth Teller, is

also paradoxical; it can formalise our intuition that the Liar circle can be reduced to the

Liar paradox; and, if one prefers a theory behaving more classically in some aspects, the

theory can be modified to respect these intuitions.

Lastly, in Chapter 6, I will sketch how the theory could be developed in a first order

language and discuss the remaining challenges. Moreover, I will propose two possible

strategies to overcome these difficulties, and we will see that each strategy leads to research

questions that are interesting in their own right.

1.1 Hierarchical Solutions to the Liar Paradox

In this section, I briefly discuss Tarski’s solution to the paradox by employing a hierarchy

of truth predicates. I will argue that the solution fails to resolve the paradox, as it is a

paradox in natural language.

The central idea of Tarski’s theory is that truth of sentences in one language can
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only be talked about in a richer language. Starting from a language L0, Tarski observes

that it is impossible — due to the Liar paradox — for L0 to have a predicate True

whose extension is exactly the set of all true sentences in L0. Therefore, we need another

language L1 that extends L0 by adding a predicate True0 to talk about true sentences

in L0. However, the same observation applies to L1, so we need another language L2

extending L1 by yet another predicate True1 to talk about true sentences in L1. This

process goes on indefinitely, and we obtain a linear hierarchy of languages L0, L1, L2, . . . ,

each containing a truth predicate applicable only to sentences from lower levels.

According to this theory, the Liar sentence in one language, for example, γ =

¬Truen(⌜γ⌝), is indeed not in the extension of Truen, so it is true1. However, this

truth cannot be expressed in the language Ln where γ is constructed, but only in higher

languages, so we have Truen+1(⌜γ⌝), instead of Truen(⌜γ⌝), and hence there is no con-

tradiction.

Nonetheless, this theory does not fit well with our practice of natural language. In

natural language, we do use the predicate “true” to talk about truth of sentences in the

same language. Moreover, as pointed out by Kripke (1975), the theory cannot make sense

of some sentences that are perfectly sensible in natural language. He gives the following

example: suppose Dean says “everything Nixon says about Watergate is not true” while

Nixon says “everything Dean says about Watergate is not true”. Intuitively, if Dean said

something true about Watergate, then Nixon’s sentence is false, and if Nixon’s other

utterances about Watergate are all false, then Dean’s sentence is true.

However, according to Tarski’s theory, these two sentences cannot be grammatical —

the truth predicate used by Dean must lie in a higher level in the hierarchy of language

than all utterances by Nixon about Watergate, so in particular it must lie in a higher level

than the truth predicate in Nixon’s sentence above. However, the same argument applies

to Nixon’s truth predicate, so we have a violation of the linear hierarchy of languages.

Therefore, by giving a hierarchy of languages, Tarski’s theory diverges too much from

natural language, and hence fails to resolve the paradox as it is presented in natural

language.

We need a theory of truth that keep the truth predicate non-hierarchical and applicable

to sentences in the same language. In the current literature, Kripke’s theory and the

Revision Theory of truth are two dominant hierarchy-free theories of truth. However, as I

will argue in Chapter 3 and Chapter 4, both theories are not satisfactory. Hence, I will

propose a new theory of truth in this thesis.

1This is because the extension of Truen consists precisely of the set of true sentences in the language
Ln−1. As γ contains the predicate Truen — which is not a symbol in Ln−1 — γ is not a sentence in
Ln−1, and therefore does not belong to the extension of Truen. Thus, γ = ¬Truen(⌜γ⌝) is true.
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1.2 A Theory of Truth via Functions

Let us reflect on how we reason with paradox — and more generally, a collection of

sentences referring to the truth of each other — pre-theoretically. Consider the Liar

paradox “this sentence is not true.” Why do we think this is a paradox? Or, by what

procedure do we decide that this is a paradox? We do not simply say that this sentence

refers to itself, so it must be problematic, but we reason with Tarski’s T -schema: assume

it is true, then by T -schema it is false, and if it is false, then by T -schema it is true.

However, a sentence cannot be both true and false, so we conclude that the sentence is

paradoxical.

Consider another example, the Truth Teller sentence “this sentence is true.” Why do

we think this is problematic? We reason again: assume it is true, then by T -schema it is

true, and if it is false, then by T -schema it is false. Then we cannot decide which value

to ascribe to the sentence, but we should not need any extra information to decide its

truth value — the sentence only says something about itself. Hence, we conclude that the

sentence is problematic.

Lastly, consider the typical logic puzzles of Knights and Knaves (Smullyan, 1978):

people from a village are either knaves (who always tell lies) or knights (who always tell

the truth), and they each say something about the identity of other villagers. For example,

suppose we encounter two villagers, A and B. A says “Either B is knight and I am a

knave, or B is a knave and I am a knight”, while B says “We are both knights or both

knaves” (CSCI E-80, 2021). How can we decide the identities of A and B? We test all

four possibilities:

1. Both knights. Then A is lying — a contradiction to our assumption that A is a

knight.

2. Both knaves. Then B is telling the truth — a contradiction.

3. A knave, B knight. Then B is lying — a contradiction.

4. A knight, B knave. Then A tells the truth and B lies — this is consistent with our

assumption.

Thus, the only coherent solution is that A is a knight and B is a knave, so we conclude

that this is the answer.

Why do we think that this is a puzzle and have fun solving it instead of claiming it a

paradox? This is because we try and find a truth configuration for each sentence such

that under and only under this configuration all the statements are coherent.

In all these examples, what we do is to give each relevant2 sentence a hypothetical

truth value, and reason, using T -schema, to obtain another truth value for every sentence

2Note that we only give hypothetical truth values to relevant sentences – take the example of Liar
paradox, to decide it is paradoxical, we only give hypothetical truth value for the Liar, but not other
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involved. If we find that the resulting truth value is the same as the hypothetical truth

value we begin with, and if this is the only configuration of truth assignment which gives

back the original values, then we say that there is no paradox, and we declare that we

have solved a logic puzzle! If no such configuration exists, then we say that there is a

paradox, and if there are multiple such configurations, then we say that the sentences

given are problematic.

A natural way to model our reasoning here is to let each sentence correspond to a

function, which takes as input a hypothetical truth value for each relevant sentence, and

outputs their truth values according to the T -schema. We then check whether the function

has a fixed point. Only when it has a unique fixed point, do we say that the corresponding

sentence is not problematic.

For example, the Liar sentence corresponds to a function f such that f(1) = 0 and

f(0) = 1. The function has no fixed point, so the Liar sentence is paradoxical. The

Truth Teller sentence corresponds to a function f such that f(1) = 1 and f(0) = 0. The

function has two fixed points, so the Truth Teller sentence is problematic. The logic

puzzle corresponds to a multivalued function, taking as input a hypothetical truth value

for each sentence and giving an output truth value for each sentence according to what

they are saying3. If the function has a unique fixed point, then the fixed point gives the

answer to the puzzle4; otherwise, we complain that the designer of the puzzle has made a

mistake — either by making the puzzle inconsistent (when there is no fixed point) or by

giving insufficient information (when there are multiple fixed points).

According to the idea above, Tarski’s T -schema should be understood as a rule to assign

truth to each sentence. Moreover, just as assigning a value to a variable in mathematics,

the assignment can fail when the rule gives no unique value: for example, if I assign a value

to x according to the rule “x is the number that satisfies x2 = 4”, then the assignment

fails because there are two numbers that satisfy the equation. This assignment does not

directly give a value to x but instead states a condition that x needs to satisfy, and thus

it fails when the condition does not pick out a unique value.

Similarly, when T -schema is applied to a sentence like the Liar, it does not assign a

truth value to the sentence but instead states a condition that the value needs to satisfy.

When the condition cannot be met or there are multiple ways to meet the condition, then

the assignment rule fails. We would only call a sentence true if the assignment rule does

irrelevant sentences like the Truth Teller. Similarly, in the Knights-Knaves puzzle, we consider only the
four possible identity assignments for A and B, ignoring any other villagers which might also exist.

3Of course, when solving actual puzzles, there are techniques where you can start with the most
“suspicious” people, but in general this is the underlying idea.

4Our previous example corresponds to a function f : {0, 1}2 → {0, 1}2 such that f(1, 1) = (0, 1) —
which means that if we assume both are knights (1) then, according to what they say, A is a knave (0)
and B is a knight (1) — f(0, 0) = (0, 1), f(0, 1) = (1, 0), and f(1, 0) = (1, 0). The function has a unique
fixed point (1, 0), which means that A is a knight and B is a knave. The formulation in Section 2.2 will
be slightly different due to some technicalities, but this is the essential idea.
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uniquely assign the value 1 to this sentence.

This is the idea I want to explore in this thesis.
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Chapter 2

A Theory of Truth in The Language

of Infinite Propositional Logic

In this chapter, I formulate the proposed theory of truth using a language of infinite

propositional logic developed in (Rabern, Rabern, and Macauley, 2012). I will first

present the formal language. Then, I will develop the idea of corresponding a function

to each sentence in the language, and use these functions to classify the semantic status

of sentences in the language. After the classification, I will discuss several properties

of the set of “true” sentences, and I will show that the classification is independent of

some irrelevant choices within the language. The last two sections will be devoted to

the discussion of the limitation and the interpretation of the theory. These two sections

are marked with a star, and they can be skipped in a first reading without affecting the

understanding of the rest of this thesis.

2.1 The Language of Infinite Propositional Logic

In this section, we will describe the formal language and see how it can be applied to

model semantic paradoxes like the Liar.

We work in an infinite propositional language LS developed in (Rabern, Rabern, and

Macauley, 2012), which has a set S of propositional variables. Through the use of a

denotation function, these variables will be interpreted as names of sentences in this

language.

The choice of this language is because it provides an especially intuitive framework for

representing the semantic paradoxes. Although it contains no predicate symbols and is

propositional, combining it with the denotation function gives us all the machinery we

need to analyse important examples in the study of semantic paradoxes — such as the

Liar, the Truth Teller, and Yablo’s paradox1.

1Introduced by Yablo in (1993) as a paradox without self-reference.
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Definition 2.1 (The Language LS). A sentence in the language LS is defined recursively

as follows:

1. ⊥, ⊤ are sentences (⊥,⊤ /∈ S);

2. any s ∈ S is a sentence;

3. if ϕ and ψ are sentences, then so are ¬ϕ and ϕ ∧ ψ;

4. for any set of sentences Φ,
∧

Φ is a sentence.

5. Nothing else is a sentence.

Let us denote the set of all sentences in LS as Sent(LS). The symbols → and ∨ are

defined in the standard way, and I will use
∨
Φ as the abbreviation for ¬

∧
¬Φ, where

¬Φ = {¬ϕ | ϕ ∈ Φ}.
We move on to define how to evaluate the truth value of a sentence in this language.

As in classical propositional logic, we start by giving each propositional letter a truth

value.

Definition 2.2 (Valuation). A valuation v is a function from S to {1, 0}.

Then this valuation is extended recursively to all sentences in the language LS:

Definition 2.3 (Extended Valuation). Any valuation v can be extended to a function v̄

from Sent(LS) to {1, 0} as follows:

1. v̄(⊥) = 0 and v̄(⊤) = 1;

2. v̄(s) = v(s) for any s ∈ S;

3. v̄(¬ϕ) = 1− v̄(ϕ);

4. v̄(ϕ ∧ ψ) = min{v̄(ϕ), v̄(ψ)};

5. v̄(
∧

Φ) = min{v̄(ϕ) | ϕ ∈ Φ}.

We identify v̄ with v when the context is clear, and we denote v(ϕ) as JϕKv.
Note that the truth value of a sentence ϕ under some valuation v only depends on

what values v assigns to the propositional letters in ϕ.

Lemma 2.4. For any ϕ ∈ Sent(LS), and any valuation v, v′, if v(s) = v′(s) for all

propositional letters s occurring in ϕ, then JϕKv = JϕKv′.

Proof. This is straightforward by induction on the complexity of ϕ.

Therefore, we can just specify what v assigns to the propositional letters in ϕ instead

of the entire valuation v when we are only interested in ϕ.

10



Definition 2.5 (Satisfaction). We say that a valuation v satisfies a sentence ϕ if JϕKv = 1,

and we denote it as v |= ϕ.

We now show how to represent paradoxes in this language. The idea is that the

propositional variables in S will be used as names of sentences. They are sentences

themselves, while they can also be used to refer to other sentences. This is a natural move

in light of the semantic paradoxes. For example, consider the Liar sentence L = “L is not

true”. L is a sentence, but it is also used as a name to refer to the sentence “L is not

true”, which contains L as a sub-sentence.

Definition 2.6 (Denotation Function). Given a set of propositional variables S, a

denotation function d : S → Sent(LS) is a function that assigns each propositional

variable a sentence in the language.

Let us see how the Liar sentence and the Truth Teller sentence can be represented in

this language:

Example 2.7. Let s1, s2 ∈ S and d(s1) = ¬s1, d(s2) = s2. Then s1 models the Liar

sentence and s2 models the Truth Teller sentence.

Thus, s ∈ S is also the name of the sentence d(s) ∈ Sent(LS). Let us follow (Rabern,

Rabern, and Macauley, 2012) and call (S, d) a sentence system.

2.2 Dependence, Ascriptions, and Truth

Now, we have enough devices to develop the idea of corresponding a function to each

sentence. Recall the motivating examples in Section 1.2. Given any sentence, we will

give a hypothetical truth value to all sentences that are relevant to the sentence. Besides

the sentence itself, we need to find out sentences that the given sentence depends on.

Therefore, we first need to define this dependence relation. In the propositional language

we use, there is a straightforward way to make this definition: a sentence s depends on

another sentence t if d(s) contains t as a subformula. Moreover, we require that this

relation is transitive, so that if s depends on t and t depends on u, then we will also say

that s depends on u.

Definition 2.8 (Dependence Relation). We first define a relation R ⊆ S × S on the set

of names of sentences as follows: sRt if and only if d(s) contains t as a subformula. Let

R∗ be the transitive closure of R. We say s depends on t if sR∗t.

Now we collect all sentences that s depends on.

Definition 2.9 (Dependence Set). We define the dependence set Ds for s as the set of

sentences that s depends on: Ds = {t ∈ S | sR∗t}.

11



As in our motivating examples, given a collection of sentences which depend on each

other in a certain way, we can give each sentence a hypothetical truth value and reason

according to what they say to obtain another truth value for each of them. For any sentence

s the collection of sentences that are relevant in this process is exactly the sentences in

Ds, plus s itself — since regardless of whether s depends on itself, we give a hypothetical

truth value to all the sentences in this collection. As this collection of sentences will be

used to determine the number of variables that the function corresponding to s will take,

let us call it the variable set of s.

We will see latter2 that we do not need to give a hypothetical truth value to s itself

when s does not depend on itself. However, at this stage, I believe it is best to stick

with the intuition as close as possible. The fact that we do not need to include s is best

treated as a discovery, or — for those with the intuition that we might not need to give a

hypothetical value for s even informally — at least a confirmation that this intuition is

formally correct.

Definition 2.10 (Variable Set). We define the variable set Vs for s as the set of sentences

that s depends on plus s itself: Vs = Ds ∪ {s}.

Example 2.11. 1. Let s ∈ S and d(s) = ¬s. Then Ds = Vs = {s}.

2. Let s1, s2 ∈ S and d(s1) = s2 and d(s2) = ⊤. Then Ds1 = {s2} and Vs1 = {s1, s2},
while Ds2 = ∅ and Vs2 = {s2}. Note that ⊤ ̸∈ Ds2 because by definition Ds ⊆ S for

all s ∈ S, while ⊤ is not in S.

By a slight abuse of language, we identify Vs with a list ordered by the ordinals. There

is no deep philosophical reason for doing this, but it will help us pick out some t ∈ Vs by

its index in the list in our formal details. Thus, intuitively, one can still think of Vs simply

as the collection of sentences that are relevant to s, and now we are able to identify the

location of each sentence in this collection.

Formally, we will write Vs(α) for the α-th coordinate of the list Vs. Moreover, for

technical convenience, we stipulate that Vs(0) = s. That is, we assume that the sentence

s itself is always put in the first coordinate of this list. Also, we say that the index of a

sentence t ∈ Vs is the unique ordinal αt such that Vs(αt) = t. For notational simplicity, for

x̄ ∈ {0, 1}κ, where κ is some cardinal, we often write xi for x̄(i), the i-th coordinate of x̄.

Each sentence s corresponds to a function fs : {0, 1}|Vs| → {0, 1}|Vs| that takes as input
a hypothetical truth value for each sentence in Vs and outputs their truth value according

to the hypothetical values and the denotation function:

Definition 2.12 (Ascription Function). Let s ∈ S be a sentence in the sentence system

(S, d). We define the ascription function fs : {0, 1}|Vs| → {0, 1}|Vs| coordinate-wise as

2This will follow from Lemma 2.31, which says that as long as all sentences that s depends on are
either true or false, then s itself is either true or false (so that it cannot be paradoxical, or problematic in
some other sense.)
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follows: fs(x̄)(α) = Jd(Vs(α))Kv, where the valuation v is such that for a sentence t ∈ Vs,

we have v(t) = xi for t = Vs(i).

Despite the heavy notation, the idea underlying this definition is very simple. An

element x̄ ∈ {0, 1}|Vs| is interpreted as giving a hypothetical truth value to each sentence

in Vs: the i-th coordinate of x̄ gives the hypothetical truth value of the i-th sentence in

Vs. Then x̄ induces a valuation v such that for any t = Vs(i), we have v(t) = xi. We then

use this v to calculate the truth value for each sentence t ∈ Vs according to d(t), and then

collect the resulting truth values as fs(x̄) ∈ {0, 1}|Vs|. In particular, the α-th coordinate

of fs(x̄) — which is what we denoted by fs(x̄)(α) — gives the truth value of the α-th

sentence in Vs according to the valuation v induced by x̄, which is denoted by Jd(Vs(α))Kv.
Let us see how this works in some typical examples.

Example 2.13. 1. The Liar: let s ∈ S be such that d(s) = ¬s. Then Vs = {s} and fs

is a function from {0, 1} to {0, 1}. We have fs(0) = Jd(s)Kv where v(s) = 0. Thus,

fs(0) = Jd(s)Kv = J¬sKv = 1. This means that if we give the Liar a hypothetical

truth value 0, then, according to what it says, we conclude that it is in fact true,

so we obtain a new truth value of 1. Similarly, fs(1) = Jd(s)Kv = J¬sKv = 0,

where v(s) = 1. This means that if we give the Liar a hypothetical truth value 1,

then, according to what it says, we conclude that it is in fact false. Thus, we have

fs(x) = 1− x. That is, the Liar corresponds to a function that always flips the input

truth value.

2. The Truth Teller: let s ∈ S be such that d(s) = s. We similarly have fs : {0, 1} →
{0, 1}. This time, fs(0) = Jd(s)Kv = JsKv = 0, where v(s) = 0; and fs(1) = Jd(s)Kv =
JsKv = 1, where v(s) = 1. Thus, we have fs(x) = x. That is, the Truth Teller

corresponds to a function that always returns the input truth value as it is.

3. We now give an intuitively unproblematic case. Consider a sentence L1 which says

“L2 is true”, while L2 just says some obvious truth, for example “1 = 1”. Clearly, we

should conclude that both L1 and L2 are true.

This can be modelled in the formal language as follows. Let s1, s2 ∈ S where d(s1) =

s2 and d(s2) = ⊤. We have seen from the previous example that Vs1 = {s1, s2} and

Vs2 = {s2}. Therefore, we have fs1 : {0, 1}2 → {0, 1}2.

Given an input, say, (0, 0), which induces a valuation v such that v(s1) = v(s2) = 0.

We calculate fs1(0, 0) ∈ {0, 1}2 coordinate-wise. The 0-th coordinate fs1(0, 0)(0) is

given by Jd(Vs(0))Kv = Jd(s1)Kv = Js2Kv = 0; and the 1-th coordinate fs1(0, 0)(1) is

given by Jd(Vs(1))Kv = Jd(s2)Kv = J⊤Kv = 1. Thus, we have fs1(0, 0) = (0, 1).

This is indeed how our intuitive reasoning works: if we assume both L1 and L2 are

false, then according to what they say, L1 is false and L1 is true.
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Similarly, we can calculate fs1(0, 1) = (1, 1), fs1(1, 0) = (0, 1), and fs1(1, 1) = (1, 1),

i.e. fs1(x, y) = (y, 1).

On the other hand, we have fs2 : {0, 1} → {0, 1}, and fs2(0) = Jd(s2)Kv = J⊤Kv = 1

and fs2(1) = Jd(s2)Kv = J⊤Kv = 1, i.e. fs2(x) = 1.

4. Liar circle: let s0, s1, . . . , sn ∈ S be such that d(si) = si+1 for i < n, and d(sn) = ¬s0.
Then Vs0 = {s0, s1, . . . , sn} and fs0 : {0, 1}n+1 → {0, 1}n+1. One can check that

fs0(x̄) = (x1, x2, . . . , xn, 1− x0).

5. Truth Teller circle: let s0, s1, . . . , sn ∈ S be such that d(si) = si+1 for i < n, and

d(sn) = s0. Then Vs0 = {s0, s1, . . . , sn} and fs0 : {0, 1}n+1 → {0, 1}n+1. One can

check that fs0(x̄) = (x1, x2, . . . , xn, x0).

6. Yablo’s paradox: let {si | i ∈ ω} ⊆ S be such that d(si) =
∧
i<j ¬sj for i ∈ ω.

Then Vs0 = {si | i ∈ ω} and fs0 : {0, 1}ω → {0, 1}ω. One can check that the α-th

coordinate of fs0(x̄) is given by fs0(x̄)(α) = min{1− xi | α ≤ i}.

One may worry that for any sentence s, Vs is a set of sentences, but to obtain the

function fs we need to first order Vs into a list, and then the function might depend

on how we order the sentences in Vs. For example, in the Liar circle, we have Vs0 =

{s0, s1, . . . , sn}. We may use the list ⟨s0, s1, s2 . . . , sn⟩ to obtain the function fs0(x̄) =

(x1, x2, x3, . . . , xn, 1− x0), or we may use ⟨s0, s2, s1, . . . , sn⟩ to obtain a function gs0(x̄) =

(x1, x3, x2, . . . , xn, 1 − x0). These two functions are clearly different. Therefore, indeed,

the functions that a sentence corresponds to depend on how one orders its variable set.

However, for the study of paradox, these differences do not matter. This is because we

are interested in whether a coherent truth assignment can be found for all the sentences

in the variable set of a sentence, which is reflected not by the function itself but by the

patterns of fixed points of the function, which we define below.

Definition 2.14 (Classisfication of Ascription Functions). Let s ∈ S be a sentence in the

sentence system (S, d). We say that the ascription fs is

1. successful if the equation x̄ = fs(x̄) has a unique solution;

2. paradoxical if the equation x̄ = fs(x̄) has no solution;

3. hypodoxical if the equation x̄ = fs(x̄) has multiple solutions;

We will explain the intuition behind this definition, but we first show that the order

of the sentences in the variable set does not affect whether the ascription function is

successful, paradoxical, or hypodoxical.
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Lemma 2.15. Let s ∈ S be a sentence in the sentence system (S, d), and Vs be the variable

set of s. Let V 1
s and V 2

s be two lists of sentences that contain the same sentences as Vs.

Let fs be the function corresponding to s with respect to V 1
s , and let gs be the function

corresponding to s with respect to V 2
s . Then fs is successful (paradoxical, hypodoxical) if

and only if gs is successful (paradoxical, hypodoxical).

Proof. Let |Vs| = n+1 and σ : n+2 → n+2 be a permutation such that V 2
s (i) = V 1

s (σ(i)).

Then x̄ = (x0, x1, . . . , xn) is a fixed point of fs if and only if σ(x̄) = (xσ(0), xσ(1), . . . , xσ(n))

is a fixed point of gs.

The intuition behind Definition 2.14 is clear. In a successful ascription, there is one

and only one coherent truth assignment for all the sentences in the variable set of a

sentence; in a paradoxical ascription, there is no coherent truth assignment for them; and

in a hypodoxical ascription, there are multiple.

A tempting next step is to say that a sentence s is “true” if fs is successful and the

truth value of s is 1 under this unique coherent truth assignment — that is to say, to

call s “true” if the fixed point x̄ of fs satisfies x0 = 1. However, another worry arises. In

the fixed point, not only is the truth value of s determined, but it simultaneously gives

the truth value for all the sentences in the variable set of s — as we said, the unique

fixed point is the coherent truth assignment for all those sentences. This is because the

calculation shows that only when the sentences involved are together assigned the values

according to the fixed point, the whole assignment is coherent. However, if s depends

on t, then t also induces an ascription function ft. This ft might disagree with fs with

respect to the fixed point — for example, fs might say there is a unique fixed point where

t is assigned value 1, while ft might say that there are many more fixed points. We give

some examples of this situation.

Example 2.16. 1. Let s1, s2 ∈ S, d(s1) = (s1 ∧ s2) ∨ (¬s1 ∧ s2) ∨ (¬s1 ∧ ¬s2) and

d(s2) = s2. Then Vs1 = {s1, s2} and Vs2 = {s2}. One can check that (1, 1) is the

only fixed point of fs1. This means that only if both s1 and s2 are true do we have a

coherent truth assignment for both s1 and s2. However, s2 itself — which is just the

Truth Teller — does not depend on s1, and fs2 does not have a unique fixed point.

2. Let s3, s2 ∈ S, d(s3) = ¬s3 ∨ s2 and d(s2) = s2. Then Vs3 = {s3, s2} and Vs2 = {s2}.
One can check that (0, 0) is the only fixed point of fs3, while fs2 does not have a

unique fixed point.

If we just naively use the fixed point to determine the truth of sentences, we will face

a contradiction. In both of the above examples, s2 is the Truth Teller. According to s1,

both s1 and s2 are true, while according to s3, both s3 and s2 are false. At the same time,

s2 itself says it does not have a definite truth value! This is a serious problem.
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Fortunately, the problem is not with the theory, but with how one interprets the

fixed point of the ascription functions. Let us focus on the second example from above,

where we have (0, 0) as the unique fixed point of fs3 . This means that we can have a

coherent truth assignment for both s2 and s3 only when both s2 and s3 are false. However,

this does not mean that s2 is confirmed to be false. It only means that if s2 is false,

then we have s3 is false. In fact, modulo classical logic, this is exactly what s3 says —

d(s3) = ¬s3 ∨ s2 ≡ s3 → s2 ≡ ¬s2 → ¬s3. Then, when we do not have s2 is false —

the Truth Teller does not have a truth value due to indeterminacy — clearly we cannot

conclude that s3 is also false.

Therefore, to actually determine the truth status of a sentence s, it is not enough that

fs has a unique fixed point; we also need that for any sentence t such that s depends on t,

ft has a unique fixed point, and the truth value assignments given by the fixed point of ft

should agree with the truth value assignments given by the fixed point of fs. We now

make this formal.

Definition 2.17 (Naive Truth Value). Let s ∈ S be a sentence in the sentence system

(S, d) where fs is successful. Let x̄ be the fixed point of fs. We say that the naive truth

value of t ∈ Vs is x(αt), where αt is the index of t in Vs.

That is, the naive truth value of a sentence t ∈ Vs is the truth value of t determined

by the fixed point of the function fs corresponding to s. Two ascription functions agree

on a sentence t if they give the same naive truth value to t.

Definition 2.18 (Agreement). Let s ∈ S be a sentence in the sentence system (S, d) and

let t ∈ Ds, where fs and ft are both successful. We say that the ascription function fs

agrees with the ascription function ft if the solution of the equation x̄ = fs(x̄) agrees with

the solution of the equation ȳ = ft(ȳ) in the sense that for all t′ ∈ Vt, the naive truth value

of t′ as determined by fs is the same as the naive truth value of t′ as determined by ft.

We now formalise the condition where the truth value of a sentence can really be

determined.

Definition 2.19 (Hereditarily Successful Ascription). Let s ∈ S be a sentence in the

sentence system (S, d). We say that the ascription fs is hereditarily successful if it is:

1. successful;

2. for any t ∈ Vs, ft is successful; and

3. fs agrees with ft for any t ∈ Vs.

Notice that in the examples we gave above, we have cases where a function is successful,

but it fails to be hereditarily successful because it violates the second condition. One might
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wonder whether there are cases where both the first and the second condition are satisfied,

but the third condition is violated — so that each ascription function gives some naive

semantic truth assignments, but these assignments are contradictory. In these situations

it might be unclear what to say about the sentences involved. However, fortunately, we

can show that this cannot happen, and hence the definition of hereditary success could be

simplified.

Lemma 2.20. Let s ∈ S be a sentence in the sentence system (S, d) and t ∈ Vs. If fs

and ft are both successful, then fs agrees with ft.

Proof. Let x̄ be the unique fixed point of fs. Let ȳ be such that y(αp) = x(αp) for all

p ∈ Vt. Then ȳ is a fixed point of ft. Since ft is successful, this is fixed point is unique.

Therefore, fs agrees with ft.

Therefore:

Corollary 2.21. Let s ∈ S be a sentence in the sentence system (S, d). The ascription

fs is hereditarily successful if and only if for any t ∈ Vs, ft is successful.

In fact, for any sentence s, we only need to check the sentences it depends on to

determine whether s is hereditarily successful.

Lemma 2.22. Let s ∈ S be a sentence in the sentence system (S, d). The ascription fs

is hereditarily successful if and only if for any t ∈ Ds, ft is successful.

Proof. ⇒: This is implied by the previous lemma.

⇐: By the previous lemma, it suffices to prove fs is successful. If s ∈ Ds then we are

done. Otherwise, denote the i-th sentence in Ds as ti. Let xi be the naive truth value

of ti as determined by fti , which is well-defined since fti is successful. Let x0 = Jd(s)Kv,
where v(ti) = xi for all i. Then fs(x̄) = x̄, and x̄ is the unique fixed point of fs.

Note a helpful technique we used several times in the above proofs:

Lemma 2.23. Let s ∈ S be a sentence in the sentence system (S, d). If fs has a fixed

point and t ∈ Vs, then ft also has a fixed point.

Collecting all the above, we also have the following useful corollary:

Corollary 2.24. Let s ∈ S be a sentence in the sentence system (S, d). The ascription

fs is hereditarily successful if and only if for all t ∈ Ds, ft is hereditarily successful.

Proof. ⇒: This follows from the transitivity of the dependence relation.

⇐: this is implied by Lemma 2.22.
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Remark 2.25. Note that, therefore, in the definition of the ascription function, we

could have replaced Vs by Ds. By the corollary above, this will give an equivalent theory.

However, we will keep using Vs, because it is more intuitive to think of all sentences in Vs

as relevant when we reason about s.

Finally, we can determine the semantic status of a sentence.

Definition 2.26 (Classisfication of Sentences). Let s ∈ S be a sentence in the sentence

system (S, d). We say that s is:

1. paradoxical if fs is paradoxical;

2. hypodoxical if fs is hypodoxical;

3. true if fs is hereditarily successful and the solution of the equation x̄ = fs(x̄) satisfies

x̄(0) = 1.

4. false if fs is hereditarily successful and the solution of the equation x̄ = fs(x̄)

satisfies x̄(0) = 0.

We will call the classifications the semantic status of s.

Let us continue the examples in Example 2.13 to see how this definition works.

Example 2.27. 1. The Liar: let s ∈ S be such that d(s) = ¬s. Recall that fs :

{0, 1} → {0, 1} and fs(x) = 1− x. This function does not have a fixed point, since

fs(0) = 1 and fs(1) = 0. Therefore, s is paradoxical.

2. The Truth Teller: let s ∈ S be such that d(s) = s. We have fs : {0, 1} → {0, 1} and

fs(x) = x. 0 and 1 are both fixed points of fs. Therefore, s is hypodoxical.

3. Intuitively unproblematic case: Let s1, s2 ∈ S and d(s1) = s2 and d(s2) = ⊤. We

have fs1 : {0, 1}2 → {0, 1}2 with the following table:

(x, y) (1, 1) (1, 0) (0, 1) (0, 0)
fs1(x, y) (1, 1) (0, 1) (1, 1) (0, 1)

and fs2 : {0, 1} → {0, 1} with fs2(x) = 1. Therefore, both fs1 and fs2 are successful,

and hence they are both hereditarily successful. Moreover, the fixed point of fs1 is

(1, 1), and the fixed point of fs2 is 1. Therefore, both s1 and s2 are true.

4. Liar circle: let s0, s1, . . . , sn ∈ S be such that d(si) = si+1 for i < n, and d(sn) = ¬s0.
Then fs0 : {0, 1}n+1 → {0, 1}n+1 with fs0(x̄) = (x1, x2, . . . , xn, 1 − x0). We prove

that this function does not have a fixed point.
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Proof. Assume that x̄ is a fixed point of fs0 . Then we have xi = xi+1 for all i < n

and xn = 1−x0. Therefore, we have x0 = x1 = · · · = xn. Thus, we have x0 = 1−x0,

but this is impossible as x0 ∈ {0, 1}. Therefore, fs0 does not have a fixed point.

Therefore, s0 is paradoxical. Similarly, we can show that s1, . . . , sn are all paradoxical.

5. Truth Teller circle: let s0, s1, . . . , sn ∈ S be such that d(si) = si+1 for i < n, and

d(sn) = s0. Then fs0 : {0, 1}n+1 → {0, 1}n+1 with fs0(x̄) = (x1, x2, . . . , xn, x0).

One can easily see that there are two fixed points of fs0, namely (0, 0, . . . , 0, 0) and

(1, 1, . . . , 1, 1). Therefore, s0 is hypodoxical. Similarly, s1, . . . , sn are all hypodoxical.

6. Yablo’s paradox: let {si | i ∈ ω} ⊆ S be such that d(si) =
∧
i<j sj for i < n, and

d(sn) = ¬s0. Then fs : {0, 1}ω → {0, 1}ω with the j-th coordinate of fs0 given by

fs0(x̄)(j) = min{1− xi | j ≤ i}.

We show that this function does not have a fixed point.

Proof. Assume that x̄ is a fixed point of fs0 . Then xj = fs0(x̄)(j) = min{1− xi |
j ≤ i} for all j ∈ ω.

If x0 = 1, then, since x0 = min{1− xi | 0 ≤ i}, we have xi = 0 for all i > 0. Then

0 = x1 = min{1− xi | 1 ≤ i} = 1, contradiction.

If x0 = 0. Then there exists j such that xj = 1. Then we have xi = 0 for all i > j.

However, then 0 = xj+1 = min{1− xi | j + 1 ≤ i} = 1, contradiction again.

Therefore, fs0 does not have a fixed point.

Therefore, s0 is paradoxical. Similarly, we can show that s1, . . . , sn are all paradoxical.

This theory aligns very well with how we classify a sentence in practice. Take Yablo’s

paradox as an example: we first decide which sentences are relevant here (formally, we

determine the variable set), and then we assume that there is a way to assign a truth

value for all the relevant sentences in the paradox (we assume fs0 has a fixed point), and

we show that a contradiction can be derived whatever value we assign to the first sentence

(we prove that fs0 has no fixed point by contradiction). Therefore, the way we derive the

contradiction in natural language exactly parallels the way we derive the contradiction in

the above proof.

One might note that Definition 2.26 does not cover all the possibilities of fs. Namely,

we did not give a name for the case where fs is successful, but not hereditarily successful.

What can we say about them? In fact, we will show in Section 5.1 that these are sentences

which depend on a hypodoxical sentence, and the existence of such sentences would give

us a sense in which hypodoxical sentences are also paradoxical. However, let us continue

with the study of truth first.
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2.3 Properties of Truth

In this section, we first explicate and dispel the concern that the definition of truth might

not be coherent. Then, we study some properties of true sentences according to our

classification.

Let T be the set of all true sentences in a sentence system (S, d). Is T coherent; or, in

other words, could there be true sentences which disagree with each other? There are

two situations that we would say intuitively that T is not coherent. Firstly, there might

be s1, s2 ∈ T , where s2 depend on s1, but the ascription function of s2 says s1 is false.

Secondly, there might be s1, s2 ∈ T , such that they do not depend on each other, but

there exists s3 such that s1 and s2 depend on s3. In this case, the ascription functions of

s1 and s2 would each give a truth value for s3, but it seems like these values might be

different.

However, we can show that these two situations can never happen by the following

lemma.

Lemma 2.28. Let s1, s2 ∈ T , and s3 ∈ V (s1) ∩ V (s2). Then the naive truth value of s3

as determined by fs1 is the same as the naive truth value of s3 as determined by fs2.

Remark 2.29. Note that the first situation is a special case of this lemma where s3 = s1.

Proof. Since s1, s2 ∈ T , we have fs1 and fs2 are hereditarily successful. Since s3 ∈
V (s1) ∩ V (s2), we have that fs3 agree with fs1 and fs2 . In particular, the naive truth

value of s3 as determined by fs3 is the same as the naive truth value of s3 as determined

by fs1 or fs2 . Thus, the naive truth value of s3 as determined by fs1 is the same as the

naive truth value of s3 as determined by fs2 .

Without the coherency concern, let us study more about the properties of true sentences.

An interesting question to ask about this theory is its behaviour with respect to classical

tautologies. Are all classical tautologies in T ? This is not the case. For instance, consider

L1, which says “L1 is not true”, while L2 says “L1 is true or L1 is not true”. This

example can be modeled in the formal language by s1, s2 ∈ S where d(s1) = ¬s1 and

d(s2) = s1 ∨ ¬s1. Then one can check that fs2 does not have any fixed point, so s2 is

paradoxical, although it is a classical tautology. In fact, we have:

Lemma 2.30. If s is true or false, then for all t ∈ Vs, t is also true or false. Moreover,

the truth assignment for t agrees with the truth value it obtains from fs in the following

sense: if the naive truth value of t ∈ Vs is 0 according to fs, then it is false; and if the

naive truth value of t ∈ Vs is 1 according to fs, then it is true.

Proof. This is a straightforward consequence of Lemma 2.20.

Note that the other direction of this lemma holds as well — if s only depends on true

or false sentences, then s itself is also either true or false:
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Lemma 2.31. Let s ∈ S be a sentence in the sentence system (S, d). If all t ∈ Ds are

either true or false, then s is either true or false.

Proof. This follows from Lemma 2.22.

Thus, we see that classical tautologies that depend on problematic sentences are not

classified as true or false. What about classical tautologies that depend only on true or

false sentences? We have:

Lemma 2.32. Let s ∈ S be a sentence in the sentence system (S, d), and all sentences in

Ds are either true or false. If d(s) is a classical tautology, then s is true; and if d(s) is a

classical contradiction, then s is false.

Proof. If d(s) is a classical tautology, Jd(s)Kv = 1 for all valuations v. Moreover, since all

sentences in Ds are either true or false, we have fs is hereditarily successful by lemma

2.22, and the fixed point of fs satisfies x(0) = 1. Therefore, s is true. Similar for the case

where d(s) is a classical contradiction.

However, true sentences are more than just classical tautologies (and false sentences

are more than just classical contradictions):

Example 2.33. Let s1, s2 ∈ S where d(s1) = (¬s1 ∧ s2) ∨ (s1 ∧ ¬s2) and d(s2) =

(s1 ∧ s2) ∨ (¬s1 ∧ ¬s2). We have Vs1 = {s1, s2} and Vs2 = {s2, s1}.
Then one can see that fs1 is the function with the following table:

(x, y) (1, 1) (1, 0) (0, 1) (0, 0)
fs1(x, y) (0, 1) (1, 0) (1, 0) (0, 1)

and fs2 is the function with the following table:

(x, y) (1, 1) (1, 0) (0, 1) (0, 0)
fs2(x, y) (1, 0) (0, 1) (0, 1) (1, 0)

Therefore, (1, 0) is the only fixed point of fs1, and (0, 1) is the only fixed point of fs2.

Both of them give s1 the naive truth value of 1 and s2 the naive truth value of 0. Therefore,

s1 is true and s2 is false.

However, s1 is not a classical tautology, and s2 is not a classical contradiction.

These kinds of sentences correspond to the logic puzzles: let there be a village where

all the inhabitants are either knaves (who always lie) or knights (who also always tell the

truth). We meet two people in the village, and one of them says “I am a knave and the

other person is a knight, or the other way around”, while the other says “either both of us

are knaves, or both of us are knights”. Do we have enough information to determine who

they are? I believe that the answer is yes — the first person is a knight and the second is

a knave — and the reasoning is exactly the same as the reasoning we used in the above

example. Also, recall that this is the example I gave in Section 1.2.
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2.4 Sentence Systems and Isomorphism

In this section, I discuss how well the theory we have developed behave with respect to the

sentence system. Specifically, we will prove that for any sentence ϕ ∈ Sent(LS), we can

always assume that there is an s in a sentence system (S, d) such that d(s) = ϕ. Moreover,

the semantic status of a sentence is independent of the sentence system it resides in.

Firstly, let us begin with a seemingly innocuous issue. When I discuss, for example, the

Liar paradox, I take an s in a sentence system (S, d) such that d(s) = ¬s. However, do we

just assume that such a letter s exists in all sentence systems? This question might sound

trivial — it seems like one can just use a sentence system that contains the Liar paradox

when one is interested in the Liar paradox, and use a potentially different sentence system

that contains other sentences when one is interested in other sentences. However, this is

not as straightforward as it seems, especially after we have developed a theory of semantic

status classification: what if a different choice of S yields a different semantic status for a

sentence? For example, could it be that a sentence is judged paradoxical in one system

but true in another3? We need to formally show that this can never happen: the same

sentence will have the same semantic status in every sentence system it resides in.

Note that two different sentence systems might use different propositional letters to

represent the same sentence in the natural language, so that they are not literally the

same. For example, let S1 = {s1} and d1(s1) = ¬s1, and S2 = {s2} and d2(s2) = ¬s2,
where s1 ̸= s2. Then s1 and s2 are not the same syntactical object, but clearly they are

both representations of the Liar paradox. In the end, we should prove that these sentences

receive the same semantic status in the two systems. Therefore, we need to define what it

means for two sentences from different sentence systems to be the same.

Intuitively, this should mean that they depend on the same sentences and are built

from those sentences in the same way. Note that this definition looks circular as it still

uses the notion of sameness. However, one can already give a formal definition of sameness

using this idea by requiring the denotation pattern for all sentences that they depend on

to be the same.

We first define the substitution of propositional letters in a sentence.

Definition 2.34 (Substitution). ϕ(x0, x1, . . . , xα) and ψ(y0, y1, . . . , yα) be two sentences

in sentence systems (S1, d1) and (S2, d2), respectively
4. The variables xi’s and yj’s are

propositional letters that ϕ and ψ contain, respectively. Let σ : {x0, x1, . . . , xα} →
{y0, y1, . . . , yα} be a bijection. Let x̄ = (x0, x1, . . . , xα) and ȳ = (y0, y1, . . . , yβ).

We write ψ(ȳ) = σ(ϕ(x̄)) if ψ(ȳ) can be obtained from ϕ(x̄) by substituting xj for σ(xj)

for all j ∈ {0, 1, . . . , α}. In this case, we say that ψ is a substitution instance of ϕ with

3This question is especially involved when we discuss in Section 5.3 the classical variants of the theory
I proposed.

4Note that α is an ordinal that might not be finite.
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respect to σ.

For an easy example, let ϕ(x0) = x0 and ψ(y0) = y0. Then by the only σ : {x0} → {y0}
we can see that ψ(y0) = σ(ϕ(x0)). That is, if we substitute x0 for y0, then ψ becomes ϕ.

We then define when two sentence systems are the same:

Definition 2.35 (Isomorphism of Sentence Systems). Let (S1, d1) and (S2, d2) be two

sentence systems. We say that they are isomorphic if there exists a bijection σ : S1 → S2

such that for all s ∈ S1, d2(σ(s)) = σ(d1(s)). We call such σ an isomorphism between

(S1, d1) and (S2, d2).

In words, two sentence systems are isomorphic if they have the same denotation struc-

ture, up to renaming the propositional letters by a bijection σ. Clearly, this isomorphism

is an equivalence relation on the class of all sentence systems.

For example, consider the sentence systems where S1 = {s0, s1, s2} and S2 = {s′0, s′1, s′2},
where d1(s0) = s1 ∧ s2, d1(s1) = ¬s1, and d1(s2) = s1; and d2(s

′
0) = s′1 ∧ s′2, d2(s′1) = ¬s′1,

and d2(s
′
2) = s′1. Then we can see that σ : S1 → S2 sending si to s

′
i is a bijection such

that d2(σ(s)) = σ(d1(s)). Indeed, there is really no distinction between these two sentence

systems, excepts that si in S1 is called s′i in S2.

Note that this is a stricter condition than simply requiring their dependence patterns

to be the same. For example, S3 = {t0, t1, t2} where d3(t0) = t1 ∨ t2, d3(t1) = t1, and

d3(t2) = ¬t1 is not isomorphic to S1 or S2, although they have the same dependence

pattern: for example, in S1 we have that s0 depends on to s1 and s2, while s2 and s1

depends on s1; and the same pattern holds for S3, that t0 depends on to t1 and t2, while

t2 and t1 depends on t1. This is because, for example, d3(t0) is the disjunction of the

sentences it depends on, while d1(s0) is their conjunction, and clearly they should not be

seen as representing the same sentence.

We can also say when a system is inside another system:

Definition 2.36 (Embedding). Let (S1, d1) and (S2, d2) be two sentence systems. We

say that S1 is embeddable into S2 if there exists a injection σ : S1 → S2 such that for all

s ∈ S1, d2(σ(s)) = σ(d1(s)). We call such σ an embedding of (S1, d1) into (S2, d2).

Therefore, an isomorphism is just an embedding that is also a bijection. A special case

of an embedding is when a system is a subsystem of another system. In this case, we can

simply take the identity function as the embedding.

Definition 2.37 (Extension and Subsystem). Let (S, d) be a sentence system. Then we

call (S ′, d′) an extension of (S, d) if S ⊆ S ′ and d′(t) = d(t) for all t ∈ S. In this case, we

call (S, d) a subsystem of (S ′, d′).

An equivalent definition for embedding is to say that (S1, d1) is embeddable into

(S2, d2) if it is isomorphic to a subsystem of (S2, d2):
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Lemma 2.38. Let (S1, d1) and (S2, d2) be two sentence systems. Then (S1, d1) is embed-

dable into (S2, d2) if and only if (S1, d1) is isomorphic to a subsystem of (S2, d2).

Proof. ⇒: Let σ : S1 → S2 be an embedding of (S1, d1) into (S2, d2). Then we can take

S ′
2 as the image of S1 under σ, and d′2 as the restriction of d2 to S ′

2. Then it is easy to see

that (S ′
2, d

′
2) is a subsystem of (S2, d2) and (S1, d1) is isomorphic to (S ′

2, d
′
2).

⇐: Let (S ′
2, d

′
2) be a substructure of (S2, d2) such that (S1, d1) is isomorphic to (S ′

2, d
′
2).

Then we can define σ : S1 → S2 by σ(s) = s′ where s′ ∈ S ′ is the image of s under the

isomorphism. Then it is easy to see that σ is an embedding of (S1, d1) into (S2, d2).

An important example of a subsystem is the following. Let s be a propositional letter

in the sentence system (S, d). Moreover — recall that d is a function from S to Sent(LS)
— let us denote the set {ϕ ∈ Sent(LS) | ϕ = d(t) for some t ∈ Vs} as d(Vs). Then, by

definition of the Vs as the transitive closure of the propositional letters generated by s

and the dependence relation, we can easily see that d(Vs) ⊆ Vs. Therefore, (Vs, d|Vs) is
also a sentence system, where d|Vs is the restriction of d to Vs. This is clearly a subsystem

of (S, d).

Now we can define when two sentences are the same. Though we still call them

isomorphic instead of “same”, because the latter might lead to the confusion of viewing

them as the same syntactical objects.

Definition 2.39 (Isomphism of Sentences). Let (S1, d1) and (S2, d2) be two sentence

systems. Let s1 ∈ S1 and s2 ∈ S2. We say that s1 and s2 are isomorphic if (Vs1 , d1|Vs1 )
and (Vs2 , d2|Vs2 ) are isomorphic under an isomorphism σ : Vs1 → Vs2 such that σ(s1) = s2.

Note that in this case, we can simply identify t ∈ Vs1 with σ(t) ∈ Vs2 :

Lemma 2.40. Let (S1, d1) and (S2, d2) be two sentence systems. Let s1 ∈ S1 and s2 ∈ S2

be two sentences that are isomorphic. Then there exists sentence systems S ′
1 and S ′

2 such

that S ′
1 is isomorphic to S1 and S ′

2 is isomorphic to S2, and there exists t ∈ S ′
1 ∩ S ′

2 such

that t is isomorphic to s1 and s2.

Proof. Simply rename s1 and s2 to t in S1 and S2, respectively (where t /∈ S1 ∪ S2, so it

is an unused propositional variable).

Isomorphic sentences have the same ascription function:

Lemma 2.41. Let (S1, d1) and (S2, d2) be two sentence systems. Let s1 ∈ S1 and s2 ∈ S2

be isomorphic sentences. Then fs1 = fs2.

Proof. The ascription function of a sentence is clearly invariant under renaming the

variables occurring in the sentence.

Therefore, we see that the semantic status of a sentence determined by this theory is

invariant under the choice of sentence systems.
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Corollary 2.42. Let (S1, d1) and (S2, d2) be two sentence systems. Let s1 ∈ S1 and

s2 ∈ S2 be isomorphic sentences. Then s1 and s2 have the same semantic status: s1 is

true (false, paradoxical, hypodoxical) iff s2 is true (false, paradoxical, hypodoxical).

Proof. This is clear as these semantic statuses only depend on the ascription function.

A related question is about the classification. According to Definition 2.26, we only

classified the semantic status of propositional letters in a sentence system (S, d). Thus,

if one is interested in the semantic status of s0 ∧ s1, where s0, s1 ∈ S, one needs to first

find an s ∈ S such that d(s) = s0 ∧ s1, and then classify s. Are there always such an s

in a sentence system (S, d)? In a finite propositional language, one can simply assume

that S is countable and d : S → Sent(LS) is a bijection, because in such languages the

cardinality of the set of propositional letters is the same as the cardinality of the set of

sentences. However, in an infinite propositional language, this is not the case: the set of

sentences has a strictly greater cardinality. Therefore, in any sentence system (S, d), there

is always a sentence ϕ ∈ Sent(LS) such that there is no s ∈ S with d(s) = ϕ. However,

because of Lemma 2.42, we can always just work in a larger system which has a name for

every sentence in the original system, and this process can be repeated indefinitely.

On top of that, if (S1, d1) and (S2, d2) have some isomorphic sentences, then we can

always find a system (S3, d3) such that (S1, d1) and (S2, d2) are embeddable into (S3, d3),

and the isomorphic sentences in S1 and S2 become the same sentences in S3. This

means that even though we might use different sentence systems while studying different

sentences, we can in fact assume that they are all in the same sentence system.

Lemma 2.43. Let (S1, d1) and (S2, d2) be two sentence systems. Let (S, d) be a sentence

system embeddable into (S1, d1) and (S2, d2), with embeddings σ1 : S → S1 and σ2 : S → S2.

Then there exists a sentence system (S3, d3) such that (S1, d1) and (S2, d2) are embeddable

into (S3, d3), via τ1 : S1 → S3 and τ2 : S2 → S3, such that τ1 ◦ σ1 = τ2 ◦ σ2.

(S1, d1)

(S, d) (S3, d3)

(S2, d2)

τ1σ1

σ2 τ2

Proof. Let S3 = S ⊔ (S1 \ σ1(S)) ⊔ (S2 \ σ2(S)). Define d3 on S3 as follows: for all s ∈ S,

d3(s) = d(s); for all s ∈ S1, d3(s) = d1(s); and for all s ∈ S2, d3(s) = d2(s). Define

τ1 : S1 → S3 as the inclusion map on S1 \ σ1(S) and τ1(σ(s)) = s for all s ∈ S, and

τ2 : S2 → S3 as the inclusion map on S2 \ σ2(S) and τ2(σ(s)) = s for all s ∈ S. It is

easy to see that τ1 and τ2 are embeddings of (S1, d1) and (S2, d2) into (S3, d3) and satisfy

τ1 ◦ σ1 = τ2 ◦ σ2.
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In words, we can always paste (S1, d1) and (S2, d2) together along the common subsys-

tem (S, d)5:

Figure 2.1: Pasting S1 and S2 along S.

Collecting all the results above, in practice, for any sentence system and any sentences

that we are interested in, we can always assume that there are propositional letters

in the sentence system that represent them, without worrying about whether it would

influence the semantic status of any sentence in the language. Though strictly speaking,

we sometimes need to move to a larger system.

This is a very desirable feature, since the sentences that s does not depend on either

directly or indirectly should be irrelevant to the semantic status of s. Moreover, as a

theory of truth that aims to guide our classification of sentences in the natural language,

it should be able to assume that all sentences of interests are in the language system.

I would later argue that a naive modification to the Revision Theory of truth fails to

respect this feature, because the revision rule is globally applied to all sentences in the

sentence system, making the classification sensitive to which sentences are included in the

system.

2.5 Interpretation of the Language*

We now discuss the limitation of this language and how to interpret a theory formed in

this formal language.

Note that this section and the next is a supplementary discussion to the rest of the

thesis, and the readers may safely skip both sections on first reading without affecting the

understanding of the rest of the thesis. Nevertheless, these two sections are important

for understanding the scope of the theory and how to use it to guide the classification of

sentences in natural language in a rigorous way.

Firstly, as a propositional language, its expressive power is limited — it cannot look

into the detailed structure of a sentence in the sense that it does not have function and

5In fact, this is the amalgamation property. See, for example, (Tent, Ziegler, 2012) for a more detailed
discussion of this property.
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predicate symbols. Therefore, it is not possible for us to distinguish between, for example,

“1 + 1 = 2”, “1 + 2 = 3”, and “grass is green”. In a first order language, these can be

represented formally as “1 + 1 = 2”, “1 + 2 = 3”, and “Green(grass)”, and we can give a

model where these are indeed true. In this propositional language, however, we cannot

distinguish between these truths that depend only on worldly facts. All of them will

simply be represented as ⊤. Similarly, all falsehoods that depend only on worldly facts

will be represented as ⊥.

This is a serious limitation for those who want to use the language to study, for

example, arithmetical truth, because only after knowing the truth of a sentence can we

then represent the sentence in our formal language. However, this is not a problem for us,

because what we are interested in here using this language is only the truth and falsity of

the sentences which depends also on other sentences.

Thus, the choice of the language is the reflection of a simplified purpose: assume

that we have already known the worldly facts; how do we determine the truth value of

sentences that refer to the expressions of these facts, or those that refer to each other? In

a word, it is not of our current interest to use the language to study worldly facts.

Nevertheless, it would indeed be an interesting project to develop these ideas in a first

order language, for example, in the language of arithmetic, where we could use the theory

to both determined arithmetical truth and the truth of sentences that refer to each other,

thus giving a theory of truth in a first order language. However, as observed by (Beringer

and Schindler, 2017) this is much harder than doing it in this propositional language. We

will discuss this in more detail in Chapter 6.

Aside from the limitations resulting from the choice of a propositional language, there

are also some potential difficulties resulting from the use of the denotation function. We

should be able to apply a theory of truth formed in this language to the natural language,

otherwise it would be unclear why one should care about it in such a limited propositional

language. For example, suppose I classify the sentence s0 with d(s0) = ¬s0 as paradoxical.

It is not of much interest to just claim that what we do is classifying a sentence s0 in the

infinite propositional language as paradoxical. Unlike the first order language — which is

of great significance because of its fruitful application in mathematics — this propositional

language is just designed to study the paradox. Therefore, we want to interpret this formal

result as saying that the Liar sentence “this sentence is not true” is paradoxical. However,

deviating from the first order language again, this language lacks a truth predicate, so it is

not as clear how to apply a theory of truth designed in this language to answer questions

about truth in natural language.

In the following, I will give examples about truth that one might want to ask and

discuss the challenges one might encounter while trying to answer them using a theory in

this language. Then I propose two suggestions on how to deal with these challenges.

Firstly, one might wonder whether this language can be used to represent iterated truth.
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For example, how do we distinguish between “grass is green”, “True(grass is green)”,

and “True(True(grass is green))”? In fact, this is quite straightforward. We express6

“grass is green” by ϕ0 = ⊤, “True(grass is green)” by s1 such that d(s1) = ϕ0 = ⊤,

and “True(True(grass is green))” by s2 such that d(s2) = s1. Therefore, the denotation

function d is really understood as taking the place of truth predicate in front of every

propositional letter: suppose d(s) = ϕ(s0, . . . , sα), where si is interpreted as a sentence Li,

then s represents the sentence ϕ(True(L0), . . . , T rue(Lα)). Note that this is consistent

with our previous examples: d(s0) = ¬s0 is interpreted as the Liar sentence L0 saying “L0

is not true”, and d(s1) = s1 is interpreted as the Truth Teller sentence L1 saying “L1 is

true”.

There is an immediate problem with this interpretation: what about sentences that

contain connectives inside the scope of a truth predicate? For example, “the negation

of this sentence is true” or “it is true that L1 and L2” where L1 and L2 are just some

normal sentences like “grass is green”. These sentences can be faithfully translated into

first order language as “True(⌜¬L⌝)” and “True(⌜L1 ∧ L2⌝)”, respectively. Given our

interpretation, there is no way to represent them in the propositional language, since the

scope of a truth predicate only ever contains the name of a single sentence.

One might propose that this is not a problem because we can freely interpret our

formal results into natural language. For example, by classifying the sentence s1 such that

d(s1) = ¬s1 as paradoxical, we can conclude that both L1 saying “L1 is not true” and

L′
1 “the negation of L′

1 is true” are paradoxical. In general, the answer to (1) whether a

sentence like “Li is not true” is true is the same as the answer to (2) whether a sentence

like “the negation of Li is true”; and the answer to (1) whether a sentence like “it is true

that Li and Lj” is true is the same as the answer to (2) whether a sentence like “Li is

true and Lj is true” is true.

However, this freedom of interpretation comes at the cost of assuming some metalin-

guistic principles — on what grounds can we claim that the answer to (1) is the same as

the answer to (2)? The most straightforward answer is that we assume the truth predicate

commutes with logical connectives. Therefore, in the above examples, the sentence “the

negation of this sentence is true” is just equivalent to the sentence “this sentence is not

true”, and the sentence “it is true that L1 and L2” is equivalent to the sentence “L1 is

true and L2 is true”. Nevertheless, these assumptions are too strong for the specific theory

I present in this thesis. Recall from the previous paragraph that we are able to represent

iterated truth in the propositional language. We will see later that the theory of truth

I propose will suggests that the truth predicate is idempotent: for any sentence L, we

would have “L is true” if and only if “it is true that L is true”. Unfortunately, this would

be inconsistent with the assumption that the truth predicate commutes with all logical

connectives (see Halbach and Leigh, 2024, Chapter 11; Halbach, 2014, Chapter 13).

6Note that ⊤ is not a propositional variable.
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There are two ways out of this dilemma — either by committing to weaker metalin-

guistic principles or admitting the expressive limits of our language. First, we do not

really need to assume that the truth predicate commutes with all logical connectives.

Instead, we can just assume that (i) the truth predicate is idempotent, and (ii) the truth

predicate commutes with logical connectives inside the scope of a truth predicate. For

example, instead of assuming that “L is not true” if and only if “the negation of L is

true”, we can assume that “it is true that L is not true” if and only if “it is true that the

negation of L is true”. This can still solve our problem because it would indeed allow us

to conclude that the answer to (1) whether a sentence like “the negation of this sentence is

true” is true is the same as the answer to (2) whether a sentence like “this sentence is not

true” is true. Moreover, these assumptions are indeed milder — formulated in the most

straightforward way in the first order language, they are implied by the Kripke–Feferman

theory of truth (see Halbach and Leigh, 2022; Halbach, 2014: Chapter 15).

However, one might not want to commit to any such metalinguistic principles. For

example, it is not at all clear that the principle that the truth predicate commutes with

logical connectives should be given up in favour of the principle that the truth predicate

is idempotent (see Halbach and Leigh, 2022; Halbach, 2014, Chapter 14). In this case,

I suggest that one should just admit the expressive limits of the language. One cannot

expect to have a fruitful or even consistent theory by giving completely free interpretations

to the formal results of this theory. In particular, I suggest that one interpret the language

in the way presented in the previous paragraph — understand d as taking the place of

truth predicate in front of every propositional letter — because in this way we can at

least cover the most important examples of semantic paradoxes in the literature.

Admittedly, both are not ideal solutions, but the reason we have these limitations is

that we are working only in a propositional language, and we do not have the expressive

power to express the truth predicate. However, as we have seen, the theory of truth built

from it can already be very fruitful in guiding us to understand most of the significant

semantic paradoxes, such as the Liar paradox, the Truth Teller paradox, and the Yablo’s

paradox. Moreover, as I will discuss in the Chapter 6, the ideas have the potential to be

developed in a first order theory, where no metatheoretical assumptions are needed.

2.6 Interpretation of the Theory*

We now move on to discuss how to interpret the theory we have developed in this

propositional language. As discussed in the previous section, we have to either assume

some metatheoretical assumptions or admit that the expressive power of the language has

some limitations. We now show that if one is willing to accept those assumptions, then

the theory can also prove that the formal counterparts of these assumptions hold.

Firstly, we need another metatheoretical assumption that the truth predicate is
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idempotent. We just showed in Section 2.4 that if we are interested in whether a sentence

ϕ is true, we can always find a sentence s in the sentence system (S, d) such that d(s) = ϕ.

However, recall from Section 2.5 that this s is interpreted as “ϕ is true”. Thus, if we later

decide that s is true, strictly speaking, we are not saying that ϕ is true, but that “ϕ is true”

is true. Hence, if we want to conclude from the formal theory that the sentence ϕ itself is

true, we need another assumption that the truth predicate is idempotent: “ϕ is true” if

and only if “it is true that ϕ is true”. As we have already discussed, this assumption is a

consequence of the Kripke-Feferman theory of truth. In addition, there is no inconsistency

with our other metatheoretical assumptions.

Hence, we have made the following assumptions in the metatheory: the truth predicate

is idempotent and it commutes with the logical connectives inside the scope of a truth

predicate.

Now we want to show that the theory is really coherent with these assumptions in

the sense that these assumptions can be expressed and proved within the theory. Note a

potential confusion: what is the point of proving, for example, that the truth predicate is

idempotent in a theory that already assumes it? Is it not circular and so meaningless?

Firstly, it is not strictly speaking circular because the assumption is made in the

metatheory, not within the theory. Moreover, the theory can be seen as a model of the

metatheory. It is rather desirable that the model can express and prove some statements

that are true in the metatheory. For example, first order logic is a model of classical

mathematical reasoning. Within first order logic, we express and prove that “proof by

contradiction” holds, while we feel free to prove this fact using the method of proof by

contradiction in the metalanguage. As another example, in set theory, we prove that the

“induction principle” holds by using mathematical induction. There is really no circularity

here — instead, we are proving that the theory built in the formal language is indeed a

very good model of the metatheory.

Let us first show that the truth predicate commutes with negation inside the scope of

truth. Recall that this means “it is true that L is not true” if and only if “it is true that

the negation of L is true”.

Lemma 2.44 (Commuting with Negation). Let ϕ ∈ Sent(LS). Let s1, s2 ∈ S be such

that d(s1) = ϕ and d(s2) = ¬s1. Let s3 ∈ S be such that d(s3) = ¬ϕ. Then the semantic

status of s2 is the same as that of s3.

Remark 2.45. Under other metatheoretical assumptions, s1 represents “ϕ is true”, s2

represents “ϕ is not true”, and s3 represents “the negation of ϕ is true”. Thus, we will

have “it is true that ϕ is not true” if and only if “it is true that the negation of ϕ is true”.

Proof. We first assume that s2 has a certain status and prove that s3 has the same.

1. s2 is paradoxical. Assume for a contradiction that s3 has a fixed point. Then this

fixed point induces a valuation on the propositional variables occurring in ϕ. This
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fixed point clearly induces a fixed point for s1, which in turn can easily be extended

to a fixed point for s2. This is a contradiction.

2. s2 is hypodoxical. Let x̄ and ȳ be two distinct fixed points of fs2 . Let vx and

vy be the valuation induced by x̄ and ȳ respectively. I claim that there must

be some t ∈ V (s1) such that vx(t) ̸= vy(t). Otherwise, by 2.4 we must have

vx(s2) = Jd(s2)Kvx = J¬s1Kvx = J¬s1Kvy = vy(s2). This means that vx and vy are the

same valuation on V (s2), which could happen only if x̄ = ȳ. This is a contradiction.

Therefore, vx and vy induce distinct fixed points for fs1 . Let w̄ and v̄ be two distinct

fixed points of fs1 . Then changing v0 and w0 to 1− v0 and 1−w0 gives two distinct

fixed points for fs3 . Thus, s3 is also hypodoxical.

3. s2 is true. Using ideas similar to those in the previous cases, we can see s3 is also

true.

4. s2 is false. Using ideas similar to those in the previous cases, we can see s3 is also

false.

Next, we need to assume s3 has a certain status and prove that s2 has the same. The

proof is similar to the above case, so we omit it.

We now express the other metatheoretical assumptions. However, the proofs are very

similar to the above case, so we omit them.

Lemma 2.46 (Idempotence). Let ϕ ∈ Sent(LS). Let s1, s2 ∈ S be such that d(s1) = ϕ

and d(s2) = s1. Then the semantic status of s1 is the same as that of s2.

Lemma 2.47 (Commuting with Conjunction). Let ϕ, ψ ∈ Sent(LS), and s1, s2 ∈ S be

such that d(s1) = ϕ and d(s2) = ψ. Let s3 ∈ S be such that d(s3) = s1 ∧ s2. Then s3 is

true if and only if s1 and s2 are both true.

Lemma 2.48 (Commuting with Disjunction). Let ϕ0, . . . , ϕα ∈ Sent(LS), and s1, . . . , sα ∈
S be such that d(si) = ϕi for all i ≤ α. Let s ∈ S be such that d(s) =

∧
i≤α si. Then s is

true if and only if all si’s are true.

Therefore, the theory is indeed coherent with the metatheoretical assumptions we

made.
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Chapter 3

Comparison with Kripke’s Theory of

Truth

There are two dominant theories which are also hierarchy-free — Kripke’s minimal fixed

point theory of truth and the Revision Theory of Truth. In the following two chapters, I

compare the proposed theory with these two theories.

Note that Kripke’s theory and the Revision Theory are both formulated in the first

order language, while the theory I proposed is formulated in an infinitary propositional

language. Therefore, I will develop their theories in the infinitary propositional language

we use here. Then we can formally compare the extension of truth in the two theories

with the extension of truth in our theory. Nevertheless, to illustrate that the difference is

not a consequence of the way I formulated the theory in this language, I will argue that

the corresponding differences also show up in the first order language.

3.1 Kripke’s Theory of Truth in the First Order Lan-

guage

Let us first review Kripke’s original theory in the first order language of arithmetic

L = {0,+,×, s}, together with its standard model N. The goal is to extend the language

with a truth predicate True. We call the extended language LT (cf. Kripke, 1975; Field,

2008: Ch3).

The key idea of Kripke’s theory is that we determine the extension of the truth

predicate step by step: imagine that “we are explaining the word ‘true’ to someone who

does not yet understand it” (Kripke 1975, p. 701) by telling them the T -schema, namely,

that we can say a sentence is true if we can assert that sentence itself. At the first step,

they would understand whether a sentence that does not involve the notion of truth is

true or false. For example, they would grasp that “snow is white” is true because they

know they can assert “snow is white”. At the second step, they now also know that they
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can assert “‘snow is white’ is true” and hence T -schema applies again to conclude that

“‘snow is white’ is true” is true. “In this manner, the subject will eventually be able to

attribute truth to more and more statements involving the notion of truth itself.” (p.

701).

Hence, in general, at the beginning, the truth of every sentence is indeterminate. At

each step, based on what have been found to be true or false, we use an update rule to

decide which previously indeterminate sentences can now be confirmed as true or false.

This update procedure goes to the transfinite and eventually reaches a fixed point where

no more sentences can be confirmed as true or false.

Formally, we assign to True both an extension S1, containing (codes of) sentences

which are true, and an anti-extension S2, containing sentences which are false. Note that

S1, S2 ⊆ N, but as they are just codes of sentences in our language, we can just see them

as sets of sentences in LT . We require S1 ∩ S2 = ∅ and the other sentences which are

in neither of them are understood as undecided. Given a pair (S1, S2), we can evaluate

the truth of a sentence ϕ ∈ Sent(LT ) according to some three-valued logic. This process,

taking a pair (S1, S2), and then returning a valuation for a sentence ϕ from the values

{0, 1
2
, 1}, is called a valuation scheme. We present the valuation schemes based on strong

Kleene logic and weak Kleene logic1.

Definition 3.1 (Strong Kleene Valuation Scheme). The strong Kleene valuation scheme

VSK : (P(N) × P(N)) → (Sent(LT ) → {0, 1
2
, 1}) is defined as follows: let (S1, S2) ∈

P(N) × P(N) be a pair of sets of sentences in LT , where S1 ∩ S2 = ∅. Then we define

v = VSK(S1, S2) : Sent(LT ) → {0, 1
2
, 1} recursively as follows: let ϕ ∈ Sent(LT ),

1. if ϕ is an atomic sentence: in L, then v(ϕ) = 1 if N |= ϕ, v(ϕ) = 0 if N ̸|= ϕ, and

v(ϕ) = 1
2
otherwise;

2. if ϕ = True(t) for some numeral t, then v(ϕ) = 1 if t ∈ S1, v(ϕ) = 0 if t ∈ S2, and

v(ϕ) = 1
2
otherwise;

3. if ϕ = ¬ψ, then v(ϕ) = 1 if v(ψ) = 0, v(ψ) = 0 if v(ϕ) = 1, and v(ϕ) = 1
2
otherwise;

4. if ϕ = ψ1 ∧ ψ2, then v(ϕ) = 1 if v(ψ1) = v(ψ2) = 1, v(ϕ) = 0 if one of v(ψ1) and

v(ψ2) is 0, and v(ϕ) = 1
2
otherwise;

5. if ϕ = ψ1 ∨ ψ2, then v(ϕ) = 1 if one of v(ψ1) and v(ψ2) is 1, v(ϕ) = 0 if v(ψ1) =

v(ψ2) = 0, and v(ϕ) = 1
2
otherwise;

6. if ϕ = ∃xψ(x), then v(ϕ) = 1 if there exists a ∈ N such that v(ψ(a)) = 1, v(ϕ) = 0

if for all a ∈ N, v(ψ(a)) = 0, and v(ϕ) = 1
2
otherwise;

1For a detailed discussion of the motivations and properties of the Kleene logics, see (Priest, 2008:
Chapter 7).
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7. if ϕ = ∀xψ(x), then v(ϕ) = 1 if for all a ∈ N, v(ψ(a)) = 1, v(ϕ) = 0 if there exists

a ∈ N such that v(ψ(a)) = 0, and v(ϕ) = 1
2
otherwise.

The valuation scheme based on weak Kleene logic is defined similarly, by modifying

the clauses for ∧, ∨, ¬, ∃, and ∀ according to weak Kleene logic.

Definition 3.2 (Weak Kleene Valuation Scheme). The weak Kleene valuation scheme

VWK : (P(N) × P(N)) → (Sent(LT ) → {0, 1
2
, 1}) is defined as follows: let (S1, S2) ∈

P(N) × P(N) be a pair of sets of sentences in L+, where S1 ∩ S2 = ∅. Then we define

v = VSK(S1, S2) : Sent(LT ) → {0, 1
2
, 1} recursively as follows: let ϕ ∈ Sent(LT ),

1. if ϕ is an atomic sentence: in L, then v(ϕ) = 1 if N |= ϕ, v(ϕ) = 0 if N ̸|= ϕ, and

v(ϕ) = 1
2
otherwise;

2. if ϕ = True(t) for some numeral t, then v(ϕ) = 1 if t ∈ S1, v(ϕ) = 0 if t ∈ S2, and

v(ϕ) = 1
2
otherwise;

3. if ϕ = ¬ψ, then v(ϕ) = 1 if v(ψ) = 0, v(ψ) = 0 if v(ϕ) = 1, and v(ϕ) = 1
2
otherwise;

4. if ϕ = ψ1 ∧ ψ2, then v(ϕ) = 1 if v(ψ1) = v(ψ2) = 1, v(ϕ) = 1
2
if one of v(ψ1) and

v(ψ2) is
1
2
, and v(ϕ) = 0 otherwise;

5. if ϕ = ψ1 ∨ ψ2, then v(ϕ) = 0 if v(ψ1) = v(ψ2) = 0, v(ϕ) = 1
2
if one of v(ψ1) and

v(ψ2) is
1
2
, and v(ϕ) = 1 otherwise;

6. if ϕ = ∃xψ(x), then v(ϕ) = 1
2
if there exists a ∈ N such that v(ψ(a)) = 1

2
, v(ϕ) = 0

if for all a ∈ N, v(ψ(a)) = 0, and v(ϕ) = 1 otherwise;

7. if ϕ = ∀xψ(x), then v(ϕ) = 1 if for all a ∈ N, v(ψ(a)) = 1, v(ϕ) = 1
2
if there exists

a ∈ N such that v(ψ(a)) = 1
2
, and v(ϕ) = 0 otherwise.

Then given a pair (S1, S2) of initial attempts for the extension and anti-extension

for True, we can apply the valuation scheme to obtain a valuation v for any sentence

ϕ ∈ Sent(LS). The sentences which are assigned 1 would then become our next attempt

for the extension of True, and those assigned 0 the next anti-extension. This update

process is called the Kripke-jump.

Definition 3.3 (Kripke-jump). Let V be a valuation scheme. The Kripke-jump JV :

P(N)× P(N) → P(N)× P(N) of V is defined as follows: let (S1, S2) ∈ P(N)× P(N) be
a pair of sets of sentences in LT . Then we define JV (S1, S2) = (S ′

1, S
′
2) where S

′
1 = {ϕ ∈

Sent(LT ) | V (S1, S2)(ϕ) = 1} and S ′
2 = {ϕ ∈ Sent(LT ) | V (S1, S2)(ϕ) = 0}. We say that

S ′
1 has truth value 1 relative to (S1, S2) and S

′
2 has truth value 0 relative to (S1, S2).
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Starting from the empty sets (∅, ∅), if we keep applying the Kripke-jump, we will

eventually reach a fixed point (S1, S2) such that JV (S1, S2) = (S1, S2), as long as the

valuation scheme is nice enough2. In the following, we assume V is either VSK or VWK .

For simplicity of notation, we write (X, Y ) ⊆ (X ′, Y ′) when X ⊆ X ′ and Y ⊆ Y ′.

Theorem 3.4 (Kripkean Truth). Let (X0, Y0) = (∅, ∅). For any ordinal α, let

(Xα+1, Yα+1) = JV (Xα, Yα). If α is a limit ordinal, let (Xα, Yα) =
⋃
β<α(Xβ, Yβ). Then

there exists an ordinal β such that (Xβ+1, Yβ+1) = JV (Xβ, Yβ). We denote Xβ as TK , the

Kripkean extension of truth.

Proof. By going through the recursive definition of V , one can routinely check that if

(X, Y ) ⊆ (X ′, Y ′), then JV (X, Y ) ⊆ JV (X ′, Y ′). As (X0, Y0) = (∅, ∅), we have (X0, Y0) ⊆
(X1, Y1). Then a straightforward induction argument shows that (Xα, Yα) ⊆ (Xα+1, Yα+1)

for all ordinals α. Since the number of sentences is countable, there must be a β such

that (Xβ+1, Yβ+1) = JV (Xβ, Yβ).

3.2 Kripke’s Theory of Truth in the Infinitary Propo-

sitional Language

We now develop a Kripkean theory of truth in the infinitary propositional language.

The essential point is to define the Kripke-jump, which, given a pair of extension and

anti-extension for truth, outputs a revised pair based on them.

We first define the two valuation schemes, which — given an extension and an anti-

extension of truth — would allow us to evaluate the truth value of any sentence in the

language. Recall that in the theory I proposed, the extension of truth would be a subset

of the propositional letters S in the language. Therefore, we also require the extension

and anti-extension to be subsets of S, so that in the end we can formally compare the

extension of truth in the two theories. Hence, in the propositional language, a valuation

scheme would take a pair of subsets of S, and return a valuation for any sentence in the

language, which is a function from Sent(LS) to {0, 1
2
, 1}.

Definition 3.5 (Strong Kleene Valuation Scheme). The strong Kleene valuation scheme

VSK : P(S) × P(S) → (Sent(LS) → {0, 1
2
, 1}) is defined as follows: let (S1, S2) ∈

P(S) × P(S) be a pair of sets of sentences in S. Then we define v = VSK(S1, S2) :

Sent(LS) → {0, 1
2
, 1} recursively as follows: let ϕ ∈ Sent(LS),

1. if ϕ ∈ {⊤,⊥}: then v(ϕ) = 1 if ϕ = ⊤, v(ϕ) = 0 if ϕ = ⊥;

2. if ϕ = s for some s ∈ S: then v(ϕ) = 1 if s ∈ S1, v(s) = 0 if s ∈ S2, and v(ϕ) =
1
2

otherwise;

2For precise conditions, see (Herzberger, 1982b) and (Beringer and Schindler, 2017).
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3. if ϕ = ¬ψ, then v(ϕ) = 1 if v(ϕ) = 0, v(ϕ) = 0 if v(ϕ) = 1, and v(ϕ) = 1
2
otherwise;

4. if ϕ = ψ1 ∧ ψ2, then v(ϕ) = 1 if v(ψ1) = v(ψ2) = 1, v(ϕ) = 0 if one of v(ψ1) and

v(ψ2) is 0, and v(ϕ) = 1
2
otherwise;

5. if ϕ =
∧
Φ, then v(ϕ) = 1 if for all ψ ∈ Φ, v(ψ) = 1, v(ϕ) = 0 if one of v(ψ) is 0,

and v(ϕ) = 1
2
otherwise.

Remark 3.6. Note that S1 is the extension of truth, while S2 is the anti-extension.

Moreover, clause 2 is where these extensions come into play — this is exactly the same

situation as in the first order case.

Definition 3.7 (Weak Kleene Valuation Scheme). The weak Kleene valuation scheme

VWK : P(S) × P(S) → (Sent(LS) → {0, 1
2
, 1}) is defined as follows: let (S1, S2) ∈

P(S) × P(S) be a pair of sets of sentences in S. Then we define v = VWK(S1, S2) :

Sent(LS) → {0, 1
2
, 1} recursively as follows: let ϕ ∈ Sent(LS),

1. if ϕ ∈ {⊤,⊥}: then v(ϕ) = 1 if d(s) = ⊤, v(ϕ) = 0 if d(s) = ⊥;

2. if ϕ = s for some s ∈ S: then v(ϕ) = 1 if s ∈ S1, v(s) = 0 if s ∈ S2, and v(ϕ) =
1
2

otherwise;

3. if ϕ = ¬ψ, then v(ϕ) = 1 if v(ϕ) = 0, v(ϕ) = 0 if v(ϕ) = 1, and v(ϕ) = 1
2
otherwise;

4. if ϕ = ψ1 ∧ ψ2, then v(ϕ) = 1 if v(ψ1) = v(ψ2) = 1, v(ϕ) = 0 if one of v(ψ1) and

v(ψ2) is
1
2
, and v(ϕ) = 0 otherwise;

5. if ϕ =
∧
Φ, then v(ϕ) = 0 if for all ψ ∈ Φ, v(ψ) = 0, and otherwise it is the same

as the above.

Note that if all propositional letters of a sentence are either in the extension or in

the anti-extension of truth, then the weak Kleene valuation and strong Kleene valuation

will agree on the truth value of this sentence. Moreover, this will just be the classical

valuation of this sentence:

Lemma 3.8. Let ϕ ∈ Sent(LS) and (S1, S2) ∈ P(S)×P(S). Let v : Sent(LS) → {0, 1}
be a classical valuation such that v(s) = 1 for all s ∈ S1 and v(s) = 0 for all s ∈ S2.

If all propositional letters occurring in ϕ are in S1∪S2, then we have VWK(S1, S2)(ϕ) =

VSK(S1, S2)(ϕ) = JϕKv.

Proof. Induction on the complexity of ϕ. Notice from the definition of the Kleene schemes

that when no formula receives the value 1
2
, the valuation schemes agree with the classical

valuation.

We now proceed to define the Kripke-jump.
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Definition 3.9 (Kripke-jump). Let V be a valuation scheme. The Kripke-jump JV :

P(S)×P(S) → P(S)×P(S) of V is defined as follows: let (S1, S2) ∈ P(S)×P(S) be a

pair of sets of sentences in LS. Then we define JV (S1, S2) = (S ′
1, S

′
2) where S

′
1 = {s ∈

S | V (S1, S2)(d(s)) = 1} and S ′
2 = {s ∈ S | V (S1, S2)(d(s)) = 0}.

The fixed point theorem holds as in the first order case, so that we can define the

Kripkean extension of truth in the infinitary propositional language:

Theorem 3.10 (Kripkean Truth). Let (X0, Y0) = (∅, ∅). For any ordinal α, let

(Xα+1, Yα+1) = JV (Xα, Yα). If α is a limit ordinal, let (Xα, Yα) =
⋃
β<α(Xβ, Yβ). Then

there exists an ordinal β such that (Xβ+1, Yβ+1) = JV (Xβ, Yβ). We denote Xβ as TK , the

Kripkean extension of truth.

We denote the Kripkean extension of truth based on the weak Kleene logic as TWK and

the Kripkean extension of truth based on the strong Kleene logic as T SK .

3.3 Supvervaluation Version of Kripke’s Theory of

Truth

In this section, we point out an undesirable feature of the Kripkean theories based on

the Kleene logics, which can be solved by using supervaluation instead of the Kleene

logics. I will follow Field (2008: Ch 10) in the presentation of this theory in the first order

language.

An unsatisfactory feature of the Kripkean theories is that they sacrifice too many of

the classical tautologies. For example, consider a sentence s1 such that d(s1) = s1 ∨ ¬(s1).
Neither Kripkean theories classifies s1 as true, because it is not in the minimal fixed point

— at the initial stage, s1 receives value 1
2
, and it remains so in all later stages because

v(1
2
∨ 1

2
) = 1

2
in both valuation schemes. Note that the original Kripkean theories in the first

order language have this problem as well — a sentence L1 = True(⌜L1⌝) ∨ ¬True(⌜L1⌝)

is not classified as true in the Kripkean theories. Therefore, the problem is just inherent

to Kripke’s construction method basing on the Kleene valuation schemes, instead of on

which language we are working with. The 3-vlaued logics are just so coarse that they

cannot see the relation and differences among sentences having truth value 1
2
. In this

case, when we assign 1
2
to all of L1, ¬L1, and the Liar L at the initial stage, the logic will

become blind to their differences — it cannot see that some sentences among them are the

negation of another, while some other sentences are completely unrelated, so it will evaluate

L1 = True(⌜L1⌝) ∨ ¬True(⌜L1⌝) just the same as the sentence True(⌜L⌝) ∨ True(⌜L⌝).
To solve this problem, one has to use a finer logic.

One way to have Kripke’s theory recognise these classical tautologies is to use su-

pervaluation instead of the Kleene logics. What remains the same is still to assign to
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True both an extension X and an anti-extension Y with X ∩ Y = ∅, and there could be

sentences which are in neither of them. To evaluate the truth of a sentence ϕ, however, we

do not simply use the extension and anti-extension based on some many-valued valuation

scheme. Instead, we look at all candidate extensions Z of truth which are consistent with

our evidence so far — X ⊆ Z and Z ∩ Y = ∅. Thus, Z contains every sentence which is

already classified as true, and does not contain any sentence which is already classified

as false. For each such Z, we have a classical model where the extension of the truth

predicate is interpreted as Z. We can then evaluate ϕ in all these models. If ϕ is true in

all of them, then we say ϕ has truth value 1, if ϕ is false in all of them, then we say ϕ has

truth value 0, while if ϕ is true in some of them and false in others, then we say ϕ has

truth value 1
2
:

Definition 3.11 (Supervaluation). The valuation scheme VSv : (P(N) × P(N)) →
(Sent(LS) → {0, 1

2
, 1}) is defined as follows: let (X, Y ) ∈ P(N)×P(N) be a pair of sets of

sentences in L+, where X ∩ Y = ∅. Then we define v = VSv(X, Y ) : Sent(LS) → {0, 1
2
, 1}

as follows: let ϕ ∈ Sent(LS),

1. If for all Z such that X ⊆ Z and Z ∩ Y = ∅, (N, Z) |= ϕ, then v(ϕ) = 1;

2. If for all Z such that X ⊆ Z and Z ∩ Y = ∅, (N, Z) ̸|= ϕ, then v(ϕ) = 0;

3. Otherwise, v(ϕ) = 1
2
.

The exact same definition for Kripke-jump (Definition 3.3) and the Kripkean extension

of truth (Theorem 3.4) works for the supervaluation scheme.

This solves the problem for the Kripkean theories based on the Kleene logics:

Example 3.12. Let L1 = True(⌜L1⌝)∨¬True(⌜L1⌝) ∈ Sent(LS). Then for any extension

Z of True, we have (N, Z) |= True(⌜L1⌝) ∨ ¬True(⌜L1⌝) because either ⌜L1⌝ ∈ Z or

⌜L1⌝ /∈ Z. Hence, L1 will be added to the extension of truth at the first stage and will

remain there throughout the whole process. Therefore, L1 is classified as true in the

supervaluation scheme.

The supervaluation scheme can be developed in the infinitary propositional language

as follows:

Definition 3.13 (Supervaluation). The valuation scheme VSv : S × S → (Sent(LS) →
{0, 1

2
, 1}) is defined as follows: let (S1, S2) ∈ S × S be a pair of sets of sentences in S.

Then we define v = VSv(S1, S2) : Sent(LS) → {0, 1
2
, 1} as follows: let ϕ ∈ Sent(LS),

1. If for all classical valuation w : S → {0, 1} such that S1 ⊆ {t ∈ S | w(t) = 1} and

{t ∈ S | w(t) = 1} ∩ S2 = ∅, JϕKw = 1, then v(ϕ) = 1;

2. If for all classical valuation w : S → {0, 1} such that S1 ⊆ {t ∈ S | w(t) = 1} and

{t ∈ S | w(t) = 1} ∩ S2 = ∅, JϕKw = 0, then v(ϕ) = 0;
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3. Otherwise, v(ϕ) = 1
2
.

That is, if ϕ comes out true under every classical valuation consistent with our evidence

so far, we add ϕ to our extension of truth; if ϕ comes out false under every such valuation,

we add ϕ to our anti-extension; otherwise we leave ϕ undecided.

The Kripke-jump and the Kripkean extension of truth based on supervaluation are

defined in the same way as the ones above (Definition 3.9 and Theorem 3.10). Let us

denote the Kripkean extension of truth based on supervaluation as T SvK .

We have the counterpart of Example 3.12 in the infinitary propositional language:

Example 3.14. Let s1 ∈ S be such that d(s1) = s1 ∨ ¬s1. Then for classical valuation

w : S → {0, 1}, we have Js1 ∨ ¬s1Kw = 1. Hence, s1 will be added to the extension of

truth at the first stage and will remain there throughout the whole process. Therefore, s1

is classified as true in the supervaluation scheme.

3.4 Comparison with Kripke’s Theory of Truth

We now discuss the relation between the Kripkean theories and the theory proposed in

this thesis3. We will first formally compare the extensions of truth in the various theories,

and then discuss the philosophical significance of the differences. In particular, I will argue

that the proposed theory handles what I will call the “ungrounded tautologies” better

than the Kripkean theories.

Recall that the extension of truth proposed in this essay is denoted by T , and for

convenience we denote the extension of false sentences as F .

Lemma 3.15. 1. TWK ⊊ T .

2. T SK and T are incomparable.

Proof. 1. We prove the first part by proving (Xα, Yα) ⊆ (T, F ) for all α. The base

case is trivial. Now suppose (Xα, Yα) ⊆ (T, F ) for some α. We need to show

(Xα+1, Yα+1) ⊆ (T, F ). By the definition of the Kripke-jump, we have Xα+1 =

{s ∈ S | V (Xα, Yα)(d(s)) = 1}. Let s ∈ Xα+1 be arbitrary. We must have

D(s) ⊆ Xα ∪ Yα — otherwise, there is t ∈ D(s) where V (Xα, Yα) =
1
2
. Then by

the weak Kleene logic, we must have V (Xα, Yα)(d(s)) = 1
2
, contradiction. Then

since (Xα, Yα) ⊆ (T, F ), we have D(s) ⊆ T ∪ F . As s only depends on true or false

sentences, by Lemma 2.31 we have s itself is also either true or false. Since s ∈ Xα+1,

we have V (X)(Xα, Yα)(d(s)) = 1. By inductive hypothesis, Xα ⊆ T and Yα ⊆ F .

Therefore, since the valuation in this language is identical to weak Kleene logic

when all propositional letter receive a classical value, by Lemma 3.8 we must have

3Recall Definition 2.26, the classification criteria of the proposed theory.
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Jd(s)Kv = 1 for a valuation v where v(t) = 1 for all t ∈ Xα and v(t) = 0 for all t ∈ Yα.

Therefore, s ∈ T . The proof for Yα+1 is similar. The limit case is straightforward.

To see that this is a strict inclusion, we consider two important examples.

(a) Let s ∈ S be such that d(s) = s ∨ ¬s. Then, as we discussed in the previous

section, s is in neither TWK nor T SK . We show that it is in T . Clearly, Vs = {s}
and the ascription function fs : (0, 1) → (0, 1) is such that fs(x) = 1. Therefore,

s has a unique fixed point (1, 1), so s ∈ T .

(b) Let s1, s2 ∈ S be such that d(s1) = s2 and d(s2) = s1 ∨ ¬s2. Then according

to the weak Kleene version of Kripke’s construction s1 and s2 receive value
1
2
at the initial stage, and then since they only depend on each other, they

will be assigned the same value throughout the whole process and will never

enter the extension of truth. Therefore, s1, s2 /∈ TWK . However, one can easily

check that fs2(x, y) = (max(1− x, y), y) has a unique fixed point (1, 1), and

fs1(x, y) = (x,max(x, 1− y)) also has a unique fixed point (1, 1). Therefore,

s1, s2 ∈ T .

2. We now show that T SK and T are incomparable. The two examples above also show

that T ̸⊆ T SK . Now let s3, s4 be such that d(s3) = ¬s3 and d(s4) = s3 ∨ ⊤. s3 is the

Liar, which is not true in either theory. However, s4 becomes true at the second

stage of the Kripke-jump based on the strong Kleene logic, and hence s4 ∈ T SK .

Nonetheless, s4 is not true in the theory proposed in this thesis because it depends

on a paradoxical sentence. Therefore, T SK ̸⊆ T .

Moreover, (T, F ) is also a fixed point of the Kripke-jump based on the weak Kleene

logic. This is an interesting result since it gives an extension in the Kripkean hierarchy of

fixed points other than the minimal one.

Lemma 3.16. (T, F ) is a fixed point of the Kripke-jump based on the weak Kleene logic.

Proof. We need to show that (T, F ) = JWK(T, F ). Let X = {s ∈ S | VWK(T, F )(d(s)) =

1}.

1. X ⊆ T : Let s ∈ X be arbitrary. Since we are using weak Kleene logic, as in the proof

above, We must have D(s) ⊆ T ∪ F . As s only depends on true or false sentences,

by Lemma 2.31 we have s itself is also either true or false and Since s ∈ X, we have

VWK(T )(d(s)) = 1. Therefore, s ∈ T . The proof for {s ∈ S | VWK(T, F )(d(s)) = 1}
is similar.

2. T ⊆ X: Let s ∈ T be arbitrary. We have VWK(T, F )(d(s)) = 1. By the definition of

the Kripke-jump, we have X = {s ∈ S | VWK(T, F )(d(s)) = 1}. Therefore, s ∈ X.

40



Lemma 3.17. T and T SvK are incomparable.

Proof. Consider again the pair of sentences s1, s2 ∈ S with d(s1) = s2 and d(s2) = s1∨¬s2.
We have seen that s1, s2 ∈ T . However, we show that they are not in the Kripkean extension

of truth based on supervaluation. We first show that for all α, we have s1, s2 /∈ Xα ∪ Yα.
The base step is trivial. Now suppose s1, s2 /∈ Xα∪Yα for some α. Then let w1 : S → {0, 1}
be a classical valuation such that w1(s1) = 0, w1(s2) = 1, Xα ⊆ {t ∈ S | w1(t) = 1},
and {t ∈ S | w(t) = 1} ∩ Yα = ∅. Let w2 : S → {0, 1} be a classical valuation such that

w2(s1) = 1, w2(s2) = 0, Xα ⊆ {t ∈ S | w2(t) = 1}, and {t ∈ S | w(t) = 1}∩Yα = ∅. There
exists such w1, w2 because s1, s2 /∈ Xα ∪ Yα. Then we have Jd(s1)Kw1 = 1, Jd(s1)Kw2 = 0,

Jd(s2)Kw1 = 0, and Jd(s2)Kw2 = 1. Therefore, s1, s2 /∈ Xα+1 ∪ Yα+1. The limit case

is standard. By induction, we have s1, s2 /∈ Xα ∪ Yα for all α. Then, in particular,

s1, s2 /∈ T SvK .

On the other hand, let d(s1) = ¬s1, d(s2) = s1 ∨ ¬s1, then s2 ∈ T SvK but s2 /∈ T .

We now summarise the differences between these theories and discuss their philosophical

significance.

As we saw in the above proofs, there are examples where the proposed theory classifies

as true, but the Kripkean theories based on Kleene logics do not: the s such that

d(s) = s∨¬s and s1, s2 with d(s1) = s2 and d(s2) = s1 ∨¬s2. The supervaluation version

of Kripke’s theory classifies s as true, but s1 and s2 are not true even in this version.

Thus, there are two important questions to ask about the differences between the

theories:

1. Are there any reasons we should think s1, s2 are true?

2. Are there any reasons we should distinguish between s and the pair s1, s2, with

regard to whether they are true?

In the other direction, there are also sentences classified as true by the Kripkean

theory based on the strong Kleene logic and the supervaluation version, but not by the

theory proposed in this paper: the s3, s4, s5 such that d(s3) = ¬s3, d(s4) = s3 ∨ ⊤, and

d(s5) = s3 ∨¬s3. Then s4 is classified as true in both Kripkean theories, s5 is classified as

true in the supervaluation version only, while neither of them is classified as true in the

proposed theory. Therefore, although s and s5 both have the form of a classical tautology

(p∨¬p), the proposed theory classifies one of them as true and the other as not true, while

all the Kripkean theories do not distinguish between them with regard to truth — those

based on the Kleene logics classify both of them as not true, while the supervaluation

version classifies both of them as true. Thus, we would also want to ask:
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3. Are there any reasons we should distinguish between s and s5 with regard to whether

they are true?

Before answering these questions, let us first see that these are also problems in the

original Kripkean theories in the first order language. The sentence L = True(⌜L⌝) ∨
¬True(⌜L⌝) is not true in the Kripkean theories based on the Kleene logics, while it is true

in the supervaluation version; while L1 = True(⌜L2⌝) and L2 = True(⌜L1⌝)∨¬True(⌜L2⌝)

are not classified as true in all the Kripkean theories. Therefore, these phenomena are

inherent to the Kripkean theories instead of my formulation of them in the infinitary

propositional language.

I will now argue that the answer to all three questions above is positive, and hence

the proposed theory gives a finer classification of truth in these aspects.

For the first two questions, let us look at the corresponding sentences of s1 and s2

in the natural language. s1 corresponds to the sentence L1 = “L2 is true” and s2 to the

sentence L2 = “L1 is true or L2 is not true”. As the theory I proposed shows, there is no

contradiction with T -schema if we assume that both sentences are true. Moreover, this is

the only configuration of truth assignment that does not yield a contradiction.

Furthermore, there is a sense in which this pair of sentences are just the same as the

sentence L = True(⌜L⌝) ∨ ¬True(⌜L⌝), which is the corresponding sentence of s — if

we substitute what L1 says into L2, then L2 really just expresses the tautology “L2 is

true or L2 is not true”. The only difference is that not only are the reference patterns

of L1 and L2 circular, but the tautological structure is also embedded in the circularity.

Let us call these sentences “ungrounded tautologies”. The Kripkean theories based on

the Kleene logics recognise none of the ungrounded tautologies as true, because in these

theories, a true sentence has to be grounded, even if they are just harmless tautologies.

The supervaluation version of Kripke’s theory seems to be an improvement, as it recognises

at least the self-referential tautology s as true. Nevertheless, it has a more serious problem

of making an arbitrary distinction between s and the pair s1, s2. Note that this is a very

general problem — given any tautology ϕ, we can use this trick to replace a subformula

ψ of the tautologies by some θ saying “ψ is true”. Then the new sentence would not be

recognised as true by the Kripkean theories.

The reason for this phenomenon is that the minimal fixed points of Kripke’s theories

— regardless of the versions — are essentially built upon the idea of groundedness. One

starts with the empty set, and then applying the Kripke-jump gives us sentences that

can be seen as true grounded on the truth of nothing (so they are simply grounded),

and then we keep applying the Kripke-jump to get more and more sentences that can be

seen as true grounded on the truth of sentences that we have already seen as grounded.

For a sentence to be considered innocuous, it has to find some sentences that are more

innocuous than itself to be grounded on. In the Kripkean theory based on the Kleene

logics, the s with d(s) = s∨¬s is not in the minimal fixed point because the only sentence
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that it can seek help from is itself, so it can never be proved innocent. The supervaluation

version resolves this problem, basically by taking additional care of sentences that have

an explicit form of a classical tautology. However, as we have seen, it only needs a level

of disguise to make a tautology look suspicious again: the supervaluation version only

saves circular sentences that have explicit forms of classical tautologies, but when the

tautological structures are also embedded in the circularity, it will get lost again.

Lastly, let us resolve the third question — does the theory I propose make an arbitrary

distinction between s and s5? Recall that s corresponds to the sentence L = True(⌜L⌝)∨
¬True(⌜L⌝), while s5 corresponds to the sentence L5 = True(⌜L3⌝) ∨ ¬True(⌜L3⌝),

where L3 is the Liar. It seems that both are just tautologies of the form p ∨ ¬p, and it is

only that the p in L5 is replaced by the Liar.

Firstly, there is a trivial response — since the Liar is well recognised as a paradox, one

has enough reason to be cautious and make a distinction between any sentences involving

the Liar and those that do not.

However, there is an even more substantial reason to make a distinction between L and

L5 with respect to whether they are true. Under some very weak assumptions about the

truth predicate, claiming L5 to be true is equivalent to claiming True(⌜L3⌝)∨True(⌜L3⌝)

to be true — which is, I believe, not what one would want to do.

Lemma 3.18. Under some very weak assumptions about the truth predicate, we have

True(⌜L5⌝) = True(⌜True(⌜L3⌝)∨¬True(⌜L3⌝)⌝) is equivalent to True(⌜True(⌜L3⌝)∨
True(⌜L3⌝)⌝).

Proof. 1. True(⌜True(⌜L3⌝) ∨ ¬True(⌜L3⌝)⌝), assumption;

2. True(⌜True(⌜L3⌝) ∨ L3⌝), by definition we have L3 = ¬True(⌜L3⌝);

3. True(⌜True(⌜True(⌜L3⌝)⌝ ∨ L3⌝)), assume True is idempotent;

4. True(⌜True(⌜True(⌜L3⌝)⌝) ∨ True(⌜L3⌝)⌝), assume True is distributive over ∨;

5. True(⌜True(⌜L3⌝)⌝) ∨ True(⌜True(⌜L3⌝)⌝), assume True is idempotent.

Moreover, with these assumptions, all steps are reversible.

Therefore, when L3 is the Liar sentence, if one wants to classify True(⌜L3⌝) ∨
¬True(⌜L3⌝) as true, one must either classify True(⌜L3⌝) ∨ True(⌜L3⌝) as well, or

one must give up some assumptions above. It is very unclear which choice one has to

make, and this fact suggests that there is a fundamental tension between any sentence

involving the Liar with our classical intuition about truth — not just the tension between

the Liar itself and Tarski’s T -schema. Therefore, there is sufficient reason to treat any

sentence involving the Liar with caution, even if it has the form of a classical tautology.

Thus, it is not arbitrary — or even advisable — to distinguish between s and s5.
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There are further interesting questions about the differences between the Kripkean

theories and the theory proposed in this paper.

Firstly, one might wonder are the ungrounded tautologies4 the only kind of sentences

that the proposed theory classifies as true, but the Kripkean theories do not? If not, what

are some other examples?

Moreover, besides the minimal fixed points, Kripke also proposed other fixed points of

the Kripke-jump which could have meaningful interpretations. One fixed point that seems

to be closely related to the theory developed here is the “largest intrinsic fixed point”,

which he characterises as “the unique ‘largest’ interpretation of T (x) which is consistent

with our intuitive idea of truth and makes no arbitrary choices in truth assignments.”

(Kripke, 1975: p. 709 - 710). It would be interesting to compare the theory proposed in

this paper with this fixed point.

Another interesting question arises from the fact that while TWK ⊆ T , we find that T SK
and T are incomparable. In some sense, this is to be expected — after all, the definition of

hereditarily successful really reflects the weak Kleene intuition that if a part of a sentence

is neither true nor false, then the whole sentence is neither true nor false. It would be

interesting to build up a definition of truth from the successful sentences in a way closer to

the strong Kleene intuition that, for example, for a disjunct to be true we only need one

of its disjuncts to be true. Then we might be able to get a theory of truth that contains

the Kripkean theory based on the strong Kleene logic.

To conclude this section, I want to emphasise an essential difference between Kripke’s

theory and the proposed one. In Kripke’s theories, one always starts from the bottom,

and all different candidates for an extension of truth (whether it is the minimal, intrinsic,

or the largest intrinsic fixed point, or even a fixed point based on some none-empty sets)

are eligible because they are all fixed points of the Kripke-jump — which means that they

are grounded on something. However, in the proposed theory, no importance is given to

groundedness. The only thing that matters is whether there is a unique way to assign a

truth value to a sentence. I believe this is a more natural way to think about truth, and

it is how people actually approach potentially problematic sentences in natural language.

4To answer these questions, one of course needs to define precisely the notion of “ungrounded
tautologies”.
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Chapter 4

Comparison with the Revision

Theory of Truth

Besides Kripke’s theory, there is another important theory of truth that keeps the

truth predicate non-hierarchical — the Revision Theory of truth. In fact, my own proposal

in this thesis is a modification of this theory. In this section, I will first introduce the

Revision Theory, and present its explanation of the Liar paradox. I will then develop

the theory in the infinite propositional language and discuss my objections. Lastly, I will

elucidate the similarities and differences between the Revision Theory and the theory

proposed in this thesis.

4.1 Introduction to the Revision Theory of Truth

The Revision Theory of truth builds on a theory of definition that allows circularity. The

essential feature of this theory is that it does not give a fixed extension to the predicate

True, so one can only talk about whether a sentence is “true” relative to a “stage” of

evaluation.

The idea is that in a non-circular definition of a predicate (e.g. “is an even number”),

one can determine its extension from its defining rule (e.g. “is divisible by two”). However,

this is impossible when the defining rule also mentions the predicate itself, because then

to apply the rule one has to know its extension in the first place. For a trivial example, if I

define a number to be “good” if the number is good, then I cannot determine the extension

of “good” because I need to know it before applying this definition. In this case, revision

theorists argue that the definition provides “a rule that can be used to calculate what

the extension should be once we make a hypothesis concerning the extension” (Gupta

and Belnap, 1993: p119). Given the hypothesis for the extension, together with all the

This Chapter is based on an essay I wrote for an individual project done with Dr. Thomas Schindler.
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relevant facts in our world, one can calculate a revised extension, which is then used as

another hypothesis, and the process goes on. In particular, they suggest that Tarski’s

T -schema — “ϕ is true if and only if ϕ” — can be used as a definition of the predicate

True.

For example, suppose that there are two sentences in our language γ = “γ is not true”

and δ = “grass is green” and we apply Revision Theory to calculate the extension of True

at each stage. The relevant fact in our world here is that grass is indeed green. Then the

T -schema yields two partial definitions for True: (i) “γ is true =def γ is not true” (ii)

“δ is true =def grass is green” (note that δ, or “grass is green”, on the left-hand side is

just a sentence — a syntactical object — in the language, while the right-hand side of

this partial definition is a proposition regarding a fact in our world). These are partial

definitions for updating the hypothetical extension of True.

Let us first make the hypothesis that the extension of True is the empty set. At

stage 0, according to the hypothesis and the relevant fact (i.e. grass is indeed green), the

criterion “γ is not true” and “grass is green” are both satisfied, and hence one revises the

hypothesis to include both γ and δ in the extension of True at stage 1. However, then “γ

is not true” is not satisfied although nothing changes the fact that grass is green, so one

revises the hypothesis again to conclude that the extension of True only contains δ at

stage 2. This process goes on indefinitely, and one can see that it is impossible to give a

stabilised extension for the predicate True regardless of what the hypothesis one makes at

stage 0 is — the extension of True always includes δ after stage 1 but oscillates between

including and not including γ at each stage. Thus, we can only talk about whether a

sentence is “true” relative to a stage of evaluation.

Then the reaction we have towards the Liar is reflected by the sequence of revision of

the extension of True: assuming it to be true at first would lead one to conclude later

that it is false, and vice versa. The revision theorists claim that the non-paradoxical

sentences (e.g. “grass is green”) are those that are always included in the extension of

True after some finite stage regardless of the hypothesis at stage 0, or always excluded

in the extension of True regardless of the initial hypothesis (Gupta and Belnap, 1993:

p137).1

4.2 Revision Theory in the Infinitary Propositional

Language

I now develop the theory in the infinitary propositional language, based on Field (2008:

pp. 186 - 187). Recall that in this language, all relevant facts about the world are decided

1The Truth Teller sentence “This sentence is true” is thus classified as paradoxical because although it
stabilises to either true or not true after some finite stage, exactly which one depends on the hypothesis
at stage 0.
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in the metatheory and are represented as ⊤ or ⊥ in the language. Therefore, in order

to define the revision rule, we only need to consider the hypothetical extension of truth.

Moreover, in this language, there is no predicate. However, we can just use the valuations:

extensions of truth can be seen as the set of sentences that are assigned 1 by a valuation.

Definition 4.1 (Revision Rule). The revision rule τ : P(S) → P(S) is defined as follows.

Let S1 ⊆ S and we define τ(S1). Let v : S → {0, 1} be the valuation such that v(s) = 1 if

s ∈ S1 and v(s) = 0 if s /∈ S1. Then we define τ(S1) = {s ∈ S | v(d(s)) = 1}.

That is, given a hypothetical extension of truth S1, the revision rule gives an updated

hypothesis τ(S1), containing all those s such that d(s) is true under the valuation which

assigns 1 to every propositional letter in S1 and 0 to the other letters. Keep applying the

revision rule gives us the revision sequence:

Definition 4.2 (Revision Sequence). A revision sequence is a transfinite sequence of length

ordinal Sα ⊆ S such that Sα+1 = τ(Sα) for all α and for a limit ordinal λ, Sλ satisfies

{s | (∃β < λ)∀δ(β ≤ δ < λ→ s ∈ Sδ)} ⊆ Sλ ⊆ {s | (∀β < λ)∃δ(β ≤ δ < λ ∧ s ∈ Sδ)}.

Remark 4.3. At the limit stage λ, a sentence is included if there is some stage β < λ

such that for all later stages δ ≥ β, the sentence is included in the extension of truth; and

it is excluded if for all stages β < λ there is some later stage δ ≥ β such that the sentence

is not included in the extension of truth.

In other words, a sentence is included at the limit stage if it has been stably included

in the extension of truth after some sufficiently large stage, and it is excluded otherwise.

Then a theory of truth is given by including sentences that are stably included in the

extension of any revision sequence after a sufficiently large stage:

Definition 4.4 (Revision Truth). A sentence s ∈ S is true if for all revision sequence Sα

there is γ such that for all β ≥ γ, s ∈ Sβ.

Example 4.5. 1. Liar: let s ∈ S be such that d(s) = ¬s. Then s always oscillates

between being true and false in any revision sequence.

2. Truth Teller: let s ∈ S be such that d(s) = s. Then s is true in a revision sequence

Sα if and only if s ∈ S0.

Therefore, none of them is true in the Revision Theory.

4.3 Issues with the Revision Theory

I will now argue that this theory is not satisfactory in two ways:

1. The explanation it provides for the truth does not work well for non-paradoxical

sentences.
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2. It overemphasises the significance of the revision sequences.

Moreover, in the discussion of the second point, I will illustrate how the theory proposed

in this thesis resolves the problems.

Firstly, by using the Revision Theory for both paradoxical and non-paradoxical

sentences, it provides explanations for the former at the expense of the latter. Since

there is no fixed extension for True, revision theorists claim that the semantic status

for a sentence is the pattern of its revision sequence (Herzberger, 1982a: p492) or the

“signification of truth is a rule of revision”(Gupta and Belnap, 1993: p139). However, this

would yield a very unnatural explanation for non-paradoxical sentences. For example, the

semantic status for “grass is green” is the pattern of revision sequence where the sentence

is always included in the extension of True, thus, according to the explanation of the Liar,

our reaction towards it should be as follows: at some initial stage we make a hypothesis

that it is “true” or “false”, then we revise our hypothesis according to the relevant fact in

our world, and we continue doing it indefinitely (or maybe by some meta-theorem we can

ensure ourselves that it will always stay in the extension). However, actually we just say

it is true and that’s it — we do not keep revising our conclusion.

The second objection to Revision Theory is that the theory overstates the importance

of the revision sequence. This is because there are sentences that keep oscillating for all

initial hypotheses except for one where it stabilises.

Consider the two sentences below:

1. ϕ = (¬True(⌜ϕ⌝) ∧ ¬True(⌜ψ⌝)) ∨ (True(⌜ϕ⌝) ∧ True(⌜ψ⌝))

2. ψ = (True(⌜ϕ⌝) ∧ ¬True(⌜ψ⌝)) ∨ (True(⌜ϕ⌝) ∧ True(⌜ψ⌝))

Are they paradoxical? Intuitively, we would argue — in the same way when we face

the Liar — as follows: assume ϕ is true and ψ is false, then we can calculate from the

T -schema that ϕ is false and ψ is true, a contradiction. Then we check all the other

possibilities, and find that all of them lead to a contradiction, except for the case when

we assume both of them to be true. Therefore, I believe we should conclude that they

are not paradoxical — this is like a logic puzzle and both sentences are true. However,

the Revision Theory2 classifies them as paradoxical, because they do not stabilise on all

initial hypotheses. In a language that contains these two sentences, one can calculate that

the revision sequence for ϕ and ψ is as follows:

ϕ 1 0 0 1 . . .
ψ 0 1 0 0 . . .

2Or, the most natural extension of this theory for sentences that refer to each other. The sketch
for this theory in Chapter 4 of Gupta and Belnap 1993 is discussed only in the presence of a directly
self-referential sentence, without considering sentences that refer to each other.
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Starting from any initial hypothesis for the extension of True that does not include

both of them, one would end up in the above circle and conclude that the extension of

True keeps oscillating between including and not including ϕ and ψ. However, if one

includes both in the initial hypothesis, then the extension of True will always include

both of them after the first stage.

The point of this example is that even if there is a hypothesis that stabilises, making

a random initial guess may not lead to it no matter how many times one revises her

hypothesis. I believe what is really important is whether there is a hypothesis that

stabilises. This is exactly how the proposed theory works — checking whether there is a

unique fixed point for the ascription function, instead of whether all initial hypothesis

stabilises to the same point after applying the function for sufficiently many times.

The revision sequence is like Newton’s algorithm for finding the root of a function:

it makes an initial guess and revises it according to a certain update function, and the

output gets closer and closer to the root. However, for the algorithm to work, one needs

the function to be “nice” and the initial guess should be “close enough” to the root. In

the above example, it turns out that one is “close enough” to the root only when one

starts with the root.

We can formally see this in the propositional language:

Example 4.6. Let d(s0) = (¬s0∧¬s1)∨ (s0∧ s1) and d(s1) = (s0∧¬s1)∨ (s0∧ s1). Then
s0 and s1 represent the two sentences in the above example. They are not true according

to the Revision Theory (Definition 4.4). However, the ascription function fs0 and fs1 are

both successful, both having the unique fixed point (1, 1). Therefore, both sentences are

true according to the theory proposed in this thesis.

This shows the first difference between the Revision Theory and the theory proposed

in this thesis: the former emphasises the revision sequence resulting from applying an

update rule repeatedly, while the latter focuses on whether there is a unique fixed point

for the rule. We will now see a second essential difference between the two theories by

considering an attempt to resolve the issue mentioned above.

The most straightforward way to incorporate cases like Example 4.6 is to say that

if there is a unique initial hypothesis for True that stabilises, then the sentences are

non-paradoxical. Let us call sentences satisfying this modification unproblematic:

Definition 4.7. A sentence s ∈ S is unproblematic if for all revision sequence Sα there

is γ such that for all β ≥ γ, s ∈ Sβ, or if there is a unique initial hypothesis S0 such that

for all revision sequence starting with S0, there is γ such that for all β ≥ γ, s ∈ Sβ.

However, this definition fails to resolve the above issue. In fact, it creates an even

worse problem — the semantic status of a sentence will depend on which sentence system

one works with.
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If we work in a sentence system (S, d) where the s0 and s1 in Example 4.6 are the

only sentences in S. Then both of them are unproblematic, because {s0, s1} is the only

initial hypothesis that gives rise to a revision sequence where the two sentences eventually

stablise. However, let (S ′, d′) be an extension of (S, d) where we add the Truth Teller s2

with d′(s2) = s2. Then both {s0, s1} and {s0, s1, s2} are initial hypotheses that stabilises,

so s0 and s1 are not unproblematic in (S ′, d′).

Formally, we have just seen:

Lemma 4.8. There are sentence systems (S1, d1) and (S2, d2), s1 ∈ S1, s2 ∈ S2 such that

s1 is isomorphic to s2, s1 is unproblematic in S1 but s2 is not so in S2.

This issue arises because the revision rule is defined globally for the predicate True —

to apply the rule, one has to give an initial hypothesis for every sentence in the language,

and then the revision rule is applied to all sentences at once. Therefore, it gives a chance

for a sentence to influence the semantic status of another completely irrelevant sentence —

in the example above, s0 and s1 are sentences referring to each other, while having no

relation to the Truth Teller s2, but the addition of s2 changes the semantic status of s0

and s1.

Admittedly, it is quite possible that further modifications would give a version of

Revision Theory that solves these problems, but I think they would be a bit ad hoc in the

sense that less and less importance would be given to the revision pattern, contrary to the

elegance of this idea when only directly self-referential sentences are present. Analogies

with Newton’s algorithm continue here: I believe the necessity for these modifications

results from putting too much weight on a technical tool for finding the root. It is whether

the function has a root that is important, instead of the revision sequence that sometimes

leads to the root.
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Chapter 5

Other Aspects of the Theory

In this chapter, we discuss how the theory developed in this thesis can be used to shed

light on other philosophical questions about truth and paradox. We will first see a way

that the hypodoxical sentences — like the Truth Teller — can also be seen as paradoxical.

Then, I will use the theory to formally capture the intuition that the Liar circle can be

reduced to the Liar sentence itself. Lastly, I will discuss how one might modify the theory

to respect certain intuitions about sentences involving the Liar.

5.1 Paradoxical Hypodox

In the literature, there are arguments implying that certain hypodoxical sentences — like

the No-No paradox — are paradoxical (Sorensen, 2001: Ch11; Cook, 2011). However,

these arguments either rely on contentious metatheoretical assumptions or on strong

principles governing the truth predicate. In this section, I will first present two arguments

supposedly demonstrating that the No-No paradox is a genuine paradox. I will then argue

that each of them depends on unwarranted assumptions. Finally, using the technical

tools developed in this thesis, I will offer a new argument that every hypodox can indeed

be treated as a paradox, albeit in a weaker sense than the sense in which the Liar is

paradoxical.

The No-No paradox is the pair of sentences L1: “L2 is not true.” and L2: “L1 is not

true.” It is easily seen that assigning one of them as true and the other as false are the

only two possibilities that do not lead to a contradiction. However, we can not decide

which one is true and which one is false, so, like the Truth Teller, they are hypodoxical

sentences.

Cook (2011) presents two arguments for the No-No paradox being a genuine paradox1.

1I will outline both arguments below. However, note that Cook (2011) only endorses the second one.
He presents the first argument only because he claims that Sorensen (2001) draws from it the conclusion
that the symmetry principle should be abandoned. Cook himself uses the second argument to establish
symmetry as a mathematical theorem rather than a philosophical principle.
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The first one appeals to a metatheoretical principle involving symmetry. Noticing that

the two sentences in the No-No paradox are completely symmetrical — each stating that

the other is not true — the principle claims that “there seem to be no principled grounds

for any semantic distinction between” (Cook, 2011: p. 468) the two sentences, and hence

they must have the same truth value (Sorensen, 2001: p. 166). However, as we have

already noted, they must have opposite truth values to avoid a contradiction. Therefore,

the No-No paradox is really paradoxical.

The problem with this argument is to conclude that the two sentences must have

the same truth value from their symmetrical structure. Of course, we should expect

some symmetry of their semantic status, but having the same truth value is not the only

way two sentences can have a symmetrical semantic status. In fact, the way they are

hypodoxical is already symmetrical. Together with T -schema, there are two situations: if

both are true or both are false, then they generate a contradiction; while if one of them

is true and the other is false, then they are consistent with each other. This is already

symmetrical — in any situation, we can swap the truth value of the two sentences while

staying in the same situation. It is not that we have decided that L1 must be true and L2

must be false for them to be consistent, but rather any one of them can be true and the

other false. They remain symmetrical in this respect.

This problem is most evident in a similar example in mathematics. Let x, y be two

integers such that x = −y and y = −x. Then they also have a symmetrical structure as

do the two sentences in the No-No paradox. However, no one would conclude that x must

be equal to y because of this symmetry, and hence the solution to this set of equations

is x = y = 0. Rather, any pair (n,−n) is a solution to these equations. Moreover, this

solution set is symmetrical with respect to x and y — whenever x = p and y = q is a

solution, x = q and y = p is also a solution. The same applies to the No-No paradox.

Symmetrical structure only ever suggests that the two sentences play an interchangeable

role, so that swapping their truth value should not change the situation we are in. It does

not suggest that they must have the same truth value.

Therefore, the metatheoretical principle that symmetrical sentences must have the

same truth value is unwarranted, and the first argument fails to show that the No-No

paradox is a genuine paradox.

The second argument given by Cook is that under mild conditions on the Truth

predicate, we can actually prove that the two sentences in the No-No paradox must receive

the same truth value — “the symmetry principle is not a philosophically or intuitively

motivated metatheoretic principle that can be abandoned in the face of recalcitrant data,

but is instead an object language theorem” (Cook, 2011: p. 474). However, I will argue

that the condition he gives is not mild at all — namely that the Truth predicate satisfies

provability conditions and hence Löb’s theorem: if ⊢ True(⌜ϕ⌝) → ϕ, then ⊢ ϕ, i.e., if a
sentence’s truth implies this sentence, then this sentence holds.
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There are two ways to see that this is a very implausible condition. First, let ϕ be

“grass can fly”. Then certainly one would agree that if “grass can fly” is true, then grass

can fly, although no one would conclude thus that grass can fly. In fact, proving Löb’s

theorem from the provability conditions is exactly the same argument used in Curry’s

paradox to show that any sentence holds (Smith, 2013: p34), so one surely does not want

to accept this. Second, as mentioned in (Smith, 2013) Löb’s theorem implies Gödel’s

second incompleteness theorem (Kreisel, 1965), which in this context states that if Cook’s

theory of truth is consistent then “it is not true that 0 = 1” does not hold. Such a

truth theory is hardly interesting since it even advocates a radical judgement of truth on

non-paradoxical sentences.

Hence, both arguments fail to show that the No-No paradox is a genuine paradox. Like

the Truth Teller, they do not generate any contradiction on their own. Nevertheless, I

will now argue — using the formal tools developed in this thesis — that there is a weaker

sense in which they are indeed paradoxical. In fact, I will show that all hypodoxes are

paradoxical in this sense.

Let us start by recalling the classification of the semantic status of sentences in

Definition 2.26. We classified a sentence s according to the behaviour of its ascription

function fs — whether it has no fixed point (or, using our terminology in Definition

2.14, it is paradoxical), has multiple fixed points (it is hypodoxical), or it has a unique

fixed point and ft has a unique fixed point for all t that s depends on (it is hereditarily

successful).

There is clearly another possibility of fs that we did not cover — fs has a unique

fixed point, but ft does not have a unique fixed point for some t that s depends on (in

our terminology, fs is successful but not hereditarily successful). What can we say about

sentences having these kinds of ascription functions?

In fact, these sentences are exactly those depending on hypodoxical sentences:

Lemma 5.1. Let s ∈ S be a sentence in the sentence system (S, d). If fs is successful,

but not hereditarily successful, then there exists t ∈ Ds such that ft is hypodoxical.

Proof. By Lemma 2.23, for all t ∈ Ds, ft has a fixed point. Since fs is not hereditarily

successful, there exists t ∈ Ds such that ft is not successful, so it must have multiple fixed

points.

One might wonder whether this gives a good reason to believe that some hypodoxical

sentences can be given a truth value after all: although one cannot decide its truth value

by looking at itself, one might find another sentence which depends on it, but together

they induce a function which has a unique fixed point. Then we can use this fixed point to

determine the truth value of the hypodoxical sentence. However, this is not possible, since

one can find sentences giving opposite truth values to the same hypodoxical sentence. Let

us give an example.
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Example 5.2. 1. Let d(s0) = s0 and d(s1) = (s0 ∧ s1) ∨ (s0 ∧ ¬s1) ∨ (¬s0 ∧ ¬s1). s0
is the Truth Teller, which is hypodoxical. However, fs1 has the following table:

(x, y) (1, 1) (1, 0) (0, 1) (0, 0)
fs1(x, y) (1, 1) (0, 1) (1, 1) (0, 1)

We can see that it has a unique fixed point, which is (1, 1). Thus, according to s1,

both itself and the Truth Teller are true, since this is the only way to consistently

assign truth values to them.

2. Let d(s0) = s0 again, while d(s2) = s0 ∧ ¬s2. Then fs2 has the following table:

(x, y) (1, 1) (1, 0) (0, 1) (0, 0)
fs2(x, y) (0, 1) (0, 0) (1, 1) (0, 0)

We can see that it has a unique fixed point, which is (0, 0). Thus, according to s2,

both itself and the Truth Teller are false, since this is the only way to consistently

assign truth values to them.

This example suggests a way to turn a hypodoxical sentence like the Truth Teller into

a real paradox in natural language. Let L0 be the Truth Teller, and let L1 be the sentence

“both L0 and L1 are true, or L0 is true and L1 is not true, or both L0 and L1 are not true”.

Let L2 be the sentence “L0 is true L2 is not true”. Note that Li is represented by si in

the above example. Now we have a paradox in the same way that the Liar is a paradox:

assume L0 is true. If L2 is true, then according to what it says, L2 is not true, which is a

contradiction. If L2 is not true, then according to what it says, L0 is not true, which is

also a contradiction. Therefore, L0 cannot be true. Now, assume L1 is true. Then one

of its conjuncts is true. However, when L0 and L1 are both true, none of the conjuncts

can be true. Therefore, L1 cannot be true. However, then one of its conjuncts — “L0

is true and L1 is not true” — is, after all, true. This means that L1 is true. This is a

contradiction. Hence, we find a paradox.

One might wonder whether the above way of turning the Truth Teller into a paradox

is trivial. It seems like when we are deriving a contradiction, we appeal to two sentences

that the Truth Teller does not depend on, so the problem is not related to Truth Teller

itself but with the added sentences. After all, given any sentence — paradoxical or not

— one can add a paradox like the Liar and then derive a contradiction. Then, although

it seems like these sentences create a paradox together, the problem is only with the

added paradoxical sentence, not the original one. For example, consider this argument

for turning “grass is green” into a paradox. Assume “grass is green” is true. If the Liar

is true, then the Liar is not true, a contradiction. If the Liar is not true, then it is true,

again a contradiction. Thus, “grass is green” cannot be true, but still, we can clearly
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derive a contradiction by going through the Liar paradox again. Then, it seems like, by

the same argument I gave above, I should say that this is a way of turning “grass is green”

into a paradox.

This is not the case. There is an essential difference between this trivial reasoning and

the one I gave above. The Liar sentence itself is paradoxical, so it is not surprising that

it can be used to derive a contradiction. However, in the example I gave, L1 and L2 are

not paradoxical on their own: as we saw, L1 only depends on L0 and itself, and there is a

unique way of consistently assigning a truth value to L1 and L0; L2 also only depends on

L0 and itself, and there is another unique way of consistently assigning a truth value to

L2 and L0. The problem is only that when these three sentences are put together, they

generate a paradox.

Admittedly, this still makes Truth Teller different from a paradox like the Liar, which

is paradoxical on its own, but I believe this is an interesting phenomenon worth noting

for the Truth Teller and provides a weak sense in which the sentence is paradoxical.

In fact, this observation generalises to all hypodoxical sentences. In the Truth Teller

scenario, one finds two sentences that both depend on the Truth Teller (which is also

the only sentence that the Truth Teller itself depends on) and yet force it to different

truth values. In general, a hypodoxical sentence s can depend on sentences other than

itself.2 Its hypodoxicality arises because there is more than one way to assign truth values

to the entire variable set3 of s in a consistent manner. Therefore, identifying the whole

variable set as the hypodox in the general case, one instead shows there is some sentence

t in the hypodox for which we can find two sentences that depend on t and compel t to

take conflicting truth assignments.

This phenomenon can be seen as a reason that the hypodoxes are really problematic —

the truth value of some sentence in the hypodox can be fixed to any value, and together

with other sentences in our language, they generate real paradoxes just like the Liar. We

now formally prove this result.

We first need a useful lemma, which will let us find sentences that correspond to any

ascription function.

Lemma 5.3. Let f : {0, 1}α → {0, 1}α be an arbitrary function. There exists a sentence

system (S, d) and s ∈ S with fs = f .

Proof. In fact, it is the same as constructing a sentence in propositional language that

has the truth table of an arbitrary logical connective. Let V = {s0, s1, . . . , sα′} be a set of

propositional letters, where si ̸= sj for all i ̸= j and |α′ + 1| = |α|.
Let P0 : {0, 1}α → {0, 1} be the projection map to the first coordinate. Let X =

{x̄1, . . . , x̄β} ⊆ {T, F}α be such that P0(f(x̄)) = T for all x̄ ∈ X. We write down the row

2In fact, up to isomorphism (as defined in Definition 2.39), the Truth Teller is the only hypodox that
depends on itself.

3That is, s and the sentences that s depends on (recall Definition 2.10).
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description σi for x̄0 using propositional letters in V with appropriate subscripts. For

example, let α = 3 and x̄i = (T, F, T ), then σi is the sentence s0 ∧ ¬s1 ∧ s2. Then let

d(s) =
∨β
i=0 σi. Note that other d(si) ∈ V are determined in the same way by using the

projection map to the (i+ 1)-th coordinate. One can check that fs = f , where V is the

variable set of s.

Next, we show that for any hypodoxical sentence s, there are at least two ways of

consistently assigning truth values to the variable set of s, so that some t in the variable

set of s receives two different truth values. Note that this is not yet the result we are

after — it only shows that there are two ways of assigning truth values to t which are

contradictory to each other, not that there are two sentences that depend on t and force

it to take these contradictory truth values. The proof is trivial, though it is important for

the main result.

Lemma 5.4. Let s ∈ S be a hypodoxical sentence in the sentence system (S, d). Then

there exists t ∈ Vs such that it receives different truth values in two different fixed points:

there exists x̄1, x̄2 of fs such that x̄1(α(t)) ̸= x̄2(α(t)). (Recall that α(t) is the index of t

in the variable set Vs of s.)

Proof. Since fs has multiple fixed points, there exist x̄1, x̄2 such that x̄1 ̸= x̄2. Then there

must be some i such that x̄1(i) ̸= x̄2(i). Let t be the i-th sentence in the variable set of s.

Then x̄1(α(t)) ̸= x̄2(α(t)), as required.

Finally, let us prove the main result of this section, which shows that for any hypodox,

there are sentences that depend on some sentence t in the hypodox and force t to take

contradictory truth values.

Theorem 5.5. Let s ∈ S be a hypodoxical sentence in the sentence system (S, d). Then

there exist s1, s2 ∈ S and t ∈ Vs such that s1 and s2 depend on t, fs1 and fs2 are both

successful, but the naive truth value 4 of t according to fs1 is 0, while the naive truth value

of t according to fs2 is 1.

Proof. Let t ∈ Vs be such that there exist two fixed points x̄1, x̄2 of fs such that x̄1(α(t)) ̸=
x̄2(α(t)), which exists by Lemma 5.4.

Let x̄0, . . . , x̄α be the fixed points of fs : {0, 1}α → {0, 1}α. Define ȳi such that ȳi(0) = 0,

and ȳi(j + 1) = x̄i(j) for all j < α; and ȳi such that z̄i(0) = 1, and ȳi(j + 1) = x̄i(j) for

all j < α. That is, the 0-th coordinate of ȳi is 0, while the rest is a copy of x̄i, and the

0-th coordinate of z̄i is 1, while the rest is a copy of x̄i. Let fs1 : {0, 1}α+1 → {0, 1}α+1

be a function such that fs1(ȳ0) = ȳ0, and fs1(ȳi) = z̄i for all i > 0, and fs2 : {0, 1}α+1 →
{0, 1}α+1 be a function such that fs2(z̄0) = z̄0, and fs2(z̄i) = ȳi for all i > 0. For any other

ȳ ∈ {0, 1}α+1, let fs1(ȳ) = fs2(ȳ) = fs(y1, y2, . . . , yα+1).

4Recall Definition 2.17.
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By Lemma 5.3, we can find a sentence system (S, d) and s1, s2 ∈ S such that fs1 = fs1

and fs2 = fs2 .

Thus, we have shown that every hypodox is paradoxical in a weak sense: we can

always find sentences in the language which force some sentence in the hypodox to take

contradictory truth values.

In fact, by the same proof method, one can show that for any given hypodox there

exist sentences (depending on some member of that hypodox) whose ascription functions

have arbitrarily chosen patterns of fixed points.

Lemma 5.6. Let s ∈ S be a hypodoxical sentence in the sentence system (S, d). Then

there exist s1 ∈ S and t ∈ Vs such that s1 depends on t, and fs1 is successful (paradoxical,

hypothetical).

There are several further questions worth exploring in this direction — namely,

examining the detailed fixed point patterns of the ascription functions of hypodoxical

sentences. For example, in Lemma 5.4, for any hypodoxical sentence s we only showed

that there is a sentence t ∈ Vs that can receive different truth values in different fixed

points of fs. We did not claim that s itself can also have different truth values. In fact,

this is not the case:

Example 5.7. Let d(s0) = s0 ∨ (¬s0 ∧ s1) and d(s1) = (s0 ∧ s1) ∨ (¬s0 ∧ ¬s1). fs1 has

the following table: There are two fixed points of fs1, namely (1, 1) and (1, 0). This means

(x, y) (1, 1) (1, 0) (0, 1) (0, 0)
fs1(x, y) (1, 1) (1, 0) (1, 0) (0, 1)

that there are two ways of consistently assigning truth values to this hypodox: assigning

both s0 and s1 as true, or assigning s0 as true and s1 as false. Thus, s0 has to be true in

any consistent assignment of truth values to the hypodox.

Therefore, there are hypodoxes for which — even though there are multiple consistent

assignments of truth values to all sentences in the hypodox— every one of these assignments

gives the same truth value to some particular sentence in the hypodox. This raises a

natural question: is this a sufficient reason to believe that this particular sentence should

be classified as true or false? Or, put in a more neutral way, could there be a fruitful

theory of truth in which such sentences are treated like ordinary (non-paradoxical) truths

or falsehoods?

I believe these questions open up rich avenues for further research. They also highlight

the robustness of the framework developed in this thesis: by analysing the patterns of

fixed points of an ascription function, we find new ways to assess the semantic status of

hypodoxical sentences.
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5.2 Reduction Operation

In (Rabern, Rabern, and Macauley, 2012), they provide a graph-theoretic sense where

the Liar paradox underlies every liar cycle of length n — L0 = “L1 is true”, L1 = “L2 is

true”, ..., Ln−1 = “L0 is not true”. However, we also have an intuition that this paradox

is not only similar to the Liar paradox, but it just is the Liar paradox after we get rid of

the redundant sentences in between. For example, there is really no need for L1 to be

here, because it is just a confirmation of L2, so we can just substitute L1 for L2. Similarly,

we can substitute L2 for L3, and so on, and finally we can substitute Ln−1 for ¬True(L0).

In general, if Li says something about the truth of Lj, then we can substitute that for

what Lj says. This can be captured by the tools we have:

Definition 5.8 (0-Reduction). Let h(x̄) = (h0(x̄), h1(x̄), . . . , hn(x̄)). Then we say g :

{0, 1}n → {0, 1}n is a 0-reduction of h if g(x̄) = (g0(x̄), g1(x̄), . . . , gn(x̄)), where

gi(x̄) = hi(x0, x1, . . . , xm−1, hm(x̄), xm+1, . . . , xn)

for some m ≤ n. That is, we substitute occurrence of xm in hi with hm(x̄).

The meaning of the above definition is as follows. Assume s1 depends on s2, which is

the m-th sentence in the list Vs1 . Let fs1 = (x̄) = (h0(x̄), h1(x̄), . . . , hn(x̄)). Then hm(x̄)

gives the revised truth value of s2 according to x̄. Then in other coordinates hi(x̄) of

fs1(x̄), we can substitute hm(x̄) for xm. Let us see it work in the Liar circle.

Example 5.9. Liar circle: let s0, s1, . . . , sn ∈ S be such that d(si) = si+1 for i < n, and

d(sn) = ¬s0. We have Vs0 = ⟨s0, s1, . . . , sn⟩ and fs0(x̄) = (x1, x2, . . . , xn, 1 − x0). Then

fs0(x̄) = (h0(x̄), h1(x̄), . . . , hn(x̄)) where hi(x̄) = xi+1 for i < n and hn(x̄) = 1− x0. Let

us substitute h1(x̄) = x2 for x1. Then we have g1(x̄) = (x2, x2, x3, . . . , xn, 1 − x0). Now

we can substitute g12(x̄) = x3 for x2, and then we have g2(x̄) = (x3, x3, x3, . . . , xn, 1− x0).

After n−1 steps, we have gn−1(x̄) = (xn, xn, xn, . . . , xn, 1−x0). Finally, we can substitute

gn−1
n (x̄) = 1− x0 for xn, and we have gn(x̄) = (1− x0, 1− x0, 1− x0, . . . , 1− x0, 1− x0).

Informally, let us see a Liar circle with 3 sentences: L0 = “L1 is true”; L1 = “L2 is

true”; L2 = “L0 is not true”. Then we can substitute what L1 says into L0 and get L′
0 =

“L2 is true”. Then we can substitute what L2 says into L′
0 and get L′′

0 = “L0 is not true”.

There is a corresponding syntactical operation for this reduction.

Definition 5.10 (Syntactical Reduction). Let s1, s2 ∈ S be propositional letters in the

sentence system (S, d). We say s2 is a 0-reduction of s1 if d(s2) can be obtained from

d(s1) by substituting some t ∈ V (s1) for d(t).

Further, we say s3 ∈ S is a reduction of s1 (or s1 can be reduced to s3) if there is a

sequence of sentences s1, s2, . . . , sα such that si is a 0-reduction of si−1 for all i ≤ n.
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Example 5.11. Take the Liar circle of length 3 where d(s0) = s1, d(s1) = s2, and

d(s2) = ¬s0. Then s0 can be reduced to s1 because d(s1) can be obtained by substituting

d(s1) for s1 in d(s0). Similarly, s1 can be reduced to s2. Therefore, we also have that s0

can be reduced to s2.

Note that there is still one step from what we want: we want to reduce the above

Liar circle to the Liar sentence L0 = “L0 is not true”, instead of L′′
0 = “L0 is not

true”. This is reflected in the formal definition because we only defined how to reduce

a function h : {0, 1}n → {0, 1}n to a function g : {0, 1}n → {0, 1}n, but to obtain

the Liar sentence, we need to reduce a function h : {0, 1}n → {0, 1}n to a function

g : {0, 1} → {0, 1}. From the example, we have already seen a natural way to do this,

because gn(x̄) = (1− x0, 1− x0, 1− x0, . . . , 1− x0, 1− x0) actually only depends on the

value of x0. Moreover, the 0-th coordinate of the output is 1− x0, which does not depend

on anything but the 0-th coordinate of the input. Therefore, one can forget about all the

other coordinates and just take the 0-th coordinate of both the input and the output to

obtain the Liar sentence. Thus, there is a way to reduce a function h : {0, 1}n → {0, 1}n

to a function g : {0, 1}m → {0, 1}m, where m < n.

Definition 5.12 (1-Reduction). Let x̄ = x0, . . . , xn and x̄′ = x0, . . . , xm−1, xm+1, . . . , xn,

where 0 ≤ m ≤ n. Let h(x̄) = (h0(x̄), h1(x̄), . . . , hn(x̄)). Then we say

g(x̄′) = (g0(x̄
′), . . . , gm−1(x̄

′), gm+1(x̄
′), . . . , gn(x̄

′))

is a 1-reduction of h if for all x0, x1, . . . , xn, we have gi(x̄
′) = hi(x̄) for all i ̸= m.

That is, we say g : {0, 1}n−1 → {0, 1}n−1 is a 1-reduction of h : {0, 1}n → {0, 1}n

if g is the same as h except that the m-th coordinate of h is removed. In general, for

m ≤ n, we define the set of sentences g : {0, 1}m → {0, 1}m which are reductions of

h : {0, 1}n → {0, 1}n recursively.

Definition 5.13 (Reduction). Let m ≤ n and h : {0, 1}n → {0, 1}n. We say g : {0, 1}m →
{0, 1}m is a reduction of h if:

1. m = n and g = h or g is a 0-reduction of h; or

2. g is a 1-reduction of h;

3. there is a sequence of reductions h0, h1, . . . , hk such that h0 = h and hk = g.

Therefore, g is a reduction of h if g can be obtained from h by a sequence of 0-reductions

and 1-reductions — i.e., by substituting what a sentence says into another sentence, and

when we find a sentence is redundant in the sense that no other sentence depends on it

after the substitution, we can remove it.
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Now we can formally say that the Liar circle can be reduced to the Liar sentence by

showing that the function corresponding to the Liar circle can be reduced to the function

corresponding to the Liar sentence.

Lemma 5.14. Let h : {0, 1}n → {0, 1}n be the function corresponding to the Liar circle

of length n and g : {0, 1} → {0, 1} be the function corresponding to the Liar sentence —

i.e. h(x̄) = (x1, x2, . . . , xn, 1− x0) and g(x) = 1− x. Then g is a reduction of h.

Proof. We have seen that hn(x̄) = (1−x0, 1−x0, 1−x0, . . . , 1−x0, 1−x0) can be obtained

from h by a sequence of 0-reductions. Notice that hn only depends on the value of x0, so

we can then perform a sequence of 1-reductions to remove all the other coordinates.

Similarly, the Truth Teller circle can be reduced to the Truth Teller sentence.

Lemma 5.15. Let h : {0, 1}n → {0, 1}n be the function corresponding to the Truth Teller

circle of length n and g : {0, 1} → {0, 1} be the function corresponding to the Truth Teller

sentence — i.e. h(x̄) = (x1, x2, . . . , xn, x0) and g(x) = x. Then g is a reduction of h.

Then some questions naturally arise:

1. Can we reduce any paradoxical sentences to the Liar and any hypodoxical sentence

to the Truth Teller?

2. Clearly the Liar and the Truth Teller cannot be further reduced, but if the previous

point is not true, what are all the irreducible sentences?

3. What about paradoxes, like Yablo’s, which correspond to an infinitary function?

These are interesting questions worthy of further research.

5.3 Classical Variation of the Theory

Recall from Section 3.4 that if a sentence depends on a paradoxical sentence, our theory

will not classify it as true, whereas Kripke’s theory sometimes does. For example, let

s0 be the Liar — i.e. d(s0) = ¬s0. Then strong Kleene version classifies the sentence

s1 with d(s1) = s0 ∨ T as true is classified as true, since no matter what truth value s0

takes, one disjunct (⊤) is already true, and under strong Kleene logic this suffices to

make the entire disjunction true. The supervaluation version classifies the sentence s2

with d(s2) = s0 ∨ ¬s0 as true, because s2 holds in any classical model. Although we have

argued that caution is warranted when dealing with sentences that depend on a paradox

— if these are classified as true, then certain classical principles have to be given up —

ultimately, the question is which classical intuition one wishes to preserve. After all, both

s1 and s2 are classically equivalent to ⊤ — under any classical valuation, they receive
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the value 1. One might therefore ask whether the intuition that classically equivalent

sentences should be classified as the same could be maintained, and whether our theory

can be modified to classify these sentences as true.

In this section, I develop a variant of the proposed theory of truth — henceforth

called classical truth — which does just that. It enjoys several desirable features: it is

classically consistent, closed under classical equivalence, and preserves semantic status

under isomorphism of sentence systems. Moreover, every one of Kripke’s three extensions

of truth turns out to be a proper subset of the classical truth.

Inspired by the fact that s1 and s2 are classically equivalent to ⊤, we may define a

sentence s to be classically true if d(s) is classically equivalent to d(s0) for some true

sentence s0.

In our previous example, s2 is classically true because we can find an s4 such that

d(s4) = ⊤. Then d(s4) is classically equivalent to d(s2) and s4 is classified as true; and s3

is also classically true since it can be reduced to s2. However, there is a technical issue

here: there might not be an s3 with d(s3) = ⊤ in some sentence system. This means that

we did not give ⊤ a name in the language system we are using. The issue can be easily

fixed by extending5 the original system (S, d) by adding a propositional letter s′ that is

not in S, and use s′ to denote ⊤.

Now, let us formulate classical truth:

Definition 5.16 (Classical Truth). Let s ∈ S be a sentence in the sentence system (S, d).

We say that s is classically true if there exists a sentence system (S ′, d′) extending (S, d)

and s1 ∈ S ′ such that s1 is true and d′(s) is classically equivalent to a d′(s1).

I believe the above definition is already well motivated, and we will study the formal

properties of classical truth. Nevertheless, one might seek to improve it be the following

example. Consider s2 as above, but we add a third sentence s3 such that d(s3) = s2. Then

d(s3) is not classically equivalent to any true sentence because it is just a propositional

letter. However, we clearly also want to classify s3 as true if we want to classify s2 as true,

because intuitively s3 says nothing but “s2 is true”. Using the notion we defined in Section

5.2, we can see that s3 can be reduced6 to s2, which in turn is classically equivalent to ⊤.

This leads to the following definition, though we will see shortly that this is problematic.

Definition 5.17 (Reducible to Classical Truth). Let s ∈ S be a sentence in the sentence

system (S, d). We say that s is reducible to classical truth if there exists a sentence system

(S ′, d′) extending (S, d) and s1 ∈ S ′ such that s1 is true and either

(1) d′(s) is classically equivalent to a d′(s1); or

5Recall Definition 2.37 on the extension of sentence systems.
6Recall definition 5.10 on syntactical reduction
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(2) there exists s2 ∈ S ′ such that d′(s2) is classically equivalent to d′(s1) and s can be

reduced to s2.

Note that reduction reflects reducibility to classical truth, i.e., if a sentence can be

reduced to another sentence which is reducible to classical truth, then the first sentence is

also reducible to classical truth.

Lemma 5.18. Let s1, s2 ∈ S be sentences in the sentence system (S, d). Suppose s1 can

be reduced to s2. If s2 is reducible to classical truth, then s1 is also reducible to classical

truth.

Proof. Trivially follows from the definition.

However, it does not respect classical equivalence because one can find two sentences

that are classically equivalent to each other, but one is reducible to classical truth while

the other is not.

Lemma 5.19. There are sentences s1, s2 ∈ S such that s1 is reducible to classical truth,

s2 is not, and d(s1) is classically equivalent to d(s2).

Proof. Let d(s0) = ¬s0 be the Liar. Let d(s1) = s0 ∨ s0 and d(s2) = s0. Then s1 is

reducible to ⊤, by substituting one of the s0 by d(s0), while s2 could only be reduced to

s0, ¬s0, ¬¬s0, . . . , none of which can be equivalent to a true sentence.

This is very undesirable: while a classically minded people might like to classify an s2

with d(s2) = s0 ∨ ¬s0 and an s3 with d(s3) = s2 as true, it would be very strange to say

that s1 is true on the ground that one can replace one of the s0 in d(s1) by d(s0) = ¬s0
and keep the other s0 unchanged.

A way to reconcile this issue is to require that one substitutes all instances of a

sentence s by d(s) when one performs a reduction:

Definition 5.20 (Uniform Reduction). Let s1, s2 ∈ S be propositional letters in the

sentence system (S, d). We say s2 is a uniform 0-reduction of s1 if d(s2) can be obtained

from d(s1) by substituting some t ∈ V (s1) for d(t) in all occurrence of t in d(s1).

Further, we say s3 ∈ S is a uniform reduction of s1 (or s1 can be uniformly reduced to

s3) if there is a sequence of sentences s1, s2, . . . , sα such that si is a 0-reduction of si−1

for all i ≤ n.

This resolves the dilemma above, as now s0 ∨ s0 could only be uniformly reduced to

¬s0 ∨ ¬s0, while s3 can still be uniformly reduced to s2.

A notion of truth built upon this idea would give:

Definition 5.21 (Uniformly Reducible to Classical Truth). Let s ∈ S be a sentence in

the sentence system (S, d). We say that s is uniformly reducible to classical truth

if there exists a sentence system (S ′, d′) extending (S, d) and s1 ∈ S ′ such that s1 is true

and either
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(1) d′(s) is classically equivalent to a d′(s1); or

(2) there exists s2 ∈ S ′ such that d′(s2) is classically equivalent to d′(s1) and s can be

uniformly reduced to s2.

Let us now explore the formal properties of this new notion of truth.

We first compare it with other notions of truth proposed in this thesis. Recall that

T denotes the set of all truth7. Let CT be the set of all classical truth8 and CTUR the

sentences uniformly reducible to classical truth. We have:

Lemma 5.22. T ⊊ CT ⊊ CTUR.

Proof. Follows from the fact that a sentence is classically equivalent to itself. To see that

the inclusions are proper, just use the examples given above.

Next, we show that both CT and CTUR enjoy some desirable properties — both are

closed under classical equivalence and are classically consistent.

CT is closed under classical equivalence:

Lemma 5.23. Let s1, s2 ∈ S. If d(s1) is classically equivalent to d(s2), and s1 is classically

true, then s2 is classically true.

Proof. Trivially follows from the definition of classical truth.

CT is classically consistent:

Lemma 5.24. Let s1, s2 ∈ S. If d(s1) is classically equivalent to ¬d(s2), then s1 and s2

cannot both be in CT .

Proof. Assume for a contradiction that s1, s2 ∈ CT . Then there exist sentence systems

(S1, d1) and (S2, d2) extending (S, d) and s′1 ∈ S1 and s
′
2 ∈ S2 such that d1(s1) is classically

equivalent to d1(s
′
1) and d2(s2) is classically equivalent to d2(s

′
2) and s

′
1 and s′2 are true.

Then there exist valuations v1 : S1 → {0, 1} and v2 : S2 → {0, 1} induced by the fixed

points of fs′1 and fs′2 such that v1(d1(s1)) = v1(d1(s
′
1)) = 1 and v2(d2(s2)) = v2(d2(s

′
2)) = 1.

Since d1(s1) = d(s1) and d2(s2) = d(s2) by the definition of an extension, we have

v1(d1(s1)) = v1(d(s1)) = 1 and v2(d2(s2)) = v2(d(s2)) = 1. Therefore, v2(¬d(s2)) = 0 ̸=
v1(d(s1)). However, then v1|S and v2|S witness that d(s1) is not classically equivalent to

¬d(s2), which is a contradiction. Therefore, s1 and s2 cannot both be in CT .

CTUR is also closed under classical equivalence:

Lemma 5.25. Let s1, s2 ∈ S. If d(s1) is classically equivalent to d(s2), and s1 ∈ CTUR

then s2 ∈ CTUR.

7Recall Definition 2.26.
8Recall definition 5.16
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Proof. If s1 is classically true, then we are done since classical truth is closed under

classical equivalence.

Otherwise, let s′1 be a sentence in a sentence system (S ′, d′) extending (S, d) such that

d′(s1) is classically true and s1 can be uniformly reduced to s′1. Suppose t0, t1, . . . , tα is

the sequence of uniform 0-reduction of s1 to s′1, where t0 = s1 and tα = s′1. Then we can

construct a sequence of uniform 0-reductions t′0, t
′
1, . . . t

′
α — where t′0 = s2 — by making

the same substitution whenever we can and let it remain unchanged otherwise. Formally,

assume ti+1 is obtained from ti by substituting s ∈ V (ti) for d(s) in all occurrences of s in

d(ti). Then we substitute s for d(s) in all occurrences of s in d(t′i) to obtain t′i+1. Note

that if s does not occur in d(t′i), then we have t′i+1 = t′i. We prove by induction that d(t′i)

is classically equivalent to d(ti) for all i ≤ α.

The base case is given by assumption, as d(t′0) = d(s2) is classically equivalent to

d(t0) = d(s1).

Assume d(t′i) is classically equivalent to d(ti) for some i < α. Assume also that

ti+1 is obtained from ti by substituting s ∈ V (ti) for d(s) in all occurrences of s in

d(ti). If s ∈ V (t′i), then d(t′i+1) is obtained from d(t′i) by substituting s for d(s) in all

occurrences of s in d(t′i)
9. Let v : S → {0, 1} be any valuation. Let v′ : S → {0, 1} be

such that it agrees with v on all variable except that v′(s) = v(d(s)). Clearly, we have

v(d(ti+1)) = v′(d(ti)) and v(d(t′i+1)) = v′(d(t′i)). Since d(ti) is classically equivalent to

d(t′i), we have v(d(ti)) = v′(d(t′i)). Therefore, v(d(ti+1)) = v(d(t′i+1)). This shows that

d(t′i+1) is classically equivalent to d(ti+1) since v is arbitrary.

Let s′2 = t′α. By induction, we have d(s′2) = d(α′) is classically equivalent to d(s′1) =

d(α). Since s′1 is classically true, we have s′2 is also classically true. Hence, s2 can also be

uniformly reduced to a classical truth.

CTUR is also classically consistent:

Lemma 5.26. Let s1, s2 ∈ S. If d(s1) is classically equivalent to ¬d(s2), then s1 and s2

cannot both be in CTUR.

Proof. If both of them are classically true, then by the previous lemma, they cannot both

be in CT . As CT ⊊ CTUR, we have s1 and s2 cannot both be in CTUR.

Thus, without loss of generality, assume s1 is not classically true. Then there exists a

sentence system (S ′, d′) extending (S, d) and s′1 ∈ S ′ such that s′1 is true and s1 can be

uniformly reduced to s′1.

Lastly, let us compare CT and CTUR with Krike’s extensions of truth. Recall from

Chapter 3 that TWK is the extension of the Kripkean truth under weak Kleene logic, T SK is

the extension of the Kripkean truth under strong Kleene logic, and T SvK is the extension

of Kripkean truth under supervaluation.

9Note that this includes the case where s does not occur in d(t′i)
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Lemma 5.27. T SK and CT are incomparable.

Proof. Let s0, s1, s2, s3 be such that d(s0) = ¬s0, d(s1) = s0 ∨ ¬s0 and d(s2) = s0 ∨ T ,
and d(s3) = s2. As we have already discussed, s1 in CT but not in T SK . On the other

hand, s3 is in T SK but not in CT . This is because s2 enters the extension of truth under

strong Kleene logic, in the first step, and then s3 will be included in the next step.

Lemma 5.28. T SvK ⊊ CTUR.

Proof. We show that T SvK ⊆ CT (they cannot be equal as T ⊆ CT ).

We will show by induction that Xα ⊆ CT and Yα∩CT = ∅ for all α, where (Xα, Yα) is

the extension and anti-extension of truth under the α-th application of the supervaluation

Kripke-jump. The basic idea is similar to the proofs in section 3.4, so we will provide a

proof sketch.

Firstly, by definition we have:

Xα+1 = {s ∈ S | Jd(s)Kv = 1 for all v such that v(Xα) = {1} and v(Yα) = {0}}.

Let s ∈ Xα+1. If s ∈ Xα then we are done by induction.

Otherwise, there must be some t ∈ Xα with t ∈ D(s). Replace all such t in d(s) with

d(t) to obtain a sentence ϕ′ which is a uniform reduction. We must have ϕ′ ∈ Xα. Thus,

we are done by induction.

Lastly, among the Kripkean theories, it is clear that we have:

Lemma 5.29. TWK ⊊ T SK ⊊ T SvK .

Proof. The inclusion part is a similar induction to above, so we omit. To see that the

inclusion is strict, consider d(s0) = ¬s0, d(s1) = s0 ∨ ⊤, and d(s2) = s0 ∨ ¬s0. Then

s1 /∈ TWK but s1 ∈ T SK . s2 /∈ T SK but s2 ∈ T SvK .
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Therefore, collecting the results above and those in Section 3.4, we have this hierarchy

of truth extensions:

TWK

T SK T

T SvK CT

CTUR

Figure 5.1: Hierarchy of Truth Extensions
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Chapter 6

Towards a Theory of Truth in the

First Order Language

In this Chapter I briefly outline how the proposed theory of truth can be formulated in

the first order language. I will discuss the technical challenges that arise and suggest

possible solutions to be further explored in future work.

In (Beringer and Schindler, 2017), they have shown how the notion of a “reference-graph”

— developed for propositional languages (Cook 2004, 2014; Rabern, Rabern, and Macauley,

2012) to represent the dependence pattern of sentences — can be extended to first order

language. In their case, the presence of quantifiers creates technical complications because

it makes the dependence relation much less straightforward than the propositional case.

The same obstacle appears for us to extend our theory of truth to first order language,

because an essential ingredient of the proposed theory is also the dependence relation. In

the propositional language, we defined1 that a sentence depends on another sentence if the

former contains the latter as a subformula. In a first order predicate language, we cannot

define the dependence relation in the same way. For example, consider a formalisation

of “all arithmetic sentences are true”: ∀x(Ar(x) → True(x)). Intuitively, we want to say

that this sentence depends on all arithmetic sentences. However, the sentence itself does

not contain any arithmetic sentence as a subformula. Moreover, neither could the relation

be determined by the range of the quantifier, because otherwise the above sentence would

depend on all sentences in the language. In fact, there is no syntactic way to define the

dependence relation in a first order predicate language, because what a sentence depends

on is built on the interpretation of the symbols — as in the above example, Ar — in the

language.

To formulate our truth theory in the first order language, we must first supply, for

each sentence ϕ a well-defined set Dϕ of sentences on which ϕ depends; only then can we

form its ascription function fϕ and analyze its fixed points. A natural candidate for Dϕ

1Recall Definition 2.8.
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can be given by employing Leitgeb’s (2005) dependence relation, which aims to capture

semantic dependence in the first order language. Unfortunately, Leitgeb’s definition does

not yield a unique dependence set for every sentence, and although he introduces the

notion of “essential dependence” to resolve this issue, essential dependence sets fail to

exist in some cases.

This chapter proceeds as follows. I begin by showing how our proposed theory can

be formulated in the first order language under the assumption that each sentence is

already equipped with a well-defined dependence set. From there, I turn to Leitgeb’s

(2005) dependence relation — and his subsequent notion of essential dependence — and

discuss the problem that essential dependence is not defined for all sentences. Lastly,

I will suggest two possible ways to resolve the issue, which I believe are worth further

exploration in future work.

The language I use is the language of arithmetic L, together with its standard model N.
The goal is to extend the language with a truth predicate True. The extended language is

denoted as LT . In the extended language, (N,Φ) |= ψ means the standard model theoretic

satisfaction where Φ is the interpretation of the truth predicate.

6.1 A Theory of Truth in the First Order Language

Let the dependence set Dϕ of ϕ be the set of sentences that ϕ depends on. We assume in

this section that there is a well-defined such set for any ϕ ∈ Sent(LT ).
We now follow the line of Section 2.2 to define the variable set, ascription function,

and classify sentences according to the pattern of fixed points of their ascription functions.

Definition 6.1 (Variable Set). We define the variable set Vϕ for ϕ as the set of sentences

that ϕ depends on plus ϕ itself: Vϕ = Dϕ ∪ {ϕ}.

Recall also that we identify Vϕ with a list of names of sentences ordered by the ordinals,

and where Vϕ(0) = ϕ. Also, we say the index of a sentence ψ ∈ Vs is the unique ordinal

αψ such that Vϕ(αψ) = ψ.

Each sentence ϕ corresponds to a function f
Dϕ
ϕ : {1, 0}|Vϕ| → {1, 0}|Vϕ| that takes as

input a hypothetical truth value of each sentence in Vϕ and outputs their truth values

according to the hypothetical values.

Note that we add a superscript Dϕ to the ascription function to indicate that it is

defined with respect to the dependence set Dϕ. We do this because it is currently unclear

which set we should choose as the dependence set for some sentences.

Definition 6.2 (Ascription Function). Let ϕ ∈ Sent(LT ) be a sentence in the extended

language. We define the ascription function f
Dϕ
ϕ : {1, 0}|Dϕ| → {1, 0}|Vϕ| coordinate-wise

as follows: f
Dϕ
ϕ (x̄)(i) = 1 if (N,Ψ) |= Vϕ(i) where Ψ is the set of sentences ψ such that

x̄(αψ) = 1, and f
Dϕ
ϕ (x̄)(i) = 0 otherwise.
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That is, given a hypothetical truth assignment x̄ to all the sentences in Vϕ, we take

the extension Ψ of the truth predicate to be the set of sentences ψ such that x̄ assigns the

value 1. Then the output of f
Dϕ
ϕ is a new truth assignment to the sentences in Vϕ according

to the hypothetical truth assignment: f
Dϕ
ϕ (x̄) assigns the value 1 to the i-th sentence

Vϕ(i) ∈ Vϕ if the standard model N satisfies the sentence Vϕ(i) under the extension Ψ,

and assigns the value 0 otherwise.

Example 6.3. 1. The Liar: let ϕ = ¬True(⌜ϕ⌝) be the Liar sentence. Assume that

Dϕ = {ϕ} — i.e. we have a notion of dependence correctly capturing the fact that

the Liar depends on itself. Then Vϕ = {ϕ} and f
Dϕ
ϕ : {0, 1} → {0, 1}. We have

f
Dϕ
ϕ (0) = 1, because (N, ∅) |= ¬True(⌜ϕ⌝), and fDϕϕ (1) = 0, because (N, {ϕ}) ̸|=
¬True(⌜ϕ⌝). Thus, we have f

Dϕ
ϕ (x) = 1− x.

2. The Truth Teller: let ϕ = True(⌜ϕ⌝) be the Truth Teller sentence. Assume that

Dϕ = {ϕ}. Then Vϕ = {ϕ} and f
Dϕ
ϕ : {0, 1} → {0, 1}. We have f

Dϕ
ϕ (0) = 0, because

(N, ∅) ̸|= True(⌜ϕ⌝), and f
Dϕ
ϕ (1) = 1, because (N, {ϕ}) |= True(⌜ϕ⌝). Thus, we have

f
Dϕ
ϕ (x) = x.

3. Yablo’s paradox: for all i ∈ ω, let ϕi be the formalisation2 of “for all j > i, ϕj is

not true”. Assume that Dϕ0 = {ϕi | i ∈ ω, i > 1}. Then Vϕ0 = {ϕi | i ∈ ω} and

f
Dϕ0
ϕ0

: {0, 1}ω → {0, 1}ω. One can check that the α-th coordinate of f
Dϕ0
ϕ0

(x̄) is given

by f
Dϕ0
ϕ0

(x̄)(α) = min{1− xi | α < i}.
Note that these functions are exactly the same as ascription functions of the corre-

sponding sentences in the propositional language3.

The classification is also the same as in the propositional case.

Definition 6.4 (Classisfication of Ascription). Let ϕ ∈ Sent(LT ) be a sentence in the

extended language. We say that the ascription f
Dϕ
ϕ is:

1. successful if the equation x̄ = fϕ(x̄) has a unique solution;

2. paradoxical if the equation x̄ = fϕ(x̄) has no solution;

3. hypodoxical if the equation x̄ = fϕ(x̄) has multiple solutions;

We proceed to define the notion of a hereditarily successful ascription.

Definition 6.5 (Agreement). Let ϕ ∈ Sent(LT ) be a sentence in the extended language

and let ψ ∈ Vϕ, where f
Dϕ
ϕ and f

Dψ
ψ are both successful. We say that the ascription function

f
Dϕ
ϕ agrees with the ascription function f

Dψ
ψ if the solution of the equation x̄ = f

Dϕ
ϕ (x̄)

agrees with the solution of the equation ȳ = f
Dψ
ψ (ȳ) in the sense that xαγ = yαγ for all

γ ∈ Vt.
2There are at least two ways this can be done: either extending the language (Leitgeb, 2005: p. 164),

or using a generalization of the diagonal lemma(Beringer and Schindler, 2016: pp. 3 - 4).
3Recall Example 2.13
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Definition 6.6 (Hereditarily Successful Ascription). Let ϕ ∈ Sent(LT ) be a sentence in

the extended language. We say that the ascription f
Dϕ
ϕ is hereditarily successful if it

is:

1. successful;

2. for any ψ ∈ Dϕ, f
Dψ
ψ is successful; and

3. f
Dϕ
ϕ agrees with f

Dψ
ϕ for any ψ ∈ Vϕ.

Again, we have this simplified definition of hereditarily successful ascription function

(the proof is completely similar so we omit):

Lemma 6.7. Let ϕ be a sentence in the extended language. The ascription f
Dϕ
ϕ is

hereditarily successful if and only if it is successful and for any ψ ∈ Vϕ, f
Dψ
ψ is successful.

Finally, we have the classification of sentences in the extended language LT .

Definition 6.8. Let ϕ be a sentence in the extended language. We say that ϕ is:

1. paradoxical if fϕ is paradoxical;

2. hypodoxical if fϕ is hypodoxical;

3. true if fϕ is successful and the solution of the equation x̄ = fϕ(x̄) satisfies x̄(0) = 1.

4. false if fϕ is successful and the solution of the equation x̄ = fϕ(x̄) satisfies x̄(0) = 0;

Example 6.9. Making the same assumptions in Example 6.3, we have that the Liar and

Yablo’s paradox is paradoxical, while the Truth Teller is hypodoxical.

Let us close this section by reflecting on our key assumption: each sentence ϕ comes with

a single, well-defined dependence set Dϕ. While the uniqueness of Dϕ is certainly desirable,

we can weaken this requirement without affecting our classification. This is because what

truly matters is the fixed-point behaviour of the resulting ascription functions. Suppose,

for example, ϕ has a collection of candidate dependence sets {Di
ϕ | i ∈ ω}. It suffices to

require that for any i, j the functions f
Diϕ
ϕ and f

Djϕ
ϕ share the same fixed-point pattern

— they must be both successful, paradoxical, hypodoxical, or hereditarily successful4.

Whether this weaker, “equivalent up to fixed-point pattern” condition can be met remains

open, but it may reduce some burden for future work.

4When they are both hereditarily successful, we need to check that they assign the same value to ϕ.
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6.2 Leitgeb’s Dependence Relation

In this section, I discuss the dependence relations proposed by Leitgeb’s (2005). We will

see that the notion of “essential dependence” provides a promising candidate for the

dependence set to be used in our theory of truth. In fact, for a large variety of sentences

(including the Liar, the Truth Teller, and Yablo’s paradox), this notion yields a unique

dependence set, which can be used to generate the ascription function and to correctly

classify those sentences. Nevertheless, there are sentences that do not essentially depend

on any set of sentences. We discuss this issue and propose two possible ways to resolve it

in the next section.

I will follow the notations in Meadows (2012), and I omit proofs of results that already

appeared in Leitgeb (2005).

Definition 6.10 (Leitgeb’s Dependence). A sentence ϕ depends on a set of sentences Φ

if for all Ψ, we have (N,Ψ) |= ϕ if and only if (N,Φ ∩Ψ) |= ϕ.

To gain some intuition for this concept, let us call a sentence true if it is included in

the extension of True and false otherwise. According to this definition, the literal meaning

of “ϕ depends on Φ” is this: if ϕ holds (or does not hold) under the assumption that all

sentences in Φ are true, then ϕ still holds (or does not hold) if we alter the truth value

of all sentences in Ψ \ Φ to false (and the reverse direction also holds). In other words,

whenever two candidate extensions of True agree on the truth-values of all sentences in

Φ, then whether ϕ holds remains the same even if we force every sentence outside Φ to be

false.

There appears to be an asymmetry in the definition. In order to keep the truth of ϕ

unchanged, it is of course natural to ask that any candidate extensions of True agree on

the truth of all sentences that ϕ depends on, but why should we put all other sentences to

false, instead of — for example — putting them to true? If other sentences are irrelevant,

it should not matter what we do with them. Thus, there seems to be a stronger notion of

dependence:

Definition 6.11. A sentence ϕ strongly depends on a set of sentences Φ if for all Ψ, we

have (N,Φ) |= ϕ if and only if for any ∆ ⊆ Φc, (N, (Φ ∩Ψ) ∪∆) |= ϕ.

That is, we should feel free to put into the extension of truth any sentence that is not

relevant, and the truth value of ϕ still should not change.

However, this is equivalent to the original definition, because the arbitrariness of Ψ in

the original definition already allows us to put any irrelevant sentence into the extension.

Lemma 6.12. For any sentence ϕ, we have ϕ depends on Φ if and only if ϕ strongly

depends on Φ.
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Proof. ⇒: Suppose ϕ depends on Φ. Let Ψ be any set of sentences. We need to show

(N,Ψ) |= ϕ if and only if for any ∆ ⊆ Φc, (N, (Φ ∩Ψ) ∪∆) |= ϕ.

1. Suppose (N,Ψ) |= ϕ and let ∆ ⊆ Φc. Since ϕ depends on Φ, we have (N,Φ∩Ψ) |= ϕ.

As ∆ ⊆ Φc, we have Φ ∩Ψ = ((Φ ∩Ψ) ∪∆) ∩Ψ. Therefore, (N, ((Φ ∩Ψ) ∪∆) ∩
Ψ) |= ϕ. By the order direction of the assumption that ϕ depends on Φ, we have

(N, (Φ ∩Ψ) ∪∆) |= ϕ.

2. Suppose (N, (Φ ∩ Ψ) ∪ ∆) |= ϕ and let ∆ ⊆ Φc. Since ϕ depends on Φ, we have

(N, ((Φ∩Ψ)∪∆)∩Φ) |= ϕ. By the same calculation as above, we have (N,Φ∩Ψ) |= ϕ.

Then using the other direction of the assumption that ϕ depends on Φ, we have

(N,Ψ) |= ϕ.

⇐: This is trivial — just take ∆ = ∅.

Nevertheless, the issue with this definition is that a sentence can depend on several

distinct sets of sentences. Even worse (for our purpose of using it to generate the

ascription function), according to Leitgeb’s definition, every sentence depends on the set

of all sentences in the language. In fact, as pointed out by Leitgeb:

Lemma 6.13. For any sentence ϕ, the collection of all sentences it depends on is a filter.

That is,

1. If ϕ depends on Φ, and Φ ⊆ Ψ, then ϕ depends on Ψ.

2. If ϕ depends on Φ and ϕ depends on Ψ, then ϕ depends on Φ ∩Ψ.

By clause (1), we can always add arbitrarily many irrelevant sentences to the set of

sentences that a sentence depends on. Leitgeb (2005) realises this issue and introduces

the notion of essential dependence:

Definition 6.14 (Essential Dependence). ϕ depends on Φ essentially if ϕ depends on Φ

and for any Ψ, if ϕ depends on Ψ then Φ ⊆ Ψ.

That is, an essential dependence set of ϕ is the smallest set of sentences on which ϕ

depends.

This set does not always exist5, but if it does, it is unique.

Lemma 6.15. If ϕ depends on Φ essentially, then Φ is the unique such set.

The essential dependence set thus offers a natural candidate for Dϕ in our theory. Its

only departure from the theory we have developed in the propositional language is that

5I will discuss this issue in more detail in the next section. For now, it suffices to keep in mind that
some sentences do not have an essential dependence set.
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the essential dependence relation is not transitive6 — recall that in order to define the

ascription function for ϕ, we need to collect all sentences relevant to ϕ, including those to

which it refers only indirectly. However, just as in Section 2.2, we can recover transitivity

by replacing each essential dependence set with its transitive closure under the essential

dependence relation.

By slightly abusing language, if ϕ depends on Φ essentially, and ψ ∈ Φ, we will also

say that ϕ depends on ψ essentially.

Definition 6.16. We first define a relation R ⊆ Sent(LT ) × Sent(LT ) on the set of

sentences as follows: ϕRψ if and only if ϕ depends on ψ essentially.

Let R∗ be the transitive closure of Rϕ.

Definition 6.17. We define the dependence set for ϕ as Dϕ = {ψ ∈ Sent(LT ) | ϕR∗ψ}.

Remark 6.18. If some sentence ϕ does not have an essential dependence set, then

according to our definition Dϕ = ∅. Then by definition 6.2, f
Dϕ
ϕ is also the empty function.

In this case, for now, we simply say that ϕ does not have an ascription function, and we

do not classify this sentence.

This yields a transitive dependence set suitable for defining ascription functions and

studying fixed point behaviour in our theory of truth as outlined in the previous section.

Moreover, note that this definition does give us what we want in the important cases

of the Liar, the Truth Teller, and Yablo’s paradox.

Example 6.19. 1. The Liar: let ϕ = ¬True(⌜ϕ⌝) be the Liar sentence. The essential

dependence set of ϕ is just {ϕ}. Thus, we have Dϕ = {ϕ}.

2. The Truth Teller: let ϕ = True(⌜ϕ⌝) be the Truth Teller sentence. The essential

dependence set of ϕ is also just {ϕ}. Then we have Dϕ = {ϕ}.

3. Yablo’s paradox: for all i ∈ ω, let ϕi be the formalisation of “for all j > i, ϕj is

not true”. Then the essential dependence set of ϕi is {ϕj | j > i}. Thus, we have

Dϕ0 = {ϕi | i ∈ ω, i > 1}.
These are exactly what we need in Example 6.3. Hence, the truth theory developed in

the previous section applies to these cases and produces the correct classification of those

sentences.

Therefore, despite the limitation that the theory applies only to sentences with an

essential dependence set, it already covers a wide range of cases — including many of the

most important examples in the literature.

6See Example 12 in (Leitgeb, 2005: p. 164) for a concrete counterexample.
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6.3 Sentences Without Essential Dependence Sets

As we have already mentioned, there are sentences which do not essentially depend on

any set of sentences. In this section, we present one such example and two potential ways

to resolve the issue.

Consider the nested Yablo’s paradox given in (Beringer and Schindler, 2016, 2017),

where ϕn is the formalisation of “there is an m > n such that for all k > m, ϕk is not

true”.

Let us first see informally that this is indeed a paradox. Suppose that we could assign

each sentence in the nested Yablo sequence a classical truth value in line with T -schema.

If we assign every one of them false, then the first sentence ϕ0 — which asserts that

“there is some point beyond which all sentences are false” — would turn out to be true,

contradicting our assignment. Therefore, at least one sentence must be true. Assume ϕn is

one such sentence. By what that sentence says, there must then be some later point m > n

such that every sentence after m is false. In particular ϕm+1 must be false. However, ϕm+1

also claims that beyond some point all later sentences are false, and since we have set all

those later sentences to false ϕm+1 must itself be true. We reach a contradiction again.

Hence, it is impossible to assign truth values to all ϕn’s consistently, and thus the nested

Yablo’s paradox is indeed a paradox.

We now illustrate that ϕ0 does not have an essential dependence set. First, as observed

by (Beringer and Schindler, 2017), ϕ0 depends on all sets of the form {ϕk | k ≥ m} for

any m ≥ 1. Thus, ϕn does not essentially depend on any set of sentences because the

empty set is the only set contained in all the above sets, while ϕn does not depend on the

empty set.

The first way to potentially solve this problem is to use a notion of “irrelevance”.

Let us first reflect on whether Leitgeb’s dependence relation captures our intuitive

idea of dependence in the nested Yablo’s paradox. We have seen that ϕ0 depends on

{ϕk | k ≥ m} for all m ≥ 1. Nonetheless, this is in some sense intuitively acceptable —

given the nested structure of the sentences, it refers to all sentences ϕk for k ≥ 1 because

of the existential quantifier, but any finite initial segment {ϕk | k < m} of the sequence

have no influence on the truth of ϕ0 because of the universal quantifier. Thus, one may

freely include — or omit — any such initial segment from the dependence set of ϕ0 without

worrying about whether the resulting set correctly captures the dependence relation.

However, there is a greater problem: by Lemma 6.13, ϕ0 also depends on {ϕk | k ≥
1} ∪ {1 = 1} and {ϕk | k ≥ 1} ∪ {ϕ} where ϕ is the liar. This is clearly not acceptable

as one should at least be able to exclude the completely irrelevant sentences from the

dependence set of ϕ0. However, unable to use essential dependence in this case, we cannot

tell the difference between these two sets and the sets {Yk | k ≥ m} for all m ≥ 1. They

are all dependence sets of Y0, and we are not able to distinguish them by set inclusion.

74



We aim for a notion of dependence that can help restrict the dependence set of Y0, so

that only sets of the form {Yk | k ≥ m} are included.

Definition 6.20. A sentence ϕ is irrelevant to ψ is there is Φ such that ϕ depends on Φ,

Ψ such that ψ depends on Ψ, and Φ ∩Ψ = ∅.

That is, if two sentences have some disjoint dependence sets, then they are irrelevant

to each other.

Example 6.21. Clearly, in the nested Yablo’s paradox, the sentence 1 = 1 and the Liar

are irrelevant to ϕ0.

We want to exclude the irrelevant sentences from the set of sentences that a sentence

depends on.

Definition 6.22. ϕ depends* on Φ if ϕ depends on Φ and for any ψ ∈ Φ, ψ is not

irrelevant to ϕ.

That is, if ϕ depends* on Φ, then Φ cannot contain any sentence irrelevant to ϕ.

Example 6.23. In the nested Yablo’s paradox, ϕ0 depends* on {ϕk | k ≥ 1}. In fact, ϕ0

depends* on Φ for any Φ containing a tail7 of Yk’s.

It would be great if these are all the sets that Yn depends* on. However, unfortunately,

this is not the case. Consider a sentence ψ which says “there is an m > 0 such that for

all k > m, Yk is not true, and the Liar is true”. That is, it says what ϕ0 says but claims

additionally that the Liar is true. Then this sentence is relevant to ϕ0, because for any

Φ such that ϕ0 depends on and any Ψ such that ψ depends on Ψ, there is m ∈ ω large

enough such that ϕm ∈ Φ ∩Ψ.

Thus, ϕ0 depends* on {ϕk | k ≥ 1} ∪ {ψ}. One can see that this new notion faces

almost the same difficulty as the original one — although the irrelevant sentences like

the Liar itself cannot be added into the dependence set, we can always first add it as a

conjunct to a relevant sentence, and then add the entire conjunction to the dependence

set.

Therefore, we need a finer-grained notion of irrelevance to avoid this issue. Whether

pursuing ever more refined notions of irrelevance would eventually solve the question or

lead to an infinite regress is a question for future work.

The second way to potentially solve the problem is to apply some metatheoretical

principle — to decide the dependence set of a sentence with nested quantifiers, only the

outermost quantifier matters.

I have argued that it is intuitively acceptable to say ϕ0 depends on {ϕk | k ≥ 1},
because ϕ0 does refer to all of them via the outermost existential quantifier. Let us further

7That is, there is some n ∈ ω such that {ϕk | k ≥ n} ⊆ Φ.
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see that taking this set as the dependence set of ϕ0 yields an ascription function and hence

classification of ϕ0 that gives the correct reasoning.

Assume Dϕ0 = {ϕk | k ≥ 1}. Then Vϕ0 = {ϕk | k ≥ 0} and f
Dϕ0
ϕ0

: {0, 1}ω → {0, 1}ω is

such that

f
Dϕ0
ϕ0

(x̄)(n) =

1, if there is m > n such that for all k > m, x̄(k) = 0;

0, otherwise.

Let us show that this function does not have any fixed point and observe that the

proof parallels how we would decide the nested Yablo’s paradox is paradoxical informally.

Firstly, 0̄ ∈ {0, 1}ω is not a fixed point, because f
Dϕ0
ϕ0

(0̄)(0) = 1. Therefore, assume x̄

is a fixed point of f
Dϕ0
ϕ0

— i.e. x̄ = f
Dϕ0
ϕ0

(x̄). Then x̄(n) = 1 for some n ∈ ω and hence

f
Dϕ0
ϕ0

(x̄)(n) = 1. By definition of f
Dϕ0
ϕ0

, there must be some m > n such that we must have

x̄(k) = 0 for all k > m. However, then x̄(m + 1) = f
Dϕ0
ϕ0

(x̄)(m + 1) = 1, contradiction.

This argument matches exactly with the informal reasoning we gave at the beginning of

this section.

Therefore, for both intuitive and pragmatic reasons, it is acceptable to ignore the inner

quantifiers in a sentence with nested quantifiers like “there is an m > 0 such that for all

k > m, ϕk is not true” and to say that it depends on the same set of sentences as the

sentence “there is an m > 0 such that ϕm is not true” depends.

Furthermore, as observed in (Leitgeb, 2005: p. 164), the latter sentence does have an

essential dependence set, {ϕk | k ≥ 1} — which is exactly what we need.

This suggests that we can use a two-step procedure to resolve the problem with nested

quantifiers: first, we appeal to some metatheoretical principle to transform the sentence

into one with only one quantifier — for example, by ignoring the inner quantifiers; then

we apply Leitgeb’s essential dependence relation to the resulting sentence to obtain a

unique dependence set.

There remain two critical questions for this approach:

1. How to formulate the metatheoretical principle for sentences with nested quantifiers

in general?

2. Is it true that all sentences having only one quantifier have an essential dependence

set? In (Leitgeb, 2005; Beringer and Schindler, 2016, 2017), only examples with

nested quantifiers are shown to have no essential dependence set, and it remains

open to characterise the class of sentences that have an essential dependence set.

These questions will be answered in future work.

Therefore, although there are sentences having no essential dependence set so that the

theory of truth developed in the previous sections does not apply, we have two potential

approaches to resolve this issue. The first way is to use a notion of irrelevance to exclude
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irrelevant sentences from the dependence set of a sentence. The second way is to appeal

to some metatheoretical principle to transform the sentence into one that has an essential

dependence set.

These potential solutions lead to further research questions interesting in their own

right — whether we can formally characterise when two sentences are irrelevant to each

other; and how to characterise sentences which do have an essential dependence set.

Furthermore, the proposed theory can already deal with important examples like the Liar,

the Truth Teller, and Yablo’s paradox. Therefore, the proposed theory of truth has robust

potential for future research.
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Chapter 7

Conclusion

In this thesis, I have introduced a theory of truth grounded in an intuitive procedure for

classifying the semantic status of a sentence — for any sentence, we identify sentences

relevant to it and ask whether there is a unique way of consistently assigning truth values

to all of them. This procedure is modelled by corresponding each sentence with a variable

set and an ascription function. The classification is then given by the pattern of fixed

points of the ascription function.

I have formally developed the theory of truth in an infinite propositional language,

and we see that it has certain advantages over the two dominant theories of truth in

the literature: Kripke’s theory of truth and the Revision theory of truth. Moreover, the

theory has robust applications in the study of semantic paradox.

Finally, I sketched how the framework can be extended to the first order language by

using the notion of essential dependence relation proposed by Leitgeb (2005). While some

sentences do not have an essential dependence set, many of the central examples in the

literature — Liar, Truth Teller, Yablo — do admit one and are correctly handled by the

theory. Furthermore, I proposed two strategies for filling the remaining gaps, each leading

to further research questions interesting in their own right.

In the future, I will further pursue the research questions raised in this thesis, including

a more detailed comparison with Kripke’s theory, the application of the theory to the

study of hypodoxes, and the completion of the first-order extension.
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